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Abstract

The aim of this thesis is to improve our understanding of how to assess and com-

municate uncertainty in areas of research deeply afflicted by it, the assessment

and communication of which are made more fraught still by the studies’ im-

mediate policy implications. The IPCC is my case study throughout the thesis,

which consists of three parts. In Part 1, I offer a thorough diagnosis of concep-

tual problems faced by the IPCC uncertainty framework. The main problem

I discuss is the persistent ambiguity surrounding the concepts of ‘confidence’

and ‘likelihood’; I argue that the lack of a conceptually valid interpretation of

these concepts compatible with the IPCC uncertainty guide’s recommendations

has worrying implications for both the IPCC authors’ treatment of uncertainties

and the interpretability of the information provided in the AR5. Finally, I show

that an understanding of the reasons behind the IPCC’s decision to include two

uncertainty scales can offer insights into the nature of this problem. In Part 2,

I review what philosophers have said about model-based robustness analysis.

I assess several arguments that have been offered for its epistemic import and

relate this discussion to the context of climate model ensembles. I also discuss

various measures of independence in the climate literature, and assess the ex-

tent to which these measures can help evaluate the epistemic import of model

robustness. In Part 3, I explore the notion of the ‘weight of evidence’ typically

associated with Keynes. I argue that the Bayesian (or anyone who believes the

role of probability in inductive inference is to quantify the degree of belief to

assign to a hypothesis given the evidence) is bound to struggle with this notion,

and draw some lessons from this fact. Finally, I critically assess some recent pro-

posals for a new IPCC uncertainty framework that significantly depart from the

current one.
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Introduction

The aim of this thesis is to improve our understanding of how to assess and com-

municate uncertainty in areas of research deeply afflicted by it, and where the

assessment and communication of that uncertainty are made fraughter still by

the studies’ immediate policy implications. The IPCC is my case study through-

out the thesis, which consists of three parts.

In the first part of my thesis, I offer a thorough diagnosis of some concep-

tual problems faced by the IPCC uncertainty framework. This I do because I

believe that any successful attempt to revise and improve this framework will

have to start from a clear understanding of the conceptual problems it currently

faces, their implications for the IPCC authors’ treatment of uncertainties, and

the quality of the information provided in the IPCC uncertainty report. Accord-

ingly, Part 1 sets out to contribute to this first step. It consists of the following

two chapters.

In Chapter 1, I discuss two important conceptual problems in the current

IPCC uncertainty framework: the puzzling bifurcation between evidence and

agreement in the characterization of ‘confidence’; and the lack of an interpre-

tation of the IPCC concepts of ‘confidence’ and ‘likelihood’ that is compatible

with the IPCC uncertainty guide’s recommendations (and thus with the result-

ing practice of the IPCC authors in their communication of uncertainty). I argue

that the ambiguity surrounding the concepts of ‘likelihood’ and ‘confidence’ has

very serious and worrying implications for both the practice of the IPCC authors

in their treatment of uncertainties and the quality of the information provided

in the IPCC uncertainty report.

In Chapter 2, I argue that examining the history of the IPCC uncertainty

framework, alongside the practice of the IPCC authors in their assessment of un-

certainty, can shed some light on the conceptual problems in the current IPCC
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uncertainty framework identified in Chapter 1. In particular, I argue that the

persistent ambiguity in the relationship between ‘confidence’ and ‘likelihood’

can partly be traced back to the reasons behind the emergence of two uncertainty

scales in the fourth assessment report. I show there were two distinct reasons

for the emergence of these two uncertainty scales, that these two reasons are in

clear tension with one another, and that the current AR5 Guide’s recommenda-

tions are an unsuccessful attempt to deal with this tension. In an attempt to gain

a better understanding of the IPCC concepts of ‘likelihood’ and ‘confidence’,

I also have a close look at some of the methods (i.e. “multi-model ensemble

methods”) that are currently used by the IPCC authors to assess uncertainty in

a finding. I conclude that these methods are not conceptually coherent methods

for producing probabilities (independently of whether they are interpreted as

objective or subjective probabilities) and hence for deciding what likelihood in-

terval to assign to a finding. This fact, I argue, can give us some further insights

into the nature of the reasons behind the emergence of two uncertainty scales in

the IPCC uncertainty framework.

In the second part of my thesis, I review and assess several arguments that

have been offered to defend the epistemic import of model robustness and relate

this discussion to the context of climate model ensembles and climate scientists’

current efforts to find an adequate measure of model independence. Part 2 con-

sists of the following three chapters.

In Chapter 3, I discuss Weisberg’s general characterization of robustness

analysis and the role that he envisions for it in the discovery of “robust the-

orems”. I argue that Weisberg’s notion of low-level confirmation is unable to

automatically confirm hypotheses that concern the actual world. Hence, I con-

clude that if low-level confirmation automatically confirms robust theorems, as

Weisberg suggests, then robust theorems do not have to be hypotheses that are

relevant to the explanation or prediction of real-world phenomena (as is usually

assumed in the literature) for them to qualify as robust theorems.

In Chapter 4, I turn to various arguments that have been offered to support

the idea that robustness analysis itself can confirm a robust theorem (which I
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now interpret as the hypothesis that a causal structure of the model has a sta-

ble capacity to manifest a particular result of the model). I critically assess an

argument put forward by Kuorikoski et al. (2010) for the epistemic import of

model-based robustness analysis, an argument which I believe to be a formal

expression of a widely held but ultimately misleading intuition: namely, the in-

tuition that a model’s conclusion is more likely to hold in the target system if

several models lead to that conclusion because it would be a remarkable coinci-

dence if that were not so. Kuorikoski et al. offer the best available defence of this

intuition and that is why I believe it is important to rigorously assess it. I argue

that, though Kuorikoski et al.’s argument relies on a weaker notion of proba-

bilistic independence than unconditional independence, it cannot be sound. By

relying on a different notion of independence (Fitelson’s (2001) account of con-

firmational independence), I offer a revised, prima-facie more plausible argu-

ment. However, I show that this revised argument also relies on assumptions

that are hardly ever plausible. Finally, I turn to Schupbach’s (2018) recent ac-

count of robustness analysis as explanatory reasoning. I show that, although

this account seems to fit well and in a straightforward manner with some em-

pirical cases of robustness analysis, when one tries to apply Schupbach’s account

to model-based robustness analysis the picture is rather more complicated than

Schupbach suggests, for its application relies on several non-trivial assumptions.

Despite this, I argue that those assumptions may be reasonable in cases where

the hypothesis we are interested in confirming through model-based RA is a

‘robust theorem’. Hence my conclusion here is modestly positive: Schupbach’s

account could indeed be adequate (from a Bayesian perspective) for justifying

why and determining when model-based RA should increase one’s confidence

in a ‘robust theorem’, and also for helping us understand the extent of that con-

firmation.

In Chapter 5, I review and critically assess some prominent arguments that

have been offered by various philosophers (Lloyd, 2015; Parker, 2011; Justus,

2012; Winsberg, 2018) that could in principle (if not necessarily in practice) mo-

tivate the epistemic import of model robustness in the context of climate model
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ensembles. I pay particular attention to Winsberg’s (2018) recent and much cele-

brated suggestion that Schupbach’s explanatory account of robustness analysis

can finally shed light on the significance of the robustness of climate model en-

sembles’ results. I argue that Schupbach’s account is inapplicable whenever the

models in an ensemble involve incompatible assumptions about a target sys-

tem and the hypothesis we are interested in confirming concerns that target sys-

tem. In light of this, I conclude that, despite Winsberg’s emphatic suggestion,

Schupbach’s account cannot shed any light on the epistemic import of model

robustness in climate science, because it is inapplicable. I then turn to consider

what climate scientists have said about the epistemic import of model robust-

ness. In particular, I focus on climate scientists’ perennial search for an adequate

measure of independence across climate models. I first review the various ways

climate scientists have sought to define and measure independence across mod-

els, then consider the challenges each of these approaches faces. Finally, I argue

that this arduous search is implicitly guided by an undefended and question-

able assumption: that the more dissimilar models are from other models in an

ensemble, the greater the confidence we should have in those models’ consen-

sus.

In the third and last part of this thesis, I explore the notion of the ‘weight of

evidence’ typically associated with Keynes (1921). I argue that the Bayesian (or

anyone who believes the role of probability in inductive inference is to quan-

tify the degree of belief to assign to a hypothesis given the evidence) is bound

to struggle with this notion, and suggest some lessons we might learn from the

fact of this struggle. Although this discussion may appear far removed from any

practical analysis of how the IPCC should characterize and communicate uncer-

tainty in their findings, I show that a thorough understanding of the (problem-

atic) nature of this notion is relevant to the assessment and evaluation of some

recent proposals for a new IPCC uncertainty framework. Part 3 consists of the

following two chapters.

In Chapter 6, I discuss in detail Keynes’s (1921) often cited notion of the

‘weight of evidence’. As we will see, Keynes understood the weight of evidence
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in at least two different ways, and that it is ultimately impossible to directly mea-

sure Keynes’s weight of evidence, however we choose to understand it. I then

turn to the Bayesian’s efforts to account for the weight of evidence. I argue that,

contrary to what seems to be implicitly assumed in the literature, the Bayesian

has not found an adequate way to account for the weight of evidence, and that

it is unlikely they will ever do so, for several reasons. Finally, I suggest that the

fact the Bayesian worries about the weight of evidence and yet struggles to pro-

vide an adequate response to those worries sheds light on the limitations of an

epistemology that envisions the role of probability to be that of quantifying the

degree of belief to assign to a hypothesis given the available evidence.

In Chapter 7, I critically assess three recent proposals for a new IPCC un-

certainty framework that significantly depart from the current one. These pro-

posals differ substantially from one another, and I believe these differences raise

many philosophically interesting questions, some of which I attempt to address

in this chapter. I first discuss Winsberg’s (2018) proposal, according to which

the likelihood metric should be used to communicate the range of credences

that the IPCC authors accept it is rational to assign to a hypothesis in light of the

available evidence, and the confidence metric should be used to communicate

‘how likely their consensus regarding appropriate credences is going to remain

fixed in the light of future developments’ (ibid., 105). Amongst other things,

I argue that Winsberg’s interpretation of the confidence metric, under his own

proposal, is unjustified. I then turn to Mach et al.’s (2017) proposal, which gets

rid of the confidence metric and replaces it with qualitative terms for scientific

understanding. I argue that Mach et al.’s proposal faces very similar conceptual

problems to the current uncertainty framework (discussed in Part 1) and that

it therefore does not constitute a considerable improvement. The last proposal

I discuss is Bradley et al.’s (2017), according to which it should be possible to

assign different likelihood levels qualified by different confidence levels to the

same hypothesis, and that the IPCC authors should be encouraged to do so.

I argue that the interpretation of confidence, under this proposal, is conceptu-

ally problematic. Finally, I offer my own tentative sketch for a new and better

IPCC uncertainty framework, in particular, one that satisfies the two following
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desiderata: 1) the framework’s fundamental concepts should be clearly defined

so that they can be used appropriately and consistently by the IPCC authors in

the communication of uncertainty; 2) the use of the framework’s fundamental

concepts should help the IPCC authors produce findings that are interpretable,

relevant and useful for the target audience.
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Part I

An assessment of the IPCC

conceptualization of uncertainty
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Chapter 1

Some conceptual problems in the

IPCC

1.1 Introduction

Studies of climate change are afflicted by deep uncertainty, the communication

of which is made fraughter still by the studies’ immediate policy implications.

The world of policy-making has its demands: uncertain information should be

communicated in a simple, consistent and relevant manner. It is thus vital to

communicate this uncertainty in the most comprehensive, true-to-the-science

and decision-relevant way, while making sure not to understate uncertainty. To

address this, the fifth and latest assessment report (AR5) by the Intergovermen-

tal Panel on Climate Change (IPCC) makes extensive use of calibrated language

to communicate uncertainty in its findings.1 Below are some typical findings

from the Summary for Policy Makers (IPCC 2013b) from the Working Group I

1The IPCC is an international body which synthesizes and communicates the current state
of knowledge about climate change so as to ‘provide a scientific basis for governments at all
levels to develop climate related policies’ (IPCC 2013a). Since its establishment in 1988 it has
had five assessment cycles, each delivering an assessment report, and it is currently in its sixth
assessment cycle with the Sixth Assessment Report (AR6) due to be completed by 2022. The
Working Group I contribution to the Sixth Assessment Report (AR6) ‘Climate Change 2021: The
Physical Science Basis’ was released at the very same time of this thesis’ completion. This is why
in this chapter, and the rest of this thesis, I solely focus on the communication of uncertainty by
the AR5, rather than the AR6. However, although the IPCC uncertainty framework has gone
through considerable revisions before each of the last three major assessment reports (the AR3,
the AR4 and the AR5), as Janzwood (2020, 1656) reports ‘the decision was made to not update the
framework and implementation guidelines prior to the commencement of the Sixth Assessment
Report (AR6) cycle’. Indeed, to the best of my knowledge, there have not been any significant
changes in the communication of uncertainty by the IPCC from the AR5 to the AR6. Hence, I
believe that a critical assessment of the AR5 reporting of uncertainty is equally relevant to that of
the AR6.
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(WG I) contribution to the AR5.2 In some cases, both likelihood and confidence

terms are used to communicate uncertainty in a finding:

1. Equilibrium climate sensitivity is likely in the range 1.5°C to 4.5°C (high

confidence). (IPCC 2013b, 16; original emphasis)

2. Relative to the average from year 1850 to 1900, global surface tempera-

ture change by the end of the 21st century [. . . is] unlikely to exceed 2C for

RCP2.63 (medium confidence). (ibid., 20; original emphasis)

In other cases, only a likelihood term is used:

3. It is likely that the frequency of heat waves has increased in large parts of

Europe, Asia and Australia. (ibid., 5; original emphasis)

And in other cases still, only a confidence term is used:

4. There is very high confidence that the extent of Northern Hemisphere snow

cover has decreased since the mid-20th century. (ibid., 9; original empha-

sis)

5. Annual CO2 emissions from fossil fuel combustion and cement production

were 8.3 [7.6 to 9.0] GtC12 yr–1 averaged over 2002–2011 (high confidence).

(ibid., 12; original emphasis)

The presentation of these findings gives rise to several questions. What do these

confidence and likelihood terms mean? Why is the IPCC using two metrics to

communicate uncertainty in its findings and what is the relationship between

them? Are they supposed to represent different types of uncertainty? If so,

what types of uncertainty? Why is a likelihood assigned to some ranges (as in

(1)) but not to others (as in (5))? What does it mean, in (2), to claim that warming

is unlikely to exceed 2°C for RCP2.6 with medium confidence? If the IPCC has only

2There are three working groups, each responsible for a distinct part of an IPCC assessment
report. WG I assesses the physical scientific basis of the climate system and climate change. WG II
assesses the vulnerability of socio-economic and natural system to climate change, consequences
and adaptation options. WG III assesses climate change mitigation methods.

3RCP2.6 is one of the four Representative Concentration Pathways (RCP) that have been
adopted by the IPCC in the AR5 (together with RCP4.5, RCP6, and RCP8.5). The IPCC considers
all four RCPs possible (but currently unverifiable) greenhouse gas concentration trajectories.
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medium confidence then should one believe that warming is really unlikely to

exceed 2°C for RCP2.6?

This chapter stems from an investigation into the above questions. Its aim is

to offer a thorough diagnosis of some of the conceptual problems currently faced

by the IPCC uncertainty framework as I believe that any successful attempt to

revise and improve this framework will have to start from a clear understand-

ing of the current conceptual problems, their implications for the IPCC authors’

treatment of uncertainties, and the quality of the information provided in the

AR5. Accordingly, this chapter (and the next) is an attempt to contribute to this

first step.

The structure of this chapter is as follows. In Section 1.2, I will give a brief

introduction of the current IPCC uncertainty framework. In Section 1.3, I will

discuss the puzzling bifurcation between evidence and agreement in the charac-

terization of confidence. In Section 1.4, I will argue that it is very unclear what

types of uncertainty both the confidence and the likelihood metric are supposed

to represent and that no matter what interpretation one gives to the IPCC con-

cepts of ‘confidence’ and ‘likelihood’, none is compatible with some of the IPCC

uncertainty guide’s recommendations - and thus with the resulting practice of

the IPCC authors in their communication of uncertainty. In Section 1.5, I will

show that the ambiguity surrounding the concepts of ‘likelihood’ and ‘confi-

dence’ has very serious and worrying implications for both the practice of the

IPCC authors in their treatment of uncertainties and the quality of the infor-

mation provided in the AR5. In Section 1.6, I will give a brief summary of the

the conceptual problems in the IPCC uncertainty framework identified in this

chapter and set forward the path for the next one.

1.2 The current IPCC uncertainty framework (for the AR5

and the AR6)

Any attempt to understand the interpretation of confidence and likelihood terms

in the AR5 should of course start from an inspection of the AR5 uncertainty
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guide (IPCC, 2010), henceforth referred to as the "Guide", to which I will now

turn.4

The Guide provides both a confidence and a likelihood metric for experts to

characterize uncertainty in their findings. The confidence metric is defined on a

qualitative scale with five levels (“very low", “low", “medium", “high" and “very

high"). The appropriate level of confidence depends on the evaluation of two

independent dimensions: evidence and agreement. The evaluation of evidence

can be low, medium or robust and depends on five criteria, namely the type5,

amount, quality, consistency and independence of the available evidence. The

evaluation of agreement can be low, medium or high; what its evaluation de-

pends on, however, is not specified in the Guide, but according to Mastrandrea

et al. (2011, 678),6 the degree of agreement is meant to express ‘a measure of the

consensus across the scientific community on a given topic and not just across

an author team’. The Guide specifies that although ‘increasing levels of evi-

dence and degrees of agreement are correlated with increasing confidence’ the

evidence and agreement dimensions are somewhat coarse grained, that is ‘for

a given evidence and agreement statement, different confidence levels could be

assigned’ (IPCC 2010, 3). Figure 1.1 shows the diagram provided by the Guide

to illustrate the relationship between the evaluation of evidence and agreement

and that of confidence.

Curiously however, despite what Figure 1.1 may suggest, the Guide further

stresses that ‘confidence cannot necessarily be assigned for all combinations of

evidence and agreement’ (ibid, 3); for some combinations the appropriate sum-

mary terms for the evaluation of evidence and agreement should be assigned

instead.7 The rules for when and when not to assign confidence are somewhat

4As I will discuss in Chapter 2, the IPCC uncertainty framework has gone through consider-
able revisions before each of the last three major assessment reports: the AR3, the AR4 and the
AR5. However, as mentioned in Footnote 1, the AR5 uncertainty framework has not been up-
dated prior to the commencement of the AR6, which will conclude in 2022. This is why the AR5
uncertainty framework which I will introduce in this section, can also be thought of as the current
uncertainty framework for the AR6.

5The types of evidence included by the Guide are: ‘mechanistic understanding, theory, data,
models, [and] expert judgment’ (IPCC 2010, 1).

6The commentary article by Mastrandrea et al. (2011) is an additional document provided by
the IPCC to explain the AR5 uncertainty framework.

7Indeed, although in the Summary for Policy Makers, the WG I authors always assign an
overall evaluation of confidence, the authors of WG II and III make frequent use of the summary
terms. In this chapter, however, I will mainly focus on the practice of WG I

11



FIGURE 1.1: ‘A depiction of evidence and agreement state-
ments and their relationship to confidence. Confidence increases
towards the top-right corner as suggested by the increasing

strength of shading.’ (ibid., 3)

ambiguous and can be summarised as follows (ibid, 2-3):

• confidence should be assigned in cases of high agreement and robust evi-

dence and also, when possible,8 in cases of with high agreement or robust

evidence, but not both;

• confidence should not be assigned in cases of low agreement and limited

evidence;

• the Guide does not specify whether or not confidence should be assigned

in all the other cases.

The likelihood metric, on the other hand, is defined on a quantitative scale with

seven levels: “Exceptionally unlikely”, “very unlikely”, unlikely”, “about as

likely as not”, “likely”, “very likely” and “virtually certain”; where each like-

lihood level corresponds to a probability interval9 as shown in the table pro-

vided by the Guide (Figure 1.2). According to the Guide this metric is meant ‘to

express a probabilistic estimate of the occurrence of a single event or of an out-

come’ [. . .and it] may be based on statistical or modelling analyses, elicitation of

expert views, or other quantitative analyses’ (ibid., 3).

8The Guide does not specify why it would be possible to assign confidence in some cases, but
not in others.

9The Guide specifies that each likelihood level ‘can be considered to have “fuzzy” boundaries’.
(ibid., 3)
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FIGURE 1.2: The likelihood metric

The Guide also has a few recommendations as to when and when not to use

the likelihood metric. For a start, the Guide discourages authors from using the

likelihood metric when ‘probabilistic information’ is not available:

A likelihood or probability should be assigned for the occurrence of

well-defined outcomes for which probabilistic information is avail-

able; (ibid., Annex B)

and it encourages to only use confidence in these cases, as in the following in-

struction for instance:

If a range can be given for a variable, based on quantitative analysis

or expert judgment: Assign likelihood or probability for that range

when possible; otherwise only assign confidence. (ibid., 4, my emphasis)

These two recommendations may explain why there are cases where only a con-

fidence term is used, as in findings (4) and (5) in Section 1.1. Importantly, the

Guide also prohibits authors from using likelihood terms if the confidence level

is not sufficiently high:

[A likelihood] assignment should only be made when confidence is

“high” or “very high,” indicating a sufficient level of evidence and

degree of agreement exist on which to base such a statement. (ibid.,

Annex B)
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Although this recommendation is mostly followed by the AR5 authors as, for

instance, in finding (1), where a likelihood term is used and the level of confi-

dence is “high”, this is not always the case. For instance, in finding (2), the level

of confidence is “medium” (and therefore neither “high” nor “very high”), but

a likelihood term is used nonetheless. In addition, the Guide does not always

require an explicit mention of the level of confidence:

A finding that includes a probabilistic measure of uncertainty does

not require explicit mention of the level of confidence associated with

that finding if the level of confidence is “high” or “very high”. (ibid.,

3)

This last recommendation may explain why there are cases where only a likeli-

hood term is used such as in finding (3): perhaps the level of confidence asso-

ciated with that finding is sufficiently high for the authors not to be required to

explicitly mention it.

So, in brief, the Guide seems to outline the following process for evaluating

and communicating uncertainties in findings. First and foremost, the authors

are instructed to evaluate evidence and agreement for a finding. Next, if pos-

sible, the authors are instructed to assign confidence which will depend on the

evaluation of evidence and agreement. Finally, if probabilistic information is

available and confidence is sufficiently high, the authors are further instructed

to assign likelihood (or a more precise presentation of probability). The diagram

below (provided by Mastrandrea et al. (2011)) is a helpful illustration of this

process (although for completeness I have added the red text).
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FIGURE 1.3: ‘Process for Evaluating and Communicating the De-
gree of Certainty in Key Findings’ (Mastrandrea et al. 2011, 679)

In this section, I tried to present an adequate summary of the AR5 uncertainty

guide (IPCC, 2010). Despite my hope, however, this uncertainty framework

does not provide a clear cut answer to the questions I asked in the introduction.

It is still not clear to me what uncertainty confidence and likelihood terms are

supposed to represent and what is the relationship between them. In the next

two sections, I will discuss what I find the most perplexing aspects involved in

the characterization of confidence and in its relationship with likelihood.

1.3 The perplexing bifurcation between evidence and agree-

ment in the characterization of confidence

Given the definition of the evidence and the agreement metrics, there appears

to be something rather problematic about the account of confidence provided:

it seems clear that, differently from what this uncertainty framework seems to

suggest, agreement and evidence so defined cannot be two independent dimen-

sions; the level of agreement (understood as the level of scientific consensus on

a given topic) surely must depend on the consistency, quality, amount and inde-

pendence of the available evidence. Indeed, consider again Figure 1.1. Although

the diagonal elements of the matrix are, somewhat plausible, the off-diagonal el-

ements are, arguably, not. Take, for instance, a case with low agreement, but ro-

bust evidence. As Wuthrich (2017, 104) points out, it seems rather odd for there
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to be low agreement (i.e. little scientific consensus on a given finding) when

the evidence underpinning that finding is robust, ‘given one makes the mini-

mal assumption that scientists base their judgements on the available evidence’.

Similarly, what are we to make of a case with high agreement, but limited ev-

idence? It seems rather peculiar for there to be high scientific consensus on a

given finding if the evidence underpinning that finding is limited: if it is not the

robustness of the evidence that is driving the scientific consensus, then the pres-

ence of scientific consensus in this case should, arguably, be a cause of concern,

rather than a reason to increase confidence.

Recall at this point that the Guide does stress that confidence cannot neces-

sarily be assigned for all findings. In particular, for findings with high agree-

ment or robust evidence but not both, it recommends authors to assign confi-

dence only when possible. If not possible, the authors are instructed to assign the

appropriate combination of summary terms for the evaluation of evidence and

agreement instead. The Guide does not specify, however, why for findings with

high agreement or robust evidence, but not both, it would be possible to assign

confidence in some cases, but not in others, and why it should not be possible to

assign confidence in the first place. This is rather puzzling given that Figure 1.1

does seem to specify confidence levels in these cases. Is the ambiguity surround-

ing the Guide’s recommendations as to when and when not to assign confidence

perhaps due to an undisclosed acknowledgement of the tension arising from the

bifurcation of evidence and agreement in the characterization of confidence?

Finally and very curiously, Mastrandrea et al. (2011, 678) further state that:

indicates, for example, the degree to which a finding follows from es-

tablished, competing, or speculative scientific explanations. Agree-

ment is not equivalent to consistency. Whether or not consistent ev-

idence corresponds to a high degree of agreement is determined by

other aspects of evidence such as its amount and quality. (agreement)

But this passage seems to articulate a rather different meaning of agreement

altogether. It suggests that agreement is not to be understood as a measure of

consensus in the scientific community, but rather as a measure of consistency
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and other aspects of the available evidence. It is further suggested that the level

of agreement for a given finding is in fact determined by the amount, quality and

possibly other aspects of the available evidence. But given that these are criteria

of the evidence metric, it is then very puzzling how the agreement dimension is

supposed to be distinct from that of evidence in the first place.

Indeed, as Regh and Staley (2017, 132) point out, the very practice of the AR5

authors makes it very hard to sustain a consensus interpretation of the agree-

ment metric:

Should IPCC authors want to know the level of community accep-

tance, then polling the scientists in the relevant community might be

more efficient, and in any case would appear to be the most impor-

tant kind of evidence relevant to attributing community consensus.

But to their knowledge, and also mine, the AR5 does not report such a survey

(nor does the Guide say that this should be done). One could argue that the

IPCC authors might be able to infer the scientific consensus on an IPCC finding

from the extent to which the set of relevant publications’ conclusions agree with

that finding (which according to Regh and Staley’s examination of the AR5’s

practice is what agreement attributions actually track in most cases). But this is

problematic for at least two reasons. For a start, as Regh and Staley (2017) point

out, ‘the IPCC authors must assume either that the teams involved in the cited

research effectively exhaust the relevant community of scientists competent to

judge the evidence for the claim, or that the acceptance of those teams in effect

represents the best opinion of the relevant community’, which as Regh and Sta-

ley remark, are not uncontroversial assumptions. Most importantly, however,

if the IPCC authors were to infer the level of scientific consensus on a finding

from a set of publications whose conclusions agree with it, then it seems that

this inference would be determined by the evaluation of the evidence dimen-

sion, since that set of publications is surely part of the evidence underlying that

finding! Hence, again it is very hard to see why the agreement dimension would

be independent from that of evidence.
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From the above discussion the following two conclusions seem to follow

naturally:

1. if agreement is understood as a measure of consensus in the scientific com-

munity, then it is very unclear how evidence and agreement should be

aggregated into an overall confidence judgement: the level of agreement

must depend on the consistency, quality, amount and independence of the

available evidence, hence the off-diagonal elements in Figure 1.1 make lit-

tle, if any, sense;

2. if agreement is understood as a measure of consistency and other aspects

of the available evidence, it is very unclear whether evidence and agree-

ment are in fact distinct dimensions in the first place.

All this strongly suggests that there is a clear tension arising from the bifurcation

of evidence and agreement in the characterization of confidence in the current

AR5 uncertainty framework. Although I am not arguing that this apparent ten-

sion is unresolvable per se, I do think any attempt to resolve this tension would

have to begin with giving an explicit and satisfactory answer to the following

question: How are the evidence and the agreement metrics defined so that they

are clearly independent from one another? For instance, here is an easy (but

rather unsatisfactory) way out to resolve to some extent the tension arising from

the bifurcation of evidence and agreement. Let’s say the evidence metric’s eval-

uation were to exclusively depend on considerations about the amount of evi-

dence available (despite the fact that it is not clear at all how one should evaluate

’the amount’ of available evidence in the first place) and not about other crite-

ria (such as quality, consistency and independence), and the agreement’ met-

ric’s evaluation were to depend on the level of consensus amongst the scientific

community on the extent to which the available evidence supports a particular

finding; this would seem to resolve the tension arising from the bifurcation of

evidence and agreement. For instance the fact that there is a lot of evidence rel-

evant to a particular finding and the fact there is little consensus on the extent

to which that evidence supports that finding no longer seem incompatible: the
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lack of consensus may be due, for instance, to the lack of consistency or indepen-

dence amongst the different lines of evidence. However, this would evidently be

an unsatisfactory solution. The extent to which the scientific community thinks

the available evidence supports a particular finding should of course depend on

considerations regarding the type, quality, consistency and independence of the

available evidence; and by not making these considerations explicit, one would

be simply accepting that the level of consensus in the scientific community is

somehow representative (i.e. can be used as a proxy) of all such considerations.

But this seems strange: one would be effectively evaluating the ‘robustness’ of

the evidence underpinning a finding not by making explicit considerations re-

garding the available evidence, but by keeping track of the level of consensus

amongst the scientific community regarding the extent to which the available

evidence supports that finding. The epistemic justifications for this inference

are dubious.

Despite the fact that it might be possible, in one way or another, to resolve

the tension arising from the bifurcation between evidence and agreement in the

characterization of confidence, it is doubtful there is an epistemically warranted

way in which this can be done: all that should matter in the assessment of con-

fidence underpinning a finding is the evaluation of the evidence underpinning

that finding and nothing else. In other words the evaluation of the evidence un-

derpinning a finding should determine the evaluation of confidence underpin-

ning that finding. By this I am not at all trying to suggest that expert judgment

does not or should not play a role in the assessment of confidence underpinning

a finding. What I am arguing, however, is that that role should only enter in the

very evaluation of the evidence underpinning that finding10. I am also not at

all trying to suggest that experts always necessarily agree about the evaluation

of the evidence with respect to a particular finding. For instance, as Douglas

(2012, 152) notes, experts can very well look at the same evidence and come

up with different explanations about why the evidence appears as it does; but

10Or potentially as a type of evidence. For example as Wuthrich (2017) points out one way in
which expert judgment could potentially be considered as a type of evidence is ‘when it concerns
a piece of information for which there is no direct evidence (e.g., the tuning parameter values for
a climate model)’.
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the fact that there are distinct explanatory accounts consistent with the available

evidence, is itself a fact that should be taken into account in the evaluation of

the evidence underpinning a finding. This brings me to the evidence dimen-

sion. Recall that the evidence dimension is itself an aggregate of five criteria,

namely the type, amount, quality, consistency and independence of the avail-

able evidence. Most of these criteria are not formally defined. But even if these

criteria could be evaluated cogently when taken by themselves, it is not at all

clear how they should be aggregated into an overall evaluation of the evidence

dimension. For instance what “evidence level” should be assigned to a situation

in which we have a high amount of high quality data that are independent but

inconsistent? And what about a situation in which we have a high amount of

low quality, independent and consistent data? It is clear that expert judgment

will and, arguably, should play a role in the evaluation of the evidence dimension

with respect to these criteria, but then the IPCC uncertainty framework should

be explicit as to what that role is, rather than, as one might put it, ’hide’ it away

into a bewildering separate agreement dimension.

1.4 What types of uncertainty do confidence and likeli-

hood represent?

As we have seen in section 1.2, the AR5 uncertainty guide provides not one

but two metrics, likelihood and confidence, for the IPCC authors to assess and

communicate uncertainty in their findings. The following question thus arises:

what is the relationship between likelihood and confidence? That is to say, do

likelihood and confidence represent different types of uncertainty, or not? And

if so, what different types of uncertainty are these? Much as we might wish for

an unambiguous answer to these questions, and despite what the IPCC authors

seem to think,11 the IPCC uncertainty guidance and the resulting practice of the

IPCC authors make the above question a rather hard one to answer. Indeed,

11In the ‘Annex A: Comparison of AR4 and AR5 Approaches’ of the uncertainty guide it is
asserted that compared to the previous uncertainty guide for the AR4, ‘the AR5 guidance [. . .] is
more explicit about the relationship and distinction between confidence and likelihood’. (IPCC
2010, Annex A)
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I will argue that there is no interpretation of confidence and likelihood that is

compatible with the Guide’s recommendations.

Let me give a brief recap of what has been established so far. On the one

hand, there is confidence, which is a qualitative scale used to synthesize ‘the

author teams’ judgments about the validity of findings as determined through

their evaluation of evidence and agreement’ (IPCC 2010, 3). On the other hand,

there is likelihood, which is a quantitative scale used ‘to express a probabilistic

estimate of the occurrence of a single event or of an outcome [. . . and it] may

be based on statistical or modeling analyses, elicitation of expert views, or other

quantitative analyses’ (IPCC 2010, 3). Crucially, the Guide stresses that likeli-

hood should only be assigned if confidence underpinning the finding is suffi-

ciently high and if the available evidence allows a probabilistic quantification of

uncertainty (IPCC 2010, 3-4 and Annex B; see also Figure 1.3).

So what to think of all this? According to Jones (2011, 736), a lead author on

the third, fourth and fifth IPCC assessment report,

The confidence-likelihood metrics of the uncertainty guidance form

an epistemological ontological structure: confidence is epistemolog-

ical and likelihood is ontological. The twinned basis for a key sci-

entific finding combines ontological reasons—what the author team

knows—and epistemological reasons—how confident are they in that

knowledge— for a particular conclusion or set of conclusions [. . .]

Jones’s terminology, here, is admittedly a little odd; usually one would say that

epistemology, rather than ontology, is concerned with knowledge. But I think

the only way to interpret this quote, that is what Jones really means to say here,

is the following: whereas the likelihood metric is ontological, e.g. it expresses

objective facts about the world, the confidence metric is epistemological e.g. it

expresses the IPCC authors’ confidence that their best theories offer a truthful

reflection of those facts.

To understand Jones’ interpretation of the likelihood and confidence metrics

it is necessary, at this point, to make a distinction between subjective probabilities

and objective probabilities. A fairly uncontroversial assumption in philosophy is
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that the interpretations of probability fall into two broad families. Subjective

interpretations view probabilities as dependent on the mental states of individ-

ual agents. These probabilities are referred to as ‘subjective probabilities’, ‘cre-

dences’ or ‘degrees of belief’. Whereas objective interpretations view probabili-

ties as features of the mind-independent world. These probabilities are usually

referred to as ‘objective probabilities’ or ‘chances’. For the purpose of this dis-

cussion I will assume that chances are in some way connected to frequencies of

an outcome and that it is possible to make true chance statements about a system

that obeys deterministic laws, that is I will assume that chances and determin-

ism are compatible.12 But then if likelihood is ontological and hence expresses

an objective fact about the world, as Jones claims, the right interpretation of

probability, as far as the likelihood metric is concerned, must be an objective one.

In other words, if likelihood is ontological, then it must be used to express the

chance of a single event or an outcome.

Under Jones’s interpretation then, confidence and likelihood are understood

as representing different types of uncertainty: whereas the likelihood metric ex-

presses the objective fact that the chance of the occurrence of an event or an

outcome is in a particular interval, the confidence metric expresses the IPPC au-

thors’ confidence in the truth of this fact. Consider, for instance, the following

finding from Section 1.1:

1. Equilibrium climate sensitivity is likely in the range 1.5°C to 4.5°C (high

confidence) [. . .]; (IPCC 2013b, 16)

Under the above interpretation, it is possible to understand this statement; what

it would mean is as follows: the world is such that the objective probability for

the Equilibrium Climate Sensitivity to lie in the range 1.5°C to 4.5°C is included

in the interval [0.66, 1]; and the IPCC authors have high confidence in this find-

ing. Under Jones’ interpretation, what makes it possible to have two distinct

uncertainty scales to characterize uncertainty in a finding is really a distinction

between credences and chances: in this case the IPCC authors have high cre-

dences in the objective fact that the chance is in the interval [0.66, 1].

12See Frigg (2014) for a survey of compatibilist and incompatibilist positions.
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However, given the nature of climate science, there are reasons to suspect

that the idea that likelihood expresses something objective in the world is im-

plausible. For although the IPCC does often rely on seemingly ‘objective’ meth-

ods (e.g. perturbed-physics ensemble methods and multi-model ensemble meth-

ods) to calculate the ‘probability’ of an event or an outcome (which will deter-

mine the likelihood assigned to that event or outcome), as Winsberg points out,

these methods ‘are objective only in the sense that they are independent of the

degrees of belief of any particular expert, and they are calculated mechanically’

(Winsberg 2018, 96). So even (or rather, especially)13 in light of these ‘objective’

methods, it is very unclear how one should interpret probabilities in the IPCC

report, which means that it is impossible to tell what kind of uncertainty the like-

lihood metric is actually supposed to represent.14 It is also worth pointing out

that, although the Guide itself does not give a general definition of probability,

some of the Guide’s remarks make it clear that at least in some cases, probability

will have a subjective interpretation, such as this one: ‘Where practical, formal

expert elicitation procedures should be used to obtain subjective probabilities for

key results’ (IPCC 2010, Annex B, my emphasis).

Perhaps we should not, then, think of the probabilities in the IPCC assess-

ment report as objective after all. But this is troubling, for if likelihood is not

ontological as Jones claims it is, then it is no longer obvious how one should in-

terpret the above statement. So the question is: is there another way to interpret

it? Could we perhaps think of the interval [0.66, 1] as imprecise subjective prob-

abilities, representing the IPCC authors’ degrees of belief that the Equilibrium

Climate Sensitivity lies in the range 1.5°C to 4.5°C? But in that case, what should

we think of the qualifier “high confidence”? Winsberg (2018) claims one possible

way to understand measures of confidence might be ‘as a kind of second-order

probability’; that is to say, the high confidence in the imprecise credence [0.66, 1]

above
13Indeed, there are several reasons to suspect these methods are not conceptually coherent. I

will discuss these reasons in detail in section 2.5 (see also Winsberg (2018, 97-100).
14I am certainly not alone in my perplexity as to how the IPCC interprets the concept of likeli-

hood; see for instance Wuthrich (2017), Aven (2018) and Janzhood (2020), who after interviewing
several IPCC authors, concludes that ‘most authors agreed that the confidence/likelihood dis-
tinction was confusing’ (ibid. 1670).
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[. . .] is a bit like a high degree of belief that the credence will be resilient

in the face of future evidence- assessed by looking at the variety of evi-

dence supporting the credence, and the degree of agreement among

those sources supporting the credence. But given the general murk-

iness of second-order probabilities in general, the lack of an obvious

set of decision rules to apply them, and the difficulties that would be

involved in interpreting such probabilities in this specific case, [. . .] it

is wise of the IPCC to refrain from using the expression ‘probability’

for its second-order characterization, and to limit itself to qualitative

characterization of confidence. (Winsberg 2018, 105, emphasis in the

original)

In my view, to speak of wisdom here requires rather too much indulgence. First,

there is no good evidence that should lead one to believe this is what the IPCC

has in mind. That is, there is no evidence to suggest the IPCC authors might

have such an epistemologically sophisticated thing in mind. Second, Winsberg

proposes here a particularly advanced epistemological interpretation, one that

certainly invites critical assessment.15 But in this chapter, I will leave that assess-

ment to one side; I will instead follow each of these two distinct candidates for

possible interpretations of likelihood and confidence (Jones’s and Winsberg’s)

and see where they lead us, i.e. whether either is compatible with the Guide’s

15In particular, and despite Winsberg’s light-hearted attitude, it is not at all obvious how one
would go about assessing the resiliency of one’s beliefs in the face of future evidence; nor why,
for instance, the amount of available evidence (which is one of the factors supposed to affect the
evaluation of confidence - see Figure 1.1) would help with this assessment. As I will discuss in
Chapter 7, I suspect Winsberg here is inspired by the Bayesian’s perennial attempt to account for
Keynes’s notion of ‘the weight of evidence’, a notion that is not reflected in an agent’s credence in
a hypothesis. The Bayesian’s standard reply is the following: true, ‘the weight of evidence’ is not
reflected in an agent’s credence in a hypothesis, but it is reflected in the resiliency of the agent’s
credence in that hypothesis (see e.g. Skyrms (1977), Joyce (2005)). However, the examples the
Bayesian relies on to convince us of this are always, to the best of my knowledge, ones in which
an agent’s credence in a hypothesis is mediated by her beliefs about the hypothesis’s objective
chances. Hence, those cases do not remotely support the idea that the weight of evidence can
manifest itself in the resiliency of an agent’s credence in a hypothesis in cases where that credence
is not mediated by her beliefs about the hypothesis’ objective chances. This is, in essence, why I
think Winsberg’s account of confidence is problematic and ill-conceived; I will give a thorough as-
sessment of Winsberg’s account in Chapter 7 (Section 2). In any case, for the purpose of what I am
arguing here, it can just be assumed that the level of confidence is merely an additional evaluation
of the evidence (somehow based on factors such as amount, quality, etc., as shown in Figure 1.1)
that was used by the IPCC authors to determine the range of credences that one ought to have in
a hypothesis (Aven (2018, 290) calls this the ‘strength of the knowledge’ supporting a subjective
probability judgment).
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recommendations and the practice of the IPCC authors. I will argue that none

of these possible interpretations fits the bill.

1.4.1 No interpretation fits the bill

Recall that likelihood is presented by the Guide as a subsequent option for char-

acterizing uncertainty, following the evaluation of confidence. In other words,

the authors are instructed to always first evaluate confidence, and only once

this is done, if the evidence allows a probabilistic quantification of uncertainty

and if confidence is sufficiently high, the Guide recommends authors to also as-

sign likelihood (see Figure 1.3). I will argue that these recommendations are

incompatible with either of the two interpretations of confidence and likelihood

discussed in the previous section.16

Consider first Winsberg’s interpretation. Here, confidence is a judgment

about the resiliency of the IPCC’s author’s credences in a finding in the face of

future evidence. In finding (1) (from Section 1.1.), for instance, the finding is:

‘equilibrium climate sensitivity lies in the range 1.5°C to 4.5°C’, the IPCC au-

thors have credences [0.66, 1] in this finding, and “high confidence” is a state-

ment about the resiliency of those credences in the face of future evidence. But

then, in cases where confidence is not sufficiently high, and hence likelihood is

not assigned in accordance with the Guide’s recommendations, one may very

well ask: confidence is a statement about the resiliency of what credences? To

clarify my concerns here, consider this particular instruction by the Guide:

[If] a range can be given for a variable, based on quantitative analysis

or expert judgment: Assign likelihood or probability for that range

when possible; otherwise only assign confidence. (IPCC 2010, 4, my

emphasis)

16I will exclusively focus on the Guide’s recommendation to assign likelihood only if confidence
is sufficiently high. However, the reasons that I give for the incompatibility between this recom-
mendation and Winsberg’s interpretation of confidence and likelihood also apply to the Guide’s
recommendation to assign likelihood only if the evidence allows a probabilistic quantification of
uncertainty. In contrast, this latter recommendation may be compatible with Jones’s interpretation
of confidence and likelihood in so far as if there are no chances to report then the likelihood metric
has no role to play.
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Let us then consider a case where a range can be given for a variable but con-

fidence is not sufficiently high. As instructed by the Guide, the authors only

assign confidence. However, if confidence had been sufficiently high then the

authors might have also reported likelihood for that range. But then under the

above interpretation of confidence and likelihood it seems impossible to under-

stand how to interpret such a finding: the given range could in principle have

any likelihood assigned to it, and we are not told which! Indeed, below are two

instances of such a finding:

The release of CO2 or CH4 to the atmosphere from thawing per-

mafrost carbon stocks over the 21st century is assessed to be in the

range of 50 to 250 GtC for RCP8.5 (low confidence) (IPCC 2013b, 27;

original emphasis);

Annual CO2 emissions from fossil fuel combustion and cement pro-

duction were 8.3 [7.6 to 9.0] GtC12 yr–1 averaged over 2002–2011

(high confidence) (IPCC 2013b, 12; original emphasis).

In these cases, the authors do not assign a likelihood to the range 50 to 250 GtC

in the first finding nor to the range 7.6 to 9.0 GtC12 yr–1 in the second finding

and instead only assign a confidence statement. So how should one interpret

these findings? Do the IPCC authors think these ranges are likely, very likely or

perhaps virtually certain? Without this information it seems impossible to un-

derstand how to interpret these statements. As another instance, consider the

following finding, in which the assessed range’s endpoints are assigned differ-

ent confidence levels:

There is high confidence that sustained warming greater than some

threshold would lead to the near-complete loss of the Greenland ice

sheet over a millennium or more [. . .] the threshold is greater than

about 1°C (low confidence) but less than about 4°C (medium confidence)

[. . .]. (IPCC 2013b, 29; original emphasis)

Again no likelihood is assigned in this case, so it is very unclear how one should

interpret this finding. Do the IPCC authors think the threshold is “likely” greater
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than about 1°C, “extremely likely” greater than about 1°C or . . .? Do the IPCC

authors think the threshold is likely less than about 4°C, extremely likely greater

than about 1°C or . . .? Again without an answer to these questions and un-

der Winsberg’s interpretation of confidence and likelihood, it seems impossible

to understand the meaning of this statement. Winsberg’s interpretation thus

appears incompatible with the frequent IPCC practice of only reporting confi-

dence levels in a finding: if confidence is really a statement about the resiliency

of the IPCC authors’ credences in a finding then we need to be told what those

credences are!17

Consider now Jones’s interpretation. Jones’ interpretation is also not com-

patible with the recommendation to use the likelihood metric only in cases of

sufficiently high confidence. If likelihood expresses the objective fact that an

event or an outcome has a particular chance, then there seems no plausible reason

for discouraging authors from communicating this fact even when confidence in

the truth of this fact is not high. For instance, suppose that I have medium confi-

dence in the claim that a coin is very biased towards Heads (e.g. it is very likely

to land heads). If in this case I can’t use the likelihood metric, what should I say

about this coin? If I do not report likelihood and just claim that I have medium

confidence in the coin landing heads, I’m omitting essential information: the

medium confidence was a statement about the finding ‘the coin is likely to land

heads’. So if I just report confidence I would be failing to report the finding I

actually have medium confidence in!

To recapitulate, both Jones’ interpretation, where ‘likelihood’ is ontologi-

cal and ‘confidence’ is epistemological and Winsberg’s interpretation, where

both ‘likelihood’ and ‘confidence’ are epistemological, are incompatible with the

Guide’s recommendation to assign likelihood only if ‘confidence’ is sufficiently

high. But I can see no other plausible interpretation of the confidence and like-

lihood metric compatible with this recommendation; I am tempted to conclude

that the problem is not my lack of imagination, but rather that uncertainty is not

adequately conceptualized.

17The example in the previous quote is not an isolated instance nor is it cherry picked. It is one
of the many instances in which the IPCC only assigns confidence to a finding.
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1.5 Troubling implications

In this section, I will argue that the lack of a conceptually coherent interpretation

of the concepts of ‘confidence’ and ‘likelihood’ in the current IPCC uncertainty

framework has serious and worrying implications for both the practice of the

IPCC authors in their treatment of uncertainties and the quality of the informa-

tion provided in the AR5.

1.5.1 The lack of transparency behind the interaction between confi-

dence and likelihood levels

There is a certain practice of the IPCC authors that may have something to do

with the Guide’s instructions to report likelihood only if the confidence under-

pinning those likelihood assignments is sufficiently high. Mach’s (2017) analysis

of the AR5’s author’s reporting of uncertainty reveals that authors often subjec-

tively adjusted (i.e. downgraded) the likelihood given by the formal analyses;

they did this to implicitly account for unquantified uncertainties (e.g. structural

uncertainties in models), and thereby raise the level of confidence associated

with that likelihood assignment. As Mach et al. (2017, 8) remark, this prac-

tice, although common, was rarely made explicit and transparent. An instance

of this practice is the following:

Increase of global mean surface temperatures for 2081–2100 relative

to 1986–2005 is projected to likely be in the ranges derived from the

concentration-driven CMIP5 model simulations, that is, 0.3°C to 1.7°C

(RCP2.6) [. . .] (Very high confidence). (IPCC 2013b, 20; original empha-

sis)

In this case the 5-95% model ranges, which according to the Guide’s calibrated

language for likelihood terms correspond to very likely ranges, were instead in-

terpreted as merely likely ranges in order to account for a not high enough con-

fidence in the validity of the models.18 As Frigg et al. (2015, 973) explain, this is

18According to Mach et al. (2017, 8) ‘the 5-95% model ranges could conceivably represent very-
likely ranges if the models were judged to include all relevant uncertainties; instead, using 5–95%
ranges as likely ranges implies a subjective adjustment based on confidence in the validity of
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a case where

the ensemble information is used but supplemented with expert judge-

ment about the chance that models are misinformative. In effect,

24% of the probability mass has been reassigned in an undetermined

manner, which we might interpret as a probability of approximately

up to one-in-four that something occurs which the models are inca-

pable of simulating.

I believe this practice may have something to do with the Guide’s instructions

to report likelihood only if the confidence underpinning those likelihood assign-

ments is sufficiently high: given that confidence in the validity of the underlying

models (or rather in the assumptions that would justify interpreting the 5–95%

model ranges as objectively ‘very likely’ - see footnote 18) was not sufficiently

high to report likelihood terms, the IPCC authors may have chosen to down-

grade the likelihood assignment so as to increase the confidence underpinning

the conclusion, and thereby be in line with the Guide’s directions.

But regardless of the Guide’s instructions’ responsibility for this practice,

there seems to be a clear interaction between confidence and likelihood levels.

This, for a start, seems to be in stark contradiction with the Guide’s recommen-

dation to assign confidence prior to assigning likelihood (given the fact that the

AR5 authors can upgrade confidence by downgrading likelihood!); which, in my

view, makes any attempt to understand what kind of uncertainty the confidence

and likelihood metrics are meant to represent in the AR5 doomed from the out-

set.19 Crucially, however, the IPCC uncertainty Guide says nothing about the

the underlying models.’ However, despite what Mach et al. suggest it is very unclear what
assumptions would have to hold for the 5-95% model ranges to conceivably represent very likely
ranges. What Mach et al. (and I) call the 5-95% model ranges are in fact the 5-95% ranges of a
normal distribution with the mean and standard deviation of the model ensemble’s projections. If
this normal distribution were to represent the actual uncertainty about future conditions, then of
course the 5-95% ranges from this distribution should be considered to be very likely in accordance
to the Guide’s calibrated language for likelihood terms. However, it is extremely unclear what
assumptions would in fact have to hold for this distribution to conceivably represent the actual
uncertainty about the future conditions. Winsberg (2018, 97-102) discusses some, if not all, of
those assumptions and concludes that they can never be plausibly satisfied. Hence, given this,
the very idea that there are some conditions under which the ranges derived by these methods
could be straightforwardly interpreted as very likely ranges is in my view misguided.

19In particular, consider Winsberg’s interpretation: why should the downgrading of likelihood
(i.e. choosing to report a broader likelihood interval), increase one’s degrees of belief that a likeli-
hood assignment will be resilient in the face of future evidence? I will come back to this question
in Chapter 7, where I will critically assess Winsberg’s proposal.
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degree of this interaction (i.e. to what degree should likelihood be downgraded

as confidence is upgraded). This is worrying for although the downgrading of

likelihood in these cases was evidently intended to account for sources of un-

certainty not adequately addressed in the formal analyses, it is very unclear to

what extent they were accounted for.20 In other words, it is often hard to tell

on what basis the IPCC authors come to the conclusions one finds in the AR5

uncertainty report. Why, for instance, in the case discussed above, did the IPCC

authors downgrade likelihood from very likely to likely rather than more likely

than not in the process of upgrading confidence? What is the reasoning behind

this conclusion? And is it good reasoning? What would good reasoning con-

sist in? I think the apparent difficulty in answering the last question, combined

with the lack of transparency of the IPCC’s practice of downgrading likelihood

thereby upgrading confidence, can only raise suspicions that this issue is taken

much less seriously than it should be.

There is, I believe, an additional reason to be wary of the AR5 authors’ com-

mon practice of downgrading likelihood, thereby upgrading confidence. If the

authors lacked very high confidence in the validity of the models to assign a very

likely assignment to the 5-95% model ranges, then why did they insist on re-

porting those very same ranges (but with a lower likelihood assignment)? That

is, intuitively another way to upgrade confidence in the finding would have

been to report a wider range instead, one that the authors considered very likely

rather than just likely. So not only is the reasoning behind downgrading likeli-

hood, thereby upgrading confidence, non-transparent and unclear, but what is

also unclear is why the authors are choosing to downgrade likelihood in the first

place when other options seem to be available.21

20See Parker and Risbey (2015) for some kind of considerations that would seem appropriate
when it comes to downgrading likelihood.

21In my view, one reason to be very wary of this practice of downgrading likelihood rather than
reporting a wider range is that, despite the downgrading of likelihood in this case, it is evident
that the most salient feature of this finding is the range 0.3°to 1.7°; and given the substantial
uncertainty in this range it seems to me highly misleading to draw so much attention to it. I will
discuss this point further in Section 2.5.
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1.5.2 Value judgments and non-interpretable findings

As it tuns out, and as already mentioned in Section 1.2, despite the Guide’s

instructions to report likelihood only if confidence is high or very high, there are

in fact several cases where the AR5 authors do not follow these instructions; see,

for instance, the following finding:

Equilibrium climate sensitivity is [. . .] very unlikely greater than 6°C

(medium confidence) (IPCC 2013b, 16; original emphasis)

But this is very puzzling. Why are the AR5 authors choosing to upgrade con-

fidence in some cases (by reporting a broader likelihood interval)22, but not in

others? What is determining the IPCC authors’ choice of the confidence level at

which to communicate a particular finding? Indeed, if confidence levels can in-

teract with likelihood assignments, as the practice of the AR5 authors suggests,

then as some have noted (Bradley et al. (2017), Winsberg (2018)), the choice of

reporting findings at a particular confidence level seems to involve a substantial

(non-epistemic) value judgment; But if this is so, is it really up to the IPCC au-

thors to make that value judgment? According to Winsberg, ‘it seems clear that

at least sometimes it is considerations of the likely applications of an uncertainty

report that guide the choice between a wider and more confident report and a

narrower and somewhat less confident report’ (Winsberg 2018, 149), but then

such considerations should be made explicit and open to scrutinization – which

currently they are, quite evidently, not.23

Not only does the choice the of reporting probabilistic findings at a partic-

ular confidence level seems to involve a substantial non-epistemic value judg-

ment, but it also makes the IPCC findings very hard to interpret. To see why

this is, consider what decision making under uncertainty is all about. Standard

decision theory recommends the agent perform the action that maximizes the

expected utility relative to the probability of the states of the world and the

22The very likely range and the likely range correspond to an interval probability assignment of
(0.9,1) and (0.66,1) respectively. Hence downgrading likelihood from very likely to likely is choos-
ing to report a broader likelihood interval.

23I will come back to the question of whether, under Winsberg’s own interpretation of ‘confi-
dence’ and ‘likelihood’, value judgments should affect the choice of what likelihood and confi-
dence levels to assign in Chapter 7.
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utilities of the possible consequences of the actions. However, several schol-

ars have noted that there are cases where an agent might hold imprecise prob-

abilities rather than precise probabilities (see, for instance, Levi 1985; Bradley

2009; Gilboa et al. 2009; Joyce 2010). And in light of this view, several decision

rules have been proposed to also deal with imprecise probabilities. Decision

theory then seems to deal relatively well when faced with both precise and im-

precise probabilities. However, the probabilistic findings in the IPCC are not

expressed merely in terms of precise probabilities, nor imprecise probabilities!

Rather they are mostly expressed in terms of imprecise probabilities, qualified by

qualitative confidence judgements and this information seems really rather hard

to integrate sensibly into an account of decision making. So the concern is the

following: What role, if any, can these qualitative confidence judgments play in

decision making? This is a legitimate concern. The main, if not only, reason an

institution such as the IPCC is in place is to give relevant and useful information

regarding the state of knowledge in studies of climate change to agents that will

ultimately want to make decisions based on this information. If it is not at all

clear how one should interpret this information so as to make rational decisions

based on it, then the project seems to have (at least partly) failed.

1.6 Taking Stock

In this Chapter, I have discussed what I consider to be some serious conceptual

problems in the current IPCC uncertainty framework. These were:

1. The puzzling bifurcation of ‘evidence’ and ‘agreement’ in the characterization of

confidence;

In Section 1.3, I argued that:

• if agreement is understood as a measure of consensus in the scien-

tific community, then it is very unclear how evidence and agreement

should be aggregated into an overall confidence judgement: the level

of agreement must depend on the consistency, quality, amount and
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independence of the available evidence, hence the off-diagonal ele-

ments in Figure 1.1 make little, if any, sense;

• if agreement is understood as a measure of consistency and other as-

pects of the available evidence, it is very unclear whether evidence

and agreement are in fact distinct dimensions in the first place.

I further argued that, although the tension arising from the bifurcation

between ‘agreement’ and ‘evidence’ in the characterization of confidence

is not unresolvable per se, any attempt to resolve this tension is likely to

be inadequate from an epistemological point of view.

2. The extremely ambiguous relationship between confidence and likelihood;

In Section 1.4, I argued that the relationship between ‘confidence’ and ‘like-

lihood’ is extremely ambiguous in so far as there seems to be no possi-

ble interpretation of confidence and likelihood that is compatible with the

IPCC Guide’s recommendation to only assign ‘likelihood’ if ‘confidence’

is sufficiently high.

In Section 1.5, I argued that the lack of a conceptually coherent interpretation of

the concepts of ‘confidence’ and ‘likelihood’ has serious and worrying implica-

tions for both the practice of the IPCC authors in their treatment of uncertainties

and the quality of the information provided in the AR5. In particular, I argued

that one should be wary of the AR5 authors’ frequent practice of subjectively

downgrading the ‘likelihood’ given by the evidence, thereby raising the level of

confidence associated with that likelihood assignment. This is due to two rea-

sons:

1. The first has to do with the lack of transparency behind this practice. The

Guide recommends authors to assign confidence based on the evaluation

of evidence and agreement prior to assigning likelihood and hence has

nothing to say about the degree to which likelihood should be down-

graded as confidence is upgraded. Hence, although the IPCC authors’

downgrading of likelihood is evidently intended to account for sources

of uncertainty not adequately addressed in the formal analyses, it is very

33



unclear to what extent they are accounted for, as the reasoning behind

this practice is very unclear. What is also not clear is why the authors are

choosing to downgrade likelihood, thereby upgrading confidence, given

that there seems other ways to upgrade confidence (e.g. to report a wider

range instead);

2. The second has to do with the lack of ubiquity of this practice. Indeed there

are cases where likelihood is reported with levels of confidence that are

neither high nor very high. But then it is not clear what determines the

IPCC authors’ choice of the confidence level at which to communicate a

particular probabilistic finding. Indeed, if confidence levels can interact

with likelihood assignments, as the practice of the AR5 authors suggests,

the choice of reporting findings at a particular confidence level seems to

involve a substantial (non-epistemic) value judgment. But if this is so, then

these value judgments should be made explicit and open to scrutinization,

and currently they are not. I have further argued that the lack of a clear

role for these qualitative confidence judgments to play in decision making,

means it is not at all clear how one should interpret likelihood assignments

qualified by confidence judgments so to ultimately make decisions based

on them.

I hope that I have convinced the reader that these are not merely philosophical

problems that can be left for a rainy day; these are serious conceptual problems

in the conceptualization of uncertainty that have implications for both the prac-

tice of the IPCC authors in their treatment of uncertainties and the quality of the

information provided in the AR5. In the next chapter, I will explore the extent

to which the history of the IPCC uncertainty framework can shed light on the

nature of these conceptual problems.
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Chapter 2

A genealogy of ‘confidence’ and

‘likelihood’ and what we can

learn from it

2.1 Introduction

Although the Second Assessment Report (AR2) included some discussion of the

need for a framework that could be consistently applied for the communication

of uncertainty across the three working groups (McBean et al., 1996), it was only

as part of the Third Assessment Report (AR3) that uncertainty guidance (Moss

and Schneider, 2000) was developed in an attempt to meet that challenge and en-

courage a more transparent and consistent treatment of uncertainty. An impor-

tant step in this direction was made with the presentation of a calibrated uncer-

tainty language to be used consistently amongst the working groups. However,

since its initial presentation in Moss and Schneider’s (2000) uncertainty guide,

the IPCC’s uncertainty language has been subject to considerable change over

the course of the assessments; I believe an investigation into the nature of this

change and the reasons for it can offer some important insights with respect to

the issues identified in Chapter 1.

The structure of this chapter is as follows. In Section 2.2, I will present the

uncertainty framework for the AR3 (Moss and Schneider, 2000), which included

a single uncertainty scale (the confidence scale). I will then point to some of the
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resemblances and discrepancies between this framework and the AR5 frame-

work which I believe can shed light on the problematic bifurcation of evidence

and agreement in the characterization of confidence discussed in Chapter 1. Fi-

nally, I will discuss WG I’s decision to introduce, in the AR3 itself, an additional

uncertainty scale (the likelihood scale) alongside the confidence scale. In Sec-

tion 2.3, I will present the substantially revised uncertainty framework for the

AR4 (IPCC, 2005), now including both a confidence and a likelihood scale. I

will point to some problematic aspects of this uncertainty framework, aspects

which motivated further revisions to the IPCC uncertainty framework. These

revisions, whose main goal was, apparently, to clarify the ‘distinction and tran-

sition’ (IPCC, 2010) between the confidence and the likelihood scales, gave rise

to the current uncertainty framework for the AR5. In Section 2.4, I will argue

that the persistent ambiguity of the relationship between confidence and likeli-

hood in the AR5 uncertainty framework can partly be traced back to the reasons

behind the emergence of two uncertainty scales in the IPCC uncertainty frame-

work. In particular, I will argue that there is a clear tension arising from these

distinct reasons and that the current guide’s recommendation to assign likeli-

hood only if confidence is sufficiently high is an unsuccessful attempt to deal

with this tension. In Section 2.5, in an attempt to gain a better understanding of

the AR5 concepts of likelihood and confidence, I will have a close look at some of

the methods (i.e. “multi-model ensemble methods”) that are currently used by

the IPCC authors to assess uncertainty in a finding. I will conclude that these

methods are not conceptually coherent methods for producing probabilities (of

any kind) and hence for deciding what likelihood interval to assign to a find-

ing. In Section 2.6, I will take stock of what both the history of the IPCC un-

certainty framework and the practice of the IPCC authors in their assessment

of uncertainty can teach us about the conceptual problems in the current IPCC

uncertainty framework identified in Chapter 1.
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2.2 The first IPCC uncertainty framework (for the AR3)

The AR3 uncertainty guide (Moss and Schneider, 2000) presented a single quan-

titative confidence scale, and encouraged all working groups to use this scale

to characterize the state of their knowledge underlying a finding, asserting that

‘[w]ithout such a discrete quantitative scale, there is strong experimental evi-

dence that the same uncertainty words often have very different meanings for

different people in different circumstances’ (ibid., 44). The scale had five levels,

ranging from “Very Low Confidence” to “Very High Confidence”, where each

level corresponded to a given probability interval as illustrated in Figure 2.1.

FIGURE 2.1: ’Scale for Assessing State of Knowledge’ (ibid., 44)

The AR3 guide further specified that the appropriate interpretation of probabil-

ity in most cases would be a subjective one: more specifically one according to

which ‘the probability of an event is the degree of belief that exists among lead

authors and reviewers that the event will occur, given the observations, model-

ing results, and theory currently available’ (ibid., 36).

Although, this was the only uncertainty scale provided by the AR3 guide for

the IPCC authors to communicate uncertainty in their findings, the AR3 guide

also remarked that in light of previous comments on earlier drafts, it was ex-

pected that ‘some may be uncomfortable with having only one option’ (ibid.,44)

to characterize uncertainty. However, the nature of this discomfort was not ex-

plained. That is, although the AR3 guide implied that not everyone would be

comfortable with only having one option to characterize uncertainty, it wasn’t
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clarified why some may feel more comfortable than others with only having

one option. In any case, in light of this potential discomfort, the AR3 guide fur-

ther proposed an additional set of qualitative uncertainty terms, to supplement

the above quantitative confidence scale and enable the authors to explain the

reasoning behind their level of confidence in a particular finding. The guide

stressed, however, that these supplementary terms were indeed to be treated

as supplementary, since ‘these qualitative terms do not always map well onto

a quantitative scale, increasing the likelihood of inconsistent usage’ (ibid., 44).

