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Abstract

This dissertation consists of three chapters. In the first, I study the impact of insti-

tutional investors on asset prices, by focusing on Collateralized Loan Obligations

(CLOs). I document that, in order to satisfy constraints based on the par value of

their assets, CLOs become forced sellers of leveraged loans. Loans sold for non fun-

damental reasons trade at depressed prices for up to nine months after the shock.

The effect cannot be explained by selection on ex-ante or ex-post loan character-

istics. A large fraction of the dislocation in secondary markets is transmitted to

the market of issuance: shocked companies due to refinance their loans substitute

away from institutional tranches towards other types of securities. I show that the

substitution is imperfect, causing an increase in the cost of borrowing for affected

firms.

In the second chapter, which is co-authored with Simona Risteska, we use data

on mutual fund portfolio holdings to extract fund managers’ stock return expecta-

tions. We use panel regressions and economic theory to demonstrate that we are

able to partial out the effect of time-varying stock and manager characteristics (e.g.,

risk-aversion) and show that subjective expected returns are significantly affected

by personal experience. Managers are more strongly influenced by recent returns

and those experienced at the early stages of their holding period.

The third chapter, co-authored with Marco Pelosi and Simona Risteska, pro-

vides evidence of the disparity in the incidence of property taxes levied at different

points in time. Housing demand is significantly less elastic with respect to taxes

deferred to the future relative to taxes levied at the moment of the purchase. We

attribute this difference to the lack of salience of future taxes at the moment of

purchase. We provide directions on the optimal tax mix between salient and non-

salient taxes with the help of a model.

4



Contents

1 Contagion in the Market for Leveraged Loans 14

1.1 Existing Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 The Mechanics of CLOs . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Data and Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Trading Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Impact on Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.1 Absence of Selection . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5.2 Placebo Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.6 Impact on Primary Markets . . . . . . . . . . . . . . . . . . . . . . . . 43

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Revealed Expectations and Learning Biases: Evidence from the Mutual

Fund Industry 50

2.1 Previous Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.1 Recovering Subjective Expected Returns . . . . . . . . . . . . 58

2.2.2 Estimating the Covariance Matrix . . . . . . . . . . . . . . . . 62

2.2.3 Recovering Risk Aversion . . . . . . . . . . . . . . . . . . . . . 63

2.3 Data and Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Reduced-form Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.1 Co-managed Funds . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4.2 Taxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5 Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.6 Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Living on the Edge: the Salience of Property Taxes in the UK Housing

Market 84

5



CONTENTS 6

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1.1 Council Tax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.1 Evidence of Selection . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.2 Identification Strategies . . . . . . . . . . . . . . . . . . . . . . 95

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.1 Grid Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.2 Matching Estimator . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4.2 Implications for Tax Policy . . . . . . . . . . . . . . . . . . . . 109

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Appendix to Contagion in the Market for Leveraged Loans 130

A.1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3 Data Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.4 Additional Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.5 Additional Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B Appendix to Revealed Expectations and Learning Biases 183

B.1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.3 Optimal Portfolio Choice . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B.3.1 Borrowing Constraint . . . . . . . . . . . . . . . . . . . . . . . 201

B.3.2 Short Sale Constraints . . . . . . . . . . . . . . . . . . . . . . . 203

B.3.3 Model Misspecification . . . . . . . . . . . . . . . . . . . . . . 205

B.3.4 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

B.4 Data Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.5 Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

B.6 Additional Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . 214



CONTENTS 7

C Appendix to Living on the Edge: the Salience of Property Taxes in the UK

Housing Market 227

C.1 Variable Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

C.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

C.3 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

C.4 Computation of the Model-averaged Posterior Incidence of Council

Tax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256



List of Tables

A1 Summary Statistics - Holdings . . . . . . . . . . . . . . . . . . . . . . . 130

A2 Summary Statistics - Transactions . . . . . . . . . . . . . . . . . . . . . 131

A3 The Mechanical Effect of Downgrades to Caa (CCC) on OC Tests . . 132

A4 Holdings vs. Market Prices . . . . . . . . . . . . . . . . . . . . . . . . 133

A5 Discontinuity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A6 Par Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A7 Rating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A8 WARF Deterioration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A9 Price Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A10 Price Pressure Within Issuers . . . . . . . . . . . . . . . . . . . . . . . 138

A11 Price Pressure - Purchases . . . . . . . . . . . . . . . . . . . . . . . . . 139

A12 The Dynamics of the Shock . . . . . . . . . . . . . . . . . . . . . . . . 140

A13 Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A14 Rating Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A15 Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A16 Par Building - Placebo Test: Downgrades to B3 . . . . . . . . . . . . . 145

A17 Price Pressure - Placebo Test: Downgrades to B3 . . . . . . . . . . . . 146

A18 Probability of Subscribing a Loan . . . . . . . . . . . . . . . . . . . . . 147

A19 All-in Spread Drawn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A20 Fraction of Institutional Loans . . . . . . . . . . . . . . . . . . . . . . . 149

A21 Fraction of Dollars Borrowed . . . . . . . . . . . . . . . . . . . . . . . 150

A22 Institutional Tranches Size . . . . . . . . . . . . . . . . . . . . . . . . . 151

A23 All-in Spread Drawn Within Lead Agent . . . . . . . . . . . . . . . . . 152

A24 Fraction of Institutional Loans Within Lead Agent . . . . . . . . . . . 153

A25 Fraction of Dollars Borrowed Within Lead Agent . . . . . . . . . . . . 154

A26 Institutional Tranches Size Within Lead Agent . . . . . . . . . . . . . 155

A27 Largest Deals and Management Teams . . . . . . . . . . . . . . . . . . 162

8



LIST OF TABLES 9

A28 Holding vs. Market Prices - All Transactions . . . . . . . . . . . . . . 163

A29 Par Building and OC Test Slack . . . . . . . . . . . . . . . . . . . . . . 164

A30 Rating Factor and OC Test Slack . . . . . . . . . . . . . . . . . . . . . . 165

A31 Price Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A32 Price Pressure - Purchases . . . . . . . . . . . . . . . . . . . . . . . . . 167

A33 The Dynamics of the Shock - Purchases . . . . . . . . . . . . . . . . . 168

A34 Probability of Default Conditional on Having a Defaulted Loan . . . 170

A35 Par Building - Placebo Test: Downgrades to B2 . . . . . . . . . . . . . 171

A36 Price Pressure - Placebo Test: Downgrades to B2 . . . . . . . . . . . . 172

B1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B2 The Effect of Average Experienced Returns . . . . . . . . . . . . . . . 184

B3 The Effect of Experienced Returns - Five Buckets . . . . . . . . . . . . 185

B4 The Effect of Experienced Returns - Ten Buckets . . . . . . . . . . . . 186

B5 The Effect of Experienced Returns by Number of Managers . . . . . . 187

B6 Managers Who Have Switched Funds - Five Buckets . . . . . . . . . . 188

B7 Managers Who Have Switched Funds - Ten Buckets . . . . . . . . . . 189

B8 Learning Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B9 Risk Aversion - Pooled Regressions . . . . . . . . . . . . . . . . . . . . 190

B10 Risk Aversion and Bias - Summary Statistics . . . . . . . . . . . . . . 191

B11 The Effect of Average Experienced Returns . . . . . . . . . . . . . . . 214

B12 The Effect of Experienced Returns - Five Buckets . . . . . . . . . . . . 215

B13 The Effect of Experienced Returns - Ten Buckets . . . . . . . . . . . . 216

B14 The Effect of Experienced Returns - Three Buckets . . . . . . . . . . . 217

B15 The Effect of Experienced Returns - Three Buckets . . . . . . . . . . . 218

B16 The Effect of Experienced Returns - Three Buckets and k = 4 Quar-

ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

B17 The Effect of Experienced Returns - Three Buckets and k = 4 Quar-

ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

B18 The Effect of Experienced Returns - Three Buckets and k = 8 Quar-

ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221



LIST OF TABLES 10

B19 The Effect of Experienced Returns - Three Buckets and k = 8 Quar-

ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

B20 The Effect of Experienced Returns by Number of Managers . . . . . 223

B21 Learning Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B22 Risk Aversion and Bias Including Zero Weights - Summary Statistics 224

C1 Evidence of Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

C2 Evidence of Selection - Additional Controls . . . . . . . . . . . . . . . 230

C3 Evidence of Selection - Median Price per Borough, Band, Year . . . . 232

C4 Evidence of Selection - Average Price per Borough, Band, Year . . . . 233

C5 Grid Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

C6 Grid Regressions - Additional Controls . . . . . . . . . . . . . . . . . 235

C7 Grid Regressions for Different Grids . . . . . . . . . . . . . . . . . . . 237

C8 Grid Regressions for Different Grids - Additional Controls . . . . . . 238

C9 Grid Regressions - Without Stamp Duty Notches . . . . . . . . . . . . 240

C10 Grid Regressions - Median Price per Borough, Band, Grid, Year . . . 241

C11 Grid Regressions - Average Price per Borough, Band, Grid, Year . . . 242

C12 Matching Regressions - Euclidean Distance . . . . . . . . . . . . . . . 243

C13 Matching Regressions - Linear Distance . . . . . . . . . . . . . . . . . 244

C14 Matching Regressions - Linear Distance Less than 30% of Predicted

Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

C15 Model-averaged Posterior Distributions for the Council Tax Incidence 246



List of Figures

A1 Fraction of Caa (CCC) securities . . . . . . . . . . . . . . . . . . . . . . 156

A2 Par Building and OC Tests Slack . . . . . . . . . . . . . . . . . . . . . 156

A3 Fraction of Above-Par Securities Sold in the Month of a Downgrade

to Caa (CCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A4 Fraction of Caa (CCC) rated Securities Sold in the Month of a Down-

grade to Caa (CCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A5 Price Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A6 The Outcome in the Primary Market . . . . . . . . . . . . . . . . . . . 158

A7 Fraction of Caa (CCC) and Defaulted Securities - Time Series . . . . . 173

A8 Fraction of Caa (CCC) and Defaulted Securities by CLO Deal’s Age . 173

A9 Loan Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A10 Fraction of Variation in Discounts Explained . . . . . . . . . . . . . . 174

A11 Securities Held by CLOs by Type . . . . . . . . . . . . . . . . . . . . . 175

A12 Securities Held by CLOs . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A13 OC Tests Slack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A14 Weighted-Average Rating Factor . . . . . . . . . . . . . . . . . . . . . 176

A15 Number of Transactions Per Loan . . . . . . . . . . . . . . . . . . . . . 177

A16 Par Gained and OC Test Slack . . . . . . . . . . . . . . . . . . . . . . . 177

A17 Rating Factor and OC Test Slack . . . . . . . . . . . . . . . . . . . . . . 178

A18 Rating Factor and OC Test Slack . . . . . . . . . . . . . . . . . . . . . . 178

A19 Probability of Selling Securities Above Par Around a Downgrade to

Caa (CCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A20 Probability of Selling Caa (CCC) Rated Securities Around a Down-

grade to Caa (CCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A21 The Dynamics of the Shock - Sales . . . . . . . . . . . . . . . . . . . . 180

A22 Average Discount for the Treated Loans . . . . . . . . . . . . . . . . . 180

A23 The Dynamics of the Shock - Purchases . . . . . . . . . . . . . . . . . 181

11



LIST OF FIGURES 12

A24 Loan Primary Use of Proceeds . . . . . . . . . . . . . . . . . . . . . . . 181

A25 Assets Under Management and Number of Facilities Matched in

CLO-i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A26 Amount and Number of Facilities Matched in SDC Platinum . . . . . 182

B1 Explained R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B2 Managers’ Careers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B3 Stock-Manager Experience . . . . . . . . . . . . . . . . . . . . . . . . . 193

B4 Weights on Past Experience . . . . . . . . . . . . . . . . . . . . . . . . 194

B5 Weights on Past Experience by Number of Managers . . . . . . . . . 195

B6 Weights on Past Experience - Managers Who Have Switched Funds . 196

B7 Weighting Functions - Various Examples . . . . . . . . . . . . . . . . 197

B8 Empirical Weighting Function . . . . . . . . . . . . . . . . . . . . . . . 197

B9 Bias and Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B10 Bias and Risk Aversion by Tenure . . . . . . . . . . . . . . . . . . . . . 199

B11 Bias and Risk Aversion by Date . . . . . . . . . . . . . . . . . . . . . . 200

B12 Weighting Functions - Various Examples . . . . . . . . . . . . . . . . 225

B13 Estimated Weighting Functions - Manager-Time, Stock-Time Fixed

Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

B14 Estimated Weighting Functions - Manager-Time, Stock Fixed Effects 226

B15 Bias and Risk Aversion Including Zero Weights . . . . . . . . . . . . 226

C1 A Typical Border . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

C2 Time Series of Council Taxes . . . . . . . . . . . . . . . . . . . . . . . . 247

C3 Histogram of Property Prices in London . . . . . . . . . . . . . . . . . 248

C4 Bunching at Stamp Duty notches . . . . . . . . . . . . . . . . . . . . . 248

C5 Histogram of Prices by Band . . . . . . . . . . . . . . . . . . . . . . . . 249

C6 Histogram of Prices by Property Type . . . . . . . . . . . . . . . . . . 249

C7 Histogram of Prices by Number of Rooms . . . . . . . . . . . . . . . . 250

C8 Histogram of Prices by Age . . . . . . . . . . . . . . . . . . . . . . . . 250

C9 Histogram of Prices by Year of Construction . . . . . . . . . . . . . . 251

C10 Histogram of Prices by Duration . . . . . . . . . . . . . . . . . . . . . 251



LIST OF FIGURES 13

C11 Council Taxes and House Prices . . . . . . . . . . . . . . . . . . . . . . 252

C12 Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

C13 Distribution of Distances for the Grid Regressions . . . . . . . . . . . 253

C14 Model-implied Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . 253

C15 Model-averaged Estimate of the Posterior Council Tax Incidence . . . 254

C16 Optimal Tax Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255



1. Contagion in the Market for Leveraged

Loans

FRANCESCO NICOLAI1

There is ample evidence that the supply of capital from institutional investors pos-

itively correlates with asset prices. It is however particularly challenging to deter-

mine whether institutional investors cause or respond to pricing conditions. This

paper provides evidence in favour of the former by analysing the price impact

of Collateralized Loan Obligations (CLOs) when they are forced to trade for non-

fundamental reasons. CLOs provide an excellent setting to study the causal impact

of institutional investors on the price of leveraged loans2 both in their primary and

secondary markets. The compensation of CLO managers is tested against the satis-

faction of constraints based on the historical value of their assets. In order to avoid

fire sales, these so-called over-collateralization (OC) constraints have been explicitly

designed to be insensitive to the market price and the rating of leveraged loans as

long as these securities are not impaired3. OC constraints have achieved their goal:

CLOs have mostly avoided fire sales during the 2007-09 financial crisis and the

market turmoil in March 2020 (Financial Stability Board, 2019; Kothari et al., 2020).

However, historical-cost-based constraints might have unintended consequences:

similarly to gains trading in the insurance industry (Ellul et al., 2015), when the

1I benefited from helpful comments by Ulf Axelson, Cynthia Balloch, Vicente Cunat, Daniel
Ferreira, Dirk Jenter, Lukas Kremens, Dong Lou, Marco Pelosi, Cameron Peng, Simona Risteska,
Karamfil Todorov, Yue Yuan and the seminar participants at LSE, the New Economic School, Uni-
versidad Carlos III de Madrid, BI Norwegian Business School, Tulane Freeman School of Business
and Cass Business School. I am grateful to the Paul Woolley Centre for the Study of Capital Market
Disfunctionality at the LSE Financial Markets Group for financial support.

2There is no standard definition of leveraged loans. Leveraged loans are usually structured
and arranged by a syndicate of investment banks and they satisfy one or more of the following
criteria: they are sub-investment grade securities rated at Ba1 (BB+) or below by Moody’s (Standard
& Poor’s); they have a spread of at least 150bps over LIBOR; they are secured by a first or second
lien against the issuer’s assets (S&P Global, 2020b). The approach of this paper is to consider as
leveraged loans the syndicated loans that are traded or held by CLOs.

3Leveraged loans are defined as impaired if their market price is below $85, their rating is at or
below Caa (CCC) according to Moody’s (Standard & Poor’s), or they have defaulted (CreditFlux,
2015).
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quality of some of their loans deteriorates, CLOs have an incentive to sell unre-

lated securities whenever they face binding constraints. A violation of these con-

straints would be extremely costly because it would force the management team

to divert cash flows from subordinated to senior notes and would significantly de-

crease their compensation. The management team, therefore, engages in trading

of securities that is fully aimed at avoiding CLO tests violations. This behaviour,

in turn, generates contagion in the secondary market for leveraged loans: shocks

spread from downgraded to otherwise healthy loans sold by distressed CLOs try-

ing to fix their balance sheets. Consistently with the evidence in Loumioti and

Vasvari (2019b) and the view of industry practitioners (Morningstar, 2018), I doc-

ument that managers of CLOs that barely passed their OC tests tend to sell unre-

lated high quality loans compared to otherwise similar CLOs that failed them. In

these regards I provide the following evidence: first, while OC constraints should

mechanically deteriorate after a downgrade to Caa (CCC), I show that this is not

the case, hinting at the fact that managers actively trade in order to restore their

OC constraints after a downgrade. Second, CLOs are usually allowed to keep on

their balance sheet up to 7.5% of Caa (CCC) or lower rated securities before their

OC tests are impaired: I document that there is no bunching in the distribution of

Caa (CCC) or lower rated securities at this threshold, suggesting that managers do

not fix their OC constraints by trading downgraded loans. Third, I show that CLOs

that have barely passed their OC tests sell securities that are trading at higher prices

compared to CLOs that just missed their tests. This behaviour is particularly pro-

nounced when the loans of a CLO have been downgraded to Caa (CCC). Fourth,

loans sold by distressed CLOs that barely satisfy their OC constraints tend to have

higher rating compared to those sold by CLOs that missed them.

I then proceed to analyse the impact on market prices of non-fundamental

trades done by distressed CLOs to restore their constraints. I show that the price

of loans sold by these CLOs is between 43.6bps and 71.8bps lower compared to

otherwise similar loans. The effect is robust to the inclusion of various fixed effects

which allows me to exclude selection based on ex-ante observable characteristics.

The results are also robust to the inclusion of issuer-time fixed effects that are meant
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to compare the price of different loans issued by the same company, capturing the

influence of any unobservable variable related to the fundamentals of the firm. I

then test whether these trades are motivated by access to private information and

refuse this hypothesis by showing that the loans sold by distressed CLOs to restore

their OC tests are marginally less likely to default, and the likelihood of a down-

grade following the trade is similar to the loans in the control group. This evidence

allows me to conclude that the price change of loans sold by distressed CLOs is

caused by their market impact rather than by their fundamentals. The price im-

pact is long lasting: loans sold for non fundamental reasons trade at depressed

prices for up to nine months after the event.

The effect of non fundamental trades is not restricted to the secondary market.

I document that companies whose loans have been sold by distressed CLOs in the

secondary market face a deterioration of their terms of financing when issuing new

loans. I also provide evidence that the deterioration is caused by a reduction in the

supply of funds from CLOs rather than by a reduction in companies’ demand. I

start by fixing the demand for capital along two dimensions: first I focus on firms

that are due to refinance their debt in the following twelve months in the spirit

of Almeida et al. (2011), and, second, I study the choice between institutional and

bank tranches for firms that end up issuing leveraged loans by taking advantage of

an identification strategy that is reminiscent of the one employed by Adrian et al.

(2013), Becker and Ivashina (2014) and Fleckenstein et al. (2020). My findings are

consistent with a reduction in the supply of institutional loans in the primary mar-

ket: first, firms whose loans have been sold by distressed CLOs in the secondary

market are between 3.9% and 11.7% less likely to include institutional tranches in

their new issuances, compared to otherwise similar firms. Even when they are able

to access the market for institutional tranches, these companies borrow between

5.5% and 11.3% less through this form of debt. Finally, the size of the tranches that

are meant to be subscribed by CLOs is between 23.5% and 34.2% smaller compared

to companies that did not suffer fire sales by constrained investors in the secondary

market. The previous findings are paired with the evidence that treated companies

face an increase in the cost of capital of up to 55bps, suggesting that indeed treated
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companies have to cope with a reduction in the supply of institutional capital from

CLOs. How can we rationalize these findings? I show that CLOs are more likely

to refinance in the primary market companies that they have previously invested

in and held on their balance sheet. Companies whose loans are widely held and

traded by distressed CLOs have a difficult time placing new loans that are issued

at par and do not help alleviate the already tight constraints their usual investors

are currently facing.

The rest of the paper proceeds as follows: Section 1.1 places the findings of this

paper in the context of the existing literature; Section 1.2 explains the workings of

CLO constraints, and, in particular, over-collateralization tests; Section 1.3 presents

and describes the data used in the empirical analysis; Section 1.4 studies the trading

behaviour of CLOs and how it is affected by OC constraints; Section 1.5 moves to

the analysis of the price impact of CLOs in the secondary market for leveraged

loans, documenting how loans sold by distressed CLOs trade at depressed prices;

Section 1.6 proceeds to study how the distortions generated by CLO constraints

propagate to primary markets by showing how the cost of capital and the financing

decisions of companies are affected by shocks to distressed CLOs.

1.1 Existing Literature

The results briefly documented above add to various strands of the literature.

First I contribute to the debate on the distortions generated by market-based and

historical-cost-based constraints. In these regards, the closest papers to mine are

Ellul et al. (2014) and Ellul et al. (2015) showing how historical cost accounting dis-

torts the trading behaviour of insurers and spreads shocks across unrelated corpo-

rate bonds. CLO constraints, where the greatest majority of the assets are counted

at their par value, are similar to historical cost accounting. As in Ellul et al. (2015),

I show that a degree of insensitivity to fluctuations in market prices helps reduc-

ing the likelihood of fire sales, but leads to the spread of shocks from distressed to

unrelated securities.

Second, I add to the literature on the propagation and amplification of shocks
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through financial intermediaries. Many have studied the impact of institutional

investors on asset prices: in these regards, Shleifer and Vishny (2011) provide a

comprehensive survey of the literature. Plenty of papers have been written on the

relationship between mutual fund flows and asset returns both in equity and fixed

income markets. Among others, Warther (1995), Wermers (1999), Nofsinger and

Sias (1999), Coval and Stafford (2007), Frazzini and Lamont (2008), Lou (2012), An-

ton and Polk (2014) study the impact of mutual funds on equity markets. Schmidt

et al. (2016), Chernenko and Sunderam (2016), Goldstein et al. (2017), Morris et

al. (2017), and Zhu (forthcoming) focus on the impact on fixed income securities.

A standard approach in the literature on mutual funds price pressure is to rely

on shocks to flows as an instrument to study their price impact. However, it is

particularly hard to disentangle whether flows cause or predict the subsequent

movements in asset prices (Warther, 1995). On the other hand, the setting of the

present paper presents a cleaner identification: the constraints on CLOs provide an

incentive to trade unrelated securities compared to the ones that have been down-

graded. These securities are often of good quality, guaranteeing that there is limited

scope for reverse causality in my findings. Finally, it is relatively easy to control for

ex-ante and ex-post measurable loan features allowing me to establish a chain of

causation that goes from CLO forced trades to a deterioration in loan prices.

Third, I contribute to the literature on the trading and pricing of loans in the

secondary market. Beyhaghi and Ehsani (2017) analyse the cross-sectional proper-

ties of loan returns in the secondary market; Gande and Saunders (2012), Allen and

Gottesman (2006), Ivashina and Sun (2011b) and Addoum and Murfin (2020) study

the relationship between loan prices and equity returns; Fabozzi et al. (2020) docu-

ment inefficiencies in the secondary market for leveraged loans that are exploited

by CLOs. I add to this literature by displaying how the prices for leveraged loans

are affected by non fundamental CLO trades.

Fourth, this paper adds to the growing recent literature on CLOs. Benmelech

et al. (2012) and Nadauld and Weisbach (2012) show that CLOs do not increase

adverse selection in corporate loans and often lead to lower loan spreads; Bozanic

et al. (2018) show that CLOs contribute to standardize the terms of loans contracts.
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Loumioti and Vasvari (2019a) and Loumioti and Vasvari (2019b) are the first to

study in detail the incentives generated by over-collateralization constraints on

CLOs, documenting that tighter constraints lead to strategic trading aimed at over-

coming tests based on them and, ultimately, cause a deterioration in performance.

I confirm their findings, showing that CLO managers engage in loan trading that

is ultimately motivated by the satisfaction of these constraints and use this feature

to study the impact that CLOs have on the price of leveraged loans. Liebscher and

Mählmann (2017), Fabozzi et al. (2020) and Cordell et al. (2020) provide evidence

in favour of skill in CLO managers collateral selection and trading. Elkamhi and

Nozawa (2021) analyse the trading behaviour of CLOs in periods of diffuse de-

faults or downgrades focusing on the effect that portfolio similarity across CLOs

has on systematic risk. Fleckenstein et al. (2020) study the effect of CLOs on com-

panies’ financing outcomes. They use CLOs origination and repricing as an instru-

ment for their appetite for new leveraged loans in the primary market and show

that CLOs actively determine the amount of issuance in this market and are the

main responsible for its cyclicality. This work adds on Fleckenstein et al. (2020)’s

findings, with a particular focus on the heterogeneity of the impact of CLOs across

companies: the firms whose loans have been sold by distressed CLOs fare worse

outcomes independently of the aggregate appetite for leveraged loans by CLOs.

My findings are also consistent with Allen and Gale (1994) who prove that, with

endogenous market participation, relatively small idiosyncratic shocks can have

large price effects on the underlying securities. The closest paper is the contempo-

raneous work by Kundu (2021) which replicates most of the findings in this article

by employing a shift-share instrument and focusing on interest diversion rather

than over-collateralization constraints.

Finally, I add to the abundant literature on the interaction between capital sup-

ply and companies’ financing decisions. Among the others, Faulkender and Pe-

tersen (2006), Frank and Goyal (2009), Leary (2009), Sufi (2009), Lemmon and Roberts

(2010). In the last part of the paper I employ an identification strategy that is simi-

lar to the one in Adrian et al. (2013) and Becker and Ivashina (2014), who show that

firms with access to the bond market have shifted away from bank loans during
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the 2007-09 financial crisis, hinting at the fact that the credit collapse was due to

a contraction in credit supply rather than demand. Ivashina and Sun (2011a) and

Fleckenstein et al. (2020), on the other hand, study the substitution between institu-

tional and bank tranches in the syndicated loan market; I expand on their findings

by showing how issuer specific shocks in the secondary market force companies

to rely on non institutional tranches at the expense of an increase in the cost of

borrowing. This complements the literature on firms arbitraging capital market

distortions4. I show that companies are able to only partially reduce the impact of

shocks in the secondary markets by shifting from institutional to non-institutional

loans, consistent with the idea of debt specialization (Colla et al., 2013).

1.2 The Mechanics of CLOs

A collateralized loan obligation (CLO) is a bankruptcy remote5 investment vehi-

cle whose purpose is to invest in fixed income assets, usually leveraged loans, and

whose liabilities are represented by notes with decreasing seniority which is strictly

enforced. Similarly to other types of securitizations, the interest and principal pay-

ments to noteholders come with a predetermined seniority, with senior notes re-

ceiving the first cashflows available to be distributed according to predetermined

rules, followed by less senior notes and, eventually, equity holders. To enforce

the seniority of the liabilities of a CLO, each tranche is subject to a battery of tests

making sure that the priority of repayment is maintained. At each payment date

CLO notes are tested against prespecified thresholds before the CLO is able to de-

termine the distribution of cashflows to the noteholders. We can divide the tests

into those that force the management team to divert cashflows from the junior to

4Loughran and Ritter (1995), Baker and Wurgler (2000), Dong et al. (2012) provide evidence on
firms arbitraging equity markets misvaluations. Baker et al. (2003), Greenwood and Hanson (2013)
and Harford et al. (2014) on firms timing debt markets. Gao and Lou (2013) and Ma (2019) on timing
across different markets.

5Each party involved in the creation of a CLO, i.e., the originator, the arranger, the trustee and
the manager, is separate from the assets which are placed in and legally held by a special purpose
vehicle (SPV). The same applies to the CLO’s liabilities. This guarantees protection from bankruptcy
of the CLO for the parties involved and protection from bankruptcy of the parties involved for the
owners of CLO’s liabilities. This separation is highly sought after in order to guarantee that the
creditworthiness of CLOs’ liabilities is fully and uniquely determined by their assets. In order to
obtain bankruptcy remoteness, the SPV must be a separate legal and operational entity, the assets
must have been transferred via a true sale, and the originator cannot exercise control over the SPV
(CreditFlux, 2015).
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the senior notes, and the so called maintain-or-improve tests. The latter group - in-

cluding tests on the weighted average rating factor (WARF) of assets, the weighted

average spread (WAS), the industry concentration, and the weighted average life

(WAL) of the collateral - are meant to reduce the riskiness of the CLO holdings, but

have minimal impact on the trading behaviour of the management team (Loumioti

and Vasvari, 2019b) because they tend to have ample slack and do not cause any

diversion of cashflows from one class of notes to another. The other group, which is

comprised of the over-collateralization (OC) and interest coverage (IC) tests, have

more serious consequences for noteholders and have material consequences on the

trading behaviour of the management team. Often OC tests are considered among

the most onerous hurdles CLO managers have to face (CreditFlux, 2015). OC tests

are a key tool in enforcing the seniority of the principal value of the notes of a CLO

by guaranteeing that the value of the assets under management remains above

a certain multiple of the par value of CLO tranches, while IC tests are meant to

maintin the order of seniority of interest distributions. Given the paper mostly fo-

cuses on OC tests, I will describe their workings in greater detail. If we start from

the most senior note (which I denote with the letter A) a CLO manager needs to

make sure that the following constrain is not violated:

ÕC
A ≡ Par Value of Assets + Excess Cash

Par value of Class A Tranche
+

Market Value of Impaired Assets
Par value of Class A Tranche

≥ OCA

(1.1)

where OCA is a tranche specific threshold. It is obvious from equation (1.1) that,

at the numerator of the test, assets under management are counted at par value

(usually $100 for leveraged loans in the United States) unless they have been im-

paired; in that case they might incur haircuts. The OC tests of CLO 2.0, i.e., the

greatest majority of CLOs issued during and after the 2007-09 financial crisis, de-

fine as impaired securities all those assets that have defaulted or are at imminent

risk of default, i.e., those rated at Caa1 (CCC resp.) or below by Moody’s(Standard

& Poor’s)6. Defaulted securities are counted at the lower between their market

value and the assumed recovery rate. The haircut for Caa (CCC) securities is more

complex: each CLO has a Caa (CCC) bucket with a predetermined threshold, usu-

6Securities purchased at a deep discount, i.e. below $85-$80, are usually counted at their market
value, as well.
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ally 7.5% of the value of the CLO’s collateral7, and the loans above this limit with

the lowest market value receive a haircut equal to the difference between their par

value and their market price. Given that Caa (CCC) securities are generally traded

at a significant discount compared to par, this guarantees that the numerator of the

OC test is reduced whenever a CLO has more than 7.5% of securities rated at Caa

(CCC) or below.

The same mechanism applies to any other tranche with lower seniority; for

instance, for tranches with seniority equal to k = B, C, ..., the OC test can be repre-

sented in the following way:

ÕC
k ≡ Par Value of Assets + Excess Cash

∑k′≤k Par Value of Tranche k′
+

Market Value of Impaired Assets
∑k′≤k Par Value of Tranche k′

≥ OCk

(1.2)

where the denominator sums over the par value of all the tranches k′ with higher

seniority than k. It is not an accident, but rather a featured design, that OC tests

have little sensitivity with respect to swings in loan prices, given that, in their cal-

culation, the greatest majority of assets are treated at their par value. The same

holds true for any change in ratings that does not involve the Caa (CCC) bucket.

On the other hand, managers are particularly sensitive to changes in ratings

that have a material effect on the Caa (CCC) bucket, given that breaching the limit

of 7.5% forces managers to significantly reduce the value of their securities. Vio-

lating OC tests has serious consequences for a CLO manager: their compensation

is, in fact, directly tied to the satisfaction of this metric. In particular, we can split

the compensation of managers in three parts, two of which are conditional on the

satisfaction of the OC test limit. The managing team first receives a senior fee which

is a constant fraction of assets under management, usually 0.2%, and does not de-

pend on the performance of the portfolio of loans. This fee is senior to any other

payment to the noteholders and it is meant to be used to carry on with the daily

management duties of the CLO. Second, we have the junior fee, which is earned

after all the coupons to noteholders have been paid: this fee is approximately 0.3%

of assets under management and it is meant to incentivize the management team

7Some deals, usually called ”enhanced CLOs”, are allowed to reach higher limits. They are
however rare representing less than 0.3% of the market in 2019 (Goldfarb, 2019; S&P Global, 2019).
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to make sure that the CLO’s cashflows are sufficient to repay noteholders. Finally,

we have the incentive fee. The incentive fee is paid after the equity holders of the

CLO have achieved a pre-specified hurdle rate and consists of 20% of the cashflows

above the prespecified hurdle.

Failing any of the OC tests (1.2) will reduce the compensation of the manage-

ment team: any interest received must be diverted from paying notes with a lower

seniority compared to the one that has failed the test; second, to make sure that

the test is satisfied in the future, any principal repayment is diverted into repaying

the principal of all the notes with a higher seniority; third, and most importantly,

the management team does not receive neither the junior nor the incentive fee, de-

facto cutting their income by more than half. It is therefore crucial for a manager

to avoid breaching any OC test. While this high-powered incentive is designed to

make sure that the interests of the management team are aligned with the interest

of the liability holders, it might also be responsible for a distortion of the objective

of the management team. It is an empirical question whether and how the threat of

failing an OC test affect the trading behaviour of CLO managers: this specific issue

is tackled in Section 1.4. Before delving into this topic, the next section introduces

the data I use in the rest of the paper.

1.3 Data and Summary Statistics

In order to analyse the trading behaviour of CLO managers and their effect on

leveraged loans, we need to collect data on the holdings and trades of CLOs, to-

gether with the characteristics of the underlying loans. All the data on CLOs come

from the CreditFlux Clo-i dataset. CLOs are required to provide their investors

with a quarterly payment report and a monthly trustee report which have been

collected by CreditFlux starting from 2009. More specifically, I make use of granu-

lar data on the universe of CLOs’ holdings at their reporting dates, all the transac-

tions that CLOs have completed between reporting dates and all the results of the

OC tests which constrain the CLOs in my sample. The focus of the paper is on US

based CLOs in the period between January 2009 and December 2019. Overall I have
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access to 89,111 unique reports from 2,601 distinct CLO deals, supervised by 218

distinct managers. Summary statistics are provided in Table A1, where Panel A re-

ports the statistics for each individual CLO deal at each reporting date, while Panel

B presents data aggregated at the management team level. The average (median)

CLO deal has $434.73Mln ($408.86Mln) assets under management, comprised by

213.82 (203) unique securities from 168.2 (157) distinct issuers. Each security, on av-

erage, represents 1% of the total portfolio. The average age for a CLO is 2.57 years,

reaching up to 11.90 years. If we look at the characteristics of the securities held by

CLOs, the median fraction of assets rated at Caa (CCC) or below is about 6%, with

a mean of 9%. On the other hand the median fraction of defaulted assets is equal to

2%, while the median is equal to 5%.8. The typical team contemporaneously man-

ages 5.57 CLOs for a total of $2.505Bln of assets. The average number of securities

held is 565.32 issued by, on average, 257.45 distinct companies. Management teams

are on average 4.70 years in sample.

I then proceed to analyse the transactions carried out by CLOs whose summary

statistics are reported in Table A2. First of all, it should be noted that CLOs do not

report a trade in roughly 18% of the months (i.e., they have zero trades for 16,596

reports out of 89,111 total reports). When they do trade, the average number of

transactions is equal to 29.73 while the median number of transactions is 19. If we

analyse purchases and sales separately, CLOs do not buy any security in 26.5% of

the reports, while they do not sell any security in 26.8% of the reports. CLOs tend

to purchase securities in the ramping-up period when they are trying to reach the

desired amount of assets under management, while sales happen during the whole

life of the deal: this implies that the average number of purchases is larger than the

average number of sales (19.25 vs 13.69) given that securities are usually bought in

bulk at the beginning of the life of a CLO. This is confirmed by the figures on the

total amount of transactions: on average CLOs report purchases for $22.44Mln and

sales for $10.84Mln. These figures are highly skewed with the largest amount pur-

chased equal to $2.37Bln and the largest amount of securities sold equal to roughly

8Some CLOs end up having 100% of assets rated at CCC or below before they are shut down,
skewing the mean towards larger values. The same holds true for defaulted securities.
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$1Bln. The typical security is sold at a price of $98.20, while the typical purchase

price is $98.99. There are two possible explanations for this divergence: either

CLOs tend to sell worse performing and purchase better performing securities, or

CLOs tend to purchase securities in periods of relative calm and become forced

sellers in periods of distress. I will show in Section 1.4 that the latter explanation

is the more plausible among the two: in periods of distress, when downgrades be-

come more prevalent, CLO managers become forced sellers. Further statistics on

CLO holdings and transactions are provided in Appendices A.4 and A.5.

Finally, the analysis in Section 1.6 focuses on the impact that forced sales have

on the primary market for U.S. syndicated loans. The data on loan originations

is collected from Refinitiv’s Security Data Company (SDC) Platinum9. The dataset

includes historical information on more than 315,000 global corporate loan transac-

tions since the early 1980s. In the paper I will focus on loans issued by companies

domiciled in the United States between January 2009 and December 2019. In order

to compute the exposure of issuers to loan rollover I also include all the loans ma-

turing after January 2009, but potentially issued before my sample period starts.

The overall sample includes 76,610 unique tranches from 48,757 facilities issued by

19,378 distinct borrowers. No common identifier between the SDC Platinum and

the CLO-i dataset exists; for this reason, Appendix A.3 outlines the matching pro-

cedure used to link the two datasets. The analysis in Section 1.6 makes use of the

number of loans, the tranche size and the All-in Spread Drawn (AISD) obtained

from SDC Platinum.

1.4 Trading Behaviour

In Section 1.2 I have outlined how the compensation of CLO managers is tied to the

satisfaction of OC tests. In this section I analyse how managers’ portfolio choices

are affected by the incentives generated by OC tests and whether their trading be-

haviour responds to the deterioration of this metric. Equation (1.2) clearly shows

that OC tests are affected by external shocks only when securities default or when

9Thomson Financial, I. (2001).
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they are downgraded to Caa (CCC): in what follows, I focus on the second type

of shock10. In particular, in the remaining of this section, I show the following:

managers do actively trade in order to restore their OC constraints when hit by

downgrades to Caa (CCC); because there is a certain degree of freedom in book-

ing Caa (CCC) rated securities at an inflated value on the balance sheet of CLOs,

managers avoid directly selling them; CLOs restore their OC tests by building par,

namely by selling high quality securities that trade at or above par and buying low

quality securities that trade well below par.

I start by providing evidence that managers actively trade in order to restore

their OC constraints. When a security is downgraded to Caa (CCC), if the Caa

(CCC) bucket is already above the 7.5% threshold, the marginal Caa (CCC) se-

curity receives a haircut which, in turn, impairs the OC test. This implies that,

absent any active measure by the manager, OC tests should mechanically deteri-

orate when a CLO is hit by a downgrade. I therefore measure the slack of an OC

test as the percentage distance from the predefined test’s threshold, i.e. slackk
i,t =

ÕC
k
i,t−OCk

i
OCk

i
, where ÕC

k
i,t is the realization of the OC test for tranche k and CLO i,

while OCk
i is the predetermined test threshold. I then construct two dummy vari-

ables: Shockedi,t which takes a value of one whenever a CLO has been hit by down-

grades to Caa (CCC), and Above 7.5%i,t which takes a value of one when the Caa

(CCC) bucket is above the threshold of 7.5%. I proceed by regressing the percent-

age slack of a CLO’s OC tests on these variables and report the results in Table

A3, from which we can conclude that there is no mechanical relationship between

tests and shocks. In particular, columns (1)-(4) show that, after having been hit by

downgrades to Caa (CCC), the slack of OC tests is neither higher nor lower: these

results are robust to the inclusion of time, CLO deals, and type of test (Junior vs

Senior) fixed effects. When the interaction Shockedi,t×Above 7.5%i,t is included in

column (5), there is still no evidence that the slack of CLOs hit by downgrades to

Caa (CCC) and whose Caa (CCC) buckets are above 7.5% is lower than average.

10Table A1 shows that defaulted securities tend to be a relatively small fraction of CLOs’ collat-
eral; moreover, defaulted securities are usually first downgraded to Caa (CCC): conditionally on
being rated Caa (CCC), the probability of default within one year is about 25% (Elton et al., 2001;
Fei et al., 2012; S&P Global, 2020a).
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Recall that there should be a mechanical negative relationship between the slack

of an OC test and the number of Caa (CCC) rated securities as shown in equation

(1.2). The lack of any correlation between the two hints at the fact that managers

respond to incentives and actively trade to restore their OC tests. When assets are

downgraded to Caa (CCC) between reporting periods, managers actively trade be-

fore the next report to make sure their compensation is not reduced. As a result,

the slack of CLOs that suffered a downgrade is no different from the slack of the

ones that did not.

After having determined that managers respond to incentives and actively trade

to restore OC tests, we are left wondering what actions can a manager undertake

in order to improve this metric. There are only two ways to gain slack on the OC

test: the first way is to directly get rid of Caa (CCC) securities or any security that

is counted at market value, while the other is to build par. Selling Caa (CCC) loans

that are recorded at their market value can help as long as the marginal security,

i.e., the security that was crossing the 7.5% threshold, does nor receive a haircut

and is recorded at par-value or if the proceeds are used to purchase securities that

trade at a discount. This is, however, a relatively ineffective strategy for two rea-

sons. First there is a purely quantitative consideration: Caa (CCC) loans trade at

large discounts hence it takes a relatively large number of securities to gather a

sizeable amount of cash. Second, selling a Caa (CCC) security would force the

manager to recognize a capital loss that could possibly be avoided. This is because

distressed loans usually receive a haircut that is in line with their market price if

they have been recently traded; managers, however, can value distressed loans at

a theoretical bid price obtained from a dealer in case there is no pricing informa-

tion(CreditFlux, 2015). This price is then certified by the CLO trustee. Managers

may have some freedom in recording Caa (CCC) loans at a higher price compared

to the one they could realise by selling the security. In order to test this hypothesis

I make use of the fact that, since September 2017, CLO-i reports data on the price

at which each loan has been recorded on CLOs’ monthly reports. I can therefore

directly compare the price at which loans are recorded on the balance sheet of a
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CLO with their closest market price by running the following regression:

discountj,t = αj + αt + β1Transactionj,t + Xj,tδ + ε j,t (1.3)

discountj,t = 100× log(100/Pj,t) is the discount compared to par11, Transactionj,t is

an indicator variable equal to one whenever the price comes from an actual trans-

action (purchase or sale) by a CLO and zero otherwise, αj and αt are issuer and

time fixed effects, while Xj,t includes a set of fixed effects for rating, industry and

interest rate of the loan. Table A4 reports the results of regression (1.3), with Panel

A focusing on all loans, while Panel B restricting the attention to loans with a rat-

ing of Caa (CCC) and below. As expected, the results indicate that managers have

a certain freedom in keeping loans at inflated prices on their balance sheet. After

having controlled for the effect of confounders, the average transaction happens at

a discount of 87bps compared to the average price at which the loan is recorded

on the trustee report by CLO managers. The result is robust to the inclusion of

Year×Month×Issuer fixed effects that are meant to partial out any unobservable

issuer characteristics. The impact is much larger when we focus on Caa (CCC)

loans in Panel B: the average loan rated at Caa (CCC) or below is usually traded

at a discount of 400bps compared to the average price recorded on CLO monthly

reports. Selling these securities is particularly costly in order to gain slack in the

OC constraints.

CLOs, however, are not required to sell their entire bucket of Caa (CCC) securi-

ties: the management team needs to make sure that the number of Caa (CCC) loans

does not exceed the threshold of 7.5%. This implies that it might be optimal for the

CLO to guarantee that these securities never cross the 7.5% and we can use this fact

to check whether managers actively trade these loans to pass the OC tests.This is

the aim of Figure A1 plotting the empirical distribution of Caa (CCC) securities as

a fraction of assets. The figure shows that there is no obvious discontinuity at 7.5%.

I formally test the presence of such a discontinuity using Cattaneo et al. (2020) lo-

cal polynomial density estimator. Table A5 provides no evidence in favour of such

11For a loan with price Pjt = $100− $X and par value of $100, the discount is equal to 100×
log($100/($100− $X)) ≈ X percent.
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a discontinuity, suggesting managers do not actively keep the pool of Caa (CCC)

securities at the 7.5% threshold.

If managers do not trade loans recorded at their market value, they can engage

in par building in order to improve their OC tests. Par building involves a trade

whereby a manager sells a highly quality security, possibly trading above par, in

favour of a lower quality security, trading below par. For instance, a CLO in need of

$100 of par value can adopt the following strategy: sell nine loans that are currently

trading at $100; the transaction will generate proceeds for $900 which the manager

will immediately use to buy ten loans that are currently trading at $90. In market

value terms the transaction is neutral, given that the proceeds from the sale can be

used to buy the new loans. However the OC test will improve: nine loans trading

at par contributed for 9 × $100 = $900 in the OC test, while ten loans trading at $90

will contribute for their full par value in the OC test,i.e., 10 × $100 = $1000 in the

numerator of the OC test. The rest of the section will show that, indeed, managers

resort to par building in order to improve their OC tests.

First, par building should be more aggressive for those CLOs whose OC con-

straints are close to be binding. In order to test this hypothesis, I divide CLOs in

seven buckets12 based on the slack of their OC tests. I measure the amount of par

gained with each transaction as: gaini,j,t = 100×
(
(100− Pj,t−1)×

Nr. loans boughti,j,t
Principal Balancei,t

)
for purchases and gaini,j,t = −100 ×

(
(100− Pj,t−1)×

Nr. loans soldi,j,t
Principal Balancei,t

)
for sales,

where Pj,t−1 is the last transaction price available for security j before being traded

by CLO i. Notice that the lagged price Pj,t−1 is not affected by the CLO transac-

tion and captures the price a manager faces when deciding which loans to sell

in order to restore their OC tests. I then sum across all the transactions by a

CLO in any given reporting period to construct the following variable: gaini,t =

100×
(

∑j(100− Pj,t−1)×
Nr. loans boughti,j,t
Principal Balancei,t

− ∑j(100− Pj,t−1)×
Nr. loans soldi,j,t

Principal Balancei,t

)
13.

12The buckets are the following: [-100%,-5%), [-5%,0%),[0%, 5%), [5%,10%),
[10%,15%),[15%,20%),[20%, 100%).

13To understand the construction of the gain, it might be instructive to look at a specific example.
If a CLO with assets of $10,000 sells nine loans trading at $100 then the gain is equal to −($100−
$100)× 9

$10,000 = 0, while if the manager buys ten loans trading at $90 the gain is equal to ($100−
$90) × 10

$10,000 = +0.009. The two transactions have generated an increase in par value equal to
($100−$100)×10+(100−90)×9

$10,000 = +0.009. If we multiply by 100 we get the figure in percentage terms, i.e.
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The left panel of Figure A2 plots the average amount of par gained as a function

of the slack of Junior OC tests, while the right panel as a function of the slack of

Senior tests. It is clear that CLOs whose Junior OC tests are binding, i.e. those with

slack close to 0%, are more likely to engage in par building compared to any other

CLOs. The large discontinuity between the CLOs that have just missed an OC test

and those that have barely passed it suggests that par building is a key tool used by

managers in order to guarantee the satisfaction of their constraint and is consistent

with previous evidence by Loumioti and Vasvari (2019a,b). Figure A16 confirms

that indeed there is a clear discontinuity in par gained between these two groups

of CLOs. No such a discontinuity is present in Senior OC tests, signalling that these

are less important in determining the trading behaviour of CLO managers.

After having performed this unconditional analysis we can study the behaviour

of CLOs that have a binding constraint in the month when they are hit by down-

grades to Caa (CCC). For this purpose I construct a dummy variable Shockedi,t that

is equal to one whenever the loans of a CLO have been downgraded to Caa (CCC)

and a dummy variable Constrainedi,t that is equal to one whenever the slack of a

CLO is between 0% and 5%, i.e., the CLO is in the group that we have shown to be

more likely to engage in par building. Columns (1) and (2) in Table A6 report the

results of the following regression:

gaini,j,t = α+ β1Constrainedi,t + β2Shockedi,t + β3Constrainedi,t× Shockedi,t + εi,t

(1.4)

while, columns (3) and (4) report the results of the following regressions, where I

sum across all the transactions of a CLO at time t:

gaini,t = α + β1Constrainedi,t + β2Shockedi,t + β3Constrainedi,t × Shockedi,t + εi,t

(1.5)

Columns (1) and (3) measure the slack in terms of Junior OC tests, while columns

(2) and (4) in terms of Senior tests. From all the regressions we can infer that

shocked CLOs are more likely to engage in par building: each transaction of a

0.9 percent.
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shocked CLO contributes towards increasing par by between 0.005% and 0.006%,

while when we sum across all the transaction carried out by a CLO, we can con-

clude that shocked CLOs build between 0.033% and 0.050% more par compared to

the CLOs in the control group14. When we compare the differential effect of Junior

and Senior tests, i.e. we contrast the results in column (1) and (3) with those in

columns (2) and (4), we can conclude that only Junior tests matter for par building:

CLOs whose Junior slack is between 0% and 5% build 0.035 more par per period

compared to other CLOs, while being shocked adds an extra 0.069 in par. The over-

all effect for CLOs that are constrained and have suffered from downgrades is of

15.4bps (i.e., 3.5bps + 5bps + 6.9bps).

Similarly, we can analyse the probability of selling securities that trade above

par or that are rated Caa (CCC) in the month other loans on the same balance sheet

have been downgraded. Figure A3 and A4 show that CLOs that barely passed their

OC tests are more likely to sell securities above par and less likely to sell securities

that are rated Caa (CCC) or below in the month of a downgrade. It should be

stressed that CLOs that barely passed their tests are likely to be different from those

that missed them along many dimensions. However the scope of the paper is to

study the impact of CLOs on the price of loans. Therefore even if the two groups

of CLOs differ systematically, this does not invalidate the identification strategy

employed to study the price impact of CLOs. We only need to prove that the loans

sold by constrained CLOs are sold for non fundamental reasons. Even if the subset

of securities held by the two groups were systematically different, we could control

for this difference with the help of issuer fixed effects that would take care of this

type of selection.

