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Abstract

This thesis contains three essays on corporate financial transactions when there

is asymmetric information between firms and investors.

In the first essay, “Security Design under Common-Value Competition”, I show

common-value competition drives informed investors to propose debt financing,

because debt protects them against the winner’s curse. The information sensi-

tiveness of investors’ securities is positively related to their market power. Among

different aspects of market power, monopolistic power is the primary determinant.

In the second essay, “Security Design with Two-Sided Asymmetric Information”,

I study a model in which a firm organizes a security-bid auction when both the

firm and investors have private information. In equilibrium, the firm cannot

credibly reveal its private valuation by security design, and requires payments in

the most information-sensitive security family regardless of its valuation.

In the third essay, “Share Issues versus Share Repurchases”, Philip Bond, Hongda

Zhong and I study firms’ share issues and repurchases in a unified framework

with the informational friction that firms have superior information to investors.

We find asymmetric outcomes of issue and repurchase methods: firms separate

on different issue methods, but pool on the most efficient repurchase method.

Moreover, firms use more efficient issue methods when raising larger amounts of

capital. Both results are consistent with empirical evidences in the literature.
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Chapter 1

Security Design under

Common-Value Competition

1.1 Introduction

One of the most influential explanations for the uniquitous use of debt financing

is the signalling model of Myers and Majluf (1984) followed by Nachman and

Noe (1994), DeMarzo and Duffie (1999) and others. In these models, firms with

superior information issue the least information sensitive security, debt, to signal

high firm value and minimize underprcing. Yet financial markets for private firms,

which account for the majority of corporates, feature three substantial departures

from these models. First, private firms are usually financed by professional in-

vestors who have developed proprietary expertise in project evaluation and are

able to gain better insight into a firm’s prospect than the entrepreneur. Sec-

ond, securities for financing private firms are usually proposed by the informed

investors rather than by the entrepreneurs. Third, it is natural for an investor

designing a security to consider competition from other investors with almost

identical resources – cash; while in the standard models, the security designer is

the monopolistic owner of the investment opportunity – the firm.
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In the only existing paper that studies such a situation, DeMarzo et al. (2005)

predict the opposite of debt financing: an informed investor offers to finance a

firm in exchange for the most information sensitive security – levered equity or a

complete buyout, to signal high prospect of the firm under their investment and

minimize undervaluation of their offer.1 However, virtually all private firms have

their outside capital raised through securities less information sensitive than even

straight equity. Debt, convertible preferred equity or at most straight equity is

the predominant solution.2 I therefore argue the existing theories are incomplete

and sometimes counterfactual.

This paper complements this literature by showing security design is sensitive to

the structure of competition. DeMarzo et al. (2005) focus on competition in a

private-value environment, in which an investor’s private information coincides

with her own value added to the firm.3 This paper studies competition in a

common-value environment, in which each investor has a private estimation of

the firm’s “intrinsic” value which is independent of who finances it. The intrinsic

or common value may represent the firm’s assets in place or the entrpereneur’s

skills. With common values, the model prediction is restored to debt financing.

Since uncertainty in common values is a primary concern in many situations in

the financial market, I argue this model reconciles the existing theories with the

empirical evidence under a reasonable change of the assumption.

The model is set up as a security auction. A penniless entrepreneur has a project

to start, which requires a fixed amount of investment. A finite number of in-

vestors compete for the opportunity to invest. The random value of the project

1In their paper, this result is presented as “an investor offers to pay debt or cash to the
entrepreneur”, which is equivalent to levered-equity financing or a buyout.

2Kaplan and Strömberg (2003) document 79.8% of venture capital investment contracts use
convertible preferred equity, and the rest use combinations of convertible debt, preferred equity,
convertible preferred equity and straight equity. In the 2004-2006 Kauffman Firm Survey of
Entrepreneurs, among the 1710 reported incidences of outside financing, 93% are through debt
and the remaining are through equity (Robb and Robinson, 2014). In the 2016 Annual Survey
of Entrepreneurs conducted by the US Census Bureau, 98% incidences of outside financing are
through debt (Hwang et al., 2019).

3DeMarzo et al. extend their analysis on “formal auctions” in which the entrepreneur pre-
commits to a security design to common values, but restrict their study on “informal auctions”
in which investors freely design the security to private values.
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is common to all investors, about which each investor observes a private signal.

Each investor offers to invest in exchange for a security that she freely designs

subject to monotonicity and limited liability. The entrepreneur receives the offers

in sealed bids and accepts the most attractive one. This is a signalling game be-

cause the entrepreneur may infer investors’ private information from their offers

when evaluating the offers. Moreover, the structure of the game implies the en-

trepreneur’s evaluation of an offer and this investor’s gain conditional on winning

are both affected by other investors’ private information, which is not a feature

of the private-value model and makes the game difficult to solve. For this reason,

this paper can show the existence or non-existence of only part of all possible

equilibria.

With two investors, there is an equilibrium in which both investors offer debt.

This equilibrium survives the D1 refinement of Cho and Kreps (1987), which

implies it is supported by “reasonable” beliefs. There is no equilibrium in which

one investor makes her offer from an ordered set, such as debt with different face

values, and the other investor makes her offer from another ordered set that is

more information sensitive, such as equity with different shares. With an arbitrary

number of investors, there is no symmetric equilibrium in which offers are from

an ordered set more information sensitive than a threshold.

The intuition is as follows. As in standard auctions, an investor is more likely

to win when other investors have lower valuations of the firm. With common

values, this exposes an investor to adverse selection from her competitors, which

is known as the winner’s curse. This brings a two-fold advantage to offering

an information insensitive security. First, holding the set of scenarios in which

an investor wins constant, if she lowers the sensitiveness of her offered security

to decreases in other investors’ private signals, she can reduce the effect of the

winner’s curse and increase her payoff conditional on winning. Second, if an

investor’s security is much less information sensitive than the others’ bids, she

may win when other investors have higher signals instead of lower signals, which

reverses the winner’s curse into the winner’s blessing. This is because in a fully
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revealing equilibrium, the entrepreneur can infer investors’ private signals and

become better informed than any single investor. Holding an investor’s signal

constant, when the other investors have high signals such that the entrepreneur

believes the project is valuable, the least information sensitive security among

the offers may be considered the cheapest source of funding and chosen by the

entrepreneur.

In comparison, there is no winner’s curse in the private-value model of DeMarzo

et al. (2005). The primary force that drives their result is signalling incentives.

To make one’s offer attractive, an investor signals high private value by volunteer-

ing to hold the most information sensitive security, levered equity. With common

values, on the other hand, one’s signalling incentive is not as straightforward and

depends on the information sensitiveness of the security she plans to offer relative

to others’ offers. If an investor’s offer is more sensitive than the others’, her offer

is a cheaper source of financing and more attractive to the entrepreneur when the

entrepreneur believes in a low valuation. Therefore, the investor wants to signal

pessimism. Similarly, if one’s offer is less sensitive than the others’, she wants

to signal optimism. However, in both cases, the investor is doomed to send the

undesired signal: the very choice to hold an information sensitive security sig-

nals optimism, and the choice to hold an information insensitive security signals

pessimism. Therefore, the signalling incentive has no clear implication on the

equilibrium security design other than deterring deviation from a given equilib-

rium strategy to both more information sensitive securities and less information

sensitive securities.

The results have implications on the relation between the entrepreneur’s rev-

enue and the entrepreneur’s commitment power. Auction theory has established

that seller revenue increases if the rule of the auction requires payments to be

contingent on other bidders’ information or post-auction information (Milgrom

and Weber, 1982; Hansen, 1985; Crémer, 1987; Samuelson, 1987; Riley, 1988;

Rhodes-Kropf and Viswanathan, 2000; DeMarzo et al., 2005; Axelson, 2007). In

particular, with affiliated values, which nests common values and private val-
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ues as special cases, DeMarzo et al. show if the entrepreneur can precommit to

only considering financing through securities from an ordered set, such as debt

or equity, the entrepreneur’s revenue decreases in the information sensitiveness of

the precommitted ordered set (that is, increases in the information sensitiveness

of the entrepreneur’s payoff), and is highest when she is precommitted to debt

financing.4 Combined with the above, the result of this paper implies with com-

mon values, the entrepreneur without precommitment expects the same revenue

as making the best precommitment. In contrast, with private values, DeMarzo et

al. show investors offer levered equity financing or buyouts when they freely de-

sign securities, which implies the entrepreneur without precommitment receives

the lowest revenue among auctions with precommitment, and thus benefits from

committing to debt financing.

The results also shed light on the roles of different aspects of market power in

security design. In a model of security design under information asymmetry, the

relative market power between entrepreneurs and investors can be summarised in

three aspects: the competition structure, informational advantage and the right

to move first to design the security. A comparison of models with different as-

sumptions in these aspects from this paper and the existing literature indicates

the party with the larger market power receives the more information sensitive

security. In particular, two patterns hold, which imply an order of importance

among different aspects of market power. First, competition is the primary de-

terminant of security design among the three aspects of market power. As a

proxy for monopolistic power, I call an agent “indispensable” if the same project

payoff cannot be realised without the participation of this agent. If agents in one

party are indispensible while those in the other are not, the indispensable party

has the larger monopolistic power and receives the more information sensitive

security. For example, in the model of this paper, even though the investors have

private information and design the securities, the entrepreneur is the sole indis-

pensable party, and receives levered equity.5 That competition dominates the

4DeMarzo et al. present this result in their paper as the entrepreneur’s revenue is the highest
when the entrepreneur precommits to receiving call options in payment.

5Other examples in which the entrepreneur is the only indispensable party and receives
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other two aspects of market power is intuitive in this model: even though an in-

vestor is privately informed, she does not have access to her competitors’ private

information, which constitutes her informational disadvantage. Moreover, due

to competition, all investors’ private information is revealed to the entrepreneur

through their offers, which further strengthens an investor’s informational disad-

vantage. When designing the security, an investor is majorly concerned about

minimising the adverse effect of her informational disadvantage, and therefore

designs an information insensitive security.

The second pattern is, when both parties are indispensable, the party which moves

first to design the security receives the more information sensitive security. For

example, both parties are indispensable in the private-value model of DeMarzo

et al. (2005). If the entrepreneur can precommit to a security design, she com-

mits to debt financing and receives levered equity; if investors freely design the

securities, they receive levered equity or the whole project. Intuitively, when the

party with superior information designs the security, she retain an information

sensitive security to signal high project value to encourage acceptance; when the

party with inferior infromation designs the security, she retains the information

sensitive security to minimise the counterparty’s informational rent.

The paper is organised as follows. Section 1.2 sets up the security auction. Fol-

lowing DeMarzo et al. (2005), I call an auction in which the entrepreneur precom-

mits to an ordered set of securities a “formal auction”, and an auction in which

investors freely design securities an “informal auction”. Section 1.3 analyses a

formal auction in preparation for the analysis of the informal auction. Section

1.4 characterises equilibria of the informal auction. Section 1.5 discusses the re-

lation between different aspects of market power and security design. Section 1.6

concludes. All proofs are relegated to Appendix 1.7.2 and 1.7.3.

levered equity include the models of Myers and Majluf (1984), Axelson (2007), Burkart and
Lee (2016) and Yang (2020), as well as the formal auction with common values of DeMarzo
et al. (2005).
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1.1.1 Related Literature

This paper contributes to the literature on security design under information

asymmetry. While the first models in this literature consider adverse selection

problems of an informed security issuer (Myers and Majluf, 1984; Nachman and

Noe, 1994; DeMarzo and Duffie, 1999; Biais and Mariotti, 2005; DeMarzo, 2005;

Vanasco, 2017), this paper is more closely related to those papers on security

design by informed investors. As mentioned earlier, it is closest to DeMarzo et al.

(2005), who study a similar setting but with private values. In his review on

security auctions, Skrzypacz (2013) discusses the effects of the seller’s selection

and the winner’s curse on security design in common-value environments. For

each of the two effects, he provides an example in which the effect drives bidders

to pay with securities rather than cash. Garmaise (2007) studies a common-value

auction in which investors design securities after the entrepreneur announces and

commits to a ranking of securities. Based on their private information, investors

offer securities that are overvalued in the announced ranking. Fishman (1989) and

Inderst and Mueller (2006) consider competition between an informed investor

and uninformed investors. Fishman considers an informed investor who trades-

off the advantage of offering a buyout to deter competition from uninformed

investors, and the advantage of investing in levered equity which induces the en-

trepreneur to make an efficient accept/reject decision. In the model of Inderst

and Mueller, the informed investor designs a security which to the largest extent

commits herself to an efficient investment decision after screening the project.

Burkart and Lee (2016) study a bilateral trade in which the informed investor

designs an information insensitive security to signal low firm value and purchase

the security at a low price.6 Vladimirov (2015) considers securities for financing

privately informed bidders in takeover contests, and shows financiers receive lev-

6Besides explicitly modelling competition, this paper differs from the model of Burkart and
Lee in the content of private information. Burkart and Lee assume the investor has private
information on the firm’s assets in place, while this paper assumes the investors have private
information on the project to start. As a result, in the former case, the investor offers an
information insensitive security to signal low outside option of the entrepreneur, while in the
bilateral version of this paper as analysed in Section 1.5, the investor offers an information
sensitive security to signal high inside option of the entrepreneur.
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ered equity if they have larger bargaining power than bidders, and receive debt

otherwise. Inderst and Vladimirov (2019) consider the interaction between secu-

rity design and holdup problems in later rounds of financing when the investor

gains an informational advantage over outside investors.

Another strand of this literature studies issuers’ security design when investors are

privately informed. Hansen (1985), Crémer (1987), Rhodes-Kropf and Viswanathan

(2000), DeMarzo et al. (2005), Axelson (2007), Abhishek et al. (2015) and Sogo

et al. (2016) show that the issuer’s optimal design of a security auction is an

auction in which investors receive information insensitive securities. Gorbenko

and Malenko (2011) show when issuers design security auctions under competi-

tion, they commit to more information sensitive securities when the competition

intensifies. Liu and Bernhardt (ming) show a takeover target optimally commits

to a menu of securities with different information sensitiveness levels to solve an

adverse selection problem from acquirers privately informed about synergies and

standalone values. Che and Kim (2010) demonstrate when investment costs are

positively related to investors’ private values, security auctions suffer from an

adverse selection problem, which is more severe when investors are restricted to

receiving less information sensitive securities. In takeover auctions with hetero-

geneous acquirers, Liu (2016) and Liu and Bernhardt (2021) show an auction

restricted to equity payments may generate lower revenue for the target than a

buyout auction, and provide the optimal mechanism of equity auctions and a

close-to-optimal implementation, which restore the revenue-superiority of infor-

mation insensitive securities. Dang et al. (2015), Yang and Zeng (2019) and Yang

(2020) consider situations in which the investor can acquire information at a cost

to facilitate the investment decision, and show the issuer designs an information

insensitive security to discourage the investor from information acquisition when

information acquisition is inefficient, and designs an information sensitive security

when information is socially valuable.
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1.2 Model Setup

Consider a penniless entrepreneur with a project which requires fixed initial in-

vestment I > 0 and yields random future payoff Z. The unconditional distribu-

tion of Z is common knowledge. The entrepreneur has no private information.

There are N ≥ 2 investors who are interested in financing the project. Each

investor observes a private signal about Z. Let X = (X1, · · · , XN) denote the

vector of private signals observed by individual investors. I will also refer to Xi

as the type of investor i.

Assumption 1.1. The project payoff Z and the private signalsX = (X1, · · · , XN)

satisfy the following properties:

(a) Conditional on Z = z, Xi for all i are independently and identically dis-

tributed with probability density fX|Z(·|z) on support [xL, xH ];

(b) Conditional on X = x, Z has probability density fZ|X(·|x) on support

[0,∞);

(c) (Xi, Z) satisfy the strict monotone likelihood ratio property (SMLRP), i.e.,

the likelihood ratio fX|Z(x|z)/fX|Z(x′|z) is strictly increasing in z if x > x′;

(d) E[Z|X = xL1]− I > 0;

(e) fX|Z(x|z) is differentiable in x, and the functions
∣∣∂fZ|X(z|x)

∂xi

∣∣ and
∣∣z ∂fZ|X(z|x)

∂xi

∣∣
are integrable on z ∈ [0,∞).

Part (c) of the assumption guarantees that each investor’s private signal is a

positive signal of the project payoff Z. Part (d) restricts the attention to projects

with positive NPV conditional on any profile of private signals. Part (e) ensures

derivatives can be taken through expectation operators.

The project can be financed by only one investor. Each investor makes a sealed-

bid investment offer to the entrepreneur, which specifies the security that the

investor requires in return for investing I. A feasible security is defined in the

following way:

Definition 1.1. A feasible security is a function S : [0,∞) 7→ R such that
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(1) (Limited Liability of the Entrepreneur) S(z) ≤ z,

(2) (Boundedness) S(z) is bounded from below,

(3) (Dual Monotonicity) S(z) and z − S(z) weakly increase in z.

The limited liability constraint requires the entrepreneur can pledge no more

than the project value. I impose no limited liability constraint on investors so

that investors are allowed to offer to pay more cash than I.7 Boundedness is

assumed to guarantee integrability. The results of the model do not change if the

limited liability constraint on investors, S(z) ≥ 0, is imposed.

The dual monotonicity constraint requires that the stakes of the investor and the

entrepreneur both weakly increase in the project value. This assumption can be

justified by that non-monotonic or decreasing stakes may induce agents to take

harmful actions on the project.

After seeing all the offers, the entrepreneur forms belief about Z, and accepts the

offer that she believes requires a security of the lowest value. If several offers look

equally valuable, the entrepreneur accepts each of them with equal probability.

The winning investor invests I to implement the project and receives the security

S that she requires in her offer. The winning investor has net payoff S(Z) − I.

The entrepreneur has net payoff Z − S(Z). The losing inestors have payoff 0.

1.2.1 Relations Among Securities

In order to facilitate the equilibrium characterisation, I introduce several con-

cepts that describe the relations among feasible securities, most of which follow

DeMarzo et al. (2005).

Definition 1.2. (Unambiguously Ordered) Security S1 is unambiguously larger

than security S2 if S1(z) ≥ S2(z) for all z and S1(z) > S2(z) for some z. Two

7If in addition to investing I, an investor offers to pay cash C > 0 to the entrepreneur, and
requires security Ŝ(Z) ≥ 0 in return, then the offer can be represented by S(Z) = Ŝ(Z) − C.
If the investor offers to invest an additional amount C into the project instead of paying C to
the entrepreneur, then this offer can be represented by S(Z) = Ŝ(Z + C) − C. In both cases,
S is feasible as long as Ŝ is feasible.
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securities are unambiguously ordered if one is unambiguously larger than the other

or if they are equal for all z.

Definition 1.3. (Ordered Set of Securities) An ordered set of securities is a

function S(s, ·) with s ∈ [s0, s1] such that

(1) S(s, ·) is a feasible security,

(2) S(s, z) is continuous and almost everywhere differentiable in s, and S1(s, z)fZ|X(z|x)

is integrable on z ∈ [0,∞),

(3) S(s′, ·) is unambiguously larger than S(s, ·) for s′ > s,

(4) E[S(s0, Z)|X = xH1] = 0 and S(s1, z) = z.

Examples of ordered sets of securities include:

The set of debt : SD(sD, z) = min(sD, z) with sD ≥ 0 being the face value;

The set of equity : SE(sE, z) = sEz with sE ∈ [0, 1] being the equity share;

The set of levered equity : SLE(sLE, z) = max(z−(−sLE), 0) with −sLE ≥ 0 being

the face value of counterparty’s debt;

The set of buyout : SBO(sBO, z) = z − (−sBO) with −sBO ≥ 0 being the buyout

price.

The main goal of the paper is to study the informal auction, in which offers are

not restricted to ordered sets. The concept of ordered sets is only to facilitate

the derivation and statement of equilibrium results.

In general, unless they are unambiguously ordered, the relative magnitude of two

securities depends on the project value Z. For example, an equity can be more

valuable than a debt when the project value is high, but less valuable when the

project value is low. The above relation is simple enough to be captured by the

following concept of “cross from below”.

Definition 1.4. (Cross from Below) Security S1 crosses S2 from below if they

are not unambiguously ordered, and there is z∗ such that S1(z) ≥ S2(z) for z > z∗

and S1(z) ≤ S2(z) for z < z∗.

A debt receives the whole project value when it is lower than the face value,
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and is thus more valuable than any other security in these scenarios. Once the

project value exceeds the face value, the debt value remains constant, whereas a

non-debt security may continue to increase in the project value and surpass the

debt value. This implies debt has the following property, which as shown in later

sections makes it an equilibrium outcome of the informal auction:

Lemma 1.1. If a debt and a non-debt security are not unambiguously ordered,

the non-debt security crosses the debt from below.

Based on “cross from below”, a partial order can be defined over ordered sets of

securities:

Definition 1.5. (Steeper) Ordered set of securities SA(·, ·) is steeper than ordered

set SB(·, ·) if for any pair of (sA, sB), SA(sA, ·) crosses SB(sB, ·) from below if

they are not unambiguously ordered.

For instance, the set of levered equity is steeper than the set of equity, which

is steeper than the set of debt. According to Lemma 1.1, any ordered set that

includes a non-debt security is steeper than the set of debt.

1.3 Formal Auction

As a necessary step of analysing the informal auction, in which investors can

choose among all feasible securities, I first adapt DeMarzo et al. (2005)’s results

on formal auctions to the current setting.

A formal auction is one in which investors can only make offers from an ordered set

of securities. Since offers are unambiguously ordered, the entrepreneur’s decision

is as simple as in a first-price cash auction. I define a “monotonic equilibrium”

as an equilibrium in which each investor’s offered security is weakly decreasing in

their private signal, i.e., the stake left to the entrepreneur is weakly increasing.

It is analogous to an increasing equilibrium in a cash auction.
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Let Yi ≡ max{Xj : j 6= i} denote the highest private signal among investors other

than i. Let G(·|x) and g(·|x) denote the cumulative probability and the density

of Yi conditional on Xi = x. Let FY |Z(·|z) and fY |Z(·|z) denote the cumulative

probability and the density of Yi conditional on Zi = z.

Lemma 1.2. In any symmetric monotonic equilibrium of a formal auction re-

stricted to ordered set S, the investor strategy sx must be strictly decreasing,

continuous and differentiable, and satisfy the differential equation

dsx
dx

= −E[S(sx, Z)− I|Xi = Yi = x]

E[S1(sx, Z)|Xi = x, Yi ≤ x]
· g(x|x)

G(x|x)
(1.1)

and the boundary condition

E[S(sxL , Z)− I|Xi = Yi = xL] = 0. (1.2)

The above strategy supports an equilibrium if for each x, there is z∗ such that

[S(sx, z)− I]fY |Z(x|z) + S1(sx, z)FY |Z(x|z)
dsx
dx

≷ 0 (1.3)

for z ≷ z∗.

The left-hand side of inequality (1.3) is a type x investor’s benefit from marginally

decreasing the required security from S(sx, ·) conditional on Z = z. The first term

is the investor’s gain due to the increased probability of winning. The second term

is the investor’s loss due to the smaller security she receives upon winning. By

requiring the marginal benefit be positive for higher z and negative for lower z,

condition (1.3) guarantees that an investor with a higher signal, which implies a

higher estimate of the project payoff, is more willing to decrease the requested

security, and hence the existence of a monotonic equilibrium.

For S being the set of equity, condition (1.3) always holds. For S being the set

of debt, condition (1.3) can be simplified to

(sx − I)
fY |Z(x|sx)
FY |Z(x|sx)

> −dsx
dx

. (1.4)
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For the rest of the paper, I assume condition (1.3) holds for the set of debt.

Whether it holds for other ordered sets does not affect the results.

Assumption 1.2. For S(s, ·) being the set of debt and sx being the strategy that

satisfies (1.1) and (1.2), inequality (1.4) holds for each x.

1.4 Informal Auction

In the informal auction, investors are allowed to offer any feasible securities. Since

securities are in general not unambiguously ordered, the entrepreneur’s compari-

son of offers depends on her valuation of the project. Although the entrepreneur

has no private information, she may infer the investors’ private signals from their

offers. This makes the informal auction a signalling game.

This paper considers pure strategies only. Let S denote the set of feasible se-

curities. Let σ(i) : [xL, xH ] 7→ S be the strategy of investor i, that is investor

i with private signal x offers security σ(i)(x). Let µ : [xL, xH ]N × SN 7→ [0,∞)

be the entrepreneur’s belief, that is the entrepreneur attributes probability den-

sity µ(x1, · · · , xN |S1, · · · , SN) to the profile of private signals (x1, · · · , xN) when

seeing a profile of offers (S1, · · · , SN). µ satisfies

∫
µ(x1, · · · , xN |S1, · · · , SN)dx1 · · · dxN = 1.

Let p(i)(S, µ) denote the probability that the entrepreneur accepts investor i’s

offer under belief µ if the profile of offers is S = (S1, · · · , SN). For vector

a = (a1, · · · , aN), let a−i denote (a1, · · · , ai−1, ai+1, · · · , aN) and am:n denote

(am, · · · , an). Let π(i)(S|S−i, µ,x) denote the expected payoff of investor i if she

offers S, the other N − 1 investors offer S−i, the entrepreneur has belief µ, and

X = x:

π(i)(S|S−i, µ,x) = E[S(Z)− I|X = x]p(i)(S1:i−1, S,Si+1:N , µ).
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Let Π(i)(S|x,σ−i, µ) denote the expected payoff of type x investor i if she offers S,

the other N−1 investors follow the profile of strategies σ−i, and the entrepreneur

has belief µ:

Π(i)(S|x,σ−i, µ) = E[π(i)(S|σ−i(X−i), µ,X1:i−1, x,X i+1:N)|Xi = x]

where σ−i(X−i) is the point-wise evaluation of the element functions of σ−i.

Unlike traditional signalling games with one signal sender or multiple senders with

independent signals, the common-value auction involves multiple signal senders

whose signals are interdependent. With this feature, the entrepreneur’s belief

needs to acknowledge the unconditional joint distribution of private signals. In

other words, the entrepreneur has the freedom to interpret the offers only up to

interpreting the investors’ strategies. This feature is captured by the concept of

sequential equilibrium. A sequential equilibrium is a profile of strategies σ and

a belief µ that satisfy:

Rationality :

σ(i)(x) ∈ arg max
S

Π(i)(S|x,σ−i, µ);

Consistency :

There are non-negative bounded functions µ̂(1), · · · , µ̂(N) such that

µ̂(i)(S|x) =

1, σ(i)(x) = S

0, σ(i)(x) 6= S and σ(i)(x′) = S ∃ x′.
(1.5)

and

µ(x1, · · · , xN |S1, · · · , SN)

=
µ̂(1)(S1|x1) · · · µ̂(N)(SN |xN)fX(x1, · · · , xN)∫

µ̂(1)(S1|x′1) · · · µ̂(N)(SN |x′N)fX(x′1, · · · , x′N)dx′1 · · · dx′N
,

(1.6)

where fX is the unconditional probability density of X.

µ̂(i)(S|x) acts as the likelihood in the entrepreneur’s belief that type x investor

i offers S. Equation (1.5) requires when investor i offers a security that is the
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equilibrium offer of some type of investor i, the entrepreneur believes investor i

has followed the equilibrium strategy. For security S that is not offered by any

type of investor i in equilibrium, sequential equilibrium imposes no restriction

on µ̂(i)(S|x) and only requires µ be consistent with some non-negative µ̂(i)(S|x)

through equation (1.6).

To verify whether a sequential equilibrium has “reasonable” off-equilibrium be-

liefs, I apply the D1 refinement of Cho and Kreps (1987). D1 requires that an

off-equilibrium action must only be associated with those types who are “most

likely to deviate” to this action. A type is “most likely to deviate” to an ac-

tion if there is no second type such that under any belief that makes this type

weakly prefer to deviate, the second type strongly prefers to deviate. Formally,

let Π(i)∗(x) denote the equilibrium payoff of type x investor i. For fixed S and i,

define

Dx ≡ {µ′ : Π(i)(S|x,σ−i, µ′) > Π(i)∗(x)} (1.7)

and

D0
x ≡ {µ′ : Π(i)(S|x,σ−i, µ′) = Π(i)∗(x)}. (1.8)

A D1 equilibrium is a sequential equilibrium that satisfies

D1 consistency: µ̂(i)(S|x) = 0 if there is x′ such that Dx ∪D0
x ⊆ Dx′.

As before, a “monotonic” equilibrium is defined as an equilibrium in which each

investor’s required security is unambiguously decreasing in her private signal.

Proposition 1.1. With two investors, the informal auction has a symmetric

monotonic D1 equilibrium (and hence a sequential equilibrium) in which all in-

vestors offer debt financing.