They were defined as follows (ibid., 45):

• Well-established: ‘models incorporate known processes; observations largely

consistent with models for important variables; or multiple lines of evi-

dence support the finding’;

• Established but Incomplete: ‘models incorporate most known processes, al-

though some parameterizations may not be well tested; observations are

somewhat consistent with theoretical or model results but incomplete; cur-

rent empirical estimates are well founded, but the possibility of changes in

governing processes over time is considerable; or only one or a few lines

of evidence support the finding’;

• Competing Explanations: ‘different model representations account for dif-

ferent aspects of observations or evidence, or incorporate different aspects

of key processes, leading to competing explanations’;

• Speculative: ‘conceptually plausible ideas that haven’t received much at-

tention in the literature or that are laced with difficult to reduce uncertain-

ties or have few available observational tests’.

These qualitative uncertainty terms were further situated in the table below, sug-

gesting that one should think of them as jointly describing the ‘amount of evi-

dence’ and the ‘level of agreement/consensus’ underlying a particular finding.
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FIGURE 2.2: ‘Supplemental Qualitative Uncertainty Terms’
(ibid., 45)

The difference between the uncertainty language presented by this uncertainty

guide and the one presented by the AR5 uncertainty guide (IPCC 2005) dis-

cussed in Chapter 1, is substantial. Arguably, the most striking difference is that

this uncertainty guide presented only a single scale, i.e. the confidence scale, for

the authors to characterize uncertainty in their findings (although a set of qual-

itative uncertainty terms was also presented, these were only meant to be used

as supplementary terms). This is in stark contrast to the AR5 framework, which,

as extensively discussed in Chapter 1, consists of two distinct uncertainty scales

(i.e. ‘confidence’ and ‘likelihood’). Another significant difference is that in this

uncertainty guide the confidence scale was defined probabilistically, rather than

qualitatively as in the latest uncertainty guide; however an explicit interpreta-

tion of probability (i.e. a subjective interpretation) was also provided, again in

stark contrast to the AR5 uncertainty guide, which does not explicitly define

probability anywhere.

It is also interesting to notice both the resemblance and discrepancy between

the table of ‘supplemental qualitative uncertainty terms’ provided by the AR3

guide (Figure 2.2) and the ‘depiction of evidence and agreement statements and

their relationship to confidence’ that one finds in the AR5 uncertainty guide (Fig-

ure 1.1). They resemble each other insofar as both depict the evidence and agree-

ment as distinct dimensions. A crucial difference, however, is that although in

this uncertainty guide the evaluation of the evidence dimension seemed to de-

pend on just the amount of evidence underlying a particular finding, in the AR5

uncertainty guide the evidence dimension further depends on additional criteria,
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such as consistency and independence of the available evidence. This discrepant

resemblance may shed some light on the ultimate reason for the puzzling bifur-

cation of evidence and agreement in the evaluation of confidence that one finds

in the AR5 uncertainty guide (discussed in Section 1.3): mere carelessness. That

is, in light of this discrepant resemblance, it is hard to resist making the following

conjecture: over the course of the IPCC assessment reports, revisions were made

to the assessment criteria for the evaluation of evidence as it became clear that

considerations on the ‘amount of evidence’ underlying a finding were rather

unhelpful if not taken together with other considerations such as, for instance,

independence and consistency of the various different lines of evidence under-

pinning that finding. However, although the introduction of these additional

criteria for the evaluation of the evidence dimension makes it rather unclear

how the agreement dimension can feasibly be independent from it, someone

simply forgot to worry about this. In other words, the problematic bifurcation

between evidence and agreement in the AR5 uncertainty guide may be simply

due to an ill-thought-out stopgap bifurcation that first appeared in the AR3 un-

certainty guide, and that got petrified in the process despite its irreconcilability

with the revisions to the IPCC uncertainty guides later introduced.

Moss and Schneider’s uncertainty guide was a first, admirable, attempt to

provide the IPCC Working Groups with a single uncertainty framework for the

communication of uncertainty in their findings with the objective of encourag-

ing a more transparent and consistent treatment of uncertainty in the IPCC re-

ports. Given this, one may wonder what actually happened in the AR3. To what

extent was this guide successful in achieving its objective?

As it turns out, despite the presentation of this calibrated uncertainty lan-

guage, in the AR3 itself there was nonetheless quite a large discrepancy between

WG I and II in their definition and use of standard terms to describe uncer-

tainty.1 As Manning (2006) notes, an analysis of the language used by the two

Working Groups readily reveals this discrepancy: whereas WG II followed the

directions of the guidance in its usage of the confidence metric to represent the

authors’ degree of confidence in key findings, WG I actually introduced a new

1WG III did not use calibrated uncertainty language in its contribution to the AR3.
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uncertainty metric in the AR3 and used this metric to characterise uncertainty

in their findings: it was called ‘likelihood’.2

According to Manning (2006), the reason behind this addition was not ob-

scure. Many of the key findings found in the literature consulted by WG I were

supported by large collections of data and hence the authors of WG I often felt

they could simply rely on statistical analysis as opposed to expert judgment to

estimate the probability of the occurrence of an event. As mentioned previously,

Moss and Schneider (2000) explicitly recommended a subjective interpretation

of probability; curiously, though, they also seemed to have anticipated that in

some cases (e.g. when dealing with ‘a long sequence of observational records,

replicable trials, or model runs’) authors might choose to adopt a ‘frequentist’

approach to characterize uncertainty in their findings, as opposed to relying on

expert judgment. And while they did suggest that it is not always feasible to

adopt a frequentist approach to characterize uncertainty, they did not in fact dis-

courage authors from using such a frequentist approach if deemed appropriate,

as long as the approach used was made explicit:

[A]uthors should explicitly state what sort of approach they are using in a

particular case: if frequentist statistics are used the authors should ex-

plicitly note that, and likewise if the probabilities assigned are sub-

jective, that too should be explicitly indicated. Transparency is the

key in all cases. (Moss and Schneider 2000, 36; emphasis in the orig-

inal)

Arguably, the absence of further guidance as to how to explicitly indicate the

chosen approach, led the WG I authors to take it upon themselves to decide how

to do so: namely, by introducing an additional likelihood scale. In any case, dur-

ing the IPCC workshops in preparation for the Fourth Assessment Report (AR4)

the discrepancy between WG I and WG II’s usage of calibrated uncertainty terms

did not go unnoticed. Below is a passage from the resulting concept paper:

2In the summary for policy makers, WG I defined the likelihood scale as follows: ‘The fol-
lowing words have been used where appropriate to indicate judgmental estimates of confidence:
virtually certain (greater than 99% chance that a result is true); very likely (90%-99% chance); likely
(66%-90% chance); medium likelihood (33%-66% chance); unlikely (10%-33% chance); very unlikely
(1%-10% chance); exceptionally unlikely (less than 1% chance)’. (IPCC 2001, 2)

41



The different approaches taken in the [AR3] by WGs I and II high-

lights some implications of choice of language. The WG I use of like-

lihood as a basis for approaching uncertainty focuses on probability

of outcomes, and was clearly intended to be interpreted that way de-

spite the definition in the WG I Summary for Policymakers referring

to ‘judgmental estimates of confidence’. The WG II use of level of

confidence focused on degree of understanding and consensus, but

at times was used as a proxy for the probability of an outcome. In

retrospect both likelihood and level of confidence may need to be addressed

and the language used should not confuse the two. (Manning et al. 2004,

6; my emphasis)

Although the nature of the ideas expressed in this passage is, in my view, far

from clear (I will discuss why this is in Section 2.4), what is clear is that WG

I’s decision to introduce the likelihood scale in the AR3 was neither unnoticed

nor rebuked. Indeed, as we will see in the next section, it was decided that the

likelihood scale was there to stay . . .

2.3 The second IPCC uncertainty guide (for the AR4)

The uncertainty guide for the AR4 (IPCC, 2005) provided not one, but two quan-

titative scales, one for confidence and one for likelihood. The confidence scale,

again, had five levels ranging from “very low confidence” to “very high confi-

dence”. These levels were now defined in terms of ‘chance of being correct’ as

shown in Figure 2.3.

FIGURE 2.3: ‘Quantitatively calibrated levels of confidence’
(IPCC 2005, 3)
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The authors were advised to use this confidence scale ‘to characterize uncer-

tainty that is based on expert judgment as to the correctness of a model, an anal-

ysis or a statement’ (ibid., 3).

The likelihood scale had seven levels which ranged from “exceptionally un-

likely” to “virtually certain”. These were defined in terms of ‘probability of

occurrence’ as shown in Figure 2.4.

FIGURE 2.4: ‘Likelihood Scale’ (ibid., 4)

The authors were advised to use this likelihood scale to express ‘a probabilistic

assessment of some well-defined outcome having occurred or occurring in the

future’, which ‘may be based on quantitative analysis or an elicitation of expert

views’ (ibid., 4).

Finally, similarly to the AR3 guide, qualitative language was also presented

for the authors to characterize the amount of evidence and the level of agree-

ment/consensus underlying a finding. With regards to this language there were,

however, two differences from the previous uncertainty guide. First, while the

AR3 guide provided four qualitative terms to together characterize the amount

of evidence and the level of agreement/consensus, the AR4 guide now advised

the authors to describe evidence and agreement/consensus separately, with now

nine possible ways to combine the summary terms for evidence and agreement,

as shown in Figure 2.5. This was perhaps due to the AR3’s four qualitative

terms (Speculative, Competing Explanations,‘Established but Incomplete and Well-

established) not having been found sufficiently nuanced to adequately character-

ize the amount of evidence and level of agreement or consensus.
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FIGURE 2.5: ‘Qualitatively defined levels of understanding’
(ibid., 3)

The second, more striking difference, however, was that this qualitative lan-

guage was now no longer presented as a supplementary language to be used

together with confidence to explain the reasoning behind a particular level of

confidence, as in the previous AR3 guide. Rather, the authors were now in-

structed to use these qualitative terms

to summarize judgments of the scientific understanding relevant to

an issue, or to express uncertainty in a finding where there is no basis

for making more quantitative statements. (ibid., 3, my emphasis)

In other words, these qualitative terms were now treated as replacements for con-

fidence and likelihood terms, contrary to what was recommended in the AR3

uncertainty guide; only in cases of “high agreement much evidence” were the

authors encouraged to characterize uncertainty using the confidence and likeli-

hood scale provided (ibid., 3).

Given this substantially different uncertainty framework, one may wonder

what happened in the AR4 report this time. How did the AR4 authors interpret

and use the confidence and likelihood metrics provided by this guide? Mastran-

drea and Mach’s (2011) analysis of the practice of the AR4 authors reveals things

got really quite messy. Sometimes confidence and likelihood terms were used to-

gether in a statement, consistent with an interpretation of likelihood and confi-

dence as representing different aspects of uncertainties (whatever those may be).

Other times only likelihood terms were used in a statement, consistent with an

interpretation of the likelihood metric as encompassing all relevant uncertainties

(though in practice, it was not always clear its usage did achieve as much). Other
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times still, the likelihood or confidence metrics were used interchangeably, thus

obliterating any conceptual distinction between them.

Arguably, this mess should have been expected: several aspects of this guide

left the understanding of what the confidence and likelihood scales actually rep-

resented rather open to the AR4 authors’ interpretation. For a start, recall that

confidence levels were now defined in terms of chances. But if the confidence

scale was meant to be used ‘to characterize uncertainty that is based on expert

judgment as to the correctness of a model, an analysis or a statement’, then it

is hard to see what role chance would have to play in the characterization of

confidence. For instance, it is hard to see what it would mean for a model or an

analysis to have at least 9 out of 10 chances of being correct. The use of the word

‘chance’ in the definition of confidence, without any further qualification, could

have been (and arguably was) a source of misinterpretation as to what the confi-

dence metric was meant to characterize. Recall also that that the summary terms

for evidence and agreement/consensus were now presented as replacements for

confidence, rather than supplementary. But then the relationship between the

evaluation of evidence and agreement/consensus on the one hand and that of

confidence on the other was somewhat unclear; in particular, it seems very hard

to reconcile the above interpretation of confidence with the AR4 guide’s direc-

tions to use confidence only in cases where there was ‘high agreement much ev-

idence’. Surely the experts’ judgment about the correctness of a statement must

have depended on the level of agreement and the amount of evidence available.

But if the authors were encouraged to report confidence only in cases with ‘high

agreement much evidence’, then it is hard to see how, under this interpretation

of the confidence metric, the IPCC authors would ever be able to use the confi-

dence terminology not at the top of scale; that is, how they could ever talk about

‘very low confidence’ or ‘low confidence’ or even ‘medium confidence’.

This inconsistent treatment and communication of uncertainty across the

AR4 did not go unnoticed; crucially, the acknowledgment that this inconsis-

tency was largely due to a lack of clarification about the distinction between the

confidence and the likelihood metrics seems to have been an important motiva-

tion for producing a new uncertainty guide for the AR5 (IPCC, 2010). Here is a
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passage from Annex A of the AR5 guide:

Consistent treatment and communication of uncertainty across the

Working Groups is a key cross-cutting issue for the IPCC and goal for

the AR5. To address this important issue, the Co-Chairs of the three

Working Groups convened a small meeting 6-7 July 2010 at the Jasper

Ridge Biological Preserve in Stanford, CA, USA. The outcome of the

meeting was a decision to produce updated Guidance Notes for AR5,

with the goal of improving the distinction and transition between different

metrics and their consistent application across the Working Groups in the

AR5. (IPCC 2010, Annex A; my emphasis)

It is evident that in the hope of clarifying the distinction between the confidence

and likelihood metrics in the AR5, an attempt was made to deal with some of

the puzzling aspects involved in the characterization of confidence that I men-

tioned above. Indeed, as seen in Section 1.2, the AR5 uncertainty guide no longer

defines confidence in terms chances. Rather confidence is presented as a quali-

tative scale whose evaluation now explicitly depends on the evaluation of ‘ev-

idence’ and ‘agreement’ as Figure 1.1 illustrates (although of course, as argued

in Section 1.3, the nature of this dependency is still far from clear).

However, I believe there was a much more fundamental problem that came

with the emergence of an additional likelihood metric which failed to be fully

appreciated at the time, and that can provide an important insight into why, de-

spite the efforts put into improving the characterization of confidence in the AR5

uncertainty framework, the relationship between confidence and likelihood is

still not quite as unambiguous as it should be. I do not believe this problem lies

in the emergence of the likelihood metric per se, but rather in the reason(s) for

its emergence. That is, the problem lies in the fact that there were two, related

but distinct, reasons for its emergence that got somehow merged into one. Why

do I think this is a problem? Because as these two reasons came to merge and

blur one into the other, the concept of probability came to be treated without

the rigour and care it necessitates, leaving its interpretation impossible – for the

IPCC authors, for me, or for whoever else cared/cares to try.
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2.4 On the reason(s) for the emergence of two uncertainty

scales

Probability is undeniably a very useful concept for the characterization of un-

certainty, but it is also a meaningless one when used without a clear and under-

standable interpretation of it. As we will see, in this section, the IPCC has made

various remarks concerning probability, but (alas) lack of sufficient rigour and

precision makes those remarks very hard to interpret and understand. For the

purpose of disambiguating some of those remarks, I will have to make three as-

sumptions about the interpretations of probability, assumptions that I think the

IPCC has also made, if not always explicitly:3

1. I will assume that there are two kinds of probability: subjective proba-

bilities and objective probabilities: whereas subjective probabilities (also

known as credences or degrees of belief) depend on the mental states of

individual agents, objective probabilities (also known as chances) are fea-

tures of the mind-independent world;

2. I will assume that it is possible to make true chance statements about a

system that obeys deterministic laws, that is I will assume that chances

and determinism are compatible;

3. I will assume that the IPCC has a conceptually coherent set of methods for

producing objective probabilities (or an estimate of them).

As discussed in Section 2.2, during the IPCC workshops in preparation for the

Fourth Assessment Report (AR4), WG I’s decision to introduce and use a new

uncertainty scale (i.e. the likelihood scale) in the AR3 in addition to the one

presented in the AR3 uncertainty guide (i.e. the confidence scale) did not go

unnoticed. And, as we have seen Section 2.3, it was in the end decided that the

new uncertainty guide (for the AR4) would have to include both a confidence

and a likelihood metric. But what was the reason behind this decision? I believe

there were in fact two distinct reasons.
3The first two assumptions are fairly uncontroversial; the last one in my view less so, as I will

discuss in Section 2.5.
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To understand the first reason, consider again the following passage from

the AR4 workshop concept paper:

The different approaches taken in the TAR by WGs I and II high-

lights some implications of choice of language. The WG I use of like-

lihood as a basis for approaching uncertainty focuses on probability

of outcomes, and was clearly intended to be interpreted that way de-

spite the definition in the WG I Summary for Policymakers referring

to ‘judgmental estimates of confidence’. The WG II use of level of

confidence focused on degree of understanding and consensus, but

at times was used as a proxy for the probability of an outcome. In

retrospect both likelihood and level of confidence may need to be

addressed and the language used should not confuse the two. (Man-

ning et al. 2004, 6)

This passage acknowledges that WG I and WG II took distinct approaches in the

characterization of uncertainty and suggests that both a confidence and a likeli-

hood metric might therefore be needed to distinguish between them. Indeed, as

mentioned above, whereas WG I heavily relied on a frequentist approach in the

characterization of uncertainty in the AR3, WG II largely relied on a subjective

approach instead. So although probability is not defined, I think the most plau-

sible interpretation of this passage is what I will call reason 1: there is a distinc-

tion between subjective and frequentist/objective probabilities, and hence we

need two distinct uncertainty scales, confidence and likelihood, to distinguish

between them.

Consider now the following two passages both reflecting on why one uncer-

tainty scale was deemed insufficient for the IPCC authors to adequately charac-

terize uncertainty in their findings. The first is from Manning himself, whereas

the second passage appears in the AR4:

The wide ranging and inter-disciplinary discussion of uncertainty

and risk that took place during preparations for the AR4 has led to

a richer language and more comprehensive structure for determin-

ing and describing uncertainties. While these approaches are clearly
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rooted in the Guidance Paper for the TAR,4 they also reflect a real evo-

lution in our thinking and one of their key results has been to draw out

more clearly the distinction between the assessed likelihood of specific out-

comes and the confidence that the science community has in its ability to

determine such likelihood. (Manning 2006, my emphasis)

The uncertainty guidance provided for the [AR4] draws, for the first

time, a careful distinction between levels of confidence in scientific

understanding and the likelihoods of specific results. This allows au-

thors to express high confidence that an event is extremely unlikely (e.g.,

rolling a dice twice and getting a six both times), as well as high confidence

that an event is about as likely as not (e.g., a tossed coin coming up heads).

Confidence and likelihood as used here are distinct concepts but are

often linked in practice. (AR4, 22, my emphasis)

These passages seem to articulate a rather different idea from that expressed

in the previous one, which I’ll call reason 2: An adequate communication of

uncertainty necessitates two uncertainty scales: a likelihood scale to indicate the

assessed probability of an event, and a confidence scale to indicate the IPCC

authors’ confidence in their ability to determine it.

Reason 1 and reason 2 are not the same reason, and yet they both seem to

have played a role in the emergence of two uncertainty scales in the AR4 uncer-

tainty framework. Let us try to better understand what I have called reason 1,

the need to distinguish between subjective and frequentist/objective probabili-

ties. Although having two distinct uncertainty scales would seem to address this

need, one may well ask: why the need to have two different uncertainty scales

in order to distinguish these two kind of probabilities? Of course, as the first un-

certainty guide itself remarked ‘transparency is key’ – but it does seem a rather

big leap to go from agreeing with this, to the introduction of an additional like-

lihood scale altogether. Why take this leap? Consider the ‘principal principle’

(Lewis, 1980), according to which a rational agent should always conform their

4TAR is short for ‘Third Assessment Report’, to which I refer throughout the paper as AR3.
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degrees of belief to the objective probabilities of the occurrence of an event.5 In

other words, if one knows the objective probability that an event will occur then

one’s degree of belief in the occurrence of that event should be the same. In light

of this principle, if the probabilities derived using a frequentist approach are

what the IPCC authors believe to be the objective probabilities of the occurrence

of an event, it seems plausible that those probabilities should also be the same as

the IPCC authors’ degrees of belief in the occurrence of that event. But then, it is

not clear why, under reason 1, two uncertainty scales would strictly be needed

for an adequate communication of uncertainty.

This brings us to what I called reason 2: the need to distinguish the assessed

probability of an outcome and the confidence that the science community has in

its ability to determine it. The recognition that the objectivity of those assessed

frequentist probabilities is always conditional on various assumptions together

with the possibility that the science community might not have much confidence

in these assumptions, seems to be the very reason why those probabilities cannot

be interpreted as the degrees of belief of the science community. But if those as-

sessed frequentist probabilities might not be objective probabilities after all, then

what are they? How should one interpret those probabilities? And most crucially

why rely on a frequentist approach to quantify uncertainty in the first place if

the confidence in the assumptions that justify the use of a frequentist approach

are not sufficiently high? Without an unambiguous answer to these questions,

things are bound to become very confusing. Why? Because it is no longer clear

how the concept of probability is used and defined, leaving its interpretation

impossible.

The current AR5 uncertainty guide’s recommendation to only assign ‘likeli-

hood’ in cases where ‘confidence’ is sufficiently high is, in my view, an attempt

to deal with this tension. The underlying thought behind this recommendation

is, arguably, the following: if the assessed probability is to be ‘objective’, then

likelihood should only be used if there is sufficiently high confidence in the as-

sumptions that justify the use of a frequentist approach. But this is evidently not

5As long as the agent does not have inadmissible knowledge about the occurrence of that
event.
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an adequate attempt to deal with this tension since, as argued in Section 1.4, this

recommendation is incompatible with any possible interpretation of ‘likelihood’

and ‘confidence’.

2.5 Likelihood revisited: objective probabilities, subjec-

tive probabilities or neither?

In the previous section, I have argued that one of the reasons behind the decision

to include both a confidence and a likelihood metric in the IPCC uncertainty

framework (reason 1) was to distinguish frequentist approaches from subjec-

tive approaches in the characterization of uncertainty, which I interpreted as the

need to draw a distinction between subjective probabilities and objective prob-

abilities. However, in this section, I will have a close look at some common

frequentist approaches in the characterization of uncertainty by the IPCC and

I will conclude that they are not conceptually coherent methods for producing

objective probabilities. This, I will argue, raises doubts as to whether my in-

terpretation of reason 1 behind the decision to include both a confidence and a

likelihood metric in the IPCC uncertainty framework is an accurate interpreta-

tion after all.

But before I get to all that, it will be helpful to give a quick review of some

basic frequentist statistical notions.

2.5.1 A Review of Some Statistical Concepts

In this subsection, I will give a quick overview of some basic frequentist notions

in statistical inference. In particular, I will discuss the well-known notion of a

confidence interval and the less well-known notion of a tolerance interval.

Confidence intervals

A common aim in statistical inference is to estimate unknown parameters that

characterize a population of interest; and relatedly, to assess the (unavoidable)

uncertainty in those estimations. To understand how this objective is carried out

in a frequentist paradigm, it is important first to understand the interpretation of
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probability under it. According to the frequentist view of probability, an event’s

probability is the limit of its relative frequency as the number of trials increases.

Under this view, the probability of an event is objective since it can, in principle,

be found by a repeatable objective process. This interpretation of probability

is in stark contrast with a Bayesian view of probability, according to which an

event’s probability represents the degrees of belief of an agent in that event.

Before I can explain how the frequentist view of probability relates to the

assessment of uncertainty in the estimation of a parameter of a population, I

must first introduce a few key statistical concepts. In statistics, one usually takes

a sample from a population of interest in order to estimate the properties of

that population. A sample statistic is a mathematical function of the sample,

whereas a parameter is any numerical quantity that characterizes some aspect

of the population of interest. In other words, the value of sample statistics are

the things one can calculate from one’s sample, and the value of the population

parameters are the things that one is trying to learn about. Evidently, a sample

statistic and a population parameter are conceptually distinct concepts, but what

links them together is the following: sample statistics can be used to estimate

population parameters.

How can a sample statistic be used to estimate a population parameter? The

notion of a sampling distribution is key here. As already mentioned, a sample

statistic is a function from the sample and hence its value can be calculated from

the sample we have taken. But in principle, there is nothing stopping us from

taking another sample of the population and calculating the value of the sample

statistic one more time, which could be different from the one obtained earlier.

And, still in principle, one could do this yet another time and so on. The sam-

pling distribution is the probability distribution of a sample statistic obtained

from taking an infinite number of samples of the same size from a population.

Of course, statisticians can’t take an infinite number of samples, and as a matter

of fact they usually just take one. However, the fact that they can’t, is in the

frequentist paradigm, no reason to reject the objectivity of the sampling distri-

bution: the sampling distribution is real and although one might not be able to

find it in practice, one can often find it theoretically.
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How does one find sampling distributions theoretically? It is not always

easy, but mathematics often comes to the rescue. A very important mathemati-

cal theorem, for instance, is the Central Limit Theorem, in light of which one can

assume that the sum of a large number of independent random variables, each

with finite mean and variance, will be approximately normally distributed, ir-

respective of the distribution function of the random variables. In particular,

the Central Limit Theorem tells us that if a population has mean µ and stan-

dard deviation σ and one takes sufficiently large samples from that population

of size N, the sampling distribution of the sample mean is approximately nor-

mally distributed with mean µ and standard deviation σ/
√

N (also known as

the standard error). What is very appealing about the Central Limit Theorem is

that it holds regardless of whether or not the population of interest is normally

distributed. Hence, because of the Central Limit Theorem, statisticians can of-

ten assume that the sampling distribution of the mean is normal, despite not

knowing the actual shape of the population distribution.

But why should one care about the sampling distribution? One reason one

should care (under a frequentist paradigm) is that if one knows the shape of

the sampling distribution, one can use this information to obtain a confidence

interval. A confidence interval is an interval estimate of a population parameter

with an associated confidence level, where the confidence level represents the

limit of the relative frequency of the confidence intervals that will contain the

true value of the unknown population parameter. Below is a simple example

that illustrates how knowing the sampling distribution of a statistic allows one

to find the confidence interval for a parameter of interest.

Suppose we want to estimate the mean height of all British 8 year old girls.

So the population of interest consists of all British 8 year old girls and we want

to learn the mean height µ of this population. Assume further that we happen

to already know the value of standard deviation of the population σ. We de-

cide to take a large random sample of size N and calculate the mean height of

this sample X = x. By appealing to the Central Limit Theorem, we are happy

to assume in this case that the sampling distribution of the sample mean X is

normally distributed with mean µ and standard error σ√
N

. From this we can
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conclude that the interval µ± 1.64 σ√
N

includes 90% of the sampling means X’s

in repeated sampling as shown in the figure below.6

FIGURE 2.6

Notice further that whenever the value of the sample mean X falls in the interval

µ± 1.64 σ√
N

, the interval X ± 1.64 σ√
N

will contain the parameter µ as shown in

the figure below.

FIGURE 2.7

But this means that if confidence intervals X ± 1.64 σ√
n are constructed from an

infinite number of independent sample statistics, 90% of those intervals will con-

tain the true value of the parameter µ. Hence the interval x± 1.64 σ√
n is the 90%

confidence interval for the mean height µ of all British 8 year old girls.

A few words on the interpretation of a confidence interval are in order. A

specified level of confidence does not refer to the confidence interval that has

been computed, but rather it refers to the procedure which has been used to con-

struct that confidence interval. So a 90% confidence interval for an unknown
690% of the area under a normal curve lies within roughly 1.64 standard deviations of the

mean.
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parameter of a population (e.g. the mean height µ in the example above) can

be interpreted as follows: “If one repeatedly calculates 90% confidence inter-

vals from independent random samples of the same size, 90% of these intervals

would, in the long run, correctly include the actual value for µ. Hence from

the frequentist definition of probability, it follows that: there is a 0.9 probability

that a 90% confidence interval calculated from a random sample will contain µ.

However, and crucially, this does not entail that the probability of a specific 90%

confidence interval contains µ is also 0.9. In a frequentist paradigm, once the

confidence interval is calculated, it either includes the correct parameter value

or it doesn’t. Hence whether or not that confidence interval contains the true

parameter value is not a matter of probability.

In light of this, one might ask: why should we care about the notion of a

confidence interval if as soon as we calculate one, all we can say about it is

that it either does or doesn’t cover the correct parameter value of the popula-

tion in question? According to a ‘coverage probability rationale’ (Mayo 2018,

193), one would argue that we should trust a confidence interval to include the

correct parameter value simply because, for instance, a 90% confidence interval

will correctly cover the true parameter value 90% of the time in repeated use.

Hence we should rely on confidence intervals to estimate a population’s param-

eter because they are generated from a procedure that performs well when used

repeatedly. However, as Mayo argues this performance oriented justification for

relying on confidence intervals is unsatisfactory for it is not clear how knowing

the performance of a procedure in repeated use can help us evaluate how it is

performing now. For instance, one may be tempted to say something like: ‘if a

procedure is rarely wrong we may assign a low probability to its being wrong

in the case at hand’. But this would be ‘dangerously equivocal, since the proba-

bility properly attaches to the method of inferring’ (Mayo 2018, 194). According

to Mayo, the ultimate justification for relying on a given confidence interval to

estimate a parameter value is that the hypothesis that the parameter value lies

in the calculated confidence interval has passed a severe test. That is, the jus-

tification for relying on confidence intervals is counterfactual. Since this is a

two-tail confidence interval there are two counterfactual claims we care about:
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1) Were µ lower than the lower confidence limit then it is very probable (a proba-

bility greater than 0.95) that the procedure would have yielded a smaller sample

mean than the one observed and 2) Were µ greater than the upper confidence

limit then it is very probable that the procedure would have yielded a larger

sample mean than the one observed.7

Leaving aside questions concerning the interpretation of confidence inter-

vals and why we should rely on them for estimating parameters of a population,

there are few technical remarks that are worth making. In the example above I

assumed that we already know the standard deviation of the population. This

assumption allowed me to compute a confidence interval by relying on the Cen-

tral Limit Theorem. However, in most realistic cases we do not already know

the standard deviation of a population, hence we can’t rely on the Central Limit

Theorem to infer the sampling distribution of the sample mean. Furthermore,

the Central Limit Theorem only holds for sample sizes that are sufficiently large.

Hence, whenever the sample size is not considered to be sufficiently large, we

also can’t rely on the Central Limit Theorem to infer the sampling distribution

of a sample statistic. In these cases we’ll have to rely on some other mathemat-

ical theorem. For instance, it can be shown that if the population of interest is

normally distributed, the t-statistic of a random sample of size N:

X− µ

S/
√

N
, (2.1)

where X is the mean of the sample and S is the standard deviation of the sample,

has a student’s t-distribution with N-1 degrees of freedom.8 Hence in many

cases, if a sample is not sufficiently large or if the standard deviation of the

population is unknown, we can nonetheless use this mathematical fact to derive

a confidence interval for µ.

7These two counterfactual claims follow from the duality between confidence interval estima-
tion and tests (see Mayo 2018, 190-93). For instance, the hypothesis that µ is less than the lower
limit of a calculated 90% confidence interval is rejected at a p-value of 0.05. I will come back to
Mayo’s notion of Severity in Chapter 6.

8The shape of student’s t-distribution resembles the bell shape of the normal distribution with
mean 0 and variance 1, but has fatter tails. However, as the number of degrees of freedom in-
creases, the t-distribution approaches the normal distribution with mean 0 and variance 1. See,
for instance Mason et al. (2003, 46-47) for a quick introduction to the student’s t-distribution and
when it can be reasonably assumed to be an adequate approximation to the normal distribution.
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Tolerance intervals

As discussed above, a confidence interval of a parameter represents an estimate

of that parameter. For instance, the 90% confidence interval for the mean µ in

the example above, is an estimate of µ and µ alone. Hence the size of a con-

fidence interval is exclusively due to the sampling error and will approach a

zero-width as the sample size increases. Hence, a confidence interval for say

a population’s mean height says nothing about how that population deviates

from that mean. But suppose I am interested in estimating the interval of height

values that includes e.g. 90% of the population’s heights. In this case, I don’t

want a confidence interval; what I want is a tolerance interval.

A tolerance interval is an interval that contains a specified proportion of a

population, at a specified level of confidence.9 Evidently, when it comes to cal-

culating a tolerance interval the most straightforward cases are those in which

the parameters of the population of interest’s distribution are known. In those

cases, it is straightforward to compute the interval that includes a specified pro-

portion of the population’s distribution. For instance, let’s return to the example

above. Suppose we know that the distribution of the population of British 8

year old girls is normal with mean µ and standard deviation σ. In this case, one

can easily construct a tolerance interval to include, say 90% of the population:

it will be the interval µ ± 1.64σ (i.e. it will be the interval included within the

5% and 95% percentile of the population). No “confidence” is attached to this

interval, because all the parameters of the population’s distribution are known.

Hence, in light of the frequentist interpretation of probability, one could make

the following statement in this case: there is a probability of 0.9 that the height

of a randomly chosen British 8 year old girl falls in the interval µ± 1.64σ (since

the limit of the relative frequency of the event ‘ a randomly chosen British 8 year

old girl falls in the interval µ± 1.64σ’ as the number of trials increases is equal

to 0.9).

However, in most realistic cases the parameters of the population distribu-

tion are not known (e.g. all cases where the available information is limited

9Where again, the specified level of confidence refers to the procedure used for constructing
the tolerance interval, not to the tolerance interval that has been computed.
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to the sample we have taken). Hence most applications of tolerance intervals

require the estimation of population’s mean and standard deviation. In these

cases, we will have to construct a tolerance interval at the chosen confidence

level.10 So for instance a (95%, 90%) tolerance interval for the height of a British

8 year old girl tells us, at a 95% confidence level, that the height of at least 90%

of British 8 year old girls falls within that interval. Hence, the width of the tol-

erance interval is affected by both the population’s proportion we want to cover

and the desired level of confidence. This means that, whereas a confidence in-

terval’s size is entirely due to sampling error, and will approach a zero-width

interval at the true population parameter as sample size increases, a tolerance

interval’s size is due partly to sampling error and partly to the actual variance

in the population, and will approach the population’s probability interval as the

sample size increases.

Calculating tolerance interval can be rather tricky, and since this is not a PhD

on statistical methods, I will spare the reader with the details! However, I’d like

to give a very quick practical example to show how the choice of confidence can

greatly affect the width of the tolerance interval that one will obtain.11 Suppose

we have a sample of 30 randomly chosen British 8 year old girls. The mean

height of the sample is 130 cm and the standard deviation is 4 cm. Suppose fur-

ther that we know that the height distribution of the population of all the British

8 year old girls is normal. Below are 3 distinct tolerance intervals covering the

same proportion of the population (i.e. 90%) but at distinct levels of confidence:

• A (90%, 90%) tolerance interval in this case would be the interval [121.9

cm, 138.1 cm];

• A (95%, 90%) tolerance interval in this case would be the interval [121.4

cm, 138.6 cm];

• A (99%, 90%) tolerance interval in this case would be the interval [120.4

cm, 139.5 cm].

10See, for instance, Mason et al. (2003, 50-52) for a more detailed introduction to tolerance
intervals.

11I have relied on a statistical interactive page very kindly provided by Pezzullo (2005) to cal-
culate the tolerance intervals below.
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As this example illustrates, as we increase the level of confidence with which we

want to cover 90% of the population’s heights, the width of the tolerance inter-

val increases substantially. Finally, it is worth mentioning that had we simply

assumed that the sample mean (130 cm) and standard deviation (4 cm) are suffi-

ciently accurate estimates for the population mean and standard deviation and

derived a probability distribution for the population height from this assump-

tion, we would have concluded that the interval covering 90% of the popula-

tion’s heights is the interval [130 ∓ 1.64 × 4 cm] = [123.4 cm, 136.6 cm] (with

no confidence attached), which is substantially smaller than any of the three tol-

erance derived above. Hence, and especially in cases where our sample is not

very large, it is not reasonable to assume that the sample mean and standard

deviation are sufficiently accurate approximations for the mean and standard

deviation of the population of interest and derive a tolerance interval based on

this assumption.

Populations

Finally, a few remarks on the very concept of a population are in order. As

discussed above, in statistics one often takes a random sample from a popula-

tion with the objective of learning something about that population. In many

cases, as in the example above, the population consists of physical objects (e.g

8 year old girls living in the UK) with a particular characteristic (e.g. height)

that we want to learn about. But there are many cases in which the population

whose characteristics we are trying to learn about does not consist of physical

objects. In the problem of repeated measurement of a quantity, for instance, the

measurements are regarded as a sample from the population that would exist if

the repetition could be continued indefinitely.

Suppose, for instance, that we are trying to measure the height of a tall

building h and we expect the measurements (e.g. the readings on a very long

meter stick) to approximate the quantity while not being exactly equal to it,

due to some errors in our measurements. In this case the population of in-

terest (often referred to as the parent population) consists of the infinite set of
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measurements that could be taken of which our finite sample of measurements

(x1, x2, x3, . . . , xn) is but a subset. In this case, we might be interested in finding

the mean µ of this population insofar as we think that the mean of the parent

population has the same value as the height of the building h (i.e. µ = h).12 And

if the sample size is sufficiently large and we know the standard deviation of the

parent population, then we can appeal to the Central Limit Theorem in this case

and happily assume the sampling distribution of the mean is normal and derive

a confidence interval for µ = h. It is also worth noting that in the problem of re-

peated measurement, it is often assumed that the parent population distribution

is itself normal.13

2.5.2 A closer look at likelihood: “multi-model ensemble methods"

and a questionable desire for “objectivity".

Consider the following finding from the IPCC summary for policy makers:

Increase of global mean surface temperatures for 2081–2100 relative

to 1986–2005 is projected to likely be in the ranges derived from the

concentration-driven CMIP5 model simulations, that is, 0.3°C to 1.7°C

(RCP2.6) [. . .] (very high confidence) (SPM, 20)

In this section, I will discuss the methods used by the IPCC authors to character-

ize uncertainty in this finding (hereinafter referred to as “multi-model ensemble

methods”). I will argue that they are not conceptually coherent methods for

producing objective probabilities.14 The multi-model ensemble methods I will

discuss in this section are not the only methods the IPCC authors use to produce

probabilities in their findings, but they are nonetheless fairly common; hence I

12But note that if there are systematic errors, that is errors that systematically cause the mea-
sured quantity to be shifted away from the real height of the building h (e.g. measurements with a
cold meter ruler which appear bigger because the scale has contracted), it would be unreasonable
to assume that the mean of the parent population has the same value of the quantity h.

13Again by appealing to the Central Limit Theorem: if a measurement result is simultaneously
influenced by many uncertainty sources then if the number of the uncertainty sources approaches
infinity the distribution function of the measurement result approaches the normal distribution,
irrespective of the distribution functions of the factors/parameters describing the uncertainty
sources.

14Although Winsberg (2018) has recently argued for a similar conclusion, in this section I hope
to show more forcefully why this is the case
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think an assessment of those methods can provide us with some general lessons

about the practice of the IPCC authors in their treatment of uncertainties.

To understand the methods used by the IPCC authors to arrive at the range

[0.3°C, 1.7°C] for the increase of global mean surface temperatures for 2081–2100

relative to 1986–2005 (from now on I will denote this by GMST81-100) and the

likelihood level (likely) assigned to it is crucial first to recognize that as far as

climate modelling is concerned,

[. . .] even for a particular question and set of processes, different

models exist. Strictly they are incompatible; they cannot be true at

the same time. But they are usually seen as complementary, because

they represent different plausible (although not necessarily equally

plausible) approximations to the target system, given some compu-

tational constraints, limited and uncertain observations, and incom-

plete understanding of all processes [. . .] For example, there are sev-

eral ways to parameterize atmospheric convection, and no scheme is

clearly superior to the others for all climatic states, and parameters

are not well constrained. (Knutti 2018, 330)

Indeed, there is a great deal of uncertainty about how to adequately represent

the climate system. Due to this uncertainty, it is often impossible to choose

which model, out of the available ones, future climate change projections should

rely. Hence, current projections of future climate change very often rely on more

than a single model. The most recent Coupled Model Intercomparison Projec-

tion Phase 5 (CMIP5), for instance, was a huge collaborative effort, involving

more than 20 climate modeling groups from around the world (Taylor et al. 2012,

486), to promote a standard set of model simulations whose outputs were then

analysed by the AR5 authors to produce many of their findings.15

The fact that there exist several models relying on different plausible but

incompatible assumptions about the climate system, is not in itself a fact that

can be changed; hence, arguably, as Parker remarks,

15The Coupled Model Intercomparison Project is now in its 6th phase.
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Despite the fact that one must be careful when interpreting the re-

sults produced by multi-model ensembles, when it comes to address-

ing the global warming issue, the ensemble approach seems clearly

better than the two most obvious alternatives, that is, relying on a

single model and/or making no use of climate models until a single

‘best’ one can be identified. (Parker 2006, 361)

So far so good. The question I am concerned with, however, is the following:

how do the AR5 authors interpret the results produced by a multi-model en-

semble to arrive at the finding above? More specifically, how are the outputs

of the CMIP5 multi-model ensemble used to arrive at the interval [0.3°C, 1.7°C]

and the likely assignment to that interval?

Consider the following table provided in the AR5 (IPCC 2013, 1055).

FIGURE 2.8

In each slot of this table, the first entry shows the mean± the standard deviation

of the model ensemble’s predictions for the selected period, region and RCP.

The second entry (given in brackets) is an interval obtained by constructing a

normal distribution with the same mean and standard deviation of that model

ensemble, and by taking the 5-95% range (the mean ±1.64 standard deviation)

of that distribution. Notice further that the interval circled in red [0.3C, 1.7C] is

the same interval that appears in the finding above. So what is going on here?

As Winsberg succinctly explains,
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The most common method of estimating the degree of structural un-

certainties in the predictions of climate models is a set of sampling

methods called “multi-model ensemble methods". The core idea is to

examine the degree of variation in the predictions of the existing set

of climate models [. . .] By looking at the average prediction of the set

of models and calculating their standard deviation, one can produce

a probability distribution for every value that the models calculate.

[. . .] If 80 percent of the results from a space of models [. . .] lie in the

range, then the probability of the true result lying in that range is

said to be 80 percent. (Winsberg 2018, 96)

And indeed, these “multi-model ensemble methods” described by Winsberg,

are the very ones that are used by the IPCC authors to arrive the interval [0.3°C,

1.7°C] for the GMST81-100 in the above finding: the average (which is equal to

1°in this case) and the standard deviation (which is equal 0.4°in this case) of the

available set of models’ predictions for the GMST81-100 are used to produce a

normal distribution for the GMST81-100. The interval [0.3C, 1.7C] is then ob-

tained from taking the 5-95% range of this probability distribution.

Of course, as the reader will have noticed, in this case the 5-95% range of

this probability distribution is not assessed by the IPCC authors to be a very

likely range for the GMST81-100, as it should be according to the calibrated un-

certainty language for likelihood (see Figure 1.2), but as a merely likely range.

This is explained in the summary for policy makers to be due to an ‘accounting

for additional uncertainties or different levels of confidence in models’ (IPCC

2013, 23), a point to which I will come back at the end of this section. However,

despite this subsequent downgrading of the likelihood assignment from very

likely to likely, the assessed range is the very same as the one derived using the

“multi-model ensemble methods" described by Winsberg. Hence these methods

nonetheless play a crucial role in the characterization of this finding.

But what to think of these “multi model ensemble methods”? Why are the

authors assuming (at least in the first instance in this case, before the downgrad-

ing of likelihood) that the variable in question is normally distributed with a
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mean and standard deviation of the predictions of the CMIP5 set of models?

According to Winsberg (2018, 99):

The average and standard deviation of a set of trials is only meaning-

ful if those trials represent a random sample of independent draws

from the relevant space- in this case the space of possible model

structures. (Winsberg 2018, 99)

He further argues that this assumption is implausible since:

What, after all, is the space of possible model structures? And why

would we want to sample randomly from this? After all, we want

our models to be as physically realistic as possible, not random. Per-

haps we are meant to assume, instead, that the existing models are

randomly distributed around the ideal model, in some kind of nor-

mal distribution. This would be an analogy to measurement theory.

But modeling isn’t measurement, and there is absolutely no reason

to think this assumption holds. (Winsberg 2018, 99)

I agree with Winsberg in so far as the assumption that the set of available models

represent a random sample from the relevant space of models seems to be a nec-

essary assumption for the average and standard deviation of the multi-model

ensemble results to be ‘meaningful’. And I also agree that this assumption is ex-

tremely questionable for more than one reason. First, as Winsberg points out

in the above passage, it is not at all clear what the space of possible model

structures is even supposed to mean. Is there really a class of possible model

structures of the climate system? What distinguishes a possible model structure

from an impossible one? Is this class mathematically definable?16 Without an

answer to these questions, there is no reason to suppose that it makes sense to

talk about the space of possible model structures in the first place. Second, the

idea that the set of available models constitutes something like a random sample

from this alleged space of possible model structures is extremely questionable.

16Frigg et al. (2014) argue that it is not at all clear how to circumscribe the class containing all
possible model structures of a target system and raise doubts as to whether this class is mathe-
matically definable.
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For a start, why assume this in the first place? A simple random sample is a sub-

set of a population in which each member of the subset has an equal probability

of being chosen and statisticians usually go to great pain to make sure that the

sample they take can indeed be reasonably thought to be a random sample from

the population of interest. For instance, in the random number method, one as-

signs every individual a number and by using e.g. a random number generator,

a subset of the population is randomly picked. If you have a hard time imagin-

ing the IPCC assigning numbers to all the models in the space of possible model

structures and using a random number generator to pick a sample for it, you

are not alone! But even if we were willing to (rather dramatically) stretch the

statistical concept of a simple random sample, as Winsberg remarks:

One obvious reason to doubt [this assumption] is that all of the cli-

mate models on the market have a shared history. Some of them

share code; scientists move from one lab to another and bring ideas

with them; some parts of climate models (though not physically prin-

cipled) are from a common tool box of techniques, etc. (Winsberg

2018, 99)

Indeed, the IPCC authors themselves openly acknowledge that ‘some features

shared by many models are a result of the models making similar assumptions

and simplifications’ (IPCC 2010a, 10) and that ‘different models may share com-

ponents and choices of parameterizations of processes and may have been cal-

ibrated using the same data sets’ (ibid., 6), concluding that ‘models may not

constitute wholly independent estimates’ (ibid., 10). But then, if climate models

are not constructed independently and are likely to share systematic sources of

error, it really does seem unreasonable to assume that the CMIP5 set of models

can be thought of representing anything like a random sample from the set of

possible model structures.

But leaving aside considerations regarding the implausibility of this assump-

tion, I’d like to further point out that this assumption alone does not explain why

the IPCC authors are taking the 5-95% range of a normal distribution with the

mean and the standard deviation of the multi-model ensemble results to derive
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the interval [0.3°C, 1.7°C] as the likely range for the GMST81-100. In particular,

where does the normal assumption come from?

As far as I can see, there are two routes one could take to attempt to justify

where the normal assumption comes from. Under the first route the obtained

interval is supposed to represent a confidence interval for the GMST81-100. Un-

der the second route, the obtained interval is supposed to be a tolerance interval

covering 90% of the results of the models in the space of possible model struc-

tures. Let me go through each of these routes (by the data provided by the IPCC,

I am assuming that the mean of the results of the available models is equal to 1,

the standard deviation of the models’ results is 0.4 and the number of models

available is 32).17

Under the first route, one would argue something like the following:

Argument 1

1. There is such a thing as the space of possible model structures.

2. The set of available models can be assumed to be a random sample from

this space.

3. The mean µ of the results of all the models in the space of possible struc-

tures is the correct value for the GMST81-100.

4. By the Central Limit Theorem and premises 1, 2 and 3, the sampling dis-

tribution of the mean is assumed to be normal with mean µ and standard

deviation σ√
N

, where σ is the standard deviation of the results of the mod-

els in the space of possible structures and N is the number of available

models.

Conclusion The interval [1± 1.64 σ√
32

°C] is a 90% confidence interval for the correct

value for the GMST81-100.

Unfortunately, although under this route it is clear where the normal assump-

tion comes from, this is clearly not what the IPCC have in mind. For a start,

17the number of models available for each projection in the table above (Figure 2.8) is provided
in Figure 12.5 of the AR5 (IPCC 2013, 1054).
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notice that the argument above assumes that the standard deviation σ of the re-

sults of the models in the space of possible model structures is known. Whereas,

the IPCC authors are using the standard deviation of the results of the available

models. But the main reason to suspect that this is not what the IPCC have in

mind is that the normal distribution they construct has the same standard devi-

ation of the results of the available models, whereas if they had anything like a

confidence interval in mind they would divide the sample’s standard deviation

by the square root of the number of models available (in this case 32). Hence this

argument does not allow us to arrive at the same interval for the GMST81-100

as the one obtained by the IPCC authors and hence it cannot be the right route

to justify where the normal assumption is coming from.

Under the second route, one would argue something like the following:

Argument 2

1. There is such a thing as the space of possible model structures.

2. The set of available models can be assumed to be a random sample from

this space.

3. The results of the models in the space of possible model structures are

normally distributed.

4. At least one result of a model from the space of possible model structures

is the correct value for the GMST81-100.

5. It is reasonable to assume that the mean (=1) and standard deviation (=0.4)

of the results of the available models are equal to the mean and standard

deviation of the results of the models in the space of possible model struc-

tures.

Conclusion 1 The interval [1 ± 1.64 × 0.4°C]=[0.3°C, 1.7°C] is a (reasonable) tolerance

interval covering 90% of the results of the models in the space of possible

model structures.

Conclusion 2 It is reasonable to assume that there is a 90% probability that the correct

value for for the GMST81-100 lies in the interval [0.3°C, 1.7°C].
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This argument allows us to arrive at the same interval as the IPCC authors, so

that’s good news! However, aside from the controversial premise 2 already

questioned above, there are a couple more premises in this argument that are

extremely questionable too. For a start notice that premise 3 simply stipulates

that the results of the models in the space of possible model structures are nor-

mally distributed. But it is unclear why one would assume such a thing. As

mentioned in Section 2.5.1, in the problem of repeated measurement, it is often

assumed that the parent population distribution is itself normal (again by ap-

pealing to the Central Limit theorem). But as Winsberg remarks ‘modeling isn’t

measurement’ so it is really unclear what would justify this assumption in this

case. Premise 5 is also extremely questionable, for there is absolutely no reason

to assume that the mean and standard deviation of the results of the available

models are equal to the mean and standard deviation of the results of models in

the space of possible model structures. Indeed, if we were to take seriously the

idea that the interval obtained is supposed to be a tolerance interval covering

90% of the results of the models in the space of possible model structures then

depending on the level of confidence we demand we would get a very different

interval from the one obtained by the IPCC. For instance, a tolerance interval

covering 90% the results of the models in the space of possible model structures

at a 99% confidence level would be the interval [0.06 °C, 1.94°C], whereas the

same tolerance interval but at a 95% confidence would be the interval [0.15 °C,

1.85°C]. The width of both of these intervals is substantially greater than the

width of the IPCC interval [0.3°C, 1.7°C]. We could only obtain a tolerance in-

terval covering 90% of the result of the models in the space of possible model

structures equivalent to the interval obtained by the IPCC by demanding a mere

60% confidence level, which is a rather low level of confidence and certainly not

one on which statisticians usually rely to make inferences.18

Overall, even if we were to grant the assumption that the available models

represent something like a random sample from the space of possible model

structures it is extremely unclear where the normal assumption comes from and

18I have once again relied on the statistical interactive page by Pezzullo (2005) to calculate these
tolerance intervals.
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more generally on what basis the IPCC authors arrive at the interval [0.3°C,

1.7°C] for GMST81-100. Argument 2 seems to me the only plausible route one

could take to justify why the IPCC arrive at this interval for GMST81-100 but as

argued above this argument relies on multiple unwarranted assumptions, hence

there is no reason to think this argument is sound.19

At this point someone might argue that perhaps we should not worry about

all this after all. As mentioned at the beginning of this section, the IPCC authors

are not claiming that the derived interval for the GMST81-100 is very likely as

would follow from my second (unsound) argument. All they are claiming is that

the correct value for GMST81-100 is likely (i.e. has at least a 66% probability) to

be in that interval. And in the summary for policy makers it is explained that this

downgrading of likelihood is due to an ‘accounting for additional uncertainties

or different levels of confidence in models’ (IPCC 2013, 23). Hence, although

a rigorous defense of the procedure that the IPCC authors use to arrive at the

interval [0.3°C, 1.7°C] for GMST81-100 cannot be found, one may argue that one

is not really needed: the IPCC approach is a rough, reasonable way to proceed,

given all the extant challenges and uncertainties and it only gives us, at the end

19It is worth mentioning that according to the ‘good practice guidance paper on assessing and
combining multi-model climate projections’ (IPCC 2010a, 4) ‘statistical frameworks in published
methods using ensembles to quantify uncertainty may assume (perhaps implicitly)’:

a. ‘that each ensemble member is sampled from a distribution centered around the truth
(“truth plus error” view)[. . .] In this case, perfect independent models in an ensemble
would be random draws from a distribution centered on observations.’

b. . ‘that each of the members is considered to be “exchangeable” with the other members
and with the real system [. . .] In this case, observations are viewed as a single random draw
from an imagined distribution of the space of all possible but equally credible climate mod-
els and all possible outcomes of Earth’s chaotic processes. A ‘perfect’ independent model
in this case is also a random draw from the same distribution, and so is ‘indistinguishable’
from the observations in the statistical model.’

The practice guidance paper further writes that ‘with the assumption of statistical model (a), un-
certainties in predictions should tend to zero as more models are included, whereas with (b), we
anticipate uncertainties to converge to a value related to the size of the distribution of all out-
comes [. . .] While both approaches are common in published literature, the relationship between
the method of ensemble generation and statistical model is rarely explicitly stated.’ (IPCC 2010a,
4)

The IPCC multi-model ensemble methods discussed in this section may prima facie seem to
fall under approach b, where the imagined distribution is for some reason assumed to be normal
(an assumption that may, arguably, be inspired by approach a). However, as the IPCC guidance
paper remarks although under this approach ‘uncertainties converge to a value related to the size
of the distribution of all outcomes’ the IPCC does not use standard statistical concepts (such as
tolerance intervals) which enable one to take account of the fact that what one has is merely a
sample of the population, not the population itself. Hence, although as argued in this section both
approach a and b rely on implausible assumptions, they are at least coherent. Whereas the IPCC
‘multi-model ensemble methods’ discussed in this section are in my view, incoherent.
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of the day, something that is considered worthy of at least 66% of our credence.

So maybe it’s ok that it’s not rigorously justified.20

However, I find this justification for not worrying about all this somewhat

troubling, for more than one reason. First, the reasoning behind the downgrad-

ing of likelihood is very unclear and non-transparent. Why are the IPCC authors

downgrading from very likely to likely? In other words, why is the range derived

by these methods worthy of at least 66% of our credence, as opposed to say at

least 60% or 55% of our credence? Given the lack of any detailed discussion on

why the IPCC authors decided to declare this range likely, it is hard to resist the

suspicion that the IPCC authors are simply downgrading likelihood to the next

level down without any sort of serious expert deliberation, which is not a very

reassuring thought. Second, if the IPCC authors themselves do not think that

the normal distribution obtained by these “multi-model ensemble methods" re-

ally does represent the actual uncertainty for the variable in question, then it’s

not clear to me why they should rely on this distribution in the first place to de-

termine a plausible the range for that variable. This is troubling because, despite

the downgrading of likelihood in this case, the most salient feature of this find-

ing is, in my view, the range [0.3°C, 1.7°C]; and given the substantial uncertainty

in this range it seems to me highly misleading to draw so much attention to it.

Related to this point, if the IPCC authors do not actually think this range is very

likely, then it is not clear why they insist on reporting this very same range (but

with a lower likelihood assignment). Intuitively another way to proceed would

be to report a wider range instead, one for instance, that the authors consider

very likely rather than just likely.

At this point one might object that it may be more epistemically demanding

for the IPCC authors to provide a wider range that is considered to be very likely

in contrast to a smaller range that is considered to be likely. That is, the IPCC au-

thors may feel comfortable with saying that at least 66% of our credence should

go in the range [0.3°C, 1.7°C] for GMST81-100, but they may not feel comfortable

with saying that at least 90% of credence should go in a greater range. Hence,

20My thanks are owed to Wendy Parker for an email exchange in which she put forward some
possible objections for me to consider.
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we should not demand the IPCC authors to do something that they don’t feel

comfortable with doing. Furthermore, one might also object that my point about

the range being the most salient feature of this finding is unjustified because all

the IPCC authors are saying is that that range is worthy of at least 66% of our

credence. Hence, the IPCC authors are not telling us we should believe that

the correct value for GMST81-100 actually lies in that range. Hence again my

worries are overall unjustified.

However, given the lack of any sort of rigorous justification for why the

IPCC authors have decided to declare that the range [0.3°C, 1.7°C] is likely as

opposed to another range (one with a greater/smaller lower limit or/and with

a lower/greater upper limit) it is not clear why what the IPCC authors are do-

ing would be evidently less epistemicallly demanding than what I am suggest-

ing they might want to do instead.21 Second, if indeed we are not supposed

to take this range seriously (and hence not worry about the lack of a rigorous

justification for how this range was derived in the first place) then this begs the

question: what is the epistemic value of this finding? That is, if all the IPCC

finding amounts to saying is that there is up to a 34% probability that the correct

value for GMST81-100 lies outside the range [0.3°C, 1.7°C] without any direction

as to how likely one should think that the correct value for the GMST81-100 is

e.g. substantially higher than the upper limit of this range, then I just can’t quite

see on what basis a e.g. policy maker should regard the range [0.3°C, 1.7°C] to be

the best estimate for the GMST81-100 on which to base their decisions. In other

words, if the IPCC are not able to exclude the possibility that, for instance, the

correct value for GMST81-100 may plausibly (with up to a 34% probability) be

substantially higher than the range reported, then clearly a policy maker should

know about this!

Together with Winsberg, I suspect that the multi-model ensemble methods

used by the IPCC for quantifying uncertainty in their findings ‘are grounded

21If the reason why what the IPCC authors are doing is less epistemicallly demanding than
what I am suggesting they might want to do instead, is that what they are doing requires very
little thinking on their part (i.e. using conceptually incoherent mechanical methods to derive a
range for a variable and then simply call this range ‘likely’ because it sounds about right) then
clearly this does not count as a valid reason.
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and conceptualized out of a misguided desire to produce objective probabili-

ties’ (Winsberg 2018, 99).22 This desire is misguided because it is essentially the

desire to produce ‘probabilities’ that are independent of the individual beliefs

of the IPCC authors, but at the cost of producing probabilities that are neither

objective nor subjective. Hence it is not clear why we should call these ‘probabil-

ities’ in the first place. The fact that in this case the IPCC authors are downgrad-

ing the likelihood level obtained from these methods from very likely to likely is,

in my view, merely a cover up for the fact that the IPCC is not willing to step out

of their comfort zone and embrace an ‘approach that self-consciously reflect the

subjective degrees of belief of the relevant set of experts’ (Winsberg 2018, 100) in

light of the models’ results and their understanding of those models, their short-

comings, and the climate system. Of course, as I will discuss in Chapter 5, the

question of how to interpret and communicate multi-model ensemble results is

an incredibly hard challenge. However, this does not justify using mechanical-

unjustified procedures for quantifying uncertainty to deal with this challenge.

Finally, recall that one of the reasons that I discussed in Section 2.4 for the

emergence of two uncertainty scales in the AR4 uncertainty framework was the

need to distinguish WG I and WG II distinct approaches in the characterization

of uncertainty, which I interpreted as the need to distinguish subjective from fre-

quentist/objective probabilities. However, in light of the multi-model methods

discussed in this section, I fear that this reason may in fact be better interpreted

as the need to make a distinction between subjective probabilities on the one

hand, and neither subjective nor objective probabilities on the other. In other

words, I fear that it may have to be interpreted as the desire to accommodate

or even encourage WG I’s misguided desire to produce probabilities in a me-

chanical way, at the cost of little, if any, objectivity at all. And if this was one of

the reasons for the emergence of two uncertainty scales then it clearly was not a

good one to begin with.

22By this I don’t mean to suggest that there can’t be a role for objective probabilities in climate
science in general.
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2.6 Taking stock

As seen in this section, the history of the IPCC calibrated uncertainty language

is a convoluted one. Below is a diagram showing the history line of the IPCC

uncertainty calibrated language.

FIGURE 2.9: History line of the IPCC calibrated uncertainty lan-
guage.

I have argued that the history of the IPCC calibrated uncertainty language can

give us some insights into the problematic aspects of the AR5 uncertainty frame-

work (IPCC, 2010) identified in Chapter 1. One issue, discussed in Section 1.3,

was

1. the puzzling bifurcation of evidence and agreement in the characterization of con-

fidence.

In Section 2.2, I have argued that the discrepant resemblance between the table of

‘supplemental qualitative uncertainty terms’ provided by the AR3 uncertainty

guide (Figure 2.2) and the ‘depiction of evidence and agreement statements and

their relationship to confidence’ that one finds in the AR5 uncertainty guide

(Figure 1.1) shows that the puzzling bifurcation of evidence and agreement in
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the characterization of confidence is partly due to an ill-thought-out stopgap

that first appeared in the AR3 uncertainty guide and that got petrified in the

process, despite its irreconcilability with the revisions to the IPCC uncertainty

guides later introduced. If this is right, then there really doesn’t seem to be

an epistemically good reason for the bifurcation of evidence and agreement in

characterization of confidence, and hence should, arguably, be removed.

The history of the IPCC calibrated uncertainty language also teaches us some-

thing about the issue discussed in Section 1.4:

2. The lack of an adequate interpretation of confidence and likelihood compatible with

the AR5 uncertainty guide’s recommendations.

In Section 2.4, I have argued that an understanding of the reasons behind the

first appearance of two uncertainty scales (‘confidence’ and ‘likelihood’) in the

AR4 uncertainty framework can give us some insights into the nature of this is-

sue. I have argued that there were two distinct reasons. On the one hand, the

emergence of two uncertainty scales was due to a felt need to distinguish WG II

approach in the characterization of uncertainty, which focused on the degree of

understanding and consensus from that of WG I, which focused on frequentist

statistics instead (reason 1). On the other hand, this emergence was also due

to a felt need to distinguish the assessed probability of an outcome (through

the use of frequentist statistics), and the confidence that the science community

had in its ability to determine it (reason 2). I have argued that there is a clear

tension arising from these two distinct reasons behind the emergence of two

uncertainty scales. If the IPCC authors lack confidence in the assumptions that

justify the use of a frequentist approach in the characterization of uncertainty,

then it is no longer clear why one should rely on a frequentist approach in the

first place, which in turn means it is no longer clear how one should interpret

those assessed probabilities: those assessed probabilities are neither subjective

nor objective! I have further suggested that both the AR5 guide’s recommenda-

tion to only use ‘likelihood’ in cases where confidence is sufficiently high is an

attempt to deal with this tension. The underlying thought behind these recom-

mendation is, arguably, something like this: if the assessed probability is to be
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‘objective’ then likelihood should only be used if there is sufficiently high confi-

dence in the assumptions that justify the use of a frequentist approach. But this

is evidently not an adequate attempt to deal with this tension. Why? Because

it is simply an attempt to cover up the apparent tension that arises from these

two distinct reasons behind the emergence of two uncertainty scales, while (as

argued in Section 1.4) providing recommendations that are incompatible with

any possible interpretation of ‘likelihood’ and ‘confidence’ and hence making it

impossible, for any one who tries, to understand what kind of uncertainty the

likelihood and confidence metrics are actually supposed to represent.

In Section 2.5, I have further argued that some common frequentist approaches

(i.e.‘multi-model ensemble methods’) on which the IPCC authors rely to assess

uncertainty in their findings are not conceptually coherent methods for produc-

ing objective probabilities. Hence, these methods produce ‘probabilities’ that are

neither objective nor subjective. Given this, I have argued that neither should

these methods be relied on for assigning a likelihood level to an event, nor

should they play a role in determining the range of ‘plausible values’ (i.e. what

the IPCC call a likely range of values) for a quantity of interest. Finally, I have

argued that the fact that these common frequentist approaches in the charac-

terization of uncertainty are not conceptually coherent methods for producing

objective probabilities raises some doubts as to whether what I called reason 1

for the emergence of two uncertainty scales (i.e. the need to distinguish subjec-

tive approaches from frequent approaches in the characterization of uncertainty)

was in fact a good reason to begin with. For if this reason cannot be interpreted

as the need to distinguish subjective from objective probabilities, then it may

have to be interpreted as the need to accommodate or even encourage WG I’s

misguided desire to produce ‘probabilities’ in a mechanical way, at the cost of

little, if any, objectivity at all. And if this is one of the reasons for the emergence

of an additional likelihood scale alongside the confidence scale in the IPCC un-

certainty framework, then it is evidently a bad one.

