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Abstract

This dissertation consists of three chapters studying how economic agents learn,
form their beliefs and make economically relevant decisions. The main theme of
the thesis is to infer beliefs from observable actions and test whether agents process
information in a way that is consistent with various theoretical models.

In the first chapter I use price data from the real-estate market to infer agent beliefs
that are consistent with their pricing behaviour. In particular, I study the way agents
make inference from the observable actions of others. In the housing market, where
the use of comparables for pricing is most common, I show that the inability to fully
grasp the structure of information flows leads agents to overweight stale news due
to their repeated use by intermediate agents. The findings are inconsistent with a
fully Bayesian model and might instead be reconciled with a model of naı̈ve learn-
ing.

The second chapter is conjoint work with Francesco Nicolai. We use data on mu-
tual fund portfolio holdings to extract fund managers’ stock return expectations
in a fairly general model of portfolio formation. We employ panel regressions to
partial out the effect of time-varying stock and manager characteristics and show
that subjective expected returns are significantly affected by personal experience. In
particular, we provide evidence that professional managers are more strongly influ-
enced by recent returns and those experienced at the early stages of their holding
period.

The third chapter, co-authored with Francesco Nicolai and Marco Pelosi, provides
evidence of the disparity in the incidence of property taxes levied at different points
in time. We show that housing demand is significantly less elastic to taxes deferred
to the future relative to taxes levied at the moment of purchase, even after account-
ing for liquidity constraints. We attribute these findings to lack of salience, implying
that the burden of deferred taxes will be borne in the future when they are levied.
We develop a model to show that the trade-off between lack of salience and liquidity
constraints gives rise to an optimal tax mix.
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1. Learning from Past Prices: Evidence from
the UK Housing Market

SIMONA RISTESKA1

The main objective of this paper is to investigate how economic agents make infer-
ence from the observable actions of others. In the face of uncertainty and imperfect
knowledge about the state of the world, social learning allows individuals to learn
private information that is embedded in other people’s actions. However, in settings
where individuals have limited knowledge about the structure of information flows,
this may lead to inferential mistakes whenever agents fail to account for the repet-
itive use of stale information. A particular form of social learning commonly used
in financial markets is referred to as pricing by comparables. When determining the
value of an asset, individuals frequently draw on past observations of similar trans-
actions to guide their decision-making. This valuation method is employed in a
variety of settings, from firm valuation in corporate finance to the pricing of illiquid
assets such as corporate bonds and loans and, perhaps most notably, in the housing
market when assessing the value of commercial and residential properties.

In this paper, I show that sellers in the housing market overweight old informa-
tion when setting prices. In particular, I use the UK market for residential housing as
a laboratory to investigate how agents make inference when exposed to the release
of new information. The institutional setting in the UK serves as an ideally suited
natural experiment in these regards: beginning in March 2012, the UK Land Registry
has been regularly publishing, on the twentieth working day of each month, data
on all the transactions of residential properties that have taken place in the previous
month. The regular release of price data provides me with a shock to the informa-
tion set of prospective sellers around the latest publication date. Combined with rich
data on listings from a large property website in the UK and data on house charac-
teristics, this allows me to analyse the causal effect of recent transactions on property

1I benefited from helpful comments from Ulf Axelson, Cynthia Balloch, Daniel Ferreira, Dirk Jen-
ter, Christian Julliard, Lukas Kremens, Dong Lou, Francesco Nicolai, Daniel Paravisini, Marco Pelosi,
Cameron Peng, Walker Ray, Huan Tang, Michela Verardo, and the seminar participants at LSE,
Copenhagen Business School, Adolfo Ibanez Business School, the New Economic School Moscow,
BI Norwegian Business School, ESSEC Business School, Durham Business School, Nova Business
School, Amsterdam Business School, Warwick Business School and WHU – Otto Beisheim School
of Management. The paper contains HM Land Registry data © Crown copyright and database right
2019. The data is licensed under the Open Government Licence v3.0.1. I thank the University of Glas-
gow - Urban Big Data Centre for providing Zoopla property data. Zoopla Limited, © 2019. Zoopla
Limited. Economic and Social Research Council. Zoopla Property Data, 2019 [data collection]. Uni-
versity of Glasgow - Urban Big Data Centre. Any errors or omissions are the responsibility of the
author.
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CHAPTER 1. LEARNING FROM PAST PRICES 12

listings. I first supply empirical evidence that prospective sellers use data on past
transactions to inform their decisions. Transactions from the previous month have
a significantly larger effect on listings posted in the period after these have been
made publicly available. I, therefore, confirm the well-known fact that pricing by
comparables is widely used by sellers, as one should expect given the fact that this
is an approach openly recommended by real-estate agents, property websites and
other housing market professionals. Any given comparable transaction has about
0.45% incremental effect on listings that observe it relative to those that do not, even
though the latter are closer in time. I then proceed to show that this is a lower bound
on the true effect by conducting a difference-in-differences analysis where I bench-
mark the incremental effect described above to data before the first publication date
in March 2012: the results indicate that the actual response is almost twice as large
than the previously estimated one.

I then proceed to the main results of the paper: by looking at how the influence
of any given transaction evolves with its repeated use, I demonstrate that sellers
in the housing market fail to recognise potential duplication of information and are,
therefore, prone to overweight stale news at the expense of more recent information.
Specifically, I find that the effect of recently published transaction prices increases
monotonically with the number of redundant channels of influence. The ability to
observe the date and price of new property listings (hereafter also referred to as
quote) allows for a detailed analysis of the way information flows from past prices
to subsequent listings, potentially also via intermediate comparable listings. The re-
sults show that the incremental effect that recent transactions have on future quotes
can be more than 3% when the number of intermediate comparables grows beyond
three relative to the case where no such redundant channels are present. This in-
cremental effect is added to the baseline influence that recent prices have on future
listings of about 82-84% implying that housing market fundamentals are quite per-
sistent and, consequently, even small pricing mistakes can have significant long-run
effects. The above findings cannot be squared with Bayesian inference. In particu-
lar, a Bayesian agent would take into account the fact that recent comparables have
been influenced by earlier ones and should, therefore, adjust the relative weights
placed on observables accordingly in order to avoid double-counting stale infor-
mation. This implies that the effect of a given comparable cannot increase as the
number of interim listings grows. I, therefore, reject the null hypothesis that agents
in the housing market behave in a Bayesian fashion.

The above results can be reconciled with a different learning model where agents
fail to recognise potential duplication of information in prior observables, practice
known in the theoretical literature on social learning as naı̈ve herding or persua-
sion bias (Eyster and Rabin, 2010; DeMarzo et al., 2003). These papers show that,
in order to make correct inference as implied by Bayesian updating, one needs to
engage in a very complex process of discerning all the channels through which a
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given signal might have already exercised an indirect influence on their actions or
else they would be inclined to overweight that piece of information. Specifically,
the agent needs to be able to disentangle all determinants of a given observation,
namely: (a) the private signal of that individual; (b) the part that is influenced by
the observability of prior actions and; (c) the public information about fundamentals
observed by everyone. This is not an easy task even in a setting with fully rational
agents and common knowledge of the structure of the information network, nev-
ertheless introducing uncertainty about information flows significantly exacerbates
the problem. Agents who instead, due to bounded rationality, attempt to make ap-
proximate inference from past actions, by assuming that these are driven purely by
distinct signals, are subject to naı̈ve learning and risk placing too much weight on
stale information.

Since sellers in the housing market have difficulty recognising potential dupli-
cation of information, it would be interesting to study whether this leads to inferior
market outcomes. In particular, one could analyse if part of the mistakes made by
sellers are corrected upon matching with buyers. In the final set of tests, I provide
some suggestive evidence that this is indeed the case by showing that sellers who
eventually sell their properties at the largest percentage difference to listed price are
those that have been most highly influenced by past prices.

The empirical results provide solid evidence that learning and pricing behaviour
in the real-estate market cannot be reconciled with Bayesian inference. They are,
however, unable to demonstrate what the economic impact of such behaviour is on
housing market dynamics in the long run. For this reason, I finally develop a sim-
ple model of learning to simulate the response of naı̈vely formed prices to various
shocks and benchmark this to the rational case. The results indicate that in a world
with naı̈ve agents, prices are much more sensitive to noisy signals about demand as
they overreact to this information for a long time. The deviation from fundamen-
tal values can be very large at 35% of the shock at a twenty-year horizon. On the
other hand, naı̈ve prices exhibit underreaction to true changes in the value of the
underlying state due to the fact that real shocks get suppressed by stale news. These
results are of particular importance once we consider that the decision to purchase
a (new) home is typically one of the biggest financial decisions households need to
make and, therefore, pricing mistakes can have large effects on their welfare.

In this paper, I provide empirical evidence regarding learning mistakes of sellers
in the housing market. I, therefore, contribute to the literature on the behaviour
of real-estate market participants and the way it affects pricing dynamics (Merlo
and Ortalo-Magné, 2004; Brunnermeier and Julliard, 2008; Piazzesi and Schneider,
2009; Head et al., 2014; Ngai and Tenreyro, 2014; Merlo et al., 2015; Anenberg, 2016;
Burnside et al., 2016; Davis and Quintin, 2017; Glaeser and Nathanson, 2017; Guren,
2018; Andersen et al., 2019; Giacoletti and Parsons, 2019; Bracke and Tenreyro, 2020).
In particular, I expand on the results of Glaeser and Nathanson (2017) who calibrate
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a model where house market participants extrapolate from past prices by failing
to adjust for the fact that past actions reflect beliefs about future demand. More
broadly, this paper relates to the work of Murfin and Pratt (2019) who show that
lenders in the market for corporate loans similarly overweight old information by
treating past transactions as independent signals.

The paper proceeds as follows: in Section 1.1 I provide a theoretical foundation
of naı̈ve learning and outline the natural experiment that guides the empirical anal-
ysis; Section 1.2 provides a survey of the existing literature on naı̈ve learning and
housing market dynamics; Section 1.3 describes the data and shows summary statis-
tics; Section 1.4 presents the results of the empirical analysis; Section 1.5 develops
a model in order to convey the economic magnitude of the long-run effects arising
from pricing mistakes, and; Section 1.6 concludes.

1.1 Theoretical Motivation and Methodology

When there is uncertainty about the state of the world and the amount of knowledge
that other actors possess, agents are naturally inclined to use observable actions and
outcomes as a way to make better informed decisions. One of the most obvious
examples of this is the widespread use of comparables for pricing financial assets.
Under this approach agents looking to determine the value of a given asset make use
of available data on prices and transactions of similar securities2. When agents have
less than full knowledge regarding the path through which information propagates,
they are likely to incur in mistakes if they apply the comparables approach blindly.
In particular, if agents do not account for common drivers among the set of observed
comparables and, instead, treat these observations as independent from each other,
they might overweight some signals at the expense of others. This practice is known
in the literature on social learning as naı̈ve herding. The theoretical literature on this
topic, pioneered by DeMarzo et al. (2003) and Eyster and Rabin (2010), shows that
agents who fail to account for common signals embedded in past actions are likely
to make suboptimal choices and even herd on the wrong decision in the long run
with positive probability. Even more surprisingly, Eyster and Rabin (2014) show that
agents are required to anti-imitate, i.e., apply negative weight on the observable ac-
tions of some agents, in order to perform correct inference. My goal is to provide
empirical evidence of the way that economic agents learn from past actions and ex-
amine whether there is any indication of naı̈ve herding. I use the housing market as
the setting for my analysis as this is one of the areas where the use of comparables

2Consider a simple asset with a periodic cash flow C, growth rate g and discount rate r. Its price
P is then determined by the standard Gordon growth formula: P = C

r−g . Re-arranging, we obtain the

price-to-cash flow ratio: P
C = 1

r−g . This formula implies that assets with the same discount rate and
growth rate (or difference thereof) should have the same value multiple. The approach of pricing by
comparables thus relies on the availability of assets with similar risk and growth characteristics to
the asset in question.
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for pricing is most common. Moreover, the market for residential properties is, un-
like most other financial markets, largely populated by households who might be
less sophisticated compared to major actors in other security markets. As a result,
the challenge of extracting the correct signals and avoiding any learning mistakes
could be more difficult to overcome in the housing market where agents are present
only temporarily and with possibly limited time and information resources.

To motivate the empirical analysis of this paper, I provide a simple stylised
model that illustrates the key features of naı̈ve learning and contrast it with Bayesian
updating. Consider an environment where agents learn about the state of demand
denoted by D. Prospective sellers looking to determine the listing price for their

property receive a noisy signal sn with a normally distributed error, εn
iid∼ N (0, σ2)

identically and independently distributed across agents and time:

sn = D + εn (1.1)

Agents act sequentially and every period each seller observes the entire history of
prices: In = {pn−1, pn−2, ..., p0}. For simplicity, suppose that sellers have a diffuse
prior and set prices equal to their best estimate of the state of demand: pn(D) =
E[D|sn, In]. The first agent n = 0 receives a signal s0 and, not observing any prior
actions, sets the price equal to the signal:

p0 = E[D|s0, I0] = s0 (1.2)

Agent 1 receives a signal and observes the action of agent 0. Given the equal preci-
sions, he assigns the same weight to both signals:

p1 = E[D|s1, I1] =

(
1− σ−2

(σ−2 + σ−2)

)
×E[D|I1]︸ ︷︷ ︸

=p0

+
σ−2

(σ−2 + σ−2)
× s1 =

1
2
× (s0 + s1)

(1.3)
The difference between Bayesian and naı̈ve updating arises with the arrival of the
third agent. A Bayesian approach would require the agent to calculate the posterior
belief as the average of his prior and the new signal weighted by the signal precision,
where the prior is equal to the expectation of demand given the history of observed
actions:

p2 = E[D|s2, I2] =

(
1− σ−2

(σ−2 + σ−2 + σ−2)

)
× E[D|I2]︸ ︷︷ ︸

=p1

+
σ−2

(σ−2 + σ−2 + σ−2)
× s2

(1.4)
Note that agent 2’s prior belief is equal to agent 1’s posterior, i.e., under common
knowledge of rationality and the informational structure, agent 2 simply sets his
prior equal to agent 1’s best estimate. Plugging in the expression for the posterior of
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agent 1 into equation (1.4), we obtain the following expression:

p2 =
2
3
× p1 +

1
3
× s2 =

1
3
× (s0 + s1 + s2) (1.5)

The key take-away from the last equation is that under Bayesian updating, agent
3 assigns appropriate weights to all previous signals in proportion to their respec-
tive precisions. More generally, the posterior of agent n is equal to the precision-
weighted average of all n + 1 available signals, i.e.:

pn =
1

n + 1
× (s0 + s1 + ... + sn) (1.6)

Crucially, note that a simpler way to achieve this is by using the previous agent’s
posterior belief and disregarding all prior actions, i.e., the posterior belief of agent
n− 1 is a sufficient statistic for all previously observed information3:

pn =
n

n + 1
× pn−1 +

1
n + 1

× sn (1.7)

The approach above, however, implies knowledge of the full history of actions and,
most importantly, the way they have influenced each other. This might not be feasi-
ble in many real-world scenarios and might therefore lead to suboptimal decision-
making in environments with social learning. To see this, consider a naı̈ve learner
in the third period, defined as one who fails to account for the redundancy of pre-
vious signals, treating past actions as independent instead. In other words, a naı̈ve
learner assumes that previous agents have not taken into account any prior infor-
mation, forming prices based solely on their respective private signals. Agent 3’s
posterior is then given by:

p̃2 = Ẽ[D|s2, I2] =

(
1− σ−2

(σ−2 + σ−2 + σ−2)

)
× Ẽ[D|I2] +

σ−2

(σ−2 + σ−2 + σ−2)
× s2

=
2
3
×
(

1
2
× p0 +

1
2
× p1

)
+

1
3
× s2 =

1
3
× p0 +

1
3
× p1 +

1
3
× s2

(1.8)

The above equation states that our naı̈ve learner would use a wrong prior given by
the precision-weighted average of the previous agents’ posteriors as opposed to their

3Note that the last result holds only in the case where agents act sequentially and there is only
one agent per period. If, instead, there are multiple agents in a given period, say k of them, who are
unable to observe each other’s actions, the prior of the subsequent set of agents will not be equal
to any of those agents’ posterior beliefs or the average thereof. This is because the former would
imply failure to absorb the private information of the remaining k-1 agents from period n-1, while
the latter would lead to overweighting of commonly observed signals relative to the private signals
from period n-1. Nevertheless, the result that the posterior of a given agent equals the weighted
average of all available signals still holds.
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signals: Ẽ[D|s2, I2] =
σ−2

(σ−2+σ−2)
× (p0 + p1). Plugging in the expressions for p0 and

p1 from equations (1.2) and (1.3) above, we obtain:

p̃2 =
1
2
× s0 +

1
6
× s1 +

1
3
× s2 (1.9)

The last equation shows that naı̈ve updating leads agents to assign wrong weights
on prior signals. In particular, by overlooking the influence that signals further in
the past have had on more recent actions, agents end up overweighting stale news.
In contrast to Bayesian learners, naı̈ve agents treat signals coming from early ac-
tions as distinct sources of information. This mistake gives rise to multiple channels
of influence from early news: the direct channel arising from the placement of an
explicit weight on past signals and the indirect one that emerges from their effect on
intermediate observations. For a general n > 2, the price looks as follows:

p̃n =
1

1× 2
× s0 +

1
2× 3

× s1 + ... +
1

n× (n + 1)
× sn−1 +

1
n + 1

× sn (1.10)

Comparing equations (1.6) and (1.10) we see that naı̈ve learning is an issue of rela-
tive over- and under-weighting of the signals coming from previous periods: notice
that both Bayesian and naı̈ve learners assign the same weight to their private infor-
mation. It therefore arises even if agents are more confident in their own signals, as
long as they learn from past data to some extent. It can further be noted that weight-
ing mistakes would be present regardless of whether the signal precisions are equal
across agents or not: naı̈ve learning implies over-weighting of old signals relative to
optimal weights even with heterogeneity in signal precisions.

The key distinctions between a Bayesian and naı̈ve approach to learning out-
lined in equations (1.4)-(1.10) guide my empirical analysis going forward. Specifi-
cally, the core of the paper seeks to benchmark the way that prices in the housing
market influence each other against the two learning models described above. Note
that deviations from Bayesian learning occur once early observable information gets
embedded into intermediate actions. Bayesian learning implies that the effect of a
given signal should not increase with the number of subsequent uses, rather we
should expect it to decline with the arrival of more news as each individual piece
of information receives a progressively lower weight. To see this, we can fix a price
from a given period k ≥ 0 and compute its covariance with prices from subsequent
periods n ≥ k + 1 under the rational and the naı̈ve models. We can then compare
the evolution of covariance functions as the number of intermediate observations
grows. For the rational model, we have:

Cov(pn, pk) =
1

n + 1
× σ2 (1.11)

The above expression shows that, as we increase n or the amount of interim prices



CHAPTER 1. LEARNING FROM PAST PRICES 18

observed by agent n but not by agent k, the covariance between pn and pk mono-
tonically decreases. This is intuitive since optimal learning implies that agent n will
assign proportionally lower weights to the information embedded in pk as he ob-
serves more and more recent news. On the other hand, the covariance of the same
two prices in the naı̈ve model would be as follows:

Cov( p̃n, p̃k) = ∑
0≤i<k

(
1

(i + 1)× (i + 2)

)2

× σ2 +
1

(k + 1)2 × (k + 2)
× σ2 (1.12)

Note that the covariance in the naı̈ve case is no longer decreasing with n. In partic-
ular, in this simple setting covariances do not depend on n and, as a result, prices
in all subsequent periods will comove with p̃k by the same amount4. To better ex-
plain the empirical results of Section 1.4 below, I develop a dynamic model with an
evolving state of demand and add an additional commonly observed public signal
which introduces correlation in the signals: the details of the model are presented in
Section A.3 of the Appendix.

In the rest of the paper, I make use of an ideally-suited setting for analysing the
comovement in house prices with the arrival of intermediate observations that po-
tentially contain overlapping signals. Namely, starting from March 2012, the UK
Land Registry has been publishing monthly housing transaction data on a regular
basis on the twentieth working day of the subsequent month. Consequently, on this
date sellers receive an information shock due to the release of house price data from
the previous month. Prior to March 2012, the data was available for purchase under
contract and there was no such a sharp and regular discontinuity in the informa-
tion set of sellers. Figure A1 gives a graphical representation of the environment.
Suppose, for instance, that the twentieth working day of March of a given year is
March 28th: this is the date when the February transactions data is made publicly
available. Sellers who list their properties after this date can thus make use of the
latest set of price data to inform their decisions. Sellers who have listed their prop-
erties just a few days before, however, are not able to observe the data on February
transactions and thus cannot infer any private signals. Comparing the correlation
of February transactions with properties listed just before and just after the publica-
tion date, therefore, gives us an idea of the effect of pricing by comparables in the
housing market. Any incremental effect on quotes posted in the post-publication
period shows evidence that sellers use information on newly published prices to
learn about the current state of demand. The results of this exercise are shown in

4It is important to note that throughout my empirical analysis, I consistently compare the effect of
prices from a given period on subsequent listings based on the amount of intermediate information
by fixing k and varying n. In particular, if we were to fix n and vary k, i.e., analyse the effect of prices
from different periods on the same quote, the covariance implications would be different. To see this,
note that equation (1.11) shows that under the rational model the covariance of pn with different past
prices pk does not depend on the amount of intermediate observations. On the other hand, under the
naı̈ve model it can be shown from (1.12) that the same covariance is decreasing in k, i.e., increasing
with the number of intermediate observations.
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Section 1.4.1 and can be interpreted as the direct effect of pricing by comparables:
they, however, fall short of explaining whether sellers incorporate new information
in an optimal or naı̈ve way. For this reason, after having established the baseline
effect, in Section 1.4.2 I look at the way that the comovement of quotes with a given
price evolves through chains of influence from subsequent listings. Specifically, us-
ing data on property listings and their timing, in addition to the price paid data,
we can get a good approximation of each agent’s information set at the time of set-
ting the quote. We can then compare the covariance between a given price p and
a subsequent quote q based on the number of intermediate quotes that are observ-
able by q which may or may not contain information also embedded in p. Note that
the regularity in the price publishing dates provides a good setting for estimating
covariances of prices with subsequent quotes by taking into account the amount of
interim information that sellers possess. To the extent that the listings posted on
the two sides of the price publication date do not differ in a systematic way, com-
paring the evolution of influence from recent prices through sequences of listings
around this date allows us to benchmark the estimated covariance coefficients to the
Bayesian and naı̈ve models described above. This enables us to determine if sellers
are able to correctly extract the real news from a given price or if they instead end
up overweighting commonly contained signals due to their failure to understand
the duplication of information.

Throughout the analysis, I investigate the impact of transaction prices on listings
of properties with similar characteristics in order to avoid any selection on observ-
ables. Moreover, I minimise concerns regarding the evolution of fundamentals by
looking at a very tight window of listings posted in the four weeks surrounding the
publication date. Similarly, I compare the effect of prices of sold properties that have
at least one comparable listing before and one after the publication date to make sure
that the results are not driven by systematic differences in the independent variable.
In the next section, I provide a review of some of the existing literature that relates
to this paper in order to outline its main contributions.

1.2 Previous Literature

The present paper relates to two broad strands of literature. First, it provides em-
pirical evidence that complements the large body of theoretical literature on social
learning beginning with the models of herd behaviour and informational cascades
by Banerjee (1992) and Bikhchandani et al. (1992) in a setting with rational agents.
Both papers show that when agents move sequentially and everyone observes all
prior actions, using past observations to learn the information other agents might
have had can lead to so-called herd behaviour where Bayesian agents stop listening
to their own signals and follow everyone else. This in turns makes each agent’s ac-
tion less informative about their own signal and thus less useful to others. Banerjee
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(1992) demonstrates that the welfare implications of this type of behaviour can be
significant to the extent that agents might gain by constraining information sharing.
The type of positive feedback effects present in this setting implies that outcomes
can be very different across game repetitions and that this might lead to excess
volatility in asset markets. Bikhchandani et al. (1992) further go on to show that
this type of cascades are fragile in the sense that they can seemingly break down
in a drastic manner with the arrival of a small amount of information or a slight
possibility of a value change. They also demonstrate that the gradual release of
public information once a cascade has started can reverse this and eventually lead
to individuals settling into the correct cascade. The above papers inspect only herd-
ing effects that result in social settings with rational inference. Convergence on the
wrong action with fully rational agents is, nonetheless, rare, it occurs primarily in
cases where agents are not confident in their beliefs and, as Ho (1993) and Smith and
Sorensen (2000) show, it arises in situations with coarse action or signal spaces. One
of the early papers that study bounded rationality in social-learning environments
is DeMarzo et al. (2003) who introduce the concept of ”persuasion bias” defined as
the failure to adjust for possible repetition of information coming either from one
source over time or multiple sources connected through a network. In their paper
they emphasise that the key issue causing this type of behaviour is the intractability
of the path that led all prior individuals to form their beliefs. Theoretical papers
that most tightly relate to the present article are Eyster and Rabin (2010) and Eyster
and Rabin (2014) who study observational learning in rich-informaton settings with
naı̈ve agents. Specifically, Eyster and Rabin (2010) describe a form of so-called ”in-
ferential naı̈vety” whereby players learning from the observable actions of others
fail to account for the influence of early actions on interim players’ choices and, in-
stead, treat all observations as purely driven by each player’s private information.
Just like in the simple model presented in Section 1.1 above, agents in their model
move sequentially after receiving a private signal and observing the full history of
past actions. They demonstrate that this type of behaviour can lead agents to con-
verge to the wrong beliefs with full confidence to the point that they are made worse
off by being able to observe the actions of previous movers. Perhaps most crucially
for the subsequent tests, Eyster and Rabin (2014) prove that rational learning im-
plies that in environments where agents share common observations, they should
either never imitate more than one predecessor or rather engage in anti-imitating
behaviour as well.

In terms of empirical literature, a closely-related paper that studies naı̈ve learn-
ing is Murfin and Pratt (2019) who look at the market for corporate loans. They ex-
ploit the date on which a given loan is reported in Refinitiv’s Dealscan database to
identify the effect of new additions to the dataset on the pricing of subsequent loans.
They find strong evidence of comparables pricing in credit markets and naı̈ve infer-
ence whereby the effect of a given comparable increases by three to five percentage
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points in the presence of redundant channels of influence, up from a baseline effect
of about 6-10%. The benefit of the present paper is that it makes use of a more cleanly
defined shock to the information set of agents to identify the direct effect of pricing
by comparables. Moreover, while Murfin and Pratt (2019) study the behaviour of
investment bank professionals, I primarily look at households operating in the res-
idential housing market who might be less sophisticated and, consequently, more
prone to influence and to committing pricing errors. Furthermore, the purchase of a
home most often is the biggest financial decision that households make which em-
phasises the importance of any pricing mistakes. Less related to the present study,
numerous other papers analyse the use of the comparables pricing method in corpo-
rate finance5. Papers that study herding behaviour in wider financial markets are,
among others: Lakonishok et al. (1992), Grinblatt et al. (1995), Hong et al. (2005) and
Dasgupta et al. (2011) who analyse institutional herding among money managers;
Alevy et al. (2007), Ivković and Weisbenner (2007) and Wang and Wang (2018) who
look at portfolio choices of retail and professional investors; Hong et al. (2004) and
Brown et al. (2008) who study stock market participation among neighbours; Fra-
cassi (2017) who looks at peer-effects among corporate managers; Bailey et al. (2018)
who study social network effects on individuals’ housing decisions.

Perhaps most relevant to the present work is Glaeser and Nathanson (2017)’s re-
search on suboptimal learning behaviour in the housing market that looks at home-
buyers who extrapolate from past transaction data by assuming that past prices
are pure manifestation of contemporaneous demand. They develop and calibrate
a model of house prices and demonstrate that it matches fairly well the short-term
autocorrelation, as well as the medium-term reversal and excess volatility of house
prices observed in the data. Most interestingly, they find that bubble-like features
are most severe when buyers have decent amount of data about past prices but lim-
ited information about fundamentals. Although I similarly look at naı̈ve inference
in the housing market, a key distinction between my paper and the one by Glaeser
and Nathanson (2017) is that I study the implications of pricing biases on the part
of homesellers. Furthermore, I provide more detailed micro-evidence on the pric-
ing patterns that result from naı̈ve learning by employing a rich dataset of house
prices and characteristics. Specifically, the ability to observe a good proxy for the
information set of prospective sellers allows me to identify chains of influence and
obtain empirical estimates for the indirect effects of past prices on future listings
that arise under naı̈ve learning. I subsequently use these estimates to calibrate the
structural parameters and show the effect of various shocks to agents’ information
sets on aggregate pricing dynamics.

5See, for instance, Baker and Ruback (1999), Bhojraj and Lee (2002) and Liu et al. (2002) for the
study of the performance of this approach in equity valuation, Kim and Ritter (1999) and Purnanan-
dam and Swaminathan (2004) for evidence on the use of the comparable firms multiples approach in
initial public offerings, and DeAngelo (1990) and Kaplan and Ruback (1995) on its use in the market
for corporate control.
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The paper also relates to the broader literature on housing markets trying to
explain the behaviour of market participants and aggregate market dynamics6. Pi-
azzesi and Schneider (2009) present a model where a small number of irrationally
optimistic individuals can have a large price impact without the need to obtain a
large market share. Head et al. (2014) develop and calibrate a dynamic search model
that generates close to half of the serial correlation in house price growth. Burnside
et al. (2016) propose a model with heterogeneous beliefs and social interactions to
study the boom-bust cycles prevalent in housing markets. Anenberg (2016) presents
a micro-search model where sellers facing information frictions update their beliefs
about house values with the arrival of buyers. His model is able to match many of
the micro features present in the data and can explain half of the short-term persis-
tence in aggregate price dynamics. Guren (2018) proposes a mechanism that ampli-
fies frictions through strategic complementarity, i.e., the willingness of sellers to set
listing prices close to the cross-sectional average in order to optimise the trade-off
between selling price and time on the market. He shows that this mechanism causes
sluggish price adjustment by sellers and can magnify momentum by a factor of two
to three.

Finally, this paper touches on the literature on extrapolative expectations and be-
havioural biases. Fuster et al. (2010) propose a dynamic model where agents form
expectations that overestimate the persistence of economic shocks. Similarly, Bar-
beris et al. (2015) study a consumption asset-pricing model where only a group of
agents form beliefs by extrapolating from past returns. Both papers find that the
model fits the data on aggregate economic and financial variables well. In a similar
vein, Kuchler and Zafar (2019) use survey data to show that individuals extrapolate
from personal experience when forming beliefs about aggregate outcomes such as
house price changes and unemployment levels.

1.3 Data and Summary Statistics

In this section I describe the data I use for the empirical analysis. The data on house
prices comes from the Price Paid dataset published by the HM Land Registry. This
data contains information on transactions of residential properties in England and
Wales starting from 1995 to the present. Apart from some exemptions7 all transac-
tions of residential properties that have been sold for full market value are recorded
and made publicly available by the UK Land Registry. The Price Paid dataset pro-

6For a survey of the literature on the microstructure of housing markets, see Han and Strange
(2015). For a review of the theoretical and empirical literature on house price dynamics, see Cho
(1996) and Glaeser and Nathanson (2015).

7Transactions that are excluded from the Price Paid dataset include commercial transactions,
property transactions that have not been lodged with the HM Land Registry and properties sold
below market value. For more details on the property sales not included in the dataset the reader
can visit the HM Land Registry website: https://landregistry.data.gov.uk.
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vides information on the date of the transaction8, the transfer price, the full address
of the property, as well as some additional characteristics about the property such
as: the age of the property, i.e., whether the property is a new construction or an ex-
isting building; the duration of the lease (freehold or leasehold)9; and the property
type categorised as either a detached, semi-detached, terraced house, or a flat.

Data on listed properties and listing prices comes from the Zoopla Property
data10. Zoopla is the second largest provider of property data for consumers and
property professionals in the UK, having access to over 27,000,000 residential prop-
erty records and 15 years of price data. The full dataset available for research pur-
poses contains over 5,000,000 records of properties listed for sale and over 3,000,000
records of properties advertised for rent. Zoopla’s website is one of the most com-
monly used in the UK for listing properties for sale, second only to Rightmove but
expanding in market coverage. The data mainly covers the period between 2009
through 2018 for properties located in Great Britain, with partial coverage from 2005.
The key variables for my empirical work are the quoted prices along with the dates
at which these have been updated. The data also gives information about the date
on which the property has been initially listed and the date on which it has been
withdrawn from the market. The above information is crucial to my empirical anal-
ysis as the goal of investigating the impact of newly available prices on new listings
requires me to have a precise idea of the moment in time when listing prices are
set/updated and the information set of sellers at the time. In addition, this dataset
contains other property characteristics such as property location, property type11,
whether the property has been categorised as residential or commercial12, number
of bedrooms, number of reception rooms, number of bathrooms, number of floors
and whether the property is listed for sale or for rent13.

The final piece of data I use in my empirical analysis is the Domestic Energy Per-
formance Certificates dataset from the Ministry of Housing, Communities and Local
Government. Before 2008, the Energy Performance Certificates (EPC) for domestic

8This is the completion date of the sale as stated on the transfer deed.
9Note that first registration of leases for seven years or less are not recorded in the dataset.

10The access to the dataset has been provided by the University of Glasgow - Urban Big Data
Centre. Access to the dataset for research purposes can be obtained directly through the Urban Big
Data Centre. The data has been collected by Zoopla. Zoopla Limited, © 2019. Zoopla Limited.
Economic and Social Research Council. Zoopla Property Data, 2019 [data collection]. University of
Glasgow - Urban Big Data Centre.

11Property types include: barn conversion, block of flats, bungalow, business park, chalet,
château, cottage, country house, detached bungalow, detached house, end-terrace house, eques-
trian property, farm, farm house, finca, flat, hotel/guest house, houseboat, industrial, land,
leisure/hospitality, light industrial, link-detached house, lodge, longère, maisonette, mews house,
mobile/park home, office, parking/garage, pub/bar, restaurant/cafe, retail premises, riad, semi-
detached bungalow, semi-detached house, studio, terraced bungalow, terraced house, town house,
unknown, villa and warehouse. For my analysis, I focus on the following property types: detached
house, end-terrace house, flat, link-detached house, maisonette, mews house, semi-detached house,
terraced house, town house, studio and villa.

12I keep only properties categorised as residential.
13I exclude properties listed for rent from my sample.
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properties could be lodged on a voluntary basis. From 2008 onwards, however, it
has become mandatory for accredited energy assessors to lodge the energy certifi-
cates. Consequently, the data coverage drastically improves around that time, as
does my ability to match these with the Price Paid and Zoopla data. More specifi-
cally, the matching rate goes from a little over 50 percent in 1995 to over 90 percent
around 2008. The dataset contains information on the address, property type, total
floor area, number of storeys, number of rooms, floor level and height, along with
many indicators of energy efficiency and quality of glazed surfaces.

Figure A2 displays heat maps of the spatial coverage of the data across England
and Wales. Figures A2a and A2b show, for every year, the total number of transac-
tions and listings, respectively, by local authority district. Comparing the two sets
of maps, it can be noted that they display similar patterns and thus the listings data
closely matches the true sales activity in the UK housing market. However, it can
be seen that the Zoopla sample mainly covers the period between 2010 and 2017,
with very few observations in 2009 and 2018. Figures A17a and A17b in the Ap-
pendix confirm this by showing the ratio of listings-to-transactions and the fraction
of transactions whose listing information could be found in the Zoopla data across
areas as a way of demonstrating the relative Zoopla coverage. As can be seen, be-
tween twenty and eighty percent of transactions are matched to their respective list-
ings in the Zoopla dataset across most regions in the period between 2010 and 2017
with the coverage peaking between 2011 and 2016. Nonetheless, it is reassuring to
know that the data is well-dispersed across space and time as this reduces the prob-
ability that the results presented later in the paper are driven by a small subsample
unrepresentative of the aggregate dynamics of the UK housing market.

As I seek to investigate the effect of using the comparables pricing method in
the housing market, most of my empirical work requires me to match listings with
recent transactions of properties with similar characteristics. The goal is to repli-
cate the natural approach that a seller would take when deciding at what price to
list their property. For this purpose, I match listings to recently sold houses based
on four criteria: (1) the property location measured using the first half of the post-
code14; (2) a rural/urban indicator from the 2011 Census classification of Output
Areas; (3) property type divided in four categories, these beeing a detached house,
semi-detached house, terraced house and a flat, and; (4) number of rooms in the
property15,16.

14Postcodes in the UK are formed of five to seven alphanumeric characters and are typically split
into two parts: the outward code and the inward code. In my work, I compare properties that have
the same outward code which corresponds to properties that belong to the same subdistrict.

15The number of rooms variable of choice comes from the EPC dataset and it includes any living
room, sitting room, dining room, bedroom, study and similar, a non-separated conservatory with
an internal quality door and a kitchen/diner with a discrete sitting area. Excluded from the count
are rooms used solely as a kitchen, utility room, bathroom, cloakroom, en-suite accommodation and
similar, any rooms not having a window and any hallway, stairs or landing.

16I group into one room category properties having between six and ten rooms. Similarly, all
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Table A1 provides summary statistics for the sample of listings and transactions
that have at least one match and, therefore, form part of the empirical analysis.
The main sample covers the period after March 2012, the date when the Land Reg-
istry began publishing monthly Price Paid data on a regular basis. However, the
data before March 2012 is used in some of the robustness checks and thus I sepa-
rately present summary statistics for this part of the sample for comparison. I re-
move observations where the listing or transaction price is below £10,000 or above
£25,000,000 to make sure that outliers do not drive the results. I also eliminate prop-
erties that have more than twenty rooms as well as observations with no rooms. For
the final sample, I end up with 1,983,528 listings and 2,521,505 transactions deemed
comparable post March 2012; prior to March 2012, there are 1,007,942 such listings
matched with 986,287 recent transactions. Looking at the price statistics, we can
observe that quoted prices tend to be larger than transaction prices: post March
2012 the average price at which a property is listed equals £268,402, while the av-
erage price paid for a property is £256,734. In the earlier part of the sample both
are slightly lower at £233,497 and £220,134, respectively, which is natural given that
real-estate prices normally exhibit a positive trend. The data also confirms the pos-
itive skewness in house prices with the median listing and transaction prices being
significantly lower than the average at £194,950 and £189,995, respectively, in the
sample from 2012 onwards. The above results are consistent with findings from the
previous literature (Merlo and Ortalo-Magné, 2004; Carrillo, 2012; Han and Strange,
2016; Guren, 2018). Second, I divide the data based on time-invariant property char-
acteristics in order to show that the sample is well-balanced both across sets (listings
and transactions) as well as across sample periods. In particular, about 15% to 19%
of the properties in my sample are detached houses, 28% to 29% semi-detached
houses, 31% to 34% terraced houses and the remaining 20% to 24% are flats. The av-
erage property has between four and five rooms and this is consistent across sample
periods.

As part of my analysis focuses on ways that any potential mistakes made by
sellers when setting quotes could be rectified by buyers at the selling stage, I also
attempt to match listings to their respective ex-post transactions. To achieve this,
I first match the data from Zoopla with the Price Paid data by property address; I
then keep only the matches for which the transactions occurs at least four weeks17

and no more than five years after the property has been listed on the market; I fi-
nally eliminate cases where the sale price is more than 50% above or below the final
quote for that listing. This procedure leaves me with a sample of 2,086,462 listings

properties with more than ten rooms are also considered comparable to each other.
17Discussions with real-estate agents and Zoopla information suggests that, due to the lengthy

conveyancing process, it on average takes about six weeks to complete a freehold sale and eight to
ten weeks a leasehold one, but that this can go down to as little as a couple of weeks. As the Price
Paid data contains the date when the sale has been completed, I take a conservative approach and
remove occurrences with less than four weeks between listing and completion.
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matched to their transactions for the period between 2009 and 2018. Figure A3 dis-
plays the distributions of the price differential and time on the market (TOM) for
the set of matched properties. The mean and median values of the two distributions
are represented by the green and blue vertical lines, respectively. Looking at Figure
A3a, it is notable that the distribution of the percentage difference between the listed
price and sale price exhibits a large spike at zero, namely, over 10% of the matched
transactions occur at the ask price, consistent with the findings in Merlo and Ortalo-
Magné (2004) and Guren (2018), among others. This suggests that the process of
determining the listing price is very important given that, although buyers can ne-
gotiate the final price with sellers, this one often ends up being equal or very close to
the quoted price. Unsurprisingly, we see that the price discount distribution is very
asymmetric around zero with most of the properties being sold below the listed
price and only about 12% being sold at a premium. The average and median prop-
erties in the sample sell 4.68% and 3.83% below listed price, respectively18. With
regard to TOM, Figure A3b shows that properties sell within 28 weeks on average,
with the median property selling within 21 weeks of listing19. It is also reassuring
to see that 99% of the properties in the sample sell within no more than two years
which confirms the matching quality. In Figure A18 of the Appendix I plot the time-
series of the average and median price discount and TOM. We can note that there
is a positive correlation between discount and time spent on the market although it
seems that TOM is less sensitive to market conditions.

Table A2 provides summary statistics for the set of listings matched to their re-
spective transactions in the restricted sample used in the later regressions, i.e., list-
ings post March 2012 that have at least one comparable transaction in the prior
month. Contrasted to the full sample of listings and transactions in Table A1, the
matched sample is pretty similar across all characteristics, although it contains around
3% more houses, and consequently larger properties, at the expense of flats com-
pared to the post 2012 sample in Table A1. The mean and median price discount
equal −3.78% and −3.13%, with the average and median TOM being 26 and 21
weeks, respectively. Coupled with the results in Figure A18 in the Appendix, we
can conclude that the majority of the observations in the test sample come from
periods of hot housing markets. Thus, it would be interesting to see how agents
behave in response to new information in times of moderate to good market condi-
tions and contrast this with findings of previous papers that focus mostly on times
of depressed housing markets (Anenberg, 2016).

To provide further evidence on the effectiveness of looking for comparable trans-
actions that match across location, property type, number of rooms and time, I next

18The average and median discount with respect to the final quote equal −3.06% and −2.73%,
respectively, which suggests that most price changes are likely to be downward revisions.

19It is important to bear in mind that this is the time difference between listing and sale comple-
tion. Taking into account the average time it takes to finalise a sale, we can conclude that the average
(median) seller finds a buyer in about 21 (14) weeks.
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show the fraction of the variation in prices that is explained by various characteris-
tics. Figure A4 displays the R-squared obtained by regressing prices on the above
fixed effects, separately for listings and transactions. I sequentially increase the
number of fixed effects in the regressions in order to discern the incremental im-
provement in explanatory power. Comparing Figures A4a and A4b, we can note
that the explanatory power of the various property characteristics and time effects
is very similar for listing and transaction prices. Starting from the bottom, the date
of the listing/transaction measured in months explains about 1% of the price vari-
ation - this is not surprising as we compare houses of very different types, size and
location across the entire England. The combination of house innate characteristics
such as type and number of rooms has a considerably larger explanatory power of
about 12-13%. Location is by far the most important determinant of house prices,
explaining close to 38% of the variation in prices alone, close to 45% of this varia-
tion when coupled with time effects and about 55% when combined with property
type effects. This is in line with the well-known fact that location is the key feature
driving property values. As we increase the number of fixed effects the R-squared
gradually increases, reaching over 85% for the full set of characteristics used in the
matching exercise. This result gives validity to the comparables search method I em-
ploy in my empirical work by re-affirming the assertion that the pairs of listing and
transaction prices I use in the regressions are indeed largely driven by common vari-
ables. Consequently, any incremental effect of recent transaction prices on listings
in the post-publication period that I find in the data would arise mainly on the ac-
count of changes to the informaton set of sellers. Figure A19 in the Appendix shows
the explanatory power that the same set of characteristics have for the variation in
the absolute and percentage price discount for the sample of transactions matched
to their respective listings. We can note that the R-squared is considerably lower
across most specifications and, in particular, time-invariant house effects explain
just 25% of the variation in the dollar differential and less than 13% of the variation
in the percentage price discount. Location is a much less important factor for price
discounts explaining less than 10% of the variation. On the other hand, in contrast
to the variation in price levels, the variation in price differences is much more signif-
icantly driven by time effects, re-asserting the conclusion that the price discount is
an aggregate feature of the housing market that evolves similarly across properties
of different types and location. The combination of all fixed effects achieves an R-
squared of 78% and 68% for the pound and percentage price difference, respectively.

Before I proceed to present the results of my empirical analysis, I briefly inves-
tigate any potential selection biases that we might have to be aware of. First of all,
it is important to note that the final sample used in the regressions below considers
only transactions that serve as comparables to at least one listing posted before and
one after the date when the price data is released. In this way, we can avoid poten-
tial concerns regarding systematic differences in the independent variable between
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the sets of treated and untreated listings. The results in the next section should
therefore be interpreted as the incremental effect that the same set of prices have
on subsequent listings following the Price Paid data publication dates. Accordingly,
the only reason why the effect might be different comes from the discontinuity in
the information set of sellers around these dates.

In Figure A5 I provide evidence on the similarity across the sets of treated and
untreated listings. Namely, I regress listed prices on a dummy for the signed number
of days between the listing and the closest price data publication date, by adding
the usual fixed effects used in the matching process20. The figure shows that there
is little variation in the prices at which properties are listed, controlling for house
characteristics. On all days but two we cannot reject the null hypothesis that prices
insignificantly differ relative to those of properties listed on the publishing date.
Even on the two days where this difference is significant, it is never larger than
£2,000. Furthermore, in untabulated analysis I regress listing prices on a dummy
for treated, that is, I compare the price levels of listings occurring before and after
the publication date21. The results show that there is no significant trend in listing
prices around publishing dates: the coefficient on treated suggests that listing prices
in the post publication periods are about £300 pounds larger, however, the p-value
is above 0.15.

Finally, I investigate any potential selection into treatment by running a density
test. Specifically, I test for a possible discontinuity in the density of observations in
the days around price publishing dates. Examining the Zoopla data in more detail,
however, shows that listings exhibit a strong pattern in terms of week days, with a
lot of activity in the middle of the week (Tuesday through Friday) and significantly
less listings being posted on weekends and Mondays. For this reason, I first regress
the count of observations per date on days of the week dummies and conduct a
McCrary test (McCrary, 2008) using the residuals from this regression. The results
of the density test are shown in Figure A6. As is evident from the picture, there does
not seem to be manipulation of the running variable around price data publication
dates. The shape of the density function is fairly smooth without exhibiting a jump
on the treatment day. This is confirmed by the p-value of the test which is equal to
0.638, well above the significance threshold.

Equipped with the above reassuring evidence, I now proceed to the next section
where I present the empirical results of my study.

20Figure A20 in the Appendix plots the results of the same test for the sample period before March
2012 used in some of the robustness checks below.

21Specifically, I run the following regression: qi = α+ β×Treatedi +FE+ εi, where the fixed-effects
correspond to the characteristics the matching is based on, i.e., location, property type, number of
rooms and month-year, and Treatedi is a dummy that equals zero for listings that occur in the two
weeks before the new transaction data is published and one for those that are posted in the two
weeks after.
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1.4 Results

The main goal of the paper is to investigate if sellers in the housing market are able
to extract and use information from past prices in the optimal way or perhaps, due
to the complexity of the chains of inter-influence among recent comparables, they
are prone to double counting repeated information at the expense of real news. For
this reason, I first provide some evidence that the comparables pricing approach
is indeed used in this market by exploiting the shock to sellers’ information sets
that occurs on each Price Paid data publication date. I then present results on the
indirect effect of past prices on future listings that arises due to repeated use of this
approach by a sequence of sellers. Finally, I address the question of whether any
mistakes made due to suboptimal learning in such an imperfect environment are
corrected at the selling stage by looking at the sample of listings matched to their
respective subsequent transactions.

1.4.1 Evidence of Pricing by Comparables

Before analysing how agents process newly released information when setting house
prices we need to make sure that past prices of similar properties significantly affect
their decisions. The housing market in the UK provides a natural experiment for
testing this hypothesis, namely, whether agents behave differently after they have
been exposed to the most recent set of transactions in their market of interest. Recall
from Section 1.1 and Figure A1 that, starting from March 2012, the Land Registry
publishes monthly transaction data for the previous month on the twentieth work-
ing day of each month. On these dates, sellers receive a shock to their information
set. Specifically, in the days leading to the publication date, sellers, real-estate agents
and other property professionals have access to the most recent prices only if they
have been directly involved in the transaction or if they have access to other sources
of private information. After the publication date, everybody can potentially ob-
serve the full set of transactions that have taken place in the previous month. In
other words, individuals who list their properties before the twentieth working day
of the month may not directly observe the prices at which similar properties have
been sold in the past month, while those who do so after the publishing date will
have access to this information. Notice that while sellers may not be aware of the
release of information, recent prices are usually immediately incorporated in the
statistics available on common property platforms such as Zoopla. This implies
that the seller becomes inadvertently a user of the newly released data as long as
he is guided by the information on these platforms. The sellers’ lack of knowledge
regarding the publishing dates makes the discontinuity in the information set less
sharp but alleviates the concern that sellers strategically select when to list which
further explains the results in Section 1.3. Together with the fact that sellers might
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have access to private information about recent transactions, this consideration im-
plies that the findings in this section represent a lower bound for the true effect of
newly released information on prices.

I start by comparing the effect of transaction prices from the past month on list-
ings around the publication date. In particular, I match each listing price by the
date on which it has been posted to its closest price publication date. In this way,
listing prices posted in the roughly two weeks before the closest publication date
do not observe the newest set of data and are thus untreated. Those posted in the
two weeks after the most recent publication date are, by contrast, able to observe the
latest set of pricing data and are therefore treated. The matching is done by follow-
ing a natural approach mirroring that of a seller, i.e., by looking at prices at which
properties comparable in location (measured by the first half of the postcode and by
an indicator from the 2011 Census rural-urban classification of Output Areas), prop-
erty type (flat, detached, semi-detached or a terraced house) and number of rooms
have sold in the past month22.
Table A3 displays the results of the following regressions:

log(qpre
i ) = αpre + βpre × log(pj) + Controls + ε

pre
i (1.13)

log(qpost
i ) = αpost + βpost × log(pj) + Controls + ε

post
i (1.14)

log(qi) = α+ β0× log(pj)+ β1× log(pj)×Treatedi +γTreatedi +Controls+ εi (1.15)

where qi is the initial listed price for property i, pj is a transaction price for a com-
parable property j that has been or will be published on the closest publication date
and Treatedi is a dummy that turns on if the listing has been posted after the price
publication date of the given month. The data runs from March 2012 to May 2018
as this is the sample period during which the Land Registry has been publishing
price data on a regular monthly basis. I keep only comparable prices that have at
least one treated and one untreated match to make sure that the set of prices affect-
ing listings before and after publication dates is similar. Each listing has an average
of 5.67 and a median of 4 comparable prices. Transaction prices on the other hand
have an average of 3.09 treated and 3.03 untreated comparable listings, while the
median number is 2 across both sets. In column (1) I regress only the set of un-
treated quotes on the transaction prices of the previous month, while in column (2)
I repeat the procedure for the set of treated listings. In both regressions, I control
for the distance in days between the date on which the comparable transaction took
place and the date of the subsequent listing and for the interaction between this dis-
tance and the transaction price in order to account for any trends in housing prices.
The difference in the coefficients on the price variable then gives an indication of

22The same approach of matching comparable properties is adopted throughout the rest of the
analysis.
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the extent to which past transactions affect future listing price decisions once they
become publicly available. Specifically, comparing the two coefficients allows us
to isolate the correlation between past prices and future quotes that arises due to
the evolution of common fundamentals from the effect of deliberately using infor-
mation contained in past prices to learn about the state of the housing market and
inform future decisions. The first regression shows that the baseline effect of past
transaction prices on listed prices in the following month is 84%. The magnitude of
this coefficient confirms the well-established fact that prices in the residential prop-
erty market exhibit high persistence. The coefficient from the second regression,
however, suggests that the mere fact of being able to directly observe the latest set
of transaction price data increases this effect by additional 0.45%. This incremental
effect is statistically significant at the one percent level with an F-statistic of 7.6052.
Columns (3)-(6) provide additional evidence of this result by running the regression
specified in equation (1.15) on the full sample of treated and untreated listings. Col-
umn (3) controls for the time distance and the potential differences in the way that
prices affect future listings across different distances, similarly to the regressions in
the first two columns; column (4) also adds month-year fixed effects to account for
the average level of listed prices across different periods; column (5) introduces a
different control for time distance, namely, it allows for non-linear effects of prices
on future listings by interacting the price with dummies for time distance measured
in weeks, and finally; in column (6) I add transaction ID fixed effects, in addition
to the previous controls, which allows me to account for common unobservables
across listings matched to the same transaction. The results are robust across all
specifications, namely, the incremental effect of prices on future quotes set after the
data becomes publicly available remains at 0.45% and statistically significant. Even
when we compare the effect by controlling for the average level of quotes matched to
the same transaction, to alleviate concerns that some transactions might be matched
to disproportionately more treated or untreated listings, the effect retains both its
statistical and economic significance at 0.34%.

Tables A13-A17 in the Appendix provide additional evidence of the direct effect
of newly published transactions: Table A13 refines the sample by varying the inter-
val of time around publication dates in which quotes are considered and by limiting
the number of comparables in order to make sure that the results are not driven by a
small number of listings with too many comparable transactions; Table A14 shows
robustness to the timing of publications, i.e., it controls for the week day of the pub-
lication and for whether this has occurred at the end of the month or the beginning
of the subsequent month23; Table A15 focuses on existing properties only and inves-
tigates if the effect varies across properties in different price ranges; Table A16 adds
real-estate agent fixed effects to make sure that the comparables pricing effect is not

23Notice that the twentieth working day of the month can sometimes fall at the beginning of the
subsequent month if there are a lot of holidays, for instance.
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absorbed by varying business practices across agents. All these refinements largely
confirm the economic and statistical significance of the effect of news release on fu-
ture listings. Finally, Table A17 shows that the results are robust to the inclusion of
reference prices for listings, hereby defined as the price at which the current owner
purchased the property, which have been shown to significantly affect listing price
decisions (Andersen et al., 2019).

The results so far confirm the use of the comparables method in the residential
housing market and give sense of the magnitude of its influence on future quotes.
One might, however, still be worried that the set of sellers who choose to list their
properties in the days following a publication date is different from the set of sellers
who do so in the days before or that properties are systematically different along
some unobservable dimension. To alleviate this concern, I next include in the sam-
ple all price updates in addition to the original quote for each listing and the dates
at which these have occurred. This allows me to control for any potential unob-
servable differences in the immutable characteristics of sellers or their properties by
adding listing ID fixed effects. Table A4 displays the results of this exercise which
follows the regression specified in equation (1.15). In columns (1) and (2) I rerun the
regression specifications from columns (4) and (6) of Table A3, respectively, without
listing ID fixed effects in order to show that the treatment effect is similar in this
extended sample: being able to directly observe the latest set of transaction data in-
creases their effect on subsequent listings by about 0.43% and 0.30% once we add
transaction ID fixed effects. Columns (3)-(6) introduce listing ID fixed effects to the
regressions - in this way, the effect of the treatment is estimated solely by using
the set of listings that have had at least one price change. As before, I control for
the time distance in days between the transaction and the subsequent quote update
and for its interaction with price in column (3); I add month-year fixed effects in
column (4); in column (5) I replace the usual time distance control with dummies
for time distance measured in weeks, and; in column (6) I include transaction ID
fixed effects in addition to month-year and listing ID fixed effects. The magnitude
of the coefficients of interest naturally decreases to about 0.08% as most of the vari-
ation is captured by the listing ID fixed effects, however, they remain statistically
significant. Table A24 in the Appendix displays the results of the same regression
on the restricted sample that includes only listings with more than one quote avail-
able. The incremental effect of transactions on quotes after the publication date is
this time even larger at about 0.11% to 0.33% depending on the specification, with
listing ID fixed effects included.

For robustness and to explore the heterogeneity in the response to different types
of news, Tables A18-A21 provide separately the effect on quotes of positive, nega-
tive, large positive and large negative price shocks24, respectively, on the full set

24To determine the sign and size of the shock, I run a hedonic regression of transaction prices and
split the sample based on the sign and magnitude of the residuals.
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of quotes that includes updates: sellers seem to respond more strongly to negative
shocks and more so when these are large. Table A22 demonstrates that the incre-
mental effect of newly published prices is stronger in periods and regions with low
sales volume, while Table A23 similarly shows that this effect is stronger when the
sales activity is below average at the local level.

The results presented above imply that the monthly publication of transaction
prices is a salient feature of the UK residential housing market that significantly af-
fects sellers’ behaviour. To provide further evidence that the effect of prices around
publication dates is indeed systematic and not coincidental, I next conduct a few
robustness tests that are meant to rule out alternative hypotheses. For instance, one
might think that we would observe a similar pattern in listing price behaviour if
house prices were very persistent and had a trend, even if publication dates did
not matter. Although the time controls should account for this possibility, to reject
this hypothesis with more confidence, I employ two strategies: first, I conduct a
difference-in-differences analysis whereby I take advantage of the large sample of
data available and compare the effect of transactions on listings around publication
dates prior to March 2012 and thereafter; second, I show that the effect is no longer
present if I shift the publication date to a few days before or after the actual one.
The results of these tests are presented in Tables A5 and A6. The sample I use for
the analysis includes quote updates, however, for robustness I provide the results of
the same analysis when only the original quote for each listing is included in Tables
A25 and A26 of the Appendix.