It should be pointed out that par building helps a manager in locking-in trading

gains by selling well performing loans and buying loans that are trading at a lower

price. However this does not represent a free-lunch: the loans that are sold might

be significantly safer compared to the ones that are purchased, resulting in risk-

shifting. It is intuitive that constrained and unconstrained CLOs might engage

14While these figures might seem small, notice that each transaction represents a small frac-
tion the assets of a CLO. Moreover notice that the improvement in OC tests is equal to gaini,t ×

Principal Balancei,t
Par Value of Note ki,t

where k = Junior, Senior.



CHAPTER 1. CONTAGION IN THE MARKET FOR LEVERAGED LOANS 32

in par building for different reasons: in normal times CLOs want to improve the

quality of their collateral, while - when the constraint is binding - to gain slack on

their OC tests. One way to test this hypothesis is to look at the riskiness of the loans

that are sold and purchased by constrained and unconstrained CLOs: if indeed

the trading behaviour of constrained CLOs is motivated by a desire to restore the

strength of OC tests, then we should expect them to sell safer loans to finance the

purchase of riskier ones. In order to investigate this hypothesis, I measure the

riskiness of a loan with its rating factor. CLOs are, in fact, subject to tests on the

Weighted-Average Rating Factor (WARF) of their assets, where loans are assigned

a numeric value on a scale from 1 to 10,000 which is supposed to capture their

riskiness. I make use of Moody’s rating mapping (reported in Table A7) in order

to transform the ordinal ratings into a meaningful cardinal value. The rating factor

increases with the riskiness of a security, ranging from 1 (Aaa) to 10,000 (Ca-C). The

typical rating for a loan on the balance sheet of a CLO is B2, commanding a factor

of 2,720, while the average and median WARF are 2,923.48 and 2,737, respectively.

As one should expect, WARFs tend to vary and follow the business cycle, as Figure

A14 shows.

Table A8 formally tests whether constrained CLOs tend to sell higher qual-

ity securities by regressing the rating factor of loans sold and purchased on the

Shockedi,t and Constrainedi,t dummies. The table shows that unconstrained CLOs

sell lower quality loans (average rating factor of 3025) compared to the ones they

buy (average rating factor of 2641), implying that - in normal times - their trading

decisions make their collateral safer. When CLOs are hit by downgrades, however,

they sell loans of slightly higher quality and purchase loans of lower quality: on

average, the assets they sell have a rating factor that is 151.6 points lower, while

their purchases have a rating factor that is 67.5 points higher. The coefficient on

the Constrainedi,t dummy, suggests that, when they have not been hit by down-

grades, the quality of the loans they sell is slightly worse (73.9 points), while there

is no difference in the loans they purchase. Finally the coefficient of interest, i.e. on

Shockedi,t×Constrainedi,t, shows that after having suffered a downgrade to Caa

(CCC), CLOs whose constraints are binding sell loans that are significantly safer
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(-514.2 points), while they purchase riskier loans (105.8 points). The results in the

table suggest that the average rating factor of loans sold by distressed CLOs is

591.9 points (i.e., -151.6 + 73.9 - 514.2) lower compared to the CLOs in the control

group, while the average rating factor of their purchases is 166.4 (i.e., 67.5 - 6.9 +

105.8) higher. Column (3) in Table A8 allows us to analyse how OC constraints

affect the portfolio composition of each individual CLO by aggregating across all

the trades executed between reporting periods. The variable of interest is now the

change in the WARF caused by all CLO trades between reporting dates, namely:

∆WARFi,t = ∑j RFi,j,t ×
Amt. Purchasedi,j,t

∑j Amt. Purchasedi,j,t
− ∑j RFi,j,t ×

Amt. Soldi,j,t
∑j Amt. Soldi,j,t

. As the previ-

ously results suggested, CLOs - when unconstrained - make their portfolios safer

with their trades, as shown by the fact that, on average, they experience a change

in WARF of 441.3 points. CLOs whose loans have been downgraded to Caa (CCC),

however, deteriorate the quality of their assets by 316.2 point, while those whose

Junior slack is between 0% and 5% by 374.5. CLOs whose constraints are binding

and whose loans have been downgraded to Caa (CCC) do even worse by decreas-

ing the quality of their portfolio by a further 79.1 points, implying that their assets

are, on average, 769.9 points riskier compared to CLOs in the control group and

328.6 points compared to the counterfactual where they did not execute any trade.

To conclude, the evidence in this section suggests that when hit by downgrades

to Caa (CCC), constrained CLO managers sell high quality securities in order to

pass their OC test requirements compared to managers that decided to fail their

tests or could not do otherwise. These loans are sold for non fundamental reasons,

allowing us to use downgrades to Caa (CCC) as an exogenous source of variation in

the supply of loans held by the CLOs affected by the shock. Consider, for instance,

the following thought experiment: there are two ex-ante identical loans, LA and

LB, which are held by CLOs α and β. An otherwise unrelated loan, say LC, is

downgraded to Caa (CCC). Imagine, LC is held by CLO α, not by β. Once α is hit

by a downgrade, LA is more likely to be sold to restore α’s OC constraint; if the

market for LA is not liquid enough to absorb the excess supply, price might fall

compared to LB as long as arbitrageurs are unable to spot the mispricing and bring

it back in line. The usual issue with this type of reasoning is that α’s management
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team endogenously chooses to sell LA, and this might happen for reasons that are

unobservable to the econometrician. This is, however, less likely to represent an

issue in this case: we have shown in this section that OC tests incentivize managers

to sell their best performing loans, implying that, if present, selection is likely to go

against finding any price impact, that is, other investors should be willing to buy

high quality assets which are sold by distressed CLOs. If, on the other hand, we

find that the price of LA is depressed compared to LB, we should conclude that

this is due to the price impact of CLOs and to the fact that it might take some time

for arbitrageurs to direct their capital towards the secondary market for leveraged

loans (Duffie, 2010). The next section will analyse and test this hypothesis in greater

detail.

1.5 Impact on Prices

In the previous section I have shown how the presence of binding OC constraints

can distort the trading behaviour of CLO managers; in particular I have shown

that whenever a loan is downgraded below Caa (CCC), managers affected by the

downgrade engage in par building by selling higher rated securities, especially so

if their junior OC tests are binding. This trading behaviour gives us an instrument

to investigate the extent to which the prices of loans are effected by forced sales that

are unrelated to fundamentals. I can therefore trace the impact of the forced sale

on the loan’s price controlling for ex-ante measurable characteristics to get an esti-

mate of how the secondary market for leveraged loans absorbs supply shocks. The

endogenous choice of selling a security might bias the results towards finding no

effect, given that loans that are sold by distressed CLOs tend to be of higher quality

compared to the ones sold by non-distressed ones. One might still be worried that

selection happens through unobservable characteristics that cannot be measured

by the econometrician. To alleviate this concern, I show in Section 1.5.1 that this is

not the case even when we assess the extent of ex-post selection: conditioning on

ex-ante observables, loans that are sold by distressed CLOs are not more likely to

be downgraded, to default, nor they display worsened liquidity. We can therefore
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conclude that the results in this section provide a lower bound for the impact of

CLOs on the secondary market for leveraged loans.

In order to measure the impact of CLOs, I compare the average discount of

loans sold by distressed CLOs after unrelated downgrades to Caa (CCC) with the

average discount of a group of control loans. The identification assumption is that,

after having controlled for time varying loan characteristics, the average discount

of the two groups of loans would be identical if not for the fact they have been

sold by distressed CLOs in order to restore their OC tests. The effect should be

largest among loans that receive more selling pressure: for this reason I proceed by

constructing a dummy variable, Shockedj,t, that is equal to one whenever a loan

has been sold by an above median number of distressed CLOs, where a CLO is

considered distressed if their loans have been downgraded to Caa (CCC) or lower

and the Junior OC slack is between 0% and 5%. These two conditions have been

proven to be related to non fundamental par-building in the previous section. I

then construct a dummy variable Postj,t that is equal to one in the twelve months

after a loan has been sold by an above median number of distressed CLOs. I then

proceed by running the following regression:

discountj,t = β1Shockedj,t + β2Shockedj,t × Postj,t + Xj,tδ + ε j,t (1.6)

The matrix Xj,t contains various controls that are supposed to partial out the ef-

fect of measurable characteristics and exclude selection on ex-ante observables: the

regressions include fixed effects for the time-to-maturity (TTM), the rating, the in-

dustry and the interest rate of the loan, all interacted with year×month fixed ef-

fects, assuring that the discount of treated loans is compared with loans with iden-

tical characteristics trading in the same month. I also include the lagged average

discount on loans by the same issuer to control for the average discount on loans is-

sued by the same company15,16. Column (1) in Table A9 shows that shocked CLOs

15Table A31 includes issuer fixed effects instead of the lagged average discount per issuer. The
key difference between these two specification lies in the fact that the latter control for the average
discount on the issuer’s loans before and after the treatment date and, hence, might be influenced
by the treatment itself. The results are, however, similar to the ones in Table A9 suggesting there is
no selection in this direction.

16Figure A10 in the Appendix shows the fraction of variation explained by each fixed effect in-
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sell expensive loans to improve their OC tests: loans sold by shocked CLOs trade

at 39.5bps premium compared to their control group, confirming the findings in

the previous section. This difference, however, becomes insignificant once we add

time varying fixed effects for time-to-maturity, rating, industry and interest rate

in columns (2)-(5), implying that most of the unconditional differences in prices

between the treatment and control loans is absorbed by ex-ante measurable char-

acteristics; this points to the fact that fixed effects take care of most of the selection

between treatment and control groups in the choice of which securities should be

sold. When we look at the impact of sales by shocked CLOs on prices, we can no-

tice that treated loans trade at a discount of 71.8bps compared to untreated loans.

The result is still statistically significant and large when we add the other fixed

effects in columns (2)-(5), with the coefficients ranging between 43.6 and 49.4bps.

I then proceed to analyse whether loans sold by distressed CLOs trade at a

significant discount compared to other loans issued by the same company k by

including time varying issuer fixed effects which are meant to control for any un-

observable time varying firm characteristics. I report in Table A10 the results of the

following regression:

discountj,k,t = αk,t + β1Shockedj,t + β2Shockedj,t × Postj,t + Xj,tδ + ε j,k,t (1.7)

where αk,t are year×month×issuer fixed effects. Loans sold by distressed CLOs

trade at 12bps discount compared to otherwise similar loans issued by the same

borrower. Two considerations are however in order. First, the median (average)

number of loans per issuer actively traded in any given month is 2 (3.1) and 33.6%

of the time an issuer has a unique loan traded in a given month, implying that

a large fraction of the observations do not have a loan in the control group. If

we take into account the fact that companies with fewer traded loans tend to be

smaller and less liquid, this might explain the reduction in magnitude of the coeffi-

cients compared to Table A9. Columns (2)-(4) in Table A10 confirm this hypothesis:

when I restrict the sample to issuers having at least 2,5 and 10 actively traded loans

cluded in the regressions, ranging from year×month rate fixed effects, which explain 15% of the
variation, to loan issuer × year ×month fixed effects, which explain 90% of the variation.
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the impact of CLOs grows to 12.6bps, 15.3bps and 17.9bps, respectively. Second,

loans tend to be priced by comparables (Murfin and Pratt, 2018) and it is likely

that the shock to a specific issue reverberates across all the loans issued by the

same company even when this shock is non fundamental, proof being the fact that

the issuer×year×month fixed effects explain a large fraction of the variation in dis-

counts. The spillover from loans sold by shocked CLOs to loans issued by the same

company implies that the estimate of β2 is likely to underestimate the true magni-

tude of the effect in this specification. On top of that, notice that the Postj,t dummy

takes into account the average difference in discounts in the twelve months follow-

ing the shock: if the impact of the shocks lasts less than one year, we should expect

this coefficient to be downward biased, given that it is already incorporating part

of the reversal. In order to check whether this is the case, and trace the impact of a

shock across time, I construct a set of dummy variables tracking the discount every

month around the forced sale, which allows me to run the following regression:

discountj,t = γShockedj,t +
12

∑
s=−6

βsShockedj,t × 1(t + s) + Xj,tδ + ε j,t (1.8)

where Shockedj,t is defined as above and 1(t + s) is a set of dummies that are

equal to one s = −6,−5, ..., 11, 12 months around the event of the sale at time t.

The results are provided in Table A12 and plotted in Figure A517. The results in

Table A12 show that the direct impact of CLOs is between 22bps and 25.9bps in

the month when loans are sold. The gap between the treatment and control group

starts widening in the months after the sale with the difference reaching its maxi-

mum around six months after the sale when treated loans trade at between 54.4bps

and 103bps discount compared to loans in the control group. Shocked loans need

between ten and twelve months before their discount is not statistically different

from the discount of the control group, but their difference starts to reduce signif-

icantly between the seventh and the ninth month. Figure A22 plots the average

discount of loans in the treated group showing that their discount jumps imme-

17Figure A5 plots the results for model (4) in Table A12, including year×month×time-to-maturity,
year×month×rating and year×month×industry fixed effects. The other results are plotted in Fig-
ure A21.
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diately on impact; however, CLOs are more likely to have binding OC constraints

in months when the market for leveraged loans is in distress. In the months after

the shock, treated loans recover at a slower pace compared to those in the con-

trol group, widening the gap in average discounts up to seven/nine months when

the treated loans slowly converge back to the control group. The presence of sig-

nificant price reversal towards the control group is suggestive of the fact that the

increase in discounts is more likely due to price pressure rather than changes in the

fundamental value of the assets (Coval and Stafford, 2007); the fact that the market

for leveraged loans is dislocated between seven and nine months after the fire sale

is consistent with the evidence in Elkamhi and Nozawa (2021) who find a price

impact of 35-40 weeks for loans sold by CLOs.

Finally, I turn to loans that distressed CLOs have purchased to build par. We

can expect an asymmetry between sales and purchases in times of distress: dis-

tressed CLOs have a hard time finding investors willing to buy their assets, while

it might be easier to meet with an investor willing to sell in periods of distress. I

proceed to analyse the effect on loans purchased by distressed CLOs by running a

difference-in-differences regression similar to the one in equation (1.5). If we look

at the coefficient on Shockedj,t × Postj,t in Table A11 we quickly realize there is no

evidence of upward price pressure on loans purchased by distressed CLOs. The

coefficient is never statistically significant, with the exception of column (2) which

includes only year×month×time-to-maturity fixed effects, suggesting that the dis-

count on loans purchased by shocked CLOs is not different from other loans pur-

chased in the twelve months after the event. The dynamic responses of discounts

to forced purchases by shocked CLOs are reported in Table A33 and Figure A23.

Overall, the evidence in this section is conclusive of the fact that CLOs exer-

cise a statistically and economically significant price pressure on the loans they

are forced to sell whenever their OC tests bind because of a shock to their Caa

(CCC) bucket. I have previously argued that any selection in the treated loans is

likely to generate downward bias in the magnitude of the price pressure. The ad-

dition of fixed effects based on loan characteristics has made sure that, conditional

on ex-ante observables, there is indeed no selection between treated and control
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groups. However, the following section tests whether there is any selection ex-post

by analysing whether shocked loans are more likely to default or be downgraded.

1.5.1 Absence of Selection

By including time, time-to-maturity, rating, industry and borrower fixed effects

we can be confident that the effect on loan discounts documented in the previous

section is not motivated by ex-ante observable characteristics. In the specification

where with year×month×issuer fixed effect, we can be confident that all the bor-

rower time-varying characteristics have been partialled out in the analysis, hence

showing that at least a fraction of the effect is security specific. However, we can

still argue that CLOs might trade on ex-ante unobservable information which is

not captured by the previously used controls. There is indeed evidence that trades

in the secondary market for leveraged loans predict equity returns (Addoum and

Murfin, 2020), suggesting that active investors in this market have access to pri-

vate and valuable information; moreover Fabozzi et al. (2020) and Cordell et al.

(2020) show that CLO managers tend to profit by actively trading loans, further

suggesting that they might have access to information that is not available to other

investors in real time. In order to differentiate between the hypothesis suggested in

Section 1.5, i.e., that trades by distressed CLOs cause price pressure, and an alterna-

tive hypothesis where distressed CLOs simply have access to superior information

and forecast a drop in the price of the loans they sell, we need to look at whether

their trades are indeed able to predict outcomes that can be measured ex-post by

the econometrician. In particular, in the rest of this section, I show that trades by

distressed CLOs are not able to predict defaults or rating downgrades, therefore

suggesting that these trades are indeed purely caused by concerns related to their

OC tests.

The first test I conduct regards defaults. The results in Table A12 and Figure A5

suggest that the price impact of CLO trades lasts up to twelve months, therefore

I proceed by constructing a dummy variable that is equal to one whenever a loan

defaults in the following twelve months and check if loans sold by distressed CLOs
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are more likely to default compared to other loans held by CLOs. In order to control

for loan characteristics by employing fixed effects and avoid the incidental parameter

problem (Neyman and Scott, 1948), I will use the following linear probability model:

defaultj,t→t+12 = β1Shockedj,t + Xj,tδ + ε j,t (1.9)

where defaultj,t→t+12 is a dummy variable equal to one when loan j defaults in the

period between t and t + 12, Shockedj,t is a dummy equal to one when the loan

has been sold by distressed CLOs and Xj,t is a matrix of fixed effects to control

for loan characteristics. The results are reported in Table A13. The baseline av-

erage probability of defaulting in the following twelve months for a loan that is

sold by a CLO is equal to 4.79%; column (1) shows that this probability is reduced

by 2.3% for the loans that are sold by distressed CLOs, confirming the hypothesis

that shocked CLOs tend to sell higher quality securities to meet their OC test con-

straints. The effect is large compared to the baseline and significant even when we

include time-to-maturity fixed effects at 0.9%. After the addition of rating fixed ef-

fects in columns (3)-(5) the coefficient becomes insignificant, suggesting that ratings

capture the difference in risk between treatment and control group. Overall, the ev-

idence in Table A13 is consistent with the hypothesis that sales by shocked CLOs

have no informational motives and are executed to meet OC constrains, adding to

the evidence that shocked CLOs are more aggressive in building par, they sell loans

with lower rating factors, and they cause price pressure on the loans they sell.

I can further develop this hypothesis by testing whether loans sold by distressed

CLOs are more or less likely to be downgraded or upgraded in the twelve months

following the sale. In order to do so, I run the following regression:

downgradej,t→t+12 = β1Shockedjt + Xjtδ + ε j,t (1.10)

where downgradej,t→t+12 is a dummy variable equal to one when loan j is down-

graded in the period between t and t + 12. Similarly I run a regression where the

outcome variable is upgradej,t→t+12, a dummy variable equal to one when a loan
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is upgraded in the period between t and t + 12. The results of the regressions are

reported in Table A14. The three leftmost columns show that loans sold by dis-

tressed CLOs after downgrades to Caa (CCC) of otherwise unrelated loans are not

more likely to be downgraded compared to loans in the control group after we

control for ex-ante observable loan characteristics: in none of the specifications the

coefficient is statistically different from zero. The same conclusion can be drawn

by looking at upgrades: none of the specifications makes us conclude that treated

loans are less likely to be upgraded in the following twelve months, compared to

their control group. Ex-ante observable characteristics predict ex-post observable

outcomes, suggesting that any regression including the former is unlikely to suffer

from selection issues between treatment and control groups.

Finally, one might wonder whether loans sold by distressed CLOs differ from

loans sold by other CLOs in terms of their liquidity. If loans sold by CLOs under

duress become less liquid after the sale, and if liquidity commands a premium, the

difference in discounts documented in Section 1.5 might be simply due to com-

pensation for this type risk. In order to test this hypothesis, I will employ two

commonly used proxies for liquidity in the literature on corporate bonds. First I

use Roll (1984)’s measure computed as the the negative of the autocovariance in

price changes, i.e. γ = −Cov(∆pt, ∆pt−1). Second I use the number of trades per

loan per month. The average value of γ is equal to 0.487, in line with measures for

the corporate bond market (Bao et al., 2011), while the average number of trades

per month is equal to 8.98, but heavily skewed towards few liquid loans, with the

median number equal to 5 and way lower than the average number of trades in the

corporate bond market. Table A15 reports the results of the following regression:

liquidityj,t = β1Shockedj,t + β2Shockedj,t × Postj,t + Xj,tδ + ε j,t (1.11)

where liquidityj,t is either γ or log(Nr.Trades). In general we can conclude that

there is no clear difference in liquidity after a loan has been sold by a distressed

CLO. When we look at γ, the difference is significant in none of the specifications;

moreover, a higher value of γ signals higher illiquidity, implying that - if something
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- loans sold by shocked CLOs tend to be more liquid ex-post, even though this

is not statistically significant. When we look at the number of trades, we cannot

draw a firm conclusion: column (1) seems to suggest that loans sold by shocked

CLOs trade 3.9% more often after the sale, however the coefficient switches sign

and becomes insignificant in columns (2) and (3) once we add further controls,

suggesting that there is no statistical difference in liquidity.

We can conclude this section by summarizing its main findings. While we have

controlled for selection on ex-ante observables in Section 1.5, one might be worried

that treatment and control groups could select on unobservables. In this section we

have shown that, on the contrary, loans sold by shocked CLOs tend to be less likely

to default after the sale, there is no statistical difference in the likelihood of being

downgraded or in the liquidity of the loan ex-post. This confirms that selection on

unobservable characteristics is unlikely to explain the findings in Section 1.5.

1.5.2 Placebo Tests

In order to make sure the results in Sections 1.4 and 1.5 are not spurious I proceed

to conduct various placebo tests. The previous analysis is based on the premise that

shocks to the Caa (CCC) bucket have potentially a material effect on OC tests and

managers are forced to trade in order to make sure their tests are not violated. In

order to test whether these distortions are really caused by the downgrades to Caa

(CCC) I conduct the following placebo test: I construct a dummy variable that turns

on when a CLO receives a shock to the bucket of securities rated B3 (B-) by Moody’s

(Standard & Poor’s) and test whether these shocks have any effect on the trading

behaviour of CLOs. Given that the OC tests are unaffected by the downgrade, the

behaviour of management teams should not be distorted by these shocks. First I

study whether CLOs whose loans have been downgraded to B3 build par by re-

gressing the amount of par gained in each transaction on this dummy variable and

another indicator that is equal to one whenever the slack of the CLO is between

0% and 5%. The results are presented in Table A16, from which it is clear that, as

expected, CLOs hit by downgrades to B3 are neither more likely nor less likely to
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build par compared to CLOs in the control group: none of the coefficients is statis-

tically significant and their magnitudes tend to be puny. This is indeed consistent

with the idea that OC tests are insensitive to rating downgrades, as long as these

downgrades do not affect Caa (CCC) buckets, implying that treated CLOs do not

have any incentives to engage in par building more than they usually do. A similar

placebo test where I consider as shocked those CLOs whose loans have been down-

graded to a rating of B2 (B) according to Moody’s (Standard & Poor’s) is presented

in Table A35, displaying similar results.

I then proceed with the final placebo test which is constructed similarly and

tests whether sales performed by CLOs that have suffered a downgrade to B3 cause

price pressure. As shown in Table A16, the trading bahaviour of these CLOs is not

significantly different from the trading behaviour of CLOs in the control group,

hence there is no reason to expect their trades will happen at depressed prices.

Moreover, downgrades to B3 do not generate significant pressure across CLOs,

implying that there will likely be other CLOs with similar portfolios willing to buy

these loans. I construct a dummy variable, Shockedj,t, that is equal to one if a loan

has been sold by an above median number of distressed CLOs that have received

downgrades to B3 and a dummy variable Postj,t that is equal to one after the loan

has been sold by shocked CLOs. Table A17 reports the results of the following

regression:

discountj,t = β1Shockedj,t + β2Shockedj,t × Postj,t + Xj,tδ + ε j,t (1.12)

where the variables are constructed as in previous sections. The results in Table

A17 confirm that loans sold by CLOs affected by downgrades to B3 do not trade at

a significant discount compared to loans in the control group. A similar result for

loans which have been sold by CLOs that suffered downgrades to B2 is reported in

Table A36, with similar findings.

1.6 Impact on Primary Markets
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Section 1.5 has documented that CLOs whose loans have been downgraded to Caa

(CCC), and whose OC constraints are binding, sell securities for non fundamental

reasons in order to restore the value of their tests. These sales depress the price

of loans for up to seven/nine months. Section 1.5.1 has shown that the trading

behaviour of distressed CLOs is not likely motivated by access to superior infor-

mation. Finally, Section 1.5.2 has provided evidence that these results are specific

to downgrades to Caa (CCC), hinting at the fact that these trades are indeed carried

out in order to gain slack on OC tests. Overall, these results can be interpreted as

evidence in favour of dislocations in the secondary market for loans unrelated to

issuing companies’ fundamentals and purely motivated by the mechanics of OC

tests. However distortions in the secondary market might simply result in zero-

sum transfers between distressed CLOs and unconstrained investors who are able

to purchase high quality securities at depressed prices and, hence, have limited

economic implications. That might not be the case whenever companies are forced

to access dislocated markets and accept worse terms of financing compared to what

they would have been able to do otherwise. Testing this hypothesis is particularly

challenging: firms can endogenously reduce their demand for funds or divert it

towards different markets, for instance, by trying to finance themselves using cor-

porate bonds, equities or even other types of leveraged loans that are not affected

by the previously documented shocks. In this section I will provide evidence in

favour of the hypothesis that companies whose loans have been sold for non funda-

mental reasons face worse terms of financing in the leverage loans primary market.

The demand for credit is an endogenous variable and if, as hinted above, compa-

nies whose loans have been sold by distressed CLOs are of higher quality, they

might demand less capital in response. I attempt to tackle the issue of endogenous

credit demand by adopting the following two strategies. First, I focus on compa-

nies whose previously issued loans are due to mature in the twelve months after

they have been sold by distressed CLOs. As in Almeida et al. (2011), the fact that a

firm is scheduled to refinance its debt in the following twelve months is the result

of previous financing decisions and is, therefore, plausibly exogenous with respect

to the downgrades to Caa (CCC) that have affected unrelated companies sharing
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the same CLO’s balance sheet. By focusing on this subset of firms for the treatment

and control group, I make sure that the two have roughly the same likelihood of

requiring funds. Second, and more importantly, I look at firms that do eventually

refinance themselves using leveraged loans and study the composition of newly

issued securities between institutional and non-institutional loans. This strategy is

reminiscent of the one used by papers analysing the substitution between corpo-

rate bonds and loans in periods of distress (Adrian et al., 2013; Becker and Ivashina,

2014) and by those on the substitution between institutional and bank tranches in

the syndicated loan market (Ivashina and Sun, 2011a; Fleckenstein et al., 2020). This

strategy guarantees that any variation in the terms of the loan cannot be explained

by company-specific factors, given that institutional and bank tranches are claims

on the same assets and usually have identical seniority18.

I document four facts: first, companies whose loans have been sold by dis-

tressed CLOs face a higher cost of capital; second, these companies are less likely

to issue institutional tranches which are usually held by CLOs; third, these com-

panies borrow less money through institutional tranches; fourth, conditional on

issuing an institutional tranche, these tend to be smaller. Figure A6 provides sug-

gestive evidence in these regards, which I discuss in greater detail in the following

paragraphs.

First, I study whether the price impact in the secondary market translates into

higher cost of funding in primary markets. Panel (1) of Figure A6 plots the yearly

average all-in spread drawn (AISD)19 for companies that have been affected by fire

sales from distressed CLOs (in red) against other companies (in blue); both groups

are in the CLO-i/SDC Platinum matched sample, guaranteeing that, at least once,

their loans have been held by CLOs. In each year in the sample the cost of capital

for firms whose loans have been sold in the secondary market by distressed CLOs

is higher by almost 100bps. This is not surprising given the evidence in Section 1.5:

leveraged loans are usually priced by looking at the price of comparables (Murfin

18These, however, are different along other dimensions such as their pricing and, mainly, their
amortization schedule.

19The all-in spread drawn is measured as the total annual spread including fees paid over the
reference rate (usually LIBOR) for each dollar drawn from the loan. It therefore includes any fee or
commission associated with the syndication process.
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and Pratt, 2018) and the price of leveraged loans of the same company traded in

the secondary market represents a clear benchmark for the cost of new issues (S&P

Global, 2020b). Once previously issued loans trade in the secondary market at a

discount, it is realistic to expect that new issued loans will likely be priced taking

this extra spread into account. This is even less surprising once we recall that most

of the discount suffered by these loans is due to a lack of convergence towards the

control group: after an initial negative shock, the discount on treated loans reduces

but in a slower fashion compared to their control group, making the mispricing

particularly hard to detect to an investor that is simply looking at the treated loans

in isolation. The results in Figure A6 do not control for firm characteristics, which

might drive the difference in AISD between the two groups. For this reason, I

investigate the effect on spreads by running the following regression whose results

are reported in Table A19:

AISDj,t = αt + αj + βShockedj,t + Xj,tδ + ε j,t (1.13)

where AISDj,t is the all-in drawn spread for issuer j at time t and Shockedj,t is a

dummy variable that is equal to one when firm j has been sold by distressed CLOs

in the previous twelve months. Column (1) shows that the spread for shocked firms

is 55bps higher compared to the control group once we include time fixed effects

which help in partialling out any shared macroeconomic variation in loan spreads.

This guarantees that the results do not stem from the fact that downgrades to Caa

(CCC) are more likely to happen during bad periods, since we are focusing on the

cross-sectional differences in AISDs. Columns (2)-(4) show that the effect is robust

to the inclusion of time-to-maturity, industry, rating and issuer fixed effects even

though the magnitude of the coefficients is reduced. The effect ranges between

23.2 and 34.7 basis points when we consider time-to-maturity, industry and rating

fixed effects. When we add issuer fixed effects in column (5), the magnitude is re-

duced to 8bps, however it should be noted that the effect is now identified from

the subset of firms that have issued loans twelve months after being sold by CLOs

and have been at least once in the control and at least once in the treated group,
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representing a small subset of the whole sample. A significant fraction of the shock

documented in Section 1.5 is transmitted to the primary market of issuance, im-

plying that the ex-post cost of borrowing for treated firms is higher than for firms

in the control group. These firms are facing a shock to the supply of institutional

loans and might be forced to finance themselves with the next best source of cap-

ital. The rest of the section tests this hypothesis by looking at differences in the

composition of borrowed funds between the two groups of companies. Panel (2)

in Figure A6 compares the number of institutional tranches as a fraction of the to-

tal number of tranches issued by the two groups every year. With the exception of

2009 and 2010, the fraction of institutional tranches for shocked issuers has always

been lower compared to firms in the control group, corroborating the hypothesis

that companies indeed move away from institutional loans whenever they face a

supply shock in this market. Notice that by focusing only on firms that do eventu-

ally issue leveraged loans we are able to fix the demand for funds and make sure

that indeed the effect is driven by the supply of credit. Panel (3) provides simi-

lar evidence if we look at the total amount of funds borrowed using institutional

tranches as a fraction of the total amount borrowed: after 2010 shocked firms have

borrowed less capital compared to firms in the control group via institutional loans.

I then proceed to test whether the fraction of institutional tranches and the

amount of dollars borrowed are significantly lower for treated firms by running

the following regressions:

Fraction Inst.j,t = αt + αj + βShockedj,t + Xj,tδ + ε j,t (1.14)

Fraction Inst. $j,t = αt + αj + βShockedj,t + Xj,tδ + ε j,t (1.15)

where Fraction Inst.j,t measures the number of institutional tranches as a fraction

of the total number of tranches issued by issuer j at time t and Fraction Inst. $j,t

measures the total amount of dollars borrowed using institutional tranches as a

fraction of the total amount borrowed by issuer j at time t. The results reported

in Table A20 and Table A21 show that shocked borrowers issue between 3.9% and

11.7% less institutional tranches, while the amount borrowed is between 5.5% and
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11.3% lower after we have controlled for firm characteristics, suggesting that af-

fected borrowers are substituting between institutional and traditional bank loans.

How can we interpret this evidence? If companies finance themselves with the

cheapest source of financing trying to arbitrage across different types of securities

(Ma, 2019), when the supply of institutional loans shifts they might move to the

next best source of funds, namely traditional (non institutional) bank loans. Once

forced to access the next source of capital we should expect the cost of capital to

increase, as documented in Table A19, and the quantities borrowed to decrease.

As a final test, Panel (4) in Figure A6 and Table A22 study intensive margin ef-

fects, by looking at the size of institutional tranches in terms of dollars borrowed:

even when they maintain access to institutional loans, treated companies draw less

funds through institutional loans sold to CLOs. The institutional tranches of com-

panies affected by dislocations in the secondary market are between 23.5% and

34.2% smaller compared to those in the control group. This is true even when we

include issuer fixed effect, which control for the average size of loans issued by that

specific borrower.

1.7 Conclusions

The paper studies the effect of non fundamental trades executed by CLOs in order

to gain slack in their constraints. After having analysed which loans are sold by

distressed CLOs in order to restore their constraints, I study the impact of their

trading actions. Securities sold by distressed CLOs trade at roughly 40bps dis-

count: I show that this effect is likely causal and cannot be explained by selection

on ex-ante or ex-post measurable loan characteristics. The effect is long lasting (up

to nine months) and mostly due to the failure of loans sold by distressed CLOs to

recover from depressed prices. I provide evidence that shocks in the secondary

market transmit to the primary market: companies that are due to refinance their

loans are less likely to employ institutional tranches when hit by the selling pres-

sure of CLOs in the secondary market. The substitution away from institutional to

bank tranches increases the cost of capital for affected firms.
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On top of documenting the relative price inelasticity of the market for leveraged

loans and the downstream effects on companies’ financing decisions, the results

in the paper might inform regulators when designing constraints for institutional

investors: constraints based on the par value of assets may prevent investors from

engaging in selling spirals where shocked assets are sold by distressed investors,

further exacerbating the initial shock. However, they might also lead to spillovers

where shocks are transmitted from troubled securities to otherwise unrelated ones

through the balance sheet of institutional investors. Finding the optimal balance

between the two concerns is crucial and should be the topic of further research.



2. Revealed Expectations and Learning

Biases: Evidence from the Mutual Fund

Industry
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How do investors form their return expectations? Do they take all available infor-

mation into account? Does personal experience play a crucial role in the formation

of expectations? We attempt to answer these questions by looking at mutual fund

managers’ stock return expectations as revealed by their portfolio holdings. We

exploit the fact that, under a large class of models, the optimal portfolio rule has a

similar functional form; using a three dimensional panel consisting of the portfolio

holdings of mutual fund managers over a period of thirty-five years, we are able

to extract a measure of subjective expected returns for every manager in our panel

by exploiting the variation across stocks over time between and within managers.

To see this, consider a mean-variance investor for whom the vector of physical ex-

pected returns is given by the following formula:

Ei,t[rt+1 − r f1] = γi,tΣtw
∗
i,t (2.1)

where Ei,t[·] is the conditional expectation operator taken under investor i’s infor-

mation set at time t, rt+1 − r f1 is a vector of excess returns, γi,t is the coefficient of

relative risk aversion of manager i at time t, Σt is the conditional covariance ma-

trix of stock returns and w∗i,t is the time t vector of optimal portfolio weights of

investor i. The above expression for expected excess returns is obtained by invert-

1We benefited from helpful comments from Ulf Axelson, Nicholas Barberis, Pasquale Della
Corte, Daniel Ferreira, Boyan Jovanovic, Christian Julliard, Samuli Knupfer, Ralph Koijen, Avner
Langut, Dong Lou, Ian Martin, Igor Makarov, Cameron Peng, Asaf Razin, Andrew Redleaf, An-
drea Tamoni, Michela Verardo and the participants at the LSE seminar, the 2019 Yale Whitebox
Conference, the 2019 Belgrade Young Economists Conference. Any errors or omissions are the re-
sponsibility of the authors.
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ing the first-order condition of a mean-variance investor provided that we have a

good measure of conditional covariances Σt. In these regards we follow Merton

(1980) and argue that investors’ disagreement should mainly regard expected re-

turns and not variances and covariances. We show that empirically this is a good

approximation. In Section 2.2.1 we show that - as long as we correctly interpret

the manager-specific time-varying parameter γi,t - many optimal portfolio models

give rise to a subjective expected return similar to (2.1); whenever that is not the

case, we can saturate the model with fixed effects in order to split the total demand

into a mean-variance component and a hedging component; to isolate the effect of

risk aversion from the effect of subjective expected returns we resort to the very

general principle that, given the cross-section of assets the manager invests in, risk

aversion is a manager-specific quantity, while expected returns are at the same time

asset-specific. The information contained in the cross section of holdings, therefore,

greatly reduces the issue of separating the variation due to the manager’s prefer-

ences from the one due to beliefs.

We start by providing evidence in Section 2.3 that more than 50% of the varia-

tion in expected returns is explained by a common time-varying factor and we are

able to explain almost 90% of the variation with manager-time and stock-time com-

ponents. This suggests that a saturated regression will likely allow us to isolate the

idiosyncratic part of expected returns affected by manager-stock-time specific ef-

fects; we focus on this component to explore the extent to which managers’ beliefs

are affected by experience. In particular, we investigate whether fund managers

put more emphasis on past stock returns that they have personally experienced over

their investment career. To begin, we consider the effect of the simple average of

past observed returns on portfolio holdings decisions. Having experienced a one

standard deviation higher average return on a given stock causes the manager to

inflate his expected excess return by between 10.3 and 15.1 basis points (after par-

tialling out the effect of common stock and manager characteristics). This effect is

both statistically and economically significant and it is almost an order of magni-

tude larger than that of other commonly used predictors. Nonetheless, the effect

of average experienced returns masks important heterogeneity in the influence of
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past returns observed at different points in time: when we move on to examining

the particular shape of the learning curve we find evidence of a differential impact.

We start by providing non-parametric results that do not require taking a stance on

the precise functional form that investors use to weight past experienced returns.

Mutual fund managers in our sample are subject to the so-called serial-position

effect: the tendency to predominantly remember the initial and the last observa-

tions in a series. More precisely, managers’ investment decisions and beliefs are

particularly affected by the returns they have experienced early on during their

stock-specific experience and those they have experienced most recently. In other

words, professional investors seem to exhibit the primacy and recency bias.

As one would expect, the effect is stronger for single-managed funds and de-

cays fast as the number of managers in a team increases: the effect of recently

experienced returns on managers in a single managed fund is twice as large com-

pared to managers working with at least one other professional; the effect of early

returns is an order of magnitude larger.

We also show that the differential effect of taxes on capital gains and losses can-

not explain these findings since the effect of early career experience is still present

even when the manager switches to a different fund. At most, tax considerations

can explain 20% of the estimated influence of past returns on portfolio choices and

expected returns.

Armed with the reduced-form evidence, we provide a tentative parametric esti-

mation of the managers’ learning function. In particular, the results in the reduced-

form estimation seem to suggest a non-monotonic learning function. For this rea-

son we adopt a variation of the parametrisation of the learning function in Mal-

mendier and Nagel (2016) that allows for a variety of decreasing and increasing,

convex and concave, monotone and non-monotone learning weights. We find that

fund managers on average do indeed place a disproportionate weight on personal

past experience and that this biases the expected returns recovered from their stock

holdings, after having adjusted for risk and risk aversion. When we allow for time-

varying weights on past stock returns, we show that mutual fund managers tend

to place excessive weight on returns experienced at the beginning of their careers
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and in the most recent quarters compared to those in the middle period, suggesting

that both early-career and recent experience seem to be important determinants of

the investment behaviour of a large class of professional investors. For instance,

a manager with the median stock-specific experience of 9 quarters assigns around

1.84 times larger weight on the return experienced in the most recent quarter com-

pared to the benchmark of 1/9, while the weight on the first experienced return

is 3.13 times larger than the benchmark. We thus reconcile two conflicting strands

of the literature: similarly to Malmendier and Nagel (2011) and Malmendier and

Nagel (2016), we confirm that investors do overweight their personal experience

and manifest a recency bias, but - at the same time - we show that professional in-

vestors also place a disproportionately large weight on returns that have been expe-

rienced in the early part of their investing career, similarly to the findings of Kaus-

tia and Knüpfer (2008) and Hirshleifer et al. (2021). When looking at co-managed

funds, we show that a large fraction of the effect of early experience washes out

while the effect of recently experienced returns persists; this might be due to the

fact that, while there is large heterogeneity in early experience, recently experi-

enced returns are mostly shared among managers within a team.

Finally, in the last part of the paper we focus on risk preferences. Notice from

equation (2.1) that, while risk aversion varies at the manager-time level, beliefs

vary at the manager-time-stock level. This lets us separate variation in adjusted

portfolio holdings that is due to the managers’ risk appetite from differences in

beliefs, but does not inform us regarding their level. Once we make some minimal

assumptions to pin down their level, we show that individual expected returns

tend to be quite biased and that preferences display significant heterogeneity across

individuals and time. Moreover, on average, mutual fund managers display an

Arrow (1965)-Pratt (1964) coefficient of relative risk aversion between 0.915 and

1.283.

The rest of the paper is organised as follows: Section 2.1 provides an overview

of recent literature. We proceed by showing that most of the literature relies on evi-

dence from surveys obtained from non-professional investors or, when not affected

by these concerns, on a relatively limited amount of data. We argue that the present
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paper tries to solve the aforementioned issues. Section 2.2 describes how we can

separate the variation in expected returns from the variation in risk aversion or

other factors in a wide class of models. Section 2.3 gives details of the data used

in our empirical work and provides some summary statistics. Section 2.4 provides

the non-parametric results of our analysis, while Section 2.5 describes and show

the results of our parametric approach. In Section 2.6, we tackle the question of

the level of risk aversion of investment professionals. Finally, Section 2.7 provides

concluding remarks.

2.1 Previous Literature

The issue of whether economic agents learn with experience has been explored

to some extent by the existing literature. Evidence from the literature in psychol-

ogy and economics shows that personal experience exerts a larger influence on

behaviour compared to other shared sources of information2, especially very re-

cent and very early experience. These two phenomena are usually referred to as

the recency and the primacy effect and they generate what is known to researchers

in psychology as the U-shaped serial-position curve3.

Diving deeper into the field of finance there is growing evidence that personal

experience affects financial behaviour. Kaustia and Knüpfer (2008) and Chiang et

al. (2011) show that the likelihood of participating in subsequent IPOs is affected

by returns experienced in previous offerings. Choi et al. (2009) provide evidence

that investors with high return or low volatility on their 401(k) savings tend to in-

vest a larger fraction of their wealth. Using data from the Survey of Consumer

Finances from 1960 to 2007, Malmendier and Nagel (2011) find that individuals

2For early evidence on the concept of reinforcement learning, see the seminal study by
Thorndike (1898). A large body of theoretical and empirical literature studies the role of personal
experience in learning, see, for instance, Tversky and Kahneman (1973) for a discussion of the avail-
ability bias, Fazio et al. (1978) for experimental evidence on the differential processing of informa-
tion that results from direct versus indirect experience, Roth and Erev (1995) and Erev and Roth
(1998) for experimental data and theory regarding learning in sequential games, Camerer and Ho
(1999) for a combined model of reinforcement and belief-based learning, Simonsohn et al. (2008) for
experimental analysis of the effect of personal experience in a game theory context.

3The psychology literature on these topics goes beyond the scope of this paper. Among others,
see Nipher (1878), Ebbinghaus (1913) and Murdock (1962) for evidence on the serial-position effect;
for evidence on the primacy effect, see Asch (1946); the recency effect is explored by Deese and
Kaufman (1957). See Murdock (1974) for a survey.
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born before the 1920s who have experienced the lackluster stock market returns

during the Great Depression report higher risk aversion, lower expected returns

and are less likely to invest in the stock market. Those that happened to experi-

ence lower bond market returns tend to reduce their bond holdings. They also

find that returns experienced in the previous year contribute four to six times more

to future investment decisions than those experienced thirty years ago. In a sim-

ilar vein, Malmendier and Nagel (2016) analyse the effect of life-time experience

on inflation expectations using the Reuters/Michigan Survey of Consumers; they

show that the effect is stronger for younger respondents, and has a direct effect

on their borrowing and savings decisions. Malmendier et al. (2021) analyse the

effect of experienced inflation on members of the FOMC board and find similar

results. Greenwood and Nagel (2009) investigate the effect of experience on mu-

tual fund managers during the dot-com bubble of the late 1990s. The authors use

age as a proxy for experience and show that younger managers were investing

more in technology stocks compared to similar older managers and displayed a

more pronounced trend-chasing behavior. Chernenko et al. (2016) study the effect

of experience on a panel of mutual funds holdings of MBS during the 2003-2007

mortgage boom and show that less experienced managers had larger positions in

these securities, especially those backed by subprime mortgages; moreover they

show that personal experience outside of the fund had an effect on portfolio choice

behaviour. Andonov and Rauh (2020) analyse the effect of experienced returns

on a cross-section of U.S. Pension Fund managers, showing a significant effect of

past experience on the expected returns that these investors report in annual target

asset allocations; in particular, earlier experiences have a stronger effect on invest-

ment behaviour. Giglio et al. (2021) look at retail investors’ portfolio allocations

and match them to beliefs elicited from surveys. They find that stated beliefs have

a low explanatory power for the timing of trades, however, they are able to pre-

dict the direction and size of those trades that do occur. Finally, there is evidence

that experienced risk affects financial behaviour: Knüpfer et al. (2017) show that

experienced labour market distress affects portfolio choices, while Lochstoer and

Muir (forthcoming) find that individuals have extrapolative beliefs about market
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volatility.

While the contribution of the above papers is substantial, we argue that most

of them are affected by one or more of the following issues: reliance on evidence

obtained from surveys where agents report their subjective expected returns, focus

on non-professional investors who spend limited time investing and, usually, in-

vest relatively small amounts, and reliance on limited time-series or cross-sections

implying that it is harder to perform statistical inference.

Regarding the first issue, the task of recovering investors’ expectations is a par-

ticularly tricky one. It is well known at least since Harrison and Kreps (1979)

that asset prices reveal only risk-neutral expectations of market participants; a

way to circumvent this problem is, therefore, to focus attention on expectations

elicited from surveys. Most of these measures seem to display high correlations

as Greenwood and Shleifer (2014) point out. However Cochrane (2017) argues

that there is no guarantee that people report their ”true-measure unconditional

mean” in surveys. In these regards, Adam et al. (2021) provide evidence that sur-

veyed expected returns are inconsistent with risk-neutral expected returns, ambi-

guity averse/robust expected returns or any other risk-adjusted returns4. How-

ever, nothing guarantees that the reported expected returns are exactly representa-

tive of the mathematical physical expectation of investors. Consider for instance a

survey respondent that interprets the question as asking “what is the most likely

return“ instead of “what is the expected return“. In that case, the respondent will

provide a measure of the modal return rather than its average taken across states

of the world. Although the previous example may seem far-fetched, Martin (2017)

shows that - for a log investor who holds the market - the physical distribution of

returns is asymmetric and, for instance, at the height of the crisis, while the ex-

pected return on the S&P 500 was above 20% per year, the author recovers a prob-

ability of almost 20% of a 20% decline in the index. Large probability masses far

from the mean imply large discrepancies between modal, median and average re-

turns. Beliefs reflected in portfolio choices are more informative and represent the

primary object of interest, given that it is ultimately changes in demand and supply

4Appendix B.3 shows that our framework can also deal with this type of preferences.
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that determine the variation in prices. Malmendier and Nagel (2011), Andonov and

Rauh (2020) and Giglio et al. (2021) show that portfolio choices are consistent with

stated beliefs, but the explanatory power is only partial, while - by construction -

our beliefs are fully consistent with trading behaviour.

Regarding the second issue, we argue that there are reasons to believe that

sophisticated professional investors might behave differently compared to house-

holds and, for this reason, we focus our attention on mutual fund managers; they

also routinely follow the stock market and therefore there might be reasons to ex-

pect them to be less prone to biases or memory issues. While this seems to be true

in the case of IPO subscriptions (Chiang et al., 2011), we show that our investors

display large biases even though we cannot provide a direct comparison to house-

holds. It should also be noted that, to the extent that these financial intermediaries

represent a large fraction of total stock market activity, their beliefs will be an im-

portant driver of stock price movements.

Finally, concerning the third issue, many of the papers dealing with institutional

investors focus on specific events (e.g., Greenwood and Nagel (2009) or Chernenko

et al. (2016)) or rely on limited time series data (e.g., Andonov and Rauh (2020)).

The aim of the present paper is to be more general and explore whether the ef-

fect of experienced returns is common across periods and stocks and represents a

permanent trait of professional investors’ behaviour.

2.2 Methodology

In this section we provide a detailed description of our empirical strategy. We first

explain how we obtain a measure of expected returns given portfolio holdings. We

argue that in a wide set of models - including a mean-variance benchmark - we

are able to separate the effect of risk and risk aversion from the effect of return

beliefs by using the cross-section of manager holdings. We then describe the way

we deal with the issue of estimating covariance matrices and, finally, our plan for

identifying risk aversion.
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2.2.1 Recovering Subjective Expected Returns

Portfolio choices reveal information about future stock return expectations: this is

the main insight of Sharpe (1974)’s indirect approach to mean-variance optimisation

whereby beliefs about expected returns are inferred from portfolio holdings, rather

than the other way around5. Consider the problem of investor i who maximises

his value function by choosing his portfolio allocations into a risk-free and N risky

assets:

max
{wi,t ,...}

Ji,t(Wi,t) (2.2)

where Ji,t(.) is the value function of the investor evaluated at his current wealth

Wi,t. When returns follow a geometric Brownian motion, the law of motion for

wealth is:

dWi,t

Wi,t
= r f dt +w′i,t(µi,t − r f1)dt− ∆Ci,tdt +w′i,tΣ

1
2
t dZt (2.3)

where r f is the instantaneous risk-free rate (or the instantaneous rate of return of

any other reference asset with respect to which excess returns are computed), µi,t is

an N × 1 vector of stock return drifts as perceived by investor i, wi,t is an N × 1

vector of stock portfolio weights, Σ
1
2
t is an N × N matrix of instantaneous loadings

on the Brownian motion processes Zt, ∆Ci,t is the (net) outflow of resources6, and

1 is an N × 1 vector of ones.

The investor chooses his optimal portfolio by selecting wi,t. Notice that we are

deliberately vague about other potential choice variables, i.e., our analysis follows

solely from the optimality conditions for the portfolio holdings and the fact that

current wealth is the only state variable. Standard dynamic optimisation argu-

5Black and Litterman (1992) start from the same insight to obtain portfolio holdings that com-
bine the manager’s views with average realised returns in a consistent way; Cohen et al. (2008)
and Shumway et al. (2011) use a similar approach to extract a measure of beliefs from portfolios
holdings. The former paper measures the best ideas of mutual funds as the investment positions for
which the authors can extract the largest expected returns, while the latter analyses the rationality
implications of extracted beliefs.

