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Abstract

The first chapter of this thesis focuses on the problem of estimating the joint law of a

discrete-time perpetuity and underlying factors which govern the cash flow rate, in an

ergodic Markovian environment. Our approach is based upon the so-called time-reversal

technique which allows us to identify the joint law as a stationary distribution of an

ergodic multidimensional Markov chain. Furthermore, a central limit theorem (CLT) for

an estimator of the joint law is provided for a specific example of the perpetuity. Our proof

of the CLT rests upon the geometric ergodicity property, which is also provided and is of

independent interest. We further provide a justification for the Monte Carlo methods for

approximating the joint law by sampling a single path of the reversed process.

The second chapter of this thesis deals with the estimation of linear functionals in

multidimensional spaces. We consider two ubiquitous statistical models: a regression model

with one-sided errors and a Poisson point process (PPP) model. We consider two estimation

approaches: a block-wise approach, when the estimator is an aggregate of local estimators,

and a maximum likelihood approach. First, we assume the regularity of the underlying

function in both models to be known. We combine the block-wise approach with martingale

stopping time arguments and the PPP geometry to derive the unbiased estimators. We

show that the rates of convergence of the mean squared risks match the lower bounds for

the risks in both models, which are also provided and are of independent interest. In the

PPP model, we show that the maximum likelihood estimator is unbiased with minimal

variance among all unbiased estimators. Finally, we sketch ideas for a proof of the CLT

for the estimator in the PPP model in multidimensional case and provide illustrative

simulations.
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Chapter 1

Discrete-time perpetuities and time

reversal

1.1 Introduction to estimation of the distribution of

discrete-time perpetuities

This chapter studies the main properties of a random variable, the so-called perpetuity or

infinite horizon stochastic discounted rewards of the following form

X0 =
∞∑
k=0

( ∏
0<`<k

b(Z`)

)
a(Zk), (1.1.1)

where a and b are well-defined functions which will be specified further and (Zn)n∈Z is a

stationary and ergodic discrete-time process which takes values on some measurable space

(S,S).

In many applications of operations and economics research, it is of the main interest

to identify the expected value of X0. There is also a range of research areas where it is

essential to identify the entire distribution of a random variable X0 as it plays a major role

in the areas of financial and insurance mathematics, see [7, 10, 22, 24, 54, 69] for a review

on possible applications. One such example is the infinite horizon net present value of an

investment strategy, see [45, 46] and references therein for a more detailed presentation.

Here we just touch upon this example to give more flavour for the motivation of studying

the distributional properties of perpetuities. If we consider the rates of return defined as

a sequence (rk)k≥1, which are constants on the corresponding time intervals [k − 1, k),

as well as a sequence of random variables (Ck)k≥1 which represents a sequence of cash

payments paid at the beginning of the corresponding time interval [k, k + 1). Further, the

initial wealth will be denoted as S0 and the sequence of the accumulated wealth as (Sk)k≥1.

The present value of cash flows up to the time k is referred to as (Xk)k≥1. Then one can
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write down the recursive equation for Sk, k ≥ 1 in the following way

Sk = (1 + rk)Sk−1 + Ck.

Oftentimes the equation above refers to as annuity equation. In finance, annuities and

cash flow sequences are usually priced using their present value Xk, which is the value

of all payments received up to and including the moment k. Then the present value

corresponding to the scenario above follows

Xk = Sk

k∏
i=1

1

1 + rk
,

which leads to the recursive equation

Xk = Xk−1 + Ck

k∏
i=1

1

1 + ri
.

Starting from X0 = S0 we obtain

Xk = S0 +
k∑
j=1

Cj

j∏
i=1

1

1 + ri
.

We thus can arrive to a perpetuity by taking a limit of the present value of the corresponding

annuity. When starting from zero, i.e. S0 = 0 and placing Dk = 1/(1 + rk), for k ≥ 1 the

perpetuity is then equal to

X∞ =
∞∑
j=1

Cj

j∏
i=1

Dj. (1.1.2)

Consider the following two examples where the distribution of X∞ can be inferred explicitly.

For the two examples below we assume that the sequences (Ck)k≥1 and (Dk)k≥1 are formed

from i.i.d. random variables as well as mutually independent.

Example 1.1.1. If C is arbitrary and D ∼ Ber(p), q = 1− p > 0. This example illustrates

the situation, when after some time, there is a probability that all the payments will stop.

Then, the present value for a given k can be written as

Xk =


∑m

j=1Cj with probability pmq, for 0 ≤ m ≤ k − 1∑k
j=1Cj with probability pk otherwise.
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The characteristic function for Xk is

E(eitXk) =
k−1∑
m=0

[
qpmE

(
eit

∑m
j=1 Cj

)]
+ pkE

(
eit

∑k
j=1 Cj

)
= q

k−1∑
m=0

[pmψ(t)m] + pkψ(t)k = q
1− pkψ(t)k

1− pψ(t)
+ pkψ(t)k,

where ψ(t) is the characteristic function for C. Since for every t from R it holds |ψ(t)| ≤ 1,

it follows that pkψ(t)k → 0 as k →∞. From where we can conclude that

E(eitX∞) =
q

1− pψ(t)
,

which corresponds to the compound geometric distribution.

Example 1.1.2. Let’s now assume that the discounting factor D = d ∈ (0, 1) is a constant.

In case C is finite a.s. the resulted perpetuity is convergent. Consider C ∼ N (µ, σ2) then

E(eitXk) = E
(
eit

∑k
j=1 d

jCj
)

=
k∏
j=1

ψ(tdj)

= exp

{
itµ

k∑
j=1

dj − t2

2
σ2

k∑
j=1

d2j

}

Putting k →∞ one can get

E(eitX∞) = exp

{
it

dµ

1− d
− t2

2
σ2 d2σ2

1− d2

}
.

The characteristic function above represents a normal distribution, namely, N ( dµ
1−d ,

d2σ2

1−d2 ).

Identifying the distribution of a perpetuity with non-restrictive assumptions is an

involved task and, often, it is impossible to provide its explicit form. At the same time,

all the known results in the literature for approximating the distribution are often slow.

Numerical methods based on partial differential equations fail because of the lack of

information about boundary conditions. Monte-Carlo-based simulations typically take a

prohibitive amount of time. We propose an alternative simulation method, using ergodicity

and time-reversal, which leads to significantly better results; in effect, reducing the entire

simulation to sampling a single path, thus, allowing an efficient use of Monte Carlo

simulation.
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1.1.1 Former results

1. As it was shown in [27], the distribution of perpetuities arises as a key factor in

risk management theory as it is used to calculate rates for estimating the pension

fund stability so that it is managed in a balanced way with respect to its actuarial

liabilities. For further details on the pension funding theory, refer to [9].

2. The distribution of perpetuities is widely studied in non-pension fund insurance

settings as well. Consider the following ruin model from risk insurance theory, first

studied in [53], as an illustration and for further stimulation of our research interest.

When working with insurance products, it is of high importance to be able to answer

the question as to what the probability of collapse is. The usual approach is to study

the distribution of the difference between the present value of the aggregated benefits

and the present value of the aggregated premiums received. Consider an insurance

risk model with the aggregated paid claim process At at time t, modelled by a

compound Poisson process. If the risk reserve of a company Rt are being invested in

at a rate r, then the discounted risk reserve satisfies the following equation

Rt = R0 + c

∫ t

0

e−rudu−
∫ t

0

e−rudAu,

where c > 0 is a constant and represents the rate at which the premiums are

accumulated. It was shown in [53] that the ruin probability, namely P(inft>0Rt < 0),

can be calculated in terms of the distribution of the following random variable

Y0 =

∫ ∞
0

e−NudFu, (1.1.3)

where Nt = rt is the aggregated discount at time t and Ft = ct− At is the value of

the surplus process at time t. In a more realistic framework, it would be natural to

assume that both the discounting rate r and the reward rate h are governed by an

ergodic continuous-time Markov chain (Mt)t∈R+ with the finite state space I. It was

shown in [92, 94] that the key to calculating the ruin probabilities in a more general

framework is computing the distribution of the following perpetuity

Y0 =

∫ ∞
0

exp

(
−
∫ t

0

r(Mu−)du

)
h(Mt)dt. (1.1.4)

3. The distribution of perpetuities plays a fundamental role in the theory of differential

equations as well. As an example, consider the following ordinary differential equation

dYt = αtYtdt+ λtdt, (1.1.5)
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where αt, λt ∈ R. When Y0 = 0, the solution to (1.1.5) is given by

Yt =

∫ t

0

exp
(∫ t

u

αsds
)
λudu

=

∫ 0

−t
exp

(∫ 0

v

αr+tdr
)
λv+tdv.

If ((λt, αt)) : t ∈ (−∞,∞) is strictly stationary with αt < 0 and λt > 0, then the

following result holds

Yt
d
=

∫ 0

−t
exp

(∫ 0

v

αrdr
)
λvdv

→
∫ 0

−∞
exp

(∫ 0

v

αsds
)
λvdv

d
= Y∞,

as t→∞. When αt = −rt and λt = ht the form of Y∞ corresponds to the random

variable X0. This implies that in order to calculate the equilibrium distribution

for the solution of the differential equation in (1.1.5), it suffices to compute the

distribution of the perpetuity.

4. Another interesting application of the perpetuity is originated from a study of the

running time of the so-called Quickselect algorithm, see [55, 58].

Quickselect algorithm (Quickselect(n,m)) is a recursive algorithm to find the item

of a given rank m ≥ 1 in a given array with n ≥ m distinct numbers, these numbers

are usually called “keys”. This algorithm was invented by Hoare, refer to [55], and

is based on partitioning of the array into two subarrays around a pivot element.

It is one of the most uninvolved and efficient algorithms in practice for finding a

specified order statistics for a given sequence. As a first step, we select the pivot

element, which is chosen at random uniformly from the array of elements. Then

every key is compared to the pivot and the rank of the pivot, i.e. i. If a randomly

selected pivot element happened to have the rank i = m, then (Quickselect(n,m))

will return the pivot. If, however, i > m, then we apply (Quickselect(i− 1,m)) on a

smaller array of the elements smaller than the pivot. Alternatively, if i < m then

(Quickselect(n− i,m− i)) is applied. The properties of the fundamental quantities

for (Quickselect(n,m)), such as, the number of comparisons between data points

and the number of recursive calls of the algorithm has been extensively studied in

the literature, see, for example [50, 68, 70, 85] and references therein. One of the

property of interest is the distribution of the number of key comparisons that are

required by the call of Quickselect(n,m). This distribution is not available in closed

form for general finite values n and m. If we denote the number of key comparisons

as C(n,m) and the rank of the first pivot that was chosen as Zn, then we can write
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down the following recursive equation

C(n,m)
d
= (n− 1) + IZn>mC(Zn − 1,m) + IZn<mC∗(n− Zn,m− Zn),

where C(n,m) is a random variable which is for every fixed n and m is distributed

as the number of comparisons needed for Quickselect(n,m) and C∗(n,m) is an

independent copy of C(n,m). The random variable Zn follows a uniform distribution

on the set of numbers from 1 to n and is independent of C(n,m) and C∗(n,m) as

well as C(n,m) is independent of C∗(n,m). When turning into asymptotics where

m is fixed and n → ∞ one can show that the random variable Y (m,n), which is

defined as follows

Y (m,n) :=
C(n,m)

n
− 1,

has a limiting distribution that satisfies the following fixed-point equation

Y
d
= U(1 + Y ), (1.1.6)

where Y and U are two independent random variables and U is uniformly distributed

on [0, 1], see [85] for the result. If now we introduce the random variable Y as

Y = U1 + U1U2 + U1U2U3 + . . . (1.1.7)

for some sequence U1, U2, U3, . . . of independent and identically distributed random

variables such that U ∼ U([0, 1]). Then, Y is also referred to as a perpetuity. Under

some non-restrictive conditions it can be shown that the perpetuity following (1.1.7)

satisfies the distributional fixed-point equation of the form (1.1.6) as well. The law

of Y is known as the Dickman distribution in the literature, see [25, 32] for further

detail and proofs of the results above. There is a number of different application

settings including number theory with topics related to the largest prime factors, as

well as combinatorics, the theory on the longest cycles in permutations, in which

the Dickman distribution naturally arises, see [58]. Another special case of (1.1.7) is

when the sequence U1, U2, U3, . . . of random variables is independent and identically

distributed as W = U1/β with U ∼ U([0, 1]) and β > 0. This special case of perpetuity

is called Vervaat perpetuity and it has been extensively studied in the literature. In

[112] it was shown that Vervaat perpetuity is infinitely divisible, and obtained the

Lévy Khintchine representation.

The distributional properties of different types of perpetuities have been extensively

studied in the literature. The method of identifying the distribution of perpetuities from the
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fixed point equation of the type (1.1.6) is one of such widely studied approach, see [27, 112].

The following examples illustrate the situation where the distribution of a perpetuity can

be identified by using fixed point equations. The type of perpetuities considered below

represents the class of Vervaat perpetuities.

Example 1.1.3. Consider again the perpetuity of the type 1.1.2 and assume that the

discounting factor D follows the exponential function with the rate of return defined

the same way as in the previous section as r. This rate of return is assumed to be

exponentially distributed with the parameter λ > 0. Then we have D = exp(−r) d
= U1/λ,

where U ∼ U([0, 1]) and the corresponding density function

fD(x) = λxλ−1I[0,1](x).

Under some appropriate assumptions, refer to [11, 112], one can show that for the corre-

sponding perpetuity the fixed point equation holds

X
d
= D(X + C).

As a result

E
(
eitX

)
= E

(
eitD(X+C)

)
=

∫ ∞
−∞

fD(x)E
(
eitx(X+C)

)
dx

=

∫ 1

0

λxλ−1E
(
eitxX

)
E
(
eitxC

)
dx =

∫ 1

0

λxλ−1ϕ(tx)ψ(tx)dx,

where ϕ(t) is the characteristic function of X. By multiplying by tλ the following equation

ϕ(t) = λt−λ
∫ t

0

uλ−1ϕ(u)ψ(u)du,

we arrive to the differential equation of the form

tλϕ
′
+ λtλ−1ϕ = λtλ−1ϕψ,

with the corresponding solution

ϕ(t) = exp

{
λ

∫ t

0

ψ(u)− 1

u
du

}
.

There are several well known examples when the integral above can be calculated. One of

such examples of Vervaat perpetuity is when C follows an exponential distribution with

the parameter α. Then, ψ(t) = α(α− it)−1 and as a consequence ϕ(t) =
(

α
α−it

)λ
, which

corresponds to the gamma distribution, i.e. Γ(λ, α). If we assume that C is distributed
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according to Laplace(0, α) then this corresponds to the situation when the payments’

sizes are exponentially distributed, however we are not aware of whether we will receive a

payment or not. Then ψ(t) = α2(α2 + t2)−1 and the corresponding characteristic function

for X∞ is given by

ϕ(t) =
( α2

α2 + t2

)λ/2
,

which serves as a characteristic function for Variance-gamma distribution. Let’s now

consider a slightly more involved case of Vervaat perpetuity. Namely, we assume that

C = ZW − (1− Z)V , where Z ∼ Ber
(
b/(a+ b)

)
, W ∼ Exp(a), V ∼ Exp(b), as well as

W and V are independent and Z is independent of both W and V . In this set up, we can

easily calculate the characteristic function of C

ψ(t) = E
(
eit(ZW−(1−Z)V )

)
=

b

a+ b

a

a− it
+

a

a+ b

b

b+ it
.

From where it follows that

ϕ(t) =
( a

a− it

)λb/(a+b)( b

b+ it

)λa/(a+b)

.

If Γ1 ∼ Γ(λb/(a+ b), a) and Γ2 ∼ Γ(λa/(a+ b), b) and Γ1 is independent from Γ2 then

ϕ(t) = E
(
eitΓ1

)
E
(
e−itΓ2

)
= E

(
eit(Γ1−Γ2)

)
,

implying that X
d
= Γ1 − Γ2. Even though we did not manage to identify the distribution

of the perpetuity explicitly the difference equation is still of high importance as it helps

with sampling the distribution of the perpetuity.

There are other methods for identifying solutions to the fixed point distributional

equations. One of such methods is based on the properties of Beta and Gamma distributions,

see [28–30] and references therein for more details on this method.

The stability of iterations of random linear maps in a discrete Markovian environment

has received additional attention in the statistical literature in the last decade. In [1] the

authors characterised all feasible limit distributions as solutions to a particular Markovian

stochastic fixed-point equation and also furnished necessary and sufficient conditions for

the a.s. and convergence in law of the iterative scheme. It was shown in [102] that the

distribution tail of the stationary solution to the linear recursion with stationary Markov-

dependent coefficients has a power law decay. In [23] based on the renewal theory, the

author provided the description of the situation where the tail of stationary solution to the

stochastic difference equation exhibits power law behaviour. The local limit theorem and

the renewal theorem for partial sums of the stochastic recursion with Markov-dependant
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coefficient was proved in [15].

The distribution of Y0 following (1.1.3) when N stands for a Brownian motion with

negative drift and Ft = t was calculated in [96]; a more general result showing that Y0 follows

an inverse gamma distribution was obtained in [27]. An explicit form of the distribution of

Y0 in the case when both N and F follow particular types of Levy processes was provided

in [93]. Computing the distribution of a perpetuity in a general setting numerically is often

infeasible. We refer to [95] for a survey of possible ways of approximating the distribution

of perpetuities using Markov chain Monte Carlo simulations, some important examples

where the distribution can be calculated explicitly are also provided in that work.

In this chapter, we are interested in identifying the distribution of (1.1.1) given the

initial value of the process (Zn)n∈Z is some z0 from S, or the joint law π of (X0, Z0). It

is often an involved task and in many application settings it is impossible to find the

exact distribution of (X0, Z0). We hence propose an alternative simulation method that

is based on ergodic theory and time-reversal techniques and motivated by the results

from [65], where the authors consider the problem of estimating the joint distribution of a

continuous-time perpetuity and the underlying factors which govern the cash flow rate, in

an ergodic Markovian model. One of the approach they use is based on techniques of time

reversal, which helps them to identify the joint law as the stationary distribution of an

ergodic multidimensional diffusion.

1.1.2 Time-reversal

Consider an irreducible stationary discrete-time process (Xn)n∈Z which takes values on

some measurable space (S,S). One can associate with (Xn)n∈Z the so-called reversed

process (Xτ−n)n∈Z, where τ is some appropriate random time. If the reversed process and

the original process are statistically indistinguishable, one says that the original process

is time-reversible (or simply reversible). By observing that for a time-reversible process

(Xn)n∈Z, it holds that (X0, X1)
d
= (X1, X0), we obtain a necessary condition for a process

to be reversible, which is the original process must be stationary.

It turns out that by studying the reversed process, one can get more insight into the

properties of the process itself. For instance, the equilibrium of a complex system can

often be derived by “guessing” the reversed process. Time reversal of diffusion processes

was first considered in [103]. Kolmogorov in [71, 72] computed the transition kernels of

the reversed process, and gave necessary and sufficient conditions for symmetry. The basic

role of time reversal and duality in potential theory was recognised by Hunt in [56].

Time-reversal can provide some useful results that can be utilised for our research goal.

We start with a pivotal example from financial time-series modelling.
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1.1.3 ARCH(1) process

A general ARCH(1) process satisfies the following stochastic recursion equation

Yn = An +BnYn−1, n ∈ N, Yn ∈ R , (1.1.8)

where the sequence (Ai, Bi)i≥1 are independent and identically distributed random variables.

If the sequence (Ai, Bi)i≥1 is stationary and ergodic, E(log|B0|) < 0, and E(log|A0|+) <∞,

then for any initial random value Y0, the limiting distribution of Yn is the same as that of

the random variable R = A0 +
∑∞

n=1 A−n
∏n−1

i=0 B−i , and it is the unique initial distribution

under which (Yn)n>0 is stationary, see [11].

This type of processes is widely used to quantify the logarithmic returns on an

investment, exchange rates, inflation, and many other financial and economic time series,

see [16, 31, 67]. The process (1.1.8) was studied extensively by many authors, see, e.g.,

[31, 98, 112]. It was shown in [31, 67], that under some stability conditions, the Markov

chain (Yn)n∈N with dynamics (1.1.8) has a stationary solution with the distribution which

corresponds to the distribution of a perpetuity. In [112] solutions to the aforementioned

distributional equation (1.1.8) are obtained based upon E(log|B0|) < 0 and E(log|A0|+) <

∞. The tails of the stationary solution as well as the convergence of iterative schemes, are

studied in [31]; furthermore, in [44] almost if and only if conditions for the convergence of

iterative schemes were obtained.

Let us now consider a special case of the perpetuity (1.1.1)

X0 =
∞∑
n=1

( n∏
i=1

Di

)
Cn,

where (Dn)n∈N and (Cn)n∈N are both i.i.d. In financial applications, (Dn)n∈N usually

correspond to the discount factors, whereas (Cn)n∈N correspond to the cash flows. The

time-reversal technique allows us to reduce an analysis of the distribution of the perpetuity

X0 to the analysis of the stationary solution to (1.1.8). For a fixed N ∈ N define

X
(N)
0 :=

N∑
n=1

( n∏
i=1

Di

)
Cn .

It follows from the i.i.d. property that X
(N)
0 has the same distribution as the random

variable

X̂N := DNCN +DNDN−1CN−1 + . . .+
( N∏

j

Dj

)
C1 =

N∑
n=1

( n∏
i=1

DN−n+1

)
CN−n+1.

Then calculations show that the reversed process (X̂n)n∈N satisfies the stochastic recursive
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equation X̂n = DnX̂n−1 +DnCn, which, with a change of variables, corresponds to (1.1.8).

Thus, assuming that (X̂n)n∈N converges to a random variable X̂ in distribution, X̂ must

solve the distributional equation

X̂ = D(X̂ + C),

where D, C and X̂ are independent, D has the same distribution as D1 and C has the

same distribution as C1. The solutions to the aforementioned distributional equation were

studied in [112]. The distribution tail of the random variable X0 is the topic of, for example,

[8, 42, 43, 48, 49, 67].

1.1.4 Organisation of the chapter

In Section 1.3 we construct a discrete-time process (Xn)n∈Z out of a random variable

(1.1.1) by taking the sum up to the point n ∈ Z, and then prove stationarity and ergodicity

for the joint process (Zn, Xn)n∈Z. In Section 1.4 we introduce the time-reversal process

(ζn, χn)n∈Z of the joint process (Zn, Xn)n∈Z and identify the dynamics for (χn)n∈Z in the

form of a recursive equation of the type similar to (1.1.8) but with Markov-dependent

coefficients. We also show that the joint process (ζn, χn)n∈Z preserves the property of

stationarity and ergodicity implying that the limiting law of (ζn, χn)n∈Z coincides with

the joint law of (Z0, X0), which we will refer to as π. We hence consider the following

empirical measure as an estimator of π

π̂n[A] :=
1

n

n∑
i=1

IA(ζi, χi), A ∈ S ⊗ B(R), n ∈ N.

We further study the stability properties of (ζn, χn)n∈Z, namely, the property of geometric

ergodicity which allows us to estimate the rate of convergence of the empirical measure to

π, in Section 1.6.2.

In Section 1.7.1 we state the central limit theorem for the process with recursive

dynamics of type (1.1.8) in a Markovian environment. We show that a central limit result

of the following form holds

√
n
(
〈g, π̂n〉 − 〈g, π〉

) d→ N(0, σ2
g), (1.1.9)

where σ2
g < ∞ is some asymptotic variance to be specified and g is a bounded and

S ⊗ B(R)-measurable function. The Markov chain theory about convergence of marginals

is connected with the one of central limit theorems, see Section 1.7. The law of large

numbers can hold for a Markov chain even though marginal distributions do not converge.

In the matter of central limit theorems it is essential to control the rate of convergence
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of marginals. There are different approaches to proving the result, and all of them do

require some conditions on the rate of convergence. These assumptions allow to reprove a

lot of classical CLT results using an intuitive probabilistic approach of the regeneration

theory of Markov chains, which helps to avoid many technicalities in the original proofs.