The question of how uncertainty should be conceptualized by the IPCC is
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undeniably a hard one, and I have sincere respect for all those who have at-

tempted to address it. But overall, what I think the history of the IPCC uncer-

tainty framework really teaches us is that any attempt to revise and improve the

IPCC uncertainty framework must start from the recognition that for an uncer-

tainty framework to be adequate, all key concepts involved in this framework

must be unambiguously defined. When concepts such as probability, likelihood,

confidence, agreement, and robust evidence lack an unambiguous interpreta-

tion, they are bound to be misunderstood, misused, even abused. Hence it is

clear that any attempt to address the conceptual issues that I have discussed

in Chapter 1 must start with the clear-sighted recognition that these issues will

not be suitably tackled without first providing a clear interpretation of all the

concepts involved.

There are several recent proposals for a new IPCC uncertainty framework

that significantly depart from the current one, which I will critically assess in

Chapter 7. However, I think that any sincere and successful attempt to revise

and improve the current IPCC uncertainty framework will require a clear diag-

nosis of the conceptual problems it currently faces and why these have devel-

oped. In these two chapters, I have sought to contribute to this diagnosis.
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Part II

Model-based robustness analysis
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Chapter 3

Robustness analysis as tool for

discovering robust theorems

3.1 Introduction

Any model of a real world phenomenon is bound to include idealizations of

some sort (by disregarding some variables, or ignoring or simplifying interac-

tions amongst variables, etc.). Yet we use models to learn about the world con-

stantly, and shall not cease doing so any time soon. A question thus arises: why

can we use models to learn about the world despite their idealizing assump-

tions? If no model is ever a complete and veridical representation of its target

system, why do we think of them as ‘vehicles for learning about the world’

(Frigg and Hartmann, 2020)?

There is an idea pertinent to this question that is popular amongst some

scientists and philosophers (e.g. Levins, 1966; Weisberg and Reisman, 2008;

Kuorikoski et al., 2010, Schupbach, 2018). This idea broadly consists in the fol-

lowing: we can increase our confidence in a model’s conclusion by ‘studying a

number of similar but distinct models of the same phenomena’ (Weisberg 2013,

156). Learning that all these models give the same conclusion, it is claimed,

should make us more confident in that conclusion. This way of dealing with

model results is usually referred to by its proponents as ‘robustness analysis’.

The first explicit discussion of robustness analysis in the context of modelling

is usually attributed to the scientist Richard Levins (1966). Below is a frequently

quoted passage from Levins on the notion of robustness:
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Even the most flexible models have artificial assumptions. There is

always room for doubt as to whether a result depends on the essen-

tials of a model or on the details of the simplifying assumptions. [. . .]

Therefore, we attempt to treat the same problem with several alter-

native models each with different simplifications but with a common

biological assumption. Then, if these models, despite their differ-

ent assumptions, lead to similar results we have what we can call a

robust theorem which is relatively free of the details of the model.

Hence our truth is the intersection of independent lies. (Levins 1966,

423)

Levins’ suggestive remark that ‘our truth is the intersection of independent lies’

became something of a shibboleth for advocates of robustness analysis. How-

ever, what this shibboleth means, and whether or not there is any truth in it,

is to this day a source of contention. On the one hand, there are those who ar-

gue that robustness analysis has a rightful claim as a method of confirmation

(e.g. Weisberg 2006, 2013;1 Lloyd (2010); Kuorikoski et al. 2010, 2012); and on

the other, there are those who disagree (e.g. Cartwright 1991; Orzack and Sober

1993; Odenbaugh and Alexandrova 2011, Justus 2012).

Despite the fact that advocates of robustness analysis as an epistemic tool

disagree about what argument one should rely on to support this idea, they

do seem to share at least one conviction: that the epistemic import of robust-

ness analysis comes from its ability to distinguish results that are artefacts of a

model’s idealizations/assumptions from those that are not. Unfortunately, how-

ever, what this conviction actually consists in is, in my view, far from clear. Con-

sider, for instance, the following quotations about some empirical results found

in a variety of scientific journals:

Fewer dolphins were sighted and acoustically detected after days of

big swells. That the same pattern was evident in both the visual and

acoustic data sets indicates that it is not an artefact of poor sighting

1As I will discuss in this chapter, Weisberg might not belong to this camp after all since accord-
ing to him ‘[r]obustness analysis helps to identify robust theorems, but it does not confirm them.’
(Weisberg 2006, 742).
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conditions on days with significant swell. (Dittmann et al. 2016, my

emphasis)

Together, these data suggest that inactivation is a function of the cal-

cium channels and was not an artefact of contamination by some other

current. (Schnee and Ricci 2003, my emphasis)

Attempts at disguising the addition of energy in the HED version

has been successful and [. . .] establish whether the reported changes

in liking were not an artefact of unexpected changes in sensory quality.

(Gould 2009, my emphasis)

I understand what is being asserted in these quotations: these are causal claims.

The sight of fewer dolphins is not an artefact of poor sighting if poor sighting

did not cause the sight of fewer dolphins. Inactivation is not an artefact of con-

tamination by some other currents if contamination of some other currents did

not cause inactivation. Reported changes in liking were not an artefact of unex-

pected changes in sensory quality if unexpected changes in sensory quality did

not cause the reported changes in liking. They also seem epistemically valuable

claims; what we learn from them is that a particular result/observation is not

due to a specific cause unrelated to the subject of investigation (and that might

thus lead to an incorrect conclusion in that investigation).

So I understand what is at stake in those quotations. By contrast, consider

the following:

In economics, proving robust theorems from different models with

diverse unrealistic assumptions helps us to evaluate which results

correspond to important economic phenomena and which ones are

merely artefacts of particular tractability assumptions. (Kuorikoski et

al. 2010, my emphasis)

To determine whether a theoretical result actually depends on core

features of the models and is not an artifact of simplifying assump-

tions, theorists have developed the technique of robustness analysis,
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the examination of multiple models looking for common predictions.

(Weisberg and Reisman 2008, my emphasis)

[Robustness analysis] allows us to learn if a model’s result is merely

an artefact of an idealization or if it is connected to a core feature of

the model. (Weisberg 2013, my emphasis)

But another possible explanation might be that the calculated result

is an artifact of the large grid size of the simulation. (Winsberg 2018,

my emphasis)

[. . .] we may discard worries that our result is an artefact of a particu-

lar unrealistic assumption of the first model by using a second model

that does not share that assumption. (Schupbach 2018, my emphasis)

These quotations, I find, are distinctly less clear. For although it seems evident

the authors of these lines share the implicit assumption that it should be obvi-

ous what it means to claim that a model’s result is not an artefact of an idealization,

I don’t think it is. What could it mean? For a start, notice that this cannot be

a claim about whether or not an idealization of the model played a role in the

derivation of the model’s result, since all of the model’s assumptions and ide-

alizations were used in the derivation of a model’s result. In other words, in

contrast with the previous claims, this cannot be a claim about what caused a

model’s result. It is also hard to see how this could be a claim about whether

or not the model’s result is true of the model’s target system. Firstly, the fact

that a model’s result is not an artefact of one particular idealization does not

tell us whether or not it is an artefact of some other idealization; learning that a

model’s result is not an artefact of a particular idealization could not therefore,

it seems to me, constitute a direct claim about a real-world phenomenon. If it

did, why claim a model’s result is not an artefact of a particular idealization,

rather than another? Secondly, it seems that the result could be true of the target

system despite the model’s result being an artefact of its idealizations (by mere

coincidence!).

Although the claim that a model’s result is not an artefact of an idealization

cannot be understood as direct claim about a real world phenomenon, perhaps
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it could be understood as a relational claim instead, in particular a claim about

how the idealization in question relates to the real world phenomenon under in-

vestigation. One way to cash this out could be to interpret the claim that a result

is not an artefact of an idealization as the claim that the idealization in question

merely distorts features of the target system that are not causally relevant to the

phenomenon under investigation. Indeed, as Rice (2012, 183) remarks ‘most ac-

counts of mechanistic modelling assume that successful models (for example,

those that can explain) are those models whose components and interactions ac-

curately represent the relevant (that is, difference-making) causal relationships

among the components of the target mechanism(s) and leave out—that is, ab-

stract away—irrelevant features’. But then could the authors of the above quotes

have something like this in mind? In other words, should we interpret the claim

that a result is not an artefact of idealization in the above quotes as the claim that

the idealization is ‘harmless’ (i.e. it merely distorts features of the target system

that are not causally relevant to the phenomenon under investigation)?

Leaving aside the various (serious) challenges that Rice raises against these

accounts of mechanistic modelling,2 it seems to me that the authors of the above

quotes cannot have something like this in mind either. This is because if all it

takes to discard worries that a model’s result is an artefact of an idealization

is to learn that another model which does not share that particular idealization

gives that same result, as all the authors of these quotes seem to implicitly or

explicitly assume, then the claim that a model’s result is not an artefact of a ide-

alization cannot be understood as the claim that that idealization is ‘harmless’

in the above sense. This is because this would entail that one would be entitled

to infer that an idealization is ‘harmless’ (i.e. that the feature of the target sys-

tem distorted by the idealization is causally irrelevant to the phenomenon under

investigation) from the mere discovery that some models which do not share a

2One important objection that Rice (2019) raises against these accounts is that the assumption
that ‘models can be decomposed into the contributions made by their accurate and inaccurate
parts’ (ibid., 180) on which these accounts of mechanistic modelling rely, is often not plausible
since in many cases of modelling ‘idealizations are not innocent bystanders that can be quaran-
tined by only distorting irrelevant (or insignificant) features; instead, they are deeply invested
collaborators that allow for the application of various mathematical modelling techniques’ (ibid.,
194).
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particular idealization happen to give the same result. And this is not plausi-

ble for at least two reasons. First, inferring a direct claim about the target phe-

nomenon (i.e. that a particular feature is causally irrelevant to the phenomenon

under investigation) from looking at the behaviour of some models would seem

to require a justification for why those models are relevant for inferring such a

thing. But to the best of my knowledge the authors of the above quotes offer no

such justification. This is, arguably, evidence that this cannot be what they have

in mind; 2) the models involve several idealizations not just the one in question.

And without knowing whether or not the models in question may involve other

not ‘harmless’ idealizations, it’s very unclear why looking at the behaviour of

these models could allow us to automatically infer a direct claim about a real

world phenomenon in the first place.

In light of the above discussion, it seems to me the only plausible interpreta-

tion of the claim a model’s result is not an artefact of an idealization in the above

quotations must concern the properties of the model relative to another model.

But which other model is far from obvious. Below are some suggestions.

My first suggestion is the following:

Interpretation I.1. A model’s result R is not an artefact of idealization A1 if when

replacing A1 with a more realistic assumption the (new) model would give the

same result R. 3

Under this interpretation, the claim that a model’s result R is not an arte-

fact of idealization A1 is merely a claim about a property of the model in

relation to another model. Hence on its own it tells one nothing about

whether or not the model’s result is actually true of the target system. To

see this, suppose the model contains another idealization B1. Clearly the

fact that the claim is true on its own entails nothing about whether R is in

fact true. All we know is that A1 + B1+ (all the other model’s assumptions

and idealizations) entail R and that replacing A1 with a more realistic as-

sumption does not affect this result. But this says nothing about whether

or not R is an artefact of e.g. B1; and if this were the case, then there would

3When an idealization is replaced with a more realistic assumption, this is usually described
in the literature as the de-idealization of a model.
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be no reason to think that R is actually true of the target system. Notice,

further, that a necessary condition for the claim to be true under this in-

terpretation is that the idealizing assumption A1 can be replaced with a

more realistic assumption in the first place. These types of idealizations

are known in the literature as ‘Galilean idealizations’ (McMullin, 1985).

Here is another suggestion:

Interpretation I.2 A model’s result R is not an artefact of idealization A1 if when

replacing A1 with a weaker assumption, i.e. an assumption that is entailed by A1,

the (new) model would give the same result R.

This is a rather different interpretation. Here, what one learns from the

claim that a model’s result R is not an artefact of idealization A1, is that R

can also be derived from replacing A1 with a weaker assumption, rather

than a more realistic one (as under interpretation I.1). And although a

weaker assumption can often be a more realistic one too, this is not al-

ways the case (e.g. the assumption that ‘my neighbour’s cat can speak

Italian and/or it is black’ is weaker but in no sense more realistic than

the assumption that ‘my neighbour’s cat is black’). From a mathematical

perspective, this is certainly an interesting claim to learn for as Raz (2017)

points out, learning that a result can be generalised seems to be relevant to

the mathematical explanation of a result. Clearly, however, as Raz points

out ‘the generalization of a result is only as good as the idealizations used

in the general model’ (Raz 2017, 751).

Here is a final suggestion:

Interpretation I.3 A model’s result R is not an artefact of idealization A1 if when re-

placing A1 with another (equally unrealistic) idealization the (new) model would

give the same result R.

From a mathematical point of view, learning that R can be derived by re-

placing A1 with another idealization A2 does not strike me as a particularly

interesting fact in itself: it might for all we know be a mere mathematical
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coincidence.4 Of course, learning this fact might prompt one to search for

a mathematical explanation for this apparent coincidence (for instance, by

showing that these two distinct models are special cases of a more gen-

eral model which also gives R); and one might find it! But whether or not

one finds it, and whatever mathematically valuable ‘discovery’ one may

make along the way, it is not the prompting fact that is mathematically

(and hence perhaps also epistemically) valuable, but that subsequent de-

velopment.

It should, of course, be mentioned that idealizations are not the only source

of worries when it comes to modelling. One might often also lack trust in a

model’s result because the model involves assumptions about the target system

that could be true or false (in contrast with idealizations); assumptions one is

unsure are true. What if the claim was not about an idealization, but about an

assumption? That is, what could the claim that ‘a model’s result is not an artefact

of a model’s assumption’ mean? Here are three suggestions, in spirit akin to

those that came before:

Interpretation A.1. A model’s result R is not an artefact of assumption A1 if when

replaced with a true assumption the (new)5 model would give the same result R.

Under this interpretation when we learn that a model’s result R is not an

artefact of a particular assumption A1, we learn that if A1 were to be re-

placed with a true assumption Ak, the (new) model would give the same

result R. Notice, however, that we could learn this fact despite not know-

ing what assumption Ak actually consists in. For instance, assume that

there is a finite set of possible assumptions A2, A3, . . . An about the tar-

get system that can replace A1 and that we know that one of them must

be right, despite not knowing which one is right. Suppose further that we

learn that result R can be derived from the set of models consisting of the

4I am using the notion of mathematical coincidence in the sense of Lange (2010). According
to him it is a coincidence that two mathematical facts are true iff they have no ‘single unified
explanation’ i.e. a proof that explains ‘why (and prove[s] that) all of the components of the non-
coincidence are true if any one is true - that is, why they all stand or fall together’. (Lange 2010,
327)

5Strictly speaking the new assumption could be same assumption as A1 so in this case using
the word ‘new’ would be inappropriate.
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model we started with (which involves A1) and the models for which A1

has been replaced with A2, A3, . . . and An respectively. In this case we

learn that when replacing assumption A1 with a true assumption Ak for

some k ∈ (1, 2, . . . , n), the (new) model gives the same result R, despite

not knowing the value of k. As all the other interpretations, under this in-

terpretation the claim that a model’s result is not an artefact of assumption

A1 is first and foremost a claim about a property of the model in relation

to another.

Interpretation A.2. A model’s result R is not an artefact of assumption A1 if when

replacing A1 with a weaker assumption, i.e. an assumption that is entailed by A1,

the (new) model would give the same result R.

Very similar considerations to the ones I made about interpretation I.2

apply to this interpretation.

Interpretation A.3. A model’s result R is not an artefact of assumption A1 if when

replaced with another not necessarily true assumption the (new) model would

give the same result R.

Notice that in some special cases learning that a model’s result R is not

an artefact of assumption A1 under this interpretation entails that we also

learn this claim under interpretation A.1. Suppose, for instance, that there

is only one possible assumption A2 that can replace A1, and that we know

that Ak is true for some k ∈ [1, 2]. Clearly in this case, if we learn that a

model’s result R is not an artefact of assumption A1 under this interpreta-

tion we also learn the same claim under interpretation A.1.

This is not at all meant to be an exhaustive list of all possible interpretations of

the claim that a model’s result is not an artefact of an idealization/assumption.

However, by offering these distinct possible interpretations, I want to stress the

fact that an assessment of the epistemic value of learning that a model’s result is

not an artefact of an idealization/assumption requires first and foremost an un-

derstanding of what such learning consists in. Unfortunately, in my view, pro-

ponents of robustness analysis as an epistemic tool are often not sufficiently clear
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about what such learning does consist in. This lack of clarity is, I believe, partly

responsible for the confusion and contention surrounding the epistemic import

of model-based robustness analysis. Clearly, however, it is impossible, in the ab-

stract, to settle as much; hence only an investigation of actual cases of robustness

analysis can help us understand what its proponents might implicitly mean by

the claim that a model’s result is not an artefact of an idealization/assumption.

The overall aim of this chapter is to critically assess the view that robustness

analysis has a rightful claim as a method of discovery of what are known in the

literature as “robust theorems”, which are theorems of the general form: ‘Ce-

teris paribus, if [common causal structure] obtains, then [robust property] will

obtain’ (Weisberg 2006, 738).6 Its structure is as follows. In Section 3.2, I will

discuss the discovery of the Volterra principle through the analysis of predator-

prey models, a principle which is considered ‘an especially striking example of

a “robust theorem”’ (Weisberg and Reisman, 2008) in the literature on robust-

ness analysis. Through this example, I will show that the claim that a model’s

result is not an artefact of an idealization/assumption must often be used with

various different interpretations implicitly in mind. In Section 3.3, I will discuss

in detail Weisberg’s general characterization of robustness analysis. I will argue

that by accepting that ‘low-level confirmation’ automatically confirms ‘robust

theorems’, as Weisberg does, one must at the same time accept that robust theo-

rems do not have to concern the actual world for them to deserve the name and

hence that one is not warranted to assume that they can be useful for explain-

ing or predicting real-world phenomena, contrary to what is usually assumed

in the literature. Hence, I will conclude that if one thinks that robust theorems

must concern the actual world, one cannot assume that they are automatically

confirmed by Weisberg’s notion of low-level confirmation.

3.2 Robustness reasoning “in action”

The Lotka-Volterra model (independently proposed by Volterra (1926) and Lotka

(1956)) is used to represent the behaviour of real-world predator-prey systems

6Whereas in the next chapter, I will critically assess the view that robustness analysis has a
rightful claim as a method of confirmation of “robust theorems”.
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and is described by the following two coupled ordinary differential equations:

dV
dt

= rV − (aV)P (3.1)

dP
dt

= b(aV)P−mP (3.2)

Where V(t) and P(t) stand for the size of the prey and predator population at

time t, respectively. The constant r stands for the birth rate of the prey popu-

lation and the constant m stands for the death rate of the predator population.

The constant a stands for the predator attack rate and the constant b stands for

the predator conversion efficiency.

The Lotka-Volterra model involves several idealizing assumptions. For in-

stance, the model assumes that prey are born at a single constant rate, or that

predators have no saturation, that is that their consumption rate is potentially

unlimited. It assumes that the predator attack rate is not affected by the size of

the predator population nor by any other plausible factors (such as the number

of refuges the prey have access to and many others). We know that these are

false simplifying assumptions that do not hold for any real-world predator-prey

system. So in light of these idealizations, it is not clear why one should think of

the Lotka-Volterra model as an adequate representation of real world predator-

prey systems and hence, due to this, why we should trust any of its results to

hold in real-world predator-prey systems.

However, there is one result in particular that is of interest to Weisberg and

Reisman (2008). A straight forward calculation reveals that the ratio of the equi-

librium value of the predator population, P̂, to that of the prey population, V̂ is

given by

ρ = rb/m. (3.3)

And an investigation of this equation reveals that the introduction of an external

factor that decreases the prey growth rate, r, and increases the predator death

rate, m, will decrease the value of ρ. But the equilibrium values for P and V are
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also the time averages for the predator and prey populations respectively in this

case.7 Hence this shows that the introduction of an external factor that decreases

the prey growth rate, r, and increase the predator death rate, m, will decrease the

ratio of the time averages for the predator population, P̄, to the time average of

the prey population V̄. This result, known as the Volterra Property, is interpreted

by Weisberg and Reisman (2008, 113) as follows:

The introduction of any substance that has a harmful effect on both

predators and prey (a general biocide), will increase the relative abun-

dance of the prey population.

Weisberg and Reisman show that what is special about the Volterra property

is that it is present across several other models that, despite being different in

several respects, all share a common assumption: the predator-prey system is

negatively coupled, i.e. ‘increasing the abundance of predators decreases the

abundance of prey and increasing the abundance of prey increases the abun-

dance of predators’ (ibid., 114). This, according to them, shows that the follow-

ing principle, which is an example of what Weisberg calls a ‘robust theorem’, is

a true empirical hypothesis.

The Volterra principle: Ceteris paribus, if a two-species, predator-prey

system is negatively coupled, then a general biocide will increase the

abundance of the prey and decrease the abundance of predators.

In Section 3.3, I will look in detail into why according to Weisberg we should

believe the Volterra Principle (and robust theorems in general) to be a true em-

pirical hypothesis. But before I do that let us first have a look at some of the

models they consider to conclude that the Volterra principle is a “robust theo-

rem” in the first place.

To demonstrate that the Volterra principle is ‘an especially striking example

of a robust theorem’, Weisberg and Reisman (2008) make an important distinc-

tion between parameter robustness analysis, structural robustness analysis, and

7Due to other properties of the Lotka-Volterra model in this case the average abundance of a
system does coincide with the equilibrium. However, the existence of an equilibrium does not in
general imply that the average abundance of a system will coincide with that equilibrium.
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representational robustness analysis and argue that the Volterra property is ro-

bust under each of these three distinct kinds of robustness analysis. According

to them,

Taken together, these three kinds of robustness analysis are a pow-

erful way of demonstrating that a particular modeling result is not

dependent on the particular assumptions or idealization embodied

in a model or family of models. (Weisberg and Reisman 2008, 108)

As I will show in this section, if each of these distinct kinds of robustness anal-

ysis (parameter, structural, and representational) is a way of demonstrating that

a particular model’s result is not an artefact of particular assumptions or ideal-

izations, then this must mean that Weisberg and Reisman have a rather liberal

conception of the claim that ‘a model’s result is not an artefact of an idealization

or an assumption’ (i.e. they must embrace various different interpretations of

this claim at once). For, as we will see, each kind of robustness has an associated

distinct class of models for which the Volterra property is derivable; and hence

each kind of robustness involves showing that the Lotka-Volterra property is not

an artefact of an idealization/assumption under different interpretations. Let us

look at each in turn.

Parameter robustness analysis involves checking whether a model described

by the same equations as the original Lotka-Volterra model but with different

parameter values gives the same result (i.e. the Volterra property). According

to Weisberg and Reisman, all parameter values where the two species coexist

yield the Volterra property. So the Volterra property seems to exhibit parameter

robustness. But what fact do we learn from this? That clearly depends on what

one thinks of the Lotka-Volterra model in the first place. If one believes that

the Lotka Volterra’s model is an accurate representation of the phenomenon of

interest then the fact that the Volterra principle is robust across all parameters

shows that despite the fact that one might not be sure about what the correct

parameter values are, the same result will be derived by a model with the correct

parameter values (regardless of what those might be). Hence what one learns
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from this fact in this case is that a model’s result R is not an artefact of an assumption

under interpretation A.1.8

On the other hand, if one does not think that the Lotka-Volterra model is an

accurate representation of the phenomenon of interest then it is not so clear what

fact we are learning from parameter robustness. This is because some of the pa-

rameters might not have a straightforward physical interpretation in this case.

To see why this may be, suppose that we don’t think that the assumption that

the prey birth rate is constant is a reasonable assumption to make about a par-

ticular real predator-prey system since we have good reasons to believe that the

amount of available resources in the environment (which affects the birth rate)

will greatly vary over time due to e.g. the changing size of the prey population

over time or perhaps other factors (such as a fluctuating environment which

may affect the amount of available resources).9 In this case a specific value for

the constant r can no longer be assumed to be a factual assumption about what

is the prey birth-rate because the birth rate is not a constant! Hence, it seems

to me that the right way to interpret a specific choice of a parameter value for

the prey birth rate r, in this case, is not as an assumption that could be true or

false about the system, but as an idealization that is known to be false no mat-

ter what parameter value we pick. Hence what one seems to be learning from

parameter robustness in this case is that a model’s result R is not an artefact of an

idealization under interpretation I.3 (and perhaps also interpretation I.1, as long

as we believe that some parameter values for the prey birth rate, although still

idealization, are in some sense more realistic than others).

Structural robustness analysis involves making structural changes to the Lotka-

Volterra model, while keeping the core negative coupling intact. An example of

a structural change Weisberg and Reisman consider is the addition of a max-

imum carrying capacity to the growth rate of the prey (i.e. in the absence of

predators, the prey population is no longer assumed to grow exponentially as

8Refer to Section 3.1 for a description of this interpretation and for all the others that I will
mention in this section.

9Indeed virtually all biological populations live in a seasonal environment, but the strength of
the seasonality varies enormously, as does an organism’s response to it. See, for instance, Vander-
meer (1996) and Sauve et al. (2020) for examples of how one may modify the Lotka-Volterra model
so to make the prey birth rate or the predator attack rate dependent on seasonal fluctuations.
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there is now a maximum size to which it can grow). This is achieved by making

the prey population growth rate density dependent so that the new model is

described by the following two equations:

dV
dt

= r(1− V
K
)V − (aV)P (3.4)

dP
dt

= b(aV)P−mP (3.5)

They go on to show that this model also exhibits the Volterra property and hence

that this is in an instance of structural robustness. But what do we learn from this

fact? It seems to me that what we are learning in this instance is that by replacing

an idealization in the original Lotka-Volterra model (i.e. the assumption that the

prey population will grow exponentially in the absence of any predator) with

a more realistic assumption (i.e. that there is a maximum carrying capacity to

the growth rate) the (new) model will give the same result (i.e. the Volterra

property). But then this seems to be a case where we learn that the model’s result

is not an artefact of a model’s idealization under interpretation I.1.

According to Weisberg and Reisman:

Further structural robustness analysis would consider other changes

to the causal structure represented in the model drawn from the

kinds of ecological factors known to be relevant to population dy-

namics and predation. While any change to the basic structure is a kind

of structural robustness test, ecologists are most interested in the ones

that are potentially ecologically realizable. When a robust property

survives all or some range of structural robustness tests, then we can

say that the property is structurally robust to such and such changes

to the causal structure of the system. If these changes sample a suffi-

ciently broad set of ecologically plausible circumstances, then ecologists

will often simply refer to a phenomenon as robust. (Weisberg and

Reisman 2008, 119, my emphasis)
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The emphasized remarks in this quote suggest that according to them struc-

tural robustness analysis can also allow us to learn that model’s result is not an

artefact of an idealization or an assumption under various other interpretations

(such as interpretation I.3 or interpretation A.1).

It is worth pointing out that Raz (2017) demonstrates that as long as a con-

dition that ensures that the average abundance of a system coincides with the

relevant equilibrium is satisfied (see Raz 2017, 748), the Volterra principle holds

for a more general model10 described by the following coupled ordinary differ-

ential equations:

dV
dt

= r f (V)V − p(V)P (3.6)

dP
dt

= p(V)P−mP (3.7)

where f (V) and p(V) are assumed to be differentiable for V ≥ 0 with d f
dt ≤ 0

and dp
dt > 0. And f (0) = a > 0, p(0) = 0.

Since this model encompasses both the original Lotka-Volterra model and

the new model considered above, ‘this generalization shows that the models

investigated by Weisberg are not really independent, but rather belong to the

same type, and that they all satisfy the Volterra Principle, because they are of

this type’ (Raz 2017, 751). So from Raz’s analysis one also learns that the model’s

result R is not an artefact of an idealization under interpretation I.2.

Finally, representational robustness analysis involves changing the ‘representa-

tional framework’ of the Lotka-Volterra model and assessing whether the same

result (i.e. the Volterra property) still obtains. The following quote clarifies what

Weisberg and Reisman mean by the representational framework of a model:

Mathematical models can be thought of as being composed of state

variables, which are variables that represent the properties (states)

of interest to the modeler and transition rules, the rules that gov-

ern how the states change through time. [. . .] The representational

framework of the model is a general description of the type of state
10Which is a slight modification of one proposed by Gause (1934).
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variables and the type of transition rules the model employs. For

example, the variables in a biological model might represent indi-

viduals or populations. [. . .] Transition rules can be deterministic,

probabilistic, or stochastic. They can also be discrete or continuous

with respect to time. (Weisberg and Reisman 2008, 120)

Indeed there are always several possible mathematical frameworks to choose

from when modelling any phenomenon. For instance, the Lotka-Volterra’s model

uses population state-variables, whereas one could choose to model a prey-

predator system using individual state variables instead. It also has determinis-

tic transition rules that are continuous with respect to time. But one could very

well choose to make them discrete with respect to time etc.

As an instance of representational robustness analysis, Weisberg and Reis-

man demonstrate that the Volterra property can be derived11 using a (density-

dependent) individual-based model in which the Lotka Volterra model’s vari-

ables, parameters and other assumptions are all translated into individual-based

terms and which also defines a negatively coupled predator-prey system.12 Hence

we find that the Volterra Principle also holds in this model. But what do we learn

from this fact? Are we learning that the Lotka- Volterra property is not an artefact

of a particular idealization? And if so under what interpretation?

As Lisciandra (2017) points out, one clear difference between the population-

based and the individual-based Lotka Volterra model is that the former assumes

that the population is continuous whereas the latter assumes that the population

is discrete, which is evidently a more realistic assumption. Could then this be an

instance in which we learn that a model’s result is not an artefact of an idealizing

assumption under interpretation I.1? No, since as Lisciandra (2017) remarks:

On the one hand, the fact that an individual-based model which is

based on discrete populations gives the same result as the Lotka-

Volterra model is an indication that the Volterra principle can also be

11This is done via the investigation of computational simulations rather than mathematical
analysis.

12In this case a model that defines a negatively coupled predator-prey system is one for which
(Ceteris Paribus) increasing the abundance of predators decreases the expected number of prey
and increasing the abundance of prey increases the expected number of predators.
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derived under the assumption of discrete populations. On the other

hand, however, when translating the Lotka-Volterra model into an

individual-based model, many aspects of the initial model change.

These changes come within an entirely new modeling ‘package’, whose

assumptions will have to be tested in turn. Note that the more as-

pects have been changed, the further we are from analyzing the ef-

fect of one specific assumption. (Lisciandra 2017, 83)

Indeed, the population-based model and the individual-based model differ in

all sorts of idealizations (for instance the individual based model involves sev-

eral idealizations with respect to the behavioural rules of the individuals and

the spatial representation of their environment whereas the population based

Lotka-Volterra model clearly does not), not just in the assumption the popula-

tion is assumed to be discrete rather than continuous. Hence, on further thought

it does not seem that one can assert that the fact that the Volterra property ob-

tains in this new representational framework shows that the Volterra property

is not an artefact of a particular idealization under any interpretation discussed

in Section 3.1. But if we don’t learn that the model’s result is not an artefact of

an idealization, then what do we learn? I think this case should be thought of

as a mathematical coincidence (in the sense of Lange (2010))13 of questionable

epistemic significance in and of itself. Suppose, for instance, that one were to

construct a model with a different representational framework which defined a

negatively coupled predator-prey system but that did not manifest the Volterra

property. What would we learn in this case as far the Volterra principle is con-

cerned? Clearly in this instance, ‘the problem [would become] that of assessing

which result is more accurate on the basis of the different merits of each model’

(Lisciandra 2017, 88). And if this is so, I don’t see why the nature of the prob-

lem should change when it comes to Weisberg and Reisman’s individual based

model’s result. In other words, it seems prima-facie reasonable to assume that

the epistemic value of learning that an individual-based model also manifests

13Notice that since the models do not share a mathematical framework it is hard to see how Raz
(2016)’s generalization approach could work in this case.
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the Volterra property should be determined on the basis of the merits of this

model, and this model alone.

Overall, from the above discussion it is clear that the popular claim that ro-

bustness analysis allows one to learn that a model’s result is not an artefact of a

particular idealization/assumption is a particularly ambiguous one. In partic-

ular, in this section we have seen that such a claim must be interpreted differ-

ently depending on what particular instance of robustness analysis one is deal-

ing with in any given case. And we have further seen that the claim must in fact

be false as far as some instances of robustness analysis are concerned (e.g. cases

of representational robustness analysis). But if we are genuinely interested in

understanding the epistemic import of robustness analysis, it is important that

we desist from relying on ambiguous claims in our efforts to do so. Hence in

what follows, I shall endeavour to avoid any such ambiguous claims.

3.3 Robust theorems, low-level confirmation and ceteris

paribus clauses

According to Weisberg (2006) the discovery of the Volterra principle through the

analysis of predator-prey models provides an ‘excellent template for a more gen-

eral characterization of robustness analysis’ (ibid. 737), which he characterizes

as a four step procedure: (i) evaluate whether a group of models share a common

result R; (ii) determine whether this set of models share a common substantial

assumption C; (iii) formulate the robust theorem: a conditional statement link-

ing the common substantial assumption C to the robust property R, prefaced by

a ceteris paribus clause; (iv) conduct “stability analysis” of the robust theorem,

with the aim of finding out what conditions will defeat the connection between

C and R.

In light of Weisberg’s general characterization of robustness analysis, there

are a couple of questions on which I want to focus in this section. First, what

does a robust theorem say about the world (i.e. what is a robust theorem’s em-

pirical content) according to Weisberg? Second, what reasons do we have for

believing that the robust theorem is a true theorem about the world according to
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Weisberg? Before grappling with these questions, however, let us have a closer

look at what Weisberg has to say about each of the above steps.

3.3.1 Weisberg’s general characterization of robustness analysis

As mentioned above, in the first step, one must evaluate whether a set of models

share a common result R. All that Weisberg says about this step is to make sure

to collect ‘a sufficiently diverse set of models so that the discovery of a robust

property does not depend in an arbitrary way on the set of models analyzed’

(ibid. 737). Weisberg, however, does not clarify what it takes for a set of models

to be sufficiently diverse for this step to be carried out appropriately, so if there

are any criteria on which to select these models according Weisberg, these are

at best left vague. In the second step (conducted subsequently to the first step

or in parallel with it) one must determine whether this set of models share a

common structure. However, Weisberg notes that this step might not always be

straightforward to carry out. For although there are cases in which the common

structure will have the very same mathematical structure in each model (as, for

instance, we have seen in the case of parameter and structural robustness for the

Volterra principle), this may not always be the case. For when models are devel-

oped using different mathematical frameworks, or ‘represent a similar causal

structure in different ways or different levels of abstraction’ (ibid., 738), if the

models are deemed to share a common structure this cannot be due to them

sharing the very same mathematical structure. Hence:

Such cases are much harder to describe in general, relying as they

do on the theorist’s ability to judge relevantly similar structures. In

the most rigorous cases, theorists can demonstrate that each token

of the common structure gives rise to the robust behavior and that

the tokens of the common structure contain important mathematical

similarities, not just intuitive qualitative similarities. However, there

are occasions in which theorists rely on judgment and experience,

not mathematics or simulation, to make such determinations. (ibid.,

738)
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If the first and second step have been carried out successfully, one can proceed

to the third step: formulating the robust theorem of the general form: ‘Ceteris

paribus, if [common causal structure] obtains, then [robust property] will obtain’

(ibid., 738). Weisberg stresses that in order to carry out this step successfully

one must interpret the common structure shared by the models and the robust

property as descriptions of empirical phenomena. For if the robust theorem is

indeed a theorem about the real world, then it must concern properties of real-

world phenomena, not of mathematical structures.

In the fourth and final step, one should conduct ‘various kinds of stability

analaysis’. The purpose of this step according to Weisberg ‘is to determine what

happens to the robust theorem when the situation described by the set of models

varies slightly’ (ibid., 738). As an instance of stability analysis, Weisberg asks us

to the consider the transition from the original Lotka-Volterra model and the one

with the prey population growth rate density dependent (both models were dis-

cussed in Section 3.3.1). One way to think about this transition is to ask whether

the Volterra principle will still hold, ‘when density dependence, even an arbi-

trary small amount of it, is factored into the model’ (ibid., 738). As discussed

in Section 3.3.1, the Volterra principle turns out to be insensitive to density de-

pendence (because it holds for all parameter values). According to Weisberg,

in cases where stability analysis is carried out extensively, ‘it may ultimately be

possible to replace a robust theorem’s general ceteris paribus clause with a very

specific statement of the conditions that defeat the efficacy of the core structure

in generating the robust properties’ (ibid. 739).

So in a nutshell, robustness analysis, according to Weisberg is a four step

procedure that allows as to discover robust theorems of the general form: ‘Ce-

teris paribus, if [common causal structure] obtains, then [robust property] will

obtain’, which are theorems about the real world. But what can we do with these

theorems? Does Weisberg think we can use them to explain a real-world phe-

nomenon or to predict its occurrence? Yes and no, according to Weisberg. No,

because robust theorems are conditional statements, further attenuated with ce-

teris paribus clauses. But for robust theorems to allows us to give us an adequate
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explanation of a real world phenomenon or a successful prediction of its occur-

rence, we would have to know that the common structure is actually being in-

stantiated in the target system and that no other causal factor is preempting the

efficacy of the common structure. Since robust theorems are silent with respect

to these questions, they can’t on their own increase the quality of our predictions

and explanations about real-world phenomena. Yes, because if were we to know

that the common structure is instantiated and that no preempting causal factors

are present in the target system, we could in such cases use robust theorems to

explain or predict.

Weisberg seems to accept that whether the common structure is being in-

stantiated and if any preempting causes are present in the target system can

only be reliably assessed though an empirical investigation. However, he also

suggests that in cases where it is impossible to collect the relevant data, there

are some techniques associated with robustness analysis that can help us settle

whether the common structure is instantiated in the target system and that no

other causal factor that can preempt its efficacy is present.

How can techniques associated with robustness analysis help us settle that

no other causal factor is preempting the efficacy of the common structure? Ac-

cording to Weisberg the answer lies in the fourth step of robustness analysis:

In order to determine how sensitive a robust property is to perturba-

tions, theorists engage in various kinds of stability analyses. If fully

carried out, the fourth step of robustness analysis provides enough

information to determine what kinds of perturbations will preempt

the occurrence of the robust property, even when the core structure

is instantiated. (ibid., 740)

However, notice that even if, through stability analysis, we were to achieve an

understanding of all the conditions that defeat the efficacy of the core structure in

generating the robust property, without the knowledge of whether or not those

conditions are present in the target system, this is not going to help us settle

that no causal factor is preempting the efficacy of the common structure in the

target system. In order to settle this, it seems to me, we would also have to know
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that those conditions are not present in the target systems, and this can only be

settled though an empirical investigation of the real phenomenon of interest.

How can techniques associated with robustness analysis help us settle whether

or not the common causal structure is instantiated in the target system? Accord-

ing to Weisberg:

The key comes in ensuring that a sufficiently heterogeneous set of

situations is covered in the set of models subjected to robustness

analysis. If a sufficiently heterogeneous set of models for a phe-

nomenon all have the common structure, then it is very likely that

the real-world phenomenon has a corresponding causal structure.

This would allow us to infer that when we observe the robust prop-

erty in a real system, then it is likely that the core structure is present

and that it is giving rise to the property. (ibid., 739)

Weisberg makes two claims in the above quote. The first is that ‘if a sufficiently

heterogeneous set of models for a phenomenon all have the common structure,

then it is very likely that the real-world phenomenon has a corresponding causal

structure’. The only way to make sense of this claim, it seems to me, is if accord-

ing to Weisberg a sufficiently heterogeneous set of models is one which exhaus-

tively (or nearly exhaustively) samples all possible representations of the target

system. If this were the case, then the discovery that all these models in this

set happen14 to share a causal structure would seem to entitle us to infer that

that causal structure must be instantiated in the target system. Weisberg’s sec-

ond claim is that ‘this would allow us to infer that when we observe the robust

property in a real system, then it is likely that the core structure is present and

that it is giving rise to the property’. Weisberg’s idea here must be that because

this set of models exhaustively samples all possible representations of the target

system, and we have identified only one causal structure that can give rise to

14I use the term ‘happen’ here to stress the fact that the models in this set couldn’t have been
selected on the basis that they share a common causal structure. For if they were selected on
such basis, then it is plausible to believe this set of models exhaustively samples all possible
representations of the target system only if one has independent reasons for believing that any
possible representation of the target system must necessarily have that causal structure. But if this
were the case, one would already believe that the causal structure is present prior to subjecting
any model to robustness analysis!
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the robust property across all these models, then if we observe the robust prop-

erty in a real system, we seem to be entitled to infer that the observed property

must be due to that causal structure being present and giving rise to it (since we

have determined that no other causal structure can give rise to that property)15.

In other words, ‘The qualifier “sufficiently heterogeneous” helps guard against

the possibility that another structure found outside the set of models considered

generates [the robust property]’ (Justus 2012, 800).

I suggested that the only way to make sense of Weisberg’s two claims above

is that a sufficiently heterogeneous set is one that exhaustively (or nearly ex-

haustively) samples all possible representations of the phenomenon of interest

for as Houkes and Vaesen (2012, 352) put it ‘that instantiation of the causal struc-

ture is only credible if, as the formalist critics submit, all conceivable models of

a target system or phenomenon are inspected. Until this completeness has been

achieved, any shared structure found responsible for a robust property may be

an artefact of the limited scope of explorative robustness analysis, even if the

implications of highly diverse models would be inspected’. But if this is what

it takes for a set of models to be sufficiently heterogeneous, then Weisberg’s no-

tion of sufficient heterogeneity is clearly an extremely demanding one, one that

is arguably very hard (if even possible) to achieve in most cases. But without

achieving it, the inference from the observation of the robust property in a real

system, to the hypothesis that the common causal structure is instantiated and

that it is giving rise to that property would at best be an inference to the best ex-

planation (or rather an inference to the only possible explanation that we have

discovered so far). It is also important to recognize that this notion of ‘sufficient

heterogeneity’ is in fact irrelevant to the practice of robustness analysis as char-

acterized by Weisberg. This is because one of the conditions for the set of models

to be subjected to robustness analysis is that the models share a common struc-

ture. In other words, if we were to find out that a model does not have the com-

mon structure shared by the other models we would regard the behavior of this

15Under this interpretation, however, it is unclear why the second claim relies on the first claim.
For the second claim would still hold if not all models for a phenomenon were to share the same
causal structure, as long as the models that do not have the causal structure in question do not
also have the robust property.
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model as irrelevant for our current purpose, that of discovering a robust theorem

(which concerns a given causal structure and a given property that this structure

is supposed to give rise to). For instance, the only models that are relevant to as-

sess the robustness of the Volterra principle are models of predator-prey systems

that are negatively coupled, because ‘negative coupling is a necessary condition

for a system to demonstrate the Volterra Principle’ (Weisberg and Reisman 2008,

124).

Overall, despite Weisberg’s (tentative) suggestions on how techniques asso-

ciated with robustness analysis can help us settle whether a causal structure is

instantiated in the target system and whether any causal factor is preempting

the efficacy of the common structure, I will assume that these are questions that

should be settled through an empirical investigation and that the practice of ro-

bustness analysis is not about providing an answer to these questions. Given

this, it is time to come back to the two questions that I raised at the beginning of

this section:

1. What does a ‘robust theorem’ say about the world (i.e. what is the empiri-

cal content of a robust theorem)?

2. Why should we believe a robust theorem is a true claim about the world?

In the next section, I will argue that by accepting Weisberg’s answer to the sec-

ond question, it is impossible to give an adequate answer to the first; and that it

is unclear what is the epistemic value of having an answer to the second ques-

tion, without having an answer to the first.

3.3.2 On the empirical content of robust theorems

What does Weisberg have to say about the second question? That is why, ac-

cording to Weisberg, should we believe a robust theorem is a true claim about

the world?

According to Weisberg the robust theorems that are generated in the the third

step of robustness analysis are confirmed empirical hypotheses. But what entitles

us to move from a mathematical fact (i.e the fact that a set of models that share

a common structure all entail a result) to an empirical one? Weisberg argues
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that although the move may appear illicit for it seems to rely on some sort of

“nonempirical confirmation”, it is not:

While the transition from mathematical to empirical may look illicit

when described as “nonempirical confirmation,” it is actually part of

a well-accepted theoretical practice that is so common, it is rarely dis-

cussed explicitly. In every scientific domain, theorists must establish

that the mathematical framework in which their theories are framed

can adequately represent the phenomena of interest. (ibid., 740)

According to Weisberg, what licenses us to move from the mathematical to the

empirical is what he calls “low-level confirmation”, which is ‘the sort of confir-

mation that licenses the use of framework to construct models of phenomena

in the first place’ (ibid., 742). As an example of low-level confirmation, he con-

siders the logistic growth model of population. According to Weisberg, if we

know that a population is growing logistically, the very fact that we think that

the logistic growth model adequately represents this growth relies on low-level

confirmation:

By way of example, consider models of population growth. Standard

issues in confirmation theory concern whether a particular kind of

model, such as the logistic growth model, is confirmed by the avail-

able data. However, there is a prior confirmation-theoretic question

that is often asked only implicitly: If the population is growing logis-

tically, can the mathematics of the logistic growth model adequately

represent this growth? Theorists rarely articulate such questions in

research articles, but an affirmative answer underlies their research.

(ibid., 740)

Similarly, Weisberg argues that what confirms the robust theorems discovered

through the practice of robustness analysis is the low-level confirmation of the

mathematical framework in which they are embedded:

In the predation case, for example, we are confident that ecologi-

cal relationships can be represented with the models described by
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coupled differential equations. Thus when we discover the conse-

quences of these models, we are confident that most of these con-

sequences are true of any system described by the model[s]. This

confidence comes from low-level confirmation, not from robustness

analysis itself. Thus robustness analysis is not a nonempirical form

of confirmation as Orzack and Sober suggest. It does not confirm ro-

bust theorems; it identifies hypotheses whose confirmation derives

from the low-level confirmation of the mathematical framework in

which they are embedded. (ibid., 741)

However, Weisberg’s notion of low-level confirmation does raise some questions

and some hesitations too. For a start, one may worry that Weisberg’s notion of

low-level confirmation relies on the idea that mathematics itself is confirmable

(as Justus (2012) does). If so, this would be odd for more than one reason:

Apart from the unusual idea that mathematics itself is confirmable

(Sober 1993), however low level, it is unclear whether this modal-

ity can do that work. First, it seems highly implausible that richer,

more expressive mathematical frameworks are somehow confirmed

by their greater representational capability. What matters for confir-

mation is whether an empirically interpreted mathematical structure

does adequately represent, not whether the mathematical framework

in which it is expressed can. Second, confirmation increases proba-

bility for almost all theories of confirmation. If mathematical frame-

works possess low-level confirmation, this would entail the odd re-

sult that empirically interpreted but thoroughly empirically inade-

quate mathematical structures would nevertheless receive a proba-

bility boost from the representationally adept framework they are

expressed within’. (Justus 2012, 800)

Luckily, however, if all that low-level confirmation is supposed to do is allow

us to give an affirmative answer to prior confirmation-theoretic questions such

as ‘if the population is growing logistically, can the mathematics of the logistic

growth model adequately represent this growth?’, then this does not seem to
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rely on the idea that maths itself is confirmable (whatever that may mean). So,

arguably, this worry is unjustified.

Notwithstanding this, there is a second more important worry. As Houkes

and Vaesen observe, Weisberg is ambiguous about the scope in his notion of low-

level confirmation. Is it supposed to apply to a broad mathematical framework,

say that of coupled differential equations? Or to a specific model family? Or to

individual models?:

Weisberg (2006, 740–41) suggests that low-level confirmation is based

on predictive accuracy and that it warrants belief in the representa-

tional accuracy of both “the mathematics of the logistic model” and

“the models described by coupled differential equations.” This il-

lustrates, in our opinion, the ambiguities of scope in the notion of

low-level confirmation: even if one assumes that the former applies

to all models described by the logistic equation, it is much more spe-

cific than the latter—and one would expect such differences to be

relevant to the scope of robustness analysis. (Houkes and Vaesen

2012, 353)

Third, and relatedly, if low-level confirmation is the sort of confirmation that

licenses the use of framework to construct models of phenomena in the first,

then what is the feature/property of the framework that we compare to reality to

determine when we are indeed licensed to do so? Without a clear understanding

of the scope in the notion of low-level confirmation, it seems particularly hard

to give an adequate answer to this question.

Last but not least, it is important to note that according to Weisberg low-

level confirmation licenses us to believe that for all the models we have collected

to undergo robustness analysis ‘when we discover the consequences of these

models, we are confident that most of these consequences are true of any system

described by the model[s]’ (Weisberg 2006, 741; my emphasis). This means that if

the systems described the models are fictional systems, that is systems that are

unrealistic with respect to the target system in various respects, then all that low-

level confirmation allows us to establish, according to Weisberg, is that if those
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fictional systems happened to exist in the real-world then we would be entitled

to believe that the consequences of our models are true in those systems. But

then, if we are interested in learning about properties of the target system and

not a fictional one, low-level confirmation in and of itself can’t help us with that.

In any case, and independently of what low-level confirmation is all about,

if as Weisberg argues low-confirmation is really what entitles us to believe the

robust theorems to be true theorems about the world, and robustness analysis

is merely a procedure to discover them, a question arises: why does Weisberg

stress that one should collect ‘a sufficiently diverse set of models so that the

discovery of a robust property does not depend in an arbitrary way on the set

of models analyzed’ in the first step of robustness analysis? In other words, if

low-level confirmation is really what ‘licenses us to regard the mathematical de-

pendence of [property R] on [structure C] as a causal dependence’ (ibid., 741)

then it seems that whether or not this mathematical dependence should be re-

garded as a causal dependence should not depend on the diversity of the set of

models we collect in the first step of robustness analysis. If it did then some-

thing other than low-level confirmation would have to be playing a role in the

confirmation of robust theorems. This would be in conflict with Weisberg’s own

justification for why we should believe robust theorems.

So why do we need a sufficiently diverse set of models in the first step of

robustness analysis? This brings us to the first question I raised above: what

is the empirical content of robust theorems? Even on the assumption that low-

level confirmation licenses us to believe the robust theorems to be true empirical

theorems, as suggested by Weisberg, there is the further question as to what is

the empirical content of a robust theorem in the first place. Recall that the robust

theorems generated in the third step of robustness analysis are hypotheses of

the general form: ‘Ceteris paribus, if [common causal structure] obtains, then

[robust property] will obtain.’ But how should we interpret these hypotheses

given the role of the ceteris paribus clause in them?

The question of the determination of a clear interpretation of ‘ceteris paribus’

(cp) clauses has received considerable attention in the philosophical literature.

Part of the motivation behind philosophers’ interest in this question has to do
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with the concern that cp laws appear to lack empirically testable content, that

is they appear to be analytically true sentences (and hence trivially true) rather

than empirical statements. The problem concerning cp laws is usually posed as

a dilemma (originally formulated by Lange (1993)): if cp laws are reconstructed

as strict generalizations then they are bound to be false (since just one counter-

instance is needed for them to be false, and typically one is not hard to find);

on the other hand if we assume that cp laws are not strict generalizations but

claims of the form “all As are Bs, if nothing interferes” then they seem to say

nothing more than “(all As are Bs) or not (all As are Bs)” which are analytically

true statements devoid of any empirical content.

Earman et al. (2002) make an important distinction between “lazy” and

“non-lazy” cp-clauses. A lazy cp clause is one that is effectively dispensable be-

cause all the conditions that have to obtain for the generalization to be true are

in fact known, but not listed explicitly merely as a result of “laziness”. Hence

lazy cp laws can avoid the horns of Lange’s dilemma. A non-lazy cp clause, on

the other hand, is not dispensable because a complete list of all the conditions

that have to obtain for the generalization to be true is impossible (e.g. due to

the list being infinite or open ended). And indeed, a complete description of

all possible conditions that have to obtain for a generalization to be true is of-

ten impossible. Consider, for instance, the claim ‘ceteris paribus, humans can

swim’. There are an infinite number of factors that may affect a human’s ability

to swim. Hence, there will always be a counter instance to the claim that ‘hu-

mans satisfying C can swim’ for every condition C which excludes a finite list

of such factors. Hence a strict completion of all possible conditions that have to

obtain for this generalization to be true is impossible. This is one of the many

instances of a “non-lazy" cp clause and I think there are good reasons to think

that the cp clause in the robust theorems generated by the practice of robustness

analysis is also non-lazy (i.e. indispensable). But if this is right, how to dismiss

the worry that those theorems are devoid of any empirical content?

Clearly, Weisberg does not intend robust theorems to be analytically true

statements. But in order for this to be the case we must find a way to interpret

the cp clause in such a way that it does not render robust theorems trivially
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true. One promising attempt is offered by Lange (2000) (see Reutlinger et al.

(2021) for a review of various other attempts).16 The essential idea in Lange’s

attempt to rescue non-lazy cp laws is to restrict their application to the purposes

of a scientific discipline. In particular, according to Lange the cp clause should

be treated as a name for a set all intervening factors I that are relevant (for a

particular discipline) and only those. These factors are relevant if ‘they arise

sufficiently often, and can cause sufficiently great deviations from G-hood, that

a policy of inferring Fs to be G [. . .] would not be good enough for the relevant

purposes’ (Lange 2000, 170) and fall into the range of the laws intended purpose

and application.

Hence by treating the ceteris paribus clause as a set I of all intervening factors

that are relevant and only those, we can perhaps rescue robust theorems from

analytic triviality. However, notice that without an understanding of the situa-

tions described by the set of models collected in the first step of robustness anal-

ysis, we would be forced to treat the ‘ceteris paribus’ clause as a name for the set

of all the factors that arise sufficiently often and that fall in the range of the law

intended purpose. For if we don’t know whether those factors will disrupt the

efficacy of the robust theorem then we are not entitled to assume that they won’t.

This move, however, would essentially render robust theorems only empirically

informative about worlds that we have extremely good reasons to believe we

are not in. Suppose for instance that we didn’t know that the Volterra princi-

ple is insensitive to density dependence. In this case we could not assume that

the Volterra principle concerns any system with density dependence, no matter

how small. But a Volterra principle which concerns only predator-prey systems

with no density dependence at all, is arguably not a theorem about the actual

world, because any real system is bound to have some density dependence. As

another example (not considered by Weisberg and Reisman), if we don’t know

whether or not the Volterra principle is sensitive to various predators and prey’s

16Another major attempt to rescue cp laws from analytic triviality is to claim that these laws
are meant to reveal dispositions, and dispositions can be instantiated without being manifested
(Cartwright 1989, Lipton 1999, Hüttemann 2014). Hence, so the thought goes, when cp laws are
understood as laws that ascribe dispositions, rather than regular behaviour, they are strict true
laws and can avoid the horns of Lange’s dilemma. As I will discuss later on in this section, this
contrasting attempt to rescue cp laws might help us provide an alternative interpretation of robust
theorems.
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responses to seasonal fluctuations, we cannot assume that the Volterra principle

concerns any predator-prey system in a seasonal environment. And yet virtually

all real-world biological populations live in a seasonal environment. Arguably,

this might be the very worry that underlies Weisberg’s recommendation to col-

lect ‘a sufficiently diverse set of models so that the discovery of a robust property

does not depend in an arbitrary way on the set of models analyzed’ in the first

step of robustness analysis. But this is not helpful to dismiss this worry. For no

matter how diverse the set may be, only an understanding of the situations that

are covered by the set of models can enable us to remove from the set I some

of those factors that arise sufficiently often and that are relevant for the theorem

intended purpose. Although the fourth step of robustness analysis (i.e. stability

analysis) may (or may not) eventually help us remove some or even many of

those factors from the set I (and hence increase the empirical informativeness of

the robust theorem), the very fact that we can, according to Weisberg, declare to

have a robust theorem prior to this step, must mean that robust theorems, un-

der Weisberg’s general characterization of robustness analysis, don’t have to be

theorems concerning the actual world to deserve the name.

This matters. For if robust theorems do not have to concern the actual world

for them to deserve the name, then regardless of whether or not those theorems

are confirmed (by low-level confirmation), it cannot be assumed they will ever be

useful for explaining or predicting real-world phenomena. For there is nothing

in Weisberg’s notion of robust theorems that licenses us to assume that they can

concern the actual world. Hence, it seems to me that by accepting that low-level

confirmation automatically confirms ‘robust theorems’ as Weisberg argues one

should, one would also have to accept that whether a robust theorem can be use-

ful for explaining or predicting real-world phenomena is irrelevant to whether

we choose to call it a robust theorem. Or to put it in other words, by accept-

ing that low-level confirmation automatically confirms ‘robust theorems’, one

would also have to accept that robust theorems do not and might never ‘estab-

lish conduits through which empirical support for C can transmit to R, and vice

versa’ (Justus 2012, 800), contrary to what has often been assumed.

To recapitulate, according to Weisberg robustness analysis is a procedure
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which can be used to discover robust theorems, which are empirical theorems of

the general form ‘ceteris paribus, if causal structure obtains robust property will

obtain.’ Robustness analysis, according to Weisberg, does not confirm those the-

orems. What confirms them is the low-level confirmation of the mathematical

framework in which they are embedded. However, I have argued that by ac-

cepting that ‘low-level confirmation’ automatically confirms ‘robust theorems’,

as suggested by Weisberg, one must at the same time accept that robust theo-

rems do not have to concern the actual world for them to deserve the name,

and hence, one is not warranted to assume they can be useful for explaining

or predicting real-world phenomena, contrary to what is usually assumed in

the literature on robustness analysis. Hence if one thinks that robust theorems

should concern the actual world, one cannot assume that they are automatically

confirmed by Weisberg’s notion of low-level confirmation.

Before concluding, it is worth mentioning that some of Weisberg’s own re-

marks do in fact suggest that he may have a rather different interpretation of

robust theorems than the one I have argued is warranted by his assumption that

robust theorems are automatically confirmed by his notion of low-level confir-

mation. Consider for instance why, according to Weisberg, robust theorems on

their own are insufficient for explaining or predicting a real world-phenomenon:

Explaining a real-world phenomenon or predicting its occurrence re-

quires us to know that the common structure is actually being instan-

tiated and that no other causal factor is preempting the efficacy of the

common structure. (Weisberg 2006, 739)

But if according to Weisberg the only reason why a robust theorem is insufficient

for explaining or predicting a phenomenon, when we know that the common

causal structure is instantiated, is that there may be some other causal factors

that are ‘preempting the efficacy of the common structure’, then this suggests

that, according to him, the efficacy of the common structure is always present,

despite the fact that it may be preempted by some other causal factors. In other

words, Weisberg doesn’t seem to consider the possibility that this efficacy may
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also be lost altogether. But if this is right then it seems that, according to Weis-

berg, robust theorems are in fact supposed to be interpreted as claims about

(stable) capacities,17 which are introduced by Cartwright to explain causal laws

and render them universal in character: if C has the (stable) capacity to produce

R then C carries this capacity from situation to situation (Cartwright 1989, 145).

Under an interpretation of robust theorems as claims about (stable) capac-

ities, a case could perhaps be made for why we should think of them as rele-

vant to the explanation and prediction of real-world phenomena. For under this

interpretation, robust theorems describe how real-world systems behave in the

absence of disturbing factors and this knowledge can in principle be ‘used to

account for more complex situations, in which various systems and their dis-

positions are intertwined—provided laws of superposition are available’ (Reut-

linger et al. 2021, 32). In any case, my aim here is not to defend the view that the

best interpretation of cp-laws or robust theorems is as claims about (stable) ca-

pacities. The sole aim of this discussion is to stress that although Weisberg him-

self may implicitly think of robust theorems as claims about (stable) capacities,

which could perhaps shed light on why we should deem them to be relevant to

the explanation and prediction of real-world phenomena, this interpretation of

robust theorems is not compatible with Weisberg’s claim that the role of robust-

ness analysis is merely to discover robust theorems, theorems that are automat-

ically confirmed by his notion of low-level confirmation. This is because, as I

have argued above, robust theorems, under the view that they are automatically

confirmed by low-level confirmation, do not have to concern the actual world

17If a cp law is interpreted as a law about capacities then it would seem that a cp law ‘is no
longer considered to be a description of the systems’ occurrent behaviour that is only manifest
under very special conditions—if at all. The law concerns the underlying stable tendencies or
disposition’ Reutlinger et al. (2021). So why am I adding a stable qualifier? As Schrenk (2007)
convincingly argues, in sciences further down the hierarchy than fundamental physics, capacities
or dispositions cannot only fail to be manifested, but can also ‘be lost because their underlying
basis breaks or alters. Haemoglobin cells might be damaged and not be able to bind O2 anymore,
birds might lose their ability to fly because their wings are broken, [. . .] etc.’ (ibid., 17). Hence, in
these cases, laws about capacities would still need a ceteris paribus that stands for the presence
or absence of the capacity. Indeed, Cartwright herself is also sceptical about the existence of stable
capacities in the social realm in particular, since ‘economic features have the capacities they do
because of some underlying social, institutional, legal and psychological arrangements that give
rise to them. So the strengths of economic capacities can be changed, unlike many in physics,
because the underlying structures from which they derive can be altered’ (Cartwright cited in
Crespo 2013, 28). This is why I have added a stable qualifier to capture how Weisberg seems to
implicitly interpret robust theorems.
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(including facts about stable capacities) for them to deserve the name. In other

words, if according to Weisberg robust theorems really are meant to be inter-

preted as claims about stable capacities, then the idea that his notion of low-level

confirmation is able to automatically confirm those theorems is untenable.

As we will see in the next chapter, some philosophers have argued that the

role of robustness analysis is not merely to discover robust theorems, but to

confirm them too. This must mean that, in their view, the robust theorems can

be confirmed even if/when Weisberg’s notion of low-level confirmation cannot.

Let us see whether they can convince us.
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Chapter 4

Robustness analysis as a tool for

confirming robust theorems: an

assessment of some popular

arguments

4.1 Introduction

The overall aim of this chapter is to critically assess the validity and soundness

of various distinct arguments that have been offered to motivate the idea that

robustness analysis (RA)s has a rightful claim as a method of confirmation of

a ‘robust theorem’. Its structure is as follows. In Section 4.2, I will critically

assess an argument put forward by Kuorikoski et al. (2010) for the epistemic

import of model-based RA, an argument which I believe is a formal expression

of a widely held but ultimately misleading intuition: the intuition that a model’s

conclusion is more likely to hold in the target system if several models lead to

that conclusion because it would be a remarkable coincidence if that were not

the case. Kuorikoski et al. offer the best available defence of this intuition and

that is why I believe it is important to rigorously assess it. I will conclude that,

although Kuorikoski et al.’s argument relies on a weaker notion of probabilis-

tic independence than unconditional probabilistic independence, it cannot be

sound. By relying on a different notion of independence (i.e. Fitelson’s (2001)

account of confirmational independence), I will then offer a revised, prima-facie
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more plausible argument. However, I will conclude that this argument also re-

lies on assumptions that are hardly ever plausible. This strongly suggests that

any successful argument to support the idea that RA is able to confirm a ‘ro-

bust theorem’ cannot rely on any sort of probabilistic independence to explicate

the notion of model diversity. In Section 4.3, I will turn to Schupbach’s (2018)

recent account of RA as explanatory reasoning. I will show that, although this

account seems to fit well with some empirical cases of RA, when one tries to

apply Schupbach’s account to model-based RA the picture appears rather more

complicated than Schupbach suggests, as its application relies on several non-

trivial assumptions. Despite this, I will argue that those assumptions may be rea-

sonable in cases where the hypothesis we are interested in confirming through

model-based RA is a ‘robust theorem’. Hence, I will conclude that Schupbach’s

account could indeed be an adequate (Bayesian) account for justifying why and

determining when model-based RA should increase one’s confidence in a ‘ro-

bust theorem’, and also for helping us understand the extent of that confirma-

tion.

4.2 The epistemic value of independent lies: false analo-

gies and equivocations.