I provide a sketch of proof here, and relegate the complete proof to Appendix

1.7.2. I will show that the symmetric monotonic equilibrium strategy of the formal

auction restricted to debt, namely sDx that satisfies (1.1) and (1.2), supports a D1

equilibrium of the informal auction. That the strategy supports an equilibrium

of the formal auction immediately implies in the conjectured debt equilibrium of
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the informal auction, no type of investor has an incentive to deviate to a different

debt offer. What remains to show is that no type of investor has an incentive to

deviate to any non-debt security.

Consider non-debt security S. In a D1 belief µ, S is believed to be offered by the

“most-likely-to-deviate” type.8 Suppose there is a type who has an incentive to

deviate to S under µ. By definition, the “most-likely-to-deviate” type also has an

incentive to deviate to S under µ. Therefore, the “most-likely-to-deviate” type

must have an incentive to deviate to S when the entrepreneur correctly infers her

type from the deviation.

However, as explained in the next two paragraphs, the above implies the “most-

likely-to-deviate” type also has an incentive to deviate to some debt. This con-

tradicts the earlier statement that no type benefits from deviating to a debt, and

thus completes the proof.

Let x be the type “most-likely-to-deviate” to security S. Suppose investor 1

observes signal x and deviates to S, and investor 2 follows the equilibrium debt

strategy. Under a D1 belief, the entrepreneur believes investor 1 has signal x.

Since investor 2’s debt offer sDy is strictly decreasing in her private signal y, the

entrepreneur can infer investor 2’s private signal with certainty. Therefore, the

entrepreneur accepts investor 1’s offer S if and only if

E[S(Z)|X1 = x,X2 = y] < E[SD(sDy , Z)|X1 = x,X2 = y].

As shown in Figure 1.1, there is a cutoff value y∗ such that the inequality holds if

and only if investor 2’s private signal y is below y∗. This is because E[S(Z)|X1 =

x,X2 = y] crosses E[SD(sDy , Z)|X1 = x,X2 = y] from below when varying y,

which is due to the following two reasons. First, Lemma 1.1 implies S crosses

SD(sDy , ·) from below for a fixed y if they are not unambiguously ordered. Second,

sDy decreases in y. Therefore, investor 1’s offer S is accepted if and only if y < y∗.

8There may be multiple “most-likely-to-deviate” types, which is covered in the proof. Here
I simplify the argument by assuming there is only one “most-likely-to-deviate” type.
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E[Z|X1 = x,X2 = y]

y

E[SD(sDy , Z)|X1 = x,X2 = y]

y∗

E[S(Z)|X1 = x,X2 = y]

E[SD(sDy∗ , Z)|X1 = x,X2 = y]

I

xL

Figure 1.1: Key argument for Proposition 1.1

If investor 2 follows a monotonic strategy to offer debt SD(sDy , ·) when X2 = y, and if
the entrepreneur believes X1 = x when investor 1 offers non-debt security S, then

type x investor 1 prefers offering debt SD(sDy∗ , ·) to offering S.

The dotted area in Figure 1.1 is investor 1’s deviation payoff.

Now consider the payoff of type x investor 1 if she instead offers debt SD(sDy∗ , ·).

Facing two debt offers, the entrepreneur simply accepts the one with the lower

face value. Investor 1 again wins if and only if y < y∗. As shown in Figure 1.1,

for y < y∗,

E[S(Z)|X1 = x,X2 = y] < E[SD(sDy∗ , Z)|X1 = x,X2 = y].

This is because the left-hand side is equal to the right-hand side for y = y∗, and

S crosses SD(sDy∗ , ·) from below. Therefore, by offering SD(sDy∗ , ·), type x investor

1 wins for the same probability as offering S but receives a security more valuable

than S conditional on winning. Her payoff is the dotted area in the figure plus

the area above it between the blue curve and the red curve. If type x investor 1

benefits from deviating to S, she strictly benefits from deviating to SD(sDy∗ , ·).

In summary, as in all common-value auctions, an investor faces the winner’s

curse. While her probability of winning is determined by the scenario in which

she marginally wins, her payoff conditional on winning is determined by the

scenarios in which she strictly wins, which implies others have lower signals than
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in the marginally-winning scenario. Among all the securities that lead to the

same probability of winning, debt is the least information sensitive and thus the

most valuable in strictly-winning scenarios. In order to acheive any probability

of winning, the investor chooses debt to minimize the effect of the winner’s curse.

With three or more investors, the entrepreneur’s choice between two offers can

depend on information revealed from a third offer. This paper does not reach a

conclusion under this complication. This being said, Propositions 1.1 holds for

three or more investors if the entrepreneur ignores information in offers that are

unambiguously smaller than another offer.

In the sketch proof of Proposition 1.1, I have used the argument that an investor’

s best reponse to her competitor’s debt strategy is also a debt strategy. Next,

I extend the argument to situations in which an investor’s competitor uses a

non-debt monotonic strategy, and show one’ s best reponse cannot be a strategy

steeper than her competitor’s.

Proposition 1.2. With two investors, there is no monotonic sequential equilib-

rium in which both investors make offers from ordered sets, of which one is steeper

than the other, and the two offers are not always unambiguously ordered.

For example, the proposition implies there is no monotonic sequential equilibrium

in which one investor offers equity and the other offers debt.

By requiring a security that crosses her competitor’s offer from below, an investor

wins when her competitor has a lower private signal. The investor can instead

mimic the type of her competitor that she marginally wins over, which allows her

to win in the same scenarios but receive a more valuable security in these scenar-

ios, because this flatter security provides better protection against the winner’s

curse than her original security.

The discussion so far has revolved around the argument that investors do not

offer securities steeper than their competitors’ offers. The next result is based on

investors’ incentive to offer securities flatter than their competitors’ offers. For
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an ordered set S, let s† be such that

E[S(s†, Z)− I|X = xL1] = 0, (1.9)

that is the value of S(s†, ·) is expected to be equal to the investment required for

the project if all investors have the lowest possible private signal xL. An ordered

set S is labelled as “too steep” if it satisfies9

d

dx
E
[
S(s†, Z)− 4(N − 1)

3(N − 2)
SD(sD†, Z)|X = x1

]∣∣
x=xL

> 0. (1.10)

Proposition 1.3. There is no symmetric monotonic sequential equilibrium in

which investors make offers from a too steep ordered set.

The key to the proof is that if investors follow a monotonic strategy in a too-steep

ordered set S, then an investor with private signal xL benefits from deviating to

debt SD(sD†, ·). Suppose N = 2, and both investors follow monotonic strategy

sx, that is a type x investor offers S(sx, ·). According to Lemma 1.2, a type xL

investor loses the auction almost for sure and expects profit 0 when she marginally

wins. On the other hand, the security value of SD(sD†, ·) is by definition equal

to I and the value of S(sxL , ·) when all investors have signal xL. That S is too

steep implies when investor 2’s signal y increases, E[S(sy, Z)|X1 = xL, X2 = y]

crosses E[SD(sD†, Z)|X1 = xL, X2 = y] from below at y = xL as shown in Figure

1.2. If investor 1 deviates to SD(sD†, ·) and the entrepreneur infers investor 1 has

signal xL, investor 1’s offer is the cheaper source of financing and thus wins when

investor 2’s offer is slightly higher than xL. If the entrepreneur holds any other

belief, it will only make investor 1’s debt offer look even cheaper and thus more

attractive compared to investor 2’s offer. Therefore, by deviating to SD(sD†, ·),

type xL investor 1 can win with strictly positive probability. Since the debt value

is increasing in investor 2’s private signal, type xL investor 1 expects strictly

9An example set of parameters such that the sets of equity, levered equity and buyouts are
too steep is provided in Appendix 1.7.1. The example differs from the model setup in that
Z has a discrete distribution. The discrete distribution is assumed in order to derive closed-
form verification of (1.10). All results in this article apply to the example despite the discrete
distribution.
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E[Z|X1 = xL, X2 = y]

y

E[S(sy, Z)|X1 = xL, X2 = y]

I

xL

E[S(sxL , Z)|X1 = xL, X2 = y]

E[SD(sD†, Z)|X1 = xL, X2 = y]

Figure 1.2: Key argument for Proposition 1.3

In a conejctured symmetric monotonic equilibrium in which both investors make
offers from a too-steep ordered set S, type xL investor 1 wins for probability zero in

equilibrium, but wins with positive probability and expects positive payoff by
deviating to debt SD(sD†, ·).

positive payoff E[SD(sD†, ·) − I|X1 = xL, X2 = y] upon winning. Therefore, the

deviation is profitable for a type xL investor. The deviation payoff is the dotted

area in Figure 1.2.

Intuitively, the entrepreneur can infer investors’ private information from their

offers and evaluate the project more precisely than any single investor in a fully-

revealing equilibrium. The entrepreneur prefers to raise capital through a flat

security and retain an information sensitive stake when she believes the project

value is high. By offering a security that is flatter than her competitors’ offers, an

investor may select into winning a valuable project and reverse the winner’s curse

into the winner’s blessing. Therefore, the best response to a too-steep strategy

cannot be the same strategy.

In summary, by showing an equilibrium outcome with debt financing and ruling

out two types of equilibrium outcomes that involve steeper securities, I argue

investors tend to offer flat securities due to the advantage of flat offers in the

presence of the winner’s curse.
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1.4.1 The Winner’s Curse and Signalling

The above results are closely tied to the assumption that the project payoff is

common when financed by different investors. In a very similar setup, DeMarzo

et al. (2005) make the alternative assumption of private values that each investor

has private information about their own influence on the project value, and show

investors offer levered equity financing or buyouts, which are the steepest ordered

sets. The drastically different security designs in the two settings are driven

separately by the winner’s curse and signalling.

The winner’s curse, which leads to debt financing in the common-value setting, is

absent with pure private values, in which case the losing investors’ private signals

are uninformative about the project payoff financed by the winning investor.

On the other hand, signalling incentive drives the design of steep securities in the

private-value setting. Similar to the firm in Myers and Majluf (1984) which signals

high value by issuing debt and retaining levered equity, an investor signals high

private value to make her offer look more attractive by requiring to hold levered

equity. With common values, the signalling incentive is more perplexing and is

dominated by the concern of the winner’s curse. Between a steeper security and

a flatter security, an optimistic entrepreneur may prefer the flatter one while a

pessimistic one may prefer the steeper one. As a result, an investor who requires

a security flatter than the other investors wishes to signal high common value. If

she signals high value by increasing the steepness of her offer, she is likely to stop

when her offer is as steep as the others’ offers. With such an offer, the investor

no longer has an incentive to signal because the offers are unambiguously ordered

and the entrepreneur’s choice is not affected by belief. Similarly, an investor who

requires a security steeper than the other investors wishes to signal low common

value and can do so by flattening the security, which is likely to stop when her

offer is as flat as the others’ offers such that there is no more signalling incentive.

The signalling effect pushes investors to offer securities from an ordered set, which

implies one may not lose much generality by focusing on symmetric monotonic
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equilibria. On the other side of the coin, it deters deviation from a symmetric

monotonic equilibrium to either a steeper or a flatter security, which blurs the

implication of the winner’s curse that flatter securities are superior choices, and

makes it hard to eliminate multiple symmetric monotonic equilibria using D1

criterion.

1.4.2 Entrepreneur Revenue and Commitment Power

DeMarzo et al. (2005) show the entrepreneur’s revenue in the formal auction

restricted to the set of debt is the highest among formal auctions restricted to

different ordered sets. The result applies to affliated values, which nests the

common-value model of this paper.

Lemma 1.3. (DeMarzo et al., 2005) The entrepreneur’s revenue in the sym-

metric monotonic equilibrium of the formal auction restricted to the set of debt

is higher than in the symmetric monotonic equilibrium of the formal auction re-

stricted to another ordered set.

Since investors offer debt in the informal auction, the entrepreneur does not

have an incentive to organise a formal auction. Even without the entrepreneur’s

precommitment, competition among investors drives them to design the security

that leads to a revenue for the entrepreneur as if she has made the optimal

precommitment.

Proposition 1.4. With two investors, the entrepreneur in an informal auction

can acheive the highest revenue among formal auctions.

1.5 Market Power and Security Design

In many models of security design, the party with superior information receives

the more information sensitive security (Myers and Majluf, 1984; Nachman and
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Noe, 1994; DeMarzo and Duffie, 1999; DeMarzo et al., 2005). This paper is one

of those in which the informed party holds an information insensitive security,

and the key to the explanation is the competition structure. In order to further

manifest that competition has a higher-order effect than superior information, in

this section I study variants of the benchmark model with modified assumptions

on competition and information. I will put the discussion in the context of the

existing literature and summarise the effects of different aspects of market power

on security design near the end.

1.5.1 The Role of Information

In the first variant of the model, I change the assumption on the information

structure. Instead of an uninformed entrepreneur, I consider an informed en-

trepreneur, who observes the vector of investors’ private signals X.

Proposition 1.5. With an informed entrepreneur and two investors, there is a

unique symmetric monotonic equilibrium, in which both investors offer debt.

For the existence of the equilibrium, one can invoke the argument in the proof

of Proposition 1.1 that no type of investor benefits from deviating to a non-debt

security when the entrepreneur correctly infers her type. In the case with an

informed entrepreneur, the entrepreneur observes the deviating investor’s type,

which implies no type of investor benefits from deviating to a non-debt security.

Whereas Proposition 1.3 only shows the non-existence of symmetric monotonic

equilibria with too-steep offers, Proposition 1.5 rules out any symmetric mono-

tonic equilibrium with a non-debt offer. It is hardly surprising that the stronger

result holds with an informed entrepreneur. When the entrepreneur observes in-

vestors’ private signals, an investor gains from keeping her probability of winning

constant and increasing her payoff upon winning by deviating to a slightly flatter

security. When the entrepreneur is uninformed, offering a flatter security signals

lower valuation, which makes the offer look less attractive to the entrepreneur
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than it actually is. This signalling effect may potentially deter deviation from a

steep offer, and makes it difficult to conclude whether debt financing is the unique

symmetric monotonic equilibrium.

In summary, the result of debt financing is robust to assuming the entrepreneur

instead of the investors is the better informed party.

1.5.2 The Role of Competition

To examine the role of competition, I consider a bilateral trade in which the only

investor makes a take-it-or-leave-it offer to the entrepreneur.

Assumption 1.3. In a bilateral trade,

(1) N = 1;

(2) The entrepreneur has fixed outside option b > 0.

Part (2) of the assumption is needed because otherwise the monopolistic in-

vestor will request the whole project and leave nothing to the entrepreneur, which

renders security design degenerate. The outside option b can represent the en-

trepreneur’s salary from a regular job once the project is abandoned.

I consider both cases in which the investor and the entrepreneur respectively have

superior information. For simplicity, assume the entrepreneur accepts the offer

when she is indifferent.

Bilateral Trade with an Informed Investor

First consider the case in which the investor observes private signal X, while

the entrepreneur does not have private information. To be comparable with the

benchmark model, I assume E[Z|X = xL] > I+b, so that the project has positive

NPV conditional on any value of X.
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Proposition 1.6. In a bilateral trade with an informed investor, there is a unique

sequential equilibrium up to variation in the offer of type xL investor, in which

all types of the investor except type xL offer a buyout at price b.

Intuitively, by offering a buyout, the investor can avoid her offer being underval-

ued because the value of cash is unambiguous. If the investor is cash constrained

so that she can pay no cash in addition to investing I, then there is a unique D1

equilibrium outcome up to variation in the offer of type xL, in which all types

of the investor offer levered-equity financing. The investor signals high valuation

by requiring the most information sensitive security, in a way similar to the in-

formed firm in Myers and Majluf (1984) signals high valuation by issuing debt

and retaining levered equity.

Bilateral Trade with an Informed Entrepreneur

Next consider the case in which the entrepreneur observes private signal V while

the investor has no private signal. V and Z satisfy the SMLRP. The entrepreneur

accepts offer S if and only if E[Z − S(Z)|V ] ≥ b. This implies the security S

determines a rule of project screening implemented by the entrepreneur. Mean-

while, S determines how the surplus is split when the offer is accepted. When

designing the security, the investor aims to both induce efficient screening and

minimise the entrepreneur’s surplus.

Let vL and vH denote the maximum and minimum values of V . If E[Z|V = vL] ≥

I + b, then it is efficient to start the project for all values of V . By offering a

buyout at price b, the investor can guarantee the offer is always accepted and she

receives the full project NPV. Offering any other security is suboptimal.

If E[Z|V = vL] < I + b, the investor can achieve a payoff infinitely close to

the maximum total surplus by offering levered-equity financing which is infinitely

close to a buyout at price b. Let v∗ be such that it is efficient to start the project

if and only if V ≥ v∗: E[Z|V = v∗] = I + b. Let Sε(Z) = max(Z − Cε, 0)− b+ ε
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Z

b

Z − Sε(Z)

b− ε

Z − Sε′(Z)

b− ε′

(a) The entrepreneur’s payoff is Z−Sε(Z) = b−ε+min(Cε, Z) if offer Sε is accepted. Z−Sε(Z)
crosses Z − Sε′(Z) from below for ε′ < ε.

v

E[Z − Sε(Z)|V = v]

E[Z − Sε′(Z)|V = v]

E[Z|V = v]

vL

b

vHv∗

(b) For ε′ < ε, both Sε and Sε′ induce the efficient screening, and Sε′ leads to higher investor
surplus than Sε. The dotted area is the investor’s surplus by offering Sε.

Figure 1.3: Bilateral trade with an informed entrepreneur

be levered equity with additional cash payment b− ε to the entrepreneur, where

Cε is determined by E[Z − Sε(Z)|V = v∗] = b. For ε > 0, the entrepreneur

accepts offer Sε if and only if V ≥ v∗, which implies Sε induces the efficient

screening. As illustrated in Figure 1.3, as ε decreases and approaches 0, Z−Sε(Z)

becomes flatter, which implies Sε(Z) becomes steeper, so that the investor’s payoff

increases and approaches the full project NPV. On the other hand, Sε(Z) for ε = 0

is a buyout with price b, which will be accepted by the entrepreneur under all

values of V and thus fails to induce the efficient screening.

Proposition 1.7. In a bilateral trade with an informed entrepreneur, the investor

can receive payoff infinitely close to the maximum total surplus by offering a

combination of levered-equity financing and cash payment which is infinitely close

to a buyout offer at price b.

Intuitively, since the entrepreneur accepts the offer when the project value is

high enough, the investor faces advantageous selection. Within the spectrum of

securities that induce the efficient screening, the investor chooses the steepest
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security, which as much as possible captures the project value extra to what is

enough to cover the entrepreneur’s opportunity cost, b, when it is greater than b.

In this way, the entrepreneur’s informational rent is diminished.

In summary, regardless of which party has superior information, the investor in

a bilateral trade requires the most information sensitive security. The result is

in contrast to the result of the benchmark model with multiple investors, which

implies competition is crucial to the equilibrium security design. Moreover, the

analysis of the bilateral trade implies if the entrepreneur instead of the investor

proposes a security through a take-it-or-leave-it offer, she will propose debt fi-

nancing (regardless of which party has superior information). This implies who

has the power to commit to a security is cruicial to the result when both parties

are monopolies.

1.5.3 Three Aspects of Market Power

As implicit in the analysis above, one can view private information, monopoly

power and the right to move first to design the security as three aspects of market

power relavent to security design. When monopoly power is carefully defined, two

patterns can be summarised to hold in the models of this paper and the existing

literature on security design under information asymmetry.

Let the concept of “indispensability” proxy for monopoly power. I call the group

of entrepreneurs indispensable if each entrepreneur is indispensable for imple-

menting their own project, that is another agent will not be able to realize the

same project payoff without contracting with this entrepreneur. Similarly, the

group of investors is indispensable if each investor is indispensable to realize their

own project payoff. Under this definition, Table 1.1 summarises the key assump-

tions of different models on which parties are indispensable, which party moves

first to propose the security and which party is privately informed. The last

column of the table lists which party receives levered equity in equilibrium. Con-

sistent with the conclusions from variants of the model of this paper, two patterns
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Indisp
ensable

Secu
rit

y Desi
gn

Inform
ed

Levere
d Equity

Informed entrepreneur’s issuance
(Myers and Majluf, 1984; Nachman and Noe,
1994; DeMarzo and Duffie, 1999)

E E E E

Uninformed seller’s design (Yang, 2020) E E I E
Formal auction w/ common values (DKS,
Axelson, 2007; Sogo et al., 2016)

E E I E

Informed buyer’s design (Burkart and Lee,
2016)

E I I E

Informal auction w/ common values (this pa-
per)

E I E or I E

Formal auction w/ private values (DKS) E,I E I E
Informal auction w/ private values (DKS) E,I I I I
Bilateral trade (this paper) E,I I E or I I

Table 1.1: Models on security design under information asymmetry

Assumptions and outcomes of each model in terms of which parties are indispensable,
which party designs the security, which party is privately informed, and which party re-
ceives levered equity in equilibrium. E = Entrepreneur, I = Investor. DKS = DeMarzo
et al. (2005).

can be summarised from this broader range of models:

(1) If only one of the two parties is indispensable, the indispensable party re-

ceives levered equity;

(2) If both parties are indispensable, the party that designs the security receives

levered equity.

For example, in the informal auction with common values of this paper, the en-

trepreneur is indispensable while each investor is not, because the project payoff

is not affected by the identity of the investor. The result that the entrepreneur

receives levered equity is consistent with pattern (1). In the formal and in-

formal auctions with private values of DeMarzo et al. (2005), each investor is

indispensable for realising their private project payoff, which implies they have

differentiable resources and face competition less direct than investors with com-

mon values. The result that the entrepreneur receives levered equity in the formal

auction and investors receive levered equity in the informal auction is consistent
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with pattern (2).

An agent is not considered indispensable in the above definition if she is indis-

pensable only for the private benefit she enjoys from owning part of the project.

For example, the buyers in the models of Burkart and Lee (2016) and Yang

(2020) are not indispensable even though they have lower discount rates on the

the project than the seller, because their participation does not affect the value

of the part of the project retained by the seller. This specification is necessary

for the summarised patterns to be consistent with the result of Burkart and Lee

(2016).

The patterns imply the party with the larger market power receives the steeper

security. Among the three aspects of market power, competition is the primary

determinant, and the right to move first to propose the security is secondary.

Some other models in this literature do not fit the patterns exactly, mostly due

to assumptions more subtle than can be characterised by the binary concept of

indispensability. These models are nevertheless consistent with the notion that

steepness of a party’s security is positively related to its monopolistic power or its

irreplaceable contribution to the project payoff. Gorbenko and Malenko (2011)

study design of security auctions by competing entrepreneurs. Indispensability is

ambiguous in the model because each entrepreneur is at first not indispensable

and becomes indispensable when an investor enters her auction. The result shows

steepness of the securities retained by entrepreneurs increases in the ratio of

investors to entrepreneurs. Inderst and Mueller (2006) and Yang and Zeng (2019)

consider an investor who receives or can acquire information after the security

design and makes the financing decision based on the information. In the model

of Inderst and Mueller, even though the investor is not indispensable for financing

the project due to competition from other uninformed investors, she is the only

one that receives private information and can increase the expected project payoff

by screening. In both models, as the probability that the project is profitable

decreases, which implies the investor’s screening becomes more socially valuable,

she receives a steeper security.
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1.6 Concluding Remarks

This paper studies security design by competing investors with private informa-

tion on the common value of the project. The contribution is three-fold. First,

competition with common values is a major concern in financial markets but has

been understudied in the literature on security design. By modelling common-

value competition, this paper provides a solution to reconcile theories of security

design under information asymmetry with the prevalence of debt financing in

private firms. Second, this paper makes the first attempt, though far from being

complete, to systematically investigate the relationship between market power

and security design under information asymmetry. By comparing the models in

this paper and various models in the literature, I find a party’s market power

is positively related to the information sensitiveness of the security it receives.

Among different aspects of market power, monopolistic power is primary and the

power to commit to a security design is secondary. Third, the model contributes

to theories of multi-dimensional bidding, and can be applied to situations other

than corporate finance. For example, a publishing house may take competition

from other publishing houses into account when deciding the advance payment

and royalty rate to offer to an author; an employer inevitably considers the outside

options of a successful job candidate when designing the fixed and performance-

based components of the offer. In both situations, it is not hard to imagine

each publishing house or employer’s offer reflects their private information on the

common value of the book or the candidate.

Several questions follow. First, since informal auctions with common values and

private values result in opposite security designs, it is useful to understand the

same with hybrids of private values and common values. A natural way to model

hybrids is affiliated values which is introduced to auction theory by Milgrom and

Weber (1982). The hybrid model may predict securities steeper than debt but

flatter than levered equity, and has the potential to explain the use of straight

equity and hybrid securities.
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Second, this paper assumes only one investor can finance the project. If co-

financing is allowed, investors may enjoy larger market power. It will be in-

teresting to know whether investors will design securities steeper than debt in

consequence.

Third, indispensablity, which is my proxy for monopolistic power, is related to

effort provision once the project is started. Agents who are indispensable at the

investment phase often continue to have on-going influence on the project per-

formance. Parallel to my prediction that a party with monopolistic power tends

to receive a steep security, models with endogenous effort provision predict an

agent whose effort is crucial to the project performance tends to receive a steep

security. It is useful to design empirical strategies to distinguish the effects of mo-

nopolistic power and endogenous effort provision when agents with big influence

on the outcome of their investments are observed to receive steep securities.

Fourth, this paper considers take-it-or-leave-it offers, while actual bargainings

between entrepreneurs and investors can be much more complex. An investor may

want to offer a menu of securities instead of a single one; there can be back-and-

forth negotiations instead of having someone committing to a take-it-or-leave-it

offer. It is useful to understand whether and how these market structures shape

security design.

Last but not least, this paper leaves out competition among entrepreneurs. In

practice, an investor may simultaneously talk with multiple entrepreneurs and

make bidding decisions subject to a budget constraint. Modelling such a situation

is empirically relevant, and will provide an examination of the notion that private-

value competition does not impede monopolistic power in security design.
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1.7 Appendix

1.7.1 A Numerical Example

This part of the appendix provides a set of model parameters under which the set

of equity, the set of levered equity and the set of buyout are too steep according

to inequality (1.10).

Let V be a random variable whose value is either vL or vH for equal probabil-

ity. (Z,X1, · · · , XN) are independent conditional on V . Let fZ|V (z|v) be the

probability that Z = z conditional on V = v:

fZ|V (z|vL) =


1
2
, z = 0

1
3
, z = 3

1
6
, z = zH

, fZ|V (z|vH) =


1
3
, z = 0

1
3
, z = 3

1
3
, z = zH .

where zH is a constant larger than 3. Suppose xH > xL ≥ 0. Let fX|V (x|v) for

x ∈ [xL, xH ] be the probability density of Xi = x conditional on V = v:

fX|V (x|v) =


1∫ xH

xL
dx

=
1

xH − xL
, v = vL

x∫ xH
xL

xdx
=

2x

x2
H − x2

L

, v = vH .

Let I = 1. These parameters satisfy Assumption 1.1 except that Z does not have

full support on [0,∞), and hence functions of z can only be summed instead of

integrated. The advantage of choosing a discrete distribution of Z is it allows me

to verify the too-steep condition (1.10) in closed-form.

For concreteness, I first establish that a weaker version of Assumption 1.2 is

satisfied, so that there is a symmetric monotonic equilibrium in a formal auction

restricted to debt. I do not verify Assumption 1.2 directly due to the difficulty

of solving sDx in closed form.
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1. The debt stratey that satisfies equations (1.1) and (1.2) supports an

equilibrium of a formal auction restricted to debt.

The following lemma provides a sufficient condition for the existence of a debt

equilibrium in an auction restricted to debt.

Lemma 1.4. If E[SD(sD, Z)|V = v] − I is log-submodular in sD and v when it

is positive, that is

E[SD(sD, Z)|V = vH ]− I
E[SD(sD, Z)|V = vL]− I

decreases in sD when E[SD(sD, Z)|V = vL]− I > 0,

(1.11)

then the debt stratey that satisfies equations (1.1) and (1.2) supports an equilib-

rium of a formal auction restricted to debt.

Inequality (1.11) is implied by Assumption 1.2 and not vice versa, but is still

sufficient for the existence of a debt equilibrium. Therefore, I next verify condition

(1.11). Let SD(sD, ·) with sD ∈ [0, 12] be a debt with face value sD:

SD(sD, z) = min(z, sD)

=


sD, if z = zH , or z = 3 and sD < 3

3, if z = 3 and sD ≥ 3

0, if z = 0

.

Since

E[SD(sD, Z)|V = vH ] =


5
6
sD, if sD < 3

1
2
sD + 1, if sD > 3

,

E[SD(sD, Z)|V = vL] =


2
3
sD, if sD < 3

1
3
sD + 1, if sD > 3

,

E[SD(sD, Z)|V = vH ]− I
E[SD(sD, Z)|V = vL]− I

=


5
6
sD−1

2
3
sD−1

, if sD < 3

3
2
, if sD > 3

is weakly decreasing in sD when sD ≥ 3
2
.
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2. If zH = 12, condition (1.10) holds for S being the sets of buyout,

levered equity and equity when N ≥ 3, N ≥ 4 and N ≥ 9 respectively.

