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Abstract

In the first chapter, co-authored with Dr. Christian Julliard, we study the
impact of option expiration on underlying stock volatility. We find a negative
direct effect on stock realized volatility and a positive and significant effect on
stock implied volatility. Moreover, a positive spillover effect on stocks with
no options expiring on a given expiration date is observed. Two possible ex-
planations are discussed, namely investors’ delta hedging and stock pinning
around option expiration dates. Both seem to affect stock volatility. Finally,
we implement a trading strategy that takes advantage of these findings.

The second chapter studies the investment behaviour of mutual funds during
financial bubbles. I find that mutual funds over-invest in bubble sectors dur-
ing the run-up and withdraw money right before the collapse. This result is
robust across different benchmark specifications and across fund styles. I also
document that this strategy generates a positive and significant alpha (4%
on an annual basis), with respect to both a risk-neutral expectation and the
Fama-French factors. The paper provides evidence supporting the theory that
mutual funds ride the bubble rather than causing it. It also demonstrates that
mutual fund holdings can predict the future returns of a sector over a short to
medium horizon.

Building on the previous findings, the third chapter studies the fee setting be-
haviour of mutual funds during financial bubbles. It shows that, besides the
well-documented persistence of fees, mutual funds charge higher fees during
price run-ups. Two theoretical models support the finding: the first shows
that investors’ sensitivity to fees decreases during bubble episodes, while the
second demonstrates that the increase in fees translates into a higher mark-up
over marginal cost.
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1. Stock Volatility on Option
Expiration Dates

1.1 Introduction

Understanding the interactions between equity and derivative markets is of
paramount importance for financial research. Not only has the derivative mar-
ket been growing continuously over the past 25 years1, but also a shock in the
option market can easily spills over into the underlying stock market.
Delta hedging (or, equivalently, option replication) is surely the most direct
channel linking the stock and the option markets. Consider, for example, an
investor who has a short position in a call option. She may want to hedge her
exposure by buying the underlying asset, generating a buying pressure in the
underlying stock market. Similarly, instead of buying a put option, a hypothet-
ical investor may decide to sell the underlying asset and invest the proceeds at
the risk-free rate in order to match the delta of the put option she would like to
purchase. Historically, we know that option replication can have a significant
impact on the stock market. In fact, in the late 1980s investors used to hedge
against market risk by selling futures on the market index or, alternatively,
by constructing synthetic put options by short-selling stocks. However, this
was a pro-cyclical strategy, which forced investors to sell stocks when their
price dropped, which in turn pushed down the price even more. On the 19th
October 1987, the equity market experienced the largest negative return in its
history (-22%), during the so-called Black Monday.
One could argue that delta hedging should not have an impact on the stock
market, simply because long and short positions should offset each other.
Hence, options may have an effect on the trading volume, but not on the
first and second moments of the return distribution. This is true in complete
and efficient markets only, where options are in zero net supply and agents
hedge their portfolios. Clearly, financial markets do not meet these require-
ments: as noted by Lakonishok et al. (2006), purchased option positions are

1The Bank of International Settlement estimates the outstanding notional amount of the
option market to be ten times that of the world stock market
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CHAPTER 1. STOCK VOLATILITY 10

less frequent than written positions for nonmarket maker investors; as a con-
sequence, market makers have more purchased than written open interest.
Additionally, non-market makers have four times more purchased calls than
puts. Furthermore, while institutional investors are more prone to hedging
strategies, speculators prefer not to. As a result, a well-documented option
imbalance translates easily into an imbalance in the underlying stock market
(Hu (2014)).
On option expiration dates, the interactions between option and stock markets
are even stronger, due to portfolio managers trading activities. In fact, on top
of dismissing the hedge on expired options and the change in option imbalance
due to an option supply shock, portfolio managers may need to actively trade
either to rebalance their portfolios and/or for liquidity needs. Indeed, equity
options have physical delivery, meaning that there must be an exchange of
assets if the option is exercised. Consider, for example, a portfolio manager
with a target stock/bond ratio, who also has in-the-money call options on a
given expiration date. Exercising the options would result in a purchase (at a
discount) of stocks, which affects the portfolio composition. To restore the tar-
geted stock/bond combination, she needs to sell the recently acquired stocks
in the market. Similarly, if the same portfolio managers does not have enough
liquidity in her portfolio to exercise the options, she may need to borrow and
immediately re-sell the acquired stocks to pay off her loan. In both cases,
option expiration triggers additional trading in the underlying stock market.
Due to continuous trading, it is extremely hard to estimate the effect of option
on stock market throughout the option’s life, as there are many other factors
affecting the stock price whose impact cannot be accounted for easily. For this
reason, the financial literature has focused either on option listing and/or op-
tion expiration dates. Option listing dates are particularly indicated for event
studies as they represent a good threshold between before-the-event period
and after-the-event period. However, option listing dates are announced in
advance, so any impact may be biased due to anticipation effects. Further-
more, for a stock to be optionable, several regulatory requirements need to be
met; hence the pool of stocks listed on the option market could be significantly
different from the set of stocks which are not. Any event study based on option
announcement or option issuance may suffer from selection bias. Conversely,
expiration dates, which occur on the Saturday after the third Friday of each
month, are defined for optionable stocks only, which constitute a homogeneous
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set of assets. Hence, no concern about a potential selection bias can be raised.
In addition, stocks are still optionable after an expiration date. As there is no
fundamental change in the asset, there shouldn’t be any anticipation effect.
For these reasons, expiration dates can be used to identify and estimate a re-
lation between stock and option markets, which is the main goal of this paper.
Besides, the impact of options on the underlying stock market is not only con-
fined to the expected return but also to the volatility of returns. Although
the literature is quite extensive, to the best of our knowledge there is no pa-
per that studies the effect of option expiration dates on the variance of the
stock return distribution. In fact, only Skinner (1989) shows that underlying
stocks’ volatility drops when options are listed; while what happens on option
expiration dates is still uncertain. This paper fills this gap in the literature,
focusing on four different volatility measures, two empirical and two implied
from option prices, and it shows that, across all optionable stocks, implied
volatility increases on option expiration dates, while empirical volatility drops.
This hitherto unknown, although puzzling, phenomenon is paramount both
for all market participants: for example, speculators may be able to gain for
it, hedgers may need to adjust their hedge, regulators may want to be sure
that no price manipulation occurs around expiration. Additionally, if option-
able stocks are split between those who have an option expiring at a given
expiration date and those who have not, we find that the latter group also
experiences an increase in implied volatility; we refer to this as the spillover
effect. We argue that these findings can be partially explained by investors’
delta hedging and, potentially, by stock pinning. Pinning occurs when stock
price tends to move closer to the option strike price around expiration. In
this paper we provide evidence of pinning but we leave the discussion on its
impact on stock volatility for future research. Moreover, we show that there is
a strong relation between moneyness and volatility, which resembles the well-
known “volatility smile” and persists after controlling for the overall market
volatility as measured by the VIX index. Finally, to show that the findings
discussed above are not only statistically but also economically significant, we
construct a trading strategy that takes advantage of the discrepancy between
realized and implied volatilities around expiration. This strategy generates an
annualized Sharpe Ratio of 2.55.

Related Literature. Several authors attempted to estimate the relation be-
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tween options and the underlying stocks. Recently, Hu (2014) shows that
option trading generates imbalances in the stock market, mainly due to the
delta hedging of the option market makers who operate in a less liquid market
and want to reduce the risk of their short positions. He splits the stock imbal-
ance in option-induced and non-option-induced stock imbalance, showing that
the former positively predicts future returns. Besides this paper, the financial
literature linking stock and option markets can be divided into four categories,
depending on time (option listing vs expiration date) and the moment of the
return distribution (return vs variance).
Although widely discussed in the financial literature, the effect of option is-
suance on the underlying stock return is still ambiguous. For example, Conrad
(1989) shows that the introduction of options generates a permanent increase
in price, beginning three days prior to listing. He argues that this is due to
market makers making up their own inventory in anticipation of their need to
delta hedge the short positions in the options. A broader effect on financial
markets is found in Detemple & Jorion (1990), which shows that, around an-
nouncement, option listing produces an increase in the underlying stock market
value as well as in the value of an industry index which excludes the recently
optionable stocks. In other words, a spillover effect to other stocks within
the same industry is observed when a stock becomes optionable. However,
subsequent research shows that these results are not robust. Sorescu (2000)
finds a negative price impact on stocks which become optionable after 1980,
while Mayhew & Mihov (2005) finds that the effect of option listing on the
underlying stock price vanishes when compared to a sample of control firms.
Regarding the second moment of the return distribution, when new options
are introduced into the market, underlying stock volatility tends to decline in
the order of 10-20% (Skinner (1989)), although the reason for this is still un-
certain. French & Roll (1986) addresses the question of why volatility changes
over time, especially during trading hours, identifying two possible reasons: a)
stocks’ returns are more volatile during trading hours due to a higher rate of
information disclosure, and b) trading itself induces noise in stock price. How-
ever, Skinner (1989) finds no evidence of either of the two effects being related
to option listing. Similarly, Bansal et al. (1989) shows that option listing leads
to a decrease in the total risk of optionable stocks and to an increase in to-
tal trading volume. Conversely, Klemkowsky & Maness (1980), Trennepohl &
Dukes (1979) and Whiteside et al. (1983) find little evidence of stock becom-
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ing riskier after option listing. Finally, there is no strong evidence of option
delisting affecting underlying stocks (Bartunek (1996)).
The second relevant day in an option’s life is the expiration date, that is when
investors close their positions by buying or selling the underlying asset. Al-
though listing announcements may impact the stock market, it is actually at
maturity that investors exchange assets, hence it is at maturity that the stock
market should be impacted the most. In fact, Chiang (2014) finds that under-
lying stocks experience a negative return of 0.8% on option expiration dates,
followed by slow reversal in the subsequent week. The author argues that this
is due to the selling pressure of call holders who immediately sell the stock
to either cash in their capital gains or for portfolio rebalancing reasons. This
effect is stronger for stocks with higher open interest and more (deeply) in-the-
money options. Also, there is no offsetting pressure from put holders, as the
effect is even stronger when the net open interest (calls open interest minus
puts open interest) is considered, nor when option writers are accounted for as
their positions are usually hedged well before expiration. Similarly, Klemkosky
(1978) finds an anticipation effect, with stock experiencing abnormal returns
of -1% in the week before expiration and +0.4% in the week after.
This paper also relates closely to Ni et al. (2004), which shows that underlying
stock prices converge to the options’ nearest strike price around expiration and
provide evidence of price manipulation by firm proprietary traders. The au-
thors notice that the stock return is small in absolute value from the Thursday
before the expiring Friday to the expiring Friday itself. Hence, stock prices
stay close to the strike from the previous Thursday rather than converging
to it only on the Friday. Differently from Chiang (2014), this phenomenon,
called stock pinning2, takes place in stocks with many slightly-in-the-money
and slightly-out-of-the-money options. Interestingly, stock pinning is a much
broader phenomenon that extends beyond the stock market. For example,
Golez & Jackwerth (2012) provides evidence of pinning in the future market
as well; in this case, the driver is not the time decay of delta hedge of market
makers (in fact, they are actually short on index options) nor price manipula-
tion (which is harder to implement in the future market), but investors having
an incentive to sell their in-the-money call options or to early exercise them
in order to avoid any price risk over the weekend. Finally, Chiang (2017) also

2Avellaneda et al. (2012) provide a theoretical framework that explains stock pinning on
option expiration dates.
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shows that trading volume spikes on option expiration dates. This paper also
relates to the huge literature of stock volatility estimation, like Engle (1982),
Koopman et al. (2005) and Schwert (1989) among the others. Finally, this
paper relates also to Christensen & Prabhala (1998) which shows that implied
volatility outperforms realized volatility as it both subsumes past information
and forecasts future volatility. In this paper, we use both realized and implied
volatility measures and we show that they behave differently around option
expiration.

The chapter is organised as follows: section 1.2 describes the data used for the
analysis and section 1.3 presents the main empirical results; possible explana-
tions are discussed in section 1.4. Section 1.5 describes the trading strategy
that exploits the main findings of the paper while robustness checks are re-
ported in section 1.6. Section 1.7 concludes.

1.2 Data

Option data come from the IvyDB US database by OptionMetrics LLC. It
contains data on all the options traded in the US market and reports histor-
ical price, expiration date, open interest, implied volatility and options type.
The sample used in this paper covers the period from 1 January 1996 to 31
December 2006 in order not to overlap with the financial crisis of 2007 which
had a significant impact on the overall market volatility.
Stock data come from the Center of Research in Security Prices (CRSP)3 and
include closing price, holding return, bid-ask spread and stock trading volume
on a daily basis of all the stocks traded on the NYSE and AMEX for the same
period. In order to eliminate any noise, penny stocks (those whose price is less
than $5) are excluded from the sample. Furthermore, only stocks with at least
500 observations are included. For each stock, the intraday trades and quotes
are obtained from TAQ. The CRSP database is augmented with daily data of
the VIX index, a measure of overall market volatility from the Chicago Board
Options Exchange. Due to the terrorist attack on September 11, 2001, no data
is available for VIX on that day. However, options were traded in the market.
After merging options and stocks data, we obtain a database with 903 option-

3Calculated (or Derived) based on data from database name ©2018 Center for Research
in Security Prices (CRSP®), The University of Chicago Booth School of Business.
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able stocks and 18,373,141 option trades, 11,170,815 of which are call option
trades and the remaining 7,202,326 are put option trades. Call options account
for 60.8% of the overall trading activity in the option market, while put op-
tions represent the remaining 39.2%. Finally, prices of futures on the S&P500
are obtained from Bloomberg while the historical list of S&P500 constituents
is obtained from Compustat.
Options usually expire on the third Saturday of each month. Given that Sat-
urdays are non-trading days and all the transactions must occur by the closing
time of the previous day, we treat the third Friday as the expiration date. In
the time frame considered, there are 132 expiration dates, among which 130
are on Fridays. The remaining two fell on Good Fridays (namely April 21,
2000 and April 18, 2003) and have been moved to the Thursday before. More-
over, a few options expired on the 29 September 2006 and on the 29 December
2006, but these options are excluded from the sample as they are not written
on common stocks.

1.3 Empirical evidence

Stock volatility is defined as the fluctuations of returns around their mean. To
address the impact of option expiration on the second moment of the underly-
ing stock return distribution, four different volatility measures are constructed:

- Squared returns: starting for the formula of the variance

var(rt) = E[r2
t ]− E[rt]

2

and using the fact that the daily mean stock return is usually very close
to 0, the variance can be approximated by squared returns. The main
limitation of this approach is that is doesn’t account for past informa-
tion. Volatility clustering4 suggests that past volatility may be a good
predictor of today’s volatility and we may want to include it in our esti-
mation.

- GARCH: for each stock a GARCH(1,1) model is estimated.5. This model
4Volatility clustering refers to the observation that "large changes tend to be followed by

large changes, of either sign, and small changes tend to be followed by small changes", as
defined by Mandelbrot (1963)

5Unsurprisingly, the GARCH(1,1) outperforms any other parameter specification in
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estimates the volatility as a function of lagged volatility and squared
residuals; this recursive approach is able to capture the persistence in
volatility, referred to as volatility clustering. Specifically, the estimated
model is the following:

ri,t = µi,t + εi,t

σ2
i,t = c2 + ασ2

i,t−1 + βε2
i,t−1

(1.1)

Different specifications of the equations above that include other controls
yield similar results to the above basic formulation.

- Volume weighted implied volatility (VW-IV): implied volatility is defined
as the value of σ that should be used into the Black-Scholes-Merton
model to match the observed price of an option, obtained as the midpoint
between the best closing bid price and the best closing offer price of the
option. On each day, several options on the same stock are traded, whose
implied volatilities are then averaged using the volume of each trade as
weight.