The aim of this section is to critically assess an argument put forward by Kuorikoski

et al. (2010) for the epistemic import of model-based robustness analysis. This

assessment is important for two reasons. First, I believe Kuorikoski et al.’s ar-

gument is a formal expression of a widely held, but what I believe to be an

ultimately misleading, intuition. This intuition is the following: a model’s con-

clusion is more likely to hold in the target system if several models lead to that

conclusion because it would be a remarkable coincidence if that were not the

case. Kuorikoski et al. offer the best available defence of this intuition and that

is why I believe it is important to rigorously assess it. Second, several arguments

for the epistemic import of robustness analysis that have been offered so far are

neither formulated nor defended with sufficient clarity and precision. Hence, in
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my view, a serious investigation into the epistemic import of robustness anal-

ysis must start with a careful reconstruction of those arguments, followed by

a rigorous assessment of the tenability of the premises of those arguments. The

purpose of this section is to critically assess Kuoriskoski et al.’s argument in par-

ticular; I will conclude that the assumptions on which this argument relies are

implausible. I must point out that I am not the first to object to Kuorikoski et al.’s

(2010) argument. Odenbaugh and Alexandranova (2011) have also questioned

the validity of some of its assumptions. However, in my view, their objections

were insufficient, and thus so were Kuorikoski et al.’s (2012) responses. Here, I

hope to show more forcefully that the assumptions that underscore Kuorikoski

et al.’s argument are untenable.

For the purpose of this discussion, I will assume that the ‘substantial as-

sumptions’ in a model are those that ‘identify a set of causal factors that in in-

teraction make up the causal mechanism about which the modeller endeavours

to make important claims’ (Kuorikoski et al. 2010, 547). Following Kuorikoski

et al., I will assume that there are two conceptually distinct kinds of idealiza-

tions: Galilean assumptions and tractability assumptions. Galilean assumptions

‘serve to isolate the working of the core causal mechanism by idealising away

the influence of the confounding factors’ (ibid., 547). According to Kuorikoski et

al., despite being unrealistic with respect to the model’s target system, Galilean

assumptions have a causal interpretation: ‘they state that a factor known or pre-

sumed to have an effect is absent’ (ibid., 547). Tractability assumptions, on the

other hand, are assumptions that are introduced ‘only for reasons of mathemat-

ical tractability’ and, in contrast to Galilean assumptions, they often ‘have no

empirical merit on their own’ (ibid., 548) and hence ‘the falsehood they embody

is hoped to be irrelevant for the model’s result’ (ibid., 548). This is why, ac-

cording to Kuorikoski et al., ‘unlike Galilean idealisations, for many tractability

assumptions it is often unclear what it would mean to replace them with more

realistic ones: if it were possible to do without these kind of assumptions they

would not be introduced in the first place’ (ibid., 548). Throughout this section,

I will denote the substantial assumptions by C, all the Galilean assumptions by

G and all the tractability assumptions by T.
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As an illustration of this working definition, take the Lotka-Volterra model,

discussed in Section 3.2. In line with discussions of this model in the litera-

ture on robustness, I will take the substantial assumption in this model to be

the assumption that the target predator-prey system is negatively coupled (i.e.

increasing the size of the predator population decreases the size of prey pop-

ulation and increasing the size of the prey population increases the size of the

predator population). And in line with the definition given above, an example

of a Galilean assumption could be the assumption that aside from the size of

the predator population, there are no other factors that may affect the size of the

prey population (such as limited resources). Notice that although this is an unre-

alistic assumption with respect any real-world predator-prey system, it could in

principle be replaced with a more realistic assumption; for instance by replacing

it with the assumption that there is a maximum carrying capacity to the growth

rate of the prey population as done by Weisberg (2006) and discussed in Section

3.2. According to Kuorikoski et al. (2012), an example of a tractability assump-

tion could be the specific functional form used to describe the rate of prey capture

per predator (this model assumes that there is a linear increase in prey capture

with prey density). Kuorikoski et al. (2012) consider this to be a tractability as-

sumption in so far as any assumed functional form for the rate of prey capture

will ‘strictly speaking be false for any natural population’ (ibid., 8).1

Kuorikoski et al. (2010) largely agree with Weisberg’s characterization of

robustness analysis. However, they argue that the failure of robustness with

respect to tractability assumptions is epistemically problematic ‘because it sug-

gests that the result is an artefact of the specific set of tractability assumptions,

which in many cases have no empirical merit on their own’ (ibid., 548). What

1This last claim may strike the reader as being a little strong since it certainly seems possible,
in principle, that a particular assumed functional form could be true. Crucially, however, even
if any assumed functional form for the rate of prey capture is unlikely to be strictly true, there is
certainly a sense in which one particular functional form could be more approximately accurate
than another. And if this is the case, then it is not clear why one should think of these assumptions
(i.e. specific choices of functional forms) as being introduced ‘only for reasons of mathematical
tractability’, as Kuorikoski et al. seem to suggest. It is also worth pointing out that Kuorikoski
et al.’s (2010) case study is not the Lotka-Volterra model, but a model in geographical economics.
According to them, examples of tractability assumptions in that case are ‘specific functional forms
of utility [. . .], production [. . .] and transformation technology [. . .]’ (ibid., 556). It seems to me that
the above considerations should apply to these examples too. I shall return to the question of how
we should interpret tractability assumptions at the end of this section.
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this means is that, in contrast to Weisberg, when models involve tractability

assumptions (as they often, if not always, do), Kuorikoski et al. don’t think

that we are licensed to believe the robust theorems discovered through the prac-

tice of robustness analysis. In contrast, in their view, the failure of robustness

with respect to Galilean assumptions is not epistemically problematic because

‘it [merely] suggests a new empirical hypothesis about a causally relevant fea-

ture in the modelled system’ (ibid. 552). Or to put it in other words, according

to Kuorikoski et al. Galilean assumptions can effectively be packed into the cp

clause and therefore do not affect the validity of the robust theorem. This is

why, as we will shortly see, Kuorikoski et al.’s argument for the epistemic im-

port of robustness analysis focuses exclusively on models that involve different

tractability assumptions, while keeping constant all Galilean assumptions.

Before I get to Kuorikoski et al.’s argument, I need to make a few clarifica-

tions. As discussed in the previous chapter, the Volterra principle is meant to be

an empirical hypothesis. However, I have also argued that due to the use of the

ceteris paribus clause it is not very clear how one should interpret this princi-

ple. For the purpose of this section, and in line with how philosophers have, in

my view, often implicitly interpreted the Volterra principle and robust theorems

more generally (e.g. Weisberg (2006), Kuorikoski et al. (2010)), I will assume the

Volterra principle is a causal hypothesis; that is, according to the Volterra princi-

ple, a two-species predator-prey system that is negatively coupled has ‘the effi-

cacy’ (Weisberg, 2006) to produce the Volterra property, despite the fact that this

efficacy may be preempted by possible intervening causal factors (which may or

may not be present in a given predator-prey system). In particular, I will assume

that the Volterra principle is a claim about capacities, which are introduced by

Cartwright to explain causal laws and render them universal in character: if C

has the capacity to produce R then C carries this capacity from situation to sit-

uation (Cartwright 1989, 145).2 Although my objections to Kuorikoski et al.’s

2As mentioned in the previous chapter, Cartwright herself is sceptical about the existence of
stable capacities in the social realm in particular, since ‘economic features have the capacities
they do because of some underlying social, institutional, legal and psychological arrangements
that give rise to them. So the strengths of economic capacities can be changed, unlike many in
physics, because the underlying structures from which they derive can be altered’ (Cartwright
cited in Crespo 2013, 28). Hence she worries that ‘the license to move from the results in the
model about what happens when a cause is exercised without impediment to a contribution that
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argument will not ultimately rest on what particular interpretation of robust

theorems one chooses, it is nonetheless important to stress that without a clear

interpretation of the hypothesis we are trying to confirm, we clearly can’t con-

firm it. Hence, my choice of interpretation of robust theorems, one that seems

compatible with what Kuorikoski et. al.’s have in mind, should be seen as an

attempt to clarify their argument for the epistemic import of robustness analysis

and not as an attempt to restrict the scope of my objections.

I need to make one final clarification. If we care about explanation and pre-

diction, we are clearly not merely interested in whether or not the Volterra prin-

ciple is true. This is because even if interpreted as a claim about stable capacities,

without knowing what causal factors can preempt those capacities from being

manifested and if they are present in a particular prey-predator system, we can-

not know whether those capacities can be manifested in that system. However,

whether or not a causal factor may preempt a capacity from being manifested,

although an important question for prediction and explanation, is an additional

hypothesis that is independent of the truth of the Volterra principle. Hence, I

will make the reasonable assumption that the question of whether or not some or

many causal factors may preempt the efficacy of a negatively-coupled predator-

prey system to produce the Volterra property is beyond the scope of Kuorikoski

et al.’s argument for the epistemic import of RA in this case.

4.2.1 An argument from coincidence?

According to Kuorikoski et al. (2010, 560):

Levins’ (1966) unclear but intuitively appealing claim that ‘our truth

is the intersection of independent lies’ could be taken to mean that re-

sult R can be derived from mechanism-description C using multiple

the cause will make in all situations of some designated category depends on the assumption that
the cause has a stable contribution to make, and that assumption must be supported by evidence
from elsewhere’ (Cartwright 2009, 53). What I am assessing in this section, therefore, is whether
Kuorikoski et al.’s account can show that model-based RA can provide some evidence for the
assumption that a cause has a stable contribution to make.
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independent sets of untrue tractability assumptions. Various falsi-

ties involved in the different derivations do not matter if robustness

analysis shows that result R does not depend on them.3

For Kuorikoski et al., the epistemic value of robustness analysis lies in the very

independence of the different untrue tractability assumptions involved in the mod-

els, since if they are independent in the right sort of way, then (in their view) it

can be shown that model-based robustness analysis is ‘a species of general ro-

bustness analysis in the sense discussed by Wimsatt and that the same epistemic

rationale applies to it’ (ibid., 559). However, aside from mentioning that accord-

ing to Wimsatt,

[robustness] provides epistemic support via triangulation: a result is

more likely to be real or reliable if a number of different and mutually

independent routes lead to the same conclusion. It would be a remark-

able coincidence if separate and independent forms of determination yielded

the same conclusion if the conclusion did not correspond to something real

(ibid., 544, my emphasis),

they neither clarify what is the epistemic rationale on which Wimsatt relies in his

defence of the epistemic value of general robustness analysis, nor (as we will see

in the next section) do they rely on it for their own defence of the epistemic value

of robustness analysis. The sole aim of this section is to reflect on what to make

of the very last line of the quote above: that it would be a remarkable coincidence

if separate and independent forms of determination yielded the same conclusion

if the conclusion did not correspond to something real.

Indeed, it is not hard to find cases where it would be a remarkable coinci-

dence if the same conclusion of distinct forms of determination did not corre-

spond to something real. Suppose, for instance, that I weigh myself on several

distinct scales from different manufacturers and different suppliers and they all

show that I weigh 300 pounds, a lot more than I thought I would. Despite this,

I think to myself ‘it would be too remarkable a coincidence if all these scales

3Kuorikoski et al. (2010) use the notation RM to refer to a model’s result, but to be consistent
with my notation I replaced all instances of RM with R.
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showed that I weigh 300 pounds if I didn’t really weigh 300 pounds. I must

weigh 300 pounds!’ No one should accuse me of irrationality here. But what

kind of coincidence would this be? It would be the following: although each

scale may mislead me, due to the possible presence of a faulty mechanism, I

have no reason to suppose that these scales share the same faulty mechanism.

Hence the fact that all these scales would mislead me in the same way for differ-

ent reasons seems an extremely implausible concurrence of events. On the other

hand, if my weight really was 300 pounds, and hence the scales’ readings cor-

responded to something real (i.e. my weight), this concurrence of events would

no longer seem a remarkable coincidence: under this hypothesis, all my scales

are working well, and so through the right sort of causal mechanism my weight

is causing the scales’ readings to agree. Hence, it seems rational for me to opt

for the hypothesis that does not involve a remarkable coincidence.4

Can one apply the same argument from coincidence that I applied to my

scale example to the context of model-based robustness analysis? For this to be

the case, one should be able to claim in this case too that it would be a remarkable

coincidence if the same conclusion is implied by multiple models, each contain-

ing different tractability assumptions, if the conclusion did not correspond to

something real and that the coincidence would vanish if the conclusion did cor-

respond to something real. However, this is not the case. For, without further

justification, the fact that these models all imply the same conclusion, despite

each and every one of them containing false tractability assumptions, should

still strike one as being a remarkable concurrence of events even if that conclu-

sion were to correspond to something real. In other words, the fact that distinct

models involving different false tractability assumptions give the same conclu-

sion is a coincidence, but not one that seems to be explained away by the hypoth-

esis that the conclusion corresponds to something real.

The crucial difference between my scale example and model-based robust-

ness analysis is the following. In my scale example, we are able to postulate a

4Notice that this argument from coincidence crucially relies on the assumption that there is
no systematic error, which seems reasonable in this case because all the scales come from different
manufacturers and different suppliers. However, without this assumption, the convergence of
the scales’ readings would at best only entitle me to infer that that this convergence is not due to
chance, but it would ‘not indicate it is due to any specific cause.’ (Mayo 1986, 45)
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process that links the cause (i.e. my weight) to the effect (i.e. the scale’s readings)

and it is the very postulation of this causal process that explains why the scales’

readings are the same. But in the case of models, we cannot postulate a causal

process that links the reality of the conclusion to the models’ conclusions. Scales

are measuring instruments, they measure things through a causal process. Mod-

els are not measuring instruments, they don’t measure things through a causal

process; hence postulating that a model’s conclusion is real is not enough to ex-

plain why distinct models agree on that conclusion. So it seems to me that, in

order for the reality of the models’ conclusion to help us explain away this co-

incidence, we would also have to tell a story about why the models that we are

considering in a given case must all agree on that conclusion if the conclusion

were to correspond to something real.5 But whether that story can in fact be

told does not seem to be something that can just be assumed. Indeed, consider a

case where two models make incompatible assumptions about a specific target

system. What story can one tell to justify the assumption that those two models

would have to agree on a conclusion if that conclusion were to hold in that target

system?

Perhaps, one could attempt to explain away this coincidence by merely ap-

pealing to the world of models and not the one outside them. But what would

it mean to find a (non-causal) explanation for this coincidence in the world of

models? One may be tempted to answer this question by simply noting that ‘all

models share a common core, which could be the main driver of the common

conclusion’ (an answer that I have more than once heard!). However, this as-

sertion must be equivalent to the claim that a particular set of models which all

share a common core all give the same conclusion. Now, if that set of models

is the same set whose conclusion we have just observed, then this would be a

tautological explanation: the explanation for why all the models in our ensem-

ble give the same conclusion is that they all give the same conclusion. So this

can’t be right. If the claim is meant to appeal to a more general class of models

of which our ensemble is but a subset, then this raises at least two questions:

5In my assessment of Schupbach’s account of in the context of model-based robustness analy-
sis (Section 4.2 and Section 5.3), I will discuss in more detail under what conditions such a story
may or may not be plausible.
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what is the relevant class of models? And in what sense would the fact that

a more inclusive set of models all entail a conclusion provide an explanation

for why a subset of it provides that conclusion? Alternatively, one might at-

tempt to explain this coincidence by showing that the models in our ensemble

are special cases of a more general model which gives the same conclusion. For

instance, as discussed in the previous section, Raz (2017) demonstrates that as

long as a condition that ensures that the average abundance of a system coin-

cides with the relevant equilibrium is satisfied, the Volterra principle holds for a

more general model. However, there are of course many cases where it cannot

be shown that different models are special cases of a more general model, es-

pecially when models involve different representational frameworks (e.g. Weis-

berg and Reisman (2008) also consider an individual based model version of the

Lotka-Volterra model). In any case, I think it is important to note that whether

or not it is possible to find an explanation for this coincidence in the world of

models, this explanation alone would not help us infer anything about the world

outside of them (which is ultimately what we are interested in).

So there seems to be a prima-facie clear difference between my scale exam-

ple and the example involving models: in the former a causal argument from

coincidence for the truth of the conclusion seems to be justified, whereas the

same cannot be said of the latter. Although Kuorikoski et al. do not advocate a

causal argument from coincidence to defend their view about the epistemic im-

port of robustness analysis (as we will see in the next section), they nonetheless

do make several equivocatory remarks that nudge the reader in that direction.

Consider, for instance, this passage:

Before conducting robustness analysis we do not know for sure which

part of the models is responsible for the result, although modellers

usually have strong intuitions about this issue. If a result is implied

by multiple models, each containing different sets of tractability as-

sumptions, we may be more confident that the result depends not on

the falsities we have introduced into the modelling, but rather on the

common components [. . .]. Robustness analysis thus increases our
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confidence in the claim that the modelling result follows from the

substantial assumptions, i.e. that some phenomenon can be caused

by the core mechanism. (ibid., 551)

In the above quote, Kuorikoski et al. are suggesting that if a result is implied

by multiple models, each containing different sets of tractability assumptions,

our confidence that the result R depends on the common components (i.e. the

substantial assumptions C), rather than the various different false tractability

assumptions, should increase. At first glance, this reasoning may seem analo-

gous to the reasoning that I applied to my scale example (i.e. a causal argument

from coincidence). However on closer inspection, it is clearly based on an equiv-

ocation: one that, like most equivocations, has the potential to mislead. To see

clearly why this is, it will be helpful to reconstruct Kuorikoski et al.’s above

reasoning into a set of premises and a conclusion from those premises. Let Mi

stand for a given model; the premises of Kuorikoski et al.’s argument are then

the following:

P1: M1 implies result R

...

Pn: Mn implies result R

By assumption, a model consists of substantial assumption C, Galilean assump-

tions G and tractability assumptions T. And, also by assumption, we are fo-

cusing on a class of models that all have the the same substantial assumptions

and Galilean assumptions but that differ in their tractability assumptions. So the

above premises can be rewritten as:

P1: C&G&T1 implies result R

...

Pn: C&G&Tn implies result R

According to Kuorikoski et al.’s above reasoning, from P1 . . . Pn, we are entitled

to have more confidence in the following conclusion:6

6More confidence than the one we would have if we only had P1.
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Robustness conclusion (R-C): R depends on C.

In light of this argument, three observations are in place. First, notice that R-C

is ambiguous between

R-C-model: In model land, R depends on C, and

R-C-world: In the actual world, R depends on C.

Second, given that all parts of a model are used in the derivation of a model’s

result, the only possible interpretation of R-C-model must be the following:

R-C-model: All models involving C in the relevant class imply result R.

But this interpretation of R-C-model is unclear without a specification of what is

the relevant class of models. Are M1 . . . Mn considered to be merely samples of

this class or should we think of them as constituting the entire class? If the for-

mer, what is the relevant class? If the latter, why is this an interesting class? That

is, why should we care about M1 . . . Mn? Without an answer to these questions

it is really not clear how one should in fact interpret R-C model. As a side note,

recall that according to Weisberg (2006, 739), ‘if a sufficiently heterogeneous set of

models for a phenomenon all have the common structure, then it is very likely

that the real-world phenomenon has a corresponding causal structure’ (my em-

phasis; Levins (1993) makes similar remarks). One might think that Weisberg’s

notion of sufficient heterogeneity is relevant to the questions I have just raised.

However, and leaving aside the lack of clarity surrounding Weisberg’s notion of

sufficient heterogeneity, it seems to me that it is not in fact pertinent here. This

is because, according to Weisberg, the purpose of robustness analysis is merely

to ‘identif[y] hypotheses’ (ibid., 741) not to confirm them. Hence for Weisberg

the only source of worry when it comes to evaluating the epistemic import of

robustness analysis is the fact that the theorems generated by robustness analy-

sis are ‘conditional statements, further attenuated with ceteris paribus clauses’

(ibid., 739). That is, the worry is that the robust theorem and its predictions

hold only under certain conditions, but not in others. Hence the reason why we

want a sufficiently heterogeneous set of models, according to Weisberg, is to ad-

dress this worry: by considering models that satisfy various different conditions
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we can raise our confidence that the theorem holds more generally. However,

Kuorikoski et al.’s concern is of an altogether different nature. Kuorikoski et al.

worry that due to the presence of tractability assumptions (which are assumed

to be strictly false for any target system) the ceteris paribus theorem might not

be a theorem about the real world in the first place. This is not to say that there

is no answer to the questions I raise above, but it is to say that Weisberg’s appeal

to the notion of a sufficiently heterogeneous set of models should not be seen as

an attempt to answer those questions. And we will see that Kuorikoski et al.’s

argument for why robustness analysis should increase one’s confidence in the

ceteris paribus theorem also averts these questions altogether, by relying on a

concept of independence instead.

Third, even if Kuorikoski et al. could give a clear interpretation of R-C-

model, the transition from R-C-model to R-C-world needs to be justified. Doing

this silently (as done in this argument) is a petitio principii because what needs

to be shown is precisely that the transition from model land to the actual world

is legitimate.

In the next section I will turn to what I consider to be Kuorikoski et al.’s

official argument for the epistemic import of model-based robustness analysis.

Indeed their ‘official argument’ could be interpreted as indirectly addressing

these criticisms, so I will now turn to it.

4.2.2 What is Kuorikoski et al.’s argument?

Here is what Kuorikoski et al. write:

Modelling can be considered as an act of inference from a set of sub-

stantial assumptions to a conclusion [. . .]. Tractability assumptions

are typically needed for the process of inference to be feasible, but

these assumptions may induce errors in the modelling process: they

may lead us to believe falsities about the world even if the substan-

tial assumptions are true. [. . .] We thus propose that the modeller

should have no positive reason to believe that if one tractability as-

sumption induces a certain kind of error (due to its falsehood) in the
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result, so does another one. Given that the modelling result of interest

(R) is correct, prior probabilities concerning whether R can be derived from

C&T1 or C&T2 . . . C&Tn should be (roughly) independent. If the probabil-

ities are independent in this way, then observing that the models lead to the

same result rationally increases our degree of belief in the result.7,8 (ibid.,

561 my emphasis)

There is a lot going on in this quote and I will need to introduce some new nota-

tion in order to unpack it. Let RT be the proposition that result R is instantiated

in the target system. And let Rk be the proposition that result R is derived by the

kth model. From the above passage, the argument of Kuorikoski et al. for the

epistemic import of model based robustness analysis seems to be the following:

The argument. Assume that we observe that a model with sub-

stantial assumption C and tractability assumptions T1 gives result

R. Then we will have some degrees of belief that the hypothesis

h: “in the actual world, R causally depends on C" is true. Suppose

further that in addition to our first model, we observe that several

other models sharing the same substantial assumptions C, but differ-

ing in their tractability assumptions Ti give the same result R. This

should rationally increase our degrees of belief in the hypothesis h,

because it is reasonable to assume that the models’ results R are prob-

abilistically independent conditional on RT (and ¬RT).9(i.e. because

it reasonable to assume that Pr(R1& . . . &Rn|RT) = Pr(R1|RT) ×

. . . × Pr(Rn|RT) and Pr(R1& . . . &Rn|¬RT) = Pr(R1|¬RT) × . . . ×

Pr(Rn|¬RT)).
7It is clear from Kuorikoski et al.’s (2010) general discussion that “the result" at the end of

this quote is not meant to refer to the hypothesis that R holds in the target system, but to the
hypothesis that in the actual world, R causally depends on C. For instance, robustness analysis
is supposed to increase our degrees of belief that the Volterra principle is correct, not that the
Volterra property is instantiated in the target system. Our confidence that the Volterra property
is instantiated in the target system might increase as a result of this to the extent that we believe
that the assumption that the predator-prey system is negatively coupled is correct and also to the
extent that we believe that there are no disrupting factors in the target system. But this should be
seen as merely a possible by-product of the confirmatory power of robustness analysis.

8Kuorikoski et al. (2010) use the notation Vi to refer to tractability idealizations. To be consis-
tent with my notation I have replaced all instances of Vi with Ti.

9In the above quote, Kuorikoski et al. do not explicitly claim that the models’ results must also
be probabilistically independent conditional on ¬RT . But without this assumption this argument
is not valid, so I am assuming this is just a slip of the hand.
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To adequately assess this argument, I will need to make a couple of clarifica-

tions. First, as mentioned in Section 4.1, according to Kuorikoski et al. tractabil-

ity idealizations are not the only kind of idealizations typically needed for the

process of inference to be feasible; various Galilean idealizations will also be

needed. So to be a little more rigorous one should say that a modeling result

R can be derived from C&Ti&Gi rather than just C&Ti. But given that accord-

ing to Kuorikoski et al., Galilean assumptions ‘serve to isolate the working of

the core causal mechanism by idealising away the influence of the confound-

ing factors’, I will assume for the sake of argument that Galilean assumptions,

rather than being problematic, are always helpful in establishing causal depen-

dencies. Therefore, I will assume that each model involves the same Galilean

assumptions and I will set them aside for the time being.

Second, Kuorikoski et al. (2010, 545) reference Bovens and Hartman (2003,

96-97) to justify that the sort of probabilistic independence invoked in this argu-

ment is enough to guarantee that our degrees of belief in the hypothesis h should

rationally increase. Indeed, Bovens and Hartmann (2003, 96-97) do show that

under certain specific conditions, if distinct instruments’ results are probabilisti-

cally independent conditional on the assumption that the testable consequence

of a hypothesis is correct (or not correct),10 then observing multiple positive re-

sults from distinct instruments should increase our degrees of belief in that hy-

pothesis. But Bovens and Hartmann’s demonstration depends on several other

conditions being satisfied! One of these, for instance, is that an unreliable instru-

ment must ‘randomize at some level a’:

Our model does not apply to unreliable instruments that do not ran-

domize, but rather provide accurate measurements of other features

than the features they are supposed to measure. In effect, our model

exploits the coherence of the reports as an indicator that the reports

are obtained from reliable rather than unreliable instruments. But

if unreliable instruments accurately measure features other than the

10Bovens and Hartman’s definition of a testable consequence of a hypothesis is as follows: ‘the
probability of the consequence given that the hypothesis is true is greater than the probability of
the consequence given that the hypothesis is false’ (ibid. 90).
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ones they are supposed to measure, then they will also provide co-

herent reports and so the coherence of the report is no longer an in-

dicator that they were obtained from reliable instruments. (Bovens

and Hartmann 2003, 95)

So if Kuorikoski et al. want to appeal to Bovens and Hartman’s demonstration

to justify the validly their argument, then they also must rely on the assumption

that unreliable models (in contrast to reliable ones) do not tend to give coher-

ent reports. In other words, they must rely on the assumption that unreliable

models cannot be systematically biased. As mentioned earlier, for simple mea-

surement devices like scales this seems to be an adequate assumption in some

cases: for any unreliable scale (i.e. malfunctioning) from a different manufacture

and supplier it can be reasonable to assume that whether or not it shows that I

weigh 300 pounds (if I really weight 300 pounds) is a matter of chance (and the

same if I do not really weigh 300 pounds). But in the case of models (sharing

the same substantial assumptions C, but differing in their tractability assump-

tions Ti), this is a substantial assumption that would need to be further justified

and nowhere in the paper do Kuorikoski et al. do so. The fact that the validity

of this argument depends on substantial assumptions, that have not been made

explicit by Kuorikoski et al., is in my view already an important weakness of

the argument, one that is possibly strong enough to reject it. But for the sake of

argument, in this section I am going to assume this argument is valid and hence

I will only critically assess whether, if valid, it is also sound.

For this argument to be sound Kuorikoski et al. need to convince us that

it is reasonable to suppose that the probabilities of the models’ results are in-

dependent conditional on RT (and ¬RT). But although this is a weaker notion

of probabilistic independence than unconditional probabilistic independence, it

is still an extremely strong notion of independence. This sort of independence

demands that if I know that the models’ result R is instantiated in the target sys-

tem, then learning that a model gives result R should not at all affect my degrees

of belief that another model would also give result R. But this is an unreason-

able demand! To see why this is, suppose that I know that R is instantiated in the
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target system. If this is all I know, then there is no reason to think that prior to

learning the models’ results, I will have much confidence in the fact that result R

will be derived by these models (even if I know that C is instantiated in the target

system as I have no reason to suppose that R causally depends on C!). But now

suppose that I learn that R can be derived by one of the models, consisting of

substantial assumptions and tractability assumptions C&T1. Kuorikoski et al.’s

notion of independence demands that my degrees of belief about whether R can

be derived from another model C&T2 should not change. But this is implausi-

ble: I know that the two models share substantial assumptions C, so if I learn

that R can be derived from the first model, my degrees of belief about whether

R will be derived by the second model are bound to change: I now seem to be in

a much better position than I was before to make an informed guess that result

R will be derived by second model.

To make my objection more vivid, consider the Lotka-Volterra model along-

side another model which shares the substantial assumption C that the system

is negatively coupled, but that involves a different set of tractability assump-

tions. Suppose that all I know is that the Volterra Property is instantiated in

the target system. Given that I have no knowledge regarding what the Volterra

Property causally depends on, there is no reason to suppose that I should have

much confidence in the fact that the Volterra property will be derived by these

two models. But now suppose that I learn that the Lotka-Volterra model has the

Volterra property. Surely my degrees of belief that another model sharing the

same substantial assumption C will also give the Volterra property will greatly

increase. Why? Because the two models share substantial assumption C, and

hence the fact that the first model had the Volterra property when assumption

C was involved will greatly increase my confidence that the second model will

also give the Volterra property.

Notice that the situation in my scale example is very different. Conditional

on the fact that I really weigh 300 pounds, it seems reasonable to suppose that

learning that a scale shows that I weigh 300 pounds will not affect my degrees

of belief that another distinct scale will also show that I weigh 300 pounds. Ef-

fectively the difference consists in the following. Learning that a scale shows my
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weight does not affect my degrees of belief that another scale will also show my

weight, because I already knew that scales are supposed to measure my weight

prior to learning the first scale’s reading. Whereas in the case of models, the situ-

ation is very different: If all I know is that RT is true, learning that a model with

substantial assumption C gives result R will affect my degrees of belief that an-

other model sharing substantial assumptions C will also give result R, because

learning that the first model gives result R when C is involved, gives me some

reasons to expect that the second model, which also involves C, will also give

result R; reasons that I didn’t have prior to learning the first model’s result.

It is worth mentioning that Schupbach (2018) has also objected to this notion

of conditional independence in the context of model-based robustness analysis,

but his objection relies on the assumption that the distinct models will share

many unrealistic assumptions and so ‘discovering that one of the models is un-

reliable should often greatly increase our confidence that the other is too’ (ibid.,

283). In other words his objection is the following: conditional on the result R

not being correct, the probabilities of the models’ results R cannot be indepen-

dent. This is indeed a very good objection, but it is weaker than mine because

it relies on the idea that models will invariably share many unrealistic assump-

tions. Although this is certainly true in most if not all cases, the reason why I

object to this notion of conditional independence is because of the very fact that

the distinct models share substantial assumptions C and so it will hold regard-

less of whether or not they share any unrealistic assumptions.

All said and done, it seems to me that models cannot be independent in the

way required by Kuorikoski et al.’s argument. Hence this argument is not sound

and should be rejected.

4.2.3 A prima-facie more plausible argument (and yet...)

It is worth noting that alternatively to Bovens and Hartman’s demonstration,

Kuorikoski et al. might want to appeal to Fitelson (2001)’s demonstration in-

stead. Fitelson (2001) shows that with respects to several popular Bayesian

measures of confirmation, if two results a1 and a2 individually confirm an hy-

pothesis H and if a1 and a2 are confirmationally independent regarding H, i.e.
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c(H, a1|a2) = c(H, a1) and c(H, a2|a1) = c(H, a2), then a1 and a2 together con-

firm H to a greater extent than either a1 or a2 does separately, i.e. c(H, a2&a1) >

c(H, a1) and c(H, a2&a1) > c(H, a2).11 Fitelson further suggests that a suffi-

cient condition for a1 and a2 to be confirmationally independent regarding H

is that they be probabilistically independent conditional on H (and ¬ H), i.e.

Pr(a1&a2|H) = Pr(a1|H)Pr(a2|H) and Pr(a1&a2|¬H) = Pr(a1|¬H)Pr(a2|¬H).12

If this is right then Kuorikoski et al. could rely on Fitelson’s ‘result’ but only if

they are willing to change the notion of conditional independence they demand

on the models’ results. That is if they want to rely on Fitelson’s demonstration

then their argument should be rephrased as follows:

A second argument. Assume that we observe that a model with sub-

stantial assumption C and tractability assumptions T1 gives result R.

Then we will have some degrees of belief that the hypothesis h: “In

the actual world, R causally depends on C" is true. Suppose fur-

ther that in addition to our first model, we observe that several other

models sharing the same substantial assumptions C, but differing in

their tractability assumptions Ti give the same result R. This should

rationally increase our degrees of belief in the hypothesis h, because

it is reasonable to assume that the models’ results are probabilisti-

cally independent conditional on the hypothesis h (and ¬h).

This argument strictly relies on the assumption that each model’s result individ-

ually confirms h. This does not seem to be an unreasonable assumption in most

cases, but it is still an assumption that needs to be acknowledged.13

For this argument to be justified Kuorikoski et al. need to convince us that

it is reasonable to suppose that the probabilities of the models’ results are in-

dependent conditional on the hypothesis h (and ¬h). For instance, in the case

11A confirmation measure c(H, a) measures the degree of confirmation lent to H by a. I use the
notation c(H, ai|aj) to indicate the degree of confirmation lent to H by ai, conditional on aj.

12To the best of my knowledge, however, Fitelson (2001) does not actually prove this result.
13Although someone may very well question this assumption too: if all the models involve

false assumptions, why would we have to accept that there is any confirmation relation at all? I.e.
why should we think that c(H, R1), c(H, R2) etc. . . . are not all equal to zero? Indeed, if they are
all equal to zero, the machinery does not get off the ground.
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of the Volterra principle, we want our models’ results to be probabilistically in-

dependent conditional on the Volterra principle, rather than conditional on the

Volterra property as in Kuorikoski et al’s original argument. This kind of con-

ditional probabilistic independence of the models’ results is prima facie more

plausible: conditional on the hypothesis that in the actual world R depends on

C, the fact that two models (consisting of C&T1 and C&T2 respectively) share

substantial assumptions C seems less of a salient factor when assessing one’s

degrees of belief that one model will give R if one has learnt that another model

has already given R. To see why this is, suppose that I know that in the actual

world R causally depends on C (e.g. I know that the Volterra principle is cor-

rect). In this case it seems that already prior to learning the models’ results, my

confidence in the fact that R will be derived by these models is going to be rela-

tively high, since I know that they both involve C. That is, in this case knowing

that R causally depends on C seems to already put me in a good position to

make an informed guess that result R will be derived by both models. But then

in this case, learning that one model gives R does not seem to put me in a better

position to make an informed guess about whether the second model will also

give R. Hence it seems, prima facie, plausible to assume that if I know that in

the actual world R causally depends on C, learning that the model consisting of

C&T1 gives R should not change my degrees of belief that a model consisting of

C&T2 will give R.

However, despite this prima-facie plausibility, this sort of independence is

still unrealistically strong in most cases, if not all. And I see two reasons for this.

First, despite differing in some tractability assumptions, models will more often

than not share many other tractability assumptions. But then, in these cases, if

I learn that result R can be derived from the first model, it is unreasonable to

suppose that my degrees of belief that R will be derived by the second model

are not going to change: even if I know that R causally depends on C in the

actual world, if the second model shares some tractability assumptions with the

first model, learning that the first model gives R will put me in a better position

to make an informed guess about whether the second model will also give result
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R.14

So it seems that the only scenario in which it might be reasonable to assume

that models’ results satisfy this sort of independence is in those rare cases in

which models share the same substantial assumptions C, but share no tractabil-

ity assumptions. As far as the Lotka-Volterra model is concerned, Kuorikoski et

al. (2012) argue that Weisberg and Reisman’s (2008) individual based model - in

which the Lotka Volterra model’s variables, parameters and other assumptions

are all translated into individual-based terms (an instance of what Weisberg and

Reisman (2008) call representational robustness, which was discussed in section

3.3.1)- is one such case:

Weisberg and Reisman (2008) also discuss a way in which practi-

cally all the tractability assumptions can be expected to be indepen-

dent: the derivation of the robust theorem in a completely different

modelling framework. Whereas the class of Lotka–Volterra models

described above are sets of differential equations relating popula-

tion aggregates, the Volterra principle can also be demonstrated us-

ing agent based computational models. Such models represent the

same core causal mechanisms, albeit describing them at an individ-

ual level. However, the radical difference in the modelling frame-

work means that the tractability assumptions, although still unavoid-

able, are of an altogether different kind: they relate to the behavioural

rules of individuals and the spatial representation of their environ-

ment, rather than to population-level generalisations as in the origi-

nal Lotka–Volterra models. (Kuorikoski et al., 2012)

If cases of representational robustness really are cases in which models share the

same substantial assumptions C, but differ in all their tractability assumptions,

as Kuorikoski et al. claim, then perhaps the sort of independence invoked in this

argument is plausible in such cases. But notice that, if cases of representational

robustness are the only kind of cases in which the sort of independence invoked

14Schupbach (2018, 285) makes essentially the same objection.
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in this argument is plausible (as I am suggesting) then the scope of this argu-

ment is clearly very restricted. Hence this argument is not applicable in most

instances of robustness analysis that are encountered in scientific and economic

modelling.

But I think there is a second reason to doubt that this sort of independence

is reasonable, even in the rare cases where models share the same substantial

assumptions C but differ in all their tractability assumptions. And it has to do

with the very nature of tractability assumptions. As mentioned previously, for

Kuorikoski et al., tractability assumptions are assumptions that are introduced

‘only for reasons of mathematical tractability’ and, in contrast to Galilean as-

sumptions, they often ‘have no empirical merit on their own’. According to

Kuorikoski et al. (2012), as far as the Lotka-Volterra model is concerned, an ex-

ample of a tractability assumption is the specific functional form used to describe

the rate of prey capture per predator, since any assumed functional form for the

rate of prey capture will ‘strictly speaking be false for any natural population’

(ibid., 8). But although it is true that any assumed functional form will strictly

speaking be false for any real-world predator-prey system, there is certainly a

sense in which one particular functional form might be more adequate to de-

scribe the rate of prey capture than another, despite both of them being strictly

false. And there is also a sense in which one might believe that at most one func-

tional form amongst the ones one is considering is adequate, even if one lacks

the knowledge to determine which one. But then, to the extent that this is the

case, I think it is unreasonable to assume that the results of two distinct mod-

els that differ in their tractability assumptions are probabilistically independent

conditional on h. And here is why. Suppose that I know that in the actual world

R causally depends on C (e.g. I know that the Volterra principle is correct) and

consider two distinct models that share substantial assumption C (e.g the as-

sumption that the predator-prey system is negatively coupled) but that assume

distinct functional forms for the rate of prey capture per predator. Suppose fur-

ther that I believe that at most one of these two functional forms can adequately

represent the actual rate of prey capture per predator. Prior to learning the mod-

els’ results, I will have some degrees of belief in the fact that R (e.g. the Volterra
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property) will be derived by these models. But now suppose that I learn that

one of these models gives result R. This should give me further reasons to sup-

pose that the particular functional form assumed in this model can adequately

describe the rate of prey capture per predator, reasons that I didn’t have prior to

learning the model’s result. And if that’s the case, then this should also give me

further reasons to suppose that the functional form assumed in the other model

is inadequate. But then, to the extent that this is the case, it is unreasonable to

suppose that learning that the first model gives result R will not change my de-

grees of belief that the second model will give result R. I now seem to have some

further reasons to suppose that the second model does not adequately represent

predator-prey systems, which should reasonably decrease my degrees of belief

that the second model will give result R. Hence, it is hard to see why it would be

reasonable to assume that conditional on hypothesis h being correct, these two

models’ results are probabilistically independent.15

Hence, due to the fact that in most cases of robustness analysis models will

very often share many tractability assumptions, and due to the very nature of

at least some tractability assumptions, I think it is in fact rather hard to justify

the sort of probabilistic independence invoked in this argument in most if not

all cases of model-based robustness analysis.

Before concluding, I would like to make one last remark. Throughout this sec-

tion, I have assumed that there is a clear distinction between Galilean assump-

tions on the one hand and tractability assumptions on the other. In particular,

I assumed that Galilean assumptions are always helpful in establishing causal

dependencies by idealizing away the influence of the confounding factors. This

allowed me to assume that robustness failure in a modelling result with respect

15Notice further, that for this argument to be applicable, there must be a clear conceptual dif-
ference between tractability assumptions on the one hand and Galilean assumptions on the other.
In particular, models that involve different tractability assumptions must never describe systems
which include distinct causal factors that can preempt the (alleged) stable capacity of the common
core C to produce R from being manifested. This is because, as mentioned earlier, whether or not
a causal factor may preempt a stable capacity from being manifested is an additional hypothesis
that is independent of the truth of a robust theorem (e.g. the Volterra principle). Only under this
assumption, it reasonable to assume (as I have in this section) that models that involve different
tractability assumptions, but share the same substantial and Galilean assumptions can be used to
confirm the same hypothesis. But if this assumption is unwarranted for the kind of assumptions
that Kuorikoski et al.’s refer to as tractability assumptions, then all the worse for this argument,
because inapplicable.
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to Galilean assumptions is never epistemically problematic, since it merely sug-

gests a new empirical hypothesis about a causally relevant feature. Without this

assumption it would have been impossible to even begin to assess Kuorikoski et

al.’s argument for the epistemic import of robustness analysis. This is because

this assumption allowed me to give an empirical (causal) and unambiguous in-

terpretation to the robust theorem. In other words, with this assumption I was

able to interpret the robust theorem as a causal hypothesis about the real world,

a hypothesis that one can both conditionalise on and confirm. However this dis-

tinction is, in my view, a lot less clear than Kuorikoski et al. suggest. Take the as-

sumption that predators can consume infinite quantities of prey. This is arguably

a Galilean assumption, since it assumes that there is no factor (e.g. a biological

factor) that affects predator satiation. But a Volterra principle that only applies to

target systems in which predators can consume infinite amount of food is clearly

not a principle about real-world predators since no real predator can consume

infinite amounts of food! This may not seem problematic under the assump-

tion that if negatively coupled (fictional) predator-prey systems with no satura-

tion have the capacity to produce the Volterra property then so must negatively-

coupled predator-prey systems with saturation, despite the fact that their capac-

ity may not be manifested. If that were the case, then learning that negatively-

coupled predator-prey systems with no saturation have the capacity to produce

the Volterra property would effectively be learning that predator-prey systems

with saturation also have that capacity (and hence we would be learning some-

thing about real-world predator-prey systems). However, this assumption is

in, my view, wrong. For if indeed we were to find out that negatively-coupled

predator-prey systems with saturation didn’t have the Volterra property,16 what

this would mean is not that their capacity to produce the Volterra property is not

manifested, but rather what it would mean is that negatively-coupled predator-

prey systems with saturation no longer have the capacity to produce the Volterra

property. In other words, what we would learn in this case is that, like birds lose

16This is just an example to illustrate my point. Indeed, according to Weisberg (2006, 736) the
Volterra principle still holds when we add a term for predator satiation.
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their ability to fly because their wings are broken, negatively coupled predator-

prey systems lose their capacity to produce the Volterra property because preda-

tors can’t consume infinite quantities of prey. But if this is right, then it seems

to me that, at least as far as some Galilean assumptions are concerned, if they

are not de-idealised from the model, then no matter how many different sets of

tractability assumptions we might go through, the theorem that we are actually

trying to confirm does not seem to be a theorem about the actual world, but a

fictional one. This does not necessarily mean that we can’t conditional on this

theorem (as required by this argument), and thereby confirm it, but it does raise

the question as to what is the relevance of learning this theorem for learning

about the real-world.

In this section, I reconstructed and critically assessed Kuorikoski et al.’s argu-

ment for the epistemic import of model-based robustness analysis. In Section

4.2.1, I argued that a causal argument from coincidence for the epistemic im-

port of model-based robustness analysis is misleading and should be rejected.

In Section 4.2.2, I tried to reconstruct what I take to be Kuorikoski et al.’s ‘of-

ficial’ argument for the epistemic import of robustness analysis; I first argued

that the validity of this argument relies on substantial assumptions that have

not been made explicit by Kuorikoski et al. I then argued that, even if its valid-

ity is not brought into question, Kuorikoski et al.’s argument is not sound, since

the sort of probabilistic independence on which it relies is unfeasible in all cases

of robustness analysis. In Section 4.2.3, by revising the notion of probabilistic

independence imposed on the models’ results, I introduced a prima-facie more

plausible argument for the epistemic import of robustness analysis. However,

despite this prima-facie plausibility, I argued that it is in fact very hard to justify

its soundness in most, if not all, cases of model-based robustness.

As mentioned at the beginning of this section, Odenbaugh and Alexandra-

nova (2011) have also objected to Kuorikoski et al.’s argument for the epistemic

import of robustness analysis. According to them, ‘robustness analysis crucially

depends on showing that the assumptions of different models are independent

of one another’; one of their objection to Kuorikoski et al.’s argument is that

‘reports of their independence have been greatly exaggerated’ (ibid., 759). But
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this objection suggests that the independence on which Kuorikoski et al.’s ar-

gument relies merely fails in practice, rather than in principle; this made it easy

for Kuorikoski et al. (2012) to dismiss this objection - their argument relatively

unharmed. Whereas I hope to have convinced the reader more forcefully that ar-

guments that rely on some sort of probabilistic independence to justify the epis-

temic import of robustness analysis are implausible in most, if not all instances

of robustness analysis. In particular, I hope to have shown that it is a mistake

to assume that models might behave a bit like measuring instruments merely

because this seems to fit well with our unquestioned intuitions. In other words,

I hope to have shown that in our attempt to understand if, and when, looking

at more than one model of the same phenomenon can help us learn about the

world, we must, here as ever, rigorously question our intuitions rather than let-

ting them dictate the kind of assumptions we are willing to accept.

In the next section, I will introduce Schupbach’s (2018) recent Bayesian ac-

count of robustness analysis as explanatory reasoning and I will investigate un-

der what conditions this account can be successfully applied to model-based

RAs.

4.3 A critical assessment of Schupbach’s explanatory ac-

count of model-based robustness analysis

As argued in the previous section, arguments that rely on some sort of prob-

abilistic independence to justify the epistemic import of (model-based) robust-

ness analysis are implausible in most, if not all instances of robustness analysis.

However, this does not mean that the Bayesian can’t rely on other arguments to

justify its epistemic import, arguments that do not rely on probabilistic indepen-

dence. The aim of this section is to critically assess one such argument recently

offered by Schupbach (2018).

Like me, Schupbach (2018) also thinks that Bayesian accounts of robustness

analysis (RA)17 which rely on probabilistic independence to explicate the notion

17At this point a bit of terminological housekeeping is in order. The term ‘robustness analysis’ is
an unfortunate one as it can mean different things to different people. As we have seen in Section
3.3, Weisberg (2006), uses the term to refer to a four-step procedure ‘which begins by examining
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of evidence diversity are in many cases, no matter how subtly formulated, woe-

fully inadequate.18 But if we are right it seems that in order to capture those

cases the Bayesian must depart from independence-based accounts of RA di-

versity. Schupbach’s (2018) recent explanatory account of RA has been rightly

welcomed as a promising step in the right direction. Indeed, by having ‘as its

central notions explanation and elimination,’ (ibid., 286) this account seems to

fit very nicely with many empirically driven cases of RA in science, thereby re-

vealing why these cases are able to lend confirmation to a hypothesis.

Schupbach, however, has further suggested that this explanatory account

of RA ‘applies to model-based RA just as well as it does to empirically driven

RAs’ (ibid., 297, my emphasis). The core aim of this section is to demonstrate

that applying this account in the context of models is a lot more difficult than

Schupbach suggests. The structure of this section is as follows. In Section 4.3.1,

I will introduce Schupbach’s explanatory account of RA. In Section 4.3.2, I will

give an example of an empirically driven case of robustness analysis to illustrate

how and why Schupbach’s account can be successfully applied to this case. In

Section 4.3.3, I will attempt to apply Schupbach’s account to a case where the

hypothesis we want to confirm through model-based RA is the Volterra princi-

ple (an instance of a ‘robust theorem’). I will argue that although the application

of Schupbach’s account to model-based RA relies on several non-trivial assump-

tions, they may be reasonable in this case.

a group of similar, but distinct, models for a robust behavior and ends with the formulation of
a robust theorem’ (ibid., 737) and many have followed suit. However, in line with Schupbach’s
notation, in this section I am using the term ‘robustness analysis’ more broadly than Weisberg
does, to refer to the general practice of using multiple means to detect the same result, where
those means ‘could include experiments, laboratory instruments, sensory modalities, derivations
(from axioms, models, theories, and so on), axiomatic systems, computer simulations, and formal
models amongst other things’ (Schupbach 2018, 277). However, this is purely a terminological de-
cision, and with this decision I am not at all suggesting that there aren’t in fact distinct kinds of RA
with important differences between them, differences which have implications for our assump-
tions and their epistemic import (as has been argued by several philosophers; see for instance
Woodward (2006), Calcott (2011)).

18Schupbach (2018) considers three accounts of probabilistic independence that could be used
to explicate the notion of evidence diversity: unconditional probabilistic independence, reliability
independence and confirmational independence (the latter two were discussed in the previous
section). And he argues that in what he considers some paradigmatic cases of RA in science the
assumptions on which these accounts rely are implausible. I think there is scope for disagreement
as to whether the cases he considers really are paradigmatic cases of RA in science. However, as
long as RA is understood as the general practice of using different means to detect the same result,
the cases he considers count as clear cases of RA in science whether they are paradigmatic or not.
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4.3.1 Schupbach’s explanatory account of RA diversity

According to Schupbach, when there is more than one means of detecting a

result R, the notion of diversity that is relevant to RA is the following:

ERA Diversity:19 Means of detecting R are ERA diverse with respect

to potential explanation (target hypothesis) H and its competitors

to the extent that their detections (R1, R2, . . . , Rn) can be put into a

sequence for which any member is explanatorily discriminating be-

tween H and some competing explanation(s) not yet ruled out by the

prior members of that sequence. (Schupbach 2018, 288)

Of course, the above account of ERA diversity would leave too many questions

unanswered: what counts as a potential competing explanation of R? What does

it take for a detection of a result R by a given means to be explanatorily discrim-

inating between the target hypothesis H and some competing explanation H′?

And why should one consider ERA diversity to be epistemically important from

a Bayesian perspective? By relying on a probabilistic conception of explanatory

power ε(H, E), Schupbach attempts to provide an answer to these questions.

According to Schupbach, the explanatory power an explanation H has over

its explanandum E is given by

ε(E, H) =
Pr(H|E)− Pr(H|¬E)
Pr(H|E) + Pr(H|¬E)

, (4.1)

where ε(E, H) can take values ranging from [−1, 1] and the greater the value

of ε(E, H), the more strongly H explains E.20 Since ε(E, H) = −ε(¬E, H), this

19Contrary to what Schupbach (2018) seems to suggest, I don’t believe this to be the only notion
of diversity that is relevant to RA from a Bayesian perspective. For although Schupbach convinc-
ingly argues that accounts which rely on probabilistic independence to explicate the notion of
evidence diversity are implausible in the two cases of RA which he uses to motivate his explana-
tory account of RA, this is far from showing that those accounts are implausible in all cases of
RA in science (and it is in my view misleading to suggest otherwise). Hence what he calls RA
diversity, I will call Explanatory Robustness Analysis diversity or ERA diversity.

20Schupbach and Sprenger (2011, 107) are careful in pointing out that this probabilistic measure
of explanatory power ‘is not intended to reveal the conditions under which a theory is explanatory
of some proposition [. . .]; rather, its goal is to reveal, for any theory already known to provide such
an explanation, just how strong that explanation is.’ Although a variety of distinct probabilistic
measures of explanatory power have been proposed in the literature, for the purpose of what
I will be arguing in this section, I am happy to assume that this measure does a good job of
capturing the explanatory power that an explanation has over its explanandum (for a defence
of this probabilistic measure of explanatory power see Schupbach and Sprenger (2011) and for
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means that if ε(E, H) > 0, H explains E more strongly than it explains its nega-

tion; if ε(E, H) < 0, H explains E less strongly than it explains its negation; and

if ε(E, H) = 0, H is explanatory irrelevant to E.

It can be shown that the value of ε(E, H) is positively correlated with the

degree of statistical relevance between E and H, that is, the strength of the in-

equality Pr(E) < Pr(E|H) (see Schupbach and Sprenger (2011, 110)). Hence,

according to this measure of explanatory power, the more H decreases the de-

gree to which E is surprising, the more strongly H explains E. Below are some

additional properties of ε(E, H) that show how the impact that H has on the de-

gree to which E is surprising is related to the explanatory power that H has over

E. As long as Pr(H) 6≈ 0 and P(E) 6≈ 0, 1, then:

• ε(E, H) > 0 iff Pr(E|H) > Pr(E) and ε(E, H) < 0 iff Pr(E|H) < Pr(E);

• ε(E, H) ≈ 1 iff Pr(E|H) ≈ 1 and ε(E, H) ≈ −1 iff Pr(E|H) ≈ 0;

• ε(E, H) = 0 iff Pr(E|H) = Pr(E).

Similarly, the explanatory power that an explanation H has over its explanan-

dum E, in light of some proposition p, is given by

ε(E, H|p) = Pr(H|E&p)− Pr(H|¬E&p)
Pr(H|E&p) + Pr(H|¬E&p)

. (4.2)

Equipped with this probabilistic conception of explanatory power, Schupbach

(2018, 293) provides the following five formal conditions for a successful incre-

ment of ERA diversity:

Past detections: We are given E = R1&R2& . . . &Rn−1 (informally, a

result R has been detected using n− 1 different means);

Success: ε(E, H), ε(E, H′) > 0 (informally, the target hypothesis H

explains this coincidence, but so does another rival hypothesis H′);

some criticisms see Glymour (2014)). However, it is worth mentioning that Schupbach (2018,
292) claims that all of the substantive results derived using this measure in his article also hold
using any of the alternative measures defended in Popper (1959), Good (1960), McGrew (2003)
and Crupi and Tentori (2012).
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Competition:21 (i) Pr(H&H′) = 0, or (ii) ε(E, H|H′) ≤ 0) (informally,

H and H′ epistemically compete with one another, with respect to E);

Discrimination: ε(Rn, H|E) ≈ 1, ε(¬Rn, H′|E) ≈ 1 (informally, there

is another nth means of potentially detecting R such that, in light of

E, H would strongly explain the detecting of R by this means (Rn)

and H′ would strongly explain not detecting R by this means (¬Rn));

New detection: we learn Rn (informally, the nth means also detects

result R).

Schupbach then shows that the above formal conditions, if satisfied, guarantee

an incremental confirmation of the target hypothesis H, i.e. Pr(H|E&Rn) >

Pr(H|E) (for a proof see Schupbach (2018, 293-296)). In other words, evidence

that is ERA diverse22 with respect to a target hypothesis H and a competing

hypothesis H′ must incrementally confirm H.23

In light of these formal conditions and of what those conditions entail, it is

now clear why Schupbach’s notion of ERA diversity is epistemically important

from a Bayesian perspective: evidence that is ERA diverse with respect to a tar-

get hypothesis H and its competitors should rationally increase one’s degrees

of belief in that hypothesis. Clearly, however, this fact alone says nothing about

how much one’s confidence in H should increase: the increase warranted by the

evidence could be anything from negligible to substantial. Luckily Schupbach

also has something to say about the extent to which a successful increment of

ERA diversity should increase one’s degrees of belief in H. The answer, how-

ever, will depend on whether or not the target hypothesis H and the competing

hypothesis H′ are mutually exclusive (i.e. on whether case (i) or case (ii) in the
21According to Schupbach, there are two ways for hypotheses to epistemically compete. Two

hypotheses H and H′ might epistemically compete because they are mutually exclusive, i.e. case
(i). But they might also epistemically compete because H′ suffices to do the explanatory work of
H, i.e. case (ii).

22The above conditions for a successful increment of ERA diversity also define ERA diversity
itself, since these are the conditions that have to be satisfied for two distinct means of detecting a
result R to count as ERA diverse.

23Notice that neither the success condition nor the discrimination conditions can be satisfied if
either Pr(H) = 0 or Pr(H′) = 0. So if an agent has no confidence in either H or H′ there cannot
be any successful increment of ERA diversity.
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competition condition is satisfied). When H and H′ are mutually exclusive,

Schupbach shows that the lower bound of how much H is confirmed by a suc-

cessful increment in ERA diversity is determined by the agent’s prior degrees

of belief in H′, Pr(H′), and by the likelihood of H′ on E, Pr(E|H′). The higher

Pr(H′) and Pr(E|H′) are, the higher that lower bound.24 This result is very

helpful. For although it doesn’t give us the exact increment of confidence in H

that is warranted by a successful increment of ERA diversity, it does nonetheless

give use a lower bound on what that increment should be. When H and H′ are

not mutually exclusive what determines the extent of confirmation of H is more

complicated, and given that the details don’t matter for this section, I refer the

reader to Schupbach (2018, 295-296) for a discussion of this case.

But what should one make of the above ERA diversity conditions? Are they

intuitive? Do they fit nicely with actual cases of RA in science?

4.3.2 Empirically driven RAs

To motivate the intuition behind these conditions, Schupbach considers the case

of the at the time curious motion of a sample of pollen granules suspended in

water, first observed in 1827 by the botanist Robert Brown. In the early 20th

century, Einstein famously offered an explanation for this observation: this mo-

tion, according to Einstein, was due to random molecular collisions in the water.

Later, Jean Perrin performed a variety of experiments to determine if Einstein’s

molecular explanation for this motion (nowadays known as Brownian motion)

was correct.25 As Schupbach points out, the fact that this motion had been de-

tected by a multitude of other different experiments (using different materials,

different media, different means of suspending the particle, etc.) was considered

24The lower bound is determined by Pr(H′) and Pr(E|H′) since

Pr(H|E&Rn)

Pr(H|E) ≥ 1 +
Pr(H′)Pr(E|H′)

c
, (4.3)

for some constant 0 ≥ c ≤ 1− Pr(H′). So the higher Pr(H′) and Pr(E|H′) are, the higher the
lower bound is. See Schupbach (2018, 294) for a proof.

25As Mayo (1996, 44) explains ‘doing so was regarded as a test of the kinetic theory against
the classical theory of thermodynamics. If Brownian motion could be explained as caused by
something either outside the liquid medium or within the particles themselves, then it would not
be in conflict with the classical theory. If, alternatively, the cause of Brownian motion was shown
to be a molecular motion in the liquid medium, as given in the kinetic theory, it would be in
conflict.’
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by Perrin (1913, 83-86) as evidence in support of Einstein’s explanation.26 But

why should the robustness of Brownian motion have counted as evidence for

Einstein’s molecular explanation?

According to Schupbach, this is because the various means of detecting the

Brownian motion were ERA diverse with respect to Einstein’s molecular expla-

nation and its competitors. Indeed, when Brown first observed the curious mo-

tion of the pollen granules suspended in water (R1), there were more than a few

competing explanations for this observed phenomenon: the motion might have

been due to currents or evaporation of the water, or it might have been due to a

sexual drive inherent in pollen, etc. But there were many later detections of this

motion that were able to explanatorily discriminate between Einstein’s molec-

ular explanation H and one of the many competing explanations not yet ruled

out. Take, for instance, the competing explanation H′ that the motion was due

to a sexual drive inherent in pollen. And consider a new detection of this mo-

tion using an inorganic material (R2). Does this new detection satisfy all the five

conditions for a successful increment of ERA diversity? Let us go through each

of them:

In this example, the Brownian motion has already been detected using a sam-

ple of pollen granules suspended in water so we have E = R1 and hence the

past detection condition is satisfied. Furthermore, Einstein’s molecular expla-

nation H and the sexual drive inherent in pollen explanation H′ provide differ-

ent causal explanations for the observed motion R1, so it seems reasonable to

assume that both H and H′ increase the probability that that we should observe

this motion (i.e. Pr(R1|H) > Pr(R1) and Pr(R1|H′) > Pr(R1)). But then, it

is also reasonable to assume that ε(R1, H) > 0 and ε(R1, H′) > 0 (see section

2). Hence both H and H′ plausibly satisfy the success condition. The com-

petition condition is also plausible. For although H and H′ are not mutually

26This, however, was but a very small subset of experimental results that Perrin (1913) cites as
evidence for Einstein’s molecular explanation of Brownian motion. It is also worth mentioning
that most philosophical discussion on the extent to which robustness reasoning played a role in
Perrin’s arguments for Einstein’s molecular explanation focuses on the convergence of Perrin’s es-
timations of Avogadro’s number from a variety of experiments on numerous distinct phenomena
(Brownian motion, blackbody radiation, the blueness of the sky, etc.). So it is somewhat surprising
that Schupbach actively chooses not to discuss this case of RA in relation to his account of ERA
diversity. For a philosophical discussion of what role this case of RA played in Perrin’s arguments
see, for instance, Mayo (1996), Psillos (2011), Chalmers (2011) and Hudson (2018).
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exclusive hypotheses, H′ seems sufficient for doing the explanatory work of H,

i.e. ε(E, H|H′) ≤ 0). It also seems plausible to assume that in light of the de-

tection of this motion using a sample of pollen granules R1, H would strongly

explain the detection of this motion using an inorganic material (R2), whereas H′

would strongly explain not detecting this motion by this means (¬R2), in accor-

dance with the discrimination condition. Why? H cites causes of the observed

motion that would also cause the movement of inorganic material, whereas H′

cites causes that would not cause such movement. Hence, it seems plausible to

assume that whereas H makes it extremely likely that we would observe this

motion using an inorganic material (i.e. Pr(R2|H&R1) ≈ 1), H′ makes it ex-

tremely likely that we would not observe it (i.e. Pr(¬R2|H′&R1) ≈ 1).27 And

this implies that ε(R2, H|R1) ≈ 1 and ε(¬R2, H′|R1) ≈ 1. Finally, the Brownian

motion has been detected using inorganic material (i.e. we learn R2) and hence

the new detection condition is also satisfied.

All conditions of ERA diversity seem plausible in this example. A similar

story could, arguably, be told for many other means that were used by Perrin to

detect Brownian motion. So I am happy to be enticed by Schupbach into con-

cluding that the reason why the robustness of Brownian motion across various

different means both was, and should have, counted as evidence for Einstein’s

molecular explanation is that each new detection of this motion lead to a suc-

cessful increment of ERA diversity and hence, for this reason, each detection was

able to incrementally confirm it. I have not attempted to convince the reader that

27One might object: why doesn’t the sexual drive inherent in pollen explanation merely fail
to make it likely (rather than make it extremely unlikely) that we would observe this motion
using an inorganic material? This is a fair objection. In response, one might argue that upon
accepting H′ one no longer has any reason to accept any other potential explanation of E and
hence all the other potential explanations of E should be ruled out. And if this is so, then it
does seem reasonable to assume that upon accepting H′, it is extremely likely that we wouldn’t
observe this motion. But why should we dismiss all potential explanations of E upon accepting
H′? The competition condition is certainly relevant here. If H and H′ are mutually exclusive
then we should of course rule out H upon accepting H′. And if H′ suffices to do the explanatory
work of H then E is already explained and hence ‘the explanandum no longer compels us to
hunt for, and reason to, further explanations’ (Schupbach 2018, 291). But there are two problems
with this response. First, as Schupbach himself acknowledges, even though H′ suffices to do the
explanatory work of H, ‘there may remain explanatory reason apart from E still supporting [H]’
(ibid. 291). Second, for this response to work, upon accepting H′ one also has to dismiss all other
potential explanations of E, not just H. And for this to be somewhat plausible it must be the case
that H′ also epistemically competes with each and every one of these explanations, not just H.
But this is not entailed by the competition condition. Hence this assumption would have to be
defended separately.

145



Schupbach’s account of ERA diversity is an adequate account of RA diversity in

general, not least because I don’t think it is. But what matters for this section, is

that this account seems to fit very nicely with some cases of empirically driven

RA.28 In particular, what allowed us to apply Schupbach’s account to this case is

that we were able to find both an adequate target and rival explanation for the

two detections of Brownian motion that plausibly satisfied all of the conditions

of ERA diversity.

Schupbach argues that this account of ERA diversity ‘applies to model-based

RAs just as well as it does to empirically driven RAs’ (ibid., 297). However,

in the next subsection, I will show that when it comes to model-based RA the

picture is rather more complicated than he suggests. In particular, I will show

that, in contrast to the case above, it is not at all straightforward to formulate an

adequate target hypothesis and rival hypothesis that satisfy all the conditions

for a successful increment of ERA diversity. Whether this is possible relies on

several substantial assumptions, assumptions which may be reasonable in some

cases, but certainly not in others.

4.3.3 Does Schupbach’s account of ERA diversity apply to model-based

RA?

Schupbach claims that his account of ERA diversity can finally give an adequate

Bayesian justification for why model-based RA can increase our confidence in

the Volterra principle:

When seeking to confirm the Volterra principle, [ERA]-diverse mod-

els may be quite similar apart from some modest differences in their

simplifying assumptions. But by utilizing these distinct (though per-

haps overall quite similar) models, we may eliminate confounding

explanations of our result left standing by either model used alone.

[. . .], we may discard worries that our result is an artefact of a par-

ticular unrealistic assumption of the first model by using a second

model that does not share that assumption. (Schupbach 2018, 289)

28Whereas, as Schupbach (2018) convincingly argues, accounts which rely on probabilistic in-
dependence to explicate the notion of evidence diversity do not fit nicely with this case.
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But I will show that the picture is considerably more complicated than what he

suggests.

