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Abstract

High-dimensional time series analysis is an important area in modern

statistics. Data arises in many fields, including finance, economics, en-

vironmental and medical studies, among others. Faced with corrupted

data where measurement errors require particular attention, previous

work devoted to clean data calls for further exploration. Motivated by

the fact that the autocovariance of observed time series automatically fil-

ters out the noise term, this thesis investigates the autocovariance-based

estimation and inferential studies based on high-dimensional functional

and scalar time series models. The subsequent chapters are organised as

follows. The first chapter studies the functional linear regression when

observed functions are error contaminated. The second chapter extends

the topic to high-dimensional functional linear models. The third chap-

ter investigates not only the estimation but also the inference on scalar

time series in high dimensions.

In the first chapter, we briefly introduce the motivation, main idea, con-

tributions and limitations of this thesis.

In the second chapter, we consider functional linear regression with seri-

ally dependent observations of the functional predictor, where the con-

tamination of the predictor by the white noise is genuinely functional

with a fully nonparametric covariance structure. It is commonly as-

sumed that samples of the functional predictor are independent realisa-

tions of an underlying stochastic process and are observed over a grid of

points contaminated by i.i.d. measurement errors. In practice, however,

the dynamical dependence across different curves may exist, and the

parametric assumption on the error covariance structure could be unre-

alistic. Therefore, we propose a novel autocovariance-based generalised

method-of-moments estimate of the slope function. We also develop a

nonparametric smoothing approach to handle the scenario of partially

observed functional predictors. The asymptotic properties of the re-

sulting estimators under different scenarios are established. Finally, we



demonstrate that our proposed method significantly outperforms com-

peting methods through an extensive set of simulations and an analysis

of a public financial dataset.

In the third chapter, we model observed functional time series, which

are subject to errors in the sense that each functional datum arises as

the sum of two uncorrelated components, one dynamic and one white

noise. We propose an autocovariance-based three-step procedure by

first performing autocovariance-based dimension reduction and then for-

mulating a novel autocovariance-based block regularised minimum dis-

tance (RMD) estimation framework to produce block sparse estimates,

from which we can finally recover functional sparse estimates. We in-

vestigate non-asymptotic properties of relevant estimated terms under

such an autocovariance-based dimension reduction framework. To pro-

vide theoretical guarantees for the second step, we present a conver-

gence analysis of the block RMD estimator. Finally, we illustrate the

proposed autocovariance-based learning framework using applications of

three sparse high-dimensional functional time series models. With de-

rived theoretical results, we study the convergence properties of the as-

sociated estimators. Using simulated and real datasets, we demonstrate

that our proposed estimators significantly outperform the competitors.

In the fourth chapter, we study the high-dimensional linear regression

with scalar serially dependent predictors that are error contaminated. To

mitigate the influence of measurement errors, we propose an autocovariance-

based de-bias regularised generalised method of moments (DRGMM)

framework to obtain a high-quality estimator for regression coefficients.

Moreover, we conduct an inferential study on the estimators within this

framework. Theoretical results on estimation consistency and inference

accuracy are provided. Finally, the finite sample performance of the

proposed inference procedure is examined through simulation studies.
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Chapter 1

Introduction

1.1 Motivation

To embrace the modern information age, time series analysts need to face the op-

portunities together with challenges brought by the availability of large time series

datasets, which come from various sources including but not limited to financial mar-

kets, engineering, natural and social phenomena. Moreover, the data are recorded

not only as data points but also in the form of functions, where observations are

recorded continuously during a time interval or intermittently at several discrete

time points. This thesis referred to these two forms of data as scalar time series and

functional time series, respectively. In the meantime, the data are often recorded

with errors, which are introduced into the observations through different manners.

For both scalar and functional data, the errors may come from the missing value,

inaccuracy and fault records. In addition, the generating of the functional data by

interpolating and smoothing from the original discretely and incompletely observed

trajectories could also induce errors. Therefore, this thesis encounters the difficulty

consisting of high dimension and error contamination in terms of the function/scalar

time series analysis.

High dimensional time series problems have drawn a lot of attention in recent years.

On the other hand, it is always a challenge to model multiple time series even with

moderately large dimensions. A simple extension of the approaches designed for

small datasets such as the Autoregressive Integrated Moving Average (ARIMA)

model and Vector Autoregression (VAR) to the high dimensional case is invalid for

the reason of the well-known “curse of dimensionality”. To reduce the number of

parameters and to eliminate the non-identification issues, one popular approach is
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to find a small number of factors to extract the information contains in the multiple

time series; see Lam and Yao (2012), among others, for example. Another approach,

which is of the main focus in Chapter 3 and Chapter 4 of this thesis, is the method

based on the sparsity assumption that only a few variables among the whole data

sets are effective, such as LASSO (Tibshirani, 1996) and Dantzig (Candes and Tao,

2007). These methods perform the variable selection and coefficients estimation

simultaneously at the cost of introducing the bias into the model. Then, following

a de-bias step, one can carry out the inferential studies.

For the purpose of characterising the temporal dependence in the time series data

of interest, a strong mixing condition (Bosq, 2000), the functional stability measure

(Guo and Qiao, 2020) and the physical dependence measure (Wu, 2005) are im-

plemented in Chapter 2, Chapter 3 and Chapter 4, respectively. These conditions

describe the dependence structures in different scenarios and facilitate the derivation

of the theorems for estimation and inference in each chapter. Specifically, given the

infinite-dimensional natural and serial dependence of the functional time series, the

mixing condition in Chapter 2 and the sub-Gaussian assumption imposed in Chap-

ter 3 simplify the derivatives of the theoretical results, and make the presentation

of the main idea more concise. And in Chapter 4, some less strident conditions are

imposed for scalar time series. See Yousuf (2018) for comparisons between physical

dependence measures and strong mixing assumptions.

For the functional data that are inherently infinite-dimensional, dimension reduc-

tion is the key to functional data modelling and analysis. One of the most preva-

lent dimension reduction tools for multivariate data analysis is principal compo-

nent analysis, which has been extended to functional data by Karhunen (1946) and

Loève (1946). Via representing the infinite-dimensional functional data by a finite-

dimensional random scores vector, functional principal component analysis (FPCA)

facilities the modelling and simplifies the estimation for the functional data, and

then, this approach becomes the most popular tool in functional data analysis. How-

ever, for the erroneous observed functional time series, the classical FPCA method

is not directly available because of the existence of temporal dependence and error

contamination. Alternatively, following the idea of Bathia et al. (2010), the autoco-

variance based method is implemented to tackle the problem. Chapter 2 implicitly

uses this idea to estimates inverse operator and Chapter 3 takes advantage of di-

mensional reduction and error filtering of this approach to promote the solution of

the high-dimensional problems.

Standing at the junction of the high dimensionality, temporal dependence and the

various form of data observed with errors, the topic of this thesis is both interesting

and challenging.
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1.2 Contributions and limitations

This thesis studies the datasets consist of p-dimensional vector time series, Wt =

{Wt1, . . . ,Wtp}T for t = 1, . . . , n. To save the notation, Wtj could either be scalar in

a real space or be functional defined on a compact interval u ∈ U as Wtj(u), where

j = 1, . . . , p and p ≥ 1.We allows p to be finite in Chapter 2, or to be diverging with,

or even larger than, n in a high-dimensional regime in Chapter 3 and Chapter 4.

Here we take the scalar time series for example as shown in Chapter 4. Define

(auto)covariance matrices ΣW
h = Cov{Wt,Wt+h} for any integer h, and similarly

define the autocovariance functions ΣW
h (u, v), u, v ∈ U as in Chapter 2 and Chap-

ter 3. Then, suppose that the Wt are erroneous observed in the form of

Wt = Xt + et,

where Xt is the p-dimensional signal series with (auto)covariance matrices denoted

by ΣX
h . And et are white noise sequence with zero mean and autocovariance Σe

h = 0

for any h ̸= 0. This formation ensures that the signal series and the white noise se-

quence include all the dynamic elements and the errors of observations, respectively.

Therefore, we have ΣW
h = ΣX

h for h ̸= 0, which implies that the autocovariance of

Wt could filter the errors and be a consistent estimation of the autocovariance of un-

observable Xt. The idea of signal-error-decomposition and autocovariance-filtering

has implemented by Lam et al. (2011) for high-dimensional scalar times and Bathia

et al. (2010) for univariate functional time series.

In the previous studies, to handle the errors, some particular assumptions are applied

to the error term. For example, in Hall and Vial (2006), the errors are assumed

to vanish as the sample size increases. And the covariance matrices of the scalar

errors are assumed known (Li et al., 2021) and some parametric structures of the

covariance functions are imposed of the functional errors (Yao et al., 2005). And

in our proposed method, we can relax these assumptions by taking advantages of

the temporal dependence of the data. See more detailed discussions in the following

chapters.

The proposed autocovariance based methods can handle linear regression models

with response and covariates being functional/scalar time series, as well as functional

vector autoregressive models in high dimensions. Throughout this thesis, the error

contamination problem is taken into consideration. And the dynamical dependence

across data facilitates the development of the proposed methods and makes the error

contamination problem tractable.
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We relax the assumptions that are usually placed on the covariance structure of the

error terms, instead, we rely on the autocovariance of the observed time series to get

rid of influence from errors. In the linear models considered in this thesis, the lag

terms of Wt naturally play the role of the instrumental variables in the econometrics

studies, which overtakes the difficult of finding the instrumental variables.

Given the infinite-dimensional nature of the functional data, the novel autocovari-

ance based generalised method of moments approach and the block regularised min-

imum distance estimation following an autocovariance based dimensional reduction

approach are proposed in Chapter 2 and Chapter 3, which contribute to the tool

kit of functional time series analysis. And a three-step approach is implemented to

perform the estimation and simultaneous inference study for the high-dimensional

time series regression problem in Chapter 4.

We establish the convergence rate for our proposed estimators under varying model

settings and provide the theoretical guarantees for the simultaneous influences. Some

interesting phenomena are not only revealed by theoretical reasoning but also illus-

trated by empirical studies, which consists of both simulations and applications on

financial datasets.

Even though our proposed autocovariance based approaches show many advantages

mentioned above in handling the error contaminated linear time series problem, it

relies on the major assumption that the temporal dependence of the variables is

existent. Considering the case where the variables are independent indeed, there is

no lag information we can obtain from the data. Therefore, our proposed method is

no longer feasible because of the zero autocovariance. Even in the situation where the

autocovariance is non-zero but very close to zero, that is, the temporal dependence

is weak, our approach suffers from the inaccuracy of the corresponding estimators

and the lack of efficiency. So, it is important to test the dependence beforehand and

to apply our proposed method only when the relevant assumptions are fulfilled. To

the best of our knowledge, there is no universal solution to this problem under our

framework. And the dependence assumption could be regarded as the price to pay

for removing the knowledge about the error terms required in previous work.

1.3 Summary of chapters

The rest of the thesis is organised as follows.

In Chapter 2, we study the linear regression model where predictors are functional

time series with additive functional errors, whose covariance function is of fully non-
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parametric. In Section 2.2, we present the model for regression with dependent func-

tional errors-in-predictors and develop an Autocovariance-based generalised method-

of moments (AGMM) fitting procedures for both scalar and functional responses.

We also propose the regularised estimator by imposing some form of smoothness into

the estimation procedure and discuss the selection of relevant tuning parameters. In

Section 2.3, we present convergence results for our proposed estimators for the slope

function under different functional scenarios. In Section 2.4, we develop a nonpara-

metric smoothing approach for partially observed curve time series and investigate

its asymptotic properties. Section 2.5 illustrates the finite sample performance of

AGMM through a series of simulation studies and a public financial dataset.

In Chapter 3, we propose an autocovariance-based three-step procedure by first

performing autocovariance-based dimension reduction and then formulating a novel

autocovariance-based block regularised minimum distance (RMD) estimation frame-

work to produce block sparse estimates, from which we can finally recover functional

sparse estimates. In Section 3.2, we propose a general autocovariance-based three-

step procedure with illustration using scalar-on-function linear additive regression

(SFLR) as an example. In Section 3.3, we present the first step of autocovariance-

based dimension reduction and establish essential deviation bounds in elementwise

ℓ∞-norm on relevant estimated terms used in subsequent analysis. In Section 3.4,

we formulate the second step in a general block RMD estimation framework and

investigate its theoretical properties. In Section 3.5, we illustrate the proposed

autocovariance-based learning framework using applications of SFLR, function-on-

function linear additive regression (FFLR) and vector functional autoregression

(VFAR), and present convergence analysis of the associated estimators. In Sec-

tion 3.6, we examine the finite-sample performance of the proposed estimators

through both an extensive set of simulations and an analysis of a public financial

dataset.

In Chapter 4, we consider the high-dimensional linear regression model where scalar

serially dependent predictors that are error contaminated. we studied the coefficient

estimation and the inference after a de-bias step. In Section 4.2, we present the high-

dimensional time series linear regression model for which an autocovariance-based

estimation and de-bias framework is proposed. In Section 4.3, we provided the

theoretical guarantee for the estimation of sparse coefficients based on regularised

minimum distant (RMD) estimation. In Section 4.4, we perform the inferential study

on the de-biased regularised estimation, where the theoretical results on estimation

consistency and inference accuracy are provided. Section 4.5 exams the finite sample

performance of the proposed inference procedure through simulation studies.

All technical proofs are relegated to the appendices.
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Chapter 2

Functional Linear Regression:

Dependence and Error

Contamination

2.1 Introduction

In functional data analysis, the linear regression problem depicting the linear rela-

tionship between a functional predictor and either a scalar or functional response,

has recently received a great deal of attention. See Ramsay and Silverman (2005)

for a thorough discussion of the issues involved with fitting such data. For exam-

ples of recent research on functional linear models, see Chakraborty and Panaretos

(2017), Cho et al. (2013), Crambes et al. (2009), Hall and Horowitz (2007), Yao

et al. (2005) and the references therein. We refer to Morris (2015) for an extensive

review on recent developments for functional regression.

In functional regression literature, one typical assumption is to model observed

functional predictors, denoted by X1(·), . . . , Xn(·), as independent realisations of

an underlying stochastic process. However, curves can also arise from segments of

consecutive measurements over time. Examples include daily curves of financial

transaction data (Horváth et al., 2014), intraday electricity load curves (Cho et al.,

2013) and daily pollution curves (Aue et al., 2015). Such type of curves, also named

as curve time series, violates the independence assumption, in the sense that the

dynamical dependence across different curves exists. The other key assumption

treats the functional predictor as being either fully observed (Hall and Horowitz,
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2007) or incompletely observed, with measurement error, at a grid of time points

(Crambes et al., 2009). In the latter case, errors associated with distinct observation

points are assumed to be i.i.d., where the corresponding covariance function for the

error process is diagonal with constant diagonal components. In the curve time series

setting, Xt(·) are often recorded at discrete points and are subject to dependent and

heteroskedastic errors (Bathia et al., 2010). Hence, the resulting error covariance

matrix would be more nonparametric with varying diagonal entries and nonzero

off-diagonal entries.

In this chapter, we consider the functional linear regression in a time series context,

which involves serially dependent observations of the functional predictor contami-

nated by genuinely functional errors corresponding to a fully nonparametric covari-

ance structure. We assume that the observed erroneous predictors, which we denote

by W1(·), . . . ,Wn(·), are defined on a compact interval U and are subject to errors

in the form of

Wt(u) = Xt(u) + et(u), u ∈ U , (2.1)

where the error process {et(·), t = 1, 2, . . .} is a sequence of white noise such that

E{et(u)} = 0 for all t and Cov{et(u), es(v)} = 0 for any (u, v) ∈ U2 provided t ̸= s.

We also assume that Xt(·) and et(·) are uncorrelated and correspond to unobservable

signal and noise components, respectively. The error contamination model in (2.1)

was also considered in Bathia et al. (2010). To fit the functional regression model,

the conventional least square (LS) approach (Hall and Horowitz, 2007) relies on the

sample covariance function of Wt(·), which is not a consistent estimator for the true

covariance function of Xt(·), thus failing to account for the contamination that can

result in substantial estimation bias. One can possibly implement the LS method

in the resulting multiple linear regression after performing dimension reduction for

Wt(·) to identify the dimensionality of Xt(·) (Bathia et al., 2010). However, this

approach still suffers from unavoidable uncertainty due to et(·), while the inconsis-

tency has been demonstrated by our simulations. Inspired from a simple fact that

Cov{Wt(u),Wt+k(v)} = Cov{Xt(u), Xt+k(v)} for any k ̸= 0, which indicates that

the impact from the unobservable noise term can be automatically eliminated, we

develop an autocovariance-based generalised method-of-moments (AGMM) estimator

for the slope function. This procedure makes the good use of the serial dependence

information, which is the most relevant in the context of time series modelling.

To tackle the problem we consider, the conventional LS approach is not directly

applicable in the sense that one cannot separate Xt(·) from Wt(·) in equation (2.1).

This difficulty was resolved in Hall and Vial (2006) under the restrictive “low noise”

setting, which assumes that the noise et(·) goes to zero as n grows to infinity. The
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recent work by Chakraborty and Panaretos (2017) implements the regression calibra-

tion approach combined with the low rank matrix completion technique to separate

Xt(·) from Wt(·). Their approach relies on the identifiability result that, provided

real analytic and banded covariance functions for Xt(·) and et(·), respectively, the
corresponding two covariance functions are identifiable (Descary and Panaretos,

2019). However, all the aforementioned methods are developed under the criti-

cal independence assumption, which would be inappropriate for the setting that

W1(·), . . . ,Wn(·) are serially dependent.

The proposed AGMM method has four main advantages. First, it can handle re-

gression with serially dependent observations of the functional predictor. The exis-

tence of dynamical dependence across different curves makes our problem tractable

and facilitates the development of AGMM. Second, without placing any parametric

assumption on the covariance structure of the error process, it relies on the au-

tocovariance function to get rid of the effect from the genuinely functional error.

Interestingly, it turns out that the operator in AGMM defined based on the auto-

covariance function of the curve process is identical to the nonnegative operator in

Bathia et al. (2010), which is used to assess the dimensionality of Xt(·) in equation

(2.1). Third, the proposed method can be applied to both scalar and functional re-

sponses with either finite or infinite dimensional functional predictors. To handle a

practical scenario where functional predictors are partially observed, we also develop

a local linear smoothing approach. Theoretically we establish relevant convergence

rates for our proposed estimators under different model settings. In particular,

our asymptotic results for partially observed functional predictors reveal interesting

phase transition phenomena. Fourth, empirically we illustrate the superiority of

AGMM relative to the potential competitors.

The rest of the chapter is organised as follows. In Section 2.2, we present the model

for regression with dependent functional errors-in-predictors and develop AGMM

fitting procedures for both scalar and functional responses. We also propose the

regularised estimator by imposing some form of smoothness into the estimation

procedure and discuss the selection of relevant tuning parameters. In Section 2.3, we

present convergence results for our proposed estimators for the slope function under

different functional scenarios. In Section 2.4, we develop a nonparametric smoothing

approach for partially observed curve time series and investigate its asymptotic

properties. Section 2.5 illustrates the finite sample performance of AGMM through

a series of simulation studies and a public financial dataset. All technical proofs are

relegated to the Appendix.
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2.2 Methodology

2.2.1 Model setup

In this section, we describe the model setup for the functional linear regression with

dependent errors-in-predictors we consider. Let L2(U) denote a Hilbert space of

square integrable functions defined on U equipped with the inner product ⟨f, g⟩ =∫
U f(u)g(u)du for f, g ∈ L2(U). Given a scalar response Yt, a functional predictor

Xt(·) in L2(U), and, without loss of generality, assuming that {Yt, Xt(·)} have been

centred to have mean zero, the classical scalar-on-function linear regression model

is of the form

Yt =

∫
U
Xt(u)β0(u)du+ εt, t = 1, . . . , n, (2.2)

where the errors εt, independent of Xt+k(·) for any integer k, are generated according

to a white noise process and β0(·) is the unknown slope function. Generally, β0 may

not be uniquely determined. We will discuss how to identify β0 we wish to estimate

later.

We assume that the observed functional predictorsW1(·), . . . ,Wn(·) satisfy the error

contamination model in equation (2.1). The existence of the unobservable noise term

et(·) indicates that the curves of interest, Xt(·), are not directly observed. Instead,

they are recorded on a grid of points and are contaminated by the error process, et(·),
without assuming any parametric structure on its covariance function, denoted by

Ce(u, v) = Cov{et(u), et(v)}. This model guarantees that all the dynamic elements

of Wt(·) are included in the signal term Xt(·) and all the white noise elements are

absorbed into the noise term et(·). Furthermore, we assume that predictor errors

et(·) are uncorrelated with both Xt+k(·) and εt+k, for all integer k.

Here we turn to discuss the identification of β0. Assume that
{(
Yt, Xt(·)

)}
is

strictly stationary and C0(u, v) is the covariance function of Xt(·), which admits the

Karhunen-Loève expansion, Xt(u) =
∑∞

j=1 ξtjϕj(u), where ξtj =
∫
U Xt(u)ϕj(u)du

and Cov(ξtj, ξtj′) = λjI(j = j′) with I(·) denoting the indicator function. Then

the eigenpairs {λj, ϕj(·)}j≥1 satisfy the eigen-decomposition
∫
U C0(u, v)ϕj(v)dv =

λjϕj(u) with λ1 ≥ λ2 ≥ · · · ≥ 0. Define S0(u) = E
{
YtXt(u)

}
, d = supi≥1 {i : λi > 0}

and assume
∑d

j=1 λ
−2
j {Cov(Y1, ξ1j)}2 <∞. Obviously β0 satisfies the following equa-

tion

S0(u) =

∫
U
C0(u, v)β(v)dv, u ∈ U . (2.3)

If the span of eigenfunctions {ϕ1, . . . , ϕd} is dense in the L2 space, which implies that

all the elements of interest in the L2 space can be represented by the eigenfunctions.
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It ensures that β0 is the unique solution to (2.3) and hence can be identified. In a

general scenario, β0 can also be well defined. To make β0 identifiable, we consider

the following minimisation problem

min
β∈L2(U)

∫
U
β2(u)du,

s.t. S0(u) =

∫
U
C0(u, v)β(v)dv, u ∈ U .

(2.4)

Noting that the solution to (2.4) exists and is unique, we define the true slope func-

tion β0 to be this unique minimizer in a closed form of β0 =
∑d

j=1 λ
−1
j Cov(Y1, ξ1j)ϕj,

which holds for both d <∞ and d = ∞. See also Cardot et al. (2003b) and He et al.

(2010).

2.2.2 Main idea

In this section, we describe the main idea to facilitate the development of AGMM to

estimate β0(·) in (2.2). We chooseXt+k(·) for k = 0, 1, . . . , as functional instrumental

variables, which are assumed to be uncorrelated with the error εt in (2.2). Let

gXk (β, u) = Cov
{
Yt, Xt+k(u)

}
−
∫
U
Cov{Xt(v), Xt+k(u)}β(v)dv. (2.5)

The population moment conditions, E{εtXt+k(u)} = 0 for any u ∈ U , and equa-

tion (2.2) implies that

gXk (β0, u) ≡ 0 for any u ∈ U and k = 1, . . . . (2.6)

In particular, the conventional LS approach is based on (2.6) with k = 0. However,

this approach is inappropriate when Xt(·) are replaced by the surrogatesWt(·) given
the fact that CW (u, v) = Cov{Wt(u),Wt(v)} = C0(u, v) + Ce(u, v), and hence the

sample version of CW (u, v) is not a consistent estimator for C0(u, v). See Hall and

Vial (2006) for the identifiability of C0(u, v) and Ce(u, v) under the assumption that

the observed curves W1(·), . . . ,Wn(·) are independent and et(·) decays to zero as n

goes to infinity.

To separate Xt(·) fromWt(·) under the serial dependence scenario, we develop a dif-

ferent approach without requiring the “low noise” condition. For an integer k ≥ 1,

denote the lag-k autocovariance function ofXt(·), by Ck(u, v) = Cov{Xt(u), Xt+k(v)},
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which does not depend on t. Our method is based on the simple fact that

Cov{Yt,Wt+k(u)} = Cov{Yt, Xt+k(u)} and Cov{Wt(u),Wt+k(v)} = Ck(u, v)

for any k ̸= 0. Then after substituting Xt(·) by Wt(·) in (2.5), we can also represent

gk(β, u) = Cov
{
Yt,Wt+k(u)

}
−
∫
U
Cov{Wt(v),Wt+k(u)}β(v)dv = gXk (β, u),

and the moment conditions in (2.6) become

gk(β0, u) ≡ 0 for any u ∈ U and k = 1 . . . , L,

where L is some prescribed positive integer.

Under the over-identification setting, where the number of moment conditions ex-

ceeds the number of parameters, we borrow the idea of generalized methods-of-

moments (GMM) based on minimizing the distance from g1(β, ·), . . . , gL(β, ·) to

zero. This distance is defined by the quadratic form of

Q(β) =
L∑

k=1

L∑
l=1

∫
U

∫
U
gk(β, u)Ωk,l(u, v)gl(β, v)dudv,

where Ω(u, v) = {Ωk,l(u, v)}1≤k,l≤L is an L by L weight matrix whose (k, l)-th ele-

ment is Ωk,l(u, v). A suitable choice of Ω(u, v) must satisfy the properties of symme-

try and positive-definiteness (Guhaniyogi et al., 2013), which are, to be specific, (i)

Ωkl(u, v) = Ωlk(v, u) for each k, l = 1, . . . , L and (u, v) ∈ U2; (ii) for any finite collec-

tion of time points u1, . . . , uT ,
∑T

t=1

∑T
t′=1 a(ut)

TΩ(ut, ut′)a(ut′) must be positive for

any a(·) =
(
a1(·), . . . , aL(·)

)T
. In general, one can choose the optimal weight matrix

Ω and implement a two-step GMM. Functional linear regression (2.2) is equivalent to

Yt =
∫
U Wt(u)β0(u)du+ ε̃t, where ε̃t = εt −

∫
U et(u)β0(u)du. Therefore, as suggested

by Hansen (1982) and Arellano and Bond (1991), the optimal weighting matrix is

Ω = Ŝ−1, where Ŝ should be the a consistent estimation of the L by L matrix S

whose (k, l)-th element is E{ε̃2Wt+k(u)Wt+l(v)}. In general, one can implement a

two-step GMM and estimate Ŝhl(u, v) = (n − L)−1
∑n−L

t=1 {ε̂2tWt+k(u)Wt+l(v)} with

ε̂t = Yt −
∫
U Wt(u)β̂

∗(u)du for some preliminary consistent estimation β̂∗. However,

the inverse problem needs further investigation and this would give a very slight

improvement in our simulations. To simplify our derivation and accelerate the com-

putation, we choose the identity weight matrix as Ωk,l(u, v) = I(k = l)I(u = v) and
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then minimise the resulting distance of

Q(β) =
L∑

k=1

∫
U
gk(β, u)

2du,

over β(·) ∈ L2(U). The minimiser of Q(β), β0(·), can be achieved by solving

∂Q(β)/∂β = 0, i.e. for any u ∈ U ,

L∑
k=1

[∫
U
Ck(u, z)Cov

{
Yt,Wt+k(z)

}
dz −

∫
U

{∫
U
Ck(u, z)Ck(v, z)dz

}
β(v)dv

]
= 0.

(2.7)

To ease our presentation, we define

R(u) =
L∑

k=1

∫
U
Ck(u, z)Cov{Yt,Wt+k(z)}dz (2.8)

and

K(u, v) =
L∑

k=1

∫
U
Ck(u, z)Ck(v, z)dz. (2.9)

Note that K can be viewed as the kernel of a linear operator acting on L2(U),
i.e. for any f ∈ L2(U), K maps f(u) to f̃(u) ≡

∫
U K(u, v)f(v)dv. For notational

economy, we will use K to denote both the kernel and the operator. Indeed, the

nonnegative definite operator K was proposed in Bathia et al. (2010) to identify the

dimensionality of Xt(·) based on Wt(·) in (2.1). Substituting the relevant terms in

(2.7), β0(·) satisfies the following equation

R(u) =

∫
U
K(u, v)β(v)dv for any u ∈ U . (2.10)

See also functional extension of the least squares type of normal equation in (2.3).

Provided that Xt(·) is d-dimensional, it follows from Proposition 1 of Bathia et al.

(2010) that, under regularity conditions,K has the spectral decomposition,K(u, v) =∑d
j=1 θjψj(u)ψj(v), with d nonzero eigenvalues θ1 ≥ θ2 ≥ · · · ≥ θd and span{ψ1, . . . , ψd}

is the linear space spanned by the d eigenfunctions {ϕ1, . . . , ϕd}. This assertion still

holds even for d = ∞.

Denote the null space ofK and its orthogonal complement by ker(K) = {x ∈ L2(U) :
Kx = 0} and ker(K)⊥ = {x ∈ L2(U) : ⟨x, y⟩ = 0,∀y ∈ ker(K)}, respectively. The

inverse operator K−1 corresponds to the inverse of the restricted operator K̆ =
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K
∣∣ ker(K)⊥, which restricts the domain of K to ker(K)⊥. See Section 3.5 of Hsing

and Eubank (2015) for details. When d <∞, β0(·) is indeed the unique solution to

(2.10) in ker(K)⊥ in the form of

β0(u) =

∫
U
K−1(u, v)R(v)dv =

d∑
j=1

θ−1
j ⟨ψj, R⟩ψj(u). (2.11)

Provided K is a bounded operator when d = ∞, K−1 becomes an unbounded oper-

ator, which means it is discontinuous and cannot be estimated in a meaningful way.

However, K−1 is usually associated with another function/operator, the composite

function/operator can be reasonably assumed to be bounded, e.g. the regression

operator (Li and Solea, 2018). If we further assume that the composite function∫
U K

−1(u, v)R(v)dv is bounded, or equivalently
∑∞

j=1 θ
−2
j ⟨ψj, R⟩2 <∞, β0(·) is still

the unique solution to (2.10) in ker(K)⊥ and is of the form

β0(u) =

∫
U
K−1(u, v)R(v)dv =

∞∑
j=1

θ−1
j ⟨ψj, R⟩ψj(u). (2.12)

Both (2.11) and (2.12) motivate us to develop the estimation procedure for β0 in

Section 2.2.3.

2.2.3 Estimation procedure

In this section, we present the AGMM estimator for β0(·) based on the main

idea described in Section 2.2.2. We first provide the estimates of Ck(u, v) and

Cov{Yt,Wt+k(u)} for k = 1, . . . , L, i.e.

Ĉk(u, v) =
1

n− L

n−L∑
t=1

Wt(u)Wt+k(v)

and

Ĉov{Yt,Wt+k(u)} =
1

n− L

n−L∑
t=1

YtWt+k(u).

(2.13)

Combing (2.8), (2.9) and (2.13) gives the natural estimators for K(u, v) and R(u)
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as

K̂(u, v) =
L∑

k=1

∫
U
Ĉk(u, z)Ĉk(v, z)dz

=
1

(n− L)2

L∑
k=1

n−L∑
t=1

n−L∑
s=1

Wt(u)Ws(v)⟨Wt+k,Ws+k⟩

(2.14)

and

R̂(u) =
L∑

k=1

∫
U
Ĉk(u, z)Ĉov{Yt,Wt+k(z)}dz

=
1

(n− L)2

L∑
k=1

n−L∑
t=1

n−L∑
s=1

Wt(u)Ys⟨Wt+k,Ws+k⟩,

(2.15)

respectively. Note we choose a fixed integer L > 1, as K pulls together the infor-

mation at different lags, while L = 1 may lead to spurious estimation results. See

Section 2.2.5 for the discussion on the selection of L.

We next perform an eigenanalysis on K̂ and thus obtain the estimated eigenpairs

{θ̂j, ψ̂j(·)} for j = 1, 2, . . . . When the number of functional observations n is large,

the accumulated errors in (2.14), (2.15) and the eigenanalysis on K̂ are relatively

small, thus resulting in smooth estimates of ψj(·) and β0(·). We refer to this imple-

mentation of our method as Base AGMM for the remainder of the chapter. However,

in the setting without a sufficiently large n this version of AGMM suffers from a

potential under-smoothing problem that the resulting estimate of β0(·) wiggles quite
a bit. To overcome this disadvantage, we can impose some level of smoothing in the

eigenanalysis through the basis expansion approach, which converts the continuous

functional eigenanalysis problem for K̂ to an approximately equivalent matrix eige-

nanalysis task. We explore this basis expansion based AGMM, simply referred to as

AGMM from here on. To be specific, let B(u) be the J-dimensional orthonormal

basis function, i.e.
∫
U B(u)BT(u)du = IJ , such that for each j = 1, . . . , J , ψj(·) can

be well approximated by δT

jB(·), where δj is the basis coefficients vector. Let

K̂ =

∫
U

∫
U
B(u)BT(v)K̂(u, v)dudv. (2.16)

We perform an eigen-decomposition on K̂, which leads to the estimated eigen-

pairs {(θ̂j, δ̂j)}Jj=1. Then the j-th estimated principal component function is given

by ψ̂j(·) = δ̂
T

jB(·). See Section 2.2.5 for the selection of J . A similar basis ex-

pansion technique can be applied to produce a smooth estimate R̂(·). Note that
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K̂, θ̂j, ψ̂j, j = 1, . . . , d, all depend on J, but for simplicity of notation, we will omit

the corresponding superscripts where the context is clear.

Finally, we substitute the relevant terms in (2.11) and (2.12) by their estimated

values. We discuss two situations corresponding to d <∞ and d = ∞ as follows. (i)

When Xt(·) is d-dimensional (d < ∞), we need to select the estimate d̂ of d in the

sense that θ̂1, . . . , θ̂d̂ are large eigenvalues of K̂ and θ̂d̂+1 drops dramatically. The

estimate β̂ of β0 is then given by

β̂(u) =
d̂∑

j=1

θ̂−1
j ⟨ψ̂j, R̂⟩ψ̂j(u). (2.17)

(ii) When Xt(·) is an infinite dimensional functional object, we take the standard

truncation approach by using the leading M eigenpairs of K̂ to approximate β0 in

(2.12). Specifically, we obtain the estimated slope function as

β̂(u) =
M∑
j=1

θ̂−1
j ⟨ψ̂j, R̂⟩ψ̂j(u). (2.18)

Section 2.2.5 presents details to select d̂ andM. However, when d = ∞, the empirical

performance of β̂(·) may be sensitive to the selected value of M. To improve the

numerical stability, we suggest an alternative ridge-type method to estimate β0.

Specifically, we propose

β̂ridge(u) =
M̄∑
j=1

(θ̂j + ρn)
−1⟨ψ̂j, R̂⟩ψ̂j(u), (2.19)

where M̄ is chosen to be reasonably larger than M and ρn ≥ 0 is a ridge parameter.

See also Hall and Horowitz (2007) for the ridge-type estimator in classical functional

linear regression.

2.2.4 Generalisation to functional response

In this section, we consider the case when the response is also functional. Given

a functional response Yt(·) and a functional predictor Xt(·), both of which are in

L2(U) and have mean zero, the function-on-function linear regression takes the form

of

Yt(u) =

∫
U
Xt(v)γ0(u, v)dv + εt(u), u ∈ U , t = 1, . . . , n, (2.20)
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where γ0(u, v) is the slope function of interest and εt(·), independent of Xt+k(·)
for any integer k, are random elements in the underlying separable Hilbert space.

We still observe the erroneous version Wt(·) rather than the signal Xt(·) itself in

equation (2.1).

