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A thesis submitted for the degree of

Doctor of Philosophy

Department of Mathematics

The London School of Economics and Political Science

London, September 2021
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Abstract

We study computational aspects of equilibria and fair division problems with a focus on

demand and valuation functions that satisfy the (weak) gross substitutes property.

We study the Arrow-Debreu exchange market model with divisible goods where agents’

demands satisfy the weak gross substitutes (WGS) property. We give an auction algorithm

that obtains an approximate market equilibrium for WGS demands. Previously, such algo-

rithms were known only for restricted classes of WGS demands. We also derive the impli-

cations of our technique for spending-restricted market equilibrium for budget-separable

piecewise linear concave (budget-SPLC) utilities. Spending-restricted equilibrium was in-

troduced as a continuous relaxation of the Nash Social Welfare (NSW) problem.

Next, we present the first polynomial-time constant-factor approximation algorithm for

the NSW problem under Rado valuations. Rado valuations form a general class of val-

uation functions that arise from maximum cost independent matching problems. They

include as special cases assignment (OXS) valuations and weighted matroid rank func-

tions. Our approach also gives the first polynomial-time constant-factor approximation

algorithm for the asymmetric NSW problem under Rado valuations, provided that the

maximum ratio between the weights is bounded by a constant.

We examine the Matroid Based Valuation (MBV) conjecture by Ostrovsky and Paes

Leme (Theoretical Economics 2015). It asserts that every (discrete) gross substitute val-

uation is a matroid based valuation—a valuation obtained from weighted matroid rank

functions by repeated applications of merge and endowment operations. Each matroid

based valuation turns out to be an endowment of some Rado valuation. By introducing

complete classes of valuated matroids, we exhibit a family of valuations that are gross sub-

stitutes but not endowed Rado valuations. This refutes the MBV conjecture. The family is

defined via sparse paving matroids.
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1 Introduction

Algorithmic game theory emerged alongside the rise of decentralized computer networks

such as the Internet. The Internet created a new economy for exchange and commerce

that allowed for the use of computational tools. Decentralized computer networks, in-

cluding the Internet, arise from the interaction between many agents (network operators,

service providers, users, etc.) each acting in their own self-interest. A natural way to view

such selfish behaviour, both human and mechanical, is through the lens of game theory.

Combining algorithmic thinking with game-theoretic is the main source of questions and

techniques for the algorithmic game theory.

Both computer science and economics have benefited from this fruitful interaction that

produced many deep connections between seemingly unrelated ideas. Fundamental con-

cepts from economics like equilibria, auctions, and incentive compatible mechanisms are

now central in the applications of computer science involving strategic agents. In the

other direction, theoretical computer science has built on the classical economic theory by

studying algorithms, approximability, and complexity of game-theoretic concepts.

In this thesis, we study the algorithmic aspects of three related economic topics.

Firstly, we study market equilibria in markets with divisible goods where agents have

weak gross substitutes demands. Demand is a function that specifies the preffered bundles

of an agent at given prices, and weak gross substitutes property states that increasing the

price of a good does not reduce the demand for all the other goods. We give an auction-

type algorithm for finding an approximate market equilibrium under such demands. In

auction algorithms, the main idea is to set-up a set of simple “ground-rules” and let the

agents outbid each other as long as they are willing to spend more money. The hope is that

this process converges to an equilibrium. While the overall approach is arguably simple,

new technical ideas are needed to give an auction algorithm that works for all weak gross

substitutes demands.

Secondly, we study the Nash social welfare (NSW) problem: Allocate a set of indivis-

ible items to a set of agents while maximizing the (weighted) geometric mean of agents

valuations. This is a central problem in fair division and computational social choice, and

it is known that the optimal allocations satisfy desirable fairness and efficiency properties.

(Interestingly, the relaxation of the Nash social welfare problem is a market equilibrium

problem which allows us to use our auction algorithm to find solutions to the relaxation.)

7
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Since the NSW problem is computationally hard, the focus is on finding constant-factor

approximation algorithms.1 Our main contribution here is a constant-factor approxima-

tion algorithm for the problem under a class of submodular valuations that we call Rado

valuations.

Thirdly, we study the relationship between Rado valuations and (discrete) gross sub-

stitutes valuations. Gross substitutes valuations are crucial for the existence and com-

putability of equilibria in markets with indivisible items, mechanism design, and auctions

of multiple items. The two classes of valuations are closely related through the Matroid

Based Valuations (MBV) conjecture. The conjecture states that every gross substitutes val-

uation arises from weighted matroid rank functions via endowment and merge operations.

If true, the MBV conjecture would imply that every gross substitute valuations is an en-

dowment of some Rado valuation.

A surprising and strong connection was discovered between gross substitutes valua-

tions and valuated matroids. Valuted matroids are a valuated generalization of the clas-

sical concept of matroids in discrete mathematics and computer science. We exploit this

connection and disprove the MBV conjecture by studying valuated matroids instead. In

particular, we introduce the notion of complete classes of valuated matroids. We show that

the smallest complete class containing R-induced and R-minor valuated matroids (valu-

ated matroids corresponding to Rado valuations and endowed Rado valuations) is not

the class of all valuated matoids. This answers negatively a question of Frank, and as a

corollary shows that there are gross substitute valuations that cannot be obtained as an

endowment of a Rado valuation. This disproves the MBV conjecture.

1.1 Auction Algorithm for Market Equilibrium under WGS

demands

A Fisher market consists of a set of divisible goods and a set of agents each with some

budget and preferences over bundles of goods. A market equilibrium comprises a set of

prices and allocations of goods to the agents such that each agent spends all their money

on a demanded bundle at these prices, and the market clears: the full amount of each good

is allocated.

Formally, we define a market equilibrium using demand systems. Let [k] := {1, 2, . . . , k}.
Let A = [n] be a set of agents and let G = [m] be a set of divisible goods. Without loss of

generality we assume that the supply of each good is one unit. Each agent i ∈ [n] arrives

at the market with a budget bi ∈ R+. A bundle x is non-negative vector x ∈ Rm+ . A demand

system is a function D : Rm+1
+ → 2Rm+ ; where D(p, b) denotes the (possibly infinite) set

1Throughout the thesis, by an approximation algorithm we mean an approximation algorithm running in
polynomial time, unless stated otherwise.
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of optimal or demand bundles at prices p and budget b. Here 2Rm+ denotes the family of al

subsets of Rm+ .

Definition 1.1.1 (Market equilibrium). Let Di denote the demand system and bi the budget

of agent i ∈ A in a Fisher market with goods G. We say that the prices p ∈ Rm+ and bundles

x(i) ∈ Rm+ form a market equilibrium if

• x(i) ∈ Di(p, bi), and

•
∑n

i=1 x
(i)
j ≤ 1, with equality whenever pj > 0, for all j ∈ G.

The existence of a market equilibrium is always guaranteed under some weak assump-

tions, as shown by Arrow and Debreu [5], using Kakutani’s fixed point theorem. The

computational aspects of finding a market equilibrium have been extensively studied in

the theoretical computer science community over the last two decades, establishing hard-

ness results as well as polynomial-time algorithms for certain cases [20, 26, 31, 39, 44, 58,

74, 116, 120].

Utility functions A standard way to implement a demand system is via an explicitly

given utility function. Assume agent i is equipped with a concave utility function ui :

Rm+ → R+. Utility function measures agents satisfaction with a certain bundle of goods.

In this case, the set of demand bundles at prices p and budget bi is the set of bundles

maximizing the utility subject to the budget constraint, i.e., the optimal solutions of the

following program
max ui(x)

s.t. p>x ≤ bi

x ≥ 0 .

(Max-utility)

Formally, Di(p, b) := Dui(p, b) = arg maxx∈Rm+ {ui(x) : p>x ≤ bi}. Most models studied in

the literature assume strictly concave utilities and thus have a unique optimal solution; a

notable exception is the case of linear utility functions. A utility function u is linear if, for

some v ∈ Rm+ , it holds u(x) = v>x for all x ∈ R+.

Eisenberg-Gale program A particularly remarkable connection between market equi-

libria and convex programming was discovered by Eisenberg and Gale [46]. In the case

of linear utilities, the market equilibria are exactly the optimal solutions to the following
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convex program

max
n∑
i=1

bi log v>i x
(i)

(
=

n∑
i=1

bi log ui(x
(i))

)
n∑
i=1

x
(i)
j ≤ 1, ∀j ∈ [m].

x(i) ≥ 0, ∀i ∈ [n].

(EG)

Let p ∈ Rm+ denote the Lagrange multipliers of the constraints. By the Karush–Kuhn–Tucker

(KKT) optimality conditions, x and p are primal and dual optimal solution if and only if

• bi vij
v>i x

(i) ≤ pj where equality holds whenever xij > 0; and

•
∑

i∈[n] x
(i)
j ≤ 1 where equality holds whenever pj > 0.

The first conditions implies that x(i) ∈ Dui for agent i, that is, x(i) maximizes (Max-utility).

In case of linear utilities, x(i) is a maximizer of (Max-utility) if and only if i spends all bud-

get bi on the goods with the highest vij
pj

– called maximum bang per buck (MBB) goods.

With a bit of algebraic manipulation we can see that this is exactly what the first condition

states. The second condition is the same as in the definition of market equilibrium.

More generally, Eisenberg [45] showed that the optimal solutions of the above program

are in one-to-one correspondence with the market equilibria whenever the utility func-

tions are homogenous of degree one, that is, ui(αx) = αui(x) for any α > 0. In particular,

in these cases we can find a market equilibrium with standard convex programming ap-

proaches.

Weak Gross Sustitutability The first idea for an algorithm or dynamics for finding an

equilibrium comes from Walras in 1874 [119]. He informally described the following pro-

cess, called tâtonnement, after observing the stock market. Start with arbitrary prices. If

the total demand for the goods is the same as the supply, we have an equilibrium. Other-

wise, pick an arbitrary good and “fix” its price: adjust the price of this good such that the

demand is equal to its supply. The adjustment might interfere with the demand of other

goods, but we are interested in the limit of such process.

The process does not always converge to an equilibrium [109] but a continuous version

of the process converges to an equilibrium whenever the utility functions satisfy weak gross

substitutability (WGS) [4, 7].2

Gross substitutability captures the following type of interaction between prices and de-

mands for goods. At given prices, an agent demands a certain amount of goods. If the

2Arrow and Hurwitz [7] first studied the local stability of an equilibrium under WGS utilities, and then
together with Block [4] they showed that the stability is global [3].
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price of a single good increases then we expect that demand for this good decreases. Con-

sequently, more money can be spent on the goods with the unchanged price and thereby

the demand for such goods should not decrease. The formal definition follows.

Definition 1.1.2 (Weak Gross Substitutes). Let (p, b) ∈ Rm+1
+ and x ∈ D(p, b). If for any

p′ ≥ p and b′ ≥ b there exists y ∈ D(p′, b′) such that yj ≥ xj whenever p′j = pj , we say that the

demand system D satisfies the weak gross substitutes (WGS) property.

The demand system arising from linear utilities satisfies the WGS property. When the

demand system is given by a utility function as in (Max-utility), we will simply say that

the utility function satisfies the WGS property.

Computational complexity The polynomial-time computability of market equilibrium

for WGS utilities was first established by Codenotti, Pemmaraju, and Varadarajan [32].

Later, a simple ascending-price algorithm using global demand queries was given by Bei,

Garg, and Hoefer [16]. Further, Codenotti, McCune, and Varadarajan [30] have shown

that a simple discrete variant of the tâtonnement algorithm converges to an approximate

equilibrium (see also [102, Section 6.3]). This was followed by a number of papers provid-

ing tâtonnement algorithms for various classes of utility functions and restricted models,

some of them substantially weakening the need for central coordination among agents,

see e.g., [9, 27, 28, 34, 48].

However, most of these algorithms still rely on global demand queries. In a sense,

they require a central authority (responsible for updating prices) to have some general

information about the demands of all agents in the market.

Auction algorithms Auction algorithms form a subclass of tâtonnement-type algorithms.

Whereas prices in tâtonnement may increase as well as decrease, in auctions prices may

only go up. The first such algorithms have been established for markets in which agents

have linear utilities by Garg and Kapoor [59] (see also [102, Section 5.12]). The algorithm

was later improved [60] and generalized to separable concave gross substitute utility func-

tions [62], to a subclass of non-separable gross-substitutes called uniformly separable [61],

and to a production model with linear production constraints and linear utilities [77].

There is a long history of auction algorithms both in the optimization and in the eco-

nomics literature. Bertsekas [17, 18] has introduced auction algorithms for assignment

and transportation problems. Closely related algorithms were introduced for markets

with indivisible items, by Kelso and Crawford [81], and Demange, Gale, and Sotomayor

[38]. We will discuss markets with indivisible items later in this section. In both con-

texts, the appeal of auction algorithms is their simplicity and distributed nature: under

simple “ground rules” the agents outbid each other and in the process converge to an ap-

proximate market equilibrium. These algorithms do not require a central authority (e.g.,



Husić E. Nash Welfare, Valauted Matroids, and Gross Substitutes.
1.1. AUCTION ALGORITHM FOR MARKET EQUILIBRIUM UNDER WGS DEMANDS 12

to update the prices) and need only minimal coordination between the agents. Further,

these algorithmic frameworks are quite robust and easily allow for various extensions and

generalizations as we demonstrate in later sections.

First main result The first main contribution is an auction algorithm that computes

an approximate market equilibrium for WGS demand oracles, settling an open question

from [61]. Our auction algorithm works for more general exchange markets and is pre-

sented in Chapter 2. This result shows that for WGS demands, this restricted class of

tâtonnement algorithms already suffices to obtain a market equilibrium. The result af-

firms the natural intuition that the WGS property is geared for auction algorithms. A

main invariant in auction algorithms is that at every price increase, the agents will still

hold on to the goods they have purchased previously at the lower prices. This property

is almost identical to the definition of the WGS property; nevertheless, making an auction

algorithm work for general WGS utilities requires some careful technical ideas.

The previously mentioned auction algorithms operate with two prices for each good,

a lower price pj and a higher price (1 + ε)pj . For linear utilities, [59] maintains that all

purchases are maximum bang-per-buck goods with respect to the lower or higher price.

This idea can be extended to separable [60] and to uniformly separable utilities [62], but

does not work if the utilities are genuinely non-separable. For this general case, our main

technical idea is to maintain subsets of optimal bundles for each agent with respect to

some individual prices. These individual prices can be different for the agents but fall

between the higher and lower prices p and (1 + ε)p.

(Discrete) Gross Substitutes We have already mentioned WGS utilities in the case of

divisible goods. In the case of discrete (indivisible) items, an analogous concept of gross

substitutes valuations is crucial for the existence and computation of the so-called Wal-

rasian equilibrium. This concept was defined by Kelso and Crawford in 1982 [81]. For a

price vector p ∈ RV and a subset X ⊆ V , we let p(X) =
∑

j∈X pj . A valuation v : 2V → R+

is a monotone function taking value 0 on the empty set. The set of optimal bundles at prices

p is called demand correspondence and is the set D(v, p),

D(v, p) := arg max
X⊆V

v(X)− p(X) .

Definition 1.1.3 (Gross Substitutes). The valuation function v : 2V → R+ is a gross substi-

tutes (GS) valuation if for any p, p′ ∈ RV such that p′ ≥ p and any X ∈ D(v, p), there exists an

X ′ ∈ D(v, p′) such that X ∩ {j : pj = p′j} ⊆ X ′.

That is, if we have an optimal bundle at prices p and increase some of the prices, then
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there will be an optimal bundle that contains all items whose price remained unchanged.

For brevity, in this thesis, we differentiate divisible goods and indivisible (discrete) items.

The terms utility functions and WGS is reserved for continuous utility functions u : Rm →
R+ over the set of goods and the terms GS and valuation for the indivisible items. Addi-

tionally, we use additive for valuations and linear for utilities.

Auction algorithms and discrete gross substitutability Auction algorithms have been

widely studied in the context of markets with discrete items. An equilibrium may not

always exist in such markets. When agents have GS valuations, an equilibrium is guaran-

teed to exist, and an approximate equilibrium can be efficiently found via a simple auction

algorithm, extending [37]. It turns out that the discrete gross substitutes property is essen-

tially a necessary and sufficient condition for the auction algorithm to work and for an

equilibrium to exist [65].

Whereas the definitions of discrete gross substitutes and continuous WGS utilities is

very similar, there does not appear to be a direct connection between these notions. The

main difference is in the utility concepts: for indivisible markets, the standard model is to

maximize the valuation minus the price of the set at given prices, whereas the standard

divisible market models operate with fiat money: the prices appear via the budget con-

straints but not in the utility value. Still, our first result can be interpreted as a continuous

analogue of the strong link between auction algorithms and the gross substitutes property

for markets with indivisible items: we show that auction algorithms are applicable for the

entire class of WGS utilities for markets with divisible goods. We suspect that the converse

should also be true, namely, that the applicability of auction algorithms should be limited

to WGS utilities/demands. In contrast, tâtonnement algorithms have been successfully

applied beyond the WGS class [27, 28, 48].

1.2 Approximating Nash social welfare

In the discrete Nash social welfare (NSW) problem, we need to allocate a set G of m indi-

visible items to a set A of n agents where each agent i has a valuation function vi : 2G →
R+ and weight (entitlement) wi > 0. The goal is to find an allocation maximizing the

NSW, defined as the weighted geometric mean of the valuations:

max


(∏
i∈A

vi(Si)
wi

)1/
∑
i∈A wi

: {Si : i ∈ A} forms a partition of G

 .

We refer to the special case when all agents have equal weight (i.e., wi = 1) as the sym-

metric NSW problem, and call the general case the asymmetric NSW problem. By taking

the logarithm of the objective function we see that the NSW problem is a discrete version
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of the Eisenberg-Gale program (EG). The objective was first discovered by Nash as the

unique solution to a bargaining game [76, 100]. It also coincides with a notion of pro-

portional fairness in networking [80], and with the competitive equilibrium from equal

incomes [115].

Fair and efficient allocation of resources is a fundamental problem in many disciplines,

including computer science, economics, and social choice theory. The Nash social wel-

fare (NSW) is a popular objective that provides a balanced tradeoff between fairness and

efficiency.

A common measure of efficiency is maximizing the utilitarian social welfare, i.e., finding

an allocation (S1, . . . , Sn) that maximizes
∑

i∈A vi(Si). Naturally, efficiency comes at the

expense of fairness: in an optimal utilitarian social welfare allocation some agents might

receive no items.

On the other side, maximizing fairness is often associated with maximizing the mini-

mum value across all agents, i.e., max(S1,S2,...,Sn) mini∈A vi(Si). This is also known as max-

min fairness or the Santa Claus problem. Fairness comes at the expense of efficiency: we

might have to assign most of the items to an agent with low valuation of all subsets of G
when compared to the valuations of other agents.

The Nash social welfare balances the two above objectives and has provable fairness and

efficiency guarantees. When agents are symmetric, the optimal NSW allocation satisfies

a relaxation of envy-freeness called envy-freeness up to one good and is Pareto-optimal [22].

These properties also carry over to the asymmetric case, where the optimal NSW satisfies

a weighted relaxation of envy-freeness and is Pareto-optimal [23].

A distinctive feature of the NSW objective is its invariance under scaling of the valu-

ations. That is, unlike the utilitarian social welfare and the max-min fairness, the set of

optimal allocations in the NSW problem remains unchanged even if the valuations of the

agents are scaled by arbitrary positive constants.

Finding an optimum of the NSW problem is NP-hard already for two agents with ad-

ditive valuations (by a reduction from the subset sum problem); a valuation v : 2G → R+

is additive if v(S) =
∑

j∈S v(j) for all S ⊆ G. Moreover, the problem is APX-hard for

additive valuations [52]. The focus is then on finding constant-factor approximation algo-

rithms for the problem. Naturally, the approximability depends on the class of valuations

function we allow. We give two approximation algorithms for the NSW problem. The

first one gives a constant-factor approximation algorithm for the symmetric NSW under

budget-SPLC valuations, and uses a slightly modified version of our auction algorithm

as the starting point (Section 1.2.1). The second is an approximation algorithm for the

asymmetric NSW under Rado valuations with the approximation guarantee depending

on maxi∈Awi (Sections 1.2.2 and 1.2.3). In the symmetric case, this gives the first constant-

factor approximation algorithm for Rado valuations.
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1.2.1 Spending restricted equilibrium and auction algorithm

In a break-through result, Cole and Gkatzelis [35, 36] gave the first constant-factor approx-

imation algorithm for the symmetric NSW problem under additive valuations. They first

solve a relaxed continuous problem and round the fractional solution. A natural relax-

ation is (EG) with linear utilities and bi = 1 for all agents i. However, that relaxation has

an unbounded integrality gap (e.g., if there is only one item, the optimal NSW value is zero

while (EG) has a non-zero solution). To circumvent this issue, the algorithm in [36] first

computes a spending restricted equilibrium and rounds such an equilibrium to an integer

solution of value at least 1/2e1/e times the optimal NSW value. We now define spending

restricted equilibrium for arbitrary demand systems and explain how we used our auc-

tion algorithm to obtain a constant-factor approximation algorithm for the NSW problem

under budget-SPLC valuations.

Definition 1.2.1 (SR-equilibrium). Let A be a set of agents with demand systems Di(p, bi) and

fixed budgets bi ∈ R+ for all i ∈ A. We say that the prices p ∈ Rm and allocations x(i) ∈ Di(p, bi)

form a Spending Restricted (SR) equilibrium, if
∑

i∈A x
(i)
j = min{1, 1/pj} for all j ∈ [m].

It is clear that the amount of money spent on good j is bounded by 1. Note that the

spending restrictions cannot be directly added to (EG) as they involve the Lagrange mul-

tipliers p. An SR-equilibrium in [36] was found via an extension of [39, 103].

The same approach was extended to separable, piecewise-linear concave (SPLC) valua-

tions [2], and budget-additive valuations [53]. Both papers find the corresponding SR-

equilibra (exact or approximate) via fairly complex combinatorial algorithms.

Approximating NSW under budget-SPLC valuations We show that auction algorithms

are particularly well-suited for SR-equilibrium computation: once the price of a good goes

above one, we can naturally decrease the total available amount of these goods. (Surpris-

ingly, here we do not make the standard non-satiation assumption that requires each agent

to fully spend her budget on each demanded bundle.) Hence, we obtain a simple approx-

imation algorithm for SR-equilibrium under WGS demands.

Next, we consider the NSW problem with n agents and m items, in which we have Dj

units (copies) of item j. Each agent i has a budget-SPLC valuation function defined as

follows. For every good j, agent i has kij segments with strictly decreasing utility rates

uij1 > uij2 > . . . > uijkij ≥ 0. Segment t ∈ [kij] has length dijt and agent i values at

uijt each of the units in the t-th segment of good j. We assume that
∑

t∈[kij ]
dijt = Dj .

Furthermore, agent i’s value is capped at Ui, i.e., their value for a subset of items is the

minimum of Ui and the sum of the values accumulated from the items.

After showing that budget-SPLC utilities are WGS under the Gale demand (see Sec-

tion 3.2.1), we apply the auction algorithm to the relaxed problem to find an approximate
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SR-equilibrium. Using a similar rounding as in [53], we obtain a 2.404-approximation al-

gorithm for maximizing NSW in polynomial time when agents have budget-SPLC valua-

tions. The previous approximation algorithm for this setting in [24] runs in pseudopolyno-

mial time (polynomial dependence on maxi
∑

j kij). These results are presented in Chap-

ter 3.

1.2.2 Rado valuations

In game theory, valuations or valuation functions model user preferences. The term valuation

function or just valuation is used for discrete functions v : 2G → R+ over the set of items

G. In particular, a valuation assigns a numerical value to each subset of items. We assume

that every valuation function is monotone: v(S) ≤ v(T ) for all S ⊆ T ⊆ G (also called

free-disposal); and we that the value of the empty set is 0: v(∅) = 0 (also called normalized

valuation).

A central place occupy submodular functions/valuations. A valuation v : 2G → R+ is

submodular if

v(S) + v(T ) ≥ v(S ∩ T ) + v(S ∪ T ) ∀S, T ⊆ G .

Or equivalently, via decreasing marginals, v is submodular if and only if v(S∪{e})−v(S) ≤
v(T ∪ {e})− v(T ) for all S ⊆ T ⊂ G and e ∈ G \ T .

Thus, submodular valuations have a natural diminishing returns making them partic-

ularly suitable for applications in economics [112]. Submodular functions are also un-

avoidable in computer science in areas such are combinatorial optimization [90], discrete

convex analysis [98], machine learning [84], and computer vision [75].

Another important class of valuations are subadditive valuations. We say that v : 2G →
R+ is subadditive if

v(S) + v(T ) ≥ v(S ∪ T ) ∀S, T ⊆ G .

Trivially, every submodular valution is also subadditive. Subadditve functions are also

very common in mathematics, economics and related areas.

Matroids To introduce Rado valuations we need to recall the notion of a matroid. A

matroid on a finite ground set V is given as M = (V, I), where I ⊆ 2V is a nonempty

collection of independent sets. This collection is required to satisfy the independence axioms:

(I1) Monotonicity: if X ∈ I then Y ∈ I for all Y ⊆ X , and

(I2) Exchange property: if X, Y ∈ I , |X| < |Y |, then there exists a y ∈ Y \ X such that

X ∪ {y} ∈ I .

The rank function rM : 2V → Z+ associated with the matroidM is defined with rM(X)

denoting the size of the largest independent subset of X ⊆ V . A fundamental property
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implied by (I2) is that every maximal independent set in X has size rM(X). The value

rM(V ) is called the rank of the matroid, and the maximal independent sets are called bases.

A set X ⊆ V is in I if and only if r(X) = |X|; and we can equivalently define a matroid

by its rank function justifying an alternative notationM = (V, r). We refer the reader to

[110, Part IV] for matroids and their role in optimization. For other characterizations of

matroids, see e.g., [105].

It is easy to check that every rank function is submodular. Moreover, every integer val-

ued monotone submodular set function on V with v(X) ≤ |X| arises as the rank function

of a matroid. Given a weighting g ∈ RV+, the weighted rank function rg(X) is the maximum

g-weight of a maximal independent set in X ; this function is also submodular.

Rado valuations The key class of valuations for our next main results is that of Rado

valuations. We propose the name “Rado valuations” in honor of Richard Rado, who

first studied the independent matching problem [107].3 We denote a bipartite graph by

(G, V ;E), where G, V are the partitioned node sets and E the edge set.

Definition 1.2.2 (Rado valuation). Assume we are given a bipartite graph (G, V ;E) with a cost

function c : E → R+ on the edges, and a matroidM = (V, I). For a subset of items S ⊆ G,

the Rado valuation function v(S) is defined as the maximum cost of a matching M in (G, V ;E)

such that ∂G(M) ⊆ S and ∂V (M) ∈ I , i.e.,

v(S) := max

{∑
e∈M

c(e) : M is a matching, ∂G(M) ⊆ S, ∂V (M) ∈ I
}
.

Here, ∂X(M) denotes the set of endpoints of M in a vertex-set X .

Let us consider the special case where the matroid M is the free matroid on V , i.e.,

I = 2V . In this case, the matroid constraints ∂V (M) ∈ I are vacuous. The value of a

set S is then the maximum cost matching in the bipartite subgraph induced by S ∪ V .

Such valuations are called assignment valuations by Shapley [111], and OXS valuations by

Lehmann, Lehmann, and Nisan [85].

Shapley [111] gave a nice interpretation of assignment valuations. Assume that the

agent is a company. Furthermore, assume that the items G are workers and V is the set of

jobs within the company. The edge set represents the possibilities (willingness) of assign-

ing workers to jobs, and the cost cjk is the value the company gets by assigning worker j

to job k. By the definition of assignment valuations, the value of a subset S ⊆ G of workers

for the company is the maximum possible value the company gets by assigning workers

S to jobs V .

3These functions previously appeared as valuations arising via bipartite matching with a matroid constraint [89]
and independent assignment valuations [98].
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The same interpretation extends to Rado valuations with the additional possibility that

the occupied set of jobs must be an independent set in matroid M. For example, the

company may partition the set of all jobs V into certain types, require that at most one job

of each type to be assigned and additionally limit the total number of employed workers—

a laminar matroid constraint.

As another example of Rado valuations, consider the case where V is a copy of the set

of items G, with each j ∈ G having a corresponding j′ ∈ V , and let E = {(j, j′) : j ∈ G}.
Let g : G → R, and cjj′ = gj for all j ∈ G, and let r be the rank function ofM. In this case

v(S) equals the weighted matroid rank function rg(S), i.e., the maximum g-weight of an

independent subset of S.

In Section 6.4, we prove that every Rado valuation on a ground set G of m elements

admits a representation with a bipartite graph of size O(m2).

The relation between popular classes of valuation functions is given in Figure 1.1.

additive

SPLC

budget-SPLCbudget-additive

OXS

weighted matroid rank
GS

submodular subadditive

Rado

Figure 1.1: Relation between classes of valuation functions. Arrows represent strict inclu-
sion. If an arrow is not present, the classes are incomparable; see [85, 102].
Strict containment between Rado valuations and gross substitute valuations is
proved in Section 4.7. Note that SPLC and budget-SPLC valuations are defined
over ZG , but an equivalent formulation over 2G can be easily obtained by con-
sidering the copies as individual items, and grouping them into “item-types”.

1.2.3 Approximating Asymmetric Nash Social Welfare under Rado

valuations

Next to the approach of using SR-equilibrium, other innovative approaches for approx-

imating the symmetric NSW problem under additive valuations were also developed.

Anari et al. [1] gave a constant-factor approximation algorithm using the theory of real

stable polynomials. Barman et al. [14] developed another approach based on local search

(price envy-freeness) that provides the state-of-the-art approximation factor of 1.45.

All three approaches have also been extended to obtain constant-factor approximation

algorithms for mild generalizations of additive, namely, budget-additive [53], SPLC [2],

and budget-SPLC valuations [24]. All these approaches heavily exploit the symmetry

of agents and the characteristics of ‘additive-like’ valuations (such as MBB) which make

them hard to extend to significantly more general settings. Moreover, as we have already

mentioned the corresponding continuous utility functions satisfy the WGS property.
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For more general valuations or the asymmetric NSW problem, the best approximation

algorithms achieve an O(n)-approximation factor [13, 25, 57], and these algorithms work

for the asymmetric NSW under subadditive valuations. However, their analysis is based

on averaging arguments, making them hard to yield a factor better than O(n) even for the

special cases, e.g., OXS valuations, or only two types of agents with weights 1 or 2 under

additive valuations. Therefore, with the following exception, O(n) remained the best ap-

proximation factor for the symmetric NSW problem beyond ‘additive-like’ valuations or

for the asymmetric NSW problem.

Li and Vondrák [88] gave a e3

(e−1)2
-estimation algorithm for the optimal value of the sym-

metric NSW problem under valuations arising as conic combinations of Rado valuations.

The paper extends the real stable polynomial approach [1]. The algorithm approximates

the objective value only and does not find a near-optimal allocation, as the randomized

rounding finds an approximate solution with exponentially small probability.

Second main result We make significant progress towards both symmetric and asym-

metric NSW by developing a novel approach for approximating the problem. In particu-

lar, we give a constant-factor approximation algorithm for the symmetric NSW problem

under Rado valuations.

Theorem 1.2.3. There exists a polynomial-time 256e3/e≈772-approximation algorithm for the

symmetric Nash social welfare problem under Rado valuations.

Next, we obtain a constant-factor approximation for the asymmetric NSW problem un-

der Rado valuations, provided that the maximum ratio between the weights is bounded

by a constant. We note that no such result was known even for additive valuations. As-

sume the weights wi of the agents fall in the interval [1, γ − 1] for some γ ≥ 2.

Theorem 1.2.4. There exists a polynomial-time 256γ3-approximation algorithm for the asym-

metric Nash social welfare problem with Rado valuations. For additive valuations, there exists a

polynomial-time 16γ-approximation algorithm.

We note that γ in the theorem can be replaced by min
{
O
(

γ
log γ

)
, n
}

as we explain in

Section 4.1.2.

The algorithm carefully combines techniques from convex programming and bipartite

matching. It is a modular algorithm presented in five phases. We give an overview of

these phases in Section 4.2 with further details given throughout Chapter 4.

Table 1.1 summarizes the updated best approximation guarantees for the problem un-

der various valuation functions.

We note that our approach can be easily modified (in Phase IV) to give similar results

for the class of budget-Rado valuations, where the value of subsets of items is given by a

Rado valuation but not more than a given threshold.
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Valuations Symmetric Asymmetric
Additive 1.45 [14] O(γ) [Theorem 1.2.4]

SPLC 1.45 [24] O(γ3) [Theorem 1.2.4]
budget-SPLC 1.45 [24], 2.404 [Theorem 3.2.7] O(n) [13, 25]

Rado O(1) [Theorem 1.2.3] O(γ3) [Theorem 1.2.4]
Subadditive O(n) [13, 25] O(n) [13, 25]

Table 1.1: Summary of the best approximation algorithms for the NSW problem. The
table excludes the e3

(e−1)2
-estimation algorithm for the cone of Rado valua-

tions [88]. The results for budget-SPLC valutations are pseudopolynomial-time
and polynomial-time algorithms, respectively.

Subsequent work In a subsequent work, Li and Vondrák [89] obtained a 380-

approximation algorithm for the symmetric NSW problem under submodular valuations.

This is obtained by strengthening and extending our approach while introducing impor-

tant new techniques. This settles the constant-factor approximability of the symmetric

NSW problem as an O(n1−ε)-approximation algorithm for the problem under subaddi-

tive valuations requires an exponential number of oracle queries for any fixed ε > 0 [13].

The constant-factor approximability of the asymmetric NSW problem remains open

even for additive valuations. We note that in our approach, for additive valuations, the

factor γ only appears in a single reduction step (Phase II).

Difficulties in approximating asymmetric NSW We note that even if the weights of the

agents are bounded, an O(1)-approximation algorithm for the symmetric case does not

yield an O(1)-approximation algorithm to the asymmetric case. To illustrate this point,

consider two items and two agents with weights w1 = 2, w2 = 1 and additive valuations

v1({a}) = M , v1({b}) = 1, v2({a}) = M + 1, v2({b}) = 1, where M is an arbitrarily large

number. The unique optimal solution to the symmetric case (by setting w′1 = w′2 = 1) is

allocating good b to agent 1 and good a to agent 2. However, this returns an NSW value

(M+1)1/3 for the original weights. This can be worse by an arbitrary factor than the value

M2/3 obtainable by assigning good a to agent 1 and good b to agent 2.

The same example shows another difficulty and illustrates the limit of equilibrium-

based approaches when approximating asymmetric NSW. Namely, any constant-factor

approximation algorithm for the asymmetric NSW under additive valuations, cannot just

round an equilibrium only on the MBB edges (the support of an equilibrium). Consider

any prices pa and pb for our two items a and b. Then, regardless of the choice of pa and pb
it cannot be the case that both item a is MBB for agent 1 and that item b is MBB for agent

2. Thus, any assignment via the MBB edges will assign b to 1 and a to 2; note that this is

regardless of agents budgets, prices, and spending limits on the items. As we have seen

above, this can be arbitrarily worse than the optimum.
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1.3 Constructions of substitutes and complete classes of

valuated matroids

Constructions of substitutes Gross substitutes valuations play a central role in algorith-

mic game theory and especially in auction and mechanism design. In such settings an

important issue is the way in which agents represent their valuations. This raised a quest

for a constructive characterization of all GS valuations. Constructive characterization of

GS valuations would specify a language in which agents can represent their valuations

in a compact and expressible way [86]. Moreover, valuations with a constructive descrip-

tion facilitate more algorithmic techniques, especially linear programming as we will see

in Sections 4.1.1, 4.4, and 6.2. While we know many characterizations of GS functions

(Balkanski and Paes Leme [10] mention eight), finding a constructive one remains elusive.

The first attempt to “construct” all GS valuations was by Hatfield and Milgrom [67].

After observing that most examples of GS valuations arising in applications are built from

assignment valuations and the endowment operation, they asked if this is true for all

GS valuations. Ostrovsky and Paes Leme [104] showed that this is not the case: some

matroid rank functions cannot be constructed as endowed assignment valuations while

all (weighted) matroid rank functions are GS valuations. Instead, Ostrovsky and Paes

Leme proposed the matroid based valuations (MBV) conjecture. Matroid based valuations

are those that arise from weighted matroid rank functions by repeatedly applying the

operations of merge and endowment; the conjecture states that all GS valuations arise in

this way. Tran [114] showed that using only merge but no endowment operations does

not suffice, but the conjecture remained open.

Given a valuation v : 2V
′ → R and W ⊆ V ′, we can define the endowed valuation

v′ : 2V
′\W → R+ as v′(X) = v(X ∪W ) − v(W ) . We define the merge of the valuations

v1, v2 : 2V → R+ as v∗(X) = maxT⊆X v1(T )+v2(X \T ) for allX ⊆ V . In economics terms,

the merge is the valuation of the company formed by the two agents; the endowment is

the valuation of an agent who already has W and measures the marginal contribution of

the items in V ′ \W .

It turns out that every matroid based valuation is an endowed Rado valuation, so the

MBV conjecture would imply that all GS valuations are endowed Rado valuations. We

disprove the MBV conjecture by exhibiting a class of GS valuations that are not endowed

Rado valuations. This is achieved by studying the complete classes of valuated matroids.

We note that it is unclear if the class of MBV valuations is the same as the class of endowed

Rado valuations, or it is a strict subclass.

Valuated matroids Valuated (generalized) matroids capture a quantitative version of the

exchange axiom(s) for matroids. They were first introduced by Dress and Wenzel [42], mo-
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tivated by questions related to number theory and the greedy algorithm. Later, Murota [95]

identified them as a fundamental building block for discrete convex analysis. They play

important roles across different areas of mathematics and computer science, with particu-

larly many applications in algorithmic game theory.

Valuated (generalized) matroids can be defined in many different ways [50, 86, 98]. We

follow [51, 99], and say that a function f : 2V → R ∪ {−∞} is a valuated generalized matroid

if two properties hold:

∀X, Y ⊆ V with |X| < |Y | :

f(X) + f(Y ) ≤ max
j∈Y \X

{f(X + j) + f(Y − j)}
(1.1a)

∀X, Y ⊆ V with |X| = |Y | and ∀i ∈ X \ Y :

f(X) + f(Y ) ≤ max
j∈Y \X

{f(X − i+ j) + f(Y + i− j)}.
(1.1b)

For fixed r ≤ |V |, those functions
(
V
r

)
→ R ∪ {−∞} fulfilling (1.1b) are valuated matroids.

This means that each layer of a valuated generalized matroid (a gross substitutes valu-

ation) is a valuated matroid. Valuated matroids with codomain {0,−∞} coincide with

usual matroids as the sets taking value 0 form the bases of a matroid; we call them trivially

valuated matroids. In this context, (1.1b) corresponds to the strong basis exchange property.

Valuated generalized matroids that are monotone and take value 0 on the empty set are

exactly GS valuations.

R-minor valuated matroids and Frank’s question We are interested in the following

classes of valuated matroids arising from independent matchings in bipartite graphs. The

name is inspired by the work of Rado [107], similarly as Rado valuations.

Definition 1.3.1 (R-minor, R-induced). Let G = (V ∪W,U ;E) be a bipartite graph with edge

weights c ∈ RE , and a matroidM on U of rank d+ |W |. We define an R-minor valuated matroid

f :
(
V
d

)
→ R for X ∈

(
V
d

)
as follows.

The value f(X) is the maximum weight of a matching in G whose endpoints in V ∪ W are

X ∪ W , and the endpoints in U form a basis in M. For W = ∅, the function f is called an

R-induced valuated matroid.

This concept naturally extends to valuated generalized matroids (which we denote by

R\ instead of R, as is often the case in discrete convex analysis [98]): the endpoints in

U should not form a basis but a set in a generalized matroid. 4 It is immediate to see that

Rado valuations (resp. endowed Rado valuations) are exactly monotone R\-induced (resp.

R\-minor) valuated generalized matroids, taking value zero on the empty set.
4Generalized matroids are defined as the effective domain of a {0,−∞}-valued valuated generalized ma-

troid, see Section 7.1. The canonical examples are independent sets of matroids.
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In 2003, Frank [68] (see also lectures by Murota [96, 97], and Paes Leme [87]) asked if

all valuated matroids arise as R-induced valuated matroids. The corresponding version of

this question for valuations asks if all GS valuations are Rado. If true, this would imply

that our approximation algorithm for the NSW problem discussed in Section 1.2 works

for all GS valuations. Unfortunately, in Section 4.7, we show that not all GS valuations

are Rado. The reason is that GS valuations (resp. valuated generalized matroids) are

closed under endowment (resp. contraction), whereas Rado valuations (resp. R\-induced

valuated generalized matroids) are not.

Noting that R-minor valuated matroids are precisely the contractions of R-induced val-

uated matroids, this suggests a natural refinement of the original question:

Do all valuated matroids arise as R-minor valuated matroids?

We will show that (i) R-minor valuated matroids form a complete class closed under several

fundamental operations, yet (ii) not all valuated matroids are R-minor.

Complete classes Let us consider R-induced and R-minor valuated matroids whereM
is the free matroid and c ≡ 0. Valuated matroids f arising in such forms are the {0,−∞}
indicator functions of transversal matroids and gammoids respectively. In 1977, Ingleton [71]

studied representations of transversal matroids and gammoids. He observed that gam-

moids arise via this simple construction yet form a rich class closed under several funda-

mental matroid operations. This motivated the definition of a complete class of matroids by

requiring closure under the operations restriction, dual, direct sum, principal extension. Clo-

sure under principal extension combined with restriction implies closure under induction

by bipartite graphs which encompasses many other natural matroid operations, including

matroid union. Closure under this operation is what creates the rich structure of complete

classes, even when one starts from very basic matroids; e.g., gammoids arise as the small-

est complete class by taking the closure of the matroid on one element.

We extend the notion of complete classes to valuated matroids (Chapter 5). These are

classes of valuated matroids closed under the valuated generalizations of the fundamen-

tal operations restriction, dual, direct sum, principal extension. The crucial ingredient going

beyond the basic operations already introduced in [42] is (valuated) principal extension.

Analogously as in the case of matroids, valuated gammoids from the smallest complete

class of valuated matroids (Theorem 5.2.6).

After introducing complete classes, we show that the smallest class of valuated matroids

containing all trivially valuated matroids and that is closed for the mentioned operations is

exactly the class of R-minor valuated matroids (Section 5.3). Hence, the refined question by

Frank is equivalent to the following: does the smallest complete class containing trivially

valuated matroids cover all valuated matroids?
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Third main result The third main contribution of the thesis is proving that there are

valuated matroids that are not R-minor valuated matroids.

We can use an information-theoretic argument to show that not all valuated matroids

are R-induced by constructing valuated matroids with many independent values (Sec-

tion 6.4). However, such an argument does not seem extendable to R-minor valuated

matroids. Instead, disproving the more general claim relies on a well-chosen family of

valuated matroids. In Chapter 6, we show that none of the valuated matroids in the fol-

lowing family is R-minor.

Definition 1.3.2. For n ≥ 2, we define Fn as the following family of functions
(

[2n]
4

)
→ R. Let

V = [2n], Pi = {2i− 1, 2i} for i ∈ [n], and let

H = {Pi ∪ Pj : ij ≡ 0 mod 2} (H-def)

i.e. we take pairs such that at least one of i, j is even. Let X∗ = P1∪P2 = {1, 2, 3, 4}. A function

h :
(
V
4

)
→ R ∪ {−∞} is in the family Fn if and only if the following hold:

• h(X) = 0 if X ∈
(
V
4

)
\ H,

• h(X) < 0 if X ∈ H, and

• h(X∗) is the unique largest nonzero value of the function.

Theorem 1.3.3. If n ≥ 2, then all functions in Fn are valuated matroids. If n ≥ 16, then no

function in Fn arises as an R-minor valuated matroid.

Sparse paving matroids A matroid of rank d is paving if all circuits are of size d or d+ 1,

and sparse paving if in addition the intersection of any two d-element circuits is of size at

most d − 2. The functions in Fn are derived from sparse paving matroids. Namely, if B

is the family of bases of a sparse paving matroid of rank d, then any function h :
(
V
d

)
→

R∪{−∞}with h(X) = 0 if X ∈ B and h(X) < 0 otherwise gives a valuated matroid, see

Section 6.3.1. In particular, this implies that all functions in Fn are valuated matroids.

Our construction is inspired by Knuth [82]. He gave an elegant construction of a doubly

exponentially large family of sparse paving matroids; the strongest lower bound on the

number of matroids on n elements. In fact, it was conjectured in [93] that asymptotically

almost all matroids are sparse paving.

Refuting the Matroid Based Valuation Conjecture Building on Theorem 1.3.3, we also

refute the MBV conjecture by Ostrovsky and Paes Leme [104]. This is done by considering

R\-minor valuated generalized matroids and reducing to Theorem 1.3.3.
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First, we show that every function that can be obtained from weighted matroid rank

functions by repeatedly applying merge and endowment is an R\-minor valuated gener-

alized matroid.