Finally, we provide assumptions under which the CLT result of the form (1.1.9) holds, and

we demonstrate that the geometric ergodicity of the reversed Markov chain (ζn, χn)n∈N a

sufficient condition for its existence.

1.2 Main contributions

As the main contributions of this chapter, the following results are provided

• An estimator of the joint law of the discrete-time perpetuity (X0, Z0) of the form

(1.1.1) and its underlying factors based on the time-reversal technique.

• Sufficient conditions for a central limit theorem for a normalised version of the

estimator of the joint law.

• An illustrative example demonstrating the computational efficiency of the estimator.

1.3 Probabilistic framework

All random elements below live on a fixed probability space (Ω,F ,P). Expectations with

respect to P are denoted by E.

Let Z ≡ (Zn)n∈Z be a stationary and ergodic process taking values on the measurable

space (S,S), and let πZ denote the stationary probability on S. Furthermore, consider two

S-measurable functions b : S 7→ (0,∞) and a : S 7→ R. To state that the random variable

(1.1.1) is well-defined, we need the following assumption to hold.

Assumption 1.3.1. For a stationary process (Zn)n∈Z defined on a measurable space (S,S)

and two S-measurable functions b : S 7→ (0,∞) and a : S 7→ R the following inequalities

hold

E
[
log+ b(Z0)

]
< E

[
log− b(Z0)

]
∈ [0,∞], E [|a(Z0)|] <∞.

Remark 1.3.2. This type of assumption is often used in the literature as a sufficient

condition for stochastic recursive difference equations of the type (1.1.8) with stationary

and ergodic coefficients to have a unique stationary solution, see [11] and references therein.

Definition 1.3.1. With a slight abuse of notation, we sometimes write T(B;Xk) =

P [Xk+1 ∈ B | Xk] or T(B;x) = P [Xk+1 ∈ B | Xk = x] , for the transition kernel T of a

stationary Markov chain Z living on some (D,D), for all B ∈ D.
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Whenever we consider a Markovian environment we assume that Z is a station-

ary ergodic Markov chain with the associated transition kernel T, i.e. T(B;Zk) =

P [Zk+1 ∈ B | Zk] = P
[
Zk+1 ∈ B | FZk

]
for all B ∈ S, where FZn := σ (Zk; k ≤ n) for

n ∈ Z. Further, let Tn denote the n-step Markov transition kernel corresponding to T, i.e.

Tn(B;Zk) = P [Zn+k ∈ B | Zk] = P
[
Zn+k ∈ B | FZk

]
.

Remark 1.3.3. In the literature the definition of ergodicity for a Markov chain differs from

the one for a dynamical system, intuitively meaning that there is only one invariant set of

positive measure. For the avoidance of doubt, by ergodicity of a Markov chain we mean

that it is irreducible, aperiodic and positive recurrent. This type of chains corresponds to

an ergodic system, but the converse does not hold without some additional assumptions,

see [106].

Remark 1.3.4. Whenever we refer to the concept of irreducibility, we sometimes write that

either a Markov chain is irreducible or the associated transition kernel is.

1.4 Convergence to the stationary distribution

We start this section by proving that Assumption 1.3.1 guarantees that the random variable

(1.1.1) is well-defined.

Lemma 1.4.1. Under Assumption 1.3.1, it holds that

∞∑
k=n

( ∏
n≤`<k

b(Z`)

)
|a(Zk)| <∞, ∀n ∈ Z, P-a.s.

Proof. By stationarity, it suffices to argue for n = 0. The fact that E
[
log+ b(Z0)

]
<

E
[
log− b(Z0)

]
and the ergodic theorem imply the existence of ε ∈ (0, 1) and an N-valued

random variable M such that
∏

n≤`<k b(Z`) ≤ (1− ε)k holds for k ≥M ; Then,

E

[
∞∑

k=M

( ∏
0≤`<k

b(Z`)

)
|a(Zk)|

]
≤ E

[
∞∑
k=0

(1− ε)k|a(Zk)|

]
=

E [|a(Z0)|]
ε

<∞,

which implies that, P-a.s.,
∑∞

k=M

(∏
0≤`<k b(Z`)

)
|a(Zk)| <∞.

Remark 1.4.2. Products over empty sets, like
∏

n≤`<n a(Z`), are by convention equal to

one.

By Lemma 1.4.1, under Assumption 1.3.1 the random variables

Xn :=
∞∑
k=n

( ∏
n≤`<k

b(Z`)

)
a(Zk), n ∈ Z,
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are well-defined. Furthermore, [64, Lemma 9.5] implies that the process (Zn, Xn)n∈Z is

stationary and ergodic.

Remark 1.4.3. Suppose that, additionally, (S,S) is a Borel space and Z is a Markov process,

and let (FZn )n∈Z be the natural filtration of Z, defined as above FZn := σ (Zk; k ≤ n) for

n ∈ Z. Furthermore, let πX|Z : B(R)× S 7→ [0, 1] denote the conditional law of X0 given

Z0, such that π(B × C) =
∫
C
πX|Z(B; s)πZ [ds] holds for all B ∈ B(R) and C ∈ S. It then

follows that the conditional law of Xn given FZn coincides with the conditional law of Xn

given Zn, the latter being πX|Z(•;Zn); in other words,

P
[
Xn ∈ B | FZn

]
= πX|Z(B;Zn), P-a.s., ∀B ∈ B(R).

Even though we shall not be assuming the Markovian property of Z in this chapter in

what follows, this is clearly the most interesting case.

By definition (see Theorem 2 in [11]), we have

Xn = a(Zn) + b(Zn)Xn+1, ∀n ∈ Z. (1.4.1)

Let (ζn, χn) = (Z−n, X−n) for all n ∈ Z, so that the process (ζn, χn)n∈Z is the time-

reversal of (Zn, Xn)n∈Z. Time-reversal is especially widely used in when the coefficients

in (1.4.1) form independent and identically distributed sequences of random variables. In

this simplified case, when the property of independence between the random variables can

be utilised, applying time reversal usually leads to a fixed point stochastic equation of

the form similar to (1.1.6) from where the distributional properties of the process can be

derived, see [27] and references therein. In the presence of Markovian dependency, applying

time-reversal does not bring us to the same fixed point stochastic equation, but it helps

to construct a new process with more manageable dynamics than (1.4.1). That allows us

to infer the main distributional properties of the reversed process while preserving all of

them. Lemma 1.4.4 formulated below proves that the reversed process (ζn, χn) is stationary

and ergodic. In its proof we use the notion of shift operator ϑ. If we consider a random

sequence α = (α1, α2, . . .) on some measurable space (S
′
,S ′) than the shift operator is

acting on S̃ = (S
′
)∞ in the following way ϑ(x0, x1, . . .) = (x1, x2, . . .).

Lemma 1.4.4. Under Assumption 1.3.1, the process (ζn, χn)n∈Z is stationary and ergodic.

Proof. Let frev be the time-reversal mapping on SZ × RZ , such that (ζ, χ) = frev(Z,X).

Then, for the shift operator ϑζ,χ on SZ × RZ given by ϑζ,χ((ζ0, χ0), (ζ1, χ1), ...) =

((ζ1, χ1), (ζ2, χ2), ...), we have ϑζ,χ(ζ, χ) = ϑζ,χfrev(Z,X) = frev ◦ ϑ(Z,X) =

frev(Z,X)(ζ, χ), because (Z,X) is stationary, see [64, Lemma 9.5]. The ergodicity of

(ζ, χ) follows from frev ◦ ϑ = ϑζ,χ ◦ frev and the ergodicity (Z,X) similar to the proof of

[64, Lemma 9.5].
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Hence, the stationary law of (ζ, χ) clearly coincides with the one of (Z,X), i.e. it is

π. An immediate consequence of the result is the following version of the law of large

numbers.

Corollary 1.4.1. For every bounded and S ⊗ B(R)-measurable g, it follows that

lim
N→∞

1

N

N∑
n=1

g(ζn, χn) =
〈
π, g
〉
≡
∫
gdπ, P-a.s. (1.4.2)

Moreover, the equation (1.4.1) translates into

χn = a(ζn) + b(ζn)χn−1, ∀n ∈ Z , (1.4.3)

using the time-reversal argument.

To simplify some of the proofs of the results below in a similar fashion, for any fixed

x ∈ R, we define the process χx ≡ (χxn)n∈N following the recursion

χxn = a(ζn) + b(ζn)χxn−1,

for all n ∈ N \ {0} with χx0 = x. The process χx differs from the second component of

the process (ζn, χn) only by the starting state, as the initial position for χx is fixed at

some point x, whereas for χ it is a random state. Lemma 1.4.5 below states that these two

processes are close to each other asymptotically as n→∞.

Lemma 1.4.5. For any fixed x ∈ R, it follows that |χxn − χn| → 0, P-a.s. as n→∞.

Proof. Given the value of χ0, it follows that

χn =

( ∏
0<k≤n

b(ζk)

)
χ0 +

n∑
k=1

( ∏
k<`≤n

b(ζ`)

)
a(ζk), n ∈ N. (1.4.4)

It then follows that

χxn =

( ∏
0<k≤n

b(ζk)

)
x+

n∑
k=1

( ∏
k<`≤n

b(ζ`)

)
a(ζk), n ∈ N.

In other words, we have

χxn = χn +

( ∏
0<k≤n

b(ζk)

)
(x− χ0) , n ∈ N.

Since
∏

k>0 b(ζk) = limn→∞
∏

0<k≤n b(ζk) = 0 (see proof of Lemma 1.4.1), the result

follows.
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Remark 1.4.6. This implies that the ergodic limit (1.4.2) will carry also when χ (which is

not practically computable, since the value of χ0 is unknown) is replaced by χx (which is

easily computable in practice), when g has some continuity in the second argument.

Lemma 1.4.7. Let g be bounded and S ⊗ B(R)-measurable, and such that g(s, •) is

continuous for πZ-a.e. s ∈ S. Then,

lim
N→∞

1

N

N∑
n=1

g(ζn, χ
x
n) =

〈
π, g
〉
, ∀x ∈ R, P-a.s. (1.4.5)

Proof. First, assume that g is bounded and K-Lipschitz, i.e., such that sups∈S|g(s, x)−
g(s, y)| ≤ K|x− y| holds for K ∈ [0,∞) and all (x, y) ∈ R2. Then, it follows that

∞∑
n=1

|g(ζn, χ
x
n)− g(ζn, χn)| ≤ K|x− χ0|

∞∑
n=1

( ∏
0<k≤n

b(ζk)

)
.

Since
∑∞

n=1

(∏
0<k≤n b(ζk)

)
< ∞ holds P-a.s., with the proof identical to the one of

Lemma 1.4.1, (1.4.5) follows from (1.4.2) and the above estimate. When g is bounded and

only assumed continuous in the second variable, one may find a non-decreasing sequence

(g↑m)m∈N and a non-increasing sequence (g↓m)m∈N, consisting of m-Lipschitz functions that

converge point-wise to g, at least for πZ-a.s. s ∈ S. It then follows that

〈
π, g↑m

〉
≤ lim inf

N→∞

1

N

N∑
n=1

g(ζn, χ
x
n) ≤ lim sup

N→∞

1

N

N∑
n=1

g(ζn, χ
x
n) ≤

〈
π, g↓m

〉
, ∀x ∈ R, ∀m ∈ N

in the P-a.s. sense from the result obtained earlier. By the monotone convergence theorem

as m→∞, we obtain (1.4.5).

Remark 1.4.8. The same procedure can be applied in the original forward sequence

(Zn, Xn)n∈Z. In particular, the recursion Xn+1 = Xn/b(Zn) − a(Zn)/b(Zn), valid for all

n ∈ Z, would imply that

Xn =

( ∏
0<k≤n

b(Zk−1)

)−1

X0 −
n∑
k=1

( ∏
k<`≤n

b(Z`−1)

)−1

a(Zk−1), n ∈ N.

For any fixed x ∈ R, define the process Xx ≡ (Xx
n)n∈N via Xx

0 = x and the recursion

Xx
n+1 = Xx

n/b(Zn)− a(Zn)/b(Zn) for all n ∈ N. It then follows that

Xx
n =

( ∏
0<k≤n

b(Zk−1)

)−1

x−
n∑
k=1

( ∏
k<`≤n

b(Z`−1)

)−1

a(Zk−1), n ∈ N.
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Therefore,

Xx
n = Xn +

( ∏
0<k≤n

b(Zk−1)

)−1

(x−X0) , n ∈ N.

Since
∏

0<k<∞ b(Zk−1) = 0 holds P-a.s. and (Xn)n∈N is stationary, it follows that (Xx
n)n∈N

is divergent on the event {X0 6= x}. Contrary to the case of the reversed process χ and

χx that are mixing (exponentially fast, pathwise), the forward processes X and Xx are

diverging (exponentially fast, pathwise).

Remark 1.4.9. Let g be bounded and S ⊗B(R)-measurable, and such that sups∈S|g(s, x)−
g(s, y)| ≤ K|x − y| holds for some K ∈ [0,∞) and all (x, y) ∈ R2. Suppose that a CLT

result holds:

lim
N→∞

√
N

(
1

N

N∑
n=1

g(ζn, χn)−
〈
π, g
〉)

= σgN , (1.4.6)

where the above is weak convergence in law, σg ∈ [0,∞) and N denotes the standard

Gaussian law. Then, since

√
N | 1
N

N∑
n=1

g(ζn, χ
x
n)− 1

N

N∑
n=1

g(ζn, χn)| ≤ K|x− χ0|√
N

∞∑
n=1

( ∏
0<k≤n

b(ζk)

)
,

as was shown in the proof of Lemma 1.4.7, implying that the quantity on the left-hand-side

above converges P-a.s. to zero as N →∞, we obtain

lim
N→∞

√
N

(
1

N

N∑
n=1

g(ζn, χ
x
n)−

〈
π, g
〉)

= σgN .

1.5 Pivotal application

1.5.1 Discretisation of continuous-time Markov chains

In the next two sections, we introduce the main concepts and properties of Markov chains

which are used throughout, and discuss connections between discrete- and continuous-time

Markov chains. The main difference between discrete- and continuous-time Markov chains

is that the latter stays in a given state for a period of time that is exponentially distributed

and the rate of that distribution usually depends on the current state of the chain.

A continuous-time Markov chain on a finite state space is a continuous-time Markov

process whose sample paths are right-continuous and piecewise-constant of finite lengths.

The number of jumps in any finite time should be finite as well. This type of Markov

processes is represented by the sequence of states it visits and the corresponding times of

these visits.
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Definition 1.5.1 (Continuous-time Markov chain). A continuous-time Markov chain

with a finite or countable state space I is a family {Yt = Y (t)}t∈R+ of I-measured random

variables such that

1. The paths t→ Y (t) are right-continuous step functions.

2. For any set of times ti < ti+1 = ti + si+1, such that, t0 = 0 and set of states yi ∈ I

P(Y (tk+1) = yk+1|Y (ti) = yi ∀i ≤ k) = P(Y (sk+1) = yk+1|Y (0) = yk). (1.5.1)

Discrete-time Markov chains are mainly used for simulation purposes as it is much easier

to construct algorithms in discrete time. Apart from that, they are quite often implemented

as crude models of physical, biological, social, and financial processes. However, when

dealing with models describing physical and biological worlds where time runs continuously,

discrete-time dynamical systems might not be an appropriate choice. In such, continuous-

time Markov chains can be a better fit. Often one can identify for a continuous-time

Markov chain its discrete-time analogue, with the famous examples of birth-death and

Brownian motion processes. These two continuous-time processes correspond to random

walks in discrete time. If we rewrite 1.5.1 in the following way

P(Y (ti) = yi ∀0 ≤ i ≤ k + 1) = P(Y (0) = y0)
k∏
i=0

psi+1
(yi, yi+1),

with pt(a, b) := P(Y (t) = y|Y (0) = y0). This suggests if we take a scalar δ > 0, then the

discrete sequence {Y (nδ)}n≤0 represents a discrete-time Markov chain. The corresponding

transition probabilities of this Markov chain are pδ(a, b).

1.5.2 Embedded Markov chains

We start this section by describing the structure of a continuous-time Markov chain

that is used to construct the main application result in the next section. Let (Yt)t∈R+

be an ergodic continuous-time Markov chain with finite state space I constructed in the

following way. Define (τn)n∈N as the jump times of Y (where we set τ0 = 0), and let

(yn)n∈N be the associated embedded discrete time Markov chain, defined via yn = Yτn .

The inter-arrival times τn+1 − τn are exponentially distributed with rate λ(yn), where

λ : I 7→ (0,∞) is a given function; more precisely, the random variables λ(yn)(τn+1 − τn)

are independent and identically distributed with the standard exponential law, and

further independent of the discrete-time Markov chain (yn)n∈N. Therefore, upon defining

un := exp (−λ(yn)(τn+1 − τn)), so that τn+1 − τn = −(1/λ(yn)) log un for all n ∈ N, it

follows that the sequence (un)n∈N consists of independent and identically distributed
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random variables with the standard uniform law, and are further independent of the

discrete-time Markov chain (yn)n∈N. The latter Markov chain (yn)n∈N has transition matrix

(p(i, j))(i,j)∈I×I , where p(i, i) = 0 for all i ∈ I. These transition probabilities of the

embedded discrete time Markov chain (yn)n∈N can be computed in the following way

p(i, j) = lim
∆t→0

P{Yt+∆t = j|Yt+∆t 6= i, Yt = i}

= lim
∆t→0

P{Yt+∆t = j, Yt+∆t 6= i|Yt = i}
P{Yt+∆t 6= i|Yt = i}

.

Denote the invariant law for (yn)n∈N as p∗, then it follows that p∗(j) =
∑

i∈I p
∗(i)p(i, j)

holds for all j ∈ I. The following result connects the stationary distributions of the

continuous-time Markov chain (Yt)t∈R+ and its embedded chain (yn)n∈N. We refer to [104]

for its proof. Now we formulate the following well known result for ergodic continuous

time Markov chains that allows us to derive the invariant law of (Yt)t∈R+ .

Proposition 1.5.2. If (Yt)t∈R+ and (yn)n∈N are ergodic on I with the corresponding

stationary distributions being π and p∗, then

π(i) =
p∗(i)/λ(i)∑
j∈I p

∗(j)/λ(j)

holds for every i ∈ I.

Based on Proposition 1.5.2 the invariant law for (Yt)t∈R+ is such that

P [Yt = i] =
p∗(i)/λ(i)∑
j∈I p

∗(j)/λ(j)
, i ∈ I, t ∈ R+.

1.5.3 Perpetuity driven by a continuous-time Markov chain

In this section, we consider a crucial example of a perpetuity that is driven by a continuous-

time Markov chain. Define the following random variable Q0, that is driven by the ergodic

continuous-time Markov chain (Yt)t∈R+ defined in the previous section

Q0 =

∫ ∞
0

exp

(
−
∫ t

0

r(Yu−)du

)
h(Yt)dt+

∑
n>0

exp

(
−
∫ τn

0

r(Yu−)du

)
c(Yτn−, Yτn),

(1.5.2)

where, it is assumed that r : I 7→ R, h : I 7→ R and c : I×I 7→ R are appropriate functions

to make the integrals well-defined.1 We are interested in the conditional law of Q0 given

1In fact, in connection to Assumption 1.3.1, we need to assume that
∑

j∈I r(i)p
∗(i)/λ(i) > 0. Simply

assuming that r(i) > 0 for all i ∈ I is sufficient.
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Y0, where Q0 is of the form (1.5.2). The first part of (1.5.2)

Q1
0 =

∫ ∞
0

exp

(
−
∫ t

0

r(Yu−)du

)
h(Yt)dt

represents a continuous time perpetuity of rate h(Y ) and discounting rate r(Y ), while the

second part

Q2
0 =

∑
n>0

exp

(
−
∫ τn

0

r(Yu−)du

)
c(Yτn−, Yτn)

is the discounted payoff of bulk payments made at transition times τn, with the payment

c(Yτn−, Yτn) depending on the states before and at transition. Perpetuities of the form

similar to (1.5.2) are derived in [116] from SDEs for the Ornstein-Uhlenbeck process.

1.5.4 The case c ≡ 0

We start with the case where c ≡ 0 in (1.5.2). In other words, we have

Q0 = Q1
0 =

∫ ∞
0

exp

(
−
∫ t

0

r(Yu−)du

)
h(Yt)dt.

With notation previously set, note that

exp

(
−
∫ τk

0

r(Yu)du

)
=
∏

0≤`<k

exp (−r(y`)(τ`+1 − τ`)) =
∏

0≤`<k

u
r(y`)/λ(y`)
` , k ∈ N,

as well as∫ τk+1

τk

exp

(
−
∫ t

0

r(Yu)du

)
h(Yt)dt = exp

(
−
∫ τk

0

r(Yu)du

)∫ τk+1

τk

exp

(
−
∫ t

τk

r(Yu)du

)
h(Yt)dt

=

( ∏
0≤`<k

u
r(y`)/λ(y`)
`

)∫ τk+1

τk

exp (−r(yk)(t− τk))h(yk)dt

=

( ∏
0≤`<k

u
r(y`)/λ(y`)
`

)
h(yk)

r(yk)
(1− exp (−r(yk)(τk+1 − τk)))

=

( ∏
0≤`<k

u
r(y`)/λ(y`)
`

)
h(yk)

r(yk)

(
1− ur(yk)/λ(yk)

k

)
, k ∈ N.

Define the product state space as S = I × [0, 1], and introduce two functions a and b in

the following way

b(i, u) = ur(i)/λ(i),

a(i, u) =
h(i)

r(i)

(
1− ur(i)/λ(i)

)
=
h(i)

r(i)
(1− b(i, u)) , (i, u) ∈ S.
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Then, we have established that

exp

(
−
∫ τk

0

r(Yu)du

)
=
∏

0≤`<k

b(y`, u`), k ∈ N,

as well as∫ τk+1

τk

exp

(
−
∫ t

0

r(Yu)du

)
h(Yt)dt =

( ∏
0≤`<k

b(y`, u`)

)
a(yk, uk), k ∈ N.

Therefore, when c ≡ 0

Q0 =
∞∑
k=0

( ∏
0≤`<k

b(y`, u`)

)
a(yk, uk).

Moreover, with Zn = (yn, un) for each n ∈ N, and Xn as defined in the previous section,

we have that the conditional law of Q0 given Y0 coincides with the conditional law of

X0 given y0.
2 We denote by (ψn)n∈N the time-reversed chain associated to (yn)n∈N and,

with some abuse of notation, we still denote by (un)n∈N the time-reversed chain of the

independent uniforms. Then, the recursion becomes

χn = ur(ψn)/λ(ψn)
n χn−1 + (1− ur(ψn)/λ(ψn)

n )
h(ψn)

r(ψn)
. (1.5.3)

The above recursion may be also used to obtain a recursive scheme for the conditional

laws. For each n ∈ N, let Fn(x; i) = P [χn ≤ x|ψn = i]. Then,

Fn(x; i) =
P [χn ≤ x, ψn = i]

P [ψn = i]
=

1

p∗i

∑
j∈I

P [χn ≤ x, ψn = i|ψn−1 = j] p∗j

=
∑
j∈I

P [χn ≤ x|ψn = i, ψn−1 = j]
P [ψn = i|ψn−1 = j] p∗j

p∗i

=
∑
j∈I

P [χn ≤ x|ψn = i, ψn−1 = j] pij

=
∑
j∈I

P
[
χn−1 ≤ u−r(i)/λ(i)

n x− (u−r(i)/λ(i)
n − 1)

h(i)

r(i)

∣∣∣ψn−1 = j

]
pij

=
∑
j∈I

pij

∫ 1

0

Fn−1

[
u−r(i)/λ(i)x− (u−r(i)/λ(i) − 1) (h(i)/r(i)) ; j

]
du.