To estimate the slope function in (2.20), we develop an AGMM approach analogous

to that for the scalar case in Section 2.2 by solving the normal equation of

H(u, v) =

∫
U
K(u,w)γ(w, v)dw for any v ∈ U , (2.21)

where H(u, v) =
∑L

k=1

∫
U Ck(u, z)Cov{Yt(v),Wt+k(z)}dz with its natural estimator

Ĥ(u, v) =
1

(n− L)2

L∑
k=1

n−L∑
t=1

n−L∑
s=1

Wt(u)Ys(v)⟨Wt+k,Ws+k⟩. (2.22)

Accordingly, we can provide the estimate γ̂ of γ0 under two functional scenarios

including d < ∞ and d = ∞. (i) When d < ∞, γ0(u, v) is the unique solution of

(2.21) in ker(K)⊥ and can be represented as

γ0(u, v) =

∫
U
K−1(u,w)H(w, v)dw =

d∑
j=1

θ−1
j ⟨ψj, H(·, v)⟩ψj(u). (2.23)

The estimate of γ0(u, v) is then given by

γ̂(u, v) =
d̂∑

j=1

θ̂−1
j ψ̂j(u)⟨ψ̂j, Ĥ(·, v)⟩. (2.24)

(ii) Under the infinite dimensional setting (d = ∞, if we assume the boundedness

of the composite function
∫
U K

−1(u,w)H(w, v)dw in the L2 sense, the solution to

(2.21) uniquely exists. Approximating the infinite dimensional γ0(u, v) in (2.23)

by the first M components and substituting the relevant terms by their estimated

values, we can obtain

γ̂(u, v) =
M∑
j=1

θ̂−1
j ψ̂j(u)⟨ψ̂j, Ĥ(·, v)⟩. (2.25)
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2.2.5 Selection of tuning parameters

Implementing AGMM requires choosing L (selected lag length in (2.7)), M (trun-

cated dimension in (2.18) when d = ∞), d̂ (number of identified nonzero eigenvalues

of K̂ when d < ∞) and J (dimension of the basis function B(u)). First, the choice

of L depends on the strength of serial dependence of the time series. A larger L may

take advantages from the possible strong serial dependence and pull together the in-

formation at different lags, while using L = 1 may cause false choices of d̂. However,

when L is too large, it will make K̂ less accurate because strongest autocorrelations

usually appear at the small time lags and the “weak instrumental” problem may

occur for long lags. Moreover, adding more terms will increase the model complex-

ity and exacerbate estimation, especially when sample size n is small. Therefore,

we tend to select a small value and set L = 5 in our empirical studies. See also

Bathia et al. (2010) and Lam et al. (2011) for relevant discussions. One can also

consider a test based method to choose L. Specifically, we may choose L to be the

largest k, such that H0 : Ck(u, v) = 0 is rejected while H0 : Ck+1(u, v) = 0 is not

rejected. Inference for the autocovariance operator of a functional time series has

been extensively studied in the literature, see Kokoszka et al. (2017) for example.

Second, to select M when d = ∞, the typical approach is to find the largest M

eigenvalues of K̂ such that the corresponding cumulative percentage of variation

exceeds the pre-specified threshold value, e.g. 90% or 95%. Other available methods

include the bootstrap test (Bathia et al., 2010) and the eigen-ratio-based estimator

(Lam et al., 2011). Third, to determine d̂ when d < ∞, we take the bootstrap

approach proposed in Bathia et al. (2010). Our task is to test the null hypothesis

H0 : θd+1 = 0. We reject H0 if θ̂d+1 > cα, where the critical value cα is the (1 − α)

quantile of θ̂d+1 corresponding to the significant level α ∈ (0, 1). And in practice, we

use the bootstrap method to estimate it. We summarise the bootstrap procedure as

follows.

1. Define Ŵt(·) =
∑d̂

j=1 η̂tjψ̂j(·), where η̂tj =
∫
U Wt(u)ψ̂j(u)du for j = 1, . . . , d̂.

Let êt(·) = Wt(·)− Ŵt(·).

2. Generate a bootstrap sample using W ∗
t (·) = Ŵt(·) + e∗t (·), where e∗t are drawn

with replacement from {ê1, . . . , ên}.

3. In an analogy to K̂ defined in (2.14), form an estimator K̂∗ by replacing {Wt}
with {W ∗

t }. Then calculate the (d+ 1)-th largest eigenvalue θ∗d+1 of K̂∗.

We repeat Steps 2 and 3 above B-times and reject H0 if the event of {θ̂d+1 > θ∗d+1}
occurs more than [(1−α)B] times. Starting with d̂ = 1, we sequentially test θd̂+1 = 0
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and increase d̂ by one until the resulting null hypothesis fails to be rejected. Note

that determine the dimensionality d is important in both theoretical study and prac-

tical application. The bootstrap test approach has shown to be working well (Bathia

et al., 2010), but the joint difficulties of serial dependency, error contamination and

the functional natural of the data make it hard to establish the theoretical guaran-

tee, which is still an open question to the best of our knowledge. In practice, an

“eyeball test” are usually adopted by checking the “elbow point” of a sequence of

eigenvalues that decreasing substantially fast. Another choice is based on the per-

centage of the variance explained (PVE) by leading eigenvalues. Both methods are

also feasible for the infinite dimensional case but effectively arbitrary. Alternatively,

some ratio-based methods are proposed for better theoretical justification, see Lam

and Yao (2012) and Xia et al. (2015) for details.

Fourth, to select J, we propose the following G-fold cross-validation (CV) approach.

1. Sequentially divide the set {1, . . . , n} into G blockwise groups, D1, . . . ,DG, of

approximately equal size.

2. Treat the g-th group as a validation set. Implement the regularised eigenanal-

ysis in Section 2.2.3 on the remaining G − 1 groups, compute K̂(−g) and let

δ̂
(−g)

1 , . . . , δ̂
(−g)

d be the top d eigenvectors of K̂(−g).

3. Compute K̂(g)(u, v) and K̂(g) based on the validation set. and Let θ̂
(g)
l =

(δ̂
(−g)

l )TK̂(g)δ̂
(−g)

l for l = 1, . . . , d.

We repeat Steps 2 and 3 above G times and choose J as the value that minimize

the following mean CV error

CV(J) =
1

G

G∑
g=1

∫
U

∫
U

{
K̂(g)(u, v)−

d∑
j=1

θ̂
(g)
j (δ̂

(−g)

j )TB(u)B(v)Tδ̂
(−g)

j

}2

dudv.

Given the time break on the training observations, the autocovariance assumption is

jeopardised by L = 5 lagged terms. However, this effect on K̂ is negligible especially

when n is sufficiently large, hence our proposed CV approach can still be practically

applied. See also Bergmeir et al. (2018) for various CV methods for time dependent

data.

2.3 Theoretical properties

In this section, we investigate the theoretical properties of our proposed estimators

for both scalar-on-function and function-on-function linear regressions.
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To present the asymptotic results, we need the following regularity conditions.

Condition 2.1. {Wt(·), t = 1, 2, . . . } is strictly stationary curve time series. Define

the ψ-mixing with the mixing coefficients

ψ(l) = sup
A∈F0

−∞,B∈F∞
l ,P (A)P (B)>0

|1− P (B|A)/P (B)|, l = 1, 2, . . . ,

where F j
i denotes the σ-algebra generated by {Wt(·), i ≤ t ≤ j}. Moreover, it holds

that
∑∞

l=1 lψ
1/2(l) <∞.

Condition 2.2. E(∥Wt∥4) <∞ and E(ε2t ) <∞.

The presentation of the ψ-mixing condition in Condition 2.1 is mainly for technical

convenience. See Section 2.4 of Bosq (2000) on the mixing properties of curve time

series. Condition 2.2 is the standard moment assumption in functional regression

literature (Chakraborty and Panaretos, 2017, Hall and Horowitz, 2007).

Condition 2.3. (i) When d is fixed, θ1 > · · · > θd > 0 = θd+1; (ii) When d = ∞,

θ1 > θ2 > · · · > 0, and there exist some positive constants c and α > 1 such that

θj − θj+1 ≥ cj−α−1 for j ≥ 1; (iii) span{ϕ1, . . . , ϕd} = span{ψ1, . . . , ψd}.

Condition 2.4. When d = ∞, β0(u) =
∑∞

j=1 bjψj(u) and there exist some positive

constants τ ≥ α + 1/2 and C such that |bj| ≤ Cj−τ for j ≥ 1.

Condition 2.3 restricts the eigen-structure of K and assumes that all the nonzero

eigenvalues of K are distinct from each other. Note that in the case where Wt(·)
are independent, the autocovariance Ck = 0 for k ≥ 0. Therefore, eigenvalues θj =

0 for all j ≥ 0, which means that there is no lag information available form the

observation. So, the idea that using lag terms as the instrumental variables is no

longer valid for violating Condition 2.3.

To this end, one may conciser to check the existence of the serial dependence before-

hand. The serial correlation test can rely on the results from dimensional reduction

via e.g. functional principal component (FPC) analysis, which transforms functional

observations into a vector time series of FPC scores. Then, the multivariate time

series technique could be used to investigate the dependence as summarised in Tsay

(2013). An alternative way is to perform the test using functional objects. Since the

linear correlation captured by the autocovariance operator is most relevant in our

study, we can perform some test procedure to measure the (cumulative) significance

of the first L > 0 empirical autocovariance. One can check the serial correlation

by testing H0 : ∀h∈{1,...,L} Ch(u, v) = 0, see Kokoszka et al. (2017) for example.
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Moreover, in our proposed autocovariance based frame work, we may also derive

some procedure to perform the inference directly on the operator K(u, v) by testing

H0 : K(u, v) = 0. And the techniques relying on a positive-definite operator, which

has been investigated in Horváth et al. (2014) and Kokoszka et al. (2017), among

others. And we will pursue the formal definition and theoretical properties of this

test in the future study.

When d = ∞, Condition 2.3 (ii) prevents gaps between adjacent eigenvalues from

being too small. The parameter α determines the tightness of eigen-gaps with

larger values of α yielding tighter gaps. This condition also indicates that θj ≥
cα−1j−α as θj =

∑∞
k=j(θk − θk+1) ≥ c

∑∞
k=j k

−α−1, and can be used to derive the

convergence rates of estimated eigenfunctions. See also Hall and Horowitz (2007)

and Qiao et al. (2020). Condition 2.3 (iii) implies that no components inXt are serial

uncorrected. Therefore, the space spanned by the eigenfunctions ofK is sufficient for

recovering Xt. Condition 2.4 restricts β0 based on its expansion using eigenfunctions

of K. The parameter τ determines the decay rate of slope basis coefficients, {bj}∞j=1.

The assumption τ ≥ α + 1/2 can be interpreted as requiring β0 be sufficiently

smooth relative to K, the smoothness of which can be implied by θj ≥ cα−1j−α

from Condition 2.3 (ii). See Hall and Horowitz (2007) for an analogous condition in

functional linear regression.

Before presenting Theorem 2.1 for the asymptotic analysis of the scalar-on-function

linear regression, we first solidify some notation. For any univariate function f, de-

fine ∥f∥ =
√

⟨f, f⟩. We denote by ∥A∥S the Hilbert-Schmidt norm for any bivariate

function A. The notation an ≍ bn for positive an and bn means that the ratio an/bn

is bounded away from zero and infinity. To obtain β̂ in (2.17) when d <∞, we use

the consistent estimator for d defined as d̂ = #{j : θ̂j ≥ ϵn}, where ϵn satisfies the

condition in Theorem 2.1 (i) below. Then by Theorem 3 of Bathia et al. (2010), d̂

converges in probability to d as n→ ∞.

Theorem 2.1. Suppose that Conditions 2.1–2.4 hold. The following assertions hold

as n→ ∞ :

(i) Let ϵn → 0 and ϵ2nn→ ∞ as n→ ∞. When d is fixed, then

∥β̂ − β0∥ = OP

(
n−1/2

)
.

(ii) When d = ∞, if we further assume that M ≍ n1/(2α+2τ), then

∥β̂ − β0∥2 = OP

(
M2α+1n−1 +M−2τ+1

)
= OP

(
n− 2τ−1

2α+2τ

)
.
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Remarks. (a) When d is fixed, the standard parametric root-n rate is achieved.

The parametric rate is optimal, because the proof of Theorem 1.1(i) relies on the

convergence of the eigenpairs {ψ̂j, θ̂j}, and both ψ̂j and θ̂j, j = 1, . . . , d with fixed

d enjoy the root-n consistency (and some faster rates for j > d). See discussion in

Guo and Qiao (2020) and the references therein. (b) When d = ∞, the convergence

rate is governed by two sets of parameters (1) dimensionality parameter, sample

size (n); (2) internal parameters, truncated dimension of the curve time series (M),

decay rate of the lower bounds for eigenvalues (α), decay rate of the upper bounds

for slope basis coefficients (τ). It is easy to see that larger values of α (tighter eigen-

gaps) yield a slower convergence rate, while increasing τ enhances the smoothness

of β0(·), thus resulting in a faster rate. The convergence rate consists of two terms,

which reflects our familiar variance-bias tradeoff as commonly considered in non-

parametric statistics. In particular, the bias is bounded by O(M−τ+1/2) and the

variance is of the order OP (M
2α+1n−1). To balance both terms, we choose the trun-

cated dimension, M ≍ n1/(2α+2τ), while the optimal convergence rate then becomes

OP{n−(2τ−1)/(2α+2τ)}. It is also worth noting that this rate is slightly slower than

the minimax rate OP{n−(2τ−1)/(α+2τ)} in Hall and Horowitz (2007), which considers

independent observations of the functional predictor without any error contamina-

tion. In fact, we tackle a more difficult functional linear regression scenario, where

extra complications come from the serial dependence and functional error contam-

ination. From a theoretical perspective, whether the rate in part (ii) is optimal in

the minimax sense is still of interest and requires further investigation.

Moreover, inference for the slope function in linear regression (2.2) has been widely

studied, see Imaizumi and Kato (2019) and references therein for example. A typi-

cal concern is to check if the true slope coefficient function β0 = 0 for the purpose

of determining the explanatory power of the model. To address this problem, a

hypothesis test H0 : β0 = βH
0 v.s. H1 : β0 ̸= βH

0 , is carried out by Cardot et al.

(2003a), and specifically take βH
0 = 0 for instance (Kong et al., 2016a). Recently,

Babii (2020) develops honest confidence bands of the functional instrumental vari-

able (IV) regression for i.i.d. sample and Kutta et al. (2021) extended the test to

functional time series. However, the test procedure for our proposed model is non-

trivial because it should be carefully devised for functional times series regression

with measurement error under GMM estimation. And we will pursue it in the future

work.

Before presenting the asymptotic results for the function-on-function linear regres-

sion, we list Conditions 2.5 and 2.6 below, which are substitutes of Conditions 2.2

and 2.4, respectively, in the functional response case.

Condition 2.5. E(∥Wt∥4) <∞ and E(∥εt∥2) <∞.
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Condition 2.6. When d = ∞, γ0(u, v) =
∑∞

j=1

∑∞
ℓ=1 bjℓψj(u)ψℓ(v) and there exist

some positive constants τ ≥ α + 1/2 and C such that |bjℓ| ≤ C(j + ℓ)−τ−1/2 for

j, ℓ ≥ 1.

Theorem 2.2. Suppose that Conditions 2.1, 2.3, 2.5 and 2.6 hold. The following

assertions hold as n→ ∞ :

(i) Let ϵn → 0 and ϵ2nn→ ∞ as n→ ∞. When d is fixed, then

∥γ̂ − γ0∥S = OP (n
−1/2).

(ii) When d = ∞, if we further assume that M ≍ n1/(2α+2τ), then

∥γ̂ − γ0∥2S = OP

(
M2α+1n−1 +M−2τ+1

)
= OP

(
n− 2τ−1

2α+2τ

)
.

2.4 Partially observed functional predictor

In this section, we consider a practical scenario where eachWt(·) is partially observed
at random time points, Ut1, . . . , Utmt ∈ U = [0, 1], where for dense measurement

designs all mt’s are larger than some order of n, and for sparse designs all mt’s are

bounded (Qiao et al., 2020, Zhang and Wang, 2016). Let Zti represent the observed

value of Wt(Uti) satisfying

Zti = Wt(Uti) + ηti, i = 1, . . . ,mt, (2.26)

where ηti’s are i.i.d. random errors with finite variance, independent of Wt(·).

Let K(·) be an univariate kernel function. We apply a local linear surface smoother

to estimate the lag-k autocovariance function Ck(u, v) for k = 1, . . . , L by minimizing

n−L∑
t=1

mt∑
i=1

mt+k∑
j=1

{
ZtiZ(t+k)j − a

(k)
0 − a

(k)
1 (Uti − u)− a

(k)
2 (U(t+k)j − v)

}2

Kk,i,j,t,h(u, v)

(2.27)

with respect to (a
(k)
0 , a

(k)
1 , a

(k)
2 ), where Kk,i,j,t,h(u, v) = K

(
Uti−u
hC

)
K
(

U(t+k)j−v

hC

)
with

a bandwidth hC > 0. Let the minimizer of (2.27) be (â
(k)
0 , â

(k)
1 , â

(k)
2 ) and the resulting

lag-k autocovariance estimator is C̃k(u, v) = â
(k)
0 . Similarly, we implement a local

linear smoothing approach to estimate Sk(u) = Cov(Yt,Wt+k(u)) for k = 1, . . . , L
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by minimizing

n−L∑
t=1

mt∑
i=1

{
YtZ(t+k)i − b

(k)
0 − b

(k)
1 (U(t+k)i − u)

}2

K

(
Uti − u

hS

)
(2.28)

with respect to (b
(k)
0 , b

(k)
1 ) with a bandwidth hS > 0. Then we obtain the estimate

S̃k(u) = b̂
(k)
0 . We also develop a basis expansion approach (Radchenko et al., 2015)

to estimate Ck and Sk, where details can be found in Section 2.6.1 of the Appendix.

Let K̃(u, v) =
∑L

k=1

∫
U C̃k(u, z)C̃k(v, z)dz with estimated eigenpairs (θ̃j, ψ̃j)j≥1 and

R̃(u) =
∑L

k=1

∫
U C̃k(u, z)S̃k(z)dz. In analogy to (2.17) and (2.18), we obtain the

corresponding estimates β̃ of β0 by replacing (θ̂j, ψ̂j)j≥1 and R̂ with (θ̃j, ψ̃j)j≥1 and R̃,

respectively. Before presenting the main asymptotic results, we impose the following

regularity conditions.

Condition 2.7. (i) The errors {ηti} are i.i.d. mean zero random variables with

E|ηti|2s < ∞ for some s > 2; (ii) {Wt(·), t = 1, 2, · · · } is strictly stationary with ψ-

mixing coefficients ψ(l) satisfying ψ(l) ≲ l−λ with λ > 3s−2
s−2

and supu∈[0,1]E|Wt(u)|2s

<∞.

Condition 2.8. K(·) is a symmetric probability density function on [−1, 1] and is

Lipschitz continuous.

Condition 2.9. {Uti, i = 1, . . . ,mt} are i.i.d. copies of a random variable U defined

on [0, 1] and the density f(·) of U is twice continuously differentiable and is bounded

from below and above over [0, 1].

Condition 2.10. {Wt} are independent of {Uti} and {ηti} are independent of

{Uti}, {Wt}.

Condition 2.11. (i) ∂2Ck(u, v)/∂u
2, ∂2Ck(u, v)/∂u∂v and ∂

2Ck(u, v)/∂v
2 for k ≥ 1

are uniformly continuous and bounded on [0, 1]2; (ii) ∂2Sk(u)/∂u
2 for k ≥ 1 are

uniformly continuous and bounded on [0, 1].

Condition 2.12. The number mt of measurement locations in time t are indepen-

dent random variables with distributionmtρ
−1
n ∼ m̂, where m̂ ∈ {1, . . . , m̄} for some

bounded m̄ such that P (m̂ > 1) > 0.

Condition 2.13. The bandwidth parameters hC and hS satisfy

hC → 0, hS → 0,
log(nρ2n)

(nρ2n)
θCh2C

→ 0 and
log(nρn)

(nρn)θShS
→ 0,

with

θC =
β − 2− (1 + β)/(s− 1)

β + 2− (1 + β)/(s− 1)
, θS =

β − 3− (1 + β)/(s− 1)

β + 1− (1 + β)/(s− 1)
.
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Conditions 2.7–2.13 are standard in local linear smoothing when the serial depen-

dence exists (Hansen, 2008, Rub́ın and Panaretos, 2020). In Condition 2.12, we

treat the number mt of measurement locations as random variables, but possibly

diverges with n at the order of ρn.When ρn is bounded, it corresponds to the sparse

case in Rub́ın and Panaretos (2020).

We present the convergence rates of C̃k, S̃k for k ≥ 1 and β̃0 in the following Theo-

rems 2.3 and 2.4, respectively.

Theorem 2.3. Suppose that Conditions 2.7–2.13 hold. As n→ ∞, we have

∥C̃k − Ck∥S = OP (δn1) and ∥S̃k − Sk∥ = OP (δn2) for k ≥ 1,

where

δn1 =
1√
nρ2nh

2
C

+
1√
n
+ h2C and δn2 =

1√
nρnhS

+
1√
n
+ h2S.

Theorem 2.4. Suppose that Conditions 2.3–2.4 and 2.7–2.13 hold. The following

assertions hold as n→ ∞ :

(i) Let ϵn → 0 and ϵ2nn→ ∞ as n→ ∞. When d is fixed, then

∥β̃ − β0∥ = OP

(
δn1 + δn2

)
.

(ii) When d = ∞, if we further assume that M ≍ δ
−2/(2α+2τ)
n1 + δ

−2/(2α+2τ)
n2 , then

∥β̃ − β0∥2 = OP

{
M2α+1

(
δ2n1 + δ2n2

)
+M−2τ+1

}
= OP

{
δ

2(2τ−1)
2α+2τ

n1 + δ
2(2τ−1)
2α+2τ

n2

}
.

Remarks. (a) In the sparse case where ρn is bounded, the L2 rates of convergence

for C̃k and S̃k in Theorem 2.3 become OP (n
−1/2h−1

C + h2C) and OP (n
−1/2h

−1/2
S +

h2S), respectively, which are consistent to those yielded convergence rates of one-

dimensional and surface local linear smoothers for independent and sparsely sampled

functional data (Zhang and Wang, 2016). When ρn grows with n, the convergence

result reveals interesting phase transition phenomena depending on the relative order

of ρn to n. We use different rates of C̃k (k ≥ 1) to illustrate such phenomenon:

i. When ρn/n
1/4 → 0 with n1/4h→ ∞, ∥C̃k − Ck∥ = OP (n

−1/2ρ−1
n h−1

C + h2C);

ii. When ρn ≍ n1/4 with hC ≍ n−1/4 or ρn/n
1/4 → ∞ with hC = o(n−1/4) and

hCρn → ∞, ∥C̃k − Ck∥ = OP (n
−1/2).

As ρn grows very fast, case (ii) results in the root-n rate, presenting the theory

for very dense curve time series falls in the parametric paradigm. As ρn grows
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moderately fast, case (i) corresponds to the rate faster than that for sparse data but

slower than root-n. The rates under cases (i) and (ii) are respectively consistent to

those of the estimated covariance function under categories of “dense” and “ultra-

dense” functional data (Zhang and Wang, 2016). For S̃k (k ≥ 1), similar phase

transition phenomenon occurs based on the ratio of ρn to n1/4.

(b) The L2 rates of β̃0 in Theorem 2.4 are governed by dimensionality parameters

(n, ρn), bandwidth parameters (hC , hS) and those internal parameters in part (ii)

of Theorem 2.1 when d = ∞. There also exists the phase transition based on the

relative order of ρn to n. For example, when ρn is bounded and d is fixed, the

rate of β̃0 is OP (n
−1/2h−1

C + n−1/2h
−1/2
S + h2C + h2S). When ρn grows very fast with

ρ−1
n = O(n−1/4) and suitable choices of hC , hS, the rates of β̃0 are identical to those

for fully observed functional predictors in Theorem 2.1.

(c) Theorem 2.4 can be extended to functional response case. Let Nk(u, v) =

Cov(Yt(u),Wt+k(v)) for k = 1, . . . , L and Ñk be the local linear smoothing esti-

mation of Nk. Then, in analogue to (2.24) and (2.25), we can get the estimates

γ̃ of γ0 in the same manner as estimating β0 by β̃. Suppose we can show that

∥Ñk − Nk∥S = Op(δn3), where δn3 is likewise defined as δn1 under some regularisa-

tion conditions imposed in Theorem 2.3, then we can extend Theorem 2.4 and get

the same convergence rate for ∥γ̃ − γ0∥S .

2.5 Empirical studies

2.5.1 Simulation study

In this section, we evaluate the finite sample performance of the two versions of

AGMM by a number of simulation studies. The basis expansion based AGMM

is referred to as “AGMM”, which relies on the regularised K̂ defined in (2.16),

while “Base AGMM” is based on K̂ in (2.14). The observed predictor curves,

Wt(u), u ∈ [0, 1], are generated from equation (2.1) with

Xt(u) =
d∑

j=1

ξtjϕj(u) and et(u) =
10∑
j=1

νtjζj(u),

where {ξtj}nt=1 follows a linear AR(1) process with the coefficient (−1)j(0.9−0.5j/d).

The slope functions are generated by β0(u) =
∑d

j=1 bjϕj(u), where bj’s take values

from the first d components in (2, 1.6,−1.2, 0.8,−1,−0.6). We generate responses
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Figure 2.1: Example 1 with n = 800 and d = 2, 4, 6: Comparison of true β(·)
functions (black solid) with median estimates over 100 simulation runs for AGMM
(red solid), Base AGMM (red dashed), CLS (cyan solid), Base CLS (cyan dashed),
Base CGMM (green dotted) and Base ALS (gray dash-dotted).

Y1, . . . , Yn from equation (2.2), where εt are independent N(0, 1) variables. Finally,

we consider two different scenarios to generate {ϕj(·)}dj=1, {ζj(·)}10j=1 and {νtj}n×10.

Example 1: This example is taken from Bathia et al. (2010) with

ϕj(u) =
√
2 cos(πju), ζj(u) =

√
2 sin(πju),

and the innovations νtj being independent standard normal variables.

We compare two versions of AGMM with three competing methods: covariance-

based LS (CLS), covariance-based GMM (CGMM), autocovariance-based LS (ALS).

The three competing approaches are implemented as follows. In the first two meth-

ods, we perform eigenanalysis on the estimated covariance function ĈW , which con-

verts the functional linear regression to the multiple linear regression, and then

implement either LS or GMM. The truncated dimension was chosen such that the

selected principal components can explain more than 90% of the variation in the

trajectory. We also tried the bootstrap method in Hall and Vial (2006) or to set a

larger threshold level, e.g. 95%. However neither approach performed well, so we do

not report the results here. The third ALS method relies on the eigenanalysis on

the estimated autocovariance-based K̂ and the subsequent implementation of LS.

In a similar fashion to the difference between Base AGMM and AGMM, we refer to

each of the unregularised method as the “base” version.

The performance of four types of approaches are examined based on the mean in-

tegrated squared error for β̂(u), i.e. E[
∫
{β̂(u) − β0(u)}2du]. We consider different

settings with d = 2, 4, 6 and n = 200, 400, 800, and ran each simulation 100 times.

The regularised versions of CGMM and ALS did not give improvements in our simu-

lation studies, so we do not report their results here. Figure 2.1 provides a graphical
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illustration of the results for n = 800 and d = 2, 4, 6. The black solid lines cor-

respond to the true β(u) from which the data were generated. The median most

accurate estimate is also plotted for each of the competing methods. It is easy to

see that the AGMM methods apparently provide the highest level of accuracy. The

top part of Table 2.1 reports numerical summaries for all simulation scenarios. We

can observe that the advantage of AGMM over Base AGMM is prominent especially

when either d or n is relatively small, while AGMM methods are superior to the

competing methods when n = 400 or 800. However, under the setting with n = 200

and d = 4 or 6, the bootstrap test in Section 2.2.5 could not select d̂ very accurately,

thus resulting in AGMM estimates inferior to some competitors.

Table 2.1: Example 1: The mean and standard error (in parentheses) of the mean

integrated squared error for β̂(u) over 100 simulation runs. The lowest values are in
bold font.

d̂ n d Base CLS CLS Base CGMM Base ALS Base AGMM AGMM

Est

200

2 1.320(0.026) 1.315(0.025) 2.215(0.099) 1.619(0.044) 1.187(0.052) 0.720(0.033)

4 1.360(0.028) 1.340(0.028) 2.128(0.093) 2.451(0.102) 2.053(0.117) 1.704(0.107)

6 1.337(0.030) 1.320(0.029) 1.912(0.102) 2.150(0.092) 1.847(0.098) 1.612(0.072)

400

2 1.184(0.018) 1.181(0.019) 1.891(0.090) 1.338(0.026) 0.772(0.034) 0.498(0.028)

4 1.198(0.021) 1.199(0.021) 1.939(0.090) 1.316(0.028) 0.701(0.034) 0.584(0.034)

6 1.159(0.023) 1.154(0.022) 1.519(0.087) 1.323(0.034) 0.824(0.045) 0.745(0.037)

800

2 1.159(0.012) 1.158(0.012) 1.792(0.080) 1.161(0.013) 0.346(0.013) 0.211(0.012)

4 1.161(0.014) 1.160(0.014) 1.762(0.105) 1.122(0.014) 0.336(0.015) 0.247(0.012)

6 1.123(0.014) 1.122(0.014) 1.297(0.091) 1.119(0.016) 0.348(0.016) 0.350(0.018)

True

200

2 1.402(0.032) 1.238(0.030) 0.774(0.044) 1.637(0.044) 1.196(0.052) 0.718(0.033)

4 1.365(0.030) 1.191(0.029) 0.924(0.056) 1.515(0.043) 1.214(0.071) 0.797(0.046)

6 1.345(0.028) 1.272(0.027) 1.150(0.065) 1.465(0.036) 1.378(0.070) 1.196(0.057)

400

2 1.226(0.019) 1.145(0.019) 0.503(0.027) 1.336(0.026) 0.772(0.034) 0.498(0.028)

4 1.199(0.021) 1.139(0.021) 0.529(0.024) 1.237(0.022) 0.653(0.032) 0.488(0.029)

6 1.166(0.023) 1.139(0.022) 0.656(0.038) 1.170(0.023) 0.726(0.039) 0.704(0.042)

800

2 1.174(0.012) 1.136(0.012) 0.269(0.011) 1.161(0.013) 0.346(0.013) 0.211(0.012)

4 1.165(0.014) 1.131(0.014) 0.324(0.014) 1.130(0.014) 0.333(0.015) 0.245(0.012)

6 1.121(0.014) 1.119(0.014) 0.323(0.016) 1.106(0.015) 0.336(0.015) 0.334(0.016)

To investigate the performance of AGMM after excluding the negative impact from

the low accuracy of d̂ especially when n = 200, we also implement an “oracle”

version, which uses the true d in the estimation. The numerical results are reported

in the bottom part of Table 2.1. We can observe that GMM methods are superior

to their LS versions, while CGMM slightly outperforms AGMM. These observations

are due to the facts that, (i) top d eigenvalues for CW and K correspond to the

same signal components in Example 1, (ii) GMM methods are capable of removing

the impact from the noise term, (iii) the estimate ĈW in CGMM does not consider

the functional error, while K̂ in AGMM would suffer from error accumulations. To
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better demonstrate the superiority of AGMM, we explore Example 2 below, where

the covariance-based approach would fail to identify the signal components but its

autocovariance-based version could.

Example 2: We generate {ζj(·)}10j=1 from a 10-dimensional orthonormal Fourier ba-

sis function, {
√
2 cos(2πju),

√
2 sin(2πju)}5j=1, and set ϕj(u) = ζj(u) for j = 1, . . . , d.

The innovations νtj are independently sampled from N(0, σ2
j ) with

σ2
j =


(1/2)j−1, for j = 1, . . . , 6,

(2.6− 0.1j)× 1.1(d/2−3), for j = 7, . . . , 10.

In this example, provided the fact that {ϕj(·)}dj=1 shares the common basis functions

with the first d elements in {ζj(·)}10j=1, we can calculate the variation in the trajectory

explained by each of the 10 components under the population level. Table 2.2 reports

the variance explained by each of the 10 components under the population level. For

each of the three parts corresponding to d = 2, 4 and 6, the second and third rows

provide the variance explained by each of the d signal components and 10 error

components, respectively. The first row ranks the components based on the overall

variance explained by each individual component, where the fourth row displays the

corresponding values. Take d = 4 as an illustrative example, the autocovariance-

based approach can correctly identify the first four signal components, while the

covariance-based approach can only correctly identify “1” and “2”, but incorrectly

select “7” and “8” as signal components. Moreover, we consider another scenario

for Example 2 by generating innovations {νtj} from a standard normal distribution,

where the variance decomposition is illustrated via Table 2.3. Under this setting, we

can observe that both approaches are capable of correctly identifying the d signal

components.

Table 2.4 gives numerical summaries under the “oracle” scenario with true d in

the estimation. As we would expect, two versions of AGMM provide substantially

improved estimates, while Base AGMM is outperformed by AGMM in most of the

cases. Under the scenario that d̂ is selected by the bootstrap approach, Figure 2.2

and Table 2.4 provide the graphical and numerical results, respectively. We observe

similar trends as in Figure 2.1 and Table 2.1 with AGMM methods providing highly

significant improvements over all the competitors.

Example 3: We use this example to demonstrate the sample performance of our

proposed kernel smoothing approach to handle partially observed functional pre-

dictors. In each simulated scenario, we first generate {Wt(·)} and {et(·)} in the

38



Table 2.2: The variance explained by each of the components in Example 2. Top
d components identified by covariance-based and autocovariance-based approaches
are underlined and in bold font, respectively.

d=2

Component 1 2 7 8 9 10 3 4 5 6

Signal 1.73 1.19

Error 1.00 0.50 1.57 1.49 1.40 1.32 0.25 0.13 0.06 0.03

Sum 2.73 1.69 1.57 1.49 1.40 1.32 0.25 0.13 0.06 0.03

d=4

Component 1 2 7 8 9 10 3 4 5 6

Signal 2.50 1.73 1.38 1.19

Error 1.00 0.50 1.73 1.64 1.55 1.45 0.25 0.13 0.06 0.03

Sum 3.50 2.23 1.73 1.64 1.55 1.45 1.63 1.32 0.06 0.03

d=6

Component 1 2 3 7 8 9 10 4 5 6

Signal 3.00 2.16 1.73 1.47 1.30 1.19

Error 1.00 0.50 0.25 1.90 1.80 1.70 1.60 0.13 0.06 0.03

Sum 4.00 2.66 1.98 1.90 1.80 1.70 1.60 1.60 1.37 1.22

Table 2.3: The variance explained by each of the components in Example 2 with
{νtj} being N(0, 1) variables. Top d components identified by covaraicne-based and
autocovariance-based approaches are underlined and in bold font, respectively.

d=2

Component 1 2 3 4 5 6 7 8 9 10

Signal 1.73 1.19

Error 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sum 2.73 2.19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

d=4

Component 1 2 3 4 5 6 7 8 9 10

Signal 2.50 1.73 1.38 1.19

Error 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sum 3.50 2.73 2.38 2.19 1.00 1.00 1.00 1.00 1.00 1.00

d=6

Component 1 2 3 4 5 6 7 8 9 10

Signal 3.00 2.16 1.73 1.47 1.30 1.19

Error 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sum 4.00 3.16 2.73 2.47 2.30 2.19 1.00 1.00 1.00 1.00
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Figure 2.2: Example 2 with n = 800 and d = 2, 4, 6: Comparison of true β(·)
functions (black solid) with median estimates over 100 simulation runs for AGMM
(red solid), Base AGMM (red dashed), CLS (cyan solid), Base CLS (cyan dashed),
Base CGMM (green dotted) and Base ALS (gray dash-dotted).

same way as Example 2 and then generate the observed values Zti from equation

(2.26), where time points Uti and errors ηti are randomly sampled from Uniform[0, 1]

and N(0, 0.52), respectively. We consider simulation settings d = 2, 4, 6, n =

400, 800, 1200 and mt = 10, 25, 50, 100, changing from sparse to moderately dense

to very dense measurement schedules. In each case, the optimal bandwidth param-

eters, hC , hS, are selected by the 10-fold cross-validation as explained in Rub́ın and

Panaretos (2020) and d̂ is chosen so that the first d̂ eigenvalues explains over 95% of

the total variation. Table 2.5 reports numerical summaries for all 36 cases. Several

conclusions can be drawn. First, for each d, the estimation accuracy is improved as

n and mt increase. Second, as curves are very densely observed, e.g. mt = 100, our

proposed smoothing approach enjoys similar performance with AGMM in Table 2.4,

providing empirical evidence to support our remark for Theorem 2.4 about the same

convergence rate between very densely observed and fully observed functional sce-

narios.

Example 4: This example is used to demonstrate the superiority of AGMM meth-

ods under the setting where the dimension of the β0(·) is less than the dimension

of Xt(·). While the data are generated in the same fashion to Example 2, the slope

functions are generated by β0(·) =
∑d

j=1 b̃jϕj(·) with b̃j = bj for j = 1, . . . , d − 1

and b̃d = 0 so that the dimension of β0(·) is d− 1 < d. Table 2.6 provides numerical

results under the oracle scenario with true d in the estimation. We obtain the same

findings to those in Table 2.4, i.e. two versions of AGMM significantly outperform

their competing methods, while AGMM is superior to Base AGMM in most of the

cases.