Then, we show that the function h\ : 2V → R≥0 defined as follows is a valuated gen-

eralized matroid but not R\-minor. This disproves the MBV conjecture. For an arbitrary

valuated matroid h ∈ Fn taking values only in (−1, 0] we define

h\(X) :=


|X| for |X| ≤ 3,

4 + h(X) for |X| = 4,

4 for |X| ≥ 5.

We achieve this by focusing on the function restricted to all 4-subsets of V . This is an

R-minor valuated matroid and therefore allows us to apply Theorem 1.3.3. Note that the

function h\ has the additional structure of being monotone and only taking value zero on

the empty set, as the MBV conjecture refers to valuations.



2 Auction algorithm for market

equilibrium with weak gross

substitute demands

We give an auction algorithm for finding an approximate market equilibrium in the ex-

change markets where the demands of each agent satisfied the WGS property. In Chap-

ter 1 we have introduced Fisher markets. Here, we introduce and work with more general

Arrow-Debreu exchange markets.

The main idea in auction algorithms is the following: we set low initial prices, we let

the agents outbid each other for parts of the goods while obeying simple “ground rules”;

in the process they converge to an approximate market-equilibrium.

The rest of this chapter is organized as follows. We first formally define the market

model and the assumptions in Section 2.1. Then, we give examples of WGS demands sys-

tems and the notion of price elasticity are given in Section 2.2. The algorithm is presented

in Section 2.3. To present the algorithm we will rely on a subroutine FindNewPrices.

The subroutine allows agents to update the prices and demands based on which the out-

bidding occurs. We give different way of implement this procedure after we present the

main algorithm, in Section 2.3.2 and Section 2.3.3.

2.1 The exchange market model

We consider a market with a set of agents A = [n] and divisible goods G = [m]. Each

agent i ∈ [n] arrives at the market with an initial endowment of goods e(i) ∈ Rm+ . Thus,

the total amount of each good j ∈ [m] is ej where e =
∑n

i=1 e
(i); w.l.o.g. ej > 0. Given

a non-negative price vector p ∈ Rm+ , the budget of agent i at prices p is defined as bi =

bi(p) = p>e(i). It follows that p>e =
∑

i p
>e(i) =

∑
i bi.

We recall that a demand system is a function D : Rm+1
+ → 2Rm+ ; D(p, b) denotes the

set of demanded bundles of an agent at prices p and budget b. If |D(p, b)| = 1 for all

(p, b) ∈ Rm+1 we say that the demand system is simple, and we will also use D(p, b) to

denote this single bundle.

26
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We include the budget b in the definition of the demand system, even though for ex-

change markets the budget of agent i is uniquely defined by the prices as p>e(i). This

formalism will be useful for our algorithm where the budgets are defined according to a

slightly different set of prices.

We extend the definition of the market equilibrium to exchange markets.

Definition 2.1.1 (Market equilibrium). Let Di denote the demand system of agent i ∈ A. We

say that the prices p ∈ Rm+ and bundles x(i) ∈ Rm+ form a market equilibrium if

• x(i) ∈ Di(p, p
>e(i)), and

•
∑n

i=1 x
(i)
j ≤ ej , with equality whenever pj > 0, for all j ∈ G.

That is, p and optimal bundles x(i) form an equilibrium if no good is overdemanded

and goods at a positive price are fully sold. Note that this implies that every agent fully

spends their budget.

When a demand system satisfies the WGS property we also say that it is a WGS demand

system. In the context of the tâtonnement process, the weak gross substitutes property is

usually defined with respect to the aggregate excess demand function of all agents. We

use the stronger requirement of having a WGS demand system for each individual agent.

The previous auction algorithms [61, 62] have also used WGS on the level of agents as

this seems to be the necessary condition that allows agents to update their bundles indi-

vidually, as opposed to tâtonnement, where the prices adjustments react to the aggregate

demands. We note that WGS demands for individual agents are also assumed in the con-

text of indivisible goods.

Next, we formally describe the orcale access to the demands our algorithm uses.

Definition 2.1.2 (Demand oracle). For a WGS demand system D(p, b), a demand oracle re-

quires two vectors (p, b), (p′, b′) ∈ Rm+1
+ such that (p′, b′) ≥ (p, b), and a vector x ∈ D(p, b). The

output is a vector y ∈ D(p′, b′) such that that yj ≥ xj whenever p′j = pj .

In other words, the oracle provides the allocations guaranteed by the definitions of WGS

systems. The complex form of the definition is due to the possible non-uniqueness of

demand bundles. For simple demand systems, the input to the oracle is simply a vector

(p′, b′) ∈ Rm+1
+ , and the output is the unique vector y ∈ D(p′, b′).

The auction algorithm relies on the more powerful FindNewPrices subroutine, which

can be seen as a strengthening of the demand oracle, incorporating a mechanism for price

increments. There are various ways to implement such a subroutine: in Section 2.3.2 we

use a simple iterative application of the demand oracle for the case of bounded price elas-

ticities; in Section 2.3.3 we use a convex programming approach for Gale demand systems;

and in Section 3.2.1 we devise a combinatorial algorithm for budget-SPLC utilities.

For exchange markets, we will make the following assumptions:
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Assumption 1 (Scale invariance). For every agent i, Di(p, bi) = Di(αp, αbi) for all α > 0.

That is, we require that the demand is homogeneous of degree 0; informally, the demand

does not depend on the currency. This is a standard assumption in microeconomics and

exchange markets, see e.g. [6, 41, 45, 92].

Assumption 2 (Non-satiation). For all demand systems, and for every (p, b) ∈ Rm+1
+ , and every

x ∈ D(p, b), we have p>x = b.

That is, in every optimal bundle the agents must fully spend their budgets. This is a

standard assumption for exchange markets as it is necessary for the fundamental theorems

of welfare economics (see e.g. [91, Chapter 16]). However, we note that we will not require

this assumption in Section 3.1 for spending restricted Fisher markets.

Approximate equilibria Let us now define the concept of an ε-equilibrium in exchange

markets, which is what our algorithm will find. We require that each agent gets an ap-

proximate optimal bundle and market clears approximately.

Definition 2.1.3 (Approximate equilibrium). For an ε > 0, the prices p ∈ Rm and bundles

x(i) ∈ Rm+ form an ε-approximate market equilibrium if

(i) x(i) ≤ z(i) for some z(i) ∈ Di(p
(i), p>e(i)), where p ≤ p(i) ≤ (1 + ε)p,

(ii)
∑n

i=1 x
(i)
j ≤ ej , and

(iii)
∑m

j=1 pj
(
ej −

∑n
i=1 x

(i)
j

)
≤ εp>e.

That is, every agent owns a subset of their optimal bundle at prices that are within a

factor (1 + ε) from p, and all goods are nearly sold: the value of the unsold goods is at

most an ε fraction of the total value of the goods. The total value of the goods “taken

away” from the near-optimal bundles of the agents is
∑n

i=1 p
>(z(i) − x(i)). Parts (i) and

(iii), together with the fact that p(i)>z(i) ≤ p>e(i) for all i, imply that this amount is≤ 2εp>e.

Definition 2.1.3 can be seen as a natural extension of the corresponding approximate

KKT conditions in [59, 61, 62]. For linear utilities, [59] requires the approximate maximum

bang-per-buck condition vij/pj ≤ (1 + ε)vik/pk for any agent i, goods j and k such that

xik > 0. Thus, one can set approximate prices p ≤ p(i) ≤ (1 + ε)p for each agent with

respect to which they purchase maximum bang-per-buck goods.

Condition (iii) corresponds to the definition of approximate equilibrium in [40] and [63].

This notion is weaker than the ones used in [59, 61, 62]. The most important difference is

that the latter papers guarantee that each agent recovers approximately their optimal util-

ity. Such a property could be achieved by strengthening the bound in (iii) from εp>e to

εpminemin, where pmin is the minimum price and emin is the smallest total fractional amount
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in the initial endowment of any agent. However, this would come at the expense of sub-

stantially worse running time guarantees in our algorithmic framework, in particular the

running time would not be polynomial anymore.

2.2 Examples and properties of WGS demand systems

We now present some classical examples of WGS utilities previously studied in the litera-

ture.

• For v ∈ Rm+ the linear utility is given by u(x) = v>x. By definition, Du(p, b) =

arg max{v>x : p>x ≤ b}.

• The constant elasticity of substitution (CES) utility is defined by u(x) =(∑
j β

1
σ
j x

σ−1
σ

j

) σ
σ−1

, where
∑

j βj = 1. Then, D(b, p) = {x} for the unique optimal

bundle x given by xj =
βjp
−σ
j b∑

k βkp
1−σ
k

. It is well-known that a CES demand system

satisfies the WGS property if and only if σ > 1.

• The Cobb-Douglas utility function is given by u(x) =
∏
j x

αj
j where

∑
j αj = 1, α ≥ 0.

The unique optimal bundle is therefore xj = bαj/pj and Du(p, b) = {x}. The Cobb-

Douglas utility function satisfies the WGS property for any parameter choices.

• The nested CES utility function is defined recursively (see [74] for more details). Any

CES function is a nested CES function. If g, h1, . . . , ht are nested CES functions,

then f(x) = max g(h1(x1), . . . , ht(x
t)) over all x1, . . . , xt such that

∑t
k=1 x

k = x, is a

nested CES function. In a well-studied special case (see e.g., [79]), each good j can

only be used in at most one of the hi’s.

Conic combinations of demand systems Given two WGS utility functions u and u′, the
demand system corresponding to their sum u + u′ may not be WGS. On the other hand,
consider two simple WGS demand systems D and D′ and nonnegative coefficients λ, λ′.
Then it is easy to see that λD+λ′D′ is also a simple WGS demand system. This enables the
construction of some interesting demand systems. For example, [92] has studied hybrids
of CES and Cobb-Douglas demands, where the demand system can be given as

xj =
b

pj

[
εαj + (1− ε)

βjp
1−σ
j∑

k βkp
1−σ
k

]
,

for some 0 ≤ ε ≤ 1 and σ > 1.1

1We note that this demand function does not seem to correspond to a nested CES utility function.
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Note that if D = Du and D′ = Du′ for some concave utility functions u and u′, the

demand system λD+ λ′D′ will in general not correspond to the utility function λu+ λ′u′.

In fact, it seems unclear if one can explicitly write utility functions corresponding to such

convex combinations. Our model does not require the demand system to be given in the

form D = Du for some concave utility function u.

The Gale demand systems For applications of our auction algorithm for the Nash social

welfare problem, we will use Gale demand systems instead of (4.3), defined as

Gu(p, b) = arg max
x∈Rm+

b log u(x)− p>x . (2.1)

We call b log u(x) − p>x the Gale objective function. It is easy to verify using Lagrangian

duality that if all ui’s are concave functions, and the utility functions correspond to the

Gale demand systems Di(p, b) = Gui(p, b), then the program (EG) always finds a market

equilibrium; see [101] for details. Moreover, if the utilities are homogenous of degree one,

then this equilibrium coincides with the equilibrium for the “standard” demand systems

given by (Max-utility). For general concave utility functions, the optimal bundles stay

within the budget b (that is, p>x ≤ b), but may not exhaust it.

We refer the reader to the paper by Nesterov and Shikhman [101] on Gale demand

systems as well as the more general concept of Fisher-Gale equilibrium; they also give a

tâtonnement type algorithm for finding such an equilibrium.

Price elasticity of demands One possible implementation of the key subroutine Find-

NewPrices (Section 2.3) relies on the (price) elasticity of the demands.2 The standard

definition of the elasticity for good j with respect to the price of good k is ej,k =

∂ log xj(p, b)/∂ log pk, where xj(p, b) is the (unique) demand for good j at prices p and

budget b. The WGS property guarantees that ej,k ≥ 0 if j 6= k, and consequently, ek,k ≤ 0.

The definition below corresponds to ek,k ≥ −f for all k ∈ [m], for the more general model

of non-simple demand systems.

Definition 2.2.1. Consider a WGS demand system D(p, b). For some f > 0, we say that the

elasticity of D(p, b) is at least −f , if for any µ ≥ 0, j ∈ [m], (p, b) ∈ Rm+1
+ and x ∈ D(p, b),

if we define p′ as p′j = pj(1 + µ) and p′k = pk for k ∈ [m] \ {j}, then there exists a bundle

x′ ∈ D(p′, b) such that x′j ≥ 1
(1+µ)f

xj .

2No finite lower bound can be given on the elasticity of linear demand systems. If we are buying a positive
amount of good j, that means that j maximizes vk/pk. If there is another good ` with vj/pj = v`/p`,
then if we increase pj but leave the other prices unchanged, then x′j = 0 for every optimal bundle x′

with respect to the new prices. Consequently, for this case, we have another way to implement Find-
NewPrices in Lemma 2.3.8.
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For the CES utilities and Cobb-Douglas utilities we prove the following easy bounds on

the elasticity of the demands.

Lemma 2.2.2. The CES demand system with parameter σ > 1 has elasticity at least −σ, and the

Cobb-Douglas demand system has elasticity at least −1.

Proof. Using the form of CES utilities described above, the demand at prices p is xj =
βjp
−σ
j b∑

k βkp
1−σ
k

. Fix a good j. Denote with x′ the optimal bundle where we increase the price

of good j by factor (1 + µ). Since CES satisfies the WGS property for σ > 1, we have

x′j =
βj(1 + µ)−σp−σj b∑

k 6=j βkp
1−σ
k + βj(1 + µ)1−σp1−σ

k

=
βjp
−σ
j b

(1 + µ)σ
∑

k 6=j βkp
1−σ
k + βj(1 + µ)p1−σ

k

>
βjp
−σ
j b

(1 + µ)σ
∑

k βkp
1−σ
k

=
1

(1 + µ)σ
xj .

For Cobb-Douglas utility function is given by u(x) =
∏
j x

αj
j where

∑
j αj = 1, α ≥ 0, the

optimal bundle is xj =
bαj
pj

. Hence, increasing the price of a good by some factor leads to

the decrease in demand for that good by the same factor.

2.3 Auction algorithm for exchange markets

The algorithm (shown in Algorithm 1) uses the accuracy parameter 0 < ε < 0.25, and

returns a 4ε-approximate equilibrium. We initialize all prices pj = 1 and the prices will

only increase during the execution of the algorithm, in increments by a factor (1 + ε). This

initialization is enabled by Assumption 1 that guarantees the existence of market clearing

prices where all positive prices are ≥ 1.3

We maintain a price vector p called the market prices; the budget of agent i ∈ [n] is

bi = p>e(i) at the current prices. Further, every agent i ∈ [n] maintains individual prices

p(i) such that p ≤ p(i) ≤ (1 + ε)p. At any point of the algorithm, agent i owns a bundle c(i)

of the goods such that c(i) ≤ x(i) for some x(i) ∈ Di(p
(i), bi). For each good j an agent is

paying either the lower price pj or the higher price (1 + ε)pj . The price agent i has to pay

for good j is the higher price (1 + ε)pj if p(i)
j = (1 + ε)pj and the lower price pj otherwise.4

We consider the agents one-by-one. If an agent i has surplus money, they use the

subroutine FindNewPrices to update their prices p(i) and bundle x(i), by maintaining

3Even though there might be goods priced at 0 in an equilibrium, we can always find an ε-approximate
equilibrium where all prices are positive.

4Note that this is in contrast with [59] and the other previous auction algorithms where i may pay pj for
some amount of good j and (1 + ε)pj for another amount.
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Algorithm 1: Auction algorithm for exchange markets

Input: Demand systems Di, and the endowment vectors e(i), and ε ∈ (0, 0.25).
Output: A 4ε-approximate market equilibrium.

1 Initialization: for all i, j set pj ← 1, p(i)
j ← 1, c(i)

j ← 0, wj = ej =
∑

i e
(i)
j , and lj = 0

NewIt for i ∈ [n] do // recompute the budgets and surpluses

3 bi ← p>e(i); si ← bi −
∑

j∈Li c
(i)
j pj −

∑
j∈Hi c

(i)
j (1 + ε)pj

4 end
5 if

∑n
i=1 si ≤ 3εp>e then return p, {p(i)}i∈[n] and {c(i)}i∈[n]

NewStp for i ∈ [n] with si > 0 do // step for agent i
7 (p̃, y)← FindNewPrices(i, p(i), p, ε, c(i), bi)
8 for j = 1 to m do
9 if p(i)

j < (1 + ε)pj and p̃j = (1 + ε)pj then // Case 1

10 si ← si − c(i)
j · εpj ; lj ← lj − c(i)

j // i pays (1 + ε)pj instead of pj

11 Outbid(i, j, yj − c(i)
j )

12 else if p(i)
j = (1 + ε)pj and p̃j = (1 + ε)pj then // Case 2

13 Outbid(i, j, yj − c(i)
j )

14 end
// Skip the goods with p

(i)
j < (1 + ε)pj & p̃j < (1 + ε)pj. Case 3

15 end
16 p(i) ← p̃; flag← 0
17 for j ∈ [m] with wj + lj = 0 do
18 pj ← (1 + ε)pj ; lj = ej ; // price increase

19 foreach k ∈ [n] do p(k)
j ← (1 + ε)pj

20 flag← 1
21 end
22 if flag = 1 then Go To NewIt
23 end

x
(i)
j ≥ c

(i)
j — this latter requirement turns out to be the main challenge. They will then try

to purchase x(i)
j − c

(i)
j amount of good j in the Outbid procedure. They start by purchas-

ing any unsold amount of good at price pj . If they still need more, then they will outbid

other agents who have been paying the lower price pj for this good, by offering the higher

price (1 + ε)pj (if p(i)
j < (1 + ε)pj this does not happen). Once good j is sold only at the

higher price (1 + ε)pj , we increase the price of the good. If no price is increased, we move

to the next agent. Otherwise, we announce the new prices p and repeat. The algorithm

terminates once the total surplus of the agents drops below 3εp>e. At this point, we can

conclude that the current prices and allocations form a 4ε-approximate equilibrium.

We express the running time of the algorithm in terms of the running time TF of the

subroutine FindNewPrices, as well as the upper bound on the ratio pmax/pmin of the

largest and smallest nonzero prices at an ε-equilibrium. Such an upper bound may be
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Procedure Outbid(i, j, t)
// t is the amount of good j for which agent i wants to

outbid.
1 if wj > 0 then // a part of j is unsold
2 τ = min{wj, t}
3 wj ← wj − τ ; c(i)

j ← c
(i)
j + τ ; t← t− τ

4 si ← si − τ · (1 + ε)pj // here pj = 1 always
5 end
6 while t > 0 and lj > 0 do
7 Let k ∈ [n] be such that c(k)

j > 0 and p(k)
j = pj . Set τ = min{c(k)

j , t}
8 c

(k)
j ← c

(k)
j − τ ; c(i)

j ← c
(i)
j + τ // i outbids k

9 sk ← sk + τ · pj ; si ← si − τ · (1 + ε)pj ; lj ← lj − τ ; t← t− τ
10 end

obtained for specific demand systems.5 Alternatively, one can follow the approach of

the papers [30, 32] by adding a dummy agent with a Cobb-Douglas demand system and

an initial endowment of a small fraction of all goods. In the presence of such an agent,

we can obtain a strong bound on pmax/pmin, at the expense of obtaining a slightly worse

approximation guarantee. We describe the construction in Section 2.3.4.

Note that for (approximate-)equilibrium prices p, αp also gives (approximate-) equilib-

rium prices with the same allocation, for any α > 0. In our algorithm, the minimum price

will remain at most 1 + ε throughout, see Lemma 2.3.4.

Theorem 2.3.1. Let TF be an upper bound on the running time of the subroutine FindNew-

Prices. Algorithm 1 finds a 4ε-approximate market equilibrium in timeO
(
nmTF
ε2
· log

(
pmax

pmin

))
.

We assume that TF = Ω(m), since the output needs to return an m-dimensional vector

of goods. There are various options for implementing FindNewPrices. In Section 2.3.2

we present a simple price increment procedure for the case of bounded elasticities; recall

the elasticity bound f from Definition 2.2.1. Using this subroutine and Lemma 2.3.7, we

obtain the following overall bound.

Theorem 2.3.2. If all agents have elasticity at least −f for some f > 0, then an ε-approximate

equilibrium can be computed in time O
(
nm2f ·TD

ε2
· log

(
pmax

pmin

))
, where TD is the time needed for

one call to the demand oracle.

As noted earlier, there are simple demand systems such as linear demand systems

where the flexibility parameter cannot be bounded. However, in case the demand sys-

tem is given in the form (Max-utility) via a utility function that is homogeneous of de-

gree one, we can obtain an implementation of FindNewPrices by solving a convex pro-

5For demand systems given by an explicit utility function in the form (Max-utility), we give such a bound
for spending-restricted Fisher-equilibria in Section 3.1.2.
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gram. This is described in Section 2.3.3. In particular, this applies to for CES utilities with

σ > 1 and Cobb-Douglas utilities. One could find further possible ways for implementing

FindNewPrices for particular demand systems; for example, we give a simple direct

procedure for linear utilities in Lemma 2.3.8, and a procedure for budget-SPLC utilities in

Section 3.2.

We give an overview of the running times of the previous auction algorithms in Sec-

tion 2.3.5.

Invariants Let us now summarize the invariant properties maintained throughout the

algorithm. We say that a bundle y dominates the bundle x if x ≤ y.

(a) Each good is partitioned into three parts according to the price it is being sold at:

• amount wj is the unsold part of the good,

• amount lj is sold at the lower price pj , and

• amount hj is sold at the higher price (1 + ε)pj .

Moreover, wj + lj > 0 at the end of each step, i.e., after each agents’ turn there is

always a part of the good that is unsold or owned by an agent at the lower price.

(b) The unsold amount wj of each good is non-increasing. If wj > 0 then pj = 1.

(c) The budget of agent i is bi = p>e(i). Each agent i maintains prices p(i) such that

p ≤ p(i) ≤ (1 + ε)p, and owns a bundle c(i) that is dominated by a bundle x(i) ∈
Di(p

(i), bi).

(d) For the amount c(i)
j of good j, agent i pays

• price pj for goods in Li := {j ∈ [m] : p
(i)
j < (1 + ε)pj}, and

• the price (1 + ε)pj for goods in Hi := {j ∈ [m] : p
(i)
j = (1 + ε)pj} = [m] \ Li.

In accordance with (d), the surplus of agent i is defined as

si := bi −
∑
j∈Li

c
(i)
j pj −

∑
j∈Hi

c
(i)
j (1 + ε)pj .

We note that the surplus could be negative.

The Outbid subroutine An important subroutine, described in Procedure Outbid, con-

trols how the ownership of goods may change. If agent k has paid price pj on a certain

amount of good j, then agent i may take over some of this amount by offering a higher

price (1+ε)pj . Possibly i = k, in which case the agent outbids herself. We also incorporate

into the procedure the case when a certain amount of a good is being purchased for the

first time. Note that pj = 1 at this point due to invariant (b).
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Main iterations The algorithm is partitioned into iterations. Each iteration finishes when

the price of a good increases from pj to (1 + ε)pj . At every such event, the budgets bi of

the agents also increase. Therefore, at the start of an iteration each agent i recomputes

their budget at line NewIt. An iteration is further partitioned into steps, which are single

executions of the main for loop in Algorithm 1. The algorithm terminates as soon as the

total surplus drops below 3εp>e.

Steps Suppose we are considering agent i. By invariant (c), the agent is buying a bundle

c(i) ≤ x(i) for some x(i) ∈ Di(p
(i), bi). The subroutine FindNewPrices(i, p(i), p, ε, c(i), bi)

delivers new prices p̃ and a bundle y such that

(A) y ≥ c(i) and y ∈ Di(p̃, bi); in addition,

(B) p(i) ≤ p̃ ≤ (1 + ε)p, and p̃j = (1 + ε)pj whenever yj > (1 + ε) c
(i)
j .

In other words, Condition (A) says that agent i still wants whatever they own even at

the increased prices p̃. Condition (B) is the crucial one for the outbid. It guarantees that

p̃ ≥ p(i), and whenever an agent wants to buy more of some good than they already own

at least by a factor 1 + ε, then they are willing to pay the higher price (1 + ε)pj for it. (They

might already be paying the increased price to start with if p(i)
j = (1 + ε)pj . In this case

p̃j = (1 + ε)pj = p
(i)
j .) The description of this subroutine is postponed to Section 2.3.2.

Observe that FindNewPrices will make progress whenever c(i) is far from x(i) for some

agent i. When they are very close for each agent i, then we have already reached an

approximate equilibrium.

The above properties suggest the following update rules for each good j ∈ [m].

Case 1. p(i)
j < (1 + ε)pj and p̃j = (1 + ε)pj . The good j was in Li and needs to be moved

to Hi, i.e., agent i used to pay pj but now is willing to pay the higher price for j. Agent i

first outbids themselves for the amount c(i)
j they already own and starts paying pj(1 + ε)

for this amount. Additionally, agent i outbids on good j up to the amount they want and

that is available from the other agents.

Case 2. p(i)
j = (1 + ε)pj and p̃j = (1 + ε)pj . The good j was in Hi and stays in Hi, i.e., agent

i continues to pay the higher price. The agent i still keeps the amount c(i)
j of good j that

they already had and outbids for as much as they can from the other agents.

Case 3. p(i)
j < (1 + ε)pj and p̃j < (1 + ε)pj . The good j remains in Li, i.e., agent i continues

to pay the lower price. By (B), we must have c(i)
j ≤ yj ≤ (1 + ε)c

(i)
j ; the agent will not seek

to buy more of these goods.

The cases above have covered all possibilities since p(i)
j ≤ p̃j . Note that, at the end of the

step, in the first two cases the agent will own min(yj, lj + wj) amount of good j, whereas

they will own c(i)
j amount in the third case. Once all of the goods have been considered
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we set p(i) = p̃, x(i) = y, and update c(i) as the current allocation. If wj + lj = 0 for some j

then hj = ej , i.e., the whole j is sold at the higher price pj(1 + ε). For each such good j we

increase the market price pj to (1 + ε)pj , and for all agents k we set p(k)
j = pj for the new

increased pj ; finally, we set lj = ej and hj = 0. The step ends.

2.3.1 Analysis

For the correctness of the algorithm, we need to show that all invariants are maintained.

Lemma 2.3.3. If all agents have WGS demand systems, then the invariants (a)-(d) are maintained

throughout the algorithm.

Proof. (a) We always sell the goods at either price pj or at price (1 + ε)pj . Moreover, at

the end of the step if we have a good with wj + lj = 0, we increase its price and set

lj = ej and hence, wj + lj > 0 holds again at the end of a step.

(b) Once a part of some good is sold to some agent, it remains being sold to the agents

until the end of the algorithm. This is guaranteed by property (A) of the procedure

FindNewPrices, and the fact that c(i)
j may only decrease if another c(k)

j increases

by the same amount. Prices can be increased only for goods with wj + lj = 0.

Consequently, a good with wj > 0 must still be at the initial price pj = 1.

(c) Suppose these properties hold for every agent before a step of agent i. The require-

ments (A) and (B) guarantee that c(i) is dominated by a bundle x(i) ∈ Di(p
(i), bi) and

prices satisfy p ≤ p(i) ≤ (1 + ε)p, for each agent i.

Now, consider an agent k different from i. In the step, k could lose a part a good

through the outbid only and hence c(k) does not increase. As long as the prices p(k)

do not change, (c) holds trivially. The only time p(k) can change is the price increase

step, namely, if pj increases to (1 + ε)pj , it forces p(k)
j = (1 + ε)pj . Note that the price

increase only happens once lj = 0. Assume we had p(k)
j < (1 + ε)pj before the price

increase, that is, agent k was buying good j at the lower price pj . By lj = 0 and

invariant (d), it follows that c(k)
j = 0 at this point. The WGS property implies that

after increasing p(k)
j , the bundle c(k) will be still dominated by an optimal bundle.

To complete the proof of (c), it remains to show that it is maintained at the beginning

of the iteration, when the budgets are recomputed. Since the budgets may only

increase, this again follows by the WGS property.

(d) Straightforward to check for each case.

Lemma 2.3.4. The smallest price min{pj : j ∈ G} remains at most (1 + ε) throughout the

algorithm.
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Proof. As long as wj > 0 for at least one good j, then the minimum price is 1 according

to invariant (b). Assume that at a certain iteration, wj = 0 for all j ∈ G, and consider the

first iteration when this happens. This iteration may raise the minimum price to (1 + ε).

We will show that the algorithm must terminate in the next iteration in line 5.

Let s̄i be the excess resulting from charging the lower price pj for all goods (both in Hi

and Li). Clearly, s̄i ≥ si.

We claim that s̄i ≥ 0. In the subroutine FindNewPrices, we had c(i) ≤ y ∈ Di(p̃, bi)

and p ≤ p̃. Since the subroutine was last executed for i, prices may have increased. How-

ever, this can only increased bi, and a price pj may have increased to (1+ε)pj if we already

had p̃j = (1 + ε)pj .

Since all goods are fully sold by invariant (b),
∑

i∈A s̄i =
∑

i∈A bi − p>e = 0. Conse-

quently, s̄i = 0 and therefore si ≤ 0 for all i ∈ A.

Next, we give a bound on the total number of iterations, using the same basic idea of

organizing the steps into rounds as in [59]. A round consists of going over all agents exactly

once in the main ‘for’ loop and doing a step for each of them; that is, every round except

the last one comprises of exactly n steps.

Lemma 2.3.5. The number of rounds in an iteration is at most 2/ε.

Proof. We fix an iteration and let p denote the market prices at the start of the iteration.

Consider a step of an agent iwithin the iteration. If i buys the remaining available portion

of a good j, i buys everything that is available at the cheaper price pj , then the market

price of j increases and the iteration finishes. So for the rest of the proof we assume

that the market price increase does not happen; consequently, the budget of each agent is

unchanged and agent i gets the amount of each good it desires.

Let ϕ denote the total money spent at a certain point of this iteration that is spent by the

agents on higher price goods. That is,

ϕ = (1 + ε)
n∑
i=1

∑
j∈Hi

c
(i)
j pj.

Claim 2.3.6. Let si denote the surplus of agent i at the beginning of their step. Then the value of

ϕ increases at least by si − 2.25εbi during agents i’s step.

Proof of Claim. Recall Cases 1-3 in the description of the step. Let Tk be the set of goods

that fall into case k, that is, T1 ∪ T2 ∪ T3 = [m].

• If j ∈ T1, then (1 + ε)pjyj will be added to ϕ in the Outbid subroutine: In this case,

the agent also outbids itself, moving the good from Li to Hi.
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• If j ∈ T2, then (1 + ε)pj(yj − c(i)
j ) will be added to ϕ in the Outbid subroutine.

• If j ∈ T3, then we do not increase ϕ. Nevertheless, (B) guarantees that p̃j(yj− c(i)
j ) ≤

εp̃jc
(i)
j . Consequently, ∑

j∈T3

p̃j(yj − c(i)
j ) ≤ εp̃>c(i). (2.2)

Also note that p̃j = (1 + ε)pj if j ∈ T1∪T2. Assumption 2 on non-satiation guarantees that

p̃>y = bi. Let ∆ϕ denote the increment in ϕ; this can be lower bounded as

∆ϕ =
∑
j∈T1

p̃jyj +
∑
j∈T2

p̃j(yj − c(i)
j ) = p̃>y −

∑
j∈T3

p̃jyj −
∑
j∈T2

p̃jc
(i)
j

≥ bi −
∑
j∈T3

p̃j(yj − c(i)
j )− p̃>c(i) ≥ bi − (1 + ε)p̃>c(i) ,

using (2.2). The money spent by the agent at the beginning of the step is bi − si. Good

j is purchased at price at least pj according to (d), and p̃j ≤ (1 + ε)pj . Consequently,

p̃>c(i) ≤ (1 + ε)(bi − si). With the above inequality, we obtain

∆ϕ ≥ bi − (1 + ε)2(bi − si) ≥ si − (2ε+ ε2)(bi − si) ≥ si − 2.25εbi,

as ε < 0.25. This completes the proof. �

As long as
∑n

i=1 si > 3εp>e, the claim guarantees that ϕ increases in every round by at

least 3εp>e− 2.25ε
∑n

i=1 bi ≥ 0.75εp>e > 0.5εp>e. Since ϕ ≤ p>e, the number of rounds is

bounded by 2/ε.

Proof of Theorem 2.3.1. In their steps, agents use their surpluses to outbid for the goods. Let

us now bound the number of repeats in the ‘while’ loop (lines 6–9) in all calls to Outbid

in a given iteration. When the Outbid(i, j, t) is called, the ‘while’ loop is repeated until t is

set to 0 or lj is set to 0. If lj is set to zero then the iteration finishes; and hence, there is one

such event per iteration. Let us count the number of times ‘while’ loop is repeated until t

is set to 0. Before this happens, some c(k)
j value must be set to zero. The total number of

such zeroing events within a single iteration is bounded by nm — each agent loses a good

through the outbid at most once.

Hence, the number of ‘while’ loops is at most nm plus the total number of calls to

Outbid. This is at most m in each step, and thus nm in each round. According to

Lemma 2.3.5, the number of ‘while’ loops in every iteration is at most 2nm/ε; each re-

peat takes O(1) time. The same bound holds for the ’if’ calls in lines 1–4 in Outbid.

Every step calls the procedure FindNewPrices exactly once. Consequently, the cost

of an iteration is O(nm
ε

+ nTF
ε

) = O(nTF
ε

), using the assumption that TF = Ω(m). There-

fore, the time taken by FindNewPrices in an iteration is O(nTF/ε). By Lemma 2.3.4,
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Algorithm 2: FindNewPrices

Input: i, p(i), p, ε, c(i), f, bi.
Output: Prices p̃ and bundle y.

1 Initialization: p̃← p(i)

2 Obtain y ∈ Di(p̃, bi) from the demand oracle with y ≥ c(i)

3 while ∃j : p̃j < (1 + ε)pj and yj > (1 + ε)c
(i)
j do

4 p̃j ← min{(1 + ε)1/f p̃j, (1 + ε)pj}
5 Obtain y′ ∈ Di(p̃, bi) from the demand oracle such that y′k ≥ yk for k 6= j
6 y ← y′

7 end
8 return (p̃, y)

the minimum price is always at most 1 + ε throughout and therefore pmax equals pmax

pmin

or (1+ε)pmax

pmin
. Hence, the number of iterations is bounded by O(m log1+ε(pmax/pmin)) =

O(m
ε

log(pmax/pmin)). The claimed running time bound follows, using also the assump-

tion TF = Ω(m).

It is left to show that the prices p and bundles c(i) form a 4ε-approximate market equi-

librium. The first two properties in the definition are clear: c(i) is dominated by an optimal

bundle with respect to the prices p(i), and no good is oversold. At termination, the total

surplus of the agents is bounded by 3εp>e. However, this surplus is computed assum-

ing that some goods are sold at price pj and others at price (1 + ε)pj . Decreasing the

price of the latter goods to pj releases an additional excess of at most εp>e. Consequently,∑m
j=1 pj(e−

∑n
i=1 c

(i)
j ) ≤ 4εp>e.

2.3.2 Implementing FindNewPrices for bounded elasticities

We now describe the subroutine FindNewPrices(i, p(i), p, ε, c(i), bi). Recall that the out-

puts are new prices p̃ ≥ p(i) and a bundle y with

(A) y ≥ c(i) and y ∈ Di(p̃, bi); in addition

(B) p(i) ≤ p̃ ≤ (1 + ε)p, and p̃j = (1 + ε)pj whenever yj > (1 + ε) c
(i)
j .

Let us assume that the demand system Di has elasticity at least −f for some f > 0.

Our Algorithm 2 for this case is a simple price increment procedure. First, we obtain

y ∈ Di(p
(i), bi) from the demand oracle with y ≥ c(i). This is possible due to invariant (c),

which guarantees that c(i) ≤ x(i) for some x(i) ≤ Di(p
(i), bi). Then, the demand oracle is

able to return a bundle y such that y ≥ x(i) ≥ c(i). Then, we iterate the following step.

As long as (B) is violated for a good j, we increase its price by a factor (1 + ε)1/f until it

reaches the upper bound (1 + ε)pj .
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Lemma 2.3.7. Assume the demand system Di has elasticity at least −f for some f > 0. Algo-

rithm 2 terminates with p̃ and y satisfying (A) and (B) in time O(mf · TD), where TD is the time

for a call to the demand oracle.

We will assume that TD = Ω(m), since the demand oracle needs to output an m-

dimensional vector.

Proof. The bound on the number of iterations is clear: since we have p ≤ p̃ ≤ (1 + ε)p

throughout, the price of every good can increase at most f times. Condition (A) is satisfied

due to the WGS property and the bound on the demand elasticity. When increasing p̃j ,

the demand yk for k 6= j is non-decreasing as guaranteed by the demand oracle. Further,

yj may decrease only by a factor (1 + ε), and since we had yj > (1 + ε)c
(i)
j before the

price update, we still have yj > c
(i)
j after the price update. Condition (B) is satisfied at

termination since the while loop keeps running as long as it is violated. Checking the

while condition each time requires O(m) time; however, this will be dominated by the

time TD according to the comment on TD ≥ m above.

As explained in Section 2.3, this is only one of the possible ways of implementing Find-

NewPrices. Section 2.3.3 presents a convex programming approach for utilities that are

homogeneous of degree 1. For example, for CES with parameter σ > 1, the running

time of Algorithm 2 depends linearly on σ (Lemma 2.2.2), whereas the running time in

Section 2.3.3 is independent on this parameter. Nevertheless, for small values of σ the

simple price increment procedure may be preferable to solving a convex program.

Further, more direct approaches for implementing FindNewPrices may be possible

for particular demand systems. For Cobb-Douglas demands with parameter vector α(i),

it is easy to devise an O(m) time algorithm implementing the procedure. The algorithm

relies on the fact that the optimal bundle is the bundle that allocates α(i)
j bi money for good

j. Hence, each price can be set independently of the others. The next lemma shows an

implementation of FindNewPrices for linear utilities; recall from Section 2.2 that the

elasticity is unbounded in this case.

Lemma 2.3.8. FindNewPrices can be implemented in O(m) for a linear demand system cor-

responding to the utility function u(x) = v>x.

Proof. Recall that for linear utilities y ∈ Di(p̃, b) yj > 0 if and only if j ∈ arg maxk vk/pk,

called maximum bang-per-buck goods (MBB). We initialize p̃ = p(i), and let S ⊆ [m]

denote the set of MBB goods. We start increasing the prices of all goods j ∈ S at the

same rate α. Once a good outside S becomes MBB, we include it in the set S and also

start raising its price. We terminate when the budget is exhausted or when the price p̃k
for a good k ∈ S reaches the upper bound (1 + ε)pk. In the latter case, we return the

bundle yj = c
(i)
j if j 6= k, and set yk = (bi −

∑
j 6=k p̃jcj)/p̃k; clearly, yk ≥ c

(i)
k . These
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prices and allocations satisfy (A) and (B); in fact, we obtain (B) in the stronger form that

p̃j = (1 + ε)pj whenever yj > c
(i)
j . We need to add a good to S at most m times, and thus

we can implement the procedure in O(m) time.

2.3.3 Implementing FindNewPrices for Gale demand systems

We now show that the subroutine FindNewPrices can be implemented for Gale demand

systems via convex programming. As previously noted, this result is also applicable for

demand systems given in the form (Max-utility) for utility functions that are homoge-

neous of degree one, for which the optimal solutions to (Max-utility) and (2.1) coincide.

Let u : Rm+ → R+ be a monotone concave differentiable function. Let us further assume

that u is strictly concave, and therefore we have unique demands: |Gu(p, b)| = 1 for all

(p, b) ∈ Rm+ .

We show that a stronger version of the subroutine can be implemented, replacing the

condition yj > (1 + ε)cj by yj > cj in (B). We formulate the problem in a slightly more

general form where the vector of higher prices (1 + ε)p is replaced by an arbitrary price

vector q.

Let p, q, c ∈ Rm+ and x ∈ Gu(p, b) such that p ≤ q and c ≤ x. The goal is to find p̃ and y

such that

(A’) y ≥ c where y ∈ Gu(p̃, b), and

(B’) p ≤ p̃ ≤ q and p̃j = qj whenever yj > cj .

The following convex program captures the idea that an agent is allowed to buy a good

j at two prices: amount y′j at price pj and amount y′′j at price qj . Moreover, the amount cj
of good j is offered at price pj and for the rest an agent pays the higher price qj .6

max b lnu(y)− p>y′ − q>y′′

y = y′ + y′′

y′ ≤ c

y′, y′′ ≥ 0 .

(2.3)

We show that the optimal solution to this program, along with the prices obtained from

the KKT conditions satisfy the requirements.

Since all constraints are linear, strong duality holds. Let y∗ = y′ + y′′ be an optimal

solution of (2.3). Then, by the KKT conditions, there exists α ∈ Rm+ such that for any

j ∈ [m],

6Trivially, if pj < qj and y′ < cj then y′′j = 0 in any optimal solution. For the goods where pj = qj we
assume that y′j < cj implies y′′j = 0, i.e., we always give priority to y′j .
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(i) b · ∂ju(y∗)
u(y∗)

≤ min{αj + pj, qj},

(ii) b · ∂ju(y∗)
u(y∗)

= αj + pj whenever y′j > 0,

(iii) b · ∂ju(y∗)
u(y∗)

= qj whenever y′′j > 0, and

(iv) y′j = cj whenever αj > 0.

Let us define p̃j := αj + pj .

Lemma 2.3.9. The allocations y∗ and prices p̃ satisfy (A’) and (B’).

Proof. Since all constraints are linear, strong duality holds for (2.1) as well as for (2.3). Let

us start with (B’). First note that (ii) implies that p̃j = qj whenever y∗j > cj . Moreover,

from (i), (ii), and (iv) it follows that p̃j ≤ qj .

For (A’), let us start by showing y∗ ∈ Gu(p̃, b). By the KKT conditions this is equivalent

to that b∂ju(y∗)
u(y∗)

≤ p̃j and equality holds whenever y∗j > 0. This is immediate from (i), (ii),

and the definition of p̃j .

It remains to show that y∗ ≥ c. We prove by contradiction: assume that y∗j < cj for a

good j. This implies y′′j = 0 and αj = 0 by the optimality conditions, yielding p̃j = pj .

By the strict concavity assumption, y∗ is the unique optimal bundle in Gu(p̃, b). Using the

WGS property for (p, b) and (p̃, b) we have y∗j ≥ xj since pj = p̃j . We obtain a contradiction

to y∗j < cj ≤ xj .

2.3.4 Adding a dummy agent to bound the prices

Recall that our bounds on the running time of the auction algorithm depend on the ratio

of the maximum price and minimum price at the termination, i.e., at an ε-approximate

equilibrium. A convenient way of bounding this ratio is to work with a slightly modified

market. We can use the same idea as [32, 30]. Given an exchange market M with agents

A and goods G, we transform it to another market M̂ with n + 1 agents as follows. Let

η ≤ 1 be a parameter such that η
1+η

> ε(1 + ε)m (and ε(1 + ε)m ≤ 1/2). For i ∈ A we keep

the same demand systems Di and the same initial endowments e(i). The market M̂ has an

extra agent n+ 1 with initial endowment e(n+1) = ηe and whose demand bundle is given

via Cobb-Douglas utility function
(∏

j x
(n+1)
j

)1/m

. Agent n + 1 spends exactly 1
m

of the

budget on any good j since its unique demand bundle x(n+1) is given by x(n+1)
j =

ηp>e

mpj
.

The lemma below shows that adding such an agent can be used to bound pmax

pmin
, at the

expense of working on an modified market.

Lemma 2.3.10. (i) For an ε-equilibrium of M̂ , formed by prices p and bundles x(i) we have
pmax

pmin

≤ (1 + ε)m

η − εm(1 + ε)(1 + η)
· emax

emin

, where emax = maxj ej and emin = minj ej .



Husić E. Nash Welfare, Valauted Matroids, and Gross Substitutes.
2.3. AUCTION ALGORITHM FOR EXCHANGE MARKETS 43

(ii) An ε-equilibrium in M̂ gives an ε(1 + η)-equilibrium in M .

Proof. Consider an ε-equilibrium in M̂ formed by p and bundles x(i). By definition, there

exists z(n+1) ∈ Dn+1

(
p(n+1), ηp>e

)
such that x(n+1) ≤ z(n+1) and p ≤ p(n+1) ≤ (1 + ε)p.

We have z(n+1)
j = ηp>e

mp
(n+1)
j

, and therefore, pjz
(n+1)
j ≥ η

(1+ε)m
p>e. On the other hand, from

the third condition of the definition of ε-equilibrium it follows that pj(z
(n+1)
j − x(n+1)

j ) ≤
εp>e(1 + η). Hence, pjx

(n+1)
j ≥

(
η

(1+ε)m
− ε(1 + η)

)
p>e for all j. In particular, x(n+1)

j ≥(
η

(1+ε)m
− ε(1 + η)

)
pmaxemin

pj
for all j. Since x(n+1)

j ≤ ej ≤ emax in an ε-equilibrium, we

have
pmax

pmin

≤
(

η

(1 + ε)m
− ε(1 + η)

)−1 emax

emin

.

