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Abstract

This thesis develops novel Bayesian Inference methodology for a wide range of factor analysis

models. The contributions consist of new Bayesian modelling approaches and the associated

Bayesian inference methodology, novel model assessment frameworks and proposed applications

of these models in clinical pharmacology. The first section focuses on developing a generalised

framework for Bayesian Structural Equation Modelling (SEM) that can be applied to a variety of

data types. It extends the previously available framework enhancing the available capabilities

in two ways: it can handle binary and ordinal data, in addition to continuous data, which

was known before, and it allows the errors to follow any distribution possible, removing the

previously imposed restriction of Gaussianity. Moreover, it proposes a novel model assessment

paradigm aiming to address shortcomings of posterior predictive p-values, which provide the

default metric of fit for Bayesian SEM. The second section extends this framework to the

sequential setting utilising techniques from the area of Sequential Monte Carlo. Sequential

frameworks are powerful tools that can be used in dynamic settings where statistical inference

is performed recursively on a continuous stream of data. In addition, this sequential approach is

used for hypothesis testing, where it has been proven superior to the traditional null hypothesis

(NHST) paradigm. Sequential Bayesian Factor (SBF) do not suffer from bias associated with

the stopping rule, the practice of stopping the processing of new data only when conclusive

evidence can be reached. The third section, extends these frameworks to data of mixed type,

combining categorical and continuous types, to be used in clinical trial analysis where data is

commonly of such mixed type. It develops a novel sequential modelling paradigm to inform

regulatory evaluation of new drugs in real time while incorporating all the data available as

well as clinical weights of importance relative to patient outcomes.
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Chapter 1

Background and Summary

1.1 Summary

This research thesis concerns Bayesian factor modelling methodologies for a variety of data

types, including continuous and categorical. The frameworks presented cover sequential and

non-sequential settings. All models are implemented and applied in simulated and real world

datasets, and the accompanying code is openly accessible on github. The final part of the thesis

employs the frameworks proposed to analyse data from a real clinical pharmacology setting.

The thesis consists of three successive research papers.

The first paper is presented in Chapter 2, titled ‘Generalised Bayesian Structural Equation

Modelling’. There we propose a generalised framework for Bayesian Structural Equation Mod-

elling (SEM) that can be applied to a variety of data types. It extends previously suggested

models by Muthén and Asparouhov (2012) and can handle continuous, binary, and ordinal data.

Moreover, we propose a novel model assessment paradigm aiming to address shortcomings of

posterior predictive p−values, which provide the default metric of fit for Bayesian SEM. We

incorporate scoring rules and cross-validation to supplement existing model assessment metrics

for Bayesian SEM. The methodology is illustrated in continuous and categorical data examples

via simulation experiments as well as real-world applications on the ‘Big-5’ personality scale

1



2 Chapter 1. Background and Summary

and the Fagerstrom test for nicotine dependence.

The second paper is presented in Chapter 3, titled ‘Sequential Bayesian Inference for Factor

Analysis’. There we extend the modelling techniques presented in Chapter 2, to the sequential

setting. We develop an efficient Bayesian sequential inference framework for factor analysis

models observed via various data types, such as continuous, binary and ordinal data. In the

continuous data case, where it is possible to marginalise over the latent factors, the proposed

methodology tailors the Iterated Batch Importance Sampling (IBIS) of Chopin (2002) to han-

dle such models and we incorporate Hamiltonian Markov Chain Monte Carlo. For binary and

ordinal data, we develop an efficient IBIS scheme to handle the parameters and latent factors,

combining with Laplace or Variational Bayes approximations. The methodology can be used in

the context of sequential hypothesis testing via Bayes factors, which are known to have advan-

tages over traditional null hypothesis testing. Moreover, the developed sequential framework

offers multiple benefits even in non-sequential cases, by providing posterior distribution, model

evidence and scoring rules (under the prequential framework) in one go, and by offering a more

robust alternative computational scheme to Markov Chain Monte Carlo that can be useful in

problematic target distributions.

The third paper is presented in Chapter 4, titled ‘Bayesian Benefit Risk Analysis’. In this final

chapter we develop a benefit risk analysis framework to compare three different treatments for

type 2 diabetes. We analyse a proprietary data set of a clinical trial conducted to understand

the benefits and risks of the proposed treatments. We employ the Multi-Criteria Decision

Analysis (MCDA) framework that facilitates decision making amidst multiple competing ac-

tions. To create a holistic modelling framework we combine MCDA with factor models that

can accommodate data of mixed type, as is the case in most clinical trials. Typically efficacy

variables (benefits) are continuous items, whereas adverse effects (risks) are categorical items.

To accommodate such cases we tailor the modelling framework of Chapter 2 and also provide

a framework for model choice in this setting. Additionally, we propose a sequential clinical

trial paradigm, using the methodologies developed in Chapter 3. This proposed framework

offers multiple benefits: (i) it allows us to recursively update model estimates with each new

subject receiving the treatment; (ii) it permits stopping the exposure as soon as the research



1.2. Background 3

requirements are satisfied reducing unnecessary further exposure to undesirable treatments;

(iii) it allows us to assign treatment groups dynamically based on research objectives. We

demonstrate these benefits by applying it to the dataset at hand and highlight what could have

been done differently under the sequential setting.

1.2 Background

Factor Analysis

Factor Analysis is a modelling technique involving latent variables often used in social sciences,

psychometric and econometric theories among other fields. It provides a method to study

variables of interest that are not directly measurable. The classical factor model equation is

y = α + Λz + ε (1.1)

where y is the observed data, z are the latent variables and (α,Λ, ε) are the model parameters

to be estimated. For one example, consider that z is the mathematical ability of high school

students that is never directly observed, rather it is indirectly deduced in relation to measurable

and quantifiable variables, denoted by y, such as test scores. Another example could be a social

attitude, such as introversion, which is never observed as a measurable quantity, but rather can

only be expressed via a set of observable actions or survey responses. Factor modelling is a

principled methodology that allows us to gain insights and quantify such latent variables of

interests, by analysing the associated observable items.

The dimension of the latent variables is typically much smaller than the dimension of the

observed items, so that a single latent variable is associated to more than one observed vari-

able. This way factor models also function as a dimensionality reduction technique aiming at

condensing a dataset of observations by expressing its structure using a lower dimensional con-

struct. In summary, factor analysis offers a way to determine whether a small number of latent
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variables can account for the dependencies among the observed variables. Note that the dual

goals of dimensionality reduction and gaining insights into latent variables are by no means

mutually exclusive, and in fact real practical applications of factor analysis typically employ

both angles in the course of the data analysis.

Latent variable models is the general umbrella term for all models that involve latent variables,

variables that are never directly observed, but rather deduced via their connection to observed

variables. When the analysis utilises categorical latent variables, it is called Latent Class Anal-

ysis for categorical observations and Latent Profile Analysis or Mixture Models for continuous

observations. On the other hand when the analysis utilises continuous latent variables, it is

termed Factor Analysis when the observations are also continuous and Latent Trait Analysis

when the observations are categorical. This thesis concentrates on the latter two types of factor

analysis, where the latent variables are continuous.

Factor Analysis is concerned with uncovering common latent sources of influence (factors)

among the observed variables (manifest variables). In cases where we observe a dependency

between two variables it is often useful to examine if that is because of a common dependency

on a third variable. If such third variables were directly observed then regression analysis would

be the natural modelling framework to understand the correlation structure. When they are

not directly observed, factor analysis can be used to determine whether any correlation among

the observed variables can be explained due to common dependency on a smaller set of latent

variables, the factors. These factors could be convenient constructs that provide a possible

way to explain the dependencies or they can be hypothesised quantities of interest that are

anticipated due to previous research. The latter often arises in case of data sets from surveys,

designed specifically to study such latent quantities of interest.

Factor analysis is usually grouped in two main categories, Exploratory Factor Analysis (EFA)

and Confirmatory Factor Analysis (CFA). Informally, EFA is the process of uncovering a com-

pressed, lower dimension, representation of the data. More formally, EFA “can be construed

as an inductivist method designed to discover an optimal set of factors that accounts for the

covariation among the items” (Skrondal and Rabe-Hesketh, 2004). EFA aims at discovering the
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factor structure, i.e. which observed variables/items load to which latent factors. This means

that loading parameters Λ are free but then scores z are assumed independent for identifiabil-

ity reasons (more on this later on). Confirmatory Factor Analysis (CFA) aims at examining

a hypothesised structure. Skrondal and Rabe-Hesketh (2004) defines it as “a hypothecist pro-

cedure designed to test hypotheses about the relationships between items and factors, where

the number and interpretation of the factors are given in advance. Hence, in the confirmatory

mode, particular parameters are set to prescribed values”. Usually the scores z are allowed

to be correlated (or with unit diagonal) and restrictions (zeros) are placed on the loading pa-

rameters Λ. A generalisation of the CFA framework for testing research hypotheses arising in

psychology and social sciences is Structural Equation Modelling (SEM). It is used to model di-

rectional (regression coefficients) and non-directional (correlations) relationships among latent

variables (structural model) which are identified by observed variables (measurement model)

(Bollen, 1989). The theory of factor analysis extends to SEM models so while we choose to

give examples mostly in factor analysis, the methodologies developed in this thesis extend to

SEM models as well.

Classical Model Assessment

Although ideally we would measure the absolute fit of a model, in practice we can usually only

measure the relative fit of one model versus a set of pre-specified alternative models. Such

comparisons can be achieved using relative fit criteria. Conventional hypothesis testing can be

used to compare nested models. Specifically, likelihood ratio tests compare a constrained model

M0 with k0 parameters (null) to an expanded model M1 (alternative) with k extra parameters

k1 = k0 + k. Nested models can also be compared using Wald or Lagrange Multiplier Score

tests. Assuming certain regularity conditions, under the null, all three tests are asymptotically

distributed as chi-squared χ2
k with k degrees of freedom (Cox and Hinkley, 1979; Buse, 1982;

Engle, 1984), but do have meaningful differences in the finite sample case (Hauck and Donner,

1977; Pawitan, 2001).

Such conventional tests, aside from their limited applicability, have a number of weaknesses that
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make them unsuitable in many cases. Asymptotic results hold under a number of conditions

that are often not satisfied in practice. For example, if the sample size N is large compared with

2p (all the possible patterns of the categorical data), the expected frequency for each response

pattern is likely to be large enough to carry out a valid chi-squared (χ2) test to compare

the observed and expected frequencies. As 2p becomes large, relative to N , the contingency

tables become too sparse and no test can be done, see Bartholomew, Knott, and Moustaki

(2011) section 4.9. Another weakness of the conventional testing approach is that the power of

hypothesis tests depends on sample size. While acknowledging that more observations imply

more information, it nevertheless appears difficult to base model assessment actions on this

criterion. This point can be made clear by considering a situation with a very large number of

observations. Here, we expect all but extremely complicated models to be rejected and we are

left with ‘models’ which merely mirror the particular data set at hand. On the other hand, if few

observations are available, we expect that oversimplifications tend to be retained (Skrondal and

Rabe-Hesketh, 2004). Finally, significance probabilities can point to contradictory directions

and/or disagree with the evidence, even for the unrealistic case of solely two nested models

(Berger and Sellke, 1987; Berger and Delampady, 1987).

There are no similar tests for model comparisons between non-nested models. This is particu-

larly relevant to the EFA context because most models of interest in exploratory analysis are

non-nested. Hence there is no agreed upon way to do EFA in practice, leaving unanswered one

of the most basic questions of EFA, determining the appropriate number of factors. Skrondal

and Rabe-Hesketh (2004) explain the status quo for continuous data as follows. “An exploratory

factor analysis usually proceeds through the following rather ad hoc steps. First the number of

factors is determined based on a principal component analysis of the correlation matrix. The

number of factors is typically chosen to be equal to the number of eigenvalues that are larger

than one, the so-called Kaiser-Guttmann criterion. Sometimes, however, a so-called scree-plot

is used where the eigenvalues are plotted against their rank and the number of factors is indi-

cated by the ‘elbow’ of the curve (Cattell, 1966)”. For categorical data there are fewer options,

mainly information criteria metrics, as we describe later on.
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Model Assessment for CFA

Informally CFA describes the scenario of having a single theory that is to be tested against

the data. For example the theory could postulate the existence of two factors, not necessarily

independent, and each factor is associated with distinct sets of measured variables. It is natural

to ask if the data support this theory and by how much. In practice this takes the form of

comparing the fit of the tested model to a benchmark model where certain parameters are set

to pre-specified values, typically zero. In some test cases, the benchmark model can also be

the saturated model for a given set of variables. Such comparisons to a baseline are considered

a measure of absolute fit within the context of factor analysis. Any hypothesis tests discussed

above can be used, since the models are usually nested in this case, with the likelihood ratio

test being the most popular. In covariance structure modelling the null hypothesis corresponds

to a restricted model and the alternative to the empirical covariance matrix1. Such methods

are usually applied to detect misspecification but cannot detect the omission of variables.

Another interesting non-nested scenario of CFA is the multi-group analysis, which occurs when

we want to compare the fit of the model to two or more sets of data. For example if we test

the above theory in data collected from two different countries, it might be natural to ask if

there are meaningful deviations between the two countries. There are usually likelihood ratio

tests for this cases but when the number of factors is even moderately large (bigger than 3)

it becomes subject to big approximation errors. The Bayesian model choice, and posterior

predictive checks in particular, provide an alternative measure of absolute fit.

Goodness of fit indices

One method to circumvent the limitation of the hypothesis tests mentioned above, is to use one

of the standardised forms of the chi-squared statistic known as goodness of fit indices (GFI).

GFIs are easy to use; they are standardised between 0 and 1, 0 being the worst fit possible

1It’s worth noting that that the status of null and alternative hypothesis is reversed in this case, compared
to the standard framework for statistical testing as the researcher desires to retain the null hypothesis in favour
of the alternative.
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and 1 being the best. Also, indices tend to be less sensitive to departures from the ideal

model conditions or different sample sizes. GFIs compare the incremental fit of a model over a

baseline (dictated by the choice of GFI), measured as the discrepancy between the sample and

the estimated covariance matrices. There is a wide range of GFIs, we refer the interested reader

example to Bartholomew et al. (2011) for a comprehensive list. That is more of a con than a

pro, as there is often no principled way to choose among the many options. Two representative

examples are the root mean square error of approximation (RMSEA) and the comparative fit

index (CFI). The CFI is a relative fit index; it compares the chi-squared statistic of the fitted

model with the chi-squared of a baseline model, usually the independence model (the degrees of

freedom of each model are taken into account). The RMSEA is calculated without an explicit

baseline using the chi-squared statistics and the degrees of freedom of the fitted model. In

practice using such indices can be problematic. Aside from having to make an arbitrary choice,

GFI are heavily affected by the baseline model they use (Sobel and Bohrnstedt, 1985) among

other issues (Skrondal and Rabe-Hesketh, 2004).

Information Criteria

Practitioners can also use conventional information criteria when choosing between models.

These metrics are easy to calculate and interpret. Deviance, twice the difference in log-likelihood

between a model and the saturated model, gives rise to the deviance information criterion (DIC).

Related criteria are the Bayesian (BIC) and the Akaike information criteria (AIC), which in

addition to approximating deviance they also penalise model complexity. For categorical data

specifically, another easy-to-use metric is the Pearson X2 statistic. Despite limitations these are

widely used in model selection, mainly because of a lack of alternative, especially for non-nested

models.
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Posterior Predictive Checks

Posterior predictive checks (Rubin, 1984; Meng, 1994b; Gelman et al., 1996) is the method of

comparing the observed data with data that the model generated. The comparison can be done

visually, or quantitatively with diagnostic measures of discrepancy between the two datasets.

It is left to the researcher to decide what constitutes acceptable levels of discrepancy. Posterior

predictive checks, as the name suggests, compare models only at the prediction level. As such,

it can be used to compare any set of models, no matter how simple or complex. For examples

of using posterior predictive checks for IRT see Sinharay et al. (2006); Levy et al. (2009).

Bayesian model choice can be a powerful alternative, especially for the non-nested model com-

parison. Methods to compute marginal likelihood for Bayesian model comparison include re-

versible jump MCMC (Green, 1995) and Bridge Sampling (Gelman and Meng, 1998). When

the latent variables are Gaussian another method is Integrated Nested Laplace approximations

(Rue, Martino, and Chopin, 2009). All these methods require additional work beyond the task

of inference and can be computationally involved, especially for non-trivial models. As we will

see later, sequential inference methods offer an attractive alternative because they produce es-

timates of the marginal likelihood as a byproduct of inference. However, the existing sequential

methodologies do not cover factor analysis models, especially for categorical data. As we will

discuss later, this thesis addresses the issue of sequential inference for the generalised latent

variable models including the case of categorical data.

Overall, the existing methodologies for model assessment are not able to provide clear guidance

on how to proceed in the case when a confirmatory model does not exhibit ‘good fit’. One

possible reason for the lack of fit is that the hypothesised structure is inadequate to capture

the variability of the data. A second possibility is that the structure is reflected too strictly

in the model, causing the available testing apparatus to reject the model. A third possibility

is that there is imperfect measurement, such as measurement error misspesification, unrelated

to the hypothesised structure that is causing the model to be rejected. This situation arises

often due to wording differences between items in survey data. In the absence of conclusive
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testing mechanism researchers use modification indices by which they free one by one different

parameters of the model to see which changes result in a better fit. This technique however

is not advisable as it is prone to capitalising on chance and arriving at false conclusions. The

alternative of freeing all parameters is not feasible either, since it would result in an over

parameterised EFA model. These challenges apply equally to the continuous and categorical

data cases. Hence, developing a comprehensive model assessment framework for CFA and SEM

models remains an elusive task in factor analysis.

Identifiability Challenges

Allowing for latent variable in a model is a useful abstraction but fitting them to data poses

a challenge. The observations are usually not enough to identify uniquely the latent values.

The issue boils down to the simple fact that the likelihood is invariant under certain transfor-

mations of the latent variables, and hence the likelihood has multiple maxima. Although most

identifiability issues can be seen as illustration of the same underlying phenomenon, one finds

them under a plethora of names in the literature. In categorical latent variables the issue is

often referred to as label switching or label ordering problem; see section 22.3 in Gelman et al.

(2014), Betancourt (2017), section 11.3.1 in Murphy (2012), Jasra et al. (2005). In continuous

latent variables the non-identifiability is usually referred to as non-uniqueness or rotational

indeterminacy ; see section 12.1.3 in Murphy (2012), Lopes and West (2004), section 2.11 in

Bartholomew et al. (2011). Note that the lack of identifiability is a theoretical issue and as

such, it cannot be resolved by investing more computational power.

Non-identifiability usually manifests itself in a multimodal posterior distribution, as we explain

in more detail in the examples that follow. From a practical point of view, finding any one

of the modes suffices for most cases. As a result, MLE techniques that are designed to find

local maxima and purposefully avoid exploring other modes could yield satisfactory answers

without the need to artificially constraint the parameter space. Bayesian inference on the other

hand, is more susceptible to these problems because it is designed to explore all the available

space for modes. All random walk algorithms suffer, to varying degree, when the space they
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are trying to explore is multimodal. That’s why LVMs present a bigger challenge for Bayesian

inference. As Bartholomew et al. (2011) put it “However, the implications of rotation and label

switching have not been thoroughly investigated under the Bayesian framework and workable

solutions still need to be given. As with rotation, any random permutation of the set of

factors leaves the joint distribution of the observed variables unchanged, which often leads

to multi-modal posterior distributions for the parameters of interest. To our knowledge no

research has been published that addresses label switching in latent variable models. For the

classical factor analysis model, restrictions similar to those applied for model identifiability

have usually been adopted as a practice for avoiding label switching.” The authors continue

“in a Bayesian estimation framework, rotational indeterminacy often leads to computational

problems such as non-convergence or label switching among the factors in the multidimensional

case. Lopes and West (2004) suggested constraints for the classical factor analysis model, but no

systematic work has been done for the factor analysis model for categorical manifest variables.

Re-parameterisations of the model are in some cases necessary to avoid lack of convergence

when large discrimination parameters occur.”

Unidentifiability in IRT models

The label switching issue can be more easily understood in the case of discrete latent classes,

called mixture models. There are multiple possible labellings of the latent classes and they

are indistinguishable from the perspective of likelihood. As a result each possible labelling (k!

possibilities for k classes) has to be equally likely which creates a multimodal posterior distri-

bution. The case of continuous latent factors suffers from a generalisation of the label switching

problem. At a high level, the likelihood is invariant to a broader range of transformations of

the factors. Any orthogonal transformation, not just permutations, can be shown to leave the

likelihood unchanged, and hence the latent factors can only be identified “up to orthogonal

transformation”. Let’s focus on the case of IRT models with p binary items and k latent vari-

ables as an example. Each response variable yj, conditionally on the latent vector, follows a

Bernoulli(πj(z)) distribution with success probability πj(z) which, for the logit link, is given by
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logit(πj (z)) = αj +
k∑
`6=1

Λj` z`, for j = 1, . . . p . (1.2)

Under this approach, assuming a random sample of N individuals with yij responses on p items

(i.e. i = 1, . . . , N and j = 1, . . . , p) the model is written

yij ∼ Bernoulli(πj(zi))

υ{πj(zi)} = αj +
k∑
`6=1

Λj` zi`,

zi` ∼ N(0, 1)

where zi = (zi1, . . . , zik) is the vector of latent variables for i-th individual,and πj(zi) is the

success probability of i subject and j item, and υ is the link used.

The linear predictor of the GLLVM can be re-written in a matrix form by

υ{µ(z)} = A + zΛ (1.3)

where µ(z) is a N×p matrix with elements µij(z), A = α′⊗1N is a N×p matrix with elements

Aij = αj and z is N×k matrix with elements zi`. Any orthogonal transformation of the factors

in (1.3) will leave the model unchanged since

υ{µ(z)} = A + zUU ′Λ.

Hence, there are infinite possible solutions with respect to the model slope parameters, B∗ =

U ′Λ. Note that permutations are orthogonal transformations and hence label switching is a

special case of the non-uniqueness.

The so-called non-uniqueness or rotational indeterminacy problem is dealt with the use of

constraints imposed on the model parameters to ensure a unique solution; for a detailed solution
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see Bartholomew et al. (2011) section 2.11. One of the first publications on the topic was

by Anderson and Rubin (1956) who give sufficient or necessary conditions to eliminate the

problem of rotation in factor analysis models. Ever since, several solutions have been proposed

by imposing zero or non-zero constraints on the loadings matrix; see in Lawley and Maxwell

(1963); Jöreskog (1969); Dunn (1973); Steiger (1979); Algina (1980) among others.

Geometrically, multiplying Λ by an orthogonal matrix U is like rotating z before generating y,

which leaves the likelihood unchanged. Recall that Λ is a p× k matrix where k < p, and hence

the space of all matrices that can act on Λ has dimension k2. To ensure unique solution we have

to remove from our search space all the orthogonal ones, there are k(k − 1)/2 of them. Some

methods to achieve this is restricting Λ to be orthonormal, or just lower triangular. In the latter

case the total number of parameters can be calculated to be p+pk−k(k−1)/2 which is equal to

the number of identifiable parameters. One caveat of this method is that the interpretation of

the latent factors is dependent on the ordering of the factors (Fruhwirth-Schnatter and Lopes,

2010).

For further readings on identifiability see Williams (1978); Elffers et al. (1978); Bekker (1986);

Sato (1991); Browne (2001) and references within. In particular, the specific side effects of

constraining the parameter space to achieve identifiability is an active area of research. One

of the most recent works on this topic is by Fruhwirth-Schnatter and Lopes (2010) where we

find the following: “A common way of dealing with these problems is to constrain the upper

triangular part of Λ to be zero and to assume that main diagonal elements of Λ are strictly

positive, i.e. Λjj > 0 for all j = 1, . . . , k, see for example Geweke and Zhou (1996a). This

constraint simultaneously prevents factor rotation and identifies the sign of the elements of

zi and Λ, however it is generally too restrictive. It induces an order dependence among the

responses and makes the appropriate choice of the first r response variables an important

modelling decision (Carvalho, Chang, Lucas, Nevins, Wang, and West, 2008a). Well-known

difficulties arise if one of the true factor loadings Λjj is equal to or close to 0, see for example

Lopes and West (2004).”
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Classical Inference for Factor Analysis

The standard way to estimate the parameters of a GLLVM is with the Expectation-Maximisation

(EM) algorithm. This algorithm exploits the fact that it is easy to compute the MLE of the

parameters if we observed the values of the latent variables, often in closed form. The EM is an

iterative algorithm that alternates between inferring the missing values of the latent variables

(step E), and then optimising the likelihood of the parameters given the latent values that were

just filled in (step M). By interweaving these two kind of steps at each iteration the EM algo-

rithm monotonically increases the log-likelihood of the observed data, until it reaches a local

maximum, see Murphy (2012) section 11.4.7 for a proof. On the bright side EM is often the

fastest method available, especially if we can make use of closed form solutions for the steps.

On the other hand, it often converges to local maximum, not a global one.

Marginalising out the latent variables to write down the likelihood for GLLVMs is sometime

possible. Moustaki and Knott (2000) work out the general gradient formulas for the continuous

latent variables case where the distribution of the observed variable belongs to the exponential

family. For some special cases of these models there are closed formulas; for all the rest the

authors recommend a Newton-Raphson method to approximate the necessary quantities. For

a contrast between the two methods discussed so far for the probit regression model see section

9.4.1 (gradient based method) and section 11.4.6 (E-M formulas) in Murphy (2012).

A notable LVM is one where both observed and latent variables are Gaussian. A common

objective for such models is to decompose the observable variables by expressing them in terms

of the latent factors. We can constrain the covariance matrix of the factors according to

research objective. For example we can enforce the factors to explain all the dependence

between the observable variables by constraining the covariance matrix to be diagonal (factors

are independent). Two common analyses along these lines are the PCA and PPCA and those

can be fit in a variety of ways, including with EM. For mode details see chapter 12 in Murphy

(2012), Tipping and Bishop (1999), and section 14.7.1 in Friedman et al. (2001).
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Bayesian Inference for Factor Analysis

Bayesian inference for factor analysis has mainly been based on Markov Chain Monte Carlo

methods. For continuous data and continuous latent variables the posterior distribution for-

mulas have been derived in previous work (Lee, 2007; Arminger and Muthén, 1998). The

methodologies available are typically based on Gibbs sampling, using the derived conditional

distributions. User-friendly implementation of these methods are available in a few commercial

and open source projects such as ‘Bugs’, ‘WinBugs’ and ‘Mplus’, and ‘blavaan’.

For binary data and continuous latent variables Bayesian inference is more challenging (Lee,

Song, and Cai, 2010). Cowles (1996) proposed multivariate extensions of the algorithm by for

estimating univariate probit regression model and Albert and Chib (1993) proposed a similar

methodology. For the multivariate probit model, Patz and Junker (1999a) proposed a Metropo-

lis within Gibbs approach that used the conditional posterior distributions for the parameters

that are available, and a Metropolis step for the rest. MCMC Gibbs for the probit model was

also developed by Chib and Greenberg (1998a) and then also by Ansari and Jedidi (2000), Lee

and Song (2003), and Talhouk, Doucet, and Murphy (2012). All these schemes use conjugate

priors have been developed in previous papers (Lee and Song, 2010). Currently such schemes

are available for the probit model but not for the logit. Ordinal data with continuous latent

variables are studied as an extension of the probit model (Johnson and Albert, 2006). Imple-

mentation for Latent Trait models is rare, with ‘Mplus’ providing a limited number of models

based on the probit link only. For an example of a Gibbs sampler for latent trait models with

binary data see Geweke and Zhou (1996b) and Lopes and West (2004).

