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Abstract

In this thesis, I develop new econometric techniques to measure and understand the sources

of economic risks in equity markets.

The first chapter studies frequency-dependent risks in the factor zoo. My approach gen-

eralizes canonical principal component analysis (PCA) by exploiting frequency-dependent

information in asset returns. Empirically, the linear stochastic discount factor (SDF) com-

posed of the first few low-frequency principal components (PCs) capture all the risk premia

in asset returns. It also explains well the cross-section of characteristic-sorted portfolios.

In contrast, high-frequency and canonical PCA have inferior performance since they fail to

identify slow-moving information in asset returns. Moreover, I decompose the low-frequency

SDF into two orthogonal priced components. The first component is constructed by high-

frequency or traditional PCA. It is almost serially uncorrelated and relates to discount-rate

news, intermediary factors, jump risk, and investor sentiment. The second component is

slow-moving and captures business-cycle risks related to consumption and GDP growth.

Hence, only low-frequency PCA identifies the second persistent component emphasized by

many macro-finance models.

The second chapter (with Svetlana Bryzgalova and Christian Julliard) proposes a novel

framework for linear asset pricing models: simple, robust, and applicable to high-dimensional

problems. For (potentially misspecified) standalone models, it provides reliable estimates of

risk prices for both tradable and non-tradable factors and detects those weakly identified. For

competing factors and (possibly non-nested) models, the method automatically selects the

best specification – if a dominant one exists – or provides a Bayesian model averaging (BMA-

SDF) if there is no clear winner. We analyse 2.25 quadrillion models generated by a large

set of factors and find that the BMA-SDF outperforms existing models in- and out-of-sample.

The third chapter (with Ran Shi) develops a Bayesian approach to quantify model uncer-

tainty about linear SDFs, defined as the entropy of posterior model probabilities. We show

that model uncertainty displays massive fluctuations over time, and high model uncertainty

coincides with major market events. These observations hold not only in US markets but

also in European and Asian Pacific equity markets. Moreover, positive model uncertainty

shocks relate to sharp outflows from US equity mutual funds but significant inflows to gov-

ernment bond funds, with effects persisting for three years. In survey data, investors tend to

be more pessimistic about equity performance during periods of higher model uncertainty.
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Chapter 1

Frequency Dependent Risks in the

Factor Zoo

Jiantao Huang1

1.1 Introduction

Explaining the cross-section of expected returns has been an important challenge in asset

pricing literature. Researchers have acknowledged that the consumption-based capital asset

pricing model (CCAPM)2 provides little explanatory power, which has inspired a wide variety

of new models. Some models introduce slow-moving components into the stochastic discount

factor (SDF), such as the surplus consumption ratio in Campbell and Cochrane (1999)

and the stochastic mean and variance of consumption growth in Bansal and Yaron (2004).

In other models, the SDF consists only of fast-moving components, e.g., output jumps in

Barro (2006), the intermediary’s consumption growth in He and Krishnamurthy (2013),

and sentiment-driven demand shocks in Kozak, Nagel, and Santosh (2018). Identifying the

key determinants of the SDF, particularly the slow-moving components that are notoriously

difficult to measure (see Alvarez and Jermann (2005)), remains an open question. This paper

addresses this question through the lens of frequency-dependent risks. In addition, I seek to

understand the frequency-specific drivers of expected returns and explore the role of distinct

asset pricing models at different frequencies.

1Any errors or omissions are my responsibility. I thank Thummim Cho, Ian Martin, Cameron Peng, Ran
Shi, Dimitri Vayanos, and seminar participants at the London School of Economics, Tsinghua University
PBC School, Chinese University of Hong Kong, University of British Columbia, Peking University HSBC
Business School, and University of Hong Kong for helpful comments, discussions, and suggestions. I am
particularly grateful to Christian Julliard, Dong Lou, and Svetlana Bryzgalova for their invaluable guidance
and support.

2I refer to earlier versions of CCAPM developed by Rubinstein (1976), Lucas (1978), and Breeden (1979).
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This paper generalizes canonical principal component analysis (PCA) to construct latent

factors that explain the cross-section of monthly expected returns. The key novelty of my

approach is that I exploit frequency-dependent information of asset returns to estimate latent

factors. Using standard Fourier transform, I decompose the covariance matrix of monthly

returns into high- and low-frequency components and estimate systematic factors in each

frequency interval. I denote them as high- and low-frequency principal components (PCs)

and use them as monthly tradable proxies for short- and long-term systematic risks.

When do frequency-dependent risks matter? I show that when asset returns are inde-

pendent, high- and low-frequency latent factors are precisely identical to the canonical PCs.

In other words, only when asset returns deviate from the independence assumption we need

to study frequency-dependent risks. Empirically, low-frequency PCs contain a persistent

element missed by high-frequency and conventional PCs. Moreover, this persistent missing

part is essential in explaining expected returns and reflects business-cycle risks.

Asset pricing models often make parametric assumptions enforcing whether fast- or slow-

moving economic shocks drive the SDF. Rather than assuming the existence of fast- or slow-

moving elements, this paper lets the data speak and suggests that both two components

are priced but reflect different economic fundamentals. The key for detecting the slow-

moving component is the rich persistent information in the factor zoo. For example, Gupta

and Kelly (2019) find that 48 of 65 investment anomalies have significantly positive AR(1)

coefficients.3 The low-frequency PCA boosts the signal of persistent information in the

factor zoo and combines the factors’ persistence into a few low-frequency PCs. Instead, the

high-frequency or conventional PCA fails to detect them.

My empirical results are based on a large cross-section of 78 portfolios.4 I divide the whole

sample equally into two subsamples. I estimate the factor compositions and risk prices

of frequency-specific PCs in the first subsample and examine their out-of-sample (OOS)

performance in the second subsample. In the main analysis, the LF interval is between three

and ten years, and I interpret it as the business-cycle frequency interval. In contrast, the

HF interval is between zero and three years. The empirical findings are fourfold.

First, the SDF is sparse only in the space of low-frequency PCs. The low-frequency SDF

comprising the seven largest low-frequency PCs is the “proper” benchmark: It yields an

OOS Sharpe ratio of around 0.37 per month. Additional low-frequency PCs are redundant.

In contrast, I need more than 20 high-frequency or canonical PCs to gain a comparable

Sharpe ratio. Since high-frequency components account for 94% of time-series variations in

asset returns, the large canonical PCs are virtually equivalent to the high-frequency latent

3The other 11 have positive yet insignificant coefficients. No factor has significantly negative coefficients.
4Test assets are long and short legs sorted by 39 firm features in Kozak, Nagel, and Santosh (2020).
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factors. I also split the whole high-frequency interval into a few subintervals, but the SDF

is dense even in the space of highly fast-moving factors (with a cycle length shorter than

three months). Past research (e.g., Kozak, Nagel, and Santosh (2018, 2020)) often uses

the first few PCs of single-period returns (identical to high-frequency PCs in the data) to

construct the SDF. My paper shows that this standard practise can be improved by exploiting

frequency-dependent information in asset returns.

Second, the low-frequency SDF cannot be explained by the high-frequency SDF or cele-

brated factor models in Fama and French (1993, 2015), Carhart (1997), and Hou, Xue, and

Zhang (2015). Monthly alphas of the low-frequency SDF are significantly greater than 0.6%.

In contrast, the low-frequency SDF can entirely span the high-frequency one. This evidence

provides further justification for using the low-frequency SDF as the benchmark.

Third, I decompose the low-frequency SDF into fast- and slow-moving components. The

first component is the optimal portfolio composed of high-frequency PCs. This SDF compo-

nent is nearly identical to the SDF constructed by Kozak, Nagel, and Santosh (2018, 2020).

I observe that the high-frequency SDF is almost serially uncorrelated and yields a monthly

Sharpe ratio of 0.29, so I denote it as the fast-moving component. However, it still misses an

essential slow-moving element. I project the low-frequency SDF into the space of the high-

frequency SDF and extract an orthogonal part, denoted as the missing-SDF. This missing

part, displaying a persistent dynamic according to the variance ratio test, explains 30% of

the time-series variation of the low-frequency SDF and earns a monthly Sharpe ratio of 0.24.

Fourth, fast- and slow-moving components of the low-frequency SDF embody entirely

different sources of economic risks. Precisely, the high-frequency SDF is correlated with

market discount-rate news in Campbell and Vuolteenaho (2004), intermediary factors in He,

Kelly, and Manela (2017), market jump risk proxied by the VXO index, and the sentiment-

driven demand shocks from Baker and Wurgler (2006) investor sentiment. Instead, the slow-

moving part of the SDF is related to consumption and GDP growth. It also predicts the

next quarter economic growth. Hence, the missing-SDF reflects slow-moving business-cycle

risks.

My empirical findings have implications for asset pricing models, which link the SDFs to

different economic fundamentals. Macro-finance models often use persistent shocks to macro

variables, such as the stochastic mean of consumption growth, to magnify their prominence

in the SDF. My paper confirms that asset returns carry useful persistent information re-

lated to macro fundamentals, but I can identify them only at low frequencies. My paper

also reconciles the disconnection between asset returns and some macro fundamentals. For

example, asset returns and consumption growth are almost uncorrelated at the quarterly

frequency, so asset pricing seems to disconnect with the macroeconomy in short horizons.
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My paper confirms that the large PCs of short-horizon returns are unrelated to consumption

growth. After removing high-frequency variations from asset returns, the remaining slow-

moving component strongly correlates with macro fundamentals. Therefore, identifying the

slow-moving component is salient for understanding and testing macro-finance models.

Furthermore, macro risks are insufficient to explain the cross-section. The fast-moving

component of the benchmark SDF commands a significant price of risk but is orthogonal

to macro risks. Instead, the demand shocks from sentiment investors, the shocks to the

intermediary sector, and market discount-rate news are essential in understanding the fast-

moving component of the SDF (high-frequency SDF). Hence, different asset pricing models

explain either fast- or slow-moving components of the SDF but not both.

There are two appealing benefits to studying asset returns at different frequencies. First,

it helps to explore the dynamics of state variables in the SDF. I decompose the variance of an

SDF (equivalently, the maximal achievable Sharpe ratio) into frequency-specific components.

Also, I prove that if the SDF has a larger variance at high (low) frequencies, state variables

entering the SDF are, on average, more fast-moving (slow-moving). Since a sparse low-

frequency SDF embodies a significantly higher Sharpe ratio than a high-frequency one, slow-

moving state variables are empirically more prominent than fast-moving ones.5

Second, frequency-dependent PCA strengthens the signal of some systematic factors.

Generally, a slow-moving (fast-moving) latent factor has a stronger signal at low (high)

frequencies. Suppose a weak latent factor explains a tiny proportion of single-period returns.6

In that case, the canonical PCA fails to identify it. However, frequency-specific PCA can

recover this weak factor if its variance is large enough in a specific frequency interval. This

paper shows that the low-frequency PCA recovers some essential priced weak factors with

strong enough signals only at low frequencies. Instead, the high-frequency and canonical

PCA identify them as idiosyncratic noises, so many small high-frequency and canonical PCs

are needed to attain the same Sharpe ratio as a sparse low-frequency SDF.

It is worth noting that economic theory predicts the sparsity of latent factor models. The

absence of near-arbitrage opportunities in Kozak, Nagel, and Santosh (2018) argues that only

the largest PCs enter the SDF. However, this paper observes some small high-frequency (also

canonical) PCs bringing nontrivial risk premia, so the absence of near-arbitrage opportuni-

ties fails. One explanation is that some economic shocks, such as the stochastic mean of

consumption growth, are slow-moving and explain only a tiny fraction of single period re-

turns. Hence, traditional PCA fails to detect these small but persistent shocks. Suppose

5The importance of a state variable Xt comes from the variance of Xt and its risk price squared (b2X). In
latent factor models, I can identify only Var(Xt)b

2
X rather than Var(Xt) and b2X individually.

6Onatski (2012) and Lettau and Pelger (2020a) assume that the variance of a weak factor does not grow
as the number of test assets converges to infinity.
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market participants have Epstein-Zin preferences as in the long-run risk model. In that case,

persistent shocks to economic fundamentals command sizable risk premia and constitute

a considerable part of the SDF. Since the low-frequency PCA successfully captures these

slow-moving elements, we observe the sparsity of the low-frequency SDF.

1.1.1 Related Literature

This paper mainly contributes to two strands of literature. The first closely related branch

of literature is the study of asset pricing models at different frequencies. We have known for

a long time that both CAPM and CCAPM have better performance in the long horizon. For

example, Handa, Kothari, and Wasley (1989) show that the size effect becomes statistically

insignificant when the market beta is estimated using annual returns. Parker and Julliard

(2005) measure ultimate consumption risk at a horizon of three years and document that

it explains a large proportion of expected returns. Brennan and Zhang (2020) derive the

CAPM with a stochastic investor horizon, and their estimates show that the probability

distribution of investor horizons puts a massive weight on the interval between 8 and 20

months. Chernov, Lochstoer, and Lundeby (2022) test asset pricing models using multi-

horizon returns and report that single-period estimates of those models typically do a poor

job of explaining long-term returns.

However, all the above papers study factor models at a specific frequency instead of

in a frequency interval. A few recent papers adopt spectral analysis to study frequency-

dependent risks. First, Dew-Becker and Giglio (2016) study frequency-dependent risk prices

in consumption-based models and show that only the long-run risk model can explain asset

returns. Instead, my paper does not make a parametric assumption of the SDF. I construct

the SDF using latent factors of asset returns and find that the SDF contains a huge fast-

moving component that the consumption risk cannot explain.

Second, Bandi, Chaudhuri, Lo, and Tamoni (2021) use a Wold representation of the

CAPM beta. Only the business cycle components within the frequency interval between 32

and 64 months can price the cross-sections. One key feature of their approach is assuming

a vector autoregressive (VAR) process for state variables. In contrast, my paper takes a

nonparametric point of view and is more robust to the model misspecification of the state

vector dynamics. In addition, we have different economic interpretations. Their paper claims

that the business-cycle component of the market beta captures delayed price adjustments to

new information in the market portfolio. Instead, my paper finds low-frequency systematic

factors capture business-cycle risks, but short-term factors miss them.

Last but not least, Neuhierl and Varneskov (2021) decompose the covariance between

asset returns and pricing factors via the Fourier transform and study the frequency-dependent
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risks. My paper improves their framework in a few aspects. Their paper studies factors

individually, and their framework cannot handle the factor zoo. Instead, the framework in

my paper is more suitable for the high-dimensional case. Also, they do not explore whether

high- or low-frequency factors can explain the cross-section of average returns. Unlike their

paper, I show that low-frequency latent factors are salient for cross-sectional asset pricing.

The decomposition of the SDF into fast- and slow-moving components also improve our

understanding of economic risks in the factor zoo.

The second branch of related literature is the abundant study of latent factor models

after Ross (1976). Early empirical applications include Chamberlain and Rothschild (1983),

Connor and Korajczyk (1986), Connor and Korajczyk (1988). Kozak, Nagel, and Santosh

(2020) use PCA to estimate latent factors of a large cross-section of characteristic-managed

portfolios and then estimate their risk prices via an elastic-net algorithm. Kelly, Pruitt, and

Su (2019) propose the instrumented PCA to model both pricing errors and factor loadings

as functions of firm characteristics, and they find that four IPCA factors explain the cross-

section of individual stock returns. Lettau and Pelger (2020a) and Lettau and Pelger (2020b)

generalize PCA by including a penalty term on the pricing errors in expected returns. Their

method can identify weak factors with high Sharpe ratios, even when the canonical PCA

omits them. This paper differs from previous literature in that I estimate latent factors

using frequency-dependent information in asset returns. As I show in Sections 1.2 and 1.3,

the importance of latent factors can change across frequencies, and the frequency-dependent

PCA can also strengthen a factor’s signal if it is not independent. Giglio and Xiu (2021)

and Giglio, Xiu, and Zhang (2021) show that we can project a nontradable factor into the

space of the largest several PCs of single-period returns. The risk premium of a nontradable

factor is the expected return of its mimicking portfolio composed of the largest several PCs

of single-period returns.

Nevertheless, I do not intend to develop a method that can outperform all previous

forms of PCA. Instead, I aim to provide a novel framework that is suitable for analyzing

frequency-dependent risks in the factor zoo. Moreover, my frequency-dependent PCA can

also be integrated with other PCA methods. For example, we can construct the factor-

mimicking portfolio composed of frequency-specific PCs and use the three-pass procedure in

Giglio and Xiu (2021) to estimate the risk premium of nontradable factors.

1.2 Methodology

Notation. E[·], Var[·], and Cov[·] are the expectation, variance, and covariance operators.

Suppose thatXt is an arbitrary N×1 vector of covariance-stationary random variables. µX ,
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Et−1[Xt], and X̄t denote the unconditional, conditional, and sample mean of Xt. ΣX(h) is

the autocovariance matrix with lag h: ΣX(h) = E
[
Xt+hXt

]
−E[Xt+h]E[Xt]

>. Particularly,

ΣX(0) is the unconditional covariance matrix, simply denoted by ΣX . Σ̂X(h) is the sample

estimate of ΣX(h). Tr
[
A
]

is the trace of a matrix A.

1.2.1 Asset Pricing Models

Suppose that there are N test assets, denoted by Rt = (R1t, . . . , RNt)
>, and the sample size

is T . This paper considers empirical applications in which both N and T are reasonably

large, in particular, N
T
→ c < 1. Motivated by the arbitrage pricing theory (APT) developed

by Ross (1976), this paper studies an approximate factor pricing model, where the excess

return on asset n, Rnt, is driven by a systematic component captured by K (K < N) latent

factors and an idiosyncratic shock,

Rt+1︸ ︷︷ ︸
N×1

= α︸︷︷︸
N×1

+ β︸︷︷︸
N×K

Ft+1︸ ︷︷ ︸
K×1

+ et+1︸︷︷︸
N×1

, (1.1)

where α denotes a vector of potential mispricings, βFt+1 is a vector of common components

that are the product of factor loadings β and latent factors Ft+1, and et+1 is a vector of

idiosyncratic shocks. I further require βFt+1 and et+1 to be orthogonal. Empirically, I need

to estimate the common component and cannot identify β and Ft+1 separately.

Moreover, I require only systematic risks, proxied by Ft+1, to enter the SDF. In other

words, this paper assumes a strong form of APT, whereas unsystematic risks et+1 earn zero

risk premia. Specifically, Mt+1 is linear in factors Ft+1,7

Mt+1 = 1− b>(Ft+1 − µF ), (1.2)

where µF is the unconditional expectation of latent factors, and b is the vector of risk prices

for systematic factors, capturing the compensation for bearing systematic risks. According

to the Hansen and Jagannathan (1991) (HJ) bound, if Ft+1 are tradable factors, b>Ft+1 is

the mean-variance efficient (MVE) portfolio. Therefore, constructing the linear SDF is the

equivalent of finding the MVE portfolio in the cross-section of test assets.

According to the fundamental asset pricing equation,

E[Mt+1Rt+1] = E
{
Rt+1[1− b>(Ft+1 − µF )]

}
= 0N (1.3)

7I consider only excess returns in this paper, so the unconditional mean ofMt+1 is unidentified. Without
loss of generality, I normalize its mean to be one.
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=⇒ E[Rt+1] = Cov(Rt+1,Ft+1)b, (1.4)

so systematic risks, quantified by the covariance matrix, fully explain the cross-section of

expected returns.

Past research documents the deviation of the independently and identically distributed

(IID) assumption for asset returns. For instance, Chernov, Lochstoer, and Lundeby (2022)

calculate the variance ratio of the mean-variance efficient portfolios in notable factor models.

According to their results, factor returns are far from IID. In addition, Haddad, Kozak, and

Santosh (2020) show that the first few principal components of asset returns are predictable

by their own portfolio-level log book-to-market ratio. Motivated by their findings, this paper

deviates from the IID assumption of Rt+1 by assuming that latent factors subsume all the

time-series dependency. Specifically, I assume that a p×1 vector of mean-zero “latent” state

variables Xt can predict factors Ft+1 as follows:

Ft+1︸ ︷︷ ︸
K×1

= µF︸︷︷︸
K×1

+ ΦX︸︷︷︸
K×p

Xt︸︷︷︸
p×1

+ ft+1︸︷︷︸
K×1

, (1.5)

where µF is the unconditional mean of latent factors, ΦXXt captures the time-varying

conditional mean of latent factors, ft+1 is conditionally uncorrelated: E[ft+1] = Et[ft+1] =

0K . Similarly, idiosyncratic shocks et+1 are conditionally uncorrelated. Chamberlain and

Rothschild (1983) also model idiosyncratic components as being cross-sectionally but not

serially correlated. Since pricing errors are poorly predictable, such an assumption can be

viewed as a good first-order approximation. I further plug equation (1.5) into the SDF,

Mt+1 = 1− b>ft+1 − b>XXt, (1.6)

where b>X = b>ΦX , and b>XXt drives the conditional mean of the SDF, capturing its full

conditional dynamics. The formula forMt+1 in equation (1.6) relates to previous studies that

decompose the SDF into permanent and transitory components (see Alvarez and Jermann

(2005) and Hansen and Scheinkman (2009)).

In addition, Hansen, Heaton, and Li (2008) study parametric models of state variables,

modelling them using a stationary vector autoregressive (VAR) model. Instead, this paper is

agnostic about the state vectorXt. Xt can be firm characteristics and macro indicators, such

as book-to-market ratio and cay (see Lettau and Ludvigson (2001a)). By decomposing asset

returns into frequency-dependent components, this paper can infer whether state variables

critical in pricing the cross-section, on average, are more important at high or low frequencies.

The next subsection introduces the Fourier transform as the non-parametric solution.
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1.2.2 Frequency Domain Analysis

This paper uses the techniques in frequency domain analysis to model the time-series de-

pendence of asset returns and decompose an empirical series into its repetitive or regular

components. I start by motivating why the Fourier transform is a natural approach to study

long-horizon asset returns. Suppose that an excess return process xt follows an AR(1) pro-

cess, xt+1 = ρxxt+
√

1− ρ2
xσxηx,t+1, where ρx is the AR(1) coefficient, σ2

x is the unconditional

variance, and ηx,t+1
iid∼ N (0, 1). When ρx is zero (negative, positive), the asset return follows

an IID (fast-moving, slow-moving) process. When ρx is more positive, the asset return tends

to be more persistent.

Figure 1.A.1 plots the cumulative returns in a 24-month rolling window for three AR(1)

processes: ρx ∈ {−0.5, 0, 0.5}. No matter how persistent the time series is, its long-horizon

return always exhibits a cyclical pattern. Hence, it is natural to project the long-horizon

return on the sine and cosine functions: xt,t+24 = a0 + a1 sin(2πt
48

) + a2 cos(2πt
48

) + et,t+24.

Note that the deterministic processes sin(2πt
48

) and cos(2πt
48

) complete a cycle in 48 months, or

equivalently, it has a cycle length of 48 months. Motivated by this observation, I can study

the cyclical pattern of long-horizon asset returns by projecting them on the space of sine and

cosine functions, and an M -month cumulative return corresponds to a cycle length of 2M .

The frequency-domain analysis is the natural solution. Technically speaking, the Fourier

transform decomposes a time series into orthogonal components at different frequencies. In

the language of regression, it regresses the original time series into a sequence of sines and

cosines functions.8

This paper uses ω to denote the frequency of a time-series process, which quantifies the

number of cycles that this process completes per unit of time. Of equal interest is the period

(or cycle length) of a time series, defined as the number of time points in a cycle: τ = 1
ω

.

For instance, if ω is 0.1 in monthly data, the time series will finish 0.1 cycles in a month.

Equivalently, it will take this process 10 months to complete one cycle.9

The spectral density matrix ofRt is defined as the Fourier transform of its auto-covariance

matrices,

fR(ω) =
∞∑

h=−∞

ΣR(h) exp{−2πihω}.

8According to the spectral representation theorem in Hannan (2009), a covariance-stationary time series
can be approximated by a sum of sine and cosines random variables with different variances across frequencies.
(see appendix 1.A.1.1).

9In addition, the absolute value of ω is no larger than 0.5 since any time series spends at least two months
completing a cycle.
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Through inverse Fourier transform, I can reverse engineer the auto-covariance matrix,

ΣR(h) =

∫ 1
2

− 1
2

exp{2πihω}fR(ω)dω.

In the study of asset pricing models, such as finding the tangency portfolio, investors focus

on the covariance matrix of asset returns, that is, h = 0,

Cov(Rt) := ΣR =

∫ 1
2

− 1
2

R(fR(ω))dω. (1.7)

The Fourier transform of Rt decomposes asset returns as an equally weighted average of

orthogonal components at different frequencies, so the covariance matrix of Rt equals the

integral of the covariance matrix of its frequency-ω component, fR(ω), as in equation (1.7).

In Appendix A1, I further show that only the real part of the spectral density matrix plays

a role in estimating PCs. Hence, I focus on R(fR(ω)), the real part of the spectral density.

Equation (1.7) also implies that R(fR(ω)) is the contribution to the covariance matrix from

the frequency-ω component. If test asset returns are IID, the spectral density matrix of asset

returns is constant across frequencies; that is fR(ω) = ΣR for every ω.

Why should we study the frequency-specific covariance matrices of asset returns? One

reason is that the single-period covariance matrix often fails to capture systematic risks

critical in explaining risk premia. For example, Brennan and Zhang (2020) show that yearly

CAPM beta, which equals the covariance between annualized asset returns and the market

portfolio, can explain the cross-section of 25 Fama-French size-B/M monthly portfolios. In

contrast, the monthly CAPM beta entirely fails. Therefore, the single-period covariance, like

the single-period CAPM beta, possibly misspecifies actual systematic risks, rendering the

estimation of risk prices difficult or even impossible. This observation calls for the study of

frequency-dependent systematic risks.

I estimate the spectral density matrix via discrete Fourier transform (DFT).10 A simple

example is in Figure 1.A.3, where a deterministic time series xt in panel (c) consists of two

components. The first component in panel (a) is slow-moving, with a frequency equal to

0.05, which completes a cycle every 20 periods. Another component of xt in panel (b) is fast-

moving, spending only two periods repeating a cycle. As in panel (d), DFT decomposes the

variance of xt into two parts contributed by low-frequency and high-frequency fluctuations.

Like other non-parametric estimation methods, the DFT estimate of the spectral density

matrix at a particular frequency is susceptible to significant uncertainties. To reduce the

variance, I divide the frequency intervals into three groups and estimate the spectral density

10Details about DFT can be found in Appendix 1.A.1.2.
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matrix in each frequency interval.

What are the ideal cutoff points of the entire frequency interval? Past research can give

some hints on this question. Dew-Becker and Giglio (2016) derive a closed-form solution to

frequency-specific risk prices of parametric CCAPMs. They observe that only the long-run

risk with cycles more prolonged than the business cycle is priced in the cross-section. In

addition, Bandi, Chaudhuri, Lo, and Tamoni (2021) use the orthogonal Wold decomposition

of CAPM’s beta, and they find that only the business-cycle component of CAPM beta in

the frequency interval between 32 and 64 months is priced. These observations motivate the

following division of frequency intervals.

More specifically, I consider the following divisions of frequency intervals: (1) τ = 1
ω
< 36

months (high-frequency, denoted as HF), (2) τ = 1
ω
∈ [36, 120] months (low-frequency, or

business cycle frequency, denoted as LF), and (3) τ = 1
ω
> 120 months (Above-LF, or A-

LF). This paper considers the second frequency interval as being closely related to business

cycles. Generally, the covariance matrix in the third group, with a cycle length greater than

120 months, is difficult to estimate non-parametrically. In later analysis, I also divide the

HF interval into several sub-intervals. In addition, I consider alternative LF intervals in the

robustness check. With the above division, I decompose the covariance matrix of Rt,

ΣR =

∫
ω∈ΩHF

R(fR(ω))dω +

∫
ω∈ΩLF

R(fR(ω))dω +

∫
ω∈ΩA−LF

R(fR(ω))dω (1.8)

= |ΩHF |ΣHF
R + |ΩLF |ΣLF

R + |ΩA−LF |ΣA−LF
R , (1.9)

where ΩHF , ΩLF , and ΩA−LF denote the set of HF, LF, and Above-LF, with lengths |ΩHF |,
|ΩLF | and |ΩA−LF | (|ΩHF |+ |ΩLF |+ |ΩA−LF | = 1).

Proposition 1.1 (Decomposition of asset returns’ spectral density matrix) I assume

that et+1 and ft+1 are conditional uncorrelated, and they are orthogonal. Then the spectral

density matrices of et+1 and ft+1 are constant across frequencies and equal to their uncondi-

tional covariance matrices Σe and Σf , respectively. Moreover, I can decompose the spectral

density matrix of Rt as,

fR(ω) = βfF (ω)β> + Σe = βΣfβ
> + Σe + βXfX(ω)β>X , (1.10)

where fF (ω) and fX(ω) are the spectral density matrices of latent systematic factors and

state variables, and βX = βΦX .

A simple derivation of proposition 1.1 is in Appendix 1.A.2.1. A key observation in equa-

tion (1.10) is that only the last component related to state variables is frequency-dependent,
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as et+1 and ft+1 are conditionally uncorrelated. Furthermore, if I estimate latent factors

of asset returns at different frequencies, I can study the difference between HF and LF sys-

tematic risks. More precisely, equation (1.10) indicates that the dynamics of state variables

entirely drive the difference between HF and LF systematic risks. Similarly, I also decompose

the SDF into frequency-dependent components and illustrate how the maximal Sharpe ratio

implied by the SDF varies across frequencies.

Proposition 1.2 (Spectral density function of the SDF) I normalize latent state vari-

ables Xt such that they are uncorrelated. Define risk prices of Xt as bX = Φ>Xb: bX =

(bX,1, . . . , bX,p)
>. Then the unconditional variance of the SDF is

Var(Mt+1) = b>Σfb+

∫ 1
2

− 1
2

p∑
j=1

b2
X,ifXi(ω)dω, (1.11)

and the spectral density function of Mt+1 is

fM(ω) = b>Σfb+

p∑
j=1

b2
X,ifXi(ω), (1.12)

where fXi(ω) is the spectral density function of the i-th state variable Xi.

I derive proposition 1.2 in Appendix 1.A.2.2. Since state variables are latent, I can

always normalize them such that they are uncorrelated. An alternative interpretation of

the normalization of Xt is that latent state variables are PCs of conditional expectations

of factors. The above derivation shows that the maximal Sharpe ratio of the economy is

frequency dependent. Moreover, the spectral density function of Mt+1, denoted by fM(ω),

varies across frequencies only due to the second term
∑p

j=1 b
2
X,ifXi(ω). I interpret this quan-

tity as the weighted-average spectral density function of latent state variables, with weights

proportional to the squared risk prices of state variables. If, on average,
∑p

j=1 b
2
X,ifXi(ω)

is larger at high (low) frequencies, it implies that high (low) frequency information is more

prominent in this cross-section of asset returns.11 In addition, the spectral decomposition of

Mt+1 can only identify the state variable with a non-zero price of risk bX,i.

Similar to this paper, Neuhierl and Varneskov (2021) use the Fourier transform to study

the dynamics of state variables driving asset returns. They also show how to map their SDF

into some canonical consumption-based asset pricing models. While the spectral density

function of the SDF in IID CCAPM is constant across frequencies, other candidate models

11The prominence of a state variable Xt comes from two sources: the variance of Xt and its risk price
squared (b2X). Since I use PCs as factors and state variables are latent, I can identify only Var(Xt)b

2
X rather

than Var(Xt) and b2X individually.

22



such as the long-run risk model in Bansal and Yaron (2004) have persistent SDFs. From the

theoretical point of view, the LF component is more critical than the HF one in the SDF.

A limitation of Neuhierl and Varneskov (2021) is that they consider only a single factor and

explore how its risk premium varies across frequency. Differently, this paper aims to handle a

factor zoo and extract frequency-dependent systematic risks in the large cross-section using

the techniques introduced in the following subsections.

Remark 1.3 (Interpretation of the Frequency) The frequency is different from the turnover

of a factor strategy. Let us consider two value strategies: the first is the monthly rebalanced

HML, or HML devil, from the AQR library. The second strategy is the yearly rebalanced HML

from Ken French library. Even though these two strategies have different turnovers, their

correlation is as high as 0.9. Furthermore, I compute their autocorrelations and variance

ratios — these two HML strategies have pretty similar patterns.

1.2.3 Estimation of Risk Factors

Under the assumption that Ft+1 and et+1 are orthogonal, I can represent the covariance

matrix of asset returns as following:

ΣR = β ΣF β
> + Σe. (1.13)

Systematic factors Ft+1 are not directly observable, so I aim to estimate tradable proxies for

them. A common way to estimate model (1.1) is the Principal Component Analysis (PCA),

which relies on the eigendecomposition of ΣR,

ΣR = QΛQ>, with Λ = diag{λ1, . . . , λN}, (1.14)

where Q is the matrix of eigenvectors (Q>Q = IN ), and Λ is the diagonal matrix of

eigenvalues in a descending order. A common practice of PCA is to estimate β as the first

K columns of Q, denoted by QK . Moreover, the estimates of K principal components (PC)

are F̂t = Q>KRt, uncorrelated by construction.

This paper uses the normalization β>β = IK and ΣF = diag{σ2
F,1, . . . , σ

2
F,K} in all

following analyses, with exceptions unless stated. Furthermore, I allow for a mixture of

strong and weak factors. In fact, most of asset pricing studies, as in this paper, use diversified

portfolios as test assets, and the number of test assets is not truly infinite. In this paper, I

differentiate strong and weak factors based on their variances.

Bai (2003) proves the asymptotic consistency of PCA when all factors are strong factors,

which affect an increasing number of test asset returns as N goes to infinity. Mathematically,
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∑T
t=1 FtF

>
t

T
→ ΣF and β>β

N
→ ΣN , where both ΣF and ΣN are positive definite matrices.

Bai and Ng (2002) make the same assumption and propose an asymptotically consistent

algorithm to determine the number of latent factors in model (1.1). Under the normalization

chosen by this paper, the above assumption is the equivalent of explosive eigenvalues of ΣF .

That is to say, the largest K eigenvalues of ΣR and ΣF will go to infinity as N →∞.

In addition, Bai (2003), like other papers, allows the idiosyncratic terms et to be only

weakly correlated both cross-sectionally and over time. Furthermore, idiosyncratic shocks

explain a finite amount of time-series variations in asset returns; that is

lim sup
N,T→∞

max eval
(
Σe

)
<∞,

where max eval(A) denotes the maximal eigenvalue of matrix A.

In empirical applications, however, it is uncommon to come across the ideal case in which

we can clearly separate large eigenvalues related to latent factors from small eigenvalues rep-

resenting idiosyncratic shocks. A few papers have documented that PCA cannot consistently

estimate model (1.1) when some latent factors are weak (see Onatski (2012), Lettau and Pel-

ger (2020a)). Contrary to a strong factor, a weak one explains a relatively smaller fraction

of time-series variations in asset returns. Alternatively, we can interpret a weak factor as

having a finite variance or a relatively small variance in a finite sample.

Some weak factors are necessary to explain the cross-section of asset returns. For example,

Lettau and Pelger (2020b) show that the omission of weak factors with a high Sharpe ratio

can deteriorate the performance of latent factor models. However, the question is, when will

PCA ignore the weak factors?

Benaych-Georges and Nadakuditi (2011) shed light on this question. Suppose that the

covariance matrix of asset returns can be decomposed into the sum of two matrices as in

equation (1.13), and one of them, such as Σe, has bounded eigenvalues. Under this setup,

the k-th (k ≤ K) eigenvalue of ΣR, representing the k-th systematic factor Fkt, is identified

if the k-th eigenvalue of β ΣF β
>, equal to σ2

F,k under the normalization, is greater than a

certain threshold; that is

λk
(
β ΣF β

>) = σ2
F,k > λcrit,

where λk(A) denotes the k-th largest eigenvalue of matrix A, and λcrit is related to the limit

of N
T

and the upper bound of eigenvalues for Σe. Otherwise, a phenomenon called eigenvalue

phase transition occurs, and the factor k is no longer identified. Now let us look at a simple

example.

Example 1.4 (Single-factor model) Suppose that there is only one systematic factor in

model (1.1), and the idiosyncratic vector et has a covariance matrix σ2IN (σ2 < ∞). I
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further normalize the factor loadings such that β>β = 1, and the variance of Ft is σ2
F

(σ2
F < ∞). As N

T
→ c < 1, the distribution of eigenvalues for Var(et) converges to the

Marchenko–Pastur distribution, with lower and upper bounds σ2(1−
√
c)2 and σ2(1 +

√
c)2.

According to corollary 2 in Lettau and Pelger (2020a), when σ2
F ≤
√
cσ2, the top eigen-

value converges to σ2(1 +
√
c)2. Consequently, PCA can no longer identify Ft, and the

correlation between true factor Ft and the PCA estimate F̂t converges to zero.

A strong factor has a variance that is much more considerable than the critical point

at all frequencies, so it is always identifiable. However, there are some “marginal factors”

whose signals are strong enough only at high or low frequencies. It depends on the dynamics

of state variables driving this factor. Suppose that a weak factor in example 1.4 has a

variance slightly less than the critical value
√
cσ2, but it follows an AR(1) process: Ft =

ρFFt−1 +
√

1− ρ2
F eF,t, eF,t

iid∼ N (0, σ2
F ). If ρF is more positive (negative), Ft is more slow-

moving (fast-moving). The spectral density of Ft is in Figure 1.A.2. For instance, when ρF

is 0.5, the variance of Ft at low frequencies is roughly four times the unconditional variance.

It is possible that a weak factor is unidentified by canonical PCA but stands out at low

frequencies if its signal is persistent and strong enough in the long horizon. This observation

also motivates the frequency-dependent PCA.

Definition 1.1 (Frequency-dependent PCA) Suppose that ΣHF
R , ΣLF

R , and ΣA−LF
R are

high-, low-, and above-low-frequency covariance matrices of the N-dimensional random vec-

tor Rt. The eigendecomposition of ΣZ
R, Z ∈ {HF,LF,A-LF}, is

ΣZ
R = QZΛZ(QZ)>, with ΛZ = diag{λZ1 , . . . , λZN},

where QZ are eigenvectors of ΣZ
R, that is, (QZ)>QZ = IN , and ΛZ is the diagonal ma-

trix of eigenvalues in descending order. Define the latent factors in the frequency Z ∈
{HF,LF,A-LF} as F Z

t = (QZ)>Rt.

Intuitively, I rotate the space of canonical PCs to target the short-term and long-term

common variations in asset returns. In other words, frequency-dependent PCA aims to select

monthly proxies for short-term and long-term systematic risks. A special case is when asset

returns are IID. Since ΣZ
R are identical in this case, PCA, HF-PCA, and LF-PCA will deliver

the exact estimates across frequencies.

1.2.4 Estimation of Risk Prices

This paper always uses principal components of asset returns as systematic factors, Ft =

(QZ)>Rt, Z ∈ {HF,LF,A-LF}. Since Ft are always tradable, estimating the linear SDF in
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equation (1.2) is the same as finding the optimal portfolio weights, b, such that b>Ft is the

MVE portfolio. If the SDF prices the cross-section of asset returns, it also prices all tradable

factors, so I can rewrite equation (1.4) as follows:

µF = ΣFb. (1.15)

I can solve the risk prices from equation (1.15), b = Σ−1
F µF . Therefore, risk prices b are

proportional to the MVE portfolio weights. In a finite sample, I need to estimate both ΣF

and µF . Past research have shown that a naive estimator such as b̂ = Σ̂−1
F F̄t does not

perform well in real datasets. For example, Tu and Zhou (2011) show that the estimated

Markowitz (1952) portfolio not only underperforms the naive 1/N rule, in which investors

invest equally across N assets, but also earns negative risk-adjusted returns. Kozak, Nagel,

and Santosh (2020) argue that the majority of uncertainty comes from the estimation of

factor means µF and propose a simple Bayesian procedure to estimate b.

To compare with Kozak, Nagel, and Santosh (2020), this paper adopts a similar strategy,

which assumes that the covariance matrix of factor returns, ΣF , is known and focuses on

the modelling of mean factor returns. Furthermore, equation (1.15) does not hold exactly

in finite sample, so I include pricing errors α on the right-hand side of equation (1.15):

µF = ΣFb + α, α ∼ N (0N ,
1
T
ΣF ). Finally, I assign a normal prior for risk prices:

b ∼ N (0K ,
κ2

τ
IK), τ = Tr

[
ΣF

]
. Under such a prior distribution, the prior expectation on

the squared Sharpe ratio of factor returns is equal to

Eprior[SR2
F ] = Eprior[b>ΣFb] =

κ2

τ
Tr
[
ΣF

]
= κ2.