6For a standard consumption maximisation problem we can interpret ∆Ci,t =
Ci,t−Yi,t

Wi,t
, i.e., the

instantaneous flow of consumption Ci,t net of the income flow Yi,t, expressed as a fraction of wealth
Wi,t. In this setting ∆Ci,t can be loosely interpreted as the net outflow of money the mutual fund
manager is subject to in each period because of redemption/creation of new fund shares. Because
of Markovianity we have that ∆Ci,t = ∆C(Wi,t).
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ments (Back, 2017) give the following optimality condition:

w∗i,t = −
JWi,t

Wi,t JWi,tWi,t

Σ−1
t (µi,t − r f1) (2.4)

where JWi,t and JWi,tWi,t are the first and second derivatives of the value function

with respect to current wealth and therefore −
Wi,t JWi,tWi,t

JWi,t
is the Arrow (1965)-Pratt

(1964) coefficient of instantaneous relative risk aversion measuring the curvature

of the value function with respect to wealth, which we denote γi,t ≡ −
Wi,t JWi,tWi,t

JWi,t
.

Notice that equation (2.4) is a generalisation of the optimal demand employed by

Koijen and Yogo (2019)7. We can invert the optimality condition (2.4) in order to

get an expression for expected excess returns as a function of optimal holdings and

Σt. In particular, we have that:

µi,t − r f1 = γi,tΣtw
∗
i,t (2.5)

If we had information about the level of the investor’s risk aversion γi,t and the co-

variance matrix Σt, we could obtain an exact measure of his subjective expectations

of future one-period ahead excess returns µi,t − r f1. We follow Merton (1980) in

arguing that investors should share beliefs regarding Σt; we later provide evidence

in support of this assumption. To isolate the effect of γi,t, let us consider each el-

ement of the vector of excess returns µi,t − r f1. At each point in time t, for each

stock j, each manager i forms a measure of expected excess return which we can

denote by (µi,t − r f1)j
8. By simply keeping track of the subscripts one can realise

that there is variation in expected returns across managers, stocks and time, i.e.,

along the three dimensions i, j, t. On the other hand, the coefficient of relative risk

aversion γi,t varies only at the i-t level, implying that the cross-section of holdings

for manager i at time t gives us enough information to isolate the variation in be-

liefs from the variation in risk aversion which acts as a level shifter on the demand
7The optimal demand in equation (7) of Koijen and Yogo (2019) is equivalent to our specification

whenever −
Wi,t JWi,tWi,t

JWi,t
= 1, i.e., investors have logarithmic utility. It is easy to incorporate short sale

constraints in our setting as we show in Appendix B.3.
8(µi,t − r f1)j is the j−th element of the vector of expected excess returns for manager i, time t,

i.e., µi,t − r f1 = [(µi,t − r f1)1, ..., (µi,t − r f1)j, ..., (µi,t − r f1)N ]
′.
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for risky assets9. When instantaneous returns are normally distributed and wealth

is the only state variable, any utility function (and therefore any value function

Ji,t(Wi,t)) gives rise to a demand as the one in (2.4). We can extend this approach to

a wide class of models where there is an L× 1 vector of Markovian state variables

Xt with the following law of motion:

dXt = φ(Xt)dt + Γ(Xt)dZt (2.6)

Standard dynamic optimisation arguments imply that, in that case, the optimal

demand will be:

w∗i,t = −
JWi,t

Wi,t JWi,tWi,t

Σ−1
t

(
(µi,t − r f1)−

L

∑
l=1

JWi,tXl,t

JWi,t

Kl,t

)
(2.7)

where
JWi,tXl,t

JWi,t
=

∂ log JWi,t
∂Xl,t

measures the semi-elasticity of the marginal utility of

wealth JWi,t with respect to the Markovian state variable Xl,t, and Kl,t = Σ
1
2
t Γl,t

represents the vector of instantaneous covariances between returns and the state

variable Xl,t. Let us denote the hedging demand Hi,t ≡ ∑L
l=1

JWi,tXl,t
JWi,t

Kl,t. There are

many settings in which we can still disentangle variation in beliefs from variation

in hedging demands10. First, we might consider the possibility that the mutual

fund is facing borrowing constraints. We show in the Appendix that in this case

the expected return can be recovered from:

(µi,t − r f1)j = γi,t
(
Σtw

∗
i,t
)

j + Hi,t (2.8)

Similarly, suppose mutual funds managers are ranked according to a common

summary statistic (e.g. alpha over a benchmark). The expected excess return can

then be approximated by:

(µi,t − r f1)j = γi,t
(
Σtw

∗
i,t
)

j + Hj,t (2.9)

9For the reader who is familiar with the textbook mean-variance optimisation, this is analogous
to the fact that the selection of the tangency portfolio does not depend on the investor’s risk aversion
which merely influences the relative proportion of wealth invested in the risk-free and risky assets.

10For more details, see Appendix B.3 where we analyse the case of borrowing and short selling
constraints, concerns about model misspecification and the issue of benchmarking.
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The previous examples show that, by saturating the regressions with the proper

fixed effects, we are able to use the cross-section of assets of a particular investor

to separate the effect of changes in beliefs (which vary at the i, j, t level) from the

effect of changes in risk aversion (varying at the i, t level) and hedging demand (as

long as this varies at a coarser level).

As a caveat, notice that the only situation where we would be unable to separate

changes in the hedging demand from changes in beliefs is if the hedging demand

varied at the stock-manager-time level (i.e., if we had Hi,j,t). This would under-

mine any attempt to recover variation in beliefs from variation in portfolio hold-

ings; however, the results in the paper would not lose their relevance. First of all,

as shown by Moreira and Muir (2019) in the case of time-varying expected returns

and volatilities, optimal portfolios can be closely approximated by an affine trans-

formation of the standard mean-variance portfolio. Second, even if expected excess

returns cannot be separated from hedging demands, it is not easy to conceive of a

mechanism where past experience has a large impact on hedging demands. Third,

even if this were the case, we could still interpret all the results in terms of scaled

demands (Σtw
∗
i,t) as opposed to beliefs. Asset prices are ultimately determined by

investors’ holdings and the variation thereof; it would be nice to know whether the

effect on investors’ demands goes through expected returns (µi,t − r f1), risk aver-

sion (γi,t) or hedging demands (H), but ultimately what matters is the fact that

part of the variation in the cross-section and the time-series of assets holdings is

due to the returns that the agent has experienced. Having said that, in what fol-

lows, we impose the previously discussed restrictions in order to disentangle the

different mechanisms. We, therefore, assume that the issue of hedging demands

can be solved by saturating the regression with the appropriate levels of fixed ef-

fects. In the following two sections, we tackle the two remaining problems, namely,

the estimation of the conditional covariance matrix and level of risk aversion.
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2.2.2 Estimating the Covariance Matrix

As can be seen in the previous section, in order to construct a measure of one-

period ahead expected excess returns, we need to have a measure of the conditional

covariance matrices. In this paper we rely on an argument set forth by Merton

(1980), which states that, in principle, all investors should agree on Σt since it can

be very precisely estimated by using increasingly more granular data. In practice

it is unavoidable to take a stance on how to estimate the conditional covariance

matrix. To make sure that our results do not depend on the chosen estimator for

Σt, we decide to take three different approaches for this exercise:

1. As a first measure, we compute the sample covariance matrix of stock returns:

Σ̂d,1
t =

1
t− 1

(Rt − r̄t1′)(Rt − r̄t1′)′

where Rt = [r1,t, ..., rj,t, ..., rN,t]
′ is an N × t matrix that contains past re-

alised returns as rows, r̄t is an N × 1 vector that collects sample average

returns computed at time t, and 1 is a t × 1 vector of ones. We estimate

Σ̂d,1
t from a one-year rolling window of daily returns11 and we scale it by

K = nb. obs.
nb. quarters = 63.07 days to obtain our first estimator as Σ̂1

t = K × Σ̂d,1
t .

It is well known that it is extremely hard to estimate correlations between

stocks and correlations close to unity in absolute value tend to give extreme

long-short portfolios. For this reason we resort to the next two measures of

the sample covariance matrix;

2. Our second estimate makes use of a Bayesian Stein Shrinkage estimator. We

follow Touloumis (2015) and compute the daily covariance matrix Σ̂d,2
t as a

weighted-average of the sample covariance matrix Σ̂d,1
t and a target matrix

11The reader might be worried about the fact that we estimate expected returns employing co-
variance matrices that rely on past return data, to subsequently regress on past realised returns.
However, notice that the same covariance estimates are shared in the cross-section of managers,
which is not true for past experienced returns. Furthermore, our estimates of covariance matrices
employ only one year of data while the average manager has more than three years of experience
with a given stock.
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Σtarget
t which imposes zero correlations across stocks:

Σ̂d,2
t = λΣ̂d,1

t + (1− λ)Σtarget
t

where Σtarget
t is a diagonal matrix where the elements on the diagonal are the

sample estimated variances, namely Σtarget
t = Σ̂d,1

t ∗ IN where ∗ denotes the

Hadamard product and IN is a N× N identity matrix where N is the number

of stocks. The estimator of quarterly covariances is then: Σ̂2
t = K× Σ̂d,2

t ;

3. In our third and final approach, we again apply a similar Bayesian Stein

Shrinkage Estimator:

Σ̂d,3
t = λΣ̂d,1

t + (1− λ)Σ̃target
t

Following Ledoit and Wolf (2004), Σ̃target
t is a diagonal matrix with the con-

stant average daily sample variance on the diagonal, namely Σ̃target
t =

tr(Σ̂d,1
t )

N IN,

where tr(Σ̂d,1
t ) is the trace of the covariance matrix, and IN is a N×N identity

matrix where N is the number of stocks. The estimator is then: Σ̂3
t = K× Σ̂d,3

t .

More details on the construction of Σ̂2
t and Σ̂3

t and the optimal choice of λ are pro-

vided in Appendix B.4. We show in the rest of the paper that the way we compute

the covariance matrices is not very relevant for our results. This should be expected

given that, as long as managers’ estimates of covariances are very similar in the

cross-section, up to the first order, the covariance matrix behaves like a stock-time

fixed effect and therefore will be absorbed by those in the saturated regressions.

2.2.3 Recovering Risk Aversion

Having discussed the identification of hedging demands and the way we estimate

covariance matrices, we now turn to the issue of risk aversion. Let us first disregard

any hedging demand for simplicity. The portfolio choice in this case takes the form

of (2.4). Note that while we can separate changes in beliefs from changes in γi,t,

the investor’s risk aversion, we are unable to determine their levels. As a simple

example, notice that γ̃i,t = 2× γi,t and µ̃i,t − r f1 = 2× (µi,t − r f1) would yield
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the exact same portfolio choice as that implied by γi,t and µi,t − r f1. In Section 2.6,

we impose a plausible restriction on the level of subjective expected returns and

risk aversion, namely, that fund managers expectations are formed in such a way

to minimise the difference with ex-post realised returns12. Start from the following

identities:

rt+1 − r f1 = Et[rt+1 − r f1] + εt+1 (2.10)

= (µi,t − r f1) + εi,t+1 (2.11)

=
γi,t

γi,t
(µi,t − r f1) + εi,t+1 (2.12)

= γi,t(Σtw
∗
i,t) + εi,t+1 (2.13)

The first line of the above expression is a definition for εt+1: realised returns have

to be equal to expected returns plus an orthogonal prediction error. In the second

line, we assume that the subjective expectation (µi,t − r f1) and the error εi,t+1

made by the investor are orthogonal. This can be interpreted as a requirement

that the expected return is consistent with the law of iterated expectations 13. The

third line multiplies and divides this expectation by the investor’s risk aversion

γi,t. In the empirical counterpart, this will require that the instantaneous relative

risk aversion is known to the manager at time t. Finally, we use equation (2.5)

to rewrite (2.12) as (2.13). We can, therefore, pin down the level of risk aversion

γi,t by running multiple regressions across managers and/or time of stock realised

returns on scaled portfolio weights. For instance, if we think that risk aversion is a

12Conditional expectations are the best predictor in a mean square sense, i.e., given the infor-
mation set Ft and the random variable yt+1, the conditional expectation E[yt+1|Ft] minimises
E[(yt+1 − ft)2] over all the Ft-measurable functions ft.

13To see this remember that, according to our notation, the expected excess return of manager i
using his information set at time t is Ei,t[rt+1− r f1] = µi,t − r f1. We can therefore rewrite (2.11) as
rt+1 − r f1 = Ei,t[rt+1 − r f1] + (rt+1 − r f1−Ei,t[rt+1 − r f1]). If the law of iterated expectations
applies under manager i’s expectation, i.e., if Ei[Ei,t[rt+1 − r f1]] = Ei[rt+1 − r f1], it is easy to
show that:

– Ei[(rt+1 − r f1−Ei,t[rt+1 − r f1])] = 0, i.e., there is no unconditional bias,

– Ei[Ei,t[rt+1 − r f1](rt+1 − r f1−Ei,t[rt+1 − r f1])
′] = 0N×N , i.e., the perceived expected re-

turn and the error are uncorrelated.
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manager-specific quantity we can run the following regression:

rj,t+1 − r f = αi + βi(Σtw
∗
i,t)j + εi,j,t+1 (2.14)

where rj,t+1 − r f is the realised excess return of stock j from time t to t + 1, and

(Σtw
∗
i,t)j is the demand for stock j for manager i, at time t scaled by the conditional

covariance matrix Σt. The estimate for αi will then be a measure of the bias or resid-

ual hedging demand. If αi = 0, i.e., the bias or hedging demand is not statistically

different from zero, we would be able to interpret the estimate for βi as the average

coefficient of relative risk aversion of manager i, that is βi = γi. It is important

to notice that, while it might be interesting to pin down the levels of risk aversion

and beliefs of each manager, the identification of the learning parameters comes

from differential changes in beliefs in the cross-section of stocks held, hence it is not

affected by our choice of the risk aversion parameter.

2.3 Data and Summary Statistics

In this section we describe the data that we use in the empirical analysis. Data on

mutual funds and mutual fund managers’ information are obtained from the Cen-

ter for Research on Security Prices (CRSP) Mutual Fund database14. Given that we

aim to conduct our analysis at the fund manager level, as opposed to the fund level,

we need to construct a dataset of managers’ careers. To do this, we first obtain a list

of the managers that at any point in time are managing at least one equity fund. We

then split each occurrence of multiple managers managing a fund at the same time

into separate observations. We also disregard all the cases in which no manager

name is available and all the observations where we have words such as ”team”,

”group”, ”partners” or others that do not allow us to infer who was managing the

fund. The most challenging part, however, is to account for cases in which a typo in

the fund manager’s name causes CRSP to treat the same manager as two different

individuals. As an illustration, an individual named John Smith could, for exam-

14University of Chicago. Center for Research in Security Prices, I. (1960).
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ple, appear as ”John Smith”, ”J. Smith”, ”J Smith” or just ”Smith”. In order to tackle

this issue, we first match names into pairs using a string matching algorithm. We

match similar names using three different string distances: the cosine, Jaccard and

Jaro-Wrinkler metrics, and we apply rather large distance-specific thresholds that

allow us to keep the names which are sufficiently close. We subsequently proceed

by manually checking the matched results which amount to more than 15,000 pairs

of matched names. Out of these pairs, our manual exercise leaves us with roughly

20% of real matches which suggests that we are quite flexible with the distance

thresholds. It is important to stress that, although our manual check might contain

some errors, i.e., false positive matches and/or false match rejections, so long as

these mistakes are random they only introduce noise in our estimates and cause no

bias. More details on the process are provided in Appendix B.4. After matching the

names we assign a unique index to each manager in order to build their careers.

This exercise leaves us with 3,214 unique managers in our sample. We next match

the above managerial data with CRSP mutual fund data based on the first and last

date when a manager has been managing a given fund. We remove index funds,

fixed-income funds and funds which mainly own foreign equities following Evans

(2010), Benos et al. (2010) and Kacperczyk et al. (2006)15. We then match the fund

information with mutual fund holdings data from the Thomson-Reuters Institu-

tional Holdings database, using Russ Wermer’s MFLinks tables. We finally merge

the above data with CRSP data on stock returns and risk-free rates and Compustat-

Capital IQ data on firm fundamentals16. Since we have monthly mutual fund and

return data while holdings data are only available on a quarterly basis, we com-

pute quarterly stock returns from the CRSP monthly data and proceed by merging

with Compustat quarterly data. The final dataset comprises of over 13 millions

observations for 3,214 distinct managers in the period 1980-201517. Table B1 pro-

vides descriptive statistics. The first panel reports summary statistics regarding

average and median past returns experienced by managers. As one should ex-

15Details on the removed funds can be found in Appendix B.4.
16Standard & Poor’s Compustat Services, I. (1962).
17The number of observations includes a sizeble fraction of holdings that have zero weights but

are included because they are part of the manager investment universe. The investment universe is
constructed similarly to Koijen and Yogo (2019).
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pect, past experienced returns tend to be right skewed with mean average returns

that are larger than mean median returns (2.4% and 1.4%, respectively). While the

standard deviation of average experienced returns is similar to the one of median

experienced returns (10% and 11% respectively), counterintuitively, the latter seem

to be more dispersed, implying that negative experienced returns tend to be right

skewed (so that the median is smaller than the average) and positive experienced

returns tend to be left skewed (so that the median is larger than the average).

The second panel of Table B1 regards expected returns, which are computed as

explained in Section 2.2.1. In the rest of the paper we provide six measures of ex-

pected excess returns which we denote (1)-(6). The first issue regards the inclusion

of zero weights18. Measures (1)-(3) include only positive weights, while measures

(4)-(6) do include the zero weights19. Measures (1) and (4) use sample covariance

matrices Σ̂1
t , measures (2) and (5) use Touloumis (2015) covariance matrices Σ̂2

t and

measures (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t . It is clear

from the table that the measures are quite similar in terms of summary statistics.

All the measures have an average expected excess return of about 1% per quar-

ter and a median expected excess return of about 0.6%. It should also be noted

that, while we have about 12.7 million data points if we consider the zero weights,

the number of observations drops to about 5.4 million once we remove the zeros.

Figure B1 sheds light on the sources of variation in beliefs. We provide a decom-

position of the variation in expected excess returns according to measure (1) by

regressing it against various fixed effects. Manager and stock fixed effects explain

a small fraction of excess returns (11.63% and 14.20%, respectively), while time

fixed effects explain more than half (55.73%) of the variation. This suggests that

manager and stock immutable characteristics are relatively less important than ag-

gregate time-varying factors in the formation of expectations. When we separately

include manager, stock and time fixed effects the explanatory power rises to al-

18Similarly to the present paper, Koijen and Yogo (2019) discuss how the analysis might be af-
fected by including or excluding zero weights.

19It might be important to know whether zero weights arise by choice or because the manager
cannot short sell stocks that would otherwise appear with negative weights. Appendix B.3 shows
how the optimal choice of a manager is affected by short selling constraints and how to deal with
them when trying to recover beliefs.
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most seventy percent (68.21%). If we allow for interactions between fixed effects,

we can explain up to almost ninety percent (89.43%) of the variation in expected

excess returns when we include manager-time and stock-time fixed effects. From

this decomposition we learn that the largest part of the changes in expected re-

turns is due to time-varying factors, then stock-specific characteristics and, finally,

factors related to the manager. The addition of manager-time and stock-time fixed

effects will remove the greatest majority of the variation in expected excess returns

and will, thus, ensure that the results are driven by idiosyncratic variation in ex-

pected returns unexplained by systematic factors. This gives more credibility to

our identification strategy.

Finally, we consider the data related to the managers’ careers which can be anal-

ysed with the help of the last panel of Table B1 and Figures B2 and B3. The upper

panel of Figure B2 provides information regarding the experience of the managers

in the sample. We plot the number of managers by the first time they appear in

the sample, which we call the starting date of the fund manager and denote it by

ti,0. The sample extends from 1980 to 2015 and covers a period of 35 years. Notice,

however, that there are fewer managers who start their career in the first ten years

compared to the rest of the sample. This can be attributed to low data coverage

during the 1980s. Most of the managers in our sample begin their career in the late

1990s. We can observe, however, a wide range of manager starting dates up until

the last sample year. We then proceed to construct a tenure variable which mea-

sures how many quarters have passed since the start of the manager’s career, i.e.,

for a given manager i and date t, tenurei,t = t− ti,0
20. The lower panel of Figure

B2 displays the number of managers with a given level of accumulated tenure over

the sample period, i.e., the empirical distribution of (t− ti,0) for all i, t. Most of the

managers in our sample are relatively young and inexperienced, but again, there is

quite a large variation in tenure as well, ranging from less than a year up to some

managers that are present in the whole sample (i.e., for a period of 35 years). Note

that, by construction, the number of observations with a given level of accumu-

20Notice that for each manager we disregard the first quarter of experience, i.e., ti,0, when com-
puting the statistic.
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lated tenure should be decreasing as, for example, a manager who has 5 quarters

of accumulated tenure must also have accumulated 4 quarters of experience pre-

viously. In practice, this could be violated for two reasons: the first reason is that

mutual funds were required to report holdings at a semi-annual level up until 2003

and only later regulators enforced quarterly reporting, as a result, some funds used

to report holdings on a quarterly basis while others did so only on a semi-annual

basis prior to 2003; second, there might be some missing data in our sample which

means that we might be able to observe a given manager’s career and holdings

in a particular quarter but not in the previous one. The bottom panel of Table B1

shows that the average tenure is of 26.9 quarters (almost 7 years), but because of

the positive skewness manifested in Figure B2, the median tenure is of only 22

quarters (5.5 years). We then proceed to the main object of interest of the paper,

which is the relationship between each manager and stock. Figure B3 describes

the relationship between fund managers and individual stock holdings. The first

panel displays the date when a given stock-manager pair has first appeared in our

sample which we call the starting date. For each manager i and stock j we can

denote the starting date as ti,j,0. Unsurprisingly, the largest number of such initi-

ations have occurred in the late nineties and early 2000s, i.e., when the number of

managers in our sample significantly increases. There is, however, large variation

in the stock-manager starting dates which we exploit as part of our identification

strategy. To see this, the second histogram depicts the length of the personal expe-

rience of a given manager with a given stock, i.e., for each manager i, stock j and

date t, experiencei,j,t = t− ti,j,0. It is clear from the histogram that there is a large

variation in experience. The third panel of Table B1 shows that it ranges from 1 to

139 quarters, with a standard deviation of about 12.9 quarters. The standard devia-

tion is of similar magnitude compared to the average (about 13.2 quarters) and the

median experience (9 quarters). The main hypothesis of the paper is that this vari-

ation in stock-specific experience is associated with a variation in expected returns

across managers. Finally, we can look at the maximal experience achieved for each

stock-manager pair, in the bottom panel of Figure B3 and Table B121. While the

21For each manager i and stock j, the maximal experience is defined as max. experiencei,j =
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average maximal experience and its standard deviation are similar to the above

(13.9 and 12 quarters respectively), the median maximal experience is larger (11

quarters, compared to 9 quarters of experience).

In the next section, we present the reduced-form results of our empirical analy-

sis.

2.4 Reduced-form Results

The main hypothesis of the paper is that past experienced returns affect expected

future returns. Moreover, if that is the case, we would like to further explore

whether certain periods carry more relevance than others. In what follows, we

show that differential stock-specific experience across managers indeed matters in

the formation of expectations and, in particular, differences in the first and the most

recent few quarters of experience play the most crucial role.

The empirical specification in this section relies on the following argument: we

conjecture that the manager will try to estimate future returns by looking at the

returns he has experienced over his career. A manager i with Ti,j,t quarters of ex-

perience with a given stock j at time t might use the average experienced return

as a sufficient statistic when forming expectations, i.e., his expected return for that

stock can be represented as:

Ei,t[rj,t+1] = βr̄i,j,t = β

 1
Ti,j,t

Ti,j,t

∑
k=1

rj,t+1−k

 (2.15)

where r̄i,j,t denotes the equal-weighted average of stock j returns observed over the

investor’s experience horizon. Notice that the variation in the length of past expe-

rience Ti,j,t allows us to exploit the cross-section of managers holding a given stock

j as our source of differential treatment22. The coefficient β captures the average

effect that past observed returns have on expectations formation, while the im-

plicit constant weight ωk = ω = 1
Ti,j,t

means that all past observations are equally-

maxt{experiencei,j,t}.
22On the other hand, the variation in the length of past experience Ti,j,t for a given manager i at

time t across different stocks is what helps us in disentangling preferences from expected returns.
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weighted. This choice implies that investors attach equal importance to all obser-

vations, however, as the length of experience grows every observation receives a

progressively lower weight. Note that this approach does not restrict managers

from incorporating other sources of information in their estimation. This can be

easily taken into account by saturating the regression with the proper controls. To

reiterate, fixed effects, for instance, would account for the information or charac-

teristics that all managers, or all stocks in the portfolio of a given manager, have in

common; the coefficient on the average experienced return would thus provide a

measure of the incremental effect of experience23. We, therefore, show in Table B2

the results of the following regression:

µi,j,t − r f = βr̄i,j,t + Hi,t + Hj,t + εi,j,t (2.16)

where µi,j,t − r f is the recovered expected one-period ahead return of manager i

for stock j at time t, r̄i,j,t is the previously defined equal-weighted average expe-

rienced return24, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed

effect. To better disentangle the effect of experience we focus on the subsample

of single-managed funds25. The results in the table confirm our main hypothe-

sis: having experienced an increase of one standard deviation in average quarterly

return leads to an increase in the expected excess return of between 0.103% and

0.151%; the results are both economically and statistically large and display very

minor variation across specifications. This validates our intuition that the estima-

tion method for the covariance matrix is not very consequential. Similarly, the

inclusion of the zero weights has no effect on our main findings, even though the

drop in R-squared shows that the zeros are indeed informative and cannot be fully

explained by the fixed effects alone. The within R-squared shows that the average

experienced returns explain between 0.6% and 0.9% of the variation in expected

23Notice that this implies that managers could very well use all past realised returns when they
form expectations and this would be absorbed by the stock-time fixed effects. In particular, β would
then measure the relative over-weighting of experienced returns.

24All the regressions in the paper use standardised explanatory variables for ease of interpreta-
tion.

25Section 2.4.1 analyses the case of co-managed funds, showing indeed that most of the effect
washes out when we aggregate across managers.
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returns. While this might seem low, it is in fact in line with the findings of Koijen

and Yogo (2019) that observable characteristics explain a small part of the variation

in investors’ demands which is mostly explained by latent factors. Table B11 in Ap-

pendix B.6 reports the results of a similar regression with manager-time and stock

fixed effects, and a number of time-varying stock characteristics, namely, profitabil-

ity, investment, book-to-market ratio, market equity, and dividend-price ratio. The

findings are similar in magnitude and statistically significant, and show that the ef-

fect of experienced returns is almost an order of magnitude larger than that of other

known characteristics, confirming again the findings of Koijen and Yogo (2019) that

standard predictors have a hard time explaining portfolio choices26.

So far, we have assumed that the effect of experience is homogeneous. Alter-

natively, we could allow for more flexible weights in order to investigate whether

certain periods matter more than others. Consider the following modified weight:

ωk =
δk

Ti,j,t
, such that 1

Ti,j,t
∑

Ti,j,t
k=1 δk = 1. Namely, the manager estimates future returns

from the weighted average of past experienced returns:

Ei,t[rj,t+1] = β

Ti,j,t

∑
k=1

δk
Ti,j,t

rj,t+1−k =

Ti,j,t

∑
k=1

βδk
rj,t+1−k

Ti,j,t
=

Ti,j,t

∑
k=1

β̃kr̃j,t+1−k (2.17)

The weighting term δk is a number centred around one measuring the relative over-

or under-weighting of a given past observation. If δk < 1, then returns observed

k-periods ago are under-weighted, while if δk > 1 they are over-weighted relative

to the previous benchmark. The last equality in equation (2.17) shows that if we

rewrite β̃k = βδk and r̃j,t+1−k =
rj,t+1−k

Ti,j,t
, then we can run a regression on experience-

adjusted returns and obtain:

β =
1

Ti,j,t

Ti,j,t

∑
k=1

β̃k, δk =
β̃k
β

(2.18)

that is, the average effect of past experience can be obtained as the average of the

k coefficients β̃k, while the relative weight assigned to the k-periods ago return is

given as the ratio of the coefficient on the k-th term and the equal-weighted average

26We do not report results for median experienced returns which are virtually identical.
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of all coefficients.

In practice, this approach breaks down if we have to deal with varying expe-

rience lengths Ti,j,t, as the number of regressors would change together with Ti,j,t.

For this reason, we group past returns into buckets as a means of fixing the number

of regressors. In our first such specification we divide the stock-specific experience

of the manager into five non-overlapping buckets of equal length, |∆Tq
i,j,t|, with

q = {1, 2, 3, 4, 5}27. Table B3 reports the results of the following regression:

µi,j,t − r f =
Q

∑
q=1

βqr̄i,j,t∈∆Tq
i,j,t

+ Hi,t + Hj,t + εi,j,t (2.19)

for Q = 5 and where r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the average return in the q-

th bucket. Table B4 reports the results for ten non-overlapping buckets of equal

length, i.e., the specification in equation (2.19) for Q = 10. In both cases we focus

on the subsample of single-managed funds. To better visualise the results, the esti-

mated coefficients of a regression with five buckets are reported in the upper panel

of Figure B4, while the bottom panel reports the results for ten buckets. The picture

immediately reveals that the effect of past experienced returns is clearly neither

constant nor monotone. Consider, for instance, our first model of expected returns

with Q = 5 for which we show results in column (1) of Table B3: a one standard de-

viation increase in experienced average quarterly return in the most recent or in the

earliest period of holding the stock increases the expected return by roughly 0.25%

(β1 = 0.276 and β5 = 0.238); on the other hand, the effect of an increase of one

standard deviation midway through the manager’s experience has an effect lower

by almost an order of magnitude (β3 = 0.041). Figure B4 confirms that the effect

of experienced returns is “U-shaped” regardless of whether we include the zero

weights and independently from the estimator for the covariance matrix used. The

lower panel of the figure reports the results for Q = 10, painting almost an iden-

27To cast this specification in terms of the previously discussed model, let us denote each bucket

by ∆Tq
i,j,t and its length by |∆Tq

i,j,t|. We then have that δk = βq
Ti,j,t

|∆Tq
i,j,t |

, where for each time index k in

bucket ∆Tq
i,j,t we assign a common effect βq and take the average return r̄i,j,t∈∆Tq

i,j,t
= ∑k∈∆Tq

i,j,t

rj,t+1−k

|∆Tq
i,j,t |

.

Notice that
Ti,j,t

|∆Tq
i,j,t |
≈ 5, where the approximation derives from the fact that we have to split ties

when the experience length is not a multiple of five.
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tical picture. The coefficients for ten buckets are similar in magnitude to those for

the regression with five buckets and follow the same “U-shaped” pattern. We re-

port in Appendix B.6 the results for various other specifications: Tables B12 and

B13 report the results of the previous models with stock fixed effects and the previ-

ously mentioned controls, while Tables B14 and B15 describe the results for a model

with three non-overlapping equal-sized buckets; finally Tables B16, B17 and B18,

B19 report the results for three non-overlapping buckets of unequal length (with

stock-time fixed effects or stock fixed effects and varying controls), where the first

and last buckets consist of four and eight quarters, respectively. All these specifica-

tions confirm the previously discussed results: experienced returns are important

in determining expected returns and most of the impact comes from most recent

and earliest stock-specific observations. This is evidence in favour of the so-called

serial-position effect, concept well studied among researchers in psychology (Mur-

dock, 1974). Moreover, our findings reconcile two apparently distinct phenomena

observed in previous research: on the one hand, Malmendier and Nagel (2011)

show that economic agents are principally affected by recent experience, while on

the other hand Kaustia and Knüpfer (2008), Hirshleifer et al. (2021) and Hoffmann

et al. (2017) report evidence in favour of the primacy effect or first impression bias. We

show that both effects are present in mutual fund managers and that they need to

be separately considered.

2.4.1 Co-managed Funds

So far we have focused our attention on single-managed funds, but one might be

interested to know whether the above findings are, in fact, weaker when managers

work in teams. In this section we check the impact of the number of managers

within a team on the effect of experience. Our hypothesis is that personal stock-

specific experiences should partly offset each other within a team, so long as the

managers that form part of the team have followed different career paths. To ex-
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plore this hypothesis, we run the following regression:

µi,j,t − r f =
Q

∑
q=1

βq,nr̄i,j,t∈∆Tq
i,j,t

+ Hi,t + Hj,t + εi,j,t (2.20)

We split managers into subsamples based on the number of co-managers they work

with, i.e., ni,t ∈{1, 2, 3, 4 or more} signifies that the manager works in a team of one,

two, three or four or more people. We thus obtain a different set of coefficients βq,n

for each combination of buckets and size of the management team. We report in

Table B5 the results of this exercise for Q = 5 buckets; the results for the specifica-

tion with 10 buckets are reported in Table B20 in Appendix B.6. To better visualise

the results, Figure B5 displays the coefficients βq,n. The two plots on the left-hand-

side of the figure show the results for measure (1) while the right-hand-side plots

display the coefficients for measure (4). The first row reports the results for Q = 5

and the bottom row for Q = 10 buckets. As one can see in Table B5, the coefficient

on the most recently experienced returns for single-managed funds is more than

twice as large as the same for funds managed by two managers; the difference in

coefficients is even larger for the earliest bucket of returns, more specifically, the

effect of returns observed at the beginning of a stock-specific experience is more

than ten times greater for single-managed funds compared to funds managed by

at least two people. The effect on managers working in teams of three or more

is orders of magnitude lower, while still statistically significant for recent experi-

enced returns. On the other hand, the effect of early returns loses significance. The

above is visually confirmed by the plots in Figure B5 showing a rather steep de-

crease in the coefficients on the earliest bucket of returns across teams of different

sizes, especially when going from a single-managed fund to a fund managed by

two professionals. The findings are equally pronounced for the specification with

ten buckets.

The results seem to suggest that a considerable part of personal experience

washes out in the cross-section of managers working in the same team, and more so

the further we go in the past since managers are more likely to change teams over

a longer period of time. On the other hand, recent returns affect all co-managers
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in a similar way as they have presumably gone through the same recent experi-

ence, having been working for the same fund. This could justify the difference in

spreads observed between buckets at different horizons, especially if we compare

single-managed funds with those managed by two individuals.

2.4.2 Taxes

In what follows, we investigate the impact of taxes on managers’ investment de-

cisions and the potential explanation the tax regime might have thereof. More

specifically, we examine whether tax considerations can absorb the effect that past

experience has on portfolio weights and expectations formation. The differential

treatment of short-term and long-term capital gains in terms of their taxation, to-

gether with the possibility to offset capital gains with capital losses, suggests that

mutual funds will try to defer the realisation of gains and accelerate the realisation

of losses. This implies that it is optimal from the point of view of minimising the

tax bill for mutual funds to hold on to assets that performed well in the past and

sell assets that had subpar performances28.

This, in turn, means that the previous results could be simply driven by tax

considerations. One way to solve the problem is to model the optimal selling deci-

sion in the spirit of Barclay et al. (1998) or Sialm and Zhang (2020) and check if the

effect of experienced returns survives after we have taken tax considerations into

account. However, in what follows we take a reduced-form approach and make

use of the large amount of data on managers who have managed different funds

in their career. In particular, we focus on the subsample of manager-stock pairs

where the manager had positive holdings of the stock in the past while managing

a different mutual fund compared to the one that he is currently working for. In

this setting, tax considerations should be muted given that capital gain overhangs

cannot be transferred from one fund to another.

Table B6 reports the results of a regression of expected returns on five buckets of

28Bergstresser and Poterba (2002) show that inflows to mutual funds, and therefore managers’
compensation, are affected by the amount of unrealised capital gains, implying that there might
be a tension between postponing capital gains indefinitely to provide better after-tax returns for
current investors and attracting new investors. Barclay et al. (1998) explicitly tackle this question,
showing that indeed managers tend to realise gains early to attract new investors.
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past experience for only those managers that have changed funds, while Table B7

reports the results when we split the previous experience in ten buckets. The results

are then summarised in Figure B6 where the upper panel reports the results for five

buckets and the lower panel for ten buckets. While the number of observations is

greatly reduced (from about 800,000 to slightly more than 110,000 observations if

we do not include zero weights, and from about 2 million to approximately 225,000

if we do), the economic and statistical significance of the coefficients is virtually

unchanged confirming the previous findings: experienced returns have a sizeable

influence on expected excess returns, with the majority of the effect coming from

the extreme buckets. If, for instance, we consider measure (1) we notice that the

coefficient on the most recent bucket goes from 0.276 to 0.224, while on the earliest

one from 0.238 to 0.199. We infer, therefore, that no more than 20% of the effect

might be due to tax considerations and we confirm both the recency and the first

impression bias.

Having presented the reduced-form results of our analysis, we now develop a

simple three-parameters model of learning and proceed with its estimation.

2.5 Parametric Estimation

The reduced-form evidence of the previous section teaches us that: experience mat-

ters, i.e., average experienced returns are an important determinant of expected re-

turns and; the effect of experience is neither constant nor monotone, in particular,

earliest and most recent experience matter the most. However, as shown in Section

2.4, estimating the shape of the weighting function requires us to drop a sizeable

amount of observations and potentially lose significant information. For this rea-

son we now posit a functional form for the learning weights and try to estimate its

parameters. As Figures B4, B5 and B6 show, we need to allow for non-monotone

weights if we want to accurately fit the data. Similarly to Section 2.4, we assume

that the manager uses a weighted average of experienced returns in order to pre-

dict future returns. Recall the model in equation (2.17) where the weights
δi,j,t,k
Ti,j,t

capture the differential effect of returns experienced at different points in time. In
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this section we directly model these weights as follows:

ωi,j,t,k =
δi,j,t,k

Ti,j,t
=

(Ti,j,t − k)λ1kλ2

∑
Ti,j,t
k=1(Ti,j,t − k)λ1kλ2

(2.21)

The functional form in equation (2.21) is similar to the one used by Malmendier

and Nagel (2011) and Malmendier and Nagel (2016)29. The weighting function

used in these papers depends only on Ti,j,t − k and, as such, it confounds two sep-

arate effects: the first impression bias and the recency bias. On the other hand, our

weighting function has the advantage of disentangling between these effects: the

term Ti,j,t − k measures the distance between the return observed at time t + 1− k

and the beginning of a stock-specific experience, hence capturing the first impres-

sion bias, while k measures the distance from the current date t, thus capturing

the recency bias. Figure B7 shows how flexible the parsimonious parametrisation

introduced in equation (2.21) is. We plot in blue the weighting function for a man-

ager with Tij,t = 50 quarters of experience for all the combinations of {λ1, λ2} ∈

{−0.1, 0, 0.1} × {−0.1, 0, 0.1}30 and compare it to the black dashed line represent-

ing the benchmark 1
Ti,j,t

where the manager equally weights each observation that

forms part of his experience. The first parameter, λ1, governs the strength of the

first impression bias: when it is negative, the manager is overweighting early ex-

periences relative to the benchmark scenario. The second parameter, λ2, controls

the strength of the recency bias: when the sign of λ2 is negative the manager over-

weights recent observations relative to the benchmark, and vice versa. As one

can see from the examples in Figure B7, using only two parameters we are able

to capture a variety of shapes including linear, convex or concave, increasing or

decreasing, monotone or non-monotone weighting schemes arising from the inter-

play of the recency and first impression bias. Given the evidence from the reduced-

form regressions we expect λ1 and λ2 to be negative, implying that the managers

are subject to both effects. Similarly to the model in equation (2.19) we include

manager-time and stock-time fixed effects to get rid of potentially time-varying

unobservable characteristics shared across stocks and managers, respectively. Ta-
29Our weighting scheme collapses to the one used by Malmendier and Nagel (2011) when λ2 = 0.
30Figure B12 in Appendix B.6 plots the weighting function for {λ1, λ2} ∈ {−2, 0, 2} × {−2, 0, 2}.



CHAPTER 2. REVEALED EXPECTATIONS AND LEARNING BIASES 79

ble B8 reports the NLS estimates of the following regression31:

µi,j,t − r f = β

Ti,j,t

∑
k=1

ωi,j,t,kri,j,t+1−k

+ Hi,t + Hj,t + εi,j,t (2.22)

ωi,j,t,k =
(Ti,j,t − k)λ1kλ2

∑
Ti,j,t
k=1(Ti,j,t − k)λ1kλ2

Consistent with the reduced-form evidence, both λ1 and λ2 are negative and sta-

tistically significant across all specifications. The magnitude of the effects is illus-

trated in Figure B8 where we plot the weighting functions at median and average

experience of Ti,j,t = 9, 13 quarters, respectively, using the empirically estimated

values for λ1 and λ2 under model (1). It is evident that the weighting function is

always convex and non-monotone, implying that managers overweight the most

recent and the earliest returns observed; for instance, a manager with an experience

of nine quarters will assign a weight of 0.204 (0.347) to the most recent (earliest) ob-

servation, which is 1.84 (3.13) times the benchmark of 1/9. On the contrary, he will

only assign a weight of 0.043 to the middle observation which is 0.39 times the

benchmark weight. The results display a slight asymmetry with λ1 being always

larger in magnitude than λ2 implying that the recency bias is marginally weaker

compared to the first impression bias. This is, however, not a robust feature of the

data: Table B21 in Appendix B.6 shows that λ1 and λ2 are almost identical once we

include only manager-time and stock fixed effects, indicating that a large fraction

of the recency bias might be captured by stock-time fixed effects as we should ex-

pect. Pinning down the actual magnitude of the two biases is extremely difficult

given that we have to get rid of a large fraction of the variation in expected returns

to achieve identification. Finally, the parameter β in Table B8 measures the average

impact of past experience on expected excess returns: the estimates range between

0.139 and 0.207. This is about 4 basis points larger than the baseline results in Table

B2 where we do not allow for varying weights32. We therefore confirm that once

31Appendix B.5 provides more details on the estimation procedure.
32Note that all the results presented refer to standardised variables. In the case of the results in

this section we estimate β and then scale its value by the standard deviation of
(

∑
Ti,j,t
k=1 ωi,j,t,krj,t+1−k

)
.

This is to avoid directly scaling the weighted average which would affect the computation of the
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we take into account the possibility that recent and early returns might have a dif-

ferential impact, we find an incremental effect of experience on expected returns.

2.6 Risk Aversion

As explained in Section 2.2.3, our methodology allows us to examine in more de-

tail the preferences of investors. Recall equations (2.10)-(2.13); if we assume that

subjective expected returns obey the law of iterated expectations, we are able to

extract the risk aversion of managers by exploiting the cross-section of individual

stock holdings. Running regressions of realised excess returns on scaled demands,

as shown in equation (2.14), we can obtain an estimate for the risk aversion param-

eter γ and the bias (or residual hedging demand). We start this section by provid-

ing evidence from pooled regressions and then proceed to show results pertaining

to the distribution of γi obtained from multiple regressions. Table B9 reports the

results of the following pooled regression:

rj,t+1 − r f = α + γ(Σtw
∗
i,t)j + εi,j,t+1 (2.23)

where rj,t+1 − r f is the realised excess return of stock j from time t to t + 1, and

(Σtw
∗
i,t)j is the scaled demand for stock j of manager i, at time t. If we assume

that preferences are constant across managers and time, we obtain a risk aversion

coefficient close to unity (between 0.915 and 1.283 across specifications) for our rep-

resentative investor. While the estimate is low compared to other measures obtained

from equity returns (Mehra and Prescott, 1985; Kocherlakota, 1996), it is consis-

tent with measures derived from labour choices (Chetty, 2006) and option prices

(Martin, 2017). Our representative investor displays a quite large and statistically

significant bias (or residual hedging demand) of about 1% per quarter.

The pooled results in Table B9 mask a sizeable amount of variability across man-

agers. For this reason, we proceed by estimating separate regressions, one for each

gradient of the right hand side of equation (2.22) needed to obtain standard errors.
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manager in the sample:

rj,t+1 − r f = αi + γi(Σtw
∗
i,t)j + εi,j,t+1 (2.24)

Given that there seems to be limited difference resulting from the choice of the co-

variance matrix Σt, we report the results using the sample covariance Σ̂1
t . Table

B10 reports summary statistics for elicited risk aversion and bias referring to mea-

sure (1)33. We obtain a median (average) relative risk aversion of 1.117 (1.236), in

line with the pooled results; however, there is a wide dispersion in the estimates

with a standard deviation of 5.850. The estimates display positive skewness and

are leptokurtic. When we allow for variation in preferences across managers, the

bias is reduced on average: the mean bias is only 0.7% and the median bias is 1%

per quarter. Figure B9 displays histograms of the distribution of αi and γi after we

have removed outliers. Unfortunately our methodology does not prevent us from

obtaining negative values for γi whenever the cross-section of revealed beliefs is

negatively correlated with realised returns. Most of the mass, however, seems to

fall in the positive value region.

We then proceed to exploit the variation of preferences across managers and

analyse whether tenure affects risk aversion and bias. Figure B10 displays the bias

and the risk aversion as a function of tenure for measures (1) and (4). It is hard

to detect a specific pattern in either of the measures; longer tenures seem to be

dominated by noise, given that they make use of fewer estimations by construction.

Finally, Figure B11 reports the results by date: also in this case it is hard to detect

any conclusive evidence. Unfortunately, our measures of risk aversion cannot be

used to predict or explain future returns given that they have been obtained from

them: by construction they represent the best linear predictor of rj,t+1 − r f given

the information contained in (Σtw
∗
i,t)j.

33The results for measure (4) can be found in Appendix B.6.
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2.7 Conclusions

This paper contributes to the literature on the effect of personal experience on

learning and expected returns by analysing a large sample of more than 3,000

professional investors (mutual fund managers) that have been tracked throughout

their careers in the 35 years period between 1980 and 2015. Section 2.2.1 shows that

in a variety of cases it is possible to invert the portfolio demands of our investors

to obtain their subjective expected returns by using the identifying assumption

that, while beliefs vary at the stock-investor-time level, risk aversion varies at the

investor-time level, i.e., risk aversion is constant in the cross-section of stock hold-

ings of a given manager. Similarly, we are able to account for many cases in which

demands display a hedging component by saturating the regressions with fixed

effects. Indeed, as we show in Section 2.3, almost ninety percent of recovered ex-

pected returns can be explained by manager-time and stock-time fixed effects. We

then provide reduced-form evidence that professional investors overweight expe-

rienced returns compared to other information shared across stocks and individ-

uals: having experienced a one standard deviation increase in quarterly returns

on average leads to an increased expected return of about 10-15 basis points per

quarter. Various reduced-form specifications in Section 2.4 and the parametric es-

timation in Section 2.5 confirm that the effect of experienced returns is neither con-

stant nor monotone. We show that investors exhibit recency and first impression bias:

an investor with a stock-specific experience of nine quarters overweights the most

recently observed quarterly returns by 1.84 times and the earliest experienced re-

turns by 3.13 times relative to the constant weight benchmark. These results are

most apparent for managers working alone, as opposed to in a team of two or

more, suggesting that a significant fraction, though not the entirety, of the effect

of personal experience cancels out once aggregated. By looking at managers who

have switched funds, we eliminate the possibility that these findings are purely

driven by tax considerations: more than 80% of the effect remains unexplained by

tax concerns. We finally turn to the issue of estimating risk aversion and find that

a representative investor displays a coefficient of relative risk aversion around unity.
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The paper also finds that individual investors exhibit biases when forming expec-

tations. Finally, when we look at more disaggregated measures, we find that there

is a large heterogeneity in biases and risk aversion across time and investors. The

results in the paper can inform theorists willing to model the preferences and the

learning behaviour of professional investors in a way that is consistent with the ev-

idence obtained from portfolio holdings. Consistent with theory, more than half of

the variation in expected excess returns can be explained by a common time vary-

ing component. However, an incremental forty percent is due to investor-specific

and stock-specific time-varying effects, hinting at the possibility of time variation in

preferences and stock-specific factors shared across investors. Finally, if interested

in modelling the idiosyncratic part of expected returns, one should pay particu-

lar attention to behavioural factors which play a prominent role as shown by the

evidence provided in this paper.



3. Living on the Edge: the Salience of

Property Taxes in the UK Housing Market

FRANCESCO NICOLAI, MARCO PELOSI AND SIMONA RISTESKA1

A standard tenet of economic theory is that the statutory incidence of taxes is ir-

relevant for their economic incidence2. It should also be the case that whether a

tax is paid at the moment of transaction or later is irrelevant for its incidence, as

long as we take into account the time value of money and the riskiness of the cash

flows. By looking at the UK residential property market, this paper shows that this

is not the case and that deferred taxes have a markedly lower incidence compared

to taxes paid at the time of decision-making.

Together with France, the United Kingdom is one of the few countries receiv-

ing a sizeable fraction of revenues from property taxes, amounting to about 4.3%

of GDP or more than £84 billion in 2016 (European Commission (2018)). The two

main taxes levied on domestic properties are the Stamp Duty Land Tax and the

council tax. The former is a tax levied on the transaction value of land and any

buildings and structures thereon. The fact that its statutory incidence falls on the

buyer, who is required to pay the tax liability to the HM Revenue and Customs

within very few weeks from the completion of the transaction, and the fact that the

tax represents a lump sum ranging between 1% and 7% of the property value are

features that make the stamp duty tax particularly salient at the moment of pur-

chase. The latter, which is the focus of the present paper, is a tax levied by the local

government on a yearly basis. The council tax is levied on the resident, as opposed

1We are grateful to Vicente Cuñat, Daniel Ferreira, Dirk Jenter, Christian Julliard, Daniel Par-
avisini, Andrea Tamoni, Michela Verardo and the participants at the LSE PhD seminar for the useful
comments on the paper. We thank Vittorio Raoul Tavolaro for invaluable research assistance. The
paper contains HM Land Registry data c© Crown copyright and database right 2019. The data is
licensed under the Open Government Licence v3.0. 1. We thank the University of Glasgow - Urban
Big Data Centre for providing Zoopla property data. Zoopla Limited, c© 2019. Zoopla Limited.
Economic and Social Research Council. Zoopla Property Data, 2019 [data collection]. University of
Glasgow - Urban Big Data Centre.

2Kotlikoff and Summers (1987) provide a detailed review of classical theory on tax incidence.
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to the house owner, and is based on the property value in 1991. While the coun-

cil tax is extremely salient at the moment when it needs to be paid, we show that

this is not the case at the moment when properties are purchased even though, in

present value terms, it is similar to or even larger than the stamp duty tax. By us-

ing the geographical discontinuity at the border of different local authorities in the

London area, we are able to estimate the incidence of the council tax on property

prices and contrast it with the incidence of the stamp duty tax estimated, among

others, by Best and Kleven (2018). The London area is particularly suitable for the

estimation because of the sharp nature of the council borders and the large disper-

sion in council tax rates across Boroughs. For instance, Figure C1 depicts a road

that is at the border of the Borough of Westminster and the Borough of Kensington

and Chelsea. As can be seen from the picture, the houses on both sides of the street

are otherwise identical except for the fact that they pay quite different council tax

amounts: the ones on the left pay £2, 279 per year in council tax while those on the

right pay £1, 421 per year. If we discount the future payments as a perpetuity at a

rate of 4%, similar to the mortgage rates observed in sample, we obtain that the dif-

ference between the two present values amounts to £21, 450 (about $28, 000). The

tax differentials become even more significant once we consider the fact that many

London Boroughs share services, such as waste management, and that many other

amenities, such as access to parks, schooling and religious facilities, are not strictly

limited to residents of a given Borough. In Section 3.3 we show that the price of

similar properties on opposite sides of a border does not adjust for differentials in

council tax amounts. By employing a variety of estimators, we establish that the

council tax incidence is never statistically negative. We then proceed in Section 3.4

to set up a model where downpayment-constrained households purchase a house

and pay two sets of taxes: a lump sum stamp duty tax levied at the moment of

purchase and a periodic council tax. We move on to perform a Bayesian analysis

in Section 3.4.1 where we provide a posterior range for council tax incidence us-

ing priors that are economically motivated. In all these estimates, the incidence

of council tax on property prices is too low relative to existing estimates of the

incidence of other property taxes, even after accounting for time value of money
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and the fact that discount rates might be larger because of borrowing constraints.