Figure A7 illustrates the idea behind the first of these tests through an example.
Although the Price Paid data was available to purchase under a licence from the
Land Registry prior to March 2012, this was done at the discretion of the real estate
agencies and other property data providers. This means that firms could get access
to the data at varying dates that would most likely not always coincide with the
twentieth working day of each month. As a result, there should not be a significant
increase in the effect of past prices on future listings around the hypothetical pub-
lishing dates in the period before March 2012. The regressions in Table A5 make use
of this change in setting by comparing the effect of prices on listings around pub-
lication dates before and after March 2012 via a difference-in-differences approach.
Take, for instance, the twentieth working days of July 2011 and July 2013: these fell
on July 28th and July 26th, respectively. Transaction data from June of the same
year were made publicly available in 2013 but not in 2011. If we compare the effect
of June prices on listings before and after July 26th 2013 to that on listings before
and after July 28th 2011, we would be able to eliminate any systematic variation in
quotes across different periods of a given month, provided that this does not dras-
tically change in the years after 2012. The results of the following regression are
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presented in Table A5:

log(qi) =α + β0 × log(pj) + β1 × log(pj)× Post March 2012i + β2 × log(pj)× Treatedi+

β3 × log(pj)× Treatedi × Post March 2012i + γ1Post March 2012i + γ2Treatedi+

γ3 × Treatedi × Post March 2012i + Controls + εi

(1.16)

where qi is the listing price for property i, pj is the price at which a compara-
ble property has been transacted in the previous month, Treatedi is a dummy that
turns on for listings posted on or after the twentieth working day of the month
and Post March 2012i is a dummy that turns on starting from March 2012. As usual,
column (1) includes controls for the time distance between the listing and the com-
parable transaction and its interaction with price; column (2) adds month-year fixed
effects; column (3) replaces the linear time distance control with dummies for time
distance between the quote and the price measured in weeks, and; column (4) adds
transaction ID fixed effects. It is interesting to see that the coefficient of interest in
row 1 almost doubles compared to Table A3 and is now close to 0.75%. Coupled
with the second row coefficients that display the effect of prices on listings after hy-
pothetical publication dates before March 2012, we can conclude that the net effect
of recently published prices on future listings is close to 0.35%. It is important to em-
phasise that the correlation between recent transaction prices and quotes decreases
after the twentieth working day of the month before March 2012 as evidenced by
the negative coefficients in the second row. This is not surprising as the ”treated”
listings naturally come after the ”untreated” ones and we thus should expect that
quotes closer to recent transactions have more correlated fundamentals than those
further in the future. This result further strengthens the conclusion that publication
dates provide a salient enrichment of the information set of sellers that they incor-
porate into their listing behaviour. In other words, the results presented in Table A3
above can be thought of as the lower bound for the direct effect of past prices on fu-
ture listings that arises due to comparables pricing. The third row coefficients show
that prices are generally more correlated in the period post March 2012 which indi-
cates that sellers might now have a more frequent access to new data than before.
Anecdotal evidence suggests that real-estate agencies used to purchase new Price
Paid data less regularly such as every few months. The shift to monthly updates
then represents an important increase in the frequency at which they would revise
their price forecasts and client advice. Finally, when we compare the effect within
listings matched to the same transaction by adding transaction ID fixed effects in
column (4), we see that the effect of prices on listings does not significantly change
around the hypothetical publishing dates before March 2012, however, it does sig-
nificantly increase post March 2012 by additional 0.4%.

Moving on to Table A6, I now conduct a second type of robustness checks. This
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time, I limit the analysis to the sample period starting from March 2012 and I vary
the publishing dates by seven days back and forth from the actual ones. I then look
at the difference in the effect of prices from the previous month in the two weeks
around these placebo publication dates using the regression specified in equation
(1.15). The first four columns show the results when I consider as treated the list-
ings that are posted at most seven days before the actual publication date, while in
the remaining four columns I consider as untreated the listings that occur in the first
week after the actual publication date. I add the usual controls for time distance
and its interaction with price as well as month-year and transaction ID fixed effects
to make the tests comparable to those in Tables A3 and A4. Looking at row one of
Table A6, we can note that the price effect does not significantly change around each
of these two sets of placebo publication days. In particular, although listings are still
strongly correlated with transaction prices from the previous month, this correlation
does not increase in the week following the hypothetical publishing dates. This find-
ing corroborates our previous conclusion that days on which new Price Paid data is
made publicly available by the Land Registry do matter and they significantly affect
the behaviour of sellers.

I have so far provided evidence on the baseline effect of recent prices on subse-
quent quotes for properties up for sale. One might be led to think that this effect
seems too small to be of any economic significance. It is worth remembering, how-
ever, that: (a) this is the effect of one single transaction, while most prospective
sellers would look at multiple similar properties before making a pricing decision:
to the extent that these comparables are driven by correlated signals their common
component can be much more heavily over-weighted by future sellers; (b) I am very
conservative in my comparables search strategy by matching listed to transacted
properties only if they are identical across location, type, number of rooms, and if
they occur in the roughly two weeks around the publication date, i.e., up to two and
a half months following the sale; (c) the above estimates can be considered a lower
bound for the true effect of comparables pricing due to the fact that the discontinu-
ity around publication dates might not be perfectly sharp, but also due to the results
in Table A5 where we see that the incremental effect of prices on future quotes after
publishing dates is negative before March 2012. For all these reasons, the actual im-
pact of past prices that results from the use of the comparables method is probably
considerably larger. Moreover, I have yet to examine the way that the price effect
changes with the number of interim channels of influence. To get a better idea of
the total effect and its evolution, therefore, in the next section I study the manner in
which the direct influence from recent prices gets amplified through the sequential
use of past observable data on listings and transactions. I then use the obtained es-
timates to investigate the long-run effects of any mistakes on aggregate prices via a
simple model of learning in Section 1.5.
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1.4.2 Indirect Effect of Past Prices Through Intermediate Channels

of Influence

In this section, I explore the way that sellers in the housing market process informa-
tion they receive from comparables when the information sets across these might
not necessarily be independent. More specifically, as transaction and listing prices
become available, new sellers use them in order to learn private information about
the state of housing demand. Suboptimal pricing behaviour can arise, however, if
sellers do not appropriately account for the potential duplication of information: if
everyone else takes the same approach, then the most recent prices incorporate in-
formation that is also embedded in older ones. Optimal learning requires sellers to
distinguish between the new signal contained in most recent data and the part that
has been influenced by previous prices or other commonly observed information.
This issue is exacerbated by the fact that the ability to appropriately extract all the
different pieces of information that drive recent prices entails knowledge of the full
structure of information flows.

For this reason, I next investigate the importance of indirect effects whereby past
directly observable prices potentially affect future seller behaviour also through
other intermediate comparables. The evolution of the effect that prices have on
future listings as the number of intermediate channels of influence grows can be
benchmarked against the Bayesian and naı̈ve learning models presented in Section
1.1 in the main body of the paper and Section A.3 in the Appendix in order to gain
understanding about the way agents process information.

For the first set of tests, I focus on listings occurring in the second week after
the publication of the latest transaction data that have at least one match within the
set of sold properties. I then check the number of listings that are comparable to
this pair in the week before and the week after the publication date. Figure A8 de-
picts the four possible cases that can arise. Specifically, going from left to right, the
matched pair might have: (a) no comparable listings posted in any of the two weeks
surrounding the Price Paid data publication date; (b) comparable listings only in the
week before but not the week after; (c) comparable listings only in the week after
but not the week before, and; (d) at least one similar listing in both weeks. Note that,
although listings in the week before the data is published do not directly observe the
recent transaction prices, they might still be correlated due to commonly observed
signals and fundamentals. Sellers in the week after, on the other hand, are able to
directly observe the latest transaction data and so they have a second channel of
influence. Looking at listings posted in the second week following the publication
date, therefore, allows us to test if agents are able to disentangle the different pieces
of information embedded in a new observation and thus avoid double-counting re-
dundant news. In particular, Section A.3 in the Appendix shows that, conditional
on agents directly observing a given transaction and its price, Bayesian updating
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implies that its effect on future quotes should be monotonically decreasing with the
number of intermediate links, i.e., the covariance between the two is expected to de-
cline with the arrival of new information as agents optimally place lower weight on
each individual signal. Conversely, if agents are unaware of or unable to discern the
different channels of influence, then we might see the effect of that same transaction
increase with the number of intermediaries relative to the Bayesian case.

Table A7 displays the results of this analysis. Across the four columns, I divide
the sample of listings posted in week two post publication into four groups corre-
sponding to the cases in Figure A8 above and I regress the quotes on the prices of
comparable transactions which have just been made available:

log(qs
i ) = αs + βs × log(ps

j) + Controls + εs
i (1.17)

where qs
i is the listed price, ps

j is the price at which a comparable property has been
transacted the month before and s is an index that captures whether the subsamples
of quote-price pairs have no comparable listings, at least one comparable listing in
the the week before, the week after or in both weeks around the publication date.
In all regressions, I control for the number of comparable matches in each week
and for the time distance between the price and the quote in question. Going from
column (1) to column (4), we can see that the price coefficient is monotonically in-
creasing. Column (1) gives the effect of recently published prices on listings in the
second week following the publication date for the case where there are no com-
parable listings in the two weeks surrounding it. This effect is about 81.66% which
can be thought of as the sum of the correlation that arises due to common signals
and fundamentals and the direct effect of price j on quote i that results from the
use of the comparables method. The following three columns then indicate the in-
cremental effect that comes from the existence of additional links between the two.
From column (2), we can infer that having a comparable listing in the week before
the price data is published already increses this effect by additional 1.62%. That is,
although the matched listing of week -1 does not directly observe price j, the fact
that it is highly correlated to it because of commonly observed news makes agent i
overweight this common signal when using both to inform his decisions. Column
(3) shows an additional increase in the effect of 0.74% if the intermediate compara-
ble is instead in the week post publication. Intuitively, the incremental effect here
arises because, on top of being driven by common news, the intermediate listing is
now able to directly observe transaction j and thus its price also explicitly embeds
the signals contained in price j. A seller who uses both transaction j and the inter-
mediate listing of the week before as two independent pieces of information is likely
to overweight repeated news such as the private signal coming from transaction j
and the common signal. Finally, column (4) shows that having all possible channels
of influence present raises the coefficient on price j to 84.79%, 0.77% larger than in
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column (3) and a striking 3.13% larger than the baseline effect in column (1). This
result further underscores our previous assertion that the direct effect estimated in
Section 1.4.1 above is likely to be the lower bound of the overall impact that past
prices have on future ones. Table A27 in the Appendix confirms these findings by
presenting the results from a single regression on the full set of week two listings by
interacting the effect of price with dummies for whether the quote-price pair have
comparable listings in any of the two weeks surrounding the publication date. As
evidenced by the coefficients in row (4) of this table, prices have on average more
than 2.32% larger effect on future listings when multiple channels of influence are
present. The coefficients in rows (2), (3) and (4) are statistically different from each
other at the 5% level or higher as shown by the p-values obtained by running linear
hypothesis tests. Table A28 in the Appendix provides evidence that the coefficients
do not exhibit the same pattern in the sample before March 2012 and the difference
between them often lacks statistical significance. Tables A29-A35 show that the re-
sults are largely robust after controlling for the reference price, in response to both
positive and negative price shocks, also when these are large, and both in periods
and regions with low as well as high sales activity and in times of high and low
relative volume at the local level.

Before proceeding to an alternative experiment, I examine more closely the way
that the effect from past prices evolves with the number of intermediate compara-
bles in a given week. Table A8 presents the results of the following regression:

log(qi) =α + β0 × log(pj) + ∑
k

βk × log(pj)× k Comps in week ni+

∑
k

γk × k Comps in week ni + Controls + εi
(1.18)

where qi is the listed price for property i posted in week two after the publication
date, pj is the transaction price for a comparable property j sold in the previous
month and k Comps in week ni is a dummy that turns on when quote i has k compa-
rable listings in week n, n being either the week before or the week following the
publication date. The first three columns show how the price effect changes as the
number of comparable quotes in the week before the publication date increases. Go-
ing from row (2) to row (5), we can see that the coefficient is larger when there are
multiple intermediate quotes available; the difference between the effect on quotes
having one comparable and that on quotes having more than 3 is close to 1% and
significant in all specifications but (1) which does not control for the number of com-
parables in the other weeks. The last three columns show the effect as the number of
comparables in the week post publication increases. This time the effect on quotes
in week two is much larger and it monotonically grows with the number of interme-
diate quotes as these directly observe the price and thus create additional redundant
links between the two. The difference between the price effect on quotes with only
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one comparable and those with more than 3 is between 1.12-2.22% and is significant
at the 1% level across all specifications.

To further corroborate the above conclusions, I now propose a second approach
to examining the way that baseline effects get amplified by naı̈ve learners over a
sequence of listing prices. Figure A9 gives a visual representation of the chain of
interactions between a given transaction and subsequent comparable listings. The
selling price is depicted in blue, listings matched to it that occur prior to its publi-
cation date are depicted in light green and those occurring after its publication date
are in dark green. Since sellers act sequentially in the housing market, observing a
sequence of past prices requires them to disentangle between various sources of in-
formation that drive recent actions. Recall from the first set of tests and Section A.3
in the Appendix that rationality and full knowledge of the links across observations
implies that agents should be able to extract the private signal coming from ev-
ery new observation and avoid double counting information already embedded in
prior actions. In other words, fully rational agents would not be disproportionately
affected by past news based solely on the number of intermediate observations; we
would thus expect to see the effect of a given transaction monotonically subside
with the increase in the number of new comparables as a growing information set
implies that each individual component gets a proportionally lower weight. Naı̈ve
agents, on the other hand, might fall in the trap of treating newly observed quotes
as plain revelations of independent information about demand; as the number of
in-between links increases, naı̈ve learners would therefore keep overweighting the
information embedded in early prices relative to the Bayesian framework. To test
this hypothesis, I next compare the effect of a given transaction on listings occurring
in the month around its publishing date by order of match, i.e., for every quote, I
control for the number of comparable quotes that happen before it and for whether
the quote in question occurs before or after the publication date.

Table A9 presents the results of this analysis. Specifically, I run the following
regression:

log(qi) =α + β1 × log(pj) +
10

∑
k=2

β
pre
k × log(pj)× Comp Order k Prei+

10

∑
k=2

γ
pre
k Comp Order k Prei +

10

∑
k=1

β
post
k × log(pj)× Comp Order k Posti+

10

∑
k=1

γ
post
k Comp Order k Posti + Controls + εi

(1.19)

where qi is the listing price, pj is the price at which a similar property has been sold
in the previous month, Comp Order k Prei is a dummy that turns on if the listing oc-
curs in the period before the publication date and it is the k-th chronological match to
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transaction j, and Comp Order k Posti is a dummy that equals one if the listing occurs
in the period after the price data is published and it is the k-th chronological post-
publication match to transaction j. Due to its length, only the coefficients of interest
are presented in Table A9 while the full table can be found in the Appendix (Table
A36). Column (1) contains the baseline regression, column (2) adds the controls for
distance in days between the listing and the matched transaction and the interac-
tion with price, while column (3) also includes listing month-year fixed effects. I
limit the number of comparables in the pre- and post-publication period to twenty
as there are very few transactions with more than twenty comparables which makes
the estimates very noisy. I estimate separate coefficients per order of match for the
first nine matches while the tenth coefficient groups all matched listings of order ten
or higher. To better visualise the results, I also plot the price coefficients along with
their 95% confidence bounds from the specification in column (3) in Figure A10 be-
low, while the coefficients for the other two specifications are graphically depicted in
Figure A21 of the Appendix. The results are virtually unchanged across all specifi-
cations: the effect of past prices tends to slightly increase up until the seventh match
in the period before publication, however, the magnitude of the incremental effect is
not very large peaking at around 0.7% and losing statistical significance thereafter.
The positive correlation can be attributed to the fact that fundamentals in the hous-
ing market are persistent which means that, although listings in the pre-publication
period do not directly observe the price data from the previous month, they tend
to co-move due to this underlying persistence and commonly observed public in-
formation. This is a key feature of the model presented in Section 1.5. Moreover,
the slight upward trend suggests that sellers are unable to properly isolate the pri-
vate signals from recent listings which in turn leads to placing too much weight on
stale news. Moving forward to the tenth or higher-order matched listings, however,
the incremental effect starts to wane, dropping down to below 0.04% as new infor-
mation begins to dominate. What is interesting is that this trends gets completely
turned around in the post-publication period: once transaction prices become pub-
licly available, their influence on future listings sees a large jump and a significant
upward trend as the order of match increases. More specifically, the incremental
effect on the first match post-publication goes back up to around 0.15-0.25% rela-
tive to the first pre-publication match; it then steadily climbs to a striking 1.8% at
the 8th match where it starts to level off. The coefficients for the post-publication
period are both economically and statistically more significant that those in the pre-
publication period. Although the effect on the early listings might be rationalised by
claiming that sellers now learn about the private signals embedded in recently pub-
lished prices, it would be very difficult to justify the upward trend as the number
of intermediate comparables increases. To put it differently, once the news becomes
public, we should see an immediate jump in the coefficient as the new information
gets embedded into prices which should then remain flat for all future listings or
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even exhibit a downward trend with the arrival of new information from interme-
diate quotes. The fact that the effect is gradually increasing thus provides further
proof that agents in the housing market have trouble discerning different drivers of
past actions; instead, they treat new observations as independent of previous com-
monly observed ones. For additional evidence, Table A37 in the Appendix presents
results on the linear trend in influence of past prices as the number of intermediate
comparables grows. The results show that there is no significant change in the co-
movement between quotes and prices in the pre-publication period, however, the
effect increases by about 0.07%-0.08% with each additional comparable in the post-
publication period. Finally, Table A38 and Figure A22 in the Appendix provide
evidence that the comovement patterns are very different before March 2012: in this
sample, the influence from past prices remains largely flat as the number of interim
quotes increases and we can even see that the incremental effect relative to the ear-
liest match becomes negative for matches of order 10 or higher across both pre- and
post-publication periods. The inability to use information contained in past prices,
or the absence of regularity in the frequency of its arrival, means that sellers in the
subsequent month have less correlated information sets before March 2012 which in
turn implies that their pricing decisions will be less affected by the same set of past
transactions.

For the final set of tests in this section, I focus on listings which have seen price
updates, i.e., I search for listings for which I have at least two available prices posted
on two different dates. This allows me to test for any amplification effects that arise
due to the repeated use of comparables by taking into account any unobservable
property and owner characteristics. Specifically, I now analyse the impact that trans-
action prices published just before a listing has been posted have on its subsequent
quote updates. This enables me to investigate propagation effects within a given list-
ing. To better see this, Figure A11 depicts potential ways that information available
prior to the very first time a property has been listed could have an increasing influ-
ence on later price changes. A seller who has his property on the market for a while
could still make use of new sources of information such as newly published listings.
If this is true news uncorrelated with past signals, then the correlation between old
prices and subsequent quote updates should mechanically decrease. However, if
the new listings utilise data that is also observable to our seller from the very be-
ginning, then he would again be faced with the challenging task of distinguishing
between what is truly new information and stale news.

Figure A23 in the Appendix shows a histogram of the number of price changes
per listing. In my sample, there are around 520,000 listings with one or more price
changes that I am able to match with at least one prior transaction. However, most
listings have very few price updates, with the vast majority having only one price
change (358,939) and only 4,494 listings having five or more price updates. For
this reason, I combine all price changes of order four or higher into one category
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in the regressions. Figure A24 in the Appendix displays a histogram of the num-
ber of days between the date the first listing price was set and the subsequent price
changes. I limit the analysis to changes that have occurred within up to two years
after the property was first listed. It can be seen that most of the price changes occur
within two to three months of listing, with the modal number of days between the
marketed date and the price change date being 28 (10,666 observations). However,
sellers frequently update prices on the day following the listing date (7,529 observa-
tions). Nonetheless, it is also often the case that price changes occur even after 200
days have passed since the property was first listed (74,299 observations).

Table A10 presents the results of the following regression:

log(qn
i ) =α + β1 × log(pj) +

5

∑
n=2

βn × log(pj)×Update Number ni+

5

∑
n=2

γnUpdate Number ni + Controls + εn
i

(1.20)

where qn
i is the n-th quote for listing i, pj is the price at which a matched property

was sold in the month before property i was initially listed and Update Number ni

is a dummy that turns on when quote i is the n-th change to the listing price for
property i. The first column shows the results of the baseline regression, column (2)
adds the time distance control and the interaction of price and time distance, col-
umn (3) adds month-year fixed effects and column (4) adds month-year and listing
ID fixed effects. The coefficients and their 95% confidence bounds for the specifica-
tion in column (3) are displayed in Figure A12 for visual inspection; Figure A25 in
the Appendix shows the coefficients for the other three specifications. The results
from the baseline regression in column (1) show that the incremental effect on the
first price update of transaction prices published just before the property was listed
on the market is about 0.97%. This effect gradually increases for subsequent price
changes to reach 2.44% for updates of order four or higher. Moving on to column
(2) we see that controlling for the fact that the relationship between the listing price
and the independent variable naturally decreases with the passage of time makes
the magnitude of the effect even larger. Specifically, the effect on the first price up-
date now goes up to 1.32% while that on the fourth update is striking 3.59% larger
than on the initially set price. Adding month-year fixed effects in column (3) leaves
the results largely unchanged which suggests that the result is not driven by a mere
trend in prices. Aggregate market dynamics do not absorb the increasing effect that
past prices have on quote changes of higher order, i.e., controlling for average price
levels confirms that listing prices are more heavily influenced by early observable
information, which are likely to be heterogeneous across sellers who update their
quotes in the same month25. Finally, the addition of listing ID fixed effects in col-

25Note that these findings are also consistent with sellers in the housing market exhibiting confir-
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umn (4) slightly reduces the magnitude of the coefficients, however, they retain their
statistical and economic significance across all specifications. Note that the present
findings do not necessarily contradict the well-known fact that most price updates
tend to be downward changes. For example, even among price downgrades, these
results show that sellers who happened to observe a lot of positive news at the mo-
ment of listing tend to reduce their quotes by less relative to others, and vice versa.

The above results provide remarkable evidence of the notable influence that past
information exerts on future seller behaviour both in the short as well as the medium
term, taking into account the fact that a considerable fraction of price updates in the
data occur even after six months of listing. The overreaction of sellers to stale infor-
mation due to redundant channels of influence could potentially be an explanation
to the documented stickiness in their pricing behaviour (Merlo et al., 2015).

I have hitherto provided convincing evidence of the challenges that agents in the
housing market face due to the complex connections among sequentially-moving
actors. I have described how this intricate environment coupled with sub-perfect
knowledge about its structure can lead sellers to place disproportionate weight on
stale news at the expense of truly new information by failing to account for com-
monly observed drivers of recent actions. Having said that, however, I have so far
only considered one side of the housing market. In particular, it would be interest-
ing to know if the potential mistakes that sellers make when trying to learn the state
of demand are partially or fully corrected at the selling stage. In the next section I
therefore look at the sample of listings matched to their respective transactions in
order to answer this question.

1.4.3 Interaction with Buyers

For the final set of results, I analyse the relationship between varying degrees of in-
fluence from past prices among sellers and the ex-post discount that they are faced
with at the transaction stage. Specifically, if sellers mis-estimate the state of demand
in the housing market, then this should eventually be somewhat corrected by buy-
ers making offers that are further from the listed price the more this one does not
coincide with current fundamentals. To provide some indicative evidence of this, I
now restrict my attention to the listings in the sample that I have matched to sub-
sequent transactions. For each listing, I compute the price differential in percent
between the first quote and the transaction price for that property26. I then split the
sample of matched listings into five buckets corresponding to the five quantiles of
the price discount distribution and run the following regression per bucket:

log(qk
i ) = αk + βk × log(pj) + Controls + εk

i (1.21)

mation bias.
26I do the same analysis with respect to the last quote available for a given listing, when there are

multiple price changes, without any significant change in the results.
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where qk
i is the first quoted price for listing i which is in quantile k of the price dis-

count distribution and pj is the transaction price for a similar property which has
been published in the month before the listing was first posted. I include the usual
controls for the time distance between past prices and matched quotes and its in-
teraction with price, as well as listing month-year fixed effects in order to absorb
any aggregate pricing dynamics. The sample used in these tests contains 1,067,282
listings in the post March 2012 period that are paired with their corresponding sub-
sequent transactions. Dividing the sample based on the price discount distribution
leads to the following five buckets: (1) properties sold at a price that is more than
7.5% lower than the listed price; (2) properties sold at a discount of between 7.5%
and 4.2% to listed price; (3) properties sold at a discount of between 4.2% and 2.2%;
(4) properties sold at the listed price or a discount of up to 2.2%, and; (5) properties
sold at a premium to quoted price. This division restates the strong skewness in the
distribution of price discount whereby we observe that over 74% of the properties
are sold at a discount, with 12% of properties selling at the listed price and only 14%
being sold at a premium, consistent with previous findings.

Table A11 displays the results of the regression in equation (1.21). For a visual
representation, I plot the coefficients per bucket along with their 95% confidence
bounds in Figure A13. The dashed horizontal line represents the price effect using
the full sample of matched listings. The results suggest a strong U-shaped rela-
tionship between the effect of recent transactions on listings and the ex-post price
discount. In particular, sellers who end up selling their properties at a very large
discount or at a premium to listed price tend to be the ones who were more heav-
ily influenced by past prices. The difference in the price coefficients between the
extremes (buckets 1 and 5) and the middle buckets, which contain properties sold
closer to listed price, shows an 8% increase in the influence from recently observed
data for those cases where the final price deviates the most from the quoted one.
This piece of evidence suggests that making ”wrong” inference about demand by
over-weighting stale information is indeed somewhat corrected in the final stage of
the selling process. Interestingly, the effect goes both ways, i.e., not only do we see
overpriced houses being sold at large discounts, but also properties that have been
under-valued by sellers see their final transaction prices increase the most due to
strong buyer competition.

Unlike most other financial markets, the market for residential housing clears
along two dimensions (Yavas and Yang, 1995; Chen and Rosenthal, 1996; Carrillo,
2012). Specifically, mis-valued properties might take longer to sell if sellers are not
willing to accept a significant discount. The relationship between making wrong in-
ference and time on the market is, however, likely not monotone as is the case with
the absolute price differential. In particular, while an overpriced property would
take longer to sell, an underpriced one should sell very quickly due to high demand.
As a result, I now investigate the relationship between the effect of past prices and
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time on the market by dividing the sample in two subcategories: properties sold at
a discount, and properties sold at a premium to listed price. I run the regression
specified in equation (1.21) by splitting the properties into five buckets based on the
quantiles of the distribution of time spent on the market. Table A12 displays the
results of this exercise: in Panel A I look at properties sold at a discount to listed
price (793,203 unique observations), while Panel B considers properties sold at the
listed price or above (274,079 distinct listings). Note that the time on the market
distribution is quite different for properties sold below the quoted price, compared
to those sold at or above it. In particular, while the average property sold at a dis-
count spends about 28 weeks on the market with the median property selling in
22 weeks, the average and median properties sold at premium spend 22.5 and 17
weeks on the market, respectively, which corresponds to approximately five weeks
faster selling time for the second sample. It is a well known fact that volume and
prices are highly correlated in the housing market, i.e., houses sell more quickly and
at higher prices in hot markets, relative to cold markets (Genesove and Mayer, 2001;
Glaeser and Nathanson, 2015). This suggests that the time coverage of properties
sold at a discount compared to those sold at a premium is probably quite different.
As a result, it is crucial to introduce time effects to the regression that would capture
the average price level in the housing market in a given month. In this way, I com-
pare relative sensitivity to past prices across TOM buckets after partialling out any
aggregate temporal variation of house prices.

Figure A14 plots the effect of recent prices on listings by quantile of the TOM dis-
tribution: Figure A14a shows the coefficients for the sample of listings sold at a dis-
count, while Figure A14b provides the coefficients for the listings sold at a premium.
It can be observed that the effect is contrasting across the two samples. Namely, for
the sample of properties sold below the quoted price, there is a positive, albeit deli-
cate connection between the amount of time spent on the market and the degree of
correlation with past price data. It seems that listed prices for properties that take
longer to sell are more heavily affected by recent comparable transactions, however,
the statistical significance of this effect is close to zero. In particular, we cannot rule
out the hypothesis that the correlation with recent transactions is equal to the sample
average across all TOM buckets. The results are quite different in Panel B of Table
A12: it is now evident that listed prices for properties that take the least time to sell
have been most influenced by past news, with the difference in the effect being 7-9%
larger for properties with the shortest TOM compared to the rest of the sample. On
the other hand, we cannot reject the hypothesis that there is no significant variation
in the way that sellers in the top four quantiles of the TOM distribution make infer-
ence from past available data. The findings above suggest that the housing market is
at least to some extent efficient at correcting mistakes made by sellers due to wrong
inference27. Furthermore, the analysis conducted in this section hints at a potential

27Note, however, that it is impossible to determine whether the final transaction prices are fully
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asymmetry in the way that the market achieves this rectification. Specifically, while
overpricing is typically corrected through sellers accepting discounts to their ask
price, undervaluation gets amended through both the price channel (buyers willing
to pay a price above the quoted one) and the time channel (significantly underpriced
properties take less time to sell).

The empirical evidence on the inference biases of sellers provided in this section
indicates that stale information might have long-lasting effects on their behaviour
due to their inability to disentangle between redundant and new signals. In the
penultimate section, I therefore investigate the economic impact that pricing mis-
takes might have on aggregate house market dynamics in the long run.

1.5 Economic Magnitude of Learning Mistakes

The aim of this section is to provide some indication of what the effect of individ-
ual pricing mistakes that result from naı̈ve learning as demonstrated in Section 1.4.2
might be on the aggregate picture, once we consider that the majority of house mar-
ket agents are likely subject to the same learning biases. This can further help us
gain understanding of some recent market phenomena, such as the impact of the
Brexit referendum vote and various stamp duty holidays on housing market dy-
namics. For this purpose, I sketch a simple model whose goal is to capture some of
the key features of real-estate markets and the information structure established in
the rest of the text.

Let us assume that the log of house prices are governed by a fundamental δt

which follows an AR(1) process with persistence parameter ρ and mean a:

δt = a + ρδt−1 + εt , εt
iid∼ N (0, σ2

ε ) (1.22)

The above assumption is for simplicity and is meant to capture, in reduced-form, the
excess demand that prospective sellers face. This implies that prices are determined
based on the conditional expectation of δt at time t:

pi,t = Ei,t[δt] (1.23)

where pi,t is the transaction price for a property sold at time t. Agents do not ob-
serve the realisation of the fundamental δt and, as a result, estimate its value from
available information. In particular, the informational structure is characterised by
the presence of public and private signals. In every period, prices are determined
after the observation of a private signal si,t about the fundamental value:

si,t = δt + ηi,t , ηi,t
iid∼ N (0, σ2

η) (1.24)

corrected without observing the fundamental. Moreover, to the extent that buyers make inference
from observable data, they may also be subject to similar biases as sellers.
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The noise terms are independent and identically distributed across individuals and
time. If there are multiple transactions occurring in a given period, they are all
formed based on a different private signal. There is also one publicly observable
signal st arriving every k periods28:

st = δt + ut , ut
iid∼ N (0, σ2

u) (1.25)

The public signal noise is also identically and independently distributed across time.
This signal represents any public information that agents might take advantage of
to make inference about housing demand and prices29. Finally, agents also observe
the full history of past transactions which they also use to extract the private signals
that agents in previous periods have received. At every period t, therefore, the in-
formation sets of agents consist of the full history of past prices, the history of public
signals and their own private signals. They thus form conditional expectations of δt

and set prices accordingly, as follows:

pi,t = E[δt|si,t, st, pt−1] (1.26)

where st = {s0, s0+k, s0+2k, ...}, pt−1 = {p0, p1, ..., pt−1}, denote the full history of
public signals and transaction prices, respectively, that agents at time t observe,
while si,t is agent i’s private signal. Given the model described in equations (1.22)-
(1.26) above, we can trace the learning process of agents who act sequentially. Specif-
ically, I solve for the posterior beliefs, and consequently prices, for both the Bayesian
and the naı̈ve case in order to compare the house price dynamics that these generate.
Section A.3.2 in the Appendix provides detail on the procedure of forming posterior
beliefs and the recursion that can be used to update beliefs given the new signals
from a given period. It can be shown that a Bayesian learner i in period t would
form prices as follows:

pi,t = δi
t|t =wtsi,t + (1− wt)[a + w̃t−1ρs̄t−1]+

(1− wt)(1− w̃t−1)[ρa + w̃t−2ρ2s̄t−2] + ...+

(1− wt)(1− w̃t−1)(1− w̃t−2)...(1− w̃1)[ρ
t−1a + w̃0ρt s̄0]+

(1− wt)(1− w̃t−1)(1− w̃t−2)...(1− w̃1)(1− w̃0)ρ
ts0

(1.27)

where pi,t is the price set by a Bayesian agent i in period t, δi
t|t is his conditional

expectation of the fundamental value δt given all information available at time t,
si,t is agent i’s own private signal, s0 is the public signal arriving in the first period,

28Here I assume that there is a single public signal arriving at t = 0 for simplicity of exposition,
however, I vary the frequency of public signal arrival in the simulation exercise.

29As explained in Section A.3 of the Appendix, the public signal might involve a housing price
index published at regular frequencies. Alternatively, it can also be interpreted as representing local
area characteristics or amenities visible to everyone.



CHAPTER 1. LEARNING FROM PAST PRICES 48

s̄t−k, ∀k ≤ t, is the precision-weighted average30 of the private signals across all
n agents in period t − k, and wt and w̃t−k, ∀k ≤ t are weights that the agents in
period t assign to all available signals. These are determined based on the signals’
relative precisions with regard to the current state of the underlying as explained
in Section A.3.2 of the Appendix. Similarly, we can show that naı̈ve learners would
form beliefs in a slightly different way:

p̃i,t = δ̃i
t|t =wtsi,t + (1− wt)[a + w̃t−1ρ ¯̃pt−1]+

(1− wt)(1− w̃t−1)[ρa + w̃t−2ρ2 ¯̃pt−2] + ...+

(1− wt)(1− w̃t−1)(1− w̃t−2)...(1− w̃1)[ρ
t−1a + w̃0ρt p̄0]+

(1− wt)(1− w̃t−1)(1− w̃t−2)...(1− w̃1)(1− w̃0)ρ
ts0

(1.28)

where p̃i,t is the price set by a naı̈ve agent i in period t, δ̃i
t|t is his conditional expec-

tation of the fundamental value δt given all information available at time t, wt and
w̃t−k, ∀k ≤ t are the same weights as defined in the Bayesian case and ¯̃pt−k, ∀k ≤ t is
the average price across all n agents in period t− k weighted by the relative private
signal precisions. Comparing equations (1.27) and (1.28), we can note that the dif-
ference between Bayesian and naı̈ve agents is that naı̈ve learners treat all past prices
as independent signals, i.e., they fail to account for the fact that past agents have
similarly set prices by looking at the actions of yet earlier agents. They, therefore,
assign the same weights as the Bayesian agents but directly to the observed prices
as opposed to the properly extracted signals. This would lead them to overweight
stale news at the expense of more recent information since old news have already
been accounted for in recent prices.

To test the magnitude of the effect of naı̈ve learning, I simulate a market with the
above characteristics and compare the impact of various shocks on prices under the
Bayesian and the naı̈ve framework. For this, I first calibrate the model parameters,
specifically the various signal precisions, using the empirical estimates from Section
1.4.2 above. The details of the calibration procedure are presented in Section A.3.1 in
the Appendix. The parameters that govern the underlying process are estimated by
running a monthly regression of log aggregate house prices on aggregate income.
The predicted values of this regression are then used to fit an AR(1) process that
yields estimates for a, ρ and σ2

ε . Figure A15 depicts the impact of a shock to the pub-
lic signal. I plot the response of naı̈ve prices in pink, that of Bayesian prices in blue
and the underlying in green. The shock is normalised to correspond to a £10,000
increase in prices which is about 5% for an average house priced at £200,000. In the
first row figures, I hold the frequency of public signal arrival fixed by assuming that
a new commonly observed signal arrives every period and I vary the number of
agents: going from left to right, I plot impulse responses for the cases with one, five

30As the precisions of all private signals are assumed to be the same, s̄t is an equally-weighted
average for all t.
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and ten transactions per month. Looking at the first figure which corresponds to
the case with only one agent per period, we can see that naı̈ve prices take longer to
recover relative to the Bayesian case although the difference is not very large. This
difference gets amplified, however, once we increase the number of agents per pe-
riod. Figure A15b shows that, in the case with five transactions per month, after 20
years the effect on Bayesian prices has been eliminated while naı̈ve prices are still
about £700 above fundamental value which corresponds to 7% of the initial shock.
The effect is even more striking in Figure A15c which assumes that there are ten
agents per period: in this case, while rational prices have essentially converged to
the truth in about 12 years, naı̈ve prices are still higher by more than £2,500; even
after 20 years more than 10% of the shock persists. Two opposing effects generate
these results. First, note that the increase in the number of observations per period
leads to Bayesian agents learning faster. Second, naı̈ve agents are, on the contrary,
harmed by the availability of more data since it takes them more time to converge
as n increases. This implies that increase in the amount of information about past
prices is not necessarily beneficial in environments where agents are prone to mak-
ing wrong inference by double-counting commonly contained signals. Looking at
the second row of Figure A15, I now keep the number of agents constant at ten per
month and vary the frequency at which new public signals are released, from every
month in Figure A15d to every twelve months in Figure A15f. The results here are
less surprising, namely, it takes both types of agents longer to converge when public
news is more sparse. However, naı̈ve learners are relatively more affected by this
since they always overweight old news, and therefore the shock, and even more so
when information arrives less frequently. This causes naı̈ve prices to still be more
than £3,500 above fundamentals, 35% of the initial shock, even after 20 years.

We can, so far, conclude that naı̈ve learning leads agents to overreact to public
shocks relative to Bayesian learners. This cannot be generalised, however, to any
type of shock. In particular, Figure A16 displays impulse responses to a £10,000
shock to the underlying demand. The specifications across figures are the same as
in Figure A15, namely I do the same comparative statics by varying the number
of agents and the frequency at which public news gets released. We can observe
a striking difference in the response of naı̈ve and Bayesian learners relative to the
previous example. Specifically, naı̈ve agents underreact to the shock when this one
represents true changes in demand. This is intuitive as the real shock to δt gets
suppressed by stale information coming from previous observations. Note that the
effect is even more significant due to the high persistence in the fundamental since
this implies that shocks to demand can take a very long time to recover from. As
a result, in the worst case scenario of Figure A16f, with ten agents per period and
public signals arriving every twelve months, naı̈ve prices are still about £4,000 away
from true fundamentals in the long run.

The above results suggest that pricing mistakes arising from naı̈ve learning have
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an important economic impact which can be very long-lasting and cause changes in
pricing patterns that are unrelated to true fundamentals. Moreover, the above find-
ings shed light on some real-world dynamics of housing markets. In particular, they
could potentially explain why real-estate prices in the UK were largely unaffected
in the wake of the Brexit referendum vote even though this event pointed toward a
significant drop in future housing demand. On the other hand, the naı̈ve learning
model would clarify the effectiveness of stamp duty tax holidays and similar policy
measures as this type of salient public information is predicted to have a positive
impact on housing market activity and prices for an extended period of time even
after their end.

1.6 Conclusions

In this paper, I provide evidence on the learning behaviour of sellers in the mar-
ket for residential housing. I show that valuation by comparables is a commonly
used pricing method in the housing market which makes prices sensitive to the
quality and quantity of past observations that gets released. Crucially, I demon-
strate that the failure to fully grasp the structure of information flows leads sellers
to overweight signals coming from old data as these get repeatedly embedded in
subsequent observations. Finally, I present and simulate a model to show how the
excessive sensitivity to stale and common news can cause prices to exhibit large
swings that might be unrelated to fundamentals.

Although I use the housing market as an ideal laboratory for analysing naı̈ve
inference and its implications, the findings of this paper extend more generally to
other markets where this pricing method is regularly employed, but also even more
broadly to any social setting where economic agents use past observations to in-
form their decisions (e.g., leisure choices, political opinions, financial decisions). As
long as the structure of the network through which information disseminates is not
perfectly known to the individuals that form part of it, making inference by ap-
proximating past actions as being pure revelations of the private signals of previous
actors would lead agents to place disproportionately high importance on early sig-
nals relative to more recent ones. Moreover, the findings above suggest that this
behaviour can give rise to situations where agents over-react to noise and under-
react to true changes in fundamentals. Crucially, the degree of (over)under-reaction
is increasing with the availability of data on past actions and decreasing with the
frequency at which agents receive new (public or private) signals about fundamen-
tals. The results of this paper, therefore, give support to policies that facilitate access
to reliable information about economic fundamentals. However, perhaps counter-
intuively, they predict that the improvement in the ability to observe the actions of
other individuals might actually contribute to pricing mistakes.



2. Revealed Expectations and Learning Biases:
Evidence from the Mutual Fund Industry

FRANCESCO NICOLAI AND SIMONA RISTESKA1

How do investors form their return expectations? Do they take all available infor-
mation into account? Does personal experience play a crucial role in the formation
of expectations? We attempt to answer these questions by looking at mutual fund
managers’ stock return expectations as revealed by their portfolio holdings. We ex-
ploit the fact that, under a large class of models, the optimal portfolio rule has a
similar functional form; using a three dimensional panel consisting of the portfolio
holdings of mutual fund managers over a period of thirty-five years, we are able
to extract a measure of subjective expected returns for every manager in our panel
by exploiting the variation across stocks over time between and within managers.
To see this, consider a mean-variance investor for whom the vector of physical ex-
pected returns is given by the following formula:

Ei,t[rt+1 − r f1] = γi,tΣtw
∗
i,t (2.1)

where Ei,t[·] is the conditional expectation operator taken under investor i’s infor-
mation set at time t, rt+1 − r f1 is a vector of excess returns, γi,t is the coefficient of
relative risk aversion of manager i at time t, Σt is the conditional covariance matrix
of stock returns andw∗i,t is the time t vector of optimal portfolio weights of investor
i. The above expression for expected excess returns is obtained by inverting the first-
order condition of a mean-variance investor provided that we have a good measure
of conditional covariances Σt. In these regards we follow Merton (1980) and argue
that investors’ disagreement should mainly regard expected returns and not vari-
ances and covariances. We show that empirically this is a good approximation. In
Section 2.2.1 we show that - as long as we correctly interpret the manager-specific
time-varying parameter γi,t - many optimal portfolio models give rise to a subjec-
tive expected return similar to (2.1); whenever that is not the case, we can saturate
the model with fixed effects in order to split the total demand into a mean-variance
component and a hedging component; to isolate the effect of risk aversion from the
effect of subjective expected returns we resort to the very general principle that,

1We benefited from helpful comments from Ulf Axelson, Nicholas Barberis, Pasquale Della Corte,
Daniel Ferreira, Boyan Jovanovic, Christian Julliard, Samuli Knupfer, Ralph Koijen, Avner Langut,
Dong Lou, Ian Martin, Igor Makarov, Cameron Peng, Asaf Razin, Andrew Redleaf, Andrea Tamoni,
Michela Verardo and the participants at the LSE seminar, the 2019 Yale Whitebox Conference, the
2019 Belgrade Young Economists Conference. Any errors or omissions are the responsibility of the
authors.
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given the cross-section of assets the manager invests in, risk aversion is a manager-
specific quantity, while expected returns are at the same time asset-specific. The
information contained in the cross section of holdings, therefore, greatly reduces
the issue of separating the variation due to the manager’s preferences from the one
due to beliefs.

We start by providing evidence in Section 2.3 that more than 50% of the variation
in expected returns is explained by a common time-varying factor and we are able
to explain almost 90% of the variation with manager-time and stock-time compo-
nents. This suggests that a saturated regression will likely allow us to isolate the
idiosyncratic part of expected returns affected by manager-stock-time specific ef-
fects; we focus on this component to explore the extent to which managers’ beliefs
are affected by experience. In particular, we investigate whether fund managers put
more emphasis on past stock returns that they have personally experienced over their
investment career. To begin, we consider the effect of the simple average of past ob-
served returns on portfolio holdings decisions. Having experienced a one standard
deviation higher average return on a given stock causes the manager to inflate his
expected excess return by between 10.3 and 15.1 basis points (after partialling out
the effect of common stock and manager characteristics). This effect is both statis-
tically and economically significant and it is almost an order of magnitude larger
than that of other commonly used predictors. Nonetheless, the effect of average
experienced returns masks important heterogeneity in the influence of past returns
observed at different points in time: when we move on to examining the particular
shape of the learning curve we find evidence of a differential impact. We start by
providing non-parametric results that do not require taking a stance on the precise
functional form that investors use to weight past experienced returns. Mutual fund
managers in our sample are subject to the so-called serial-position effect: the ten-
dency to predominantly remember the initial and the last observations in a series.
More precisely, managers’ investment decisions and beliefs are particularly affected
by the returns they have experienced early on during their stock-specific experi-
ence and those they have experienced most recently. In other words, professional
investors seem to exhibit the primacy and recency bias.

As one would expect, the effect is stronger for single-managed funds and decays
fast as the number of managers in a team increases: the effect of recently experi-
enced returns on managers in a single managed fund is twice as large compared to
managers working with at least one other professional; the effect of early returns is
an order of magnitude larger.

We also show that the differential effect of taxes on capital gains and losses can-
not explain these findings since the effect of early career experience is still present
even when the manager switches to a different fund. At most, tax considerations
can explain 20% of the estimated influence of past returns on portfolio choices and
expected returns.
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Armed with the reduced-form evidence, we provide a tentative parametric esti-
mation of the managers’ learning function. In particular, the results in the reduced-
form estimation seem to suggest a non-monotonic learning function. For this reason
we adopt a variation of the parametrisation of the learning function in Malmendier
and Nagel (2016) that allows for a variety of decreasing and increasing, convex and
concave, monotone and non-monotone learning weights. We find that fund man-
agers on average do indeed place a disproportionate weight on personal past expe-
rience and that this biases the expected returns recovered from their stock holdings,
after having adjusted for risk and risk aversion. When we allow for time-varying
weights on past stock returns, we show that mutual fund managers tend to place
excessive weight on returns experienced at the beginning of their careers and in the
most recent quarters compared to those in the middle period, suggesting that both
early-career and recent experience seem to be important determinants of the invest-
ment behaviour of a large class of professional investors. For instance, a manager
with the median stock-specific experience of 9 quarters assigns around 1.84 times
larger weight on the return experienced in the most recent quarter compared to the
benchmark of 1/9, while the weight on the first experienced return is 3.13 times
larger than the benchmark. We thus reconcile two conflicting strands of the litera-
ture: similarly to Malmendier and Nagel (2011) and Malmendier and Nagel (2016),
we confirm that investors do overweight their personal experience and manifest a
recency bias, but - at the same time - we show that professional investors also place a
disproportionately large weight on returns that have been experienced in the early
part of their investing career, similarly to the findings of Kaustia and Knüpfer (2008)
and Hirshleifer et al. (2021). When looking at co-managed funds, we show that a
large fraction of the effect of early experience washes out while the effect of recently
experienced returns persists; this might be due to the fact that, while there is large
heterogeneity in early experience, recently experienced returns are mostly shared
among managers within a team.

Finally, in the last part of the paper we focus on risk preferences. Notice from
equation (2.1) that, while risk aversion varies at the manager-time level, beliefs vary
at the manager-time-stock level. This lets us separate variation in adjusted portfolio
holdings that is due to the managers’ risk appetite from differences in beliefs, but
does not inform us regarding their level. Once we make some minimal assumptions
to pin down their level, we show that individual expected returns tend to be quite
biased and that preferences display significant heterogeneity across individuals and
time. Moreover, on average, mutual fund managers display an Arrow (1965)-Pratt
(1964) coefficient of relative risk aversion between 0.915 and 1.283.

The rest of the paper is organised as follows: Section 2.1 provides an overview
of recent literature. We proceed by showing that most of the literature relies on
evidence from surveys obtained from non-professional investors or, when not af-
fected by these concerns, on a relatively limited amount of data. We argue that the
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present paper tries to solve the aforementioned issues. Section 2.2 describes how we
can separate the variation in expected returns from the variation in risk aversion or
other factors in a wide class of models. Section 2.3 gives details of the data used in
our empirical work and provides some summary statistics. Section 2.4 provides the
non-parametric results of our analysis, while Section 2.5 describes and show the re-
sults of our parametric approach. In Section 2.6, we tackle the question of the level of
risk aversion of investment professionals. Finally, Section 2.7 provides concluding
remarks.

2.1 Previous Literature

The issue of whether economic agents learn with experience has been explored
to some extent by the existing literature. Evidence from the literature in psychol-
ogy and economics shows that personal experience exerts a larger influence on be-
haviour compared to other shared sources of information2, especially very recent
and very early experience. These two phenomena are usually referred to as the
recency and the primacy effect and they generate what is known to researchers in
psychology as the U-shaped serial-position curve3.

Diving deeper into the field of finance there is growing evidence that personal
experience affects financial behaviour. Kaustia and Knüpfer (2008) and Chiang et
al. (2011) show that the likelihood of participating in subsequent IPOs is affected
by returns experienced in previous offerings. Choi et al. (2009) provide evidence
that investors with high return or low volatility on their 401(k) savings tend to in-
vest a larger fraction of their wealth. Using data from the Survey of Consumer Fi-
nances from 1960 to 2007, Malmendier and Nagel (2011) find that individuals born
before the 1920s who have experienced the lackluster stock market returns during
the Great Depression report higher risk aversion, lower expected returns and are
less likely to invest in the stock market. Those that happened to experience lower
bond market returns tend to reduce their bond holdings. They also find that re-
turns experienced in the previous year contribute four to six times more to future
investment decisions than those experienced thirty years ago. In a similar vein,
Malmendier and Nagel (2016) analyse the effect of life-time experience on inflation

2For early evidence on the concept of reinforcement learning, see the seminal study by Thorndike
(1898). A large body of theoretical and empirical literature studies the role of personal experience in
learning, see, for instance, Tversky and Kahneman (1973) for a discussion of the availability bias,
Fazio et al. (1978) for experimental evidence on the differential processing of information that results
from direct versus indirect experience, Roth and Erev (1995) and Erev and Roth (1998) for experimen-
tal data and theory regarding learning in sequential games, Camerer and Ho (1999) for a combined
model of reinforcement and belief-based learning, Simonsohn et al. (2008) for experimental analysis
of the effect of personal experience in a game theory context.

3The psychology literature on these topics goes beyond the scope of this paper. Among others,
see Nipher (1878), Ebbinghaus (1913) and Murdock (1962) for evidence on the serial-position effect;
for evidence on the primacy effect, see Asch (1946); the recency effect is explored by Deese and
Kaufman (1957). See Murdock (1974) for a survey.
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expectations using the Reuters/Michigan Survey of Consumers; they show that the
effect is stronger for younger respondents, and has a direct effect on their borrow-
ing and savings decisions. Malmendier et al. (2021) analyse the effect of experienced
inflation on members of the FOMC board and find similar results. Greenwood and
Nagel (2009) investigate the effect of experience on mutual fund managers during
the dot-com bubble of the late 1990s. The authors use age as a proxy for experience
and show that younger managers were investing more in technology stocks com-
pared to similar older managers and displayed a more pronounced trend-chasing
behavior. Chernenko et al. (2016) study the effect of experience on a panel of mutual
funds holdings of MBS during the 2003-2007 mortgage boom and show that less ex-
perienced managers had larger positions in these securities, especially those backed
by subprime mortgages; moreover they show that personal experience outside of
the fund had an effect on portfolio choice behaviour. Andonov and Rauh (2020)
analyse the effect of experienced returns on a cross-section of U.S. Pension Fund
managers, showing a significant effect of past experience on the expected returns
that these investors report in annual target asset allocations; in particular, earlier ex-
periences have a stronger effect on investment behaviour. Giglio et al. (2021) look
at retail investors’ portfolio allocations and match them to beliefs elicited from sur-
veys. They find that stated beliefs have a low explanatory power for the timing of
trades, however, they are able to predict the direction and size of those trades that
do occur. Finally, there is evidence that experienced risk affects financial behaviour:
Knüpfer et al. (2017) show that experienced labour market distress affects portfolio
choices, while Lochstoer and Muir (forthcoming) find that individuals have extrap-
olative beliefs about market volatility.

While the contribution of the above papers is substantial, we argue that most
of them are affected by one or more of the following issues: reliance on evidence
obtained from surveys where agents report their subjective expected returns, focus
on non-professional investors who spend limited time investing and, usually, in-
vest relatively small amounts, and reliance on limited time-series or cross-sections
implying that it is harder to perform statistical inference.

Regarding the first issue, the task of recovering investors’ expectations is a partic-
ularly tricky one. It is well known at least since Harrison and Kreps (1979) that asset
prices reveal only risk-neutral expectations of market participants; a way to circum-
vent this problem is, therefore, to focus attention on expectations elicited from sur-
veys. Most of these measures seem to display high correlations as Greenwood and
Shleifer (2014) point out. However Cochrane (2017) argues that there is no guaran-
tee that people report their ”true-measure unconditional mean” in surveys. In these
regards, Adam et al. (2021) provide evidence that surveyed expected returns are
inconsistent with risk-neutral expected returns, ambiguity averse/robust expected
returns or any other risk-adjusted returns4. However, nothing guarantees that the

4Appendix B.3 shows that our framework can also deal with this type of preferences.
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reported expected returns are exactly representative of the mathematical physical
expectation of investors. Consider for instance a survey respondent that interprets
the question as asking “what is the most likely return“ instead of “what is the ex-
pected return“. In that case, the respondent will provide a measure of the modal
return rather than its average taken across states of the world. Although the pre-
vious example may seem far-fetched, Martin (2017) shows that - for a log investor
who holds the market - the physical distribution of returns is asymmetric and, for
instance, at the height of the crisis, while the expected return on the S&P 500 was
above 20% per year, the author recovers a probability of almost 20% of a 20% decline
in the index. Large probability masses far from the mean imply large discrepancies
between modal, median and average returns. Beliefs reflected in portfolio choices
are more informative and represent the primary object of interest, given that it is
ultimately changes in demand and supply that determine the variation in prices.
Malmendier and Nagel (2011), Andonov and Rauh (2020) and Giglio et al. (2021)
show that portfolio choices are consistent with stated beliefs, but the explanatory
power is only partial, while - by construction - our beliefs are fully consistent with
trading behaviour.

Regarding the second issue, we argue that there are reasons to believe that so-
phisticated professional investors might behave differently compared to households
and, for this reason, we focus our attention on mutual fund managers; they also rou-
tinely follow the stock market and therefore there might be reasons to expect them
to be less prone to biases or memory issues. While this seems to be true in the case
of IPO subscriptions (Chiang et al., 2011), we show that our investors display large
biases even though we cannot provide a direct comparison to households. It should
also be noted that, to the extent that these financial intermediaries represent a large
fraction of total stock market activity, their beliefs will be an important driver of
stock price movements.

Finally, concerning the third issue, many of the papers dealing with institutional
investors focus on specific events (e.g., Greenwood and Nagel (2009) or Chernenko
et al. (2016)) or rely on limited time series data (e.g., Andonov and Rauh (2020)). The
aim of the present paper is to be more general and explore whether the effect of ex-
perienced returns is common across periods and stocks and represents a permanent
trait of professional investors’ behaviour.

2.2 Methodology

In this section we provide a detailed description of our empirical strategy. We first
explain how we obtain a measure of expected returns given portfolio holdings. We
argue that in a wide set of models - including a mean-variance benchmark - we are
able to separate the effect of risk and risk aversion from the effect of return beliefs by
using the cross-section of manager holdings. We then describe the way we deal with
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the issue of estimating covariance matrices and, finally, our plan for identifying risk
aversion.

2.2.1 Recovering Subjective Expected Returns

Portfolio choices reveal information about future stock return expectations: this is
the main insight of Sharpe (1974)’s indirect approach to mean-variance optimisation
whereby beliefs about expected returns are inferred from portfolio holdings, rather
than the other way around5. Consider the problem of investor i who maximises
his value function by choosing his portfolio allocations into a risk-free and N risky
assets:

max
{wi,t ,...}

Ji,t(Wi,t) (2.2)

where Ji,t(.) is the value function of the investor evaluated at his current wealth Wi,t.
When returns follow a geometric Brownian motion, the law of motion for wealth is:

dWi,t

Wi,t
= r f dt +w′i,t(µi,t − r f1)dt− ∆Ci,tdt +w′i,tΣ

1
2
t dZt (2.3)

where r f is the instantaneous risk-free rate (or the instantaneous rate of return of
any other reference asset with respect to which excess returns are computed), µi,t is
an N × 1 vector of stock return drifts as perceived by investor i, wi,t is an N × 1

vector of stock portfolio weights, Σ
1
2
t is an N × N matrix of instantaneous loadings

on the Brownian motion processes Zt, ∆Ci,t is the (net) outflow of resources6, and 1

is an N × 1 vector of ones.
The investor chooses his optimal portfolio by selecting wi,t. Notice that we are

deliberately vague about other potential choice variables, i.e., our analysis follows
solely from the optimality conditions for the portfolio holdings and the fact that
current wealth is the only state variable. Standard dynamic optimisation arguments
(Back, 2017) give the following optimality condition:

w∗i,t = −
JWi,t

Wi,t JWi,tWi,t

Σ−1
t (µi,t − r f1) (2.4)

where JWi,t and JWi,tWi,t are the first and second derivatives of the value function with

5Black and Litterman (1992) start from the same insight to obtain portfolio holdings that com-
bine the manager’s views with average realised returns in a consistent way; Cohen et al. (2008) and
Shumway et al. (2011) use a similar approach to extract a measure of beliefs from portfolios holdings.
The former paper measures the best ideas of mutual funds as the investment positions for which the
authors can extract the largest expected returns, while the latter analyses the rationality implications
of extracted beliefs.