- Open-interest weighted implied volatility (OIW-IV): same as before, but
implied volatilities are now averaged using open interest as weight. While
volume can be thought of as a proxy for liquidity, open interest may be
more suited to study the impact of option expiration on the underlying
stock. In fact, consider a short position in a deeply-in-the-money call
option. It is likely that such an option is not traded much, as there is
little uncertainty about the probability of exercising it. Hence, trading
volume might be low. However, if the open interest, which measures
the total number of option contracts outstanding in the market, is large,
there might as well be a large trading volume in the underlying stock, as
hedgers needs to continuously adjust their hedge to match the negative
delta of this position. Despite the low trading volume in the option
market, there certainly is an effect on the underlying stock volatility.
Additionally, Chiang (2014) shows that stocks with larger open interest
suffer larger negative returns on option expiration dates, so it is likely
that, if any, open interest has an effect on the second moment as well.

which the orders of the GARCH are chosen by implementing the Engle LM test (see Engle
(1982)) For this reason, only GARCH(1,1) estimates are reported in the paper.
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Squared returns and GARCH are empirical measures as they are obtained from
real market observations and depend on actual investors’ trading behaviour.
On the other hand, volume-weighted and open-interest-weighted volatilities are
implied measures as they are inferred from the Black-Scholes-Merton model,
where the option price is computed as the risk-neutral expectation of future
payoff. In addition, the model assumes that the underlying stock follows a
geometric Brownian motion and that volatility is constant throughout the op-
tion’s life. In terms of probability measures, we can state that the former two
depend on real-world probabilities, while the latter two depend on risk-neutral
probabilities.
Table A1 shows the correlation among the four volatility measures described
above. As they are all proxy for the second moment of the return distribution,
all four measures are pairwise positively correlated. Not surprisingly, the two
risk-neutral volatility proxies are strongly correlated, with a correlation coeffi-
cient higher than 80%. However, the correlation drops significantly when the
empirical volatilities are considered: GARCH has a 40% correlation with the
implied-volatility measures while squared returns show a correlation close to
17% with all the other measures.
To estimate the effect of option expiration on stock volatility, we run the fol-
lowing regression:

log(σ2
i,t) =αi +

6∑
j=1

βjlog(MONcall,i,t)
j +

6∑
j=1

γjlog(MONput,i,t)
j +OIcall,i,t+

+OIput,i,t + δ1DFriday + δ2Dexdate + εi,t

(1.2)

where the dependent variable is each of the four volatility measures described
above and αi represents a stock fixed effect. Dexdate is a dummy that is 1 on
those days t which are expiration dates.6 Hence, the coefficient δ2 measures
exactly the change in volatility on option expiration dates. However, since
all expiration days are Fridays, the estimation of δ2 might be biased by the
so-called Friday effect. To account for this, the dummy DFriday that takes the
value of 1 if day t is a Friday is also included in the regression. Hence, δ2

captures the impact of option expiration dates on stocks’ volatility net of any
6Note that not all stocks have options expiring on every expiration date. In what follows,

a separate regression accounts for stocks with no options expiring on a given expiration date.
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Friday effect.
Furthermore, a sixth-order polynomial on calls and puts moneyness is included
to account for the well-known volatility smile of implied volatility. Moneyness
is computed as the ratio between stock price and option strike price; hence, an
at-the-money call option has a moneyness equal to 1, an in-the-money call op-
tion has a moneyness larger than 1 and an out-of-the-money call option has a
moneyness smaller than 1. For put options the function is exactly symmetric:
the put option is in-the-money (out-of-the-money) when the underlying asset
price is below (above) the strike price, hence the ratio of stock price over strike
price is less (larger) than 1. This way of calculating moneyness (in comparison
with the standard formula S−K

K
) allows to apply the logarithmic function with-

out dealing with negative values. Given that more than one option is traded
on each stock on a specific trading day, for each option type the daily weighted
averaged moneyness is computed, where the weights are the options’ open in-
terests. Allowing for calls and puts moneyness to have a different effect on
volatility is necessary as exercising a call option generates a different pressure
on the underlying stock market than exercising a put option. In fact, investors
who are long on an in-the-money call option exercise it on an expiration day
and buy a stock, but they are also likely to immediately sell it on the market
to either cash in the capital gain or because they need to rebalance their port-
folio. In both cases, this causes a selling pressure on the stock market which is
not offset by investors who are short on in-the-money put options, as they are
likely to be hedged already, nor by rebalancing of investors who are long on
the put either. Evidence of this can be found in Chiang (2014), which shows
that stocks with high open interest exhibit significantly negative returns on
option expiration days. This effect is even stronger when the net open interest
(calls minus puts) is considered.
Logarithmic function is applied to the dependent variables and the regressors
so that any coefficient can be interpreted as an elasticity measure. Finally, we
control for the option open interest, in line with the result of Chiang (2014).
Errors are clustered at the stock level. Results of regression in Equation (1.2)
are reported in Figure A1 and Table A2. Figure A1 plots the relationship
between volatility and moneyness in the form of a sixth order polynomial. For
each volatility measure, a comparison between call and put option moneyness
is shown. In both cases, such relationship takes the typical U-shape, known as
volatility smile, that we observe in financial markets since the crash of October



CHAPTER 1. STOCK VOLATILITY 19

1987.
Numerical results are reported in Table A2. In contrast with Berument &
Kiymaz (2001) which demonstrates that Friday is the most volatile day of the
week, Table A2 shows that volatility is significantly lower on the last day of
the week. Such difference can be easily explained by noticing that Berument &
Kiymaz (2001) focuses on the S&P500 market index while this paper includes
all and only the optionable stocks.
The analysis of the variable Dexdate is twofold: first, all the coefficients are sig-
nificantly different from 0 at 5% confidence level across all measures, demon-
strating that option expiration has a strong impact on volatility (besides any
Friday effect). Second, the coefficients are positive for risk-neutral volatili-
ties and negative for empirical volatilities. Such a different behaviour between
realized and implied volatility around expiration could lead to profitable in-
vestment opportunities; in fact, Black-Scholes model tells us that there is a
positive relationship between option price and volatility. We test the economic
significance of this finding in greater details in section 1.5.
Although significant and novel, what has been described above is not necessar-
ily the impact of option expiration on underlying stock volatility. In fact, not
every stock has options expiring at every expiration date. For this reason, we
split the dummy Dexdate into two separate dummies, namely Dexpiring_options

and Dno_expiring_options. The former dummy takes a value of 1 for those stocks
having at least one option expiring at a given expiration date while the latter
is 1 if a day is an expiration Friday but the given stock has no option expiring
on that day. Table A3 shows the regression outcomes. The control variables
are the same as Equation (1.2) and are not reported for easiness of reading.
Consistently with Table A2, the effect of option expiration on volatility is neg-
ative for empirical measures and positive for implied measures for stocks with
at least one option expiring. We refer to this as the direct effect. However, we
also observe an impact even on those optionable stocks which do not have any
option expiring at a given expiration date. We call this the spillover effect.
The spillover effect is positive and highly significant for risk-neutral measures
only and supports the theoretical model by Danilova et al. (2018) which devel-
ops an equilibrium model in which, in the presence of option imbalance, the
derivative payoff enters the household’s marginal utility, hence the stochastic
discount factor, affecting the pricing of all the assets in the economy.
Moreover, we argue that the two groups (stocks with expiring options and
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stocks with no options expiring) are equal due to: a) both groups contain
optionable stocks only, so any minimum requirement necessary for being op-
tionable is satisfied in both samples; b) any factor that varies cross-sectionally
(like size, B/M, number of shares . . . ) is captured by the stock fixed effect
which is included in the regression; c) the event “expiration date" is predeter-
mined, exogenous and the same for every stock, so anything else happening
in the market affects all the stocks in both groups in the same way. As a
consequence, any difference in volatility can be only due to options reaching
maturity, and we can conclude that the spillover effect is actually due to the
expiration of options.
However, focusing on a single day could be misleading as rational investors are
expected to predict the outcome of their option positions some days before the
actual expiration. In order to have a better understanding of the dynamics
of stock volatility around expiration, a regression of stock volatility on daily
dummies is conducted, in which each dummy takes the value 1 for each day
between two expiration dates, from 9 days before to 9 days after expiration.
As above, we control for calls and puts moneyness and open interest (which
are not reported for easiness of reading). A visual representation is depicted
in Figure A2, which plots the two implied volatility measures against time to
expiration with confidence bands at 0.5% and 99.5% levels. The plot clearly
shows that volatility gradually increases as we approach the expiration day,
reaching its maximum on the day before expiration. It then suddenly drops
on the expiration day (day 0), when, as showed in Table A2, it is still above
its average. Then volatility decreases even more in the week after expiration,
and remains more or less constant for two weeks, before a further increase as
the next expiration day approaches. This pattern has important consequences
in terms of option prices. Such a sharp increase in implied volatility must be
accompanied by an equally sharp increase in price, which will be exploited in
the trading strategy discussed in section 1.5.

1.4 Possible Explanations

In this section we discuss two potential explanations for the phenomenon de-
scribed above, namely delta hedging and stock pinning.
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1.4.1 Delta Hedging

The first explanation hinges on the possibility that investors do not delta
hedge their position when they get close to expiration. Two facts support this
hypothesis: first, deeply out-of-the-money options do not bear any uncertainty
so there is no reason for them to be hedged. Second, even for those investors
who keep their hedge, the incentive to do so is much lower: in fact, they face
a trade off between the uncertainty of experiencing a greater (if any) loss if
they do not hedge, and the certainty of incurring costs (e.g. transaction costs)
if they do hedge.
To test how delta hedging affects the underlying stock volatility, we construct
a proxy for it using data on futures on the S&P500. In fact, investors do not
delta hedge their position at the stock-level, but instead using future contracts.
Using a no arbitrage argument:

F = Ser(T−t) ⇒ ∆× F = ∆× Ser(T−t) ⇒ ∆× Fer(T−t) = ∆× S

Hence, instead of having a position of ∆ stocks, investors buy ∆e−r(T−t) future
contracts.
Our analysis focuses on stocks traded on the S&P500 only, whose future con-
tracts are issued on a quarterly basis. For each trading day, we compute the
delta of each stock as the weighted average of the deltas of all available options
written on that stock, using the open interest as weight. Then we compute
the “Delta Hedging” regressor as ∆Fe−r(T−t), where F is the price of the most
liquid future (i.e. the one with lowest bid-ask spread) and ∆ is the value-
weighted delta of the stocks in the S&P500.
Table A4 shows that delta hedging have a positive and significant effect on
stock volatility. In fact, higher values of delta require more trading in the
underlying asset, which in turn increases the volatility. Interestingly, the first
row shows that once delta hedging is accounted for, option expiration no longer
has any effect on realized volatility. However, both the direct and the spillover
effects on implied volatilities persist. In other words, (less) delta hedging is
the reason why realized volatility drops on expiration days, while the increase
in implied volatility is still unexplained.
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1.4.2 Pinning

Pinning was first documented by Ni et al. (2004) which shows that around
expiration dates the closing price of stocks with listed options clusters around
the strike price. The authors also argue that this phenomenon is produced
primarily from stocks closing around the strike on the Thursday prior to ex-
piration and remaining in that neighbourhood on Friday, rather than from
stock moving closer to the strike on the expiration Friday only. The absence
of trading activity might as well justify the drop in volatility documented in
the present paper.
To address this issue, on each expiration Friday and for each stock, we pick
the strike price which is closest to the closing stock price and we compare it
with the stock closing price from 9 days prior to 9 days after expiration. Then
we count how many stocks have a price closer than $0.5, $0.2 and $0.1 to the
closest strike price. Figure A3 shows the distribution across expiration dates
of the percentage of stocks closing near the strike around expiration; the plot
supports the presence of pinning around expiration in our sample. In fact, the
bottom quartile on expiration days is always above the median on any other
day both before and after expiration.
The main issue is how to test for the possibility of pinning affecting volatility
as we do not have a proxy for it. One possible solution is to split the sample
between stocks who are likely to be subject to pinning and those who are not
and, among those who are, control for the number of trades. Specifically, if
the price is above the strike, the number of seller-motivated trades could be
used as a proxy for pinning while, if the price is below the strike, the number
of buyer-motivated trades could be used. We will address this issue in future
research.

1.5 Trading Strategy

In section 1.3 we show a statistically significant increase in implied volatility
around option expiration dates. Is this results also economically significant?
To answer this question, we construct and test a trading strategy that exploits
this finding. Figure A2 shows that implied volatility starts increasing a few
days before expiration and then suddenly drops on option expiration. As in
Black-Scholes model option prices increase when volatility increases, we expect
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options to be over-priced throughout the expiration week. To take advantage
of this, we construct a trading strategy that sells both a call and a put a few
days before any expiration date. This corresponds to taking a short position
on a straddle, as depicted in Figure A4. The cash flows of this strategy are: a)
an inflow equal to the sum of the price of the call and the price of the put at
initiation; b) a negative payoff from either the call or the put, depending on
which one is exercised. The sum of the two is the net payoff of the strategy.
The outcome of this strategy strongly depends on the choice of the options to
sell. First, we only keep options with bid price or open interest strictly greater
than zero. These conditions ensure that investors have to pay a positive premia
to buy options and that options are in positive net supply. We then pick the
options depending on the following two strategies:

Strategy 1: this strategy is the most conservative as we select options based
on their degree of liquidity. Intuitively, this is the strategy a very risk-averse
investor, who is willing to pay a liquidity premium, will choose. Specifically:

- We first pick the options with strike closest to the current stock price,
provided they are out-of-the-money. Hence, we pick the put whose strike
price is closest from below to the stock price and the call whose strike
price is the closest from above to the stock price;

- If there is more than one option satisfying the above condition, we select
the one with lower bid-ask spread;

- If two options also have the same bid-ask spread, we choose the one with
largest open interest as it is more liquid;

- Between two options with the same open interest, we select the one which
is closer to maturity;

- Whenever two or more options have the same expiration date, we take
the one with lowest price in the attempt of being as conservative as
possible;

- Ceteris paribus, we then choose the one with higher trading volume;

- All else equal, we pick an option at random. Given the conditions above,
a random choice only occurs for a couple of stock-time pairs.
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Strategy 2: the second strategy simply tries to maximize the return. Differently
from above, investors who choose this strategy do not care about liquidity at
all; they rather try to receive the largest premia as possible. Picking the
options is much simpler:

- At each point in time, we pick the out-of-the-money option with highest
price. As we sell the options, we aim at maximizing the initial inflow of
money;

- Among options with the same price, we pick one at random.

For each of the above strategies we compute the annualized expected excess
return and the standard deviation across all the expiration dates, the Sharpe
Ratio and the Information Ratio, which is computed as follows:

IR =
E[r − rM ]

sd(r − rM)

where rM is the return of the S&P500 index.
Panel A of Table A5 shows that both strategy 1 and strategy 2 yield positive
return when implemented from 3 days to 1 day before expiration, with strat-
egy 2 being profitable even from 4 days prior expiration. The Sharpe Ratio
is increasing as we approach maturity, with an annualized value of 2.16 and
2.77 the day before for the two strategy, respectively. The Information Ratio
confirms the results. The annualized Sharpe Ratio is computed by multiplying
the ratio between the expected return and the standard deviation by

√
12 as

this strategy can only be implemented 12 times a year (there are 12 expiration
days in a year). The same applies to the annualized Information Ratio. In
Panel B, we restrict the sample to options written on stocks in the S&P500
only. Results are extremely similar, confirming that the profitability of the
strategy does not depend on small, less liquid stocks.
Table A6 tests the robustness of the results. Panel A reports the outcome of
the trading strategy applied to placebo expiration dates. Specifically, each ex-
piration date is moved by a number of trading days randomly drawn between
-9 and 10. The resulting date is considered as the new expiration date. As
there are at least four weeks between two consecutive expiration dates, mov-
ing them back and forward by 2 weeks ensures that placebo expiration dates
do not overlap. Panel A in Table A6 shows that the conservative strategy
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consistently yields negative payoffs on non-expiration dates. Regarding the
aggressive strategy, although payoffs are mostly positive, the profitability is
reduced significantly, with the largest Sharpe Ratio being 0.33. This could
easily turn negative once transaction costs are included. Panels B and C of
Table A6 mimic Panels A and B of Table A5 respectively, but restrict the
sample to the period 2001-2006. The choice of this time period is justified by
two reasons. First, by the expansion of the option market in the early 2000s.
As a matter of fact, 76% of the options in our sample are traded from 2000 on-
ward. As liquidity plays an important role in constructing the strategy and in
managing its risk, we expect better results in the second half of our sample. In
fact, the Sharpe Ratio increases from 2.15 to 2.52 for strategy 1 implemented
one day before expiration. Second, from 1996 to 2001, financial markets ex-
perienced above-average volatility due to the Tech bubble. Excluding those
years from the sample ensures that results are not driven by such an extreme,
low-probability event.
The main drawback of this strategy is that, potentially, it can lead to extremely
large negative payoff. Shorting options is risky, and shorting a straddle (or a
strangle) is even riskier. For this reason, it would be interesting to assess its
profitability in combination with some hedging or risk-mitigation assets. For
example, a portfolio manager may want to combine the short straddle with a
long low-strike put and a long high-strike call to obtain the so-called butterfly
spread. Alternatively, receiver variance swaps could be used to bet on high
implied volatility. In fact, the floating leg (short) is the realized underlying
asset volatility, while the fixed leg (long) is usually its implied volatility.

1.6 Robustness checks

The first concern we want to address is whether the pattern in volatility is
driven by the overall market sentiment rather than the option expiration as
argued above. As a measure of market sentiment we use the VIX index.
For this purpose, we identify three different volatility clusters, specifically low,
medium and high volatility periods. Low volatility days are those in which the
VIX index is below the 5th percentile, medium volatility when VIX is between
the 45th and the 55th percentile, and high volatility when the VIX is above
the 95th percentile. Percentiles are computed from the time series from 1996
to 2006, consistently with the overall time frame considered so far. Table A7
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shows the results of the following regression:

log(σ2
i,t) =αi +

6∑
j=1

βjlog(MONcall,i,t)
j +

6∑
j=1

γjlog(MONput,i,t)
j +OIcall,i,t+

+OIput,i,t + δ1Dfriday + δ2Dexpiring_options + δ3Dno_expiring_options+

+ δLDlow_V IX + δMDmedium_V IX + δHDhigh_V IX + εi,t

(1.3)

Table A7 shows that both real-world and risk-neutral variances co-move with
the VIX, as they are significantly lower when the VIX is around its lowest
values (δL < 0), significantly higher when the VIX is close to the maximum
values (δH > 0), and close to average when the VIX is also around its median
value (δM ≈ 0). This is not surprising as the VIX is an average of market
volatilities. Moreover, on expiration dates, stocks with at least one expiring
option still exhibit lower realized volatility and higher implied volatility. Addi-
tionally, optionable stocks with no option expiring on a given expiration date
also experience a rise in implied volatility. Hence, the aforementioned results
are robust even when the overall market volatility is accounted for.
Even after controlling for the VIX, the relation between moneyness and volatil-
ity does not change, as it can be noticed from Figures A5 and A6 which com-
pare the relationship between moneyness and volatility to the benchmark case
as in Figure A1. No significant differences can be observed.