These findings can be rationalised in a model where agents neglect taxes that are

levied in the future. We show in Section 3.4.2 that then a trade-off between the two

types of taxes arises: the stamp duty tax is distortionary because agents are liquid-

ity constrained; on the other hand, the council tax leads agents to over-consume

the housing good and, therefore, distorts their consumption choices by reducing

available income. As a result, we demonstrate that the Government can optimally

tune the two taxes to minimise distortions for a given level of revenue.

The present paper adds on to the burgeoning literature on behavioural public

finance and the salience of taxes (or the lack thereof). Chetty et al. (2009) is the first

paper to empirically estimate how differences in salience can alter the behaviour of

economic agents. They intervene in a grocery store in order to modify the salience

of sales taxes and show that the incidence on buyers is largely reduced when taxes

are made fully salient. In a second experiment they compare the effect of excises

taxes, which are included in posted prices, and sales taxes, which are not explicitly

included, on alcohol demand and again show that tax salience plays an important

role in consumer behaviour. The setting in the present paper is quite similar to the

second experiment in Chetty et al. (2009), given that the stamp duty tax is paid

upfront while the council tax is deferred and thus less salient. For policy reasons,

however, the question of property taxes is of greater importance because of the

large amounts of money involved and the fact that it is very difficult for agents to

learn since buying a new property is typically a once-in-a-lifetime event. Following

Chetty et al. (2009), other papers have also explored the question of tax salience, for

instance, Feldman and Ruffle (2015) and Feldman et al. (2018) have replicated the

findings in laboratory experiments, while Finkelstein (2009) similarly shows that

the introduction of electronic toll payments raises toll expenditures. Taubinsky and

Rees-Jones (2018) further explore the topic by showing that there is large variation

in the way agents react to tax salience and investigate policy implications. The

present paper is also akin to Allcott (2011) who demonstrates that a similar bias is

present in the automobile market, namely, car buyers fail to correctly price in the

future energy cost at the time of purchase. As in Allcott (2011), our conclusions also
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rely on the choice of an appropriate discount factor. We show in Section 3.4.1 that

the bias persists even after allowing for large discount rates. In a similar vein, using

Norwegian data, Agarwal and Karapetyan (2016) explore the effect of non-salient

debt features on households’ purchasing decisions and show that they do not fully

factor in the added cost. The authors show that the mispricing was eliminated

once these features became fully salient. Finally, the paper extends the literature

on property taxes; among others, we use the results of Besley et al. (2014) and,

in particular, Best and Kleven (2018) to compare our estimates of the council tax

incidence with their stamp duty incidence estimates in order to highlight the lack

of salience of the former.

The rest of the paper is organised as follows: Section 3.1 describes the data and

the institutional setting; Section 3.2 gives evidence of the geographical distribution

of council taxes and points out that this can significantly bias our estimates if not

appropriately taken care of, before proceeding with the details of our identification

strategies; Section 3.3 presents the empirical estimates of the council tax incidence;

Section 3.4 develops a stylised model to help interpret the findings and shows that

the estimated incidence is too low to be consistent with fully-salient taxes, before

exploring some policy implications; and finally, Section 3.5 summarises and con-

cludes the paper.

3.1 Data

To estimate the incidence of council taxes we need access to data on property char-

acteristics and house prices, as well as council taxes paid. Price paid data on house

transactions are readily available from the HM Land Registry website. This dataset

contains information about all residential properties transacted in England and

Wales from 1995 that have been sold for full market value3. The dataset com-

prises of the price paid, the transaction date and, most importantly, the address

of the house which allows us to pinpoint the exact location of every property. Ad-

3Data excluded from the dataset include commercial transactions, property transactions that
have not been lodged in with HM Land Registry and transactions made below market value. For
more details on the property sales not included in the dataset the reader can visit the HM Land
Registry website: https://www.gov.uk/guidance/about-the-price-paid-data.
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ditionally, the data provide us with information on the property type, which can

be one of five possible categories (a detached, semi-detached, or terraced house, a

flat/maisonette and other), the age of the property (classified into old or new to

distinguish between newly built properties and already established buildings) and

the duration of tenure, i.e., whether the property is under a freehold or leasehold4.

Since we would ideally like to compare properties that are as similar to each

other as possible, we need more information on property characteristics. For this

purpose we make use of two additional datasets: the Zoopla Property data and

Domestic Energy Performance Certificates. The Zoopla Property data5 has been

collected by Zoopla, one of the UK’s leading providers of property data for con-

sumers and property professionals, giving free access to information on 27,000,000

property records, up to 1,000,000 property listings and 15 years of sold prices data.

The dataset covers the period between 1st January 2010 and 31st March 2019 for

properties located in Great Britain (England, Wales, Scotland). The dataset con-

tains details on characteristics such as property location, property type6, whether

the property has been categorised as residential or commercial7, number of bed-

rooms, number of floors, number of bathrooms, number of receptions and whether

the property is listed for sale or for rent8. In addition, we also have access to the ask-

ing price for both rents and sales, however, we use the more accurate transaction

price from the HM Land Registry dataset. The second source of house character-

istics comes from the Ministry of Housing, Communities and Local Government.

On their website, one can access the Energy Performance Certificates (EPC) for

domestic and non-domestic buildings. For domestic properties, before 2008 cer-

4Note that leases of seven years or less are not recorded in the dataset.
5The access to the dataset has been kindly provided by the University of Glasgow - Urban Big

Data Centre. Access to the dataset for research purposes can be obtained directly through the Urban
Big Data Centre. The data has been collected by Zoopla. Zoopla Limited, c© 2019. Zoopla Limited.
Economic and Social Research Council. Zoopla Property Data, 2019 [data collection]. University of
Glasgow - Urban Big Data Centre.

6Property types include: barn conversion, block of flats, bungalow, business park, chalet,
château, cottage, country house, detached bungalow, detached house, end terrace house, eques-
trian property, farm, farm house, finca, flat, hotel/guest house, houseboat, industrial, land,
leisure/hospitality, light industrial, link-detached house, lodge, longère, maisonette, mews house,
mobile/park home, office, parking/garage, pub/bar, restaurant/cafe, retail premises, riad, semi-
detached bungalow, semi-detached house, studio, terraced bungalow, terraced house, town house,
unknown, villa and warehouse.

7We keep only properties categorised as residential.
8For the time being we only keep properties listed for sale.
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tificates could be lodged on a voluntary basis. From 2008 onwards, however, it

has become mandatory for accredited energy assessors to lodge the energy certifi-

cates. Consequently, the data coverage drastically improves around that time, as

does our ability to match these data with the price paid data. More specifically, the

matching rate jumps from about 50 percent to over 90 percent around 2008. The

dataset contains information on the location, property type, total floor area, num-

ber of storeys, number of rooms, floor level and height, along with many indicators

of energy efficiency and quality of glazed surfaces. The final piece of data needed

to conduct our analysis is related to council tax data; in the following section we

describe in more detail the functioning of this property tax and the relevant data.

3.1.1 Council Tax

The taxation of properties in the United Kingdom is peculiar compared to other

OECD countries, representing a rather large source of both central Government

and local authorities’ revenues. The three main taxes levied on properties are the

council tax, business rates and stamp duty taxes. Council taxes are levied on each

occupier, rather than on the owner, of domestic properties. The tax is one of the

few levies in Great Britain being both set and collected by local authorities (Bor-

oughs in the case of London) and it represents one of their major sources of revenue

(around one-third of total revenue), the other sources being commercial property

taxes (business rates) and transfers from the central Government. The tax is based

on a classification in eight bands (A-H) based on the value of the property as es-

tablished by the Valuation Office in 1991; newly built properties are assigned to

a band, after having their current value converted into the value of an equivalent

property in 1991. Each London Borough is responsible for setting the annual tax

amount to be paid by a property in band D every year; the amount to be paid by

other bands is automatically set as a ratio to the amount for band D9. Bands C and

D represent the largest fraction of dwellings (about 50 percent of the total), but

there is variation across Boroughs with central properties being skewed towards

9The ratios are constant across Boroughs and are as follows: band A 6/9, band B 7/9, band C
8/9, band D 1, band E 10/9, band F 13/9, band G 15/9, band H 2.
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higher valued bands compared to properties in outer Boroughs. Figure C2 shows

the time series of the council tax payable per band per Borough. Each panel in

the figure depicts the amount payable by different bands showing that, by con-

struction, the tax moves in locksteps across bands. More interestingly, it should be

noted that there is a wide dispersion in amounts payable across Boroughs, even

though the ranking across different local authorities remains almost constant with

the only exception being the Borough of Hammersmith and Fulham where taxes

have been slashed starting from the late 2000s. After a marked increase in council

tax rates in the early 2000s, the freeze mandated by the central Goverment after the

2008 financial crisis is visible in the time series; since 2011, taxes can be raised only

by a centrally set amount unless a local referendum allows the authority to do so.

We show in Section 3.2.1 that the geographical distribution of council tax rates is

not random and could severely bias any estimate of incidence, given that central

(and pricier) Boroughs tend to set lower council tax rates. This is mainly because

central Boroughs tend to have larger fraction of properties in higher bands; for in-

stance, the Borough of Kensington and Chelsea raises more than fifty percent of its

revenues from bands G and H, while Barking and Dagenham raise less than five

percent from these bands.

We obtain information on council tax band assignment from the website of the

Valuation Office Agency, which provides data on the full address and the council

tax band for each property in Great Britain. The average amount to be paid in

each London Borough by each band in the period 1999-2018 is obtained from the

London Datastore managed by the Greater London Authority.

In the following section, we provide some descriptive statistics of the data we

have mentioned so far.

3.1.2 Descriptive Statistics

Figure C3 shows the distribution of transaction prices for domestic properties in

London, truncated to exclude extremely high property prices which are, however,

included in the analysis. The data consists of 889,925 observations in the period
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between 1999 and 2018 for which property characteristics and council tax infor-

mation is available. We confirm that the distribution is highly skewed with the

average and median property values being £366, 528 and £250, 000, respectively. It

is immediately obvious that there is a large degree of bunching in prices, as noted

for instance in Best and Kleven (2018). The bunching mainly happens just before

stamp duty notches, which allows Best and Kleven (2018) to estimate the local inci-

dence of this tax. Figure C4, for instance, shows the large extent of bunching at the

threshold of £250, 000 (upper panel) and £500, 000 (lower panel) where the stamp

duty tax jumps from 1% to 3% and from 3% to 4%, respectively. Best and Kleven

(2018) estimate a rather large incidence of stamp duty tax on property prices and

argue in favour of evidence of rather strict borrowing constraints; we use their es-

timates to inform our analysis of the incidence of the council tax, allowing us to

disentangle how much of the incidence is due to borrowing constraints (or the lack

thereof) and how much is attributable to pure time discount. Figure C5 shows the

distribution of house prices per band. The vertical red lines depict the median price

within each band. As one should expect, higher bands tend to have houses with

higher average prices although there is a large dispersion within bands. This is

because prices have increased a lot over the past twenty years, especially for more

central and higher-banded properties. This makes it essential that we compare

only transactions occurring in close periods. Moreover, one should notice that the

number of properties belonging to bands C and D dominates the rest, as previously

mentioned. In Figures C6, C7, C8, C9 and C10 we show that there is a wide dis-

persion of transaction prices based on house characteristics such as property type,

number of rooms, property age and duration. There is a disproportionate amount

of flats in our sample, which we see as an advantage in our estimation, as flats are

much more likely to be similar to each other relative to other property types. De-

tached houses are most expensive, with a median price of £525, 000, followed by

semi-detached houses (£319, 950) and terraced houses (£270, 000), and finally, flats

are the cheapest category (£195, 000). Naturally, the house price is increasing in

the number of rooms with the median value of each additional room being about

£40, 000 in the full sample. Newly-built properties represent a minority in our sam-
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ple and trade at a small discount relative to established buildings. This is due to

the geographic distribution of the housing stock in London where older properties

tend to be in the more sought-after central areas. However, there is some hetero-

geneity when we look at the year of construction: properties built before 1949 sold

at a median of £287, 000 close to those built after 2003 (£275, 000), while proper-

ties built in the period 1950-1982 and 1983-2002 sold at lower prices (£215, 000 and

£200, 000, respectively). This pattern can be explained both by differences in type

and location across groups. Finally, it can be noted that properties under a freehold

ownership have a higher median price (£305, 000) compared to leasehold proper-

ties (£195, 000).

After having described the data, we proceed to the discussion of our empirical

strategy in the next section.

3.2 Empirical Strategy

3.2.1 Evidence of Selection

The main issue that arises when estimating the incidence of council taxes is the

fact that the cross-sectional distribution of council tax amounts across Boroughs is

very strongly correlated with other characteristics that affect house prices. To see

this, Figure C11 shows a map of the distribution of Band D council tax amounts

payable for each London Borough along with the respective distribution of house

prices. Panel C11a shows the distribution of council taxes in 2000, where taxes

increase moving from yellow to red; Panel C11b the distribution of house prices in

the same year, where prices increase moving from light blue to brown. Panel C11c

shows the distribution of council taxes in 2018, while panel C11d the distribution of

house prices in the same year. It is visually striking that councils with lower taxes

tend to have higher house prices. For instance, the City of Westminster had the

lowest Band D council tax in 2000 (£375.17) and the second highest average house

price (£357, 925), after the Borough of Kensington and Chelsea (£726, 908) which

had the fourth lowest council tax (£623.38). In 2018 the same holds true, with the



CHAPTER 3. THE SALIENCE OF PROPERTY TAXES 93

City of Westminster having the lowest council tax (£710.50) and the second highest

average price (£1, 612, 231), after Kensington and Chelsea (£3, 040, 547) which had

the fifth lowest council tax (£1, 139.41). In general, it is clear from the map that

Boroughs that lie further from the centre tend to have higher council taxes and

lower prices, while the more central Boroughs tend to exhibit the opposite pattern.

To confirm the intuition obtained from Figure C11, we can run a naı̈ve regression of

house prices on house characteristics and council tax payable without controlling

for the geographical location of the property, i.e.:

pidbt = βτdbt + δbt + ζ ′xidbt + εidbt (3.1)

where pidbt is the price of house i in Borough d, band b at time t; τdbt is the coun-

cil tax amount for a house in Borough d, band b at time t; δbt are year-band fixed

effects; and xidbt are controls which include the property size measured in squared

meters, number of rooms, property type, age, duration and month which controls

for seasonality in the housing market (Ngai and Tenreyro, 2014). Table C1 reports

the results of regression (3.1); the first column provides the baseline result where

month and year-band fixed effects are included in order to remove the mechani-

cal correlation between increasing property prices and taxes over time and the fact

that moving from band A to band H goes hand in hand with higher house prices.

If we took this evidence at face value, we would conclude that the incidence of

council tax is extremely large and statistically significant with a point estimate of

−231.2. To give intuition, using a discount rate of r = 4% (similar to the risk-

free rate observed in sample) this would roughly imply that an extra £1 in present

value of taxes would lead to a drop in prices of r × β = 4%× 231.2 = £9.25. It

is obvious that this figure is only the artefact of the negative correlation between

the value of properties and the average tax within councils as observed in Fig-

ure C11. Extremely negative coefficients are obtained in columns (2), (3) and (4)

where we control for the property size, number of rooms, property type, whether

the property is newly-built and whether it is a leasehold. The smallest of these

coefficients in absolute value, i.e., −228.7 in column (3), would imply an incidence
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of r × β = 4%× 228.7 = £9.15 which is still unreasonably high. Table C2 shows

similar estimates when we include all the variables available as controls. To further

corroborate the negative correlation between property prices and council taxes due

to geographical selection, we provide the results of the following two-step estima-

tion. First, we regress house prices on characteristics to obtain hedonic residuals:

pidbt = ζ ′xidbt + εidbt (3.2)

For each Borough, band, year, we compute the median residual price εmed
dbt and pro-

ceed to regress it on council tax amount payable including year-band fixed effects:

εmed
dbt = βτdbt + δbt + ηdbt (3.3)

The results are reported in Table C3. The vector of predictors xidbt in the first-stage

hedonic regression includes: month fixed effects in column (1); month, property

size, number of rooms in column (2); month, property size, number of rooms and

property type in column (3); and month, property size, number of rooms, prop-

erty type and indicators for whether the property is newly-built and a leashold in

column (4). Similarly, Table C4 reports results when the dependent variable in the

second stage is the average hedonic residual ε̄dbt per Borough, band, year, i.e.:

ε̄dbt = βτdbt + δbt + ηdbt (3.4)

Both tables confirm the previous finding that Boroughs with higher house values

tend to impose lower council tax bills: the coefficients are negative and statistically

significant, ranging from −183.6 to −368.4.

The results provided so far imply that special care needs to be taken before

using the geographical variation in council taxes to estimate their incidence on

house prices. For this reason in our identification strategy we compare only houses

that lie extremely close, i.e., no more than 500 meters and mainly closer than 200

meters, to the border between two adjacent Boroughs in order to disentangle the

actual incidence of the tax from the geographical distribution of taxes across Bor-
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oughs. Throughout the rest of the paper, the reader should bear in mind that the

geographical distribution of council taxes entails that any estimated incidence is, at

most, an upper bound for the true incidence. This is because, if buyers value certain

characteristics upon purchasing a house, these should be capitalised in the house

price which, in this case, acts almost like a sufficient statistic for their value; the

results of Figure C11 and Tables C1-C4 signal that houses with more highly valued

characteristics (and higher prices) tend to be located in Boroughs with lower taxes,

thus inflating any estimate of tax incidence. A second and more subtle reason why

we can only estimate an upper bound for the incidence has to do with our iden-

tification strategy. By comparing similar dwellings on opposite sides of a border,

we implicitly assume that the buyer always has an outside option during the price

bargaining process. As a result, the buyer would be much more elastic than an

otherwise identical buyer involved in the purchase of a house located in the heart

of a Borough where there is no outside option in terms of council tax. We show

in Section 3.4 that the seller bears the full incidence of the tax at the border, while

that is not necessarily the case at an interior point. In general, even in the absence

of perfect substitutes across council borders, it is reasonable to conjecture that the

incidence is still much larger at the border compared to the council centre, where

the agent would have to move long distance in order to pay a different council tax

rate.

In the next section we describe the identification strategies that allow us to es-

timate the incidence of council taxes as precisely as possible given the present set-

ting, bearing in mind that any attempt is likely to result in an over-estimation of

the true incidence.

3.2.2 Identification Strategies

We use two different identification strategies to measure an upper bound of the

incidence of council tax on property prices: regressions grids and a matching algo-

rithm.
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Regression Grids

The first strategy compares houses that lie in close proximity by dividing the area

of London in a grid and assigning a fixed effect to each square in the grid. By do-

ing so, we are de-facto comparing two houses that are otherwise identical but lie

on opposite sides of a given border between two Boroughs. Figure C12 graphi-

cally depicts our first approach. Panel C12a shows a grid of squares with equal

sizes superposed on a map of London. Panel C12b shows a more detailed picture

of the Boroughs in the centre10. We then proceed to select the squares that have

two houses that: are sold in the same year, are in the same council tax band and

lie on opposite sides of the border; Panel C12b displays in blue examples of such

squares. It can be noticed that we discard observations for which the border is lo-

cated on the Thames River bank. To avoid relying on an arbitrary division, we use

three different grids, namely one grid divides the area in 50× 50 squares, another

divides it in 100× 100 squares and, finally, the last grid is a 150× 150 one. These

squares have an approximate size of 800 meters, 400 meters and 250 meters, re-

spectively. While the maximal possible distance between houses can be inferred as
√

2× square side length, we choose to remove observations that are more than 500

meters far from the border. Figure C13 shows the distribution of distances to the

border for our different specifications. As mentioned, no house lies more than 500

meters away from the border, and most of the observations are about 200 meters

away from the closest border. As we proceed to refine our grids by subdividing

into a larger number of squares, we can see that we lose observations in the 200

meters-500 meters range; this reduces our power significantly, but ensures that we

compare houses that are indeed in very close proximity.

Our strategy consists of running within square regressions whereby we com-

pare houses that are sold in the same year and in the same council tax band, specif-

ically:

pibgdt = βτbdt + δbgt + ζ ′xibgdt + εibgdt (3.5)

10The three main Boroughs depicted in the picture are, starting from left, Hammersmith and
Fulham, Kensington and Chelsea and the City of Westminster.
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where pibgdt is the price of house i, in council tax band b, grid square g, Borough

d, and year t; τbdt is the council tax amount for band b, Borough d in year t; and

xibgdt are house-specific controls. The presence of the band-grid square-year fixed

effects δbgt guarantees that the regression compares houses that are in the same

square, same council tax band and are sold in the same year, implying that our

identification assumption is that they systematically differ only due to the amount

of council tax paid, after partialling out the effect of house characteristics that we

add to increase our precision. It should be noticed that, as mentioned above, better

Boroughs, i.e., Boroughs with higher average prices, tend to have lower council

taxes, implying that - if we leave some hidden characteristic out of our regression

- the estimate of β is most likely going to overstate the true incidence. To give an

example, while highly unlikely given the sharp nature of the borders, one could

argue that there is a name tag value of living in certain Boroughs over others, for

instance, a house in Westminster commands a premium over a similar house on

the other side of the border in Brent. The fact that Westminster has a lower tax

compared to Brent implies that we would overestimate the incidence of the tax

because of the name tag value of living in Westminster. In general, to reverse this

bias and claim that the true incidence might be higher than the one we estimate,

the reader should think of some hidden characteristic that systematically causes

people to prefer living in a Borough with worse amenities compared to a Borough

with better ones.

The following section presents our second identification strategy which relies

on a matching estimator rather than grid squares fixed effects.

Matching Estimator

Our second identification approach consists of pairwise matching of houses on

opposite sides of a given border. To find the closest match, we need to define a

distance: in what follows, we rely on a Euclidean distance and a distance based on

a linear model. Under the first one, we restrict the possible matches to be: no more

than 500 meters away from each other, sold in the same year, in the same council

tax band, and to both be either old or newly-built and freehold or leasehold prop-
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erties. For each property we then choose the closest match as the one minimising

the Euclidean distance d(i, j) =
√

∑K
k=1(xik − xjk)2, where i is the original property,

j indexes the possible matches on the other side of the border, xik are house i char-

acteristics and xjk are house j characteristics. We then run within-pair regressions:

pibdt = βτbdt + δij + ζ ′xibdt + εibdt (3.6)

where δij are ij-pair dummies and xibdt are house i-specific features. The second

choice of distance is based on a linear pricing model:

pit = α + β′xit + εit (3.7)

where xit similarly contains house-specific characteristics as above. We then com-

pute the model-predicted price p̂it = α̂ + β̂′xit. As before, we restrict the pairing

to houses sold in the same year, band, old/new and leasehold/freehold categories

and no further than 500 meters from each other. For each property i we pick the

closest match j as the one that minimises the following distance: d(i, j) = | p̂it− p̂jt|.

To estimate the incidence, we run within pair-regressions as in equation (3.6) where

the δij dummies are determined according to the new matching algorithm. As in

Section 3.2.2 the identification is valid as long as the only systematic difference

within pairs is the amount of council tax. As previously explained, any other omit-

ted variable would most likely lead us to estimate an upper bound for the inci-

dence, given the geographical distribution of council taxes.

3.3 Results

3.3.1 Grid Estimator

Table C5 presents the results of the grid regressions described in Section 3.2.2 where

we use a 50× 50 grid and include band-grid square ID-year fixed effects to compare

the effect of council taxes on properties in the same band, sold in the same year, lo-

cated in the same grid square but on opposite sides of a border as in equation (3.5).
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The controls we include are as follows: column (1) uses month fixed effects to con-

trol for housing market seasonality; column (2) adds number of rooms fixed effects

and controls for property size; column (3) also adds property type fixed effects,

and; column (4) includes an indicator for newly-built and leasehold properties.

These are our default specifications throughout the rest of the paper. In all columns

the coefficient on council taxes is statistically indistinguishable from zero and al-

ways with the wrong sign. The lack of significance cannot be attributed to lack

of statistical power in the regressions given that other control variables are always

strongly statistically significant. For instance, the effect of one additional squared

metre ranges between £4, 537 and £4, 627, newly-built properties command a pre-

mium of about £33, 400 and freehold properties sell for £76, 000 more relative to

leaseholds. The same conclusion can be drawn from Table C6 where we expand

the regressions to include all available house price predictors, showing that even

relatively minor characteristics such as the number of lighting outlets or the pres-

ence of fireplaces in the property have a significant effect on prices.

Table C7 displays the grid regression results for grids of different sizes: column

(1) uses a grid that divides the London area into 50× 50 squares, column (2) 100×

100, and column (3) 150 × 150. This might help to alleviate concerns that grids

made of large squares might be comparing houses that are rather distant from each

other. The specification is otherwise same as the one in column (4) of Table C5. The

coefficient on council tax remains statistically insignificant and the point estimate

varies from positive to negative across columns: this is precisely what we should

expect when a regressor has no effect on the outcome variable and simply reacts to

the noise in the sample. The fact that the R-squared is very high (between 77% and

83%) and that all other coefficients are precisely estimated confirms our previous

finding that the incidence of the council tax is indistinguishable from zero. In Table

C8 we augment the regressions by adding all additional house characteristics: the

coefficient on council tax ranges from -11.8 to 75.4 and is never statistically lower

than zero.

To make sure that the confounding effect of the stamp duty notches does not

play a role in our estimation results, Table C9 presents the results of the grid regres-
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sions when we remove the two main stamp duty notches at £250, 000 and £500, 000.

Column (1) excludes only the first notch, column (2) the second, and column (3) re-

moves both. The results are virtually unchanged, with the incidence still being

statistically insignificant, small in magnitude, and always displaying the wrong

sign. As previously mentioned, the large R-squared and the fact that the remain-

ing coefficients are precisely estimated guarantees that this is not due to lack of

power.

Finally, Tables C10 and C11 provide estimates of council tax incidence using a

similar two-step approach as in Tables C3 and C4, i.e., by first obtaining residual

hedonic prices as follows:

pibdgt = ζ ′xibdgt + εibdgt (3.8)

and subsequently regressing the median or average hedonic residuals for each Bor-

ough, band, grid square and year on council tax amounts:

εmed
bdgt = βτbdt + δbgt + ηbdgt (3.9)

ε̄bdgt = βτbdt + δbgt + ηbdgt (3.10)

where δbgt are band-grid square-year fixed effects included to ensure that we com-

pare values of houses in the same council tax band, sold in the same year and

located in the same square of the grid. As usual, we restrict the analysis to grid

squares with at least two houses located on different sides of a border and present

the four standard specifications. The results confirm the previous finding: both the

median and average hedonic residuals are not decreasing in the council tax amount

paid, suggesting that the incidence of this tax on house prices is not different from

zero.

In the following section we supplement the evidence by presenting results us-

ing our second identification strategy.
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3.3.2 Matching Estimator

Tables C12, C13 and C14 show the results of our second estimation approach where

we explicitly match similar dwellings on opposite sides of a border as described in

Section 3.2.2. As previously mentioned, all the results are obtained using hous-

ing pairs on opposite sides of a border no more than 500 metres apart, sold in

the same year, in the same council tax band and which are both either old or

newly-built and leasehold or freehold properties. Table C12 displays the results

where closest pairs have been determined by minimising the Euclidean distance

d(i, j) =
√

∑K
k=1(xik − xjk)2, where the vectors xi and xj consist of property size

and number of rooms in columns (1) and (2), and also energy cost in columns (3)

and (4). All the variables are standardised to be comparable. This procedure leads

to 57,612 and 57,323 observations of property pairs with 71,578 and 71,656 unique

transactions in columns (1)-(2) and (3)-(4), respectively11. After having obtained

the pairs, we run the regression specified in equation (3.6). The presence of δij

pair fixed effects amounts to regressing the difference in prices of matched houses

on the difference in council tax paid, controlling for other property characteristics

along which the matched properties may differ. Consistent with the results ob-

tained with the grid estimator, none of the coefficients on council tax is statistically

significantly negative. As pointed out before, this result is not attributable to lack

of statistical power: for instance, the coefficient on size is highly statistically sig-

nificant and has the same order of magnitude as the ones obtained with the earlier

estimator12. Table C13 confirms these findings under the linear matching algorithm

where pairs are chosen by minimising the distance d(i, j) = | p̂it − p̂jt|, where the

predicted prices p̂it and p̂jt are obtained from a linear model as in equation (3.7). As

before, columns (1) and (2) match properties based on size and number of rooms,

while columns (3) and (4) add energy cost. Finally, Table C14 presents the last set

of results for the linear model where we allow each property to be paired with

11Notice that any given transaction can be the closest match for more than one property. In order
to take care of this redundancy we cluster standard errors at the transaction ID level.

12Notice that, compared to the default specifications used in Tables C1, C5, C7 and C9, the indi-
cators for newly-built and leasehold properties have been dropped given that properties are con-
strained to be identical along these dimensions.
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more than one similar property on the other side of the border, as long as the ab-

solute difference in predicted prices is less than 30% of the largest predicted price,

namely: | p̂it − p̂jt| < 0.3×max{ p̂it, p̂jt}. While the point estimates range between

-5.24 and -8.19, none of the coefficients is statistically different from zero as in all

previous specifications. We shed more light on the interpretation of these and the

previous results in Section 3.4.1.

The empirical findings above demonstrate that council tax differences never

significantly explain house price differences. Moreover, while absence of evidence,

namely the fact that agents seem to be insensitive to taxes that are postponed to the

future, does not directly imply evidence of absence, many point estimates are pos-

itive and hence with the wrong sign. Bearing these estimates in mind, in the next

section we develop a simple model that allows us to propose a plausible explana-

tion for the above results. We subsequently calibrate the model using a Bayesian

approach informed by all of the above estimates and briefly discuss policy impli-

cations.

3.4 Model

In what follows, we present a simple multi-period model of housing-consumption

choice in order to calibrate the above results. We begin with the optimisation prob-

lem of an agent who chooses at time t = 0 an infinite stream of consumption {ct}∞
t=0

and a composite housing good h:

max
{{ct,dt}∞

t=0,h,1{A},1{B}}
U({ct}∞

t=0, h) = c0 +
∞

∑
t=1

βtu(ct) +
∞

∑
t=0

βt log(h) (3.11)

s.t. c0 + h(pA01{A} + pB01{B} + τS) ≤ w0 + d0 (3.12)

ct + h(τAt1{A} + τBt1{B}) + dt−1(1 + r) ≤ wt + dt t = 1, 2, 3, ... (3.13)

dt ≤ αh(pAt1{A} + pBt1{B}) t = 0, 1, 2... (3.14)

For simplicity, the utility of the agent is chosen to be time-separable and separa-
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ble in consumption and housing. The utility function is quasi-linear in c0 in order

to get rid of income effects, as is standard practice in the public finance literature.

For tractability and to separate the effects of stamp duty and council tax, the agent

purchases the housing good only once at t = 0. There are two Boroughs, A and

B, with exogenously chosen and potentially different council tax rates. We assume

that there is equal supply of housing in both Boroughs13. Equation (3.12) is the

first-period budget constraint: the agent spends his initial endowment w0 on con-

sumption c0 and the after-tax cost of his housing demand h. When he buys a house,

the agent pays the pre-tax price pi0, i = A, B, and, in addition, he also needs to pay

the stamp duty tax τS hereby assumed to be proportional to the quality-adjusted

level of housing demand. If his total demand exceeds his initial endowment, the

agent can borrow additional funds d0 for one period at the risk-free rate. The bud-

get constraints for all subsequent periods are identical and given by equation (3.13):

from time t = 1 onwards, the agent spends his endowment wt on his optimal con-

sumption choice ct and to pay the council tax τit, i = A, B, that corresponds to the

Borough where he has chosen to locate at time t = 0. He also needs to repay his

short-term debt from the previous period inclusive of interest dt−1(1+ r), and is al-

lowed to borrow again at the same terms in order to balance his budget constraint.

Finally, the last constraint in equation (3.14) is the financing constraint: the agent

cannot borrow more than a fraction α of the pre-tax cost of his housing demand.

This can potentially generate very large incidence for the stamp duty tax since the

lump sum nature of this tax tightens the leverage constraint. The Lagrangian for

the above problem can be written as:

L =U({ct}∞
t=0, h)− λ0(c0 + h(pB0 + τS)− w0 − d0)

−
∞

∑
t=1

λt(ct + hτBt + dt−1(1 + r)− wt − dt)−
∞

∑
t=0

µt(dt − αhpBt)

− h1{A}

[
λ0(pA0 − pB0) +

∞

∑
t=1

λt(τAt − τBt)− α
∞

∑
t=0

µt(pAt − pBt)

] (3.15)

13This assumption is crucial and de-facto eliminates the potential for a differential elasticity of
supply with respect to council taxes at the border. We consider this assumption quite reasonable
given that the greatest majority of the housing stock in London has been constructed well before
the introduction of this tax in the early 90s as shown in Figures C8 and C9.
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where we use the fact that 1{B} = 1− 1{A}. Notice that the Lagrangian is mono-

tone in the choice of Borough 1{A}, therefore, the choice of where to locate can be

separated from the consumption and housing-quality choices. The agent chooses

to live in Borough A if:

pA0 − pB0 ≤ −
∞

∑
t=1

λt

λ0
(τAt − τBt) + α

∞

∑
t=0

µt

λ0
(pAt − pBt) (3.16)

i.e., if the price differential between the same-quality house in Boroughs A and B

more than compensates for the present value of the difference in future council

tax payments and the collateral value of the house. In equilibrium, markets clear

if equation (3.16) holds with equality which, from now onwards, we assume to

be the case. Assuming that the agent is indifferent between living in Boroughs A

and B, we proceed by suppressing the Borough subscripts and denote the price of

the house as pt and the council tax as τt. The first-order conditions for an interior

solution are:

1 = λ0 (3.17)

βtu′(ct) = λt ∀t = 1, 2, 3, ... (3.18)

−λt + λt+1(1 + r) + µt = 0 ∀t = 0, 1, 2, ... (3.19)

h−1

(1− β)
= λ0(p0 − α

µ0

λ0
p0 + τS) +

∞

∑
t=0

λt+1τt+1 −
∞

∑
t=0

λt+2
µt+1

λt+2
αpt+1 (3.20)

Combining the first-order conditions for consumption and for the optimal debt

choice, we obtain the following Euler equation:

λt+1

λt
= β

u′(ct+1)

u′(ct)
=

1
1 + r + µt

λt+1

(3.21)

The above Euler equation implies that the agent’s discount factor is equal to the
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inverse of the risk-free rate and a liquidity premium µt
λt+1

, arising from the fact

that the house has some collateral value. In order to simplify the exposition, we

assume that in equilibrium the liquidity premium is constant and equal to µt
λt+1

= k,

that house prices grow at a constant rate g, i.e., pit = pi0(1 + g)t, and council tax

amounts grow at a constant rate g̃, i.e., τit = τi1(1 + g̃)t−1. Re-arranging equations

(3.16), (3.20) and (3.21), we obtain the final no-arbitrage condition and housing

demand:

(pA0 − pB0)

(
1− αk

r + k− g

)
= −(τA1 − τB1)

1
r + k− g̃

(3.22)

h−1

(1− β)
= p0

(
1− αk

r + k− g

)
+ τS +

τ1

r + k− g̃
(3.23)

The first equation is the equilibrium condition of how house prices should behave

across Boroughs: the house price differential, after having taken into account the

collateral value αk
r+k−g , needs to match (the negative of) the present value of the

council tax differential. The second equation states that the agent’s marginal utility

of housing is equal to the house price inclusive of (the present value of) all taxes

and collateral value. It is important to note that the no-arbitrage condition (3.22)

in general gives a different incidence compared to the one obtained from the hous-

ing demand (3.23). This is because the former holds only at the border between

two Boroughs where the outside option, i.e., the option to buy an otherwise iden-

tical house on the other side of the border, implies that the supply bears the whole

burden of the tax. In particular, from equation (3.22) we obtain an incidence of:

dp0

dτ1
= − 1

r + k− g̃
× r + k− g

r + (1− α)k− g
(3.24)

On the other hand, for both houses on the border as well as houses in the mid-

dle of a given Borough we can define the optimal demand from equation (3.23) as

D(p0, τ1, τS) = h∗(p0, τ1, τS). Equating with the optimal supply, S(p0) = D(p0, τ1, τS),
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and after total differentiation we obtain the standard formula for the incidence:

dp0

dτ1
= −

∂D
∂τ1

∂D
∂p0
− ∂S

∂p0

= − 1
r + k− g̃

× 1
r+(1−α)k−g

r+k−g + η̃S

(3.25)

where η̃S = ∂S
∂p0

p0
S

p0

(
1− αk

r+k−g

)
+τS+

τ1
r+k−g̃

p0
= ηS

p0

(
1− αk

r+k−g

)
+τS+

τ1
r+k−g̃

p0
is a slightly modi-

fied version of the supply elasticity ηS that takes into account the price inclusive of

taxes and collateral value. In general, we have that:

1
r+(1−α)k−g

r+k−g + η̃S

≤ r + k− g
r + (1− α)k− g

(3.26)

implying that the incidence at the border between Boroughs is an upper bound for

the true council tax incidence as long as the modified elasticity of supply is non-

negative, i.e., η̃S ≥ 0. Notice that the modified elasticity of supply η̃S is positive as

long as the true elasticity of supply ηS is positive.

3.4.1 Calibration

The model in the previous section allows us to better interpret the empirical results

of Section 3.3. By using equations (3.22), (3.23) and (3.24) we get14:

dp0

dτ1
=

dp0

dτS
× 1

r + k− g̃
(3.27)

i.e., the incidence of the council tax can be interpreted as the present value of the

sum of the incidence of the stamp duty tax discounted at the liquidity-adjusted cost

of capital r + k with growth rate g̃. In what follows we use the results in Tables C5 -

C14 and provide further direction on how to interpret them. We treat each estimate

as a separate model m. Conditional on the model being true and given a common

prior distribution p(βτ|m) = p(βτ) about the true incidence of council tax and the

likelihood function of the data p(y|βτ, m) we can use Bayes’ rule to express the

14This assumes that η̃S = 0, i.e., that the supply of housing is fixed in the short term.
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posterior distribution for the incidence under each model m as:

p(βτ|y, m) =
p(y|βτ, m)× p(βτ)∫

p(y|βτ, m)× p(βτ)dβτ
(3.28)

We then proceed to obtain the model-averaged posterior distribution as:

p(βτ|y) = ∑
m

p(βτ|y, m)p(m|y) (3.29)

The computational burden of equation (3.29) is significant, therefore, we proceed

with the simplifying assumptions described in Appendix C.4. We always start from

a normally-distributed prior βτ ∼ N (bτ, σ2
τ) and likelihood function which leads to

a normal posterior. As detailed in Appendix C.4 the mean of the prior is chosen by

calibrating the parameters g, g̃, r and α based on historical data and matching the

stamp duty incidence to results in Best and Kleven (2018). For robustness we also

vary the precision of the prior and provide results for five different specifications:

p(βτ) = N (−150, 502), N (−100, 502), N (−50, 502), N (−150, 752), N (−50, 252).

Figure C15 plots the model-averaged density of the posterior distribution for

the council tax incidence. Panel (a) displays the posterior density for a constant

standard deviation of the prior of 50, while (b) for a standard deviation equal to

half the prior mean. It can be noted that the shape of the posterior is similar across

specifications and that it displays a significant shift of mass toward zero. Table C15

provides the quantiles, the mode and the mean of the posterior distribution of the

incidence. The median posterior incidence ranges between -22.87 and -2.17, well

below the median implied by the model calibration which has informed the prior.

The last column reports the ratio between the two, giving the implied attenuation

bias displayed by agents. Given the model parameters the price reaction to council

taxes is between 4% and 37% of what the price reaction to the stamp duty tax would

imply from agents who fully perceive the tax.

The results above become striking once coupled with the extent to which house

buyers react to stamp duty taxes. When buyers are liquidity-constrained, their

effective discount rates become large and, therefore, one might be tempted to at-
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tribute the previous evidence solely to extreme discounting of future cash flows. If

we are willing to take this view, we would have to assume discount rates ranging

between 23.4% and 231.9% in order to fit the posterior estimates of the council tax

incidence. Moreover, it should be noted that every estimate of the council tax inci-

dence is conditioned on an estimate of the stamp duty incidence, i.e., the discount

rate is not a free parameter in the calibration. To put it differently, changing the

discount rate to match a reasonable incidence for the council tax would lead to an

incidence of the stamp duty tax that is inconsistent with current estimates in the

literature. The fact that the incidence of the stamp duty is large but not extreme

implies that the liquidity premium cannot be the only source of the low council tax

incidence. Third, in our estimation we use relatively concentrated priors around

the model-informed incidence; had we allowed the likelihood to dominate by as-

signing diffuse priors, we would have obtained much lower estimates compared to

the conservative ones provided so far. One way to explain these findings is by hy-

pothesising that, when buying their properties, agents discount tax payments that

happen in the future disproportionately compared to those that occur concurrently

with the purchase. It is difficult to argue that this might be due to uncertainty as-

sociated with council tax payments given that differences in council tax amounts

across Boroughs are very smooth and predictable as shown in Figure C2. This

leaves us with another plausible alternative explanation: agents fail to fully inter-

nalise the difference in council tax payments across Boroughs upon purchasing a

property, either because this is much less salient compared to the stamp duty tax15,

or because they fail to appreciate the magnitude of its present value16. Notice also

that the results so far suggest that there is somebody who does not take the council

tax differentials into account in a fully-rational way, but this does not need to be the

house buyer: our previous analysis goes through even if the buyer is fully aware

15It is also possible that the tax is fully salient to agents but, due to mental accounting, they fail
to integrate its present value into the house price they are willing to pay. Other explanations could
be related to search costs and cognitive costs.

16For a property in band D worth, say, £300, 000, the stamp duty tax in 2018 would amount to
£9, 000. If the buyer could choose whether to buy the property in the Borough of Camden or the
Borough of Westminster, the difference in council tax would amount to about £778 in 2018 which,
in present value using a discount rate of 4%, would be equal to £19, 450, more than twice the value
of the stamp duty tax.
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of the tax and hopes to shift its incidence onto the subsequent buyer, or the renter

in the case of buy-to-let property transactions17.

Motivated by these findings, we explore some policy implications in the follow-

ing section.

3.4.2 Implications for Tax Policy

Given the results in the previous section, it seems reasonable to argue that agents

fail to fully perceive deferred taxes. As a result, we propose a modified version of

the model above that allows for non-fully salient taxes. We extend our analysis to

properties that are potentially far from the border and, therefore, allow the elastic-

ity of supply ηS to be non-zero. Recall that the incidence estimates coming from

the border in Section 3.3 are an upper bound for the incidence in the middle of Bor-

oughs. For simplicity, let us assume we are in an equilibrium where the leverage

constraint (3.14) is binding, i.e., dt = αhpt. If we multiply each of the constraints

(3.12) and (3.13) by 1
(1+r+k)t and add them together, we obtain the following con-

solidated budget constraint:

c0 +
c1

(1 + r + k)
+

c2

(1 + r + k)2 + ... + p̃h = w0 +
w1

(1 + r + k)
+ ... = I (3.30)

where p̃ = p0

(
1− αk

r+k−g

)
+ τS +

τ1
r+k−g̃ is the tax-inclusive house price. For sim-

plicity of exposition, define p = p0

(
1− αk

r+k−g

)
and τ = τ1

r+k−g̃ , so that we can

rewrite p̃ = p + τS + τ. Following Chetty et al. (2009), Farhi and Gabaix (2020) and

Goldin (2015), we assume that the agent misperceives taxes with attenuation factor

γ, i.e., he solves the following maximisation problem:

max
{{ct}∞

t=0,h}
U({ct}∞

t=0, h) = c0 + log(h) +
∞

∑
t=1

βt (u(ct) + log(h)) (3.31)

17Note that we largely interpret the results as evidence of overpricing. Another possibility is that
the properties on the low council tax side of borders are relatively underpriced and it is, therefore,
sellers who fail to incorporate the tax discount into their ask price.
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s.t.

c0 +
c1

(1 + r + k)
+

c2

(1 + r + k)2 + ... + p̃γh = w0 +
w1

(1 + r + k)
+ ... = I (3.32)

where the perceived house price is:

p̃γ = p + τS + γτ, γ ∈ [0, 1] (3.33)

Recall from the previous section that the attenuation factor for the council tax im-

plied by the data ranges between 0.04 and 0.37. Notice that while the agent per-

ceives the above budget constraint, he has to satisfy the actual budget constraint

(3.30) given by the rational model. As pointed out in Reck (2016), it is crucial to de-

cide what choice variable bears the burden of adjustment. Given our assumption

about the quasi-linear utility function in first-period consumption c0, it is natural

to let c0 be the shock absorber. This choice amounts to assuming the following train

of events: 1) the agent misperceives the council tax he will have to pay going for-

ward and, as a result, buys ”too much” quality-adjusted housing; 2) following this,

he realises that the actual amount of taxes he will have to pay is beyond his bud-

get; 3) consequently, the agent adjusts his consumption in the first period keeping

everything else constant. Denoting the observed demands as ĉ0, ĉt, ĥ, and the opti-

mal demands absent any behavioural frictions as c∗0 , c∗t , h∗, we have the following

first-order conditions:

ĉt = [u′]−1
(

1
(β(1 + r + k))t

)
= c∗t (3.34)

ĥ = [(1− β) p̃γ]
−1 6= [(1− β) p̃]−1 = h∗ (3.35)

ĉ0 = I −
∞

∑
t=1

ĉt

(1 + r + k)t − ĥ p̃ 6= c∗0 (3.36)

As previously mentioned, the optimality condition for future consumption remains

as before. However, equation (3.35) shows that the agent demands ”too much”

housing due to the fact that the perceived price p̃γ is lower than the true price p̃,

as long as γ < 1. As a result, because of quasi-linearity in the utility function,
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ĉ0 adjusts to absorb the reduction in available income. The previous discussion

highlights the fact that misperception of the house price affects both consumption

and housing demand, albeit in opposite directions. This implies that a benevolent

social planner needs to carefully balance the two distortions when setting the opti-

mal tax policy. To see this more formally, let us adopt the approach of Goldin (2015)

and assume that the Government chooses the optimal (property) tax combination

in order to raise a fixed amount of revenue and maximise the utility of the buyer18.