2Note, however, that the marginal laws of Y0 and y0 are different. This created no problem, since these
marginal laws are explicitly known in terms of p : I × I 7→ [0, 1] and λ : I 7→ (0,∞).
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1.5.5 The case of general c

With the same notation, observe that

exp

(
−
∫ τk+1

0

r(Yu−)du

)
c(Yτk+1−, Yτk+1

) =

( ∏
0≤`<k

u
r(y`)/λ(y`)
`

)
u
r(yk)/λ(yk)
k c(yk, yk+1)

The state space now becomes S = I × I × (0, 1), Zn = (yn, yn+1, un) for all n ∈ N, the

associated functions

b(i, j, u) = ur(i)/λ(i),

a(i, j, u) =
h(i)

r(i)
(1− b(i, u)) + b(i, u)c(i, j), (i, j, u) ∈ S,

and the recursion for the time-reversed process becomes

χn = ur(ψn)/λ(ψn)
n (χn−1 + c(ψn, ψn−1)) + (1− ur(ψn)/λ(ψn)

n )
h(ψn)

r(ψn)
. (1.5.4)

Further, we formulate the following assumption for the joint process (ψn, χn)n∈N and,

throughout the rest of this paper, we assume the following condition for the joint process

(ψn, χn)n∈N holds. It is introduced for the convenience of the presentation in the following

sections. The property of irreducibility and ergodicity holds for (ψn)n∈N automatically since

(yn)n∈N is assumed to be finite state and ergodic, see remarks on this after the assumption.

Assumption 1.5.3. The Markov chain (ψn)n∈N is irreducible on the finite state space I.

From now on, whenever we refer to the process (χn)n∈N as a solution to (1.5.3), we

assume it is a stationary process.

Remark 1.5.4. The existence of a stationary solution to (1.5.3) is evident from the results

of Section 1.4. Moreover, this stationary solution to (1.5.3) is unique under Assumption

1.3.1.

Remark 1.5.5. Since the Markov chain (yn)n∈N is assumed to be finite state and ergodic,

the associated reversed Markov chain (ψn)n∈N is automatically irreducible.

Assumption 1.5.3 allows us to reduce our analysis of the process (yn)n∈N to the analysis

of the associated reversed Markov chain (ψn)n∈N.

1.6 Geometric ergodicity

Geometric ergodicity refers to a concept of “fast” convergence of a Markov chain to its

invariant distribution and is strongly connected with central limit theorems.
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Definition 1.6.1 (Geometric Ergodicity). A Markov chain X with a transition kernel T
and stationary distribution π(•) is called geometrically ergodic if

‖Tn( • ;x)− π(•)‖TV ≤M(x)rn, (1.6.1)

for some function 0 ≤M(x) <∞ and some 0 ≤ r < 1, π−a.s.

Typically, the techniques to establish geometric ergodicity are quite involved, see [88],

unless the state space is finite, in which case geometric ergodicity is equivalent to ergodicity.

It is known, see [88], that geometric ergodicity is equivalent to the existence of the so-called

drift to a petite set.

Definition 1.6.2 (Petite set C ). A subset C ⊆ S is νa-petite if the sampled chain satisfies

the bound

Ta( • ;x) ≥ νa(•), x ∈ C, (1.6.2)

i.e. Ta(A;x) ≥ νa(A) for all x ∈ C and all measurable A ⊆ S, where νa(A) is a non-trivial

measure on S.

Definition 1.6.3 (Geometric Drift Towards C). The geometric drift condition for a

Markov chain X on a state space S holds if there exists a real valued measurable function

V : S → [1,∞] finite as some one point x0 ∈ S such that for some constants α > 0, β <∞,

and a measurable set C,

E[V (Xn)|Xn−1 = x]− V (x) ≤ −αV (x) + βIC(x), x ∈ S.

1.6.1 Supporting results

In this section we consider a collection of technical results formulated for Markov chains

that are required for the proofs of the main results. The first such result that we prove in

this section provides us with necessary and sufficient conditions for a Markov chain on

general state space to be ϕ-irreducible and it is stated in Lemma 1.6.6.

Definition 1.6.4 (ϕ-irreducibility on general state space). The Markov chain X with

transition kernel T is called ϕ-irreducible if, for every measurable A with ϕ(A) > 0 and

every x ∈ X, there exists an n ∈ N (which may depend on x and A) such that Tn(A;x) > 0.

In words, the meaning behind ϕ-irreducibility is that every set A with ϕ(A) > 0 is

reachable from any x ∈ X. We say that the chain is ϕ-reducible if it is not ϕ-irreducible,

meaning that, when there exist x and A with ϕ(A) > 0 such that Tn(A;x) = 0 for all

n ∈ N. Next, we need to formulate another definition that is used in Lemma 1.6.6. This

definition introduces the notion of a closed set for Markov chains.
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Definition 1.6.5 (Closed set for Markov chains). For a Markov chain X on a state space

X with transition kernel T a set C ∈ B(X), where B(X) is the Borel sigma algebra, is

called closed if it is non-empty and T(Cc;x) = 0 for all x ∈ C.

From Definition (1.6.5) it follows that a non-empty set C ⊆ X is called closed if, once

the chain enters the set C it can not leave this set anymore. As an obvious observation

the state space X is a closed set.

Lemma 1.6.6. A Markov chain X with transition kernel T on a general state space X is

ϕ-reducible if and only if there exists a closed set C such that ϕ(Cc) > 0.

Proof. Let X be a ϕ-reducible Markov chain on a state space X with transition kernel T,

meaning that there exists a measurable set B ∈ B(X) such that ϕ(B) > 0 and a point

x ∈ Bc with the property that ∀n ∈ N it holds that Tn(B;x) = 0. Define the set A as a

union of Ak = {x : Tk(B;x) > 0} with k ∈ N, then one can show that the set C := Ac∩Bc

is closed in the definition for Markov chains sense. First, note that ϕ(Cc) > ϕ(A) > 0. We

next prove the closeness of C by contradiction. Suppose that x∗ ∈ C and T(Cc;x∗) > 0,

then we should have

T(A;x∗) + T(B;x∗) ≥ T(A ∪B;x∗) = T(Cc;x∗) > 0. (1.6.3)

Since x∗ is in C, it follows that x∗ is in Ac and hence Ac1. From the fact that the chain X

is ϕ-reducible, we know that T(B;x∗) = 0 and hence it must be true that T(A;x∗) > 0, so

that (1.6.3) holds. Then there exists k ∈ N with T(Ak;x
∗) > 0 and as a result

T(k+1)(B;x∗) =

∫
X

Tk(B; y)T(dy;x) =

∫
Ak

Tk(B; y)T(dy;x∗) > 0.

This however implies that x∗ is inside of Ak+1 which contradicts the fact that x∗ is in C.

Hence, for all x ∈ C it must be the case that T(Cc;x) = 0 and one can conclude that the

set C is closed in the sense of the definition for Markov chains.

Now, suppose that the set C is closed and ϕ(Cc) > 0. By induction one can show that if

T(Cc;x) = 0 ∀x ∈ C, then ∀x ∈ C and ∀n ∈ N

Tn+1(Cc;x) =

∫
X

Tn(Cc; y)T(dy;x) =

∫
C

Tn(Cc; y)T(dy;x) = 0,

which proves reducibility of the chain.

1.6.2 Geometric ergodicity of (ζn, χn)n∈N

The property of geometric ergodicity is often based on a slightly “weaker” notion of the

so-called ϕ-irreducibility, which is adopted from the previous section to the considered
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setting in the following definition.

Definition 1.6.7 (ϕ-irreducibility). The joint chain (ψn, χn)n∈N on a state space S is

ϕ-irreducible for some non-trivial measure ϕ on S, if for any starting point (i0, x0) ∈ S of

the joint process (ψn, χn)n∈N, any set {i} ×A ∈ S with ϕ({i} ×A) > 0 can be reached by

the chain in a finite number of steps with positive probability.

Theorem 1.6.8. Let Assumptions 1.3.1 and 1.5.3 hold and r : I → R+, as well as

h(i)/r(i) ≥ 1

1− α
for all i ∈ I, (1.6.4)

where α = maxi∈I E
[
u
r(ψn)/λ(ψn)
0

∣∣ψn−1 = i
]

and u0 is random variables with standard

uniform law. Then the joint Markov chain (ψn, χn)n∈N is ϕ-irreducible for some non-trivial

measure ϕ on I × R.

Proof. It is clear that (ψn)n∈N is an irreducible finite state space Markov chain with

transition probabilities (prev, ij)i,j∈I satisfying the following equation

prev, ij =
πj
πi
prev,ji, for all i, j ∈ I.

Denote the stationary distribution of the chain (ψn)n∈N as p∗rev and let ϕ = p∗rev ⊗
λDLeb, where D is an open connected set of the form

(
h(i∗)/r(i∗), h(j∗)/r(j∗)

)
, with i∗ =

arg mini∈I{h(i)/r(i)} (assuming it is unique, if not, we should subtract in the argument of

the definition for j∗ the set of values {i∗} for which the function h/r(•) attains its minimal

value) and j∗ = argmaxj∈I{h(j)/r(j)}. In the degenerate case, when h(i)/r(i) = c for all

i ∈ I and some constant c > 0, the limiting distribution of (χn)n∈N degenerates at c. In

this case the joint process (ψn, χn)n∈N is clearly irreducible.

Assuming that we do not have a degenerate case, namely i∗ 6= j∗, we prove ϕ-

irreducibility of the joint process (ψn, χn)n∈N. Since the first component of the joint

process is irreducible Markov chain, for any starting point i0 from I and any point i again

from I there is a finite k ∈ N such that in k number of steps the chain reaches i.

Let p
(k)
i0,i

= P
(
ψk = i

∣∣ψ0 = i0
)
, then p

(k)
i0,i

> 0 and

P
(

(ψk, χk) ∈ {i} × A
∣∣∣(i0, x)

)
= p

(k)
i0,i

P
(
χk ∈ A

∣∣∣ψ0 = i0, ψk = i, χ0 = x
)

= p
(k)
i0,i

P
(
u
r(i)
λ(i)

k χk−1 +
(
1− u

r(i)
λ(i)

k

)h(i)

r(i)
∈ A

∣∣∣ψ0 = i0, χ0 = x
)

= p
(k)
i0,i

P
( ∏
ij∈(i0,...,i),j

u

r(ij)

λ(ij)

j x0 +
∏

ij∈(i1,...,ik−1),j

u

r(ij)

λ(ij)

j

(
1− u

r(i1)
λ(i1)

1

)h(i1)

r(i1)
+ ...

+
(
1− u

r(i)
λ(i)

k

)h(i)

r(i)
∈ A

∣∣∣ψ0 = i0, χ0 = x
)
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= p
(k)
i0,i

P
( ∏
ij∈(i0,...,i),j

u

r(ij)

λ(ij)

j x0 +
∏

ij∈(i1...,ik−1),j

u

r(ij)

λ(ij)

j

(
1− u

r(i1)
λ(i1)

1

)h(i1)

r(i1)
+ ...

+
(
1− u

r(i)
λ(i)

k

)h(i)

r(i)
∈ A

)
One can find a path for (ψn)n∈N from i0 to i through i∗ and j∗, so that the support of the

random variable
(∏

ij∈(i0,...,i),j
u

r(ij)

λ(ij)

j x0 +
∏

ij∈(i1...,ik−1),j u

r(ij)

λ(ij)

j

(
1 − u

r(i1)
λ(i1)

1

)h(i1)
r(i1)

+ ... +
(
1 −

u
r(i)
λ(i)

k

)h(i)
r(i)

)
is D. As a result, we can conclude that P

(
(ψk, χk) ∈ {i}×A

∣∣(i0, x)
)
> 0 proving

ϕ-irreducibility of the joint chain.

Since the second component of the process (ζn)n∈N = (ψn, un)n∈N forms an independent

and identically distributed sequence of uniform random variables, in order to show that

the process (ζn, χn)n∈N is geometrically ergodic it suffices to show that the joint process

(ψn, χn)n∈N is geometrically ergodic.

Proposition 1.6.9. Consider the joint Markov chain (ψn, χn)n∈N, where the first compo-

nent is a finite state space Markov chain defined on I and the second component follows

the dynamics (1.5.3). Let Assumptions 1.3.1 and 1.5.3 hold. Assume that for the functions

r : I → R+, λ : I → (0,∞), and h : I → R− the following conditions are satisfied∑
j∈I

prev, ij
1 + r(j)/λ(j)

< 1 for all i ∈ I, (1.6.5)

where (prev, ij)(i,j)∈I×I denote the transition probabilities of (ψn)n∈N. As well as

h(i)/r(i) ≥ 1

1− α
for all i ∈ I, (1.6.6)

where α = maxi∈I E
[
u
r(ψn)/λ(ψn)
0

∣∣ψn−1 = i
]

with u0 - a random variable with standard

uniform law. Then the joint Markov chain (ψn, χn)n∈N is geometrically ergodic.

Remark 1.6.10. The condition (1.6.5) guarantees that the contractive and expansive parts

of the second component (χn)n∈N of the joint process balance each other, that is, the

distribution of u
r(ψn)/λ(ψn)
n has enough mass on {ur(ψn)/λ(ψn)

n < 1}.

In the proof of this proposition to follow, we show the existence of geometric drift

from Definition 1.6.3 for the process (ψn, χn)n∈N, i.e. we construct a petite set C on which

the geometric drift condition holds. An explicit proof that the constructed set C is petite

requires to analyse higher order transition kernels and is rather involved. Instead, we

exploit the property of the uniform countable additivity, see [110].
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Definition 1.6.11 (Uniform Countable Additivity). Let X be a Markov chain defined

on a state space S with transition kernel T. A set C ∈ S satisfies the uniform countable

additivity condition if for any sequence Bn in S with Bn ↓ ∅ the following limit holds

lim
n→∞

sup
x∈C

T(Bn;x) = 0.

Indeed, the uniform countable additivity condition requires only the knowledge of

one-step transition probabilities and is simpler to verify. Based on the result of [110],

Theorem 3, in order to guarantee that any particular set C is petite for an irreducible

Markov chain it suffices to demonstrate that the condition of uniform countable additivity

holds for the given set C as well as the following generalised drift condition.

Definition 1.6.12 (Generalised Drift Towards C). The drift condition for a Markov chain

X on a state space S holds if there exists a real valued measurable function V : S → (0,∞]

such that for some constant β <∞, and a measurable set C,

E[V (Xn)|Xn−1 = x]− V (x) ≤ −1 + βIC(x), x ∈ S.

Proof. Let α := maxi∈I E
[
u
r(ψn)/λ(ψn)
0

∣∣ψn−1 = i
]
. It follows from (1.6.5) that α < 1. Denote

β := maxi∈I
h(i)
r(i)
∗ maxi∈IE

[(
1 − u

r(ψn)/λ(ψn)
0

)∣∣ψn−1 = i
]
. Introduce C := I × [d, c] with

c = 1+β
1−α and d = 1

1−α .

Define the drift function as V (ψ, χ) := 1 + χ. If χ0 ≥ d it follows that I(χn ≥ d) = 1

for all n ≥ 1. Also, if χ0 < d the process (χn)n∈N at some point n0 will become bigger than

d and for all n ≥ n0 it then holds I(χn ≥ d) = 1. So, it is enough to consider the case

when χ0 ≥ d. By plugging in the dynamics of χn from the recursive equation (1.5.3) and

using the above notations of α and β we obtain

E
[
V (ψn, χn)

∣∣(ψn−1, χn−1) = (i, x)
]

= E
[
1 + χn

∣∣(ψn−1, χn−1) = (i, x)
]

= E
[
1 + ur(ψn)/λ(ψn)

n χn−1

+
(
1− ur(ψn)/λ(ψn)

n

)h(ψn)

r(ψn)

∣∣∣(ψn−1, χn−1) = (i, x)
]

= 1 + E
[
ur(ψn)/λ(ψn)
n x+

(
1− ur(ψn)/λ(ψn)

n

)h(ψn)

r(ψn)

∣∣∣ψn−1 = i
]

= 1 + xE
[
ur(ψn)/λ(ψn)
n

∣∣ψn−1 = i
]

+ E
[(

1− ur(ψn)/λ(ψn)
n

)h(ψn)

r(ψn)

∣∣∣ψn−1 = i
]

≤ 1 + xE
[
u
r(ψn)/λ(ψn)
0

∣∣ψn−1 = i
]

+ β

≤ 1 + xα + β.
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Next, using the fact that α = 1− (1 + β)/c gives

E
[
V (ψn, χn)

∣∣(ψn−1, χn−1)
]
≤ 1 + x

(
1− 1 + β

c

)
+ β

≤ 1 + x− x1

c
− βx

c
+ β

≤ 1 + x− x1

c
− βx

c
ICc(ψn−1, χn−1)− βx

c
IC(ψn−1, χn−1) + β

Further, from the definition of C we know that Cc = I × [d, c]c, meaning that if χn−1 ∈ Cc,

then we need to consider only the case of x > c. As was stated above, once the process

χ enters the region [d,∞), its values never gets smaller than d. Thus, we arrive to the

following upper bound in the case of ICc(ψn−1, χn−1) = 1

E
[
V (ψn, χn)

∣∣(ψn−1, χn−1)
]
≤ 1 + x− x1

c
− βICc(ψn−1, χn−1) + β

= 1 + x− x1

c

= V (i, x)− 1.

In a similar way, when IC(ψn−1, χn−1) = 1, x ≥ 1
1−α and

E
[
V (ψn, χn)

∣∣(ψn−1, χn−1)
]
≤ 1 + x− x1

c
− βx

c
IC(ψn−1, χn−1) + β

≤ 1 + x− x

c
(1 + β) + βIC(ψn−1, χn−1)

= 1 + x− x(1− α) + βIC(ψn−1, χn−1)

≤ 1 + x− 1 + βIC(ψn−1, χn−1)

= V (i, x)− 1 + βIC(ψn−1, χn−1),

implying that the generalised drift condition from Definition (1.6.12) holds for the set C

defined above.

To prove that the set C is petite, it remains to demonstrate the uniform countable

additivity condition is satisfied. For Bn ∈ S let Bn ↓ ∅. Note that Bn = (Bn∩C)∪(Bn∩Cc)

and if Bn ↓ ∅, then both (Bn ∩ C) ↓ ∅ and (Bn ∩ Cc) ↓ ∅. Next,

lim
n→∞

sup
(i,x)∈C

T(Bn; (i, x)) = lim
n→∞

sup
(i,x)∈C

P((ψn+1, χn+1) ∈ Bn|(ψn, χn) = (i, x))

≤ lim
n→∞

sup
(i,x)∈C

P((ψn+1, χn+1) ∈ Bn ∩ C|(ψn, χn) = (i, x))

+ lim
n→∞

sup
(i,x)∈C

P((ψn+1, χn+1) ∈ Bn ∩ Cc|(ψn, χn) = (i, x)) (1.6.7)
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For the second component in the above the following holds

lim
n→∞

sup
(i,x)∈C

P((ψn+1, χn+1) ∈ Bn ∩ Cc|(ψn, χn) = (i, x))

= lim
n→∞

sup
(i,x)∈C

P

((
ψn+1,

(
u
r(ψn+1)/λ(ψn+1)
n+1 x+

(
1− ur(ψn+1)/λ(ψn+1)

n+1

) h(ψn+1)

r(ψn+1)

))

∈ Bn ∩ Cc|(ψn, χn) = (i, x)

)
.

Let Bn = Jn ×Kn, where Jn ⊆ I and Kn ∈ B(R) for all n ∈ N. Since Bn ↓ ∅, it follows

that at least Jn ↓ ∅ or Kn ↓ ∅. When Jn ↓ ∅, the result follows easily. In the case Kn ↓ ∅,
we have

sup
(i,x)∈C

P

((
ψn+1,

(
u
r(ψn+1)/λ(ψn+1)
n+1 x+

(
1− ur(ψn+1)/λ(ψn+1)

n+1

) h(ψn+1)

r(ψn+1)

))

∈ Kn ∩ [d, c]c|(ψn, χn) = (i, x)

)

≤ sup
(i,x)∈C

∑
j∈I

P

((
u
r(ψn+1)/λ(ψn+1)
n+1 x+

(
1− ur(ψn+1)/λ(ψn+1)

n+1

) h(ψn+1)

r(ψn+1)

)

∈ Kn ∩ [d, c]c
∣∣(ψn, χn) = (i, x), ψn+1 = j

)
pij

≤ |I| sup
(j,x)∈C

P

((
u
r(j)/λ(j)
n+1 x+

(
1− ur(j)/λ(j)

n+1

) h(j)

r(j)

)
∈ Kn ∩ [d, c]c

)
,

where |I| represents the number of possible states for the Markov chain (ψn)n∈N. Note

that for any ε, there exists n∗ ∈ N such that

sup
(j,x)∈C

P

((
u
r(j)/λ(j)
n+1 x+

(
1− ur(j)/λ(j)

n+1

) h(j)

r(j)

)
∈ Kn ∩ [d, c]c

)
≤ ε,

for all n ≥ n∗, where ε = ε|I|. Similar arguments can be applied to the first component of

(1.6.7). This allows us to conclude that the one-step transition kernel of the joint Markov

chain (ψn, χn)n∈N satisfies

lim
n→∞

sup
(i,x)∈C

T(Bn; (i, x)) = 0.

As a result, we conclude that the set C is petite, cf. Theorem 3 in [110].

The next and final step is to check the existence of the geometric drift of (ψn, χn)n∈N

towards C, this can be done in similar way to the previous drift condition check. Let
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Vn := V (ψn, χn) = χn, n ∈ N then

E
[
Vn
∣∣ψn−1, χn−1

]
− Vn−1 ≤ E

[
u
r(ψn)/λ(ψn)
0

∣∣∣ψn−1

]
Vn−1 + E

[(
1− ur(ψn)/λ(ψn)

0

)h(ψn)

r(ψn)

∣∣∣ψn−1

]
−Vn−1

≤ −
(

1− α
)
Vn−1 + βIC(ψn−1, χn−1) + βICc(ψn−1, χn−1)

≤

−
(

1− α
)
Vn−1 + βIC(ψn−1, χn−1) if (ψn−1, χn−1) ∈ C

−(1− α)Vn−1 + βIcC(ψn−1, χn−1) if (ψn−1, χn−1) ∈ Cc

≤

−
(

1− α
)
Vn−1 + βIC(ψn−1, χn−1) if (ψn−1, χn−1) ∈ C

−Vn−1
1+β
c

+ βIcC(ψn−1, χn−1) if (ψn−1, χn−1) ∈ Cc

≤

−
(

1− α
)
Vn−1 + βIC(ψn−1, χn−1) if (ψn−1, χn−1) ∈ C

−1− Vn−1
β
c

+ βIcC(ψn−1, χn−1) if (ψn−1, χn−1) ∈ Cc

≤

−
(

1− α
)
Vn−1 + βIC(ψn−1, χn−1) if (ψn−1, χn−1) ∈ C

−1 if (ψn−1, χn−1) ∈ Cc

≤ −
(

1− α
)
Vn−1 + βIC(ψn−1, χn−1).

Moreover, since α < 1 the coefficient in front of Vn−1 is positive. Thus, (ψn, χn)n∈N satisfies

the geometric drift condition from Definition 1.6.3. We then have that (ψn, χn)n∈N is

ϕ-irreducible, V (ψ, χ) is everywhere finite and the set C is petite. By Theorem 15.0.1 in

[88], we then obtain that (ψn, χn)n∈N is geometrically ergodic.

1.7 Central limit theorem

While the estimator π̂ for the joint law of (Z0, X0) enjoys desirable consistency properties,

for inference questions we are also in need of distributional properties of 〈g, π̂n〉, at least

asymptotically. A priori, it may not be clear that the limiting distribution is Gaussian,

but in fact it is the case and this is the focus of the following result.