Bayesian Model Choice and Priors

Bayesian theory suggests that we should choose the model with the highest marginal likelihood,

see for example section 8.4.2 in Skrondal and Rabe-Hesketh (2004) for a relevant discussion.

As an alternative to computing the marginal likelihood it is common to use approximations

such as AIC or BIC. In addition to the potential difficulties involved in the computation of the
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marginal likelihood, another issue that needs to be addressed is the sensitivity on priors. We

turn our attention to that problem next. We illustrate this point continuing with the example

of the IRT model from equation (1.2).

A latent variable model involving N individuals, p binary items and k factors, entails (N+p)×

k + p parameters. Naturally, all parameters are considered a-priori independent and the prior

has the general structure

π(θ, z) =
N∏
i=1

k∏
`=1

π(zi`)×
p∏

j=1

π(αj)×
p∏

j=1

k∏
`=1

π(Λj`) . (1.4)

In classical factor analysis models it is common to assume the latent variables the latent vari-

ables are typically assumed to be a-priori distributed as independent standard normal distri-

butions, that is

π(zi`) = N(0, 1). (1.5)

With respect to the item parameters, four criteria were considered in the construction of the

corresponding priors. In particular, the item priors should

a) be low informative to express prior ignorance or indifference,

b) impose constraints in order to achieve unique solution,

c) be suitable for Bayesian model comparison, in a way that is takes into consideration the

Lindley-Bartlett paradox (Lindley, 1957; Bartlett, 1957), and

d) be easily generalisable to other members of the GLLVM.

Those four criteria will now be discussed in detail for the multidimensional logistic factor

model for binary data. For the normal ogive model which implements the probit response

function, conjugate priors exist, which facilitate the implementation of the Bayesian approach.

In particular, normal priors are used for the α parameter, truncated normal priors for the Λ

parameter (restricted to be positive) and finally beta priors are implemented for the guessing
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parameter, in the 3-PL model see for instance Sahu (2002). The positivity constraint is imposed

to address the rotation problem in the uni-dimensional case. Similar priors are used in models

with a multilevel structure (Fox and Glas, 2001; Janssen et al., 2000; Glas and Meijer, 2003;

Beguin and Glas, 2001; Sheng, 2008).

In the case of the logistic IRT models, there are no priors available leading to conjugate forms.

The effect of priors on the parameter estimation of the logistic IRT models is assessed in

Gifford and Swaminathan (1990). Beguin and Glas (2001) also examine the effects of different

prior distributions on parameter recovery. Typically normal priors, N(0, σ2
αj

), are used for the α

parameter and LN(0, σ2
Λj

) for the Λ parameter in the univariate case, with large prior variances

to express lack of prior information (Sinharay, 2005a, 2006; Kang and Cohen, 2007; Kim and

Bolt, 2007; Patz and Junker, 1999a, 1999b).

Sequential Monte Carlo

Sequential Monte Carlo refers to a wide network of inferential techniques that are used broadly

in the sciences and engineering fields. This field was given birth with the discovery of Particle

Filters in 1993 (Gordon, Salmond, and Smith, 1993) and the subsequent study of the “filtering

problem”. Informally, for a time series of discrete observations yt and a related time series of

latent state zt, the filtering problem refers to the question of inferring zt from noisy observations

of yt. One of the most celebrated solutions to this problem was given by Kalman (1960) for the

case of linear Gaussian state-space models. Since their introduction, Particle Filters research

focused on expanding the inferential framework around state-space models and solving more

general cases of the filtering problem for non-linear and non-Gaussian systems.

The model parameters governing the relationship between observations and latent space in tra-

ditional state-space models were considered static and known, and the focus was on learning the

state variables. The existing parameter estimation techniques based on Markov Chain Monte

Carlo, were not easily compatible to the sequential framework. One of the most influential

works was the introduction of Particle Markov Chain Monte Carlo frameworks for sequential

inference by Doucet, De Freitas, Gordon, et al. (2001). That line of research was developed in
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parallel to that of Particle Filters’ research until more recently when the two merged, becoming

known as Sequential Monte Carlo methods.

The goal of a sequential scheme is to recursively explore the sequence of posterior distributions

π0(θ) = p(θ), πt(θ) = p(θ|y1:t), t ≥ 1 (1.6)

where θ denotes all the unknown parameters in our model. The sequential inference paradigm

approximates recursively these posterior distributions and the model evidence p(y1:t) (Del Moral,

Doucet, and Jasra, 2006).

Although the inclusion of latent variables makes factor modelling a natural fit for SMC methods,

this area remains unexplored to the best of our knowledge. In Factor Analysis when it is possible

to marginalise out the latent variables the natural sequential scheme of choice would be Iterative

Batch Importance Sampling (IBIS) (Chopin, 2002). For the rest of the cases, which are the

majority, inference in factor models is a harder problem. For example the IBIS algorithm is not

directly applicable for factor models for categorical data, where the latent variables cannot be

integrated out. The main framework for sequential Bayesian inference of latent variable models

is the SMC2 scheme of (Chopin, Jacob, and Papaspiliopoulos, 2012) which combines previously

available methodologies of IBIS and the pseudo-marginal framework of Andrieu and Roberts

(2009), and applies to cases of Markov dependent latent variables. While we recognise the

contributions of this research work, as we explain later on, we find that the needs of Sequential

Factor Analysis are not adequately met by any of the existing frameworks.

Sequential Monte Carlo research is a powerful network of techniques that has been successfully

applied in a variety of tasks. Although it has not been extensively used in the study of factor

models, we find that it can provide solutions to a number of areas of active research including

identifiability issues around inference, model assessment in confirmatory analysis, and determin-

ing the right number of factors. Furthermore, the sequential paradigm opens up the possibility

of dynamic or online inference for factor analysis. Separately, the sequential paradigm can be

particularly useful in experimental designs and alleviate issues of the traditional hypothesis
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testing framework.



Chapter 2

Generalised Bayesian Structural

Equation Models

2.1 Introduction

Structural Equation Modelling (SEM) is a general framework for testing research hypotheses

arising in psychology and social sciences in general. It is used to model directional (regression

coefficients) and non-directional (correlations) relationships among latent variables (structural

model) which are identified by observed variables (measurement model) (Bollen, 1989). Initial

inference methods for SEM have mostly been frequentist, but recently their Bayesian counter-

part has gained popularity (see e.g. Scheines et al., 1999a; Dunson et al., 2005; Kaplan, 2014;

Merkle and Rosseel, 2015; Van De Schoot et al., 2017). Bayesian SEM offers several potential

advantages. It has been shown to perform well with small sample sizes (Depaoli and Clifton,

2015) or small number of groups in hierarchical modelling (Hox et al., 2012), and can help

resolve issues of inadmissible estimates (Can et al., 2015). Moreover, it provides computation-

ally efficient schemes for models with large numbers of latent variables (Lüdtke et al., 2013;

Oravecz et al., 2011), and can quantify uncertainty via credible intervals of quantities that are

functions of parameters such as reliability (Geldhof et al., 2014) or indirect effects (Yuan and

MacKinnon, 2009). It can also provide a unified framework for handling missing data (Lee and

20
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Xia, 2008) and semi-parametric models (e.g. Yang and Dunson, 2010; Song et al., 2013).

In this paper, we focus on the Bayesian SEM framework introduced by Muthén and Asparouhov

(2012). Structural equation models impose some kind of restrictions on the number of param-

eters to be estimated. Usually, some parameters are set to zero and thus not estimated at

all (e.g. cross-loadings, error correlations, regression coefficients). Muthén and Asparouhov

(2012) suggested treating such parameters as approximate rather than exact zero, by assigning

informative priors on them that place a large mass around zero; we will refer to this approach

as the approximate zero framework. The introduction of the approximate zero framework was

intended to address a number of issues with classical SEM. First and foremost, it aimed to

correct the fact that classical null-hypothesis testing framework over-rejects valid hypothesised

structures due to differences that, from a research point of view, may be small, negligible, or

irrelevant. Second, it provided researchers with a modelling framework that can be used as

an alternative, or additional, diagnostic of goodness of fit and help investigate what aspects

of the model are causing it to have bad fit. Third, by virtue of being a Bayesian approach,

it also alleviates estimation issues common under the maximum likelihood framework, such as

non-covergence or Heywood cases. Using such informative priors, instead of exact zero assump-

tions, is convenient in situations where there are concerns regarding the fit of the exact zero

model. More specifically, it allows using the model as an exploratory tool to identify the source

of model misfit. An alternative option for such a task is the use of modification indices (e.g.

MacCallum et al., 1992). However, the approximate zero framework offers several advantages,

see for example the discussion in Stromeyer et al. (2015), and its implementation is possible

for the case of continuous and normally distributed data in the Mplus package (Muthén and

Muthén, 2017). More specifically, a modification index measures the improvement in model fit

that would result if a previously omitted parameter were to be freely estimated. This can often

lead to a model unsupported by the hypothesised substantive theory. Moreover, the greedy

nature of the procedure does not guarantee convergence to an optimal model (Muthén and As-

parouhov, 2012; Asparouhov, Muthén, and Morin, 2015). On the other hand, the approximate

zero approach provides information on model modification in one go, while the hypothesised

theory is reflected clearly via the priors on the loadings. To our knowledge, the approximate
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zero approach offers the only Bayesian alternative to the modification indices. In theory, one

can approach the same problem via Bayesian model searching using e.g. spike and slab priors

and stochastic search variable selection but this is a substantially more challenging approach;

see for example Lu et al. (2016).

In this paper, we aim to improve upon two aspects of the approximate zero framework. First,

the existing framework covers models for continuous data and relies on the normality assump-

tion. Here, we propose a generalised approximate zero framework that can accommodate more

distributions, such as the logistic which is commonly employed in item response theory (IRT).

This is achieved by introducing in the measurement model item-individual random effects.

The model by Muthén and Asparouhov (2012) becomes then a special case of the proposed

framework.

Second, we focus on the task of assessing model fit under the approximate zero framework

(Garnier-Villarreal and Jorgensen, 2020; Asparouhov and Muthén, 2020). Several approaches

exist in the literature, with posterior predictive p-values (PPP) (Meng, 1994a) being the most

widely used. However, concerns have been raised regarding their suitability in this framework

(see e.g. Stromeyer et al., 2015; Hoijtink and van de Schoot, 2018a). Special consideration has

to be given to the choice of prior distributions for the model parameters, which can potentially

affect the PPP performance (MacCallum et al., 2012; Van Erp et al., 2018; Liang, 2020).

Perhaps a more fundamental question is whether priors should be set on the basis of fit indices,

rather than formal Bayesian model choice quantities, such as the Bayes factor. Nevertheless,

the Bayes factor requires calculating the model evidence, or else marginal likelihood (Gelman

et al., 2017), which can be quite a challenging task especially in models with latent variables

(e.g. Lopes and West, 2004; Vitoratou et al., 2014). Moreover, the Bayes factor is a relative

measure and therefore does not directly address the question of whether a model fits the data

well. Asparouhov et al. (2015) suggest avoiding the use of the approximate zero model to reach

binary decisions on goodness of fit, but instead use it as an exploratory tool leaving the choice

up to the subject matter experts.

Our approach aims towards reaching a middle ground between exploring lack of fit and assessing
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its severity. This is done by developing a decision framework that monitors the out-of-sample

predictive performance to explore model misfit (i.e. validity of the hypothesised theory). Our

proposed decision framework uses collectively fit indices and scoring rules via cross-validation

to examine whether the approximate zero parameters are picking up random noise rather than

systematic patterns in the data. From a machine learning viewpoint, cross-validation is one of

the standard tools to guard against overfit, while at the same time ensuring a good fit. The

advantages of using cross-validation to measure model performance have been noted in the

SEM context; see, for example, MacCallum et al. (1992), Browne (2000) and recommendation

4 of Stromeyer et al. (2015). An intuitive argument in favour of cross-validation is that if a

measurement scale does not generalise well in parts of the existing data it is highly unlikely

that it will in future data. Merkle et al. (2019) use the DIC and WAIC indices that can

be viewed as approximate versions of cross-validation (Gelman et al., 2014), although their

resulting approximation is not always satisfactory; see for example Plummer (2008). From a

Bayesian viewpoint, cross-validation, when combined with the log posterior predictive scoring

rule, has tight connections with the model evidence and is less sensitive to priors (Fong and

Holmes, 2020). Our proposed framework is developed by combining fit and out of sample

predictive performance indices from different models.

The paper is structured as follows. In Section 2, we define the proposed generalised Bayesian

SEM framework, illustrate how existing Bayesian SEM formulations are special cases, and

provide examples of new models. Section 3 introduces the framework for assessing Bayesian

SEM models. In Section 4, we illustrate and assess our methodology through several simulation

experiments. Section 5 presents the analyses of two real applications: the first is a standard

example on examining the ‘Big 5’ personality factors on data from the 2005-06 British Household

Panel Survey (BHPS), whereas the second example is on the Fagerstrom Test for Nicotine

Dependence (FTND). Finally, Section 6 concludes with some relevant discussion and extensions.

The code for this work is available in the accompanying repository ‘bayes-sem’ hosted on

github1.

1https://github.com/bayesways/bayes-sem/
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2.2 Generalised framework for Bayesian SEM

2.2.1 Model specification

We use a unified Bayesian framework that encompasses models for categorical and continuous

responses. Suppose there are p observed variables (items) denoted by y = (y1, . . . , yp) and

that their associations are explained by k continuous latent variables (factors) denoted by

z = (z1, . . . , zk). Categorical variables (binary and ordinal) can be accommodated in the same

framework as for continuous data by assuming that the categorical responses are manifestations

of underlying (latent) continuous variables denoted by y∗ = (y∗1, . . . , y
∗
p). When continuous

variables are analysed, yj = y∗j , (j = 1, . . . , p). The classical linear factor analysis model

(measurement model) is:

y∗i = α + Λzi + εi, i = 1, . . . , n (2.1)

where α is a p× 1 vector of intercept parameters, Λ is a p× k matrix of factor loadings and n

is the sample size. The vector of latent variables zi has a Normal distribution, zi ∼ Nk(0,Φ),

where the covariance matrix Φ is either unstructured or defined by a parametric model that

relates latent variables with each other and observed covariates (structural model). The εis are

error terms assumed to be independent from each other and from the zis.

For binary data, the connection between the observed binary variable yj and the underlying

variable y∗j is yj = I(y∗j > 0). Similarly, for an ordinal variable with mj categories, yj = a if

τ
(j)
a−1 < y∗j ≤ τ

(j)
a , a = 1, . . . ,mj where τ

(j)
0 = ∞, τ (j)

1 < τ
(j)
2 < . . . < t

(j)
mj−1, τ

(j)
mj = +∞. More

specifically, for a binary item j and individual i, the probability of success (positive) response

is given by:

P (yij = 1 | zi) = P (y∗ij > 0 | zi) = P (αj+Λjzi+εij > 0 | zi) = P (εij < αj+Λjzi | zi) = F (αj+Λjzi),

(2.2)

where F stands for the cumulative distribution function (CDF) of εij. Finally, the model
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becomes:

F−1{P (yij = 1)} = αj + Λjzi, (2.3)

where F−1 is the inverse of the CDF also known as the link between the probability of success

and the linear predictor. Specific choices for the distribution of the error term εi lead to the

following well known models:

εi ∼


N(0p,Ψ), Ψ = diag(ψ2

1, . . . , ψ
2
p), if yi is continuous

N(0p,Ψ), Ψ = Ip, if yi is binary & F−1 is the inverse CDF of the normal∏J
j=1 Logistic(0, π2/3), if yi is binary & F−1 is the inverse CDF of the logistic,

(2.4)

where 0p is a p-dimensional vector of zeros and Ip denotes the identity matrix of dimension p.

The inverse CDF of the normal and the logistic distributions are known as the probit and logit

links respectively. In case of continuous or categorical items with the probit link, the marginal

distribution of y∗i is:

y∗i ∼ N(α,ΛΦΛT + Ψ). (2.5)

However, such an expression is not available for the logit model.

The model defined in (2.1) and (2.4) applies to confirmatory factor analysis (CFA) and ex-

ploratory factor analysis (EFA), and the differences between them are expressed in terms of

restrictions on the parameters Λ and Φ. CFA is a method used to verify the factor structure

of a set of observed variables. This is achieved by setting several elements of Λ to zero that

are referred to as cross-loadings. EFA, on the other hand, uses a much more flexible Λ by only

placing identifiability restrictions on it, and sets Φ = Ik. An assumption, which is common

to both approaches, is the conditional independence of the variables given the factors. This

is equivalent to setting the off-diagonal terms in the covariance of the ε, also known as error

correlations, to zero.
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2.2.2 Generalised Bayesian model framework

The Bayesian SEM approach introduced in Muthén and Asparouhov (2012) (approximate zero

framework), mostly covers continuous items, and it can potentially be extended to binary and

ordinal data under the probit specification.

The AZ model was introduced in (Muthén and Asparouhov, 2012) to relax the exact zero

conditions so that it better reflects a hypothesised substantive theory and better serves the

goal of confirming it. These relaxation of the exact zero assumption was used in two aspects

of the model, the cross-loadings and the error correlations.

The relaxation of the cross-loadings is done by freeing up the cross-loadings that would be

otherwise set to zero, but constraining them near zero by assigning them a highly informative

prior distribution around zero.

The relaxation of the error correlation assumption, also known as local independence, can be

done in a few different ways. One way is via the covariance matrix according to which the

residual errors are distributed. Under the exact zero assumptions, that matrix is a strictly

diagonal matrix. Under the approximate zero framework that matrix can be assumed to be

‘approximately’ diagonal, by assigning it an informative prior distribution with a lot of mass

around a diagonal matrix. One common option for such a distribution is the Inverse Wishart

using a diagonal matrix and high degrees of freedom. Another way is using the model we

propose here, a more general specification that includes the logistic model for categorical data

and for which the model by Muthén and Asparouhov (2012) is a special case.

Model (2.1) is extended by adding an item-individual specific random effect uij giving

y∗i = α + Λzi + ui + ei, (2.6)

where εi in (2.1) is split into ui, a p-dimensional vector of random effects with a non-diagonal

covariance matrix Ω, and ei, an error term with a diagonal covariance matrix Ψ∗. The ui

terms aim to capture associations among the items beyond those explained by the vector of
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latent variables zi. Those associations can be due to question wording, method effect, etc.

Furthermore, the item-individual specific random effects uij can be seen as an additional residual

term that provides model diagnostics information for the detection of two-way outliers (e.g.

leaked items and cheating behaviour in educational testing or secondary response strategies

employed by some of the respondents to some of the items). Moreover, we note that now,

contrary to equations (2.1) and (2.4), the cross loadings Λ in (2.6) and (2.7) are non-zero

parameters that are assigned informative priors centred around zero, e.g. N(0, 0.01).

For continuous normally distributed data, Model (2.6) becomes the model proposed in Muthén

and Asparouhov (2012) written as

y∗i ∼ N(α,ΛΦΛT + Ω + Ψ∗), i = 1, . . . , n, (2.7)

where ui ∼ N(0,Ω), zi ∼ N(0,Φ) and ei ∼ N(0,Ψ∗).

Under this new model defined in equations (2.6) and (2.7), we can relax the local independence

assumption by introducing the item-individual random effect uij, that aim to capture associa-

tions between the items beyond those explained already by the latent variables. These random

effects have to be small in magnitude and in particular have to be smaller than the rest of the

residual error e because they are meant to capture correlation among the items, not residual

errors of individual items. Furthermore, the error correlations need to be small for the model

to stay close to hypothesised theory and for identifiability reasons, as mentioned before. Hence,

the prior distribution of the u should be concentrated around zero to degree that ensures that u

are smaller than e, and have a non-diagonal covariance matrix. In particular, a Normal distri-

bution N(0,Ω) would work, where Ω is a full covariance matrix with an appropriate informative

prior. As mentioned earlier, it is essential that the overall amount of error correlations is not

substantial and this can be achieved by ensuring that the impact of Ω is low compared to Ψ∗.

One approach to make this more specific is to use an estimate of diagonal matrix Ψ∗ under

the same model without error correlations, and then set the prior of Ω to favour low values for

its diagonal elements compared to the estimate. For example, in the applications considered

in this paper, the elements of the Ψ matrix were all estimated to be relatively closed to one.
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The Inverse Wishart distribution with identity scale matrix and p + 6 degrees, also used in

(Muthén and Asparouhov, 2012), may therefore provide a reasonable choice. Under this prior,

the diagonal elements of Ω have mean 0.2 and standard deviation 0.163 (see appendix A for

explicit formulae for the prior mean and variance and note that p cancels out), hence the prior

probability mass is concentrated well below the Ψ estimates.

Note that in this case the residual errors e are assumed to be distributed according to the

covariance matrix Ψ∗, which is constrained to be diagonal, so that all correlation among the

errors are channelled through the random effect uij.

As it will be discussed in Section 2.2.3, it is essential to assign an informative prior on Ω.

A reasonable choice that favours diagonal matrices is the Inverse Wishart, which is also used

in Muthén and Asparouhov (2012). This choice of prior can be thought of as controlling

the magnitude of model flexibility the researcher is willing to allow for capturing the effects

of external factors on measurement, such as question wording. Hence, it is important when

setting this prior to ensure that the uis are of lower magnitude than the eis.

The generalised framework of (2.6) provides several extensions. It is now possible to define the

approximate zero model for logistic models by assuming eij ∼ Logistic(0, π2/3) (see Section

2.2.2.2 for details). Other distributions (e.g. t-distribution, non-Normal) can also be assumed

for ei and uis. Setting Φ = Ik in (2.6) leads to the EFA model, nevertheless fitting such a

model with MCMC may be challenging as we discuss later on; see also (Lopes and West, 2004;

Erosheva and Curtis, 2017; Frühwirth-Schnatter and Lopes, 2018; Conti, Frühwirth-Schnatter,

Heckman, and Piatek, 2014) for some relevant Bayesian EFA schemes.

Inference is carried by adopting a fully Bayesian framework. This requires assigning priors on

all the model parameters θ, denoted by π(θ), and proceeding based on their posterior given the

data Y = {yi}ni=1, denoted by π(θ|Y ), obtained via the Bayes theorem. A key feature of the

approximate zero framework is that the priors on the cross loadings given in Λ and the error

covariances of Ω are informative and point towards zero. Next, we discuss in detail the model

and prior specifications for continuous and categorical data.
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2.2.2.1 Model and priors for continuous normally distributed data

The model in (2.6) originates from the specification below:



yi = α + Λzi + ui + ei

zi ∼ N(0,Φ)

ei ∼ N(0,Ψ∗)

ui ∼ N(0,Ω)

(2.8)

Nevertheless, as mentioned earlier, non-Normal distributions can be assigned on eis, uis and

even zi. In the case where all these are assumed to be Normal, the following augmentation is

also equivalent: 
yi | ui ∼ N

(
α + ui, ΛΦΛT + Ψ∗

)
ui ∼ N(0,Ω).

(2.9)

Regarding priors, we begin with Ω, the non-diagonal covariance matrix that introduces the error

correlations. As mentioned earlier, it is essential that the overall amount of error correlations is

not substantial and this can be achieved by ensuring that the impact of Ω is low compared to

Ψ∗. One approach to make this more specific is to use an estimate of diagonal matrix Ψ under

the same model without error correlations, and then set the prior of Ω to favour low values for

its diagonal elements compared to the estimate. For example, in the applications considered

in this paper, the elements of the Ψ matrix were all estimated to be relatively closed to one.

The Inverse Wishart distribution with identity scale matrix and p + 6 degrees, also used in

(Muthén and Asparouhov, 2012), may therefore provide a reasonable choice. Under this prior,

the diagonal elements of Ω have mean 0.2 and standard deviation 0.163 (see appendix A.1 for

explicit formulae for the prior mean and variance and note that p cancels out), hence the prior

probability mass is concentrated well below the Ψ estimates.

Regarding Λ and Φ there are generally two parametrisations to ensure identifiability. Under

the first one, Φ is a full covariance matrix and the leading loadings in Λ for each factor are
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set to one. In this case, an Inverse Wishart prior with relatively low amount of information,

compared to the prior of Ω, is sought for Φ, e.g. the Inverse Wishart with the identity as the

scale matrix and p+ 4 degrees of freedom or lower. Under the second formulation, the leading

loadings in Λ for each factor are just constrained to be positive and Φ is a correlation matrix.

It is also possible to remove these positivity constraints and therefore assign Normal priors to

all of the elements of Λ; this formulation may be viewed as a special case of the parameter

expansion suggested in Ghosh and Dunson (2009) for EFA. To ensure identifiability under this

formulation, post-processing should be applied on the MCMC output. More specifically, the

posterior samples of the columns corresponding to each factor should be multiplied by −1 if the

relevant leading loading is negative, otherwise they are left as they are. In our experience, this

option results in more efficient MCMC performance, in terms of mixing and convergence, when

running the model in Stan. Regarding the correlation matrix Φ, the LKJ prior, introduced in

Lewandowski et al. (2009), can be used.

The variances of the Normal priors assigned on the elements of Λ depend on whether these are

regarded as cross-loadings or free parameters according to the hypothesised model. The cross

loadings are assigned Normal distributions with zero mean and a variance of 0.01 as in Muthén

and Asparouhov (2012), whereas the remaining parameters of Λ require some extra attention.

A frequently used option is to assign large variance Normal priors, but this can lead to issues

such as Lindley’s paradox (Lindley, 1957). One way to guard against such problems is to use

unit information priors (Kass and Wasserman, 1996). The main idea behind unit information

priors is to avoid the very large prior variances causing the paradox, by setting them so that

they correspond to information from a single observation point. Lopes and West (2004) and

Ghosh and Dunson (2009), in the context of EFA, recommend the following unit information

priors:

Λij ∼ N(0, ψ2
j ) (2.10)

where ψ2
j are the idiosyncratic variances of the diagonal matrix Ψ that are treated as unknown

parameters. Note, however, that the above priors may cause problems in cases where the ψ2
j s

are quite small as it is essential to differentiate from the prior variance of 0.01 used for the cross
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loadings. For this reason, a fixed value may be used instead for the prior variance of the free

elements of Λ, based on preliminary estimates of them, or even the value of one if the items are

on similar scales.

Regarding the diagonal matrix Ψ, independent Inverse Gamma priors, introduced in Frühwirth-

Schnatter and Lopes (2018) and used in Conti et al. (2014), can be assigned on each ψ2
j . The

hyper-parameters of these Inverse Gamma priors are set in a way so that Heywood cases are

given very small prior weight. More specifically, the prior given to the idiosyncratic variance is

ψ2
j ∼ InvGamma(c0, (c0 − 1)/(S−1

y )jj)

where Sy is the empirical covariance matrix and c0 is a constant that the researcher can choose

in order to limit the probability of running into Heywood issues that arise when

1/ψ2
j ≥ (S−1

y )jj.