For convenience, define the present value of council tax revenue from the Govern-

ment’s point of view, discounted at the risk-free rate, as τ̃ = τ1
r−g̃ . The total revenue

raised from a given buyer is:

R = (τS + τ̃)h =

(
τS + τ

r + k− g̃
r− g̃

)
h (3.37)

The second equality of the above equation shows that the Government discounts

the revenue raised through council taxes at a lower rate than agents due to the

presence of borrowing constraints. The Government can twick the two taxes to

maintain revenue-neutrality. In particular, a revenue-neutral tax change is such

that:

[
h +

(
τS + τ

r + k− g̃
r− g̃

)
∂h
∂τS

]
∆τS = −

[
r + k− g̃

r− g̃
h +

(
τS + τ

r + k− g̃
r− g̃

)
∂h
∂τ

]
∆τ

(3.38)

This implies that the change in stamp duty per unit change in council tax needed

to maintain revenue-neutrality is:

∆τS

∆τ
= −

r+k−g̃
r−g̃ h +

(
τS + τ

r+k−g̃
r−g̃

)
∂h
∂τ

h +
(

τS + τ
r+k−g̃

r−g̃

)
∂h
∂τS

= −
r+k−g̃

r−g̃ h +
(

τS + τ
r+k−g̃

r−g̃

)
θτ

∂h
∂p

h +
(

τS + τ
r+k−g̃

r−g̃

)
θτS

∂h
∂p

(3.39)

where θτS =
∂h

∂τS
∂h
∂p

and θτ =
∂h
∂τ
∂h
∂p

tell us how responsive the demand is with respect

to taxes relative to pre-tax prices. From equations (3.33) and (3.35) we infer that

θτS = 1 and θτ = γ in our model. The indirect utility function for an inattentive

18In what follows, we abstract from analysing the effect on the utility of the seller.
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agent is:

V(p, τS, τ) = I −
∞

∑
t=1

ĉt

(1 + r + k)t − ĥ(p + τS + τ) +
∞

∑
t=1

βtu(ĉt) +
log(ĥ)
(1− β)

(3.40)

where ĉt = [u′]−1
(

1
(β(1+r+k))t

)
and ĥ = ĥ(p, τS, τ) = [(1− β)(p + τS + γτ)]−1

from the agent’s first-order conditions. Differentiate the indirect utility function

above to obtain:

dV
dτ

= −ĥ
(

dp
dτ

+
∂τS

∂τ
+ 1
)
+

[
∂U
∂h
− (p + τS + τ)

] [
dp
dτ

+ θτS

∂τS

∂τ
+ θτ

]
∂ĥ
∂p

(3.41)

where dp
dτ = ∂p

∂τ + ∂p
∂τS

∂τS
∂τ is the total incidence of the council tax after having taken

into account the shift in stamp duty to guarantee revenue neutrality. As in Goldin

(2015), the change in welfare can be decomposed into four components: the first

part, i.e., −ĥ
(

dp
dτ + ∂τS

∂τ + 1
)

measures the direct welfare effect of a tax shift due to

the alleviation of the borrowing constraint; the second part, i.e.,
[

∂U
∂h − (p + τS + τ)

]
is the behavioural wedge and it represents the difference between perceived and

actual prices; the third component, i.e.,
[

dp
dτ + θτS

∂τS
∂τ + θτ

]
is equal to the change in

prices as perceived by the agent; and the fourth component, i.e., ∂ĥ
∂p is the impact

of a change in prices on demand for housing. With no bias, i.e., when γ = 1 the

perceived price is equal to the actual price and the envelope theorem ensures that

the second component above is equal to zero. As a consequence, the optimal tax

policy depends on the sign of the first term19. If this is positive, it is optimal for

the government to set τS = 0, if negative, τS = R. It is easy to show that when

γ = 1 this term is unambiguously positive as long as ηS > 0. The Government

should then choose a zero stamp duty tax in order to alleviate the agent’s liquidity

constraint. In the presence of biases, however, there is a trade-off between the two

inefficiencies: 1) the liquidity constraint and differences in salience make increas-

ing the stamp duty tax less efficient than raising the council tax; 2) on the other

19Notice that ∂τS
∂τ < −1 because r + k − g̃ > r − g̃, θτ < θτS and ∂h

∂p < 0. The above assumes

that r+k−g̃
r−g̃ h +

(
τS + τ

r+k−g̃
r−g̃

)
∂h
∂τ > 0 and h +

(
τS + τ

r+k−g̃
r−g̃

)
∂h
∂τS

> 0, i.e., the Government is on the

upward sloping part of the Laffer curve. The term ∂p
∂τ + ∂p

∂τS

∂τS
∂τ is usually positive since agents react

less to a decrease in council tax relative to a revenue-neutral increase in the stamp duty.
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hand, raising the council tax causes a shift in demand away from c0 which in our

example is the shock absorber. In the extreme case when there are no liquidity con-

straints, it is optimal to impose no council tax. Otherwise, the problem of the social

planner amounts to choosing the optimal combination of stamp duty and council

tax to jointly solve the following two equations:

ĥ
(

τS + τ
r + k− g̃

r− g̃

)
= R (3.42)

dV
dτ

= 0 (3.43)

Figure C16 reports the optimal mix of taxes computed for a house worth £430, 000

which is the median value of properties in band D in 2017. The property pays a

stamp duty of £11, 500 and we assume that it pays a yearly council tax of £1, 419.73,

the in-sample median amount in the corresponding band and year. The upper

panel shows how the optimal combination varies as a function of the discount rate

r + k, while the bottom panel varies the attenuation parameter γ. The figures con-

firm the above intuition. From Figure C16a we can see that when the liquidity

premium is zero, the optimal policy is to levy only the stamp duty tax. For a

small liquidity premium there is an optimal mix that includes positive amounts

of both taxes, however, the borrowing constraints become dominant fairly quickly

and make it optimal to set a stamp duty of zero. Figure C16b, on the other hand,

focuses on the effect of salience. Even when the council tax is entirely non-salient,

i.e., γ = 0, it is still optimal to raise a little over 20% of revenue through it. As

the tax becomes more salient, its distortionary effect on c0 decreases, therefore, its

proportion should increase, up to the point where it becomes the only form of tax-

ation for γ greater than 0.25. It should be noted, however, that this assumes that

tax policy changes do not affect any of the parameters. In practice, changing the

tax mix can change the inattention parameter γ.
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3.5 Conclusions

This paper studies the incidence of property taxes in the UK housing market. By us-

ing a geographical discontinuity approach, exploiting the considerable difference

in council tax rates across London Boroughs, we show that agents significantly

underreact to council taxes. Our empirical estimates of council tax incidence on

house prices is never significantly negative and this lack of significance cannot be

attributed to lack of power. This is in sharp contrast to the large stamp duty in-

cidence estimated by Best and Kleven (2018) and suggests that agents do not pay

sufficient attention to taxes deferred to the future, or possibly points to evidence of

very large search frictions or other cognitive costs. In Section 3.4.2, we touch upon

the policy implications of our findings, however, one should be aware of issues

arising when manipulating tax rates given that there is no guarantee that changes

in policies are not followed by changes in tax salience and therefore behaviour. The

analysis in this paper relies on data from the residential property market, however,

it can also be extended to other domains of tax policy. One general take-away from

the present work is that transaction taxes, such as the stamp duty tax, have a large

incidence on transaction prices while deferred taxes, such as the council tax, have a

lower effect on prices but potentially higher impact on consumption choices. This

implies that the optimal mix of taxes may be some combination of the two. The

analysis can be extended, for instance, to financial securities where the fact that a

transaction tax might be very distortionary does not imply that it is optimal to raise

revenues only through capital gains20 or dividend taxes.

The findings in the paper keep open the question of the nature of the channels

through which inattentive households correct their mistakes and adjust their con-

sumption policies, once neglected taxes materialise. Access to disaggregated ex-

penditure data could help shed light on this matter: this can be done by analysing

differences in consumption responses at the border between Boroughs, which we

should expect to arise whenever agents fail to optimally account for tax differ-

20While the capital gains tax is a transaction tax, the fact that it is borne by the seller of the asset
suggests that agents could still underreact to it as it is a deferred tax and, therefore less salient
compared to a tax charged at the moment of purchase like the stamp duty tax.
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ences and are forced to adjust their expenditures ex-post to meet their budget con-

straints.
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Liebscher, Roberto and Thomas Mählmann, “Are Professional Investment Man-

agers Skilled? Evidence from Syndicated Loan Portfolios,” Management Science,

2017, 63 (6), 1892–1918.

Lochstoer, Lars A. and Tyler Muir, “Volatility Expectations and Returns,” The Jour-

nal of Finance, forthcoming.

Lou, Dong, “A Flow-based Explanation for Return Predictability,” The Review of

Financial Studies, 2012, 25 (12), 3457–3489.

Loughran, Tim and Jay R. Ritter, “The New Issues Puzzle,” The Journal of Finance,

1995, 50 (1), 23–51.

Loumioti, Maria and Florin P. Vasvari, “Consequences of CLO Portfolio Con-

straints,” Available at SSRN 3371162, 2019.

and , “Portfolio Performance Manipulation in Collateralized Loan Obliga-

tions,” Journal of Accounting and Economics, 2019, 67 (2-3), 438–462.

Ma, Yueran, “Nonfinancial Firms as Cross-Market Arbitrageurs,” The Journal of Fi-

nance, 2019, 74 (6), 3041–3087.

Maenhout, Pascal J., “Robust Portfolio Rules and Asset Pricing,” The Review of Fi-

nancial Studies, 2004, 17 (4), 951–983.

Malmendier, Ulrike and Stefan Nagel, “Depression Babies: Do Macroeconomic Ex-

periences Affect Risk Taking?,” The Quarterly Journal of Economics, 2011, 126 (1),

373–416.

and , “Learning from Inflation Experiences,” The Quarterly Journal of Eco-

nomics, 2016, 131 (1), 53–87.

, , and Zhen Yan, “The Making of Hawks and Doves,” Journal of Monetary

Economics, 2021, 117, 19–42.



BIBLIOGRAPHY 126

Martin, Ian W. R., “What is the Expected Return on the Market?,” The Quarterly

Journal of Economics, 2017, 132 (1), 367–433.

Mehra, Rajnish and Edward C. Prescott, “The Equity Premium: A Puzzle,” Journal

of Monetary Economics, 1985, 15 (2), 145–161.

Merton, Robert C., “On Estimating the Expected Return on the Market : An Ex-

ploratory Investigation,” Journal of Financial Economics, 1980, 8 (4), 323–361.

Moreira, Alan and Tyler Muir, “Should Long-Term Investors Time Volatility?,”

Journal of Financial Economics, 2019, 131 (3), 507 – 527.

Morningstar, “CLO Commentary: Push for Higher Equity Returns Leads to

Weaker Structural Features in CLOs,” 2018.

Morris, Stephen, Ilhyock Shim, and Hyun Song Shin, “Redemption Risk and Cash

Hoarding by Asset Managers,” Journal of Monetary Economics, 2017, 89, 71–87.

Murdock, Bennet B. Jr., “The Serial Position Effect of Free Recall.,” Journal of Exper-

imental Psychology, 1962, 64 (5), 482.

, Human Memory: Theory and Data., Lawrence Erlbaum, 1974.

Murfin, Justin R. and Ryan Pratt, “Comparables Pricing,” The Review of Financial

Studies, 04 2018, 32 (2), 688–737.

Nadauld, Taylor D. and Michael S. Weisbach, “Did Securitization Affect the Cost

of Corporate Debt?,” Journal of Financial Economics, 2012, 105 (2), 332–352.

Neyman, Jerzy and Elizabeth L. Scott, “Consistent Estimates Based on Partially

Consistent Observations,” Econometrica, 1948, pp. 1–32.

Ngai, L Rachel and Silvana Tenreyro, “Hot and cold seasons in the housing mar-

ket,” American Economic Review, 2014, 104 (12), 3991–4026.

Nipher, Francis E., “On the Distribution of Errors in Numbers Written from Mem-

ory,” Transactions of the Academy of Science of St. Louis, 1878, 3, 10–1.



BIBLIOGRAPHY 127

Nofsinger, John R. and Richard W. Sias, “Herding and Feedback Trading by Insti-

tutional and Individual Investors,” The Journal of Finance, 1999, 54 (6), 2263–2295.

Pratt, John W., “Risk Aversion in the Small and in the Large,” Econometrica, 1964,

32, 122–136.

Reck, Daniel, “Taxes and Mistakes: What’s in a Sufficient Statistic?,” Working Paper,

April 2016.

Roll, Richard, “A Simple Implicit Measure of the Effective Bid-ask Spread in an

Efficient Market,” The Journal of Finance, 1984, 39 (4), 1127–1139.

Roth, Alvin E. and Ido Erev, “Learning in Extensive-form Games: Experimental

Data and Simple Dynamic Models in the Intermediate Term,” Games and Eco-

nomic Behavior, 1995, 8 (1), 164–212.

Schmidt, Lawrence, Allan Timmermann, and Russ Wermers, “Runs on Money

Market Mutual Funds,” American Economic Review, 2016, 106 (9), 2625–57.

Sharpe, William F., “Imputing Expected Security Returns from Portfolio Composi-

tion,” Journal of Financial and Quantitative Analysis, 1974, 9 (03), 463–472.

Shleifer, Andrei and Robert Vishny, “Fire Sales in Finance and Macroeconomics,”

Journal of Economic Perspectives, 2011, 25 (1), 29–48.

Shumway, Tyler, Maciej J. Szefler, and Kathy Yuan, “The Information Content of

Revealed Beliefs in Portfolio Holdings,” LSE Research Online Documents on

Economics, London School of Economics and Political Science, LSE Library 2011.

Sialm, Clemens and Hanjiang Zhang, “Tax-Efficient Asset Management: Evidence

from Equity Mutual Funds,” The Journal of Finance, 2020, 75 (2), 735–777.

Simonsohn, Uri, Niklas Karlsson, George Loewenstein, and Dan Ariely, “The Tree

of Experience in the Forest of Information: Overweighing Experienced Relative

to Observed Information,” Games and Economic Behavior, 2008, 62 (1), 263–286.

S&P Global, “As Leveraged Loan Downgrades Mount, CLOs Cast Wary Eye on

Triple-C Limits,” 2019.



BIBLIOGRAPHY 128

, “Default, Transition, and Recovery: 2019 Annual Global Corporate Default And

Rating Transition Study,” 2020.

, “Leveraged Commentary & Data (LCD): Leveraged Loan Primer,” 2020.

Standard & Poor’s Compustat Services, I., “Compustat,” 1962.

Sufi, Amir, “The Real Effects of Debt Certification: Evidence from the Introduction

of Bank Loan Ratings,” The Review of Financial Studies, 2009, 22 (4), 1659–1691.

Taubinsky, Dmitry and Alex Rees-Jones, “Attention Variation and Welfare: Theory

and Evidence from a Tax Salience Experiment,” Review of Economic Studies, 2018,

85 (4), 2462–2496.

Tepla, Lucie, “Optimal Portfolio Policies with Borrowing and Shortsale Con-

straints,” Journal of Economic Dynamics and Control, 2000, 24 (11-12), 1623–1639.

Thomson Financial, I., “SDC Platinum,” 2001.

Thorndike, Edward L., “Animal Intelligence: An Experimental Study of the Asso-

ciative Processes in Animals.,” The Psychological Review: Monograph Supplements,

1898, 2 (4), i.

Touloumis, Anestis, “Nonparametric Stein-type Shrinkage Covariance Matrix Es-

timators in High-dimensional Settings,” Computational Statistics & Data Analysis,

2015, 83 (C), 251–261.

Tversky, Amos and Daniel Kahneman, “Availability: A Heuristic for Judging Fre-

quency and Probability,” Cognitive Psychology, 1973, 5 (2), 207–232.

University of Chicago. Center for Research in Security Prices, I., “CRSP databases,”

1960.

van Binsbergen, Jules H., Michael W. Brandt, and Ralph S.J. Koijen, “Optimal De-

centralized Investment Management,” The Journal of Finance, 2008, 63 (4), 1849–

1895.



BIBLIOGRAPHY 129

Warther, Vincent A., “Aggregate Mutual Fund Flows and Security Returns,” Journal

of Financial Economics, 1995, 39 (2-3), 209–235.

Wermers, Russ, “Mutual Fund Herding and the Impact on Stock Prices,” The Jour-

nal of Finance, 1999, 54 (2), 581–622.

Xu, Gan-Lin and Steven E. Shreve, “A Duality Method for Optimal Consump-

tion and Investment Under Short- Selling Prohibition. I. General Market Coef-

ficients,” The Annals of Applied Probability, 1992, 2 (1), 87–112.

Zhu, Qifei, “Capital supply and Corporate Bond Issuances: Evidence from Mutual

Fund Flows,” Journal of Financial Economics, forthcoming.



A. Appendix to Contagion in the Market for

Leveraged Loans

A.1 Tables

Table A1: Summary Statistics - Holdings

The table contains summary statistics for the sample of CLOs in the CLO-i dataset between January
2009 and December 2019. Panel A reports summary statistics at the level of each CLO report, while
Panel B aggregates at the level of Management Team - Month. Total Assets refers to the sum of the
current balance of securities held measured in $Mlns; Nr. Issuers refers to the distinct number of
issuers held; Nr. Securities to the distinct number of securities; % of Assets to the fraction of assets
represented by each security in the portfolio; Interest rate to the interest rate of the loan; % CCC to
the ratio between the sum of the current balance of securities rated at or below Caa (CCC) and total
assets; % Default to the ratio between the sum of the current balance of securities in default and
total assets; Age to the difference between the first time a certain deal or management team appears
in sample and the current reporting date; WARF to the weighted-average rating factor computed
using Moody’s rating factors.

Panel A: CLO Deals
Nr.Obs Min Max Median Mean Std.Dev

Total Assets 89,111 0.00 18336.84 408.86 434.73 283.96
Nr. Issuers 89,111 1.00 748.00 157.00 168.20 101.33
Nr. Securities 89,111 1.00 907.00 203.00 213.82 115.27
% of Assets 88,517 0.00 1.00 0.01 0.01 0.05
Interest Rate 88,334 0.00 16.47 4.77 4.87 1.11
% CCC 88,905 0.00 1.00 0.06 0.09 0.12
% Default 88,905 0.00 1.00 0.02 0.05 0.11
Age 89,111 0.00 10.90 2.00 2.57 2.16
WARF 88,421 4.33 10000.00 2737 2923.48 806.63

Panel B: Management Teams
Nr.Obs Min Max Median Mean Std.Dev

Deals Managed 15,470 1.00 53.00 3.00 5.57 6.50
Total Assets 15,470 0.00 28504.00 1239.46 2504.18 3328.16
Nr. Issuers 15,470 1.00 1209.00 217.00 257.45 183.73
Nr. Securities 15,470 1.00 4935.00 337.00 565.32 606.29
% of Assets 15,100 0.00 1.00 0.00 0.01 0.04
Interest Rate 15,298 0.00 12.28 4.72 4.88 1.10
% CCC 15,451 0.00 1.00 0.07 0.09 0.10
% Default 15,451 0.00 1.00 0.03 0.05 0.09
Age 15,470 0.00 11.00 4.21 4.70 3.23
WARF 15,080 160.75 10000.00 2753.89 2944.44 818.51
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Table A2: Summary Statistics - Transactions

The table contains summary statistics for the sample of CLOs’ transactions in the CLO-i dataset
between January 2009 and December 2019. Tot. Transactions refers to the number of transactions
completed by a deal between two reporting dates; Purchase Price to the average price at which a
loan has been purchased; Nr. Purchases to the total number of securities bought; Amt. Purchased
to the amount of securities purchased, measured in $ Mlns; Sale Price to the average price at which
a loan has been sold; Nr. Sales to the total number of securities sold; Amt. Sold to the amount of
securities sold, measured in $ Mlns. Prices have been capped between $10 and $150. Nr. Obs counts
the number of non-zero observations, while Nr. Zeros counts the number of observations equal to
zero. Min, Max, Median, Mean and Std. Dev are the minimum, maximum, median, average and
standard deviation of the non-zero observations.

CLO Deals
Nr. Obs Nr. Zeros Min Max Median Mean Std.Dev

Tot. Transactions 72,515 16,596 0.00 853.00 19.00 29.73 36.97
Purchase Price 64,919 0 10.00 150.00 98.99 95.31 13.39
Nr. Purchases 65,458 23,653 0.00 736.00 13.00 19.25 26.20
Amt. Purchased 65,458 23,653 0.00 2372.24 15.29 22.44 43.94
Sale Price 64,755 0 10.00 150.00 98.20 91.73 17.53
Nr. Sales 65,239 23,872 0.00 475.00 8.00 13.69 17.55
Amt. Sold 65,239 23,872 0.00 1006.72 6.65 10.84 19.67
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Table A3: The Mechanical Effect of Downgrades to Caa (CCC) on OC Tests

The table studies the mechanical effect of downgrades to Caa (CCC) on the slack of OC tests.
Columns (1)-(4) report the results of the following regression: slackk

i,t = α + β1Shockedi,t + Xi,tδ +

εi,t, where slackk
i,t =

ÕC
k
i,t−Ok

i
Ok

i
, ÕC

k
i,t is the realization of the OC test for tranche k and CLO i and Ok

i

is the test threshold; Shockedi,t is an indicator variable that turns on whenever the loans of CLO
i have been downgraded to Caa (CCC). Column (5) reports the result of the following regression:
slackk

i,t = α + β1Shockedi,t + β2Above 7.5%i,t + β3Shockedi,t × Above 7.5%i,t + Xi,tδ + εi,t, where
Above 7.5%i,t is a dummy variable that turns on whenever the fraction of Caa (CCC) securities for
CLO i is greater than 7.5% at time t. Standard errors are reported in parantheses and are double
clustered at the Year ×Month & CLO Deal level.

(1) (2) (3) (4) (5)

(Intercept) 0.072∗∗∗

(0.008)
Shocked -0.007 -0.007 -0.008 -0.008 -0.006

(0.005) (0.005) (0.006) (0.006) (0.005)
Above 7.5% 0.140

(0.135)
Shocked × Above 7.5% -0.124

(0.128)

Fixed-Effects
Year×Month No Yes Yes Yes Yes
Deal No No Yes Yes Yes
Senior/Junior OC No No No Yes Yes

Observations 80,321 80,321 80,321 80,321 80,321
R2 0.000 0.001 0.052 0.053 0.053
Within R2 – 0.000 0.000 0.000 0.000

Two-way (Year×Month & Deal) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A4: Holdings vs. Market Prices

The table compares the discount of loans as they are reported by CLOs with the closest market price
in the following year by running the following regression: discountj,t = αi + αt + β1Transactionj,t +
Xj,tδ + ε j,t, where discountj,t = 100× log(100/Pj,t) is the discount at which a loan is recorded or
traded compared to par, Transactionj,t is an indicator variable equal to one whenever the price
comes from an actual sale transaction and zero otherwise, αi and αt are issuer and time fixed effects,
while Xj,t includes a set of fixed effects for rating, industry and interest rate of the loan. Panel A
consider the universe of loans that have at least one price reported on the balance sheet of CLOs
and one market price in the following twelve months, while Panel B focuses on the subset of loans
rated Caa (CCC). Standard errors clustered at the Year ×Month and Issuer level are reported in
parentheses.

Panel A: All Loans
(1) (2) (3) (4) (5)

Transaction 0.871∗∗∗ 0.875∗∗∗ 0.875∗∗∗ 0.875∗∗∗ 0.878∗∗∗

(0.169) (0.170) (0.170) (0.170) (0.170)

Fit statistics
Obs. 2,211,675 2,200,337 2,200,337 2,200,337 2,211,675
R2 0.578 0.609 0.610 0.610 0.726
Within R2 0.004 0.005 0.005 0.005 0.006

Panel B: Caa (CCC) Loans
(1) (2) (3) (4) (5)

Transaction 3.990∗∗∗ 4.000∗∗∗ 4.000∗∗∗ 4.000∗∗∗ 4.030∗∗∗

(0.801) (0.801) (0.801) (0.801) (0.803)

Fit statistics
Obs. 195,073 195,073 195,073 195,073 195,073
R2 0.622 0.644 0.646 0.646 0.728
Within R2 0.013 0.014 0.014 0.014 0.018

Fixed-Effects
Year ×Month Yes Yes Yes Yes No
Issuer Yes Yes Yes Yes No
Rating No Yes Yes Yes Yes
Industry No No Yes Yes Yes
Interest No No No Yes Yes
Year ×Month×Issuer No No No No Yes

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A5: Discontinuity Test

The table reports the result of a discontinuity test where I compare the density of the fraction of Caa
(CCC) or lower rated securities before and after the 7.5% threshold. Number of Obs. reports the
total number of observations on the left and right of the 7.5% threshold; Eff. Number of Obs. reports
the number of observations used for the test which employs Cattaneo et al. (2020) local polynomial
approximation.

Cutoff 0.075 Left Right

Number of Obs. 45318 1620
Eff. Number of Obs. 961 744
Order 2 2
Order Bias 3 3
Bandwith 0.008 0.011

T Pr > |T|
Statistic -0.2725 0.7852
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Table A6: Par Building

Columns (1) and (2) report the results of the following regressions: gaini,j,t =
α + β1Constrainedi,t + β2Shockedi,t + β3Constrainedi,t × Shockedi,t + εi,t, where

gaini,j,t = 100 ×
(
(100− Pj,t−1)×

Nr. loans boughti,j,t
Principal Balancei,t

)
for purchases and gaini,j,t =

−100 ×
(
(100− Pj,t−1)×

Nr. loans soldi,j,t
Principal Balancei,t

)
for sales; Constrainedi,t is a dummy variable equal

to one whenever the Junior (column (1)) or Senior (column(2)) slack of CLO i is between 0%
and and 5% in period t; Shockedi,t is a dummy variable equal to one whenever the loans of
CLO i have been downgraded. Columns (3) and (4) report the results of the following regres-
sions: gaini,t = α + β1Constrainedi,t + β2Shockedi,t + β3Constrainedi,t × Shockedi,t + εi,t, where

gaini,t = 100×
(

∑j(100− Pj,t−1)×
Nr. loans boughti,j,t
Principal Balancei,t

−∑j(100− Pj,t−1)×
Nr. loans soldi,j,t

Principal Balancei,t

)
and the

other variables are defined as above. Constrainedi,t refers to Junior tests in column (3) and to Senior
tests in column (4). Standard errors are reported in parentheses and they are double clustered at
the Year×Month & CLO Deal level.

Individual Transactions Multiple Transactions
(1) (2) (3) (4)

(Intercept) -0.007∗∗∗ -0.003∗∗∗ -0.068∗∗∗ -0.034∗∗∗

(0.001) (0.000) (0.006) (0.002)
Constrained 0.004∗∗∗ -0.008∗∗∗ 0.035∗∗∗ -0.052∗∗∗

(0.001) (0.002) (0.006) (0.015)
Shocked 0.006∗∗∗ 0.005∗∗∗ 0.050∗∗∗ 0.033∗∗∗

(0.001) (0.000) (0.006) (0.003)
Constrained × Shocked 0.005∗∗∗ 0.004 0.069∗∗∗ 0.016

(0.001) (0.003) (0.008) (0.022)

Fit statistics
Observations 309,028 303,160 30,156 29,034
R2 0.002 0.002 0.009 0.005
Adjusted R2 0.002 0.002 0.009 0.005

OC Test Junior Senior Junior Senior

Two-way (Year×Month & CLO Deal) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A7: Rating Factor

The table shows how to convert Moody’s and Standard&Poor’s ratings into Moody’s Rating Fac-
tors. Rating Factors convert the ordinal rating into a cardinal variable.

Moody’s S&P Rating Factor Moody’s S&P Rating Factor

Aaa AAA 1 Ba1 BB+ 940
Aa1 AA+ 10 Ba2 BB 1350
Aa2 AA 20 Ba3 BB- 1766
Aa3 AA- 40 B1 B+ 2220
A1 A+ 70 B2 B 2720
A2 A 120 B3 B- 3490
A3 A- 180 Caa1 CCC+ 4770
Baa1 BBB+ 260 Caa2 CCC 6500
Baa2 BBB 360 Caa3 CCC- 8070
Baa3 BBB- 610 Ca-C CC-C 10000

Table A8: WARF Deterioration

The table compares the average rating factor for loans sold, in column (1), and purchased, col-
umn (2), by CLOs whose loans have been downgraded to Caa (CCC) and whose Junior OC tests
are binding, by reporting the coefficients of the following regression: RFi,j,t = α + β1Shockedi,t +
β2Constrainedi,t + β3Shockedi,t×Constrainedi,t + εi,t; where RFi,j,t is the rating factor of loan j, sold
by CLO i at time t; Shockedi,t is dummy variable equal to one when the loans of CLO i have been
downgraded to Caa (CCC); Constrainedi,t is a dummy variable equal to one when the slack of the
Junior OC test is between 0% and 5%. Column (3) aggregates the results by reporting the coefficients
of the following regression: ∆WARFi,t = α + β1Shockedi,t + β2Constrainedi,t + β3Shockedi,t ×
Constrainedi,t + εi,t, where ∆WARFi,t = ∑j RFi,j,t ×

Amt. Purchasedi,j,t
∑j Amt. Purchasedi,j,t

− ∑j RFi,j,t ×
Amt. Soldi,j,t

∑j Amt. Soldi,j,t
.

Standard errors clustered by CLO Deal & Year×Month are reported in parentheses.

Individual Transactions Multiple Transactions
(1) (2) (3)

(Intercept) 3025.0∗∗∗ 2641.4∗∗∗ -441.3∗∗∗

(29.5) (12.3) (39.6)
Shocked -151.6∗∗∗ 67.5∗∗∗ 316.2∗∗∗

(26.9) (18.3) (35.5)
Constrained 73.9∗∗ -6.9 374.5∗∗∗

(34.2) (14) (43.3)
Shocked × Constrained -514.2∗∗∗ 105.8∗∗∗ 79.1∗

(40.2) (23.4) (41.2)

Fit statistics
Observations 155,079 162,629 21,043
R2 0.00847 0.00434 0.04243
Adjusted R2 0.00845 0.00432 0.0423

Two-way (CLO Deal & Year×Month) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A9: Price Pressure

The table reports the results of the following regression: discountj,t = β1Shockedj,t +
β2Shockedj,t × Postj,t + Xj,tδ + ε j,t, where discountj,k,t = 100 × log(100/Pj,k,t), Pj,k,t is the price
of loan j issued by firm k at time t, Shockedj,tis a dummy variable equal to one when loan j
selling volume by shocked CLOs is above median, Postj,t is a dummy equal to one after loan j
has received an above median selling volume by shocked CLOs, Xj,t is a matrix containing var-
ious fixed effects and controls. Column (1) includes year×month fixed effects; column (2) adds
year×month×time-to-maturity fixed effects; column (3) adds year×month×rating fixed effects;
column (4) adds year×month×industry fixed effects; column (5) adds year×month×interest rate
fixed effects. Interest and time-to-maturity fixed effects are constructed after bucketing the contin-
uous variable in ten groups. All the regressions include the lagged average discount on the issuer
computed as Avg. discountk,t−1 = 1

Jk×(t−1) ∑Jk
j=1 ∑t−1

s=1 discountj,k,s, where Jk is the number of loans
by issuer k actively traded. Two-way clustered standard errors at the year×month and issuer level
are reported in parentheses.

(1) (2) (3) (4) (5)

Shocked×Post 0.718∗∗∗ 0.494∗∗∗ 0.476∗∗∗ 0.469∗∗∗ 0.436∗∗∗

(0.130) (0.104) (0.088) (0.083) (0.086)
Shocked -0.395∗∗∗ -0.093 -0.009 -0.027 -0.011

(0.116) (0.094) (0.068) (0.063) (0.067)
Avg. discountt−1 0.802∗∗∗ 0.798∗∗∗ 0.659∗∗∗ 0.651∗∗∗ 0.660∗∗∗

(0.037) (0.037) (0.033) (0.032) (0.033)

Fixed-Effects
Year×Month Yes No No No No
Year×Month×TTM No Yes Yes Yes Yes
Year×Month×Rating No No Yes Yes Yes
Year×Month×Industry No No No Yes Yes
Year×Month×Interest No No No No Yes

Fit statistics
Observations 738,354 738,354 738,354 738,354 738,354
R2 0.421 0.432 0.533 0.564 0.540
Within R2 0.324 0.312 0.224 0.218 0.223

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A10: Price Pressure Within Issuers

The table reports the results of the following regression: discountj,k,t = αk,t + β1Shockedj,t +
β2Shockedj,t × Postj,t + Xj,tδ + ε j,k,t, where discountj,t = 100 × log(100/Pj,t), Pj,t is the price of
loan j at time t, Shockedj,tis a dummy variable equal to one when loan j selling volume by shocked
CLOs is above median, Postj,t is a dummy equal to one after loan j has received an above median
selling volume by shocked CLOs, Xj,t is a matrix containing the fixed effects reported in the table.
Column (1) includes all the loans that have been traded by CLOs; column (2) restricts the sample
to those issuers with at least two actively traded loans; column (3) to those issuers with at least five
actively traded loans; column (4) to those issuers with at least 10 actively traded loans. Two-way
clustered standard errors at the year×month and issuer level are reported in parentheses. Two-way
clustered standard errors at the year×month and issuer level are reported in parentheses.

(1) (2) (3) (4)

Shocked -0.032 -0.034 -0.053∗ -0.042
(0.026) (0.026) (0.032) (0.040)

Shocked×Post 0.120∗∗∗ 0.126∗∗∗ 0.153∗∗∗ 0.179∗∗

(0.039) (0.041) (0.051) (0.071)

Fixed-effects
Year×Month×Issuer Yes Yes Yes Yes
Year×Month×TTM Yes Yes Yes Yes
Year×Month×Rating Yes Yes Yes Yes
Year×Month×Industry Yes Yes Yes Yes
Year×Month×Interest Yes Yes Yes Yes

Fit statistics
Observations 746,956 629,507 402,252 170,122
R2 0.914 0.884 0.853 0.821
Within R2 0.000 0.000 0.000 0.000

Nr. Traded Loans ≥ 1 ≥ 2 ≥ 5 ≥ 10

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A11: Price Pressure - Purchases

The table reports the results of the following regression: discountj,t = β1Shockedj,t +
β2Shockedj,t × Postj,t + Xj,tδ + ε j,t, where discountj,k,t = 100 × log(100/Pj,k,t), Pj,k,t is the price
of loan j issued by firm k at time t, Shockedj,tis a dummy variable equal to one when loan j pur-
chasing volume by shocked CLOs is above median, Postj,t is a dummy equal to one after loan j
has received an above median purchasing volume by shocked CLOs, Xj,t is a matrix containing
various fixed effects and controls. Column (1) includes year×month fixed effects; column (2) adds
year×month×time-to-maturity fixed effects; column (3) adds year×month×rating fixed effects;
column (4) adds year×month×industry fixed effects; column (5) adds year×month×interest rate
fixed effects. Interest and time-to-maturity fixed effects are constructed after bucketing the contin-
uous variable in ten groups. All the regressions include the lagged average discount on the issuer
computed as Avg. discountk,t−1 = 1

Jk×(t−1) ∑Jk
j=1 ∑t−1

s=1 discountj,k,s, where Jk is the number of loans
by issuer k actively traded. Two-way clustered standard errors at the year×month and issuer level
are reported in parentheses.

(1) (2) (3) (4) (5)

Shocked -1.16∗∗∗ -0.923∗∗∗ -0.612∗∗∗ -0.634∗∗∗ -0.603∗∗∗

(0.130) (0.109) (0.084) (0.086) (0.084)
Shocked×Post -0.108 -0.281∗∗ 0.014 0.004 -0.054

(0.149) (0.142) (0.139) (0.135) (0.133)
Avg. discountt−1 0.795∗∗∗ 0.790∗∗∗ 0.611∗∗∗ 0.609∗∗∗ 0.607∗∗∗

(0.036) (0.037) (0.039) (0.038) (0.038)

Fixed-Effects
Year×Month Yes No No No No
Year×Month×TTM No Yes Yes Yes Yes
Year×Month×Rating No No Yes Yes Yes
Year×Month×Industry No No No Yes Yes
Year×Month×Interest No No No No Yes

Fit statistics
Observations 738,354 738,354 597,976 597,976 596,807
R2 0.42337 0.42419 0.48533 0.4922 0.4915
Within R2 0.32595 0.31629 0.19398 0.18928 0.18685

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A12: The Dynamics of the Shock

(1) (2) (3) (4) (5)

Shocked×1(t− 6) -0.241∗ -0.241∗ 0.187 0.151 0.162

(0.136) (0.136) (0.124) (0.111) (0.109)

Shocked×1(t− 5) -0.076 -0.076 0.145 0.156∗ 0.161∗

(0.124) (0.124) (0.096) (0.090) (0.092)

Shocked×1(t− 4) -0.237∗∗ -0.237∗∗ -0.046 -0.028 -0.016

(0.109) (0.109) (0.074) (0.066) (0.065)

Shocked×1(t− 3) -0.216∗ -0.216∗ -0.088 -0.073 -0.047

(0.126) (0.126) (0.094) (0.090) (0.084)

Shocked×1(t− 2) -0.081 -0.081 -0.070 -0.028 0.012

(0.098) (0.098) (0.082) (0.074) (0.073)

Shocked×1(t− 1) -0.183∗∗ -0.183∗∗ -0.112∗ -0.073 -0.052

(0.081) (0.081) (0.060) (0.057) (0.055)

Shocked×1(t) 0.259∗∗ 0.259∗∗ 0.280∗∗∗ 0.221∗∗∗ 0.220∗∗∗

(0.107) (0.107) (0.085) (0.068) (0.068)

Shocked×1(t + 1) 0.205∗ 0.205∗ 0.191∗∗ 0.150∗∗ 0.122∗

(0.107) (0.107) (0.078) (0.065) (0.063)

Shocked×1(t + 2) 0.489∗∗∗ 0.489∗∗∗ 0.402∗∗∗ 0.364∗∗∗ 0.331∗∗∗

(0.147) (0.147) (0.117) (0.102) (0.100)

Shocked×1(t + 3) 0.540∗∗∗ 0.540∗∗∗ 0.368∗∗∗ 0.377∗∗∗ 0.342∗∗∗

(0.137) (0.137) (0.115) (0.100) (0.096)

Shocked×1(t + 4) 0.752∗∗∗ 0.752∗∗∗ 0.554∗∗∗ 0.482∗∗∗ 0.444∗∗∗

(0.147) (0.147) (0.132) (0.112) (0.111)

Shocked×1(t + 5) 0.929∗∗∗ 0.929∗∗∗ 0.648∗∗∗ 0.572∗∗∗ 0.525∗∗∗

(0.185) (0.185) (0.144) (0.131) (0.129)

Shocked×1(t + 6) 1.03∗∗∗ 1.03∗∗∗ 0.587∗∗∗ 0.592∗∗∗ 0.544∗∗∗

(0.209) (0.209) (0.149) (0.135) (0.124)

Continued on next page
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Table A12 – Continued from previous page

(1) (2) (3) (4) (5)

Shocked×1(t + 7) 0.872∗∗∗ 0.872∗∗∗ 0.408∗∗ 0.378∗∗∗ 0.346∗∗∗

(0.196) (0.196) (0.171) (0.139) (0.130)

Shocked×1(t + 8) 0.760∗∗∗ 0.760∗∗∗ 0.266 0.260∗ 0.250∗

(0.200) (0.200) (0.172) (0.152) (0.144)

Shocked×1(t + 9) 0.467∗∗∗ 0.467∗∗∗ 0.037 0.158 0.126

(0.166) (0.166) (0.139) (0.123) (0.119)

Shocked×1(t + 10) 0.683∗∗∗ 0.683∗∗∗ 0.273∗ 0.309∗∗ 0.239∗

(0.176) (0.176) (0.150) (0.144) (0.132)

Shocked×1(t + 11) -0.130 -0.130 -0.033 0.030 0.034

(0.149) (0.149) (0.132) (0.122) (0.120)

Shocked×1(t + 12) -0.294∗∗∗ -0.294∗∗∗ 0.068 0.080 0.088

(0.111) (0.111) (0.095) (0.089) (0.087)

Fixed-Effects

Year×Month Yes No No No No

Year×Month×TTM No Yes Yes Yes Yes

Year×Month×Rating No No Yes Yes Yes

Year×Month×IndustryNo No No Yes Yes

Year×Month×Interest No No No No Yes

Fit statistics

Observations 746,956 746,956 746,956 746,956 746,956

R2 0.48414 0.48414 0.58706 0.61761 0.62407

Within R2 0.00153 0.00153 0.00107 0.00091 0.00072

Two-way (Year×Month & Issuer) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A13: Defaults

The table reports the results of the following regression: defaultj,t→t+12 = βShockedj,t + Xj,tδ +
ε j,t, where defaultj,t→t+12 is a dummy variable equal to one when loan j defaults in the period
between t and t + 12, Shockedj,t is a dummy equal to one when the loan has been sold by distressed
CLOs and Xj,t is a matrix of fixed effects to control for loan characteristics. Column (1) includes
year×month fixed effects; column (2) includes year×month×time-to-maturity fixed effects; column
(3) adds year×month×rating fixed effects; column (4) adds year×month×industry fixed effects;
column (5) adds year×month×interest fixed effects. Interest and time-to-maturity fixed effects are
constructed after bucketing the continuous variable in ten groups. Two-way clustered standard
errors at the year×month and issuer level are reported in parentheses.

(1) (2) (3) (4) (5)

Shocked -0.023∗∗∗ -0.009∗∗∗ -0.000 -0.000 -0.000
(0.003) (0.002) (0.002) (0.002) (0.002)

Fixed-effects
Year×Month Yes No No No No
Year×Month×TTM No Yes Yes Yes Yes
Year×Month×Rating No No Yes Yes Yes
Year×Month×Industry No No No Yes Yes
Year×Month×Interest No No No No Yes

Fit statistics
Observations 141,564 141,564 141,564 141,564 141,564
R2 0.052 0.129 0.408 0.471 0.483
Within R2 0.00 0.000 0.000 0.000 0.000

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A14: Rating Changes

The table reports the results of the following regression: y = βShockedj,t + Xj,tδ + ε j,t, where the
outcome variable is either y = downgradej,t→t+12 or y = upgradej,t→t+12. downgradej,t→t+12 is a
dummy variable equal to one if loan j is downgraded between time t and t + 12; upgradej,t→t+12
is a dummy variable equal to one if loan j is upgraded between time t and t + 12. Shockedj,t is a
dummy equal to one when the loan has been sold by shocked CLOs and Xj,t is a matrix of fixed
effects to control for loan characteristics. Column (1) includes year×month fixed effects; column
(2) adds year×month×time-to-maturity and year×month×rating fixed effects; column (3) adds
year×month×industry and year×month×interest rate fixed effects. Interest and time-to-maturity
fixed effects are constructed after bucketing the continuous variable in ten groups. Two-way clus-
tered standard errors at the year×month and issuer level are reported in parentheses.

downgradej,t→t+12 upgradej,t→t+12

(1) (2) (3) (1) (2) (3)

Shocked 0.000 -0.000 -0.000 -0.000 0.000 0.000
(0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

Fixed-effects
Year×Month Yes Yes Yes Yes Yes Yes
Year×Month×TTM No Yes Yes No Yes Yes
Year×Month×Rating No Yes Yes No Yes Yes
Year×Month×Industry No No Yes No No Yes
Year×Month×Interest No No Yes No No Yes

Fit statistics
Observations 75,489 75,484 75,405 75,489 75,484 75,405
R2 0.222 0.270 0.278 0.171 0.262 0.268
Within R2 0 0 0 0 0 0

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A15: Liquidity

The table reports the results of the following regression: y = β1Shockedj,t + β2Shockedj,t ×
Postj,tXj,tδ + ε j,t, where the outcome variable is either y = γj,t or y = log(Nr.Trades). γj,t measures
the liquidity of loans by using the covariance in price changes (Roll, 1984), while log(Nr.Trades) is
the natural logarithm of the number of times a given loan has been traded by CLOs. Shockedj,t is a
dummy equal to one when the loan has been sold by distressed CLOs and Postj,t is a dummy that is
equal to one after a loan has been sold by a shocked CLO. Xj,t is a matrix of fixed effects to control
for loan characteristics.

γ log(Nr.Trades)

(1) (2) (3) (1) (2) (3)

Shocked 0.561 0.446 0.387 -0.048∗∗∗ 0.054∗∗∗ 0.051∗∗∗

(0.399) (0.349) (0.333) (0.014) (0.012) (0.013)
Shocked× Post -0.293 -0.301 -0.290 0.039∗∗∗ -0.015 -0.015

(0.328) (0.362) (0.363) (0.012) (0.014) (0.014)

Fixed-effects
Year×Month Yes Yes Yes Yes Yes Yes
Year×Month×TTM No Yes Yes No Yes Yes
Year×Month×Rating No Yes Yes No Yes Yes
Year×Month×Industry No No Yes No No Yes
Year×Month×Interest No No Yes No No Yes

Fit statistics
Observations 137,866 123,273 123,165 137,866 123,273 123,165
R2 0.121 0.155 0.156 0.154 0.198 0.200
Within R2 0.000 0.000 0.000 0.000 0.000 0.000

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A16: Par Building - Placebo Test: Downgrades to B3

The table reports the difference in par built between CLOs that have received a shock to the
bucket of securities rated B3. Columns (1) and (2) report the results of the following re-
gressions: gaini,j,t = α + β1Constrainedi,t + β2Shockedi,t + β3Constrainedi,t × Shockedi,t + εi,t,

where gaini,j,t = 100 ×
(
(100− Pj,t−1)×

Nr. loans boughti,j,t
Principal Balancei,t

)
for purchases and gaini,j,t = −100 ×(

(100− Pj,t−1)×
Nr. loans soldi,j,t

Principal Balancei,t

)
for sales; Constrainedi,t is a dummy variable equal to one

whenever the Junior (column (1)) or Senior (column(2)) slack of CLO i is between 0% and and
5% in period t; Shockedi,t is a dummy variable equal to one whenever the loans of CLO i
have been downgraded to B3. Columns (3) and (4) report the results of the following regres-
sions: gaini,t = α + β1Constrainedi,t + β2Shockedi,t + β3Constrainedi,t × Shockedi,t + εi,t, where

gaini,t = 100×
(

∑j(100− Pj,t−1)×
Nr. loans boughti,j,t
Principal Balancei,t

−∑j(100− Pj,t−1)×
Nr. loans soldi,j,t

Principal Balancei,t

)
and the

other variables are defined as above. Constrainedi,t refers to Junior tests in column (3) and to Senior
tests in column (4). Standard errors are reported in parentheses and they are double clustered at the
Year×Month & CLO Deal level.

Individual Transactions Multiple Transactions
(1) (2) (3) (4)

(Intercept) -0.004∗∗∗ -0.002∗∗∗ -0.078∗∗∗ -0.051∗∗∗

(0.0004) (0.0002) (0.006) (0.003)
Shocked 0.0005 0.0003∗ 0.005 0.004

(0.0004) (0.0002) (0.009) (0.003)
Constrained 0.002∗∗∗ -0.008∗∗∗ 0.030∗∗∗ -0.079∗∗∗

(0.0004) (0.002) (0.007) (0.024)
Shocked × Constrained -0.0003 0.002 -0.003 0.026

(0.0005) (0.002) (0.010) (0.028)

Fit statistics
Observations 309,028 303,160 30,156 29,034
R2 0.000 0.000 0.001 0.001
Adjusted R2 0.000 0.000 0.000 0.001

OC Test Junior Senior Junior Senior

Two-way (Year×Month & CLO Deal) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1



APPENDIX A. CONTAGION IN THE MARKET FOR LEVERAGED LOANS 146

Table A17: Price Pressure - Placebo Test: Downgrades to B3

The table reports the results of the following regression: discountj,k,t = β1Shockedj,t +
β2Shockedj,t × Postj,t + Xj,tδ + ε j,t, where discountj,k,t = 100 × log(100/Pj,k,t), Pj,k,t is the price
of loan j issued by firm k at time t, Shockedj,tis a dummy variable equal to one when loan j sell-
ing volume by CLOs that experienced downgrades to B3 is above median and their slack is be-
tween 0% and 5%, Postj,t is a dummy equal to one after loan j has received an above median
selling volume by CLOs with downgrades to B3, Xj,t is a matrix containing various fixed effects
and controls. Column (1) includes year×month fixed effects; column (2) adds year×month×time-
to-maturity fixed effects; column (3) adds year×month×rating fixed effects; column (4) adds
year×month×industry fixed effects; column (5) adds year×month×interest rate fixed effects. In-
terest and time-to-maturity fixed effects are constructed after bucketing the continuous variable in
ten groups. All the regressions include the lagged average discount on the issuer computed as Avg.
discountk,t−1 = 1

Jk×(t−1) ∑Jk
j=1 ∑t−1

s=1 discountj,k,s, where Jk is the number of loans by issuer k actively
traded. Two-way clustered standard errors at the year×month and issuer level are reported in
parentheses.

(1) (2) (3) (4) (5)

Shocked 0.738∗∗∗ 0.597∗∗∗ 0.538∗∗∗ 0.427∗∗∗ 0.377∗∗∗

(0.176) (0.151) (0.122) (0.111) (0.107)
Shocked×Post -0.204 -0.001 0.059 0.066 0.075

(0.147) (0.132) (0.111) (0.104) (0.103)
Avg. Discountt−1 0.853∗∗∗ 0.838∗∗∗ 0.709∗∗∗ 0.693∗∗∗ 0.690∗∗∗

(0.033) (0.034) (0.032) (0.031) (0.031)

Fixed-Effects
Year×Month Yes No No No No
Year×Month×TTM No Yes Yes Yes Yes
Year×Month×Rating No No Yes Yes Yes
Year×Month×Industry No No No Yes Yes
Year×Month×Interest No No No No Yes

Fit statistics
Observations 332,118 332,118 332,118 332,118 332,118
R2 0.489 0.504 0.597 0.636 0.644
Within R2 0.406 0.388 0.290 0.276 0.274

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A18: Probability of Subscribing a Loan

The table provides the results of the following regression in column (1): Subscribedi,j,t = α +
βPreviously Heldi,j,t + εi,j,t, where Subscribedi,j,t is dummy variable equal to one when a CLO deal
i subscribed a loan issued by borrower j at time t and Previously Heldi,j,t is a dummy variable
equal to one when the CLO i has held a different loan from borrower j before time t. Column (2)
reports the results of the following model: Subscribedi,j,t = αt + βPreviously Heldi,j,t + εi,j,t where
αt are Year×Month fixed effects. Column(3) adds the age of a CLO Deal and the logarithm of to-
tal assets under management as controls: Subscribedi,j,t = αt + βPreviously Heldi,j,t + γ1Agei,t +

γ2Total Assetsi,t + εi,j,t. Column (4) adds CLO deals fixed effect interacted with the issuer’s indus-
try fixed effect αj,s: Subscribedi,j,t = αt + αj,s + βPreviously Heldi,j,t + γ1Agei,t + γ2Total Assetsi,t +

εi,j,t. Standard errors clustered at the Year×Month level are reported in parentheses.

(1) (2) (3) (4)

(Intercept) 0.033∗∗∗

(0.001)
Previous Held 0.098∗∗∗ 0.098∗∗∗ 0.121∗∗∗ 0.089∗∗∗

(0.006) (0.006) (0.008) (0.008)
Age -0.006∗∗∗ -0.147∗∗∗

(0.0003) (0.046)
Total Assets 0.023∗∗∗ 0.010∗∗∗

(0.001) (0.002)

Fixed-effects
Yesr×Month No Yes Yes Yes
CLO Deal×Industry No No No Yes

Fit statistics
Observations 9,626,651 9,626,651 6,439,971 6,439,971
R2 0.021 0.026 0.050 0.091
Within R2 – 0.021 0.041 0.014

One-way (Year×Month) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A19: All-in Spread Drawn

The table reports the results of the following regression: AISDj,t = αt + αj + βShockedj,t + Xj,tδ +
ε j,t, AISDj,t is the all-in drawn spread for issuer j at time t, Shockedj,t is a dummy variable that is
equal to one when firm j has been sold by shocked CLOs in the previous twelve months. Column
(1) includes Year×Month fixed effects; column (2) adds time-to-maturity fixed effects constructed
by grouping the variable in ten buckets; column (3) adds industry fixed effects; column (4) adds
rating fixed effects; column (5) adds issuer fixed effects. Rating is constructed from the closest
rating available for the firm. Standard errors are reported in paretheses and double clustered by
Year×Month and Issuer.

(1) (2) (3) (4) (5)

Shocked 0.550∗∗∗ 0.347∗∗∗ 0.232∗∗∗ 0.232∗∗∗ 0.084∗∗

(0.037) (0.042) (0.041) (0.041) (0.039)

Fixed-effects
Year ×Month Yes Yes Yes Yes Yes
TTM No Yes Yes Yes Yes
Industry No No Yes Yes Yes
Rating No No No Yes Yes
Issuer No No No No Yes

Fit statistics
Observations 13,468 13,365 13,365 13,365 13,365
R2 0.04806 0.06598 0.09166 0.09166 0.60933
Within R2 0.00304 0.00121 0.00055 0.00055 7e-05

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A20: Fraction of Institutional Loans

The table reports the results of the following regression: Fraction Inst.j,t = αt + αj + βShockedj,t +
Xj,tδ + ε j,t, Fraction Inst.j,t measures the number of institutional tranches as a fraction of the total
number of tranches issued by issuer j at time t, Shockedj,t is a dummy variable that is equal to one
when firm j has been sold by distressed CLOs in the previous twelve months. Column (1) includes
Year×Month fixed effects; column (2) adds time-to-maturity fixed effects constructed by grouping
the variable in ten buckets; column (3) adds industry fixed effects; column (4) adds rating fixed
effects; column (5) adds issuer fixed effects. Rating is constructed from the closest rating available
for the firm. Standard errors are reported in paretheses and double clustered by Year×Month and
Issuer.