The second part of the lemma follows easily from the definition of an approximate equi-

librium.

2.3.5 Running times of existing auction algorithms

We conclude this chapter by reviewing the running time bounds given in previous auction

algorithms and comparing them to our bounds.

Linear utility functions The paper [59] includes two algorithms. The running time

of the first algorithm is O

(
nm

ε2
log

pmax1
>e

εemin

log pmax

)
, and for the second one it is

O
(nm
ε

(n+m) log pmax

)
. The running time in Theorem 2.3.1, with the bound TF = O(m)

for linear utilities from Lemma 2.3.8, gives an additional factor (m + n) bound, while

removing the first log factor (or term). We note that we are using a weaker notion of

equilibrium in our result. The additional factor is due to our global update step: due to

the more general, nonseparable nature of our framework, we consider all goods when

updating an agent, while [59] considers only one good for an update.

The paper also gives the price bound pmax ≤ (1 + ε)vmax

vmin
(assuming the algorithm is

initialized with all prices equal to 1) where vmax = maxi,j vi,j and vmin = mini,j vi,j are the

highest utility and the lowest utility and agent has for a good, as well as a more general

bound for the case when vmin = 0 is possible. These bounds are comparable to our bounds

in Section 3.1.2 for SR-equilibria.

Separable WGS In [62], the running time bound is presented only for the Fisher market

case, given asO
(
nm

ε
log

1

ε
log

vvmax1
>b

bminvmin

logm

)
. Here, vmax and vmin are upper and lower

bounds on the slopes of the functions (analogous to those we define in (3.1)), bmin is the

smallest budget, and v is the total utility an agent would get from owning the full amount
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of all goods. It is mentioned that the result could be extended to exchange markets, simi-

larly to [59], but no details or running time estimation are provided.

Uniformly separable WGS The paper [61], gives essentially the same bound as above;

the analysis is limited and mainly refers to [62]. A problematic issue is that the main

motivation for the paper is to give bounds on CES and Cobb-Douglas utilities, but vmax =

∞ for these particular utilities.



3 Auction algorithm, spending restricted

equilibrium, and Nash social welfare

We show how to modify the auction algorithm given in Chapter 2 for finding a spend-

ing restricted (SR) equilibrium in Fisher markets when agents have weak gross substi-

tute (WGS) demands. Recall the definition of an SR-equilibrium: For agents A with de-

mand systems Di(p, bi) and fixed budgets bi ∈ R+ for all i ∈ A, we say that the prices

p ∈ Rm and allocations x(i) ∈ Di(p, bi) form a Spending Restricted (SR) equilibrium, if∑
i∈A x

(i)
j = min{1, 1/pj} for all j ∈ [m].

The modified algorithm is given in Section 3.1. As an application, we then give a

polynomial-time constant-factor approximation algorithm for the symmetric Nash social

welfare (NSW) under budget separable piecewise-linear concave (budget-SPLC) valua-

tions (Section 3.2).

3.1 Auction algorithm for spending restricted equilibrium

We present a modification of Algorithm 1 for finding an approximate SR-equilibrium in a

Fisher market where each agent satisfies the WGS property.

We allow for a more general notion of SR-equilibrium, where we can restrict the amount

of money spend on good j to be any positive number tj ∈ [0,∞] and not just one. Note

that in case of SR-equilibrium we require that the available amount of each good is fully

sold as opposed to the approximate equilibrium in exchange markets.

Definition 3.1.1 (Approximate SR-equilibrium). Let t ∈ [1,∞]m. For an ε > 0, the prices

p ∈ Rm and bundles x(i) ∈ Rm+ form an ε-approximate SR-equilibrium w.r.t. t if

(i) x(i) ≤ z(i) for some z(i) ∈ Di(p
(i), bi), where p ≤ p(i) ≤ (1 + ε)p,

(ii)
∑n

i=1 x
(i)
j = aj := min{1, tj/pj} for all j, and

(iii)
∑m

j=1 pj
(∑n

i=1 z
(i)
j − aj

)
≤ ε

∑n
i=1 bi.

Changes to the algorithm To adopt the auction algorithm for the SR-equilibrium in

Fisher markets we make four changes. First, the budgets bi are constant throughout the

45
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algorithm and are part of the input. As such, they do not depend on the prices of goods

in the market. Second, we need to account for the fact that in an SR-equilibrium exactly

min{1, tj/pj} of a good is sold. Third, the initialization must be changed since the prices

cannot be scaled up as for exchange markets: we cannot assume that there exists an SR-

equilibrium with pj ≥ 1 for all j. Fourth, we do not make Assumption 2 on non-satiation.

We only use the following weaker assumption, namely that after the prices increase, the

spending of every agent is non-decreasing.

Assumption 3. Let (p, b) ∈ Rm+1 and x ∈ D(p, b). If q ≥ p and y ∈ D(q, b), then q>y ≥ p>x.

For Gale demand systems arising in the NSW problem with budget-additive valuations

(as in [52]), Assumption 2 does not hold, whereas this weaker assumption is true. The

same is trivially true for the budget-SPLC valuations we study in Section 3.2.

We use exactly the same variables as before, except that w is not used; we will have

w = 0 throughout, i.e., all goods remain fully sold. We change the invariants (a) and (b)

slightly. The invariants (c) and (d) remain the same.

(a) The available amount aj of each good is partitioned into two parts according to the

price it is being sold at:

• amount lj is sold at the lower price pj , and

• amount hj is sold at the higher price (1 + ε)pj .

Moreover, lj > 0 at the end of every step, i.e., after every step there is always a part

of the good owned by an agent at the lower price. It holds lj + hj = aj .

(b) The amount of each good j being sold is exactly aj = min{1, tj/pj}.

Recall the definition of the surplus si = bi −
∑

j∈Li c
(i)
j pj −

∑
j∈Hi c

(i)
j (1 + ε)pj . In the

modified algorithm, we will use the relative surplus sri instead, defined as

sri := p(i)>x(i) −
∑
j∈Li

c
(i)
j pj −

∑
j∈Hi

c
(i)
j (1 + ε)pj .

This is the difference between the money the agent would like to spend and what they are

actually spending (in accordance with (c) and (d)). Under Assumption 2, sri = si holds;

we need to make the distinction since we do not assume non-satiation.

Initialization In the case of exchange markets, we used Assumption 1 to state that ap-

proximate equilibrium prices ≥ 1 exist, and then we were able to initialize the algorithm

by setting all prices to 1. This is not viable for Fisher markets, where even the total budget

might be smaller thanm. Instead, we assume that we are given some initial, small enough

prices p̄ < t and optimal bundles x(i) ∈ Di(p̄, bi) such that
∑n

i=1 x
(i) ≥ 1. A simple way to
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achieve this is to have a single agent that overdemands all the goods, i.e., there is i ∈ [n]

and p̄ < t such that x(i) ≥ 1 for x(i) ∈ Di(p̄, bi). Such an initialization would need to be

given for the particular demands.

Given such prices and allocations, we initialize p(i) = p̄ for all i, and set all c(i)’s such

that c(i) ≤ x(i) and
∑

i c
(i) = 1. One can readily check that all invariants are satisfied after

the initialization. In particular, lj = 1, hj = 0 for all j ∈ [m].

Changes to the algorithm In procedure Outbid, lines 1-4 are redundant as wj = 0 for all

j. In the main part of the algorithm, one needs to make the following changes besides the

initialization.

• Every occurrence of si is replaced by sri .

• We do not need to recompute the budgets and surpluses at line NewIt.

• We need to add a new line between lines 18-19. The new line decreases the amount

of good sold to exactly min{1, tj/pj} by decreasing c(i)
j for all agents i proportionally

to the values c(i)
j . This will decrease the amount of goods sold whenever pj > tj .

Remark 3.1.2. A simple alternative initialization is to set the price of good j as pj =

min{ ε
m

∑
i bi, tj}, and start with allocations c(i) = 0. The drawback is that we would obtain a

slightly weaker equilibrium at termination. Part (ii) of Definition 3.1.1 requires that all goods are

fully sold; we would need to weaken this property to saying that the total price of all unsold goods

would be ≤ ε
∑

i bi. Below, we describe the analysis for the case where initially all goods are fully

sold, but it can be easily adapted to this version.

3.1.1 Analysis

As previously mentioned, an (ε-)SR equilibrium may not exist at all. In such cases, our

algorithm will never terminate, increasing the prices unlimitedly. We give the running

time in terms of the ratio pSRmax/pmin. Here, pmin = minj p̄j , the smallest one among the

initial prices, and pSRmax is an upper bound on the prices in the algorithm; note that we

may have pSRmax = ∞. In Section 3.1.2, we give a bound in terms of the maximum and

minimum values of the partial derivatives of the utility function.

Theorem 3.1.3. Let TF be an upper bound on the running time of the subroutine FindNew-

Prices. Then there exists an auction algorithm that finds a 4ε-approximate SR equilibrium in

time

O

(
nmTF
ε2

log

(
pSRmax

pmin

))
.

Lemma 3.1.4. If all agents have WGS demand systems, then the invariants (a)-(d) are maintained

throughout the algorithm.
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Proof. The justification for invariants (c) and (d) is similar to the one given in the proof of

Lemma 2.3.3. We only present the proofs of (a) and (b) which need some small modifica-

tions.

(a) For each case it is clear that every good is being sold at either pj or (1 + ε)pj . Using the

invariant (b) it is also clear that exactly aj of good j is sold. Moreover, at the end of

the step if we have a good with lj = 0 we increase its price at line 18 and set lj = aj .

Hence lj > 0 is also satisfied.

(b) We need to show that exactly aj = max{1, tj/pj} of good j is sold at any point. Sup-

pose that the invariant holds at the beginning of a step. After the for loop, the in-

variant is still satisfied since the outbid only changes the owner of the good. The

invariant could be violated only at line 18 when we increase the price at the end of

the step. Trivially, if the price increases to pj and pj ≤ tj the invariant remains valid.

So, we only need to deal with the case when the price of good j increases to pj and

pj > tj . Then, in the new line we added between 18 and 19, we will immediately

take away some of good j from the agents to restore the invariant.

The bound on the number of rounds within an iteration is exactly the same as for Al-

gorithm 1, while the proof differs slightly due to using Assumption 3 instead of Assump-

tion 2.

Lemma 3.1.5. The number of rounds in an iteration is at most 2/ε.

Proof. The only change arises at the end of the proof of Claim 2.3.6. We state the new claim

and show how the end of the proof changes.

Claim 3.1.6. Let sri denote the relative surplus of agent i at the beginning of their step. Then the

value of ϕ increases by at least sri − 2.25εbi during agent i’s step.

Let ∆ϕ denote the increment in ϕ; this can be lower bounded as

∆ϕ =
∑
j∈T1

p̃jyj +
∑
j∈T2

p̃j(yj − c(i)
j ) = p̃>y −

∑
j∈T3

p̃jyj −
∑
j∈T2

p̃jc
(i)
j

≥ p̃>y −
∑
j∈T3

p̃j(yj − c(i)
j )− p̃>c(i) ≥ p̃>y − (1 + ε)p̃>c(i) ,

using (2.2). The money spent by the agent at the beginning of the step is p(i)>x(i) − sri .

Good j is purchased at price at least pj according to (d), and p̃j ≤ (1 + ε)pj . Consequently,

p̃>c(i) ≤ (1 + ε)(p(i)>x(i) − sri ). Assumption 3 yields p̃>y ≥ p(i)>x(i). Therefore, using

ε < 0.25, we obtain

∆ϕ ≥ p̃>y−(1+ε)2(p(i)>x(i)−sri ) ≥ sri+p̃
>y−(1+ε)2p(i)>x(i) ≥ sri−2.25εp̃>y ≥ sri−2.25εbi ,
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The claim follows.

Proof of Theorem 3.1.3. The running times follows similarly as in the proof of Theorem 2.3.1.

All that remain is to show that the prices p and bundles c(i) form a 4ε-approximate SR equi-

librium. The first two properties in the definition are clear: c(i) is dominated by an optimal

bundle x(i) with respect to the prices p(i), and exactly aj = min{1, tj/pj} of each good j

is sold. At termination, the total relative surplus of the agents is bounded by 3ε
∑

i bi.

Moreover,

n∑
i=1

sri =
n∑
i=1

p(i)>x(i) −
n∑
i=1

∑
j∈Li

c
(i)
j pj +

∑
j∈Hi

c
(i)
j (1 + ε)pj


≥

∑
p>x(i) − (1 + ε)

n∑
i=1

p>c(i) ≥ −ε
n∑
i=1

bi +
m∑
j=1

pj

(
n∑
i=1

x(i) − aj

)
.

Therefore,
∑m

j=1 pj(
∑n

i=1 x
(i)
j − aj) ≤ 4ε

∑
i bi.

3.1.2 Conditions on the existence of SR-equilibria

We now present a general bound on the value of pSRmax. Suppose that the demand sys-

tem of each agent i is provided in terms of a monotone concave and differentiable utility

function ui in the form (Max-utility). We now assume that each ui is differentiable. The ar-

guments here can be easily adopted for the non-differentiable case by using subgradients.

We let

D :=
maxi bi
pmin

, vimax := max
j
∂jui(0), vimin := min

j
{∂jui(D · 1) : ∂jui(0) > 0},

Vmax := max
i

vimax

vimin

,

tmax := max
j
tj.

(3.1)

Note that if ∂jui(0) = 0, then agent i is not interested in good j at all. In case ∂jui(0) > 0

we say that agent i is interested in good j. Note that D is an upper bound on the amount

of any single good that any agent could buy during the algorithm.

We note that tmax =∞ could be possible. However, we can truncate the value of every

tj to min{tj,
∑

i bi} without changing the problem, since the total spending is at most the

total budget; the price of a good can never rise above this value in the algorithm or in an

SR-equilibrium. Thus, we may assume tmax ≤
∑

i bi in the bounds below.

A necessary condition on the existence of SR-equilibria The condition
∑

i bi ≤
∑

j tj is

necessary for the existence of an SR-equilibrium, since
∑

j tj is the total amount of money
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that can be spent on the goods. One can formulate an extension of this, that amounts

to Hall’s condition in a certain graph. Let (A ∪ G,E) denote the bipartite graph where

the two classes A and G represent the agents and goods, respectively. We add an edge

(i, j) ∈ E if ∂jui(0) > 0, that is, if agent i is interested in good j. For a subset S ⊆ A, we

let Γ(S) ⊆ G denote the set of neighbors in this graph. Then, Hall’s condition, that is,

∑
i∈S

bi ≤
∑
j∈Γ(S)

tj, ∀S ⊆ A (3.2)

is a necessary condition on the existence of an SR-equilibrium. Note however that this

condition is not sufficient: it holds for the example of Cobb-Douglas utilities, where no

SR-equilibrium exists, as explained after Definition 3.1.1.

Upper bounds on the prices We now give a bound on pSRmax in terms of Vmax and tmax.

We first consider the case when every agent is interested in every good. In this case, (3.2)

reduces to the case when S contains every good. Note that the bounds are finite only if

vimin > 0, and vimax is finite. For the Cobb-Douglas utilities, vimax =∞.

Lemma 3.1.7. Assume the demand systems of the agents are given in form (Max-utility) for

monotone concave and differentiable utility functions ui.

(i) Suppose that every agent is interested in every good, that is, ∂jui(0) > 0 for every agent

i and every good j. Assume that
∑

i bi ≤
∑

j tj . Then, the prices throughout the auction

algorithm remain bounded by (1 + ε)2tmaxVmax.

(ii) Assume condition (3.2) holds with strict inequality for all S ⊆ B. Then, the prices through-

out the auction algorithm remain bounded by (1 + ε)ntmaxV
n−1

max .

The same bounds are valid for any ε-SR equilibrium.

Proof. Let us first consider (i). Let p denote the market prices at a certain point of the

algorithm, or at an ε-SR equilibrium, and let pSRmin be the minimal price among those.

Observe that this might be different from pmin, since pmin is the minimal price at initializa-

tion. Let ` be a good with p` = pSRmin.

We use the KKT conditions of convex program (Max-utility). We let β(i) denote the

Lagrange multiplier of the budget constraint for agent i. Then, ∂jui(x(i)) ≤ β(i)p
(i)
j for all

goods j; and equality holds whenever x(i)
j > 0. Recall that each good j is owned by some

agent during the algorithm as well as in an ε-SR-equilibrium.

Consider a good j, and let k be an agent buying j, i.e., c(k)
j > 0 and therefore x(k)

j >

0. By the above, p(k)
j /p

(k)
` ≤ ∂juk(x

(k))/∂`uk(x
(k)). The assumption that every agent is

interested in every good means that vimin = minj ∂jui(D · 1). Since x(`) ≤ D · 1, concavity

implies ∂`uk(x(k)) ≥ vimin. We also get ∂juk(x(k)) ≤ vkmax. Consequently, p(k)
j /p

(k)
l ≤
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vkmax/vkmin ≤ Vmax. Finally, since p ≤ p(k) ≤ (1 + ε)p we have pj ≤ (1 + ε)pSRminVmax for

any good j.

The proof is complete by showing that pSRmin ≤ (1 + ε)tmax. To prove this, we first

show that once p ≥ t, the algorithm terminates. Indeed, if p ≥ t, then the agents spend∑
j tj in total, since the amount aj = min{1, tj/pj} is always fully sold. The condition∑
i bi ≤

∑
j tj shows that agents cannot have any surplus at this point. Thus, once the

lowest price rises above tmax, the algorithm terminates. Since the prices increase in steps

of (1 + ε), we get that pSRmin ≤ (1 + ε)tmax.

Let us now consider part (ii). We take the bipartite graph (A∪G,E), and on the same set

of nodes we define a directed graph as follows. We orient all edges in E from A to G, and

also add the arc (j, i) whenever x(i)
j > 0. Fix any good j, and let S be the set of agents in A

reachable from j in this directed graph. Note that the set of goods reachable from j will be

precisely Γ(S). Let ` ∈ Γ(S) be the good with the lowest price p`. As above, we can show

that p` ≤ (1 + ε)tmax, since p ≥ t is not possible. Indeed, once p ≥ t, then all the available

amounts of goods in Γ(S) are fully sold, and their total value is
∑

j∈Γ(S) tj >
∑

i∈S bi by

the assumption. By the definition of S, no agent outside S pays for goods in Γ(S), leading

to a contradiction.

The directed graph contains a path of length≤ 2(n− 1) from pj to p`. As in the proof of

part (i), one can argue that for any two consecutive goods j′ and j′′ on this path, pj′/pj′′ ≤
(1 + ε)Vmax. This implies the bound.

Bounding the prices for Gale demand systems Consider now the demand system

Gui(p, bi) defined from a monotone concave utility function by (2.1). An important dif-

ference is that agent i may not exhaust their full budget bi; however, the concavity im-

plies that they will never spend more than bi in the optimal bundle. Consequently, even∑
i bi ≤

∑
j tj is not a necessary condition for the existence of an equilibrium.

Still, we can obtain the same bounds as in Lemma 3.1.7 on the prices. The proof is iden-

tical, noting that the KKT conditions for (2.1) also imply p(k)
j /p

(k)
` ≤ ∂juk(x

(k))/∂`uk(x
(k))

if x(k)
j > 0, and the fact that agent i spends at most bi in their optimal bundle.

Lemma 3.1.8. Assume every agent has a Gale demand system (2.1) for monotone concave and

differentiable utility functions ui.

(i) Suppose that every agent is interested in every good, that is, ∂jui(0) > 0 for every agent

i and every good j. Assume that
∑

i bi ≤
∑

j tj . Then, the prices throughout the auction

algorithm remain bounded by (1 + ε)2tmaxVmax.

(ii) Assume condition (3.2) holds with strict inequality for all S ⊆ B. Then, the prices through-

out the auction algorithm remain bounded by (1 + ε)ntmaxV
n−1

max .

The same bounds are valid for any ε-SR equilibrium.
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dij1 dij2 = 6 dij3 = 16

Dj = 24

uij1

uij2

uij3

xij

kij = 3

Figure 3.1: Agent i’s utility for good j.

3.2 Approximating Nash social welfare under budget-SPLC

valuations

As an application of the spending restricted auction algorithm in Section 3.1, we give

a polynomial-time (2e1/2e + ε) ≈ 2.404-approximation algorithm for the NSW problem

under budget-separable piecewise linear concave (SPLC) valuations—the common gen-

eralization of the models in [2] and [53]. We consider an instance of the NSW problem

with n agents and m items, in which we have Dj units (copies) of item j. Each agent i has

a budget-SPLC valuation function defined as follows (see Figure 3.1). For every good j,

agent i has kij segments with strictly decreasing utility rates uij1 > uij2 > . . . > uijkij ≥ 0.

Segment t ∈ [kij] has length dijt and agent i values at uijt each of the units in the segment.

We assume that
∑

t∈[kij ]
dijt = Dj . Furthermore, agent i’s value is capped at Ui, i.e., their

value for a subset of items is the minimum of Ui and the sum of the values accumulated

from the items.

Chaudhury et al. [24] gave a e1/(1+ε)e ≈ 1.45-approximation algorithm for the problem,

while Anari et al. [2] studied the problem with SPLC utilities (Ui = ∞) and gave a 2-

approximation algorithm. The running times of these algorithms depend linearly on M ,

where M =
∑

j∈[m] Dj . In other words, [2] and [24] use segments of length 1. Therefore,

when multiple copies of a good have the same utility rate, their algorithms run in pseu-

dopolynomial time. Using the auction algorithm, we give an approximation algorithm

running in polynomial time: the valuation function is specified by the utility rate and the

length of a segment rather than dijt segments of length one with the same value. The

approach consists of three parts:

• Finding an SR-equilibrium for the instance of Fisher market arising as a relaxation

of the NSW problem. The natural relaxation of the NSW problem uses the SR-
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equilibrium with respect to the Gale demand system, where each agent has budget

1. We use the auction algorithm to find such an approximate SR-equilibrium (x, p).

It is worth pointing out that this is the main reason why we obtain a better running

time guarantee than the existing approaches.

• Upper bound on the optimal value of the NSW in terms of prices p.

• Rounding the allocation x.

The last two rely on the ideas originally given by Cole and Gkatzelis [35] and extended

in [2, 53]. More precisely, for the upper bound we follow [2] and we explain how the

rounding reduces to the case of budget-additive linear utilities [53]. For the sake of sim-

plicity, we present an upper bound and the rounding for an exact SR-equilibrium similar

to the one in [53]. The modification to an approximate SR-equilibrium is straightforward.

For the upper bound and rounding we make the assumption that uijt ≤ Ui, as we could

redefine the values to uijt ← min{uijt, Ui} without changing the objective value of the

feasible allocations for the NSW instance.

Gale demand and NSW The demand systems of the market models in [2, 53] do not

exactly correspond to (Max-utility). In [53] one needs additional conditions on the agents

being “thrifty”; in [2] a “utility market model” is used. In both cases, the total spending

of the agents can be below their budgets, i.e., they violate the non-satiation assumption.

A natural unified way of capturing these equilibrium concepts is via Finding a spending-

restricted equilibrium for Gale demand systems appears to be the right setting for NSW; in

fact, the concepts used by [2] and [53] correspond to the Gale equilibrium in these settings,

and moreover, these Gale demand systems admit the WGS property, see Section 3.2. On

contrary, the demand systems arising from the previously mentioned utility functions do

not satisfy the WGS property in the usual setting (Max-utility).

3.2.1 SR equilibrium under Gale demand systems of a budget-SPLC

We now consider the Gale demand system for budget-SPLC. We first show that the cor-

responding demand system is WGS—thus we can use the auction algorithm; and then

we give an implementation of the FindNewPrices subroutine for this demand system.

Note that the convex programming approach does not immediately apply, since the util-

ity function is not differentiable, and the optimal bundle is not unique. Instead, we give a

simple price increment procedure, an extension of that in Lemma 2.3.8 for linear utilities.

As both the WGS property and FindNewPrices refer to a fixed agent, we drop the term

i denoting the agent in the subscripts.
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The Gale demand system Gu(p, b) is defined as the set of optimal solutions to the fol-

lowing formulation.

max b log

(∑
j

∑
t

xjtujt

)
−
∑
j

pj

kj∑
t=1

xjt

s.t. xjt ≤ djt ∀j ∈ [m], t ∈ [kj]

m∑
j=1

kj∑
t=1

xjtujt ≤ U

x ≥ 0 .

(3.3)

It can be easily verified, using the KKT conditions given below, that admissible spendings in

[2] correspond to the case when U =∞, and modest and thrifty demand bundles in [53] to

the case when kj = 1 for all j with dj1 =∞.

Let us now present the KKT conditions characterizing the optimal solution x∗. Let rjt
be the Lagrange multipliers of the constraint xjt ≤ djt and γ the Lagrange multiplier of

the utility constraint. Recall that u(x∗) =
∑

j

∑
t ujtx

∗
jt. We have the following:

(i) bujt
u(x∗)

≤ rjt + pj + ujtγ for all j, t,

(ii) bujt
u(x∗)

= rjt + pj + ujtγ whenever x∗jt > 0,

(iii) x∗jt = djt whenever rjt > 0, and

(iv)
∑

j

∑
t x
∗
jtujt = U whenever γ > 0.

Lemma 3.2.1 (WGS property). The Gale demand system for budget-SPLC utilities satisfies the

WGS property.

Proof. Let us consider prices p′ defined as p′j = pj for j ∈ [m] \ {`} and p′` > p`. We

show that there is an optimal bundle x′ at prices p′ such that x′jt ≥ x∗jt for all j 6= ` and

all t ∈ [kj]. For prices p′, let u be the optimal utility in (3.3) and let γ′ be the Lagrange

multiplier for the constraint on the maximum utility achieved. We consider two cases.

Case 1: ū < u(x∗i ). By (ii), x∗jt > 0 implies ujt
pj
≥ u(x∗)

b
. Thus, we have ujt

p′j
=

ujt
pj
≥ u(x∗i )

b
>

u
b

for all j, t with x∗jt > 0 and j 6= `.

Moreover, by (ii) and (iii), if ujt
p′j
> u

b
·
(

1 + γ′ · ujt
p′j

)
then x′jt = djt. By (iv), ū < u(x∗i ) ≤ U

implies that γ′ = 0, and hence x′jt = djt for all j, t with x∗jt > 0 and j 6= `. In other words,

for every item j, j 6= `, every segment of the good that the agent was buying at prices p is

fully bought at prices p′. The lemma follows.

Case 2: ū = u(x∗i ). It suffices to prove that the optimal solutions of the following knap-
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sack linear program satisfy the WGS property.

min
∑
j

pj

kj∑
t=1

xjt

s.t. xjt ≤ djt ∀j ∈ [m], t ∈ [kj]

m∑
j=1

kj∑
t=1

xjtujt = ū

x ≥ 0 .

(3.4)

Suppose that the optimal solution x is unique, then it can be build in a greedy fashion.

Order the segments of all items in a decreasing order of the fractions ujt
pj

. Then x is ob-

tained by purchasing the segments (i.e. allocating xjt = djt) in the above order until the

utility becomes ū; having in mind that the last purchased segment might be purchased

only partially.

To prove the WGS property we consider increasing price p` of an item `. The price

increase will cause the segments corresponding to good ` to move further back in the

ordering while the relative order of all rest of the segments remains unchanged. Hence,

by the greedy argument above, one can find an optimal solution x′ with x′jt ≥ xjt for all

j 6= ` and t ∈ [kj].

In the case there are multiple optimal solutions, a similar argument holds since two

optimal solution differ only on a set of goods with the same ratio ujt
pj

.

As in Section 2.3.3, we show that the following slightly more general version of Find-

NewPrices can be implemented. Let p, q, c ∈ Rm+ and x ∈ Gu(p, b) such that p ≤ q and

c ≤ x. Find p̃ and y such that

(A’) y ≥ c where y ∈ Gu(p̃, b), and

(B’) p ≤ p̃ ≤ q and p̃j = qj whenever yj > cj .

Lemma 3.2.2 (FindNewPrices). The procedure FindNewPrices can be implemented in

time O(K) for Gale demand systems with budget-SPLC utilities, where K =
∑

j∈[m] kj is the

number of segments with different marginal utility.

The proof is via an algorithm that is an extension of the one in the proof of Lemma 2.3.8

for linear utilities.

Proof. We present an algorithm for finding such prices p̃ and bundle y. The algorithm

initializes p̃ = p and y = c. The prices as well as the allocations are non-decreasing

throughout the algorithm. Note that u(y) < U at the initialization; otherwise, c = x

would follow and we can simply output y = x and p̃ = p. We maintain p ≤ p̃ ≤ q
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throughout. For each j ∈ [m], let tj ∈ [kj] denote the first segment of a good j that is not

completely sold in y, i.e., the minimal tj such that yjtj < djtj . We call this the active segment

for j.

Consider the optimal bundle x such that c ≤ x, and let γ be the Lagrange multiplier for

the utility cap constraint for x. We initialize β = (b/u(x)− γ)−1. Then, from (i)-(iii) we

see that if xjt = 0 then ujt/pj ≤ β, if 0 < xjt < djt then ujt/pj = β, and if xjt = djt then

ujt/pj ≥ β.

Stage I: enforcing the complementarity conditions The algorithm proceeds in two

stages. In the first stage, we consider the goods for which ujtj/p̃j > β yet yjtj < djt.

(Recall that we initialized y = c and p̃ = p.) For each such good, we increase p̃j until

either ujtj/p̃j = β, or p̃j = qj . In the latter case, we buy the entire active segment of j,

that is, we increase to yjtj = djtj . Thus, tj increases by 1. If we still have ujtj/qj > β, we

again buy the entire active segment, and continue until ujtj/qj ≤ β for the current active

segment. This finishes the description of the first stage.

From the KKT optimality conditions on x, it is easy to see that y ≤ x at the end of the

first stage. We claim that the following conditions are satisfied at this point:

yjt = 0⇒ ujt/p̃j ≤ β, 0 < yjt < djt ⇒ ujt/p̃j = β, yjt = djt ⇒ ujt/p̃j ≥ β.(3.5)

u(y) ≤ min{U, bβ} (3.6)

yjt > cjt ⇒ p̃j = qj (3.7)

The conditions (3.5) and (3.7) are immediate from the algorithm. The bound (3.6) follows

since y ≤ x; u(y) ≤ u(x) ≤ U by the feasibility of x and u(x) ≤ bβ by the definition of β.

Stage II: price increases In the second stage we continue increasing y and p̃, as well as

decreasing β so that (3.5), (3.6), and (3.7) are maintained. The algorithm terminates once

(3.6) holds at equality. In this case, one can verify from the optimality conditions that

y ∈ Gu(p̃, b). Together with (3.7), we see that the output satisfies (A’) and (B’).

The algorithm performs the following iterations. We let A denote the set of goods for

which ujtj/p̃j = β. If there is a good j ∈ A with p̃j = qj , then we start increasing yjtj until

either

1. yjtj = djtj . Note that tj increases by one in this case, and j leaves A.

2. The inequality (3.6) becomes binding. In this case, the algorithm terminates.

We now turn to the case when p̃j < qj for all j ∈ A. During the iteration we multiplica-

tively increase the price of every good in A by the same factor α > 0, as well as decrease
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β by the factor α. We choose the smallest value of α when one of the following events

happen:

1. For some j ∈ A we reach p̃j = qj . We change the allocations as described above.

2. The inequality (3.6) becomes binding (due to the decrease in β). In this case, the

algorithm terminates.

3. For some good ` /∈ A,
u`t`
p`

= β. In this case, we add ` to A, and iterate with the

larger set.

It is easy to see that all three properties (3.5), (3.6), and (3.7) are maintained throughout

the algorithm. We claim that the number of price change steps is at most
∑

j kj . Indeed,

a price increase step always ends when a good j with p̃j = qj enters A, either in case 1 or

case 3. Once this happens, we increase yjtj ; if the algorithm does not terminate, then we

saturate the segment to yjtj = dj . This shows that the number of price augmentation steps

is bounded by the total number of segments
∑

j kj .

Bound on pSRmax While the budget-SPLC utilities are not strictly monotone nor differ-

entiable, the same bound as in Lemma 3.1.7 (or Lemma 3.1.8) can be similarly proved for

vimax = maxj∈[m],t∈[kij ] uijt and vimin = minj∈[m],t∈[kij ]{uijt : uijt > 0}. The value uijt
represent the utility rate of agent i for the t-th segment of item j.

Recalling that Dj is the number of available units of good j, we have the following

theorem.

Theorem 3.2.3. Consider the Fisher market instance arising from the NSW problem where agents

have budget-SPLC utilities. Let K = maxi∈A
∑

j∈G kij be the minimum number of segments

needed to specify the utility of any agent. We can find an ε-SR equilibrium with respect to the Gale

demand systems and bounds tj := Dj in time O
(
n3mK
ε2

log
(
DmaxVmax

ε

))
.

Proof. We start by adding a dummy agent 0 to the market with budget ε. The utility of

agent 0 is additive, meaning that for each good j, there is only one segment of length

Dj and u0,j,1 = 1. We initialize the auction algorithm by setting each price pj to ε∑
j Dj

and assigning all goods to 0. By running the auction algorithm for SR-equilibrium we

obtain 4ε
5

-approximate equilibrium. Now, we can remove the agent. As this agent could

be buying the goods in amount at most ε, by removing the dummy agent we are left

with a slightly weaker notion of ε-approximate equilibrium. Namely, the first and third

condition in Definiton 3.1.1 are satisfied by the choice of the precision parameter, but the

second condition is not satisfied exactly. Rather, we can only guarantee that
∑n

i=1 x
(i)
j ≤ aj

and
∑

j∈[m] pj(aj−
∑n

i=1 x
(i)
j ) ≤ ε. In words, the total price of unsold available amounts of

all goods is at most ε.
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By Theorem 3.1.3 the auction algorithm runs in O
(
nmTF
ε2

log

(
pSRmax

pmin

))
. Recall that

TF is time needed to implement FindNewPrices. By Lemma 3.2.2, in this case TF is

O(K). By construction, pmin = ε∑
j Dj

. By Lemma 3.1.8 we have that pSRmax ≤ (1 +

ε)nDmaxV
n−1

max .

3.2.2 Upper bound on the optimal NSW value

Let (x, p) an SR-equilibrium in the Fisher market arising from an instance of NSW (with

respect to the Gale demand system) and with bounds (Dj)j∈[m]. In other words, xi ∈
Gui(p, 1) for each agent i ∈ A, and it holds

∑
i∈[n] xij =

∑
i∈[n],j∈[m],t∈[kij ]

xijt = Dj ·
min{1, 1/pj} for all j ∈ G. As xi ∈ Gui(p, 1) we have the following KKT conditions, see

Section 3.2.1:

(i) uijt
ui(xi)

≤ rijt + pj + uijtγi,

(ii) uijt
ui(xi)

= rijt + pj + uijtγi whenever xijt > 0,

(iii) xijt = dijt whenever rijt > 0, and

(iv)
∑

j

∑
t xijtuijt = Ui whenever γi > 0.

Let us describe some properties of SR-equilibrium (x, p) that the above KKT conditions

imply. By property (ii), uijt
rijt+pj

= ui(xi)
1−γiui(xi) whenever xijt > 0. This justifies defining

mbbi := ui(xi)
1−γiui(xi) . Since the SR-equilibrium as well as NSW are invariant under scaling

each agent’s utilities uijt andUi, we can assume that mbbi = 1 for all agents i. (This implies

an appropriate implicit scaling of each γi as well.) Then by property (iii) we obtain:

Proposition 3.2.4. If xijt > 0 then uijt
pj
≥ 1. If uijt

pj
> mbbi = 1 then xijt = dijt.

In other words, an agent only buys copies of goods with utility at least as much as their

price, and if an agent values some copy of a good strictly more than its price then she also

gets this copy in x.

We say that an agent i is capped if ui(xi) = Ui and non-capped otherwise. Let H(p) =

{j ∈ [m] : pj > 1} be the set of expensive goods.

Proposition 3.2.5. Assume mbbi = 1 for all agents i. For all capped agents i it holds xijt = 0

for all j ∈ H(p) and all t ∈ [kij], and ui(x) = Ui ≤ 1. Each non-capped agent i receives exactly

one unit of utility, i.e., ui(x) = 1.

Proof. Suppose not and let xijt > 0 for some j ∈ H(p). Then uijt ≥ pj > 1. Since Ui ≥ uijt

it also holds that Ui > 1. A contradiction since 1 < Ui
1−γiui(xi) = ui(xi)

1−γiui(xi) = 1 holds.

Since ui(xi)
1−γiui(xi) = 1 and γiui(xi) ≥ 0 it follows that ui(xi) ≤ 1. The property (iv) implies

that γi = 0 for non-capped agents, , and therefore ui(x) = 1.
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In order to prove an upper bound we may assume that Ui = ∞ for all non-capped

agents. Such an assumption can only increase the optimal NSW, so if we prove the upper

bound under the assumption it also holds in the original instance. Since “cap inequality”

is ineffective for every non-capped agent, by the KKT conditions we can see that (x, p)

remains an SR-equilibrium. Denote with Ac (resp. Au) the set of capped (resp. non-

capped) agents in the equilibrium (x, p).

Lemma 3.2.6. Let p be a vector of SR-equilibrium prices and x∗ an optimal NSW allocation. Then

NSW(x∗) ≤

∏
i∈Ac

Ui ·
∏

j∈H(p)

p
Dj
j

1/n

.

Proof. First we give a bound on the sum of the agents’ utilities in any integer allocation z

as a function of prices p. Recall that x is an SR-equilibrium allocation for prices p. Since

valuations of the agents are scaled to have mbbi = 1, by Proposition 3.2.5 each non-capped

agent receives exactly 1 unit of utility in x. Each capped agent receives Ui utility in x by

definition. However, if there are some expensive goods then x does not fully allocate

all the goods. Each copy of the expensive goods generates 1 unit of utility in x since

the total spending on it is precisely 1 and since no capped agent buys expensive goods

(Proposition 3.2.5).

Let x̄ be the allocation in which we allocate every copy of each expensive good j to a

single agent spending on it in x. We can do so since the spending is exactly Dj and thus,

there are at least as many agents buying good j as the copies. As all of these agents are

non-capped and we assume that for such agents Ui = ∞, it follows that each copy of an

expensive item generates exactly pj utility to the agents in x̄. By Proposition 3.2.4, it is at

least pj as xijt > 0 implies that uijt ≥ pj ; it is at most pj by the contraposition of: uijt > pj

implies that xijt = dijt ≥ 1. Therefore, the total utility that all the items in x̄ generate is:

∑
i∈Ac

Ui + |Au|+
∑

j∈H(p)

Dj(pj − 1) =
∑
i∈Ac

Ui + |Au| −
∑

j∈H(p)

Dj +
∑

j∈H(p)

Djpj .

We claim that the total utility of all the agents in any integer allocation is not larger than

the above sum. Consider the copies of item j. In x̄, each one of those items generates either

pj or more than pj utility. Moreover, any agent that can derive more than pj utility from

a copy of a good actually receives the copy in x̄. Therefore, x̄ allocates the copy of goods

to the agents such that the total utility all the goods generate is maximized. It follows that

for any integral allocation z the total utility all agents receive is at most

∑
i∈[n]

ui(z) ≤
∑
i∈Ac

Ui + |Au| −
∑

j∈H(p)

Dj +
∑

j∈H(p)

Djpj .
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At this point, suppose that we are given the above amount of utility and we can freely

distribute it among agents to maximize NSW, regardless of what the utility function of

each agent is, but only respecting the fact that the capped agents cannot get more than their

cap, and that expensive goods are indivisible. By Proposition 3.2.5, all caps of the capped

agents are at most 1. Then, it is not too hard to see that the optimal way of distributing our

lump sum of utility is to assign: each expensive copy to a non-capped agent and nothing

else to those agents, exactly Ui to each capped agent, and 1 to everyone else. In this case,

the NSW is exactly
(∏

i∈Ac Ui ·
∏
j∈H(p) p

Dj
j

)1/n

.

3.2.3 Rounding

As in the previous section, we assume that the utilities are scaled such that mbbi = 1.

Moreover, we use that uijt ≤ Ui. We reduce our rounding to the case of budget-additive

utilities in [53]. It is convenient to present the rounding in terms of the spending graph. For

an SR-equilibrium (x, p) the spending graph is a bipartite graph (A,G;E) where an agent

i is adjacent to a good j if and only if xij > 0. We show how to round x to an integral

allocation x′.

By the KKT conditions, whenever uijt
pj

> mbbi then xijt = dijt – in this case we allocate

dijt copies of good j to i by setting x′ijt ← dijt. Moreover, if for for some triple i, j, t

we have xijt > 1 then we allocate bxijtc units of good j to agent i. Formally, we set

x′ijt ← bxijtc. Once we do this for all goods and all agents, any agent can have up to one

unit of a good that she is buying in the SR-equilibrium but that is not yet allocated in x′.

Hence there are at most n units of each good j that are still to be allocated. By the first

rule for allocating goods, for these remaining copies of a good j, if an agent i is buying

a fraction of it, then uijti
pj

= 1 (where ti is the first non-saturated segment of agent i). By

assuming that uijt = 0 for all t > ti, we can transform the instance into an instance in

which the utility of every agent is budget-additive. The only issue is that we could have

several copies of a good. Since there are at most n copies of each good that are unassigned

and the utilities are budget-additive, we can simply split each good into the appropriate

number of goods with a single copy. Then, the rest of the rounding follows the exact same

steps as the rounding for budget-additive utilities in [53]. The analysis reduces in the same

way. By choosing a suitable ε we obtain the following theorem.

Theorem 3.2.7. Consider an instance of NSW problem where agents have budget-SPLC utilities.

Let K = maxi∈A
∑

j∈G kij be the minimum number of segments needed to specify the utility of

any agent. Then there is an algorithm running in timeO (n3mK log (DmaxVmax)) which produces

a solution that is at most 2.404 times worse than the optimum.



4 Approximating asymmetric Nash

social welfare under Rado valuations

We recall that the discrete Nash social welfare problem asks to solve the following problem

max


(∏
i∈A

vi(Si)
wi

)1/
∑
i∈A wi

: {Si : i ∈ A} forms a partition of G

 . (4.1)

where vi : 2G → R+ is the valuation function of agent i and wi > 0 is i’s weight (entitle-

ment). In this chapter, we present an approximation algorithm for the asymmetric NSW

problem under Rado valuations. The approximation ratio depends on γ = 1 + maxi∈Awi,

i.e., all weights fall into the interval [1, γ − 1] for some γ ≥ 2.

The valuation functions vi in the Nash social welfare problem are defined on subsets of

G. Our arguments are based on convex relaxations, which requires a continuous extension

of the valuation functions to RG+. Thus, our first tasks is to provide a suitable extension for

Rado valuations which we do in Section 4.1.1.

We present the overall approach and the main phases of our approximation algorithm

in Section 4.2. The details and proofs required for the individual phases are then pre-

sented in the later sections. In Section 4.6, we show how our approach connects to the

SR-equilibrium. Finally, in Section 4.7 we give an example separating Rado valuations

and GS valuations.

4.1 Preliminaries

4.1.1 Concave extensions of discrete valuations

For any discrete valuation function v : 2G → R, we can define the concave closure v̄ :

[0, 1]G → R as

v̄(x) := inf
p∈RG ,α∈R

{〈p, x〉+ α : p(S) + α ≥ v(S) ∀S ⊆ G} , (4.2)

see e.g. [95, Section 3.4]. As the infimum of linear functions, v̄ is always concave. Note that

it provides the concave upper envelope of the function v defined on the discrete set {0, 1}G ,

61
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meaning that v̄ ≤ f for every concave function f : RG+ → R such that v(S) ≤ f(χS) for

all S ⊆ G, and where χS is an indicator vector in RG of a subset S. Moreover, whenever

v is monotone then v̄ is a concave extension of v. By an extension we mean that the two

functions coincide on the integer points, i.e., v̄(χS) = v(S) for all S ⊆ G. Namely, when v

is monotone the value v̄(χS) is lower-bounded by v(S) and it is also achieved by α = v(S)

and p set to 0 in S and to v(G) outside of S, for any S ⊆ G .

Whereas the concave extension v̄ can be defined for every monotone valuation func-

tion v, evaluating v̄(x) can be a hard problem. For example, in the case of submodular

valuations, deciding whether p(S) + α ≥ v(S) holds for all S ⊆ G amounts to sub-

modular maximization and is thus NP-hard. Computing v̄(x) amounts to minimization

over a polyhedron P where separation is NP-hard; by the polynomial equivalence of op-

timization and separation [64], it follows that evaluating v̄(x) is NP-hard for submodular

functions (see also [72, Lemma 6.15]).