Following Frühwirth-Schnatter and Lopes (2018); Conti et al. (2014), the constant c0 can be

chosen such that the prior probability of the event above is quite small. In the data considered

in this paper, the value of c0 = 2.5 was chosen on that basis. This is a data-dependent prior but

the impact incorporates a minimal amount of information and it also helps avoid identification

and MCMC convergence issues that are associated with Heywood problems. To back this up

we also conducted a sensitivity analysis that is presented in appendix A.2. The results using

the chosen data-dependent prior were practically identical with those obtained using several

data-independent priors.

Finally, large variance Normal priors are assigned on the α parameters. In every analysis that

follows we use the following wide prior Normal, α ∼ N(0, 102).
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2.2.2.2 Model and priors for binary and ordinal data

The model for binary data using the underlying variables y∗ij, (j = 1 . . . , p) can be written as



yij = I(y∗ij > 0),

y∗i = α + Λzi + ui + ei,

ei ∼
∏p

j=1 Logistic(0, π2/3) or
∏p

j=1N(0, 1)

zi ∼ N(0,Φ)

ui ∼ N(0,Ω).

In the above models the eis correspond to the logistic and probit specifications that are the

most frequently used models, although other choices of distributions are also possible. The

above expressions may be simplified by integrating out the eis and obtain



yi ∼
∏p

j=1 Bernoulli
(
πij(ηij)

)
πij(ηij) = σ(ηij) or πij(ηij) = Φ(ηij), ηij = [ηi]j

ηi := α + Λzi + ui,

zi ∼ N(0,Φ)

ui ∼ N(0,Ω)

(2.11)

where σ(·) denotes the sigmoid function and leads to the logit model, whereas Φ(·) denotes the

cumulative density function of the standard Normal distribution and leads to the probit model.

Note that the distribution of uis, and even zis, need not be Normal under the framework,

this was only done for exposition purposes. In the cases where uis are indeed assumed to be

Normal, the amount of data augmentation can be reduced further by the following equivalent
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formulation 
yi ∼

∏p
j=1 Bernoulli

(
πij(ηij)

)
πij(ηij) = σ(ηij) or πij(ηij) = Φ(ηij)

ηi ∼ N(α, ΛΦΛT + Ω).

(2.12)

In the simulation experiment and real-world examples the formulations of (2.11) and (2.12)

were used as they are more convenient in the context of MCMC for models based on the logit

link.

In terms of interpretation, it is interesting to note that the proposed model extends the two-

parameter logistic IRT model by allowing for an item-individual random effect in addition to

the standard individual latent variable zi. The probability of a correct response to item j by

individual i can be written as

1

1 + exp
(
− [α + Λzi]j − uij

) .

Similarly to the binary case, to model an ordinal observed variable yj with mj categories, we

assume the existence of an underlying continuous variable y∗j so that yj = a if τ
(j)
a−1 < y∗j ≤

τ
(j)
a , a = 1, . . . ,mj.

The multinomial model is assumed to be:

yij ∼
mj∏
s=1

πj,s(η)yj,s

where yj,s = 1 if the response yij is in category s and 0 otherwise, πij,s(ηij) = (γij,s(ηij) −

γij,s−1(ηij)) and γij,s(ηij) is a cumulative probability of a response in category s or lower to item
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yj. Furthermore, 

yi | ηi ∼
∏p

j=1 Multinomial(πij(ηij))

γij(ηij) = σ(ηij) or γij(ηij) = Φ(ηij)

ηi = τ + Λzi + ui,

zi ∼ N(0,Φ)

ui ∼ N(0,Ω).

(2.13)

The parameters τ are unknown parameters also referred to as ‘cut-points’ on the logistic, probit

or other scale, where τ
(j)
0 =∞, τ (j)

1 < τ
(j)
2 < . . . < t

(j)
mj−1, τ

(j)
mj = +∞.

Similar priors can be assigned as in the case of continuous data. Regarding the elements of the

Λ matrix that are not approximate zero, unit information priors can be used. In the case of

the 2PL IRT model this translates to a N(0, 4) prior (Vitoratou et al., 2014).

2.2.3 Overview of the models and their estimation procedure

In this Section, we highlight some models, within the framework defined so far, that are essential

for the methodology developed in this paper. We then provide details and discussion regarding

their implementation. These models are defined below:

• The exact zero (EZ) model. This is the standard structural equation model and provides

the starting point in the analysis considered here. It is defined by equations (2.1) and

(2.4) with the cross-loadings in Λ being fixed to zero.

• The approximate zero (AZ) model. This is the model first introduced in Muthén and

Asparouhov (2012) and generalised in this paper. In its general form it is defined in

equation (2.6). In the case of normally distributed uis, eis and zis, is simplified to (2.7).

An important feature is that the cross-loadings in Λ are no longer being fixed to zero. It

is a model to be used only in the Bayesian sense, as the informative priors on the Ω and

on the cross-loadings in Λ are essential.
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• The exploratory factor analysis model (EFA). It is the standard EFA model, defined

here by equations (2.1) and (2.4) where low informative priors are assigned to all the

components of Λ and Φ = I.

• The EFA model with item-individual random effects (EFA-C). It is defined as the EFA

model but with equation (2.6) instead of (2.4). This approach to EFA allows for a small

amount of item dependencies conditional on the extracted independent factors. That

model specification might result in greater amount of dimension reduction than EFA,

since the stricter assumption of conditional independence could require a model with

additional factors.

In terms of implementation, it is generally possible to use MCMC and several schemes can be

used, (see e.g. Edwards, 2010). In cases where the eis, uis and zis are all assumed to be Normal,

Gibbs samplers may be formed, (see e.g. Geweke and Zhou, 1996b; Chib and Greenberg,

1998b), and the model may also be fitted with standard software such MPlus. Nevertheless,

if any of these are assumed to be non-Normal, e.g. logistic models, different software and

MCMC algorithms are needed. In this paper, we recommend the use of Hamiltonian Monte

Carlo (HMC) (Neal, 2011), as it covers all cases. HMC is a Markov Chain Monte Carlo

(MCMC) technique for Bayesian inference that updates all the parameters simultaneously. It

utilises information from the gradient of the log-posterior via the Hamiltonian equations in

order to provide an efficient Markov chain with good mixing and convergence properties. The

user is referred to Neal (2011) for more details. HMC can be implemented with the help of

programming frameworks such as Stan (Carpenter et al., 2017). It is supported by high-level

software packages such as ‘blavaan‘ (Merkle and Rosseel, 2015), PyStan or RStan which are

the Python and R language interfaces of the Stan language respectively. In this work, we

chose to implement all model inference using HMC and the Stan language to take advantage

of the generality of the HMC methodology and the software ecosystem built around the Stan

language. For a complete repository of the code and further implementation details we refer

the interested reader to the code repository for this work hosted on github at ‘bayes-sem’2. We

2https://github.com/bayesways/bayes-sem/
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note of course that it is possible to construct tailor made MCMC schemes for specific models

by taking advantage of potential simplifications in their structure; the Gibbs sampler for the

fully Normal case provides such an example.

Fitting the EZ model in Stan is generally straightforward although we note that it may be

useful to consider different parametrisations to improve MCMC performance and stability. For

example, one may set the leading loadings in Λ to one and consider a full covariance matrix Φ

or just restrict the leading cross loadings to be positive and consider a correlation matrix for

Φ.

While the EZ model is identifiable both under the frequentist and Bayesian framework, this

is not the case for the AZ model that, as mentioned earlier is to be approached in a Bayesian

manner. The AZ model was introduced in Muthén and Asparouhov (2012) to relax the exact

zero conditions so that it better reflects a hypothesised substantive theory and better serves

the goal of confirming it. The cross-loadings or error correlations that would be constrained to

zero under the EZ model, become free parameters in the AZ model but with highly informative

priors centred at zero. Usually, there is information in the data to identify some of those

parameters but not all of them. Hence, if all those parameters were freed and a frequentist

model was adopted one would run into identifiability issues. As we typically do not know which

of these parameters to free, an alternative is to adopt the AZ model, where identifiability is less

of a concern given the informative priors that are concentrated around zero. Hence, AZ models

essentially satisfy two goals: i.) the model stays close to the substantive hypothesis, only

replacing the exact zero assumptions, used in traditional SEM modelling, with approximate

zero, and ii.) it protects against any identifiability issues since the prior contains enough

information to guide the inference algorithm to completion.

In cases where the EZ model does not perform well it is essential to find an appropriate bench-

mark to assess the performance of the AZ model. As discussed in more detail in the next

section, such benchmarks can be provided by the EFA and EFA-C models. In general, fitting

EFA models using MCMC can be a challenging task, due to issues such as rotational inde-

terminacy. The problem lies in the fact that the likelihood is specified in terms of ΛΛT but
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often interest lies instead on Λ. The lower triangular set of restrictions (see e.g. Geweke and

Zhou, 1996b) ensures the mapping between those matrices is well defined, but introduces or-

der dependence among the observed variables. The choice of the first k variables, which is an

important modelling decision (Carvalho, Chang, Lucas, Nevins, Wang, and West, 2008b), thus

becomes influential. The schemes of Conti et al. (2014); Frühwirth-Schnatter and Lopes (2018);

Bhattacharya and Dunson (2011) provide an alternative to setting these restrictions and can

also be used to identify the number of factors in a single MCMC run. However, as also noted in

Bhattacharya and Dunson (2011), for a number of tasks such as choosing the number of factors

or assessing the predictive performance, there is no need to focus on Λ, but on ΛΛT instead

which is free of rotational issues. In such cases, the restrictions on Λ can be omitted as long as

there are no MCMC convergence and mixing issues on the ΛΛT elements. As described in the

next section, EFA and EFA-C models are only used in this paper to establish a benchmark for

their predictive performance, hence focusing on ΛΛT is sufficient. It is important to note here

that this does not apply for the SEM driven EZ and AZ models, where we are also interested

on the Λ elements and the fit of the model. But for these models, the restrictions implied by

the hypothesised SEM ensure that the elements of Λ are free of rotational issues. The number

of factors of the EFA and EFA-C models can either be matched to that of the EZ model or,

alternatively, models with different number of factors can be fit separately and compared. The

comparison can be done by standard indices, such as the model evidence, BIC, etc., or via

the model assessment framework introduced in this paper and presented in the next section.

Drawing inference on Λ in the EFA context, in addition to ΛΛT , remains an interesting and

challenging problem, especially in the case of binary data and the presence of item-individual

random effects. But, as it is beyond the scope of the paper, it is left for future research.

2.3 Model assessment

In this section, we introduce a model assessment framework that collectively uses fit indices

and cross-validation to detect overfit. The aim is to complement PPP values, or other similar

indices, with scoring rules to evaluate the prediction extracted from the model. The aim is to
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achieve a good fit and avoid overfit. The suggested procedure involves calculating these metrics

for the EZ and AZ models as well as the EFA and EFA-C models with the same number of

factors. We begin by presenting the proposed indices in detail, and finally provide our suggested

procedure along with some guidelines and recommendations.

2.3.1 Assessing goodness of fit with PPP values

PPP values are perhaps the most frequently used method to assess model fit in the Bayesian

SEM framework. Posterior predictive checking relies on a discrepancy function denoted by

D(Y , θ) that quantifies how far the fitted model is from the data. For continuous data, the

discrepancy function used here is the likelihood ratio test (LRT) function (see e.g. Scheines

et al., 1999a) comparing the estimated model (H0 hypothesis), and the unconstrained variance-

covariance matrix model (H1 hypothesis). The unconstrained model is also known as the

saturated model (perfect fit). D(Y , θ) is given by:

LR [S,Σ(θ)] = (n− 1)
{

log |Σ(θ)|+ tr
[
SΣ−1(θ)

]
− log |S| − p

}
, (2.14)

where S and Σ(θ) are the sample and model implied variance-covariance matrix respectively.

Furthermore, |·|, tr(·) denote the determinant and trace of a matrix respectively. For example,

if the maximum likelihood estimate (MLE) of θ, is plugged in (2.14), then LR [·] is a statistic,

but if θ is unknown then LR [·] may be viewed as a metric. Given the discrepancy function

D(Y , θm) defined in (2.14), a suitable MCMC algorithm and M posterior draws, the PPP value

is computed as follows:

1. At each (or some) of the MCMC samples θm, m = 1, . . . ,M , do the following:

(a) Compute D(Y , θm).

(b) Draw Ỹ having the same size as Y , from the likelihood function f(Y |θm) of the

implied model in Equation (2.5) or (2.7) and using the current value θm.
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(c) Calculate D(Ỹ, θm) and dm = I
[
D(Y , θm) < D(Ỹ, θm)

]
, where I

[
·
]

is an indicator

function.

2. Return PPP= 1
M

∑M
m=1 dm.

In the case of binary and ordinal data, the model is written as the probability of a response

pattern. For p binary items, there are R = 2p possible response patterns, denoted by {yr}Rr=1,

with corresponding observed frequencies denoted by Or where r = 1, . . . , R. The probability of

a response pattern, based on the logistic model with a parameter vector θ, and the assumption

of conditional independence given z and u is:

πr(θ) =

∫ p∏
j=1

Bernoulli {[yr]j|σ([η]j)} f(z)f(u)dzdu, (2.15)

where Bernoulli{y|π} denotes the Bernoulli probability mass function for a binary observation

y and probability of success π, η is as defined in Section 2.2.2, i.e. η = α+ Λz + u, and z and

u are the latent components in the implied model. The integral in (2.15) can be approximated

using Monte Carlo. Similar expressions can also be obtained for the probit specification.

An equivalent model can now be defined for the observed frequencies (O1, . . . , OR) given the

model-based πr(θ)s via the Multinomial distribution

(O1, . . . , OR) ∼ Multinomial [n, π1(θ), . . . , πR(θ)] . (2.16)

In the context of PPP values, a frequently used discrepancy measure, (see e.g. Sinharay, 2005b),

is the G2 statistic given by

D(Y , θ) =
R∑
r=1

Or log

(
Or

nπr(θ)

)
. (2.17)

For a given θ, e.g. a sample draw from the posterior, (2.17) can be derived from the likelihood

ratio between the model in (2.16) and the saturated version of it where each πr(θ) is replaced by

Or/n. Given M MCMC samples from the posterior, the PPP value is then calculated following

the steps given above for continuous data. PPP values are not p-values and therefore are
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not necessarily connected with the relevant type I error argument. Instead, they are regarded

merely as fit indices. In terms of criteria on the PPP values, we follow the relevant discussion

in Muthén and Asparouhov (2012). As such, the fit of a model with a PPP value around 0.5 is

regarded as excellent. It is generally not clear how low a PPP value should be to warrant poor

fit but usually this threshold is set to 0.1 or 0.05.

The discrepancy function used here checks the overall fit of the model. Other discrepancy

functions can be used that check the fit on lower order margins. In the case of categorical

data, one can compute chi-square type residuals (see e.g. Jöreskog and Moustaki, 2001) on the

univariate, bivariate and trivariate margins as well as utilise the work on limited information

test statistics such as the M2 test statistic by Maydeu-Olivares and Joe (2005), which is also

connected to modification indices (Oberski, van Kollenburg, and Vermunt, 2013). Those PPP

values can be useful in detecting model misfit in pair or triple of items. Those discrepancies

can be investigated in future research within the paper’s proposed framework.

2.3.2 Scoring rules and cross validation in SEM

As mentioned in the introduction, it is essential to assess the out-of-sample predictive perfor-

mance of each model considered in addition to its fit. Although prediction is not necessarily

the main aim of factor analysis models, certain ideas from predictive inference can be borrowed

here to help us assess model fit and overfit. The focus is on a model’s ability to predict new

data that was not used for estimating the model parameters. Hence, we divide individuals into

two samples: i.) the training sample Y tr used to estimate the model parameters, through the

posterior distribution π(θ|Y tr), and ii.) the test sample Y te used to check the forecasts of the

model estimated above.

More specifically, the predictions for the unseen data come in the form of a distribution

h(Y te|Y tr) that can be contrasted as a whole against the actual test data Y te. In the fre-

quentist case, one option for such a predictive distribution is f(Y te|θ̂tr), where f(·) denotes the

likelihood function and θ̂tr is the MLE obtained from Y tr. Under the Bayesian framework, the
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standard choice is the posterior predictive distribution

f(Y te|Y tr) =

∫
f(Y te|θ)π(θ|Y tr)dθ. (2.18)

In order to assess the quality of these distributions, scoring rules can be used, (e.g. see Dawid

and Musio, 2014; Gneiting and Raftery, 2007) as indices whose small values typically indicate

good performance. For example, one common choice for a scoring rule is the log score. For a

predictive distribution h(Y te) the log score is defined as

LS(Y te) = − log h(Y te). (2.19)

The log score is among a class of scoring rules with the desired property of being strictly proper.

Strict propriety for a scoring rule ensures that the optimal model among the ones considered

will be uniquely identified. More specifically, the score of this optimal model will be strictly

lower than the scores of the other models; in the case of it being smaller or equal we get a

proper scoring rule rather than strictly proper.

The log score may be seen as a natural extension to the goodness of fit criterion based on the

likelihood ratio test statistic for prediction assessment. Consider an SEM model, defined by

(2.1) or (2.6) and (2.4), and suppose we want to compare it against the saturated model, e.g. in

the case of continuous data the model Y te ∼ N(α,Σ) for an unconstrained variance-covariance

matrix Σ. Denoting with fSEM(·) and fS(·) the density functions of the SEM and saturated

models respectively, the difference between the two log scores becomes

− log

[
fSEM(Y te|θ̂tr)
fS(Y te|α̂tr, Σ̂tr)

]
. (2.20)

The above may be viewed as the likelihood ratio test statistic based on point parameter esti-

mates from the training data Y tr, but evaluated on the unseen test data Y te.

Note that in (2.20), the predictive distributions do not account for the uncertainty in the

parameter estimates, which can be substantial for small training sample sizes. The Bayesian
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framework accounts for this source of uncertainty in a natural way via the posterior predictive

distribution (2.18). Computing some scoring rules, such as the log score require access to

the predictive distribution. However, this predictive distribution may be intractable and only

samples from it are available, for example via MCMC. When predicting one dimensional data,

one can use posterior draws to estimate the distribution using techniques involving kernel

densities or the mixture of parameters approach (Krüger et al., 2020; Jordan et al., 2019). But

in the SEM context, such techniques cannot be applied since the forecasts for the continuous

data case are multivariate. It is possible, however, to use other scoring rules such as the energy

score (Gneiting and Raftery, 2007) and the variogram score (Scheuerer and Hamill, 2015).

These scores, which are presented in Section 2.3.3, can be computed using posterior draws and

do not require access to the exact distribution. For the categorical data case, as we illustrate

in Section 2.3.4, the log score can actually be calculated by reformulating the model in terms

of the response pattern frequencies.

So far we have assumed a single split between the training and test data, but this may not

provide representative results in cases where there are too many peculiar data points in the

training or the test data. To limit the effect of such unfortunate splits, cross validation may be

used. The procedure can be described as follows:

1. Split the data randomly into K parts.

2. For each of the K parts repeat the following steps:

(a) Designate the selected group as the test data set and use the other K − 1 groups

together as the training data set.

(b) Fit the model in the training data set and draw samples from its posterior and its

posterior predictive distribution to predict the data in the test set.

(c) Evaluate the predictions via the chosen scoring rule against the test data.

3. Aggregate the values of the scoring rules across all K groups by summing or averaging.

A nice feature of the above procedure is that all data points appear both in the training and

test datasets. Regarding the choice of K, the aim is to ensure a good balance between having
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an adequate amount of data points in both training and test samples, so this depends on the

sample size. For large enough sample sizes a choice of K = 3 often works well. Another option

is to use more than one K and average over them as well. For the choice of K = 3, the model

has to be fitted three times, but in each of these times the sample size is two-thirds the size of

the entire sample. The computational time therefore increases with K.

It is interesting to note that the calculation of both PPP values and scoring rules are based on

the posterior predictive distribution. Nevertheless, there is an essential difference between the

two approaches. PPP values are based on the posterior distribution conditional on the entire

dataset and the prediction is made again on the entire dataset. In the scoring rules approach

the posterior is conditional only on a subset of the data (training sample) and the prediction

is made on the complement of that set (test sample).

2.3.3 Scoring rules for continuous and normally distributed data

In order to assess the predictive performance we need to select a scoring rule. As mentioned

in the previous section, the log score is not available in the case of continuous data and the

available options are the energy and the variogram scores. To choose between these two, we note

that the energy score has been reported to have little sensitivity in detecting misspecifications

on correlation matrices (Pinson and Girard, 2012; Scheuerer and Hamill, 2015), which is in line

with our empirical findings from our simulation experiments. For this reason, we proceed with

the variogram score. To calculate this score for a single data point yi = (yi1, . . . , yip), we need

a set of M samples from the corresponding predictive distribution; let ỹm = (ỹm1, . . . , ỹmp)

be the m-th sample of a draw and denote all these samples together by Ỹ = {ỹm}m=1. The

variogram score for this point is defined in its general form as

V S(yi, Ỹ) =

p∑
j=1

p∑
k=1

wj,k

(
|yij − yik|P −

1

m

M∑
m=1

|ỹmj − ỹmk|P
)2

(2.21)

where, in (2.21), the j, k are just indices to consider all pairs of each data point yi of dimension

p, the wj,ks are weights and P is the order of the variogram. We follow common practice by
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setting all weights to one, and P at its default value of 0.5. In the context of cross-validation, for

each split between training (Y tr) and test data (Y te), the variogram score can be computed by

obtaining samples from the posterior based on Y tr, and using them to draw samples {ỹm}Mm=1

from the posterior predictive distribution (2.18). The samples can then be inserted in (2.21)

together for each of the data points in the test set (Y te) in place of yi. The scores are then

added over all points in the test set, to calculate the score corresponding to this train-test split

for the model considered. In the case of 3-fold cross-validation, this procedure is repeated for

all 3 train-test splits and aggregated by summing or averaging.

2.3.4 Scoring rules for binary and ordinal data

It is possible to compute the log score in the case of binary or ordinal data via the alternative

formulation based on frequency patterns, hence we focus on this scoring rule. Note that the

posterior predictive density is given by Equations (2.16) and (2.15) where the integral in the

latter is with respect to the posterior based on the training data. We can therefore write the

log scoring rule for a set of observed frequencies in the test data Ote = (Ote
1 , . . . , O

te
R ) based

on probabilities πtr = (π1(θ)tr, . . . , πR(θ)tr), obtained based on the posterior from the training

data, as

LS(Ote, πtr) = − log f(Ote|πtr) = − log

[
c

R∏
r=1

[
πr(θ)

tr
]Oter ] = −

R∑
r=1

Ote
r log πr(θ)

tr + c, (2.22)

where c represents a constant. Note that the log score only differs as a metric to G2 by a

constant, which essentially confirms the argument made earlier in Equation (2.20), about the

connection of the likelihood ratio test and the log score, and makes it more specific to categorical

data.

2.3.5 Model assessment with fit and predictive performance indices

Our procedure contains two main elements: assessing goodness of fit, as done routinely under

current practice, but also assessing out-of-sample predictive performance. For goodness of fit,
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the governing well-known procedure is to check if the fit of the hypothesised model, the EZ

model in our framework, is no worse than that of the unconstrained model (also known as the

saturated model). As described earlier this can be checked by looking at the PPP values of

the EZ model. In case of satisfactory PPP value, our recommendation is no different than the

standard course of action, to support the hypothesised model, and there is no need to look

further.

Now let us consider a situation where the EZ model does not fit the data well, in terms of a PPP

value, but the AZ model does. One of the main arguments of this paper is that the researcher

should not rush to support the hypothesised model as the satisfactory PPP value may as well

be due to the AZ model overfitting the data. Our definition of ‘overfit’, specifically to the

SEM context is the following: If the AZ model is better than its EZ counterpart in terms of

goodness of fit but also worse in terms of out-of-sample predictive performance, then it overfits

the data. In other words, if the gains in goodness of fit of the AZ model, over the corresponding

EZ model, are not based on systematic patterns of the data, then these gains would be of no

help when predicting unseen data. Moreover the slightly increased model complexity of the

AZ model may have an adverse effect in terms of prediction over the corresponding EZ model.

In other words, we are seeking parsimony in addition to goodness of fit. Hence, according to

our suggested framework, if the AZ model is worse than the EZ model in terms of the relevant

scoring rule, then there is little support in the data for the hypothesised model.

Next, let’s consider the case where the AZ model has good PPP value, in contrast with the

corresponding EZ model, and also better predictive performance as measured by the relevant

scoring rule. Our view in this case is to conduct further checks. There is a possibility that AZ

model is just improving upon a poorly specified EZ model but there may exist other EZ or AZ

models that predict even better. If the poor fit of the EZ model is due to only some small cross

loadings or error correlations, then the AZ model that captures these quantities model should

perform really well. But if there are also some other systematic patterns missing from the EZ

model, the improvement offered by the AZ model would be limited. Ultimately, the question

that we want to answer is whether the predictive performance of each one of these models is

good enough. Therefore, it is essential to establish a benchmark when comparing predictive
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performances. In the case of goodness of fit assessment this is done by the performance of the

unconstrained saturated model. But this may not be a suitable choice for assessing predictive

performance (MacCallum et al., 1992). The problem lies in the fact that the saturated model

has substantially higher complexity, or else substantially larger number of parameters, than the

hypothesised models. Generally speaking, if two models with different numbers of parameters

have similar in-sample performance, then the one with the smaller number of parameters will

generally perform better out of sample. An alternative option for a benchmark model, exploited

in this paper, is the EFA model with the same number of factors as the hypothesised model.

This model has generally fewer parameters than the saturated one and is generally expected

to perform well in terms of predictive performance as it is allowed to search for systematic

patterns in the data without any restrictions, other than having k factors. This is not the case

for the EZ and AZ models, where explicit restrictions are given and it is often hoped that they

will not be too far from those indicated from the EFA. Hence, in order to regard the predictive

performance of the hypothesised model as satisfactory, its scoring rule should be comparable

with that of the EFA model chosen as the benchmark.

Caution must be exercised over the choice of the benchmark EFA model, as selecting an over-

parameterised EFA model will set the bar too low in terms of predictive performance. Therefore

it may be more appropriate, in some cases, to check the parsimony of the EFA model selected as

the benchmark. This can be done, for example, by considering EFA models with fewer factors,

provided that they fit the data well. In line with such considerations, we note that the presence

of the small error correlations induced by the uis under the approximate zero framework may

offer an advantage to CFA models in terms of prediction as it can be viewed as an additional

minor factor. Hence, in order to bring CFA and EFA models onto a level playing field, it may

be reasonable to incorporate small error correlations to both of them via the EFA-C model.

Note also that, while the AZ models are more flexible than their EZ counterparts, they can

still perform badly in cases of substantial model misspecification. For example, in cases of large

enough cross loadings, say more than 0.5, using the Normal(0, 0.01) as prior can still result

in poor performance compared to the EFA model. This comparison may thus be exploited to

detect misspecified models as we illustrate in Sections 2.4 and 2.5.
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We summarise below the recommendations of our proposed framework.

1. If the EZ model has satisfactory fit indices such as PPP values, there is strong support

towards the hypothesised model.