Theorem 1.7.1. Let (Yt)t∈R+ be an ergodic continuous-time Markov chain with a finite

state space I, (yn)n∈N – the associated embedded discrete-time Markov chain. Denote the

reversed Markov chain of (yn)n∈N as (ψn)n∈N and the transition probabilities of (ψn)n∈N as

(prev, ij)(i,j)∈I×I respectively. Assume that for the functions r : I → R+ and λ : I → (0,∞)

the following condition is satisfied∑
j∈I

prev, ij
1 + r(j)/λ(j)

< 1 for all i ∈ I, (1.7.1)
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and Assumption 1.3.1 holds for the joint process (yn, un)n∈N, with (un)n∈N being i.i.d.

random variables with standard uniform law. As well as

h(i)/r(i) ≥ 1

1− α
for all i ∈ I, (1.7.2)

where α = maxi∈I E
[
u
r(ψn)/λ(ψn)
0

∣∣ψn−1 = i
]
. Then for the empirical measure π̂ on S ⊗B(R),

given by

π̂[A] :=
1

n

n∑
i=1

IA(ζi, χi), A ∈ S ⊗ B(R),

a
√
n−CLT holds for all initial distributions and all S ⊗ B(R)−measurable functions g

whenever Eπ|g|2+δ <∞ for some δ > 0, i.e.

√
n

(
1

n

n∑
n=1

g(ζi, χi)−
〈
π, g
〉) d→ σgN ,

where σ2
g := Varπ{g(ζ0, χ0)}+ 2

∑∞
i=1 Cov{g(ζ0, χ0), g(ζi, χi)} ∈ [0,∞).

Proof. Under assumptions, it follows from Proposition 1.6.9 that the joint process

(ζn, χn)n∈N is geometrically ergodic. The central limit theorem for (ζn, χn)n∈N follows

from Theorem 17.0.1 in [88].

Remark 1.7.2. The condition Eπ|g|2+δ <∞ for some δ > 0 in Theorem 1.7.1 can be relaxed

for reversible chains to Eπ|g|2 <∞, see [101]. For counterexamples for the general case of

non-reversible chains, see [51].

Remark 1.7.3. One can show that for the joint process (ζn, χn)n∈N not only the law of

large numbers holds, but also a strong law in view of the Harris ergodicity of the process.

Corollary 1.7.1. Let g be bounded and S ⊗ B(R)-measurable, and such that

sups∈S|g(s, x) − g(s, y)| ≤ K|x − y| holds for some K ∈ [0,∞) and all (x, y) ∈ R2.

Under the assumptions of Theorem (1.7.1) it holds

√
n

(
1

n

n∑
i=1

g(ζi, χ
x
i )−

〈
π, g
〉) d→ σgN (1.7.3)

Remark 1.7.4. Since we assume that the function g is bounded, the assumption Eπ|g|2+δ <

∞ for some δ > 0 is automatically fulfilled.

Proof. Following the lines in the proof of Lemma 1.4.7, we can show that

√
n
∣∣∣ 1
n

n∑
i=1

g(ζi, χ
x
i )−

1

n

n∑
i=1

g(ζi, χi)
∣∣∣ ≤ K|x− χ0|√

n

∞∑
i=1

( ∏
0<k≤i

b(ζk)

)
.
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This implies that the quantity on the left-hand-side above converges P-a.s. to zero as

n → ∞, and hence (1.7.3) holds by Slutsky’s lemma, with σ2
g defined as above. The

fact that σg stays unchanged can be easily inferred from the fact that for any bounded

function g and ergodic process (ζn, χn)n∈N we have σ2
g =limn→∞

1
n
Eπ
(∑n

i=0 ḡ(ζi, χi)
)2

,

with ḡ = g −
〈
π, g
〉
.

1.8 Illustrative simulations

In this section, we provide an illustrative example which demonstrates the computational

efficiency of the MC method over the recursive method. We keep the captions of the figures

below to the minimum, providing only the information that was changed with respect to

Figure 1.1. Consider

Q0 =

∫ ∞
0

exp

(
−
∫ t

0

r(Yu−)du

)
h(Yt)dt,

where (Yt)t∈R+ is an ergodic continuous-time Markov chain with finite state space I1.

Define (τn)n∈N as the jump times of Y (where we set τ0 = 0), and let (yn)n∈N be the

associated embedded discrete time Markov chain, defined via yn = Yτn . Let (ψn)n∈N be

the time-reversed chain associated to (yn)n∈N, refer to Section 1.5 for further details, this

chain is living then on a finite state space I1. First, assume that |I1| = 4 and define the

transition matrix of (ψn)n∈N as follows

P1 = (p1(i, j))(i,j)∈I×I =


0.1 0.2 0.2 0.5

0.3 0.4 0 0.3

0.4 0 0.4 0.2

0.3 0 0.2 0.5

 .
Then, the chain (ψn)n∈N is an ergodic discrete-time Markov chain. To find the invariant

law of this chain we need to solve the equation p∗ = p∗P1, which brings us to the following

system of equations

p∗(1) = 0.1p∗(1) + 0.3p∗(2) + 0.4p∗(3) + 0.3p∗(4)

p∗(2) = 0.2p∗(1) + 0.4p∗(2)

p∗(3) = 0.2p∗(1) + 0.4p∗(3) + 0.2p∗(4)

p∗(4) = 0.5p∗(1) + 0.3p∗(2) + 0.2p∗(3) + 0.5p∗(4).
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Solving this system of equations together with the fact that
∑

i∈I p
∗(i) = 1 gives us the

stationary distribution of (ψn)n∈N

p∗ =
( 39

145
,

13

145
,

33

145
,

60

145

)
.

This invariant distribution tells us that the process (ψn)n∈N spends around 40% of its time

in the state 4. For the comparison purposes we also consider one more example of the

process (ψn)n∈N, which resides on a smaller state space I2 with |I2| = 3 and the transition

matrix is defined in the following way

P2 = (p2(i, j))(i,j)∈I×I =

 0.5 0.25 0.25

0.5 0 0.5

0.25 0.25 0.5

 ,
and the corresponding p∗ is given by

p∗ =
(

0.4, 0.2, 0.4
)
.

Next, we introduce the process (χn)n∈N in the same way as it was done in Section 1.5,

i.e. following the dynamics of (1.5.3) with the corresponding functions defined as λ = 1,

r(i) = 1, h(i) = i for all i ∈ I, where I can be either I1 or I2, depending on where the

considered chain (ψn)n∈N resides.

χn = ur(ψn)/λ(ψn)
n χn−1 + (1− ur(ψn)/λ(ψn)

n )
h(ψn)

r(ψn)
= unχn−1 + (1− un)ψn.

The goal then becomes to estimate the joint distribution of (χn, ψn)n∈N. We are interested

in the estimation of the distribution function P(χn ≤ x|ψ0 = 1, χ0 = 0), n ∈ N, and we do

it in two ways. First, by using the MC method and then, the recursive approach, which

is based on the calculation of the conditional probabilities Fn(x; i) = P [χn ≤ x|ψn = i],

introduced in Section 1.5

Fn(x; i) =
P [χn ≤ x, ψn = i]

P [ψn = i]
=

1

p∗i

∑
j∈I

P [χn ≤ x, ψn = i|ψn−1 = j] p∗j

=
∑
j∈I

P [χn ≤ x|ψn = i, ψn−1 = j]
P [ψn = i|ψn−1 = j] p∗j

p∗i

=
∑
j∈I

P [χn ≤ x|ψn = i, ψn−1 = j] pij

=
∑
j∈I

P
[
χn−1 ≤ u−r(i)/λ(i)

n x− (u−r(i)/λ(i)
n − 1)

h(i)

r(i)

∣∣∣ψn−1 = j

]
pij
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=
∑
j∈I

pij

∫ 1

0

Fn−1

[
u−r(i)/λ(i)x− (u−r(i)/λ(i) − 1) (h(i)/r(i)) ; j

]
du.

For the simulations we use the recursive representation of the conditional laws above with

a fixed grid size δ = 1/100 and then compare the results to the MC simulation, for which

we compute the empirical distribution along a single path of a given length N . In this

simulation study we consider N = 400, 2000, 5000 as well as the number of iterations

used for the recursive method is Nrec = 4, 20. We also calculate the Kolmogorov-Smirnov

distances between the empirical and true distributions in both methods. The error is a

fixed number for each recursive implementation, while in the case of the MC simulation

we produce the distribution for the errors by running it over 50 times.

Figure 1.1: On the left: two estimators Precest(χn ≤ x|ψ0 = 1, χ0 = 0) (green), PMCMC
est (χn ≤

x|ψ0 = 1, χ0 = 0) (blue) of the distribution P(χn ≤ x|ψ0 = 1, χ0 = 0) as well as the true
distribution itself (purple line). For the recursive method n ranges from 1 to 4, for the MC –
from 1 to 400. The y-axis corresponds to the values of Precest , PMCMC

est , and Precest respectively, while
x-axis represents different values of x. Further, I = I2 and N = 400, Nrec = 4.
On the right: Kolmogorov-Smirnov distances between the empirical and the true distribution.
The x-axis corresponds to the error values, while y-axis represents the values of the density
function of the errors produced by the MCMC implementation.

Table 1.1: Computational time for the recursive method

Number of iterations Time in seconds,
|I| = 3

Time in seconds,
|I| = 4

4 159 366
20 803 1754
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Figure 1.2: N = 2000 and Nrec = 4, I = I2.

Table 1.2: Computational time for the MC method

The length of the path Time in seconds,
|I| = 3

Time in seconds,
|I| = 4

400 0.087 0.110
2000 0.44 0.542
5000 1.083 1.335

First, consider the case when the chain (ψn)n∈N lives on the three state space I2. We

can observe from the right plot in Figure 1.1, where N = 400 and Nrec = 4, that the errors

are visually of the same magnitude, however, the recursive method takes about 150 seconds

to run with only 4 iterations, while the MC achieves the same quality in about 0.087

seconds, refer to Table 1.1 and 1.2 for details. Moreover, the MC method captures the

shape of the true distribution quite early, whereas the estimator from the recursive method

is quite “smooth”. In particular, this entails the biggest spread for the recursive method

at the point 1 in this example. The discretisation technique for recursions can slightly be

optimised to achieve the same performance, but it still lags behind the MC method. Figure

1.2 depicts a significant improvement in the accuracy of the MC method with N = 2000.

If we increase the number of iterations for the recursive method to Nrec = 20 and take

N = 5000, see Figure 1.3, the results are close in the accuracy, however, it takes more

than 13 minutes for the recursive implementation to run and only around 1 second for the

MC method.

When the Markov chain (ψn)n∈N resides on the four state space I1, the recursive

method takes even longer than twice the time it was taking when I = I2. Whereas, the MC
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Figure 1.3: N = 5000 and Nrec = 20, I = I2.

simulation is still running considerably fast, see Table 1.2. Also, we observe very similar

patterns in terms of the behaviour of the accuracy for both methods, with the results

being close to the previous example, when I = I2, see Figures 1.4, 1.5, and 1.6 for more

details. Further, we can observe that the blue line starts to capture the true distribution

quite early as before.
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Figure 1.4: N = 400 and Nrec = 4, I = I1.

Figure 1.5: N = 2000 and Nrec = 4, I = I1.
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Figure 1.6: N = 5000 and Nrec = 20, I = I1.
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Chapter 2

Optimal estimation of functionals in

multivariate case

2.1 Introduction to efficient estimation of linear func-

tionals

When working in a discrete-time setting, one can define a regression model in one-

dimensional case in the following way

Yi = g(i/n) + εi, i = 1, . . . , n, (2.1.1)

where Yi ∈ R, g is a smooth function and (εi) are some random variables that are

uncorrelated with mean zero and variance σ2 > 0. This type of regression models is well

studied in the literature, especially when the error terms are independent and identically

distributed random variables, refer to [109]. Consider the discrete time functionals of the

following form

ϑn =
1

n

n∑
i=1

g(i/n)ω(i/n), with ω : [0, 1]→ R (2.1.2)

then, it can be estimated by ϑ̂n = 1
n

∑n
i=1 Yiω(i/n) with no bias and variance of

σ2

n2

∑n
i=1 ω(i/n)2.

The corresponding model to (2.1.1) when the errors are uncorrelated with mean zero

and variance σ2 > 0 in continuous time can be written in the following way

dYt = g(t)dt+ σn−1/2dWt, t ∈ [0, 1], (2.1.3)

where W is a Brownian motion on [0, 1], the function g is unknown on [0, 1] and such that
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g ∈ L2([0, 1]), n ∈ N, see [109] for more details on the connection between Gaussian white

noise model (2.1.3) and nonparametric regression (2.1.1). Then, the plug-in estimator

ϑ̂ =
∫ 1

0
ω(t)dY (t) is an unbiased estimator for the following functional

ϑ =

∫
[0,1]

g(x)ω(x)dx, (2.1.4)

for some ω ∈ L2([0, 1]). The corresponding variance of the estimator ϑ̂ is given by
σ2

n

∫ 1

0
ω(t)2dt.

In this thesis we are interested in a regression model of type (2.1.1) in a multivariate

case with one-sided error terms, i.e. when the error terms live on [0,∞). This type of

models is used to estimate a function g when it is a frontier or boundary function of the

observations, see [18, 37, 75] for some overview. As such, we assume that for independent

and identically distributed error terms (εi)i∈N the following always holds

εi ≥ 0, i = 1, . . . , n.

Further, for a mean regression model with one-sided errors we also consider its continuous-

time analogous, which is given by observing a Poisson point process (PPP) on [0, 1]d × R.

We introduce these models in Section (2.3.3) properly.

2.1.1 Former results

Estimation of linear functionals of the regression function g is a popular topic in the

statistical literature, see [20, 78, 90, 91, 105, 109]. When the error terms ε in the regression

model (2.1.1) are uncorrelated random variables with expected value zero and constant

variance, the linear functionals (2.1.2) can be estimated by plugging in Yi into (2.1.2), i.e.

as

ϑ̂n =
1

n

n∑
i=1

Yiω(i/n),

for i = 1, . . . , n. This estimator is an unbiased estimator with the variance given by
σ2

n2

∑n
i=1 ω

2(i/n). Furthermore, by the Gauß-Markov theorem, see [47] page 146, it has

minimal variance among all linear and unbiased estimators. This property of estimators is

referred to as BLUE in the statistical literature, meaning that it is the best linear unbiased

estimator.

In the continuous-time model (2.1.3), in order to estimate the functional (2.1.4) one

can construct a corresponding plug-in estimator as

ϑ̂ =

∫
[0,1]

ω(t)dYt,
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which is also unbiased. The variance of this estimator is σ2

n

∫
[0,1]

ω(t)2dt. By the Riesz

representation theorem any linear functional g that is L2-continuous can be estimated

with the parametric rate n−1/2, see [74] for a comprehensive summary of this and other

related results. Interestingly, as it was noted in [74], an optimal estimator of the regression

function itself does not lead to an optimal estimator of the linear functional.

The independence between error terms is a standard assumption for regression models.

This condition of independence is of high importance for frontier models when the statistical

procedures such as bootstrap are applied, refer to [107, 115] for more detailed information.

In the estimation of linear functionals under one-sided errors we assume the independence of

the error terms as well. Regression models with one-sided errors underpin many applications

where the support rather than the mean properties of the noise are known and where

the regression function g describes a frontier or boundary curve. These models arise

naturally in analysis of auctions and records, image analysis, or in extreme value analysis

with covariates, see, for example, [114]. In [75] and [41] the authors consider a variety

of boundary estimation problems with a focus on applications in image recovery. In the

prototypical case of (εi)i∈N are i.i.d. with εi ≥ 0 and for some intensity parameter λ > 0

P(εi ≤ x) = λx+O(x2), i = 1, . . . , n, (2.1.5)

as x ↓ 0, e.g. ε ∼ Exp(λ), the parametric rate for the location model, i.e. the model that

assumes g to be a constant function, is n−1, and it is quicker than the regular case. The

irregular statistical models are extensively studied in the literature as well. In [5] the

authors provide a rate-optimal estimator via the extreme value statistics mini Yi.

When we work in continuous-time settings, we use a PPP model for estimating linear

functionals of the form (2.1.4). This idea appears to be quite novel and extremely fruitful,

see [62, 87]. Further, in [39] the authors propose a projection based estimator for g together

with derived convergence rates and limit distributions. In [87] a regression model with

a known bounded support of the errors is considered. The authors show asymptotic

equivalence in the strong LeCam sense to a continuous-time PPP model when the error

density has a jump at the endpoint of its support.

Both regression-type model with one-sided errors and the PPP model play a major role

for the density support estimation or image boundary recovery problems. We also refer

to [74] for estimation of the boundary or the frontier function of the support when the

regression function belongs to a certain Hölder class. The authors introduce a way to obtain

the rate of n−(β+1/2)/(β+1) for the functional of the form
∫ 1

0
g(x)dx, where β is a constant

called Hölder exponent. The derived upper bound is based upon a localisation step and

loses a logarithmic factor. They also study the case of monotone or convex regression

functions. Estimation of sets with smooth boundaries is considered in [86]. In [35] an

estimator of the density support area based on threefold sample splitting is constructed,

55



and it achieves the minimax optimal rate. For a review on the recent developments in

the density support estimation, see [14]. A significant amount of research is dedicated to

asymptotic results of the estimation of the expected area of a convex hull. The results for

the i.i.d. case can be found in [99]. In [38] the authors introduce a linear programming

approach and the corresponding estimators are analysed asymptotically. The work of

[86] introduces the connections to the classification problems. In [73] the authors, when

estimating the density support set in Hausdorff distance, calculate the asymptotically

exact risk. For a regression model when the distribution of errors is one-sided and regularly

varying at 0 the authors in [62] propose an estimator for the boundary regression function

which adapts to the unknown smoothness of the function.

2.1.2 Organisation of the chapter

The next section collects the main results of this chapter. Section 2.3 provides an introduc-

tion into the theory of point process models together with a detailed overview of Poisson

point processes. We introduce the main definitions as well as discuss their main applications.

In Section 2.3.3, we formulate two statistical models which are the focus of this chapter, a

PPP model and a multidimensional regression model with one-sided errors. Section 2.4 is

devoted to block-wise estimation methods, when the estimator is an aggregate of local

estimators constructed on subsets of [0, 1]d. As a first step, in Section 2.4.1 we construct an

estimator for the PPP model by using martingale theory and then extend the results to the

one-sided regression model in Section 2.4.2. The proposed block-wise estimators estimate

the functionals with no bias and at the minimax optimal rate n, which is established in

Section 2.4.4. The proof of the minimax optimal rate is based on a Bayesian risk bound,

which provides a lower bound for the minimax risk, see [74] for similar approaches. In

Section 2.5, we study a nonparametric maximum likelihood approach in the PPP model.

Using the fact that a maximum likelihood estimator for the function g is a complete and

sufficient statistics, shown in Proposition 2.5.1, we derive an unbiased estimator of minimal

variance for the linear functional. Further, we discuss a central limit theorem in Section

2.5.2. In Section 2.5.3, we provide numerical results for the validity of the central limit

theorem for the nonparametric maximum likelihood estimator in the PPP model. We

illustrate both one-dimensional and two-dimensional scenarios numerically in Section 2.5.3

and Section 2.6. In Section 2.7.1 we provide some auxiliary technical lemmata. We also

collect some foundational results from statistical theory that are used throughout this

chapter in Section 2.7.2
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2.2 Main contributions

The main goal of this chapter is to develop new methods of estimating linear functionals

(2.1.2) and (2.1.4) in multidimensional case. As the main contributions we list the following

• We rigorously introduce two statistical models for estimating linear functionals in

(2.1.2) and (2.1.4). We first study the PPP model and then the one-sided regression

model.

• We construct two types of estimators for each of the models, a block-wise estimator

and a maximum likelihood estimator (MLE).

• We further study the statistical properties of the provided estimators. We prove that

the block-wise estimator is an unbiased estimator for linear functionals in discrete-

and continuous-time settings. We also calculate an upper bound for the variance

of the estimator. In the PPP model we provide the minimax optimal rate, and we

show that the MLE is UMVU (uniformly of minimum variance among all unbiased

estimators).

• Finally, we provide numerical illustrations for the results with simulated data.

2.3 Introduction and background

We start by introducing point process models and discussing a wide range of their

applications in statistical modelling. We then focus on the PPP model and also recall

the foundational definitions and results from nonparametric statistics which are used

throughout the chapter.

2.3.1 Point process models

A point process is a model of indistinguishable points distributed randomly in a space.

This space can be quite general, but usually set to be Rd with d ≥ 1. In dimensions d > 1,

point processes are usually referred to as spatial point processes. In the one-dimensional

case, there typically exists a natural ordering for the underlying domain of the process,

such as for time, unlike in higher dimensions d > 1, where ordering doesn’t typically exist.

A toy example of a one-dimensional point processes is the number of emergency phone

calls received at a police station at times Ti, which can be modelled by a Poisson process.

A one-dimensional point process can also be seen as a counting process. As such, one can
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define for all t > 0 (with a slight abuse of notation)

Nt = number of points arriving up to time t

=
∞∑
i=1

I{Ti ≤ t}.

For special cases of point processes, such as the Poisson process, the increments Ntj −Nti ,

0 ≤ ti ≤ tj are independent random variables for disjoint intervals. While there is no

natural ordering of the points in a multidimensional space, one can generalise the interval

counts Ntj −Nti , 0 ≤ ti ≤ tj to the subset counts. For a bounded and closed set A ⊆ Rd

we define the following random variable

N(A) = number of points falling inside A.

Similarly to the one-dimensional case, for special cases of spatial processes, such as the

Poisson point process, whenever the sets A and B are disjoint the random variables N(B)

and N(A) are independent.

As the next step, we rigorously formulate the definition of a point process. Let E
in Rd denote a locally compact Hausdorff space whose topology has a countable base

(usually Rd) as a state space and denote by E its Borel σ-algebra. Let B be the family of

bounded (relatively compact) sets in E . On (E, E) we define the set of random measures

M = {m measure on E : m(A) < ∞ ∀A ∈ B} and the set of point measures Mp =

{m measure on E : m(A) ∈ N, ∀A ∈ B}. The σ-algebra on the set M can be easily

defined in terms of sets as M = σ(m 7→ m(A), A ∈ E). In particular, M is countably

generated. The set Mp belongs to M, and we define Mp = M∩Mp.

Definition 2.3.1. Let (Ω,F ,P) be an abstract probability space.

(a) A random measure on E is a measurable mapping M of (Ω,F) into (M,M);

(b) A point process on E is a measurable mapping N of (Ω,F) into (Mp,Mp).

A point process N is a random distribution of points in E. Let N(A) be the number of

points in A, then, as was mentioned above, there exists a representation of a point process

N as the sum of Dirac delta functions δXi

N =
∑K

i=1 δXi ,

where δx is the point mass at x, Xi are measurable mappings of (Ω,F) into (E, E), and K

is a random variable with values in {0, 1, ...,∞}. As such, a point process can be described

as the measure that allocates a unit mass a random set of points in E. Furthermore, one

can also use finite-dimensional distributions, vacancy probabilities, capacity functional, or

generating function for mathematical construction and characterisation of point processes,
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refer to [36] for the range of equivalence theorem for spatial processes. However, an easier

and more straightforward way is to construct a point process by transforming an already

existing point process by thinning, superposition, or clustering, see [108].

Point processes are well studied in probability theory and are mainly used to model

and analyse spatial data, refer to [89]. They are applied in a variety of fields starting

from epidemiology, and computational neuroscience and finishing with astronomy and

agriculture, see [36]. They are also used in applications to machine learning and pattern

recognition, however this direction is relatively new, see [12, 17, 26, 76, 113]. Point process

models show some links with random fields that are often applied in pattern recognition,

for example conditional and Markov random fields, for further detail refer to [6].

2.3.2 Poisson point process

One of the main examples of point processes is the so-called PPP. Poisson point processes

play an important role in stochastic analysis. We start by providing the definition of PPP

using the notation from the previous section.

Definition 2.3.2. Let µ be an element of M. A point process N on E is a Poisson process

with intensity measure µ if:

1. For all mutually disjoint sets A1, ..., An ∈ E , the random variables N(A1), ..., N(An)

are independent.

2. For any A ∈ E , we have N(A) ∼ Poiss
(
µ(A)

)
.

Thus, N has independent increments and for each A the random number of points in

A has a Poisson distribution with mean µ(A). When E = Rd and µ(A) = λ
∣∣A∣∣, where

∣∣A∣∣
is the Lebesgue measure of the set A, the process defined above is called a homogeneous

Poisson process and λ is known as the intensity of the process. This process is well-defined

as it follows from the following theorem.