Also, the posterior distribution of b, conditional on (µF ,ΣF ), is

p(b | µF ,ΣF ) ∝ exp

{
−T

2

[
(µF −ΣFb)

>Σ−1
F (µF −ΣFb) +

τ

κ2T
b>b

]}
.

Therefore, the posterior mode of b is the solution to the below objective function I,

min
b

{
(µF −ΣFb)

>Σ−1
F (µF −ΣFb) + v2b

>b

}
, (1.16)

where v2 =
Tr
[
ΣF

]
Eprior[SR2

F ]×T . A detailed derivation of equation (1.16) is in Appendix 1.A.2.3.

For simplicity, I will denote
√

Eprior[SR2
F ] as SRprior, or simply call it the prior Sharpe ratio.

However, due to Jensen’s inequality, Eprior[SRF ] ≤
√
Eprior[SR2

F ], so SRprior is an upper

bound on the expected Sharpe ratio under prior distribution. Objective function I is to
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minimize squared Sharpe ratio of pricing errors (or equivalently maximize R2
GLS), subject to

L2-penalty. In addition, I include factors into the model based on their ability of explaining

time-series variations. That is to say, I include the first K largest PCs into analysis when I

consider a K−factor model.

Kozak, Nagel, and Santosh (2020) extends equation (1.16) by including the L1-penalty,

min
b

{
(µF −ΣFb)

>Σ−1
F (µF −ΣFb) + 2v1|b|1 + v2b

>b

}
. (1.17)

Since the principal components are uncorrelated by constructions, its covariance matrix ΣF

is diagonal with elements equal to eigenvalues of the covariance matrix of test assets. The

closed-form solution to optimization problem (1.17) is

λ̂i,KNS =


µF,i−v1
σ2
F,i+v2

, if µF,i ≥ v1,

0, if µF,i < v1,
(1.18)

so the above algorithm selects a certain factor j whenever it has a mean greater than v1. In

other words, v1 controls the sparsity of factor models. Moreover, factors with small variances

are shrunk more heavily by the L2-penalty. This makes sense as those factors are more likely

to be idiosyncratic risks that should not command sizeable risk premia.

This paper shows the empirical results using both objective functions (1.16) and (1.17).

Suppose systematic factors that explain a large amount of time-series variations can capture

most of the risk premium. In that case, estimates by (1.16) or (1.17) should be largely

similar. It also implies that we can find a sparse factor model consisting of large PCs of

asset returns. Finally, I emphasize that I also assume there is only one true SDF. One of

this paper’s main objectives is to determine whether the SDF comprised of canonical, HF,

or LF PCs is a better approximation to the tangency portfolio.

1.3 Empirics

I now proceed to the empirical studies. The first step is to estimate frequency-specific

risk factors using the techniques introduced in Section 1.2 and to investigate whether the

SDF composed of HF or LF factors is a better approximation to the tangency portfolio.

Next, I explore whether some celebrated factor models proposed in the literature, such as

Fama-French three factors, can explain these SDFs. Finally, I attempt to understand the

economic fundamentals behinds SDFs. I begin this section with the analysis of 25 Fama-

French portfolios to show how the factor structure of asset returns varies across frequencies.
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I then carry out the main analysis in a large cross-section of portfolios, studying which

frequency is salient for the cross-sectional asset pricing.

1.3.1 Sample and Data

My primary data source comes from the characteristic-managed portfolios in Kozak, Nagel,

and Santosh (2020). The definition of firm characteristics and the data are on Serhiy Kozak’s

website. There are 51 firm characteristics in Kozak, Nagel, and Santosh (2020),12 but I select

39 of them to ensure the sample size large enough to estimate the low-frequency covariance

matrix of asset returns.

In the benchmark analysis, I split the sample from August 1963 to December 2019 into two

halves and focus on the out-of-sample performance, which imposes additional challenges on

the estimation due to the smaller subsamples. Firm characteristics can be further categorized

into eight groups, as in Table 1.A.2. Kozak, Nagel, and Santosh (2020) also exclude stocks

with market equity below 0.01% of the aggregate US market cap, alleviating the impact of

microcaps. Each month, individual stocks are sorted into 10 portfolios based on each of the

39 firm characteristics. They construct portfolios with weights equal to cross-sectional ranks

of a given stock’s characteristic, which is centered and normalized by the sum of absolute

values of all ranks in the cross-section.

I also use the Fama-French 25 size and book-to-market (total variance) portfolios in

Section 1.3.2. I download the data from Ken French’s library. In succeeding analysis, I sup-

plement the main dataset with additional economic variables. Detailed variable definitions

and data sources are provided in Table 1.A.1.

1.3.2 Starting Examples: 25 Fama-French Portfolios

To illustrate how the factor structures vary across frequencies, I start with the 25 Fama-

French size and book-to-market portfolios. The numbers in Figure 1.1 are 25 portfolios’

factor loadings, equivalently their portfolio weights. The sample spans from August 1963

to December 2019. In each graph, the x-axis shows five buckets of book-to-market ratio,

whereas the y-axis plots five levels of firm size. For instance, ME1 represents small firms,

and BM5 means high book-to-market portfolios. Since PC1 is always the level (identically

market) factor, I will display only the second and third PCs. In addition, I note that PCs

and HF-PCs are almost identical; therefore, I will focus on explaining the difference between

HF-PCs and LF-PCs.

12I thank the authors for sharing the data on their website. A more specific description of how to construct
this dataset can be found on Serhiy Kozak’s website: https://sites.google.com/site/serhiykozak/data.
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Figure 1.1: 25 Fama-French Size-Value Portfolios: 2nd and 3rd PCs

This figure shows the factor loadings of the second and third principal components in the cross-section of
25 Fama-French size-value portfolios. I estimate the factor loadings using the canonical PCA, HF-PCA, and
LF-PCA. See Definition 1.1 for the algorithm. The sample is from August 1963 to December 2019.
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First of all, let us look at Panel (c): In each column, the second HF-PC positively loads

on all large portfolios in ME5 but negatively on small portfolios in ME1. Therefore, HF-PC2

is a size factor. Next, in Panel (d), the portfolio weights of all five portfolios in BM5 (BM1)

are always positive (negative), so HF-PC3 is a value factor. Overall, the size factor is more

important than the value factor at high frequencies.

On the contrary, I observe the opposite at low frequencies. The heat-map in Panel (e)

reveals that the second most crucial LF-PC is the value factor, while the size factor becomes

the third-largest LF-PC, as is evident in Panel (f). This observation is largely compatible

with the economic theory because the value factor often captures the business-cycle risk at

low frequency. For example, Lettau and Ludvigson (2001b) point out that value stocks are

more highly correlated with consumption growth in bad economic states than growth stocks,

so they earn higher average returns. In short, the example in Figure 1.1 shows that the

relative importance of latent factors can vary across frequencies.

1.3.3 Simple Simulation

In this section, I design a simple simulation to illustrate how the frequency-dependent PCA

can recover the conditional information in asset returns. I assume that each asset return

is driven by an IID systematic component (strong factor), a persistent state variable (weak

factor), and an idiosyncratic element,

Rt+1 = µR + βFFt+1 + βxxt + et+1, β
>
FβF = 1, β>xβx = 1, β>Fβx = 0. (1.19)

Ft+1
iid∼ N (0, σ2

F ), et+1
iid∼ N (0N , σ

2IN ), Ft+1⊥xt⊥et+1,

xt+1 = ρx · xt +
√

1− ρ2
x σx ηx,t+1, ηx,t+1

iid∼ N (0, 1). (1.20)

In the above model, only the state variable xt can predict asset returns, and it follows an

AR(1) process. Examples of xt include (1) the time-varying mean and variance of consump-

tion growth in the long-run risk model (Bansal and Yaron (2004)), (2) the systemic- and

stock-specific resilience in the recovery following a disaster in the disaster model (Gabaix

(2012)), (3) the surplus consumption ratio in Campbell and Cochrane (1999), and (4)

portfolio-level book-to-market ratio (Haddad, Kozak, and Santosh (2020)). Idiosyncratic

shocks are homogeneous and have an identical variance σ2.

According to example 4, the conditional information βxxt is asymptotically unidentified

if σ2
x <

√
lim N

T
σ2. Factor returns are weakly predicted, so the assumption for a relatively

small σ2
x is reasonable. Furthermore, Ft+1 and xt are priced in the cross-section, so they
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enter the linear SDF,

Mt+1 = 1− bF · Ft+1 − bx · xt, (1.21)

where bF and bx are risk prices of Ft+1 and xt. The expected returns are determined by the

fundamental asset pricing equation E[Mt+1Rt+1] = 0N , which implies

µR = −Cov(Mt+1,Rt+1) = bFβFσ
2
F + bxβxσ

2
x. (1.22)

Ft+1 and xt are latent, so I extract their tradable proxies. Specifically, I project them into

the space of asset returns and find factor-mimicking portfolios with the highest Sharpe ratio:

Ft+1 : F̃t+1 = β>FRt+1, E[F̃t+1] = bFσ
2
F , Var(F̃t+1) = σ2

F + σ2, SR2
F =

b2
Fσ

2
F

1 + σ2

σ2
F

,

xt : X̃t+1 = β>xRt+1, E[X̃t+1] = bxσ
2
x, Var(X̃t+1) = σ2

x + σ2, SR2
x =

b2
xσ

2
x

1 + σ2

σ2
x

,

where F̃t+1 and X̃t+1 are tradable proxies for Ft+1 and xt and are orthogonal by construction.

Regarding the simulation setup, I estimate the first PC in the cross-section of 78 test

assets and assume that βF is equal to its factor loadings and the volatility of Ft+1 (σF ) is 8.13

Also, the idiosyncratic shocks have a unit variance (σ2 = 1). In addition, the weak factor

xt has an identical factor loading (βx) as the second PC. However, its variance is small,

σ2
x = 0.5; in other words, the weak factor explains a tiny fraction of time-series variations in

single-period returns. In the cross-section of 78 test assets and 338 monthly observations, the

canonical PCA has difficulty in identifying this factor: The critical value,
√

lim N
T
σ2 ≈ 0.48,

is close to the variance of weak factor. According to past literature, state variables that

can predict asset returns tend to be extremely persistent, such as those in the long-run risk

model, so I set ρ to be 0.9. Finally, I choose the Sharpe ratio of F̃t+1 and X̃t+1 to be 0.25 and

0.30 per month, and their risk prices can be reverse-engineered: bF = 0.032 and bx = 0.735.

Suppose I simulate factors and asset returns using the above model setup. I estimate the

latent factors using canonical PCA, HF-PCA and LF-PCA. Figure 1.2 is one such example.

The blue solid lines are “true” tradable factors β>FRt+1 and β>xRt+1, and the red dotted

lines show the estimates of factors. As is evident in Panels (a), (c), and (e), I can always

identify the first latent factor. Equivalently, the first latent factor explains the largest fraction

of time-series variations in both short-horizon and long-horizon asset returns.

13I assume a relatively large σF to make sure that it is a strong factor that is always identified by (HF-
or LF- or canonical) PCA. The simulation results are robust to other σF ∈ {3, 5, 10}. In the data, the first
three - five latent factors often have sizable eigenvalues (volatility) compared to the idiosyncratic volatility,
so this assumption for the strong factor is reasonable.
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Figure 1.2: Starting example: first two latent factors from canonical, HF-, and LF-PCA

I simulate one sample path of systematic factors and asset returns using the model setup described in the
main text. This graph plots the time series of the first two “true” tradable factors (blue solid lines) and their
estimates (red dotted lines) from canonical PCA (Panels (a) and (b)), HF-PCA (Panels (c) and (d)), and
LF-PCA (Panels (e) and (f)). In addition, corr. refers to the correlation between the true tradable factor
and its estimate. I standardize all time series to have unit variance.

32



On the contrary, the weak factor is difficult to identify. Panels (b) and (d) show that

neither canonical PCA and HF-PCA can recover the weak factor related to xt, and the

second PC or HF-PC has an almost zero correlation with the true factor-mimicking portfolio

of xt. The maximal Sharpe ratio implied by the first two PCs or HF-PCs is 0.276. However,

the persistence of the state variables xt magnifies its signal at low frequencies and allows me

to detect it empirically. Panel (f) plots the second LF-PC, which closely tracks the “true”

factor and has a correlation of 0.88. Moreover, the maximal Sharpe ratio implied by the first

two LF-PCs is 0.321. Intuitively, as Figure 1.A.2 displays, the low-frequency variance of the

persistent factor is much more considerable than its unconditional variance, so the signal of

this factor passes the critical value
√

lim N
T
σ2 at low frequencies and becomes identified.

Table 1.1 reports the simulation results of estimation using canonical PCA, HF-PCA, and

LF-PCA in 1,000 simulations. The time-series sample size is 338. For each statistic, I show

its 5th, 25th, 50th, 75th, 95th, mean, and mode. Panel (A) displays the correlation between

the second true factor and estimated PC2 from canonical PCA, HF-PCA, and LF-PCA.

Ideally, the correlation is 1. I focus on the second PC since the first PC is always identified,

so there is no difference among different types of PCAs. The most important observation

is that the LF-PC2 has a much more significant correlation with the true second factor.

Specifically, the average correlation between LF-PC2 and the true factor 2 is 0.754, whereas

they are only 0.176 and 0.434 for HF-PC2 and canonical PC2, respectively. Hence, studying

the LF components asset returns recovers a huge part of the persistent state variable.

In panel (B), I construct the MVE portfolios consisting of the first two latent factors:

MVEt = µ̂>F Σ̂−1
F Ft, where Ft is either the first two PCs, HF-PCs, or LF-PCs. Since the

LF-PCA recovers the persistent priced state variable, the LF-MVE portfolio has a greater

Sharpe ratio than the other two portfolios. Panel (C) further reports the correlation among

the HF-MVE, canonical-MVE, and LF-MVE portfolios. The MVE portfolios composed

of the HF- and canonical PCs are highly correlated, with an average correlation of 0.937.

However, the PCA can identify the state variable xt in some simulations when the HF-PCA

fails, so their MVE portfolios have correlations less than 0.746 in 5% of these simulations.

Finally, I decompose MVEHF
t and MVELF

t in Panel (D),

MVELF
t = γHFMVEHF

t + MVEmissing
t , MVEHF

t = γHFMVELF
t + MVEunpriced

t .

I report the Sharpe ratio of MVEmissing
t and MVEunpriced

t and also their correlation coeffi-

cients with the second factor. On average, the missing-MVE portfolio (MVEmissing
t ) has a

correlation of 0.666 with the second true factor and yields a Sharpe ratio of 0.193. It implies

that the HF-PCA misses important conditional information xt. On the contrary, the un-

priced MVE portfolio (MVEunpriced
t ) has a negative correlation with the second true factor,
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but its Sharpe ratio is almost zero. Hence, the LF-MVE portfolio can be decomposed into

two components: The first component, which is linear in the HF-MVE portfolio, identifies

the IID shock driving a large proportion of common variations in asset returns, and the

second component is the missing-part, mainly reflecting the slow-moving state variable.

In short, the simulation results confirm that both canonical PCA and HF-PCA often fail

to identify the weak factor. However, if the weak factor is slow-moving, its signal can soar

at low frequencies so that the LF-PCA can identify it.

Table 1.1: Simulation Results

5th 25th 50th 75th 95th Mean Mode
Panel (A). Correlation between 2nd true factor and its estimate

corr(β>xRt+1, (β̂
PC
x )>Rt+1) 0.041 0.228 0.449 0.640 0.798 0.434 0.556

corr(β>xRt+1, (β̂
HF
x )>Rt+1) 0.012 0.069 0.154 0.257 0.431 0.176 0.053

corr(β>xRt+1, (β̂
LF
x )>Rt+1) 0.451 0.706 0.791 0.847 0.900 0.754 0.831

Panel (B). Sharpe ratio of MVE portfolios
Sharpe ratio of MVEPC

t 0.179 0.232 0.272 0.313 0.374 0.274 0.264
Sharpe ratio of MVEHF

t 0.163 0.218 0.254 0.292 0.347 0.255 0.249
Sharpe ratio of MVELF

t 0.210 0.279 0.325 0.378 0.473 0.330 0.332

Panel (C). Correlation between MVE portfolios
corr(MVEPC

t ,MVEHF
t ) 0.746 0.919 0.971 0.993 0.999 0.937 0.992

corr(MVEHF
t ,MVELF

t ) 0.497 0.665 0.789 0.899 0.979 0.770 0.917
corr(MVEPC

t ,MVELF
t ) 0.599 0.771 0.868 0.937 0.985 0.840 0.943

Panel (D). Difference between MVEHF
t and MVELF

t

Sharpe ratio of MVEmissing
t 0.035 0.114 0.189 0.260 0.363 0.193 0.199

Sharpe ratio of MVEunpriced
t 0.001 0.003 0.008 0.019 0.055 0.015 0.004

corr(β>xRt+1,MVEmissing
t ) 0.197 0.623 0.740 0.812 0.881 0.666 0.788

corr(β>xRt+1,MVEunpriced
t ) -0.741 -0.627 -0.514 -0.392 -0.087 -0.475 -0.520

This table reports the simulation results in 1,000 simulations. I estimate the systematic factors using
canonical PCA, HF-PCA, and LF-PCA. For each statistic, I show its 5th, 25th, 50th, 75th, 95th, mean,
and mode. In Panel (A), I consider the correlation between the second true factor and estimated PC2
from canonical PCA, HF-PCA, and LF-PCA. Ideally, the correlation should be 1. In Panel (B), I construct

the mean-variance efficient (MVE) portfolios consisting of the first two latent factors: MVEt = µ̂>F Σ̂−1F Ft,
where Ft is either the first two canonical PCs, HF-PCs, or LF-PCs. Panel (c) reports the correlation between

MVEPC
t , MVEHF

t , and MVELF
t . Next, I decompose MVEHF

t and MVELF
t in Panel (D) as follows:

MVELF
t = γHFMVEHF

t + MVEmissing
t ,

MVEHF
t = γHFMVELF

t + MVEunpriced
t .

Finally, I report the Sharpe ratio of MVEmissing
t and MVEunpriced

t and their correlation coefficients with
the second factor.
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1.3.4 Out-of-Sample Performance: 78 Test Assets

In this section, I examine a large cross-section of 39 firm characteristics from Kozak, Nagel,

and Santosh (2020). Following the past literature such as Lettau and Pelger (2020b), I include

both the short and long legs into my analysis, so there are 78 test assets. I focus only on

two extreme portfolios for two reasons. First, if I consider all 10 sorted portfolios for each

characteristic, there are 390 portfolios. This large cross-section is particularly challenging

for the LF-PCA, which uses only long-run components of asset returns in estimation. It

implies a trade-off between signaling extraction and estimation noise, so I include only two

extreme portfolios to control estimation errors. Also, when I include all 10 sorted portfolios,

the portfolio weights are often the most enormous for portfolios in deciles 1 and 10. In other

words, most of the relevant information comes from two extreme portfolios.

The entire sample is from August 1963 to December 2019. I further split the whole sample

into two equal subsamples. Subsample 1 has 339 monthly observations, spanning from Au-

gust 1963 to October 1991, and I treat it as the in-sample. Subsample 2 is the out-of-sample

(OOS), which is from November 1991 to the end of the sample. As I show in Section 1.2,

estimating a linear SDF composed of asset returns is identical to finding the MVE portfolio

with the highest achievable Sharpe ratio. It requires me to focus on the OOS performance

of asset pricing models, as the in-sample estimate often exaggerates the attainable Sharpe

ratio in the real world. For instance, the annualized Sharpe ratio of 78 test assets is higher

than 3 in the full sample, which is unreasonably large, according to the good deal bounds in

Cochrane and Saa-Requejo (2000). In addition, McLean and Pontiff (2016) document the

declining performance of many anomalies post-publication, and Kozak, Nagel, and Santosh

(2018) also show that the average returns of 15 factors decrease considerably in the second

subsample. Motivated by the previous papers, this paper estimates the PCs and their risk

prices using data in the first subsample and evaluates the OOS performance in subsample 2.

HF vs. LF Time-Series Variations

First, I look at the time-series variations (TSVs) explained by different frequency-specific

components in the in-sample. The results in the second subsample are largely similar (see

Figure 1.A.4). I estimate the spectral density matrix f̂R(ω) via the DFT described in

Appendix 1.A.1.2, where the algorithm estimates only at frequencies h
360

, h ∈ {1, . . . , 180}.
Specially, the HF component corresponds to the cycle length shorter than 36 months, that

is, 360
h
< 36, whereas the LF part has a cycle period between 36 and 120 months, that is,
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36 ≤ 360
h
≤ 120. Therefore, the sample estimates of ΣHF

R and ΣLF
R are as follows:

Σ̂HF
R =

1

170

180∑
h=11

R
(
f̂R(

h

360
)
)
, Σ̂LF

R =
1

8

10∑
h=3

R
(
f̂R(

h

360
)
)
.

I further define the fraction of time-series variations explained by HF and LF components

as follows:

TSV HF =
tr
[∑180

h=11 f̂R( h
360

)
]

tr
[∑180

h=1 f̂R( h
360

)
] and TSV LF =

tr
[∑10

h=3 f̂R( h
360

)
]

tr
[∑180

h=1 f̂R( h
360

)
] .

If returns are uncorrelated, the spectral density matrix is approximately constant across

frequencies, so the HF (LF, or above-LF) component accounts for 170
180

= 94.5% ( 8
180

= 4.4%,

or 2
180

= 1.1% ) of time-series variations. Empirically, however, this LF part explains 5.1% of

time-series variations, so this slow-moving component is slightly more important than that

predicted by the uncorrelated assumption (see Figure 1.3(a)).

I further compare Tr
[
Σ̂LF
R

]
to Tr

[
Σ̂HF
R

]
and find that the former is around 1.2 times as

the latter, which means the LF risk is slightly higher than the HF risk. Next, Figure 1.3(b)

computes the ratio of LF-eigenvalues over HF-eigenvalues. An interesting observation is that

the top 10 eigenvalues of the LF covariance matrix are 1.5 to 2.5 times as those of the HF

one, except for the PC1. Therefore, the LF component has a clearer factor structure.
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Figure 1.3: Time-series variations in 78 assets, subsample 1

Panel (a) plots the fraction of time-series variations in 78 asset returns explained by the HF, LF, and above-
LF components. Panel (b) plots the ratio of the first 15 low-frequency eigenvalues over high-frequency
eigenvalues. The sample is from August 1963 to October 1991.
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Out-of-Sample Sharpe Ratio

With the eigendecomposition of the frequency-dependent covariance matrix of asset re-

turns, I construct OOS latent factors following definition 1.1: FOOSt = (QIN)>ROOS
t , where

QIN is the eigenvector of the frequency-dependent covariance matrix estimated in the first

subsample, andROOS
t denotes asset returns in the out-of-sample. In addition, I estimate risk

prices b for different prior Sharpe ratios in the in-sample, with the estimate denoted as b̂IN .

In the benchmark case, I use the objective function in equation (1.16) and include latent

factors into the regression based on their eigenvalues. In other words, latent factors that

drive more common movements among asset returns enter the SDF first. Next, I construct

the OOS MVE portfolio, MVEOOS
t = (b̂IN)>FOOSt .

Figure 1.4 is the heat-map of the OOS Sharpe ratio. I present only the HF- and LF-PCA

results to save space, while the graphs of above-LF-PCA and PCA are in the appendix.

In each panel, the x-axis denotes the prior Sharpe ratio of factor models, corresponding to

different levels of L2-shrinkage v2 in equation (1.16). If I choose a larger prior Sharpe ratio,

I impose a gentler shrinkage to risk prices b. The y-axis is the number of PCs included in

the SDF. In addition, different colors represent different OOS Sharpe ratios. For example,

the red color represents the “nearly” maximal monthly Sharpe ratio that these factor models

can achieve in the out-of-sample, around 0.35 - 0.38 in the data.

Panel (a) in Figure 1.4 and Panel (b) in Figure 1.A.5 show the results of HF-PCA and

canonical PCA respectively — they have almost identical heat-maps. Generally, the first six

or seven canonical or high-frequency PCs deliver an OOS Sharpe ratio of 0.28-0.29 across a

wide range of prior Sharpe ratios. However, this low-dimensional (HF-)PC model still ignores

an important priced component in the SDF. For example, when the prior Sharpe ratio is

0.4 or 0.5, in Figure 1.5, the OOS Sharpe ratio increases gradually from 0.28 to 0.37 as

more (HF-)PCs enter the SDF. Besides, a substantial L2-shrinkage helps reduce the required

number of latent factors. Especially when SRprior = 0.2, I need 20-25 (HF-)PCs to reach

the nearly optimal OOS Sharpe ratio. The factor model composed of the extremely low-

frequency PCs has a similar observation, as is indicated in Panel (a) in Figure 1.A.5. Since

the above-LF-component is moving considerably slowly, estimating the covariance matrix is

challenging, so I compare the HF and LF systematic factors and the SDFs composed of them

in the following analysis.

Panel (b) plots the OOS Sharpe ratio of LF-PCs. A distinguishing feature is the sparsity

in the space of LF-PCs. In Figure 1.5, the first seven LF-PCs are almost sufficient to achieve

the optimal OOS Sharpe ratio, at around 0.37 per month. In other words, seven systematic

factors that explain the most LF common variations in asset returns can span the whole asset

space in the out-of-sample. Moreover, this observation is not sensitive to the choice of prior
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Sharpe ratio. With a wide range of reasonable prior, such as SRprior ∈ [0.3, 0.8], the SDF

constructed by the first seven LF-PCs is always nearly optimal in the out-of-sample. Last but

not least, since PCs are no more than linear transformations of original test asset returns

Rt, they contain almost identical information. Therefore, the MVE portfolios consisting

of HF-PCs, LF-PCs, and original PCs earn just about the same OOS Sharpe ratio as the

number of factors entering the SDF approximates N .
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Figure 1.4: OOS Sharpe ratio of HF- vs. LF-PCA, 78 test assets

This graph plots the heat-maps of the OOS Sharpe ratio of HF- vs. LF-PCA in the cross-section of 78 test
assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is the
number of PCs included in the SDF. In addition, different colors represent different levels of OOS Sharpe
ratios. I include the PCs into the SDF based on their ability to explain time-series variations.

Out-of-Sample R2
gls

In addition to the OOS Sharpe ratio, I also investigate the GLS R-squared of factor

models, denoted by R2
gls. With the in-sample estimate of risk prices, I compute the OOS

pricing errors predicted by a factor model, αOOSR = R̄OOS
t −Cov(ROOS

t ,FOOSt )b̂IN , where

Cov(ROOS
t ,FOOSt ) is the sample covariance matrix between OOS asset returns ROOS

t and

OOS factors fOOSt , R̄OOS
t is the sample average of OOS asset returns. R2

gls is defined as

R2
gls = 1− (αOOSR )>(Σ̂OOS

R )−1αOOSR

(R̄OOS)>(Σ̂OOS
R )−1R̄OOS

. (1.23)

R2
gls has a few satisfying properties. First, R2

gls has a straightforward economic inter-

pretation: It quantifies the proportion of the squared Sharpe ratio of test assets explained

by a factor model. Also, the objective function in equation (1.16) is to maximize R2
gls.

Therefore, it is natural to compare R2
gls in the out-of-sample, consistent with my objective

function. Last but not least, R2
gls is invariant to any non-singular linear transformation of
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Figure 1.5: Zoom in OOS Sharpe ratio, SRprior ∈ {0.4, 0.5}

This graph zooms in the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA. Different from figure 1.4, this
figure shows the estimates using two prior Sharpe ratios, SRprior ∈ {0.4, 0.5}.

the original asset space. Specifically, for an arbitrary transformation of asset returns, such

as Y OOS
t = P>ROOS

t , where P is nonsingular, R2
gls of pricing Y OOS

t is exactly identical to

that of ROOS
t . By focusing on R2

gls, there is no need to choose whether the SDF should price

original asset returns or their transformation, such as PCs.
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Figure 1.6: OOS R2
gls of HF- vs. LF-PCA, 78 test assets

This graph plots the heat-maps of the OOS R2
gls of HF- vs. LF-PCA in the cross-section of 78 test assets.

In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is the number
of PCs included in the SDF. In addition, different colors represent different levels of OOS R2

gls. I include the
PCs into the SDF based on their ability to explain time-series variations.

Figure 1.6 plots the heat-maps of OOS R2
gls of HF- and LF-PCA. Related plots of above-

LF-PCA and original PCA can be found in Figure 1.A.6. Similar to the OOS Sharpe ratio,
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the PCA and HF-PCA share similar patterns — I need many latent factors to obtain the

optimal OOS R2
gls. On the contrary, I can choose a relatively parsimonious SDF consisting of

LF-PCs. For instance, when SRprior is between 0.5 and 0.8, the OOS R2
gls of a 7 LF-factor-

model is around 18% – 20%. Overall, the exploration of R2
gls provides further evidence on

the sparsity of LF-SDF. At the same time, the HF-SDF always needs more than 30 latent

factors to achieve a nearly optimal OOS R2
gls.

Zoom in High-Frequency Intervals

In the previous analysis, I define the HF interval as τHF ∈ [2, 36) and find the sparsity

of latent factor models only at low frequencies. However, the definition of the HF interval

is probably too wide to capture certain pricing information at a specific high frequency. For

instance, the short-term reversal in Jegadeesh (1990) manipulates extremely fast-moving

information in predicting future stock returns. To explore whether the performance of latent

factor models varies significantly under alternative definitions of HF intervals, I consider a

further division of τHF ∈ [2, 36): (1) [2, 3), (2) [3, 6), (3) [6, 12), and (4) [12, 36). Next, I will

examine the OOS Sharpe ratio of latent factor models in these four HF intervals.

Figure 1.7 plots the heat-maps of the OOS Sharpe ratio of latent factor models composed

of PCs in these four HF intervals. Clearly, I always need more than 20 latent factors to achieve

the optimal OOS Sharpe ratio. In addition, the performance of factor models is sensitive to

the choice of the L2-penalty — a significant penalty or a small prior Sharpe ratio is necessary

to ensure a decent OOS performance. Hence, the sparsity of latent factor models only exists

in the LF frequency interval [36, 120).

The previous empirical results shed light on the dynamics of priced state variables in

the cross-section of 78 test assets. According to Proposition 1.2, the maximal Sharpe ratio

implied by the SDF is frequency-dependent only due to state variables Xt. More impor-

tantly, it implies that
∑p

j=1 b
2
X,ifXi(ω), the second term in the spectral density function of

the SDF, is on average larger at low frequencies. While either the canonical or HF-PCA

fails to identify this persistent state variable, the LF-PCA recovers it as one of the largest

factors explaining time-series variations in long-horizon asset returns. This conditional in-

formation is also priced in the cross-section. In the language of ICAPM (Merton (1973)),

stock market participants have the incentive to hedge some slow-moving state variables, as

those state variables can predict the future stock returns and economic environments and

therefore affect investors’ future investment opportunity set. Because of the hedging de-

mand, the state variables command non-zero risk prices, so a valid SDF should not omit

them. Finally, the fast-moving state variables are not essential in the monthly data. As Fig-

ure 1.7 indicates, the SDF is similarly dense in the space of extremely HF systematic factors.
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Figure 1.7: Robustness Check: OOS Sharpe ratio of 78 test assets, different HF intervals

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA, where I divide the HF intervals into four
sub-intervals: [2, 3), [3, 6), [6, 12) and [12, 36). In each panel, the x-axis denotes the prior Sharpe ratio of the
factor model, while the y-axis is the number of PCs included in the SDF.

Kozak, Nagel, and Santosh (2020) Estimation: Imposing Model Sparsity

As previous empirical results indicate, an SDF composed of (HF-)PCs cannot be parsi-

monious in terms of either the OOS Sharpe ratio or R2
gls. What if I impose the sparsity of

factor models? In this part, I follow the Kozak, Nagel, and Santosh (2020) procedure, de-

scribed in equation (1.17), that includes L1 shrinkage. According to the closed-form solution

in equation (1.18), this procedure selects PCs with higher in-sample average returns first.

Also, a larger v1 renders more factors to have zero risk prices, so this algorithm enforces the

sparsity of factor models.

I show the OOS Sharpe ratio of the MVE portfolios from the Kozak, Nagel, and Santosh

(2020) estimation in Figure 1.8. First, 15 PCs or 20 HF-PCs and canonical PCs can deliver

the nearly optimal Sharpe ratio, so the SDF does become sparser. However, it must be

the case that the objective function chooses some small PCs that have essential pricing
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information. At the same time, the Kozak, Nagel, and Santosh (2020) procedure can still

discover a sparse LF-SDF, with the first seven LF-PCs commanding a 0.4 monthly Sharpe

ratio. According to the heat-maps of OOS Sharpe ratio in Figure 1.A.7, the LF-SDF is

always sparse when the prior Sharpe ratio that I use to estimate the risk prices of LF latent

factors is greater than 0.3.
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Figure 1.8: OOS Sharpe ratio, Kozak, Nagel, and Santosh (2020) estimation

This graph zooms in the OOS Sharpe ratio of the canonical PCA, HF-PCA, and LF-PCA. The prior monthly
Sharpe ratio is set to be 0.4 in Panel (a) and 0.5 in Panel (b). I estimates risk prices using the Kozak, Nagel,
and Santosh (2020) algorithm described in equation (1.17). Latent factors are PCs of 78 test asset returns.

Factor models that have been proposed in past literature are mostly sparse, such as the

Fama-French three-factor model. However, there is no particular reason why a factor model

must be sparse, even though people often pursue parsimonious models. Giannone, Lenza,

and Primiceri (2021a) call this “the illusion of sparsity.” Moreover, it is almost unlikely

to select a few firm characteristics, such as size and book-to-market ratio, and use them

to span the whole asset space. For instance, Kozak, Nagel, and Santosh (2020) show that

characteristics-sparse SDFs formed from a few factors cannot appropriately explain the cross-

section of expected stock returns in the out-of-sample. In addition, Bryzgalova, Huang, and

Julliard (2021) use a continuous spike-and-slab Bayesian prior to study 51 observable tradable

and nontradable factors, and they find that within a wide range of reasonable prior Sharpe

ratios of the SDF, 95% posterior credible intervals of the number of factors in the true model

are between 16 and 32.

Why do we desire the sparsity of latent factor models? According to Kozak, Nagel, and

Santosh (2018), the absence of near arbitrage opportunities implies that factors capturing

the most systematic common variations in asset returns are non-diversifiable, so market

participants earn non-zero risk premia for taking these risks. However, I observe some small
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(HF-)PCs bringing nontrivial risk premia. These factors explain less than 0.1% of the time-

series variation, which implies that they are idiosyncratic shocks. Accordingly, they should

not command sizable risk premia; otherwise, arbitrageurs can include those small PCs into

their portfolio without increasing their investment risk significantly — instead, the sparsity

of LF-SDF solves this puzzle to some extent.

How should we interpret the sparsity of the LF-SDF? On the one hand, it makes economic

sense to observe a sparse LF-SDF. Suppose investors are buy-and-hold investors who pay

more attention to the long-term trade-off between risk and returns, or investors have Epstein-

Zin preference and are particularly risk-averse to the long-run uncertainty. Under these

scenarios, the LF-SDF should imply a higher Sharpe ratio than the HF-SDF, because those

LF systematic factors are the most risky in the long horizon. On the other hand, some

persistent state variables explain a small fraction of common variations in single-period

returns, but they are much more prominent in the long horizon. Hence, the LF-PCA boosts

the signal of this persistent conditional information and recovers them partially or wholly.

1.3.5 Do Celebrated Models Explain HF and LF Risks?

This section further compares the OOS MVE portfolios of latent factors with the following

benchmark models: (1) CAPM, (2) Fama and French (1993) three factors (FF3), (3) Fama

and French (2015) five factors (FF5), (4) Carhart (1997) four factors (Carhart4), and (5) Hou,

Xue, and Zhang (2015) four factors (Q4). First of all, I examine whether these five sparse

factor models can explain HF- and LF-MVE portfolios by running time-series regressions as

follows:14

MVEZ
t = α + β>Bt + ηt, Z ∈ {HF,LF},

where Bt is one of the five benchmark models mentioned before. I report three test-statistics

in Table 1.2: (1) α, (2) t-statistics of α, and (3) the adjusted R-squared, denoted as R2
adj.

To control for the serial dependence of pricing errors, I use Newey and West (1987) standard

errors with both 36 lags (t-stat I) and 12 lags (t-stat II). In Table 1.2, I estimate risk prices

of PCs under the prior Sharpe ratio equal to 0.4. To enhance interpretability, I normalize

all MVE portfolios to have the same volatility as the market factor.

The first panel in Table 1.2 examines CAPM. Not surprisingly, the market factor alone

entirely fails to explain neither HF- nor LF-MVE portfolios. The pricing errors are enormous,

always greater than 1% per month. Moreover, LF-MVE portfolios always have higher alphas

and t-statistics than HF ones; hence, they are more difficult ro explain. Interestingly, I

14Empirically, the MVE portfolios composed of the first several HF or canonical PCs are almost identical.
Specifically, their correlation coefficients are around 98 – 99%. Therefore, I focus on comparing HF- and
LF-MVE portfolios.
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observe relatively low R2
adj, less than 10% in all columns. Since the first PC in the cross-

section is always a level factor that is highly correlated with the market factor, the low R2
adj

in CAPM implies that the SDF loads heavily on other lower-order latent factors.

FF3 extends CAPM by including the size and value factors. Compared to CAPM, FF3

slightly reduces the pricing errors and significantly increases R2
adj, particularly in the regres-

sion of HF-MVE portfolios. However, FF3 still fails to explain the OOS MVE portfolios of

latent factors.

Carhart4 includes the momentum factor into FF3. Intriguingly, the alphas of MVE

portfolios reduce by more than 40% compared to the previous two regressions, although all

remain significantly positive. Moreover, the inclusion of the momentum factor improves the

time-series fit dramatically. For example, Carhart4 explains 52% of time-series variation in

the MVE portfolio of seven LF-PCs, while R2
gls in FF3 is just 16%.

Table 1.2: Do celebrated models explain HF and LF risks?

Panel (A). MVEHF
t Panel (B). MVELF

t

7 PCs 8 PCs 9 PCs 10 PCs 7 PCs 8 PCs 9 PCs 10 PCs
CAPM α 1.03% 1.00% 1.16% 1.18% 1.39% 1.38% 1.38% 1.41%

t-stat I (2.89) (2.47) (2.88) (2.99) (3.57) (3.72) (3.72) (3.76)
t-stat II (3.05) (2.72) (3.16) (3.28) (4.48) (4.60) (4.60) (4.60)
R2
adj 8.02% 5.55% 0.30% 0.44% 7.41% 6.38% 5.76% 4.36%

FF3 α 0.80% 0.77% 0.94% 0.98% 1.27% 1.27% 1.27% 1.29%
t-stat I (4.87) (3.91) (4.29) (4.44) (4.45) (4.65) (4.65) (4.75)
t-stat II (4.76) (4.13) (4.60) (4.73) (5.82) (5.95) (5.97) (6.05)
R2
adj 40.97% 38.39% 31.92% 26.44% 15.84% 14.24% 13.06% 12.05%

Carhart4 α 0.44% 0.39% 0.57% 0.59% 0.83% 0.82% 0.81% 0.84%
t-stat I (3.18) (2.61) (3.09) (3.18) (3.75) (3.88) (3.87) (3.91)
t-stat II (2.81) (2.39) (3.08) (3.14) (4.40) (4.46) (4.45) (4.44)
R2
adj 65.13% 65.62% 57.00% 53.91% 52.36% 51.2% 51.81% 50.21%

FF5 α 0.43% 0.43% 0.48% 0.53% 0.87% 0.84% 0.83% 0.84%
t-stat I (2.55) (2.36) (2.87) (3.11) (3.15) (3.17) (3.12) (3.13)
t-stat II (2.43) (2.42) (3.24) (3.43) (3.94) (3.88) (3.81) (3.87)
R2
adj 49.98% 48.09% 48.77% 41.91% 27.95% 28.02% 27.52% 27.26%

Q4 α 0.32% 0.23% 0.26% 0.33% 0.76% 0.73% 0.71% 0.72%
t-stat I (2.07) (1.30) (1.47) (1.81) (2.77) (2.82) (2.75) (2.81)
t-stat II (1.60) (1.10) (1.30) (1.61) (3.25) (3.22) (3.14) (3.24)
R2
adj 42.81% 39.87% 44.7% 40.47% 31.31% 31.35% 31.71% 31.16%

This table tests whether five sparse factor models proposed in past literature can explain the MVE portfolios
composed of latent factors. I construct the MVE portfolios using the first seven to 10 latent factors following
the same steps as in the section 1.3.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.4.
The five benchmark models include (1) CAPM, (2) Fama and French (1993) three factors (FF3), (3) Fama
and French (2015) five factors (FF5), (4) Carhart (1997) four factors (Carhart4), and (5) Hou, Xue, and
Zhang (2015) four factors (Q4). I report three test-statistic in table 1.2: (1) α, (2) t-statistics of α, and (3)
adjusted R-squared, denoted as R2

adj . To control for the serial dependence of pricing errors, I use Newey and

West (1987) standard errors with both 36 lags (t-stat I) and 12 lags (t-stat II).