2. If both EZ and AZ models have poor PPP values then there is little support of the

hypothesised model. Perhaps it may be useful to use more vague priors to explore its

weaknesses. It would be expected in this case that the EFA models will have better

predictive performance otherwise there maybe issues in the fitting algorithms or elsewhere.

3. If the EZ model has poor performance in terms of fit indices, whereas the AZ model is

satisfactory, it is essential to check the scoring rules. If the improvement offered by the

AZ model is due to overfit, it is expected that the prediction score for the AZ model will

be inferior to that of the EZ one.

The predictive performance of models that overfit is therefore expected to diminish. On

the other hand, a prediction score that still favours the AZ model suggests that overfit

is not the case. To check if the predictive performance of the AZ model is good enough,

comparisons with EFA type models can be made. In cases of comparable or improved

performance there is supporting evidence towards the hypothesised model.

Model fit assessment is by no means an easy task especially in factor analysis modelling where

model misfit can be due to various reasons such as misspecification of the latent variable dis-

tribution, item dependencies, skewed data and non-linear predictors. In this paper, for the

calculation of PPP values we use a discrepancy function that looks at the overall fit of the

model both in the case of continuous and categorical data. It is useful to complement those

overall goodness of fit tests with other measures of fit such as residuals and limited information

test statistics that check the fit on lower order margins and detect item misfit as explained in

Section 3.1. It is because of those complexities that our proposed methodology is trying to shed

light to model fit challenges using a different set of tools that look at the model’s out of sample

prediction performance. This provides new tools within the Bayesian modelling framework in

SEM and highlights even further the challenges of fit and problems of PPP values. Furthermore,
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the new residual term in the linear predictor defined by the item-individual random effects uis

plays a key role since it can be used as model diagnostics to detect outliers such as leaked

items and cheating behavior in educational testing or secondary response strategies employed

by some of the respondents to some of the items.

The approximate zero framework has also been applied in the study of Measurement Invariance

in SEM. Measurement Invariance (MI) for multi-group SEM, refers to the constraint of setting

parameters to be equal across different groups. Although this is still an active area of research,

there have been some indications so far, that the approximate zero framework has limitations in

this context. Several simulation studies call into question the effectiveness of the approximate

zero framework, at least within the context of measurement invariance. (Pokropek, Schmidt,

and Davidov, 2020) studied the effect that different prior choices on the parameters that control

cross-group differences have, in the final analysis and model choice. They found that prior mis-

specifications have little impact on point estimates and more substantial impact on credible

interval coverage. Overall, they found that MI testing in the approximate zero framework is

meaningfully dependent on the study size, which is not a desirable feature. In the same vain,

(Pokropek, Davidov, and Schmidt, 2019) did a large comparative simulation study between

approximate MI and alternative approaches, such as exact and partial MI. They found that the

approximate MI model is suitable when there are small MI deviations, even when the number

of deviations is high. However, it provides biased results when the deviations are moderate

or large, even when the number of such deviations are small. The authors concluded that the

alternative approaches are preferable in practice. A similar, but smaller scale simulation study

by (Van De Schoot, Kluytmans, Tummers, Lugtig, Hox, and Muthén, 2013) reached similar

conclusions and highlighted the ineffectiveness of the approximate zero MI approach in cases

where the group differences are not small.
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2.4 Simulation experiments

2.4.1 Setup

Simulation experiments were conducted to study the performance of the proposed models and

demonstrate the assessment framework for continuous and binary data. We focus on two cases

of data generated using Equation (2.4), i.e. continuous and binary. For each of these two cases,

three scenarios were considered when generating simulated data:

• Scenario 1: Data generated from the EZ model.

• Scenario 2: Data generated from the AZ model with small error correlations, introduced

by item-individual random effects, and without cross loadings.

• Scenario 3: Data generated from the AZ model with two non-negligible cross loadings

and without correlated item-individual random effects.

For both continuous and binary data, we considered p = 6 items and k = 2 factors. The

factor loadings used to generate the data, in each of the three scenarios, are shown in Table

2.1. Although the data were generated under the three scenarios, in all of them the typical

Scenario 1 Scenario 2 Scenario 3

z1 z2 z1 z2 z1 z2

1 0 1 0 1 0
.8 0 .8 0 .8 0
.8 0 .8 0 .8 .6
0 1 0 1 .6 1
0 .8 0 .8 0 .8
0 .8 0 .8 0 .8

Table 2.1: True factor loadings used in the three simulation scenarios.

hypothesised model assumes a simple structure in which the first three items load on the first

factor whereas the last three load on the second factor. In other words, for the AZ model,
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the first three elements of the first Λ column and the last three of the second Λ column are

regarded as the major parameters, whereas the other elements of Λ are cross-loadings. In all

three scenarios, the factor correlation was set to 0.2, and the intercepts α were all zero. The

sample sizes were set to n = 1, 000 in the continuous data and n = 2, 000 in the binary data. For

Scenario 2, equation (2.7) was used by setting the matrix Ω + Ψ∗ to have ones in the diagonal,

and 6 non-zero off-diagonal elements set to 0.2 with the remaining 9 off-diagonal elements set

to zero.

For each scenario, the proposed model assessment framework of Section 2.3 was put into action

by computing the PPP values and scoring rules for all the previously mentioned models. After

fitting and summarising these models, according to Sections 2.3.3 and 2.3.4, we proceeded

according to the recommendations of Section 2.3.

The models and priors were specified as outlined in Section 2.2 and samples from the posterior

of each model were obtained using Hamiltonian MCMC programmed using the Stan language.

In the case of continuous data, 1, 000 iterations were used as the warm-up period and another

2, 000 for inference purposes. In the case of binary data, it was 2, 000 for warm-up and 2, 000

for analysis purposes. The models were run in 4 parallel chains in each case resulting in

4×2, 000 = 8, 000 posterior draws. In all cases, we ensured successful convergence of the chains

with the help of the automatic metrics implemented in Stan as well as visual inspection of the

posterior draws.

In all instances, we applied a 3-fold cross-validation and aggregated the scores by summing.

Given that a scoring rule is a comparative index, we reported the difference in scores between

each model and the best model. In other words, the best model of each case, or else the one

with the smallest score, was given the value of zero.

The next two sections present the results of the simulation experiments for continuous and

binary data. The aim of these experiments is to illustrate the performance of the proposed

model framework and provide a proof of concept. More detailed simulation experiments will

be helpful, as we discuss in the next sections, and are left for future research.
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2.4.2 Continuous data

Table 2.2 gives the variogram score (V S) and the PPP values for the three simulation scenarios.

We use the variogram score with parameter P = 0.5 and weights wij = 1. Starting with Scenario

1, we note that all models fit the data well in terms of the PPP values. In terms of predictive

performance, we note that the EZ model performs best, which is not surprising given that the

data were generated from it. Note that the EZ model even improves upon the EFA models in

terms of predictive performance as it is a more parsimonious model.

Scenario 1 Scenario 2 Scenario 3

Model PPP VS PPP VS PPP VS
EZ 0.66 0 0.00 6.93 0.00 17.79
AZ 0.51 4.28 0.31 0 0.53 1.58

EFA 0.62 2.06 0.00 0.23 0.59 0
EFA-C 0.53 1.05 0.38 0.03 0.56 1.45

Table 2.2: Simulation Results for Continuous Data. PPP values and sum of variogram scores
of 3-fold cross validation for the relevant models. For each scenario, the best model has 0
variogram score and the differences from it are reported for the other models.

In simulation Scenario 2, both the EZ and EFA models exhibit poor fit according to their PPP

values, which is again not surprising given that these models assume zero error correlations. In

contrast, the AZ and EFA-C models that allow for small, yet not exactly, zero error correlations

both fit well. At this point, the question is whether the improved fit of the AZ model is due

to fitting noise or else overfit as defined in Recommendation 2. But if AZ was overfitting the

data, we would not expect to see an improved performance over the EZ model, as we see here.

We can expand the investigation of the AZ model further, wondering whether there is another

theory that leads to an AZ model with even better predictive performance. Recommendation 3

may shed light on this question when we compare the predictive performance against the EFA

models. We see that AZ is quite competitive against those models and, in fact, does better,

although their variogram scores are quite close. Hence, according to our proposed framework,

there is strong support towards the AZ model and, consequently, the hypothesised model.

This appears to be a reasonable conclusion in the SEM context given that the poor fit is due
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to error correlations that are usually linked with observation error rather than factor loading

misspecifications. As before, the use of PPP values alone would not have been enough to reach

that conclusion.

Finally, let us consider the simulations for Scenario 3, where the EZ model does not have a

good fit, as one would expect, but all the other models have PPP values around 0.5. As before,

we are interested in whether the AZ model overfits and what conclusions we can draw on the

hypothesised model. To answer such questions, we set the benchmark model to be the EFA

model with the higher predictive performance; it is the EFA model in this case, as one would

expect since the data were simulated without error correlations. The variogram score of the

AZ model is again much better than that of the EZ, as it utilises its approximate zero cross

loadings to pick up the two cross loadings of 0.6. But it is not better than the EFA model, thus

not ruling out the presence of a different hypothesised theory regarding the loading structure

of the six items. Indeed, the theory corresponding to factor loadings according to Scenario 3

described in Table 2.1 provides a better model as the data were simulated from it.

2.4.3 Binary data

In this section, we summarise the results of the three simulation experiments for the case of

binary data. Table 2.4.3 gives the PPP values and the log scores. The results are very similar

to the continuous case. In the case of Scenario 1, all models demonstrate good fit as indicated

by the PPP values. Furthermore, the EZ model is the optimal one in terms of predictive

performance (Recommendation 2 ) which is reassuring since data were simulated from the EZ

model. In Scenario 2, we see that the EZ model exhibits very poor fit, caused by the additional

error correlations in the simulated data, as indicated by the PPP value of 0.02. The rest of the

models exhibit a moderately good fit with PPP values above 0.10. Similarly to the continuous

case, the AZ model does well in terms of both Recommendation 2 and 3 being the model with

the best predictive performance. Finally, in Scenario 3, in terms of model fit the EZ model

also fails, due to the presence of non-zero cross loadings. The other models do well, leaving

some questions open in terms of the validity of the hypothesised theory. For this reason,
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Recommendation 3 compares the predictive performance of AZ against the best performing

EFA model. In this case, the AZ model is not as good as the EFA.

Scenario 1 Scenario 2 Scenario 3

Model PPP CV-L PPP CV-L PPP CV-L
EZ 0.52 0 0.02 4.19 0.00 7.31
AZ 0.50 0.68 0.12 0 0.52 1.90

EFA 0.59 1.45 0.13 0.09 0.45 0
EFA-C 0.54 3.27 0.17 0.24 0.50 2.96

Table 2.3: Simulation Results for Binary Data. PPP values and sum of variogram scores of
3-fold cross validation for the relevant models. For each scenario, the best model has log score
equal to 0 and the differences from it are reported for the other models.

2.4.4 Parameter recovery for the AZ model in the binary data case.

To investigate the parameter recovery performance of the AZ model in the binary data case,

we performed a simulation experiment where 100 different datasets were simulated and the AZ

model was fitted on each one of them to obtain samples from its posterior. More specifically

the data were drawn from the EZ model, so that we focus on the main parameters of interest,

namely the factor loadings and the correlation of the factors, each with sample of size 2, 000.

The factor loadings used to simulate the data are the same as in the Scenario 1 of the simulation

experiments of Section 2.4 and the correlation between the two factors was 0.2. Finally, the

intercept parameters used to simulate the data were all set to 0. We used the parameterisation

where the loadings are unrestricted and the factors’ variance is fixed to 1 hence their covariance

matrix is restricted to be a correlation matrix.

Regarding the prior specification of the AZ model, we assumed that, according to the hypothe-

sised theory, the first factor loads on the first 3 items and the second factor loads on the last 3

items. Hence, the rest of loading parameters were regarded as cross-loadings, and were assigned

informative priors around zero. The rest of the priors were assigned as described earlier in the

paper.

As informal measures of how well the parameters are recovered, we focused on frequentist



54 Chapter 2. Generalised Bayesian Structural Equation Models

properties of some estimators derived from the posterior samples. The estimators consisted of

the 95% credible intervals as interval estimators, obtained from the sample 2.5-th and 97.5-th

points extracted from the posterior draws, as well as the posterior mean and median as point

estimator. We then examined the coverage probability of the former and the bias of the latter.

We note that these summaries (95% credible intervals, posterior mean, and posterior median)

may not exhibit the desired frequentist performance even in the case the model fits the data

well, as they have not been constructed to do so. Nevertheless, if they happen to perform well,

it is definitely reassuring.

We examined the main parameters of interest, such as the loadings Λ and the factor correlation

ρ. The results are summarised in Table 2.4 and they contain coverage probabilities and biases

of the previously mentioned posterior summaries. As we can see, the coverage probabilities are

reasonably close to 0.95 whereas the biases are not substantial, particularly for the posterior

median. We therefore conclude, while noting the informal nature of the experiment, than no

substantial concerns regarding parameter recovery are raised.

Parameter True Value Coverage Rate Bias of Post. Mean Bias of Post. Median

Λ[1,1] 1.0 0.94 0.06 0.03
Λ[2,1] 0.8 0.96 0.05 0.03
Λ[3,1] 0.8 0.94 0.05 0.03
Λ[4,1] 0.0 1.00 0.00 0.00
Λ[5,1] 0.0 1.00 0.00 0.00
Λ[6,1] 0.0 1.00 0.00 0.00
Λ[1,2] 0.0 1.00 0.00 0.00
Λ[2,2] 0.0 1.00 -0.01 -0.01
Λ[3,2] 0.0 1.00 0.00 0.00
Λ[4,2] 1.0 0.99 0.03 0.00
Λ[5,2] 0.8 0.95 0.06 0.04
Λ[6,2] 0.8 0.99 0.03 0.02
ρ 0.2 1.00 -0.01 -0.01

Table 2.4: True values, 95% coverage success rate and bias of point estimators out of 100
replications, AZ model for binary data.
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2.5 Real-world data examples

In this section, we demonstrate our proposed model assessment framework with two real

datasets. The first dataset is a popular psychometric test, usually referred to as the ‘Big 5

Personality Test’, that decomposes human personality along 5 main traits using 15 items mea-

sured on a 7-point likert scale. The second data set is based on the Fagerstrom Test for Nicotine

Dependence (FTND) that consists of six binary variables.

2.5.1 Example 1: ‘Big 5 Personality Test’

The data were collected as part of the British Household Panel Survey in 2005-06 focusing on

female subjects between the ages of 50 and 55; the sample size consists of 589 individuals. The

‘Big 5 Personality Test’, as it is known, is a 15-item questionnaire on topics of social behaviour

and emotional state. Participants answer each item on a scale from 1 − 7, 1 being ‘strongly

disagree’ and 7 being ‘strongly agree’. Items are treated here as continuous. The test is designed

to measure five major, potentially correlated, personality traits. Each trait corresponds to a

factor, and each factor is hypothesised to explain exactly 3 out of 15 items.

The data have been analysed in several papers including Muthén and Asparouhov (2012),

Stromeyer et al. (2015), and Asparouhov et al. (2015). In these analyses, an interesting

finding was that the exact zero (EZ) model did not exhibit good fit based on several standard

indices including the PPP values. The approximate zero (AZ) model gave a good fit in terms

of the PPP values, but also had many non-zero error correlations. This raised concerns over

whether the flexibility of the AZ model is picking up noise, thus resulting in a misleadingly

high PPP value. The validity of the ‘Big 5’ scale on these data remains unclear. In an attempt

to shed more light on this question we apply our model assessment framework and summarise

the results in Table 2.5.

The picture is very similar to the error correlations scenario in Section 2.4.2, yet much more

pronounced. Our analysis confirms the poor fit of the EZ and the EFA with five factors. Both
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Model PPP CV-V

EZ 0.0 56.43
AZ 0.23 0

EFA 0.00 94.35
EFA-C 0.38 78.47

Table 2.5: ‘Big 5’ personality test data, BHPS. PPP values and sum of variogram scores of 3-
fold cross validation for the relevant models. For each scenario, the best model has 0 variogram
score and the differences from it are reported for the other models.

AZ and EFA-C models have reasonably good PPP values. This implies that error correlations

contribute to the lack of fit to a large extent. In order to assess the question of overfit and

draw conclusions on the validity of the ‘Big 5’ scale, we calculate the variogram scores for each

model. The variogram score of the AZ model clearly dominates all the other models, suggesting

that the model is fitting consistent patterns in the data and it clearly outperforms the EFA

models. This points to strong support towards the ‘Big 5’ scale, attributing the fit issues of the

EZ model to error correlations that could have been caused by the wording and other issues

often present in survey data like the BHPS.

2.5.2 Binary Data: Fagerstrom Test for Nicotine Dependence

In this section we use data on 566 patients available through the National Institute on Drug

Abuse (study: IDA-CTN-0051). The Fagerstrom Test for Nicotine Dependence (FTND) (Heatherton

et al., 1991) was designed to provide a measure of nicotine dependence related to cigarette smok-

ing. It contains six items that evaluate the quantity of cigarette consumption, the compulsion to

use, and dependence. The original scale consists of 4 binary and 2 ordinal items for self-declared

smokers:

1. FNFIRST: How soon after you wake up do you smoke your first cigarette? [‘3’=Within

5 minutes, ‘2’=6 - 30 minutes, ‘1’=31 - 60 minutes, ‘0’=After 60 minutes]

2. FNGIVEUP: Which cigarette would you hate most to give up? [‘1’=The first one in the

morning, ‘0’=All others]
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3. FNFREQ: Do you smoke more frequently during the first hours after waking than during

the rest of the day? [‘1’=Yes, ‘0’=No]

4. FNNODAY: How many cigarettes/day do you smoke? [‘0’=10 or less, ‘1’=11-20, ‘2’=21-

30, ‘3’=31 or more]

5. FNFORBDN: Do you find it difficult to refrain from smoking in places where it is forbid-

den (e.g., in church, at the library, in cinema, etc.)? [‘1’=Yes, ‘0’=No]

6. FNSICK: Do you smoke if you are so ill that you are in bed most of the day? [‘1’=Yes,

‘0’=No].

For the purposes of our analysis, item FNFIRST was dichotomised as ‘1’=[3] and ‘0’=[0,1,2]

and item FNNODAY as ‘1’=[2,3] and ‘0’=[0,1].

The mapping between the FTND scale and a CFA model is not clear, see e.g. Richardson

and Ratner (2005) and references therein. Richardson and Ratner (2005) fitted a single factor,

a correlated two factor, and a two factor model with one cross loading. These models were

also considered in our analysis and are denoted as 1F, 2F-EZ, and 2F EZ-b respectively. More

specifically, under the EZ model items 1, 2 and 3 load on a ‘morning’ smoking factor, whereas

items 4, 5 and 6 load on a ‘daytime’ smoking factor. The EZ-b model is specified by letting

item ‘FNFIRST’ load on both factors. In addition to these models, we also considered their

approximate zero versions, denoted as 1F-C, 2F-AZ, and 2F-AZ-b respectively, as well as the

two-factor EFA models with and without error correlations (2F-EFA and 2F-EFA-C). The

results are shown in Table 2.6.

Examination of the PPP values reveals concerns about the fit of the models 1F and 2F-EZ, so

these are ruled out of the discussion. This raises several questions: Is the 2F-EZ-b the best

model or do any of the AZ model versions, 2F-AZ or 2F-AZ-b, do better? Is the best of these

three good enough? Perhaps more importantly, which measurement scale should be used for

the FTND test on the basis of this dataset?

We attempt to shed light on these questions with the use of cross-validated log scores. The

best model is the 2F-EZ-b correcting the misspecifications of 2F-EZ with a single additional
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Model PPP CV-L

1F 0.01 15.98
1F-C 0.32 6.63

2F-EZ 0.04 10.45
2F-AZ 0.40 6.23

2F-EZ-b 0.41 0.00
2F-AZ-b 0.44 2.01
2F-EFA 0.44 2.66

2F-EFA-C 0.58 2.38

Table 2.6: PPP values and and sum of log scores of 3-fold cross validation for the relevant
models. The models with ‘-b’ refer to the measurement model with the first item loading to
both factors. The best model had log score equal to 0 and the differences from it are reported
for the other models.

parameter. The fact that the log score of 2F-EZ-b is smaller than that of the EFA models

provides support towards the scale with two correlated factors where the item ‘FNFIRST’

loads on both of them.

2.6 Discussion

In this paper, we generalise the Bayesian SEM framework, introduced in Muthén and As-

parouhov (2012), along two directions. First, by expanding the model to allow for other data

distributions than the Normal; e.g. logistic often used in IRT models. Second, in terms of model

exploration and assessment, by developing a suitable framework that goes beyond goodness of

fit and allows us to address questions that naturally arise from the application of Bayesian

SEM. This framework incorporates scoring rules combined with cross-validation to the existing

fit indices.

As illustrated on simulated data and real-world examples, the use of the scoring rules can

prove quite useful in SEM analysis. Nevertheless, as with any index, it would be helpful to

explore it further and get a better understanding of the range of values indicating a good model

in different settings. This range may depend on the sample size, the number of factors and

parameters, the type of the data, the choice of the scoring rules, the number of folds or the



2.6. Discussion 59

form of cross-validation in general, the choice of the benchmark model etc. Another important

component, present in any form of Bayesian analysis, is the prior specification. The behaviour

of the scoring rules under different priors, e.g. the spike and slab priors, as in Lu et al. (2016),

rather than the ridge-type priors, is also an interesting question.

The approximate zero framework has also been applied in the study of Measurement Invariance

in SEM. Measurement Invariance (MI) for multi-group SEM, refers to the constraint of setting

parameters to be equal across different groups. Although this is still an active area of research,

there have been some indications so far, that the approximate zero framework has limitations

in this context. Previous research has revealed that the use the approximate zero framework

can be the problematic, especially when the size of the mis-specifications is moderate or high.

The calculations can be implemented using MCMC through standard user-friendly software

like Stan and can be combined with existing packages for SEM. This opens up the possibility of

using fast approximate methods such as Variational Bayes (Kucukelbir et al., 2017a) that are

automated and readily available. This can be particularly useful in categorical data application

where the use of MCMC and the presence of high-dimensional latent variables can result in

computation times that are larger than the users’ expectations. Moreover, Variational Bayes

can be used to improve the efficiency of MCMC samplers.

Further extensions of the generalised family of models can also be explored; for example, non-

Normal errors eis or random effects uis. Inspection of the latter may also provide diagnostic

information for detecting outliers and removing items to purify the constructs. It would also be

interesting to explore the connections with Bayes factors, as they tend to provide parsimonious

models that typically do well in terms of cross-validation. Calculating Bayes factors is not

always straightforward and they are also more sensitive to the choice of priors. However, such

issues can be alleviated by suitable choice of priors, as done in this paper.

Finally, it is important to note that the developed model assessment framework and the CV

index can be applied outside the Bayesian SEM context. In fact, it can be useful in situations

where we need to assess the fit of a more flexible model, such as semi-parametric or non-

parametric formulations (Yang and Dunson, 2010; Song et al., 2013). In such models, attaining
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a good fit is not always associated with a good systematic part of the model, as the flexibility

in its error part can lead to overfitting. Such models arise in many scientific areas and go well

beyond the SEM framework.



Chapter 3

Sequential Bayesian Inference for

Factor Analysis

3.1 Introduction

Factor analysis is a statistical technique that uses a small number of latent factors to model the

behaviour of a potentially larger number of observed variables. It can be used to model direc-

tional (regression coefficients) and non-directional (correlations) relationships amongst latent

variables (structural model) which are identified by observed variables (measurement model).

Factor analysis is part of Structural Equation Modelling (SEM) and Confirmatory Factor Anal-

ysis (CFA), where the focus is on verifying scientific hypotheses. Alternatively, Exploratory

Factor Analysis (EFA) uses factor analysis as a dimension reduction technique or as a tool to

uncover patterns in multivariate data. In both cases, Bayesian approaches have been developed

and offer several benefits such as providing a natural framework for parsimonious model choice

(Lopes and West, 2004; Frühwirth-Schnatter and Lopes, 2018; Conti et al., 2014), performing

well in small sample sizes (Depaoli and Clifton, 2015) and assessing model fit (Muthén and

Asparouhov, 2012).

Sequential Bayesian modelling has received attention in the setting of hypothesis testing where

it has been proven superior to the traditional null hypothesis (NHST) paradigm. Specifically,

61



62 Chapter 3. Sequential Bayesian Inference for Factor Analysis

Sequential Bayes Factors (SBF) do not suffer from bias associated to the stopping rule, the

practice of stopping the processing of new data only when conclusive evidence is reached.

Contrary to NHST theory, which requires a prespecified sampling plan, Bayes Factors allow for

flexible sampling design and unlimited testing (Pramanik et al., 2021; Schnuerch and Erdfelder,

2020). One drawback of Bayes Factors is that they are not always easy to compute except from

some simple cases of mean difference analysis (Schönbrodt et al., 2017). Several schemes have

been proposed but they are only approximate and typically they are also non trivial to compute;

see Vitoratou, Ntzoufras, and Moustaki (2016) and the references therein for some examples

in the context of factor analysis. The sequential scheme developed in this paper offers another

alternative with the additional benefit that there is no need to refit the model from scratch

when new data become available. The goal of a sequential scheme is to recursively explore the

sequence of posterior distributions

π0(θ) = p(θ), πi(θ) = p(θ|y1:i), i = 1, . . . , n, (3.1)

where θ denotes all the unknown parameters in our model. The sequential inference paradigm

approximates recursively these posterior distributions and the model evidence p(y1:i). For mod-

els where the likelihood f(y|θ) is available, the sequential scheme of Iterative Batch Importance

Sampling (IBIS) (Chopin, 2002) and its more general framework (Del Moral et al., 2006) pro-

vide the standard option. Factor models based on continuous and normally distributed data

fall in this category and in this paper we tailor the IBIS algorithm for this case. For mod-

els including latent variables, such as factor models based on binary data, interest lies in the

augmented joint posterior of parameters and latent variables

π0(θ, z0) = p(θ)p(z), πi(θ, z1:i) = p(θ, z1:i|y1:i), i = 1, . . . , n, (3.2)

In such cases one option is provided by the SMC2 scheme of Chopin et al. (2012) which

focuses on the case where the latent variables satisfy the Markov property, e.g. Hidden Markov

Models. In this paper we aim to construct an alternative scheme that takes advantage of the

independence, rather than Markov dependence, between the latent variables that is typically
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assumed in factor analysis.

Despite the fact that the developed computational scheme of the paper is sequential, it of-

fers several benefits even in non-sequential contexts. First, it can provide the posterior joint

distributions of the parameters and the model evidence in one go. Second, it allows the com-

putation of scoring rules under the prequential framework; see for example (Dawid and Musio,

2014). Third, it can provide a more robust alternative computational scheme than MCMC

schemes that can be helpful when the target distribution has problematic landscape, e.g. being

multi-modal.

In summary, a sequential framework for factor analysis can be desirable for three main reasons.