Theorem 2.3.3. The Poisson point process exists and is uniquely determined by its

intensity measure.

The aforementioned definition and proof of this result can be found, for example, in

[21, 36, 66, 77].

Applications of the Poisson point process

The tractability of the PPP has been acknowledged in many statistical applications. A

vast number of realistic models of physical processes give rise to a PPP (often relying on

the Poisson limit theorem), see [4, 59, 83], some of which we shortlist here.
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1. Spatial birth-and-death process. Consider a dynamical system seen as a collection

of motionless points in some space at each moment of time. We interpret the points

as particles, or individuals. Each particle is characterised by its location. Existing

particles may die within time interval ∆t with a probability α∆t. The rate α is

called a mortality rate per particle per unit time. Further, in any small region of

area ∆s in the same time interval new particles may appear with probability g∆s∆t.

Independently of the initial state of the system over a long period of time the spatial

birth-and-death process arrives to an equilibrium state. At this equilibrium state the

pattern of the system is a realisation of a Poisson process with intensity function

g/α, for further detail on spatial birth-and-death processes and a proof of the result,

see [34, 97].

2. Random strewing. Consider a high number of points N that are being scattered

randomly in a region E according to a binomial point process, implying that the

points are independent of each other and also uniformly distributed over this region

E. If we observe this pattern in a subset S, i.e. S ⊆ E and such that the area of

S is much smaller than the area of E, then the observed pattern approximately

corresponds to a PPP inside S.

3. Random displacement. Consider a system represented by a point process X.

Suppose that each point of the process X is subjected to a random displacement

independently of other points, i.e. a point xi is moved from its original location

to a new location yi = xi + ai where ai is a random vector. Assuming that ai are

independent random vectors, then, under some additional assumptions, one can show

that the resulting point process Y is approximately an inhomogeneous Poisson point

process, see [84].

2.3.3 Statistical models and estimation problems

We are now ready to introduce two statistical models for the purpose of efficient estimation

of linear functionals of the form (2.1.2) and (2.1.4) respectively which are used throughout

this chapter. The PPP model in continuous-time and the regression-type model in discrete-

time.

• Poisson point process model given by observing a PPP on [0, 1]d×R of intensity

λg(x, y) = n1(y ≥ g(x)), x ∈ [0, 1]d, y ∈ R, (2.3.1)

where g is a smooth function to be specified further.

See Figure 2.1 for an illustration of the PPP model in one-dimensional case.

60



Figure 2.1: PPP model. The circles indicate the PPP observation points (Xi, Yi) with intensity
(2.3.1), the blue line is the function g. The x-axis corresponds to the values of (Xi) and y-axis
represents the values of (Yi).

• Multidimensional regression model with one-sided errors

Yi = g(Xi) + εi, Yi ∈ R,

where we assume that (Xi)1≤i≤n are spread deterministically over [0, 1]d. We further

consider the equidistant case, where the data points (Xi)1≤i≤n form a grid in the

following way 
n−1/d

n−1/d

...

n−1/d

 ,


2n−1/d

n−1/d

...

n−1/d

 , · · · ,


1
...

1

(n1/d − 1)n−1/d

 ,


1
...

1

1

 ,

with n−1/d ∈ N. In the one-dimensional case the above becomes Xi = i/n with

i = 1, . . . , n. The error terms (εi) are assumed to be supported on [0,∞). The

prototypical case is that (εi) are independent and identically distributed with εi ≥ 0

and for some intensity parameter λ > 0

P(εi ≤ x) = λx+O(x2), i = 1, . . . , n, (2.3.2)
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as x ↓ 0, e.g. ε ∼ Exp(λ).

For an illustrative example of one-sided regression model also in one-dimensional

case see Figure 2.2 (where all the observation points (Xi,Yi) lie above the function

g). One can see that in this model the points are concentrated mainly near the

function g on its upper side.

Figure 2.2: One-sided regression model. The circles indicate the observation points (Xi,Yi) and
the blue line is the function g. The x-axis corresponds to the values of (Xi) and y-axis represents
the values of (Yi).

One of the main differences between the PPP model (2.3.1) and regression model with

one-sided errors (2.3.2) can be seen when doing statistical inferences. A classical approach

to the inference is likelihood estimation. It clearly differs for stochastic processes, in

particular, for point processes, when the number of observations is a random variable,

from estimation procedures for classical inference based on a fixed sample of data.

2.3.4 Technical assumptions

Finally, let us specify the family of probability measures P = {Pg, g ∈ G}, in our setting.

From now on we shall assume that the regression function g in both models (2.3.3) and

(2.3.1) belongs to the Hölder class.

Definition 2.3.4. (Hölder property). Let β ∈ (0, 1] and R > 0 be two positive numbers.

The Hölder class Cβ(R) is defined as the set of all continuous functions f : [0, 1]d → R
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satisfying

|f(x)− f(y)| ≤ R ‖ x− y ‖βL2 , ∀x, y ∈ [0, 1]d.

Remark 2.3.5. The variable β is referred to as the exponent of the Hölder condition. If a

function on an interval satisfies the Hölder property with β > 1 then it is constant. In

case of β = 1 the function satisfies the so-called Lipschitz condition. For any other values

of β, the Hölder property implies that the function is uniformly continuous.

The full list of notations can be found in List of Notation, page 13. However, throughout

this chapter we are actively using some of those notations. For a better presentation we

restate them again here. We agree on the following conventions

1. an . bn or an = O(bn) whenever an is bounded by a constant multiple of bn

2. an ∼ bn means that an . bn as well as bn . an

3. an = o(bn) meaning that an/bn → 0 and an � bn when an/bn → 1.

2.4 Block-wise estimation in multidimensional space

We start this section with the continuous-time model, i.e. the PPP model.

2.4.1 Poisson point process model

The main goal of this section is to find an efficient way of estimating the following linear

functional in dimension d

ϑ =

∫
[0,1]d

g(x)ω(x)dx, for some ω ∈ L2([0, 1]d). (2.4.1)

Let (Xj, Yj)j≥1 be the observations of the PPP in Rd (d ≥ 1) with the intensity function

is of the form (2.3.1). To grasp the main idea behind block-wise estimation method that is

being introduced in this section, we assume first that ω(x) ≡ 1 holds, then the target of

estimation is

ϑ =

∫
[0,1]d

g(x)dx. (2.4.2)

Suppose that we also know a deterministic function g0 : [0, 1]d → R such that the following

property g0 ≥ g holds point-wise. The number of PPP observations that lie below the

graph of g0 is distributed according to the Poisson law with the intensity measure equal to

n multiplied by the area between g and g0, i.e.

∑
j≥1

1(Yj ≤ g0(Xj)) ∼ Poiss

(
n

∫
[0,1]d

(g0 − g)(x)dx

)
.
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Hence, by introducing the following estimator ϑ̂ of the functional (2.4.2)

ϑ̂ :=

∫
[0,1]d

g0(x)dx− 1

n

∑
j≥1

1(Yj ≤ g0(Xj)), (2.4.3)

we obtain that the expectation of that estimator (2.4.3) equals to (2.4.2)

E[ϑ̂] =

∫
[0,1]d

(g0 − (g0 − g))(x)dx = ϑ,

which implies that the estimator ϑ̂ from (2.4.3) is unbiased for ϑ in (2.4.2). We can also

compute the variance of the estimator ϑ̂

Var(ϑ̂) =
1

n

∫
[0,1]d

((g0 − g))(x)dx. (2.4.4)

From (2.4.4) we can see that the larger the area between the graphs the higher is the

variance of ϑ̂.

To find a good candidate for an estimator of a general linear functional (2.4.1) we

adapt the same idea as above, when ω = 1. Now the main goal is to identify an empirical

substitute for g0 that keeps the property of unbiasedness by stopping time arguments. A key

ingredient here is that the function g can be bounded locally under the Hölder-continuity

assumption.

To this end, we divide a d-dimensional unit square [0, 1]d into d-dimensional cubes

defined as Idk := [kh, (k+ 1)h)d and the length of each side of this cube is being equal to h.

Denote the block-wise minimum (Xj, Yj)j≥1 as Y ∗k then Y ∗k := minj:Xj∈Idk Yj and it satisfies

the following inequality

Y ∗k ≥ min
j:x∈Idk

g(x).

Since the Hölder property holds for g we can conclude by Definition 2.3.4 that

g(x) ≤ Y ∗k +R‖z‖βL2 , ∀x ∈ Idk , (2.4.5)

where z is a vector in Rd with all entries equal to h. Thus, Y ∗k +R‖z‖βL2 is a local upper

bound for g. As an illustrative example consider a one-dimensional case, i.e., when d = 1,

see Figure 2.3, where the construction of the estimator ϑ̂ is illustrated. Next, using the fact

that the L2-norm of the vector z is equal to
√
dh we can rewrite the local upper bound

from (2.4.5) as Y ∗k + R
√
dhβ. We now can estimate the functional (2.4.1) locally on the

cubes introduced in the following way

ϑ̂k := (Y ∗k +R
√
dhβ)ω̄k −

1

nhd

∑
i≥1

1(Xi ∈ Idk , Yi ≤ Y ∗k +R
√
dhβ)ω(Xi), (2.4.6)
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Figure 2.3: Construction of ϑ̂block in the one-dimensional case. The circles indicate the observation
points Xi, Yi in the PPP model. The crosses correspond to the block-wise minimum Y ∗k and the
horizontal grey lines are the upper boundaries Y ∗k +Rhβ. The blue smooth line represents g.

where ω̄k = h−d
∫
Idk
ω(x)dx. The set of estimators (ϑ̂k) estimate only the following local

functionals ϑk := h−d
∫
Idk
g(x)ω(x)dx. We further need to introduce a block-wise estimator

to estimate the linear functional (2.4.1). We construct it as a weighted sum of the block-wise

estimators (ϑ̂k), i.e. as

ϑ̂block =
h−d∑
k=1

ϑ̂kh
d

Next, we formulate the main properties of this estimator (2.4.1) in the following theorem.

Mainly, we show that the estimator ϑ̂block is unbiased and provide an upper bound for its

variance.

Theorem 2.4.1. Let (Xi, Yi)i≥1 be the observations of the PPP in Rd (d ≥ 1) of intensity

λg(x, y) = n1(y ≥ g(x)), x ∈ [0, 1]d, y ∈ R,

with a function g ∈ Cβ(R). Then, for the estimator ϑ̂block =
∑h−d

k=1 ϑ̂kh
d of the functional

(2.4.1) with ϑ̂k from (2.4.6) the following result holds

E[ϑ̂block] = ϑ, Var(ϑ̂block) ≤ 2R
√
dhβ + (nhd)−1

n
‖ω‖2

L2 ,

65



where ‖ω‖2
L2 =

∫
[0,1]d

ω(x)2dx. Moreover, for the asymptotically optimal size of the length

of the cube Idk which is given by

h � (n/
√
d)−1/(β+d)

it holds

lim sup
n→∞

sup
g∈Cβ(R)

n(2β+d)/(β+d)Var(ϑ̂block) ≤ β + d

β
(2βR/

√
d)d/(β+d)‖ω‖2

L2 .

Proof. Consider the weighted counting process defined on the cube Idk in the following way

N(t) :=
∑
i≥1

1(Xi ∈ Idk , Yi ≤ t)ω(Xi), t ∈ R.

When w ≡ 1, (N(t), t ∈ R) corresponds to the pure counting process
∑

i≥1 1(Xi ∈
Idk , Yi ≤ t), which is a point process with respect to t and such that the intensity measure

λt = n
∫

[0,1]d
(t − g(x))+dx is deterministic. As a result, one can show that (N(t), t ∈ R)

for a general ω is a process with independent increments satisfying

E[N(t)] =

∫
Idk

n(t− g(x))+ω(x)dx, Var(N(t)) =

∫
Idk

n(t− g(x))+ω(x)2dx.

Moreover, the process M(t) = N(t) − E[N(t)], which is a centred weighted counting

process, is a cádlág martingale with respect to the following filtration

Ft = σ((Xi, Yi)1(Yi ≤ t), i ≥ 1) t ∈ R, (2.4.7)

which predictable quadratic variation is given by 〈M〉t = Var(N(t)), (see Proposition 2.32

in [66]).

Now define a stopping time τ as τ := Y ∗k +R
√
dhβ, which is an Ft-stopping time. Next,

to demonstrate the unbiasedness and estimate the variance of ϑ̂k, we have to elaborate on

the properties of the stopping time τ a bit more. We first show that the expectation of τ

is finite. For that we calculate an upper bound for the following probability

P (τ ≥ t) = exp
(
− n

∫
Idk

(t−R
√
dhβ − g(x))+dx

)
≤ exp

(
− nhd(t−R

√
dhβ −max

x∈Idk
g(x))

)
for t ≥ maxx∈Idk g(x) +R

√
dhβ. In particular, if we take T = maxx∈Idk g(x) +R

√
dhβ, for
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the expectation of τ we obtain the result

E[τ ] =

∫ ∞
0

P (τ ≥ t)dt =

∫ T

0

P (τ ≥ t)dt+

∫ ∞
T

P (τ ≥ t)dt =

≤
∫ T

0

P (τ ≥ t)dt+ exp
(
nhd(R

√
dhβ + max

x∈Idk
g(x))

)∫ ∞
0

e−nh
dtdt <∞. (2.4.8)

Hence, from the fact that the expectation of τ is finite and Theorem 2.7.1 on optional

stopping it follows that E[M(τ)] = 0. From (2.4.8) we have that the expectation of

Y ∗k + R
√
dhβ is finite. This implies that we always observe a point in any cube Idk of a

given length h, suggesting that the estimator is well-defined for any choice of h. However,

while reducing h at some point the estimator will result in a higher variance, as on

some intervals the upper boundary will move far away for the function of interest g, as

Y ∗k might jump relatively high with a relatively small choice of h. Now, for the local

estimator ϑ̂k by plugging τ into (2.4.6) and using the fact that ϑk := h−d
∫
Idk
g(x)ω(x)dx

and ω̄k = h−d
∫
Idk
ω(x)dx

ϑ̂k = τ ω̄k −
1

nhd
N(τ) = τh−d

∫
Idk

ω(x)dx− 1

nhd
EN(τ)− 1

nhd
M(τ)

= τh−d
∫
Idk

ω(x)dx− h−d
∫
Idk

(
τ − g(x)

)
ω(x)dx− 1

nhd
M(τ)

= ϑk −
1

nhd
M(τ), (2.4.9)

that E[ϑ̂k] = ϑk. Moreover, we have

E[N(τ)] = n

∫
Idk

E[(τ − g(x))+]ω(x)dx

and since 〈M〉t = Var(N(t)) we obtain

Var[M(τ)] = E[〈M〉τ ] = n

∫
Idk

E[(τ − g(x))+]ω(x)2dx.

The identity

ϑ̂k = τ ω̄k −
1

nhd
N(τ) = ϑk −

1

nhd
M(τ)

and the fact that the estimator is unbiased E[ϑ̂k] = ϑk together with τ ≥ g(x) imply

E[(τ − g(x))+] = E[Y ∗k ] +R
√
dhβ − g(x) for all x ∈ Idk .
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As a result this brings us to the following equation for the variance of M(τ)

Var[M(τ)] = n

∫
Idk

E[Y ∗k +R
√
dhβ − g(x)]ω(x)2dx. (2.4.10)

From (2.4.9) using the identity for ϑ̂k of the form

ϑ̂k = ϑk −
1

n
M(τ)

together with (2.4.10) we arrive to the result for the variance of ϑ̂k

Var(ϑ̂k) =
1

n2h2d
Var[M(τ)] =

1

nh2d

∫
Idk

E[Y ∗k +R
√
dhβ − g(x)]ω(x)2dx.

Next, to evaluate the upper bound for the variance of the estimator ϑ̂k we need to provide

an upper bound for E[Y ∗k ]. By using the fact that Y ∗k − maxx∈Idk g(x) is stochastically

smaller that the minimum of the Poisson point process of the intensity n1(x ∈ Idk , y ≥ 0)

in y we conclude the rough universal bound with a random variable E ∼ Exp(nhd)

E[Y ∗k ] ≤ E[max
x∈Idk

g(x) + E] ≤ g(x) +R
√
dhβ + (nhd)−1.

This proves that

Var(ϑ̂k) ≤
2R
√
dhβ + (nhd)−1

nh2d

∫
Idk

ω(x)2dx.

Now we are able to conclude that for the final estimator ϑ̂block =
∑h−d

k=1 ϑ̂kh
d from the

property of independence of (ϑ̂k) it holds E[ϑ̂block] = ϑ, and

Var(ϑ̂block) ≤ 2R
√
dhβ + (nhd)−1

n

h−d∑
k=1

∫
Idk

ω(x)2dx =
2R
√
dhβ + (nhd)−1

n
‖ω‖2

L2 .

To find the asymptotically optimal h we take the derivative of (2R
√
dhβ + (nhd)−1)/n over

h and equate it to zero

(2R
√
dhβ + (nhd)−1

n

)′
h

=
2R
√
dnβhβ+d − d
n2hd+1

= 0,

the solution of this equation is h � (2βRn/
√
d)−1/(β+d). Insertion of the asymptotically

optimal h yields the variance bound

Var(ϑ̂block) ≤ β + d

β
(2βR/

√
d)d/(β+d)n−(2β+d)/(β+d)‖ω‖2

L2 .
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Example 2.4.2. We now consider an example of how the above results can be applied when a

function possess Hölder property along each coordinate axis. For a function g : [0, 1]2 → R
which is from a Hölder ball of regularity β1 ∈ (0, 1] and radius R1 for the first component

and from a Hölder ball of regularity β2 ∈ (0, 1] and radius R2 for the second component,

the following inequalities hold

|g(x1
1, x

2)− g(x1
2, x

2)| ≤ R1|x1
1 − x1

2|β1 ,

|g(x1, x2
1)− g(x1, x2

2)| ≤ R1|x2
1 − x2

2|β2 .

For any two vectors x1 and x2 from R2 it holds

|g(x1
1, x

1
2)− g(x2

1, x
2
2)| = |g(x1

1, x
1
2)− g(x2

1, x
1
2) + g(x2

1, x
1
2)− g(x2

1, x
2
2)|

≤ R1|x1
1 − x2

1|β1 +R1|x1
2 − x2

2|β2 .

For a function g we use the above theory to estimate linear functions. The analogous

block-wise estimator is again ϑ̂block =
∑(h1h2)−1−1

k=0 ϑ̂k with

ϑ̂k := (Y ∗k +R1h
β
1 +R2h

β
2 )ω̄k −

1

nh2
1h

2
2

∑
i≥1

1(Xi ∈ I2
k , Yi ≤ Y ∗k +R1h

β
1 +R2h

β
2 ),

and the upper bound of the variance is given by

Var(ϑ̂block) ≤ 2R1h
β
1 + 2R2h

β
2 + (nh1h2)−1

n
‖ω‖2

L2 .

The asymptotically optimal size of the length of the cube’s side is a solution of the following

equation (
2R1h

β1
1 + 2R2h

β2
2 + (nh1h2)−1

)′
= 0,

under the constraint hβ11 = hβ22 we obtain

h1 � n−β2/(β1β2+β1+β2),

h2 � n−β1/(β1β2+β1+β2).

Introducing 1/β = (β1 + β2)/β1β2 we have hβ11 = hβ22 � n−1/(1+1/β).
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2.4.2 Regression-type model

Let us recall the regression model with one-sided errors

Yi = g(Xi) + εi, 1 ≤ i ≤ n,

where (εi)1≤i≤n are independent and identically distributed with εi ≥ 0 and for some λ > 0

it holds

P (εi ≤ x) = λx+O(x2) (2.4.11)

as x ↓ 0. The main example is when the error terms are exponentially distributed, i.e.

εi ∼ Exp(λ), for 1 ≤ i ≤ n, however, any distribution on Rd
+ such that the distribution

possesses a Lipschitz continuous density fε at zero and fε(0) = λ is covered as long as

some loose tail boundary condition at infinity holds.

Recall the functional of interest in the discrete-time representation as before satisfies

ϑ(n) = n−1

n∑
i=1

g(Xi)ω(Xi) (2.4.12)

for some function ω : [0, 1]d → R. Similarly to the PPP case, we partition [0, 1]d into

d-dimensional cubes Ĩdj with the length h of each side, such that 1/hd ∈ N. Next, on each

cubes of indices Ĩdk we construct an estimator for ϑk = n−1
∑

i∈Ĩdk
g(Xi)ω(Xi) as

ϑ̃k :=
1

n

∑
i∈Ĩdk

(
Yi ∧ (Y ∗

k +R
√
dhβ)− λ−11(Yi ≤ Y ∗

k +R
√
dhβ)

)
ω(Xi). (2.4.13)

As before Y ∗
k = mini∈Ĩdk

Yi corresponds to the minimal observation on each cube. The idea

to use a similar estimator as in the regression-type model comes from the fact that the

models are asymptotically equivalent in the Le Cam sense, see [79, 80], and so intuitively

a similar-type estimator should perform well in both models. The main difference with the

PPP-estimator is in the empirical upper bound for g on Ĩdk . Now this upper bound is given

by the minimum of Y ∗
k +R

√
dhβ and Yi. This difference has a negligible impact on the

rate-optimal choice of h. Now let ‖ω‖p =
(

1
n

∑n
i=1 |ω(Xi)|p

)1/p
denote the standardised

lp-norm, then, the block-wise estimator for the functional (2.4.12) is given by

ϑ̃blockn =
h−d−1∑
k=0

ϑ̃k.

The next result provides upper bounds for both the bias and variance of the estimator

ϑ̃blockn in case when the error terms satisfy (2.4.11), as well as demonstrates the property

of unbiasedness in case of exponentially distributed error terms.
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Theorem 2.4.3. Assume that error variables ε satisfy (2.4.11) and also are independent

and identically distributed. Then, for g ∈ Cβ(R) the estimator ϑ̃blockn =
∑h−d−1

k=0 ϑ̃k, with

each ϑ̃k following (2.4.13), satisfies uniformly in n, h, R, β

|E[ϑ̃blockn − ϑ(n)]| . (R
√
dhβ + (nhd)−1)2‖ω‖1, Var(ϑ̃blockn ) .

R
√
dhβ + (nhd)−1

n
‖ω‖2,

when
√
dh→ 0 together with nhd →∞. For d ≥ 1 with the rate-optimal length of the side

of the cube

h ∼ n−1/(β+d)

it holds (
E[ϑ̃blockn − ϑ(n)]

)2

= o
(
Var(ϑ̃blockn )

)
, Var(ϑ̃blockn ) . n−(2β+d)/(β+d).

Remark 2.4.4. In Theorem 2.4.3 if we consider the case of dimension 1 uniformly over

β > 1/2, R ≤ R0 <∞ we obtain for the rate-optimal length of the cube’s side

h ∼ n−1/(β+1)

the following result(
E[ϑ̃blockn − ϑ(n)]

)2

= o
(
Var(ϑ̃blockn )

)
, Var(ϑ̃blockn ) . R1/β+1n−(2β+1)/(β+1)‖ω‖2

2.

Remark 2.4.5. For the estimator ϑ̃blockn the following result holds√
E
[
(ϑ̃blockn − ϑ(n))2

]
= O

(
n−(β+d/2)/(β+d)

)
.

Moreover, it can be inferred that for the values of d up to O(log n) the variance of the

estimator ϑ̃blockn tends to 0 as n→∞.

Proof. As in the proof of the previous result for the PPP model we first fix the cube Ĩdk of

index k and for t ∈ R introduce the following process

M(t) :=
∑
i∈Ĩdk

(
1(Yi ≤ t) + log F̄ε(Yi ∧ t− g(Xi))

)
ω(Xi), (2.4.14)

where F̄ε is defined as F̄ε(y) = P (εi ≥ y). This process is formed of two components.