In the last two panels, I consider two models with both investment and profitability
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factors in them. Simply speaking, FF5 differs from Q4 in the additional value factor in

FF5, and they adopt a slightly distinct approach to construct factors. In addition, Q4 is

better at explaining the MVE portfolios than FF5. Notably, pricing errors of HF-MVE

portfolios are remarkably smaller, declining to around 0.3% per month, and are no longer

significant, except for t-statistic I in the column of seven HF-PCs . On the other hand,

LF-MVE portfolios still have sizable and statistically significant pricing errors, at around

0.7% per month. I have similar empirical findings under another prior Sharpe ratio equal to

0.5 (see Table 1.A.3 in the appendix).

In short, none of the five benchmark models can explain LF-MVE portfolios, while the

Q4 model in Hou, Xue, and Zhang (2015) is capable of rationalizing the abnormal returns

of the HF-MVE portfolios.

Next, I test whether LF-MVE portfolios can explain HF-MVE ones or whether the oppo-

site is valid. Similarly, I run time-series regressions, but the benchmark model Bt becomes

either MVEHF
t or MVELF

t . Table 1.3 reports the results under the prior Sharpe ratio 0.4.

In Panel (a), I regress MVEHF
t on MVELF

t , both of which are constructed by the first

seven, eight, nine, and 10 PCs. First, pricing errors are almost zeros in the statistical sense

and less than 0.1% per month. In other words, the LF-MVE portfolios can span the HF-

MVE portfolios. On the other hand, I regress MVELF
t on MVEHF

t in Panel (b). Unlike

Panel (a), pricing errors are always significantly positive, implying that the HF-MVE ignores

an essential priced component of LF-MVE.

To sum up, the evidence in Tables 1.2 and 1.3 indicates that MVE portfolios, or SDFs,

consisting of LF-PCs, should be the right benchmark. The first few LF-PCs can construct

an LF-SDF that yields nearly optimal OOS Sharpe ratio, and none of the five notable factor

models proposed in the past literature or HF-MVE portfolios can explain them. At the same

time, they can fully explain HF-MVE portfolios in the out-of-sample.

Table 1.3: Which benchmark? HF vs. LF Tangency Portfolios

Panel (A): Panel (B):
MVEHF

t = α + βMVELF
t + et MVELF

t = α + βMVEHF
t + et

7 PCs 8 PCs 9 PCs 10 PCs 7 PCs 8 PCs 9 PCs 10 PCs
α -0.10% -0.10% 0.10% 0.00% 0.60% 0.60% 0.70% 0.60%
t-stat I (-0.74) (-0.62) (0.51) (-0.08) (3.29) (4.19) (2.79) (2.70)
t-stat II (-0.63) (-0.52) (0.44) (-0.07) (4.01) (4.50) (3.04) (3.06)
R2
adj 68.89% 62.68% 53.86% 63.23% 68.89% 62.68% 53.86% 63.23%

This table tests whether the LF-MVE portfolio can explain the HF-MVE or whether the opposite is valid.
I construct the MVE portfolios using the first 7 – 10 latent factors following the same steps as in Section
1.3.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.4. I report three test-statistic in
Table 1.2: (1) α, (2) t-statistics of α, and (3) adjusted R-squared, denoted as R2

adj . To control for the serial

dependence of pricing errors, I use Newey and West (1987) standard errors with both 36 lags (t-stat I) and
12 lags (t-stat II).
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1.3.6 Origins of Economic Risks in SDFs

Why do I observe the sparsity of latent factor models only in the space of LF-PCs? Why

do sparse LF-MVE portfolios earn higher Sharpe ratios than those composed of the first

few HF or canonical PCs? Do they represent different sources of economic fundamentals?

This section attempts to answer these questions by studying the economic drivers behind

the linear SDFs consisting of HF and LF systematic factors.

I consider the SDFs composed of the first seven HF-PCs or LF-PCs. I denote them

as the HF-SDF and LF-SDF, respectively. From the heat-maps in Figure 1.4, the first

seven LF-PCs can generate nearly optimal OOS Sharpe ratios under a wide range of prior

distributions. In addition, the inclusion of extra PCs into the SDF adds enormous unpriced

noises but minimal additional pricing information. Last but not least, the space of the first

seven HF-PCs is almost identical to that of the first seven canonical PCs, so I focus on

comparing the HF-SDF to LF-SDF.

Past literature often uses the first several largest PCs of single-period returns, which are

empirically identical to HF-PCs, to construct the linear SDF. However, my previous empirical

findings indicate that such SDFs can neglect a vast priced component. Hence, I decompose

the LF-SDF15 (MLF
t ) into two components, the first of which is perfectly correlated with

the HF-SDF (MHF
t ) and another of which is the orthogonal part as follows:

MLF
t = βHFMHF

t +Mmissing
t , MHF

t ⊥M
missing
t . (1.24)

Similarly, I project the HF-SDF into the linear space of the LF-SDF and extract an uncor-

related component, denoted by Munpriced
t ,

MHF
t = βLFMLF

t +Munpriced
t , MLF

t ⊥M
unpriced
t . (1.25)

Table 1.4 reports the correlation matrix and Sharpe ratios implied by MLF
t , MHF

t ,

Mmissing
t , and Munpriced

t . As mentioned before, MLF
t implies a higher Sharpe ratio than

MHF
t , and both SDFs imply statistically significant Sharpe ratios with t-statistics greater

than 4. Moreover, MHF
t accounts for only 69% of the time-series variation of MLF

t but

misses a considerable component Mmissing
t that earns a monthly Sharpe ratio of around 0.2

and has a t-statistic equal to 4.6. In the following tables, I call Mmissing
t the missing-SDF,

which means that the traditional PCA or HF-PCA misses a huge priced component of the

LF-SDF. Not surprisingly, the part of HF-SDF orthogonal to LF-SDF has almost zero Sharpe

ratio, so this is an unpriced component. Hence, I will call Munpriced
t the unpriced-SDF.

15In this paper, the SDF is equal to one minus the MVE portfolio: Mt = 1 −MVEt. Hence, it is
equivalent to studying the MVE portfolios.
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Table 1.4: Correlation among MLF
t , MHF

t , Mmissing
t , and Munpriced

t

Corr. MLF
t Munpriced

t MHF
t Mmissing

t SR t-stat (36 lags)
MLF

t 1.00 0.376 6.22

Munpriced
t 0.00 1.00 0.037 0.67

MHF
t 0.83 0.56 1.00 0.292 4.71

Mmissing
t 0.56 -0.83 0.00 1.00 0.240 4.56

This table plots the correlation matrix and Sharpe ratio (SR) of the following four variables: MLF
t , MHF

t ,

Mmissing
t , and Munpriced

t . MLF
t and MHF

t are OOS MVE portfolios composed of the first seven HF- or
LF-PCs, and they are constructed by the procedures in Section 1.3.4 under the prior Sharpe ratio 0.4. The
last column reports the t-statistics of Sharpe ratio using the Newey and West (1987) standard errors with
36 lags. The out-of-sample period spans from November 1991 to December 2019.

The findings in Table 1.4 also relate to literature that attempts to denoise the tradable

factor. For instance, Golubov and Konstantinidi (2019) decompose the market-to-book ra-

tio into market-to-value and value-to-book components — the market-to-value component

drives nearly all the risk premium of the value strategy. In addition, Daniel, Mota, Rottke,

and Santos (2020) document that unpriced components explain a reasonably large amount of

Fama-French five factors, and they propose a novel way to hedge the unpriced components.

By focusing on the long-term comovement of asset returns, the LF-SDF significantly reduces

the unpriced component.

Dynamics of SDFs: Variance Ratio Test

Theoretically, the LF-PCA has a better finite sample performance than the HF-PCA

and canonical PCA because studying the long-horizon returns boosts the signal of some

persistent conditional information driving the asset returns and detects them empirically.

If the previous argument is valid, the LF-SDF must capture some conditional information

ignored by the HF-SDF, so LF-SDF should have a different dynamic across multiple horizons.

To explore the dynamics of SDFs, I resort to the variance ratio test, which is calculated as

V R(h) =
Var(Mt,t+1 + · · ·+Mt+h−1,t+h)

h× Var(Mt,t+1)
, (1.26)

where Mt,t+1 is the single-period SDF. I can also rewrite the variance ratio as a weighted

average of the autocorrelations of Mt,t+1. A useful benchmark is the IID case, where the

variance ratio test equals 1 at any horizon.

Figure 1.9 displays the variance ratios for MLF
t , MHF

t , Mmissing
t , and Munpriced

t . The

blue dotted lines are 95% confidence intervals of the variance ratios. If the solid red line

crosses the dotted blue lines, I can reject the null hypothesis of the IID assumption. Panels

(a) and (b) show the variance ratios for the HF-SDF and LF-SDF, respectively. While
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(b) LF-SDF
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(c) Missing-SDF
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(d) Unpriced-SDF

Figure 1.9: Variance Ratio of the SDF Components

This graph plots the variance ratios of MLF
t , MHF

t , Mmissing
t , and Munpriced

t , calculated as

V R(h) =
Var(Mt,t+1 + · · ·+Mt+h−1,t+h)

h×Var(Mt,t+1)
,

where Mt,t+1 is the single-period SDF. The HF-SDF and LF-SDF consist of the largest seven HF- and
LF-PCs. The prior (monthly) Sharpe ratio used to estimated the risk prices is set to be 0.4. The blue dotted
lines are 95% confidence intervals of the variance ratios. If the red solid line crosses the blue dotted lines, I
can reject the null hypothesis of the IID assumption for the linear SDFs.
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the HF-SDF exhibits limited autocorrelation over time, the LF-SDF displays a remarkable

deviation from the IID assumption. For example, a five-year investor holding the LF-MVE

portfolio is subject to double the variance of an investor with a monthly holding period. In

addition, the variance ratio of the LF-SDF peaks between the six- and seven-year horizon,

but it starts to decrease slowly after the seven-year horizon. Intuitively, the LF-SDF is riskier

than HF-SDF from the perspective of long-term investors, so it should command a higher

Sharpe ratio to compensate for bearing additional low-frequency risks.

Clearly, there are essential persistent components in the dynamic of the LF-SDF. Panel

(c) further plots the variance ratio for the missing-SDF, which manifests a similar dynamic

as the LF-SDF. Combining the evidence in Panels (a), (b), and (c), I conjecture that the

LF-SDF, which is the suitable benchmark and captures the highest attainable Sharpe ratio,

contains two components: (1) the first component is spanned by the HF-SDF, which mainly

captures the short-term information in asset returns and is roughly conditionally uncorre-

lated over time, and (2) the second component is ignored by canonical PCA, which identifies

some persistent information that commands sizable risk premium. Panel (d) also presents

the variance ratio for the unpriced-SDF. I confirm that this component mainly reflects short-

horizon information, with a decreasing variance ratio after two years.

Cumulative Returns of MVE Portfolios

Next, I examine the cumulative performance from the perspective of an investor of the

LF-MVE, HF-MVE, missing-MVE, and the market portfolio. To increase interpretability, I

normalize all portfolio returns to have the same volatility as the market portfolio, about 4.2%

per month. The portfolio weights of the MVE portfolios are determined by the data in the

first subsample, so there is no looking-forward bias. Figure 1.10 plots the log of cumulative

excess returns from November 1991 to December 2019 (OOS). The solid red line indicates

that the LF-MVE portfolio has the best long-horizon performance, with a log cumulative

excess return of around 5. As a comparison, the investor earns cumulative log-returns of

3.83 and 2.03 in the HF-MVE portfolio (solid blue line) and the market portfolio (solid green

line), respectively. Another surprising fact is that investors of the MVE portfolios do not

lose money during the dot-com bubble, while the market portfolio experiences a -40% return.

However, the market values of all portfolios plummet during the 2008 global financial crisis.

The missing-MVE portfolio (solid orange line) is the component of the LF-MVE that is

uncorrelated with the HF-MVE portfolio, and its behaviors are different from the HF-MVE

portfolio. For instance, the missing-MVE portfolio has an extraordinary performance in the

late 1990s, while the HF-MVE portfolio has an almost zero excess return during the same

period.
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Figure 1.10: Log Cumulative Excess Returns of the MVE Portfolios

This graph plots the log of cumulative excess returns of the LF-MVE, HF-MVE, Missing-MVE (from table
1.4), and market portfolios. I normalize the LF-MVE, HF-MVE, Missing-MVE portfolios to have the same
monthly volatility as the market portfolio. The sample spans from November 1991 to December 2019. Shaded
areas denote the NBER recession periods: (1) 2001/03 – 2001/11 and (2) 2007/12 – 2009/06.

With the decompositions of SDFs in equations (1.24) and (1.25), I examine how each

component in Table 1.4 relates to economic risks. Specifically, I regress each economic vari-

able on different SDF components and conduct statistical tests on the correlation coefficients

between each economic variable and SDFs.

There are two primary objectives for these regressions. First, I attempt to understand the

economics behind SDFs. For example, the LF-SDF implies a higher Sharpe ratio than the

HF-SDF. However, the extra Sharpe ratio earned by the missing-SDF (Mmissing
t ) is probably

the compensation for bearing economic risks that the HF-SDF does not load on. Moreover,

given the LF-SDF as the proper benchmark, I desire to learn whether different economic

risks drive the HF component (βHFMHF
t ) and the persistent component (Mmissing

t ).

Second, it helps study the risk premium of a nontradable economic factor. As Cochrane

(2009) indicates, we can define its risk premium as −Cov(Yt,Mt), where Yt is the nontrad-

able factor. Similarly, Giglio and Xiu (2021) show that we should project a nontradable

factor into the space of the largest principal components of a huge cross-section of test as-

sets. However, Section 1.3.4 points out that the SDF constructed by either PCs or HF-PCs
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potentially ignore an important priced component of the true SDF. According to equation

(1.24), Cov(Yt,MLF
t ) = βHFCov(Yt,MHF

t ) + Cov(Yt,Mmissing
t ). An economic variable can

be uncorrelated with MHF
t but significantly correlated with the missing part, Mmissing

t .

Hence, the study of LF latent factors provides additional insights into nontradable economic

risks.

Table 1.5 reports the results. I consider eight economic variables, whose definitions are

in Table 1.A.1. I standardize both dependent and independent variables so that readers can

interpret all coefficient estimates as correlations. Similar to previous tables, I report two

t-statistics using Newey and West (1987) standard errors with (1) 36 lags (t-stat I) and (2)

12 lags (t-stat II). Since macro variables are sometimes extremely persistent, I also report

dependent variables’ first-order autoregressive (AR(1)) coefficients (ρ). For example, if ρ is

close to 1, the economic variable is virtually a random walk process, making all statistical

inference based on asymptotic normality invalid.

In Panel (A), I regress each nontradable economic variable Yt on MHF
t and Mmissing

t ,

while in Panel (B), I regress Yt on MLF
t and Munpriced

t . Since past literature often uses

canonical PCs, which are almost identical to HF-PCs, it is intriguing to compare the co-

efficient estimates of MHF
t and MLF

t . Also, if their coefficients are hugely different, the

missing-SDF Mmissing
t or the unpriced-SDF Munpriced

t should explain the difference. In Ta-

ble 1.5, I estimate the risk prices of factors under the prior Sharpe ratio 0.4. I consider a

robustness check by adopting another prior Sharpe ratio 0.5, and Table 1.A.6 presents the

related results. Overall, the results in Table 1.5 are not considerably different from those in

1.A.6.

Quarterly Real Consumption Growth

First, I consider the textbook CCAPM, which predicts a negative correlation between

consumption growth and SDFs. However, past research (e.g., Kan and Zhang (1999a))

find that the quarterly real nondurable consumption growth, commonly used in the past

literature, is not strongly correlated with test assets. In other words, the risk premium of

consumption risk is zero, contradicting the standard textbook prediction.

Column (1) in Table 1.5 presents the coefficient estimate of quarterly real consumption

growth. Theoretically, when the consumption growth is low in bad economic states, marginal

utility of investors, proxied by the SDF, should be higher, so economic theory predicts

negative correlations. However, the correlation between consumption growth and the HF-

SDF is only marginally negative, with a t-statistic of −0.4. However, Panel (B) shows

that the consumption growth is closely associated with the LF-SDF, with a much higher

correlation coefficient −0.15. The t-statistic (optimal lags) equals −1.2, so I cannot reject
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Table 1.5: Economic Fundamentals related to HF- vs. LF-SDFs

Yt : Cnd
t Cnd

t+1 GDPt GDPt+1 NCF
t NDR

t HKMntr
t HKM tr

t V XOar1
t BW ar1

t

Panel (A): Yt = β0 + β1MHF
t + β2Mmissing

t + εt
MHF

t -0.037 0.148 -0.175 0.037 -0.123 -0.299 -0.238 -0.293 0.238 -0.147
t-stat I (-0.410) (1.396) (-0.761) (0.347) (-0.909) (-2.926) (-2.423) (-2.484) (2.525) (-2.540)
t-stat II (-0.412) (1.396) (-0.815) (0.387) (-0.805) (-2.557) (-2.315) (-2.410) (2.557) (-2.716)

Mmissing
t -0.218 -0.229 -0.180 -0.223 -0.112 -0.043 0.136 0.168 -0.040 -0.013

t-stat I (-1.846) (-3.953) (-1.583) (-2.203) (-1.425) (-0.610) (1.467) (1.581) (-0.826) (-0.171)
t-stat II (-1.940) (-3.953) (-1.759) (-2.484) (-1.431) (-0.591) (1.460) (1.572) (-0.800) (-0.171)

Panel (B): Yt = β0 + β1MLF
t + β2Munpriced

t + εt
MLF

t -0.147 0.004 -0.244 -0.088 -0.164 -0.272 -0.122 -0.149 0.175 -0.130
t-stat I (-1.156) (0.044) (-1.003) (-0.780) (-1.425) (-2.925) (-1.420) (-1.550) (2.125) (-1.922)
t-stat II (-1.139) (0.044) (-1.063) (-0.833) (-1.426) (-3.119) (-1.564) (-1.631) (2.249) (-1.921)

Munpriced
t 0.165 0.272 0.059 0.209 0.025 -0.131 -0.246 -0.303 0.166 -0.071

t-stat I (3.023) (3.513) (0.733) (2.300) (0.201) (-1.399) (-2.328) (-2.368) (2.556) (-1.074)
t-stat II (2.634) (3.410) (0.939) (2.683) (0.195) (-1.223) (-2.140) (-2.270) (2.325) (-1.081)

ρ 0.153 0.153 0.352 0.352 -0.189 -0.108 0.061 0.104 0.116 0.105
R2
adj 4.91% 7.43% 6.30% 5.11% 2.76% 9.13% 7.51% 11.38% 5.80% 2.19%

Sample size 112 111 112 111 338 338 338 338 338 326

This table reports the results of the regressions in which I regress eight economic variables on different
components of SDFs. The dependent variables include (1) and (2) current and one-period ahead quarterly
real nondurable consumption growth, (3) and (4) current and one-period ahead quarterly real GDP growth,
(5) cash-flow news, (6) discount-rate news, (7) nontradable intermediary factor, (8) tradable intermediary
factor, (9) the AR(1) shock in VXO index, and (10) the AR(1) shock in investor (Baker and Wurgler (2006))
sentiments. The SDFs are composed of the first seven principal components of asset returns, and their risk
prices are estimated under the prior Sharpe ratio equal to 0.4. I standardize both dependent and independent
variables so that readers can interpret all coefficient estimates as correlations. I report two t-statistics using
Newey and West (1987) standard errors with (1) 36 lags (t-stat I) and (2) 12 lags (t-stat II). In addition,
I report dependent variables’ first-order autocorrelation coefficients (ρ). The monthly (quarterly) out-of-
sample runs from November 1991 to December 2019 (Q1 1992 – Q4 2019).

the null hypothesis of zero correlation.

What can explain this huge difference? The missing-SDF is the key, and its correlation

with consumption growth is −0.22 and statistically significant. Suppose that a state variable

predicts future consumption growth and portfolio returns, but it is relatively persistent. The

standard PCA, which is virtually equivalent to HF-PCA, fails to identify the components

related to this state variable; hence, the HF-SDF is not correlated with the consumption

growth. However, the focus on the long-horizon asset returns recovers the identification

of consumption risk. In short, the Mmissing
t is significantly and negatively correlated with

consumption growth, which implies a positive risk premium of consumption risk.

Campbell (1999) suggest an alternative timing convention to calculate the correlation be-

tween consumption growth and asset returns. Specifically, the consumption during a quarter

is a flow. If we think of the consumption observed at quarter t as the consumption level

at the beginning of this quarter, we should use the next-period consumption to compute
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consumption growth at quarter t. In other words, I should estimate the correlation between

Cnd
t+1 and Mt. Column (2) in Table 1.5 displays the results. The missing-SDF is still signif-

icantly correlated with the next-period consumption growth, and its t-statistic is around -4.

Quarterly Real GDP Growth

Liew and Vassalou (2000) show that HML and SMB positively predict future real GDP

growth. Motivated by this finding, I study whether the quarterly real GDP growth correlates

with SDFs. Intriguingly, only the coefficient estimate of Mmissing
t is significantly negative,

with a t-statistic around −1.8 (see t-statistic II) in Column (3) of Table 1.5. Although the

correlation coefficients of both MHF
t and MLF

t are not trivial, around −0.2, their standard

errors are so enormous that I cannot reject the null hypothesis of zero correlation. The high

autocorrelation coefficient, equal to 0.35, and small sample size, potentially contribute to

the notable estimation uncertainty.

In Column (4), I explore whether the SDFs can predict GDP growth in the next quarter.

While both the HF-SDF and LF-SDF have almost zero prediction power, the missing-SDF

negatively predicts the GDP growth. The coefficient estimate is −0.22 and has a t-statistic

around −2. In other words, if the MVE portfolio implied by the missing-SDF experiences

a negative return (or the missing-SDF increases) at quarter t, it predicts that the future

GDP growth will decrease over the next quarter. This finding indicates that persistent state

variables contained in asset returns can predict GDP growth. The missing-SDF captures

this persistent predictor, so it is closely related to GDP growth.

Cash-Flow vs. Discount-Rate News

Campbell and Vuolteenaho (2004) decompose the shocks in the market portfolio into

cash-flow news and discount-rate news.16 In their language, cash-flow news is bad, for

investors’ wealth decreases and the future investment opportunity set is unchanged. On the

contrary, discount-rate news is good since future investment opportunities, quantified by

expected returns, improve.

Campbell and Vuolteenaho (2004) include four state variables: (1) the excess log return

on the market, (2) the term yield spread that is the yield difference between 10-year and

short-term constant-maturity taxable bonds, (3) the pricing-earnings ratio (PE) from Shiller

(2000), and (4) the small-stock value spread that is the difference between log( BE
ME

) of the

16Campbell and Vuolteenaho (2004) estimate cash-flow and discount-rate news using a first-order VAR
model: Zt+1 = a + ΓZt + ut+1, where Zt+1 is a m-by-1 state vector with the log market excess return
as its first entry. After estimating the VAR(1) model via OLS, they define cash-flow and discount-rate
news as follows: NCF

t+1 =
[
e>1 + e>1 ρΓ(Im − ρΓ)−1

]
ut+1 and NDR

t+1 = e>1 ρΓ(Im − ρΓ)−1ut+1, where e>1 =
(1, 0, . . . , 0)>.
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small high-book-to-market portfolio and log( BE
ME

) of the small low-book-to-market portfolio.

However, the term yield spread that they used originally is no longer updated, so I replace it

with the difference between the log yield on the 10-year U.S. Constant Maturity Bond and

the log yield on the three-month U.S. Treasury bill, as in Campbell, Giglio, and Polk (2013).

Campbell, Giglio, and Polk (2013) additionally include as a state variable the default spread

(DEF), defined as the difference between the log yield on Moody’s BAA and AAA bonds.

In the monthly data, I find that the default spread does not predict the market portfolio,

so I stick to the four-state-variable VAR regression in Campbell and Vuolteenaho (2004).

Moreover, I estimate the VAR model using monthly data from December 1928 to December

2019 and extract cash-flow and discount-rate news from November 1991 to December 2019.

In Columns (5) and (6) of Table 1.5, I report the correlation coefficients between SDFs and

two sources of shocks in the market portfolio.

Cash-flow news is negatively correlated with MHF
t , Mmissing

t , and MLF
t , but none of

their coefficients is statistically significant. The LF-SDF is slightly more relevant to cash-

flow news than the HF-SDF. Overall, the statistical power of these tests is not strong enough

to make decisive conclusions.

Differently, discount-rate news is strongly and negatively correlated with bothMHF
t and

MLF
t , with correlation coefficients around −0.3 and t-statistics around −3. In other words,

discount-rate news earns a significantly positive risk premium. The time-series R2, equal to

9% in column (6), is also considerably higher than in the regression of cash-flow news.

As a robustness check, I also estimate cash-flow and discount rate news by including the

default spread as the fifth state variable in the VAR(1) regression. Columns (1) and (2) of

Table 1.A.5 present similar results. The coefficient estimates in the regression are almost

unchanged. In short, not only does discount-rate news explain most of the time-series vari-

ation in return news (see Campbell (1990)), but it is also more critical than cash-flow news

as a source of economic risk for which investors in stock markets require risk compensation.

Intermediary Factor

He, Kelly, and Manela (2017) show that their intermediary factor can price many asset

classes and conclude that financial intermediaries are important marginal investors and key

to understanding asset prices. Their paper defines the intermediary capital ratio as the

aggregate value of market equity divided by aggregate market equity plus aggregate book

debt of primary dealers active. The intermediary capital risk factor, HKMntr
t , is the AR(1)

innovation to the market-based capital ratio of primary dealers. He, Kelly, and Manela

(2017) also define a tradable intermediary factor, denoted as HKM tr
t . As predicted by

intermediary asset pricing theory, such as He and Krishnamurthy (2013), the SDF of financial
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intermediaries is higher when a negative shock hits them, so the correlation between their

SDF and the intermediary factor is expected to be negative.

Column (7) in Table 1.5 studies the nontradable intermediary factor. Panel (A) shows

that the HF-SDF has a significant negative correlation with HKMntr
t , equal to around −0.24

with a t-statistic of −2.4. However, the LF-SDF has a smaller correlation (−0.12) in absolute

terms, and its t-statistic is only −1.4. Hence, I am on the edge of rejecting the null hypothesis

of zero correlation between HKMntr
t and MLF

t . More surprisingly, Mmissing
t is positively

associated with the intermediary factor, which implies that it hedges the intermediary risk

in the HF-SDF. In other words, the intermediary factor cannot explain the high Sharpe ratio

of Mmissing
t , or makes it even more puzzling.

Column (8) in Table 1.5 runs similar regressions but uses the tradable intermediary

factor. The observations are largely compatible with those in Column (7). I also report

the correlation between SDFs and quarterly intermediary factors in Columns (3) and (4) of

Table 1.A.5, and the empirical patterns are virtually identical.

Even though I do not discover a significant correlation coefficient between the LF-SDF

and the intermediary factor, it does not imply that financial intermediaries do not play an

important role in understanding asset prices. On the one hand, the intermediary factor is

significantly correlated with the HF-SDF, especially its unpriced component, so the inter-

mediary factor, at the very least, drives the common variations in asset returns. On the

other hand, the risk premium of the nontradable factor in He, Kelly, and Manela (2017)

is not statistically different from zero in the monthly regression of stock portfolios, which

is consistent with the insignificant correlation between the LF-SDF and the intermediary

factor. Also, financial intermediaries should be more important in other asset markets, such

as CDS and derivative markets, in which they get involved actively.

Jump Risk

Investors require compensation for bearing downside risk (e.g., Ang, Chen, and Xing

(2006)). While there is no consensus on which variable represents downside risk, I use the

VXO index as the proxy, since it is commonly accepted as the fear index in the industry.

Specifically, the VXO index is the risk-neutral entropy of the market excess return and is

particularly sensitive to the left tail of the return distribution.

It is problematic to regress the VXO index on SDFs. The VXO index is highly persistent,

with an AR(1) coefficient of around 0.9, so standard errors of coefficient estimates are enor-

mous. In other words, the high persistence makes the statistical inference almost impossible

in small samples. Hence, I extract the shock in the VXO index via an AR(1) regression,

Yt = a+ ρYt−1 + nt, and jump risk is defined as the AR(1) innovation Yt − a− ρYt−1.
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Column (9) of Table 1.5 reports the correlation between SDFs and jump risk. Both the

HF-SDF and LF-SDF have significantly positive correlations (0.18 − 0.24) with jump risk.

Interestingly, coefficient estimates of the HF-SDF and LF-SDF in Table 1.5 are similar to

those in Table 1.A.5, in which I regress the original VXO index on SDFs. Hence, it can

increase the power of statistical tests to focus on the much less persistent AR(1) innovation.

Intuitively, when investors are particularly fearful, the SDFs, proxying for their marginal

utility functions, are likewise high. In other words, investors are willing to pay a positive risk

premium to hedge jump risk. Nevertheless, the missing-SDF is almost unrelated to jump

risk, so jump risk does not explain the risk premium of Mmissing
t .

Investor Sentiment

Rational economic models cannot always explain economic phenomena that we observe

in the real world, such as the tech stock bubble in the late 1990s and the housing bubble

in 2008. Instead, investor sentiments are also essential in understanding asset prices. For

instance, De Long, Shleifer, Summers, and Waldmann (1990) build a theoretical model in

which the presence of noise traders with stochastic beliefs can create a source of risk that

requires a positive risk premium. Kozak, Nagel, and Santosh (2018) show that if the demand

from sentiment investors drives a large proportion of asset returns’ common variations, their

demand shocks, or investor sentiments, should enter the SDF as well.

Motivated by these papers, I go on to explore how SDFs extracted purely from asset

returns correlate with the proxy for investor sentiments. First of all, I use the BW sentiment

index in Baker and Wurgler (2006), which estimate the first principal component of six

variables: the closed-end fund discount, the NYSE share turnover, the number and average

first-day returns on IPOs, the equity share in new issues, and the dividend premium.

The AR(1) coefficient of the BW index is close to 1, so I extract its AR(1) shock following

the same steps as for the VXO index. The last column of Table 1.5 demonstrates that the

HF-SDF is negatively correlated with the investor sentiment, with a t-statistic of around

−2.6. The LF-SDF has a similar coefficient estimate (−0.13), and its t-statistic is about

−1.9. Column (6) of Table 1.A.5 reports the correlation between SDFs and the original BW

sentiment. Even though the magnitudes of coefficient estimates are extremely similar, their

t-statistics are much lower due to the persistence of the BW sentiment index. Last but not

least, the missing-SDF is virtually unrelated to the BW sentiment index. Overall, Table

1.5 indicates that only macro risk, such as consumption and GDP growth, can potentially

explain the risk premium of Mmissing
t .

Huang, Jiang, Tu, and Zhou (2015) modify the BW sentiment index using the partial

least squares method. Precisely, they extract the most important component that can simul-
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taneously predict the future market return and explain time-series variations of the original

six proxies. I call their sentiment index HJTZ sentiment. Columns (7) and (8) of Table 1.A.5

show that only the HF-SDF is weakly correlated with the AR(1) shock of HJTZ sentiment.

On the contrary, its correlation with the LF-SDF is only −0.07, compared to −0.14 for BW

sentiment. Overall, the HJTZ sentiment is less correlated with SDFs than the BW sentiment.

Summary

The findings in Table 1.5 deepen our understanding of the economics behind the factor

zoo. One potential reason for the existence of the factor zoo is that factors are noisy proxies

for economic fundamentals and therefore do not span each other. For example, Liew and

Vassalou (2000) report that both the value and size factors can predict GDP growth, but

they are never comprehensive predictors and cannot replace each other. This paper further

shows that the importance of economic risks varies at different frequencies. In Table 1.5, I

confirm that a sparse LF-SDF, earning a nearly optimal Sharpe ratio, captures two elements:

(1) the first one is perfectly linear in the HF-SDF and almost uncorrelated over time, which is

statistically associated with discount-rate news of the market excess return, the intermediary

factor, jump risk, and investor sentiment, whereas (2) the second one is neglected by the

HF-SDF and captures some persistent state variables, reflecting business-cycle risks related

to consumption and GDP growth.

1.4 Additional Robustness Checks

In this part, I present a few of the robustness checks of Section 1.3. Specifically, I investigate

whether the sparsity of the LF-SDF is robust (1) when I consider only long-short portfolios,

(2) if I impose the CAPM, or (3) if I slightly modify the definition of the LF interval.

1.4.1 39 Long-Short Portfolios

Until now, I have included long and short portfolios separately for each firm characteristic

in Section 1.3. However, many papers in cross-sectional asset pricing literature handle long-

short portfolios, such as the size factor in FF3. To confirm the robustness of the main results,

I further analyze long-short portfolios of 39 firm characteristics.

Figure 1.11 plots the OOS Sharpe ratio of PCA, HF-PCA and LF-PCA under prior

Sharpe ratios ∈ {0.4, 0.5}. A more comprehensive heat-map is in Figure 1.A.8. First,

the maximal Sharpe ratio is around 0.35, slightly less than that in the cross-section of 78

portfolios. Second, I can still discern a parsimonious factor model composed of low-frequency

PCs. Particularly, a six-factor LF-PC model delivers an optimal OOS Sharpe ratio, and this
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finding is robust across a wide range of L2-penalty, as I observe in Figure 1.A.8. On the

contrary, latent-factor models constructed by canonical and high-frequency PCs are dense,

consistent with my observations in Section 1.3.4. Overall, the sparsity of LF-PC models is

robust in the cross-section of 39 long-short portfolios. In the following robustness analyses,

I stick to the original cross-section of 78 test assets.
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Figure 1.11: Zoom in OOS Sharpe ratio of 39 long-short portfolios, SRprior ∈ {0.4, 0.5}

This graph zooms in the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA. The cross-section of test assets
is 39 long-short portfolios. Different from figure 1.A.8, this figure shows the estimates using two prior Sharpe
ratios, SRprior ∈ {0.4, 0.5}.

1.4.2 Imposing the CAPM

Since the introduction of the CAPM by Sharpe (1964) and Lintner (1965), the market factor

has become the most influential factor in cross-sectional asset pricing. For example, Barillas

and Shanken (2018a) use the market factor as the anchor to compare a few famous factor

models via Bayes factors. Also, Kozak, Nagel, and Santosh (2020) extract the CAPM α of

50 long-short anomalies and estimate other systematic factors via the eigendecomposition of

the CAPM α. Following the past literature, I turn to study the CAPM α.

Here is my empirical strategy. First, I regress Rt on the market factor using the in-

sample observations: RIN
t = βIN0 +βINm RIN

mt +eINt , and the CAPM α is defined as: αINt =

RIN
t −βINm RIN

mt . Next, I decompose the covariance matrix of αINt into frequency-dependent

components and estimate frequency-dependent PCs as in definition 1.1. When I mention a

K-factor model, the SDF consists of the market factor and the first K PCs of αINt : Mt =

1−bm(RIN
mt −µm)−b>F (Ft−µF ). Finally, I estimate risk prices (bm, b

>
F )> using the objective

function in equation (1.16). To evaluate the OOS performance, I use the in-sample estimate
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of market loadings βIN to construct the OOS CAPM α: αOOSt = ROOS
t −βINROOS

mt . Then

I construct the OOS latent factors and MVE portfolio as before.

Figure 1.12 plots the Sharpe ratio of the OOS MVE portfolio following the procedures

described in the previous paragraph. The prior monthly Sharpe ratio is set to be 0.4 in

Panel (a) and 0.5 in Panel (b). Like the benchmark case, the MVE portfolio consisting of

the market factor and another 6 LF-PCs can earn a virtually optimal OOS Sharpe ratio,

around 0.37 monthly. HF-PCA, however, needs much more PCs, literally more than 60, to

reach the highest point, and PCA has almost an identical pattern. In short, a seven LF

factor model can nearly span the whole asset space in the out-of-sample.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
MVELF−7

0.1

0.2

0.3

0.4

0 20 40 60 80
Number of PCs

S
R

oo
s

Models:
HF LF PCA

(a) SRprior = 0.4

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
MVELF−7

0.1

0.2

0.3

0 20 40 60 80
Number of PCs

S
R

oo
s

Models:
HF LF PCA

(b) SRprior = 0.5

Figure 1.12: Imposing CAPM: OOS Sharpe ratio of 78 portfolios, SRprior ∈ {0.4, 0.5}

This graph zooms in the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA after imposing the CAPM. This
figure shows the estimates using two prior Sharpe ratios, SRprior ∈ {0.4, 0.5}.

1.4.3 Alternative Cutoffs of the LF Interval

Earlier, I define the low-frequency component of an asset return as the part with a cycle

length between 36 and 120 months. This section investigates whether the sparsity of LF

factor models is particularly sensitive to alternative cutoffs of the LF intervals.

Panel (a) in Figure 1.13 defines the period of the LF component between 24 and 120

months. The OOS MVE portfolios of HF-PCA and PCA are identical to previous ones.

The LF-MVE portfolios, however, are still more parsimonious. For example, The LF-MVE

portfolio composed of the first seven LF-PCs earns a monthly Sharpe ratio of 0.35 in the

out-of-sample. In addition, Figure 1.A.9 plots the heat-map for LF-PCA, whose pattern is

virtually identical to that of Figure 1.4.
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Bandi, Chaudhuri, Lo, and Tamoni (2021) decompose the CAPM β into frequency-

dependent components, and they discover that only the component in the LF frequency

with a period between 32 and 64 months can price conventional Fama-French portfolios.

Motivated by their results, I define the period of the LF (HF) component as τLF ∈ [32, 64]

months (τHF ∈ [2, 32)). Panel (b) in Figure 1.13 shows that the monthly Sharpe ratio of

a seven LF factor model is slightly higher than 0.37, whereas I still demand many HF-PCs

to span the asset space of 78 test assets in the out-of-sample. In short, the sparsity of the

LF-SDF is not sensitive to alternative definitions of the LF interval.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

7 LF−PCs

0.2

0.3

0.4

0 20 40 60 80
Number of PCs

S
R

oo
s

Models:
HF LF PCA

(a) τLF ∈ [24, 120]

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
MVELF−7

0.2

0.3

0.4

0 20 40 60 80
Number of PCs

S
R

oo
s

Models:
HF LF PCA

(b) τLF ∈ [32, 64]

Figure 1.13: Robustness Check: OOS Sharpe ratio of 78 portfolios, SRprior = 0.4

This graph shows additional robustness checks of the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA. I
estimate risk prices under the prior Sharpe ratio 0.4. The low-frequency (LF) interval is equal to (1) panel
(a): τHF ∈ [2, 24) and τLF ∈ [24, 120], and (2) panel (b): τHF ∈ [2, 32) and τLF ∈ [32, 64].

1.5 Conclusions

I use frequency-dependent risks to dissect the factor zoo and answer fundamental questions

about what is salient for cross-sectional asset pricing. As a first step, I propose a new

approach to quantify frequency-dependent risks and deliver monthly proxies for short-term

and long-term systematic factors. Empirically, the SDF is sparse only in the space of low-

frequency systematic factors. An economic interpretation of this finding is that investors are

more risk-averse to low-frequency persistent systematic factors that drive a vast majority of

long-run movements of asset returns, probably because they have long investment horizons or

Epstein-Zin preference that imposes a considerable risk aversion to the long-run uncertainty.

Hence, the first few largest LF latent factors capture almost the entire Sharpe ratio of the

true SDF.

60



In addition, I confirm that none of the celebrated sparse factor models, such as the

Fama-French three-factor model, or HF-SDF can explain the LF-SDF. At the same time,

the LF-SDF can span the HF-SDF. Therefore, I conjecture that the SDF composed of the

first several low-frequency factors is the proper benchmark SDF.