Second, Bollen & Whaley (2004) shows that net buying pressure positively cor-
relates with the stock implied volatility function. The intuition is as follows:
whenever there is a difference between options’ demand and supply, market
makers step in to absorb the imbalance and set the option price in order to
receive compensation for the volatility risk or hedging costs. Under the as-
sumption of limits to arbitrage and an upward supply curve, implied volatility
will exceed actual return volatility. To control for this effect, we construct a
measure for the net buying pressure as follows: a) for each stock, we define the
prevailing quotes as the most frequent bid-ask pair across the daily quotes; b)
trades executed at a price above (below) the prevailing bid-ask midpoint are
categorized as buyer-motivated (seller-motivated) trades; c) net buying pres-
sure is the difference between buyer-motivated and seller-motivated trades.
Table A8 shows the results of the regression in which the net buying pressure
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is added as a control variable.
Consistently with Bollen & Whaley (2004), net buying pressure positively cor-
relates with implied volatility, meaning that larger differences between buyer-
motivated and seller-motivated trades are associated with larger implied volatil-
ities. However, net buying pressure does not explain the increase in volatility
around expiration. In fact, coefficients on dummies of interest are still posi-
tive and significant. Both the direct and the spillover effects are robust to the
inclusion of net buying pressure as a control variable.

Finally, despite the inclusion of a six-order polynomial on call and put mon-
eyness in every regression, we acknowledge that the positive effect on implied
volatility on expiration date can be caused by a reshape or a shift of the “volatil-
ity smile". To address this concern, a new volatility measure is constructed
as follows: for any date-stock pair, the implied volatilities of at-the-money
options are averaged, using the option open interest as weight. If no at-the-
money option is available, the average is computed using the option(s) with
smallest moneyness bigger than 1 and the option(s) with highest moneyness
less than 1. If no options are traded on a specific date, volatility is assumed to
be the same as the previous day’s. In this way, we get rid of the deeply in-the-
money and deeply out-of-the-money options which are typically characterized
by higher volatility. This new variable is then used as dependent variable in
the regression displayed in Equation (1.2). The outcome demonstrates that
a significant increase in implied volatility also affects at-the-money options
around expiration, so the effect of option expiration on stock volatility is not
caused by a shift in the volatility smile.

1.7 Conclusion

In this paper, we first provide striking evidence that on option expiration dates
realized volatility is significantly lower while implied volatility is significantly
higher than their respective averages. Specifically, implied volatility builds up
during the expiration week, reaching its peak the day before expiration. In
addition, a similar, stronger effect is found on implied volatility of stocks with
no option expiring on a given expiration date. While the decline in realized
volatility can be explained by investors’ delta hedging, the rise in implied
volatility is a broader phenomenon which can be explained by a change in the
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risk-neutral measure. In particular, an increase in option imbalance around
expiration could explain the finding; in fact, Danilova et al. (2018) show that,
even in the presence of complete markets, option imbalance affects implied
volatility, which could exhibit smile and smirk patterns.
Furthermore, we demonstrate the the impact of option expiration on stock
volatility is not only statistically but also economically significant: indeed,
selling a straddle a few days before expiration and holding until maturity
generates a Sharpe Ratio larger than 2. Further tests demonstrate that this
strategy is profitable only around expiration, but it does not depend on the
time period considered.
Finally, we show that our results are robust to the inclusion of several control
variables, namely the net buying pressure and the VIX index.



2. Mutual Funds’ Behaviour during
Financial Bubbles

2.1 Introduction

Bubble episodes are recurrent, but still partially unexplained, events in finan-
cial markets. The first known episode dates back to the XVII century, the
so-called Tulip Mania, and was followed by the South Sea Bubble (1719) and
the Dot-com Bubble (2000), among others. All of these episodes share some
common patterns: an initial positive shock, a significant price increase (run-
up), high trading volume and eventually a collapse. Reconciling all of them
under a unique, comprehensive framework has been one of the greatest chal-
lenges in the financial literature.
In fact, in the last decades researchers have provided several explanations for
the formation and evolution of bubbles in the stock market. Firstly, they tried
to incorporate financial bubbles into a neoclassical model. Under the assump-
tions of infinite horizon and asymmetric information, some rational agents may
act irrationally, causing stock prices to deviate from fundamentals (Blanchard
& Watson (1983), Santos & Woodford (1997)). The drawback of these models
is that the two strong assumption of infinite horizon and asymmetric informa-
tion are needed to generate the price trajectory typical of financial bubbles.
In fact, Tirole (1982), using a backward induction argument, argues that in
a discrete-time finite-horizon setting with symmetric information stock prices
cannot deviate from fundamentals. Intuitively, the presence of arbitrageurs,
who act against any mispricing, would prevent any bubble from even starting.
Arbitrageurs’ failure to correct mispricing is at the core of a second stream
of literature. The reasons for such a failure are, for example, short-sales con-
straints (Harrison & Kreps (1978)), heterogeneity in beliefs (Scheinkman &
Xiong (2003)), and capital constraints (Shleifer & Vishny (1997)). Finally,
a third explanation, pioneered by Abreu & Brunnermeier (2003), relates the
evolution of bubbles to their own profitability. In fact, smart investors have
an incentive to ride the bubble as long as they are able to time it, meaning
they can withdraw the money before it collapses.
Building on the third explanation, this paper studies the trading activity of

29
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mutual funds during bubble episodes and tests whether they ride and time the
bubble effectively. The attention to mutual funds is justified by the crucial
role that they play in financial markets.
On one hand, they are sophisticated investors who are able to quickly spot any
mispricing and decide whether to correct it or exploit it. The latter theory is in
line with Brunnermeier & Nagel (2004), which demonstrates that hedge funds
did not exert any correcting force on stock prices during the Tech Bubble,
but they were instead able to profit from the price run-up and avoid much of
the downturn by withdrawing funds at the right moment. Similarly, Griffin
et al. (2011) shows that most institutions were able to run the Tech Bubble
until a coordinated selling effort which caused the collapse at the expenses of
unsophisticated investors.
On the other hand, mutual funds differ from hedge funds in several aspects.
First, their set of possible strategies is restricted by the investment objectives
and risk levels stated in the prospectus, which are often linked to an index, a
sector or a specific type of stocks. These constraints could potentially limit the
ability of mutual funds to ride the bubble. Second, they serve different types of
clients: mutual funds’ money comes mainly from households, hence unsophis-
ticated investors, while hedge funds’ clients are institutions, high net-worth
individuals and accredited investors, hence sophisticated investors. Such a dif-
ference is important because it is reflected in the managers’ compensation: in
fact, the 2-and-20 fee charged by hedge funds (which consists in 2% of manage-
ment fees plus 20% of performance fees calculated on profits) creates a strong
incentive to take on more risk during market booms. While the fee structure
of mutual funds usually includes only a management fee as, by law, any perfor-
mance fee would need to be applied equally to profits and losses. Thus, such
regulation limits the risk bearing capacity of mutual funds and their incentive
to ride a bubble. Third, if hedge funds take advantage of a rising market from
the performance fees they charge, for mutual funds the same advantage comes
from reputation. In other words, if they do not keep up with competitors’
return they are subject to fund withdrawals. These in turn impact the rev-
enues, which are calculated as a percentage of the assets under management.
Indeed, one takeaway of this paper is the crucial role that households play dur-
ing financial bubbles. Fourth, mutual funds represent a much larger market
share, and their behaviour could affect stock prices. During the Tech Bubble,
for example, mutual funds managed 7.5 trillion dollar, 60% of which was held
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by equity funds only. While in 2019, they held 24% of the total outstanding
shares.
This paper not only extends the analysis of investors’ behaviour during finan-
cial bubbles to mutual funds, but also generalizes it in several directions. First,
rather than focusing on a single bubble episode (existing literature focuses on
the Tech Bubble only) it studies all the bubble episodes from the 1980s to
2018 and shows a consistent pattern across all of them. Second, rather than
trades only, this paper looks at holdings and compares them with an appro-
priate benchmark. In fact, to prove that agents actively time a bubble, it is
not only necessary to show that they buy stocks at the right moment, but also
that they buy more stocks than they should or are expected to. By looking at
mutual funds only, whose choices are usually restricted by the investment strat-
egy declared in the prospectus, we can compare their trading strategies with
the relative benchmark and show that they actively deviate from it. Further-
more, by looking at different holding characteristics, this paper demonstrates
that mutual funds’ investments predict the future return of a sector during
bubble episodes. Predictability holds both in the short and medium horizon.
These findings are consistent with two possible competitive stories: mutual
funds riding the bubble versus mutual funds creating the bubble. In order
to disentangle the two, three different tests are run and no evidence support-
ing an active involvement of mutual funds in generating financial bubbles is
found. First, when mutual funds are aggregated on a value weighted basis,
no significant over-investment is found, suggesting that the effect is not driven
mainly by big funds, which are also expected to have a larger price impact.
Second, there is no contemporaneous correlation between mutual funds’ trades
and sector abnormal returns (but there is a lead-lag positive correlation). Fi-
nally, mutual funds withdraw money 3 to 6 months before the collapse, which
demonstrates that they are not directly responsible for the crash. Together
with the evidence that hedge funds rode the Tech bubble (Griffin et al. (2011),
showing that mutual funds are also able to ride a bubble suggests that individ-
ual investors are those who are ultimately hit by the collapse. Unfortunately,
the absence of granular data on household investment holdings prevents an
analysis in this direction.

Related Literature. This paper relates closely to two streams of literature:
one focuses on financial bubbles and the other on mutual funds.
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Regarding financial bubbles, several papers debate the topic from a theoreti-
cal perspective. Starting from rational explanations (Tirole (1982)), researches
then moved to models with frictions, namely short-sales constraints (Harrison
& Kreps (1978)), limits to arbitrage (Shleifer & Vishny (1997)), overconfidence
(Scheinkman & Xiong (2003)), synchronization risk (Abreu & Brunnermeier
(2003)) and heterogeneous beliefs (Xiong (2013)). Finally, behavioural models
were introduced, in which psychological biases, such as extrapolation, play a
crucial role (see, for example, Greenwood & Nagel (2009)). A complete sum-
mary of theoretical models can be found in Brunnermeier & Oehmke (2013).
Such a richness of theoretical models hasn’t been followed by many empirical
papers. In addition, most of them focus on the Tech Bubble only. For exam-
ple, Brunnermeier & Nagel (2004) studies the behaviour of hedge funds during
the Tech Bubble and finds that, due to limits to arbitrage, they rode the bub-
ble. Griffin et al. (2011) extends the analysis to other financial institutions.
More recently, Liao et al. (2020) demonstrates that price and volume dynamics
typical of financial bubbles can be observed in a market where investors are
subject to both extrapolation and disposition effect.
The literature on mutual funds is extremely broad, but Berk & Green (2004)
have a pride of place in it. The paper develops a parsimonious rational model
on the relation between return and fund flows and demonstrates that persis-
tence in returns does not reflect managers’ stock picking ability. Yet, mutual
fund investors chase performance, the so-called “performance based arbitrage”
(see Sirri & Tufano (1998)). The inability of fund managers to consistently
generate positive abnormal return after fees and transaction costs has been
documented in Grinblatt & Titman (1989). Similarly, Daniel et al. (1997)
show that only some mutual funds exhibit stock-picking ability, while no fund
exhibits market-timing ability.

The paper is organized as follow: section 2.2 describes the data used in this
project while section 2.3 reports the bubble episodes historically observed in fi-
nancial markets. Mutual fund over-investment in bubble sectors is documented
in section 2.4. This strategy generates a positive and statistically significant
alpha. Section 2.5 demonstrates that funds’ holdings have a strong predictive
power and section 2.6 supports the claim that mutual funds are not responsi-
ble for the formation and the collapse of financial bubbles. Finally, section 2.7
concludes.
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2.2 Data

Data on stock prices, returns and shares outstanding come from the Center of
Research in Security Prices (CRSP) Monthly Stock database1. I restrict the
sample to common stocks (code 10 or 11) and I merge CRSP data with the
most recent company information available on Compustat. Each stock is as-
sociated to a specific sector using the last available SIC code from Compustat.
If not available, I use the SIC code available on CRSP. Sector classification
comes from Fama & French (1993) which is regularly updated on Kenneth
French’s website. From Kenneth’s French library I also obtain the monthly
risk-free rate, the market excess return and the Fama-French factors.
Data on financial institution holdings come from the Thomson Reuters Insti-
tutional Holdings database s12, which is compiled from the quarterly filings
of Securities and Exchange Commission form 13F. Differently from the most
common s34 database, which contains data at the fund family level, database
s12 contains more granular data on individual mutual funds. For each fund,
I have access to long positions in stocks at the quarterly level. However, no
short positions and bond holdings are available. I also merge each individual
fund holdings with fund characteristics from CRSP Mutual Fund database,
including monthly returns, several types of fees and fund style. I use the latter
to separate growth and value funds as well as to identify active funds.
Finally, from CRSP I obtain the implied volatility surface that I use to esti-
mate the VIX and SVIX indexes. Stock-specific VIX is obtained from option
data, available on OptionMetrics.

2.3 Bubble episodes

Following Greenwood et al. (2019) I identify bubble episodes as those periods
in which an industry2 experienced a value weighted return of 100% or more,
both raw and in excess of market, over the past 2 years and a 100% or more
raw return over the past 5 years. The choice of 100% return over two years
is meant to conform to the widely accepted conviction that a bubble begins

1Calculated (or Derived) based on data from database name ©2018 Center for Research
in Security Prices (CRSP®), The University of Chicago Booth School of Business.

2Industry is defined based on the 49-industry classification proposed by Fama & French
(1997).
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with a large price run-up. The longer 5 year horizon avoids to include in the
sample those sectors which are recovering from a downturn. The first month in
which these conditions are met is time 0. A bubble episode runs for 54 months,
from t = −24 to t = 30. The time window is not symmetric around zero as
usually the peak is reached six months after t = 0. In some of these episodes
a crash will be eventually observed, while in other cases the cumulative return
keeps growing for the whole time period considered. I define a crash as a 40%
drop in price at any point in time over the 30 months after the bubble is first
identified. Finally, for each bubble episode that eventually crashes, I define
the dummy variable Run-up which takes a value of 1 from t = −24 to the
peak. Figure B1, which shows the cumulative return of the sector Chips3 in
the period December 1997 - June 2002, gives a graphical representation of the
timings of an episode that crashes. For sectors that do not crash, it does not
make sense to construct the aforementioned dummy as the peak cannot be
identified. When needed for the analysis, I will define the peak for episodes
that do not crash as the average peak time of those that do crash.
Following the criteria outlined above, I identify 36 bubble episodes in the period
1980-2018, 10 of which eventually crashed. Table B1 lists the bubble episodes
together with some summary statistics. Panel A reports those episodes which
eventually lead to a crash in returns. As depicted in Figure B1, a bubble
is defined for those sector experiencing at least 100% raw and excess return.
The time of each episode (column 2 of Table B1) corresponds to the first
quarter this condition is met. Column 3 contains the number of firms in each
sector. Columns 4 and 5 show the cumulative return, raw and in excess of
market respectively, from t = −24 to t = 0. All these numbers are above 1
by construction. Column 6 reports the percent drop in price during the crash.
Finally, the last two columns show the number of months elapsing from time
0 to the peak and the crash, respectively. For example, for sector Chips in
December 1999, the peak was reached 6 months after time 0, after the peak
there was a cumulative return of 0.42, i.e. a 58% drop in price, and the crash
occurred 3 months later (i.e. 9 months after time 0). Panel B reports the same
information for those episodes in which the run-up was not followed by a crash.
We can observe that these sectors are usually smaller in terms of number of
firms, but the magnitude of the return paths, both raw and in excess of the

3One of the 49 sectors of the Fama-French sector classification, it includes companies
producing electronic equipment. It is one of most representative sectors of the Tech bubble.
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market, are very similar to those in panel A. In addition, it is worth noting
that the peak occurs, on average, 7.5 months after the bubble is first identified
(time 0) and the crash occurs in the next quarter. This supports the speculative
explanation of financial bubbles, which would not be consistent with a long
delay between the peak and the collapse. In other words, speculators won’t
hold on to an asset which is over-priced: they either sell it if they expect it to
go back to the fundamental value or keep buying if they expect the mispricing
to get worse.