6For a standard consumption maximisation problem we can interpret ∆Ci,t =
Ci,t−Yi,t

Wi,t
, i.e., the

instantaneous flow of consumption Ci,t net of the income flow Yi,t, expressed as a fraction of wealth
Wi,t. In this setting ∆Ci,t can be loosely interpreted as the net outflow of money the mutual fund
manager is subject to in each period because of redemption/creation of new fund shares. Because of
Markovianity we have that ∆Ci,t = ∆C(Wi,t).
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respect to current wealth and therefore −
Wi,t JWi,tWi,t

JWi,t
is the Arrow (1965)-Pratt (1964)

coefficient of instantaneous relative risk aversion measuring the curvature of the

value function with respect to wealth, which we denote γi,t ≡ −
Wi,t JWi,tWi,t

JWi,t
. Notice

that equation (2.4) is a generalisation of the optimal demand employed by Koijen
and Yogo (2019)7. We can invert the optimality condition (2.4) in order to get an
expression for expected excess returns as a function of optimal holdings and Σt. In
particular, we have that:

µi,t − r f1 = γi,tΣtw
∗
i,t (2.5)

If we had information about the level of the investor’s risk aversion γi,t and the co-
variance matrix Σt, we could obtain an exact measure of his subjective expectations
of future one-period ahead excess returns µi,t − r f1. We follow Merton (1980) in ar-
guing that investors should share beliefs regarding Σt; we later provide evidence in
support of this assumption. To isolate the effect of γi,t, let us consider each element
of the vector of excess returns µi,t − r f1. At each point in time t, for each stock j,
each manager i forms a measure of expected excess return which we can denote by
(µi,t − r f1)j

8. By simply keeping track of the subscripts one can realise that there
is variation in expected returns across managers, stocks and time, i.e., along the
three dimensions i, j, t. On the other hand, the coefficient of relative risk aversion
γi,t varies only at the i-t level, implying that the cross-section of holdings for man-
ager i at time t gives us enough information to isolate the variation in beliefs from
the variation in risk aversion which acts as a level shifter on the demand for risky
assets9. When instantaneous returns are normally distributed and wealth is the only
state variable, any utility function (and therefore any value function Ji,t(Wi,t)) gives
rise to a demand as the one in (2.4). We can extend this approach to a wide class
of models where there is an L× 1 vector of Markovian state variables Xt with the
following law of motion:

dXt = φ(Xt)dt + Γ(Xt)dZt (2.6)

Standard dynamic optimisation arguments imply that, in that case, the optimal de-
mand will be:

w∗i,t = −
JWi,t

Wi,t JWi,tWi,t

Σ−1
t

(
(µi,t − r f1)−

L

∑
l=1

JWi,tXl,t

JWi,t

Kl,t

)
(2.7)

7The optimal demand in equation (7) of Koijen and Yogo (2019) is equivalent to our specification

whenever −
Wi,t JWi,tWi,t

JWi,t
= 1, i.e., investors have logarithmic utility. It is easy to incorporate short sale

constraints in our setting as we show in Appendix B.3.
8(µi,t − r f1)j is the j−th element of the vector of expected excess returns for manager i, time t,

i.e., µi,t − r f1 = [(µi,t − r f1)1, ..., (µi,t − r f1)j, ..., (µi,t − r f1)N ]
′.

9For the reader who is familiar with the textbook mean-variance optimisation, this is analogous
to the fact that the selection of the tangency portfolio does not depend on the investor’s risk aversion
which merely influences the relative proportion of wealth invested in the risk-free and risky assets.
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where
JWi,tXl,t

JWi,t
=

∂ log JWi,t
∂Xl,t

measures the semi-elasticity of the marginal utility of wealth

JWi,t with respect to the Markovian state variable Xl,t, and Kl,t = Σ
1
2
t Γl,t represents

the vector of instantaneous covariances between returns and the state variable Xl,t.

Let us denote the hedging demand Hi,t ≡ ∑L
l=1

JWi,tXl,t
JWi,t

Kl,t. There are many set-

tings in which we can still disentangle variation in beliefs from variation in hedging
demands10. First, we might consider the possibility that the mutual fund is facing
borrowing constraints. We show in the Appendix that in this case the expected re-
turn can be recovered from:

(µi,t − r f1)j = γi,t
(
Σtw

∗
i,t
)

j + Hi,t (2.8)

Similarly, suppose mutual funds managers are ranked according to a common sum-
mary statistic (e.g. alpha over a benchmark). The expected excess return can then
be approximated by:

(µi,t − r f1)j = γi,t
(
Σtw

∗
i,t
)

j + Hj,t (2.9)

The previous examples show that, by saturating the regressions with the proper
fixed effects, we are able to use the cross-section of assets of a particular investor to
separate the effect of changes in beliefs (which vary at the i, j, t level) from the effect
of changes in risk aversion (varying at the i, t level) and hedging demand (as long
as this varies at a coarser level).

As a caveat, notice that the only situation where we would be unable to separate
changes in the hedging demand from changes in beliefs is if the hedging demand
varied at the stock-manager-time level (i.e., if we had Hi,j,t). This would undermine
any attempt to recover variation in beliefs from variation in portfolio holdings; how-
ever, the results in the paper would not lose their relevance. First of all, as shown by
Moreira and Muir (2019) in the case of time-varying expected returns and volatili-
ties, optimal portfolios can be closely approximated by an affine transformation of
the standard mean-variance portfolio. Second, even if expected excess returns can-
not be separated from hedging demands, it is not easy to conceive of a mechanism
where past experience has a large impact on hedging demands. Third, even if this
were the case, we could still interpret all the results in terms of scaled demands
(Σtw

∗
i,t) as opposed to beliefs. Asset prices are ultimately determined by investors’

holdings and the variation thereof; it would be nice to know whether the effect on
investors’ demands goes through expected returns (µi,t − r f1), risk aversion (γi,t) or
hedging demands (H), but ultimately what matters is the fact that part of the vari-
ation in the cross-section and the time-series of assets holdings is due to the returns
that the agent has experienced. Having said that, in what follows, we impose the

10For more details, see Appendix B.3 where we analyse the case of borrowing and short selling
constraints, concerns about model misspecification and the issue of benchmarking.
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previously discussed restrictions in order to disentangle the different mechanisms.
We, therefore, assume that the issue of hedging demands can be solved by satu-
rating the regression with the appropriate levels of fixed effects. In the following
two sections, we tackle the two remaining problems, namely, the estimation of the
conditional covariance matrix and level of risk aversion.

2.2.2 Estimating the Covariance Matrix

As can be seen in the previous section, in order to construct a measure of one-period
ahead expected excess returns, we need to have a measure of the conditional co-
variance matrices. In this paper we rely on an argument set forth by Merton (1980),
which states that, in principle, all investors should agree on Σt since it can be very
precisely estimated by using increasingly more granular data. In practice it is un-
avoidable to take a stance on how to estimate the conditional covariance matrix. To
make sure that our results do not depend on the chosen estimator for Σt, we decide
to take three different approaches for this exercise:

1. As a first measure, we compute the sample covariance matrix of stock returns:

Σ̂d,1
t =

1
t− 1

(Rt − r̄t1′)(Rt − r̄t1′)′

where Rt = [r1,t, ..., rj,t, ..., rN,t]
′ is an N × t matrix that contains past realised

returns as rows, r̄t is an N × 1 vector that collects sample average returns
computed at time t, and 1 is a t × 1 vector of ones. We estimate Σ̂d,1

t from a
one-year rolling window of daily returns11 and we scale it by K = nb. obs.

nb. quarters =

63.07 days to obtain our first estimator as Σ̂1
t = K× Σ̂d,1

t . It is well known that
it is extremely hard to estimate correlations between stocks and correlations
close to unity in absolute value tend to give extreme long-short portfolios. For
this reason we resort to the next two measures of the sample covariance matrix;

2. Our second estimate makes use of a Bayesian Stein Shrinkage estimator. We
follow Touloumis (2015) and compute the daily covariance matrix Σ̂d,2

t as a
weighted-average of the sample covariance matrix Σ̂d,1

t and a target matrix
Σtarget

t which imposes zero correlations across stocks:

Σ̂d,2
t = λΣ̂d,1

t + (1− λ)Σtarget
t

where Σtarget
t is a diagonal matrix where the elements on the diagonal are the

11The reader might be worried about the fact that we estimate expected returns employing covari-
ance matrices that rely on past return data, to subsequently regress on past realised returns. How-
ever, notice that the same covariance estimates are shared in the cross-section of managers, which
is not true for past experienced returns. Furthermore, our estimates of covariance matrices employ
only one year of data while the average manager has more than three years of experience with a
given stock.
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sample estimated variances, namely Σtarget
t = Σ̂d,1

t ∗ IN where ∗ denotes the
Hadamard product and IN is a N × N identity matrix where N is the number
of stocks. The estimator of quarterly covariances is then: Σ̂2

t = K× Σ̂d,2
t ;

3. In our third and final approach, we again apply a similar Bayesian Stein Shrink-
age Estimator:

Σ̂d,3
t = λΣ̂d,1

t + (1− λ)Σ̃target
t

Following Ledoit and Wolf (2004), Σ̃target
t is a diagonal matrix with the constant

average daily sample variance on the diagonal, namely Σ̃target
t =

tr(Σ̂d,1
t )

N IN,
where tr(Σ̂d,1

t ) is the trace of the covariance matrix, and IN is a N × N identity
matrix where N is the number of stocks. The estimator is then: Σ̂3

t = K× Σ̂d,3
t .

More details on the construction of Σ̂2
t and Σ̂3

t and the optimal choice of λ are pro-
vided in Appendix B.4. We show in the rest of the paper that the way we compute
the covariance matrices is not very relevant for our results. This should be expected
given that, as long as managers’ estimates of covariances are very similar in the
cross-section, up to the first order, the covariance matrix behaves like a stock-time
fixed effect and therefore will be absorbed by those in the saturated regressions.

2.2.3 Recovering Risk Aversion

Having discussed the identification of hedging demands and the way we estimate
covariance matrices, we now turn to the issue of risk aversion. Let us first disregard
any hedging demand for simplicity. The portfolio choice in this case takes the form
of (2.4). Note that while we can separate changes in beliefs from changes in γi,t,
the investor’s risk aversion, we are unable to determine their levels. As a simple
example, notice that γ̃i,t = 2× γi,t and µ̃i,t − r f1 = 2× (µi,t − r f1) would yield
the exact same portfolio choice as that implied by γi,t and µi,t − r f1. In Section
2.6, we impose a plausible restriction on the level of subjective expected returns and
risk aversion, namely, that fund managers expectations are formed in such a way
to minimise the difference with ex-post realised returns12. Start from the following
identities:

rt+1 − r f1 = Et[rt+1 − r f1] + εt+1 (2.10)

= (µi,t − r f1) + εi,t+1 (2.11)

=
γi,t

γi,t
(µi,t − r f1) + εi,t+1 (2.12)

= γi,t(Σtw
∗
i,t) + εi,t+1 (2.13)

12Conditional expectations are the best predictor in a mean square sense, i.e., given the in-
formation set Ft and the random variable yt+1, the conditional expectation E[yt+1|Ft] minimises
E[(yt+1 − ft)2] over all the Ft-measurable functions ft.
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The first line of the above expression is a definition for εt+1: realised returns have to
be equal to expected returns plus an orthogonal prediction error. In the second line,
we assume that the subjective expectation (µi,t − r f1) and the error εi,t+1 made by
the investor are orthogonal. This can be interpreted as a requirement that the ex-
pected return is consistent with the law of iterated expectations 13. The third line
multiplies and divides this expectation by the investor’s risk aversion γi,t. In the
empirical counterpart, this will require that the instantaneous relative risk aversion
is known to the manager at time t. Finally, we use equation (2.5) to rewrite (2.12) as
(2.13). We can, therefore, pin down the level of risk aversion γi,t by running mul-
tiple regressions across managers and/or time of stock realised returns on scaled
portfolio weights. For instance, if we think that risk aversion is a manager-specific
quantity we can run the following regression:

rj,t+1 − r f = αi + βi(Σtw
∗
i,t)j + εi,j,t+1 (2.14)

where rj,t+1 − r f is the realised excess return of stock j from time t to t + 1, and
(Σtw

∗
i,t)j is the demand for stock j for manager i, at time t scaled by the conditional

covariance matrix Σt. The estimate for αi will then be a measure of the bias or resid-
ual hedging demand. If αi = 0, i.e., the bias or hedging demand is not statistically
different from zero, we would be able to interpret the estimate for βi as the average
coefficient of relative risk aversion of manager i, that is βi = γi. It is important to
notice that, while it might be interesting to pin down the levels of risk aversion and
beliefs of each manager, the identification of the learning parameters comes from
differential changes in beliefs in the cross-section of stocks held, hence it is not af-
fected by our choice of the risk aversion parameter.

2.3 Data and Summary Statistics

In this section we describe the data that we use in the empirical analysis. Data on
mutual funds and mutual fund managers’ information are obtained from the Center
for Research on Security Prices (CRSP)14 Mutual Fund database. Given that we aim
to conduct our analysis at the fund manager level, as opposed to the fund level, we
need to construct a dataset of managers’ careers. To do this, we first obtain a list of

13To see this remember that, according to our notation, the expected excess return of manager i
using his information set at time t is Ei,t[rt+1 − r f1] = µi,t − r f1. We can therefore rewrite (2.11) as
rt+1 − r f1 = Ei,t[rt+1 − r f1] + (rt+1 − r f1− Ei,t[rt+1 − r f1]). If the law of iterated expectations
applies under manager i’s expectation, i.e., if Ei[Ei,t[rt+1 − r f1]] = Ei[rt+1 − r f1], it is easy to show
that:

– Ei[(rt+1 − r f1−Ei,t[rt+1 − r f1])] = 0, i.e., there is no unconditional bias,

– Ei[Ei,t[rt+1− r f1](rt+1− r f1−Ei,t[rt+1− r f1])
′] = 0N×N , i.e., the perceived expected return

and the error are uncorrelated.

14University of Chicago. Center for Research in Security Prices, I. (1960)
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the managers that at any point in time are managing at least one equity fund. We
then split each occurrence of multiple managers managing a fund at the same time
into separate observations. We also disregard all the cases in which no manager
name is available and all the observations where we have words such as ”team”,
”group”, ”partners” or others that do not allow us to infer who was managing the
fund. The most challenging part, however, is to account for cases in which a typo in
the fund manager’s name causes CRSP to treat the same manager as two different
individuals. As an illustration, an individual named John Smith could, for example,
appear as ”John Smith”, ”J. Smith”, ”J Smith” or just ”Smith”. In order to tackle
this issue, we first match names into pairs using a string matching algorithm. We
match similar names using three different string distances: the cosine, Jaccard and
Jaro-Wrinkler metrics, and we apply rather large distance-specific thresholds that al-
low us to keep the names which are sufficiently close. We subsequently proceed by
manually checking the matched results which amount to more than 15,000 pairs of
matched names. Out of these pairs, our manual exercise leaves us with roughly 20%
of real matches which suggests that we are quite flexible with the distance thresh-
olds. It is important to stress that, although our manual check might contain some
errors, i.e., false positive matches and/or false match rejections, so long as these mis-
takes are random they only introduce noise in our estimates and cause no bias. More
details on the process are provided in Appendix B.4. After matching the names we
assign a unique index to each manager in order to build their careers. This exer-
cise leaves us with 3,214 unique managers in our sample. We next match the above
managerial data with CRSP mutual fund data based on the first and last date when
a manager has been managing a given fund. We remove index funds, fixed-income
funds and funds which mainly own foreign equities following Evans (2010), Benos
et al. (2010) and Kacperczyk et al. (2006)15. We then match the fund information
with mutual fund holdings data from the Thomson-Reuters Institutional Holdings
database, using Russ Wermer’s MFLinks tables. We finally merge the above data
with CRSP data on stock returns and risk-free rates and Compustat-Capital IQ16

data on firm fundamentals. Since we have monthly mutual fund and return data
while holdings data are only available on a quarterly basis, we compute quarterly
stock returns from the CRSP monthly data and proceed by merging with Compustat
quarterly data. The final dataset comprises of over 13 millions observations for 3,214
distinct managers in the period 1980-201517. Table B1 provides descriptive statistics.
The first panel reports summary statistics regarding average and median past re-
turns experienced by managers. As one should expect, past experienced returns
tend to be right skewed with mean average returns that are larger than mean me-

15Details on the removed funds can be found in Appendix B.4.
16Standard & Poor’s Compustat Services, I. (1962)
17The number of observations includes a sizeble fraction of holdings that have zero weights but

are included because they are part of the manager investment universe. The investment universe is
constructed similarly to Koijen and Yogo (2019).
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dian returns (2.4% and 1.4%, respectively). While the standard deviation of average
experienced returns is similar to the one of median experienced returns (10% and
11% respectively), counterintuitively, the latter seem to be more dispersed, imply-
ing that negative experienced returns tend to be right skewed (so that the median
is smaller than the average) and positive experienced returns tend to be left skewed
(so that the median is larger than the average).

The second panel of Table B1 regards expected returns, which are computed as
explained in Section 2.2.1. In the rest of the paper we provide six measures of ex-
pected excess returns which we denote (1)-(6). The first issue regards the inclusion
of zero weights18. Measures (1)-(3) include only positive weights, while measures
(4)-(6) do include the zero weights19. Measures (1) and (4) use sample covariance
matrices Σ̂1

t , measures (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and

measures (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t . It is clear

from the table that the measures are quite similar in terms of summary statistics. All
the measures have an average expected excess return of about 1% per quarter and a
median expected excess return of about 0.6%. It should also be noted that, while we
have about 12.7 million data points if we consider the zero weights, the number of
observations drops to about 5.4 million once we remove the zeros. Figure B1 sheds
light on the sources of variation in beliefs. We provide a decomposition of the vari-
ation in expected excess returns according to measure (1) by regressing it against
various fixed effects. Manager and stock fixed effects explain a small fraction of ex-
cess returns (11.63% and 14.20%, respectively), while time fixed effects explain more
than half (55.73%) of the variation. This suggests that manager and stock immutable
characteristics are relatively less important than aggregate time-varying factors in
the formation of expectations. When we separately include manager, stock and time
fixed effects the explanatory power rises to almost seventy percent (68.21%). If we
allow for interactions between fixed effects, we can explain up to almost ninety per-
cent (89.43%) of the variation in expected excess returns when we include manager-
time and stock-time fixed effects. From this decomposition we learn that the largest
part of the changes in expected returns is due to time-varying factors, then stock-
specific characteristics and, finally, factors related to the manager. The addition of
manager-time and stock-time fixed effects will remove the greatest majority of the
variation in expected excess returns and will, thus, ensure that the results are driven
by idiosyncratic variation in expected returns unexplained by systematic factors.
This gives more credibility to our identification strategy.

Finally, we consider the data related to the managers’ careers which can be anal-

18Similarly to the present paper, Koijen and Yogo (2019) discuss how the analysis might be affected
by including or excluding zero weights.

19It might be important to know whether zero weights arise by choice or because the manager
cannot short sell stocks that would otherwise appear with negative weights. Appendix B.3 shows
how the optimal choice of a manager is affected by short selling constraints and how to deal with
them when trying to recover beliefs.
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ysed with the help of the last panel of Table B1 and Figures B2 and B3. The upper
panel of Figure B2 provides information regarding the experience of the managers
in the sample. We plot the number of managers by the first time they appear in
the sample, which we call the starting date of the fund manager and denote it by
ti,0. The sample extends from 1980 to 2015 and covers a period of 35 years. No-
tice, however, that there are fewer managers who start their career in the first ten
years compared to the rest of the sample. This can be attributed to low data cov-
erage during the 1980s. Most of the managers in our sample begin their career in
the late 1990s. We can observe, however, a wide range of manager starting dates
up until the last sample year. We then proceed to construct a tenure variable which
measures how many quarters have passed since the start of the manager’s career,
i.e., for a given manager i and date t, tenurei,t = t− ti,0

20. The lower panel of Fig-
ure B2 displays the number of managers with a given level of accumulated tenure
over the sample period, i.e., the empirical distribution of (t− ti,0) for all i, t. Most
of the managers in our sample are relatively young and inexperienced, but again,
there is quite a large variation in tenure as well, ranging from less than a year up to
some managers that are present in the whole sample (i.e., for a period of 35 years).
Note that, by construction, the number of observations with a given level of accu-
mulated tenure should be decreasing as, for example, a manager who has 5 quarters
of accumulated tenure must also have accumulated 4 quarters of experience pre-
viously. In practice, this could be violated for two reasons: the first reason is that
mutual funds were required to report holdings at a semi-annual level up until 2003
and only later regulators enforced quarterly reporting, as a result, some funds used
to report holdings on a quarterly basis while others did so only on a semi-annual
basis prior to 2003; second, there might be some missing data in our sample which
means that we might be able to observe a given manager’s career and holdings in a
particular quarter but not in the previous one. The bottom panel of Table B1 shows
that the average tenure is of 26.9 quarters (almost 7 years), but because of the pos-
itive skewness manifested in Figure B2, the median tenure is of only 22 quarters
(5.5 years). We then proceed to the main object of interest of the paper, which is the
relationship between each manager and stock. Figure B3 describes the relationship
between fund managers and individual stock holdings. The first panel displays the
date when a given stock-manager pair has first appeared in our sample which we
call the starting date. For each manager i and stock j we can denote the starting date
as ti,j,0. Unsurprisingly, the largest number of such initiations have occurred in the
late nineties and early 2000s, i.e., when the number of managers in our sample sig-
nificantly increases. There is, however, large variation in the stock-manager starting
dates which we exploit as part of our identification strategy. To see this, the second
histogram depicts the length of the personal experience of a given manager with a

20Notice that for each manager we disregard the first quarter of experience, i.e., ti,0, when com-
puting the statistic.
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given stock, i.e., for each manager i, stock j and date t, experiencei,j,t = t− ti,j,0. It is
clear from the histogram that there is a large variation in experience. The third panel
of Table B1 shows that it ranges from 1 to 139 quarters, with a standard deviation of
about 12.9 quarters. The standard deviation is of similar magnitude compared to the
average (about 13.2 quarters) and the median experience (9 quarters). The main hy-
pothesis of the paper is that this variation in stock-specific experience is associated
with a variation in expected returns across managers. Finally, we can look at the
maximal experience achieved for each stock-manager pair, in the bottom panel of
Figure B3 and Table B121. While the average maximal experience and its standard
deviation are similar to the above (13.9 and 12 quarters respectively), the median
maximal experience is larger (11 quarters, compared to 9 quarters of experience).

In the next section, we present the reduced-form results of our empirical analysis.

2.4 Reduced-form Results

The main hypothesis of the paper is that past experienced returns affect expected fu-
ture returns. Moreover, if that is the case, we would like to further explore whether
certain periods carry more relevance than others. In what follows, we show that dif-
ferential stock-specific experience across managers indeed matters in the formation
of expectations and, in particular, differences in the first and the most recent few
quarters of experience play the most crucial role.

The empirical specification in this section relies on the following argument: we
conjecture that the manager will try to estimate future returns by looking at the
returns he has experienced over his career. A manager i with Ti,j,t quarters of expe-
rience with a given stock j at time t might use the average experienced return as a
sufficient statistic when forming expectations, i.e., his expected return for that stock
can be represented as:

Ei,t[rj,t+1] = βr̄i,j,t = β

 1
Ti,j,t

Ti,j,t

∑
k=1

rj,t+1−k

 (2.15)

where r̄i,j,t denotes the equal-weighted average of stock j returns observed over the
investor’s experience horizon. Notice that the variation in the length of past experi-
ence Ti,j,t allows us to exploit the cross-section of managers holding a given stock j
as our source of differential treatment22. The coefficient β captures the average effect
that past observed returns have on expectations formation, while the implicit con-
stant weight ωk = ω = 1

Ti,j,t
means that all past observations are equally-weighted.

21For each manager i and stock j, the maximal experience is defined as max. experiencei,j =

maxt{experiencei,j,t}.
22On the other hand, the variation in the length of past experience Ti,j,t for a given manager i at

time t across different stocks is what helps us in disentangling preferences from expected returns.
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This choice implies that investors attach equal importance to all observations, how-
ever, as the length of experience grows every observation receives a progressively
lower weight. Note that this approach does not restrict managers from incorporat-
ing other sources of information in their estimation. This can be easily taken into
account by saturating the regression with the proper controls. To reiterate, fixed
effects, for instance, would account for the information or characteristics that all
managers, or all stocks in the portfolio of a given manager, have in common; the
coefficient on the average experienced return would thus provide a measure of the
incremental effect of experience23. We, therefore, show in Table B2 the results of the
following regression:

µi,j,t − r f = βr̄i,j,t + Hi,t + Hj,t + εi,j,t (2.16)

where µi,j,t − r f is the recovered expected one-period ahead return of manager i for
stock j at time t, r̄i,j,t is the previously defined equal-weighted average experienced
return24, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect.
To better disentangle the effect of experience we focus on the subsample of single-
managed funds25. The results in the table confirm our main hypothesis: having ex-
perienced an increase of one standard deviation in average quarterly return leads to
an increase in the expected excess return of between 0.103% and 0.151%; the results
are both economically and statistically large and display very minor variation across
specifications. This validates our intuition that the estimation method for the covari-
ance matrix is not very consequential. Similarly, the inclusion of the zero weights
has no effect on our main findings, even though the drop in R-squared shows that
the zeros are indeed informative and cannot be fully explained by the fixed effects
alone. The within R-squared shows that the average experienced returns explain
between 0.6% and 0.9% of the variation in expected returns. While this might seem
low, it is in fact in line with the findings of Koijen and Yogo (2019) that observable
characteristics explain a small part of the variation in investors’ demands which is
mostly explained by latent factors. Table B11 in Appendix B.6 reports the results
of a similar regression with manager-time and stock fixed effects, and a number of
time-varying stock characteristics, namely, profitability, investment, book-to-market
ratio, market equity, and dividend-price ratio. The findings are similar in magnitude
and statistically significant, and show that the effect of experienced returns is almost
an order of magnitude larger than that of other known characteristics, confirming
again the findings of Koijen and Yogo (2019) that standard predictors have a hard

23Notice that this implies that managers could very well use all past realised returns when they
form expectations and this would be absorbed by the stock-time fixed effects. In particular, β would
then measure the relative over-weighting of experienced returns.

24All the regressions in the paper use standardised explanatory variables for ease of interpretation.
25Section 2.4.1 analyses the case of co-managed funds, showing indeed that most of the effect

washes out when we aggregate across managers.
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time explaining portfolio choices26.
So far, we have assumed that the effect of experience is homogeneous. Alter-

natively, we could allow for more flexible weights in order to investigate whether
certain periods matter more than others. Consider the following modified weight:
ωk = δk

Ti,j,t
, such that 1

Ti,j,t
∑

Ti,j,t
k=1 δk = 1. Namely, the manager estimates future returns

from the weighted average of past experienced returns:

Ei,t[rj,t+1] = β

Ti,j,t

∑
k=1

δk
Ti,j,t

rj,t+1−k =

Ti,j,t

∑
k=1

βδk
rj,t+1−k

Ti,j,t
=

Ti,j,t

∑
k=1

β̃kr̃j,t+1−k (2.17)

The weighting term δk is a number centred around one measuring the relative over-
or under-weighting of a given past observation. If δk < 1, then returns observed
k-periods ago are under-weighted, while if δk > 1 they are over-weighted relative
to the previous benchmark. The last equality in equation (2.17) shows that if we
rewrite β̃k = βδk and r̃j,t+1−k =

rj,t+1−k
Ti,j,t

, then we can run a regression on experience-
adjusted returns and obtain:

β =
1

Ti,j,t

Ti,j,t

∑
k=1

β̃k, δk =
β̃k
β

(2.18)

that is, the average effect of past experience can be obtained as the average of the
k coefficients β̃k, while the relative weight assigned to the k-periods ago return is
given as the ratio of the coefficient on the k-th term and the equal-weighted average
of all coefficients.

In practice, this approach breaks down if we have to deal with varying expe-
rience lengths Ti,j,t, as the number of regressors would change together with Ti,j,t.
For this reason, we group past returns into buckets as a means of fixing the num-
ber of regressors. In our first such specification we divide the stock-specific experi-
ence of the manager into five non-overlapping buckets of equal length, |∆Tq

i,j,t|, with
q = {1, 2, 3, 4, 5}27. Table B3 reports the results of the following regression:

µi,j,t − r f =
Q

∑
q=1

βqr̄i,j,t∈∆Tq
i,j,t

+ Hi,t + Hj,t + εi,j,t (2.19)

for Q = 5 and where r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the average return in the q-th

bucket. Table B4 reports the results for ten non-overlapping buckets of equal length,

26We do not report results for median experienced returns which are virtually identical.
27To cast this specification in terms of the previously discussed model, let us denote each bucket

by ∆Tq
i,j,t and its length by |∆Tq

i,j,t|. We then have that δk = βq
Ti,j,t

|∆Tq
i,j,t |

, where for each time index k in

bucket ∆Tq
i,j,t we assign a common effect βq and take the average return r̄i,j,t∈∆Tq

i,j,t
= ∑k∈∆Tq

i,j,t

rj,t+1−k

|∆Tq
i,j,t |

.

Notice that
Ti,j,t

|∆Tq
i,j,t |
≈ 5, where the approximation derives from the fact that we have to split ties when

the experience length is not a multiple of five.
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i.e., the specification in equation (2.19) for Q = 10. In both cases we focus on the sub-
sample of single-managed funds. To better visualise the results, the estimated coef-
ficients of a regression with five buckets are reported in the upper panel of Figure
B4, while the bottom panel reports the results for ten buckets. The picture immedi-
ately reveals that the effect of past experienced returns is clearly neither constant nor
monotone. Consider, for instance, our first model of expected returns with Q = 5 for
which we show results in column (1) of Table B3: a one standard deviation increase
in experienced average quarterly return in the most recent or in the earliest period
of holding the stock increases the expected return by roughly 0.25% (β1 = 0.276 and
β5 = 0.238); on the other hand, the effect of an increase of one standard deviation
midway through the manager’s experience has an effect lower by almost an order of
magnitude (β3 = 0.041). Figure B4 confirms that the effect of experienced returns is
“U-shaped” regardless of whether we include the zero weights and independently
from the estimator for the covariance matrix used. The lower panel of the figure
reports the results for Q = 10, painting almost an identical picture. The coefficients
for ten buckets are similar in magnitude to those for the regression with five buck-
ets and follow the same “U-shaped” pattern. We report in Appendix B.6 the results
for various other specifications: Tables B12 and B13 report the results of the previ-
ous models with stock fixed effects and the previously mentioned controls, while
Tables B14 and B15 describe the results for a model with three non-overlapping
equal-sized buckets; finally Tables B16, B17 and B18, B19 report the results for three
non-overlapping buckets of unequal length (with stock-time fixed effects or stock
fixed effects and varying controls), where the first and last buckets consist of four
and eight quarters, respectively. All these specifications confirm the previously dis-
cussed results: experienced returns are important in determining expected returns
and most of the impact comes from most recent and earliest stock-specific observa-
tions. This is evidence in favour of the so-called serial-position effect, concept well
studied among researchers in psychology (Murdock, 1974). Moreover, our findings
reconcile two apparently distinct phenomena observed in previous research: on the
one hand, Malmendier and Nagel (2011) show that economic agents are principally
affected by recent experience, while on the other hand Kaustia and Knüpfer (2008),
Hirshleifer et al. (2021) and Hoffmann et al. (2017) report evidence in favour of the
primacy effect or first impression bias. We show that both effects are present in mutual
fund managers and that they need to be separately considered.

2.4.1 Co-managed Funds

So far we have focused our attention on single-managed funds, but one might be
interested to know whether the above findings are, in fact, weaker when managers
work in teams. In this section we check the impact of the number of managers
within a team on the effect of experience. Our hypothesis is that personal stock-
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specific experiences should partly offset each other within a team, so long as the
managers that form part of the team have followed different career paths. To explore
this hypothesis, we run the following regression:

µi,j,t − r f =
Q

∑
q=1

βq,nr̄i,j,t∈∆Tq
i,j,t

+ Hi,t + Hj,t + εi,j,t (2.20)

We split managers into subsamples based on the number of co-managers they work
with, i.e., ni,t ∈{1, 2, 3, 4 or more} signifies that the manager works in a team of
one, two, three or four or more people. We thus obtain a different set of coefficients
βq,n for each combination of buckets and size of the management team. We report in
Table B5 the results of this exercise for Q = 5 buckets; the results for the specification
with 10 buckets are reported in Table B20 in Appendix B.6. To better visualise the
results, Figure B5 displays the coefficients βq,n. The two plots on the left-hand-side
of the figure show the results for measure (1) while the right-hand-side plots display
the coefficients for measure (4). The first row reports the results for Q = 5 and
the bottom row for Q = 10 buckets. As one can see in Table B5, the coefficient
on the most recently experienced returns for single-managed funds is more than
twice as large as the same for funds managed by two managers; the difference in
coefficients is even larger for the earliest bucket of returns, more specifically, the
effect of returns observed at the beginning of a stock-specific experience is more
than ten times greater for single-managed funds compared to funds managed by
at least two people. The effect on managers working in teams of three or more is
orders of magnitude lower, while still statistically significant for recent experienced
returns. On the other hand, the effect of early returns loses significance. The above
is visually confirmed by the plots in Figure B5 showing a rather steep decrease in the
coefficients on the earliest bucket of returns across teams of different sizes, especially
when going from a single-managed fund to a fund managed by two professionals.
The findings are equally pronounced for the specification with ten buckets.

The results seem to suggest that a considerable part of personal experience washes
out in the cross-section of managers working in the same team, and more so the fur-
ther we go in the past since managers are more likely to change teams over a longer
period of time. On the other hand, recent returns affect all co-managers in a similar
way as they have presumably gone through the same recent experience, having been
working for the same fund. This could justify the difference in spreads observed be-
tween buckets at different horizons, especially if we compare single-managed funds
with those managed by two individuals.

2.4.2 Taxes

In what follows, we investigate the impact of taxes on managers’ investment deci-
sions and the potential explanation the tax regime might have thereof. More specif-
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ically, we examine whether tax considerations can absorb the effect that past experi-
ence has on portfolio weights and expectations formation. The differential treatment
of short-term and long-term capital gains in terms of their taxation, together with
the possibility to offset capital gains with capital losses, suggests that mutual funds
will try to defer the realisation of gains and accelerate the realisation of losses. This
implies that it is optimal from the point of view of minimising the tax bill for mutual
funds to hold on to assets that performed well in the past and sell assets that had
subpar performances28.

This, in turn, means that the previous results could be simply driven by tax con-
siderations. One way to solve the problem is to model the optimal selling decision
in the spirit of Barclay et al. (1998) or Sialm and Zhang (2020) and check if the effect
of experienced returns survives after we have taken tax considerations into account.
However, in what follows we take a reduced-form approach and make use of the
large amount of data on managers who have managed different funds in their ca-
reer. In particular, we focus on the subsample of manager-stock pairs where the
manager had positive holdings of the stock in the past while managing a different
mutual fund compared to the one that he is currently working for. In this setting,
tax considerations should be muted given that capital gain overhangs cannot be
transferred from one fund to another.

Table B6 reports the results of a regression of expected returns on five buckets of
past experience for only those managers that have changed funds, while Table B7
reports the results when we split the previous experience in ten buckets. The results
are then summarised in Figure B6 where the upper panel reports the results for five
buckets and the lower panel for ten buckets. While the number of observations is
greatly reduced (from about 800,000 to slightly more than 110,000 observations if
we do not include zero weights, and from about 2 million to approximately 225,000
if we do), the economic and statistical significance of the coefficients is virtually
unchanged confirming the previous findings: experienced returns have a sizeable
influence on expected excess returns, with the majority of the effect coming from
the extreme buckets. If, for instance, we consider measure (1) we notice that the
coefficient on the most recent bucket goes from 0.276 to 0.224, while on the earliest
one from 0.238 to 0.199. We infer, therefore, that no more than 20% of the effect might
be due to tax considerations and we confirm both the recency and the first impression
bias.

Having presented the reduced-form results of our analysis, we now develop a
simple three-parameters model of learning and proceed with its estimation.

28Bergstresser and Poterba (2002) show that inflows to mutual funds, and therefore managers’
compensation, are affected by the amount of unrealised capital gains, implying that there might be a
tension between postponing capital gains indefinitely to provide better after-tax returns for current
investors and attracting new investors. Barclay et al. (1998) explicitly tackle this question, showing
that indeed managers tend to realise gains early to attract new investors.
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2.5 Parametric Estimation

The reduced-form evidence of the previous section teaches us that: experience mat-
ters, i.e., average experienced returns are an important determinant of expected re-
turns and; the effect of experience is neither constant nor monotone, in particular,
earliest and most recent experience matter the most. However, as shown in Section
2.4, estimating the shape of the weighting function requires us to drop a sizeable
amount of observations and potentially lose significant information. For this rea-
son we now posit a functional form for the learning weights and try to estimate
its parameters. As Figures B4, B5 and B6 show, we need to allow for non-monotone
weights if we want to accurately fit the data. Similarly to Section 2.4, we assume that
the manager uses a weighted average of experienced returns in order to predict fu-
ture returns. Recall the model in equation (2.17) where the weights

δi,j,t,k
Ti,j,t

capture the
differential effect of returns experienced at different points in time. In this section
we directly model these weights as follows:

ωi,j,t,k =
δi,j,t,k

Ti,j,t
=

(Ti,j,t − k)λ1kλ2

∑
Ti,j,t
k=1(Ti,j,t − k)λ1kλ2

(2.21)

The functional form in equation (2.21) is similar to the one used by Malmendier and
Nagel (2011) and Malmendier and Nagel (2016)29. The weighting function used
in these papers depends only on Ti,j,t − k and, as such, it confounds two sepa-
rate effects: the first impression bias and the recency bias. On the other hand, our
weighting function has the advantage of disentangling between these effects: the
term Ti,j,t − k measures the distance between the return observed at time t + 1− k
and the beginning of a stock-specific experience, hence capturing the first impres-
sion bias, while k measures the distance from the current date t, thus capturing the
recency bias. Figure B7 shows how flexible the parsimonious parametrisation in-
troduced in equation (2.21) is. We plot in blue the weighting function for a man-
ager with Tij,t = 50 quarters of experience for all the combinations of {λ1, λ2} ∈
{−0.1, 0, 0.1} × {−0.1, 0, 0.1}30 and compare it to the black dashed line representing
the benchmark 1

Ti,j,t
where the manager equally weights each observation that forms

part of his experience. The first parameter, λ1, governs the strength of the first im-
pression bias: when it is negative, the manager is overweighting early experiences
relative to the benchmark scenario. The second parameter, λ2, controls the strength
of the recency bias: when the sign of λ2 is negative the manager overweights recent
observations relative to the benchmark, and vice versa. As one can see from the
examples in Figure B7, using only two parameters we are able to capture a variety
of shapes including linear, convex or concave, increasing or decreasing, monotone

29Our weighting scheme collapses to the one used by Malmendier and Nagel (2011) when λ2 = 0.
30Figure B12 in Appendix B.6 plots the weighting function for {λ1, λ2} ∈ {−2, 0, 2} × {−2, 0, 2}.
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or non-monotone weighting schemes arising from the interplay of the recency and
first impression bias. Given the evidence from the reduced-form regressions we ex-
pect λ1 and λ2 to be negative, implying that the managers are subject to both ef-
fects. Similarly to the model in equation (2.19) we include manager-time and stock-
time fixed effects to get rid of potentially time-varying unobservable characteristics
shared across stocks and managers, respectively. Table B8 reports the NLS estimates
of the following regression31:

µi,j,t − r f = β

Ti,j,t

∑
k=1

ωi,j,t,kri,j,t+1−k

+ Hi,t + Hj,t + εi,j,t (2.22)

ωi,j,t,k =
(Ti,j,t − k)λ1kλ2

∑
Ti,j,t
k=1(Ti,j,t − k)λ1kλ2

Consistent with the reduced-form evidence, both λ1 and λ2 are negative and statis-
tically significant across all specifications. The magnitude of the effects is illustrated
in Figure B8 where we plot the weighting functions at median and average experi-
ence of Ti,j,t = 9, 13 quarters, respectively, using the empirically estimated values for
λ1 and λ2 under model (1). It is evident that the weighting function is always con-
vex and non-monotone, implying that managers overweight the most recent and
the earliest returns observed; for instance, a manager with an experience of nine
quarters will assign a weight of 0.204 (0.347) to the most recent (earliest) observa-
tion, which is 1.84 (3.13) times the benchmark of 1/9. On the contrary, he will only
assign a weight of 0.043 to the middle observation which is 0.39 times the bench-
mark weight. The results display a slight asymmetry with λ1 being always larger
in magnitude than λ2 implying that the recency bias is marginally weaker compared
to the first impression bias. This is, however, not a robust feature of the data: Table
B21 in Appendix B.6 shows that λ1 and λ2 are almost identical once we include
only manager-time and stock fixed effects, indicating that a large fraction of the
recency bias might be captured by stock-time fixed effects as we should expect. Pin-
ning down the actual magnitude of the two biases is extremely difficult given that
we have to get rid of a large fraction of the variation in expected returns to achieve
identification. Finally, the parameter β in Table B8 measures the average impact of
past experience on expected excess returns: the estimates range between 0.139 and
0.207. This is about 4 basis points larger than the baseline results in Table B2 where
we do not allow for varying weights32. We therefore confirm that once we take into
account the possibility that recent and early returns might have a differential impact,

31Appendix B.5 provides more details on the estimation procedure.
32Note that all the results presented refer to standardised variables. In the case of the results in

this section we estimate β and then scale its value by the standard deviation of
(

∑
Ti,j,t
k=1 ωi,j,t,krj,t+1−k

)
.

This is to avoid directly scaling the weighted average which would affect the computation of the
gradient of the right hand side of equation (2.22) needed to obtain standard errors.
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we find an incremental effect of experience on expected returns.

2.6 Risk Aversion

As explained in Section 2.2.3, our methodology allows us to examine in more detail
the preferences of investors. Recall equations (2.10)-(2.13); if we assume that subjec-
tive expected returns obey the law of iterated expectations, we are able to extract the
risk aversion of managers by exploiting the cross-section of individual stock hold-
ings. Running regressions of realised excess returns on scaled demands, as shown
in equation (2.14), we can obtain an estimate for the risk aversion parameter γ and
the bias (or residual hedging demand). We start this section by providing evidence
from pooled regressions and then proceed to show results pertaining to the distri-
bution of γi obtained from multiple regressions. Table B9 reports the results of the
following pooled regression:

rj,t+1 − r f = α + γ(Σtw
∗
i,t)j + εi,j,t+1 (2.23)

where rj,t+1 − r f is the realised excess return of stock j from time t to t + 1, and
(Σtw

∗
i,t)j is the scaled demand for stock j of manager i, at time t. If we assume

that preferences are constant across managers and time, we obtain a risk aversion
coefficient close to unity (between 0.915 and 1.283 across specifications) for our rep-
resentative investor. While the estimate is low compared to other measures obtained
from equity returns (Mehra and Prescott, 1985; Kocherlakota, 1996), it is consistent
with measures derived from labour choices (Chetty, 2006) and option prices (Martin,
2017). Our representative investor displays a quite large and statistically significant
bias (or residual hedging demand) of about 1% per quarter.

The pooled results in Table B9 mask a sizeable amount of variability across man-
agers. For this reason, we proceed by estimating separate regressions, one for each
manager in the sample:

rj,t+1 − r f = αi + γi(Σtw
∗
i,t)j + εi,j,t+1 (2.24)

Given that there seems to be limited difference resulting from the choice of the co-
variance matrix Σt, we report the results using the sample covariance Σ̂1

t . Table
B10 reports summary statistics for elicited risk aversion and bias referring to mea-
sure (1)33. We obtain a median (average) relative risk aversion of 1.117 (1.236), in
line with the pooled results; however, there is a wide dispersion in the estimates
with a standard deviation of 5.850. The estimates display positive skewness and
are leptokurtic. When we allow for variation in preferences across managers, the
bias is reduced on average: the mean bias is only 0.7% and the median bias is 1%

33The results for measure (4) can be found in Appendix B.6.
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per quarter. Figure B9 displays histograms of the distribution of αi and γi after we
have removed outliers. Unfortunately our methodology does not prevent us from
obtaining negative values for γi whenever the cross-section of revealed beliefs is
negatively correlated with realised returns. Most of the mass, however, seems to fall
in the positive value region.

We then proceed to exploit the variation of preferences across managers and
analyse whether tenure affects risk aversion and bias. Figure B10 displays the bias
and the risk aversion as a function of tenure for measures (1) and (4). It is hard to
detect a specific pattern in either of the measures; longer tenures seem to be domi-
nated by noise, given that they make use of fewer estimations by construction. Fi-
nally, Figure B11 reports the results by date: also in this case it is hard to detect
any conclusive evidence. Unfortunately, our measures of risk aversion cannot be
used to predict or explain future returns given that they have been obtained from
them: by construction they represent the best linear predictor of rj,t+1− r f given the
information contained in (Σtw

∗
i,t)j.

2.7 Conclusions

This paper contributes to the literature on the effect of personal experience on learn-
ing and expected returns by analysing a large sample of more than 3,000 profes-
sional investors (mutual fund managers) that have been tracked throughout their ca-
reers in the 35 years period between 1980 and 2015. Section 2.2.1 shows that in a va-
riety of cases it is possible to invert the portfolio demands of our investors to obtain
their subjective expected returns by using the identifying assumption that, while
beliefs vary at the stock-investor-time level, risk aversion varies at the investor-time
level, i.e., risk aversion is constant in the cross-section of stock holdings of a given
manager. Similarly, we are able to account for many cases in which demands dis-
play a hedging component by saturating the regressions with fixed effects. Indeed,
as we show in Section 2.3, almost ninety percent of recovered expected returns
can be explained by manager-time and stock-time fixed effects. We then provide
reduced-form evidence that professional investors overweight experienced returns
compared to other information shared across stocks and individuals: having ex-
perienced a one standard deviation increase in quarterly returns on average leads
to an increased expected return of about 10-15 basis points per quarter. Various
reduced-form specifications in Section 2.4 and the parametric estimation in Section
2.5 confirm that the effect of experienced returns is neither constant nor monotone.
We show that investors exhibit recency and first impression bias: an investor with a
stock-specific experience of nine quarters overweights the most recently observed
quarterly returns by 1.84 times and the earliest experienced returns by 3.13 times
relative to the constant weight benchmark. These results are most apparent for
managers working alone, as opposed to in a team of two or more, suggesting that
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a significant fraction, though not the entirety, of the effect of personal experience
cancels out once aggregated. By looking at managers who have switched funds, we
eliminate the possibility that these findings are purely driven by tax considerations:
more than 80% of the effect remains unexplained by tax concerns. We finally turn
to the issue of estimating risk aversion and find that a representative investor displays
a coefficient of relative risk aversion around unity. The paper also finds that indi-
vidual investors exhibit biases when forming expectations. Finally, when we look at
more disaggregated measures, we find that there is a large heterogeneity in biases
and risk aversion across time and investors. The results in the paper can inform the-
orists willing to model the preferences and the learning behaviour of professional
investors in a way that is consistent with the evidence obtained from portfolio hold-
ings. Consistent with theory, more than half of the variation in expected excess
returns can be explained by a common time varying component. However, an in-
cremental forty percent is due to investor-specific and stock-specific time-varying
effects, hinting at the possibility of time variation in preferences and stock-specific
factors shared across investors. Finally, if interested in modelling the idiosyncratic
part of expected returns, one should pay particular attention to behavioural factors
which play a prominent role as shown by the evidence provided in this paper.



3. Living on the Edge: the Salience of Property
Taxes in the UK Housing Market

FRANCESCO NICOLAI, MARCO PELOSI AND SIMONA RISTESKA1

A standard tenet of economic theory is that the statutory incidence of taxes is irrel-
evant for their economic incidence2. It should also be the case that whether a tax is
paid at the moment of transaction or later is irrelevant for its incidence, as long as
we take into account the time value of money and the riskiness of the cash flows.
By looking at the UK residential property market, this paper shows that this is not
the case and that deferred taxes have a markedly lower incidence compared to taxes
paid at the time of decision-making.

Together with France, the United Kingdom is one of the few countries receiv-
ing a sizeable fraction of revenues from property taxes, amounting to about 4.3% of
GDP or more than £84 billion in 2016 (European Commission (2018)). The two main
taxes levied on domestic properties are the Stamp Duty Land Tax and the council
tax. The former is a tax levied on the transaction value of land and any buildings
and structures thereon. The fact that its statutory incidence falls on the buyer, who
is required to pay the tax liability to the HM Revenue and Customs within very few
weeks from the completion of the transaction, and the fact that the tax represents a
lump sum ranging between 1% and 7% of the property value are features that make
the stamp duty tax particularly salient at the moment of purchase. The latter, which
is the focus of the present paper, is a tax levied by the local government on a yearly
basis. The council tax is levied on the resident, as opposed to the house owner, and is
based on the property value in 1991. While the council tax is extremely salient at the
moment when it needs to be paid, we show that this is not the case at the moment
when properties are purchased even though, in present value terms, it is similar to
or even larger than the stamp duty tax. By using the geographical discontinuity at
the border of different local authorities in the London area, we are able to estimate
the incidence of the council tax on property prices and contrast it with the incidence
of the stamp duty tax estimated, among others, by Best and Kleven (2018). The Lon-
don area is particularly suitable for the estimation because of the sharp nature of the

1We are grateful to Vicente Cuñat, Daniel Ferreira, Dirk Jenter, Christian Julliard, Daniel Par-
avisini, Andrea Tamoni, Michela Verardo and the participants at the LSE PhD seminar for the useful
comments on the paper. We thank Vittorio Raoul Tavolaro for invaluable research assistance. The
paper contains HM Land Registry data © Crown copyright and database right 2019. The data is li-
censed under the Open Government Licence v3.0.1. We thank the University of Glasgow - Urban Big
Data Centre for providing Zoopla property data. Zoopla Limited, © 2019. Zoopla Limited. Economic
and Social Research Council. Zoopla Property Data, 2019 [data collection]. University of Glasgow -
Urban Big Data Centre. Any errors or omissions are the responsibility of the authors.

2Kotlikoff and Summers (1987) provide a detailed review of classical theory on tax incidence.
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council borders and the large dispersion in council tax rates across Boroughs. For
instance, Figure C1 depicts a road that is at the border of the Borough of Westmin-
ster and the Borough of Kensington and Chelsea. As can be seen from the picture,
the houses on both sides of the street are otherwise identical except for the fact that
they pay quite different council tax amounts: the ones on the left pay £2, 279 per
year in council tax while those on the right pay £1, 421 per year. If we discount
the future payments as a perpetuity at a rate of 4%, similar to the mortgage rates
observed in sample, we obtain that the difference between the two present values
amounts to £21, 450 (about $28, 000). The tax differentials become even more signif-
icant once we consider the fact that many London Boroughs share services, such as
waste management, and that many other amenities, such as access to parks, school-
ing and religious facilities, are not strictly limited to residents of a given Borough. In
Section 3.3 we show that the price of similar properties on opposite sides of a border
does not adjust for differentials in council tax amounts. By employing a variety of
estimators, we establish that the council tax incidence is never statistically negative.
We then proceed in Section 3.4 to set up a model where downpayment-constrained
households purchase a house and pay two sets of taxes: a lump sum stamp duty
tax levied at the moment of purchase and a periodic council tax. We move on to
perform a Bayesian analysis in Section 3.4.1 where we provide a posterior range for
council tax incidence using priors that are economically motivated. In all these esti-
mates, the incidence of council tax on property prices is too low relative to existing
estimates of the incidence of other property taxes, even after accounting for time
value of money and the fact that discount rates might be larger because of borrow-
ing constraints. These findings can be rationalised in a model where agents neglect
taxes that are levied in the future. We show in Section 3.4.2 that then a trade-off
between the two types of taxes arises: the stamp duty tax is distortionary because
agents are liquidity constrained; on the other hand, the council tax leads agents to
over-consume the housing good and, therefore, distorts their consumption choices
by reducing available income. As a result, we demonstrate that the Government can
optimally tune the two taxes to minimise distortions for a given level of revenue.

The present paper adds on to the burgeoning literature on behavioural public
finance and the salience of taxes (or the lack thereof). Chetty et al. (2009) is the first
paper to empirically estimate how differences in salience can alter the behaviour of
economic agents. They intervene in a grocery store in order to modify the salience
of sales taxes and show that the incidence on buyers is largely reduced when taxes
are made fully salient. In a second experiment they compare the effect of excises
taxes, which are included in posted prices, and sales taxes, which are not explic-
itly included, on alcohol demand and again show that tax salience plays an impor-
tant role in consumer behaviour. The setting in the present paper is quite similar
to the second experiment in Chetty et al. (2009), given that the stamp duty tax is
paid upfront while the council tax is deferred and thus less salient. For policy rea-
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sons, however, the question of property taxes is of greater importance because of the
large amounts of money involved and the fact that it is very difficult for agents to
learn since buying a new property is typically a once-in-a-lifetime event. Following
Chetty et al. (2009), other papers have also explored the question of tax salience, for
instance, Feldman and Ruffle (2015) and Feldman et al. (2018) have replicated the
findings in laboratory experiments, while Finkelstein (2009) similarly shows that
the introduction of electronic toll payments raises toll expenditures. Taubinsky and
Rees-Jones (2018) further explore the topic by showing that there is large variation in
the way agents react to tax salience and investigate policy implications. The present
paper is also akin to Allcott (2011) who demonstrates that a similar bias is present
in the automobile market, namely, car buyers fail to correctly price in the future
energy cost at the time of purchase. As in Allcott (2011), our conclusions also rely
on the choice of an appropriate discount factor. We show in Section 3.4.1 that the
bias persists even after allowing for large discount rates. In a similar vein, using
Norwegian data, Agarwal and Karapetyan (2016) explore the effect of non-salient
debt features on households’ purchasing decisions and show that they do not fully
factor in the added cost. The authors show that the mispricing was eliminated once
these features became fully salient. Finally, the paper extends the literature on prop-
erty taxes; among others, we use the results of Besley et al. (2014) and, in particular,
Best and Kleven (2018) to compare our estimates of the council tax incidence with
their stamp duty incidence estimates in order to highlight the lack of salience of the
former.

The rest of the paper is organised as follows: Section 3.1 describes the data and
the institutional setting; Section 3.2 gives evidence of the geographical distribution
of council taxes and points out that this can significantly bias our estimates if not
appropriately taken care of, before proceeding with the details of our identification
strategies; Section 3.3 presents the empirical estimates of the council tax incidence;
Section 3.4 develops a stylised model to help interpret the findings and shows that
the estimated incidence is too low to be consistent with fully-salient taxes, before ex-
ploring some policy implications; and finally, Section 3.5 summarises and concludes
the paper.

3.1 Data

To estimate the incidence of council taxes we need access to data on property char-
acteristics and house prices, as well as council taxes paid. Price paid data on house
transactions are readily available from the HM Land Registry website. This dataset
contains information about all residential properties transacted in England and Wales
from 1995 that have been sold for full market value3. The dataset comprises of the

3Data excluded from the dataset include commercial transactions, property transactions that
have not been lodged in with HM Land Registry and transactions made below market value. For
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price paid, the transaction date and, most importantly, the address of the house
which allows us to pinpoint the exact location of every property. Additionally, the
data provide us with information on the property type, which can be one of five
possible categories (a detached, semi-detached, or terraced house, a flat/maisonette
and other), the age of the property (classified into old or new to distinguish be-
tween newly built properties and already established buildings) and the duration
of tenure, i.e., whether the property is under a freehold or leasehold4.

Since we would ideally like to compare properties that are as similar to each
other as possible, we need more information on property characteristics. For this
purpose we make use of two additional datasets: the Zoopla Property data and
Domestic Energy Performance Certificates. The Zoopla Property data5 has been col-
lected by Zoopla, one of the UK’s leading providers of property data for consumers
and property professionals, giving free access to information on 27,000,000 prop-
erty records, up to 1,000,000 property listings and 15 years of sold prices data. The
dataset covers the period between 1st January 2010 and 31st March 2019 for proper-
ties located in Great Britain (England, Wales, Scotland). The dataset contains details
on characteristics such as property location, property type6, whether the property
has been categorised as residential or commercial7, number of bedrooms, number
of floors, number of bathrooms, number of receptions and whether the property
is listed for sale or for rent8. In addition, we also have access to the asking price
for both rents and sales, however, we use the more accurate transaction price from
the HM Land Registry dataset. The second source of house characteristics comes
from the Ministry of Housing, Communities and Local Government. On their web-
site, one can access the Energy Performance Certificates (EPC) for domestic and
non-domestic buildings. For domestic properties, before 2008 certificates could be
lodged on a voluntary basis. From 2008 onwards, however, it has become manda-
tory for accredited energy assessors to lodge the energy certificates. Consequently,
the data coverage drastically improves around that time, as does our ability to match
these data with the price paid data. More specifically, the matching rate jumps from

more details on the property sales not included in the dataset the reader can visit the HM Land
Registry website: https://www.gov.uk/guidance/about-the-price-paid-data.

4Note that leases of seven years or less are not recorded in the dataset.
5The access to the dataset has been kindly provided by the University of Glasgow - Urban Big

Data Centre. Access to the dataset for research purposes can be obtained directly through the Urban
Big Data Centre. The data has been collected by Zoopla. Zoopla Limited, © 2019. Zoopla Limited.
Economic and Social Research Council. Zoopla Property Data, 2019 [data collection]. University of
Glasgow - Urban Big Data Centre.

6Property types include: barn conversion, block of flats, bungalow, business park, chalet,
château, cottage, country house, detached bungalow, detached house, end terrace house, eques-
trian property, farm, farm house, finca, flat, hotel/guest house, houseboat, industrial, land,
leisure/hospitality, light industrial, link-detached house, lodge, longère, maisonette, mews house,
mobile/park home, office, parking/garage, pub/bar, restaurant/cafe, retail premises, riad, semi-
detached bungalow, semi-detached house, studio, terraced bungalow, terraced house, town house,
unknown, villa and warehouse.