Furthermore, my paper deepens our understanding of the economics behind the factor

zoo. It is common to use the largest several canonical PCs to construct the SDF. This SDF,

virtually identical to the HF-SDF, is almost uncorrelated over time and captures economic

risks related to discount-rate news of the market excess return, intermediary factors, jump

risk, and investor sentiment. However, the HF-SDF still ignores an economically important

component of the LF-SDF. This missing component commands a sizable monthly Sharpe

ratio of about 0.2 and displays a persistent conditional dynamic, as the variance ratio test

shows. More importantly, it reflects only business-cycle risks related strongly to consumption

and GDP growth, and it can also predict consumption and GDP growth over the next

quarter.

Traditional macro-finance models emphasize persistent conditional information and use

them to rationalize the asset pricing puzzles. What I observe in this paper confirms that asset

returns indeed contain useful conditional information related to macro variables, but they

can be identified only at low frequencies. At the same time, the tail risk, behavioral finance,

and intermediary asset pricing models are also essential in understanding asset returns, but

they are more relevant in short horizons.
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1.A.1 Additional Details on Frequency Domain Anal-

ysis

1.A.1.1 Spectral Representation Theorem

Theorem 1.A.1 (Spectral Representation Theorem, Hannan (2009)) Suppose xt is

a mean-zero covariance stationary process, with the spectral distribution function F (ω) such

that its auto-covariance function Σx(h) can be expressed as

Σx(h) =

∫ 1
2

− 1
2

exp{2πiωh}dF (ω),

where F (ω) is non-decreasing, F (−1
2
) = 0 and F (1

2
) = Σx(0).Then there exists a complex-

value stochastic process z(ω), ω ∈ [−1
2
, 1

2
], having stationary uncorrelated increments, such

that xt can be written as the stochastic integral

xt =

∫ 1
2

− 1
2

exp{−2πiωt}dz(ω),

where Var[z(ω2)− z(ω1)] = F (ω2)− F (ω1). Furthermore, the Spectral Representation Theo-

rem can be extended to multivariate case.

Suppose that xt(ω) satisfies the differential equation: xt(ω)dω = exp{−2πiωt}dz(ω). The

Spectral Representation Theorem implies that xt(ω) is uncorrelated at different frequencies,

and xt is decomposed as an equally weighted average of xt(ω), i.e., xt =
∫ 1

2

− 1
2

xt(ω)dω. There-

fore, I can represent the variance of xt as Var(xt) =
∫ 1

2

− 1
2

Var[xt(ω)]dω, where Var[xt(ω)] is

the contribution from the frequency-ω component.

Suppose that Xt is a two-dimensional time series, for example, Xt = (x1t, x2t)
>, with

the auto-covariance matrix ΣX(h). According to the Spectral Representation Theorem,

the cross-spectrum fx1,x2(ω) that satisfies dF12(ω) = fx1,x2(ω)dω can be interpreted as the

covariance between the frequency-ω components of x1,t and x2,t. Next, I will consider a linear

transformation ofXt. Let a and b be arbitrary real numbers, and define yt as yt = ax1,t+bx2,t.
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The spectral density function of yt is

fy(ω) =
∞∑

h=−∞

Cov(yt+h, yt) exp{−2πihω}

=
∞∑

h=−∞

Cov(ax1,t+h + bx2,t+h, ax1,t + bx2,t) exp{−2πihω}

=
∞∑

h=−∞

[
a2Var(x1,t) + b2Var(x2,t) + abCov(x1,t+h, x2,t) + abCov(x1,t, x2,t+h)

]
exp{−2πihω}

= a2fx1(ω) + b2fx2(ω) + abfx1,x2(ω) + abfx2,x1(ω)

= a2fx1(ω) + b2fx2(ω) + 2abR[fx1,x2(ω)],

where the last equality makes use of the fact that fx1,x2(ω) = fx2,x1(−ω) and fx2,x1(ω) +

fx2,x1(−ω) = 2R[fx1,x2(ω)]. There are two implications. First, I can interpret the real part

of the cross-spectrum as the covariance between the frequency-ω components of x1,t and x2,t.

Second, I need to focus only on the real part of the cross-spectrum. This paper aims to

extract PCs at different frequencies. For example, the largest PC chooses a unitary linear

transformation of Xt such that its variance is maximized.

1.A.1.2 Discrete Fourier Transform (DFT)

Given data R1, . . . ,RT , DFT and its inverse (IDFT) are defined as

d(ωj) =
1√
T

T∑
t=1

Rt exp{−2πiωjt}, ωj =
j

T
, j = 0, 1, . . . , T − 1, (27)

Rt =
1√
T

T−1∑
j=0

d(ωj) exp{2πiωjt}, t = 1, . . . , T. (28)

Let’s define the frequency-ωj component of asset returns: Rt(ωj) = 1√
T
d(ωj) exp{2πiωjt}.

A distinguishing feature of the aforementioned decomposition is that two components from

distinct frequencies are uncorrelated by construction; that is, CovT

(
Rt(ωj)Rt(ωk)

>
)

=

0N×N if j 6= k, or f̂R(ωj) if j = k. The intuition is that DFT decomposesRt into orthogonal

frequency-dependent parts.

Moreover, d(ωj)d(ωj)
? =

∑n−1
h=−(n−1) Σ̂R(h) exp{−2πiωjh} = f̂R(ωj), where d(ωj)

? is the

conjugate transpose operation of d(ωj). Therefore, we can estimate the frequency density

matrix of asset returns via DFT. In practice, researchers often use a fast Fourier transform

(FFT) algorithm to compute the transformations in replace of DFT rapidly. Figure 1.A.3
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is a simple example of DFT.

1.A.2 Proofs

1.A.2.1 Proof of Proposition 1.1

Since et+1 is conditionally independent, its conditional expectation is always zero: For

h > 0, E[et+h | It] = 0, where It denotes the conditional information at time t. If h > 0, the

auto-covariance matrix of et+1 is

Σe(h) = E(et+he
>
t ) = E[E(et+he

>
t | It)] = E[E(et+h | It)e>t ] = 0N×N ,

which implies that the spectral density matrix of et+1 is

fe(ω) =
∞∑

h=−∞

Σe(h) exp{−2πihω} = Σe(0) = Σe.

Therefore, even though et+1 and ft+1 can follow stochastic volatility processes, their spectral

density matrices are constant across frequencies.

In addition, Ft and et are orthogonal, so I can represent the covariance matrix of Rt

as ΣR = βΣFβ
> + Σe. Suppose that fF (ω) is the spectral density matrix of Ft: ΣF =∫ 1

2

− 1
2

fF (ω)dω. This implies the following spectral decomposition of ΣR:

ΣR =

∫ 1
2

− 1
2

βfF (ω)β>dω + Σe =

∫ 1
2

− 1
2

[
βfF (ω)β> + Σe

]
dω.

Due to the uniqueness of the spectral density matrix, the spectral density matrix of Rt is

fR(ω) = βfF (ω)β>+ Σe. Similarly, I show that fF (ω) = Σf + ΦXfX(ω)Φ>X . Therefore, I

rewrite the spectral density matrix of Rt as follows:

fR(ω) = βΣfβ
> + Σe + βXfX(ω)β>X , βX = βΦX .
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1.A.2.2 Proof of Proposition 1.2

I can derive the unconditional variance of the linear SDF as follows:

Var(Mt+1) = b>Var(ft+1)b+ b>ΦXVar(Xt)Φ
>
Xb

= b>Var(ft+1)b+ b>XVar(Xt)bX

= b>Var(ft+1)b+

p∑
j=1

b2
X,iVar(Xjt)

= b>Var(ft+1)b+

∫ 1
2

− 1
2

p∑
j=1

b2
X,ifXi(ω)dω,

where the third equality uses the fact that state variables are assumed to be uncorrelated,

and the last step uses the spectral decomposition of each state variable Xi. Since the spectral

density function is unique, fM(ω) = b>Var(ft+1)b+
∑p

j=1 b
2
X,ifXi(ω).

1.A.2.3 Derivation of Equation (1.16)

This section derives the objective function in equation (1.16) under a more general distri-

butional assumption for pricing errors and risk prices. I consider only the cross-sectional

regression, conditional on the observed expectation and covariance of Ft as follows:

µF = ΣFb+α, α ∼ N (0N , σ
2ΣF ).

Therefore, the only unknowns are b and σ2. Pástor and Stambaugh (2000) and Barillas and

Shanken (2018a) also make a similar distributional assumption for α. Intuitively, σ2 reflects

investors’ uncertainty about mispricing: When σ2 is close to zero, the asset pricing model is

almost correct. In contrast, if σ2 is infinity, the factor model is useless, as it entirely fails to

explain risk premia.

Furthermore, I assign a normal prior for risk prices: b ∼ N (0K ,
ψσ2

τ
IK), τ = Tr

[
ΣF

]
,

and b is uncorrelated with α. Under such a prior distribution, the prior expectation on the

squared Sharpe ratio of factor returns implied by the asset pricing model is equal to

Eprior[SR2
F ] = Eprior[b>ΣFb] =

K∑
k=1

σ2
F,kEprior[b2

k] =
ψσ2

τ
Tr
[
ΣF

]
= ψσ2.

66



Next, I decompose the expected squared Sharpe ratio of factor returns as follows:

Eprior[µ>FΣ−1
F µF ] = Eprior[(ΣFb+α)>Σ−1

F (ΣFb+α)]

= Eprior[b>ΣFb] + Eprior[α>Σ−1
F α]

= ψσ2 +Nσ2 = (ψ +N)σ2;

therefore, Eprior[µ>FΣ−1
F µF ] is the sum of Eprior[b>ΣFb] and Eprior[α>Σ−1

F α], where the

former is the contribution from the SDF. Also, I derive the expected squared Sharpe ratio

of the SDF as follows:

Eprior[SR2
F ] =

ψ

ψ +N
Eprior[µ>FΣ−1

F µF ],

so a larger ψ implies higher prior Sharpe ratio of the SDF. Under the above assumptions,

the posterior distribution of b, conditional on (µF ,ΣF ), is

p(b | µF ,ΣF ) ∝ exp

{
− 1

2σ2
(µF −ΣFb)

>Σ−1
F (µF −ΣFb)

}
exp

{
− τ

2ψσ2
b>b

}
∝ exp

{
− 1

2σ2

[
(µF −ΣFb)

>Σ−1
F (µF −ΣFb) +

τ

ψ
b>b

]}
.

Now let v2 = τ
ψ

= τσ2

Eprior[SR2
F ]

. Therefore, the posterior mode of b is the solution to the

objective function in equation (1.16).

To compare with Kozak, Nagel, and Santosh (2020), this paper adopts a similar strategy,

which assumes σ2 = 1
T

, so v2 = τ
ψ

= τ
T×Eprior[SR2

F ]
. Last but not least, the assumption of

σ2 = 1
T

changes only the prior Sharpe ratio implied by the SDF. In this paper, I show the

empirical results across a wide range of prior Sharpe ratios. More importantly, empirical

results are robust when I estimate the model with reasonable prior monthly Sharpe ratios,

for example, between 0.3 and 0.6.
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1.A.3 Additional Tables

Table 1.A.1: Definition of Variables

Variable Definition Data Source
Rmt Monthly market excess return CRSP database
TYt Monthly term yield spread, the difference between the log yield on FRED

the 10-year U.S. Constant Maturity Bond and the log yield
on the three-month U.S. treasury bills

PEt Monthly pricing-earnings ratio (PE) from Shiller (2000) Robert Shiller’s website
V St Small-stock value spread that is the difference in log( BE

ME
) between the small Ken French’s website

high-book-to-market portfolio and the small low-book-to-market portfolio
DEFt Monthly default spread, the difference between the log yield FRED

on Moody’s BAA and AAA bonds
Cnd
t Quarterly real nondurable consumption growth per capita Table 7.1 in BEA

GDPt Quarterly real GDP growth per capita Table 7.1 in BEA
NCF
t Monthly cash-flow news in Campbell and Vuolteenaho (2004) Estimated by this paper

Four state variables in VAR(1): (log(Rmt), TYt, PEt, V St)
NDR
t Monthly discount-rate news in Campbell and Vuolteenaho (2004) Estimated by this paper

Four state variables in VAR(1): (log(Rmt), TYt, PEt, V St)

NCF,2
t Monthly cash-flow news in Campbell, Giglio, and Polk (2013) Estimated by this paper

Five state variables in VAR(1): (log(Rmt), TYt, PEt, V St, DEFt)

NDR,2
t Monthly discount-rate news in Campbell, Giglio, and Polk (2013) Estimated by this paper

Five state variables in VAR(1): (log(Rmt), TYt, PEt, V St, DEFt)
HKM I

t Monthly nontradable intermediary factor in He, Kelly, and Manela (2017) Author’s website
HKM II

t Monthly tradable intermediary factor in He, Kelly, and Manela (2017) Author’s website
HKM I

qt Quarterly nontradable intermediary factor in He, Kelly, and Manela (2017) Author’s website
HKM II

qt Quarterly tradable intermediary factor in He, Kelly, and Manela (2017) Author’s website
V XOt the VXO index WRDS database
BWt Sentiment index in Baker and Wurgler (2006) Dashan Huang’s website
HJTZt Sentiment index in Huang, Jiang, Tu, and Zhou (2015) Dashan Huang’s website
V XOar1

t AR(1) shock in V XOt: V XOt − ρ× V XOt−1 Estimated by this paper
BW ar1

t AR(1) shock in BWt: BWt − ρ×BWt−1 Estimated by this paper
HJTZar1t AR(1) shock in HJTZt: HJTZt − ρ× HJTZt−1 Estimated by this paper

Table 1.A.2: 39 Firm Characteristics in Kozak, Nagel, and Santosh (2020)

Category Characteristics
Reversal lrrev, strev, indmomrev, indrrev, indrrevlv
Momentum mom, mom12, indmom, momrev
Value value, valuem, divp, ep, cfp, sp
Investment inv, invcap, igrowth, growth, noa
Profitability prof, roaa, roea, gmargins
Value interaction valmom, valmomprof, valprof
Trading frictions ivol, shvol, aturnover
Others size, price, accruals, ciss, lev, season, sgrowth, nissa, dur
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Table 1.A.3: Do celebrated models explain HF and LF risks? (SRprior = 0.5)

Panel (A). MVEHF
t Panel (B). MVELF

t

7 PCs 8 PCs 9 PCs 10 PCs 7 PCs 8 PCs 9 PCs 10 PCs
CAPM α 1.08% 1.03% 1.15% 1.18% 1.47% 1.46% 1.45% 1.47%

t-stat I (2.98) (2.49) (2.91) (3.03) (3.66) (3.84) (3.83) (3.88)
t-stat II (3.15) (2.75) (3.20) (3.33) (4.69) (4.84) (4.84) (4.83)
R2
adj 3.89% 2.29% 0.13% 0.07% 2.79% 2.05% 1.63% 0.83%

FF3 α 0.85% 0.80% 0.95% 0.99% 1.37% 1.37% 1.36% 1.38%
t-stat I (4.87) (3.79) (4.12) (4.27) (4.31) (4.52) (4.51) (4.62)
t-stat II (4.79) (4.05) (4.44) (4.58) (5.75) (5.90) (5.92) (6.00)
R2
adj 36.19% 33.64% 29.11% 23.11% 8.85% 7.56% 6.53% 6.19%

Carhart4 α 0.47% 0.41% 0.59% 0.61% 0.92% 0.91% 0.90% 0.92%
t-stat I (3.28) (2.57) (3.01) (3.10) (3.66) (3.80) (3.78) (3.83)
t-stat II (2.89) (2.37) (3.02) (3.09) (4.43) (4.50) (4.49) (4.48)
R2
adj 62.35% 62.3% 53.52% 50.1% 46.84% 45.86% 46.91% 45.52%

FF5 α 0.47% 0.45% 0.49% 0.55% 0.95% 0.92% 0.90% 0.90%
t-stat I (2.62) (2.37) (2.80) (3.04) (3.12) (3.15) (3.09) (3.10)
t-stat II (2.53) (2.48) (3.23) (3.42) (4.02) (3.98) (3.90) (3.95)
R2
adj 45.98% 44.58% 46.93% 39.31% 21.81% 22.4% 22.17% 22.69%

Q4 α 0.35% 0.24% 0.27% 0.34% 0.84% 0.81% 0.78% 0.79%
t-stat I (2.17) (1.29) (1.42) (1.75) (2.73) (2.79) (2.71) (2.77)
t-stat II (1.69) (1.11) (1.29) (1.61) (3.34) (3.33) (3.24) (3.33)
R2
adj 39.04% 36.74% 44.05% 39.22% 25.73% 26.12% 26.91% 27.12%

This table tests whether five sparse factor models proposed in past literature can explain the MVE portfolios
composed of latent factors. I construct the MVE portfolios using the first seven to 10 latent factors following
the same steps as in the section 1.3.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.5.
The five benchmark models include (1) CAPM, (2) Fama and French (1993) three factors (FF3), (3) Fama
and French (2015) five factors (FF5), (4) Carhart (1997) four factors (Carhart4), and (5) Hou, Xue, and
Zhang (2015) four factors (Q4). I report three test-statistic in table 1.2: (1) α, (2) t-statistics of α, and (3)
adjusted R-squared, denoted as R2

adj . To control for the serial dependence of pricing errors, I use Newey and

West (1987) standard errors with both 36 lags (t-stat I) and 12 lags (t-stat II).

Table 1.A.4: Correlation among MLF
t , MHF

t , Mmissing
t , and Munpriced

t , SRprior = 0.5

Corr. MLF
t Munpriced

t MHF
t Mmissing

t SR t-stat (optimal lags)
MLF

t 1.00 0.378 6.24

Munpriced
t 0.00 1.00 0.014 0.25

MHF
t 0.79 0.61 1.00 0.290 4.65

Mmissing
t 0.61 -0.79 0.00 1.00 0.244 4.62

This table tests whether the LF-MVE portfolio can explain the HF-MVE or whether the opposite is valid.
I construct the MVE portfolios using the first 7 – 10 latent factors following the same steps as in Section
1.3.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.5. I report three test-statistic in
Table 1.2: (1) α, (2) t-statistics of α, and (3) adjusted R-squared, denoted as R2

adj . To control for the serial

dependence of pricing errors, I use Newey and West (1987) standard errors with both 36 lags (t-stat I) and
12 lags (t-stat II).
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Table 1.A.5: Economic Properties of HF- vs. LF-SDFs II

Yt : NCF,2
t NDR,2

t HKMntr
qt HKM tr

qt V XOt BWt HJTZt HJTZar1t

Panel (A): Yt = β0 + β1MHF
t + β2Mmissing

t + εt
MHF

t -0.134 -0.278 -0.301 -0.344 0.215 -0.193 -0.162 -0.125
t-stat I (-1.125) (-2.931) (-2.642) (-2.843) (1.309) (-1.641) (-1.030) (-1.658)
t-stat II (-0.952) (-2.426) (-2.466) (-2.695) (1.383) (-1.523) (-0.912) (-1.695)

Mmissing
t -0.099 -0.048 0.206 0.193 -0.053 -0.085 -0.076 0.054

t-stat I (-1.427) (-0.695) (1.480) (1.398) (-0.724) (-1.743) (-1.272) (0.665)
t-stat II (-1.325) (-0.696) (1.562) (1.572) (-0.669) (-1.791) (-1.164) (0.787)

Panel (B): Yt = β0 + β1MLF
t + β2Munpriced

t + εt
MLF

t -0.167 -0.257 -0.146 -0.189 0.148 -0.209 -0.177 -0.074
t-stat I (-1.560) (-2.861) (-1.522) (-1.726) (0.939) (-1.861) (-1.116) (-0.965)
t-stat II (-1.570) (-2.929) (-2.177) (-2.547) (0.947) (-1.740) (-0.991) (-1.000)

Munpriced
t 0.007 -0.115 -0.334 -0.346 0.164 -0.037 -0.027 -0.114

t-stat I (0.062) (-1.244) (-2.258) (-2.271) (1.956) (-0.557) (-0.426) (-1.393)
t-stat II (0.059) (-1.144) (-2.006) (-2.153) (2.125) (-0.578) (-0.427) (-1.671)

ρ -0.173 -0.114 -0.023 0.024 0.888 0.951 0.985 0.408
R2
adj 2.78% 7.96% 13.30% 15.54% 4.90% 4.50% 3.21% 1.85%

Sample size 338 338 112 112 338 326 326 326

This table reports the results of regressing economic variables on different components of SDFs. It differs
from Table 1.5 in following aspects: (1) I estimate cash-flow and discount-rate news including five state
variables into VAR(1) regression, as in Campbell, Giglio, and Polk (2013); (2) I use quarterly intermediary
factors rather than monthly ones; (3) I use the original time-series of VXO index and Baker and Wurgler
(2006) sentiment index, rather than AR(1) shocks in these variables. In addition, I consider the sentiment
index in Huang, Jiang, Tu, and Zhou (2015) in the last two columns.

Specifically, the dependent variables include (1) cash-flow news, (2) discount-rate news, (3) the
quarterly nontradable intermediary factor, (4) the quarterly tradable intermediary factor, (5) the VXO
index, (6) the Baker and Wurgler (2006) sentiment index, (7) the Huang, Jiang, Tu, and Zhou (2015)
sentiment index, and (8) the AR(1) shock in the Huang, Jiang, Tu, and Zhou (2015) sentiment.

The SDFs are composed of the first seven principal components of asset returns and their risk prices
are estimated under the prior Sharpe ratio equal to 0.4. I standardize both dependent and independent
variables so that readers can interpret all coefficient estimates as correlations. I report two t-statistics using
Newey and West (1987) standard errors with (1) 36 lags (t-stat I) and (2) 12 lags (t-stat II). In addition,
I also report dependent variables’ first-order autocorrelation coefficients (ρ). The monthly (quarterly)
out-of-sample is from November 1991 to December 2019 (Q1 1992 – Q4 2019).
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Table 1.A.6: Economic Fundamentals related to HF- vs. LF-SDFs, SRprior = 0.5

Yt : Cnd
t Cnd

t+1 GDPt GDPt+1 NCF
t NDR

t HKMntr
t HKM tr

t V XOar1
t BW ar1

t

Panel (A): Yt = β0 + β1MHF
t + β2Mmissing

t + εt
MHF

t -0.011 0.169 -0.147 0.062 -0.062 -0.227 -0.173 -0.221 0.182 -0.152
t-stat I (-0.113) (1.707) (-0.650) (0.635) (-0.454) (-2.299) (-1.879) (-1.931) (2.154) (-2.618)
t-stat II (-0.128) (1.707) (-0.693) (0.694) (-0.412) (-2.004) (-1.709) (-1.863) (2.128) (-2.772)

Mmissing
t -0.192 -0.209 -0.158 -0.192 -0.081 -0.004 0.162 0.200 -0.080 -0.014

t-stat I (-1.614) (-3.304) (-1.511) (-1.985) (-1.057) (-0.054) (1.769) (1.893) (-1.629) (-0.188)
t-stat II (-1.864) (-3.304) (-1.594) (-2.209) (-1.056) (-0.051) (1.721) (1.857) (-1.635) (-0.188)

Panel (B): Yt = β0 + β1MLF
t + β2Munpriced

t + εt
MLF

t -0.123 0.013 -0.212 -0.064 -0.099 -0.181 -0.037 -0.052 0.094 -0.129
t-stat I (-1.009) (0.147) (-0.925) (-0.613) (-0.895) (-2.077) (-0.429) (-0.538) (1.351) (-1.876)
t-stat II (-0.995) (0.149) (-0.965) (-0.664) (-0.896) (-2.207) (-0.475) (-0.567) (1.409) (-1.871)

Munpriced
t 0.149 0.269 0.040 0.192 0.025 -0.137 -0.234 -0.294 0.175 -0.082

t-stat I (3.217) (3.264) (0.415) (2.138) (0.201) (-1.443) (-2.252) (-2.332) (2.592) (-1.296)
t-stat II (2.856) (3.281) (0.497) (2.418) (0.195) (-1.259) (-2.050) (-2.228) (2.421) (-1.304)

ρ 0.153 0.153 0.352 0.352 -0.189 -0.108 0.061 0.104 0.116 0.105
R2
adj 4.91% 7.43% 6.30% 5.11% 2.76% 9.13% 7.51% 11.38% 5.80% 2.19%

Sample size 112 111 112 111 338 338 338 338 338 326

This table differs from Table 1.5 only in the prior Sharpe ratio that I use to estimate risk prices of latent
factors. Specifically, this table sets SRprior to be 0.5. See the footnote in Table 1.5 for details.
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1.A.4 Additional Figures
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(a) Fast-Moving: AR(1) coefficient = -0.5
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(b) IID: AR(1) coefficient = 0
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(c) Slow-Moving: AR(1) coefficient = 0.5

Figure 1.A.1: Cumulative returns in a 24-month rolling window

This graph plots the cumulative returns in a 24-month rolling window. I consider three AR(1) processes for

monthly (demeaned) asset returns: xt+1 = ρxxt +
√

1− ρ2xσxηx,t+1, where σ2
x = 4.5%, ρx ∈ {−0.5, 0, 0.5}.
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(a) ρx ∈ {−0.5, 0, 0.5}.
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(b) ρx ∈ {−0.9, 0, 0.9}.

Figure 1.A.2: Spectral density function of AR(1) processes

This graph plots the spectral density functions of three AR(1) processes: xt+1 = ρxxt +
√

1− ρ2xηx,t+1,

where ηx,t+1
iid∼ WN(0, 1). When ρx is positive (negative), this time series is slow-moving (fast-moving).
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(c) xt = xslowt + xfastt
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(d) Spectral density function fx(ω), DFT

Figure 1.A.3: Example: decompose a deterministic time series via DFT
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(b) LF-eigenvalues / HF-eigenvalues

Figure 1.A.4: Time-series variations in 78 assets, subsample 2

Panel (a) plots the fraction of time-series variations in 78 asset returns explained by the HF, LF, and above-
LF components. Panel (b) plots the ratio of the first 15 LF-eigenvalues over HF-eigenvalues. The sample
starts from November 1991 to December 2019.
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Figure 1.A.5: OOS Sharpe ratio of Above-LF-PCA and PCA, 78 test assets

This graph plots the heat-maps of the OOS Sharpe ratio of Above-LF-PCA and PCA in the cross-section of
78 test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is
the number of PCs included in the SDF. In addition, different colors represent different OOS Sharpe ratios.
I include the PCs into the SDF based on their ability to explain time-series variations.

Above−LF−PCA PCA

0

20

40

60

80

 0.2 0.4 0.6  0.2 0.4 0.6
prior SR

N
um

be
r 

of
 P

C
s

Rgls
2

≥ 0.15

0.1

0.05

0

≤ −0.05

Figure 1.A.6: OOS R2
gls of Above-LF-PCA and PCA, 78 test assets

This graph plots the heat-maps of the OOS R2
gls of Above-LF-PCA and PCA in the cross-section of 78 test

assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is the
number of PCs included in the SDF. In addition, different colors represent different OOS R2

gls. I include the
PCs into the SDF based on their ability to explain time-series variations.
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Figure 1.A.7: OOS Sharpe ratio using Kozak, Nagel, and Santosh (2020), 78 test assets

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA, LF-PCA, Above-LF-PCA and PCA in
the cross-section of 78 test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor
model, while the y-axis is the number of PCs included in the SDF. In addition, different colors represent
different OOS Sharpe ratios. The risk prices and the number of PCs entering the SDFs are determined by
the Kozak, Nagel, and Santosh (2020) objective function in equation (1.17).
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Figure 1.A.8: OOS Sharpe ratio of 39 test assets

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA, LF-PCA, Above-LF-PCA and PCA in the
cross-section of 39 long-short portfolios. In each panel, the x-axis denotes the prior Sharpe ratio of the factor
model, while the y-axis is the number of PCs included in the SDF. In addition, different colors represent
different OOS Sharpe ratios. I include the PCs into the SDF based on their ability to explain time-series
variations of 39 long-short portfolios.
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Figure 1.A.9: Robustness Check: OOS Sharpe ratio of 78 test assets, τLF ∈ [24, 120]

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA and LF-PCA in the cross-section of 78
test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is
the number of PCs included in the SDF. In addition, different colors represent different OOS Sharpe ratios.
I include the PCs into the SDF based on their ability to explain time-series variations. The LF frequency
interval is defined as τLF ∈ [24, 120].
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Figure 1.A.10: Robustness Check: OOS Sharpe ratio of 78 test assets, τLF ∈ [32, 64]

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA and LF-PCA in the cross-section of 78
test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is
the number of PCs included in the SDF. In addition, different colors represent different OOS Sharpe ratios.
I include the PCs into the SDF based on their ability to explain time-series variations. The LF frequency
interval is defined as τLF ∈ [32, 64].
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Chapter 2

Bayesian Solutions for the Factor Zoo:

We Just Ran Two Quadrillion Models

Svetlana Bryzgalova, Jiantao Huang, and Christian Julliard1

2.1 Introduction

In the last decade or so, two observations have come to the forefront of the empirical asset

pricing literature. First, thanks to the factor zoo phenomenon, in the near future we might

have as many empirically “priced” sources of risk as stock returns. Second, the so-called

weak factors (i.e., factors whose true covariance with asset returns is asymptotically zero)

are likely to both appear empirically relevant and invalidate inference on the true sources

of risk (see, e.g., Gospodinov, Kan, and Robotti (2019), and Kleibergen and Zhan (2020)).

Nevertheless, to the best of our knowledge, no general method has been suggested to date

that: i) is applicable to both tradable and non-tradable factors, ii) can handle the entire

factor zoo, iii) remains valid under misspecification, iv) is robust to the weak inference

problem, and, importantly, v) delivers an empirical pricing kernel that outperforms (in- and

out-of-sample) popular models (with either observable or latent factors). And that is exactly

1For helpful comments, discussions and suggestions, we thank Caio Almeida, Doron Avramov, Mikhail
Chernov, Pierre Collin-Dufresne, Aureo de Paula, Marcelo Fernandes, Stefano Giglio, Rodrigo Guimaraes,
Raymond Kan, Bryan Kelly, Lars Lochstoer, Albert Marcet, Marcelo Medeiros, Alexander Michaelides,
Olivier Scaillet, Chris Sims, George Tauchen, Fabio Trojani, Dacheng Xiu, Motohiro Yogo, Irina Zviadadze,
and seminar and conference participants at HBS, Princeton University, Carnegie Mellon, Cambridge Judd,
ICEF Moscow, Goethe University Frankfurt, University College London, University of Lugano, London Busi-
ness School, London School of Economics, Second David Backus Memorial Conference on Macro-Finance,
SITE Summer Workshops, SoFiE seminar, SITE workshop on Asset Pricing, Macro Finance, and Com-
putation, AFA 2021, Fourth International Workshop in Financial Econometrics, SOFIE virtual seminar,
Virtual Finance Workshop, and CEPR Advanced Forum in Financial Economics, NBER Asset Pricing 2021,
Brazilian Finance Society.
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what we provide.

We develop a unified framework for tackling linear asset pricing models. In the case of

stand-alone model estimation, our method provides reliable price of risk estimates, hypoth-

esis testing, and confidence intervals for these parameters, as well as all other objects of

interest – alphas, R2’s, Sharpe ratios, etc. Furthermore, even when all the pricing kernels

are misspecified and non-nested, our approach delivers factor selection – if a dominant mo-

del exists – or model averaging, if there is no clear winner given the data. The method is

numerically simple, fast, easy to use, and can be feasibly applied to literally quadrillions of

candidate factor models.

Empirically, we find that the Stochastic Discount Factor (SDF) constructed as the

Bayesian Model Averaging (BMA) over the space of 2.25 quadrillion models, prices a wide

cross-section of anomalies better than both celebrated (observable) factor models and the

latent factor approach of Kozak, Nagel, and Santosh (2020). This outperformance arises not

only in sample but also out-of-sample in both time series and cross-sectional dimensions.2

There are three key drivers of this performance. First, our method reliably identifies a small

subset of observable factors that should be included in any SDF with high probability. Sec-

ond, although these factors alone are already sufficient to outperform notable (observable)

factor models, they do not fully characterize the SDF. The latter, as we show, is dense in the

space of observable factors. As a result, the BMA optimally (in the predictive density sense)

aggregates multiple imperfect measures of the same sources of risk. Third, our method relies

on a novel prior that is fully driven by the researcher’s belief about the Sharpe ratio in the

economy, and that effectively controls potential overfitting. The BMA-SDF neither requires

arbitrary tuning parameters nor separates factor extraction and aggregation. Instead, unlike

most of the existing literature, it delivers an SDF in one step, driven by transparent and

economically motivated priors.

As stressed by Harvey (2017) in his AFA presidential address, the factor zoo naturally

calls for a Bayesian solution – and we develop one. Furthermore, we show that factor

proliferation and spurious inference are tightly connected problems, and a näıve Bayesian

model selection fails in the presence of weak factors. We develop a reliable solution focused

on the SDF representation, since the key question posed by the factor zoo lies in whether

candidate risk factors have non-zero price of risk. Our Bayesian SDF formulation (B-SDF)

is intuitively similar to the standard frequentist OLS/GLS estimation that imposes the self-

pricing of tradable factors when they are part of the test assets. However, it is robust to

identification failure, allows us to easily compare and aggregate non-nested models, and

2In cross-sectional out-of-sample exercises, we first estimate the BMA-SDF in a baseline cross-section,
and then use it to price several other cross-sections without any further parameter estimation.
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provides robust inference for all the quantities of interest within stand-alone models and

across the whole model space. Remarkably, unlike the frequentist alternatives, the B-SDF

estimator performs well in both small and large samples, even with fairly large cross-sections.

Our empirical results are based on what is arguably a representative cross-section of test

assets: 60 portfolios based on a large number of firm-specific characteristics. We examine

51 factors proposed in the previous literature, yielding a total of 2.25 quadrillion possible

models to analyze. We find that only a handful of factors proposed in the literature are

robust explanators of the cross-section of returns, and a three (at most six) most likely factor

model easily outperforms canonical reduced-form benchmarks. Nevertheless, there is no clear

“winner” across the whole space of potential models: Hundreds of possible specifications that

combine tradable and non-tradable factors, none of which has been examined in the previous

literature, are virtually equally likely to price the cross-section of returns.

Furthermore, we find that the “true” latent SDF is dense in the space of observable

factors; that is, a large subset of variables is needed to fully capture its pricing implications.3

Nonetheless, the SDF-implied maximum Sharpe ratio in the economy is not unrealistically

high, suggesting substantial commonality among the risks spanned by the factors in the

zoo. BMA, therefore, emerges naturally as an optimal way of aggregating models that

load on the same set of underlying risks: It aggregates all the possible factors and models

based on their likelihood to have generated the data. Crucially, this approach allows for

both selection and aggregation based on the posterior probabilities of the factors being part

of the pricing kernel, and allows the data to decide on the optimal structure of the SDF.

Empirically, we find that the BMA-SDF performs well both in- and out-of-sample (OOS). Its

OOS performance is stable across subsamples (going both into the future and into the past),

and, most importantly, it prices well cross-sections not used for its construction, including

the notoriously challenging 49 industry portfolios.

Our contribution is fourfold. First, we develop a very simple Bayesian estimator for linear

SDFs with both traded and non-traded factors. This approach makes weak factors easily

detectable in finite sample, while providing valid inference on the strong factors’ price of

risk, measures of cross-sectional fit, and other objects of interest. Our robust approach is

very simple to implement and use, and it does not require pre-testing or pre-estimation.

Second, we provide a method for inference on the entire factor zoo with model (and factor)

posterior probabilities. However, as we show, model and factor selection based on marginal

likelihoods (i.e., on posterior probabilities or Bayes factors) is unreliable under a flat prior

for the price of risk: Asymptotically, weakly identified factors are selected with probability

3Interestingly, the SDF remains dense even when we include either the five principal components or the
five RP-PCs of Lettau and Pelger (2020b).
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one even if they have zero price of risk.4 This observation, however, not only illustrates

the nature of the problem; it also suggests how to restore inference: use suitable, non-

informative – but yet non-flat – priors. Building upon the literature on predictor selection

(see, e.g., Ishwaran, Rao, et al. (2005) and Giannone, Lenza, and Primiceri (2021b)), we

provide a novel (continuous) “spike-and-slab” prior that restores the validity of model and

factor selection based on posterior model probabilities and Bayes factors. It is uninformative

(the “slab”) for strong factors but shrinks away (the “spike”) the weak ones. This prior also:

i) makes it computationally feasible to analyze quadrillions of alternative factor models, ii)

allows the researcher to encode prior beliefs (or lack thereof) about the sparsity of the true

SDF without imposing hard thresholds, iii) restores the validity of hypothesis testing, and

iv) performs well in numerous simulation settings. The prior is entirely pinned down by

economic quantities: It maps into beliefs about the Sharpe ratio of the risk factors. We

regard this approach as a solution for the high-dimensional inference problem generated by

the factor zoo.5

Third, we provide a new way of selecting robust observable factors. Indeed, we find a new

3–6 observable factor model, combining variables from different papers, that dominates all

the popular reduced-form benchmarks. However, even that model would be strongly rejected

by the data: No sparse factor model is among the most likely 2000 data-generating processes

that we consider. Furthermore, a unique best performing combination of the factors (sparse

or dense in observables) does not seem to exist: Hundreds of possible models, never proposed

in the previous literature, deliver almost equivalent performance, which indicates fragility

of conventional model selection and horse races, popular among reduced-form sparse factor

models.

Fourth, our results do not rely on ex ante unverifiable assumptions of existence, unique-

ness, and sparsity of the true SDF representation among the candidate models (unlike LASSO

and other popular frequentist methods). When a dominant model for the SDF does not arise

in the data (as in our analysis), our method does not stop at selection. Instead, it efficiently

aggregates pricing information from (potentially) the entire factor zoo. Interestingly, we show

that solely extracting leading standard latent factors from a wide range of predictors using

PCA or RP-PCA, is not sufficient to characterize the SDF. In fact, we find that observable

and (some) leading latent factors are complementary for such a characterization. Therefore,

4This is similar to the effect of “weak instruments” in IV estimations, as discussed in Sims (2007).
5Despite a seemingly prohibitive dimension of the model space, the estimation is numerically simple and

computationally feasible. Our Markov Chain, used to evaluate the whole space of 2.25 quadrillions of models
and deliver all the baseline results from the paper, takes about four hours on a 3.0GHz 10-core Intel Xeon
W processor and 128 GB of RAM. Furthermore, we formally test its convergence and establish that the
posterior distributions converge already after less than one fifth of the Markov Chain draws, making our
method easily applicable for most researchers.
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our results indicate that there is scope for both more efficient latent factor extraction and

better aggregation informed by economic fundamentals.

The remainder of the paper is organized as follows. In the next subsection we review

the most closely related literature and our contribution to it. Section 2.2 provides a brief

overview of the benchmark frequentist approach, while Section 2.3 outlines the Bayesian

SDF estimation and its properties for inference, selection, and model aggregation. Section

2.4 provides simulation evidence on both small- and large-sample behavior of our method.

Section 2.5 presents our empirical results. Finally, Section 2.6 discusses potential extensions

of our procedure and concludes.

2.1.1 Related Literature

There are numerous strands of literature relying on Bayesian tools, especially for asset al-

location (for an excellent overview, see Avramov and Zhou (2010)), model selection (e.g.,

Chib, Zeng, and Zhao (2020)), and performance evaluation (Baks, Metrick, and Wachter

(2001), Pástor and Stambaugh (2002), and Harvey and Liu (2019)). Therefore, we aim to

provide only an overview of the literature that is most closely related to our paper.

Shanken (1987) and Harvey and Zhou (1990) are probably the first to use the Bayesian

framework in portfolio choice and develop GRS-type tests (cf. Gibbons, Ross, and Shanken

(1989)) for mean-variance efficiency. While Shanken (1987) is the first to examine the pos-

terior odds ratio for portfolio alphas in the linear factor model, Harvey and Zhou (1990) set

the benchmark by imposing priors on the deep model parameters. Interestingly, we show

that there is a tight link between using the most popular, diffuse, priors for the price of risk

and the failure of the standard estimation techniques in the presence of weak factors.

Pástor and Stambaugh (2000) and Pástor (2000) assign a prior distribution to the vector

of pricing errors α, α ∼ N (0, κΣR), where ΣR is the variance-covariance matrix of returns

and κ ∈ R+, and apply it to portfolio choice. This prior imposes a degree of shrinkage on

the alphas: When factor models are misspecified, pricing errors cannot be too large a priori.