The concave extension of Rado valuations Unlike with the submodular functions, the

concave closure can be evaluated with polynomially many value oracle calls for any GS

valuation. This is since, in contrast with general submodular functions, GS functions (and

the difference of a GS function and an additive function) can be efficiently maximized with

a simple greedy algorithm. Rado valuations are a subclass of GS valuations and thus their

concave closure can be evaluated efficiently. Moreover, for Rado valuations the concave

closure/extension is captured by an explicit a linear program. This representation of the

concave extension is at the core of the arguments in Section 4.4, where we argue about the

existence of a sparse optimal solution of a particular convex program.

Theorem 4.1.1. Consider a Rado valuation v : 2G → R given by a bipartite graph (G, V ;E) with

costs on the edges c : E → R, and a matroidM = (V, I) with a rank function r = rM as in

Definition 1.2.2. For x ∈ [0, 1]G , let us define

ν(x) := max
∑

(j,k)∈E

cjkzjk

s.t.:
∑
k∈V

zjk ≤ xj ∀j ∈ G∑
j∈G,k∈T

zjk ≤ r(T ) ∀T ⊆ V

z ≥ 0 .

(4.3)

Then, ν = v̄ is the concave extension of v, and v̄ is monotone and subadditive1.

1Extending notions from discrete valuations, a function f : RG+ → R+ is monotone if f(x) ≤ f(y) for x ≤ y,
x, y ∈ RG+, and subadditive if f(x+ y) ≤ f(x) + f(y) for any x, y ∈ [0, 1]G such that x+ y ∈ [0, 1]G .
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Proof. Monotonicity is immediate and concavity is implied once we prove ν = v̄. For

subadditivity, if z is the optimal solution in the program defining ν(x+ y) for some x, y ∈
[0, 1]G , then we can easily decompose z = z′ + z′′ such that z′ is feasible to the program

defining ν(x) and z′′ if feasible for y. Thus, ν(x+ y) ≤ ν(x) + ν(y) follows.

It is left to show that ν = v̄. The value v(x) for x ∈ [0, 1]m is defined by a linear program

(4.2). We will use the dual LP:

v̄(x) = min p>x+ α

s.t.: p(S) + α ≥ v(S) ∀S ⊆ G

(p, α) ∈ Rm+1

max
∑
S⊆G

λSv(S)

s.t.:
∑
S⊆G

λSχS = x

∑
S⊆G

λS = 1

λ ≥ 0

(4.4)

We letM(x) denote the set of feasible solutions of (4.3). Fix any x ∈ Rm. We first show

that v(x) ≤ ν(x).

Consider an optimal solution λ for the dual LP in (4.4) such that v(x) =
∑

S⊆G λSv(S).

For every S ⊆ G, we have an integral allocation MS of the goods inM(χS) that is optimal

in the linear program (4.3) defining ν(χS) = v(S). It is easy to see that
∑

S⊆G λSMS ∈
M(x). Thus, v(x) ≤ ν(x).

For the other direction v(x) ≥ ν(x), let z be the optimal solution defining ν(x) in (4.3).

By the integrality of the bipartite matching polytope, we can write the fractional matching

z as a convex combinations of integral allocations MS for S ⊆ G, i.e., z =
∑

S⊆G λSMS for

some λ ≥ 0 with
∑
λS = 1. The dual of (4.3) is

min
∑
j∈G

xjπj +
∑
T⊆V

ρT

s.t.: πj +
∑
T :k∈T

ρT ≥ cjk ∀j ∈ G,∀T ⊆ V

π ∈ RG+, ρ ∈ R2V

+ .

Consider an optimal dual solution (π, ρ). By complementarity, πi +
∑

S:k∈T ρT = cjk for

every (j, k) ∈ supp(z); if ρT > 0 for T ⊆ V then z(∂(T )) = r(T ), and if πj > 0 for j ∈ G
then z(∂(j)) = xj .

Since z =
∑

S λSMS , we have MS ⊆ supp(z), and ∂MS
(S) = r(S) whenever z(∂(S)) =

r(S). Further, z(∂(j)) = xj implies that every matching MS with j ∈ S covers j. We see

that χMS
and (π, ρ) satisfy complementary slackness in (4.3) for every set S with λS > 0.
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Thus, c(MS) = ν(χS), and ν(χS) = v(S). We can thus conclude that

ν(x) =
∑
S⊆G

λSc(MS) =
∑
S⊆G

λSv(S) ≤ v̄(x) ,

completing the first part of the proof.

In the light of this theorem, in the rest of this chapter we will denote by v : [0, 1]G → R
the continuous extension of Rado valuation v defined in (4.3). Whereas our overall result

requires the continuous extension of Rado valuations, much weaker assumptions suffice for

most parts of the argument, as formulated next.

Assumption 4. For every agent i ∈ A the continuous extension of the valuation function vi :

[0, 1]G → R+ is monotone, concave, and subadditive.

4.1.2 Simple upper bounds

We will often use the following simple bounds.

Lemma 4.1.2. Let n, c ∈ N, S ⊆ [n], and 1 ≤ w1, . . . , wn ≤ γ − 1. For i ∈ S let ki ∈ R+ such

that
∑

i∈S ki ≤ c · n. Then (∏
i∈S

kwii

)1/
∑n
i=1 wi

≤ c · γ .

Proof. By the (weighted) arithmetic-geometric we have:

(∏
i∈S

kwii

)1/
∑n
i=1 wi

=
∏
i∈S

k
wi∑n
i=1

wi

i ·
∏

i∈[n]\S

1
wi∑n
i=1

wi

≤
∑
i∈S

wiki∑n
i=1wi

+
∑

i∈[n]\S

wi∑n
i=1wi

≤ (γ − 1)

∑
i∈S ki∑n
i=1wi

+ 1 ≤ c · γ .

Lemma 4.1.3. Let n, c ∈ N, S ⊆ [n]. For i ∈ S let ki ∈ R+ such that
∑

i∈S ki ≤ c · n. Then

(∏
i∈S

ki

)1/n

≤ c · e1/e .

Proof. We present the proof for c = 1, the general cases easily reduces to c = 1 by scaling.

Without loss of generality, we assume that ki ≥ 1 for i ∈ S. For fixed size of S (k = |S|),
the product

∏
i∈S ki is maximized when all ki are the same. Hence,

(∏
i∈S ki

)1/n ≤
(
n
k

)k/n.

Let ξ = n
k

then
(
n
k

)k/n
= ξ1/ξ. By the first order conditions, the value ξ1/ξ achieves the

maximum for ξ = e. Hence,
(∏

i∈S ki
)1/n ≤ e1/e.
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We show that the bound in Lemma 4.1.2 can be slightly improved using the similar

approach as in the proof of Lemma 4.1.3 Throughout the section the base of the logarithm

is e. We recall that the Lamberth function W is the inverse of t 7→ t ln t for t ∈ R+. For

x > e it holds W(x) < log x; and for x > 41.19 it holds W(x) > log x − log(log x),

see [66]. Let ψ(x) =
(

x−2
W(x−2

e
)

)x/(x−2+ x−2

W(x−2
e )

)
(for x > 2). Then, by the above bound we

get ψ(x) ≤ max
{
c, x−2

log(x−2
e

)−log log(x−2
e

)

}
for some constant c that depends on 41.19. Now,

we can prove our lemma.

Lemma 4.1.4. Let n ∈ N, S ⊆ [n], and 1 ≤ w1, . . . , wn < γ − 1. For i ∈ S let ki ∈ R+ such

that
∑

i∈S ki ≤ c · n. Assuming c is a constant we have

(∏
i∈S

kwii

)1/
∑n
i=1 wi

≤ c · ψ(γ) = O

(
γ

log(γ)

)
.

Proof. We present the proof for c = 1, the general cases easily reduces to c = 1 by scaling.

SinceW(x)eW(x) = x we have eW(x−2
e

)+1 = e · x−2
e
· 1
W(x−2

e
)

= x−2
W(x−2

e
)
. Hence,

(
eW(x−2

e
)+1
)x/(x−2+eW(x−2

e )+1)

)
=

(
x− 1

W(x−2
e

)

)x/(x−2+ x−2

W(x−2
e )

)
,

for x > 2. It suffices to prove that

(∏
i∈S

kwii

)1/
∑n
i=1 wi

≤
(
eW( γ−2

e
)+1
)γ/(γ−2+eW(

γ−2
e )+1)

)
.

Without loss of generality we can assume that ki ≥ 1. Then the worst case is if wi = γ − 1

for all i ∈ S and wi = 1 for i ∈ [n] \ S. For fixed size of S (k = |S|), the product
∏
i∈S k

γ−1
i

is maximized when all ki are the same. Hence,
(∏

i∈S k
wi
i

)1/
∑n
i=1 wi is upper-bounded by(

n
k

)k(γ−1)/(k(γ−1)+n−k). Let ξ = n
k

then
(
n
k

)k(γ−1)/(k(γ−1)+n−k)
= ξ(γ−1)/(γ−2+ξ). By the first

order conditions, the value ξ(γ−1)/(γ−2+ξ) achieves the maximum for ξ = eW( γ−2
e

)+1. Hence,

(n
k

)kγ/(kγ+n−k)

≤
(
eW( γ−2

e
)+1
)(γ−1)/

(
γ−2+eW(

γ−2
e )+1)

)
.
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4.2 Overview of the approach

Let vi be the extensions of the valuation function and wi > 0 be the weight for each i ∈ A.

Given a fractional allocation x = (x1, . . . , xn) ∈ RA×G+ , we let

NSW(x) :=

(∏
i∈A

vi(xi)
wi

)1/
∑
i wi

.

Then, the asymmetric Nash social welfare program is captured by the following integer

program.

max NSW(x) s.t.
∑
i∈A

xij ≤ 1 ∀j ∈ G, x ∈ {0, 1}E . (NSW-IP)

Let OPT denote the optimum value. The natural relaxation is (NSW-IP) is

max NSW(x) s.t.
∑
i∈A

xij ≤ 1 ∀j ∈ G, x ≥ 0 . (4.5)

The objective is log-concave assuming the vi’s are concave functions. However, Cole and

Gkatzelis [35, Lemma 3.1] showed that this relaxation has unbounded integrality gap al-

ready for additive valuations.

We propose a mixed integer programming relaxation instead of (4.5). Consider a set of

itemsH ⊆ G. Our mixed relaxation requires the items inH to be allocated integrally and

the rest can be allocated fractionally.

max NSW(x)

s.t.:
∑
i∈A

xij ≤ 1 ∀j ∈ G

xij ∈ {0, 1} ∀j ∈ H, ∀i ∈ A

x ≥ 0 .

(Mixed relaxation)

This clearly gives a relaxation of (NSW-IP): OPTH ≥ OPT where OPTH is optimal value

of (Mixed relaxation) for any set of items H. Theorem 1.2.4 is shown by constructing an

integer allocation x ∈ {0, 1}A×G and an item set H such that NSW(x) ≥ OPTH /(256γ3).

This is proved in five phases:

Phase I Find an appropriate item setH.

Phase II Approximate (Mixed relaxation) by another integer program (Mixed+matching).

Phase III Find an approximate mixed integer solution to (Mixed+matching).

Phase IV Find a sparse approximate mixed integer solution to (Mixed+matching).
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Phase V Round the mixed integer solution to an integer solution.

We note that phases are not necessarily algorithmic phases but also conceptional reduc-

tions of the problem. Regardless, we call them phases for the sake of presentation. We

now give an overview of all the phases; most proofs are deferred to later sections.

4.2.1 Phase I: Finding the item setH

We solve a maximum weight matching problem that achieves the highest Nash social

welfare value under the restriction that each agent may only receive a single item. This

can be achieved by assigning an edge weight ωij = wi log(vij) for every i ∈ A, j ∈ G,

and solving the maximum weight assignment problem in the complete bipartite graph

between A and G; we recall the notation vij = vi({j}). We let τ : A → G denote the

optimal matching represented as a mapping, i.e. τ(i) is the item matched to agent i ∈ A.

We define H as the set of items assigned by τ , i.e., H := τ(A). We will refer to this set H
as the set of most preferred items.

Interestingly, in case of symmetric agents endowed with additive valuations the set H
contains all items with price at least one in any spending restricted equilibrium as in [35];

see Section 4.6.

The existence of τ with finite weight proves that the instance is feasible, i.e., there is a

way of allocating one item to each agent such that agent values the assigned item pos-

itively. On the other hand, if no finite weight matching exists, the optimum value to

(NSW-IP) is 0. Henceforth, we assume without loss of generality that the optimal NSW is

non-zero.

4.2.2 Phase II: Reduction to the mixed matching relaxation

We approximate (Mixed relaxation) by a second mixed integer program. We use variables

y ∈ RA×(G\H)
+ representing the fractional allocations of the items in G \ H. Even though

the valuation functions vi are defined on RG+, we use vi(yi) to denote vi(xi), where xi is

obtained from yi by setting xij = 0 for j ∈ H and xij = yij for j ∈ G \ H.

max

(∏
i∈A

(
vi(yi) + viσ(i)

)wi)1/
∑
i wi

s.t.:
∑
i∈A

yij ≤ 1 ∀j ∈ G \ H

yij ≥ 0 ∀j ∈ G \ H,∀i ∈ A

σ : A → H is a matching.

(Mixed+matching)

We will refer to this program as the mixed matching relaxation. The pro-
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gram (Mixed+matching) differs from (Mixed relaxation) in two respects. Firstly, the ob-

jective differs from NSW(x): for each agent, the value of each agent in (Mixed relaxation)

is given by the Rado valuation while in (Mixed+matching) we evaluate the utility of each

agent separately on H and G \ H and take the sum of these two values. Secondly, and

more importantly, we require that the items inH are allocated to the agents by a matching.

Unlike (Mixed relaxation), this will not be a relaxation of (NSW-IP): the optimal integer

solution may allocate multiple items in H to the same agent. We show that the effect of

both these changes is limited.

Let (y, σ) be a feasible solution to (Mixed+matching). We define NSW(y, σ) as the objec-

tive function value in (Mixed+matching), and let OPTH denote the optimum value. Let us

define NSW(y, σ) as the Nash social welfare of the same allocation. Namely, NSW(y, σ) =

NSW(x), where xij = yij if j ∈ G \ H, and for j ∈ H we have xij = 1 if j = σ(i), and

xij = 0 otherwise. The next lemma is an easy consequence of monotonicity and subaddi-

tivity.

Lemma 4.2.1. For any feasible solution (y, σ) to (Mixed+matching), we have

NSW(y, σ) ≥ NSW(y, σ) ≥ 1

2
NSW(y, σ) .

Proof. We have NSW(y, σ) ≥ NSW(y, σ) by subadditivity. By monotonicity:

2 NSW(y, σ) ≥ NSW(y, ∅) + NSW(0, σ) = NSW(y, σ).

Using this lemma, as well as Lemma 4.1.2, we can relate the optimum values and ap-

proximate solutions of (Mixed relaxation) and (Mixed+matching).

Theorem 4.2.2. LetH ⊆ G with |H| = |A|. For the optimum values OPTH to (Mixed relaxation)

and OPTH to (Mixed+matching), we have

OPTH ≥
1

γ
OPTH .

Let (y, σ) be an α-approximate optimal solution to (Mixed+matching), that is, NSW(y, σ) ≥
1
α

OPTH. Then, NSW(y, σ) ≥ 1
2αγ

OPTH. If the valuation functions vi are additive, then the

stronger bound NSW(y, σ) ≥ 1
αγ

OPTH applies.

Proof. We first show that OPTH ≥ 1
γ

OPTH. Let x be an optimal solution

to (Mixed relaxation). For each agent i, let Ki be the set of items agent i receives from

H under x; and let y be the restriction of x on G \H defined as yij = xij for j ∈ G \H and

yij = 0 otherwise. Let ki := |Ki|. Denote with S the set of agents that receive at least one

items from H, i.e., S = {i ∈ A : ki ≥ 1}. For each agent i ∈ S let σ(i) = maxj∈Ki{vij},
and define σ(i) = ∅ for i ∈ A \ S. Then, (y, σ) is a feasible solution of (Mixed+matching).
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In other words, (y, σ) is obtained from x once each agent i ∈ S discards all items from Ki

except the most valuable one. By monotonicity and subadditivity, for all i ∈ S, we have

vi(xi) ≤ vi(y) +
∑
j∈Ki

vij ≤ ki · (vi(y) + viσ(i)) .

Therefore,

OPTH

OPTH
≤ NSW(x)

NSW(y, σ)
=

(∏
i∈S

vi(xi)
wi

(vi(y) + viσ(i))wi

)1/
∑
i wi

≤
(∏
i∈S

kwii

)1/
∑
i wi

.

Moreover,
∑

i∈S ki ≤ |H| = |A| = n. Then, the bound follows by Lemma 4.1.2. The

second part of the theorem follows by Lemma 4.2.1.

4.2.3 Phase III: Approximating the mixed matching relaxation

Our next goal is to find a 2-approximation solution to (Mixed+matching); we do not know

whether this problem is polynomial-time solvable. By Theorem 4.2.2, this yields a (4γ)-

approximation to (Mixed relaxation).

Let us first remove all items in H. Some agents may only value positively the items

H. We let A′ the subset of agents who have positive values for the items G \ H, that is,

A′ := {i ∈ A : vi(G \ H) > 0}. Consider the “naı̈ve” relaxation (4.5) on the instance

restricted toA′ and G \ H, and taking the logarithm of the objective

max
∑
i∈A′

wi log(vi(yi))

s.t.:
∑
i∈A′

yij ≤ 1 ∀j ∈ G \ H

y ≥ 0.

(EG-NSW)

This is the classical Eisenberg–Gale convex program that computes an equilibrium in

Fisher markets with divisible items for homogeneous concave valuation functions [45].

Given an optimal solution y∗ ∈ RA
′×(G\H)

+ of (EG-NSW) we can find an approximate solu-

tion to (Mixed+matching).

Theorem 4.2.3. Let H ⊆ G with |H| = |A|. Let π∗ be maximum weight assignment in the

complete bipartite graph between A and H, with edge weights ωij = wi log (vi(y
∗
i ) + vij) for

i ∈ A, j ∈ H. Then, NSW(y∗, π∗) ≥ 1
2
OPTH.

Theorem 4.2.3 is an immediate consequence of the following lemma.

Lemma 4.2.4. Let H ⊆ G with |H| = |A|. Let α > 0 and y∗ be an optimal and y a fea-

sible solution of (EG-NSW) such that vi(yi) ≥ 1
α
vi(y

∗
i ) for all i ∈ A′. Let π be maximum
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weight assignment in the bipartite graph with colour classes A and H, and edge weights ωij =

wi log (vi(yi) + vij) for i ∈ A, j ∈ H. Then,

NSW(y, π) ≥ 1

2α
OPTH .

Since valuations vi are concave, (EG-NSW) is a convex program. For any ε > 0, we can

find an (1−ε)-approximate solution in polynomial-time, where the running time depends

on log(1/ε). It turns out that approximation of the objective function might not be enough.

In Lemma 4.2.4 we require an agent-wise approximate solution: each agent gets at least

a constant fraction of her value in the optimum. It is not clear if finding such agent-wise

approximation is possible in polynomial time for general concave valuations vi, but as we

will see in the next section we can find an exact optimal solution for Rado valuations.

The proof of Lemma 4.2.4 is deferred to Section 4.3. It does not depend on the choice of

H but only requires |H| = |A|.

4.2.4 Phase IV: A sparse approximate solution for the mixed matching

relaxation

In this section we exploit the properties of Rado valuations. Assuming the agents have

Rado valuation functions, we can find an approximate solution of (Mixed+matching) with

a strong sparsity property. Even though the approximation ratio is weaker than given in

Theorem 4.2.3, sparsity will be essential for the rounding in Phase V.

Theorem 4.2.5. Suppose the functions vi are Rado valuations. Let H ⊆ G with |H| = |A|. We

can find a feasible solution (y, π) to (Mixed+matching) such that

(i) NSW(y, π) ≥ 1
4
OPTH,

(ii) supp(y) ≤ 2|A| + |L+| where L+ = {j ∈ G \ H :
∑

i∈A′ yij > 0}, that is, L+ is the set

of allocated items in y.

Moreover, for additive valuation functions, we can strengthen (i) to NSW(y, σ) ≥ 1
2

OPTH and

(ii) to supp(y) ≤ |A|+ |L+|.

Let us start with the special case of additive valuations. In this case, an exact solution

y∗ to the Eisenberg–Gale convex program (EG-NSW) can be found in strongly polynomial

time [103, 118].

Theorem 4.2.6. Assuming the valuations vi are additive, we can find an optimal solution y∗

of (EG-NSW) in strongly polynomial time such that the support supp(y∗) is a forest.
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The claim on the support follows easily by showing that any cycles in supp(y∗) can be

eliminated, see e.g., [35, 43, 103]. Consequently, |supp(y∗)| ≤ |A′| + |L+| − 1. Together

with Lemma 4.2.4, this proves the statement in Theorem 4.2.5 for additive valuations.

For Rado valuations, we first prove that an optimal solution of (EG-NSW) can be found

in polynomial time, see Section 4.4.1. We first show that this is a rational convex program,

and use the variant of the ellipsoid method for rational polyhedron [64].

Lemma 4.2.7. Suppose that for each agent i ∈ A, vi is a Rado valuation given by a bipartite graph

(G, Vi;Ei), integer costs ci : Ei → Z and a matroidMi = (Vi, Ii) as in Definition 1.2.2. Let

T = maxi∈A |Vi|, and C = maxi∈A ‖ci‖∞. Let the weights wi > 0 be rational numbers given

as quotients of two integers at most U . Assume the matroidsMi are given by rank oracles. Then,

(EG-NSW) has a rational solution with poly(|A|, |G|, T, logC, logU) bit-complexity, and such

a solution can be found in poly(|A|, |G|, T, logC, logU) arithmetic operations and calls to the

matroid rank oracles.

Our next lemma shows that any feasible solution to (EG-NSW) can be sparsified by

losing at most the half of the value for each agent, see Section 4.4.2. This is achieved in

two steps, using the sparsity of basic feasible solutions to linear programs. Half of the

valuation may be lost in the second step, where for the fractionally allocated items we aim

to remove one of the fractional edges. The set to be deleted is identified by writing an

auxiliary linear program.

Lemma 4.2.8. Suppose the functions vi are Rado valuations, and let ŷ be a feasible solution to

(EG-NSW). Then, in polynomial time we can find a feasible solution y such that

(i) vi(y) ≥ 1
2
vi(ŷ),

(ii) |supp(y)| ≤ 2|A′|+ |L+| where L+ := L+(y) = {j ∈ G \ H :
∑

i∈A′ yij > 0}.

By combining Lemmas 4.2.4, 4.2.7, 4.2.8, we obtain Theorem 4.2.5 for Rado valuations.

4.2.5 Phase V: Rounding the mixed integer solution

For this phase of the algorithm, we require a sparse approximate solution as in Theo-

rem 4.2.5, and exploit the choice of H as the set of most preferred items in Phase I. We

start with a mixed integer solution (y, π) as in Theorem 4.2.5. By a reduction of (y, π) we

mean a mixed integer solution (yr, π) obtained as follows. For each j ∈ L+, we pick an

arbitrary agent κ(j) ∈ A such that yκ(j)j > 0. We set yrκ(j)j = yκ(j)j , and set yrij = 0 if

i 6= κ(j). By the bound on supp(y), this amounts to setting ≤ 2|A| values yij to 0. The

proof of the next lemma is given in Section 4.5.
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Lemma 4.2.9. Let H be the set of most preferred items, and let (y, π) be a solution to

(Mixed+matching) as in Theorem 4.2.5. Let (yr, π) be a reduction of (y, π). Then in polynomial-

time we can find a matching ρ : A → H such that

NSW(yr, ρ) ≥ 1

32γ2
NSW(y, π) .

Further, if the valuations are linear, then we can find a matching ρ : A → H such that

NSW(yr, ρ) ≥ 1
8
NSW(y, π).

Such a matching ρ can be found by combining the matching π in the solution (y, π), and

the initial matching τ from Phase I that delivers the highest NSW value such that every

agent may receive only one item. We swap from π to τ on certain alternating paths and

cycles.

We are ready to prove the main results.

Theorem 1.2.4. There exists a polynomial-time 256γ3-approximation algorithm for the asym-

metric Nash social welfare problem with Rado valuations. For additive valuations, there exists a

polynomial-time 16γ-approximation algorithm.

Proof. From Theorem 4.2.5 and Lemma 4.2.9, we can obtain a solution an (128γ2)-

approximate solution (yr, ρ) to (Mixed+matching) such that for each item L+ there is ex-

actly one incident edge in supp(yr). We can obtain a 0–1 valued solution x to (NSW-IP)

by assigning each item in H according to ρ and each item j ∈ L+ to the unique agent i

with yrij > 0. Clearly, NSW(x) ≥ NSW(yr, ρ). We obtain NSW(x) ≥ OPTH /(256γ3) ≥
OPT /(256γ3) using Theorem 4.2.2. For additive valuations, we use the stronger bounds

in the same results.

Theorem 1.2.3. There exists a polynomial-time 256e3/e≈772-approximation algorithm for the

symmetric Nash social welfare problem under Rado valuations.

Proof. The proof follows exactly as the proof of Theorem 1.2.4 once we replace γ by e1/e.

Such a change is justified as in the symmetric case we can use Lemma 4.1.3 instead of the

bound given by Lemma 4.1.2.

4.2.6 Approximating NSW under submodular valuations

As we already mentioned, following our work, Li and Vondrák [89] gave a 380-

approximation algorithm for the symmetric NSW problem under arbitrary monotone sub-

modular valuations. This is obtained by strengthening and extending our approach.

Among others, the key two new ingredients and techniques are needed in Phase III
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and Phase IV to deal with multilinear extension of submodular valuations. We briefly

mention these below.

Submodular valuation functions do not have a known concave extension that can be

evaluated efficiently. Nevertheless, submodular valuations can be extended via the multi-

linear extension that is not concave but is concave along any line. Moreover, the multilin-

ear extension can be efficiently approximated. Even so, the first major issue is then how

to solve the corresponding fractional program in Phase III as this program is not convex

anymore. Li and Vondrák here employ an iterated version of a continuous greedy algo-

rithm and show that the fractional program can be 2-approximated. The second major

issue appears in Phase IV. Namely, now the extension does not have a LP formulation

that can be used for sparsifying feasible fractional solutions. They overcome this issue

by using a randomized rounding. While the randomized rounding appears simple, the

analysis is involved.

4.3 Phase III: Approximating the mixed matching relaxation

Phase III presents a general way of obtaining a 2-approximation to (Mixed+matching).

By Theorem 4.2.2, this gives a (4γ)-approximation to (Mixed relaxation), a mixed integer

relaxation of the ANSW problem. Recall that (Mixed+matching) is the following mixed

integer program

max

(∏
i∈A

(
vi(yi) + viσ(i)

)wi)1/
∑
i wi

s.t.:
∑
i∈A

yij ≤ 1 ∀j ∈ G \ H

yij ≥ 0 ∀j ∈ G \ H,∀i ∈ A

σ : A → H is a matching.

(Mixed+matching)

In the above problem, we need to allocate items G to the agents in A in order to max-

imize an objective function that is an approximation of the NSW. Items in G \ H can be

allocated fractionally to the agents without any constraints. The items in H have to be

allocated integrally via an assignment, thereby allocating exactly one item fromH to each

agentA.

While the exact computational complexity of (Mixed+matching) remains unresolved,

we show that we can 2-approximate it.

Denote L = G \ H. Let A′ be the subset of agents that have positive value for the items

in G \ H, A′ := {i ∈ A : vi(G \ H) > 0}, as some agents may only have positive value for

the items inH. Restricting (Mixed+matching) to the items L and agentsA′ and taking the
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objective yields an instance of (EG-NSW):

max
∑
i∈A′

wi log vi(yi)

s.t.:
∑
i∈A′

yij ≤ 1 ∀j ∈ L

yij ≥ 0 ∀j ∈ L,∀i ∈ A′.

The above is a convex program whenever the valuations vi(.) are concave, and we can

solve it to an arbitrary precision in polynomial time if we have access to a supergradient

oracle to the objective function. On the other hand, suppose that the variables y are fixed

in (Mixed+matching). Under the fixed y, we can find an optimal assignment σ. Namely,

an optimal assignment is exactly a maximum weight assignment in the bipartite graph

(A,H;E) where the weight of an edge ij for i ∈ A, j ∈ H is ωij := wi log(vi(yi) + vij).

Informally, (Mixed+matching) is a combination of two tractable problems. We show

that an optimal solution y∗ to the restriction of the problem to L and A′, and an optimal

assignment with respect to the fixed y∗ gives a 2-approximation for (Mixed+matching).

In Section 4.3.1 we discuss the restriction of the problem toL andA′ and give a technical

lemma. The main result of the section is presented in Section 4.3.2.

4.3.1 Properties of Eisenberg–Gale program

Let us now consider the Eisenberg–Gale program (EG-NSW). An optimal solution y∗

and the optimal Lagrange multipliers pj for j ∈ L can be interpreted as the so-called

Gale equilibrium in the market with divisible items L, agents A′, and where agent i has

valuation vi and budget wi. In particular, y∗ represent the allocations and pj for j ∈ L,

specify the prices in the market equilibrium, see e.g., [56, 101].2

Our technical lemma relates the combined difference in valuations of each agent in the

optimal solution y∗ and any other allocation y′. The rest of Section 4.3.1 is devoted to its

proof.

Lemma 4.3.1. Let y∗ be an optimal solution to (EG-NSW). Then for any feasible solution y′ and

any A′′ ⊆ A′ it holds ∑
i∈A′′

wi
vi(y

′
i)

vi(y∗i )
≤
∑
i∈A′′

wi +
∑
i∈A′

wi .

We recall some definitions and the Karush–Kuhn–Tucker (KKT) optimality conditions

in terms of subgradients; see [108, Chapter 2 and Theorem 3.27]. Given a convex function

f : RM → R, we say that g is a subgradient of h at y∗ ∈ RM if f(y) ≥ f(y∗) + g>(y − y∗)

2In case of homogeneous valuations this can be used to find a Fisher equilibrium, since Fisher and Gale
equilibria coincide under homogeneous valuations [46, 101].
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for all y ∈ RM . The set of all subgradients at a point y∗ is called subdifferential and denoted

as ∂f(y∗). If the function is differentiable then ∂f(y∗) = {∇f(y∗)}. Consider the convex

program
min f0(y)

s.t.: fj(y) ≤ 0 ∀j ∈ L

y ≥ 0 ,

where fj for j ∈ {0} ∪ L is convex. Assume that the there exists a strict feasible point

(Slater’s condition). Then, y∗ is a an optimal solution with the Lagrange multipliers p, if

and only if the following conditions hold

• fj(y∗) ≤ 0, pj ≥ 0 for all j ∈ L (primal and dual feasibility),

• 0 ∈ ∂f0(y∗) +
∑

j∈L pj∂fj(y
∗) + {µ ∈ RM− : µ>y∗ = 0} (stationarity), and

• pjfj(y∗) = 0 (complementary slackness).

We say that g is a supergradient of the concave function f if −g is a subgradient of −f .

The following proposition guarantees the existence of supergradients.

Proposition 4.3.2. The function f : RM+ → R is concave if and only if ∀y∗ ∈ RM+ it has a

non-empty superdifferential at y∗. In other words, there is g ∈ RM such that

f(y) ≤ f(y∗) + g>(y − y∗) .

We can interpret the Lagrange multipliers in (EG-NSW) as prices; the next claim states

that no agent spends more that her budget in a Gale–equilibrium.

Claim 4.3.3. Let y∗ be an optimum and p be the optimal Lagrange multipliers of (EG-NSW). For

all i ∈ A′ it holds p>y∗i ≤ wi.

Proof. Let us apply the KKT conditions to the concave maximization program (EG-NSW).

The stationary condition can be written such that for each agent i ∈ A′

0 ∈ ∂ (−wi log(vi(y
∗
i ))) + p+ {µi ∈ RL− : µ>i y

∗
i = 0} .

By the composition rules for subgradients we have

0 ∈ −wi∂vi(y
∗
i )

vi(y∗i )
+ p+ {µi ∈ RL− : µ>i y

∗
i = 0} .

Therefore, there exists a supergradient gi ∈ ∂vi(y
∗
i ) such that wig>i = vi(y

∗
i ) · (p> + µ>i )

where µi ≤ 0 and µ>i y
∗
i = 0.

By definition of subgradient (supergradient) at y∗i , we have that g>i y
∗
i ≤ vi(y

∗
i ) for all

i ∈ A′. It follows that p>y∗i ≤ wi for all i ∈ A′.
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Proof of Lemma 4.3.1. By the KKT conditions, for each i ∈ A′, we have a supergradient

gi ∈ ∂vi(y
∗
i ) such that wigi

vi(y∗i )
≤ p holds. By complementarity slackness, if pj > 0 then∑

i∈A′ y
∗
ij = 1. Let yij = max{y∗ij, y′ij}. Then we obtain:

vi(y
′
i) ≤ vi(yi) ≤ vi(y

∗
i ) + g>i (yi − y∗i ) ≤ vi(y

∗
i ) +

vi(y
∗
i )p
>

wi
· (yi − y∗i ) .

The first inequality is by monotonicity, the second by the definition of the supergradi-

ent, and the third from the KKT conditions as noted above. After rearranging we obtain
wivi(y

′
i)

vi(y∗i )
≤ wi + p>(yi − y∗i ). Summing the previous inequality for each agent i ∈ A′′ for a

subset A′′ ⊆ A′, and by definition of yi, we have

∑
i∈A′′

wivi(y
′
i)

vi(y∗i )
≤
∑
i∈A′′

wi +
∑
i∈A′′

p>(yi − y∗i ) ≤
∑
i∈A′′

wi + p>1 .

Since pj > 0 implies
∑

i∈A′ y
∗
ij = 1 we have that p>1 = p>

∑
i∈A′ y

∗
i . Then, by Claim 4.3.3

we have ∑
i∈A′′

wi
vi(y

′
i)

vi(y∗i )
≤
∑
i∈A′′

wi +
∑
i∈A′

wi

4.3.2 The approximation guarantee for the mixed matching relaxation

Lemma 4.2.4. Let H ⊆ G with |H| = |A|. Let α > 0 and y∗ be an optimal and y a fea-

sible solution of (EG-NSW) such that vi(yi) ≥ 1
α
vi(y

∗
i ) for all i ∈ A′. Let π be maximum

weight assignment in the bipartite graph with colour classes A and H, and edge weights ωij =

wi log (vi(yi) + vij) for i ∈ A, j ∈ H. Then,

NSW(y, π) ≥ 1

2α
OPTH .

Proof. Let π∗ be a maximum weight matching in the bipartite graph with colour classes

A and H and with edge weights q∗i = wi log(vi(y
∗) + vij). Equivalently, π∗ is a matching

maximizing (∏
i∈A′

(
vi(y

∗
i ) + viπ∗(i)

)wi)1/
∑
i∈A wi

.

We have the bounds

NSW(y, π) ≥ NSW(y, π∗) ≥ 1

α
NSW(y∗, π∗) . (4.6)

The first inequality is by the definition of π as the maximum weight matching. The second

inequality follows from the assumption vi(yi) ≥ 1
α
vi(y

∗
i ) for each i ∈ A′.

The rest of the proof is devoted to proving that NSW(y∗, π∗) ≥ 1
2
OPTH; together with
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(4.6), this implies the statement. Let us introduce some notation. For an agent i ∈ A, let

Y ∗i = vi(y
∗
i ) be the value agent i gets from the optimal fractional bundle y∗. Then,

NSW(y∗, π∗) =

∏
i∈A′

(Y ∗i + viπ∗(i))
wi

∏
i∈A\A′

vwiiπ∗(i)

1/
∑
i∈A wi

.

Let (y′, %) be an optimal solution achieving OPTH. For an agent i ∈ A let Yi = vi(y
′
i)

be the value agent i gets from the fractional allocation y′. Then OPTH = NSW(y′, %) =(∏
i∈A(Yi + vi%(i))

wi
)1/

∑
i∈A wi . By definition of the setA′, the agents inA\A′ do not value

the items in L. Thus, by monotonicity

NSW(y′, %) =

∏
i∈A′

(Yi + vi%(i))
wi

∏
i∈A\A′

vwii%(i)

1/
∑
i∈A wi

.

By the choice of π∗, we have

NSW(y∗, π∗) ≥ NSW(y∗, %) =

∏
i∈A′

(Y ∗i + vi%(i))
wi

∏
i∈A\A′

vwii%(i)

1/
∑
i∈A wi

.

Combining the last two we have:
NSW(y′, %)

NSW(y∗, π∗)
≤
(∏
i∈A′

(
Yi + vi%(i)

Y ∗i + vi%(i)

)wi)1/
∑
i∈A wi

.

Let A′′ = {i ∈ A′ : Yi > Y ∗i } be the set of agents that get more value from y′ than y∗.

Then, for i ∈ A′ \ A′′ the fraction
Yi + vi%(i)

Y ∗i + vi%(i)

is trivially bounded by 1. On the other hand,

for i ∈ A′′ we have
Yi + vi%(i)

Y ∗i + vi%(i)

≤ Yi
Y ∗i

. Since OPTH = NSW(y′, %) it follows

OPTH

NSW(y∗, π∗)
≤
(∏
i∈A′

(
Yi + vi%(i)

Y ∗i + vi%(i)

)wi)1/
∑
i∈A wi

≤
(∏
i∈A′′

(
Yi
Y ∗i

)wi)1/
∑
i∈A wi

.

We claim that the last expression is bounded by 2. By Lemma 4.3.1 we have
∑

i∈A′′ wi
Yi
Y ∗i
≤∑

i∈A′′ wi +
∑

i∈A′ wi. Then by the inequality between weighted arithmetic and geometric

mean we have

∏
i∈A′′

(
Yi
Y ∗i

)wi/∑i∈A wi

≤
∑

i∈A′′ wi
Yi
Y ∗i

+
∑

i∈A\A′′ 1∑
i∈Awi

≤
∑

i∈A′′ wi +
∑

i∈A′ wi + |A \ A′′|∑
i∈Awi

≤ 2 .

The lemma follows.
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4.4 Phase IV: Obtaining a sparse approximate solution

Recall that a continuous Rado valuation is defined as an optimum of the LP (4.3). For the

valuation vi of agent i ∈ A, this is defined by a bipartite graph (G, Vi;Ei) with costs on the

edges ci : Ei → R+, and a matroidMi = (Vi, Ii) with a rank function ri = rMi
.

The program (EG-NSW) forA′ and L = G \ H can be thus written as follows.

max
∑
i∈A′

wi log

∑
j∈L

∑
k∈Vi

cijkzijk


s.t.:

∑
i∈A′

yij ≤ 1 ∀j ∈ L∑
k∈Vi

zijk ≤ yij ∀i ∈ A′,∀j ∈ L

∑
j∈L

∑
k∈S

zijk ≤ ri(S) ∀i ∈ A′,∀S ⊆ Vi

y ≥ 0 , z ≥ 0 .

Without loss of generality we can assume that the second set of constraints always holds

with equality, i.e., yij =
∑

k∈Vi zijk for j ∈ L and i ∈ A′. By eliminating the variables y,

the program (EG-NSW) becomes:

max
∑
i∈A′

wi log

∑
j∈L

∑
k∈Vi

cijkzijk


s.t.:

∑
i∈A′

∑
k∈Vi

zijk ≤ 1 ∀j ∈ L

∑
j∈L

∑
k∈S

zijk ≤ ri(S) ∀i ∈ A′,∀S ⊆ Vi

z ≥ 0 ,

(EG-Rado)

Using this formulation, we first show that the Eisenberg–Gale type convex pro-

gram (EG-NSW) can be solved exactly in polynomial time for Rado valuations (Sec-

tion 4.4.1). We then transform the optimal solution to a sparse approximate solution (Sec-

tion 4.4.2).

4.4.1 Solving the Eisenberg-Gale relaxation

In this section, we prove the following lemma.

Lemma 4.2.7. Suppose that for each agent i ∈ A, vi is a Rado valuation given by a bipartite graph

(G, Vi;Ei), integer costs ci : Ei → Z and a matroidMi = (Vi, Ii) as in Definition 1.2.2. Let
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T = maxi∈A |Vi|, and C = maxi∈A ‖ci‖∞. Let the weights wi > 0 be rational numbers given

as quotients of two integers at most U . Assume the matroidsMi are given by rank oracles. Then,

(EG-NSW) has a rational solution with poly(|A|, |G|, T, logC, logU) bit-complexity, and such

a solution can be found in poly(|A|, |G|, T, logC, logU) arithmetic operations and calls to the

matroid rank oracles.

As noted above, (EG-NSW) with Rado valuations for the set of agents A′ and set of

goods L is equivalent to (EG-Rado). Throughout, we assume this program is feasible, i.e.

it has a solution with finite objective value. This is a mild condition only requiring the

existence of at least one edge (j, k) ∈ Ei with cijk > 0 and ri({k}) = 1 for every i ∈ A′.
In general, one can only expect to solve convex programs approximately: no rational

solution may even exist. Vazirani [117] defines rational convex programs where a fi-

nite optimum exists with bounded bit-complexity in the input size, where the input is

described by a finite set of parameters. This model is not directly applicable for our

program (EG-Rado) as it is described with an exponential number of constraints. The

bound poly(|A|, |G|, T, logC, logU) does not take into account the matroidal constraints;

it is polynomial in the amount of information needed to describe the objective function.3

We first show that the set of optimal solutions is a polytope where the vertices have

polynomially bounded bit-complexity.

Lemma 4.4.1. For an NSW problem instance with Rado valuations as in Lemma 4.2.7, the set of

optimal solutions forms a polytope. The bit-complexity of each vertex of this polytope is bounded

as poly(|A|, |G|, T, logC, logU).

To prove the above lemma we use the KKT conditions for (EG-Rado). Let pj ’s and

αi(S)’s denote the Lagrange multipliers corresponding to the first and second sets of the

constraints, respectively. It holds:

(i) ∀j ∈ L : pj ≥ 0.

(ii) ∀i ∈ A′,∀S ⊆ Vi : αi(S) ≥ 0.

(iii) ∀j ∈ L : pj > 0 =⇒
∑

i∈A′,k∈Vi

zijk = 1.

(iv) ∀i ∈ A′,∀S ⊆ Vi : αi(S) > 0 =⇒
∑

j∈L,k∈S

zijk = ri(S).

(v) ∀i ∈ A′,∀j ∈ L,∀k′ ∈ Vi :
cijk

pj +
∑

S:k∈S αi(S)
≤
∑

j∈L,k′∈Vi cijk′zijk′

wi
.

3We note that for exponential size linear programs, a standard way to bound the encoding size is giving
bounds on facet/vertex-complexity, defined later in this section. The program (EG-Rado) maximizes a
concave function over a polytope that has facet complexity O(|A|T ).
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(vi) ∀i ∈ A′,∀j ∈ L : zijk > 0 =⇒ cijk
pj +

∑
S:k∈S αi(S)

=

∑
j∈L,k∈Vi cijk′zijk′

wi
.

In (v) and (vi), we have divided the conditions by pj +
∑

S:k∈S αi(S) and multiplied by∑
j∈L,k′∈Vi cijk′zijk′ . By the feasibility assumption, both these must be positive.

We say that (p, α) are optimal Lagrange multipliers if they satisfy (i)–(vi) together with

any optimal solution z to (EG-Rado).

Claim 4.4.2. There exists an optimal solution z with optimal Lagrange multipliers (p, α) with

the following property: for every agent i ∈ A′, the support of the vector αi is a chain of sets

S
(i)
1 ⊂ · · · ⊂ S

(i)
hi
⊆ Vi for some hi ∈ N.

Proof of Claim. We use a standard uncrossing argument. Let z be an optimal solution to

(EG-Rado). Let us consider the set of optimal Lagrange multipliers (p, α). For a fixed

z, the set of vectors (p, α) satisfying the constraints (i)–(vi) forms a polytope, since each

constraint can be equivalently written as a linear constraint, and (iii), (iv), and (vi) imply

boundedness. Thus, there exists a solution (p, α) that maximizes the objective

ϕ(p, α) :=
∑
i∈A′

∑
S⊆Vi

|S|2αi(S) .

We claim that such a solution satisfies the conditions. This follows by showing that for

each i ∈ A′, if αi(X), αi(Y ) > 0 then either X ⊆ Y or Y ⊆ X .

For a contradiction, assume X \ Y, Y \X 6= ∅, and let ε := min{αi(X), αi(Y )} > 0. Let

us define α′ as follows:

• α′i(X ∪ Y ) = αi(X ∪ Y ) + ε;

• α′(X) = α(X)− ε and α′(Y ) = α(Y )− ε;

• if X ∩ Y 6= ∅, then α′i(X ∩ Y ) = αi(X ∩ Y ) + ε;

• if S /∈ {X, Y,X ∪ Y,X ∩ Y } then α′i(S) = αi(S); and

• if j 6= i then α′j(S) = αj(S) for all S.