7We keep only properties categorised as residential.
8For the time being we only keep properties listed for sale.
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about 50 percent to over 90 percent around 2008. The dataset contains information
on the location, property type, total floor area, number of storeys, number of rooms,
floor level and height, along with many indicators of energy efficiency and quality of
glazed surfaces. The final piece of data needed to conduct our analysis is related to
council tax data; in the following section we describe in more detail the functioning
of this property tax and the relevant data.

3.1.1 Council Tax

The taxation of properties in the United Kingdom is peculiar compared to other
OECD countries, representing a rather large source of both central Government and
local authorities’ revenues. The three main taxes levied on properties are the council
tax, business rates and stamp duty taxes. Council taxes are levied on each occupier,
rather than on the owner, of domestic properties. The tax is one of the few levies in
Great Britain being both set and collected by local authorities (Boroughs in the case
of London) and it represents one of their major sources of revenue (around one-third
of total revenue), the other sources being commercial property taxes (business rates)
and transfers from the central Government. The tax is based on a classification in
eight bands (A-H) based on the value of the property as established by the Valuation
Office in 1991; newly built properties are assigned to a band, after having their cur-
rent value converted into the value of an equivalent property in 1991. Each London
Borough is responsible for setting the annual tax amount to be paid by a property
in band D every year; the amount to be paid by other bands is automatically set as
a ratio to the amount for band D9. Bands C and D represent the largest fraction of
dwellings (about 50 percent of the total), but there is variation across Boroughs with
central properties being skewed towards higher valued bands compared to proper-
ties in outer Boroughs. Figure C2 shows the time series of the council tax payable per
band per Borough. Each panel in the figure depicts the amount payable by different
bands showing that, by construction, the tax moves in locksteps across bands. More
interestingly, it should be noted that there is a wide dispersion in amounts payable
across Boroughs, even though the ranking across different local authorities remains
almost constant with the only exception being the Borough of Hammersmith and
Fulham where taxes have been slashed starting from the late 2000s. After a marked
increase in council tax rates in the early 2000s, the freeze mandated by the central
Goverment after the 2008 financial crisis is visible in the time series; since 2011, taxes
can be raised only by a centrally set amount unless a local referendum allows the
authority to do so. We show in Section 3.2.1 that the geographical distribution of
council tax rates is not random and could severely bias any estimate of incidence,
given that central (and pricier) Boroughs tend to set lower council tax rates. This is

9The ratios are constant across Boroughs and are as follows: band A 6/9, band B 7/9, band C
8/9, band D 1, band E 10/9, band F 13/9, band G 15/9, band H 2.
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mainly because central Boroughs tend to have larger fraction of properties in higher
bands; for instance, the Borough of Kensington and Chelsea raises more than fifty
percent of its revenues from bands G and H, while Barking and Dagenham raise less
than five percent from these bands.

We obtain information on council tax band assignment from the website of the
Valuation Office Agency, which provides data on the full address and the council
tax band for each property in Great Britain. The average amount to be paid in each
London Borough by each band in the period 1999-2018 is obtained from the London
Datastore managed by the Greater London Authority.

In the following section, we provide some descriptive statistics of the data we
have mentioned so far.

3.1.2 Descriptive Statistics

Figure C3 shows the distribution of transaction prices for domestic properties in
London, truncated to exclude extremely high property prices which are, however,
included in the analysis. The data consists of 889,925 observations in the period
between 1999 and 2018 for which property characteristics and council tax informa-
tion is available. We confirm that the distribution is highly skewed with the average
and median property values being £366, 528 and £250, 000, respectively. It is im-
mediately obvious that there is a large degree of bunching in prices, as noted for
instance in Best and Kleven (2018). The bunching mainly happens just before stamp
duty notches, which allows Best and Kleven (2018) to estimate the local incidence
of this tax. Figure C4, for instance, shows the large extent of bunching at the thresh-
old of £250, 000 (upper panel) and £500, 000 (lower panel) where the stamp duty
tax jumps from 1% to 3% and from 3% to 4%, respectively. Best and Kleven (2018)
estimate a rather large incidence of stamp duty tax on property prices and argue
in favour of evidence of rather strict borrowing constraints; we use their estimates
to inform our analysis of the incidence of the council tax, allowing us to disentan-
gle how much of the incidence is due to borrowing constraints (or the lack thereof)
and how much is attributable to pure time discount. Figure C5 shows the distribu-
tion of house prices per band. The vertical red lines depict the median price within
each band. As one should expect, higher bands tend to have houses with higher
average prices although there is a large dispersion within bands. This is because
prices have increased a lot over the past twenty years, especially for more central
and higher-banded properties. This makes it essential that we compare only trans-
actions occurring in close periods. Moreover, one should notice that the number
of properties belonging to bands C and D dominates the rest, as previously men-
tioned. In Figures C6, C7, C8, C9 and C10 we show that there is a wide dispersion
of transaction prices based on house characteristics such as property type, number
of rooms, property age and duration. There is a disproportionate amount of flats in
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our sample, which we see as an advantage in our estimation, as flats are much more
likely to be similar to each other relative to other property types. Detached houses
are most expensive, with a median price of £525, 000, followed by semi-detached
houses (£319, 950) and terraced houses (£270, 000), and finally, flats are the cheapest
category (£195, 000). Naturally, the house price is increasing in the number of rooms
with the median value of each additional room being about £40, 000 in the full sam-
ple. Newly-built properties represent a minority in our sample and trade at a small
discount relative to established buildings. This is due to the geographic distribu-
tion of the housing stock in London where older properties tend to be in the more
sought-after central areas. However, there is some heterogeneity when we look at
the year of construction: properties built before 1949 sold at a median of £287, 000
close to those built after 2003 (£275, 000), while properties built in the period 1950-
1982 and 1983-2002 sold at lower prices (£215, 000 and £200, 000, respectively). This
pattern can be explained both by differences in type and location across groups.
Finally, it can be noted that properties under a freehold ownership have a higher
median price (£305, 000) compared to leasehold properties (£195, 000).

After having described the data, we proceed to the discussion of our empirical
strategy in the next section.

3.2 Empirical Strategy

3.2.1 Evidence of Selection

The main issue that arises when estimating the incidence of council taxes is the fact
that the cross-sectional distribution of council tax amounts across Boroughs is very
strongly correlated with other characteristics that affect house prices. To see this,
Figure C11 shows a map of the distribution of Band D council tax amounts payable
for each London Borough along with the respective distribution of house prices.
Panel C11a shows the distribution of council taxes in 2000, where taxes increase
moving from yellow to red; Panel C11b the distribution of house prices in the same
year, where prices increase moving from light blue to brown. Panel C11c shows
the distribution of council taxes in 2018, while panel C11d the distribution of house
prices in the same year. It is visually striking that councils with lower taxes tend
to have higher house prices. For instance, the City of Westminster had the lowest
Band D council tax in 2000 (£375.17) and the second highest average house price
(£357, 925), after the Borough of Kensington and Chelsea (£726, 908) which had the
fourth lowest council tax (£623.38). In 2018 the same holds true, with the City of
Westminster having the lowest council tax (£710.50) and the second highest average
price (£1, 612, 231), after Kensington and Chelsea (£3, 040, 547) which had the fifth
lowest council tax (£1, 139.41). In general, it is clear from the map that Boroughs
that lie further from the centre tend to have higher council taxes and lower prices,
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while the more central Boroughs tend to exhibit the opposite pattern. To confirm the
intuition obtained from Figure C11, we can run a naı̈ve regression of house prices on
house characteristics and council tax payable without controlling for the geograph-
ical location of the property, i.e.:

pidbt = βτdbt + δbt + ζ ′xidbt + εidbt (3.1)

where pidbt is the price of house i in Borough d, band b at time t; τdbt is the coun-
cil tax amount for a house in Borough d, band b at time t; δbt are year-band fixed
effects; and xidbt are controls which include the property size measured in squared
meters, number of rooms, property type, age, duration and month which controls
for seasonality in the housing market (Ngai and Tenreyro, 2014). Table C1 reports
the results of regression (3.1); the first column provides the baseline result where
month and year-band fixed effects are included in order to remove the mechanical
correlation between increasing property prices and taxes over time and the fact that
moving from band A to band H goes hand in hand with higher house prices. If we
took this evidence at face value, we would conclude that the incidence of council
tax is extremely large and statistically significant with a point estimate of−231.2. To
give intuition, using a discount rate of r = 4% (similar to the risk-free rate observed
in sample) this would roughly imply that an extra £1 in present value of taxes would
lead to a drop in prices of r× β = 4%× 231.2 = £9.25. It is obvious that this figure is
only the artefact of the negative correlation between the value of properties and the
average tax within councils as observed in Figure C11. Extremely negative coeffi-
cients are obtained in columns (2), (3) and (4) where we control for the property size,
number of rooms, property type, whether the property is newly-built and whether
it is a leasehold. The smallest of these coefficients in absolute value, i.e., −228.7
in column (3), would imply an incidence of r × β = 4%× 228.7 = £9.15 which is
still unreasonably high. Table C2 shows similar estimates when we include all the
variables available as controls. To further corroborate the negative correlation be-
tween property prices and council taxes due to geographical selection, we provide
the results of the following two-step estimation. First, we regress house prices on
characteristics to obtain hedonic residuals:

pidbt = ζ ′xidbt + εidbt (3.2)

For each Borough, band, year, we compute the median residual price εmed
dbt and pro-

ceed to regress it on council tax amount payable including year-band fixed effects:

εmed
dbt = βτdbt + δbt + ηdbt (3.3)

The results are reported in Table C3. The vector of predictors xidbt in the first-stage
hedonic regression includes: month fixed effects in column (1); month, property
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size, number of rooms in column (2); month, property size, number of rooms and
property type in column (3); and month, property size, number of rooms, property
type and indicators for whether the property is newly-built and a leashold in column
(4). Similarly, Table C4 reports results when the dependent variable in the second
stage is the average hedonic residual ε̄dbt per Borough, band, year, i.e.:

ε̄dbt = βτdbt + δbt + ηdbt (3.4)

Both tables confirm the previous finding that Boroughs with higher house values
tend to impose lower council tax bills: the coefficients are negative and statistically
significant, ranging from −183.6 to −368.4.

The results provided so far imply that special care needs to be taken before us-
ing the geographical variation in council taxes to estimate their incidence on house
prices. For this reason in our identification strategy we compare only houses that
lie extremely close, i.e., no more than 500 meters and mainly closer than 200 me-
ters, to the border between two adjacent Boroughs in order to disentangle the actual
incidence of the tax from the geographical distribution of taxes across Boroughs.
Throughout the rest of the paper, the reader should bear in mind that the geograph-
ical distribution of council taxes entails that any estimated incidence is, at most, an
upper bound for the true incidence. This is because, if buyers value certain char-
acteristics upon purchasing a house, these should be capitalised in the house price
which, in this case, acts almost like a sufficient statistic for their value; the results
of Figure C11 and Tables C1-C4 signal that houses with more highly valued char-
acteristics (and higher prices) tend to be located in Boroughs with lower taxes, thus
inflating any estimate of tax incidence. A second and more subtle reason why we
can only estimate an upper bound for the incidence has to do with our identification
strategy. By comparing similar dwellings on opposite sides of a border, we implic-
itly assume that the buyer always has an outside option during the price bargaining
process. As a result, the buyer would be much more elastic than an otherwise iden-
tical buyer involved in the purchase of a house located in the heart of a Borough
where there is no outside option in terms of council tax. We show in Section 3.4 that
the seller bears the full incidence of the tax at the border, while that is not necessarily
the case at an interior point. In general, even in the absence of perfect substitutes
across council borders, it is reasonable to conjecture that the incidence is still much
larger at the border compared to the council centre, where the agent would have to
move long distance in order to pay a different council tax rate.

In the next section we describe the identification strategies that allow us to esti-
mate the incidence of council taxes as precisely as possible given the present setting,
bearing in mind that any attempt is likely to result in an over-estimation of the true
incidence.
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3.2.2 Identification Strategies

We use two different identification strategies to measure an upper bound of the inci-
dence of council tax on property prices: grid regressions and a matching algorithm.

Grid Regressions

The first strategy compares houses that lie in close proximity by dividing the area of
London in a grid and assigning a fixed effect to each square in the grid. By doing so,
we are de-facto comparing two houses that are otherwise identical but lie on oppo-
site sides of a given border between two Boroughs. Figure C12 graphically depicts
our first approach. Panel C12a shows a grid of squares with equal sizes superposed
on a map of London. Panel C12b shows a more detailed picture of the Boroughs in
the centre10. We then proceed to select the squares that have two houses that: are
sold in the same year, are in the same council tax band and lie on opposite sides
of the border; Panel C12b displays in blue examples of such squares. It can be no-
ticed that we discard observations for which the border is located on the Thames
River bank. To avoid relying on an arbitrary division, we use three different grids,
namely one grid divides the area in 50× 50 squares, another divides it in 100× 100
squares and, finally, the last grid is a 150× 150 one. These squares have an approxi-
mate size of 800 meters, 400 meters and 250 meters, respectively. While the maximal
possible distance between houses can be inferred as

√
2 × square side length, we

choose to remove observations that are more than 500 meters far from the border.
Figure C13 shows the distribution of distances to the border for our different speci-
fications. As mentioned, no house lies more than 500 meters away from the border,
and most of the observations are about 200 meters away from the closest border. As
we proceed to refine our grids by subdividing into a larger number of squares, we
can see that we lose observations in the 200 meters-500 meters range; this reduces
our power significantly, but ensures that we compare houses that are indeed in very
close proximity.

Our strategy consists of running within square regressions whereby we compare
houses that are sold in the same year and in the same council tax band, specifically:

pibgdt = βτbdt + δbgt + ζ ′xibgdt + εibgdt (3.5)

where pibgdt is the price of house i, in council tax band b, grid square g, Borough d,
and year t; τbdt is the council tax amount for band b, Borough d in year t; and xibgdt

are house-specific controls. The presence of the band-grid square-year fixed effects
δbgt guarantees that the regression compares houses that are in the same square,
same council tax band and are sold in the same year, implying that our identification

10The three main Boroughs depicted in the picture are, starting from left, Hammersmith and Ful-
ham, Kensington and Chelsea and the City of Westminster.
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assumption is that they systematically differ only due to the amount of council tax
paid, after partialling out the effect of house characteristics that we add to increase
our precision. It should be noticed that, as mentioned above, better Boroughs, i.e.,
Boroughs with higher average prices, tend to have lower council taxes, implying
that - if we leave some hidden characteristic out of our regression - the estimate of
β is most likely going to overstate the true incidence. To give an example, while
highly unlikely given the sharp nature of the borders, one could argue that there
is a name tag value of living in certain Boroughs over others, for instance, a house
in Westminster commands a premium over a similar house on the other side of
the border in Brent. The fact that Westminster has a lower tax compared to Brent
implies that we would overestimate the incidence of the tax because of the name
tag value of living in Westminster. In general, to reverse this bias and claim that the
true incidence might be higher than the one we estimate, the reader should think
of some hidden characteristic that systematically causes people to prefer living in a
Borough with worse amenities compared to a Borough with better ones.

The following section presents our second identification strategy which relies on
a matching estimator rather than grid squares fixed effects.

Matching Estimator

Our second identification approach consists of pairwise matching of houses on op-
posite sides of a given border. To find the closest match, we need to define a distance:
in what follows, we rely on a Euclidean distance and a distance based on a linear
model. Under the first one, we restrict the possible matches to be: no more than 500
meters away from each other, sold in the same year, in the same council tax band,
and to both be either old or newly-built and freehold or leasehold properties. For
each property we then choose the closest match as the one minimising the Euclidean

distance d(i, j) =
√

∑K
k=1(xik − xjk)2, where i is the original property, j indexes the

possible matches on the other side of the border, xik are house i characteristics and
xjk are house j characteristics. We then run within-pair regressions:

pibdt = βτbdt + δij + ζ ′xibdt + εibdt (3.6)

where δij are ij-pair dummies and xibdt are house i-specific features. The second
choice of distance is based on a linear pricing model:

pit = α + β′xit + εit (3.7)

where xit similarly contains house-specific characteristics as above. We then com-
pute the model-predicted price p̂it = α̂ + β̂′xit. As before, we restrict the pairing to
houses sold in the same year, band, old/new and leasehold/freehold categories and
no further than 500 meters from each other. For each property i we pick the closest
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match j as the one that minimises the following distance: d(i, j) = | p̂it− p̂jt|. To esti-
mate the incidence, we run within pair-regressions as in equation (3.6) where the δij

dummies are determined according to the new matching algorithm. As in Section
3.2.2 the identification is valid as long as the only systematic difference within pairs
is the amount of council tax. As previously explained, any other omitted variable
would most likely lead us to estimate an upper bound for the incidence, given the
geographical distribution of council taxes.

3.3 Results

3.3.1 Grid Estimator

Table C5 presents the results of the grid regressions described in Section 3.2.2 where
we use a 50× 50 grid and include band-grid square ID-year fixed effects to compare
the effect of council taxes on properties in the same band, sold in the same year, lo-
cated in the same grid square but on opposite sides of a border as in equation (3.5).
The controls we include are as follows: column (1) uses month fixed effects to con-
trol for housing market seasonality; column (2) adds number of rooms fixed effects
and controls for property size; column (3) also adds property type fixed effects, and;
column (4) includes an indicator for newly-built and leasehold properties. These are
our default specifications throughout the rest of the paper. In all columns the coeffi-
cient on council taxes is statistically indistinguishable from zero and always with the
wrong sign. The lack of significance cannot be attributed to lack of statistical power
in the regressions given that other control variables are always strongly statistically
significant. For instance, the effect of one additional squared metre ranges between
£4, 537 and £4, 627, newly-built properties command a premium of about £33, 400
and freehold properties sell for £76, 000 more relative to leaseholds. The same con-
clusion can be drawn from Table C6 where we expand the regressions to include all
available house price predictors, showing that even relatively minor characteristics
such as the number of lighting outlets or the presence of fireplaces in the property
have a significant effect on prices.

Table C7 displays the grid regression results for grids of different sizes: col-
umn (1) uses a grid that divides the London area into 50× 50 squares, column (2)
100× 100, and column (3) 150× 150. This might help to alleviate concerns that grids
made of large squares might be comparing houses that are rather distant from each
other. The specification is otherwise same as the one in column (4) of Table C5. The
coefficient on council tax remains statistically insignificant and the point estimate
varies from positive to negative across columns: this is precisely what we should
expect when a regressor has no effect on the outcome variable and simply reacts to
the noise in the sample. The fact that the R-squared is very high (between 77% and
83%) and that all other coefficients are precisely estimated confirms our previous
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finding that the incidence of the council tax is indistinguishable from zero. In Table
C8 we augment the regressions by adding all additional house characteristics: the
coefficient on council tax ranges from -11.8 to 75.4 and is never statistically lower
than zero.

To make sure that the confounding effect of the stamp duty notches does not
play a role in our estimation results, Table C9 presents the results of the grid regres-
sions when we remove the two main stamp duty notches at £250, 000 and £500, 000.
Column (1) excludes only the first notch, column (2) the second, and column (3) re-
moves both. The results are virtually unchanged, with the incidence still being sta-
tistically insignificant, small in magnitude, and always displaying the wrong sign.
As previously mentioned, the large R-squared and the fact that the remaining coef-
ficients are precisely estimated guarantees that this is not due to lack of power.

Finally, Tables C10 and C11 provide estimates of council tax incidence using a
similar two-step approach as in Tables C3 and C4, i.e., by first obtaining residual
hedonic prices as follows:

pibdgt = ζ ′xibdgt + εibdgt (3.8)

and subsequently regressing the median or average hedonic residuals for each Bor-
ough, band, grid square and year on council tax amounts:

εmed
bdgt = βτbdt + δbgt + ηbdgt (3.9)

ε̄bdgt = βτbdt + δbgt + ηbdgt (3.10)

where δbgt are band-grid square-year fixed effects included to ensure that we com-
pare values of houses in the same council tax band, sold in the same year and located
in the same square of the grid. As usual, we restrict the analysis to grid squares with
at least two houses located on different sides of a border and present the four stan-
dard specifications. The results confirm the previous finding: both the median and
average hedonic residuals are not decreasing in the council tax amount paid, sug-
gesting that the incidence of this tax on house prices is not different from zero.

In the following section we supplement the evidence by presenting results using
our second identification strategy.

3.3.2 Matching Estimator

Tables C12, C13 and C14 show the results of our second estimation approach where
we explicitly match similar dwellings on opposite sides of a border as described
in Section 3.2.2. As previously mentioned, all the results are obtained using hous-
ing pairs on opposite sides of a border no more than 500 metres apart, sold in the
same year, in the same council tax band and which are both either old or newly-
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built and leasehold or freehold properties. Table C12 displays the results where
closest pairs have been determined by minimising the Euclidean distance d(i, j) =√

∑K
k=1(xik − xjk)2, where the vectors xi and xj consist of property size and number

of rooms in columns (1) and (2), and also energy cost in columns (3) and (4). All
the variables are standardised to be comparable. This procedure leads to 57,612 and
57,323 observations of property pairs with 71,578 and 71,656 unique transactions
in columns (1)-(2) and (3)-(4), respectively11. After having obtained the pairs, we
run the regression specified in equation (3.6). The presence of δij pair fixed effects
amounts to regressing the difference in prices of matched houses on the difference
in council tax paid, controlling for other property characteristics along which the
matched properties may differ. Consistent with the results obtained with the grid
estimator, none of the coefficients on council tax is statistically significantly nega-
tive. As pointed out before, this result is not attributable to lack of statistical power:
for instance, the coefficient on size is highly statistically significant and has the same
order of magnitude as the ones obtained with the earlier estimator12. Table C13 con-
firms these findings under the linear matching algorithm where pairs are chosen by
minimising the distance d(i, j) = | p̂it − p̂jt|, where the predicted prices p̂it and p̂jt

are obtained from a linear model as in equation (3.7). As before, columns (1) and
(2) match properties based on size and number of rooms, while columns (3) and (4)
add energy cost. Finally, Table C14 presents the last set of results for the linear model
where we allow each property to be paired with more than one similar property on
the other side of the border, as long as the absolute difference in predicted prices is
less than 30% of the largest predicted price, namely: | p̂it− p̂jt| < 0.3×max{ p̂it, p̂jt}.
While the point estimates range between -5.24 and -8.19, none of the coefficients is
statistically different from zero as in all previous specifications. We shed more light
on the interpretation of these and the previous results in Section 3.4.1.

The empirical findings above demonstrate that council tax differences never sig-
nificantly explain house price differences. Moreover, while absence of evidence,
namely the fact that agents seem to be insensitive to taxes that are postponed to the
future, does not directly imply evidence of absence, many point estimates are pos-
itive and hence with the wrong sign. Bearing these estimates in mind, in the next
section we develop a simple model that allows us to propose a plausible explana-
tion for the above results. We subsequently calibrate the model using a Bayesian
approach informed by all of the above estimates and briefly discuss policy implica-
tions.

11Notice that any given transaction can be the closest match for more than one property. In order
to take care of this redundancy we cluster standard errors at the transaction ID level.

12Notice that, compared to the default specifications used in Tables C1, C5, C7 and C9, the in-
dicators for newly-built and leasehold properties have been dropped given that properties are con-
strained to be identical along these dimensions.
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3.4 Model

In what follows, we present a simple multi-period model of housing-consumption
choice in order to calibrate the above results. We begin with the optimisation prob-
lem of an agent who chooses at time t = 0 an infinite stream of consumption {ct}∞

t=0

and a composite housing good h:

max
{{ct,dt}∞

t=0,h,1{A},1{B}}
U({ct}∞

t=0, h) = c0 +
∞

∑
t=1

βtu(ct) +
∞

∑
t=0

βt log(h) (3.11)

s.t. c0 + h(pA01{A} + pB01{B} + τS) ≤ w0 + d0 (3.12)

ct + h(τAt1{A} + τBt1{B}) + dt−1(1 + r) ≤ wt + dt t = 1, 2, 3, ... (3.13)

dt ≤ αh(pAt1{A} + pBt1{B}) t = 0, 1, 2... (3.14)

For simplicity, the utility of the agent is chosen to be time-separable and separa-
ble in consumption and housing. The utility function is quasi-linear in c0 in order
to get rid of income effects, as is standard practice in the public finance literature.
For tractability and to separate the effects of stamp duty and council tax, the agent
purchases the housing good only once at t = 0. There are two Boroughs, A and
B, with exogenously chosen and potentially different council tax rates. We assume
that there is equal supply of housing in both Boroughs13. Equation (3.12) is the
first-period budget constraint: the agent spends his initial endowment w0 on con-
sumption c0 and the after-tax cost of his housing demand h. When he buys a house,
the agent pays the pre-tax price pi0, i = A, B, and, in addition, he also needs to pay
the stamp duty tax τS hereby assumed to be proportional to the quality-adjusted
level of housing demand. If his total demand exceeds his initial endowment, the
agent can borrow additional funds d0 for one period at the risk-free rate. The bud-
get constraints for all subsequent periods are identical and given by equation (3.13):
from time t = 1 onwards, the agent spends his endowment wt on his optimal con-
sumption choice ct and to pay the council tax τit, i = A, B, that corresponds to the
Borough where he has chosen to locate at time t = 0. He also needs to repay his
short-term debt from the previous period inclusive of interest dt−1(1 + r), and is al-
lowed to borrow again at the same terms in order to balance his budget constraint.
Finally, the last constraint in equation (3.14) is the financing constraint: the agent
cannot borrow more than a fraction α of the pre-tax cost of his housing demand.
This can potentially generate very large incidence for the stamp duty tax since the
lump sum nature of this tax tightens the leverage constraint. The Lagrangian for the

13This assumption is crucial and de-facto eliminates the potential for a differential elasticity of
supply with respect to council taxes at the border. We consider this assumption quite reasonable
given that the greatest majority of the housing stock in London has been constructed well before the
introduction of this tax in the early 90s as shown in Figures C8 and C9.



CHAPTER 3. THE SALIENCE OF PROPERTY TAXES 92

above problem can be written as:

L = U({ct}∞
t=0, h)− λ0(c0 + h(pB0 + τS)− w0 − d0)

−
∞

∑
t=1

λt(ct + hτBt + dt−1(1 + r)− wt − dt)−
∞

∑
t=0

µt(dt − αhpBt)

− h1{A}

[
λ0(pA0 − pB0) +

∞

∑
t=1

λt(τAt − τBt)− α
∞

∑
t=0

µt(pAt − pBt)

] (3.15)

where we use the fact that 1{B} = 1− 1{A}. Notice that the Lagrangian is monotone
in the choice of Borough 1{A}, therefore, the choice of where to locate can be sepa-
rated from the consumption and housing-quality choices. The agent chooses to live
in Borough A if:

pA0 − pB0 ≤ −
∞

∑
t=1

λt

λ0
(τAt − τBt) + α

∞

∑
t=0

µt

λ0
(pAt − pBt) (3.16)

i.e., if the price differential between the same-quality house in Boroughs A and B
more than compensates for the present value of the difference in future council tax
payments and the collateral value of the house. In equilibrium, markets clear if
equation (3.16) holds with equality which, from now onwards, we assume to be the
case. Assuming that the agent is indifferent between living in Boroughs A and B, we
proceed by suppressing the Borough subscripts and denote the price of the house as
pt and the council tax as τt. The first-order conditions for an interior solution are:

1 = λ0 (3.17)

βtu′(ct) = λt ∀t = 1, 2, 3, ... (3.18)

−λt + λt+1(1 + r) + µt = 0 ∀t = 0, 1, 2, ... (3.19)

h−1

(1− β)
= λ0(p0 − α

µ0

λ0
p0 + τS) +

∞

∑
t=0

λt+1τt+1 −
∞

∑
t=0

λt+2
µt+1

λt+2
αpt+1 (3.20)

Combining the first-order conditions for consumption and for the optimal debt
choice, we obtain the following Euler equation:

λt+1

λt
= β

u′(ct+1)

u′(ct)
=

1
1 + r + µt

λt+1

(3.21)

The above Euler equation implies that the agent’s discount factor is equal to the
inverse of the risk-free rate and a liquidity premium µt

λt+1
, arising from the fact that

the house has some collateral value. In order to simplify the exposition, we assume
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that in equilibrium the liquidity premium is constant and equal to µt
λt+1

= k, that
house prices grow at a constant rate g, i.e., pit = pi0(1+ g)t, and council tax amounts
grow at a constant rate g̃, i.e., τit = τi1(1 + g̃)t−1. Re-arranging equations (3.16),
(3.20) and (3.21), we obtain the final no-arbitrage condition and housing demand:

(pA0 − pB0)

(
1− αk

r + k− g

)
= −(τA1 − τB1)

1
r + k− g̃

(3.22)

h−1

(1− β)
= p0

(
1− αk

r + k− g

)
+ τS +

τ1

r + k− g̃
(3.23)

The first equation is the equilibrium condition of how house prices should behave
across Boroughs: the house price differential, after having taken into account the
collateral value αk

r+k−g , needs to match (the negative of) the present value of the
council tax differential. The second equation states that the agent’s marginal utility
of housing is equal to the house price inclusive of (the present value of) all taxes
and collateral value. It is important to note that the no-arbitrage condition (3.22) in
general gives a different incidence compared to the one obtained from the housing
demand (3.23). This is because the former holds only at the border between two
Boroughs where the outside option, i.e., the option to buy an otherwise identical
house on the other side of the border, implies that the supply bears the whole burden
of the tax. In particular, from equation (3.22) we obtain an incidence of:

dp0

dτ1
= − 1

r + k− g̃
× r + k− g

r + (1− α)k− g
(3.24)

On the other hand, for both houses on the border as well as houses in the mid-
dle of a given Borough we can define the optimal demand from equation (3.23) as
D(p0, τ1, τS) = h∗(p0, τ1, τS). Equating with the optimal supply, S(p0) = D(p0, τ1, τS),
and after total differentiation we obtain the standard formula for the incidence:

dp0

dτ1
= −

∂D
∂τ1

∂D
∂p0
− ∂S

∂p0

= − 1
r + k− g̃

× 1
r+(1−α)k−g

r+k−g + η̃S

(3.25)

where η̃S = ∂S
∂p0

p0
S

p0

(
1− αk

r+k−g

)
+τS+

τ1
r+k−g̃

p0
= ηS

p0

(
1− αk

r+k−g

)
+τS+

τ1
r+k−g̃

p0
is a slightly modi-

fied version of the supply elasticity ηS that takes into account the price inclusive of
taxes and collateral value. In general, we have that:

1
r+(1−α)k−g

r+k−g + η̃S

≤ r + k− g
r + (1− α)k− g

(3.26)

implying that the incidence at the border between Boroughs is an upper bound for
the true council tax incidence as long as the modified elasticity of supply is non-
negative, i.e., η̃S ≥ 0. Notice that the modified elasticity of supply η̃S is positive as
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long as the true elasticity of supply ηS is positive.

3.4.1 Calibration

The model in the previous section allows us to better interpret the empirical results
of Section 3.3. By using equations (3.22), (3.23) and (3.24) we get14:

dp0

dτ1
=

dp0

dτS
× 1

r + k− g̃
(3.27)

i.e., the incidence of the council tax can be interpreted as the present value of the
sum of the incidence of the stamp duty tax discounted at the liquidity-adjusted cost
of capital r + k with growth rate g̃. In what follows we use the results in Tables
C5 - C14 and provide further direction on how to interpret them. We treat each
estimate as a separate model m. Conditional on the model being true and given a
common prior distribution p(βτ|m) = p(βτ) about the true incidence of council tax
and the likelihood function of the data p(y|βτ, m) we can use Bayes’ rule to express
the posterior distribution for the incidence under each model m as:

p(βτ|y, m) =
p(y|βτ, m)× p(βτ)∫

p(y|βτ, m)× p(βτ)dβτ
(3.28)

We then proceed to obtain the model-averaged posterior distribution as:

p(βτ|y) = ∑
m

p(βτ|y, m)p(m|y) (3.29)

The computational burden of equation (3.29) is significant, therefore, we proceed
with the simplifying assumptions described in Appendix C.4. We always start from
a normally-distributed prior βτ ∼ N (bτ, σ2

τ) and likelihood function which leads to
a normal posterior. As detailed in Appendix C.4 the mean of the prior is chosen by
calibrating the parameters g, g̃, r and α based on historical data and matching the
stamp duty incidence to results in Best and Kleven (2018). For robustness we also
vary the precision of the prior and provide results for five different specifications:
p(βτ) = N (−150, 502), N (−100, 502), N (−50, 502), N (−150, 752), N (−50, 252).

Figure C15 plots the model-averaged density of the posterior distribution for
the council tax incidence. Panel (a) displays the posterior density for a constant
standard deviation of the prior of 50, while (b) for a standard deviation equal to
half the prior mean. It can be noted that the shape of the posterior is similar across
specifications and that it displays a significant shift of mass toward zero. Table C15
provides the quantiles, the mode and the mean of the posterior distribution of the
incidence. The median posterior incidence ranges between -22.87 and -2.17, well
below the median implied by the model calibration which has informed the prior.

14This assumes that η̃S = 0, i.e., that the supply of housing is fixed in the short term.
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The last column reports the ratio between the two, giving the implied attenuation
bias displayed by agents. Given the model parameters the price reaction to council
taxes is between 4% and 37% of what the price reaction to the stamp duty tax would
imply from agents who fully perceive the tax.

The results above become striking once coupled with the extent to which house
buyers react to stamp duty taxes. When buyers are liquidity-constrained, their effec-
tive discount rates become large and, therefore, one might be tempted to attribute
the previous evidence solely to extreme discounting of future cash flows. If we are
willing to take this view, we would have to assume discount rates ranging between
23.4% and 231.9% in order to fit the posterior estimates of the council tax incidence.
Moreover, it should be noted that every estimate of the council tax incidence is con-
ditioned on an estimate of the stamp duty incidence, i.e., the discount rate is not a
free parameter in the calibration. To put it differently, changing the discount rate to
match a reasonable incidence for the council tax would lead to an incidence of the
stamp duty tax that is inconsistent with current estimates in the literature. The fact
that the incidence of the stamp duty is large but not extreme implies that the liq-
uidity premium cannot be the only source of the low council tax incidence. Third,
in our estimation we use relatively concentrated priors around the model-informed
incidence; had we allowed the likelihood to dominate by assigning diffuse priors,
we would have obtained much lower estimates compared to the conservative ones
provided so far. One way to explain these findings is by hypothesising that, when
buying their properties, agents discount tax payments that happen in the future dis-
proportionately compared to those that occur concurrently with the purchase. It is
difficult to argue that this might be due to uncertainty associated with council tax
payments given that differences in council tax amounts across Boroughs are very
smooth and predictable as shown in Figure C2. This leaves us with another plausi-
ble alternative explanation: agents fail to fully internalise the difference in council
tax payments across Boroughs upon purchasing a property, either because this is
much less salient compared to the stamp duty tax15, or because they fail to appreci-
ate the magnitude of its present value16. Notice also that the results so far suggest
that there is somebody who does not take the council tax differentials into account
in a fully-rational way, but this does not need to be the house buyer: our previous
analysis goes through even if the buyer is fully aware of the tax and hopes to shift its
incidence onto the subsequent buyer, or the renter in the case of buy-to-let property

15It is also possible that the tax is fully salient to agents but, due to mental accounting, they fail to
integrate its present value into the house price they are willing to pay. Other explanations could be
related to search costs and cognitive costs.

16For a property in band D worth, say, £300, 000, the stamp duty tax in 2018 would amount to
£9, 000. If the buyer could choose whether to buy the property in the Borough of Camden or the
Borough of Westminster, the difference in council tax would amount to about £778 in 2018 which, in
present value using a discount rate of 4%, would be equal to £19, 450, more than twice the value of
the stamp duty tax.
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transactions17.
Motivated by these findings, we explore some policy implications in the follow-

ing section.

3.4.2 Implications for Tax Policy

Given the results in the previous section, it seems reasonable to argue that agents
fail to fully perceive deferred taxes. As a result, we propose a modified version of
the model above that allows for non-fully salient taxes. We extend our analysis to
properties that are potentially far from the border and, therefore, allow the elasticity
of supply ηS to be non-zero. Recall that the incidence estimates coming from the bor-
der in Section 3.3 are an upper bound for the incidence in the middle of Boroughs.
For simplicity, let us assume we are in an equilibrium where the leverage constraint
(3.14) is binding, i.e., dt = αhpt. If we multiply each of the constraints (3.12) and
(3.13) by 1

(1+r+k)t and add them together, we obtain the following consolidated bud-
get constraint:

c0 +
c1

(1 + r + k)
+

c2

(1 + r + k)2 + ... + p̃h = w0 +
w1

(1 + r + k)
+ ... = I (3.30)

where p̃ = p0

(
1− αk

r+k−g

)
+ τS +

τ1
r+k−g̃ is the tax-inclusive house price. For simplic-

ity of exposition, define p = p0

(
1− αk

r+k−g

)
and τ = τ1

r+k−g̃ , so that we can rewrite
p̃ = p + τS + τ. Following Chetty et al. (2009), Farhi and Gabaix (2020) and Goldin
(2015), we assume that the agent misperceives taxes with attenuation factor γ, i.e.,
he solves the following maximisation problem:

max
{{ct}∞

t=0,h}
U({ct}∞

t=0, h) = c0 + log(h) +
∞

∑
t=1

βt (u(ct) + log(h)) (3.31)

s.t.

c0 +
c1

(1 + r + k)
+

c2

(1 + r + k)2 + ... + p̃γh = w0 +
w1

(1 + r + k)
+ ... = I (3.32)

where the perceived house price is:

p̃γ = p + τS + γτ, γ ∈ [0, 1] (3.33)

Recall from the previous section that the attenuation factor for the council tax im-
plied by the data ranges between 0.04 and 0.37. Notice that while the agent per-
ceives the above budget constraint, he has to satisfy the actual budget constraint
(3.30) given by the rational model. As pointed out in Reck (2016), it is crucial to

17Note that we largely interpret the results as evidence of overpricing. Another possibility is that
the properties on the low council tax side of borders are relatively underpriced and it is, therefore,
sellers who fail to incorporate the tax discount into their ask price.
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decide what choice variable bears the burden of adjustment. Given our assumption
about the quasi-linear utility function in first-period consumption c0, it is natural to
let c0 be the shock absorber. This choice amounts to assuming the following train
of events: 1) the agent misperceives the council tax he will have to pay going for-
ward and, as a result, buys ”too much” quality-adjusted housing; 2) following this,
he realises that the actual amount of taxes he will have to pay is beyond his bud-
get; 3) consequently, the agent adjusts his consumption in the first period keeping
everything else constant. Denoting the observed demands as ĉ0, ĉt, ĥ, and the opti-
mal demands absent any behavioural frictions as c∗0 , c∗t , h∗, we have the following
first-order conditions:

ĉt = [u′]−1
(

1
(β(1 + r + k))t

)
= c∗t (3.34)

ĥ = [(1− β) p̃γ]
−1 6= [(1− β) p̃]−1 = h∗ (3.35)

ĉ0 = I −
∞

∑
t=1

ĉt

(1 + r + k)t − ĥ p̃ 6= c∗0 (3.36)

As previously mentioned, the optimality condition for future consumption remains
as before. However, equation (3.35) shows that the agent demands ”too much”
housing due to the fact that the perceived price p̃γ is lower than the true price p̃,
as long as γ < 1. As a result, because of quasi-linearity in the utility function, ĉ0

adjusts to absorb the reduction in available income. The previous discussion high-
lights the fact that misperception of the house price affects both consumption and
housing demand, albeit in opposite directions. This implies that a benevolent social
planner needs to carefully balance the two distortions when setting the optimal tax
policy. To see this more formally, let us adopt the approach of Goldin (2015) and
assume that the Government chooses the optimal (property) tax combination in or-
der to raise a fixed amount of revenue and maximise the utility of the buyer18. For
convenience, define the present value of council tax revenue from the Government’s
point of view, discounted at the risk-free rate, as τ̃ = τ1

r−g̃ . The total revenue raised
from a given buyer is:

R = (τS + τ̃)h =

(
τS + τ

r + k− g̃
r− g̃

)
h (3.37)

The second equality of the above equation shows that the Government discounts the
revenue raised through council taxes at a lower rate than agents due to the presence
of borrowing constraints. The Government can twick the two taxes to maintain

18In what follows, we abstract from analysing the effect on the utility of the seller.
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revenue-neutrality. In particular, a revenue-neutral tax change is such that:[
h +

(
τS + τ

r + k− g̃
r− g̃

)
∂h
∂τS

]
∆τS = −

[
r + k− g̃

r− g̃
h +

(
τS + τ

r + k− g̃
r− g̃

)
∂h
∂τ

]
∆τ

(3.38)
This implies that the change in stamp duty per unit change in council tax needed to
maintain revenue-neutrality is:

∆τS

∆τ
= −

r+k−g̃
r−g̃ h +

(
τS + τ

r+k−g̃
r−g̃

)
∂h
∂τ

h +
(

τS + τ
r+k−g̃

r−g̃

)
∂h
∂τS

= −
r+k−g̃

r−g̃ h +
(

τS + τ
r+k−g̃

r−g̃

)
θτ

∂h
∂p

h +
(

τS + τ
r+k−g̃

r−g̃

)
θτS

∂h
∂p

(3.39)

where θτS =
∂h

∂τS
∂h
∂p

and θτ =
∂h
∂τ
∂h
∂p

tell us how responsive the demand is with respect to

taxes relative to pre-tax prices. From equations (3.33) and (3.35) we infer that θτS = 1
and θτ = γ in our model. The indirect utility function for an inattentive agent is:

V(p, τS, τ) = I −
∞

∑
t=1

ĉt

(1 + r + k)t − ĥ(p + τS + τ) +
∞

∑
t=1

βtu(ĉt) +
log(ĥ)
(1− β)

(3.40)

where ĉt = [u′]−1
(

1
(β(1+r+k))t

)
and ĥ = ĥ(p, τS, τ) = [(1− β)(p + τS + γτ)]−1 from

the agent’s first-order conditions. Differentiate the indirect utility function above to
obtain:

dV
dτ

= −ĥ
(

dp
dτ

+
∂τS

∂τ
+ 1
)
+

[
∂U
∂h
− (p + τS + τ)

] [
dp
dτ

+ θτS

∂τS

∂τ
+ θτ

]
∂ĥ
∂p

(3.41)

where dp
dτ = ∂p

∂τ + ∂p
∂τS

∂τS
∂τ is the total incidence of the council tax after having taken

into account the shift in stamp duty to guarantee revenue neutrality. As in Goldin
(2015), the change in welfare can be decomposed into four components: the first
part, i.e., −ĥ

(
dp
dτ + ∂τS

∂τ + 1
)

measures the direct welfare effect of a tax shift due to

the alleviation of the borrowing constraint; the second part, i.e.,
[

∂U
∂h − (p + τS + τ)

]
is the behavioural wedge and it represents the difference between perceived and
actual prices; the third component, i.e.,

[
dp
dτ + θτS

∂τS
∂τ + θτ

]
is equal to the change in

prices as perceived by the agent; and the fourth component, i.e., ∂ĥ
∂p is the impact

of a change in prices on demand for housing. With no bias, i.e., when γ = 1 the
perceived price is equal to the actual price and the envelope theorem ensures that
the second component above is equal to zero. As a consequence, the optimal tax
policy depends on the sign of the first term19. If this is positive, it is optimal for the
government to set τS = 0, if negative, τS = R. It is easy to show that when γ = 1

19Notice that ∂τS
∂τ < −1 because r + k − g̃ > r − g̃, θτ < θτS and ∂h

∂p < 0. The above assumes

that r+k−g̃
r−g̃ h +

(
τS + τ

r+k−g̃
r−g̃

)
∂h
∂τ > 0 and h +

(
τS + τ

r+k−g̃
r−g̃

)
∂h
∂τS

> 0, i.e., the Government is on the

upward sloping part of the Laffer curve. The term ∂p
∂τ + ∂p

∂τS

∂τS
∂τ is usually positive since agents react

less to a decrease in council tax relative to a revenue-neutral increase in the stamp duty.
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this term is unambiguously positive as long as ηS > 0. The Government should then
choose a zero stamp duty tax in order to alleviate the agent’s liquidity constraint. In
the presence of biases, however, there is a trade-off between the two inefficiencies:
1) the liquidity constraint and differences in salience make increasing the stamp
duty tax less efficient than raising the council tax; 2) on the other hand, raising the
council tax causes a shift in demand away from c0 which in our example is the shock
absorber. In the extreme case when there are no liquidity constraints, it is optimal
to impose no council tax. Otherwise, the problem of the social planner amounts to
choosing the optimal combination of stamp duty and council tax to jointly solve the
following two equations:

ĥ
(

τS + τ
r + k− g̃

r− g̃

)
= R (3.42)

dV
dτ

= 0 (3.43)

Figure C16 reports the optimal mix of taxes computed for a house worth £430, 000
which is the median value of properties in band D in 2017. The property pays a
stamp duty of £11, 500 and we assume that it pays a yearly council tax of £1, 419.73,
the in-sample median amount in the corresponding band and year. The upper panel
shows how the optimal combination varies as a function of the discount rate r + k,
while the bottom panel varies the attenuation parameter γ. The figures confirm the
above intuition. From Figure C16a we can see that when the liquidity premium is
zero, the optimal policy is to levy only the stamp duty tax. For a small liquidity pre-
mium there is an optimal mix that includes positive amounts of both taxes, however,
the borrowing constraints become dominant fairly quickly and make it optimal to
set a stamp duty of zero. Figure C16b, on the other hand, focuses on the effect of
salience. Even when the council tax is entirely non-salient, i.e., γ = 0, it is still opti-
mal to raise a little over 20% of revenue through it. As the tax becomes more salient,
its distortionary effect on c0 decreases, therefore, its proportion should increase, up
to the point where it becomes the only form of taxation for γ greater than 0.25. It
should be noted, however, that this assumes that tax policy changes do not affect
any of the parameters. In practice, changing the tax mix can change the inattention
parameter γ.

3.5 Conclusions

This paper studies the incidence of property taxes in the UK housing market. By us-
ing a geographical discontinuity approach, exploiting the considerable difference
in council tax rates across London Boroughs, we show that agents significantly
underreact to council taxes. Our empirical estimates of council tax incidence on
house prices is never significantly negative and this lack of significance cannot be
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attributed to lack of power. This is in sharp contrast to the large stamp duty in-
cidence estimated by Best and Kleven (2018) and suggests that agents do not pay
sufficient attention to taxes deferred to the future, or possibly points to evidence of
very large search frictions or other cognitive costs. In Section 3.4.2, we touch upon
the policy implications of our findings, however, one should be aware of issues aris-
ing when manipulating tax rates given that there is no guarantee that changes in
policies are not followed by changes in tax salience and therefore behaviour. The
analysis in this paper relies on data from the residential property market, however,
it can also be extended to other domains of tax policy. One general take-away from
the present work is that transaction taxes, such as the stamp duty tax, have a large
incidence on transaction prices while deferred taxes, such as the council tax, have a
lower effect on prices but potentially higher impact on consumption choices. This
implies that the optimal mix of taxes may be some combination of the two. The
analysis can be extended, for instance, to financial securities where the fact that a
transaction tax might be very distortionary does not imply that it is optimal to raise
revenues only through capital gains20 or dividend taxes.

The findings in the paper keep open the question of the nature of the channels
through which inattentive households correct their mistakes and adjust their con-
sumption policies, once neglected taxes materialise. Access to disaggregated ex-
penditure data could help shed light on this matter: this can be done by analysing
differences in consumption responses at the border between Boroughs, which we
should expect to arise whenever agents fail to optimally account for tax differences
and are forced to adjust their expenditures ex-post to meet their budget constraints.

20While the capital gains tax is a transaction tax, the fact that it is borne by the seller of the as-
set suggests that agents could still underreact to it as it is a deferred tax and, therefore less salient
compared to a tax charged at the moment of purchase like the stamp duty tax.
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A. Appendix to Learning from Past Prices:
Evidence from the UK Housing Market

A.1 Tables

Table A1: Listings and Comparable Transactions - Summary Statistics

The table presents summary statistics for the set of listings and recent comparable transactions that
have at least one match. Summary statistics are presented separately for the sample of data be-
fore March 2012 and post March 2012. Nb. of Observations refers to the total number of unique
listings and transactions, respectively. Listing price is the first quote at which a property has been
listed, while transaction price is the final agreed price between the buyer and the seller. Property
type refers to the built-form of the property which can be one of four possible categories: detached,
semi-detached, terraced house or a flat. Number of rooms refers to the total number of habitable
rooms in the property. I report the following statistics on the distribution of prices and number
of rooms: Mean is the average value, Min is the lowest value, P25, Median and P75 are the 25-
th, 50-th and 75-th percentile of the distributions, respectively, and Max is the highest value ob-
served in the sample. For property type, I report the fraction of observations that are of a given type.

Listings Transactions

Pre March 2012 Post March 2012 Pre March 2012 Post March 2012

Nb. of Observations 1,007,942 1,983,528 986,287 2,521,505
Listing/Transaction Price
Mean £233,497 £268,402 £220,134 £256,734
Min £10,500 £10,500 £10,300 £10,018
P25 £125,000 £129,995 £119,995 £125,000
Median £178,500 £194,950 £170,000 £189,995
P75 £265,000 £310,000 £250,000 £300,000
Max £17,500,000 £25,000,000 £19,250,000 £18,500,000
Property type (%)
Detached 16.00 15.23 17.34 18.67
Semi-detached 28.11 28.84 27.84 29.12
Terraced 31.66 34.15 31.27 31.72
Flat 24.23 21.77 23.55 20.49
Number of rooms
Mean 4.47 4.53 4.49 4.59
Min 1 1 1 1
P25 3 3 3 4
Median 4 4 4 5
P75 5 5 5 5
Max 18 19 18 19
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Table A2: Listings Matched to Respective Transactions - Summary Statistics

The table presents summary statistics for the set of listings that have been matched to their respec-
tive ex-post transactions in the period from March 2012. Listing price is the first quote at which
a property has been listed, while transaction price is the final agreed price between the buyer and
the seller. Price discount is the percentage difference between the initial listed price and the final
transaction price. TOM is time on the market measured in weeks. Property type refers to the built-
form of the property which can be one of four possible categories: detached, semi-detached, terraced
house or a flat. Number of rooms refers to the total number of habitable rooms in the property.
I report the following statistics on the distribution of prices, price discounts, time on the market
and number of rooms: Mean is the average value, Min is the lowest value, P25, Median and P75
are the 25-th, 50-th and 75-th percentile of the distributions, respectively, and Max is the highest
value observed in the sample. For property type, I report the fraction of observations that are of a
given type. Nb. of Observations refers to the total number of transactions in the matched sample.