This prior effectively places a bound on the Sharpe ratio achievable in this economy.

Barillas and Shanken (2018a) extend the aforementioned prior and derive a closed-form

solution for the Bayes factor when all the risk factors are tradable and use it to compare

different linear factor models exploiting the time series dimension of the data. Chib, Zeng,

and Zhao (2020) show that the improper prior specification of Barillas and Shanken (2018a)

is problematic and propose a new class of priors that leads to valid comparison for traded

factor models.

There is a general close connection between the Bayesian approach to model selection

and parameter estimation and the shrinkage-based one. Garlappi, Uppal, and Wang (2007)
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impose a set of different priors on expected returns and the variance-covariance matrix and

find that the shrinkage-based analogue leads to superior empirical performance. The ridge-

based approach to recovering the SDF of Kozak, Nagel, and Santosh (2020) can also be

interpreted from a Bayesian perspective with priors on the expected returns distribution.

To the best of our knowledge, our paper is the first attempt to develop a general Bayesian

approach for both tradable and non-tradable factors, capable of imposing tradable restric-

tion on the price of risk when needed. Flat priors for the price of risk, we show, lead to

erroneous model selection in the presence of weak factors. Hence, we develop a novel one

that depends on the degree of parameter identification. This prior is heterogenous among

factors, depending on the correlation between test assets and the factor itself. In the spirit

of Pástor and Stambaugh (2000), our prior directly maps into beliefs about the Sharpe ratio

achievable in the economy, yet without imposing a hard threshold on it. Not only does it

restore the validity of model selection, but it also allows for sharp inference in small sample

on all the economic quantities of interest.

Our paper naturally contributes to the literature on weak identification in asset pricing.

Starting from the seminal papers of Kan and Zhang (1999a,b), identification of risk premia

has been shown to be challenging for traditional estimation procedures. Kleibergen (2009)

demonstrates that the two-pass regression of Fama-MacBeth lead to biased estimates of the

risk premia and spuriously high significance levels. Moreover, useless factors often crowd out

the impact of the true sources of risk in the model and lead to seemingly high levels of cross-

sectional fit (Kleibergen and Zhan (2015)). Gospodinov, Kan, and Robotti (2014, 2019)

demonstrate that most of the estimators used to recover risk premia in the cross-section are

invalidated by the presence of useless factors, and they propose alternative procedures that

effectively eliminate the impact of these factors. We build upon the intuition developed in

these papers and formulate the Bayesian solution to the problem by providing a prior such

that when the vector of correlation coefficients between asset returns and a factor is close

to zero, the prior variance for the price of risk also goes to zero, effectively shrinking the

posterior toward zero.

Our method does not require any pretesting, works well in small and large time-series

and cross-sectional dimensions. Furthermore, due to its hierarchical structure, it can be

feasibly extended to handle time variation in the factor exposure and asset risk premia,

and it accommodates both observable and latent factors. Most importantly, our approach

provides a robust unified framework for evaluation of stand-alone models, factor and model

selection, as well as aggregation, even when all the potential models are misspecified.

Naturally, our paper also contributes to the active (and growing) body of work that criti-

cally re-evaluates existing findings in the empirical asset pricing literature and develop robust
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inference methods. There is ample empirical evidence that most linear factor models are mis-

specified (e.g., Chernov, Lochstoer, and Lundeby (2022), and He, Huang, and Zhou (2018)).

Following Harvey, Liu, and Zhu (2016), a large body of literature has tried to understand

which of the existing factors (or their combinations) drive the cross-section of asset returns.

Gospodinov, Kan, and Robotti (2014) develop a general approach for misspecification-robust

inference, while Giglio and Xiu (2021) exploit the invariance principle of the PCA and re-

cover the price of risk of a given factor from the projection on the span of latent factors

driving a cross-section of returns. Similarly, Uppal, Zaffaroni, and Zviadadze (2018) recover

latent factors from the residuals of an asset pricing model, effectively completing the span of

the SDF. Feng, Giglio, and Xiu (2020) combine cross-sectional asset pricing regressions with

the double-selection LASSO of Belloni, Chernozhukov, and Hansen (2014) to provide valid

uniform inference on the selected sources of risk when the true SDF is sparse. Huang, Li,

and Zhou (2018) use a reduced rank approach to select from not only the observable factors

but their total span, effectively allowing for sparsity in both factors and their combinations.

We do not take a stand on the origin of the factors, the “unique” true model being

among the candidate specifications, and a priori SDF sparsity. Instead, we consider the

whole universe of potential models that can be created from a wide set of factors proposed

in the empirical literature (observable and latent) and let the data speak. We find that the

cross-sectional likelihood across many best-performing (dense) models is flat. Hence, the

data seem to call for aggregation, rather than selection.

Avramov (2002, 2004) are the first formal studies that bring model uncertainty to the

forefront of asset pricing. Building on these seminal papers, Anderson and Cheng (2016)

develop a BMA approach to portfolio choice that, with formal recognition of model uncer-

tainty, delivers robust asset allocation and superior out-of-sample performance. Similarly,

we find that there is a large degree of model uncertainty in cross-sectional asset pricing, sug-

gesting a large degree of model misspecification and rendering canonical selection unreliable.

We therefore develop a BMA method that explicitly targets cross-sectional pricing of asset

returns. The resulting averaging over the space of SDFs delivers superior pricing in- and

out-of-sample.

In reality, the BMA-SDF has – endogenously – elements of both selection and aggregation:

While a small subset of factors delivers large individual contributions to the SDF, other

factors are efficiently bundled together to deliver the best predictive density of the cross-

sectional pricing kernel. In the recent literature, model selection (see, e.g., Feng, Giglio, and

Xiu (2020)) or aggregation (see, e.g., Kozak, Nagel, and Santosh (2020)) of pricing factors,

have been largely mutually exclusive alternatives. Our framework, instead, successfully

combines both.
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2.2 Frequentist Estimation of Linear SDFs

This section introduces the notation and reviews the basics of linear SDF models as well

as related (frequentist) Generalized Method of Moments (GMM) estimation. Suppose that

there are K factors, ft = (f1t . . . fKt)
>, t = 1, . . . T , which could be either tradable or non-

tradable. The returns of N test assets, which are long-short portfolios, are denoted by Rt =

(R1t . . . RNt)
>. Throughout the paper, E[X] or µX denotes the unconditional expectation of

arbitrary random variable X and X̄ denotes the sample mean operator.

Consider linear stochastic discount factors (M), that is models of the form Mt = 1 −
(ft − E[ft])

>λf . In the absence of arbitrage opportunities E[MtRt] = 0N , which implies

that expected returns are given by µR = E[Rt] = Cfλf , where Cf is the covariance matrix

between Rt and ft and λf ∈ RK denotes the vector of prices of risk associated with the

factors. The latter can therefore be estimated via the cross-sectional regression:

µR = λc1N +Cfλf +α = Cλ+α, (2.1)

where C = (1N ,Cf ), λ> = (λc,λ
>
f ), λc is a scalar average mispricing (equal to zero under

the null of the model being correctly specified), 1N denotes an N -dimensional vector of ones,

and α ∈ RN is the vector of pricing errors in excess of λc (also equal to zero under the null

of the model).

Such a model is usually estimated via GMM (see Hansen (1982)) with the following

moment conditions:

E[gt(λc,λf ,µf )] = E

(
Rt − λc1N −Rt(ft − µf )>λf

ft − µf

)
=

(
0N

0K

)
, (2.2)

with corresponding sample analogue function gT (λc,λf ,µf ) ≡ 1
T

∑T
t=1 gt(λc,λf ,µf ). Com-

bining the latter with a weighting matrix W yields the GMM estimates as the minimizer of

the following objective function:

{λ̂c, λ̂f , µ̂f} ≡ arg min
λc,λf ,µf

gT (λc,λf ,µf )>WgT (λc,λf ,µf ).

Different weighting matrices deliver different point estimates. Following (Cochrane, 2009,

pp. 256-258), two popular choices are

Wols =

(
IN 0N×K

0K×N κIK ,

)
, and Wgls =

(
Σ−1
R 0N×K

0K×N κIK

)
,
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where ΣR is the covarince matrix of returns, and κ > 0 is a large constant so that µ̂f ≡
1
T

∑T
t=1 ft. These weighting matrices yield, respectively, the following prices of risk estimates:

λ̂ols = (Ĉ>Ĉ)−1Ĉ>R̄, and (2.3)

λ̂gls = (Ĉ>Σ−1
R Ĉ)−1Ĉ>Σ−1

R R̄, (2.4)

where Ĉ = (1N , Ĉf ) and Ĉf = 1
T

∑T
t=1Rt(ft − µ̂f )>.

GMM provides valid inference on the price of risk under a set of well-known assumptions

(Newey and McFadden (1994)). In particular, equations (2.3) and (2.4) make it clear that

OLS and GLS (but also GMM more generally) require the matrix of factor exposures C to

have full rank – that is, the price of risk to be identified. However, there is a growing body

of literature that finds this assumption to be often empirically violated.6 Most famously,

this problem arises in the case of a weak factor fj that does not have enough comove-

ment with any of the assets but is nonetheless considered to be a part of the SDF, that is

Ci,j ∼ O(T−1/2), i ∈ 1 . . . N . In such a model, the price of risks are no longer identified and

their estimates diverge with the sample size, leading to wrong inference for both strong and

weak factors (Kan and Zhang (1999a)). Another widespread example of weak identification

arises with the inclusion of a level factor, fj, characterized by a lack of cross-sectional spread

in factor exposures, that is,
∑N

i=1(Ci,j − C̄j)2 ∼ O(T−1), where C̄j ≡ 1
N

∑N
i=1Ci,j.

Identification problems arise not only when using the GMM in estimating linear SDF

models but equally so in Fama-MacBeth regressions (Kan and Zhang (1999b), Kleibergen

(2009)) and Maximum Likelihood Estimation (Gospodinov, Kan, and Robotti (2019)). In

addition to creating inference problems for model parameters, weak identification also tends

to inflate the standard measures of cross-sectional fit (Kleibergen and Zhan (2015)). Con-

sequently, several papers have attempted to develop alternative statistical procedures that

are robust to the presence of weak factors and general cases of rank deficiency of the matrix

C. In particular, Kleibergen (2009) proposes several novel statistics whose large sample

distributions are unaffected by the failure of the identification condition. Gospodinov, Kan,

and Robotti (2014) derive robust standard errors for GMM estimates of factor risk prices

in the linear stochastic discount factor framework and prove that t-statistics calculated us-

ing their standard errors are robust even when the model is misspecified and a weak factor

is included. Bryzgalova (2015) introduces a LASSO-like penalty term that identifies weak

factors and eliminates their impact on the model. Finally, since factor strength depends on

the choice of returns used in the estimation, Giglio, Xiu, and Zhang (2021) recently devel-

oped an iterative procedure for constructing a cross-section of model-specific test assets that

6For recent applications, see Kleibergen and Zhan (2020) and Gospodinov and Robotti (2021a,b).
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specifically addresses the problem of weak factors.

In this paper, we provide a Bayesian inference and model selection framework that i) can

be easily used for robust inference in the presence, and detection, of weak and level factors

(section 2.3) and ii) can be used for both model selection and model averaging, even in the

presence of a very large number of candidates (traded or non-traded, and possibly weak)

risk factors – that is, the entire factor zoo.

Although we focus on the estimation of linear SDF representations, our approach can be

adapted (with minimal adjustments) to deliver a robust Bayesian version of the canonical

Fama-MacBeth estimation approach (see Fama and MacBeth (1973) and Fama and French

(1993)).

2.3 Bayesian Analysis of Linear SDFs

This section introduces our hierarchical Bayesian estimation of linear SDF models, B-SDF.

A more detailed derivation is presented in Appendix 2.A.1.1.

Consider first the time-series dimension of the estimation problem. Let ft ≡ (f1t . . . fKt)
>,

t = 1, . . . T denote a vector of factors. Without loss of generality, we order the K1 tradable

factors first (f
(1)
t ), followed by K2 non-tradable factors (f

(2)
t ), hence, f ≡ (f

(1),>
t ,f

(2),>
t )>

and k1 + k2 = K.

Let Yt denote the union of factors and returns, that is, Yt ≡ ft ∪ Rt, where Yt is a

p-dimensional vector. If one requires the tradable factors to price themselves (as we do in

our empirical applications), then Y >t ≡ (R>t ,f
(2),>
t )> and p = N +K2.

We assume that {Yt}Tt=1 follows an iid multivariate Gaussian distribution, that is, Yt
iid∼

N (µY ,ΣY ), where µY and ΣY denote, respectively, the unconditional means vector and the

unconditional covariance matrix. This modeling choice can easily be modified to accommo-

date different distributional assumptions, predictability, and time-varying volatility, albeit

at the cost of losing analytical solutions in most cases. In particular, as discussed in Section

2.6, we could accommodate time-varying means and variances, as well as autocorrelations.

The resulting likelihood function for the time-series layer of our hierarchical modeling is

p(Y|µY ,ΣY ) ∝ |ΣY |−
T
2 exp

{
−1

2
tr

[
Σ−1
Y

T∑
t=1

(Yt − µY ) (Yt − µY )>
]}

, (2.5)

where Y ≡ {Yt}Tt=1. For simplicity, we use the diffuse prior: π(µY ,ΣY ) ∝ |ΣY |−
p+1
2 . This

implies the following posterior distribution of (µY ,ΣY ):

µY |ΣY ,Y ∼ N (µ̂Y , ΣY /T ) , (2.6)
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ΣY |Y ∼ W -1

(
T − 1,

T∑
t=1

(Yt − µ̂Y ) (Yt − µ̂Y )>
)
, (2.7)

where µ̂Y ≡ 1
T

∑T
t=1 Yt and W -1 is the inverse-Wishart distribution (a multivariate general-

ization of the inverse-gamma distribution). Note that the above posterior distribution is well

defined even in the presence of weak factors, since the time-series layer does not depend on

the strength of the factors or their tradability. Furthermore, the above posterior is analogous

to the canonical t-distribution result for the parameters of a linear regression model.

The Normal-inverse-Wishart posterior in equations (2.6)–(2.7) implies that we can sample

the distribution of the parameters (µY ,ΣY ) by first drawing the covariance matrix ΣY from

the inverse-Wishart distribution conditional on the data, and then by drawing µY from a

multivariate normal distribution conditional on the data and the draw of ΣY .

If the SDF is correctly specified, in the sense that all true factors are included, expected

asset returns should be fully explained by their risk exposure, C, and the prices of risk λ,

that is, µR = Cλ, where µR is the sub-vector of µY corresponding to asset returns and

C is the corresponding covariance sub-matrix of ΣY . Therefore, we can define our first

estimator.7 In Appendix 2.A.1.1 we show formally that it arises, under the assumption of

correct specification, as a particular case of our general posterior presented in equations

(2.11)-(2.12) below.

Definition 2.2 (Bayesian SDF (B-SDF) Estimates) Conditional on µY , ΣY and the

data Y = {Yt}Tt=1, under the null of unique correct SDF specification8 and any diffuse prior,

the posterior distribution of λ is a Dirac distribution (that is, a constant) at (C>C)−1C>µR.

Therefore, conditional on only the data Y = {Yt}Tt=1 and the null, the posterior distribution

of λ can be sampled by drawing µY,(j) and ΣY,(j) from the Normal-inverse-Wishart (2.6)–

(2.7) and computing the draw λ(j) ≡
(
C>(j)C(j)

)−1

C>(j)µR,(j).

The posterior distribution of λ, defined above, accounts for both the uncertainty about

expected returns – via the sampling of µR – and the uncertainty about the factor loadings

– via the sampling of Cf . Note that for completeness in the above we have allowed for a

common cross-sectional intercept, λc. However, this can be readily constrained to be equal

to zero, and we consider this case in our empirical analysis.

7The B-SDF estimator, and its GLS version, as shown in Appendix 2.A.1.1, are particular cases of the more
general posterior characterizations in equations (2.11)–(2.12) and (2.13)–(2.14). For expositional purposes
we focus on the particular OLS- and GLS-like Bayesian estimators. Nevertheless, for any conformable matrix
A such that AC is invertible, we have that under the null of unique correct specification, λ has (under any
non-dogmatic prior) a degenerated posterior at (AC)−1AµR conditional on A, C, and µR.

8That is, µR = Cλ holds for a unique value of λ as assumed in standard frequentist estimation.
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From the B-SDF definition, it is intuitive why we expect posterior inference to detect

weak factors in finite sample. For such factors, the near singularity of (C>(j)C(j))
−1 will cause

the draws for λ(j) to diverge from zero (as in the frequentist point estimate). Nevertheless,

the posterior uncertainty about factor loadings and asset risk premia will cause C>(j)µR,(j) to

switch sign across draws, causing the posterior distribution of λ to put substantial probability

mass on both values above and below zero. Hence, centered posterior credible intervals will

tend to include zero with high probability.

In addition to risk prices λ, we are also interested in estimating the cross-sectional fit

of the model, that is, the cross-sectional R2. Once we obtain the posterior draws of the

parameters, we can easily obtain the posterior distribution of the cross-sectional R2, defined

as

R2
ols = 1− (µR −Cλ)>(µR −Cλ)

(µR − µ̄R1N )>(µR − µ̄R1N )
, (2.8)

where µ̄R = 1
N

∑N
i µR,i. That is, for each posterior draw of (µR, C, λ), we can construct

the corresponding draw for the R2 from equation (2.8), hence, tracing out its posterior

distribution. Equation (2.8) can be thought of as the population R2, where µR, C, and λ

are unknown. After observing the data, we infer the posterior distribution of µR, C, and λ

, and from these we can recover the distribution of the R2.

Often the cross-sectional step of the frequentist estimation is performed via GLS rather

than least squares. In our setting, under the null of the model, this leads to the following

GLS estimator (see Appendix 2.A.1.1 for a formal derivation).

Definition 2.3 (Bayesian SDF GLS (B-SDF-GLS)) Conditional on µY , ΣY and the

data Y = {Yt}Tt=1, under the null of unique correct SDF specification and any diffuse prior,

the posterior distribution of λ is a Dirac distribution (that is, a constant) at (C>Σ−1
R C)−1C>Σ−1

R µR.

Therefore, conditional on only the data Y = {Yt}Tt=1 and the null, the posterior distribution

of λ can be sampled by drawing µY,(j) and ΣY,(j) from the Normal-inverse-Wishart (2.6)–

(2.7) and computing λ(j) ≡ (C>(j)Σ
−1
R,(j)C(j))

−1C>(j)Σ
−1
R,(j)µR,(j).

From the posterior sampling of the parameters in the definition above, we can also obtain

the posterior distribution of the cross-sectional GLS R2, defined as

R2
gls = 1− (µR −Cλ)>Σ−1

R (µR −Cλ)

(µR − µ̄R1N )>Σ−1
R (µR − µ̄R1N )

. (2.9)

Once again, we can think of equation (2.9) as the unknown population GLS R2, which is

a function of the unknown quantities µR, C, and λ. Since after observing the data we infer

the posterior distribution of the parameters, we obtain the posterior distribution of the R2
gls

as well.
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Realistically, models are rarely true. Therefore, we now allow for the presence of model-

implied average pricing errors, α.9 This can be easily accommodated within our Bayesian

framework since in this case the data-generating process in the cross-section becomes µR =

Cλ + α. Adding an assumption on the cross-sectional distribution of the pricing errors

yields a Bayesian hierarchical structure to the estimation that naturally separates the time

series and cross-sectional dimensions of the inference problem. To continue the analogy with

OLS and GLS estimators, we consider two distributional assumptions for the average pricing

errors α.

First, we consider the case of spherical cross-sectional errors, that is, αi
iid∼ N (0, σ2),

in the spirit of OLS. Under this assumption, the cross-sectional likelihood function (i.e.,

conditional on the time-series parameters µR and C) is

p(data|λ, σ2) = (2πσ2)−
N
2 exp

{
− 1

2σ2
(µR −Cλ)>(µR −Cλ)

}
. (2.10)

In the cross-sectional regression, the “data” are the expected risk premia, µR, and the

factor loadings, C. These quantities are not directly observable to the researcher but can

be sampled from the Normal-inverse-Wishart posterior distribution in equations (2.6)–(2.7).

Conceptually, this is not very different from the Bayesian modeling of latent variables. In

the benchmark case, we assume a diffuse prior10 for (λ, σ2): π(λ, σ2) ∝ σ−2. In Appendix

2.A.1.1, we show that the posterior distribution of (λ, σ2) is then

λ|σ2,µR,C ∼ N
(

(C>C)−1C>µR︸ ︷︷ ︸
λ̂

, σ2(C>C)−1︸ ︷︷ ︸
Σλ

)
and (2.11)

σ2|µR,C ∼ IG
(
N −K − 1

2
,
(µR −Cλ̂)>(µR −Cλ̂)

2

)
, (2.12)

where IG denotes the inverse-Gamma distribution. The conditional distribution in equation

(2.11) makes it clear that the posterior takes into account both the uncertainty about prices

of risk stemming from the time series parameters C and µR (that are drawn from the

Normal-inverse-Wishart posterior in equations (2.6)–(2.7)) and the random pricing errors α

that have the conditional posterior variance distribution given in equation (2.12). If test

assets’ expected excess returns are fully explained by C, there are no pricing errors and

σ2(C>C)−1 converges to zero; otherwise, this layer of uncertainty always exists. Similarly,

9As we show in the next section, this natural assumption is essential for model selection.
10As shown in the next subsection, in the presence of weak factors, such a prior is not appropriate for

model selection based on Bayes factors and posterior probabilities, since it does not lead to proper marginal
likelihoods. Therefore, we introduce therein a novel prior for model selection.
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if one assumes that the cross-sectional model is correctly specified, that is, σ2 → 0, we are

back to the B-SDF estimator in Definition 2.2.11

The OLS assumption ignores the fact that average pricing errors could be cross-sectionally

correlated, which motivates our second, non-spherical, cross-sectional distributional assump-

tion for α. Suppose that the model is correctly specified, that is, Rt = λc1N +Cfλf + εt,

where εt
iid∼ N (0N ,ΣR). Since ET [Rt] = λc1N +Cfλf + ET [εt], the pricing error α should

be equal to ET [εt].
12 Hence, in the spirit of the central limit theorem, a natural distributional

assumption for the pricing errors is α | ΣR ∼ N (0N ,
1
T
ΣR). However, since we allow for

mispricing, and its degree is endogeously determined by the observed data, a scaling of the

covariance matrix is desirable. Therefore, we assign the following distributional assumption

for α: α ∼ N (0N , σ
2ΣR). We call this the GLS assumption. Recall that ΣR is the covari-

ance matrix of returns Rt. Hence, the difference between the OLS and GLS assumption is

that non-diagonal elements are non-zeros in the latter case. Since all models are misspecified

to a certain degree, we would expect that the estimated σ2 to be larger than 1/T .

The posterior distribution of (λ, σ2) under the GLS distributional assumption, and con-

ditional on µR, ΣR and C, is then (see derivation in Appendix 2.A.1.1)

λ|σ2, data ∼ N
(

(C>Σ−1
R C)−1C>Σ−1

R µR︸ ︷︷ ︸
λ̂

, σ2(C>Σ−1
R C)−1︸ ︷︷ ︸

Σλ

)
and (2.13)

σ2|data ∼ IG
(
N −K − 1

2
,
(µR −Cλ̂)>Σ−1

R (µR −Cλ̂)

2

)
. (2.14)

And once again µR, ΣR, and C can be sampled from the the Normal-inverse-Wishart

posterior in equations (2.6)–(2.7). Furthermore, as before, by setting σ2 → 0 we recover the

B-SDF-GLS in Definition 2.3.

Remark 2.2 (Generated factors) Often factors are estimated, as, for example, in the

case of principal components (PCs) and factor-mimicking portfolios (albeit the latter are not

needed in our setting). This generates an additional layer of uncertainty normally ignored in

empirical analysis due to the associated asymptotic complexities. Nevertheless, thanks their

hierarchical structure, it is relatively easy to adjust the above-defined Bayesian estimators

to account for this uncertainty. In the case of a mimicking portfolio, under a diffuse prior

and Normal errors, the posterior distribution of the portfolio weights follow the standard

Normal-inverse-Gamma of Gaussian linear regression models (see, e.g., Lancaster (2004)).

11When pricing errors α are assumed to be exactly zero under the null, the posterior distribution of λ
in equation (2.11) collapses to a degenerate distribution, where λ equals (C>C)−1C>µR with probability
one.

12Where ET is the sample analog of the unconditional expectation operator.
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Similarly, in the case of principal components as factors, under a diffuse prior, the covariance

matrix from which the PCs are constructed follows an inverse-Wishart distribution.13 Hence,

the posterior distributions in Definitions 2.2 and 2.3 can account for the generated factors

uncertainty by first drawing from an inverse-Wishart the covariance matrix from which PCs

are constructed, or from the Normal-inverse-Gamma posterior of the mimicking portfolios

coefficients, and then sampling the remaining parameters as explained above.

Note that while we focus on the case of linear SDF models, our method can be easily

extended to the estimation of beta representations of the fundamental pricing equation used

in the two-pass procedure, such as Fama-MacBeth regressions.

2.3.1 Model Selection and Aggregation

In the previous subsection we have derived simple Bayesian estimators that deliver, in a finite

sample, credible intervals robust to the presence of weak factors and avoid over-rejecting the

null hypothesis of zero prices of risk for such factors.

However, given the plethora of risk factors that have been proposed in the literature, a

robust approach for model selection, across not necessarily nested models, that can handle

a very large universe of possible models, as well as both traded and non-traded factors, is

of paramount importance for empirical asset pricing. The canonical way of selecting models

and testing hypotheses within the Bayesian framework is through Bayes factors and posterior

probabilities, which is the approach we present in this section. This is, for instance, the

approach suggested by Barillas and Shanken (2018a) for tradable factors. The key elements

of novelty of the proposed method are that: i) our procedure is robust to the presence of

weak factors, ii) it is directly applicable to both traded and non-traded factors, and iii) it

selects models based on their cross-sectional performance (rather than on the time series),

that is, on the basis of the risk prices that the factors command.

Our approach hinges upon the introduction of suitable and economically driven priors

that deliver valid marginal likelihoods and posterior model probabilities. With valid pos-

terior probabilities, our framework allows to also aggregate multiple candidate factors and

specifications into the most likely, given the data, representation of the true unknown SDF

(via BMA).14 Hence, our method endogenously selects a dominant subset of factors – if

such a set exists uniquely – and instead aggregates factors optimally, if no dominant low-

dimensional representation arises. But, unlike the canonical dichotomy of observable factors

13Based on these two observations, Allena (2019) proposes a generalization of the Barillas and Shanken
(2018a) model comparison approach for these type of factors.

14See, e.g., Raftery, Madigan, and Hoeting (1997), and Hoeting, Madigan, Raftery, and Volinsky (1999).
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selection versus pure aggregation (e.g., principal component and entropy methods), our ap-

proach combines both. In a sense, it jointly delivers model selection and “smart” latent

factor extraction.

In this subsection, we show first that flat priors for risk prices are not suitable for model

selection in the presence of weak factors. Given the close analogy between frequentist testing

and Bayesian inference with flat priors, this is not too surprising. But the novel insight is

that the problem arises exactly because of the use of flat priors and can therefore be fixed

by using non-flat, yet non-informative, priors. Second, we introduce “spike-and-slab” priors

that are robust to the presence of weak factors. These priors allow us to test hypotheses using

valid Bayes factors and model probabilities. Furthermore, they are particularly powerful in

high-dimensional model selection, that is, when one wants, as in our empirical application,

to consider all the factors in the zoo. Finally, we show how, as a by-product of the estimation

and selection method, factors and models can be optimally aggregated.

2.3.1.1 Pitfalls of Flat Priors for Risk Prices

We start this section by discussing why flat priors for prices of risk are not suitable for model

selection. Since we want to focus on and select models based on the cross-sectional asset

pricing properties of the factors, for simplicity we retain flat (in the sense of Jeffreys) priors

for the time-series parameters (µY ,ΣY ).

In order to perform model selection, we relax the (null) hypothesis that models are

correctly specified and allow instead for the presence of cross-sectional pricing errors. That

is, we consider the cross-sectional representation µR = Cλ + α. For illustrative purposes,

we focus on spherical cross-sectional errors (i.e., the case analogous to the GMM-OLS).

Nevertheless, all the results in this and following subsections are also generalized to the

non-spherical error setting (i.e., the case analogous to the GMM-GLS).

To model variable selection, we introduce a vector of binary latent variables γ> =

(γ0, γ1, . . . , γK), where γj ∈ {0, 1}. When γj = 1, factor j (with associated loadings Cj)

should be included into the model and vice versa. Therefore, the number of included factors

is pγ ≡
∑K

j=0 γj . Note that we always include the intercept, that is, γ0 = 1 always. The

notation Cγ = [Cj]γj=1 represents a pγ-columns sub-matrix of C.

When testing whether the risk price of factor j is zero, the null hypothesis is H0 : λj = 0.

In our notation, this null hypothesis can be expressed as H0 : γj = 0, while the alternative

is H1 : γj = 1. This is a small but important difference relative to the canonical frequentist

testing approach: For weak factors, risk prices are not identified; hence, testing whether

they are equal to any given value is problematic per se. Nevertheless, as we show in the next

section, with appropriate priors, whether a factor should be included or not is a well-defined
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question even in the presence of weak factors.

In the Bayesian framework, the prior distribution of parameters under the alternative

hypothesis should be carefully specified. Generally speaking, the priors for nuisance param-

eters, such as µY , ΣY and σ2, do not greatly influence the cross-sectional inference. But, as

we are about to show, this is not the case for the priors about risk prices.

Recall that when considering multiple models, say, without loss of generality model γ

and model γ ′, by Bayes theorem we have that the posterior probability of model γ is

Pr(γ|data) =
p(data|γ)

p(data|γ) + p(data|γ ′)
,

where we have given equal prior probability to each model and p(data|γ) denotes the marginal

likelihood of the model indexed by γ. In Appendix 2.A.1.2 we show that, when using a flat

prior for λ, the marginal likelihood is

p(data|γ) ∝ (2π)
pγ
2 |C>γ Cγ |−

1
2

Γ(N−pγ
2

)

(
Nσ̂2

γ

2
)
N−pγ

2

, (2.15)

where σ̂2
γ = (µR−Cγ λ̂γ)>(µR−Cγ λ̂γ)

N
, λ̂γ = (C>γ Cγ)−1C>γ µR, and Γ denotes the Gamma func-

tion.

Therefore, if model γ includes a weak factor (whose Cj asymptotically converges to

zero), the matrix C>γ Cγ is nearly singular and its determinant goes to zero, sending the

marginal likelihood in (2.15) to infinity. As a result, the posterior probability of the model

containing the weak factor goes to one.15 Consequently, under a flat prior for risk prices,

the model containing a weak factor will always be selected asymptotically. However, the

posterior distribution of λ for the weak factor is robust, and particularly disperse, in any

finite sample.

Moreover, it is highly likely that conclusions based on the posterior coverage of λ contra-

dict those arising from Bayes factors. When the prior distribution of λj is too diffuse under

the alternative hypothesis H1, the Bayes factor tends to favor the null H0, even though the

estimate of λj is far from 0. The reason is that even though H0 seems quite unlikely based

on posterior coverages, the data are even more unlikely under H1. Therefore, a disperse

prior for λj may push the posterior probabilities to favor H0 and make it fail to identify true

factors.16

15Note that a similar problem also arises when using mimicking portfolios of weak factors. In this case the
singularity in the determinant in equation (2.15) would be generated by the projection of the non-tradable
factors on the space of returns.

16This phenomenon is known as the Bartlett Paradox (see Bartlett (1957)).
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Note also that flat (hence improper) priors for risk prices are not appropriate, since they

render the posterior model probabilities arbitrary. Suppose that we are testing the null

H0 : λj = 0. Under the null hypothesis, the prior for (λ, σ2) is λj = 0 and π(λ−j, σ
2) ∝ 1

σ2 .

However, the prior under the alternative hypothesis is π(λj, λ−j, σ
2) ∝ 1

σ2 . Since the marginal

likelihoods of the data, p(data|H0) and p(data|H1), are both undetermined, we cannot define

the Bayes’ factor p(data|H1)
p(data|H0)

(as stressed in, e.g., Chib, Zeng, and Zhao (2020)). In contrast,

for nuisance parameters such as σ2, we can continue to assign improper priors. Since both

hypotheses H0 and H1 include σ2, the prior for it will be offset in the Bayes factor and

in the posterior probabilities. Therefore, we can only assign improper priors for common

parameters.17 Similarly, we can still assign improper priors for µY and ΣY in the first

time-series step.

The final reason why it might be undesirable to use a flat prior for risk prices is that

it does not impose any shrinkage on the parameters. This is problematic, given the large

number of members of the factor zoo, while we have only limited time-series observations of

both factors and test asset returns.

In the next subsection, we propose an appropriate prior for risk prices that is both robust

to weak factors and can be used for model selection, even when dealing with a very large

number of potential models.

2.3.1.2 Spike-and-Slab Prior for Risk Prices

To ensure that the integration of the marginal likelihood is well-behaved, we propose a novel

prior specification for the factors’ risk prices λ>f = (λ1, ..., λK). Since the inference in time-

series regression is always valid, we only modify the priors of the cross-sectional regression

parameters.

This prior belongs to the so-called spike-and-slab family. For illustrative purposes, in this

section we consider a Dirac spike and show analytically its implications for model selection.

In the next subsection we generalize the method to a “continuous spike” prior and study its

finite sample performance in our simulation setup.

In particular, we model the uncertainty underlying the model selection problem with a

mixture prior, π(λ, σ2,γ) ∝ π(λ|σ2,γ)π(σ2)π(γ). When γj = 1, and, hence, the factor

should be included in the model, the prior (the “slab”) follows a normal distribution, given

by λj|σ2, γj = 1 ∼ N (0, σ2ψj), where ψj is a (crucial) quantity that we define below. When

instead γj = 0, and the corresponding risk factor should not be included in the model, the

prior (the “spike”) is a Dirac distribution at zero. For the cross-sectional variance of the

17See Kass and Raftery (1995) (and also Cremers (2002)) for a more detailed discussion.
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pricing errors we keep the canonical diffuse prior:18 π(σ2) ∝ σ−2.

Let D denote a diagonal matrix with elements c, ψ−1
1 , · · · ψ−1

K , and Dγ the sub-matrix

of D corresponding to model γ, where c is a small positive number corresponding to the

common cross-sectional intercept (λc). The prior for the prices of risk (λγ) of model γ is

then

λγ |σ2,γ ∼ N (0, σ2D−1
γ ).

Given this prior, we sample the posterior distribution by sequentially drawing from the

conditional distributions of the parameters (i.e., we use a Gibbs sampling approach)19 pre-

sented in the following proposition.

Proposition 2.3 (B-SDF OLS Posterior with Dirac Spike-and-Slab) The posterior

distribution of (λγ, σ
2,γ) under the assumption of Dirac spike-and-slab prior and spherical

α (OLS), conditional on the draws of µY and ΣY from equations (2.6)–(2.7), is given by

the following conditional distributions:

λγ |data, σ2,γ ∼ N
(
λ̂γ , σ̂

2(λ̂γ)
)
, (2.16)

σ2|data,γ ∼ IG
(
N

2
,
SSRγ

2

)
, and (2.17)

p(γ | data) ∝ |Dγ |
1
2

|C>γ Cγ +Dγ |
1
2

1

(SSRγ/2)
N
2

, (2.18)

where λ̂γ = (C>γ Cγ +Dγ)−1C>γ µR, σ̂
2(λ̂γ) = σ2(C>γ Cγ +Dγ)−1, and SSRγ = µ>RµR −

µ>RCγ(C>γ Cγ + Dγ)−1C>γ µR = minλγ{(µR − Cγλγ)>(µR − Cγλγ) + λ>γDγλγ} and IG
denotes the inverse-Gamma distribution.

Proposition 2.4 (B-SDF GLS Posterior with Dirac Spike-and-Slab) The posterior

distribution of (λγ, σ
2,γ) under the assumption of Dirac spike-and-slab prior and and non-

spherical α (GLS), conditional on the draws of µY and ΣY from equations (2.6)–(2.7), is

given by the following conditional distributions:

λγ |data, σ2,γ ∼ N
(
λ̂γ , σ̂

2(λ̂γ)
)
, (2.19)

18Note that since the parameter σ is common across models and has the same support in each model,
the marginal likelihoods obtained under this improper prior are valid and comparable (see Proposition 1 of
Chib, Zeng, and Zhao (2020)).

19We do not standardize Yt in the time-series regression. In the empirical implementation, after obtaining
posterior draws for µY and ΣY , we calculate µR and Cf as the standardized expected returns of test assets
and correlation between test assets and factors. Then C is a matrix containing a vector of ones and Cf .
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σ2|data,γ ∼ IG
(
N

2
,
SSRγ

2

)
, and (2.20)

p(γ | data) ∝ |Dγ |
1
2

|C>γ Σ−1
R Cγ +Dγ |

1
2

1

(SSRγ/2)
N
2

, (2.21)

where λ̂γ = (C>γ Σ−1
R Cγ+Dγ)−1C>γ Σ−1

R µR, σ̂
2(λ̂γ) = σ2(C>γ Σ−1

R Cγ+Dγ)−1, and SSRγ =

µ>RΣ−1
R µR − µ>RΣ−1

R Cγ(C>γ Σ−1
R Cγ +Dγ)−1C>γ Σ−1

R µR = minλγ{(µR −Cγλγ)>Σ−1
R (µR −

Cγλγ) + λ>γDγλγ} and IG denotes the inverse-Gamma distribution.

The above propositions are proved, respectively, in Appendices 2.A.1.3 and 2.A.1.4.

Note that SSRγ is the minimized sum of squared errors under the spherical pricing

errors assumption, and is instead the minimized squared Sharpe ratio of pricing errors in the

non-spherical case, where the term λ>γDγλγ is akin to a generalized ridge regression penalty.

Our prior modeling is analogous to introducing a Tikhonov-Phillips regularization (see

Tikhonov, Goncharsky, Stepanov, and Yagola (1995) and Phillips (1962)) in the cross-

sectional regression step, and has the same rationale: delivering a well-defined marginal

likelihood in the presence of rank deficiency (which, in our setting, arises in the presence of

weak factors).

The key element and novelty of our method is that the “shrinkage” applied to the factors is

endogenously heterogeneous and designed to target weak factors: It leverages the correlation

between factors and returns by setting ψj as

ψj = ψ × ρ>j ρj , (2.22)

where ρj is an N×1 vector of correlation coefficients between factor j and the test assets, and

ψ ∈ R+ is a tuning parameter that controls the degree of shrinkage over all factors.20 But,

unlike tuning parameters in frequentist inference, as we show below, ψ is uniquely pinned

down by the researcher’s beliefs about Sharpe ratios being achievable in the economy.

When the correlation between fjt and Rt is very low, as in the case of a weak factor, the

penalty for λj, which is the reciprocal of ψρ>j ρj ≡ ({Dγ}jj)−1, is very large and dominates

the sum of squared errors.

Equation (2.16) (and, similarly, equation (2.19)) makes clear why this Bayesian formu-

lation is robust to weak factors. When C converges to zero, (C>γ Cγ + Dγ) is dominated

by Dγ , so the identification condition for the prices of risk no longer fails. When a factor

20Alternatively, we could have set ψj = ψ ×C>j Cj , where Cj is a N × 1 vector of covariances of the test
assets with factor j. However, ρj has the advantage of being invariant to the units in which factors are
measured. Furthermore, in the empirical analysis the cross-sectional step is implemented using returns and
factors scaled by their standard deviations, making the distinction immaterial.
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is weak, its correlation with test assets converges to zero; hence, the penalty for this factor,

ψ−1
j , goes to infinity. As a result, the posterior mean of λγ , λ̂γ = (C>γ Cγ +Dγ)−1C>γ µR,

is shrunk toward zero, and the posterior variance term σ̂2(λ̂) approaches σ2D−1
γ . Conse-

quently, the posterior distribution of λ for a weak factor is nearly the same as its prior. In

contrast, for a normal factor that has non-zero covariance with test assets, the information

contained in C dominates the prior information, since in this case the absolute size of Dγ

is small relative to C>γ Cγ .