(1) (2) (3) (4) (5)

Shocked -0.117∗∗∗ -0.082∗∗∗ -0.080∗∗∗ -0.055∗∗ -0.039∗

(0.024) (0.024) (0.024) (0.022) (0.022)

Fixed-effects
Year×Month Yes Yes Yes Yes Yes
TTM No Yes Yes Yes Yes
Industry No No Yes Yes Yes
Rating No No No Yes Yes
Issuer No No No No Yes

Fit statistics
Observations 13,468 13,365 13,365 13,365 13,365
R2 0.11799 0.20027 0.20301 0.23609 0.34322
Within R2 0.00183 0.001 0.00095 0.00047 2e-04

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A21: Fraction of Dollars Borrowed

The table reports the results of the following regression: Fraction Inst. $j,t = αt + αj + βShockedj,t +
Xj,tδ + ε j,t, Fraction Inst. $j,t measures the total amount of dollars borrowed using institutional
tranches as a fraction of the total amount borrowed by issuer j at time t, Shockedj,t is a dummy
variable that is equal to one when firm j has been sold by shocked CLOs in the previous twelve
months. Column (1) includes Year×Month fixed effects; column (2) adds time-to-maturity fixed
effects constructed by grouping the variable in ten buckets; column (3) adds industry fixed effects;
column (4) adds rating fixed effects; column (5) adds issuer fixed effects. Rating is constructed
from the closest rating available for the firm. Standard errors are reported in paretheses and double
clustered by Year×Month and Issuer.

(1) (2) (3) (4) (5)

Shocked -0.113∗∗∗ -0.099∗∗∗ -0.092∗∗∗ -0.059∗∗ -0.055∗∗

(0.029) (0.030) (0.030) (0.027) (0.027)

Fixed-effects
Year×Month Yes Yes Yes Yes Yes
TTM No Yes Yes Yes Yes
Industry No No Yes Yes Yes
Rating No No No Yes Yes
Issuer No No No No Yes

Fit statistics
Observations 8,969 8,667 8,667 8,667 8,667
R2 0.2085 0.23172 0.24261 0.31183 0.54704
Within R2 0.00245 0.00195 0.00169 0.00077 0.00073

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A22: Institutional Tranches Size

The table reports the results of the following regression: log(Inst. Tranche Size)j,t = αt + αj +
βShockedj,t + Xj,tδ + ε j,t, where log(Inst. Tranche Size)j,t is the logarithm of the tranche size for in-
stitutional loans measured in dollars, Shockedj,t is a dummy variable that is equal to one when firm
j has been sold by shocked CLOs in the previous twelve months. Column (1) includes Year×Month
fixed effects; column (2) adds time-to-maturity fixed effects constructed by grouping the variable
in ten buckets; column (3) adds industry fixed effects; column (4) adds rating fixed effects; column
(5) adds issuer fixed effects. Rating is constructed from the closest rating available for the firm.
Standard errors are reported in paretheses and double clustered by Year×Month and Issuer.

(1) (2) (3) (4) (5)

Shocked -0.342∗∗∗ -0.326∗∗∗ -0.334∗∗∗ -0.270∗∗∗ -0.235∗∗∗

(0.111) (0.109) (0.106) (0.096) (0.077)

Fixed-effects
Year×Month Yes Yes Yes Yes Yes
TTM No Yes Yes Yes Yes
Industry No No Yes Yes Yes
Rating No No No Yes Yes
Issuer No No No No Yes

Fit statistics
Observations 5,723 5,623 5,623 5,623 5,623
R2 0.08508 0.12548 0.15397 0.24187 0.59158
Within R2 0.0033 0.00318 0.00341 0.00247 0.00204

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A23: All-in Spread Drawn Within Lead Agent

The table reports the results of the following regression: AISDj,t = βShockedj,t + Xj,tδ+ ε j,t, AISDj,t
is the all-in drawn spread for issuer j at time t, Shockedj,t is a dummy variable that is equal to one
when firm j has been sold by shocked CLOs in the previous twelve months. Column (1) includes
Year×Month×Lead Agent fixed effects; column (2) adds time-to-maturity fixed effects constructed
by grouping the variable in ten buckets; column (3) adds industry fixed effects; column (4) adds
rating fixed effects. Rating is constructed from the closest rating available for the firm. Standard
errors are reported in paretheses and clustered by Year×Month.

(1) (2) (3) (4)

Shocked 0.519∗∗∗ 0.467∗∗∗ 0.467∗∗∗ 0.436∗∗∗

(0.097) (0.094) (0.094) (0.090)

Fixed-effects
Year×Month×Lead Agent Yes Yes Yes Yes
TTM No Yes Yes Yes
Rating No No Yes Yes
Industry No No No Yes

Fit statistics
Observations 13,252 12,826 12,826 12,826
R2 0.63895 0.63905 0.63905 0.64029
Within R2 0.00064 0.00051 0.00051 0.00043

One-way (Year×Month) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A24: Fraction of Institutional Loans Within Lead Agent

The table reports the results of the following regression: Fraction Inst.j,t = βShockedj,t + Xj,tδ+ ε j,t,
Fraction Inst.j,t measures the number of institutional tranches as a fraction of the total number of
tranches issued by issuer j at time t, Shockedj,t is a dummy variable that is equal to one when
firm j has been sold by distressed CLOs in the previous twelve months. Column (1) includes
Year×Month×Lead Agent fixed effects; column (2) adds time-to-maturity fixed effects constructed
by grouping the variable in ten buckets; column (3) adds industry fixed effects; column (4) adds
rating fixed effects. Rating is constructed from the closest rating available for the firm. Standard
errors are reported in paretheses and clustered by Year×Month.

(1) (2) (3) (4)

Shocked -0.227∗∗ -0.216∗∗∗ -0.210∗∗∗ -0.213∗∗∗

(0.091) (0.078) (0.076) (0.079)

Fixed-effects
Year×Month×Lead Agent Yes Yes Yes Yes
TTM No Yes Yes Yes
Rating No No Yes Yes
Industry No No No Yes

Fit statistics
Observations 13,252 12,826 12,826 12,826
R2 0.60046 0.64498 0.64604 0.65359
Within R2 0.00068 0.00069 0.00064 0.00067

One-way (Year×Month) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A25: Fraction of Dollars Borrowed Within Lead Agent

The table reports the results of the following regression: Fraction Inst. $j,t = βShockedj,t + Xj,tδ +
ε j,t, Fraction Inst. $j,t measures the total amount of dollars borrowed using institutional tranches as
a fraction of the total amount borrowed by issuer j at time t, Shockedj,t is a dummy variable that is
equal to one when firm j has been sold by shocked CLOs in the previous twelve months. Column
(1) includes Year×Month×Lead Agent fixed effects; column (2) adds time-to-maturity fixed effects
constructed by grouping the variable in ten buckets; column (3) adds industry fixed effects; column
(4) adds rating fixed effects. Rating is constructed from the closest rating available for the firm.
Standard errors are reported in paretheses and clustered by Year×Month.

(1) (2) (3) (4)

Shocked -0.169∗ -0.183∗∗ -0.182∗∗ -0.180∗∗

(0.090) (0.093) (0.085) (0.089)

Fixed-effects
Year×Month×Lead Agent Yes Yes Yes Yes
TTM No Yes Yes Yes
Rating No No Yes Yes
Industry No No No Yes

Fit statistics
Observations 8,794 8,457 8,457 8,457
R2 0.95913 0.96312 0.9645 0.96552
Within R2 0.00533 0.00685 0.00693 0.00681

One-way (Year×Month) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A26: Institutional Tranches Size Within Lead Agent

The table reports the results of the following regression: log(Inst. Tranche Size)j,t = βShockedj,t +
Xj,tδ+ ε j,t, where log(Inst. Tranche Size)j,t is the logarithm of the tranche size for institutional loans
measured in dollars, Shockedj,t is a dummy variable that is equal to one when firm j has been sold
by shocked CLOs in the previous twelve months. Column (1) includes Year×Month×Lead Agent
fixed effects; column (2) adds time-to-maturity fixed effects constructed by grouping the variable in
ten buckets; column (3) adds industry fixed effects; column (4) adds rating fixed effects. Rating is
constructed from the closest rating available for the firm. Standard errors are reported in paretheses
and clustered by Year×Month.

(1) (2) (3) (4)

Shocked -0.156 -0.181 -0.155 -0.189
(0.203) (0.192) (0.223) (0.237)

Fixed-effects
Year×Month×Lead Agent Yes Yes Yes Yes
TTM No Yes Yes Yes
Rating No No Yes Yes
Industry No No No Yes

Fit statistics
Observations 5,727 5,622 5,622 5,622
R2 0.82295 0.82543 0.82998 0.85369
Within R2 0.00015 2e-04 0.00014 0.00024

One-way (Year×Month) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A.2 Figures

Figure A1: Fraction of Caa (CCC) securities

The upper panel reports a histogram of the fraction of Caa (CCC) rated securities, while the lower
panel superposes a local polynomial approximation of the density with the relative confidence in-
tervals, following Cattaneo et al. (2020).
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Figure A2: Par Building and OC Tests Slack

The figure depicts the gain in par as a function of the slack of the over-collateralization test by
plotting the estimated coefficients of the following regression: gaini,t = ∑S

s=1 βs1s + εi,t, where

gaini,t = 100 ×
(

∑j(100− Pj,t−1)×
Nr. loans boughti,j,t
PrincipalBalancei,t

−∑j(100− Pj,t−1)×
Nr. loans soldi,j,t

PrincipalBalancei,t

)
; 1s is a

dummy variable equal to one whenever the Junior (left panel) or Senior (right panel) slack belongs
to bucket s of the following S = 7 buckets: [-1.00,-0.05), [-0.05,0), [0,0.05), [0.05,0.10), [0.10,0.15),
[0.15,0.20), [0.20,1.00). Full results are reported in Table A29.

−0.4

−0.2

0.0

0.2

−0.1% 0% 0.1% 0.2%
Slack

G
ai

n

Junior OC Slack

−0.4

−0.2

0.0

0.2

−0.1% 0% 0.1% 0.2%
Slack

G
ai

n

Senior OC Slack



APPENDIX A. CONTAGION IN THE MARKET FOR LEVERAGED LOANS 157

Figure A3: Fraction of Above-Par Securities Sold in the Month of a Downgrade to
Caa (CCC)

The plots report the amount of securities sold above par as a fraction of total sales as a function of
the slack in Junior OC tests. Observations are binned following Cattaneo et al. (2019). Each panel
fits a separate polynomial of order p = 1, 2, 3, 4 to observation with positive and negative slack,
following Calonico et al. (2015).
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Figure A4: Fraction of Caa (CCC) rated Securities Sold in the Month of a Down-
grade to Caa (CCC)

The plots report the amount of securities rated at Caa (CCC) or below sold as a fraction of total
sales as a function of the slack in Junior OC tests. Observations are binned following Cattaneo et al.
(2019). Each panel fits a separate polynomial of order p = 1, 2, 3, 4 to observation with positive and
negative slack, following Calonico et al. (2015).
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Figure A5: Price Pressure

The figure plots the results of the following regression: discountj,t = γShockedj,t +

∑12
s=−6 βsShockedj,t × 1(t + s) + Xj,tδ + ε j,t, where discountj,t = 100 × log(100/Pj,t), Pj,t is the

price of loan j at time t, Shockedj,tis a dummy variable equal to one when loan j selling vol-
ume by shocked CLOs is above median, 1(t + s) is a set of dummies that are equal to one
s = −6,−5, ..., 11, 12 months around the event of the sale at time t, Xj,t is a matrix containing the fol-
lowing fixed effects: year×yonth×time-to-maturity, year×month×rating, year×month×industry.
Time-to-maturity fixed effects are constructed after bucketing the continuous variable in ten groups.
Standard errors are two-way clustered at the year×month and issuer level.
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Figure A6: The Outcome in the Primary Market

The figure is composed of fours panels. (1) reports the yearly average all-in spread drawn in basis
points; (2) reports the fraction of institutional loans per year as the total number of institutional
tranches as a fraction of the total number of tranches; (3) reports the total amount of funds raised
via institutional tranches as a fraction of total amount of funds raised; (4) reports the yearly average
tranche size for institutional loans. All the panels reports the statistics for shocked firms in red and
for the control group in blue.
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A.3 Data Matching

This section describes the matching process to link loans in the CLO-i dataset with

loans in the SDC Platinum dataset. Matching datasets on the U.S. syndicated loan

market is a challenging task and no agreed upon procedure exists (Cohen et al.,

2018). The task is even more challenging for the CLO-i dataset: due to the fact that

information on loan holdings and transactions are obtained from CLOs’ reports,

there is no guarantee of consistency across time and deals. This implies that, in or-

der to guarantee the integrity of the data, most of the matching procedure requires

human discretion. In what follows I describe the steps I undertaken to match CLO-

i with SDC Platinum, which - to the best of my knowledge - is the first attempt in

these regards.

The procedure starts from the CLO holdings in the CLO-i dataset from which

I keep only the following types: “Term Loan B”, “Term Loan C”, “Term Loan D”,

“Term Loan (Other)” and “Other”. These types represent the greatest majority

of CLO holdings as Figure A11 shows. For each of these securities I proceed to

compute the first and last date they appear in sample together with the maturity

date provided on the report; Figure A12 shows their distribution. I then proceed

by recoding the maturity date as the maximum between the last time a security

appears in sample and the reported maturity date, given that a security cannot

appear on a balance sheet past its maturity and the resulting maturity date likely

stems from a reporting mistake. I then proceed to compare the information at the

security level across different CLO reports. Whenever a security presents different

maturity dates I keep the modal date across reports.

Unfortunately, for the greatest part of the sampe, CLO-i does not provide a

unique identifier for each security1. In order to make sure that the same security

does not appear twice or more because of spelling mistakes I use the following

convention: two securities are considered the same if the agree on the name of the

borrower, type and maturity date. This implies that the analysis in the paper is

carried out at the level of the loan issue-tranche type. In order to guarantee the

1CLO-i provides a unique loan identifier only after 2019.
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integrity of the match, issuer and security names have been removed of irrelevant

information: special characters have been removed, all the names have been con-

verted into lower cased letters, commonly used abbreviations (e.g., “corp”, “grp”,

etc...) have been fixed, similarly to Cohen et al. (2018). Once a security has been

uniquely identified on CLO-i, I keep information regarding the first time it appears

in sample, the maturity date, the first rating and the first interest rate, whenever

they are available.

I then proceed to apply the same procedure to the universe of loans in SDC

Platinum, which - however - does not require to be fixed for duplicates. First,

I obtain the distinct observations by borrower, announcement date, facility and

tranche. Then the borrower names are adjusted as previously described.

I then match the refined samples of loans in CLO-i and SDC Platinum using

the following criteria: first, the announcement date in SDC Platinum needs to be

no more than one year away from the first time the loan appears in CLO-i, second

the maturity date in SDC Platinum is no more than one year away from the ma-

turity date in the CLO-i, third at least one word in the borrower name reported in

SDC Platinum needs to appear in either the issuer or the security name in CLO-

i2. This leaves me with approximately 300,000 matches. These matches have been

manually inspected in order to avoid false positives. When a security in CLO-i is

matched with more than one security in SDC Platinum I keep the closest security

according to the following criteria: first, I give priority to the securities sharing the

same maturity date and loan type; second, I keep securities whose types are con-

sistent3; third, if more than one tranche is matched, I keep the closest loan in terms

of maturity and interest rate.

The final matching rate by year is displayed in Figure A25 for the securities in

2Applying fuzzy string matching routines provides a reduced matching rate compared to this
procedure.

3CLO-i provides information on the loan type which I augment with information from the secu-
rity name whenever possible. I adopt the following matching rules. “Term Loan B” is matched
with the following SDC Platinum types: “1stLienTermLoan”, “Other”, “”RevCred/Term Ln”,
“RevCred/TLB”, “Term Loan”, and“Term Loan B”. “Term Loan C” is matched with the follow-
ing SDC Platinum types: “1stLienTermLoan”, “Other”, “”RevCred/Term Ln”, “RevCred/TLC”,
“Term Loan”,“Term Loan C”, and “Term Loan/LC”. “Term Loan D” is matched with the follow-
ing SDC Platinum types: “1stLienTermLoan”, “Other”, “”RevCred/Term Ln”, “RevCred/TLD”,
“Term Loan”,“Term Loan D”. “Term Loan (Other)” and “Other” are matched with all the previous.
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the CLO-i dataset, and in Figure A26 for the securities in SDC Platinum.
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A.4 Additional Tables

Table A27: Largest Deals and Management Teams

The table reports the twenty largest CLO managers, in Panel A, and CLO deal, in Panel B,
based on the average total assets in sample. For managers, total assets are the sum of the
current balance of holdings managed in a given month, while for CLO deals the sum of the
current balance of holdings held in a given report. Assets are measured in $Mlns.

Panel A: Managers
Name Mean Median Min. Max.

GSO Capital Partners 15536.34 15075.26 5813.30 27456.15
Carlyle Group 11932.33 10541.84 1620.47 24850.72
KKR Financial Advisors 11376.15 11419.91 9645.77 13058.09
Och Ziff 11136.66 11622.85 8459.28 13089.39
Credit Suisse Asset Management 11093.56 8881.74 2718.49 28504.00
Ares Management 7819.85 7326.49 1999.78 19644.97
Barings 7701.79 7383.15 3856.02 17866.87
PGIM 7606.96 5128.54 1653.70 24309.48
Alcentra 7457.40 7629.65 2525.83 13718.95
CIFC Asset Management 7011.29 6284.61 493.14 18429.52
KKR 6994.95 6402.08 2700.69 18720.42
Apollo Global Management 6918.01 6946.41 1303.09 14200.04
CBAM 6581.15 7750.09 1231.18 10223.07
CVC Credit Partners 6205.31 5197.08 2134.08 13792.22
Barclays Capital 6151.88 5772.62 4755.84 9752.23
MJX Asset Management 5584.94 4169.99 852.10 17248.10
Investcorp Credit Management 5510.20 5238.23 2053.56 11178.54
Sculptor 5082.09 5269.00 588.07 14447.15
Octagon Credit Investors 4859.36 2993.79 670.60 18102.80
Onex Credit Partners 4848.65 3993.32 501.63 10095.17

Panel B: CLO Deals
Name Mean Median Min. Max.

Heta Funding 5331.63 4938.22 4721.55 7897.35
GoldenTree Credit Opportunities Financing I 3652.07 3652.07 3652.07 3652.07
Fortress Credit Opportunities I 3441.43 3454.84 1251.67 18336.84
KKR Financial CLO 2007-1 2817.67 3196.07 56.26 3424.96
GSO Domestic Capital Funding 2101.24 2101.24 170.94 4031.53
Antares CLO 2017-1 2100.21 2111.52 2016.51 2171.98
Prospect Funding I 1817.85 1431.03 1189.79 3750.56
CBAM 2017-2 1552.42 1554.13 1532.76 1572.30
RR 3 1479.54 1489.09 1306.71 1523.67
Ares XXXI-R 1362.82 1266.47 1243.70 2546.44
Genesis CLO 2007-2 1324.87 1313.84 1275.03 1371.04
Fortress Credit Opportunities IX 1318.64 1407.09 1108.52 1491.66
CBAM 2017-3 1288.33 1286.42 1262.60 1309.47
Tennenbaum Opportunities Partners V 1246.03 1331.87 623.67 3839.90
CBAM 2017-1 1239.99 1240.39 1225.05 1257.22
Ares XXXI 1213.49 1228.08 1075.40 1266.95
Antares CLO 2017-2 1208.99 1215.78 1164.59 1241.41
Churchill Financial Cayman 1198.26 1176.02 192.14 5162.72
Woodmont 2017-2 Trust 1171.74 1171.65 1103.75 1210.65
Zohar II 2005-1 1137.45 1153.06 919.02 1202.65
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Table A28: Holding vs. Market Prices - All Transactions

The table compares the discount of loans as they are reported by CLOs with the closest market price
in the following year by running the following regression: discountj,t = αj + αt + β1Transactionj,t +
Xj,tδ + ε j,t, where discountj,t = 100× log(100/Pj,t) is the discount at which a loan is recorded or
traded compared to par, Transactionj,t is an indicator variable equal to one whenever the price
comes from an actual transaction (sale or purchase) and zero otherwise, αj and αt are issuer and
time fixed effects, while Xj,t includes a set of fixed effects for rating, industry and interest rate of
the loan. Panel A consider the universe of matched loans, while Panel B focuses on loans rated Caa
(CCC).

Panel A: All Loans
(1) (2) (3) (4) (5)

Transaction 0.700∗∗∗ 0.709∗∗∗ 0.709∗∗∗ 0.709∗∗∗ 0.708∗∗∗

(0.160) (0.161) (0.161) (0.161) (0.161)

Fit statistics
Observations 2,598,448 2,580,708 2,580,708 2,580,708 2,598,448
R2 0.570 0.602 0.603 0.603 0.729
Within R2 0.003 0.003 0.003 0.003 0.005

Panel B: Caa (CCC) Loans
(1) (2) (3) (4) (5)

Transaction 2.96∗∗∗ 2.97∗∗∗ 2.97∗∗∗ 2.97∗∗∗ 3.01∗∗∗

(0.669) (0.669) (0.669) (0.669) (0.670)

Fit statistics
Observations 228,440 228,440 228,440 228,440 228,440
R2 0.628 0.648 0.650 0.650 0.739
Within R2 0.0083 0.00884 0.0089 0.0089 0.01218

Fixed-Effects
Year×Month Yes Yes Yes Yes No
Issuer Yes Yes Yes Yes No
Rating No Yes Yes Yes Yes
Industry No No Yes Yes Yes
Interest No No No Yes Yes
Year×Month×Issuer No No No No Yes

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A29: Par Building and OC Test Slack

Columns (1) and (2) report the results of the following regressions: gaini,j,t = ∑S
s=1 1s + εi,t,

where gaini,j,t = (100− Pj,t−1) ×
Nr. loans boughti,j,t
Principal Balancei,t

for purchases and gaini,j,t = −(100− Pj,t−1) ×
Nr. loans soldi,j,t

Principal Balancei,t
for sales; 1s is a dummy variable equal to one whenever the Junior (column (1)) or

Senior (column(2)) slack belongs to bucket s of the following S = 7 buckets: [-1.00,-0.05), [-0.05,0),
[0,0.05), [0.05,0.10), [0.10,0.15), [0.15,0.20), [0.20,1.00). Columns (3) and (4) report the results of the

following regressions: gaini,t = ∑S
s=1 1s + εi,t, where gaini,t = ∑j(100− Pj,t−1)×

Nr. loans boughti,j,t
PrincipalBalancei,t

−

∑j(100− Pj,t−1)×
Nr. loans soldi,j,t

PrincipalBalancei,t
; 1s is a dummy variable equal to one whenever the Junior (col-

umn (3)) or Senior (column(4)) slack belongs to bucket s.

Individual Transactions Multiple Transactions
(1) (2) (3) (4)

1[−1.00,−0.05) -0.037∗∗∗ -0.008 -0.158∗∗∗ -0.067
(0.012) (0.012) (0.043) (0.091)

1[−0.05, 0.00) 0.012 0.0004 0.030 0.030
(0.012) (0.014) (0.048) (0.098)

1[0.00, 0.05) 0.041∗∗∗ 0.004 0.249∗∗∗ 0.008
(0.012) (0.012) (0.043) (0.093)

1[0.05, 0.10) 0.036∗∗∗ 0.009 0.143∗∗∗ 0.068
(0.012) (0.012) (0.043) (0.091)

1[0.10, 0.15) 0.014 0.009 0.0007 0.066
(0.012) (0.012) (0.050) (0.092)

1[0.15, 0.20) 0.001 0.006 -0.082 0.043
(0.014) (0.012) (0.069) (0.093)

1[0.20, 1.00) 0.013 -0.006 -0.075 -0.038
(0.014) (0.012) (0.068) (0.093)

Fit statistics
Observations 301,770 301,669 18,539 17,676
R2 0.01193 0.00368 0.04887 0.01655
Adjusted R2 0.01191 0.00366 0.04856 0.01621

OC Test Junior Senior Junior Senior

Two-way (CLO Deal & Year×Month) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A30: Rating Factor and OC Test Slack

The table presents the average rating factor for loans sold, in column (1), and purchased, column
(2), by CLOs as a function of the slack of their Junior OC tests, by reporting the coefficients of the
following regression: RFi,j,t = ∑S

s=1 βs1s + εi,j,t; where RFi,j,t is the rating factor of loan j, sold by
CLO i at time t; 1s is a dummy variable equal to one whenever the Junior slack belongs to bucket
s of the following S = 7 buckets: [-1.00,-0.05), [-0.05,0), [0,0.05), [0.05,0.10), [0.10,0.15), [0.15,0.20),
[0.20,1.00). Column (3) aggregates the results by reporting the coefficients of the following regres-

sion: ∆WARFi,t = ∑S
s=1 βs1s + εi,t, where ∆WARFi,t = ∑j RFi,j,t ×

Amt. Purchasedi,j,t
∑j Amt. Purchasedi,j,t

− ∑j RFi,j,t ×
Amt. Soldi,j,t

∑j Amt. Soldi,j,t
. Standard errors clustered by CLO Deal & Year×Month are reported in parentheses.

Individual Transactions Multiple Transactions
(1) (2) (3)

1[−1.00,−0.05) 4392.7∗∗∗ 2669.5∗∗∗ -397.4
(597.4) (78.5) (467.8)

1[−0.05, 0.00) 46.1 54.2 79.2
(631.8) (98.2) (475.6)

1[0.00, 0.05) -1951.6∗∗∗ 138∗ 751.1
(597.7) (80.5) (468.3)

1[0.05, 0.10) -1576.2∗∗∗ 39.1 -59.9
(597.2) (80.8) (469.3)

1[0.10, 0.15) -1135.7∗ 84.6 -736.6
(628.1) (211.6) (538.5)

1[0.15, 0.20) -459 501.9 -1840.4∗∗

(854.1) (390.5) (762.2)
1[0.20, 1.00) -1617.9∗∗∗ 5.06 -438.1

(601) (100.7) (559.2)

Fit statistics
Observations 155,079 162,629 21,043
R2 0.05856 0.00231 0.1135
Adjusted R2 0.05843 0.00222 0.11295

Two-way (CLO Deal & Year×Month) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A31: Price Pressure

The table reports the results of the following regression: discountj,t = β1Shockedi,j,t +
β2Shockedj,t × Posti,j,t + Xj,tδ + εi,j,t, where discountj,t = 100 × log(100/Pj,t), Pj,t is the price of
loan j at time t, Shockedj,tis a dummy variable equal to one when loan j selling volume by shocked
CLOs is above median, Posti,j,t is a dummy equal to one after loan j has received an above me-
dian selling volume by shocked CLOs, Xj,t is a matrix containing various fixed effects and controls.
Column (1) includes issuer and year×month fixed effects; column (2) adds year×month×time-
to-maturity fixed effects; column (3) adds year×month×rating fixed effects; column (4) adds
year×month×industry fixed effects; column (5) adds year×month×interest rate fixed effects. In-
terest and time-to-maturity fixed effects are constructed after bucketing the continuous variable in
ten groups. Two-way clustered standard errors at the year×month and issuer level are reported in
parentheses.

(1) (2) (3) (4) (5)

Shocked -0.520∗∗∗ -0.144∗ -0.069 -0.073 -0.067
(0.095) (0.078) (0.056) (0.051) (0.054)

Shocked×Post 1.02∗∗∗ 0.690∗∗∗ 0.525∗∗∗ 0.514∗∗∗ 0.499∗∗∗

(0.144) (0.121) (0.091) (0.086) (0.089)

Fixed-Effects
Issuer Yes Yes Yes Yes Yes
Year×Month Yes No No No No
Year×Month×TTM No Yes Yes Yes Yes
Year×Month×Rating No No Yes Yes Yes
Year×Month×Industry No No No Yes Yes
Year×Month×Interest No No No No Yes

Fit statistics
Observations 738,354 738,354 738,354 738,354 738,354
R2 0.421 0.432 0.533 0.564 0.540
Within R2 0.324 0.312 0.224 0.218 0.223

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A32: Price Pressure - Purchases

The table reports the results of the following regression: discountj,t = β1Shockedi,j,t +
β2Shockedj,t × Posti,j,t + Xj,tδ + εi,j,t, where discountj,t = 100 × log(100/Pj,t), Pj,t is the price of
loan j at time t, Shockedj,tis a dummy variable equal to one when loan j selling volume by shocked
CLOs is above median, Posti,j,t is a dummy equal to one after loan j has received an above me-
dian selling volume by shocked CLOs, Xj,t is a matrix containing various fixed effects and controls.
Column (1) includes issuer and year×month fixed effects; column (2) adds year×month×time-
to-maturity fixed effects; column (3) adds year×month×rating fixed effects; column (4) adds
year×month×industry fixed effects; column (5) adds year×month×interest rate fixed effects. In-
terest and time-to-maturity fixed effects are constructed after bucketing the continuous variable in
ten groups. Two-way clustered standard errors at the year×month and issuer level are reported in
parentheses.

(1) (2) (3) (4) (5)

Shocked -1.4∗∗∗ -1.03∗∗∗ -0.582∗∗∗ -0.581∗∗∗ -0.558∗∗∗

(0.140) (0.121) (0.089) (0.089) (0.086)
Shocked×Post -0.068 -0.338∗∗∗ -0.199 -0.199 -0.207

(0.110) (0.121) (0.131) (0.131) (0.134)

Fixed-Effects
Issuer Yes Yes Yes Yes Yes
Year×Month Yes No No No No
Year×Month×TTM No Yes Yes Yes Yes
Year×Month×Rating No No Yes Yes Yes
Year×Month×Industry No No No Yes Yes
Year×Month×Interest No No No No Yes

Fit statistics
Observations 746,956 746,956 600,004 600,004 598,787
R2 0.48686 0.48926 0.56682 0.56815 0.5695
Within R2 0.0068 0.00438 0.00173 0.00172 0.00165

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A33: The Dynamics of the Shock - Purchases

(1) (2) (3) (4) (5)

Shocked×1(t− 6) -0.122 -0.122 -0.042 -0.095 -0.090

(0.114) (0.114) (0.099) (0.086) (0.084)

Shocked×1(t− 5) -0.228∗∗ -0.228∗∗ -0.121 -0.108 -0.069

(0.103) (0.103) (0.088) (0.082) (0.080)

Shocked×1(t− 4) -0.144 -0.144 -0.081 -0.128∗ -0.072

(0.088) (0.088) (0.084) (0.072) (0.073)

Shocked×1(t− 3) -0.106 -0.106 -0.017 -0.014 0.025

(0.126) (0.126) (0.108) (0.109) (0.106)

Shocked×1(t− 2) -0.164 -0.164 -0.037 -0.021 0.033

(0.146) (0.146) (0.137) (0.128) (0.126)

Shocked×1(t− 1) -0.188∗ -0.188∗ -0.108 -0.096 -0.027

(0.105) (0.105) (0.112) (0.110) (0.107)

Shocked×1(t) -0.342∗∗∗ -0.342∗∗∗ -0.229∗∗ -0.197∗ -0.120

(0.111) (0.111) (0.112) (0.108) (0.105)

Shocked×1(t + 1) -0.466∗∗∗ -0.466∗∗∗ -0.322∗∗∗ -0.305∗∗∗ -0.228∗∗

(0.100) (0.100) (0.103) (0.103) (0.102)

Shocked×1(t + 2) -0.502∗∗∗ -0.502∗∗∗ -0.334∗∗∗ -0.299∗∗∗ -0.233∗∗

(0.107) (0.107) (0.111) (0.107) (0.104)

Shocked×1(t + 3) -0.445∗∗∗ -0.445∗∗∗ -0.277∗∗ -0.245∗∗ -0.198∗

(0.109) (0.109) (0.112) (0.108) (0.107)

Shocked×1(t + 4) -0.492∗∗∗ -0.492∗∗∗ -0.333∗∗∗ -0.309∗∗∗ -0.251∗∗

(0.102) (0.102) (0.104) (0.101) (0.099)

Shocked×1(t + 5) -0.269∗∗ -0.269∗∗ -0.117 -0.171 -0.162

(0.128) (0.128) (0.128) (0.109) (0.103)

Shocked×1(t + 6) -0.254∗∗∗ -0.254∗∗∗ -0.090 -0.127 -0.102

(0.092) (0.092) (0.102) (0.100) (0.101)

Continued on next page
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Table A33 – Continued from previous page

(1) (2) (3) (4) (5)

Shocked×1(t + 7) -0.121 -0.121 -0.0010 -0.042 -0.036

(0.108) (0.108) (0.116) (0.107) (0.109)

Shocked×1(t + 8) -0.212∗∗ -0.212∗∗ -0.069 -0.088 -0.084

(0.106) (0.106) (0.118) (0.116) (0.117)

Shocked×1(t + 9) -0.148 -0.148 -0.047 -0.045 -0.043

(0.099) (0.099) (0.106) (0.105) (0.106)

Shocked×1(t + 10) -0.140 -0.140 -0.040 -0.061 -0.054

(0.098) (0.098) (0.105) (0.102) (0.102)

Shocked×1(t + 11) 0.070 0.070 0.154 0.148 0.124

(0.120) (0.120) (0.123) (0.119) (0.120)

Shocked×1(t + 12) 0.020 0.020 0.075 0.070 0.055

(0.097) (0.097) (0.088) (0.081) (0.081)

Fixed-Effects

Year×Month Yes No No No No

Year×Month×TTM No Yes Yes Yes Yes

Year×Month×Rating No No Yes Yes Yes

Year×Month×IndustryNo No No Yes Yes

Year×Month×Interest No No No No Yes

Fit statistics

Observations 435,712 435,712 435,712 435,712 435,712

R2 0.5226 0.5226 0.57876 0.61972 0.63059

Within R2 0.00238 0.00238 0.00152 0.00129 0.00096

Two-way (Year×Month & Issuer) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A34: Probability of Default Conditional on Having a Defaulted Loan

The table reports the results of the following regressions: y = α + βdefaulti,t + εi,j,t. The outcome
variable is y = defaulti,j,t or y = defaulti,j,t→t+12. defaulti,j,t is a dummy variable equal to one if loan
j from issuer i is in default at time t; defaulti,j,t→t+12 is a dummy variable equal to one if loan j from
issuer i defaults between time t and t+ 12. The independent variable is defaulti,t, a dummy variable
equal to one when any of the loans of issuer i are in default at time t. Two-way clustered standard
errors at the year×month and issuer level are reported in parentheses. The sample contains only
loans from issuers with more than one issue currently on CLOs portfolios.

defaulti,j,t defaulti,j,t→t+12

(Intercept) 0.000 0.000
(0.000) (0.000)

defaulti,t 0.200∗∗∗ 0.285∗∗∗

(0.012) (0.014)

Fit statistics
Observations 2,548,697 2,548,697
R2 0.15203 0.22163
Adjusted R2 0.15203 0.22163

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A35: Par Building - Placebo Test: Downgrades to B2

The table reports the difference in par built between CLOs that have received a shock to the
bucket of securities rated B2. Columns (1) and (2) report the results of the following re-
gressions: gaini,j,t = α + β1Constrainedi,t + β2Shockedi,t + β3Constrainedi,t × Shockedi,t + εi,t,

where gaini,j,t = 100 ×
(
(100− Pj,t−1)×

Nr. loans boughti,j,t
Principal Balancei,t

)
for purchases and gaini,j,t = −100 ×(

(100− Pj,t−1)×
Nr. loans soldi,j,t

Principal Balancei,t

)
for sales; Constrainedi,t is a dummy variable equal to one

whenever the Junior (column (1)) or Senior (column(2)) slack of CLO i is between 0% and and
5% in period t; Shockedi,t is a dummy variable equal to one whenever the loans of CLO i
have been downgraded to B2. Columns (3) and (4) report the results of the following regres-
sions: gaini,t = α + β1Constrainedi,t + β2Shockedi,t + β3Constrainedi,t × Shockedi,t + εi,t, where

gaini,t = 100×
(

∑j(100− Pj,t−1)×
Nr. loans boughti,j,t
Principal Balancei,t

−∑j(100− Pj,t−1)×
Nr. loans soldi,j,t

Principal Balancei,t

)
and the

other variables are defined as above. Constrainedi,t refers to Junior tests in column (3) and to Senior
tests in column (4). Standard errors are reported in parentheses and they are double clustered at the
Year×Month & CLO Deal level.

Individual Transactions Multiple Transactions
(1) (2) (3) (4)

(Intercept) -0.004∗∗∗ -0.002∗∗∗ -0.080∗∗∗ -0.048∗∗∗

(0.0004) (0.0002) (0.009) (0.003)
Shocked 0.0005 0.000 0.010 -0.0009

(0.0004) (0.0001) (0.009) (0.003)
Constrained 0.002∗∗∗ -0.006∗∗∗ 0.034∗∗∗ -0.065∗∗

(0.0004) (0.002) (0.009) (0.027)
Shocked × Constrained -0.0005 -0.0001 -0.011 -0.001

(0.0004) (0.002) (0.009) (0.028)

Fit statistics
Observations 309,028 303,160 30,156 29,034
R2 0.000 0.000 0.001 0.001
Adjusted R2 0.000 0.000 0.000 0.001

OC Test Junior Senior Junior Senior

Two-way (Year×Month & CLO Deal) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A36: Price Pressure - Placebo Test: Downgrades to B2

The table reports the results of the following regression: discountj,k,t = β1Shockedj,t +
β2Shockedj,t × Postj,t + Xj,tδ + ε j,t, where discountj,k,t = 100 × log(100/Pj,k,t), Pj,k,t is the price
of loan j issued by firm k at time t, Shockedj,tis a dummy variable equal to one when loan j sell-
ing volume by CLOs that experienced downgrades to B2 is above median and their slack is be-
tween 0% and 5%, Postj,t is a dummy equal to one after loan j has received an above median
selling volume by CLOs with downgrades to B2, Xj,t is a matrix containing various fixed effects
and controls. Column (1) includes year×month fixed effects; column (2) adds year×month×time-
to-maturity fixed effects; column (3) adds year×month×rating fixed effects; column (4) adds
year×month×industry fixed effects; column (5) adds year×month×interest rate fixed effects. In-
terest and time-to-maturity fixed effects are constructed after bucketing the continuous variable in
ten groups. All the regressions include the lagged average discount on the issuer computed as Avg.
discountk,t−1 = 1

Jk×(t−1) ∑Jk
j=1 ∑t−1

s=1 discountj,k,s, where Jk is the number of loans by issuer k actively
traded. Two-way clustered standard errors at the year×month and issuer level are reported in
parentheses.

(1) (2) (3) (4) (5)

Shocked 0.713∗∗∗ 0.565∗∗∗ 0.506∗∗∗ 0.403∗∗∗ 0.335∗∗∗

(0.172) (0.145) (0.112) (0.106) (0.106)
Shocked×Post -0.180 0.039 0.083 0.088 0.109

(0.135) (0.117) (0.098) (0.093) (0.092)
Avg. Discountt−1 0.852∗∗∗ 0.838∗∗∗ 0.709∗∗∗ 0.693∗∗∗ 0.690∗∗∗

(0.033) (0.034) (0.032) (0.031) (0.031)

Fixed-Effects
Year×Month Yes No No No No
Year×Month×TTM No Yes Yes Yes Yes
Year×Month×Rating No No Yes Yes Yes
Year×Month×Industry No No No Yes Yes
Year×Month×Interest No No No No Yes

Fit statistics
Observations 332,118 332,118 332,118 332,118 332,118
R2 0.489 0.504 0.597 0.636 0.644
Within R2 0.406 0.388 0.290 0.276 0.274

Two-way (Year×Month & Issuer) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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A.5 Additional Figures

Figure A7: Fraction of Caa (CCC) and Defaulted Securities - Time Series

The upper plot displays the times series of the median fraction of securities rated Caa (CCC) or be-
low. The lower plot displays the times series of the median fraction of defaulted securities. Shaded
areas indicate the 25th and 75th percentiles of the distribution.
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Figure A8: Fraction of Caa (CCC) and Defaulted Securities by CLO Deal’s Age

The plots report the median fraction of securities rated Caa (CCC) or below, on the left, and the
median fraction of defaulted securities, on the right, as a function of a CLO deal’s age. The upper
plots measure age as a fraction of the total age of each deal, while the bottom plots measure age in
years.Shaded areas indicate the 25th and 75th percentiles of the distribution.
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Figure A9: Loan Prices

The upper plot reports the time series of the median price of loans traded by CLOs by month, while
the lower plot refers to the average price weighted by the volume of trades. Blue lines include all
the transactions by CLOs, red lines include only loans purchased by CLOs while green lines include
only loans sold by CLOs.
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Figure A10: Fraction of Variation in Discounts Explained

The plots reports the fraction of variation in discounts explained by various characteristics as the R2

of a regression of discounts on various fixed effects, i.e. discountj,t = Xj,tβ+ ε j,t, where discountj,t =

100× log
(
100/Pj,t

)
, Pj,t is the price of loan j at time t and Xj,t is a matrix of fixed effects. (1) includes

Year × Month fixed effects; (2) interested rate fixed effects interacted with Year × Month fixed
effects, where the interest rate of a loan is grouped in ten buckets; (3) includes time-to-maturity
fixed effects interacted with Year × Month fixed effects, where time-to-maturity is grouped in ten
buckets; (4) includes industry fixed effects interacted with Year ×Month fixed effects; (5) includes
rating fixed effects interacted with Year ×Month fixed effects; (6) includes loan issuer fixed effects;
(7) includes all the previous fixed effects; (8) includes issuer × Year × Month fixed effects; (9)
includes issuer × Year × Month fixed effects and, separately, interest, time-to-maturity, industry
and rating fixed effects interacted with Year ×Month fixed effects.
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Figure A11: Securities Held by CLOs by Type

The figure plots a histogram of the securities held by CLOs bucketed by their type. The upper plot
counts the number of securities, while the bottom plot refers to each security has a fraction of CLO
assets.
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Figure A12: Securities Held by CLOs

The topmost figure plots a histogram of the securities held by CLOs bucketed by the first time they
appear in sample. The middle histogram refers to the last date each security appears in sample. The
bottom histogram refers to the maturity date of each security.
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Figure A13: OC Tests Slack

The plot reports the monthly time series of the median slack for over-collateralization (OC) tests
together with their 25th and 75th percentiles. Senior OC tests are in red, while Junior OC tests are
in blue. For each deal the slack of tranche k is constructed as slackk = test resultk−test thresholdk

test thresholdk
. The

senior slack for each deal is obtained as the median slack of tranches A and B, while the junior slack
is obtained as the median slack of the remaining tranches.
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Figure A14: Weighted-Average Rating Factor

The plot reports the time series of the median weighted-average rating factor, in red, and its average,
in blue. Both statistics are computed from the cross-section of CLO deals reporting in any given
month.
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Figure A15: Number of Transactions Per Loan

The upper panel displays the average number of transactions per loan per month. The bottom
panel displays the median number of transactions per loan per month. Blue lines represent loans
purchased by CLOs, while red lines loans sold by CLOs.
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Figure A16: Par Gained and OC Test Slack

The plots report the gain in par as a function of the slack in Junior OC tests. Observations are
binned following Cattaneo et al. (2019). Each panel fits a separate polynomial of order p = 1, 2, 3, 4
to observation with positive and negative slack, following Calonico et al. (2015).
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Figure A17: Rating Factor and OC Test Slack

The plots show the average rating factor for loans sold (left) and purchased (right) by CLOs as a
function of the slack of their Junior OC tests, by reporting the coefficients of the following regres-
sion: RFi,j,t = ∑S

s=1 βs1s + εi,j,t; where RFi,j,t is the rating factor of loan j, sold by CLO i at time t;
1s is a dummy variable equal to one whenever the Junior slack belongs to bucket s of the following
S = 7 buckets: [-1.00,-0.05), [-0.05,0), [0,0.05), [0.05,0.10), [0.10,0.15), [0.15,0.20), [0.20,1.00).
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Figure A18: Rating Factor and OC Test Slack

The plot reports the coefficients of the following regression: ∆WARFi,t = ∑S
s=1 βs1s + εi,t, where

∆WARFi,t = ∑j RFi,j,t ×
Amt. Purchasedi,j,t

∑j Amt. Purchasedi,j,t
− ∑j RFi,j,t ×

Amt. Soldi,j,t
∑j Amt. Soldi,j,t

; RFi,j,t is the rating factor of

loan j, sold by CLO i at time t; 1s is a dummy variable equal to one whenever the Junior slack
belongs to bucket s of the following S = 7 buckets: [-1.00,-0.05), [-0.05,0), [0,0.05), [0.05,0.10),
[0.10,0.15), [0.15,0.20), [0.20,1.00).
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Figure A19: Probability of Selling Securities Above Par Around a Downgrade to
Caa (CCC)

The plot reports the difference between CLOs that just passed their OC test and those that failed
them in the fraction of above-par securities sold as a fraction of total sales.
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Figure A20: Probability of Selling Caa (CCC) Rated Securities Around a Down-
grade to Caa (CCC)

The plot reports the difference between CLOs that just passed their OC test and those that failed
them in the fraction of securities rated Caa (CCC) or below sold as a fraction of total sales.
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Figure A21: The Dynamics of the Shock - Sales

The figure plots the coefficients of models (1), (2), (3) and (5) in Table A12.
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Figure A22: Average Discount for the Treated Loans

The plots reports the average discount for treated loans by around the month they are sold by
shocked CLOs obtained from the following regression: discountj,t = ∑12

s=−6 βs1(t + s) + ε j,t, where
discountj,t = 100 × log

(
100/Pj,t

)
, Pj,t is the price of loan j at time t and and 1(t + s) is a set of

dummies that are equal to one s = −6, 5, ..., 11, 12 months around the event of the sale at time
t. Error bars reports the two-standard errors confidence intervals. Standard errors are two-wat
clustered at the year×month and issuer level.
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Figure A23: The Dynamics of the Shock - Purchases

The figure plots the coefficients of models (1), (2), (3), (4) and (5) from Table A33.
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Figure A24: Loan Primary Use of Proceeds

The plots reports a histogram of the count of loans in the SDC Platinum dataset grouped by the
primary use of proceeds. General includes general corporate purposes and payment of fees and
expenses; Acquisition includes acquisition finance, future acquisitions, real estate and property ac-
quisition and acquisition of securities; Refinancing includes general refinancing, bank refinancing,
payments on previous borrowed money, payment on long-term borrowings, and down payments
of previously borrowed money; LBO refers to leveraged buyouts; Lev. Recap. to any recapitaliza-
tion; Proj. Finance to general project finance, recourse and non-recourse project finance; SBO refers
to sponsored buyouts; Standby to standby facilities; Others contains all the remaining residual cat-
egories.

0

10000

20000

30000

40000

General Acquisition Refinancing LBO Working Capital Lev. Recap. Other Proj. Finance Construction SBO Standby

Loan Purpose



APPENDIX A. CONTAGION IN THE MARKET FOR LEVERAGED LOANS 182

Figure A25: Assets Under Management and Number of Facilities Matched in CLO-
i

The upper panel reports the amount of assets under management in the CLO-i dataset measured
in $ Billions. The lower panel reports the number of facilities by year. Blue lines refer to the full
sample, while red lines to the sample of securities matched with loans in the SDC Platinum dataset.
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Figure A26: Amount and Number of Facilities Matched in SDC Platinum

The upper panel reports the amount of loans issued by year in the SDC Platinum dataset measured
in $ Billions. The lower panel reports the number of facilities issued by year. Blue lines refer to
the full sample, while red lines to the sample of leveraged loans matched with loans in the CLO-i
dataset.
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B. Appendix to Revealed Expectations and

Learning Biases

B.1 Tables

Table B1: Summary Statistics

The table reports summary statistics for the data used. Column x̄ reports the sample average of
each variable, column σ its standard deviation, Min the smallest observation, Q1 the first quartile,
Median the 50th percentile, Q3 the third quartile, Max the largest observation and N the number
of observations. The first panel reports summary statistics regarding average and median past re-
turns experienced by managers. The second panel reports six measures of expected excess returns
computed as Σ̂twi,t. Rows (1)-(3) report results without wi,j,t = 0, namely including in the compu-
tations only strictly positive weights; rows (4)-(6) include zero weights on stocks that belong to the
manager’s investment universe. Rows (1) and (4) use sample covariance matrices Σ̂1

t , rows (2) and
(5) use Touloumis (2015) covariance matrices Σ̂2

t and rows (3) and (6) use Ledoit and Wolf (2004)
covariance matrices Σ̂3

t in the computation of Σ̂twi,t. The third panel reports summary statistics on
managers’ careers; experience refers to the number of quarters since the first time a certain stock
appeared in the manager’s portfolio; max.experience refers to the maximum experience achieved
for each manager-stock pair; tenure refers to the number of quarters since the first time the manager
appeared in sample.

x̄ σ Min Q1 Median Q3 Max N

Experienced Returns
average 0.024 0.100 -0.557 -0.010 0.026 0.063 0.607 13, 912, 677
median 0.014 0.111 -0.871 -0.026 0.021 0.062 1.198 13, 912, 677

Expected Excess Returns
(1) 0.012 0.015 -0.282 0.004 0.007 0.014 1.336 5, 416, 032
(2) 0.011 0.014 -0.208 0.003 0.006 0.012 0.806 5, 416, 032
(3) 0.011 0.015 -0.161 0.003 0.006 0.013 0.764 5, 416, 032
(4) 0.012 0.015 -0.278 0.004 0.007 0.014 0.766 12, 707, 119
(5) 0.011 0.015 -0.292 0.003 0.006 0.012 1.086 12, 707, 119
(6) 0.011 0.015 -0.319 0.003 0.006 0.013 1.034 12, 707, 119

Managers Careers
experience 13.158 12.853 1 4 9 17 139 13, 912, 677
max. experience 13.884 11.981 1 6 11 17 139 1, 223, 610
tenure 26.896 21.943 1 10 21 39 139 75, 179

183
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Table B2: The Effect of Average Experienced Returns

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =
βr̄i,j,t + Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead return of
manager i for stock j at time t, r̄i,j,t is the standardised equal-weighted average experienced return,
Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. Standard errors are clustered
at the same level of the fixed effects and are reported in parentheses. Columns (1)-(3) report results
without wi,j,t = 0, namely including in the computations only strictly positive weights; columns
(4)-(6) include zero weights on stocks that belong to the manager’s investment universe. Columns
(1) and (4) use sample covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covari-
ance matrices Σ̂2

t and columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the

computation of Σ̂twi,t.

Expected Returns
(1) (2) (3) (4) (5) (6)

β 0.103∗∗∗ 0.103∗∗∗ 0.105∗∗∗ 0.149∗∗∗ 0.148∗∗∗ 0.151∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

N 1, 270, 823 1, 270, 823 1, 270, 823 2, 856, 830 2, 856, 830 2, 856, 830
R2 0.781 0.765 0.773 0.709 0.692 0.695
Within-R2 0.006 0.006 0.006 0.009 0.009 0.009

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B3: The Effect of Experienced Returns - Five Buckets

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑5
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the standardised average

return in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. To
be included, a manager-stock pair must have at least 5 quarters of experience. Standard errors are
clustered at the same level of the fixed effects and are reported in parentheses. Columns (1)-(3) re-
port results without wi,j,t = 0, namely including in the computations only strictly positive weights;
columns (4)-(6) include zero weights on stocks that belong to the manager’s investment universe.
Columns (1) and (4) use sample covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015)
covariance matrices Σ̂2

t and columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t

in the computation of Σ̂twi,t.