Listing Price Transaction Price

Mean £255,038 Mean £245,569

Min £12,000 Min £11,000

P25 £134,950 P25 £127,000

Median £190,000 Median £186,500

P75 £299,950 P75 £290,000

Max £15,000,000 Max £16,200,000

Price Discount (%) TOM (weeks)

Mean -3.78 Mean 26.48

Min -63.52 Min 4.00

P25 -6.41 P25 14.43

Median -3.13 Median 20.57

P75 0.00 P75 31.43

Max 1.16 Max 256.86

Number of rooms Property type (%)

Mean 4.62 Detached 15.14

Min 1 Semi-detached 32.16

P25 4 Terraced 35.28

Median 5 Flat 17.42

P75 5

Max 16

Nb. of Observations 1,067,282
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Table A3: Effect of Transaction Prices on Quotes Around Publishing Dates

The table presents the results of the following regression: log(qi) = α + β× log(pj) + Controls + εi,
where qi is the listed price for property i and pj is the transaction price for a comparable prop-
erty j sold in the previous month. Columns (1) and (2) present the results of running sepa-
rate regressions for the set of untreated and treated listings, where treated listings are those that
are able to directly observe the most recent price data. Columns (3)-(6) combine the two sam-
ples in a single regression of the following form: log(qi) = α + β0 × log(pj) + β1 × log(pj) ×
Treatedi + γTreatedi + Controls + εi, where Treatedi is a dummy that turns on when the listing price
has been set in the period following the price data publication date. Controls for the time dis-
tance between the listing and the comparable transaction measured in days and its interaction with
log price are included in all columns but (5). Column (5) instead includes time distance (mea-
sured in weeks) dummies and their interaction with log price. Fixed-effects included are: list-
ing month-year dummies in columns (4)-(6), and; transaction ID dummies in column (6). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

Untreated Treated Full Sample

(1) (2) (3) (4) (5) (6)

Price × Treated 0.0045∗∗∗ 0.0045∗∗∗ 0.0039∗∗ 0.0034∗∗∗

(0.0015) (0.0015) (0.0015) (0.0011)
Price 0.8401∗∗∗ 0.8446∗∗∗ 0.8401∗∗∗ 0.8402∗∗∗ 0.8367∗∗∗

(0.0026) (0.0036) (0.0023) (0.0023) (0.0030)
Treated -0.0550∗∗∗ -0.0548∗∗∗ -0.0459∗∗ -0.0387∗∗∗

(0.0185) (0.0185) (0.0183) (0.0134)

Controls
Price x Time distance Yes Yes Yes Yes No Yes
Price x Time distance dummies No No No No Yes No

Fixed-Effects
Month-year No No No Yes Yes Yes
Transaction ID No No No No No Yes

Observations 3,698,564 3,768,386 7,466,950 7,466,950 7,466,950 7,466,950
R2 0.7028 0.7056 0.7043 0.7050 0.7050 0.8689
Within R2 – – – 0.7032 0.7032 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A4: Effect of Transaction Prices on Quotes - Including Listing Price Updates

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns
on when the listing price has been set/updated in the period following the most recent price data
publication date. Controls for the time distance between the listing and the comparable transaction
measured in days and its interaction with log price are included in all columns but (5). Column (5)
instead includes time distance (measured in weeks) dummies and their interaction with log price.
Listing ID fixed effects are included in specifications (3)-(6). Additional fixed-effects include: listing
month-year dummies in all columns but (3) and; transaction ID dummies in columns (2) and (6).
Standard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4) (5) (6)

Price × Treated 0.0043∗∗∗ 0.0030∗∗∗ 0.0008∗∗∗ 0.0008∗∗∗ 0.0008∗∗∗ 0.0025∗∗∗

(0.0012) (0.0009) (0.0002) (0.0002) (0.0002) (0.0002)

Price 0.8418∗∗∗ -0.0012∗∗∗ −0.0001

(0.0020) (0.0002) (0.0001)

Treated -0.0521∗∗∗ -0.0342∗∗∗ -0.0135∗∗∗ -0.0080∗∗∗ -0.0080∗∗∗ -0.0331∗∗∗

(0.0150) (0.0103) (0.0027) (0.0024) (0.0024) (0.0023)

Controls

Price × Time distance Yes Yes Yes Yes No Yes

Price × Time distance dummies No No No No Yes No

Fixed-Effects

Listing ID No No Yes Yes Yes Yes

Month-year Yes Yes No Yes Yes Yes

Transaction ID No Yes No No No Yes

Observations 11,410,244 11,410,244 11,410,244 11,410,244 11,410,244 11,410,244

R2 0.7080 0.8695 0.9985 0.9989 0.9989 0.9994

Within R2 0.7053 0.0000 0.0011 0.0002 0.0002 0.0156

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A5: Effect of Transaction Prices on Quotes - Before vs After March 2012

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Post March 2012i + β2 × log(pj) × Treatedi + β3 × log(pj) × Treatedi × Post March 2012i +

γ1Post March 2012i + γ2Treatedi + γ3 × Treatedi × Post March 2012i + Controls + εi, where qi is the
listed price for property i, pj is the transaction price for a comparable property j sold in the pre-
vious month, Post March 2012i is a dummy that equals one for listings published starting from
March 2012 and Treatedi is a dummy that turns on when the listing price has been set/updated
in the period following the most recent price data publication date. Controls for the time dis-
tance between the listing and the comparable transaction measured in days and its interaction with
log price are included in all columns but (3). Column (3) instead includes time distance (mea-
sured in weeks) dummies and their interaction with log price. Fixed-effects included are: listing
month-year dummies in all columns but (1) and; transaction ID dummies in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price × Treated × Post March 2012 0.0075∗∗∗ 0.0072∗∗∗ 0.0072∗∗∗ 0.0040∗∗

(0.0021) (0.0021) (0.0021) (0.0018)
Price × Treated -0.0041∗∗ -0.0038∗ -0.0043∗∗ -0.0010

(0.0020) (0.0020) (0.0020) (0.0016)
Price × Post March 2012 0.0513∗∗∗ 0.0508∗∗∗ 0.0508∗∗∗

(0.0020) (0.0020) (0.0020)
Price 0.7889∗∗∗ 0.7893∗∗∗ 0.7875∗∗∗

(0.0024) (0.0024) (0.0028)
Treated 0.0459∗ 0.0417∗ 0.0492∗∗ 0.0102

(0.0236) (0.0235) (0.0235) (0.0190)
Post March 2012 -0.6188∗∗∗ -0.6381∗∗∗ -0.6382∗∗∗

(0.0241) (0.0247) (0.0248)
Treated × Post March 2012 -0.0878∗∗∗ -0.0839∗∗∗ -0.0838∗∗∗ -0.0443∗∗

(0.0246) (0.0245) (0.0245) (0.0216)

Controls
Price × Time distance Yes Yes No Yes
Price × Time distance dummies No No Yes No

Fixed-Effects
Month-year No Yes Yes Yes
Transaction ID No No No Yes

Observations 16,367,900 16,367,900 16,367,900 16,367,900
R2 0.6805 0.6814 0.6814 0.8565
Within R2 – 0.6782 0.6782 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A6: Effect of Transaction Prices on Quotes Around Placebo Publishing Dates

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns on
when the listing price has been set/updated in the week before (first four columns) or one week after
(last four columns) the closest price data publication date. Only listing prices from the two weeks
surrounding the placebo publishing dates are considered. Controls for the time distance between
the listing and the comparable transaction measured in days and its interaction with log price are in-
cluded in all columns but (3) and (7). Columns (3) and (7) instead include time distance (measured in
weeks) dummies and their interaction with log price. Additional fixed-effects include: listing month-
year dummies in all columns but (1) and (5) and; transaction ID dummies in columns (4) and (8).
Standard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

7 days before 7 days after

(1) (2) (3) (4) (5) (6) (7) (8)

Price × Treated 0.0014 0.0012 0.0006 0.0000 0.0016 0.0012 0.0007 -0.0007

(0.0016) (0.0016) (0.0016) (0.0014) (0.0016) (0.0016) (0.0016) (0.0013)

Price 0.8457∗∗∗ 0.8451∗∗∗ 0.8428∗∗∗ 0.8436∗∗∗ 0.8435∗∗∗ 0.8429∗∗∗

(0.0026) (0.0026) (0.0028) (0.0035) (0.0035) (0.0033)

Treated -0.0208 -0.0192 -0.0106 0.0008 -0.0222 -0.0164 -0.0100 0.0086

(0.0194) (0.0194) (0.0194) (0.0162) (0.0191) (0.0190) (0.0191) (0.0160)

Controls

Price × Time distance Yes Yes No Yes Yes Yes No Yes

Price × Time distance dummies No No Yes No No No Yes No

Fixed-Effects

Month-year No Yes Yes Yes No Yes Yes Yes

Transaction ID No No No Yes No No No Yes

Observations 4,569,583 4,569,583 4,569,583 4,569,583 4,705,129 4,705,129 4,705,129 4,705,129

R2 0.7061 0.7069 0.7069 0.8785 0.7104 0.7113 0.7113 0.8811

Within R2 – 0.7038 0.7038 0.0000 – 0.7085 0.7085 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A7: Indirect Price Effects Through Intermediate Listings

The table presents the results of the following regression: log(qs
i ) = αs + βs × log(ps

j ) +Controls+ εs
i ,

where qs
i is the listed price for property i and ps

j is the transaction price for a comparable prop-
erty j sold in the previous month. The sample includes quotes that have been set/updated
during the second week following the most recent price data publication date. Each column
refers to a different subsample s of quote-price pairs: column (1) considers quotes with no com-
parable listings in the previous two weeks; column (2) quotes with comparable listings only
in the week before the publication date; column (3) quotes with comparable listings only in
the week after the publication date, and; column (4) quotes with comparable listings in both
weeks. Controls for the time distance between the listing and the comparable transaction mea-
sured in days and its interaction with log price are included in all columns, as well as controls
for the number of comparable quotes in the current and each of the two previous weeks. Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

No prior comps Comps in wk -1 Comps in wk +1 Comps in all wks

(1) (2) (3) (4)

Price 0.8166∗∗∗ 0.8328∗∗∗ 0.8402∗∗∗ 0.8479∗∗∗

(0.0094) (0.0103) (0.0084) (0.0054)

Controls

Price x Time distance Yes Yes Yes Yes

Nb. of comps per week Yes Yes Yes Yes

Observations 384,735 332,801 486,689 1,728,033

R2 0.6927 0.6947 0.7092 0.7110

Adjusted R2 0.6927 0.6947 0.7092 0.7110

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A8: Indirect Price Effects by Number of Intermediate Comparable Listings

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + ∑k βk ×
log(pj)× k Comps in week ni + ∑k γk × k Comps in week ni + Controls + εi, where qi is the listed price
for property i, pj is the transaction price for a comparable property j sold in the previous month
and k Comps in week ni is a dummy that turns on when quote i has k comparable listings in
week n. The sample includes quotes that have been set/updated during the second week fol-
lowing the most recent price data publication date. Columns (1)-(3) investigate the indirect ef-
fect of past transactions on quotes based on the number of comparable listings in the week be-
fore the price data publication date, while columns (4)-(6) consider the indirect price effect based
on the number of comparable listings in the first week after the publication date. Controls for
the time distance between the listing and the comparable transaction measured in days and its
interaction with log price are included in all columns, as well as controls for the number of com-
parable quotes in weeks +1, +2 and -1, +2 and their interaction with log price in columns (2)-(3)
and (5)-(6), respectively. Columns (3) and (6) also include listing month-year fixed effects. Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

n = −1 n = +1

(1) (2) (3) (4) (5) (6)

Price 0.8330∗∗∗ 0.8367∗∗∗ 0.8358∗∗∗ 0.8277∗∗∗ 0.8333∗∗∗ 0.8323∗∗∗

(0.0041) (0.0043) (0.0043) (0.0041) (0.0043) (0.0043)
Price × 1 comp in week n (1) 0.0080∗∗∗ 0.0090∗∗∗ 0.0089∗∗∗ 0.0121∗∗∗ 0.0137∗∗∗ 0.0135∗∗∗

(0.0024) (0.0024) (0.0024) (0.0025) (0.0025) (0.0025)
Price × 2 comps in week n 0.0137∗∗∗ 0.0157∗∗∗ 0.0157∗∗∗ 0.0153∗∗∗ 0.0187∗∗∗ 0.0186∗∗∗

(0.0029) (0.0030) (0.0030) (0.0028) (0.0029) (0.0029)
Price × 3 comps in week n 0.0123∗∗∗ 0.0154∗∗∗ 0.0146∗∗∗ 0.0199∗∗∗ 0.0252∗∗∗ 0.0248∗∗∗

(0.0036) (0.0038) (0.0038) (0.0034) (0.0036) (0.0036)
Price × > 3 comps in week n (2) 0.0132∗∗∗ 0.0199∗∗∗ 0.0194∗∗∗ 0.0233∗∗∗ 0.0359∗∗∗ 0.0350∗∗∗

(0.0031) (0.0037) (0.0037) (0.0029) (0.0035) (0.0035)
1 comp in week n -0.0990∗∗∗ -0.1117∗∗∗ -0.1122∗∗∗ -0.1441∗∗∗ -0.1636∗∗∗ -0.1627∗∗∗

(0.0290) (0.0294) (0.0293) (0.0297) (0.0299) (0.0299)
2 comps in week n -0.1678∗∗∗ -0.1930∗∗∗ -0.1922∗∗∗ -0.1835∗∗∗ -0.2253∗∗∗ -0.2256∗∗∗

(0.0350) (0.0361) (0.0360) (0.0341) (0.0350) (0.0349)
3 comps in week n -0.1460∗∗∗ -0.1847∗∗∗ -0.1764∗∗∗ -0.2358∗∗∗ -0.3009∗∗∗ -0.2970∗∗∗

(0.0440) (0.0459) (0.0458) (0.0414) (0.0431) (0.0429)
> 3 comps in week n -0.1490∗∗∗ -0.2354∗∗∗ -0.2275∗∗∗ -0.2695∗∗∗ -0.4238∗∗∗ -0.4131∗∗∗

(0.0380) (0.0447) (0.0446) (0.0349) (0.0418) (0.0417)

(2)−(1) 0.0052 0.0109∗∗∗ 0.0105∗∗∗ 0.0112∗∗∗ 0.0222∗∗∗ 0.0215∗∗∗

p-value (0.1193) (0.0029) (0.0046) (0.0002) (0.0000) (0.0000)

Controls
Price x Time distance Yes Yes Yes Yes Yes Yes
Price x Nb. of comps per week No Yes Yes No Yes Yes

Fixed-Effects
Month-year No No Yes No No Yes

Observations 2,932,258 2,932,258 2,932,258 2,932,258 2,932,258 2,932,258
R2 0.7067 0.7068 0.7077 0.7068 0.7069 0.7078
Within R2 – – 0.7050 – – 0.7051

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A9: Chain Effects of Prices on Quotes by Order of Match

The table presents the results of the following regression:
log(qi) = α + β1 × log(pj) + ∑10

k=2 β
pre
k × log(pj) × Comp Order k Prei +

∑10
k=2 γ

pre
k Comp Order k Prei + ∑10

k=1 β
post
k × log(pj) × Comp Order k Posti +

∑10
k=1 γ

post
k Comp Order k Posti + Controls + εi, where qi is the listed price for

property i, pj is the transaction price for a comparable property j sold in the
previous month and Comp Order k Pre (Post)i is a dummy that turns on when
quote i is the k-th sequential match to transaction j in the period before (after)
the price data publication date. The sample includes listings in the one-month
period surrounding the publication date that have a comparable transaction
which has at least one treated and one untreated match. Controls for the time
distance between the listing and the comparable transaction measured in days
and its interaction with log price are included in all columns but (1). Column
(3) also includes listing month-year fixed effects. Standard errors double-
clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3)

Price 0.8388∗∗∗ 0.8404∗∗∗ 0.8401∗∗∗

(0.0011) (0.0020) (0.0020)
Price × 2nd Untreated 0.0010 0.0011 0.0011

(0.0016) (0.0016) (0.0016)
Price × 3rd Untreated 0.0043∗∗ 0.0045∗∗ 0.0044∗∗

(0.0020) (0.0020) (0.0020)
Price × 4th Untreated 0.0054∗∗ 0.0057∗∗ 0.0056∗∗

(0.0023) (0.0023) (0.0023)
Price × 5th Untreated 0.0060∗∗ 0.0063∗∗ 0.0062∗∗

(0.0027) (0.0027) (0.0027)
Price × 6th Untreated 0.0039 0.0042 0.0041

(0.0033) (0.0033) (0.0033)
Price × 7th Untreated 0.0068∗ 0.0071∗ 0.0070∗

(0.0039) (0.0039) (0.0039)
Price × 8th Untreated 0.0021 0.0024 0.0025

(0.0044) (0.0044) (0.0044)
Price × 9th Untreated 0.0036 0.0040 0.0041

(0.0055) (0.0055) (0.0055)
Price × 10th or more Untreated 0.0000 0.0004 0.0003

(0.0038) (0.0038) (0.0038)
Price × 1st Treated 0.0015 0.0023 0.0025

(0.0014) (0.0017) (0.0017)
Price × 2nd Treated 0.0039∗∗ 0.0048∗∗ 0.0050∗∗∗

(0.0016) (0.0019) (0.0019)
Price × 3rd Treated 0.0054∗∗∗ 0.0064∗∗∗ 0.0065∗∗∗

(0.0019) (0.0022) (0.0022)
Price × 4th Treated 0.0106∗∗∗ 0.0116∗∗∗ 0.0116∗∗∗

(0.0022) (0.0025) (0.0025)
Price × 5th Treated 0.0082∗∗∗ 0.0093∗∗∗ 0.0092∗∗∗

(0.0026) (0.0029) (0.0029)

Continued on next page
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Table A9 – Continued from previous page

(1) (2) (3)

Price × 6th Treated 0.0098∗∗∗ 0.0109∗∗∗ 0.0107∗∗∗

(0.0031) (0.0033) (0.0033)
Price × 7th Treated 0.0117∗∗∗ 0.0129∗∗∗ 0.0126∗∗∗

(0.0037) (0.0039) (0.0039)
Price × 8th Treated 0.0177∗∗∗ 0.0188∗∗∗ 0.0186∗∗∗

(0.0044) (0.0046) (0.0046)
Price × 9th Treated 0.0099∗ 0.0110∗∗ 0.0108∗∗

(0.0051) (0.0052) (0.0052)
Price × 10th or more Treated 0.0101∗∗∗ 0.0113∗∗∗ 0.0112∗∗∗

(0.0036) (0.0039) (0.0039)

Controls
Price x Time distance No Yes Yes

Fixed-Effects
Month-year No No Yes

Observations 11,292,00911,292,009 11,292,009
R2 0.7081 0.7081 0.7089
Within R2 – – 0.7063
Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A10: Effect of Prices on Quote Updates

The table presents the results of the following regression: log(qn
i ) = α + β1 × log(pj) + ∑5

n=2 βn ×
log(pj) × Update Number ni + ∑5

n=2 γnUpdate Number ni + Controls + εn
i , where qn

i is the n-th listed
price update for property i, pj is the transaction price for a comparable property j sold in the
month before property i was initially listed and Update Number ni is a dummy that turns on
when qn

i is the n-th consecutive quote update for property i. The sample includes listings
in the post March 2012 period that have at least one price change and a comparable transac-
tion that has been published just before the listing was first posted. Controls for the time dis-
tance between the listing and the comparable transaction measured in days and its interaction
with log price are included in all columns but (1). Column (3) also includes listing month-
year fixed effects and column (4) includes listing ID as well as month-year fixed effects. Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price 0.8320∗∗∗ 0.8345∗∗∗ 0.8310∗∗∗ -0.0105∗∗∗

(0.0010) (0.0012) (0.0013) (0.0002)
Price × 1st Change 0.0097∗∗∗ 0.0132∗∗∗ 0.0129∗∗∗ 0.0070∗∗∗

(0.0002) (0.0009) (0.0009) (0.0002)
Price × 2nd Change 0.0160∗∗∗ 0.0224∗∗∗ 0.0217∗∗∗ 0.0131∗∗∗

(0.0014) (0.0021) (0.0021) (0.0004)
Price × 3rd Change 0.0194∗∗∗ 0.0282∗∗∗ 0.0272∗∗∗ 0.0184∗∗∗

(0.0028) (0.0036) (0.0036) (0.0007)
Price × ≥ 4th Change 0.0244∗∗∗ 0.0359∗∗∗ 0.0349∗∗∗ 0.0225∗∗∗

(0.0074) (0.0080) (0.0079) (0.0014)
1st Price Change -0.1560∗∗∗ -0.2037∗∗∗ -0.1990∗∗∗ -0.1224∗∗∗

(0.0019) (0.0105) (0.0105) (0.0025)
2nd Price Change -0.2542∗∗∗ -0.3407∗∗∗ -0.3306∗∗∗ -0.2299∗∗∗

(0.0164) (0.0250) (0.0250) (0.0049)
3rd Price Change -0.3099∗∗∗ -0.4294∗∗∗ -0.4146∗∗∗ -0.3204∗∗∗

(0.0340) (0.0429) (0.0428) (0.0091)
≥ 4th Price Change -0.3793∗∗∗ -0.5362∗∗∗ -0.5226∗∗∗ -0.3972∗∗∗

(0.0894) (0.0959) (0.0950) (0.0171)

Controls
Price x Time distance No Yes Yes Yes

Fixed-Effects
Month-year No No Yes Yes
Listing ID No No No Yes

Observations 5,868,384 5,868,384 5,868,384 5,868,384
R2 0.7160 0.7161 0.7170 0.9981
Within R2 – – 0.7101 0.2670

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1



APPENDIX A. LEARNING FROM PAST PRICES 121

Table A11: Relation between Effect of Past Prices and Future Price Discount

The table presents the results of the following regression: log(qk
i ) = αk + βk × log(pj) +Controls+ εk

i ,
where qk

i is the first quoted price for listing i which is in quantile k of the price discount distribution
and pj is the transaction price for a similar property which has been published in the month before the
listing was originally posted. The sample includes listings in the sample period starting from March
2012 that have been matched to their respective ex-post transactions. The first five columns present
the coefficients on recent transaction prices per quantile of price discount: column (1) considers list-
ings sold at the largest price discount while column (5) listings that were sold at a premium to quoted
price. The final column includes all matched listings to give an idea of the average price effect. Con-
trols for the time distance between the listing and the comparable transaction measured in days and
its interaction with log price as well as listing month-year fixed effects are included in all regressions.
Standard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4) (5) Full Sample

Price 0.8671∗∗∗ 0.8198∗∗∗ 0.7851∗∗∗ 0.7921∗∗∗ 0.8737∗∗∗ 0.8254∗∗∗

(0.0053) (0.0053) (0.0054) (0.0049) (0.0073) (0.0027)

Controls

Price x Time distance Yes Yes Yes Yes Yes Yes

Fixed-Effects

Month-year Yes Yes Yes Yes Yes Yes

Observations 956,899 1,000,010 985,789 1,411,376 813,810 5,167,884

R2 0.7392 0.7209 0.7084 0.6936 0.7041 0.7153

Within R2 0.7332 0.7183 0.7072 0.6926 0.6984 0.7144

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A12: Relation between Effect of Past Prices and Time on the Market

The table presents the results of the following regression: log(qk
i ) = αk + βk × log(pj) +Controls+ εk

i ,
where qk

i is the first quoted price for listing i which is in quantile k of the time-on-the-market
(TOM) distribution and pj is the transaction price for a similar property which has been pub-
lished in the month before the listing was originally posted. The sample includes listings in
the sample period starting from March 2012 that have been matched to their respective ex-
post transactions. Panel A considers properties that sold at a discount to listed price, while
Panel B focuses on properties sold at a premium. The first five columns present the coeffi-
cients on recent transaction prices per TOM quantile: column (1) looks at listings that took the
least time to sell, while column (5) listings that had the longest duration. The final column in-
cludes all matched listings to give an idea of the average price effect. Controls for the time dis-
tance between the listing and the comparable transaction measured in days and its interaction
with log price as well as listing month-year fixed effects are included in all regressions. Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

Panel A: Properties Sold at Discount

(1) (2) (3) (4) (5) Full Sample

Price 0.8216∗∗∗ 0.8120∗∗∗ 0.8139∗∗∗ 0.8245∗∗∗ 0.8306∗∗∗ 0.8211∗∗∗

(0.0065) (0.0055) (0.0063) (0.0058) (0.0062) (0.0030)

Controls
Price x Time distance Yes Yes Yes Yes Yes Yes

Fixed-Effects
Month-year Yes Yes Yes Yes Yes Yes

Observations 736,353 905,252 680,331 752,650 638,851 3,713,437
R2 0.7230 0.7232 0.7273 0.7276 0.7258 0.7242
Within R2 0.7220 0.7222 0.7253 0.7243 0.7165 0.7223

Panel B: Properties Sold at Premium

(1) (2) (3) (4) (5) Full Sample

Price 0.9042∗∗∗ 0.8113∗∗∗ 0.8152∗∗∗ 0.8157∗∗∗ 0.8303∗∗∗ 0.8431∗∗∗

(0.0115) (0.0117) (0.0109) (0.0107) (0.0115) (0.0054)

Controls
Price x Time distance Yes Yes Yes Yes Yes Yes

Fixed-Effects
Month-year Yes Yes Yes Yes Yes Yes

Observations 314,764 253,091 291,296 317,690 277,606 1,454,447
R2 0.7080 0.7002 0.6939 0.6782 0.6814 0.6933
Within R2 0.7026 0.6940 0.6887 0.6739 0.6781 0.6895

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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A.2 Figures

Figure A1: Timeline of Price Data Publication

The figure presents the natural experiment that generates shocks to the information set of sellers:
beginning in March 2012, the Land Registry publishes regular monthly data on housing transactions
on the twentieth working day of the subsequent month. For example, transaction prices, depicted in
blue, from February are published on the twentieth working day of March which is 28th March in
this case. The property listings published at the beginning of March and before the publication date,
depicted in light green, do not observe the data on February transactions, while those published after
this date, depicted in dark green, may observe February price data and therefore can use this to make
inference about demand.

t01Feb 01Mar 01Apr

28Mar

Publication Date

February Transactions

Listings do NOT observe prices

Listings may observe prices

Figure A2: Geographic Coverage

The figure plots heat maps of the geographic coverage of the transaction and listing data between
2009-2018 by year across England and Wales, computed as the total number of observations by local
authority district. Figure A2a displays the total number of transactions, while figure A2b the total
number of unique listings in the sample.

(a) Transactions (b) Listings



APPENDIX A. LEARNING FROM PAST PRICES 124

Figure A3: Price Discount and Time on the Market for Matched Listings

The figure displays the distributions of price discount and time on the market (TOM) for the set of
property listings that were matched to their respective ex-post transactions in the sample from 2009
to 2018. Figure A3a plots the histogram of the percentage difference between the first listed price and
the final transaction price, while Figure A3b shows the histogram of time on the market measured
as the number of weeks from listing to sale completion. The mean and median values of the two
distributions are represented by the green and blue vertical lines, respectively.
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Figure A4: Fraction of Explained Variation in Prices

The figure displays the percentage of the variation in the price data that is explained by observable
characteristics, measured as the R-squared from a regression of prices on various fixed effects. Figure
A4a shows the variation explained in the listing data and Figure A4b in the transaction data. Fixed ef-
fects included are: month-year of the listing or transaction; property type (detached, semi-detached,
terraced house or a flat); number of rooms in the property, where properties with between 6 and 10
rooms are placed in one bucket and properties with more than 10 rooms in another; location, mea-
sured as the address outcode, and; a rural/urban area indicator from the 2011 Census classification
of Output Areas.
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Figure A5: Variation In Quotes Around Publishing Dates

The figure plots the results from a regression of listing prices on dummies for the signed number
of days between the listing date and the closest price data publication date for the sample after
March 2012. The regression is specified as follows: qi = α + ∑15

∆=−15 γ∆∆i + FE + εi, where the
fixed-effects correspond to the characteristics the matching is based on, i.e., location, property type,
number of rooms and month-year, and ∆i is a dummy for the signed difference in days between the
date on which a listing is posted and the closest publication date. The baseline coefficient is the one
for listings posted exactly on the publication date. The vertical lines represent the 95% confidence
bounds for the point estimates.
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Figure A6: Density of Listing Observations Around Publishing Dates

The figure displays the smoothed density of the number of listing observations per day around price
data publication dates for the sample after March 2012, where I fit two polynomials on each side of
the publication date. The total daily count is first regressed on day-of-the-week dummies and the
residuals of this regression are used for the density test.
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Figure A7: Difference-in-differences Analysis: Pre vs Post March 2012

The figure presents the change to the institutional setting that occurred in March 2012: beginning
in March 2012, the Land Registry publishes regular monthly data on transactions on the twentieth
working day of the subsequent month. The second figure shows that transaction prices, depicted in
blue, from June 2013, are published on the twentieth working day of July which is 26th July in this
case. Property listings posted at the beginning of June and before the publication date, depicted in
light green, do not observe the June transactions data, while those posted after this date, depicted in
dark green, may observe and therefore use use this data to make inference about market demand.
The first figure shows that in the period before March 2012, there was no such regular shock to the
sellers’ information set. For example, June transactions data was not made publicly available on
the twentieth working day of July 2011, 28th July. Listings that occurred throughout the months
of July and August 2011, therefore, are depicted in light green as they might not observe the June
transactions data or, at least, not have this information arrive at the same regular intervals.

Pre March 2012

t01Jun2011 01Jul2011 01Aug2011

28Jul2011

June Transactions Listings might NOT observe prices

Post March 2012

t01Jun2013 01Jul2013 01Aug2013

26Jul2013
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June Transactions
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Figure A8: Experiment I: Indirect Price Effects Through Intermediate Listings

The figure provides an example of the possible channels through which a given price observation
might have an influence on subsequent sellers. The blue circles represent transaction prices from a
given month, the light green ones (Q-1) are listings that were posted in the week before the price
data becomes available, while the dark green circles, Q+1 and Q+2, are listings posted in the first or
second week following the publication date, respectively. Focusing on the listings posted in week
two after publication and their links to the transaction prices from the previous month, I show the
four possible cases that can arise. Going from left to right, there may be: (a) no comparable listing
posted in any of the two weeks surrounding the Price Paid data publication date; (b) comparable
listings only in the week before but not the week after; (c) comparable listings only in the week after
but not the week before, and; (d) at least one similar listing in both weeks.
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Figure A9: Experiment II: Chain Effects of Prices on Quotes by Order of Match

The figure shows how a given price observation can have an increasing number of channels of indi-
rect influence on future listings as the number of interim comparables grows. The blue circle repe-
sents a given transaction price, the light green circles are listings posted before its publication date
and the dark green circles are listings posted after. The listings are indexed in order to capture their
chronological arrival in the market and provide an idea of the information set of subsequent sellers.
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Figure A10: Effect of Transaction Prices by Order of Match

The figure plots the price coefficients from the following regression along with
their 95% confidence bounds: log(qi) = α + β1 × log(pj) + ∑10

k=2 β
pre
k × log(pj) ×

Comp Order k Prei + ∑10
k=2 γ

pre
k Comp Order k Prei + ∑10

k=1 β
post
k × log(pj) × Comp Order k Posti +

∑10
k=1 γ

post
k Comp Order k Posti + Controls + εi, where qi is the listed price for property i, pj is the

transaction price for a comparable property j sold in the previous month and Comp Order k Pre (Post)i
is a dummy that turns on when quote i is the k-th sequential match to transaction j in the period
before (after) the price data publication date. The sample includes listings in the one-month period
surrounding the publication date that have a comparable transaction which has at least one treated
and one untreated match. Controls for the time distance between the listing and the comparable
transaction measured in days and its interaction with log price, as well as listing month-year fixed
effects are included in this specification.
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Figure A11: Experiment III: Effect of Prices on Quote Updates

The figure shows the way that a given price observation can exercise an increasing influence on
a listing via its effect on other observable listings. The blue circle depicts a transaction from the
previous month, the green circles are the ordered quote changes for a listing that has been first posted
following the release of the transaction data and the pink circles represent other listings posted while
the property of interest is still on the market.
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Figure A12: Effect of Transaction Prices on Quote Updates

The figure displays the price coefficients from the following regression along with their 95%
confidence bounds: log(qn

i ) = α + β1 × log(pj) + ∑5
n=2 βn × log(pj) × Update Number ni +

∑5
n=2 γnUpdate Number ni + Controls + εn

i , where qn
i is the n-th listed price update for property i, pj

is the transaction price for a comparable property j sold in the month before property i was initially
listed and Update Number ni is a dummy that turns on when qn

i is the n-th consecutive quote update
for property i. The sample includes listings in the post March 2012 period that have at least one price
change and a comparable transaction that has been published just before the listing was first posted.
Controls for the time distance between the listing and the comparable transaction measured in days
and its interaction with log price as well as month-year fixed effects are included in this specification.
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Figure A13: Effect of Past Prices by Price Discount

The figure plots the price coefficients of the following regressions along with their 95% confidence
bounds: log(qk

i ) = αk + βk × log(pj) + Controls + εk
i , where qk

i is the first quoted price for listing i
which is in quantile k of the price discount distribution and pj is the transaction price for a similar
property which has been published in the month before the listing was originally posted. The sam-
ple includes listings in the sample period starting from March 2012 that have been matched to their
respective ex-post transactions. Each coefficient comes from a regression of listings from a different
quantile of the price discount distribution: the first coefficient is based on listings sold at the largest
price discount while the last one on listings that were sold at a premium to quoted price. The hori-
zontal line represents the average price effect across the full sample. Controls for the time distance
between the listing and the comparable transaction measured in days and its interaction with log
price, as well as listing month-year fixed effects are included in the regressions.

0.775

0.800

0.825

0.850

0.875

Highest Discount 2nd 3rd 4th Premium
Price Discount Quantile

Effect of Comparables by Price Differential



APPENDIX A. LEARNING FROM PAST PRICES 131

Figure A14: Effect of Past Prices by Time on the Market

The figure plots the price coefficients of the following regressions along with their 95% confidence
bounds: log(qk

i ) = αk + βk × log(pj) + Controls + εk
i , where qk

i is the first quoted price for listing i
which is in quantile k of the TOM distribution and pj is the transaction price for a similar property
which has been published in the month before the listing was originally posted. The sample includes
listings after March 2012 that have been matched to their respective ex-post transactions. Figure
A14a considers properties that sold at a discount to listed price, while Figure A14b properties sold
at a premium. Each coefficient comes from a regression of listings from a different quantile of the
TOM distribution: the first coefficient is based on listings that took the least time to sell while the
last one on listings that had the longest duration. The horizontal line represents the average price
effect across the full sample. Controls for the time distance between the listing and the comparable
transaction measured in days and its interaction with log price, as well as listing month-year fixed
effects are included in the regressions.
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Figure A15: Impulse Response to a Shock to the Public Signal

The figure plots impulse responses of prices to a shock to the public signal in period 13. The response
of naı̈ve prices is depicted in pink, that of rational prices is in blue and the underlying state of demand
is plotted in green. The various figures vary the number of simultaneous price-setters in a given
period, n = 1, 5, 10 and the frequency at which the public signal arrives, k = 1, 6, 12 months. The
shock is standardised to correspond to a £10,000 increase in prices on impact.
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Figure A16: Impulse Response to a Shock to the Underlying

The figure plots impulse responses of prices to a shock to the underlying in period 13. The response of
naı̈ve prices is depicted in pink, that of rational prices is in blue and the underlying state of demand
is plotted in green. The various figures vary the number of simultaneous price-setters in a given
period, n = 1, 5, 10 and the frequency at which the public signal arrives, k = 1, 6, 12 months. The
shock is standardised to correspond to a £10,000 increase in the underlying on impact.
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A.3 Structural Estimation

In this section I sketch a stylised model that builds on the results from Section 1.1
in the main body of the paper in order to gain intuition regarding the way that
covariances between prices and subsequent quotes are expected to change as the
number of intermediate comparables grows under the Bayesian and naı̈ve learning
models. I make the model more realistic compared to Section 1.1 by allowing the
underlying state to change over time and for the presence of commonly observed
signals. Subsequently, I use the estimated coefficients from the empirical study of
indirect effects obtained in Section 1.4.2 to provide some evidence regarding the
magnitude of the impact of pricing mistakes on aggregate market dynamics.

For simplicity, let us assume that the log of house prices are determined by the
fundamental δt which follows an AR(1) process with persistence parameter ρ and
mean a:

δt = a + ρδt−1 + εt , εt
iid∼ N (0, σ2

ε ) (A.1)

This can be thought of as a reduced-form way of modelling the demand that sellers
face. As a result, prospective sellers set listing prices based on their expectation of
δt:

pi,t = Ei,t[δt] (A.2)

qi,t = Ei,t[δt] (A.3)

where qi,t is the log quote set by agent i at time t and pi,t is a transaction price for a
property sold at time t. Agents do not observe the realisation of δt and, therefore,
try to estimate its value from available information. In particular, the informational
structure is characterised by the presence of public and private signals. Each seller
receives a private signal sq

i,t before choosing the quote:

sq
i,t = δt + νi,t , νi,t

iid∼ N (0, σ2
ν ) (A.4)

The noise terms are independent and identically distributed across individuals and
time. If there are multiple sellers in a given period, they all receive a different private
signal. There is also a publicly observable signal st arriving every k periods:

st = δt + ut , ut
iid∼ N (0, σ2

u) (A.5)

In this case too, the noise is identically and independently distributed across time.
The public signal represents any public information that sellers might use to make
inference about housing demand and prices, for instance a housing price index pub-
lished at regular frequencies. Alternatively, we can interpret it as representing local
area characteristics or amenities visible to everyone. Finally, sellers also observe the
full history of past transactions and listings which they also use to extract the private
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signals that agents in previous periods have received. The signal contained in past
prices has the same form as the other two signals but possibly a different precision:

sp
i,t = δt + ηi,t , ηi,t

iid∼ N (0, σ2
η) (A.6)

I make a distinction between the private signals embedded in prices and those from
quotes to account for the fact that the final transaction price can be adjusted upon in-
teraction with the buyer. In other words, the signal extracted from transaction prices
contains additional information about demand and (idiosyncratic) buyer character-
istics to the extent that buyers have some bargaining power. This approach of mod-
elling private signals differently across quotes and prices can be seen as a reduced-
form way of capturing housing market features common in the housing literature
without resorting to more complicated search models.1 At every point in time, the
information sets of agents consist of the full history of past prices, the history of pub-
lic signals and their own private signals. They thus form conditional expectations
of δt and set quotes accordingly, as follows:

pi,t = E[δt|sp
i,t, st, pt−1, qt−1] (A.7)

qi,t = E[δt|sq
i,t, st, pt−1, qt−1] (A.8)

where st = {s0, s0+k, s0+2k, ...}, pt−1 = {p0, p1, ..., pt−1}, qt−1 = {q0, q1, ..., qt−1} de-
note the full history of public signals, transaction prices and listing prices, respec-
tively, that agents at time t observe2, while sp

i,t or sq
i,t is agent i’s private signal.

A.3.1 Parameter Calibration

The goal of this exercise is to help us gain understanding about the way that the
effect of a given price p on subsequent listings q evolves as the number of interim
comparables increases under the Bayesian learning framework. Specifically, I use
the setting of Figure A8 and Table A7 where I look at the effect of recent transaction
prices on quotes posted in week two after the publication date. As in Table A7, there
are four types of sellers depending on what is in their information set:

• Seller 1 observes the newly published price data but has no comparable list-
ings in the two-week period around the publishing date;

1The specifics of the housing market microstructure and the bargaining process go beyond the
scope of this paper. Here, I simply attempt to provide some evidence on the economic magnitude
of the effect of naı̈ve inference by sellers. Using a more involved search model would render the
interpretation of the results more difficult without changing the big picture. See Han and Strange
(2015) for a survey of the literature on the microstructure of housing markets.

2As price data are published on a monthly basis, agents observe the history of past prices up until
the previous month. Quotes can, however, be observed at a higher frequency on property websites.
Here I assume that sellers can observe all past listings up to the previous week.
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• Seller 2 observes the newly published price data and has at least one com-
parable listing in the week before and no comparable in the week after the
publishing date;

• Seller 3 observes the newly published price data and has no comparable listing
in the week before and at least one comparable in the week after the publishing
date, and;

• Seller 4 observes the newly published price data and has at least one compa-
rable listing both in the week before and the week after the publishing date.

The object of interest for this analysis is the covariance of four types of quotes with
the most recently published prices. For simplicity, I assume that the newly pub-
lished comparable transaction price, denoted as p0, has been determined based on
agent 0’s private signal sp

0,0 and a public signal3 that englobes the full history of past
information s0:

p0 = E[δ0|s
p
0,0, s0] = wp

0 × sp
0,0 + (1− wp

0)× s0 (A.9)

where the weight that agent 0 assigns to his private signal is proportional to the

signal precision, i.e., wp
0 =

σ−2
η

σ−2
η +σ−2

w
. The variance of the posterior belief of agent 0

P0|0 is given by:
P0|0 = (wp

0)
2 × σ2

η + (1− wp
0)

2 × σ2
w (A.10)

One period later, at t = 1, prospective sellers determine listing prices using available
information. Type 1 sellers observe p0, their own private signal sq

1,1, a new public
signal s1

4 and they also directly observe the same public signal s0 that has already
been accounted for by agent 0. Rational sellers understand that p0 already incor-
porates the original public signal s0 and thus avoid double-counting it. They form
their posterior belief about δ1, and hence the quote, as follows:

q1,1 = E[δ1|s
q
1,1, s1, p0, s0] = E[δ1|s

q
1,1, s1, p0]

= wq
1 ×

[
σ−2

ν

σ−2
ν + σ−2

u
× sq

1,1 +
σ−2

u

σ−2
ν + σ−2

u
× s1

]
+ (1− wq

1)× (a + ρ× p0)

(A.11)

where wq
1 = P1|0 ×

(
P1|0 +

(
σ−2

ν

σ−2
ν +σ−2

u

)2
× σ2

ν +
(

σ−2
u

σ−2
ν +σ−2

u

)2
× σ2

u

)−1

and P1|0 = ρ2 ×

P0|0 + σ2
ε is the variance of agent 1’s prior belief about δ1 given the available informa-

tion up to time 0. Note that under the Bayesian learning framework agent 1 does not

3The public signal here can be interpreted as the prior belief of agent 0 based on his information
set before receiving the private signal. For this reason, I allow this prior to have a different precision

compared to the periodic public signals, as follows: s0 = δ0 + w0 , w0
iid∼ N (0, σ2

w).
4For this exercise, I assume that a new public signal arrives every period, i.e., k=1.
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assign an explicit weight on the initial public signal s0, rather he treats p0 as a suffi-
cient statistic for all information up to t = 0, being aware that it already embeds s0.
Naı̈ve sellers, however, fail to recognise this, believing that p0 is solely determined
based on agent 0’s private signal, i.e., they believe p0 = Ẽ[δ0|s

p
0,0]. As a result, they

treat the newly observed price as independent from the public signal, leading them
to assign an explicit weight to the public signal when forming beliefs about the state
of housing demand:

q̃1,1 = Ẽ[δ1|s
q
1,1, s1, p0, s0]

= wq
1 ×

[
σ−2

ν

σ−2
ν + σ−2

u
× sq

1,1 +
σ−2

u

σ−2
ν + σ−2

u
× s1

]
+

(1− wq
1)× [a + wp

0 × ρp0 + (1− wp
0)× ρs0]

(A.12)

where the weight wq
1 is the same as in the Bayesian case. Notice that when forming

his prior belief the naı̈ve agent assigns weights to p0 and s0 that a Bayesian learner
would assign to the correctly extracted signals sp

0,0 and s0, respectively. The prob-
lem with naı̈ve learners is that they believe that past actions are purely driven by
private signals, p0 = sp

0,0, when instead p0 has effectively been determined using
all available information at t = 0, as in equation (A.9). This leads naı̈ve agents to
overweight the commonly observed public signal relative to Bayesian learners, as
they account for it both directly (through its explicit weight in the prior belief) and
indirectly (through its effect on p0).

Type 2 sellers observe p0 and another listing, denoted by q0,1, posted before the
price data publication date5. They also observe the original public signal s0, the
public signal from period 1, s1, and a new private signal, sq

2,1. The Bayesian learner
would extract only the private signals embedded in q0,1 and p0 and form beliefs as
follows:

q2,1 = E[δ1|s
q
2,1, q0,1, s1, p0, s0] = E[δ1|s

q
2,1, sq

0,1, s1, p0]

= wq
2 ×

[
σ−2

ν

2σ−2
ν + σ−2

u
× (sq

2,1 + sq
0,1) +

σ−2
u

2σ−2
ν + σ−2

u
× s1

]
+ (1− wq

2)× [a + ρ× p0]

(A.13)

where wq
2 = P1|0 ×

(
P1|0 + 2×

(
σ−2

ν

2σ−2
ν +σ−2

u

)2
× σ2

ν +
(

σ−2
u

2σ−2
ν +σ−2

u

)2
× σ2

u

)−1

. Notice

that both agent 2 and the interim agent forming quote q0,1 observe s0 and s1. Since
seller 2 knows their precisions, he can easily infer what the private signal embed-

5Note that the interim agent does not observe p0 and therefore cannot learn agent 0’s pri-
vate signal. He thus sets his quote q0,1 based on the original public signal s0, the new public
signal from period 1, s1, and his own private signal, sq

0,1, as follows: q0,1 = E[δ1|s
q
0,1, s1, s0] =

wq
0 ×

[
σ−2

ν

σ−2
ν +σ−2

u
× sq

0,1 +
σ−2

u
σ−2

ν +σ−2
u
× s1

]
+ (1 − wq

0) × (a + ρs0), where wq
0 = (ρ2 × σ2

w + σ2
ε ) ×(

ρ2 × σ2
w + σ2

ε +
(

σ−2
ν

σ−2
ν +σ−2

u

)2
× σ2

ν +
(

σ−2
u

σ−2
ν +σ−2

u

)2
× σ2

u

)−1
.
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ded in q0,1 is and avoid double counting information. His posterior belief about δ1

is thus equal to a weighted-average of the prior belief (for which p0 is again a suf-
ficient statistic) and the average of the newly obtained signals in period 1, i.e., sq

2,1,
sq

0,1 and s1, weighted by their precisions. The naı̈ve sellers of type 2 make the same
mistake as the type 1 naı̈ve sellers, i.e., they incorrectly believe that p0 = Ẽ[δ0|s

p
0,0]

and q0,1 = Ẽ[δ1|s
q
0,1]. As a result, the effect of naı̈ve inference is now two-fold as the

initial public signal has been embedded both in p0 and q0,1. Since the private signals
received by agent 2 and the interim agent who sets q0,1 are equally-precise, agent 2
sets his quote as follows:

q̃2,1 = Ẽ[δ1|s
q
2,1, q0,1, s1, p0, s0]

= wq
2 ×

[
σ−2

ν

2σ−2
ν + σ−2

u
× (sq

2,1 + q0,1) +
σ−2

u

2σ−2
ν + σ−2

u
× s1

]
+

(1− wq
2)× [a + wp

0 × ρp0 + (1− wp
0)× ρs0]

(A.14)

Similarly to seller 1, the naı̈ve type 2 seller assigns weights that would be correct
if past prices and quotes were truly equal to the private signals of the preceding
agents. As this is not the case, however, seller 2 ends up overweighting the common
signal through two indirect channels: its influence on p0 and that on q0,1.

Moving on to type 3 sellers, recall that the only difference with type 2 sellers is
that they observe listing q1,1, instead of q0,1, which is set after the publication date
and, in turn, directly observes p0 as well. Rational agents would recognise this and
extract the private signal from q1,1 in order to avoid double counting the public
signals s0 and s1 as well as the private information coming from p0. Accordingly, it
follows that the weights they would assign are the same as for the rational type 2
sellers:

q3,1 = E[δ1|s
q
3,1, q1,1, s1, p0, s0] = E[δ1|s

q
3,1, sq

1,1, s1, p0]

= wq
2 ×

[
σ−2

ν

2σ−2
ν + σ−2

u
× (sq

3,1 + sq
1,1) +

σ−2
u

2σ−2
ν + σ−2

u
× s1

]
+ (1− wq

2)× [a + ρ× p0]

(A.15)

Similarly, naı̈ve type 3 sellers assign the same weights as naı̈ve type 2 sellers under
the beliefs that p0 = Ẽ[δ0|s

p
0,0] and q1,1 = Ẽ[δ1|s

q
1,1]. As a result, they set the quote as

follows:

q̃3,1 = Ẽ[δ1|s
q
3,1, q̃1,1, s1, p0, s0]

= wq
2 ×

[
σ−2

ν

2σ−2
ν + σ−2

u
× (sq

3,1 + q̃1,1) +
σ−2

u

2σ−2
ν + σ−2

u
× s1

]
+

(1− wq
2)× [a + wp

0 × ρp0 + (1− wp
0)× ρs0]

(A.16)

An important distinction arises when comparing naı̈ve agents of types 2 and 3.
Namely, although they assign the exact same weights, the fact that q̃1,1, unlike q0,1,



APPENDIX A. LEARNING FROM PAST PRICES 138

is formed using information from p0 could lead to different covariances with p0 be-
tween type 2 and type 3 sellers. This is because agent 3 has two different channels of
influence from the private signal in p0, one through the direct effect of p0 on q̃3,1 and
another due to the indirect effect of p0 through q̃1,1. In addition, there are now four
implicit weights on the public signal: the direct effect, the indirect effect through p0

and the indirect effect through q̃1,1, which can further be decomposed into its direct
effect on q̃1,1 and the indirect effect on q̃1,1 through p0.

Finally, sellers of type 4 have the richest information set: they observe p0 as well
as both q0,1 and q2,1, in addition to the private and public signals, sq

4,1, s1 and s0. As
usual, rational type 4 sellers extract and use only the private information from the
intermediate quotes, leading to the following beliefs:

q4,1 = E[δ1|s
q
4,1, q2,1, q0,1, s1, p0, s0] = E[δ1|s

q
4,1, sq

2,1, sq
0,1, s1, p0]

= wq
4 ×

[
σ−2

ν

3σ−2
ν + σ−2

u
× (sq

4,1 + sq
2,1 + sq

0,1) +
σ−2

u

3σ−2
ν + σ−2

u
× s1

]
+

(1− wq
4)× [a + ρ× p0]

(A.17)

where wq
4 = P1|0×

(
P1|0 + 3×

(
σ−2

ν

3σ−2
ν +σ−2

u

)2
× σ2

ν +
(

σ−2
u

3σ−2
ν +σ−2

u

)2
× σ2

u

)−1

. Naı̈ve type

4 agents instead, believing that p0 = Ẽ[δ0|s
p
0,0], q0,1 = Ẽ[δ1|s

q
0,1] and q2,1 = Ẽ[δ1|s

q
2,1],

assign weights as follows:

q̃4,1 = Ẽ[δ1|s
q
4,1, q̃2,1, q0,1, s1, p0, s0]

= wq
4 ×

[
σ−2

ν

3σ−2
ν + σ−2

u
× (sq

4,1 + q̃2,1 + q0,1) +
σ−2

u

3σ−2
ν + σ−2

u
× s1

]
+

(1− wq
4)× [a + wp

0 × ρp0 + (1− wp
0)× ρs0]

(A.18)

The initial public signal s0 influences type 4 sellers via six different channels, the
private signal from p0 affects q̃4,1 via two channels and the new public signal s1 is
also counted multiple times through its effect on q0,1, q̃2,1 and the directly assigned
weight.

The results above show how agents overweight repeated information at the ex-
pense of novel signals and this generates differences in the covariance between
quotes and prices under the naı̈ve model relative to the Bayesian case. To more
clearly see the differences in comovement patterns under the two models, I com-
pute the covariances of the four sets of quotes with p0 for both the Bayesian and
naı̈ve agents. It can be shown that the covariances in the Bayesian case take the
following forms:

Cov(q1,1, p0) = ρVar(δ0) + (1− wq
1)(w

p
0)

2 × ρσ2
η + (1− wq

1)(1− wp
0)

2 × ρσ2
w (A.19)

Cov(q2,1, p0) = ρVar(δ0) + (1− wq
2)(w

p
0)

2 × ρσ2
η + (1− wq

2)(1− wp
0)

2 × ρσ2
w (A.20)
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Cov(q3,1, p0) = Cov(q2,1, p0) (A.21)

Cov(q4,1, p0) = ρVar(δ0) + (1− wq
4)(w

p
0)

2 × ρσ2
η + (1− wq

4)(1− wp
0)

2 × ρσ2
w (A.22)

Note that the only difference in the covariance expressions above is in the weights
(1− wq

i ) that multiply the two terms related to the respective inverse precisions of
the private signal sp

0,0 and the initial public signal s0. As these weights are decreasing
with i, it follows that Bayesian updating would imply that the covariances, and
therefore the betas, should be monotonically decreasing with the increase in the
number of intermediate comparables, regardless of the parameter values. In other
words, as the information set of agents grows, they optimally assign a lower weight
to each individual signal. Benchmarking the results of the empirical analysis from
Section 1.4.2 against these predictions, we can reject the hypothesis that sellers in the
housing market act in a Bayesian way. On the other hand, we can derive the same
covariances for the naı̈ve case and compare:

Cov(q̃1,1, p0) = ρVar(δ0) + (1− wq
1)(w

p
0)

3 × ρσ2
η + (1− wq

1)(1− wp
0)

2(1 + wp
0)× ρσ2

w

(A.23)
Cov(q̃2,1, p0) = ρVar(δ0) + (1− wq

2)(w
p
0)

3 × ρσ2
η+

[wq
2k2(1− wq

0) + (1− wq
2)(1− wp

0)(1 + wp
0)](1− wp

0)× ρσ2
w

(A.24)

Cov(q̃3,1, p0) = ρVar(δ0) + [wq
2k2(1− wq

1) + (1− wq
2)](w

p
0)

3 × ρσ2
η+

[wq
2k2(1− wq

1) + (1− wq
2)](1 + wp

0)(1− wp
0)

2 × ρσ2
w

(A.25)

Cov(q̃4,1, p0) = ρVar(δ0) + [wq
4k4(1− wq

2) + (1− wq
4)](w

p
0)

3 × ρσ2
η+

[wq
4k4(1− wq

0)(1 + wq
2k2) + wq

4k4(1− wq
2)(1− wp

0)(1 + wp
0)+

(1− wq
4)(1− wp

0)(1 + wp
0)](1− wp

0)× ρσ2
w

(A.26)

where k2 = σ−2
ν

2σ−2
ν +σ−2

u
and k4 = σ−2

ν

3σ−2
ν +σ−2

u
. The covariances may no longer be decreas-

ing due to the overweighting of stale information embedded in p0 relative to new
signals coming from intermediate comparables. We can note that the original pub-
lic signal is always more heavily weighted in the covariances between naı̈ve quotes
and prices relative to the rational case. This is because, on top of assigning the opti-
mal explicit weight to it, naı̈ve sellers also get an indirect influence through its effect
on previous prices/quotes. On the other hand, the private signal coming from p0

might be both under- or over-weighted across agents, depending on the relative
precisions.

As the results in Section 1.4.2 cannot be reconciled with Bayesian updating, I
postulate that sellers are subject to naı̈ve learning and use these results in a cali-
bration exercise. Specifically, I estimate the signal precisions described above, i.e.,
the precisions of the original and periodic public signals, σ−2

w and σ−2
u , and the two

types of private signals, σ−2
η and σ−2

ν , using equations (A.23)-(A.26) and the results
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from Table A7. The parameters that govern the underlying process are estimated by
running a monthly regression of log aggregate house prices on aggregate income.
The predicted values from the above regression are used to fit an AR(1) process that
yields estimates for a, ρ and σ2

ε . The calibrated parameters are then employed in
simulations in order to evaluate the aggregate impact of naı̈ve inference on house
prices in the long run.

A.3.2 Estimating the Magnitude of the Effect of Information Shocks

under the Bayesian and Naı̈ve Filters

Given the model described in equations (A.1)-(A.8) above, we can trace the learning
process of sellers who act sequentially. Assuming there are n agents per period, the
first set of agents set prices using their own private signal and the public signal6,7.
For simplicity, I here assume that there is a single public signal arriving at t = 0,
however, I vary the frequency of public signal arrival in the simulations. I first
describe the updating process for fully rational agents and subsequently specify
how this differs from naı̈ve updating. Let us denote the posterior belief of agents at
time t by δt|t, it then follows that:

pi
0 = δi

0|0 = E[δ0|si
0, s0] = w0 × si

0 + (1− w0)× s0 (A.27)

where w0 =
σ−2

η

σ−2
η +σ−2

u
, as before. Denoting the variance of the posterior belief of each

seller acting in period t by Pt|t, we have:

P0|0 = w2
0 × σ2

η + (1− w0)
2 × σ2

u (A.28)

The second set of agents in period t = 1 observe the same public signal s0 and the n
prices from the previous period, along with their own private signals. Unlike in the
standard single-file example, their prior belief, therefore, is not simply equal to the
posterior of any of the preceding agents, rather it is a function of the average private
signal from the previous period. Denoting this prior belief by δt|t−1, we obtain:

δ1|0 = a + w̃0 × ρs̄0 + (1− w̃0)× ρs0 (A.29)

where w̃0 =
nσ−2

η

σ−2
u +nσ−2

η
and s̄0 is the equally-weighted average of private signals at

time 0. The variance of the prior belief of agents in period t is denoted as Pt|t−1. This

6I assume that same-period agents do not observe each other’s actions and thus cannot use each
other’s signals to inform their decisions.