The joint distribution of (V,X1, · · · , XN) implies

fV |X1,··· ,XN (vL|x, · · · , x) =
a

a+ bxN

where a ≡ 1
(xH−xL)N

and b ≡ 2N

(x2H−x
2
L)N

. Therefore,

fZ|X(z|X = x1) =



1
2
a+ 1

3
bxN

a+bxN
, z = 0

1
3
a+ 1

3
bxN

a+bxN
, z = 3

1
6
a+ 1

3
bxN

a+bxN
, z = zH

.

Let SE(sE, z) = sEz with sE ∈ [0, 1] be a share sE of equity. Let SLE(sLE, z)

with −sLE ∈ [0, zH ] be levered equity with counterparty debt level −sLE:

SLE(sLE, z) = max(0, z − (−sLE))

=


zH − (−sLE), if z = zH

3− (−sLE), if z = 3 and − sLE < 3

0, o/w

.

Let SBO(sBO, z) = z − (−sBO) with −sBO ∈ [0, zH ] is the buyout price. Let

q(x) ≡ fZ|X(zH |X = x1). Then

E[SD(sD, Z)|X = x1] =

[1
3

+ q(x)]sD, sD < 3

1 + q(x)sD, sD > 3,

E[SE(sE, Z)|X = x1] = sE [zHq(x) + 1] ,

E[SLE(sLE, Z)|X = x1] =

1− 1
3
(−sLE) + q(x)[zH − (−sLE)], −sLE < 3

q(x)[zH − (−sLE)], −sLE > 3,

E[SBO(sBO, Z)|X = x1] = q(x)zH + 1− (−sBO).
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According to (1.9),

sD† =
3

1 + q(xL)
, sE† =

1

1 + q(xL)zH
, sLE† = −[zH −

1

q(xL)
], sBO† = −q(xL)zH .

Moreover,
d

dx
E[SD(sD, Z)|X = x1] = sDq′(x),

d

dx
E[SE(sE, Z)|X = x1] = zHs

Eq′(x),

d

dx
E[SLE(sLE, Z)|X = x1] = [zH − (−sLE)]q′(x),

d

dx
E[SBO(sBO, Z)|X = x1] = zHq

′(x).

Let xL = 0. Then q(xL) = 1
6
. Condition (1.10) for S being the set of equity,

levered equity and buyout are respectively equivalent to

sE†zH
sD†

=
7

3
· zH

6 + zH
>

4(N − 1)

3(N − 2)
, (1.12)

zH − (−sLE†)
sD†

=
7

3
>

4(N − 1)

3(N − 2)
, (1.13)

zH
sD†

=
7

18
zH >

4(N − 1)

3(N − 2)
. (1.14)

Let zH = 12. Then conditions (1.12), (1.13) and (1.14) hold when N ≥ 9, N ≥ 4

and N ≥ 3 respectively.

1.7.2 Proof of Propositions

Proof of propositions is provided in Appendix 1.7.2. Proof of lemmas is provided

in Appendix 1.7.3.

Lemma 1.5. (1) For any security S, E[S(Z)− I|X = x] = 0 implies

d

dxi
E[S(Z)− I|X = x] > 0.
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(2) If security S1 crosses S2 from below, E[S1(Z)− S2(Z)|X = x] = 0 implies

d

dxi
E[S1(Z)− S2(Z)|X = x] > 0.

Lemma 1.6. Consider Eµ,S,y[f(Z)] defined by equation (1.16) in the proof of

Proposition 1.1. If security S1 crosses security S2 from below, then

Eµ,S,y[S1(Z)− S2(Z)] = 0

implies
d

dy
Eµ,S,y[S1(Z)− S2(Z)] > 0.

Proof of Proposition 1.1: Let sDx be the investor strategy in the monotonic

symmetric equilibrium of the formal auction restricted to debt, as described in

Lemma 1.2. The optimality of the strategy in the formal auction implies that

in an informal auction, if all investors follow this strategy, an investor does not

benefit from deviating to any debt, that is

Π∗(x) ≥ Π(SD(sDx′ , ·)|x, µ) (1.15)

for all x, x′ and µ.10 To show that sDx supports an equilibrium under a D1-

consistent belief, it suffices to show that no type of investor 1 benefits from

deviating to an arbitrary non-debt security S under any D1-consistent belief.

According to Lemma 1.1, S crosses SD(sDx , ·) from below if they are not unam-

biguously ordered.

Step 1. Under any belief µ, there is yµ such that if investor 1 deviates to S, she

wins if and only if investor 2 has private signal below yµ.

Let Eµ,S,y[f(Z)] be the entrepreneur’s evaluation of function f(Z) under belief

µ, if investor 1 offers S and investor 2 offers debt SD(sDy , ·). Since sDy is strictly

10In this proof, superscripts of Π(i), Π∗(i) and µ̂(i) are omitted with the understanding that
the superscript is 1. The argument σ2 of function Π is omitted with the understanding that
investor 2 plays the equilibrium strategy.
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decreasing, y is the only type of investor 2 that offers SD(sDy , ·) in equilibrium.

According to equations (1.6) and (1.5), there is µ̂(S|x) such that

µ(x, y′|S, SD(sDy , ·)) =


µ̂(S|x)fX(x, y)∫
µ̂(S|u)fX(u, y)du

, y′ = y

0, y′ 6= y

Therefore,

Eµ,S,y[f(Z)] =

∫
E[f(Z)|X1 = x,X2 = y]

µ̂(S|x)fX(x, y)∫
µ̂(S|u)fX(u, y)du

dx. (1.16)

According to Lemma 1.1 and 1.6, Eµ,S,y[S(Z)− SD(sDy , Z)] = 0 implies

d

dy
Eµ,S,y[S(Z)− SD(sDy , Z)]

=
d

dy
Eµ,S,y[S(Z)− SD(sDy′ , Z)]

∣∣
y′=y
− Eµ,S,y[SD1 (sDy , Z)]

dsDy
dy

≥ d

dy
Eµ,S,y[S(Z)− SD(sDy′ , Z)]

∣∣
y′=y

>0.

Therefore, there is yµ such that

Eµ,S,y[S(Z)− SD(sDy , Z)] ≷ 0 (1.17)

for y ≷ yµ. This implies the entrepreneur accepts investor 1’s offer S when

investor 2 has signal below yµ.

Step 2. Suppose a type strictly benefits from deviating to S under a D1-consistent

belief µ∗. Then all types in the support of µ̂∗(·|S) strictly benefit from deviating

to S under µ∗.

Consider Dx and D0
x for security S as defined in equation (1.7) and (1.8), which

stand for the sets of beliefs under which type x investor 1 strictly benefits from

and is indifferent about deviating to S. If µ ∈ Dx ∪D0
x, then (1) µ′ ∈ D0

x for µ′

such that yµ
′
= yµ and (2) µ′′ ∈ Dx for µ′′ such that yµ

′′
> yµ. Part (2) is because
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according to part (1) of Lemma 1.5, Π(S|x, µ′′) > 0 implies E[S(Z) − I|X1 =

x,X2 = yµ
′′
] > 0, which implies Π(S|x, µ′′)− Π(S|x, µ) > 0.

Therefore, for each x, there is yx such that Dx = {µ : yµ > yx} and D0
x = {µ :

yµ = yx}. If any type of investor 1 strictly benefits from deviating to S under

a D1-consistent belief µ∗, then all types of investor 1 in the support of µ̂∗(·|S)

strictly benefit from deviating to S under µ∗.

Step 3. That all types in the support of µ̂∗(·|S) strictly benefit from deviating to

S under µ∗ contradicts that no type benefits from deviating to a debt.

Suppose type x is in the support of µ̂∗(·|S). That she strictly benefits from

deviating to S under µ∗ implies Π(S|x, µ∗) > Π∗(x∗). According to inequality

(1.15), this implies

Π(S|x, µ∗) > Π(SD(sDyµ∗ , ·)|x, µ
∗),

that is the investor expects higher payoff by offering S than by offering debt

SD(sD
yµ∗
, ·). With either offer, the investor wins if and only if the other investor

has a private signal below yµ
∗
. Therefore, there must be y < yµ

∗
such that

E[S(Z)− SD(sDyµ∗ , Z)|X1 = x,X2 = y] > 0.

According to Lemma 1.5, this implies

E[S(Z)− SD(sDyµ∗ , Z)|X1 = x,X2 = yµ
∗
] > 0. (1.18)

Since (1.18) holds for all x in the support of µ̂∗(·|S), multiplying it by µ∗(x, yµ
∗|S, sD

yµ∗
)

and integrating over x in the support of µ̂∗(·|S) implies

Eµ∗,S,yµ
∗

[S(Z)− SD(sDyµ∗ , Z)] > 0.

Since Eµ∗,S,y[S(Z) − SD(sDy , Z)] is continuous in y, the above contradicts the

definition of yµ
∗

in inequality (1.17). This completes the proof.
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Proof of Proposition 1.2: Suppose ordered set SA is steeper than ordered

set SB. I conjecture an equilibrium in which investor 1 offers securities from SA

and investor 2 offers securities from SB, and I will show that there is a type of

investor 1 who benefits from deviating to offering a security from SB.

Step 1. There is strictly positive measure of x such that type x investor 1 wins

with strictly positive probability in equilibrium.

Suppose the opposite is true, that is for measure 1 of x, type x investor 1 wins

with probability 0. This implies for measure 1 of x, type x investor 2 wins

with probability 1. If investor 2 can win with probability 1 by offering a certain

security, it is suboptimal for her to offer another security unambiguously smaller.

Therefore, for measure 1 of x, type x investor 2 makes an identical offer. Denote

this offer by SB(sB∗, ·).

That investor 2 participates with measure 1 of private signals implies she expects

non-negative profit by offering SB(s∗B, ·) when X2 = xL, i.e.,

E[SB(sB∗, Z)− I|X1 ∈ χ1, X2 = xL] ≥ 0.

where χ1 denotes the set of x such that type x investor 1 wins with probability

0. Lemma 1.5 part (1) implies

E[SB(sB∗, Z)− I|X1 ∈ χ1, X2 ≥ xL] > 0.

Therefore, there is strictly positive measure of x ∈ χ1 such that

E[SB(sB∗, Z)− I|X1 = x,X2 ≥ xL] > 0.

which implies type x investor 1 benefits from deviating to a security in SB that

is slightly smaller than sB∗. The deviation allows her to win with probability 1

and expect strictly positive payoff.

Therefore, there must be a strictly positive measure of x such that type x investor
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1 wins with strictly positive probability in equilibrium.

Step 2. There is x∗ such that type x∗ investor 1 expects strictly positive payoff.

Consider two types x < x∗ such that type x and type x∗ investor 1 both win

with strictly positive probability. In the function Π(1), we temporarily omit the

arguments σ(2) and µ with the understanding that σ(2) is the equilibrium strategy

of investor 2 and µ is the equilibrium belief.

Π(1)(σ(1)(x∗)|x∗) ≥ Π(1)(σ(1)(x)|x∗) > Π(1)(σ(1)(x)|x) > 0.

The first inequality follows the optimality of equilibrium offers. The second in-

equality follows Lemma 1.5 part (1).

Step 3. Type x∗ investor 1 benefits from deviating to a security in SB.

Let SA(sAx , ·) and SB(sBx , ·) denote the equilibrium offers of a type x investor 1

and a type x investor 2. Then for y2 > y1,

E[SA(sAx∗ , Z)− SB(sBy1 , Z)|X1 = x∗, X2 = y1] ≥ 0

implies

E[SA(sAx∗ , Z)− SB(sBy2 , Z)|X1 = x∗, X2 = y2] > 0.

This is because

E[SA(sAx∗ , Z)|X1 = x∗, X2 = y2]

>E[SB(sBy1 , Z)|X1 = x∗, X2 = y2]

≥E[SB(sBy2 , Z)|X1 = x∗, X2 = y2].

The first inequality is implied by Lemma 1.5 part (2) and the second inequality

is because sAx is assumed to decrease in x.

Therefore, there is y∗ such that for y ≷ y∗,

E[SA(sAx∗ , Z)− SB(sBy , Z)|X1 = x∗, X2 = y] ≷ 0. (1.19)
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This implies if sBy is fully-revealing, type x∗ investor 1 wins in equilibrium if and

only if X2 < y∗.

(1) Consider the case in which investor 2 with private signal y > y∗ and y < y∗

offer different securities. Then type x∗ investor 1 wins when X2 < y∗. By

offering SB(sB∗, ·) with sB∗ = sup{sBy : y < y∗}, investor 1 also wins when

X2 < y∗. According to (1.19) and Lemma 1.5 part (2),

E[SA(sAx∗ , Z)− SB(sB∗, Z)|X1 = x∗, X2 = y] < 0

for y < y∗. Therefore, type x∗ investor 1 benefits from deviating to offering

SB(sB∗, ·).

(2) Consider the case in which there is a range of x such that sBx = sBy∗ . Define

χ2 ≡ {x : sBx = sBy∗}. Consider each possibility regarding the sign of

E[SA(sAx∗ , Z)− SB(sBy∗ , Z)|X1 = x∗, X2 ∈ χ2]. (1.20)

(a) Suppose (1.20) > 0. Then when investor 1 offers SA(sAx∗ , ·) and investor

2 offers SB(sBy∗ , ·), the entrepreneur accepts the offer of investor 2.

Therefore, investor 1 with private signal x∗ wins only when X2 <

inf χ2.

Π(1)∗(x∗) =

∫ inf χ2

E[SA(sAx∗ , Z)− I|X1 = x∗, X2 = y]g(y|x∗)dy.

Let sB∗∗ = inf{sBy : y < inf χ2}. According to (1.19) and Lemma 1.5

part (2), for y < inf χ2,

E[SA(sAx∗ , Z)− SB(sB∗∗, Z)|X1 = x∗, X2 = y] < 0.

Therefore,

∫ inf χ2

E[SA(sAx∗ , Z)− SB(sB∗∗, Z)|X1 = x∗, X2 = y]g(y|x∗)dy < 0.

(1.21)
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First, suppose sB∗∗ > sBy∗ .

Then by offering sB ∈ (sBy∗ , s
B∗∗), investor 1 also wins when X2 <

inf χ2. By the continuity of (1.21) in sB∗∗, there is sB ∈ (sBy∗ , s
B∗∗)

such that

∫ inf χ2

E[SA(sAx∗ , Z)− SB(sB, Z)|X1 = x∗, X2 = y]g(y|x∗)dy < 0.

Therefore, a type x∗ investor 1 benefits from deviating to SB(sB, ·).

second, suppose sB∗∗ = sBy∗ . The definition of χ2 implies sBy > sBy∗ =

sB∗∗ for y < inf χ2, and the definition of sB∗∗ implies sBy is left-

continuous at y = inf χ2. Therefore, by offering SB(sB, ·) with sB

marginally higher than sBy∗ = sB∗∗, investor 1 wins when X2 < y′ for

y′ marginally smaller than inf χ2.

Π(1)(SB(sB, ·)|x∗) =

∫ y′

E[SB(sB, Z)− I|X1 = x∗, X2 = y]g(y|x∗)dy.

Since (1.21) is continuous in inf χ2,

Π(1)∗(x∗) < Π(1)(SB(sB, ·)|x∗),

that is type x∗ investor 1 benefits from deviating to SB(sB, ·).

(b) Suppose (1.20) = 0. Then by offering SA(SAx∗ , ·), investor 1 wins when

X2 < inf χ2, and wins with probability 1/2 when X2 ∈ χ2. If investor

1 offers SB(sBy∗ , ·), she also wins in the same scenarios. (1.20) = 0 and

inequality (1.19) imply that type x∗ investor 1 cannot do worse by

offering SB(sBy∗ , ·). Since her equilibrium payoff is strictly positive, she

strictly prefers offering SB(sB, ·) with sB slightly smaller than sBy∗ over

offering SB(sBy∗ , ·), because it increases the chance of winning discretely

and decreases the payoff conditional on winning marginally. Therefore,

type x∗ investor 1 benefits from deviating to SB(sB, ·).

(c) Suppose (1.20) < 0. Then by offering SA(SAx∗ , ·), investor 1 wins when

52



X2 < supχ2.

Π(1)∗(x∗) =

∫ supχ2

E[SA(sAx∗ , Z)− I|X1 = x∗, X2 = y]g(y|x∗)dy.

By offering SB(sB, ·) marginally smaller than SB(sBy∗ , ·), investor 1 wins

when X1 < y′ with y′ equal to or marginally larger than supχ2.

Π(1)(SB(sB, ·)|x∗) =

∫ y′

E[SB(sB, Z)− I|X1 = x∗, X2 = y]g(y|x∗)dy.

That (1.20) < 0 and inequality (1.19) imply

∫ supχ2

E[SA(sAx∗ , Z)− SB(sBy∗ , Z)|X1 = x∗, X2 = y]g(y|x∗)dy < 0.

Since the above inequality is continuous in supχ2,

Π(1)∗(x∗) < Π(1)(SB(sB, ·)|x∗),

that is a type x∗ investor 1 benefits from deviating to SB(sB, ·).

Lemma 1.7. For an ordered set S and the investor strategy sx that satisfies

equation (1.1) and (1.2),

E[S1(sxL , Z)|Xi = Yi = xL]
dsx
dx

∣∣
x=xL

= −N + 2

4

d

dx
E[S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

.

(1.22)

Proof of Proposition 1.3: Suppose there is a symmetric monotonic sequential

equilibrium in which all investors offer securities in an ordered set S that satisfies

Condition 1.10. According to Lemma 1.2, the investor strategy sx must satisfy

equation (1.1) and (1.2). I will show that type xL investor benefits from deviating

to offering SD(sD†, ·) as defined in (1.9) under any belief of the entrepreneur.
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Step 1. Condition (1.10) implies

d

dy
E[SD(sD†, Z)− S(sy, Z)|Xi = xL,X−i = y1]

∣∣
y=xL

< 0, (1.23)

where X−i denotes the vector of investor private signals except Xi.

Rewriting the left hand side of(1.23),

d

dy
E[SD(sD†, Z)− S(sy, Z)|Xi = xL,X−i = y1]

∣∣
y=xL

= (N − 1)
d

dx
E[SD(sD†, Z)− S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

− E[S1(sxL , Z)|Xi = Yi = xL]
dsx
dx

∣∣
x=xL

= (N − 1)
d

dx
E[SD(sD†, Z)− S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

+
N + 2

4

d

dx
E[S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

.

(1.24)

The second equation is due to Lemma 1.7. Regarranging (1.24) and substituting

sxL by s† (which are equal according to equation (1.2) and (1.9)) show that

inequality (1.23) is equivalent to Condition (1.10).

Step 2. A type xL investor can win with strictly positive probability by deviating

to SD(sD†, ·).

According to equation (1.2) and (1.9),

E[SD(sD†, Z)− S(sy, Z)|X = xL1] = 0.

Inequality (1.23) implies there is ȳ > xL such that for y ∈ (xL, ȳ),

E[SD(sD†, Z)− S(sy, Z)|Xi = xL,X−i = y1] < 0.

Let Yi,m be the m-th highest private signal among investors other than i. For

each y ∈ (xL, ȳ), there is ε > 0 such that for y2, · · · , yN−1 ∈ (y − ε, y),

E[SD(sD†, Z)− S(sy, Z)|Xi = xL, Yi = y, Yi,2 = y2, · · · , Yi,N−1 = yN−1] < 0.
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Therefore, for each y ∈ (xL, ȳ),

Pr(E[SD(sD†, Z)− S(sy, Z)|X] < 0|Xi = xL, Yi = y) > 0.

Integrating the above with respect to G(y|xL),

Pr(E[E[SD(sD†, Z)− S(sYi , Z)|X] < 0|Xi = xL) > 0,

i.e., by offering SD(sD†, ·), type xL investor wins with strictly positive probabiltiy,

if the entrepreneur believes SD(sD†, ·) is offered by type xL investor.

According to Lemma 1.5 part (2), for x > xL,

E[SD(sD†, Z)− S(sy, Z)|Xi = xL,X−i = x−i] < 0

implies

E[SD(sD†, Z)− S(sy, Z)|Xi = x,X−i = x−i] < 0.

Therefore, if the entrepreneur believes SD(sD†, ·) is offered by a type higher than

xL with positive probability, type xL investor can still win with strictly positive

probabiltiy by offering SD(sD†, ·).

Step 3. Type xL investor expects strictly positive payoff by offering SD(sD†, ·).

Equation (1.9) and Lemma 1.5 part (1) imply

E[SD(sD†, Z)− I|Xi = xL,X−i = x−i] > 0

for x−i 6= xL1. Therefore, an investor with private signal xL can expect strictly

positive payoff by offering SD(sD†, ·). Since she expects zero payoff in equilibrium,

she benefits from deviating to SD(sD†, ·).

Proof of Proposition 1.4: Proposition 1.1 has established the entrepreneur in

an informal auction can receive the same payoff as in a formal auction restricted

55



to debt financing. It follows Lemma 1.3 that the entrepreneur revenue in a formal

auction restricted to debt financing is the highest among formal auctions.

Proof of Proposition 1.5: I first show the debt strategy sDx that satisfies

(1.1) and (1.2) supports a symmetric monotonic equilibrium. Since the strategy

supports a symmetric monotonic equilibrium of a formal auction restricted to

debt, no type benefits from deviating to another debt. It suffices to show no type

benefits from deviating to an arbitrary non-debt security S.

Suppose type x investor 1 deviates to S while investor 2 follows the equilibrium

strategy. Lemma 1.1 implies S crosses SD(sDy , ·) from below for any y if they are

not unambiguously ordered. Therefore,

E[S(Z)− SD(sDy , Z)|X1 = x,X2 = y] = 0

implies
d

dy
E[S(Z)− SD(sDy , Z)|X1 = x,X2 = y]

=
d

dy
E[S(Z)− SD(sDy′ , Z)|X1 = x,X2 = y]|y′=y

− E[SD1 (sDy , Z)|X1 = x,X2 = y]
dsDy
dy

> 0.

The inequality is due to Lemma 1.5 and
dsDy
dy

< 0. Therefore, there is y∗ such that

for y ≷ y∗,

E[S(Z)− SD(sDy , Z)|X1 = x,X2 = y] ≷ 0.

Since the entrepreneur observes both investors’ private signals, she chooses in-

vestor 1’s deviated offer if and only if X2 < y∗. If type x investor 1 alternatively

offers SD(sDy∗ , ·), her offer is unambiguously ordered with investor 2’s offer, and

she again wins if and only if X2 < y∗. By definition of y∗,

E[S(Z)− SD(sDy∗ , Z)|X1 = x,X2 = y∗] = 0.
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Lemma 1.5 implies for y < y∗,

E[S(Z)− SD(sDy∗ , Z)|X1 = x,X2 = y] < 0,

that is conditional on X1 = x and X2 = y < y∗, S is less valuable than SD(sDy∗ , ·).

Since type x investor 1 does not benefit from deviating to SD(sDy∗ , ·), it cannot

benefit from deviating to S.

I next show there is no symmetric monotonic equilibrium in which some type

offers a non-debt security. Consider a symmetric monotonic equilibrium strategy

in which type x investor offers S(sx, ·) from ordered set S. Lemma 1.2 implies sx

satisfies (1.1) and (1.2). Suppose there is type x such that S(sx, ·) is not debt.

Then there is debt SD such that S(sx, ·) crosses SD from below and

E[S(sx, Z)− SD(Z)|X1 = X2 = x] = 0.

Let Sε for ε ∈ (0, 1) be the combination of S(sx, ·) and SD:

Sε(Z) = εSD(Z) + (1− ε)S(sx, Z).

This implies S(sx, ·) crosses Sε from below, that is for y ≷ x,

E[Sε(Z)− S(sx, Z)|X1 = x,X2 = y] ≶ 0.

For y ≷ x, since

E[S(sx, Z)− S(sy, Z)|X1 = x,X2 = y] ≷ 0,

for ε is small enough,

E[Sε(Z)− S(sy, Z)|X1 = x,X2 = y] ≷ 0.

If type x investor 1 deviates to offering Sε, it still wins when X2 < x. Conditional

on X2 < x, security Sε is strictly more valuable than S(sx, ·). Therefore, type x
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investor 1 benefits from deviating to offering Sε.

Proof of Proposition 1.6: I first show that the strategy that type x > xL

investor offers to buy out the project at price b and type xL investor offers security

S∗ such that E[Z − S∗(Z)|X = xL] = b supports an equilibrium. Under this

strategy, type x investor has payoff E[Z|X = x] − I − b for all x. Consider

the entrepreneur belief that all securities except buyouts are offered by type xL

investor. Under this belief, the entrepreneur accepts a security S if and only if

E[Z − S(Z)|X = xL] ≥ b, which implies E[Z − S(Z)|X = x] > b for x > xL

according to Lemma 1.5. By deviating to a security S that is not buyout at price

b, type x > xL investor is either rejected or accepted with payoff

E[S(Z)|X = x]− I < E[Z|X = x]− I − b.

Therefore, type x > xL investor does not benefit from deviating. It is obvious

that type xL investor does not deviate.

I next show that there is no equilibrium in which some type other than xL offers

a security that is not buyout at price b. Since under any entrepreneur belief, type

x investor can offer a buyout at price b and guarantee payoff E[Z|X = x]− I− b,

her equilibrium payoff must be no smaller. This implies the entrepreneur always

accepts the offer in equilibrium. It is obvious that no type offers a buyout at a

different price. Suppose type x∗ > xL investor offers a non-buyout security S.

That she prefers S to buyout at price b implies

E[S(Z)|X = x∗]− I ≥ E[Z|X = x∗]− I − b,

which implies E[Z − S(Z)|X = x∗] ≤ b. Lemma 1.5 implies E[Z − S(Z)|X =

x] < b for x < x∗. Therefore, type x < x∗ investor can guarantee payoff

E[S(Z)|X = x]− I > E[Z|X = x]− I − b
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by offering S. This implies the payoff of type x investor is no smaller than

E[Z|X = x] − I − b for all x and strictly larger for positive measure of x. This

implies the entrepreneur’s expected payoff is smaller than b, which contradicts

that the entrepreneur always accepts the offer in equilibrium.

Proof of Proposition 1.7: The maximum total surplus is achieved when the

project is started if and only if V ≥ v∗ with v∗ defined by E[Z|V = v∗] = I + b.

The total surplus in this case is

∫
v∗
E[Z − I − b|V = v]fV (v)dv.

Since the entrepreneur cannot expect negative payoff in equilibrium, the investor

payoff cannot exceed the total surplus.

According to the definition of Cε, for ε > 0, the entrepreneur accepts the offer Sε

if and only if V ≥ v∗. Since

lim
ε→0

Sε(Z) = Z − b,

the investor’s payoff conditional on V = v ≥ v∗ approaches E[Z − I − b|V = v]

when ε approaches zero.

1.7.3 Proof of Lemmas

Proof of Lemma 1.1: Let S be an arbitrary non-debt security, and SD(sD, ·)

be a debt with face value sD. Suppose S and SD(sD, ·) are not unambiguously

ordered. To show S crosses SD(sD, ·) from below, it suffices to show that S(z∗) >

SD(sD, z∗) implies S(z) ≥ SD(sD, z) for z > z∗, and S(z∗) < SD(sD, z∗) implies

S(z) ≤ SD(sD, z) for z < z∗.

Limited liability of the entrepreneur implies S(z) ≤ z = SD(sD, z) for z ≤ sD.

Therefore, S(z∗) > SD(sD, z∗) implies z∗ > sD. Monotonicity of S(·) implies
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S(z) ≥ S(z∗) for z > z∗. Meanwhile, SD(sD, z) = sD = SD(sD, z∗) for z > z∗ >

sD. Therefore, S(z) > SD(sD, z) for z > z∗.

On the other hand, suppose S(z∗) < SD(sD, z∗). Limited liability of the en-

trepreneur implies S(z) ≤ z = SD(sD, z) for z ≤ sD. If z∗ > sD, monotonoicity

of S(·) implies S(z) ≤ S(z∗) < SD(sD, z∗) = sD = SD(sD, z) for z ∈ (sD, z∗).

Lemma 1.8. (Yi, Z) satisfy the SMLRP.

Proof. Since FY |Z(y|z) = FX|Z(y|z)N−1,

fY |Z(y|z) = (N − 1)FX|Z(y|z)N−2fX|Z(y|z).