2.4 Mutual fund behaviour

To study the behaviour of mutual funds during bubble episodes, it is natural
to look at their holdings. For each quarter t and each sector s I compute the
percentage of equity holdings that fund manager i has invested in that given
sector as follows:

Holdingi,s,t =
Equity Holdings ins

Total Equity Holdings
=

∑
j∈s Pj,tXi,j,t∑
j Pj,tXi,j,t

(2.1)

where Xi,j,t is the number of shares of company j that mutual fund i holds in
quarter t.
However, holdings per se are meaningless if not compared with a benchmark.
In fact, an increase in holdings is not necessarily an active choice of the fund
manager to bet on a given sector. Alternatively, managers may change their
fund composition either in response to a change in the fund’s benchmark or
simply due to an overall good performance of a sector which implicitly in-
creases its market capitalization in comparison to other sector holdings. To
rule out the latter explanations, I compare the holdings computed as in Equa-
tion (2.1) to the weight that a sector would have in an index made of all the
stocks available on CRSP. The intuition is the following: consider a hypothet-
ical fund manager who is agnostic about the stock market future performance.
Her strategy would be to buy every stock available in the market and her port-
folio would then mimic the CRSP index. Any active choice of an experienced
manager would result in a deviation from the composition of the hypotheti-
cal, agnostic manager. I reckon that such a scenario, although theoretically
solid, is unrealistic. Indeed, there are some stocks that managers do not invest
in, like penny stocks which are usually very illiquid, hence difficult to trade.
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For this reason, I refine my benchmark by considering a CRSP index which
includes only stocks whose price is above $5. Additionally, the investment set
of a fund manager is limited by the fund style, which determines the ultimate
objective of the fund itself. In this respect, I identify two major categories:
growth funds, whose primary goal is to generate capital gains for investors,
with no or little dividend payouts and above-average risk, and value funds,
which instead focus on undervalued stocks and usually have a higher dividend
yield. To take fund style into consideration, I identify growth funds as those
which meet one of the following criteria: a) the fund name includes the word
“Growth"; b) it is a growth fund according to the CRSP classification code.
In my sample, 23.8% of funds can be classified as growth funds. The proper
benchmark for these funds is obtained by selecting only growth stocks in the
CRSP universe of stocks: following Fama & French (1993), in June of each
year I sort stocks based of their book-to-market ratio and identify those in
the bottom 30% as growth stocks. Following an identical procedure, I identify
value funds using either the fund name or the CRSP classification code and
compare their holdings with an index made of stocks in the top tercile when
sorted using the book-to-market value. Approximately 12% of the funds end
up in the latter category.
To test whether mutual fund managers take advantage of the run-up of the
bubble, I run the following regression:

Excess Holdingsi,s,t = Xi,tβ + Run-ups,t + ψi + σs + ηt + εi,s,t (2.2)

where i indicates the mutual fund, s the sector and t the quarter and ψi, σs and
ηt are the corresponding fixed effects. X includes some time-varying control
variables specific to each fund, namely the size of the fund, measured by the
total net assets, and the return over the past quarter. Errors are clustered at
the fund level. Table B2 reports the results.
In all four regressions, the coefficient of interest is positive and significant,
showing that during run-ups mutual funds over-invest in bubble sectors in
comparison to their benchmark. Interestingly, the behaviour of growth funds
looks very similar to that of value funds, although they have a very different
investment style: growth funds invest heavily in stocks which are expected to
experience an increase in prices, which is exactly what happens during finan-
cial bubbles, while value funds have a more conservative approach. Apparently,
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value funds deviate from their objective and benefit from the bubble as well.
The above regression gives a static representation on funds’ strategies and con-
firms their ability to exploit the rapid price increase typical of bubble episodes.
The following regression, by splitting the Run-up dummy into quarterly dum-
mies, gives a dynamic representation of mutual funds’ behaviour:

Excess Holdingsi,s,t = Xi,tβ +
∑
τ∈B

δτDτ + ηt + ξi + σs + εi,s,t (2.3)

where B is the set of quarters of a bubble episode and D0 is the time at which
each episode reaches its peak.
Instead of reporting the coefficients δτ of the regression, these are depicted in
Figure B2 together with their 95% confidence bands. The monotonic pattern
demonstrates that mutual funds over-invest in the bubble sector during the
run-up and withdraw rapidly right before the peak is reached. Afterwards,
they start building up their holdings again. Figure B3 documents an inter-
esting difference in behaviour between growth and value funds. While growth
funds’ capital gain oriented strategy pushes them to overweight the bubble sec-
tor from the very beginning of the run-up until two quarters before the peak,
value funds are more conservative and significantly increase their exposure to
bubble sectors very late, when the prices are already close to collapse.
However, a successful investment strategy cannot be determined by the man-
ager’s stock-picking ability only, but also by her market-timing ability. Espe-
cially during a bubble period, timing is the key: over-investing in a bubble
sector does not necessarily involve excess returns, especially if the market has
already factored the expected run-up in current prices. For this reason, in
addition to a benchmark comparison, a timing analysis is needed. Options
are extremely valuable in this respect. In fact, following Martin and Wagner
(2019), the expected return of a stock can be obtained from option prices as
follows:

ERi,t+T −Rf,t+T

Rf,t+T

= SVIX2
t,T +

1

2
(SVIX2

i,t,T − SVIX2
t,T )

where SVIX is the market SVIX, SVIXi is the SVIX for stock i only, SVIX is the
average SVIX across all available stocks and T is the time horizon considered.
For all VIX-related variables, T refers to the maturity of the options used for
their construction.
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For each sector s, I run a cross sectional regression of the realized return on
the expected return as follows:

Ri,t+T −Rf,t+T

Rf,t+T

= α + βSVIX2
t,T + γ(SVIX2

i,t,T − SVIX2
t,T ) + εi

The coefficient of interest is α: a positive (negative) αmeans that a given sector
over- (under-) performed its risk-neutral expectations in the period from t to
t + T . Given that option data are available at fixed frequencies only, the
analysis could be run at 1, 3, 6 and 12 months horizons. In the interest of
space, results are reported for 3 months and 6 months only.
The first test I run is whether there is a correlation between mutual fund
holdings and the performance of the sector in the subsequent months. I run
the following regression:

α̂s,t→t+k = Xi,tβ + Run-ups,t × Excess Holdingsi,s,t + ηt + ξi + σs + εs,t (2.4)

whose results are displayed in Table B3.
In the first two columns of Table B3 the whole sample is used, while in the last
two columns the analysis is restricted to active funds only. For both samples,
two different regressions are run: the first uses the 3-month α̂ as dependent
variable, while the second uses the 6-month α̂. The first row shows that,
in normal market conditions, there is a small and (almost) non significant
correlation between the excess holdings and the risk-neutral excess return of a
sector as measured by α̂. However, the coefficients on the interacted regressor
Run-up × Excess Holdings is much stronger both in magnitude and statistical
significance, showing that the stock-picking ability is enhanced during bubble
episodes. Similar results are obtained when using trades instead of holdings
as independent variables of the regressions. To construct fund-sector trades, I
first compute stock trades as the percentage change in the number of stocks
held by each mutual fund at the end of each quarter. I then aggregate them at
the sector level by taking the weighted average, using the corresponding dollar
holdings as weights. Regression is as follows:

α̂s,t→t+k = Xi,tβ + Run-ups,t × Tradesi,s,t + ηt + ξi + σs + εi,s,t (2.5)
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where X also includes fund flows interacted with a stock ownership measure
and a sector liquidity control (as in Lou (2012)). The former accounts for size-
related constraints while the latter accounts for trading and transaction costs.
Flows are computed as a percentage change in total net assets after account-
ing for fund mergers, while ownership is the ratio between shares held and
total shares outstanding and liquidity measure is obtained following Pastor &
Stambaugh (2003). In Table B4, results are even more striking. Indeed, while
under normal market conditions there is a negative correlation between trades
and α̂, the very same correlation flips and becomes positive during run-ups.
The results presented so far clearly demonstrate that mutual funds have the
abilities (stock-picking and timing) to anticipate the run-up and benefit from
it. Hence, the natural question to ask is: do they generate a positive and sig-
nificant alpha from their investments? To answer this question, I first compute
the value weighted return from each mutual fund’s equity position at the end
of each quarter. I then regress it on the Fama French factors: market excess
return, size factor (SMB - Small Minus Big), value factor (HML - High Minus
Low) as well as the most recent profitability (RMW - Robust Minus Weak)
and investment (CMA - Conservative Minus Aggressive) factors. Results are
displayed in Table B5. The first column shows the result of a standard CAPM
regression, where mutual fund excess return is regressed on the market excess
return and the Run-up dummy. The constant is omitted as it is multicollinear
with the mutual fund fixed effects. The coefficient on the market excess return
shows that mutual funds portfolio are well diversified and have an exposure
to the market very close to 1. The coefficient of the dummy is positive and
significant, showing that mutual funds earn a 1.3% abnormal return from they
equity investments at a quarterly frequency. These results are robust to the
inclusion of the additional factors SMB and HML as well as the more recent
RMW and CMA.

2.5 Predictability

Having established that mutual funds can identify a bubble before it collapses
and deviate from their usual trading strategy to take advantage of their knowl-
edge, it is natural to check whether observing their holdings could give investors
some information about the future performance of a sector. In this section, I
test if mutual fund holdings can predict the future sector returns. To do so, I
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run the following regression:

Rs,t→t+k = c+ β × Chars,t + σs + ηt + εi (2.6)

where Char stands for a set of mutual fund holding characteristics. The choice
of these variables hinges on the findings of the previous section. In fact, we have
seen that mutual funds over-weight bubble sectors compared to a hypothetical
CRSP index. Hence, it is natural to use the deviation from this benchmark as
the first variable that might predict future returns. Additionally, section 2.4
documents a different behaviour between growth funds and value funds, with
the former being more responsive at an early stage of the bubble. Therefore,
the difference in holdings between growth and value funds (henceforth GMV)
could also be a powerful predicting variable. Furthermore, not only the static
figures of excess holdings, but also the dynamics of holdings formation could
shed some light on the future return of a sector. Dynamics can be captured by
acceleration and turnover. Acceleration is defined as the change in number of
shares held over the last two quarters over the change in the number of shares
held in the last 4 quarters

(
Sharesi,t−Sharesi,t−2

Sharesi,t−Sharesi,t−4

)
. A value close to 1 means

that the fund has significantly increased its holdings in the last 6 months
or, in other words, has accelerated its buying in the recent past. Under the
assumption that the fund can predict the sector performance, we expect a
positive correlation between the acceleration and the future sector returns.
Turnover is the percentage change in shares held

(
∆sharesi,t
Sharesi,t−1

)
. A higher value

means that the fund is significantly increasing its holdings, which signifies that
the fund expects the sector to perform well in the subsequent quarters.
For each characteristic, I run the regression in Equation (2.6) using the return
over the next 3 months, 6 months and 1 year as dependent variables. As
displayed in Table B8, almost all of them are able to predict future sector
returns at a 5% significance level.

2.6 Endogeneity

The results presented above document the behaviour of mutual funds during
bubble episodes, but do not pin down their exact role in financial markets.
In fact, these findings are compatible with two very different explanations: a)
mutual funds are able to predict the run-up and exploit their superior informa-
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tion; b) mutual funds have a price impact in the market and their simultaneous
behaviour causes the bubble. This endogeneity problem is well known in the
asset pricing literature, especially for empirical papers in which the low fre-
quency of data (quarterly in this case) is an obstacle to any reverse causality
issues. This section aims at clarifying the role played by mutual funds, showing
three pieces of evidence in support of mutual funds riding the bubble rather
than directly causing it. It is worth mentioning that this section does not
exclude any involvement of mutual funds first in the run-up and then in the
collapse of financial bubbles; it just demonstrates that mutual funds alone can-
not generate these patterns. More likely, they are the results of the interaction
between mutual fund and household investment strategies.

A value-weighted approach

First, some insights can be obtained from taking into account the size of each
fund, as not all funds are big enough to have a price impact on the market.
In other words, to support the claim of mutual funds causing the bubble, it
must be the case that most of the over-investing found in section 2.4 comes
from large funds. To test this, I aggregate individual fund data by taking
the weighted average of excess holdings, using total net assets as weighting
variable, and run the following regression:

Excess Holdingss,t = Xtβ + Run-ups,t + σs + ηt + εs,t (2.7)

where X now includes the sum of the total net assets of all funds at time
t as well as the value-weighted return of the mutual fund industry. Results
are displayed in Table B6, which shows that when the whole mutual fund
industry is considered and funds are aggregated by size, the effect vanishes.
This finding suggests that small mutual funds are mostly responsible for sector
over-investing, therefore it is unlikely that they have a price impact.4

4Alternatively, a price impact could be generated by synchronized behaviour of several
small mutual funds. Given the composition of the mutual fund industry, with the 5 largest
funds commanding 46% of the market share in 2018, this is also unlikely.
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Trades and abnormal returns

Second, if mutual funds had a price impact during the run-up, a positive and
significant correlation between their trades and the sector abnormal return
should be observed. Section 2.4 documents how funds invest in sectors which
will experience positive abnormal returns in the following quarter. Using the
same approach, a contemporaneous effect of trades on alpha can be analysed:
if funds have a price impact, we expect a positive and significant correlation
between trades and abnormal returns over the same time period. The following
regression mimics Equation (2.5), with the only difference that the dependent
variable α and the independent variable Trades are now contemporaneous.
Regression output is reported in Table B7.

α̂s,t→t+1 = Xi,tβ + Run-ups,t × Tradesi,s,t→t+1 + ηt + ξi + σs + εi,s,t (2.8)

In fact, Table B7 shows that there is no contemporaneous correlation over a 3-
month horizon, suggesting that mutual fund trades have no significant impact
on stock prices. The correlation is even negative over a 6-month horizon.

Comparison with other episodes

Third, some evidence can be derived from the comparison of the behaviour
during two different run-ups: those of bubble episodes, which are eventually
hit by a crash, versus the “fundamentally-driven” run-ups, in which the price
increase is justified by the sector fundamentals and are not followed by any
collapse. In this case, the focus is on the crash rather then the run-up. In
fact, if mutual funds have a price impact, not only can they cause the run-up
as argued above, but they might cause the collapse when they liquidate their
holdings. To compare the two scenarios, the following difference-in-difference
regression is run:

Excess Holdingsi,s,t = Xi,tβ +
∑
τ∈B

δτDτDcrash + ηt + ξi + σs + εi,s,t (2.9)

where Dτ is a dummy that takes into account the timing of the bubble, i.e.
the distance in quarters from the peak, while Dcrash is a dummy which is
1 for those episodes that eventually crash. Coefficients δτ are displayed in
Figure B4. Interestingly, there is no significant difference in mutual fund be-
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haviour during the run-up. In other words, it seems that the driver of funds’
investment strategies is the future expected return, independently of the po-
tential mispricing of the asset. In fact, during financial bubbles assets are
overpriced while during “fundamentally driven” run-ups it is reasonable to say
that asset are fairly priced. However, mutual funds’ behaviour is not statisti-
cally different under the two scenarios. The behaviour changes when collapse
approaches. For those episodes in which a crash occurs, mutual funds start
reducing their exposure one quarter before the peak and two quarters before
the crash. Hence, there is no evidence they are directly responsible for it.
Otherwise, the crash would be contemporaneous to the withdrawal. Figure B4
also shows that after the bubble collapses, mutual funds quickly re-build their
exposure: usually the market overreacts to the crash, so this is the time when
new profitable investment opportunities arise.

2.7 Conclusion

In this paper, I study mutual funds’ behaviour during financial bubbles and
I document that mutual funds over-invest in sectors that experience a price
run-up. In addition, they withdraw money before the collapse. This strategy
earns a positive and significant abnormal return (4% on an annual basis) across
multiple model specifications. The ability to predict future market movements
is confirmed by a positive correlation between trades and future returns. More
generally, a broad range of holding characteristics are proven to predict future
sector returns.
These findings are consistent with the limits to arbitrage literature which ex-
plains why arbitrageurs do not exert any price correction to mispricing, but
instead make profit from it. Although difficult to disentangle, exploiting and
causing the bubble are two very different concepts. This paper shows that
mutual funds earn abnormal profits from financial bubbles, with no evidence
of them being responsible for the run-up nor the collapse.
Besides assessing the ability to time the bubble, this paper sheds some light on
the fund-household relationship. Being the less sophisticated investors in the
market, households are not able to predict the crash and are mostly hit by it.
Although at the present date no data are available to test this hypothesis, rul-
ing out financial institutions leaves no uncertainty on who suffers most of the
losses. This is also consistent with the well-documented exacerbation of wealth
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inequalities as a consequence of financial bubbles. This claim has important
policy implication: enhancing households’ market participation could turn out
to be a double-edged sword; on one hand, it is a way to achieve equality and
prosperity, but on the other hand this could be detrimental to the wealth of
less sophisticated investors.