There is a substantial difference between empirically driven RAs and model-

based RAs and it is important to make this difference clear before we can attempt

to apply Schupbach’s account of ERA diversity to the latter. Recall that Schup-

bach’s account of ERA diversity concerns distinct means of detecting the same

result R. Schupbach has shown that if those distinct means of detecting a result

R are ERA diverse with respect to a target explanation H and its rival explana-

tions for their detections R1, R2, . . . , Rn, then H is incrementally confirmed. In

the empirically driven case of RA considered in section 3:

• R is Brownian motion in the actual world;

• Ri are the distinct detections of Brownian motion in the actual world;

• H is a hypothesis about why we detect Brownian motion in the actual world

(i.e. Einstein’s molecular explanation).

So, in this case, R and its detections R1, R2, . . . , Rn all concern the actual world

and the hypothesis that we want to confirm (i.e. Einstein’s molecular explana-

tion), which also concerns the actual world, is a possible explanation of these

detections.

In this case of RA, however, things are less straightforward, since we have:

• R is the Volterra property in model land;

• Ri are the detections of the Volterra property in model land;

• H is a hypothesis about why we detect the Volterra property in model land.

So, in this case, R and its detections R1, R2, . . . , Rn all concern model land and

since the hypothesis that we want to confirm (i.e. the Volterra principle) con-

cerns the actual world, it is not a possible explanation for these detections.

Hence a crucial difference between empirically driven RAs and model-based

RAs is the following: in the former, the hypothesis that we want to confirm is

a possible explanation for why we detect the same result, whereas in the latter
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it is not a possible explanation for why we detect the same result. In light of

this difference, it is clear that the application of Schupbach’s account of ERA

diversity to model-based RAs is considerably less straightforward. This does

not imply that Schupbach’s account is not applicable to model-based RAs, but

it does nonetheless show that any attempt to successfully apply it will have to

acknowledge this difference, and show that it can be applied in spite of it. In

this section, I will attempt to do just this.

To assess whether Schupbach’s account of ERA diversity can apply to this

example of model-based RA, it will be helpful to consider a very simple case.

Suppose I have already learnt that the original Lotka-Volterra model has the

Volterra property (i.e. I have learnt R1). Suppose further that I subsequently

learn that another model in which an idealization/assumption A1 of the original

Lotka-Volterra model has been replaced by an other idealization/assumption A2

also has the Volterra property (i.e. I learn R2). Are these two detections of the

Volterra property ERA diverse with respect to a target and rival hypothesis? Or

in other words, can Schupbach’s account of ERA diversity show that learning

R2 should incrementally confirm the Volterra principle?

For this to be the case, we must find an adequate target hypothesis H and ri-

val hypothesis H′. Let’s think first about a plausible candidate for H. Of course,

the hypothesis that we ultimately want to confirm is the Volterra principle. But

as mentioned earlier, the Volterra principle cannot be an adequate target hy-

pothesis since it is not a possible explanation for why we detect the Volterra

property in model land. Indeed, recall that the Success condition demands that

ε(R1, H) > 0 and the Discrimination condition that ε(R2, H|R1) ≈ 1. But if

we take H to be the Volterra principle, neither condition is satisfied, since this

hypothesis alone, without any further assumption about the ability of the mod-

els to adequately represent the real behavior of predator-prey systems, doesn’t

make it any more or less likely that the the two models in question have the

Volterra property and hence ε(R1, H) = 0 and ε(R2, H|R1) = 0. So to satisfy

both conditions, the target hypothesis H must assert something like the follow-

ing:
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H: The Volterra principle is correct & both the Lotka-Volterra model

and the new model adequately represent the target system.

But what does it mean for a model to adequately represent the target system?

Before I explain this, it will be useful first to contrast my choice of target hypoth-

esis with that of Schupbach. Here is what he writes:

That a biological model behaves in accordance with the Volterra prin-

ciple while not making the unrealistic assumption that prey cannot

take cover is explained well by the Volterra principle itself (in con-

junction with the hypothesis that the model is accurately modelling the real

world behaviour of predator–prey systems); (Schupbach 2018, 288, my

emphasis)

Clearly, Schupbach also thinks that the target hypothesis cannot merely be the

Volterra principle. According to him, the target hypothesis must be a conjunc-

tion of two hypotheses: the hypothesis that the Volterra principle is correct; and

the hypothesis that ‘the model is accurately modelling the real world behaviour

of predator-prey systems’. However, I think the word accurately is rather mis-

leading here. As discussed Chapter 3, we already know that the Lotka-Volterra

model is highly unrealistic in many respects; that is, we already know that the

Lotka-Volterra model does not accurately describe the real-world behaviour of

predator-prey systems. Hence Schupbach’s hypothesis cannot be a plausible

candidate for the target hypothesis, since we already know from the outset that

it is not true.

But that the Lotka-Volterra model is not an accurate representation of the

target system is no surprise since, as many have argued, this is the case for most

if not all scientific models. But then, if the hypothesis that a model is an accurate

representation is not the sort of hypothesis that can be confirmed, what hypoth-

esis might we try to confirm instead? According to Parker (2009, 2020), it is the

adequacy of a model for a particular purpose. Under this view, what we want to

(and maybe can) confirm is the hypothesis that a model, despite not being an ac-

curate representation, is nonetheless an adequate representation for the particular
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purpose at hand.29 Following Parker’s suggestion, the claim that ‘the Lotka-

Volterra model and the new model adequately represent the target system’ in

my target hypothesis is meant to capture the idea that the models are adequate

for the particular purpose at hand, in this case, that of discerning whether or not

the Volterra principle is correct. So in this case, the models adequately repre-

sent the target system just in case they have the Volterra property iff the Volterra

principle is correct. Notice that if H is true - and hence the Volterra principle is

true and both models adequately represent the target system - then both models

must have the Volterra property, that is Pr(R1|H) = 1 and Pr(R2|R1&H) = 1.

This implies that ε(R1, H) = 1 and ε(R2, H|R1) ≈ 1 and hence the success con-

dition and discrimination condition are satisfied.

Have we found a plausible candidate for the target hypothesis? Perhaps.

But of course only if we think that it is plausible that both models can indeed be

adequate representations of the target system. This is not a trivial assumption.

For instance, this might fail to be a plausible assumption if by replacing the old

assumption A1 with A2, we believe that the new model now describes a sys-

tem in which a causal factor can preempt the capacity of a negatively-coupled

predator-prey system to manifest the Volterra property. In this case it is un-

clear why we should think that the new model can be adequate for discerning

whether the Volterra principle is true. In Cartwright’s words, if a model is to

teach us about capacities, it must do so by ‘mimicking Galilean experiments’

where a Galilean experiment is ‘one that isolates the cause under study so that

it operates “without impediment”. What happens in the experiment then is the

exercise of that capacity and of that capacity alone’ (Cartwright 2009, 47). How-

ever, if we know that the new model does not describe such a system, then this

might be a reasonable assumption.30 It is also worth pointing out that whether

or not H is a plausible target hypothesis in this example does not rely on the

29See Katzav (2014), Frisch (2015) and Parker (2020) for discussions of the challenges and con-
siderations involved in the confirmation of adequacy-for-purpose hypotheses (in relation to cli-
mate models).

30This of course relies on the idea that there is always a clear distinction between factors that
trigger or fail to trigger a capacity on the one hand, and factors that preempt or don’t preempt a
capacity from being manifested on the other. Although, in my view, this is not a trivial assump-
tion, it is one that must be true if a conceptually coherent interpretation of ‘robust theorems’ in
terms of stable capacities is possible.

150



idea that the new assumption is necessarily more realistic than the old one. For

although this might, arguably, be what Schupbach has in mind in light of his

choice of A1 (i.e. the unrealistic assumption that prey cannot take cover) and A2

(i.e. the more realistic assumption that prey can take cover), this doesn’t have to

be the case. For instance, A1 could be the specific functional form used to de-

scribe the rate of prey capture per predator (the Lotka-Volterra model assumes

that there is a linear increase in prey capture with prey density) and A2 could

be another functional form. And we might consider both of these functional

forms to be equally unrealistic idealizations. However, we may nonetheless be-

lieve that both of these functional forms are sufficiently accurate descriptions of

the rate of prey capture per predator for some real predator-prey system. Hence

in this case we can safely assume that it is possible for both the Lotka-Volterra

model and the new model to be adequate for discerning whether the Volterra

principle is true.31

An important caveat is in order here. For H is to be a plausible candidate

for the target hypothesis we must think that both the Lotka-Volterra model and

the new model are adequate representations not by mere luck but because, for

whatever reasons, the model ‘latches on’ to the underlying mechanism in the

target system. For if we do think that the models are adequate simply as a matter

of luck, then according to us H is an arbitrary conjunction: that is the hypothesis

that the Volterra principle is true and the hypothesis that the models behave

in accordance to it (and hence they are adequate) are unrelated to one another.

But if H is an arbitrary conjunction, the hypothesis that the Volterra principle

is true is irrelevant to the behaviour of the models and hence it is not part of an

explanation for the models’ results. However, one might wonder: in virtue of

what does a model ‘latch on’ to the underlying mechanism? Although a rigorous

answer to his question is beyond the scope of this section, I do believe that any

such answer will have to necessarily depend on the nature of the hypothesis

we want to confirm. For instance, since in this case the hypothesis we want to

31Crucially, the reason why the incompatibility of A1 and A2 is not problematic in this example
is that we are not interested in learning something about a specific predator-prey system. However,
as I will argue in the next chapter (section 5.3), in cases where we are interested in learning some-
thing about a specific target system, the incompatibility of assumptions will present a problem
for the applicability of Schupbach’s account.
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confirm is (by assumption) a claim about stable capacities, we might think the

models are adequate not by mere luck just in case they all successfully mimic a

Galilean experiment. However, in cases where we want to confirm a different

type of hypothesis, the answer to this question will inevitably be a different one.

But in any case, it is important to recognize that for H to be a plausible candidate

for the target hypothesis, we must think that there is some connection between

the target system and the behaviour of the models, and that it is in virtue of this

connection that the models are adequate representations.32

We may have found a plausible candidate for the target hypothesis H. What

about a plausible candidate for the rival hypothesis H′? This is what Schupbach

writes:

[. . .] but the competing explanation that this behaviour is attributable

to the unrealistic assumption in question would rather provide a

strong explanation of our failing to observe the behaviour using such

a model. Such a model thus explanatorily discriminates between

these potential explanations. (Schupbach 2018, 288)

Schupbach is suggesting that a rival explanation for the Lotka-Volterra model’s

result R1 (i.e. the Volterra property) and the new model’s potential result ¬R2

is the hypothesis that the model’s behaviour ‘is attributable to the unrealistic

32During conversations, two alternative candidates for a target hypothesis H have been sug-
gested to me. Although I don’t think these suggestions work, they are worth mentioning in case
the reader wants to think about this further. One suggestion is that H can be the Volterra principle
itself as long as we think of the Volterra principle as a hypothesis which concerns both the actual
world and model land. However, assuming that a Volterra principle which concerns model land
must be interpreted as something like ‘all models in the relevant class of models have the Volterra
property’, this suggestion for H can’t work since H is an arbitrary conjunction of two hypothe-
ses: the hypothesis that the Volterra principle holds in the actual world & the hypothesis that the
Volterra principle holds in model land. And the latter is supposedly doing all the ‘explaining’,
not the former. The other suggestion is that H is the hypothesis that all models in the relevant
class of models have the Volterra property in conjunction with the hypothesis that at least one of
the models in this class is adequate. However, the hypothesis that the Volterra property is present
in the relevant class of models is again an arbitrary conjunction of hypotheses (model 1 has the
Volterra property & model 2 has the Volterra property & . . . ). And if this is so, then the fact that
we detect the Volterra property in some models does not confirm the hypothesis that all models in
the relevant class of models have the Volterra property. As Lange (2001, 577) remarks, ‘a hypothe-
sis believed to be coincidental if true, such as “All of the families on my block have two children.”
[. . . ] does not have its predictive accuracy confirmed by its success in a given case. For example,
that the Jones family on my block has two children typically fails to confirm that the Smith family
on my block does, too.’ The crucial difference between my suggestion for H and the ones above
is that the hypothesis that the Volterra principle is true and the hypothesis that models we select
for RA (that may indeed be instances of a larger class of models) are all adequate (not by mere
luck) for the purpose at hand is not an arbitrary conjunction.
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assumption in question.’ But notice that since all assumptions and idealizations

of a model are needed for the derivation of a model’s result, what this hypothesis

actually means, according to Schupbach, is not clear. However, in my view (and

perhaps Schupbach’s too), the only possible candidate for a rival explanation H′

is the following logical hypothesis:

H′: the Lotka-Volterra model entails R1 & if A1 is replaced with a

different assumption (i.e. A2) the new model entails ¬R2.

The target hypothesis H and the rival hypothesis H′ are mutually exclusive,

since H′ entails R1&¬R2 whereas H entails R1&R2; hence the competition con-

dition is satisfied. The fact that H′ entails both R1 and ¬R2 means that it also

satisfies both the success condition and the discrimination condition. Hence,

since H′ satisfies all conditions of ERA diversity, whether H′ is a plausible can-

didate for a rival potential explanation will ultimately depend on whether or not

we think that logical hypotheses can be explanatory in the first place (as men-

tioned in footnote 3, ε is not supposed to reveal whether a theory is explanatory

of some proposition).33

If logical hypotheses are explanatory then we may we have found both a

target and rival explanation that satisfy all of Schupbach’s conditions of ERA di-

versity and hence detections R1 and R2 could count as ERA diverse in this case.

However, some qualifications are in order. Notice that a logically omniscient

agent will either have degrees of belief Pr(H′) = 1 or Pr(H′) = 0 depend-

ing on whether H′ is true or false respectively; and since H and H′ are mutu-

ally exclusive this means that for such agent either Pr(H) = 0 or Pr(H′) = 0

33One may wonder if a non-logical alternative rival explanation H′ could be found instead. For
instance, one may suggest the following alternative for H′: ‘the Volterra principle is not true & the
original model is inadequate & the new model is adequate. However, I have two concerns about
this alternative rival explanation. First, it is unclear why the hypothesis the Volterra principle
is not true and that the original model is inadequate can be thought of an explanation for why
the original model has the Volterra property (in other words, why should the fact that a model
is inadequate explain a particular result of the model?). Worryingly, if that were right, what
would stop us from formulating a target hypothesis which states that ‘the Volterra principle is
not true & both models are inadequate’? This would clearly be bad news. Second, whether or
not the Volterra principle is true is irrelevant for coming up with a rival explanation to my target
hypothesis. According to my target hypothesis both models must indicate the truth of the Volterra
principle since they are both adequate and the Volterra principle is true. Hence if the second
model fails to indicate its truth, then the target hypothesis is rejected, independently of whether
Volterra principle is true or false. Hence given that the falsity of Volterra principle is irrelevant
for rejecting the target hypothesis, it is not clear why it should be part of a rival explanation.
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and hence detections R1 and R2 cannot count as ERA diverse (see footnote 23).

Hence, only for an agent who is not logically omniscient, for whom Pr(H′) can

take non-maximal values, could detections R1 and R2 count as ERA diverse.34

Furthermore, notice that given that, as mentioned in Section 4.3.1, the extent to

which the target hypothesis is confirmed is partly determined by how plausi-

ble the rival hypothesis is prior to elimination, the extent to which H will be

confirmed in this case would have to partly depend on the agent’s knowledge

and beliefs about the derivational relationships in a family of models. Clearly,

this can vary substantially from agent to agent. Hence, although non-omniscient

agents might agree that detections R1&R2 are ERA diverse, they might nonethe-

less strongly disagree about the extent to which this should confirm H. In other

words, the extent to which H will be confirmed is highly contextual and, ar-

guably, also very difficult to assess within a given context (since it requires an

agent to assess their own knowledge and beliefs about the various derivational

relationships in a family of models: evidently not an easy task). Finally, it is

worth noting that there might be cases where there are an infinite number of

idealizations with which we could replace a particular idealization (e.g. there

is an infinite number of functional forms that we could pick to describe the rate

of prey capture per predator). So one may wonder: when can we stop worry-

ing about the infinite number of rival explanations that have not yet been ruled

out by our finite number of ERA diverse detections? There are, however, two

considerations that might help with this question. First, we might think that a

large class of those idealizations are not sufficiently accurate for any predator-

prey system hence whether or not a model which includes one of those ideal-

izations has the Volterra property is irrelevant to us because we don’t think that

the model is adequate. Second, and perhaps one of the main lessons to take

away from Schupbach’s account of ERA diversity, only the elimination of the

rival (logical) hypotheses that we think are plausible can incrementally confirm

H. Hence if we strongly believe that by replacing an idealization with another,

34Although there have been various attempts to relax the logical omniscience assumption in
Bayesian confirmation theory (see, for instance, Garber (1983)), not all Bayesians are willing to
relax this assumption, as this move threatens to prevent the derivation of most important results
in Bayesian epistemology. Hence for such Bayesians, Schupbach’s account is not applicable to
model-based RA.
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the new model will give the same result, then there will be very little or no con-

firmation in this case. Clearly, then, we should prioritize eliminating the rival

hypotheses that we think are plausible.35

In this section, I have argued that the application of Schupbach’s account to

model-based RA relies on several non-trivial assumptions. The first important

assumption I discussed is that an agent must believe that the models they are

considering are adequate representations of the target system not by mere luck

but because, for whatever reasons, the models ‘latch on’ to the underlying mech-

anism in the target system. This is so because if it were not then, according to the

agent, the target hypothesis would be an arbitrary conjunction (in other words,

the hypothesis that the empirical hypothesis under investigation is correct and

the hypothesis that the models are adequate for discerning whether or not it is

correct would be unrelated to one another). Hence, without this assumption, the

hypothesis that the empirical hypothesis under investigation is correct would be

irrelevant to the explanation for the models’ results and couldn’t be confirmed

by them. A second assumption I discussed is that logical hypotheses can be

explanatory; I have argued that this is a necessary assumption for finding an

adequate rival hypothesis, one that satisfies all Schupbach’s conditions of ERA

diversity. The final assumption I discussed is that the agent is not logically om-

niscient and that therefore, according to such an agent, the probability of the

rival (logical) hypothesis can take non-maximal values.

Despite these substantial assumptions, I have argued that they may be rea-

sonable in cases where the hypothesis we are interested in confirming through

model-based RA is a ‘robust theorem’ (which I interpreted as the hypothesis

that a causal structure of the model has a stable capacity to manifest a particular

result). Hence, if this is right, Schupbach’s account of ERA diversity can justify

35Indeed there might very well exist cases where we have good reasons to believe that a large
set of the possible rival logical hypotheses are implausible. One of these reasons, for instance,
could be that we know that all those models, despite involving different idealizations, ‘belong to
the same type, and they satisfy the Volterra principle, because they are of this type’ (Raz 2017, 751).
Indeed, as discussed in Section 3.2, Raz demonstrates that, as long as a condition that ensures that
the average abundance of a system coincides with the relevant equilibrium is satisfied (see Raz
2017, 748), the Volterra principle holds for a more general model (a slight modification of one
proposed by Gause (1934)). Hence, if an agent knows this, there won’t be any confirmation when
the models selected for RA belong to this type.
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why and when model-based RA should increase one’s confidence in a ‘robust

theorem’.36 This is the good news.

There is some less good news, however. Firstly, under this account, the ex-

tent to which the target hypothesis H will be confirmed is highly contextual and

will vary from individual to individual depending on their knowledge and be-

liefs about the derivation relationships in a family of models. Hence, even if two

agents might agree that a set of models’ results is ERA diverse with respect to H,

they might strongly disagree about the extent to which this fact should confirm

it. But of course, that’s Bayesianism for you. Secondly, the above assumptions

are not at all trivial assumptions and although in this section I have argued that

they may (sometimes) be reasonable in cases where the hypothesis we are inter-

ested in confirming through model-based RA is a ‘robust theorem’, there is no

reason to assume they are reasonable in other cases. Indeed, in Section 5.3, I will

argue that in all cases where the hypothesis we want to confirm is that a result

of a model is instantiated in the target system, and the models we select to check

if that result is maintained involve incompatible assumptions about that target

system, Schupbach’s account of ERA diversity is inapplicable because not all of

the above assumptions can reasonably hold.

36Of course, this only applies to agents who are Bayesian in the first place!
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Chapter 5

The epistemic import of model

agreement in climate science:

what philosophers and scientists

have to say about it

5.1 Introduction

The climate system is too complex to be faithfully represented so any attempt to

model it so as to learn something about it will necessarily involve several idealiz-

ing and simplifying assumptions that scientists know fail to accurately represent

the climate system. As Baumberger et al. remark, this is not in itself a problem

since:

The aim in climate modeling [. . .] is not (and cannot be) to arrive

at a complete representation of the climate system that is correct in

all details. The aim is rather to construct models that represent pro-

cesses of the climate system in ways that make the model adequate

for specific purposes.1 (Baumberger et al. 2017, 4)

Let us then consider a case where all one cares about is whether a model is ad-

equate for predictive purposes: couldn’t one simply identify the model that is

1What it would mean for a model to be a ‘complete representation of the climate system’ is not
at all a trivial matter in the first place.
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most promising as a predictive tool? Looking at the models’ histories of pre-

dictive successes and failures would be the most obvious place to start, but as

Parker notes,

[climate] models make predictions about what might happen 10 or

50 or 200 years from now under conditions that may or may not ac-

tually obtain during the intermediate years. [. . .] Weather forecasting

models, by contrast, make predictions about what will actually hap-

pen over time periods of hours, days or weeks. Scientists can and do

compile much information about the predictive strengths and weak-

nesses of these models. But for climate models, there is almost no

such information, since the observational data that is needed in or-

der to assess the quality of their predictions will not be available,

even in principle, for quite some time. (Parker 2006, 353)

Could one perhaps look at simulations of past and present climate conditions

and assess the model’s predictive performance based on its retrodictive successes

and failures? Unfortunately, as Parker further explains, this is also tricky:

One serious problem [. . .] is that data are available for only a few

quantities (e.g., temperature, pressure, precipitation), for only rela-

tively recent time periods, and primarily for land locations and near-

surface locations, and even these records are incomplete and of vari-

able quality. Scientists lack a solid observational foundation against

which to compare even the retrodictions of climate models. (Parker

2006, 353)

This is clearly bad news: if all climate models fail to be accurate representations

of the climate system and there is not a straightforward method to test their

predictive performance, there doesn’t seem to be any good reason to rely on any

single one of them for predictive purposes. But making no use of climate models

until a single ‘best’ one can be identified is also hopeless, for two reasons. First,

there is little reason to believe that it will ever be possible to identify a single

‘best’ model, for the same reasons as above. Second, we can’t afford to wait.

Hence as Parker remarks,
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Despite the fact that one must be careful when interpreting the re-

sults produced by multi-model ensembles, when it comes to address-

ing the global warming issue, the ensemble approach seems clearly

better than the two most obvious alternatives, that is, relying on a

single model and/or making no use of climate models until a single

‘best’ one can be identified. (Parker 2006, 361)

And indeed, the IPCC has certainly embraced an ensemble approach. As dis-

cussed in Section 2.4, the most recent Coupled Model Intercomparison Projec-

tion Phase 5 (CMIP5), for instance, was a huge collaborative effort, involving

more than 20 climate modeling groups from around the world (Taylor et al. 2012,

486), to promote a standard set of model simulations whose outputs were then

analysed by the AR5 authors to produce many of their findings.2 Despite the

harsh criticisms that I made in that chapter regarding the IPCC authors’ inter-

pretation of the results produced by multi-model ensembles, I have by no means

questioned the IPCC ensemble approach itself.

But accepting that an ensemble approach is more reasonable than any other

approach nonetheless gives rise to many questions: how should a model ensem-

ble’s results be interpreted? Should the fact that current climate models agree on

a particular result (or a range of predictions) raise our confidence in that result?

If so how much confidence? What kind of considerations are relevant to answer

these questions?

This chapter is an exploration into the above questions. In Section 5.2, I will

give a brief review of the ‘exchange’ between Lloyd and Parker on the epistemic

import of robustness of current climate multi-model ensembles’ results. I will

conclude that none of these arguments that I consider in this section are able

to shed light on the epistemic import of model robustness in climate science.

In Section 5.3, I will turn to Winsberg (2018)’s claim that Schupbach’s account

of ERA diversity can finally help shed some light on the significance of the ro-

bustness of climate model ensembles’ results. Unfortunately, we will see that

there are strong reasons to be pessimistic here too. In Section 5.4, I will turn

to the question of what climate scientists have said about the epistemic import
2The Coupled Model Intercomparison Project is now in its 6th phase.
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of model agreement. In particular, I will focus on scientists’ current (frenetic)

search for an adequate measure of independence across climate models. After

reviewing the various approaches that have been proposed to define and mea-

sure of the level of independence across models and the challenges that each

of these approaches faces, I will argue that this search is implicitly guided by

a undefended and questionable assumption: the assumption that the more dis-

similar models are from other models in an ensemble, the greater the confidence

we should have in the models’ consensus.

5.2 Lloyd and Parker on the epistemic import of model

robustness in climate science

As Winsberg (2018, 178) notes, Lloyd (2009, 2010, 2015) and Parker (2011) have

been central figures in the debate about the epistemic import of model robust-

ness in climate science. However, in contrast to Winsberg, it is in my view fair

(and not just ‘tempting’)3, ‘to treat them as the robustness booster and robust-

ness skeptic, respectively’. Hence, it is worth having a close look at what each

has had to say about the epistemic import of model robustness in climate sci-

ence, starting from Lloyd.

I find Lloyd’s argument for the epistemic import of model robustness unclear

in several respects. However, I will try to reconstruct her argument as best I can,

in the hope that this will help me clarify exactly what is unclear about it and why

I don’t think it is a sound (nor valid) argument. To illustrate her argument for the

epistemic import of model robustness in climate science, Lloyd (2015) considers

the fact that ‘all of the available climate models that incorporate greenhouse

3Winsberg 2018, 179) argues that in the exchange between Parker and Lloyd on robustness
in climate science, they ‘were addressing slightly different issues’ since the targets of their dis-
cussions were somewhat different: whereas Parker focused on the question of ‘how much work
can RA do in understanding whether diverse models support climate hypothesis’, Lloyd focused
on the question of ‘how much work can RA do in understanding how diverse models and other
sources of evidence work together to support climate hypotheses’. Hence, according to Winsberg,
it is somewhat a mistake to see Lloyd’s and Parker’s views in direct opposition to each other (see
also Lusk’s review of Winsberg’s book for a similar take on this). However, contrary to Winsberg
and Lusk, I do think that Lloyd and Parker did in fact address the very same question (i.e. the
question of what is the epistemic import of model robustness in climate science, in light of the
available evidence) and came to different conclusions as to the answer to this question.
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gases as a cause of climate change produce an increase in global mean surface

temperature (GMST) in the late 20th Century’ as shown in the figure below.

FIGURE 5.1: ‘14 GHG GCMs, in 58 simulations of 20th Century
GMST anomaly trends..’ (ibid., 61)

Lloyd argues that the fact that we have a robust and successful retrodiction from

all these models is epistemically significant. I take her argument to consist of

three steps. In the first step, Lloyd notes that although all these distinct models

(Mi) differ in many of their assumptions and parameterizations, they all ‘share

a core representation of greenhouse gases (GHG) as a radiative cause’ (ibid., 62).

Reminiscent of Weisberg’s analysis of model robustness, Lloyd then argues that

we should think of this as the common causal core shared by these models, and

hence this is a case in which we have ‘a model-type M, which is characterized by

the inclusion of the GHG causal core’ and where ‘there is variety of different as-

sumptions and parameterizationsAis [. . .] composing the rest of the model, such

that (M&Ais) implies conclusion T’ (ibid., 64), where T is the robust retrodiction

in this case.

In the second step, Lloyd argues that each model in the ensemble is not only

confirmed by its success in predicting T, as well as experimentation support for

its GHG core causal process (e.g. Tyndall’s and later laboratory experiments)4,

4Already in the mid-19the century, a causal connection between CO2 (and other greenhouse
gases) and an increase in atmospheric temperature was supported by laboratory experiments
done by John Tyndall (Hulme, 2009), but as Lloyd (2015, 62) remarks ‘questions remained about
whether these laboratory setups resembled the earth’s real atmosphere enough to provide a causal
explanation at the global scale’.
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but also by a large set of observational evidence for its assumptions Ai, which

will vary from model to model:

Because of the variety of parameters, variables, and parameteriza-

tions used in the construction of M1 . . . Mn, there is also a wide va-

riety of empirical evidence that can be brought to bear on the as-

sumptions, Ais, of these individual models, in addition to scoring

its empirical success in producing accurate global mean surface tem-

peratures, T. For instance, one model may rely on empirical evi-

dence supporting its parameter values in its modeling of the El Nino

Southern Oscillation (ENSO), while another may rely heavily on the

empirical support for a number of details, such as moisture content,

drop size, etc., of its cloud parameterization. [. . .]Because the details

of empirical support for these assumptions of the individual models

the values relating to parameterizations, variables, parameter val-

ues, and model structures differ in the case of each individual model

or model application, it is necessary to construct individualized sets

of confirming empirical evidence for each model application in the

set of robust models of the model family. Thus, the different Ais

are each supported by their own bodies of empirical evidence, even

while they produce competing or conflicting detailed climate sys-

tems. (Lloyd 2015, 63)

Before moving to the second step of Lloyd’s argument, a clarification is impor-

tant. Although Lloyd (2015) often talks of a model being confirmed by a variety

of evidence, she clarifies that this is shorthand for the claim that a variety of ev-

idence confirms the hypothesis that ‘[a model] represents specific aspects of the

real world, say, various structures contributing to and predicting/retrodicting

global mean temperature, to specified degrees, for purposes x, y, or z’ (ibid., 64).

So essentially what it means to confirm a model according to Lloyd is to confirm

the hypothesis that a model is similar to a target in particular respects and de-

grees for the purposes of the modellers or those who use them. Indeed, as Parker
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(2020) notes, the idea that models simpliciter are the objects of confirmation is a

problematic one:

On some accounts, scientific models are structures or objects; they

are not the sort of thing that can be true or false and thus are not

an appropriate target of confirmation. Even if a model is viewed

as a complex hypothesis about the workings of a target system (per

Oreskes et al. and many others), it is usually misguided to seek to

confirm (or disconfirm or falsify) that hypothesis, since it is usually

known from the outset to be false; some of the model’s assumptions

are known to be highly idealized or simplified, to appeal to fictional

entities, and so on (Parker 2010). (Parker 2020, 458) 5

However, as Parker remarks, although there is no sense in which one can con-

firm a model simpliciter there are a number of reasonable alternatives. Parker

(2020) herself advocates an adequacy-for purpose view of model evaluation

with which Lloyd’s view seems to be compatible.

In the second step, Lloyd argues that since each model is independently em-

pirically supported by a variety of empirical and experimental evidence, this

makes each model ‘a satisfactory candidate to serve as evidence or an “experi-

ment.”’:

We can imagine that each model is an “experiment” for purposes of

a variety of evidence argument. These “experiments” are in the form

of random, distinct, independently confirmed, models, M1, M2,. . . , Mn,

and their supporting observational and experimental evidence, in

which GHG is part of the radiative causal core, and other assump-

tions, Ais, such as formulations of equations, values of forcings, or

parameterizations, of the individual models vary. Significantly, each

random model is well-supported by a variety of empirical and ex-

perimental evidence, making it a satisfactory candidate to serve as

5As Parker (2020, 458) further notes the idea that a model simpliciter can be confirmed is not
merely an academic point since a view that sees models simpliciter as the object of confirmation
can easily lead to misplaced confidence, such as confidence in any result obtained from the model
even when this is not warranted.
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evidence or an “experiment.” This situation includes, as we have

discussed, that many of the Ais are often independently empirically

supported, as well as the causal core itself having independent ex-

perimental and/or observational evidence of its own. (Lloyd 2015,

65)

From these two steps, Lloyd’s concludes that:

this is a way in which the GHG causal core itself can have its con-

fidence and reliability raised through its repeated successes in pro-

ducing accurate predictions/retrodictions of late 20th and early 21st

C. global mean temperature, T, in conjunction with a variety of inde-

pendently empirically supported model assumptions. Model robust-

ness describes a pattern of models and evidence, which is described

within a variety-of-evidence inference, as telling us more than any

given piece or subset of pieces of evidence as used in these infer-

ences, and as giving us increased confidence first in the causal core,

and ultimately in the model outcomes. (Lloyd 2015, 65)

I find Lloyd’s argument confusing for at least two reasons. The first is that it

is not sufficiently clear what hypothesis model robustness is supposed to con-

firm according to Lloyd. In the quote above Lloyd argues that model robust-

ness in this case should increase our confidence in the causal core of the models,

which I take to be the hypothesis that there is a causal connection between green-

house gases and increases in atmospheric temperature (but not the hypothesis

that greenhouse gases necessarily increase temperatures in the earth’s real at-

mosphere). However, she also argues that model robustness in this case will

‘ultimately’ also increase our confidence ‘in the model outcomes’ (ibid., 65). But

what outcomes is Lloyd referring to is not clear. The case that she considers to

illustrate her argument is one in which we have a robust and successful retrodic-

tion, so it is hard to see why we would want to confirm this outcome in the first

place. Perhaps then she is thinking of other various predictions by the model

ensemble in question? But what other predictions she may be referring to is

not clear. In yet other passages she argues that model robustness raises ‘the
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confidence connecting the causal core, GHG, of the model-type, M, to the 20th

and early 21st Century warming outcomes, to specified degrees and respects,

and assuming a particular purpose’ (ibid., 65) or that it increases ‘confidence in

that causal core as a good explanation of the robust and verified model predic-

tions/retrodictions’ (ibid., 67). So here she seems to argue that model robustness

can increase our confidence that greenhouse gases have played a substantial

causal role in the 20th and early 21st century temperature increase. These are

all different hypotheses, and without clarity as to which one model robustness is

supposed to confirm in this case it is hard to understand where the epistemic

import of model robustness actually lies according to Lloyd.

The second reason for why I find Lloyd’s argument confusing (or better: puz-

zling) is that it is not at all clear what to make of the idea that each model in the

ensemble is a ‘satisfactory candidate to serve as evidence or an “experiment”.

That is, what can it possibly mean to take a model as evidence for a hypothe-

sis? For instance, if one understands a model as a complex hypothesis about

the global climate, then it doesn’t seem conceptually coherent to think of this

complex hypothesis as evidence for a hypothesis, nor if we think of models as

structures or objects for that matter. So whatever Lloyd means by the claim that

a model can serve as evidence must mean something else, but Lloyd herself

doesn’t clarify this.

I am clearly not alone in this puzzlement. Indeed, in his attempt to recon-

struct Lloyd’s variety of evidence argument for the epistemic import of model

robustness Justus (2012) is confronted with the very same puzzlement. In his

attempt to reconstruct Lloyd’s argument, Justus (2012) applies Fitelson (2001)’s

account of confirmational independence (discussed in Section 4.2.3) as follows:6

Because each [Global Climate Model] GCM is confirmed by various

predictions, perhaps they can be treated as bits of evidence for the

common core C that they share. Returning to Fitelson’s account and

making the relevant substitutions, the generalization would require

what follows:
6Although, Lloyd (2015) does not mention Fitelson’s account of confirmational independence

(nor any other account of confirmation for that matter) to justify her variety of evidence argument
in this instance, she does in her earlier papers; see Lloyd (2009, 2010).
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If GCM1 and GCM2 individually confirm C and are [confirmation-

ally independent] regarding the (core) hypothesis C, then c(C, GCM2

&GCM1) > c(C, GCM1), and c(C, GCM2&GCM1) > c(C, GCM2).7

But this is flawed on many fronts. First, since C is part of GCMi,

the right side of each [inequality] seems to be 0, and the first part

of the preceding antecedent, false: GCMi deductively entails C, but

that certainly does not establish that it confirms C. And, second,

since GCMi and GCMj (i 6= j) are logically incompatible hypotheses

about global climate, the left-hand side of each [inequality] seems

undefined: the conditionalizations are predicated on an impossible

circumstance. (Justus 2012, 805)

Let’s focus on the second flaw that Justus points out with this analysis, the fact

that ‘since GCMi and GCMj (i 6= j) are logically incompatible hypotheses about

global climate, the left-hand side of each [inequality] seems undefined: the con-

ditionalizations are predicated on an impossible circumstance.’ Indeed, if we

take models to serve as evidence for a hypothesis, as suggested by Lloyd, and if

we understand models to be complex incompatible hypotheses about the global

climate, then in order to apply Fitelson’s account in this instance we would have

to assume that a set of incompatible hypotheses about the global climate can

confirm a hypothesis. But this can’t be right since if the probability of the ‘evi-

dence’ is 0, conditionalization is undefined and hence under any plausible con-

firmation measure, the confirmatory value of learning this evidence will also be

undefined. What I (and arguably Justus too) take this to show is that Lloyd’s

idea that models can serve as evidence for a hypothesis is conceptually problem-

atic.

There is, however, a way to improve (if not save) Lloyd’s argument. Rather

than treating models as evidence for a hypothesis H, we might be able to treat

their results as evidence for a hypothesis. So returning to Fitelson’s account and

making the relevant substitutions, the generalization would now require what

follows:
7In the original quote those inequalities are equalities. But I changed them, as it is a typo (Jack

Justus has confirmed this to me).

166



If R1 and R2 (which are the results of GCM1 and GCM2 respectively)

individually confirm a hypothesis H and are confirmationally inde-

pendent regarding H, then c(H, R2&R1) > c(H, R1), and c(H, R2&R1)

> c(H, R2).

In contrast to Justus’s application of Fitelson’s account, this is one doesn’t seem

to be conceptually incoherent.8 However, despite this, there are in fact plenty

of reasons to doubt that it is reasonable to assume that the models’ results R1

and R2 are confirmationally independent regarding H. For even if we were to

accept Lloyd’s first step - that distinct ‘models’ are supported by distinct bodies

of evidence - it is really unclear why this alone should convince us that this as-

sumption is reasonable. As discussed in Section 4.2.3, if the models in question

share idealizations, uncertain assumptions, omissions etc. it is unreasonable to

assume their results to be confirmationally independent regarding a hypothe-

sis. And as Parker (2011, 591) notes, this is indeed the case for current climate

models since ‘there are climate system features and processes [. . .] that are not

represented in any of today’s models but that may significantly shape the ex-

tent of future climate change on space and time scales of interest. In addition,

when it comes to features and processes that are represented, different models

sometimes make use of similar idealizations and simplifications.’

Hence, even if a more charitable reconstruction of Lloyd’s variety of evidence

argument is possible, there is very little reason to think that the assumptions on

which this reconstruction relies are satisfied by current climate model ensembles

(and future climate model ensembles too for that matter).9 Perhaps Lloyd might

not want to rely on Fitelson’s account of confirmational independence after all.

8By this I don’t mean to suggest that Justus wasn’t well aware of the conceptual incoherence
involved nor that Justus was making some kind of error in attempting to reconstruct what possi-
bly Lloyd could have had in mind. Indeed, it is clear that the aim of Justus’s analysis above was
to reveal the incoherence of Lloyd’s approach.

9My sceptical attitude towards Lloyd’s argument for the epistemic import of model robustness
is not at all meant to suggest that I don’t think there is overwhelming evidence supporting the
hypothesis that greenhouse gases are responsible for the 20th and early 21st century temperature
increase. Indeed there are plenty of established results (justified independently of GCMs) that
provide overwhelming strong evidence in support of it (e.g. our very good understanding of the
causal mechanism of the greenhouse effect, our identification of water vapour, carbon dioxide as
greenhouse gases, Paleo climate data revealing that current CO2 concentration levels far exceed
natural fluctuations etc.). However, the fact that we have overwhelming evidence in support of
this hypothesis has nothing to do with whether or not Lloyd’s argument for the epistemic import
of model robustness is a good one.
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However, given that she does not provide any other account of confirmation,

her argument is at best incomplete.

Parker (2011), in contrast to Lloyd, has a rather more pessimistic outlook on

the epistemic import of model robustness in climate science. She considers sev-

eral arguments that could in principle be used to justify why we should have

high confidence in current climate ensembles’ robust predictions, but she con-

cludes that all those arguments rely on very questionable assumptions and that

they therefore not ‘readily applicable in the context of ensemble climate predic-

tion today’. Here I will only mention two of the arguments she considers (I only

focus on the ones that don’t rely on any sort of assumption of probabilistic inde-

pendence since as already discussed extensively in Chapter 4, I don’t think the

epistemic import of model robustness can be adequately defended on the basis

of any sort of probabilistic independence). One argument she considers is the

following (ibid., 584):

1. It is likely that at least one simulation in this collection is indicating cor-

rectly regarding hypothesis H.

2. Each of the simulations in this collection indicates the truth of H.

∴ It is likely that H.

She argues that there are at least two possible approaches to justify why the

likely adequacy condition (premise 1) is met by today’s multi-model ensembles:

one that focus on ensemble construction and one that focuses on ensemble per-

formance. Under the first approach: ‘one would argue that an ensemble of mod-

els samples so much of current scientific uncertainty about how to represent the

climate system (for purposes of the predictive task at hand) that it is likely that

at least one simulation produced in the study is indicating correctly regarding

H’ (Parker 2011, 584). However, as already mentioned above, as far as today’s

multi-model ensembles are concerned this approach is unlikely to succeed since

‘these ensembles are ensembles of opportunity [. . .] they are not designed to

span an uncertainty range’ (ibid., 585). On the performance approach, on the

other hand: ‘an ensemble is viewed as a tool for indicating the truth/falsity of
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hypotheses of a particular sort, of which the predictive hypothesis H is an in-

stance; the ensemble’s past reliability with respect to H-type hypotheses is cited

as evidence that it is likely that at least one of its simulations is indicating cor-

rectly regarding this particular H’ (Parker 2011, 585). The main problem Parker

raises with using this approach to justify the likely adequacy condition (premise

1) has to do with the tuning of climate models: ‘given the ad hoc nature of the

tuning process, and the fact that today’s climate models are far from perfect in

their representation of the climate system, it cannot be assumed that the per-

formance of a tuned climate model with respect to as-yet-unseen data will be

similar to its performance with respect to the data to which it is tuned. More-

over, when today’s climate models are tuned, it is often difficult to adequately

test their out-of-sample performance, both because reliable observations of past

climate are limited and because most observations that are available are for time

periods in which greenhouse gas concentrations were significantly lower than

they are expected to be in the future.’ (Parker 2011, 587)

Parker (2011, 590) also considers the following Bayesian argument for why

agreement across models should increase confidence in the common result:

1. e warrants significantly increased confidence in predictive hypothesis H if

p(e|H) >> p(e|¬H).10

2. e = all of the models in this ensemble indicate H to be true.

3. The observed agreement among models is substantially more probable if

H is true than if H is false; that is, p(e|H) >> p(e|¬H).

∴ e warrants significantly increased confidence in H

However, she strongly doubts that the third premise can be adequately justified

as far as today’s climate model ensembles are concerned. In particular she ar-

gues that there are many reasons to worry that climate models might all indicate

the truth of a predictive hypothesis, despite it being false:

10This premise follows from Bayes’ theorem.
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First, there are climate system features and processes— some recog-

nized and perhaps some not—that are not represented in any of to-

day’s models but that may significantly shape the extent of future

climate change on space and time scales of interest. In addition,

when it comes to features and processes that are represented, dif-

ferent models sometimes make use of similar idealizations and sim-

plifications. Finally, errors in simulations of past climate produced

by today’s models have already been found to display some signif-

icant correlation (see, e.g., Knutti et al. 2010; Pennell and Reichler

2011). Thus, in general, the possibility should be taken seriously

that a given instance of robustness in ensemble climate prediction

is, as Nancy Cartwright once put it, “an artifact of the kind of as-

sumptions we are in the habit of employing” (1991, 154). Perhaps

with additional reflection and analysis, persuasive arguments for

p(e|H) >> p(e|¬H) can be developed in some cases, but at present

such arguments are not readily available. (Parker 2011, 591)

This ends my brief review of the ‘exchange’ between Lloyd and Parker as far

as the epistemic import of model robustness in climate science is concerned. As

we have seen, none of the arguments that I have considered in this section (one

from Lloyd and two from Parker) seem to provide a satisfactory justification

for why robust predictions/retrodictions should increase (let alone substantially

increase) our confidence in climate hypotheses. However, Winsberg (2018) has

recently suggested that Schupbach’s account of ERA diversity can help shed

some light on the significance of the robustness of climate model ensembles’

results. The aim of next section is to critically assess whether this is in fact the

case.

5.3 Winsberg on ERA diversity and Climate model en-

sembles

In his recent book ‘Philosophy and Climate Science’, Winsberg (2018) has em-

phatically argued that Schupbach’s account of ERA diversity can finally shed
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light on the epistemic import of model robustness in climate science.11 Accord-

ing to Winsberg:

We should not ask whether the outputs that are robust under the en-

semble of opportunity of models should be trusted. This question is

too simple to have a determinate answer. Rather, we should talk

about specific climate hypotheses, and inquire about how [ERA]-

diverse our ensemble of models is with respect to each one of these

hypotheses individually. (Winsberg 2018, 193-94)

From this view it follows that:

Whether or not an ensemble of models is a good candidate for lend-

ing strong support for a hypothesis via RA depends almost entirely

on the extent to which the set of models suffices for ruling out com-

peting hypotheses. This means that just because the set of proce-

dures we have that detect H are ERA-diverse does not imply that we

should have confidence in H. [ERA]-diversity only implies CEP [cu-

mulative epistemic power], i.e. it only implies that you are headed

down the road to acceptance as you increase the size of the set of

procedures. Once we know that a set is [ERA]-diverse the question

of whether it is large enough to warrant acceptance of H, whether it

is sufficiently [ERA]-diverse, is a further question. And the answer

to that further question will always be a matter of judgment, context,

considerations of inductive risk, etc. (Winsberg 2018, 194)

In Section 4.3, I argued that the application of Schupbach’s account to model-

based RA relies on several non-trivial assumptions. Despite this, I argued those

assumptions may be reasonable in cases where the hypothesis we are interested

in confirming through model-based RA is a ‘robust theorem’ (interpreted as the

hypothesis that a causal structure of the model has a stable capacity to manifest

11And he is not alone. According to O’Loughlin (2021, 36), ‘Winsberg (2018) convincingly ar-
gues that [Schupbach’s account] can be applied to climate models.’ In reviews of Winsberg’s book,
Lusk (2019) writes that ‘Winsberg’s argument is a convincing reconceptualization of robustness
analysis in climate science’ and Knüsel (2020, 116) that ‘Winsberg [. . .] makes a novel, convinc-
ing suggestion for when multiple sources of evidence in favor of a hypothesis are meaningful in
climate science.’
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a particular result). In this section, however, I will argue that Schupbach’s ac-

count is inapplicable to a very large class of model-based RA, that is, all cases in

which the hypothesis we want to confirm is that a result of the model is instanti-

ated in the target system and the models we select for RA involve incompatible

assumptions about that system. Hence, contrary to what Winsberg suggests

above, I will conclude that Schupbach’s account is not applicable in the context

of climate model ensembles. Hence, we should not rely on this account to help

us shed some light on the significance of the robustness of climate model en-

sembles’ results. But first, it will be useful to look at one of the main sources of

uncertainty in climate modeling: the parameterization of physical processes.

Several physical processes, whose representation is thought to be critical in

generating accurate projections, cannot be resolved directly by current climate

models since they occur at a smaller scale than the models’ grid resolution.12

For instance, the development and evolution of cloud processes are thought to

play a very important role in the Earth’s radiation budget. However, these pro-

cesses cannot be resolved directly by current climate models since clouds can be

as diminutive as a few hundred metres across – substantially smaller than the

current models’ grid resolution (around 50–100 km horizontally) (Parker, 2013).

Therefore, in order to include the effects of these subgrid processes in the evo-

lution of the model variables, these subgrid processes must be represented in

terms of larger-scale variables. This process of representing physical processes

that cannot be resolved directly by the model is known as parameterization.

Since a parameterized subgrid process is one for which the model has no di-

rect information, the subgrid process must be related to known model variables

in one way or another. Hence the process of parameterization involves both

a choice of what equations should describe the various relationships between

the subgrid process and the known model variables and a choice of the various

12Climate models represent the atmosphere by a three-dimensional set of points (called a grid).
So model resolution (which depends on the number of discrete grid points) refers to the horizon-
tal and vertical scales that can be resolved by the model. Clearly, the higher the resolution, the
more physical processes can be directly resolved. However, there will always be some physical
processes that cannot be explicitly represented (and hence will have to be parameterized) regard-
less of the model’s resolution: either because they occur at too small a scale (e.g. the formation
of cloud droplets occurs on the molecular scale) or because of their complexity (e.g. biochemical
processes of vegetation).
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parameter values within those equations. It is clear, then, that when it comes

to the parameterization of subgrid processes, there will always be at least two

sources of uncertainty. One is parameter uncertainty, i.e. uncertainty concerning

the adequate parameter values; the other is structural uncertainty, i.e. uncer-

tainty concerning the adequate equations describing the relationships between

the subgrid process and known model variables.13 However, it is important to

note that regardless of these choices, parameterizations ‘by necessity distill only

the essential aspects of the physical processes they represent’ (Stensrud 2007,

9); in other words, all parameterizations are invariably simplified and idealized

representations of complex physical processes.

With this in mind, let us now look at an example on which Winsberg relies

to convince us that Schupbach’s account of ERA diversity can shed light on the

epistemic import of model-based RA in climate science:

Suppose that a climate simulation can be used to calculate that equi-

librium climate sensitivity (ECS) is greater than 2°C. One explana-

tion of this is that ECS is actually greater than 2°C. Thus this would

count as a detection of the hypothesis (that ECS is greater than 2°C)

by a model. But another possible explanation might be that the cal-

culated result is an artifact of the large grid size of the simulation. A

natural move is to try to halve the grid size and check to see if the

result is maintained. If it is half the grid size again. If the result re-

mains stable, then the probability of that rival explanation goes way

down. Thus a reasonable ensemble of different simulation models

with descending grid size could count as [ERA] diverse. [. . .] But

even once we are convinced that the grid size is not responsible for

the purported detection of the hypothesis, there remains the possibil-

ity that the detection is an artifact of the way that cloud formation is

13An important difference between structural and parameter assumptions is that for any given
structural assumption, the space of possible alternative structural assumptions is, arguably, un-
defined - since there is no clear way to circumscribe the class of possible alternative equations
describing the various relationships between the subgrid process and the known model vari-
ables. In contrast, for a given parameter assumption, the space of possible alternative parameter
assumptions is well defined: it is the space of possible numerical values (but as Baumberger et al.
(2017, 10) remark ‘it is nonetheless computationally intractable to its dimensionality’).
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parameterized in the simulation. A rival cloud parameterization can

be tried. Certainly those two methods of detection would count as ERA

diverse. Again, context and judgment, but this time presumably of a

more subtle and difficult character, would be required to decide at

what point, if any, enough different cloud parameterization schemes

are enough to rule out all such hypotheses. (Winsberg 2018, 192-93,

my emphasis)

Winsberg actually uses two examples to illustrate when simulations’ results

count as ERA diverse. The first concerns simulations with different grid sizes,

the second concerns simulations with different parameterizations. However, the

first example is, in my view, besides the point when it comes to discussions con-

cerning the epistemic import of model-based RA in climate science. Scientists

are very well aware that higher resolution would, for instance, reduce the influ-

ence of physical parameterizations of some of the processes that are sufficiently

well understood, but that occur at finer spatial and temporal scales. So if they

could increase resolution, they would! But substantially increasing model res-

olution for global climate models is not at all trivial and requires an enormous

amount of computing power. Hence for the time being, the resolution of cur-

rent global climate models is what it is and climate scientists have to live with

it. The question that matters to us is whether current global climate models can

be used to learn about the climate. In particular, in this case, what we want to

know is whether the fact that a result is robust across current multi-model en-

sembles should increase our confidence in that result. Given that those models

often include distinct parameterizations for the same physical process, Wins-

berg’s second example seems more pertinent to this question.

In this example, Winsberg considers a simulation involving a particular pa-

rameterization scheme for cloud formation (i.e. a particular structural assump-

tion B1) which gives result R1. He then claims that if one were to observe that

a second simulation involving a rival cloud parameterization scheme (i.e. a dif-

ferent structural assumption B2) gives the same result R2, these two detections

would count as ERA diverse. Hence, Winsberg is implicitly assuming that it
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is possible to find a target explanation H and rival explanation H′ that satisfy

Schupbach’s conditions of ERA diversity in this case. The following candidates

for H and H′ may, prima facie, seem reasonable:

H: ECS is greater than 2°C (R) & both climate simulations are ade-

quate (not by mere luck) representations of the target system,

H′: The original climate simulation entails R1 & if B1 is replaced with

B2 the new simulations entails ¬R2.

However, I will argue that, due to the incompatibility of the assumptions B1

and B2, it must be the case that either H or H′ fails to be a plausible candidate.

Hence, contrary to what Winsberg claims, I will conclude that ‘certainly those

two methods of detection would [not] count as ERA diverse’.

In a nutshell, my argument is the following. In light of the incompatibility

between B1 and B2, there are only two possible epistemic states for an agent to be

in, and under neither of them is it possible for an agent to find both an adequate

target and rival hypothesis that satisfy all of Schupbach’s conditions of ERA

diversity. They are the following: 1) an agent believes that at most one of these

two simulations can be adequate (not by mere luck) for the purpose at hand and

hence H is not a plausible candidate for the target hypothesis since for such an

agent Pr(H) = 0; 2) an agent believes that both simulations can be adequate

(again not by mere luck) and hence H′ is not an adequate rival hypothesis since

for such an agent Pr(H′) = 0.

Consider case 1). An agent may reasonably believe that since different pa-

rameterizations for a particular process (in this case, cloud formation) are com-

peting ways to represent such a process (Parker, 2006), then at most one of these

two simulations can be adequate (not by mere luck) for the purpose at hand.

Hence, for an agent in this epistemic state Pr(H) = 0, and hence H is not a plau-

sible target hypothesis for them. Consider case 2). An agent may reasonably

believe that although different parameterizations for a process are competing

ways to represent such a process, those differences are irrelevant for whether or

not the simulations are adequate for the purpose at hand. According to such

an agent, since the simulations are sufficiently similar in what they consider to
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be all the relevant aspects, it is possible to assume that both simulations can be

adequate (not by mere luck) for the purpose at hand. Hence, for such an agent

H is a plausible target hypothesis. However, for an agent to believe that those

differences are irrelevant for whether or not the simulations are adequate (not

by mere luck) for the purpose at hand, they must effectively believe that the dif-

ferences across those simulations are irrelevant to the result they will produce.

In other words, such an agent must believe that both simulations, despite their

differences, are bound to give the same result. Hence according to such an agent,

H′ is false and is thus not a plausible rival hypothesis.

A more general perspective might further help us to see what is at stake here.

I take the above example to be an instance of a more general class of model-based

RA, one in which in light of the modelers’ uncertainty about how to adequately

represent a target system, there are many possible incompatible ways to do so

and, perhaps surprisingly,14 it is discovered that all the models available agree

on a particular result. For Schupbach’s account of ERA diversity to apply, and

hence reveal why this fact should increase one’s confidence that this result is

instantiated in the target system, it must be possible to provide a partly empir-

ical explanation for this coincidence, one according to which the truth of such a

result plays not only a necessary role but also a sufficient one (aside from repre-

sentational considerations). I argue that although an explanation according to

which the truth of such a result plays a necessary role is possible, one according

to which it plays a sufficient one is not. This is because the truth of the result

cannot on its own explain why all those models agree on that result. In order for

the truth of the result to explain why those models agree on that result, we must

also independently believe that the differences across the models are irrelevant

to the result they will give. In other words, the truth of the result can perhaps

explain why the models agree on that result, but not why they agree in the first

place. Hence, if this is right, Schupbach’s account is not applicable to these

cases, because for the truth to explain this coincidence, one must presuppose

14Perhaps not. Indeed this very much depends on how we understand "agreement". For in-
stance, there is nothing surprising about the fact that incompatible models may all agree that the
value for a particular variable is within a given range, especially if that range is determined after
observing the models’ results, which is how Winsberg himself seems to understand agreement.
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the models, despite their differences, are bound to give the same result (since

those differences are irrelevant for the purpose at hand). Hence, by accepting

that the truth of a result can be part of an adequate explanation for why all these

models give that result, one must at the same accept that a rival explanation that

satisfies Schupbach’s conditions of ERA diversity is not possible in this case.

There is a possible objection to my argument that is glaring and that I should

respond to before concluding. My argument relies on the idea that if an inves-

tigator considers the hypothesis H to be plausible, then she must assign zero

probability to the incompatible H′. But surely, one might object, a Bayesian in-

vestigator could assign both H and the incompatible H′ some probability > 0;

she can be uncertain about which is true. She collects more evidence precisely

because she wants to discriminate between them. However, here is why I don’t

think this objection works. This objection relies on the idea that the investigator

is uncertain about whether or not the differences across the models are irrelevant

to the result they will produce. That is, according to the investigator, the models

she considers might or might not give the same result, she simply is unsure. But

a precondition for H to be true (and hence for all the models in the ensemble

to be adequate representations of the target system despite making incompati-

ble assumptions about the target system) is that all the models in the ensemble

will necessarily give the same result whether or not it holds in the target system.

Since the investigator does not know whether this is the case, this hypothesis

must now be part of the target hypothesis H. Hence the target hypothesis H

must state something like the following:

H: R holds in the target system & both climate simulations will nec-

essarily give the same result whether or not it holds in the target

system & both climate simulations are adequate (not by mere luck)

representations of the target system

But notice that the above hypothesis can be equivalently rewritten as follows:

H: R holds in the target system & the first simulation is an adequate

(not by mere luck) representation of the target system & so is the
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other simulation because it is bound to give the same result as the

first one whether or not it holds in the target system

Which can further be equivalently rewritten as follows:

H: R holds in the target system & the first simulation is an adequate

(not by mere luck) representation of the target system and hence it

gives result R & if the first simulation gives result R so must the

second simulation whether or not R holds in the target system.

But then notice that under H, the fact that the second simulation gives result

R has nothing to do with whether or not R actually holds in the target system.

Under H the second simulation gives R merely because it is bound to give the

same result as the first simulation independently of whether R holds in the target

system. Hence H in this case is really an arbitrary conjunction of two hypotheses

H1 and H2 where H1 is the hypothesis that R holds in the target system and the

first simulation is an adequate representation of the target system and H2 is the

hypothesis that the second simulation must give R independently of whether

R holds in the target system since the first simulation gives R. But then H1 is

clearly irrelevant to the explanation of why the second simulation gives result

R and hence cannot be confirmed by it. Hence, given that the ultimate aim is

to confirm that R holds in the target system, H cannot be an adequate target

hypothesis.

In this section, I have argued that when the hypothesis we want to confirm is

that a result of a model is instantiated in the target system, and the models we

select to check if that result is maintained involve incompatible assumptions

about that target system, Schupbach’s account of ERA diversity is inapplicable,

for it is impossible to find both an adequate target and rival hypothesis that

satisfy all conditions of ERA diversity.

Indeed, I think the idea that there must be an explanation for the robustness

of a result in order for this robustness to be epistemically significant is simply the

wrong way to think about what is going on in these cases of RA. What matters in

these cases is not why the models agree on a result, but rather that they do at all!
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For instance, as discussed above, there is a great deal of uncertainty about how

to adequately represent the climate system; there are thus many ways one might

attempt to do so. The hope, then, is that at least one of the available models is

adequate for the purpose at hand, not necessarily all of them!15 Therefore, one

way to motivate the idea that our confidence should increase the more models

agree on a result is by arguing that by considering those additional models we

can increase our confidence that at least one of the selected models is adequate

for the purpose at hand. This is a very different way of motivating the epistemic

import of model-based RA, and notice further that it has very little, if anything,

to do with the agent’s knowledge and beliefs about the derivational relation-

ships in a family of models. Unfortunately, however, although I think this is the

right way to think about what’s going on in these cases of model-based RA, this

argument doesn’t take us very far without an understanding of what is the space

of (possibly) adequate representations of the target system in question, and the

extent to which the models we select are relevant for spanning that space. These

are, in many cases, very hard questions, questions that we philosophers should

help with if we want to help provide an adequate justification for the epistemic

import of model robustness in those cases.

Indeed, I think there is a lot for us philosophers to think about in relation to

those questions. As we will see in the next section, climate scientists have been

trying for some time to find a measure of independence that can satisfactorily

capture how dissimilar climate models are from one another (e.g. Bishop and

Abramowitz, 2012; Sanderson et al., 2015; Annan and Hargreaves, 2017; Boe,

2018). Although these attempts vary considerably, the implicit assumption mo-

tivating all of them is that the more dissimilar models are from other models in

an ensemble, the greater the confidence we should have in the models’ consen-

sus. But why should we assume that the more dissimilar an ensemble is, the more

it spans current scientific uncertainty? For instance, two models may be rather

similar in most respects and yet involve different parameterization schemes for

highly uncertain processes (e.g. cloud formation). Although we might judge

15But as discussed in Section 5.2, as far as today’s multi-model ensembles are concerned, this
can at best be a hope rather than a justified assumption, for ‘these ensembles are ensembles of
opportunity [. . .] they are not designed to span an uncertainty range’ (Parker 2011, 585).
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these models to be rather similar overall, they might span more scientific uncer-

tainty about how to adequately represent the climate system than two models

we might judge less similar overall but that do not involve different parame-

terization schemes for such highly uncertain processes. That is, considerations

on dissimilarity across models do not on their own seem to be sufficient for as-

sessing the extent to which an ensemble samples current scientific uncertainty.

So what are the relevant considerations? And which considerations can actu-

ally be implemented in practice? I believe these are the kinds of questions that

we, philosophers, should think about if we are genuinely interested in helping

scientists evaluate the epistemic import of model-robustness in climate science.

Hence, it is time to turn to those.

5.4 Independence revisited: what have climate scientists

said about the epistemic import of model agreement?

In a rough survey of the contents of several leading climate journals, Pirtle et al.

(2010) found 188 articles ‘in which the authors relied on the concept of agree-

ment between models to inspire confidence in their results’ (353). Indeed, it is

not hard to find quotes by climate scientists in which they make explicit the

thought that if multiple models agree on a result this should increase our confi-

dence that that result holds in the actual world. For instance, Lambert and Boer

(2001, 88) write that ‘A small value of δ indicates agreement among models and

supports the assumption that they are capturing the processes that govern that

variable and hence its climate. A large value of intermodal scatter, on the other

hand, indicated disagreement and unreliability’. Tebaldi et al. (2011, 1) write ‘if

multiple models, based on different but plausible assumptions, simplifications

and parameterizations, agree on a result, we have higher confidence than if the

result is based on a single model, or if models disagree on the result’. Boe (2018,

2771) write that ‘At the core of the multi-model approach lies the basic idea that

if the results of an additional model B are close to the ones of a model A, then

our confidence in the results of A is reinforced. Obviously, it is only true insofar

A and B are not near identical’.
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But not everyone thinks that model agreement is always confirmatory, or at

the very least not everyone thinks that all cases model agreement are equally

confirmatory. Indeed a prominent idea among climate scientists is that indepen-

dence across models is crucial for their agreement to be confirmatory (or per-

haps substantially confirmatory). However, the notion of independence that

they have in mind is not always clear and can be used to mean very different

things. Indeed, there are at least three different interpretations of independence

that have been discussed in the climate literature and the distinction between

them is significant in many respects. Broadly they can be characterized as fol-

lows:

1. Under the first interpretation, ‘the assumption of independence is equiv-

alent to the interpretation that each model approximates the real world

with some random error’ (Knutti et al., 2010). This is often referred to as

the “truth plus error” hypothesis/paradigm;

2. Under the second interpretation, the degree of independence is determined

by the amount of divergence of models’ outputs independent of obser-

vations (Abramowitz and Gupta, 2008) or by the degree of correlation of

observed model errors (Bishop and Abramowitz, 2012; Sanderson et al.,

2015). Under this interpretation, independence is measured a posteriori;

3. Under the third interpretation, the degree of independence is determined

by the degree of shared formulation in the models. Hence under this con-

ception of independence models are classified ‘based on the independence

of their structure’ (Abramowitz, 2010). Under this interpretation, indepen-

dence is measured a priori.

Notice that under the first interpretation, independence is not a matter of de-

grees. In other words, under the first interpretation models are either indepen-

dent or they are not. Under the second and third interpretation, on the other

hand, independence is a matter of degrees. In other words, under these inter-

pretations models can be more or less independent and what we are interested
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in is the extent to which the are. Below I will discuss the first interpretation, and

in the next subsection, I will turn to the second and third interpretations.