We claim that (p, α′) are also optimal Lagrange multipliers. This gives a contradiction,

since ϕ(p, α′) > ϕ(p, α). Constraints (i)–(iii) are immediate. Constraints (v) and (vi)

follow since
∑

S:k∈S α
′
i(S) =

∑
S:k∈S αi(S) holds for all i ∈ A′ and all k ∈ Vi. Finally, (iv)

follows by observing that for any i ∈ A′ and any j ∈ L,∑
j∈L,k∈X

zijk +
∑

j∈L,k∈Y

zijk = ri(X) + ri(Y ) ≥ ri(X ∪ Y ) + ri(X ∩ Y )

≥
∑

j∈L,k∈X∩Y

zijk +
∑

j∈L,k∈X∪Y

zijk =
∑

j∈L,k∈X

zijk +
∑

j∈L,k∈Y

zijk ,
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using the submodularity of ri. We must have equality throughout, implying (iv) for S =

X ∪ Y and S = X ∩ Y . �

Proof of Lemma 4.4.1. Let z be any optimal solution to (EG-Rado) and let (p, α) be any op-

timal Lagrange multipliers as in Claim 4.4.2, with αi supported on the chain S(i)
1 ⊂ S

(i)
2 ⊂

. . . ⊂ S
(i)
hi

.

Let L′ ⊆ L be the subset of goods with pj > 0, and let E ′i ⊆ Ei be the set of edges (j, k)

for which cijk/(pj +
∑

S:k∈S αi(S)) is maximized. Clearly, zijk > 0 only if (j, k) ∈ E ′i.
We perform the following variable substitution:

qj :=
1

pj
∀j ∈ L, and Q

(i)
jt :=

1

pj +
∑hi

b=t αi
(
S

(i)
b

) ∀i ∈ A′, ∀t ∈ [hi] . (4.7)

We show that, provided the supports L′, E ′i, we can define a linear program in the

variables qj ’s, Q(i)
jt ’s, and zijk as follows. We include all feasibility constraints on zijk from

(EG-Rado) and the following additional constraints:∑
i∈A′,k∈Vi

zijk = 1 ∀j ∈ L′

∑
j∈L,k∈S

zijk = ri(S) ∀i ∈ A′,∀S ⊆ Vi

wicijkQ
(i)
jt ≤

∑
j∈L,k′∈Vi

cijk′zijk′ ∀i ∈ A′, ∀(j, k) ∈ Ei, and t s.t. k ∈ S(i)
t \ S

(i)
t−1

wicijkQ
(i)
jt =

∑
j∈L,k′∈Vi

cijk′zijk′ ∀i ∈ A′,∀(j, k) ∈ E ′i, and t s.t. k ∈ S(i)
t \ S

(i)
t−1

Q
(i)
jt ≤ Q

(i)
j(t+1) ∀i ∈ A′, j ∈ L′, t ∈ [hi − 1]

qj = 0 ∀j ∈ L \ L′

zijk = 0 ∀i ∈ A′, (j, k) ∈ Ei \ E ′i
Q, q ≥ 0

Let P ∈ R(
∑
i∈A′ |Ei|)×L′×(

∑
j∈F ′ hi) be the set of feasible solutions to this LP. According to

(i)–(vi), (z, q, Q) ∈ P , where (q,Q) is obtained from (p, α) as in (4.7). Conversely, if

(z′, q′, Q′) ∈ P , then we can map (q′, Q′) to a nonnegative (p′, α′) such that (4.7) holds and

(z′, p′, α′) satisfy (i)–(vi).

Since all coefficients in the system are rational numbers from the input, and the feasible

region P is bounded, it follows that P is a polytope where all basic feasible solutions are

rational vectors with encoding size polynomially bounded in the input.

Let us fix (q′, Q′) in a basic feasible solution, and let P ′′ = {z′′ : (z′′, q′, Q′) ∈ P}. Then,

z′′ ∈ P ′′ if and only if z′′ is optimal with respect to (EG-Rado). Further, P ′′ is a polytope

defined by linear constraints with polynomially bounded coefficients. Thus, the claim
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follows.

The Ellipsoid Method for Rational Polyhedra We quickly recall some relevant concepts

for the Ellipsoid Method from the book [64] by Grötschel, Lovász, and Schrijver. A strong

separation oracle for the convex set K ⊆ Rn takes as input a vector x ∈ Rn, and either

returns the answer x ∈ K , or returns a vector a ∈ Rn such that 〈a, x〉 > max{〈a, z〉 : z ∈
K}.

Let us recall the definitions of facet and vertex complexity. We only include the defini-

tions for polytopes, instead of general polyhedra.

Definition 4.4.3 ([64, Definition (6.2.2)]). Let P ⊆ Rn be a polytope.

1. We say that P has facet-complexity at most ϕ, if P can be defined by a system of linear

inequalities with rational coefficients such that each inequality has encoding length at most

ϕ. If P = Rn, we require ϕ ≥ n + 1. The triple (P ;n, ϕ) is called a well-described

polytope.

2. We say that P has vertex-complexity at most ν, if P is the convex hull of a finite set of

rational vectors, all having encoding length at most ν. P = ∅, then we require ν ≥ n.

Lemma 4.4.4 ([64, Lemma (6.2.4)]). If P has vertex-complexity at most ν, then P has facet-

complexity at most 3n2ν.

Theorem 4.4.5 ([64, Theorems (6.4.9), (6.5.7)]). For a well-described polyhedron (P ;n, ϕ) given

by a strong separation oracle, there exists oracle-polynomial time algorithm that either returns a

vertex solution x ∈ P , or concludes that P = ∅. Given a linear objective function 〈c, x〉, if

P 6= ∅ then there exists an oracle-polynomial time algorithm that finds an optimal vertex solution

to max 〈c, x〉 s.t. x ∈ P .

An oracle-polynomial time algorithm means that the number of arithmetic operations

and calls to the strong separation oracle is bounded as poly(ϕ); note that ϕ ≥ n.

Proof of Lemma 4.2.7. Let P be the set of feasible solutions and P ∗ the set of optimal solu-

tions to (EG-Rado). We note that P 6= ∅ since z = 0 is a feasible solution. Further, P ∗ 6= ∅
since P is bounded. Lemma 4.4.1 asserts that this is a nonempty polytope with vertex-

complexity poly(|A|, |G|, T, logC, logU); thus (P ∗,
∑

i∈A |Ei|, ϕ) is a well-described poly-

tope for some ϕ ∈ poly(|A|, |G|, T, logC, logU) by Lemma 4.4.4.

We now describe the strong separation oracle to P ∗. For a vector z ∈ R×i∈AEi , we first

check whether z ∈ P . Checking the first set of |A| constraints is straightforward. The

submodular constraints can be verified by solving |A| submodular function minimization

problems. We either conclude z ∈ P , or obtain a separating hyperplane for z and P that

is also a separating hyperplane for z and P ∗.
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If z ∈ P , the we compute the gradient ∇f(z), where f(z) denotes the objective

function. We then solve the linear optimization problem max〈∇f(z), x〉 s.t. x ∈ P .

(P ∗,
∑

i∈A |Ei|,
∑

i∈A |Ei| + log T ) is a well-described polytope since all coefficients are

0 and 1 and the left hand side values are at most T . Using the strong separation oracle for

P we just described, the second half of Theorem 4.4.5 shows that we can find an optimal

solution x∗ ∈ P in time poly(|A|, |G|, T, logC, logU).

If max〈∇f(z), x∗〉 = max〈∇f(z), z〉, i.e., if z itself is an optimal solution, then we con-

clude that z ∈ P ∗. Otherwise, 〈∇f(z), x〉 > 〈∇f(z), z〉 is a valid separating hyperplane.

Thus, by the first half of Theorem 4.4.5, we can find an optimal solution x ∈ P ∗ in time

poly(|A|, |G|, T, logC, logU).

This method requires the implementation of the ellipsoid method for linear optimiza-

tion inside the separation oracle. We now show that this can be easily avoided by always

using the hyperplane 〈∇f(z), x〉 > 〈∇f(z), z〉, without solving the LP. If z ∈ P \ P ∗, then

this is always valid, but if z ∈ P ∗, then this holds with equality instead of strict inequality.

Nevertheless, we can run the ellipsoid method using the gradients as separating direc-

tions (without solving the LP). This ultimately leads to concluding P ∗ = ∅, since the algo-

rithm returns a separating hyperplane for every z ∈ R×i∈AEi . At this point, we consider

the feasible solution z ∈ P with the largest objective value f(z) visited by the algorithm,

and conclude that this solution must have been optimal. This is true since if no optimal

solutions would have been visited, then every separating hyperplane we used would be

a valid strong separator for P ∗, and thus, we could not have reached the false conclusion

P ∗ = ∅.

Remark 4.4.6. We note that a similar argument was used by Jain [73, Theorem 12], showing

that whenever a convex set is given with a strong separation oracle and is guaranteed to contain

a point of bit-complexity at most ν, then a feasible solution can be found in polynomial time,

using simultaneous Diophantine approximation. Our proof leverages the stronger property that

the optimal solution set P ∗ is a well-described polytope.

4.4.2 Sparse solutions to Eisenberg-Gale relaxation

In this section we prove Lemma 4.2.8. Recall that the polytope P ∗ is the set of optimal so-

lutions to (EG-Rado) as in Lemma 4.4.1. In Lemma 4.4.7 and Corollary 4.4.8, we show that

the solution of every vertex solution of P ∗ is sparse. In Lemma 4.2.8 we further sparsify

such a solution by losing at most half of the value for each agent. The arguments in both

steps rely on bounding the number of non-zero variables in particular linear systems.

Consider an optimal solution z for (EG-Rado) that is also a basic solution to P ∗. Ac-

cording to Theorem 4.4.5, we can require that the optimal solution found in Lemma 4.2.7

is a basic solution. We define v∗i :=
∑

k∈Vi cijkzijk as the optimum utility value attained by
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agent i ∈ A′; by strict convexity of the objective, these values are the same for all optimal

solutions.

Lemma 4.4.7. Every optimal solution z ∈ P ∗ satisfies |supp(z′)| ≤ |A′| + 2|L+(z′)| − |R1| −
|R2|, where

L+(z) =

{
j ∈ L :

∑
i∈A′

∑
k∈Vi

zijk > 0

}
,

R1 = {j ∈ L : ∃! i ∈ A′ such that 0 <
∑
k∈Vi

zijk < 1},

R2 = {j ∈ L : ∃! i ∈ A′ such that zijk = 1 for some k ∈ Vi} .

The set L+ is the set of allocated items in L by z; R1 is the set of items in L each of

which is allocated to one agent only, but the item is not fully allocated; and R2 is the set of

items in L each of which is fully allocated to agent via single edge of the graph (G, Vi;Ei).

Obviously, R1 and R2 are disjoint.

Proof of Lemma 4.4.7. The following LP gives a description of P ∗. We note that this is a

different description from the extended system in the proof of Lemma 4.4.1: here, we can

make use of the optimal values v∗i and thus do not require the dual variables. Note that

the notion of vertex solutions is independent of the describing system.∑
j∈L,k∈Vi

cijkzijk ≥ v̂∗i ∀i ∈ A′

∑
i∈A′,k∈Vi

zijk ≤ 1 ∀j ∈ L

∑
j∈L,k∈S

zijk ≤ ri(S) ∀i ∈ A′,∀S ⊆ Vi

z ≥ 0 .

In order to prove the bound on the support of a vertex (basic feasible) solution to P ∗, we

upper-bound the number of linearly independent tight constraints. Trivially, there are at

most |A′| tight constraints of the first type. By definition of sets L+ and R1 there are at

most |L+| − |R1| tight constraints of the second type.

Let us bound the maximal number of tight submodular constraints. By Claim 4.4.2, for

each agent i ∈ A′, the maximal set of linearly independent tight submodular constraints

forms a chain. Formally, for i ∈ A′ there exist sets Si1 ⊂ Si2 ⊂ · · · ⊂ Sihi ⊆ Vi, such

that the set of constraints {
∑

j∈G,k∈Sit
zijk ≤ ri(S

i
t)}

hi
t=1 generates all the tight submodular

constraints for agent i. All together, there are at most |A′| + |L+| − |R1| +
∑

i∈A′ hi tight

constraints.

Now, let us consider an element j ∈ R2 and let i be the agent such that zijk = 1 for some
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k ∈ Vi. Since ri is rank function we have zijk = 1 = ri({k}). Let Sib be the smallest set in the

i-th chain containing k. Since {k} is also tight we can assume that k = Sib\Sib−1. Therefore,

the tight inequalities corresponding to Sib, S
i
b−1 and zijk ≤ 1 (or equivalently

∑
k∈Vi zijk ≤

1) are not linearly independent and we can drop the inequality corresponding to zijk ≤ 1

from the minimal set of linearly independent tight inequalities. In other words, we do not

have to count the inequality corresponding to j, for j ∈ R2 and we can replace the term

|L+| by |L+| − |R2|.
Further, by flow conservation we have |L+| ≥

∑
i∈A′,j∈L,k∈Vi

zijk ≥
∑
i∈A′

ri(S
i
hi

) ≥
∑
i∈A′

hi.

Thus,

|supp(z)| ≤ |A′|+ 2|L+| − |R1| − |R2| .

Corollary 4.4.8. Consider an optimal vertex solution y of (EG-NSW) for Rado valuations. Then,

|supp(y)| ≤ |A′|+ 2|L+(y)| − |L1(y)|, where

L+(y) = {j ∈ L :
∑
i∈A′

yij > 0},

L1(y) = {j ∈ L : ∃!i ∈ A′ such that yij > 0}.

Proof. The optimal vertex solution y can be written as yij =
∑

(i,k)∈Ei zijk for a vertex

solution z of P ∗. We have |supp (z)| ≤ |A′| + 2|L+| − |R1| − |R2|. The first condition

holds by definition of y. By construction we also have L+(y) = L+(z) =: L+. Moreover,

R1, R2 ⊆ L1.

By definition of L1, R1 and R2; we have j ∈ L1 \ (R1 ∪ R2) if and only if j is allocated

fully to a unique agent i and there exist different k1, k2 ∈ Vi with zijk1 > 0 and zijk2 > 0.

Both variables zijk1 and zijk2 contribute that yij > 0 for the same i, j. Thus,

|supp(y)| ≤ |A′|+ 2|L+| − |R1| − |R2| − |L1 \ (R1 ∪R2)| = |A′|+ 2|L+| − |L1|.

Further sparsification We showed that any basic optimal solution to (EG-NSW) under

Rado valuations has support of size |A′| + 2|L+| − |L1|. Next, we show that any such

sparse solution can be further sparsified by losing a fraction of valuation of each agent.

The main observation is that given a feasible allocation for a Rado valuation function, all

“sub-allocations” behave in a “locally subadditive” way, as explained next.

Let y′ be a feasible allocation and z′ its corresponding representation in (EG-Rado).

Our argument will scale down yij = qijy
′
ij for some qij ∈ [0, 1]. We have vi(y

′
i) =∑

j∈L,k∈Vi cijkz
′
ijk. Thus, we can write vi(y′i) =

∑
j∈L u(i, j) where u(i, j) =

∑
k∈Vi cijkz

′
ijk

is the value agent i gets from good j. Hence, we can represent yij = qijy
′
ij as yij =
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qij
∑

k∈Vi z
′
ijk. Assuming qij ∈ [0, 1] we have

vi(yi) ≥
∑

j∈L,k∈Vi

qij · cijkz′ijk =
∑
j∈L

qij · u(i, j) ,

where we use the fact that whenever z′ is feasible for (EG-Rado) then so is the allocation

given by qijz′ijk for j ∈ L, k ∈ Vi. In particular, this justifies the notation yij = qijy
′
ij for

qij ∈ [0, 1] and it holds that vi(yi) ≥
∑

j∈L qiju(i, j). Such a property is used to prove the

following lemma.

Lemma 4.2.8. Suppose the functions vi are Rado valuations, and let ŷ be a feasible solution to

(EG-NSW). Then, in polynomial time we can find a feasible solution y such that

(i) vi(y) ≥ 1
2
vi(ŷ),

(ii) |supp(y)| ≤ 2|A′|+ |L+| where L+ := L+(y) = {j ∈ G \ H :
∑

i∈A′ yij > 0}.

Given a ŷ, we can transform it to a vector y′ with |supp(y′)| ≤ |A′|+ 2|L+(y′)|− |L1(y′)|
by Corollary 4.4.8. Then, the idea is to exhibit q such that the vector y defined as yij = qijy

′
ij

satisfies the lemma. Such q needs to preserve at least half of the value for each agent and

should set at least |L+| − |L1| − |A′| values of y′ij to 0. We can find such a q as a basic

feasible solution of a system of linear (in)equalities.

Proof. Let y′ be a solution of (EG-NSW) with |supp(y′)| ≤ |A′|+2|L+(y′)|− |L1(y′)|, given

by Corollary 4.4.8. Let D = {j ∈ L+(y′) : ∃i, i′, i 6= i′ such that y′ij > 0 and y′i′j > 0},
i.e., D is the set of items in L+(y′) allocated to at least two different agents by y′. Hence,

|D| = |L+(y′)| − |L1(y′)|. For each j ∈ D, let D(j) be a set containing two different agents

i, i′ getting the item j in y′. Such two agents are picked arbitrarily, but fixed throughout

the proof for each j. Let A′′ = ∪j∈DD(j).

We consider the following linear system with variables q. The value qij represents the

fraction of y′ij agent i keeps. By the above, if agent obtained u(i, j) value from y′ij units of

j then agent receives qiju(i, j) value from qijy
′
ij units of good j whenever qij ∈ [0, 1].

∑
j∈D

qiju(i, j) ≥ 1

2

∑
j∈D

u(i, j) ∀i ∈ A′′

qij + qi′j = 1 ∀j ∈ D, {i, i′} = D(j)

q ≥ 0 .

Let us define y: set yij = 0 if qij = 0 and yij = y′ij for all other values. Then for any

feasible q we have

• The second set of constraints together with non-negativity of q guarantees qij ∈ [0, 1]

and hence we can treat the values vi(yi) ≥ qijvi(y
′
i) as described before the statement

of the lemma.
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• By the first set of constraints and definition of y, we have

vi(yi) ≥
∑
j∈D

qiju(i, j) +
∑
j∈L\D

u(i, j) ≥ 1

2

∑
j∈D

u(i, j) +
1

2

∑
j∈L\D

u(i, j) ≥ 1

2
vi(y

′) .

Therefore, any feasible solution of the linear system in q gives an allocation that satisfies

the first condition of the lemma. Let us show that the system is indeed feasible. Namely,

setting qij = 1
2

for all i ∈ A′′ and all j ∈ D we see that the above system is feasible.

Since, the system is feasible we can also find a basic feasible solution q. By counting

the number of tight constraints we show that there are at least |L+(y′)| − |L1(y′)| − |A′′|
zeros in q. Thus, allocation y defined as yij = qijy

′
ij will have support smaller by at least

|L+(y′)| − |L1(y′)| − |A′′|.
The maximum number of (tight) constraints is obviously |A′′| + |D|. Thus, |supp(q)| ≤
|A′′| + |D|. Crucially, by the second constraint we have L+(y) = L+(y′). Hence, we

only need to compare |supp(y′)| and |supp(y)|. The allocation y′ has exactly 2|D| positive

variables when restricted on D and A′′. On the other hand, q and therefore y take at most

|D| + |A′′| non-zero values on D and A′′. It follows that y has at least |D| − |A′′| less

positive variables than y′, i.e., |supp(y)| ≤ |supp(y′)| − (|D| − |A′′|). By Corollary 4.4.8

and since |A′′| ≤ |A′|we have |supp(y)| ≤ 2|A′|+ 2|L+| − |L1(y′)| − |D|. By recalling that

|D| = |L+| − |L1(y′)|we get |supp(y)| ≤ 2|A′|+ |L+|.

4.5 Phase V: Rounding the mixed solution

We present the rounding for a sparse solution of (Mixed+matching). We recall that by

sparse we mean a feasible solution (y, π) of (Mixed+matching) satisfying:

supp(y) ≤ 2|A|+ |L+|where L+ =

{
j ∈ G \ H :

∑
i∈A′

yij > 0

}
.

Such a sparse solution is rounded by setting 2|A| positive variables in y to 0, i.e., a

reduction of (y, π) and allocating the items according to the support of the reduction.

Formally, by a reduction of (y, π) we mean a mixed integer solution (yr, π) obtained as

follows (see Figure 4.1). For each item j a fraction of which is allocated by y (i.e., j ∈ L+),

we pick an arbitrary agent κ(j) getting the item (i.e., yκ(j)j > 0). We set yrκ(j)j = yκ(j)j , and

set yrij = 0 if i 6= κ(j). In words, the agent κ(j) keeps getting the same amount in reduction

and no other agent receives any part of item j. By the bound on supp(y), this amounts to

setting ≤ 2|A| values yij to 0. Looking at the reduction from the agents perspective: let

di be the number of items agent i lost by reduction, i.e., the number of items j for which

yij > 0 and yrij = 0. Then,
∑

i∈A′ di ≤ 2|A|.
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1 2 3 4 5 6 7 8 9

agents: items:

a1 a2 a3

supp(y):

a1 a2 a3

supp(yr):

Figure 4.1: Support graph of an allocation y. Support graph of reduction yr obtained by
κ(1) = κ(2) = κ(3) = a1, κ(4) = κ(5) = κ(6) = κ(7) = a2, and κ(8) = κ(9) =
a3. It follows that da1 = 2, da2 = 1 and da3 = 3.

The reduction (yr, π) might have an arbitrarily worse objective value than (y, π) (e.g., if

for agent i we have viπ(i) = 0 and reduction sets yri = 0), but we show that we can find a

different assignment ρ such that (yr, ρ) is only worse by a constant factor than (y, π), no

matter how the reduction is carried out. The assignment ρ is obtained as a combination of

τ (the assignment obtained in Phase I) and π.

For a fixed reduction and the values di, ρ and its properties are given by the following

lemma.

Lemma 4.5.1 (Key rounding lemma). LetH be the set of most preferred items, (y, π) a feasible

solution to (Mixed+matching), and let di ∈ N, (di ≥ 1) for each i ∈ A. In O(|A|) time, we can

find an assignment ρ such that

NSW(y, ρ) ≥ 1

2

(∏
i∈A

(di + 1)−wi

)1/
∑
i∈A wi

NSW(y, π)

and for each i ∈ A it holds either

(a) viρ(i) ≥ 1
di
vi(yi), or

(b) for each j ∈ L it holds vij ≤ 1
di+1

(vi(yi) + viρ(i)).

Intuitively, the above lemma states that starting with a feasible allocation y, we can find

an assignment ρ that might have smaller NSW(y, ρ) than NSW(y, π) but has the following

nice property for each agent i ∈ A:

• In case (a), i values the item ρ(i) at least as she values a 1/di fraction of yi (and thus

at least a 1/(di+1) fraction of vi(yi)+viρ(i)). Hence, agent i keeps a 1/(di+1)-fraction

of her value just by keeping ρ(i) even if we can take away all items i gets from L.
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• In case (b), every item L has a small value for i when compared to the combined

value of yi and ρ(i). That is, i values yi and ρ(i) significantly more than any di items

combined from L. Looking at it from the other side, even if we were to take away

any di in L items from i she will still keep a fraction of the value.

The essence of both cases is that the reduction will not hurt the agent too much. Before we

present the proof of Lemma 4.5.1, we show that this is enough to prove Lemma 4.2.9.

Lemma 4.2.9. Let H be the set of most preferred items, and let (y, π) be a solution to

(Mixed+matching) as in Theorem 4.2.5. Let (yr, π) be a reduction of (y, π). Then in polynomial-

time we can find a matching ρ : A → H such that

NSW(yr, ρ) ≥ 1

32γ2
NSW(y, π) .

Further, if the valuations are linear, then we can find a matching ρ : A → H such that

NSW(yr, ρ) ≥ 1
8
NSW(y, π).

Proof of Lemma 4.2.9. We first prove the lemma for the general case. Let yr be any reduction

of y and let di be the number items agent i lost in reduction. By sparsity in Theorem 4.2.5

we have
∑

i∈A di ≤ 2|A|.
We use Lemma 4.5.1 to obtain ρ. Note that Lemma 4.5.1 requires di ≥ 1 so we define

di = max{1, di}. Thus, now we have the bound
∑

i∈A(di+1) ≤ 4|A|. Let ρ be the matching

obtained by Lemma 4.5.1 given di’s and y. By Lemma 4.1.2 we have

(∏
i∈A

(di + 1)−wi

)1/
∑
i∈A wi

≥ 1

4γ
.

Thus, NSW(y, ρ) ≥ 1
8γ

NSW(y, π). By the same inequality, it suffices to show that

NSW(yr, ρ) ≥
(∏

i∈A(di + 1)−wi
)∑

i∈A wi NSW(y, ρ). We do so, by showing that for each

i ∈ A it holds vi(yri ) + viρ(i) ≥ 1
di+1

(vi(yi) + viρ(i)). By Lemma 4.5.1 for agent i we have

either (a) or (b).

(a) In this case we have diviρ(i) ≥ vi(yi). Thus, viρ(i) ≥ 1
di+1

(vi(yi)+viρ(i)). Consequently,

vi(y
r
i ) + viρ(i) ≥ 1

di+1
(vi(yi) + viρ(i)).

(b) We have vij ≤ 1
di+1

(vi(yi) + viρ(i)) for all j ∈ L. Denote with Di the set of di items

j for which yij > 0 and yrij = 0. By subadditivity vi(Di) ≤
∑

j∈Di vij . Therefore,

vi(Di) ≤ di
di+1

(vi(yi) + viρ(i)) ≤ di
di+1

(vi(yi) + viρ(i)). Hence, vi(yi)− vi(Di) + viρ(i) ≥
1

di+1
(vi(yi) + viρ(i)). By subadditivity and monotonicity we have vi(yri ) ≥ vi(yi) −

vi(Di), proving in this case as well that vi(yri ) + viρ(i) ≥ 1
di+1

(vi(yi) + viρ(i)). The

lemma follows.
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For additive valuations, we recall Theorem 4.2.6. It gives an optimal solution

of (EG-NSW) that is supported on a forest in which each tree contains an agent. In particu-

lar, this implies a nice property for the reductions of y. Namely, we can choose a reduction

yr in which di ≤ 1 for each agent i ∈ A. Such a reduction is obtained by rooting each

tree of the forest at an arbitrary agent and letting κ(j) to be the parent agent of item j.

Informally, each agent loses at most one item. Therefore, di = 1 for all i ∈ A. The lemma

follows by Lemma 4.5.1.

The proof of Lemma 4.5.1 is presented in the following section.

4.5.1 Constructing the new matching

Recall Phase I where we defined τ as an assignment maximizing
(∏

i∈A v
wi
iτ(i)

)
andH the

set of items assigned by τ . We number the agents A = {1, 2, . . . , n}, and renumber the

itemsH = {1, 2, . . . , n} such that τ = {(i, i) : i ∈ A}. In other words, τ assigns item i ∈ G
to agent i ∈ A.

Intuition We are given a feasible solution (y, π) of (Mixed+matching) and τ . For the

sake of illustration assume that by using the matching τ instead of π we don’t lose too

much in the objective, i.e.,

NSW(y, τ) ≥
(∏
i∈A

(di + 1)−wi

)1/
∑
i∈A wi

NSW(y, π) .

In this case, each agent i gets the item i from H. Let us show that under the above as-

sumption we can set ρ = τ , i.e., that for each agent i either (a) or (b) holds.

Claim 4.5.2. Let i ∈ A. Then either vii > 1
di
vi(yi) or for any j ∈ L it holds vij ≤ 1

di+1
(vii +

vi(yi))

Proof of Claim. By the optimality of τ it then holds vii ≥ vij for all j ∈ L. If vii ≥ 1
di
vi(yi)

then (a) holds. Otherwise, we have that divii < vi(yi). Combining it with vij < vii, we

have that

(di + 1)vij ≤ (di + 1)vii < vi(yi) + vii = vi(yi) + viτ(i) . �

Therefore, our goal is to construct ρ by “replacing” as much of π with τ without losing

too much in the objective. By Claim 4.5.2 for any agent for which ρ(i) = τ(i) we will have

either (a) and (b). We formalize this idea below, and give a way of constructing ρ such that

even when ρ(i) 6= τ(i) still we have either (a) and (b).
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Algorithm Let (y, π) be a feasible solution of (Mixed+matching). We denote with Yi the

value agent i gets in y, i.e., Yi = vi(yi). We construct new assignment ρ by combining π

and τ . In particular, whenever π(i) = τ(i) then we set ρ(i) := π(i) = τ(i) and otherwise

exactly one of the following will be the case: ρ(i) = τ(i), ρ(i) = π(i) or ρ(i) = ∅. Notation

ρ(i) = ∅ represents the case that i is not allocated any item from H. (Formally, we can

allocate one item to each agent since |H| = |A| but as some agents might value some

items at 0 it is simpler to say that agent is not allocated an item by ρ.)

Consider the symmetric difference of the two assignments π∆τ . Each component is

an alternating cycle; we consider the components one-by-one. Take any component C of

π∆τ with c agents and c items. Let the agents in the component be a1, a2, . . . , ac. The

numbering is modulo c: ac+k = ak for all k ∈ Z. By the convention on the numbering, the

corresponding items are also numbered a1, a2, . . . , ac, and (ak, ak) ∈ τ for all k ∈ [c]. We

order the agents around the cycle such that (ak, ak−1) ∈ π for all k ∈ [c]. Let B := B(C) =

{t ∈ [c] : Yat > datvatat−1}. We consider two cases based on the size of B:

|B| = 0. In this case we set ρ(at) = π(at) = at−1 for all t ∈ [c].

|B| ≥ 1. First, we trim π by setting π(at) = ∅ for each t ∈ B. We have
Yat+vatat−1

Yat
≤ 2 for each

t ∈ B since dat ≥ 1. In words, each agent losses at most half of her value.

After trimming π, the connected component C decomposes into several alternating

paths, see Figure 4.2. Consider one such path, starting in agent ak and ending in item

ar. It follows that k ∈ B and t 6∈ B for all k < t ≤ r. We consider the following ratio

that measures the change in the objective value by augmenting π over the previously

mentioned path:

ϕ(C, k, r) :=

(
Yak

vakak + Yak

)wak r∏
t=k+1

(
vatat−1 + Yat
vatat + Yat

)wat
.

If it holds that ϕ(C, k, r) ≤
∏r−1
t=k(dat + 1)wat then we say that the interval [k, r] is

reversible. Moreover, we set ρ(at) = τ(at) = at for all k ≤ t ≤ r. If [k, r] is not

reversible then we set ρ(ak) = ∅ and ρ(at) = π(at) = at for all k < t ≤ r. We do the

same for every augmenting path.

To prove Lemma 4.5.1, we first show that by changing the assignment from π to ρ the

objective value of (Mixed+matching) cannot decrease by too much.

Lemma 4.5.3. The assignment ρ can be constructed in linear time (in n), and it holds

NSW(y, π)

NSW(y, ρ)
≤ 2 ·

(∏
i∈A

(di + 1)wi

)1/
∑
i∈A wi

.
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a1 a2 a3 a4 a5 a6 a7 a8

a1 a2 a3 a4 a5 a6 a7 a8

a9 a10

a9 a10

σ :

ρ :

agents: items:π :

C :

a1a1

a1 a2 a3 a4 a5 a6 a7 a8

a1 a2 a3 a4 a5 a6 a7 a8

a9 a10

a9 a10

C :

a1a1

a1 a2 a3 a4 a5 a6 a7 a8

a1 a2 a3 a4 a5 a6 a7 a8

a9 a10

a9 a10 a1a1

B = {4, 9}

trim

[4, 8] reveresible

[9, 3] non-reveresible

Figure 4.2: Assignments τ, π, and ρ resulting fromB = {4, 9} and reversible interval [4, 8].

Proof. It suffices to prove the lemma for each of the connected components C of π∆τ . For

|B| = 0 the lemma holds trivially. So assume that |B| ≥ 1 for the rest of the proof.

The procedure terminates in linear time, as we only require one pass through the agents

and items in C . To prove the bound on NSW(y,ρ)

NSW(y,π)
, we show that for every interval [k, r] the

objective value “before averaging” decreases at most by factor 2wak
∏r
t=k(dat + 1)wat .

If interval [k, r] is not reversible, then the change in the objective function is captured

by
(
vakak−1

+Yak
Yak

)wak
, as for every agent at with t ∈ [k + 1, r], we have ρ(at) = π(at), and

ρ(ak) = ∅. Since k ∈ B, it follows that Yak > dakvakak−1
≥ vakak−1

. Thus,
(
vakak−1

+Yak
Yak

)wak
<

2wak .

If, on the other hand, [k, r] is reversible, then the difference in the objectives is exactly

(
vakak−1

+ Yak
vakak + Yak

)wak r∏
t=k+1

(
vatat−1 + Yat
vatat + Yat

)wat
=

(
vakak−1

+ Yak
Yak

· Yak
vakak + Yak

)wak r∏
t=k+1

(
vatat−1 + Yat
vatat + Yat

)wat
.

As [k, r] is reversible ϕ(C, k, r) =
(

Yak
vakak+Yak

)wak ·∏r
t=k+1

(
vatat−1+Yat
vatat+Yat

)wat
<
∏r
t=k(dat +

1)wat . Since k ∈ B and dak ≥ 1 we again have
vakak−1

+Yak
Yak

< 2. Hence, the change in the

objective value is bounded by 2wak ·
∏r
t=k(dat + 1)wat .
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It is left to show that for each agent i either (a) or (b) holds. Recall that Yi = vi(yi).

Lemma 4.5.4. Let i ∈ A. Then we either have

(a) viρ(i) ≥ 1
di
vi(yi), or

(b) for each j ∈ L it holds vij ≤ 1
di+1

(vi(yi) + viρ(i)).

To prove the lemma we use the following simple claim, which can applied to any agent

i 6∈ B:

Claim 4.5.5. For any agent i ∈ A, if Yi ≤ diviπ(i), then
viπ(i) + Yi
vii + Yi

≤
(di + 1)viπ(i)

vii
.

Proof of Lemma 4.5.4. If ρ(i) = i, that is, agent i receives the same item in ρ as in τ then the

lemma follows by Claim 4.5.2. For the rest of the proof we assume ρ(i) 6= i. Hence, either

ρ(i) = π(i) or ρ(i) = ∅.
We consider the component C of τ∆π containing an agent i. We use the notation as

before, denoting the agents in C by a1, a2, . . . , ac, and letting i = ak.

If ρ(ak) = π(ak) = ak−1 then for i it holds (a). Namely, ρ(ak) = ak−1 implies that k 6∈ B
as otherwise this would be trimmed. Thus Yak ≤ dakvakak−1

; or equivalently vakak−1
≥

1
dak
Yak .

If on the other hand ρ(ak) = ∅, we have that k ∈ B and also that the interval [k, r]

with starting and k and ending in r that corresponds to some alternating path in C is not

reversible (otherwise, ρ(ak) = ak). Therefore, ϕ(C, k, r) >
∏r
t=1(dat + 1)wat . Recall that for

each such considered interval we have k ∈ B and t 6∈ B. Starting with
∏r
t=k(dat + 1)wat <

ϕ(C, k, r) and then by Claim 4.5.5 we obtain

1 <
r−1∏
t=k

(dat + 1)−wat ·
(

Yak
vakak + Yak

)wak
·

r∏
t=2

(
vatat−1 + Yat
vatat + Yat

)wat
≤ (dak + 1)−wak ·

(
Yak

vakak + Yak

)wak
·

r∏
t=2

(
vatat−1

vatat

)wat
.

We further bound

1 < (dak + 1)−wak ·
(
Yak
vakj
· vakj
vakak

)wak
·

r∏
t=2

(
vatat−1

vatat

)wat
.

By the optimal choice of τ , for every j ∈ Lwe have

1 ≤
(
vakak
vakj

)wak
·

r∏
t=2

(
vatat
vatat−1

)wat
.

Combining the last two inequalities, we obtain Yak > (dak + 1)vakj . Hence, in this case (b)

holds, by recalling that i = ak and ρ(ak) = ∅.
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4.6 Connection to spending restricted equilibrium

The first constant factor approximation algorithm for the Nash social welfare problem was

given by [35] using the spending restricted (SR) equilibrium; and we (Section 3.2) as well

as other authors have since used this concept to desing approximation algorithms for the

NSW problem [2, 33, 53, 56].

An important feature of the SR-equilibrium is that the items highly valued by the agents

are recognized as items with price more than 1 (expensive) in the equilibrium. Isolating

such items is at the essence of the approximation algorithms in the literature. The main

idea is that each of the expensive items must be allocated integrally to one agent only,

thereby preventing the unbounded integrality gap arising when several agents share a

very desirable good, see [35, Lemma 3.1].

In this section, we illustrate a connection between the approach we use and the SR-

equilibrium. In that light, for the rest of the section we focus on the case of symmetric

Nash social welfare problem where agents have additive valuations. We show that the set

of the most preferred items H obtained in Phase I contains all the expensive items in an SR-

equilibrium. Similarly to the algorithms relying on the SR-equilibrium where expensive

items have special status during rounding, the items inH are allocated integrally through-

out our algorithm. Intuitively, this is how we are overcoming the unbounded integrality

gap.

SR-equilibrium From the definition, it follows that and x and a price vector p form an

SR-equilibrium for additive valuations if and only if every agent spends all of her budget

(1 unit) on her MBB items at prices p, and the total spending on each item is equal to

min{1, pj}. By scaling the valuation of each agent we can assume that the maximum bang

per buck is one for all agents. Under such a scaling, in an SR-equilibrium we also have

that vij = pj whenever item j is MBB for agent i and vij < pj otherwise. We work with

this assumption for the rest of this section.

NSW and SR-equilibrium Consider a NSW welfare instance with items G and agents

A where each agent i has additive valuation. For the NSW problem, the valuations are

discrete function and the value of a subset of items S for agent i is given by vi(S) =∑
j∈S vij . The extension of an additive valuation vi to RG+ is naturally defined as vi(xi) =∑
j∈G vijxij for all xi ∈ RG+. We construct the market from the NSW instance from the same

set of items G that are now declared divisible and the set of agents A each equipped with

the extension of the discrete additive valuation and budget one.

Let (x, p) be an SR-equilibrium in such a market. Define the set of expensive goods H

as H := {j ∈ G : pj > 1}. Cole nad Gkatzelis [35] proved that
(∏

j∈H pj
)1/|A|

is an
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upper-bound on the optimal value of NSW, and gave a rounding algorithm that uses an

SR-equilibrium as a starting point.

In the next lemma we show that H ⊆ H, where H is the set of the most preferred

goods obtained in Phase I of our algorithm. Recall that τ is an assignment maximizing(∏
i∈A viτ(i)

)1/|A| and that H := τ(A). In words, τ maximizes the NSW welfare under the

constraint that each agent gets exactly one item.

For the purposes of the proof recall that the the spending graph (A,G;Ex) of an alloca-

tion x is defined as ij ∈ Ex if and only if xij > 0.

Lemma 4.6.1. It holds H ⊆ H.

Proof. Using a cycle canceling argument, we can assume that the spending graph of SR-

equilibrium (x, p) is a forest F . Moreover, since x is an SR-equilibrium allocation, every

tree contains at least one agent and one item. The next claim states that an expensive item

is a leaf in some tree in F only in a very special case.

Claim 4.6.2. Let T = (A1,G1;E1) be a tree component of F and j ∈ G1 an item in T . If pj > 1

then either |A1| = |G1| = 1 or j is not a leaf of T .

Proof of Claim. By definition of SR-equilibrium each agent spends all of her budget which

is 1. If j is a leaf, then there is unique agent i buying j. Moreover, i spends all 1 unit of her

budget on j and cannot buy any other item. Thus,A1 = {i} and G1 = {j}. �

Let κ : H → A such that xκ(j)j > 0. Such an function κ exists by definition of SR-

equilibrium. Moreover, by Claim 4.6.2 we can choose κ to be an assignment (root every

tree of F in an arbitrary item and assign the expensive item to any child agent). We are

ready to prove the lemma.

For the sake of contradiction suppose that there is an item j1 ∈ H such that j1 6∈ H. In

other words, pj1 > 1 and j1 is not allocated to any agent by τ . By definition we have H ≤
|A| = |H|. Consider the component of the symmetric difference τ∆κ containing j. Since

j1 6∈ H and H = τ(A), this component forms a path starting in j1 and ending in a vertex

jk+1 in G \ H ; see Figure 4.3. Let us denote the path as j1, κ(j1), j2, κ(j2), . . . , κ(jk), jk+1

where jt+1 = τ(κ(jt)) for t ∈ [k], and jt ∈ H for t ≤ k.

j1 j3 j4 j5

κ(j1)
agents: items:

κ(j2) κ(j3) κ(j4)

κ :

σ :

j2 = σ(κ(j1))
j1 ∈ H, j1 �∈ H

for 1 < j ≤ k, ji ∈ H ∩H

jk+1 �∈ H, jk+1 ∈ H

Figure 4.3: A component of κ∆τ containing j1.

Recall, that MBB of each agent is one, therefore vij = pj for each i, j with xij > 0.

By definition of κ we have that vκ(jt)jt ≥ vκ(jt)jt+1 for t ∈ [k − 1]. Moreover, we have
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vκ(j1)j1 = pj1 > 1 ≥ pjk+1
≥ vκ(jk),k+1. Since jt+1 = τ(κ(jt)), augmenting over the above

path will contradict the optimality of τ .

4.7 Separating Rado and GS valuations

We show that Rado valuations form a strict subclass of GS valuations, thereby answer-

ing negatively the verions of Frank’s question for the valuation functions. Lehmann,

Lehmann, and Nisan [85, Example 1] gave an example that is GS valuations valuation

but not OXS (assignment). We show that the same example is also not a Rado valuation;

the proof is similar.

Lemma 4.7.1. Consider the following valuation on the ground set G = {1, 2, 3, 4}. We define

v(S) = 10 if |S| = 1, and v(S) = 19 for all sets with |S| ≥ 2 except v({1, 3}) = v({2, 4}) = 15.

This is a GS valuation, but not a Rado valuation.

Proof. The proof that v is a gross substitutes valuation is given in [85, Claim 2]. Let us

show that it is not a Rado valuation. For a contradiction, assume v is a Rado valuation as

in Definition 1.2.2. We can assume that the matroid on V does not contain any loops (rank-

0 elements), and any parallel elements, i.e., any set S ⊆ V with |S| ≥ 2 and r(S) = 1; we

can contract any such set to a single element and obtain another representation.

Trivially, we can assume that no edge in the bipartite graph (G, V ;E) has cost more

than 10. By v({1}) = 10 we have an element u ∈ V with c1u = 10. Since v({2}) = 10,

there is u′ ∈ V such that c2u′ = 10. Since v({1, 2}) < 20 we have u′ = u as otherwise

(1, u), (2, u′) would be an independent matching of cost 20, since r({u, u′}) = 2 by the

above assumption.

An analogous argument shows that cju = 10 for all j ∈ {1, 2, 3, 4}. We must have

cjk ≤ 5 for any j ∈ {1, 2, 3, 4} and any k ∈ V \ {v}, as otherwise we would have an

independent matching of cost > 15 covering {1, 3} or {2, 4}, again using the assumption

of no parallel elements in V . Now, it is clear that we cannot realize v({1, 2}) = 19.

The reason why Rado valuations are not a rich enough class is that it is not closed under

endowment operations. Given a valuation v : 2G → R and a subset T ⊆ G, we can define the

valuation v′ : 2G
′\T → R+ as

v′(X) = v(X ∪ T )− v(T ) .

Using the definition of valuated generalized matroids, it is immediate that if v is GS val-

uation than so is v′. It is not difficult to check that the example in Lemma 4.7.1 arises as

the endowment of a Rado valuation, showing that Rado valuations are not closed under
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endowment operations. Note that endowement is combination of a contraction of the set

T and (additive) shift by v(T ). This fact is explained in more detail in Section 7.1.



5 Complete classes of valuated matroids

In this chapter, we study the classes of valuated matroids. A function f :
(
V
d

)
→ R ∪ {−∞}

is a valuated matroid if and only if:

∀X, Y ∈
(
V

d

)
with |X| = |Y | and ∀i ∈ X \ Y :

f(X) + f(Y ) ≤ max
j∈Y \X

{f(X − i+ j) + f(Y + i− j)}.

We start by either recalling and introducing the valuated versions of the classical matroid

operations (Section 5.1). These include deletion, contraction, dual, truncation, principal

extension, induction by a bipartite graph, induction by a network, direct sum, and valu-

ated matroid union. All of the previously mentioned operations turn out to preserve the

property of being a valuated matroid.

In Section 5.2, we introduce complete classes of valuated matroids. A class of valuated

matroids is complete if it is closed under deletion, contraction, dual, truncation and prin-

cipal extension (although contraction could be dropped as it can be realized via deletion

and dual, see Lemma 5.1.13). The main message here is that a complete class is also closed

under all other of the above operations. We chose the five to define complete classes as

they are the most basic ones.