3. On the Time-Series Persistence of
Mutual Fund Fees

3.1 Introduction

Mutual fund fees are strongly persistent over time. A simple regression of
mutual fund expense ratio on its lagged value generates an autocorrelation
coefficient equal to 0.88 and, with the inclusion of a fund fixed effect, an R-
squared of 99%. Not only within funds, but also fee dispersion across mutual
funds is roughly constant over time. However, fund managers are sophisticated
investors and should be able to calibrate their fees on investors’ sentiment.
Are there times when funds can charge, on average, higher expenses? More
specifically, do mutual funds increase their fees during up-trending markets?
Bubble episodes represent a perfect setting to answer these questions for two
reasons: first, they are characterized by large price movements, during which
time-varying fee policies could be investigated. Second, financial bubbles1 are
usually subject to a large media coverage, ensuring that households are well
aware of the current market situation.
The present paper finds that fees increase during financial bubbles. This is true
for both management fees and 12b-1 fees, which in turn generate an increase in
expense ratio2 of around 10 basis points, which corresponds to a 8.8% increase
with respect to the median expense ratio. This result holds after controlling
for fund characteristics as well as competition within the industry.
A possible explanation for this finding hinges on a lower investors’ sensitivity
to fees. In fact, in standard industrial organization settings, a lower sensitiv-
ity to fees corresponds to a steeper inverse demand function; or, in terms of
quantity (i.e. market share), an increase in fees generates a smaller market
share loss when fee sensitivity is lower. Additionally, media coverage might
as well increase the household demand: the demand function shifts to the
right, resulting in higher fees in equilibrium. However, any empirical test that
estimates the sensitivity to fees suffers from endogeneity issues, due to the

1Specifically, the run-up component of a financial bubble
2Expense ratio is the annualized total cost charged to mutual fund investors.
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simultaneous effect of prices on quantities and vice versa. To address this is-
sue, an instrumental variable approach is used, where fees of a given fund are
instrumented by the average fees of other funds which are not direct competi-
tors. In the first stage I demonstrate that, despite the well-documented fee
dispersion among mutual funds (see Cooper et al. (2020)), fees are correlated
in the cross-section. In the second stage, I show that, while in normal times a
1% increase in fees generates a 2.9% drop in market share, a still negative but
not statistically significant effect is found during financial bubbles.
However, higher fees can be justified by other factors, such as an increase
in trading activity, which may result in higher transaction costs, or an in-
crease in managers’ compensation. To account for this, this paper develops
a theoretical model, based on Luo (2002), which allows to split fees into two
components, namely the marginal cost and the mark-up. Marginal cost is
estimated as a linear function of fund characteristics, like size, age and past
performance. Mark-up is strongly related to the degree of competition within
the mutual fund industry. Consistently with the literature, it is measured us-
ing the Herfindal index and a normalized Herfindal index, which takes into
account the number of mutual funds. These indicators are based on funds’
market shares, hence they can be computed at a quarterly level. The resulting
time series is then used to estimate the mark-up charged by mutual funds.
Due to non-linearity of the estimation, a GMM approach is used. Addition-
ally, as in the previous model, the estimation suffers from endogeneity. In this
model, the instrumented variable is the fund size, but the intuition is similar:
in fact, the size of a given fund (measured as assets under management) is in-
strumented using the average assets under management of competitor funds.
Clearly, the target variable and the instrument are correlated, as funds oper-
ating in the same sector tend to change their size proportionally to the sector’s
size. Hortaçsu & Syverson (2004) provide evidence that the exclusion restric-
tion is also satisfied. Indeed, they demonstrate that significant variation in
asset under management across similar funds cannot be explained by differ-
ence in fees. A GMM is estimated both using the whole dataset and on a
sample which includes bubble episodes only. While under normal market con-
ditions the mark-up corresponds to 10% of the fees, the proportion increases
to almost 20% during financial bubbles.

Related Literature. The question of whether fees really matter to investors



CHAPTER 3. PERSISTENCE OF FEES 47

has given rise to two opposite streams of literature on the mutual fund indus-
try.
On the one hand, we have the neoclassical view, which originated from the
seminal paper of Berk & Green (2004). Until then, given the apparent fierce
competition between funds, combined with the inability of fund managers to
outperform their passive benchmarks, it was hard to justify the high and dis-
persed fees charged to investors. The paper develops a model of active portfolio
management that reconciles these seemingly puzzling empirical findings within
a rational and competitive setting. In this model, managers increase their fees
with fund size up to the point where gross alpha equals fees, and average
net alpha is zero. Not surprisingly, in a competitive market investors do not
earn any abnormal profit, and fees should not matter to them. The model is
supported empirically by the finding in Berk & van Binsbergen (2015), which
shows that, in a sample of both US and international equity funds, the average
fund generates a $2m added value, but net-of-fee alphas are zero. Another key
ingredient of the model is diseconomies of scale, which are also found in Pástor
& Stambaugh (2012), Pástor et al. (2015), Pástor et al. (2020) and Stambaugh
(2020).
On the other hand, some authors argue that mutual fund markets are not
perfectly competitive, hence fees matter. For example, Hortaçsu & Syverson
(2004) finds that fee dispersion among S&P500 funds can be explained by fund
differentiation as well as search frictions. Similarly, Elton et al. (2004) docu-
ments that S&P500 funds, although very similar, earn very different returns.
As a consequence, selecting low-fee funds outperforms the portfolio of index
funds chosen by investors. This can be explained by investors’ inability to
arbitrage. Both papers show that mutual funds can earn abnormal profits and
that after-fees alpha is not zero.
What the two streams of literature agree on, is that there is a large dispersion
of fees across funds. Cooper et al. (2020) finds that, although the average
net alpha is equal to zero, there is a significant and persistent cross-sectional
variation in fees among mutual funds in the US, with the interquartile range
of fee dispersion being around 30 basis points for S&P500 index funds. Similar
dispersion have been found across countries (Khorana et al. (2008), Geranio
& Zanotti (2005)). Finally, cross-sectional variation in fees correlates with
fund performance: higher fees are associated with worse performance (Cooper
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et al. (2020), Gil-Bazo & Ruiz-Verdù (2009)), funds with front-end loads3 have
usually lower expenses (Dellva & Olson (1998)) and funds with small boards
and more independent directors charge lower fees (Tufano & Sevick (1997)).
Instead of looking at the cross-sectional variation, this paper focuses on the
time-series variation, and shows that fees respond to market conditions. In
particular, fees are significantly higher during financial bubbles. The simplest
explanation is that mutual funds respond to a lower sensitivity to fees from
outside investors, which is estimated using a standard empirical industrial or-
ganization model similar to Shin (2014). Additionally, the effect of such an
increase in fees on mutual fund profit is estimated by calibrating a model for
mutual fund competition (see Luo (2002)).

The rest of the paper is organized as follows: section 3.2 summarizes the data
used, while section 3.3 provides evidence that mutual funds increase fees during
financial bubbles. Robustness checks are also included. Section 3.4 develops
and calibrates a model for investors’ sensitivity to fees. Similarly, section 3.5
develops and calibrates, using GMM, a model to decompose fees into marginal
cost and mark-up. Finally, section 3.6 concludes.

3.2 Data

Data on mutual funds come from the Center of Research in Security Prices
(CRSP) Mutual Fund database4. It contains quarterly data on open-ended
mutual funds, including a history of each mutual fund’s name, investment
style, asset allocation, total net assets and monthly total returns. Addition-
ally, the fee structure and schedules of rear and front load fees are included.
For each fund, I have also access to long positions in stocks at a quarterly level.
Data begin at varying times between 1962 and 2008 depending on availability.
From Kenneth French’s Library I obtain the monthly risk-free rate, the mar-
ket excess return and the Fama-French factors. I also download the updated
49-sector stock classification based on each stock SIC code.

Data on bubble episodes come from my previous work on mutual funds’ in-
vestment strategy. I define a bubble episode at the sector level, provided that
the following three conditions are met: a) at least 100% raw return over the

3Front-end loads are entry fees charged by some mutual funds.
4Calculated (or Derived) based on data from database name ©2019 Center for Research

in Security Prices (CRSP®), The University of Chicago Booth School of Business.
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past 2 years; b) at least 100% excess market return over the past 2 years; c) at
least 100% return over the past 5 years. Pellicioli (2021) contains an example
of bubble episode as well as the list of all price run-ups over the last 3 decades.
The 49-sector classification in Fama & French (1993) is much finer than the
one from the investment style information available on CRSP. The two are
then matched as described in Table C1.

3.3 Fees

Fees shape the relation between funds and household: on one hand, higher fees
enhance the profitability of the fund but, on the other hand, they discourage
investors from providing money to the fund. From a policy perspective, fees
can also be interpreted as the cost that individuals have to pay to access
financial markets. Hence, understanding the fee-setting behaviour of mutual
funds is interesting from both an economic and a social perspective.
There are several types of fees:

• Management Fees : usually calculated as a percentage of the assets under
management, they are charged to compensate the fund manager for the
time and effort in managing the fund. For this reason, management fees
are usually higher in actively managed funds than in passive funds.

• Front (Rear) Load: expressed as a percentage of the amount invested,
they are charged una-tantum when an individual invests in (withdraws
from) the fund.

• 12b-1 Fees: expressed as a percentage of assets under management,
they are attributed to marketing and distribution costs. A maximum
of 1% can be charged, with 0.75% attributable to marketing expenses
and 0.25% to distribution expenses. They were originally introduced to
finance marketing activities that would help the fund reach a size where
economies of scales could be beneficial for the fund itself and, as a con-
sequence, for the investors. Nowadays, they are mainly used to reward
intermediaries.

• Expense Ratio: percentage of total investment that shareholders pay
for the fund’s operating expenses. As it includes waivers and reimburse-
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ments, expense ratio may be lower than management fees. Expense ratio
also includes 12-b-1 fees.

Table C2 reports summary statistics of all the different types of fees. Man-
agement fees have a wide range, with a minimum value of -1.569% and a
maximum value of 1.243%. In particular, management fees may turn negative
due to waivers and reimbursements. The average management fees is 0.34%
of the fund’s net assets. Front and rear loads cannot be directly compared to
management fees for two reasons: first, they are paid only once, rather than
on an annual basis, hence their value should be split equally over the investors’
investment horizon. Second, they usually depend on the amount invested, as
they tend to be lower for low investments. The reported fees are the median
values charged across different investment thresholds. More than 25% of funds
do not charge entry or exit fees, although they can reach significant values of
5.75% and 2.5%, respectively. Interestingly, front load fees are larger than rear
fees across the whole distribution. This can be evidence of a relatively inelas-
tic and sticky demand for funds as investors do not mind paying entering fees
while funds do not need equivalently high exit fees to retain their clients. Con-
sistently with the legal constraint on 12b-1 fees, they range between 0 and 1%.
The distribution is left skewed, with more than 25% funds charging exactly
the upper-bound, i.e. 1%. Finally, in line with existing literature, the average
expense ratio is slightly above 1%, with peaks of 2.5%. As it comprises all the
aforementioned fees, it is a comprehensive and the most-reliable measure of
the cost of the fund.
Understanding how fees change during bubble episodes is of paramount impor-
tance to analyse the fund-household relationship. In fact, there is a trade-off
when mutual funds decide their fees: on one side, higher fees reduce the fund’s
attractiveness to outside investors, but on the other side they increase the
fund’s revenues. The regression in Equation (3.1), whose results are reported
in Table C3, sheds some light on such a trade-off. It regresses the five types of
fees on the Run-up dummy5, some controls and a year fixed effect. The con-
trols, namely the fund’s net assets and return in the previous quarter, take into
account the fund’s performance while the fixed effect is introduced to capture
the decreasing trend of fees over the last decades.

Feesi,t = γRun-upt +Xβ + ηt + εi,t (3.1)
5As defined in chapter 2, section 2.3. A graphical representation in provided in Figure B1
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Table C3 shows that investing in mutual funds is significantly more costly
during run-ups than in normal market conditions. In fact, even though man-
agement fees slightly decrease, the remaining fees increase significantly. As a
consequence, the expense ratio is 1.3 basis points higher when the market is
in a bubble.
Starting from this result, I appreciate that there are other factors affecting fund
fees, namely the competition within the fund industry and the sector the fund
mostly operates in. The former relates to any model of industrial organization
in which, in a competitive market, revenues (fees for the mutual fund indus-
try) should equal the marginal cost. It may be the case that, during turbulent
times as financial bubbles, some funds are wiped out of the market, reducing
the competition within the financial industry. This in turn allows the survivors
to increase their fees. The latter is only partially related to competition. In
fact, if on one hand some sectors are more heavily targeted by asset managers
than others, on the other hand sectors differ for characteristics like liquidity or
information transparency which affect the fees through the marginal cost. For
example, transaction costs in illiquid markets are usually higher and need to be
compensated by higher fees. These two determinants of fees, competition and
marginal costs, will be addressed theoretically in the following sections. For
now, competition can be measured empirically by looking at common holdings
across funds. For example, suppose there are two funds, A and B, and three
stocks, X, Y and Z. A invests 80% in X and 20% in Y, while B invests 50% in
Y and 50% in Z. Stock Y is the only common stock, hence A has 20% of its
holding shared with B. Note that this commonality measure is not symmetric,
as B has 50% of its holdings shared with A. By considering all possible fund
pairs, I can measure how “popular” A’s holdings are, hence how competitive
A’s targeted market is. Mathematically, this measure of competition can be
computed using the following equation:6:

MVOi,t =
1

N

N∑
j=1

θi,j,t∑
τ=1

ωi,τ,t where ωi,τ,t =
Pi,τ,tSi,τ,t∑
γi
Pi,γi,tSi,γi,t

where i and j represent the funds and τ ranges over the common holdings
between i and j. Finally, S represents the number of shares, P the stock price
and γi runs over all the stocks held by fund i. In words, ωi,τ,t is the percentage

6A similar measure can be found in Wahal & Wang (2011)
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holdings invested by mutual fund i in stock τ at time t. For each mutual fund
pair i and j, MVOi,t sums ω across common holdings (τ = 1, . . . , θi,j,t) and
then averages across N mutual fund pairs.
Table C4 reports the outcome of regression in Equation( 3.1) with the inclu-
sion of the MVO variable as well as year-sector fixed effects. Two significant
differences arise: first, the coefficient of the dummy Run-up is now positive
for management fees, meaning that they are higher during financial bubbles.
Second, entry and exit fees do not change significantly. However, the total
effect on fees, measured by the expense ratio, is still positive and significant
and much larger in magnitude. Expense ratios are 0.097% higher during run-
ups, which represents a 10% increase when compared to its long-term, cross
sectional average.

3.4 A Model of Investors’ Sensitivity to Fees

This section contains a model that explains why mutual funds increase their
fees during financial bubbles. In fact, there is a trade-off in raising fees: on one
hand, it increases revenues for the fund, while on the other hand it discour-
ages new inflows of money. However, an increase in fees can be rationalized
by a decrease in sensitivity to fees. Does fee sensitivity actually decrease dur-
ing bubble episodes? This is the questions that the subsequent model, and
its calibration, answers. The model shows that, during bubble episodes, the
(negative) relation between fund’s share and fees decreases in magnitude: a
change in fees has a significantly weaker effect on market share. In other words,
the trade-off moves in favor of increasing fees, as the potential new revenues
overcome the potential flows withdrawal.

3.4.1 Demand

Let i = 1, . . . , N be the set of individuals and j = 1, . . . , J be the set of mutual
funds. When choosing which fund to invest in, each individual i considers some
fund (observable) characteristics Xj like past return, age, size and the fees she
is going to pay pj. For simplicity, I assume that the choice of investing in
fund j does not depend on the fees of other funds, p−j. Other unobservable
fund characteristics δj, like reputation and brand effects, may play a role in
the individual’s decision. Individuals choose which mutual fund j to invest in



CHAPTER 3. PERSISTENCE OF FEES 53

by maximizing their utility:

ui.j = −αpj +Xγ + δj + εi,j

We can interpret the coefficient α as the sensitivity of investors to fees. Any
error due to an idiosyncratic preference of individual i for mutual fund j is
denoted by εi,j and is assumed to follow a Type 1 Extreme Value distribution
(T1EV). Under this assumption, the individual’s demand for fund j is:

sj(pj) =
exp(−αpj +Xγ + δj)

1 +
∑J

k=1 exp(−αpk +Xγ + δk)

where 1 in the denominator is a normalization of utility of a hypothetical
outside option s0.

3.4.2 Supply

Mutual funds provide the supply of investment opportunities. Given the indi-
vidual’s demand, they choose fees to maximise their profits given by:

max
pj

πj = max
pj

sj(pj)A(pj −mcj)

where mcj is the marginal cost of providing a $1 investment and A is the
total assets under management. The first order condition of the maximization
problem is:

sj(pj) +
∂sj(pj)

∂pj
(pj −mcj) = 0

The first order condition states the trade-off of an increase in fees: the first
term is the benefit due to more revenues, the second term is the loss due to a
lower market share sj. In fact, the derivative of sj is negative as an increase
in fees should reduce the market shares of a fund. Specifically, we have:

∂sj(pj)

∂pj
= −αsj(1− sj)

Plugging it into the first order condition gives:

sj − αsj(1− sj)(pj −mcj) = 0
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which allows to estimate the mutual fund j’s fees as:

pj = mcj +
1

α(1− sj)

Again, the intuition is quite simple: mutual funds choose their fees based on
their marginal cost plus a mark-up which correlates negatively with individ-
ual’s sensitivity to fees α. Hence, the change in fees can be due to either a
more efficient management and/or to take advantage of a change in individuals’
sensitivity. To test whether fee sensitivity changes, I estimate the model.