Example 5: This example is used to illustrate the advantages of AGMM meth-

ods under the infinite dimensional setting. With a large enough d, e.g. d =

25, the data is generated as follows so that Conditions 2.3 and 2.4 are satisfied.
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Table 2.4: Example 2: The mean and standard error (in parentheses) of the mean

integrated squared error for β̂(u) over 100 simulation runs. The lowest values are in
bold font.

d̂ n d Base CLS CLS Base CGMM Base ALS Base AGMM AGMM

True

400

2 1.591(0.059) 0.990(0.046) 1.118(0.078) 1.165(0.030) 0.599(0.038) 0.262(0.026)

4 2.026(0.066) 1.590(0.070) 2.310(0.112) 0.972(0.033) 0.686(0.041) 0.448(0.034)

6 2.310(0.069) 1.932(0.077) 2.722(0.104) 0.938(0.035) 0.825(0.042) 0.676(0.048)

800

2 1.377(0.051) 0.940(0.038) 0.884(0.085) 0.994(0.019) 0.337(0.020) 0.138(0.010)

4 1.934(0.051) 1.526(0.054) 2.268(0.105) 0.685(0.016) 0.318(0.016) 0.208(0.013)

6 2.160(0.056) 1.872(0.055) 2.859(0.138) 0.575(0.015) 0.339(0.017) 0.364(0.020)

1200

2 1.294(0.053) 0.980(0.048) 0.750(0.081) 0.900(0.013) 0.203(0.011) 0.080(0.005)

4 1.959(0.053) 1.524(0.058) 2.426(0.121) 0.582(0.009) 0.167(0.008) 0.124(0.006)

6 2.270(0.048) 2.002(0.050) 3.092(0.113) 0.494(0.011) 0.217(0.010) 0.248(0.010)

Est

400

2 0.817(0.012) 0.818(0.012) 0.980(0.059) 1.141(0.026) 0.575(0.030) 0.248(0.018)

4 1.037(0.043) 0.725(0.036) 1.319(0.070) 1.097(0.038) 0.773(0.042) 0.584(0.038)

6 0.913(0.041) 0.811(0.038) 1.305(0.068) 1.164(0.050) 0.999(0.051) 0.955(0.053)

800

2 0.795(0.010) 0.795(0.010) 0.899(0.055) 0.989(0.019) 0.333(0.020) 0.138(0.009)

4 1.093(0.033) 0.768(0.035) 1.471(0.065) 0.682(0.016) 0.319(0.016) 0.212(0.013)

6 0.859(0.041) 0.809(0.039) 1.139(0.061) 0.571(0.016) 0.335(0.017) 0.369(0.020)

1200

2 0.779(0.007) 0.780(0.007) 0.747(0.044) 0.898(0.012) 0.205(0.012) 0.079(0.005)

4 1.055(0.026) 0.815(0.032) 1.344(0.052) 0.580(0.009) 0.166(0.008) 0.130(0.007)

6 0.813(0.029) 0.808(0.029) 1.159(0.058) 0.492(0.011) 0.216(0.011) 0.243(0.009)

To be specific, we generate Xt(u) =
∑d

j=1 ξtjϕj(u) based on ξtj = 0.8ξt−1,j +

ϵtj, where ϵtj ∼ N(0, j−0.75). Some specific calculations yield lag-k autocovariance

of ξtj as Cov(ξtj, ξt+k,j) = 0.8k·j−0.75

0.36
and eigenvalues of K in equation (2.9) as

θj =
∑L

k=1Cov(ξtj, ξt+k,j)
2 =

∑L
k=1 0.8

2k

0.362
· j−1.5 ≍ j−1.5 under the orthonormality

of {ϕj(·)}j≥1. Hence, Condition 2.3 is satisfied with α = 1.5. Moreover, we set τ = 2

in Condition 2.4 so that τ ≥ α+ 1/2 is satisfied and hence generate the slope func-

tion β0(·) =
∑d

j=1 b̃jϕj(·) with b̃j = (−1)j−1 · 2 · j−2. The innovations {νtj}n×10 are

independent N(0, 1) variables. The truncated dimension M is chosen so that the

top M eigenvalues explains over 90% of the total variation. Table 2.7 reports nu-

merical results for all comparison methods under two settings, where {ϕj(·)}dj=1 and

{ζj(·)}10j=1 are generated from the corresponding basis functions used in Example 1

and 2, respectively. Again we observe the prominent superiority of two versions

of AGMM methods over the competitors with AGMM significantly outperforming

Base AGMM.

2.5.2 Real data analysis

In this section, we illustrate the proposed AGMM using a public financial dataset.

The dataset was downloaded from Wharton Research Data Services and consists of
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Table 2.5: Example 3: The mean and standard error (in parentheses) of the mean

integrated squared error for β̂(u) over 100 simulation runs.

n d mt = 10 mt = 25 mt = 50 mt = 100

400

2 0.906(0.052) 0.374(0.019) 0.296(0.015) 0.227(0.011)

4 1.238(0.046) 0.637(0.027) 0.593(0.045) 0.395(0.020)

6 1.168(0.051) 1.092(0.031) 0.906(0.028) 0.721(0.027)

800

2 0.571(0.030) 0.194(0.009) 0.155(0.008) 0.142(0.007)

4 0.804(0.030) 0.375(0.015) 0.329(0.023) 0.231(0.010)

6 1.130(0.039) 0.835(0.029) 0.481(0.019) 0.360(0.013)

1200

2 0.317(0.017) 0.145(0.007) 0.124(0.006) 0.107(0.005)

4 0.632(0.025) 0.226(0.008) 0.214(0.013) 0.150(0.007)

6 1.043(0.031) 0.505(0.016) 0.311(0.010) 0.269(0.009)

Table 2.6: Example 4: The mean and standard error (in parentheses) of the mean

integrated squared error for β̂(u) over 100 simulation runs. The lowest values are in
bold font.

n d Base CLS CLS Base CGMM Base ALS Base AGMM AGMM

400

2 0.683(0.008) 0.577(0.007) 0.244(0.014) 0.646(0.008) 0.255(0.014) 0.132(0.008)

4 1.415(0.042) 0.993(0.043) 1.619(0.072) 0.756(0.014) 0.489(0.024) 0.324(0.018)

6 1.990(0.051) 1.600(0.055) 2.312(0.066) 0.775(0.021) 0.647(0.025) 0.500(0.024)

800

2 0.589(0.006) 0.560(0.006) 0.137(0.008) 0.593(0.006) 0.125(0.005) 0.076(0.005)

4 1.378(0.038) 0.855(0.037) 1.641(0.069) 0.620(0.008) 0.253(0.010) 0.191(0.012)

6 1.817(0.036) 1.546(0.035) 2.351(0.077) 0.515(0.009) 0.295(0.011) 0.304(0.019)

1200

2 0.573(0.004) 0.552(0.004) 0.081(0.005) 0.576(0.004) 0.082(0.004) 0.048(0.003)

4 1.383(0.035) 0.875(0.044) 1.732(0.072) 0.554(0.005) 0.142(0.006) 0.108(0.006)

6 1.895(0.032) 1.623(0.036) 2.598(0.071) 0.462(0.007) 0.196(0.007) 0.197(0.013)

one-minute resolution prices of Standard & Poor’s 500 index and inclusive stocks

from n = 251 trading days in year 2017. The trading time (9:30-16:00) is then

converted to minutes, u ∈ [0, 390]. Let Pt(uj) (t = 1, . . . , n, j = 1, . . . , 390) be the

price of a financial asset at the j-th minute after the opening time on the t-th trading

day. Denote the cumulative intraday return (CIDR) trajectory, in percentage, by

rt(uj) = 100
[
log{Pt(uj)} − log{Pt(u1)}

]
(Horváth et al., 2014). Let rm,t(u) be the

CIDR curves of the Standard & Poor’s 500 index.

We extend the standard capital asset pricing model (CAPM) [Chapter 5 of Campbell

et al. (1997)] to the functional domain by considering the functional linear regression
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Table 2.7: Example 5: The mean and standard error (in parentheses) of the mean

integrated squared error for β̂(u) over 100 simulation runs. The lowest values are in
bold font.

{ϕj}25j=1, {ζj}10j=1 n Base CLS CLS Base CGMM Base ALS Base AGMM AGMM

Example 1

400 0.972(0.017) 1.068(0.022) 0.913(0.030) 0.708(0.012) 0.582(0.013) 0.390(0.017)

800 0.810(0.011) 0.849(0.012) 0.540(0.018) 0.535(0.008) 0.329(0.008) 0.200(0.008)

1200 0.775(0.009) 0.800(0.009) 0.446(0.017) 0.463(0.006) 0.235(0.005) 0.156(0.005)

Example 2

400 0.677(0.012) 0.684(0.015) 0.838(0.026) 0.702(0.012) 0.590(0.014) 0.376(0.017)

800 0.536(0.008) 0.541(0.007) 0.449(0.012) 0.546(0.007) 0.341(0.008) 0.200(0.007)

1200 0.482(0.005) 0.486(0.005) 0.308(0.009) 0.478(0.004) 0.241(0.005) 0.153(0.005)
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Figure 2.3: Estimated β(·) curves for AGMM (solid) and CLS (dashed).

with functional errors-in-predictors as follows

yt = α +

∫
xt(u)β(u)du+ εt, rm,t(u) = xt(u) + et(u), t = 1, . . . , n, u ∈ [0, 390],

(2.29)

where xt(·) and et(·) represent the signal and error components in rm,t(·), respec-
tively, and yt is the intraday return of a specific stock on the t-th trading day. Note

that the slope parameter in the classical CAPM explains how strongly an asset re-

turn depends on the market portfolio. Analogously, β(·) in functional CAPM in

(2.29) can be understood as the functional sensitivity measure of an asset return to

the market CIDR trajectory.

Figure 2.3 plots the estimated β(·) functions using both AGMM and CLS for three

large-cap-sector stocks, Adobe (ADBE), Johnson & Johnson (JNJ) and PepsiCo

(PEP). A few trends are apparent. First, the AGMM estimates place more positive

weights as u increases. This result seems reasonable given the fact that the daily

most recent market price would contain the most information about the stock’s

closing price. Second, the CLS estimates first dip in the mid-morning and then

start to increase until the end of the trading day. In general, the shapes of the

estimated β(·) functions by either AGMM or CLS are quite similar across the three

43



stocks.

To formulate a prediction problem, we treat CIDR trajectories of the same stock

as that in (2.29) up to current time T < 390 as ry,t(u), u ∈ [0, T ], where, e.g.,

T = 375 corresponds to 15 minutes prior to the closing time of the trading day. Then

we construct the same functional linear model as (2.29) by replacing rm,t(·) with

ry,t(·). To judge which method produces superior predictions, we implement a rolling

procedure to calculate the mean squared prediction error (MSPE) for H = 30 days.

Specifically, for each h = H,H−1, . . . , 1, we treat {yn−h+1, ry,n−h+1} as a testing set,

implementing each fitting method on the training set of {(yt, ry,t) : t = 1, . . . , n−h},
calculate the squared error between yn−h+1 and its predicted value, and repeat this

procedure H-times to compute the MSPE. We calculate the MSPEs over a grid of

(d, J) values and choose the pair with the lowest error. We also include the prediction

errors from the null model, using the mean of the training response to predict the

test response. The resulting MSPEs, for various values of T and the same three

stocks, are provided in Table 2.8. It is easy to observe that the prediction accuracy

for AGMM and CLS improves as T approaches to 390 and AGMM significantly

outperforms two competitors in almost all settings.

Table 2.8: Mean squared prediction errors up to different current times, T = 330,
345, 360, 375, 380 and 385 minutes, for AGMM and two competing methods. All
entries have been multiplied by 10 for formatting reasons. The lowest MSPE for
each value of T is bolded.

Stock Method u ≤ 330 u ≤ 345 u ≤ 360 u ≤ 375 u ≤ 380 u ≤ 385

ADBE

AGMM 1.276 1.179 0.983 0.852 0.800 0.728

CLS 1.272 1.186 1.094 0.991 0.949 0.895

Mean 12.224 12.224 12.224 12.224 12.224 12.224

JNJ

AGMM 0.419 0.305 0.279 0.254 0.243 0.226

CLS 0.583 0.496 0.419 0.352 0.330 0.306

Mean 3.077 3.077 3.077 3.077 3.077 3.077

PEP

AGMM 0.749 0.659 0.557 0.466 0.429 0.384

CLS 0.781 0.687 0.596 0.502 0.468 0.429

Mean 2.956 2.956 2.956 2.956 2.956 2.956

2.6 Appendix

Appendix 2.6.1 contains the basis expansion approach to address partially observed

curve time series. The proofs of all theorems and technical lemmas are in the

Appendix 2.6.2.
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2.6.1 Basis expansion approach

We develop a standard basis expansion approach to estimate K(u, v) and R(u). Let

B(u) be the J-dimensional orthonormal basis function, i.e.
∫
U B(u)BT(u)du = IJ ,

such that each Ck(u, v) can be well approximated by {B(u)}TΣkB(v). In practice,

J can be selected by a similar cross-validation procedure described in Section 2.2.5.

Let Bti = B(Uti). We consider minimizing

n−L∑
t=1

mt∑
i=1

mt+k∑
j=1

{
ZtiZ(t+k)j −BT

tiΣkB(t+k)j

}2
(2.30)

with respect to Σk ∈ RJ×J . Standard calculation shows that the estimate of Σk that

minimizes (2.30) is

vec(Σ̂k) =

(∑
t,i,j

(B(t+k)j ⊗Bi)(B(t+k)j ⊗Bi)
T

)−1∑
t,i,j

(B(t+k)j ⊗Bi)ZtiZ(t+k)j,

where vec(B) denotes the vectorization of the matrix B formed by stacking its

columns into a single column vector and ⊗ is the Kronecker product. Then the

estimate of K(u, v) is

K̃(u, v) = {B(u)}T

L∑
k=1

Σ̂kΣ̂
T

kB(v).

Similarly, we can obtain a consistent estimator Ĉov{Yt,Wt+k(u)} = δ̂
T

kB(u), where

δ̂k is obtained by minimizing

n−L∑
t=1

∑
1≤i≤mt

{
YtZ(t+k)i − δTkB(t+k)i

}2
with repsect to δk ∈ RJ . Then the estimate of δk is

δ̂k =

(∑
t,i

B(t+k)iB
T
(t+k)i

)−1∑
t,i

B(t+k)iYtZ(t+k)i.
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As a result, R(u) can be estimated by

R̃(u) =
L∑

k=1

δ̂
T

k Σ̂
T

kB(u).

2.6.2 Proofs

Proof of Theorem 2.1 (i)

Define K̂(u, v) =
∑d

j=1 θ̂jψ̂j(u)ψ̂j(v) and K−1(u, v) =
∑d

j=1 θ
−1
j ψj(u)ψj(v). Let

β̂(u) =
∫
U K̂

−1
(u, v)R̂(v)dv. For a large δ > 0, by Lemma 2.4, we have

P
(
n1/2∥β̂ − β0∥ > δ

)
= P

(
n1/2∥β̂ − β0∥ > δ, d̂ = d

)
+ P

(
n1/2∥β̂ − β0∥ > δ, d̂ ̸= d

)
≤ P

(
n1/2∥β̂ − β0∥ > δ, d̂ = d

)
+ P

(
d̂ ̸= d

)
≤ P

(
n1/2∥β̂ − β0∥ > δ

)
+ o(1),

which means that, to prove n1/2∥β̂−β0∥ = OP (1), it suffices to show that ∥β̂−β0∥ =

OP (n
−1/2). It is easy to show that

∥β̂ − β0∥ ≤ ∥K̂
−1

−K−1∥S∥R̂∥+ ∥K−1∥S∥R̂−R∥. (2.31)

Then it follows from Lemmas 2.2, 2.3 and 2.5 that ∥β̂ − β0∥ = OP (n
−1/2).

Proof of Theorem 2.1 (ii)

Without any ambiguity, write ⟨q,K⟩, ⟨K, q⟩ and ⟨p, ⟨K, q⟩⟩ for

∫
U
K(u, v)q(u)du,

∫
U
K(u, v)q(v)dv and

∫
U

∫
U
K(u, v)p(u)q(v)dudv,

respectively. In Lemma 2.6, we give expressions for θ̂j − θj and ψ̂j − ψj for j ≥ 1.

Let βM(u) =
∑M

j=1 θ
−1
j ⟨ψj, R⟩ψj(u). By the triangle inequality, we have

∥β̂ − β0∥2 ≤ ∥β̂ − βM∥2 + ∥βM − β0∥2. (2.32)

By (2.12) and orthonormality of {ψj(·)}, we have ∥βM−β0∥2 =
∑∞

j=M+1 θ
−2
j ⟨ψj, R⟩2.
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It follows from Condition 2.4 and some specific calculations that

∥βM − β0∥2 =
∞∑

j=M+1

b2j ≤ C

∞∑
j=M+1

j−2τ = O(M−2τ+1). (2.33)

Next we will show the convergence rate of ∥β̂ − βM∥2. Observe that

β̂(u)− βM(u) =
M∑
j=1

(
θ̂−1
j − θ−1

j

)
⟨ψj, R⟩ψ̂j(u) +

M∑
j=1

θ̂−1
j

(
⟨ψ̂j, R̂⟩ − ⟨ψj, R⟩

)
ψ̂j(u)

+
M∑
j=1

θ−1
j ⟨ψj, R⟩

{
ψ̂j(u)− ψj(u)

}
.

Then we have

∥β̂ − βM∥2 ≤ 3
M∑
j=1

(
θ̂−1
j − θ−1

j

)2⟨ψj, R⟩2 + 3
M∑
j=1

θ̂−2
j

(
⟨ψ̂j, R̂⟩ − ⟨ψj, R⟩

)2
+3M

M∑
j=1

θ−2
j ⟨ψj, R⟩2

∥∥ψ̂j − ψj

∥∥2
= 3In1 + 3In2 + 3In3. (2.34)

Let ∆̂ = ∥K̂ − K∥S and ΩM = {2∆̂ ≤ δM}. On the event ΩM , we can see that

supj≤M |θ̂j − θj| ≤ θM/2, which implies that 2−1θj ≤ θ̂j ≤ 2θj. Moreover, we can

show that P (ΩM) → 1 since n1/2δM → ∞ as n→ ∞. Hence it suffices to work with

bounds that are established under the event ΩM .

Provided that event ΩM holds, it follows from supj≥1 |θ̂j − θj| = OP (n
−1/2) in

Lemma 2.1(i) and some calculations that

In1 ≤ 4
M∑
j=1

(
θ̂j − θj

)2
θ−4
j ⟨ψj, R⟩2 = 4

M∑
j=1

θ−2
j b2j

(
θ̂j − θj

)2
= OP

(
n−1

M∑
j=1

θ−2
j b2j

)
.

By Conditions 2.3–2.4, we have

In1 = OP (n
−1) ·

( M∑
j=1

j2α−2τ
)

= OP (n
−1) ·

(
M +M2α−2τ+1

)
= oP

(
n−1M2α+1

)
.
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Consider the term In3. By ∥ψ̂j − ψj∥ = OP

(
j1+αn−1/2

)
in Lemma 2.1(iii) and Con-

dition 2.4, we obtain that

In3 ≤M
M∑
j=1

b2j
∥∥ψ̂j − ψj

∥∥2 = OP

(
n−1M2−2τ+2α+2

)
= OP

(
n−1M2α+1

)
,

where the last equality comes from α > 1 and 2α − 2τ + 4 ≤ 2α + 1 implied by

Condition 2.4.

Consider the term In2. On the event ΩM , we have that

In2 ≤ 4
M∑
j=1

θ−2
j

(
⟨ψ̂j, R̂⟩ − ⟨ψj, R⟩

)2
≤ 12

M∑
j=1

θ−2
j

(
⟨ψ̂j − ψj, R⟩2 + ⟨ψj, R̂−R⟩2 + ⟨ψ̂j − ψj, R̂−R⟩2

)
≤ 12

M∑
j=1

θ−2
j

(
⟨ψ̂j − ψj, R⟩2 + ∥R̂−R∥2 + ∥ψ̂j − ψj∥2∥R̂−R∥2

)
, (2.35)

where the last inequality comes from orthonormality of {ψj(·)} and Cauchy-Schwarz

inequality. By Lemma 2.6 and some calculations, we can represent the term ⟨ψ̂j −
ψj, R⟩ as

⟨ψ̂j − ψj, R⟩ = Rj1 +Rj2,

where Rj1 =
∑

k:k ̸=j θkbk(θ̂j − θk)
−1⟨ψ̂j, ⟨K̂ − K,ψk⟩⟩ and Rj2 = θjbj⟨ψ̂j − ψj, ψj⟩.

It follows from Condition 2.3–2.4, Lemma 2.1 and Cauchy-Schwarz inequality that

M∑
j=1

θ−2
j R2

j2 = OP (n
−1) ·

( M∑
j=1

j−2τ+2α+2
)
= oP

(
n−1M2α+1

)
. (2.36)

Note that on the event ΩM , |θ̂j − θj| ≤ 2−1|θj − θk| for j = 1, . . . , k− 1, k+1, . . . ,M

and hence |θ̂j − θk| ≥ 2−1|θj − θk|. If we can show that

sup
j≥1

(θ2j j
2α)−1

∑
k:k ̸=j

θ2kb
2
k(θj − θk)

−2 = O(1), (2.37)
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then, by Condition 2.4, Lemma 2.1 and on the event ΩM , we have

M∑
j=1

θ−2
j R2

j1 ≤ 4
M∑
j=1

θ−2
j

∑
k:k ̸=j

θ2kb
2
k(θj − θk)

−2∥K̂ −K∥2S

= OP (n
−1) ·

M∑
j=1

θ−2
j θ2j j

2α = OP (n
−1M2α+1). (2.38)

We turn to prove (2.37) as follows. Denote [j/2] by the largest integer less than j/2.

Then

∑
k:k ̸=j

θ2kb
2
k(θj − θk)

−2 =

 ∞∑
k=2(j+1)

+

k=2j+1∑
k=[j/2]+1,k ̸=j

+

[j/2]∑
k=1

 θ2kb
2
k(θj − θk)

−2.

Observe that for k ≥ 2(j + 1),

θj − θk =
k−1∑
s=j

(θs − θs+1) ≥ c

∫ 2(j+1)

j+1

s−α−1ds = − c

α
s−α
∣∣∣2(j+1)

j+1
≥ c

2α
2−αj−α,

and for [j/2] + 2 ≤ k ≤ 2j + 1 but k ̸= j,

|θj − θk| ≥ max(θj − θj+1, θj−1 − θj) ≥ cj−α−1.

Therefore,

(θ2j j
2α)−1

∞∑
k=2(j+1)

θ2kb
2
k(θj − θk)

−2 = O(1) · j2α−2τ

∞∑
k=2(j+1)

θ2k = O(1),

(θ2j j
2α)−1

2j+1∑
k=[j/2]+1

θ2kb
2
k(θj − θk)

−2 ≤ (θ2j j
2α)−1

2j+1∑
k=[j/2]+1

2
{
θ2j + (θj − θk)

2
}
b2k(θj − θk)

−2

= O(1) · θ−2
j j−2α(1 + θ2j j

2α+3−2τ ) = O(1),

(θ2j j
2α)−1

[j/2]∑
k=1

θ2kb
2
k(θj − θk)

−2 ≤ O(1)

[j/2]∑
k=1

θ2kb
2
k(θk − θ2k)

−2 = O(1) · θ21j2α−2τ+1

= O(1),

uniformly in j. Then (2.37) follows.
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Moreover, it follows from Condition 2.3, Lemmas 2.1–2.3 that

M∑
j=1

θ−2
j ∥R̂−R∥2 = OP (n

−1M2α+1)

and

M∑
j=1

θ−2
j ∥ψ̂j − ψj∥2∥R̂−R∥2 = OP (n

−2M4α+3).

(2.39)

Combing the results in (2.35)–(2.36) and (2.38)–(2.39), we have

In2 = OP

(
n−2M4α+3 + n−1M2α+1

)
. (2.40)

Combining the results in (2.32),(2.33) and (2.40) and choosing M ≍ n1/(2α+2τ), we

obtain that

∥β̂ − β0∥2 = OP

(
n−2M4α+3 + n−1M2α+1 +M−2τ+1

)
= OP

(
n− 2τ−1

2α+2τ

)
.

Proof of Theorem 2.2

Following the similar arguments used in the proofs for Lemmas 2.2 and 2.3 under

some regularity conditions, we can show that

∥Ĥ −H∥S = OP (n
−1/2) and ∥H∥S = O(1). (2.41)

Consider the case when d is fixed. Let γ̂(u, v) =
∫
U K̂

−1
(u,w)Ĥ(w, v)dw. Then we

have

∥γ̂ − γ0∥S ≤ ∥K̂
−1

−K−1∥S∥Ĥ∥S + ∥K−1∥S∥Ĥ −H∥S . (2.42)

It follows from Lemma 2.5 and (2.41) that ∥γ̂ − γ∥S = OP (n
−1/2 + n−1/2) =

OP (n
−1/2). Finally, applying the similar technique used in the proof for part (i)

of Theorem 2.1, we can prove the result in part (i) of Theorem 2.2.

When d = ∞, let γM(u, v) =
∑M

j=1 θ
−1
j ψj(u)⟨ψj, H(·, v)⟩. By the triangle inequality,

we have

∥γ̂ − γ0∥2S ≤ ∥γ̂ − γM∥2S + ∥γM − γ0∥2S . (2.43)
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It follows from Condition 2.6 and some specific calculations that

∥γM − γ0∥2S = O(1)
∥∥∥ ∞∑

j=M+1

∞∑
ℓ=1

bjℓψj(u)ψℓ(v)
∥∥∥2
S

= O(1)
∞∑

j=M+1

∞∑
ℓ=1

b2jℓ = O(1)
∞∑

j=M+1

∞∑
ℓ=1

(j + ℓ)−2τ−1

= O(M−2τ+1).

It remains to show that the convergence rate of ∥γ̂ − γM∥2S . Observe that

γ̂(u, v)− γM(u, v) =
M∑
j=1

(
θ̂−1
j − θ−1

j

)
⟨ψj, H⟩(v)ψ̂j(u)

+
M∑
j=1

θ̂−1
j

(
⟨ψ̂j, Ĥ⟩(v)− ⟨ψj, H⟩

)
(v)ψ̂j(u)

+
M∑
j=1

θ−1
j ⟨ψj, H⟩(v)

{
ψ̂j(u)− ψj(u)

}
.

Then we have,

∥γ̂ − γM∥2S ≤ 3
M∑
j=1

(
θ̂−1
j − θ−1

j

)2∥⟨ψj, H⟩∥2 + 3
M∑
j=1

θ̂−2
j

∥∥⟨ψ̂j, Ĥ⟩ − ⟨ψj, H⟩
∥∥2

+ 3M
M∑
j=1

θ−2
j

∥∥⟨ψj, H⟩
∥∥2∥∥ψ̂j − ψj

∥∥2.
Following the similar arguments used in the proof for Theorem 2.1 (ii), we can show

that

∥γ̂ − γM∥2S = OP (M
4α+3n−2 +M2α+1n−1). (2.44)

Combing the results in (2.43)–(2.44) and choosing M ≍ n1/(2α+2τ), we have

∥γ̂ − γ0∥2S = OP

(
M2α+1n−1 +M−2τ+1

)
= OP

(
n− 2τ−1

2α+2τ

)
.

which completes our proof for part (ii) of Theorem 2.2.
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Proofs of Theorem 2.3

We begin with the L2 rates of C̃k for k ≥ 1. We wish to prove them in the same

fashion as the proof of Theorem 1 in Hansen (2008). For p, q = 0, 1, 2, define

Z̃
(1)
p,q,i(u, v) =

mt∑
i=1

mt+k∑
j=1

Kk,i,j,h,t(u, v)

(
Uti − u

hC

)p(U(t+k)j − v

hC

)q

,

Z̃
(2)
p,q,i(u, v) =

mt∑
i=1

mt+k∑
j=1

Kk,i,j,h,t(u, v)

(
Uti − u

hC

)p(U(t+k)j − v

hC

)q

ZtiZ(t+k)j.

Let Spq = (nρ2nh
2
C)

−1
∑n

i=1 Z̃
(1)
p,q,i and Gpq = (nρ2nh

2
C)

−1
∑n

i=1 Z̃
(2)
p,q,i. Then we have

C̃k =
(S20S02 − S2

11)G00 − (S10S02 − S01S11)G10 + (S10S11 − S01S20)G01

(S20S02 − S2
11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

so that C̃k(u, v)− Ck(u, v) can be expressed as

=
(S20S02 − S2

11){G00 − Ck(u, v)S00 − hC
∂Ck

∂u
(u, v)S10 − hC

∂Ck

∂v
(u, v)S01}

(S20S02 − S2
11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

−
(S20S02 − S2

11){G10 − Ck(u, v)S10 − hC
∂Ck

∂u
(u, v)S20 − hC

∂Ck

∂v
(u, v)S11}

(S20S02 − S2
11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

+
(S20S02 − S2

11){G01 − Ck(u, v)S01 − hC
∂Ck

∂u
(u, v)S11 − hC

∂Ck

∂v
(u, v)S02}

(S20S02 − S2
11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

.

Let U = {Uti, i = 1, . . . ,mt, t = 1, . . . , n}. Suppose we have shown that for p, q =

0, 1, 2, ∥∥Gpq − E
{
Gpq

∣∣U}∥∥S = OP

(
1√
nρ2nh

2
C

+
1√
n

)
, (2.45)

and

sup
u,v∈[0,1]

∣∣Spq(u, v)− ESpq(u, v)
∣∣ = oP (1). (2.46)

By Taylor expansion, Condition 2.11 and (2.46),

∥∥∥∥E{G00

∣∣U}− Ck(u, v)S00 − hC
∂Ck

∂u
(u, v)S10 − hC

∂Ck

∂v
(u, v)S01

∥∥∥∥
S
= OP (h

2
C).

(2.47)
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Then combing (2.45) and (2.47) yields that

∥∥∥∥G00 − Ck(u, v)S00 − hC
∂Ck

∂u
(u, v)S10 − hC

∂Ck

∂v
(u, v)S01

∥∥∥∥
S
=

OP

(
1√
nρ2nh

2
C

+
1√
n
+ h2C

)
. (2.48)

Similarly, both G10 − Ck(u, v)S10 − hC
∂Ck

∂u
(u, v)S20 − hC

∂Ck

∂v
(u, v)S11 and G01 −

Ck(u, v)S01 − hC
∂Ck

∂u
(u, v)S11 − hC

∂Ck

∂v
(u, v)S02 can be proved to have the same rate

in (2.48). We can see from (2.46) that each denominator in C̃k(u, v) is positive and

bounded away from zero with probability approaching one, and as a consequence,

part (i) of Theorem 2.3 follows.

Next, we turn to prove (2.45) and (2.46). For (2.45), it suffices to show that

∫ ∫
E
{
G00(u, v)− E

{
G00(u, v)

∣∣U}}2 dudv ≲
1

nρ2nh
2
C

+
1

n
,

where an ≲ bn means lim supn→∞ |an/bn| ≤ C for some positive constant C > 0. It

is easy to see that

E
{
G00 − E

{
G00

∣∣U}}2 ≤ 1

n2ρ4nh
4
C

n∑
t=1

E
∣∣∣Z̃(2)

0,0,1 − E
{
Z̃

(2)
0,0,1|U

}∣∣∣2
+

1

nρ4nh
4
C

n∑
t=1

∣∣∣Cov{Z̃(2)
0,0,1 − E

{
Z̃

(2)
0,0,1|U

}
, Z̃

(2)
0,0,t+1 − E

{
Z̃

(2)
0,0,t+1|U

}}∣∣∣ .
Let W = {Wt(·), Uti, i = 1, . . . ,mt, t = 1, . . . , n}. Note that Z̃

(2)
0,0,1 − E

{
Z̃

(2)
0,0,1|U

}
=

Z̃
(2)
0,0,1 −E

{
Z̃

(2)
0,0,1

∣∣W}+E
{
Z̃

(2)
0,0,1

∣∣W}−E
{
Z̃

(2)
0,0,1|U

}
. Given W, the first term Z̃

(1)
0,0,1 −

E
{
Z̃

(1)
0,0,1

∣∣W} is a U-type statistics and hence some specific calculations yield that

E
{
Z̃

(2)
0,0,1 −E

{
Z̃

(2)
0,0,1

∣∣W}}2

≲ ρ2nh
2
C + ρ3nh

3
C and E

{
E
{
Z̃

(2)
0,0,1

∣∣W}−E
{
Z̃

(2)
0,0,1|U

}}2

≲

ρ4nh
4
C + ρ2nh

2
C . As a result,

E|Z̃(2)
0,0,1 − E

{
Z̃

(2)
0,0,1|U

}
|2 ≲ ρ4nh

4
C + ρ2nh

2
C .

In a similar manner together with Marcinkiewicz-Zygmund inequality, we can show

that

E|Z̃(2)
0,0,1(u, v)− E

{
Z̃

(2)
0,0,1|U

}
|s ≲ ρ2sn h

2s
C + ρsnh

s
C + ρs/2n h2C .

For each fixed (u, v) and hC , under the Conditions 2.7–2.12, we see that (Z̃
(2)
0,0,1,
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Z̃
(2)
0,0,i, . . .) is strictly stationary with ψ-mixing coefficients ψZ(l) satisfying ψZ(l) ≲

(l − k)−λ for l ≥ k + 1. For j∗ < j ≤ max(j∗ + 1, ρ−2
n h−2

C ) with fixed j∗ > k + 1, we

have that

∣∣∣Cov{Z̃(2)
0,0,1 − E

{
Z̃

(2)
0,0,1|U

}
, Z̃

(2)
0,0,t+1 − E

{
Z̃

(2)
0,0,t+1|U

}}∣∣∣ ≲ ρ4nh
4
C .

For j > max(j∗ + 1, ρ−2
n h−2

C ) + 1, using Davydov’s lemma, we show that

∣∣∣Cov{Z̃(2)
0,0,1 − E

{
Z̃

(2)
0,0,1|U

}
, Z̃

(2)
0,0,t+1 − E

{
Z̃

(2)
0,0,t+1|U

}}∣∣∣
≲ j−2+2/s

(
ρ4nh

4
C + ρ2nh

2
C + ρnh

4/s
C

)
.

Therefore, the rate in (2.45) follows from the steps to prove Theorem 1 in Hansen

(2008). Similarly, together with Conditions 2.7–2.13, the rates in (2.46) and ∥Ŝk −
Sk∥ follows from the steps to prove Theorem 2 in Hansen (2008). The proof is

complete.

Proofs of Theorem 2.4

By Theorem 2.3 for k = 1, . . . , L, we can easily show that

∥K̃ −K∥S = OP

(
δn1
)
and ∥R̃−R∥ = OP

(
δn1 + δn2

)
. (2.49)

Following directly from the proof steps of Theorem 2.1 by replacing ∥K̂ − K∥ =

OP (n
−1/2) and ∥R̂ − R∥ = OP (n

−1/2) with the corresponding rates in (2.49), we

complete our proof.

Lemma 2.1 and its proof

Lemma 2.1. Suppose that Conditions 2.1–2.3 hold and ⟨ψ̂j, ψj⟩ ≥ 0. Then as

n→ ∞, the following results hold:

(i) ∥K̂ −K∥S = OP (n
−1/2) and supj≥1 |θ̂j − θj| = OP (n

−1/2).

(ii) When d is fixed, ∥ψ̂j − ψj∥ = OP (n
−1/2) for j = 1, . . . , d.

(iii)When d = ∞, ∥ψ̂j − ψj∥ = OP (j
1+αn−1/2) for j = 1, 2, . . . .

Proof. The first result in part (i) can be found in Theorem 1 of Bathia et al. (2010)

and hence the proof is omitted. By (4.43) of Bosq (2000), we have supj≥1|θ̂j −
θj| ≤ ∥K̂ − K∥S = OP (n

−1/2), which completes the proof for the second result in
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part (i). To prove parts (ii) and (iii), let δj = 2
√
2max{(θj−1 − θj)

−1, (θj − θj+1)
−1}

if j ≥ 2 and δ1 = 2
√
2(θ1 − θ2)

−1. It follows from Lemma 4.3 of Bosq (2000) that

∥ψ̂j − ψj∥ ≤ δj∥K̂ − K∥S = OP (δjn
−1/2). Under Condition 2.3(i) with a fixed d,

root-n rate can be achieved. When d = ∞, Condition 2.3(ii) and (iii) imply that

δj ≤ Cjα+1 with some positive constant C. This completes our proof for part (iii).