Expected Returns
(1) (2) (3) (4) (5) (6)

β1 0.276∗∗∗ 0.287∗∗∗ 0.272∗∗∗ 0.275∗∗∗ 0.273∗∗∗ 0.281∗∗∗

(0.008) (0.013) (0.008) (0.006) (0.007) (0.006)
β2 0.134∗∗∗ 0.132∗∗∗ 0.136∗∗∗ 0.134∗∗∗ 0.132∗∗∗ 0.136∗∗∗

(0.005) (0.005) (0.005) (0.003) (0.003) (0.004)
β3 0.041∗∗∗ 0.043∗∗∗ 0.040∗∗∗ 0.042∗∗∗ 0.042∗∗∗ 0.046∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.003) (0.003)
β4 0.073∗∗∗ 0.073∗∗∗ 0.077∗∗∗ 0.075∗∗∗ 0.072∗∗∗ 0.078∗∗∗

(0.003) (0.003) (0.004) (0.002) (0.002) (0.002)
β5 0.238∗∗∗ 0.237∗∗∗ 0.241∗∗∗ 0.238∗∗∗ 0.237∗∗∗ 0.237∗∗∗

(0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

N 796, 021 796, 021 796, 021 1, 958, 072 1, 958, 072 1, 958, 072
R2 0.798 0.786 0.792 0.720 0.705 0.708
Within-R2 0.042 0.043 0.043 0.043 0.042 0.042

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B4: The Effect of Experienced Returns - Ten Buckets

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑10
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, ..., 10}, is the standardised average

return in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. To
be included, a manager-stock pair must have at least 10 quarters of experience. Standard errors are
clustered at the same level of the fixed effects and are reported in parentheses. Columns (1)-(3) re-
port results without wi,j,t = 0, namely including in the computations only strictly positive weights;
columns (4)-(6) include zero weights on stocks that belong to the manager’s investment universe.
Columns (1) and (4) use sample covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015)
covariance matrices Σ̂2

t and columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t

in the computation of Σ̂twi,t.

Expected Returns
(1) (2) (3) (4) (5) (6)

β1 0.276∗∗∗ 0.293∗∗∗ 0.258∗∗∗ 0.271∗∗∗ 0.290∗∗∗ 0.268∗∗∗

(0.012) (0.039) (0.010) (0.010) (0.017) (0.007)
β2 0.147∗∗∗ 0.163∗∗∗ 0.141∗∗∗ 0.149∗∗∗ 0.157∗∗∗ 0.148∗∗∗

(0.008) (0.023) (0.009) (0.006) (0.009) (0.005)
β3 0.100∗∗∗ 0.102∗∗∗ 0.098∗∗∗ 0.100∗∗∗ 0.102∗∗∗ 0.096∗∗∗

(0.006) (0.011) (0.006) (0.004) (0.005) (0.004)
β4 0.060∗∗∗ 0.058∗∗∗ 0.067∗∗∗ 0.059∗∗∗ 0.066∗∗∗ 0.061∗∗∗

(0.006) (0.008) (0.006) (0.004) (0.004) (0.003)
β5 0.028∗∗∗ 0.023∗∗∗ 0.021∗∗∗ 0.029∗∗∗ 0.030∗∗∗ 0.025∗∗∗

(0.005) (0.008) (0.005) (0.003) (0.003) (0.003)
β6 0.022∗∗∗ 0.024∗∗∗ 0.019∗∗∗ 0.021∗∗∗ 0.027∗∗∗ 0.024∗∗∗

(0.004) (0.006) (0.004) (0.003) (0.003) (0.003)
β7 0.020∗∗∗ 0.027∗∗∗ 0.026∗∗∗ 0.024∗∗∗ 0.020∗∗∗ 0.023∗∗∗

(0.004) (0.005) (0.004) (0.002) (0.002) (0.003)
β8 0.043∗∗∗ 0.045∗∗∗ 0.040∗∗∗ 0.045∗∗∗ 0.046∗∗∗ 0.046∗∗∗

(0.004) (0.006) (0.005) (0.002) (0.003) (0.003)
β9 0.080∗∗∗ 0.088∗∗∗ 0.087∗∗∗ 0.086∗∗∗ 0.088∗∗∗ 0.087∗∗∗

(0.006) (0.007) (0.004) (0.004) (0.003) (0.003)
β10 0.206∗∗∗ 0.204∗∗∗ 0.206∗∗∗ 0.208∗∗∗ 0.216∗∗∗ 0.215∗∗∗

(0.005) (0.005) (0.005) (0.003) (0.003) (0.003)

N 442, 353 442, 353 442, 353 1, 073, 779 1, 073, 779 1, 073, 779
R2 0.824 0.812 0.820 0.750 0.736 0.738
Within-R2 0.039 0.041 0.039 0.039 0.042 0.039

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B5: The Effect of Experienced Returns by Number of Managers

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑Q
q=1 βq,n r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the standardised aver-

age return in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed
effect. Each column reports the results for the sub-sample of managers working in a team of
ni,t ∈ {1, 2, 3, 4 or more}, members at time t. Standard errors are clustered at the same level of
the fixed effects and are reported in parentheses. The first four columns report results for measure
(1), using sample covariance matrices Σ̂1

t and no wi,j,t = 0, namely including in the computations
only strictly positive weights; the last four columns report results for measure (4), using sample co-
variance matrices Σ̂1

t and including zero weights on stocks that belong to the manager’s investment
universe.

Expected Returns
(1) (4)

Nr. Managers 1 2 3 ≥ 4 1 2 3 ≥ 4

β1 0.276∗∗∗ 0.114∗∗∗ 0.006∗∗ 0.015∗∗∗ 0.275∗∗∗ 0.114∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(0.008) (0.014) (0.003) (0.003) (0.006) (0.008) (0.002) (0.002)
β2 0.133∗∗∗ 0.053∗∗∗ 0.004∗∗ 0.008∗∗∗ 0.134∗∗∗ 0.047∗∗∗ 0.004∗∗∗ 0.001

(0.005) (0.005) (0.002) (0.002) (0.003) (0.004) (0.001) (0.002)
β3 0.040∗∗∗ 0.011∗∗∗ 0.004∗∗ 0.006∗∗∗ 0.041∗∗∗ 0.010∗∗∗ 0.006∗∗∗ 0.003∗∗

(0.004) (0.004) (0.002) (0.002) (0.002) (0.003) (0.001) (0.001)
β4 0.072∗∗∗ 0.014∗∗∗ 0.000 0.001 0.074∗∗∗ 0.015∗∗∗ 0.003∗∗∗ 0.001

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)
β5 0.237∗∗∗ 0.017∗∗∗ 0.002∗∗ 0.001 0.237∗∗∗ 0.019∗∗∗ 0.004∗∗∗ 0.001

(0.004) (0.002) (0.001) (0.001) (0.003) (0.001) (0.001) (0.001)

N 796, 021 580, 367 1, 000, 968 790, 078 1, 958, 072 1, 455, 284 2, 773, 180 2, 181, 406
R2 0.798 0.912 0.991 0.989 0.720 0.866 0.984 0.978
Within-R2 0.042 0.002 0.000 0.001 0.043 0.003 0.001 0.000

wi,j,t = 0 No No No No Yes Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×TimeStock×TimeStock×TimeStock×TimeStock×TimeStock×TimeStock×TimeStock×Time

Covariance Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B6: Managers Who Have Switched Funds - Five Buckets

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑5
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the standardised average

return in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect.
To be included, a manager must have in his current investment universe a stock that he has previ-
ously held in a different fund. A manager-stock pair must have at least 5 quarters of experience.
Standard errors are clustered at the same level of the fixed effects and are reported in parentheses.
Columns (1)-(3) report results without wi,j,t = 0, namely including in the computations only strictly
positive weights; columns (4)-(6) include zero weights on stocks that belong to the manager’s in-
vestment universe. Columns (1) and (4) use sample covariance matrices Σ̂1

t , columns (2) and (5)
use Touloumis (2015) covariance matrices Σ̂2

t and columns (3) and (6) use Ledoit and Wolf (2004)
covariance matrices Σ̂3

t in the computation of Σ̂twi,t.

Expected Returns
(1) (2) (3) (4) (5) (6)

β1 0.224∗∗∗ 0.272∗∗∗ 0.209∗∗∗ 0.240∗∗∗ 0.214∗∗∗ 0.250∗∗∗

(0.018) (0.031) (0.023) (0.014) (0.014) (0.022)
β2 0.133∗∗∗ 0.116∗∗∗ 0.112∗∗∗ 0.125∗∗∗ 0.117∗∗∗ 0.124∗∗∗

(0.015) (0.016) (0.015) (0.009) (0.009) (0.011)
β3 0.048∗∗∗ 0.046∗∗∗ 0.031∗∗∗ 0.063∗∗∗ 0.049∗∗∗ 0.066∗∗∗

(0.011) (0.014) (0.011) (0.008) (0.007) (0.009)
β4 0.066∗∗∗ 0.071∗∗∗ 0.051∗∗∗ 0.078∗∗∗ 0.065∗∗∗ 0.073∗∗∗

(0.010) (0.010) (0.011) (0.007) (0.006) (0.007)
β5 0.199∗∗∗ 0.199∗∗∗ 0.202∗∗∗ 0.216∗∗∗ 0.219∗∗∗ 0.211∗∗∗

(0.011) (0.013) (0.013) (0.007) (0.007) (0.009)

N 110, 037 110, 037 110, 037 225, 676 225, 676 225, 676
R2 0.892 0.885 0.889 0.843 0.834 0.842
Within-R2 0.034 0.038 0.034 0.040 0.040 0.040

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B7: Managers Who Have Switched Funds - Ten Buckets

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑10
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, ..., 10}, is the standardised average

return in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect.
To be included, a manager must have in his current investment universe a stock that he has previ-
ously held in a different fund. A manager-stock pair must have at least 10 quarters of experience.
Standard errors are clustered at the same level of the fixed effects and are reported in parentheses.
Columns (1)-(3) report results without wi,j,t = 0, namely including in the computations only strictly
positive weights; columns (4)-(6) include zero weights on stocks that belong to the manager’s in-
vestment universe. Columns (1) and (4) use sample covariance matrices Σ̂1

t , columns (2) and (5)
use Touloumis (2015) covariance matrices Σ̂2

t and columns (3) and (6) use Ledoit and Wolf (2004)
covariance matrices Σ̂3

t in the computation of Σ̂twi,t.

Expected Returns
(1) (2) (3) (4) (5) (6)

β1 0.246∗∗∗ 0.253∗∗∗ 0.252∗∗∗ 0.281∗∗∗ 0.212∗∗∗ 0.198∗∗∗

(0.026) (0.026) (0.027) (0.055) (0.017) (0.021)
β2 0.129∗∗∗ 0.148∗∗∗ 0.127∗∗∗ 0.154∗∗∗ 0.124∗∗∗ 0.116∗∗∗

(0.018) (0.018) (0.020) (0.023) (0.011) (0.013)
β3 0.071∗∗∗ 0.102∗∗∗ 0.106∗∗∗ 0.101∗∗∗ 0.097∗∗∗ 0.071∗∗∗

(0.015) (0.014) (0.018) (0.011) (0.010) (0.010)
β4 0.054∗∗∗ 0.066∗∗∗ 0.074∗∗∗ 0.060∗∗∗ 0.055∗∗∗ 0.042∗∗∗

(0.015) (0.012) (0.017) (0.009) (0.008) (0.009)
β5 0.027∗∗ 0.035∗∗∗ 0.030∗∗∗ 0.040∗∗∗ 0.029∗∗∗ 0.022∗∗∗

(0.013) (0.011) (0.012) (0.008) (0.007) (0.008)
β6 0.026∗∗ 0.025∗∗ 0.015 0.029∗∗∗ 0.012∗ 0.023∗∗∗

(0.011) (0.011) (0.013) (0.007) (0.007) (0.006)
β7 0.011 0.019∗ 0.013 0.027∗∗∗ 0.020∗∗∗ 0.027∗∗∗

(0.011) (0.010) (0.011) (0.006) (0.007) (0.007)
β8 0.044∗∗∗ 0.031∗∗∗ 0.033∗∗ 0.056∗∗∗ 0.040∗∗∗ 0.038∗∗∗

(0.012) (0.011) (0.013) (0.007) (0.006) (0.007)
β9 0.090∗∗∗ 0.073∗∗∗ 0.085∗∗∗ 0.084∗∗∗ 0.086∗∗∗ 0.077∗∗∗

(0.012) (0.013) (0.012) (0.008) (0.007) (0.007)
β10 0.183∗∗∗ 0.169∗∗∗ 0.180∗∗∗ 0.195∗∗∗ 0.193∗∗∗ 0.200∗∗∗

(0.014) (0.014) (0.016) (0.010) (0.009) (0.009)

N 78, 920 78, 920 78, 920 160, 237 160, 237 160, 237
R2 0.914 0.915 0.914 0.869 0.865 0.867
Within-R2 0.038 0.037 0.039 0.044 0.040 0.039

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B8: Learning Parameters

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

β
(

∑
Ti,j,t
k=1 ωi,j,t,krj,t+1−k

)
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period

ahead return of manager i for stock j at time t, rj,t+1−k is the realised return of stock j from time
t− k to t + 1− k, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. Weights

are represented by the following functional form : ωi,j,t,k =
(Ti,j,t−k)λ1 kλ2

∑
Ti,j,t
k=1 (Ti,j,t−k)λ1 kλ2

. Clustered standard

errors are in parentheses. Columns (1)-(3) report results without wi,j,t = 0, namely including in
the computations only strictly positive weights; columns (4)-(6) include zero weights on stocks that
belong to the manager’s investment universe. Columns (1) and (4) use sample covariance matrices
Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and columns (3) and (6) use

Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.

Expected Returns
(1) (2) (3) (4) (5) (6)

β 0.146∗∗∗ 0.139∗∗∗ 0.144∗∗∗ 0.205∗∗∗ 0.205∗∗∗ 0.207∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
λ1 -1.901∗∗∗ -1.838∗∗∗ -1.873∗∗∗ -1.663∗∗∗ -1.700∗∗∗ -1.683∗∗∗

(0.068) (0.064) (0.064) (0.034) (0.038) (0.035)
λ2 -1.659∗∗∗ -1.487∗∗∗ -1.563∗∗∗ -1.574∗∗∗ -1.610∗∗∗ -1.590∗∗∗

(0.108) (0.116) (0.108) (0.053) (0.061) (0.053)

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B9: Risk Aversion - Pooled Regressions

The table reports the parameter estimates obtained from the following pooled regression: rj,t+1 −
r f = α + γ(Σtw

∗
i,t)j + εi,j,t+1, where rj,t+1 − r f is the realised excess return of stock j from time t

to t + 1, and (Σtw∗i,t)j is the demand of manager i for stock j at time t scaled by the conditional
covariance matrix Σt. α is the pooled estimated bias across managers and time, γ is the pooled es-
timated risk aversion across managers and time. Standard errors are clustered at the manager-time
and stock-time level and reported in parentheses. Columns (1)-(3) report results without wi,j,t = 0,
namely including in the computations only strictly positive weights; columns (4)-(6) include zero
weights on stocks that belong to the manager’s investment universe. Columns (1) and (4) use sam-
ple covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and

columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.

Expected Returns
(1) (2) (3) (4) (5) (6)

α 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
γ 0.915∗∗∗ 0.999∗∗∗ 0.958∗∗∗ 1.204∗∗∗ 1.283∗∗∗ 1.255∗∗∗

(0.079) (0.082) (0.080) (0.077) (0.079) (0.078)

N 5, 383, 850 5, 383, 850 5, 383, 850 12, 545, 295 12, 545, 295 12, 545, 295
R2 0.004 0.004 0.004 0.006 0.006 0.006

wijt = 0 No No No Yes Yes Yes

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B10: Risk Aversion and Bias - Summary Statistics

The table reports the summary statistics of the parameter estimates α̂i and γ̂i obtained by running
one regression per manager with the following specification: rj,t+1 − r f = αi + γi(Σtw

∗
i,t)j + εi,j,t+1,

where rj,t+1 − r f is the realised excess return of stock j from time t to t + 1, and (Σtw∗i,t)j is the de-
mand of manager i for stock j at time t scaled by the conditional covariance matrix Σt. The reported
results are obtained under measure (1), using sample covariance matrices Σ̂1

t and no wi,j,t = 0,
namely including in the computations only strictly positive weights.

α̂i γ̂i

mean 0.007 1.236

standard deviation 0.068 5.850

median 0.010 1.117

min -0.676 -44.666

max 0.736 48.631

skewness -0.626 1.075

kurtosis 27.395 13.200
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B.2 Figures

Figure B1: Explained R2

The figure reports the fraction of variation in expected excess returns explained by various fixed
effects. For (1), (2) and (3) we report the R2 of the following regression µi,j,t − r f = Hk + εi,j,t. (1)
reports results for manager fixed effects, i.e., Hk = Hi; (2) for stock fixed effects Hk = Hj; (3) for
time fixed effects Hk = Ht. (4) reports the R2 for separate manager, stock and time fixed effects, i.e.,
µi,j,t − r f = Hi + Hj + Ht + εi,j,t. (5) reports the results for manager-time and stock fixed effects,
i.e., µi,j,t − r f = Hi,t + Hj + εi,j,t. (6) reports the results for manager and stock-time fixed effects, i.e.,
µi,j,t − r f = Hi + Hj,t + εi,j,t. (7) reports the results for manager-time and stock-time fixed effects,
i.e., µi,j,t − r f = Hi,t + Hj,t + εi,j,t.
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Figure B2: Managers’ Careers

The upper panel shows the distribution of starting date for the managers’ careers, as the first date
we can track the manager in sample. The bottom panel shows the distribution of tenure across
managers and dates as the difference between the current date and the starting date in quarters.
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Figure B3: Stock-Manager Experience

The upper panel depicts the starting date of each manager-stock pair ti,j,0, as the first date in which
we observe a certain manager i holding a certain stock j. The middle panel shows the distribution
of stock-manager experience, i.e., for any date t, manager i and stock j experiencei,j,t = t− ti,j,0. The
bottom panel reports the distribution of the maximal experience achieved for each manager-stock
pair, i.e., max. experiencei,j = maxt{experiencei,j,t}.
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Figure B4: Weights on Past Experience

The figure reports the parameter estimates for βq obtained from the following regression: µi,j,t −
r f = ∑Q

q=1 βq r̄i,j,t∈∆Tq
i,j,t

+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period

ahead return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

is the standardised average return in the

q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. The upper panel
reports the results for Q = 5, while the bottom panel for Q = 10. To be included in the upper panel,
a manager-stock pair must have at least 5 quarters of experience, while 10 quarters are needed
for the bottom panel. Measures (1)-(3) report results without wi,j,t = 0, namely including in the
computations only strictly positive weights; measures (4)-(6) include zero weights on stocks that
belong to the manager’s investment universe. Measures (1) and (4) use sample covariance matrices
Σ̂1

t , measures (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and measures (3) and (6) use

Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.
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Figure B5: Weights on Past Experience by Number of Managers

The figure reports the parameter estimates for βq,n obtained from the following regression: µi,j,t −
r f = ∑Q

q=1 βq,n r̄i,j,t∈∆Tq
i,j,t

+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period

ahead return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, is the standardised average return in the

q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. The horizontal
axis refers to q, while each line to ni,t ∈ {1, 2, 3, 4 or more}. The top row reports the results for
Q = 5, the bottom for Q = 10. The left column plots coefficients for measure (1), namely expected
excess returns are computed without wi,j,t = 0 and using the sample covariance matrix Σ̂1

t ; the right
column for measure (4), namely expected excess returns are computed with wi,j,t = 0 and using the
sample covariance matrix Σ̂1

t .
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Figure B6: Weights on Past Experience - Managers Who Have Switched Funds

The figure reports the parameter estimates for βq obtained from the following regression: µi,j,t −
r f = ∑Q

q=1 βq r̄i,j,t∈∆Tq
i,j,t

+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period

ahead return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

is the standardised average return in the

q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. The upper panel
reports the results for Q = 5, while the bottom panel for Q = 10. To be included, a manager must
have in his current investment universe a stock that he has previously held in a different fund. In
the upper panel, manager-stock pairs have at least 5 quarters of experience, while 10 quarters are
needed for the bottom panel. Measures (1)-(3) report results without wi,j,t = 0, namely including in
the computations only strictly positive weights; measures (4)-(6) include zero weights on stocks that
belong to the manager’s investment universe. Measures (1) and (4) use sample covariance matrices
Σ̂1

t , measures (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and measures (3) and (6) use

Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.
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Figure B7: Weighting Functions - Various Examples
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Figure B8: Empirical Weighting Function

The figure plots the weights implied by the parameter estimates obtained from the following re-

gression: µi,j,t − r f = β
(

∑
Ti,j,t
k=1 ωi,j,t,krj,t+1−k

)
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered

expected one-period ahead return of manager i for stock j at time t according to measure (1), rj,t+1−k
is the realised return of stock j from time t − k to t + 1 − k, Hi,t is a manager-time fixed effect,
and Hj,t is a stock-time fixed effect. Weights are represented by the following functional form :

ωi,j,t,k =
(Ti,j,t−k)λ1 kλ2

∑
Ti,j,t
k=1 (Ti,j,t−k)λ1 kλ2

. The upper panel reports weights for a manager with stock-specific expe-

rience of 9 quarters and the lower for 13 quarters.

0.1

0.2

0.3

0.4

2.5 5.0 7.5

W
ei

gh
t

9 Quarters

0.0

0.1

0.2

0.3

0.4

5 10
Experience

W
ei

gh
t

13 Quarters



APPENDIX B. REVEALED EXPECTATIONS AND LEARNING BIASES 198

Figure B9: Bias and Risk Aversion

The figure shows the empirical distribution of the parameter estimates α̂i,t and γ̂i,t obtained by run-
ning one regression per manager with the following specification: rj,t+1 − r f = αi + γi(Σtw

∗
i,t)j +

εi,j,t+1, where rj,t+1 − r f is the realised excess return of stock j from time t to t + 1, and (Σtw∗i,t)j is
the demand of manager i for stock j at time t scaled by the conditional covariance matrix Σt. The
dashed lines represent the median bias and risk aversion, respectively. The histograms are trimmed
for outliers.
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Figure B10: Bias and Risk Aversion by Tenure

The figure plots the parameter estimates α̂τ and γ̂τ obtained by running one regression per tenure
τ with the following specification: rj,t+1 − r f = ατ + γτ(Σtw

∗
i,t)j + εi,j,t+1, where rj,t+1 − r f is the

realised excess return of stock j from time t to t + 1, and (Σtw∗i,t)j is the demand of manager i for
stock j at time t scaled by the conditional covariance matrix Σt. Bias is the estimated parameter
α̂τ , while Risk Aversion is the estimated parameter γ̂τ . Tenure is measured in quarters since the
first observation where we can identify the manager. The shaded grey area covers two standard
deviations around the point estimate. The left panel reports results for measure (1), using sample
covariance matrices Σ̂1

t and no wi,j,t = 0, namely including in the computations only strictly positive
weights; the right panel reports results for measure (4), using sample covariance matrices Σ̂1

t and
including zero weights on stocks that belong to the manager’s investment universe.
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Figure B11: Bias and Risk Aversion by Date

The figure plots the parameter estimates α̂t and γ̂t obtained by running one regression per date with
the following specification: rj,t+1 − r f = αt + γt(Σtw

∗
i,t)j + εi,j,t+1, where rj,t+1 − r f is the realised

excess return of stock j from time t to t + 1, and (Σtw∗i,t)j is the demand of manager i for stock j
at time t scaled by the conditional covariance matrix Σt. Bias is the estimated paramater α̂t, while
Risk Aversion is the estimated parameter γ̂t. The shaded grey area covers two standard deviations
around the point estimate. The left panel reports results for measure (1), using sample covariance
matrices Σ̂1

t and no wi,j,t = 0, namely including in the computations only strictly positive weights;
the right panel reports results for measure (4), using sample covariance matrices Σ̂1

t and including
zero weights on stocks that belong to the manager’s investment universe.
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B.3 Optimal Portfolio Choice

In what follows we provide four examples of optimal portfolio choice and describe

how we can (or cannot) achieve identification of beliefs. We first look at an investor

facing borrowing constraints, second an investor facing short sale constraints, third

we look at an investor worried about model misspecification and, finally, an in-

vestor who is tracking a benchmark. We show that we can identify beliefs in the

first three cases, while the last one requires us to make additional assumptions.

B.3.1 Borrowing Constraint

We follow the approach of Cvitanic and Karatzas (1992), Xu and Shreve (1992) and

Tepla (2000). There exists a standard filtered probability space (Ω,F , {Ft}t∈[0,∞), P)

where all the usual regularity conditions are satisfied. We assume that the investor

maximises his expected utility over terminal wealth E0[U(WT)]. Returns follow

a geometric Brownian motion and the investor faces a borrowing constraint. He

solves the following problem:

sup
{ws}s∈[0,T]

E0

[
W1−γ

T
1− γ

]
s.t. (B.1)

dBt

Bt
= r f dt, B0 = 1 (B.2)

dSt
St

= µtdt + Σ
1
2
t dZt (B.3)

dWt

Wt
=

dBt

Bt
+w′t

(
dSt
St
− dBt

Bt
1
)

(B.4)

w′t1 ≤ k (B.5)

where Bt is the price of a risk-free bond, St is a vector of stock prices, dSt
St

=[
dS1,t
S1,t

, ... ,
dSj,t
Sj,t

, ..., dSN,t
S,N,t

]′
, r f is the instantaneous risk-free rate, µt is the vector of

stock return drifts, wt is the vector of stock portfolio weights, Σ
1
2
t is the matrix

of instantaneous loadings on the Brownian motion processes Zt, 1 is a vector of

ones and k is a real number. Cvitanic and Karatzas (1992) show that the problem
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in (B.1)-(B.5) is equivalent to an unconstrained problem with modified drifts, i.e.,

where (B.2) and (B.3) are replaced by:

dBt

Bt
= (r f + δ(vt))dt (B.6)

dSt
St

= (µt + vt + δ(vt)1)dt + Σ
1
2
t dZt (B.7)

where the support function δ(x) = supw′1≤k(−w′x), vt is such that δ(vt) < ∞.

Cvitanic and Karatzas (1992) show that the optimal v∗t and portfolio weights w∗t

can be obtained by solving the ’dual’ Hamilton-Jacobi-Bellman equation1. In par-

ticular, the optimal portfolio weights are:

w∗t =
1
γ

Σ−1
t (µt − r f1− v∗t ) (B.8)

where v∗t = arg min{v s.t. δ(v)<∞}

[
||θt + Σ−

1
2

t vt||2 + 2γδ(vt)

]
and θt = Σ−

1
2

t (µt −

r f1). Tepla (2000) shows that v∗t = v̄∗1 with v̄∗ =
γ(1−γ)−1′Σ−1

t (µt−r f1)

1′Σ−1
t 1

when the

borrowing constraint binds, and zero otherwise. Notice that the above result im-

plies that the solution to the constrained optimisation problem is equivalent to that

of an unconstrained problem with a risk-free rate shifted by the scalar v̄∗. Identifi-

cation of beliefs is easily achieved in (B.8) by saturating the model with manager-

time fixed effects in order to absorb any variation in manager-specific borrowing

constraints. Specifically, for each manager i solving the above problem, the subjec-

tive beliefs can be expressed as:

µi,t − r f1 = γiΣtw
∗
i,t +Hi,t (B.9)

where the manager-time fixed effect is equal toHi,t = v̄i
∗1.

1See Sections 12 and 15 of Cvitanic and Karatzas (1992). In particular, see equations (15.1), (15.2)
and (15.10).
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B.3.2 Short Sale Constraints

The manager solves the following problem2:

sup
{ws}s∈[0,T]

E0

[
W1−γ

T
1− γ

]
s.t. (B.10)

dBt

Bt
= r f dt, B0 = 1 (B.11)

dSt
St

= µtdt + Σ
1
2
t dZt (B.12)

dWt

Wt
=

dBt

Bt
+w′t

(
dSt
St
− dBt

Bt
1
)

(B.13)

−wj,t ≤ 0 ∀j = 1, 2, ..., N (B.14)

The problem (B.10)-(B.14) can be solved by using Cvitanic and Karatzas (1992) and

Xu and Shreve (1992)’s dual approach, similarly to the previous section. The sup-

port function now becomes δ(x) = sup{−wj,t≤0 ∀j=1,2,...,N}(−w′x). As before, we

can find v∗t by solving:

min
[
||θt + Σ−

1
2

t vt||2 + 2γδ(vt)

]
s.t. (B.15)

−vt ≤ 0 (B.16)

Denote the vector of Lagrange multipliers on the the constraint in equation (B.16)

by λt = [λ1,t, ..., λN,t]
′. Taking first-order conditions of the above minimisation

problem yields:

Σ−1
t (µt − r f1+ v

∗
t ) + λt = 0 (B.17)

Consider the following partitions: v∗t = [0′ v
(2)∗′
t ]′, λt = [λ

(1)′
t 0′]′, where we

have divided between assets for which the short sale constraint does not bind and

those for which it does. We can also partition the vector of expected excess returns

2This problem is similar to the discrete problem analyzed by Koijen and Yogo (2019) as γ→ 1.
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and the covariance matrix: µt − r f1 = [(µ
(1)
t − r f1)

′ (µ
(2)
t − r f1)

′]′,

Σt =

 Σ(1,1)
t Σ(1,2)

t

Σ(2,1)
t Σ(2,2)

t

 ,

Standard results imply that the inverse of the covariance matrix can be partitioned

as:

Σ−1
t =

 Ω(1)
t −Σ(1,1)−1

t Σ(1,2)
t Ω(2)

t

−Σ(2,2)−1
t Σ(2,1)

t Ω(1)
t Ω(2)

t


where

Ω(1)
t =

(
Σ(1,1)

t − Σ(1,2)
t Σ(2,2)−1

t Σ(2,1)
t

)−1

Ω(2)
t =

(
Σ(2,2)

t − Σ(2,1)
t Σ(1,1)−1

t Σ(1,2)
t

)−1

Using the above, rewrite equation (B.17) as:

0 =

 Ω(1)
t (µ

(1)
t − r f1)− Σ(1,1)−1

t Σ(1,2)
t Ω(2)

t

(
µ
(2)
t − r f1+ v

(2)∗
t

)
+ λ

(1)
t

−Σ(2,2)−1
t Σ(2,1)

t Ω(1)
t

(
µ
(1)
t − r f1

)
+ Ω(2)

t

(
µ
(2)
t − r f1+ v

(2)∗
t

)
 (B.18)

Multiplying the second row of (B.18) by Σ(1,1)−1
t Σ(1,2)

t and adding it to the first row

allows us to solve for the Lagrange multipliers:

λ
(1)
t = −Σ(1,1)−1

t

(
µ
(1)
t − r f1

)
(B.19)

Insert the multipliers into the first-order condition in equation (B.17) to obtain:

v∗t =

 0

v
(2)∗
t

 =

 0

Σ(1,1)−1
t Σ(2,1)

t

(
µ
(1)
t − r f1

)
−
(
µ
(2)
t − r f1

)
 (B.20)

We can now substitute v∗t into equation (B.8) and solve for the optimal weights:

w∗
t =

 w
(1)∗
t

0

 =
1
γ

 Ω(1)
t

(
µ
(1)
t − r f1

)
− Σ(1,1)−1

t Σ(1,2)
t Ω(2)

t

(
Σ(1,1)−1

t Σ(2,1)
t (µ

(1)
t − r f1)

)
−Σ(2,2)−1

t Σ(2,1)
t Ω(1)

t

(
µ
(1)
t − r f1

)
+ Ω(2)

t

(
Σ(1,1)−1

t Σ(2,1)
t (µ

(1)
t − r f1)

)


(B.21)
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Multiplying the second row by Σ(1,1)−1
t Σ(1,2)

t and adding the two rows together

gives the optimal weights on the unconstrained assets:

w
(1)∗
t =

1
γ

Σ(1,1)−1
t

(
µ
(1)
t − r f1

)
(B.22)

Intuitively, the optimisation program of a short sale constrained investor results in

an unconstrained portfolio allocation over the set of assets for which the constraint

does not bind. For each manager i, identification of beliefs can be achieved by

inverting equation (B.22):

µ
(1)
i,t − r f1 = γiΣ

(1,1)
t w

(1)∗
i,t (B.23)

B.3.3 Model Misspecification

In this section we follow the approach of Maenhout (2004) and analyse the be-

haviour of an investor worried about model misspecification. The investor solves

the following problem:

J0 = sup
{ws,Cs}

E0

[∫ ∞

0
f (Cs, Js)ds

]
s.t. (B.24)

dBt

Bt
= r f dt, B0 = 1 (B.25)

dSt
St

= µtdt + Σ
1
2
t dZt (B.26)

dWt

Wt
=

dBt

Bt
+w′t

(
dSt
St
− dBt

Bt
1
)
− Ct

Wt
dt (B.27)

where we are vague about the functional form of the value function. Standard

dynamic optimisation arguments yield the following HJB equation:

0 = sup
{wt,Ct}

{ f (Ct, Jt)dt + Et [dJt]} (B.28)

Equation (B.28) assumes that the investor is certain about the value of Et [dJt] and

chooses his portfolio accordingly. An investor worried about model misspecifica-
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tion will choose the optimal allocation given the worst-case scenario. Following

Anderson et al. (2003), Maenhout (2004) shows that the wealth of the investor un-

der the endogenously chosen model for u(Wt) will evolve according to:

dWt = Wt

(
r f +w

′
t(µt − r f1)−

Ct

Wt

)
dt + Wtw

′
tΣ

1
2
t dZt + W2

t w
′
tΣtwtu(Wt)dt

(B.29)

where u(Wt) is a drift term chosen by the investor to minimise the following ex-

pression:

u∗(Wt) = inf
ut

{
Et[dJt|ut] +

1
2Ψ

u2
t W2

t w
′
tΣtwtdt

}
(B.30)

where Et[dJt|ut] is computed under the law of motion in equation (B.29). Among

all the models for u(Wt) the investor chooses the least favourable one in terms of

its effect on Et[dJt|ut], subject to the entropy constraint 1
2Ψ u2

t W2
t w
′
tΣtwtdt. The HJB

equation thus becomes:

0 = sup
{wt,Ct}

inf
ut

f (Ct, Jt) +
∂Jt

∂t
+ JWtWt

(
r f +w

′
t(µt − r f1)−

Ct

Wt

)
+

JWtW
2
t w
′
tΣtwtut +

1
2Ψ

u2
t W2

t w
′
tΣtwt +

1
2

JWtWtW
2
t w
′
tΣtwt

(B.31)

The agent will choose u(Wt)∗ = −JWt Ψ. The optimal portfolio, therefore, will be:

w∗t = − JWt

[JWtWt − J2
Wt

Ψ]Wt
Σ−1

t (µt − r f1) (B.32)

An investor concerned about model misspecification will behave like an otherwise

identical investor with relative risk aversion of γi,t = −
[JWi,tWi,t

−J2
Wi,t

Ψi]Wi,t

JWi,t
. In this

case, identification follows in a way similar to the standard model presented in the

main text.

B.3.4 Benchmarking

In the spirit of van Binsbergen et al. (2008), consider an investor who has his objec-

tive function defined over his terminal wealth WT relative to a benchmark portfolio
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MT. He will solve the following problem:

J0 = sup
{ws}

E0

[
f

(
WT

Mβ
T

)]
s.t. (B.33)

dBt

Bt
= r f dt, B0 = 1 (B.34)

dSt
St

= µtdt + Σ
1
2
t dZt (B.35)

dWt

Wt
=

dBt

Bt
+w′t

(
dSt
St
− dBt

Bt
1
)

(B.36)

Assume that the benchmark has weights θt in the N risky assets and therefore

evolves according to:

dMt

Mt
=

dBt

Bt
+ θ′t

(
dSt
St
− dBt

Bt
1
)

(B.37)

The problem can be recast in terms of the state variable Xt =
Wt

Mβ
t

with the following

law of motion:

dXt

Xt
=((1− β)r f + (wt − βθt)

′(µt − r f1))dt− 1
2

β(β− 1)θ′tΣtθtdt+

(wt − βθt)
′Σ

1
2
t dZt − (wt − βθt)

′Σtβθtdt
(B.38)

If we set up the HJB equation and take first-order conditions, we obtain the optimal

weights:

w∗t = − JXt

JXtXt Xt
Σ−1

t (µt − r f1) + βθt

(
1 +

JXt

JXtXt Xt

)
(B.39)

In this case, it is not obvious that we can identify beliefs. However, if there is

no variation in the objective function in the cross-section of managers adopting

the same benchmark portfolio θt, stock-time fixed effects would suffice to recover

expectations. Although the above model requires an additional assumption to

achieve identification, this is consistent with the common practice of evaluating

managers using summary statistics such as CAPM alphas (Berk and van Binsber-

gen, 2016; Barber et al., 2016). For instance, set f
(

WT

Mβ
T

)
= 1

1−γ

(
WT/W0

(MT/M0)β

)1−γ
=
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1
1−γ

(
RW,T

Rβ
M,T

)1−γ

. That would be equivalent to solving:

sup
{ws}

E0[rW,T]− βE0[rM,T]−
(γ− 1)

2
Var0(rW,T − βrM,T) (B.40)

where rW,T = log WT/W0 and rM,T = log MT/M0 are log-returns. The manager

is maximising α = E0[rW,T]− βE0[rM,T] subject to the tracking error penalisation
(γ−1)

2 Var0(rW,T− βrM,T)
3. In this case− JXt

JXtXt Xt
= 1/γ and we could recover beliefs

using:

µi,t − r f1 = γΣtw
∗
i,t +Ht (B.41)

Notice that each element of the vector Ht varies at the stock-time level, i.e.: Ht =

(1− γ)βΣtθt.

3As it is well known, the agent penalises tracking error for any value of γ > 0, even for 0 <

γ ≤ 1. To see this, notice that we can substitute E0[rW,T − βrM,T ] = log E0

[
RW,T

Rβ
M,T

]
− 1

2 Var0(rW,T −

βrM,T) and obtain the following objective:

sup
{ws}

log E0

RW,T

Rβ
M,T

− γ

2
Var0(rW,T − βrM,T)
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B.4 Data Construction

In this section we provide details on the construction of the data that are used

in the paper. We start with the universe of mutual funds in the CRSP database.

We remove funds whose manager name clearly does not refer to a person4. Af-

ter having obtained a list of names of managers, we look for cases in which the

same manager is spelled differently, e.g. ”John Smith”, ”J. Smith”, ”J Smith” or

just ”Smith”. To be sure that the pairing is done correctly we proceed in the fol-

lowing way: first, we compute a matrix of distances between names using cosine,

Jaccard and Jaro-Winkler methods. We then keep pairs that have a distance below a

distance-specific threshold (0.10, 0.17, 0.10 for the cosine, Jaccard and Jaro-Wrinkler

methods, respectively) that is set to make sure that we avoid false negatives. We

then proceed to manually check over 15,000 pairs to guarantee proper matching

with the help of online resources and common sense. After having obtained a list

of managers with the dates in which they manage a specific fund, we follow Evans

(2010) and Benos et al. (2010) to screen for equity mutual funds. First, if avail-

able, we keep funds with the following Lipper class: EIEI, G, LCCE, LCGE, LCVE,

MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE, SCGE, SCVE. We then keep

the funds with missing Lipper class and the following Strategic Insight Objective

Code: AGG, GMC, GRI, GRO, ING, SCG. If neither of the previous are available,

we use the following Wiesenberger Fund Type Codes: G, G-I, AGG, GCI, GRI,

GRO, LTG, MCG, and SCG. We then keep all the funds with policy equal to CS.

Finally, we remove funds with less than 80% of holdings in common equity, simi-

larly to Kacperczyk et al. (2006). To check for possible mistakes we keep funds with

CRSP objective code starting with E and M and remove those starting with EF.

This provides us with a manager-by-manager history of the funds managed that

we subsequently match with the S12 type1 file from the Thomson-Reuters Institu-

tional Holdings database, using Russ Wermer’s MFLinks tables. We then proceed

by joining with the S12 type2 and type3 files to obtain a history of holdings.

4We use various automatic screens like “advisors”, “ltd”, “limited”, etc..., paired with manual
inspection.
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We continue by adding stock return and balance sheet data using CRSP and

Compustat, respectively. From the CRSP Compustat Merged Database we select

LinkTypes LU and LC and LinkPrim P and C for stocks with share codes of 10

and 11. After we have merged the two datasets, we compute dividends using

CRSP returns and returns not including distributions, similarly to Koijen and Yogo

(2019). From Compustat we compute the following quantities: me as market equity,

beme as the book to market equity ratio, dp as the ratio between dividends and

market prices, profitability as the ratio between operating profits and book equity

and investment as the growth rate of assets similarly to Fama and French (2015).

We then proceed with the construction of the scaled demands Σ̂twi,t. We start

from CRSP daily return data and compute covariance matrices using the previ-

ous year. We compute three daily covariance matrices: Σ̂d,1
t which is the sample

covariance matrix, and two Bayesian shrinkage estimates. The first one follows

Touloumis (2015) and shrinks the daily sample covariance towards a target diag-

onal matrix with the sample variances on the diagonal, i.e., the resulting estima-

tor is Σ̂d,2
t = λΣ̂d,1

t + (1− λ)Σtarget
t , with Σtarget

t = IN ∗ Σ̂d,1
t , where ∗ denotes the

Hadamard product and IN is an N×N identity matrix with N being the number of

stocks. The third covariance estimator follows Ledoit and Wolf (2004) and shrinks

the daily covariance matrix towards a diagonal matrix with the average variance

on the diagonal, i.e., Σ̂d,3
t = λΣ̂d,1

t + (1− λ)Σ̃target
t , where Σ̃target

t =
tr(Σ̂d,1

t )
N IN, where

tr(Σ̂d,1
t ) is the trace of the daily sample covariance matrix. The shrinkage intensity

λ is chosen similarly to Touloumis (2015) to minimise the risk function E[||Σ̂d,k
t −

Σd
t ||2F] where ||S||2F = tr(S′S)

dim(S) denotes the Frobenius norm of matrix S, which re-

sults in λ =
Y2,T+Y2

1,T

TY2,T+
N−T+1

N Y2
1,T

, where Y1,T = 1
T ∑T

s=1 X′sXs − 1
PT

2
∑s 6=h X′hXs, Y2,T =

1
PT

2
∑s 6=h(X′hXs)2 − 2 1

PT
3

∑s 6=h 6=k X′sXhX′sXk +
1

PT
4

∑s 6=h 6=k 6=w XsX′hXkX′w with Xj being

the vector of stock returns for which we have T observations and Pb
a = b!

(b−a)! . Fi-

nally, we can scale the matrices Σ̂d,k
t by the average number of trading days in a

quarter, which in our sample is equal to num.obs
num.quarters = 63.07 to obtain our quarterly

estimators Σ̂k
t = num.obs

num.quarters × Σ̂d,k
t . We can then proceed to compute scaled de-

mands as Σ̂k
twi,t. We compute two vectors of scaled demands for each estimator:

one that does not include stocks that currently have zero weights, but belong to the
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investment opportunity set of the manager, and one that does, i.e., in the first case

all the wi,j,t in wi,t are different from zero, while in the second wi,t has some zero

elements. The investment opportunity set is constructed similarly to Koijen and

Yogo (2019) and includes all stocks that are currently held or have ever been held

by the manager in the past 11 quarters.
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B.5 Parametric Estimation

As described in Section 2.5, we estimate the model in equation (2.22) via non-linear

least squares (NLS). In particular we obtain the coefficients θ̂ = (β̂, λ̂1, λ̂2)
′ by min-

imising the sum of squared errors:

θ̂ = arg min
θ

∑
i

∑
j

∑
t

µi,j,t − r f − β

Ti,j,t

∑
k=1

(Ti,j,t − k)λ1kλ2

∑
Ti,j,t
k=1(Ti,j,t − k)λ1kλ2

rj,t+1−k

− Hi,t − Hj,t

2

(B.42)

We perform the minimisation with (λ̂1, λ̂2) ∈ [−5, 5]× [−5, 5] via Simulated An-

nealing and limited-memory BFGS5. Fixed effects are partialled out by demeaning

µi,j,t− r f and

(
∑

Ti,j,t
k=1

(Ti,j,t−k)λ1 kλ2

∑
Ti,j,t
k=1 (Ti,j,t−k)λ1 kλ2

rj,t+1−k

)
. To compute standard errors, we can

rewrite (B.42) as:

θ̂ = arg min
θ

1
2

P

∑
p=1

(yp − ϕ(xp;θ))2 (B.43)

where the index p is a short-hand for all the P combinations of i, j, t. We next fol-

low the approach of Davidson and MacKinnon (2001) and recover standard errors

using Gauss-Newton Regressions. Consider the 3× 1 gradient vector Ψ(xp;θ) =

∂ϕ(xp;θ)
∂θ and the following regression:

yp − ϕ(xp; θ̂) = Ψ(xp; θ̂)′b+ up (B.44)

where we regress the residuals yp − ϕ(xp; θ̂) on the estimated gradient Ψ(xp; θ̂)6.

Denote the P× 3 matrix of gradient observations as Ψ̂ = [Ψ(x1; θ̂), ..., Ψ(xP ; θ̂)]′,

then we can estimate the covariance matrix of the coefficients b using the standard

clustered “sandwich” estimator:

S(b̂) = (Ψ̂′Ψ̂)−1Ψ̂′Ω̂Ψ̂(Ψ̂′Ψ̂)−1 (B.45)

5Notice that, conditional on λ1 and λ2, β can be estimated via OLS and, therefore, is left uncon-
strained.