Suppose y1 > y2. Since (Xi, Z) satisfy the SMLRP,
fX|Z(y1|z)
fX|Z(y2|z) strictly increases in

z. Moreover,

fX|Z(x1|z1)fX|Z(x2|z2) > fX|Z(x1|z2)fX|Z(x2|z1)

for x1 > x2 and z1 > z2, which implies

∫ y1

y2

fX|Z(x1|z1)dx1

∫ y2

fX|Z(x2|z2)dx2 >

∫ y1

y2

fX|Z(x1|z2)dx1

∫ y2

fX|Z(x2|z1)dx2.

Therefore ,
FX|Z(y1|z1)

FX|Z(y2|z1)
>
FX|Z(y1|z2)

FX|Z(y2|z2)
,

that is
FX|Z(y1|z)
FX|Z(y2|z) strictly increase in z. This implies

fY |Z(y1|z)
fY |Z(y2|z) strictly increases in

z.

Lemma 1.9.
∂ ln fZ|X(z|x)

∂xi
,
∂ ln fZ|X,Y (z|x,y)

∂x
and

∂ ln fZ|X,Y (z|x,y)

∂y
strictly increase in z.

Proof.

∂ ln fZ|X,Y (z|x, y)

∂y
=
∂ ln fZ,X|Y (z, x|y)

∂y
−
∂ ln fX|Y (x|y)

∂y

=
∂ ln fZ|Y (z|y)

∂y
−
∂ ln fX|Y (x|y)

∂y
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The first equation is from the Bayes’ rule. The second equation is because

fZ,X|Y (z, x|y) = fX|Z(x|z)fZ|Y (z|y) due to the Bayes’ rule and that X and Y are

independent conditional on Z. According to Lemma 1.8, ∂ ln
fZ|Y (z1|y)

fZ|Y (z2|y)

/
∂y > 0 for

z1 > z2, which implies
∂ ln fZ|Y (z|y)

∂y
strictly increases in z. Therefore,

∂ ln fZ|X,Y (z|x,y)

∂y

strictly increases in z.

That
∂ ln fZ|X(z|x)

∂xi
and

∂ ln fZ|X,Y (z|x,y)

∂x
strictly increase in z are proved in similar

ways.

Proof of Lemma 1.5:

(1) Since M ≤ S(z) ≤ z for some finite number M and under part (e) of

Assumption 1.1, the Dominated Convergence Theorem implies

d

dxi
E[S(Z)− I|X = x]

=

∫
[S(z)− I]

∂fZ|X(z|x)

∂xi
dz

=

∫
[S(z)− I]

[
∂fZ|X(z|x)/∂xi
fZ|X(z|x)

−
∂fZ|X(z∗|x)/∂xi
fZ|X(z∗|x)

]
fZ|X(z|x)dz

for all z∗. The second equation is because E[S(Z) − I|X = x] = 0. Since

S(z) is increasing, we can pick z∗ such that S(z) − I ≥ 0 for z > z∗ and

S(z)− I ≤ 0 for z < z∗. Since S(z) ≤ z, there is positive measure of z such

that S(z) 6= I. According to Lemma 1.9,
∂fZ|X(z|x)/∂xi
fZ|X(z|x)

≷
∂fZ|X(z∗|x)/∂xi
fZ|X(z∗|x)

for

z ≷ z∗. Therefore,

[S(z)− I]

[
∂fZ|X(z|x)/∂xi
fZ|X(z|x)

−
∂fZ|X(z∗|x)/∂xi
fZ|X(z∗|x)

]
≥ 0

for z 6= z∗, with the inequality holds strictly for positive measure of z. This

implies
d

dxi
E[S(Z)− I|X = x] > 0.

(2) The proof is identical to that of part (1), with S(z) − I substituted by

S1(z)−S2(z). Since S1 crosses S2 from below, there is z∗ such that S1(z)−
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S2(z) ≥ 0 for z > z∗ and S1(z) − S2(z) ≤ 0 for z < z∗, and continuity of

S1(z)−S2(z) guarantees both inequalities hold strictly for positive measures

of z.

Proof of Lemma 1.2: In step 1 I show the necessary conditions of a symmetric

monotonic equilibrium. In step 2 I show the existence of a symmetric monotonic

equilibrium under Condition (1.3).

Step 1. Necessary conditions of a symmetric monotonic equilibrium.

Let sx be the equilibrium strategy in a symmetric monotonic equilibrium. In

equilibrium, the entrepreneur accepts the offer with the lowest required s.

Step 1.1. sx is strictly increasing.

Suppose sx were constant on an interval. Then investor types in that interval

expect to win for strictly positive probability. Participation implies every type in

that interval expects non-negative profit upon winning. Part (1) of Lemma 1.5

implies some type on that interval expects strictly positive profit upon winning.

Such a type strictly benefits from lowering her required security marginally, which

decreases the winning payoff marginally but increases the probability of winning

discretely.

Step 1.2. sx is continuous.

Otherwise a type that requires a security just below a discontinuity could gain

by increasing her bid.

Step 1.3. sx is differentiable.

Let Π(s, x) denote the expected payoff of a type x investor by bidding security

S(s, ·):

Π(sx′ , x) =

x′∫
E[S(sx′ , Z)− I|Xi = x, Yi = y]g(y|x)dy

= E[S(sx′ , Z)− I|Xi = x, Yi ≤ x′]G(x′|x).

(1.25)
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According to part (2) of Definition 1.3,

∂

∂s
E[S(s, Z)|Xi = x, Yi ≤ x′] = E[S1(s, Z)|Xi = x, Yi ≤ x′].

Suppose x′ > x, which implies sx′ < sx. By the Mean Value Theorem, there is

s∗ ∈ [sx′ , sx] such that

E[S(sx, Z)|Xi = x, Yi ≤ x′]− E[S(sx′ , Z)|Xi = x, Yi ≤ x′]

= (sx − sx′)E[S1(s∗, Z)|Xi = x, Yi ≤ x′].

Therefore,

Π(sx′ , x) =

∫ x′

E[S(sx, Z)− I|Xi = x, Yi = y]g(y|x)dy

− (sx − sx′)E[S1(s∗, Z)|Xi = x, Yi ≤ x′]G(x′|x)

The optimality of sx implies Π(sx, x) ≥ Π(sx′ , x), which can be rewritten as

sx′ − sx
x′ − x

≤ −
∫ x′
x
E[S(sx, Z)− I|Xi = x, Yi = y]g(y|x)dy

(x′ − x)E[S1(s∗, Z)|Xi = x, Yi ≤ x′]G(x′|x)
. (1.26)

Similarly, there is s∗∗ ∈ [sx′ , sx] such that

E[S(sx, Z)|Xi = x′, Yi ≤ x′]− E[S(sx′ , Z)|Xi = x′, Yi ≤ x′]

= E[S1(s∗∗, Z)|Xi = x′, Yi ≤ x′](sx − sx′)

and

Π(sx, x
′) =

∫ x

E[S(sx′ , Z)− I|Xi = x′, Yi = y]g(y|x′)dy

+ (sx − sx′)E[S1(s∗∗, Z)|Xi = x′, Yi ≤ x]G(x|x′).

The optimality of sx′ implies Π(sx′ , x
′) ≥ Π(sx, x

′), which implies

sx′ − sx
x′ − x

≥ −
∫ x′
x
E[S(sx′ , Z)− I|Xi = x′, Yi = y]g(y|x′)dy

(x′ − x)E[ES1(s∗∗, Z)|Xi = x′, Yi ≤ x]G(x|x′)
. (1.27)

Taking limits of (1.26) and (1.27) establishes differential equation (1.1).
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Step 1.4. Boundary condition (1.2) holds.

Let x be the lowest type of investor that makes an offer. If x > xL, then a type x

investor expects to win with strictly positive probability G(x|x), and thus strictly

benefits from requiring a slightly larger security. Therefore x = xL.

A type xL investor has zero chance to win. If E[S(sxL , Z)−I|Xi = Yi = xL] > 0, a

type xL investor benefits from marginally decreasing the required security, which

allows her to win with strictly positive probability and expect a strictly positive

profit upon winning. If E[S(sxL , Z) − I|Xi = Yi = xL] < 0, an investor with a

signal slightly higher than xL earns negative profit which violates participation.

Step 2. There is a symmetric monotonic equilibrium under condition (1.3).

It suffices to show that if investors follow strategy sx in step 1, a type x investor’s

payoff by mimicking type x′, Π(sx′ , x), is decreasing (resp. increasing) in x′ for

x′ ≷ x. Since sx is differentiable, Π(sx′ , x) is differentiable in x′. It suffices to

show
∂Π(sx′ ,x)

∂x′
≶ 0 for x′ ≷ x.

∂Π(sx′ , x)

∂x′

= E[S(sx′ , Z)− I|Xi = x, Yi = x′]g(x′|x) + E[S1(sx′ , Z)|Xi = x, Yi ≤ x′]G(x′|x)
dsx′

dx′

=

∫
[S(sx′ , z)− I]fY |Z(x′|z)fZ|X(z|x)dz +

∫
S1(sx′ , z)FY |Z(x′|z)fZ|X(z|x)dz

dsx′

dx′

=

∫
a(z)fZ|X(z|x)dz

where fZ|X(·|x) denotes the density of Z conditional on Xi = x, and

a(z) ≡ [S(sx′ , z)− I]fY |Z(x′|z) + S1(sx′ , z)FY |Z(x′|z)
dsx′

dx′
.

According to condition (1.3), there is z∗ such that a(z) ≷ 0 for z ≷ z∗.

According to equation (1.1),
∫
a(z)fZ|X(z|x′)dz = 0. Therefore,

∂Π(sx′ , x)

∂x′
=

∫
a(z)

[
fZ|X(z|x)

fZ|X(z|x′)
−
fZ|X(z∗|x)

fZ|X(z∗|x′)

]
fZ|X(z|x′)dz.
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Suppose x′ < x. The SMLRP of (Z,Xi) implies
fZ|X(z|x)

fZ|X(z|x′) −
fZ|X(z∗|x)

fZ|X(z∗|x′) ≷ 0 for

z ≷ z∗. Therefore,
∂Π(sx′ ,x)

∂x′
> 0. Similarly,

∂Π(sx′ ,x)

∂x′
< 0 for x′ > x.

Proof of Lemma 1.6: According to equation (1.16),

Eµ,S,y[S1(Z)− S2(Z)]

=

∫
[S1(z)− S2(z)]

∫
fZ|X,Y (z|x, y)

µ̂(S|x)fX|Y (x|y)∫
µ̂(S|u)fX|Y (u|y)du

dx︸ ︷︷ ︸
≡µZ|Y,S(z|y,S)

dz.

Denote the underbraced part by µZ|Y,X(z|y, S).

Step 1.
∂2 lnµZ|Y,S(z|y, S)

∂y∂z
> 0.

That Xi and Yi are independent conditional on Z implies

fZ|X,Y (z|x, y) =
fX|Z(x|z)fZ|Y (z|y)

fX|Y (x|y)
.

Therefore

µZ|Y,S(z|y, S) = fZ|Y (z|y) ·
∫
µ̂(S|x)fX|Z(x|z)dx∫
µ̂(S|u)fX|Y (u|y)du

.

According to Lemma 1.8, (Yi, Z) satisfies the SMLRP. Therefore

∂2 lnµZ|Y,X(z|y, S)

∂y∂z
=
∂2 ln fZ|Y (z|y)

∂y∂z
> 0.

Step 2. Show the lemma.

Suppose Eµ,S,y[S1(Z)− S2(Z)] = 0. Then

d

dy
Eµ,S,y[S1(Z)− S2(Z)]

=

∫
[S1(z)− S2(z)]

[
∂µZ|Y,S(z|y, S)/∂y

µZ|Y,S(z|y, S)
−
∂µZ|Y,S(z∗|y, S)/∂y

µZ|Y,S(z∗|y, S)

]
µZ|Y,S(z|y, S)dz.

for any z∗. Since S1 crosses S2 from below, let z∗ be such that S1(z) ≥ S2(z)

for z > z∗ and S1(z) ≤ S2(z) for z < z∗, and both inequalities hold strictly for
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positive measures of z. According to step 1,
∂µZ|Y,S(z|y,S)/∂y

µZ|Y,S(z|y,S)
strictly increases in

z. Therefore,

[S1(z)− S2(z)]

[
∂µZ|Y,S(z|y, S)/∂y

µZ|Y,S(z|y, S)
−
∂µZ|Y,S(z∗|y, S)/∂y

µZ|Y,S(z∗|y, S)

]
≥ 0,

and the inequality holds strictly for positive measure of z. This implies

d

dy
Eµ,S,y[S1(Z)− S2(Z)] > 0.

Proof of Lemma 1.7: Step 1. Show that

d

dx
E[S(sxL , Z)|Xi ≤ x, Yi = xL]

∣∣
x=xL

=
1

2

d

dx
E[S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

.

(1.28)

The left-hand side can be calculated as

d

dx
E[S(sxL , Z)|Xi ≤ x, Yi = xL]

∣∣
x=xL

=
d

dx

∫ x
E[S(sxL , Z)|Xi = u, Yi = xL]fX|Y (u|xL)du

FX|Y (x|xL)

∣∣
x=xL

= lim
x→xL

fX|Y (x|xL)

FX|Y (x|xL)

[
E[S(sxL , Z)− I|Xi = x, Yi = xL]

− E[S(sxL , Z)− I|Xi ≤ x, Yi = xL]

]
=

d

dx
E[S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

− d

dx
E[S(sxL , Z)|Xi ≤ x, Yi = xL]

∣∣
x=xL

,

which implies (1.28). The third equation is from the L’Hopital’s rule.

Step 2. Show that

d

dx
E[S(sxL , Z)|Xi = xL, Yi = x]

∣∣
x=xL

=
N

2

d

dx
E[S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

.

(1.29)
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The left-hand side can be calculated as

d

dx
E[S(sxL , Z)|Xi = xL, Yi = x]

∣∣
x=xL

=
d

dx
E[S(sxL , Z)|X1 = xL, X2 = x,X3, · · · , XN ≤ x]

∣∣
x=xL

=
d

dx
E[S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

+ (N − 2)
d

dx
E[S(sxL , Z)|Xi ≤ x, Yi = xL]

∣∣
x=xL

.

Plugging (1.28) into the above leads to (1.29).

Step 3. Show that

d

dx
E[S(sx, Z)|Xi = Yi = x]

∣∣
x=xL

= E[S1(sxL , Z)|Xi = Yi = xL]
dsx
dx

∣∣
x=xL

+
N + 2

2

d

dx
E[S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

.

(1.30)

The left-hand side can be calculated as

d

dx
E[S(sx, Z)|Xi = Yi = x]

∣∣
x=xL

= E[S1(sxL , Z)|Xi = Yi = xL]
dsx
dx

∣∣
x=xL

+
d

dx
E[S(sxL , Z)|Xi = x, Yi = xL]

∣∣
x=xL

+
d

dx
E[S(sxL , Z)|Xi = xL, Yi = x]

∣∣
x=xL

.

Plugging (1.29) into the above leads to (1.30).

Step 4. Show (1.22).

Take the limit of equation (1.1) at x = xL:

E[S1(sxL , Z)|Xi = Yi = xL]
dsx
dx

∣∣
x=xL

= − lim
x→xL

E[S(sx, Z)− I|Xi = Yi = x]
g(x|x)

G(x|x)

= − limx→xL dE[S(sx, Z)|Xi = Yi = x]/dx

limx→xL dG(x|x)/dx
g(xL|xL).

(1.31)
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The second equation is from the L’Hopital’s rule. Plugging (1.30) and

lim
x→xL

dG(x|x)

dx

∣∣
x=xL

= g(xL|xL) +
dG(xL|x)

dx

∣∣
x=xL︸ ︷︷ ︸

0

into (1.31) and rearranging lead to (1.22).
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Chapter 2

Security Design with Two-Sided

Asymmetric Information

2.1 Introduction

When firms raise capital under asymmetric information, security design has non-

trivial implications on firm revenues. Firms may have inside information that

is not available to investors, which leads to inevitable mispricing when firms

issue securities to raise capital. Myers and Majluf (1984); Nachman and Noe

(1994); DeMarzo and Duffie (1999) show informed firms pool on the same security

design that minimizes mispricing, under which the firm can retain an information-

sensitive stake. In particular, Nachman and Noe (1994) incorporate the market’s

belief about securities not issued in equilibrium, and establish conditions under

which all firms pool on the same security due to the market’s unfavourable belief

about any off-equilibrium security design.

On the other hand, professional investors are repeated players in capital markets

and may gain experience and expertise on evaluating businesses, which gives

them private insight about firms’ financial prospects. There is a literature on

firms’ design of security-bid auctions (Hansen, 1985; Crémer, 1987; Rhodes-Kropf
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and Viswanathan, 2000; DeMarzo et al., 2005; Axelson, 2007; Abhishek et al.,

2015; Sogo et al., 2016)1, which shows an uninformed firm optimally designs an

auction in which bids are restricted to leaving information-sensitive stakes to the

firm. Under the firm’s optimal auction design, competition among investors is

the most intense, which minimises their informational rent and maximises the

firm’s revenue.

In principle, both types of informational frictions can coexist in a market. A nat-

ural question follows: when both the firm and investors have private information,

how does the firm’s signalling incentive interact with its incentive to enhance

competition among investors? This paper studies security design under this type

of informational friction. The result shows that among a set of security designs

whose information sensitivenss can be ranked by the concept of “strong steep-

ness” first used by Abhishek et al. (2015), all firms pool on the strongly steepest

security design. For example, among combinations of equity and cash payments,

the set of equity with a smaller fixed cash payment is strongly steeper than the

set of equity with a larger fixed cash payment, and the firm optimally forbids any

cash payment.

The model considers a firm that needs to raise capital for an investment project.

The project value is uncertain, about which both the firm and each potential

investor has private information. The firm designs a second-price auction in

which investors bid with securities from an ordered set chosen by the firm, such

as the set of different shares of equity. The investor with the highest bid wins

the investment opportunity and pays the security specified in second-highest bid

to the firm. Based on the firm’s choice of securities to allow in the auction,

investors infer the firm’s private information and decide their bidding strategies

accordingly. If investors have positive belief about the firm’s private information,

they will bid more aggressively by offering to pay a larger security to the firm

(or equivalently, requiring a smaller security in return for the investment). As

a result, firms wish to signal high private valuation. On the other hand, as in

1These models can be extended to nest auctions to sell a fixed security in which investors
bid prices.
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models in which firms have no private information, conditional on its valuation

being truly revealed, a firm expects higher revenue by restricting bids to steeper

securities. This makes a flat security design a potential costly signalling device. A

firm with high valuation may potentially be able to distinguish itself by choosing

flatter securities which deter worse firms from mimicking.

However, when the firm’s choice of ordered sets can be ordered by strong steep-

ness, such an attempt to separate from worse firms cannot succeed in equilibrium.

Consider a simple example as follows. Suppose the firm’s private signal is either

high or low. The firm can choose to either restrict all bids to equity, or restrict

all bids to cash (which is equivalent to buyout offers). Equity is strongly steeper

than cash. Conjecture an equilibrium in which a firm with signal high chooses

cash and a firm with signal low chooses equity. When investors bid with cash

under the belief that the firm’ signal is high, the firm’s revenue is independent

of its true value since the value of cash is not sensitive to firm value. That no

firm deviates implies a low-type firm’s revenue from holding an equity auction is

higher than either type of firm’s revenue from a cash auction, which is in turn

higher than a high-type firm’s revenue from holding an equity auction. However,

this leads to contradiction because the value of any equity offer is increasing in

the firm’s true signal.

Intuitively, the revenue-enhancing effect of choosing a strongly steeper ordered

set is more significant if the true firm value is higher. Compared with a firm

with a lower private valuation, it is even more costly for a better firm to choose

a strongly flatter ordered set. If the equilibrium belief about a strongly flatter

ordered set is good enough to attract a better firm, a worse firm is always willing

to mimic. This destroys any separating equilibrium.

In addition to ruling out separating equilibria, I deploy the D1 refinement criterion

of Cho and Kreps (1987) to select among pooling equilibria. Since a better type is

more likely to prefer a strongly steeper ordered set, D1 regulates investors believe

deviation to any ordered set strongly steeper than the equilibrium security design

is made by the best firm, and deviation to any strongly flatter ordered set is
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made by the worst firm. Given the favourable beliefs attached to strongly steep

securities, and that it is revenue enhancing to use steeper securities conditional

on the firm’s information is truly revealed, it is hardly surprising that all types

of firms choose the strongly steepest ordered set in the unique D1 equilibrium.

2.2 Model Setup

This paper considers a model in which a penniless entrepreneur designs a security

auction to finance an investment project. The project requires fixed investment

I and generates random future payoff Z. There are N investors, each of whom

has abundant capital for the investment. Each of the entrepreneur and investors

observes a private signal. Let V denote the entrepreneur’s private signal, and Xi

for i = 1, · · · , N denote the private signal of investor i. Let X = (X1, · · · , XN)

denote the vector of all investors’ private signals and x = (x1, · · · , xN) the vector

of signal values. The value of a private signal will also be referred to as the type

of the entrepreneur or an investor.

Assumption 2.1. The project payoff Z and the private signals (V,X1, · · · , XN)

satisfy the following properties:

(1) The entrepreneur’s private signal V is distributed with probability density

fV (·) on support [vL, vH ];

(2) Each investor’s private signal Xi is distributed with probability density fX(·)

on support [xL, xH ];

(3) All private signals (V,X1, · · · , XN) are independently distributed;

(4) Conditional on the values of private signals (V,X1, · · · , XN) = (v, x1, · · · , xN),

Z is distributed with probability density fZ|V,X(·|v, x1, · · · , xN), which is

symmetric in the last N arguments, and has full support on [0,∞).

(5) Each private signal (V or Xi) and Z satisfy the strict monotone likelihood

ratio property (SMLRP) conditional on other private signals, i.e., the like-

lihood ratio fZ|V,X(z|v, x1, · · · , xN)/fZ|V,X(z′|v, x1, · · · , xN) is strictly in-

creasing in the last N + 1 arguments if z > z′;
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(6) E [Z|V = vL,X = xL1]− I > 0.

Part (5) of the assumption implies each private signal is a positive signal of the

project payoff Z. As part (6) implies, this paper focuses on projects that have

positive NPV conditional on any profile of private signals.

The project can be financed by only one investor. The entrepreneur holds a

second-price auction to decide which investor makes the investment and how the

project payoff is allocated between the entrepreneur and the investor. In the

auction, each investor makes a security offer s from a predetermined ordered

set S. The investor that offers the highest s wins - she makes investment I,

pays the entrepreneur the security offered in the second-highest bid, and own the

remaining of the project. The definitions of security and ordered set of securities

follow those in DeMarzo et al. (2005):

Definition 2.1. A feasible security is a function S : [0,∞) 7→ R such that

(1) (Limited Liability of the Entrepreneur) S(z) ≥ 0,

(2) (Dual Monotonicity) S(z) and z − S(z) weakly increase in z.

Definition 2.2. An ordered set of securities is a function S(s, ·) with s ∈ [s0, s1]

such that

(1) S(s, ·) is a feasible security,

(2) S(s, z) is continuous and almost everywhere differentiable in s, and S1(s, z)fZ|V,X(z|v,x)

is integrable on z ∈ [0,∞),

(3) For s′ > s, S(s′, z) ≥ S(s, z) for all z and S(s′, z) > S(s, z) for some z,

(4) E[Z − S(s0, Z)|V = vL,X = xL1] > I and E[Z − S(s1, Z)|V = vH ,X =

xH1] < I.

To describe the entrepreneur’s choices in designing the security auction, I define

“strong steepness” following Abhishek et al. (2015), which is a stronger version of

the commonly-used concept of “steepness” first defined by DeMarzo et al. (2005).

Definition 2.3. Ordered set SA is strongly steeper than ordered set SB if there

are sA and sB such that SA(sA, z)−SB(sB, z) assumes both positive and nevative
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values over z ∈ [0,∞), and for any such sA and sB, SA(sA, z) − SB(sB, z) is

non-decreasing in z.

Let S = {S(λ, s, z), λ ∈ [λL, λH ]} be a set of ordered sets such that S(λ, ·, ·) is

strongly steeper than S(λ′, ·, ·) if and only if λ > λ′. For examples of S, consider

a “slope-increasing” ordered set of securities S:

Definition 2.4. An ordered set of securities S is slope-increasing if for any

two securities S(s, ·) and S(s′, ·) with s > s′, S2(s, z) ≥ S2(s′, z) for all z and

S2(s, z) > S2(s′, z) for some z.

The set of debt, the set of equity and the set of levered equity are all slope-

increasing ordered sets. If S(·, ·) is a slope-increasing ordered set, and S(λ, s, z)

with −λ ≥ 0 represents an offer to invest I and pay cash −λ and security S(s, ·)

to the entrepreneur (S(λ, s, z) = S(s, z) + (−λ)), then ordered set S(λ, ·, ·) is

strongly steeper than S(λ′, ·, ·) if and only if the component of cash payment is

smaller: −λ < −λ′. The strongly steepest ordered set λH = 0 is the original

ordered set S(·, ·) without any cash component.

The entrepreneur can choose an ordered set λ from set S, so that offers in the

auction are restricted to securities from ordered set S(λ, ·, ·). For example, if

S(λ, s, z) = sz + (−λ) with −λ ≥ 0 and s ∈ [0, 1], then S(λ, s, ·) represents

the combination of cash −λ and fraction s of the project’s equity. In this case,

S includes all combinations of equity payments and cash payments. The en-

trepreneur’s auction design is to require a fixed cash payment −λ in every offer.

Investors decide the equity share s in their offers in the auction.

2.3 Equilibrium Characterisation

I first present investors’ bidding strategies in a partial equilibrium in subsection

2.3.1, and then solve the entrepreneur’s security design problem and characterise

a full equilibrium.

74



2.3.1 Bidding Strategies

Consider investors’ bidding strategies in an auction restricted to ordered set

S(λ, ·, ·). Suppose it is common knowledge among investors that the entrepreneur’s

private signal V has probability density µ(·). I focus on a symmetric monotonic

equilibrium of the auction, that is an equilibrium in which investors follow the

same bidding strategy and an investor with a larger private signal offers a weakly

larger security. As in a second-price cash auction with common values, investors

offer their true values conditional on marginally winning:

Lemma 2.1. An auction in which offers are restricted to ordered set S(λ, ·, ·)

and investors believe it is common knowledge that V has probability density µ(·)

has a symmetric monotonic equilibrium. An investor with private signal x offers

security S(λ, sλ,µx , ·) such that

∫
E
[
Z − S(λ, sλ,µx , Z)|Xi = Yi = x, V = v

]
µ(v)dv = I (2.1)

where Yi denotes the highest private signal among investors other than i.

2.3.2 Entrepreneur Revenue

If the true entrepreneur signal is v, while investors believe V follows distribution

µ, the entrepreneur’s expected payoff from an auction restricted to S(λ, ·, ·) is

Π(λ, µ, v) =

∫ ∫
S(λ, sλ,µy , z)fZ|V,X(2)(z|v, y)dzfX(2)(y)dy . (2.2)

whereX(i) denotes the i-th highest private signal among (X1, · · · , XN), fZ|V,X(2)(·|v, y)

denotes the probability density of Z conditional on V = v and X(2) = y, and

fX(2)(·) is the probability density of X(2).

For convenience of comparing bidding strategies and entrepreneur payoffs under

different beliefs, I assume that the probability density of Z conditional on V = v

and X = x, fZ|V,X(·|v,x), satisfies the following property:
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Assumption 2.2. For any z,x and probability density function µ,

∫
fZ|V,X(z|v,x)µ(v)dv = fZ|V,X(z|

∫
vµ(v)dv,x).

Assumption 2.2 requires investors’ posterior believed distribution of Z is affected

by µ, their believed distribution of the entrepreneur’s signal V , only through the

believed expectation of V ,
∫
vµ(v)dv.

Lemma 2.2. A type-v entrepreneur’s revenue from an auction restricted to or-

dered set S(λ, ·, ·) under investors’ belief that V follows distribution µ, denoted

by Π(λ, µ, v), satisfies:

(1) Π(λ, µ, v) strictly increases in
∫
v′µ(v′)dv′;

(2) Π(λ, µ, v) is strictly increasing v unless S(λ, sλ,µx , ·) is purely cash for all x;

(3) Π(λ, µ, v) is strictly increasing in λ if
∫
v′µ(v′)dv′ ≤ v.

Π(λ, µ, v) increases in
∫
v′µ(v′)dv′ because sλ,µy increases in

∫
v′µ(v′)dv′ according

to (2.1) and Assumption 2.2. Π(λ, µ, v) is increasing in v because security value

is increasing in Z and (V, Z) satisfy the SMLRP.