3.4.3 Estimation

To estimate the demand function, I regress the log odds-ratio of market share
of fund j, sj, over the outside option s0 on fund’s characteristics (quarterly
return and end-of-quarter Net Asset Value), the fees it charges (expense ratio)
and a fund fixed effect, as in the equation below:

ln(
sj,t
s0,t

) = α× Bubblet × pj +Xγ + δj + εi,j (3.2)

Results of the regression are displayed in Table C5. As a proxy for fees I use
the expense ratio for the most recent completed fiscal year, measured as ratio
of total investment that shareholders pay for the fund’s operating expenses,
including 12b-1 fees, waivers and reimbursements. In fact, expense ratio is
what investors actually pay as a result of a bargaining power with the fund
and it is the variable they take into consideration when they choose among
several funds. Bubblet is a dummy that takes a value of 1 if at time t the
market experiences a bubble episode.
As in the model above, under normal market conditions the coefficient of fees
is negative and significant, meaning that, coeteris paribus, funds with higher
fees have a lower market share. However, the interacted coefficient is posi-
tive: during bubble episodes, the sensitivity of fees, which is the sum of both
coefficients, becomes less negative. In other words, the sensitivity of fees de-
creases significantly (in absolute value). During normal times, the regression
coefficient of market share on fees is −0.551, as reported in Table C5. How-
ever, during bubble episodes, the same coefficient decreases in magnitude by
0.359 (corresponding to 65%) to -0.192. This simple model explains clearly
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the trade-off of an increase in mutual fund fees but suffers from two limita-
tions: a) the coefficients of the regression of market share (quantity) on fees
(price) is biased due to simultaneity/reverse causality; b) it does not disentan-
gle the marginal cost and the mark-up, making it unclear whether higher fees
are needed because trading is more costly or they are simply a transfer from
household to fund managers.7 The first concern is addressed with a different
regression approach, while the second is discussed in the next section.
From an econometric perspective, reverse causality issues can be resolved with
an instrumental variable regression. In particular, the instrument needs to pos-
sess two characteristics: a) it must correlate with the endogenous regressor; b)
it must affect the dependent variable through the endogenous regressor only
(the so-called exclusion restriction). I argue that instrumenting the expense
ratio of fund i with the average expense ratio of all other funds j belonging to
a different classification group than fund i satisfies both the above-mentioned
properties. The first condition is ensured by the long-term downward trend of
fees within the mutual fund industry over the last three decades and by their
contemporaneous correlation with the market performance. I argue that the
second condition holds as investors first choose the sector they want to invest
in and then they pick the cheapest fund within that sector. Hence, the market
share of fund i should not be directly correlated with the fees of funds oper-
ating in other sectors. Mathematically, we can decompose the percent market
share of fund i operating in sector S as follows:

TNAi∑
j TNAj

=
TNAi∑
s∈STNAs

∑
s∈STNAs∑
j TNAj

The first term compares the size of fund i with the size of sector S, which is in-
dependent of fees charged by funds investing in other sectors. The second term
is the ratio of the size of sector S with the size of the mutual fund industry,
which again is independent of fees as the investors’ first choice is which sector

7Using the fitted value of the regression in Equation (3.2), ŝ, and the estimated α̂, I can
estimate the marginal cost and the mark-up as:

mcj = pj −
1

α̂(1− ŝj)
and mark-upj =

1

α̂(1− ŝj)

However, market share is very persistent and it is unlikely that it immediately incorporates
the effect of a change in fees. For this reason, the estimation of the mark-up is discussed in
section 3.5.
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to invest in (independently of fees). This is particularly true during financial
bubbles. Suppose, for example, that the Technology sector is experiencing a
financial bubble. Even if fees of some other sectors, let’s say Utilities, are
significantly lower, investors will invest in Tech funds to gain from the price
run-up. Table C6 shows the results of the IV regressions. In the first stage, ex-
pense ratio is regressed on the average expense ratio of non-competitor funds,
controlling for size, performance and adding sector and year fixed effects. Due
to the strong persistence of fees within funds, a fund fixed effect is not added.
In fact, the inclusion of a fund fixed effect would generate an R-squared higher
than 96%. The first stage fitted values would then be extremely close to the
variable they are instrumenting, making the whole IV regression meaningless.
In the second stage, the log market share is regressed on the first stage fitted
values with the same controls.
The first two columns of Table C6 reports the first and second stage regressions,
respectively, for the time-sector pairs that do not constitute a financial bubble.
The first regression shows that there is a strong correlation between the ex-
pense ratio of fund i and those of non-competitor funds, which proves that the
instrument is sufficiently strong. The second regression shows that, in normal
times, there is a negative sensitivity between fees and market share. A 1bp
increase in fees generates a -2.9% decrease in market share. In the remaining
two columns, the sample is restricted to include those time-sector pairs which
represents price run-ups. The first stage still indicates that the chosen instru-
ment in strong. However, the second stage shows that investors’ sensitivity to
fees is still negative (as any inverse demand function), but no longer significant.
In other words, investors do not necessarily withdraw money from expensive
funds, provided that they generate sufficiently large returns. An alternative
specification of the model uses the change in market share as dependent vari-
able in the second stage. The intuition is straightforward: rather than the
market share level, fees are more likely to influence the fund flows, hence the
change in market share. An increase (decrease) in fees should generate an
outflow (inflow) of money and a negative (positive) change in market share.
Table C7 shows the IV two stage regression using the logarithm of change
in market share as a dependent variable. Results are both qualitatively and
quantitatively very similar.
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3.5 Marginal Cost vs. Mark-Up

Instead of looking at the fund-investor relation, this section estimates the
mark-up component of the fees charged by mutual funds. Intuitively, funds
are able to charge higher mark-ups when investors’ sensitivity to fees is lower.
This paper does not investigate the determinants of a lower elasticity to fees,
although funds’ superior information and easier access to financial markets are
reasonable explanations. Based on data availability, the following model is a
simplified version of Luo (2002).

3.5.1 Marginal Cost

Following Tufano & Sevick (1997) and Malhotra & McLeod (1997), mutual
fund costs are assumed to be function of both fund characteristics and per-
formance related variables. Among the former, total net assets (Ai,t) and
fund age are used. It is widely recognized in the literature the existence of
economies of scale. Hence, larger funds are expected to have lower marginal
costs. Mathematically, there are economies of scale when the cost function
is not linear in the quantity, thus its first order derivative (i.e. the marginal
cost) is function of the quantity as well. The second fund feature considered,
Agei,t, accounts for unobservable fund manager characteristics, like experience
and reputation. Fund managers who have been investing in financial markets
for several years have surely more experience and, assuming they have been
profitable, they also have an above-average reputation. Assuming there is a
learning curve effect, the older the fund is, the cheaper it is to manage. Re-
garding performance related variables, quarterly return is included among the
marginal cost determinants. In fact, a well-performing fund is usually more
costly to manage than a fund with lower profitability, due to pre-trading anal-
ysis, risk management and managers’ compensation, among others. To avoid
any contemporaneous effect between return and fees, which could bias the es-
timation, I use the lagged return. In fact, on one hand, the return time series
displays positive autocorrelation, making lagged return a good independent
variable. On the other hand, this ensures there is no reverse causality as fees
in quarter t could not have affected the fund’s performance in the previous
quarter.
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In summary, fund marginal cost is modelled as follows:

MCi,t = f(Ai,t, Agei,t, Ret
Q
i,t−1) (3.3)

where Ai,t denotes the assets under management and RetQi,t−1 the quarterly
return of fund i at time t− 1.

3.5.2 Demand function

For the purpose of this paper, there is no need to explicitly model the demand
of funds (qi,t) from households. However, some considerations are still neces-
sary. The first choice that investors make is which sector to invest their money
into. Hence, it is reasonable to model the inverse demand function as function
of the sector size, denoted by ASi,t. In addition, demand depends heavily on
past performance, usually known as performance based arbitrage8. According
to this hypothesis, outside investors do not understand the trading strategies
employed by fund managers and provide additional money following good per-
formance and withdraw funds following past losses. Finally, demand depends
on fund’s reputation and experience, which are unobservable. A good proxy
for them is age, under the assumption that long lasting funds have a good
record of past return, hence a good reputation, and clearly more experience.
In summary, when deciding which sector to invest in, outside investors take
into account the size of the sector as well as the performance and the age of
the fund. The (inverse) demand function of fund i at time t can be written as:

pi,t = ΦS(ASi,t, µi,t, Agei,t)

where ASi,t is total net assets of mutual funds in sector S and µi,t is the average
annual return over the last three years.

3.5.3 Utility maximization

In the previous model, mutual funds choose their fees to maximise their profit.
In this model, they still maximise their profit but, using the inverse demand

8See Shleifer & Vishny (1997)
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function, the choice variable is now A rather p. That is:

max
Ai,t

[ΦS(ASi,t, µi,t, Agei,t)Ai,t − C(·)]

Taking first order conditions:

∂ΦS

∂ASi

∂ASi
∂Ai

Ai + ΦS(·)− ∂C(·)
∂Ai

= 0

where time subscripts have been removed to make the notation easier.
Rearranging term and using pi = ΦS(·):

pi

(
1 +

(
∂ΦS

∂ASi

AS

pi

)(
∂ASi
∂Ai

Ai
As

))
−MC(·) = 0 (3.4)

Note that (∂ΦS/∂ASi )(AS/pi) is the negative of the inverse elasticity of de-
mand. Let’s define:

− 1

ηSi
=
∂ΦS

∂ASi

AS

pi

Similarly, (∂ASi /∂Ai)(Ai/As) is the elasticity of sector S total fund with respect
to the total assets of fund i. Let’s define:

δSi =
∂ASi
∂Ai

Ai
As

Substituting the last two equations into Equation (3.4), the first order condi-
tion can be rewritten as:

pi

(
1− δSi

ηSi

)
= MC(·) or pi = MC(·)

(
1− δSi

ηSi

)−1

(3.5)

The above equation decomposes the optimal fees into two components, namely
the marginal cost and the mark-up. In case of perfect competition, an infinites-
imal increase in fees of fund i (pi) causes investors to withdraw their money
and invest into cheaper funds. In other words, the elasticity of demand is
infinite (ηSi →∞). Equation (3.5) becomes pi = MC(·). Fees equal marginal
cost, and there is no room for mark-up. Similarly, in case of perfect competi-
tion within a sector, investors would easily transfer money across competitors
without changing the total asset of the sector as a whole. Hence, ∂ASi /∂Ai = 0

and δSi = 0. Again, fees equal marginal cost and investors do not pay for any
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mark-up. In all the other cases, both the demand elasticity (ηSi ) and the sector
elasticity (δSi ) are positive and fees exceed marginal cost. Furthermore, it is
likely that the competition across mutual funds within each sector changes
over time. For example, during the run-up of a bubble, more funds may want
to reap the benefit of a rapidly growing market, increasing the competition.
However, when the price is close to its peak and riding the bubble has become
increasingly risky, some funds may exit the market, reducing the competition.
A few months after the collapse (usually between 3 to 6 months), when prices
have dropped below their fundamental value, competition may restore as new
profitable investment opportunities arise.
To test for the existence of a mark-up, an explicit expression of the term
(1 − δSi /η

S
i )−1 is needed. Economic literature agrees on using the Herfindal

index as a measure of competition. It is defined as the sum of squared market
shares within an industry. When market shares are calculated as fractions, it
ranges between 1/N and 1, where 1/N represents a perfectly competitive mar-
ket while 1 indicates a monopoly. For the mutual fund industry, the market
share is measured using the total net assets (A); hence the Herfindal index for
sector S at time t is defined as:

ht(S) =
∑
i∈S

s2
i =

∑
i∈S

 Ai∑
j∈S

Aj


2

(3.6)

One limitation of this indicator is that it depends on the number of firms
within each sector. Consider for example two sectors, A and B, with equally
distributed market share. In A operates NA funds, while in B operates NB

funds. The market shares in the two sectors are 1/NA and 1/NB respectively
and, using Equation (3.6), h(A) = 1/NA and h(B) = 1/NB. Even if in both
sectors market shares are equally distributed, the Herfindal indexes are differ-
ent. In other words, the Herfindal index is affected by the number of funds.
However, Sutton (1991) shows that, in many oligopolistic markets, there is no
relation between the number of participants and the mark-up. Hence, a nor-
malization of the Herfindal index may be needed for an accurate estimation.
The normalization is as follows:

hNt (S) =
ht(S)

hCt (S)
− 1
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where hCt (S) = 1/NS is the Herfindal index under equally distributed market
shares. Going back to the example above, h(A) = 1/NA and hC(A) = 1/NA,
hence hN(A) = 0. Similarly, h(B) = 1/NB and hC(B) = 1/NB, hence
hN(B) = 0. The normalized Herfindal index for sector S is bounded between
0 and NS − 1 and decreases with competition. Although they have a different
interpretations, both the Herfindal index and the normalized Herfindal index
are able to capture the degree of competitiveness which explains the mark-up
embedded in the mutual fund fees. Hence, I model the mark-up as function of
both, as in the equation below:(

1− δSi
ηSi

)−1

= 1 + θ1ht(S) + θ2h
N
t (S) (3.7)

As discussed above, note that when h(S) → 0 and hN(S) = 0 then (1 −
δSi /η

S
i )−1 → 1, hence there is no mark-up. As the market becomes less and

less competitive, h(S) and hN(S) increase and the mark-up becomes positive.
Substituting Equation (3.7) into Equation (3.5), we obtain:

pi = MCi(·)(1 + θ1ht(S) + θ2h
N
t (S)) (3.8)

3.5.4 Estimation

To estimate the model, we need an explicit formula for the marginal cost
described in Equation (3.3). For simplicity, let’s assume that the marginal
cost is linear in the variable described above; hence:

MCi,t = γ1Ai,t + γ2Agei,t + γ3Ret
Q
i,t−1

Substituting into Equation (3.8), it follows that fees can be expressed as:

pi = (γ1Ai,t + γ2Agei,t + γ3Ret
Q
i,t)(1 + θ1ht(S) + θ2h

N
t (S)) (3.9)

Compared to the model in section 3.4, this formulation allows to estimate
the mark-up as function on the Herfindal indexes and the parameters ĥ(S)

and ĥN(S). However, it is still subject to the endogeneity problem caused
by the presence of asset under management among the explanatory variables.
Similarly to the previous section, this issue can be solved using an instrumental
variable. I claim that the average assets under management of competitor
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funds (A−i,t) is a good instrument. For fund i operating in sector S, I define
A−i,t as follows:

A−i,t =
1

Ns − 1

∑
j 6=i

Aj,t (3.10)

The variable A−i,t satisfies both the requirements of a good instrumental vari-
able. In fact, it correlates with Ai,t as both fund i and the competitors operate
in the same sector at the same time and must have similar holdings. An in-
crease in the market value of a sector positively affects all the funds which
invest in it, including fund i. To address the exclusion restriction, I refer to
Hortaçsu & Syverson (2004) which finds that significant variation in asset un-
der management across similar funds cannot be explained by difference in fees.
Hence, assets under management of competitors have an effect on fees of fund
i only through i’s assets under management.
As the model is non-linear, it is estimated using the generalized method of
moments (GMM). Let X be the set of explanatory variables in Equation (3.9)
and define ε as the unexplained component of fees as follows:

εi,t = pi,t −MC(Xi,t)(1 + θ1ht(S) + θ2h
N
t (S))

Let Z be the set of instruments, which includes Agei,t, RetQi,t−1, ht(S) and
hNt (S). In addition, I include A−i,t as instrument for total net assets as well
as A2

−i,t
9. The GMM minimizes the following quadratic function:

G(γ, θ;Z)′WG(γ, θ;Z)

where γ and θ are the parameter vectors and W is the weighting matrix (no
restrictions are imposed on W ). The matrix G contains the sample moment
conditions E[Z ′ε] = 0, as, by the exclusion restriction, all variables in Z are
now independent to ε.
The model is estimated both using all available information and after restrict-
ing the sample to bubble episodes only. Results are reported in Table C8.
Consistently with the literature, there is a negative correlation (γ1 < 0) be-
tween fees and funds’ total net assets. In fact, the presence of economies of
scales reduces the marginal cost as the fund’s size increases. The coefficient
γ2 shows that “older” funds charge higher fees; given that age is a proxy for

9In all the estimates that follow, the inclusion of an additional instrument does not violate
the J-test for over-identifying restrictions.
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reputation and expertise, it is reasonable that experienced funds are rewarded
more. The coefficient γ3 supports the performance based arbitrage assumption:
funds with higher past return attracts more investors, hence they tend to be
more expensive. Finally, θ1 shows that fees increase with the Herfindal index
(hence decrease with competition), with a minor correction in highly popu-
lated sectors as represented by the normalized Herfindal index (θ2). Similar
results are obtained during bubble episodes, except for the negative coefficient
γ3, which requires further analysis. Surely, during financial bubbles all funds
experience particularly large returns, which makes the return-fee relation dif-
ficult to interpret.
The main advantage of this model is that it allows to estimate the mark-up
that mutual funds charge, expressed as a percentage of the fees. Let’s define
the mark-up as:

Mark-up(%) =
Fees−Marginal Cost

Fees

Substituting Equation (3.8) yields:

Mark-up(%) = 1− 1

1 + θ1ht(S) + θ2hNt (S)

Substituting the estimate θ̂1 and θ̂2 and averaging over time, I can compute
the average mark-up. Across the whole sample, 88.39% of fees is used to
cover marginal costs, while the remaining 11.61% represents the fund’s mark-
up. These percentages change dramatically during financial bubbles, when the
mark-up almost doubles to 21.5% of fees.

3.6 Conclusion

Despite the persistence of fees over time, this paper documents a statistically
significant increase of mutual fund fees during financial bubbles. A model on
the relation between mutual funds and outside investors demonstrates that
such an increase can be explained by a lower sensitivity to fees of households.
Furthermore, a second theoretical model shows that higher fees are also asso-
ciated to a larger percent mark-up that mutual funds charge on top of their
marginal cost.
In light of the recent development of several behavioural models that reconcile
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the formation of financial bubbles with the extrapolative behaviour of house-
holds, a deeper analysis of fees could shed some light on the relation between
mutual funds and outside investors. Specifically, Barberis et al. (2018) present
a model where the interaction between fundamental traders and extrapola-
tors could generate a price pattern that resembles those of financial bubbles.
Showing that the increase in fees is larger than what the change in sensitivity
would explain, could demonstrate some rent extraction at the expenses of un-
sophisticated investors. This would also result in an enhanced profitability of
funds during financial bubbles. Although the results in this paper point in this
direction, there is no evidence of any wealth transfer from naive households to
smart fund managers. Similarly, the increase in mark-up does not necessarily
mean that mutual funds make abnormal profit, after risk is factored in. A
deeper analysis of these of these topics is left for future research.
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A. Appendix to Stock Volatility on
Option Expiration Dates

Table A1: Correlation among Volatility Measures

This Table reports the pairwise correlation between the four volatility measures. For each
pair, correlations are calculated using only those days in which both measures are available.
As all four measures are proxies for the second central moment of the return distribution,
they are all positively correlated with each other.