Remark 2.5 (Level Factors) Identification failure of factors’ risk prices can arise in the

presence of “level factors,” that is factors to which asset returns have non-zero exposure but

lack cross-sectional spread. These factors help explain the average level of returns but not

their cross-sectional dispersion, and, hence, are collinear with the common cross-sectional

intercept. Our approach can handle this case by using variance standardized variables in the

cross-sectional part of the estimation and replacing the penalty in (2.22) with

ψj = ψ × ρ̃j>ρ̃j, (2.23)

where ρ̃j ≡ ρj −
(

1
N

∑N
i=1 ρj,i

)
× 1N is the cross-sectionally demeaned vector of factor j

correlations with asset returns.

When comparing two models, using posterior model probabilities for specification selec-

tion is equivalent to simply using the ratio of the marginal likelihoods, that is, the Bayes

factor, which is defined as

BFγ,γ′ = p(data|γ)/p(data|γ ′),

where we have given equal prior probability21 to model γ and model γ′.

Corollary 2.1 shows that, unlike in the flat prior case discussed earlier, under the Dirac

spike, the Bayes factors (and posterior probabilities) are well-defined even in the presence of

weak factors. Therefore, they can be used for model selection and hypotheses testing.

Corollary 2.1 (Model Selection via the Bayes Factor) Consider two nested linear fac-

tor models, γ and γ ′. The only difference between γ and γ ′ is γp: γp equals 1 in model γ

but 0 in model γ ′. Let γ−p denote a K×1 vector of model index excluding γp: γ
> = (γ>−p, 1)

and γ ′> = (γ>−p, 0) where, without loss of generality, we have assumed that the factor p is

ordered last.

21The corollary can be trivially extended to the case of different prior probabilities for the two models,
since in this case the Bayes factor is simply the ratio of marginal likelihoods multiplied by the prior odds.
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Under the spherical assumption for α (OLS), the Bayes factor is

BFγ,γ′ =

(
SSRγ′

SSRγ

)N
2 (

1 + ψpC
>
p

[
IN −Cγ′(C>γ′Cγ′ +Dγ′)

−1C>γ′
]
Cp
)− 1

2 , (2.24)

where SSRγ = µ>RµR−µ>RCγ(C>γ Cγ+Dγ)−1C>γ µR = minλγ{(µR−Cγλγ)>(µR−Cγλγ)+

λ>γDγλγ}. Under the non-spherical assumption for α (GLS), the Bayes factor is

BFγ,γ′ =

(
SSRγ′

SSRγ

)N
2 ∣∣∣1 + ψp

[
C>p Σ−1

R Cp −C
>
p Σ−1

R Cγ′
(
C>γ′Σ

−1
R Cγ′ +Dγ′

)−1
C>γ′Σ

−1
R Cp

]∣∣∣− 1
2
.

(2.25)

where SSRγ = µ>RΣ−1
R µR − µ>RΣ−1

R Cγ(C>γ Σ−1
R Cγ + Dγ)−1C>γ Σ−1

R µR = minλγ{(µR −
Cγλγ)>

Σ−1
R (µR −Cγλγ) + λ>γDγλγ}.

The proof can be found in Appendix 2.A.1.5.

Since C>p [IN − Cγ′(C>γ′Cγ′ +Dγ′)
−1C>γ′ ]Cp is always positive, ψp plays an important

role in variable selection. For a strong and useful factor that can substantially reduce pricing

errors, the first term in equation (2.24) dominates, and the Bayes factor will be much greater

than 1, hence, providing evidence in favor of model γ.

Recall that SSRγ = minλγ{(µR −Cγλγ)>(µR −Cγλγ) + λ>γDγλγ}, hence, we always

have SSRγ ≤ SSRγ′ in sample. There are two effects of increasing ψp: i) when ψp is large,

the penalty for λp is small, hence, it is easier to minimize SSRγ, and SSRγ′/SSRγ becomes

much larger than 1; ii) large ψp decreases the second term in equation (2.24), lowering the

Bayes factor, and acting as a penalty for dimensionality.

A particularly interesting case is when the factor added by model γ is weak: Cp converges

to zero, but the penalty term 1/ψp ∝ 1/ρ>pρp goes to infinity. On the one hand, the first

term in equation (2.24) will converge to 1; on the other hand, since ψp ≈ 0 in large sample,

the second term in equation (2.24) will also be around 1. Therefore, the Bayes factor for

a weak factor will go to 1 asymptotically.22 In contrast, a useful factor should be able to

greatly reduce the sum of squared errors SSRγ, so the Bayes factor will be dominated by

SSRγ, yielding a value substantially above 1.

Note that since our prior restores the validity of the marginal likelihood, any hypothesis

on the parameters (e.g., whether the pricing errors are jointly zero) can be tested via pos-

terior probabilities or, equivalently, Bayesian p-values. In particular, we obtain closed-form

solutions for testing hypothesis about prices of risk by centering the Dirac spike at the null

22But in finite sample it may deviate from its asymptotic value, so we should not use 1 as a threshold
when testing the null hypothesis H0 : γp = 0.
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value rather than at zero.

Corollary 2.2 (Hypothesis Testing for Risk Prices (Bayesian p-values)) Suppose that

we want to test the point hypothesis λ−γ = λ̃−γ and as before we have the prior λγ |σ2,γ ∼
N (0, σ2D−1

γ ) in model γ. In this case, the posterior distributions in Propositions 2.3 and

2.4 still hold with SSRγ, therein replaced by S̃SRγ, defined below.

Under the spherical assumption for α (OLS),

S̃SRγ = (µR −C−γλ̃−γ)>(µR −C−γλ̃−γ)−

(µR −C−γλ̃−γ)>Cγ(C>γ Cγ +Dγ)−1C>γ (µR −C−γλ̃−γ)

= min
λγ
{(µ̃R −Cγλγ)>(µ̃R −Cγλγ) + λ>γDγλγ},

where µ̃R ≡ µR − C−γλ̃−γ denotes the vector of cross-sectional residual expected returns

that are unexplained by factors f−γ with prices of risk λ̃−γ.

Under the non-spherical assumption for α (GLS),

S̃SRγ = (µR −C−γλ̃−γ)>Σ−1
R (µR −C−γλ̃−γ)−

(µR −C−γλ̃−γ)>Σ−1
R Cγ(C>γ Σ−1

R Cγ +Dγ)−1C>γ Σ−1
R (µR −C−γλ̃−γ)

= min
λγ
{(µ̃R −Cγλγ)>Σ−1

R (µ̃R −Cγλγ) + λ>γDγλγ},

A Bayesian p-value for the null hypothesis is then constructed by integrating 1−p(γ | data)

in equation (2.18) (equation (2.21) in the case of spherical (non-spherical) pricing errors),

with respect to the Normal-inverse-Wishart in equations (2.6)–(2.7).

The proof of the corollary follows the same steps as the proofs of Propositions 2.3 and 2.4

in Appendices 2.A.1.3 and 2.A.1.4.

Corollary 2.2 can be used for joint hypothesis testing within the Bayesian framework

(e.g., building confidence intervals), and it is very similar in spirit to the standard frequentist

identification-robust inference.

2.3.1.3 Continuous Spike

We extend the Dirac spike-and-slab prior by encoding a continuous spike for λj, when γj

equals 0. While the closed-form solutions obtained with a Dirac spike allow to feasibly eval-

uate millions of models, this extension allows to efficiently sample quadrillions of alternative

specifications.

Following the literature on Bayesian variable selection (see, e.g., George and McCulloch

(1993, 1997) and Ishwaran, Rao, et al. (2005)), we model the uncertainty underlying model
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selection with a mixture prior π(λ, σ2,γ,ω) = π(λ | σ2,γ)π(σ2)π(γ | ω)π(ω), where

λj | γj, σ2 ∼ N
(
0, r(γj)ψjσ

2
)
. (2.26)

Note the introduction of two new elements, r(γj) and π(ω), in the prior. When the factor

should be included, r(γj = 1) = 1, hence we have the same “slab” as before. When the factor

should not be in the model r(γj = 0) = r � 1. Hence the Dirac “spike” is replaced by a

Gaussian spike, which is extremely concentrated at zero (we set r = 0.001 in our empirical

analysis). Note that in this case ψj has an effect on the spike, but given a small value for r

this effect is virtually immaterial. As we explain below, the additional prior π(ω) encodes

our ex ante beliefs about the sparsity of the true model in terms of observable factors.

We now redefineD as a diagonal matrix with elements c, (r(γ1)ψ1)−1 , . . . , (r(γK)ψK)−1,

where ψj is given as before by equation (2.22). In matrix notation, the prior for λ is therefore:

λ|σ2,γ ∼ N (0, σ2D−1). The term r(γj)ψj in D−1 is set to be small or large, depending on

whether γj = 0 or γj = 1. In the empirical implementation, we set r to a value much smaller

than 1 since we intend to shrink λj toward zero when γj is 0. Hence, the spike component

concentrates the posterior mass of λ around zero, whereas the slab component allows λ to

take values over a much wider range. Therefore, the posterior distribution of λ is very similar

to the case of a Dirac spike in section 2.3.1.2.

Furthermore, this prior encodes beliefs about the fraction of the total Sharpe ratio of

the test assets ascribable to the factors and to the pricing errors. To see this, consider the

case in which (as in our empirical applications) both factors and returns are standardized.

It then follows that

Eπ[SR2
f | γ, σ2]

Eπ[SR2
α | σ2]

=

∑K
k=1 r(γk)ψk

N
=
ψ
∑K

k=1 r(γk)ρ̃
>
k ρ̃k

N
, (2.27)

where SRf and SRα denote, respectively, the Sharpe ratios of all factors23 (ft) and of the

pricing errors of all assets (α), and Eπ denotes prior expectations. In the baseline sample

of our empirical applications,
∑K

k=1 ρ̃
>
k ρ̃k/N ' 3.22.24 Hence, for ψ in the 1–5 range, if,

say, 50% of the factors are selected, our prior expectation is that the factors should explain

about 62%–89% of the squared Sharpe ratio of test assets.

The prior π(ω) not only gives us a way of sampling from the space of potential models,

23The squared Sharpe ratio implied by the SDF is λ>f Σfλf . Since λf are assumed to be independently

distributed in the prior level, Eπ[SR2
f | γ, σ2] is equal to

∑K
k=1 Eπ[λ2k | γk, σ2].

24Note that in our previous study (where the cross-section was 25 Fama-French size and B/M portfolios

plus 30 industry portfolios)
∑K
k=1 ρ̃

>
k ρ̃k/N ' 0.51. In that case, for ψ in the 10–20 range, if, say, 50% of the

factors are selected, our prior expectation is that the factors should explain about 71%–83% of the squared
Sharpe ratio of test assets.
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but also encodes belief about the sparsity of the true model using the prior distribution

π(γj = 1|ωj) = ωj. Following the literature on predictors selection, we set:

π(γj = 1|ωj) = ωj, ωj ∼ Beta (aω, bω) .

Different hyper-parameters aω and bω determine whether one a priori favors more parsimo-

nious models or not.25 Furthermore, aω and bω can be chosen to encode prior beliefs about

the Sharpe ratio achievable in the economy since Eπ[SR2
f | σ2] = aω

aω+bω
ψσ2

∑K
k=1 ρ̃

>
k ρ̃k as

r → 0.

The considerations above imply that an agent’s expectations about the Sharpe ratio

achievable i) with only one factor, ii) with all the factors jointly, and iii) the sparsity of the

“true” model, uniquely determine the parameters ψ, aω, bω.26

When ωj is constant and equal to 0.5 and r converges to 0, the continuous spike-and-

slab prior is equivalent to the one with Dirac spike in Section 2.3.1.2. Instead, treating ωj

(hence, γj), as a parameter to be sampled is particularly useful in high-dimensional cases.

For instance, suppose that there are 30 candidate factors. With the Dirac spike-and-slab

prior we have to calculate the posterior model probabilities for 230 different models. Given

that we update (µR,Cf ) at each sampling round, posterior probabilities for all models are

re-computed for every new draw of these quantities, rendering the computational cost very

large. In contrast, with the continuous spike-and-slab approach one can simply use the

posterior mean of γj to estimate the posterior marginal probability of the j-th factor, since

they are the same quantity.

Similar to the Dirac spike-and-slab case, we use sequential sampling from the conditional

distributions of the parameters (λ,ω, σ2) and, most importantly, γ, as presented in the

following propositions.

Proposition 2.6 (B-SDF OLS Posterior with Continuous Spike-and-Slab) The pos-

terior distribution of (λ,γ,ω, σ2) under the assumption of continuous spike-and-slab prior

and spherical α (OLS), conditional on the draws of µY and ΣY from equations (2.6)–(2.7),

is given by the following conditional distributions:

λ|data, σ2,γ,ω ∼ N
(
λ̂, σ̂2(λ̂)

)
, (2.28)

25The prior expected probability of selecting a factor is simply aω
aω+bω

. We set aω = bω = 1 in the
benchmark case; that is, each factor has an ex ante expected probability of being selected equal to 50%.
However, we could for instance, set aω = 1 and bω >> 1 in order to favor a sparser model.

26For a discussion on the importance of using priors on observables and economic quantities, rather than
deep model parameters, see Jarociński and Marcet (2019).
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p(γj = 1|data,λ,ω, σ2,γ−j)

p(γj = 0|data,λ,ω, σ2,γ−j)
=

ωj
1− ωj

p(λj|γj = 1, σ2)

p(λj|γj = 0, σ2)
, (2.29)

ωj|data,λ,γ, σ2 ∼ Beta (γj + aω, 1− γj + bω) , and (2.30)

σ2|data,ω,λ,γ ∼ IG
(
N +K + 1

2
,
(µR −Cλ)>(µR −Cλ) + λ>Dλ

2

)
, (2.31)

where λ̂ = (C>C +D)−1C>µR and σ̂2(λ̂) = σ2(C>C +D)−1.

Proposition 2.7 (B-SDF GLS Posterior with Continuous Spike-and-Slab) The pos-

terior distribution of (λ,γ,ω, σ2) under the assumption of continuous spike-and-slab prior

and non-spherical α (GLS), conditional on the draws of µY and ΣY from equations (2.6)–

(2.7), differs from ones in Proposition 2.6 only for the posterior distributions of (λ, σ2):

λ|data, σ2,γ,ω ∼ N
(
λ̂, σ̂2(λ̂)

)
, and (2.32)

σ2|data,ω,λ,γ ∼ IG
(
N +K + 1

2
,
(µR −Cλ)>Σ−1

R (µR −Cλ) + λ>Dλ

2

)
, (2.33)

where λ̂ = (C>Σ−1
R C +D)−1C>Σ−1

R µR and σ̂2(λ̂) = σ2(C>Σ−1
R C +D)−1.

The proofs of the above propositions are reported in Appendix 2.A.1.6.

2.3.1.4 Selection vs. Aggregation

The posterior probabilities of models and factor obtained above with spike-and-slab priors,

can be used not only for model selection but also efficient aggregation using all possible

specification.

If we are interested in some quantity ∆ that is well-defined for every model m = 1, ..., m̄

(e.g., price of risk, risk premia, and maximum Sharpe ratio), from the Bayes theorem we

have

E [∆|data] =
m̄∑
m=0

E [∆|data,model = m] Pr (model = m|data) , (2.34)

where E [∆|data,model = m] = limL→∞
1
L

∑L
l=1 ∆(θ

(m)
l ) and

{
θ

(m)
l

}L
l=1

denote L draws from

the posterior distribution of the parameters of model m. That is, the BMA expectation of

∆, conditional on only the data is simply the weighted average of the expectation in every

model, with weights equal to the models’ posterior probabilities (see, e.g., Raftery, Madigan,

and Hoeting (1997), and Hoeting, Madigan, Raftery, and Volinsky (1999)).

The BMA efficiently aggregates information about ∆ over the space of all models, rather

than conditioning on a particular model. At the same time, if a dominant model exists –

hence it has posterior probability approaching one – the BMA will use that model alone.
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For each model γ that one could construct with the universe of factors, we have the cor-

responding SDF: Mγ,t = 1−(fγ,t − E[fγ,t])
> λγ . Therefore, one can construct a BMA of the

SDF using the model posterior probabilities derived in the previous sections. Note that these

probabilities are based upon the ability of the factors and models to explain the cross-section

of asset return; that is, they explicitly target the key property of a valid SDF. Aggregation is

particularly appealing when multiple candidate factors load on the same underlying sources

of risk (plus factor-specific noise). Crucially, BMA creates a weighted average that endoge-

nously maximizes the SDF signal-to-noise ratio for cross-sectional pricing.

The BMA is the optimal aggregation procedure for a very wide spectrum of optimality

criteria, and, in particular, it is optimal under the quadratic loss function and is “optimal on

average”, that is, no alternative estimator can beat the BMA for all values of the true un-

known parameters (see, e.g., Raftery and Zheng (2003), and Schervish (1995)). Furthermore,

the BMA predictive distribution minimizes the Kullback-Leibler information divergence rel-

ative to the true unknown data generating process. Hence, it delivers the most likely SDF

given the data, and the estimated density is as close as possible to the true unknown one,

even if all the models considered are misspecified.

A powerful feature of the BMA method is that equation (2.34) can be evaluated by

generating a Markov Chain over the space of possible models. This is exactly what the

continuous spike-and-slab method allows us to do: We sample models in the unrestricted

space of 2.25 quadrillion specifications, computing all the desired quantities of interest for

each specification sampled, and then aggregate the results. The Markov Chain endogenously

over-samples the more likely specifications and under-samples the ones that are less likely

to have generated the observed data. The Markov Chain can then be stopped when the

posterior means of interest have converged according to the standard tests. We use as a

convergence criterion the Separate Partial Mean test (see, e.g., Geweke (2005)) for each

factor specific parameter (i.e., posterior probability and price of risk).

Recent literature has usually pursued either selection (see, e.g., Feng, Giglio, and Xiu

(2020)) or aggregation (see, e.g., Kozak, Nagel, and Santosh (2020)) of pricing factors. Our

approach, instead, combines both. The BMA-SDF includes both factors that are clear drivers

of asset returns, that is, factors with posterior probability of inclusion (Pr[γj = 1|data]) ap-

proaching 1, and also an optimal combination of factors that are, given the data, individually

less salient.
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2.4 Simulation

We build a simple setting for a linear factor model that includes both strong and weak factors

and allows for potential model misspecification.

The cross-section of asset returns mimics the empirical properties of 25 Fama-French

portfolios sorted by size and value. We generate both factors and test asset returns from

normal distributions, assuming that HML is the only useful factor. A misspecified model also

includes pricing errors from the GMM-OLS estimation, which makes the vector of simulated

expected returns equal to their sample mean estimates of 25 Fama-French portfolios. Finally,

a useless factor is simulated from an independent normal distribution with mean zero and

standard deviation 1%. In summary,

ft,useless
iid∼ N (0, (1%)2),

(
Rt

ft,hml

)
iid∼ N

([
µ̄R

f̄hml

]
,

[
Σ̂R Ĉhml

Ĉ>hml σ̂2
hml

])
, and

µR =

λ̂c1N + Ĉf λ̂HML, if the model is correct, and

R̄, if the model is misspecified,

where factor loadings, risk prices, and variance-covariance matrix of returns and factors are

equal to their sample estimates from the time series and cross-sectional regressions of the

GMM-OLS procedure, applied to 25 size-and-value portfolios and HML as a factor. All the

model parameters are estimated on monthly data from July 1963 to December 2017.

To illustrate the properties of the frequentist and Bayesian approaches, we consider three

estimation setups: (a) the model includes only a strong factor (HML), (b) the model includes

only a useless factor as a stylized example for a weak factor, and (c) the model includes both

strong and useless factors. Each setting can be correctly or incorrectly specified, with the

following sample sizes: T = 100, 200, 600, 1,000, and 20,000. We compare the performance

of the OLS/GLS standard frequentist and Bayesian SDF estimators (GMM and B-SDF,

respectively) with the focus on risk prices recovery, testing, and identification of strong and

useless factors for model comparison.

2.4.1 B-SDF Estimation of Risk Prices

In this section we focus on the most realistic (and challenging) model setup, which includes

both useless and strong factors and allows for model misspecification. We found similar

performance of the B-SDF approach in a wide range of alternative simulation settings (e.g.,

considering correctly specified models and cross-sections of different dimensions).27

27These additional results are reported in Appendix 2.A.3.
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Table 2.1 compares the performance of frequentist and Bayesian estimators of the price

of risk and reports their empirical test size and confidence intervals for cross-sectional R2. In

the case of the Bayesian estimation we report results for both the flat and normal priors for

the price of risk (the latter, in a single stand-alone model case, corresponds to the spike-and-

slab approach). Since the model is misspecified, true cross-sectional R2 has the population

value of 43.87% (6.69%) for OLS (GLS)). In the case of the standard GMM approach, tests

are constructed using standard t-statistics, and in the case of the B-SDF we rely on the

quantiles of the posterior distribution to form the credible confidence intervals. The last two

columns also report the quantiles of the posterior distribution of the R2 mode across the

simulations, corresponding to the peak of the cross-sectional likelihood.

As expected, in the conventional frequentist estimation, the useless factor is often found

to be a significant predictor of the asset returns: Its OLS (GLS) t-statistic would be above

a 5%-critical value in more than 60% (87%) of the simulations in the asymptotic case of

T = 20, 000. On the contrary, the Bayesian confidence intervals detect the useless factor and

reject the null of zero price of risk attached to the useless factor with frequency asymptotically

approaching the size of the tests independently from the prior.

The presence of useless factors can also bias parameter estimates for the strong ones and

often leads to their crowding out from the model. Panel A in Table 2.1 serves as a good

illustration of this possibility, with the GMM price of risk estimates for the strong factor

clearly biased due to the weak identification problem. In this case B-SDF provides reliable,

albeit conservative in the case of the flat prior, confidence bounds for model parameters

effectively restore statistical inference. Note that the empirical size of the B-SDF (normal

prior) credible confidence intervals is very close to the nominal one even for relatively small

sample sizes.

Why does the Bayesian approach work while the frequentist one fails? The argument is

probably best illustrated by Figure 2.1, which plots posterior distributions of B-SDF λ̂ for

both strong and useless factors from one of the simulations, along with their pseudo-true

values of the price of risk (defined as 0 for the useless factor).

In this particular simulation, GMM estimates of λuseless imply significant price of risk

for both OLS and GLS versions of the weight matrix, with traditional hypothesis testing

rejecting the null of λuseless = 0, even at 1% significance level. Instead, the B-SDF posteriors

(blue lines in Figure 2.1) of the useless factor price of risk are diffuse and centered around 0.

Intuitively, the main driving force behind it is the fact that in B-SDF, C (the covariance of

factors with returns) is updated continuously: When Ĉ is close to zero, the posterior draws

of C will be randomly positive or negative, which implies that the conditional expectation

of λ in equation 2.11 will also switch sign from draw to draw. As a result, the posterior
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Table 2.1: Price of risk tests in a misspecified model with useless and strong factors

λc λstrong λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

GMM–Wols 100 0.083 0.033 0.007 0.065 0.03 0.005 0.082 0.029 0.004 -4.35% 70.21%
200 0.084 0.039 0.006 0.058 0.025 0.003 0.119 0.047 0.006 -2.38% 69.17%
600 0.075 0.034 0.009 0.074 0.032 0.005 0.255 0.140 0.024 8.42% 67.27%
1000 0.078 0.03 0.004 0.070 0.031 0.001 0.311 0.181 0.048 16.85% 65.40%
20000 0.066 0.019 0.001 0.052 0.022 0.001 0.752 0.585 0.288 36.92% 58.64%

B-SDF, flat prior 100 0.037 0.015 0.001 0.032 0.007 0.001 0.003 0.001 0.000 16.62% 49.24%
200 0.054 0.021 0.002 0.036 0.013 0.001 0.006 0.001 0.000 13.54% 54.05%
600 0.053 0.027 0.005 0.047 0.015 0.002 0.019 0.006 0.001 14.72% 58.72%
1000 0.059 0.027 0.004 0.050 0.018 0.000 0.040 0.013 0.002 19.57% 58.85%
20000 0.015 0.005 0.000 0.010 0.003 0.000 0.089 0.043 0.009 39.19% 52.86%

B-SDF, normal prior 100 0.062 0.029 0.005 0.047 0.019 0.002 0.003 0.001 0.000 7.47% 43.43%
200 0.084 0.04 0.008 0.067 0.031 0.005 0.006 0.002 0.000 3.66% 48.19%
600 0.087 0.048 0.018 0.093 0.044 0.010 0.019 0.006 0.001 4.87% 54.33%
1000 0.094 0.052 0.011 0.106 0.051 0.010 0.040 0.013 0.002 9.64% 54.13%
20000 0.100 0.050 0.011 0.102 0.052 0.009 0.088 0.043 0.009 34.47% 46.84%

Panel B: GLS
GMM–Wgls 100 0.095 0.048 0.007 0.076 0.035 0.004 0.146 0.070 0.012 -7.66% 20.08%

200 0.104 0.051 0.008 0.086 0.045 0.007 0.235 0.142 0.031 -6.97% 19.19%
600 0.090 0.045 0.009 0.105 0.047 0.008 0.433 0.326 0.163 -4.81% 20.93%
1000 0.096 0.044 0.010 0.106 0.054 0.008 0.535 0.444 0.273 -3.38% 19.52%
20000 0.084 0.034 0.006 0.091 0.037 0.009 0.889 0.865 0.807 1.42% 19.32%

B-SDF, flat prior 100 0.114 0.061 0.011 0.046 0.020 0.001 0.029 0.009 0.000 -1.99% 9.64%
200 0.094 0.050 0.012 0.056 0.023 0.003 0.034 0.012 0.001 -3.04% 10.27%
600 0.090 0.045 0.008 0.066 0.028 0.004 0.068 0.029 0.004 -2.31% 12.68%
1000 0.080 0.036 0.007 0.071 0.026 0.002 0.075 0.035 0.007 -1.10% 12.98%
20000 0.017 0.002 0.000 0.013 0.004 0.002 0.105 0.050 0.011 3.43% 12.65%

B-SDF, normal prior 100 0.133 0.070 0.014 0.054 0.023 0.002 0.029 0.008 0.000 -3.50% 7.72%
200 0.111 0.057 0.018 0.075 0.033 0.006 0.034 0.012 0.001 -5.08% 7.24%
600 0.105 0.061 0.013 0.093 0.047 0.008 0.068 0.029 0.004 -5.30% 7.85%
1000 0.108 0.055 0.014 0.099 0.049 0.010 0.075 0.035 0.007 -4.42% 7.86%
20000 0.090 0.046 0.010 0.113 0.057 0.009 0.105 0.050 0.011 0.62% 4.10%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true values of λc
and λstrong, λ

∗
useless ≡ 0 in a misspecified model with an intercept, a strong and a useless factor. The true

value of the cross-sectional R2
adj is 43.87% (6.69%) for the OLS (GLS) estimation. B-SDF estimates credible

intervals of risk prices under (1) a flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT
d), where d is chosen

to be 0.5, while ψ is equal to 5. The normal prior corresponds to a (annualized) prior SR of the factor model
equal to 1.239, 1.305, 1.386, 1.413, and 1.497 for T ∈ {100, 200, 600, 1, 000, and 20, 000}.

distribution of λuseless is centered around 0, and so is its confidence interval. The same logic

applies to both OLS and GLS B-SDF formulations. Note that the Bayesian prior does not

have any significant impact on the price of risk estimation of strong factors: In the case of

well-identified sources of risk (Figure 2.1, panels (b) and (d)), the Bayesian and frequentist

approach give very similar results.

Our setting also allows us to perform formal hypothesis testing via posterior probabilities

and Bayes factors, following Corollary 2.2, even as T → ∞, using the spike-and-slab prior

of Section 2.3.1.2. We report corresponding simulation results for the Bayesian p-value

in Appendix 2.A.3.2. Figure 2.A.1 shows that useless factors are easily detected (their
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Figure 2.1: Distribution of the price of risk estimates.
Posterior distribution of the price of risk (blue dashed line) from B-SDF estimation of a misspecified one-
factor model based on a single simulation with T = 1000 and asymptotic distribution of the frequentist GMM
estimate (red solid line). The dotted line corresponds to the pseudo-true value of the parameter (defined
to be 0 for a useless factor). Panels (a) and (c) correspond to the estimation of a model including a single
useless factor. Panels (b) and (d) correspond to the case of including a single strong, well-identified factor.

p−values, as expected, are sharply concentrated around the prior inclusion probability of

50% for any sample size), while true sources of risk are successfully selected with probability

fast approaching 1.

2.4.1.1 Evaluating Cross-Sectional Fit

Weak identification notoriously affects not only parameter estimates but also conventional

measures of fit, such as cross-sectional R2 (Kleibergen and Zhan (2015)). We now show that

the B-SDF approach restores not only inference on the price of risk but also the validity of

the measures of cross-sectional fit.

Figure 2.2 shows the distribution of cross-sectional R2 across a large number of simu-

lations for the asymptotic case of T = 20, 000 and a misspecified process for returns. For
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Figure 2.2: Cross-sectional distribution of OLS R2
adj in a model with a useless factor.

Empirical distribution of cross-sectional R2 achieved by a misspecified model with a useless factor across
2,000 simulations of sample size T = 20, 000. Blue dashed lines correspond to the distribution of the
posterior mode for R2

adj , while red solid lines depict the pointwise sample distribution of R2
adj evaluated at

the frequentist GMM estimates. The grey dotted line stands for the true value of R2
adj .

brevity, we focus on the most illustrative case of a single useless factor in the model. In

this case frequentist estimation yields an extremely spreadout distribution of R2 across sim-

ulations, which makes the researcher likely to conclude that the useless factor actually has

significant explanatory power in the cross-section of returns.28 This unfortunate property of

the frequentist approach is not shared by our hierarchical Bayesian approach: The mode of

the posterior distribution is tightly concentrated (across simulations) in the proximity of the

true R2 value.

However, the pointwise distribution of cross-sectional R2 across the simulations is only

part of the story, as it does not reveal the in-sample estimation uncertainty and whether the

confidence intervals are credible in reflecting it. While B-SDF incorporates this uncertainty

directly into the shape of its posterior distribution, one needs to rely on bootstrap-like

algorithms to build a similar analogue in the frequentist case. As a frequentist benchmark,

we use the approach of Lewellen, Nagel, and Shanken (2010) to construct the confidence

interval.

Figure 2.3 presents the posterior distribution of cross-sectional R2 for a model that con-

tains a useless factor and contrasts it with the frequentist values and their confidence inter-

vals. The true adjusted R2 is marginally negative, yet not only are its frequentist estimates

economically large (29% and 19% for the OLS and GLS estimation types, respectively), but

also the standard approach of Lewellen, Nagel, and Shanken (2010) yields extremely wide

28Gospodinov, Kan, and Robotti (2019) show examples of perfect fit obtainable with artificially generated
useless factors and a family of one-step estimators.
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Figure 2.3: The estimation uncertainty of cross-sectional R2.

Posterior densities of cross-sectional R2
adj in one representative simulation with centered 90% confidence

interval (shaded area). The blue dashed line denotes the true R2
adj . The red dashed-dotted line depicts FM

R2
adj estimate with 90% Lewellen, Nagel, and Shanken (2010) confidence intervals (red dotted lines).

confidence intervals. Interestingly, they include a level of fit up to 100%, but not the true

value. In contrast, while there is still considerable estimation uncertainty, the posterior dis-

tribution of the adjusted R2 peaks in the proximity of 0 and is concentrated on much lower

values. As shown in the last two columns of Table 2.1, this is a general property of the

B-SDF estimation across simulation designs, sample sizes, and types of prior.

The B-SDF estimator performed well in a wide range of additional simulations that we

have conducted. In particular, in Section 2.A.3.1 of the Appendix we show that the B-SDF-

based inference stays reliable even in the presence of what is typically considered a large

cross-section (100 portfolios). This is reassuring, as it implies that our estimator does not

require any specific adjustments for applications with either small time-series dimension or

a large cross-sectional one (unlike popular frequentist alternatives).

2.4.2 Selection via Bayes Factors

How well do flat and spike-and-slab priors work empirically in selecting relevant and detecting

useless factors in the cross-section of asset returns? We revisit the theoretical results from

Section 2.3 using the same simulation design therein.

We consider a misspecified model with both strong and useless factors and compute Bayes

factors, corresponding to each of the potential sources of risk. Table 2.2 reports the empirical

frequency of variable retention in the model across 2,000 simulations of different sample sizes

(T = 200, 600, and 1,000). We first report the probability of retaining a factor under a flat

prior, which is standard in the literature. Second, we use the continuous spike-and-slab prior
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Table 2.2: The probability of retaining risk factors using Bayes factors

T 55% 57% 59% 61% 63% 65% 55% 57% 59% 61% 63% 65%
Panel A: Flat prior

200 fstrong: 0.636 0.602 0.570 0.538 0.509 0.470 fuseless: 0.980 0.950 0.856 0.724 0.581 0.437
600 0.821 0.802 0.784 0.764 0.733 0.710 0.996 0.983 0.970 0.932 0.878 0.791

1,000 0.880 0.850 0.840 0.840 0.800 0.800 1.000 1.000 0.990 0.980 0.940 0.910

Panel B: Spike-and-Slab, prior of
√
Eπ[SR2

f | σ2] = 0.295

200 fstrong: 0.815 0.761 0.721 0.675 0.630 0.581 fuseless: 0.004 0.000 0.000 0.000 0.000 0.000
600 0.974 0.961 0.954 0.943 0.926 0.899 0.000 0.000 0.000 0.000 0.000 0.000

1,000 0.980 0.970 0.970 0.960 0.960 0.940 0.000 0.000 0.000 0.000 0.000 0.000

Panel C: Spike-and-Slab, prior of
√

Eπ[SR2
f | σ2] = 0.807

200 fstrong: 0.527 0.489 0.449 0.412 0.381 0.349 fuseless: 0.041 0.007 0.004 0.000 0.000 0.000
600 0.859 0.832 0.811 0.774 0.734 0.690 0.001 0.000 0.000 0.000 0.000 0.000

1,000 0.910 0.910 0.870 0.850 0.830 0.820 0 .000 0.000 0.000 0.000 0.000 0.000

Frequency of retaining risk factors using BF for different samples size (T=200, 600, and 1,000) across 2,000
simulations of a misspecified model with strong and useless factors. A factor is retained if its posterior
probability, Pr(γi = 1|data), is greater than a given threshold: 55%, 57%, 59%, 61%, 63%, and 65%.
Returns and factors are standardized. Panel A reports results for the flat prior. Panels B and C use the
spike-and-slab approach of Section 2.3.1.3 with demeaned correlations, r = 0.001 and ψ = 1 or 10, mapping

into the corresponding monthly Sharpe ratios,
√

Eπ[SR2
f | σ2], listed in the table. The prior for each factor

inclusion in Panels B and C is a Beta(1, 1), yielding a prior expectation for factor inclusion of 50%.

for the price of risk and compute the marginal probability of each factor as the posterior

mean of γj. The decision rule is based on a range of critical values, 55%–65%, such that

when the posterior factor probability (Pr[γj = 1|data]) is above a particular threshold, we

retain the factor.

The difference generated by the two priors is drastic in the presence of useless factors. As

discussed in Section 2.3.1.1, under a flat prior for the price of risk, the posterior probability

of including a useless factor in the model converges to 1 asymptotically. Table 2.2 makes it

clear that the same holds even for a very short sample, making the overall process of model

selection completely invalid. In turn, factor selection via spike-and-slab prior approach of

Section 2.3.1.3 is reliable in both retaining strong factors and excluding useless ones (even

with a very small sample size). As Panels B and C indicate, our results also remain robust

to different prior values for the factor Sharpe ratio.

Overall, we find the behavior of the spike-and-slab prior very encouraging for variable

and model selection: It successfully eliminates the impact of the useless factors from the

model and identifies the true sources of risk.

2.5 Empirical Analysis

In this section we apply our hierarchical Bayesian method to a large set of factors proposed

in the previous literature. First, we consider 51 tradable and non-tradable factors, yielding

more than two quadrillion possible models, and employ our spike-and-slab priors to compute
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factors’ posterior probabilities and implied prices of risk (Section 2.5.1). Second, based

on the results of this estimation, in Section 2.5.2 we construct an SDF via Bayesian Model

Averaging and show its superior asset pricing properties. Following Martin and Nagel (2021),

we consider not only in-sample but also out-of-sample performance (both in the time-series

and cross-sectional dimension) and compare the BMA-SDF with both notable reduced-form

models and the shrinkage-based approach to factor aggregation (Kozak, Nagel, and Santosh

(2020)). Finally, in Sections 2.5.3 and 2.5.4 we study whether one can achieve an accurate

representation of the SDF with low-dimensional (observable) factor models, and show that

such conjecture is not supported by the data. Strikingly, our results indicate that there is

scope for both selection and aggregation in linear factor models.

2.5.1 Sampling Two Quadrillion Models

We now turn our attention to a large cross-section of candidate asset pricing factors. In

particular, we focus on 51 (both tradable and non-tradable) monthly factors available from

October 1973 to December 2016 (i.e. T ' 600). Factors are described in Table 2.A.1 in the

Appendix, with additional details available in Table OA13 of the Online Appendix.

As test assets we consider a cross-section of 60 asset returns that are meant to capture

well-documented cross-sectional anomalies. These include all the (34) tradable (long-short)

factors in Table 2.A.1 and additional 26 long-short portfolios based on the univariate sorting

of the characteristics listed in Table 2.A.2 of Appendix 2.A.2. The inclusion of the tradable

factors among the test assets and the usage of the non-spherical pricing error formulation

(i.e., GLS) also imposes (asymptotically) the restriction of factors pricing themselves.29

Since we do not restrict the maximum number of factors to include, all the possible

combinations of factors give us a total of 251 possible specifications, that is 2.25 quadrillion

models. We use the continuous spike-and-slab approach of Section 2.3.1.3 with non-spherical

errors, since it easily handles a very large number of possible models while remaining valid

in the presence of the most common identification failures. We report both posterior prob-

abilities (given the data) of each factor (i.e., E [γj|data], ∀j) as well as the posterior means

of the factors’ price of risk (i.e., E [λj|data], ∀j) computed as the Bayesian Model Average

(BMA) across the universe of models. We use the formulation of the penalty term ψj in

equation (2.23) in order to also handle identification failures of factors’ price of risk caused

by level factors (see Remark 2.5).30

29Note that we could also have enforced this pricing restriction in finite sample using an ad hoc prior for
these factors – which is analogous to estimating the model via the GLS version of the beta representation of
expected returns, and then inverting the estimates to obtain the price of risk of the SDF formulation.

30In Appendix 2.A.4 we report results based on the formulation in equation (2.22)). The findings therein
are very similar to the ones discussed below. Table 2.A.15 reports the values of the squared correlations,
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Figure 2.4: Posterior factor probabilities.

Posterior probabilities of factors, E [γj |data], computed using the continuous spike-and-slab approach of
Section 2.3.1.3 and 51 factors described in Table 2.A.1 of the Appendix. Sample: 1973:10–2016:12. Test
assets: 60 anomaly portfolios. Prior distribution for the j-th factor inclusion is a Beta(1, 1), yielding a 0.5

prior expectation for γj . Posterior probabilities for different values of the prior Sharpe ratio,
√
Eπ[SR2

f | σ2],

annualized.

The posterior evaluation is performed and reported over a wide range for the parameter

ψ (in equation (2.23)) that regulates the degree of shrinkage of potentially useless factors.

This parameter controls the prior belief about the Sharpe ratio achievable with the pricing

factors. We tabulate the results in units of Sharpe ratio prior defined as
√

Eπ[SR2
f | σ2],

since this is a natural metric of beliefs. The lower value that we consider, a prior SR of 1,

generates a strong shrinkage (small ψ), while the highest value reported, a prior SR of 3.5,

makes the shrinkage virtually irrelevant. Since our prior gives non-zero probability to any

SR value, these are not hard constraints.

The prior probability for each factor inclusion is drawn from a Beta(1, 1) (i.e., a uniform

on [0, 1]), yielding a prior expectation for γj equal to 50%. That is, a priori we have maximum

uncertainty about whether a factor should be included or not.31

and their cross-sectionally demeaned version, of factors and test assets.
31We obtain virtually identical results using a Beta(2, 2), which still implies a prior probability of factor

inclusion of 50% but lower probabilities for very dense and very sparse models. Furthermore, using a prior in
favor of more sparse factor models (a Beta(1, 9)), the empirical findings are very similar to the ones reported.
These additional results are reported in Section 2.A.4 of the Appendix.
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Figure 2.4 plots the posterior probabilities of the 51 factors as a function of the maximum

SR in the 95% prior support. The corresponding values are reported in Table 2.3.