Suppose
∫
v′µ(v′)dv′ ≤ v. To compare entrepreneur revenue from two ordered

sets λ1 > λ2, rewrite (2.2) as

Π(λ, µ, v) =

∫
E
[
S(λ, sλ,µy , Z)|Xi ≥ y, Yi = y, V = v

]
fX(2)(y)dy . (2.3)

For a fixed y, notice that (2.1) implies the expected values of S(λ1, sλ
1,µ
y , ·) and

S(λ2, sλ
2,µ
y , ·) are the same conditional on Xi = Yi = y and V follows distribution

µ. Compared with these values of Xi, Yi and V , the conditions Xi ≥ y, Yi = y

and V = v imply an improvement on the distribution of Z. Since λ1 is strongly

steeper than λ2, the increase in the value of S(λ1, sλ
1,µ
y , ·) is larger than that in

the value of S(λ2, sλ
2,µ
y , ·). Therefore, Π(λ1, µ, v) > Π(λ2, µ, v).2

2If v <
∫
vµ(v)dv, it is unclear whether Xi ≥ y, Yi = y and V = v improves the distribution

of Z over the conditions Xi = Yi = y and V follows µ. Therefore, Π(λ, µ, v) may or may not
be monotonic in λ.
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Under the assumption that the entrepreneur has no private information, DeMarzo

et al. (2005) show the entrepreneur expects higher revenue by restricting offers

to a steeper ordered set. Part (3) of Lemma 2.2 extends the result to situations

where investors’ belief is kept constant at a distribution that is worse than the

entrepreneur’s true type. In both cases, it is sub-optimal for the entrepreneur to

restrict offers to an ordered set flatter than the steepest, λ < λH . The essence

of the property is the Linkage Principle first formalized by Milgrom and Weber

(1982): the more the payment to the entrepreneur is linked to the project value,

the less the winning investor’s payoff is linked to the same, which leads to more

intense competition among investors and higher entrepreneur revenue.

2.3.3 Single-Crossing Property

This ranking of entrepreneur revenue opens up the question whether the en-

trepreneur may credibly signal high project valuation by choosing a flat ordered

set of securities. As shown in Lemma 2.2, a better belief encourages investors to

make higher offers in the auction and enhances the entrepreneur’s revenue. If a

flatter ordered set can induce a better belief, which outweighs the negative effect

on revenue due to reduced competition, the entrepreneur may be willing to hold

an auction with the flatter ordered set.

As in all signalling games, a signal sender may be able to credibly reveal its

type with a costly signal only if a single crossing condition is satisfied, which

guarantees a worse type does not mimic. In this game, the needed condition is

that between an auction restricted to a steeper ordered set associated with a belief

and an auction restricted to a flatter ordered set associated with another belief,

if a lower-type entrepreneur prefers the former, a higher-type entrepreneur has

the same preference strictly. However, the following lemma shows the opposite is

true:

Lemma 2.3. Consider two ordered sets λ1 > λ2. If a type v entrepreneur weakly

prefers to hold an auction restricted to λ1 under investors’ belief that V follows
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distribution µ1 rather than hold an auction restricted to λ2 under investors’ belief

that V follows distribution µ2, then a higher-type entrepreneur v′ > v has the

same preference strictly.

Intuitively, a higher-type entrepreneur puts more weight on high values of Z. For

any realiasation of X(2), strategy sλ,µx defined by (2.1) implies there is z such that

S(λ1, sλ
1,µ1

X(2) , z) = S(λ2, sλ
2,µ2

X(2) , z) = z − I.

This combined with the definition of strongly steeper implies S(λ1, sλ
1,µ1

X(2) , z) −

S(λ2, sλ
2,µ2

X(2) , z) increases in z. Therefore, compared with a lower-type entrepreneur,

a higher-type entrepreneur has higher preference for S(λ1, sλ
1,µ1

X(2) , ·) over S(λ2, sλ
2,µ2

X(2) , ·)

for each realisation of X(2).

2.3.4 Equilibrium Design of Security Auction

Let λ∗ : [vL, vH ] 7→ [λL, λH ] denote the entrepreneur’s auction design strategy,

that is the entrepreneur chooses ordered set λ∗(v) if her private signal is V = v.

Let µ∗ : [λL, λH ] × [vL, vH ] 7→ [0,∞) denote investors’ belief, that is investors

assign probability density µ∗(λ, v) to entrepreneur type v when the entrepreneur

chooses ordered set λ. An equilibrium is a pair of (λ∗, µ∗) that satisfies

λ∗(v) ∈ arg max
λ

Π(λ, µ∗(λ, ·), v), (2.4)

and

µ∗(λ, v) =


fV (v)∫

λ∗(v)=λ fV (v)dv
, if λ∗(v) = λ

0, o/w

(2.5)

for λ such that {v : λ∗(v) = λ} is not empty.

The single crossing property given in Lemma 2.3 is in the opposite direction

of what supports separation in a signalling game. It implies all types of the

entrepreneur will pool on the same ordered set λ in equilibrium.
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Suppose there is an equilibrium in which ordered sets λ1 and λ2 with λ1 > λ2 are

both chosen by non-empty sets of types of the entrepreneur. Consider type v̄, the

best type that chooses λ2. It is either fairly valued or undervalued in equilibrium,

and Lemma 2.2 implies it prefers λ1 to λ2 if both choices induce the equilibrium

belief associated with λ2. Lemma (2.3) implies an entrepreneur who chooses λ1 in

equilibrium has higher private signal than an entrepreneur who chooses λ2, which

implies λ1 must be associated with better belief than λ2. Lemma 2.2 implies by

deviating to λ1, type v̄ can expect a payoff even higher than the hypothetical

payoff from choosing λ1 under the equilibrium belief about λ2. As a result, this

entrepreneur benefits from the deviation, which destroys such an equilibrium.

Proposition 2.1. In any equilibrium, all types of the entrepreneur choose the

same ordered set.

Multiple pooling equilibria may exist due to arbitrarily unfavourable beliefs about

off-equilibrium ordered sets. To select among these equilibria, I deploy the D1

refinement criterion of Cho and Kreps (1987) which prune “unreasonable” off-

equilibrium beliefs. Fixing an equilibrium, let Π∗(v) denote the equilibrium payoff

of type v entrepreneur. For a fixed ordered set λ, let

Dv ≡ {µ : Π(λ, µ, v) > Π∗(v)}

and

D0
v ≡ {µ : Π(λ, µ, v) = Π∗(v)} .

In addition to (2.5), a D1 belief requires µ∗(λ, v) = 0 if there is a type v′ such that

Dv ∪ D0
v ⊆ Dv′ (where Dv, D

0
v and Dv′ are with respect to λ). An equilibrium

outcome is a D1 outcome if it can be supported by a D1 belief. Intuitively, D1

requires investors to believe a deviation to an off-equilibrium ordered set is done

by those types of the entrepreneur that are most likely to make the deviation.

Proposition 2.2. A unique D1 equilibrium outcome exists, in which all types of

the entrepreneur choose the strongly steepest ordered set λH .
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D1 rules out pooling on any ordered set strongly flatter than λH . As shown in

Lemma 2.2, the entrepreneur strictly prefers λH to λ if investors can observe V .

In a conjectured equilibrium in which the entrepreneur always chooses ordered

set λ < λH , Lemma 2.3 implies investors believe a deviation to λH is made by the

best type of the entrepreneur under a D1 belief. Such a favourable belief attracts

deviation. For example, the average type of the entrepreneur deviates to profit

from both overvaluation and more intense competition among investors.

2.4 Appendix

In this appendix, proofs of propositions and lemmas are provided.

Proof of Lemma 2.1:

Suppose all investors other than investor i follow strategy sλ,µx which satisfies

(2.1). Conditional on Xi = x and Yi = y, investor i has expected payoff

U(x, y) =

∫
E[Z − S(λ, sλ,µy , Z)|Xi = x, Yi = y, V = v]µ(v)dv − I

from winning the project. Since (Z,Xi, Yi, V ) are affiliated, and Z−S(λ, sλ,µy , Z)

is strictly increasing in Z, U(x, y) is strictly increasing in x. Since (2.1) implies

U(y, y) = 0, U(x, y) ≷ U(y, y) = 0 when x ≷ y. It is optimal for investor i to win

if and only if x > y. The only way to acheive this is to follow strategy sλ,µx .

Proof of Lemma 2.2:

1. Assumption 2.2 implies (2.1) can be rewritten as

E

[
Z − S(λ, sλ,µx , Z)|Xi = Yi = x, V =

∫
vµ(v)dv

]
= I. (2.6)

Since (Z,Xi, Yi, V ) are affiliated, and Z −S(λ, sλ,µy , Z) is strictly increasing in Z,

sλ,µx is strictly increasing in
∫
vµ(v)dv. Therefore, Π(λ, µ, v) strictly increases in∫

vµ(v)dv.
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2. Consider v1 > v2.

Π(λ, µ, v1)− Π(λ, µ, v2)

=

∫ ∫
S(λ, sλ,µy , z)

[
fZ|V,X(2)(z|v1, y)− fZ|V,X(2)(z|v2, y)

]
dzfX(2)(y)dy

.

For each y there is z∗(y) such that

fZ|V,X(2)(z∗(y)|v1, y) = fZ|V,X(2)(z∗(y)|v2, y).

Since (Z,Xi, Yi, V ) are affiliated, fZ|V,X(2)(z|v1, y) ≷ fZ|V,X(2)(z|v2, y) for z ≷

z∗(y). Since∫
S(λ, sλ,µy , z∗(y))

[
fZ|V,X(2)(z|v1, y)− fZ|V,X(2)(z|v2, y)

]
dz

= S(λ, sλ,µy , z∗(y))

∫ [
fZ|V,X(2)(z|v1, y)− fZ|V,X(2)(z|v2, y)

]
dz

= 0

,

we have

Π(λ, µ, v1)− Π(λ, µ, v2)

=

∫ ∫ [
S(λ, sλ,µy , z)− S(λ, sλ,µy , z∗(y))

] [
fZ|V,X(2)(z|v1, y)− fZ|V,X(2)(z|v2, y)

]
dzfX(2)(y)dy

.

Since S(λ, sλ,µy , z) is increasing in z, S(λ, sλ,µy , z)−S(λ, sλ,µy , z∗(y)) and fZ|V,X(2)(z|v1, y)−

fZ|V,X(2)(z|v2, y) have the same sign. Therefore, Π(λ, µ, v1) > Π(λ, µ, v2).

3. Suppose
∫
vµ(v)dv ≤ v. (2.6) implies

∫
S(λ, sλ,µy , z)fZ|V,X,Y

(
z|
∫
vµ(v)dv, y, y

)
dz

is the same for any λ. Let

Π(λ, µ, v, y) ≡
∫
S(λ, sλ,µy , z)fZ|V,X(2)(z|v, y)dz ,
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then

Π(λ, µ, v, y)−
∫
S(λ, sλ,µy , z)fZ|V,X,Y

(
z|
∫
vµ(v)dv, y, y

)
dz

=

∫
S(λ, sλ,µy , z)

[
fZ|V,X(2)(z|v, y)− fZ|V,X,Y

(
z|
∫
vµ(v)dv, y, y

)]
dz

=

∫
S(λ, sλ,µy , z)

[∫
y
fZ|V,X,Y

(
z|
∫
vµ(v)dv, x, y

)
fX(x)dx∫

y
fX(x)dx

− fZ|V,X,Y (z|y, y,
∫
vµ(v)dv)

]
dz

=

∫
y

∫
S(λ, sλ,µy , z)b(x, y, z)dz

fX(x)∫
y
fX(x)dx

dx

where

b(x, y, z) = fZ|V,X,Y (z|x, y, v)− fZ|V,X,Y (z|y, y,
∫
vµ(v)dv).

Let z∗(x, y) be such that b(x, y, z∗(x, y)) = 0. Since (Z,Xi, Yi, V ) are affiliated,

b(x, y, z) ≷ 0 for z ≷ z∗(x, y).

For λ1 > λ2,

Π(λ1, µ, v, y)− Π(λ2, µ, v, y)

=

∫
y

∫ [
S(λ, sλ

1,µ
y , z)− S(λ, sλ

2,µ
y , z)

]
b(x, y, z)dz

fX(x)∫
y
fX(x)dx

dx

=

∫
y

∫
c(x, y, z)b(x, y, z)dz

fX(x)∫
y
fX(x)dx

dx

where

c(x, y, z) =
[
S(λ, sλ

1,µ
y , z)− S(λ, sλ

1,µ
y , z∗(x, y))

]
−
[
S(λ, sλ

2,µ
y , z)− S(λ, sλ

2,µ
y , z∗(x, y))

]
.

The second equation is because∫ [
S(λ, sλ

1,µ
y , z∗(x, y))− S(λ, sλ

2,µ
y , z∗(x, y))

]
b(x, y, z)dz

=
[
S(λ, sλ

1,µ
y , z∗(x, y))− S(λ, sλ

2,µ
y , z∗(x, y))

] ∫
b(x, y, z)dz

= 0

.

Since λ1 is strongly steeper than λ2, and (2.1) implies there is z such that
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S(λ, sλ
1,µ
y , z) = S(λ, sλ

2,µ
y , z), S(λ, sλ

1,µ
y , z) − S(λ, sλ

1,µ
y , z∗(x, y)) is larger than

S(λ, sλ
2,µ
y , z) − S(λ, sλ

2,µ
y , z∗(x, y)) when z > z∗(x, y) and smaller when z <

z∗(x, y). Therefore, c(x, y, z) and b(x, y, z) always have the same sign. This im-

plies Π(λ1, µ, v, y) > Π(λ2, µ, v, y). Since Π(λ, µ, v) =

∫
Π(λ, µ, v, y)fX(2)(y)dy ,

Π(λ1, µ, v) > Π(λ2, µ, v).

Proof of Lemma 2.3:

That type v entrepreneur weakly prefers λ1 under belief V follows distribution

µ1 to λ2 under belief V follows distribution µ2 implies

Π(λ1, µ1, v)− Π(λ2, µ2, v)

=

∫ ∫ [
S
(
λ1, sλ

1,µ1

y , z
)
− S

(
λ2, sλ

2,µ2

y , z
)]
fZ|V,X(2)(z|v, y)dzfX(2)(y)dy

≥ 0

.

For v′ > v,

Π(λ1, µ1, v′)− Π(λ2, µ2, v′)

≥
[
Π(λ1, µ1, v′)− Π(λ2, µ2, v′)

]
−
[
Π(λ1, v1, v)− Π(λ2, v2, v)

]
=

∫ ∫ [
S
(
λ1, sλ

1,µ1

y , z
)
− S

(
λ2, sλ

2,µ2

y , z
)]

·
[
fZ|V,X(2)(z|v′, y)− fZ|V,X(2)(z|v, y)

]
dzfX(2)(y)dy

. (2.7)

Since
∫
fZ|V,X(2)(z|v′, y)dz =

∫
fZ|V,X(2)(z|v, y)dz = 1, for each y there is z∗(y)

such that

fZ|V,X(2)(z∗(y)|v′, y) = fZ|V,X(2)(z∗(y)|v, y).

Since (Z, V ) and (Z,Xi) both satisfy the SLMRP, (Z, V,X(2)) are affiliated, which

83



implies fZ|V,X(2)(z|v′, y) ≷ fZ|V,X(2)(z|v, y) for z ≷ z∗(y). Since

∫ [
S
(
λ1, sλ

1,µ1

y , z∗(y)
)
− S

(
λ2, sλ

2,µ2

y , z∗(y)
)] [

fZ|V,X(2)(z|v′, y)− fZ|V,X(2)(z|v, y)
]
dz

=
[
S
(
λ1, sλ

1,µ1

y , z∗(y)
)
− S

(
λ2, sλ

2,µ2

y , z∗(y)
)] ∫ [

fZ|V,X(2)(z|v′, y)− fZ|V,X(2)(z|v, y)
]
dz

=
[
S
(
λ1, sλ

1,µ1

y , z∗(y)
)
− S

(
λ2, sλ

2,µ2

y , z∗(y)
)]
· 0

= 0

,

(2.7) implies

Π(λ1, µ1, v′)− Π(λ2, µ2, v′)

≥
∫ ∫

a(z, y)
[
fZ|V,X(2)(z|v′, y)− fZ|V,X(2)(z|v, y)

]
dzfX(2)(y)dy

(2.8)

where

a(z, y) =
[
S
(
λ1, sλ

1,µ1

y , z
)
− S

(
λ1, sλ

1,µ1

y , z∗(y)
)]

−
[
S
(
λ2, sλ

2,µ2

y , z
)
− S

(
λ2, sλ

2,µ2

y , z∗(y)
)].

Since S (λ1, ·, ·) is strongly steeper than S (λ2, ·, ·), S
(
λ1, sλ

1,µ1

y , z
)
−S

(
λ1, sλ

1,µ1

y , z∗(y)
)

is larger than S
(
λ2, sλ

2,µ2

y , z
)
− S

(
λ2, sλ

2,µ2

y , z∗(y)
)

when z > z∗(y) and smaller

when z < z∗(y). This implies a(z, y) in (2.8) has the same sign as fZ|V,X(2)(z|v′, y)−

fZ|V,X(2)(z|v, y) for all z and y. Therefore, Π(λ1, µ1, v′)−Π(λ2, µ2, v′) > 0, which

implies type v′ entrepreneur strictly prefers λ1 under belief µ1 to λ2 under belief

µ2.

Proof of Proposition 2.1:

Suppose in contrast, there is an equilibrium in which there two ordered sets

λ1 > λ2 that are both chosen by non-empty sets of types of the entrepreneur. Let

µ1 and µ2 denote the equilibrium belief associated with λ1 and λ2. Let v̄ be a

type of the entrepreneur that chooses λ2 that satisfies v̄ ≥
∫
vµ(λ2, v)dv. Lemma

2.2 implies

Π(λ1, µ(λ2, ·), v̄) > Π(λ2, µ(λ2, ·), v̄).

Lemma (2.3) implies an entrepreneur who chooses λ1 in equilibrium has higher
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private signal than an entrepreneur who chooses λ2, which implies
∫
vµ(λ1, v)dv ≥∫

vµ(λ2, v)dv. Lemma 2.2 implies

Π(λ1, µ(λ1, ·), v̄) > Π(λ1, µ(λ2, ·), v̄).

This implies

Π(λ1, µ(λ1, ·), v̄) > Π(λ2, µ(λ2, ·), v̄) = Π∗(v̄),

that is type v̄ benefits from deviating to λ1, which contradicts that this is an

equilibrium.

Proof of Proposition 2.2:

Consider an equilibrium in which all types of the entrepreneur choose ordered set

λ < λH . Lemma 2.3 implies with respect to a deviation to λH , Dv ∪D0
v ⊆ DvH .

Therefore, D1 requires µ∗(λH , ·) has support only on vH . For type vH , Lemma

2.2 implies

Π (λH , µ
∗(λH , ·), vH) > Π (λ, µ∗(λH , ·), vH) > Π∗ (vH) ,

that is type vH benefits from deviating to λH . Therefore, λ < λH cannot sup-

ported by a D1 belief.

Consider an equilibrium in which all types of the entrepreneur choose ordered set

λH . Lemma 2.3 implies with respect to a deviation to any ordered set λ < λH ,

Dv ∪D0
v ⊆ DvL . Therefore, D1 requires µ∗(λ, ·) has support only on vL. For any

type v, Lemma 2.2 implies

Π∗ (v) > Π (λH , µ
∗(λ, ·), v) > Π (λ, µ∗(λ, ·), v) ,

that is type v does not benefit from deviating to λ. Therefore, no type of the

entrepreneur deviates under the belief that any deviation is made by type vL,

which is a D1 belief.
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Chapter 3

Share Issues versus Share

Repurchases

3.1 Introduction

Public firms often tap into the equity market – they issue new shares to fund valu-

able investment opportunities and repurchase existing shares, returning surplus

cash to investors who may utilize it more efficiently. In many ways, issuing and

repurchasing shares are mirror images of each other. Both directions of equity

transaction frequently occur under the informational friction of firms knowing

more than outside investors. And for both issues and repurchases, firms choose

both transaction size and method (speed).

In this paper we show that equilibrium outcomes in issue and repurchase trans-

actions are not mirror images of each other. We obtain three main results. First,

issues and repurchases exhibit a sharp asymmetry in the use of method: issuing

firms signal via method, generating heterogeneity in equilibrium issue methods,

while repurchasing firms do not, so that repurchase methods are homogeneous.

Second, there is no corresponding asymmetry in transaction size choices: for both

transaction types, transaction size is related to firm quality. Third: Since issu-
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ing firms signal via both method and size, how are the two choices related? We

establish an unambiguous ordering: firms prefer to inefficiently reduce transac-

tion size rather than to choose a more inefficient method. All three predictions

are consistent with empirical observation. Looking ahead, the central economic

force behind the asymmetry result is that issuing firms want to raise investors’

perceptions of their value, while repurchasing firms instead want the opposite.

In more detail, we build such a unified framework based on Myers and Majluf

(1984), allowing firms to choose both transaction size and method when they

issue or repurchase shares. More specifically, firms privately know the value of

their assets in place, whereas investors in the market only know the distribution.

Firms have a positive NPV “project” that can only be implemented through

trading equity. If the project requires a positive investment, the firm needs to

raise capital by issuing shares. In contrast, if the “investment” is negative, then

the firm needs to pay out capital by repurchasing equity. The positive NPV in

the latter case can be interpreted as the part of free cash flows that the managers

will waste if the capital is not paid out. The project is scalable and generates

higher NPV if more capital is deployed (raised or paid out) up to a boundary.

Firms can choose the size of the project (or equivalently equity transaction) and

the transaction method which differs in its efficiency – the NPV generated per

unit of capital deployed in the project. The firm’s objective is to maximize its

long-term shareholders’ payoff. Investors in the market price shares competitively

upon observing the transaction size and method.

While the specific labeling is not crucial for our theoretical insight, for concrete-

ness and empirical relevance, we consider four methods, representing fast/slow

ways to issue/repurchase equity, respectively. Firms can raise equity quickly in

an SEO, which typically completes in 2-8 weeks (Gao and Ritter, 2010). Alter-

natively, they can issue gradually through at-the-market offerings (ATM) over a

couple of years. Billett et al. (2019) provides a nice review of this growing popu-

lar issue method. On the flip side, repurchases can be carried out either swiftly

in tender offers (henceforth, TOR, often lasting for a month (Masulis, 1980)) or

87



slowly via open market repurchase (OMR) programs.

The model generates several surprising yet empirically consistent predictions.

First, despite our symmetric fashion to model share issues and repurchases (as

negative issues), speed asymmetry arises robustly in equilibrium between the

two directions. Specifically, firms with different qualities can choose different is-

sue methods (efficiency) to separate from one another, but all pool on the same

method when they repurchase shares. This prediction maps well to the empirical

observation that both SEOs and ATMs coexist as frequently observed issue meth-

ods, whereas OMR dominates the repurchase market.1 The reason why issuing

firms can separate by having different transaction efficiency is standard. Firms

prefer to issue at a higher price, and better firms therefore have incentive to sacri-

fice NPV (by using a less efficient method) and reveal their superior types. These

better firms are also more capable to bear this signaling cost as the NPV sacrificed

features a smaller fraction of the total firm value. The more interesting insight is

why repurchasing firms cannot do the same, namely, sacrificing NPV in exchange

for a more favorable price. This is because when repurchasing, it is the worse

firms who would like to reveal themselves and enjoy a lower repurchase price.

However, they cannot achieve separation in equilibrium by sacrificing efficiency,

as better firms who are less averse to sacrificing NPV would always mimic.

On the flip side, the transaction size can be a viable signal in both issues and re-

purchases. The result for the issue game again follows from the standard retention

signaling intuition in the literature (Leland and Pyle, 1977; Krasker, 1986; De-

Marzo and Duffie, 1999): Good firms issue less to signal their types and receive

a higher issue price. However, the repurchase equilibrium is more interesting:

Worse firms repurchase less at a lower price. As two possible signals in the re-

purchase game, how is size different from efficiency, such that firms can separate

on size but not on efficiency? Like a less efficient repurchase method, a smaller

1Billett et al. (2019) document that ATMs represent 63% incidence and 26% issue proceeds
of those for SEOs. In contrast, there are 1212 cases of open market repurchases in 1999, with
a total size of 137 billion dollars, and tender offers and dutch auctions only account for 21 and
19 cases, and 1.7 billion dollar and 3.8 billion dollar proceeds respectively (see Grullon and
Ikenberry (2000)).
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size reduces the NPV thereby making it a possible signal, but unlike efficiency,

repurchasing a smaller amount increases firm value as the firm retains more cash.

Worse firms value the extra cash more as it represents a bigger fraction of the

firm. Consequently, worse firms have both higher preference for repurchasing

less as a signal and the incentive to separate from better firms to enjoy a lower

repurchase price, sustaining the in equilibrium separation on size.

This comparison between the two signaling channels delivers the third insight of

our model: Firms use transaction size as the primary signal and only use transac-

tion efficiency when the separation on size becomes infeasible. Intuitively, both a

decrease in transaction size and a decrease in transaction efficiency reduce NPV

and thus may deter other firms from mimicking. Keeping the project NPV and

issue price fixed, shares are likely to be overpriced for a worse firm but under-

priced for a better firm, and thus a worse firm is more reluctant to decrease the

issue size. Therefore, a lower issue size deters mimicking from worse firms on top

of the effect of reduced NPV. The NPV sacrifice sufficient to deter worse firms

from mimicking is smaller if the firm makes the sacrifice by lowering issue size

rather than by lowering transaction efficiency. Size is thus given priority over

transaction efficiency as a signaling tool. We view this result as a valuable contri-

bution to the literature as the majority features only one dimensional signaling,

that is either retention (size) such as in Leland and Pyle (1977); Krasker (1986);

DeMarzo and Duffie (1999) or efficiency, but not both.

Next, for empirical relevance, we microfound the efficiency associated with the

transaction methods (SEO and ATM when firms issue, OMR and TOR when

repurchase) in Section 3.4. The faster issue method SEO is more efficient than

ATM as the former allows the firm to immediately implement the project, whose

NPV might disappear over time. The gradual repurchase method OMR is more

efficient relative to TOR since the former allows the firm to pay out free cash flows

as soon as they become available, whereas a lumpy TOR until all cash flows are

realized risks managers’ wasting of some cash flows. Under this interpretation,

the model delivers the empirical prediction that larger issues are usually carried
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out more quickly in SEOs.2 This empirical fact could be surprising at first glance

as one might imagine firms may prefer to divide large issues into smaller pieces

and issue more gradually. In the context of our model, firms tend to use size

as a signal first. Worst firms issue the maximum amount in the most efficient

method SEO. As the quality of the firm improves, they issue less until reaching

the minimum issue size, at which point they start to reduce efficiency by switching

to ATMs with different speeds. As a result, large sizes are correlated with faster

issue methods, consistent with the empirical observation.

Finally, we appreciate that firms’ preference solely for long-term shareholders’

payoff may be extreme, as it implies that firms would prefer their share price

to crash in repurchases which seems unnatural. We alleviate this concern by

extending our model and allow the firm to favor for both a higher share price

directly and the payoff to long-term shareholders. Our key results remain robust.

3.2 Model Setup

We construct a model that accommodates both share issuances and repurchases

in a unified framework. Consider a firm with assets in place a and an opportunity

to invest i in a new project. The value of assets in place a is the firm’s private

information, whereas others only know the value is drawn from a distribution

F (a) that is differentiable everywhere and has support on [amin, amax]. We refer

to a as the firm’s type.

The firm chooses project size i to lie in the closed interval between IL and I,

where IL and I are exogenous constants that are common knowledge. Either

I > IL ≥ 0, in which case the project is an investment project; or I < IL ≤ 0, in

which case the project is a divestment project. The case |IL| > 0 corresponds to

2We calculate from Table 2 of Billett et al. (2019) that the average proceeds per SEO are 256
million dollars, whereas average proceeds per ATM program are 92 million dollars. Even though
the ratio of proceeds to market equity is roughly the same between the two methods (18% for
SEO and 20% for ATM), it is significantly smaller for ATM than for SEO after controlling for
other factors.
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a minimum project size, which arises for investment projects if the project has

a minimum scale, and divestment projects if the firm is compelled to pay out at

least a minimum amount of cash (for example, if retaining cash above some level

would lead to extremely wasteful spending).3

The investment choice i is associated with equity transactions: Investment projects

(i > 0) require funding and hence share issues, while divestment projects (i < 0)

produce cash to be paid out via repurchases. (For unmodeled reasons, the firm

prefers to raise funding via equity to other securities, and to pay out cash via

repurchases rather than dividends.)

In addition to project size i, the firm can also choose among equity transaction

methods with different levels of efficiencies, captured by the variable θ ∈ [0, 1],

with efficiency increasing in θ. For concreteness, we interpret different efficiency

levels as various speeds that firms can choose to issue or repurchase equity. For

instance, firms can transact quickly through standard SEOs and tender offer re-

purchases or slowly through at-the-market offerings and open market repurchases.