Squared return GARCH(1,1) OIW var VW var

Squared return 1 0.160 0.169 0.176
GARCH(1,1) 0.160 1 0.385 0.415
OIW var 0.169 0.385 1 0.804
VW var 0.176 0.415 0.804 1

Table A2: Regression of Volatility on Option Expiration Dates

This Table reports the outcome of the regression in Equation (1.2). Only the two coefficients
of interest are reported. Each regression includes a stock fixed effect and errors are clustered
at the stock level.

Dependent variable:

Log(σ2)

Squared return GARCH(1,1) VW-IV OIW-IV

(1) (2) (3) (4)

D(Friday) −0.007∗∗∗ 0.009∗∗∗ −0.042∗∗∗ −0.032∗∗∗

(0.0004) (0.001) (0.001) (0.001)
D(expiration date) −0.002∗∗∗ −0.008∗∗∗ 0.032∗∗∗ 0.035∗∗∗

(0.001) (0.002) (0.002) (0.001)

Stock FE Y Y Y Y
Observations 2,128,988 1,545,786 2,128,988 2,128,988
R2 0.012 0.059 0.079 0.089
Adjusted R2 0.012 0.058 0.079 0.089

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure A1: Volatility as a Function of Moneyness

This figure plots the six-order polynomial of the regression of stock volatility on option
moneyness, as in Equation (1.2). Moneyness is computed as (S−K)/K. For each volatility
measure, call and put moneyness are compared. The former is plotted in blue, while the
latter is in red.
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Table A3: Spillover Effect

This Table reports the outcome of the regression in Equation (1.2) where the dummy for
expiration date has been replaced with two dummies: Dexpiring_options is 1 for those stocks
with at least one option expiring on a given expiration date, and Dno_expiring_options for
those stocks with no expiring options on a given expiration date. The table shows a sig-
nificant positive spillover effect to those stocks with no option expiring. Each regression
includes stock fixed effects and clusters the errors at the stock level.

Dependent variable:

Log(σ2)

Squared return GARCH(1,1) VW-IV OIW-IV

(1) (2) (3) (4)

D(Friday) −0.007∗∗∗ 0.009∗∗∗ −0.042∗∗∗ −0.032∗∗∗

(0.0004) (0.001) (0.001) (0.001)
D(expiring options) −0.002∗∗∗ −0.009∗∗∗ 0.005 0.013∗∗∗

(0.001) (0.002) (0.004) (0.004)
D(no expiring options) −0.001 0.037∗ 0.214∗∗∗ 0.183∗∗∗

(0.002) (0.020) (0.022) (0.022)

Stock FE Y Y Y Y
Observations 2,128,988 1,545,786 2,128,988 2,128,988
R2 0.012 0.059 0.079 0.089
Adjusted R2 0.012 0.058 0.079 0.089

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A4: Regression of Volatility on Open-Interest-weighted Delta Hedging

This Table reports the outcome of the regression in Equation (1.2), to which a measure of
investors’ delta hedging is added. Delta hedging is computed as ∆Fer(T−t), where F is
the most liquidity future on the S&P500. Delta hedging is also interacted with the dummy
for option expiration. A stock fixed effect is also included in the regression, and errors are
clustered at the stock level.

Dependent variable:

Log(σ2)

Squared return GARCH(1,1) VW-IV OIW-IV

(1) (2) (3) (4)

D(expiring options) −0.002 0.021 0.049∗∗∗ 0.058∗∗∗

(0.005) (0.020) (0.016) (0.016)
D(no expiring options) 0.001 −0.012 0.112∗∗∗ 0.138∗∗∗

(0.005) (0.037) (0.026) (0.026)
Delta Hedging 0.020∗∗∗ 0.193∗∗∗ 0.340∗∗∗ 0.355∗∗∗

(0.001) (0.003) (0.002) (0.002)
D(expiring options) × 0.003 −0.016 −0.022∗∗ −0.018∗

Delta Hedging (0.003) (0.013) (0.011) (0.010)

Stock FE Y Y Y Y
Observations 891,946 798,331 891,946 891,946
R2 0.021 0.084 0.114 0.126
Adjusted R2 0.021 0.083 0.113 0.126

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A5: Trading Strategy

This Table reports some summary statistics of the trading strategy discussed in section 1.5.
Strategy 1 is a conservative strategy, where investors are more concerned about risk and
choose options based on their liquidity. Strategy 2 is a more aggressive strategy, where
investors only aim at maximizing the option premia. The column “TTE” indicates how
many days before expiration the strategy is implemented. For each strategy, the expected
return, the standard deviation, the annualized Sharpe Ratio and the annualized Information
Ratio are reported. Panel A uses the whole sample of stocks, while in panel B we restrict
the sample to stocks in the S&P500 only.

Panel A: All stocks

Strategy 1 Strategy 2

TTE Ex ret Std SR IR Ex ret Std SR IR

1 0.53 0.85 2.16 2.15 0.66 0.82 2.77 2.76
2 0.24 0.71 1.17 0.83 0.40 0.70 1.41 1.41
3 0.03 0.61 0.10 0.09 0.21 0.60 0.70 0.70
4 −0.06 0.59 −0.17 −0.17 0.12 0.54 0.37 0.36

Panel B: Options on Stocks in the S&P 500

Strategy 1 Strategy 2

TTE Ex ret Std SR IR Ex ret Std SR IR

1 0.63 1.09 1.99 1.98 0.74 1.08 2.39 2.38
2 0.32 0.94 0.84 0.83 0.49 0.93 1.30 1.30
3 0.09 0.65 0.27 0.26 0.30 0.63 0.96 0.96
4 −0.004 0.64 −0.01 −0.01 0.21 0.60 0.60 0.59
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Table A6: Trading Strategy - Robustness Checks

This Table reports robustness checks of the trading strategy discussed in section 1.5. Strat-
egy 1 is a conservative strategy, where investors are more concerned about risk and choose
options based on their liquidity. Strategy 2 is a more aggressive strategy, where investors
only aim at maximizing the option premia. The column “TTE” indicates how many days
before expiration the strategy is implemented. For each strategy, the expected return, the
standard deviation, the annualized Sharpe Ratio and the annualized Information Ratio are
reported. In panel A, expiration dates are moved to a random day over a 4-week window
around the real expiration date. In the so-called placebo expiration dates, Strategy 1 turns
out to be unprofitable, while Strategy 2 generates a Sharpe Ratio very close to 0 even be-
fore transaction costs. Panel B and C use the whole sample of stock and the stocks in the
S&P500 only, respectively, but restricts the time period considered to the second half of our
sample (from 2001 to 2006). In fact, the derivative market increased significantly in size,
hence liquidity, in the early 2000s. Additionally, in the first half of the sample (from 1996
to 2000) financial markets were experiencing the Tech bubble, which may affect the results
reported in Table A5.

Panel A: Placebo expiration dates

Strategy 1 Strategy 2

TTE Ex ret Std SR IR Ex ret Std SR IR

1 −0.04 0.74 −0.18 −0.18 0.07 0.69 0.33 0.33
2 −0.07 0.65 −0.24 −0.25 0.05 0.65 0.18 0.18
3 −0.08 0.66 −0.24 −0.24 0.02 0.65 0.07 0.06
4 −0.12 2.92 −0.07 −0.07 −0.02 2.93 −0.01 −0.01

Panel B: All Stocks - second half

Strategy 1 Strategy 2

TTE Ex ret Std SR IR Ex ret Std SR IR

1 0.56 0.76 2.52 2.51 0.67 0.75 3.09 3.08
2 0.27 0.67 0.99 0.98 0.43 0.68 1.55 1.54
3 0.06 0.53 0.24 0.23 0.23 0.54 0.86 0.85
4 −0.02 0.54 −0.06 −0.07 0.14 0.53 0.45 0.45

Panel C: Options on S&P 500 only - second half

Strategy 1 Strategy 2

TTE Ex ret Std SR IR Ex ret Std SR IR

1 0.64 0.95 2.33 2.32 0.74 0.94 2.75 2.74
2 0.35 0.92 0.92 0.92 0.53 0.94 1.37 1.36
3 0.12 0.57 0.44 0.43 0.33 0.57 1.16 1.16
4 0.03 0.61 0.09 0.09 0.23 0.58 0.69 0.68
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Table A7: Robustness Check: controlling for VIX

This table reports the outcome of regression in Equation (1.2), with the inclusion of a
control for the market volatility, measured by the VIX index. Specifically, three dummies
are added to the regression: one for days of low VIX (below 5th percentile), one for days with
medium VIX (between 45th and 55th percentiles) and one for days with high VIX (above
95th percentile). Low (High) VIX dummy coefficients are negative (positive), showing that
all four volatility measures are significantly lower (higher) than the average on days of low
(high) VIX. Medium VIX coefficients are positive but very low in magnitude. The negative
effect on realized volatility and positive effect on implied volatility on option expiration date
persist. Each regression includes a stock fixed effect, and errors are clustered at the stock
level.

Dependent variable:

Log(σ2)

Squared return GARCH(1,1) VW-IV OIW-IV

(1) (2) (3) (4)

D(expiring options) −0.002∗∗∗ −0.003∗ 0.008∗∗∗ 0.006∗∗∗

(0.001) (0.002) (0.004) (0.004)
D(no exp. options) −0.002 0.036∗ 0.207∗∗∗ 0.175∗∗∗

(0.002) (0.019) (0.022) (0.022)
Low VIX −0.038∗∗∗ −0.508∗∗∗ −0.343∗∗∗ −0.370∗∗∗

(0.001) (0.013) (0.013) (0.013)
Medium VIX −0.001 0.022∗∗∗ 0.018∗∗∗ 0.023∗∗∗

(0.001) (0.005) (0.005) (0.004)
High VIX 0.097∗∗∗ 0.601∗∗∗ 0.443∗∗∗ 0.415∗∗∗

(0.002) (0.011) (0.010) (0.010)

Stock FE Y Y Y Y
Observations 2,217,693 1,544,970 2,217,693 2,217,693
R2 0.027 0.122 0.112 0.123
Adjusted R2 0.027 0.122 0.111 0.123

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A8: Robustness Check: controlling for Net Buying Pressure

This table reports the outcome of regression in Equation (1.2), with the inclusion of a control
for the net buying pressure. Net buying pressure is defined as the difference between buyer-
motivated and seller-motivated trades. Buyer-motivated trades are those that occur at a
price above the daily most frequent bid-ask midpoint. Seller-motivated trades are those that
occur at a price below the daily most frequent bid-ask midpoint. As in Bollen & Whaley
(2004), net buying pressure positively correlates with implied volatility. Each regression
includes a stock fixed effect, and errors are clustered at the stock level.

Dependent variable:

Log(σ2)

Squared return GARCH(1,1) VW-IV OIW-IV

(1) (2) (3) (4)

D(expiring options) −0.002 −0.005∗∗ 0.010∗ 0.015
(0.001) (0.002) (0.005) (0.005)

D(no exp. options) −0.002 0.034 0.191∗∗∗ 0.172∗∗∗

(0.002) (0.023) (0.034) (0.033)
Net buying pressure −0.002∗∗∗ 0.001 0.002∗∗∗ 0.002∗∗

(0.0004) (0.001) (0.001) (0.001)

Stock FE Y Y Y Y
Observations 1,111,175 857,219 1,111,175 1,111,175
R2 0.014 0.059 0.088 0.100
Adjusted R2 0.013 0.059 0.087 0.099

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure A2: Implied Volatility around Expiration Dates

These figures show how each implied volatility measure evolves as we approach the option
expiration date, which is set at time 0. For each plot, confidence bands at 0.05% and
99.5% are included, obtained by running a Monte Carlo simulation with 1,000 draws from a
Normal-Inverse-Wishart distribution. The y-axis reports the logarithm of implied volatility,
hence the negative range.
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Figure A3: Boxplot of Distance of Stock Price from Strike around Expiration

Boxplots of percentage of stocks closing closer than $0.5, $0.2 and $0.1 to the closest strike
price over a 20-day window around expiration. On expiration dates, the first quartile is
above the median value of any other day. This suggests that there is evidence of pinning in
our sample.
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Figure A4: Payoff Structure of a Straddle

A straddle is a combination of options that consists in shorting both a call and a put on
a given underlying asset. The red dashed line is the payoff of a short call, while the blue
dashed line is the payoff of a short put. Both of them are shifted upward by the premia
received from selling the options. The black solid line is the net payoff from the straddle.
If the realized volatility turns out to be smaller than the implied volatility (as we expect
on option expiration dates), the stock price at expiration will be in a neighbourhood of the
strike price S0, and the net payoff will be positive (green area). If instead realized volatility
exceeds implied volatility, this strategy generates a loss. If the stock price drops, the short
put is exercised, while if the stock price increases, the short call is exercised. In both cases,
the option writer suffers a loss (red area).

short putshort call
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Figure A5: Volatility Smile of Call Options (controlling for VIX)

For each volatility measure, this Figure plots the volatility of call options as a function of
moneyness. The blue line shows a benchmark case, derived from the six-order polynomial
of regression in Equation (1.2), whose output is shown in Table A2. The red line plots the
same six-order polynomial from a regression which controls for the VIX index. Specifically,
three dummies are added to the regression: one for days of low VIX (below 5th percentile),
medium VIX (between 45th and 55th percentiles) and high VIX (above 95th percentile).
No significant difference can be observed, especially for at-the-money options.
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Figure A6: Volatility Smile of Put Options (controlling for VIX)

For each volatility measure, this Figure plots the volatility of put options as a function of
moneyness. The blue line shows a benchmark case, derived from the six-order polynomial
of regression in Equation (1.2), whose output is shown in Table A2. The red line plots the
same six-order polynomial from a regression which controls for the VIX index. Specifically,
three dummies are added in the regression: one for days of low VIX (below 5th percentile),
medium VIX (between 45th and 55th percentiles) and high VIX (above 95th percentile).
No significant difference can be observed, especially for at-the-money options.



B. Appendix to Mutual Funds’
Behaviour during Financial Bubbles

Figure B1: Timing of a Bubble Episode

Time 0 is defined as the first month in which a sector experiences a 100% or more raw and
excess return. A bubble episode runs from t = −24 to t+ 30. The peak is located after time
0, on average around t = 8. The period from t = −24 to Peak is called Run-up while the
period from Peak to t = 30 is called After Run-up

84
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Table B1: Bubble Episodes

This Table displays the summary statistics of the main bubble episodes for the period 1980-
2018. Panel A reports those episodes which eventually crash. For each of them, column 2
contains the first quarter after a 100% raw and excess return, and is the time 0 for that
episode. Column 3 shows the number of firms in each sector. Columns 4 and 5 display the
2-year raw and excess return (not annualized) while column 6 contains the smallest return
(largest loss) after the peak. Finally, columns 7 and 8 report the number of months from
time 0 to when the peak is reached and the crash occurs, respectively. Panel B reports the
same feature for “fundamentally driven” run-ups, i.e. those run-ups which are not followed
by a crash. In these cases, no peak can be identified, nor a crash is observed.

Sector Time Nr. firms 2yr Ret 2yr Ex Ret Crash Ret Peak Crash

Panel A - Episodes with Crash

Chips 1999/12 347 2.06 1.16 0.42 6 9
Hardware 1999/03 171 2.28 1.01 0.26 6 9
Software 1999/03 640 2.38 1.20 0.56 12 15
Finance 2000/03 150 1.77 1.00 0.55 3 6
Smoke 2001/12 3 1.14 1.45 0.57 3 6
Other 2001/03 33 1.03 1.10 0.53 3 6
Real Estate 2006/03 27 1.44 1.05 0.56 12 15
Mines 2006/06 16 1.73 1.20 0.40 24 27
Steel 2007/06 39 1.86 1.16 0.30 9 12
Coal 2008/06 13 1.40 1.28 0.21 0 3

Mean 144 1.71 1.16 0.44 7.5 10.5

Panel B - Episodes with No Crash

Gold 1987/12 38 1.40 1.04
Mines 1988/03 21 1.30 1.09
Medical Equip. 1991/09 195 1.43 1.11
Toys 1992/06 49 1.38 1.00
Chips 1993/09 309 1.59 1.01
Entertainment 1993/09 112 1.74 1.12
Telecommunication 1999/09 201 1.79 1.02
Healthcare 2000/12 92 1.48 1.07
Laboratory Equip. 2000/03 119 2.14 1.25
Real Estate 2001/12 36 1.12 1.39
Construction 2001/03 63 1.09 1.17
Electrical Equip. 2001/03 82 1.36 1.17
Wholesales 2001/06 189 1.03 1.04
Clothing 2002/03 68 1.10 1.56
Personal Services 2002/03 59 1.13 1.73
Automotive 2010/09 53 1.17 1.28
Entertainment 2010/09 47 1.13 1.33
Real Estate 2010/09 25 1.19 1.38
Entertainment 2018/06 49 1.79 1.02

Mean 72 1.39 1.25
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Figure B2: Evolution of Excess Holdings during a Bubble Episode

This Figure plots the δ coefficients from Equation (2.3). The solid line plots the point
estimates, while the dashed lines represent the 95% confidence interval. All bubble episodes
are aligned on the peak, which is indicated by the red vertical dashed line. Starting from 5
quarters before the peak, the δ coefficients are positive and significant, showing a gradual
over-investment of funds. Mutual funds withdraw money at the peak, which is the first time
that δ becomes negative and significant. From 6 months after the peak, they start investing
again.
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Figure B3: Evolution of Excess Holdings during a Bubble Episode

This Figure plots the δ coefficients from Equation (2.3). In the top panel, the sample is
restricted to growth funds only, whose holdings are compared to an index of growth stocks.
Similarly, in the bottom panel, the sample is restricted to value funds, whose holdings are
compared to an index of value stocks. The solid lines plot the point estimates, while the
dashed lines represent the 95% confidence intervals. All bubble episodes are aligned on the
peak, which is indicated by the red vertical dashed lines. The two plots show a very different
behaviour between growth and value funds, with growth funds proactively exploit the price
run-up.
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Figure B4: Evolution of Excess Holdings during a Bubble Episode.