Firstly, it is needed to develop methodology that offers sequential posterior distributions for

the cases where sequential inference is needed. Typically because the data stream is available

one data point at a time and the analysis must be done in an online fashion. Second, because

we may wish to compute the model evidence which allows us to perform model choice based

on formal Bayesian quantities. This connects to a contribution of Chapter 2 which develops

a model choice paradigm based on predictive performance and scoring rules. An interesting

further research question is to compare the two approaches for model choice. Third, an efficient

sequential approach provides an alternative inference algorithm to standard MCMC. Sequential

algorithms can be useful even when used in a non-sequential way, because they can be more

robust computationally than standard MCMC.

We begin by laying out the framework for continuous data in Section 3.2. We then proceed to

explore the more challenging case of categorical data, given the presence of latent variables, in

Section 3.3. In Section 3.4 we demonstrate the framework with simulation experiments and a

real data example. Finally Section 3.5 concludes with some relevant discussion.
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3.2 Sequential Monte Carlo for Factor Analysis Based

on Continuous Data

3.2.1 Model and Priors

We use a unified Bayesian framework that encompasses models for categorical and continuous

observations. In this Section we focus on continuous data. Suppose there are p observed

variables (items) denoted by y = (y1, . . . , yp) and that their associations are explained by k

continuous latent variables (factors) denoted by z = (z1, . . . , zk). The classical linear factor

analysis model (measurement model) is:

yi = α + Λzi + εi, i = 1, . . . , n (3.3)

where α is a p × 1 vector of intercepts, Λ is the p × k matrix of factor loadings and n is the

sample size. The vector of latent variables zi has usually a Normal distribution, zi ∼ Nk(0,Φ).

The εis are error terms assumed to be independent from each other and from the zis. If they

are assumed to be Normally distributed as ε ∼ N(0p,Ψ), Ψ = diag(ψ2
1, . . . , ψ

2
p), the latent

variables z can be integrated out using standard properties of the Normal distribution, to obtain

yi ∼ N(α,ΛΦΛT + Ψ). (3.4)

The model defined in (3.3) and (3.4) applies to EFA, CFA or more generally SEM depending

on how the parameters Λ and Φ are formulated. EFA is the practice of factor analysis for

the purpose of reducing the dimensionality of the observed outcomes. This is typically done

by fitting a model where all the elements of Λ are all free parameters, subject to some iden-

tifiability restrictions, while enforcing Φ = Ik. In CFA and more broadly SEM, the focus is

on establishing whether a hypothesised social, psychological, or other scientific theory, that

determines which items load on each factor, is compatible with the data. Researchers express

the theory by restricting certain elements of Λ to zero (e.g. the so-called cross-loadings) to
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assign items to factors, and assessing the model’s goodness of fit. The covariance matrix Φ is

either unstructured (CFA) or defined by a parametric model that relates the latent variables

with each other and optionally with the observed covariates (SEM). For both approaches it is

common to set Ψ to be a diagonal matrix, an assumption known as conditional independence

of the variables given the factors.

Fitting the model requires resolving certain indeterminacies that arise. Since the scale of the

latent factors is not identifiable there are generally two parametrisations to choose from: either

the leading loadings in Λ for each factor are fixed to a constant, usually 1, or Φ is constrained

to be a correlation matrix. In the second case, further care is needed as the sign of the factor

loadings is not identifiable so the parameter space needs to be constrained to the positive

or the negative side. Alternatively the parameter space could be unconstrained and instead

post-sampling processing can be applied whereby the posterior samples of the loading columns

corresponding to each factor should be multiplied by −1 if the relevant leading loading is

negative, otherwise they are left as they are. This formulation may be viewed as a special case

of the parameter expansion suggested in Ghosh and Dunson (2009) for EFA. In the case of

EFA further challenges have to be addressed due to the fact that the likelihood is specified in

terms of ΛΛT while the parameter of interest Λ is free. Contrary to CFA, in the EFA setting

there are no modelling constraints on the loading matrix, hence the likelihood is invariant under

rotations of Λ. Enforcing Λ to be lower triangular (see e.g. Geweke and Zhou, 1996b) is one

way to remove the rotational indeterminacy, but it introduces order dependence amongst the

observed variables. The choice of the first k variables, which is an important modelling decision

(Carvalho et al., 2008b), thus becomes inadvertently impactful. Alternative schemes have been

proposed by Conti et al. (2014); Frühwirth-Schnatter and Lopes (2018); Bhattacharya and

Dunson (2011), which have the additional benefit of helping to identify the number of factors

in a single MCMC run.

Regarding priors we start with the factor correlation matrix Φ which under the full covariance

matrix parametrisation receives a prior with a low amount of information, e.g. the Inverse

Wishart with the identity as the scale matrix and p + 4 degrees of freedom or lower. Alterna-

tively, if we use a correlation matrix Φ, the LKJ prior is assigned, introduced in Lewandowski
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et al. (2009), with a similar amount of low information, e.g. LKJ(2). The free loadings in Λ

are assigned zero-centred Normal priors N(0, σ2). The prior variance is frequently set to be a

large constant, which however can lead to issues related to Lindley’s paradox (Lindley, 1957).

An alternative choice that protects against such problems is the unit information priors (Kass

and Wasserman, 1996), according to which variance is set to a small value that correspond

to the amount of information from a single observation point. In this work, our items are

in similar scales hence we fix the prior variance to 1 in line with recommendations by Lopes

and West (2004) and Ghosh and Dunson (2009). Regarding the diagonal matrix Ψ, we assign

independent Inverse Gamma priors on each ψ2
j

ψ2
j ∼ InvGamma(c0, (c0 − 1)/(S−1

y )jj)

where Sy is the empirical covariance matrix and c0 is a constant that the researcher can choose

in order to limit the probability of running into Heywood issues as per recommendations in

Frühwirth-Schnatter and Lopes (2018) and Conti et al. (2014). Finally, large variance Normal

priors are assigned on the α parameters. In every analysis that follows we use the following

wide prior Normal, α ∼ N(0, 102).

3.2.2 Sequential Algorithm

To target the recursive posteriors π(θ|y1:i) we adopt the Iterated Batch Importance Sampling

algorithm (IBIS), introduced by Chopin (2002). At a high level, IBIS works by propagating

forward in time a set of parameter particles, each weighted by the likelihood function evaluated

at its parameter values. For the standard IBIS approach we need to evaluate the likelihood

function f(y|θ) which is available for the continuous case via formulation (3.4). The ability to

integrate out the latent variables, combined with the efficiency of the IBIS algorithm, achieves

the goal we set in Section 3.1, i.e. to get an efficient process to draw samples from the sequence

of posterior distributions p(θ|y1:i), i ≥ 1 and compute the model evidence. In what follows we

describe the steps of the algorithm, while the full process is presented in Algorithm 1. We begin

by drawing Nθ samples of the parameter vector θ = (α,Λ,Φ,Ψ) from the prior distribution,
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Algorithm 1 IBIS

Sample θm, for m = 1, . . . , Nθ from π(θ) and set ωm = 1. All operations are assumed to be
repeated for all m ∈ 1 : Nθ.
Then at time i = 1, . . . , n, do:

1: Compute the incremental weights and their weighted average

ui(θ
m) = f(yi|yi:i−1, θ

m) = f(yi|θm), Li =
1∑Nθ

m=1 ω
m
×

Nθ∑
m=1

ωmui(θ
m),

2: Update the importance weights
ωm = ωmui(θ

m)

3: if ESS(ω) < γ then
4: procedure resample(θ, ω)
5: return θ
6: procedure jitter(θm,y1:i) using an MCMC algorithm
7: return θ̃m

8: (θm, ωm) = (θ̃m, 1)

called θ particles and denoted with {θm}Nθm=1. We proceed in increments of time by considering

one data point yi at each time i. This is also known as data tempering and is adopted in this

paper so that we can assess the out of sample predictive performance of the model in question.

At each time i, or else data point, we compute the weights specified by the likelihood function

ωmi = f(y1:i|y1:i−1θ
m). Note that the latter simplifies to f(y1:i|θm) for the factor models defined

in the previous subsection. Doing so, the weighted draws of the θ particles, {θm, ωmi }
Nθ
m=1 at time

i can be used to evaluate summaries of the posterior π(θ|y1:i). More specifically, expectations

with respect to that posterior, E[g(θ)|y1:i], can be computed using the estimator

∑
m[ωmg(θm)]∑

m ωm
→ E[g(θ)|y1:i]. (3.5)

(Chopin, 2004) shows consistency and asymptotic normality of this estimator as Nθ → ∞ for

all appropriately integrable g(·). The same holds for expectations with respect to the posterior

predictive distributions such as f(yi+1|y1:i). Since

f(yi+1|y1:i) ∝ f(yi+1|y1:i, θ)π(θ|y1:i),

the weighted θ particles, from π(θ|y1:i), can be transformed into weighted yi+1 particles from
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f(yi+1|y1:i) by simply drawing ymi+1 from f(yi+1|y1:i, θ
m) which, as mentioned earlier, equals to

f(yi+1|θm) in our case. Moreover, a very useful by-product of the IBIS algorithm is the ability

to compute the model evidence f(y1:i), to calculate Bayes factors. Computing the following

quantity in step 1 in Algorithm 1 yields a consistent and asymptotically normal estimator of

f(yi|y1:i−1)

1∑Nθ
m=1 ω

m

Nθ∑
m=1

ωmui(θ
m)→ f(yi|yi:i−1). (3.6)

In other words the output of the IBIS output allows the calculation of all the summaries

often obtained from the MCMC outputs, such as the posterior mean, mode, or median, 95%

credible intervals, samples from the predictive distribution, but for all the posteriors π(θ|y1:i),

i = 1, . . . , n. Moreover it provides estimates of the model evidence for all i.

Note that if we were to only propagate the particles according to steps 1 and 2 of the (IBIS)

Algorithm 1, the weights of the particles will eventually deteriorate with very few or even

one of them dominating the others, which will lead to inaccurate estimates of the posterior

summaries. One index that measures the quality of the weighted θ particles is the effective

sample size (ESS)

ESS(ω) =

(∑Nθ
m=1 ω

m
)2

∑Nθ
m=1 (ωm)2

. (3.7)

The protocol of the IBIS algorithm requires to monitor a degeneracy criterion, which is typically

to check if the ESS is less than a prespecified threshold γ, the violation of which triggers a two-

step procedure to improve the quality of the θ particles. The first step of this procedure is

to resample the θ particles with replacement, e.g. via the multinomial distribution with the

normalised weights as probabilities. At that point we reset all weights to 1 but we end up

having multiple copies of the θ particles with high weights, whereas some θ particles with low

weights are removed. The purpose of this step is to drop θ particles of low weights and focus

on the ones with high weight. This can be particularly helpful in the presence of local modes,

since the θ particles that can potentially get trapped there will eventually be removed if the

density at those modes is low. The second step of this procedure, called jittering, is to apply a

MCMC algorithm with initial value at each θm particle to sample from the posterior given data

up to that point. The MCMC algorithm is run for a few iterations and the last value of the
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MCMC chain, denoted by θ̃m becomes the new value θm. The purpose of jittering is to avoid

having exact multiple copies in the set of θ particles and the use of MCMC ensure that the

desirable asymptotic properties of the IBIS output are not violated; see (Chopin, 2002, 2004;

Del Moral et al., 2006) for details on the relevant theory.

Hence, in order to fully define the IBIS algorithm, it necessary to provide a MCMC algorithm

to sample from the posteriors π(θ|y1:i) for all i. Note that the standard Gibbs sampler of

(Geweke and Zhou, 1996b) is not immediately suitable for this purpose as it returns samples

from π(θ, z|y1:i). We therefore proceed with Hamiltonian MCMC targeting the posterior based

on the likelihood in (3.4) where the latent factors have been marginalised out. The Hamiltonian

MCMC algorithm can be applied using the standard publicly available platform Stan (Carpenter

et al., 2017). The code used for this paper, which is provided in the accompanying repository1,

combines the IBIS algorithm with the use of PyStan, the Python interface of the Stan language.

The fact that the MCMC and IBIS target π(θ|y), as opposed to π(θ, z|y1:i), does not imply

that it is no longer possible to explore the posterior of the latent factors. Note that under the

model of (3.3) and for all i ≤ j ≤ n

π(zi|y1:j) ∝ π(zi|θ,y1:j)π(θ|y1:j) = π(zi|θ,yi)π(θ|y1:j),

which for the case of Φ = Ik is (zi|θ,yi) ∼ N
(
(Ik + ΛTΨ−1Λ)−1ΛTΨ−1yi , (Ik + ΛTΨ−1Λ)−1

)
,

see e.g. Geweke and Zhou (1996b); Lopes and West (2004). A similar expression is available

for the general case. Hence the IBIS output can be used to transform the θ particles into zi

particles by simply drawing from the full conditional above for each θm given a data point yi.

From a computational point of view, the most expensive step of the IBIS algorithm is the

jittering step that requires to run an MCMC routine for a few iterations per θ particle. This is

roughly equivalent to running several MCMC algorithms based on the smaller dataset y1:i for

some i. Nevertheless, note that jittering is more likely to occur when, in the transition between

π(θ|y1:i−1) and π(θ|y1:i), these two posteriors are substantially different. As a consequence,

most of jittering steps tend to take place for small is, where the learning curve is steeper, and

1https://github.com/bayesways/smc2
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become less frequent as i increases. This suggests that the computational cost of the IBIS

algorithm is typically larger than running a single MCMC algorithm on the full data y1:n but

usually not by much. The difference can often be eliminated by using parallel computing; more

specifically running the MCMC chains of the jittering step in parallel for each θ particle. For

more coding details see Appendix B.1 and the accompanying repository.

3.3 Sequential Monte Carlo methods for Binary data

3.3.1 Model, Priors and MCMC Scheme

Binary and ordinal type data can be accommodated by extending the model framework used for

continuous data and viewing the categorical responses as manifestations of underlying (latent)

continuous variables denoted by y∗ = (y∗1, . . . , y
∗
p). When continuous variables are analysed,

yj = y∗j , (j = 1, . . . , p). The classical linear factor analysis model in the general form then

becomes:

y∗i = α + Λzi + εi, i = 1, . . . , n (3.8)

For binary data, the connection between the observed binary variable yj and the underlying

variable y∗j is yj = I(y∗j > 0). Specific choices for the distribution of the error term ε lead to

the following well known models:

ε ∼


N(0p,Ψ), Ψ = diag(ψ2

1, . . . , ψ
2
p), if yi is continuous

N(0p,Ψ), Ψ = Ip, if yi is binary and the probit model is adopted∏J
j=1 Logistic(0, π2/3), if yi is binary and the logit model is adopted,

(3.9)

where 0p is a p-dimensional vector of zeros and Ip denotes the identity matrix of dimension p.

The marginal distribution of the underlying variable becomes:

y∗i ∼ N(α,ΛΦΛT + Ψ). (3.10)
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The expression above is equivalent to the following



yi ∼
∏p

j=1 Bernoulli
(
πij(ηij)

)
πij(ηij) = σ(ηij) or πij(ηij) = Φ(ηij), ηij = [ηi]j

ηi := α + Λzi,

zi ∼ N(0,Φ)

(3.11)

where σ(·) denotes the sigmoid function and leads to the logit model, whereas Φ(·) denotes the

cumulative density function of the standard Normal distribution and leads to the probit model.

Priors are set similarly to the continuous data case described in Section 3.2. Parameters α and

Φ are treated identically. However, the unit information prior for the loading parameters Λ

could be different. In the case of the 2PL IRT model this translates to a N(0, 4) prior (Vitoratou

et al., 2014), which is the one we adopt for most models as well. Finally, in the binary data

case there is no longer a matrix Ψ to consider under formulation (3.11).

In order to sample from the posterior given all the available data, the Gibbs sampler is only

available for the case of the probit link (Chib and Greenberg, 1998b), whereas a Metropolis

withing Gibbs algorithm has also been used, see Vitoratou et al. (2016) and the references

therein. Aiming for an efficient and general option, we again resort to Stan, which can in

principle be used for all such models. Stan was also used in Vamvourellis et al. (2021) where

it performed reasonably well. As described in the previous Section, an efficient MCMC scheme

is an essential ingredient for sequential schemes, the topic we turn to next.

3.3.2 Sequential Scheme

The IBIS approach taken in the continuous data is not directly relevant for the case of binary

data because we cannot integrate the latent factor to obtain a likelihood of the form f(y|θ)

for categorical data, except for the case of the probit link. Instead, we can easily evaluate the

augmented likelihood f(y | z, θ) according to (3.9) where the underlying variable is given by

(3.11) depending on the model chosen. There are two potential routes in order to construct a
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sequential Monte Carlo scheme that includes both parameters θ and latent variables z1:i. The

first is to consider an IBIS algorithm on the higher dimensional parameter vector, that includes

both parameter and latent variables, and explore the properties of factor analysis models to

mitigate potential issues caused by the increased dimension. An example application of the IBIS

algorithm in high dimensions is provided by (Kantas, Beskos, and Jasra, 2014). The second

route is to pursue the development of a scheme in the spirit of the SMC2 of (Chopin et al.,

2012). SMC2 focuses mostly on the case of Markov dependent latent variables and combines the

IBIS algorithm with the pseudo marginal framework of Andrieu and Roberts (2009) and, more

specifically, the particle MCMC algorithm (Andrieu, Doucet, and Holenstein, 2010). In this

paper we proceed along the lines of the former route, by constructing an efficient IBIS algorithm

on the augmented parameter vector Θ = (θ, z1:n), enhanced with importance sampling targeting

the posterior of the latent factor z1:n based on the Laplace or Variational Bayes approximations

(Blei, Kucukelbir, and McAuliffe, 2017). Note that the developed approach requires a single z

particle for each θ particle, as opposed to Nz particles in the SMC2 framework.

Getting to the specifics of the IBIS algorithm, we take Algorithm 1, formulated on Θ rather

than θ, as starting point and present our modifications that lead to the Algorithm 2, which we

recommend in this paper for the case of binary data. The initialisation in the case of Algorithm

1, requires to draw samples from the priors of θ and zi for i = 1, . . . , n. Note however, that at

time i of the IBIS the latent factors zj for i < j < n do not contribute at all to the algorithm;

neither in the incremental weights nor in the likelihood for the MCMC in the jittering step.

They can therefore be omitted and drawn retrospectively when the algorithm reaches i = j.

One of the key features regarding the efficiency of the IBIS algorithm is the number of times the

degeneracy criterion is triggered. Under the data tempering schedule the ESS is being reduced

at time i due to the differences between the posteriors based on y1:i−1 and y1:i. When it comes

to θ such differences typically become smaller as i increases. This is not the case, however,

for latent factors zis. As noted earlier, for factor analysis models, π(zi|y1:n, θ) = π(zi|yi, θ),

which implies that given θ the learning regarding zi takes place only at time i. Hence, if the

posteriors π(zi|yi, θ)s tend to be substantially different than the priors, the degeneracy criterion

of Algorithm 1 may end up being triggered at all times, thus leading to a very inefficient
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computational scheme. The problem can potentially be addressed by replacing data tempering

with another schedule, but this will no longer enable desirable features such as sequential testing

and evaluation of scoring rules. We therefore proceed by retaining the data tempering schedule

and resort to importance sampling to address this issues. More specifically, rather than drawing

each zi from its prior, which leads to incremental weights f(yi|y1:i−1, θ, zi) = f(yi|θ, zi), we

draw them from a proposal distribution q(.) and compute the weights according to

ui(z
m
1:i, θ

m) =
f(yi|θm, zm1:i)π(z)

q(zmi |θm,y1:i)
(3.12)

We seek a proposal q(·) that resembles the posterior π(zi|θm,y1:i) = π(zi|θm,yi). The density of

this posterior is not available in closed form but it is typically low dimensional and its likelihood

function consists of a single data point. Hence, it is not hard neither computationally expensive

to obtain approximations of it, such as the Laplace method which is easy to program in the

presence of the relevant derivatives; see Appendix B.2. Another option is provide by Variational

Bayes (VB) (Kingma and Welling, 2013; Kucukelbir et al., 2017b) to derive a distribution that

approximates the posterior π(zi|yi, θ). The VB method has the advantage of not requiring the

model specific expressions of the derivatives and can be automated.

We now summarise and present the full process in Algorithm 2. The main differences of this

IBIS algorithm when contrasted with the Algorithm 1 is the augmentation of the particles with

latent variables, thus having {Θm}NΘ
m=1 particles, the usage of the augmented likelihood in (3.3)

instead of the marginal in (3.4) and the incremental addition of the latent factor particles.

3.4 Applications

We perform sequential parameter inference and model choice in simulated and real datasets

considering cases of continuous and categorical data. We start with simulations of continuous

data in Section 3.4.1 to show that the final posterior distribution are correctly recovered. We

then extend those results to the case of binary data in Section 3.4.2 where we also compare the

suggested methodologies from Section 3.3. Section 3.4.3 focuses on Bayes Factors for sequential
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Algorithm 2 IBIS-LVM

Sample θm from π(θ) and set ωm = 1 for m ∈ 1 : NΘ. All operations are assumed to be repeated
for all m ∈ 1 : NΘ.
Then at time i = 1, . . . , n do:

1: Sample zmi ∼ q(zi|yi, θm)
2: Append zmi to zm1:i−1 to maintain the matrix of latent variables (if t = 1 initialise matrix

zm1:1 = zm1 )
3: Compute the incremental weights and their weighted average

ui(θ
m, zmi ) =

f(yi|θm, zmi )π(zmi |θm)

q(zmi |yi, θm)
, Li =

1∑Nθ
m=1 ω

m
×

Nθ∑
m=1

ωmui(θ
m, zmi ),

4: Update the importance weights

ωm = ωmui(θ
m, zmi )

5: if ESS(ω) < γ then
6: procedure resample(θm, zm1:i, ω)
7: return θm, zm1:i

8: procedure jitter(θm, zm1:i,y1:i) using an MCMC algorithm
9: return θ̃m, z̃m1:i

10: (θm, zm1:i, ω
m) = (θ̃m, z̃m1:i, 1)

model choice in different scenarios including choosing the number of factors. Finally, Section

3.4.4 contains a real data example from the British Household Panel Survey.

3.4.1 Continuous Data Simulations

We generated data y from the model of equation (3.3) with two factors according to the

following process, denoted as ‘Continuous Scenario 1’: the sample size n is 200, and α is a

vector of zeros, the factor scores zis were generated from the N(0,Φ), whereas the error terms

were distributed according to the N(0,Ψ) with the associated parameters Λ, Ψ and Φ being as
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follows

Ψ = diag(0.35, 0.58, 0.58, 0.35, 0.58, 0.58)

Φ =

0.65 0.13

0.13 0.65



Λ =



1.0 0

0.8 0

0.8 0

0 1

0 0.8

0 0.8



(3.13)

A CFA model was fit to the simulated data where the loading matrix structure mirrors the

loading matrix used in the data generation process, in other words the locations of zeros were

assumed to be known but the remaining loading were considered as unknown parameters.

Moreover, the residual covariance matrix was restricted to be diagonal.

We performed inference using the IBIS algorithm as presented in Section 3.2 and recovered

posterior samples for all parameters at each step i = 1, . . . , n. In Figures 3.1, 3.2, 3.3, and 3.4,

we plot the 95% credible intervals after processing the last data point (i = 200) and verify that

they include the correct values (marked with red dots). Note that for identifiability reasons the

leading loading parameters were fixed to 1, hence the free loading parameters to be estimated

in this model are the 4 elements in the positions containing the values 0.8 in Λ matrix in

(3.13). We also fit the same model using a batch MCMC algorithm to the same exact data set

and compared the posterior draws. More specifically, we compared the posterior draws of the

sequential IBIS methodology with the posterior draws from an MCMC batch algorithm that

was fit to the full dataset all at once. We confirmed that the posterior draws are essentially

identical, which demonstrates the correctness of the sequential methodology. In Figures 3.5,

3.6, 3.7, and 3.8, we present the density plots of the loadings parameters overlaying the density

charts for both algorithms. We see that the charts coincide almost completely, which shows
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Figure 3.1: Real data values marked in red dots overlaid with the 95% credible intervals for Λ,
the loading matrix parameters in Continuous Scenario 1.

Figure 3.2: Real data values marked in red dots overlaid with the 95% credible intervals for α,
the intercept parameters in Continuous Scenario 1.

that at the end of the process the sequential algorithm produces the same posterior density

plots as the standard MCMC batch algorithm.

3.4.2 Parameter Estimation for Binary Data

We now proceed to demonstrate the sequential inference algorithm for a case of simulated

binary data. We run three inferential processes on the same data set, each time using one of the

three methodologies presented in Section 3.3.2, sampling the latent variables from their prior,
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Figure 3.3: Real data values marked in red dots overlaid with the 95% credible intervals for Φ,
the factor covariance parameters in Continuous Scenario 1.

Figure 3.4: Real data values marked in red dots overlaid with the 95% credible intervals for
diag(Θ) the diagonal elements of the residual covariance parameters in Continuous Scenario 1.
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Figure 3.5: Posterior Draws for the Loading matrix Λ in Continuous Scenario 1, for both IBIS
and batch MCMC methodologies.
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Figure 3.6: Posterior Draws for the Intercept parameters α in Continuous Scenario 1, for both
IBIS and batch MCMC methodologies.

Figure 3.7: Posterior Draws for the Factor Covariance matrix Φ in Continuous Scenario 1, for
both IBIS and batch MCMC methodologies.
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Figure 3.8: Posterior Draws for the diagonal of the covariance matrix of the residual Errors
diag(Θ) in Continuous Scenario 1, for both IBIS and batch MCMC methodologies.
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the Laplace approximation of their posterior, and the Automatic Variational Bayes (ADVI)

approximation (Kucukelbir et al., 2017b) of their posterior. The data set was generated from a

single factor model based on formulation (3.11) adopting the logit link and using the following

parameter values: n = 100, α = (−0.53, 0.35,−1.4,−1.4,−0.96,−2.33), the loading matrix

Λ = (1, 1, 1, 1, 1, 1), and the factor scores were generated as z ∼ N(0, 1). We call this data

generation process ‘Binary Scenario 1’.

The simulations demonstrate that the naive approach of simulating from the prior, denoted

by ‘PRIOR’ is inefficient. We contrast PRIOR to the two alternative methods we propose

in this paper, namely the Laplace approximation method (LAPLACE) and the Variational

Bayes method (VB). The PRIOR method is relatively easy to implement because the latent

variables are drawn from the prior. The drawback of this method is that because the latent

particles come from the prior, very few of them achieve high likelihood values. As a result,

we need to refresh the particles very often by running a full MCMC chain for each particle,

which is typically the most costly step in a sequential algorithm. In the 100 data point data

set we used, the ESS criterion was triggered 57 times under the PRIOR scheme. The problem

is particularly acute because the resampling and jittering rate does not necessarily drop as

the data index i increases, contrary to the other methods we examined. More specifically,

the degeneracy criterion was triggered 30 times in the first 50 data points and 27 in the last

50 data points; in other words the rate fell by only 10% in the second half. The LAPLACE

methodology requires extra work to derive the derivatives but is far more efficient in terms of

resampling rate. More specifically, the ESS criterion was triggered only 27 times in the 100

data points. More importantly, the resampling and jittering rate in the second half of the

data set was (9/50) whereas in the first half it was (18/50), thus resulting in 50% reduction.