Under the first interpretation of independence what it means for models to

be independent is that their errors are independent and identically distributed

(typically assumed to be normally distributed with zero mean). This is referred

to as the “truth plus error” hypothesis/paradigm. And as Knutti et al. (2010,

2745) remark many Bayesian methods that are used to interpret the results de-

rived from multi-model ensembles rely on the assumption that the truth plus

error hypothesis is true and according to Leduc et al. (2016, 8302) ‘the truth-

plus-error paradigm remains the most widely used technique for processing

multimodel ensemble’.16

As Annan and Hargreaves (2017) point out, if the truth plus error hypothesis

were actually true it would have rather remarkable consequences:

Although it has not generally been explicitly stated, even a small

ensemble of samples drawn from such a distribution would be an

incredibly powerful tool. If we could sample models from such a

distribution, then we could generate arbitrarily precise statements

about the climate, including future climate changes, merely by pro-

ceeding with the model-building process indefinitely and taking the

ensemble mean. This would obviate the need both for computational

advances and also for any additional understanding of how to best

simulate the climate system [. . .] For example, if we accept the ar-

guments of Pennell and Reichler (2011) that the CMIP3 ensemble

contains eight “effectively independent” models then its full range

of sensitivity values, 2.1–4.4 C, would still be a legitimate 99% confi-

dence interval for the true sensitivity [. . .] The same argument would

apply to any other output or derived parameter of the model cli-

mates.17 (Annan and Hargreaves 2017, 212-13)

16Indeed as discussed in chapter 2 (section 2.5), the IPCC seems to often implicitly rely on this
assumption too (but we have also seen that it is not very clear on what other assumptions they
are relying to interpret climate model ensembles results as they do).

17Annan and Hargeaves (ibid., 213) further remark that this would imply that ‘we could be “vir-
tually certain” (to use the IPCC calibrated language) that the model ensemble bounds multiple
aspects of the behaviour of the climate system, even with this very modest number of number of
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As a further example of the impact of the error plus truth hypothesis, consider

figure 5.2 below taken from Knutti et al. (2010), showing various pdfs obtained

using a Bayesian method developed by Furrer et al. (2007) which relies on the

truth plus error assumption. As the number of models increases the uncertainty

in the true value of the temperature change (i.e. the width of the probability

density function) decreases substantially as the number of models included in

the ensemble increase from 4 to 21 models.

FIGURE 5.2: ‘PDFs for annual global temperature change for
the period 2080–99 relative to period 1980–99 from the Bayesian
method by Furrer et al. (2007), for the A1B scenario and for 4, 10,

and 21 models.’ (Knutti et al. 2010, 2746)

Notice further that by applying Furrer et al.’s Bayesian method, we can con-

clude that we should be "virtually certain" (to use the IPCC calibrated language)

that the value for the temperature change lies within the range of the values

predicted by the 21 models. This is anything but a humble conclusion. 18

But however striking the consequences of the truth plus error assumption,

and despite the fact that many Bayesian methods that are used to interpret the

results derived from multi-model ensembles rely on it, there is in fact very little

reason to think it is plausible in most if not all cases. Indeed there are many

“effectively independent” models’. However, it is worth noting that this is a (alas very common)
fallacy, one that Morey et al. (2016, 104) call The Fundamental Confidence Fallacy: ‘If the probability
that a random interval contains the true value is X%, then the plausibility or probability that a
particular observed interval contains the true value is also X%; or, alternatively, we can have X%
confidence that the observed interval contains the true value.’

18And (strikingly) one that was already obtained by considering only 4 models!
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studies that show that models’ errors are often correlated and that the mean

of an ensemble does not converge to the truth as the number of models in an

ensemble increases as should be the expected if the error plus truth hypothesis

were true. Knutti et al. (2010), for instance, show that the errors of the models’

results in the CMIP3 are strongly correlated and that mean of the CMIP3 does

not asymptotically converge to observations. But crucially, the knowledge that

climate models often share many simplifications, limitations and assumptions

should already provide enough of a reason to suspect that this assumption is

not appropriate in the first place as many have noted (e.g. Knutti et al. 2010,

Bishop and Abramowitz 2012, 4)).19

In light of the implausibility of the truth plus error assumption, climate scien-

tists have been frenetically trying to find other approaches to define (and mea-

sure) independence across models. To the best of my knowledge, all of these

alternative approaches either rely on the second interpretation of independence

or on the third interpretation of independence introduced above. In the next

subsection, I will discuss some of the challenges that each of these two distinct

types of approaches faces.

5.4.1 Measures of independence: A-posteriori and A-priori approaches

The various approaches that have been proposed to define and measure the level

of independence across models can be divided into two main families: a poste-

riori approaches and a priori approaches. Arguably, both approaches can be

thought of as attempts to measure inter-model dependencies, that is how dis-

similar climate models are from one another in their uncertain assumptions and

idealizations about the target system. However, as we will see, each approach

has its own set of considerable challenges.

19An other objection that has been raised against the error plus truth hypothesis that is worth
mentioning is that this hypothesis is incompatible with any concept of “internal variability”
(Houghton 2014, 2306; Bishop and Abramowitz 2012, 12; Abramowitz 2019, 96). Indeed as
Abramowitz et al. (2019, 96) remark, ‘[i]f we wish to consider ensemble simulations where unpre-
dictability or aleatory uncertainty is an inherent part of the prediction, we no can longer expect
that the system might be entirely deterministically predictable. [. . .] In these cases we accept that
some component of the observational data is inherently unpredictable, even for a perfect model
without any epistemic uncertainty’.
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Under a posteriori approaches (second interpretation of independence), ‘the

proximity of GCMs results or of their errors is used to quantify a posteriori their

interdependencies’ (Boe 2018, 2772). A posteriori approaches can be further di-

vided into ones that assume that the level of dependence depends on the amount

of divergence of their outputs independent of observations and ones that as-

sume that it depends on the correlation of model errors (so the latter rely on

observations).

Abramowitz and Gupta (2008)’s measure of independence, for instance, be-

longs to the former. Under their account of independence, the closer the models’

outputs are under similar input and initial conditions the more dependent they

are considered to be. Several objections have been raised against measures of

independence that are based merely on the divergence of outputs independent

of observations (such as Abramowitz and Gupta (2008)’s measure). According

to Annan and Hargreaves (2017, 213), ‘this approach has the potential weakness

that models that agree because they are all accurate will be discounted, rela-

tive to much worse models, without any allowance being made for their good

performance relative to reality.’ However, Abramowitz and Gupta (2008, 3-4)

do concede that in order ‘to choose the best model ensemble, we must consider

both the independence and performance of potential ensemble members’ and

that ‘choosing model weights for an ensemble is then a process of deciding on a

performance measure (or aggregation of performance measures) and then using

a weight description that values performance and independence in an appropri-

ate ratio.’ 20 So this does seem to be a possible reply to Annan and Hargreaves’s

concern. Abramowitz et al. (2019)’s objection is stronger, however. They ar-

gue that ‘inter-model distances alone in the absence of observational data are an

incomplete proxy for model independence’. (95) To illustrate their point they

consider the following example.

If models’ results that are spread around observational estimates should be con-

sidered to be independent (even if their outputs are similar), as Abramowitz

et al. (2019) argue, and measures of independence that rely on inter-model

distances alone in the absence of observational data cannot account for this,
20This is of course is easier said than done.
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FIGURE 5.3: ‘A two-dimensional projection of an inter-model
distance space, showing different models and observational esti-
mates, with a radius around models that could be used to deter-
mine model dependence. The radius around observations might
be related to the uncertainty associated with a given observa-
tional estimate. Panels (a) and (b) illustrate how the relative posi-
tion of observational data sets in this space could complicate this

definition of model dependence.’ (ibid., 96)

then it seems that one shouldn’t use this measure of independence regardless of

whether one also takes into account of the models’ performance in the weighting

process.

Other a posteriori approaches that have been proposed assume that the level

of dependence depends on the level of model error covariance or error correla-

tion (Collins et al. 2010, Bishop and Abramowitz 2013). As Abramowitz (2019,

95) notes, these approaches have ‘the advantage that “error” only reflects devia-

tions from an observational product (rather than similarity in model outputs per

se)’ and hence it is perhaps more reasonable to assume that ‘differences in the

structure of error between models are likely to reflect differences in the sections

of model representation that are not tightly constrained by observations’. How-

ever, several objections have also been raised against these a posteriori measures

of independence. According to Pirtle et al. (2010, 354), all a posteriori measures

of independence ‘essentially treat models as black boxes, ignoring the causal

reasons for disagreement between models. It is possible that two models could

agree with respect to outputs despite their having different causal assumptions,

but such a result, using this approach, would falsely indicate model “depen-

dence,” because these models would yield the same output despite the fact that
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they make different and possibly conflicting claims about the underlying mech-

anisms’. Similarly, Annan and Hargreaves (2017, 218) think that ‘[p]airwise

similarity between model outputs may arise through convergence of different

approaches to understanding the climate system, and not merely through copy-

ing of ideas, and this would not indicate any dependence as defined here. [. . .]

We do not believe that coincidentally similar behaviour should be penalised

by downweighting of these models, as it may represent a true “emergent con-

straint” on system behaviour’. And Abramowitz et al. (2019, 98) worry about

the sensitivity of a posteriori dependence measures to the choice of variable,

constraining observational data set, metric, time period and the region chosen’.

The a posteriori approaches, discussed above, are seen as pragmatic ap-

proaches to quantify inter-model dependencies – the hope with that approach is

that the proximity of models’ results or model error correlations are good proxy

measures for model interdependencies i.e. the similarities in the way the mod-

els represent the world and its causal structure.21 However, all the objections

mentioned above raise serious doubts as to whether a posteriori approaches to

quantify inter-model dependencies are really fit for purpose. In light of this,

some scientists argue that inter-model dependencies should be assessed using a

priori approaches instead, where ‘the independence of models is judged a pri-

ori, based only on the knowledge of their codes, and not of their results.’ (Boe

2018, 2772 )

A priori approaches are still very much in their infancy, however. A very

basic a priori approach is the “institutional democracy” proposed by Leduc et

al. (2016). Under this approach models that come from the same institution (i.e.

the same modelling center) are assigned less weight.22 The motivation behind

this approach is that ‘[c]limate models developed within a given research group

21But as Abramowitz et al. (2019, 93) point out ‘[f]or those process representations where mod-
els exhibit high fidelity (i.e. where there is sufficient observational constraint to ascertain this),
models should be expected to agree in their representation [. . .] It is only in the cases where there
is insufficient observational constraint to diagnose such an epistemic departure, or those where
no model can avoid one, that models should provide independent process representations.’

22To give a bit more detail, Leduc et al. suggest a weighing technique that gives half weight
to a model that agrees with another model from the same centre. So they effectively suggest
to‘[disregard] one model per pair when an agreement is found’ (Leduc et al. 2016, 8310), but not
when it is not found. However under a truly a priori approach, agreement across models should
play no role in the assessment of inter-model dependencies, so Leduc et al.’s weighing technique
seems to be based on a mix of a prioiri and a posteriori considerations.
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or institution are prone to share structural similarities’ (ibid. 8301) and hence

institutional democracy could be used a proxy for measuring inter-model de-

pendences. However, many have found the institutional democracy approach

unsatisfactory, since models can share many similarities despite not being from

the same modelling centre and hence ‘deciding whether or not two GCMs are

independent based on their institutions is just a first step. A better knowledge of

how code similarity impacts GCMs results is needed to go forward’ (Boe 2018,

2772).

Annan and Hargreaves (2017) propose a general account of independence

that is determined a priori in terms of the anticipated outputs of the models. Ac-

cording to them two models should be considered independent if a researcher’s

subjective belief about a possible outcome of one of the models in the ensemble is

not affected by learning an output of the other model. However, this assessment

of independence is extremely subjective and they only show how it is supposed

to work in cases where all the researcher knows is the model’s institution.23

Boe (2018) has recently proposed to use the number of shared components by

GCMs as a proxy for model independence.24 But he himself acknowledges that

this approach ‘is still crude and has some limits’ (ibid., 2777). For a start, deter-

mining whether or not two components are different is not a trivial exercise and

is bound to be rather subjective. Indeed Boe relies on the version numbers of the

GCMs’ components to determine whether two components are different, but as

Abramowitz notes ‘it is unlikely that the approach to version numbering is con-

sistent across modelling centres, meaning that two components might be very

different even if they share a major version number, or vice versa.’ (Abramowitz

2019, 94) Another issue that Boe himself points out is that ‘the impact of tun-

ing is not considered. Some components may be considered “identical” in this

work but use different parameters, which may be a source of important differ-

ences. A better documentation of tuning in GCMs would be necessary to go

23The downgrading technique they propose to downgrade models that are not deemed to be
independent is also based on highly subjective considerations and seems rather arbitrary to me.

24Each GCM is characterized by its four key components: atmosphere, ocean, land surface, and
sea ice models. Some GCMs may share one or more components, but they may nonetheless use
different values for some parameters depending on the tuning strategy that is used or they may
also use different versions of that component (where different versions may include substantially
different structural assumptions).
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further’ (Boe, 2777). Yet an other problem is that it is not at all clear how one

should select or weigh models based on this measure of independence. As Boe

remarks, the simplest approach might be to simply forbid component replica-

tion or perhaps to accept a certain level of component replication. However,

that would seem to go too far since ‘even if GCMs with replicated components

are not independent, they are not totally identical.’ (ibid., 2777) Boe tentatively

suggest a “component democracy” approach, ‘whereby each different compo-

nent would be given the same overall weight in the ensemble. The weight of

a GCM would be the combination of the weights corresponding to each of its

components’ or the ‘approach proposed by Annan and Heargreaves (2017) to

derive independence weights, but at the replicated component level rather than

the group level.’ (ibid., 2777) However, these are indeed tentative suggestions.

Finally as Abramowitz (2019, 94) remark ‘Boé’s approach quickly becomes dif-

ficult and time consuming for large ensembles such as CMIP, given the lack of

transparency regarding precisely what constitutes different models and the role

of tuning.’ And furthermore ’shared history as it pertains to dependence should

only include process representations that are not tightly observationally con-

strained (so that Navier–Stokes equations might not represent dependent pro-

cess treatment, for example)’ which might further complicate things.

Overall, although a priori approaches to measure inter-model dependencies

may intuitively seem more appropriate, they clearly also face considerable chal-

lenges. Indeed, there is currently no scientific consensus on how to measure

inter-model dependencies.

5.4.2 Why such a strong focus on independence?

In the midst of this search for a measure of independence that can satisfacto-

rily capture how dissimilar climate models are from one another, there is a sub-

stantial and yet undefended assumption that is often implicitly and sometimes

explicitly made in the literature. It is the assumption that the more dissimilar

models are from other models in an ensemble, the greater the confidence we

should have in the models’ consensus. For instance, when Pirtle argues that

‘increased confidence requires an account of independence within each set of
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models’ and that ‘the authors would strengthen their case for increased con-

fidence with a clear account of what these six models share that would make

them useful for this study, and an argument for independence despite this over-

lap’, he is implicitly making the assumption that independence across models

is able to give one epistemic warrant. So is Boe (2018) when he states that ‘At

the core of the multi-model approach lies the basic idea that if the results of an

additional model B are close to the ones of a model A, then our confidence in

the results of A is reinforced. Obviously, it is only true insofar as A and B are

not near identical.’ And so are Leduc et al. (2016, 8302) when they state that

‘Agreements between climate change projections from several models are often

interpreted as predictors of confidence [. . .], but such an inference is difficult to

defend without any robust measure of model independence’.

However, this is not at all a trivial assumption. For although it is intuitively

clear that if you look at the same thing over and over again you are not going

to build any confidence, it would be a fallacy to infer from this that the con-

verse is equally intuitive. That is, is there any reason to believe that if GCMs

that are not identical all indicate the truth of a hypothesis this should automati-

cally raise our confidence in that hypothesis as Boe suggests? And in particular

is there any reason to believe that the more dissimilar the GCMs are from one

another, the more confidence we should have that their consensus is epistem-

ically significant? To explore the answer to the latter question in particular, it

will be helpful to go back to some of the arguments for the epistemic import

of model consensus that I have discussed in this chapter and see whether they

could somehow help us justify why greater dissimilarity across models should

raise one’s confidence in their consensus. I will start with the two arguments

by Parker, discussed in Section 5.2 and I will then briefly turn to Winsberg’s

argument (although I should really say Schupbach’s), discussed in Section 5.3.

Finally, I will explore the possible connection between climate scientists’ implicit

assumption that the more dissimilar models are from other models in an ensem-

ble, the greater the confidence one should have in the models’ consensus, and

philosophers’ (such as Kuorikoski et al. and, arguably, Lloyd too) attempt to

justify the epistemic import of model consensus on the basis of some notion of
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probabilistic independence.

As discussed in Section 5.2, one of the arguments that Parker (2011) consid-

ers as a possible attempt to justify why agreement across models should sub-

stantially increase one’s confidence in the common result is the following:

1. It is likely that at least one simulation in this collection is indicating cor-

rectly regarding hypothesis H.

2. Each of the simulations in this collection indicates the truth of H.

∴ It is likely that H.

Recall that the problem with this argument is that it seems rather hard to justify

that the adequacy condition (premise 1) is met by today’s multi-model ensem-

bles, for as Parker argues, neither of the two possible approaches to justify this

premise (one that focuses on ensemble construction and one that focus on en-

semble performance) is successful. However, one might think that the extent of

dissimilarity across models in an ensemble is relevant here. Indeed one might

attempt to justify why greater dissimilarity across models in an ensemble should

lead to greater confidence in their consensus by relying on the following revised

version of Parker’s argument above:

1. Greater dissimilarity across models increases the likelihood that at least

one simulation is indicating correctly regarding hypothesis H.

2. Each of the simulations in this collection indicates the truth of H.

∴ Greater dissimilarity across models increases the likelihood that H.

As for Parker’s original argument, there seem to be two possible approaches to

justify premise 1: One that focuses on model construction and one that focuses

on ensemble performance. On the model construction approach, one would

argue that the greater the dissimilarity across models, the greater the current

scientific uncertainty about how to represent the climate system (for purposes

of the predictive task at hand) sampled by an ensemble and hence the more

likely that at least one simulation produced in the study is indicating correctly
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regarding H. However, why one should accept this argument is far from clear.

Without any careful considerations as to the extent to which various dissim-

ilarities are relevant for spanning current scientific uncertainty about how to

represent the climate system (for purposes of the predictive task at hand), why

should we assume that the more dissimilar an ensemble is, the more it must

span current scientific uncertainty? For instance, two models might be quite

similar in most respects and yet involve different parameterizations schemes for

highly uncertain processes (such as, for instance, cloud formation). Although

we might judge these models to be rather similar overall they might arguably

span more scientific uncertainty about how to represent the climate system than

two models that we might judge to be less similar overall but that do not involve

different parameterizations schemes for such highly uncertainty processes. Or

perhaps still, two models might be dissimilar in many respects that are nonethe-

less believed to be irrelevant for the particular purpose at hand (i.e. discerning

whether or not H is correct). Although we might judge these models to span

more scientific uncertainty than two models that are more similar overall, we

might think this greater dissimilarity is irrelevant to the likelihood that at least

one simulation is indicating correctly regarding H. That is, considerations on

dissimilarity across models do not on their own seem to be sufficient for assess-

ing the extent to which an ensemble samples current scientific uncertainty, and

neither do considerations on the extent to which an ensemble samples current

scientific uncertainty (independently of the particular purpose at hand) seem

sufficient for assessing the likelihood that at least one simulation is indicating

correctly regarding hypothesis H. Hence on the model construction approach it

seems hard to adequately justify premise 1.

One the performance approach, one would argue that the greater the dissim-

ilarity across models the more justified one is in citing the ensemble’s past relia-

bility with respect to H-type hypothesis as evidence that it is likely that at least

one of its simulations is indicating correctly regarding this particular H. Recall

that one of the worries that Parker had with respect to the performance approach

has to do with ‘the ad hoc nature of the tuning process’ which coupled with ’

the fact that today’s climate models are far from perfect in their representation
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of the climate system’ means that ‘it cannot be assumed that the performance of

a tuned climate model with respect to as-yet-unseen data will be similar to its

performance with respect to the data to which it is tuned’. Can independence

perhaps alleviate this worry and in so doing provide a justification for premise

1? I do not think so. If the worry from tuning stems from the fact the models are

far from perfect in the representation of the climate system (and hence ‘because

of significant errors elsewhere in the model, parameter values that give the best

model performance might be noticeably different from measured values—if a

clear physical interpretation of the parameter can be given at all’ (Parker 2011,

588)), then it is very unclear why greater dissimilarity across models on its own

can address this concern. Indeed it seems to me that the more dissimilar models

are in their representation of the climate system, the more reasons to doubt that

all of them can be relatively accurate representation of the climate system and

the more justified the worry from the ad hoc nature of the tuning process. Hence

on the performance approach it also seems hard to adequately justify premise 1.

Let us now look at an other argument that Parker (2011) considers as a pos-

sible attempt to justify why agreement across models should substantially in-

crease one’s confidence in the common result :

1. e warrants significantly increased confidence in predictive hypothesis H if

p(e|H) >> p(e|¬H).

2. e = all of the models in this ensemble indicate H to be true.

3. The observed agreement among models is substantially more probable if

H is true than if H is false; that is, p(e|H) >> p(e|¬H).

∴ e warrants significantly increased confidence in H.

As discussed in Section 5.2, Parker argues that premise 3 is rather hard to justify

as far today’s multi-model ensembles are concerned. One of the reasons that she

gives for worrying that models might all indicate the truth of a hypothesis de-

spite the hypothesis being false is that ‘when it comes to features and processes

that are represented, different models sometimes make use of similar idealiza-

tions and simplifications.’ The worry here is that models might tend to indicate
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the truth of a hypothesis independently of whether the hypothesis is true be-

cause they share similar idealizations and simplifications. This is, arguably, also

one of the very concerns that is currently driving climate scientists to search for

a satisfactory independence metric; one might therefore think that we have fi-

nally found where dissimilarity across models might play an epistemic role. The

idea here might be something like the following: if we can show that models in

an ensemble do not involve many similar idealizations and simplifications, then

we might be able to alleviate the worry that models agree merely because they

make similar idealizations and simplifications – hence we might be in a better

position to justify premise 3.

In this case one might try to justify why greater dissimilarity across models

in an ensemble should lead to greater confidence in their consensus by relying

on a revised version of Parker’s argument above:

1. e warrants significantly increased confidence in predictive hypothesis H if

p(e|H) >> p(e|¬H).

2. e = all of the models in this ensemble indicate H to be true.

3. If the models in this ensemble share few idealizations, simplifications and

uncertain factual assumptions then the observed agreement among mod-

els is substantially more probable if H is true than if H is false; that is,

p(e|H) >> p(e|¬H).

∴ If the models in this ensemble share few idealizations, simplifications and

uncertain factual assumptions e warrants significantly increased confidence

in H.

But a little reflection shows that things are not as straightforward as they seem.

As Parker (2006, 363) notes, climate models in a multi-model ensemble ‘often in-

corporate conflicting assumptions about what the climate system is like’. And,

arguably, the more dissimilar models are, the more conflicting assumptions one

should expect them to incorporate. But if this is right then it is seems to me

that having highly dissimilar models in an ensemble merely replaces one worry
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with another. For although we can now worry less that models agree merely be-

cause they share similar simplifications and idealizations, we now have to worry

about why models agree on a result despite making conflicting assumptions

about what the climate system is like. In other words, given that the models

make conflicting assumptions about the climate system and hence ‘the models

are [. . .] incompatible with respect to ontology’ (ibid., 364) why should we ex-

pect that the models are more likely to agree regarding the truth of a hypothesis

on the assumption that the hypothesis is true, rather than on the assumption

that the hypothesis is false? If anything, the knowledge that models agree de-

spite making incompatible assumptions about the target system might suggest

that the models are agreeing for reasons that are independent of what the cli-

mate system is like.

Consider now Winsberg’s argument that ‘whether or not an ensemble of

models is a good candidate for lending strong support for a hypothesis via [ro-

bustness analysis] depends almost entirely on the extent to which the set of mod-

els suffices for ruling out competing hypotheses.’ As argued in Section 5.3, there

are many reasons to doubt that Winsberg’s attempt to rely on Schupbach’s ac-

count of RA to justify when agreement across climate models can lend further

support to a climate hypothesis works, since despite what Winsberg suggests

it doesn’t seem that one is ever in a position to formulate an adequate target

explanation and rival explanation for the models’ common result that satisfy

Schupbach’s conditions of ERA diversity whenever the models in an ensemble

make incompatible assumptions about a target system and the hypothesis we

are interested in confirming concerns that target system. But leaving aside the

objections I raised in Section 5.3, (in other words supposing that my objections

can be somehow be responded to and hence that Winsberg is right in so far con-

sensus across models can lend further support to a hypothesis by allowing us

to rule out competing explanations for that result) then clearly greater dissimi-

larity across models without any detailed account for why those dissimilarities

are relevant for ruling out competing hypotheses (if indeed they are relevant)

is not going to help one assess the extent to which an ensemble is ERA diverse

with respect to a target hypothesis. Hence the idea that the greater dissimilarity
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across models, the greater the epistemic import of their consensus can certainly

not be defended on the basis of Schupbach’s account of ERA diversity.25

Finally, it is worth briefly exploring the possible connection between climate

scientists’ implicit assumption that the more dissimilar models are from other

models in an ensemble, the greater the confidence one should have in the mod-

els’ consensus, and philosophers (such as Kuorikoski et al. and arguably Lloyd

too)’s attempt to justify the epistemic import of model consensus on the basis

of some notion of probabilistic independence. As discussed in Section 4.2.3 and

Section 5.2, by relying on Fitelson (2001)’s account of confirmational indepen-

dence, one could offer the following argument for why agreement across climate

models should increase one’s confidence in a hypothesis:

1. If R1 and R2 (which are the results of GCM1 and GCM2 respectively) in-

dividually confirm a hypothesis H and are confirmationally independent

regarding H, then c(H, R2&R1) > c(H, R1), and c(H, R2&R1) > c(H, R2).

2. R1 and R2 individually confirm a hypothesis H.

3. R1 and R2 are confirmationally independent regarding H.

∴ c(H, R2&R1) > c(H, R1), and c(H, R2&R1) > c(H, R2).

As discussed in Section 5.2, premise 3 is particularly troubling as far as today’s

climate model ensembles are concerned. One important reason for this is that

current climate models often share similar idealizations, simplifications and also

uncertain factual assumptions. As argued extensively in section 4.2.3, when this

is the case it is unreasonable to assume their results to be confirmationally inde-

pendent regarding a hypothesis. One might therefore think that climate scien-

tists’ implicit assumption that the more dissimilar models are from other models

in an ensemble, the greater the confidence we should have in the models’ con-

sensus, is closely connected to this reason for worrying about the validity of

25Related to this last point, O’Loughlin (2021), who in contrast to me believes that Winsberg
‘convincingly argues that ERA can be applied to climate models’ (36) argues that ‘because climate
scientists may engage in robustness inferences that are not focused solely on pinning down the
value of a climate variable and that do not include the elimination of competitor hypotheses,
we should be critical of the notion that ERA applies generally across all cases of RA in climate
science’. (37)
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premise 3 of the above argument. The idea here would have to be something

like the following: the more dissimilar models are from other models in an en-

semble, the more reasons for believing that premise 3 is justified and hence the

more reasons for accepting the above argument’s conclusion.

There are, however, at least three problems with this idea. The first is an ob-

vious one. Models’ results are either confirmationally independent regarding a

hypothesis or they are not so. That is, confirmational independence is not a mat-

ter of degrees. Hence, greater dissimilarity across models despite knowing that

the models still share some idealizations, simplifications and uncertain assump-

tions is simply not enough to dismiss our worries about the validity of premise

3. The second, perhaps less obvious, problem with this idea is that the plausibil-

ity of premise 3 also depends on what the hypothesis H is all about. Suppose,

for instance, that H = RT is the hypothesis that the models’ common result R is

instantiated in the target system. In this case premise 3 would require R1 and R2

to be confirmationally independent regarding RT. But as argued in Section 4.2.2,

the assumption that the models’ results R1 and R2 are probabilistically indepen-

dent conditional on RT (and ¬RT)26 is implausible whenever the models under

consideration share a set of substantial assumptions about the target system de-

spite differing in all other assumptions. But climate models will inevitably share

a large set of substantial assumptions about the target system (e.g. all process

representations that are tightly observationally constrained such as, for instance,

the Navier-Stokes equations). Hence, it is very unclear why one would have any

reason to accept premise 3 in this case, no matter how otherwise dissimilar the

models might be from one another. What I take this to illustrate is that the fact

that distinct models may share different idealizations, simplifications, and un-

certain factual assumptions may in fact be altogether irrelevant for supporting

premise 3, depending on the nature of the hypothesis H one is trying to confirm.

A final problem with this idea is that there may be cases in which the models un-

der considerations might make distinct incompatible assumptions about the tar-

get system and one may have reasons to believe that at most one amongst these

26Recall that according to Fitelson (2001) this is a sufficient condition for R1 and R2 to be con-
firmationally independent regarding RT .
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assumptions is adequate, even if one lacks the knowledge to determine which

one (e.g. one such case might be when the models involve distinct parametriza-

tions schemes for a given process). As argued in Section 4.2.3, whenever this is

the case, it is hard to see why it would be reasonable to assume that conditional

on the hypothesis H being correct (whatever H may be), the models’ results are

probabilistically independent. As discussed in that section, on the assumption

that one knows that H is correct, it is unreasonable to suppose that learning that

the first model gives result R should not change one’s degrees of belief that the

second model will give result R. This is because learning that the first model

gives result R should give one further reasons to suppose that the assumption

in the second model is inadequate, which should reasonably decrease one’s de-

grees of belief that the second model will give result R. Hence, this may be an

additional reason for worrying that greater dissimilarity across models per se is

irrelevant for dismissing our worries about premise 3 of the above argument.

All in all, it is hard to see why greater dissimilarity across models in an en-

semble is relevant for the assessment of the epistemic import of model consen-

sus. This suggests that this frenetic search by climate scientists for a measure

of independence that can satisfactorily capture how dissimilar models are from

one another not only faces many challenges (some of which I discussed in Sec-

tion 5.4.1) – it is also misguided.

The assessment of the epistemic import of climate model consensus, and more

generally the interpretation of climate models’ results, is an extremely challeng-

ing problem, one that scientists are trying very hard to deal with; however, as

I have suggested in this section, they have not necessarily done so in the most

fruitful way. In light of this challenge, some scientists and philosophers (e.g.

Stainforth et al. 2007, Betz 2010, Katzav 2014) have argued that the most we

should expect from current climate models is for them to be used as tools for ar-

ticulating ‘possibilities’.27 Betz suggests that, under this view, ‘progress would

27Whether we should think of these possibilities as ‘real possibilities’ is itself a source of debate.
Suppose we define a real possibility as a state of affairs that has been demonstrated to be consis-
tent with the relevant background knowledge (this is how Betz (2010, 98) seems to implicitly
define a real/verified possibility. However, Betz (2016) later refers to this as an epistemic possibility
and reserves the term ‘real possibility (at time t)’ to describe all states-of-affairs whose realizations
are objectively compatible with the states-of-the-world at time t). In light of this definition, Betz
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consist not in convergence of simulation results but in a proliferation of the un-

derlying models, and of the scenarios they generate’ while stressing that the

current ‘prominent role of GCMs is at least debatable. Sophisticated climate

models might actually contribute much less to our foreknowledge than evoked

by the IPCC’. Although I am somewhat sympathetic to these views, I also be-

lieve that a very important, if not main, role of the IPCC is to be responsive to

policy makers’ and other decision makers’ needs for expert judgment, given all

the evidence available (including GCMs’ results), even though those judgments

may indeed have to involve a substantial degree of subjectivity. Hence, I don’t

think the IPCC should give up trying to establish confidence in claims about

how the climate system actually is (contrary to what some proponents of this

view seem to suggest). What I do think, however, is that the interpretation of

climate model results is indeed a formidable challenge, one the IPCC must deal

with somehow or other, and one we philosophers of science, must think very

carefully about so as to help, not hinder, the IPCC in their efforts to practically

deal with it. Although this chapter has been more critical than constructive, I do

hope that some of its criticisms can at the very least steer us away from some

inauspicious paths and point us towards more promising ones.

(2010, 96) worries that since climate models incorporate assumptions about the climate system
that are known to be strictly false, the total states of affairs they represent cannot be considered
real possibilities and hence one is not entitled to assume that their predictions represent real pos-
sibilities either. Katzav (2014, 236), on the other hand, defines a real possibility (relative to some
time t) as follows: (a) its realisation is compatible with the basic way things are in the target
domain over the period during which it might be realised and (b) our knowledge at t does not
exclude its realisation over that period. In light of this definition, he argues that ‘the models only
need to provide us with simulations that represent the basic way the climate system is over the
periods in question. And representing the basic way the climate system is over a period of time
is compatible with being false to a substantial degree. It only requires representing something
like the circumstances that obtain in the system and something like the way in which the system
evolves. Plausibly, given the substantial knowledge built into GCMs and given the empirical suc-
cesses of their simulations, their simulations often provide what is required here’ (Katzav 2014,
204). However, in light of Katvaz’s less demanding definition of ‘real possibility’ it is unclear, in
my view, why one should care about whether something is a real possibility in the first place.
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Part III

The weight of evidence and some

proposals for a new IPCC uncertainty

framework
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Chapter 6

On the weight of evidence: what

is it, can we measure it, and why

should care about it?

6.1 Introduction

It has often been argued there is an important distinction to be made between

the balance of evidence ‘which is a matter of how decisively the data tells for or

against the hypothesis’ (Joyce 2005) and the weight of evidence, ‘which is a mat-

ter of the gross amount of data available’ (Joyce 2005); and that any satisfactory

epistemology should recognize this distinction.1 However, in my view, propo-

nents of this idea have not always been sufficiently clear as to what, according

to them, the notion of the “weight of evidence” actually consists in. The one

thing that most advocates of this idea do have in common is that they claim that

Keynes (1921) was one of the first to point out this distinction and that what

they mean by the “weight of evidence” is roughly what Keynes meant by it.

Some give a bit more detail; others leave it as that. Yet this is odd for at least

two reasons. First, Keynes (1921) never fully clarified what he meant by the no-

tion of the weight of evidence. Indeed, as we will see in the next section, one

can distinguish two rather different ways in which Keynes conceptualized the

1Joyce (2005) argues that there is also a third aspect of the evidence (i.e. the specificity of the
evidence) that any satisfactory epistemology should recognize, but I shall not be talking about
this third aspect here.
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weight of evidence. Second, Keynes had a particular view about the role prob-

abilities should play in our inferences (i.e. he was an advocate of logical prob-

abilities), one that is arguably rather unpopular these days and that is rejected

by most recent proponents of this distinction. In light of all this, it is not clear to

me whether advocates of this distinction really are referring to an unequivocal

concept of the weight of evidence, one that is sufficiently understood to be ad-

equately characterized. In spite of my doubts, I believe the fact that the notion

of the weight of evidence has troubled epistemologists for a long time, together

with the fact that – despite much effort – a satisfactory measure of it has yet to

be found and is unlikely ever to be found, does tell us something. In particular,

I will argue that it tells us something about the limitations of an epistemology

that envisions the role of probability to be that of quantifying the degree of belief

to assign to a hypothesis given the available evidence.

The structure of this chapter is as follows. In Section 6.2, I will introduce

what the weight of the evidence consisted in according to Keynes. We will see

that Keynes himself thought that the weight of evidence could be understood

in at least two different ways, and that it is often impossible to directly measure

Keynes’s weight of evidence or compare the weight of different evidential sets,

however we choose to understand it. In Section 6.3, I will assess the Bayesian’s

efforts to account for the weight of evidence. I will argue that the Bayesian has

not found an adequate measure of the weight of evidence, and that it is unlikely

that any will ever be found, for several reasons. In Section 6.3.1, I will argue that

the fact the Bayesian worries about the weight of evidence and yet struggles to

provide an adequate response to those worries sheds light on the limitations of

an epistemology that envisions the role of probability to be that of quantifying

the degree of belief to assign to a hypothesis given the available evidence.

Before I begin, I would like to make a cautionary remark. This chapter may,

at first sight, appear to be largely disconnected from any issue that I have been

concerned with so far and, in particular, from any practical issues that the IPCC

authors may face in their evaluation and communication of uncertainty in their

findings. Indeed, not only will this chapter be highly abstract; its conclusions

will be mostly negative too. Why, then, take my reader on this apparent detour?
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What useful and practical lessons can one possibly take away from such an ab-

stract and negative chapter? Yet there are in fact two reasons why, despite prima

facie appearances, this chapter is relevant to the assessment and communication

of uncertainty by the IPCC.

First, as discussed in Chapter 1, the current IPCC uncertainty framework

includes two uncertainty metrics: confidence and likelihood. And, as seen in

Chapter 2, although the IPCC gave more than one reason for including two un-

certainty scales, those reasons were not articulated with sufficient clarity and

precision, nor (when interpreted with sufficient clarity and precision) did they

seem like especially good ones. Notwithstanding all this, if indeed there is an

important and meaningful distinction to be made between the balance of evi-

dence and the weight of evidence – a distinction that any satisfactory epistemol-

ogy should recognize, as many have argued since Keynes first introduced this

notion – then this would seem to provide a firm justification for why the IPCC

may indeed want to include two uncertainty scales for the communication of

uncertainty: one for the balance of the evidence and one for its weight! Given

the rather intuitive force of this distinction, the large literature on this matter,

and the possible justification that it could provide for why the IPCC should in-

clude two uncertainty scales, I believe a careful discussion of this (infamous)

notion of the weight evidence is vital if we are to overcome whatever unques-

tioned intuitions we may have about this distinction and recognize just how

very problematic it is.

Second, as we will see in Chapter 7, there are several proposals for a new

IPCC uncertainty framework that significantly depart from the current one, and

from each other too. Several conclusions of this chapter will be directly rel-

evant to my assessment of at least two of these proposals: Winsberg’s (2018)

proposal and Bradley et al.’s (2017) proposal. As I will discuss in Section 7.2,

the interpretation of confidence under Winsberg’s (2018) proposal seems to (if

only implicitly) rely on unquestioned assumptions resulting from the literature

on resiliency of credence and the weight of evidence. Some of the conclusions
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of Section 6.3 of this chapter will help me assess the tenability of those assump-

tions. Bradley et al.’s (2017) proposal, which I will discuss in Section 7.5, ex-

plicitly refers to Keynes’s notion of weight of evidence to motivate the role of

confidence under their proposal. However, I will argue that not only is it highly

unclear why confidence under this proposal should have anything to do with

Keynes’s notion of the weight of evidence, which I will discuss extensively in

Section 6.2 in this chapter, but that the only possible way in which confidence

under their proposal can be understood as expressing something remotely close

to the notion of Keynes’s weight of evidence renders their proposal conceptually

flawed.

In a nutshell: if you do find yourself questioning the relevance of this chap-

ter, please stay with it all the same, as its pertinence will become clear in due

course.

6.2 Keynes on the weight of arguments: two unmeasur-

able concepts

The aim of this section is to give an overview of Keynes’s notion of ‘the weight

of an argument’. But before I do that, it will be helpful to give a quick introduc-

tion to Keynes’s interpretation of probability. Keynes is an advocate of logical

probabilities. That is, according to him, probability is a logical relationship be-

tween some premises E and a conclusion H: the truth of the premises entails

some degree of rational degree of belief in the conclusion.2

There are two important features of probability resulting from this view that

are worth mentioning. First, according to this view, unconditional probabilities

are meaningless, since probability is always a relation between some premises

and a proposition. In other words, no proposition by and of itself is probable or

improbable. Second, probabilities are always objective, in the sense that there

2It is worth mentioning, however, that according to Keynes numerical probabilities were (very)
special cases of probability, which neither had to be quantifiable nor comparable. Indeed, accord-
ing to Keynes, only under very specific conditions could probabilities be numerical, such as, for
instance, under the conditions of Keynes’ own version of the Principle of Indifference (see Keynes
(1921, Chapter 4).
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is a unique rational degree of belief in a proposition given some premises. In

Keynes’s words:

A proposition is not probable because we think it so. When once the

facts are given which determine our knowledge, what is probable or

improbable in these circumstances has been fixed objectively, and is

independent of our opinion. (Keynes 1921, 4)

From this view it follows that whenever distinct individuals disagree about

probabilities when faced with the same conclusion and premises, they cannot all

be correct (i.e. some of them must have made a logical fallacy). However, since

the probability of a proposition is always relative to some premises, and the

premises that are selected will always depend on the evidence available to the

particular individual at a particular time, distinct individuals can rationally as-

sign different probabilities to the same proposition. Whenever distinct rational

individuals disagree about the probability of a proposition because they have

selected different premises in light of the available evidence, there is no sense

in which one probability is more correct than another according to Keynes. All

probabilities Pr(H|E1), Pr(H|E2) . . . are correct. For instance, consider a case in

which the conclusion of two arguments is the same, and the relevant evidence

in one of the two arguments includes and exceeds the evidence in the other. Al-

though the two arguments might have different probabilities, there is no sense

in which the probability of the argument which includes additional evidence is

more correct than the one which includes less evidence:

If Pr(H|E1&E2) = 2/3 and Pr(H|E1) = 3/4, it has sometimes been

supposed that it is more probable that Pr(H|E1&E2) really is 2/3

than that Pr(H|E1) really is 3/4. According to this view, an increase

in the amount of evidence strengthens the probability of the proba-

bility, or, as De Morgan would say, the presumption of the probabil-

ity. A little reflection will show that such a theory is untenable. For

the probability of H on hypothesis E1 is independent of whether as a

matter of fact H is or is not true, and if we find out subsequently that

H is true, this does not make it false to say that on hypothesis E1 the
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probability of H is 3/4. Similarly the fact that Pr(H|E1&E2) is 2/3

does not impugn the conclusion that Pr(H|E1) is 3/4, and unless we

have made a mistake in our judgment or our calculation on the ev-

idence, the two probabilities are 2/3 and 3/4 respectively. (Keynes

1921, 80)

With this very brief overview of Keynes’s interpretation of probability, it is time

to turn to his notion of the weight of an argument. Before we do that, though,

a clarification is in order. As mentioned in the introduction, Keynes’s interpre-

tation of probability is not widely shared these days. Hence, one might reason-

ably worry: if Keynes’s notion of the weight of an argument strictly relies on this

particular interpretation of probability, then why should anyone who does not

share this interpretation care about this notion? In other words, what can one

hope to learn from a discussion about what Keynes’s notion of the weight of an

argument is all about if one does not agree with his interpretation of probabil-

ity to begin with? In light of this potential worry, I’d like to stress that nothing

substantial about my overview of Keynes’s notion of the weight of an argument

strictly relies on Keynes’s own particular understanding of probability. In other

words, Keynes’s interpretation could be replaced by an interpretation that is

more plausible by modern lights without affecting the discussion to come. Hav-

ing said this, certain features of Keynes’s notion of weight of an argument will

indeed be affected by the kind of interpretation of probability one is operating

with and I will make sure to point those out whenever this is the case.

Below is an often quoted passage in Keynes’s Treatise on Probability on this

notion:

As the relevant evidence at our disposal increases, the magnitude

of the probability of the argument may either decrease or increase,

according as the new knowledge strengthens the unfavourable or

the favourable evidence; but something seems to have increased in

either case, - we have a more substantial basis upon which to rest

our conclusion. I express this by saying that an accession of new

evidence increases the weight of the argument. New evidence will
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sometimes decrease the probability of an argument, but it will al-

ways increase its ‘weight’. (Keynes 1921, 77)

As hinted in the above quote, according to Keynes an argument from premises E

to conclusion H has, in addition to a probability Pr(H|E), also a weight V(H|E).

However, despite this passage is often quoted to allude to what Keynes has in

mind with his notion of the weight of an argument, what this concept actually

consists in according to Keynes is far from clear; for as Runde (1990) remarks,

one can distinguish two conceptually different notions of the weight of an argu-

ment in Keynes’s Treatise.

According to the first conception of the weight of an argument, which fol-

lowing Runde (1990), I call weight1, ‘one argument has more weight than an-

other if it is based on a greater amount of relevant evidence’ (Keynes 1921, 84).

From this conception of the weight of an argument, it follows that the proba-

bility of an argument is completely independent from its weight. For if all that

matters for comparing the weight of two arguments is the amount of relevant

evidence that appears in their premises, then it is clear that one can in principle

compare the weight of two arguments without having to know their probabil-

ities. Under weight1, it also follows that the addition of relevant evidence E1

to the original premises of an argument H|E will always increase its weight (i.e.

V(H|E&E1) > V(H|E)) independently of whether the probability of the new

argument is higher, lower or the same as that of the original argument (i.e. in-

dependently of whether Pr(H|E&E1) > Pr(H|E) or Pr(H|E&E1) < Pr(H|E) or

Pr(H|E&E1) = Pr(H|E)).

For weight1 to be a meaningful concept we must define what it means for

some evidence to be relevant. One may prima facie be tempted to say that: E1 is

relevant to H on evidence E if an only if Pr(H|E&E1) 6= Pr(H|E) i.e. if and only

if the addition of E1, to data E makes a difference to the probability of H. How-

ever, as Keynes recognizes, this definition of relevance is too strict. To see why

this is consider a case in which the addition of premise E1 affects the probability

of an argument in one direction exactly as much as the further addition of E2

affects it in the other. In this case the addition of E1 would increase the weight of
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the argument and the further addition of E2 would further increase the weight

of the argument. But then if we don’t think it reasonable for the weight of an

argument to be affected differently depending on whether E1 and E2 are added

successively or conjunctively, the addition of the conjunction E1&E2 should also

increase the weight of the argument even though it is not relevant in the sense

above. In light of this possibility, Keynes attempts to provide a less strict def-

inition of relevance. According to his definition a proposition E1 is relevant to

H on evidence E if and only if there is a proposition E2 inferable from E1&E

but not from E such that Pr(H|E&E2) 6= Pr(H|E). However, as Cohen (1986)

remarks, Keynes’s less strict definition of relevance can’t do the job he wants it

to do, since any proposition E1 whatsoever entails the disjunction E1 ∨ H, and

Pr(H|E&(E1 ∨ H)) 6= Pr(H|E).3 Hence, from Keynes’s less strict definition of

relevance, it follows that any proposition whatsoever is relevant to an argument

and hence will increase its weight. Since this would evidently trivialize the con-

cept of the weight of an argument, Cohen (1986) suggests to tighten the con-

ditions under which some evidence E1 increases the weight of an argument as

follows (in the passage below he is using the standard definition of relevance,

i.e. E1 is relevant to H on evidence E if an only if Pr(H|E&E1) 6= Pr(H|E)):

In order to avoid such trivialisation we need to tighten the condi-

tions under which V(H|E&E1) > V(H|E). We need to say that this

inequality holds if and only if E1 entails a proposition E2 that is rel-

evant to Pr(H|E), where no proposition E3 occurs in E2 (or in any

equivalent of E2) such that E1 entails E3 and, without affecting the

relevance of E2 to Pr(H|E), E3 can be replaced in E2 (or in some

equivalent of E2) by a proposition that has no relevance to Pr(H|E).

And we can also say that under just these same conditions E1 will

give at least as much weight to Pr(H|E) as E2 does. (Cohen 1986,

268)

Under Cohen’s suggestion it is no longer the case that any proposition whatso-

ever will increase the weight of an argument. Indeed, notice that we can replace
3Since Pr(E1 ∨ H|H&E) = 0, by applying Bayes’s theorem it follows that Pr(H|E&(E1 ∨ H) =

Pr(H|E)
Pr(E1∨H|E) 6= Pr(H|E).
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E1 in E2 = E1 ∨ H with a proposition that has no relevance to Pr(H|E) without

affecting the relevance of E2 to Pr(H|E). Hence, under Cohen’s conditions, the

fact that E1 entails the disjunction E2 = E1 ∨ H is no longer a reason to assume

that E1 will increase the weight of an argument. Hence, I am happy to assume

that Cohen’s definition of relevance4 is adequate.

Equipped with this definition of relevance, weight1 seems to be a meaningful

concept.5 However, the following question arises. Can we always compare the

weight of two arguments? Keynes himself doesn’t think so. According to him

in a very large number of cases it is in fact impossible to compare the weight of

two arguments:

Where the conclusions of two arguments are different, or where the

evidence for the one does not overlap the evidence for the other, it

will often be impossible to compare their weights, just as it may be

impossible to compare their probabilities. (Keynes 1921, 78)

Indeed, let me illustrate some of the difficulties encountered when trying to com-

pare the weight of two arguments through the following example. Consider

these two arguments: one is from E1&E2 to H and the other is from E1&E3 to

H. In this case, the premises of the first argument do not entail all the premises

of the second argument and vice versa. Suppose that Pr(H|E1&E2) differs more

from Pr(H|E1) than does Pr(H|E1&E3). One might think that since E2 is of

greater relevance than E3, the weight of Pr(H|E1&E2) should be greater than

that of Pr(H|E1&E3. However, as Cohen convincingly argues, allowing the the

extent of a new premise’s relevance to enter into comparisons of incremental

weight would lead one into a paradoxical situation, one in which the order in

which different premises are stated could affect the weight of an argument:

4Cohen’s conditions under which V(H|E&E1) > V(H|E) can be reinterpreted as conditions
under which E1 counts as relevant to the weight of an argument.

5It is worth mentioning, however, that an important feature of this concept will be affected
by the kind of interpretation of probability one is operating with. Indeed, notice that under
Keynes interpretation of probability, weight1 is an objective notion in so far as distinct rational
individuals when faced with the same conclusion and premises can’t disagree about their views
on the weight1 of such argument. This is because under Kaynes’ interpretation, they can’t dis-
agree about what counts as relevant evidence. Whereas, for instance, under a subjective Bayesian
interpretation of probabilities, distinct rational individuals when faced with the same conclusion
and premises could disagree about their views on the weight1 of such argument because they can
rationally disagree about what counts as relevant evidence.
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Suppose a set of evidential items E1, E2, . . . , E100 in regard to a hy-

pothesised conclusion H. Suppose too that quite a lot of these items,

on their own, ground low probabilities in favour of H, quite a lot

ground high probabilities in favour of H, and quite a lot ground in-

termediate probabilities at varying levels. One way of ordering these

items would be to begin with those highly in favour of H, then pro-

ceed with those slightly less in favour and so on down, ending up

with those highly in favour of ¬H. In such a carefully graduated or-

der the extent of the relevance of each new piece of evidence, after

the first, would tend to be small. So if the weight of the argument

were to be affected by the extent of the relevance of each incremental

piece of evidence, as well as by the number of those pieces, the addi-

tional effect on the overall weight would be minimal. But, if instead

the evidential premisses were ordered so as to alternate as violently

as possible between favourable and unfavourable items, the over-

all effect on the weight would be very different, if extent of relevance

was allowed to affect the issue at each incremental step. (Cohen 1986,

271)

In light of this, it seems unreasonable to assume that since E2 is of greater rele-

vance than E3, the weight of Pr(H|E1&E2) is greater than that of Pr(H|E1&E3).

So using Cohen’s own example, although learning that a person has a dangerous

hobby (E2) might be more relevant to the probability that a person will survive

to age 65 than learning that the person is a male (E3), given that the person is

a lorry-driver (E1), one would not be justified in concluding from this that the

probability that a lorry-driver with a dangerous hobby will survive to age 65 has

greater weight than the probability that a male lorry-driver will survive to age

65.6

But then one may wonder: does it follow that these two probabilities should

6When I speak of ‘the weight of the probability of a hypothesis H given evidence E’, what I
should really say is ‘the weight of the argument from E to H’. However, this flexibility is harmless
as long as one remembers that according to Keynes the weight is independent of the probability
value (Keynes (1921) himself is pretty flexible in his notation too).
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be given the same weight? According to Cohen the answer is again no: the in-

equality in this case is rejected because no comparisons of this kind are possible,

rather than because the true comparison is one of equality. Why is that?

According to Cohen the assumption that the two probabilities have the same

weight in this case would have to rely on the acceptance of what he calls ‘the

principle of equipollence’, ‘that the members of different families of predicates

enhance the weight of an argument equally when they enter relevantly into its

premisses’ (Cohen 1986, 273). However, Cohen argues this principle is implau-

sible. To convince us of this, he asks us to consider the two predicates ‘has a

dangerous hobby’ and ‘has a dangerous hobby and a weak heart’. Under the

principle of equipollance it would seem to follow that the weight of an argu-

ment must be the same regardless of which of these two predicates enters into

the premises of the argument. But this is, arguably, implausible, since having

a weak heart is certainly relevant to whether a person survives to age 65 even

on the condition that the person is a lorry-driver and has a dangerous hobby.

Hence the only way to salvage the principle of equipollence would be to restrict

its application to primitive predicates in some appropriately tailored language-

system. However, as Cohen remarks, this move ‘would introduce a substantial

element of linguistic convention into the assessment of weight. The weight of

an argument would depend not just on facts about probabilistic relevance but

also on which predicates were chosen as primitive and therefore as having no

non-trivial entailments’ (Cohen 1986, 274). Hence, Cohen concludes that ‘unless

there is a reason in a particular area of inquiry to suppose that the primitiveness

or non-primitiveness of a predicate is unambiguously determined by the facts

rather than convention, it looks as though the principle of equipollance cannot

be rescued’ (ibid., 274). Notice further that if Cohen is right, that is if the prin-

ciple of equipollance really cannot be rescued, this also means that ‘there is no

natural unit of weight and the prospects of any non-arbitrary system for measur-

ing weight are very poor’ (ibid., 274). Hence, without the help of the principle

of equipollance, there is no sense in which we can measure the weight of an ar-

gument. All we can do is compare the weight1 of distinct arguments, and as we

have seen above, even this comparison will not be possible in most cases.
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Leaving aside considerations of measurability and comparability, there is a

much a more pressing question. Why should we care about weight1 from an epis-

temological perspective? Is it really the case that when faced with an argument

with greater weight1 than another, ‘we [always] have a more substantial basis

upon which to rest our conclusion’, as Keynes remarks in the passage quoted

at the beginning of this section? As some have argued (Runde, 1990; Feduci,

2010) this doesn’t seem to be the case, since the acquisition of more relevant ev-

idence does not necessarily lead to a more a substantial basis on which to rest

our conclusion. To see why this is, it will be helpful to turn to Keynes’s second

conception of the weight of an argument.

There is another conception of the weight of an argument to which Keynes

alludes in his Treatise, and which consists in a substantial departure from weight1.

According to this second conception of the weight of an argument, which fol-

lowing Runde (1990) I will call weight2, the comparison of the weight of two

arguments ‘turns upon a balance [. . .] between the absolute amounts of relevant

knowledge and of relevant ignorance respectively’ (Keynes 1921, 77) and thus

depends on ‘the degree of completeness of the information on which a probabil-

ity is based’7 (ibid., 345). Weight2 is a different concept from that of weight1 and

yet Keynes neither says much about it, nor does he acknowledge the distinction

in the first place. However, the distinction is certainly there and hence treating

weight1 and weight2 as one and the same concept, as Keynes does, is wrong.

Under weight2, comparing the amount of relevant evidence that appears

in the premises of two arguments is no longer sufficient for comparing their

weights. Since on this account, the weight of an argument no longer depends

on merely the amount of evidence that appears in its premises as under the pre-

vious account. Rather, it now depends on the amount of relevant evidence and

the amount of relevant ignorance. Intuitively, the relationship between weight1

and weight2 can be understood by the following metaphor by Feduzi:

7Runde (1990, 281) actually distinguishes three conceptions of the weight of evidence in
Keynes’s Treatise. Let Kr represent the relevant knowledge and Ir relevant ignorance. Accord-
ing to Runde, Under weight1, V(H|E) = Kr; under weight2, V(H|E) = Kr

Kr+Ir
and under weight3,

V(H|E) = Kr
Ir

. However, weight2 and weight3 are conceptually very similar, in particular if one
increases so does the other. Hence, as Runde himself concedes the distinction is conceptually
irrelevant.
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If I tell you that ‘I have covered twenty miles’, you cannot say if I

have come very far in my journey. But if I tell you my final destina-

tion, you can tell if I am at the beginning or at the end of my journey,

or if I am almost there. In the same way, the absolute amount of evi-

dence E one has already acquired (first definition of weight) does not

reveal how far one has come in the learning process [. . .]; but if one

knows how much information is relevant to the proposition H, one

can say whether the evidence acquired so far is relatively ‘scanty’,

‘complete’ or simply ‘sufficient’ to make a decision [. . .]. This is be-

cause no evidence is itself ‘scanty’ or ‘complete’ in the same way as

no place can be intrinsically distant. (Feduzi 2010, 343)

Although this metaphor give us an intuitive way to understand the difference

between weight2 and weight1, it is not at all clear whether weight2 is in fact a

meaningful concept in the first place. Whether or not it is meaningful strictly

depends on whether a definition of relevant ignorance is possible. Keynes, him-

self, does not provide a definition of relevant ignorance so it is hard to know

what he really has in mind as far as this concept is concerned. However, Runde

(1990, 282) suggests that relevant ignorance should be understood as all those

factors of which an agent is ‘to a large extent ignorant, but which are relevant

to [her] probability estimates.’ According to Runde, one is often able to identify

such factors. He provides the following example:

Consider, for example, the proposition r that it will rain two days

hence. On the basis of the evidence, namely, certain propositions

we take to be true, we may be able to arrive at the probability of r.

These evidential propositions take the form of “direct knowledge"

in Keynes’s account. In practice, we may use certain historical data

in the belief that it is the best available, or rely on recent weather

forecasts and meteorological reports. We are nevertheless aware of

the possibility, in these situations, that better data may be available,

or that it may have been an apprentice weatherperson who has been

making the reports in recent weeks. And by the same token, we are
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aware that there are usually relevant factors that we have omitted

altogether. It is in these senses, I maintain, that we may speak of

“relevant ignorance." (Runde 1990, 282)

Some remarks about Runde’s ‘definition’ of relevant ignorance are in order. The

first thing to note is that relevant ignorance according to Runde’s definition is to

a large extent a subjective notion, since the assessment of the extent of an agent’s

relevant ignorance strictly relies on the agent’s ability to determine those factors

of which she is ignorant but that are relevant to her probability estimates, and

this will clearly vary from agent to agent. The second thing to note is that this

definition of relevant ignorance exclusively concerns relevant factors of which

the agent is aware. But this raises a question: why should an agent restrict her

attention to relevant factors of which she is aware for her assessment of her rel-

evant ignorance? For instance, consider a case in which an agent is not able to

identify any particular factor that is relevant to her probability estimates and yet

she nonetheless believes that there may be factors which she doesn’t know but

that are nonetheless relevant to her probability estimates. According to Runde’s

definition it seems that the agent in this case would have to conclude that she

has no relevant ignorance. But this seems a little odd. The agent’s belief in the

existence of factors of which she is ignorant, but that are relevant to her prob-

ability estimates, should arguably be taken into account in her assessment of

her relevant ignorance regardless of whether or not the agent is able to identify

those factors. Relatedly, Feduzi (2010, 344) distinguishes four different epistemic

situation in which an agent might find themselves:

1. The agent knows all the available evidence relevant to some conclusion

and knows that she knows all of it.

2. The agent does not know some of the evidence relevant to some conclusion

and knows that this is the case.

3. The agent does not know some part of the evidence relevant to some con-

clusion, does not know that she does not know this part of the evidence,
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but knows that there may be some part of the evidence that she does not

know.

4. The agent does not know a part of the evidence relevant to some conclu-

sion, does not know that she does not know this part of the evidence, and

does not know that she might not know some relevant evidence.

The first situation is one in which there are no relevant factors of which the agent

is ignorant. The second is one in which the agent is ignorant of some relevant

factors and she is able to identify such factors. The third is one in which the

agent believes that there may be some relevant factors of which she is ignorant,

but she is not able to identify what they are. And the fourth one is one in which

there are relevant factors of which the agent is ignorant, but the agent does not

believe this is the case.

The example I gave above is one in which the agent is in the third situation on

this list, and according to Feduzi an agent will often find herself in this situation:

In many cases the decision maker cannot recognize the main features

of her ignorance. The decision maker is frequently unable even to

imagine factors that could affect the probability of an event. How-

ever, I claim that she is always aware of the possibility that there

might be relevant factors that she could have omitted altogether. Sit-

uation (3) thus represents a choice situation in which the decision

maker is not able to recognize relevant factors of which she is igno-

rant, but she is ‘aware of the possibility of being surprised’; she does

not ‘have in mind’ how she is going to be surprised, but she knows

that this eventuality is likely to happen. (Feduzi 2010, 345)

Notice that under Runde’s definition of relevant ignorance an agent’s assess-

ment of her relevant ignorance would be the same under situation 1,3 and 4:

in all these situations she would conclude that she has no relevant ignorance.

The only situation in which she would conclude that she has some relevant ig-

norance is in situation 2. Hence if we don’t think that is right, that is, if we

think that the assessment of an agent’s relevant ignorance should be affected by
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whether she finds herself in situation 3 on the one hand and situation 1 and 2 on

the other, then Runde’s definition must be revised.8

But even if we were to settle on an appropriate definition of an agent’s rele-

vant ignorance (regardless of what that might be), to what extent can we com-

pare the weight2 of distinct arguments? Recall that if the principle of equipol-

lance is indefensible, as Cohen argues, the weight2 of an argument is not measur-

able since neither the amount of relevant knowledge nor the amount of relevant

ignorance can be measured in any non-arbitrary way. So, as for weight1, the best

we can hope for is to compare the weight2 of distinct arguments. However, the

comparison of the weight2 of distinct arguments seems to be even more tricky

than it was for weight1.

To see why this is, consider a case in which the acquisition of new relevant

evidence also has the consequence of increasing an agent’s perception of the

amount of her relevant ignorance. According to Runde this is a case where the

weight2 of an argument might actually decrease despite the fact that one has

gained more relevant evidence (contrary to weight1 which always increases with

the addition of relevant evidence):

In terms of weight1 new evidence “will sometimes decrease the prob-

ability of an argument, but it will always increase its weight" [. . .].

The surprising feature of weight2 is that the same conclusion need

not follow. New evidence, in other words, may lead to a decrease

in weight. To see this, it will be helpful to refer again to [V(H|E) =
Kr

Kr+Ir
]9: If Ir does not increase by more than Kr, it is clear that weight2

will increase with every increase in Kr. But it is surely possible, in

principle, that we may sometimes learn something that leads us to

drastically reassess Ir, to revise it upward by more than any increase

in Kr. In this case, the accretion of evidence will lead to a decrease in

weight. (Runde 1990, 282)

8Notice that even though situation 4 and situation 1 are different epistemic situations, if the
assessment of relevant ignorance is relative to the agent’s subjective beliefs about what she does
not know, then regardless of how we cash this idea out in its details, an agent’s assessment of her
relevant ignorance cannot be affected by whether she finds herself in situation 4 or situation 1.

9See footnote 5.
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However, things are not at all as easy as Runde would like us to believe. This

is a case in which both the amount of relevant knowledge and the amount of

relevant ignorance of an agent have increased, and because of this very fact it is

unclear how an agent can determine whether the weight2 of the argument has

increased, decreased or stayed the same. To determine whether it has increased,

decreased or stayed the same, the agent would have to determine how much the

amount of relevant knowledge has increased compared to the original amount

of relevant knowledge, and how much the amount of relative ignorance has in-

creased relative to the original amount of relevant ignorance. But again if the

principle of equipollance is indefensible, as Cohen argues, this doesn’t seem to

be possible. Hence, clearly, comparisons of the weight2 of distinct arguments are

even more difficult to come by than comparisons of the weight1 of distinct ar-

guments. In particular, in contrast to weight1, whenever the acquisition of new

relevant evidence also has the consequence of increasing an agent’s perspective

of the amount of her relevant ignorance it seems impossible to determine how

this should affect the weight2 of an argument.

In light of the discussion above, it is clear that weight2 is a considerably

more difficult concept to grasp than that of weight1 since its nature will depend

on how we choose to define an agent’s relevant ignorance, and that choice is

clearly not as straightforward as Runde seems to suggest. Furthermore, in con-

trast to weight1, the assessment of the weight2 of an argument depends on an

agent’s own awareness of her relevant ignorance, which can vary considerably

from agent to agent. Finally, we have also seen that comparisons of the weight2

of distinct arguments seem to be even more challenging to come by than com-

parisons between the weight1 of distinct arguments.

However, despite the fact that weight2 is a considerably harder notion to

grasp than weight1 if as Feduzi remarks ‘the absolute amount of evidence E

one has already acquired (first definition of weight) does not reveal how far

one has come in the learning process’, then it seems that if we are to be at all

persuaded by Keynes’s claim that a greater weight implies that ‘we have a more

substantial basis upon which to rest our conclusion’, weight2 is evidently a more

appropriate conception of the weight of an argument than weight1.
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Before concluding this section, it is worth mentioning that although Keynes

did think that our decisions in light of the available evidence E relevant to a

hypothesis H should be affected by both the probability of an argument Pr(H|E)

and its weight V(H|E), he himself struggled to understand how all this was

supposed to work:

In the present connection the question comes to this - if two probabil-

ities are equal in degree, ought we, in choosing our course of action,

to prefer that one which is based on a greater body of knowledge?