6For expositional reasons we exclude the estimated fixed effects from θ. Given that they enter
linearly in ϕ(xp;θ), their gradients are identical to the matrix containing the full set of dummies
and, therefore, can be taken care of by including dummies on the right hand side of (B.44) or by
demeaning.
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Davidson and MacKinnon (2001) show that the covariance matrix of b in (B.45) is

a consistent estimator for the covariance of θ.
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B.6 Additional Tables and Figures

Table B11: The Effect of Average Experienced Returns

Expected Returns

(1) (2) (3) (4) (5) (6)

β 0.148∗∗∗ 0.140∗∗∗ 0.146∗∗∗ 0.188∗∗∗ 0.179∗∗∗ 0.189∗∗∗

(0.006) (0.005) (0.005) (0.005) (0.005) (0.005)

profitability -0.002 -0.0010 -0.002 -0.003 -0.002 -0.004

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

investment 0.040∗∗∗ 0.032∗∗∗ 0.035∗∗∗ 0.051∗∗∗ 0.039∗∗∗ 0.042∗∗∗

(0.007) (0.006) (0.006) (0.006) (0.005) (0.005)

BE/ME 0.012 0.020∗∗∗ 0.012∗ 0.016∗ 0.019∗∗ 0.017∗∗

(0.008) (0.008) (0.007) (0.008) (0.007) (0.007)

ME 0.011 0.009 0.012 0.009 0.0009 0.008

(0.015) (0.012) (0.013) (0.018) (0.016) (0.017)

D/P -0.019∗∗∗ -0.017∗∗∗ -0.018∗∗∗ -0.005 -0.006 -0.005

(0.006) (0.006) (0.006) (0.006) (0.005) (0.005)

N 1, 153, 333 1, 153, 333 1, 153, 333 2, 596, 853 2, 596, 853 2, 596, 853

R2 0.591 0.583 0.588 0.546 0.538 0.536

Within-R2 0.016 0.014 0.015 0.021 0.019 0.021

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B12: The Effect of Experienced Returns - Five Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.297∗∗∗ 0.283∗∗∗ 0.286∗∗∗ 0.274∗∗∗ 0.264∗∗∗ 0.277∗∗∗

(0.009) (0.010) (0.008) (0.006) (0.007) (0.006)

β2 0.137∗∗∗ 0.129∗∗∗ 0.138∗∗∗ 0.125∗∗∗ 0.115∗∗∗ 0.121∗∗∗

(0.009) (0.008) (0.008) (0.005) (0.005) (0.005)

β3 0.061∗∗∗ 0.054∗∗∗ 0.057∗∗∗ 0.055∗∗∗ 0.048∗∗∗ 0.054∗∗∗

(0.008) (0.008) (0.007) (0.005) (0.004) (0.005)

β4 0.084∗∗∗ 0.083∗∗∗ 0.088∗∗∗ 0.085∗∗∗ 0.078∗∗∗ 0.084∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.004) (0.004)

β5 0.266∗∗∗ 0.259∗∗∗ 0.262∗∗∗ 0.267∗∗∗ 0.258∗∗∗ 0.261∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.004) (0.004)

profitability -0.005∗ 0.0009 -0.005 -0.010∗∗ -0.006 -0.008∗

(0.003) (0.004) (0.004) (0.004) (0.004) (0.004)

investment 0.006 0.003 0.002 0.019∗∗∗ 0.011∗ 0.013∗∗

(0.008) (0.007) (0.007) (0.006) (0.006) (0.006)

BE/ME 0.066∗∗∗ 0.072∗∗∗ 0.062∗∗∗ 0.053∗∗∗ 0.056∗∗∗ 0.054∗∗∗

(0.014) (0.015) (0.016) (0.010) (0.010) (0.010)

ME -0.009 -0.007 -0.005 -0.012 -0.017 -0.013

(0.015) (0.012) (0.013) (0.020) (0.019) (0.019)

D/P -0.008 -0.003 -0.006 0.005 0.003 0.004

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006)

N 724, 999 724, 999 724, 999 1, 783, 648 1, 783, 648 1, 783, 648

R2 0.594 0.587 0.591 0.556 0.547 0.545

Within-R2 0.066 0.064 0.065 0.070 0.067 0.069

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B13: The Effect of Experienced Returns - Ten Buckets

Expected Returns
(1) (2) (3) (4) (5) (6)

β1 0.259∗∗∗ 0.224∗∗∗ 0.237∗∗∗ 0.235∗∗∗ 0.229∗∗∗ 0.242∗∗∗

(0.011) (0.008) (0.008) (0.007) (0.006) (0.007)
β2 0.123∗∗∗ 0.116∗∗∗ 0.131∗∗∗ 0.124∗∗∗ 0.115∗∗∗ 0.120∗∗∗

(0.007) (0.006) (0.007) (0.005) (0.005) (0.005)
β3 0.098∗∗∗ 0.094∗∗∗ 0.102∗∗∗ 0.088∗∗∗ 0.083∗∗∗ 0.084∗∗∗

(0.006) (0.005) (0.006) (0.005) (0.004) (0.004)
β4 0.078∗∗∗ 0.064∗∗∗ 0.073∗∗∗ 0.069∗∗∗ 0.063∗∗∗ 0.065∗∗∗

(0.006) (0.005) (0.006) (0.004) (0.004) (0.005)
β5 0.059∗∗∗ 0.048∗∗∗ 0.049∗∗∗ 0.047∗∗∗ 0.041∗∗∗ 0.043∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)
β6 0.061∗∗∗ 0.053∗∗∗ 0.055∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 0.052∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)
β7 0.067∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.057∗∗∗ 0.063∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.003) (0.004)
β8 0.074∗∗∗ 0.063∗∗∗ 0.067∗∗∗ 0.071∗∗∗ 0.070∗∗∗ 0.074∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)
β9 0.107∗∗∗ 0.109∗∗∗ 0.113∗∗∗ 0.120∗∗∗ 0.114∗∗∗ 0.112∗∗∗

(0.005) (0.006) (0.006) (0.004) (0.004) (0.004)
β10 0.243∗∗∗ 0.239∗∗∗ 0.239∗∗∗ 0.243∗∗∗ 0.247∗∗∗ 0.246∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.004) (0.004)
profitability -0.005 -0.003 -0.007 -0.013∗∗ -0.009 -0.011∗

(0.004) (0.005) (0.005) (0.006) (0.005) (0.006)
investment -0.015∗ -0.011 -0.015∗ -0.005 -0.011∗ -0.007

(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)
BE/ME 0.076∗∗∗ 0.078∗∗∗ 0.065∗∗∗ 0.069∗∗∗ 0.071∗∗∗ 0.066∗∗∗

(0.018) (0.019) (0.024) (0.014) (0.013) (0.013)
ME -0.019 -0.014 -0.011 -0.022 -0.028 -0.021

(0.016) (0.015) (0.015) (0.023) (0.021) (0.022)
D/P -0.001 -0.003 -0.006 0.008 0.006 0.010

(0.010) (0.010) (0.009) (0.008) (0.008) (0.008)

N 403, 968 403, 968 403, 968 980, 175 980, 175 980, 175
R2 0.598 0.588 0.596 0.567 0.557 0.555
Within-R2 0.065 0.061 0.063 0.070 0.070 0.071

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B14: The Effect of Experienced Returns - Three Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.283∗∗∗ 0.294∗∗∗ 0.288∗∗∗ 0.284∗∗∗ 0.288∗∗∗ 0.288∗∗∗

(0.006) (0.007) (0.006) (0.005) (0.005) (0.004)

β2 0.077∗∗∗ 0.082∗∗∗ 0.078∗∗∗ 0.078∗∗∗ 0.079∗∗∗ 0.080∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.003) (0.003)

β3 0.229∗∗∗ 0.231∗∗∗ 0.232∗∗∗ 0.231∗∗∗ 0.231∗∗∗ 0.233∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.002) (0.002)

N 1, 031, 564 1, 031, 564 1, 031, 564 2, 483, 275 2, 483, 275 2, 483, 275

R2 0.777 0.762 0.769 0.704 0.688 0.690

Within-R2 0.039 0.041 0.040 0.040 0.040 0.040

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B15: The Effect of Experienced Returns - Three Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.280∗∗∗ 0.273∗∗∗ 0.277∗∗∗ 0.273∗∗∗ 0.267∗∗∗ 0.277∗∗∗

(0.008) (0.008) (0.007) (0.005) (0.005) (0.005)

β2 0.073∗∗∗ 0.069∗∗∗ 0.071∗∗∗ 0.066∗∗∗ 0.060∗∗∗ 0.066∗∗∗

(0.006) (0.006) (0.006) (0.005) (0.004) (0.005)

β3 0.236∗∗∗ 0.230∗∗∗ 0.233∗∗∗ 0.238∗∗∗ 0.229∗∗∗ 0.235∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

profitability -0.001 -0.000 -0.002∗ -0.003 -0.002 -0.004

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

investment 0.019∗∗∗ 0.013∗ 0.014∗∗ 0.032∗∗∗ 0.021∗∗∗ 0.024∗∗∗

(0.007) (0.006) (0.007) (0.006) (0.006) (0.006)

BE/ME 0.048∗∗∗ 0.056∗∗∗ 0.048∗∗∗ 0.043∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(0.010) (0.011) (0.011) (0.009) (0.009) (0.008)

ME -0.002 -0.003 0.000 -0.006 -0.014 -0.007

(0.014) (0.012) (0.012) (0.019) (0.017) (0.017)

D/P -0.009 -0.007 -0.008 0.004 0.002 0.003

(0.007) (0.006) (0.006) (0.007) (0.006) (0.006)

N 937, 382 937, 382 937, 382 2, 258, 925 2, 258, 925 2, 258, 925

R2 0.582 0.573 0.578 0.545 0.536 0.535

Within-R2 0.056 0.055 0.056 0.058 0.056 0.059

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B16: The Effect of Experienced Returns - Three Buckets and k = 4 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β2 0.016∗∗∗ 0.015∗∗∗ 0.022∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.014∗∗∗

(0.005) (0.005) (0.005) (0.003) (0.003) (0.003)

β3 0.161∗∗∗ 0.159∗∗∗ 0.160∗∗∗ 0.166∗∗∗ 0.168∗∗∗ 0.165∗∗∗

(0.004) (0.003) (0.003) (0.002) (0.002) (0.002)

N 618, 451 618, 451 618, 451 1, 499, 594 1, 499, 594 1, 499, 594

R2 0.812 0.799 0.807 0.744 0.729 0.733

Within-R2 0.021 0.021 0.021 0.021 0.021 0.020

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B17: The Effect of Experienced Returns - Three Buckets and k = 4 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.208∗∗∗ 0.189∗∗∗ 0.198∗∗∗ 0.206∗∗∗ 0.194∗∗∗ 0.205∗∗∗

(0.009) (0.008) (0.008) (0.007) (0.007) (0.007)

β2 0.093∗∗∗ 0.083∗∗∗ 0.089∗∗∗ 0.077∗∗∗ 0.070∗∗∗ 0.076∗∗∗

(0.008) (0.008) (0.007) (0.005) (0.005) (0.005)

β3 0.215∗∗∗ 0.208∗∗∗ 0.209∗∗∗ 0.229∗∗∗ 0.225∗∗∗ 0.223∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

profitability -0.005 -0.003 -0.007 -0.013∗∗ -0.010 -0.011∗

(0.004) (0.004) (0.005) (0.006) (0.006) (0.006)

investment -0.002 -0.003 -0.006 0.004 -0.001 0.001

(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)

BE/ME 0.056∗∗∗ 0.059∗∗∗ 0.048∗∗∗ 0.052∗∗∗ 0.051∗∗∗ 0.049∗∗∗

(0.013) (0.015) (0.018) (0.012) (0.011) (0.011)

ME -0.006 -0.002 0.001 -0.009 -0.012 -0.007

(0.016) (0.014) (0.015) (0.022) (0.020) (0.021)

D/P -0.008 -0.009 -0.012 0.004 0.002 0.004

(0.008) (0.008) (0.007) (0.007) (0.007) (0.007)

N 564, 287 564, 287 564, 287 1, 367, 732 1, 367, 732 1, 367, 732

R2 0.598 0.590 0.597 0.570 0.560 0.558

Within-R2 0.042 0.039 0.040 0.046 0.044 0.045

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B18: The Effect of Experienced Returns - Three Buckets and k = 8 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β2 0.020∗∗∗ 0.017∗∗∗ 0.026∗∗∗ 0.014∗∗∗ 0.020∗∗∗ 0.019∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.003) (0.002)

β3 0.137∗∗∗ 0.131∗∗∗ 0.135∗∗∗ 0.136∗∗∗ 0.144∗∗∗ 0.141∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.002) (0.002)

N 343, 058 343, 058 343, 058 753, 526 753, 526 753, 526

R2 0.870 0.864 0.866 0.834 0.821 0.824

Within-R2 0.021 0.020 0.021 0.020 0.022 0.021

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B19: The Effect of Experienced Returns - Three Buckets and k = 8 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.168∗∗∗ 0.149∗∗∗ 0.157∗∗∗ 0.165∗∗∗ 0.152∗∗∗ 0.160∗∗∗

(0.010) (0.010) (0.010) (0.009) (0.009) (0.008)

β2 0.067∗∗∗ 0.058∗∗∗ 0.065∗∗∗ 0.066∗∗∗ 0.063∗∗∗ 0.065∗∗∗

(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

β3 0.179∗∗∗ 0.173∗∗∗ 0.178∗∗∗ 0.183∗∗∗ 0.187∗∗∗ 0.186∗∗∗

(0.006) (0.007) (0.005) (0.005) (0.004) (0.004)

profitability -0.003 -0.003 -0.007 -0.016∗ -0.014 -0.014

(0.004) (0.005) (0.005) (0.008) (0.009) (0.009)

investment -0.029∗∗∗ -0.027∗∗∗ -0.029∗∗∗ -0.029∗∗∗ -0.035∗∗∗ -0.032∗∗∗

(0.010) (0.009) (0.009) (0.009) (0.008) (0.008)

BE/ME 0.093∗∗∗ 0.100∗∗∗ 0.092∗∗∗ 0.077∗∗∗ 0.074∗∗∗ 0.069∗∗∗

(0.027) (0.027) (0.026) (0.019) (0.019) (0.018)

ME -0.015 -0.007 -0.008 -0.023 -0.027 -0.021

(0.019) (0.017) (0.018) (0.027) (0.025) (0.026)

D/P -0.001 0.004 -0.007 0.014 0.009 0.015

(0.010) (0.011) (0.010) (0.011) (0.011) (0.011)

N 314, 557 314, 557 314, 557 691, 634 691, 634 691, 634

R2 0.671 0.661 0.666 0.655 0.644 0.644

Within-R2 0.034 0.031 0.033 0.036 0.036 0.036

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B20: The Effect of Experienced Returns by Number of Managers

Expected Returns
(1) (4)

Nr. Managers 1 2 3 ≥ 4 1 2 3 ≥ 4

β1 0.280∗∗∗ 0.164∗∗∗ -0.001 0.014∗∗∗ 0.275∗∗∗ 0.160∗∗∗ -0.001 0.008∗∗∗

(0.012) (0.010) (0.003) (0.004) (0.010) (0.008) (0.002) (0.003)
β2 0.149∗∗∗ 0.025∗∗∗ -0.002 0.008∗∗ 0.151∗∗∗ 0.031∗∗∗ -0.002 -0.000

(0.008) (0.007) (0.002) (0.004) (0.006) (0.004) (0.002) (0.002)
β3 0.101∗∗∗ 0.028∗∗∗ -0.002 0.005 0.101∗∗∗ 0.027∗∗∗ -0.001 -0.001

(0.006) (0.004) (0.002) (0.003) (0.004) (0.003) (0.001) (0.002)
β4 0.060∗∗∗ 0.017∗∗∗ -0.004∗∗ 0.001 0.059∗∗∗ 0.017∗∗∗ -0.002∗∗ -0.006∗∗∗

(0.006) (0.003) (0.002) (0.003) (0.004) (0.002) (0.001) (0.002)
β5 0.028∗∗∗ -0.001 -0.003∗∗ 0.001 0.029∗∗∗ -0.001 -0.000 -0.003∗∗

(0.005) (0.002) (0.001) (0.003) (0.003) (0.002) (0.001) (0.002)
β6 0.022∗∗∗ 0.003 -0.001 -0.002 0.021∗∗∗ 0.002 -0.001 -0.001

(0.004) (0.002) (0.001) (0.002) (0.003) (0.002) (0.001) (0.001)
β7 0.020∗∗∗ -0.002 -0.002∗ -0.003∗ 0.024∗∗∗ 0.000 0.000 -0.001

(0.004) (0.002) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001)
β8 0.041∗∗∗ 0.008∗∗∗ -0.002 -0.002 0.044∗∗∗ 0.008∗∗∗ -0.000 0.000

(0.004) (0.002) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001)
β9 0.077∗∗∗ 0.004∗ 0.000 -0.002∗ 0.083∗∗∗ 0.005∗∗∗ -0.000 -0.001

(0.006) (0.002) (0.001) (0.001) (0.004) (0.001) (0.001) (0.001)
β10 0.203∗∗∗ 0.017∗∗∗ -0.002∗∗∗ -0.002 0.204∗∗∗ 0.016∗∗∗ -0.001 0.001

(0.005) (0.002) (0.001) (0.001) (0.003) (0.001) (0.001) (0.001)

N 442, 353 579, 965 558, 722 428, 591 1, 073, 779 1, 454, 292 1, 524, 108 1, 158, 163
R2 0.824 0.912 0.993 0.991 0.750 0.867 0.988 0.982
Within-R2 0.039 0.010 0.000 0.001 0.039 0.012 0.000 0.001

wi,j,t = 0 No No No No Yes Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×TimeStock×TimeStock×TimeStock×TimeStock×TimeStock×TimeStock×TimeStock×Time

Covariance Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B21: Learning Parameters

Expected Returns

(1) (2) (3) (4) (5) (6)

β 0.203∗∗∗ 0.190∗∗∗ 0.198∗∗∗ 0.246∗∗∗ 0.241∗∗∗ 0.251∗∗∗

(0.007) (0.007) (0.007) (0.006) (0.006) (0.006)

λ1 -2.225∗∗∗ -2.223∗∗∗ -2.157∗∗∗ -1.800∗∗∗ -1.929∗∗∗ -1.854∗∗∗

(0.128) (0.119) (0.114) (0.066) (0.068) (0.065)

λ2 -2.362∗∗∗ -2.313∗∗∗ -2.265∗∗∗ -1.881∗∗∗ -2.012∗∗∗ -1.951∗∗∗

(0.137) (0.126) (0.121) (0.073) (0.074) (0.072)

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B22: Risk Aversion and Bias Including Zero Weights - Summary Statistics

α̂i γ̂i

mean 0.006 1.501

standard deviation 0.056 5.266

median 0.009 1.441

min -0.431 -43.532

max 0.398 42.658

skewness -1.111 0.954

kurtosis 13.375 13.727
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Figure B12: Weighting Functions - Various Examples
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Figure B13: Estimated Weighting Functions - Manager-Time, Stock-Time Fixed Ef-
fects
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Figure B14: Estimated Weighting Functions - Manager-Time, Stock Fixed Effects

0.0

0.1

0.2

0.3

0.4

0.5

2.5 5.0 7.5

W
ei

gh
t

9 Quarters

0.0

0.1

0.2

0.3

0.4

0.5

5 10
Experience

W
ei

gh
t

13 Quarters

(a) Σ̂1
tw

∗
i,t, wi,j,t > 0

0.1

0.2

0.3

0.4

2.5 5.0 7.5

W
ei

gh
t

9 Quarters

0.0

0.1

0.2

0.3

0.4

5 10
Experience

W
ei

gh
t

13 Quarters

(b) Σ̂2
tw

∗
i,t, wi,j,t > 0

0.1

0.2

0.3

0.4

2.5 5.0 7.5

W
ei

gh
t

9 Quarters

0.0

0.1

0.2

0.3

0.4

5 10
Experience

W
ei

gh
t

13 Quarters

(c) Σ̂3
tw

∗
i,t, wi,j,t > 0

0.1

0.2

0.3

0.4

2.5 5.0 7.5

W
ei

gh
t

9 Quarters

0.0

0.1

0.2

0.3

0.4

5 10
Experience

W
ei

gh
t

13 Quarters

(d) Σ̂1
tw

∗
i,t, wi,j,t ≥ 0

0.1

0.2

0.3

0.4

2.5 5.0 7.5

W
ei

gh
t

9 Quarters

0.0

0.1

0.2

0.3

0.4

5 10
Experience

W
ei

gh
t

13 Quarters

(e) Σ̂2
tw

∗
i,t, wi,j,t ≥ 0

0.1

0.2

0.3

0.4

2.5 5.0 7.5

W
ei

gh
t

9 Quarters

0.0

0.1

0.2

0.3

0.4

5 10
Experience

W
ei

gh
t

13 Quarters

(f) Σ̂3
tw

∗
i,t, wi,j,t ≥ 0

Figure B15: Bias and Risk Aversion Including Zero Weights
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C. Appendix to Living on the Edge: the

Salience of Property Taxes in the UK Housing

Market

C.1 Variable Definition

Variable Name Description

Price Transaction price for the property as recorded by HM Land Registry

Council Tax Amount of council tax payable per year

Band Council tax band. One of: A, B, C, D, E, F, G, H

Year Calendar year of the transaction

Month Calendar month of the transaction

Size Total floor area measured in squared meters

No. Rooms Number of habitable rooms in the property as defined in the EPC

Property Type One of: detached, semi-detached or terraced house and flat

Newly-built Equals 1 if the property is newly-built

Leasehold Equals 1 if the property is under a leasehold agreement

Energy Cost Sum of the annual heating, hot water and lighting costs for the property

One of very low, low, medium, high and very high expenditures

Baseline = very low

CO2 Emissions CO2 emissions in tonnes/year

One of very low, low, medium, high and very high

Baseline = very low

No. Lighting Outlets Number of fixed lighting outlets in the property, standardised

Energy Rating A-G energy rating fixed effects with A being the most efficient

Glazed Type Indicates the type of glazing

Various categories of single, double or triple glazing according to

the British Fenestration Rating Council or manufacturer declaration

No. Storeys > 3 Equals 1 if the building has more than 3 storeys

Glazed Area Estimate of total glazed area of the property

Continued on next page

227
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Continued from previous page

One of: Normal, Less than Normal, More than Normal

Baseline = Normal

Fireplaces Equals 1 if the property has open fireplaces

No. Extensions Number of extensions added to the property

One of: 0, 1, 2, 3, 4

Floor Height Average storey height in metres

One of: less than 2.3, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3 or more

Built in Age band when the building was constructed

One of: before 1949, 1950-1982, 1983-2002, after 2003

Grid ID An indicator for the grid square in which the property is located

Pair ID An indicator for the pair of matched properties
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C.2 Tables

Table C1: Evidence of Selection

The table shows the estimates of a simple regression of house prices on council tax amounts,
namely: pibdt = βτbdt + δbt + ζ ′xibdt + εibdt where pibdt is the price of house i in band b, Borough
d at time t; τbdt is the council tax amount for a house in band b, Borough d at time t; δbt are band-
year fixed effects; and xibdt are controls. All columns include band-year and month fixed effects.
All other variables are defined in Section C.1. Standard errors double-clustered at the Borough and
year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax -231.2∗∗∗ -263.3∗∗∗ -228.7∗∗∗ -229.2∗∗∗

(71.8) (86.4) (78.0) (78.3)

Size 2,233.7∗∗∗ 2,271.7∗∗∗ 2,270.8∗∗∗

(724.4) (731.2) (730.9)

Newly-built 14,054.3∗∗

(5,619.8)

Leasehold -8,681.7

(10,801.3)

Fixed-effects

Band × Year Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Obs. 889,925 889,925 889,925 889,925

R2 0.530 0.573 0.578 0.578

Within R2 0.022 0.064 0.058 0.058

Two-way (Borough & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C2: Evidence of Selection - Additional Controls

(1) (2) (3) (4)

Council Tax -255.9∗∗∗ -225.0∗∗ -259.6∗∗∗ -220.1∗∗

(85.6) (80.0) (88.2) (78.2)

Size 2,747.2∗∗∗ 2,266.9∗∗∗ 2,534.4∗∗∗ 2,310.4∗∗∗

(911.3) (734.5) (780.3) (784.4)

Energy Cost Low -26,896.1∗ -15,049.6∗∗

(13,515.0) (7,107.5)

Energy Cost Medium -47,312.9∗∗ -24,385.3∗∗

(22,380.7) (11,482.6)

Energy Cost High -69,359.2∗∗ -32,869.7∗∗

(30,818.3) (15,291.8)

Energy Cost Very High -94,269.8∗ -39,075.4

(45,563.6) (22,987.4)

CO2 Emisions Low -17,677.3∗∗ -14,199.3∗∗∗

(7,006.9) (4,857.3)

CO2 Emissions Medium -26,558.8∗∗ -23,257.6∗∗

(11,971.2) (8,475.0)

CO2 Emissions High -36,052.5∗ -31,559.2∗∗

(18,323.2) (12,521.6)

CO2 Emissions Very High -32,523.2 -26,343.9

(28,385.1) (17,461.3)

No. Lighting Outlets 20,870.4∗∗∗ 19,659.8∗∗∗

(5,833.9) (5,317.1)

No. Storeys > 3 -3,140.4 632.9

(5,841.7) (6,385.2)

Glazed Area Less than Normal 6,923.6 851.3

(11,930.2) (10,981.8)

Glazed Area More than Normal 16,669.1∗∗∗ 13,729.2∗∗∗

(3,337.1) (3,490.2)

Fireplaces 42,454.0∗∗∗ 33,624.0∗∗∗

(9,985.6) (9,114.6)

Newly-built 23,567.3∗∗∗ 29,368.6∗∗∗

(5,295.0) (4,958.9)

Leasehold 24,601.4∗ -13,104.3

(13,060.7) (11,681.6)

Continued on next page
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Table C2 – Continued from previous page

(1) (2) (3) (4)

Built in 1950-1982 -43,868.7∗∗∗-29,435.6∗∗∗

(8,169.9) (5,870.5)

Built in 1983-2002 -22,756.2∗∗ -30,012.4∗∗∗

(9,533.2) (8,919.4)

Built after 2003 -21,575.1 -31,925.1∗∗

(13,706.9) (15,196.7)

Fixed-effects

Band × Year Yes Yes Yes Yes

Month Yes Yes Yes Yes

Energy Rating Yes No No Yes

Glazed Type Yes No No Yes

No. Rooms No Yes No Yes

Property Type No Yes No Yes

No. Extensions No Yes No Yes

Floor Height No Yes No Yes

Obs. 889,925 889,925 889,925 889,925

R2 0.566 0.580 0.564 0.583

Within R2 0.095 0.059 0.092 0.063

Two-way (Borough & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C3: Evidence of Selection - Median Price per Borough, Band, Year

The table shows the estimates of the following regression: εmed
bdt = βτbdt + δbt + ηbdt, where εmed

bdt is the
median residual price of all houses in band b, Borough d at time t obtained from a hedonic regres-
sion of prices on house characteristics; τbdt is the council tax amount for a house in band b, Borough
d at time t; and δbt are band-year fixed effects. The explanatory variables used to computed the
hedonic residuals are reported in the panel First-stage controls. All variables are defined in Section
C.1. Standard errors double-clustered at the Borough and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax -183.6∗∗∗ -334.0∗∗∗ -324.3∗∗∗ -325.1∗∗∗

(56.4) (84.7) (83.5) (83.1)

Fixed-effects

Band × Year Yes Yes Yes Yes

First-stage controls

Month Yes Yes Yes Yes

Size No Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Newly-built No No No Yes

Leasehold No No No Yes

Obs. 5,014 5,014 5,014 5,014

R2 0.804 0.501 0.503 0.500

Within R2 0.055 0.122 0.117 0.118

Two-way (Borough & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C4: Evidence of Selection - Average Price per Borough, Band, Year

The table shows the estimates of the following regression: ε̄bdt = βτbdt + δbt + ηbdt, where ε̄bdt is the
average residual price of all houses in band b, Borough d at time t obtained from a hedonic regres-
sion of prices on house characteristics; τbdt is the council tax amount for a house in band b, Borough
d at time t; and δbt are band-year fixed effects. The explanatory variables used to computed the
hedonic residuals are reported in the panel First-stage controls. All variables are defined in Section
C.1. Standard errors double-clustered at the Borough and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax -195.6∗∗∗ -368.4∗∗∗ -358.6∗∗∗ -358.9∗∗∗

(64.9) (93.9) (92.8) (92.5)

Fixed-effects

Band × Year Yes Yes Yes Yes

First-stage controls

Month Yes Yes Yes Yes

Size No Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Newly-built No No No Yes

Leasehold No No No Yes

Obs. 5,014 5,014 5,014 5,014

R2 0.797 0.512 0.513 0.511

Within R2 0.053 0.123 0.118 0.118

Two-way (Borough & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C5: Grid Regressions

The table shows the estimates of a regression of house prices on council tax amounts, namely:
pibdgt = βτbdt + δbgt + ζ ′xibdgt + εibdgt, where pibdgt is the price of house i, in band b, Borough d, grid
square g at time t; τbdt is the council tax amount for a house in band b, Borough d at time t; δbgt
are band-grid ID-year fixed effects; and xibdgt are controls. All columns include band-grid ID-year
and month fixed effects. The squares are constructed from a 50 × 50 grid of London. All other
variables are defined in Section C.1. Standard errors double-clustered at the grid-ID and year level
are reported in parentheses.

(1) (2) (3) (4)

Council Tax 50.3 12.6 13.4 14.3

(50.9) (48.0) (45.3) (44.7)

Size 4,626.9∗∗∗ 4,547.6∗∗∗ 4,537.0∗∗∗

(1,380.6) (1,368.4) (1,366.9)

Newly-built 33,398.5∗∗∗

(9,937.9)

Leasehold -75,924.3∗∗

(27,874.0)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Obs. 71,734 71,734 71,734 71,734

R2 0.696 0.771 0.773 0.773

Within R2 0.000 0.103 0.010 0.101

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C6: Grid Regressions - Additional Controls

(1) (2) (3) (4)

Council Tax 7.98 15.0 9.19 17.5

(42.3) (45.4) (40.1) (43.4)

Size 5,855.9∗∗∗ 4,522.7∗∗∗ 5,318.7∗∗∗ 4,787.6∗∗∗

(1,585.1) (1,366.3) (1,353.6) (1,548.8)

Energy Cost Low -66,317.8∗∗ -35,546.7∗∗

(23,418.5) (14,809.1)

Energy Cost Medium -108,665.0∗∗ -57,508.8∗∗

(38,438.8) (23,978.0)

Energy Cost High -147,580.7∗∗ -77,036.8∗∗

(52,657.2) (33,410.5)

Energy Cost Very High -195,178.8∗∗ -106,670.2∗

(79,418.3) (52,374.7)

CO2 Emissions Low -32,054.7∗∗∗ -28,497.1∗∗∗

(10,727.2) (9,893.5)

CO2 Emissions Medium -48,961.2∗∗ -47,738.6∗∗∗

(17,139.3) (16,123.8)

CO2 Emissions High -75,329.8∗∗ -71,914.7∗∗∗

(27,138.1) (24,295.9)

CO2 Emissions Very High -69,844.7 -66,123.0∗

(41,209.7) (33,075.1)

No. Lighting Outlets 21,965.9∗∗ 19,370.8∗∗

(8,176.9) (7,921.1)

No. Storeys > 3 -20,775.9∗∗∗ -22,481.8∗∗∗

(6,704.8) (7,545.2)

Glazed Area Less than Normal -25,624.5 -18,393.5

(18,311.0) (17,084.0)

Glazed Area More than Normal 13,298.3 12,980.2

(8,438.6) (8,365.9)

Fireplaces 34,202.3∗∗∗ 32,533.3∗∗∗

(6,533.8) (6,832.4)

Newly-built 23,232.4∗∗ 23,142.1∗

(9,272.9) (11,929.6)

Leasehold -64,925.4∗∗∗-81,662.8∗∗∗

(17,738.1) (28,274.4)

Continued on next page
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Table C6 – Continued from previous page

(1) (2) (3) (4)

Built in 1950-1982 -33,647.4∗∗∗-31,823.5∗∗∗

(8,513.9) (9,833.6)

Built in 1983-2002 43,030.8∗∗ 5,862.8

(19,392.1) (10,375.6)

Built after 2003 37,169.2∗∗ -1,989.2

(16,898.5) (15,825.0)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes Yes

Month Yes Yes Yes Yes

Energy Rating Yes No No Yes

Glazed Type Yes No No Yes

No. Rooms No Yes No Yes

Property Type No Yes No Yes

No. Extensions No Yes No Yes

Floor Height No Yes No Yes

Obs. 71,734 71,734 71,734 71,734

R2 0.762 0.774 0.759 0.777

Within R2 0.216 0.010 0.209 0.110

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C7: Grid Regressions for Different Grids

The table shows the estimates of a regression of house prices on council tax amounts, namely:
pibdgt = βτbdt + δbgt + ζ ′xibdgt + εibdgt, where pibdgt is the price of house i, in band b, Borough d,
grid square g at time t; τbdt is the council tax amount for a house in band b, Borough d at time t;
δbgt are band-grid ID-year fixed effects; and xibdgt are controls. The grids divide London into 50 ×
50, 100 × 100 and 150 × 150 squares in columns (1), (2) and (3), respectively. All columns include
band-grid ID-year, month, number of rooms, property type, newly-built and leasehold fixed effects,
as well as a control for the property size. All variables are defined in Section C.1. Standard errors
double-clustered at the grid-ID and year level are reported in parentheses.

(1) (2) (3)

Council Tax 14.3 -16.2 28.2

(44.7) (58.4) (32.4)

Size 4,537.0∗∗∗ 6,988.4∗∗∗ 7,737.4∗∗∗

(1,366.9) (1,794.8) (2,319.6)

Newly-built 33,398.5∗∗∗ 22,929.9 -28,536.5

(9,937.9) (20,993.7) (24,742.0)

Leasehold -75,924.3∗∗ -82,738.9∗ -151,551.3∗∗

(27,874.0) (44,068.4) (69,763.6)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes

Month Yes Yes Yes

No. Rooms Yes Yes Yes

Property Type Yes Yes Yes

Obs. 71,734 21,446 6,954

R2 0.773 0.792 0.827

Within R2 0.101 0.139 0.154

Grid 50 × 50 100 × 100 150 × 150

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C8: Grid Regressions for Different Grids - Additional Controls

(1) (2) (3)

Council Tax 17.5 -11.8 75.4∗∗

(43.4) (62.0) (33.1)

Size 4,787.6∗∗∗ 7,579.1∗∗∗ 7,516.7∗∗∗

(1,548.8) (1,968.4) (2,014.1)

Newly-built 23,142.1∗ 23,012.5 -17,873.0

(11,929.6) (23,337.2) (11,886.9)

Leasehold -81,662.8∗∗∗ -100,958.8∗ -180,856.2∗

(28,274.4) (48,348.3) (92,255.8)

Built in 1950-1982 -31,823.5∗∗∗ -36,770.1∗∗ -46,677.3∗

(9,833.6) (13,202.8) (22,562.5)

Built in 1983-2002 5,862.8 26,842.2 -20,068.4

(10,375.6) (22,698.3) (26,632.8)

Built after 2003 -1,989.2 -30,612.1 -68,073.3

(15,825.0) (29,315.1) (66,304.7)

No. Storeys > 3 -22,481.8∗∗∗ -19,920.1∗∗ -10,496.4

(7,545.2) (9,293.2) (10,564.8)

Glazed Area Less than Normal -18,393.5 -37,901.5 41,021.3

(17,084.0) (25,339.4) (69,940.7)

Glazed Area More than Normal 12,980.2 4,587.5 -102,420.2

(8,365.9) (19,443.3) (63,902.4)

Fireplaces 32,533.3∗∗∗ 41,107.7∗∗∗ 49,004.1∗∗∗

(6,832.4) (12,251.9) (16,591.1)

Energy Cost Low -35,546.7∗∗ -55,601.8∗∗ -62,161.9∗∗∗

(14,809.1) (20,340.8) (16,726.8)

Energy Cost Medium -57,508.8∗∗ -93,685.8∗∗∗ -85,741.3∗∗∗

(23,978.0) (31,367.3) (23,759.2)

Energy Cost High -77,036.8∗∗ -141,100.4∗∗∗-161,362.9∗∗∗

(33,410.5) (46,540.7) (41,048.0)

Energy Cost Very High -106,670.2∗ -170,909.0∗∗ -189,343.0∗∗

(52,374.7) (66,032.5) (72,613.7)

CO2 Emissions Low -28,497.1∗∗∗ -46,607.7∗∗∗ -43,592.6∗∗∗

(9,893.5) (14,538.3) (13,312.9)

CO2 Emissions Medium -47,738.6∗∗∗ -73,467.2∗∗∗ -96,311.1∗∗

(16,123.8) (23,582.7) (43,159.3)

Continued on next page
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Table C8 – Continued from previous page

(1) (2) (3)

CO2 Emissions High -71,914.7∗∗∗-104,329.4∗∗∗ -141,727.0∗∗

(24,295.9) (32,544.5) (58,712.5)

CO2 Emissions Very High -66,123.0∗ -133,060.2∗∗∗ -150,608.5∗

(33,075.1) (44,218.2) (77,511.2)

No. Lighting Outlets 19,370.8∗∗ 22,306.9 53,060.6∗

(7,921.1) (16,072.2) (30,324.9)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes

Month Yes Yes Yes

No. Rooms Yes Yes Yes

Property Type Yes Yes Yes

No. Extensions Yes Yes Yes

Floor Height Yes Yes Yes

Energy Rating Yes Yes Yes

Glazed Type Yes Yes Yes

Obs. 71,734 21,446 6,954

R2 0.777 0.798 0.846

Within R2 0.110 0.150 0.165

Grid 50 × 50 100 × 100 150 × 150

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C9: Grid Regressions - Without Stamp Duty Notches

The table shows the estimates of a regression of house prices on council tax amounts, namely:
pibdgt = βτbdt + δbgt + ζ ′xibdgt + εibdgt, where pibdgt is the price of house i, in band b, Borough d,
grid square g at time t; τbdt is the council tax amount for a house in band b, Borough d at time t;
δbgt are band-grid ID-year fixed effects; and xibdgt are controls. All columns include band-grid ID-
year, month, number of rooms, property type, newly-built and leasehold fixed effects, as well as
a control for property size. The squares are constructed from a 50 × 50 grid of London. Column
(1) excludes properties sold at a price between £240, 000 and £270, 000; column (2) properties sold
for between £490, 000 and £520, 000; and column (3) excludes both properties sold in the £240, 000
- £270, 000 and £490, 000 - £520, 000 price range. All variables are defined in Section C.1. Standard
errors double-clustered at the grid-ID and year level are reported in parentheses.

(1) (2) (3)

Council Tax 16.1 16.7 18.8

(46.9) (45.3) (47.7)

Size 4,715.8∗∗∗ 4,586.7∗∗∗ 4,765.9∗∗∗

(1,446.6) (1,403.6) (1,487.4)

Newly-built 37,062.1∗∗∗ 30,619.3∗∗∗ 33,964.1∗∗∗

(9,998.4) (9,694.0) (9,549.4)

Leasehold -80,083.0∗∗ -75,897.2∗∗ -80,141.1∗∗

(30,142.0) (28,682.7) (31,002.5)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes

Month Yes Yes Yes

No. Rooms Yes Yes Yes

Property Type Yes Yes Yes

Obs. 65,328 70,012 63,606

R2 0.775 0.776 0.779

Within R2 0.105 0.102 0.106

p /∈ [240k-270k] [490k-520k] [240k-270k] & [490k-520k]

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C10: Grid Regressions - Median Price per Borough, Band, Grid, Year

The table shows the estimates of the following regression: εmed
bdgt = βτbdt + δbgt + ηbdgt, where εmed

bdgt is
the median residual price of all houses in band b, Borough d, grid square g at time t obtained from
a hedonic regression of prices on house characteristics; τbdt is the council tax amount for a house in
band b, Borough d at time t; and δbgt are band-grid ID-year fixed effects. The squares are constructed
from a 50 × 50 grid of London. The explanatory variables used to computed the hedonic residuals
are reported in the panel First-stage controls. All variables are defined in Section C.1. Standard
errors double-clustered at the grid ID and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax 92.1∗ 15.4 19.9 19.1

(50.8) (35.4) (36.3) (36.6)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes Yes

Fit statistics

Obs. 19,377 19,377 19,377 19,377

R2 0.866 0.833 0.825 0.823

Within R2 0.006 0.000 0.000 0.000

First-stage controls

Month Yes Yes Yes Yes

Size No Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Newly-built No No No Yes

Leasehold No No No Yes

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C11: Grid Regressions - Average Price per Borough, Band, Grid, Year

The table shows the estimates of the following regression: ε̄bdgt = βτbdt + δbgt + ηbdgt, where ε̄bdgt is
the average residual price of all houses in band b, Borough d, grid square g at time t obtained from
a hedonic regression of prices on house characteristics; τbdt is the council tax amount for a house in
band b, Borough d at time t; and δbgt are band-grid ID-year fixed effects. The squares are constructed
from a 50 × 50 grid of London. The explanatory variables used to computed the hedonic residuals
are reported in the panel First-stage controls. All variables are defined in Section C.1. Standard
errors double-clustered at the grid ID and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax 104.5∗∗ 23.6 28.2 26.6

(48.0) (32.7) (33.5) (33.9)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes Yes

Obs. 19,377 19,377 19,377 19,377

R2 0.875 0.835 0.827 0.825

Within R2 0.007 0.001 0.001 0.001

First-stage controls

Month Yes Yes Yes Yes

Size No Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Newly-built No No No Yes

Leasehold No No No Yes

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C12: Matching Regressions - Euclidean Distance

The table shows the estimates of the following regression: pibdt = βτbdt + δij + ζ ′xibdt + εibdt, where
pibdt is the price of house i in band b, Borough d at time t; τbdt is the council tax amount for a
house in band b, Borough d at time t; δij are pair fixed effects; and xibdt are controls. Housing pairs
from opposite sides of a given border are constrained to be no more than 500 metres away, sold in
the same year, in the same council tax band and to both be either old or newly-built and freehold
or leasehold properties. The closest match for each property is chosen as the one minimising the

Euclidean distance d(i, j) =
√

∑K
k=1(xik − xjk)2. The vectors xi and xj in columns (1) and (2) include

size and number of rooms, while columns (3) and (4) add the energy cost. All variables are defined
in Section C.1. Standard errors clustered at the transaction ID level are reported in parentheses.

(1) (2) (3) (4)

Council Tax 53.8∗∗ 12.9 50.7∗∗ 9.00

(23.4) (18.3) (23.8) (18.8)

Size 3,770.6∗∗∗ 3,750.2∗∗∗

(763.8) (734.2)

Fixed-effects

Pair ID Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes No Yes

Property Type No Yes No Yes

Obs. 115,224 115,224 114,646 114,646

Unique Transaction IDs 71,578 71,578 71,656 71,656

R2 0.799 0.836 0.796 0.834

Within R2 0.001 0.042 0.001 0.042

Distance Euclidean 1 Euclidean 1 Euclidean 2 Euclidean 2

One-way (Transaction ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C13: Matching Regressions - Linear Distance

The table shows the estimates of the following regression: pibdt = βτbdt + δij + ζ ′xibdt + εibdt, where
pibdt is the price of house i in band b, Borough d at time t; τbdt is the council tax amount for a house
in band b, Borough d at time t; δij are pair fixed effects; and xibdt are controls. Housing pairs from
opposite sides of a given border are constrained to be no more than 500 metres away, sold in the
same year, in the same council tax band and to both be either old or newly-built and freehold or
leasehold properties. The closest match for each property is chosen as the one minimising the fol-
lowing distance: d(i, j) = | p̂it − p̂jt|, where p̂it and p̂jt are model-predicted prices for two matched
property transactions i and j based on a linear model: pit = α + β′xit + εit. The vectors xit and xjt
in columns (1) and (2) include size and number of rooms, while columns (3) and (4) add the energy
cost. All variables are defined in Section C.1. Standard errors clustered at the transaction ID level
are reported in parentheses.

(1) (2) (3) (4)

Council Tax 56.8∗∗ 15.3 55.7∗∗ 14.6

(23.4) (18.1) (23.7) (18.7)

Size 3,879.2∗∗∗ 3,809.8∗∗∗

(778.8) (762.1)

Fixed-effects

Pair ID Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes No Yes

Property Type No Yes No Yes

Obs. 114,904 114,904 113,854 113,854

Unique Transaction IDs 71,588 71,588 71,649 71,649

R2 0.799 0.837 0.798 0.835

Within R2 0.001 0.045 0.001 0.043

Distance Linear 1 Linear 1 Linear 2 Linear 2

One-way (Transaction ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C14: Matching Regressions - Linear Distance Less than 30% of Predicted
Prices

The table shows the estimates of the following regression: pibdt = βτbdt + δij + ζ ′xibdt + εibdt, where
pibdt is the price of house i in band b, Borough d at time t; τbdt is the council tax amount for a house
in band b, Borough d at time t; δij are pair fixed effects; and xibdt are controls. Housing pairs from
opposite sides of a given border are constrained to be no more than 500 metres away, sold in the
same year, in the same council tax band and to both be either old or newly-built and freehold or
leasehold properties. Each house i is matched to all possible candidates j that satisfy the following
constraint: d(i, j) = | p̂it − p̂jt| < 0.3×max{ p̂it, p̂jt}, where p̂it and p̂jt are model-predicted prices
for two matched property transactions i and j based on a linear model: pit = α + β′xit + εit. The
vectors xit and xjt in columns (1) and (2) include size and number of rooms, while columns (3) and
(4) add the energy cost. All variables are defined in Section C.1. Standard errors clustered at the
transaction ID level are reported in parentheses.

(1) (2) (3) (4)

Council Tax -8.19 -5.24 -7.65 -8.14

(10.1) (9.68) (11.0) (10.3)

Size 3,980.1∗∗∗ 3,982.4∗∗∗

(295.8) (349.3)

Fixed-effects

Pair ID Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes No Yes

Property Type No Yes No Yes

Obs. 175,639 175,639 167,704 167,704

Unique Transaction IDs 59,722 59,722 58,917 58,917

R2 0.871 0.875 0.855 0.859

Within R2 0.000 0.017 0.000 0.018

Distance Linear 1 Linear 1 Linear 2 Linear 2

One-way (Transaction ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C15: Model-averaged Posterior Distributions for the Council Tax Incidence

The table displays 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99% quantiles, the modal and mean
values of the average posterior distribution for the council tax incidence obtained by using the esti-
mates from Tables C5-C9 and C12-C14. The last column reports the attenuation factor γ computed
as the ratio of the posterior and prior median. Each row refers to a different choice of prior.

Prior 1% 5% 10% 25% 50% 75% 90% 95% 99% mode mean γ

N (−150, 502) -143.50 -110.66 -93.21 -61.85 -22.87 -1.98 18.67 31.04 51.90 -12.08 -31.85 0.15

N (−100, 502) -116.75 -85.88 -69.23 -39.43 -12.79 7.60 29.51 41.86 62.81 -9.86 -16.81 0.13

N (−50, 502) -90.71 -61.45 -45.54 -20.99 -2.17 20.33 42.09 54.20 75.25 -6.78 -1.76 0.04

N (−150, 752) -126.67 -87.78 -67.60 -32.92 -7.49 16.49 41.31 54.86 78.03 -8.24 -10.46 0.05

N (−50, 252) -82.09 -64.43 -54.54 -36.79 -18.64 -4.40 9.15 17.64 32.93 -13.86 -20.87 0.37
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C.3 Figures

Figure C1: A Typical Border

The figure shows an example of a border between two Boroughs in London. Houses on the left side
of the West Eaton Place road belong to the Borough of Kensington and Chelsea and have an annual
council tax bill of £2, 279, while houses on the right side belong to the Borough of Westminster and
have an annual council tax bill of only £1, 421.

Figure C2: Time Series of Council Taxes

The figure reports the time series of council tax amounts payable across Boroughs. Each panel refers
to a different band, while the lines in each panel represent different Boroughs.
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Figure C3: Histogram of Property Prices in London

The figure presents a histogram of the distribution of house transaction prices in London. The
distribution is truncated at £1, 500, 000.
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Figure C4: Bunching at Stamp Duty notches

The figure presents a histogram of the distribution of house transaction prices in London around
stamp duty notches. Panel (A) refers to the notch at £250, 000, while panel (B) at £500, 000.
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Figure C5: Histogram of Prices by Band

The figure presents a histogram of the distribution of house transaction prices in London per
band. Each panel refers to properties belonging to different bands. The distribution is truncated
at £2, 000, 000. The red vertical lines represent the median values computed using the full sample.
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Figure C6: Histogram of Prices by Property Type

The figure presents a histogram of the distribution of house transaction prices in London by prop-
erty type. The distribution is truncated at £2, 000, 000. The red vertical lines represent the median
values computed using the full sample.
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Figure C7: Histogram of Prices by Number of Rooms

The figure presents a histogram of the distribution of house transaction prices in London by number
of rooms. The distribution is truncated at £2, 000, 000. The red vertical lines represent the median
values computed using the full sample.
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Figure C8: Histogram of Prices by Age

The figure presents a histogram of the distribution of house transaction prices in London by age.
The top panel reports the histogram of prices for newly-built properties, while the bottom for es-
tablished residential buildings. The distribution is truncated at £2, 000, 000. The red vertical lines
represent the median values computed using the full sample.
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Figure C9: Histogram of Prices by Year of Construction

The figure presents a histogram of the distribution of house transaction prices in London by year
of construction. The distribution is truncated at £2, 000, 000. The red vertical lines represent the
median values computed using the full sample.
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Figure C10: Histogram of Prices by Duration

The figure presents a histogram of the distribution of house transaction prices in London by tenure
duration. The top panel reports the histogram of prices for freehold properties, while the bottom for
leasehold properties. The distribution is truncated at £2, 000, 000. The red vertical lines represent
the median values computed using the full sample.

Leasehold

Freehold

0 500000 1000000 1500000 2000000

0

10000

20000

0

10000

20000

Price

N
o.

 O
bs



APPENDIX C. THE SALIENCE OF PROPERTY TAXES 252

Figure C11: Council Taxes and House Prices

The maps show the distribution of council tax payable for properties in band D for each London
Borough, along with the respective distribution of house prices in 2000 and 2018.

(a) Council Taxes in 2000 (b) House Prices in 2000

(c) Council Taxes in 2018 (d) House Prices in 2018

Figure C12: Grids

The maps depict our first identification strategy of dividing London in a grid of equally sized
squares. Panel C12a shows a grid of 150× 150 squares superposed on the map of the city; Panel
C12b shows an enlargement of the central Boroughs. The blue squares denote areas which contain
at least two similar properties located on opposite sides of a border.

(a) Grid (b) Enlargement of the Centre



APPENDIX C. THE SALIENCE OF PROPERTY TAXES 253

Figure C13: Distribution of Distances for the Grid Regressions

The figure depicts histograms for the distribution of distances between houses on opposite sides of
a border that are used in our grid regressions. We report the distributions for three different grids,
namely grids where we have divided London in 50× 50 squares, 100× 100 and, finally, 150× 150.
For each histogram we report the approximate size of the square sides in meters.
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Figure C14: Model-implied Incidence

The figure plots the relationship between tax incidence on house prices and discount rates, where
the discount rate is defined as r + k as in Section 3.4. The upper panel shows the incidence of the
stamp duty, while the bottom panel the incidence of the council tax.
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Figure C15: Model-averaged Estimate of the Posterior Council Tax Incidence

The figure plots the density of the council tax incidence obtained by taking the model-average of
the posteriors as described in Sections 3.4.1 and C.4. The priors are normally distributed N (b0, σ2

0 )
in all figures. In panel (a) the priors have constant standard deviation σ0 = 50 and varying means of
b0 = −150,−100,−50, respectively. In panel (b) the standard deviation of the priors is proportional
to the mean, i.e., σ0 = |b0|/2.

(a) Constant Variance (b) Proportional Variance
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Figure C16: Optimal Tax Policy

The figure plots the optimal mix of stamp duty and council tax the Government should choose to
maximise the utility of buyers and maintain revenue-neutrality. Panel (a) displays the variables
as a function of the discount rate r + k, while panel (b) as a function of the attenuation parameter
γ. The top plots of each panel show the optimal amount of council tax in £ and stamp duty tax
as percentage of house price, respectively. The bottom plots provide the relative percentages of
revenue raised through council and stamp duty tax, respectively. In the upper panel we calibrate
the parameters as follows: α = 0.8, g = g̃ = 3.5%, ηS = 0.5, β = 0.99, γ = 0.15; in the bottom panel:
α = 0.8, g = g̃ = 3.5%, ηS = 0.5, β = 0.99, r + k = 5%.
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C.4 Computation of the Model-averaged Posterior In-

cidence of Council Tax

In Section 3.3 we estimate models of the type:

y = Xmβm + εm (C.1)

where εm|m ∼ N (0, Ωm), with Ωm being the population covariance matrix of the

errors under model m. We partition the parameters as βm = (β0, βm
−0), where

βm
−0 = (βm

1 , βm
2 , ...) and β0 is the parameter of interest. We then make the (strong)

simplifying assumption that Ωm is known and assume that the prior distribution of

the parameters is: βm|m ∼ N (bm, Σm). We also assume that the marginal prior dis-

tribution of the parameter of interest is common across models, i.e., p(β0|m) =

p(β0) = N (b0, σ2
0 ). It follows that the posterior is: βm|y, m ∼ N (((Σm)−1 +

Xm′(Ωm)−1Xm)−1(Xm′(Ωm)−1y + (Σm)−1bm), ((Σm)−1 + Xm′(Ωm)−1Xm)−1). We

then proceed by making the following approximations:

((Σm)−1 + Xm′(Ωm)−1Xm)−1
[1,1] ≈ (σ−2

0 + V̂ar(β̂m)−1
[1,1])

−1 (C.2)

(((Σm)−1 + Xm′(Ωm)−1Xm)−1(Xm′(Ωm)−1y + (Σm)−1bm))[1] ≈

(σ−2
0 + V̂ar(β̂m)−1

[1,1])
−1(V̂ar(β̂m)−1

[1,1] β̂
m
0 + σ−2

0 b0)
(C.3)

where A[i,j] and a[i] indicate the ij-th element of matrix A and the i-th element of

vector a, respectively. This leads, therefore, to the following approximate posterior

distribution for the parameter of interest:

p(β0|y, m) =

N
(
(σ−2

0 + V̂ar(β̂m)−1
[1,1])

−1(V̂ar(β̂m)−1
[1,1] β̂

m
0 + σ−2

0 b0), (σ−2
0 + V̂ar(β̂m)−1

[1,1])
−1
)
(C.4)

After having obtained the posterior distribution for β0 for each model we average

using a flat prior across models to obtain the final density p(β0|y) = 1
M ∑M

m=1 p(β0|y, m).
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Returning to the choice of prior distribution for the parameter of interest, we

are guided by the model-implied incidence from Section 3.4. We calibrate the fol-

lowing parameters: g = 0.035, g̃ = 0.035, r = 0.04 and α = 0.81. Given these

values we pick three different means for the prior distribution to match the range

of incidence of the stamp duty tax obtained in Best and Kleven (2018), namely,

b0 = −150,−100,−50, which roughly correspond to stamp duty incidences of:
dp
dτS

= −2,−3,−4. We choose the standard deviations of the prior to be equal to

σ0 = 50 or σ0 = |b0|
2 to obtain five prior distributions.

1The parameters r and g̃ are consistent with the in-sample average mortgage rate and growth
rate of council taxes in the UK, respectively; α is consistent with a downpayment of 20% which is
common in the UK. We use a conservative expected growth rate of house prices of 3.5% compared
to the in-sample average of 7.3%.