First, there is particularly strong evidence for including the BEH PEAD factor of Daniel,

Hirshleifer, and Sun (2020), or (behavioral) post-earnings announcement drift anomaly, as

the source of priced risk in the SDF. This factor is meant to capture investors’ limited

attention. The posterior probability of this factor being part of the SDF is over 70% for

most prior values. This might not be too surprising, given that many anomaly portfolios

seem to be associated with short-term market inefficiencies.

Second, the excess return on the market (MKT) appears as a likely source of priced risk

posterior probability in excess of 60% across prior specifications. This is both surprising

and reassuring. Surprising, since the market return is rarely found to be significant for

cross-sectional asset pricing. It is reassuring because Giglio and Xiu (2021) show that once

inference is corrected for potential misspecification, the market factor appears to be priced.

In our setting, estimation across all the universe of possible models is meant exactly to

address the misspecification problem, and it seems to do so successfully.

Third, CMA∗ factor of Daniel, Mota, Rottke, and Santos (2020) shows a non-trivial

increase in the posterior probability of being part of the SDF. This is the investment factor

of Fama and French (2015) without its unpriced component.

Fourth, there are three more factors (RMW∗, STRev, and RMW∗, described in Table

2.A.1) for which the posterior probability estimate provide some (albeit not strong) support.

Fifth, there is a substantial set of factors for which the posterior probability stays roughly

equal to the prior one. That is, these factors are likely to be weakly identified at best. Finally,

there is a large set of factors that is unlikely to be part of the SDF pricing our data (e.g.,

long-short portfolios sorted by the Ohlson O-score, long-term reversal, and asset growth).

Interestingly, the results are not very sensitive to the choice of prior maximum Sharpe

ratio unless there is almost no shrinkage, that is, there is no protection against weakly

identified factors. In this latter case, weakly identified factors seem to drive out the statistical

support for likely components of the true SDF, which is consistent with the findings of

Gospodinov, Kan, and Robotti (2014) for the frequentist estimation of linear factor models.

In addition to the posterior probabilities of the factors, Table 2.3 reports the posterior

means of the price of risk computed as Bayesian Model Average (BMA), that is, the weighted

average of the posterior means in each possible factor model specification, with weights equal

to the posterior probability of each specification being the true data-generating process (see,

e.g., Roberts (1965), Geweke (1999), and Madigan and Raftery (1994)).

Several observations are in order. First, the price risk estimates for factors that are more

likely to be part of the SDF (top three to six factors), the estimates are relatively stable
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Table 2.3: Posterior factor probabilities, E [γj|data], and risk prices: 2.25 quadrillion models

Factor inclusion prob., E [γj|data] Price of risk, E [λj|data]
Total prior SR Total prior SR

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
BEH PEAD 0.555 0.618 0.704 0.779 0.853 0.811 0.018 0.043 0.085 0.146 0.231 0.278
MKT 0.505 0.539 0.578 0.613 0.630 0.508 0.017 0.040 0.073 0.114 0.170 0.186
CMA∗ 0.510 0.529 0.544 0.571 0.597 0.488 0.011 0.023 0.041 0.067 0.106 0.117
STRev 0.496 0.511 0.535 0.555 0.572 0.428 0.007 0.018 0.036 0.060 0.093 0.090
RMW∗ 0.499 0.502 0.522 0.546 0.569 0.417 0.009 0.020 0.038 0.065 0.105 0.099
BW ISENT 0.502 0.509 0.512 0.520 0.538 0.568 0.002 0.005 0.009 0.016 0.035 0.122
ROE 0.513 0.522 0.516 0.503 0.467 0.301 0.021 0.039 0.056 0.075 0.093 0.077
DIV 0.503 0.504 0.502 0.503 0.509 0.548 0.000 0.001 0.002 0.004 0.009 0.042
DEFAULT 0.501 0.501 0.502 0.505 0.501 0.500 0.000 0.001 0.001 0.003 0.006 0.022
TERM 0.501 0.498 0.498 0.500 0.505 0.520 0.000 -0.001 -0.002 -0.004 -0.008 -0.037
HJTZ ISENT 0.499 0.503 0.500 0.501 0.499 0.470 0.001 0.002 0.003 0.005 0.009 0.029
IPGrowth 0.501 0.501 0.500 0.496 0.498 0.494 0.000 0.000 -0.001 -0.002 -0.004 -0.014
PE 0.497 0.497 0.500 0.498 0.500 0.500 0.000 -0.001 -0.002 -0.003 -0.007 -0.029
FIN UNC 0.494 0.491 0.500 0.500 0.505 0.495 0.001 0.002 0.003 0.007 0.016 0.050
NONDUR 0.494 0.493 0.495 0.499 0.501 0.500 0.001 0.001 0.003 0.005 0.012 0.051
UNRATE 0.496 0.494 0.496 0.495 0.497 0.507 0.000 0.001 0.002 0.003 0.008 0.038
SERV 0.493 0.495 0.494 0.495 0.495 0.488 0.000 0.000 0.001 0.001 0.003 0.018
REAL UNC 0.496 0.495 0.493 0.492 0.495 0.480 0.000 0.000 0.001 0.002 0.005 0.010
QMJ 0.492 0.484 0.493 0.496 0.506 0.360 0.016 0.030 0.050 0.081 0.132 0.128
MACRO UNC 0.496 0.493 0.495 0.491 0.496 0.478 0.000 0.000 0.001 0.001 0.003 0.001
DeltaSLOPE 0.494 0.495 0.493 0.490 0.497 0.488 0.000 0.001 0.001 0.002 0.004 0.016
Oil 0.498 0.495 0.493 0.490 0.491 0.467 0.000 0.000 0.001 0.002 0.005 0.021
MKT∗ 0.502 0.502 0.500 0.490 0.462 0.358 0.007 0.015 0.024 0.034 0.043 0.057
LIQ NT 0.492 0.493 0.493 0.491 0.481 0.408 0.000 0.001 0.000 -0.002 -0.010 -0.026
HML DEVIL 0.471 0.463 0.466 0.490 0.543 0.403 0.008 0.017 0.036 0.073 0.152 0.163
BAB 0.513 0.516 0.496 0.474 0.419 0.284 0.015 0.027 0.037 0.046 0.052 0.049
SKEW 0.493 0.494 0.488 0.478 0.455 0.279 0.013 0.027 0.043 0.061 0.082 0.061
INTERM CAP RATIO 0.496 0.491 0.486 0.478 0.452 0.342 0.006 0.013 0.021 0.027 0.028 0.016
MGMT 0.498 0.494 0.479 0.469 0.427 0.264 0.020 0.032 0.044 0.061 0.077 0.062
HML∗ 0.503 0.497 0.485 0.469 0.410 0.248 0.010 0.020 0.031 0.041 0.045 0.033
PERF 0.489 0.489 0.478 0.466 0.436 0.272 0.012 0.022 0.034 0.047 0.065 0.053
NetOA 0.502 0.495 0.485 0.462 0.413 0.265 0.006 0.013 0.019 0.026 0.030 0.027
LIQ TR 0.494 0.490 0.481 0.466 0.415 0.262 0.003 0.007 0.012 0.018 0.023 0.019
ACCR 0.491 0.480 0.473 0.460 0.433 0.271 0.004 0.008 0.016 0.028 0.041 0.034
IA 0.503 0.486 0.466 0.432 0.379 0.224 0.018 0.028 0.037 0.044 0.051 0.041
INV IN ASS 0.495 0.489 0.464 0.431 0.365 0.205 0.009 0.015 0.021 0.025 0.026 0.018
UMD 0.486 0.475 0.456 0.424 0.386 0.254 0.007 0.010 0.011 0.011 0.015 0.023
SMB∗ 0.487 0.476 0.455 0.426 0.377 0.224 0.005 0.009 0.014 0.019 0.025 0.020
DISSTR 0.474 0.459 0.451 0.435 0.392 0.241 -0.002 -0.009 -0.020 -0.034 -0.047 -0.040
SMB 0.476 0.466 0.446 0.417 0.358 0.199 0.010 0.019 0.029 0.036 0.037 0.025
CMA 0.484 0.459 0.435 0.400 0.349 0.204 0.011 0.012 0.009 0.000 -0.015 -0.015
STOCK ISS 0.488 0.466 0.437 0.404 0.330 0.182 0.011 0.017 0.021 0.024 0.021 0.015
RMW 0.471 0.455 0.432 0.403 0.363 0.221 0.005 0.005 0.002 -0.006 -0.023 -0.019
GR PROF 0.475 0.454 0.434 0.406 0.352 0.198 0.001 0.002 0.004 0.006 0.007 0.001
BEH FIN 0.480 0.459 0.437 0.396 0.338 0.191 0.014 0.018 0.020 0.018 0.012 0.012
HML 0.470 0.443 0.422 0.394 0.372 0.232 0.005 0.001 -0.006 -0.019 -0.044 -0.042
ROA 0.472 0.457 0.432 0.400 0.333 0.186 0.009 0.013 0.015 0.014 0.009 0.003
COMP ISSUE 0.477 0.457 0.425 0.384 0.319 0.174 0.006 0.007 0.007 0.005 0.002 0.004
A Growth 0.474 0.452 0.421 0.378 0.312 0.168 0.007 0.008 0.006 0.002 -0.002 -0.003
LTRev 0.473 0.451 0.417 0.379 0.313 0.167 0.004 0.005 0.005 0.004 0.001 0.001
O SCORE 0.472 0.450 0.417 0.378 0.311 0.168 -0.004 -0.006 -0.006 -0.005 -0.007 -0.005

Posterior probabilities of factors, E [γj |data], and posterior mean of factors’ risk prices, E [λj |data] ,are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 251 ≈ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj
equal to 50%. The 51 factors considered are described in Table 2.A.1 of the Appendix. Test assets: 34
tradable factors plus 26 investment anomalies, sampled monthly, 1973:10 to 2016:12. Results are tabulated

for different values of the prior Sharpe ratio,
√
Eπ[SR2

f | σ2].
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for non-extreme values of the prior maximum SR. Second, for factors that are likely to be

at best weakly identified the estimated price of risk is very close to zero but becomes large

when the prior SR is very high, and therefore the estimation is no more robust to the weak

factors. This is to be expected given the frequentist results on this issue. Third, for factors

for which there is clear evidence that they should not be part of the SDF, the estimates of

the price of risk are stably around zero. Furthermore, for these factors they are very close

to zero even conditional on the factors being included in the SDF. This quantity can be

easily computed by dividing the posterior mean of the price of risk by the factor posterior

probability – both reported in Table 2.3.

As a reality check on the results in Table 2.3, in Table 2.5 of Section 2.5.3 below, we

expand our set of candidate priced factors to include artificially generated weak factors and

show that our procedure successfully singles them out. Furthermore, in the above estimation

we have allowed for a common cross-sectional intercept due to allowing for an average level

of mispricing. In Tables 2.A.17–2.A.18 of the Appendix we repeat the estimation imposing

a zero common intercept and obtain virtually identical results.32

Finally, since we sample the space of 2 quadrillion models instead of estimating them

one-by-one, one might wonder whether the estimation is accurate. We address this formally

with the standard Separated Partial Means test (see, e.g., Geweke (2005)) for both posterior

probabilities and prices of risk, which clearly indicates fast and accurate convergence of the

Markov Chain-based estimates.33

A natural question is whether the posterior probabilities and prices of risk estimates,

summarized in Table 2.3, deliver a good representation of the true latent SDF.

2.5.2 Cross-Sectional Performance

We now focus on the cross-sectional asset pricing performance of our BMA estimates of the

Stochastic Discount Factor (BMA-SDF), both in- and out-of-sample, and compare it with

traditional popular reduced-form factor models. Table 2.4 reports root mean squared pricing

error (RMSE), mean absolute pricing errors (MAPE), and OLS and GLS cross-sectional R2

32The fact that imposing the zero intercept restriction leaves the results virtually unchanged is not too
surprising since, across all our estimates, the posterior mean of the common intercept is about 0.02–0.03
in monthly SR unit. Hence, since the average monthly variance of the baseline test assets is about 4.5%,
the posterior mean of the common intercept is about 0.09%–0.135% in monthly returns units i.e. it is quite
small.

33To implement the test we drop the first 50,000 draws and split our Markov Chain in five subsets. We
compute the average frequency of rejection of posterior probability of factor inclusion and price of risk being
the same for all the subsets for different values of the test size (i.e., 95%, 90%, and 80%). The corresponding
empirical frequencies of rejection are 6.0%, 9.9%, and 20.2% for the posterior probability of factor inclusion
and 4.1%, 9.1%, and 20.4% for the price of risk. In addition, we have estimated the model, increasing the
number of draws by a factor of 10, and found virtually identical parameter estimates.
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for a variety of models and test assets. For a benchmark comparison, we consider the CAPM,

Fama-French five-factor model, Carhart four-factor model, and the q4 model of Hou, Xue,

and Zhang (2015). Finally, we also present results for the 51 factor model that includes all

the candidate risk factors considered in our analysis, as well as the shrinkage-based approach

of Kozak, Nagel, and Santosh (2020) (KNS) with the optimal shrinkage level and number

of factors chosen by three-fold cross-validation.34 Results for the Bayesian (GLS) SDFs are

reported for a wide range of SR priors. All the frequentist SDFs are estimated via a GLS

version of the GMM (i.e., imposing the tradability restriction on the model-implied price of

risk, whenever factors are tradable).35

Table 2.4: Cross-sectional asset pricing

Model RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

Panel A: In-sample pricing, test assets: 60 anomalies
BMA-SDF: SRpr = 1 0.287 0.227 39.2% 24.2% 51 factors 0.041 0.022 98.1% 97.7%

SRpr = 1.5 0.253 0.197 49.8% 30.3% CAPM 0.418 0.338 -29.4% 16.8%
SRpr = 2 0.223 0.170 59.1% 37.4% FF5 0.301 0.223 24.5% 23.2%
SRpr = 2.5 0.193 0.148 68.2% 45.5% Carhart 0.317 0.244 21.5% 21.2%
SRpr = 3 0.162 0.128 76.6% 54.7% q4 0.267 0.189 37.5% 28.1%
SRpr = 3.5 0.157 0.128 78.4% 58.8% KNSCV3 0.296 0.237 53.7% 19.6%
Panel B: Cross-sectional out-of-sample pricing, test assets: 25 size-value portfolios

BMA-SDF: SRpr = 1 0.108 0.082 42.1% 17.5% 51 factors 0.200 0.163 -98.5% -1653%
SRpr = 1.5 0.094 0.070 55.7% 24.5% CAPM 0.145 0.112 -4.6% 5.2%
SRpr = 2 0.085 0.063 64.5% 30.2% FF5 0.079 0.059 69.2% 28.0%
SRpr = 2.5 0.077 0.058 70.5% 34.9% Carhart 0.086 0.063 63.2% 27.1%
SRpr = 3 0.073 0.054 73.9% 38.4% q4 0.083 0.065 66.1% 28.2%
SRpr = 3.5 0.075 0.055 72.3% 36.8% KNSCV3 0.096 0.074 54.4% 28.0%

Panel C: Cross-sectional out-of-sample pricing, test assets: 49 industry portfolios
BMA-SDF: SRpr = 1 0.097 0.080 15.6% 11.8% 51 factors 0.420 0.310 -1474.3% -1694%

SRpr = 1.5 0.097 0.082 15.3% 12.8% CAPM 0.111 0.082 -10.6% 20.9%
SRpr = 2 0.097 0.082 15.7% 15.8% FF5 0.123 0.103 -35.8% 3.6%
SRpr = 2.5 0.098 0.081 14.9% 18.5% Carhart 0.117 0.089 -22.1% 13.7%
SRpr = 3 0.100 0.083 10.9% 19.7% q4 0.134 0.105 -60.5% -10.9%
SRpr = 3.5 0.100 0.083 11.5% 20.9% KNSCV3 0.100 0.082 10.9% 14.0%

This table compares in-sample and cross-sectional out-of-sample asset pricing performance of the B-SDF
and notable frequentist factor models. We use GMM-GLS to estimate factor prices of risk for the CAPM,
FF5 model of Fama and French (2015), Carhart (1997) model, q4 model of Hou, Xue, and Zhang (2015),
and the model including all 51 factors. KNS stands for the SDF estimation of Kozak, Nagel, and Santosh
(2020), with tuning parameter and number of factors chosen by three-fold cross-validation. For the B-SDF,

we report results with risk prices under a range of prior
√
Eπ[SR2

f | σ2] ∈ {1–3.5}. In the cross-sectional

OOS the models are first estimated using the baseline test assets of Panel A and then used to price (without
additional parameters estimation), the test assets listed in Panels B and C. All the data is standardized,
that is, pricing errors are in SR units. We show the annualized RMSE and MAPE. The out-of-sample
performance relies on the SDF estimates obtained from 60 anomaly portfolios as test assets and is then used
to price other cross-sectionally demeaned test assets without re-estimating the SDF.

34When applied to our sample of 60 portfolios, three-fold CV selects a model with 11 factors and the root
expected SR2 of 1.2.

35We have also obtained virtually identical results using time-series regressions (with tradable factors)
instead of GMM, as well as other cross-sections not reported in Table 2.4. Results are available upon
request.
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Panel A reports in-sample asset pricing statistics for the baseline set of assets used in

our estimation (60 anomaly portfolios).36 It is striking that the Bayesian SDF tends to

outperform conventional models across a wide range of metrics, and this result is stable

across the whole set of SR priors. Furthermore, unlike the benchmark models, the BMA-

SDF delivers cross-sectional OLS and GLS R2 measures that are consistent with each other

– without explicitly targeting any of them at the SDF estimation stage. The only model that

seems to perform better than the BMA-SDF is the one using 51 factors to price 60 assets

and is very likely to be overfitting the cross-section (as we show below). One might wonder

whether part of the Bayesian SDF success could also be due to overfitting. We address this

issue by analyzing its OOS performance, in both cross-sectional and time-series dimensions.

Panels B and C summarize the performance of SDFs estimated on a set of 60 anomaly

portfolios (M̂t) but then used to price a different cross-section – 25 portfolios sorted by size

and value (Panel B), and 49 industry portfolios (Panel C). Since we shrink away level factors

in the BMA-SDF, to put different models on equal footing we focus on cross-sectionally

demeaned pricing errors. Our findings make it clear that the superior performance of the

BMA-SDF observed in-sample is not due to overfitting. While the 51-factor model has a

disastrous cross-sectional OOS performance, this is not the case for the BMA-SDF. Consis-

tent with our in-sample results, the performance of the Bayesian SDF is stable across priors

and metrics. Furthermore, it is either on par with that of the best reduced-form benchmark

model (the FF5 model when focusing on size-value portfolios) or better. The BMA-SDF

pricing ability is particularly striking in the case of industry portfolios that have long been

considered a challenge for asset pricing and often advocated as an appropriate testing ground

for models (e.g., Lewellen, Nagel, and Shanken (2010), and Daniel and Titman (2012)).

Figure 2.5 further illustrates the performance of different SDFs estimated on the baseline

cross-section and then used to price the 49 industry portfolios. The BMA-SDF is the only

model that generates predicted Sharpe ratios close to the observed ones and has positive

(OLS and GLS) cross-sectional R2s. Note that while some of the models yield predictions

that have positive correlation with the actual return realizations, they are still characterized

by a substantially negative R2 since we impose the theoretical pricing restriction of E[Rt] =

−Cov(Mt,Rt) (using the innocuous normalization E[Mt] = 1).

We now turn to the time-series out-of-sample performance of the BMA-SDF.37 According

36The table reports the following measures: RMSE ≡
√

1
N

∑N
i=1 α

2
i , MAPE ≡ 1

N

∑N
i=1 |αi|, R2

ols ≡

1− (α− 1
Nα
>1N)

>
(α− 1

Nα
>1N)

(µR− 1
N µ
>
R1N )>(µR− 1

N µ
>
R1N )

, and R2
gls ≡ 1− α>Σ−1

R α

µ>RΣ−1
R µR

.

37We follow the approach canonical in the literature of performing time series OOS via a split-sample
approach (see, e.g., Linnainmaa and Roberts (2018), Chen, Pelger, and Zhu (2019), Gu, Kelly, and Xiu
(2020)). Nevertheless, ideally, one might want to focus on the post publication sample of the factors. This
is unfortunately unfeasible in our empirical setting since a large share of the factors that we analyze have
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(a) B-SDF, SRpr = 2 (R2
ols = 16%)

●

●

●

●
●

●

●
● ●
● ●●

●
●

●
● ●

●
● ●

●
●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●●

●●● ●● ●
●

●

●

●

●

●

●

●

●
●

●

●
● ●
● ●●

●
●●

● ●
●

● ●

●
●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●●

●●● ●● ●
●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

− Cov(M̂t, Rit)

R
ea

liz
ed

 S
R

(b) 51-factor model (R2
ols = −1474%)
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(c) FF5 (R2
ols = −36%)
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(d) Carhart (R2
ols = −22%)
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(e) q4 (R2
ols = −61%)
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(f) KNSCV3 (R2
ols = 10%)

Figure 2.5: Out-of-sample cross-sectional pricing of 49 industry portfolios.

For each model, the figure depicts the out-of-sample performance of the SDF, obtained by using 60 anomaly
portfolios as test assets, and applied to pricing 49 industry portfolios without re-estimation. All the data
are standardized; that is, pricing errors are in SR units. The 45-degree line corresponds to the theoretical
relationship of E[Rt] = −Cov(Mt,Rt), where SDFs are normalized to have unit mean.

been only very recently documented.
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to Table 2.4, only the shrinkage-based approach of Kozak, Nagel, and Santosh (2020) comes

close to matching the performance of our Bayesian approach overall. Hence, we use it as

a benchmark model for the time-series out-of-sample performance. Figure 2.6 reports out-

of-sample model performance, based on the time-series difference between estimation and

prediction periods. Following Martin and Nagel (2021), we use half of the time-series sample

for the model estimation and SDF recovery and evaluate its cross-sectional pricing ability on

the other subsample. Thus, we consider out-of-sample performance of the model, going into

both future and past, without re-estimating any of the parameters. For the same value of

the prior SR, BMA-SDF tends to outperform the cross-validated estimates (CV3) of KNS,

despite the fact that cross-validation was carried out on the full data sample. Furthermore,

for a wide range of prior SR, our Bayesian approach performs either as well as the ex-post

best combination of tuning parameters in KNS or better. This is particularly evident when

recent data is used as the evaluation subsample.

2.5.3 Model Uncertainty: Selection or Aggregation?

In the previous section we have shown that averaging across the space of possible models

yields an accurate representation of the SDF. A natural question is whether in the universe

of models there is a single best model.

For consistency, frequentist model selection demands the existence of a unique first-best

model that can be reliably distinguished from the alternatives. This is a key assumption

underlying reliable factor selection via t- and χ2- tests, LASSO, and many other approaches.

In contrast, the existence of such a dominant model can be formally assessed within the

Bayesian paradigm. For instance, Giannone, Lenza, and Primiceri (2021b) study the sparsity

assumption in popular empirical economic applications (using, like us, a spike-and-slab prior

approach for model and variable selection). They find that the posterior distribution does

not typically concentrate on a single sparse model but rather supports a wide set of models

that often include a large number of predictors.

Our framework is ideally suited for evaluating the assumption of sparsity (in observable

factors) in cross-sectional asset pricing, since we can compute posterior model probabili-

ties for each possible specification generated by our 51 factors (i.e., about 2.25 quadrillion

models).

Figure 2.7 presents the model posterior probabilities of the 2,000 most likely specifications

(with a prior SR of 2). The first thing to notice is that even the most likely specification(s)

is not a clear winner within the set of all possible models – its posterior probability is only

about 0.011%. This is a remarkable improvement relative to the prior model probability

that is of the order of 10−16, but it clearly does not represent a substantial resolution of
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KNS (2020)
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Figure 2.6: Out-of-sample cross-sectional pricing (different time samples).

The figure depicts out-of-sample performance of the SDF (R2
ols and R2

gls), obtained by using both BMA and

Kozak, Nagel, and Santosh (2020) approaches using a time series subsample of 60 anomaly portfolios. We
use half of the time-series sample for the model estimation and SDF recovery and evaluate its cross-sectional
pricing ability on the other subsample. Results are reported for a range of SR prior, and in the case of KNS
(2020) for different number of PCs used, as well as the optimal combination of tuning parameters chosen by
a three-fold cross-validation applied to the estimation period.

model uncertainty. Furthermore, we have 10 specifications with basically the same posterior

probability, and the posterior model probability decays very slowly as we move down the list

of most likely models: Moving from the best model, it takes more than a thousand models
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Figure 2.7: Posterior model probabilities, prior SR = 2.

Posterior model probabilities of the 2,000 most likely models computed using the continuous spike-and-slab
of Section 2.3.1.3 and 51 factors. The horizontal axis uses a log scale. Sample: 1973:10–2016:12. Test assets:
34 tradable factors plus 26 investment anomalies, sampled monthly, 1973:10 to 2016:12.

to reach the relative odds of 2:1 (i.e., to reduce the posterior probability by 50%). That is,

to a first-order approximation, the frequentist likelihood ratio test of the best performing

model versus the 1000th one would yield a p-value of 30% at best (and a p-value of 15% after

2,000 models).

But how many of the factors proposed in the literature does it really take to price the

cross-section? Thanks to our Bayesian method, even this question can be easily answered.

In particular, by using our estimations of about 2.25 quadrillion models and their posterior

probabilities, we can compute the posterior distribution of the dimensionality of the “true”

model. That is, for any integer number between one and 51, we can compute the posterior

probability of the linear factor model being a function of that number of factors.

Figure 2.8a reports the posterior distributions of the model dimensionality for various

values of prior SR. These distributions are also summarized in Table 2.A.19 of Appendix

2.A.4.

For the most salient values of the prior SR (1–3), the posterior mean of the number of

factors in the true model is in the 23–25 range, and the 95% posterior credible intervals

are contained in the 16–32 factors range. That is, there is substantial evidence that the

SDF is dense in the space of observable factors: Given the factors at hand, a relative large

number of them is needed to provide an accurate representation of the “true” model. Since

most of the literature has focused on very low-dimensional linear factor models, this finding

suggests that most empirical results therein have been affected by a very large degree of
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Figure 2.8: Posterior densities of model dimensionality and its implied Sharpe ratio.

Left panel: posterior density of the true model having the number of factors listed on the horizontal axis.
Right panel: posterior density of the (annualized) Sharpe ratio implied by the linear factor model for various
values of SRprior ∈ [1, 3.5]. Sample: 1973:10–2016:12. Test assets: 34 tradable factors plus 26 investment
anomalies, sampled monthly, 1973:10 to 2016:12. The prior for each factor inclusion is a Beta(1, 1), yielding
a prior expectation for γj equal to 50%. The 51 factors considered are described in Table 2.A.1 of the
Appendix.

misspecification.

It is worth noticing that, as Figure 2.8a shows, for very large prior SR, that is, with

basically a flat prior for factors’ price of risk, the posterior dimensionality is reduced. This

is due to two phenomena we have already outlined. First, if some of the factors are useless

(and our analysis points in this direction), under a flat prior they tend to have a higher

posterior probability and drive out the true sources of priced risk. Second, a flat prior for

the price of risk can generate a “Bartlett Paradox” (see the discussion in Section 2.3.1.1).

Note that if the factors proposed in the literature were to capture different and uncor-

related sources of risk, one might worry that a dense model in the space of factors could

imply unrealistically high Sharpe ratios (see, e.g., the discussion in Kozak, Nagel, and San-

tosh (2020)). Since, given a model, the SDF-implied maximum Sharpe ratio is merely a

function of the factors’ price of risk and covariance matrix, our Bayesian method allows us

to construct the posterior distribution of the maximum Sharpe ratio for each of the 2.25

quadrillion models considered. Therefore, using the posterior probabilities of each possi-

ble model specification, we can actually construct the (BMA) posterior distribution of the

SDF-implied maximum Sharpe ratio (conditional on the data only).

Figure 2.8b (and Table 2.A.19b in Appendix 2.A.4) reports the posterior distribution

of the SDF-implied maximum Sharpe ratio (annualized) for several values of the prior SR.

Except when a very strong shrinkage (small prior SR) is imposed (hence, Sharpe ratios
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are shrunk) the posterior distributions of the Sharpe ratio are quite similar for all prior

values. Furthermore, despite the model being dense in the space of factors, the posterior

maximum Sharpe ratio does not appear to be unrealistically high: For example, for a prior

SR ∈ [1.5, 3] its posterior mean is about 1.17–2.19, and the 95% posterior credible intervals

are in the 0.70–2.96 range.

Note that a model that is dense in the space of observable factors might be in principle

sparse in the space of latent factors, for example, principle components. We address this

issue by directly including principal components in the set of candidate factors. In particular,

we consider the first five principal components of our cross-section of test assets, followed by

a set of five “Risk Premia” principal components (RP-PC) of Lettau and Pelger (2020b). In

addition, to confirm that our method successfully handles weak identification, we add two

artificially generated useless factors (independent of returns and i.i.d. distributed). Table

2.5 reports our findings.

Panel A of Table 2.5 shows that the first five principal components do not seem to capture

priced risk: Their posterior probability is substantially lower than their prior probability,

and their estimated market price of risk is zero (despite them explaining 61% of the time-

series variation of returns). This is quite expected since standard principal components are

not designed to capture cross-sectional pricing information.

Clearly, the artificially generated useless factors are successfully handled by the estimation

procedure: As expected, their posterior probability remains at the prior level (50%), and

their estimated price of risk is basically zero.

In Panel B we replace the canonical PCs with RP-PCs. We find strong support for two of

them (first and third) capturing priced risk, while the other three have posterior probability

below the prior value and prices of risk close to zero. Interestingly, even though some of the

RP-PCs seem to successfully aggregate pricing information from the cross-section of returns

(and factors, since the tradable ones are part of the test assets), they do not drive out

the relevance of the robust stand-alone factors we identified earlier: BEAH PEAD, CMA?,

RMW?, among others. Consequently, the underlying SDF would be best described by a

combination of both observable factors and (some) latent variables. Hence, the results in

Panel B highlight that, in the quest of describing the sources of priced risk, there is scope

for both selection and aggregation. This is confirmed by Figure 2.A.2 in Appendix 2.A.4,

which shows that the most likely SDF is dense in the combined space of observable factors

and principal components.
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Table 2.5: Observable factors versus Principal Components

Factor inclusion prob., E [γj|data] Price of risk, E [λj|data]
Total prior SR Total prior SR

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
Panel A: Principal Components as Factors

BEH PEAD 0.547 0.602 0.678 0.766 0.840 0.814 0.015 0.036 0.073 0.132 0.220 0.287
MKT 0.508 0.542 0.573 0.598 0.607 0.504 0.015 0.035 0.064 0.100 0.149 0.182
CMA? 0.509 0.523 0.539 0.564 0.597 0.516 0.009 0.020 0.037 0.061 0.101 0.124
BW ISENT 0.499 0.502 0.509 0.514 0.528 0.555 0.002 0.004 0.008 0.014 0.030 0.105
RMW? 0.500 0.499 0.514 0.537 0.568 0.450 0.007 0.017 0.032 0.057 0.097 0.107
STRev 0.495 0.503 0.522 0.546 0.555 0.435 0.006 0.016 0.030 0.052 0.083 0.089
...

...
...

...
...

...
...

...
...

...
...

...
...

Useless I 0.499 0.499 0.501 0.498 0.498 0.497 0.000 0.000 0.000 0.000 0.001 0.006
...

...
...

...
...

...
...

...
...

...
...

...
...

Useless II 0.496 0.495 0.495 0.494 0.498 0.500 0.000 0.000 0.001 0.001 0.002 0.010
...

...
...

...
...

...
...

...
...

...
...

...
...

PC5 0.489 0.490 0.488 0.482 0.459 0.336 0.000 0.000 0.000 0.000 0.000 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

PC4 0.497 0.487 0.480 0.471 0.451 0.322 0.000 0.000 0.000 0.000 0.000 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

PC3 0.483 0.477 0.467 0.449 0.420 0.280 0.000 0.000 0.000 0.000 0.000 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

PC1 0.478 0.467 0.457 0.437 0.399 0.248 0.000 0.000 0.000 0.000 -0.001 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

PC2 0.473 0.455 0.444 0.429 0.397 0.249 0.000 0.000 0.000 0.000 0.000 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

LTRev 0.477 0.464 0.437 0.402 0.347 0.204 0.003 0.005 0.004 0.002 -0.002 -0.003
COMP ISSUE 0.485 0.462 0.438 0.399 0.338 0.191 0.006 0.007 0.008 0.007 0.003 0.002
A Growth 0.481 0.462 0.436 0.399 0.337 0.189 0.007 0.008 0.006 0.003 -0.002 -0.003
O SCORE 0.473 0.450 0.425 0.385 0.323 0.186 -0.003 -0.005 -0.004 -0.002 -0.002 -0.003

Panel B: RP-Principal Components (Lettau and Pelger (2020b)) as Factors
RP-PC1 0.600 0.631 0.640 0.634 0.592 0.448 -0.016 -0.030 -0.043 -0.056 -0.066 -0.067
RP-PC3 0.548 0.597 0.645 0.661 0.651 0.529 -0.004 -0.009 -0.017 -0.024 -0.032 -0.035
BEH PEAD 0.540 0.585 0.628 0.681 0.709 0.630 0.014 0.032 0.058 0.097 0.149 0.185
CMA? 0.510 0.523 0.542 0.571 0.616 0.531 0.009 0.020 0.037 0.062 0.104 0.129
RMW? 0.500 0.504 0.517 0.547 0.583 0.466 0.007 0.017 0.033 0.059 0.101 0.112
MKT 0.507 0.518 0.525 0.516 0.493 0.391 0.013 0.028 0.044 0.061 0.081 0.103
...

...
...

...
...

...
...

...
...

...
...

...
...

Useless I 0.499 0.499 0.500 0.500 0.499 0.497 0.000 0.000 0.000 0.000 0.001 0.007
...

...
...

...
...

...
...

...
...

...
...

...
...

Useless II 0.495 0.495 0.495 0.498 0.496 0.499 0.000 0.000 0.000 0.001 0.002 0.010
...

...
...

...
...

...
...

...
...

...
...

...
...

RP-PC5 0.481 0.487 0.488 0.484 0.459 0.338 0.001 0.003 0.005 0.008 0.011 0.012
...

...
...

...
...

...
...

...
...

...
...

...
...

RP-PC4 0.494 0.487 0.479 0.459 0.433 0.303 0.002 0.003 0.004 0.005 0.005 0.005
...

...
...

...
...

...
...

...
...

...
...

...
...

RP-PC2 0.479 0.464 0.458 0.439 0.403 0.267 0.000 -0.001 -0.001 -0.001 -0.001 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

COMP ISSUE 0.483 0.464 0.438 0.406 0.338 0.193 0.006 0.008 0.010 0.009 0.004 0.002
A Growth 0.483 0.466 0.443 0.396 0.337 0.196 0.007 0.007 0.005 0.000 -0.005 -0.007
LTRev 0.483 0.461 0.438 0.404 0.358 0.222 0.003 0.003 0.000 -0.006 -0.014 -0.015
O SCORE 0.472 0.456 0.426 0.386 0.331 0.189 -0.003 -0.002 0.001 0.005 0.005 0.001

Posterior probabilities of factors, E [γj |data], and posterior mean of factors’ risk prices, E [λj |data], are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 59 factors yielding 259 models.
The factors included are the 51 factors described in Table 2.A.1 of the Appendix plus two artificial i.i.d.
useless factors, and five principal components. Panel A uses simple time-series principal components while
Panel B uses the RP-PCs of Lettau and Pelger (2020b). Test assets: 34 tradable factors plus 26 investment
anomalies, sampled monthly, 1973:10 to 2016:12. Results tabulated for different values of the prior Sharpe

ratio,
√
Eπ[SR2

f | σ2].
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2.5.4 A Quest for Sparsity

The previous subsections suggest that only a small number of observable factors – BEH PEAD,

MKT, CMA∗, and, to a lesser extent, STRev, RMW∗, and BW ISENT – are likely stand-

alone explanators of the cross-section of asset returns. A natural question is whether the

Bayesian factor posterior probabilities of Table 2.3 can help identify a low-dimensional bench-

mark model for pricing asset returns. We answer this question by comparing the performance

of a three-factor model with HML, MKT∗, and SMB∗ as factors, to the one of several notable

factor models.

Table 2.6 reports the model posterior probabilities, that is, the probability of any of these

models being the true data-generating process, for the SDFs built with the most likely factors

and notable linear factor models. Posterior model probabilities (for all models) are computed

using the closed-form solutions for the Dirac spike-and-slab prior method of Section 2.3.1.2,

giving us very precise estimates.

Strikingly, for any value of SRpr, the best performing model is the one based on the

most likely factors: Just three most likely factors (see Panel A), BEH PEAD, MKT, and

CMA∗, are enough to outperform the most widely used empirical SDFs. This outperformance

becomes even more pronounced when we consider the six most likely factors (see Panel B).

Note that this drastic difference in performance understates the true power of our Bayesian

approach to factor and model selection. Indeed, a subset of the most (individually) likely

factors does not necessarily create the most likely model. Luckily, our approach can also be

used to select the most likely model of any dimension. In particular, in Panel C we run the

horse race between the most likely five-factor model that emerges using the Dirac Spike-and-

Slab approach of Section 2.3.1.2. Clearly, for all the values of prior SR, the best five-factor

model outperforms not only all the notable models but also the combination of six overall

most likely factors (from Panel B). While different prior SR may lead to different most likely

low-dimensional models, the subset of selected factors is quite stable: All the specifications

include BEH PEAD and CMA∗, while RMW∗ and BAB are selected four times out of five,

and STRev is part of the most likely model three times out of five.

Our approach can also be used to formally evaluate the space of sparse factor models. In

particular, in Table 2.7 we consider the universe of all the possible models that include no

more than five factors, that is, 2.6 mln models. We evaluate all of those models individually,

computing each of their marginal likelihoods following the Dirac spike-and-slab approach of

Section 2.3.1.2 (instead of sampling models, as in Section 2.5.1). The table reports both

posterior probabilities of the factor inclusion and their posterior price of risk. For simplicity,

we consider the prior probability of a factor being included into the model being equal to

9.58% (since we have 51 factors total and each model with up to five factors is given equal
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Table 2.6: Posterior probabilities of notable models versus most likely factors

Panel A: 3 most likely factors Panel B : 6 most likely factors Panel C : Most likely 5-factor model
model: SRpr: 1 1.5 2 2.5 3 1 1.5 2 2.5 3 1 1.5 2 2.5 3
Most likely factors 17.5% 24.9% 36.0% 48.8% 59.1% 17.8% 27.0% 44.0% 66.5% 83.7% 23.0% 35.3% 57.0% 77.6% 88.1%
CAPM 12.7% 12.5% 11.8% 11.3% 13.1% 12.7% 12.1% 10.3% 7.3% 5.2% 11.9% 10.8% 8.0% 5.0% 3.9%
FF3 10.3% 7.9% 5.3% 3.2% 1.7% 10.3% 7.7% 4.7% 2.1% 0.7% 9.6% 6.8% 3.6% 1.4% 0.5%
FF5 9.9% 7.0% 4.2% 2.1% 0.7% 9.8% 6.8% 3.7% 1.3% 0.3% 9.2% 6.0% 2.8% 0.9% 0.2%
Carhart 10.2% 7.8% 5.2% 2.9% 1.3% 10.2% 7.6% 4.6% 1.9% 0.5% 9.6% 6.7% 3.5% 1.3% 0.4%
q4 15.7% 17.8% 17.9% 14.9% 9.6% 15.6% 17.3% 15.7% 9.9% 3.9% 14.6% 15.3% 11.9% 6.4% 2.7%
Liq-CAPM 12.5% 12.0% 10.9% 9.6% 9.0% 12.5% 11.7% 9.5% 6.2% 3.6% 11.7% 10.4% 7.4% 4.3% 2.7%
FF3-QMJ 11.2% 10.1% 8.8% 7.4% 5.5% 11.1% 9.8% 7.7% 4.8% 2.1% 10.4% 8.6% 5.8% 3.1% 1.5%

Posterior model probabilities for the specifications in the first column, for different prior Sharpe ratio values,
computed using the Dirac spike-and-slab prior method of Section 2.3.1.2. Panel A includes the factors
BEH PEAD, MKT, CMA∗, while Panel B considers in addition STRev, RMW∗, and BW ISENT. Panel
C uses the most likely 5-factor model according to the posterior probability. Factors are: MKT, MGMT,
BAB, BEH PEAD, CMA? for SRpr = 1; STRev, BAB, BEH PEAD, RMW?, CMA? for SRpr = 1.5 to
2.5; BW ISENT, BEH PEAD, MKT?, RMW?, CMA? for SRpr = 3. Factors are described in Table 2.A.1
of the Appendix. Liq-CAPM stands for the liquidity-adjusted model of Pástor and Stambaugh (2003) and
FF3-QMJ corresponds to the 4-factor model of Asness, Frazzini, and Pedersen (2019). Sample: 1973:10 to
2016:12. Test assets: 60 anomaly portfolios.

ex ante probability).