Lemma 2.2 and its proof

Lemma 2.2. Suppose that Conditions 2.1-2.2 hold, then ∥R̂−R∥ = OP (n
−1/2).

Proof. Provided L is fixed, we may set n ≡ n − L. Let S denotes the space

consisting of all the operators with a finite Hilbert-Schmidt norm and H denotes the

space consisting of all the functions with a finite L2 norm. Let Ztk = Wt ⊗Wt+k ∈
S and ztk = YtWt+k ∈ H. Now consider the kernel ρ : S × H → H given by

ρ(A, x) = Ax∗ with A ∈ S and x ∈ H. Let ck(·) = Cov{Yt,Wt+k(·)}. We can

represent Ĉkĉ
∗
k = n−2

∑n
t=1

∑n
t′=1 ρ(Ztk, zt′k), which is simply a H valued Von Mises’

functional (Borovskikh, 1996). For d ≥ 1, neither of Ck and ck is zero, it follows

from Lemma 3 of Bathia et al. (2010) that E∥Ĉkĉ
∗
k−Ckc

∗
k∥2 = O(n−1). Then by the

Chebyshev inequality, we have

∥R̂−R∥ ≤
L∑

k=1

∥Ĉkĉ
∗
k − Ckc

∗
k∥ = OP (n

−1/2),

which completes the proof.

Lemma 2.3 and its proof

Lemma 2.3. Suppose that Condition 2.2 holds, then ∥R∥ = O(1).

Proof. By the definitions of Ck and (2.8), we have

∥R∥ ≤
L∑

k=1

∥Ck∥S∥Cov(Yt,Wt+k)∥ =
L∑

k=1

∥E{Wt(u)Wt+k(v)}∥S∥E(YtWt+k(u))∥.
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It follows from Cauchy-Schwartz inequality, Condition 2.2, Fubini Theorem and

Jensen’s inequality that ∥E{Wt(u)Wt+k(v)}∥2S

=

∫
U

∫
U
[E{Wt(u)Wt+k(v)}]2dudv

≤
∫
U
E{Wt(u)

2}du
∫
U
E{Wt+k(v)

2}dv =
[ ∫

U
E{Wt(u)

2}du
]2

≤ E
{∫

U
Wt(u)

2du
}2

<∞.

Similarly, ∥E{YtWt+k(u)}∥2 ≤ E(Y 2
t )
∫
U E{Wt+k(u)

2}du < ∞. Combining the re-

sults leads to ∥R∥ = O(1).

Lemma 2.4 and its proof

Lemma 2.4. Suppose the Conditions 2.1, 2.2, 2.3 (i) and (iii) hold. Let ϵn → 0,

ϵ2nn→ ∞ and as n→ ∞. Then when d <∞, P
(
d̂ ̸= d

)
= O{(ϵ2nn)−1} → 0.

Proof. This lemma, which holds for d < ∞, can be found in Theorem 3 of Bathia

et al. (2010) and hence the proof is omitted.

Lemma 2.5 and its proof

Lemma 2.5. Suppose that Conditions 2.1, 2.2, 2.3(i) and (iii) hold. Then the

following results hold.

(i) ∥K̂
−1

−K−1∥S = OP (n
−1/2).

(ii) ∥K−1∥S = O(1).

Proof. Observe that

K̂
−1

−K−1 =
d∑

j=1

(θ̂−1
j − θ−1

j )ψ̂j(u)ψ̂j(v) +
d∑

j=1

θ−1
j {ψ̂j(u)ψ̂j(v)− ψj(u)ψj(v)}.

Then by the orthonormality of {ψj(·)} and {ψ̂j(·)}, we have

∥K̂
−1

−K−1∥S ≤
d∑

j=1

θ̂−1
j θ−1

j |θ̂j − θj|+ 2
d∑

j=1

θ−1
j ∥ψ̂j − ψj∥. (2.50)

When d is fixed, the smallest eigenvalue θd is bounded away from zero. It follows

from Lemma 2.1 (i),(ii) and (2.50) that there exists some positive constant C such

that ∥K̂
−1

−K−1∥S ≤ C(θ−2
d + θ−1

d )n−1/2, which completes the proof for part (i).
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Note that ∥K−1∥S = ∥
∑d

j=1 θ
−1
j ψj(u)ψj(v)∥S = (

∑d
j=1 θ

−2
j )1/2 ≤ d1/2θ−1

d . Then

part (ii) follows as d is fixed and θd is bounded below from zero.

Lemma 2.6 and its proof

Lemma 2.6. If infk ̸=j |θ̂j − θk| > 0, then

ψ̂j − ψj =
∑
k:k ̸=j

(θ̂j − θk)
−1ψk⟨ψ̂j, ⟨K̂ −K,ψk⟩⟩+ ψj⟨ψ̂j − ψj, ψj⟩. (2.51)

Proof. This lemma can be derived from Lemma 5.1 of Hall and Horowitz (2007)

and hence the proof is omitted.
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Chapter 3

An Autocovariance-based

Learning Framework for

High-Dimensional Functional

Time Series

3.1 Introduction

Functional time series refers to functional data objects that are observed consec-

utively over time and constitutes an active research area. Existing research has

mainly focused on extending standard univariate or low-dimensional multivariate

time series methods to the functional domain with theoretical guarantees under an

asymptotic framework, e.g., Aue et al. (2015), Bathia et al. (2010), Bosq (2000),

Hörmann et al. (2015), Hörmann and Kokoszka (2010), Li et al. (2020), Panaretos

and Tavakoli (2013), just to name a few. Rapid development of data collection

technology has made high-dimensional functional time series datasets become in-

creasingly common. Examples include hourly measured concentrations of various

pollutants, e.g., PM10 trajectories (Hörmann et al., 2015) collected over a number

of sites, daily electricity load curves (Cho et al., 2013) for a large number of house-

holds, cumulative intraday return trajectories (Horváth et al., 2014), daily return

density curves (Bathia et al., 2010) and functional volatility processes (Müller et al.,

2011) for a large collection of stocks, and annul temperature curves (Aue and van
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Delft, 2020) at different measuring stations.

The datasets, in this context, consist of p-dimensional vector of functional time se-

ries, Wt(·) = {Wt1(·), . . . ,Wtp(·)}T for t = 1, . . . , n with (auto)covariance functions

ΣW
h (u, v) = Cov{Wt(u),Wt+h(v)} for any integer h and u, v ∈ U (a compact in-

terval), where p can be diverging with, or even larger than, n in a high-dimensional

regime. Suppose the observed curves Wt(·) are subject to errors in the form of

Wt(·) = Xt(·) + et(·) , (3.1)

whereXt(·) = {Xt1(·), . . . , Xtp(·)}T is p-dimensional functional time series of interest

and et(·) = {et1(·), . . . , etp(·)}T is a white noise sequence. In the same manner

as ΣW
h (u, v), we define ΣX

h (u, v) and Σe
h(u, v) by replacing Wt(·) with Xt(·) and

et(·), respectively. We call et(·) is a white noise sequence if E{et(u)} = 0 and

Σe
h(u, v) = 0 for any u, v ∈ U and h ̸= 0. This formulation guarantees that all

dynamic elements of Wt(·) are included in the signal term Xt(·) and all white noise

elements are absorbed into et(·). The existence of et(·) reflects that curves Xt(·) are
seldom completely observed. Instead, they are often only measured, with errors, at

discrete locations. These noisy discrete data are smoothed to yield “observed” curves

Wt(·). Note that {Xt(·)}nt=1 and {et(·)}nt=1 are uncorrelated and unobservable. See

Bathia et al. (2010) for the univariate case of model (3.1) with fully nonparametric

structure on Σe
0. When W1(·), . . . ,Wn(·) are univariate and independent, Hall and

Vial (2006) addressed the same problem under a ‘low noise’ setting assuming that

et(·) goes to 0 as n goes to ∞. Imposing some parametrically specified structure in

the univariate case, Σe
0 is assumed to be diagonal in Yao et al. (2005) and banded

under the assumption that ΣX
0 is finite rank in Descary and Panaretos (2019).

The standard estimation procedure for univariate or low-dimensional functional time

series models consists of three steps (Aue et al., 2015). Due to the intrinsic infinite-

dimensionality of functional data, the first step performs dimension reduction via

e.g. functional principal components analysis (FPCA) to approximate each observed

curve by the finite Karhunen-Loève representation, which transforms functional time

series observations into a vector time series of FPC scores. The second step trans-

forms the estimation of function-valued parameters involved in the models to the

estimation of some vector- or matrix-valued parameters based on the estimated FPC

scores. The third step utilises estimated eigenfunctions to obtain the function-valued

estimate of interest from the vector- or matrix-valued estimate obtained in the sec-

ond step. Estimation in the context of high-dimensional functional time series is

often impossible without imposing some lower-dimensional structural assumption

on the model parameters space. With imposed functional sparsity structure, the
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second step needs to consider the estimation under a block (or group) sparsity con-

straint resulting from the first step, where variables belonging to the same group

should be simultaneously included in or excluded from the model. In a regres-

sion setup, the group-lasso penalized least squares estimation (Yuan and Lin, 2006)

can be implemented in the second step to obtain block sparse estimates, from which

the third step can recover functional sparse estimates. Similar three-step procedures

have been developed to estimate sparse high-dimensional functional models, see e.g.,

vector functional autoregression (VFAR) (Guo and Qiao, 2020), scalar-on-function

linear additive regression (SFLR) (Fan et al., 2015, Kong et al., 2016b, Xue and

Yao, 2020) and function-on-function linear additive regression (FFLR) (Fan et al.,

2014, Luo and Qi, 2017) with serially dependent observations.

Under the error contamination model in (3.1), provided that both FPCA and pe-

nalized least squares estimation are based on the estimated covariance function of

Wt(·), i.e. Σ̂
W

0 , the standard covariance-based procedure is inappropriate given the

fact that ΣW
0 = ΣX

0 +Σe
0 and hence Σ̂

W

0 is not a consistent estimator for ΣX
0 . In this

chapter, motivated from a simple fact that ΣW
h = ΣX

h for any h ̸= 0, which automat-

ically removes the impact from the noise et(·), we propose an autocovariance-based

three-step learning framework. Differing from FPCA via Karhunen-Loève expan-

sion of Wtj(·) for each j, our first step of dimension reduction is developed under an

alternative data-driven basis expansion of Xtj(·) formed by performing eigenanlysis

on a positive-definite operator defined based on autocovariance functions of Wtj(·).
Different from the penalized least squares estimation applied in the second step,

we make use of the autocovariance information of the basis coefficients to construct

some moment equations and then apply our proposed block regularised method to

estimate the associated block sparse vector- or matrix-valued parameters based on

the estimated basis coefficients obtained in the first step. In the third step, the

block sparse estimates obtained in the second step are re-transformed to sparse

function-valued estimates via estimated basis functions obtained in the first step.

There exist several challenges in the theoretical analysis of the proposed autocovariance-

based learning framework for high-dimensional functional time series gathering chal-

lenges of non-asymptotics (Wainwright, 2019) and infinite-dimensionality with se-

rial dependence (Jirak, 2016). First, our proposed second step is applied to the

estimated basis coefficients rather than the true coefficients to produce block sparse

estimates whereas the conventional sparse estimation is applied directly to observed

data. Accounting for such approximation is a major undertaking. Second, under

a high-dimensional and serially dependent setting, it is essential to develop non-

asymptotic theory that seeks to provide probabilistic bounds on relevant estimated
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terms as a function of n, p and the truncated dimension under our autocovariance-

based dimension reduction framework. Third, compared with non-functional data,

the infinite-dimensional nature of functional data leads to the additional theoretical

complexity that arises from specifying the block structure and controlling the bias

terms formed by truncation errors in our dimension reduction step.

The main contribution of this chapter is fourfold.

1. Our autocovariance-based learning framework can address the error contami-

nation model in (3.1) in the presence of infinite-dimensional signal curve dy-

namics with the addition of ‘genuinely functional’ white noise. It makes the

good use of the serial correlation information in our estimation, which is most

relevant in the context of time series modelling.

2. To provide theoretical guarantees for the first and third steps and to verify

imposed conditions in the second step, we rely on functional stability mea-

sures (Fang et al., 2020, Guo and Qiao, 2020) to characterise the effect of

serial dependence and investigate non-asymptotic properties of relevant esti-

mated terms under the autocovariance-based dimension reduction framework

we consider.

3. We utilise the autocovariance of basis coefficients to construct high-dimensional

moment equations with partitioned group structure, based on which we formu-

late the second step in a general block regularised minimum distance (RMD)

estimation framework so as to produce block sparse estimates. Within such

framework, the group information can be explicitly encoded in a convex opti-

misation targeting at minimising the block ℓ1 norm objective function subject

to the block ℓ∞ norm constraint. To theoretically support the second step, we

also study convergence properties of the block RMD estimator.

4. Exemplarily, we illustrate the autocovariance-based three-step procedure us-

ing three sparse high-dimensional functional time series models, i.e. SFLR,

FFLR and VFAR. Using our derived theoretical results, we establish con-

vergence rates of the associated estimators in these models. Empirically, we

demonstrate the superiority of these autocovariance-based estimators relative

to their covariance-based counterparts.

This chapter is set out as follows. In Section 3.2, we propose a general autocovariance-

based three-step procedure with illustration using SFLR as an example. In Sec-

tion 3.3, we present the first step of autocovariance-based dimension reduction and

establish essential deviation bounds in elementwise ℓ∞-norm on relevant estimated
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terms used in subsequent analysis. In Section 3.4, we formulate the second step in a

general block RMD estimation framework and investigate its theoretical properties.

In Section 3.5, we illustrate the proposed autocovariance-based learning framework

using applications of SFLR, FFLR and VFAR, and present convergence analysis

of the associated estimators. In Section 3.6, we examine the finite-sample perfor-

mance of the proposed estimators through both an extensive set of simulations and

an analysis of a public financial dataset. All technical proofs are relegated to the

Appendix.

Notation. For a positive integer q, we denote [q] = {1, . . . , q}. Let L2(U) be a

Hilbert space of square integrable functions on a compact interval U . The inner

product of f, g ∈ L2(U) is ⟨f, g⟩ =
∫
U f(u)g(u) du. For a Hilbert space H ⊂ L2(U),

we denote the p-fold Cartesian product by Hp = H× · · · ×H and the tensor prod-

uct by S = H ⊗ H. For f = (f1, . . . , fp)
T and g = (g1, . . . , gp)

T in Hp, we define

⟨f ,g⟩ =
∑p

i=1⟨fi, gi⟩. We use ∥f∥ = ⟨f , f⟩1/2 and ∥f∥0 =
∑p

i=1 I(∥fi∥ ≠ 0) with I(·)
being the indicator function to denote functional versions of induced norm and ℓ0-

norm, respectively. For an integral operator K : Hp → Hq induced from the kernel

function K = (Kij)q×p with each Kij ∈ S, K(f)(u) = {
∑p

j=1⟨K1j(u, ·), fj(·)⟩, . . . ,∑p
j=1⟨Kqj(u, ·), fj(·)⟩}T ∈ Hq for any f ∈ Hp. For notational economy, we will also

use K to denote both the kernel and the operator. We define functional versions of

Frobenius and matrix ℓ∞-norms by ∥K∥F = (
∑q

i=1

∑p
j=1 ∥Kij∥2S)1/2 and ∥K∥∞ =

maxi∈[q]
∑p

j=1 ∥Kij∥S , respectively, where ∥Kij∥S = {
∫
U

∫
U K

2
ij(u, v) dudv}1/2 de-

notes the Hilbert–Schmidt norm of Kij. For any real matrix B = (bij)q×p, we

write ∥B∥max = maxi∈[q],j∈[p] |bij| and use ∥B∥F = (
∑q

i=1

∑p
j=1 |bij|2)1/2 and ∥B∥2 =

λ
1/2
max(BTB) to denote its Frobenius norm and ℓ2-norm, respectively. For two se-

quences of positive numbers {an} and {bn}, we write an ≲ bn or bn ≳ an if there

exist a positive constant c such that an/bn ≤ c. We write an ≍ bn if and only if

an ≲ bn and bn ≲ an hold simultaneously.

3.2 Autocovariance-based three-step procedure

Suppose we observe weakly stationary functional time series {Wt(·)}t∈[n] with mean

zero and (auto)covariance functions ΣW
h (u, v) = {ΣW

h,jk(u, v)}j,k∈[p] for integer h ≥ 0

and (u, v) ∈ U2, whose sample estimators are given by

Σ̂
W

h (u, v) =
1

n− h

n−h∑
t=1

Wt(u)Wt+h(v)
T = {Σ̂W

h,jk(u, v)}j,k∈[p] . (3.2)
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Our proposed autocovariance-based learning framework consists of the following

three steps.

Step 1: Due to the infinite-dimensionality of functional data, for each j, we expand sig-

nal curves Xtj(·) through data-driven orthonormal basis functions, {ψjl(·)}∞l=1,

and approximate them using dj-dimensional truncation,

Xtj(·) =
∞∑
l=1

ηtjlψjl(·) ≈ ηT

tjψj(·) , j ∈ [p] , (3.3)

where ηtjl = ⟨Xtj, ψjl⟩, ηtj = (ηtj1, . . . , ηtjdj)
T ∈ Rdj and ψj = (ψj1, . . . , ψjdj)

T

∈ Rdj . Given observed functional time series {Wtj(·)}t∈[n], we adopt an

autocovariance-based dimension reduction approach in Section 3.3, where we

can obtain estimated basis functions ψ̂j = (ψ̂j1, . . . , ψ̂jdj)
T and estimated basis

coefficients η̂tj = (η̂tj1, . . . , η̂tjdj)
T with η̂tjl = ⟨Wtj, ψ̂jl⟩ for l ∈ [dj].

Step 2: Based on the dimension reduction in Step 1, we can transform the estimation

of function-valued parameters of interest under the sparsity constraint to the

block sparse estimation of some vector- or matrix-valued parameters. Let

E{ηtjη
T

(t+h)k} = {σ(h)
jklm}l∈[dj ],m∈[dk] with its estimator (n−h)−1

∑n−h
t=1 η̂tjη̂

T

(t+h)k

= {σ̂(h)
jklm}l∈[dj ],m∈[dk] for j, k ∈ [p] and h ≥ 0. To identify these vector- or

matrix-valued parameters, we use the autocovariance information among the

basis coefficients {ηtj} to construct high-dimensional moment equations with

partitioned group structure and then rely on estimated autocovariance terms

{σ̂(h)
jklm : j, k ∈ [p], l ∈ [dj],m ∈ [dk], h ≥ 1} to formulate the block RMD

estimation as introduced in Section 3.4.

Step 3: We utilise {ψ̂j(·)}j∈[p] to recover functional sparse estimates from those block

sparse estimates obtained in Step 2.

We give some illustration on the rationality of our autocovariance-based procedure.

Write ΣX
h (u, v) = {ΣX

h,jk(u, v)}j,k∈[p] and Σe
h(u, v) = {Σe

h,jk(u, v)}j,k∈[p]. In the first

step, the classical FPCA is implemented by the eigenanalysis of Σ̂W
0,jj for each j.

However, such covariance-based estimation problem is insoluble in the sense that

one cannot separate Xtj(·) from Wtj(·) due to ΣW
0,jj = ΣX

0,jj + Σe
0,jj and hence Σ̂W

0,jj

is no longer a consistent estimator for ΣX
0,jj. Inspired from ΣW

h,jj = ΣX
h,jj for any

h ̸= 0, which automatically filters out the impact from etj(·) and hence guarantees

that Σ̂W
h,jj is a legitimate estimator for ΣX

h,jj, our first step is developed under an

alternative data-driven basis expansion of Xtj(·) formed by performing eigenanalysis

on a positive-definite operator defined based on Σ̂W
h,jj for h ≥ 1. In the second step,
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the commonly adopted penalized least squares approach is based on the sample

covariance among the estimated FPC scores {σ̂(0)
jklm : j, k ∈ [p], l ∈ [dj],m ∈ [dk]},

see e.g. Kong et al. (2016b). However, provided that σ
(h)
jklm = ⟨ψjl,Σ

X
h,jk(ψkm)⟩ and

σ̂
(h)
jklm = ⟨ψ̂jl, Σ̂

W
h,jk(ψ̂km)⟩, such covariance-based penalized least squares approach

is inappropriate due to the fact that Σ̂W
0,jk and σ̂

(0)
jklm are not consistent estimators

for ΣX
0,jk and σ

(0)
jklm, respectively. Motivated from ΣW

h,jk = ΣX
h,jk for any h ̸= 0

ensuring that σ̂
(h)
jklm is a legitimate estimator for σ

(h)
jklm, the moment equations based

on {σ(h)
jklm : j, k ∈ [p], l ∈ [dj],m ∈ [dk], h ≥ 1} can be well approximated by its

empirical version relied on {σ̂(h)
jklm}.

We next illustrate the proposed three-step procedure using SFLR as an example.

Consider high-dimensional SFLR in the form of

Yt =

p∑
j=1

∫
U
Xtj(u)β0j(u) du+ εt , t ∈ [n] , (3.4)

where p-dimensional functional covariates {Xt(·)}t∈[n] satisfying model (3.1) are in-

dependent of i.i.d. mean-zero random errors {εt}t∈[n], and {β0j(·)}j∈[p] are unknown
functional coefficients. Given observations {(Wt(·), Yt)}t∈[n], our goal is to estimate

β0(·) = {β01(·), . . . , β0p(·)}T. To guarantee a feasible solution under high-dimensional

scaling, we assume that β0(·) is functional s-sparse, i.e. s components in {β0j(·)}j∈[p]
are nonzero with s being much smaller than p.

We expand each Xtj(·) according to (3.3) truncated at dj and rewrite (3.4) as

Yt =

p∑
j=1

ηT

tjb0j + rt + εt ,

where b0j =
∫
U ψj(u)β0j(u) du ∈ Rdj and rt =

∑p
j=1

∑∞
l=dj+1 ηtjl⟨ψjl, β0j⟩ is the

truncation error. Given some prescribed positive integer L, we choose {η(t+h)k : h ∈
[L], k ∈ [p]} as vector-valued instrumental variables. Then b0 = (bT

01, . . . ,b
T
0p)

T ∈
R

∑p
j=1 dj can be identified by the following moment equations:

E{η(t+h)kεt} = ghk(b0) +Rhk = 0 , k ∈ [p] , h ∈ [L] , (3.5)

where ghk(b0) = E{η(t+h)kYt} −
∑p

j=1 E{η(t+h)kη
T
tjb0j} and the bias term Rhk =

−E{η(t+h)krt}.

With {η̂tj}t∈[n],j∈[p] and {ψ̂j(·)}j∈[p] obtained in the first step, for any b = (bT
1 , . . . ,b

T
p )

T ∈
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R
∑p

j=1 dj , we define

ĝhk(b) =
1

n− h

n−h∑
t=1

η̂(t+h)kYt −
1

n− h

n−h∑
t=1

p∑
j=1

η̂(t+h)kη̂
T

tjbj , k ∈ [p] , h ∈ [L] , (3.6)

which provides the empirical version of ghk(b) = E{η(t+h)kYt}−
∑p

j=1 E{η(t+h)kη
T
tjbj}.

It follows from (3.5) that

ĝhk(b0) ≈ 0 , k ∈ [p] , h ∈ [L] . (3.7)

Based on (3.7), applying the block RMD estimation introduced in Section 3.4 results

in a block sparse estimator b̂ = (b̂T
1 , . . . , b̂

T
p )

T. Given that the recovery of functional

sparsity in β0(·) is equivalent to estimating the block sparsity in b0, we can estimate

functional sparse coefficients in the third step by

β̂j(·) = ψ̂j(·)Tb̂j , j ∈ [p] . (3.8)

3.3 Autocovariance-based dimension reduction

3.3.1 Methodology

For each j ∈ [p], we assume that signal curves Xtj(·) admit the Karhunen-Loève

expansion Xtj(·) =
∑∞

l=1 ξtjlνjl(·), where ξtjl = ⟨Xtj, νjl⟩ corresponds to a sequence

of random variables with E(ξtjl) = 0 and Cov(ξtjl, ξtjl′) = ωjlI(l = l′). Here ωj1 ≥
ωj2 ≥ · · · ≥ 0 are eigenvalues of ΣX

0,jj and νj1(·), νj2(·), . . . are the corresponding

orthonormal eigenfunctions satisfying
∫
U ΣX

0,jj(u, v)νjl(v) dv = ωjlνjl(u) for l ≥ 1.

The commonly adopted FPCA is based on applying Karhunen-Loève expansion to

observed curves {Wtj(·)}t∈[n]. However, this covariance-based dimension reduction

approach is inappropriate under the error contamination model in (3.1) as discussed

in Section 3.2. Hall and Vial (2006) tackled such covariance-based problem under

the assumption that W1j(·), . . . ,Wnj(·) are independent and the noise etj(·) goes to
0 as n grows to ∞.

Without requiring the restrictive ‘low noise’ and independence assumption, we follow

Bathia et al. (2010) to implement an autocovariance-based dimension reduction

approach for observed curves {Wtj(·)}t∈[n] due to the fact ΣW
h,jj = ΣX

h,jj for any h ̸= 0,

which ensures that Σ̂W
h,jj is a legitimate estimator for ΣX

h,jj when h ̸= 0. Specifically,
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we define a nonnegative operatorKjj to pull together the autocovariance information

at different lags:

Kjj(u, v) =
L∑

h=1

∫
U
ΣX

h,jj(u, z)Σ
X
h,jj(v, z) dz =

L∑
h=1

∫
U
ΣW

h,jj(u, z)Σ
W
h,jj(v, z) dz , (3.9)

where L > 0 is some prescribed fixed integer. See Lam and Yao (2012) for the

selection of L in practice. It then follows from the infinite-dimensional analog of

Proposition 1 in Bathia et al. (2010) that, under regularity conditions, Kjj has the

spectral decomposition Kjj(u, v) =
∑∞

l=1 λjlψjl(u)ψjl(v) with nonzero eigenvalues

λ1 ≥ λ2 ≥ · · · > 0 and corresponding orthonormal eigenfunctions ψj1(·), ψj2(·), . . .
such that the expansion in (3.3) holds. This expansion forms the foundation of

autocovariance-based dimension reduction for error-contaminated functional time

series and generalises the finite-dimensional formulation in Bathia et al. (2010) to

the infinite-dimensional setting.

With legitimate estimators Σ̂W
h,jj for positive integer h in (3.2), a natural estimator

for Kjj in (3.9) can be obtained by

K̂jj(u, v) =
L∑

h=1

∫
U
Σ̂W

h,jj(u, z)Σ̂
W
h,jj(v, z) dz

=
1

(n− L)2

L∑
h=1

n−L∑
t,s=1

Wtj(u)Wsj(v)⟨W(t+h)j,W(s+h)j⟩ .
(3.10)

Performing eigenanalysis on K̂jj leads to the estimated eigenpairs {(λ̂jl, ψ̂jl)}l≥1.

The infinite series in the expansion in (3.3) are then truncated at dj, chosen data-

adaptively. In practice, we only observe the erroneous versions {Wtj(·)}t∈[n] instead
of the signal components {Xtj(·)}t∈[n] themselves, and the estimated basis coeffi-

cients are given by η̂tjl = ⟨Wtj, ψ̂jl⟩.

3.3.2 Rates in elementwise ℓ∞-norm

To characterise the effect of dependence on relevant estimated terms, we will use

the functional stability measure of {Wt(·)}t∈Z proposed in Guo and Qiao (2020).

Condition 3.1. For {Wt(·)}t∈Z, the spectral density operator fWθ = (2π)−1
∑

h∈Z

ΣW
h e

−ihθ for θ ∈ [−π, π] exists and the functional stability measure defined in (3.11)

is finite, i.e.

MW = 2π · ess sup
θ∈[−π,π],Φ∈Hp

0

⟨Φ, fWθ (Φ)⟩
⟨Φ,ΣW

0 (Φ)⟩
<∞ , (3.11)
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where Hp
0 = {Φ ∈ Hp : ⟨Φ,ΣW

0 (Φ)⟩ ∈ (0,∞)}.

Here MW in (3.11) is expressed proportional to functional Rayleigh quotients of

fWθ relative to ΣW
0 and hence it can more precisely capture the effect of eigenvalues

of fWθ relative to small decaying eigenvalues of ΣW
0 , which is essential to handle

truly infinite-dimensional functional objects {Wtj(·)}. We next define the functional

stability measure of all k-dimensional subsets of {Wt(·)}t∈Z, i.e. {(Wtj(·) : j ∈
J)T}t∈Z for J ⊂ [p] with cardinality |J | ≤ k, by

MW
k = 2π · ess sup

θ∈[−π,π],∥Φ∥0≤k,Φ∈Hp
0

⟨Φ, fWθ (Φ)⟩
⟨Φ,ΣW

0 (Φ)⟩
, k ∈ [p] . (3.12)

Under Condition 3.1, it is easy to verify that MW
k ≤ MW < ∞, which will be

used in our non-asymptotic analysis. Provided that our non-asymptotic results

are developed using the infinite-dimensional analog of Hanson–Wright inequality

(Rudelson and Vershynin, 2013) in a general Hilbert space H, we need to specify

the sub-Gaussian random variables therein.

Definition 3.1. Let Zt(·) be a mean zero random variable in H for any fixed t and

Σ0 : H → H be a covariance operator. Then Zt(·) is a sub-Gaussian process if there

exists a constant c > 0 such that E(e⟨x,Z⟩) ≤ ec
2⟨x,Σ0(x)⟩/2 for all x ∈ H.

Condition 3.2. (i) {Wt(·)}t∈Z is a sequence of multivariate functional linear pro-

cesses with sub-Gaussian errors, namely sub-Gaussian functional linear processes,

Wt(·) =
∑∞

l=0Bl(εt−l) for any t ∈ Z, where Bl = (Bl,jk)p×p with each Bl,jk ∈ H⊗H,
εt(·) = {εt1(·), . . . , εtp(·)}T ∈ Hp and the components in {εt(·)}t∈Z are indepen-

dent sub-Gaussian processes satisfying Definition 3.1; (ii) The coefficient functions

satisfy
∑∞

l=0 ∥Bl∥∞ = O(1); (iii) ωε
0 = maxj∈[p]

∫
U Σε

0,jj(u, u) du = O(1), where

Σε
0,jj(u, u) = Cov{εtj(u), εtj(u)}.

The multivariate functional linear process can be seen as the generalisation of func-

tional linear process (Bosq, 2000) to the multivariate setting as well as the extension

of multivariate linear process (Hamilton, 1994) to the functional domain. According

to Fang et al. (2020), Condition 3.2(ii) ensures the stationarity of {Wt(·)}t∈Z and, to-

gether with Condition 3.2(iii), implies that ωW
0 = maxj∈[p]

∫
U ΣW

0,jj(u, u) du = O(1),

which is essential in subsequent analysis.

Condition 3.3. (i) For each j ∈ [p], it holds that λj1 > λj2 > · · · > 0, and there

exist some positive constants c0 and α > 1 such that λjl − λj(l+1) ≥ c0l
−α−1 for

l ≥ 1; (ii) For each j ∈ [p], the linear space spanned by {νjl(·)}∞l=1 is the same as

that spanned by {ψjl(·)}∞l=1.
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Condition 3.3(i) controls the lower bound of eigengaps with larger values of α yield-

ing tighter gaps and also implies that λjl ≥ c0α
−1l−α. See similar conditions in Hall

and Horowitz (2007) and Kong et al. (2016b). To simplify notation, we assume the

same α across j, but this condition can be relaxed by allowing α to depend on j and

our theoretical results can be generalised accordingly. We next establish the devi-

ation bounds on estimated eigenpairs, {(λ̂jl, ψ̂jl)}, and the sample autocovariance

among estimated basis coefficients, {σ̂(h)
jklm}, in elementwise ℓ∞-norm, which play a

crucial role in further convergence analysis under high-dimensional scaling.

Theorem 3.1. Let Conditions 3.1–3.3 hold, d be a positive integer possibly depend-

ing on (n, p). If n ≳ log(pd), then there exist some positive constants c1 and c2

independent of (n, p, d) such that

max
j∈[p],l∈[d]

{
|λ̂jl − λjl|+

∥∥∥ ψ̂jl − ψjl

lα+1

∥∥∥} ≲ MW
1

√
log(pd)

n
(3.13)

holds with probability greater than 1− c1(pd)
−c2, where MW

1 is defined in (3.12).

Theorem 3.2. Let conditions in Theorem 3.1 hold and h ≥ 1 be fixed. If n ≳

d2α+2(MW
1 )2 log(pd), then there exist some positive constants c3 and c4 independent

of (n, p, d) such that

max
j,k∈[p],l,m∈[d]

|σ̂(h)
jklm − σ

(h)
jklm|

(l ∨m)α+1
≲ MW

1

√
log(pd)

n
(3.14)

holds with probability greater than 1− c3(pd)
−c4, where MW

1 is defined in (3.12).

Remark 3.1. The parameter d in Theorems 3.1 and 3.2 can be understood as the

truncated dimension of infinite-dimensional functional objects under the expansion

in (3.3). In general, d can depend on j, say dj, then the right-sides of (3.13) and (3.14)

become MW
1 n

−1/2 log1/2(
∑p

j=1 dj). Compared with normalised deviation bounds

on estimated eigenpairs, {(ω̂jl, ν̂jl}, and sample autocovariance among estimated

FPC scores established in Guo and Qiao (2020), we obtain slower rates in (3.13)

and (3.14) for decaying eigenvalues. Intuitively, as opposed to the expansion of

Xtj through ψj1, ψj2, . . . with correlated coefficients, νj1, νj2, . . . , provide the unique

basis with respect to which Xtj can be expressed as Karhunen–Loève expansion with

uncorrelated coefficients and gives the most rapidly convergent representation of Xtj

in the L2 sense. From a theoretical viewpoint, whether the rates in (3.13) and (3.14)

are optimal in the minimax sense is of interest and requires further exploration.
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3.4 Block RMD estimation framework

3.4.1 A general estimation procedure

In this section, we present the proposed second step in a general block RMD es-

timation framework. For high dimensional GMM problem, it is essential to select

the moment conditions and the covariates simultaneously to prevent the accumula-

tion of estimation errors (Fan and Liao, 2014). And the selection is implied by the

RMD estimation in the sense that blocked ℓ∞-norm are applied in the programming

problem (3.16). An alternative method is LASSO-type regularisation proposed in

Caner and Kock (2018), which, however, did not perform the moments selection and

circumvent this problem by a more restricted assumption on the bounded minimum

restricted eigenvalue instead of its blocked version shown in Condition 3.7.

Resulting from the dimension reduction step, the estimation of function-valued

parameters involved in sparse high-dimensional functional models can be trans-

formed to the block sparse estimation of some vector- or matrix-valued parameters,

θ0 = (θT

01, . . . ,θ
T

0p)
T ∈ R

∑p
j=1 dj×d̃ with each θ0j ∈ Rdj×d̃, under high-dimensional

scaling. For SFLR with a scalar response, d̃ = 1. For FFLR and VFAR, d̃ ≥ 1 is

the truncated dimension of the functional response. Given some prescribed positive

integer L and q = pL target moment functions θ 7→ gi(θ) mapping θ ∈ R
∑p

j=1 dj×d̃

to gi(θ) ∈ Rdk×d̃ with i = (h− 1)p+ k and k ∈ [p] for h ∈ [L], where both p and q

are large, we assume that θ0 can be identified by the following moment equations:

gi(θ0) +Ri = 0 , i ∈ [q] , (3.15)

where Ri’s are formed by autocovariance-based truncation errors due to the finite

approximation in the first step. We are interested in estimating block sparse θ0

based on empirical mappings θ 7→ ĝi(θ) of θ 7→ gi(θ) for i ∈ [q]. See Sections 3.2

and 3.5 for detailed expressions of gi(·) and ĝi(·) in some exemplified models.

We define the block RMD estimator θ̂ = (θ̂
T

1 , . . . , θ̂
T

p )
T ∈ R

∑p
j=1 dj×d̃ as a solution to

the following convex optimisation problem:

θ̂ = argmin
θ

p∑
j=1

∥θj∥F subject to max
i∈[q]

∥ĝi(θ)∥F ≤ γn , (3.16)

where γn ≥ 0 is a regularisation parameter. For SFLR or FFLR with d̃ = 1, the

matrix Frobenius norm in (3.16) degenerates to the vector ℓ2-norm. For FFLR and

VFAR with d̃ > 1, the corresponding optimisation tasks are formulated under the
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matrix Frobenius norm. The group information is encoded in the objective function,

which forces the elements of θ̂j to either all be zero or nonzero, thus producing the

block sparsity in θ̂. It is worth noting that, without the bias terms Ri’s in (3.15), our

proposed block RMD estimation framework can be seen as a blockwise generalisation

of the RMD estimation (Belloni et al., 2018) by replacing | · | with the ∥·∥F. To solve

the large-scale convex optimisation problem in (3.16), we use the R package CVXR

(Fu et al., 2020), which is easy to implement and converges fast. In Sections 3.5.1,

3.5.2 and 3.5.3, we will illustrate our proposed autocovariance-based block RMD

estimation framework using examples of SFLR, FFLR and VFAR, respectively, in

the context of high-dimensional functional time series.