. . . The question appears to me to be highly perplexing, and it is dif-

ficult to say much that is useful about it. But the degree of complete-

ness of the information on which a probability is based does seem

to be relevant, as well as the actual magnitude of the probability, in

making practical decisions. Bernoulli’s maxim, that in reckoning a

probability we must take into account all the information which we

have, even when reinforced by Locke’s maxim that we must get all

the information we can, does not completely seem to meet the case.

If, for one alternative, the available information is necessarily small,

that does not seem to be a consideration which ought to be left out

of the account altogether. (Keynes 1921 345-46)

This ends my discussion of Keynes’s notion of the weight of an argument. In the

next section I will turn to what the Bayesian has had to say about this notion,

since Keynes first introduced it.

6.3 The Bayesian on the weight of evidence

In the previous section, we have seen that what the notion of the weight of an

argument (which from now on I will refer to as ‘the weigh of evidence’, in line

with how people refer to it nowadays) actually consists in, according to Keynes,

is not clear, since he offers at least two distinct conceptions of it. We have also

seen that any attempt to directly measure the weight of evidence (regardless of

whether we understand it as weight1 or weight2) does not seem to be possi-

ble. We can at best compare the weight of different evidential sets and even this
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doesn’t seem to be possible in most cases. But regardless of the elusiveness sur-

rounding this concept, many Bayesians seem to agree with Keynes: the weight

of evidence is not a meaningless concept and however we choose to understand

it, it is not represented in an agent’s credences. In light of this recognition, the

Bayesian has gone to considerable length to try to show that they can account

for the weight of evidence in other ways. In this section, I will assess the extent

to which these Bayesian’s efforts are successful. First, though, I need to make an

important clarification.

Several philosophers (e.g. Popper 1959, 424; Good 1985, 267; O’ Donnell

1989, 76; Roussous 2020, 197; and many more) have claimed that the first person

to introduce the notion of the weight of evidence was not Keynes (1921) but

Peirce (1878) many years earlier. But as Kasser explains,

The situation actually involves an embarrassment and a confusion

of riches, however. Peirce formulates two quite distinct notions of

weight of evidence, each of which has been influential. One antici-

pates Keynes’s conception of the weight of argument, first broached

in his 1921 A Treatise on Probability. Peirce develops this sense of

weight as part of a critique of conceptualist (or, as we would now

say, Bayesian) approaches to probability. But Peirce also develops a

conception of weight of evidence that favors conceptualism, and this

has been picked up by Bayesians like Good. Peirce goes to consider-

able trouble to distinguish the two notions, but almost all commen-

tators have either conflated the two notions or ignored one in favor

of the other. (Kasser 2016, 629)

Indeed, two very different understandings of the weight of evidence can be

traced back to an 1878 article by Peirce “The Probability of Induction". In that ar-

ticle Pierce introduces two distinct notions. One of these is supposed to measure

the gross amount of evidence and seems to anticipate Keynes’s conception(s) of

the weight of evidence (Peirce himself did not give it a name, however). The

other notion Peirce introduced in that article and to which he referred as the
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weight of evidence, is supposed to measure something like the balance of evi-

dence in favour of a hypothesis compared to another. This notion of the weight

of evidence has become associated with I. J. Good who was one of the first to for-

malize it and is considered to this day to be a useful notion in Bayesian analysis

(see, for instance, Fairfield and Charmann (2017)). According to Good (1950,

1985) the weight of evidence in favour of a hypothesis Hi compared to a rival

hypothesis Hj is proportional to the logarithm of the likelihood ratio:10

WOE(Hi : Hj) = log10
P(E|Hi)

P(E|Hj)
.

I mention this because these two notions of the weight evidence (Keynes’s and

Good’s) are in fact two completely distinct notions that should neither be con-

flated nor, in my view, seen in competition with one another. Indeed, as Joyce

(2005, 165) remarks Good’s measure above is really a measure ‘of evidential rel-

evance that compare[s] balances of total evidence irrespective of weight. Since

the values of these measures can remain fixed even as the volume of data in-

creases, they do not capture the weight of evidence in the sense Keynes had

in mind’. Despite this, as Kasser notes ‘an attempt to characterize one kind of

evidential weight has often been criticized as a misguided attempt to measure

the other’ (Kasser 2016, 641). Hence, I just want to make it clear that in what

follows I am exclusively focusing on Keynes’s notion of the weight of evidence

and whether or not the Bayesian can account for this notion.

An example that is often used to motivate the idea that the weight of evi-

dence is not reflected in an agent’s credences is what Popper called ‘the paradox

of ideal evidence’ (Popper 1959, 425-7) even though it is not a paradox in any

sense of the term. It goes as something like the following:

John is presented with a coin and he is asked to assign a probability

to the proposition H that it will come up heads next time it is tossed.

10The logarithmic scale is in many cases considered to be more natural than a linear scale for
measuring sensory inputs (e.g. sound which is measured in decibels). For similar reasons, loga-
rithm scales are also thought to facilitate the assessment of perceptions of uncertainty in proba-
bilistic inference (see e.g. Peirce (294) Good (1985, 255)), which partly explains why Good’s notion
of the weight of evidence is to this day considered to have practical value in Bayesian inferences
(see, for instance, Fairfield and Charmann (2017).
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He doesn’t know whether the coin is fair or whether it is biased to-

wards heads or tails. So in light of his ignorance, he assigns a prob-

ability of 1/2 to H i.e. his subjective prior in H is Pr(H) = 1/2. He

is then allowed to toss the coin a thousand times and he gets about

50% heads and 50% tails. Call this evidence E. The probability that

he assigns to the proposition H that the coin will land heads next

time it is tossed is still 1/2 i.e. Pr(H|E) = Pr(H) = 1/2.

Popper is troubled by this example: after observing the coin being tossed a thou-

sand times, John has a lot more evidence concerning the proposition H that the

coin will come up heads next time it is tossed, and yet this is not reflected in

John’s credence in H. i.e. Pr(H|E) = Pr(H). In other words, the weight of evi-

dence is not reflected in John’s credence for the outcome of the coin next time it

is tossed.

The standard reply from the Bayesian to Popper’s concerns is the following:

true, the weight of evidence is not reflected in John’s credence in H, but it is

nonetheless reflected in the resiliency of his credence in H, so nothing to worry

about! This reply goes all the way back to Jeffrey (1965, 196) who notes that

although John prior to seeing the evidence (call him John¬E) and John after see-

ing the evidence (call him JohnE) assign the same probability to the proposition

H that the coin will come up heads the next time it is tossed, they nonetheless

‘assign different values to any proposition A(n) that asserts, concerning n ≥ 2

distinct tosses, that all of them yield heads. To any such proposition [JohnE] as-

signs the value 1/2n ; but to the same proposition [John¬E] must assign a higher

value, if you hope to learn from experience’ (Jeffrey 1965, 196). What Jeffrey is

essentially pointing out here is that JohnE’s credence in H is not going to change

very much in the face of new evidence, regardless of what that evidence is (e.g a

long series of tosses all yielding heads) and that is why he assigns the (approxi-

mate) value 1/2n to any proposition A(n). On the other hand, John¬E’s credence

for H will increase each time he sees a coin toss yielding heads, and hence why

he will assign a probability greater than 1/2n to any proposition A(n). In other

words, as Skyrms (1977, 707) puts it ‘the ideal evidence has changed not the
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probability of [heads] on toss a, but rather the resiliency of the probability of

[heads] on toss a’.

The reason why JohnE’s credence in H is more resilient than John¬E’s is not

obscure. Although evidence E has not affected the probability that John assigns

to the proposition H, it has affected John’s credences in other hypotheses. This

is how Skyrms puts it:

[I]n the ignorance situation the second order probabilities are spread

out all over the spectrum for Pr(heads) = x [though we may plau-

sibly assume that the second-order probability weighed average for

values of Pr(heads) = 1/2; i.e., the second-order expectation, is 1/2].

In the “ideal-evidence" situation, the second-order probabilities can

be thought of as concentrated sharply at Pr(heads) = 1/2, so that

Pr(Pr(heads) = 1/2) = 1 (or some close approximation to that situ-

ation).11 (Skyrms 1977, 707)

In the above passage, Skyrms claims that evidence E has changed the spread of

John’s ‘second-order probabilities’ over the spectrum for Pr(H) = x. However,

Skyrms’ usage of the term ‘second-order probabilities’ is, in my view, mislead-

ing. For what Skyrms calls ‘second-order probabilities’ is really John’s subjec-

tive probability density distribution f of the chance of the coin landing heads

Ch(H). In other words, the difference between the ignorance situation and the

ideal-evidence situation is that in the former John¬E assigns a uniform proba-

bility density function to the chance of the coin landing heads Ch(H), whereas

in the latter JohnE’s probability density distribution is concentrated sharply at

Ch(H) = 1/2 so that Pr(Ch(H) ≈ 1/2) ≈ 1. Despite this difference, how-

ever, both John¬E and JohnE’s credence in H is 1/2 since their expectation of the

chance of the coin landing heads is 1/2 in both cases (i.e. Pr(H) = Pr(H|E) =∫ 1
0 f (Ch(H) = x) · x dx = 1/2). Below is a picture to illustrate the difference

between JohnE’s and John¬E’s subjective probability density distributions f of

the chance of the coin landing heads Ch(H).

11For consistency, I have replaced all instances of ‘tails’ with ‘heads’.
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FIGURE 6.1: The effect of evidence E on John’s probability den-
sity function f of the chance of the coin landing heads Ch(H)

So, informally, JohnE’s credence in H is more resilient than John¬E’s relative to

the observation of a long series of tosses all yielding heads because his proba-

bility density distribution is concentrated sharply at Ch(H) = 1/2 and hence it

will take an extremely long series of tosses all yielding heads to shift this proba-

bility density distribution in such a way that its expectation of the chance of the

coin landing heads is considerably different from 1/2. Whereas the same cannot

be said for John¬E.

The reason why it is important to stress that the claim that there is a dif-

ference between John¬E’s and JohnE’s epistemic state relies on a distinction be-

tween chances and credences, rather than a distinction between probabilities

and second-order probabilities is two fold. First, we can’t invoke the notion

of second-order probability without dramatically departing from the Bayesian

framework. Hence if we interested in understanding the Bayesian response to

Popper’s concern, it seems to me that the only way to make sense of why the

weight of evidence manifests itself in the resiliency of agent’s credences in this

example must be through a distinction between credences and chances. Second,

all the examples on which the Bayesian relies to convince us that the weight
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of the evidence manifests itself in the resiliency of an agent’s credence in a hy-

pothesis are always, to the best of my knowledge, examples in which an agent’s

credence in that hypothesis is mediated by her beliefs about the hypothesis’s

objective chances. But this is troubling: showing that the weight of evidence can

manifest itself in the resiliency of an agent’s credence in a hypothesis in cases

where that credence is mediated by their beliefs about the hypothesis’ objective

chances is nowhere close to showing that the weight of evidence manifests it-

self in an agent’s credence in a hypothesis in cases in which that credence is not

mediated by their beliefs about objective chances. I will come back to this point

shortly, but first it will be helpful to look at an other example in which the weight

of evidence manifests itself in an agent’s credences in a hypothesis.

In Popper’s ‘paradox of ideal evidence’ Ch(H) is a continuous variable. Hence,

we had to introduce the notion of a subjective probability density distribution f

of the chance of the coin landing heads Ch(H) to make sense of what was going

on there. However, it is not hard to find simpler examples that Bayesians have

used to argue that the weight of evidence is manifested in the resiliency of an

agent’s credence in a hypothesis H and in which Ch(H) is a discrete, rather than

a continuous variable. Here is one from Joyce (2005, 159):

Four Urns: Jacob and Emily both start out knowing that the urn

U was randomly chosen from a set of four urns {urn0, urn1, urn2,

urn3} where urni contains three balls, i of which are blue and 3− i

of which are green. Since the choice of U was random both sub-

jects assign equal credence to the four hypotheses about its contents:

Pr(U =urni) = 1/4. Moreover, both treat these hypotheses as state-

ments about the objective chance of drawing a blue ball from U, so

that knowledge of U =urni ‘screen offs’ any sampling data in the

sense that Pr(Bnext|E&U =urni) = Pr(Bnext|U =urni), where Bnext

says that the next ball drawn from the urn will be blue and E is a

proposition that describes any prior series of random draws with

replacement from U. Finally, Jacob and Emily regard random draw-

ing with replacement as an exchangeable process, so that any series
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of draws that produces m blue balls and n green balls is as likely

as any other such series, irrespective of order. Use BmGn to denote

the generic event in which m blue balls and n green balls are drawn

at random and with replacement from U. Against this backdrop of

shared evidence, suppose Jacob sees five balls drawn at random and

with replacement from U and observes that all are blue, so his ev-

idence is B5G0. Emily, who sees Jacob’s evidence, looks at fifteen

additional draws of which twelve come up blue, so her evidence is

B17G3. What should Emily and Jacob think about Bnext?

In this example, Joyce clarifies that Jacob and Emily both treat the four hypothe-

ses about the urn’s contents ‘U = urni’ as statements about the objective chance

of drawing a blue ball from urn U. Hence, for clarity, I will replace the propo-

sition ‘U = urni’ with the proposition ‘Ch(Bnext) = i/3’ from now on. From

the example, we can assume that Emily and Jacob assign equal credence to the

four hypotheses about its contents, hence Pr(Ch(Bnext) = i/3) = 1
4 for all

i ∈ {0, 1, 2, 3} for both Emily and Jacob. And from David Lewis’s principal prin-

ciple, according to which an agent’s credences should reflect objective chances

(assuming the agent has no inadmissible information), we can also assume that

Pr(Bnext|Ch(Bnext) = i/3) = i
3 for both Emily and Jacob. Hence we have all the

information we need to apply Bayes’ theorem to determine Jacob and Emily’s

posterior credences in Bnext. John sees five blue balls and hence by applying

Bayes theorem his posterior credences in the four chance hypothesis are as fol-

lows:

Jacob:

• Pr(Ch(Bnext) = 0|B5G0) = 0

• Pr(Ch(Bnext) =
1
3 |B5G0) = 0.0036

• Pr(Ch(Bnext) =
2
3 |B5G0) = 0.1159

• Pr(Ch(Bnext) = 1|B5G0) = 0.8804

Jacob’s expected value of the chance of the next ball drawn being blue is then

c(Bnext|B5G0) = 0.959. But Emily has seen fifteen additional draws of which
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twelve came up blue, hence her posterior probabilities in the four chance hy-

potheses are as as follows:

Emily:

• Pr(Ch(Bnext) = 0|B17G3) = 0

• Pr(Ch(Bnext) =
1
3 |B17G3) = 0.00006

• Pr(Ch(Bnext) =
2
3 |B17G3) = 0.99994

• Pr(Ch(Bnext) = 1|B17G3) = 0

Emily’s expected value of the chance of the next ball drawn being blue is then

Pr(Bnext|B5G0) = 0.666626.

Notice that Jacob has a much higher posterior credence in Bnext than Emily.

According Joyce this means that ‘Jacob’s total evidence points more decisively

than Emily’s does toward Bnext’.12 However, Emily has seen more draws than

Jacob and hence has weightier evidence than him (regardless of whether we

understand the weight of evidence as weight1 or weight2) and this fact is not

reflected in Jacob and Emily’s credence in Bnext (because it can’t be). However,

as Joyce argues, the fact that Emily has weightier evidence than Jacob does man-

ifest itself in the resilience of Jacob and Emily’s credence in Bnext relative to new

evidence. For instance, ‘if both subjects received evidence that tells against Bnext,

then Jacob’s beliefs are likely to change more than Emily’s. Suppose that both

see five more balls drawn, and all are green. Jacob’s credence will fall from near

0.96 to 0.5. Emily’s will move hardly at all, dropping from 0.666626 to 0.666016’

(Joyce 2015, 161). Indeed, Jacob’s credence is ‘less resilient than Emily’s with

respect to almost every potential data sequence, the sole exceptions being those

sequences in which only blue balls are drawn’ (ibid., 61), which is ultimately

because Emily’s credences are considerably less spread out over the possible

chance hypotheses than Jacob’s credences (e.g. notice that Emily has 0 or ap-

proximately 0 credence in three out of four chance hypotheses, whereas Jacob in

12To accept Joyce’s claim that the fact that Jacob’s posterior credence in Bnext is higher than
Emily’s means that his ‘total evidence points more decisively than Emily’s does toward Bnext’ one
must first and foremost accept that Bayesian inference is adequate for determining when one has
evidence for a hypothesis. In this PhD, I have remained agnostic about whether this is the case,
hence I am also agnostic about Joyce’s claim.
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two out of four). So, once again, this is a case in which the weight of evidence

is manifested in the resiliency of an agent’s credence in a hypothesis. And once

again this is a case in which an agent’s credence in the hypothesis are mediated

through the agent’s beliefs about objective chances.

So what to think of all this? Is the Bayesian’s response to Popper’s concerns

satisfactory? There are at least two reasons for thinking that it is not. The first

reason is that, as mentioned earlier, showing that the weight of evidence can

manifest itself in the resiliency of an agent’s credence in a hypothesis in cases

where that credence is mediated by the agent’s beliefs about objective chances

is nowhere close to showing that the weight of evidence manifests itself in the

resiliency of an agent’s credence in a hypothesis in cases in which that credence

is not mediated by their beliefs about objective chances.13 In the above two ex-

amples, the reason for why weightier evidence tends to increase the resiliency

of an agent’s credence in a hypothesis has to do with the effect that the weight of

evidence has on the agent’s beliefs about the objective chance of that hypothesis

(e.g. in both cases the weight of evidence reduces the number/size of the inter-

val of chance hypotheses that the agents considers plausible). It is roughly due

to this effect, that the agent’s expected value of the chance of the hypothesis (i.e.

the agent’s credence in that hypothesis) tends to become more resilient as the

weight of evidence increases. However, there is no analogous story to be told

in cases in which an agent’s credence in a hypothesis is not mediated through

their beliefs about the objective chance of that hypothesis and hence the exam-

ples above do not give us any reason whatsoever for thinking that the weight of

evidence manifests itself in the resiliency of an agent’s credence in a hypothesis

in those cases. And some very basic considerations show this idea to be rather

dubious too.

Indeed, notice that in both of the above cases the agent’s credence in the

13One may perhaps object: Popper’s paradox of ideal evidence concerns a case in which the
agent’s credence is mediated by the agent’s beliefs about objective chances. Hence, so the ob-
jection might go, from the outset the discussion has assumed that we’re dealing with objective
chances and so it’s not clear why a change of setup would be an objection to the Bayesian’s re-
sponse to Popper’s concerns. However, I see no reason for supposing that Popper’s concerns
should be restricted to examples in which the agent’s credence is mediated by the agent’s beliefs
about objective chances. If Popper’s concerns stem from the fact that the weight of evidence is
not represented in an agent’s credence, then a response to Popper’s concerns which only applies
to a restricted class of possible cases is clearly not a satisfactory one.
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hypothesis tends to stabilize around the actual chance of the hypothesis. But

in cases where there are no chances involved, that is when dealing with a hy-

pothesis that has no objective chance of being true, the agent’s credence in that

hypothesis can’t stabilize around the objective chance of the hypothesis since

the hypothesis has no objective chance of being true! Hence what reasons could

we possibly give to justify the idea the weight of evidence tends to stabilize the

agent’s credence in that hypothesis on any probability value that is neither 0 nor

1? It seems to me none. The hypothesis is either true or false and the best one can

hope for is that as the weight of evidence increases the agent’s credence in that

hypothesis will tend to get closer and closer to 1 or to 0 depending on whether

the hypothesis is true or false. But even this is clearly just a hope. As discussed

in the previous section, regardless of whether we understand the weight of evi-

dence as weight1 or weight2, the weight of evidence increases independently of

the extent of the relevance of each incremental piece of evidence, that is inde-

pendently of whether the additional evidence is highly in favour of H or highly

in favour of ¬H. But then there is clearly no reason to suppose that as the weight

of evidence increases an agent’s credence in a hypothesis is bound to get closer

and closer to 1 or 0 depending on weather the hypothesis is true or false.14

Could one perhaps argue that in cases where the agent’s credence in a hy-

pothesis is not mediated by objective chances, as the weight of evidence in-

creases, an agent’s credence in a hypothesis tends to become more resilient in

a particular range of credences? For instance, if my credence in H is 0.9, then

one might argue that the weight of evidence tends to increase the resiliency of

my credence in the range [0.9, 1]. But if my credence in H is 0.2, then one might

14Savage (1972), and several others after him, attempted to show that under certain conditions
a Bayesian agent’s credence will converge to the truth with probability one. However, as many
have pointed out (Glymour, 1980; Earman, 1992), these convergence to the truth results don’t
show that a Bayesian’s credence will actually converge to the truth: all they show is that Bayesian
agents are certain that they will, despite that not being necessarily the case. Hence these results
are clearly too weak to underwrite a notion of objectivity and they may even ‘constitute a real
liability for Bayesianism by forbidding a reasonable epistemological modesty’ (Belot, 2013). More
recently Nielson (2020) has shown that for a Bayesian to be guaranteed to actually converge to the
truth (rather than be certain that they are going to) the agent’s priors must satisfy an extremely
demanding condition (which he calls the strong regularity thesis), according to which ‘there exists
some positive real number that is strictly less than every probability of a non-empty proposition’
(bid., 1463). This condition can only be satisfied by a finite probability space and hence is at
odds with a substantial proportion of probability theory and its applications in statistics and the
sciences.
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argue that as the weight of evidence increases, my credence in H will tend to

become more resilient in the range [0, 0.2]. To better understand this idea, con-

sider the following example. Suppose that my credence in H: ‘John stole my

copy of Catch 22 in the library’ is 0.9. I have high credence in H because e.g.

I have lost my copy of Catch 22 in the library, I know that John stole another

book from me in the past, and I recently saw him reading the same edition of

Catch 22. However, I have yet to undergo a serious investigation of the relevant

evidence (e.g. I still need to find out whether John was in the library when I lost

the book, I need to talk to John’s friends to find out whether they know if John

had a copy of Catch 22 prior to me losing mine, I need to do a finger print test

on the desk I was sitting at etc.). Suppose further that I do gather more relevant

evidence and that my credence in H happens to remain 0.9. Could one perhaps

argue in this case that although my prior credence in H was not very resilient in

the range [0.9, 1], since there was a lot of relevant evidence that I had yet to ob-

tain which could have (substantially) decreased my credence in H (for instance,

I could have found out that John was not in the library that day, or that he has fi-

nally decided to get around reading his copy of Catch 22, despite having bought

it a couple years ago etc.), after having gathered more relevant evidence, and in

particular after the weight of evidence has increased, my credence in H is now

more resilient in the range [0.9, 1]?

This is, arguably, the only possible way to reconcile the idea that a greater

weight of evidence is somehow correlated to the resiliency of an agent’s cre-

dence in a hypothesis (in cases where the agent’s credence is not mediated by

objective chances). But, unfortunately, there are several problems with this idea.

For a start, it is unclear how one would go about measuring the resiliency of a

credence in a hypothesis (in a given range) when we have lots of different sorts

of evidence. Should we perhaps think about the set of evidence that we could

easily get, and see whether an agent’s credence would move out of the range

were they to get any of that evidence? If so, can one really circumscribe the set

of evidence that one could easily get in any given case? If not, what set of evi-

dence shall we consider? But even once we decide the relevant set of evidence

with respect to which we should evaluate the resiliency of my credence in H,
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how should we evaluate the overall resilience of my credence in H? Suppose,

for instance, that my credence is very resilient with respect to some possible

sorts of evidence but not resilient at all with respect to some other possible sorts

of evidence. One may think that the overall resilience of my credence in H may

perhaps depend on the ratio of the amount of evidence with respect to which my

credence in H is resilient and the amount of evidence with respect to which my

credence is not resilient. But is the evaluation of this ratio possible in light of the

fact that, as discussed in Section 6.2, the principle of equipollance seems to be in-

defensible in most cases?15 Secondly, regardless of whether we understand the

weight of evidence as weight1 or weight2, the weight of evidence increases with

each incremental piece of evidence independently of the extent of the relevance

of each incremental piece of evidence and also independently of the relevance

of the possible evidence that we have yet to consider. Hence, it seems that the

weight of evidence can increase despite having very little if any effect on the

resiliency of my credence in H with respect to the remaining evidence if the re-

maining evidence is highly relevant. So there doesn’t seem to be a direct link

between the weight of evidence and the resiliency of an agent’s credence in a

range.

To make this point more salient, suppose instead that my prior credence in

H: ‘John stole my copy of Catch 22 in the library’ is 0.6. And suppose that de-

spite having gathered lots of relevant evidence (e.g. some of which was highly

in favour of H and some of which was highly in favour of ¬H), my posterior

credence in H remains 0.6. Although the weight of evidence has increased, at

the end of the day there are only two options: either John stole my copy or he

didn’t. Hence, despite having gathered a lot of relevant evidence already, there

is no reason to suppose that if I were to gather even more relevant evidence my

credence won’t significantly depart from 0.6. And if so, why suppose that my

posterior credence in H is now more likely to increase than decrease and hence

15In the coin tosses example the space of possible evidence is well defined (and also finite as
long as we restrict our attention to a finite number of possible future coin tosses) and furthermore
the principle of equipollance seems applicable in this case since it seems reasonable ‘to suppose
that the primitiveness or non-primitiveness of a predicate is unambiguously determined by the
facts rather than convention’ (i.e. whether I observed 2 rather than 3 coin tosses doesn’t seem to
be a matter of convention.)
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be more resilient in the range [0.6, 1] than my prior credence in H? The only

reason for supposing this would be that in light of the extra relevant evidence

that I have gathered, there are now more reasons to suppose that the remaining

evidence is in favour of H than before I had gathered that evidence. However,

there is nothing in the notion of the weight of evidence that remotely suggests

this! Just for illustration, consider the following (bad) argument to justify why

one should think that my credence in H is more resilient in light of the extra

evidence I have gathered: the weightier the evidence, the more reasons for be-

lieving the hypothesis is true and hence the more reasons to expect that future

evidence will be in favour of it. Recall, however, that the weight of evidence has

nothing to do with how strongly one should believe a hypothesis. In this exam-

ple, in particular, my credence in H is the same as before I had gathered the extra

evidence. Hence by my own standards, even though the weight of evidence has

increased, I do not think I have now more reasons for believing that H is true

than I did prior to gathering that evidence. Therefore, this kind of reasoning to

motivate why the weightier the evidence, the more resilient an agent’s credence

in a hypothesis will be in a range, is clearly not valid.

Overall, not only is it not clear how we should evaluate the resilience of a

credence in a range in cases where we have lots of different possible sorts of

evidence, but it is also not at all clear why we should think that, in cases where

the agent’s credence is not mediated by objective chances, the weight of evidence

(whether we understand it as weight1 or weight2) is reflected in the resilience of

a credence in a range (however we choose to measure it) in the first place.

The second reason for why the Bayesian’s response is unsatisfactory is that

the claim that the weight of evidence tends to increase the resiliency of our cre-

dence in a hypothesis is not particularly helpful to anyone who is interested in

determining the extent of the weight of evidence or even simply comparing the

weight of different bodies of evidence. But if the Bayesian is willing concede that

the weight of evidence is just as important an aspect of the evidence as its bal-

ance then it seems like there is no reason why the Bayesian should only attempt

to measure the latter and not the former. So this raises the following question:

is it possible for the Bayesian to measure the weight of evidence? As far this
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question is concerned, Joyce (2005) takes up the challenge.

Joyce (2005) argues that although the resilience of an agent’s credences is of-

ten a reliable symptom of the weight of evidence as many before have observed,

‘it is not the heart of the matter’ (ibid., 166). Indeed, as seen in the examples

above, the actual reason why weight tends to manifest itself in the resilience

of an agent’s credence in a hypothesis is because weightier evidence ‘tends to

cause credences to concentrate more and more heavily on increasingly smaller

subsets of chance hypotheses, and this concentration tends to become more re-

silient’ (ibid., 167). Hence, if this is what weight does, according to Joyce, we

should try to measure the extent of this effect as an indirect way of measuring

the weight of evidence. He proposes the following measure:16

w(H|E) = ∑
x
|Pr(Ch(H) = x|E) · (Pr(H)− x|E)2− Pr(Ch(H) = x) · (Pr(H)− x)2|

(6.2)

where E is some potential data proposition. According to him, the more an

agent’s credences are concentrated on a smaller subset of chance hypotheses

and the more resilient this concentration is, the smaller the value of w(H|E) will

be. Hence, Joyce proposes to take w(H|E) as an indirect measure of the weight

of evidence, where the smaller the value w(H|E) is, the weightier the evidence

for H is supposed to be.

Although this is a welcome attempt to (indirectly) measure the weight of ev-

idence, this measure has some problems and, importantly, some serious caveats

too. I will start with the problems, some of which Joyce himself acknowledges.

First, notice that the value of w(H|E) crucially depends on the choice of E. That

is, the value of w(H|E) will be affected by what potential data proposition E

we choose to consider. Joyce acknowledges this, but seems to suggest that we

16When x is a continuous variable, Joyce’s measure would have to be the following:

w(H|E) =
∫ 1

0
| f (Ch(H) = x|E) · (Pr(H)− x|E)2 − f (Ch(H) = x) · (Pr(H)− x)2|dx, (6.1)

where f is the density that defines the probability distribution Pr.
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should not be too troubled, since w(H, E) will be small for a wide range of po-

tential data propositions E when the evidence is weighty and w(H, E) will not

be small for a wide range of E when the evidence is not weighty. However, re-

gardless of whether this is the case, this doesn’t change the fact that the value

of w(H|E) will be affected by the choice of E, and in some cases very much so.

For instance, in the example above, Jacob’s value of w(H|E) will considerably

be closer to Emily’s value of w(H|E) if say, we take E to be a sequence in which

three blue balls are drawn, instead of a sequence in which two blue balls and

one red ball are drawn.17 So if we are to take this measure of weight seriously,

then something must be said about how to choose E (or perhaps even a class of

E). In light of this, this measure of the weight of evidence is at best incomplete.

Second, notice that the value of w(H|E) will invariably be affected by an agent’s

subjective priors in the different chance hypotheses. In the example above, the

choice of the urn U is random and hence all agents must assign equal credence

to the four hypotheses about its content. However, if that choice were not ran-

dom, then different agents might assign different priors to the four hypotheses

and this difference in priors would affect the value of w(H|E). This means that

distinct agents can obtain different values for w(H|E) even if they have seen ex-

actly the same evidence. Is this a problem? Well, it is if we want a measure of

the weight of evidence that is independent of an agents prior beliefs, beliefs that

have nothing to do with that evidence. But regardless of whether one is troubled

by this, it is clear that the fact that the value of w(H|E) depends on an agent’s

subjective priors, consists in an important departure from what Keynes had in

in mind with his notion of the weight of evidence. Besides the fact that, as men-

tioned in the previous section, Keynes didn’t think that we could have uncondi-

tional credences in the first place, Keynes’s notion of the weight of evidence is

completely independent from an agent’s credences and Joyce’s measure of the

weight of evidence is evidently not; so there is a clear mismatch here. Third,

17In this example Jacob has been rather mislead by the evidence, so although his value of
w(H|E) will be very close to Emily’s value of w(H|E) for some choices of E, I don’t think it will
ever be smaller than Emily’s value of w(H|E) regardless of what potential data proposition E we
choose. However, it should not be too hard to design an example in which Jacob is less mislead
by the evidence, in such a way that his value of w(H|E) will be smaller than that of Emily’s for
some choices of E, despite him having seen less balls than Emily.
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many Bayesians (including Joyce), are not committed to the existence of sharp

numerical degrees of belief. According to them a person’s belief can be repre-

sented by a set of credence functions (Joyce calls this an agent’s credal state)

rather than just one credence function. Hence according to this view it is pos-

sible for an agent to assign more than one probability value to a hypothesis H.

But then, if this measure of weight is to apply to imprecise probabilities, and not

only precise probabilities, then something must be said about how we are sup-

posed to calculate w(H|E) in cases where there is more than one credal function

in an agent’s credal set, since this can give rise to a different value for w(H|E)

depending on what credal function one calculates its value relative to. Is one

supposed to calculate w(H|E) for all credence functions in an agent’s credal set,

and perhaps take an average of the different values we get? If not what shall

one do? Regardless of what is the right answer to this question, it is clear that

if we want to apply this measure of weight to imprecise probabilities as well as

precise probabilities, we need one. So, this is an other reason why this (indirect)

measure of weight is at best incomplete.

Leaving aside the problems mentioned above, this measure of weight has

a crucial caveat: it is only applicable in cases where an agent’s credences in a

hypothesis are mediated by her credences about the objective chances of that

hypothesis, and hence as Joyce himself acknowledges ’it’s applicability is lim-

ited’ (ibid., 166), which is, arguably, an understatement. This caveat entails that

the idea that the Bayesian has finally found a comprehensive measure of weight

is altogether unwarranted.

6.3.1 The weight of evidence and severity: two (very different) sides

of the same coin?

According to a severe tester, one is justified in declaring to have evidence in

support of a hypothesis just in case the hypothesis in question has passed a

severe test, one that it would be very unlikely to pass so well if the hypothesis

were false. Deborah Mayo calls this the strong severity principle:

Strong severity principle: We have evidence for a claim C just to
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the extent it survives a stringent scrutiny. If C passes a test that was

highly capable of finding flaws or discrepancies from C, and yet none

or few are found, then the passing result, x, is evidence for C. (Mayo

2018, 14)

In her extensive and persuasive defence of statistical inference as severe test-

ing (or error statistics), Mayo (2018) argues that Bayesian inference is unable to

guarantee that the above principle will be met: a Bayesian can declare to have

evidence for a claim despite not having done anything to severely test that claim,

since the posterior probability of a hypothesis does not directly depend on the

severity of a test it has passed. The core reason for this has to do the (infamous)

likelihood principle whose violation is not an option for anyone who subscribes to

the Bayesian paradigm. Here is a statement of it by Berger and Wolpert (1988,

19):

The likelihood principle: All the information about θ obtainable

from an experiment is contained in the likelihood function for θ given

x. Two likelihood functions for θ (from the same or different experi-

ments) contain the same information about θ if they are proportional

to one another.

However, for anyone who believes in the strong severity principle, the likeli-

hood principle must be wrong since it entails that inferences about hypotheses

depend exclusively on the outcome of an experiment, and not on its design. But

considerations pertaining to the design of an experiment (e.g. whether someone

deliberately stops an investigation depending on what the data looks like) are

relevant for assessing the severity with which a hypothesis has passed a test,

and consequently whether one has evidence in support of a hypothesis.18

The Bayesian, however, seems to be largely unmoved by the incompatibility

between the strong severity principle and the likelihood principle. According to

the Bayesian all one needs to obtain posterior probabilities in various hypotheses

is the prior probabilities of those hypotheses and their likelihood function given

18Disagreement about the likelihood principle is a core issue in the philosophical debate be-
tween frequentists and Bayesians.
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the observed data, ‘consequently the whole of the information contained in the

observations that is relevant to the posterior probabilities of different hypotheses

is summed up in the values that they give to the likelihood’ (Jeffreys 1961, 57).

Hence, the likelihood principle must be right and the strong severity principle

wrong, if incompatible with it.19

The reason I mention all this is not to argue whether or not one should pick

the strong severity principle over the likelihood principle. Rather, I mention this

because, despite the fact that the notion of severity has very little to do with that

of the weight of evidence,20 I think the Bayesian’s never ending quest for some

way to account for the latter betrays the Bayesian’s confidence in the likelihood

principle after all. That is, the Bayesian’s recognition that the posterior probabil-

ity that one assigns to a hypothesis given the available evidence (in light of the

agent’s priors and likelihood function) is unable to reflect something that seems

important about the nature of that evidence (i.e. its weight) is, in my view, a

mere symptom of the Bayesian’s own dissatisfaction with the likelihood princi-

ple: there is more to say about the evidence for hypotheses than their likelihood

function given that evidence and the Bayesian can’t account for what that some-

thing is.

As argued in Section 6.3, although there have been various attempts to ac-

count for the weight of evidence, none of them can show that the Bayesian can

account for it in cases where an agent’s credence in a hypothesis is not mediated

19Van Dongen et al. (2020) have recently argued that the Bayesian can cash out severity in
terms of the expected success of the predictions a theory makes with respect to its negation.
Hence, according to them what it takes for a test to be severe is that the tested hypothesis im-
poses ‘substantial restrictions on the range of potential data that are consistent with it’ (ibid., 13).
They further argue that ‘Popper and Bayes can thus be reconciled: the evaluation of hypotheses
in terms of Bayes factors is influenced by their specificity and Bayesian inference has the concep-
tual resources to reward specific predictions’ (ibid., 21). However, the severity of a test according
to this account is unrelated to the design of the experiment (e.g. whether or not a test is severe
according to this account is unaffected by whether someone deliberately stops an investigation
depending on what the data looks like) and hence is, in my view, an unsatisfactory account of
severity.

20Why do I claim that the notion of severity has very little to do with the notion of the weight of
evidence? To see this, consider weight1 for simplicity. Weight1 will increase as more data comes
in independently of whether someone deliberately stops an investigation based on what the data
looks like. That is weight1 will increase as the data increases, regardless of how that data was
acquired (i.e. regardless of the experimenter’s intentions). But to the severe tester what matters in
the assessment of whether one has evidence in support of a hypothesis is not how much relevant
evidence one has gathered, rather it is whether or not the process of generating that evidence has
been able to severely test the hypothesis in question. Similar considerations apply to weight2.
Hence the weight of evidence, however we choose to understand it, seems to have very little to
do with the notion of severity.
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by objective chances. Furthermore, as discussed in Section 6.2, any attempt to

directly measure the weight of evidence also seems impossible. But then what

to make of this? Should the Bayesian’s worries about ‘the weight of evidence’, a

concept that has proved to be extremely hard (and that is arguably impossible)

to measure either directly or indirectly, a reason to try harder or perhaps a rea-

son to abandon the Bayesian framework all together? Although I merely wish

to raise the question, without answering it, it is worth pointing out that under a

severe testing perspective the problem of the weight of evidence becomes some

sort of a pseudo problem. For the severe tester what matters in the assessment

of whether one has evidence in support of a hypothesis is whether or not the

process of generating that evidence has been able to severely test the hypothesis

in question; hence whether one has ’a lot’ or ’a little’ evidence without an un-

derstanding of the process that generated that evidence is irrelevant. Perhaps

then the weight of evidence and severity may be thought of as two (very dif-

ferent) sides of the same coin: they are two unrelated notions, but what brings

them together is the fact that they both seem to make trouble for the likelihood

principle, a principle at the core of Bayesian inference.
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Chapter 7

An assessment of some proposals

for a new IPCC uncertainty

framework

7.1 Introduction

Throughout this chapter, I will assume that an adequate uncertainty framework

for the IPCC should (at the very least) satisfy the following two desiderata:

1. the framework’s fundamental concepts (e.g. probability, likelihood, con-

fidence etc.) should be clearly defined so that they can be used appro-

priately and consistently by the IPCC authors in the communication of

uncertainty;

2. the use of the framework’s fundamental concepts should help the IPCC

authors produce findings that are interpretable, relevant and useful for

the target audience/s (e.g. policy makers, decision makers, the general

public).

In Part 1, I have argued extensively that the current IPCC uncertainty framework

fails to adequately meet the above desiderata, concluding that a better and more

carefully considered framework is in urgent need. The aim of this section is

to critically assess the extent to which some recent proposals for a new IPCC

uncertainty framework are an improvement over the current one with respect

to the above desiderata. I won’t refrain from criticizing, when I believe there

238



are criticisms to be made. However, I will try my best to identify the merits of

each proposal and to offer some constructive guidance for a better future IPCC

uncertainty framework.

The structure of this chapter is as follows. In Section 7.2, I will critically as-

sess Winsberg’s (2018) proposal, according to which the likelihood metric should

be used to communicate the range of credences that the IPCC authors assign to

a hypothesis in light of the available evidence, and the confidence metric should

be used to communicate ‘how likely their consensus regarding appropriate cre-

dences is going to remain fixed in the light of future developments’ (ibid., 105).

Amongst other things, I will argue that Winsberg’s interpretation of the confi-

dence metric, under his own proposal, is unjustified. In Section 7.3, I will assess

Mach et al.’s (2017) proposal, which gets rid of the confidence metric and re-

places it with qualitative terms for scientific understanding. I will argue that

Mach et al.’s proposal faces very similar conceptual problems to the current un-

certainty framework (problems which were discussed extensively in Part 1) and

that it is, therefore, not a considerable improvement over the current uncertainty

framework with respect to the above desiderata. In Section 7.4, I will identify

some of the merits of both Winsberg’s and Mach et al.’s proposal and I will

incorporate them into my own tentative sketch of a proposal for a better IPCC

uncertainty framework. Finally, in Section 7.5, I will assess Bradley et al.’s (2017)

proposal for a new IPCC uncertainty framework, which stems from a desire to

help clarify what role probability ranges, qualified by confidence judgments,

should play in decision making. Despite the more than justified motivation be-

hind this proposal, I will argue that the interpretation of confidence under this

proposal is problematic. Hence, this proposal fails to meet the first desideratum.

I will further argue that my own proposal does clarify how the IPCC findings

should be interpreted by decision makers and hence addresses Bradley et al.’s

concerns without having to rely on an overly problematic interpretation of con-

fidence.
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7.2 Winsberg’s proposal: Can scientists measure the re-

silience of their credences, and should they?

As briefly mentioned in Chapter 1, Winsberg (2018) proposes a particular inter-

pretation of the likelihood metric and the confidence metric in the IPCC uncer-

tainty framework. In essence, according to his proposal the likelihood metric is

supposed to communicate the range of credences that the IPCC authors assign

to a hypothesis in light of the available evidence. The confidence metric, on the

other hand, should be used to communicate ‘how likely their consensus regard-

ing appropriate credences is going to remain fixed in the light of future devel-

opments’ (ibid., 105). Hence according to Winsberg, confidence can be thought

of ‘as a kind of second-order probability – since, in effect, it would reflect the

panel’s estimate of the likelihood of their credence changing in the future’ (ibid.,

105). In Section 1.4.1, I have argued that Winsberg’s interpretation of likelihood

and confidence is incompatible with some of the Guides’ recommendations- and

thus with the resulting practice of the IPCC authors in their communication of

uncertainty. Hence, if Winsberg’s proposal is to be implemented coherently,

some of the guide’s recommendations would evidently have to change. The

aim of this section, however, is to go deeper into Winsberg’s proposal and as-

sess whether it is a good one in the first place.

Likelihood

According to Winsberg’s proposal the likelihood metric should be used to com-

municate the ‘range of probabilities that is satisfactory to almost all, if not all, of

the members of a panel. Group credence, in other words, should be considered

to be the number, or range of numbers, that is the consensus of the group regard-

ing what one’s degree of belief in the hypothesis ought to be’ (ibid., 103). There

is a caveat, however. According to Winsberg, we should interpret credences not

as things that scientists simply have but rather as ‘things that scientists accept’:

There are of course situations in which a scientist might realize that

the degrees of belief that they happen to have do not reflect the best
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available evidence. Or they might just not have degrees of belief in

the purist’s sense: they might have no particular disposition to bet

on climate hypotheses. Even worse, if probabilities are just things

that you have, it is difficult to see how a group can deliberate to-

gether about what the correct ones are. Following Cohen (1995) and

Steel (2015), therefore, I think we should think of personal probabili-

ties as things that scientists accept. On this view, the careful scientist

will use whatever methods of reasoning are at her disposal to correct

the degrees of belief that she happens to have, and in the case of the

model based science we are discussing, she will attempt to estimate

what the best probabilities for her to use are, based on her best mod-

els. And she will use Bayes’ rule as a way of calculating probabilities,

rather than as a constraint on rationality. (Winsberg 2018, 114)

In a nutshell, the idea here is that a subjective probabilistic assessment of the

available evidence must rely on a probability model that specifies a likelihood

function and a prior probability and that scientists might often have to make a

choice about what model(s) to accept (and reject!), which will in turn determine

what posterior probability they accept to assign to a hypothesis in light of the

available evidence. Winsberg’s view of credences as things that scientists of-

ten accept rather than simply have is reasonable.1 However, if this idea is right,

then it clearly raises the question as to what determines the decision to accept a

probabilistic model over another. That is, if a scientist must decide to accept a

probability model among multiple probability models all compatible with their

beliefs, what determines the scientist’s decision? In particular, if we take the

idea of the acceptance of credences seriously then, as argued by Steel (2015), it

seems like any such acceptance will be subject to an argument from inductive

1And I would also be willing to embrace the stronger claim that any Bayesian assessment of
the available evidence in science always involves a prior decision about what probabilistic model
to accept. In other words, I am happy to deny that precise subjective probabilities/credences can
ever be plausibly thought as representations of a scientist’s involuntary cognitive state. However,
a defence of this stronger claim is beyond the scope of this thesis.
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risk (Rudner, 1953).2 That is, if scientists are in the business of accepting and re-

jecting (subjective) probabilities to assign to a hypothesis and these decisions can

have implications for practical action then it seems that these decisions should

depend in part on non-epistemic value judgments about the costs of error.3

But even if one agrees with the idea that there might often be more than

one probability model to accept, perhaps one could question whether scientists

are in fact forced to make a choice about which one to accept in order to re-

port their beliefs, and hence question the idea that in such cases the reporting

of scientists’ beliefs must inevitably be subject to an argument from inductive

risk. Indeed, one might suggest that the fact that the IPCC authors can report

a range of probabilities (by assigning a particular likelihood level) rather than

precise probabilities they can perhaps avoid decisions about which probabili-

ties to accept. This suggestion effectively relies on the idea that IPCC authors

can avoid making a decision about which probability models to accept by rep-

resenting vague and incomplete degrees of belief by a complete set of proba-

bility functions and then determining all the probabilities that are rational to

assign to a hypothesis according to these functions.4 However, there are several

problems with this suggestion. For a start, suppose one were to accept this as

2Rudner (1953) famously argued that given that the evidence is never enough to establish a hy-
pothesis with certainty, scientists are always faced with a decision as to whether that evidence is
sufficiently strong to accept or reject a hypothesis H. And ethical values (e.g. how bad real-world
consequences would be were one to mistakenly accept or reject H) should affect this decision.
Jeffrey (1956) famously challenged this argument by denying that scientists accept or reject hy-
potheses in the first place; according to Jeffrey scientists merely assign probabilities to hypotheses.
However, if as Winsberg argues ‘we should think of personal probabilities as things that scientists
accept’ rather than representations of scientists’ involuntary cognitive state, then the decision of
a scientist to accept a credence seems once again to be subject to an argument from inductive risk.

3Winsberg (2012, 2018) also argues that non-epistemic values can affect the probability values
that climate scientists assigns to a hypothesis. However, he argues this on the basis that in climate
science, ‘scientists’ best attempts at estimating Pr(H|e&B) [where e is a new piece of evidence
and B is the scientists’ background knowledge] will often involve estimating Pr(H|e&B’) instead,
where B’ replaces some of the claims in B, with a computationally tractable scientific model, M or
set of models M, of the system or phenomenon under investigation [. . .] the distortions relative
to B that scientists are willing to tolerate when developing M, however, will depend in part on
the purposes and priorities of their investigations, as well as the purposes and priorities that
shaped any earlier layers of the model’s development’ (Winsberg 2018, 146). But whether or not
Winsberg’s argument is successful in showing that social values affect what probabilities climate
scientists assign to a hypothesis (see e.g. Parker (2014) for some possible objections) is irrelevant
to the idea that if probabilities really are things that scientists accept then this acceptance is subject
to an argument from inductive risk.

4This is a popular suggestion. For instance, Steele (2012) argues that ‘scientists can simply
report their beliefs to policy makers, using whatever representation that best “captures” these
beliefs, whether this be a probability function, a set of probability functions, nonadditive proba-
bilities, or something else’ and hence do not have to ‘choose their beliefs in a manner that takes
into account real-world consequences’ (897).
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a reasonable suggestion and hence accept that ‘the push-the-problem-one-step-

back argument [from inductive risk] is misguided or at least incomplete’ (Steele

2012, 897) since scientists can in principle report their beliefs using whatever

representation best captures their beliefs. This on its own is not enough to show

that scientists (qua policy advisers) can always avoid making value judgments

when reporting their beliefs. Since as Steele (2012) argues, whenever scientists

(qua policy advisors) must convert their beliefs to a standard scale (such us, for

instance, the likelihood metric in the IPCC uncertainty framework), ‘scientists

cannot avoid making value judgments, at least implicitly, when deciding how

to match their beliefs to the required scale’ (Steele 2012, 899). Second, there are

good reasons for not thinking that this suggestion is a reasonable one in the first

place. For as Steel (2015) remarks, there are at least two difficulties with it:

First, it does not avoid the problem of vagueness. For not only may

a person’s exact degrees of belief be vague, it may also be vague

which probability distributions are consistent with her degrees of

belief and which are not (Howson & Urbach 1993, 88-89). Thus, de-

cisions would have to be made about which ensemble of personal

probability models to accept. Secondly, this approach has the po-

tential to greatly increase the complexity of probabilistic reasoning

(Howson & Urbach, 1993). Instead of one possibly already quite

complex probability model, one must consider a massive and po-

tentially ill-defined set of models. As a result, the approach of rep-

resenting degrees of beliefs by means of sets of probability functions

comes with a practical cost of increased mathematical and computa-

tional complexity. (Steel 2015, 6)

But if the set of all probability models that are compatible (and only those) with

a scientist’s beliefs does not seem to be something that a scientist is able to con-

sider in practice, as Steel suggests in the above passage, then the fact that the

IPCC authors can report a range of credences in a hypothesis H does not mean

that they can avoid decisions about which probabilities to accept. Why? For

two reasons. First, if the IPCC authors don’t know the probabilities that all
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those probabilistic models compatible with their beliefs give to a hypothesis H,

then neither can they know that all those probabilities should lie in the range of

probabilities reported. Hence, a decision would still have to be made as to what

range of probabilities to accept such that it includes all probabilities that all those

unconsidered probabilistic models give to H. Second, and crucially, accepting

that it is rational to assign a probability to a hypothesis in light of the available

evidence (without there being a probabilistic model that is compatible with it

and the scientist’s beliefs) is no less problematic than not accepting it. That is,

if a probability value for a hypothesis is not entailed by any probabilistic model

that is compatible with the scientists’ beliefs then that probability value should

not be included in the reported range. Suppose, for instance, that one were to

increase the range of probabilities reported in H without a worry in this world.

In this case, one would effectively be willing to accept that it is rational to hold

a particular credence in H in light of the available evidence, despite not hav-

ing any good reason for accepting it. This last point is, in my view, particularly

important, especially in relation to the IPCC current practice in their treatment

of uncertainties. As discussed in Section 1.5 and Section 2.5, the IPCC authors

often assign a likely level to a finding (a rather wide probability range i.e. (0.66,

1)) to account ‘for additional uncertainties or different levels of confidence in

models’ (IPCC 2013, 23). However, the rationale behind how they arrive at this

interval is not explained. Underling this practice is, in my view, the idea that

claiming that the probability of an event is in the interval (0.66, 1) is less strong

than claiming the probability of that the event is in a smaller interval e.g. (0.9,

1). This idea would make sense if we were talking about objective probabilities.

In this case the claim that the objective probability of an event is in the interval

(0.66, 1) would evidently be less strong than the claim that it lies in the interval

(0.9, 1) since the former probability interval both includes and is greater than

the latter. However, under the view that the reported range of probabilities is

supposed to represent all and only those credences that the IPCC authors think

it is rational to assign to a hypothesis in light of the available evidence, then the

claim that it is rational to assign any credence in the range (0.66, 1) to a hypoth-

esis is no less strong that the claim that it is only rational to assign credences
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in the range (0.9, 1); since claiming that it is rational to assign a credence to a

hypothesis in the interval (0.66, 0.9] is no less strong than the claim that it is not

rational to do so. Hence, if likelihood is really to be understood as the range of

all and only those credences that the IPCC authors accept it is rational to hold

in a hypothesis in light of the available evidence, as Winsberg proposes, then

the IPCC authors under this proposal should, arguably, not take the decision to

accept probabilities as light-heartedly as the current practice suggests.5

Confidence

The interpretation of the likelihood metric under Winsberg’s proposal is rela-

tively clear, so it is time to turn to the confidence metric. How is “confidence”

evaluated and what type of uncertainty is it supposed to represent under Wins-

berg’s proposal?

Winsberg (2018, 105) suggests that there are three factors that a policy maker

(or any other decision maker) might want to know in addition to the range of

credences that an IPCC panel assigns to a hypothesis in light of the available

evidence:

• ‘how many different sources of evidence were consulted by the experts in

arriving at the assessments of probability’;

• ‘how univocal (or the contrary) those various sources were’;

• ‘the degree to which the reported consensus of the committee papered

over internal disagreement or, to the contrary, reflected easy-to-come-by

agreement’.

According to Winsberg:

All three of these factors are, in principle, independent. There could

be many sources of evidence that disagree, or few sources that agree.

5Steel’s argument for why the acceptance of probabilities in light of the available evidence
is subject to an argument from inductive risk relies on the idea that the experts must accept a
probabilistic model (or a set of them) to begin with. However, as discussed in Section 2.5.2, the
IPCC does not seem to currently rely on Bayesian inference to determine the range of probabilities
to assign to a hypothesis in light of multi-model ensemble’s results. So the question of why they
accept those probabilities in the first place is, in my view, a much more pressing question than
whether this acceptance may be subject to an argument from inductive risk.
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There could be agreement or disagreement among the experts either

way. Thus, in principle the policy maker might want to use all of this

information as a guide to how she should act. She might use that

added information, in conjunction with the reported probabilities,

in a variety of ways. More conveniently, though, the policy maker

might want the committee to summarize these three components of

information into one single metric [i.e. the confidence metric]. (Wins-

berg 2018, 105)

Hence, under Winsberg’s proposal, the role of the confidence metric is to sum-

marize the three factors above into a single metric. I will discuss in some more

detail each of those factors shortly, but first: why is, according to Winsberg, a

summary of the evaluation of these three factors useful to policy makers? This

is what he says:

One way to think about this kind of self-assessment of confidence is

as the committee’s assessment of the degree to which the answers

to the above questions foretell a resiliency in their credences; as an

assessment of how likely their consensus regarding appropriate cre-

dences is going to remain fixed in the light of future developments

(be they in modeling, physical understanding, data acquisition, etc.).

One possible way to understand measures of confidence, therefore,

might be as a kind of second-order probability – since, in effect, it

would reflect the panel’s estimate of the likelihood of their credence

changing in the future. A high confidence in a credence is a bit

like a high degree of belief that that credence will be resilient in the

face of future evidence – assessed by looking at the variety of evi-

dence supporting the credence, and the degree of agreement among

those sources and among experts. But given the general murkiness

of second- order probabilities in general, the lack of an obvious set

of decision rules to apply to them, and the difficulties that would be

involved in interpreting such probabilities in this specific case, I’m

inclined to think that it is wise of the IPCC to refrain from using the
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expression “probability” for its second- order characterizations, and

to limit itself to qualitative characterizations of confidence. (Wins-

berg 2018, 104)

So according to Winsberg, knowing the level of confidence, in addition to the

range of credences that the IPCC experts assign to a particular hypothesis (i.e.

in addition to the likelihood level), is useful for policy makers because the confi-

dence level (under Winsberg’s proposal) tells them the extent to which the IPCC

experts believe that ‘their consensus regarding appropriate credences is going to

remain fixed in light of future developments’. So what Winsberg is essentially

arguing is that, if the role of confidence is that of summarizing those three fac-

tors mentioned above, it is reasonable to suppose that the higher the confidence

level is, the more strongly the IPCC experts believe that their credences in a hy-

pothesis will remain fixed in light of future evidence. So under this view, if the

experts claim to have a high confidence that the Equilibrium climate sensitivity

(ESC) is likely in the range [1.5°C, 4.5°C]’ then what this should mean, under

Winsberg’s proposal, is that the experts strongly believe that they will still con-

sider this range for ECS to be likely in light of future evidence (as opposed to e.g.

unlikely, more likely than not or very likely).

I will argue that Winsberg’s interpretation of what the confidence metric is

supposed to represent under his own proposal cannot be correct. But first it will

be helpful to think a little about how to interpret the three factors on which the

evaluation of the confidence metric depends under Winsberg’s proposal.

Three factors relevant to the evaluation of confidence

The first factor Winsberg mentions is ‘how many different sources of evidence

were consulted by the experts in arriving at the assessments of probability’. But

how should we interpret this factor? Could this be roughly what Keynes had

in mind with his notion of ‘the weight of evidence’ and what he himself and

the Bayesians have been struggling to represent/measure ever since? And if

so, is it supposed to be a measure of the absolute amount of available evidence

(corresponding to something like weight1) or rather is it supposed to be a mea-

sure of the extent to which the available evidence is complete (corresponding to
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something like weight2)? Or perhaps is Winsberg thinking of something else all

together?

To get a glimpse of how Winsberg might be interpreting this factor, it will

be helpful to consider his discussion of the various different sources of evidence

underlying the following IPCC finding:

Equilibrium climate sensitivity (ESC) is likely in the range 1.5°C to

4.5°C with high confidence. ECS is positive, extremely unlikely less than

1°C (high confidence) and very unlikely greater than 6°C (medium confi-

dence).

Winsberg argues that Schupbach’s account of ERA diversity (discussed exten-

sively in Part 2) can help us understand ‘why, when it comes to the claim that

it is “very unlikely" that ECS > 6 °C the IPCC only claims “medium confi-

dence”’(Winsberg 2018, 206). Why is that?

Winsberg begins by pointing out that there are various rather different sources

of evidence that are relevant for assessing the value of ECS. An important source

of evidence, for instance, comes from the range of values for ECS predicted by

multi-model ensembles. An other comes from observations of the post-industrial

warming of the ocean and atmosphere in response to various external forcings

(e.g. increasing concentrations of greenhouse gases, aerosols, volcanic eruptions

etc.). Yet another one comes from paleoclimate records (such as the cooling

of the Last Glacial Maximum or the last few glacial cycles). Winsberg further

points out that the various methods that are used to estimate the correct value

for ECS based on each of these different sources of evidence are subject to dif-

ferent sources of uncertainty. For instance, methods which rely on Paleoclimate

records are particularly subject to measurement uncertainty since both the re-

constructed past climate and forcing ‘are inferred from indirect evidence that

may not be spatially representative or may be responding to multiple factors,

uncertainties that are difficult to quantify’ (Knutti et al. 2017, 729). Measure-

ment uncertainty is less salient when it comes to methods that rely on more

recent observations of the climate response to forcing. However, these meth-

ods are particularly subject to uncertainty concerning whether of not the planet
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has had time to reach equilibrium before the forcing was taken away (and so

the worry is that one might be observing a transient response instead). And of

course methods that rely on multi-model ensembles’ results are subject to un-

certainty as to whether those models adequately represent the climate system in

spite of possible discrimination errors, parametarization uncertainty, the omis-

sion of important sources of feedback etc.6 According to Winsberg, by thinking

of each of these different sources of uncertainty as possible alternative expla-

nations for the range of ECS values obtained by each of these methods we can

inquire about the extent to which these methods are ERA diverse with respect

to a target explanation (e.g. that the ECS value actually lies within a particular

range) and its competitors:

If we are interested in doing robustness analysis on these various de-

tection methods, then it is helpful to think of each of these sources of

uncertainty [. . .] as alternative possible explanations of various hy-

potheses detections. Suppose, for example, that using instrument

data associated with a particular volcanic eruption, we find that the

data support the hypothesis that ECS is between 1.5°C and 4°C. We

can count this as a method of detection for this hypothesis. Thus, to

do RA, we would want to ask: in addition to the truth of the hypoth-

esis, what other explanations are there for the fact that this method

detects that hypothesis? (Winsberg 2018, 205)

Once we have answered this question we can, according to Winsberg, proceed

to consider other methods of estimating ECS that are able to rule out these al-

ternative rival explanations. For instance, an alternative explanation for why

we obtained this range for ECS using data associated with a particular volcanic

eruption might be that the the climate hadn’t yet reached equilibrium before

the forcing was taken away and hence under this rival explanation what we

observed was merely a transient response. Given that Paleoclimate data is less

6There are many other important sources of uncertainties when it comes to each of these three
methods for estimating the ECS, many of which are mentioned by Winsberg (2018, 203-204). But
for the purpose of understanding Winsberg’s analysis, this will suffice (see also Knutti et al. (2017)
for a comprehensive summary of the current evidence relevant to the estimation of the ECS).
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susceptible to uncertainty about whether the planet has reached equilibrium be-

fore the forcing was taken away (as long as the actual value of ECS is not very

high since the larger the value of ECS is, the more slowly equilibrium is expected

to be reached) we can, according to Winsberg, use methods that rely on Paleocli-

mate data to rule out this explanation for the detection that ECS > 1.5°C. And by

considering more and more detection methods, we can, rule our more and more

alternative explanations for why detect that ECS > 1.5°C.

In contrast, Winsberg argues that it is more difficult to find detection meth-

ods that are able to rule out alternative explanations for why we detect that ECS

< 6°C:

What is of course interesting is that this set of detection methods is

very good at ruling out alternative explanations for the hypothesis

that ECS > 1.5 °C, but not very good at all at ruling out alternative

explanations of the hypothesis that ECS < 6 °C. One good way to

see this is to ask: if ECS were greater than 6°C, what would explain

all of our detections that it is lower? Unfortunately, it is not hard to

come up with explanations: suppose, for example, there is a strong

but as-yet-unaccounted-for positive feedback mechanism. Then we

would not expect our models to correctly detect the high value of

ECS, and we would not expect our instrument records to detect it

either, because (being a high value of ECS) it would act too slowly

for them to see it. We would probably only expect to see it in the

millions of-years-scale paleodata – but those data sets have enough

uncertainty that they are poor at eliminating such a hypothesis [. . .]

(Winsberg 2018, 205-206)

Winsberg concludes that this is the reason why the IPCC authors assign only a

“medium confidence” to the claim that it is “very unlikely” that ECS > 6 °C and

“high confidence" to the other probabilistic claims in the IPCC finding above:

Robustness analysis helps us to see why we have high confidence

that ECS is greater than 1.5°C, but lower confidence that it is less

than 6°C, and virtually none at all regarding any hypothesis that is
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more fine-grained than 1.5°C < ECS < 4°C. [. . .] we can also see why

the IPCC finds it useful to put probabilities on these hypotheses com-

bined with a further estimate of confidence. Climate scientists seem

to believe that each detection method puts a low probability on ECS

< 1.5°C and on ECS > 6°C. Both are statistical outliers in each of the

methods. But the RA we just performed on each hypothesis reveals

that the ECS < 1.5°C probability estimate is likely to be much more

resilient – precisely because it is more robust. This is presumably

why, when it comes to the claim that it is “very unlikely” that ECS

> 6°C, the IPCC claims only “medium confidence.” (Winsberg 2018,

206)

Hence, in a nutshell, according to Winsberg the confidence level that is assigned

to a probabilistic claim concerning a particular hypothesis is affected by the ex-

tent to which the available evidence is ERA diverse with respect to that hypoth-

esis and its competitors.

There are at least a couple of problems with Winsberg’s analysis. The first

is that, according to Schupbach’s account of ERA diversity, the extent to which

the detection methods are ERA diverse with respect to a target hypothesis (and

its competitors) should affect the extent to which the target hypothesis is con-

firmed. In particular, if the detection methods are not ERA diverse with re-

spect to the hypothesis ECS < 6°C, as Winsberg argues above, then according to

Schupbach’s account of ERA diversity, once’s credence in that hypothesis should

not increase. But then under Winsberg’s analysis, it is unclear on what basis the

authors are justified in declaring that it is “very unlikely” that ECS > 6°C.

A second crucial problem is that, contrary to what Winsberg suggests, it is

hard to see how any of the methods he mentions for estimating the value of ECS

are able to rule out competing hypotheses with respect to any target hypothesis

in the sense required by Schupbach’s account of ERA diversity. For instance, the

fact that methods that rely on Paleoclimate data agree with methods that rely on

instrument data associated with a particular volcanic eruption in so far as ECS

> 1.5°C is not able to rule out that the latter result was due a transient response
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to forcing. As mentioned earlier, Paleoclimate data is subject to a great deal of

measurement uncertainty and hence it is more than possible that the these two

methods could agree that ECS > 1.5°C, despite the former result being due to a

transient response and the latter being due to a measurement error. Given this,

it seems to me that Winsberg is effectively relying on some sort of argument

from coincidence in the above analysis and not, as he suggests, on Schupbach’s

account of ERA diversity.