The smallest complete class of valuated matroids are valuated gammoids – analogously

to the matroids where the smallest complete class of matroids is the class of gammoids.

We know that not all matroids are gammoids, so the next question arises: What is the

smallest complete class of valuated matroids containing all trivially valuated matroids?

The answer turns out to be the class of all R-minor valuated matroids (Section 5.3).

Chapter 6 is devoted to showing that not all valuated matroids are R-minor. Note that

this is in contrast with complete classes of matroids where the above question has trivial

answer.

Preliminaries We introduce the notation used in Chapters 5, 6 and 7. We denote a bipar-

tite graph G by G = (V, U ;E), where V, U are the partitioned node sets and E the edge

set. If the bipartite graph is weighted, we denote the edges weights by c ∈ RE . For Y ⊆ U

or Y ⊆ V , we denote the set of neighbours of Y by Γ(Y ) = ΓG(Y ). A network N is a

98
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directed graph denoted as (T,A) where T is the node set and A the arc set; if weighted

then we denote the weights by c ∈ RA.

In these chapters the matroids are given asM = (U, r) where U is the ground set and

r = rM is the rank of the matroid. The operations on matroids follows the notation of

valuated matroids introduced in Section 5.1, as these are special cases of the valuated

operations. Given a set V , we denote its set of subsets of cardinality d by
(
V
d

)
.

5.1 Operations on valuated matroids

For a valuated matroid f , its (effective) domain dom(f) is formed by those sets X on which

f(X) > −∞. The exchange property implies that it forms the set of bases of a matroid.

The rank rk(f) of a valuated matroid f is the rank of the underlying matroid dom(f).

Definition 5.1.1. Let f :
(
V
d

)
→ R ∪ {−∞} be a valuated matroid with d = rk(f), and Y ⊂ V

some subset of V .

(i) If V−Y has full rank in dom(f) then the deletion of f by Y is the function f\Y :
(
V−Y
d

)
→

R ∪ {−∞} defined as

(f \ Y )(X) = f(X), ∀X ∈
(
V − Y
d

)
.

This is also called the restriction to V \ Y and denoted by f |(V \ Y ). If V − Y does not

have full rank in dom(f), the deletion is the function attaining only −∞.

(ii) If Y is independent in dom(f), then the contraction of f by Y is the function f/Y :
(
V−Y
d−|Y |

)
→

R ∪ {−∞} defined as

(f/Y )(X) = f(X ∪ Y ), ∀X ∈
(
V − Y
d− |Y |

)
.

If Y is not independent in dom(f), the contraction is the function attaining only −∞.

(iii) The dual of f is the function f ∗ :
(

V
|V |−d

)
→ R ∪ {−∞} defined as

f ∗(X) = f(V −X), ∀X ∈
(

V

|V | − d

)
.

(iv) The truncation of f is the function f (1) :
(
V
d−1

)
→ R ∪ {−∞} defined as

f (1)(X) = max
v∈V \X

f(X ∪ v), ∀X ∈
(

V

d− 1

)
.
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The iterated truncation for 1 ≤ r ≤ d− 1 is given by f (r+1) = (f (r))(1).

(v) For w ∈ (R ∪ {−∞})V , the principal extension fw of f with respect to w is the valuated

matroid on V ∪ p of rank d, for an additional element p, with fw|V = f and

fw(X ∪ p) = max
v∈V \X

(f(X ∪ v) + wv) for all X ∈
(

V

d− 1

)
.

Remark 5.1.2. Our definition of deletion and contraction differs from the usual definition, e.g.

in [42], in that we impose these rank conditions. The usual definition of deletion (and dually con-

traction) for matroids could equally be formulated by first performing a truncation (to the rank of

the remaining set) and then a deletion. While for unvaluated matroids this is the same, for valuated

matroids the naive deletion, where the remaining set does not have full rank, would result in a

function only taking−∞ as value. Our reason to be more restrictive with deletion and contraction

is that these definitions allow for simple ‘layer-wise’ extensions to valuated generalized matroids in

Section 7.1.

Example 5.1.3. The most basic examples of valuated matroids are those with trivial valuation,

where only the values 0 and −∞ are attained (following naming as in [47]). Such valuated ma-

troids can be identified with the underlying matroid. Observe that the operations listed in Defini-

tion 5.1.1 agree with the usual matroid operations for trivially valuated matroids.

Example 5.1.4. Valuated matroids corresponding to the layers of the assignment valuations are

transversally valuated matroids. For a graph G = (V, U ;E) with edge weights c ∈ RE , we

define transversally valuated matroid f :
(
V
|U |
)
→ R ∪ {−∞} for X ∈

(
V
d

)
as the maximum

weight of a matching whose endpoints in V are exactly X ; if no such matching exists then we set

f(X) = −∞.

Let V = [4] and consider the valuated matroid f :
(
V
2

)
→ R ∪ {−∞} defined as

f(12) = −∞ , f(13) = 0 , f(14) = 0 , f(23) = 1 , f(24) = 1 , f(34) = 1 .

This valuated matroid is transversally valuated as it can be realized via the weighted bipartite graph

shown in Figure 5.1.

Example 5.1.5. One source of valuated matroids arises from matrices with polynomial entries. Let

A be a matrix with d rows and columns labelled by V , whose entries are univariate polynomials

over a field. For J ⊆ V , we denote by A[J ] the submatrix formed by the columns labelled by J .

The valuated matroid induced by A is defined to be

f(J) = deg detA[J ] ,
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1 2 3 4

Figure 5.1: The bipartite graph realising the transversally valuated matroid from Exam-
ple 5.1.4. The dashed edges have weight zero and the solid edges have weight
one.

where f(J) = −∞ if detA[J ] = 0 or A[J ] is non-square, see [95, Section 2.4.2] for further

details.

Recall the valuated matroid from Example 5.1.4. Observe that we can also represent this matrix

via the polynomial matrix

A =

[
1 t t 0

0 0 1 1

]

e.g. f(23) = deg(t) = 1.

Definition 5.1.6 (Direct sum, Valuated matroid union). Let f1 and f2 be valuated matroids on

ground sets V1 and V2 with ranks d1 and d2.

• For V1 ∩ V2 = ∅, the direct sum of f1 and f2 is (f1 ⊕ f2) :
(
V1∪V2
d1+d2

)
→ R ∪ {−∞}, where

(f1 ⊕ f2)(X1 ∪X2) = f1(X1) + f2(X2) for all X1 ∈
(
V1

d1

)
, X2 ∈

(
V2

d2

)
.

• For V := V1 ∪ V2, the (valuated) matroid union of f1 and f2 is (f1 ∨ f2) :
(

V
d1+d2

)
→

R ∪ {−∞}, where

(f1 ∨ f2)(X) = max

{
f1(Y ) + f2(X \ Y ) : Y ⊆ X , Y ∈

(
V1

d1

)
, X \ Y ∈

(
V2

d2

)}
.

Undefined sets get the value −∞.

Actually, the direct sum can be considered as valuated matroid union by embedding

both ground sets in a common bigger ground set. We give both definitions for sake of

explicitness.

Example 5.1.7. Given a matroid on some ground set, it is often useful to extend that ground set

to a larger ground set by adding coloops, elements contained in all bases. The same construction

can be generalized to valuated matroids in the following way.

Let f be a valuated matroid on ground set V , and W a disjoint set from V . We define the free

valuated matroid frW on W to take the value 0 on W and −∞ everywhere else. Then the direct
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V

Vp

Figure 5.2: Given a valuated matroid f on V and (w ∈ R ∪ {−∞})V , the principal ex-
tension fw is realized as the induction of f via the above bipartite graph. The
dashed edges are weighted zero, while the solid edges (p, v) are weighted wv.

sum of f with frW is given by

(f ⊕ frW )(X) =

f(Y ) X = Y ∪W

−∞ otherwise
.

In particular, note that f = (f ⊕ frW )/W . This construction of adding coloops to a valuated

matroid will be useful throughout.

5.1.1 Induction by networks

The next operation is very powerful and can be seen as a vast generalization of Rado’s

theorem (Theorem 6.1.2). Somewhat surprisingly, we show that it can be modelled by the

basic operations defined so far.

Definition 5.1.8. Let N = (T,A) be a directed network with a weight function c ∈ RA. Let

V, U ⊆ T be two non-empty subsets of nodes of N . Let g be a valuated matroid on U of rank d.

Then the induction of g by N is a function Φ(N, g, c) :
(
V
d

)
→ R ∪ {−∞}. For X ∈

(
V
d

)
, one

sets Φ(N, g, c)(X) to

max

{∑
a∈P

c(a) + g(Y ) : node-disjoint paths P in N : ∂V (P) = X ∧ ∂U(P) = Y

}
.

Note that the maximization can also result in −∞ if there exists no node-disjoint paths from X to

a set with finite value. It is even possible that dom(Φ(N, g, c)) = ∅.
In the special case that the directed network is bipartite with the edges directed from V to U ,

we can also consider this as an undirected weighted bipartite graph and call the corresponding

operation induction by bipartite graphs.

Theorem 5.1.9 (Special case of [95, Theorem 9.27]). LetN, g and c as in Definition 5.1.8. Then

if Φ(N, g, c) 6≡ −∞ the induced function is a valuated matroid.
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While it is a special case of induction by networks, induction by bipartite graphs is an

extremely powerful operation. Many of the operations introduced so far can be modelled

using induction by bipartite graphs, which is a key observation in the proof of Theo-

rem 5.1.12.

Remark 5.1.10. One such example is principal extension, which is displayed in Figure 5.2. Ex-

plicitly, for a valuated matroid g on ground set U and weight vector w ∈ R ∪ {−∞}U , let

G = (U ′ ∪ {p}, U ;E) where U ′ a copy of U , the edge set E consists of (u′, u) and (p, u) for

all u ∈ U , and c the weight function that takes the value zero on (u′, u) and wu on (p, u). Then the

principal extension gw of g with respect to w is precisely Φ(G, g, c). More details why this holds

are provided in Lemma 5.1.15.

Furthermore, the following lemma shows we can realize induction by a network as in-

duction by a bipartite graph followed by a contraction. Given the power of this operation,

it shall be a key construction throughout.

Lemma 5.1.11. LetN be a directed network with weight function d and g a valuated matroid such

that f = Φ(N, g, d) is again a valuated matroid.

Then there is a bipartite graph G with weight function c, a valuated matroid h and a subset of

the nodes of G such that f = (Φ(G, h, c))/W .

Proof. Let N = (T,A) be the weighted directed network such that the valuated matroid

f on the subset V of T is the induction of the valuated matroid g on the subset U of T

through N . Let W = T \ (V ∪ U) and W ′ a disjoint copy of W . We define the bipartite

graph G = (V ∪W,U ∪W ′;E) with weight function c ∈ RE where for each arc (a, b) ∈ A,

we add the edge (a, b) if b ∈ U or (a, b′) if b ∈ W to E with weight d(a, b). Furthermore,

we add the zero weight edges (w,w′) for all w ∈ W with copy w′. An example of this

construction is displayed in Figure 5.3.

Let X ⊆ V and Y ⊆ U be subsets of equal cardinality. We observe that node disjoint

paths from X to Y in N are in bijection with matchings from X ∪W to Y ∪W ′ in G, and

furthermore preserve weights. Let P be a set of node disjoint paths in N , the edges of G

corresponding to arcs of P form a matching of equal weight on a subset of the nodes from

X ∪W to Y ∪W ′. For any nodes w ∈ W that are not used in P , we add the corresponding

zero weight edge (w,w′) to the matching: this gives a perfect matching from X ∪W to

Y ∪ W ′ of the same weight at P . Conversely, any perfect matching µ from X ∪ W to

Y ∪ W ′ gives rise to a set of node disjoint paths by contracting the (w,w′) in G for all

w ∈ W . This precisely recovers the network N from G, and the matching µ becomes a set

of node disjoint paths from X to Y in N .

We let h be the valuated matroid g ⊕ frW ′ as defined in Example 5.1.7. Consider f(X)

for some X ⊆ V . As node disjoint paths from X in N are bijection with matchings on
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Figure 5.3: An example of the construction from Lemma 5.1.11: a network N and the cor-
responding bipartite graph G. A set of node-disjoint paths in N correspond to
a matching in G, both displayed in bold.

X ∪W in G, we can replace N with G in the definition of f :

f(X) = max

{∑
e∈µ

c(e) + g(Y ) : matching µ in G ∧ ∂V ∪W (µ) = X ∪W ∧ ∂U∪W ′(µ) = Y ∪W ′

}
.

Furthermore, by definition of hwe can replace g(Y ) with h(Y ∪W ′) in the above equation.

This implies that f(X) = Φ(G, h, c)(X ∪W ); furthermore this holds for arbitrary X and

so f = Φ(G, h, c)/W .

We end this section by showing that valuated matroids are closed under all the opera-

tions introduced so far.

Theorem 5.1.12. The class of valuated matroids is closed under the operations deletion, contrac-

tion, dualization, truncation, principal extension, direct sum, matroid union.

To prove the lemma we use several lemmas.

Lemma 5.1.13. f/Y = (f ∗ \ Y )∗

Proof. At first, observe that the independence of Y in dom(f) implies that it is contained

in a basis. Hence, V − Y has full rank in dom(f ∗) = dom(f)∗ and we can actually apply

the deletion operation.

Let X ∈
(
V−Y
d−|Y |

)
. Then, as the codomain of (f ∗ \ Y ) is V − Y , we get (f ∗ \ Y )∗(X) =

(f ∗ \ Y )(V − (Y ∪X)). Note that X and Y are disjoint by definition. Furthermore, from

V − (Y ∪X) ⊆ V − Y we obtain (f ∗ \ Y )(V − (Y ∪X)) = f ∗(V − (Y ∪X)). Since the

codomain of f ∗ is V , this yields f ∗(V − (Y ∪X)) = f(X ∪ Y ).

Lemma 5.1.14. f (1) = f0/{p}, where 0 is the zero vector and p is the element added in the

principal extension.

Proof. As p is not a loop of dom(f0) one can form this contraction and rk({p}) = 1. Now

the claim follows directly from the definition of contraction and truncation.
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The valuated truncation is further studied in [94]. It is shown that this actually gives rise

to a valuation on all independent set such that this forms a generalized valuated matroid.

Lemma 5.1.15. Let G = (V, U ;E) be a bipartite graph with weight function c ∈ RE and g be a

valuated matroid on U . Then Φ(G, g, c) = ((. . . (gc1) . . . )c|V |) \U , where ci ∈ (R ∪ {−∞})U is

the function c restricted to the edges incident with i ∈ V extended with value −∞ where it is not

defined. Furthermore, these principal extensions commute.

Proof. The claim follows by induction. We start with the bipartite graph G0 = (U ′, U ;E0)

where U ′ is a copy of U , and E0 consists of edges (u′, u) between copies of elements.

Furthermore the weight function d0 takes the value zero on all elements of E0.

We inductively define Gi = (Vi, U ;Ei) where Vi = U ′ ∪ {1, . . . , i} by adding the node

i ∈ V to Gi−1 with edges (i, u) for all u ∈ U . Furthermore the weight function di takes the

value of di−1 for all edges in Ei−1, and the value ciu on the new edges (i, u). These graphs

are displayed in Figure 5.4. We claim that Φ(Gi, g, di) = (. . . (gc1) . . . )ci .

Note that for the base case, we have that Φ(G0, g, d0) = g, as all edges inG0 have weight

zero.

For the general case, consider Φ(Gi, g, di) and let X be a d-subset of Vi = U ∪{1, . . . , i}.
If i /∈ X , then Φ(Gi, g, di) = Φ(Gi−1, g, di−1) as the graphs Gi and Gi−1 are the same

outside of node i. If X = i ∪ Y , then

Φ(Gi, g, di)(X) = max

 ∑
(k,v)∈P

di(k, v) + g(Z)

∣∣∣∣∣∣ ∂Vi(P) = X , ∂U(P) = Z


= max

c(i, u) +
∑

(k,v)∈P ′
di(k, v) + g(Z ′ ∪ u)

∣∣∣∣∣∣ ∂Vi(P ′) = Y , ∂U(P) = Z ′


= max

u∈Vi\Y
(ciu + Φ(Gi−1, g, di)(Y ∪ u)) .

Note that for u /∈ U , we define ciu = −∞, therefore this maximum will only be achieved

for some u ∈ U unless no matching P exists. This is precisely the principal extension of

Φ(Gi−1, g, di−1) with respect to ci. By the inductive hypothesis, this implies Φ(Gi, g, di) =

(. . . (gc1) . . . )ci .

The final observation is that G is obtained from the graph GV by deleting the copy of U

that shares no edges with V . As they share no edges, deleting these nodes is equivalent to

deletion on the level of valuated matroids, therefore Φ(G, g, c) = Φ(GV , g, dV ) \ U .

Finally, we note that as elements of V share no edges, we can inductively build the

graph GV by adding nodes in any order. On the level of valuated matroids, this implies

the principal extensions commute.

Let V1 and V2 be the respective (not necessarily disjoint) ground sets for the valuated
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UVi Ui− 1 1· · ·

G0 Gi GV

Gi−1 G

Figure 5.4: The inductive construction of graphs corresponding to principal extension
from Lemma 5.1.15.

V1 V2

V = V1 ∪ V2

v

vv

Figure 5.5: The graph G that induces the union f1 ∨ f2, as described before Lemma 5.1.16.

matroids f1 and f2 with ranks d1 and d2 and let V = V1 ∪ V2. We define a bipartite graph

G = (V, V1∪̇V2;E) where one colour class is V and the other colour class is the disjoint

union of copies of V1 and V2. The edge set E consists of edges (v, v) connecting a node

to any of its copies, all weighted zero by weight function c; in particular, a node of V has

degree two if and only if it represents an element in V1 ∩ V2. This graph is displayed in

Figure 5.5.

Lemma 5.1.16. The union f1 ∨ f2 can be written as an induction Φ(G, f1 ⊕ f2, c).

Proof. Any matching M such that ∂V (M) = X corresponds to a decomposition X =

X1∪̇X2 where Xi ⊆ Vi. Therefore

Φ(G, f1 ⊕ f2, c)(X) = max

{
(f1 ⊕ f2)(X) : X1 ∈

(
V1

d1

)
, X2 = X \X1 ∈

(
V2

d2

)}
,

which is precisely the definition of f1 ∨ f2.

Proof of Theorem 5.1.12. Deletion, dualization and direct sum are all covered by [95, The-

orem 6.13], parts (6), (2) and (8) respectively. Lemma 5.1.13 implies closure under con-

traction. Lemma 5.1.16 and Remark 5.1.10 show matroid union and principal extension

are special cases of induction by networks, which valuated matroids are closed under via

Theorem 5.1.9. Finally, Lemma 5.1.14 implies closure under truncation.
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Figure 5.6: The inclusion relationship between classes of valuated matroids.

5.2 Classes of valuated matroids

In the following, we consider certain classes of valuated matroids that arise naturally in

combinatorial optimization.

(i) The class of transversally valuated matroids are those valuated matroids arising from

trivially valuated free matroids by induction via a bipartite graph.

(ii) The class of valuated gammoids are contractions of those valuated matroids arising

from trivially valuated free matroids by induction via a bipartite graph.

(iii) The class of R-induced valuated matroids are those valuated matroids arising from

trivially valuated matroids by induction via a bipartite graph.

(iv) The class of N-induced valuated matroids are those valuated matroids arising from

trivially valuated matroids by induction via a network.

(v) The class of R-minor valuated matroids are those valuated matroids arising as contrac-

tions of R-induced valuated matroids.

Transversally valuated matroids are essentially the layers of assignment valuations.

They were extensively studied in [47], which also considered the class of valuated strict

gammoids, a subclass of valuated gammoids.

The inclusion relationship between these classes is shown in Figure 5.6. These are laid

out in the following example and lemmas.

Example 5.2.1. Consider the valuated matroid on six elements of rank two that takes the value

−∞ on {12, 34, 56}, and 0 on all other pairs of elements. This valuated matroid, referred to as

the “Snowflake”: in particular it is not a transversally valuated matroid as shown in [47, Example

3.10]. However, it is both a valuated gammoid and an R-induced valuated matroid, as given by the

representations in Figure 5.7.

Lemma 5.2.2. The class of valuated gammoids forms a strict subclass of R-minor valuated ma-

troids.



Husić E. Nash Welfare, Valauted Matroids, and Gross Substitutes.
5.2. CLASSES OF VALUATED MATROIDS 108

1 2 3 4 5 6 1 2 3 4 5 67

U2,3

Figure 5.7: Two representations of the Snowflake, defined in Example 5.2.1. The left is
a valuated gammoid representation, where the element 7 is contracted. The
right is an R-induced representation with induced matroid U2,3. All edges are
weighted zero.

Proof. Containment is given by Theorem 5.2.6. By [104, Lemma 1], valuated gammoids

are strictly base-orderable. However, any trivially valuated matroid that is not strictly base-

orderable is an R-induced valuated matroid, giving strict containment.

Lemma 5.2.3. The class of R-induced valuated matroids forms a subclass of N-induced valuated

matroids and a subclass of R-minor valuated matroids. Furthermore, N-induced valuated matroids

form a subclass of R-minor valuated matroids.

Proof. The inclusion of R-induced within N-induced and R-minor are immediate from

definition. Furthermore, Lemma 5.1.11 shows how to represent an N-induced valuated

matroid as an R-minor valuated matroid.

The strictness of the inclusion between N-induced valuated matroids and R-minor val-

uated matroids remains unresolved. While this is reminiscent of the strict inclusion of

transversal matroids within gammoids, the authors don’t have a proof at hand for the

valuated case. From an algorithmic point of view, it would be desirable for N-induced

valuated matroids to exhibit concise representations in the spirit of the small representa-

tion of gammoids in [83]; see [110, Section 39.4a] for more on transversal matroids and

their contractions, the gammoids.

Conjecture 5.2.4. Let N = (T,A) be a directed network with a weight function c ∈ RA. Let

V, U ⊆ T be two non-empty subsets of nodes of N . Let g be a valuated matroid on U of rank d.

Then there is a directed networkN ′ containingU and V , and arc weights c′ such that Φ(N, g, c) =

Φ(N ′, g, c′) and such that |V (N ′)| is polynomial in |V | and |U |.

Furthermore, N-induced valuated matroids form a strict subclass of R-minor valuated matroids.

As we show in Section 6.4, R-induced valuated matroids have a polynomial size rep-

resentation. However, the information-theoretic argument given does not extend to N-

induced and R-minor valuated matroids as it cannot control the size of the contracted set.

This suggests that several of the inclusions in Figure 5.6 should indeed be strict.
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5.2.1 Complete Classes

Definition 5.2.5 (Complete class). Let V be a subset of the set of valuated matroids. We call V a

complete class if it is closed under taking restriction, duals, direct sum and principal extension.

We extend several results in [19] from unvaluated to valuated matroids.

Theorem 5.2.6. A complete class of valuated matroids is closed under taking contraction, trunca-

tion, induction by bipartite graphs, induction by directed graph and valuated union.

Furthermore, valuated gammoids forms the smallest complete class. Hence, they are contained

in all complete classes.

Proof. The points follow from Lemma 5.1.13, Lemma 5.1.14, Lemma 5.1.15, Lemma 5.1.16

and Lemma 5.1.11.

A non-empty complete class must contain the free matroid on one element. By taking

iterated direct sum, this yields all free matroids. Then closure under induction by bipartite

graphs and minors yields valuated gammoids.

5.3 R-minor valuated matroids

The classes of valuated matroids discussed in the beginning of this section arising from

induction through a network may only be induced by trivially valuated matroids. As

discussed in Example 5.1.3, a trivially valuated matroid g can be identified with its un-

derlying matroidM, where g(X) takes the value zero on bases ofM and −∞ otherwise.

Working with this underlying matroid shall be more convenient much of the time, there-

fore we extend the notation of Definition 5.1.8 to define Φ(N,M, c) := Φ(N, g, c).

Let f be an R-minor valuated matroid on V . By definition, there exists an R-induced

valuated matroid f̃ on V ∪W such that f = f̃/W . By definition, there exists some bipartite

graphG = (V ∪W,U ;E) with edge weights c ∈ RE and matroidM = (U, r) such that f̃ =

Φ(G,M, c); we say f̃ has an R-induced representation (G,M, c). As f = Φ(G,M, c)/W , we

extend this notation to say that f has an R-minor representation (G,M, c,W ), where W is

the set to be contracted.

In the following, we show that R-minor valuated matroids are closed under deletion,

principal extension, duality and direct sum, making them a complete class. In the follow-

ing we shall assume f is an R-minor matroid with representation (G,M, c,W ) as above.

Lemma 5.3.1. For a subset X ⊆ V , let G \X be the graph obtained from G by deleting the nodes

X and all edges adjacent. The deletion f \X is represented by (G \X,M, c,W ).

Proof. This follows by the definition of deletion.
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Figure 5.8: The network N constructed from a graph G inducing the principal extension
of a R-minor valuated matroid, as described before and within Lemma 5.3.2.

Let w ∈ (R ∪ {−∞})V and consider fw. Let V ′,W ′ denote copies of V,W , and define a

network N = (T,A) on the node set T = (V ′ ∪W ′ ∪ {p}) ∪ (V ∪W ) ∪ U , where p is a

new node. The arc set A weighted by c′ ∈ RA consists of arcs (v′, v) with weight 0, where

v′ ∈ V ′ ∪W ′ denotes the copy of v ∈ V ∪W . We also add arcs (p, v) with weight wv for

all v ∈ V , and arcs (v, u) for all edges E of G with weight inherited by c. The constructed

network N is displayed in Figure 5.8. This network can intuitively be thought of as the

“concatenation” of G with the graph from Remark 5.1.10.

Lemma 5.3.2. The principal extension fw arises as the contraction of Φ(N,M, c) by W ′. In

particular, it can be represented as an R-minor valuated matroid.

Proof. Consider a subset X ⊆ V ∪ {p}, the principal extension fw is defined as

fw(X) = (f̃/W )w(X) =

maxv∈V \Y
(
f̃(Y ∪ v ∪W ) + wv

)
X = Y ∪ {p}

f̃(X ∪W ) p /∈ X
.

We claim that Φ(N,M, c′)(X ′ ∪W ′) = fw(X) for X ′ ⊆ V ′ ∪ {p}.
If p /∈ X ′, then the value of Φ(N,M, c′)(X ′ ∪ W ′) is simply the maximal independent

matching in G to X ∪W with no contribution from the zero edges, i.e. Φ(N,M, c)(X ′) =

f̃(X ∪ W ). If X ′ = Y ′ ∪ {p}, then the value of Φ(N,M, c′)(X ′ ∪ W ′) is the maximal

independent matching in G to Y ∪ v ∪W for some v ∈ V \ Y , plus wv picked up from the

arc (p, v), i.e.

Φ(N,M, c′)(X ′ ∪W ′) = max
v∈V \Y

(
f̃(Y ∪ v ∪W ) + wv

)
,

which is precisely the value of fw. Therefore fw = Φ(N,M, c′)/W ′. Applying

Lemma 5.1.11, we can represent Φ(N,M, c′) as an R-minor valuated matroid, and there-

fore also fw.

Consider the dual valuated matroid f ∗, we claim it can be represented in the following

way. Let U ′, V ′,W ′ be copies of U, V,W respectively. LetG′ = (U∪V ∪W,U ′∪V ′∪W ′, E ′)
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Figure 5.9: Construction of R-minor representation for f ∗.

whose edge set E ′ consists of edges

E ′ = {(v, v′) : v ∈ U ∪ V ∪W} ∪ {(u, v′) : (v, u) ∈ E} .

The edge weights are given by c′ ∈ RE′ where c′(v, v′) = 0 and c′(u, v′) = c(v, u). This

graph is displayed in Figure 5.9. We also use in our representation the matroid M′ =

M∗ ⊕ frV ′∪W ′ , the direct sum of the dual matroidM∗ = (U ′, r∗) and the free matroid on

V ′ ∪W ′.

Lemma 5.3.3. The dual f ∗ is a R-minor valuated matroid.

Proof. Let f = f̃/W , then its dual is f ∗ = (f̃/W )∗ = (f̃)∗ \ W by Lemma 5.1.13. As

R-minor valuated matroids are closed under deletion by Lemma 5.3.1, we are done if

we can show (f̃)∗ is an R-minor valuated matroid. We claim that (f̃)∗ is represented by

(G′,M′, c′, U).

Fix some X ⊆ V , we shall compute Φ(G′,M′, c′)(X ∪ U). First observe that v ∈ X can

only be matched to v′ ∈ X ′ with weight zero, and that there are no matroid constraints

on these edges. Therefore the rest of the matching is an independent matching from U to

(U ∪ V ′ ∪W ′) \X ′. For any independent matching, Y ⊆ U matches to (V ′ ∪W ′) \X ′ if

and only if U ′ \ Y ′ is independent inM∗, which by matroid duality only occurs when Y

is independent inM. Therefore all independent matchings are of the form

{(u, v′) : (v, u) ∈ µ} ∪ {(v, v′) : v ∈ X ∪ (U \ Y )}

where µ is an independent matching in G from (V ∪W ) \X to Y ⊆ U . As the weights of

these edges are either 0 or inherited from G, we have

Φ(G′,M′, c′)(X ∪ U) = f̃((V ∪W ) \X) = (f̃)∗(X) ,

implying that (f̃)∗ = Φ(G′,M′, c′)/U as claimed. AsU,W are disjoint, contracting and/or

deleting them commute and so f ∗ has the representation (G′ \ W,M′, c′, U); the same

representation as (f̃)∗, but with W deleted from G′.
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Lemma 5.3.4. Let f1 and f2 be two R-minor valuated matroids represented by (G1,M1, c1,W1)

and (G2,M2, c2,W2). Then f1 ⊕ f2 is represented by (G′,M1 ⊕M2, c
′,W1 ∪W2), where G′

and its weight function c′ arises by taking the union of the weighted graphs G1 and G2.

Proof. This just follows from the definitions.

Theorem 5.3.5. The set of R-minor valuated matroids forms a complete class of valuated matroids.

Proof. This follows directly from Lemmas 5.3.1, 5.3.2, 5.3.3 and 5.3.4.



6 Non R-minor valuated matroids

Our goal is to show that there are valuated matroids that are not R-minor. Recall that a

function f :
(
V
d

)
→ R is an R-minor valuated matroid valuated matroid if there exists a

bipartite graph G = (V ∪W,U ;E) with edge weights c ∈ RE , and a matroidM on U of

rank d+ |W |, such that: the value f(X) is the maximum weight of a matching in G whose

endpoints in V ∪W are X ∪W ; and the endpoints in U form a basis inM.

In particular, we will show that none of the valuated matroids in Fn are not R-minor

(Theorem 1.3.3). We recall the definition of Fn.

Definition 1.3.2. For n ≥ 2, we define Fn as the following family of functions
(

[2n]
4

)
→ R. Let

V = [2n], Pi = {2i− 1, 2i} for i ∈ [n], and let

H = {Pi ∪ Pj : ij ≡ 0 mod 2} (H-def)

i.e. we take pairs such that at least one of i, j is even. Let X∗ = P1∪P2 = {1, 2, 3, 4}. A function

h :
(
V
4

)
→ R ∪ {−∞} is in the family Fn if and only if the following hold:

• h(X) = 0 if X ∈
(
V
4

)
\ H,

• h(X) < 0 if X ∈ H, and

• h(X∗) is the unique largest nonzero value of the function.

The proof that functions in Fn are valuated matroids follows from simple case analysis

given in Appendix 6.3.1. We prove that no function in Fn arises as an R-induced minor

function in Section 6.3; the proof uses several lemmas on Rado representations of matroids

given in Section 6.1, and lemmas on the LP representation of R-minor valuated matroids

given in Section 6.2. An overview of this proof is given below.

A guide for the core proof

We now give an overview of a complex technical argument in Section 6.3 showing that

functions in Fn (Definition 1.3.2) are not R-minor. Recall that the domain of each of these

functions contains B0 :=
(
V
4

)
\ H. We reduce the study of the family to the combinatorial

structure and Rado representations of the matroids B0 and the domain of the function. To

achieve this, we use a canonical linear programming formulation and the submodularity

113
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of the rank of the neighbourhood function arising in the bipartite graph of an R-minor

representation. Finally, we impose several extremality assumptions on a potential repre-

sentation which we exploit by applying local modifications. Now, we elaborate on these

steps.

The first main ingredient is the linear programming dual of the R-minor representation

(Section 6.2). Let h be a function of rank d on V = [2n] represented by a bipartite graph

G = (V ∪W,U ;E), matroidM = (U, r), and weights c ∈ RE , such that r(M) = |W |+ d.

(In our construction, d = 4.) The maximum weight independent matching problem of size

|W |+d can be formulated as a linear program. The dual program has variables π ∈ RV ∪W

and τ ∈ RU that form a vertex cover, i.e. πi + τj ≥ cij for every edge (i, j) ∈ E. The

objective can be equivalently written as minπ(V ∪ W ) + r̂(τ), where r̂ is the Lovász-

extension of r, i.e., r̂(τ) is the maximum τ -weight of any basis.

Note that for h ∈ Fn the maximum is 0 and the set of maximizers equals B0. The

optimality criteria of the LP are as follows: letE0 ⊆ E denote the tight edges (πi+τj = cij)

and Mτ the matroid formed by the maximum τ -weight bases. Then, for X ⊆ V with

|X| = 4, we have X ∈ B0 if and only if W ∪X has an independent matching to a base in

Mτ using edges in E0 only. We also let E∗ ⊆ E denote the union of all maximum weight

independent matchings. By complementary slackness, E∗ ⊆ E0 for any dual optimal

solution.

A key proof strategy is to work with the purely combinatorial structure of Rado-minor

representations of two matroids: the one with bases B0 and the larger one with bases B1,

where B1 := dom(h) is the effective domain, i.e., where h(X) > −∞. For B0, this means

that X ∈ B0 if and only if there is a matching between X ∪W and a basis ofMτ using

edges from E0; for B1, we use the matroidM and edge set E instead. Note that the edge

weights c are not used in these representations. We review the necessary concepts and

results in Section 6.1.

We fix n ≥ 16, and prove by contradiction that no function in h ∈ Fn can be rep-

resented. We carefully select a counterexample that satisfies certain minimality criteria.

Most importantly, we require that (a) B1 is minimal; subject to this, that (b) the contracted

set |W | is minimal, and finally, that (c) |E \ E∗| is minimal. From these, we can easily

deduce that one of two main cases (Lemma 6.3.4):

(CI) There exist a dual optimal solution (π, τ) such that E = E0 ∪ {(i′, j′)} for an edge

(i′, j′),Mτ =M, and B1 = B0 ∪ {X∗}.

(CII) E = E∗ andMτ 6=M for any dual optimal solution (π, τ).

Thus, in case (CI), all bases inM have the same τ -weight, and there is a single non-tight

edge. Further, h(X∗) is the only finite value outside B0. In contrast, in case (CII), all edges

are tight, but we need to work with two different matroids on U .
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We now explain the proof for the base case W = ∅, i.e., that h is not R-induced (Sec-

tion 6.3.3). (This can be alternatively proved by an information-theoretic argument as in

Section 6.4.) We show that case (CI) must apply. Otherwise,Mτ 6=M, in which case one

can show that B0 is fully reducible, that is, it can be written as a full-rank matroid union of

smaller matroids (Lemma 6.1.8). In Lemma 6.3.7, we show that this is not the case for B0,

exploiting the combinatorics of the pairs Pi in the construction.

To complete the proof of the base caseW = ∅, we note that the setX∗ = P1∪P2 does not

have an independent matching in E0 but has one in E1 = E0 ∪ {(i′, j′)}. Hence, (i′, j′) is

incident to X∗; say, i′ ∈ P1. With an uncrossing argument using the submodularity of the

rank of the neighbourhood function, we show that (i′, j′) should create an independent

matching also for another set X = P1 ∪ Pk /∈ B0. SinceM = Mτ and this is the single

non-tight edge, it follows that 0 > h(Z) ≥ h(X∗), a contradiction that h(X∗) is the unique

largest negative function value.

In Section 6.3.4 we analyze Rado-representation of robust matroids: a common gener-

alization of B0 and B0 ∪ {X∗}, sparse paving matroids with elements arranged in pairs

Pi. It turns out that the structure of the pairs Pi forces itself on the full representation; in

particular, for each pair Pi there exists a unique largest ‘extension set’ Zi ⊆ V ∪W such

that Zi ∩ V = Pi, and these are tight with respect to Rado’s condition. Moreover, the Zi’s

are pairwise disjoint, and and encode all relevant information of the robust matroid, B0

or B1. The structural analysis is based on careful uncrossing arguments of the rank of the

neighbourhood function in the Rado-representation.

In Section 6.3.5, we apply this structure to first show that B1 = B0∪{X∗}, that is, in the

first selection criterion, dom(h) = B1 is as small as it can be. We also show that the sets Z0
i

and Z1
i —obtained for each pair Pi from the robust matroid analysis for B0 and B1—are

closely related: Z0
i = Z1

i ∪Q0 for a certain set Q0. Both cases (CI) (Section 6.3.6) and (CII)

(Section 6.3.7) can be derived by exposing the discrepancy between two near-identical

representations of two near-identical (yet different) matroids.

6.1 Rado representation of matroids

In this section, we specialize R-induced and R-minor representation to matroids without

valuation. This means that the bipartite graph has only zero weights and the starting

valuated matroid has only trivial valuation. Then the construction boils down to well-

known results in matroid theory. This allows us to deduce strong structural statements on

these representations in Section 6.1.1.

Definition 6.1.1 (Rado representation). Let G = (V, U ;E) be a bipartite graph and M =

(U, rM) be a matroid. We define a matroidN on V as follows. A set X ⊆ V is independent inN
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if there exists S ⊆ U such that there is a perfect matching in the subgraph induced by (X,S) and

S is independent inM. We say that (G,M) is Rado representation ofN .

The following theorem verifies that this construction indeed defines a matroid, and

characterizes its rank function.

Theorem 6.1.2 (Rado’s theorem [107, 105]). Let N be as in Definition 6.1.1. Then N is a

matroid. Moreover, a set X ⊆ V is independent in N if and only if rM(Γ(Y )) ≥ |Y | for all

Y ⊆ X . If a set X ⊆ V is a circuit inN , then rM(Γ(Y )) = |Y | − 1.

A more general representation can be obtained as minors of the above.

Definition 6.1.3 (Rado-minor representation). Let G = (V ∪W,U ;E) be a bipartite graph

and M = (U, rM) be a matroid. We define a matroid N on V as follows. A set X ⊆ V is

independent in N if there exists S ⊆ U such that there is a perfect matching in the subgraph

induced by (X ∪ W,S) and S is independent in M. We say that (G,M,W ) is Rado-minor

representation ofN .

Proposition 6.1.4. Let N be as in Definition 6.1.3. Then N is a matroid. Moreover, X ⊂ V is

independent inN if and only if for all Z ⊆ X ∪W it holds rM(Γ(Z)) ≥ |Z|.

Proof. Consider G,W andM as in Definition 6.1.4. Then, letN ′ be the matroid on V ∪W
with Rado representation (G,M). It is easy to see that N can be obtained by contracting

W inN ′. The proposition follows.

Any matroid that has no independent sets other than the empty set is said to be an empty

matroid. We next introduce some basic matroidal notions, and present their properties

in the context of Rado representations. Note that definitions of matroid sum and matroid

union are specializations of the operation direct sum and valuated matroid union to trivially

valuated matroids, see Definition 5.1.6. We state them here for clarity.

Definition 6.1.5 (Matroid sum, Disconnected). Let U1, . . . , Uk be disjoint sets. For i ∈ [k] let

Bi be the bases of matroidMi on Ui. We define the matroid sumM1⊕· · ·⊕Mk as a matroidM
on U = ∪̇ki=1Ui with bases B = {∪̇ki=1Bi : Bi ∈ Bk}. We say that a matroidM is disconnected

if and only if it is a matroid sum of at least two non-empty matroids. A matroid is connected if

it is not disconnected.

Definition 6.1.6 (Matroid union, Fully reducible). For i ∈ [k] let Bi be the bases of matroid

Mi on U . We define the matroid union M1 ∨ · · · ∨ Mk as a matroid M on U with bases

B = {∪ki=1Bi : Bi ∈ Bk}.
We say that a matroidM is reducible if and only if it is a matroid union of at least two non-

empty matroids. Further,M is fully reducible, ifM =M1∨ · · · ∨Mk for non-empty matroids

M1, . . . ,Mk, k ≥ 2, and r(M) =
∑k

i=1 r(Mi). Given the latter condition, this is a full-rank

matroid union [29].
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We will use the rank formula of matroid union, see e.g. [49, Theorem 13.3.1].

Theorem 6.1.7 (Edmonds and Fulkerson, 1965). Consider the matroid unionM =M1∨· · ·∨
Mk for matroidsM1, . . . ,Mk, k ≥ 2 on the ground set U , and let ri denote the rank function of

the i-th matroid. Then for any X ⊆ U , the rank r(X) inM equals

r(X) = min

{
k∑
i=1

ri(Z) + |X \ Z| : Z ⊆ X

}
.

Consequently, if X is a circuit inM then
∑k

i=1 ri(X) = |X| − 1.

Lemma 6.1.8. LetN be a matroid with a Rado-representation (G,M), whereG = (V, U ;E) and

M = (U, r). Assume thatM =M1⊕· · ·⊕Mk for matroidsMi = (Ui, ri), and Γ(V )∩Ui 6= ∅
for every component ofM. Then, N is reducible. Further, if rN (V ) = rM(U), then N is fully

reducible.

Proof. Let Ni be the matroid with Rado representation (Gi,Mi), where Gi = (V, Ui;Ei)

and Ei is the set of edges between V and Ui. It follows from definitions that N = N1 ∨
. . .Nk. By the assumption, Γ(V ) ∩ Ui 6= ∅ for each component, hence each Ni is a non-

empty matroid. The second part is immediate.

6.1.1 Uncrossing properties for Rado-minor representation

We now present some technical statements for Rado-minor representations that will be

used in the proof of Theorem 1.3.3. Consider a matroid N on ground set V with Rado-

minor representation (G,M,W ) where G = (V ∪W,U ;E) andM = (U, r).

For a subsetX of the ground set V ofN , we say thatZ ⊆ V ∪W is anX-set ifZ∩V = X .

For Z ⊆ V ∪W , let

ρ(Z) := r(Γ(Z))− |Z| .

For an X-set Z, we give lower bounds on ρ(Z) depending on the independence of X in

N . Throughout, we will use X, Y for subsets of V ; and Z, I, J for subsets of V ∪W , i.e.,

X-sets for some X ⊆ V are denoted with letters Z, I, J .

Lemma 6.1.9. The function ρ : 2V ∪W → Z defined above is submodular. LetX ⊆ V and consider

any X-set Z.

(ind) If X is independent inN , then ρ(Z) ≥ 0.

(cir) If X is a circuit in N , then ρ(Z) ≥ −1. Moreover, in this case there is an X-set Z such

that ρ(Z) = −1.

(dep) If X is dependent inN and contains a basis, then ρ(Z) ≥ r(N )− |X|.
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Proof. Function ρ is the difference of a submodular function r(Γ(.)) and a modular func-

tion |.|, and thus submodular. (Function r(Γ(.)) is submodular, see [105, Lemma 11.2.13].)

(ind) follows immediately from Proposition 6.1.4. Let us show (cir). Using previous, we

have ρ(Z \ {i}) ≥ 0 for i ∈ Z ∩V . Since the marginal value of any element with respect to

ρ is at least −1, it follows that ρ(Z) ≥ −1 by submodularity. As Z ∩ V = X is dependent,

it must be the case that ρ(Z ′) < 0 for some Z ′ ⊆ V ∪W with Z ′ ∩ V = X . For such Z ′ we

have ρ(Z ′) = −1.

For (dep), let B ⊂ Z ∩ V be a basis. Then, using the monotonicity of r(Γ(.)) we have

ρ(Z) = r(Γ(Z))− |Z| = r(Γ(Z))− |B ∪ (Z ∩W )| − |Z ∩ V \B|

≥ r(Γ(B ∪ (Z ∩W )))− |B ∪ (Z ∩W )| − |Z ∩ V \B|

= ρ(B ∪ (Z ∩W ))− |Z ∩ V \B| .

Using (ind) for the basis B and the fact that B has cardinality r(N ) yields

ρ(Z) ≥ 0− (|Z ∩ V | − |B|) = r(N )− |Z ∩ V | .

Lemma 6.1.10. If ρ(I) + ρ(J) = ρ(I ∪ J) + ρ(I ∩ J), then cl[Γ(I)]∩ cl[Γ(J)] = cl[Γ(I ∩ J)].