Regarding the additional run time cost of computing the Laplace approximation, we found it to

be minor in our simulations. Informally, we note that in the experiments we ran the run time

of LAPLACE method was only 10-20% higher compared to the PRIOR method, in the order of

added minutes. A potential drawback of this scheme is that the Laplace approximation requires

the analytical derivatives, which may not be simple to derive. A more automatic approach is

offered by the VB method which does not require the user to manually derive the derivative
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Figure 3.9: Real data values marked in red dots overlaid with the 95% credible intervals for
the loading matrix parameters Λ in the Binary Scenario 1 data simulation.

formulas needed for the Laplace approximation. The efficiency of VB in our simulations was

exactly the same as that of LAPLACE, with the ESS criterion being triggered at 18/50 times

in the first half and 9/50 times in the second half of the data points. One possible drawback

of the VBA is the extra run time needed to compile and run the VBA step for each draw.

While the exact run time is highly dependent on the software and hardware used, to reduce

run time we advise using a language that can run compiled models in order to amortise the

compile time of the model across the rest of the resampling steps. In Figures 3.9 and 3.10 we

plot the 95% credible intervals for the loading parameters along with the real data values and

verify that the credible intervals cover the true values used to generate the data. Additionally,

just as we did with the continuous data simulations, we fit both the batch MCMC and the

sequential algorithm to the same dataset and compare the posterior draws. We verify that the

draws of the sequential framework at the last step coincide with those from the batch MCMC

algorithm fit to the entire data set. We present the comparison in Figures 3.11 and 3.12. For

simplicity we show the output of the LAPLACE method only since the rest of the methods

produce similar results.
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Figure 3.10: Real data values marked in red dots overlaid with the 95% credible intervals for
the intercept parameters α in the Binary Scenario 1 data simulation.

3.4.3 Sequential Model Choice

3.4.3.1 Overview

In this Section, and also the next one, we demonstrate the use of Sequential Bayes Factors

in order to facilitate model choice. We include special considerations for choosing the right

number of factors. After we have briefly introduced the concept, we lay out the range of

candidate models. We then proceed to run simulations using synthetic continuous data, which

allows us to check our approach since we know the best model in advance.

The fully Bayesian approach to model choice is based on computing the model evidence and

the probability of the observed data under the model of choice. The evidence of modelM, also

called marginal likelihood, is defined as follows

π(y|M) =

∫
f(y|θ,M)π(θ,M)dθ (3.14)

where f(y|θ,M) is the likelihood function under the model M, and π(θ,M) is the prior

distribution under modelM. When the model is implied, we omit it from the formulas for ease

of notation. In the Bayesian framework, to compare two models M1 and M2 is to compare
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Figure 3.11: Posterior Draws for the Loading matrix Λ in for EZ model in the binary data
simulation, for both IBIS and batch MCMC methodologies.
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Figure 3.12: Posterior Draws for the intercept parameters α of EZ model in the binary data
simulation, for both IBIS and batch MCMC methodologies.
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their evidence. The ratio of their evidence is the Bayes Factor which we will abbreviate as

BF (M1/M2) :=
π(y|M1)

π(y|M2)

The Bayes Factor of two models provides a numerical comparison as for which model is most

supported by the data. For example if π(y|M1)/π(y|M2) = 2 that means that the probability

of y under model M1 is twice bigger than under model M2. Jeffreys provided guidelines for

qualitative interpretations of Bayes Factors (Kass and Raftery, 1995), according to which, a BF

of 4 and above is substantial evidence that M1 is the optimal model amongst the two under

the Bayesian framework.

We focus on the task of model choice within a range of factor models that span the spectrum

from CFA to EFA which we describe in detail now. As described in Section 3.2, researchers

routinely express a factor hypothesis by setting certain loading parameters to zero, while freeing

the rest. Such ‘exact zero’ models, however, are very sensitive to model misspecifications and

typically demonstrate poor fit in the presence of even small cross loadings, which are often

found in real world data sets. For this reason researchers have questioned the suitability of

such models, denoted by EZ henceforth, in research hypothesis testing (Stromeyer et al., 2015;

Hoijtink and van de Schoot, 2018a). A proposed solution to this issue is to replace exact zero

parameters with approximate zero (AZ) parameters through the use of prior distributions that

are highly concentrated around zero. Such a model can be seen as the middle road between

confirmatory and exploratory analysis. Specifically, in the classical confirmatory EZ models

the loading matrix parameters are either free or zero. Freeing the zero parameters completely

would result in an EFA model, so AZ offers a middle path where we free them while strongly

constraining them to be near zero using appropriate prior distributions. The loading structures

of all three models, exact zeros (EZ), approximate zeros (AZ), and exploratory factor model

(EFA), are presented in Table 3.2. Note that the the first loading of each factor in EZ and AZ are

set to 1 for identifiability reasons, as the scale of the latent variable is non-identifiable. Similarly,

exact zero models impose a diagonal structure in the residual covariance matrix, whereas the AZ

model allows off-diagonal elements to be free but constrained near zero. For more information
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we refer the interested reader to Muthén and Asparouhov (2012) and Vamvourellis et al. (2021).

In the discussion above we have assumed that the true number of factors is known, since we

generated the data ourselves using two factors. Hence, all three models so far (EZ, AZ and

EFA) have been assumed to have two factors. In the absence of specific knowledge however,

choosing the right number of factors remains an important challenge of applied factor analysis.

To address this, we propose fitting EFA models with different number of factors and comparing

their Bayes Factors. The most supported EFA model amongst them will likely be the one with

the appropriate number of factors. That of course assumes a case of perfect model specification,

as in Scenario 1. If there are cross loadings or correlated residual errors, such as in Scenario

2, it is possible that an EFA model with an extra factor would perform better because such

an extra factor allows the model to accommodate the misspecifications. We demonstrate these

cases by including the 1 factor EFA (EFA1) and the three factor EFA (EFA3) along with the

two factor EFA (EFA2) and the rest of the models.

3.4.3.2 Simulation Experiments

Our starting point is the case study presented in Section 3.4.1 using data generated according

to Continuous Scenario 1. We fit the exact zero model (EZ) which we deliberately chose to

match exactly the structure of the model that we used to generate the data. Hence we expect

that EZ is supported by this data more than any other model, and indeed we find that it is. In

the next scenario, we examine how model performance metrics change in the presence of small

model misspecifications, a process we denote by ‘Continuous Scenario 2’. In particular, we

generated data from the same model as before, except the loading structure introduces small

cross loadings in three positions, as shown in Table 3.1.

Now we demonstrate the use of Bayes Factors for finding the optimal model amongst the ones

considered under the Bayesian framework in the two scenarios discussed above. In Scenario

1 the EZ model matches exactly the data generation process so it is expected to be the best

model. In Scenario 2, however, the loading structure imposed by the EZ does not exactly match

the data generation process anymore. We expect that a more flexible factor model, such as the
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Scenario 1 Scenario 2

Λ:1 Λ:2 Λ:1 Λ:2

1 0 1 0
.8 0 .8 .3
.8 0 .8 0
0 1 0 1
0 .8 .3 .8
0 .8 .3 .8

Table 3.1: True factor loadings used in continuous data simulation.

EZ AZ EFA

Λ:1 Λ:2 Λ:1 Λ:2 Λ:1 Λ:2

1 0 1 ∼ 0 x x
x 0 x ∼ 0 x x
x 0 x ∼ 0 x x
0 1 ∼ 0 1 x x
0 x ∼ 0 x x x
0 x ∼ 0 x x x

Table 3.2: Loading structure of all three models, x represents a free parameter, ∼ 0 represents
a free parameter with a prior distribution concentrated around 0.
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EFA, would perform better. Such flexibility comes at the cost of higher risk of overfitting, which

occurs when a model fits noise rather than systematic patterns in the data. Furthermore, EFA

models generally have slightly more free parameters than CFA models, and thus may result in

lower estimation accuracy compared to EZ model. Hence, it is not clear a-priori whether the

EFA model is better or worse than the EZ model in the presence of cross loadings in the data.

The middle grown candidate model is the AZ, which preserves some of the structure of the EZ

model but with some added flexibility. In the presence of small cross loadings we expect that

the AZ model will be better than the EZ, but it is not clear how it would fair against the EFA.

Below we summarise the results of Scenario 1 in Tables 3.3 and 3.4 as it stands at the end of the

inferential process (at point i = 200). Table 3.3 shows the log model evidence for each model

from which we can deduce that EZ is the optimal model amongst those considered, since it has

the highest value. In table 3.4 we provide all the log Bayes Factors for each pair of models,

which we will denote by LBF . For example the first column shows the log Bayes Factors

LBF (EZ/M) := logBF (EZ/M) = log(π(y|EZ)/π(y|M)) for M ∈ {AZ, EFA1, EFA2, EFA3}.

We can verify that all ratios are above 0 which is a different way of saying that EZ is supported

by the data the most. The second best model is AZ, as in the second column we can see it has

positive ratios with the all other models but EZ.

The table also shows us how we could have concluded that the right number of factors is two, in

the absence of prior knowledge. We are looking for the EFA model that is most supported by the

data amongst the three options. From Table 3.3 we can see that EFA2 has the highest value of

the three EFA models. Alternatively, we can verify this from Table 3.4; LBF (EFA1/EFA2) =

−58.2 < 0 which means that EFA2 beats EFA1; and also LBF (EFA2/EFA3) = 6.6 > 0 which

means that EFA2 also beats EFA3.

Moving on, we now turn to the results in Scenario 2, where the data present cross-loadings.

The results for Scenario 2 are summarised in Tables 3.5 and 3.6 where we can verify that the

EZ model is no longer the optimal of the candidate models. In fact, the most supported model

is now the AZ model since it has the highest marginal likelihood value in Table 3.5. This is

a confirmation that the Bayes Factors are picking up on the fact that the exact zero model is
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Name Log(Model Evidence)

EZ −1330.98
AZ −1331.27

EFA1 −1391.82
EFA2 −1333.67
EFA3 −1340.21

Table 3.3: Log Marginal Likelihood or Log Model Evidence for candidate models in simulation
Scenario 1, at the final point i = 200. We highlight model EZ with the highest value.

EZ AZ EFA1 EFA2 EFA3

EZ
AZ 0.3

EFA1 60.8 60.6
EFA2 2.7 2.4 −58.2
EFA3 9.2 8.9 −51.6 6.6

Table 3.4: Log Bayes Factor for candidate models in simulation Scenario 1, at the final point
i = 200. The table values represent the log ratio of the model on the top row divided by the
model on the column. For example the LBF (EZ/AZ) = 0.3.

no longer the best match for the data generation process, given the presence of the small cross

loadings. It is interesting to gain a qualitative insight into how much does the data support

each of the three models EZ, AZ and EFA2. If we exponentiate the values presented on Table

3.6 we can read all four comparisons involving AZ from the table as follows:

BF (AZ)/BF (EZ) =
1

exp(LBF (EZ)/AZ))
=

1

exp(−9.8)
= 1e5

BF (AZ/EFA2) = exp(2.6) = 13.4

We can verify that the hypothesised loading structure represented by EZ is too restrictive as

AZ is clearly more supported. Additionally, because the cross loadings used to generate the

data are relatively small, the loading structure is for the most part correct and for this reason

the AZ model is strongly preferred also over the exploratory model with the correct number of

factors EFA2.
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Furthermore, we can note, that even in the presence of cross loadings we can deduce the right

number of factors by observing which EFA performs best in terms of Bayes Factors. As in the

previous scenario, EFA2 beats both EFA1 and EFA3, hence the evidence is pointing decisively

towards EFA2 and two factors. Interestingly, EFA3 is also supported to a degree as the Bayes

Factor BF (EFA2/EFA3) = exp(1.2) = 3.3 is relatively low at the value of 3. That is probably

happening because the additional factor is able to accommodate some of the cross loadings.

Name Log(Model Evidence)

EZ −1330.69
AZ −1290.85

EFA1 −1347.83
EFA2 −1293.43
EFA3 −1294.61

Table 3.5: Log Marginal Likelihood or Log Model Evidence for candidate models in simulation
Scenario 2, at the final point i = 200. We highlight model AZ with the highest value.

EZ AZ EFA1 EFA2 EFA3

EZ
AZ −9.8

EFA1 47.1 57.0
EFA2 −7.3 2.6 −54.4
EFA3 −6.1 3.8 −53.2 1.2

Table 3.6: Log Bayes Factor for candidate models in simulation Scenario 2, at the final point
i = 200. The table values represent the log ratio of the model on the top row divided by the
model on the column. For example the LBF (EZ/AZ) = −9.8.

So far we have focused on model evaluation after having fit the model to the full batch of

the data. However, the sequential framework we propose allows us to dynamically evaluate

the models at each data point if we wanted. In practice it is not uncommon for sequential

algorithms to be slow to reach a good set of particles if initiated at the first data point. One

solution is to use the Adaptive Tempering algorithm which is designed to mitigate this issue

exactly, see for example (Kantas et al., 2014; Schäfer and Chopin, 2013). Another solution is

to initiate the sequential process particles using the output of a batch MCMC run using the

first few data points. In this work, for demonstration purposes, we chose to initialise using
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the first 30 data points for all our runs. In general, further work is required to choose the size

of the batch used for the initialisation step. After the initialisation step, the particles achieve

good values (values of high likelihood) and remain stable from then on. The inference output

suffices to carry out the comparisons between the models we described above at each new data

point we process.

We first address the question of how to choose the right number of factors to choose in Scenario

1. Recall that we initiate the sequential paradigm after having initialised the particles by

running a batch MCMC on the first 30 points. We present the chart of log Bayes Factors

between the EFA models in Figure 3.13 where the horizontal axis shows the index of the data

point and the vertical axis shows the Log Bayes Factor. We can confidently claim that the

right number of factors is two based on the fact that EFA2 outperforms easily both EFA1

and EFA3. We present the Sequential Log Bayes Factors amongst the rest of the models for

Scenario 1 in Figure 3.14. We choose to present all the factors with EZ in the numerator and

the other 2 models in the denominator. The chart highlights two interesting points. First, it

shows that the AZ and EZ models present very comparable level of support throughout the

dataset as their log factor ratio stays near zero throughout. Second, we see that the EZ model

starts to outperform the best EFA model, EFA2, after about 50 points when their log ratio

turns positive. However, it does not surpass the notional mark of 1.4 until it hits point 180.

We note that BF (EZ/EFA2) = exp(1.4) = 4 and recall that a Bayes Factor of 4 is considered

substantial support in favour of the better model.

In Figure 3.15 we present the Sequential Log Bayes Factors for the EFA models in Scenario 2

in order to choose the right number of factors. We see that EFA2 outperforms EFA1 from the

beginning but LBF (EFA2/EFA3) remains above 0 but below 2.5 for the rest of the dataset.

This would be a sign that the right number of factors is probably 2, but there are additional

model misspecifications that might call for an additional factor. More generally, when the data

support an EFA model with K factors only slightly more an EFA with K + 1 factors, it could

be an indication that the true number of factors is K but there are model misspecifcations

that justify using the EFA model with K + 1 factors as well. We then present the comparisons

of the rest of the models in Figure 3.16 where we choose to present all the ratios with AZ in
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Figure 3.13: Bayes Factors for EFA models of 1, 2 and 3 factors respectively in Scenario 1.
We see that EFA2 outperforms both of the other models, which is an indication that the right
number of factors is 2.

the numerator. The EZ model remains competitive for approximately the first 100 points, and

after that the log ratio grows decisively above 5. The ratios with EFA2 favours AZ in the range

of 2− 3 throughout which confirms the interpretation we discussed in relation to Table 3.6.

3.4.4 Application: Big 5 Personality Test - British Household Panel

Survey

In this Section we apply the proposed framework to a real word dataset to highlight the benefits

of sequential model selection in the case where the true data generation process is unknown.

The data set we work with comes from the British Household Panel Survey in 2005-06, which

concentrated on female subjects between the ages of 50 and 55; the sample size consists of 676

individuals. The ‘Big 5 Personality Test’, as it is known, is a 15-item questionnaire on topics of

social behaviour and emotional state. Each item receives an answer from each participant on a

scale from 1− 7, 1 being ‘strongly disagree’ and 7 being ‘strongly agree’. The test is meant to

measure five major, potentially correlated, personality traits. Each factor corresponds to one

trait, and is hypothesised to explain exactly 3 out of 15 items. Typically, as is the case in our
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Figure 3.14: Bayes Factor values of 3 candidate models, in Scenario 1 where the data was
generated from a structure with zero cross loadings. We expect EZ to be the model of choice
since it matches the structure of the data generation model the best of all the candidate models.

Figure 3.15: Bayes Factors for EFA models of 1, 2 and 3 factors respectively in Scenario 2.
We see that EFA2 outperforms both of the other models, which is an indication that the right
number of factors is 2. However, because of model misspecification the EFA model with an
additional factor, EFA3, remains competitive.
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Figure 3.16: Bayes Factor values of the 4 candidate models, in Scenario 2 where the data was
generated from a structure that included cross loadings. We expect AZ to be the model of
choice since it matches the structure of the data generation model the best of all the candidate
models.

analysis, the questions are ordered in a way such that the first three questions correspond to the

first factor, the next three questions correspond to the second factor; the pattern continues so

that the last three questions correspond to the fifth factor. For our analysis we standardised the

data by removing the mean and set the standard deviation to 1 so that we receive standardised

loading values.

Prior research has suggested that the dataset demonstrates potentially small cross loadings, as

well as correlated residual errors, possibly as a result of negative wordings of some of the items

in the questionnaire. As a result, the exact zero model has been found to have poor fit, while the

equivalent AZ model fits the data much better (Muthén and Asparouhov, 2012; Vamvourellis

et al., 2021). We are also interested in examining whether more flexible models are more

supported by the data, to benchmark against the confirmatory models with the hypothesised

structure. Since the questionnaire was constructed to measure 5 personality traits, we will

include the 5 factor EFA model which will perform better than the rest if the hypothesised

factor structure is not correct. Finally, we include the most flexible model possible, the saturated

model denoted by ‘SAT’, that imposes no factor structure on the dataset.
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Figure 3.17: Bayes Factor values of the 4 candidate models. Based on prior research we expect
AZ to be the model of choice.

In the sequential model comparison chart, Figure 3.17, it becomes clear early on that the

hypothesised factor structure is correct. Even though the cross loadings and residual errors

cause the EZ model to not perform optimally in terms of Bayes Factors, the overall loading

structure is supported by the data. We can conclude this because the most supported model is

the AZ model, which easily outperforms EFA and SAT, both of which are presumed to be more

flexible. Their flexibility would result in higher model evidence if indeed the factor structure

hypothesised in AZ was wrong. The fact that the most flexible models fail to perform better

is an indication that the hypothesised structure of AZ is supported. The SBF framework can

facilitate dynamic adjust to surveys, such as the one analysed here. As we can see,it becomes

immediately clear that the AZ is better than the EZ, say after the first 80 participants. If

the analysis was done in real time, the researchers could have stopped the study early and

potentially revised the structure or the wording of the questionnaire.

Having selected the right model we can also draw posterior samples at each point and learn the

loadings of the factors for each item. Here we present the posterior mean estimated loadings

after the last data point has been processed in Table 3.7. We can see that some cross loadings,

such as 1-st factor 8-th item are estimated to be non-zero, despite the strong priors towards

zero. These items are prime candidates for sources of model misspecification. Overall, all such
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cross loadings are estimated to be smaller than 0.1 in absolute value while the main loading

structure takes values around 1. A posterior density plot of the draws, Figure 3.18 can reveal

some further characteristics of the areas of misfit. For example, some cross loading densities,

such as the the 4-th factor on the 14-th item, present substantial skewness to the right, which

means that there is potentially a stronger source of cross loading than the cross loading of the

1-st factor on the 8-th item which is a more symmetric density plot.

Λ:1 Λ:2 Λ:3 Λ:4 Λ:5

1. 0. -0.1 -0. 0.
1.2 -0. 0.1 0. 0.
1.5 0. 0. 0. -0.
0. 1. -0. -0. 0.
0. 0.9 0.1 0. -0.
0. 1.3 -0. -0. -0.
-0. 0. 1. -0. -0.
0.1 0. 1.4 -0. -0.
-0. -0. 1.3 0. 0.
-0. 0. 0. 1. 0.
0. -0. -0.1 1.1 0.
-0. -0. 0. 1. -0.
-0. 0.1 0. -0.1 1.
-0. -0. 0. 0.1 1.3
0. -0. -0. -0. 1.

Table 3.7: Posterior mean estimates of loading values for the Big 5 dataset at the final point
of inference. We present the values at 1 decimal point.

3.5 Discussion

In this paper we propose an efficient sequential scheme for factor analysis with continuous

latent variables. The modelling case of continuous Normally distributed data can be handled

using the existing framework of IBIS (Chopin, 2002). The crucial fact is that it is possible

to write down the distribution of the data, marginalising out the latent variables. However,

when that marginal distribution is not available, as is the case in IRT models, the standard

IBIS algorithm does not apply. We develop an efficient scheme based on IBIS that can handle

categorical and non-normally distributed continuous data, using the Laplace and Variational
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Figure 3.18: Posterior density plots for the loadings parameter of the AZ model fit to the Big5
dataset.
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Bayes approximations. Other SMC2 based approaches, while wholly valid, they tend to be

inefficient in the context of factor analysis. The reason is that they are constructed to work with

latent variables that present temporal correlations, whereas factor modelling usually involves

independent latent variables. Our scheme takes advantage of the independence structure to

offer an efficient alternative. Merging the fields of Sequential Monte Carlo methods and Factor

Analysis could be a fertile area of research ahead. Additionally, future practitioners stand to

benefit from more research into the implementation details of these frameworks. Moreover,

we note that the sequential inferential framework proposed in this work provides a robust

computational alternative to MCMC schemes for factor analysis even in the non-sequential

setting. An interesting future research direction is a more formal performance comparison

between the two approaches.

Finally, another area of future research is that of sequential model choice. The sequential

framework proposed here facilitates model choice in two ways. While in this work we focus

on Bayes Factors, scoring rules is a powerful alternative tool. Scoring rules assess a model

via predictive performance, even when when prediction is not amongst the research objectives.

The philosophical basis of this approach suggests that a model fits the data well when it is

able to predict new data that was not used for estimating the model parameters. Scoring rules

evaluated on out-of-sample data are available as a direct output of the data tempering strategy

adopted in this work, under the prequential framework (Dawid and Musio, 2014). A formal

comparison of Sequential Bayes Factors and such scoring rules is an interesting field of further

research.



Chapter 4

Bayesian Benefit Risk Analysis

4.1 Introduction

Regulatory authorities called to authorise new drugs, often face a difficult challenge on how to

choose an action in the presence of multiple competing objectives. Rising demand for individu-

alised treatments, increasing number of stakeholders and higher level of complexity in the kind

of questions asked today, all make the challenge even harder. Multiple high profile drugs have

been withdrawn over the past 20 years (Guo, Pandey, Doyle, Bian, Lis, and Raisch, 2010), some

permanently while others have been re-marketed under revised labelling and guidance (Wallach,

Wang, Zhang, Cheng, Nardini, Lin, Bracken, Desai, Krumholz, and Ross, 2020). Given the

complexity and the gravity of this challenge, it is important to provide stakeholders with struc-

tured quantitative approaches for benefit-risk assessment of medicines. Such approaches, as

the one developed in this paper, typically rest on using observational data to estimate suitable

models and the parameters thereof, while at the same time balancing competing objectives.

One high profile drug with a controversial past is rosiglitazone. Rosiglitazone is a drug for

the treatment for Type II diabetes, that was marketed under the commercial name Avandia.

It gained market authorisation in the United States in 1999 and in the European Union in

2000. New data subsequently emerged about possible cardiovascular risks associated with

rosiglitazone, confirmed by a meta-analysis in 2007 (Nissen and Wolski, 2007), which resulted

100
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in a European suspension of the Marketing Authorisation in 2010. This suspension included its

use as a fixed dose combination with metformin or glimepiride for Type II diabetes, which had

been approved in 2003 for metformin and 2006 for glimepiride. The drug remained available

in the United States, but only under a restricted-access program put in place in 2010. In 2011

the US regulators reverted the recommendation and suspended the drug. In 2013 the drug

regained approval, following a study that found rosiglitazone to be as safe as other diabetes

drugs. Today the drug is withdrawn from most countries in the world, but remains available

in the United States. For a complete review of regulatory history of rosiglitazone see (Wallach

et al., 2020).

Benefit risk analysis (BRA) is an umbrella term that encompasses any structured approach for

weighing the benefits (typically the efficacy) against the risks (typically dangerous or unwanted

side effects) of drug treatments. The goal is to assist stakeholders decide if a drug works,

and whether the potential side effects are acceptable. Since the decision depends on personal

preferences and risk tolerances, the proposed frameworks include various ways of embedding

formal or informal utility functions. Mt-Isa et al. (2014) conducted a review of the benefit risk

literature categorising the approaches into quantitative frameworks, metrics for benefit-risk

assessment, estimation techniques and utility survey techniques, and qualitative frameworks.

Out of these four groups, the first two are formal quantitative approaches based on statistical

theory, whereas the latter two are more informal. Common single metrics are the benefit risk

ratio (BRR) (Carlisle et al., 2016) and net clinical benefit (NCB) (Shakespeare et al., 2001)

whereas more recently researchers have suggested extension metrics such as RV-NNT and MCE

(Holden, 2003). Single metrics like these, while providing useful summaries, in practice cannot

holistically evaluate a drug as they focus instead on specific aspects of the decision making

process. A practical limitation is that they require the benefit and risks to be already expressed

in common scales. A theoretical limitation is that complex decision making often cannot be

easily summarised by single numbers especially if the uncertainty is not taken into account.

Ratio based metrics in particular, have received criticism for being unstable or misleading often

hiding the uncertainty embedded into the final decision that rests on the actual value (Lynd

and O’brien, 2004; Shaffer and Watterberg, 2006; Sutton et al., 2005).
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Multi-criteria decision analysis (MCDA) is one of the most comprehensive quantitative frame-

works for benefit risk assessment and it is widely used today (Keeney et al., 1993; Mussen et al.,

2009; Dodgson et al., 2009). It is a quantitative framework that allows users to weight outcomes

by their utilities and can support any integrated single metric score. It has been developed

over the last 50 years (Jong and Stone, 1976) and has subsequently been used for assessing the

benefit-risk balance of drugs (Glasziou and Irwig, 1995), or other interventions (Ponce, Bartell,

Wong, LaFlamme, Carrington, Lee, Patrick, Faustman, and Bolger, 2000). In particular it has

been recommended by Mussen et al. (2007) and Garrison Jr et al. (2007) as a necessary tool

in the regulatory setting (Mühlbacher, Juhnke, Beyer, and Garner, 2016). MCDA also lends

itself to sensitivity analysis around crucial variables, a methodology commonly referred to as

SMAA (Tervonen and Figueira, 2008; Tervonen et al., 2011; Lahdelma et al., 1998) for which

there is also a software package (Tervonen, 2014).

There has been some recent work on Bayesian modelling for MCDA analysis. Waddingham,

Mt-Isa, Nixon, and Ashby (2016) conducted an analysis of multiple data sets, formed by both

aggregated and patient level data, to incorporate uncertainty in the MCDA score. They propose

a Bayesian probabilistic model to propagate the uncertainty caused by sampling variability to

the final outcome of an MCDA study. The methodology is demonstrated using a model applied

to 9 binomial variables and one count variable. The model assumes that all variables are

independent, and does not include assessing the model fit. Li, Luo, Yuan, and Mt-Isa (2019)

proposed a two factor latent trait model to account for correlation amongst outcome variables,

accommodating a combination of continuous and binary outcomes of interest. Furthermore,

their approach introduced the use of latent factors that represent the benefit and risks.