We provide more details on the efficiency of different speeds and draw empirical

implications in Section 3.4.

Denote by V (a, i, θ) the total value of a type a firm after choosing project size i

and the efficiency level of the equity transaction θ. While we can accommodate

more general function forms, for simplicity, we assume

V (a, i, θ) = a+ i+ |i|θb,
3If IL > 0, so that investment projects are being analyzed, then one might also want to allow

the possibility of the firm simply doing nothing, i.e., i ∈ {0} ∪ [IL, I]. We have fully analyzed
this case, and it does not yield any additional economic insights relative to i ∈ [IL, I]. Both to
avoid distracting complexity in the statements of our results, and also to preserve symmetry
across issuance and repurchase analysis, we present our results for the case in which |IL| > 0
indeed precludes the possibility of doing nothing. Effectively, for IL > 0 (the issue setting) we
are assuming, in terms of formal objects defined below, that

V (amax, IL, 1)

1 + IL
V (amin,IL,1)−IL

> V (amax, 0, 1) , (3.1)

i.e., the best firm prefers issuing IL at full efficiency but at the most unfavorable price that can
be supported in equilibrium over the alternative of doing nothing; along with the analogous
assumption for repurchase (IL < 0).
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where b ∈ (0, 1) is a constant that captures the most efficient level of NPV per unit

project. For the repurchase case (I < IL ≤ 0), value creation b stems from cash

being more valuable in the hands of shareholders than the firm, either because of

internal agency problems in the firm, or because of shareholders’ liquidity needs.

The number of shares outstanding before any issue or repurchase is normalized

to 1. Given an equity transaction price p, the firm needs to issue i
p

shares (or

repurchase −i
p

shares if i < 0) in order to implement the project. The firm

maximizes the payoff of its long-term investors, which is given by

Π(a, i, θ, p) =
V (a, i, θ)

1 + i
p

. (3.2)

Upon observing the firm’s investment choice i and transaction efficiency choice

θ, competitive investors in the market update their beliefs about the firm type a

and set the transaction price P (i, θ), so that they expect to break even.

We focus on pure strategy equilibria, which consist of each firm-type’s choices

of transaction size i∗(a) and efficiency θ∗(a) and competitive investors’ pricing

function P ∗(i, θ) such that the following two conditions hold. 1. Given P ∗(i, θ), a

type a firm’s equilibrium strategy i∗(a) and θ∗(a) maximizes its long-term share-

holders’ value:

(i∗(a), θ∗(a)) ∈ arg max
i,θ

Π(a, i, θ, P ∗(i, θ))

2. The pricing function P ∗(i, θ) is consistent with firms’ strategies, i.e., P ∗(i, θ) =

E [Π(a, i, θ, P ∗(i, θ))|i, θ], or equivalently, given (3.2),

P ∗(i, θ) = E[V (a, i, θ)|i, θ]− i.

As in many signaling models, we have multiple equilibria. We employ the widely

accepted D1 criterion (Cho and Kreps, 1987) to eliminate those equilibrium out-

comes that are supported by “unreasonable” off-equilibrium beliefs. Broadly

speaking, the D1 criterion requires that the belief associated with any off-equilibrium

action must be supported on the set of types that are most likely to deviate to
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that action. Formally, let Π∗(a) denote the equilibrium payoff of a type a firm.

Given investment size i and efficiency θ, define

Da = {p : Π(a, i, θ, p) > Π∗(a)}

and

D0
a = {p : Π(a, i, θ, p) = Π∗(a)}.

Let µ(a|i, θ) denote the probability density that investors attribute to firm type

a if the firm chooses investment i and efficiency θ. For type a, if there exists a

second type a′ such that Da∪D0
a ⊆ Da′ , then a D1 belief must have µ(a|i, θ) = 0.

An equilibrium strategy (i∗, θ∗) is a D1 equilibrium outcome if it can be supported

by a pricing function P such that P (i, θ) =
∫

(V (a, i, θ) − i)µ(a|i, θ)da under a

D1 belief µ. It is worth noting one of our key results – the speed (efficiency)

asymmetry between share issue and repurchases (Proposition 3.3) – does not rely

on equilibrium refinement.

3.3 Equilibrium Characterization

Unlike retention signaling models (Leland and Pyle, 1977; Myers and Majluf,

1984; DeMarzo and Duffie, 1999), we allow firms to use both the transaction size

and efficiency to signal their types. We first show that firm types tend to use

size to separate from one another before sacrificing transaction efficiency – the

key result of Section 3.3.1. Next, we fully characterize the equilibrium outcomes

of both the issue (Section 3.3.2) and repurchase games (Section 3.3.3). The key

finding is that separation in transaction efficiency is possible only when firms

issue shares but not when they repurchase.
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3.3.1 Size v.s. Efficiency

We first show that under D1 refinement, firms prefer to signal by lowering trans-

action size rather than sacrificing transaction efficiency. This is true for both the

issue and repurchase settings.

Proposition 3.1. In any D1 equilibrium any firms that choose a transaction size

|i| > |IL| use the most efficient method θ = 1.

Proposition 3.1 implies that any firm that uses efficiency to signal its type by

choosing some θ < 1 must have exhausted the option to signal through size, i.e.,

the transaction is already at the minimum size |IL|. This result follows from the

D1 refinement criterion. We explain the intuition for a type that fully separates in

the issuance case, noting that the argument for pooling and repurchases is similar.

Suppose to the contrary that a D1 equilibrium exists in which some firm a chooses

a higher than minimum issue size i > IL and a less than fully efficient method

θ < 1. Consider any off-equilibrium deviation (i′, θ′) that leads to a lower firm

value V (a, i′, θ′) < V (a, i, θ). By D1, the beliefs associated with this deviation

are no worse than a. The reason is that with lower firm value, such a deviation

is attractive only if it induces strictly less dilution, i′/p′ < i/p; and less dilution

is in turn strictly more valuable for better firms. Hence, such deviations are at

least fairly priced for firm a, and so firm a can profitably deviate by choosing a

deviation from this class that also raises NPV (V (a, i′, θ′)− i′ > V (a, i, θ)− i).

Intuitively, both a decrease in transaction size and a decrease in transaction

efficiency reduce NPV and thus may deter other firms from mimicking. Keeping

the project NPV and issue price fixed, shares are likely to be overpriced for a worse

firm but underpriced for a better firm, and thus a worse firm is more reluctant to

decrease the issue size. Therefore, a lower issue size deters mimicking from worse

firms on top of the effect of reduced NPV. The NPV sacrifice sufficient to deter

worse firms from mimicking is smaller if the firm makes the sacrifice by lowering

issue size rather than by lowering transaction efficiency. Size is thus given priority

over transaction efficiency as a signaling tool. An analogous intuition applies to
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repurchases.

3.3.2 Issuance

In this subsection, we characterize the equilibrium of the issuance setting (I >

IL ≥ 0). The key is Proposition 3.1’s statement that firms signal by scaling down

the project in preference to signaling by adopting inefficient methods. From

this result, there is an interval of firms that separate by issue size, potentially

followed by an interval of firms that issue the minimum amount i = IL, and

separate by inefficient issue methods. The details of the equilibrium construction

are essentially standard:

First, there is no distortion at the bottom: the worst firm amin issues the maximum

size (i = I) at maximum efficiency.

Second, firms in the interval above amin separate by scaling down the project,

while retaining maximal issuance efficiency θ = 1. Given separation, issues are

fairly priced, i.e., P = V − i. Writing î(a) for firm a’s issue strategy, firm a’s

payoff from mimicking the issue strategy of firm ã is

V
(
a, î (ã) , 1

)
1 + î(ã)

V (ã,̂i(ã),1)−î(ã)

.

As standard, the equilibrium condition is that firm a doesn’t gain from mim-

icking neighboring firms, so that equilibrium strategy î (a) solves the differential

equation

∂

∂ã

 V
(
a, î (ã) , 1

)
1 + î(ã)

V (ã,̂i(ã),1)−î(ã)


ã=a

= 0. (3.3)

subject to the boundary condition î (amin) = I. By straightforward manipulation,
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(3.3) simplifies to

∂î(a)

∂a
= − î(a)

Vi(a, î(a), 1)− 1

Va(a, î(a), 1)

V (a, î(a), 1)
= − î(a)

V (a, î(a), 1)b
, (3.4)

where the second equality simply reflects the functional form of V .

The economic force behind separation is similar to in Leland and Pyle (1977),

viz., better firms separate by retaining a larger fraction of equity, which is less

costly for them.

Third, separation on issue size according to (3.4) continues as long as there is

room. Specifically, if î (amax) ≥ IL, all firms issue, separating on issue size, and

the equilibrium characterization is complete; for use in Proposition 3.2, define

â = amax. If instead there is a such that î(a) = IL, define â as the smallest value

of a such that î (a) = IL.

Firms in the interval above â issue the minimum amount IL, and instead separate

by adopting more inefficient methods. Writing θ̂ (a) for firm a’s issuing strategy,

for firms a > â the equilibrium strategy θ̂ (a) solves the differential equation

∂

∂ã

 V
(
a, IL, θ̂ (ã)

)
1 + IL

V (ã,IL,θ̂(ã))−IL


ã=a

= 0, (3.5)

subject to the boundary condition θ̂ (â) = 1. Equation (3.5) simplifies to

∂θ̂(a)

∂a
= − IL

Vθ

(
a, IL, θ̂(a)

) Va
(
a, IL, θ̂(a)

)
V
(
a, IL, θ̂(a)

) = − 1

V
(
a, IL, θ̂(a)

)
b
. (3.6)

Under the assumption that the best firm prefers issuing IL with method θ = 1

under the worst belief to doing nothing, there is enough room on efficiency θ for

all types above â to fully separate.

Summarizing:

Proposition 3.2. The issue game (I > IL ≥ 0) has a unique D1 equilibrium, in
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which firms a ∈ [amin, â] issue î (a) in the most efficient way (θ = 1), and firms

i ∈ (â, ā] issue i = IL at efficiency θ̂ (a), where â, î (·), and θ̂ (·) are as defined

above.)

We highlight that D1 rules out pooling on any issue size and efficiency level.

Consider a candidate equilibrium that entails pooling and an off-equilibrium path

deviation that leads to a lower firm value (by either reducing size or efficiency).

Intuitively, because better firms care less about change in firm value and are more

concerned about dilution, the set of prices that make such a deviation attractive

is larger for better firms. Accordingly, D1 means that beliefs associated with

relevant off-path deviations heavily weight good firms. Consequently, the better

firms associated with any pooling action would deviate. In contrast, as we show

below, pooling is possible in the repurchase game.

One of the key takeaways when firms issue equity is that they can separate us-

ing issue methods with different efficiency levels (in addition to size). As we

will show in the next subsection, such a separation becomes impossible when

firms repurchase equity, and the only signaling possibility is through the size of

repurchase.

Another takeaway is that firms primarily signal with retention from trading and

secondarily with transaction efficiency. Up to our knowledge, this is a new insight

in the literature on multiple signals. Besides the different signals under study,

a prominent difference between our paper and most literature on multiple sig-

nals is the equilibrium concept we use. A signaling game usually has multiple

equilibria due to arbitrarily unfavorable off-equilibrium beliefs, and equilibrium

refinement criterions like D1 can sometimes select a unique outcome by pruning

unreasonable off-equilibrium beliefs. When agents can send multiple signals, the

task of determining “reasonable” off-equilibrium beliefs becomes particularly chal-

lenging due to the multi-dimensional (and hence large) space of off-equilibrium

actions. Instead of regulating off-equilibrium beliefs, most of the literature on
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multiple signals look for the Pareto-optimal one among separating equilibria4

(John and Williams, 1985; Ambarish et al., 1987; Besanko and Thakor, 1987;

Ofer and Thakor, 1987; Viswanathan, 1987; Williams, 1988). On the other hand,

in a general signaling model with multiple signals, Engers (1987); Cho and Sobel

(1990); Ramey (1996) establish the existence and uniqueness of a D1 equilib-

rium, and show it coincides with the Pareto-optimal separating equilibrium. Our

exposition to find the unique D1 equilibrium resembles that of (Ramey, 1996),

but is not a direct application of Ramey’s work. An important part of our work

is to characterize the transition between the use of the two signals (transaction

size and efficiency) when the space of one is exhausted, whereas Ramey’s model

precludes this possibility by assuming there is no upper boundary (analogous to

the lower boundary on investment size in our model) on signals. In other words,

the literature provides the interior solution while we derive a corner solution with

meaningful economic implications.

Finally, we characterize the analytical solutions to the ODEs given by (3.4) and

(3.6):

î(a)b
(
a+ î(a)b

)
= Ib (amin + Ib) , (3.7)

and

ebθ̂(a)
(
a+ ILbθ̂(a)

)
= eb (â+ ILb) . (3.8)

As a technical note, when IL = 0, the solution î in (3.7) never reaches IL = 0 for

any domain [amin, amax]. Therefore, the cutoff type â stated in Proposition 3.2 is

amax, and all firms separate on issue size according to î.

3.3.3 Repurchase

We now turn our attention to the case in which firms wish to pay out capital

by repurchasing shares (I < IL ≤ 0). While it may be tempting to conjecture

that the repurchase equilibrium is a mirror-image of the issue equilibrium, this

4The Pareto-optimal separating equilibrium is also called the “Riley equilibrium”.
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is not the case. In particular, repurchasing firms are unable to separate using

transaction efficiency.

Proposition 3.3. In the repurchase game (I < IL ≤ 0), all firms that repurchase

the same size i choose the same efficiency θ.

We highlight that Proposition 3.3 covers all equilibria, and is independent of the

D1 refinement.

Recall that when firms issue equity, those firms that issue the minimum amount

IL separate by choosing different efficiency levels. Proposition 3.3 rules out such a

possibility when firms repurchase, that is no firms in equilibrium can repurchase

the same amount of equity with different transaction efficiency. Underlying the

separating outcome in share issuances is the property that firms that are more

eager to reveal their types (good types) are also more willing to sacrifice NPV by

reducing efficiency (or size) in exchange for a more favorable price. This property,

known as the single-crossing condition or Spence-Mirrlees condition (Mirrlees,

1971; Spence, 1973), enables efficiency (or size) as costly signals to distinguish

types in equilibrium. To understand Proposition 3.3, it is useful to decompose

the firms’ objective function,

ln Π(a, i, θ, P ∗(i, θ)) = lnV (a, i, θ)− ln

(
1− −i

P ∗(i, θ)

)
. (3.9)

The first term corresponds to the percentage change in total firm value, while

the second corresponds to the percentage change in the number of shares. When

repurchasing shares, it is the worse firms who prefer to reveal their types and

buy back shares at lower prices. Suppose that worse firms attempt to separate

by adopting some less efficient method θ′ ≡ θ −∆θ < θ in exchange for a lower

repurchase price P (i, θ′). On the one hand, the resulting sacrifice in total firm

value V is ∆θ|i|b, which represents a smaller fraction of a better firm. On the

other hand, the percentage change in the number of shares is independent of firm

type. Consequently, the lower efficiency choice θ′ is more attractive for good firms

than bad firms, and so separation of this type is impossible in equilibrium.
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In contrast, firms can still separate on transaction size when they repurchase, just

as in the issue game (Proposition 3.2).

Proposition 3.4. In a D1 equilibrium outcome of the repurchase game (I < IL ≤

0), if amin and amax are sufficiently close, then firms separate on size according

to
∂ĩ(a)

∂a
=

ĩ(a)

V (a, ĩ(a), 1)b
, (3.10)

with the boundary condition

ĩ(amax) = I. (3.11)

When amin and amax are sufficiently different such that (3.10) and (3.11) imply

ĩ(a) = IL for some a ∈ (amin, amax), only an upper interval of firms separate on

size according to ĩ – a case we fully characterize in Proposition 3.5.

In words, Proposition 3.4 states: The best firm amax repurchases the maximum

amount I. Worse firms separate by scaling down the divestment “project,” in

order to lower the repurchase price. Note that the differential equation (3.10)

coincides with the first equality in the analogous separation condition (3.4) in the

issue game, but has a different sign because Vi (a, i, θ)−1 = −θb in the repurchase

setting (as opposed to Vi (a, i, θ) − 1 = θb in the issue setting). Proposition 3.4

also builds on Proposition 3.1’s result that firms repurchasing strictly more than

the minimum level IL choose maximal efficiency θ = 1.

Why can repurchasing firms separate using size i though they cannot separate

using efficiency θ (Proposition 3.3)? In the repurchase setting, it is worse firms

that wish to separate themselves from better firms so as to be able to acquire

shares at a lower price. Consider a firm that offers a smaller repurchase size |i′| ≡

|i| − |∆i|, in order to obtain a lower price. While this smaller repurchase lowers

the NPV of the divestment project by θb|∆i|, it raises firm value by |∆i| (1− θb),

since the firm retains more cash. From the decomposition (3.9), this represents

a larger fraction of firm value for worse firms. Since the effect on the number of

shares is the same for all firm types, this makes the smaller repurchase size most

attractive for worse firms.
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Propositions 3.3 and 3.4 represent the principle insights of this subsection. First,

there is a sharp asymmetry between equilibrium efficiency choices in issue and

repurchase settings, namely that efficiency is not a viable means of separation for

repurchasing firms. Second, there is no corresponding asymmetry with respect to

the choice of transaction size; in particular, both repurchasing and issuing firms

modulate transaction size in order to separate from other firms and obtain more

favorable transaction prices.

The remainder of the subsection completes the characterization of repurchase

equilibria. Issue equilibria and repurchase equilibria share the features that there

are upper (repurchase) and lower (issue) intervals of firms that transact, using

transaction size as a separation device; and potentially lower (repurchase) and

upper (issue) intervals of firms that pool at the minimum transaction size IL. The

difference between issue and repurchase equilibria is that issuing firms that pool

on IL then use efficiency as a further means of separation, while repurchasing

firms do not.

Equation (3.10) characterizes the form that separation on repurchase size takes.

If amin is sufficiently close to amax that (3.10) leads to repurchases above the

minimum size IL (i < IL, i.e., |i| > IL) for all firms a > amin, then Proposition

3.4 is already a complete description of the repurchase equilibrium. For use in

Proposition 3.5, define â = amin.

The remaining case in which ĩ (·) hits this minimum repurchase level IL < 0 before

amin is reached is more complicated. As a first step, it is instructive to note that

it cannot be an equilibrium for separation to continue according to (3.10) all the

way until the minimum repurchase size IL < 0 is hit. The reason is that in such

a case, there is an interval of firms immediately below the separating firms that

pool on the minimum repurchase size IL. But firms marginally better than the

firms pooling on IL would gain by deviating and reducing their repurchases very

slightly to IL, since doing so generates a discrete price reduction.

Instead, the equilibrium consists of a cutoff type â. Firms better than â sepa-
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rate according to (3.10). As discussed immediately above, the separation region

ends before the minimum repurchase IL is hit, i.e., ĩ (â) < IL. Firms below â

pool and repurchase the minimum amount, IL; and so in particular, repurchase

discretely less than all the separating firms above â. The cutoff â is determined

by that firm â is indifferent between repurchasing ĩ (â) < IL at the separat-

ing price P = V
(
â, ĩ (â) , 1

)
− ĩ (â) and repurchasing IL at the pooling price

P = E [V (a, IL, 1) |a ∈ (ā, â)]− IL:

V
(
â, ĩ (â) , 1

)
− ĩ (â) =

V (â, IL, 1)

1 + IL
E[V (a,IL,1)|a∈[amin,â)]−IL

. (3.12)

If there is no â with ĩ(â) < IL that satisfies (3.12), it implies all types prefer

repurchasing IL at the price pooled with lower types to repurchasing its separating

amount ĩ(a) at the fair price V
(
a, ĩ (a) , 1

)
− ĩ (a). In this case, â = amax, and all

types repurchase IL.

Summarizing:

Proposition 3.5. The repurchase game (I < IL ≤ 0) has a unique D1 equilib-

rium, in which firms with a > â separate and repurchase according to ĩ (·) defined

by (3.10) and (3.11), and firms a < â pool at the minimum repurchase size IL.

All repurchases take place at maximal efficiency, θ = 1.

Finally, we characterize the analytical solution to the ODE given by (3.10) and

(3.11),

ĩ(a)−b
(
a− ĩ(a)b

)
= I−b (amax − Ib) . (3.13)

Similar to the issue game, we note a technical observation that when IL = 0, the

solution ĩ in (3.13) never reaches IL = 0. In this case, the cutoff type â is amin,

and all firms separate on their size choice according to ĩ.
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3.4 Empirical Implications

In this section, we explore the empirical implications of our model. There are

broadly speaking two ways to issue seasoned equity in practice. The first method

is a fast one-off SEO which is typically completed within several weeks.5 A lesser

known but growing popular method is at-the-market offering (henceforth, ATM).

(Billett et al., 2019) provides a nice review of ATMs. In an ATM, the firm first

registers new shares with the SEC, and then anonymously sell these shares grad-

ually in the secondary market. Compared to SEOs, ATMs take much longer

to complete, on average 6.2 quarters, and the proceeds are 20% of the firm’s

market value of equity. Similarly, firms can repurchase equity in a quick one-off

fashion through tender offer repurchase (henceforth TOR) within a month.6 Al-

ternatively, they can carry out an open-market repurchase program (henceforth,

OMR) over the horizon of several years.7

To map the equity transaction methods in our model to those in practice, we build

a microfoundation of transaction efficiency associated with each issue method.

The key implication of this exercise is that the fast issue method (SEO) and

the gradual repurchase method (OMR) are more efficient compared with ATM

and TOR respectively. Intuitively, once firms decide on the scale of the project,

they can only implement it after the required capital for investment is raised. A

prompt SEO therefore guarantees an investment project is implemented with no

delay, whereas a gradual ATM risks losing the valuable investment opportunity.

In contrast, when firms need to efficiently pay out free cash flow in the form

of share repurchases, they can only do so when the cash flow is realized. To

the extend that cash flow is typically generated gradually, a long-horizon OMR

5A nonshelf bookbuilt SEO often takes 2-8 weeks, while an accelerated bookbuilt SEO often
takes 2 days from announcement to completion (Gao and Ritter, 2010; Huang and Zhang, 2011).
SEO proceeds is on average 18% of market value of equity. (Billett et al., 2019)

6In a TOR, firms on average repurchase 16% of outstanding shares (1962-1986) (Lakonishok
and Vermaelen, 1990). It takes 25 days on average from announcement of an TOR to the
expiration of the offer (Masulis, 1980).

7On average, firms target to repurchase 7% of outstanding shares in three years, and 46.2%,
66.9%, and 73.9% of the target amount is completed by end of the first, second, and third year,
respectively (Stephens and Weisbach, 1998).
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program ensures a timely payout. If firms wait until all free cash flows are realized

and then pay out in a TOR, some of the early free cash flows could have been

wasted. The following microfoundation of the transaction efficiency θ details this

intuition.

First, consider a firm that faces an investment opportunity at time 0 which re-

quires capital outlay i. The firm needs to raise i through equity issuance. Suppose

it can choose a timeframe t to complete the issuance, and the project can be im-

plemented only after capital i is fully raised. Every instant before the project is

implemented, a competitor may arrive with probability (intensity) α, reducing

the project’s NPV to a negligible level. As such, if the firm raises the required

equity capital over a period of t, the expected NPV is θ(t)ib where

θ(t) = Prob(a competitor does not arrive before t) = e−αt.

In this specification, θ(t) ∈ (0, 1] is strictly decreasing in t with θ(0) = 1 and

limt→∞ θ(t) = 0. A faster issue method (i.e., a smaller t) corresponds to higher

efficiency. SEO corresponds to fast issuance in a short period, which yields high

project NPV, and ATM corresponds to slow issuance over a long period, dur-

ing which the investment is delayed and profitability of the project has been

decreased.

Consider a firm that generates free cash flows continuously through time at speed

λ. If not paid out to shareholders, the free cash flow is deployed in bad projects

and decays exponentially at rate β. This implies the free cash flow generated

during period t accumulates to
∫ t

0
λe−β(t−s)ds = λ

β
(1 − e−βt) at the end of the

period if it is not paid out. Suppose over the period between 0 and T , the firm

chooses a total amount |i| ≤ λ
β
(1 − e−βT ) to pay out through repurchases. The

firm can choose the frequency of repurchase x ∈ N+, such that it pays out |i|
x

at time t, 2t, · · · , T for t = T
x

. At time T , the firm will have paid out |i| and

accumulated cash balance λ
β
(1− e−βT )− |i|

x
1−e−βT

1−e−
βT
x

. Compared with the scenario

in which the firm does not repurchase, the repurchase program generates NPV
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θ(x) = |i|
(

1− 1
x
· 1−e−βT

1−e−
βT
x

)
> 0. Notice θ(x) increases in x. θ(1) = 0 and

limx→∞ θ(x) = |i|
(

1− 1−e−βT
βT

)
. An OMR repurchase program corresponds to a

frequent repurchase program with a large x, which leads to a higher NPV than an

infrequent repurchase such as a TOR. Based on our interpretation of the trans-

action method θ, the model generates several empirically consistent predictions.

Prediction 1: Both SEO and ATM coexist when firms issue equity, whereas OMR

dominates when firms repurchase equity.

Lemma 3.5 shows that firms can separate using transaction method θ when they

issue equity. Instead, Proposition 3.3 shows such separation is impossible when

firms repurchase, and all repurchasing firms pool on the most efficient method

θ = 1, namely open market repurchase.

Empirically, when firms issue equity, both SEOs and ATMs are widely adopted

with the more efficient method SEOs being more common. Billett et al. (2019)

document that ATMs represent 63% incidence and 26% issue proceeds of those

for SEOs. In contrast, almost all firms use the efficient method, i.e., open market

repurchases, to buy back equity. For example, in 1999, there are 1212 cases of

open market repurchases with a total size of 137 billion dollars. In comparison,

tender offers and dutch auctions account for 21 and 19 cases, and 1.7 billion dollar

and 3.8 billion dollar proceeds respectively (see Grullon and Ikenberry (2000)).

Prediction 2: Larger issues are carried out more quickly.

Proposition 3.2 implies that large issues i > IL are carried out in the most efficient

method (θ = 1), which is interpreted as SEO in our model. Firms conducting

smaller issues i = IL can separate using different efficiency, interpreted as ATM

with different transaction speeds in our model.

Empirically, Billett et al. (2019) document average proceeds per SEO is 256 mil-

lion dollars, whereas average proceeds per ATM program is 92 million dollars

(calculated from Table 2). Even though the ratio of proceeds to market equity is

roughly the same between the two methods (18% for SEO and 20% for ATM),
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the ratio is significantly smaller for ATM than for SEO in their regression that

controls for other factors (Table 4).

Prediction 3: SEO firms have lower asymmetric information than ATM firms

(Billett et al., 2019) (Table 4).

3.5 Robustness: Preference for Share Price

So far in our model, firms only care about their long-term shareholders’ payoff,

resulting in an asymmetric preference about transaction price. Specifically, firms

favor higher share price when issuing new equity and lower price when repurchas-

ing. One could argue that even when firms repurchase shares, they may not wish

their share price to collapse, even though a lower price enables them to repur-

chase more shares. In this section, we perturb the firm’s objective function (3.2)

to allow for explicit preference for share price:

Π(a, i, θ, p) = pε

(
V (a, i, θ)

1 + i
p

)1−ε

, (3.14)

where the parameter ε ∈ [0, 1] reflects the degree to which firms care about their

share prices directly. When ε = 0, this preference reduces to the original model

(3.2). All other ingredients are the same.

Similar to (3.4) in the original model, when firms separate on issue size, they

follow the modified ODE

d̂i(a)

da
= −εV (a, î, 1) + (1− ε)̂i

V (a, î, 1)b
, (3.15)

with the same boundary condition î(amin) = I and the fully efficient issue method

θ = 1.

As in the original model, when there is a minimum transaction size IL > 0 binding

in equilibrium, in the sense that the solution î to the ODE (3.15) reaches IL before
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a reaches amax, firms start to separate on transaction efficiency θ. The modified

ODE that characterizes firms’ efficiency strategy is given by

dθ̂(a)

da
= −εV (a, IL, θ̂) + (1− ε)IL

V (a, IL, θ̂)ILb
. (3.16)

Our key insight that firms cannot separate on θ when they repurchase equity

remains robust to this ε-modification when ε is small. Specifically, when a mini-

mum repurchase size IL > 0 binds, firms can only pool on repurchasing IL using

the most efficient method. The modified ODE that gives the equilibrium size

strategy is
d̃i(a)

da
=
εV (a, ĩ, 1) + (1− ε)̃i

bV (a, ĩ, 1)
. (3.17)

3.6 Appendix

In the appendix, we provide proofs of all propositions and lemmas.