The first one
∑

i∈Ĩdk
1(Yi ≤ t) represents the counting process and the second component

corresponds to it compensator. We can rewrite the equation (2.4.14) by utilising the notion

of a cumulative hazard function H(•) for Yi, which is determined in the following way

H(t) ≡ HYi(t) ≡
∫ t−g(Xi)

0

[1/F̄ε(y)]d]F̄ε(y) = − log F̄ε(t− g(Xi)).
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As the next step, we plug in the hazard function H into (2.4.14)

M(t) =
∑
i∈Ĩdk

(
1(Yi ≤ t)−

∫ t−g(Xi)

0

1(εi ≥ u)dH(u)
)
ω(Xi)

=
∑
i∈Ĩdk

(
1(Yi ≤ t)−

∫ Yi∧t−g(Xi)

0

dH(u)
)
ω(Xi)

=
∑
i∈Ĩdk

(
1(Yi ≤ t)−H(Yi ∧ t− g(Xi))

)
ω(Xi).

The process (M(t), t ∈ R) represents a martingale with respect to the following filtration

Ft = σ
(
Yi1(Yi ≤ t), i ∈ Ĩdk

)
,

and since M(0) = 0, we can conclude that E[M(t)] = 0. The compensator of the

following counting process
∑

i∈Ĩdk
1(Yi ≤ t) equals to the integrated hazard function∑

i∈Ĩdk
H
(
Yi ∧ t− g(Xi)

)
. From the result of Theorem 2.5.1 in [33] we can then infer for

the process

M̃(t) =
∑
i∈Ĩdk

(
1(Yi ≤ t)−H

(
Yi ∧ t− g(Xi)

))

that its quadratic variation equals to

〈M̃〉t =
∑
i∈Ĩdk

H
(
Yi ∧ t− g(Xi)

)
=
∑
i∈Ĩdk

(
− log F̄ε

(
Yi ∧ t− g(Xi)

))
,

and thus, the quadratic variation for the process 〈M〉t can be calculated as

〈M〉t =
∑
i∈Ĩdk

(
− log F̄ε

(
Yi ∧ t− g(Xi)

))
ω(Xi)

2.

Furthermore, by introducing the following random variable τ := Y ∗
k +R

√
dhβ one can see

that it is a stopping time with respect to (Ft). Taking the following difference

ϑ̃k − ϑk =
1

nλhd

(∑
i∈Ĩdk

[
λ
(
Yi ∧ τ − g(Xi)

)
+ log F̄ε

(
Yi ∧ τ − g(Xi)

)]
ω(Xi)−M(τ)

)

from the representation of this difference and the stopping Theorem 2.7.1 together with

the fact that the stopping time τ has a finite expectation, i.e. E[τ ] < ∞, which is the
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result of the moment bound from Lemma 2.7.2, we obtain the next result

E[ϑ̃k − ϑk] =
1

nλhd

∑
i∈Ĩdk

E
[
λ
(
Yi ∧ τ − g(Xi)

)
+ log F̄ε

(
Yi ∧ τ − g(Xi)

)]
ω(Xi),

here for the simplicity we introduce the following function Gε(z) := λz + log F̄ε(z), then,

the equation above can be rewritten as

E[ϑ̃k − ϑk] =
1

nλhd

∑
i∈Ĩdk

E
[
Gε

(
Yi ∧ τ − g(Xi)

)]
ω(Xi). (2.4.15)

When the error terms are exponentially distributed, i.e. ε ∼ Exp(λ), it holds that

log F̄ε(z) = −λz and as a result it follows that Gε(z) = 0. As a result, we can con-

clude that the estimator is unbiased.

In a more general case, there is some δ > 0 such that |Gε(z)| . z + | log F̄ε(z)|1(z > δ).

Thus, by plugging in the result into (2.4.15) and introducing the following notation

C(τ,Xi) := τ − g(Xi) and K(Yi,Xi) := Yi − g(Xi) we have

|E[ϑ̃k − ϑk]| ≤
1

nλhd

∑
i∈Ĩdk

E[|Gε(Yi ∧ τ − g(Xi))|]|ω(Xi)|

.
1

nλhd

∑
i∈Ĩdk

E[(Yi ∧ τ − g(Xi))
2 + | log F̄ε(Yi ∧ τ − g(Xi))|1(| log F̄ε(Yi ∧ τ − g(Xi))| > δ)]|ω(Xi)|

.
1

nλhd

∑
i∈Ĩdk

E[(C(τ,Xi))
2 + | log F̄ε(K(Yi,Xi))|1(| log F̄ε(K(Yi,Xi))| > δ)]|ω(Xi)|.

Next, from the Cauchy-Schwarz inequality and the fact that F̄ε(εi) ∼ U [0, 1] we obtain

|E[ϑ̃k − ϑk]| .
1

nhd

∑
i∈Ĩdk

E[(C(τ,Xi))
2] + E[log(F̄ε(K(Yi,Xi))

2]1/2P (| log F̄ε(K(Yi,Xi))| > δ)1/2|ω(Xi)|

.
1

nhd

∑
i∈Ĩdk

E[(C(τ,Xi))
2] + E[log(F̄ε(εi))

2]1/2P (F̄ε(min
i∈Ĩdk

εi + 2R
√
dhβ) < e−δ)1/2|ω(Xi)|

.
1

nhd

∑
i∈Ĩdk

E[(C(τ,Xi))
2] + P (min

i∈Ĩdk
εi < F̄−1

ε (e−δ)− 2R
√
dhβ)1/2|ω(Xi)|

.
(R
√
dhβ + (nλhd)−1)2 + F̄ε(F̄

−1
ε (e−δ)− 2R

√
dhβ)nh

d/2

nhd

∑
i∈Ĩdk

|ω(Xi)|.

By setting h→ 0 and nhd →∞ the second term in the numerator converges geometrically
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quick to zero. As a result, we immediately have the assertion for the bias of ϑ̃blockn

|E[ϑ̃blockn − ϑ(n)]| . (R
√
dhβ + (nλhd)−1)2

λ
‖ω‖1.

To bound the variance we use the standard upper bound for the variance of a sum of two

random variables, i.e. Var(A+B) ≤ 2Var(A) + 2Var(B).

Var(ϑ̃k) = Var(ϑ̃k − ϑk)

=
1

(nλhd)2
Var
(∑
i∈Ĩdk

[
λ(Yi ∧ τ − g(Xi)) + log F̄ε(Yi ∧ t− g(Xi))

]
ω(Xi)−M(τ)

)
≤ 2

(nλhd)2
Var
(∑
i∈Ĩdk

[Gε(Yi ∧ τ − g(Xi))]ω(Xi)
)

+
2

(nλhd)2
Var(M(τ))

≤ 2

(nλhd)2

∑
i∈Ĩdk

nhdE
[(
Gε(Yi ∧ τ − g(Xi))ω(Xi)

)2]
+

2

(nλhd)2
E[M(τ)2].

From Theorem 2.7.1 we know that E[M(τ)2] = E[〈M〉τ ] holds. Hence, we have

E[M(τ)2] = E
[∑
i∈Ĩdk

(
− log F̄ε

(
Yi ∧ τ − g(Xi)

))
ω(Xi)

2
]
.

To bound the first term in the upper bound for the variance Var(ϑ̃k), we use the same

technique as above

E
[(
Gε(Yi ∧ τ − g(Xi))

)2
]
. E

[(
τ − g(Xi)

)4
]

+ E
[

log F̄ε(εi)
4
]1/2

P
(
F̄ε(min

i∈Ĩdk
εi + 2R

√
dhβ) < e−δ

)1/2

.
(
R
√
dhβ + (nλhd)−1

)4
+ F̄ε

(
F̄−1
ε (e−δ)− 2R

√
dhβ
)nhd/2

.
(
R
√
dhβ + (nλhd)−1

)4
.

Now it is left to find an upper bound for the expectation of quadratic variation E[〈M〉τ ]
at time τ . To bound it, we also use the same technique as above

E[M(τ)2] ≤ E
[∑
i∈Ĩdk

| log F̄ε
(
Yi ∧ τ − g(Xi)

)
|ω(Xi)

2
]

≤ E
[∑
i∈Ĩdk

(
|Gε

(
Yi ∧ τ − g(Xi)

)
|+ λ(Yi ∧ τ − g(Xi))

)
ω(Xi)

2
]

. E
[∑
i∈Ĩdk

(
(τ − g(Xi))

2 + (τ − g(Xi)) + | log F̄ε(Yi − g(Xi))|1(| log F̄ε(Yi − g(Xi))| > δ)
]
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. R
√
dhβ + (nλhd)−1 + F̄ε

(
F̄−1
ε (e−δ

)
− 2R

√
dhβ)nh

d/2

. R
√
dhβ + (nλhd)−1.

Finally,

Var(ϑ̃k) .
(R
√
dhβ + (nhd)−1)4

nhd

∑
i∈Ĩdk

ω(Xi)
2 +

R
√
dhβ + (nhd)−1

(nhd)2

∑
i∈Ĩdk

ω(Xi)
2

.
R
√
dhβ + (nhd)−1

(nhd)2

∑
i∈Ĩdk

ω(Xi)
2.

For the global estimator ϑ̃blockn we infer the result from the independence of ϑ̃k

Var(ϑ̃blockn ) . h2dR
√
dhβ + (nhd)−1

nh2d
‖ω‖2

2 .
R
√
dhβ + (nhd)−1

n
‖ω‖2

2.

It can be shown as in the case of PPP model that the optimal length of the side of the

cube is h ∼ (Rn)−1/(β+d). Inserting the rate-optimal choice of h into the bias bound and

variance we obtain

(E[ϑ̃blockn − ϑ(n)])2 . R4d/(β+d)n−4β/(β+d)‖ω‖2
1,

Var(ϑ̃blockn ) . Rd/(β+d)n−β/(β+d)n−1 = Rd/β+dn−(2β+d)/(β+d)‖ω‖2
2.

It remains to note that n−4β/β+1 = o(n−(2β+1)/(β+1)) holds for β > 1/2 in one-dimensional

case and that n−(2β+d)/(β+d) = o(n−4β/β+d) holds for d > 1.

Corollary 2.4.1. Under the assumption of Theorem 2.4.3 as well as the additional

requirement that εi ∼ Exp(λ), i = 1, . . . , n, for any β ∈ (0, 1], R, λ > 0 the following more

precise result holds

E[ϑ̃blockn ] = ϑ, Var(ϑ̃blockn ) ≤ 2R
√
dhβ + (nλhd)−1

nλ
‖ω‖2

2.

Proof. Consider the case of εi ∼ Exp(λ), i = 1, . . . , n. Then, the following two inequalities

hold

E[Y ∗k −max
i
g(Xi)] ≤ (nλhd)−1

Var(ϑ̃k) = E[〈M〉τ ]/(nλhd)2.
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As a result,

Var(ϑ̃k) ≤
∑
i∈Ĩdk

E[Y ∗k +R
√
dhβ −maxi g(Xi)]

λ(nhd)2
ω(Xi)

2 ≤ 2R
√
dhβ + (nλhd)−1

λ(nhd)2

∑
i∈Ĩdk

ω(Xi)
2.

which again from the fact that ϑ̃k are independent the claimed bound for Var(ϑ̃blockn )

follows.

Remark 2.4.6. The results and proof for εi ∼ Exp(λ), i = 1, . . . , n, are exactly as in

the PPP model. For other distributions of (εi)1≤i≤n, the estimator is only asymptotically

unbiased. In one-dimensional case, for β > 1/2 the bias is negligible with respect to the

stochastic error.

2.4.3 Adaptive estimation in the regression-type model

We now address the question of choosing the block size h in a data-driven way, not

assuming the regularity parameters R and β to be known. For the block estimators ϑ̂block

the construction process primarily depends on the values R and β. A misspecification of β

for ϑ̂block, i.e. using β̃ > β instead, results in the block-wise upper bound Yk+R
√
dhβ̃ which

is producing a bias of the maximal size R
√
d(hβ−hβ̃). Then with the rate optimal choice of

h, which is n−1/(β+d), the resulted upper bound for a bias is O
(

(n−β/(β̃+d) − n−β̃/(β̃+d))+

)
,

the variance is of the order n−(2β̃+d)/(β̃+d). The bandwidth h is another unknown quantity

that needs to be specified when constructing both the block-wise estimator and MLE. See

[41, 73] for a more detailed background on the bandwidth selection problem for regression

type models under one-sided errors. The data driven approaches are not that well-spreaded

in the literature. One of the reasons for this to happen partially due to nonmonotonicity of

the approximation error terms. This prevents well-known concepts such as cross-validation

being used for mean regression. For more information, refer to [52]. In [19] the authors

introduce β-adaptive minimax optimal estimator. They use the Bayesian approach and

are relying on the assumption that the law of the error terms is known. Further, in [40]

the adaptive methods are studied as well for nonparametric problems. The adaptation

problem consists of finding an asymptotically optimal length of the side of the cube when

neither the regression function g nor the specific boundary behaviour of the errors is

known. More precisely, we consider the question of choosing the length of the cube’s side

size h, or volumes hd, in a data-driven way, without an assumption that the regularity

parameters R and β are known. We follow the method inaugurated by Lepskii in [82]

and consider geometrically growing volumes with hdm ∼ hd0q
m, for m = 1, . . . ,M, q > 1,

M ∼ log n. The basic idea is to increase the volume hdm as long as the distance between

the estimators is not significantly larger than the usual stochastic fluctuations of the
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estimators such that at ĥd, which is specified below, the bias is not yet dominating. We

should also notice that an explicit non-asymptotic risk analysis is evidently possible, we

concentrate only on the asymptotic risk here. The results on risk’s upper bounds in the

non-asymptotic case are covered for both block-wise estimation methods in Section 2.4.1

and Section 2.4.2, refer to Theorem 2.4.1 and Theorem 2.4.3 respectively. Further, in

Section 2.5.1 we introduce a maximum likelihood estimator and provide similar results

on upper bounds in Theorem 2.5.2. In this section we prove that by the versatility of

Lepski’s method rate-optimal adaptive estimation is possible up to logarithmic factors in

the current non-regular situation.

With a choice n−1(log n)2 ≤ hd1 < . . . < hdM ≤ 1 of bandwidth hm with h−dm , nhdm ∈ N
consider the corresponding block-wise estimators

ϑ̃blockn,hm :=
1

n

h−dm∑
k=1

∑
i∈Ik,hm

(
Yi ∧ (Y ∗

k,hm + (nhdm)−1)− λ−11(Yi ≤ Y ∗
k,hm + (nhdm)−1)

)
ω(Xi),

where the subscript hm in Ik,hm represents all quantities depending on the length of the

cube side. The quantity R
√
dhβ in (2.4.13) is replaced with (nh−dm )−1, which does not

depend on the unknown R and β and at the same time asymptotically balanced in size.

As the next step we select among (hm)1≤m≤M the length of the cube side in an adaptive

way as

ĥd := inf{hdm|∃m
′ ≤ m : |ϑ̃blockn,h

m
′ − ϑ̃

block
n,hm+1

| > κm+1 + κm′} ∧ hdM ,

where (κm) denote critical values and they are given by

κm =
∑
i

(
Yi ∧ (Y ∗

ki,hm
+ (nhdm)−1)

H√c logn(h
d/2
m ω(Xi))

nλh
d/2
m

+
(Cc log n)2 ‖ ω ‖1

n2λh2d
m

+

√
c log n

2nλh
d/2
m

,

where ki is the cube number k with i ∈ Ĩdk . We specify c > 0 below, the function Hx(y) =
log(1−2x|y|)
−2x

−|y| and the constant C > 0 with the following property |λz+log F̄ε(z)| ≤ C2z2

for z ∈ [0, δ] are used. In the asymptotic case it holds that Hx(y) ≈ xy2 as xy → 0 and

C ≈ −(f
′
ε(0) + f 2

ε (0)) in the case when the density function fε of ε is differentiable around

zero (also note that C = 0 for ε ∼ Exp(λ)).

The main technical work is devoted to obtaining explicit critical values, and it is done

in Proposition 2.7.3. To this end, the critical values are defined via the compensator of

an exponential counting process and are thus itself again stochastic. The proof of the

following result for the risk bound can be found in Section 2.7.1.

Theorem 2.4.7. Let g ∈ Cβ(R) and supx |ω(x)| < ∞. Assuming that also fε/F̄ε is

bounded, then for λ ∈ (0, λ) and n sufficiently large the adaptive estimator ϑ̃blockn = ϑ̃block
n,ĥ
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together with

h∗ := sup{hm|R(
√
dhm)β ≤ (nhdm)−1} ∨ h1

satisfies

E[(ϑ̃blockn − ϑ̃(n))21(ĥ < h∗)] .M(n−c + n(1−λc)/2),

E[(ϑ̃blockn − ϑ̃blockn,h∗ )21(ĥ ≥ h∗)] .
(log n)4

(n(h∗)d)4
+
M log n

n2(h∗)d
.

By choosing c > 5λ−1 ∨ 2 and also asymptotically hd0 ∼ (log n)2n−1, hdm ∼ hd0q
m for

m = 1, . . . ,M, q > 1, M ∼ log n, for the asymptotic rate of the adaptive estimator the

following result holds

E[(ϑ̃blockn − ϑ̃(n))2] . (log n)2n−(2β+d)/(β+d) + (log n)4n−4β/(β+d).

In particular, for β ≥ 1/2 the estimator achieves the minimax optimal rate up to a

logarithmic factor in the one-dimensional case. When d > 1 the estimator has the rate

n−4β/(β+d) which appears to be not optimal.

Remark 2.4.8. As it follows from the proof, when ε ∼ Exp(λ)) not only the critical values,

but also the bounds obtain a simpler representation. We have

E[(ϑ̃blockn − ϑ̃blockn,h∗ )21(ĥ ≥ h∗)] .
M log n

n2(h∗)d

and, as a result, for any β > 0 the minimax optimal rate is achieved up to a logarithmic

factor and in all dimensions.

Remark 2.4.9. In the case of d = 1 for the asymptotic rate we just note that the geometric

grid of bandwidths needs to achieve the following rate h∗ ∼ n−1/β+1 asymptotically, then,

by inserting we have the following bound

|E[ϑ̃blockn − ϑ(n)]| . n−(2β+1)/(β+1) + n−4β/(β+1).

From where we can infer that once n−(2β+1)/(β+1) ≥ n−4β/(β+1) then the estimator achieves

the minimax optimal rate up to a logarithmic factor in the one-dimensional case. This is

exactly the case when (2β + 1)/(β + 1) ≤ 4β/(β + 1) what is equivalent to β ≥ 1/2. To

achieve the minimax optimal rate in dimensions higher than 1, β would need to be bigger

than 1, which is not the case for the class of functions being considered.

Remark 2.4.10. Adaptive procedure is a comprehensive topic, which can be applied to the

higher-dimensional setting, because essentially it depends on the errors and the response

variables, which are one-dimensional quantities. Note that different approaches to this

problem may be considered, such as a theoretically lighter cross validation approach or a

bootstrap method, refer to [52] for more details.
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2.4.4 Rate optimality for the Poisson point process model

In this section we demonstrate that the rate Rd/β+dn−(2β+d)/β+d is optimal in a minimax

sense over Cβ(R). The proof is provided only for the PPP model. The case of the regression-

type model with ε ∼ Exp(λ) can be treated analogously.

Theorem 2.4.11. For the problem of estimation ϑ =
∫

[0,1]d
g(x)ω(x)dx, where ω ∈

L2([0, 1]d), in the PPP model with parameter class Cβ(R), with β ∈ (0, 1] and R > 0 the

following result for the asymptotic lower bound holds

lim inf
n→∞

inf
ϑ̂n

sup
g∈Cβ(R)

R−d/β+dn−(2β+d)/β+d‖ω‖−2
L2Eg[(ϑ̂n − ϑ)2] > 0.

This infimum expands over all estimators ϑ̂n from the PPP model with the intensity measure

provided by (2.3.1).

Proof. The proof is based on the approach provided in [74]. The approach is based on a

Bayesian risk bound and it grants a lower bound for the minimax risk. Another possible

way to prove the minimax lower bound is based on Yang-Barron version of Fano’s method,

see again [74]. This method is particularly useful for nonparametric problems, since it

obviates the need for constructing a local packing.

First, we start with taking an independent Bernoulli sequence εk, i.e. P (εk = 1) = p,

P (εk = 0) = 1− p with p ∈ (0, 1) and consider d one-dimensional triangular kernels

Ki(xi) = 2 min(xi, 1− xi)1[0,1](xi),

i = 1, . . . , d. As the next step we take the product kernel K(y) =
∏d

i=1Ki(xi), x =

(x1, . . . , xd) ∈ Rd and put

g(x) =
∑h−1−1

k=0 εkgk(x) with gk(x) = cRhβ
∏d

i=1Ki((xi − kh)/h),

where h ∈ (0, 1) with h−d ∈ N that we specify later.

For c > 0 and at the same time sufficiently small, for all h and all realisations of (εk)

it holds that g ∈ Cβ(R). We refer to this representation of g as a prior on Cβ(R). We use

the property of the independence of the prior as well as the observation laws on different

cubes. From the Bayes formula for each k we infer the posterior probability given the

observations of the PPP in cubes Idk

ε̂k := E[εk|(Xi, Yi)i≥1] = P (εk = 1|(Xi, Yi)i≥1) =
p(dPgk/dP0)(dPg0/dP0)−1

(1− p) + p(dPgk/dP0)(dPg0/dP0)−1

=
pe

n
∫
Id
k
gk(x)

1− p+ pe
n
∫
Id
k
gk(x)

1(∀Xi ∈ Idk : Yi ≥ gk(Xi)).
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From the fact that each εk are either 0 or 1-valued random variables, we obtain the

following results for conditional expectation and variance of εk

ε̂k = E[εk|(Xi, Yi)i≥1], and Var(εk|(Xi, Yi)i≥1) = ε̂k(1− ε̂k).

From what it follows the Bayes-optimal estimator of ϑ2 under squared loss is given by the

posterior mean

ε̂ =
h−d−1∑
k=0

ε̂k

∫
Idk

gk(x)ω(x)dx.

By the independence and the fact that E[ε̂k − εk] = 0, its Bayes risk is calculated in the

following way

E[(ε̂k − εk)2] =
h−d−1∑
k=0

Var(ε̂k − εk)
(∫

Idk

gk(x)ω(x)dx
)2

=
h−d−1∑
k=0

E[Var(εk|(Xi, Yi)i≥1)]
(∫

Idk

gk(x)ω(x)dx
)2

=
h−d−1∑
k=0

p(1− p)
(1− p+ pen

∫
gk)2

(∫
Idk

gk(x)ω(x)dx
)2

.

By picking h = d(cRn)1/(β+d)e−1 such that

n

∫
Idk

gk(x)ω(x)dx = cRhβ+dn ≤ 1

holds, the Bayes risk is bounded in order by

E[(ε̂k − εk)2] & R2h2β+d

h−d−1∑
k=0

(∫
Idk

K((x− kh)/h)

‖K((• − h)/h)‖L2

ω(x)dx
)2

.

The same argument over the shifted cubes Îdk = [(k+ 1/2)h, (k+ 3/2)h)d suggests that the

minimax risk is bounded by the maximum, and therefore the average, over the respective

Bayes risks

inf
ϑ̂n

sup
g∈Cβ(R)

E[(ε̂k − εk)2] & R2h2β+d

h−d−1∑
k=0

(∫
Idk

K((x− kh)/h)

‖K((• − h)/h)‖L2

ω(x)dx
)2

.

Using generalisation of the orthonormal basis in Rd it can be shown that the sum in the

above inequality is bounded from below by L2−norm of ω. Insertion of h ∼ (Rn)−1/β+d

80



gives the result

lim inf
n→∞

inf
ϑ̂n

sup
g∈Cβ(R)

R−d/β+dn−(2β+d)/β+d‖ω‖−2
L2Eg[(ϑ̂n − ϑ)2] > 0.