This recent line of research successfully demonstrates the benefits of Bayesian modelling for

drug evaluations. Waddingham et al. (2016) used Bayesian modelling to incorporate parameter

estimation uncertainty into the final MCDA score, and demonstrated the importance of taking

that uncertainty into account for drug evaluation. Costa et al. (2017); Li et al. (2019) showed

how to account for the correlation between continuous types of data, typically the treatment

efficacy outcomes, and discrete types of data, typically adverse events. Naturally, in order to

account for any correlation, such models are fit on individual level data, rather than summary
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data, which is aligned with the recent efforts to create personalised treatment according to

individual preferences. These modelling advances are important steps towards comprehensive

drug evaluations. Since the final decision depends on parameter estimates from a model, it is

crucial to be able to check if the proposed model is supported by the data before basing any

decisions on the results of inference. At the same time assessing the predictive performance is

essential in order to choose amongst competing models.

In this paper, we aim to enhance the available methodology in a few new directions. We build

a framework that can accommodate multivariate sets of data that consists of categorical and

continuous variables, henceforth denoted as mixed type. Importantly, we do not only model the

marginal distributions of the observations, but also their dependencies. The first contribution

expands the pool of models by considering Bayesian structural equation modelling (Muthén

and Asparouhov, 2012; Vamvourellis et al., 2021), tailored to the data features of this paper.

Given the increased number of models it becomes essential to develop schemes for model choice

and assessment. In addition to account for the data dependencies, it is highly important to seek

a parsimonious model in order to achieve good predictive performance and avoid overfitting.

The second contribution of this paper offers a way to search between the available models

by extending the methodology of Vamvourellis et al. (2021) to mixed type data. Thirdly, we

introduce a sequential clinical study design paradigm that offers multiple benefits over standard

batch clinical trials: (i) it allows us to recursively update model estimates with each new

subject receiving the treatment; (ii) it permits stopping the exposure as soon as the research

requirements are satisfied reducing unnecessary further exposure to undesirable treatments;

(iii) it allows us to assign treatment groups dynamically based on research objectives, for

example if the effects of one treatment are estimated with high confidence within a few data

points while for another they remain uncertain, we can shift subjects away from the first group

and into the second as needed. We note that while early stopping can be problematic in

the frequentist hypothesis testing framework, due to the multiple comparisons involved, it is

generally not a problem under the Bayesian framework (Schnuerch and Erdfelder, 2020; Dienes,

2016; Schönbrodt et al., 2017; Pramanik et al., 2021). From a computational point of view, this

is achieved by developing an efficient Sequential Monte Carlo (SMC) scheme to accommodate
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the models considered in this paper and facilitate assessment and choice thereof. Last but

certainly not least, sequential algorithms, such as the one we propose in this paper, offer

meaningful benefits over standard Markov Chain Monte Carlo (MCMC) approaches even when

used as a non-sequential batch learning algorithm. Among other benefits, SMC algorithms

produce estimates of the model evidence and Bayes factors, as well as provide an alternative

inferential framework that is computationally more robust than batch data MCMC methods.

The paper is structured as follows. In Section 2, we lay out the comprehensive modelling

framework for benefit risk analysis of different drug treatments, including modelling the data

generation process and the MCDA approach. We review various model alternatives based on

latent variable modelling, including exploratory factor analysis as well as structural equation

models, in order to hone into specific aspects of the data generation process that is of interest.

Section 3 introduces the framework for assessing different models and choosing the most suitable

for the data at hand. In Section 4, we introduce the sequential inference paradigm. In Section 5,

we demonstrate the benefits of the proposed methodology by applying it to a real world clinical

case study for diabetes treatments. We conclude with a discussion of limitations and future

work. All code associated with this paper is available at the accompanying github repository

named ‘bayesways/mcda’1.

4.2 Factor Models for Multi-criteria Decision Analysis

4.2.1 Multi-criteria Decision Analysis Score and Data

We define MCDA amongst R treatments, based on data collected on P criteria for a set of N

subjects in the following way. The criteria of a clinical trial typically consist of the benefits

of the treatment and the adverse events that are experienced by the subjects, denoted by yijr

for i = 1 . . . N , j = 1 . . . p, and r = 1 . . . R. Commonly, the benefits are efficacy measurements

represented by continuous variables, whereas adverse events refer to measurable experiences

1https://github.com/bayesways/mcda
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of negative side effects, commonly expressed as the frequency of occurrences for each event

considered. The MCDA approach adopted in this paper requires that the expected value of

each outcome, with respect to the population of N individuals, E(yijr) is accompanied by a

partial value function Ujr := uj {E(yijr)} → [0, 1], that maps from a pre-specified range in the

observations space onto an integrated benefit-risk scale from 0 to 1. These functions, typically

common across subjects and treatment groups, map the range of outcomes to a subjective

continuous measure of utility or value, with 0 representing the worst case scenario, and 1

representing the best case scenario. In this paper, we work with simple linear mappings, however

other types of mappings can be used as well in our approach. The MCDA score also requires

multiplying each Ujr with a weight wj that reflects the relative importance or preference of a full

swing from worst to best of the j-th criterion relative to the rest. Such weights are elicited by

expert clinicians tasked with evaluating a drug treatment, or by individual patients who want

to compare the possible treatments available to them according to their personal benefit risk

preferences. To keep notation clean and simple we assume these weights are common across all

subjects in this work. However, it is easy to accommodate individual-specific weights {wij}i,j

as long as
∑

j wij = 1 for all i. Without loss of generality we proceed with common weights

and define population based MCDA score for the r-th treatment as

Mr :=
∑
j

wjUjr =
∑
j

wj · ujr {E(yijr)} . (4.1)

4.2.2 Factor Analysis for Mixed Type Data

As the MCDA score of (4.1) for each treatment depends on the unknown values of the popula-

tion means, its calculation requires estimating them from data based on an appropriate model.

The data consist of p observed variables denoted by y = (y1, . . . , yp) that can be of mixed

type and potentially dependent. We consider several models in this papers aiming for a model

that captures the dependencies between the data while at the same time is parsimonious and

achieves good predictive performance. The models are defined in the following subsections.
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4.2.2.1 Latent variable framework

One approach that can accommodate continuous or categorical variables is a factor analysis

model. According to this approach, to model a set of observations for p items y = (y1, . . . , yp)

we introduce k continuous latent factors, denoted by z = (z1, . . . , zk). The associations between

the observed items can be explained through the latent factors and their loading structure Λ

as follows

y∗i = α + Λzi + εi, i = 1, . . . , n (4.2)

where y∗ = (y∗1, . . . , y
∗
p) are auxiliary variables that help us express a general framework. When

the j-th item yj is a continuous variable, we assume that the underlying variable is directly

observed yj = y∗j . In the context of clinical trials, the amount of glucose detected in the blood

stream could be such an item measured on the continuous scale. When the j-th item is a

categorical variable, we can model it as a manifestation of the underlying latent variable y∗j

as follows. For a binary item we model it as yj = I(y∗j > 0), where I(·) is the indicator

function. For an ordinal item with mj categories, yj = a if τ
(j)
a−1 < y∗j ≤ τ

(j)
a , a = 1, . . . ,mj

where τ
(j)
0 =∞, τ (j)

1 < τ
(j)
2 < . . . < t

(j)
mj−1, τ

(j)
mj = +∞. Examples of such categorical variables in

the context of clinical trials are typically related to adverse events. For instance experiencing

allergic reactions could be a binary item, whereas the experiencing pain on scale of 1 to 5 would

be an ordinal variable.

We can then interpret equation (4.2) in sufficient generality that encompasses more than one

type of data, as is often the case in clinical trials. The parameters of equation (4.2) are

understood as follows: α is a p × 1 vector of intercepts and expressed the population mean

for each item, Λ is the p × k matrix of factor loadings and n is the sample size. The factors

zi usually are assumed to be normally distributed, zi ∼ Nk(0,Φ) though other distributions

could be used. The covariance matrix Φ can either be assumed unstructured or defined by a

parametric model that relates latent variables with each other and observed covariates. The

εis are error terms assumed to be independent from each other and from the zis.
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Specific choices for the distribution of the error term ε lead to the following well known models:

ε ∼


N(0p,Ψ), Ψ = diag(ψ2

1, . . . , ψ
2
p), if yi is continuous

N(0p,Ψ), Ψ = Ip, if yi is binary and the probit model is adopted∏J
j=1 Logistic(0, π2/3), if yi is binary and the logit model is adopted,

(4.3)

where 0p is a p-dimensional vector of zeros and Ip denotes the identity matrix of dimension p.

When we know in advance which factors contribute to what items, the model is considered to

be confirmatory factor analysis (CFA). Such knowledge is typically expressed by constraining

certain elements of the loading matrix Λ to zero. For example, a confirmatory model used in

this paper sets several element of Λ to zero in a way so that the first factor loads only onto

the outcomes that measure benefits, and the second factor loads only onto the outcomes that

measure risks. When the loading structure is unknown the loading matrix is Λ unconstrained

and the model is referred to as exploratory factor analysis (EFA). EFA has more free parameters

hence it is often necessary to place restrictions to ensure identifiability, such as restricting Λ to

be upper triangular or setting Φ = Ik. Both approaches may have different numbers of factors

with a limiting case being the saturated model, under which

y∗i ∼ N(α,Σ), (4.4)

where Σ is a full covariance matrix, except for the constraint of having ones in its diagonal

entries corresponding to binary variables for identifiability reasons.

4.2.2.2 Bayesian structural equation modelling

The Bayesian formulation of factor models, introduced by Muthén and Asparouhov (2012) and

extended by Vamvourellis et al. (2021), provides a alternative model that may be viewed as

being between exploratory and confirmatory factor analysis or between separate effects and

pooled models. This is achieved by replacing any exact zero restrictions of parameters with

approximate zero ones, using informative priors that place a large amount of probability mass
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around zero; these models are henceforth denoted as approximate zero. The general equation

framework is expressed with the help of item-individual random effects The model in (4.2) is

generalised with the addition of an item-individual specific random effect uij as follows

y∗i = α + Λzi + ui + ei, (4.5)

where εi in (4.2) is split into ui, a p-dimensional vector of random effects with a non-diagonal

covariance matrix Ω, and ei, an error term with a diagonal covariance matrix Ψ∗. The ui terms

aim to capture associations amongst the items beyond those explained by the vector of latent

variables zi. Those associations can be due to question wording, method effect, etc. In the case

of continuous data it is possible to marginalise over the latent variables to get the following

expression

y∗i ∼ N(α,ΛΦΛT + Ω + Ψ∗), i = 1, . . . , n, (4.6)

where ui ∼ N(0,Ω), zi ∼ N(0,Φ) and ei ∼ N(0,Ψ∗).

Overall, it becomes clear that several models can be used to carry out MCDA thus providing

several options. On the other hand, this introduces the challenge of choosing an appropriate

model amongst the competing models. Our suggested approach is presented in the next section

where the aim is to strike a good balance between goodness of fit and out-of-sample predictive

performance in the MCDA context of correlated mixed-type data.

4.2.2.3 Multiple group models

The models presented so far refer to a single treatment group. When data from more than one

group are available, one can proceed with a separate model for each group or a pooled model

aiming for more parsimony. For example in a classical clinical trial there are two arms, control

and treatment. More generally a clinical trial can contain R arms where subjects are allocated

to one of the R groups. We can denote such data by {y(r)
i }

nr
i=1 where the r-th group contains

nr subjects. In this case, rather than modelling each group completely separately, it may be

beneficial to pool together certain parameters of the model, such as the covariance structures
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(Ψ,Ω,Ψ∗). At the same time the intercept parameters α and the loadings Λ can be group

specific. This way expression (4.6) becomes

y
∗(r)
i ∼ N(αr,ΛrΦΛT

r + Ω + Ψ∗), i = 1, . . . , n, (4.7)

where now r = 1, . . . , R is the index of the clinical arm. Note that there are now R intercept

parameters {αr}Rr=1 and loading matrices {Λr}Rr=1 to be estimated. However because we pooled

the rest of the parameters there is still only one of each (Ψ,Ω,Ψ∗) to be estimated which is

common across all R groups.

4.2.2.4 Priors

We use priors according to the recommendations in (Vamvourellis et al., 2021) and references

within. The cross loadings in the Λ matrix are assigned Normal distributions with zero mean

and a variance of 0.01 as in Muthén and Asparouhov (2012). For the rest of the loadings we

use Λij ∼ N(0, 1) when yj is continuous and Λij ∼ N(0, 4) when yj binary. The prior given to

the idiosyncratic variance, for the continuous variables, is

ψ2
j ∼ InvGamma−1(c0, (c0 − 1)/(S−1

y )jj)

where Sy is the sample covariance matrix of the continuous observations y and c0 is a constant

that we choose so as to avoid Heywood issues, and bound the samples away from 0. The

idiosyncratic variance for the binary variables are fixed to 1, since they are not identifiable. We

set Φ as a correlation matrix and remove the constraints imposed on the corresponding elements

of Λ (equal to one) for identifying the scale of the latent variables. Also rather than constraining

these Λ entries to be positive, a restriction required to ensure identifiability, we assign Normal

priors to all of them and apply post processing on the MCMC output based on their sign. The

LKJ prior, introduced in Lewandowski et al. (2009), was used for the correlation matrix Φ.

For the Ω matrix, we assign the Inverse Wishart distribution with identity scale matrix and

p + 6 degrees of freedom to reflect prior beliefs of near zero residual covariances (Muthén and
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Asparouhov, 2012). The scale can be thought of as controlling the magnitude of model flexibility

the researcher is willing to allow for capturing the effects of external factors on measurement.

Hence, it is important when setting this prior to ensure that the uis are of lower magnitude

than the eis. Finally, we set large variance normal priors for the α parameters, α ∼ N(0, 102).

4.3 Model Assessment

In this section we propose a model assessment framework suitable for potentially correlated

mixed type data and provide guidance on how to use it in a real world case study. In short,

our approach looks at goodness of fit and predictive performance indices separately for con-

tinuous and categorical data. More specifically, we recommend complementing PPP values by

monitoring the out-of-sample performance of the marginal distributions of each set of variables,

continuous and binary. In other words, we model all the variables jointly but check the model

fit separately for continuous and binary. In mixed data, to our knowledge it is not possible

to come up with a single metric for the PPP values or a single scoring rule for both the bi-

nary/ordinal and continuous data. Hence we adopt the approach of looking at separate indices

of these parts. Examining separately the fit for the categorical and the continuous items is in

line with previous work by Moustaki (1996).

While PPP values are commonly used as the default metric for Bayesian factor modelling, they

are not directly suitable for the approximate zero framework (Muthén and Asparouhov, 2012).

The reason being that they cannot detect overfitting, the case where the gains in goodness

of fit are based on finding circumstantial patterns of the data that do not replicate in new

unseen data. To guard against overfitting Vamvourellis et al. (2021) proposed evaluating

out-of-sample scoring rules via cross-validation. We need to evaluate the performance of the

predictive distributions, which are typically not available in closed form, against the observed

data in the test set. This is done using proper scoring rules that can be evaluated with posterior

sample draws. While the specific scoring rules used differ depending on the type of data under

consideration, the basic idea is to avoid overly flexible models that often fail to disentangle
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noise from systematic patterns in the data.

4.3.1 PPP Values

Our proposed approach considers measures of goodness of fit (to assess if a model fits the

data sufficiently well) and of relative fit (to compare competing models). Since the tests are

specific to the type of data we need to apply them to the marginal distributions of the target

variables, separately for the continuous and binary parts of the outcomes. The goodness of fit

is regularly used to assess if the model is supported by the data. In the Bayesian setting, the

common metric used is posterior predictive p-values (PPP) which is an absolute measure of

in-sample performance. A model is considered to not fit the data if it achieves a PPP value

that is close to zero, though it does not have the same distribution properties as traditional

p-values. What PPP values cannot do is to compare models beyond the question of adequate

fit. For that, Vamvourellis et al. (2021) suggested using out-of-sample predictive performance

measured by scoring rules and cross-validation. Since factor models have fewer variables than

the unconstrained saturated versions, if a factor model has adequate fit, it is expected to

perform better out-of-sample due to parsimony. Generally speaking, the higher the number

of parameters the better a model will perform in-sample, but that is not necessarily true out-

of-sample where performance grows as a function of parameters until it starts declining. The

focus of out-of-sample check is on a model’s ability to predict new data that was not used

for estimating the model parameters. In practice, it is recommended to use cross-validation

instead of randomly sampling a single test set, to limit the effect of an unfortunate split.

These cross-validated scoring rules are a useful compliment to goodness of fit measures such as

the Posterior Predictive P-values (PPP) which are commonly used, although researchers have

questioned their suitability for Bayesian factor models (Stromeyer et al., 2015; Hoijtink and

van de Schoot, 2018b). One of the challenges here is that PPP performance can be sensitive to

the choice of prior distributions (MacCallum et al., 2012; Van Erp et al., 2018; Liang, 2020).

A more robust approach is to additionally monitor the predictive performance of the models,

even when prediction is not strictly the main aim. The idea is to avoid models that achieve a
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high PPP value but fail to learn patterns that generalise to unseen data. An alternative and

more formal Bayesian approach to model choice uses the marginal likelihood conditional on the

model which we do not explore further in this work.

The object of interest for model assessment is the predictive distribution. In the Bayesian

setting the object that is the posterior predictive distribution

f(Y te|Y tr) =

∫
f(Y te|θ)π(θ|Y tr)dθ. (4.8)

where ytr denotes the data used for learning the model parameters and y′ can be ytr (in-

sample prediction) or new data that was not used for inference (out-of-sample prediction).

In the frequentist case, one option for such a predictive distribution is f(Y te|θ̂tr), where f(·)

denotes the likelihood function and θ̂tr is the maximum likelihood estimate obtained from Y tr.

We first describe the general procedure of calculating the PPP value and then get into the spe-

cific choices of functions. Given a suitable MCMC algorithm, the PPP value is then calculated

as follows:

1. At each (or some) of the MCMC samples θm, m = 1, . . . ,M , do the following:

(a) Compute D(Y ,θm).

(b) Draw Ỹ having the same size as Y using the current value θm in Equation (4.2) or

(4.6) (depending which model is under consideration).

(c) Calculate D(Ỹ,θm) and dm = I
[
D(Y ,θm) < D(Ỹ,θm)

]
, where I

[
·
]

is an indicator

function.

2. Return PPP= 1
M

∑M
m=1 dm.

The PPP value is defined based on a discrepancy function D(Y ,θ). A standard choice of D(·)

for continuous data is the likelihood ratio test (LRT) statistic between the restricted and the

unrestricted model (see e.g. Scheines, Hoijtink, and Boomsma, 1999b). For binary data, a
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common choice of discrepancy measure, see for example Sinharay (2005c), is the G2 statistic

given by

D(Y ,θ) =
R∑
r=1

Or log

(
Or

nπr(θ)

)
. (4.9)

where the model is reformulated in terms of response patterns and their observed frequencies in

a sample size of n. For binary items there are R = 2p possible response patterns, denoted by yr,

with corresponding observed frequencies denoted by Or where r = 1, . . . , R. The probability

of occurrence of a response pattern, based on a logistic model with a parameter vector θ, can

be calculated from the following equation using the fact that the p variables are conditionally

independent given z and u

πr(θ) =

∫ p∏
j=1

Bernoulli {[yr]j|σ([η]j)} f(z)f(u)dzdu, (4.10)

where σ(ηrj) is defined in Section 2.2.2, and z and u are the latent components in the model

considered. The integral in (4.10) can be computed using Monte Carlo. For more details we

refer the interested reader to (Vamvourellis et al., 2021).

4.3.2 Scoring Rules

While PPP is computed using the entire dataset Y , the out-of-sample scoring rules are com-

puted on a held out test dataset Y te which is completely separate from the dataset Y tr used to

learn the parameters. Once we split the data in training and testing sets, we perform inference

to learn the model parameters using the training set, and compare the posterior predictive

distribution against the held out testing set. The comparison is done using scoring rules.

In the case of continuous data we use the variogram score which is defined as:

V S(yi, Ỹ) =

p∑
j=1

p∑
k=1

wj,k

(
|yij − yik|P −

1

m

M∑
m=1

|ỹmj − ỹmk|P
)2

(4.11)

where, in (4.11), the j, k are just indices to consider all pairs of each data point yi of dimension

p, the wj,ks are weights and P is the order of the variogram. We follow common practice by
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setting all weights to one, and P at its default value of 0.5. Hence, for each cross validation

split between training (Y tr) and test data (Y te), the variogram score can be computed by

obtaining samples from the posterior based on Y tr, and using them to draw samples from the

posterior-predictive distribution for Y te. The latter can then be inserted in (4.11), together

with the test data, to calculate the score corresponding to this train-test split for the model

considered.

In the case of binary data we use the the log scoring rule for a set of observed frequencies in

the test data Ote = (Ote
1 , . . . , O

te
R ) based on probabilities πtr = (π1(θ)tr, . . . , πR(θ)tr), obtained

based on the posterior from the training data, as

LS(Ote, πtr) = − log f(Ote|πtr) = − log

[
c

R∏
r=1

[
πr(θ)tr

]Oter ] = −
R∑
r=1

Ote
r log πr(θ)tr + c, (4.12)

where c represents a constant. For more details we refer the interested reader to (Vamvourellis

et al., 2021).

4.4 Sequential Monte Carlo

Having made our model choice, as explained in section 4.3, we proceed to construct an efficient

sequential inference scheme that provides the sequence of parameter posterior distributions. In

this section we present our developed sequential inference paradigm that allows us to recursively

update model and parameter estimates each time new data become available. This framework

can be used towards a sequential clinical trial design which can offer improvements over stan-

dard designs on moral and financial grounds. It permits stopping the treatment as soon as

the research requirements are satisfied, reducing unnecessary further exposure to undesirable

treatments. More broadly, it allows us to allocate dynamically subjects to treatment groups

based on parameter inference. Without a sequential inference algorithm, achieving such goals

can only be done by re-running the MCMC algorithms for all sequential batches.
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4.4.1 IBIS Algorithm for Benefit Risk Analysis

We use the Iterated Batch Importance Sampling algorithm (IBIS) with the Laplace approxi-

mation proposal for the latent variables. At a high level, IBIS works by propagating forward in

time a set of parameter samples, also known as particles, each weighted by the likelihood func-

tion evaluated at its parameter values. For the standard IBIS approach we need to have access

to the likelihood function f(y|θ), as in formula (4.6). However, such forms are not available for

the logit model, or any mixed type data models that include the logit. Instead we can easily

evaluate the augmented likelihood f(y|θ, z). In order to use the augmented likelihood we need

to augment the set of particles in the IBIS algorithm to include the latent variables as well.

For each data point yi we draw latent variable particles {zmi }
Nθ
m=1 from a proposal distribution

q(.) and compute the weights according to um = f(yi|θm, zmi ). The simplest and most standard

choice for the proposal distribution is the prior q(z) = π(z). However, the efficiency of the

scheme can be improved if the proposal is the posterior q(z) = π(z|y, θm). Even though the ex-

act posterior is not available we can use the Laplace or the Variational Bayes (Blei et al., 2017)

approximations. In this paper we proceed with the former which we denote as pL(zi|yi, θm).

For ease of illustration we develop the sequential algorithm below for one of the models we

consider in this work. We choose the exact zero model, which performs quite well in the case

study we present in the following section 4.5. However, the methodology we propose extends to

the rest of the models presented in this paper.Without loss of generality let us assume that the

first c variables are continuous and the next p−c are binary. The model is defined by equations

(4.2) or (4.3) in the case of exact zero models or (4.5) and (4.6) in the case of approximate zero

models. In the case of the saturated model the definition comes from (4.4).

The particles of the parameter vector θ contain (α,Λ,Ψ,Φ) and the latent variables are denoted

by zi. Note than in the case of EZ models, the ηis is a deterministic function of z, α and Λ,

here η(z, θ) = α + Λz; under the AZ formulation they would have also been separate random

variables. All the operations involving the particle index m must be understood as operations

performed for all m ∈ 1 : Nθ, where Nθ is the total number of θ-particles. The incremental
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Algorithm 3 IBIS-Laplace for Benefit Risk Analysis

Sample θm from p(θ) and store and set ωm = 1. All operations are assumed to be repeated for
all m ∈ 1 : Nθ.
Then for point i = 1 : N do:

1: Sample zmi ∼ pL(zi|yi, θm) using the Laplace approximation
2: Compute and store ηmi along with θm and zmi as η(zi, θ) = α + ziΛ

′ so that every time we
refer to (θm, zmi ) we also have access to the associated ηmi

3: We also compute and store the MCDA population score associated with particle θm for
each treatment r as follows smr =

∑
j wj · uj(αjr), using formula (4.1)

4: Update zm1:i = zmi
5: Compute the incremental weights and their weighted average

ui(θ
m, zmi ) =

f(yi|y1:i−1, θ
m, zmi )π(zmi |θm)

pL(zmi |yi, θm)
, Li =

1∑Nθ
m=1 ω

m
×

Nθ∑
m=1

ωmui(θ
m, zmi ),

6: Update the importance weights

ωm = ωmui(θ
m, zmi )

7: if ESS(ω) < γ then
8: procedure resample(θ, z1:i, ω)
9: return θ, zi

10: procedure jitter(θm, zm1:i,y1:i) using an HMC algorithm with
11: return θ̃m, z̃m1:i

12: (θm, zm1:i, ω
m) = (θ̃m, z̃m1:i, 1)
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weight in the Algorithm 3 can be computed as follows

ui(θ
m, zmi ) =

f(yi|y1:i−1, θ
m, zmi )π(zmi |θm)

pL(zmi |yi, θm)
=
f(yi|θm, zmi )π(zmi |θm)

pL(zmi |yi, θm)
(4.13)

where

f(yi|αm,Λm,Ψm, zmi ) =
c∏
j=1

N
{
yi,1:c|(αm + zmi Λm)ij, ψ

2
j

}
·

p∏
j=p−c+1

Bernoulli {yij| σ [(αm + zmi Λm)ij]}

(4.14)

π(zmi |Φm) = N(zi|0,Φm) (prior for zi) (4.15)

pL(zmi |yi, θm) = N(zi|µL,ΣL) (Laplace approximation) (4.16)

with N(x|A,B) denoting the probability density function of a random variable x based on

the N(A,B) and, similarly, Bernoulli(yij|P ) denotes the probability mass function of the

Bernoulli(P ) distribution. The last formula is given by the Laplace approximation of the

posterior π(zmi |yi, θm). Further simplifications may be possible depending on the model. Ap-

pendix B.2 contains details for EZ models with separate independent factors for the continuous

and binary variables.

The jittering procedure uses the MCMC developed for the batch MCMC described in section

4.2. We now derive the Laplace approximation for this model for demonstration purposes.

Alternatively, one can find numerical approximations to the Laplace method parameters.