Proof. As ρ(I) + ρ(J) = ρ(I ∪J) + ρ(I ∩J), we have r( Γ(I) ) + r( Γ(J) ) = r( Γ(I ∪J) ) +

r( Γ(I ∩ J) ). Then trivially,

r( cl[Γ(I)] ) + r( cl[Γ(J)] ) = r( cl[Γ(I ∪ J)] ) + r( cl[Γ(I ∩ J)] ) . (6.1)

On the other hand, we have

r( cl[Γ(I)] ) + r( cl[Γ(J)] ) ≥ r( cl[Γ(I)] ∪ cl[Γ(J)] ) + r( cl[Γ(I)] ∩ cl[Γ(J)] )

≥ r( cl[Γ(I) ∪ Γ(J)] ) + r( cl[Γ(I) ∩ Γ(J)] )

≥ r( cl[Γ(I ∪ J)] ) + r( cl[Γ(I ∩ J)] ) .

The first inequality follows by submodularity of r. The second inequality follows

since r( cl[Γ(I)] ∪ cl[Γ(J)] ) = r( cl[Γ(I) ∪ Γ(J)] ) (the previous follows form cl[ cl[Γ(I)] ∪
cl[Γ(J)] ] = cl[Γ(I) ∪ Γ(J)] ) and since cl[Γ(I) ∩ Γ(J)] ⊆ cl[Γ(I)] ∩ cl[Γ(J)]. The third

inequality follows from Γ(I) ∪ Γ(J) = Γ(I ∪ J) and since Γ(I ∩ J) ⊆ Γ(I) ∩ Γ(J).

Thus, by (6.1), we have r( cl[Γ(I)] ∩ cl[Γ(J)] ) = r( cl[Γ(I ∩ J)] ). Now, cl[Γ(I ∩ J)]

is a closed set that is subset of closed set cl[Γ(I)] ∩ cl[Γ(J)], and both cl[Γ(I ∩ J)] and

cl[Γ(I)] ∩ cl[Γ(J)] have the same rank. Thus, cl[Γ(I)] ∩ cl[Γ(J)] = cl[Γ(I ∩ J)].

Throughout we shall refer to the following uncrossing lemmas liberally.
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Lemma 6.1.11 (Uncrossing I). For X, Y ⊆ V let I, J ⊆ V ∪W be any X-set and any Y -set

respectively, and assume ρ(I) = ρ(J) = 0. If X ∪ Y is independent inN then,

ρ(I ∩ J), ρ(I ∪ J) = 0 .

In particular, if X = Y for an independent set X inN , and ρ(I) = 0 for some X-set I , then there

exists a unique largest maximal set I with ρ(I) = 0.

Proof. By submodularity, we have 0 = ρ(I) +ρ(J) ≥ ρ(I ∩J) +ρ(I ∪J) . Trivially, I ∩J is

an (X ∩ Y )-set and I ∩ J is an (X ∪ Y )-set. Since both X ∩ Y and X ∪ Y are independent,

we have ρ(I ∩ J), ρ(I ∪ J) ≥ 0 by Lemma 6.1.10. The first part follows.

By the first part the family of sets I that are X-sets with ρ(I) = 0 is is closed under

intersection and union. If this family is non-empty then there exists unique largest X-set

I with ρ(I) = 0.

In other words, the above lemma states that the set of X-sets I where X is independent

inN and with ρ-value 0 is a lattice over V ∪W with respect to the union and intersection.

By the uncrossing lemma for X = Y = ∅ and since ρ(∅) = 0, we have the following

corollary.

Corollary 6.1.12. There exists a unique largest set Q ⊆ W such that ρ(Q) = 0.

Lemma 6.1.13 (Uncrossing II). Let X, Y ⊆ V be two different circuits in matroid N whose

union contains a basis. Consider an X-set I and a Y -set J with ρ(I), ρ(J) = −1. Then, we have

ρ(I ∩ J) = 0 and ρ(I ∪ J) = −2.

Proof. Since I∩J is a (X∩Y )-set and sinceX∩Y is an independent set we have ρ(I∩J) ≥
0. Since I ∪ J is a (X ∩ Y )-set and since X ∪ Y contains a basis we have ρ(I ∪ J) ≥ −2.

By submodularity we get −2 = ρ(I) + ρ(J) ≥ ρ(I ∩ J) + ρ(I ∪ J) ≥ 0 − 2 . Hence, the

equalities ρ(I ∩ J) = 0 and ρ(I ∪ J) = −2 hold.

6.1.2 Lovász extension and the matroid of maximum weight bases

Definition 6.1.14 (Lovász extension). LetM = (U, r) be a matroid. The Lovász-extension

r̂ : RU → R of the rank function r is defined for τ ∈ RU as the maximum τ -weight of a basis of

M.

For a given τ ∈ RU , the value r̂(τ) can be calculated by the following well-known

characterization, see e.g., [49, Theorem 5.5.5].

Lovász extension is often used more general for any submodular function, and in fact

can be used to characterize submodularity. Namely, Lovász extension of a function is

convex if and only if the function is submodular. It is a basic building block for many

submodular optimization algorithms [90].
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Lemma 6.1.15. LetM = (U, r) be a matroid. For τ ∈ RU , the Lovász-extension r̂(τ) equals

r̂(τ) = r(U)τun +
n−1∑
i=1

r(Ui)(τui − τui−1
) ,

where we reordered U = {u1, u2, . . . , un} such that τu1 ≥ τu2 ≥ . . . ≥ τun , and Ui =

{u1, . . . , ui} for all i ∈ [n].

In this context, we say that S ⊆ U is a level set of τ if S = ∅, S = U , or S = Ui for some

i ∈ [n] with τvi > τvi+1
. Thus, the level sets of τ form a chain. Using these level sets we

can nicely capture all maximum weight bases in a matroid. The following lemma follows

from the greedy algorithm for finding maximum weight bases in a matroid.

Lemma 6.1.16. For a matroidM = (U, r) and τ ∈ RU , let ∅ = S0 ( S1 ( S2 ( . . . St (
St+1 = U denote the level sets of τ . Let us define the matroid

Mτ :=
t+1⊕
`=1

(
M
∣∣
S`

)
/S`−1 .

This is the matroid formed by the maximum τ -weight bases of M. That is, a basis B in M
maximizes

∑
i∈B τi if and only if B is a basis inMτ .

6.2 Linear Programming representation of R-minor

functions

R-induced valuated matroids are defined via independent matchings. This can be natu-

rally captured by the following linear program.

Throughout this section, unless stated otherwise, f is an R-minor valuated matroid with

representation (G,M, c,W ) given by a bipartite graph G = (V ∪W,U ;E), edge weights

c ∈ RE and a matroidM = (U, r).

Lemma 6.2.1. For X ⊆ V , f(X) is the objective value of the linear program

max
∑

(i,j)∈E cijxij

s.t.:
∑

j∈U xij = 1i∈X∪W ∀i ∈ V ∪W∑
i∈V ∪W,j∈S xij ≤ r(S) ∀S ⊂ U∑
i∈V ∪W,j∈U xij = r(U)

xij ≥ 0 ∀i ∈ V ∪W,∀j ∈ U .

(6.2)

Here, 1i∈Z is the indicator function of the set Z, taking value 1 if i ∈ Z and 0 otherwise.



Husić E. Nash Welfare, Valauted Matroids, and Gross Substitutes.
6.2. LINEAR PROGRAMMING REPRESENTATION OF R-MINOR FUNCTIONS 121

Proof. The formulation clearly gives a relaxation of the integer program defining the value

of f(X). Using the total-dual integrality of polymatroid intersection, see [110, Theorem

46.1 and Corollary 41.12b], the existence of an integer optimal solution x ∈ ZE is guaran-

teed; see the proof of Lemma 6.2.2 for more detail. By the first set of constraints and since∑
i∈V xij ≤ r({j}) ≤ 1 for all j ∈ U , it is clear that x = χµ for a matching µ. Moreover, it

holds ∂V ∪W (µ) = X ∪W and ∂U(µ) is a basis inM. The lemma follows.

We next characterize the set of maximizers of an R-minor valuated matroid.

Lemma 6.2.2. Let B be the set of maximizers of f . Then B corresponds to the set of integral

optimal solutions of

max
∑

(i,j)∈E cijxij

s.t.:
∑

j∈U xij ≤ 1 ∀i ∈ V∑
j∈U xij = 1 ∀i ∈ W∑

i∈V ∪W,j∈S xij ≤ r(S) ∀S ⊂ U∑
i∈V ∪W,j∈U xij = r(U)

xij ≥ 0 ∀i ∈ V ∪W,∀j ∈ U .

(6.3)

The dual of (6.3) is then
min π(V ) + π(W ) + r̂(τ)

s.t.: πi + τj ≥ cij ∀(i, j) ∈ E

πi ≥ 0 ∀i ∈ V

πi − free ∀i ∈ W

τ − free.

(6.4)

Above, r̂ is the Lovász extension of the matroid rank function r. Let E0 = {(i, j) ∈ E : πi +

τj = cij} denote the set of tight edges, and G0 = (V ∪ W,U ;E0) the tight subgraph. Let

∅ = S0 ( S1 ( S2 ( . . . St ( St+1 = U be the level sets of τ in U , and denote withMτ the

matroid of maximum weight bases. LetN be the matroid on V ∪W with bases {B∪W : B ∈ B}.
Then, (G0,Mτ ) is a Rado representation of N . We have πi = 0 for all i ∈ V for which there is a

maximizer set X ∈ B with i 6∈ X .

Further, the optimal solution (π, τ) can be chosen with the following additional properties:

• Every level set S`, ` ∈ [t+ 1] is a flat inM.

• For every ` ∈ [t+ 1], (S` \ S`−1) ∩ ΓE0(V ) 6= ∅.

Proof. Observe that the problem is a special case of matroid intersection. We can define

two matroids on the edge set E: a partition matroid enforcing that only one edge can be

selected incident to every node in V ∪W , and a second matroid enforcing that the set of
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endpoints in U must be independent in M; this can be obtained from M by replacing

every node u ∈ U by parallel copies corresponding to the edges incident to u. By the

integrality of polymatroid intersection [110, Theorem 46.1 and Corollary 41.12b], the set

arg max{f(X) : X ⊆ V } corresponds to the set of integral solutions of (6.3).

The dual LP formulation can be easily derived from Frank’s weight splitting theorem

[49, Theorem 13.2.4], interpreted in this bipartite setting. The Rado representation of N
and the condition on the πi = 0 values follow by complementary slackness.

Let us now show that the additional properties can be ensured. Consider the smallest

level set S` that is not a flat. Thus, S` = {i ∈ U : τi ≥ λ} for some λ ∈ R. Let us increase

τj to λ for every j ∈ cl(S`) \ S`. By definition of the Lovász extension, this does not

change the value r̂(τ); and since we only increase τ , the solution remains feasible. After

the change, cl(S`) replaces S` as a level set. Thus, after at most |U | such changes, we can

guarantee that all level sets are flats.

We show that this also implies the final property, i.e. that for every i ∈ [t + 1], there

exists a tight edge (i, j) ∈ E0 with j ∈ S` \ S`−1. Indeed, if no such edge exists, then we

can decrease τk by some positive ε > 0 for every k ∈ S` \ S`−1 such that (π, τ) remains

feasible, and S` remains a level set, i.e. τk > τk′ for any k ∈ S`, k′ ∈ S`+1. This decreases

r̂(τ) by ε (r(S`)− r(S`−1)) > 0, a contradiction to optimality.

Note that as an immediate corollary, the set of maximizers B is a matroid with Rado-

minor representation (G0,Mτ ,W ).

Lemma 6.2.3. Let f be an R-induced represented by (G,M, c) and B be the set of maximizers

of f . Consider a dual optimal solution (π, τ) as in Lemma 6.2.2. If τi 6= τj for some i, j ∈ U , then

the matroid on V defined by the bases B is fully reducible.

Proof. By Lemma 6.2.2, (V, U ;E0) andMτ gives a Rado representation of the matroid with

basesB (sinceW = ∅). For the flats S`,Mτ is the direct sum of the matroids
(
M
∣∣
S`

)
/S`−1

(Lemma 6.1.16). Since all level sets S` are flats, each matroid
(
M
∣∣
S`

)
/S`−1 is non-empty.

If there are more than two terms, then Lemma 6.1.8 implies that B corresponds to a fully

reducible matroid. Otherwise, the only flats can be S0 = ∅ and S1 = U ; consequently, τi is

the same for all i ∈ U .

6.3 R-minor functions do not cover valuated matroids

In this section we prove that no function in Fn arises as R-minor valuated matroid, that is,

we prove Theorem 1.3.3. Recall that Fn (Definition 1.3.2) is a family of valuated matroids

defined over ground set V = [2n], and using pairs Pi = {2i− 1, 2i} for i ∈ [n]. We letH be

the set of pairs such that at least one of i, j is even and we let X∗ = P1 ∪ P2 = {1, 2, 3, 4}.
A function h :

(
V
4

)
→ R ∪ {−∞} is in Fn if and only if the following hold:
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• h(X) = 0 if X ∈
(
V
4

)
\ H,

• h(X) < 0 if X ∈ H, and

• h(X∗) is the unique largest nonzero value of the function.

First, we prove that all functions in Fn are valuated matroids. Then we proceed to the

main proof that no function in Fn is a an R-minor valuated matroid. This is proved by

showing that a carefully chosen minimal counterexample does not exist.

6.3.1 All functions in Fn are valuated matroids

Lemma 6.3.1. LetB0 =
(
V
4

)
\H andB1 = dom(h). ThenB0 andB1 are sparse paving matroids.

Proof. Let J be the Johnson graph with nodes
(
V
4

)
with edges (X, Y ) if and only if |X ∩

Y | = 3. By [12, Lemma 8], a set system U forms an independent set of J if and only if
(
V
4

)
\

U forms the bases of a sparse paving matroid. As elements of H can intersect in at most

two elements, they form an independent set of J and soB0 is a sparse paving matroid. As

B1 is obtained by removing elements ofH, it is also a sparse paving matroid.

Lemma 6.3.2. For every n ≥ 2, all functions in Fn are valuated matroids.

Proof. Required to show each h ∈ Fn satisfies (1.1b). We consider three cases:

• Let X, Y ∈ B0 and i ∈ X \ Y . By Lemma 6.3.1, the basis exchange axiom holds

within B0. Therefore we can find j ∈ Y \ i such that X \ i ∪ j, Y ∪ i \ j are both in

B0, taking the value zero and satisfying (1.1b).

• Let X ∈ B0, Y ∈ H without loss of generality. If there exists j ∈ Y \ X such that

X \ i ∪ j ∈ B0, then Y ∪ i \ j is also in B0 and we satisfy (1.1b). If such a j does not

exist, there cannot be distinct j1, j2 ∈ Y \X , elseX \i∪j1, X \i∪j2 are both elements

of H and have intersection of cardinality 3, something elements of H cannot have.

Therefore Y = X \ i ∪ j and so (1.1b) is satisfied with equality.

• Let X, Y ∈ H and i ∈ X \ Y . As elements of H can intersect in at most two ele-

ments, picking any j ∈ Y \ X to exchange yields two sets in B0 with value zero,

satisfying (1.1b).

Remark 6.3.3. We can extend the above construction of the valuated matroid h to any sparse

paving matroid B, where H =
(
V
4

)
\ B is the set of circuits of rank 4. The proof of Lemma 6.3.2

generalizes as it only uses the property that elements of H cannot intersect in three elements, as

stated in [106, Lemma 19].
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6.3.2 A minimal counterexample

Let us fix a value n ≥ 16. For a contradiction, let us assume there exists a valuated

matroid h ∈ Fn that is R-minor arising via a bipartite graph G = (V ∪W,U ;E), matroid

M = (U, r), and weights c ∈ RE . Define

B0 :=

(
V

4

)
\ H , B1 := dom(h) .

By Lemma 6.3.1 both B0 and B1 are (sparse) paving matroids. From the definition of Fn,

we have B0 ∪ {X∗} ⊆ B1. Define

E∗ = {(i, j) : (i, j) ∈ µ for some independent matching with c(µ) = 0}

as the union of all maximum weight independent matchings in G.

Selection criteria for h. Let us select a valuated matroid h ∈ Fn that admits an R-minor

representation (G,M, c,W ) according to the following criteria:

(S1) The function h has minimal effective domain, that is, |B1| is minimal.

(S2) Subject to this, |W | is minimal.

(S3) Subject to this, |E \ E∗| is minimal.

Note that (S1) only depends on h, whereas (S2) and (S3) on also on the representation.

We will refer to this choice as the minimal counterexample. This choice is well-defined,

since all criteria minimize over non-negative integers. For (S1), note that the extreme case

is B1 = B0 ∪ {X∗}; a key step in the proof is to show that this must always be the case.

Dual solutions and the two main cases We will also select an optimal dual solution

(π, τ) to (6.4) in Lemma 6.2.2. Let us introduce some notation; the choice of the particular

solution will be specified in Lemma 6.3.4.

Let E0 = {(i, j) ∈ E : πi + τj = cij} denote the set of tight edges. By complementarity,

E∗ ⊆ E0 must hold for any optimal dual (π, τ). Recall thatMτ denotes the matroid of

the maximum τ -weight bases as in Lemma 6.1.16. The bipartite graph G = (V ∪W,U ;E)

and matroid M = (U, r) and W give a Rado-minor representation of B1, while G0 =

(V ∪W,U ;E0) andMτ = (U, rτ ) and W give a Rado-minor representation of B0.

For Z ⊆ V ∪W , we let Γ(Z) and Γ0(Z) denote the set of neighbours of Z in U in the

edge sets E and E0, respectively. Furthermore, for Z ⊆ V ∪W we define

ρ0(Z) := rτ (Γ0(Z))− |Z| ,

ρ1(Z) := r(Γ(Z))− |Z| .
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Note that ρ1(Z) ≥ ρ0(Z) for every Z ⊆ V ∪W . Finally, let Q0 denote the unique largest

subset of W with ρ0(Q0) = 0 as in Corollary 6.1.12.

Further, for every X ∈ B1, select a maximum weight independent matching µX with

∂V ∪W (µX) = X ∪W ; let L be the set of all these matchings.

Lemma 6.3.4. The minimal counterexample can be selected to satisfy one of the following proper-

ties:

(CI) We can choose dual optimal solution (π, τ) such that E = E0 ∪{(i′, j′)} for an edge (i′, j′)

where i′ ∈ X∗ ∪W ,Mτ =M, and B1 = B0 ∪ {X∗}.

(CII) E = E0 = E∗ andMτ 6=M for any dual optimal (π, τ).

Intuitively, the above lemma states that the difference between Rado-minor representa-

tions of B0 and B1 is either in the edge set only, or in the matroid on U only. In case (CII)

we can select an arbitrary (π, τ); in case (CI) we will use the dual asserted in the lemma.

Proof of Lemma 6.3.4. Let µX
∗ ∈ L denote a maximum weight independent matching cov-

ering X∗ ∪W . First, we show that E = E∗ ∪ µX∗ . Indeed, removing an edge in E \ (E∗ ∪
µX

∗
) does not affect h(X) forX ∈ B0∪{X∗} as all matchings µX forX ∈ B0 lie inE∗. For

any other set, h(X) may decrease (possibly to−∞); but this would yield another function

in Fn that is the same or better on criterion (S1), the same on (S2), and strictly better on

(S3). Hence, E = E∗ ∪ µX∗ .
Now, assume that E \ E∗ = µX

∗ \ E∗ 6= ∅. Let (i′, j′) be an arbitrary edge in µX
∗ \ E∗,

i.e., i′ ∈ X∗ ∪W . We start increasing c to c′ for ε ≥ 0 as follows

cij =

cij + ε for (i, j) = (i′, j′)

cij otherwise.

Pick the largest ε ≥ 0 such that the maximum weight of an independent matching in G,

M, c remains 0, i.e., such that the optimum value of the LP (6.3) does not change.

Claim 6.3.5. ε = −h(X∗).

Proof. Suppose that ε < −h(X∗). By definition of Fn, we have stopped increasing ε as

the edge (i′, j′) has now entered E∗ and increasing the value further would increase the

optimal value via a set X ∈ B0. This is a contradiction on (S3).

Next, we note that B0 ∪ {X∗} is the set of maximizers of LP (6.3) under the increased

weights c′. Indeed, by the choice of ε all previous maximizers B0 remain maximizers and

now µX
∗

achieves the same value thereby becoming a maximizer as well. Moreover, for

X ∈ H \ {X∗}, we have c′(µX) ≤ c(µX) + ε < c(µX
∗
) + ε = 0.
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Let us pick an optimal dual solution (π, τ) to (6.4) under c′. Recall that E = E∗ ∪ µX∗

and therefore all edges E are tight with respect to c′. Since c′ ≥ c and the optimum value

is the same for the two cost functions, it follows that (π, τ) is also optimal to (6.4) with the

original weights c.

Since c and c′ differ only on (i′, j′), all edges E \ {(i′, j′)} are tight under (π, τ) for c;

thus, E0 = E \ {(i′, j′)}.
As ∂U(µX

∗
) is a maximum τ -weight basis in M, it follows that we can replace M by

Mτ . This is because all µX ∈ L for X ∈ B0 ∪ {X∗} remain independent matchings.

The function value h(X) might decrease for X 6∈ B0 ∪ {X∗}, but this may only lead to

improvement in (S1), or otherwise we get another solution that is equally good on the

selection criteria.

It is left to show B1 = B0 ∪ {X∗}. Take any X ∈ B1. Since every basis in M has

maximum τ -weight, the value of c(µ) is the optimum minus the sum of the slack values

on the edges, that is, h(X) = c(µX) = −
∑

(i,j)∈µ(πi + τj − cij). Since (i′, j′) is the only

edge with positive slack, this means that h(X) = 0 if (i′, j′) /∈ µX and h(X) = h(X∗)

if (i′, j′) ∈ µX . Since X∗ is the unique set with the largest negative function value, this

implies B1 = B0 ∪ {X∗}.
Finally assume E = E∗ . Then, µX

∗ ⊆ E∗ ⊆ E0. Thus, ∂U(µ) cannot be independent

inMτ , as otherwise h(X∗) = 0 would follow by complementary slackness. Hence,M 6=
Mτ , giving case (CII).

Lemma 6.3.6. In the minimal representation for each Z ⊆ W,Z 6= ∅ it holds ρ1(Z) > 0.

Proof. For a contradiction let Z ⊆ W be a non-empty set with ρ1(Z) ≥ 1. Let T =

cl(Γ(Z)). Since r(T ) = |Z|, for every independent matching µ, we must have |∂U(µ)∩T | =
r(T ). This implies that the weight of the edges covering Z must be the same value δ for

any independent matching. This follows since for any two independent matchings µ, µ′,

we can replace by the set of edges covering Z in µ by the set of edges covering Z in µ′ and

obtain another independent matching covering Z ∪X .

LetM′ denote the contraction of T in U , and U ′ = U \ T . Then, we obtain a smaller

R-minor representation by restricting to W ′ = W \ Z, and usingM′ on U ′. Moreover, we

define the new weight function on the edges as c′(i, j) = c(i, j) + δ/r(M) for each edge

(i, j) with i ∈ (V ∪W ) \Z and j ∈ U \T to obtain the same h(X) values. This contradicts

criterion (S2) whenever Z 6= ∅.

6.3.3 h is not R-induced

We start by showing that W = ∅ is not possible; in other words, h cannot have an R-

induced representation. (An alternative proof is given in Section 6.4.) We start with a

structural claim on B0.
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Lemma 6.3.7. The matroid on [2n] defined by bases B0 is not fully reducible for n ≥ 10.

Proof. For a contradiction, assume B0 is obtained as the union of two matroidsM1 and

M2 on V = [2n] with rank functions r1 and r2, such that r1(V )+r2(V ) = 4; let r(.) denote

the rank function of B0. W.l.o.g. r1(V ) ≤ r2(V ). We distinguish two cases.

Case I: r1(V ) = 1, r2(V ) = 3. Let T = {v ∈ V : r1({v}) = 0} denote the set of loops in

M1. We claim that T may intersect at most three different pairs Pi. Indeed, every X ⊆ V

with |X| = 4 intersects four different pairs is in B0, and therefore X ⊆ T cannot be the

case. Let us select four pairs Pi, Pj , Pk, P` that do not intersect T , i and j are odd, k

and ` are even; such selection is possible for n ≥ 10. Since Pi ∪ Pj ∈ B0, we must have

r2(Pi ∪ Pj) = 3; w.l.o.g. assume r2(Pi) = 2.

Consider Pi ∪Pk and recall that it forms a circuit inM. By Theorem 6.1.7, r1(Pi ∪Pk) +

r2(Pi ∪ Pk) = 3, implying r2(Pi ∪ Pk) = 2. Similarly, r2(Pi ∪ P`) = 2. By submodularity,

we have r2(Pi ∪ Pk ∪ P`) = 2, and thus r(Pi ∪ Pk ∪ P`) = 3, a contradiction as the union

of any three pairs contains a basis.

Case II: r1(V ) = r2(V ) = 2. Note that there can be at most one pair Pt such that r1(Pt) =

0, and at most one pair Pt′ with r2(Pt′) = 0. Otherwise, if there existed Pa, Pb such that

r1(Pa) = r1(Pb) = 0, then r1(Pa ∪ Pb) = 0, contradicting that the union of any two pairs

has rank at least 3 in B0.

Let us select Pi, Pj , Pk, P` such that i is even, j, k, and ` are odd, and all these pairs

have rank ≥ 1 in both matroids; again such sets can be selected for n ≥ 10. Since Pi ∪ Pj
is a circuit, r1(Pi ∪ Pj) + r2(Pi ∪ Pj) = 3. Similarly, r1(Pi ∪ Pk) + r2(Pi ∪ Pk) = 3 and

r1(Pi ∪ P`) + r2(Pi ∪ P`) = 3. W.l.o.g. r1(Pi ∪ Pj) = r1(Pi ∪ Pk) = 1. By the assumption

r1(Pi) ≥ 1, submodularity gives r1(Pi ∪ Pj ∪ Pk) = 1. This again contradicts the fact that

r(Pi ∪ Pj ∪ Pk) = 4.

Lemma 6.3.8. IfW = ∅, then we must have π ≡ 0 and τ ≡ 0 for the optimal dual (π, τ) in (6.4).

Proof. By definition of h ∈ Fn, the optimum value of the LP (6.3) is 0. Since for any i ∈ V
there is an X ∈ B0 not containing i, it follows that πi = 0 for all i ∈ V . From Lemma 6.2.3,

it follows that τi has the same value for all i ∈ U ; let α be this common value. Then,

the objective value of the dual program (6.4) is 0 = α · r(M). Consequently, α = 0, and

therefore τ = 0.

ThereforeMτ =M, implying case (CI) of Lemma 6.3.4: E = E0 ∪ {(i∗, j∗)} and B1 =

B0 ∪ {X∗}. The rest of the analysis is covered by the argument in Section 6.3.6 for (CI).

We include a simpler direct proof that also illustrates some key ideas of the more complex

subsequent arguments.
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Let ` ∈ {1, 2} such that i∗ ∈ P`. We note that the cases ` = 1 and ` = 2 are not

symmetric, because of different parity.

Claim 6.3.9. We have r(Γ(P`)) = 3.

Proof of Claim. Note first that j∗ 6∈ cl[Γ0(X∗)] as otherwise there is no independent match-

ing µX
∗

covering X∗. Trivially j∗ 6∈ cl[Γ0(P`)]. Since P` is a subset of a basis in B0 we have

r(cl[Γ0(P`))]) ≥ 2. Thus, r(Γ(P`)) = r(Γ0(P`) ∪ {j∗}) = r(cl[Γ0(P`))] ∪ {j∗}) ≥ 3.

For any i ∈ [n] it holds r(Γ(Pi)) ≥ r(Γ0(Pi)) ≥ 2 since each Pi is a subset of a basis in

B0; and it particular for i = 4. Recall that P` ∪ P4 ∈ H \ {X∗}, i.e., P` ∪ P4 6∈ B0 ∪ X∗.
Thus we have r(Γ(P`)) ≤ 3 as otherwise there is an independent matching µP`∪P4 ∈ L.

The claim follows. �

Proposition 6.3.10. h is not an R-induced valuated matroid.

Proof. Let X, Y ∈ H \ {X∗} be two sets whose intersection is P`. If ` = 1, we can select

X = P1 ∪ P4 = {1, 2, 7, 8} and Y = P1 ∪ P6 = {1, 2, 11, 12}, and if ` = 2, we can select

X, Y ∈ H\ {X∗} intersecting in P2, such as X = P2 ∪P3 = {3, 4, 5, 6} and Y = P2 ∪P4 =

{3, 4, 7, 8}.
Let X, Y ∈ H \ {X∗} be two sets whose intersection is P`. If ` = 1, we can select

X = {1, 2, 7, 8} and Y = {1, 2, 11, 12}, and if ` = 2, we can select X, Y ∈ H \ {X∗}
intersecting in P2, such as X = {3, 4, 5, 6} and Y = {3, 4, 7, 8}.

Since h(X), h(Y ) = −∞ by B1 = B0 ∪ {X∗}, there is no independent matching in E

covering X or Y . By Theorem 6.1.2, we have r(Γ(X)) = r(Γ(Y )) = 3. By Claim 6.3.9, it

follows that Γ(X),Γ(Y ) ⊆ cl(Γ(P`)). This further implies that r(Γ(X ∪ Y )) ≤ r(Γ(P`)) =

3, a contradiction since X ∪ Y contains a set in B. (For ` = 1, one such set is {1, 2, 7, 11},
and for ` = 2, we can select {3, 4, 5, 7}.)

6.3.4 Robust matroids and their Rado-minor representations

In this section we study some additional properties of Rado-minor representations of the

matroid B0. We formulate the properties more generally, so that we can also use them

whenever B1 = B0 ∪ {X∗}. This always holds in case (CI), and we will later show that it

must also be true in case (CII).

Definition 6.3.11 (Robust matroid). Let V = [2n], and let Pi = {2i− 1, 2i} for i ∈ [n]; these

are called pairs. We define a matroid by its set of bases B ⊆
(
V
4

)
and letH =

(
V
4

)
\B. We say that

B forms the bases of a robust matroid if

(D1) Every circuit inH is the union of two pairs Pi ∪ Pj ,

(D2) Consider a graph ([n], H) where {i, j} ∈ H if and only if Pi ∪ Pj ∈ H. Then, we can

partition [n] into two sets S and K such that |S| ≥ 2, K is a clique in H with |K| ≥ 3,
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K
S

Figure 6.1: The graph H of a robust matroid defined in (D2).

and every node in S is adjacent to every node in K . Moreover, for each i ∈ S there is j ∈ S
such that i is non-adjacent to j in H . (A schematic view of H is given in Figure 6.1.)

Note that this defines a sparse paving matroid.

Lemma 6.3.12. Both B0 and B0 ∪ {X∗} are robust matroids for n ≥ 8.

Proof. The first property is immediate. For (D2), in B0 (respectively B0 ∪ {X∗}), it suffices

to choose K as the set of even indices (respectively the set of even indices different from

2). In both cases, S = [n] \K .

Let B be a robust matroid on V . Consider a Rado-minor representation (G,M) with

bipartite graph G = (V ∪ W,U ;E) and M = (U, r). We now derive strong structural

properties for such a representation of the matroid B.

Recall that for Z ⊆ V ∪W , ρ(Z) := r(Γ(Z)) − |Z|. In the following proofs, we make

heavy use Lemma 6.1.9. Note that the rank of a robust matroid is 4. Thus, in this section

we use the following assumption. Recall that Q is the unique maximal subset of W such

that ρ(Q) = 0 by Corollary 6.1.12.

Lemma 6.3.13. For each pair Pk, there exists a unique largest Pk-set Zk with ρ(Zk) = 0; and

Q ⊂ Zk.

Proof. Let k ∈ [n]. By (D2), there exists different indices i, j ∈ [n] \ {k} such that Pi ∪ Pj
and Pi∪Pk are circuits inH. By (cir), there exists a (Pi∪Pk)-set I and a (Pj∪Pk)-set J with

ρ(I) = ρ(J) = −1. By the second uncrossing lemma, I ∩ J is a Pk-set with ρ(I ∩ J) = 0.

This shows existence of a Pk-set with ρ-value 0. The existence of a unique largest such set

follows by the first uncrossing lemma by choosing X = Y = Pk there.

To see that Q ⊆ Zk, we apply the first uncrossing lemma for X = ∅, I = W0 and

Y = Pk, J = Zk. Namely, Q ∩ Zk is ∅-set and Q ∪ Zk is Pk-set. Thus, ρ(Q ∪ Zk) = 0 and

Q ⊆ Zκ.

Let us interpret the above lemma. It states that for any pair Pk there exists unique largest

set Zk containing exactly Pk in V with ρ(Zk) = 0. Having ρ(Zk) = 0 means that any

independent matching µ in the Rado-minor representation with ∂V ∪W (µ) = Pk∪W , must

match the nodes in Zk to cl[Γ(Zi)] and no other node is matched to a node in cl[Γ(Zi)].
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Next we describe how the sets Zk, given by Lemma 6.3.13, interact with each other.

Lemma 6.3.14. For any i, j ∈ [n], i 6= j, we have

• If Pi ∪ Pj ∈ B then ρ(Zi ∪ Zj) = 0;

• if Pi ∪ Pj ∈ H then ρ(Zi ∪ Zj) = −1.

• For all i, j ∈ [n], i 6= j we have Zi ∩ Zj = Q and cl[Γ(Zi)] ∩ cl[Γ(Zj)] = cl[Γ(Q)].

Proof. First, we show the lemma for pairs Pi and Pj such that Pi ∪ Pj is a basis in B. We

have thatZi∩Zj is ∅-set andZi∪Zj is (Pi∪Pj)-set. By the first uncrossing lemma, as Pi∪Pj
is an independent set, we have ρ(Zi∩Zj), ρ(Zi∪Zj) = 0. By the maximality ofQ and since

Q ⊆ Zi, Zj , we have Zi ∩ Zj = Q. Finally, Lemma 6.1.10 implies cl(Γ(Zi)) ∩ cl(Γ(Zj)) =

cl(Γ(W0)). This proves the lemma for i, j ∈ [n] with Pi ∪ Pj ∈ B.

For the rest of the proof consider pairs Pi and Pj such that Pi ∪ Pj is a circuit in H.

We show that ρ(Zi ∪ Zj) = −1. By (cir), there is a (Pi ∪ Pj)-set A with ρ(A) = −1. Let

k ∈ K \{i, j} be such that Pi∪Pk and Pj ∪Pk are circuitsH; such k is guaranteed by (D2).

Again by (cir), there exist a (Pi∪Pk)-set I and a (Pj∪Pk)-set J such that ρ(I) = ρ(J) = −1.

By the second uncrossing lemma, we have ρ(I ∪ J) = −2.

Using ρ(A) = −1 and ρ(I ∪ J) = −2, we uncross A and I ∪ J :

−3 = ρ(A) + ρ(I ∪ J) ≥ ρ(A ∩ (I ∪ J)) + ρ(A ∪ I ∪ J) ≥ −1− 2 ,

by (cir) and (dep), sinceC = A∩(I∪J) is a (Pi∪Pj)-set andA∪I∪J is a (Pi∪Pj∪Pk)-set.

Thus, ρ(C) = −1. We can write C = (A ∩ I) ∪ (A ∩ J). By the maximality of Zi and Zj

we have A ∩ I ⊆ Zi, A ∩ J ⊆ Zj . Consequently, C ⊆ Zi ∪ Zj . Finally, we uncross C with

Zi (resp. with Zj), and then uncross C ∪ Zi and C ∪ Zj to see that ρ(Zi ∪ Zj) = −1.

Next, we show that Zi ∩ Zj = Q. For a contradiction, assume there exists w ∈ Zi ∩ Zj \
Q ⊆ W . Consider k ∈ K \{i, j} as before, i.e., k ∈ K \{i, j} such that {i, j, k} is a triangle

in graph H . By the second uncrossing lemma for I = Zi ∪ Zk and J = Zj ∪ Zk, we see

that ρ(I ∩ J) = 0. Since Zk ⊆ I ∩ J and Zk is the largest Pk-set with ρ(Zk) = 0, it follows

that I ∩ J = Zk. Consequently, Zi ∩ Zj ⊆ Zk and w ∈ Zk for all k ∈ K .

Let k, k′ ∈ K , and consider any ` ∈ S. These three indices again from a triangle in the

graph ([n], H). By the same argument as in the previous paragraph, we conclude w ∈ Z`
for all ` ∈ S. Hence, w ∈ Z` for all ` ∈ [n]. This is contradiction as we have already

showed that Za ∩ Zb = Q whenever Pa ∪ Pb is a basis in B.

Finally, we show that cl[Γ(Zi)] ∩ cl[Γ(Zj)] = cl[Γ(Q)]. Similarly to the previous argu-

ment, we assume for the contradiction that there exists u ∈ cl[Γ(Zi)]∩ cl[Γ(Zj)] \ cl[Γ(Q)].

Again, by the second uncrossing lemma for I = Zi∪Zk and J = Zj∪Zk, we have ρ(I∩J) =

0 and I ∩ J = Zk. Moreover, it holds ρ(I) + ρ(J) = ρ(I ∩ J) + ρ(I ∪ J). Lemma 6.1.10
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implies that cl[Γ(I)]∩ cl[Γ(J)] = cl[Γ(Zk)]; consequently, cl[Γ(Zi)]∩ cl[Γ(Zj)] ⊆ cl[Γ(Zk)].

As before, this implies that u ∈ cl[Γ(Z`)] for all ` ∈ [n]. This is contradiction as we have

already shown that cl[Γ(Za)] ∩ cl[Γ(Zb)] = cl[Γ(Q)] whenever Pa ∪ Pb is a basis in B.

Lemma 6.3.15. We have ρ(∪ni=1Zi) = 4−2n and and ρ(∪i∈[n]\{j}Zi) = 2−2n for every j ∈ [n].

Proof. We rely on the following two claims.

Claim 6.3.16. Consider three different indices i, j, k ∈ [n] such that at least two out of {i, j}, {i, k},
and {j, k} are edges in H . Then, ρ(Zi ∪ Zj ∪ Zk) = −2.

Proof of Claim. Consider the pairs Pi, Pj , and Pk with indices as in the claim. Without loss

of generality assume that {i, k}, {j, k} are edges inH . Thus, Pi∪Pk and Pj∪Pk are circuits

in H. Then, we have ρ(Zi ∪ Zk) = ρ(Zj ∪ Zk) = −1 by the second part of Lemma 6.3.14.

Let us uncross these two sets. By submodularity and Lemma 6.1.9, we have

−2 = ρ(Zi ∪ Zk) + ρ(Zj ∪ Zk) ≥ ρ(Zk) + ρ(Zi ∪ Zj ∪ Zk) ≥ 0− 2 .

Hence, ρ(Zi ∪ Zj ∪ Zk) = −2. �

Claim 6.3.17. Let L ⊆ [n] such that |L∩K| ≥ 3 and L∩ S contains two non-adjacent indices i

and j. (Recall that K and S are the sets given by (D2).) Then, ρ(∪i∈LZi) = 4− 2|L|.

Proof of Claim. As {i, j} 6∈ H then Pi ∪ Pj ∈ B and thus ρ(Zi ∪ Zj) = 0 by the first part

of Lemma 6.3.14. Consider any index k ∈ K . By Claim 6.3.16, ρ(Zk ∪ Zi ∪ Zj) = −2.

Therefore, adding Zk to Zi ∪ Zj decreases the ρ value by 2. In other words, for any k ∈ K
we have

∆ρ(Zk|Zi ∪ Zj) := ρ(Zk ∪ Zi ∪ Zj)− ρ(Zi ∪ Zj) = −2− 0 = −2 . (6.5)

By submodularity, adding ` different sets Zk with k ∈ K to Zi ∪ Zj decreases ρ by at

least 2`. We proceed to prove a similar statement for sets Zk with k ∈ S.

Next, consider three different indices a, b, c ∈ K∩L. Let Y = Za∪Zb∪Zc. We then have,

ρ(Y ∪Zi∪Zj) ≤ 4− 2 · 5. By Claim 6.3.16, we have ρ(Y ) = −2. By Lemma 6.1.9 (dep), we

also have ρ(Y ∪ Zi ∪ Zj) ≥ 4− 2 · 5 and consequently ρ(Y ∪ Zi ∪ Zj) = 4− 2 · 5. (Which

proves the claim if L = {a, b, c, i, j}.) Similarly, ρ(Y ∪ Zi) = 4− 2 · 4.

Rearranging the above we conclude that whenever {i, j} 6∈ H , we have

∆ρ(Zi ∪ Zj|Y ) = −4 . (6.6)

In other words, adding Zi ∪ Zj to Y leads to a decrease of 4 in the ρ value. By

Lemma 6.1.9 (dep) we also have ρ(Y ∪ Zi) ≥ 4 − 2 · 4 = −4, and ρ(Y ∪ Zi ∪ Zj) ≥
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4− 2 · 5 = −6. Combining it with the previous paragraph, we have ∆ρ(Zi|Y ) ≥ −2, and

∆ρ(Zj|Y ∪ Zi) ≥ −2. Using (6.6) and submodularity we conclude that the inequalities

hold with equality. That is, we have

∆ρ(Zi|Y ) = −2 (6.7)

for every i such that {i, j} 6∈ H for some j ∈ S, i.e., by (D2), for every i ∈ S. By sub-

modularity, adding ` different sets Zi with i ∈ S to Y decreases the ρ value by at least

2 · `.
Thus, for our set L, by submodularity and combing (6.5) and (6.7) we have ρ(∪i∈LZi) ≤

4− 2 · |L|. The equality holds by Lemma 6.1.9 (dep). �

The lemma follows by applying the last claim for L = [n] and L = [n] \ {i}.

6.3.5 Bounding the support of h

Since B0 is always a robust matroid, we can use the results in the previous section for

B = B0. Let Z0
i denote the Zi-sets, and Q0 the unique largest subset of Wwith ρ0(Q) = 0.

Our first goal is to show Lemma 6.3.20 below, namely, that in both case (CI) and (CII),

we have that dom(h) = B1 = B0∪ (X∗). Thus, we get the smallest possible size according

to the main selection criterion (S1). This will enable us to also use the robust matroid

analysis on B = B1. The proof will rely on the following ‘compression’ of the matroidM.

CompressingM We replaceM on U by the following matroidM: a set T ∈
(

U
|W |+4

)
is

a basis inM if and only if there is a matching in E between T and a basis in

B := {X ∪W : X ∈ B0 ∪ {X∗}} .

These sets T form the bases of a matroid by Rado’s theorem. Since h(X) is finite for all

X ∈ B0 ∪ {X∗}, this will be a submatroid ofM, i.e., all bases ofM are bases inM. Let

h̄(X) be the function corresponding to the modified representation (G,M, c,W ). Clearly,

h̄(X) = h(X) for every X ∈ B0 ∪ {X∗} and h̄(X) ≤ h(X) otherwise. As h̄ has the same

or better criteria (S1)–(S3) than h, we assume that h = h̄ andM =M.

Using this construction, we first show that Q0 = ∅ in (CII). However, Q0 6= ∅ may still

be possible in case (CI).

Lemma 6.3.18. In case (CII), i.e., if E = E∗, then Q0 = ∅must hold. Thus, ρ1(Z0
i ) ≥ ρ0(Z0

i ) ≥
1 for all Z ⊆ W,Z 6= ∅ in this case.

Proof. Denote with T0 = Γ(Q0). By definition of ρ0, rτ (T0) = |Q0|. We claim that also

r(T0) = |Q0|. The next claim will be needed for this proof.
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Claim 6.3.19. There is no edge (i, j) ∈ E with i ∈ (V ∪W ) \Q0 and j ∈ T0.

Proof of Claim. Suppose there is such an edge. By definition of E∗ (= E), there exists

an independent matching µ containing (i, j) with weight 0. Trivially, this matching also

covers Q0 as Q0 ⊆ W . Thus, µ matches Q0 and i to the set T0 in U . By optimality criteria

the endpoints of µ in U must form a basis inMτ . This is a contradiction, since |Q0∪{i}| >
rτ (T0) = |Q0|. �

Suppose that r(T0) > |Q0|. Then there is a basis S ofM such that |S ∩ T0| > |Q0|. As

M =M there is an independent matching, matching S ∩ T0 to a subset of size > |Q0| in
V ∪W . This is impossible as the neighbourhood of T0 in V is Q0 by Claim 6.3.19. Hence,

r(T0) = |Q0|. This contradicts Lemma 6.3.6.

Lemma 6.3.20. B1 = B0 ∪ {X∗} must hold.

Proof. There is nothing to prove in (CI), so let us assume we are in case (CII); thus,E = E∗.

According to the previous lemma, we also have Q0 = ∅. Let Z∗ = ∪ni=1Z
0
i ; in particular

V ⊆ Z∗.

Claim 6.3.21. There are no edges between W \ Z∗ and Γ(Z∗).