3.4.2 Theoretical properties

We begin with some notation that will be used in this section. For a block matrix

B = (Bij)i∈[N1],j∈[N2] ∈ RN1m1×N2m2 with the (i, j)-th block Bij ∈ Rm1×m2 , we define

∥B∥(m1,m2)
max = maxi∈[N1],j∈[N2] ∥Bij∥F. When N2 = 1, we also define ∥B∥(m1,m2)

1 =∑N1

i=1 ∥Bi∥F. To simplify notation in this section and theoretical analysis in Sec-

tion 3.5, we assume the same truncated dimension dj = d across j ∈ [p], but our

theoretical results extend naturally to the more general setting where dj’s are differ-

ent. Let g(θ) = {g1(θ)
T, . . . ,gq(θ)

T}T and R = (RT
1 , . . . ,R

T
q )

T ∈ Rqd×d̃. We focus

on the case of which the moment function θ 7→ g(θ) mapping from Rpd×d̃ to Rqd×d̃

is linear with respect to θ in the form of g(θ) = Gθ + g(0) for some G ∈ Rqd×pd.

This together with (3.15) implies that

Gθ0 + g(0) +R = 0 , (3.17)

the form of which can be easily verified for SFLR, FFLR and VFAR models we

consider in this chapter. Now we reformulate the optimisation task in (3.16) as

θ̂ = argmin
θ

∥θ∥(d,d̃)1 subject to ∥ĝ(θ)∥(d,d̃)max ≤ γn , (3.18)

where ĝ(θ) = Ĝθ+ ĝ(0) is the empirical version of g(θ). It is worth noting that θ0

is block s-sparse with support S = {j ∈ [p] : ∥θ0j∥F ̸= 0} and its cardinality s = |S|.

Before presenting properties of the block RMD estimator θ̂, we impose some high-

level regularity conditions.

Condition 3.4. There exists ϵn1, δn1 > 0 such that ∥Ĝ−G∥(d,d)max ∨∥ĝ(0)−g(0)∥(d,d̃)max ≤
ϵn1 with probability at least 1− δn1.
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Condition 3.5. There exists ϵ2 > 0 such that ∥R∥(d,d̃)max ≤ ϵ2.

Condition 3.6. There exists δn2 > 0 such that ∥ĝ(θ0)∥(d,d̃)max ≤ γn with probability

at least 1− δn2.

Conditions 3.4 and 3.5 together ensure that the empirical moment functions are

nicely concentrated around the target moment functions. Using our derived non-

asymptotic results in Section 3.3.2, we can easily specify the concentration bounds

in Condition 3.4 for SFLR, FFLR and VFAR. With further imposed smoothness

conditions on coefficient functions, Condition 3.5 can also be verified. Condition 3.6

indicates that θ0 is feasible in the optimisation problem (3.18) with high probability,

in which case a solution θ̂ of (3.18) exists and satisfies ∥θ̂∥(d,d̃)1 ≤ ∥θ0∥(d,d̃)1 . The

non-block version of such property typically plays a crucial role to tackle high-

dimensional models in the literature.

Let δ = θ − θ0. We define a block ℓ1-sensitivity coefficient

κ(θ0) = inf
T :|T |≤s

inf
δ∈CT :∥δ∥(d,d̃)1 >0

∥Gδ∥(d,d̃)max

∥δ∥(d,d̃)1

, (3.19)

where CT = {δ ∈ Rpd×d̃ : ∥δT c∥(d,d̃)1 ≤ ∥δT∥(d,d̃)1 } for T ⊂ [p]. Provided that δ̂ =

θ̂−θ0 ∈ CS under Condition 3.6 as justified in Lemma 3.1 of the Appendix, the lower

bound of κ(θ0) is useful to establish the error bound for ∥δ̂∥(d,d̃)1 . See also Gautier

and Rose (2019) for non-block lq-sensitivity quantities to handle high-dimensional

instruments. We then need Condition 3.7 below to determine such lower bound.

Before presenting this condition, we introduce some notation. Let J ⊂ [q] and

M ⊂ [p], let GJ,M = (Gjk)j∈J,k∈M with each Gjk ∈ Rd×d be the block submatrix

of G consisting of all block rows j ∈ J and all block columns k ∈ M of G. For an

integer m ≥ s, we define

σmin(m,G) = min
|M |≤m

max
|J |≤m

σmin(GJ,M) and σmax(m,G) = max
|M |≤m

max
|J |≤m

σmax(GJ,M) ,

where σmin(GJ,M) and σmax(GJ,M) are the smallest and largest singular values of

GJ,M .

Condition 3.7. There exists universal constants c5 > 0 and µ > 0 such that

σmax(m,G) ≥ c5 and σmin(m,G)/σmax(m,G) ≥ µ for m = 16s/µ2.

In Condition 3.7, the quantity µ serves as a key factor to determine the lower bound

of κ(θ0), which is justified in Lemma 3.3 of the Appendix. When µ is bounded away
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from zero, we have a strongly-identified model. When µ→ 0, it corresponds to the

scenario with weak instruments. See also Belloni et al. (2018) for similar conditions.

We are now ready to present the theorem on the convergence rate of θ̂.

Theorem 3.3. Suppose that Conditions 3.4–3.7 hold. If ∥θ0∥(d,d̃)1 ≤ K for some

K > 0 and the regularisation parameter γn ≲ (K + 1)ϵn1 + ϵ2, then with probability

at least 1− (δn1 + δn2), the block RMD estimator θ̂ satisfies

∥θ̂ − θ0∥(d,d̃)1 ≲ sµ−2{(K + 1)ϵn1 + ϵ2} . (3.20)

Remark 3.2. (i) The error bound in (3.20) has the familiar variance-bias trade-

off as commonly considered in nonparametrics statistics, suggesting us to carefully

select the truncated dimension d so as to balance variance and bias terms for

the optimal estimation. (ii) With commonly imposed smoothness conditions on

functional coefficients, it is easy to verify that K ∨ ϵ2 = o(s) for SFLR, FFLR

and VFAR in Section 3.5. (iii) For three examples we consider, G is formed

by {σ(h)
jklm : j, k ∈ [p], l,m ∈ [d], h ∈ [L]} with the components σ

(h)
jklm satisfying

|σ(h)
jklm| ≤ {E(η2tjl)}1/2[E{η2(t+h)km}]1/2 = λ

1/2
jl λ

1/2
km → 0 as l,m → ∞. Consider a gen-

eral cross-covariance matrix G = E(xyT) ∈ Rqd×pd with entries decaying to zero

as d → ∞, where x = (x1, . . . , xqd)
T with E(x) = 0 and y = (y1, . . . , ypd)

T with

E(y) = 0, it is more sensible to impose Condition 3.7 on its normalised version

G̃ = DxGDy instead of G itself, where Dx = diag{Var(x1)−1/2, . . . ,Var(xqd)
−1/2}

and Dy = diag{Var(y1)−1/2, . . . ,Var(ypd)
−1/2}. For three exemplified models, Dx

and Dy are formed by {λ−1/2
jl : j ∈ [p], l ∈ [d]}.

Remark 3.2(iii) motivates us to present the following proposition that will be used

in the theoretical analysis of associate estimators for SFLR, FFLR and VFAR in

Section 3.5.

Proposition 3.1. Suppose that all conditions in Theorem 3.3 hold except that Con-

dition 3.7 holds for G̃, then with probability at least 1− (δn1 + δn2), the block RMD

estimator θ̂ satisfies

∥θ̂ − θ0∥(d,d̃)1 ≲ sµ−2∥Dx∥max∥Dy∥max{(K + 1)ϵn1 + ϵ2} . (3.21)

3.5 Applications

In this section, we present the proposed autocovariance-based estimation procedure

with corresponding convergence analysis using applications of SFLR, FFLR and
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VFAR models under high-dimensional scaling in Sections 3.5.1, 3.5.2 and 3.5.3,

respectively.

3.5.1 High-dimensional SFLR

Within the learning framework in Section 3.2, we first perform autocovariance-based

dimension reduction on {Wtj(·)}t∈[n] for each j ∈ [p]. Following the optimisation

framework in (3.16), we then develop the block RMD estimator b̂ as a solution to

the constrained optimisation problem below:

b̂ = argmin
b

p∑
j=1

∥bj∥2 subject to max
k∈[p],h∈[L]

∥ĝhk(b)∥2 ≤ γn ,

where γn ≥ 0 is a regularisation parameter and ĝhk(b) is defined in (3.6). Finally,

we obtain estimated functional coefficients {β̂j(·)}j∈[p] as in (3.8).

We next present the convergence analysis of {β̂j(·)}j∈[p]. To simplify notation, we

assume the same truncated dimension dj = d across j ∈ [p]. We rewrite (3.5)

in the form of (3.17), where g = (gT
11, . . . , g

T
1p, . . . ,g

T
L1, . . . ,g

T
Lp)

T, R = (RT
11, . . . ,

RT
1p, . . . ,R

T
L1, . . . ,R

T
Lp)

T and G = (Gij) ∈ RpLd×pd whose (i, j)-th block is Gij =

E{η(t+h)kη
T
tj} ∈ Rd×d with i = (h − 1)p + k and k ∈ [p] for h ∈ [L]. Applying

Theorem 3.2 and Proposition 3.3 in the Appendix on Ĝ and ĝ(0), respectively, we

can verify Condition 3.4 with the choice of ϵn1 ≍ MW,Y d
α+2{log(pd)/n}1/2, where

MW,Y is specified in Proposition 3.3 in the Appendix. Before presenting the main

theorem, we list two regularity conditions.

Condition 3.8. For each j ∈ S = {j ∈ [p] : ∥β0j∥ ̸= 0}, β0j(·) =
∑∞

l=1 ajlψjl(·) and
there exists some positive constant τ > α + 1/2 such that |ajl| ≲ l−τ for l ≥ 1.

Condition 3.9. Let G̃ = (G̃ij) be the normalised version of G = (Gij) by replacing

each Gij with G̃ij = E{Dkη(t+h)kη
T
tjDj}, i = (h − 1)p + k, k ∈ [p] for h ∈ [L] and

j ∈ [p], where Dj = diag(λ
−1/2
j1 , . . . , λ

−1/2
jd ). Then there exists an universal constant

c6 and µ > 0 such that σmax(m, G̃) ≥ c6 and σmin(m, G̃)/σmax(m, G̃) ≥ µ for

m = 16s/µ2.

Condition 3.8 restricts each component in {β0j(·) : j ∈ S} based on its expansion

through basis {ψjl(·)}l≥1. The parameter τ determines the decay rate of basis coeffi-

cients and hence control the level of smoothness with large values yielding smoother

functions in {β0j(·) : j ∈ S}. See similar conditions in Hall and Horowitz (2007)

and Kong et al. (2016b). Noting that components of G decay to zero as d grows
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to infinity, we impose Condition 3.9 on G̃, which can be viewed as the normalised

counterpart of Condition 3.7 for SFLR.

Applying Proposition 3.1 and Theorem 3.1 yields the convergence rate of the SFLR

estimate β̂(·) = {β̂1(·), . . . , β̂p(·)}T under functional ℓ1 norm in the following theo-

rem.

Theorem 3.4. Suppose that Conditions 3.1–3.3 and Condition 3.13(ii) in the Ap-

pendix hold for sub-Gaussian functional linear process {Wt(·)} and sub-Gaussian

linear process {Yt}, and also Conditions 3.8–3.9 hold. If the regularisation param-

eter γn ≍ s[dα+2MW,Y {log(pd)/n}1/2 +d−τ+1/2], then the estimate β̂(·) satisfies

p∑
j=1

∥β̂j − β0j∥ = Op

{
µ−2s2

(
d2α+2MW,Y

√
log(pd)

n
+ dα−τ+1/2

)}
. (3.22)

Remark 3.3. The rate of convergence in (3.22) is governed by both dimensionality

parameters (n, p, s) and internal parameters (MW,Y , d, α, τ, µ). Typically, the rate is

better when τ, µ are large and MW,Y and α are small. To balance variance and bias

terms in (3.22) for the optimal estimation, we can choose the truncated dimension

d satisfying M2
W,Y log(pd)d2τ+2α+3 ≍ n.

3.5.2 High-dimensional FFLR

Consider high-dimensional FFLR in the form of

Yt(v) =

p∑
j=1

∫
U
Xtj(u)β0j(u, v) du+ εt(v) , t ∈ [n] , v ∈ V , (3.23)

where {Xt(·)}t∈[n] satisfy model (3.1) and are independent of i.i.d. mean-zero func-

tional errors {εt(·)}t∈[n], and {β0j(·, ·)}j∈[p] are functional coefficients to be esti-

mated. With observed data {(Wt(u), Yt(v)) : (u, v) ∈ U × V , t ∈ [n]}, we tar-

get to estimate β0 = {β01(·, ·), . . . , β0p(·, ·)}T under a functional sparsity constraint

when p is large. Specifically, we assume β0 is functional s-sparse with support

S = {j ∈ [p] : ∥β0j∥S ̸= 0} and cardinality s = |S| ≪ p.

Provided that each observed Yt(·) is decomposed into the sum of dynamic and white

noise components in (3.23), we approximate Yt(·) under the Karhunen–Loève ex-

pansion truncated at d̃, i.e. Yt(·) ≈ ζT

t ϕ(·), where ζt = (ζt1, . . . , ζtd̃)
T and ϕ =

(ϕ1, . . . , ϕd̃)
T. Note that we can relax the independence assumption for {εt(·)}t∈[n]

and model observed response curves via Ỹt(·) = Yt(·) + eYt (·), where Yt(·) and eYt (·)
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correspond to the dynamic signal and white noise elements, respectively. Then Yt(·)
can be approximated under the autocovariance-based expansion in the sense of (3.3)

and our subsequent analysis still follow. For each j ∈ [p], we expand Xtj(·) accord-
ing to (3.3) truncated at dj. Some specific calculations lead to the representation of

(3.23) as

ζT

t =

p∑
j=1

ηT

tjB0j + rT

t + ε
T

t , (3.24)

where B0j =
∫
U×V ψj(u)β0j(u, v)ϕ(v)

T dudv ∈ Rdj×d̃ and rt = (rt1, . . . , rtd̃)
T is the

truncation error with each rtm =
∑p

j=1

∑∞
l=dj+1 ηtjl⟨⟨ψjl, β0j⟩, ϕm⟩ for m ∈ [d̃]. Let

B0 = (BT
01, . . . ,B

T
0p)

T ∈ R
∑p

j=1 dj×d̃. We choose {η(t+h)k : h ∈ [L], k ∈ [p]} as vector-

valued instrumental variables, which are assumed to be uncorrelated with the ran-

dom error εt in (3.24). Within the framework of (3.15), we assume that B0 is the

unique solution to the following moment equations:

0 = E{η(t+h)kε
T

t } = ghk(B0) +Rhk , h ∈ [L] , k ∈ [p] , (3.25)

where ghk(B0) = E{η(t+h)kζ
T

t }−
∑p

j=1 E{η(t+h)kη
T
tjB0j} and Rhk = −E{η(t+h)kr

T
t }.

Given the recovery equivalence between functional sparsity in β0 and the block

sparsity in B0, we aim to estimate the block sparse matrix B0 using the empirical

versions B 7→ ĝhk(B) for h ∈ [L] and k ∈ [p],

ĝhk(B) =
1

n− h

n−h∑
t=1

η̂(t+h)kζ̂
T

t −
1

n− h

n−h∑
t=1

p∑
j=1

η̂(t+h)kη̂
T

tjBj ,

where ζ̂t = (ζ̂t1, . . . , ζ̂td̃)
T with ζ̂tm = ⟨Yt, ϕ̂m⟩ for m ∈ [d̃] and {η̂tj}t∈[n],j∈[p] are

obtained in the first step. In the second step, according to (3.16), we formulate the

block RMD estimator B̂ by solving the convex optimisation problem below:

B̂ = argmin
B

p∑
j=1

∥Bj∥F subject to max
k∈[p],h∈[L]

∥ĝhk(B)∥F ≤ γn ,

where γn ≥ 0 is a regularisation parameter. In the third step, we estimate the

coefficient functions by

β̂j(u, v) = ψ̂j(u)
TB̂jϕ̂(v) , (u, v) ∈ U × V , j ∈ [p] , (3.26)

where {ψ̂j(u)}j∈[p] and ϕ̂(v) = (ϕ̂1(v), . . . , ϕ̂d̃(v))
T are obtained in the first step.
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In the following, we investigate the convergence property of {β̂j(·, ·)}j∈[p] in (3.26).

To simplify notation, we assume the same truncated dimension dj = d across j ∈ [p].

We first rewrite (3.25) in the form of (3.17) and apply Theorem 3.2 and Proposi-

tion 3.2 in the Appendix on Ĝ and ĝ(0) to verify Condition 3.4 with the choice of

ϵn1 ≍ MW,Y d
α∨α̃+2{log(pd)/n}1/2, where MW,Y is specified in Proposition 3.2 in the

Appendix. In a similar fashion to α, the parameter α̃ as specified in Condition 3.14

in the Appendix determines the tightness of eigengaps of the covariance function of

{Yt(·)}. We then impose the following smoothness condition on nonzero coefficient

functions.

Condition 3.10. For each j ∈ S, β0j(u, v) =
∑∞

l,m=1 ajlmψjl(u)ϕm(v) and there

exists some positive constant τ > α ∨ α̃ + 1/2 such that |ajlm| ≲ (l +m)−τ−1/2 for

l,m ≥ 1.

Similar to Condition 3.8 in SFLR, Condition 3.10 ensures that smooth regression

coefficients {β0j(·, ·) : j ∈ S} in FFLR are expanded by its basis {ψjl(·)}l≥1 and

{ϕm(·)}m≥1, and the smoothness is determined by parameter τ . We are now ready

to present the convergence rate of the FFLR estimate β̂(·, ·) = {β̂1(·, ·), . . . , β̂p(·, ·)}T

under functional ℓ1 norm in Theorem 3.5.

Theorem 3.5. Suppose that Conditions 3.1–3.3 and Conditions 3.13(i), 3.14 in the

Appendix hold for sub-Gaussian functional linear processes {Wt(·)} and {Yt(·)},
and also Conditions 3.9–3.10 hold. Let d ≍ d̃. If the regularisation parameter γn ≍
s[dα∨α̃+2MW,Y {log(pd)/n}1/2 +d−τ+1/2], then the estimate β̂(·, ·) satisfies

p∑
j=1

∥β̂j − β0j∥S = Op

{
µ−2s2

(
dα+α∨α̃+2MW,Y

√
log(pd)

n
+ dα−τ+1/2

)}
. (3.27)

Remark 3.4. With the same expression of G for both SFLR and FFLR, Condi-

tion 3.9 is required in both Theorems 3.4 and 3.5. Note we can further remove the

assumption of d ≍ d̃, and establish the general convergence result in terms of d, d̃

and other parameters.

3.5.3 High-dimensional VFAR

The high-dimensional VFAR of a fixed lag order H, namely VFAR(H), takes the

form of

Xt(v) =
H∑

h′=1

∫
U
A

(h′)
0 (u, v)Xt−h′(u) du+ εt(v) , t = H + 1, . . . , n , (3.28)
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where {Xt(·)} satisfy model (3.1), the errors εt = (εt1, . . . , εtp)
T are i.i.d. sam-

pled from a p-dimensional vector of mean-zero functional processes, independent of

Xt−1(·),Xt−2(·), . . . , and A
(h′)
0 = {A(h′)

0,jj′(·, ·)}j,j′∈[p] is the unknown functional tran-

sition matrix at lag h′. In the special case H = 1 with A0 = A
(1)
0 , Theorem 3.1 of

Bosq (2000) ensures the stationarity of {Xt(·)} if there exists an integer l0 such that

sup∥f∥≤1 ∥Al0
0 (f)∥ < 1 for f ∈ Hp. According to Guo and Qiao (2020), all VFAR(H)

models can be reformulated as a VFAR(1) model and hence it is not hard to adjust

the stationarity condition for the general case H > 1. To make a feasible fit to (3.28)

under a high-dimensional regime based on observed curves {Wt(·)}t∈[n], we assume

{A(h′)
0 }h′∈[H] is rowwise functional s-sparse with s = maxj∈[p] sj ≪ p. To be specific,

for the j-th row of components in {A(h′)
0 }, we denote the set of nonzero functions by

Sj = {(j′, h′) ∈ [p]× [H] : ∥A(h′)
0,jj′∥S ̸= 0} and its cardinality by sj = |Sj| for j ∈ [p].

For each j ∈ [p], we approximate Xtj(·) based on the expansion in (3.3) truncated

at dj. With some specific calculations, model (3.28) can be rowwisely rewritten as

ηT

tj =
H∑

h′=1

p∑
j′=1

ηT

(t−h′)j′Ω
(h′)
0,jj′ + rT

tj + ε
T

tj , j ∈ [p] , (3.29)

where Ω
(h′)
0,jj′ =

∫
U2 ψj′(u)A

(h′)
0,jj′(u, v)ψj(v)

T dudv ∈ Rdj′×dj and rtj = (rtj1, . . . , rtjdj)
T

is the truncation error with each rtjm =
∑H

h′=1

∑p
j′=1

∑∞
l=dj′+1 η(t−h′)j′l⟨⟨ψj′l, A

(h′)
0,jj′⟩,

ψjm⟩ for m ∈ [dj]. Let Ω0j = {(Ω(1)
0,j1)

T, . . . , (Ω
(1)
0,jp)

T, . . . , (Ω
(H)
0,j1)

T, . . . , (Ω
(H)
0,jp)

T)}T ∈
RH

∑p

j′=1
dj′×dj . We choose

{
η(t+h)k : h ∈ [L], k ∈ [p]

}
as vector-valued instrumental

variables, which are assumed to be uncorrelated with the random error εtj in (3.29).

Within the framework of (3.15), we assume that Ω0j is the unique solution to the

following moment equations:

0 = E{η(t+h)kε
T

tj} = gj,hk(Ω0j) +Rj,hk , h ∈ [L] , k ∈ [p] , (3.30)

where gj,hk(Ω0j) = E{η(t+h)kη
T
tj}−

∑H
h′=1

∑p
j′=1 E{η(t+h)kη

T

(t−h′)j′Ω
(h′)
0,jj′} andRj,hk =

−E{η(t+h)kr
T
tj}.

Given that estimating the functional sparsity in the j-th row of {A(h′)
0 }h′∈[H] is

equivalent to estimating the block sparsity in Ω0j for each j, our goal is to estimate

the block sparse matrix Ω0j using the empirical versions Ωj 7→ ĝj,hk(Ωj) for h ∈ [L]

and k ∈ [p], where

ĝj,hk(Ωj) =
1

n− h

n−h∑
t=1

η̂(t+h)kη̂
T

tj −
1

n− h

n−h∑
t=1

H∑
h′=1

p∑
j′=1

η̂(t+h)kη̂
T

(t−h′)j′Ω
(h′)
jj′
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and {η̂tj}t∈[n],j∈[p] are obtained in the first step. The second step follows (3.16) to

formulate the block RMD estimator Ω̂j by solving the following optimisation task:

Ω̂j = argmin
Ωj

H∑
h′=1

p∑
j′=1

∥Ω(h′)
jj′ ∥F subject to max

k∈[p],h∈[L]
∥ĝj,hk(Ωj)∥F ≤ γnj ,

where γnj ≥ 0 is a regularisation parameter. The third step estimates functional

transition matrices by

Â
(h′)
jj′ (u, v) = ψ̂j′(u)

TΩ̂
(h′)

jj′ ψ̂j(v) , (u, v) ∈ U2 , j, j′ ∈ [p] , h′ ∈ [H] ,

where {ψ̂j(·)}j∈[p] are obtained in the first step.

We next present convergence analysis of {Â(h′)
jj′ (·, ·) : j, j′ ∈ [p], h′ ∈ [H]}. To simplify

notation, we assume the same truncated dimension dj = d across j ∈ [p]. For each

j ∈ [p], we first express (3.30) in the form of

gj(Ω0j) +Rj = GjΩ0j + gj(0) +Rj = 0 ,

where gj = (gT
j,11, . . . ,g

T
j,1p, . . . ,g

T
j,L1, . . . ,g

T
j,Lp)

T, Rj = (RT
j,11, . . . ,R

T
j,1p, . . . ,R

T
j,L1,

. . . ,RT
j,Lp)

T and Gj = (Gj,ii′) ∈ RpLd×pHd whose (i, i′)-th block is Gj,ii′ = E{η(t+h)k

ηT

(t−h′)j′} ∈ Rd×d with i = (h − 1)p + k, k ∈ [p] for h ∈ [L] and i′ = (h′ − 1)p +

j′, j′ ∈ [p] for h′ ∈ [H]. Applying Theorem 3.2 on Ĝj and ĝj(0), we can verify

Condition 3.4 with the choice of ϵn1 ≍ MW
1 d

α+2{log(pd)/n}1/2. Similarly, we then

give two regularity conditions.

Condition 3.11. For each j ∈ [p] and (j′, h′) ∈ Sj, A
(h′)
0,jj′(u, v) =

∑∞
l,m=1 a

(h′)
jj′lm

ψj′m(u)ψjl(v) and there exists some constant τ > α + 1/2 such that |a(h
′)

jj′lm| ≲

(l +m)−τ−1/2 for l,m ≥ 1.

Condition 3.12. For each j ∈ [p], let G̃j = (G̃j,ii′) be the normalised version

of Gj = (Gj,ii′) by replacing each Gj,ii′ with G̃j,ii′ = E{Dkη(t+h)kη
T

(t−h′)j′Dj′} for

i = (h− 1)p+ k and i′ = (h′ − 1)p+ j′ with k, j′ ∈ [p], h ∈ [L] and h′ ∈ [H], where

Dj = diag(λ
−1/2
j1 , . . . , λ

−1/2
jd ). Then there exists an universal constant c̃j and µj > 0

such that σmax(m, G̃j) ≥ c̃j and σmin(m, G̃j)/σmax(m, G̃j) ≥ µj for m = 16sj/µ
2
j .

Following the spirit of Condition 3.8 and 3.10, Condition 3.11 determines the basis

{ψjl(·)}j∈[p],l≥1 on which the functional transition matrices are expanded and also

controls the smoothness of the functional transition matrices by parameter τ, where

a smaller (larger) τ implies smoother (rougher) coefficients. And Condition 3.12
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extends Condition 3.9 to VFAR, where G̃j is the normalised version of Gj, whose

components vanish as d increase to infinity. Therefore, working with G̃j is preferred

as argued in Remark 3.2.

We finally establish convergence rate of the VFAR estimate {Â(h′)
jj′ }j,j′∈[p],h′∈[H] in

the sense of functional matrix ℓ∞ norm as follows.

Theorem 3.6. Suppose that Conditions 3.1–3.3 hold for sub-Gaussian functional

linear process {Wt(·)}, and Conditions 3.11–3.12 also hold. If regularisation pa-

rameters satisfy γnj ≍ sj[d
α+2MW

1 {log(pd)/n}1/2 + d−τ+1/2] for j ∈ [p] and µ =

minj∈[p] µj, the estimate {Â(h′)
jj′ } satisfies

max
j∈[p]

p∑
j′=1

H∑
h′=1

∥Â(h′)
jj′ − A

(h′)
0,jj′∥S = Op

{
µ−2s2

(
d2α+2MW

1

√
log(pd)

n
+ dα−τ+1/2

)}
.

(3.31)

3.6 Empirical studies

3.6.1 Simulation study

In this section, we conduct a number of simulations to evaluate the finite-sample

performance of the proposed autocovariance-based estimators for SFLR, FFLR and

VFAR models.

In each simulated scenario, to mimic the infinite-dimensional nature of signal curves,

we generate Xtj(u) =
∑25

l=1 ηtjlψl(u) = ηT
tjψ(u) with ηtj = (ηtj1, . . . , ηtj25)

T and

ψ(·) = {ψ1(·), . . . , ψ25(·)}T for t ∈ [n], j ∈ [p] and u ∈ U = [0, 1], where {ψl(u)}1≤l≤25

is formed by 25-dimensional Fourier basis functions, 1,
√
2 cos(2πlu),

√
2 sin(2πlu)

for l = 1, . . . , 12 and each ηt = (ηT
t1, . . . ,η

T
tp)

T ∈ R25p is generated from a sta-

tionary vector autoregressive (VAR) model, ηt = Ωηt−1 + ϵt, with block transi-

tion matrix Ω = (Ωjk)j,k∈[p] ∈ R25p×25p and ϵt = (ϵt1, . . . , ϵtp)
T, with ϵtj ∈ R25

whose components are independently sampled according to ϵtjl ∼ N (0, 0.7 − 0.1l)

for l = 1, . . . , 5 and N (0, l−2) for l = 6, . . . , 25. Therefore, Xt(·) follows a VFAR(1)

model satisfying Xt(v) =
∫
U A(u, v)Xt−1(u) du + εt(v), where εtj(v) = ψ(v)Tϵtj

and autocoefficient functions satisfy Ajk(u, v) = ψ(v)TΩjkψ(u) for j, k ∈ [p] and

u, v ∈ U . In our simulations, we generate n = 100, 200, 400 serially dependent ob-

servations of p = 40, 80 functional variables. The observed curves are generated

from Wtj(u) = Xtj(u)+ etj(u), where white noise curves etj(u) =
∑5

l=1 ztjlψl(u) and
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{(ztj1, . . . , ztj5)T}t∈[n] are independently sampled from multivariate normal distribu-

tion with mean zero and covariance diag(1, 0.8, 0.3, 1.5, 1.6). For each of the three

models, the data is generated as follows.

VFAR: We generate block sparse Ω with 5% or 10% nonzero blocks for p = 80

or p = 40, respectively. Specifically, for the j-th block row, we set the diagonal

block Ωjj = diag(0.60, 0.59, 0.58, 0.3, 0.2, 6−2, . . . , 25−2) and randomly choose one

off-diagonal block being 0.4Ωjj and two off-diagonal blocks being 0.1Ωjj. Such block

sparse design on Ω can guarantee the stationarity of the VFAR(1) process. It

is worth noting that estimating VFAR(1) results in a very high-dimensional task,

since, e.g. even under the most ‘low-dimensional’ setting with p = 40, n = 400 and

truncated dimension d = 3, one needs to estimate 402 × 32 = 14, 400 parameters

based on only 400 observations. The p-dimensional functional covariates {Xt(·)}t∈[n]
for SFLR and FFLR below are generated in the same way as those for VFAR.

SFLR: We generate the scalar responses {Yt}t∈[n] from model (3.4), where εt’s are

independent N (0, 1) variables. For each j ∈ S = {1, . . . , 5}, we generate βj(u) =∑25
l=1 bjlψl(u) for u ∈ U , where bj1, bj2, bj3 are sampled from the uniform distribution

with support [−1,−0.5]∪ [0.5, 1] and bjl = (−1)l l−2 for l = 4, . . . , 25. For j ∈ [p]\S,
we let βj(u) = 0.

FFLR: We generate the functional responses {Yt(v) : v ∈ V}t∈[n] with V = [0, 1]

from model (3.23), where εt(v) =
∑5

m=1 gtmψm(v) with gtm’s being independent

N (0, 1) variables. For j ∈ S, we generate βj(u, v) =
∑25

l,m=1 bjmlψl(u)ψm(v) for

(u, v) ∈ U × V , where components in {bjlm}1≤l,m≤3 are sampled from the uniform

distribution with support [−1,−0.5] ∪ [0.5, 1] and bjlm = (−1)l+m(l +m)−2 for l or

m = 4, . . . , 25. For j ∈ [p] \ S, we let βj(u, v) = 0.

Implementing our proposed autocovariance-based learning framework (AUTO) re-

quires choosing L and dj’s. As our simulated results suggest that the estimators are

not sensitive to the choice of L, we set L = 3 in simulations. To select dj, we take

the standard approach by selecting the largest dj eigenvalues of K̂jj in (3.10) such

that the cumulative percentage of selected eigenvalues exceeds 90%. To choose the

regularisation parameter(s) for each model and comparison method, there are sev-

eral possible methods one could adopt such as AIC, BIC and cross-validation. The

BIC and AIC methods require the calculation of the effective degrees of freedom,

which leads to a very challenging task given the high-dimensional, functional and

dependent nature of the model structure and hence is left for future research. In our

simulations, we generate a training sample of size n and a separate validation sample

of the same size. Using the training data, we compute a series of estimators with

30 different values of the regularisation parameters, i.e. {b̂(γn)
j }j∈[p] (or {B̂(γn)

j }j∈[p])
as a function of γn for SFLR (or FFLR) and {Ω̂

(γnj)

jk }k∈[p] as a function of γnj for
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VFAR, calculate the squared error between observed and fitted values on the valida-

tion set, i.e.
∑n

t=1[Yt −
∑p

j=1{b̂
(γn)
j }Tη̂tj]

2 for SFLR,
∑n

t=1 ∥ζ̂t −
∑p

j=1(B̂
(γn)
j )Tη̂tj∥2

for FFLR and
∑n

t=1 ∥η̂tj −
∑p

k=1(Ω̂
(γnj)

jk )Tη̂(t−1)k∥2 for VFAR, and choose the one

with the smallest error.

We compare AUTO with the standard covariance-based estimation framework (COV),

which proceeds in the following three steps. The first step performs FPCA on

{Wtj(·)}t∈[n] for each j, where the truncated dimension was selected in a similar

way as dj. Therefore, estimating SFLR and FFLR models are transformed into fit-

ting multiple linear regressions with univariate response (Kong et al., 2016b) and

multivariate response (Fang et al., 2020), respectively and the VFAR estimation is

converted to the VAR estimation (Guo and Qiao, 2020). The second step consid-

ers minimising the covariance-based criterion, essentially the least squares with the

addition of a group lasso type penalty. Such criterion can be optimised using an

efficient block version of fast iterative shrinkage-thresholding algorithm developed

in Guo and Qiao (2020), which converges faster than the commonly adopted block

coordinate descent algorithm (Fan et al., 2015). The third step recovers functional

sparse estimates using estimated eigenfunctions.

We examine the performance of COV and AUTO for three models in terms of

the relative estimation accuracy, i.e. ∥Â − A∥F/∥A∥F for VFAR, (
∑p

j=1 ∥β̂j −
β0j∥2)1/2/(

∑p
j=1 ∥β0j∥2)1/2 for SFLR and (

∑p
j=1 ∥β̂j−β0j∥2S)1/2/(

∑p
j=1 ∥β0j∥2S)1/2 for

FFLR. We ran each simulation 100 times. Figure 3.1 displays boxplots of relative

estimation errors for three models, while Table 3.2 in the Appendix gives numerical

summaries. Several conclusions can be drawn from Figure 3.1. First, AUTO signif-

icantly outperforms COV for three models under all scenarios we consider. Second,

as discussed in Section 3.2, AUTO provides consistent estimates, while the consis-

tency of COV estimates is jeopardized by the white noise contamination. This can

be demonstrated by our empirical results that AUTO provides more substantially

improved estimates over COV as n increases from 100 to 400 especially for SFLR and

FFLR. Third, the performance of AUTO slightly deteriorates as p increases from 40

to 80, providing empirical evidence to support that the rates in (3.22), (3.27) and

(3.31) for SFLR, FFLR and VFAR models, respectively, all depend on the (log p)1/2

term.

3.6.2 Real data analysis

We further illustrate our developed methodology using a public financial dataset,

which was obtained from the Wharton Research Data Services and consists of high-

frequency observations of prices for S&P 100 index and component stocks (list
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Figure 3.1: The boxplots of relative estimation errors for (a) VFAR, (b) SFLR and
(c) FFLR.
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available in Table 3.3 of the Appendix, we removed several stocks for which the

data were not available so that p = 98 in our analysis) in year 2017 compris-

ing 251 trading days. We obtain one-minute resolution prices by using the last

transaction price in each one-minute interval after removing the outliers, and hence

convert the trading period (9:30–16:00) to minutes [0, 390]. We construct cumula-

tive intraday return (CIDR) trajectories (Horváth et al., 2014), in percentage, by

Wtj(uk) = 100[log{Ptj(uk)} − log{Ptj(u1)}], where Ptj(uk) (t ∈ [n], j ∈ [p], k ∈ [N ])

denotes the price of the j-th stock at the k-th minute after the opening time on the

t-th trading day. We work with mildly smoothed CIDRs obtained by expanding the

data with respect to a 45-dimensional B-spline basis. Such CIDR curves always start

from zero and have nearly the same shape as the original price curves, but make

the stationarity assumption more plausible. We performed the functional KPSS test

(Horváth et al., 2014) on CIDR curves for each stock using the R package "fsta"

(Shang, 2013). The p-values are greater than 1% for all the companies, indicating

that these CIRDs are stationary.