7For the simulation exercise, I focus solely on transaction prices and, therefore, disregard the
quote setting procedure. As a result, the only relevant type of private signal is the one embedded in
final prices, i.e., sp

i,t. For ease of exposition, I hereafter denote this signal simply by si
t.
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can be computed recursively as follows:

P1|0 = ρ2P̃0|0 + σ2
ε (A.30)

where P̃0|0 = w̃2
0 × 1

n σ2
η + (1− w̃0)

2 × σ2
u in order to adjust for the fact that there are

n private signals coming from period t− 1. Each period agent i forms his posterior
belief and the price by mixing the above prior and his private signal:

pi
1 = δi

1|1 = w1 × si
1 + (1− w1)× δ1|0 (A.31)

where w1 = P1|0 × (P1|0 + σ2
η)
−1 is the Kalman gain. From here onward, we can de-

fine the recursion through which agents form and update their beliefs in a sequen-
tial way. The prior beliefs are computed by adjusting for the number of observations
from the previous period:

δt|t−1 = a + w̃t−1 × ρs̄t−1 + (1− w̃t−1)× ρδt−1|t−2 (A.32)

where w̃t−1 = Pt−1|t−2 × (Pt−1|t−2 +
1
n σ2

η)
−1. The variance of this prior can be com-

puted as follows:

Pt|t−1 = ρ2Pt−1|t−1 + σ2
ε = ρ2[Pt−1|t−2 − P2

t−1|t−2(Pt−1|t−2 +
1
n

σ2
η)
−1] + σ2

ε (A.33)

Finally, agent i forms his posterior belief updated for his private signal and sets the
price accordingly:

pi
t = δi

t|t = wt × si
t + (1− wt)× δt|t−1 (A.34)

where wt = Pt|t−1(Pt|t−1 + σ2
η)
−1. Plugging in the expressions for the prior beliefs

recursively, we can outline the way that prices depend on all past signals:

pi
t = δi

t|t =wtsi
t + (1− wt)[a + w̃t−1ρs̄t−1]+

(1− wt)(1− w̃t−1)[ρa + w̃t−2ρ2s̄t−2] + ...+

(1− wt)(1− w̃t−1)(1− w̃t−2)...(1− w̃1)[ρ
t−1a + w̃0ρt s̄0]+

(1− wt)(1− w̃t−1)(1− w̃t−2)...(1− w̃1)(1− w̃0)ρ
ts0

(A.35)

The difference between rational and naı̈ve sellers is that naı̈ve learners treat all past
prices as independent signals by failing to account for the fact that previous sellers
have similarly formed their beliefs by looking at yet earlier prices. They, therefore,
assign the same weights as the rational agents but directly to the observed prices as
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opposed to the signals extracted:

p̃i
t = δ̃i

t|t =wtsi
t + (1− wt)[a + w̃t−1ρ ¯̃pt−1]+

(1− wt)(1− w̃t−1)[ρa + w̃t−2ρ2 ¯̃pt−2] + ...+

(1− wt)(1− w̃t−1)(1− w̃t−2)...(1− w̃1)[ρ
t−1a + w̃0ρt p̄0]+

(1− wt)(1− w̃t−1)(1− w̃t−2)...(1− w̃1)(1− w̃0)ρ
ts0

(A.36)

This leads them to overweight old signals at the expense of more recent information
since these have also been incorporated into the prices set by more recent sellers. To
determine the magnitude of the effect of naı̈ve learning given the estimates obtained
in the empirical analysis, I simulate a market with the above characteristics and
compare the impact of various information shocks on prices in the rational and naı̈ve
settings.
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A.4 Additional Tables and Figures

Table A13: Effect of Transaction Prices on Quotes - Sample Refinements

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns on
when the listing price has been set in the period following the price data publication date. Columns
(1)-(2) present the results for the sample of listings that excludes those posted exactly on publishing
dates; columns (3)-(4) restrict the sample to listings posted in the two weeks around the publishing
date and; columns (5)-(6) limit the number of comparables to no more than 30 per listing. Con-
trols for the time distance between the listing and the comparable transaction measured in days
and its interaction with log price are included in all columns. Fixed-effects included are: listing
month-year dummies in all columns, and; transaction ID dummies in columns (2), (4) and (6). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

No quotes on pub dates Within 7 days of pub date Less than 30 comps

(1) (2) (3) (4) (5) (6)

Price × Treated 0.0041∗∗∗ 0.0031∗∗∗ 0.0056∗∗∗ 0.0038∗∗ 0.0035∗∗ 0.0033∗∗∗

(0.0016) (0.0011) (0.0021) (0.0018) (0.0015) (0.0011)

Price 0.8400∗∗∗ 0.8457∗∗∗ 0.8387∗∗∗

(0.0023) (0.0037) (0.0023)

Treated -0.0501∗∗∗ -0.0351∗∗ -0.0637∗∗ -0.0406∗ -0.0423∗∗ -0.0373∗∗∗

(0.0193) (0.0138) (0.0254) (0.0210) (0.0183) (0.0132)

Controls

Price × Time distance Yes Yes Yes Yes Yes Yes

Fixed-Effects

Month-year Yes Yes Yes Yes Yes Yes

Transaction ID No Yes No Yes No Yes

Observations 7,075,069 7,075,069 2,908,410 2,908,410 7,421,440 7,421,440

R2 0.7052 0.8696 0.7058 0.8800 0.7056 0.8694

Within R2 0.7033 0.0000 0.7036 0.0001 0.7038 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A14: Effect of Transaction Prices on Quotes - Sensitivity to Publication Days

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transac-
tion price for a comparable property j sold in the previous month and Treatedi is a dummy that
turns on when the listing price has been set in the period following the price data publication
date. In columns (1)-(2) dummies for the day-of-the-week of the publishing date are also interacted
with price pj and Treatedi (for brevity I report only the subset of relevant coefficients). Columns
(3)-(4) restrict the sample to cases where the publishing date occurred at the end of the month,
while columns (5)-(6) to cases where it fell at the beginning of the next month. Controls for the
time distance between the listing and the comparable transaction measured in days and its in-
teraction with log price are included in all columns. Fixed-effects included are: listing month-
year dummies in all columns, and; transaction ID dummies in columns (2), (4) and (6). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

Pub day of week Pub day at end of month Pub day at beginning of month

(1) (2) (3) (4) (5) (6)

Price × Treated 0.0057∗∗∗ 0.0034∗∗∗ 0.0040∗∗ 0.0033∗∗∗ 0.0107∗ 0.0057
(0.0019) (0.0011) (0.0016) (0.0011) (0.0063) (0.0045)

Price × Treated ×Monday -0.0019 0.0007∗

(0.0034) (0.0004)
Price × Treated × Tuesday -0.0070∗∗ −0.0000

(0.0030) (0.0003)
Price × Treated ×Wednesday 0.0040 -0.0004

(0.0030) (0.0003)
Price × Treated × Thursday -0.0048∗ 0.0000

(0.0029) (0.0003)
Price 0.8402∗∗∗ 0.8411∗∗∗ 0.8225∗∗∗

(0.0023) (0.0023) (0.0097)
Treated -0.0669∗∗∗ -0.0383∗∗∗ -0.0483∗∗ -0.0365∗∗∗ -0.1131 -0.0537

(0.0233) (0.0134) (0.0190) (0.0138) (0.0789) (0.0576)

Controls
Price × Time distance Yes Yes Yes Yes Yes Yes

Fixed-Effects
Month-year Yes Yes Yes Yes Yes Yes
Transaction ID No Yes No Yes No Yes

Observations 7,466,950 7,466,950 6,959,170 6,959,170 507,780 507,780
R2 0.7050 0.8689 0.7072 0.8701 0.6735 0.8525
Within R2 0.7032 0.0000 0.7055 0.0000 0.6697 0.0002

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A15: Effect of Transaction Prices on Quotes - Existing Houses and by Price
Range

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns on
when the listing price has been set in the period following the price data publication date. Columns
(1)-(2) present the results for the sample of listings that excludes newly-built properties; columns
(3)-(4) restrict the sample to quotes that are below median, and; columns (5)-(6) to quotes above
median. Controls for the time distance between the listing and the comparable transaction measured
in days and its interaction with log price are included in all columns. Fixed-effects included are:
listing month-year dummies in all columns, and; transaction ID dummies in columns (2), (4) and (6).
Standard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

Existing houses only Price below median Price above median

(1) (2) (3) (4) (5) (6)

Price × Treated 0.0045∗∗∗ 0.0029∗∗∗ 0.0046∗ 0.0040∗∗ 0.0081∗∗ 0.0028

(0.0015) (0.0011) (0.0025) (0.0017) (0.0032) (0.0020)

Price 0.8431∗∗∗ 0.5467∗∗∗ 0.5934∗∗∗

(0.0023) (0.0034) (0.0048)

Treated -0.0545∗∗∗ -0.0333∗∗ -0.0547∗ -0.0468∗∗ -0.1000∗∗ -0.0306

(0.0186) (0.0134) (0.0294) (0.0206) (0.0407) (0.0248)

Controls

Price × Time distance Yes Yes Yes Yes Yes Yes

Fixed-Effects

Month-year Yes Yes Yes Yes Yes Yes

Transaction ID No Yes No Yes No Yes

Observations 7,225,115 7,225,115 3,919,114 3,919,114 3,089,563 3,089,563

R2 0.7093 0.8719 0.3981 0.7039 0.4363 0.7309

Within R2 0.7076 0.0000 0.3958 0.0000 0.4327 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A16: Effect of Transaction Prices on Quotes - Controlling for Listing Agent

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is
the transaction price for a comparable property j sold in the previous month and Treatedi is
a dummy that turns on when the listing price has been set in the period following the price
data publication date. Controls for the time distance between the listing and the comparable
transaction measured in days and its interaction with log price are included in all columns but
(3). Column (3) instead includes time distance (measured in weeks) dummies and their interac-
tion with log price. Fixed-effects included are: real-estate agent dummies in all columns; list-
ing month-year dummies in columns (2)-(4), and; transaction ID dummies in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price × Treated 0.0037∗∗∗ 0.0042∗∗∗ 0.0039∗∗∗ 0.0023∗∗

(0.0013) (0.0013) (0.0013) (0.0010)

Price 0.5581∗∗∗ 0.5455∗∗∗ 0.5418∗∗∗

(0.0019) (0.0019) (0.0026)

Treated -0.0444∗∗∗ -0.0524∗∗∗ -0.0481∗∗∗ -0.0240∗∗

(0.0154) (0.0154) (0.0153) (0.0115)

Controls

Price x Time distance Yes Yes No Yes

Price x Time distance dummies No No Yes No

Fixed-Effects

Agent ID Yes Yes Yes Yes

Month-year No Yes Yes Yes

Transaction ID No No No Yes

Observations 7,443,824 7,443,824 7,443,824 7,443,824

R2 0.7899 0.7925 0.7925 0.8970

Within R2 0.3690 0.3540 0.3540 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A17: Effect of Transaction Prices on Quotes - Controlling for Reference Price

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns on
when the listing price has been set in the period following the price data publication date. Con-
trols for the purchase price of the listed property are included in all columns. Controls for the
time distance between the listing and the comparable transaction measured in days and its inter-
action with log price are included in all columns but (3). Column (3) instead includes time distance
(measured in weeks) dummies and their interaction with log price. Additional fixed-effects include:
listing month-year dummies in all columns but (1), and transaction ID dummies in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price × Treated 0.0035∗∗∗ 0.0040∗∗∗ 0.0036∗∗∗ 0.0030∗∗∗

(0.0013) (0.0013) (0.0013) (0.0011)

Price 0.5173∗∗∗ 0.5108∗∗∗ 0.5089∗∗∗

(0.0020) (0.0020) (0.0028)

Treated -0.0431∗∗∗ -0.0500∗∗∗ -0.0447∗∗∗ -0.0343∗∗∗

(0.0163) (0.0162) (0.0161) (0.0130)

Purchase Price 0.5009∗∗∗ 0.5081∗∗∗ 0.5081∗∗∗ 0.2276∗∗∗

(0.0014) (0.0014) (0.0014) (0.0013)

Controls

Price x Time distance Yes Yes No Yes

Price x Time distance dummies No No Yes No

Fixed-effects

Month-year No Yes Yes Yes

Transaction ID No No No Yes

Observations 7,457,256 7,457,256 7,457,256 7,457,256

R2 0.7752 0.7768 0.7768 0.8759

Within R2 – 0.7755 0.7755 0.0544

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A18: Effect of Transaction Prices on Quotes - Positive Shocks

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns on
when the listing price has been set/updated in the period following the most recent price publica-
tion date. The sample of sold properties includes only those whose transaction price is above the
predicted price obtained using a hedonic regression of the form: log(pj) = FE + ε j, where the fixed
effects refer to the month-year of the transaction, location measured as the address outcode, prop-
erty type (detached, semi-detached, terraced house or a flat) and number of rooms. Controls for the
time distance between the listing and the comparable transaction measured in days and its interac-
tion with log price are included in all columns but (3). Column (3) instead includes time distance
(measured in weeks) dummies and their interaction with log price. Additional fixed-effects include:
listing month-year dummies in all columns but (1), and transaction ID dummies in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price × Treated 0.0035∗∗ 0.0034∗∗ 0.0029∗ 0.0028∗∗∗

(0.0015) (0.0015) (0.0015) (0.0010)

Price 0.9137∗∗∗ 0.9087∗∗∗ 0.9021∗∗∗

(0.0025) (0.0025) (0.0032)

Treated -0.0410∗∗ -0.0404∗∗ -0.0339∗ -0.0319∗∗

(0.0187) (0.0186) (0.0184) (0.0127)

Controls

Price × Time distance Yes Yes No Yes

Price × Time distance dummies No No Yes No

Fixed-Effects

Month-year No Yes Yes Yes

Transaction ID No No No Yes

Observations 5,464,143 5,464,143 5,464,143 5,464,143

R2 0.7696 0.7711 0.7711 0.8723

Within R2 – 0.7638 0.7638 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1



APPENDIX A. LEARNING FROM PAST PRICES 149

Table A19: Effect of Transaction Prices on Quotes - Negative Shocks

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns on
when the listing price has been set/updated in the period following the most recent price publica-
tion date. The sample of sold properties includes only those whose transaction price is below the
predicted price obtained using a hedonic regression of the form: log(pj) = FE + ε j, where the fixed
effects refer to the month-year of the transaction, location measured as the address outcode, prop-
erty type (detached, semi-detached, terraced house or a flat) and number of rooms. Controls for the
time distance between the listing and the comparable transaction measured in days and its interac-
tion with log price are included in all columns but (3). Column (3) instead includes time distance
(measured in weeks) dummies and their interaction with log price. Additional fixed-effects include:
listing month-year dummies in all columns but (1), and transaction ID dummies in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price × Treated 0.0049∗∗∗ 0.0054∗∗∗ 0.0047∗∗∗ 0.0035∗∗∗

(0.0015) (0.0015) (0.0015) (0.0010)

Price 0.9188∗∗∗ 0.9205∗∗∗ 0.9231∗∗∗

(0.0025) (0.0025) (0.0032)

Treated -0.0595∗∗∗ -0.0642∗∗∗ -0.0552∗∗∗ -0.0404∗∗∗

(0.0185) (0.0185) (0.0183) (0.0124)

Controls

Price × Time distance Yes Yes No Yes

Price × Time distance dummies No No Yes No

Fixed-Effects

Month-year No Yes Yes Yes

Transaction ID No No No Yes

Observations 5,946,101 5,946,101 5,946,101 5,946,101

R2 0.7507 0.7517 0.7517 0.8665

Within R2 – 0.7509 0.7509 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A20: Effect of Transaction Prices on Quotes - Large Positive Shocks

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi +Controls+ εi, where qi is the listed price for property i, pj is the transaction price
for a comparable property j sold in the previous month and Treatedi is a dummy that turns on when
the listing price has been set/updated in the period following the most recent price publication date.
The sample of sold properties includes only those for which the log transaction price is by more
than 0.20 greater than the predicted price obtained using a hedonic regression of the form: log(pj) =

FE + ε j, where the fixed effects refer to the month-year of the transaction, location measured as the
address outcode, property type (detached, semi-detached, terraced house or a flat) and number of
rooms. This cutoff roughly corresponds to the top 20% of the residual price distribution. Controls for
the time distance between the listing and the comparable transaction measured in days and its inter-
action with log price are included in all columns but (3). Column (3) instead includes time distance
(measured in weeks) dummies and their interaction with log price. Additional fixed-effects include:
listing month-year dummies in all columns but (1), and transaction ID dummies in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price × Treated 0.0041∗∗ 0.0036∗ 0.0026 0.0029∗∗

(0.0021) (0.0021) (0.0020) (0.0013)

Price 0.9192∗∗∗ 0.9140∗∗∗ 0.9069∗∗∗

(0.0036) (0.0035) (0.0044)

Treated -0.0481∗ -0.0418 -0.0299 -0.0329∗∗

(0.0258) (0.0257) (0.0254) (0.0161)

Controls

Price × Time distance Yes Yes No Yes

Price × Time distance dummies No No Yes No

Fixed-Effects

Month-year No Yes Yes Yes

Transaction ID No No No Yes

Observations 2,208,678 2,208,678 2,208,678 2,208,678

R2 0.7813 0.7827 0.7828 0.8762

Within R2 – 0.7748 0.7748 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A21: Effect of Transaction Prices on Quotes - Large Negative Shocks

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi +Controls+ εi, where qi is the listed price for property i, pj is the transaction price
for a comparable property j sold in the previous month and Treatedi is a dummy that turns on when
the listing price has been set/updated in the period following the most recent price publication date.
The sample of sold properties includes only those for which the log transaction price is by more
than 0.20 lower than the predicted price obtained using a hedonic regression of the form: log(pj) =

FE + ε j, where the fixed effects refer to the month-year of the transaction, location measured as the
address outcode, property type (detached, semi-detached, terraced house or a flat) and number of
rooms. This cutoff roughly corresponds to the bottom 20% of the residual price distribution. Controls
for the time distance between the listing and the comparable transaction measured in days and its
interaction with log price are included in all columns but (3). Column (3) instead includes time dis-
tance (measured in weeks) dummies and their interaction with log price. Additional fixed-effects in-
clude: listing month-year dummies in all columns but (1), and transaction ID dummies in column (4).
Standard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price × Treated 0.0051∗∗ 0.0057∗∗∗ 0.0050∗∗ 0.0043∗∗∗

(0.0020) (0.0020) (0.0020) (0.0013)

Price 0.9275∗∗∗ 0.9294∗∗∗ 0.9356∗∗∗

(0.0034) (0.0034) (0.0045)

Treated -0.0622∗∗ -0.0672∗∗∗ -0.0571∗∗ -0.0489∗∗∗

(0.0242) (0.0241) (0.0240) (0.0154)

Controls

Price × Time distance Yes Yes No Yes

Price × Time distance dummies No No Yes No

Fixed-Effects

Month-year No Yes Yes Yes

Transaction ID No No No Yes

Observations 2,644,044 2,644,044 2,644,044 2,644,044

R2 0.7630 0.7643 0.7643 0.8704

Within R2 – 0.7619 0.7618 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A22: Effect of Transaction Prices on Quotes by Sales Volume

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns
on when the listing price has been set/updated in the period following the most recent price pub-
lication date. The sample is split based on sales activity: the first two columns show the effect on
quotes of transaction prices in months and regions with sales volume below the sample average,
while the last two columns show the results for the subsample with above-average sales volume.
Controls for the time distance between the listing and the comparable transaction measured in days
and its interaction with log price are included in all columns. Additional fixed-effects include: listing
month-year dummies in all columns, and; transaction ID dummies in columns (2) and (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

Low Volume High Volume

(1) (2) (3) (4)

Price × Treated 0.0054∗∗ 0.0037∗∗ 0.0034∗∗ 0.0027∗∗∗

(0.0022) (0.0015) (0.0015) (0.0010)

Price 0.8358∗∗∗ 0.8392∗∗∗

(0.0036) (0.0023)

Treated -0.0648∗∗ -0.0417∗∗ -0.0412∗∗ -0.0312∗∗

(0.0267) (0.0179) (0.0179) (0.0122)

Controls

Price × Time distance Yes Yes Yes Yes

Fixed-effects

Month-year Yes Yes Yes Yes

Transaction ID No Yes No Yes

Observations 3,461,461 3,461,461 7,948,783 7,948,783

R2 0.7212 0.8781 0.6974 0.8631

Within R2 0.7082 0.0000 0.6956 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A23: Effect of Transaction Prices on Quotes by Excess Volume at the Local
Level

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns
on when the listing price has been set/updated in the period following the most recent price pub-
lication date. The sample is split based on relative sales activity: the first two columns show the
effect on quotes of transaction prices in months with below-average sales volume for the local area,
while the last two columns show the results for months with above-average sales volume. Con-
trols for the time distance between the listing and the comparable transaction measured in days and
its interaction with log price are included in all columns. Additional fixed-effects include: listing
month-year dummies in all columns, and; transaction ID dummies in columns (2) and (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

Low Relative Volume High Relative Volume

(1) (2) (3) (4)

Price × Treated 0.0058∗∗∗ 0.0041∗∗∗ 0.0024 0.0021∗

(0.0017) (0.0012) (0.0018) (0.0012)

Price 0.8216∗∗∗ 0.8341∗∗∗

(0.0028) (0.0027)

Treated -0.0712∗∗∗ -0.0463∗∗∗ -0.0282 -0.0240

(0.0208) (0.0145) (0.0215) (0.0148)

Controls

Price × Time distance Yes Yes Yes Yes

Fixed-effects

Month-year Yes Yes Yes Yes

Transaction ID No Yes No Yes

Observations 5,618,545 5,618,545 5,791,699 5,791,699

R2 0.7081 0.8679 0.7106 0.8700

Within R2 0.6730 0.0000 0.6945 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A24: Effect of Transaction Prices on Quotes - within Listing Price Updates

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is
the transaction price for a comparable property j sold in the previous month and Treatedi is a
dummy that turns on when the listing price has been set/updated in the period following the
most recent price publication date. Only listings that have at least one treated and one un-
treated quote are included. Controls for the time distance between the listing and the compara-
ble transaction measured in days and its interaction with log price are included in all columns
but (5). Column (5) instead includes time distance (measured in weeks) dummies and their in-
teraction with log price. Listing ID fixed effects are included in specifications (3)-(7). Addi-
tional fixed-effects include: listing month-year dummies in all columns but (3); transaction ID
dummies in columns (2), (6) and (7), and; order of quote update dummies in column (7). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4) (5) (6) (7)

Price × Treated 0.0028∗∗ 0.0037∗∗∗ 0.0013∗∗∗ 0.0011∗∗∗ 0.0011∗∗∗ 0.0033∗∗∗ 0.0021∗∗∗

(0.0014) (0.0012) (0.0003) (0.0002) (0.0002) (0.0003) (0.0002)

Price 0.8353∗∗∗ -0.0024∗∗∗ 0.0003 0.0003

(0.0026) (0.0003) (0.0003) (0.0004)

Treated -0.0362∗∗ -0.0466∗∗∗ -0.0173∗∗∗ -0.0104∗∗∗ -0.0106∗∗∗ -0.0400∗∗∗ -0.0221∗∗∗

(0.0165) (0.0139) (0.0034) (0.0030) (0.0030) (0.0037) (0.0030)

Controls

Price × Time distance Yes Yes Yes Yes No Yes Yes

Price × Time distance dummies No No No No Yes No No

Fixed-Effects

Listing ID No No Yes Yes Yes Yes Yes

Month-year Yes Yes No Yes Yes Yes Yes

Transaction ID No Yes No No No Yes Yes

Order of price update No No No No No No Yes

Observations 3,817,123 3,817,123 3,817,123 3,817,123 3,817,123 3,817,123 3,817,123

R2 0.7136 0.9203 0.9962 0.9971 0.9971 0.9989 0.9991

Within R2 0.7061 0.0001 0.0006 0.0008 0.0009 0.0131 0.0011

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A25: Effect of Transaction Prices on First Quotes - Before vs After March 2012

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Post March 2012i + β2 × log(pj) × Treatedi + β3 × log(pj) × Treatedi × Post March 2012i +

γ1Post March 2012i + γ2Treatedi + γ3 × Treatedi × Post March 2012i + Controls + εi, where qi is the
listed price for property i, pj is the transaction price for a comparable property j sold in the previous
month, Post March 2012i is a dummy that equals one for listings published starting from March 2012
and Treatedi is a dummy that turns on when the listing price has been set in the period following
the most recent price publication date. Only the initial quotes of listings are included. Controls
for the time distance between the listing and the comparable transaction measured in days and its
interaction with log price are included in all columns but (3). Column (3) instead includes time
distance (measured in weeks) dummies and their interaction with log price. Fixed-effects included
are: listing month-year dummies in all columns but (1) and; transaction ID dummies in column (4).
Standard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price × Treated × Post March 2012 0.0094∗∗∗ 0.0090∗∗∗ 0.0089∗∗∗ 0.0033
(0.0027) (0.0027) (0.0027) (0.0024)

Price × Treated -0.0060∗∗ -0.0056∗∗ -0.0060∗∗ 0.0001
(0.0025) (0.0025) (0.0025) (0.0021)

Price × Post March 2012 0.0460∗∗∗ 0.0461∗∗∗ 0.0461∗∗∗

(0.0023) (0.0023) (0.0023)
Price 0.7917∗∗∗ 0.7917∗∗∗ 0.7901∗∗∗

(0.0027) (0.0027) (0.0033)
Treated 0.0667∗∗ 0.0625∗∗ 0.0687∗∗ -0.0071

(0.0302) (0.0301) (0.0301) (0.0248)
Post March 2012 -0.5650∗∗∗ -0.5862∗∗∗ -0.5865∗∗∗

(0.0270) (0.0278) (0.0278)
Treated × Post March 2012 -0.1083∗∗∗ -0.1033∗∗∗ -0.1030∗∗∗ -0.0314

(0.0321) (0.0320) (0.0320) (0.0282)

Controls
Price × Time distance Yes Yes No Yes
Price × Time distance dummies No No Yes No

Fixed-Effects
Month-year No Yes Yes Yes
Transaction ID No No No Yes

Observations 10,585,043 10,585,043 10,585,043 10,585,043
R2 0.6773 0.6782 0.6782 0.8561
Within R2 – 0.6756 0.6756 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A26: Effect of Transaction Prices on First Quotes Around Placebo Publishing
Dates

The table presents the results of the following regression: log(qi) = α+ β0× log(pj) + β1× log(pj)×
Treatedi + γTreatedi + Controls + εi, where qi is the listed price for property i, pj is the transaction
price for a comparable property j sold in the previous month and Treatedi is a dummy that turns on
when the listing price has been set in the week before (first four columns) or one week after (last four
columns) the closest price publication date. Only the initial quotes of listings posted in the two weeks
surrounding the placebo publishing dates are included. Controls for the time distance between the
listing and the comparable transaction measured in days and its interaction with log price are in-
cluded in all columns but (3) and (7). Columns (3) and (7) instead include time distance (measured in
weeks) dummies and their interaction with log price. Additional fixed-effects include: listing month-
year dummies in all columns but (1) and (5) and; transaction ID dummies in columns (4) and (8).
Standard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

7 days before 7 days after

(1) (2) (3) (4) (5) (6) (7) (8)

Price × Treated 0.0021 0.0019 0.0012 0.0012 0.0007 0.0004 -0.0000 -0.0013

(0.0021) (0.0021) (0.0021) (0.0018) (0.0021) (0.0021) (0.0021) (0.0018)

Price 0.8430∗∗∗ 0.8428∗∗∗ 0.8410∗∗∗ 0.8406∗∗∗ 0.8409∗∗∗ 0.8411∗∗∗

(0.0031) (0.0031) (0.0035) (0.0042) (0.0042) (0.0040)

Treated -0.0279 -0.0266 -0.0169 -0.0110 -0.0127 -0.0076 -0.0014 0.0139

(0.0255) (0.0254) (0.0255) (0.0212) (0.0254) (0.0253) (0.0254) (0.0214)

Controls

Price × Time distance Yes Yes No Yes Yes Yes No Yes

Price × Time distance dummies No No Yes No No No Yes No

Fixed-Effects

Month-year No Yes Yes Yes No Yes Yes Yes

Transaction ID No No No Yes No No No Yes

Observations 2,831,845 2,831,845 2,831,845 2,831,845 2,900,284 2,900,284 2,900,284 2,900,284

R2 0.7021 0.7029 0.7029 0.8785 0.7068 0.7077 0.7077 0.8817

Within R2 – 0.7006 0.7005 0.0000 – 0.7055 0.7055 0.0000

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A27: Indirect Price Effects Through Intermediate Listings - Full Sample

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Comps in w-1i + β2 × log(pj) × Comps in w+1i + β3 × log(pj) × Comps in all weeksi + γ1 ×
Comps in w-1i + γ2 × Comps in w+1i + γ3 × Comps in all weeksi + Controls + εi, where qi is the listed
price for property i which has been set/updated during the second week following the most recent
price data publication date, pj is the transaction price for a comparable property j sold in the previ-
ous month, Comps in w-1i is a dummy that turns on if the listing-transaction pair have at least one
other comparable match in the week before the price publication date but none in the week after,
Comps in w+1i is a dummy for pairs that have at least one match in the week after but none in the
week before, and Comps in all weeksi is a dummy for listing-transaction pairs with at least one match
in each week. The table also reports the p-values of linear hypothesis tests of the difference in the
price coefficients. Controls for the time distance between the listing and the comparable transac-
tion measured in days and its interaction with log price are included in all columns but (1), while
controls for the number of comparable quotes in the current and each of the two previous weeks
are included in columns (3)-(4). Listing month-year fixed effects are included in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price 0.8242∗∗∗ 0.8231∗∗∗ 0.8231∗∗∗ 0.8226∗∗∗
(0.0020) (0.0044) (0.0044) (0.0043)

Price × Comps in week -1(1) 0.0089∗∗∗ 0.0089∗∗∗ 0.0089∗∗∗ 0.0083∗∗∗
(0.0032) (0.0032) (0.0032) (0.0032)

Price × Comps in week +1(2) 0.0176∗∗∗ 0.0176∗∗∗ 0.0177∗∗∗ 0.0169∗∗∗
(0.0029) (0.0029) (0.0029) (0.0029)

Price × Comps in all weeks(3) 0.0239∗∗∗ 0.0240∗∗∗ 0.0238∗∗∗ 0.0232∗∗∗
(0.0025) (0.0025) (0.0025) (0.0025)

Comps in week -1 -0.1140∗∗∗ -0.1138∗∗∗ -0.1151∗∗∗ -0.1071∗∗∗
(0.0392) (0.0392) (0.0392) (0.0391)

Comps in week +1 -0.2130∗∗∗ -0.2130∗∗∗ -0.2150∗∗∗ -0.2067∗∗∗
(0.0356) (0.0356) (0.0356) (0.0356)

Comps in all weeks -0.2854∗∗∗ -0.2858∗∗∗ -0.2890∗∗∗ -0.2837∗∗∗
(0.0303) (0.0303) (0.0303) (0.0303)

(2)−(1) 0.0087∗∗∗ 0.0087∗∗∗ 0.0088∗∗∗ 0.0086∗∗∗
p-value (0.0082) (0.0083) (0.0084) (0.0091)
(3)−(2) 0.0063∗∗ 0.0064∗∗ 0.0061∗∗ 0.0063∗∗
p-value (0.0154) (0.0147) (0.0179) (0.0158)
(3)−(1) 0.0150∗∗∗ 0.0151∗∗∗ 0.0149∗∗∗ 0.0149∗∗∗
p-value (0.0000) (0.0000) (0.0000) (0.0000)

Controls
Price x Time distance No Yes Yes Yes
Nb. of comps per week No No Yes Yes

Fixed-Effects
Month-year No No No Yes

Observations 2,932,258 2,932,258 2,932,258 2,932,258
R2 0.7067 0.7068 0.7068 0.7077
Within R2 – – – 0.7050
Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A28: Indirect Price Effects Through Intermediate Listings - Before March 2012

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Comps in w-1i + β2 × log(pj) × Comps in w+1i + β3 × log(pj) × Comps in all weeksi + γ1 ×
Comps in w-1i + γ2 × Comps in w+1i + γ3 × Comps in all weeksi + Controls + εi, where qi is the listed
price for property i which has been set/updated during the second week following the most re-
cent (placebo) price data publication date, pj is the transaction price for a comparable property j
sold in the previous month, Comps in w-1i is a dummy that turns on if the listing-transaction pair
have at least one other comparable match in the week before the price publication date but none in
the week after, Comps in w+1i is a dummy for pairs that have at least one match in the week after
but none in the week before, and Comps in all weeksi is a dummy for listing-transaction pairs with
at least one match in each week. The regressions are estimated using data from the sample before
March 2012. The table also reports the p-values of linear hypothesis tests of the difference in the
price coefficients. Controls for the time distance between the listing and the comparable transac-
tion measured in days and its interaction with log price are included in all columns but (1), while
controls for the number of comparable quotes in the current and each of the two previous weeks
are included in columns (3)-(4). Listing month-year fixed effects are included in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price 0.7656∗∗∗ 0.7510∗∗∗ 0.7504∗∗∗ 0.7548∗∗∗
(0.0037) (0.0085) (0.0085) (0.0085)

Price × Comps in week -1(1) 0.0257∗∗∗ 0.0257∗∗∗ 0.0258∗∗∗ 0.0229∗∗∗
(0.0064) (0.0064) (0.0064) (0.0064)

Price × Comps in week +1(2) 0.0303∗∗∗ 0.0303∗∗∗ 0.0306∗∗∗ 0.0267∗∗∗
(0.0056) (0.0056) (0.0056) (0.0056)

Price × Comps in all weeks(3) 0.0216∗∗∗ 0.0215∗∗∗ 0.0180∗∗∗ 0.0135∗∗∗
(0.0047) (0.0047) (0.0047) (0.0047)

Comps in week -1 -0.3179∗∗∗ -0.3178∗∗∗ -0.3240∗∗∗ -0.2814∗∗∗
(0.0762) (0.0762) (0.0762) (0.0759)

Comps in week +1 -0.3700∗∗∗ -0.3696∗∗∗ -0.3813∗∗∗ -0.3282∗∗∗
(0.0673) (0.0673) (0.0673) (0.0671)

Comps in all weeks -0.2494∗∗∗ -0.2488∗∗∗ -0.2345∗∗∗ -0.1697∗∗∗
(0.0565) (0.0565) (0.0565) (0.0565)

(2)−(1) 0.0046 0.0046 0.0048 0.0038
p-value (0.4899) (0.4922) (0.4782) (0.5784)
(3)−(2) -0.0087∗ -0.0088∗ -0.0126∗∗ -0.0132∗∗
p-value (0.0901) (0.0893) (0.0146) (0.0102)
(3)−(1) -0.0041 -0.0042 -0.0078 -0.0094
p-value (0.4910) (0.4859) (0.1883) (0.1107)

Controls
Price x Time distance No Yes Yes Yes
Nb. of comps per week No No Yes Yes

Fixed-Effects
Month-year No No No Yes

Observations 1,355,042 1,355,042 1,355,042 1,355,042
R2 0.6014 0.6014 0.6024 0.6044
Within R2 – – – 0.6018
Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1



APPENDIX A. LEARNING FROM PAST PRICES 159

Table A29: Indirect Price Effects - Controlling for Reference Price

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Comps in w-1i + β2 × log(pj) × Comps in w+1i + β3 × log(pj) × Comps in all weeksi + γ1 ×
Comps in w-1i + γ2 × Comps in w+1i + γ3 × Comps in all weeksi + Controls + εi, where qi is the listed
price for property i which has been set/updated during the second week following the most re-
cent price data publication date, pj is the transaction price for a comparable property j sold in the
previous month, Comps in w-1i is a dummy that turns on if the listing-transaction pair have at least
one other comparable match in the week before the price publication date but none in the week
after, Comps in w+1i is a dummy for pairs that have at least one match in the week after but none
in the week before, and Comps in all weeksi is a dummy for listing-transaction pairs with at least
one match in each week. Controls for the initial purchase price of the listed property are included
in all columns, controls for the time distance between the listing and the comparable transaction
measured in days and its interaction with log price are included in all columns but (1), while con-
trols for the number of comparable quotes in the current and each of the two previous weeks are
included in columns (3)-(4). Listing month-year fixed effects are included in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price 0.5137∗∗∗ 0.5155∗∗∗ 0.5153∗∗∗ 0.5088∗∗∗

(0.0022) (0.0038) (0.0038) (0.0037)
Price × Comps in week -1 0.0098∗∗∗ 0.0098∗∗∗ 0.0098∗∗∗ 0.0090∗∗∗

(0.0029) (0.0029) (0.0029) (0.0029)
Price × Comps in week +1 0.0116∗∗∗ 0.0116∗∗∗ 0.0117∗∗∗ 0.0111∗∗∗

(0.0027) (0.0027) (0.0027) (0.0027)
Price × Comps in all weeks 0.0155∗∗∗ 0.0155∗∗∗ 0.0157∗∗∗ 0.0150∗∗∗

(0.0023) (0.0023) (0.0023) (0.0023)
Comps in week -1 -0.1217∗∗∗ -0.1214∗∗∗ -0.1205∗∗∗ -0.1106∗∗∗

(0.0355) (0.0355) (0.0355) (0.0353)
Comps in week +1 -0.1409∗∗∗ -0.1409∗∗∗ -0.1406∗∗∗ -0.1330∗∗∗

(0.0326) (0.0326) (0.0326) (0.0325)
Comps in all weeks -0.1805∗∗∗ -0.1805∗∗∗ -0.1815∗∗∗ -0.1762∗∗∗

(0.0277) (0.0277) (0.0277) (0.0276)
Purchase Price 0.4884∗∗∗ 0.4884∗∗∗ 0.4886∗∗∗ 0.4941∗∗∗

(0.0020) (0.0020) (0.0020) (0.0020)

Controls
Price x Time distance No Yes Yes Yes
Nb. of comps per week No No Yes Yes

Fixed-effects
Month-year No No No Yes

Observations 2,912,960 2,912,960 2,912,960 2,912,960
R2 0.7765 0.7765 0.7765 0.7783
Within R2 – – – 0.7763

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A30: Indirect Price Effects - Positive Shocks

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Comps in w-1i + β2 × log(pj) × Comps in w+1i + β3 × log(pj) × Comps in all weeksi + γ1 ×
Comps in w-1i + γ2 × Comps in w+1i + γ3 × Comps in all weeksi + Controls + εi, where qi is the listed
price for property i which has been set/updated during the second week following the most re-
cent price data publication date, pj is the transaction price for a comparable property j sold in the
previous month, Comps in w-1i is a dummy that turns on if the listing-transaction pair have at least
one other comparable match in the week before the price publication date but none in the week af-
ter, Comps in w+1i is a dummy for pairs that have at least one match in the week after but none in
the week before, and Comps in all weeksi is a dummy for listing-transaction pairs with at least one
match in each week. The sample of sold properties includes only those whose transaction price
is above the predicted price obtained using a hedonic regression of the form: log(pj) = FE + ε j,
where the fixed effects refer to the month-year of the transaction, location measured as the ad-
dress outcode, property type (detached, semi-detached, terraced house or a flat) and number of
rooms. Controls for the time distance between the listing and the comparable transaction mea-
sured in days and its interaction with log price are included in all columns but (1), while con-
trols for the number of comparable quotes in the current and each of the two previous weeks are
included in columns (3)-(4). Listing month-year fixed effects are included in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price 0.8926∗∗∗ 0.8871∗∗∗ 0.8868∗∗∗ 0.8811∗∗∗

(0.0026) (0.0058) (0.0058) (0.0058)
Price × Comps in week -1 0.0144∗∗∗ 0.0145∗∗∗ 0.0143∗∗∗ 0.0134∗∗∗

(0.0041) (0.0041) (0.0041) (0.0041)
Price × Comps in week +1 0.0199∗∗∗ 0.0199∗∗∗ 0.0199∗∗∗ 0.0192∗∗∗

(0.0037) (0.0036) (0.0036) (0.0036)
Price × Comps in all weeks 0.0304∗∗∗ 0.0305∗∗∗ 0.0314∗∗∗ 0.0299∗∗∗

(0.0031) (0.0031) (0.0031) (0.0031)
Comps in week -1 -0.1847∗∗∗ -0.1853∗∗∗ -0.1814∗∗∗ -0.1709∗∗∗

(0.0501) (0.0501) (0.0500) (0.0499)
Comps in week +1 -0.2498∗∗∗ -0.2499∗∗∗ -0.2475∗∗∗ -0.2391∗∗∗

(0.0448) (0.0448) (0.0447) (0.0447)
Comps in all weeks -0.3826∗∗∗ -0.3832∗∗∗ -0.3850∗∗∗ -0.3715∗∗∗

(0.0386) (0.0386) (0.0385) (0.0385)

Controls
Price x Time distance No Yes Yes Yes
Nb. of comps per week No No Yes Yes

Fixed-Effects
Month-year No No No Yes

Observations 1,409,595 1,409,595 1,409,595 1,409,595
R2 0.7688 0.7688 0.7689 0.7704
Within R2 – – – 0.7631

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A31: Indirect Price Effects - Negative Shocks

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Comps in w-1i + β2 × log(pj) × Comps in w+1i + β3 × log(pj) × Comps in all weeksi + γ1 ×
Comps in w-1i + γ2 × Comps in w+1i + γ3 × Comps in all weeksi + Controls + εi, where qi is the listed
price for property i which has been set/updated during the second week following the most re-
cent price data publication date, pj is the transaction price for a comparable property j sold in the
previous month, Comps in w-1i is a dummy that turns on if the listing-transaction pair have at least
one other comparable match in the week before the price publication date but none in the week af-
ter, Comps in w+1i is a dummy for pairs that have at least one match in the week after but none in
the week before, and Comps in all weeksi is a dummy for listing-transaction pairs with at least one
match in each week. The sample of sold properties includes only those whose transaction price
is below the predicted price obtained using a hedonic regression of the form: log(pj) = FE + ε j,
where the fixed effects refer to the month-year of the transaction, location measured as the ad-
dress outcode, property type (detached, semi-detached, terraced house or a flat) and number of
rooms. Controls for the time distance between the listing and the comparable transaction mea-
sured in days and its interaction with log price are included in all columns but (1), while con-
trols for the number of comparable quotes in the current and each of the two previous weeks are
included in columns (3)-(4). Listing month-year fixed effects are included in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price 0.8923∗∗∗ 0.8944∗∗∗ 0.8943∗∗∗ 0.8971∗∗∗

(0.0025) (0.0054) (0.0054) (0.0054)
Price × Comps in week -1 0.0112∗∗∗ 0.0111∗∗∗ 0.0112∗∗∗ 0.0101∗∗

(0.0040) (0.0040) (0.0040) (0.0039)
Price × Comps in week +1 0.0176∗∗∗ 0.0176∗∗∗ 0.0176∗∗∗ 0.0169∗∗∗

(0.0036) (0.0036) (0.0036) (0.0036)
Price × Comps in all weeks 0.0341∗∗∗ 0.0341∗∗∗ 0.0339∗∗∗ 0.0331∗∗∗

(0.0030) (0.0030) (0.0030) (0.0030)
Comps in week -1 -0.1373∗∗∗ -0.1368∗∗∗ -0.1389∗∗∗ -0.1254∗∗∗

(0.0475) (0.0475) (0.0475) (0.0474)
Comps in week +1 -0.2080∗∗∗ -0.2079∗∗∗ -0.2109∗∗∗ -0.2047∗∗∗

(0.0436) (0.0436) (0.0436) (0.0435)
Comps in all weeks -0.3994∗∗∗ -0.3994∗∗∗ -0.4048∗∗∗ -0.3987∗∗∗

(0.0365) (0.0365) (0.0365) (0.0364)

Controls
Price x Time distance No Yes Yes Yes
Nb. of comps per week No No Yes Yes

Fixed-Effects
Month-year No No No Yes

Observations 1,522,663 1,522,663 1,522,663 1,522,663
R2 0.7498 0.7499 0.7499 0.7513
Within R2 – – – 0.7504

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1



APPENDIX A. LEARNING FROM PAST PRICES 162

Table A32: Indirect Price Effects - Large Positive Shocks

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Comps in w-1i + β2 × log(pj) × Comps in w+1i + β3 × log(pj) × Comps in all weeksi + γ1 ×
Comps in w-1i + γ2 × Comps in w+1i + γ3 × Comps in all weeksi + Controls + εi, where qi is the listed
price for property i which has been set/updated during the second week following the most re-
cent price data publication date, pj is the transaction price for a comparable property j sold in the
previous month, Comps in w-1i is a dummy that turns on if the listing-transaction pair have at least
one other comparable match in the week before the price publication date but none in the week af-
ter, Comps in w+1i is a dummy for pairs that have at least one match in the week after but none in
the week before, and Comps in all weeksi is a dummy for listing-transaction pairs with at least one
match in each week. The sample of sold properties includes only those for which the log transac-
tion price is by more than 0.20 greater than the predicted price obtained using a hedonic regression
of the form: log(pj) = FE + ε j, where the fixed effects refer to the month-year of the transaction,
location measured as the address outcode, property type (detached, semi-detached, terraced house
or a flat) and number of rooms. This cutoff roughly corresponds to the top 20% of the residual
price distribution. Controls for the time distance between the listing and the comparable transac-
tion measured in days and its interaction with log price are included in all columns but (1), while
controls for the number of comparable quotes in the current and each of the two previous weeks
are included in columns (3)-(4). Listing month-year fixed effects are included in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price 0.8987∗∗∗ 0.8854∗∗∗ 0.8851∗∗∗ 0.8788∗∗∗

(0.0036) (0.0085) (0.0085) (0.0084)
Price × Comps in week -1 0.0137∗∗ 0.0138∗∗ 0.0134∗∗ 0.0128∗∗

(0.0057) (0.0057) (0.0057) (0.0057)
Price × Comps in week +1 0.0234∗∗∗ 0.0234∗∗∗ 0.0234∗∗∗ 0.0226∗∗∗

(0.0050) (0.0050) (0.0050) (0.0050)
Price × Comps in all weeks 0.0297∗∗∗ 0.0299∗∗∗ 0.0306∗∗∗ 0.0292∗∗∗

(0.0043) (0.0043) (0.0043) (0.0043)
Comps in week -1 -0.1794∗∗ -0.1808∗∗ -0.1722∗∗ -0.1652∗∗

(0.0706) (0.0706) (0.0704) (0.0703)
Comps in week +1 -0.2977∗∗∗ -0.2977∗∗∗ -0.2966∗∗∗ -0.2869∗∗∗

(0.0625) (0.0625) (0.0624) (0.0625)
Comps in all weeks -0.3800∗∗∗ -0.3817∗∗∗ -0.3803∗∗∗ -0.3656∗∗∗

(0.0539) (0.0539) (0.0538) (0.0538)

Controls
Price x Time distance No Yes Yes Yes
Nb. of comps per week No No Yes Yes

Fixed-Effects
Month-year No No No Yes

Observations 571,002 571,002 571,002 571,002
R2 0.7804 0.7804 0.7805 0.7820
Within R2 – – – 0.7738

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A33: Indirect Price Effects - Large Negative Shocks

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Comps in w-1i + β2 × log(pj) × Comps in w+1i + β3 × log(pj) × Comps in all weeksi + γ1 ×
Comps in w-1i + γ2 × Comps in w+1i + γ3 × Comps in all weeksi + Controls + εi, where qi is the listed
price for property i which has been set/updated during the second week following the most re-
cent price data publication date, pj is the transaction price for a comparable property j sold in the
previous month, Comps in w-1i is a dummy that turns on if the listing-transaction pair have at least
one other comparable match in the week before the price publication date but none in the week af-
ter, Comps in w+1i is a dummy for pairs that have at least one match in the week after but none in
the week before, and Comps in all weeksi is a dummy for listing-transaction pairs with at least one
match in each week. The sample of sold properties includes only those for which the log transac-
tion price is by more than 0.20 lower than the predicted price obtained using a hedonic regression
of the form: log(pj) = FE + ε j, where the fixed effects refer to the month-year of the transaction,
location measured as the address outcode, property type (detached, semi-detached, terraced house
or a flat) and number of rooms. This cutoff roughly corresponds to the bottom 20% of the residual
price distribution. Controls for the time distance between the listing and the comparable transac-
tion measured in days and its interaction with log price are included in all columns but (1), while
controls for the number of comparable quotes in the current and each of the two previous weeks
are included in columns (3)-(4). Listing month-year fixed effects are included in column (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3) (4)

Price 0.8945∗∗∗ 0.8943∗∗∗ 0.8942∗∗∗ 0.8970∗∗∗

(0.0033) (0.0074) (0.0074) (0.0073)
Price × Comps in week -1 0.0118∗∗ 0.0118∗∗ 0.0118∗∗ 0.0106∗∗

(0.0052) (0.0052) (0.0052) (0.0052)
Price × Comps in week +1 0.0189∗∗∗ 0.0189∗∗∗ 0.0189∗∗∗ 0.0184∗∗∗

(0.0048) (0.0048) (0.0048) (0.0048)
Price × Comps in all weeks 0.0449∗∗∗ 0.0449∗∗∗ 0.0445∗∗∗ 0.0440∗∗∗

(0.0040) (0.0040) (0.0040) (0.0040)
Comps in week -1 -0.1431∗∗ -0.1429∗∗ -0.1449∗∗ -0.1302∗∗

(0.0623) (0.0623) (0.0623) (0.0619)
Comps in week +1 -0.2179∗∗∗ -0.2181∗∗∗ -0.2214∗∗∗ -0.2176∗∗∗

(0.0569) (0.0569) (0.0569) (0.0567)
Comps in all weeks -0.5155∗∗∗ -0.5160∗∗∗ -0.5218∗∗∗ -0.5200∗∗∗

(0.0474) (0.0474) (0.0473) (0.0471)

Controls
Price x Time distance No Yes Yes Yes
Nb. of comps per week No No Yes Yes

Fixed-Effects
Month-year No No No Yes

Observations 674,737 674,737 674,737 674,737
R2 0.7622 0.7622 0.7623 0.7640
Within R2 – – – 0.7617

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A34: Indirect Price Effects by Sales Volume

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Comps in w-1i + β2 × log(pj) × Comps in w+1i + β3 × log(pj) × Comps in all weeksi + γ1 ×
Comps in w-1i + γ2 × Comps in w+1i + γ3 × Comps in all weeksi + Controls + εi, where qi is the listed
price for property i which has been set/updated during the second week following the most re-
cent price data publication date, pj is the transaction price for a comparable property j sold in
the previous month, Comps in w-1i is a dummy that turns on if the listing-transaction pair have
at least one other comparable match in the week before the price publication date but none in
the week after, Comps in w+1i is a dummy for pairs that have at least one match in the week af-
ter but none in the week before, and Comps in all weeksi is a dummy for listing-transaction pairs
with at least one match in each week. The sample is split based on sales activity: the first two
columns show the effect on quotes of transaction prices in months and regions with sales vol-
ume below the sample average, while the last two columns show the results for the subsam-
ple with above-average sales volume. Controls for the time distance between the listing and the
comparable transaction measured in days and its interaction with log price, as well as controls
for the number of comparable quotes in the current and each of the two previous weeks are in-
cluded in all columns. Listing month-year fixed effects are included in columns (2) and (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

Low Volume High Volume

(1) (2) (3) (4)

Price 0.8306∗∗∗ 0.8194∗∗∗ 0.8223∗∗∗ 0.8237∗∗∗

(0.0076) (0.0075) (0.0053) (0.0053)
Price × Comps in week -1 0.0071 0.0064 0.0087∗∗ 0.0082∗∗

(0.0055) (0.0055) (0.0040) (0.0040)
Price × Comps in week +1 0.0128∗∗ 0.0113∗∗ 0.0182∗∗∗ 0.0175∗∗∗

(0.0051) (0.0051) (0.0036) (0.0036)
Price × Comps in all weeks 0.0220∗∗∗ 0.0199∗∗∗ 0.0177∗∗∗ 0.0166∗∗∗

(0.0042) (0.0042) (0.0031) (0.0031)
Comps in week -1 -0.0959 -0.0873 -0.1108∗∗ -0.1044∗∗

(0.0664) (0.0662) (0.0481) (0.0480)
Comps in week +1 -0.1567∗∗ -0.1378∗∗ -0.2201∗∗∗ -0.2131∗∗∗

(0.0614) (0.0614) (0.0434) (0.0433)
Comps in all weeks -0.2779∗∗∗ -0.2539∗∗∗ -0.2080∗∗∗ -0.1977∗∗∗

(0.0508) (0.0506) (0.0373) (0.0373)

Controls
Price x Time distance Yes Yes Yes Yes
Nb. of comps per week Yes Yes Yes Yes

Fixed-effects
Month-year No Yes No Yes

Observations 897,043 897,043 2,035,215 2,035,215
R2 0.7174 0.7194 0.6978 0.6989
Within R2 – 0.7057 – 0.6969

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A35: Indirect Price Effects by Excess Volume at the Local Level

The table presents the results of the following regression: log(qi) = α + β0 × log(pj) + β1 ×
log(pj) × Comps in w-1i + β2 × log(pj) × Comps in w+1i + β3 × log(pj) × Comps in all weeksi + γ1 ×
Comps in w-1i + γ2 × Comps in w+1i + γ3 × Comps in all weeksi + Controls + εi, where qi is the listed
price for property i which has been set/updated during the second week following the most re-
cent price data publication date, pj is the transaction price for a comparable property j sold in
the previous month, Comps in w-1i is a dummy that turns on if the listing-transaction pair have
at least one other comparable match in the week before the price publication date but none in
the week after, Comps in w+1i is a dummy for pairs that have at least one match in the week af-
ter but none in the week before, and Comps in all weeksi is a dummy for listing-transaction pairs
with at least one match in each week. The sample is split based on relative sales activity: the
first two columns show the effect on quotes of transaction prices in months with below-average
sales volume for the local area, while the last two columns show the results for months with
above-average sales volume. Controls for the time distance between the listing and the com-
parable transaction measured in days and its interaction with log price, as well as controls for
the number of comparable quotes in the current and each of the two previous weeks are in-
cluded in all columns. Listing month-year fixed effects are included in columns (2) and (4). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

Low Relative Volume High Relative Volume

(1) (2) (3) (4)

Price 0.8315∗∗∗ 0.8063∗∗∗ 0.8178∗∗∗ 0.8163∗∗∗

(0.0063) (0.0062) (0.0060) (0.0060)
Price × Comps in week -1 0.0072 0.0079∗ 0.0105∗∗ 0.0085∗

(0.0046) (0.0046) (0.0045) (0.0044)
Price × Comps in week +1 0.0131∗∗∗ 0.0148∗∗∗ 0.0205∗∗∗ 0.0183∗∗∗

(0.0042) (0.0042) (0.0040) (0.0040)
Price × Comps in all weeks 0.0199∗∗∗ 0.0212∗∗∗ 0.0245∗∗∗ 0.0203∗∗∗

(0.0035) (0.0035) (0.0035) (0.0035)
Comps in week -1 -0.0940∗ -0.1012∗ -0.1339∗∗ -0.1130∗∗

(0.0558) (0.0553) (0.0542) (0.0540)
Comps in week +1 -0.1600∗∗∗ -0.1781∗∗∗ -0.2501∗∗∗ -0.2265∗∗∗

(0.0508) (0.0506) (0.0492) (0.0491)
Comps in all weeks -0.2435∗∗∗ -0.2603∗∗∗ -0.2988∗∗∗ -0.2527∗∗∗

(0.0421) (0.0422) (0.0424) (0.0422)

Controls
Price x Time distance Yes Yes Yes Yes
Nb. of comps per week Yes Yes Yes Yes

Fixed-effects
Month-year No Yes No Yes

Observations 1,384,793 1,384,793 1,547,465 1,547,465
R2 0.7035 0.7080 0.7073 0.7104
Within R2 – 0.6688 – 0.6928

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A36: Chain Effects of Prices on Quotes by Order of Match

The table presents the results of the following regression:
log(qi) = α + β1 × log(pj) + ∑10

k=2 β
pre
k × log(pj) × Comp Order k Prei +

∑10
k=2 γ

pre
k Comp Order k Prei + ∑10

k=1 β
post
k × log(pj) × Comp Order k Posti +

∑10
k=1 γ

post
k Comp Order k Posti + Controls + εi, where qi is the listed price for

property i, pj is the transaction price for a comparable property j sold in the
previous month and Comp Order k Pre (Post)i is a dummy that turns on when
quote i is the k-th sequential match to transaction j in the period before (after)
the price data publication date. The sample includes listings in the one-month
period surrounding the publication date that have a comparable transaction
which has at least one treated and one untreated match. Controls for the time
distance between the listing and the comparable transaction measured in days
and its interaction with log price are included in all columns but (1). Column
(3) also includes listing month-year fixed effects. Standard errors double-
clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3)

Price 0.8388∗∗∗ 0.8404∗∗∗ 0.8401∗∗∗

(0.0011) (0.0020) (0.0020)
Price × 2nd Untreated 0.0010 0.0011 0.0011

(0.0016) (0.0016) (0.0016)
Price × 3rd Untreated 0.0043∗∗ 0.0045∗∗ 0.0044∗∗

(0.0020) (0.0020) (0.0020)
Price × 4th Untreated 0.0054∗∗ 0.0057∗∗ 0.0056∗∗

(0.0023) (0.0023) (0.0023)
Price × 5th Untreated 0.0060∗∗ 0.0063∗∗ 0.0062∗∗

(0.0027) (0.0027) (0.0027)
Price × 6th Untreated 0.0039 0.0042 0.0041

(0.0033) (0.0033) (0.0033)
Price × 7th Untreated 0.0068∗ 0.0071∗ 0.0070∗

(0.0039) (0.0039) (0.0039)
Price × 8th Untreated 0.0021 0.0024 0.0025

(0.0044) (0.0044) (0.0044)
Price × 9th Untreated 0.0036 0.0040 0.0041

(0.0055) (0.0055) (0.0055)
Price × 10th or more Untreated 0.0000 0.0004 0.0003

(0.0038) (0.0038) (0.0038)
Price × 1st Treated 0.0015 0.0023 0.0025

(0.0014) (0.0017) (0.0017)
Price × 2nd Treated 0.0039∗∗ 0.0048∗∗ 0.0050∗∗∗

(0.0016) (0.0019) (0.0019)
Price × 3rd Treated 0.0054∗∗∗ 0.0064∗∗∗ 0.0065∗∗∗

(0.0019) (0.0022) (0.0022)

Continued on next page
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Table A36 – Continued from previous page

(1) (2) (3)

Price × 4th Treated 0.0106∗∗∗ 0.0116∗∗∗ 0.0116∗∗∗

(0.0022) (0.0025) (0.0025)
Price × 5th Treated 0.0082∗∗∗ 0.0093∗∗∗ 0.0092∗∗∗

(0.0026) (0.0029) (0.0029)
Price × 6th Treated 0.0098∗∗∗ 0.0109∗∗∗ 0.0107∗∗∗

(0.0031) (0.0033) (0.0033)
Price × 7th Treated 0.0117∗∗∗ 0.0129∗∗∗ 0.0126∗∗∗

(0.0037) (0.0039) (0.0039)
Price × 8th Treated 0.0177∗∗∗ 0.0188∗∗∗ 0.0186∗∗∗

(0.0044) (0.0046) (0.0046)
Price × 9th Treated 0.0099∗ 0.0110∗∗ 0.0108∗∗

(0.0051) (0.0052) (0.0052)
Price × 10th or more Treated 0.0101∗∗∗ 0.0113∗∗∗ 0.0112∗∗∗

(0.0036) (0.0039) (0.0039)
2nd Untreated -0.0115 -0.0131 -0.0122

(0.0198) (0.0198) (0.0198)
3rd Untreated -0.0508∗∗ -0.0535∗∗ -0.0524∗∗

(0.0236) (0.0237) (0.0237)
4th Untreated -0.0635∗∗ -0.0669∗∗ -0.0661∗∗

(0.0280) (0.0282) (0.0281)
5th Untreated -0.0686∗∗ -0.0726∗∗ -0.0720∗∗

(0.0328) (0.0330) (0.0330)
6th Untreated -0.0406 -0.0449 -0.0437

(0.0395) (0.0397) (0.0396)
7th Untreated -0.0749 -0.0797∗ -0.0777∗

(0.0469) (0.0471) (0.0470)
8th Untreated -0.0158 -0.0207 -0.0210

(0.0529) (0.0532) (0.0531)
9th Untreated -0.0269 -0.0319 -0.0328

(0.0659) (0.0661) (0.0661)
10th or more Untreated 0.0194 0.0140 0.0174

(0.0457) (0.0462) (0.0461)
1st Treated -0.0165 -0.0288 -0.0305

(0.0174) (0.0200) (0.0200)
2nd Treated -0.0442∗∗ -0.0582∗∗ -0.0590∗∗∗

(0.0199) (0.0229) (0.0228)
3rd Treated -0.0599∗∗ -0.0751∗∗∗ -0.0747∗∗∗

(0.0233) (0.0264) (0.0263)
4th Treated -0.1213∗∗∗ -0.1372∗∗∗ -0.1360∗∗∗

(0.0269) (0.0300) (0.0299)

Continued on next page
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Table A36 – Continued from previous page

(1) (2) (3)

5th Treated -0.0894∗∗∗ -0.1059∗∗∗ -0.1035∗∗∗

(0.0318) (0.0347) (0.0346)
6th Treated -0.1101∗∗∗ -0.1269∗∗∗ -0.1229∗∗∗

(0.0377) (0.0403) (0.0403)
7th Treated -0.1278∗∗∗ -0.1451∗∗∗ -0.1399∗∗∗

(0.0449) (0.0472) (0.0471)
8th Treated -0.1997∗∗∗ -0.2172∗∗∗ -0.2118∗∗∗

(0.0529) (0.0551) (0.0551)
9th Treated -0.1079∗ -0.1256∗∗ -0.1199∗

(0.0612) (0.0632) (0.0631)
10th or more Treated -0.0996∗∗ -0.1177∗∗ -0.1125∗∗

(0.0438) (0.0470) (0.0469)

Controls
Price x Time distance No Yes Yes

Fixed-Effects
Month-year No No Yes

Observations 11,292,00911,292,009 11,292,009
R2 0.7081 0.7081 0.7089
Within R2 – – 0.7063

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A37: Chain Effects of Prices on Quotes by Order of Match - Linear Effects

The table presents the results of the following regression: log(qs
i ) = αs + βs

0× log(pj)+ βs
1× log(pj)×

Nb. prior compss
i + γ1 ×Nb. prior compss

i + Controls + εs
i , where qs

i is the listed price for property i, pj

is the transaction price for a comparable property j sold in the previous month and Nb. prior compss
i

is the number of previous listings that have been matched to the same transaction. The super-
script s is an indicator for whether the regressions use the sample of treated listings, i.e., listings
posted in the period after the price data publication date (last three columns), or the set of un-
treated ones (first three columns). Controls for the time distance between the listing and the compa-
rable transaction measured in days and its interaction with log price are included in all columns
but (1) and (4) and listing month-year fixed effects are included in columns (3) and (6). Stan-
dard errors double-clustered at the transaction and listing ID levels are reported in parentheses.

Untreated Treated

(1) (2) (3) (4) (5) (6)

Prior × Nb. prior comps 0.0001 0.0001 0.0001 0.0007∗∗∗ 0.0008∗∗∗ 0.0007∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

Price 0.8409∗∗∗ 0.8414∗∗∗ 0.8408∗∗∗ 0.8420∗∗∗ 0.8435∗∗∗ 0.8436∗∗∗

(0.0011) (0.0022) (0.0022) (0.0011) (0.0030) (0.0030)

Nb. prior comps 0.0005 0.0003 0.0008 -0.0072∗∗ -0.0076∗∗ -0.0067∗∗

(0.0034) (0.0035) (0.0034) (0.0032) (0.0033) (0.0033)

Controls

Price x Time distance No Yes Yes No Yes Yes

Fixed-Effects

Month-year No No Yes No No Yes

Observations 5,577,243 5,577,243 5,577,243 5,714,766 5,714,766 5,714,766

R2 0.7068 0.7068 0.7076 0.7094 0.7094 0.7103

Within R2 – – 0.7048 – – 0.7076

Two-way (Transaction ID & Listing ID) standard-errors in parentheses

Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A38: Chain Effects of Prices on Quotes by Order of Match - Before March 2012

The table presents the results of the following regression:
log(qi) = α + β1 × log(pj) + ∑10

k=2 β
pre
k × log(pj) × Comp Order k Prei +

∑10
k=2 γ

pre
k Comp Order k Prei + ∑10

k=1 β
post
k × log(pj) × Comp Order k Posti +

∑10
k=1 γ

post
k Comp Order k Posti + Controls + εi, where qi is the listed price for

property i, pj is the transaction price for a comparable property j sold in the
previous month and Comp Order k Pre (Post)i is a dummy that turns on when
quote i is the k-th sequential match to transaction j in the period before (after)
the (placebo) price data publication date. The regressions use only data from
the period before March 2012. The sample includes listings in the one-month
period surrounding the publication date that have a comparable transaction
which has at least one treated and one untreated match. Controls for the time
distance between the listing and the comparable transaction measured in days
and its interaction with log price are included in all columns but (1). Column
(3) also includes listing month-year fixed effects. Standard errors double-
clustered at the transaction and listing ID levels are reported in parentheses.