2.5 Nonparametric maximum-likelihood

2.5.1 The MLE over Cβ(R)

In this section we study the nonparametric maximum-likelihood estimator (MLE) in the

class Cβ(R). Consider the PPP model with the intensity λ = n1(y ≥ g(x)) and denote

by Pg the law of the observations in this model. Then the Radon-Nikodym derivative
dPg
dPg0

for g ≥ g0 is by (a minor generalisation of) Theorem 1.3 in [77] and the fact that

the PPP intensities coincide outside the compact set [0, 1]d × [min g0,max g] we get the

Radon-Nikodym derivative

dPg
dPg0

= exp
(
n

∫
[0,1]d

(g − g0)(x)dx
)
1
(
∀j : Yj ≥ g(Xj)

)
. (2.5.1)

A simple probability measure dominating all Pg, g ∈ Cβ(R) (note that g does need to be

bounded from below), is given by the PPP model with intensity λ0(x, y) = n and yields

again via Theorem 1.3 in [77] the likelihood

L(g) = exp
(
n

∫
[0,1]d

g(x)dx
)
1
(
∀j : Yj ≥ g(Xj)

)
. (2.5.2)

The MLE over Cβ(R) is the function ĝ that maximises
∫

[0,1]d
g over all g ∈ Cβ(R) with

the property that g(Xj) ≤ Yj for all j ≥ 1. We can write explicitly

ĝMLE(x) = min
j≥1

(
Yj +R‖x−Xj‖β2

)
, (2.5.3)

as the right-hand side of the above equation even maximises g(x) point-wise over the

considered class of functions g. Refer to Figure 2.4 for an illustration of the construction

of the estimator ĝMLE(x).

Next, in an analogous way the corresponding likelihood function with respect to the

n-dimensional Lebesgue measure for the regression-type model (2.3.3) with error terms,

independent and identically distributed random variables distributed according to the
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Figure 2.4: Construction of the MLE estimator ĝMLE(x) in the PPP model in the one-dimensional
case, n = 150. The thin straight lines correspond to x→ Yi +R|x−Xi|. The blue smooth line is
the function g.

exponential law ε ∼ Exp(λ), can be written in the following way

Lregr(g) = λn exp
(
− λ

n∑
i=1

Yi

)
exp

(
− λ

n∑
i=1

gi(Xi)
)
1
(
∀i = 1, ..., n : Yi ≥ g(Xi)

)
.

One can then infer the maximum-likelihood estimator over Cβ(R)

ĝMLE−regr(x) = mini=1,...,n

(
Yi +R‖x−Xi‖β2

)
, x ∈ [0, 1]d,

and 1 ≤ i ≤ n.

An illustration of the construction of MLE ĝMLE−regr(x) for the regression model is

demonstrated in Figure 2.5.

Both MLE estimators for PPP and the regression-type models are quickly computed

numerically. Further, in this section we focus on the MLE in the PPP model and only

briefly comment on the results for the regression-type model and in the settings of the

exponential noise. The analysis of MLE under non-exponential noise in the regression-type

model is completely omitted, as the results must be asymptotic in nature and will be

comparable to Theorem 2.4.3. The next Proposition asserts that the introduced above

MLE is a sufficient and complete statistic.

Proposition 2.5.1. The nonparametric MLE (ĝMLE(x), x ∈ [0, 1]d) is a sufficient and

complete statistic for the parameter class Cβ(R).
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Figure 2.5: Construction of the MLE ĝMLE−regr(x) in the regression-type model. We consider
the case of ε ∼ Exp(1) and β = 1.

Proof. Sufficiency of ĝMLE(x) follows directly by using Neyman factorisation criterion (e.g.

[81]) for the likelihood (2.5.2).

Let us first note that by definition ĝMLE(x) is an element of Cβ(R). As Cβ(R), equipped

with its Cβ(R)-norm, is not separable, we equip it with the Borel σ-algebra generated by the

uniform (supremum) norm, which is generated by all point evaluations. We can establish

the measurability of the estimator ĝMLE(x) is established since all point evaluations of

ĝMLE(x), x ∈ [0, 1]d, are measurable as a minimum of countably many random variables.

To prove the result of completeness we now shall consider any statistic T : Cβ(R)→ R
that satisfies the following condition

Eg[T (ĝMLE)] = 0 for all g ∈ Cβ(R),

and which is Borel measurable with respect to the uniform norm. For g ∈ Cβ(R) we denote

by [g,∞) := {h ∈ Cβ(R)|h ≥ g} the bracket between g and ∞, that is all the functions

that are above g. Next, for some g ∈ Cβ(R) and h ∈ Cβ(R) taking the intersection

[g,∞) ∩ [h,∞) = [g ∨ h,∞) we see that the maximum g ∨ h is again in Cβ(R). This

suggests that the family {[g,∞)|g ∈ Cβ(R)} is an ∩-stable generator of the uniform Borel

σ−algebra in Cβ(R). By the Hölder condition we have that {h ∈ Cβ(R)|h(x0) ≥ y0} =

[y0 − R‖• − x0‖β,∞) for any x0 ∈ [0, 1] and y0 ∈ R and {[y0,∞)|y0 ∈ R} generates the

Borel σ−algebra on R.
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Using the likelihood function under P0 and the fact that Eg[T (ĝMLE)] = 0 we get

en
∫

(g+1)E0

[
T (ĝMLE)e

∑
j≥1(−Yj)+1(ĝMLE ∈ [g,∞))

]
= 0.

If we split our statistic T into two parts in the following way T = T+ − T−, where T+, T−

are both non-negative functions, and introduce the following two measures for Borel sets

B as

B → E0

[
T±(ĝMLE)e

∑
j≥1(−Yj)+1(ĝMLE ∈ B)

]
,

we can infer that these measures B → E0

[
T±(ĝMLE)e

∑
j≥1(−Yj)+1(ĝMLE ∈ B)

]
coincide on

{[g,∞)|g ∈ Cβ(R)} and, as a result, by the uniqueness theorem for all uniform Borel sets

B in Cβ(R) and in particular for B = {T > 0} and B = {T < 0}. This in turn implies

that

T+(ĝMLE)e
∑
j≥1(−Yj)+ = T−(ĝMLE)e

∑
j≥1(−Yj)+ , P0-a.s.

and thus, we showed that T (ĝMLE) = 0 Pg-a.s. for all g ∈ Cβ(R), which concludes the

proof of the result.

Similarly to the construction of the block-wise estimator ϑ̂block for the functional (2.4.1),

we introduce here the maximum likelihood estimator of the linear functional in the following

way

ϑ̂MLE :=

∫
[0,1]d

ĝMLE(x)ω(x)dx− 1

n

∑
j

1
(
ĝMLE(Xj = Yj)

)
ω(Xj). (2.5.4)

As can be observed from the representation (2.5.4) the MLE ϑ̂MLE is obtained by a

simple plug-in of the nonparametric MLE ĝMLE into the functional (2.4.1) with a further

subtraction of 1
n

∑
j 1
(
ĝMLE(Xj = Yj)

)
ω(Xj). This subtraction serves as a bias correction

term and it counts the relative number of observations on the graph of ĝMLE. This produces

an unbiased estimator of the functional (2.4.1). However, the main result is that this

suggested estimator ϑ̂MLE is not only unbiased, but also uniformly of minimum variance

among all unbiased estimators for the class Cβ(R). We will further refer to this last

property of the estimator (2.5.4) as UMVU (uniformly of minimum variance among all

unbiased estimators). Now we formulate this result as a part of the next theorem, providing

the result for an upper bound and asymptotic upper bound of the variance of the estimator

as well.

Theorem 2.5.2. Let n be the sample size of {(Xj, Yj)}j≥1. Then, for each finite n the

estimator ϑ̂MLE from (2.5.4) is an unbiased estimator of the functional (2.4.1). Further-

more, the estimator ϑ̂MLE is uniformly of minimal variance over the class Cβ(R) and the
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following upper bound holds

Var(ϑ̂MLE) =
1

n

∫
[0,1]d

E[ĝMLE(x)− g(x)]ω(x)2dx

≤
(
Γ(β/(β + d))β(2Rβ/(β + d))d/(β+d)n−(2β+d)/(β+d) +

1

n2
e−2βRn/(β+d)

)
‖ω‖2

L2 .

In the asymptotic case, when n→∞ we get

Var(ϑ̂MLE) ≤ (2 + o(1))Rd/(β+d)n−(2β+d)/(β+d)‖ω‖2
L2 .

Remark 2.5.3. The result for non-asymptotic rates of converges is based on the following

deviation inequality that holds for the estimator ĝMLE(x)

P (ĝMLE(x)− g(x) ≥ s) ≤

exp(−n 2R
(β+d)

(s/2R)(β+d)/β) if s ∈ [0, 2Rdβ/2),

exp(−n(s− 2Rd/(β + d))) if s > 2Rdβ/2.

Thus, we are able to demonstrate the finiteness of the variance of ϑ̂MLE.

Proof. Similar to the proof of Theorem 2.4.1 we first define a weighted counting process

in the following way

N̄(t) =
∑

j≥1 1
(
Yj ≤ t ∧min(Yi +R‖Xj −Xi‖β2 )

)
ω(Xj), t ∈ R.

One can notice that for every t the part inside the brackets {mini≥1(Yi+R‖Xj−Xi‖β2 ) < t}
is identical to {mini:Yi<t(Yi +R‖Xj −Xi‖β2 ) < t}. Again, as in the proof of Theorem 2.4.1,

consider a pure counting process, i.e., when ω ≡ 1, then this counting process has the

following intensity measure

λ̄t = n

∫
[0,1]d

∫
[g(x),t]

1
(

min
i:Yi<t

(Yi +R‖x−Xi‖β2 ) ≥ s
)
dsdx.

Hence, N̄ is adapted to the filtration (Ft), which is defined exactly as in the proof of

Theorem 2.4.1, i.e.

Ft = σ((Xi, Yi)1(Yi ≤ t), i ≥ 1) t ∈ R.

By (Proposition 2.32 in [66]) the following process

M̄(t) = N̄(t)− n
∫

[0,1]d

∫
[g(x),t]

1
(

min
i:Yi<t

(Yi +R‖x−Xi‖β2 ) ≥ s
)
dsω(x)dx

is an (Ft)-martingale. By taking the difference between the martingale M̄(t) and the
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counting process N̄(t) and sending the time t to infinity we obtain

lim
t→∞

(M̄(t)− N̄(t)) = n

∫
[0,1]d

∫ ∞
g(x)

1
(

min
i:Yi<t

(Yi +R‖x−Xi‖β2 ) ≥ s
)
dsω(x)dx

= n

∫
[0,1]d

∫ ∞
g(x)

1(ĝMLE(x) ≥ s)dsω(x)dx

= n

∫
[0,1]d

1(ĝMLE(x)− g(x))ω(x)dx,

and observing that

N̄(∞) := lim
t→∞

N̄(t) =
∑
j≥1

1(ĝMLE(x) ≥ Yj)ω(Xj) =
∑
j≥1

1(ĝMLE(x) = Yj)ω(Xj),

we conclude that the counting process counts the weighted number of points (Xj, Yj) on

the graph of ĝMLE(x) and equals to the scaled bias n(
∫

[0,1]d
ĝMLE(x)ω(x)dx− ϑ) up to a

martingale term. As a result, we have

ϑ̂MLE =

∫
[0,1]d

ĝMLE(x)ω(x)dx− 1

n
N̄(∞) = ϑ− 1

n
M̄(∞),

where

M̄(∞) =
∑
j≥1

1(ĝMLE(x) ≥ Yj)ω(Xj)−
∫

[0,1]d
1(ĝMLE(x)− g(x))ω(x)dx

is a.s. an L2-limit of the L2 bounded martingale M̄ . The quadratic variation of M̄ is given

by

〈M̄〉t = n

∫
[0,1]d

∫ t

g(x)

1
(

min
i:Yi<t

(Yi +R‖x−Xi‖β2 ) ≥ s
)
dsω(x)2dx.

Sending t to the infinity we get

〈M̄〉t ↑ n
∫

[0,1]d
(ĝMLE(x)− g(x))ω(x)2dx =: 〈M̄〉∞ as t ↑ ∞.

Using the result of Theorem (2.7.1) in the case of τ = ∞ together with the following

identity

E[ϑ̂MLE − ϑ] =
1

n
E[−M̄(∞)],

we can conclude that the estimator (2.5.4) is an unbiased estimator of the functional

(2.4.1), i.e., it holds

E[ϑ̂MLE] = E[ϑ].
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Next, based on the same result of Theorem 2.7.1 in the case of τ =∞ and the fact that

Var(ϑ̂MLE) =
1

n2
Var(M̄(∞)),

we obtain the following equation for the variance of ϑ̂MLE

Var(ϑ̂MLE) =
1

n2
E[〈M̄〉∞] =

1

n

∫
[0,1]d

E[ĝMLE(x)− g(x)]ω(x)2dx. (2.5.5)

Hence, by Theorem 2.7.10, see [81], the estimator ϑ̂MLE derived from a sufficient and

complete statistics, is uniformly of minimum variance among all unbiased estimators.

Next for the variance bound we use the following rough deviation bound for s ≥ 0 and

x ∈ [0, 1]d

P (ĝMLE(x)− g(x) ≥ s) = exp
(
− n

∫
[0,1]d

(s−R‖ξ − x‖β2 + g(x)− g(ξ))+dξ
)

≤ exp
(
− n

∫
[0,1]d

(s− 2R‖ξ − x‖β2 )+dξ
)
.

Let us consider the following integral J =
∫

[0,1]d
( s

2R
− ‖ξ − x‖β2 )+dξ, then

J =

∫ 1

0

...

∫ 1

0

( s

2R
−
(
(ξ1 − x1)2 + ...+ (ξd − xd)2

)β/2)
+
dξ1...dξd.

In d-dimensional spherical coordinates, in which the coordinates consist of a radial coordi-

nate, r which ranges over [0, r0] with r0 = d1/2 ≥ 1, and n− 1 angular coordinates ϕ1, ϕ2,

..., ϕd−1 where ϕd−1 ranges over [0, 2π) radians and the other angles range over [0, π], the

integral has the following form

J =

∫ 2π

0

∫ π

0

...

∫ π

0

∫ r0

0

( s

2R
− rβ

)
+
rd−1 sind−2 sind−2 ϕ1 sind−3 ϕ2... sinϕd−2drdϕ1dϕ2...dϕd−1

=

∫ ∫ (s/2R) 1
β

0

( s

2R
− rβ

)
rd−1Υdrdυ, for s ∈ [0, 2Rrβ0 ),

where we denoted sind−2 sind−2 ϕ1 sind−3 ϕ2... sinϕd−2 as Υ and dϕ1dϕ2...dϕd−1 as dυ re-

spectively. Then, taking the integral over r

J =

∫ (1

d

( s

2R

)β+d
β − 1

β + d

( s

2R

)β+d
β
)

Υdυ =

∫
β

d(β + d)

( s

2R

)β+d
β

Υdυ.
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To calculate the integral
∫

Υdυ we notice that the volume of the unit d-ball is given by

Vd =

∫ 2π

0

∫ π

0

...

∫ π

0

∫ 1

0

rd−1 sind−2 sind−2 ϕ1 sind−3 ϕ2... sinϕd−2drdϕ1dϕ2...dϕd−1

=
1

d

∫ 2π

0

∫ π

0

...

∫ π

0

sind−2 sind−2 ϕ1 sind−3 ϕ2... sinϕd−2drdϕ1dϕ2...dϕd−1 =
1

d

∫
Υdυ.

As a result, we have ∫
Υdυ = dVd =

dπ
d
2

Γ(d
2

+ 1)
≥ d,

since π
d
2

Γ( d
2

+1)
≥ 1 for d ≥ 0. The following inequality holds for J when s ∈ [0, 2Rrβ0 )

J =
β

d(β + d)

( s

2R

)β+d
β

∫
Υdυ ≥ β

(β + d)

( s

2R

)β+d
β
.

When s > 2Rr0

J =

∫ 2π

0

∫ π

0

...

∫ π

0

∫ r0

0

( s

2R
− rβ

)
rd−1 sind−2 sind−2 ϕ1 sind−3 ϕ2... sinϕd−2drdϕ1dϕ2...dϕd−1

=
( srd0

2Rd
− rβ+d

0

β + d

)∫
Υdυ ≥ srd0

2R
− drβ+d

0

β + d
≥ s

2R
− d

β + d
.

Now we have the upper bound for the survival function

P (ĝMLE(x)−g(x) ≥ s) ≤ exp(−2nRJ) ≤

exp(−n 2R
(β+d)

(s/2R)(β+d)/β) if s ∈ [0, 2Rrβ0 ),

exp(−n(s− 2Rd/(β + d))) if s > 2Rrβ0 .

Taking the integral of this survival function bound, we get

E[ĝMLE(x)− g(x)] =

∫ ∞
0

P (ĝMLE(x)− g(x) ≥ s)

≤
∫ 2Rrβ0

0

exp
(
− n 2Rβ

(β + d)
(s/2R)(β+d)/β

)
ds+

∫ ∞
2Rrβ0

e−n(s−2R/(β+d))ds

≤
∫ 2Rrβ0

0

exp
(
− n 2R

(β + d)
(s/2R)(β+d)/β

)
ds+

∫ ∞
2R

e−n(s−2R/(β+d))ds

= n−β/(β+d)β(2R/(β + d))d/(β+d)

∫ 2Rrβ0

0

e−xx−d/(β+d)dx+
1

n
e−2βRn/(β+d)

≤ Γ(β/(β + d))β(2Rβ/(β + d))d/(β+d)n−β/(β+d) +
1

n
e−2βRn/(β+d).
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Thus, we derive the bound for the variance in (2.5.5)

Var(ϑ̂MLE) =
1

n

∫
[0,1]d

E[ĝMLE(x)− g(x)]ω(x)2dx

≤
(

Γ(β/(β + d))(2Rβ/(β + d))d/(β+d)n−1−β/(β+d) +
1

n2
e−2βRn/(β+d)

)
‖ω‖2

L2

=
(

Γ(β/(β + d))(2Rβ/(β + d))d/(β+d)n−(2β+d)/(β+d) +
1

n2
e−2βRn/(β+d)

)
‖ω‖2

L2

Sending n to infinity we obtain Var(ϑ̂MLE) ≤ (2 + o(1))Rd/(β+d)n−(2β+d)/(β+d)‖ω‖2
L2 .

The construction of the estimator ϑ̂MLE also relies on the values of R and β. From

what follows that in the case of using wrong β, i.e. β̃, such that β̃ > β one will end up with

an estimation bias. As was mentioned in Section 2.4.3 the size of the bias is bounded above

by R(β̃− β). Then, since the rate optimal choice for h is n−1/β̃+d, it produces a bias upper

bound O
(

max(0, n−β/(β+d) − n−β̃/(β̃+d))
)

and the variance is of the order n−(2β̃+d)/β̃+d.

Example 2.5.4. One of the most important applications of the estimation of linear func-

tionals is called orthogonal series estimators, see [60]. Consider an orthonormal basis in

L2([0, 1]) defined as (ψk)k≥1 as well as the estimator for g ∈ Cβ(R), which is defined as

ĝK =
∑K

k=1 ϑ̂kψk with ω = ψk and ϑ̂k estimating the coefficient 〈g, ψk〉L2 . If we use the

estimators for g of Hölder continuity β we get the upper bound for the L2−risk as follows

E
[
‖ĝK − E[ĝK ]‖2

L2

]
=

K∑
k=1

Var(ϑ̂k) . Kn−(2β+d)/(β+d).

2.5.2 Discussion on central limit theorem

The knowledge of the limiting distribution of an estimator allows us to construct confi-

dence intervals for the estimator. For the block-wise estimator, it can be shown, using

independence of the estimators between cubes and applying Lindeberg’s theorem, see

[2, 3, 13, 100] for a detailed review of the CLT results for martingales, that the limiting

distribution is Gaussian. Unfortunately, the same technique cannot be applied for the MLE

estimator to derive the central limit theorem, as there is no independence structure in the

construction of the estimator. The idea would be to divide the unit cube [0, 1]d into some

cubes and on each cube introduce a block-wise MLE, such that the sequence of MLEs

are independent random variables. As such, we could establish CLT for the block-wise

MLE showing that the Lyapunov condition holds. Then, we could consider the difference

between MLE and block-wise MLE and demonstrate that it is of small stochastic order

and via Slutsky’s lemma the CLT result would follow for the MLE.

However, the proof of this CLT result in multidimensional case, i.e., when d > 1

appears to be intricate. Essentially, the main difficulty is to extract geometrical properties
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of the estimators so that they could be used to control the difference between the block-

wise MLE and MLE. The geometry of the problem is getting more complicated as the

dimension grows, and some other methods should be exploited to prove the CLT result in

multidimensional case.

2.5.3 Finite sample behaviour

The aim of this section is to provide numerical confirmation of the central limit theorem

for the block-wise and nonparametric maximum likelihood estimators in the PPP model.

We focus on a numerical study of the following central limit theorem results

χ(1)
n =

n1/2(ϑ̂MLE
n − ϑ)( ∫ 1

0
(ĝMLE
n − g(x))ω(x)2dx

)1/2
⇒ N (0, 1),

χ(2)
n =

n1/2(ϑ̂blockn − ϑ)(∑h−d

k=1
1
nhd

∫
Idk

(Y ∗k +R
√
dhβ − g(x))ω(x)2dx

)1/2
⇒ N (0, 1).

For the details on the notations used, refer to the previous sections. The numerical results

are obtained on the simulated data and we place ω = 1. First, we construct the MLE

estimators ĝMLE(x) based on the observations of the PPP on [0, 1] × R with intensity

λg(x, y) = n1(g(x) ≤ y < c), x ∈ [0, 1] for two support functions

• g1(x) =
√
x, β = 0.5, R = 1,

• g2(x) = 0.5 sin(2πx) + 4x, β = 1, R = 7.5,

Figure 2.6: Nonparamatric MLE estimators for two functions: g1(x) =
√
x on the left and

g2(x) = 0.5 sin(2πx) + 4x on the right.

see Figure 2.6. We take c = 2 for the function g1 and c = 5 for the function g2. For both

functions, we consider n = 50, 150, 500, 1000, 2000, 5000 and construct a histogram histn(x)
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and an empirical density function f̂n(x) for both χ
(1)
n and χ

(2)
n based on 100 iterations to

illustrate the central limit theorem result. The numerical results for g1 are depicted in

Figure 2.7 and for g2 – in Figure 2.8 for the statistics χ
(1)
n . For the corresponding plots of χ

(2)
n

refer to Figures 2.9 and 2.10. The simulations are made using various scipy.stats packages

from [63] and packages from [57]: the histogram is made using matplotlib.pyplot.hist in

[57] and the empirical density function is constructed applying a smoothing Gaussian

kernel, the function scipy.stats.gaussian kde in [63], to the histogram.

Next, we study χ
(1)
n and χ

(2)
n for the PPP on [0, 1]2 × R with intensity λg(x1, x2, y) =

n1(g(x1, x2) ≤ y < c), (x1, x2) ∈ [0, 1]2 and c = 2 for a support function

• g(x1, x2) =
√
x2

1 + x2
2, β = 0.5, R = 1.

Refer to Figure 2.13 for an illustration of ĝMLE. Again as before, we consider n = 50,

150, 500, 1000, 2000, 5000 and construct histograms histn(x) and the empirical density

functions f̂n(x) for the quantities χ
(1)
n and χ

(2)
n based on 100 iterations to illustrate the

central limit theorem result, see Figures 2.11 and 2.12.

Finally, as the last example, we examine χ
(1)
n with a support function

• g(x1, x2, x3, x4, x5) = 0.5 sin(2π(x1 + x2 + x3 + x4 + x5)) + 4(x1 + x2 + x3 + x4 + x5),

for the PPP on [0, 1]5 × R of intensity λg(x1, x2, x3, x4, x5, y) = n1(g(x1, x2, x3, x4, x5) ≤
y < c), (x1, x2, x3, x4, x5) ∈ [0, 1]5 and c = 5. See Figure 2.14 for the results.