Our interest is in predicting the intraday return of the S&P 100 index based on

observed CIDR trajectories of component stocks, Wtj(u), u ∈ U = [0, N ] up to time

N, where, e.g. N = 360 corresponds to 30 minutes prior to the closing time of the

trading day. With this in mind, we construct a sparse SFLR model with erroneous

functional predictors as follows

Yt =

p∑
j=1

∫
U
Xtj(u)β0j(u) du+εt, Wtj(u) = Xtj(u)+etj(u), t ∈ [n], j ∈ [p] , (3.32)

where Yt is the intraday return of the S&P 100 index on the t-th trading day, Xtj(·)
and etj(·) represent the signal and noise components inWtj(·), respectively. We split

the whole dataset into three subsets: training, validation and test sets consisting

of the first 171, subsequent 40 and last 40 observations, respectively. We apply the

validation set approach to select the regularisation parameters for AUTO and COV,

based on which we estimate sparse functional coefficients in (3.32) and calculate the

mean squared prediction errors (MSPEs) on the test set. For comparison, we also

implement autocovariance-based generalised method-of-moments (AGMM) (Chen

et al., 2020) and covariance-based least squares method (CLS) (Hall and Horowitz,

2007) to fit the unvariate version of (3.32) for each component stock, among which

we choose the best models leading to the lowest test MSPEs. Finally, we include

the null model, using the mean of the training response to predict the test response.

The resulting test MSPEs for different values of N and all comparison approaches

are presented in Table 3.1. We observe a few apparent patterns. First, in all
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Table 3.1: MSPEs up to different current times, N = 300, 315, 330, 345, 360, 370
and 380 minutes, for AUTO and four competing methods. All entries have been
multiplied by 100 for formatting reasons. The lowest MSPE for each value of N is
in bold font.

Method u ≤ 300 u ≤ 315 u ≤ 330 u ≤ 345 u ≤ 360 u ≤ 370 u ≤ 380

AUTO 5.068 4.936 4.814 4.161 3.892 3.798 3.726

COV 5.487 5.360 5.222 5.090 4.976 4.927 4.882

AGMM 6.506 6.470 6.454 6.441 6.408 6.385 6.364

CLS 6.859 6.798 6.730 6.655 6.583 6.546 6.507

Mean 8.832 8.832 8.832 8.832 8.832 8.832 8.832

scenarios we consider, AUTO provides the best predictive performance, while the

autocovariance-based methods are superior to the covariance-based counterparts.

Second, the predictive accuracy for functional regression type of methods improves as

N approaches to 390 providing more recent information into the predictors. Third,

AUTO and COV significantly outperform AGMM and CLS, while Mean gives the

worst results. This indicates that using multiple selected functional predictors from

the trading histories indeed improves the prediction results.

3.7 Appendix

Appendix 3.7.1 contains further non-asymptotic results. Additional empirical re-

sults are presented in Appendix 3.7.2. Technical proofs of main theoretical results,

additional technical lemmas and their proofs are in Appendix 3.7.3.

3.7.1 Further non-asymptotic results

To provide the theoretical support for proposed estimators in Sections 3.5.1 and

3.5.2, we present essential non-asymptotic results for relevant estimated cross-(auto)

covariance terms based on the functional cross-spectral stability measure (Fang

et al., 2020) between {Wt(·)}t∈Z and p̃-dimensional mean-zero functional time se-

ries (or scalar time series) {Yt(·)}t∈Z (or {Zt}t∈Z). Define ΣW,Y
h (u, v) = Cov{Wt(u),

Yt+h(v)} and ΣW,Z
h (u) = Cov{Wt(u),Zt+h} for h ∈ Z and (u, v) ∈ U × V .
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Condition 3.13. (i) For {Wt(·)}t∈Z and {Yt(·)}t∈Z, the cross-spectral density func-

tion fW,Y
θ = (2π)−1

∑
h∈ZΣ

W,Y
h e−ihθ for θ ∈ [−π, π] exists and the functional cross-

spectral stability measure defined in (3.33) is finite, i.e.

MW,Y = 2π · ess sup
θ∈[−π,π],Φ1∈Hp

0,Φ2∈Hp̃
0

|⟨Φ1, f
W,Y
θ (Φ2)⟩|√

⟨Φ1,Σ
W
0 (Φ1)⟩

√
⟨Φ2,Σ

Y
0 (Φ2)⟩

<∞ , (3.33)

where Hp
0 = {Φ ∈ Hp : ⟨Φ,ΣW

0 (Φ)⟩ ∈ (0,∞)} and Hp̃
0 = {Φ ∈ Hp̃ : ⟨Φ,ΣY

0 (Φ)⟩ ∈
(0,∞)}.
(ii) For {Wt(·)}t∈Z and {Zt}t∈Z, the cross-spectral density function fW,Z

θ = (2π)−1∑
h∈ZΣ

W,Z
h e−ihθ for θ ∈ [−π, π] exists and the functional cross-spectral stability

measure defined in (3.34) is finite, i.e.

MW,Z = 2π · ess sup
θ∈[−π,π],Φ∈Hp

0,v∈R
p̃
0

|⟨Φ, fW,Z
θ v⟩|√

⟨Φ,ΣX
0 (Φ)⟩

√
vTΣZ

0 v
<∞ , (3.34)

where Rp̃
0 = {ν ∈ Rp̃ : vTΣZ

0 v ∈ (0,∞)}.

In analogy to (3.12), we can define the functional cross-spectral stability measure

of all k1-dimensional subsets of {Wt(·)} and k2-dimensional subsets of {Yt(·)} (or

{Zt}) as MW,Y
k1,k2

(or MW,Z
k1,k2

). It is easy to verify that MW,Y
k1,k2

≤ MW,Y < ∞ (or

MW,Z
k1,k2

≤ MW,Z < ∞) for k1 ∈ [p] and k2 ∈ [p̃]. For scalar time series {Zt}, the
non-functional stability measure degenerates to

MZ = 2π · ess sup
θ∈[−π,π],v∈Rp̃

0

vTfZθ v

vTΣZ
0 v

.

and the stability measure of all k-dimensional subsets of {Zt}, i.e. MZ
k for k ∈ [p̃],

can be similarly defined according to (3.12).

For each k ∈ [p̃], we represent Ytk(·) =
∑∞

m=1 ζtkmϕkm(·) under the Karhunen-Loève

expansion, where ζtkm = ⟨Ytk, ϕkm⟩ and {(θkm, ϕkm)}m≥1 are pairs of eigenvalues

and eigenfunctions of ΣY
0,kk. Let {(θ̂km, ϕ̂km)}m≥1 be estimated eigenpairs of Σ̂Y

0,kk

and ζ̂tkm = ⟨Ytk, ϕ̂km⟩. We next impose a condition on eigenvalues {θkm}m≥1 and

then develop the deviation bound in elementwise ℓ∞-norm on how σ̂W,Y
h,jklm = (n −

h)−1
∑n−h

t=1 η̂tjlζ̂(t+h)km concentrates around σW,Y
h,jklm = Cov{ηtjl, ζ(t+h)km}, which plays

a crucial role in investigating the convergence property of the FFLR estimate in

Section 3.5.2.
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Condition 3.14. (i) For each k ∈ [p̃], θk1 > θk2 > · · · > 0, and there exist some

positive constants c̃ and α̃ > 1 such that θkm − θk(m+1) ≥ c̃m−α̃−1 for m ≥ 1; (ii)

maxk∈[p̃]
∑∞

m=1 θkm = O(1).

Proposition 3.2. Suppose that Conditions 3.1–3.3, 3.13(i) and 3.14 hold for sub-

Gaussian functional linear processes, {Wt(·)}, {Yt(·)}, and h is fixed. Let d and d̃

be positive integers possibly depending on (n, p, p̃) and MW,Y = MW
1 +MY

1 +MW,Y
1,1 .

If n ≳ (d2α+2∨ d̃2α̃+2)(MW,Y )
2 log(pp̃dd̃), then there exist some positive constants c7

and c8 independent of (n, p, p̃, d, d̃) such that

max
j∈[p],k∈[p̃],l∈[d],m∈[d̃]

|σ̂W,Y
h,jklm − σW,Y

h,jklm|
lα+1 ∨mα̃+1

≲ MW,Y

√
log(pp̃dd̃)

n
(3.35)

holds with probability greater than 1− c7(pp̃dd̃)
−c8 .

We next consider a mixed process scenario consisting of {Wt(·)} and {Zt} and estab-

lish the deviation bound in elementwise ℓ∞-norm on how ϱ̂X,Z
h,jkl = (n−h)−1

∑n−h
t=1 η̂tjl

Z(t+h)k concentrates around ϱX,Z
h,jkl = Cov{ηtjl, Z(t+h)k}, which is essential in the con-

vergence analysis of the SFLR estimate in Section 3.5.1.

Proposition 3.3. Suppose that Conditions 3.1–3.3 and 3.13(ii) hold for sub-Gaussian

functional linear process {Wt(·)}, sub-Gaussian linear process {Zt} and h is fixed.

Let d be a positive integer possibly depending on (n, p, p̃) and MW,Z = MW
1 +MZ

1 +

MW,Z
1,1 . If n ≳ (MW,Z)

2 log(pp̃d), then there exist some positive constants c9 and c10

independent of (n, p, p̃, d) such that

max
j∈[p],k∈[p̃],l∈[d]

|ϱ̂W,Z
h,jkl − ϱW,Z

h,jkl|
lα+1

≲ MW,Z

√
log(pp̃d)

n
, (3.36)

holds with probability greater than 1− c9(pp̃d)
−c10 .

3.7.2 Additional simulation results

Table 3.2 reports numerical summaries of relative errors for VFAR, SFLR and FFLR.

Table 3.3 presents the list of S&P 100 component stocks used in Section 3.6.2.

3.7.3 Proofs

Throughout, we use c, c1, c2, . . . to denote positive constants.
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Table 3.2: The mean and standard error (in parentheses) of relative estimation
errors over 100 simulation runs.

Model
p 40 80

n 100 200 400 100 200 400

VFAR
COV 0.928(0.005) 0.858(0.006) 0.802(0.005) 0.942(0.004) 0.871(0.005) 0.811(0.004)

AUTO 0.865(0.010) 0.759(0.012) 0.712(0.011) 0.873(0.010) 0.759(0.011) 0.713(0.010)

SFLR
COV 0.927(0.035) 0.874(0.035) 0.852(0.034) 0.950(0.033) 0.897(0.035) 0.863(0.027)

AUTO 0.883(0.058) 0.757(0.061) 0.639(0.073) 0.917(0.050) 0.785(0.056) 0.642(0.065)

FFLR
COV 0.866(0.029) 0.816(0.024) 0.777(0.022) 0.904(0.024) 0.831(0.022) 0.801(0.020)

AUTO 0.840(0.040) 0.728(0.044) 0.611(0.047) 0.879(0.034) 0.742(0.036) 0.617(0.039)

Proof of Theorem 3.1

Applying similar techniques to prove Theorem 1 of Fang et al. (2020) and Proposi-

tion 1 of Guo and Qiao (2020), we obtain that for h ≥ 1

P
{∣∣∣∣ ⟨Φ1, (Σ̂

W

h −ΣW
h )(Φ2)⟩

⟨Φ1,Σ
W
0 (Φ1)⟩+ ⟨Φ2,Σ

W
0 (Φ2)⟩

∣∣∣∣ > 2MW
k δ

}
≤ 8 exp

{
− c1nmin(δ2, δ)

}
.

(3.37)

For each j ∈ [p], consider the spectral decomposition ΣW
0,jj(u, v) =

∑∞
l=1 ω

W
jl ν

W
jl (u)

νWjl (v) and ω0 = maxj
∑∞

l=1 ω
W
jl = O(1), implied from Lemma 3.4 in Appendix.

For each (j, k, l,m), choosing Φ1 = {0, . . . , 0, (ωW
jl )

−1/2νWjl , 0, . . . , 0}T and Φ2 =

{0, . . . , 0, (ωW
km)

−1/2νWkm, 0, . . . , 0}T on (3.37) and following the same developments

to prove Theorem 2 of Guo and Qiao (2020) with the choice of suitable constant c2,

we can obtain that

P
{
∥Σ̂W

h,jk − ΣW
h,jk∥S >MW

1 δ
}
≤ 8 exp

{
− c2nmin(δ2, δ)

}
. (3.38)

It follows from (3.9), (3.10) and Cauchy–Schwartz inequality that

∥K̂j −Kj∥2S ≤ 2L
L∑

h=1

∥Σ̂W
h,jj − ΣW

h,jj∥2S∥ΣW
h,jj∥2S + L

L∑
h=1

∥Σ̂W
h,jj − ΣW

h,jj∥4S .

Let Ω
(h)
ω,jk = {∥Σ̂W

h,jk −ΣW
h,jk∥S ≤ ω0} and Ω

(h)
jk = {∥Σ̂W

h,jk −ΣW
h,jk∥S ≤ MW

1 δ}. On the

event Λj = Ω
(1)
ω,jj ∩ · · · ∩ Ω

(L)
ω,jj ∩ Ω

(1)
jj ∩ · · · ∩ Ω

(L)
jj , it follows from the above results

and Lemma 3.5 that

∥K̂j −Kj∥S ≤
√
3Lω0MW

1 δ . (3.39)
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Table 3.3: List of S&P 100 stocks.

Ticker Company name Ticker Company name

AAPL APPLE INC JPM JPMORGAN CHASE & CO

ABBV ABBVIE INC KHC KRAFT HEINZ

ABT ABBOTT LABORATORIES KMI KINDER MORGAN INC

ACN ACCENTURE PLC CLASS A KO COCA-COLA

AGN ALLERGAN LLY ELI LILLY

AIG AMERICAN INTERNATIONAL GROUP INC LMT LOCKHEED MARTIN CORP

ALL ALLSTATE CORP LOW LOWES COMPANIES INC

AMGN AMGEN INC MA MASTERCARD INC CLASS A

AMZN AMAZON COM INC MCD MCDONALDS CORP

AXP AMERICAN EXPRESS MDLZ MONDELEZ INTERNATIONAL INC CLASS A

BA BOEING MDT MEDTRONIC PLC

BAC BANK OF AMERICA CORP MET METLIFE INC

BIIB BIOGEN INC MMM 3M

BK BANK OF NEW YORK MELLON CORP MO ALTRIA GROUP INC

BLK BLACKROCK INC MON MONSANTO

BMY BRISTOL MYERS SQUIBB MRK MERCK & CO INC

C CITIGROUP INC MS MORGAN STANLEY

CAT CATERPILLAR INC MSFT MICROSOFT CORP

CELG CELGENE CORP NEE NEXTERA ENERGY INC

CHTR CHARTER COMMUNICATIONS INC CLASS A NKE NIKE INC CLASS B

CL COLGATE-PALMOLIVE ORCL ORACLE CORP

COF CAPITAL ONE FINANCIAL CORP OXY OCCIDENTAL PETROLEUM CORP

COP CONOCOPHILLIPS PCLN THE PRICELINE GROUP INC

COST COSTCO WHOLESALE CORP PEP PEPSICO INC

CSCO CISCO SYSTEMS INC PFE PFIZER INC

CVS CVS HEALTH CORP PG PROCTER & GAMBLE

CVX CHEVRON CORP PM PHILIP MORRIS INTERNATIONAL INC

DHR DANAHER CORP PYPL PAYPAL HOLDINGS INC

DIS WALT DISNEY QCOM QUALCOMM INC

DUK DUKE ENERGY CORP RTN RAYTHEON

EMR EMERSON ELECTRIC SBUX STARBUCKS CORP

EXC EXELON CORP SLB SCHLUMBERGER NV

F F MOTOR SO SOUTHERN

FB FACEBOOK CLASS A INC SPG SIMON PROPERTY GROUP REIT INC

FDX FEDEX CORP T AT&T INC

FOX TWENTY-FIRST CENTURY FOX INC CLASS B TGT TARGET CORP

FOXA TWENTY-FIRST CENTURY FOX INC CLASS A TWX TIME WARNER INC

GD GENERAL DYNAMICS CORP TXN TEXAS INSTRUMENT INC

GE GENERAL ELECTRIC UNH UNITEDHEALTH GROUP INC

GILD GILEAD SCIENCES INC UNP UNION PACIFIC CORP

GM GENERAL MOTORS UPS UNITED PARCEL SERVICE INC CLASS B

GOOG ALPHABET INC CLASS C USB US BANCORP

GS GOLDMAN SACHS GROUP INC UTX UNITED TECHNOLOGIES CORP

HAL HALLIBURTON V VISA INC CLASS A

HD HOME DEPOT INC VZ VERIZON COMMUNICATIONS INC

HON HONEYWELL INTERNATIONAL INC WBA WALGREEN BOOTS ALLIANCE INC

IBM INTERNATIONAL BUSINESS MACHINES CO WFC WELLS FARGO

INTC INTEL CORPORATION CORP WMT WALMART STORES INC

JNJ JOHNSON & JOHNSON XOM EXXON MOBIL CORP
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Applying (3.38) and choosing δ = (MW
1 )−1ω0 for Ω

(1)
ω,jj, . . . ,Ω

(L)
ω,jj yields

P(ΛC
j ) ≤ 8L exp

{
− c2nmin(δ2, δ)

}
+8L exp

[
− c2nmin{(MW

1 )−2ω2
0, (MW

1 )−1ω0}
]
.

Combing the above results and choosing suitable constants c3, c4, we obtain

P
(
∥K̂j −Kj∥S >MW

1 δ
)
≤ c4 exp

{
− c3nmin(δ2, δ)

}
+ c4 exp(−c3n) . (3.40)

For each j ∈ [p], it follows from Lemma 4.3 of Bosq (2000) and Condition 3.3 that

|λ̂jl − λjl| ≤ ∥K̂j −Kj∥S and ∥ψ̂jl − ψjl∥ ≤ 2
√
2c−1lα+1∥K̂j −Kj∥S . (3.41)

Combining (3.40), (3.41) and the union bound of probability yields that

P
(

max
j∈[p],l∈[d]

|λ̂jl − λjl| >MW
1 δ
)
∨ P
{

max
j∈[p],l∈[d]

(∥ψ̂jl − ψjl∥/lα+1) > 2
√
2c−1MW

1 δ
}

≤ c4pd exp
{
− c3nmin(δ2, δ)

}
+ c4pd exp(−c3n) .

Let δ = ρ
√
log(pd)/n ≤ 1. Choosing suitable positive constants c5 and c6 = 1−c3ρ2,

we obtain that (3.13) holds with probability greater than 1− c5(pd)
−c6 , which com-

pletes the proof of Theorem 3.1. □

Proof of Theorem 3.2

For each (j, k, l,m) and h ≥ 1, we write

σ̂
(h)
jklm − σ

(h)
jklm = ⟨ψ̂jl, Σ̂

W
h,jk(ψ̂km)⟩ − ⟨ψjl,Σ

W
h,jk(ψkm)⟩

= ⟨(ψ̂jl − ψjl), Σ̂
W
h,jk(ψ̂km − ψkm)⟩+ ⟨ψjl, (Σ̂

W
h,jk − ΣW

h,jk)(ψkm)⟩

+
{
⟨(ψ̂jl − ψjl), (Σ̂

W
h,jk − ΣW

h,jk)(ψkm)⟩+

⟨ψjl, (Σ̂
W
h,jk − ΣW

h,jk)(ψ̂km − ψkm)⟩
}

+
{
⟨(ψ̂jl − ψjl),Σ

W
h,jk(ψkm)⟩+ ⟨ψjl,Σ

W
h,jk(ψ̂km − ψkm)⟩

}
= J1 + J2 + J3 + J4 .

On the event Ω̃jk = Ω
(h)
ω,jk ∩Ω

(h)
jk ∩Λj ∩Λk, it follows from Lemma 3.5, (3.39), (3.41),

the orthonormality of {ψjl}, {ψkm} that |J1| ≲ (l ∨m)2(α+1)(MW
1 )2δ2, |J2| ≤ MW

1 δ,
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|J3| ≲ (l ∨ m)α+1MW
1 δ and |J4| ≲ (l ∨ m)α+1MW

1 δ. Combing the above results

implies that

4∑
i=1

|Ji| ≤ c7(l ∨m)α+1MW
1 δ + c8(l ∨m)2(α+1)(MW

1 )2δ2 .

Applying (3.38) and choosing δ = (MW
1 )−1ω0 for Ω

(h)
ω,jk, Ω

(1)
ω,jj, . . . , Ω

(L)
ω,jj, Ω

(1)
ω,kk,

. . . , Ω
(L)
ω,kk yields

P(Ω̃c
jk) ≤ (16L+ 8) exp

{
− c2nmin(δ2, δ)

}
+ (16L+ 8) exp

[
− c2nmin{(MW

1 )−2ω2
0, (MW

1 )−1ω0}
]
.

Combing the above results, choosing suitable positive constants c9, c10, c11, and ap-

plying the union bound of probability yields

P
{

max
j,k∈[p],l,m∈[d]

∣∣∣∣ σ̂(h)
jklm − σ

(h)
jklm

(l ∨m)α+1

∣∣∣∣ >MW
1 δ + c11(l ∨m)α+1(MW

1 )2δ2
}

≤ c10p
2d2 exp

{
− c9nmin(δ2, δ)

}
+ c10p

2d2 exp(−c9n) .
(3.42)

Choosing δ = ρ1
√

log(pd)/n ≤ 1 and 1 + c11d
α+1MW

1 δ ≤ ρ2 for some positive con-

stants ρ1, ρ2, which can be achieved for sufficiently large n ≳ d2α+2(MW
1 )2 log(pd),

it follows from (3.42) that there exists positive constants c12, c13 such that, with

probability greater than 1− c12(pd)
−c13 ,

max
j,k∈[p],l,m∈[d]

∣∣∣∣ σ̂(h)
jklm − σ

(h)
jklm

(l ∨m)α+1

∣∣∣∣ ≤ ρ1ρ2MW
1

√
log(pd)

n
,

which completes the proof of Theorem 3.2. □

Proof of Proposition 3.2
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For each (h, j, k, l,m), we write

σ̂W,Y
h,jklm − σW,Y

h,jklm

=
〈
(ψ̂jl − ψjl), Σ̂

W,Y
h,jk (ϕ̂km − ϕkm)

〉
+
〈
ψjl, (Σ̂

W,Y
h,jk − ΣW,Y

h,jk )(ϕkm)
〉

+
{〈

(ψ̂jl − ψjl), (Σ̂
W,Y
h,jk − ΣW,Y

h,jk )(ϕkm)
〉
+
〈
ψjl, (Σ̂

W,Y
h,jk − ΣW,Y

h,jk )(ϕ̂km − ϕkm)
〉}

+
{〈

(ψ̂jl − ψjl),Σ
W,Y
h,jk (ϕkm)

〉
+
〈
ψjl,Σ

W,Y
h,jk (ϕ̂km − ϕkm)

〉}
= I1 + I2 + I3 + I4.

Let ΩY
0kk = {∥Σ̂Y

0,kk − ΣY
0,kk∥S ≤ MY

1 δ}, Ω
W,Y
hjk = {∥Σ̂W,Y

h,jk − ΣW,Y
h,jk ∥S ≤ MW,Y δ}.

On the event Λj ∩ ΩY
0,kk ∩ ΩW,Y

h,jk , it follows from ∥⟨ΣW,Y
h,jk , ϕkm⟩∥ ≤ ω

1/2
0 θ

1/2
km and

∥⟨ψjl,Σ
W,Y
h,jk ⟩∥ ≤ ω

1/2
0 θ

1/2
0 , derived by the similar techniques to prove Lemma 3.5,

together with Lemma 3.4, Lemma 4.3 of Bosq (2000), (3.39), (3.41), the orthonor-

mality of {ψjl}, {ϕkm} and Condition 3.14 that

|I1| ≲ lα+1MW
1 δm

α̃+1MY
1 δ ≲ l2(α+1)(MW

1 )2δ2 +m2(α̃+1)(MY
1 )

2δ2,

|I2| ≤ MW,Y δ,

|I3| ≲ lα+1MW
1 MW,Y δ

2 +mα̃+1MY
1 MW,Y δ

2,

|I4| ≲ lα+1MW
1 δ +mα̃+1MY

1 δ

Combing the above results and MW,Y = MW
1 +MY

1 +MW,Y
1,1 yields that

4∑
i=1

|Ii| ≤ c14(l
α+1 ∨mα̃+1)MW,Y δ + c15(l

2(α+1) ∨m2(α̃+1))(MW,Y )
2δ2.

Following the same developments to prove (3.42), we apply (3.40), Theorem 2,

Lemma 24 of Fang et al. (2020) and the union bound of probability, choose suitable

positive constants c16, c17, c18 and hence obtain that

P

{
max

j∈[p],k∈[p̃],l∈[d],m∈[d̃]

|σ̂W,Y
h,jklm − σW,Y

h,jklm|
lα+1 ∨mα̃+1

>MW,Y δ + c18(l
α+1 ∨mα̃+1)(MW,Y )

2δ2

}

≤ c17pp̃dd̃ exp
{
− c16nmin(δ2, δ)

}
+ c17pp̃dd̃ exp

(
− c16n

)
.

(3.43)

Choosing δ = ρ3

√
log(pp̃dd̃)/n ≤ 1 and 1 + c19(d

α+1 ∨ d̃α̃+1)MW,Y δ ≤ ρ4 for some

positive constants ρ3, ρ4, which can be achieved for sufficiently large n ≳ (d2α+2 ∨
d̃2α̃+2)(MW,Y )

2 log(pp̃dd̃), it follows from (3.43) that there exists positive constants
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c20, c21 such that, with probability greater than 1− c20(pp̃dd̃)
−c21 ,

max
j∈[p],k∈[p̃],l∈[d],m∈[d̃]

|σ̂W,Y
h,jklm − σW,Y

h,jklm|
lα+1 ∨mα̃+1

≤ ρ3ρ4MW,Y

√
log(pp̃dd̃)

n
,

which completes the proof of Proposition 3.2. □

Proof of Proposition 3.3

For each (h, j, k, l), we write

ϱ̂W,Z
h,jkl − ϱW,Z

h,jkl

=
〈
(ψ̂jl − ψjl), (Σ̂

W,Z
h,jk − ΣW,Z

h,jk )
〉
+
〈
ψjl, (Σ̂

W,Z
h,jk − ΣW,Z

h,jk )
〉
+
〈
(ψ̂jl − ψjl),Σ

W,Z
h,jk

〉
= T1 + T2 + T3.

Let ΩW,Z
hjk =

{
∥Σ̂W,Z

h,jk − ΣW,Z
h,jk∥S ≤ MW,Zδ

}
. On the event Λj ∩ ΩW,Z

hjk , it follows from

(3.39), (3.41), the orthonormality of {ψjl} and ∥ΣWZ
h,jk∥ ≤ ω

1/2
0 σZ

0,kk that

|T1| ≲ lα+1MW
1 δMW,Zδ,

|T2| ≤ MW,Zδ,

|T3| ≲ lα+1MW
1 δ.

Combing the above results and MW,Z = MW
1 +MZ

1 +MW,Z
1,1 implies that

3∑
i=1

|Ti| ≤ c22l
α+1MW,Zδ + c23l

α+1(MW,Z)
2δ2.

Following the same developments to prove (3.42), we apply (3.40), Remark 3 and

Lemma 28 of Fang et al. (2020) and the union bound of probability, choose suitable

positive constants c24, c25, c26 and hence obtain that

P

{
max

j∈[p],k∈[p̃],l∈[d]

|ϱ̂W,Z
h,jkl − ϱW,Z

h,jkl|
lα+1

>MW,Zδ + c26(MW,Z)
2δ2

}

≤ c25pp̃d exp
{
− c24nmin(δ2, δ)

}
+ c25pp̃d exp

(
− c24n

)
.

(3.44)

Choosing δ = ρ5
√

log(pp̃d)/n ≤ 1 and 1+c26MW,Zδ ≤ ρ6 for some positive constants

ρ5, ρ6, which can be achieved for sufficiently large n ≳ (MW,Z)
2 log(pp̃d), it follows
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from (3.44) that there exists positive constants c27, c28 such that, with probability

greater than 1− c27(pp̃d)
−c28 ,

max
j∈[p],k∈[p̃],l∈[d]

|ϱ̂W,Z
h,jkl − ϱW,Z

h,jkl|
lα+1

≤ ρ5ρ6MW,Z

√
log(pp̃d)

n
,

which completes the proof of Proposition 3.3. □

Proof of Theorem 3.3

By g(θ) = Gθ + g(0) and (3.17), we have g(θ̂) = Gθ̂ + g(0), Gθ0 + g(0) +R = 0

and ĝ(θ̂) = Ĝθ̂ + ĝ(0). Consider event A =
{
∥Ĝ −G∥(d,d)max ∨ ∥ĝ(0) − g(0)∥(d,d̃)max ≤

ϵn1
}
∩
{
∥ĝ(θ0)∥(d,d̃)max ≤ γn

}
. By the union bound of probability and Conditions 3.4

and 3.6, this event occurs with probability at least 1 − δn1 − δn2. On event A, we

have

∥G(θ̂ − θ0)∥(d,d̃)max ≤ ∥g(θ̂)∥(d,d̃)max + ∥R∥(d,d̃)max

≤ ∥ĝ(θ̂)− g(θ̂)∥(d,d̃)max + ∥ĝ(θ̂)∥(d,d̃)max + ∥R∥(d,d̃)max

≤ ∥(Ĝ−G)θ̂∥(d,d̃)max + ∥ĝ(0)− g(0)∥(d,d̃)max + ∥ĝ(θ̂)∥(d,d̃)max + ∥R∥(d,d̃)max

≤ ∥Ĝ−G∥(d,d)max ∥θ0∥
(d,d̃)
1 + ∥ĝ(0)− g(0)∥(d,d̃)max+

∥ĝ(θ̂)∥(d,d̃)max + ∥R∥(d,d̃)max

≤ Kϵn1 + ϵn1 + γn + ϵ2,

(3.45)

where, in the last two inequalities, we have used the facts that ∥(Ĝ −G)θ̂∥(d,d̃)max =

maxi∈[q]
∑p

j=1 ∥(Ĝ − G)ijθ̂j∥F ≤ maxi,j ∥(Ĝ − G)ij∥F
∑

j ∥θ̂j∥F = ∥Ĝ − G∥(d,d)max

∥θ̂∥(d,d̃)1 , ∥θ̂∥(d,d̃)1 ≤ ∥θ0∥(d,d̃)1 ≤ K and ∥ĝ(θ̂)∥(d,d̃)max ≤ γn by the definition of the

block RMD estimator in (3.18) and ∥R∥(d,d̃)max ≤ ϵ2 by Condition 3.5. On event A,

choosing the set T = S in (3.19) and applying Lemma 3.1 under Condition 3.6 yields

∥δ̂SC∥(d,d̃)1 ≤ ∥δ̂S∥(d,d̃)1 and hence δ̂ ∈ CS. Then by (3.19), (3.45) and Lemma 3.3 un-

der Condition 3.7, we have

∥θ̂ − θ0∥(d,d̃)1 ≤ κ(θ0)
−1 · ∥G(θ̂ − θ0)∥(d,d̃)max ≲

s{(K + 1)ϵn1 + γn + ϵ2}
µ2

,

which completes the proof. □
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Proof of Proposition 3.1

Define κ̃(θ0) by substituting G in (3.19) by G̃. By G̃ = DxGDy with Dx and Dy

being diagonal matrices, we have

∥θ̂ − θ0∥(d,d̃)1 ≤ κ̃(θ0)
−1 · ∥G̃(θ̂ − θ0)∥(d,d̃)max

≤ κ̃(θ0)
−1 · ∥Dx∥max∥Dy∥max∥G(θ̂ − θ0)∥(d,d̃)max .

Following the same procedure to prove Theorem 3.3, we can obtain (3.21). □

Lemma 3.1 and its proof

Lemma 3.1. Suppose that Condition 3.6 holds. Then ∥δ̂Sc∥(d,d̃)1 ≤ ∥δ̂S∥(d,d̃)1 with

probability at least 1− δn2.

Proof. It follows from Condition 3.6 and θ0,Sc = 0 by definition that with proba-

bility at least 1− δn2, ∥θ̂∥(d,d̃)1 ≤ ∥θ0∥(d,d̃)1 = ∥θ0,S∥(d,d̃)1 , which implies that

∥θ0,S∥(d,d̃)1 ≥ ∥θ̂S∥(d,d̃)1 + ∥θ̂Sc∥(d,d̃)1

≥ ∥θ0,S∥(d,d̃)1 − ∥θ̂S − θ0,S∥(d,d̃)1 + ∥θ̂Sc∥(d,d̃)1 .

By cancelling ∥θ0,S∥(d,d̃)1 on both sides above, we obtain ∥θ̂Sc − θ0,Sc∥(d,d̃)1 ≤ ∥θ̂S −
θ0,S∥(d,d̃)1 . □

Lemma 3.2 and its proof

To simplify notation in this section, we will use σmin(m) and σmax(m) to represent

σmin(m,G) and σmax(m,G), respectively.

Lemma 3.2. It holds that

κ(θ0) ≥ max
m≥s

{
σmin(m)√

m
− 2σmax(m)√

m

√
s

m

}
s−1/2

2(1 + 2
√
s/m)

.

Proof. Let T ⊂ [p] and ∥δT c∥(d,d̃)1 ≤ ∥δT∥(d,d̃)1 by (3.19). Let T1 denote the largest

m components of {∥δi∥F}i∈[p], and T2 be the subsequent m-largest, etc. Let Vµ =

diag(µ ⊗ 1d) where µ ∈ Rq with
∑q

i=1 I(|µi| ̸= 0) ≤ m and 1d = (1, . . . , 1)T ∈ Rd.
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We let ∥µ∥ = (
∑q

i=1 µ
2
i )

1/2 and ∥µ∥∞ = maxi∈[q] |µi|. Then, we have

∥Gδ∥(d,d̃)max = max
µ

∥∥∥∥ 1

∥µ∥
VµGδ

∥∥∥∥
F

≥
∥∥∥∥ 1√

m∥µ∥∞
VµGδ

∥∥∥∥
F

≥
∥∥∥∥ 1√

m∥µ∥∞
VµG·,T1δT1

∥∥∥∥
F

−
∑
j≥2

∥∥∥∥ 1√
m∥µ∥∞

VµG·,Tj
δTj

∥∥∥∥
F

, (3.46)

where G·,Tj
is the block submatrix of G consisting of all rows and all block columns

in Tj of G for j ≥ 1. Define J̃1 = argmax|J |≤m σmin(GJ,T1). We can let µ = (µi)

with µi = 1 if i ∈ J̃1 and 0 otherwise, so that ∥µ∥∞ = 1. Then the first term in

(3.46) becomes

∥∥∥∥ 1√
m∥µ∥∞

VµG·T1δT1

∥∥∥∥
F

=

∥∥∥∥ 1√
m
GJ̃1,T1

δT1

∥∥∥∥
F

≥
σmin(GJ̃1,T1

)
√
m

∥δT1∥F =
1√
m

max
|J |≤m

σmin(GJ,T1)∥δT1∥F

≥ 1√
m

min
|M |≤m

max
|J |≤m

σmin (GJ,M) ∥δT1∥F =
σmin(m)√

m
∥δT1∥F ,

(3.47)

where the first inequality comes from Lemma 3.6. Define J̃j = argmax|J |≤m

σmax(GJ,Tj
) for each j ≥ 2. By the similar arguments as above, the second term in

(3.46) becomes

∑
j≥2

∥∥∥∥ 1√
m∥µ∥∞

VµG·,Tj
δTj

∥∥∥∥
F

=
1√
m

∑
j≥2

∥∥∥GJ̃j ,Tj
δTj

∥∥∥
F

≤ 1√
m

∑
j≥2

σmax(GJ̃j ,Tj
)∥δTj

∥F

=
1√
m

∑
j≥2

max
|J |≤m

σmax(GJ,Tj
)∥δTj

∥F

≤ 1√
m

max
|M |≤m

max
|J |≤m

σmax (GJ,M)
∑
j≥2

∥δTj
∥F

=
σmax(m)√

m

∑
j≥2

∥δTj
∥F.