Lemma 3.1. In the issue game (I > IL ≥ 0), if type a of the firm chooses the pair

of issue size and method (i, θ), then for (i′, θ′) such that i′(1 + θ′b) < i(1 + θb),

no type a′ < a chooses the pair (i′, θ′), and a D1 belief satisfies P ∗(i′, θ′) ≥

V (a, i′, θ′) − i′. For (i′′, θ′′) such that i′′(1 + θ′′b) > i(1 + θb), no type a′ > a

chooses the pair (i′′, θ′′), and a D1 belief satisfies P ∗(i′′, θ′′) ≤ V (a, i′′, θ′′)− i′′.

In the repurchase game (I < IL ≤ 0), if type a of the firm chooses the pair of

repurchase size and method (i, θ), then for (i′, θ′) such that |i′(1−θ′b)| < |i(1−θb)|,

no type a′ > a chooses the pair (i′, θ′), and a D1 belief satisfies P ∗(i′, θ′) ≤

V (a, i′, θ′) + (−i′). For (i′′, θ′′) such that |i′′(1− θ′′b)| > |i(1− θb)|, no type a′′ < a

chooses the pair (i′′, θ′′), and a D1 belief satisfies P ∗(i′′, θ′′) ≥ V (a, i′′, θ′′)+(−i′′).

Proof. We first prove for the issue game (I > IL ≥ 0). Consider types a and a′

such that a′ < a. Suppose type a of the firm chooses (i, θ), and there is (i′, θ′)

such that i′(1 + θ′b) < i(1 + θb).
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Suppose p ∈ D0
a′ ∪Da′ with respect to (i′, θ′), which implies

Π(a′, i′, θ′, p) ≥ Π∗(a′) ≥ Π(a′, i, θ, P ∗(i, θ)).

This implies

Π(a′, i′, θ′, p)

Π(a′, i, θ, P ∗(i, θ))
=
a′ + i′(1 + θ′b)

a′ + i(1 + θb)
·

1 + i
P ∗(i,θ)

1 + i′

p

≥ 1.

Since i′(1 + θ′b) < i(1 + θb), Π(a,i′,θ′,p)
Π(a,i,θ,P ∗(i,θ))

strictly increases in a. This implies

Π(a,i′,θ′,p)
Π(a,i,θ,P ∗(i,θ))

> 1. Since Π∗(a) = Π(a, i, θ, P ∗(i, θ)), p ∈ Da. Therefore, Da′ ∪

D0
a′ ⊆ Da, and D1 requires (i′, θ′) cannot be associated with any type a′ < a .

This implies P ∗(i′, θ′) ≥ V (a, i′, θ′)− i′.

Suppose type a′ chooses (i′, θ′) in equilibrium. This implies P ∗(i′, θ′) ∈ D0
a′ , which

implies P ∗(i′, θ′) ∈ Da, which contradicts that type a chooses (i, θ) in equilibrium.

Therefore, type a′ does not choose (i′, θ′) in equilibrium.

For similar reasons, if type a of the firm chooses (i, θ), and there is (i′′, θ′′) such

that i′′(1 + θ′′b) > i(1 + θb), then p ∈ D0
a′′ ∪Da′′ for type a′′ > a with respect to

(i′′, θ′′) implies p ∈ Da. This implies P ∗(i′′, θ′′) ≤ V (a, i′′, θ′′) − i′′, and no type

a′′ > a chooses (i′′, θ′′) in equilibrium.

We next prove for the repurchase game (I < IL ≤ 0). Consider types a and a′

such that a′ > a. Suppose type a of the firm chooses (i, θ), and there is (i′, θ′)

such that |i′(1− θ′b)| < |i(1− θb)|.

Suppose p ∈ D0
a′ ∪Da′ with respect to (i′, θ′), which implies

Π(a′, i′, θ′, p) ≥ Π∗(a′) ≥ Π(a′, i, θ, P ∗(i, θ)).

This implies

Π(a′, i′, θ′, p)

Π(a′, i, θ, P ∗(i, θ))
=
a′ − |i′(1− θ′b)|
a′ − |i(1− θb)|

·
1− |i|

P ∗(i,θ)

1− |i′|
p

≥ 1.
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Since |i′(1 − θ′b)| < |i(1 − θb)|, Π(a,i′,θ′,p)
Π(a,i,θ,P ∗(i,θ))

strictly decreases in a. This implies

Π(a,i′,θ′,p)
Π(a,i,θ,P ∗(i,θ))

> 1. Since Π∗(a) = Π(a, i, θ, P ∗(i, θ)), p ∈ Da. Therefore, Da′ ∪

D0
a′ ⊆ Da, and D1 requires (i′, θ′) cannot be associated with any type a′ > a .

This implies

P ∗(i′, θ′) ≤ V (a, i′, θ′) + (−i′).

Suppose type a′ chooses (i′, θ′) in equilibrium. This implies Π(a′,i′,θ′,P ∗(i′,θ′))
Π(a′,i,θ,P ∗(i,θ))

≥ 1.

As shown above, this implies Π(a,i′,θ′,P ∗(i′,θ′))
Π(a,i,θ,P ∗(i,θ))

> 1, which contradicts that type

a chooses (i, θ) in equilibrium. Therefore, type a′ does not choose (i′, θ′) in

equilibrium.

For similar reasons, if type a of the firm chooses (i, θ), and there is (i′′, θ′′) such

that |i′(1− θ′b)| > |i(1− θb)|, then p ∈ D0
a′′ ∪Da′′ for type a′′ < a with respect to

(i′′, θ′′) implies p ∈ Da. This implies

P ∗(i′′, θ′′) ≥ V (a, i′′, θ′′) + (−i′′),

and no type a′′ < a chooses (i′′, θ′′) in equilibrium.

Lemma 3.2. In a D1 outcome of the repurchase game (I < IL ≤ 0), all firms

use the most efficient method θ = 1.

Proof. Suppose in a D1 equilibrium outcome, types in a non-empty set A of the

firm choose (i, θ) with θ < 1. Let a′ ∈ A be such that V (a′, i, θ) ≤ E[V (a, i, θ)|a ∈

A]. We show type a′ strictly benefits from deviating to (i, 1).

Let a∗ be such that V (a∗, i, θ) = E[V (a, i, θ)|a ∈ A]. Type a∗ will be fairly priced

if it chooses (i, θ), which implies

Π(a∗, i, θ, P ∗(i, θ)) = V (a∗, i, θ) + (−i).
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If type a∗ chooses (i, 1), it has payoff

Π(a∗, i, 1, P ∗(i, 1)) =
V (a∗, i, 1)

1− −i
P ∗(i,1)

≥ V (a∗, i, 1)

1− −i
V (a∗,i,1)+(−i)

= V (a∗, i, 1) + (−i)

> V (a∗, i, θ) + (−i)

.

The first inequality is because |i(1 − b)| < |i(1 − θb)| and Lemma 3.1 implies

P ∗(i, 1) ≤ V (a∗, i, 1) + (−i), and the second is due to |i| > |iθ|. This implies

Π(a∗,i,1,P ∗(i,1))
Π(a∗,i,θ,P ∗(i,θ))

> 1. Since

Π(a, i, 1, P ∗(i, 1))

Π(a, i, θ, P ∗(i, θ))
=

a− |i(1− b)|
a− |i(1− θb)|

·
1− −i

P ∗(i,θ)

1− −i
P ∗(i,1)

strictly decreases in a and a′ ≤ a∗, Π(a′,i,1,P ∗(i,1))
Π(a′,i,θ,P ∗(i,θ))

> 1. This implies type a′ strictly

benefits from deviating to (i, 1).

Proof of Proposition 3.1:

We first prove for the issue game (I > IL ≥ 0). Suppose in a D1 equilibrium

outcome, types in a non-empty set A of the firm choose (i, θ) with i > IL and

θ < 1. Then there is (i′′, θ′) such that i′′ ∈ (IL, i) and i′′θ′ = iθ. This implies

i′′(1 + θ′b) < i(1 + θb). There is i′ slightly larger than i′′ such that i′θ′ > iθ and

i′(1 + θ′b) < i(1 + θb). Let a′ ∈ A be such that V (a′, i, θ) ≥ E[V (a, i, θ)|a ∈ A].

We show type a′ strictly benefits from deviating to (i′, θ′).

Let a∗ be such that V (a∗, i, θ) = E[V (a, i, θ)|a ∈ A]. Type a∗ will be fairly priced

if it chooses (i, θ), which implies

Π(a∗, i, θ, P ∗(i, θ)) = V (a∗, i, θ)− i.
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If type a∗ chooses (i′, θ′), it has payoff

Π(a∗, i′, θ′, P ∗(i′, θ′)) =
V (a∗, i′, θ′)

1 + i′

P ∗(i′,θ′)

≥ V (a∗, i′, θ′)

1 + i′

V (a∗,i′,θ′)−i′

= V (a∗, i′, θ′)− i′

> V (a∗, i, θ)− i

.

The first inequality is because Lemma 3.1 implies

P ∗(i′, θ′) ≥ V (a∗, i′, θ′)− i′,

and the second is due to i′θ′ > iθ. This implies Π(a∗,i′,θ′,P ∗(i′,θ′))
Π(a∗,i,θ,P ∗(i,θ))

> 1. Since

Π(a, i′, θ′, P ∗(i′, θ′))

Π(a, i, θ, P ∗(i, θ))
=
a+ i′(1 + θ′b)

a+ i(1 + θb)
·

1 + i
P ∗(i,θ)

1 + i′

P ∗(i′,θ′)

strictly increases in a and a′ ≥ a∗, Π(a′,i′,θ′,P ∗(i′,θ′))
Π(a′,i,θ,P ∗(i,θ))

> 1. This implies type a′

strictly benefits from deviating to (i′, θ′).

For the repurchase game (I < IL ≤ 0), it follows Lemma 3.2 that any type that

repurchases a positive amount (i < 0) chooses the most efficient method θ = 1.

Lemma 3.3. When the project requires firms to raise equity (I > IL ≥ 0), a

D1 equilibrium outcome has a cutoff firm type â such that firms with a < â issue

strictly more than the minimum size i∗(a) > IL, and firms with a ∈ (â, amax] issue

equity IL.

When firms repurchase equity (I < IL ≤ 0), a D1 equilibrium outcome has a cutoff

firm type â such that firms with a > â repurchase strictly more than the minimum

size |i∗(a)| > |IL|, and types with a ∈ [amin, â) repurchase exactly |i∗(a)| = |IL|.

Proof. We first prove for the issue game (I > IL ≥ 0).

According to Proposition 3.1, in a D1 outcome, if type a chooses issue size i > IL,
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then it chooses speed θ = 1. Suppose type a chooses (i, 1) and type a′ chooses

(IL, θ) for an arbitrary θ. Since IL(1 + θb) < i(1 + b), Lemma 3.1 implies a < a′.

Therefore, there must be cutoff type â such that i∗(a) > IL for types with a < â

and i∗(a) = IL for types with a ∈ (â, amax].

We next prove for the repurchase game (I < IL ≤ 0).

According to Lemma 3.2, in a D1 outcome, any firm that repurchases a positive

amount |i| > 0 chooses speed θ = 1. Suppose for two repurchase sizes i and i′

such that |i| > |i′| ≥ |IL|, type a chooses (i, 1) and type a′ chooses (i′, 1). Since

|i′(1− b)| < |i(1− b)|, Lemma 3.1 implies a > a′.

Therefore, there must be cutoff type â such that |i∗(a)| > |IL| for types with

a > â and |i∗(a)| = |IL| for types with a ∈ [amin, â).

Lemma 3.4. In a D1 equilibrium outcome of the issue game (I > IL ≥ 0), for

firms that issue strictly more than IL, their size strategy is i∗(a) = î(a) which

satisfies the differential equation (3.4) and the boundary condition î (amin) = I.

Proof. Define A ≡ {a : |i∗(a)| > IL}. According to 3.3, A = [amin, â) or [amin, â].

According to Proposition 3.1, θ∗(a) = 1 for a ∈ A.

(1) i∗(a) is strictly decreasing on A.

If i′ < i, then i′(1 + b) < i(1 + b). Lemma 3.1 implies i∗(a) is decreasing on

A. To show i∗(a) is strictly decreasing on A, it suffices to show there is no

i > IL that is chosen by an interval of types.

Suppose types in an interval A′ choose (i, 1) in equilibrium. This implies

P ∗(i, 1) = E[V (a, i, 1)|a ∈ A′]− i < V (supA′, i, 1)− i.

If type supA′ chooses (i, 1), it has payoff

Π(supA′, i, 1, P ∗(i, 1)) < V (supA′, i, 1)− i.
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For i′ < i, Lemma 3.1 implies

P ∗(i′, 1) ≥ V (supA′, i′, 1)− i′.

If type supB chooses (i′, 1), it has payoff

Π(supA′, i′, 1, P ∗(i′, 1)) ≥ V (supA′, i′, 1)− i′.

Since limi′↑i V (supA′, i′, 1)− i′ = V (supA′, i, 1)− i, there is i′ such that

Π(supA′, i′, 1, P ∗(i′, 1)) > Π(supA′, i, 1, P ∗(i, 1)).

Since Π is continuous in a, there is a ∈ A′ such that

Π(a, i′, 1, P ∗(i′, 1)) > Π(a, i, 1, P ∗(i, 1)),

which contradicts that types in A′ choose (i, 1) in equilibrium.

(2) i∗(a) is continuous on A.

Since i∗(a) is decreasing, it suffices to rule out jump discontinuity on A.

Consider a discontinuity at type a∗ ∈ A.

Suppose a∗ > inf A, and there is i > i∗(a∗) such that i∗(a) > i for any a ∈ A

with a < a∗. This implies i(1 + b) < i∗(a)(1 + b) for any a ∈ A with a < a∗,

and Lemma 3.1 implies

P ∗(i, 1) ≥ V (a, i, 1)− i

for any a ∈ A with a < a∗. Therefore,

P ∗(i, 1) ≥ V (a∗, i, 1)− i.

This implies type a∗ benefits from deviating to (i, 1), which gives it higher
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NPV than its equilibrium choice and at least fair pricing:

Π(a∗, i, 1, P ∗(i, 1)) =
V (a∗, i, 1)

1 + i
P ∗(i,1)

≥ V (a∗, i, 1)

1 + i
V (a∗,i,1)−i

= V (a∗, i, 1)− i

> V (a∗, i∗(a), 1)− i∗(a)

= Π∗(a∗)

.

Suppose a∗ < supA, and there is i < i∗(a∗) such that i∗(a) < i for a ∈ A

with a > a∗. Since i∗(a) is strictly monotonic on A,

P ∗(i∗(a∗), 1) = V (a∗, i∗(a∗), 1)− i∗(a∗).

This implies for a > a∗,

Π(a, i∗(a∗), 1, P ∗(i∗(a∗), 1)) > V (a∗, i∗(a∗), 1)− i∗(a∗).

On the other hand, since i∗(a) is strictly monotonic on A,

Π∗(a) = V (a, i∗(a), 1)− i∗(a) < V (a, i, 1)− i

for a ∈ A with a > a∗. Since V (a, i, 1) is continuous in a and i,

lim
a↓a∗

V (a, i, 1)− i = V (a∗, i, 1)− i

< V (a∗, i∗(a∗), 1)− i∗(a∗)
.

Therefore, there is a ∈ A with a > a∗ such that V (a, i, 1)−i < V (a∗, i∗(a∗), 1)−

i∗(a∗). This implies

Π∗(a) < Π(a, i∗(a∗), 1, P ∗(i∗(a∗), 1)),

that is type a strictly benefits from deviating to (i∗(a∗), 1).
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(3) i∗(a) is satisfies ODE (3.4) (substituting î by i∗) for a ∈ A.

That i∗(a) is strictly decreasing on A implies

P ∗(i∗(a), 1) = V (a, i∗(a), 1)− i∗(a)

and

Π∗(a) = V (a, i∗(a), 1)− i∗(a)

for a ∈ A. Consider types a1, a2 ∈ A such that a1 < a2. Their equilibrium

choices imply

Π(a1, i
∗(a2), 1, P ∗(i∗(a2), 1)) ≤ Π∗(a1),

Π(a2, i
∗(a1), 1, P ∗(i∗(a1), 1)) ≤ Π∗(a2).

These imply

V (a2, i
∗(a2), 1)

V (a1, i
∗(a2), 1)− V (a1, i

∗(a1), 1)

a2 − a1

+ i∗(a1)i∗(a2)

V (a2,i∗(a2),1)
i∗(a2)

− V (a1,i∗(a2),1)
i∗(a1)

a2 − a1

≤ 0

, (3.18)

V (a1, i
∗(a1), 1)

V (a2, i
∗(a2), 1)− V (a2, i

∗(a1), 1)

a2 − a1

+ i∗(a1)i∗(a2)

V (a2,i∗(a2),1)
i∗(a2)

− V (a1,i∗(a1),1)
i∗(a1)

a2 − a1

≥ 0

. (3.19)

Since i∗(a) is continuous on A, taking the limits of (3.18) and (3.19) results

in

V (a, i∗(a), 1) [Vi(a, i
∗(a), 1)− 1] i∗′(a) + i∗(a)Va(a, i

∗(a), 1) = 0,

which can be simplified into ODE (3.4) (substituting î by i∗).

(4) If A is not empty, i∗(amin) = I.

Suppose type amin chooses issue size i ∈ (IL, I). Since types in A are fully
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revealed in equilibrium, Π∗(amin) = V (amin, i, 1) − i. If type amin deviates

to size and speed (I, 1), it has payoff

Π(amin, I, 1, P
∗(I, 1)) =

V (amin, I, 1)

1 + I
P ∗(I,1)

≥ V (amin, I, 1)

1 + I
V (amin,I,1)−I

= V (amin, I, 1)− I

> V (amin, i, 1)− i

.

The first inequality is because

P ∗(I, 1) ≥ V (amin, I, 1)− I,

and the second inequality is because I > i. Therefore,

Π(amin, I, 1, P
∗(I, 1)) > Π∗(amin),

that is type amin strictly benefits from deviating to (I, 1).

Lemma 3.5. In a D1 equilibrium outcome of the issue game (I > IL ≥ 0), for

firms that issue exactly IL, their method strategy is θ∗(a) = θ̂(a) which satisfies

the differential equation (3.6) with the boundary condition θ̂(â) = 1.

Proof. Lemma 3.3 implies the set B ≡ {a : i∗(a) = IL} is an interval from â to ā.

(1) θ∗(a) is strictly decreasing on B.

If θ′ < θ, then IL(1+θ′b) < IL(1+θb). Lemma 3.1 implies θ∗(a) is decreasing

on B. To show θ∗(a) is strictly decreasing on A, it suffices to show there is

no θ such that (IL, θ) is chosen by an interval of types.
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Suppose types in an interval B′ choose (IL, θ) in equilibrium. This implies

P ∗(IL, θ) = E[V (a, IL, θ)|a ∈ B′]− IL

< V (supB′, IL, θ)− IL
.

If type supB′ chooses (IL, θ), it has payoff

Π(supB′, IL, θ, P
∗(IL, θ)) < V (supB′, IL, θ)− IL.

For θ′ < θ, Lemma 3.1 implies

P ∗(IL, θ
′) ≥ V (supB′, IL, θ

′)− IL.

If type supB′ chooses (IL, θ
′), it has payoff

Π(supB′, IL, θ
′, P ∗(IL, θ

′)) ≥ V (supB′, IL, θ
′)− IL.

Since

lim
θ′↑θ

V (supB′, IL, θ
′)− IL = V (supB′, IL, θ)− IL,

there is θ′ such that

Π(supB′, IL, θ
′, P ∗(IL, θ

′)) > Π(supB′, IL, θ, P
∗(IL, θ)).

Since Π is continuous in a, there is a ∈ B′ such that

Π(a, IL, θ
′, P ∗(IL, θ

′)) > Π(a, IL, θ, P
∗(IL, θ)),

which contradicts that types in B′ choose (IL, θ) in equilibrium.

(2) θ∗(a) is continuous on B.

Since θ∗(a) is decreasing, it suffices to rule out jump discontinuity on B.

Consider a discontinuity at type a∗ ∈ A.

Suppose a∗ > inf B, and there is θ > θ∗(a∗) such that θ∗(a) > θ for any

a ∈ B with a < a∗. This implies θ(1 + b) < θ∗(a)(1 + b) for any a ∈ B with
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a < a∗, and Lemma 3.1 implies

P ∗(IL, θ) ≥ V (a, IL, θ)− IL

for any a ∈ B with a < a∗. Therefore,

P ∗(IL, θ) ≥ V (a∗, IL, θ)− IL.

This implies type a∗ benefits from deviating to (IL, θ), which gives it higher

NPV than its equilibrium choice and at least fair pricing:

Π(a∗, IL, θ, P
∗(IL, θ)) =

V (a∗, IL, θ)

1 + IL
P ∗(IL,θ)

≥ V (a∗, IL, θ)

1 + IL
V (a∗,IL,θ)−IL

= V (a∗, IL, θ)− IL

> V (a∗, IL, θ
∗(a))− IL

= Π∗(a∗)

.

Suppose a∗ < supB, and there is θ < θ∗(a∗) such that θ∗(a) < θ for a ∈ B

with a > a∗. Since θ∗(a) is strictly monotonic on B,

P ∗(IL, θ
∗(a∗)) = V (a∗, IL, θ

∗(a∗))− IL.

This implies for a > a∗,

Π(a, IL, θ
∗(a∗), P ∗(IL, θ

∗(a∗))) > V (a∗, IL, θ
∗(a∗)))− IL.

On the other hand, since θ∗(a) is strictly monotonic on B,

Π∗(a) = V (a, IL, θ
∗(a))− IL < V (a, IL, θ)− IL
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for a ∈ B with a > a∗. Since V (a, IL, θ) is continuous in a and θ,

lim
a↓a∗

V (a, IL, θ)− IL = V (a∗, IL, θ)− IL

< V (a∗, IL, θ
∗(a∗)))− IL

.

Therefore, there is a ∈ B with a > a∗ such that

V (a, IL, θ)− IL < V (a∗, IL, θ
∗(a∗)))− IL.

This implies

Π∗(a) < Π(a, IL, θ
∗(a∗), P ∗(IL, θ

∗(a∗))),

that is type a strictly benefits from deviating to (IL, θ
∗(a∗)).

(3) θ∗(a) satisfies (3.6) with θ̂(a) substituted by θ∗(a).

That θ∗(a) is strictly decreasing on B implies

P ∗(IL, θ
∗(a)) = V (a, IL, θ

∗(a))− IL

and

Π∗(a) = V (a, IL, θ
∗(a))− IL

for a ∈ B. Consider types a1, a2 ∈ B such that a1 < a2. Their equilibrium

choices imply

Π(a1, IL, θ
∗(a2), P ∗(IL, θ

∗(a2))) ≤ Π∗(a1),

Π(a2, IL, θ
∗(a1), P ∗(IL, θ

∗(a1))) ≤ Π∗(a2).

These imply

V (a2, IL, θ
∗(a2))

V (a1, IL, θ
∗(a2))− V (a1, IL, θ

∗(a1))

a2 − a1

+ IL
V (a2, IL, θ

∗(a2))− V (a1, IL, θ
∗(a2))

a2 − a1

≤ 0

, (3.20)

119



V (a1, IL, θ
∗(a1))

V (a2, IL, θ
∗(a2))− V (a2, IL, θ

∗(a1))

a2 − a1

+ IL
V (a2, IL, θ

∗(a1))− V (a1, IL, θ
∗(a1))

a2 − a1

≥ 0

. (3.21)

Taking the limits of (3.20) and (3.21) results in

V (a, IL, θ
∗(a))Vθ(a, IL, θ

∗(a))θ∗′(a) + ILVa(a, IL, θ
∗(a)) = 0,

which can be simplified into (3.6).

(4) If B is not empty, lima↓â θ
∗(â) = 1.

Suppose B is not empty and lima↓â θ
∗(â) = θ < 1. Let θ′ ∈ (θ, 1]. Since

i∗(a) > IL and θ∗(a) = 1 for a < â, Lemma (3.1) implies

P ∗(IL, θ
′) ≥ V (â, IL, θ

′)− IL.

. Type â strictly prefers (IL, θ
′) at the equilibrium price to (IL, θ) at price

p = V (â, IL, θ)− IL:

Π(â, IL, θ
′, P ∗(IL, θ

′)) =
V (â, IL, θ

′)

1 + IL
P ∗(IL,θ′)

≥ V (â, IL, θ
′)

1 + IL
V (â,IL,θ′)−IL

= V (â, IL, θ
′)− IL

> V (â, IL, θ)− IL

= Π(â, IL, θ, p)

.

Since lima↓â P
∗(IL, θ

∗(a)) = p, the above implies

lim
a↓â

Π(a, IL, θ
′, P ∗(IL, θ

′)) > lim
a↓â

Π(a, IL, θ
∗(a), P ∗(IL, θ

∗(a))).

There is a ∈ B that strictly prefers deviating to (IL, θ
′).
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Proof of Proposition 3.2:

We first prove the uniqueness and then the existence of the D1 equilibrium out-

come.

For the uniqueness of the D1 equilibrium outcome, following Proposition 3.1 and

Lemma 3.3, 3.4 and 3.5, it suffices to show i∗(a) is continuous at â.

Lemma 3.4 and 3.5 imply every issuing type is fairly priced, that is for all a,

Π∗(a) = P ∗(i∗(a), θ∗(a)) = V (a, i∗(a), θ∗(a))− i∗(a).

Suppose â < amax. Lemma 3.3 and 3.4 imply lima↑â = î(â) and lima↓â = IL. For

continuity of i∗(a) at â, it suffices to show î(â) = IL.

Suppose î(â) > IL. Fix i ∈ (IL, î(â)). Since i∗(a) = î(a) > î(â) and θ∗(a) = 1 for

a < â, Lemma 3.1 implies

P ∗(i, 1) ≥ V (â, i, 1)− i.

Type â strictly prefers (i, 1) to (IL, 1) at its fair price p = V (â, IL, 1)− IL:

Π(â, i, 1, P ∗(i, 1)) =
V (â, i, 1)

1 + i
P ∗(i,1)

≥ V (â, i, 1)

1 + i
V (â,i,1)−i

= V (â, i, 1)− i

> V (â, IL, 1)− IL

= Π(â, IL, 1, p)

.

According to Lemma 3.5, lima↓â θ
∗(a) = 1. Therefore,

lim
a↓â

P ∗(IL, θ
∗(a)) = lim

a↓â
V (a, IL, θ

∗(a))− IL = p.
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The above implies

lim
a↓â

Π(a, i, 1, P ∗(i, 1)) > lim
a↓â

Π(a, IL, θ
∗(a), P ∗(IL, θ

∗(a))),

which implies there is type a > â that chooses (IL, θ
∗(a)) in equilibrium benefits

from deviating to (i, 1). Therefore, i∗(a) is continuous at â.

We next prove the strategy described in the proposition indeed supports a D1

equilibrium outcome.

(1) No type benefits from mimicking another type.

Since i∗(a) and θ∗(a) are continuous and almost everywhere differentiable,

it is sufficient to show

d

da′
Π (a, i∗(a′), θ∗(a′), P ∗(i∗(a′), θ∗(a′))) ≶ 0

for a′ ≷ a and a′ 6= â.

d

da′
Π (a, i∗(a′), θ∗(a′), P ∗(i∗(a′), θ∗(a′)))

= Πii
∗′(a′) + Πθθ

∗′(a′) + Πp
dP ∗(i∗(a′), θ∗(a′))

da′

where Πi, Πθ and Πp stand for the derivatives of Π (a, i∗(a′), θ∗(a′), P ∗(i∗(a′), θ∗(a′))

with respect to i∗(a′), θ∗(a′) and P ∗(i∗(a′), θ∗(a′)).

Πi

Π
=

(
Vi (a, i

∗(a′), θ∗(a′))

V (a, i∗(a′), θ∗(a′))
− 1

P ∗(i∗(a′), θ∗(a′))

)

where Π stands for Π (a, i∗(a′), θ∗(a′), P ∗(i∗(a′), θ∗(a′))), and

Πθ

Π
=
Vi (a, i

∗(a′), θ∗(a′))

V (a, i∗(a′), θ∗(a′))
,

Πp

Π
=

i∗(a′)

P ∗(i∗(a′), θ∗(a′)) [P ∗(i∗(a′), θ∗(a′)) + i∗(a′)]
.
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According to ODEs (3.4) and (3.6),

d

da′
Π (a, i∗(a′), θ∗(a′), P ∗(i∗(a′), θ∗(a′))) = 0

if a = a′. Since Πi
Π

and Πθ
Π

strictly decrease in a, and either i∗′(a′) < 0 and

θ∗′(a′) = 0 or i∗′(a′) = 0 and θ∗′(a′) < 0,

d

da′
Π (a, i∗(a′), θ∗(a′), P ∗(i∗(a′), θ∗(a′))) ≷ 0

for any a ≷ a′. This implies type a does not benefit from mimicking another

type.