4.5 Rosiglitazone Case Study

We now demonstrate our proposed framework by applying it to the study of rosiglitazone

treatment for type 2 diabetes. We first give an overview of the clinical trial setup and the data

that was collected as a result of it, and lay out the MCDA framework and the parameter choices

within. In section 4.5.2 we describe in detail the range of models we consider and demonstrate
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the proposed model choice methodology. In section 4.5.3 we compute the final MCDA scores

based on the estimated parameters of the chosen model. Finally, in section 4.5.4, we present

our proposed sequential framework. Specifically, since we do not have a dedicated sequential

dataset, we create one synthetically to highlight the benefits of the sequential clinical trial

design.

4.5.1 Data and MCDA Setup

We analyse data from a clinical trial of three different treatments that were administered over

a 12 week period and the difference in health outcomes was compared before and after the

treatment. The data consists of 449 diabetic subjects that received one of three treatments

under examination: metformin (MET), rosiglitazone (RSG) and a combination of the two

(AVM), marketed under the commercial name ‘Avandia’. The sample sizes for each group were

as follows, 146 subjects were given MET, 153 were given RSG and 150 were given AVM.

We employed the MCDA methodology to arrive at a comprehensive score for each treatment

reflecting their corresponding benefit risk profiles. The targeted efficacy outcome was a re-

duction of the haemoglobin and glucose levels detected in the blood stream of each subject

at the end of the treatment, compared to the level observed in the pre-treatment screening.

Measurements for both haemoglobin and glucose difference from the baseline were taken on a

continuous scale. The treatments under consideration are known to have relatively mild side

effects, most common of which are nausea and vomiting. For our case study we consulted with

researchers who studied the drugs before and landed on 4 adverse events of note: diarrhoea,

nausea, vomiting, and dyspepsia, encoded as binary outcomes that were equal to 0 unless a

patient experienced the event at least once during the trial. Overall, our data consisted of 8

columns, one for the anonymised subject id, one for treatment received, two for the efficacy

continuous outcomes and four for the binary adverse events.

In this study, we adopted all the MCDA parameters, such as the partial value functions and

the specified ranges of the variables in questions in consultation with researchers who have
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conducted similar studies of rosiglitazone in the past using MCDA. The ranges and weights for

each outcome are presented in Table 4.1.

Name Type Outcome Range MCDA Weight

haemoglobin continuous [-6, 3] 0.592
glucose continuous [-15, 7.5] 0.118

prob(diarrhoea) binary [0.10, 0.35] 0.089
prob(nausea) binary [0.10, 0.25] 0.178

prob(vomiting) binary [0.10, 0.20] 0.018
prob(dyspepsia) binary [0.10, 0.25] 0.005

Table 4.1: Outcomes of interest and MCDA parameters.

Note that the continuous variables, the first two items, indicate the difference in measured

haemoglobin and glucose levels respectively, at the end of the study versus at the beginning.

The binary adverse events, last 4 items, measure the probability of experiencing the even in

question at least once during the course of the treatment.

4.5.2 Model Choice

Given the data and the MCDA scores, it is important to design an appropriate model in order

to extract the relevant population parameters of interest. We consider a range of different

models and utilise the proposed model assessment framework to choose between them. Focus

is given on CFA models with two factors and structure such that the first factor loads onto the

efficacy variables and the second loads onto the risk variables as shown in Table 4.2.

The models considered are the full saturated model, with full covariance matrix (SAT), and

the independence model where the covariance matrix S is fixed to be diagonal (IND). Then

we considered four factor models where one factor loads to the first two items, being the

efficacy variables which are continuous variable, and the second factor loads to the rest 4

items, the adverse events which are binary variables. The first model is the EZ model with

independent factors (EZ1), and the second is the same model with correlated factors (EZ2). The

approximate zero model includes a model with correlated errors for the binary data, without

cross loadings (AZ1), and with cross loadings (AZ2). For all the above models, we fit also the
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Λ:1 Λ:2

1 0
x 0
0 x
0 x
0 x
0 x

Table 4.2: Hypothesised factor loading structure: the first factor z1 loads onto the efficacy
variables, the first two items, and the second factor z2 loads onto the risk variables, last four
items.

version (denoted by ‘-p’) where the covariance structured is assumed to be common amongst

the three groups. Among these option, the model that fits the data the best has to be the

one the highest predictive performance for out-of-sample data. The results are summarised in

Table 4.3. Before proceeding one should also check that the model selected achieves a reasonable

PPP value, typically values greater than 0.1 are not problematic and values around 0.5 indicate

excellent fit. The PPP values for the top for the top four models are shown in Table 4.4.

The collective results, presented in Table 4.3, lead to the following conclusions. First, pooling

the covariance parameters results in higher predictive performance for the binary data and lower

performance for the continuous data. We can verify that by comparing models in pairs while

recalling that lower scoring rules indicate a better predictive performance. For example we see

that SAT underperforms SAT-p in both continuous and binary scoring rules by about 1 and

2 units respectively, EZ1 underperforms EZ1-p in both continuous and binary scoring rules by

about 5 and 9 units respectively, and finally IND underperforms IND-p in both continuous and

binary scoring rules by about 6 and 1 unit respectively. When the covariance estimates of each

of the three groups are reasonably close, as seems to be the case here, pooling benefits predictive

accuracy; whereas in the opposite case the pooled model will underperform. Second, the results

suggest that the saturated model overfits the data leading to lower out-of-sample performance

than the more parsimonious models. To verify that observe that the best performing saturated

model amongst all the versions (SAT, SAT-p, IND, IND-p) is SAT-p, and is still underperfoming

the worst performing factor model, EZ1, by about 1 unit in the continuous part and about 6

units in the binary part. Third, we suspect that the benefits and risks are not substantially
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correlated, since EZ1-p fits better than EZ2-p. Recall that EZ1 is the same model as EZ2

except that the factors are assumed independent. Furthermore, we see that there is non trivial

correlation within the benefit items, and within the risk items respectively, since the IND scores

worse than SAT while at the same time IND-p scores worse than SAT-p. Finally we see the

power of model parsimony as the most parsimonious of the models, EZ1-p, turns out to be

the best in terms of predictive performance of all models. Before moving on with the model of

choice, EZ1-p, we also confirm that it achieves a satisfactory fit. In Table 4.4 we compare the

PPP values for all the best models so far, and confirm that all of them, including the top pick,

EZ1-p, demonstrate excellent fit with PPP values near 0.5 for both continuous and binary.

In any case, the importance of model choice and assessment becomes clear. While all the

models presented hear are plausible, there could be substantial differences between them as

far as predictive performance is concerned. Since we will be basing our final analysis on the

estimated parameters of the model, choosing a model with good predictive performance is

crucial to protect the validity of the final results.

Model Continuous-VS Binary-LS

SAT 349.93 573.10
SAT-p 348.75 570.91
EZ1 347.88 564.36

EZ1-p 342.03 555.36
EZ2-p 345.06 558.53
AZ1-p 346.41 557.56
AZ2-p 343.44 558.51
IND 388.44 576.37

IND-p 382.90 575.07

Table 4.3: Summary of out of sample predictive performance for all candidate models using
scoring rules. Sum of variogram and log scores of 3-fold cross validation for continuous and
binary data respectively.

In Table 4.5 we also present the parameter estimates for EZ1-p, the chosen model, on the basis

of goodness of fit and out-of-sample predictive performance.
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Model Continuous-PPP Binary-PPP

EZ1-p 0.49 0.36
EZ2-p 0.49 0.37
AZ1-p 0.42 0.35
AZ2-p 0.44 0.39

Table 4.4: Model Fit Metrics for the best performing models.

Parameter 95% Coverage Post. Mean Post. Median

Λ[2,1] [1.45, 2.15] 1.78 1.78
Λ[3,2] [0.05, 0.98] 0.46 0.45
Λ[4,2] [−1.21, 0.40] -0.39 -0.37
Λ[5,2] [−1.43, 3.46] 2.15 2.23
Λ[6,2] [−1.67, 3.71] 2.36 2.44
αAVM

1 [−2.49,−2.10] -2.30 -2.30
αAVM

2 [−4.48,−3.62] -4.05 -4.05
αAVM

3 [−2.42,−1.40] -1.87 -1.86
αAVM

4 [−2.94,−1.70] -2.27 -2.25
αAVM

5 [−4.08,−1.88] -2.83 -2.78
αAVM

6 [−7.29,−3.60] -5.19 -5.10
αMET

1 [−2.03,−1.64] -1.83 -1.83
αMET

2 [−3.41,−2.49] -2.95 -2.95
αMET

3 [−1.85,−0.97] -1.39 -1.39
αMET

4 [−3.31,−1.96] -2.58 -2.56
αMET

5 [−4.91,−2.38] -3.45 -3.38
αMET

6 [−7.23,−3.63] -5.17 -5.07
αRSG

1 [−1.79,−1.41] -1.60 -1.60
αRSG

2 [−3.25,−2.38] -2.81 -2.81
αRSG

3 [−3.42,−2.08] -2.70 -2.68
αRSG

4 [−3.15,−1.87] -2.44 -2.42
αRSG

5 [−5.80,−2.87] -4.11 -4.04
αRSG

6 [−9.13,−4.53] -6.55 -6.45

Table 4.5: True values, 95% coverage success rate and bias of point estimators out of 100
replications.
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Figure 4.1: MCDA Scores at the end of the sequential run. Avandia (AVM) scores substantially
higher than the other two treatments, Rosiglitazone (RSG) and Metformin (MET).

4.5.3 MCDA Scores

Our goal is to compute the final benefit risk score, including the parameter uncertainty that is

propagated from the Bayesian model. Having access to samples from the posterior distributions

of the parameters allow us to compute any metric of interest, including the MCDA socres. For

each sample from the posterior αmr for treatment r we compute the implied sample smr from

the posterior of the MCDA score as follows smr =
∑

j wj · uj(αjr). We run the batch MCMC

algorithm to draw 1000 samples from the posterior distribution of α and the implied posterior

distribution of the scores sr for r = 1, 2, 3 representing the three treatment groups MET, RSG

and AVM respectively. The scores posterior density distributions are show in Figure 4.1. As

we can see AVM has higher mean scores compared to both RSG and MET. We computed the

posterior probability that P (sAVM > sMET) = 0.99 and that P (sAVM > sRSG) = 0.99.

4.5.4 Sequential Analysis

In our data the subjects were pre-allocated according to a random algorithm to one of the

three treatment arms ahead of the trial. For illustration purposes we now analyse the same
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data as if the allocation to the treatment arms was done sequentially. Specifically, we shuffled

all subjects and then inter-weaved them cycling through the groups as shown in Table 4.6. We

will demonstrate what could have been done differently if we conducted a sequential design

trial, rather than a traditional pre-specified one.

New Index Subject ID Group

1 324 AVM
2 422 MET
3 124 RSG
4 121 AVM
5 224 MET
6 231 RSG
7 . . . . . .

Table 4.6: Schematic sequential schedule of synthetic re-ordering of the original clinical trial
data.

To demonstrate the use of the sequential paradigm, we run our analysis inputting one subject

at a time. Since we didn’t have access to the original order that the subjects were treated in,

we randomised the order before interweaving the treatment groups so that we cycle through all

three groups at a similar rate as we analyse one data point at a time. We computed the MCDA

score of the parameters at each data point looking for potential early stopping points for any of

the treatments. In particular we monitored the probability P (sAVM > sMET) at each data point

and found that it converged to 0.99 within the first 198 patients. Of those patients, the effective

sample size exposed to either AVM or MET is two thirds as per the schedule (Table 4.6). That

means that we were able to conclude that AVM is better than MET using information from

only 66 of 150 patients, which represents about 43% of the subject sample size. Similarly, we

monitored P (sAVM > sRSG) which converged to 0.99 at within the first 300, as shown in Figure

4.2. This translates to reaching a conclusion using 66% of the sample size. Using the sequential

paradigm we would have concluded the exposure at the 300-th subject, removing the need to

expose subjects to the less effective treatments. This way the trials would have reached the

same conclusion faster and exposing fewer subjects. Alternatively, we could have allocated more

subjects to RSG and MET in order to facilitate that comparison. As we can see in Figure 4.3

we can also see a case of an inconclusive comparison between RSG and MET. Under a dynamic
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Figure 4.2: Sequentially updated probabilities of P (sAVM > sMET) and P (sAVM > sRSG). We
see tha the probabilities converge to 1 within the first 300 patients. A dynamic trial could
have concluded early or could have assigned the remaining patients to AVM given that it is
considered a better treatment based on MCDA scores.

clinical trial it would be possible to monitor these probabilities and allocate patients away from

treatment arms that results have converged early, such as the AVM-RSG and AVM-MET pair

comparisons, and into groups that require more data to become conclusive, such as RSG-MET

depicted in Figure 4.3.

We are also able to make a sequential chart of distribution of the MCDA population scores

for each treatment. Figure 4.4 shows the posterior mean (lines) and the 95% central quantiles

(shade bands) of the posterior distributions for the final MCDA population scores for each

treatment, at each point in the trial. This way we can get a high level view of the evolution

of the clinical trial results, and the progression of the uncertainty quantification as more data

is gathered. The lines indicate that AVM (in blue) is shown to have a higher predicted score

early on, within the first 100 data points. However, the fact that the uncertainty bands around

the posterior mean lines of the three treatments at that point remain fairly indistinguishable,

indicate that there is considerable uncertainty about which treatment is better at that point.

We can also see that the AVM 95% band separates from the the other two bands after about

the first 300 subjects while the other two treatments remain very close throughout. At that
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Figure 4.3: Sequentially updated probabilities of P (sRSG > sMET). We see that the comparison
is inconclusive as the probability fluctuates around 0.5. Under a dynamic clinical trial it would
be possible to monitor these probabilities and allocate patients away from treatment arms that
results have converged early, such as the AVM-RSG and AVM-MET pair comparisons, and into
groups that require more data to become conclusive, such as RSG-MET presented here.

point we are almost certain that the AVM score is higher than that of RSG and MET.

4.6 Discussion

In this paper we introduce a comprehensive benefit risk framework for the assessment of clinical

treatments. To holistically assess competing treatments it is important to use a framework that

encompasses all aspects of the treatment. MCDA is a general framework that can be used in

association with any statistical model and any types of data. It also allows for stakeholders,

clinicians, policy makers, individual patients, or others, to express their preferences through

the use of weights. MCDA rests on accurate estimation of the statistical parameters of interest,

which are embedded in the data generation process.

For this purpose we introduce a range of models that accommodate mixed type data and a

methodology to assess the model fit. The more modelling options the more important it is
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Figure 4.4: Sequentially updated posterior mean (lines) and the 95% central quantiles (shade
bands) of the posterior distributions for the final MCDA population scores sr for each treatment
r ∈ {AVM, MET, RSG}, at each point in the trial.

to choose the model carefully. On the one hand, more flexible models are desired in ordered

to capture more features of the data, such as the dependence amongst the items. On the

other hand, the more flexible the model the more susceptible to overfitting. It is vital to check

carefully the model fit before using the parameter estimates further. In particular, a model that

overfits can produce misleading estimates which in turn can lead to false conclusions regarding

the treatment. Robust model assessment frameworks are needed, especially when there are

multiple competing models to choose from. The introduced model assessment framework does

not examines cross dependencies between binary and continuous data when it comes to goodness

of fit and predictive performance as this is not a straightforward task. Finding metrics to do

so is an interesting open problem which is left for further research. In this paper we proceeded

requiring good performance on both marginal parts of the data in the absence of a better

alternative in line with Moustaki (1996).

In this paper we also propose a sequential clinical trial framework that can be a meaningful

improvement in the process of assessing clinical treatments. This framework uses normality

assumptions to derive the formulas for the sequential scheme. A promising direction for future

research would be to drop these assumptions. Another assumption of the framework is the
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linearity of the model, it would be interesting to extend it for the non-linear models.

Regarding model fit, an alternative assessment method is that of comparing the model evi-

dence quantities of the candidate models. These quantities are a by product of the sequential

framework we propose, without which it would be non-trivial to compute. To pick between the

two approaches we reflect on the ultimate goal of our research: ranking the treatments from

best to worse. In that regard we need to pick the model that matches reality the best and

whose parameters map as well as possible to the desired variables of clinical interest. In other

words we are not looking for the right model, but the most useful one. Of the two methods at

hand, predictive performance is the more practical and for this reason, we go with predictive

performance over model evidence as the framework of choice.
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Appendix A

Generalised Bayesian Structural

Equation Models

A.1 Inverse Wishart

We recall here that the Inverse Wishart distribution IW(Dp, d) is parameterised by matrix Dp

of dimension p × p and d degrees of freedom where we need d > p + 1 for the distribution

to be well defined. The higher the value of d the more concentrated the distribution gets

around Dp. For example, if we choose Dp = Ip the identity matrix of size p, then the marginal

distribution of the diagonal elements will be distributed with mean 1/(d− p− 1) and variance

2/[(d − p − 1)2(d − p − 3)], whereas the off-diagonal elements will be distributed with mean

0 and variance 1/[(d − p)(d − p − 1)2(d − p − 3)]. Note that these expressions simplify when,

for example, d is set to p + 6. We refer the interested reader to the appendix of Muthén and

Asparouhov (2012) for more information.
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A.2 Sensitivity analysis for data-dependent priors

We performed a sensitivity analysis to examine the effect of the data-dependent priors on the

final result. In order to amplify the prior effect we used a relatively small sample size, by

simulating 200 data points from a standard two-factor model, according to simulation Scenario

1 in Section 2.4. We fit the EZ model with the data-dependent prior of Frühwirth-Schnatter

and Lopes (2018); Conti et al. (2014) that protects against Heywood cases for the idiosyncratic

variances

ψ2
j ∼ InvGamma(c0, (c0 − 1)/(S−1

y )jj)

with c0 = 2.5. Moreover, the following data-independent priors were also used: InvGamma(0.1, 0.1),

Half-Cauchy(5), and Uniform(0, 10). The posterior samples from all four priors were used to

produce kernel density plots for the posterior of the free Λ elements that are depicted in Figure

A.1. As we can see, the posterior density plots are almost identical for all these priors. Sim-

ilar results were also obtained for the remaining parameters. We therefore conclude that the

data-dependent prior does not impact the final results, while helping guard against Heywood

cases.
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Figure A.1: Posterior density plots of the loading matrix parameters under 4 different prior
choices. The model using a data-dependent prior (red) produces identical posterior density
plots as three other models using priors independent of the data.
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Sequential Latent Variable Modelling

B.1 HMC Implementation Details

One can also improve efficiency by providing good values Hamiltonian MCMC tuning parame-

ters. In particular, the mass matrix needed to propose new values can be estimated accurately

by running a longer chain for the first particle, which can then be reused as an initial value

for the rest the particles’ chains. Similarly, any other MCMC parameters that require a long

adaptation phase, such as the step size in HMC, can be learned by running one long chain for

the first particle, then used as initial values for the rest of the particles. With this approach,

each time the criterion indicates a resample, we run one a long chain for the first particle and

then we can afford to run short chains for the rest of the particles. In our experiments running

the first particle for 500 steps produced sufficiently accurate initial values for the rest to be run

for 10 steps. Further efficiencies can be achieved by running the particle chains in parallel as

they are independent of each other.

B.2 IBIS with Laplace Approximation

In this section we derive the approximation to posterior π(zi|yi, θ) via the Laplace method. The

goal is to use the approximating distribution, pL(zi|yi, θ) in place of the proposal q(.) Our model
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assigns N(0, 4) priors to each component of z and also assumes a-priori independence between

these components. More generally we can note, even though we do not need it in this derivation,

that based on this prior and (3.8), conditional on θ, the zi rows are independent a-posteriori.

Thus, in order to approximate conditional posterior of z given θ, one can approximate the

corresponding posteriors of each zi· separately. For the exposition that follows we can drop

the subscripts, since the focus of the approximation is the i-th point zi only, so we adopt the

running assumption that z and y represent zi and yi for the remaining of the section. We focus

on approximating the posterior

π(z | y, θ) ∝ f(y | z, θ) exp(−1
2
zzT ). (B.1)

We then target the logarithm of (B.1),

`(z | y, θ) = log f(y | z, θ)− 1
2
zzT =

p∑
j=1

[yj log πj(z, θ) + (1− yj) log {1− πj(z, θ)}]− 1
2

k∑
`=1

z2
`

(B.2)

In order to apply the Laplace approximation on (B.1) we need the first and second derivatives

of (B.2) with respect each z` for ` = 1, . . . , k. These are

∂
∂z`
`(z | y, θ) = −z` +

p∑
j=1

{
yj

∂
∂z`
πj(z, θ)

πj(z, θ)
−

(1− yj) ∂
∂z`
πj(z, θ)

1− πj(z, θ)

}

= −z` +

p∑
j=1

∂
∂z`
πj(z, θ)

{
yj

πj(z, θ)
− 1− yj

1− πj(z, θ)

}
(B.3)

∂2

∂z2
`
`(z | y, θ) = −1 +

p∑
j=1

∂2

∂z2
`
πj(z, θ)

{
yj

πj(z, θ)
− 1− yj

1− πj(z, θ)

}

+

p∑
j=1

∂
∂z`
πj(z, θ)

[
−
yj

∂
∂z`
πj(z, θ)

πj(z, θ)2
−

(1− yj) ∂
∂z`
πj(z, θ)

{1− πj(z, θ)}2

]

= −1 +

p∑
j=1

∂2

∂z2
`
πj(z, θ)

{
yj

πj(z, θ)
− 1− yj

1− πj(z, θ)

}

−
p∑
j=1

{
∂
∂z`
πj(z, θ)

}2
[

yj
πj(z, θ)2

+
1− yj

{1− πj(z, θ)}2

]
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and for m = 1, . . . , k, with ` 6= m

∂2

∂z`∂zm
`(z | y, θ) =

p∑
j=1

∂2

∂z`∂zm
πj(z, θ)

{
yj

πj(z, θ)
− 1− yj

1− πj(z, θ)

}

−
p∑
j=1

∂
∂z`
πj(z, θ)

∂
∂zm

πj(z, θ)

[
yj

πj(z, θ)2
+

1− yj
{1− πj(z, θ)}2

]

The above can also provide the Fisher’s information matrix I(z | θ), as for ` = 1, . . . , k, we get

[I]`` (z | θ) = −E
{

∂2

∂z2
`
`(z | y, θ)

}
= 1 +

p∑
j=1

{
∂
∂z`
πj(z, θ)

}2
{

1

πj(z, θ)
+

1

1− πj(z, θ)

}

= 1 +

p∑
j=1

{
∂
∂z`
πj(z, θ)

}2

πj(z, θ) {1− πj(z, θ)}
(B.4)

and for m = 1, . . . , k, with ` 6= m

[I]`m (z | θ) = −E
{

∂2

∂z`∂zm
`(z | y, θ)

}
=

p∑
j=1

∂
∂z`
πj(z, θ)

∂
∂zm

πj(z, θ)

πj(z, θ) {1− πj(z, θ)}
(B.5)

It remains to calculate πj(z, θ) and ∂
∂z`
πj(z, θ). Based on the model in (3.9) we get

πj(z, θ) =
exp

(
αj +

∑k
`=1 z`Λ`j

)
1 + exp

(
αj +

∑k
`=1 z`Λ`j

) , ∂
∂z`
πj(z, θ) =

exp(αj+
∑k
`=1 z`Λ`j)Λ`j

{1+exp(αj+
∑k
`=1 z`Λ`j)}2 ,

which we can plug in to (B.3), (B.4) and (B.5) to obtain the Laplace approximation

z ∼ N

{
arg max

z
`(z | y, θ), I(z | θ)−1

}
(B.6)

where arg max
z

`(z | y, θ) can be obtained via the Fisher’s Scoring algorithm.

Alternatively we can compute the Observed Information matrix which is negative the Hessian

of the log-likelihood evaluated at the mode. For that we will need the second derivative of
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∂2

∂2z`
πj(z, θ) as follows:

∂
∂z`
πj(z, θ) =

−Λ2
`j exp

(
αj +

∑k
`=1 z`Λ`j

)
{

1 + exp
(
αj +

∑k
`=1 z`Λ`j

)}2

which we can plug into equation (B.3) to compute the matrix.
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Conti, G., S. Frühwirth-Schnatter, J. J. Heckman, and R. Piatek (2014). Bayesian exploratory

factor analysis. Journal of Econometrics 183 (1), 31–57.

Costa, M. J., W. He, Y. Jemiai, Y. Zhao, and C. Di Casoli (2017). The case for a bayesian ap-

proach to benefit-risk assessment: overview and future directions. Therapeutic innovation

& regulatory science 51 (5), 568–574.

Cowles, M. K. (1996). Accelerating monte carlo markov chain convergence for cumulative-link

generalized linear models. Statistics and Computing 6 (2), 101–111.



140 References

Cox, D. R. and D. V. Hinkley (1979). Theoretical statistics. CRC Press.

Dawid, A. P. and M. Musio (2014). Theory and applications of proper scoring rules.

METRON 72 (2), 169–183.

Del Moral, P., A. Doucet, and A. Jasra (2006). Sequential monte carlo samplers. Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 68 (3), 411–436.

Depaoli, S. and J. P. Clifton (2015). A Bayesian approach to multilevel structural equation

modeling with continuous and dichotomous outcomes. Structural Equation Modeling: A

Multidisciplinary Journal 22 (3), 327–351.

Dienes, Z. (2016). How bayes factors change scientific practice. Journal of Mathematical

Psychology 72, 78–89.

Dodgson, J. S., M. Spackman, A. Pearman, and L. D. Phillips (2009). Multi-criteria analysis:

a manual.

Doucet, A., N. De Freitas, N. J. Gordon, et al. (2001). Sequential Monte Carlo methods in

practice, Volume 1. Springer.

Dunn, J. (1973). A note on a sufficiency condition for uniqueness of a restricted factor matrix.

Psychometrika 38, 141–143.

Dunson, D. B., J. Palomo, and K. Bollen (2005). Bayesian structural equation modeling.

SAMSI# TR2005-5 .

Edwards, M. C. (2010). A Markov Chain Monte Carlo approach to confirmatory item factor

analysis. Psychometrika 75 (3), 474–497.

Elffers, H., J. Bethlehem, and R. Gill (1978). Indeterminacy problems and the interpretation

of factor analysis results. Statistica Neerlandica 32 (4), 181–199.

Engle, R. F. (1984, 1). Chapter 13 Wald, likelihood ratio, and Lagrange multiplier tests in

econometrics. Handbook of Econometrics 2, 775–826.

Erosheva, E. A. and M. S. Curtis (2017). Dealing with reflection invariance in Bayesian factor

analysis. Psychometrika 82 (2), 295–307.

Fong, E. and C. Holmes (2020). On the marginal likelihood and cross-validation.

Biometrika 107 (2), 489–496.

Fox, J. and C. A. W. Glas (2001). Bayesian estimation of a multilevel IRT model using Gibbs



References 141

sampling. Psychometrika 66 (2), 271–288.

Friedman, J., T. Hastie, and R. Tibshirani (2001). The elements of statistical learning, Vol-

ume 1. Springer series in statistics New York.

Fruhwirth-Schnatter, S. and H. F. Lopes (2010, 7). Parsimonious Bayesian Factor Analysis

when the Number of Factors is Unknown. pp. 1–37.
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