(3.48)

By the construction of sets {Tj}j≥1, we have ∥δTj
∥(d,d̃)1 =

∑
l∈Tj

∥δl∥F ≥ m∥δTj+1
∥(d,d̃)max
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≥
√
m∥δTj+1

∥F, which implies that

∑
j≥2

∥δTj
∥F ≤

∑
j≥1

∥δTj
∥(d,d̃)1 /

√
m ≤ ∥δ∥(d,d̃)1 /

√
m. (3.49)

Combining (3.47), (3.48) and (3.49) yields

∥Gδ∥(d,d̃)max ≥ σmin(m)√
m

∥δT1∥F − σmax(m)√
m

∥δ∥(d,d̃)1 /
√
m

≥ σmin(m)√
m

∥δT1∥F − σmax(m)√
m

2

√
s

m
∥δT∥F

=

{
σmin(m)√

m
− 2

σmax(m)√
m

√
s

m

∥δT∥F
∥δT1∥F

}
∥δT1∥F

(3.50)

where the second inequality comes from ∥δ∥(d,d̃)1 ≤ 2∥δT∥(d,d̃)1 ≤ 2
√
s∥δT∥F with

|T | ≤ s. This fact together with (3.49) implies that

∥δ∥F ≤ ∥δT1∥F +
∑
j≥2

∥δTj
∥F ≤ ∥δT1∥F + 2

√
s/m∥δT∥F ≤ (1 + 2

√
s/m)∥δT1∥F.

(3.51)

Combing (3.50) and (3.51) yields that

∥Gδ∥(d,d̃)max ≥
{
σmin(m)√

m
− 2

σmax(m)√
m

√
s

m

}
∥δ∥F

(1 + 2
√
s/m)

≥
{
σmin(m)√

m
− 2

σmax(m)√
m

√
s

m

}
∥δ∥(d,d̃)1 /

√
s

2(1 + 2
√
s/m)

,

(3.52)

where the second inequality comes from ∥δ∥F ≥ ∥δT∥F ≥ ∥δT∥(d,d̃)1 /
√
s ≥ ∥δ∥(d,d̃)1 /√

4s.We complete our proof by (3.19) and dividing ∥δ∥(d,d̃)1 on both sides of (3.52). □

Lemma 3.3 and its proof

Lemma 3.3. Suppose that Condition 3.7 holds. Then there exists some constant c

such that

κ(θ0) ≥
cµ2

24s
.
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Proof. Applying Lemma 3.2 and choosing m = 16s/µ2 yields that

κ(θ0) ≥ max
m≥s

σmax(m,G)√
m

{
σmin(m,G)

σmax(m,G)
− µ

2

}
s−1/2

2(1 + µ/2)

≥ cµ

4
√
s
(µ− µ

2
)[2(1 +

µ

2
)]−1s−1/2 ≥ cµ2

24s
. □

Proof of Theorem 3.4

We first verify Condition 3.4 for SFLR. Define events

I1 =

{
max

j,k∈[p],h∈[L],l,m∈[d]

∣∣σ̂(h)
jklm − σ

(h)
jklm

∣∣ ≤ c1d
α+1MW

1

√
log(pd)

n

}
, (3.53)

I2 =

{
max

k∈[p],h∈[L],m∈[d]

∣∣∣∣∣ 1

(n− h)

n∑
t=h

η̂(t+h)kmYt − E{η(t+h)kmYt}

∣∣∣∣∣ ≤
c2d

α+1MW,Y

√
log(pd)

n

}
.

On event I1 ∩ I2, we have

∥Ĝ−G∥(d,d)max = max
j,k∈[p],h∈[L]

∥∥∥ 1

(n− h)

n∑
t=h

η̂(t+h)kη̂
T

tj − E{η(t+h)kη
T

tj}
∥∥∥
F

≤ c1d
α+2MW

1

√
log(pd)

n
,

(3.54)

∥ĝ(0)− g(0)∥(d,1)max = max
k∈[p],h∈[L]

∥∥∥ 1

(n− h)

n∑
t=h

η̂(t+h)kYt − E(ηtjYt)
∥∥∥

≤ c2d
α+3/2MW,Y

√
log(pd)

n
.

(3.55)

By Theorem 3.2, Proposition 3.3 and the union bound of probability, P (I1 ∩ I2) ≥
1− c3(pd)

−c4 . By (3.54) and (3.55), Condition 3.4 can be verified by choosing δn1 =

c3(pd)
−c4 (pd depends on n) and

ϵn1 = c5d
α+2MW,Y

√
log(pd)

n
. (3.56)
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We next verify Condition 3.5 for SFLR. If follows from rt =
∑p

j=1

∑∞
l=d+1 ηtjl⟨ψjl,

β0j⟩, orthonormality of {ψjl}, Cauchy–Schwartz inequality and Condition 3.8 that

{
∥R∥(d,1)max

}2
= max

k∈[p],h∈[L]
∥E{η(t+h)krt}∥2 = max

k,h

d∑
m=1

{
E
(
η(t+h)km

p∑
j=1

∞∑
l=d+1

ηtjlajl

)}2

≤ max
k,h

d∑
m=1

{∑
j∈S

∞∑
l=d+1

√
E(η2(t+h)km)E(η2tjl)ajl

}2

≤ s2max
k,j

d∑
m=1

( ∞∑
l=d+1

λ
1/2
kmλ

1/2
jl ajl

)2
≤ s2max

k

d∑
m=1

λkmmax
j

{ ∞∑
l=d+1

λjl

∞∑
l=d+1

a2jl

}
≲ λ20s

2

∞∑
l=d+1

l−2τ = O(s2d−2τ+1).

where the asymptotic inequality comes from Condition 3.8 and λ0 = maxj
∑∞

l=1 λjl

= O(1) implied by some calculations based on (3.9) and Lemma 3.4. Therefore

∥R∥(d,1)max ≤ c6sd
−τ+1/2 = ϵ2. (3.57)

By the similar technique above and Condition 3.8,

∥b0∥(d,1)1 =
∑
j∈S

(
d∑

l=1

a2jl)
1/2 ≲ smax

j∈S
(

d∑
l=1

l−2τ )1/2 = O(s). (3.58)

Finally, we verify Condition 3.6 for SFLR. On event I1 ∩ I2, combing (3.56) (3.57)

and (3.58) yields that

∥ĝ(b0)∥(d,1)max ≤ ∥ĝ(b0)− g(b0)∥(d,1)max + ∥R∥(d,1)max

≤ ∥(Ĝ−G)b0∥(d,1) + ∥ĝ(0)− g(0)∥(d,1)max + ∥R∥(d,1)max

≤ ∥Ĝ−G∥(d,d)max ∥b0∥(d,1)1 + ∥ĝ(0)− g(0)∥(d,1)max + ∥R∥(d,1)max

≤ c7s
(
dα+2MW,Y

√
log(pd)

n
+ d−τ+1/2

)
= γn.

(3.59)

By Condition 3.3 with maxj ∥Dj∥max ≤ maxj λ
−1/2
jd = O(dα/2) and Proposition 3.1
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under Condition 3.9, we have

∥b̂− b0∥(d,1)1 = Op

{
µ−2s2dα

(
dα+2MW,Y

√
log(pd)

n
+ d−τ+1/2

)}
. (3.60)

For each j ∈ [p], let Rj(u) =
∑∞

l=d+1 ajlψjl(u). By the orthonormality of {ψjl} and

∥Rj∥2 = ∥
∑∞

l=d+1 ajlψjl∥2 =
∑∞

l=d+1 a
2
jl ≲ d−2τ+1 for j ∈ S under Condition 3.8, we

have

∥β̂j − β0j∥ = ∥ψ̂
T

j b̂j −ψT

j b0j −Rj∥

≤ ∥(ψ̂j −ψj)
Tb̂j∥+ ∥ψT

j {b̂j − b0j}∥+ ∥Rj∥

≤ d1/2max
l∈[d]

∥ψ̂jl − ψjl∥∥b̂j∥+ ∥b̂j − b0j∥+O(d−τ+1/2) ,

which implies that

∥β̂ − β0∥1 ≤ d1/2 max
j∈[p],l∈[d]

∥ψ̂jl − ψjl∥∥b̂∥(d,1)1 + ∥b̂− b0∥(d,1)1 +O(sd−τ+1/2),

where the third term above is of a smaller order of the second term due to (3.60).

By ∥b̂∥(d,1)1 ≤ ∥b̂−b0∥(d,1)1 + ∥b0∥(d,1)1 , (3.58) and Theorem 3.1, the first term above

is of a smaller order of the second term. Hence, we obtain (3.22) from (3.60), which

completes the proof. □

Proof of Theorem 3.5

We first verify Condition 3.4 for FFLR. In addition to event I1 in (3.53), we define

event

I3 =

{
max

k∈[p],h∈[L],m∈[d],l∈[d̃]

∣∣∣∣∣ 1

(n− h)

n∑
t=h

η̂(t+h)kmζ̂tl − E{η(t+h)kmζtl}

∣∣∣∣∣ ≤
c2d

α∨α̃+1MW,Y

√
log(pdd̃)

n

 .
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On event I1 ∩ I3, we have

∥ĝ(0)− g(0)∥(d,d̃)max = max
k∈[p],h∈L

∥∥∥ 1

(n− h)

n∑
t=h

η̂(t+h)kζ̂
T

t − E{ηtjζ
T

t }
∥∥∥
F

≤ c2d
α∨α̃+2MW,Y

√
log(pdd̃)

n
.

(3.61)

By Theorem 3.2, Proposition 3.2 and the union bound probability, P (I1 ∩ I3) ≥
1− c3(pd)

−c4 . By (3.54) and (3.61), Condition 3.4 can be verified with the choice of

ϵn1 = c5d
α∨α̃+2MW,Y

√
log(pd)

n
. (3.62)

We next verify Condition 3.5 for FFLR. If follows from rt = (rt1, . . . , rtd̃)
T with each

rtm′ =
∑p

j=1

∑∞
l=d+1 ηtjl

〈
⟨ψjl, β0j⟩, ϕm′

〉
, orthonormality of {ψjl}, {ϕm′}, Cauchy–

Schwartz inequality and Condition 3.10 that

{
∥R∥(d,d̃)max

}2

= max
k∈[p],h∈[L]

∥E{η(t+h)kr
T

t }∥2F

= max
k,h

d∑
m=1

d̃∑
m′=1

{
E
(
η(t+h)km

p∑
j=1

∞∑
l=d+1

ηtjlajlm′

)}2

≤ max
k,h

d∑
m=1

d̃∑
m′=1

{∑
j∈S

∞∑
l=d+1

√
E(η2(t+h)km)E(η2tjl)ajlm′

}2

≤ s2max
k,j

d∑
m=1

d̃∑
m′=1

( ∞∑
l=d+1

λ
1/2
kmλ

1/2
jl ajlm′

)2
≤ s2max

k

d∑
m=1

λkmmax
j

{ ∞∑
l=d+1

λjl

d̃∑
m′=1

∞∑
l=d+1

a2jlm′

}

≲ λ20s
2

d̃∑
m′=1

∞∑
l=d+1

(l +m′)−2τ−1 = O(s2d−2τ+1),

which implies that

∥R∥(d,d̃)max ≤ c6sd
−τ+1/2 = ϵ2. (3.63)

By the similar technique above and Condition 3.10,

∥B0∥(d,d̃)1 =
∑
j∈S

(
d∑

l=1

d̃∑
m=1

a2jlm)
1/2 ≲ smax

j∈S

{ d∑
l=1

d̃∑
m=1

(l +m)−2τ−1
}1/2

= O(s). (3.64)
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Finally, we verify Condition 3.6 for FFLR. On event I1 ∩ I3, combing (3.62) (3.63)

and (3.64) and applying the similar techniques for SFLR, we have

∥ĝ(B0)∥(d,d̃)max ≤ ∥Ĝ−G∥(d,d)max ∥B0∥(d,d̃)1 + ∥ĝ(0)− g(0)∥(d,d̃)max + ∥R∥(d,d̃)max

≤ c7s
(
dα∨α̃+2MW,Y

√
log(pd)

n
+ d−τ+1/2

)
= γn.

(3.65)

By Condition 3.3 and Proposition 3.1 under Condition 3.9, we have

∥B̂−B0∥(d,d̃)1 = Op

{
µ−2s2dα

(
dα∨α̃+2MW,Y

√
log(pd)

n
+ d−τ+1/2

)}
. (3.66)

For each j ∈ [p], let Rj(u, v) = (
∑d

l=1

∑d̃
m=1 −

∑∞
l,m=1)ajlmψjl(u)ϕm(v) and write

β̂j(u, v)− β0j(u, v) = ψ̂j(u)
TB̂jϕ̂(v)−ψj(u)

TB0jϕ(v) +Rj(u, v)

= ψ̂j(u)
TB̂j{ϕ̂(v)− ϕ(v)}+ {ψ̂j(u)−ψj(u)}TB̂jϕ(v)

+ψj(u)
T{B̂j −B0j}ϕ(v) +Rj(u, v).

By Lemma 9 of Guo and Qiao (2020), we bound the first three terms by

∥∥ψ̂T

j B̂j(ϕ̂− ϕ)
∥∥
S ≤ d̃1/2 max

m∈[d̃]
∥ϕ̂m − ϕm∥∥B̂j∥F,∥∥(ψ̂j −ψj)

TB̂jϕ
∥∥
S ≤ d1/2max

l∈[d]
∥ψ̂jl − ψjl∥∥B̂j∥F,∥∥ψT

j (B̂j −B0j)ϕ
∥∥
S = ∥B̂j −B0j∥F.

(3.67)

We next bound the fourth term. For j ∈ S, by the orthonormality of {ψjl} and

{ϕm},

∥Rj∥2S = ∥(
d∑

l=1

d̃∑
m=1

−
∞∑

l,m=1

)ajlmψjlϕm∥2S

= O(1)(
d∑

l=1

∞∑
m=d̃+1

a2jlm +
∞∑
l=1

d̃∑
m=1

a2jlm)

= O(1)
{ d∑

l=1

∞∑
m=d̃+1

(l +m)−2τ−1 +
∞∑
l=1

d̃∑
m=1

(l +m)−2τ−1
}
= O(d−2τ+1).

(3.68)
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Combing (3.67) and (3.68), we obtain

∥β̂ − β0∥1 ≤ ∥B̂∥(d,d̃)1

{
d̃1/2max

m∈[d̃]
∥ϕ̂m − ϕm∥+ d1/2 max

j∈[p],l∈[d]
∥ψ̂jl − ψjl∥

}
+∥B̂−B0∥(d,d̃)1 +O(sd−τ+1/2),

where the third term above is of a smaller order of the second term due to (3.66).

By ∥B̂∥(d,d̃)1 ≤ ∥B̂ − B0∥(d,d̃)1 + ∥B0∥(d,d̃)1 , (3.64) and Theorem 3.1, the first term is

of a smaller order of the second term. According to (3.66), we complete the proof. □

Proof of Theorem 3.6

For each j ∈ [p], we first verify Condition 3.4 for VFAR. On event I1 in (3.53),

∥Ĝj −Gj∥(d,d)max = max
j′,k∈[p],h∈[L],h′∈[H]

∥∥∥ 1

(n− h)

n∑
t=h

η̂(t+h)kη̂
T

(t−h′)j′−

E{η(t+h)kη
T

(t−h′)j′}
∥∥∥
F

≤ c1d
α+2MW

1

√
log(pd)

n
,

(3.69)

∥ĝj(0)− gj(0)∥(d,d)max = max
k∈[p],h∈[L]

∥∥∥ 1

(n− h)

n∑
t=h

η̂(t+h)kη̂
T

tj − E(η(t+h)kη
T

tj)
∥∥∥
F

≤ c2d
α+2MW

1

√
log(pd)

n
.

(3.70)

It follows from Theorem 3.2 that P (I1) ≥ 1 − c3(pd)
−c4 . By (3.69) and (3.70),

Condition 3.4 can be verified by choosing

ϵn1 = c5d
α+2MW

1

√
log(pd)

n
. (3.71)

We next verify Condition 3.5 for VFAR. It follows from rtj = (rtj1, . . . , rtjd)
T

with each rtjm′ =
∑H

h′=1

∑p
j′=1

∑∞
l=d+1 η(t−h′)j′l

〈
⟨ψj′l, A

(h′)
0,jj′⟩, ψjm′

〉
, orthonormality
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of {ψjl}, Cauchy–Schwartz inequality and Condition 3.11 that

{
∥Rj∥(d,d)max

}2
= max

k∈[p],h∈[L]
∥E{η(t+h)kr

T

tj}∥2F

= max
k,h

d∑
m=1

d∑
m′=1

{
E
(
η(t+h)km

H∑
h′=1

p∑
j′=1

∞∑
l=d+1

η(t−h′)j′la
(h′)
jj′lm′

)}2

≤ max
k,h

d∑
m=1

d∑
m′=1

{ ∑
(j′,h′)∈Sj

∞∑
l=d+1

√
E(η2(t+h)km)E(η2(t−h′)j′l)a

(h′)
jj′lm′

}2

≤ s2j max
k,j′,h′

d∑
m=1

d∑
m′=1

( ∞∑
l=d+1

λ
1/2
kmλ

1/2
j′l a

(h′)
jj′lm′

)2
≤ s2j max

k

d∑
m=1

λkmmax
j′,h′

{ ∞∑
l=d+1

λj′l

d∑
m′=1

∞∑
l=d+1

(a
(h′)
jj′lm′)

2
}

≲ λ20s
2
j

d∑
m′=1

∞∑
l=d+1

(l +m′)−2τ−1 = O(s2jd
−2τ+1),

which implies that

∥Rj∥(d,d)max ≤ c6sjd
−τ+1/2 = ϵ2. (3.72)

By the similar technique above and Condition 3.11, we have

∥Ω0j∥(d,d)1 =
∑

(j′,h′)∈Sj

{ d∑
l=1

d∑
m=1

(a
(h′)
jj′lm)

2
}1/2

≲ sj max
(j′,h′)∈Sj

(
d∑

l=1

d∑
m=1

{
l +m)−2τ−1

}1/2
= O(sj).

(3.73)

Finally, we verify Condition 3.6 for VFAR. On event I1, combing (3.71) (3.72),(3.73)

and applying the similar techniques, we have

∥ĝj(Ω0j)∥(d,d)max ≤ ∥Ĝj −Gj∥(d,d)max ∥Ω0j∥(d,d)1 + ∥ĝj(0)− gj(0)∥(d,d)max + ∥Rj∥(d,d)max

≤ c7sj

(
dα+2MW

1

√
log(pd)

n
+ d−τ+1/2

)
= γnj.

(3.74)

By Condition 3.3 and Proposition 3.1 under Condition 3.12, we have

∥Ω̂j −Ω0j∥(d,d)1 = Op

{
µ−2
j s2jd

α

(
dα+2MW

1

√
log(pd)

n
+ d−τ+1/2

)}
. (3.75)
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For each j′ ∈ [p], let R
(h′)
jj′ (u, v) = (

∑d
l=1

∑d
m=1 −

∑∞
l,m=1)a

(h′)
jj′lmψj′m(u)ψjl(v) and

write

Â
(h′)
jj′ (u, v)− A

(h′)
0,jj′(u, v) = ψ̂j′(u)

TΩ̂
(h′)

jj′ ψ̂j(v)−ψj′(u)
TΩ

(h′)
0,jj′ψj(v) +R

(h′)
jj′ (u, v)

= ψ̂j′(u)
TΩ̂

(h′)

jj′ {ψ̂j(v)−ψj(v)}+

{ψ̂j′(u)−ψj′(u)}TΩ̂
(h′)

jj′ ψj(v)+

ψj′(u)
T{Ω̂

(h′)

jj′ −Ω
(h′)
0,jj′}ψj(v) +R

(h′)
jj′ (u, v) .

By the same techniques to prove (3.67), we bound the first three terms

∥∥ψ̂T

j′Ω̂
(h′)

jj′ (ψ̂j −ψj)
∥∥
S ≤ d1/2max

l∈[d]
∥ψ̂jl − ψjl∥∥Ω̂

(h′)

jj′ ∥F ,∥∥(ψ̂j′ −ψj′)
TΩ̂

(h′)

jj′ ψj

∥∥
S ≤ d1/2 max

m∈[d]
∥ψ̂j′m − ψj′m∥∥Ω̂

(h′)

jj′ ∥F ,∥∥ψT

j′{Ω̂
(h′)

jj′ −Ω
(h′)
0,jj′}ψj

∥∥
S = ∥Ω̂

(h′)

jj′ −Ω
(h′)
0,jj′∥F .

(3.76)

We next bound the fourth term. For (j′, h′) ∈ Sj, by the orthonormality of {ψjl},

∥R(h′)
jj′ ∥

2
S = ∥(

d∑
l=1

d∑
m=1

−
∞∑

l,m=1

)a
(h′)
jj′lmψjlψj′m∥2S

= O(1)
{ d∑

l=1

∞∑
m=d+1

(a
(h′)
jj′lm)

2
}

= O(1)
{ d∑

l=1

∞∑
m=d+1

(l +m)−2τ−1
}
= O(d−2τ+1).

(3.77)

Combing (3.76) and (3.77), we obtain

max
j∈[p]

p∑
j′=1

H∑
h′=1

∥Â(h′)
jj′ − A

(h′)
0,jj′∥S

≤ max
j

∥Ω̂j∥(d,d)1

{
d1/2 max

j∈[p],l∈[d]
∥ψ̂jl − ψjl∥+ d1/2 max

j′∈[p],m∈[d]
∥ψ̂j′m − ψj′m∥

}
+max

j
∥Ω̂j −Ω0j∥(d,d)1 +O(sjd

−τ+1/2) ,

where the third term above is of a smaller order of the second term due to (3.75). By

maxj ∥Ω̂j∥(d,d)1 ≤ maxj ∥Ω̂j−Ω0j∥(d,d)1 +maxj ∥Ω0j∥(d,d)1 , (3.73) and Theorem 3.1, the

first term is of a smaller order of the second term. Applying (3.75) with µ = minj µj
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and s = maxj sj completes our proof. □

Lemma 3.4 and its proof

Lemma 3.4. Suppose that Condition 3.2 holds. Then we have ω0 = maxj
∑∞

l=1 ω
W
jl

= O(1).

Proof. This lemma follows directly from Lemma 2 of Fang et al. (2020) and hence

the proof is omitted here. □

Lemma 3.5 and its proof

Lemma 3.5. For p× p lag-h autocovariance of {Wt(·)}, {ΣW
h,jk}1≤j,k≤p, we have

∥ΣW
h,jk∥S ≤ ω0, ∥ΣW

h,jk(ψkm)∥S ≤ ω
1/2
kmω

1/2
0 for m ≥ 1.

Proof. This lemma follows directly from Lemma 8 of Guo and Qiao (2020) and

hence the proof is omitted here. □

Lemma 3.6 and its proof

Lemma 3.6. For A ∈ Rq×p with rank(A) ≤ min(p, q) and x ∈ Rp×d, let A =

UΛVT be the singular value decomposition of A with Λ = diag{σ1, . . . , σr} and

σ1 ≥ · · · ≥ σr > 0. Then we have

σr∥x∥F ≤ ∥Ax∥F ≤ σ1∥x∥F.

Proof. Let vj denotes the j-th row of VTx for j ∈ [r]. Write

σ2
r∥x∥2F ≤ ∥Ax∥2F = tr(xTATAx) = tr(xTVΛ2VTx) =

( r∑
j=1

σ2
jv

T

j vj

)1/2
≤ σ2

1∥x∥2F,

where, in the inequalities above, we have used ∥VTx∥F = ∥x∥F due to the orthonor-

mality of V. Taking the squared root completes the proof of this lemma. □
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Chapter 4

De-Biased Learning for High

Dimensional Time Series Linear

Regression

4.1 Introduction

In the recent years, significant progress has been made on high-dimensional linear

regression models. Consider the model

Yt = XT

t β0 + εt, 1 ≤ t ≤ n, (4.1)

where Xt = (Xt1, . . . , Xtp) ∈ Rp is a stationary vector time series with autoco-

variance ΣX
h = Cov(Xt+h,Xt) for any integer h and εt is the random disturbance

independent of Xt. Without loss of generality, we assume that E{Xt} = 0. And

we consider the error-in-variables case where signal Xt are not observable, instead,

Wt = Xt+et are observed, where the white noise sequence et are independent of Xt

and εt, with zero mean and Σe
h = 0 for h ̸= 0. For identification in high-dimension,

we assume that β0 is sparse with only s components are non-zero and s is much

smaller than p.

Regression model with measurement errors has been substantially developed in the

literature. Wang et al. (2019) considered the case where the covariates are missing

completely at random, which could be regraded as an error-in-variables problem with
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multiplicative errors that are Bernoulli distributed. Li et al. (2021) introduced the

additive error into the covariates of interest. Both additive and multiplicative error

were modelled in Datta and Zou (2017), but they all assumed the key information of

the distribution for errors are known. In our proposed problem, all the covariates are

measured with error and we do not impose the assumption that variance of the error

is known. Instead, we can use autocovariance ΣW
h to filter out the impact of et in the

sense that ΣW
h = ΣX

h for h ̸= 0. This idea was used in Bathia et al. (2010), where the

autocovariance information are extracted to perform the dimensional reduction and

dimensional identification for functional data. Then the “low noise” condition (Hall

and Vial, 2006) which assume that the error goes to zero as sample size increase is

not required.

Let the lag terms Zt = (WT
t+1, . . . ,W

T
t+L)

T ∈ RpL be the instrumental variables

(IVs), where L > 0 is a prescribed integer. Given the stationarity of the process

Wt, where the dependence quickly decaying to zero, a small L is suggested. Then

denote the covariance of Zt by Γ = E{ZtZ
T
t } = (ΣW

i−j)i,j∈[L] ∈ RpL×pL. Consider

estimating regression coefficient β0 in (4.1) by Generalised Method of Moments

(GMM) approach, and for β ∈ Rp, let

gt(β) = Zt(Yt −WT
t β), t ∈ [n− L], (4.2)

and denote expecation of gt(β) by g(β) = E{gt(β)}. Then the moment conditions

are

g(β0) = Gβ0 + g(0) = 0, (4.3)

where G = −E{ZtW
T
t } = −(ΣW

h )h∈[L] ∈ RpL×p and g(0) = E{ZtYt} ∈ RpL. And

β̂, the estimation of the coefficients β0, could be obtained by some regularised esti-

mates like Lasso or Dantzig. Belloni et al. (2018) studied the Dantzig type method

for independent data. And Caner and Kock (2018) estimate the high dimension

linear GMM with inference using LASSO. However, the estimation β̂ derived from

the regularised methods suffers from the regularisation bias, which motivates us to

invoke some de-bias approach. For example, Javanmard and Montanari (2014) and

Wang et al. (2019) proposed the de-biased estimator based on the Lasso estimation

and remove the bias by subtracting the term proportional to the sub-gradient of

ℓ1 norm in the Lasso solution. Ning and Liu (2017) and Li et al. (2021) provided

the de-biased estimator by solving the estimation equation consists of the first order

approximation (decorrelated) score function. However, they assume a fixed number

for covariates of interest, even the dimension of nuisance parameter are allowed to be

larger than n. Belloni et al. (2018) proposed de-biased regularised GMM (DRGMM)
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approach, which can mitigate the impact of the bias. The DRGMM estimator is de-

rived from the regularised GMM (RGMM) estimator with an approximately linear

form which fits into the Many Approximate Mean (MAM) framework. Moreover,

MAM provides a tool kits for further inferential study on β0.

To extend the DRGMM approach to dependent data case, it is important to measure

the dependence or stability. Basu and Michailidis (2015) introduce a measure of

stability for stationary processes using their spectral properties that provides insight

into the effect of dependence on the accuracy of the regularised estimates. Guo and

Qiao (2020) and Fang et al. (2020) propose a stability measure for Gaussian and sub-

Gaussian functional data, which serve as a fundamental tool for further consistency

analysis. Wu (2005) developed a functional dependence measure, which cover a large

class of time series model and facilitates the inferential study. With the help of tools

from Zhang and Wu (2017, 2021), the deviation of autocovariance based estimation

are bounded.

Once we have a de-biased estimation, on which the hypothesis test and confidence

intervals can be constructed. Adamek et al. (2020) and Caner and Kock (2018) bring

Lasso to the time series setting and establish the uniform asymptotic normality for

desparsified Lasso method, allowing for inference in high-dimensional time series.

In this chapter, we derive a DRGMM estimation and perform inference on β0 for

high-dimensional linear time series model. Our proposed work consists of the fol-

lowing three steps.

Step 1: Apply RMD approach to obtain initial RGMM estimation by;

Step 2: Update the initial estimation by DRGMM;

Step 3: Perform simultaneous inference on β0.

This chapter is organised as follows. In Section 4.2, we present the high-dimensional

time series linear regression model for which an autocovariance-based estimation

and de-bias framework is proposed. In Section 4.3, we provided the theoretical

guarantee for the estimation of sparse coefficients based on regularised minimum

distant estimation. In Section 4.4, we perform the inferential study on the de-biased

regularised estimation, where the theoretical results on estimation consistency and

inference accuracy are provided. Section 4.5 exams the finite sample performance

of the proposed inference procedure through simulation studies.

Notation. For a vector v = (v1, . . . , vp)
T we define |v|q = (

∑p
j=1 |vj|q)1/q, q >

0, |v|∞ = maxj∈[p] |vj| and |v|0 =
∑p

j=1 I{vj ̸= 0}. For any real matrix A = (aij)q×p,

we write the ℓ1, ℓ∞ and the entrywise max norm as |A|1 = maxj∈[p]
∑q

i=1 |aij|,
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|A|∞ = maxi∈[q]
∑p

j=1 |aij| and |A|max = maxi∈[q],j∈[p] |aij|, respectively. For a

random variable X, let ∥X∥q = (E|X|q)1/q, q > 0. For two real numbers, set

x ∨ y = max(x, y) and x ∧ y = min(x, y). Let {an} and {bn} be two sequences

of positive numbers and denote an ≲ bn or bn ≳ an if there exists a positive constant

c such that an/bn ≤ c. If an ≲ bn and bn ≲ an hold simultaneously, we can write

an ≍ bn. For a positive integer p, let [p] = {1, . . . , p}.

4.2 Autocovariance-based DRGMM estimation

4.2.1 Autocovariance-based estimations

To characterise the effect of dependence and develop asymptotic results for esti-

mators, we impose dependence measures as follow. Let Ft = (. . . , νt−1, νt), where

(νt)t∈Z are i.i.d. random elements. Suppose that Wt is a zero mean stationary

process satisfying

Wt = (Wt1, . . . ,Wtp)
T = ζ(Ft), (4.4)

where ζ(·) = (ζ1(·), . . . , ζp(·))T is an Rp-valued measurable function. (4.4) defines a

large class of linear and nonlinear time series model (Wu, 2005). Moreover, for the

simplicity we assume that νt is a martingale difference sequence with E{νt|Ft−1} = 0,

E{ν2t |Ft−1} = σ2
ν and E{Wtνt} = 0, which restrict the dependency structure of the

random disturbance term.

Let ν0 be replaced by its i.i.d. copy ν ′0 andW′
t = ζ(F ′

t), where F ′
t = (. . . , ν ′0, . . . , νt−1, νt).

Then define the dependence adjusted norms of Wt by

∥W·,j∥q,θ = sup
h≥0

(h+ 1)θ
∞∑
t=h

∥Wtj −W ′
tj∥q, (4.5)

where q ≥ 1 and θ > 0 depicts the decay rate of the cumulative tail dependence.

Thus, a larger θ implies weaker temporal dependence. For the p-dimensional sta-

tionary process Wt, to address the high-dimensionality, we further define the ℓ∞

dependence adjusted norm

∥|W·|∞∥q,θ = sup
h≥0

(h+ 1)θ
∞∑
t=h

∥|Wt −W′
t|∞∥q.

Then define the overall and the uniform dependence adjusted norm as ΘW
q,θ =

(
∑

j∈[p] ∥W·,j∥q/2q,θ )
2/q and ΨW

q,θ = maxj∈[p] ∥W·,j∥q,θ, respectively. Let ΣW
h be the
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lag-h autocovariance matrices of Wt estimated by

Σ̂
W

h =
1

n− L

n−L∑
t=1

Wt+hW
T

t

for h ≤ L. When h = 0, ΣW
0 is covariance matrix. Let ĝ(0) = (n−L)−1

∑n−L
t=1 gt(0)

be the estimation of g(0). By (4.1) and (4.2), we have

gt(0) = ZtW
T

t β0 +Rt,

where Rt = Zt(εt − eT
t β0). Note that et and εt are zero mean white noise sequences

independent of zero mean stationary sequence Zt. Therefore, Rt is also station-

ary with zero mean (Wecker, 1978). For the (pL)-dimensional process Rt we can

similarly define the uniform dependence adjusted norm ΨR
q,θ = maxj∈[pL] ∥R·,j∥q,θ.

Denote that

ϵWn = max
0≤h≤L

|Σ̂
W

h −ΣW
h |max and ϵRn = (n− L)−1

∣∣∣∣∣
n−L∑
t=1

Rt

∣∣∣∣∣
∞

,

and Theorem 4.1 and 4.2 below provide, respectively, the non-asymptotic bounds

on ϵWn and ϵRn , which consists the estimation for G, Γ and g(0).

Theorem 4.1. Suppose that Wt is a zero mean stationary process of the form (4.4)

and q1 > 4. Let

H1 =
H

2/q1
1,n

n
(log p∥|W·|∞∥q1,θ1 ∧ΘW

q1,θ1
)2,

H2 =

√
log{(L+ 1)p}

n
(ΨW

4,θ1
)2 and H3 =

(1 + (L+ 1)−θ1+1)ΨW
2,0Ψ

W
2,θ1

n
,

where H1,n = (L + 1)q1/4n for θ1 > 1/2 − 2/q1 and H1,n = (L + 1)q1/4n + (L +

1)nq1/4−θ1q1/2 for θ1 < 1/2− 2/q1. Then we have

ϵWn = Op (H1 +H2 +H3) .

One can prove Theorem 4.1 by applying Lemma 4.9 and 4.10 in the appendix, there-

fore, the proof is omitted. Given the preset small integer L, if ΨW
2,0 and ΨW

2,θ1
are

bounded by constants, H3 is always smaller in order than H1 and H2, which respec-

tively imply the polynomial tail and sub-Gaussian type tail. For large deviation, the
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polynomial tail H1 dominates while the sub-Gaussian tail H2 dominates for small

deviation. Both H1 and H2 involve dimension p, and we next investigate the effect

of p.

Consider the case where H1 dominates when dependence adjusted norms ΨW
4,θ1

∨
∥W·,j∥q1,θ1 ≍ 1 and ∥|W·|∞∥q1,θ1 ≍ pτ1 for some τ1 ≥ 0. For example, τ1 could

be 1/q1 if there exists constants C1, C2 > 0 such that C1 ≤ ∥W·,j∥q1,θ1 ≤ C2 for

j ∈ [p], where each component process ofWt satisfies a balanced order of dependence

adjusted norm. Then we have ∥|W·|∞∥q1,θ1 ≤ (
∑p

j=1 ∥W·,j∥q1q1,θ1)
1/q1 ≍ p1/q1 and

Θq1,θ1 ≍ p2/q1 . Therefore, in H1, log p∥|W·|∞∥q1,θ1 is smaller in order than ΘW
q1,θ1

and

log p∥|W·|∞∥q1,θ1 ∧ΘW
q1,θ1

≲ pτ1 log p. Note that for fixed L, there exists b1 such that

H
2/q1
1,n /n ≍ n−b1 for 1/2 < b1 ≤ 1− 2/q1. Then it allows p to be polynomial increase

with n as p2τ1(log p)3/4 ≳ nb1+1/2. On the contrary, if we assume that dependence

adjusted norms ∥|W·|∞∥q1,θ1 , ΘW
q1,θ1

and ΨW
4,θ1

are bounded by constants, it can be

shown that H2 dominates and we have ϵWn = Op

(
n−1/2(log p)1/2

)
, which is the same

rate as shown in Section 3.3.2, where sub-Gaussian assumption is applied.

Theorem 4.2. Suppose that Rt is a zero mean stationary process of the form (4.4)

and q2 > 2. Let

H4 =
H2,n{log(Lp)}3/2

n
∥|R·|∞∥q2,θ2 , H5 =

√
log(Lp)

n
ΨR

2,θ2
,

where H2,n = n1/q2 if θ2 > 1/2 − 1/q2 and H2,n = n1/2−θ2 if θ2 < 1/2 − 1/q2, then

we have

ϵRn = Op (H4 +H5) .