This Figure plots the δ coefficients of the regression displayed in Equation (2.9). The solid
line plots the point estimates, while the dashed lines represent the 95% confidence interval.
All bubble episodes are aligned on the quarter the run-up is first identified, which corresponds
to time 0. The average peak (for episodes that crash) is indicated by the red vertical dashed
line. No statistically different behaviour is observed during the run-up up to one quarter
before the peak.
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Table B2: Excess Holdings

This Table displays the outcome of the regression of excess holdings on the dummy Run-up.
In column (1), excess holdings are computed with respect to the whole universe of stocks in
CRSP. In column (2) the sample is restricted to stocks whose price is larger than 5 dollars.
In columns (3) and (4) the sample is restricted to growth and value funds and their excess
holdings are then constructed in comparison to an index made of growth and value stocks
only, respectively. All regressions include time, sector and fund fixed effects. Errors are
clustered at the fund level.

Dependent variable:

Excess Holdings
CRSP Price Growth Value

(1) (2) (3) (4)

Run-up 0.117∗∗∗ 0.106∗∗∗ 0.379∗∗∗ 0.417∗∗∗

(0.034) (0.034) (0.052) (0.076)

Time FE Y Y Y Y
Fund FE Y Y Y Y
Sector FE Y Y Y Y
R2 0.308 0.308 0.320 0.458
Adjusted R2 0.307 0.307 0.319 0.457

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B3: Stock Picking Ability (holdings)

This Table shows the output of the regression displayed in Equation (2.4). In the first two
columns the whole sample is used, while in the last two columns the sample is restricted to
active funds only. For both samples, two regressions are run: the first uses the 3-month α̂
as dependent variable, while the second uses the 6-month α̂. All regressions include time,
sector and fund fixed effects. Errors are clustered at the fund level.

Dependent variable:

All Funds Active Funds
3m 6m 3m 6m

(1) (2) (3) (4)

Excess Holdings 0.003∗ 0.002 0.002∗ 0.005
(0.001) (0.004) (0.001) (0.003)

Run-up × Excess Holdings 0.184∗∗∗ 0.339∗∗∗ 0.190∗∗∗ 0.372∗∗∗

(0.015) (0.029) (0.015) (0.030)

Time FE Y Y Y Y
Sector FE Y Y Y Y
Fund FE Y Y Y Y
Observations 2,752,690 2,752,690 2,358,582 2,358,582
R2 0.197 0.076 0.202 0.081

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B4: Stock Picking Ability (trades)

This Table shows the output of the regression displayed in Equation (2.5). In the first two
columns the whole sample is used, while in the last two columns the sample is restricted to
active funds only. For both samples, two regressions are run: the first uses the 3-month α̂
as dependent variable, while the second uses the 6-month α̂. All regressions include time,
sector and fund fixed effects. Errors are clustered at the fund level.

Dependent variable:

All Funds Active Funds
3m 6m 3m 6m

(1) (2) (3) (4)

Trades −0.006∗∗∗ −0.010∗∗∗ −0.006∗∗∗ −0.007∗

(0.002) (0.003) (0.002) (0.004)
Run-up × Trades 0.040∗∗∗ 0.041∗∗∗ 0.033∗∗∗ 0.028∗

(0.007) (0.013) (0.009) (0.016)

Time FE Y Y Y Y
Sector FE Y Y Y Y
Fund FE Y Y Y Y
Observations 564,097 564,097 437,305 437,305
R2 0.174 0.073 0.185 0.074

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B5: Mutual Fund Excess Returns

This Table displays the regressions of mutual fund excess return on the Fama French factors
and the dummy Run-up. Column (1) shows a CAPM regression, column (2) also includes
the SMB and HML factors from Fama & French (1993), while columns (3) and (4) add
RMW (Robust Minus Weak) and CMA (Conservative Minus Aggressive) factors from Fama
& French (2015). All regressions include fund fixed effects. The coefficients on the dummy
Run-up are all positive and statistically significant, showing that mutual funds earn abnormal
profits during financial bubbles.

Dependent variable:

Mutual Fund Excess Returns

(1) (2) (3) (4)

Run-up 0.013∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 0.015∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Excess Market Return 1.088∗∗∗ 1.023∗∗∗ 1.024∗∗∗ 1.034∗∗∗

(0.001) (0.001) (0.001) (0.001)
SMB 0.324∗∗∗ 0.325∗∗∗ 0.320∗∗∗

(0.002) (0.002) (0.002)
HML −0.052∗∗∗ −0.054∗∗∗ −0.116∗∗∗

(0.002) (0.002) (0.002)
RMW 0.006∗∗ 0.001

(0.002) (0.002)
CMA 0.132∗∗∗

(0.004)

Fund FE Y Y Y Y
R2 0.533 0.543 0.543 0.544
Adjusted R2 0.520 0.530 0.530 0.531

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B6: Excess Holdings (value-weighted)

This Table reports the outcome of the regression in Equation (2.7). Mutual funds are
aggregated on a value-weighted basis and excess holdings are regressed on the dummy Run-
up and some industry characteristics, namely size and past return. The regression includes
time and sector fixed effects.

Dependent variable:

Excess holdings

CRSP Growth Value

Run-up −0.568 −0.265 0.187
(1.208) (1.337) (1.733)

Time FE Y Y Y
Sector FE Y Y Y
R2 0.428 0.483 0.585
Adjusted R2 0.360 0.415 0.528

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B7: Contemporaneous Correlation between Excess Returns and Trades

This Table shows the output of the regression displayed in Equation (2.8). In the first two
columns the whole sample is used, while in the last two columns the sample is restricted
to active funds only. For both samples, two regressions are run: the first uses the 3-month
α̂ as dependent variable, while the second uses the 6-month α̂. The variable Trades and
the dependent variable α̂ are contemporaneous, i.e. they are calculated over the same time
period. All regressions include time, sector and fund fixed effects. Errors are clustered at
the fund level.

Dependent variable:

All Funds Active Funds
3m 6m 3m 6m

(1) (2) (3) (4)

Trades −0.0004 0.030∗∗∗ −0.001 0.040∗∗∗

(0.001) (0.007) (0.002) (0.009)
Run-up × Trades 0.003 −0.035∗∗ −0.006 −0.070∗∗∗

(0.008) (0.018) (0.010) (0.021)

Time FE Y Y Y Y
Sector FE Y Y Y Y
Fund FE Y Y Y Y
Observations 486,089 486,089 367,677 367,677
R2 0.173 0.074 0.188 0.077

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B8: Return Predictability of Mutual Fund Holdings

This Table reports the coefficient β, its standard error and the R-squared of regression in Equation (2.6). Each row displays a different holding
characteristic, namely the excess holdings on a value-weighted index of all the stocks in CRSP, the difference in holdings between growth and value
funds (GMV), acceleration and turnover. Acceleration is defined as the change in number of shares held over the last two quarters over the change in
the number of shares held in the last 4 quarters

(
Sharesi,t−Sharesi,t−2

Sharesi,t−Sharesi,t−4

)
. Turnover is the percentage change in shares held

(
∆sharesi,t
Sharesi,t−1

)
. Regressions are

run for three different time horizons, from 3 months, to 6 months, to 1 year. They all include sector and time fixed effects, which are not reported.

Dependent variable:

Excess Market Return
3 months 6 months 1 year

β s.e. R2 β s.e. R2 β s.e. R2

Excess Holdings 2.198 (0.662) 0.338 4.211 (1.113) 0.407 5.764 (1.529) 0.435
GMV 0.012 (0.004) 0.390 0.020 (0.009) 0.461 0.043 (0.015) 0.502
Acceleration 0.093 (0.044) 0.344 0.092 (0.064) 0.456 0.261 (0.071) 0.528
Turnover 0.014 (0.006) 0.324 0.014 (0.005) 0.383 0.028 (0.014) 0.420
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Table C1: Sector Classification

This Table describes how to link the CRSP sector classification to the Fama-French sector
classification. In fact, mutual funds are associated to a CRSP sector based on they style.
While stocks, whose returns are used to define bubbles, are associated to a Fama-French
sector based on their SIC codes. As CRSP classification is less granular, and to each CRSP
sector corresponds one or more Fama-French sectors. This mapping allows to identify which
funds have an investing style which focuses on a sector that experiences a financial bubble.

CRSP Fama-French

Commodity Agriculture, Rubber and Plastic Products

Consumer Goods Apparel, Beer & Liquor, Business Supplies,
Candy & Soda, Consumer Goods, Food Products,
Printing and Publishing, Recreation, Retail,
Tobacco Products, Wholesale

Consumer Services Business Services, Entertainment, Personal Services,
Restaurants, Hotels and Motels, Transportation

Financial Banking, Insurance, Trading

Gold Precious Metals

Healthcare Healthcare

Industrial Aircraft, Automobiles/Trucks, Chemicals, Defense,
Electrical Equipment, Laboratory Equipment,
Machinery, Medical Equipment, Pharmaceutical
Products, Shipbuilding and Railroad Equipment

Materials Building Materials, Construction, Construction
Materials, Fabricated Products, Shipping
Containers, Textiles

Natural Resources Coal, Non-Metallic and Industrial Metal Mining,
Petroleum and Natural Gas, Steel

Real Estate Real Estate

Technology Electronic Equipment, Hardware, Software

Telecommunication Communication

Utility Utility
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Table C2: Summary Statistics

For each type of fee, this Table reports some summary statistics, namely the minimum, the
maximum, the average, the quartiles and the number of non-missing values (in thousands).
Management fees may be negative due to waivers and reimbursements. Not all funds charge
load and rear fees, hence their minimum values are 0. 12b-1 fees are associated to marketing
costs and cannot exceed 1%. Expense ratio is calculated as the percentage of total investment
that shareholders pay for the fund’s operating expenses. All numbers, except the number of
observations, are in percent.

Min 1st Q Median Mean 3rd Q Max N (th)

Mgmt Fees −1.569 0.200 0.524 0.342 0.759 1.243 1, 149
Front Load 0 0 2.500 2.052 3 5.750 359
Rear Load 0 0 0.500 0.723 1 2.500 648
12b-1 Fees 0.025 0.250 0.500 0.557 1 1 707
Expense Ratio 0.080 0.670 1.100 1.153 1.580 2.500 1, 251

Table C3: Fees during Bubble Episodes

This Table reports the regression outcome of Equation (3.1). Each column corresponds to
a different regression in which only the dependent variable changes. Only the independent
variable of interest is shown. Run-up is a dummy that takes the value 1 if a sector a fund
operates in is experiencing a price run-up. Each regression also includes a year fixed effect
and clusters errors at the fund level.

Dependent variable:

Management Fees 12b-1 Front Load Rear Load Expense Ratio

(1) (2) (3) (4) (5)

Run-up −0.024∗ 0.012∗∗∗ 0.037∗∗∗ 0.060∗∗∗ 0.013∗∗∗
(0.014) (0.001) (0.007) (0.003) (0.002)

Year FE Y Y Y Y Y
Observations 1,127,056 641,698 312,920 564,923 1,126,814
R2 0.001 0.044 0.096 0.155 0.069
Adjusted R2 0.001 0.044 0.096 0.155 0.069

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C4: Fees during Bubble Episodes (controlling for competition)

This Table reports the regression outcome of Equation (3.1), with the addition of a control
variable for competition in the mutual fund industry. Each column corresponds to a different
regression in which only the dependent variable changes. Only the independent variable of
interest is shown. Run-up is a dummy that takes the value 1 if a sector a fund operates in
is experiencing a price run-up. MVO measures competition and is computed as the average
percent holding that each fund shares with any other fund. Each regression also includes a
year fixed effect and clusters errors at the fund level.

Dependent variable:

Management Fees 12b-1 Front Load Rear Load Expense Ratio

(1) (2) (3) (4) (5)

Run-up 0.054∗∗ 0.055∗∗∗ −0.126 0.042 0.097∗∗∗
(0.021) (0.020) (0.097) (0.047) (0.033)

MVO −0.070 −0.409∗∗∗ 1.133∗∗∗ −0.153 −0.717∗∗∗
(0.088) (0.068) (0.404) (0.167) (0.113)

Year × Sector FE Y Y Y Y Y
Observations 5,595 3,811 1,637 3,296 5,951
R2 0.086 0.184 0.348 0.229 0.308
Adjusted R2 0.053 0.142 0.277 0.185 0.284

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table C5: Regression of Market Share on Fees

This Table reports the regression outcome of Equation (3.2). The dependent variable is
the logarithm of market share. Only the independent variables of interest are included:
Expense ratio is the percentage of total investment that investors pay for the fund’s operating
expenses, while Bubble is a dummy that takes a value of 1 if the sector the fund operates in
is experiencing a financial bubble. The regression also includes fund and sector fixed effects
and clusters errors at the fund level.

Dependent variable:

Log(Market Share)

Expense Ratio −0.551∗∗∗
(0.135)

Expense Ratio × Bubble 0.359∗∗∗
(0.103)

Fund FE Y
Sector FE Y
R2 0.857
Adjusted R2 0.855

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C6: IV Regression of Change in Market Share

This Table shows the IV regression of Equation (3.5). The dependent variable is the loga-
rithm of market share. Due to simultaneity problem typical of any demand function esti-
mation, an instrument for the fees is needed. To instrument fees charged by a given fund,
the average fee charged by funds belonging to a different classification group is used. The
cross-sectional long-term downward trend of fees ensures that the instrumented variable
and the instrument are correlated. The exclusion restriction is satisfied as the instrument is
computed using funds which are not direct competitors. The first stage regression includes
sector and year fixed effect, but not a fund fixed effect to ensure that the fitted values are
sufficiently different from the instrumented values. Fund, year and sector fixed effects are
included in the second stage. Two IV estimation are reported: No Bubble excludes sectors
which are experiencing a financial bubble, while Bubble restricts the sample to those funds
that operate in a bubble sector.

Dependent variable:

Log(Mkt Share)
No Bubble Bubble

I Stage II Stage I Stage II Stage

Instrument 0.928∗∗∗ 1.249∗∗∗
(0.146) (0.333)

Expense Ratio −2.896∗∗∗ −0.233
(0.539) (0.397)

Fund FE N Y N Y
Sector FE Y Y Y Y
Year FE Y Y Y Y
R2 0.850 0.972 0.964 0.973
Adjusted R2 0.848 0.971 0.961 0.971

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C7: IV Regression of Market Share

This Table shows the IV regression of Equation (3.5). The dependent variable is the log-
arithm of change in market share. Due to simultaneity problem typical of any demand
function estimation, an instrument for the fees is needed. To instrument fees charged by a
given fund, the average fee charged by funds belonging to a different classification group is
used. The cross-sectional long-term downward trend of fees ensures that the instrumented
variable and the instrument are correlated. The exclusion restriction is satisfied as the
instrument is computed using funds which are not direct competitors. The first stage re-
gression includes sector and year fixed effect, but not a fund fixed effect to ensure that the
fitted values are sufficiently different from the instrumented values. Fund, year and sector
fixed effects are included in the second stage. Two IV estimation are reported: No Bubble
excludes sectors which are experiencing a financial bubble, while Bubble restricts the sample
to those funds that operate in a bubble sector.

Dependent variable:

Log(∆Mkt Share)
No Bubble Bubble

I Stage II Stage I Stage II Stage

Instrument 0.930∗∗∗ 1.250∗∗∗
(0.146) (0.336)

Expense Ratio −2.894∗∗∗ −0.579
(0.538) (1.008)

Fund FE N Y N Y
Sector FE Y Y Y Y
Year FE Y Y Y Y
R2 0.850 0.972 0.964 0.973
Adjusted R2 0.848 0.971 0.961 0.971

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C8: GMM Estimation

This Table reports the GMM estimation of Equation (3.9). The first three parameters, i.e.
γ1, γ2 and γ3, are used to model the marginal cost. The remaining two variables, i.e. θ1 and
θ2, measure the competition as a function of the Herfindal index and are used to estimate
the mark-up. Two GMM estimations are reported: All Data uses the whole sample, while
Bubble restricts the sample to those funds that operate in a sector that is experiencing a
financial bubble.

All Data Bubble

Coef Variable Estimate t-stat Estimate t-stat

γ1 Total Net Asset -0.638 -81.775 -0.265 -6.112
γ2 Age 0.797 112.018 0.510 11.563
γ3 Past return 0.342 13.776 -0.165 -2.551
θ1 Herfindal Index 0.813 29.026 0.067 0.359
θ2 Herfindal Index (norm’d) -0.001 -4.196 0.042 8.847
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