Leaving aside these problems with Winsberg’s analysis, it seems that accord-

ing to Winsberg the factor ‘how many different sources of evidence were con-

sulted by the experts in arriving at the assessments of probability’ may, perhaps,

be better interpreted (at least as far as this example is concerned) as something

like ‘how many methods that are subject to different types of uncertainty are

used by the IPCC experts to arrive at the assessments of the probability of a hy-

pothesis’. In any case, it seems clear that what the first factor is supposed to

represent and how one should evaluate it is left rather open to interpretation.

The second factor that Winsberg argues should affect the evaluation of con-

fidence underlying a probabilistic statement is ‘how unequivocal (or contrary)

various sources of evidence were’. If the level of confidence is affected by how

unequivocal the sources of evidence are then confidence, under Winsberg’s pro-

posal, is clearly not anything like Keynes’s notion of the weight of evidence.

But, crucially, a probabilistic assessment of the evidence with respect to a hy-

pothesis should surely be affected by the extent to which the various sources of

evidence are unequivocal or contrary with respect to that hypothesis. Hence, if

this factor plays a role in the evaluation of confidence, then confidence cannot

be reasonably thought of as an independent dimension from likelihood.

The final factor that is supposed to be relevant for the evaluation of confi-

dence according to Winsberg is ‘the degree to which the reported consensus of

the committee papered over internal disagreement or, to the contrary, reflected

easy- to- come-by agreement’. This is no longer an evaluation of the evidence

itself, but rather it is an evaluation of the extent to which the relevant experts

agree on the range of probabilistic values that should be assigned to a hypothe-

sis in light of the available evidence. What is particularly odd about this factor
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is that it seems to be irrelevant, if we understand likelihood as Winsberg told us

we should understand it. That is, if according to Winsberg the likelihood metric

should be used to communicate the ‘range of probabilities that is satisfactory to

almost all, if not all, of the members of a panel’, then by definition there should

be very little if any disagreement regarding the range of probabilities that are ul-

timately assigned to a hypothesis (i.e. the assigned likelihood level). What ads

an extra layer of confusion to this is that, according to Winsberg, these three fac-

tors are all in principle independent. As far this factor is concerned, this means

that disagreement amongst the experts is in principle independent of how many

different sources of evidence were consulted by the experts and how unequiv-

ocal (or contrary) those various sources were. From a Bayesian perspective, the

only way to make sense of this seems to be if disagreement amongst experts

as to what is the range of satisfactory probabilities that should be assigned to a

hypothesis in light of the evidence is merely due to a disagreement as to what

priors are reasonable. But this is just one source out of the many possible sources

of disagreement amongst experts. As Steel (2015) remarks ‘probabilistic assess-

ments of evidence or degrees of confirmation depend on accepting data, back-

ground knowledge, and probability models’ and whether or not to accept data

or a particular probability model is directly affected by what sources of evidence

the experts considers to be relevant for the hypothesis in question and also the

extent to which the experts thinks the evidence is unequivocal or contradictory.

So it seems more natural to think that disagreement amongst experts might more

often than not stem from disagreement as to the evaluation of the first two fac-

tors, raising the question as to what role disagreement among experts plays in

their evaluation.

Winsberg’s interpretation of confidence

Leaving behind the details of how these factors should be evaluated and the

questions that each of them raises, recall that according to Winsberg, if the con-

fidence metric is a sort of summary of the evaluation of these three factors, then

the level of confidence can be interpreted by policy makers ‘as the committee’s

assessment of the degree to which the answers to the above questions foretell
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a resiliency in their credences; as an assessment of how likely their consensus

regarding appropriate credences is going to remain fixed in the light of future

developments’.

However, it is extremely unclear on what basis Winsberg can argue that un-

der his proposal this is a reasonable interpretation of confidence. Is Winsberg

here perhaps inspired by the Bayesians’ efforts (discussed in Chapter 6) to try to

show that as ‘the weight of evidence’ increases an agent’s credence in a hypoth-

esis tends to become more and more resilient (despite the fact that confidence

under Winsberg’s proposal cannot be straightforwardly understood as anything

close to what Keynes and Bayesians have in mind with the notion of ‘the weight

of evidence’)? Perhaps. However, recall that, as I argued in Section 6.3, this is a

reasonable idea only in cases where the agent’s credence in a hypothesis is me-

diated by objective chances and hence their credence in that hypothesis can be

interpreted as their expectation of the hypothesis’s chance, and it is that expec-

tation that tends to become more and more resilient as ‘the weight of evidence’

increases. But in this case there is no sense in which the experts’ credences in the

hypothesis that the ECS is in the range 1.5 °C to 4.5°C are mediated by objective

chances.

Recall that under Winsberg’s proposal the likelihood metric is supposed to

communicate the range of credences that the experts agree it is reasonable to

hold in a hypothesis in light of the available evidence. So if the IPCC experts

claim that ECS is likely to lie in the range 1.5°C to 4.5°C, what this means under

Winsberg’s proposal is that according to the experts the range of credences that

one ought to hold in the hypothesis that the ECS lies in the range [1.5°C , 4.5°C],

in light of the available evidence, is (0.66, 1). The range (0.66, 1) is not the ex-

perts’ estimate of the expected chance of the hypothesis. Hence, there doesn’t

seem to be any reason for supposing that a high level of confidence (somehow

based on the evaluation of those three factors) is supposed to give any indication

of whether or not the range of credences that the experts assign to that hypoth-

esis will remain fixed in light of future evidence. For instance, Sherwood et al.

(2020) seem to be particularly optimistic that further developments in modeling

or data acquisition, such as ‘improved observation and proxy characterization of
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other warm periods in the geological past, which are not yet sufficiently under-

stood’ (Sherwood et al. 2020, 107) or continued ‘progress in the understanding

of cloud feedback mechanisms’ (ibid., 106), might in the not too distant future

help substantially further down the range of what climate experts consider plau-

sible values for ECS. And if this is right, this should evidently affect the range of

credences that the IPCC will assign to the range [1.5°C , 4.5°C] for ECS in light

of those developments. In other words, why should the experts, regardless of

the evaluation of those three factors today, not substantially change the range of

credences that they will assign to the hypothesis that ECS is in the range [1.5°C ,

4.5°C] in light of e.g. improved observation and proxy characterization of other

warm periods in the geological past? Suppose, for instance, that ECS really is

in the range [1.5°C, 4.5°C]. Why should we think that in light of future devel-

opments the experts won’t consider this range to be “very likely” or “extremely

likely”? Or suppose instead that ECS is in fact higher than 4.5°C. Why should

we think that, in light of future developments, the experts would still consider

this range to be “likely”? If anything, one would hope in this case that in light

of future developments the IPCC experts would substantially decrease the cre-

dences that they assign to the hypothesis that ECS is in the range [1.5°C, 4.5°C].

In either case, it is very hard to see why an evaluation of confidence which, un-

der Winsberg’s proposal, has nothing to do with an evaluation of what evidence

the IPCC expect to gather in the future, should give us any indication as to what

credences the IPCC experts will assign to a hypothesis in light of future evidence

(nor what credences the IPCC experts themselves believe they will assign to a

hypothesis in the future).

To be clear, this is not to say that experts may never have good reasons to

believe that the credences that they currently assign to a hypothesis is going to

remain fixed in light of future evidence. For instance, Consider the following

remark in Sherwood et al.’s (2020) recent Bayesian assessment of the evidence

relevant to the estimation of the ECS:

Some of the effects quantified in this paper with the help of GCMs

were looked at only with pre-CMIP6 models, and interpretations of
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evidence might therefore shift in the future upon further analysis of

newer models, but we would not expect such shifts to be noteworthy

unless they involved significant improvements in model skill against

relevant observations. (Sherwood et al. 2020, 106)

The above remark suggests that, in this case, the experts do not think that their

probabilistic assessment will be greatly affected by the forthcoming evidence

from the results of the newer CMIP6 models. But notice that this is mainly due

to the nature of the evidence that they expect to obtain in the near future, rather

than any evaluation of the evidence that they already have.

Hence, to repeat, what I am arguing is that if confidence is supposed to be

a summary of those three factors discussed above, as proposed by Winsberg,

it really does not look as if the level of confidence has anything to do with the

experts’ assessment ‘of how likely their consensus regarding appropriate cre-

dences is going to remain fixed in light of future developments’, contrary to

what Winsberg suggests.

One way to revise Winsberg’s interpretation of confidence as to make it

somewhat more plausible might be to argue that the higher the confidence, the

more likely the expert’s consensus regarding appropriate credences is going to

remain within the range of credences that they currently assign to the hypothesis.

For instance, under this interpretation of confidence, if the experts were to report

that a hypothesis is e.g. “likely” with “very high confidence”, this would mean

that they strongly believe that in light of future developments they will report

that that hypothesis is “likely”, or “very likely” or “extremely likely”. Whereas

if the experts were to report that a hypothesis is e.g. “unlikely” with “very high

confidence”, this would mean that they strongly believe that, in light of future

developments, they will report that that hypothesis is “unlikely”, or “very un-

likely” or “extremely unlikely”. However, this interpretation of confidence, al-

though prima facie more plausible, is not at all obvious. This interpretation of

confidence is only feasible if the higher the confidence, the more reasons the
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experts would have for supposing that future evidence will be in favour of a hy-

pothesis that they currently consider “likely” (or more than likely).7 But given

that the level of confidence, according to Winsberg’s proposal, has nothing to do

with the nature of the evidence that the experts expect to see in the future, it is

really not clear what would justify this view.8 Hence, overall, I see no reason for

suggesting, as Winsberg does, that confidence under his proposal has anything

to do with the resiliency of the experts’ credences in a hypothesis.

Why confidence and likelihood levels should not interact

Winsberg’s proposal gives rise to an another important question to do with the

interaction of confidence and likelihood levels: can confidence and likelihood

levels interact under this proposal? I will argue that, despite what intuitions

one may have about this, confidence and likelihood levels should not be able

to interact under Winsberg’s proposal. Recall that under this proposal, the like-

lihood level is determined by the range of credences that almost all, if not all,

the relevant experts accept to assign to a hypothesis in light of the available evi-

dence. For instance, if the experts claim that the ESC is “likely” to lie in the range

[1.5°C , 4.5°C] what this should mean, under Winsberg’s proposal, is that in light

of the available evidence, according to almost all, if not all, experts, it is reason-

able to assign probability values in the interval [0.66, 1] to the hypothesis that

ECS lies in the range [1.5°C , 4.5°C]. Confidence, on the other hand, is supposed

to be some sort of subsequent overall evaluation of the available evidence based

on those three factors discussed above. So the acceptance of the probability val-

ues that should be assigned to a hypothesis comes prior to assigning confidence.

Hence, under Winsberg’s proposal, it does not look as if one should be able to

increase confidence levels by fiddling with the likelihood levels. That is, there is

one likelihood level, which is determined by the range of satisfactory probability
7And also the higher the confidence, the more reasons the experts would have for suppos-

ing that future evidence will not be in favour of a hypothesis that they currently consider e.g.
“unlikely” (or less than unlikely).

8In Section 6.3, I argued that it is implausible to argue that as the weight of evidence increases,
the resilience of a credence in a range should increase. However, confidence, under Winsberg’s
proposal, is clearly a different notion from the weight of evidence, since it is affected by factors
other than the amount of evidence (such as the extent to which the different sources of evidence
agree). So given that my scepticism about this revised interpretation of confidence is mainly
driven by the discussion of the weight of evidence in Section 6.3, I am aware that I have not given
sufficiently strong reasons for rejecting this revised interpretation of confidence.
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that should be assigned to a hypothesis agreed on by the experts, and there is

one confidence level, which is based on some sort of evaluation of the available

evidence based on a summary of those three factors. And that should be the end

of the story.

But of course, one may wonder: why couldn’t the experts increase confi-

dence by simply choosing to report a wider probability interval instead? Surely

that should be a way to increase confidence! Let’s think about this. Of course, if

there were to exist an actual correct probability value that should be assigned to

a hypothesis and the IPCC authors were simply unsure about what that value is,

then the idea that the IPCC can increase confidence by reporting a wider prob-

ability interval would be rather intuitive. A wider probability interval is more

likely to contain the correct probability value. Hence, the wider the probability

interval, the more confidence the experts should have that the correct probabil-

ity lies in it. However, under Winsberg’s proposal, this is not what is going on

here at all. Hence we shouldn’t think that the intuition in this example should

carry over under Winsberg’s proposal. Under Winsberg’s proposal, the experts

are supposed to agree on a range of credences that should be assigned to a hy-

pothesis in light of the available evidence. Only those credences that are deemed

reasonable by the majority of the experts should be included in the interval. For

instance, if the experts claim that the ESC is “likely” to lie in the interval [1.5°C ,

4.5°C] this must mean, under Winsberg’s proposal, that it is not the case that the

majority of the experts think that it is reasonable to assign any credence in the

interval (0, 0.66] to the hypothesis that the ESC lies in the interval [1.5°C , 4.5°C].

But then, it seems to me that reporting a wider probability interval than the one

that was agreed on by the experts in light of the available evidence cannot be a

viable/coherent way to increase confidence, under Winsberg’s proposal, since

the experts should not be reporting credences that are not considered to be rea-

sonable by the majority of the experts in light the available evidence.

It just so happens that my views about the lack of interaction between confi-

dence and likelihood levels, under Winsberg’s proposal, is in stark contrast with

what Winsberg himself might actually think about all this. Winsberg argues that

there are many reasons to think that the IPCC conclusions are value laden. One
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reason he mentions has to do with the possible interaction between confidence

and likelihood levels:

The IPCC scientists reported “high confidence” in the conclusion

that warming greater than 2°C was “likely” under RCP6.0. The “likely”

range corresponds to an interval probability assignment of (0.66, 1.0).

But the scientists could also have reported a wider probability in-

terval, such as (0.5, 1.0), corresponding to “more likely than not,”

with even higher confidence, e.g. “very high confidence.” Or per-

haps they could have reported a narrower interval, such as (0.9, 1.0),

corresponding to “very likely,” but with less confidence. The ques-

tion is: what determines which of these representations of uncer-

tainty is communicated? (We assume here that the representations

are all consistent with one another.) Without speculating regard-

ing the IPCC example, it seems clear that at least sometimes it is a

consideration of the likely applications of an uncertainty report that

guide the choice between a wider and more confident report and a

narrower and somewhat less confident report. Perhaps a narrower,

even if somewhat less confident interval is thought to be more useful

for policy makers. In such cases, social values are once again playing

a role. (Winsberg 2018, 149)

In the above passage, Winsberg seems to suggest that the idea that likelihood

levels can interact with confidence levels makes sense and that the choice of

reporting a particular probability interval at a particular confidence level is a

choice that that the IPCC experts have to make and one that involves social

values. It is possible, however, that Winsberg here is merely referring to the cur-

rent practice of the IPCC authors and hence his comments in the above passage

may have nothing to do with whether he thinks that the interaction between

confidence levels and likelihood levels is conceptually coherent under his own

proposal. But in any case, since Winsberg (2018) does not discuss the interaction

of confidence and likelihood under his own proposal, it is important to stress
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that under Winsberg’s proposal, likelihood levels should not be able to inter-

act with confidence levels.9 This does not mean that social values cannot play

a role in what likelihood level to assign. This is because to argue that, under

Winsberg’s proposal, confidence and likelihood should not interact and hence

that the experts should only be able to report one probability interval (rather

than any probability interval they feel like, by upgrading/downgrading confi-

dence) is not equivalent to arguing that the acceptance of probabilities in light of

the available evidence is not subject to an argument from inductive risk, as Steel

(2015) argues. This may very well be. But as discussed earlier, from an inductive

risk perspective, accepting probabilities is no less problematic than not accept-

ing them and hence accepting a wider probability interval than the one on which

most of the experts agree in light of the available evidence is not a valid way to

temper this worry. That is, even if we grant that probabilistic reasoning requires

a decision about which probability model, or a set of them, to accept (which will

in turn affect which posterior probabilities one accept to assign to a hypothesis

in light of the available evidence) and that that decision will necessarily involve

some sort of value judgment and hence those values judgments will be ‘embed-

ded in whatever posterior probability distribution results from the analysis’, this

does not support the idea that an IPCC expert panel is free to report whatever

probability interval they feel like (by fiddling with confidence levels). The only

probability interval that they can and should report, under Winsberg’s proposal,

is the range of probabilities that are accepted by all or most of the experts and

only those.

Before concluding, I should mention that Winsberg’s proposal (stripped of

misinterpretations of the confidence metric) seems to be close to what Aven

(2018) has in mind in the following passage:

9Fun fact. In the above passage, Winsberg suggests that the wider the probability interval,
the higher the confidence. Under his interpretation of confidence (which as argued in this section
can’t be right), this would mean that the wider the probability interval, the more strongly the IPCC
believe that it will remain fixed in light of future developments. So under this interpretation,
the claim that ‘we have “high confidence” in the probability interval (0.66, 1) and even higher
confidence in the interval (0.5, 1)’ would have to be interpreted as something like ‘it is rational
to assign credences in the range (0.66, 1) and we strongly believe that it will still be rational to
assign credences in the range (0.66, 1) in light of future developments & it is rational to assign
credences in the range (0.5, 1) and we believe even more strongly that it will still be rational to
assign credences in the range (0.5, 1) in light of future developments’. This doesn’t strike me as a
conceptually coherent claim that the IPCC experts should be able to make.
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To be used in relation to climate change issues, a probability has

to be viewed as a subjective (also referred to as a judgemental or

knowledge-based) probability, which is conditional on some knowl-

edge. This knowledge can be more or less strong and even erro-

neous. This fact creates two additional dimensions of risk: firstly, a

need for characterising the strength of this knowledge and, secondly,

a need for considering surprises relative to the knowledge available.

The IPCC works are not explicit on these dimensions, although the

former is discussed in relation to statements when referring to evi-

dence and agreement among experts. The problem is, however, [. . .]:

there is no link between the probability judgements and the strength

of knowledge judgements in the IPCC framework. From this per-

spective, the risk analysis science clearly shows that there is such a

link and it is essential for understanding risk. (Aven 2018, 292)

Aven, like Winsberg, argues that if the likelihood metric is used to communicate

the range of subjective probabilities that the IPCC authors assign to a hypothe-

sis conditional on some knowledge (i.e. conditional on the available evidence),

the IPCC should also characterize ‘the strength of this knowledge’ in some way

or another. Unfortunately, Aven does not go into any detail about how such

knowledge should be characterized, hence it is hard to tell what he really has

in mind and whether he’d be happy with characterizing ‘the strength of this

knowledge’ through something like the confidence metric as in Winsberg’s pro-

posal. Nonetheless, Aven is making an important point in the above passage

that it is important to stress. However one chooses to characterize and commu-

nicate ‘the strength of knowledge’ on which a probabilistic assignment is condi-

tional, such communication should always come in conjunction with the range

of subjective probabilities that the IPCC authors assign to a hypothesis in light

of that ‘knowledge’. In other words, if the confidence metric is used to com-

municate ‘the strength of knowledge’ on which a probabilistic assignment to a

hypothesis is conditional on, then one should never assign confidence without

also assigning likelihood.
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7.3 Mach et al.’s proposal: So long confidence?

Most of the authors of Mach et al.’s (2017) proposal for a new IPCC uncertainty

framework, in contrast to Winsberg’s proposal (discussed in Section 7.2) and

Bradley et al.’s proposal (which I will discuss in Section 7.5), are scientists who

have been directly involved with the IPCC assessment and reporting of uncer-

tainties for several years.10 In light of their experience with the AR5 uncertainty

framework, and in response to what they consider a lack of rigour and trans-

parency in the IPCC authors’ current usage of the confidence and the likelihood

metrics, they propose a new uncertainty framework that is ‘is intended to be si-

multaneously more rigorous and accessible – more straightforward to apply and

for readers to understand’ (ibid., 10). Despite their intention, however, I will ar-

gue that this proposed framework faces most, if not all, the conceptual problems

that the current AR5 uncertainty framework faces (discussed extensively in Part

1). Hence, although Mach et al.’s recognition of the some of conceptual problems

and ambiguities in the current AR5 uncertainty framework and their ambition

to produce a more rigorous and accessible IPCC uncertainty framework is cer-

tainly welcome, I will argue that that their proposal does not live up to their

ambition.

Mach et al.’s suggested framework includes five terms for describing scien-

tific understanding (‘limited’, ‘emergent’, ‘medium’, ‘divergent’, ‘robust’) based

on evidence and agreement, as shown below.

FIGURE 7.1: ‘Characterization of scientific understanding’ (Mach
et al. 2017, 10)

10Katherine Mach co-directed the scientific activities of WG II from 2010 till 2015, and is cur-
rently a lead author for the AR6. Michael Mastrandrea contributed to the AR4 and was part of
the leadership team for the AR5. Patrick Freeman was a coordinating lead author for the AR4 and
currently serves as a co-chair of WG II.
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It also includes a likelihood scale as in the current uncertainty guide, as shown

below.

FIGURE 7.2: The likelihood scale

However, similarly to Winsberg’s proposal discussed in the previous section,

the likelihood scale, under this proposal, is supposed to be explicitly based on

subjective probabilistic assessments, ‘reflecting all plausible uncertainty sources’

and should be ‘informed by all available evidence, whether it is quantitative,

probabilistic, or more diverse’ (Mach et al. 2017, 10).

According to Mach et al.’s proposal the above qualitative scientific-understanding

terms can either be used as (optional) supplements to likelihood assignments or

as a fall back ‘when probability cannot be evaluated’:

Where possible and appropriate, experts would assign likelihood or

more precise presentations of probability. Scientific-understanding

terms would be a supplement or, when probability cannot be eval-

uated, a fallback. Likelihood could be prioritized especially for key

assessment findings, perhaps with more abundant use of scientific-

understanding terms in underlying traceable and transparent accounts

of evidence and expert judgments. (ibid., 10)

In other words, under this proposal the authors have the option to either assign

only likelihood to a finding, or to report likelihood and supplement it with a

scientific understanding term, or to only assign a scientific understanding term

‘to characterize lower certainty conclusions or broad qualitative conclusions if
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the available evidence does not support subjective probabilities’ (ibid., 10). Be-

low are some examples that Mach et al. give to show how this would work in

practice.

FIGURE 7.3: ‘Communication of degree of certainty in findings’
(Mach et al. 2017, 10)

What to think of this proposal? One apparent difference between this proposal

and the current uncertainty framework for the AR5 is that the confidence metric

has disappeared. But is this a significant difference as Mach et al. seem to sug-

gest? In particular, is the relationship between those new qualitative terms for

scientific understanding and the likelihood metric clearer than the relationship

between “confidence” and “likelihood” in the AR5 uncertainty framework? It

seems to me the answer is: no. For Mach et al. have merely replaced the con-

fidence metric with those scientific-understanding terms, without changing any

of the aspects that gives rise to the problematic relationship between confidence

and likelihood identified in Part 1.
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Indeed, notice that under this proposal the authors are once again encour-

aged to only assign scientific-understanding terms to a finding when ‘probabil-

ity cannot be evaluated’. But then if a scientific-understanding term can be as-

signed to a finding, without also assigning likelihood, this must mean that those

terms cannot be understood as an evaluation of a dimension of uncertainty that

in addition to the range of credences that the IPCC authors assign to a finding, in

light of the available evidence, can be of interest to policy makers (as in Wins-

berg’s proposal discussed above). But if this is not their role, then what is it? One

could perhaps interpret those terms as mere proxies for likelihood assignments,

but then there is the question as to why would we need them in the first place

since one scale would seem to be enough for the job (i.e. the job of communicat-

ing the range of credences that the IPCC authors assign to a hypothesis in light

of the available evidence). And if those scientific-understanding terms are not

supposed to be proxies for likelihood assignments (as arguably is the case) then

there is the the question as to what dimension of uncertainty they are supposed

to be an evaluation of, and in particular how policy makers should interpret a

finding without a likelihood assignment. That is, if a finding to which only a sci-

entific understanding term is assigned is not supposed to tell us anything about

what range of subjective probabilities the IPCC assign to a finding, in light of

the available evidence, then what is it telling us? 11

In light of this, it seems to me that Mach et al.’s remark that that this pro-

posal is ‘simultaneously more rigorous and accessible – more straightforward

to apply and for readers to understand’, is not quite justified. For aside from

claiming that likelihood is supposed to reflect ‘all plausible uncertainty sources’

and should be ‘informed by all available evidence, whether it is quantitative,

probabilistic, or more diverse’ (and hence making some sort of attempt to clarify

the interpretation of the likelihood metric), this proposal suffers from nearly all

(if not all) the conceptual problems and ambiguities that the current uncertainty

11Recall that another problem with the current AR5 uncertainty framework that I discussed
in Part 1 was the puzzling bifurcation of ‘evidence’ and ‘agreement’ in the characterization of
confidence. Notice that under Mach et al.’s proposal the very same bifurcation of evidence and
agreement appears in the characterization of scientific understanding. However, given that Mach
et al. do not clarify what the evaluation of evidence and agreement actually depends on, there
is not much I can say about it aside from the fact that clearly more would have to be said about
what their evaluation depends on under this proposal.
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framework suffers from (discussed extensively in Part 1). Hence, for anyone

who thinks that those conceptual problems should be resolved, this proposal is

not a satisfactory one.

7.4 Some thoughts towards an adequate uncertainty frame-

work: Avoiding the same old mistakes

In this section, I will sketch what a proposal for the IPCC uncertainty frame-

work that satisfies the two desiderata below could look like, while trying not

to undermine the honest reporting of the deep uncertainty afflicting studies of

climate change and the various challenges that the IPCC authors face in their

assessment of it:

1. the framework’s fundamental concepts should be clearly defined so that

they can be used appropriately and consistently by the IPCC authors in

the communication of uncertainty;

2. the use of the framework’s fundamental concepts should help the IPCC

authors produce findings that are interpretable, relevant and useful for

the target audience/s

The proposal I am going to sketch is somewhat similar in spirit to Winsberg’s

proposal discussed in Section 7.2, but it does nonetheless differ from it in some

important ways.

Let’s start with ‘probability’. As discussed in Chapter 2, the history of the

IPCC uncertainty framework is an interesting one: new scales have appeared

out of the blue, concepts have changed meaning implicitly if not explicitly. And

yet the idea that probability would have to play a role in the communication

of uncertainty has never been questioned by the IPCC (every IPCC uncertainty

framework that has been produced has always included at least one scale de-

fined in terms of probability ranges). Indeed, probability can undeniably be a

very useful concept for the communication of uncertainty. However, it can also

be a meaningless, and hence not a very useful, one when used without a clear

and understandable interpretation of it.
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As discussed in Chapter 2, the very first uncertainty guide (for the AR3) did

offer an interpretation of probability. It stated that:

the probability of an event is the degree of belief that exists among

lead authors and reviewers that the event will occur, given the ob-

servations, modeling results, and theory currently available. (Moss

and Schneider 2000, 36)

This was the first and last time that probability was explicitly defined in an IPCC

uncertainty framework and I think it’s no coincidence. From the very first un-

certainty guide the IPCC authors were not discouraged from using ‘frequentist’

methods to produce probabilities. Indeed, despite providing the definition of

probability above, the first guide itself left room for the authors to decide for

themselves when to adopt a ‘frequentist’ approach’ instead, as long this choice

was made explicit:

authors should explicitly state what sort of approach they are using in a

particular case: if frequentist statistics are used the authors should ex-

plicitly note that, and likewise if the probabilities assigned are sub-

jective, that too should be explicitly indicated. Transparency is the

key in all cases. (Moss and Schneider 2000, 36; emphasis in the orig-

inal)

In Chapter 2, we have seen what happened afterwards. In the second revised

IPCC uncertainty framework (for the AR4), two quantitative scales appeared

instead of one (both were being defined probabilistically). Clearly, transparency

was not thought to be enough.

Indeed, transparency is not enough! As argued in Section 2.5, some very

prominent ‘frequentist’ (or rather, more accurately, mechanical) methods that

are used by the IPCC to assign a probability (or a probability range) to a hy-

pothesis in light of multi-model ensemble results are not conceptually coherent

methods for producing objective probabilities (or an estimate of them). Hence,

transparency about whether or not one is using some methods rather than others

to produce probabilities can’t, in my view, be ‘the key’ if those methods should

be not used in the first place.
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The reason why I mention all this, is that the methods that the IPCC authors

use to assign probabilities to a hypothesis matter. An uncertainty guide which

defines probability as subjective and yet does not discourage authors from us-

ing conceptually incoherent mechanical methods to produce probabilities is not

good enough. Nor of course is an uncertainty guide which doesn’t define proba-

bility at all.

Under my proposal, probability is supposed to be subjective. In particular, as

in Winsberg’s proposal (and similarly to the first uncertainty guide for the IPCC)

the likelihood metric should be used to communicate the range of credences that

are satisfactory to almost all, if not all, of the members of a panel i.e. a partic-

ular likelihood level assigned to a hypothesis is supposed to communicate the

panel’s consensus regarding what the range of one’s degree of beliefs in a hy-

pothesis ought to be in light of the available evidence. Of course, how the IPCC

authors should determine the credences that one ought to have in a hypothesis

in light of the available evidence is far from clear in many cases. In particular,

as discussed in Chapter 5, evaluating the epistemic import of model consensus

in climate science is clearly very hard, hence there is no reason to think that as-

signing credences to a hypothesis in light of the models’ results should be any

easier (leaving aside the fact that many scientists might not be Bayesians in the

first place). However, if the aim of the IPCC is to truly help policy makers, de-

cision makers and the general public understand what they should think about

climate change in light of the available evidence, then the IPCC authors’ attempt

to evaluate the range of credences that one ought to have in a hypothesis in light

of the available evidence is, arguably, better than no attempt at all.

In light of the role of the likelihood metric under this proposal, there are a

couple of considerations that I’d like to make. First, since under this proposal a

likelihood level is supposed to communicate the range of credences that are sat-

isfactory to the members of a panel and only those, it is worth thinking carefully

about the ranges of probability that will determine a particular level of likeli-

hood; some ranges might be more pertinent than others. Compare, for instance,

the confidence scale in the first uncertainty framework (for the AR3) with the

likelihood scale in the current uncertainty framework (for the AR5).
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FIGURE 7.4: Comparison of the AR3 confidence metric with the
AR5 likelihood metric.

Notice that the probability ranges that determine a particular confidence level

in the AR3 confidence metric do not overlap with one another, whereas the ones

that determine a likelihood level in the AR5 likelihood metric do. I think this

difference is significant. And I think that under this proposal there may in fact

be good reasons to go back to something like the AR3 confidence metric. As

argued in Section 7.2, accepting that it is rational to assign a probability to a

hypothesis in light of the available evidence if there are not good reasons for

accepting it is no less problematic than not accepting that it is rational to assign

a probability to a hypothesis in light of the available evidence if there are good

reasons for accepting it. So if an IPCC panel does not think it is rational to assign

a credence of e.g. 0.99 to a hypothesis in light of the available evidence, that cre-

dence should not be included in the ranges of credences that are assigned to a

hypothesis. However, if the IPCC authors are given a likelihood metric like the

one in the AR5 uncertainty framework, they would be forced to assign a range

of credences to a hypothesis that includes e.g. 0.99 even in cases when they only

thought it’s rational to assign a credence of roughly e.g. 0.7 to a hypothesis. In

light of this, I think something like the AR3 confidence metric might be more ap-

propriate for the purpose at hand. Below is my suggestion for what a likelihood

metric under this proposal could look like:
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FIGURE 7.5: The likelihood scale under my proposal.

Second, many important findings in the IPCC are projections of a particular vari-

able in the future, such as this one:

Increase of global mean surface temperatures for 2081–2100 relative

to 1986–2005 is projected to likely be in the ranges derived from the

concentration-driven CMIP5 model simulations, that is, 0.3°C to 1.7°C

(RCP2.6) [. . .] (very high confidence) (IPCC 2013b, 20; original empha-

sis)

As argued in Section 2.5, the most salient feature of this finding is, in my view,

the range [0.3°C, 1.7°C]. However, given that the IPCC authors seem to think this

range is merely ‘likely’ I have argued that it is inappropriate to draw so much

attention to it. In light of this, under my proposal the IPCC authors should

be encouraged to communicate as much as possible the full range of epistemic

uncertainty in important projections. For instance, whether the IPCC authors

think that under the most positive scenario (RCP2.6) it is ‘very unlikely’ that

by the end of the century increase of global mean surface temperatures will be

above 4 °C or whether they think that it is ‘very unlikely’ that it will be above 2

°C is, in my view, extremely valuable information for policy makers and really

everyone else who is concerned about climate change and might want to act on

it. Hence, if the IPCC authors think that the range 0.3°C to 1.7°C is ‘likely’ they

should tell us, but this should not preclude them from also telling us what range

they consider to be e.g ‘very likely’ in light of the available evidence.
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Let’s now move on to the confidence metric. I would get rid of it, as it clearly

caused too much trouble for its own good. Of course, under my proposal, there

might many cases in which the IPCC authors may be forced to assign a likeli-

hood level to a hypothesis (i.e. may forced to tell us their credences in a hy-

pothesis) in light of very limited or perhaps conflicting evidence. But under my

proposal this should not preclude them from doing so. For as Moss and Schnei-

der remarked in the very first IPCC uncertainty guide (for the AR3):

It is certainly true that “science” itself strives for objective empirical

information to test theory and models. But at the same time “science

for policy” must be recognized as a different enterprise than “sci-

ence” itself, since science for policy (e.g., Ravetz, 1986) involves be-

ing responsive to policymakers’ needs for expert judgment at a par-

ticular time, given the information currently available, even if those

judgments involve a considerable degree of subjectivity. (Moss and

Schneider 2000, 36)

Furthermore, the practice of the IPCC authors in their treatment of uncertain-

ties suggests that they often feel more comfortable assigning probabilities to a

hypothesis when they can rely on mechanical methods (such as multi-model

ensemble methods) to produce them, and less so in other cases. But given that,

as argued in Section 2.5, those mechanical methods are not conceptually coher-

ent, there is no justified reason for why this should be the case. Hence, under

my proposal the authors should always assign a likelihood level to a hypothesis

to express their epistemic uncertainty in that hypothesis, independently of the

kind of available evidence. This is a key difference between this and Mach et

al.’s (2018) proposal discussed in the previous section.

Having said this, as Winsberg (2018) and Aven (2018) argue, it might be valu-

able for the authors to have some supplementary qualitative terms for letting

policy makers know some aspects of the evidence underpinning their likeli-

hood judgments in a hypothesis, especially when those likelihood judgments

are based on very limited or perhaps conflicting evidence. However, in contrast

to Winsberg (2018) and Aven (2018), I am less optimistic as to whether those
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aspects (whatever we choose them to be) can be neatly summarized into a met-

ric whose evaluation can be of practical value to policy makers and decision

makers. As extensively discussed in Chapter 6, the Bayesian has been worrying

for a long time about the notion of the weight of evidence underlying a subjec-

tive probabilistic assignment to a hypothesis, and as argued in that chapter, the

Bayesian (or anyone who uses probability in inductive inference to quantify the

degree of belief to assign to a hypothesis given the evidence) has to this day not

been able to find an adequate way to measure it, despite acknowledging that it is

an important aspect of the evidence. Of course, Keynes’s notion/s of the weight

of the evidence is/are not quite what Winsberg and Aven seem to have in mind,

since according to them the evaluation of the evidence underlying a probabilis-

tic judgment (through the confidence metric) depends on several other factors

that are not usually associated with Keynes’s notion/s. However, I nonetheless

believe that Winsberg’s, Aven’s and (to a certain extent) also the IPCC’s desire

to have an additional metric beyond likelihood to characterize ‘the strength of

knowledge’ supporting a probabilistic judgment about a hypothesis is due to

essentially the same concern that has driven the Bayesian’s perennial attempt

to find a solution to the problem of the weight of evidence: the amount and

perhaps other just as (if not more) important aspects of the available evidence

relevant to a hypothesis are simply not reflected in an agent’s credence/s in that

hypothesis.

In light of this, I think the best one can hope for is to find some pragmatic

but also intelligible way to let policy makers know about some aspects of the ev-

idence underlying a probabilistic judgment that are deemed important. Having

qualitative terms such as ‘limited’, ‘emerging’, etc., as in Mach et al. proposal

(Figure 7.1), could perhaps be an adequate pragmatic solution, but only so long

as a little more thought goes into what their evaluation depends on. As argued

in Section 2.3, the bifurcation of evidence and agreement in the characterization

of confidence in the current AR5 uncertainty framework is conceptually prob-

lematic. The fact that the same bifurcation appears in Mach et al.’s characteri-

zation of ‘scientific understanding’ (Figure 7.1) is certainty not reassuring. The

problem of how best to characterize the ‘strength of knowledge’ underpinning
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a subjective probability judgment in a hypothesis is clearly a very challenging

one, one for which I don’t have a solution and that deserves a lot more atten-

tion than it has received hitherto. But, however one chooses to characterize it,

an important point to keep in mind is that for a proposal to satisfy the second

desideratum at the beginning of this section, it should not give the option to as-

sign a qualitative term that is supposed to describe the ‘strength of knowledge’

underpinning a likelihood assignment without also assigning a likelihood level

to that hypothesis.

Below are the key points of the proposal sketched in this section:

1. The likelihood metric (Figure 7.5) should always be used to communicate

the range of credences in a hypothesis that are satisfactory to almost all, if

not all, of the members of a panel i.e. a particular likelihood level assigned

to a hypothesis is supposed to communicate the panel’s consensus regard-

ing what the range of one’s degree of beliefs in a hypothesis ought to be in

light of the available evidence.

2. The IPCC authors should be encouraged to communicate as much as pos-

sible the full range of epistemic uncertainty regarding important variables.

For instance, the IPCC should be encouraged to tell us both what they

consider to be a ‘likely’ range and what they consider to be a ‘very likely’

range for a variable. This is because the fact that the IPCC authors con-

sider a range for a variable to be ‘likely’ does not sufficiently help policy

makers and decision makers understand what values the IPCC authors be-

lieve one is ‘warranted’ in dismissing for a variable in light of the available

evidence.

3. Some additional qualitative terms to describe some important aspects of

the evidence underpinning a likelihood assignment might be of some use

to policy makers and decision makers to give them some sense of the

‘strength of knowledge’ underpinning a likelihood assignment. However,

what those aspects should be and how they should be evaluated is not at
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all obvious. Perhaps merely having a couple of qualitative terms that al-

lows the IPCC authors to highlight when the available evidence is particu-

larly limited and hard to evaluate (for whatever reason e.g. because differ-

ent lines of evidence support inconsistent hypotheses, or because models

do not incorporate important relevant processes etc.) might be enough for

the job.

4. However one chooses to address point 3) those additional qualitative terms

should always be used in conjunction with the range of subjective probabil-

ities that the IPCC authors assign to a hypothesis in light of the available

evidence, no matter how limited and what not. In other words, those qual-

itative terms should only be used in conjunction with a likelihood level,

never on their own.

Although this is only a sketch of a proposal for a future IPCC uncertainty frame-

work, it is an attempt to give an example of an uncertainty framework that could

in principle satisfy the above two desiderata. Having said this, by no means do

I think that there could not be other proposals that significantly depart from this

one that might also satisfy the above two desiderata. I am also conscious that

this proposal leaves open other questions (such as how best to characterize ‘the

strength of knowledge’ underpinning a likelihood assignment). But I nonethe-

less hope that this sketch can provide some constraints and guidance for future

work on developing an adequate IPCC uncertainty framework.

In the next section, I will assess a final proposal by Bradley et al. (2017) that

is particularly motivated by desideratum 2. I will argue that it is not an adequate

proposal because it fails to satisfy desideratum 1.
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7.5 Bradley et al.’s proposal: What decision makers want

. . . and how to give it to them without being peer pres-

sured

In a couple of recent papers (Bradley et al. 2017; Helgeson et al., 2018) Bradley,

Helgeson and Hill (BHH)12 offer some suggestions for how to improve and clar-

ify the relationship between confidence and likelihood in the IPCC uncertainty

framework. BHH’s proposal for how the confidence metric and the likelihood

metric should be interpreted and used by the IPCC authors stems mainly from a

desire to help clarify what role probability ranges, qualified by confidence judg-

ments, should play in decision making. This is of course an issue of critical im-

portance, one that the IPCC itself should be confronting, given that its main role

as an institution is arguably that of informing behaviour and policy. However,

the aim of this section is to critically assess the extent to which those sugges-

tions, if taken seriously, would help clarify the interpretation of confidence and

likelihood in the IPCC uncertainty framework. Unfortunately, I will argue that

their proposal suffers from some serious conceptual problems. Hence, I will

conclude that if confidence does have a role to play in the IPCC communication

of uncertainty, it can’t be the role that they have in mind.

Decision makers are (relatively) comfortable with making decisions when

faced with precise probabilities. In this case they can rely on the orthodox nor-

mative decision theory, expected utility theory, which prescribes picking the ac-

tion which maximizes the expected utility relative to the probabilities of the pos-

sible states of the world and the utilities.13 When it comes to imprecise probabil-

ities, decision makers are slightly less comfortable in so far as there is no longer

an orthodox normative decision theory on which they can rely to make deci-

sions. However, there are nonetheless a host of possible decision rules that have

been offered by decision theorists that can help them in these cases too. A much

12For now onward, I will use BHH to refer to the three of them independently of the paper I am
quoting from.

13Expected utility theory as a normative decision theory is certainly not at all unchallenged, but
this is a subject which is beyond the scope of my PhD, so I refer to Steele and Stefánsson (2020)
for a comprehensive review of those challenges and possible responses to them.
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discussed rule, for instance, is the Maxmin-EU rule, which recommends picking

the action with the greatest minimum expected utility relative to the set of prob-

abilities that the decision makers is working with (see, for instance, Gilboa and

Schmeidler 1989).14 Or a less cautious rule is, for instance, the α-Maxmin rule

which recommends picking the action with the greatest α-weighted sum of the

minimum and maximum expected utilities, again relative to the set probabili-

ties that the decision maker is working with. Under this rule the choice of the

relative weight for the minimum and maximum expected utility are supposed

to reflect either the decision maker’s pessimism or their degree of caution (see,

for instance, Ghirardato, Maccheroni, and Marinacci 2004; Binmore 2009).

So far so good. However, some decision theorists have noticed that ‘at first

pass, the IPCC’s uncertainty framework seems far removed from models de-

veloped by decision theorists’ (Bradley et al. 2017, 503) since what the IPCC

delivers are neither precise nor imprecise probabilities. Rather what it delivers

is imprecise probabilities qualified by qualitative confidence judgments. Hence

in light of this, Bradley, Helgeson and Hill worry that it is not sufficiently clear

what role those supplementary confidence judgments should play in decision

making and that this is a problem for anyone who actually might want to make

decisions based on the IPCC findings. Conveniently, however, they do find the

one (and only) one decision model that can deal with imprecise probabilities

qualified by confidence judgments offered by Hill (2013, 2017). And, in light

of this model, they offer some suggestions for how to improve and clarify the

relationship of confidence and likelihood in the IPCC uncertainty framework to

which I will now turn.

According to BHH’s proposal:

confidence terms attach to the likelihood rather than the outcome

directly, two findings can address the same outcome despite using

different confidence levels. There is no logical inconsistency in re-

porting, for example, that the probability of ECS exceeding 6°is 0–.1

(very unlikely) with medium confidence, and 0–.33 (unlikely) with

14Although this is a very simple rule to apply, it has been argued that it is overly cautious in so
far as the action this rule recommends is not at all affected by the spread of the expected utilities.
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high confidence. The two statements complement one another, to-

gether giving an indication of the prevailing trade-off between con-

fidence and precision. Informally, these findings say “We have good

evidence that the probability is less than one tenth, and very strong

evidence it is no more than one third.” On this approach, there is

no tension at all between the multiple findings [. . .]. All of those

findings—both original and derived—can be understood as mutu-

ally consistent and complementary. (Helgeson et al. 2018, 520)

Notice that BHH’s suggestion that it should be possible for the IPCC to assign

different likelihood levels qualified by different confidence levels to the same

hypothesis is in stark contrast with what I have argued in the previous sec-

tion. However, since BHH claim ‘to provide a simple mathematical model of the

confidence-likelihood relationship that resolves outstanding ambiguities while

respecting the qualitative nature of the confidence scale’ (Helgeson et al. 2018,

518), it is certainly worth hearing out what they have to say.

BHH start with the idea that the assignment of an imprecise probability in-

terval to a hypothesis must be determined by a well defined set of probability

distribution functions (pdfs); so for instance ‘assigning probability 0–.1 to out-

come x means that within the set of pdfs collectively representing authors’ un-

certainty, the smallest probability given to outcome x by any pdf is 0 and the

largest probability given to x by any pdf is .1’ (Helgeson 2018, 520). Accord-

ing to BHH’s proposal, this set of probability distributions will determine the

probability interval that should be assigned to a particular quantity or outcome,

but with a caveat. A different level of confidence should be associated ‘with

its own set of pdfs, where higher confidence sets encompass lower-confidence

sets’ (Helgeson et al. 2018, 520). So in a nutshell, under this proposal, there are

various sets of pdfs, where each set is associated with a level of confidence and

determines the probability interval that should be assigned to a hypothesis at

that level of confidence. Furthermore, since ‘higher confidence sets encompass

lower confidence sets’ this means that higher confidence sets will always include

more pdfs than lower confidence sets; hence, under BHH’s proposal, there is a
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clear trade-off between confidence and the width of the probability interval that

should be assigned to a hypothesis:

This nesting of sets naturally encodes the trade-off between confi-

dence and precision, since more inclusive sets of pdfs translate to

wider probability intervals for any given outcome. Multiple likelihood-

plus-confidence findings addressing the same uncertain quantity are

mutually consistent if and only if they can be modelled by such a

mathematical structure. (Helgeson et al. 2018, 520-521)

FIGURE 7.6: ‘Each confidence level is associated with its own
set of probability distributions. The nested structure reflects the
trade-off between confidence and the precision of likelihood as-

signments’ (Helgeson et al. 2018, 521)

Bradley et al. (2017, 514-517) give the following toy example to illustrate how

this is supposed to work. They ask us to suppose that the author team starts

with a well defined set of possible pdfs concerning the value of the equilibrium

climate sensitivity (ECS) (where each of these pdfs determines precise proba-

bility claims about the values of ECS) and that, ‘for concreteness’, each pdf is

assumed to be lognormally distributed. The author team must then sort those

pdfs into what Bradley et al. call a confidence partition, which in this example

is assumed to have four elements π = {M0, M1, M2, M3}. The pdfs in M0 are

supposed to be those considered to be most plausible according to the author

team and the pdfs in M1 ‘collectively represent a second tier of plausibility. The

element M2 is another step down from there, and M3 is the bottom of the barrel:

all of the pdfs more or less ruled out by the body of research that the experts

evaluated’ (Bradley et al 2018, 515). This partition of pdfs can then be used to

generate a nested family of subsets of pdfs {L0, L1, L2, L3} where Li is the union
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of M0 through Mi and each Li is associated with a level of confidence. In this toy

example the pdfs have been sorted by the author team in such a way that there

are two pdfs in M0, hence two pdfs in L0 (since M0 = L0); and three pdfs in M1,

hence five pdfs in L1 (since L1 = M0 ∪M1) - as is shown in the figure below (the

pdfs in M2 and M3 are not represented in the figure).

FIGURE 7.7: ‘Illustration of a confidence partition consistent with
IPCC findings on equilibrium climate sensitivity. The hatched
area corresponds to the finding that ECS is very unlikely greater

than 6°C (medium confidence)’ (Bradley et al. 2017, 516)

Assuming that L0 corresponds to medium confidence and L1 to high confidence,

the author team is now able to generate various probability statements at those

two levels of confidence. For instance, if the experts want to determine the

probability interval that should be assigned to the hypothesis that ECS value

is greater than 6°at say medium confidence, all they have to do is check what

probabilities the various pdfs in L0 assign to that hypothesis and then report the

probability interval bounded by the smallest and largest of those probabilities.

In this case L0 contains two pdfs, where one assigns (nearly) zero probability to

the hypothesis that ECS is greater than 6 °and the other assigns just under 0.1

probability. Hence the probability range is roughly [0− 0.1] which, according

to the IPCC terminology, corresponds to ‘very unlikely’. Hence the author team

can report that “ECS is very unlikely greater than 6 °C (medium confidence)".

What if the author team wants to determine the probability interval that should
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be assigned to very same hypothesis by with high confidence instead? All they

have to do is repeat the same procedure, the only difference being that they now

have to take the M1 pdfs into account in addition to those in M0 (i.e. they have

to consider all pdfs in L1). In this case the largest probability assigned to the this

hypothesis by any of the pdfs in L1 seems to be a little more than 0.1 but less than

0.33 so in line with IPCC terminology the author team could report that “ESC

is unlikely greater than 6°C (high confidence)". The author team can then keep

repeating the very same mechanical procedure to determine the probability that

should be assigned to all sorts of hypotheses concerning the possible values of

ECS at a medium or high confidence. For instance take the hypothesis that the

ECS value is within the interval [1.5− 4.5]. This time the smallest probability

given by any of the pdfs in L1 to this hypothesis is a little more than 0.6 where

as the highest is nearly one. So in line with the IPCC terminology, the authors

could report that “ESC is likely in the interval [1.5− 4.5] (high confidence)". And

so on and so forth.

BHH argue that their proposal clarifies the relationship between confidence

and likelihood by providing a principled and transparent method that deter-

mines how likelihood and confidence levels interact with one another and that

‘systematizes, and enforces consistency among probability intervals assigned to

different ranges of a single quantity such as ECS ’ (Helgeson et al. 2018, 520)

at various different confidence levels. Furthermore, they argue that by showing

how it ‘can make sense, conceptually to answer the same question at multiple

confidence levels’ (and at multiple likelihood levels) this proposal can help the

IPCC authors give ‘a richer picture of scientific knowledge and the added in-

formation may be valuable to policy makers and to the public’ (Bradley et al.

2017, 519). In particular, they argue that ‘by building confidence assessments

into a formal belief representation (the nested sets)’ (Helgeson et al. 2018, 521),

their proposal can help give confidence a clear role in decision making. What

they have in mind is a confidence-based decision model proposed by Hill (2013,

2017) which can deal with imprecise probabilities qualified by qualitative (i.e.
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ordinal) confidence judgments.15

The main considerable challenge BHH acknowledge with their proposal has

to do with the calibration of confidence levels between different author teams.

That is, for this proposal to work in practice and for it to actually be helpful for

decision makers, one would need to make sure that ‘what one group means by

high confidence is the same as the other’ (Bradley et al. 2017, 518) and what one

group means by medium confidence is the same as the other (and so on for the

other confidence levels). In order to make sure that this is the case, they argue

that the IPCC would need to develop ‘a proper calibration scale [that] would

enable clear and unambiguous formulation and communication of confidence

judgments across authors and actors. Were one to take [this] proposal for con-

necting the IPCC uncertainty language with theories of decision seriously, one

major challenge is to develop such a scale’ (Bradley et al. 2017, 518).

I agree that were the IPCC to take their proposal seriously, such a calibration

scale would have to be developed; however it is extremely unclear what that cal-

ibration scale would look like. Moreover, I don’t believe the IPCC should take

this proposal seriously. My main reason for doubting the adequacy of this pro-

posal owes to its lacking an adequate interpretation of confidence. Intuitively,

and in line with the literature on imprecise probabilities, the set of pdfs with

which the authors would begin this alleged procedure is supposed to represent

all the credence functions that the authors believe are consistent with the avail-

able evidence. So on what bases can the authors sort out all those credence func-

tions in a confidence partition in a principled way? The example that Bradley

et al. (2017) give suggests that the authors should sort these credence functions

based on their confidence in them. But if we understand those credence func-

tions as being all consistent with the available evidence, it is highly unclear why

some should be preferred over others and on what bases if so. Without a clear

answer to this question it is impossible to understand how this procedure could

15The core idea in Hill’s decision model is that the probabilistic beliefs an agent adopts will
depend on what is at stake in a particular decision problem. That is, what is at stake in a given
decision problem will determine the appropriate level of confidence which will in turn determine
the set of probability measures taken as the basis for choice. Once the set of probability measures
is determined, the agent will once again be in the realm of imprecise probabilities and can choose
any of the several decision rules that have been proposed to deal with imprecise probabilities.
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even begin. Furthermore, the following remark adds an extra layer of confusion

to the problem of how we should interpret confidence under this proposal:

When used in conjunction with likelihood, we understand confidence

to express something like Keynes’ (1921/1973) “weight of evidence”

behind a probability statement, where the weight he refers to in-

cludes the quantity, quality and diversity of evidence underpinning

a claim. (Helgeson et al. 2018, 522)

As discussed in Section 6.2, Keynes’s notion of ‘the weight of evidence’ is an

ambiguous notion since it can be understood in at least two rather different

ways. Given that in this quote they claim that weight includes quantity, qual-

ity and diversity of evidence underpinning a probabilistic claim, it is not in fact

clear what interpretation of Keynes’s weight of evidence they have in mind or

whether they are actually referring to Keynes’s weight of evidence at all (given

that he never explicitly mentions quality and diversity in his various definitions

of the weight of evidence). But leaving aside this lack of clarity, and however

ambiguous Keynes’s notion of the weight of evidence itself is, it is very hard

to see why confidence under BHH’s proposal has anything to do with Keynes’s

weight of evidence. The only way, under their proposal, confidence can be un-

derstood as expressing something like the ‘weight of evidence’ , however we

choose to understand it, is if we assume that the various sets of pdfs associated

with different levels of confidence are based on more or less evidence. And per-

haps this is what BHH may have in mind after all. As far as the example above

is concerned, in order to help the reader understand where the assumption that

the pdfs are lognormally distributed comes from, they cite Meehl et al. 2007,

sec.10.5.2.1 who write that ‘Most studies aiming to constrain climate sensitivity

with observations do indeed indicate a similar to lognormal probability distri-

bution of climate sensitivity’. Further down, Meehl et al. provide a summary of

the evidence on equilibrium climate sensitivity (Box 10.2), where one can find

a host of pdfs concerning the value of ECS obtained from different studies and

different lines of evidence. Thus perhaps what BHH have in mind is that the

relevant set of pdfs with which the author team should begin this procedure is
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the set of all pdfs that have been published in the studies reviewed by the team.

Beginning with this set of pdfs, the author team is then supposed somehow to

sort them in a confidence partition based on some kind of criterion. But if this

is what BHH have in mind, it is conceptually flawed. None of the pdfs that are

published in the literature can be straightforwardly interpreted as the credence

functions of the authors reviewing the available evidence, since each of these

pdfs are derived from looking at one particular line of evidence (although not

always: sometimes they may be based on the same evidence but derived using

different assumptions such as different priors or likelihood functions). But from

a Bayesian perspective, the credence functions of the IPCC authors should be

based on all the evidence available to them, not just on one line of evidence. Of

course, combining different lines of evidence using a Bayesian approach is ac-

tually very hard, and I am not in anyway suggesting that the authors are able

to do that in any sort of rigorous sense.16 But regardless of how challenging

combining different lines of evidence in any rigorous sense can be, the idea that

we should simplify that challenge by offering the IPCC authors a mechanical

procedure that is conceptually problematic, and that raises all sorts of questions

regarding the interpretation of confidence, can’t be the right way to deal with

this challenge.

Of course, as mentioned earlier, BHH’s proposal stems from an urgent need

to clarify how the IPCC findings should be interpreted by decision makers (or

indeed anyone else!). Moreover, as discussed extensively in Part 1, I also be-

lieve it is currently not sufficiently clear how the IPCC findings should be inter-

preted by any agent who might want to make decisions in light of those findings.

However, if the likelihood metric is used by the IPCC authors to communicate

the range of credences that, according to the consensus of the author team, one

ought to have in a hypothesis in light of all the available evidence (as in my

proposal outlined in the previous section), then the likelihood level will deter-

mine the range of probabilities that an agent should take as input for their de-

cisions. Under my proposal, if the confidence metric has a role to play in the

16It is certainly worth noting, however, that there are some recent efforts to do just so at least
insofar as equilibrium climate sensitivity is concerned (see, for instance, Stevens et al. 2016 and
Sherwood et al. 2020)
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IPCC’s communication of uncertainty in addition to the likelihood metric, then

that role should only be as a supplementary evaluation of some of the aspects of

the available evidence. Unfortunately, I don’t think there is an easy answer to

what those aspects should be and to how they should be neatly summarized into

a metric, even if a qualitative one (indeed, I further argued we should get rid of

the confidence metric and merely have some supplementary terms to describe

a few aspects of the available evidence that are deemed important). But this is

unfortunately a problem for any scientist that has taken it upon herself to assign

credences to a hypothesis in light of the available evidence: the weight of evi-

dence– as Keynes first called it and however we choose to conceptualize it – is,

and in my view and always will be, a problem for the Bayesian (or anyone who

believes the role of probability in inductive inference is to quantify the degree of

belief to assign to a hypothesis given the available evidence). But this problem

should not affect the consistency and the coherency of the communication of un-

certainty by the IPCC. So if the IPCC thinks that there are important aspects of

the evidence that should be communicated in addition to the range of ‘accept-

able’ credences in a hypothesis, then it should be clear what those aspects are.

If it is not clear, then it might be better we rid ourselves of confidence (or any

supplementary qualitative terms) altogether and avoid unnecessary confusion.
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Concluding Remarks

The official aim of the IPCC is ‘to provide policymakers with regular scientific

assessments on climate change, its implications and potential future risks, as

well as to put forward adaptation and mitigation options’ and its assessment re-

ports are a key input into the international negotiations to tackle climate change.

In light of the potentially catastrophic impacts of climate change on our planet

and life as we know it, these assessment reports have (or rather should have)

immediate policy implications. There is overwhelming evidence of the disas-

trous effects of increasing atmospheric levels of greenhouse gases on our planet;

in particular, there is overwhelming evidence that temperatures are indeed in-

creasing, will continue to do so and that, in the absence of drastic action to re-

duce levels of greenhouse gases emissions, severe climate catastrophe will en-

sue.

However, the climate system is undoubtedly complex, as are its interrela-

tions with humanity. Hence, when it comes to more specific questions beyond

these ‘big picture’ forecasts – How much...? How fast...? Where...? Who...? –,

answers are inevitably much harder to furnish. It is because the IPCC does not

(and should not) shy away from these questions that it serves as an ideal case

study for this thesis’s central research question: the question of how to improve

our understanding of the challenges involved in the assessment and communi-

cation of uncertainty in areas of research deeply afflicted by it, where the assess-

ment and communication of that uncertainty are all the fraughter on account of

the studies’ immediate policy implications.

We have encountered many challenges in this thesis. As discussed in Part

1, despite the significant effort that has gone into revising and improving the

uncertainty framework over the years, IPCC reports continue to suffer from se-

rious conceptual problems, problems that, I argued, have worrying implications
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for the IPCC authors’ treatment of uncertainties, and the quality of the informa-

tion provided in the IPCC assessment reports. In Part 2 of this thesis, we have

also seen what a formidable challenge the assessment of the epistemic import of

model consensus in climate science – and more generally the interpretation of

multi-model ensembles’ results – really is.

Has this thesis offered any insights that might help us deal with the chal-

lenges it identifies? Despite the principally critical nature of this thesis, I believe

it has.

For starters, my thesis sheds some light on how to deal with the challenges

involved in the assessment of the epistemic import of model consensus in cli-

mate science identified in Part 2. There are two key negative conclusions in my

thesis that should at the very least steer philosophers on the one hand, and scien-

tists on the other, away from some popular but, I argue, ultimately inauspicious

paths for successfully dealing with these challenges.

The first key negative conclusion concerns Winsberg’s (2018) recent argu-

ment that Schupbach’s account of ERA diversity can finally offer us enlighten-

ment on the epistemic import of model robustness in climate science. Wins-

berg’s argument has had an extremely positive reception in the philosophical

literature on robustness analysis. According to O’Loughlin (2021, 36), ‘Winsberg

(2018) convincingly argues that [Schupbach’s account] can be applied to climate

models.’ In reviews of Winsberg’s book, Lusk (2019) writes that ‘Winsberg’s

argument is a convincing reconceptualization of robustness analysis in climate

science’ and Knüsel (2020, 116) that ‘Winsberg [. . .] makes a novel, convincing

suggestion for when multiple sources of evidence in favor of a hypothesis are

meaningful in climate science.’ Despite this extremely positive reception, how-

ever, I have argued that Winsberg’s argument is flawed and hence cannot shed

any light on the epistemic import of model robustness in climate science. As I

showed in Section 4.3, Schupbach’s (2018) account of ERA diversity seems to fit

well and in a straightforward manner with some empirical cases of robustness

analysis; however, when one tries to apply Schupbach’s account of ERA diver-

sity to model-based robustness analysis, the picture is a good deal more compli-

cated than Schupbach suggests, for its application relies on several non-trivial
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assumptions. In Section 5.3, I argued that, whenever the models in an ensemble

involve incompatible assumptions about a target system and the hypothesis we

are interested in confirming concerns that target system, not all those assump-

tions can be plausibly satisfied. Hence in all those cases, Schupbach’s account is

inapplicable. In light of this, I concluded that Winsberg’s argument that Schup-

bach’s account of ERA diversity can finally shed light on the epistemic import

of model robustness in climate science is flawed. Although this is a negative

conclusion, I think it provides a useful lesson for philosophers, especially when

it comes to helping scientists evaluate the epistemic import of model robustness.

If our aim as philosophers of science is genuinely to help scientists evaluate the

epistemic import of model robustness, then we must endeavour to question our

intuitions and not allow them to dictate the (often implicit) assumptions that we

are willing to accept in order to advance our ultimately unhelpful arguments.

The second key negative conclusion concerns climate scientists’ perennial

attempt to find a satisfactory measure of independence across climate models,

or in other words, a measure of how dissimilar climate models are from one

another. In Section 5.4, I argued that what has been driving these efforts is the

implicit assumption that the more dissimilar models are from other models in an

ensemble, the greater the confidence one should have in the models’ consensus.

And yet, as I further argued, none of the arguments for the epistemic import of

model robustness that I have considered in this thesis can justify why this is a

valid assumption. This negative conclusion suggests (despite not conclusively

showing) that the frenetic search by climate scientists for a measure of indepen-

dence able to satisfactorily capture how dissimilar models are from one another

not only faces many challenges (some of which I discussed in Section 5.4.1) – it is

also misguided. Hence, this also suggests that scientists’ current efforts to deal

with the extremely challenging problem of the interpretation of climate models’

results would be better directed elsewhere. (Where? That is a question that this

thesis has, I confess, shed little if any light on.)

Let me now turn to the insights offered by my thesis with respect to the chal-

lenges involved in the conceptualization of uncertainty in the IPCC uncertainty

framework, discussed in Part 1 of this thesis. In Chapter 1, I argued extensively
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that the current IPCC uncertainty framework fails to adequately meet the fol-

lowing two basic desiderata for an adequate uncertainty framework:

1. the framework’s fundamental concepts should be clearly defined so that

they can be used appropriately and consistently by the IPCC authors in

the communication of uncertainty;

2. the use of the framework’s fundamental concepts should help the IPCC

authors produce findings that are interpretable, relevant and useful for

the target audience/s.

In particular, I identified and extensively discussed what I take to be two im-

portant conceptual problems in the current IPCC uncertainty framework: the

puzzling bifurcation between evidence and agreement in the characterization

of ‘confidence’; and the lack of an interpretation of the IPCC concepts of ‘con-

fidence’ and ‘likelihood’ that is compatible with the IPCC uncertainty guide’s

recommendations (and thus with the resulting practice of the IPCC authors in

their communication of uncertainty). I argued that the ambiguity surround-

ing the concepts of ‘likelihood’ and ‘confidence’ has very serious and worrying

implications for both the practice of the IPCC authors in their treatment of un-

certainties and the quality of the information provided in the IPCC uncertainty

report.

The aim of Part 3 of this thesis was to offer critical reflections on what an

adequate IPCC uncertainty framework could in fact look like. In Chapter 7, I

evaluated three recent and very different proposals for a new IPCC uncertainty

framework that significantly depart from the current one (Winsberg’s (2018),

Mach et al.’s (2017) and Bradley et al.’s (2017)). After arguing than none of these

proposals meet the above two basic desiderata for different reasons, I offered

my own tentative sketch of a proposal for a better IPCC uncertainty framework.

I say tentative because it really is: the purpose of my sketched proposal was

merely to show what an IPCC uncertainty framework that meets the above two

desiderata could look like, rather than what the IPCC uncertainty framework

should look like. Indeed, I hope that Chapter 6’s somewhat arcane journey into

the troubling notion(s!) of Keynes’s weight of evidence – and the light I have
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shown it sheds (in the Bayesian’s own eyes) on the limitations of an(y) episte-

mology that envisions the role of probability to be that of quantifying the de-

gree of belief to assign to a hypothesis given the available evidence – has at the

very least convinced my reader that what an adequate IPCC uncertainty frame-

work meeting the above two desiderata might look like is anything but obvious.

Where do we go from here? That remains an open question.
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