One can prove Theorem 4.2 by applying Lemma 4.11 in the appendix, therefore,

the proof is omitted. Consider the case where dependence adjusted norms ΨR
2,θ2

≍ 1

and ∥|R·|∞∥q2,θ2 ≍ pτ2 for some τ2 ≥ 0, and L is preset. Theorem 4.2 implies that

H2,n/n ≍ n−b2 for 1/2 < b2 ≤ 1−1/q1. Then, H4 dominates when nb2−1/2 ≲ pτ2 log p.

In the special case where ΨR
2,θ2

and ∥|R·|∞∥q2,θ2 are bounded by constants, it allows

log p = o(n1/2−b2), which leads to concentration rate ϵRn = Op

(
n−1/2(log p)1/2

)
.

Theorem 4.1 and 4.2 facilitate us to establish the deviation bounds on estimators

Ĝ, Γ̂ and ĝ(0), which are crucial for convergence analysis of the RMD estimations

in Section 4.3. Given the construction of Ĝ and Γ̂, it is clear that |Ĝ − G|max ≤
|Γ̂− Γ|max ≤ ϵWn . Moreover, by Hölder’s inequality, we have

|ĝ(0)− g(0)|∞ ≤ max
h∈[L]

|Σ̂W
h − ΣW

h |max|β0|1 + ϵRn .
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Suppose that |β0|1 ≤ K for some constant K < ∞. Then for ϵgn = |ĝ(0)− g(0)|∞,
we have ϵgn ≤ KϵWn + ϵRn .

To summarise the above discussion of Theorem 4.1 and 4.2 and to conclude the

concentration analysis, we present the following condition.

Condition 4.1. Suppose that Wt and Rt are zero mean stationary process of

the form (4.4). For q0 > 2, there exist θ0 > 0 such that dependence adjusted

norms satisfy ∥W·,j∥2q0,θ0 ∨ΨW
4,θ0

∨ΨR
2,θ0

≍ 1, ∥|W·|∞∥2q0,θ0 ≲ pτ0 and ∥|R·|∞∥q0,θ0 ≲
pτ0(log p)1/2 for τ0 > 0.

For the two processes of interest Wt and Rt, Condition 4.1 controls the the moments

condition and the strength of dependence by q and θ. It balances the dimensionality

of the ℓ∞ dependence adjusted norms. Let ϵn = ϵWn ∨ ϵRn , the following proposition

establishes a unified convergence rates.

Proposition 4.1. Under Condition 4.1, there exists b with 1/2 < b ≤ 1− 1/q0 such

that

ϵn = Op

(
pτ0(log p)2

nb
+

√
log p

n

)
.

Proposition 4.1 restricts the dimensionality and dependency structure of the time

series. As a natural requirement of consistency, we need pτ0(log p)2 = o(nb) and

log p = o(n). If pτ0(log p)3/2 ≲ nb−1/2, then sub-Gaussian tail dominates and ϵn =

Op

(
(log p)1/2n−1/2

)
. Otherwise, pτ0(log p)3/2 ≳ nb−1/2 and ϵn = Op

(
pτ0(log p)2n−b

)
.

4.2.2 DRGMM estimation

For the high-dimensional regression (4.1), we assume a sparse regression coefficient

β0 satisfying |β0|0 = s ≪ p. And let the coefficient has moderate magnitude with

|β0|1 ≤ K for some K ≥ 0. Then we can acquire a regularised GMM (RGMM)

estimation from the regularised minimum distance (RMD) estimator defined by

β̂ = argmin
β

|β|1 s.t. |ĝ(β)|∞ ≤ λβn , (4.6)

where λβn ≥ 0 is a regularisation parameter.

We further consider a de-biased estimator by updating the biased estimation (4.6).

Let Ω = E{gt(β0)gt(β0)
T} ∈ RpL×pL be the variance of the scores gt(β0). If the

homoskedastic assumption is applied, then Ω = σ2E{ZtZ
T
t } = σ2Γ with a finite σ2.

Suppose that the initial estimation is the nuisance parameters denoted by η ∈ Rp,
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and the updating parameters α ∈ Rp to be the target. Considering the moment

condition defined in (4.3), we have g(β0) = G(β0 − β̂) + g(β̂) = 0, this motivate

us to construct the moment equations for parameters (α,η) as

M(α,η) = GTΓ−1 [G(α− η) + g(η)] , (4.7)

Given the true values α = η = β0, it follows that M(β0,β0) = 0 and the Neyman

orthogonality property ∂ηTM(β0,η)|η=β0
= 0 is satisfied. It ensures that the mo-

ment equations are first order insensitive to the nuisance parameter η around the

true value. Then we could define an “oracle” linear estimator b̄ of α0 as the root of

M̄(b̄,β0) = GTΓ−1
[
G(b̄− β0) + ĝ(β0)

]
= 0, that is

√
n(b̄− β0) = −(GTΓ−1G)−1GTΓ−1

√
nĝ(β0), (4.8)

where
√
n(b̄−β0) approximates N(0, (GTΓ−1G)−1), under some regular conditions

in Sections 4.4. This motivate us to update the estimator of the target parameter

and obtain the DRGMM estimation

b̂ = β̂ − µ̂γ̂ĝ(β̂), (4.9)

where γ̂ and µ̂ are the plug-in estimator for γ0 = GTΓ−1 and µ0 = (γ0G)−1,

respectively, and Γ̂ = (n − L)−1
∑n−L

t=1 ZtZ
T
t . Note that in the high-dimensional

setting, Γ̂ and µ̂ are singular due to the rank deficiency. Therefore, we consider to

RMD estimation again to get γ̂ and µ̂. In particular, for each j ∈ [p], let γj denote

the j-th row of γ and γ̂j be the solution of

argmin
γj∈RpL

|γj|1 s.t. |γjΓ̂− (ĜT)j|∞ ≤ λγnj, (4.10)

where (ĜT)j denotes the j-th row of ĜT. Likewise, let µj be j-th row of µ, then,

for each j ∈ [p], µ̂j is the solution of

argmin
µj∈Rp

|µj|1 s.t. |µjγ̂Ĝ− Ij|∞ ≤ λµnj, (4.11)

where Ij is the j-th row of the identity matrix I ∈ Rp×p.
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4.3 Theoretical results

In this section, we will show the consistency of the RMD estimator in (4.6), and

the results could be applied to (4.10) and (4.11) in the same way. Before presenting

properties of the RMD estimator β̂, we impose the following high-level regularity

conditions.

Condition 4.2. There exists ϵGn , ϵ
g
n and δn = o(1) such that {|Ĝ − G|max ≤

ϵGn and |ĝ(0)− g(0)|∞ ≤ ϵgn} hold with probability 1− δn.

Let ϵGn ≤ ϵn and ϵgn ≤ (K + 1)ϵn, Condition 4.2 can be verified directly by Propo-

sition 4.1. The concentration of the empirical moment equations is indicated by

Condition 4.2, under which we can check that the β0 is a feasible solution in the op-

timisation problem (4.6) with high probability. It can be guaranteed by the following

lemma.

Lemma 4.1. Suppose that Condition 4.1 and 4.2 hold. If regularisation parameter

in (4.6) satisfies λβn > KϵGn + ϵgn, then |ĝ(β0)|∞ ≤ λβn holds with probability 1− δn.

Lemma 4.1 ensures that, with high probability, the solution β̂ of (4.6) exists and

satisfies |β̂|1 ≤ |β0|1, which implies |δ̂Sc |1 ≤ |δ̂S|1 for δ̂ = β̂ − β0 as justified in

Lemma 4.5 of the Appendix. It is a important property to handle high-dimensional

models because for δ = β − β0, we can define the ℓ1-sensitivity coefficient

κ(β0,G) = min
T :|T |≤s

{
min

δ∈CT :|δ|1=1
|Gδ|∞

}
, (4.12)

where CT = {δ ∈ Rp : |δT c |1 ≤ |δT |1} for T ⊂ [p]. Therefore, it follows that

δ̂ = β̂−β0 ∈ CS, by which we can establish the error bound for |δ̂|1 in consequence

of determined lower bond of κ(β0,G) under Condition 4.3 below. Let J ⊂ [q] and

M ⊂ [p], let GJ,M = (Gjk)j∈J,k∈M with each Gjk ∈ R|J |×|M | be the submatrix of G

consisting of all rows j ∈ J and all columns k ∈ M of G. For an integer m ≥ s, we

define

σmin(m,G) = min
|M |≤m

max
|J |≤m

σmin(GJ,M) and σmax(m,G) = max
|M |≤m

max
|J |≤m

σmax(GJ,M),

where σmin(GJ,M) and σmax(GJ,M) are the smallest and largest singular values of

GJ,M , respectively.

Condition 4.3. For a pair (β0,G) with S = {j : β0j ̸= 0} and sparsity s = |S|,
there exists universal constants σ0 > 0 and µ > 0 such that σmax(m,G) ≥ σ0 and

σmin(m,G)/σmax(m,G) ≥ µ for m ≤ 16s/µ2.
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We denote that Condition 4.3 holds for (β0,G) since it is indexed by the parameter

of interest β0 and the matrix G. Provided that the closeness between population

autocovariance G and its estimation Ĝ are bounded in Proposition 4.1, we choose

to formulate Condition 4.3 on the population autocovariance matrix, rather than

on the sample autocovariance matrix. Note that the quantity µ plays a crucial role

in determining the lower bound of κ(β0,G). It is a strongly identified model if µ is

bounded away from zero. Otherwise, we have a weak identified model when µ→ 0.

The identification of the problem is determined by the strength of the instrumental

variables, see Belloni et al. (2018) for more details.

Lemma 4.2. Suppose that Condition 4.1, 4.2 and 4.3 hold. If there exists ϵβn > 0

such that regularisation parameter λβn in (4.6) satisfies KϵGn + ϵgn ≤ λβn ≤ ϵβn , then

with probability 1− δn we have

|β̂ − β0|1 ≤ 2Cσ0,µsϵ
β
n ,

where constant Cσ0,µ depends only on σ0 and µ.

It suffices to choose ϵβn = (2K + 1)ϵn and we have that |β̂ − β0|1 is bounded by ϵn

shown in Proposition 4.1. Next we proceed to analyse the convergence properties of

the estimators γ̂ and µ̂. An empirical moment condition is imposed.

Condition 4.4. There exists ϵGn , ϵ
Γ
n and δn = o(1) such that {|Ĝ − G|max ≤

ϵGn and |Γ̂− Γ|max ≤ ϵΓn} hold with probability 1− δn.

Condition 4.4 plays a similar role as Condition 4.2 of Lemma 4.2 and can be verified

under Proposition 4.1 by setting ϵGn ≤ ϵΓn ≤ ϵn. Under the similar conditions as

shown in Lemma 4.2 and by carefully choosing the regularisation parameters, we

can derive the ℓ1-rate of convergence for the rows of estimators.

Lemma 4.3. Suppose that Condition 4.1 and 4.4 hold and maxj∈[p] |γ0j|1 ≤ K.

If there exists ϵγn > 0 such that the regularisation parameters λγnj in (4.10) satisfy

KϵΓn + ϵGn ≤ λγnj ≤ ϵγn for j ∈ [p]. Suppose that Condition 4.3 holds for (γ0j,Γ), j ∈
[p]. Then with probability 1− δn we have

max
j∈[p]

|γ̂j − γ0j|1 ≤ 2Cσ0,µsϵ
γ
n.

Lemma 4.4. Suppose that Condition 4.1 and 4.4 holds and maxj∈[p] |µ0j|1 ≤ K.

If there exists ϵµn > 0 such that the regularisation parameters λγnj in (4.11) satisfy
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2KϵGn +K2ϵΓn +Kmaxj∈[p] λ
γ
nj ≤ λµnj ≤ ϵµn for j ∈ [p]. Suppose that Condition 4.3

holds for (µ0j,G
TΓ−1G), j ∈ [p]. Then with probability 1− δn we have

max
j∈[p]

|µ̂j − µ0j|1 ≤ 2Cσ0,µsϵ
µ
n .

It is satisfied to choose ϵγn = (K + 2)ϵn and ϵµn = (1 ∨K2)(K + 2)ϵn. Then we have

maxj∈[p] |γ̂j − γ0j|1 and maxj∈[p] |µ̂j − µ0j|1 are bounded by ϵn shown in Proposi-

tion 4.1.

4.4 Inferential study on the de-biased estimation

In this section we perform the inference based on de-biased estimator in Section 4.2.2.

We invoke the high-dimensional central limit theorem proposed in Zhang and Wu

(2017) to construct the simultaneous confidence intervals of the regression coeffi-

cients.

4.4.1 Influence decomposition

We first analysis the accuracy of the estimator b̂ in (4.9). Let Ut = (utj)j∈[p], where

utj = −(µ0γ0)jgt(β0), then, as justified in Lemma 4.8, the deviance b̂ − β0 is

decomposed into two parts as

√
n(b̂− β0) =

1√
n

n∑
t=1

Ut + rn,

where rn = r1n + r2n with r1n =
√
n(I − µ̂γ̂Ĝ)(β̂ − β0) and r2n =

√
n(µ̂γ̂ −

µ0γ0)ĝ(β̂). Ut are the influence factors and rn is error. We can show in Theorem 4.3

that |rn|∞ is asymptotically negligible under mild conditions. Then we apply a

central limit theorem to the influence factors.

Theorem 4.3. Suppose that conditions in Lemma 4.2, 4.3 and 4.4 hold with |β0|1 ≤
K, maxj∈[p] |γ0j|1 ≤ K and maxj∈[p] |µ0j|1 ≤ K. Let regularisation parameters satisfy

λβn ≤ (2K + 1)ϵn, λ
γ
nj ≤ (K + 2)ϵn and λµnj ≤ 2(1 ∨K2)(K + 2)ϵn for j ∈ [p]. Then

there exists constant CK only depending on K and Cσ0,µ only depending on σ0 and

µ such that

|rn|∞ ≤ CKCσ0,µ

√
nsϵ2n.
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The above result implies that |rn|∞ approximate zero if
√
nsϵ2n = o(1). By the results

in Proposition 4.1, it allows dimension p polynomial increase with n as pa ≲ n for

some constant a > 0 such that aτ0 < b − 1/4, then |rn|∞ = o
(
sn1/2−2bp2τ0(log p)4

)
with s≪ p. Note that as discussed in Proposition 4.1, the rate can be improved by

employing the stronger tail assumptions.

4.4.2 Simultaneous Inference

Consider the inference on H0 : β0j = 0 for j ∈ J ⊆ [p]. Suppose that ut = {utj}j∈J
is a stationary process of form (4.4). Likewise, for ut we define the dependence

adjusted norm ∥u·∥q,θ as (4.5). Moreover, to address the high-dimensionality, we

define the following quantities:

Ψu
q,θ = max

j∈J
∥u·j∥q,θ, Υq,θ =

(∑
j∈J

∥u·j∥qq,θ

)1/q

,

Φq,θ = Υq,θ ∧ {∥u·∥q,θ(log |J |)3/2}, L1 = {Ψ2,θΨ2,0(log |J |)2}1/θ,

W1 = (Ψ6
3,0 +Ψ4

4,0){log(|J |n)}7, W2 = Ψ2
2,θ{log(|J |n)}4,

W3 =
[
n−θ{log(|J |n)}3/2Φq,θ

]1/(1/2−θ−1/q)
, N1 = (n/ log |J |)q/2Φ−q

q,θ,

N2 = n(log |J |)−2Ψ−2
2,θ, N3 = {n1/2(log |J |)−1/2Φ−1

q,θ}
1/(1/2−θ).

Condition 4.5. (i) (Weak dependency case) Suppose that Φq,θ < ∞ holds with

q ≥ 2 and θ > 1/2−1/q, then Φq,θ{log(|J |n)}3/2n1/q−1/2 → 0 and L1max(W1,W2) =

o(1)min(N1, N2). (ii) (Strong dependency case) Suppose that 0 < θ < 1/2 − 1/q,

then Φq,θ(log |J |)1/2 = o(nθ) and L1max(W1,W2,W3) = o(1)min(N2, N3).

Condition 4.5 restricts the dependency structure of the influence factors ut. For

example, consider the weak dependency case where θ > 1/2−1/q for Φq,θ = O(|J |1/q)
and Ψu

q,θ = O(1). Then Φq,θ{log(|J |n)}3/2n1/q−1/2 → 0 implies |J | log(|J |n)3q/2 =

o(nq/2−1), which further ensures L1max(W1,W2) = o(1)min(N1, N2). Therefore,

Condition 4.5 holds under the requirement |J | log(|J |)3q/2 = o(nq/2−1), which is a

admissible rate compared with Proposition 4.1.

Let cα be the (1− α) quantile of maxj∈J |ρ1j|, where (ρ1j)j∈J are drawn from stan-

dard normal distribution. When µ0 = (µ0,ij)i,j∈[p] = (GTΓ−1G)−1 is known with

minj∈J µ0,jj > c for some constant c, under Condition 4.5 and the conditions in
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Theorem 4.3, we have

lim
n→∞

∣∣∣∣∣Pr
(
max
j∈J

√
n|̂bj − β0j|
µ0,jj

≥ cα

)
− α

∣∣∣∣∣ = 0

hold with probability 1 − o(1) (Chernozhukov et al., 2021). When µ0 is unknown,

we shall use a consistent estimation µ̂ to replace µ0, and employ a multiplier boot-

strap method to estimate the quantifies necessary for the inference. Let ûtj =

−(µ̂0γ̂0)jgt(β̂) and define multiplier bootstrap estimator τj by

τj = − 1√
n

ln∑
i=1

ρ2i

idn∑
t=(i−1)bn+1

ûtj, j ∈ J, (4.13)

where (ρ2i)i∈ln are independent standard normal variables, and ln, dn are the number

of blocks and block size, respectively, with ln = ⌈n/dn⌉ and dn → ∞. In particu-

lar, to guarantee the availability of the multiplier bootstrap estimation (4.13), the

following conditions on dn are required.

Condition 4.6. Define Fθ = n, for θ > 1− 2/q, Fθ = lnd
q/2−qθ/2
n , for 1/2− 2/q <

θ < 1− 2/q, and Fθ = l
q/4−qθ/2
n d

q/2−qθ/2
n , for θ < 1/2− 2/q, it satisfies that

dn = o
(
n(log|J |)−4(Ψu

q,θ)
−4 ∧ n(log|J |)−5(Ψu

4,θ)
−4
)
, Fθ = o

(
nq/2(log |J |)−q|J |−1Υ−q

q,θ

)
.

Ψu
2,0Ψ

u
2,θ{d−1

n + log(n/dn)n
−1 + (n− dn) log dn(ndn)

−1}(log |J |)2 = o(1), if θ = 1;

Ψu
2,0Ψ

u
2,θ{d−1

n + n−θ + (n− dn)d
−θ+1
n (ndn)

−1}(log |J |)2 = o(1), if θ < 1;

Ψu
2,0Ψ

u
2,θ{d−1

n + n−1d−θ+1
n + (n− dn)(ndn)

−1}(log |J |)2 = o(1), if θ > 1.

Condition 4.6 controls the rate on which the bootstrap block size dn diverges with

n and |J |. Consider the weak dependency case where 1 > θ > 1 − 2/q for Ψu
q,θ =

O(1) and Υq,θ = O(|J |1/q). Then Condition 4.6 holds for dn = o (n(log p)−5) and

p2(log p)q = o(nq/2−1). We find that Condition 4.5 and Condition 4.6 are mild and

it is valid to assume these two conditions hold at the same time. Then a theorem is

provided for the simultaneous confidence intervals of the de-biased estimator.

Theorem 4.4. Let c∗α be the (1 − α) quantile of maxj∈J |τj|. Under Condition 4.5

and 4.6 and the same conditions of Theorem 4.3, and assume that Ψu
q,θ < ∞ with
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q > 4, we have

lim
n→∞

∣∣∣∣∣Pr
(
max
j∈J

√
n|̂bj − β0j|
µ̂jj

≥ c∗α

)
− α

∣∣∣∣∣ = 0.

The theorem 4.4 is relying on Theorem 5.1 of Zhang and Wu (2017) and the proof

is similar to theorem 5.8 of Chernozhukov et al. (2021).

4.5 Simulation study

In this section, we illustrate the finite-sample properties of our proposed method by

simulation studies. Let Xt, t ∈ [n] generate from a stationary vector autoregressive

(VAR) model Xt = AXt−1 + ϵt with A ∈ Rp×p and ϵt is a vector independently

sampled from multivariate normal distribution N(0,Σϵ), where Σϵ
jk = ρ|j−k| for

j, k ∈ [p]. Furthermore, we fix the coefficients of interest β0 = (1, 1,0T
p−8, 0.5,0

T
5 )

with 0k being a zero vector of length k. Then the response variables are generated

by Yt = XT
t β0+εt, where εt are independent normally distribution with mean 0 and

the variance is chosen to ensure the SNR = 4. The error contaminated regressors are

generated from Wtj = Xtj + etj, where the observation errors etj are independently

sampling from N(0, δe · Var(Xtj)) for j ∈ [p].

The inference performance is evaluated by computing the average rejection rate on

the null hypothesis Hj
0 : β0j = 0 for either j ∈ {j : β0j = 0} and j ∈ {j : β0j ̸= 0},

respectively, as the empirical size and power.

We use five fold cross validation to select λβn for the initial estimator β̂ in the

problem (4.6). And in the problem (4.10) and (4.11), as in Gold et al. (2020), we

choose λγnj = 1.2 · infγj∈RpL |γjΓ̂ − (ĜT)j|∞ and λµnj = 1.2 · infγj∈RpL |µjγ̂Ĝ − ITj |∞
for each j ∈ [p]. The corresponding large-scale minimisation problems are solved by

the MOSEK optimiser for R (ApS, 2021).

We set the diagonal elements of A equal to 0.8 and 0 otherwise. Then δe = 0.4, 0.8

are chosen for the cases of moderate and large measurement errors, respectively.

And we also check influence from the correlation by setting ρ = 0.5, 0.8. We take

n = 200, 300 for p = 100, 150, and repeat each design for 500 times for significance

levels at α = 1%, 5% and 10%.

The averaged type I error rates at different significance levels are presented in Ta-

ble 4.1. We can see that the size are stable and close to the nominal significance

levels in all the designs, indicating a good performance of our proposed method.
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Table 4.1: Type I error of the hypothesis test at different significance levels.

p = 100 p = 150

ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8

δe α n = 200 n = 300 n = 200 n = 300 n = 200 n = 300 n = 200 n = 300

0.4

1% 0.9% 1.1% 1.1% 1.2% 0.7% 0.9% 0.8% 1.0%

5% 4.9% 5.3% 4.9% 5.2% 4.2% 4.5% 4.3% 4.8%

10% 10.0% 10.5% 10.1% 10.1% 9.0% 9.2% 8.9% 9.4%

0.8

1% 0.9% 0.9% 1.1% 1.3% 0.7% 0.7% 0.9% 1.1%

5% 4.6% 4.8% 5.0% 5.0% 4.1% 4.2% 4.5% 4.7%

10% 9.6% 9.8% 10.0% 10.0% 8.6% 8.6% 9.1% 9.4%

Table 4.2: Power of the hypothesis test at different significance levels.

p = 100 p = 150

ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8

δe α n = 200 n = 300 n = 200 n = 300 n = 200 n = 300 n = 200 n = 300

0.4

1% 75.8% 84.8% 59.5% 66.3% 50.3% 86.7% 37.0% 69.4%

5% 87.7% 92.8% 72.6% 78.6% 64.4% 95.5% 52.4% 81.8%

10% 92.7% 95.7% 79.0% 83.4% 72.2% 97.7% 60.5% 88.1%

0.8

1% 66.2% 74.9% 53.9% 59.9% 38.6% 77.4% 31.3% 64.2%

5% 80.7% 87.0% 67.0% 71.5% 55.0% 87.3% 46.1% 77.6%

10% 85.6% 91.2% 75.4% 78.2% 64.9% 93.7% 54.5% 82.9%

The power are summarised in Table 4.2 at different significance levels. We observe

that power increases when the sample size increases, the variance of measurement

error decreases and ρ decreases. And as significance level increases, the higher tol-

erance of the type I error leads to more powerful test. We can also observe that the

empirical size and power slightly deteriorates as p increases.

4.6 Appendix

4.6.1 Technical Proofs

Proof of Theorem 4.3

By applying Proposition 4.1, we have that for j ∈ [p], |γ̂j|1 ≤ |γ0j|1 and |µ̂j|1 ≤
|µ0j|1 hold with probability 1− δn. Lemma 4.2, 4.3 and 4.4 yields with probability

1− δn that |β̂ − β0|1 ≤ 2Cσ0,µ(2K + 1)sϵn, maxj∈[p] |γ̂j − γ0j|1 ≤ 2Cσ0,µ(K + 2)sϵn

and maxj∈[p] |µ̂j − µ0j|1 ≤ 2Cσ0,µ(1 ∨K2)(K + 2)sϵn. Then, we can bound r1n and

120



r2n. It follows from Höder’s inequality that r1n as

|r1n|∞ ≤
√
n|I− µ̂γ̂Ĝ|max|β̂ − β0|1

≤
√
nmax

j∈[p]
λµnj · |β̂ − β0|1

≤ 4(1 ∨K2)(K + 2)(2K + 1)Cσ0,µ

√
nsϵ2n.

Next, by triangle inequality and Höder’s inequality, we have

|r2n|∞ ≤
√
nmax

j∈[p]

(
|(µ0j − µ̂j)γ0ĝ(β0)|+ |µ̂j(γ0 − γ̂)ĝ(β0)|

)
≤

√
nmax

j∈[p]
|µ0j − µ̂j|1|γ0ĝ(β0)|∞

+
√
nmax

j∈[p]
|µ̂j|1|(γ0 − γ̂)ĝ(β0)|∞

≤
√
nmax

j∈[p]
|γ0j|1max

j∈[p]
|µ0j − µ̂j|1|ĝ(β0)|∞

+
√
nmax

j∈[p]
|µ̂0j|1max

j∈[p]
|γ̂j − γ0j|1|ĝ(β0)|∞

≤ 6K(1 ∨K2)(K + 2)(2K + 1)Cσ0,µ

√
nsϵ2n.

Therefore, by applying Proposition 4.1, we have

|rn|∞ ≤ |r1n|∞ + |r2n|∞ ≤ CKCσ0,µ

√
nsϵ2n,

where CK = 2(1 ∨K2)(K + 2)(2K + 1)(3K + 2). □

Proof of Lemma 4.1

It hold from Condition 4.2 that with probability 1− δn we have

|ĝ(β0)|∞ = |ĝ(β0)− g(β0)|∞

≤ |(Ĝ−G)β0|∞ + |ĝ(0)− g(0)|∞

≤ |Ĝ−G|max|β0|1 + |ĝ(0)− g(0)|∞,

≤ KϵGn + ϵgn ≤ λβn . □
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Proof of Lemma 4.2

Consider event A =
{
|Ĝ −G|max ≤ ϵGn and |ĝ(0) − g(0)|∞ ≤ ϵgn

}
∩
{
|ĝ(β0)|max ≤

λβn
}
. Under Condition 4.2 and by applying Lemma 4.1, this event occurs with prob-

ability 1− δn. On event A, we have

|G(β̂ − β0)|∞ ≤ |g(β̂)|∞

≤ |ĝ(β̂)− g(β̂)|∞ + |ĝ(β̂)|∞

≤ |(Ĝ−G)β̂|∞ + |ĝ(0)− g(0)|∞ + |ĝ(β̂)|∞

≤ |β0|1|Ĝ−G|max + |ĝ(0)− g(0)|∞ + |ĝ(β̂)|∞

≤ KϵGn + ϵgn + λβn ≤ 2ϵβn ,

(4.14)

where, in the last two inequalities, we have used the Hölder’s inequality and the facts

that |β̂|1 ≤ |β0|1 ≤ K and |ĝ(β̂)|max ≤ λβn by the definition of the RMD estimator

in (4.6).

On event A, choosing the set T = S in (4.12) and applying Lemma 4.1 and 4.5

yields |δ̂SC |1 ≤ |δ̂S|1 and hence δ̂ ∈ CS. Then by (4.12), (4.14) and Lemma 4.7

under Condition 4.3, we have

|β̂ − β0|1 ≤ κ(β0)
−1 · |G(β̂ − β0)|∞ ≤ 2Cσ0,µsϵ

β,

which completes the proof. □

Proof of Lemma 4.3

The proof follows the same idea as Theorem 4.2. We observe that problem (4.10)

fit into (4.6) by redefining Ĝ = Γ̂ and ĝ(0) = (ĜT)j. Note that Condition 4.3

and Condition 4.4, as a counterpart of Condition 4.2, are assumed for (4.10). Next

we need to verify the feasibility of the regularisation parameter λγnj as shown in

Lemma 4.1. Under Condition 4.4, with probability 1− δn we have

|γ0jΓ̂− (ĜT)j|∞ ≤ |γ0jΓ− (GT)j|∞ + |γ0j(Γ̂− Γ)|∞ + |(GT)j − (ĜT)j|∞

≤ 0 + |γ0j|1|Γ̂− Γ|max + ϵGn

≤ KϵΓn + ϵGn

Therefore, if λγj ≥ KϵΓn + ϵGn , γ0j is feasible for all j ∈ [p]. Thus, the rest of steps to
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prove Lemma 4.3 follows directly from that in Lemma 4.2. □

Proof of Lemma 4.4

We observe that problem (4.11) fit into (4.6) by redefining Ĝ = γ̂Ĝ and ĝ(0) = Ij.

Note that Condition 4.3 and Condition 4.4, as a counterpart of Condition 4.2, are

assumed for (4.11). Next we need to verify the feasibility of the regularisation pa-

rameter λµnj as shown in Lemma 4.1. Under Condition 4.4, we have with probability

greater than 1− δn that

|γ̂Ĝ− γG|max ≤ |γ̂(Ĝ−G)|max + |(γ̂ − γ0)G|max

≤ max
j∈[p]

|γ0j|1|Ĝ−G|max + |γ̂ΓγT

0 − γ0Γγ
T

0 |max

≤ KϵGn + |γ̂ΓγT

0 − γ̂Γ̂γT

0 + γ̂Γ̂γ
T

0 −GTγT

0 |max

≤ KϵGn + |γ̂(Γ̂− Γ)γT

0 |max + |(γ̂Γ̂− ĜT + ĜT −GT)γT

0 |max

≤ KϵGn +K
{
|γ̂(Γ̂− Γ)|max + |γ̂Γ̂− ĜT|max + |Ĝ−G|max

}
≤ KϵGn +Kmax

j∈[p]
|γ0j|1|Γ̂− Γ|max +Kmax

j∈[p]
|γ0jΓ̂− (ĜT)j|∞

+K|Ĝ−G|max

≤ 2KϵGn +K2ϵΓn +Kmax
j∈[p]

λγnj,

where we used G = ΓγT
0 . Therefore, µ0j is feasible for all j ∈ [p], if λµj ≥

2K2ϵGn +K3ϵΓn +K
2maxj∈[p] λ

γ
nj. Thus, the rest of steps to prove Lemma 4.4 follows

directly from that in Lemma 4.2. □

Lemma 4.5 and its proof

Lemma 4.5. Suppose that Condition 4.2 holds. Then |δ̂Sc|1 ≤ |δ̂S|1 with probability

1− δn.

Proof. It follows from Lemma 4.1 under Condition 4.2 and β0,Sc = 0 by definition

that with probability 1− δn, |β̂|1 ≤ |β0|1 = |β0,S|1, which implies that

|β0,S|1 ≥ |β̂S|1 + |β̂Sc |1

≥ |β0,S|1 − |β̂S − β0,S|1 + |β̂Sc|1 .
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By cancelling |β0,S|1 on both sides above, we obtain |β̂Sc −β0,Sc |1 ≤ |β̂S −β0,S|1. □

Lemma 4.6 and its proof

Lemma 4.6. It holds that

κ(β0,G) ≥ max
m≥s

{
σmin(m,G)√

m
− 2σmax(m,G)√

m

√
s

m

}
s−1/2

2(1 + 2
√
s/m)

.

Proof. This lemma follows directly from Theorem 1 of Belloni et al. (2019) and

hence the proof is omitted here. □

Lemma 4.7 and its proof

Lemma 4.7. Suppose that Condition 4.3 holds. Then there exists some constant

Cσ0,µ denpending on σ0 and µ such that

κ(β0,G) ≥ C−1
σ0,µ

s−1.

Proof. Applying Lemma 4.6 under Condition 4.3 yields that

κ(β0,G) ≥ max
m≥s

σmax(m,G)√
m

{
σmin(m,G)

σmax(m,G)
− µ

2

}
s−1/2

2(1 + µ/2)

≥ σ0µ

4
√
s
(µ− µ

2
)[2(1 +

µ

2
)]−1s−1/2 ≥ σ0µ

2

24s
. □

Lemma 4.8 and its proof

Lemma 4.8. According to (4.9), we have

b̂ = β0 − µ0γ0ĝ(β0) + (I− µ̂γ̂Ĝ)(β̂ − β0) + (µ0γ0 − µ̂γ̂)ĝ(β0).
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Proof. By elementary expansion and some algebra, we have

b̂ = β̂ − µ̂γ̂ĝ(β̂)

= β̂ − β0 + β0 − µ0γ0ĝ(β0) + µ0γ0ĝ(β0)− µ̂γ̂ĝ(β̂)

= β0 − µ0γ0ĝ(β0) + (β̂ − β0) + (µ0γ0 − µ̂γ̂)ĝ(β0) + µ̂γ̂
(
ĝ(β0)− ĝ(β̂)

)
= β0 − µ0γ0ĝ(β0) + (µ0γ0 − µ̂γ̂)ĝ(β0) + (β̂ − β0) + µ̂γ̂(Ĝβ̂ − Ĝβ0)

= β0 − µ0γ0ĝ(β0) + (I− µ̂γ̂Ĝ)(β̂ − β0) + (µ0γ0 − µ̂γ̂)ĝ(β0).□

4.6.2 Some useful lemmas

Lemma 4.9. (Proposition 3.3 of Zhang and Wu (2021)). Let Xt be a zero mean

stationary process of the form (4.4), which satisfies ΨX
4,θ <∞ and ΘX

q,θ <∞ for some

q > 4 and θ > 0. Then there exists absolute constant C, constant Cθ only depending

on θ and constant Cq,θ only depending on q and θ such that for any η > 0,

Pr

(
max
0≤h≤L

|Σ̂
X

h − EΣ̂
X

h |max ≥ η

)
≤Cq,θHn,L(log p∥|X.|∞∥q,θ ∧Θq,θ)

q

(nη)q/2

+ C(L+ 1)p2 exp

{
− nη2

Cθ(ΨX
4,θ)

4

}
,

where Hn,L = (L+1)q/4n for θ > 1/2−2/q and Hn,L = (L+1)q/4n+(L+1)nq/4−θq/2

for θ < 1/2− 2/q.

Lemma 4.10. (Corollary 3.4 of Zhang and Wu (2021)). Under the conditions in

Lemma 4.9, we have

max
0≤h≤L

|EΣ̂
X

h −ΣX
h |max = Op

{
(1 + (L+ 1)−θ+1)ΨX

2,0Ψ
X
2,θ

n

}
.

Lemma 4.11. (Theorem 6.2 of Zhang and Wu (2017)). Let Sn =
∑n

t=1Xt, where

Xt ∈ Rp is a zero mean process of the form (4.4), satisfying ∥|X·|∞∥q,θ ≤ ∞ and
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ΨX
2,θ <∞ with q > 2 and θ > 0. (i) If θ > 1/2− 1/q, then for η ≳ (n log p)1/2ΨX

2,θ +

n1/q(log p)3/2∥|X·|∞∥q,θ,

Pr(|Sn|∞ ≥ η) ≤
Cq,θn(log p)

q/2∥|X·|∞∥qq,θ
ηq

+ Cq,θ exp

{
− Cq,θη

2

n(ΨX
2,θ)

2

}
.

(ii) If θ < 1/2− 1/q, then for η ≳ (n log p)1/2ΨX
2,θ + n1/2−θ(log p)3/2∥|X·|∞∥q,θ,

Pr(|Sn|∞ ≥ η) ≤
Cq,θn

q/2−θq(log p)q/2∥|X·|∞∥qq,θ
ηq

+ Cq,θ exp

{
− Cq,θη

2

n(ΨX
2,θ)

2

}
.
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