(2) θ̂(a) > 0 for all a.

Suppose ODE (3.6) and the boundary condition θ̂(â) = 1 imply there is

a′ > â such that θ̂(a′) = 0. According to step 1, type a′ strictly prefers

(IL, 0) at price V (a′, IL, 0)− IL to (IL, 1) at price V (â, IL, 1)− IL. Lemma

3.1 implies amax ≥ a′ has the same preference. This implies

amax ≥
V (amax, IL, 0)

1 + IL
V (a′,IL,0)−IL

= Π(amax, IL, 0, V (a′, IL, 0)− IL)

> Π(amax, IL, 1, V (â, IL, 1)− IL)

> Π(amax, IL, 1, V (amin, IL, 1)− IL)

.

However, this leads to contradiction with (3.1), the assumption that type

amax prefers issuing IL with method θ = 1 under the worst belief to doing

nothing.

(3) No type benefits from deviating to an off-equilibrium action (i, θ) such that

i(1 + θb) > i∗(amax)(1 + θ∗(amax)b). (3.22)

Let Da and D0
a respectively denote the set of prices of (i, θ) that makes type

a strictly prefer to deviate to (i, θ) and indifferent. There is p(a) such that

D0
a = {p(a)} and Da = {p > p(a)}. D1 belief about (i, θ) is supported on
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those types that deviate under the largest set of prices, arg mina p(a). If

under the equilibrium belief, a type in arg mina p(a) does not benefit from

deviating to (i, θ), that is P ∗(i, θ) ≤ mina p(a), then no type benefits from

deviating to (i, θ).

Let type a′′ be a type in the support of the D1 belief on (i, θ) such that

P ∗(i, θ) ≤ V (a′′, i, θ)− i. Inequality (3.22) implies there is a′ < ā such that

its equilibrium choice (i′, θ′) satisfies i′(1 + θ′b) < i(1 + θb) and i′θ′ > iθ.

Lemma 3.1 implies (i, θ) cannot be associated with any type a > a′ in a D1

belief. Therefore, a′′ ≤ a′. Since type a′′ does not benefit from mimicking

type a′ as shown in step 2, it does not benefit from deviating to (i, θ):

Π(a′′, i, θ, P ∗(i, θ)) =
V (a′′, i, θ)

1 + i
P ∗(i,θ)

≤ V (a′′, i, θ)− i

< V (a′′, i′, θ′)− i′

≤ V (a′′, i′, θ′)

1 + i′

V (a′,i′,θ′)−i′

= Π(a′′, i′, θ′, P ∗(i′, θ′))

.

The second inequality is because iθ < i′θ′, and the third inequality is be-

cause V (a′, i′, θ′) ≥ V (a′′, i′, θ′). This implies no type a benefits from devi-

ating to (i, θ).

(4) No type benefits from deviating to an off-equilibrium action (i, θ) such that

i(1 + θb) ≤ i∗(amax)(1 + θ∗(amax)b). (3.23)

(3.23) implies iθ < i∗(amax)θ∗(amax). Since no type benefits from mimicking
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type amax, it follows that no type benefits from deviating to (i, θ):

Π(a, i, θ, P ∗(i, θ)) =
V (a, i, θ)

1 + i
P ∗(i,θ)

≤ V (a, i, θ)

1 + i
V (amax,i,θ)−i

=
V (a, i, θ)

V (amax, i, θ)
(V (amax, i, θ)− i)

<
V (a, i∗(amax), θ∗(amax))

V (amax, i∗(amax), θ∗(amax))
(V (amax, i

∗(amax), θ∗(amax))− i∗(amax))

= Π (a, i∗(amax), θ∗(amax), P ∗ (i∗(amax), θ∗(amax)))

≤ Π∗(a)

.

The first inequality is because P ∗(i, θ) ≤ V (amax, i, θ) − i, the second in-

equality is due to a < amax, (3.23) and iθ < i∗(amax)θ∗(amax), and the third

equality is because

P ∗ (i∗(amax), θ∗(amax)) = V (amax, i
∗(amax), θ∗(amax))− i∗(amax).

Proof of Proposition 3.3:

Suppose types in A1 repurchase i at efficiency level θ1, and types in A2 repurchase

the same size i with a more efficient method θ2 > θ1. Lemma 3.1 implies types in

A1 are weakly better than types in A2. This implies P ∗(i, θ2) ≤ V (a, i, θ2) + (−i)

for a ∈ A1. Type a1 ∈ A1 such that a1 ≤ E[a|a ∈ A1] strictly benefits from
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deviating to (i, θ2):

Π(a1, i, θ2, P
∗(i, θ2)) =

V (a1, i, θ2)

1− −i
P ∗(i,θ2)

≥ V (a1, i, θ2)

1− −i
V (a1,i,θ2)+(−i)

= V (a1, i, θ2) + (−i)

> V (a1, i, θ1) + (−i)

≥ V (a1, i, θ1)

1− −i
P ∗(i,θ1)

= Π∗(a1)

.

The last inequality is because

P ∗(i, θ1) = E[V (a, i, θ1)|a ∈ A1] + (−i)

≥ V (a1, i, θ1) + (−i)
.

Lemma 3.6. In a D1 equilibrium outcome of the repurchase game (I < IL ≤ 0),

firms that repurchase strictly more than the minimum size |i∗(a)| > |IL| (a > â )

separate on size according to (3.10) and (3.11).

Proof. Define A ≡ {a : |i∗(a)| > IL}. According to 3.3, A = (â, amax] or [â, amax]

in a D1 equilibrium outcome. According to Proposition 3.1, θ∗(a) = 1 for a ∈ A.

(1) |i∗(a)| is strictly increasing on A.

If |i′| < |i|, then |i′(1−b)| < |i(1−b)|. Lemma 3.1 implies |i∗(a)| is increasing

on A. To show i∗(a) is strictly increasing on A, it suffices to show there is

no i with |i| > IL that is chosen by an interval of types.

Suppose types in an interval A′ choose (i, 1) in equilibrium. This implies

P ∗(i, 1) = E[V (a, i, 1)|a ∈ A′] + (−i)

> V (inf A′, i, 1) + (−i)
.
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If type inf A′ chooses (i, 1), it has payoff

Π(inf A′, i, 1, P ∗(i, 1)) < V (inf A′, i, 1) + (−i).

For i′ with |i′| < |i|, Lemma 3.1 implies

P ∗(i′, 1) ≤ V (inf A′, i′, 1) + (−i′).

If type inf A′ chooses (i′, 1), it has payoff

Π(inf A′, i′, 1, P ∗(i′, 1)) ≥ V (inf A′, i′, 1) + (−i′).

Since

lim
i′↑i

V (inf A′, i′, 1) = V (inf A′, i, 1) + (−i),

there is i′ such that

Π(inf A′, i′, 1, P ∗(i′, 1)) > Π(inf A′, i, 1, P ∗(i, 1)).

Since Π is continuous in a, there is a ∈ A′ such that

Π(a, i′, 1, P ∗(i′, 1)) > Π(a, i, 1, P ∗(i, 1)),

which contradicts that types in B choose (i, 1) in equilibrium.

(2) |i∗(a)| is continuous on A.

Since |i∗(a)| is increasing, it suffices to rule out jump discontinuity on A.

Consider a discontinuity at type a∗ ∈ A.

Suppose a∗ < supA, and there is i with |i| > |i∗(a∗)|such that |i∗(a)| > |i|

for any a ∈ A with a > a∗. This implies |i(1 − b)| < |i∗(a)(1 − b)| for any

a ∈ A with a > a∗, and Lemma 3.1 implies

P ∗(i, 1) ≤ V (a, i, 1) + (−i)
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for any a ∈ A with a > a∗. Therefore,

P ∗(i, 1) ≤ V (a∗, i, 1) + (−i).

This implies type a∗ benefits from deviating to (i, 1), which gives it higher

NPV than its equilibrium choice and allows it to repurchase at most at the

fair price:

Π(a∗, i, 1, P ∗(i, 1)) =
V (a∗, i, 1)

1− −i
P ∗(i,1)

≥ V (a∗, i, 1)

1− −i
V (a∗,i,1)+(−i)

= V (a∗, i, 1) + (−i)

> V (a∗, i∗(a), 1) + (−i∗(a))

= Π∗(a∗)

.

Suppose a∗ > inf A, and there is i with |i| < |i∗(a∗)| such that |i∗(a)| < |i|

(that is i∗(a) > i) for a ∈ A with a < a∗. Since i∗(a) is strictly monotonic

on A,

P ∗(i∗(a∗), 1) = V (a∗, i∗(a∗), 1) + (−i∗(a∗)).

This implies

lim
a↑a∗

Π(a, i∗(a∗), 1, P ∗(i∗(a∗), 1)) = V (a∗, i∗(a∗), 1) + (−i∗(a∗)).

On the other hand, since |i∗(a)| is strictly monotonic on A,

Π∗(a) = V (a, i∗(a), 1) + (−i∗(a))

< V (a, i, 1) + (−i)

for a ∈ A with a > a∗. Since V (a, i, 1) is continuous in a and i,

lim
a↓a∗

V (a, i, 1) + (−i) = V (a∗, i, 1) + (−i)

< V (a∗, i∗(a∗), 1) + (−i∗(a∗))
.
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Therefore, there is a ∈ A with a > a∗ such that

V (a, i, 1) + (−i) < Π(a, i∗(a∗), 1, P ∗(i∗(a∗), 1)).

This implies

Π∗(a) < Π(a, i∗(a∗), 1, P ∗(i∗(a∗), 1)),

that is type a strictly benefits from deviating to (i∗(a∗), 1).

(3) i∗(a) satisfies (3.10) with ĩ(a) substituted by i∗(a) for a ∈ A.

That |i∗(a)| is strictly increasing on A implies

P ∗(i∗(a), 1) = V (a, i∗(a), 1) + (−i∗(a))

and

Π∗(a) = V (a, i∗(a), 1) + (−i∗(a))

for a ∈ A. Consider types a1, a2 ∈ A such that a1 < a2. Their equilibrium

choices imply

Π(a1, i
∗(a2), 1, P ∗(i∗(a2), 1)) ≤ Π∗(a1),

Π(a2, i
∗(a1), 1, P ∗(i∗(a1), 1)) ≤ Π∗(a2).

These imply

V (a2, i
∗(a2), 1)

V (a1, i
∗(a2), 1)− V (a1, i

∗(a1), 1)

a2 − a1

+ i∗(a1)i∗(a2)

V (a2,i∗(a2),1)
i∗(a2)

− V (a1,i∗(a2),1)
i∗(a1)

a2 − a1

≤ 0

, (3.24)

V (a1, i
∗(a1), 1)

V (a2, i
∗(a2), 1)− V (a2, i

∗(a1), 1)

a2 − a1

+ i∗(a1)i∗(a2)

V (a2,i∗(a2),1)
i∗(a2)

− V (a1,i∗(a1),1)
i∗(a1)

a2 − a1

≥ 0

. (3.25)
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Taking the limits of (3.24) and (3.25) results in

V (a, i∗(a), 1) [Vi(a, i
∗(a), 1)− 1] i∗′(a) + i∗(a)Va(a, i

∗(a), 1) = 0,

which can be simplified into (3.10).

(4) If A is not empty, i∗(amax) = I.

Suppose type amax chooses repurchase size i such that |i| ∈ (IL, I). Since

i∗(a) is strictly increasing on A, type amax is fairly priced, which implies

Π∗(amax) = P ∗(i, 1) = V (amax, i, 1) + (−i).

Then type amax benefits from deviating to (I, 1):

Π(amax, I, 1, P
∗(I, 1)) =

V (amax, I, 1)

1− −I
P ∗(I,1)

≥ V (amax, I, 1)

1− −I
V (amax,I,1)+(−I)

= V (amax, I, 1) + (−I)

> V (amax, i, 1) + (−i)

.

The first inequality is because

P ∗(I, 1) ≤ V (amax, I, 1) + (−I),

and the second inequality is because |I| > |i|. Therefore, type amax must

choose the maximum repurchase size I in a D1 equilibrium outcome.

Proof of Proposition 3.4: it follows Proposition 3.5.

Proof of Proposition 3.5:

We first prove the uniqueness of the D1 equilibrium outcome. It follows Proposi-

tion 3.3 that all repurchasing types of the firm use speed θ = 1. It follows Lemma
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3.3 and Proposition 3.4 that there is cutoff type â such that types with a > â

repurchase equity ĩ(a), and types with a < â repurchase IL. It suffices to show

(1) If ĩ(a) < IL for all a > amin, then â = amin;

(2) If there is a > amin such that ĩ(a) = IL, then â satisfies

â = max

{
ã :

V (ã, IL, 1)

1 + IL
E[V (a,IL,1)|a∈(amin,ã)]−IL

≥ V
(
ã, ĩ (ã) , 1

)
− ĩ (ã)

}
. (3.26)

(1) If ĩ(a) < IL for all a > amin, then all types repurchase ĩ(a) < IL, that is

â = amin.

(a) Each type a prefers choosing (̃i(a), 1) at the price V (a, ĩ(a), 1)+(−ĩ(a))

to choosing (̃i(amin), 1) at price V (amin, ĩ(amin), 1) + (−ĩ(amin)).

For a′ ≷ a,

d

da′
Π
(
a, ĩ(a′), 1, V (a′, ĩ(a′), 1) + (−ĩ(a′))

)
= Πi

∂ĩ(a′)

∂a′
+ Πp

∂
[
V (a′, ĩ(a′), 1) + (−ĩ(a′))

]
∂a′

where Πi and Πp stand for the derivatives of Π
(
a, ĩ(a′), 1, V (a′, ĩ(a′), 1) + (−ĩ(a′))

)
with respect to the second and fourth inputs.

Πi

Π
=

(
Vi
(
a, ĩ(a′), 1

)
V
(
a, ĩ(a′), 1

) − 1

V (a′, ĩ(a′), 1) + (−ĩ(a′))

)

where Π stands for Π
(
a, ĩ(a′), 1, V (a′, ĩ(a′), 1) + (−ĩ(a′))

)
, and

Πp

Π
=

ĩ(a′)[
V (a′, ĩ(a′), 1) + (−ĩ(a′))

]
V (a′, ĩ(a′), 1)

.

According to (3.10),

d

da′
Π
(
a, ĩ(a′), 1, V (a′, ĩ(a′), 1) + (−ĩ(a′))

)
= 0
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if a = a′. Since Πi
Π

strictly decreases in a, and ∂ĩ(a′)
∂a′

< 0,

d

da′
Π
(
a, ĩ(a′), 1, V (a′, ĩ(a′), 1) + (−ĩ(a′))

)
≷ 0. (3.27)

for a ≷ a′.

(b) (amin, â) is empty.

Since |̃i(amin)| > |IL|, type â strictly prefers choosing (̃i(amin), 1) at

price V (amin, ĩ(amin), 1) + (−ĩ(amin)) to choosing (IL, 1) at the equilib-

rium price:

Π
(
â, ĩ(amin), 1, V (amin, ĩ(amin), 1) + (−ĩ(amin))

)
=

V (â, ĩ(amin), 1)

1− −ĩ(amin)

V (amin ,̃i(amin),1)+(−ĩ(amin))

=
â− (−ĩ(amin))(1− b)
amin − (−ĩ(amin))(1− b)

[
amin + (−ĩ(amin))b

]
≥ â− (−IL)(1− b)
amin − (−IL)(1− b)

[
amin + (−ĩ(amin))b

]
>

â− (−IL)(1− b)
amin − (−IL)(1− b)

[amin + (−IL)b]

= Π (â, IL, 1, V (amin, IL, 1) + (−IL))

≥ Π (â, IL, 1, P
∗(IL, 1))

.

The first inequality is due to −ĩ(amin) > −IL and â ≤ amin, the second

inequality is due to −ĩ(amin) > −IL, and the last inequality is due to

P ∗(IL, 1) ≥ V (amin, IL, 1) + (−IL).

On the other hand, since either â = amax or types with a > â choose

ĩ(a) < ĩ(â), Lemma 3.1 implies

P ∗(̃i(â), 1) ≤ V (â, ĩ(â), 1)− ĩ(â).

Step (a) implies type â prefers choosing (̃i(â), 1) at price V (â, ĩ(â), 1)+

(−ĩ(â)) to choosing (̃i(amin), 1) at price V (amin, ĩ(amin), 1)+(−ĩ(amin)).
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Therefore,

Π
(
â, ĩ(â), 1, P ∗(̃i(â), 1)

)
≥ Π

(
â, ĩ(â), 1, V (â, ĩ(â), 1) + (−ĩ(â))

)
≥ Π(â, ĩ(amin), 1, V (amin, ĩ(amin), 1) + (−ĩ(amin))

> Π (â, IL, 1, P
∗(IL, 1))

,

that is type â strictly prefers (̃i(â), 1) to (IL, 1). By continuity of

Π(a, i, θ, p) in a, if (amin, â) is not empty, there is type a′ ∈ (amin, â)

that deviates to (̃i(â), 1).

(2) If there is a > amin such that ĩ(a) = IL, then â satisfies (3.26).

If there is a > amin such that ĩ(a) = IL, then â > amin, and types a ∈

[amin, â) repurchase IL with method θ = 1.

Suppose â < amax. Types with a > â prefer (̃i(a), 1) to (IL, 1):

V (a, ĩ(a), 1) + (−ĩ(a)) ≥ Π(a, IL, 1, P
∗(IL, 1)).

Taking limits implies

V (â, ĩ(â), 1) + (−ĩ(â)) ≥ Π(â, IL, 1, P
∗(IL, 1)).

Types with a′ ∈ (ā, â) prefer (IL, 1) to (̃i(a), 1) for any a > â:

Π(a′, IL, 1, P
∗(IL, 1)) ≥ Π(a′, ĩ(a), 1, P ∗(̃i(a), 1)).

Taking limits of a′ and a leads to

Π(â, IL, 1, P
∗(IL, 1)) ≥ V (â, ĩ(â), 1) + (−ĩ(â)).

Therefore,

V (â, ĩ(â), 1) + (−ĩ(â)) = Π(â, IL, 1, P
∗(IL, 1))
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where

P ∗(IL, 1) = E [V (a, IL, 1)|a ∈ [amin, â)] + (−IL).

Suppose â = amax. Then Lemma 3.1 implies (̃i(â), 1) = (I, 1) is associated

with amax:

P ∗(I, 1) = V (amax, I, 1) + (−I).

That types with a ∈ [amin, â) prefer (IL, 1) to (̃i(â), 1) implies

Π(a, IL, 1, P
∗(IL, 1)) ≥ Π(a, ĩ(â), 1, P ∗(̃i(a), 1)).

Taking limits implies

Π(â, IL, 1, P
∗(IL, 1)) ≥ V (â, ĩ(â), 1) + (−ĩ(a)).

We next prove the existence of a D1 equilibrium outcome.

(1) If (3.10) implies ĩ(a) < IL for all a, then the strategy to repurchase ĩ(a) for

all a supports a D1 equilibrium outcome.

(a) No type benefits from mimicking another type.

Inequality (3.27) implies Π (a, i∗(a′), 1, P ∗(i∗(a′), 1)) is quasi-concave

in a′.

(b) No type benefits from deviating to an off-equilibrium (i, θ) with

|i(1− θb)| ≤ |i∗(amin)(1− b)|. (3.28)

Inequality (3.28) implies |iθ| ≤ |i∗(amin)|. Since type a does not benefit
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from mimicking type amin, it does not benefit from deviating to (i, θ):

Π(a, i, θ, P ∗(i, θ)) =
V (a, i, θ)

1− −i
P ∗(i,θ)

≤ V (a, i, θ)

1− −i
V (amin,i,θ)+(−i)

=
V (a, i, θ)

V (amin, i, θ)
(V (amin, i, θ) + (−i))

≤ V (a, i∗(amin), 1)

V (amin, i∗(amin), 1)
P ∗(i∗(amin), 1)

= Π(a, i∗(amin), 1, P ∗(i∗(amin), 1))

.

The second inequality is because V (a,i,θ)
V (amin,i,θ)

weakly increases in |i(1 −

θb)|,

P ∗(i∗(amin), 1) = V (amin, i
∗(amin), 1) + (−i∗(amin))

and |iθ| ≤ |i∗(amin)|.

(c) No type benefits from deviating to (i, θ) with θ < 1 and

|i(1− θb)| > |i∗(amin)(1− b)|. (3.29)

Let Da and D0
a respectively denote the set of prices of (i, θ) that makes

type a strictly prefer to deviate to (i, θ) and indifferent. There is p(a)

such that D0
a = {p(a)} and Da = {p < p(a)}. D1 belief about (i, θ) is

supported on those types that deviate under the largest set of prices,

arg maxa p(a). If under the equilibrium belief, a type in arg maxa p(a)

does not benefit from deviating to (i, θ), that is

P ∗(i, θ) ≥ max
a
p(a),

then no type benefits from deviating to (i, θ).

Let type a′′ be a type in the support of the D1 belief on (i, θ) such

that

P ∗(i, θ) ≥ V (a′′, i, θ)− i.
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Inequality (3.29) implies there is a′ such that |i(1−θb)| > |i∗(a′)(1−b)|

and |iθ| < |i∗(a′)|. Lemma 3.1 implies (i, θ) cannot be associated with

any type a > a′ in a D1 belief. Therefore, there is type a′′ ≤ a′ such

that a′′ is associated with (i, θ) and

P ∗(i, θ) ≥ V (a′′, i, θ) + (−i).

Since type a′′ does not benefit from mimicking type a′ as shown in step

(c), it does not benefit from deviating to (i, θ):

Π(a′′, i, θ, P ∗(i, θ)) =
V (a′′, i, θ)

1− −i
P ∗(i,θ)

≤ V (a′′, i, θ) + (−i)

< V (a′′, i∗(a′), 1) + (−i∗(a′))

<
V (a′′, i∗(a′), 1)

1− −i∗(a′)
V (a′,i∗(a′),1)+(−i∗(a′))

= Π(a′′, i∗(a′), 1, P ∗(i∗(a′), 1))

.

The second inequality is because |iθ| < |i∗(a′)|, and the third inequality

is because V (a′′, i′, θ′) ≤ V (a′, i′, θ′). This implies no type a benefits

from deviating to (i, θ).

(2) Suppose (3.10) implies there is type a∗ > amin such that |̃i(a∗)| = |IL|.

Define p(â), and â(p):

p(â) ≡ E [V (a, IL, 1)|a ∈ [amin, â)] + (−IL),

â(p) ≡ sup
{
a : Π(a, IL, 1, p) ≥ V (a, ĩ(a), 1) + (−ĩ(a))

}
.

â satisfies (3.26) if and only if â = â(p(â)).

(a) There is â such that â = â(p(â)), or equivalently, there is p such that

p = p(â(p)).

Let

f(p) ≡ p− p(â(p)).
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Let

p1 = V (a∗, IL, 1) + (−IL),

then â(p1) = a∗. p(a∗) < p1,which implies f(p1) > 0.

Let p2 = p(a∗). Then â(p2) > a∗. This implies f (p2) < 0.

Since f(p) is continuous in p, there must be p∗ ∈ (p2, p1) such that

f(p∗) = 0. This implies p∗ = p(â(p∗)), and â = â(p∗) > a∗.

(b) This â supports a D1 equilibrium outcome.

i. The definition of â(p) implies no type in (â, amax] benefits from

deviating to (IL, 1).

ii. It follows inequality (3.27) that Π (a, i∗(a′), 1, P ∗(i∗(a′), 1)) is quasi-

concave in a′. This implies no type in (â, amax] benefits from mim-

icking another type in (â, amax].

iii. If â < amax, no type in [amin, â) benefits from mimicking a type in

(â, amax].

The definition of â(p) implies type â is indifferent between (i∗(â), 1)

at price V (â, i∗(â), 1) + (−i∗(â)) and (IL, 1):

Π (â, i∗(â), 1, V (â, i∗(â), 1) + (−i∗(â)))

Π (â, IL, 1, P ∗(IL, 1))

=
â− (−i∗(â))(1− b)
â− (−IL)(1− b)

·
1− −IL

P ∗(IL,1)

1− −i∗(â)
V (â,i∗(â),1)+(−i∗(â))

= 1

.

Since a−(−i∗(â))(1−b)
a−(−IL)(1−b) increases in a, for a ∈ [ā, â),

Π (a, i∗(â), 1, V (â, i∗(â), 1) + (−i∗(â)))

Π (a, IL, 1, P ∗(IL, 1))
≤ 1.

Therefore, no type in [amin, â) benefits from deviating to (i∗(â), 1)

at price V (â, i∗(â), 1)+(−i∗(â)). Inequality (3.27) implies Π (a, i∗(a′), 1, P ∗(i∗(a′), 1))

is quasi-concave in a′. Therefore, no type in [amin, â) benefits from

mimicking a type in (â, amax].

iv. That no type benefits from deviating to (i, θ) with θ < 1 and
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|i(1− θb)| > |̃i(â)(1− b)| follows an argument similar to 1(c).

v. No type benefits from deviating to (i, θ) 6= (IL, 1) such that

|i(1− θb)| ≤ |̃i(â)(1− b)|. (3.30)

Inequality (3.30) implies |i| ≤ |̃i(â)| and |iθ| ≤ |i∗(a)|. Lemma 3.1

implies

P ∗(i, θ) = V (â, i, θ) + (−i)

and

P ∗(̃i(â), 1) = V (â, ĩ(â), 1) + (−ĩ(â)).

Type â weakly prefers (i∗(â), 1) to (i, θ) because both give it fair

pricing and the former leads to higher NPV:

Π (â, i, θ, P ∗(i, θ)) = V (â, i, θ)− (−i)

≤ V (â, ĩ(â), 1)− (−ĩ(â))

= Π
(
â, ĩ(â), 1, P ∗(̃i(â), 1)

).

Due to (3.30),

Π (a, i, θ, P ∗(i, θ))

Π
(
a, ĩ(â), 1, P ∗(̃i(â), 1)

) =
a− (−i)(1− θb)
a− (−ĩ(â))(1− b)

·
1− −ĩ(â)

P ∗ (̃i(â),1)

1− −i
P ∗(i,θ)

is weakly decreasing in a, for a > â, Π(a,i,θ,P ∗(i,θ))

Π(a,̃i(â),1,P ∗ (̃i(â),1))
≤ 1. In-

equality (3.27) implies types with a > â do not benefit from de-

viating to (̃i(â), 1). Therefore, they do not benefit from deviating

to (i, θ).

On the other hand, the definition of â(p) implies type â weakly

prefers (IL, 1) to (i∗(â), 1). Therefore, the above anlysis implies

type â weakly prefers (IL, 1) to (i, θ). Since (i, θ) 6= (IL, 1), |i(1−
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θb)| > |IL(1− b)|, which implies

Π (a, i, θ, P ∗(i, θ))

Π (a, IL, 1, P ∗(IL, 1))
=
a− (−i)(1− θb)
a− (−IL)(1− b)

·
1− −IL

P ∗(IL,1)

1− −i
P ∗(i,θ)

strictly increases in a. This implies for a < â, Π(a,i,θ,P ∗(i,θ))
Π(a,IL,1,P ∗(IL,1))

< 1,

which implies types with a < â prefer (IL, 1) to (i, θ). Since types

with a < â do not benefit from deviating to (−IL, 1), they do not

benefit from deviating to (i, θ).

139



Bibliography

Abhishek, V., Hajek, B., and Williams, S. R. (2015). On bidding with securities:

Risk aversion and positive dependence. Games and Economic Behavior, 90:66–

80.

Ambarish, R., John, K., and Williams, J. (1987). Efficient signalling with divi-

dends and investments. Journal of Finance, 42(2):321–343.

Axelson, U. (2007). Security design with investor private information. Journal

of Finance, 62(6):2587–2632.

Besanko, D. and Thakor, A. V. (1987). Competitive equilibrium in the credit mar-

ket under asymmetric information. Journal of Economic Theory, 42(1):167–

182.

Biais, B. and Mariotti, T. (2005). Strategic liquidity supply and security design.

Review of Economic Studies, 72(3):615–649.

Billett, M. T., Floros, I. V., and Garfinkel, J. A. (2019). At-the-market offerings.

Journal of Financial and Quantitative Analysis, 54(3):1263–1283.

Burkart, M. and Lee, S. (2016). Smart buyers. Review of Corporate Finance

Studies, 5(2):239–270.

Che, Y.-K. and Kim, J. (2010). Bidding with securities: Comment. American

Economic Review, 100(4):1929–35.

Cho, I.-K. and Kreps, D. M. (1987). Signaling games and stable equilibria. Quar-

terly Journal of Economics, 102(2):179–221.

140



Cho, I.-K. and Sobel, J. (1990). Strategic stability and uniqueness in signaling

games. Journal of Economic Theory, 50(2):381–413.
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