Proof. Let F denote the edge set in the claim. Let T ∗ = Γ(Z∗). By Lemma 6.3.15 and

Lemma 6.3.18, we have that ρ0(Z∗) = 4−2n. As ρ0(Z∗) = rτ (Γ0(Z∗))−|Z∗| = rτ (T
∗)−|Z∗|

we have rτ (T ∗) = 4 + |Z∗ ∩W |. Consequently, an independent matching µ of weight 0

cannot use any of the edges in F , since |∂Z∗(µX)| = 4 + |Z∗ ∩W | and thus ∂Z∗(µX) must

be matched to a maximal independent set in T ∗. Hence, E∗ ∩ F = ∅. Then F = ∅ as

E = E∗.

Consider any X ∈ B1 \ (B0 ∪ {X∗}). We have X = Pi ∪ Pj for some i, j ∈ [n],

{i, j} 6= {1, 2} by the definition of Fn. Let S = Z0
i ∪ Z0

j and T = Γ(S). The next claim

shows that r(T ) < |S| − 1.

Claim 6.3.22. r(T ) < |S|.

Proof of Claim. By Lemma 6.3.14 and Lemma 6.3.18 (Q0 = ∅), there are no edges connect-

ing T and any Z0
k , k /∈ {i, j}. As F = ∅ there are no edges between T ⊆ Γ(Z∗) andW \Z∗.

We conclude that Γ(T ) = S (the direction Γ(T ) ⊇ S follows by definition as T = Γ(S)).

Therefore, T = Γ(S) and S = Γ(T ).

SinceM = M and using Rado’s theorem, if we have r(T ) ≥ |S| then B∗ has a basis

intersecting S in at least |S| elements. As S = Z0
i ∪Z0

j for some X = Pi ∪Pj /∈ B0 ∪ {X∗}
this means that, Pi ∪ Pj ∪W is a basis of B. �

By the above claim and Rado’s theorem, there cannot be any independent matching in

G,M covering X ∪W ; thus, h(X) = −∞ proving the lemma.
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In light of the above Lemma, we can apply the techniques in Section 6.3.4 to the robust

matroidB1 = B0∪{X∗}. LetZ1
i denote the corresponding sets in Lemma 6.3.14, and recall

that ρ1(Z) = r(Γ(Z))− |Z|. By Lemma 6.3.6, the largest subset Q1 of W with ρ1(Q1) = 0

is Q1 = ∅.

Lemma 6.3.23. In the minimal counterexample we have ∪ni=1Z
1
i = V ∪W .

Proof. We use the following claim stating that, in the minimal counterexample, for any

V -set Z with sufficiently large ρ1-value it holds V ∪W = Z.

Claim 6.3.24. Let Z = V ∪W ′ for W ′ ⊆ W such that ρ1(Z) = 4 − |V |. Then, in a minimal

counterexample we must have W ′ = W or equivalently Z = V ∪W .

Proof of Claim. For a contradiction assume that W ′ 6= W . Let T = cl[Γ(V ∪ W ′)]. By

definition of ρ1, having ρ1(V ∪W ′) = 4−|V |means r(T ) = |V ∪W ′|+ 4−|V | = |W ′|+ 4.

Thus, for anyX ∈ B1 (|X| = 4) the corresponding matching µX ∈ Lmatches exactly r(T )

nodes in T to the nodes in X ∪W ′. In other words, any matching µX ∈ Lmatches nodes

W \W ′ to |W \W ′| nodes in U \ T .

Similarly to the proof of Lemma 6.3.6, it follows that in any µX ∈ L, the cost of the edges

covering W \W ′ is the same. Hence, we can get a smaller representation by restricting W

to W ′ and U to U ′. �

Lemma 6.3.15 for B1 gives ρ1(∪ni=1Z
1
i ) = 4 − 2n. Also noting that V ⊆ ∪ni=1Z

1
i , the

statement follows by Claim 6.3.24.

Lemma 6.3.25. In a minimal counterexample we have Z0
i = Z1

i ∪Q0 (in particular, Z0
i = Z1

i in

case (CII)) for every i ∈ [n].

Proof. Let us first show Z1
i ∪Q0 ⊆ Z0

i . By Lemma 6.3.13, Q0 ⊆ Z0
i . Let us show Z1

i ⊆ Z0
i .

We have ρ0(Z1
i ) ≥ 0 by (ind) since Z1

i is a Pi-set, and also ρ0(Z1
i ) ≤ ρ1(Z1

i ) = 0. Thus,

ρ0(Z1
i ) = 0. By the maximality of Z0

i (Lemma 6.3.13), it follows that Z1
i ⊆ Z0

i .

We next show that equality holds. For the sake of contradiction, assume that we have

w ∈ Z0
i \ (Z1

i ∪Q0) for some i ∈ [n]. Lemma 6.3.23 shows that ∪ni=1Z
1
i = V ∪W , and hence

we must have w ∈ (Z0
i ∩ Z1

j ) \ Q0 for some i 6= j. By the third part of Lemma 6.3.14 we

then have Q0 = Z0
i ∩ Z0

j ⊇ Z1
i ∩ Z0

j ⊇ {w}, a contradiction.

6.3.6 The case (CI)

We are ready to show that case (CI) cannot occur. In this case, we haveMτ = M, E =

E0 ∪ {(i∗, j∗)}, and B1 = B0 ∪ {X∗}.

Lemma 6.3.26. Either Q0 = ∅ or there exists unique q ∈ [n] such that Q0 ⊆ Z1
q .
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Proof. The sets Z1
i are pairwise disjoint by Lemmas 6.3.6 and 6.3.14. Suppose Q0 ∩Z1

q 6= ∅
for some q ∈ [n]. Let us uncross these two sets. Trivially ρ1(Z1

q ) = 0, by Lemma 6.3.6 we

have ρ1(Q0) ≥ 1 and ρ1(Z1
q ∩ Q0) ≥ 1. Further ρ1(Z1

q ∪ Q0) ≥ 0 holds since Z1
q ∪ Q0 is a

Pq-set. By submodularity it follows

0 + 1 = ρ1(Z1
q ) + ρ1(Q0) ≥ ρ1(Z1

q ∩Q0) + ρ1(Z1
q ∪Q0) ≥ 1 + 0 ,

implying ρ1(Z1
q ∪Q0) = 0. By maximality of Z1

q we have Q0 ⊆ Z1
q .

Lemma 6.3.27. We have ρ0(Z0
1 ∪ Z0

2) = −1 and ρ0(Z1
1 ∪ Z1

2) = 0. Consequently, Q0 6= ∅ and

q /∈ {1, 2} for q as in Lemma 6.3.26.

Proof. Recall that ρ0(Z0
1 ∪Z0

2) = −1 by Lemma 6.3.14 as h(X∗) < 0. We claim that ρ0(Z1
1 ∪

Z1
2) = 0.

Recall thatM =Mτ . For a contradiction, assume that ρ0(Z1
1 ∪ Z1

2) = 0. It can only be

that ρ0(Z1
1 ∪Z1

2) < ρ1(Z1
1 ∪Z1

2) = 0. In particular, ρ0(Z1
1 ∪Z1

2) = −1 as every three element

set is independent in B0. Hence, ρ0(Z1
1 ∪ Z1

2) = −1 < 0 = ρ1(Z1
1 ∪ Z1

2). This means that

r(Γ(Z1
1 ∪ Z1

2)) > r(Γ0(Z1
1 ∪ Z1

2)). Thus, the single edge (i′, j′) ∈ E \ E0 is incident to

Z1
1 ∪ Z1

2 . Let ` ∈ {1, 2} such that i′ ∈ Z1
` . Now, we must have 0 ≤ ρ0(Z1

` ) < ρ1(Z1
` ) = 0, a

contradiction.

The last statements follow since if Q0 = ∅ or q ∈ {1, 2}, then Z0
1 ∪ Z0

2 = Z1
1 ∪ Z1

2 by

Lemma 6.3.25.

Lemma 6.3.28. Let q ∈ [n] such thatQ0 ⊆ Z1
q , and let Y = ∪i∈[n]\{q}Z

1
i . Then, ρ0(Y ) = 2−2n.

Proof. By the second part of Lemma 6.3.15 for ρ1, we have ρ1(Y ) = 2− 2n. We show that

the same holds for ρ0.

By Lemma 6.3.26 (and Lemma 6.3.27) we know that Q0 ⊆ Z1
q for a unique q ∈ [n]. As

all Z1
i are disjoint (Lemma 6.3.14 and Q1 = ∅) we have Q0 ∩ Z1

i = ∅ for all i ∈ [n] \ {q}.
Then by Lemma 6.3.25 we have that Z1

i = Z0
i \Q0. We use this below at the second line to

show ρ0(Y ) ≥ 2− 2n:

ρ0(Y ) = ρ0(∪i∈[n]\{q}Z
1
i )

= ρ0(∪i∈[n]\{q}(Z
0
i \Q0))

= ρ0

(
(∪i∈[n]\{q}Z

0
i ) \Q0

)
+ ρ0(Q0) (ρ0(Q0) = 0)

≥ ρ0(∪i∈[n]\{q}Z
0
i ) + ρ0(∅) (submodularity)

= 2− 2n . (Lemma 6.3.15 for ρ0)

Since ρ0(Y ) ≤ ρ1(Y ) we conclude ρ0(Y ) = 2− 2n.

Let us now derive the final contradiction for (CI). As Q0 only intersects Z1
q , by submod-
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cl[Γ(Za)]

Za Zb Zc Zd

Pa Pb Pc
Pd

cl[Γ(Zb)] cl[Γ(Zc)] cl[Γ(Zd)]

Figure 6.2: Schematic example of matroid B1 with its Rado-minor representation
(G,M,W ). Here, the neighbourhoods if taken in the edge set E, and the clo-
sure in the matroidM. The black dots represent set V and the white dots rep-
resent W . Similarly, a Rado-minor representation holds for B0 once we replace
M (and closure) byMτ .

ularity

ρ0(Y ∪Q0) + ρ0(Z1
1 ∪ Z1

2) ≤ ρ0(Z1
1 ∪ Z1

2 ∪Q0) + ρ0(Y ) .

Then, by Lemma 6.3.27 we further have

ρ0(Y ∪Q0)− ρ0(Y ) ≤ ρ0(Z1
1 ∪Z1

2 ∪Q0)− ρ0(Z1
1 ∪Z1

2) = ρ0(Z0
1 ∪Z0

2)− ρ0(Z1
1 ∪Z1

2) = −1 .

Hence, ρ0(Y ∪ Q0) ≤ 1 − 2n. On the other hand ρ0(Y ∪ Q0) = ρ0(∪i∈[n]\{q}Z
1
i ∪ Q0) =

ρ0(∪i∈[n]\{q}Z
0
i ) = 2− 2n. A contradiction.

6.3.7 The case (CII)

In the remaining case (CII), we have E = E0 = E∗ but Mτ 6= M. In Section 6.3.5,

we have already showed some strong properties for this case: Q0 = ∅ (Lemma 6.3.18),

B1 = B0 ∪ {X∗} (Lemma 6.3.20), and Z0
i = Z1

i for all i ∈ [n] (Lemma 6.3.25). In light of

this, we can simplify the notation to Zi = Z0
i = Z1

i .

Let Di := cl[ΓE(Zi)]; see Figure 6.2. By Lemma 6.3.14, there are no edges with one end

point in Zi and the other in Dj whenever i 6= j.

Let us additionally modify the bipartite graph in the representations: we may assume

that E = E0 = E∗ is a complete bipartite graph between Zi and Di for any i ∈ [n].

Indeed, recall that any independent matching covering Zi has to match Zi to Di and no

node outside of Zi can be matched to a node in Di. Thus, adding new edges between

these sets cannot add a new basis to either the set of all bases B1 or to the set of maximum

weight bases B0.

Introducing these new edges allows us to describe the representations of B0 and B1 in

purely set-theoretic and matroidal terms. We introduce definition that under the repre-

sentation constructed above captures the matroids B0 and B1.

Definition 6.3.29. For a set X ∈
(
V
4

)
, we say that a set S ⊆ U , |S| = |W | + 4 conforms X if
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|S ∩Di| = |X ∩ Pi|+ |Zi| − 2 for all i ∈ [n].

The requirements on our matroidsM andMτ can be stated as follows:

• For any X ∈
(
V
4

)
, there exists a basis S inM conforming X if and only if X ∈ B1.

• For any X ∈
(
V
4

)
, there exists a basis S inMτ conforming X if and only if X ∈ B0.

The next lemma concludes the proof of Theorem 1.3.3, by showing that W = ∅ in a

minimal representation. Thus, the existence of an R-minor representation would imply

the existence of an R-induced representation, which we have already shown cannot exist.

Recall from Lemma 6.3.15 (applied to both ρ0 and ρ1) that ρ0(∪ni=1Zi) = ρ1(∪ni=1Zi) =

4− 2n and and ρ0(∪i∈[n]\{j}Zi) = ρ1(∪i∈[n]\{j}Zi) = 2− 2n for every j ∈ [n].

Lemma 6.3.30. In a minimal representation we must have W = ∅.

Proof. For a contradiction, assume W 6= ∅; pick i ∈ [n] such that |Zi| > 2. Now, every

basis in M (and thus in Mτ ) must intersect Di in at least |Zi| − 2 elements (due to the

modified representation above, or the second part of Lemma 6.3.15). This guarantees the

existence of a u ∈ Di such that u /∈ clMτ (U \Di). We claim that a smaller representation

can be obtained by contracting u in Di and deleting a node from W ∩ Zi.
To see this, it suffices to prove that for every X ∈ B0 there exists a basis S in Mτ

conforming X with u ∈ S, and there exists a basis S1 inM conforming X1 with u ∈ S1.

Then, the requirements listed above remain true in the smaller instance. Note that we

do not require that S1 has the largest possible τ -weight; as long as we can guarantee the

existence of a basis inM but not inMτ that conforms X1, we get a function in Fn that is

the same on (S1), but better on (S2) (with possibly different negative value h(X∗).)

Consider any X ∈ B0 and a basis S inMτ conforming X but u /∈ S. Let C ⊆ S ∪ {u}
be the fundamental circuit of u with respect to S. Then, (C \ u) ∩ Di 6= ∅: otherwise,

C \u ⊆ U \Di would yield u ∈ clMτ (U \Di), a contradiction to the choice of u. Hence, we

can exchange u with an element of S ∩Di and thereby obtain another basis S ′ conforming

X with u ∈ S ′.
The same argument applies for the basis S1 inM conforming X1, noting that clM(U \

Di) ⊆ clMτ (U \Di).

6.4 The size of R-induced representations

We show that any R-induced valuated matroid has an R-induced representation where the

bipartite graph has size O(|V | · d), where d is its rank. A corollary is that not all valuated

matroids are R-induced.
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Lemma 6.4.1. Let f :
(
V
d

)
→ R ∪ {−∞} be an R-induced valuated matroid with representation

G = (V, U ;E),M = (U, r) and c ∈ RE . Then, there is an R-induced representation of f with

G′ = (V, U ′;E ′),M′ = (U ′, r′) and c′ ∈ RE′ such that |ΓG′(v)| ≤ d for all v ∈ V . In particular,

|E ′|+ |U ′|+ |V | ∈ O(|V | · d).

Proof. Consider an arbitrary node v ∈ V , and the set of its neighbours ΓG(v) in U . Let us

define a weight function ω over ΓG(v) as ω(u) = cvu for u ∈ ΓG(v). Let S be a maximum

weight basis in the matroidM restricted to ΓG(v) with respect to the weights ω. AsM
has rank d it follows that |S| := s ≤ d.

To prove the lemma, it suffices to show that for any set X ∈ dom(f) with v ∈ X , in any

maximum weight independent matching µX defining f(X) the edge incident to v can be

switched to have the other end point in S.

Let µX be an independent matching coveringX whereX ∈ dom(f) and v ∈ X . Denote

with u the node in U matched to v by µX . If u ∈ S, there is nothing to show. So, assume

u 6∈ S. Let T be the set of all other endpoints of µX in U . That is, the set of endpoints of

µX in U is exactly T ∪ {u}, where u 6∈ T and |T | = |X| − 1. We show that we can swap

(v, u) by an edge (v, u′) for u′ ∈ S without decreasing the weight of the matching.

Denote the elements of the neighbourhood ΓG(v) by u1, . . . , us such that ω(u1) ≥ · · · ≥
ω(us). Since S is a maximum weight basis, there is a k ∈ [s] such that ω(u1) = cvu1 ≥
· · · ≥ ω(uk) = cvuk ≥ ω(u) = cvu and u ∈ cl({u1, . . . , uk}) (by the greedy algorithm for

finding a maximum weight basis in a matroid).

If we can replace (v, u) by an edge (v, ut) for t ∈ [k] in µX , we get a new independent

matching with weight at least as much as the weight of µX . On the other hand, suppose

that for any t ∈ [k] the set µX ∪ {(v, ut)} \ {(v, u)} is not an independent matching. Then,

it must be the case that {u1, . . . , uk} ⊆ cl(T ). Since, u ∈ cl({u1, . . . , uk}) it follows that

u ∈ cl(T ). A contradiction. It follows that we can always swap (v, u) ∈ µX for an edge

(v, u′) where u′ ∈ S, to obtain a matching with weight at least the weight of µX . The

lemma follows.

Information-theoretic separation We use the above lemma to give an alternative proof

that not all valuated matroids are R-induced. Note that this is also proved in Proposi-

tion 6.3.10.

Let f :
(
V
4

)
→ R ∪ {−∞} be an R-induced valuated matroid and consider its R-induced

representation (G,M, c) given by Lemma 6.4.1; in particular, G = (V, U ;E) where |E| ≤
|V | · rk(f) = 4|V |. Let C = {cij : (i, j) ∈ E} be the set of weights appearing on the edges;

note that we trivially have |C| ≤ 4|V |. For any set X ∈
(
V
4

)
, the value f(X) is either

−∞ or a sum of precisely four numbers in C. This implies the set of function values is

contained in the Q-vector space generated byC. In particular, the dimension of this vector

space is bounded above by |C|.
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We now exhibit a family of valuated matroids for which the Q-vector space generated

by its attained values has dimension greater than 4|V |. Recall from Definition 1.3.2 and

Appendix 6.3.1 the sparse paving matroid with bases
(
V
4

)
\ H, where H the set of pairs

Pi ∪ Pj where at least one of i, j are even. We define a valuated matroid by

h(X) =

0 X ∈
(
V
4

)
\ H

αX X ∈ H
, αX < 0 .

In particular, the values αX for X ∈ H can be assigned freely. Consider such a function

for which the set A = {αX : X ∈ H} is a set of linearly independent real numbers over

Q. Therefore the Q-vector space generated by values of h has dimension at least |A|. By

definition of H we have, |A| =
(
n
2

)
−
(bn/2c

2

)
; in particular, this grows quadratically as

opposed to |C|which grows linearly. For n ≥ 23, we have that |A| > 4 ·2n = 4|V |. Hence,

such a function h is not an R-induced valuated matroid.

Finally we mention that with a similar proof, it is easy to show an analogous lemma for

R\-induced valuated generalized matroids.

Lemma 6.4.2. Let f : 2V → R ∪ {−∞} be an R\-induced valuated matroid with representation

G = (V, U ;E), M = (U, r) and c ∈ RE . Then, there is an R\-induced representation of f

with G′ = (V, U ′;E ′),M′ = (U ′, r′) and c′ ∈ RE′ such that |ΓG′(v)| ≤ min{n, r(M)} for all

v ∈ V . In particular, |E ′|+ |U ′|+ |V | ∈ O(|V |2).



7 Refuting the MBV conjecture

In this chapter, we build on the family Fn of counterexamples in Theorem 1.3.3 to refute

the MBV conjecture. Theorem 1.3.3 states that all functions in Fn are valuated matroids

but not R-minor valuated matroids.

To refute the MBV conjecture, we extend the class of R-minor valuated matroids to R\-

minor valuated generalized matroids, and show this contains matroid based valuations as

a subclass. Furthermore, we extend our main counterexample to a valuated generalized

matroid that is not R\-minor and therefore not a matroid based valuation, refuting the

MBV conjecture.

7.1 Valuated generalized matroids

Recall that a function f : 2V → R ∪ {−∞} is a valuated generalized matroid if and only

two properties (1.1a) and (1.1b) hold:

∀X, Y ⊆ V with |X| < |Y | :

f(X) + f(Y ) ≤ max
j∈Y \X

{f(X + j) + f(Y − j)}

∀X, Y ⊆ V with |X| = |Y | and ∀i ∈ X \ Y :

f(X) + f(Y ) ≤ max
j∈Y \X

{f(X − i+ j) + f(Y + i− j)}.

In Section 7.2, we demonstrate a construction which allows one to consider valuated

generalized matroids as special cases of valuated matroids on a larger ground set. On the

other hand, we already saw valuated matroids as special class of valuated generalized

matroids. Another important class are the trivially valuated generalized matroids, those

taking only values 0 and −∞. This includes the characteristic functions of the family of

independent sets of a matroid. Indeed, if g(∅) > −∞ for a valuated generalized matroid,

then dom(g) is the family of independent sets of a matroid [99, Corollary 1.4].

We defined several constructions for valuated matroids which are defined on the layers

of those subsets with fixed size in Section 5.1. It turns out that these operations extend

essentially layer-wise to valuated generalized matroids. In the following we denote the

restriction of a valuated generalized matroid g on V to
(
V
k

)
by `k (g).

140
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Definition 7.1.1. Let N = (T,A) be a directed network with a weight function c ∈ RA. Let

V, U ⊆ T be two non-empty subsets of nodes of N . Let g be a valuated generalized matroid on U .

Then the induction of g by N is the function Φ(N, g, c) : 2V → R ∪ {−∞} such that

`k (Φ(N, g, c)) = Φ(N, `k (g) , c),

where Φ(N, g, c)(∅) = g(∅).

In the special case that the directed network is bipartite with the edges directed from V to U ,

we can also consider this as an undirected weighted bipartite graph and call the corresponding

operation induction by bipartite graphs.

Analogous to Theorem 5.1.9 this is just a special case of transformation by networks.

Theorem 7.1.2 (Special case of [95, Theorem 9.27]). Let N, g, c as in Definition 7.1.1. Then if

Φ(N, g, c) 6≡ −∞ the induced function is a valuated generalized matroid.

As with induction of valuated matroids, we shall often be most interested in the induc-

tion of trivially valuated generalized matroids. A trivially valuated generalized matroid

g can be identified with its underlying domain I , where g(I) = 0 if I ∈ I and −∞ other-

wise. As stated previously, if ∅ ∈ I then I forms the set of independent sets of a matroid;

however this does not have to be the case, I only has to satisfy the independent set ex-

change axiom (the unvaluated equivalent of (1.1a)). We call such an I a generalized matroid.

As working with I directly will be convenient in some situations, we extend the notation

of Definition 7.1.1 to define Φ(N, I, c) := Φ(N, g, c).

The following example shows why induction of trivially valuated generalized matroids

is a natural construction to consider.

Example 7.1.3. Let I be the independent sets of a matroidM on ground set V . A weighted rank

function rw : 2V → R≥0 with weight w ∈ Rn≥0 is

rw(X) = max

{∑
i∈I

wi : I ⊆ X , I ∈ I
}

.

Note that if w is the vector of all ones, then rw is precisely the rank function ofM.

Let V ′ and V ′′ be copies of V and let I be the independent sets of the matroidM =M⊕ frV ′′
on V ′ ∪ V ′′. Furthermore, we define the bipartite graph G = (V, V ′ ∪ V ′′;E) where E consists of

the edges (v, v′) and (v, v′′) connected each node in V its copies in V ′ and V ′′. We attach weights

c ∈ RE where the edge (v, v′) gets the weight wv and the edge (v, v′′) gets the weight 0.

Let I ⊆ X be the max weight independent set contained in X . The value of Φ(G, I, c)(X)

is obtained by connecting elements of I to I ′ ⊆ V ′ via edges of weight wi, and then connecting

elements of X \ I to their copy in V ′′ by edges of weight zero. In this way rw = Φ(G, I, c) arises

from a trivially valuated generalized matroid by induction via a bipartite graph.
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V
′ V

′′

V
v

v
′′v

′

M frV ′′⊕

Figure 7.1: The graph G = (V, V ′ ∪ V ′′;E) realising the weighted matroid rank function
from Example 7.1.3. Edges of weight wv are solid while edges of weight zero
are dashed.

Many of the operations on valuated matroids extend to valuated generalized matroids

by acting layerwise.

Definition 7.1.4. Let f : 2V → R ∪ {−∞} be a valuated generalized matroid and Y ⊂ V

some subset of V . The operations deletion (restriction), contraction, dualization, truncation,

principal extension are defined by the respective operations on the layers from Definition 5.1.1.

Note that direct sum and valuated matroid union do not extend layerwise to valuated

generalized matroids. Intuitively, this is because the k-th layer of the union must take

information from multiple layers of the constituent valuated generalized matroids, all i-th

and j-th layers such that k = i + j. The analogue of direct sum and valuated matroid

union for valuated generalized matroids is the following operation.

Definition 7.1.5. Let f, g : 2V → R ∪ {−∞}. The merge of f and g is the function f ∗g : 2V →
R ∪ {−∞} defined as

(f ∗ g)(X) = max {f(Y ) + g(X \ Y ) : Y ⊆ X} , ∀X ⊆ V.

With these operations, we get an analogue of Theorem 5.1.12.

Theorem 7.1.6. The class of valuated generalized matroids is closed under the operations deletion,

contraction, dualization, truncation, principal extension, merge.

Proof. Deletion, dualization and merge are covered by [95, Theorem 6.15]; the latter is

integer infimal convolution restricted to the interval [0, 1], parts (8) and (5) respectively.

Lemma 5.1.13 implies layerwise closure under contraction and therefore globally closed

contraction. Remark 5.1.10 shows principal extension are special cases of induction by net-

works, which valuated generalized matroids are closed under via Theorem 7.1.2. Finally,

Lemma 5.1.14 implies layerwise closure under truncation and therefore globally closed

under truncation.

It was shown in [10] that valuated generalized matroids are not covered by the cone of

matroid rank functions; note that not even all non-negative combinations of matroid rank
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functions are valuated generalized matroids. In particular, not every valuated generalized

matroid can be represented as a weighted matroid rank function [113, Theorem 4].

However, it was conjectured that allowing two operations, merge and endowment,

would suffice to construct all. Here, the endowment by T ⊆ V of a function f : 2V →
R ∪ {−∞} is the function ∆T (f) : 2V \T → R ∪ {−∞}with ∆T (f)(X) = f(X ∪T )− f(T )

for all X ⊆ V \ T .

With this, the class of matroid based valuations are those functions arising from the class

of weighted matroid rank functions by arbitrary application of merge and endowment.

Conjecture 7.1.7 (MBV conjecture [104]). The class of matroid based valuations is equal to the

class of monotone valuated generalized matroids taking value zero on the empty set.

We study a subclass of valuated generalized matroids which is an extension of the class

of R-minor valuated matroids. This allows us to use the results from Section 6.3.

Definition 7.1.8. The class of R\-induced functions are valuated generalized matroids arising

from trivially valuated generalized matroids via induction by bipartite graph.

The class of R\-minor functions are valuated generalized matroids arising from contractions of

R\-induced functions.

Throughout the proofs in this section, we use the same notation as introduced in Sec-

tion 5.3. Let f be an R\-minor function on V ; by definition, there exists an R\-induced

function f̃ on V ∪W such that f = f̃/W . By definition, there exists some bipartite graph

G = (V ∪W,U ;E) with edge weights c ∈ RE and generalized matroid I on U such that

f̃ = Φ(G, I, c); we say f̃ has an R\-induced representation (G, I, c). As f = Φ(G, I, c)/W ,

we extend this notation to say that f has an R\-minor representation (G, I, c,W ), where W

is the set to be contracted.

Lemma 7.1.9. The class of R\-minor functions is closed under endowment.

Proof. Given f as above, we show we can represent ∆T (f) as an R\-minor function for

some T ⊆ V . As f is a contraction of f̃ by W , the endowment by T can be written as

∆T (f) = f(X ∪ T )− f(T ) = f̃(X ∪ T ∪W )− f̃(T ∪W ) = ∆T∪W (f̃) .

Let δ = f̃(T ∪W )/|T ∪W | and consider a new edge weight function c′(e) that takes the

value c(e)− δ on all edges adjacent to T ∪W , and c(e) otherwise. Then the induction of I
through the graph G with altered weight function c′ is

(Φ(G, I, c′))(Z) = f̃(Z)− δ · |Z ∩ (T ∪W )| .
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VW1 W2

U1 U2
G1

G2

Figure 7.2: The graph G′ constructed in the proof of Lemma 7.1.10, obtained by gluing G1

and G2 at their common node set V .

Taking the contraction of Φ(G, I, c′) by T ∪W yields

(Φ(G, I, c′)/(T ∪W ))(X) = f̃(X ∪ T ∪W )− δ · |T ∪W | = ∆T (f)(X) .

Lemma 7.1.10. The class of R\-minor functions is closed under merge.

Proof. Let f1, f2 be R\-minor functions on a common ground set V with representation

(Gi, Ii, ci,Wi) where Gi = (V ∪Wi, Ui, Ei) for i = 1, 2. In particular, we can choose the

contracted sets to be disjoint i.e.,W1∩W2 = ∅. This last assertion is particularly important

as it allows merge and contraction to commute. By extending f̃1 and f̃2 to the ground

set V ∪W1 ∪W2, taking the value −∞ where previously undefined, we see that for any

X ⊆ V ,

(f1 ∗ f2)(X) = (f̃1/W1 ∗ f̃2/W2)(X)

= max{f̃1(Y ∪W1) + f̃2((X \ Y ) ∪W2) : Y ⊆ X}

= max{f̃1(Z) + f̃2((X ∪W1 ∪W2) \ Z) : Z ⊆ X ∪W1 ∪W2}

= (f̃1 ∗ f̃2)(X ∪W1 ∪W2)

= ((f̃1 ∗ f̃2)/(W1 ∪W2))(X) .

Therefore if we can represent (f̃1∗f̃2) via induction by bipartite graph, contractingW1∪W2

completes the proof.

Let G′ be a graph obtained by “gluing” G1 and G2 along their common ground set.

Explicitly,G′ = (V ∪W1∪W2, U1∪U2;E1∪E2) whose weight function c′ inherits the same

weights from c1 and c2. The graph is given in Figure 7.2. We consider the trivially valuated

generalized matroid I ′ = I1 ⊕ I2. Then the value of Φ(G′, I ′, c′)(Z) is the maximum over

all matchings from Y ⊂ Z to U1 and matchings Z \ Y to U2, ranging over subsets Y ⊂ Z,

precisely realizing (f̃1 ∗ f̃2) as an R\-induced function.

Example 7.1.3 showed that weighted matroid rank functions are special cases of R\-

induced functions. Combining this with Lemmas 7.1.9 and 7.1.10, we see that matroid
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based valuations are a subclass of R\-minor functions.

Corollary 7.1.11. Matroid based valuations form a subclass of R\-minor functions with the prop-

erties that they are monotone, real-valued and have value 0 on the empty set.

7.1.1 A valuated generalized matroid extending a robust matroid

Let h be an arbitrary function in the class Fn in Definition 1.3.2 which takes only values in

(−1, 0].

We define a function h\ : 2V → R by

h\(X) =


|X| for |X| ≤ 3

4 + h(X) for |X| = 4

4 for |X| ≥ 5

Note that h\ is a perturbed rank function of the uniform matroid on V of rank 4.

Lemma 7.1.12. The function h\ is a valuated generalized matroid.

Proof. We first show h\ satisfies (1.1b), where |X| = |Y | = k. When k 6= 4, all sets of that

cardinality k have the same value and so h\ satisfies (1.1b). The case when k = 4 follows

from Lemma 6.3.2 and all sets being scaled by the same value.

We next show h\ satisfies (1.1a), where without loss of generality |X| < |Y |.

• If |X| ≥ 5, then all sets take the value 4, and therefore trivially satisfy (1.1a).

• If |X| = 4, then h\(X) + h\(Y ) ≤ 8. If we can pick i ∈ Y \ X such that Y \ i /∈ H,

then h\(X + i) + h\(Y − i) = 8 and this case holds. If no such i exists, then |Y | = 5.

Furthermore, there cannot be two distinct elements i, j ∈ Y \X , else Y −i, Y −j ∈ H
intersect in three elements, which no pairs in H do. Therefore Y = X ∪ i, and

so (1.1a) holds with equality.

• If |Y | = 4, then h\(X)+h\(Y ) ≤ |X|+4. If we can pick i ∈ Y \X such thatX∪i /∈ H,

then h\(X + i) + h\(Y − i) = |X|+ 4 and this case holds. By a similar argument as

above, if no such i exists then Y = X ∪ i, and so (1.1a) holds with equality.

• If |Y | ≤ 3, then all sets take the value of their cardinality, and therefore trivially

satisfy (1.1a).

Lemma 7.1.13. For n ≥ 16, the function h\ is not an R\-minor function.

Proof. Suppose h\ is R\-minor, therefore it has representation (G, I, c,W ) for some graph

G = (V ∪W,U ;E). We claim we can find an R-minor representation for h.
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First note that

h(X) = `4
(
h\
)

(X)− 4

= `|W |+4 (Φ(G, I, c)) (X ∪W )− 4

= Φ(G, `|W |+4 (I) , c)(X ∪W )− 4 .

By introducing the altered weight function c′(e) = c(e)− 4/(|W |+ 4), we get

Φ(G, `|W |+4 (I) , c′)(X ∪W ) = Φ(G, `|W |+4 (I) , c)(X ∪W ))− 4|X ∪W |
|W |+ 4

= h(X) .

Therefore, h has the R-minor representation (G, `|W |+4 (I) , c′,W ), contradicting Theo-

rem 1.3.3.

Theorem 7.1.14. The class of R\-minor functions is not equal to the class of valuated generalized

matroids. In particular, Conjecture 7.1.7 is false.

Proof. The first claim follows immediately from Lemmas 7.1.12 and 7.1.13. For the sec-

ond claim, we observe that h\ is a monotone and only takes finite values. However, by

Corollary 7.1.11 it is not a matroid based valuation, providing a counterexample to Con-

jecture 7.1.7.

7.2 From valuated generalized matroids to valuated

matroids

By definition, valuated matroids are defined only on a layer of the ground set, but it is

easy to check that each valuated matroid is also a valuated generalized matroid if we

set the function value to −∞ outside of the layer. Another way to obtain a valuated

generalized matroid from a valuated matroid is by truncation (introduced in Section 5.1)

and elongation. The interested reader is referred to [94], in particular Theorem 3.2.

Here, we demonstrate how to go in the other direction, i.e., how to represent a valuated

generalized matroid as a valuated matroid. Then we show an explicit construction for the

case of R\-minor valuated generalized matroids.

Let f : 2V1 → R ∪ {−∞} be a valuated generalized matroid. Denote with n the size

of V1 and let V2 be a copy of V1. We define a function gf :
(
V1∪V2
n

)
→ R ∪ {−∞} for

X ∈
(
V1∪V2
n

)
as

gf (X) := f(X ∩ V1) .

Then, it is a straightforward check via the valuated (generalized) matroid axioms that the

function gf is a valuated matroid. Note that given such a function gf , we can recover f as
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f(X) = gf (X ∪ Y ) for any Y ⊆ V2 of size n− |X|.

Starting with an R\-induced or an R\-minor valuated generalized matroid, a similar

construction gives rise to an R-minor valuated matroid. Let f : 2V1 → R ∪ {−∞} be

an R\-minor valuated generalized matroid represented by (G1,M1, c,W ) where G1 =

(V1 ∪ W,U1;E). For n = |V1|, let V2, U2 be two disjoint sets, each with n elements, and

disjoint from V1∪W∪U1. LetM2 be the free matroid onU2. Consider the R-minor valuated

matroid g defined by the bipartite graph G = ( (V1 ∪ V2) ∪W, U1 ∪ U2; E ′), matroidM
on U1 ∪ U2, c′ ∈ RE′ , and W ; where

• M is obtained by truncatingM1 ⊕M2 to the size |W |+ n, and

• E ′ is obtained from E by adding all possible edges (i, j), for i ∈ V2, j ∈ U1 ∪ U2,

• c′ extends c to E ′ by weighting all edges in E ′ \ E0 by zero.

Then, a maximal independent matching in G on X ∪W must come from a maximal inde-

pendent matching inG1 with additional zero weight edges adjacent to all nodes inX∩V2,

verifying that g is the same valuated matroid as gf defined in the previous paragraph.



8 Conclusion and future directions

We presented three main results in this thesis. We recall these results, and propose several

questions and open problems.

We gave an auction algorithm for finding an approximate market equilibrium in Arrow-

Debreu exchange markets when agents have weak gross substitutes (WGS) demands. We

believe that this class of demands is a maximal class of demands for which auction-type al-

gorithms converge to an ε-equilibrium as in the case of markets with indivisible items. An

interesting direction is to give a compelling argument on when and why an equilibrium

problem with divisible goods admits an auction-type algorithm, i.e., an algorithm with in-

creasing prices. As we have seen, in some cases the equilibria are captured as the optimal

solutions of a convex program, where the Lagrangian multipliers of the constraints corre-

spond to the prices. In such cases the (non-) existence of an auction-type algorithm could

be explained from a convex programming perspective. This line of work was suggested

by Chandra Chekuri during the PhD viva.

The auction algorithm framework is a robust one. As we have shown, our auction algo-

rithm is easily modified for finding spending-restricted market equilibria in Fisher mar-

kets and assuming agent have WGS demands. Previous auction algorithms [59] have been

extended to the markets where agents satisfy the WGS property only approximately [78].

In this case the auction algorithm converges to an approximate equilibrium where the ap-

proximation factor additionally depends on how close the demands are to being WGS,

e.g., if demands satisfy δ-approximate WGS property, then there is an auction algorithm

that converges to a (δ + ε)-approximate equilibrium. We expect that our auction algo-

rithm also extends to the setting where agents’ demands satisfy the WGS property only

approximately.

Our second main contribution is a constant-factor approximation algorithm for the sym-

metric Nash social welfare (NSW) problem under Rado valuations. The algorithm also

works for the asymmetric NSW problem under Rado valuations and produces an O(γ3)-

approximation algorithm, where γ is such that the weights of all agents fall in the in-

terval [1, γ − 1] for γ ≥ 2. In a subsequent work, Li and Vondrák [89] obtained a 320-

approximation algorithm for the symmetric NSW problem under arbitrary submodular

valuations. They extended and strengthened our approach. Their algorithm likely extends
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Husić E. Nash Welfare, Valauted Matroids, and Gross Substitutes. 149

also to the asymmetric NSW under submodular valuations with approximation guarantee

depending on γ. Hence, two obvious open questions remain:

• Design a constant-factor approximation algorithm for the asymmetric NSW problem

under additive valuations (or more general valuations). Recall that our approxima-

tion algorithm loses γ only in Phase II.

• Improve the approximation factor for the NSW problem under submodular valua-

tions.

The Nash social welfare problem asks for an allocation of the items to the agents while

maximizing the geometric mean of agents’ valuations. The geometric mean is a p-mean

for p = 0; and one could define the same problem for any other p-mean for p ∈ [−∞, 1].

When p = −∞ and p = 1 we recover the max-min welfare (Santa Claus) problem, and the

social welfare problem, respectively. It is increasingly popular to investigate the general

problem of allocating goods to the agents in order to maximize a p-mean of their valuation,

see e.g. [25, 14] and references therein. An interesting problem is to find a constant-factor

approximation algorithm that works for any given p-mean even for additive valuations.

Note that finding such an algorithm is quite challenging as the special case of p = −∞ is

the Santa Claus problem [8] – a significant open problem.

As an encouragement, we point out that the complementary problem of minimum-

norm load balancing admits a (2 + ε)-approximation algorithm that works for any sym-

metric norm f [70]. In the minimum-norm load balancing problem, the goal is to allocate

the items (jobs) to the agents (machines) in order minimize the f -norm of the agents’ val-

uations (machine loads).

For our third main contribution we exhibited a family of valuated matroids that are not

R-minor valuated matroids. As a corollary we showed that the Matroid Based Valuation

conjecture does not hold. Hence, the quest for a constructive characterization of gross sub-

stitutes valuations and valuated matroids remains open. From the perspective of complete

classes there are two natural next options. The first option is to find a necessary conditions

for a minimal class of valuations C such that the complete class containing C covers all GS

valuations. We showed that C cannot be the class of matroid rank functions. The second

option is to add additional operations and define complete class to be closed under the

additional operations as well. A related possibility is that all GS valuations arise as sums

of R-minor valuated matroids. Note that it has been shown that there are GS valuations

that are not sums of weighted matroid rank functions [11].
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Husić E. Nash Welfare, Valauted Matroids, and Gross Substitutes.
Bibliography 151

[10] E. Balkanski and R. P. Leme. On the construction of substitutes. Mathematics of

Operations Research, 45(1):272–291, 2020. (Cited on pages 21 and 142.)

[11] E. Balkanski and R. Paes Leme. On the construction of substitutes. Mathematics of

Operations Research, 45(1):272–291, 2020. (Cited on page 149.)

[12] N. Bansal, R. A. Pendavingh, and J. G. Van der Pol. On the number of matroids.

Combinatorica, 35(3):253–277, 2015. (Cited on page 123.)

[13] S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram. Tight approxima-

tion algorithms for p-mean welfare under subadditive valuations. arXiv preprint

arXiv:2005.07370, 2020. (Cited on pages 19 and 20.)

[14] S. Barman, S. K. Krishnamurthy, and R. Vaish. Finding fair and efficient allocations.

In Proceedings of the 2018 ACM Conference on Economics and Computation (EC), pages

557–574. ACM, 2018. (Cited on pages 18, 20, and 149.)

[15] B. Behera, E. Husić, S. Jain, T. Roughgarden, and C. Seshadhri. FPT algorithms for

finding near-cliques in c-closed graphs. In 13th Innovations in Theoretical Computer

Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, California, USA.

(Cited on page 2.)

[16] X. Bei, J. Garg, and M. Hoefer. Ascending-price algorithms for unknown markets.

ACM Transactions on Algorithms (TALG), 15(3):37:1–37:33, 2019. (Cited on page 11.)

[17] D. P. Bertsekas. A new algorithm for the assignment problem. Mathematical Pro-

gramming, 21(1):152–171, 1981. (Cited on page 11.)

[18] D. P. Bertsekas. The auction algorithm for assignment and other network flow prob-

lems: A tutorial. Interfaces, 20(4):133–149, 1990. (Cited on page 11.)

[19] J. E. Bonin and T. J. Savitsky. An infinite family of excluded minors for strong

base-orderability. Linear Algebra and its Applications, 488:396–429, 2016. (Cited on

page 109.)

[20] W. C. Brainard and H. E. Scarf. How to compute equilibrium prices in 1891. Ameri-

can Journal of Economics and Sociology, 64(1):57–83, 2005. (Cited on page 9.)
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[56] J. Garg, E. Husić, and L. A. Végh. Auction Algorithms for Market Equilibrium

with Weak Gross Substitute Demands and Their Applications. In 38th International

Symposium on Theoretical Aspects of Computer Science (STACS 2021), volume 187 of

Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:19, 2021. (Cited

on pages 2, 74, and 94.)

[57] J. Garg, P. Kulkarni, and R. Kulkarni. Approximating Nash social welfare under sub-

modular valuations through (un)matchings. In Proceedings of the 2020 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2020, pages 2673–2687, 2020. (Cited on

page 19.)

[58] J. Garg, R. Mehta, V. V. Vazirani, and S. Yazdanbod. Settling the complexity of leon-

tief and plc exchange markets under exact and approximate equilibria. In Proceed-

ings of the 49th Annual ACM Symposium on Theory of Computing (STOC), pages 890–

901. ACM, 2017. (Cited on page 9.)

[59] R. Garg and S. Kapoor. Auction algorithms for market equilibrium. Math. Oper. Res.,

31(4):714–729, 2006. (Cited on pages 11, 12, 28, 31, 37, 43, 44, and 148.)

[60] R. Garg and S. Kapoor. Price roll-backs and path auctions: An approximation

scheme for computing the market equilibrium. In International Workshop on Internet

and Network Economics, pages 225–238. Springer, 2006. (Cited on pages 11 and 12.)

[61] R. Garg and S. Kapoor. Market equilibrium using auctions for a class of gross-

substitute utilities. In International Workshop on Web and Internet Economics, pages

356–361. Springer, 2007. (Cited on pages 11, 12, 27, 28, and 44.)

[62] R. Garg, S. Kapoor, and V. Vazirani. An auction-based market equilibrium algorithm

for the separable gross substitutability case. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques, pages 128–138. Springer, 2004.

(Cited on pages 11, 12, 27, 28, 43, and 44.)

[63] M. Ghiyasvand and J. B. Orlin. A simple approximation algorithm for computing

Arrow-Debreu prices. Operations Research, 60(5):1245–1248, 2012. (Cited on page 28.)

[64] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial

optimization, volume 2. Springer Science & Business Media, 2012. (Cited on pages 62,

71, and 82.)

[65] F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of

Economic theory, 87(1):95–124, 1999. (Cited on page 13.)

[66] M. Hassani. Approximation of the Lambert W function. Research report collection,

8(4), 2005. (Cited on page 65.)
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