(1) (2) (3)

Price 0.7875∗∗∗ 0.7777∗∗∗ 0.7786∗∗∗

(0.0023) (0.0042) (0.0042)
Price × 2nd Untreated 0.0057∗ 0.0052 0.0047

(0.0034) (0.0034) (0.0034)
Price × 3rd Untreated 0.0094∗∗ 0.0086∗∗ 0.0077∗∗

(0.0038) (0.0038) (0.0038)
Price × 4th Untreated 0.0076∗ 0.0066 0.0054

(0.0045) (0.0045) (0.0045)
Price × 5th Untreated 0.0102∗∗ 0.0090∗ 0.0076

(0.0051) (0.0051) (0.0051)
Price × 6th Untreated 0.0073 0.0060 0.0045

(0.0057) (0.0057) (0.0057)
Price × 7th Untreated 0.0047 0.0033 0.0018

(0.0064) (0.0064) (0.0064)
Price × 8th Untreated 0.0021 0.0007 -0.0009

(0.0075) (0.0075) (0.0075)
Price × 9th Untreated -0.0011 -0.0027 -0.0044

(0.0085) (0.0086) (0.0086)
Price × 10th or more Untreated-0.0175∗∗∗-0.0193∗∗∗ -0.0213∗∗∗

(0.0058) (0.0059) (0.0059)
Price × 1st Treated 0.0014 -0.0034 -0.0036

(0.0030) (0.0034) (0.0034)
Price × 2nd Treated 0.0028 -0.0024 -0.0030

Continued on next page
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Table A38 – Continued from previous page

(1) (2) (3)

(0.0033) (0.0038) (0.0038)
Price × 3rd Treated -0.0002 -0.0058 -0.0068

(0.0038) (0.0043) (0.0043)
Price × 4th Treated 0.0071∗ 0.0013 0.0001

(0.0042) (0.0047) (0.0047)
Price × 5th Treated 0.0070 0.0011 -0.0001

(0.0048) (0.0053) (0.0053)
Price × 6th Treated -0.0031 -0.0092 -0.0105∗

(0.0054) (0.0059) (0.0059)
Price × 7th Treated 0.0070 0.0008 -0.0005

(0.0061) (0.0065) (0.0065)
Price × 8th Treated 0.0036 -0.0027 -0.0040

(0.0069) (0.0073) (0.0073)
Price × 9th Treated -0.0051 -0.0114 -0.0127

(0.0077) (0.0081) (0.0081)
Price × 10th Treated -0.0183∗∗∗-0.0249∗∗∗ -0.0263∗∗∗

(0.0056) (0.0062) (0.0062)
2nd Untreated -0.0666∗ -0.0606 -0.0543

(0.0397) (0.0398) (0.0397)
3rd Untreated -0.1110∗∗ -0.1009∗∗ -0.0895∗∗

(0.0453) (0.0454) (0.0454)
4th Untreated -0.0867 -0.0739 -0.0584

(0.0533) (0.0536) (0.0536)
5th Untreated -0.1160∗ -0.1011∗ -0.0824

(0.0600) (0.0604) (0.0602)
6th Untreated -0.0808 -0.0646 -0.0452

(0.0677) (0.0681) (0.0680)
7th Untreated -0.0485 -0.0311 -0.0109

(0.0760) (0.0764) (0.0763)
8th Untreated -0.0128 0.0052 0.0255

(0.0887) (0.0892) (0.0892)
9th Untreated 0.0310 0.0495 0.0725

(0.1015) (0.1020) (0.1016)
10th or more Untreated 0.2482∗∗∗ 0.2696∗∗∗ 0.2952∗∗∗

(0.0692) (0.0702) (0.0701)
1st Treated -0.0201 0.0375 0.0404

(0.0355) (0.0404) (0.0403)

Continued on next page
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Table A38 – Continued from previous page

(1) (2) (3)

2nd Treated -0.0336 0.0302 0.0385
(0.0395) (0.0452) (0.0451)

3rd Treated 0.0038 0.0718 0.0854∗

(0.0452) (0.0512) (0.0512)
4th Treated -0.0815 -0.0108 0.0050

(0.0501) (0.0560) (0.0559)
5th Treated -0.0762 -0.0033 0.0131

(0.0567) (0.0630) (0.0630)
6th Treated 0.0479 0.1223∗ 0.1405∗∗

(0.0644) (0.0698) (0.0698)
7th Treated -0.0713 0.0041 0.0228

(0.0722) (0.0773) (0.0773)
8th Treated -0.0251 0.0513 0.0702

(0.0824) (0.0873) (0.0871)
9th Treated 0.0810 0.1579 0.1764∗

(0.0918) (0.0966) (0.0967)
10th or more Treated 0.2571∗∗∗ 0.3363∗∗∗ 0.3567∗∗∗

(0.0674) (0.0748) (0.0746)

Controls
Price x Time distance No Yes Yes

Fixed-Effects
Month-year No No Yes

Observations 4,772,899 4,772,899 4,772,899
R2 0.60688 0.60689 0.60811
Within R2 – – 0.60669

Two-way (Transaction ID & Listing ID) standard-errors in parentheses
Signif Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure A17: Relative Coverage of Listing Data

The figure plots heat maps of the relative geographic coverage of the Zoopla listing data between
2009-2018 by year across England and Wales. Figure A17a displays the total number of listings as
a fraction of transactions shifted by six months (average TOM), while Figure A17b the fraction of
transactions that were matched to their respective listings in the Zoopla data.

(a) Listings-to-Transactions Ratio (b) % of Transactions Listed on Zoopla
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Figure A18: Time-series of Price Discount and Time on the Market

The figure displays the time-series of price discount and time on the market (TOM) for the set of
property listings that were matched to their respective ex-post transactions in the sample from 2009 to
2018. Figure A18a plots the time-series of the percentage difference between the first listed price and
the final transaction price, while Figure A18b shows the time-series of time on the market measured
as the number of weeks from listing to sale completion. The green lines show the time-series of the
average values and the blue lines represent the median values.
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Figure A19: Fraction of Explained Variation in Price Differences

The figure displays the percentage of variation in differences between listing and transaction prices
that is explained by observable characteristics, measured as the R-squared from a regression of price
differences on various fixed effects, for the set of property listings that were matched to their re-
spective ex-post transactions in the 2009-2018 sample. Figure A19a shows the explained variation in
level price differences and Figure A19b in percentage price differences. Fixed effects included are:
month-year of the listing or transaction; property type (detached, semi-detached, terraced house or
a flat); number of rooms in the property, where properties with between 6 and 10 rooms are placed
in one bucket and properties with more than 10 rooms in another; location, measured as the address
outcode, and; a rural/urban area indicator from the 2011 Census classification of Output Areas.
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Figure A20: Variation In Quotes Around Publishing Dates - Before March 2012

The figure plots the results from a regression of listing prices on dummies for the signed number
of days between the listing date and the closest (placebo) price data publication date for the sample
before March 2012. The regression is specified as follows: qi = α + ∑15

∆=−15 γ∆∆i + FE+ εi, where the
fixed-effects correspond to the characteristics the matching is based on, i.e., location, property type,
number of rooms and month-year, and ∆i is a dummy for the signed difference in days between the
date on which a listing is posted and the closest publication date. The baseline coefficient is the one
for listings posted exactly on the publication date. The vertical lines represent the 95% confidence
bounds for the point estimates.
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Figure A21: Effect of Transaction Prices by Order of Match

The figure plots the price coefficients from the following regression along with
their 95% confidence bounds: log(qi) = α + β1 × log(pj) + ∑10

k=2 β
pre
k × log(pj) ×

Comp Order k Prei + ∑10
k=2 γ

pre
k Comp Order k Prei + ∑10

k=1 β
post
k × log(pj) × Comp Order k Posti +

∑10
k=1 γ

post
k Comp Order k Posti + Controls + εi, where qi is the listed price for property i, pj is the

transaction price for a comparable property j sold in the previous month and Comp Order k Pre
(Post)i is a dummy that turns on when quote i is the k-th sequential match to transaction j in the
period before (after) the price data publication date. The sample includes listings in the one-month
period surrounding the publication date that have a comparable transaction which has at least one
treated and one untreated match. Figure A21a is the baseline regression with no controls and Figure
A21b includes controls for the time distance between the listing and the comparable transaction
measured in days and its interaction with log price.
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Figure A22: Effect of Transaction Prices by Order of Match - Before March 2012

The figure plots the price coefficients from the following regression along with
their 95% confidence bounds: log(qi) = α + β1 × log(pj) + ∑10

k=2 β
pre
k × log(pj) ×

Comp Order k Prei + ∑10
k=2 γ

pre
k Comp Order k Prei + ∑10

k=1 β
post
k × log(pj) × Comp Order k Posti +

∑10
k=1 γ

post
k Comp Order k Posti + Controls + εi, where qi is the listed price for property i, pj is the

transaction price for a comparable property j sold in the previous month and Comp Order k Pre
(Post)i is a dummy that turns on when quote i is the k-th sequential match to transaction j in the
period before (after) the (placebo) price data publication date. The sample includes only listings
before March 2012 posted in the one-month period surrounding the publication date that have a
comparable transaction which has at least one treated and one untreated match. Figure A22a is the
baseline regression with no controls, Figure A22b includes controls for the time distance between
the listing and the comparable transaction measured in days and its interaction with log price and
Figure A22c includes month-year fixed effects in addition to time distance controls.
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Figure A23: Number of Quote Updates per Listing

The figure plots the histogram of the total number of price changes per listing. The sample includes
listings posted after March 2012 that have at least one comparable transaction.
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Figure A24: Distance in Days between Initial Listing Date and Subsequent Quote
Changes

The figure plots a histogram of the difference in days between quote changes and the initial date of
the listing. The sample includes listings posted after March 2012 that have at least one comparable
transaction.
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Figure A25: Effect of Transaction Prices on Quote Updates

The figure displays the price coefficients from the following regression along with their 95%
confidence bounds: log(qn

i ) = α + β1 × log(pj) + ∑5
n=2 βn × log(pj) × Update Number ni +

∑5
n=2 γnUpdate Number ni + Controls + εn

i , where qn
i is the n-th listed price update for property i, pj

is the transaction price for a comparable property j sold in the month before property i was initially
listed and Update Number ni is a dummy that turns on when qn

i is the n-th consecutive quote update
for property i. The sample includes listings in the post March 2012 period that have at least one price
change and a comparable transaction that has been published just before the listing has been first
posted. Figure A25a is the baseline regression with no controls, Figure A25b includes controls for the
time distance between the listing and the comparable transaction measured in days and its interac-
tion with log price and Figure A25c includes month-year and listing ID fixed effects in addition to
time distance controls.
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B. Appendix to Revealed Expectations and
Learning Biases: Evidence from the Mutual

Fund Industry

B.1 Tables

Table B1: Summary Statistics

The table reports summary statistics for the data used. Column x̄ reports the sample aver-
age of each variable, column σ its standard deviation, Min the smallest observation, Q1 the
first quartile, Median the 50th percentile, Q3 the third quartile, Max the largest observation
and N the number of observations. The first panel reports summary statistics regarding aver-
age and median past returns experienced by managers. The second panel reports six measures
of expected excess returns computed as Σ̂twi,t. Rows (1)-(3) report results without wi,j,t = 0,
namely including in the computations only strictly positive weights; rows (4)-(6) include zero
weights on stocks that belong to the manager’s investment universe. Rows (1) and (4) use
sample covariance matrices Σ̂1

t , rows (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t

and rows (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation

of Σ̂twi,t. The third panel reports summary statistics on managers’ careers; experience refers
to the number of quarters since the first time a certain stock appeared in the manager’s port-
folio; max.experience refers to the maximum experience achieved for each manager-stock pair;
tenure refers to the number of quarters since the first time the manager appeared in sample.

x̄ σ Min Q1 Median Q3 Max N

Experienced Returns
average 0.024 0.100 -0.557 -0.010 0.026 0.063 0.607 13, 912, 677
median 0.014 0.111 -0.871 -0.026 0.021 0.062 1.198 13, 912, 677

Expected Excess Returns
(1) 0.012 0.015 -0.282 0.004 0.007 0.014 1.336 5, 416, 032
(2) 0.011 0.014 -0.208 0.003 0.006 0.012 0.806 5, 416, 032
(3) 0.011 0.015 -0.161 0.003 0.006 0.013 0.764 5, 416, 032
(4) 0.012 0.015 -0.278 0.004 0.007 0.014 0.766 12, 707, 119
(5) 0.011 0.015 -0.292 0.003 0.006 0.012 1.086 12, 707, 119
(6) 0.011 0.015 -0.319 0.003 0.006 0.013 1.034 12, 707, 119

Managers Careers
experience 13.158 12.853 1 4 9 17 139 13, 912, 677
max. experience 13.884 11.981 1 6 11 17 139 1, 223, 610
tenure 26.896 21.943 1 10 21 39 139 75, 179

180
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Table B2: The Effect of Average Experienced Returns

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

βr̄i,j,t + Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead return
of manager i for stock j at time t, r̄i,j,t is the standardised equal-weighted average experi-
enced return, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. Stan-
dard errors are clustered at the same level of the fixed effects and are reported in paren-
theses. Columns (1)-(3) report results without wi,j,t = 0, namely including in the compu-
tations only strictly positive weights; columns (4)-(6) include zero weights on stocks that be-
long to the manager’s investment universe. Columns (1) and (4) use sample covariance ma-
trices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and columns

(3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.

Expected Returns

(1) (2) (3) (4) (5) (6)

β 0.103∗∗∗ 0.103∗∗∗ 0.105∗∗∗ 0.149∗∗∗ 0.148∗∗∗ 0.151∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

N 1, 270, 823 1, 270, 823 1, 270, 823 2, 856, 830 2, 856, 830 2, 856, 830

R2 0.781 0.765 0.773 0.709 0.692 0.695

Within-R2 0.006 0.006 0.006 0.009 0.009 0.009

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



APPENDIX B. REVEALED EXPECTATIONS AND LEARNING BIASES 182

Table B3: The Effect of Experienced Returns - Five Buckets

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑5
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the standardised av-

erage return in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time
fixed effect. To be included, a manager-stock pair must have at least 5 quarters of experi-
ence. Standard errors are clustered at the same level of the fixed effects and are reported in
parentheses. Columns (1)-(3) report results without wi,j,t = 0, namely including in the com-
putations only strictly positive weights; columns (4)-(6) include zero weights on stocks that
belong to the manager’s investment universe. Columns (1) and (4) use sample covariance
matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and columns

(3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.276∗∗∗ 0.287∗∗∗ 0.272∗∗∗ 0.275∗∗∗ 0.273∗∗∗ 0.281∗∗∗

(0.008) (0.013) (0.008) (0.006) (0.007) (0.006)

β2 0.134∗∗∗ 0.132∗∗∗ 0.136∗∗∗ 0.134∗∗∗ 0.132∗∗∗ 0.136∗∗∗

(0.005) (0.005) (0.005) (0.003) (0.003) (0.004)

β3 0.041∗∗∗ 0.043∗∗∗ 0.040∗∗∗ 0.042∗∗∗ 0.042∗∗∗ 0.046∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.003) (0.003)

β4 0.073∗∗∗ 0.073∗∗∗ 0.077∗∗∗ 0.075∗∗∗ 0.072∗∗∗ 0.078∗∗∗

(0.003) (0.003) (0.004) (0.002) (0.002) (0.002)

β5 0.238∗∗∗ 0.237∗∗∗ 0.241∗∗∗ 0.238∗∗∗ 0.237∗∗∗ 0.237∗∗∗

(0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

N 796, 021 796, 021 796, 021 1, 958, 072 1, 958, 072 1, 958, 072

R2 0.798 0.786 0.792 0.720 0.705 0.708

Within-R2 0.042 0.043 0.043 0.043 0.042 0.042

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B4: The Effect of Experienced Returns - Ten Buckets

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑10
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, ..., 10}, is the standardised av-

erage return in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time
fixed effect. To be included, a manager-stock pair must have at least 10 quarters of experi-
ence. Standard errors are clustered at the same level of the fixed effects and are reported in
parentheses. Columns (1)-(3) report results without wi,j,t = 0, namely including in the com-
putations only strictly positive weights; columns (4)-(6) include zero weights on stocks that
belong to the manager’s investment universe. Columns (1) and (4) use sample covariance
matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and columns

(3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.

Expected Returns
(1) (2) (3) (4) (5) (6)

β1 0.276∗∗∗ 0.293∗∗∗ 0.258∗∗∗ 0.271∗∗∗ 0.290∗∗∗ 0.268∗∗∗

(0.012) (0.039) (0.010) (0.010) (0.017) (0.007)
β2 0.147∗∗∗ 0.163∗∗∗ 0.141∗∗∗ 0.149∗∗∗ 0.157∗∗∗ 0.148∗∗∗

(0.008) (0.023) (0.009) (0.006) (0.009) (0.005)
β3 0.100∗∗∗ 0.102∗∗∗ 0.098∗∗∗ 0.100∗∗∗ 0.102∗∗∗ 0.096∗∗∗

(0.006) (0.011) (0.006) (0.004) (0.005) (0.004)
β4 0.060∗∗∗ 0.058∗∗∗ 0.067∗∗∗ 0.059∗∗∗ 0.066∗∗∗ 0.061∗∗∗

(0.006) (0.008) (0.006) (0.004) (0.004) (0.003)
β5 0.028∗∗∗ 0.023∗∗∗ 0.021∗∗∗ 0.029∗∗∗ 0.030∗∗∗ 0.025∗∗∗

(0.005) (0.008) (0.005) (0.003) (0.003) (0.003)
β6 0.022∗∗∗ 0.024∗∗∗ 0.019∗∗∗ 0.021∗∗∗ 0.027∗∗∗ 0.024∗∗∗

(0.004) (0.006) (0.004) (0.003) (0.003) (0.003)
β7 0.020∗∗∗ 0.027∗∗∗ 0.026∗∗∗ 0.024∗∗∗ 0.020∗∗∗ 0.023∗∗∗

(0.004) (0.005) (0.004) (0.002) (0.002) (0.003)
β8 0.043∗∗∗ 0.045∗∗∗ 0.040∗∗∗ 0.045∗∗∗ 0.046∗∗∗ 0.046∗∗∗

(0.004) (0.006) (0.005) (0.002) (0.003) (0.003)
β9 0.080∗∗∗ 0.088∗∗∗ 0.087∗∗∗ 0.086∗∗∗ 0.088∗∗∗ 0.087∗∗∗

(0.006) (0.007) (0.004) (0.004) (0.003) (0.003)
β10 0.206∗∗∗ 0.204∗∗∗ 0.206∗∗∗ 0.208∗∗∗ 0.216∗∗∗ 0.215∗∗∗

(0.005) (0.005) (0.005) (0.003) (0.003) (0.003)

N 442, 353 442, 353 442, 353 1, 073, 779 1, 073, 779 1, 073, 779
R2 0.824 0.812 0.820 0.750 0.736 0.738
Within-R2 0.039 0.041 0.039 0.039 0.042 0.039

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B5: The Effect of Experienced Returns by Number of Managers

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑Q
q=1 βq,n r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t− r f is the recovered expected one-period ahead re-

turn of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the standardised average return in

the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. Each column
reports the results for the sub-sample of managers working in a team of ni,t ∈ {1, 2, 3, 4 or more},
members at time t. Standard errors are clustered at the same level of the fixed effects and are
reported in parentheses. The first four columns report results for measure (1), using sample co-
variance matrices Σ̂1

t and no wi,j,t = 0, namely including in the computations only strictly pos-
itive weights; the last four columns report results for measure (4), using sample covariance ma-
trices Σ̂1

t and including zero weights on stocks that belong to the manager’s investment universe.

Expected Returns
(1) (4)

Nr. Managers 1 2 3 ≥ 4 1 2 3 ≥ 4

β1 0.276∗∗∗ 0.114∗∗∗ 0.006∗∗ 0.015∗∗∗ 0.275∗∗∗ 0.114∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(0.008) (0.014) (0.003) (0.003) (0.006) (0.008) (0.002) (0.002)
β2 0.133∗∗∗ 0.053∗∗∗ 0.004∗∗ 0.008∗∗∗ 0.134∗∗∗ 0.047∗∗∗ 0.004∗∗∗ 0.001

(0.005) (0.005) (0.002) (0.002) (0.003) (0.004) (0.001) (0.002)
β3 0.040∗∗∗ 0.011∗∗∗ 0.004∗∗ 0.006∗∗∗ 0.041∗∗∗ 0.010∗∗∗ 0.006∗∗∗ 0.003∗∗

(0.004) (0.004) (0.002) (0.002) (0.002) (0.003) (0.001) (0.001)
β4 0.072∗∗∗ 0.014∗∗∗ 0.000 0.001 0.074∗∗∗ 0.015∗∗∗ 0.003∗∗∗ 0.001

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)
β5 0.237∗∗∗ 0.017∗∗∗ 0.002∗∗ 0.001 0.237∗∗∗ 0.019∗∗∗ 0.004∗∗∗ 0.001

(0.004) (0.002) (0.001) (0.001) (0.003) (0.001) (0.001) (0.001)

N 796, 021 580, 367 1, 000, 968 790, 078 1, 958, 072 1, 455, 284 2, 773, 180 2, 181, 406
R2 0.798 0.912 0.991 0.989 0.720 0.866 0.984 0.978
Within-R2 0.042 0.002 0.000 0.001 0.043 0.003 0.001 0.000

wi,j,t = 0 No No No No Yes Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B6: Managers Who Have Switched Funds - Five Buckets

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑5
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the standardised aver-

age return in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed
effect. To be included, a manager must have in his current investment universe a stock that
he has previously held in a different fund. A manager-stock pair must have at least 5 quar-
ters of experience. Standard errors are clustered at the same level of the fixed effects and are
reported in parentheses. Columns (1)-(3) report results without wi,j,t = 0, namely including in
the computations only strictly positive weights; columns (4)-(6) include zero weights on stocks
that belong to the manager’s investment universe. Columns (1) and (4) use sample covari-
ance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and columns

(3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.224∗∗∗ 0.272∗∗∗ 0.209∗∗∗ 0.240∗∗∗ 0.214∗∗∗ 0.250∗∗∗

(0.018) (0.031) (0.023) (0.014) (0.014) (0.022)

β2 0.133∗∗∗ 0.116∗∗∗ 0.112∗∗∗ 0.125∗∗∗ 0.117∗∗∗ 0.124∗∗∗

(0.015) (0.016) (0.015) (0.009) (0.009) (0.011)

β3 0.048∗∗∗ 0.046∗∗∗ 0.031∗∗∗ 0.063∗∗∗ 0.049∗∗∗ 0.066∗∗∗

(0.011) (0.014) (0.011) (0.008) (0.007) (0.009)

β4 0.066∗∗∗ 0.071∗∗∗ 0.051∗∗∗ 0.078∗∗∗ 0.065∗∗∗ 0.073∗∗∗

(0.010) (0.010) (0.011) (0.007) (0.006) (0.007)

β5 0.199∗∗∗ 0.199∗∗∗ 0.202∗∗∗ 0.216∗∗∗ 0.219∗∗∗ 0.211∗∗∗

(0.011) (0.013) (0.013) (0.007) (0.007) (0.009)

N 110, 037 110, 037 110, 037 225, 676 225, 676 225, 676

R2 0.892 0.885 0.889 0.843 0.834 0.842

Within-R2 0.034 0.038 0.034 0.040 0.040 0.040

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B7: Managers Who Have Switched Funds - Ten Buckets

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

∑10
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, q ∈ {1, 2, ..., 10}, is the standardised aver-

age return in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed
effect. To be included, a manager must have in his current investment universe a stock that
he has previously held in a different fund. A manager-stock pair must have at least 10 quar-
ters of experience. Standard errors are clustered at the same level of the fixed effects and are
reported in parentheses. Columns (1)-(3) report results without wi,j,t = 0, namely including in
the computations only strictly positive weights; columns (4)-(6) include zero weights on stocks
that belong to the manager’s investment universe. Columns (1) and (4) use sample covari-
ance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and columns

(3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.

Expected Returns
(1) (2) (3) (4) (5) (6)

β1 0.246∗∗∗ 0.253∗∗∗ 0.252∗∗∗ 0.281∗∗∗ 0.212∗∗∗ 0.198∗∗∗

(0.026) (0.026) (0.027) (0.055) (0.017) (0.021)
β2 0.129∗∗∗ 0.148∗∗∗ 0.127∗∗∗ 0.154∗∗∗ 0.124∗∗∗ 0.116∗∗∗

(0.018) (0.018) (0.020) (0.023) (0.011) (0.013)
β3 0.071∗∗∗ 0.102∗∗∗ 0.106∗∗∗ 0.101∗∗∗ 0.097∗∗∗ 0.071∗∗∗

(0.015) (0.014) (0.018) (0.011) (0.010) (0.010)
β4 0.054∗∗∗ 0.066∗∗∗ 0.074∗∗∗ 0.060∗∗∗ 0.055∗∗∗ 0.042∗∗∗

(0.015) (0.012) (0.017) (0.009) (0.008) (0.009)
β5 0.027∗∗ 0.035∗∗∗ 0.030∗∗∗ 0.040∗∗∗ 0.029∗∗∗ 0.022∗∗∗

(0.013) (0.011) (0.012) (0.008) (0.007) (0.008)
β6 0.026∗∗ 0.025∗∗ 0.015 0.029∗∗∗ 0.012∗ 0.023∗∗∗

(0.011) (0.011) (0.013) (0.007) (0.007) (0.006)
β7 0.011 0.019∗ 0.013 0.027∗∗∗ 0.020∗∗∗ 0.027∗∗∗

(0.011) (0.010) (0.011) (0.006) (0.007) (0.007)
β8 0.044∗∗∗ 0.031∗∗∗ 0.033∗∗ 0.056∗∗∗ 0.040∗∗∗ 0.038∗∗∗

(0.012) (0.011) (0.013) (0.007) (0.006) (0.007)
β9 0.090∗∗∗ 0.073∗∗∗ 0.085∗∗∗ 0.084∗∗∗ 0.086∗∗∗ 0.077∗∗∗

(0.012) (0.013) (0.012) (0.008) (0.007) (0.007)
β10 0.183∗∗∗ 0.169∗∗∗ 0.180∗∗∗ 0.195∗∗∗ 0.193∗∗∗ 0.200∗∗∗

(0.014) (0.014) (0.016) (0.010) (0.009) (0.009)

N 78, 920 78, 920 78, 920 160, 237 160, 237 160, 237
R2 0.914 0.915 0.914 0.869 0.865 0.867
Within-R2 0.038 0.037 0.039 0.044 0.040 0.039

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B8: Learning Parameters

The table reports the parameter estimates obtained from the following regression: µi,j,t − r f =

β
(

∑
Ti,j,t
k=1 ωi,j,t,krj,t+1−k

)
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period

ahead return of manager i for stock j at time t, rj,t+1−k is the realised return of stock j from
time t − k to t + 1 − k, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect.

Weights are represented by the following functional form : ωi,j,t,k =
(Ti,j,t−k)λ1 kλ2

∑
Ti,j,t
k=1 (Ti,j,t−k)λ1 kλ2

. Clustered

standard errors are in parentheses. Columns (1)-(3) report results without wi,j,t = 0, namely in-
cluding in the computations only strictly positive weights; columns (4)-(6) include zero weights
on stocks that belong to the manager’s investment universe. Columns (1) and (4) use sample
covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and

columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.

Expected Returns

(1) (2) (3) (4) (5) (6)

β 0.146∗∗∗ 0.139∗∗∗ 0.144∗∗∗ 0.205∗∗∗ 0.205∗∗∗ 0.207∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

λ1 -1.901∗∗∗ -1.838∗∗∗ -1.873∗∗∗ -1.663∗∗∗ -1.700∗∗∗ -1.683∗∗∗

(0.068) (0.064) (0.064) (0.034) (0.038) (0.035)

λ2 -1.659∗∗∗ -1.487∗∗∗ -1.563∗∗∗ -1.574∗∗∗ -1.610∗∗∗ -1.590∗∗∗

(0.108) (0.116) (0.108) (0.053) (0.061) (0.053)

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B9: Risk Aversion - Pooled Regressions

The table reports the parameter estimates obtained from the following pooled regression: rj,t+1 −
r f = α + γ(Σtw

∗
i,t)j + εi,j,t+1, where rj,t+1 − r f is the realised excess return of stock j from time t

to t + 1, and (Σtw
∗
i,t)j is the demand of manager i for stock j at time t scaled by the conditional

covariance matrix Σt. α is the pooled estimated bias across managers and time, γ is the pooled es-
timated risk aversion across managers and time. Standard errors are clustered at the manager-time
and stock-time level and reported in parentheses. Columns (1)-(3) report results without wi,j,t = 0,
namely including in the computations only strictly positive weights; columns (4)-(6) include zero
weights on stocks that belong to the manager’s investment universe. Columns (1) and (4) use sam-
ple covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and

columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.

Expected Returns

(1) (2) (3) (4) (5) (6)

α 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

γ 0.915∗∗∗ 0.999∗∗∗ 0.958∗∗∗ 1.204∗∗∗ 1.283∗∗∗ 1.255∗∗∗

(0.079) (0.082) (0.080) (0.077) (0.079) (0.078)

N 5, 383, 850 5, 383, 850 5, 383, 850 12, 545, 295 12, 545, 295 12, 545, 295

R2 0.004 0.004 0.004 0.006 0.006 0.006

wijt = 0 No No No Yes Yes Yes

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B10: Risk Aversion and Bias - Summary Statistics

The table reports the summary statistics of the parameter estimates α̂i and γ̂i obtained by run-
ning one regression per manager with the following specification: rj,t+1 − r f = αi + γi(Σtw

∗
i,t)j +

εi,j,t+1, where rj,t+1 − r f is the realised excess return of stock j from time t to t + 1, and (Σtw
∗
i,t)j

is the demand of manager i for stock j at time t scaled by the conditional covariance ma-
trix Σt. The reported results are obtained under measure (1), using sample covariance matri-
ces Σ̂1

t and no wi,j,t = 0, namely including in the computations only strictly positive weights.

α̂i γ̂i

mean 0.007 1.236

standard deviation 0.068 5.850

median 0.010 1.117

min -0.676 -44.666

max 0.736 48.631

skewness -0.626 1.075

kurtosis 27.395 13.200
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B.2 Figures

Figure B1: Explained R2

The figure reports the fraction of variation in expected excess returns explained by various fixed
effects. For (1), (2) and (3) we report the R2 of the following regression µi,j,t − r f = Hk + εi,j,t. (1)
reports results for manager fixed effects, i.e., Hk = Hi; (2) for stock fixed effects Hk = Hj; (3) for
time fixed effects Hk = Ht. (4) reports the R2 for separate manager, stock and time fixed effects, i.e.,
µi,j,t − r f = Hi + Hj + Ht + εi,j,t. (5) reports the results for manager-time and stock fixed effects,
i.e., µi,j,t − r f = Hi,t + Hj + εi,j,t. (6) reports the results for manager and stock-time fixed effects, i.e.,
µi,j,t − r f = Hi + Hj,t + εi,j,t. (7) reports the results for manager-time and stock-time fixed effects, i.e.,
µi,j,t − r f = Hi,t + Hj,t + εi,j,t.
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Figure B2: Managers’ Careers

The upper panel shows the distribution of starting date for the managers’ careers, as the first date we
can track the manager in sample. The bottom panel shows the distribution of tenure across managers
and dates as the difference between the current date and the starting date in quarters.
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Figure B3: Stock-Manager Experience

The upper panel depicts the starting date of each manager-stock pair ti,j,0, as the first date in which
we observe a certain manager i holding a certain stock j. The middle panel shows the distribution
of stock-manager experience, i.e., for any date t, manager i and stock j experiencei,j,t = t− ti,j,0. The
bottom panel reports the distribution of the maximal experience achieved for each manager-stock
pair, i.e., max. experiencei,j = maxt{experiencei,j,t}.
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Figure B4: Weights on Past Experience

The figure reports the parameter estimates for βq obtained from the following regression: µi,j,t− r f =

∑Q
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

is the standardised average return in the q-th

bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. The upper panel
reports the results for Q = 5, while the bottom panel for Q = 10. To be included in the upper
panel, a manager-stock pair must have at least 5 quarters of experience, while 10 quarters are needed
for the bottom panel. Measures (1)-(3) report results without wi,j,t = 0, namely including in the
computations only strictly positive weights; measures (4)-(6) include zero weights on stocks that
belong to the manager’s investment universe. Measures (1) and (4) use sample covariance matrices
Σ̂1

t , measures (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and measures (3) and (6) use

Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.
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Figure B5: Weights on Past Experience by Number of Managers

The figure reports the parameter estimates for βq,n obtained from the following regression: µi,j,t −
r f = ∑Q

q=1 βq,n r̄i,j,t∈∆Tq
i,j,t

+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period

ahead return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

, is the standardised average return in the

q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. The horizontal
axis refers to q, while each line to ni,t ∈ {1, 2, 3, 4 or more}. The top row reports the results for Q = 5,
the bottom for Q = 10. The left column plots coefficients for measure (1), namely expected excess
returns are computed without wi,j,t = 0 and using the sample covariance matrix Σ̂1

t ; the right column
for measure (4), namely expected excess returns are computed with wi,j,t = 0 and using the sample
covariance matrix Σ̂1

t .
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Figure B6: Weights on Past Experience - Managers Who Have Switched Funds

The figure reports the parameter estimates for βq obtained from the following regression: µi,j,t− r f =

∑Q
q=1 βq r̄i,j,t∈∆Tq

i,j,t
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered expected one-period ahead

return of manager i for stock j at time t, r̄i,j,t∈∆Tq
i,j,t

is the standardised average return in the q-th

bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. The upper panel
reports the results for Q = 5, while the bottom panel for Q = 10. To be included, a manager must
have in his current investment universe a stock that he has previously held in a different fund. In
the upper panel, manager-stock pairs have at least 5 quarters of experience, while 10 quarters are
needed for the bottom panel. Measures (1)-(3) report results without wi,j,t = 0, namely including in
the computations only strictly positive weights; measures (4)-(6) include zero weights on stocks that
belong to the manager’s investment universe. Measures (1) and (4) use sample covariance matrices
Σ̂1

t , measures (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and measures (3) and (6) use

Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twi,t.
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Figure B7: Weighting Functions - Various Examples
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Figure B8: Empirical Weighting Function

The figure plots the weights implied by the parameter estimates obtained from the following re-

gression: µi,j,t − r f = β
(

∑
Ti,j,t
k=1 ωi,j,t,krj,t+1−k

)
+ Hi,t + Hj,t + εi,j,t, where µi,j,t − r f is the recovered

expected one-period ahead return of manager i for stock j at time t according to measure (1), rj,t+1−k
is the realised return of stock j from time t − k to t + 1 − k, Hi,t is a manager-time fixed effect,
and Hj,t is a stock-time fixed effect. Weights are represented by the following functional form :

ωi,j,t,k =
(Ti,j,t−k)λ1 kλ2

∑
Ti,j,t
k=1 (Ti,j,t−k)λ1 kλ2

. The upper panel reports weights for a manager with stock-specific experi-

ence of 9 quarters and the lower for 13 quarters.
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Figure B9: Bias and Risk Aversion

The figure shows the empirical distribution of the parameter estimates α̂i,t and γ̂i,t obtained by run-
ning one regression per manager with the following specification: rj,t+1 − r f = αi + γi(Σtw

∗
i,t)j +

εi,j,t+1, where rj,t+1 − r f is the realised excess return of stock j from time t to t + 1, and (Σtw
∗
i,t)j is

the demand of manager i for stock j at time t scaled by the conditional covariance matrix Σt. The
dashed lines represent the median bias and risk aversion, respectively. The histograms are trimmed
for outliers.
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Figure B10: Bias and Risk Aversion by Tenure

The figure plots the parameter estimates α̂τ and γ̂τ obtained by running one regression per tenure
τ with the following specification: rj,t+1 − r f = ατ + γτ(Σtw

∗
i,t)j + εi,j,t+1, where rj,t+1 − r f is the

realised excess return of stock j from time t to t + 1, and (Σtw
∗
i,t)j is the demand of manager i for

stock j at time t scaled by the conditional covariance matrix Σt. Bias is the estimated parameter
α̂τ , while Risk Aversion is the estimated parameter γ̂τ . Tenure is measured in quarters since the
first observation where we can identify the manager. The shaded grey area covers two standard
deviations around the point estimate. The left panel reports results for measure (1), using sample
covariance matrices Σ̂1

t and no wi,j,t = 0, namely including in the computations only strictly positive
weights; the right panel reports results for measure (4), using sample covariance matrices Σ̂1

t and
including zero weights on stocks that belong to the manager’s investment universe.
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Figure B11: Bias and Risk Aversion by Date

The figure plots the parameter estimates α̂t and γ̂t obtained by running one regression per date with
the following specification: rj,t+1 − r f = αt + γt(Σtw

∗
i,t)j + εi,j,t+1, where rj,t+1 − r f is the realised

excess return of stock j from time t to t + 1, and (Σtw
∗
i,t)j is the demand of manager i for stock j

at time t scaled by the conditional covariance matrix Σt. Bias is the estimated paramater α̂t, while
Risk Aversion is the estimated parameter γ̂t. The shaded grey area covers two standard deviations
around the point estimate. The left panel reports results for measure (1), using sample covariance
matrices Σ̂1

t and no wi,j,t = 0, namely including in the computations only strictly positive weights;
the right panel reports results for measure (4), using sample covariance matrices Σ̂1

t and including
zero weights on stocks that belong to the manager’s investment universe.
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B.3 Optimal Portfolio Choice

In what follows we provide four examples of optimal portfolio choice and describe
how we can (or cannot) achieve identification of beliefs. We first look at an investor
facing borrowing constraints, second an investor facing short sale constraints, third
we look at an investor worried about model misspecification and, finally, an investor
who is tracking a benchmark. We show that we can identify beliefs in the first three
cases, while the last one requires us to make additional assumptions.

B.3.1 Borrowing Constraint

We follow the approach of Cvitanic and Karatzas (1992), Xu and Shreve (1992) and
Tepla (2000). There exists a standard filtered probability space (Ω,F , {Ft}t∈[0,∞), P)

where all the usual regularity conditions are satisfied. We assume that the investor
maximises his expected utility over terminal wealth E0[U(WT)]. Returns follow
a geometric Brownian motion and the investor faces a borrowing constraint. He
solves the following problem:

sup
{ws}s∈[0,T]

E0

[
W1−γ

T
1− γ

]
s.t. (B.1)

dBt

Bt
= r f dt, B0 = 1 (B.2)

dSt
St

= µtdt + Σ
1
2
t dZt (B.3)

dWt

Wt
=

dBt

Bt
+w′t

(
dSt
St
− dBt

Bt
1
)

(B.4)

w′t1 ≤ k (B.5)

where Bt is the price of a risk-free bond, St is a vector of stock prices, dSt
St

=
[

dS1,t
S1,t

, ... ,
dSj,t
Sj,t

, ..., dSN,t
S,N,t

]′
, r f is the instantaneous risk-free rate, µt is the vector of stock return

drifts, wt is the vector of stock portfolio weights, Σ
1
2
t is the matrix of instantaneous

loadings on the Brownian motion processes Zt, 1 is a vector of ones and k is a real
number. Cvitanic and Karatzas (1992) show that the problem in (B.1)-(B.5) is equiv-
alent to an unconstrained problem with modified drifts, i.e., where (B.2) and (B.3)
are replaced by:

dBt

Bt
= (r f + δ(vt))dt (B.6)

dSt
St

= (µt + vt + δ(vt)1)dt + Σ
1
2
t dZt (B.7)
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where the support function δ(x) = supw′1≤k(−w′x), vt is such that δ(vt) < ∞.
Cvitanic and Karatzas (1992) show that the optimal v∗t and portfolio weightsw∗t can
be obtained by solving the ’dual’ Hamilton-Jacobi-Bellman equation1. In particular,
the optimal portfolio weights are:

w∗t =
1
γ

Σ−1
t (µt − r f1− v∗t ) (B.8)

where v∗t = arg min{v s.t. δ(v)<∞}

[
||θt + Σ−

1
2

t vt||2 + 2γδ(vt)

]
and θt = Σ−

1
2

t (µt −

r f1). Tepla (2000) shows that v∗t = v̄∗1 with v̄∗ =
γ(1−γ)−1′Σ−1

t (µt−r f1)

1′Σ−1
t 1

when the
borrowing constraint binds, and zero otherwise. Notice that the above result implies
that the solution to the constrained optimisation problem is equivalent to that of an
unconstrained problem with a risk-free rate shifted by the scalar v̄∗. Identification of
beliefs is easily achieved in (B.8) by saturating the model with manager-time fixed
effects in order to absorb any variation in manager-specific borrowing constraints.
Specifically, for each manager i solving the above problem, the subjective beliefs can
be expressed as:

µi,t − r f1 = γiΣtw
∗
i,t +Hi,t (B.9)

where the manager-time fixed effect is equal toHi,t = v̄∗i,t1.

B.3.2 Short Sale Constraints

The manager solves the following problem2:

sup
{ws}s∈[0,T]

E0

[
W1−γ

T
1− γ

]
s.t. (B.10)

dBt

Bt
= r f dt, B0 = 1 (B.11)

dSt
St

= µtdt + Σ
1
2
t dZt (B.12)

dWt

Wt
=

dBt

Bt
+w′t

(
dSt
St
− dBt

Bt
1
)

(B.13)

−wj,t ≤ 0 ∀j = 1, 2, ..., N (B.14)

The problem (B.10)-(B.14) can be solved by using Cvitanic and Karatzas (1992) and
Xu and Shreve (1992)’s dual approach, similarly to the previous section. The support
function now becomes δ(x) = sup{−wj,t≤0 ∀j=1,2,...,N}(−w′x). As before, we can

1See Sections 12 and 15 of Cvitanic and Karatzas (1992). In particular, see equations (15.1), (15.2)
and (15.10).

2This problem is similar to the discrete problem analyzed by Koijen and Yogo (2019) as γ→ 1.
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find v∗t by solving:

min
[
||θt + Σ−

1
2

t vt||2 + 2γδ(vt)

]
s.t. (B.15)

−vt ≤ 0 (B.16)

Denote the vector of Lagrange multipliers on the the constraint in equation (B.16) by
λt = [λ1,t, ..., λN,t]

′. Taking first-order conditions of the above minimisation problem
yields:

Σ−1
t (µt − r f1+ v

∗
t ) + λt = 0 (B.17)

Consider the following partitions: v∗t = [0′ v
(2)∗′
t ]′, λt = [λ

(1)′
t 0′]′, where we

have divided between assets for which the short sale constraint does not bind and
those for which it does. We can also partition the vector of expected excess returns
and the covariance matrix: µt − r f1 = [(µ

(1)
t − r f1)

′ (µ
(2)
t − r f1)

′]′,

Σt =

[
Σ(1,1)

t Σ(1,2)
t

Σ(2,1)
t Σ(2,2)

t

]
,

Standard results imply that the inverse of the covariance matrix can be partitioned
as:

Σ−1
t =

[
Ω(1)

t −Σ(1,1)−1
t Σ(1,2)

t Ω(2)
t

−Σ(2,2)−1
t Σ(2,1)

t Ω(1)
t Ω(2)

t

]
where

Ω(1)
t =

(
Σ(1,1)

t − Σ(1,2)
t Σ(2,2)−1

t Σ(2,1)
t

)−1

Ω(2)
t =

(
Σ(2,2)

t − Σ(2,1)
t Σ(1,1)−1

t Σ(1,2)
t

)−1

Using the above, rewrite equation (B.17) as:

0 =

 Ω(1)
t (µ

(1)
t − r f1)− Σ(1,1)−1

t Σ(1,2)
t Ω(2)

t

(
µ
(2)
t − r f1+ v

(2)∗
t

)
+ λ

(1)
t

−Σ(2,2)−1
t Σ(2,1)

t Ω(1)
t

(
µ
(1)
t − r f1

)
+ Ω(2)

t

(
µ
(2)
t − r f1+ v

(2)∗
t

)  (B.18)

Multiplying the second row of (B.18) by Σ(1,1)−1
t Σ(1,2)

t and adding it to the first row
allows us to solve for the Lagrange multipliers:

λ
(1)
t = −Σ(1,1)−1

t

(
µ
(1)
t − r f1

)
(B.19)

Insert the multipliers into the first-order condition in equation (B.17) to obtain:

v∗t =

[
0

v
(2)∗
t

]
=

[
0

Σ(1,1)−1
t Σ(2,1)

t

(
µ
(1)
t − r f1

)
−
(
µ
(2)
t − r f1

) ] (B.20)
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We can now substitute v∗t into equation (B.8) and solve for the optimal weights:

w∗
t =

[
w

(1)∗
t

0

]
=

1
γ

 Ω(1)
t

(
µ
(1)
t − r f1

)
− Σ(1,1)−1

t Σ(1,2)
t Ω(2)

t

(
Σ(1,1)−1

t Σ(2,1)
t (µ

(1)
t − r f1)

)
−Σ(2,2)−1

t Σ(2,1)
t Ω(1)

t

(
µ
(1)
t − r f1

)
+ Ω(2)

t

(
Σ(1,1)−1

t Σ(2,1)
t (µ

(1)
t − r f1)

) 
(B.21)

Multiplying the second row by Σ(1,1)−1
t Σ(1,2)

t and adding the two rows together
gives the optimal weights on the unconstrained assets:

w
(1)∗
t =

1
γ

Σ(1,1)−1
t

(
µ
(1)
t − r f1

)
(B.22)

Intuitively, the optimisation program of a short sale constrained investor results in
an unconstrained portfolio allocation over the set of assets for which the constraint
does not bind. For each manager i, identification of beliefs can be achieved by in-
verting equation (B.22):

µ
(1)
i,t − r f1 = γiΣ

(1,1)
t w

(1)∗
i,t (B.23)

B.3.3 Model Misspecification

In this section we follow the approach of Maenhout (2004) and analyse the be-
haviour of an investor worried about model misspecification. The investor solves
the following problem:

J0 = sup
{ws,Cs}

E0

[∫ ∞

0
f (Cs, Js)ds

]
s.t. (B.24)

dBt

Bt
= r f dt, B0 = 1 (B.25)

dSt
St

= µtdt + Σ
1
2
t dZt (B.26)

dWt

Wt
=

dBt

Bt
+w′t

(
dSt
St
− dBt

Bt
1
)
− Ct

Wt
dt (B.27)

where we are vague about the functional form of the value function. Standard dy-
namic optimisation arguments yield the following HJB equation:

0 = sup
{wt,Ct}

{ f (Ct, Jt)dt + Et [dJt]} (B.28)

Equation (B.28) assumes that the investor is certain about the value of Et [dJt] and
chooses his portfolio accordingly. An investor worried about model misspecifica-
tion will choose the optimal allocation given the worst-case scenario. Following
Anderson et al. (2003), Maenhout (2004) shows that the wealth of the investor under
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the endogenously chosen model for u(Wt) will evolve according to:

dWt = Wt

(
r f +w

′
t(µt − r f1)−

Ct

Wt

)
dt + Wtw

′
tΣ

1
2
t dZt + W2

t w
′
tΣtwtu(Wt)dt

(B.29)
where u(Wt) is a drift term chosen by the investor to minimise the following expres-
sion:

u∗(Wt) = inf
ut

{
Et[dJt|ut] +

1
2Ψ

u2
t W2

t w
′
tΣtwtdt

}
(B.30)

where Et[dJt|ut] is computed under the law of motion in equation (B.29). Among
all the models for u(Wt) the investor chooses the least favourable one in terms of
its effect on Et[dJt|ut], subject to the entropy constraint 1

2Ψ u2
t W2

t w
′
tΣtwtdt. The HJB

equation thus becomes:

0 = sup
{wt,Ct}

inf
ut

f (Ct, Jt) +
∂Jt

∂t
+ JWtWt

(
r f +w

′
t(µt − r f1)−

Ct

Wt

)
+

JWtW
2
t w
′
tΣtwtut +

1
2Ψ

u2
t W2

t w
′
tΣtwt +

1
2

JWtWtW
2
t w
′
tΣtwt

(B.31)

The agent will choose u(Wt)∗ = −JWt Ψ. The optimal portfolio, therefore, will be:

w∗t = − JWt

[JWtWt − J2
Wt

Ψ]Wt
Σ−1

t (µt − r f1) (B.32)

An investor concerned about model misspecification will behave like an otherwise

identical investor with relative risk aversion of γi,t = −
[JWi,tWi,t

−J2
Wi,t

Ψi]Wi,t

JWi,t
. In this

case, identification follows in a way similar to the standard model presented in the
main text.

B.3.4 Benchmarking

In the spirit of van Binsbergen et al. (2008), consider an investor who has his objec-
tive function defined over his terminal wealth WT relative to a benchmark portfolio
MT. He will solve the following problem:

J0 = sup
{ws}

E0

[
f

(
WT

Mβ
T

)]
s.t. (B.33)

dBt

Bt
= r f dt, B0 = 1 (B.34)

dSt
St

= µtdt + Σ
1
2
t dZt (B.35)

dWt

Wt
=

dBt

Bt
+w′t

(
dSt
St
− dBt

Bt
1
)

(B.36)
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Assume that the benchmark has weights θt in the N risky assets and therefore
evolves according to:

dMt

Mt
=

dBt

Bt
+ θ′t

(
dSt
St
− dBt

Bt
1
)

(B.37)

The problem can be recast in terms of the state variable Xt =
Wt

Mβ
t

with the following

law of motion:

dXt

Xt
=((1− β)r f + (wt − βθt)

′(µt − r f1))dt− 1
2

β(β− 1)θ′tΣtθtdt+

(wt − βθt)
′Σ

1
2
t dZt − (wt − βθt)

′Σtβθtdt
(B.38)

If we set up the HJB equation and take first-order conditions, we obtain the optimal
weights:

w∗t = − JXt

JXtXt Xt
Σ−1

t (µt − r f1) + βθt

(
1 +

JXt

JXtXt Xt

)
(B.39)

In this case, it is not obvious that we can identify beliefs. However, if there is no
variation in the objective function in the cross-section of managers adopting the
same benchmark portfolio θt, stock-time fixed effects would suffice to recover ex-
pectations. Although the above model requires an additional assumption to achieve
identification, this is consistent with the common practice of evaluating managers
using summary statistics such as CAPM alphas (Berk and van Binsbergen, 2016; Bar-

ber et al., 2016). For instance, set f
(

WT

Mβ
T

)
= 1

1−γ

(
WT/W0

(MT/M0)β

)1−γ
= 1

1−γ

(
RW,T

Rβ
M,T

)1−γ

.

That would be equivalent to solving:

sup
{ws}

E0[rW,T]− βE0[rM,T]−
(γ− 1)

2
Var0(rW,T − βrM,T) (B.40)

where rW,T = log WT/W0 and rM,T = log MT/M0 are log-returns. The manager
is maximising α = E0[rW,T] − βE0[rM,T] subject to the tracking error penalisation
(γ−1)

2 Var0(rW,T − βrM,T)
3. In this case − JXt

JXtXt Xt
= 1/γ and we could recover beliefs

using:
µi,t − r f1 = γΣtw

∗
i,t +Ht (B.41)

Notice that each element of the vector Ht varies at the stock-time level, i.e.: Ht =

(1− γ)βΣtθt.
3As it is well known, the agent penalises tracking error for any value of γ > 0, even for 0 < γ ≤ 1.

To see this, notice that we can substitute E0[rW,T − βrM,T ] = log E0

[
RW,T

Rβ
M,T

]
− 1

2 Var0(rW,T − βrM,T)

and obtain the following objective:

sup
{ws}

log E0

RW,T

Rβ
M,T

− γ

2
Var0(rW,T − βrM,T)
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B.4 Data Construction

In this section we provide details on the construction of the data that are used in
the paper. We start with the universe of mutual funds in the CRSP database. We re-
move funds whose manager name clearly does not refer to a person4. After having
obtained a list of names of managers, we look for cases in which the same manager
is spelled differently, e.g. ”John Smith”, ”J. Smith”, ”J Smith” or just ”Smith”. To
be sure that the pairing is done correctly we proceed in the following way: first,
we compute a matrix of distances between names using cosine, Jaccard and Jaro-
Winkler methods. We then keep pairs that have a distance below a distance-specific
threshold (0.10, 0.17, 0.10 for the cosine, Jaccard and Jaro-Wrinkler methods, respec-
tively) that is set to make sure that we avoid false negatives. We then proceed to
manually check over 15,000 pairs to guarantee proper matching with the help of on-
line resources and common sense. After having obtained a list of managers with the
dates in which they manage a specific fund, we follow Evans (2010) and Benos et al.
(2010) to screen for equity mutual funds. First, if available, we keep funds with the
following Lipper class: EIEI, G, LCCE, LCGE, LCVE, MCCE, MCGE, MCVE, MLCE,
MLGE, MLVE, SCCE, SCGE, SCVE. We then keep the funds with missing Lipper
class and the following Strategic Insight Objective Code: AGG, GMC, GRI, GRO,
ING, SCG. If neither of the previous are available, we use the following Wiesen-
berger Fund Type Codes: G, G-I, AGG, GCI, GRI, GRO, LTG, MCG, and SCG. We
then keep all the funds with policy equal to CS. Finally, we remove funds with less
than 80% of holdings in common equity, similarly to Kacperczyk et al. (2006). To
check for possible mistakes we keep funds with CRSP objective code starting with
E and M and remove those starting with EF. This provides us with a manager-by-
manager history of the funds managed that we subsequently match with the S12
type1 file from the Thomson-Reuters Institutional Holdings database, using Russ
Wermer’s MFLinks tables. We then proceed by joining with the S12 type2 and type3
files to obtain a history of holdings.

We continue by adding stock return and balance sheet data using CRSP and
Compustat, respectively. From the CRSP Compustat Merged Database we select
LinkTypes LU and LC and LinkPrim P and C for stocks with share codes of 10 and
11. After we have merged the two datasets, we compute dividends using CRSP
returns and returns not including distributions, similarly to Koijen and Yogo (2019).
From Compustat we compute the following quantities: me as market equity, beme as
the book to market equity ratio, dp as the ratio between dividends and market prices,
profitability as the ratio between operating profits and book equity and investment as
the growth rate of assets similarly to Fama and French (2015).

We then proceed with the construction of the scaled demands Σ̂twi,t. We start

4We use various automatic screens like “advisors”, “ltd”, “limited”, etc..., paired with manual
inspection.
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from CRSP daily return data and compute covariance matrices using the previ-
ous year. We compute three daily covariance matrices: Σ̂d,1

t which is the sample
covariance matrix, and two Bayesian shrinkage estimates. The first one follows
Touloumis (2015) and shrinks the daily sample covariance towards a target diag-
onal matrix with the sample variances on the diagonal, i.e., the resulting estima-
tor is Σ̂d,2

t = λΣ̂d,1
t + (1 − λ)Σtarget

t , with Σtarget
t = IN ∗ Σ̂d,1

t , where ∗ denotes the
Hadamard product and IN is an N × N identity matrix with N being the num-
ber of stocks. The third covariance estimator follows Ledoit and Wolf (2004) and
shrinks the daily covariance matrix towards a diagonal matrix with the average vari-

ance on the diagonal, i.e., Σ̂d,3
t = λΣ̂d,1

t + (1− λ)Σ̃target
t , where Σ̃target

t =
tr(Σ̂d,1

t )
N IN,

where tr(Σ̂d,1
t ) is the trace of the daily sample covariance matrix. The shrinkage

intensity λ is chosen similarly to Touloumis (2015) to minimise the risk function
E[||Σ̂d,k

t − Σd
t ||2F] where ||S||2F = tr(S′S)

dim(S) denotes the Frobenius norm of matrix S,

which results in λ =
Y2,T+Y2

1,T

TY2,T+
N−T+1

N Y2
1,T

, where Y1,T = 1
T ∑T

s=1 X′sXs − 1
PT

2
∑s 6=h X′hXs,

Y2,T = 1
PT

2
∑s 6=h(X′hXs)2 − 2 1

PT
3

∑s 6=h 6=k X′sXhX′sXk +
1

PT
4

∑s 6=h 6=k 6=w XsX′hXkX′w with Xj

being the vector of stock returns for which we have T observations and Pb
a = b!

(b−a)! .