2.6 Further simulation studies

In this section we investigate the behaviour of the block-wise estimator and the MLE for a

linear functional in both R and R2 spaces on finite samples. We simulate both the PPP

model and the regression-type model. For the last model we consider the error terms being

exponentially distributed with parameter 1. We consider two different regression functions

g specified below

• g(x) =
√
x, β = 0.5, R = 1,

• g(x1, x2) =
√
x2

1 + x2
2, β = 0.5, R = 1,

the intensity measure λ is defined in the same way as in the previous section, and estimate

the root mean squared error (RMSE) in M = 100 Monte Carlo repetitions. What can

be inferred from the plots is that both the block-wise estimator and the MLE work well

enough even for small sized samples, i.e. starting from n = 100. The performance for the

PPP model is slightly better than in the regression-type model.
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(a) n = 50 (b) n = 150

(c) n = 500 (d) n = 1000

(e) n = 2000 (f) n = 5000

Figure 2.7: Histograms and empirical densities for the quantity χ
(1)
n for the function

g1(x) =
√
x.
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(a) n = 50 (b) n = 150

(c) n = 500 (d) n = 1000

(e) n = 2000 (f) n = 5000

Figure 2.8: Histograms and empirical densities for the quantity χ
(1)
n for the function

g2(x) = 0.5 sin(2πx) + 4x.
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(a) n = 50 (b) n = 150

(c) n = 500 (d) n = 1000

(e) n = 2000 (f) n = 5000

Figure 2.9: Histograms and empirical densities for the quantity χ
(2)
n for the function

g1(x) =
√
x.

94



(a) n = 50 (b) n = 150

(c) n = 500 (d) n = 1000

(e) n = 2000 (f) n = 5000

Figure 2.10: Histograms and empirical densities for the quantity χ
(2)
n for the function

g2(x) = 0.5 sin(2πx) + 4x.
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(a) n = 50 (b) n = 150

(c) n = 500 (d) n = 1000

(e) n = 2000 (f) n = 5000

Figure 2.11: Histograms and empirical densities for the quantity χ
(1)
n for the function

g(x1, x2) =
√
x2

1 + x2
2.
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(a) n = 50 (b) n = 150

(c) n = 500 (d) n = 1000

(e) n = 2000 (f) n = 5000

Figure 2.12: Histograms and empirical densities for the quantity χ
(2)
n for the function

g(x1, x2) =
√
x2

1 + x2
2.
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Figure 2.13: Nonparamatric MLE estimator (blue) for the function g(x1, x2) =
√
x2

1 + x2
2 (green).

On Figure 2.15 we see the results for one-dimensional case and on Figure 2.16 the

results are for two-dimensional function g. Similar plots can be produced with respect to

h for a range of n. Then, one can select h based upon where RMSE attains its minimum.

However, the results are quite close to the theoretically optimal value of h.

We can additionally observe from the plots with RMSE results that the block-wise

estimator does not perform way worse than the MLE, what can also be expected from the

theoretical results of the previous sections. If we consider the ratio of the non-asymptotic

variances for ϑ̂MLE as well as ϑ̂block we obtain the following equation

Γ(β/(β + d))β(β/(β + d))d/(β+d)

β−β/(β+d)(β + d)
= Γ(β/(β + d))β(2β+d)/(β+d)(β + d)−(β+2d)/(β+d).

(2.6.1)

If we consider the case of dimension one, the above ratio will be equal to the following

function of β

Γ(β/(β + 1))β(2β+1)/(β+1)(β + 1)−(β+2)/(β+1).

This function attains its minimum when β ≈ 0.473 which is 0.54, after that it increases to

approximately 0.6 as β approaches 1, as β goes to zero the function approaches 1. Refer to

Figure 2.17 for the illustration of the described dynamics in dimension one. If we consider

the behaviour of the ratio from (2.6.1) in the case of higher dimension, we get similar

results. As an example, see Figure 2.18 for the illustration of the case of dimensionality 10.
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(a) n = 50 (b) n = 150

(c) n = 500 (d) n = 1000

(e) n = 2000 (f) n = 5000

Figure 2.14: Histograms and empirical densities for the quantity χ
(1)
n for the function

g(x1, x2, x3, x4, x5) = 0.5 sin(2π(x1 + x2 + x3 + x4 + x5)) + 4(x1 + x2 + x3 + x4 + x5).
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Figure 2.15: Monte-Carlo based RMSE for the function g(x) =
√
x.

Comparing the MLE and simple block-wise estimator the latter is computationally

faster, which is highly applicable for any adaptive estimator. On top of that it is theoretically

simpler to analyse than the MLE. These reasons make us conclude that both approaches

can be appealing and as such should be considered in their own accord.

2.7 Appendix

2.7.1 Technical results

The main results of the previous chapters heavily rely upon the martingale approach, with

martingale stopping arguments for counting processes playing a key role. One way to

construct a martingale from a stochastic process is via the Doob decomposition theorem,

which allows us to derive a martingale by subtracting from a point process its compensator.

To get an idea how the compensator of a point process looks like we consider a simple

example of a point process of a single jump. Let T be a random variable and the process

N have a single jump at the random time T , that is, N(t) = 1(T ≤ t) and let F be the

distribution function of T . Then, the compensator A(t) of N(t) = 1(T ≤ t) is given by

A(t) =

∫ t∧T

0

dF (s)

1− F (s−)
.
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Figure 2.16: Monte-Carlo based RMSE for the function for the function g(x1, x2) =
√
x2

1 + x2
2.

A(t) is clearly predictable, and to show that N(t)−A(t) is a martingale it suffices to show

that E[N(τ)] = E[A(τ)] for any stopping time τ. One can show, see [66], that there exists

an F0-measurable (i.e. almost surely constant) random variable ξ such that

{τ ≥ T} = {τ ∧ T = T} = {ξ ∧ T = T} = {T ≤ ξ}.

Therefore,

E[N(τ)] = P(τ ≥ T ) = P(T ≤ ξ)

=

∫ ξ

0

dF (t) =

∫ ξ∧T

0

P(T ≥ t)

1− F (t−)
dF (t)

= E
(∫ ξ

0

1(T ≥ t)

1− F (t−)
dF (t)

)
= E

(∫ ξ∧T

0

1

1− F (t−)
dF (t)

)
= E

(∫ τ∧T

0

1

1− F (t−)
dF (t)

)
= E[A(τ)].

Similarly, one can derive a compensator for a general counting process. Note that if

the distribution F is continuous with F (0) = 0 then, by changing variables we have∫ T

0

dF (t)

1− F (t−)
=

∫ T

0

dF (t)

1− F (t)
= − log(1− F (T )).
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Figure 2.17: The ratio of the non-asymptotic variances of ϑ̂MLE and ϑ̂block. The vertical axis
represents to the values of the function Γ(β/(β + 1))β(2β+1)/(β+1)(β + 1)−(β+2)/(β+1) while x-axis
corresponds the values of β.

Next, we formulate a stopping-time theorem for continuous-time martingales. This

result we provide with the proof as well as it is quite concise.

Theorem 2.7.1. Let (M(t), t ≥ t0) be a cadlag martingale with M(t0) = 0 and let τ be a

stopping time with values in [t0,∞], both on some filtered probability space. If E[〈M〉τ ] is

finite, then E[M(τ)] = 0 and E[M(τ)2] = E[〈M〉τ ] hold.

Proof. From the Burkholder-Davis-Gundy inequality (Theorem 26.12 in [64]) and the

identity E[[M ]τ ] = E[〈M〉τ ] we can infer that

E[sup
t≥t0

M2
t∧τ ] . E[〈M〉τ ].

Hence, (|Mt∧τ |p)t≤t0 for p ∈ 1, 2 is uniformly integrable. By optional stopping it follows

that E[[M ]τ ] = limt→∞ E[Mt∧τ ] = 0 as well as [M2
τ ] = E[[M ]τ ] = E[〈M〉τ ].

Lemma 2.7.2. Under the assumptions of Theorem 2.4.3 we have for τ = Y ∗k +R‖h‖β

E[(τ − g(Xi))
p]1/p . R‖h‖β + (nλhd)−1

as nhd →∞ for any p > 0.
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Figure 2.18: The ratio of the non-asymptotic variances of ϑ̂MLE and ϑ̂block. The vertical axis
represents the values of the function Γ(β/(β + 10))β(2β+10)/(β+10)(β + 10)−(β+20)/(β+10) while
x-axis corresponds to different values of β.

Proof. The fact that Y ∗k ≤ maxi∈Ĩdk
g(Xi) + mini∈Ĩdk

εi provides that as nhd →∞

P (nλhd(Y ∗k −max
i∈Ĩdk

g(Xi)) ≥ z) ≤ F̄ε(z/nλh
d)nh

d

= enh
d log F̄ε(z/nλhd) → e−z.

Since F̄ε(z/nλh
d)nh

d
. (1 + z/nhd)−nh

dρ, for any p ≥ 0 we can establish that the following

limit is zero

lim
R→∞

sup
n,h

∫ ∞
R

zp−1P (nλhd(Y ∗k −max
i∈Ĩdk

g(Xi)) ≥ z)dz = 0

such that by uniform integrability the result of

lim sup
nhd→∞

E
[(
nλhd|Y ∗k −max

i∈Ĩdk
g(Xi)|

)p]
≤
∫ ∞

0

zpe−zdz <∞

follows.

Next, from the Hölder condition we infer that g varies at most by R(
√
dh)β on each

cube and thus, the result E[(τ − g(Xi))
p]1/p . R(

√
dh)β + (nλhd)−1 holds.

Now we ready to address the proof of Theorem 2.4.7.

Proof. For hm < h∗ we also have that hdm < (h∗)d and thus, we obtain from the deviation
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bound in Proposition 2.7.3, stated below, that

P(ĥd = hdm) = P(ĥ = hm) ≤
m−1∑
m′

(
P(|ϑ̃blockn,h′m

− ϑ(n)| > κ′m) + P(|ϑ̃blockn,hm+1
− ϑ(n)| > κm+1)

)
≤

m−1∑
m′

(
4n−2c + nF̄ε((c log n− 2)/nhdm′)

nhd
m′ + nF̄ε((c log n− 2)/nhdm+1)nh

d
m+1

)
.M(n−2c + n1−λc)

for some λ ∈ (0, λ) and n is being sufficiently large. Applying Cauchy-Schwarz inequality

we get the following upper bound

E[(ϑ̃blockn − ϑ̃(n))21(ĥ < h∗)] . E[(ϑ̃blockn − ϑ̃(n))41(ĥ < h∗)]1/2M(n−c + n(1−λc)/2)1/2.

Combining the result of Theorem 2.7.1 together with Lemma 2.7.2 we infer that the fourth

moment of the error is bounded so that the first inequality follows. Moreover, it even tends

to zero.

From the construction it follows that

|ϑ̃blockn − ϑ̃blockn,h∗ | < κm̂ + κm∗

for hm̂ := ĥ > h∗ =: hm∗ holds. Moreover, since Hx(y) ≈ xy2 and hdm ≥ (log n)2n−1, we

can conlclude that the sum of κm̂ and κm∗ is bounded by

κm̂+κm∗ .
(log n)2

(n(h∗)d)2
+

√
(log n)2

(n(h∗)d/2)

(
1+ max

hm≥h∗
hdm

h−dm∑
k=1

#{i ∈ Ik,hm : Yi ≤ (Y ∗
k,hm+(nhdm)−1}

)
.

Now for every fixed hm by compensation of the block-wise counting process we conclude

that

E
[( h−dm∑

k=1

#{i ∈ Ik,hm : Yi ≤ (Y ∗
k,hm + (nhdm)−1}

)2]
≤ h−dm sumh−dm

k=1E[A2
k + Ak]

where Ak is defined as follows

Ak =
∑
Ik,hm

∫
1
(
Y ∗
k,hm < s+ g(Xi) ≤ Y ∗

k,hm + (nhdm)−1
) fε(s)
F̄ε(s)

ds ≤ ‖fε/F̄ε‖∞ ∼ 1.

Using the fact that #{i ∈ Ik,hm : Yi ≤ (Y ∗
k,hm

+ (nhdm)−1} = 1 a.s. by the definition, we

obtain

E
[
hdm

h−dm∑
k=1

#{i ∈ Ik,hm : Yi ≤ (Y ∗
k,hm + (nhdm)−1}

)2]
. 1.
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Hence, we obtain the second inequality

E[(ϑ̃blockn − ϑ̃blockn,h∗ )21(ĥ′ ≥ h∗)] .
(log n)4

(n(h∗)d)4
+
M log n

n2(h∗)d
.

To show the result for the asymptotic rate we just note that the geometric grid of

bandwidths needs to achieve the following rate h∗ ∼ n−1/β+d asymptotically, then by

inserting we have the following bound

|E[ϑ̃blockn − ϑ(n)]| . n−(2β+d)/(β+d) + n−4β/(β+d)

and the result follows from the triangle inequality. Also note that the risk is negligible on

ĥ < h∗.

The proof of the result of Theorem 2.4.7 is based upon the following proposition that

provides the result of deviation inequality.

Proposition 2.7.3. For any h, x, κ > 0 that satisfy the following conditions

R(
√
dh)β ≤ (nhd)−1,

2xhd/2‖ω‖∞ < 1,

κ < (δ − 2R(
√
dh)β)nhd

the following bound holds

nλhd/2ϑ̃blockn − ϑ(n) ≤
∑
i

1(Yi ≤ τ (i))Hx(h
d/2ω(Xi)) + C2(κ+ 2)2n−1h3d/2‖ω‖1 + x,

with probability at least 1− 2e2x2 − h−dF̄ε(z/nλhd)nh
d
.

Proof. We start with the martingale M(t) from (2.4.14) that we constructed in the proof

of Theorem 2.4.3 and consider as well the associated stopping time τ which was introduced

there too. By the substitution rule, refer to (Theorem 26.7 in [64]), we obtain the following

exponential martingale

E = exp
(∑

i

1(Yi ≤ t) log(1 + γω(Xi)) + log(F̄ε(Yi ∧ t− g(Xi)))γω(Xi)
)

= exp
(
γM(t)−

∑
i

1(Yi ≤ t)
(
γω(Xi)− log(1 + γω(Xi))

))
,

for γ > −1/‖ω‖∞.

From the fact that for all p > 1 the following random variable F̄ε(εi), that is uniformly

distributed on [0, 1], has finite p-moments and by Theorem 2.7.1 we obtain the following
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stopping result

E
[

exp
(
γM(τ)−

∑
i

1(Yi ≤ τ)
(
γω(Xi)− log(1 + γω(Xi))

))]
= 1.

The independence between cubes provides E[eγZγ ] = 1, where Zγ is defined in the following

way

Zγ := nλ(ϑ̃blockn,h − ϑ(n))−
∑
i

Gε(Yi ∧ τ i − g(Xi))ω(Xi)

−
∑
i

1(Yi ≤ τ (i))
(
ω(Xi)−

log(1 + γω(Xi))

γ

)
.

We now pick γ as |γ| = 2xhd/2 and infer by using the result of Markov inequality the

following two upper bounds

P(hd/2Z2xhd/2 ≥ x) ≤ e−2x2 ,

P(hd/2Z2xhd/2 ≤ −x) ≤ e2x2

such that

hd/2|nλ(ϑ̃blockn,h − ϑ(n))− Ξ| ≤
∑
i

1(Yi ≤ τ (i))Hx(h
d/2ω(Xi)) + x, (2.7.1)

with probability 1− 2e−2x2 . We use the following notation in (2.7.1)

Ξ =
∑
i

Gε(Yi ∧ τ i − g(Xi))ω(Xi).

From the fact that for z ∈ [0, δ] the following bound holds |Gε(z)| ≤ C2z2 and also

R(
√
dh)β ≤ (nhd)−1 we obtain

P
(

max
i∈Idk
|Gε(Yi ∧ τ i − g(Xi))| >

C2(κ+ 2)2

(nhd)2

)
≤ P

(
max
i∈Ik

(Yi ∧ τ i − g(Xi)) >
(κ+ 2)

nhd

)
≤ P

(
min
i∈Ik

εi + 2(nhd)−1) >
(κ+ 2)

nhd

)
= F̄ε

(
κ/nhd

)nhd
.

We thus infer the following upper bound∣∣∣∑
i∈Ik

Gε(Yi ∧ τ i)− g(Xi))ω(Xi)
∣∣∣ ≤ C2(κ+ 2)2

(nhd)2

∑
i∈Ik

|ω(Xi)|
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with probability 1− F̄ε(κ/nhd)nh
d
.

Summing over the h−d cubes in the result above we obtain that

hd/2
∣∣∣∑
i∈Ik

Gε(Yi ∧ τ i)− g(Xi))ω(Xi)
∣∣∣ ≤ C2(κ+ 2)2

n
h−3d/2 ‖ ω ‖1,

holds with probability 1− h−dF̄ε(κ/nhd)nh
d
. From (2.7.1) then the result follows.

2.7.2 Basic statistical framework and minimax risk

We here collect foundational statistical tools which are used throughout, and we prefer to

follow the universal notation. We assume that the data Y, are given by a random vector

on (Ω,F ,P) and taking values in a measurable space (S,S) and coming from some true

measure P∗. This measure belongs to a family of probability measures P = {Pg, g ∈ G},
defined on the space (S,S), where G is a parameter space. We denote ϑ as a functional on

the space P , taking values in a measurable space (Θ,Ξ) – that is, a mapping P→ ϑ(Pg) ∈ Θ

(usually Θ = Rd equipped with its Borel sigma-algebra BRd for some d ≥ 1).

Our goal is to estimate ϑ(Pg) based on the data Y we observe. We call a statistic

any measurable function u of the data Y and usually denote it as T or u. In order to

estimate the functional ϑ(Pg), we construct a statistic ϑ̂ : (S,S)→ (Θ,Ξ), which we call

an estimator. One of the most desired properties of an estimator is to be unbiased and

at the same time of minimal variance. This property is referred to as UMVU (uniformly

minimum variance unbiased). We formulate a precise definition of this property.

Definition 2.7.4. For a sample Y that is taken from an unknown measure (Pg ∈ P)

an unbiased estimator ϑ̂(Y) of ϑ is called UMVU estimator if and only if Var(ϑ̂(Y)) ≤
Var(u(Y)) for any (Pg ∈ P) and any other unbiased estimator u(Y) of ϑ.

We now introduce two essential classes of statistics which allow us to conduct further

statistical inference.

Definition 2.7.5. A measurable function u(Y) of the data is called a sufficient statistic

for Y, if conditionally on u(Y) the distribution of the data Y does not depend on an

unknown function of interest ϑ, i.e. P(Y|u(Y) = v) is independent of ϑ, provided that a

regular conditional probability exists.

Broadly speaking, a statistic is sufficient with respect to a statistical model and its

associated unknown function ϑ if no other statistic that can be calculated from the same

data provides any additional information as to the value of the function ϑ.

Another important class of statistics we use in this chapter is closely related to the

identifiability of a model, and is called complete statistic.
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Definition 2.7.6. A measurable function u(Y) of the data Y is called a complete statistic

for the distribution of Y, if for every measurable function T the following implication

holds

∀g : Eg[T (u(Y))] = 0 implies that T (u(Y)) = 0 Pg − a.s. (2.7.2)

One of the reasons why these two classes of statistics are of interest is that given an

unbiased estimator of the target parameter ϑ and a complete sufficient statistic u one can

derive the unique unbiased estimator of uniformly minimal variance among all unbiased

estimators. This striking result can be inferred from the two following prominent theorems.

Theorem 2.7.7. (Rao-Blackwell) Let Y be a sample from an unknown measure Pg ∈ P,

ϑ̂ be an estimator of ϑ with E[ϑ̂2] < ∞ and u be a sufficient statistic for P. Then, for

(Pg ∈ P) the following holds

Eg[(Eg[ϑ̂|u]− ϑ(Pg))2] ≤ Eg[(ϑ̂− ϑ(Pg))2].

Remark 2.7.8. In fact, Theorem 2.7.7 can also be applied to any convex loss function and

not just to a quadratic one.

Remark 2.7.9. Note that sufficiency only ensures that Eg[ϑ̂|u] is independent of ϑ, i.e. that

it is an estimator.

Theorem 2.7.10. (Lehmann-Scheffe) Let Y be a sample from an unknown measure

Pg ∈ P and ϑ̂ be an unbiased estimator of ϑ with E[ϑ̂2] < ∞. If u is a complete and

sufficient statistic for P, then Eg[ϑ̂|u] is an UMVU estimator for ϑ. Furthermore, Eg[ϑ̂|u]

is the unique UMVU estimator.

Proof. By Rao-Blackwell theorem, for any Pg ∈ P

Varg(Eg[ϑ̂|u]) ≤ Varg(ϑ̂).

Let ϑ̃ be any other unbiased estimator of ϑ. Then,

Eg(Eg[ϑ̂|u]− Eg[ϑ̃|u]) = Eg(Eg[(ϑ̂− ϑ̃)|u]) = 0,

thus, by the definition of complete statistic we have that for all Pg ∈ P the following holds

Pg(Eg[ϑ̂|u] = Eg[ϑ̃|u]) = 1. Hence, Eg[ϑ̂|u] is the unique UMVU estimator.

A comprehensive discussion of these results can be found in [81]. From the Lehmann-

Scheffe theorem it follows that determining the UMVU is simply a matter of finding a

complete sufficient statistic for the family P and conditioning any unbiased estimator on it.

In some models, however, biased estimators have lower mean-squared-error (MSE) because

they have a smaller variance than any unbiased estimator, e.g. James-Stein estimator in
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the Gaussian model that can be found in the paper of [61]. Notwithstanding, there might

be an unbiased estimator with a smaller variance. We concentrate on UMVU estimators

in this chapter. If the UMVU estimator exists it might be inadmissible, i.e. there might

be another estimator which has uniformly smaller risk but which is biased. It is worth

mentioning, that in Bayesian statistics the so-called Bayes estimators are virtually always

admissible. The Bayesian approach is when the unknown parameter ϑ is viewed as a

random variable, that is being endowed with some prior distribution. We can then take

expectations over the risk function with respect to that prior. Nonetheless, while Bayes

estimators, as a class of estimators, possess important properties (see e.g. [111]), in any

given situation the assumption of the existence of an a priori distribution may not be

valid, or, if such a distribution exists, it may be unknown.

A closely related minimax approach, which we focus on in this chapter, is to model

the choice of ϑ in an adversarial manner, and to compare estimators based on their

worst-case performances. More precisely, for each estimator ϑ̂, we compute its worst-case

risk supPg∈P Eg[ϑ̂ − ϑ]2 and rank estimators according to this property. The estimator,

which is optimal in the minimax sense, achieves the so-called minimax risk that is being

defined in the following way

M(ϑ(P)) = inf
ϑ̂

sup
Pg∈P

Eg[(ϑ̂− ϑ(Pg))2],

where the infimum extends over all possible estimators. We call the minimax optimal rate

the rate of convergence of the minimax risks. The minimax approach ensures that an

estimator performs best in the worst possible case allowed in the problem. We refer to [86]

for a comprehensive summary of results about minimax estimation.
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[103] Schrödinger, E. (1931): Über die Umkehrung der Naturgesetze, Sitzungsberichte

der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse.

Akad. d. Wissenschaften.

[104] Sericola, B. (2013): Markov chains: theory and applications. John Wiley & Sons.

[105] Severini, T. A., and G. Tripathi (2012): “Efficiency bounds for estimating linear

functionals of nonparametric regression models with endogenous regressors,” Journal of

Econometrics, 170(2), 491–498.

[106] Shalizi, C., and A. Kontorovich (2007): “Almost None of the Theory of

Stochastic Processes A Course on Random Processes, for Students of Measure-Theoretic

Probability, with a View to Applications in Dynamics and Statistics,” .

[107] Simar, L., and P. W. Wilson (1998): “Sensitivity analysis of efficiency scores:

How to bootstrap in nonparametric frontier models,” Management Science, 44(1), 49–61.

[108] Stoyan, D., and H. Stoyan (1994): Fractals, random shapes, and point fields:

methods of geometrical statistics, vol. 302. John Wiley & Sons Inc.

[109] Tsybakov, A. B. (2008): Introduction to Nonparametric Estimation. Springer

Publishing Company, Incorporated, 1st edn.

[110] Tweedie, R. (2001): “Drift conditions and invariant measures for Markov chains,”

Stochastic Processes and Their Applications, 92(2), 345–354.
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