Finally, we can scale the matrices Σ̂d,k
t by the average number of trading days in a

quarter, which in our sample is equal to num.obs
num.quarters = 63.07 to obtain our quarterly

estimators Σ̂k
t =

num.obs
num.quarters × Σ̂d,k

t . We can then proceed to compute scaled demands
as Σ̂k

twi,t. We compute two vectors of scaled demands for each estimator: one that
does not include stocks that currently have zero weights, but belong to the invest-
ment opportunity set of the manager, and one that does, i.e., in the first case all the
wi,j,t inwi,t are different from zero, while in the secondwi,t has some zero elements.
The investment opportunity set is constructed similarly to Koijen and Yogo (2019)
and includes all stocks that are currently held or have ever been held by the manager
in the past 11 quarters.
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B.5 Parametric Estimation

As described in Section 2.5, we estimate the model in equation (2.22) via non-linear
least squares (NLS). In particular we obtain the coefficients θ̂ = (β̂, λ̂1, λ̂2)

′ by min-
imising the sum of squared errors:

θ̂ = arg min
θ

∑
i

∑
j

∑
t

µi,j,t − r f − β

Ti,j,t

∑
k=1

(Ti,j,t − k)λ1kλ2

∑
Ti,j,t
k=1(Ti,j,t − k)λ1kλ2

rj,t+1−k

− Hi,t − Hj,t

2

(B.42)
We perform the minimisation with (λ̂1, λ̂2) ∈ [−5, 5] × [−5, 5] via Simulated An-
nealing and limited-memory BFGS5. Fixed effects are partialled out by demeaning

µi,j,t − r f and

(
∑

Ti,j,t
k=1

(Ti,j,t−k)λ1 kλ2

∑
Ti,j,t
k=1 (Ti,j,t−k)λ1 kλ2

rj,t+1−k

)
. To compute standard errors, we can

rewrite (B.42) as:

θ̂ = arg min
θ

1
2

P

∑
p=1

(yp − ϕ(xp;θ))2 (B.43)

where the index p is a short-hand for all the P combinations of i, j, t. We next follow
the approach of Davidson and MacKinnon (2001) and recover standard errors using
Gauss-Newton Regressions. Consider the 3× 1 gradient vector Ψ(xp;θ) = ∂ϕ(xp;θ)

∂θ

and the following regression:

yp − ϕ(xp; θ̂) = Ψ(xp; θ̂)′b+ up (B.44)

where we regress the residuals yp − ϕ(xp; θ̂) on the estimated gradient Ψ(xp; θ̂)6.
Denote the P × 3 matrix of gradient observations as Ψ̂ = [Ψ(x1; θ̂), ..., Ψ(xP ; θ̂)]′,
then we can estimate the covariance matrix of the coefficients b using the standard
clustered “sandwich” estimator:

S(b̂) = (Ψ̂′Ψ̂)−1Ψ̂′Ω̂Ψ̂(Ψ̂′Ψ̂)−1 (B.45)

Davidson and MacKinnon (2001) show that the covariance matrix of b in (B.45) is a
consistent estimator for the covariance of θ.

5Notice that, conditional on λ1 and λ2, β can be estimated via OLS and, therefore, is left uncon-
strained.

6For expositional reasons we exclude the estimated fixed effects from θ. Given that they enter
linearly in ϕ(xp;θ), their gradients are identical to the matrix containing the full set of dummies
and, therefore, can be taken care of by including dummies on the right hand side of (B.44) or by
demeaning.
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B.6 Additional Tables and Figures

Table B11: The Effect of Average Experienced Returns

Expected Returns

(1) (2) (3) (4) (5) (6)

β 0.148∗∗∗ 0.140∗∗∗ 0.146∗∗∗ 0.188∗∗∗ 0.179∗∗∗ 0.189∗∗∗

(0.006) (0.005) (0.005) (0.005) (0.005) (0.005)

profitability -0.002 -0.0010 -0.002 -0.003 -0.002 -0.004

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

investment 0.040∗∗∗ 0.032∗∗∗ 0.035∗∗∗ 0.051∗∗∗ 0.039∗∗∗ 0.042∗∗∗

(0.007) (0.006) (0.006) (0.006) (0.005) (0.005)

BE/ME 0.012 0.020∗∗∗ 0.012∗ 0.016∗ 0.019∗∗ 0.017∗∗

(0.008) (0.008) (0.007) (0.008) (0.007) (0.007)

ME 0.011 0.009 0.012 0.009 0.0009 0.008

(0.015) (0.012) (0.013) (0.018) (0.016) (0.017)

D/P -0.019∗∗∗ -0.017∗∗∗ -0.018∗∗∗ -0.005 -0.006 -0.005

(0.006) (0.006) (0.006) (0.006) (0.005) (0.005)

N 1, 153, 333 1, 153, 333 1, 153, 333 2, 596, 853 2, 596, 853 2, 596, 853

R2 0.591 0.583 0.588 0.546 0.538 0.536

Within-R2 0.016 0.014 0.015 0.021 0.019 0.021

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B12: The Effect of Experienced Returns - Five Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.297∗∗∗ 0.283∗∗∗ 0.286∗∗∗ 0.274∗∗∗ 0.264∗∗∗ 0.277∗∗∗

(0.009) (0.010) (0.008) (0.006) (0.007) (0.006)

β2 0.137∗∗∗ 0.129∗∗∗ 0.138∗∗∗ 0.125∗∗∗ 0.115∗∗∗ 0.121∗∗∗

(0.009) (0.008) (0.008) (0.005) (0.005) (0.005)

β3 0.061∗∗∗ 0.054∗∗∗ 0.057∗∗∗ 0.055∗∗∗ 0.048∗∗∗ 0.054∗∗∗

(0.008) (0.008) (0.007) (0.005) (0.004) (0.005)

β4 0.084∗∗∗ 0.083∗∗∗ 0.088∗∗∗ 0.085∗∗∗ 0.078∗∗∗ 0.084∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.004) (0.004)

β5 0.266∗∗∗ 0.259∗∗∗ 0.262∗∗∗ 0.267∗∗∗ 0.258∗∗∗ 0.261∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.004) (0.004)

profitability -0.005∗ 0.0009 -0.005 -0.010∗∗ -0.006 -0.008∗

(0.003) (0.004) (0.004) (0.004) (0.004) (0.004)

investment 0.006 0.003 0.002 0.019∗∗∗ 0.011∗ 0.013∗∗

(0.008) (0.007) (0.007) (0.006) (0.006) (0.006)

BE/ME 0.066∗∗∗ 0.072∗∗∗ 0.062∗∗∗ 0.053∗∗∗ 0.056∗∗∗ 0.054∗∗∗

(0.014) (0.015) (0.016) (0.010) (0.010) (0.010)

ME -0.009 -0.007 -0.005 -0.012 -0.017 -0.013

(0.015) (0.012) (0.013) (0.020) (0.019) (0.019)

D/P -0.008 -0.003 -0.006 0.005 0.003 0.004

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006)

N 724, 999 724, 999 724, 999 1, 783, 648 1, 783, 648 1, 783, 648

R2 0.594 0.587 0.591 0.556 0.547 0.545

Within-R2 0.066 0.064 0.065 0.070 0.067 0.069

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B13: The Effect of Experienced Returns - Ten Buckets

Expected Returns
(1) (2) (3) (4) (5) (6)

β1 0.259∗∗∗ 0.224∗∗∗ 0.237∗∗∗ 0.235∗∗∗ 0.229∗∗∗ 0.242∗∗∗

(0.011) (0.008) (0.008) (0.007) (0.006) (0.007)
β2 0.123∗∗∗ 0.116∗∗∗ 0.131∗∗∗ 0.124∗∗∗ 0.115∗∗∗ 0.120∗∗∗

(0.007) (0.006) (0.007) (0.005) (0.005) (0.005)
β3 0.098∗∗∗ 0.094∗∗∗ 0.102∗∗∗ 0.088∗∗∗ 0.083∗∗∗ 0.084∗∗∗

(0.006) (0.005) (0.006) (0.005) (0.004) (0.004)
β4 0.078∗∗∗ 0.064∗∗∗ 0.073∗∗∗ 0.069∗∗∗ 0.063∗∗∗ 0.065∗∗∗

(0.006) (0.005) (0.006) (0.004) (0.004) (0.005)
β5 0.059∗∗∗ 0.048∗∗∗ 0.049∗∗∗ 0.047∗∗∗ 0.041∗∗∗ 0.043∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)
β6 0.061∗∗∗ 0.053∗∗∗ 0.055∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 0.052∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)
β7 0.067∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.057∗∗∗ 0.063∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.003) (0.004)
β8 0.074∗∗∗ 0.063∗∗∗ 0.067∗∗∗ 0.071∗∗∗ 0.070∗∗∗ 0.074∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)
β9 0.107∗∗∗ 0.109∗∗∗ 0.113∗∗∗ 0.120∗∗∗ 0.114∗∗∗ 0.112∗∗∗

(0.005) (0.006) (0.006) (0.004) (0.004) (0.004)
β10 0.243∗∗∗ 0.239∗∗∗ 0.239∗∗∗ 0.243∗∗∗ 0.247∗∗∗ 0.246∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.004) (0.004)
profitability -0.005 -0.003 -0.007 -0.013∗∗ -0.009 -0.011∗

(0.004) (0.005) (0.005) (0.006) (0.005) (0.006)
investment -0.015∗ -0.011 -0.015∗ -0.005 -0.011∗ -0.007

(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)
BE/ME 0.076∗∗∗ 0.078∗∗∗ 0.065∗∗∗ 0.069∗∗∗ 0.071∗∗∗ 0.066∗∗∗

(0.018) (0.019) (0.024) (0.014) (0.013) (0.013)
ME -0.019 -0.014 -0.011 -0.022 -0.028 -0.021

(0.016) (0.015) (0.015) (0.023) (0.021) (0.022)
D/P -0.001 -0.003 -0.006 0.008 0.006 0.010

(0.010) (0.010) (0.009) (0.008) (0.008) (0.008)

N 403, 968 403, 968 403, 968 980, 175 980, 175 980, 175
R2 0.598 0.588 0.596 0.567 0.557 0.555
Within-R2 0.065 0.061 0.063 0.070 0.070 0.071

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B14: The Effect of Experienced Returns - Three Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.283∗∗∗ 0.294∗∗∗ 0.288∗∗∗ 0.284∗∗∗ 0.288∗∗∗ 0.288∗∗∗

(0.006) (0.007) (0.006) (0.005) (0.005) (0.004)

β2 0.077∗∗∗ 0.082∗∗∗ 0.078∗∗∗ 0.078∗∗∗ 0.079∗∗∗ 0.080∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.003) (0.003)

β3 0.229∗∗∗ 0.231∗∗∗ 0.232∗∗∗ 0.231∗∗∗ 0.231∗∗∗ 0.233∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.002) (0.002)

N 1, 031, 564 1, 031, 564 1, 031, 564 2, 483, 275 2, 483, 275 2, 483, 275

R2 0.777 0.762 0.769 0.704 0.688 0.690

Within-R2 0.039 0.041 0.040 0.040 0.040 0.040

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B15: The Effect of Experienced Returns - Three Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.280∗∗∗ 0.273∗∗∗ 0.277∗∗∗ 0.273∗∗∗ 0.267∗∗∗ 0.277∗∗∗

(0.008) (0.008) (0.007) (0.005) (0.005) (0.005)

β2 0.073∗∗∗ 0.069∗∗∗ 0.071∗∗∗ 0.066∗∗∗ 0.060∗∗∗ 0.066∗∗∗

(0.006) (0.006) (0.006) (0.005) (0.004) (0.005)

β3 0.236∗∗∗ 0.230∗∗∗ 0.233∗∗∗ 0.238∗∗∗ 0.229∗∗∗ 0.235∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

profitability -0.001 -0.000 -0.002∗ -0.003 -0.002 -0.004

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

investment 0.019∗∗∗ 0.013∗ 0.014∗∗ 0.032∗∗∗ 0.021∗∗∗ 0.024∗∗∗

(0.007) (0.006) (0.007) (0.006) (0.006) (0.006)

BE/ME 0.048∗∗∗ 0.056∗∗∗ 0.048∗∗∗ 0.043∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(0.010) (0.011) (0.011) (0.009) (0.009) (0.008)

ME -0.002 -0.003 0.000 -0.006 -0.014 -0.007

(0.014) (0.012) (0.012) (0.019) (0.017) (0.017)

D/P -0.009 -0.007 -0.008 0.004 0.002 0.003

(0.007) (0.006) (0.006) (0.007) (0.006) (0.006)

N 937, 382 937, 382 937, 382 2, 258, 925 2, 258, 925 2, 258, 925

R2 0.582 0.573 0.578 0.545 0.536 0.535

Within-R2 0.056 0.055 0.056 0.058 0.056 0.059

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B16: The Effect of Experienced Returns - Three Buckets and k = 4 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β2 0.016∗∗∗ 0.015∗∗∗ 0.022∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.014∗∗∗

(0.005) (0.005) (0.005) (0.003) (0.003) (0.003)

β3 0.161∗∗∗ 0.159∗∗∗ 0.160∗∗∗ 0.166∗∗∗ 0.168∗∗∗ 0.165∗∗∗

(0.004) (0.003) (0.003) (0.002) (0.002) (0.002)

N 618, 451 618, 451 618, 451 1, 499, 594 1, 499, 594 1, 499, 594

R2 0.812 0.799 0.807 0.744 0.729 0.733

Within-R2 0.021 0.021 0.021 0.021 0.021 0.020

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B17: The Effect of Experienced Returns - Three Buckets and k = 4 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.208∗∗∗ 0.189∗∗∗ 0.198∗∗∗ 0.206∗∗∗ 0.194∗∗∗ 0.205∗∗∗

(0.009) (0.008) (0.008) (0.007) (0.007) (0.007)

β2 0.093∗∗∗ 0.083∗∗∗ 0.089∗∗∗ 0.077∗∗∗ 0.070∗∗∗ 0.076∗∗∗

(0.008) (0.008) (0.007) (0.005) (0.005) (0.005)

β3 0.215∗∗∗ 0.208∗∗∗ 0.209∗∗∗ 0.229∗∗∗ 0.225∗∗∗ 0.223∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

profitability -0.005 -0.003 -0.007 -0.013∗∗ -0.010 -0.011∗

(0.004) (0.004) (0.005) (0.006) (0.006) (0.006)

investment -0.002 -0.003 -0.006 0.004 -0.001 0.001

(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)

BE/ME 0.056∗∗∗ 0.059∗∗∗ 0.048∗∗∗ 0.052∗∗∗ 0.051∗∗∗ 0.049∗∗∗

(0.013) (0.015) (0.018) (0.012) (0.011) (0.011)

ME -0.006 -0.002 0.001 -0.009 -0.012 -0.007

(0.016) (0.014) (0.015) (0.022) (0.020) (0.021)

D/P -0.008 -0.009 -0.012 0.004 0.002 0.004

(0.008) (0.008) (0.007) (0.007) (0.007) (0.007)

N 564, 287 564, 287 564, 287 1, 367, 732 1, 367, 732 1, 367, 732

R2 0.598 0.590 0.597 0.570 0.560 0.558

Within-R2 0.042 0.039 0.040 0.046 0.044 0.045

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B18: The Effect of Experienced Returns - Three Buckets and k = 8 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β2 0.020∗∗∗ 0.017∗∗∗ 0.026∗∗∗ 0.014∗∗∗ 0.020∗∗∗ 0.019∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.003) (0.002)

β3 0.137∗∗∗ 0.131∗∗∗ 0.135∗∗∗ 0.136∗∗∗ 0.144∗∗∗ 0.141∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.002) (0.002)

N 343, 058 343, 058 343, 058 753, 526 753, 526 753, 526

R2 0.870 0.864 0.866 0.834 0.821 0.824

Within-R2 0.021 0.020 0.021 0.020 0.022 0.021

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B19: The Effect of Experienced Returns - Three Buckets and k = 8 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.168∗∗∗ 0.149∗∗∗ 0.157∗∗∗ 0.165∗∗∗ 0.152∗∗∗ 0.160∗∗∗

(0.010) (0.010) (0.010) (0.009) (0.009) (0.008)

β2 0.067∗∗∗ 0.058∗∗∗ 0.065∗∗∗ 0.066∗∗∗ 0.063∗∗∗ 0.065∗∗∗

(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

β3 0.179∗∗∗ 0.173∗∗∗ 0.178∗∗∗ 0.183∗∗∗ 0.187∗∗∗ 0.186∗∗∗

(0.006) (0.007) (0.005) (0.005) (0.004) (0.004)

profitability -0.003 -0.003 -0.007 -0.016∗ -0.014 -0.014

(0.004) (0.005) (0.005) (0.008) (0.009) (0.009)

investment -0.029∗∗∗ -0.027∗∗∗ -0.029∗∗∗ -0.029∗∗∗ -0.035∗∗∗ -0.032∗∗∗

(0.010) (0.009) (0.009) (0.009) (0.008) (0.008)

BE/ME 0.093∗∗∗ 0.100∗∗∗ 0.092∗∗∗ 0.077∗∗∗ 0.074∗∗∗ 0.069∗∗∗

(0.027) (0.027) (0.026) (0.019) (0.019) (0.018)

ME -0.015 -0.007 -0.008 -0.023 -0.027 -0.021

(0.019) (0.017) (0.018) (0.027) (0.025) (0.026)

D/P -0.001 0.004 -0.007 0.014 0.009 0.015

(0.010) (0.011) (0.010) (0.011) (0.011) (0.011)

N 314, 557 314, 557 314, 557 691, 634 691, 634 691, 634

R2 0.671 0.661 0.666 0.655 0.644 0.644

Within-R2 0.034 0.031 0.033 0.036 0.036 0.036

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B20: The Effect of Experienced Returns by Number of Managers

Expected Returns
(1) (4)

Nr. Managers 1 2 3 ≥ 4 1 2 3 ≥ 4

β1 0.280∗∗∗ 0.164∗∗∗ -0.001 0.014∗∗∗ 0.275∗∗∗ 0.160∗∗∗ -0.001 0.008∗∗∗

(0.012) (0.010) (0.003) (0.004) (0.010) (0.008) (0.002) (0.003)
β2 0.149∗∗∗ 0.025∗∗∗ -0.002 0.008∗∗ 0.151∗∗∗ 0.031∗∗∗ -0.002 -0.000

(0.008) (0.007) (0.002) (0.004) (0.006) (0.004) (0.002) (0.002)
β3 0.101∗∗∗ 0.028∗∗∗ -0.002 0.005 0.101∗∗∗ 0.027∗∗∗ -0.001 -0.001

(0.006) (0.004) (0.002) (0.003) (0.004) (0.003) (0.001) (0.002)
β4 0.060∗∗∗ 0.017∗∗∗ -0.004∗∗ 0.001 0.059∗∗∗ 0.017∗∗∗ -0.002∗∗ -0.006∗∗∗

(0.006) (0.003) (0.002) (0.003) (0.004) (0.002) (0.001) (0.002)
β5 0.028∗∗∗ -0.001 -0.003∗∗ 0.001 0.029∗∗∗ -0.001 -0.000 -0.003∗∗

(0.005) (0.002) (0.001) (0.003) (0.003) (0.002) (0.001) (0.002)
β6 0.022∗∗∗ 0.003 -0.001 -0.002 0.021∗∗∗ 0.002 -0.001 -0.001

(0.004) (0.002) (0.001) (0.002) (0.003) (0.002) (0.001) (0.001)
β7 0.020∗∗∗ -0.002 -0.002∗ -0.003∗ 0.024∗∗∗ 0.000 0.000 -0.001

(0.004) (0.002) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001)
β8 0.041∗∗∗ 0.008∗∗∗ -0.002 -0.002 0.044∗∗∗ 0.008∗∗∗ -0.000 0.000

(0.004) (0.002) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001)
β9 0.077∗∗∗ 0.004∗ 0.000 -0.002∗ 0.083∗∗∗ 0.005∗∗∗ -0.000 -0.001

(0.006) (0.002) (0.001) (0.001) (0.004) (0.001) (0.001) (0.001)
β10 0.203∗∗∗ 0.017∗∗∗ -0.002∗∗∗ -0.002 0.204∗∗∗ 0.016∗∗∗ -0.001 0.001

(0.005) (0.002) (0.001) (0.001) (0.003) (0.001) (0.001) (0.001)

N 442, 353 579, 965 558, 722 428, 591 1, 073, 779 1, 454, 292 1, 524, 108 1, 158, 163
R2 0.824 0.912 0.993 0.991 0.750 0.867 0.988 0.982
Within-R2 0.039 0.010 0.000 0.001 0.039 0.012 0.000 0.001

wi,j,t = 0 No No No No Yes Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B21: Learning Parameters

Expected Returns

(1) (2) (3) (4) (5) (6)

β 0.203∗∗∗ 0.190∗∗∗ 0.198∗∗∗ 0.246∗∗∗ 0.241∗∗∗ 0.251∗∗∗

(0.007) (0.007) (0.007) (0.006) (0.006) (0.006)

λ1 -2.225∗∗∗ -2.223∗∗∗ -2.157∗∗∗ -1.800∗∗∗ -1.929∗∗∗ -1.854∗∗∗

(0.128) (0.119) (0.114) (0.066) (0.068) (0.065)

λ2 -2.362∗∗∗ -2.313∗∗∗ -2.265∗∗∗ -1.881∗∗∗ -2.012∗∗∗ -1.951∗∗∗

(0.137) (0.126) (0.121) (0.073) (0.074) (0.072)

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B22: Risk Aversion and Bias Including Zero Weights - Summary Statistics

α̂i γ̂i

mean 0.006 1.501

standard deviation 0.056 5.266

median 0.009 1.441

min -0.431 -43.532

max 0.398 42.658

skewness -1.111 0.954

kurtosis 13.375 13.727
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Figure B12: Weighting Functions - Various Examples
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Figure B13: Estimated Weighting Functions - Manager-Time, Stock-Time Fixed Ef-
fects
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Figure B14: Estimated Weighting Functions - Manager-Time, Stock Fixed Effects
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Figure B15: Bias and Risk Aversion Including Zero Weights
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C. Appendix to Living on the Edge: the
Salience of Property Taxes in the UK Housing

Market

C.1 Variable Definition

Variable Name Description

Price Transaction price for the property as recorded by HM Land Registry
Council Tax Amount of council tax payable per year
Band Council tax band. One of: A, B, C, D, E, F, G, H
Year Calendar year of the transaction
Month Calendar month of the transaction
Size Total floor area measured in squared meters
No. Rooms Number of habitable rooms in the property as defined in the EPC
Property Type One of: detached, semi-detached or terraced house and flat
Newly-built Equals 1 if the property is newly-built
Leasehold Equals 1 if the property is under a leasehold agreement
Energy Cost Sum of the annual heating, hot water and lighting costs for the property

One of very low, low, medium, high and very high expenditures
Baseline = very low

CO2 Emissions CO2 emissions in tonnes/year
One of very low, low, medium, high and very high
Baseline = very low

No. Lighting Outlets Number of fixed lighting outlets in the property, standardised
Energy Rating A-G energy rating fixed effects with A being the most efficient
Glazed Type Indicates the type of glazing

Various categories of single, double or triple glazing according to
the British Fenestration Rating Council or manufacturer declaration

No. Storeys > 3 Equals 1 if the building has more than 3 storeys
Glazed Area Estimate of total glazed area of the property

One of: Normal, Less than Normal, More than Normal
Baseline = Normal

Fireplaces Equals 1 if the property has open fireplaces
No. Extensions Number of extensions added to the property

One of: 0, 1, 2, 3, 4
Floor Height Average storey height in metres

One of: less than 2.3, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3 or more
Built in Age band when the building was constructed

One of: before 1949, 1950-1982, 1983-2002, after 2003

Continued on next page
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Continued from previous page

Grid ID An indicator for the grid square in which the property is located
Pair ID An indicator for the pair of matched properties

C.2 Tables

Table C1: Evidence of Selection

The table shows the estimates of a simple regression of house prices on council tax amounts,
namely: pibdt = βτbdt + δbt + ζ ′xibdt + εibdt where pibdt is the price of house i in band
b, Borough d at time t; τbdt is the council tax amount for a house in band b, Borough
d at time t; δbt are band-year fixed effects; and xibdt are controls. All columns include
band-year and month fixed effects. All other variables are defined in Section C.1. Stan-
dard errors double-clustered at the Borough and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax -231.2∗∗∗ -263.3∗∗∗ -228.7∗∗∗ -229.2∗∗∗

(71.8) (86.4) (78.0) (78.3)

Size 2,233.7∗∗∗ 2,271.7∗∗∗ 2,270.8∗∗∗

(724.4) (731.2) (730.9)

Newly-built 14,054.3∗∗

(5,619.8)

Leasehold -8,681.7

(10,801.3)

Fixed-effects

Band × Year Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Obs. 889,925 889,925 889,925 889,925

R2 0.530 0.573 0.578 0.578

Within R2 0.022 0.064 0.058 0.058

Two-way (Borough & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C2: Evidence of Selection - Additional Controls

The table shows the estimates of a simple regression of house prices on council tax amounts,
namely: pibdt = βτbdt + δbt + ζ ′xibdt + εibdt where pibdt is the price of house i in band b, Bor-
ough d at time t; τbdt is the council tax amount for a house in band b, Borough d at time t; δbt

are band-year fixed effects; and xibdt are controls. All columns include band-year and month
fixed effects and control for the property size. All other variables are defined in Section C.1.
Standard errors double-clustered at the Borough and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax -255.9∗∗∗ -225.0∗∗ -259.6∗∗∗ -220.1∗∗

(85.6) (80.0) (88.2) (78.2)
Size 2,747.2∗∗∗ 2,266.9∗∗∗ 2,534.4∗∗∗ 2,310.4∗∗∗

(911.3) (734.5) (780.3) (784.4)
Energy Cost Low -26,896.1∗ -15,049.6∗∗

(13,515.0) (7,107.5)
Energy Cost Medium -47,312.9∗∗ -24,385.3∗∗

(22,380.7) (11,482.6)
Energy Cost High -69,359.2∗∗ -32,869.7∗∗

(30,818.3) (15,291.8)
Energy Cost Very High -94,269.8∗ -39,075.4

(45,563.6) (22,987.4)
CO2 Emisions Low -17,677.3∗∗ -14,199.3∗∗∗

(7,006.9) (4,857.3)
CO2 Emissions Medium -26,558.8∗∗ -23,257.6∗∗

(11,971.2) (8,475.0)
CO2 Emissions High -36,052.5∗ -31,559.2∗∗

(18,323.2) (12,521.6)
CO2 Emissions Very High -32,523.2 -26,343.9

(28,385.1) (17,461.3)
No. Lighting Outlets 20,870.4∗∗∗ 19,659.8∗∗∗

(5,833.9) (5,317.1)
No. Storeys > 3 -3,140.4 632.9

(5,841.7) (6,385.2)
Glazed Area Less than Normal 6,923.6 851.3

(11,930.2) (10,981.8)
Glazed Area More than Normal 16,669.1∗∗∗ 13,729.2∗∗∗

(3,337.1) (3,490.2)
Fireplaces 42,454.0∗∗∗ 33,624.0∗∗∗

(9,985.6) (9,114.6)
Newly-built 23,567.3∗∗∗ 29,368.6∗∗∗

(5,295.0) (4,958.9)
Leasehold 24,601.4∗ -13,104.3

(13,060.7) (11,681.6)
Built in 1950-1982 -43,868.7∗∗∗-29,435.6∗∗∗

(8,169.9) (5,870.5)
Built in 1983-2002 -22,756.2∗∗ -30,012.4∗∗∗

(9,533.2) (8,919.4)

Continued on next page
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Table C2 – Continued from previous page

(1) (2) (3) (4)

Built after 2003 -21,575.1 -31,925.1∗∗

(13,706.9) (15,196.7)

Fixed-effects
Band × Year Yes Yes Yes Yes
Month Yes Yes Yes Yes
Energy Rating Yes No No Yes
Glazed Type Yes No No Yes
No. Rooms No Yes No Yes
Property Type No Yes No Yes
No. Extensions No Yes No Yes
Floor Height No Yes No Yes

Obs. 889,925 889,925 889,925 889,925
R2 0.566 0.580 0.564 0.583
Within R2 0.095 0.059 0.092 0.063
Two-way (Borough & Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C3: Evidence of Selection - Median Price per Borough, Band, Year

The table shows the estimates of the following regression: εmed
bdt = βτbdt + δbt + ηbdt, where εmed

bdt is the
median residual price of all houses in band b, Borough d at time t obtained from a hedonic regression
of prices on house characteristics; τbdt is the council tax amount for a house in band b, Borough
d at time t; and δbt are band-year fixed effects. The explanatory variables used to computed the
hedonic residuals are reported in the panel First-stage controls. All variables are defined in Section
C.1. Standard errors double-clustered at the Borough and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax -183.6∗∗∗ -334.0∗∗∗ -324.3∗∗∗ -325.1∗∗∗

(56.4) (84.7) (83.5) (83.1)

Fixed-effects

Band × Year Yes Yes Yes Yes

First-stage controls

Month Yes Yes Yes Yes

Size No Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Newly-built No No No Yes

Leasehold No No No Yes

Obs. 5,014 5,014 5,014 5,014

R2 0.804 0.501 0.503 0.500

Within R2 0.055 0.122 0.117 0.118

Two-way (Borough & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C4: Evidence of Selection - Average Price per Borough, Band, Year

The table shows the estimates of the following regression: ε̄bdt = βτbdt + δbt + ηbdt, where ε̄bdt is the
average residual price of all houses in band b, Borough d at time t obtained from a hedonic regression
of prices on house characteristics; τbdt is the council tax amount for a house in band b, Borough
d at time t; and δbt are band-year fixed effects. The explanatory variables used to computed the
hedonic residuals are reported in the panel First-stage controls. All variables are defined in Section
C.1. Standard errors double-clustered at the Borough and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax -195.6∗∗∗ -368.4∗∗∗ -358.6∗∗∗ -358.9∗∗∗

(64.9) (93.9) (92.8) (92.5)

Fixed-effects

Band × Year Yes Yes Yes Yes

First-stage controls

Month Yes Yes Yes Yes

Size No Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Newly-built No No No Yes

Leasehold No No No Yes

Obs. 5,014 5,014 5,014 5,014

R2 0.797 0.512 0.513 0.511

Within R2 0.053 0.123 0.118 0.118

Two-way (Borough & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C5: Grid Regressions

The table shows the estimates of a regression of house prices on council tax amounts,
namely: pibdgt = βτbdt + δbgt + ζ ′xibdgt + εibdgt, where pibdgt is the price of house i, in
band b, Borough d, grid square g at time t; τbdt is the council tax amount for a house in
band b, Borough d at time t; δbgt are band-grid ID-year fixed effects; and xibdgt are con-
trols. All columns include band-grid ID-year and month fixed effects. The squares are con-
structed from a 50 × 50 grid of London. All other variables are defined in Section C.1.
Standard errors double-clustered at the grid-ID and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax 50.3 12.6 13.4 14.3

(50.9) (48.0) (45.3) (44.7)

Size 4,626.9∗∗∗ 4,547.6∗∗∗ 4,537.0∗∗∗

(1,380.6) (1,368.4) (1,366.9)

Newly-built 33,398.5∗∗∗

(9,937.9)

Leasehold -75,924.3∗∗

(27,874.0)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Obs. 71,734 71,734 71,734 71,734

R2 0.696 0.771 0.773 0.773

Within R2 0.000 0.103 0.010 0.101

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C6: Grid Regressions - Additional Controls

The table shows the estimates of a regression of house prices on council tax amounts, namely:
pibdgt = βτbdt + δbgt + ζ ′xibdgt + εibdgt, where pibdgt is the price of house i, in band b, Borough
d, grid square g at time t; τbdt is the council tax amount for a house in band b, Borough d at
time t; δbgt are band-grid ID-year fixed effects; and xibdgt are controls. All columns include
band-grid ID-year and month fixed effects and control for the property size. The squares are
constructed from a 50 × 50 grid of London. All other variables are defined in Section C.1.
Standard errors double-clustered at the grid-ID and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax 7.98 15.0 9.19 17.5
(42.3) (45.4) (40.1) (43.4)

Size 5,855.9∗∗∗ 4,522.7∗∗∗ 5,318.7∗∗∗ 4,787.6∗∗∗

(1,585.1) (1,366.3) (1,353.6) (1,548.8)
Energy Cost Low -66,317.8∗∗ -35,546.7∗∗

(23,418.5) (14,809.1)
Energy Cost Medium -108,665.0∗∗ -57,508.8∗∗

(38,438.8) (23,978.0)
Energy Cost High -147,580.7∗∗ -77,036.8∗∗

(52,657.2) (33,410.5)
Energy Cost Very High -195,178.8∗∗ -106,670.2∗

(79,418.3) (52,374.7)
CO2 Emissions Low -32,054.7∗∗∗ -28,497.1∗∗∗

(10,727.2) (9,893.5)
CO2 Emissions Medium -48,961.2∗∗ -47,738.6∗∗∗

(17,139.3) (16,123.8)
CO2 Emissions High -75,329.8∗∗ -71,914.7∗∗∗

(27,138.1) (24,295.9)
CO2 Emissions Very High -69,844.7 -66,123.0∗

(41,209.7) (33,075.1)
No. Lighting Outlets 21,965.9∗∗ 19,370.8∗∗

(8,176.9) (7,921.1)
No. Storeys > 3 -20,775.9∗∗∗ -22,481.8∗∗∗

(6,704.8) (7,545.2)
Glazed Area Less than Normal -25,624.5 -18,393.5

(18,311.0) (17,084.0)
Glazed Area More than Normal 13,298.3 12,980.2

(8,438.6) (8,365.9)
Fireplaces 34,202.3∗∗∗ 32,533.3∗∗∗

(6,533.8) (6,832.4)
Newly-built 23,232.4∗∗ 23,142.1∗

(9,272.9) (11,929.6)
Leasehold -64,925.4∗∗∗-81,662.8∗∗∗

(17,738.1) (28,274.4)
Built in 1950-1982 -33,647.4∗∗∗-31,823.5∗∗∗

(8,513.9) (9,833.6)
Built in 1983-2002 43,030.8∗∗ 5,862.8

Continued on next page
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Table C6 – Continued from previous page

(1) (2) (3) (4)

(19,392.1) (10,375.6)
Built after 2003 37,169.2∗∗ -1,989.2

(16,898.5) (15,825.0)

Fixed-effects
Band × Grid ID × Year Yes Yes Yes Yes
Month Yes Yes Yes Yes
Energy Rating Yes No No Yes
Glazed Type Yes No No Yes
No. Rooms No Yes No Yes
Property Type No Yes No Yes
No. Extensions No Yes No Yes
Floor Height No Yes No Yes

Obs. 71,734 71,734 71,734 71,734
R2 0.762 0.774 0.759 0.777
Within R2 0.216 0.010 0.209 0.110
Two-way (Grid ID & Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C7: Grid Regressions for Different Grids

The table shows the estimates of a regression of house prices on council tax amounts, namely:
pibdgt = βτbdt + δbgt + ζ ′xibdgt + εibdgt, where pibdgt is the price of house i, in band b, Borough
d, grid square g at time t; τbdt is the council tax amount for a house in band b, Borough d at
time t; δbgt are band-grid ID-year fixed effects; and xibdgt are controls. The grids divide Lon-
don into 50 × 50, 100 × 100 and 150 × 150 squares in columns (1), (2) and (3), respectively. All
columns include band-grid ID-year, month, number of rooms, property type, newly-built and lease-
hold fixed effects, as well as a control for the property size. All variables are defined in Section
C.1. Standard errors double-clustered at the grid-ID and year level are reported in parentheses.

(1) (2) (3)

Council Tax 14.3 -16.2 28.2

(44.7) (58.4) (32.4)

Size 4,537.0∗∗∗ 6,988.4∗∗∗ 7,737.4∗∗∗

(1,366.9) (1,794.8) (2,319.6)

Newly-built 33,398.5∗∗∗ 22,929.9 -28,536.5

(9,937.9) (20,993.7) (24,742.0)

Leasehold -75,924.3∗∗ -82,738.9∗ -151,551.3∗∗

(27,874.0) (44,068.4) (69,763.6)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes

Month Yes Yes Yes

No. Rooms Yes Yes Yes

Property Type Yes Yes Yes

Obs. 71,734 21,446 6,954

R2 0.773 0.792 0.827

Within R2 0.101 0.139 0.154

Grid 50 × 50 100 × 100 150 × 150

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C8: Grid Regressions for Different Grids - Additional Controls

The table shows the estimates of a regression of house prices on council tax
amounts, namely: pibdgt = βτbdt + δbgt + ζ ′xibdgt + εibdgt, where pibdgt is the price of
house i, in band b, Borough d, grid square g at time t; τbdt is the council tax amount
for a house in band b, Borough d at time t; δbgt are band-grid ID-year fixed effects;
and xibdgt are controls. The grids divide London into 50 × 50, 100 × 100 and 150
× 150 squares in columns (1), (2) and (3), respectively. All columns include band-
grid ID-year fixed effects. All control variables are identical across columns and
are as defined in Section C.1. Standard errors double-clustered at the grid-ID and
year level are reported in parentheses.

(1) (2) (3)

Council Tax 17.5 -11.8 75.4∗∗

(43.4) (62.0) (33.1)
Size 4,787.6∗∗∗ 7,579.1∗∗∗ 7,516.7∗∗∗

(1,548.8) (1,968.4) (2,014.1)
Newly-built 23,142.1∗ 23,012.5 -17,873.0

(11,929.6) (23,337.2) (11,886.9)
Leasehold -81,662.8∗∗∗ -100,958.8∗ -180,856.2∗

(28,274.4) (48,348.3) (92,255.8)
Built in 1950-1982 -31,823.5∗∗∗ -36,770.1∗∗ -46,677.3∗

(9,833.6) (13,202.8) (22,562.5)
Built in 1983-2002 5,862.8 26,842.2 -20,068.4

(10,375.6) (22,698.3) (26,632.8)
Built after 2003 -1,989.2 -30,612.1 -68,073.3

(15,825.0) (29,315.1) (66,304.7)
No. Storeys > 3 -22,481.8∗∗∗ -19,920.1∗∗ -10,496.4

(7,545.2) (9,293.2) (10,564.8)
Glazed Area Less than Normal -18,393.5 -37,901.5 41,021.3

(17,084.0) (25,339.4) (69,940.7)
Glazed Area More than Normal 12,980.2 4,587.5 -102,420.2

(8,365.9) (19,443.3) (63,902.4)
Fireplaces 32,533.3∗∗∗ 41,107.7∗∗∗ 49,004.1∗∗∗

(6,832.4) (12,251.9) (16,591.1)
Energy Cost Low -35,546.7∗∗ -55,601.8∗∗ -62,161.9∗∗∗

(14,809.1) (20,340.8) (16,726.8)
Energy Cost Medium -57,508.8∗∗ -93,685.8∗∗∗ -85,741.3∗∗∗

(23,978.0) (31,367.3) (23,759.2)
Energy Cost High -77,036.8∗∗ -141,100.4∗∗∗-161,362.9∗∗∗

(33,410.5) (46,540.7) (41,048.0)
Energy Cost Very High -106,670.2∗ -170,909.0∗∗ -189,343.0∗∗

(52,374.7) (66,032.5) (72,613.7)
CO2 Emissions Low -28,497.1∗∗∗ -46,607.7∗∗∗ -43,592.6∗∗∗

(9,893.5) (14,538.3) (13,312.9)
CO2 Emissions Medium -47,738.6∗∗∗ -73,467.2∗∗∗ -96,311.1∗∗

(16,123.8) (23,582.7) (43,159.3)
CO2 Emissions High -71,914.7∗∗∗-104,329.4∗∗∗ -141,727.0∗∗

Continued on next page
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Table C8 – Continued from previous page

(1) (2) (3)

(24,295.9) (32,544.5) (58,712.5)
CO2 Emissions Very High -66,123.0∗ -133,060.2∗∗∗ -150,608.5∗

(33,075.1) (44,218.2) (77,511.2)
No. Lighting Outlets 19,370.8∗∗ 22,306.9 53,060.6∗

(7,921.1) (16,072.2) (30,324.9)

Fixed-effects
Band × Grid ID × Year Yes Yes Yes
Month Yes Yes Yes
No. Rooms Yes Yes Yes
Property Type Yes Yes Yes
No. Extensions Yes Yes Yes
Floor Height Yes Yes Yes
Energy Rating Yes Yes Yes
Glazed Type Yes Yes Yes

Obs. 71,734 21,446 6,954
R2 0.777 0.798 0.846
Within R2 0.110 0.150 0.165

Grid 50 × 50 100 × 100 150 × 150
Two-way (Grid ID & Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C9: Grid Regressions - Without Stamp Duty Notches

The table shows the estimates of a regression of house prices on council tax amounts, namely:
pibdgt = βτbdt + δbgt + ζ ′xibdgt + εibdgt, where pibdgt is the price of house i, in band b, Borough
d, grid square g at time t; τbdt is the council tax amount for a house in band b, Borough d at
time t; δbgt are band-grid ID-year fixed effects; and xibdgt are controls. All columns include band-
grid ID-year, month, number of rooms, property type, newly-built and leasehold fixed effects, as
well as a control for property size. The squares are constructed from a 50 × 50 grid of London.
Column (1) excludes properties sold at a price between £240, 000 and £270, 000; column (2) prop-
erties sold for between £490, 000 and £520, 000; and column (3) excludes both properties sold in
the £240, 000 - £270, 000 and £490, 000 - £520, 000 price range. All variables are defined in Section
C.1. Standard errors double-clustered at the grid-ID and year level are reported in parentheses.

(1) (2) (3)

Council Tax 16.1 16.7 18.8

(46.9) (45.3) (47.7)

Size 4,715.8∗∗∗ 4,586.7∗∗∗ 4,765.9∗∗∗

(1,446.6) (1,403.6) (1,487.4)

Newly-built 37,062.1∗∗∗ 30,619.3∗∗∗ 33,964.1∗∗∗

(9,998.4) (9,694.0) (9,549.4)

Leasehold -80,083.0∗∗ -75,897.2∗∗ -80,141.1∗∗

(30,142.0) (28,682.7) (31,002.5)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes

Month Yes Yes Yes

No. Rooms Yes Yes Yes

Property Type Yes Yes Yes

Obs. 65,328 70,012 63,606

R2 0.775 0.776 0.779

Within R2 0.105 0.102 0.106

p /∈ [240k-270k] [490k-520k] [240k-270k] & [490k-520k]

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C10: Grid Regressions - Median Price per Borough, Band, Grid, Year

The table shows the estimates of the following regression: εmed
bdgt = βτbdt + δbgt + ηbdgt, where εmed

bdgt
is the median residual price of all houses in band b, Borough d, grid square g at time t obtained
from a hedonic regression of prices on house characteristics; τbdt is the council tax amount for a
house in band b, Borough d at time t; and δbgt are band-grid ID-year fixed effects. The squares
are constructed from a 50 × 50 grid of London. The explanatory variables used to computed the
hedonic residuals are reported in the panel First-stage controls. All variables are defined in Section
C.1. Standard errors double-clustered at the grid ID and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax 92.1∗ 15.4 19.9 19.1

(50.8) (35.4) (36.3) (36.6)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes Yes

Obs. 19,377 19,377 19,377 19,377

R2 0.866 0.833 0.825 0.823

Within R2 0.006 0.000 0.000 0.000

First-stage controls

Month Yes Yes Yes Yes

Size No Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Newly-built No No No Yes

Leasehold No No No Yes

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C11: Grid Regressions - Average Price per Borough, Band, Grid, Year

The table shows the estimates of the following regression: ε̄bdgt = βτbdt + δbgt + ηbdgt, where ε̄bdgt

is the average residual price of all houses in band b, Borough d, grid square g at time t obtained
from a hedonic regression of prices on house characteristics; τbdt is the council tax amount for a
house in band b, Borough d at time t; and δbgt are band-grid ID-year fixed effects. The squares
are constructed from a 50 × 50 grid of London. The explanatory variables used to computed the
hedonic residuals are reported in the panel First-stage controls. All variables are defined in Section
C.1. Standard errors double-clustered at the grid ID and year level are reported in parentheses.

(1) (2) (3) (4)

Council Tax 104.5∗∗ 23.6 28.2 26.6

(48.0) (32.7) (33.5) (33.9)

Fixed-effects

Band × Grid ID × Year Yes Yes Yes Yes

Obs. 19,377 19,377 19,377 19,377

R2 0.875 0.835 0.827 0.825

Within R2 0.007 0.001 0.001 0.001

First-stage controls

Month Yes Yes Yes Yes

Size No Yes Yes Yes

No. Rooms No Yes Yes Yes

Property Type No No Yes Yes

Newly-built No No No Yes

Leasehold No No No Yes

Two-way (Grid ID & Year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C12: Matching Regressions - Euclidean Distance

The table shows the estimates of the following regression: pibdt = βτbdt + δij + ζ ′xibdt + εibdt, where
pibdt is the price of house i in band b, Borough d at time t; τbdt is the council tax amount for a house
in band b, Borough d at time t; δij are pair fixed effects; and xibdt are controls. Housing pairs from
opposite sides of a given border are constrained to be no more than 500 metres away, sold in the
same year, in the same council tax band and to both be either old or newly-built and freehold or
leasehold properties. The closest match for each property is chosen as the one minimising the Eu-

clidean distance d(i, j) =
√

∑K
k=1(xik − xjk)2. The vectors xi and xj in columns (1) and (2) include

size and number of rooms, while columns (3) and (4) add the energy cost. All variables are defined
in Section C.1. Standard errors clustered at the transaction ID level are reported in parentheses.

(1) (2) (3) (4)

Council Tax 53.8∗∗ 12.9 50.7∗∗ 9.00

(23.4) (18.3) (23.8) (18.8)

Size 3,770.6∗∗∗ 3,750.2∗∗∗

(763.8) (734.2)

Fixed-effects

Pair ID Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes No Yes

Property Type No Yes No Yes

Obs. 115,224 115,224 114,646 114,646

Unique Transaction IDs 71,578 71,578 71,656 71,656

R2 0.799 0.836 0.796 0.834

Within R2 0.001 0.042 0.001 0.042

Distance Euclidean 1 Euclidean 1 Euclidean 2 Euclidean 2

One-way (Transaction ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C13: Matching Regressions - Linear Distance

The table shows the estimates of the following regression: pibdt = βτbdt + δij + ζ ′xibdt + εibdt, where
pibdt is the price of house i in band b, Borough d at time t; τbdt is the council tax amount for
a house in band b, Borough d at time t; δij are pair fixed effects; and xibdt are controls. Hous-
ing pairs from opposite sides of a given border are constrained to be no more than 500 me-
tres away, sold in the same year, in the same council tax band and to both be either old or
newly-built and freehold or leasehold properties. The closest match for each property is cho-
sen as the one minimising the following distance: d(i, j) = | p̂it − p̂jt|, where p̂it and p̂jt are
model-predicted prices for two matched property transactions i and j based on a linear model:
pit = α + β′xit + εit. The vectors xit and xjt in columns (1) and (2) include size and num-
ber of rooms, while columns (3) and (4) add the energy cost. All variables are defined in
Section C.1. Standard errors clustered at the transaction ID level are reported in parentheses.

(1) (2) (3) (4)

Council Tax 56.8∗∗ 15.3 55.7∗∗ 14.6

(23.4) (18.1) (23.7) (18.7)

Size 3,879.2∗∗∗ 3,809.8∗∗∗

(778.8) (762.1)

Fixed-effects

Pair ID Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes No Yes

Property Type No Yes No Yes

Obs. 114,904 114,904 113,854 113,854

Unique Transaction IDs 71,588 71,588 71,649 71,649

R2 0.799 0.837 0.798 0.835

Within R2 0.001 0.045 0.001 0.043

Distance Linear 1 Linear 1 Linear 2 Linear 2

One-way (Transaction ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C14: Matching Regressions - Linear Distance Less than 30% of Predicted Prices

The table shows the estimates of the following regression: pibdt = βτbdt + δij + ζ ′xibdt + εibdt, where
pibdt is the price of house i in band b, Borough d at time t; τbdt is the council tax amount for
a house in band b, Borough d at time t; δij are pair fixed effects; and xibdt are controls. Hous-
ing pairs from opposite sides of a given border are constrained to be no more than 500 metres
away, sold in the same year, in the same council tax band and to both be either old or newly-
built and freehold or leasehold properties. Each house i is matched to all possible candidates
j that satisfy the following constraint: d(i, j) = | p̂it − p̂jt| < 0.3 × max{ p̂it, p̂jt}, where p̂it and
p̂jt are model-predicted prices for two matched property transactions i and j based on a linear
model: pit = α + β′xit + εit. The vectors xit and xjt in columns (1) and (2) include size and
number of rooms, while columns (3) and (4) add the energy cost. All variables are defined in
Section C.1. Standard errors clustered at the transaction ID level are reported in parentheses.

(1) (2) (3) (4)

Council Tax -8.19 -5.24 -7.65 -8.14

(10.1) (9.68) (11.0) (10.3)

Size 3,980.1∗∗∗ 3,982.4∗∗∗

(295.8) (349.3)

Fixed-effects

Pair ID Yes Yes Yes Yes

Month Yes Yes Yes Yes

No. Rooms No Yes No Yes

Property Type No Yes No Yes

Obs. 175,639 175,639 167,704 167,704

Unique Transaction IDs 59,722 59,722 58,917 58,917

R2 0.871 0.875 0.855 0.859

Within R2 0.000 0.017 0.000 0.018

Distance Linear 1 Linear 1 Linear 2 Linear 2

One-way (Transaction ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C15: Model-averaged Posterior Distributions for the Council Tax Incidence

The table displays 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99% quantiles, the modal and mean
values of the average posterior distribution for the council tax incidence obtained by using the
estimates from Tables C5-C9 and C12-C14. The last column reports the attenuation factor γ com-
puted as the ratio of the posterior and prior median. Each row refers to a different choice of prior.

Prior 1% 5% 10% 25% 50% 75% 90% 95% 99% mode mean γ

N (−150, 502) -143.50 -110.66 -93.21 -61.85 -22.87 -1.98 18.67 31.04 51.90 -12.08 -31.85 0.15

N (−100, 502) -116.75 -85.88 -69.23 -39.43 -12.79 7.60 29.51 41.86 62.81 -9.86 -16.81 0.13

N (−50, 502) -90.71 -61.45 -45.54 -20.99 -2.17 20.33 42.09 54.20 75.25 -6.78 -1.76 0.04

N (−150, 752) -126.67 -87.78 -67.60 -32.92 -7.49 16.49 41.31 54.86 78.03 -8.24 -10.46 0.05

N (−50, 252) -82.09 -64.43 -54.54 -36.79 -18.64 -4.40 9.15 17.64 32.93 -13.86 -20.87 0.37
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C.3 Figures

Figure C1: A Typical Border

The figure shows an example of a border between two Boroughs in London. Houses on the left side
of the West Eaton Place road belong to the Borough of Kensington and Chelsea and have an annual
council tax bill of £2, 279, while houses on the right side belong to the Borough of Westminster and
have an annual council tax bill of only £1, 421.

Figure C2: Time Series of Council Taxes

The figure reports the time series of council tax amounts payable across Boroughs. Each panel refers
to a different band, while the lines in each panel represent different Boroughs.
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Figure C3: Histogram of Property Prices in London

The figure presents a histogram of the distribution of house transaction prices in London. The distri-
bution is truncated at £1, 500, 000.
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Figure C4: Bunching at Stamp Duty notches

The figure presents a histogram of the distribution of house transaction prices in London around
stamp duty notches. Panel (A) refers to the notch at £250, 000, while panel (B) at £500, 000.
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Figure C5: Histogram of Prices by Band

The figure presents a histogram of the distribution of house transaction prices in London per
band. Each panel refers to properties belonging to different bands. The distribution is truncated
at £2, 000, 000. The red vertical lines represent the median values computed using the full sample.
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Figure C6: Histogram of Prices by Property Type

The figure presents a histogram of the distribution of house transaction prices in London by property
type. The distribution is truncated at £2, 000, 000. The red vertical lines represent the median values
computed using the full sample.
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Figure C7: Histogram of Prices by Number of Rooms

The figure presents a histogram of the distribution of house transaction prices in London by number
of rooms. The distribution is truncated at £2, 000, 000. The red vertical lines represent the median
values computed using the full sample.
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Figure C8: Histogram of Prices by Age

The figure presents a histogram of the distribution of house transaction prices in London by age. The
top panel reports the histogram of prices for newly-built properties, while the bottom for established
residential buildings. The distribution is truncated at £2, 000, 000. The red vertical lines represent the
median values computed using the full sample.

Old

New

0 500000 1000000 1500000 2000000

0

10000

20000

30000

40000

0

10000

20000

30000

40000

Price

N
o.

 O
bs



APPENDIX C. THE SALIENCE OF PROPERTY TAXES 244

Figure C9: Histogram of Prices by Year of Construction

The figure presents a histogram of the distribution of house transaction prices in London by year of
construction. The distribution is truncated at £2, 000, 000. The red vertical lines represent the median
values computed using the full sample.
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Figure C10: Histogram of Prices by Duration

The figure presents a histogram of the distribution of house transaction prices in London by tenure
duration. The top panel reports the histogram of prices for freehold properties, while the bottom for
leasehold properties. The distribution is truncated at £2, 000, 000. The red vertical lines represent the
median values computed using the full sample.
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Figure C11: Council Taxes and House Prices

The maps show the distribution of council tax payable for properties in band D for each London
Borough, along with the respective distribution of house prices in 2000 and 2018.

(a) Council Taxes in 2000 (b) House Prices in 2000

(c) Council Taxes in 2018 (d) House Prices in 2018

Figure C12: Grids

The maps depict our first identification strategy of dividing London in a grid of equally sized squares.
Panel C12a shows a grid of 150× 150 squares superposed on the map of the city; Panel C12b shows
an enlargement of the central Boroughs. The blue squares denote areas which contain at least two
similar properties located on opposite sides of a border.

(a) Grid (b) Enlargement of the Centre
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Figure C13: Distribution of Distances for the Grid Regressions

The figure depicts histograms for the distribution of distances between houses on opposite sides of
a border that are used in our grid regressions. We report the distributions for three different grids,
namely grids where we have divided London in 50× 50 squares, 100× 100 and, finally, 150× 150.
For each histogram we report the approximate size of the square sides in meters.
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Figure C14: Model-implied Incidence

The figure plots the relationship between tax incidence on house prices and discount rates, where the
discount rate is defined as r + k as in Section 3.4. The upper panel shows the incidence of the stamp
duty, while the bottom panel the incidence of the council tax.
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Figure C15: Model-averaged Estimate of the Posterior Council Tax Incidence

The figure plots the density of the council tax incidence obtained by taking the model-average of the
posteriors as described in Sections 3.4.1 and C.4. The priors are normally distributed N (b0, σ2

0 ) in
all figures. In panel (a) the priors have constant standard deviation σ0 = 50 and varying means of
b0 = −150,−100,−50, respectively. In panel (b) the standard deviation of the priors is proportional
to the mean, i.e., σ0 = |b0|/2.

(a) Constant Variance (b) Proportional Variance
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Figure C16: Optimal Tax Policy

The figure plots the optimal mix of stamp duty and council tax the Government should choose to
maximise the utility of buyers and maintain revenue-neutrality. Panel (a) displays the variables as a
function of the discount rate r + k, while panel (b) as a function of the attenuation parameter γ. The
top plots of each panel show the optimal amount of council tax in £ and stamp duty tax as percentage
of house price, respectively. The bottom plots provide the relative percentages of revenue raised
through council and stamp duty tax, respectively. In the upper panel we calibrate the parameters
as follows: α = 0.8, g = g̃ = 3.5%, ηS = 0.5, β = 0.99, γ = 0.15; in the bottom panel: α = 0.8,
g = g̃ = 3.5%, ηS = 0.5, β = 0.99, r + k = 5%.
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C.4 Computation of the Model-averaged Posterior In-

cidence of Council Tax

In Section 3.3 we estimate models of the type:

y = Xmβm + εm (C.1)

where εm|m ∼ N (0, Ωm), with Ωm being the population covariance matrix of the
errors under model m. We partition the parameters as βm = (β0, βm

−0), where βm
−0 =

(βm
1 , βm

2 , ...) and β0 is the parameter of interest. We then make the (strong) simpli-
fying assumption that Ωm is known and assume that the prior distribution of the
parameters is: βm|m ∼ N (bm, Σm). We also assume that the marginal prior distribu-
tion of the parameter of interest is common across models, i.e., p(β0|m) = p(β0) =

N (b0, σ2
0 ). It follows that the posterior distribution is: βm|y, m ∼ N (((Σm)−1 +

Xm′(Ωm)−1Xm)−1(Xm′(Ωm)−1y+(Σm)−1bm), ((Σm)−1 +Xm′(Ωm)−1Xm)−1). We then
proceed by making the following approximations:

((Σm)−1 + Xm′(Ωm)−1Xm)−1
[1,1] ≈ (σ−2

0 + V̂ar(β̂m)−1
[1,1])

−1 (C.2)

(((Σm)−1 + Xm′(Ωm)−1Xm)−1(Xm′(Ωm)−1y + (Σm)−1bm))[1] ≈
(σ−2

0 + V̂ar(β̂m)−1
[1,1])

−1(V̂ar(β̂m)−1
[1,1] β̂

m
0 + σ−2

0 b0)
(C.3)

where A[i,j] and a[i] indicate the ij-th element of matrix A and the i-th element of
vector a, respectively. This leads, therefore, to the following approximate posterior
distribution for the parameter of interest:

p(β0|y, m) =

N
(
(σ−2

0 + V̂ar(β̂m)−1
[1,1])

−1(V̂ar(β̂m)−1
[1,1] β̂

m
0 + σ−2

0 b0), (σ−2
0 + V̂ar(β̂m)−1

[1,1])
−1
)
(C.4)

After having obtained the posterior distribution for β0 for each model we average
using a flat prior across models to obtain the final density p(β0|y) = 1

M ∑M
m=1 p(β0|y, m).

Returning to the choice of prior distribution for the parameter of interest, we are
guided by the model-implied incidence from Section 3.4. We calibrate the following
parameters: g = 0.035, g̃ = 0.035, r = 0.04 and α = 0.81. Given these values we pick
three different means for the prior distribution to match the range of incidence of the
stamp duty tax obtained in Best and Kleven (2018), namely, b0 = −150,−100,−50,
which roughly correspond to stamp duty incidences of: dp

dτS
= −2,−3,−4. We

1The parameters r and g̃ are consistent with the in-sample average mortgage rate and growth
rate of council taxes in the UK, respectively; α is consistent with a downpayment of 20% which is
common in the UK. We use a conservative expected growth rate of house prices of 3.5% compared to
the in-sample average of 7.3%.
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choose the standard deviations of the prior to be equal to σ0 = 50 or σ0 = |b0|
2 to

obtain five prior distributions.