First, three factors clearly stand out in Table 2.7: BEH PEAD, BW SENT, CMA?, all

of which were also among the most likely factors in the SDF identified in the whole model

space of Table 2.3. Second, and strikingly, there is a large set of factors that have poste-

rior probability of inclusion above the prior, providing support for them being included in

a low-dimensional model. This group includes not only the other robust factors identified

in Section 2.5.1 but also 40% of both tradable and nontradable macro-factors, such as non-

durable consumption, unemployment, and industrial production growth. This second finding

is consistent with our results in Section 2.5.3, where we showed that many factors seem to

load on the same underlying sources of economic risks: Sparse models, therefore, tend to rely

on them almost interchangeably. This is further illustrated in Figure 2.A.3 of the Appendix,

which depicts posterior probabilities for the top 2,000 sparse models under the SR prior of

2. Similar to our findings in Section 2.5.3, the space of best performing models is quite flat,

with their corresponding posterior probability decaying slowly. In fact, up to a first-order

approximation, the frequentist likelihood ratio test of the best performing model versus the

100th (1000th) specification would yield a p-value of 19.0% (9.2%) at best.

Our findings indicate that all the low-dimensional models with observable factors are

likely to be severely misspecified, and in many cases reflect noisy measures of the same

underlying economic risks. While some of the factors still stand alone as significant drivers

of the cross-section of asset returns, the true latent SDF is still best approximated by an

efficient aggregation of many underlying variables, provided by the BMA. To further validate

this point, we have performed an OOS analysis (in both time-series and cross-sectional

dimension) of the BMA versus the best low-dimensional models and found that the former
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Table 2.7: Posterior factor probabilities, E [γj|data], and risk prices: 2.6 million models

Factor inclusion prob., E [γj|data] Price of risk, E [λj|data]
Total prior SR: Total prior SR:

Factors: 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
BEH PEAD 0.124 0.206 0.309 0.389 0.430 0.421 0.005 0.024 0.059 0.095 0.122 0.130
BW ISENT 0.099 0.109 0.128 0.161 0.225 0.343 0.001 0.002 0.007 0.016 0.041 0.111
CMA? 0.104 0.122 0.136 0.141 0.137 0.120 0.003 0.010 0.017 0.023 0.026 0.025
BAB 0.112 0.133 0.140 0.136 0.125 0.105 0.005 0.014 0.021 0.024 0.025 0.022
DIV 0.097 0.102 0.109 0.121 0.141 0.183 0.000 0.000 0.001 0.002 0.005 0.016
HJTZ ISENT 0.097 0.102 0.109 0.119 0.134 0.156 0.000 0.001 0.002 0.005 0.010 0.021
NONDUR 0.097 0.101 0.108 0.118 0.133 0.161 0.000 0.001 0.002 0.004 0.008 0.020
TERM 0.097 0.101 0.108 0.118 0.133 0.161 0.000 0.000 -0.001 -0.002 -0.005 -0.012
PE 0.097 0.101 0.108 0.117 0.132 0.160 0.000 0.000 -0.001 -0.002 -0.004 -0.012
FIN UNC 0.097 0.101 0.108 0.117 0.131 0.149 0.000 0.001 0.002 0.004 0.008 0.017
UNRATE 0.097 0.101 0.107 0.116 0.130 0.154 0.000 0.000 0.001 0.002 0.005 0.013
DeltaSLOPE 0.097 0.101 0.107 0.116 0.129 0.154 0.000 0.000 0.001 0.002 0.003 0.010
IPGrowth 0.097 0.101 0.107 0.115 0.127 0.148 0.000 0.000 0.000 -0.001 -0.002 -0.006
DEFAULT 0.097 0.101 0.107 0.115 0.127 0.146 0.000 0.000 0.001 0.001 0.003 0.007
SERV 0.096 0.101 0.106 0.114 0.126 0.146 0.000 0.000 0.000 0.001 0.002 0.006
REAL UNC 0.096 0.100 0.106 0.114 0.125 0.141 0.000 0.000 0.000 0.001 0.002 0.004
STRev 0.095 0.098 0.105 0.116 0.123 0.109 0.001 0.005 0.010 0.016 0.022 0.022
MACRO UNC 0.096 0.100 0.106 0.113 0.122 0.136 0.000 0.000 0.000 0.000 0.001 0.000
Oil 0.096 0.100 0.105 0.111 0.119 0.129 0.000 0.000 0.000 0.000 0.001 0.002
MKT? 0.097 0.101 0.104 0.105 0.103 0.105 0.002 0.005 0.009 0.013 0.015 0.020
RMW? 0.096 0.098 0.102 0.106 0.103 0.083 0.002 0.006 0.011 0.015 0.018 0.016
LIQ NT 0.096 0.098 0.100 0.102 0.101 0.096 0.000 0.000 0.001 0.001 0.002 0.003
MKT 0.094 0.099 0.103 0.103 0.095 0.080 0.003 0.009 0.014 0.018 0.020 0.018
ROE 0.107 0.113 0.106 0.093 0.078 0.060 0.006 0.013 0.016 0.017 0.015 0.012
MGMT 0.109 0.109 0.101 0.092 0.080 0.061 0.007 0.014 0.017 0.018 0.017 0.013
NetOA 0.098 0.102 0.101 0.094 0.084 0.068 0.002 0.005 0.008 0.010 0.010 0.009
IA 0.108 0.108 0.099 0.089 0.077 0.060 0.006 0.013 0.015 0.016 0.015 0.012
HML? 0.099 0.101 0.096 0.087 0.075 0.058 0.003 0.007 0.010 0.011 0.011 0.009
LIQ TR 0.095 0.095 0.093 0.087 0.078 0.063 0.001 0.002 0.004 0.006 0.006 0.005
INTERM CAP RATIO 0.093 0.090 0.087 0.083 0.075 0.062 0.001 0.004 0.006 0.008 0.009 0.008
INV IN ASS 0.098 0.097 0.090 0.079 0.067 0.051 0.003 0.006 0.009 0.009 0.008 0.007
PERF 0.096 0.091 0.082 0.071 0.059 0.044 0.003 0.007 0.009 0.009 0.008 0.006
STOCK ISS 0.098 0.092 0.081 0.070 0.058 0.043 0.004 0.008 0.009 0.009 0.008 0.006
ACCR 0.093 0.087 0.079 0.070 0.060 0.048 0.001 0.002 0.004 0.004 0.004 0.004
BEH FIN 0.099 0.089 0.077 0.067 0.057 0.043 0.005 0.009 0.010 0.010 0.009 0.007
QMJ 0.095 0.086 0.076 0.066 0.055 0.040 0.004 0.008 0.010 0.010 0.009 0.007
UMD 0.094 0.087 0.076 0.065 0.055 0.043 0.002 0.004 0.005 0.005 0.004 0.003
SMB? 0.092 0.083 0.073 0.063 0.052 0.039 0.001 0.003 0.004 0.004 0.004 0.003
HML DEVIL 0.085 0.073 0.067 0.066 0.062 0.050 0.002 0.004 0.006 0.009 0.011 0.010
CMA 0.095 0.084 0.071 0.059 0.049 0.037 0.004 0.007 0.007 0.006 0.005 0.004
SKEW 0.089 0.081 0.071 0.060 0.048 0.036 0.002 0.005 0.006 0.006 0.005 0.004
ASS Growth 0.093 0.081 0.068 0.057 0.047 0.035 0.003 0.005 0.005 0.005 0.004 0.003
COMP ISSUE 0.091 0.077 0.065 0.055 0.046 0.034 0.003 0.004 0.005 0.004 0.004 0.003
LTRev 0.089 0.076 0.064 0.053 0.043 0.032 0.001 0.003 0.003 0.003 0.003 0.002
RMW 0.088 0.074 0.062 0.052 0.043 0.032 0.002 0.003 0.004 0.004 0.003 0.003
ROA 0.089 0.075 0.062 0.051 0.041 0.030 0.002 0.004 0.004 0.004 0.003 0.002
GR PROF 0.087 0.073 0.061 0.051 0.042 0.031 0.000 0.001 0.000 0.000 0.000 0.000
SMB 0.086 0.073 0.061 0.051 0.040 0.029 0.002 0.004 0.004 0.004 0.004 0.002
DISSTR 0.084 0.069 0.059 0.051 0.043 0.033 0.001 0.000 -0.001 -0.002 -0.003 -0.002
HML 0.086 0.070 0.057 0.048 0.039 0.030 0.002 0.003 0.003 0.003 0.003 0.002
O SCORE 0.084 0.069 0.056 0.045 0.036 0.027 -0.001 -0.002 -0.002 -0.002 -0.001 -0.001

Posterior probabilities of factors, E [γj |data], and posterior mean of factors’ risk prices, E [λj |data], are
computed using the the Dirac spike-and-slab approach of Section 2.3.1.2 and 51 factors described in Table
2.A.1 of Appendix. Sample: 1973:10-2016:12. Test assets: 34 tradable factors and 26 investment anomalies.
Prior probability of a factor being included is about 9.58% since we give each possible model equal prior
probability and a factor could be included in a model with up to four other variables. Posterior probabilities
are plotted for prior Sharpe ratio ∈ [0.5, 3].
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strongly outperforms the latter.38

2.6 Conclusions and Extensions

We develop a novel (Bayesian) method for the analysis of linear factor models in asset

pricing. This approach can handle quadrillions of models generated by the zoo of traded and

non-traded factors and delivers inference that is robust to the common identification failures

caused by weak and level factors.

We apply our approach to the study of more than 2 quadrillion factor model specifications

and find that: 1) only a handful of factors seem to be robust explanators of the cross-

sections of asset returns; 2) jointly, the three to six robust factors provide a model that

substantially outperforms notable benchmarks; 3) nevertheless, with very high probability

the “true” latent SDF is dense in the space of factors proposed in the previous literature,

likely containing 23–25 observable factors; and 4) a BMA over the universe of possible models

delivers an SDF that presents a novel benchmark for in- and out-of-sample empirical asset

pricing.

Our method can be feasibly extended to accommodate several salient extensions. First,

one might want to bound the maximum price of risk (or the maximum Sharpe ratios) as-

sociated with the factors. This can be achieved by replacing the Gaussian distributions

in our spike-and-slab priors with (rescaled and centred) Beta distributions, since the latter

have bounded support. Furthermore, for the sake of expositional simplicity and closed-form

solutions, we have focused on regularizing spike-and-slab priors with exponential tails. Nev-

ertheless, our approach, which shrinks weak (and level) factors based on their correlation

with asset returns, could also be implemented using polynomial tailed (i.e., heavy-tailed)

mixing priors (see Polson and Scott (2011) for a general discussion of priors for regulariza-

tion and shrinkage).39 The rationale for heavy-tailed priors is that when the likelihood has

thick tails while the prior has a thin tail, if the likelihood peak moves too far from the prior,

the posterior eventually reverts toward the prior. Nevertheless, note that this mechanism

(first pointed out in Jeffreys (1961)) is actually desirable in our settings in order to shrink

the price of risk of useless factors toward zero.40

Second, thanks to its hierarchical structure, our approach can formally handle the statisti-

38These additional results are available upon request.
39For example, albeit alternative distributions with desirable properties exist, our spike-and-slab could be

implemented using a Cauchy prior with location parameter set to zero and scale parameter proportional to
ψj , as defined in equations (2.22) and (2.23).

40Since useless factors tend to generate heavy-tailed likelihoods (in the limit, the likelihood is an improper
“uniform” on R), with peaks for price of risk that deviate toward infinity, the posterior price of risk of such
factors is shrunk toward the prior (zero) mean if the prior has thin tails.
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cal uncertainty caused by generated factors, for example, mimicking portfolios, and provides

valid inference in their presence. Furthermore, it can accommodate a wide range of both

priced and unpriced latent factors.

Third, thanks to the hierarchical structure of our method, time-varying expected returns

and SDF factor loadings could be accommodated by adopting the time-varying parame-

ter approach of Primiceri (2005). Furthermore, although this would significantly increase

the numerical complexity of the cross-sectional inference step, the time-varying parameters

formulation could also be used for the modelling time-varying factor price of risk.
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2.A.1 Additional Derivations and Proofs

2.A.1.1 Derivation of the Posterior Distributions in Section 2.3

Let’s consider first the time series layer of our hierarchical model. We assume that Yt
iid∼

N (µY ,ΣY ). The likelihood function of the observed time-series data Y = {Yt}Tt=1 is

p(Y|µY ,ΣY ) ∝ |ΣY |−
T
2 e−

1
2
tr[Σ−1

Y

∑T
t=1(Yt−µY )(Yt−µY )>]

∝ |ΣY |−
T
2 e−

1
2
tr[Σ−1

Y

∑T
t=1(Yt−µ̂Y )(Yt−µ̂Y )>+TΣ−1

Y (µY −µ̂Y )(µY −µ̂Y )>],

where µ̂Y = 1
T

∑T
t=1 Yt. After assigning a diffuse prior for (µY ,ΣY ), π(µY ,ΣY ) ∝ |ΣY |−

p+1
2 ,

the posterior distribution function of (µY ,ΣY ) is

p(µY ,ΣY |Y) ∝ |ΣY |−
T+p+1

2 e−
1
2
tr[Σ−1

Y

∑T
t=1(Yt−µ̂Y )(Yt−µ̂Y )>+TΣ−1

Y (µY −µ̂Y )(µY −µ̂Y )>],

Hence, the posterior distribution of µY conditional on Y and ΣY is

p(µY |Y,ΣY ) ∝ e−
1
2
tr[TΣ−1

Y (µY −µ̂Y )(µY −µ̂Y )>]

and the above is the kernel of the multivariate normal in equation (2.6). If we further

integrate out µY , it is easy to show that p(ΣY |Y) ∝ |ΣY |−
T+p
2 e−

1
2
tr[Σ−1

Y

∑T
t=1(Yt−µ̂Y )(Yt−µ̂Y )>].

Therefore, the posterior distribution of Σ is the inverse-Wishart in equation (2.7).

Recall that C = (1N , Cf ), λ> = (λc, λ
>
f ). Assuming αi ∼ iid N (0, σ2), the cross-

sectional likelihood function conditional on the time-series parameters (µY and ΣY ), p(data|λ, σ2),

is given in equation (2.10), where “data” in this cross-sectional (second) step include the ob-

served time-series Y = {Yt}Tt=1, as well as µY and ΣY drawn from the time-series step.

Assuming the diffuse prior π(λ, σ2) ∝ σ−2, the posterior distribution of (λ, σ2) is

p(λ, σ2|data) ∝ (σ2)−
N+2

2 e−
1

2σ2
(µR−Cλ)>(µR−Cλ) = (σ2)−

N+2
2 e−

1
2σ2

(µR−Cλ̂+C(λ̂−λ))>(µR−Cλ̂+C(λ̂−λ))

= (σ2)−
N+2

2 e−
1

2σ2
(µR−Cλ̂)>(µR−Cλ̂)− 1

2σ2
(λ−λ̂)>C>C(λ−λ̂), and

∴ p(λ|σ2, data) ∝ e−
(λ−λ̂)>C>C(λ−λ̂)

2σ2 ,

where λ̂ = (C>C)−1C>µR, σ̂2 = (µR−Cλ̂)>(µR−Cλ̂)
N

. Note that sending σ2 → 0 the posterior

p(λ|σ2, data) is proportional to a Dirac at λ̂ as per Definition 2.2. For non-degenerate values

of σ2, the conditional posterior of λ is instead the one in equation (2.11). We derive the

posterior of σ2 by integrating out λ in the joint posterior, p(σ2|data) =
∫
p(λ, σ2|data)dλ ∝

(σ2)−
N−K+1

2 e−
Nσ̂2

2σ2 , hence, obtaining equation (2.12).

Under the GLS distributional assumption, α ∼ N (0N , σ
2ΣR), where ΣR is the covari-
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ance matrix of returns Rt, the posterior of (λ, σ2) is then

p(λ, σ2|data) ∝ (σ2)−
N+2

2 e−
1

2σ2
(µR−Cλ)>Σ−1

R (µR−Cλ)

= (σ2)−
N+2

2 e−
1

2σ2
(µR−Cλ̂)>Σ−1

R (µR−Cλ̂)− 1
2σ2

(λ−λ̂)>C>Σ−1
R C(λ−λ̂), and

∴ p(λ|σ2, data) ∝ e−
(λ−λ̂)>C>Σ

−1
R
C(λ−λ̂)

2σ2 ,

where λ̂ = (C>Σ−1
R C)−1C>Σ−1

R µR and the above is the kernel of a Gaussian distribution.

Note that sending σ2 → 0, the posterior p(λ|σ2, data) is proportional to a Dirac at λ̂

as per Definition 2.3. For non-degenerate values of σ2 the conditional posterior of λ is

instead the one in equation (2.13). Further integrating out λ, we obtain p(σ2|data) =∫
p(λ, σ2|data)dλ ∝ (σ2)−

N−K+1
2 e−

1
2σ2

(µR−Cλ̂)>Σ−1
R (µR−Cλ̂). Hence, the posterior of σ2 is as

in equation (2.14).

2.A.1.2 Formal Derivation of the Flat Prior Pitfall for Risk Prices

Following the derivation in Section 2.A.1.1, the cross-sectional likelihood is given by equa-

tion (2.10). Assigning a flat prior to the parameters41 (λ, σ2), the marginal cross-sectional

likelihood function conditional on model index γ is

p(data|γ) =

∫∫
p(data|γ,λ, σ2)π(λ, σ2|γ)dλdσ2 ∝

∫∫
(σ2)−

N+2
2 e−

1
2σ2

(µR−Cγλγ)>(µR−Cγλγ)dλdσ2

=

∫∫
(σ2)−

N+2
2 e−

Nσ̂2γ

2σ2 e−
(λγ−λ̂γ )>C>γ Cγ (λγ−λ̂γ )

2σ2 dλdσ2

= (2π)
pγ
2 |C>γ Cγ |−

1
2

∫
(σ2)−

N−pγ+2

2 e−
Nσ̂2γ

2σ2 dσ2 = (2π)
pγ
2 |C>γ Cγ |−

1
2

Γ(N−pγ
2

)

(
Nσ̂2

γ

2
)
N−pγ

2

,

where λ̂γ = (C>γ Cγ)−1C>γ µR, σ̂2
γ = (µR−Cγ λ̂γ)>(µR−Cγ λ̂γ)

N
and Γ denotes the Gamma func-

tion.

41More precisely, the priors for (λ, σ2) are π(λγ , σ
2) ∝ 1

σ2 and λ−γ = 0.
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2.A.1.3 Proof of Proposition 2.3

Sampling λγ. From Bayes’ theorem we have that

p(λ|data, σ2,γ) ∝ p(data|λ, σ2,γ)π(λ|σ2,γ)

∝ (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 e−

1
2σ2

[(µR−Cγλγ)>(µR−Cγλγ)+λ>γDγλγ ]

= (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 e−

(λγ−λ̂γ )>(C>γ Cγ+Dγ )(λγ−λ̂γ )

2σ2 e−
SSRγ

2σ2 ,

where SSRγ = µ>RµR−µ>RCγ(C>γ Cγ+Dγ)−1C>γ µR = minλγ{(µR−Cγλγ)>(µR−Cγλγ)+

λ>γDγλγ}. Hence, defining λ̂γ = (C>γ Cγ +Dγ)−1C>γ µR and σ̂2(λ̂γ) = σ2(C>γ Cγ +Dγ)−1,

we obtain the posterior distribution in (2.16).

Using our priors and integrating out λ yields

p(data|σ2,γ) =

∫
p(data|λ, σ2,γ)π(λ|σ2,γ)dλ ∝ (σ2)−

N
2

|Dγ |
1
2

|C>γ Cγ +Dγ |
1
2

e−
SSRγ

2σ2 .

Sampling σ2. From Bayes theorem, the posterior of σ2 is p(σ2|data,γ) ∝ p(data|σ2,γ)π(σ2) ∝
(σ2)−

N
2
−1e−

SSRγ

2σ2 . Hence, the posterior distribution of σ2 is the inverse-Gamma in (2.17).

Finally, we obtain the marginal likelihood of the data in (2.18) by integrating out σ2 as

follows:

p(data|γ) =

∫
p(data|σ2,γ)π(σ2)dσ2 ∝ |Dγ |

1
2

|C>γ Cγ +Dγ |
1
2

1

(SSRγ/2)
N
2

,

where SSRγ = µ>RµR − µ>RCγ(C>γ Cγ +Dγ)−1C>γ µR.

2.A.1.4 Proof of Proposition 2.4

Sampling λγ. From Bayes’ theorem we have that

p(λ|data, σ2,γ) ∝ p(data|λ, σ2,γ)π(λ|σ2,γ)

∝ (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 e−

1
2σ2

[(µR−Cγλγ)>Σ−1
R (µR−Cγλγ)+λ>γDγλγ ]

= (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 e−

(λγ−λ̂γ )>(C>γ Σ−1
R
Cγ+Dγ )(λγ−λ̂γ )

2σ2 e−
SSRγ

2σ2 ,

where SSRγ = minλγ{(µR −Cγλγ)>Σ−1
R (µR −Cγλγ) + λ>γDγλγ}. Hence, defining λ̂γ =

(C>γ Σ−1
R Cγ +Dγ)−1C>γ Σ−1

R µR, σ̂
2(λ̂γ) = σ2(C>γ Σ−1

R Cγ +Dγ)−1, we obtain the posterior

distribution in (2.19).
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Using our priors and integrating out λ yields

p(data|σ2,γ) =

∫
p(data|λ, σ2,γ)π(λ|σ2,γ)dλ ∝ (σ2)−

N
2

|Dγ |
1
2

|C>γ Σ−1
R Cγ +Dγ |

1
2

e−
SSRγ

2σ2 .

Obviously, the posterior distribution of σ2 is identical to that in equation (2.20).

Finally, we obtain the marginal likelihood of the data in (2.21) by integrating out σ2 as

follows:

p(data|γ) =

∫
p(data|σ2,γ)π(σ2)dσ2 ∝ |Dγ |

1
2

|C>γ Σ−1
R Cγ +Dγ |

1
2

1

(SSRγ/2)
N
2

.

2.A.1.5 Proof of Corollary 2.1

To begin with, we introduce the following matrix notations:

Cγ = (Cγ′ ,Cp), Dγ =

(
Dγ′ 0

0 ψ−1
p

)
,

where 0 denotes conformable matrices of zeros.

Under the spherical (OLS) distributional assumption for pricing errors α,

C>γ Cγ +Dγ =

(
C>γ′Cγ′ +Dγ′ C>γ′Cp

C>pCγ′ C>pCp + ψ−1
p

)
,

|C>γ Cγ + Dγ | = |C>γ′Cγ′ + Dγ′ | × |C>pCp + ψ−1
p − C>pCγ′(C>γ′Cγ′ + Dγ′)

−1C>γ′Cp|, and

|Dγ | = |Dγ′| × ψ−1
p . Equipped with the above, we have by direct calculation

p(data|γj = 1,γ−j)

p(data|γj = 0,γ−j)
=

|Dγ |
1
2

|C>γ Cγ +Dγ |
1
2

1

(SSRγ/2)
N
2

/
|Dγ′ |

1
2

|C>γ′Cγ′ +Dγ′ |
1
2

1

(SSRγ′/2)
N
2

=

(
SSRγ′

SSRγ

)N
2

ψ
− 1

2
p

∣∣∣C>pCp + ψ−1
p −C>pCγ′

(
C>γ′Cγ′ +Dγ′

)−1
C>γ′Cp

∣∣∣− 1
2

=

(
SSRγ′

SSRγ

)N
2 (

1 + ψpC
>
p

[
IN −Cγ′

(
C>γ′Cγ′ +Dγ′

)−1
C>γ′
]
Cp

)− 1
2
,

whereC>p

[
IN −Cγ′(C>γ′Cγ′ +Dγ′)

−1C>γ′
]
Cp = minb{(Cp−Cγ′b)>(Cp−Cγ′b)+b>Dγ′b}

is the minimal value of the penalized sum of squared errors when we use Cγ′ to predict Cp.

136



Similar to the above, in the non-spherical (GLS) pricing errors case we have

C>γ Σ−1
R Cγ +Dγ =

(
C>γ′Σ

−1
R Cγ′ +Dγ′ C>γ′Σ

−1
R Cp

C>p Σ−1
R Cγ′ C>p Σ−1

R Cp + ψ−1
p

)
,

|C>γ Σ−1
R Cγ +Dγ | = |C>γ′Σ

−1
R Cγ′ +Dγ′ | × |C>p Σ−1

R Cp + 1
ψp
−C>p Σ−1

R Cγ′(C
>
γ′Σ

−1
R Cγ′ +Dγ′)

−1C>γ′Σ
−1
R Cp|, and

|Dγ | = |Dγ′| × ψ−1
p . Equipped with the above, we have by direct calculation

p(data|γj = 1,γ−j)

p(data|γj = 0,γ−j)
=

|Dγ |
1
2

|C>γ Σ−1
R Cγ +Dγ |

1
2

1

(SSRγ/2)
N
2

/
|Dγ′ |

1
2

|C>γ′Σ
−1
R Cγ′ +Dγ′ |

1
2

1

(SSRγ′/2)
N
2

=

(
SSRγ′

SSRγ

)N
2

ψ
− 1

2
p

∣∣∣∣C>p Σ−1
R Cp +

1

ψp
−C>p Σ−1

R Cγ′
(
C>γ′Σ

−1
R Cγ′ +Dγ′

)−1
C>γ′Σ

−1
R Cp

∣∣∣∣− 1
2

=

(
SSRγ′

SSRγ

)N
2 ∣∣∣1 + ψp

[
C>p Σ−1

R Cp −C
>
p Σ−1

R Cγ′
(
C>γ′Σ

−1
R Cγ′ +Dγ′

)−1
C>γ′Σ

−1
R Cp

]∣∣∣− 1
2
,

whereC>p Σ−1
R Cp−C>p Σ−1

R Cγ′
(
C>γ′Σ

−1
R Cγ′ +Dγ′

)−1

C>γ′Σ
−1
R Cp = minb{(Cp−Cγ′b)>Σ−1

R (Cp−
Cγ′b) + b>Dγ′b}, which is the minimal value of the penalized sum of squared errors when

we use Cγ′ to predict Cp, but the prediction errors are weighted by Σ−1
R .

2.A.1.6 Proof of Propositions 2.6 and 2.7

Sampling λγ. Combining the likelihood and the prior for λ we have the following:

p(λ|data, σ2,γ) ∝ p(data|λ, σ2,γ)p(λ|σ2,γ) ∝ e−
1

2σ2
[λ>(C>C+D)λ−2λ>C>µR].

Therefore, defining λ̂ = (C>C +D)−1C>µR and σ̂2(λ̂) = σ2(C>C +D)−1, we have the

posterior in equation (2.28).

Sampling {γj}Kj=1. Given a ωj, the conditional Bayes factor for the j-th risk factor is42

p(γj = 1|data,λ,ω, σ2,γ−j)

p(γj = 0|data,λ,ω, σ2,γ−j)
=

ωj
1− ωj

p(λj|γj = 1, σ2)

p(λj|γj = 0, σ2)

Sampling ω. From Bayes’ theorem we have p(ωj|data,λ,γ, σ2) ∝ π(ωj)π(γj|ωj) ∝ ω
γj
j (1−

ωj)
1−γjωaω−1

j (1 − ωj)bω−1 ∝ ω
γj+aω−1
j (1 − ωj)1−γj+bω−1. Therefore, the posterior distribution

of ωj is the Beta in equation (2.30).

Sampling σ2. Finally, p(σ2|data,ω,λ,γ) ∝ (σ2)−
N+K+1

2
−1e−

1
2σ2

[(µR−Cλ)>(µR−Cλ)+λ>Dλ].

Hence, the posterior distribution of σ2 is the inverse-Gamma in equation (2.31). The proof

42If we had instead imposed ωj = 0.5, as in Section 2.3.1.2, the Bayes factor would simply be
p(λj |γj=1,σ2)
p(λj |γj=0,σ2) .
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of Proposition 2.7 follows the same identical steps, and is therefore omitted for brevity.
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2.A.2 Data

Table 2.A.1: List of factors for cross-sectional asset pricing models

Factor ID Reference Factor ID Reference
MKT Sharpe (1964, Journal of Finance), Lintner (1965,

Journal of Finance)
HML DEVIL Asness and Frazzini (2013, Journal of Portfolio

Management)
SMB Fama and French (1992, Journal of Finance) QMJ Asness, Frazzini, and Pedersen (2019, Review of

Accounting Studies)
HML Fama and French (1992, Journal of Finance) FIN UNC Jurado, Ludvigson, and Ng (2015, American Econ-

omy Review), Ludvigson, Ma, and Ng (2019, AEJ:
Macroeconomics)

RMW Fama and French (2015, Journal of Financial Eco-
nomics)

REAL UNC Jurado, Ludvigson, and Ng (2015, American Econ-
omy Review), Ludvigson, Ma, and Ng (2019, AEJ:
Macroeconomics)

CMA Fama and French (2015, Journal of Financial Eco-
nomics)

MACRO UNC Jurado, Ludvigson, and Ng (2015, American Econ-
omy Review), Ludvigson, Ma, and Ng (2019, AEJ:
Macroeconomics)

UMD Carhart (1997, Journal of Finance), Jegadeesh and
Titman (1993, Journal of Finance)

TERM Chen, Ross and Roll (1986, Journal of Business),
Fama and French (1993, Journal of Financial Eco-
nomics)

STRev Jegadeesh and Titman (1993, Journal of Finance) DELTA SLOPE Ferson and Harvey (1991, Journal of Political
Economy)

LTRev Jegadeesh and Titman (2001, Journal of Finance) CREDIT Chen, Ross and Roll (1986, Journal of Business),
Fama and French (1993, Journal of Financial Eco-
nomics)

q IA Hou, Xue, Zhang (2015, Review of Financial Stud-
ies)

DIV Campbell (1996, Journal of Political Economy)

q ROE Hou, Xue, Zhang (2015, Review of Financial Stud-
ies)

PE Basu (1977, Journal of Finance), Ball (1978, Jour-
nal of Financial Economics)

LIQ NT Pastor and Stambaugh (2003, Journal of Political
Economy)

BW INV SENT Baker and Wurgler (2006, Journal of Finance)

LIQ TR Pastor and Stambaugh (2003, Journal of Political
Economy)

HJTZ INV SENT Huang, Jiang, Tu, and Zhou (2015, Review of Fi-
nancial Studies)

MGMT Stambaugh and Yuan (2016, Review of Financial
Studies)

BEH PEAD Daniel, Hirshleifer, and Sun (2019, Review of Fi-
nancial Studies)

PERF Stambaugh and Yuan (2016, Review of Financial
Studies)

BEH FIN Daniel, Hirshleifer, and Sun (2019, Review of Fi-
nancial Studies)

ACCR Sloan (1996, Accounting Review) MKT∗ Daniel, Mota, Rottke, and Santos (2020, Review
of Financial Studies)

DISSTR Campbell, Hilscher, and Szilagyi (2008, Journal of
Finance)

SMB∗ Daniel, Mota, Rottke, and Santos (2020, Review
of Financial Studies)

A Growth Cooper, Gulen, and Schill (2008, Journal of Fi-
nance)

HML∗ Daniel, Mota, Rottke, and Santos (2020, Review
of Financial Studies)

COMP ISSUE Daniel and Titman (2006, Journal of Finance) RMW∗ Daniel, Mota, Rottke, and Santos (2020, Review
of Financial Studies)

GR PROF Novy-Marx (2013, Journal of Financial Eco-
nomics)

CMA∗ Daniel, Mota, Rottke, and Santos (2020, Review
of Financial Studies)

INV IN ASSETS Titman, Wei, and Xie (2004, Journal of Financial
and Quantitative Analysis)

SKEW Langlois (2019, Journal of Financial Economics)

NetOA Hirshleifer, Kewei, Teoh, and Zhang (2004, Jour-
nal of Accounting and Economics)

NONDUR Chen, Ross and Roll (1986, Journal of Business),
Breeden, Gibbons, and Litzenberger (1989, Jour-
nal of Finance)

OSCORE Ohlson (1980, Journal of Accounting Research) SERV Breeden, Gibbons, and Litzenberger (1989, Jour-
nal of Finance), Hall (1978, Journal of Political
Economy)

ROA Chen, Novy-Marx, and Zhang (2010, working pa-
per)

UNRATE Gertler and Grinols (1982, Journal of Money,
Credit, and Banking)

STOCK ISS Ritter (1991, Journal of Finance), Fama and
French (2008, Journal of Finance)

IND PROD Chan, Chen, and Hsieh (1985, Journal of Financial
Economics), Chen, Ross and Roll (1986, Journal
of Business)

INTERM CR He, Kelly, and Manela (2017, Journal of Financial
Economics)

OIL Chen, Ross and Roll (1986, Journal of Business)

BAB Frazzini and Pedersen (2014, Journal of Financial
Economics)

The table presents the list of factors used in Section 2.5.1. For each of the variables, we present their
identification index, the nature of the factor, and the source of data for downloading and/or constructing
the time series. Full description of the factors, sources, and references can be found in Table OA13 of the
Online Appendix.
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Table 2.A.2: List of additional anomalies used for the construction of test assets

Anomaly ID Reference Anomaly ID Reference
CashAssets Palazzo (2012, Journal of Financial Economics) Volume Garfinkel (2009, Review of Accounting Studies)
FCFBook Hou, Karolyi, and Kho (2011, Review of Financial

Studies)
SGASales Freyberger, Neuhierl, and Weber (2020, Review of

Financial Studies)
CFPrice Desai, Rajgopal, and Venkatachalam (2004, Ac-

counting Review)
Q Kaldor (1996, Review of Economic Studies)

CapTurnover Haugen and Baker (1996, Journal of Financial
Economics)

IVolCAPM Ang, Hodrick, Xing, and Zhang (2006, Journal of
Finance)

CapIntens Gorodnichenko and Weber (2016, American Eco-
nomic Review)

IVolFF3 Ang, Hodrick, Xing, and Zhang (2006, Journal of
Finance)

DP tr Litzenberger and Ramaswamy (1979, Journal of
Financial Economics)

DayVariance Ang, Hodrick, Xing, and Zhang (2006, Journal of
Finance)

PPE delta Lyandres, Sun, and Zhang (2008, Review of Finan-
cial Studies)

ProfMargin Soliman (2008, Accounting Review)

Lev Lewellen (2015, Critical Finance Review) PriceCostMargin Bustamante and Donangelo (2017, Review of Fi-
nancial Studies)

SalesPrice Lewellen (2015, Critical Finance Review) OperLev Novy-Marx (2011, Review of Finance)
IntermMom Novy-Marx (2012, Journal of Financial Eco-

nomics)
FixedCostSale D’Acunto, Liu, Pflueger, and Weber (2018, Jour-

nal of Financial Economics)
YearHigh George and Hwang (2004, Journal of Finance) LTMom Bondt and Thaler (1985, Journal of Finance)
PE tr Basu (1983, Journal of Financial Economics) NetSalesNetOA Soliman (2008, Accounting Review)
BidAsk Chung and Zhang (2014, Journal of Financial Mar-

kets)
AssetsMarket Bhandari (1988, Journal of Finance)

The table presents the list of anomalies, which, together with the tradable factors from Table 2.A.1, form
a cross-section of test assets used in Section 2.5.1. For each of the variables, we present their identification
index, the nature of the factor, and the source of data for downloading and/or constructing the time series.
Full description of the factors, sources, and references can be found in the Table OA14 of the Online Appendix.
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2.A.3 Additional Simulation Results: N = 25

Table 2.A.3: Price of risk tests in a misspecified model with a strong factor

λc λstrong R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

100 0.109 0.058 0.014 0.082 0.039 0.008 -3.92% 65.58%
200 0.107 0.053 0.011 0.084 0.041 0.006 -3.33% 65.60%

GMM 600 0.099 0.055 0.017 0.098 0.048 0.009 5.87% 64.16%
1000 0.098 0.054 0.011 0.108 0.052 0.010 13.23% 61.49%
20000 0.102 0.051 0.011 0.103 0.048 0.007 37.62% 49.45%

100 0.064 0.029 0.006 0.047 0.019 0.002 8.14% 43.29%
200 0.086 0.041 0.007 0.067 0.033 0.004 6.54% 49.57%

B-SDF, flat prior 600 0.087 0.050 0.018 0.097 0.046 0.009 8.72% 56.19%
1000 0.092 0.052 0.011 0.104 0.053 0.010 13.65% 56.14%
20000 0.099 0.052 0.010 0.104 0.051 0.009 37.36% 49.18%

100 0.064 0.029 0.006 0.049 0.020 0.002 8.13% 43.27%
200 0.086 0.040 0.008 0.069 0.033 0.004 6.53% 49.56%

B-SDF, normal prior 600 0.088 0.049 0.018 0.098 0.047 0.009 8.72% 56.18%
1000 0.092 0.052 0.011 0.106 0.056 0.011 13.65% 56.14%
20000 0.099 0.052 0.010 0.102 0.051 0.009 37.36% 49.18%

Panel B: GLS
100 0.105 0.051 0.009 0.082 0.041 0.007 -3.96% 16.32%
200 0.109 0.055 0.010 0.097 0.048 0.009 -3.43% 16.10%

GMM 600 0.104 0.057 0.014 0.121 0.067 0.015 -1.65% 14.80%
1000 0.109 0.058 0.012 0.124 0.067 0.015 -0.37% 13.53%
20000 0.096 0.050 0.012 0.140 0.082 0.016 4.88% 8.44%

100 0.140 0.078 0.017 0.056 0.024 0.003 -0.64% 9.35%
200 0.116 0.059 0.017 0.074 0.036 0.005 -1.70% 9.80%

B-SDF, flat prior 600 0.104 0.061 0.014 0.096 0.048 0.008 -1.08% 11.34%
1000 0.107 0.057 0.014 0.099 0.048 0.011 -0.09% 11.55%
20000 0.092 0.049 0.011 0.112 0.059 0.008 4.96% 8.28%

100 0.139 0.078 0.017 0.059 0.023 0.004 -0.65% 9.34%
200 0.116 0.060 0.017 0.075 0.037 0.005 -1.70% 9.79%

B-SDF, normal prior 600 0.104 0.061 0.014 0.093 0.048 0.007 -1.08% 11.34%
1000 0.106 0.057 0.014 0.101 0.047 0.010 -0.09% 11.54%
20000 0.092 0.049 0.011 0.115 0.060 0.009 4.96% 8.28%

Frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true values of λ∗i in a misspecified model
with an intercept and a strong factor. Last two columns: 5th and 95th percentiles of cross-sectional R2

adj

across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior mean for B-SDF.
The true value of the cross-sectional R2

adj is 43.87% (6.69%) for the OLS (GLS) estimation. B-SDF estimates

credible intervals of risk prices under (1) a flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT
d), where d

is chosen to be 0.5, while ψ is equal to 5. The normal prior corresponds to a prior SR of the factor model
equal to 1.239, 1.305, 1.386, 1.413, and 1.497, for T ∈ {100, 200, 600, 1, 000, and 20, 000}.
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Table 2.A.4: Price of risk tests in a misspecified model with a useless factor

λintercept λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.079 0.039 0.009 0.095 0.033 0.001 -4.28% 39.58%
200 0.088 0.041 0.006 0.151 0.054 0.004 -4.27% 43.35%

GMM 600 0.092 0.041 0.007 0.332 0.176 0.023 -4.26% 40.40%
1000 0.097 0.046 0.007 0.429 0.254 0.043 -4.28% 38.52%
20000 0.193 0.114 0.040 0.832 0.674 0.279 -4.28% 39.93%

100 0.045 0.018 0.003 0.003 0.001 0.000 6.45% 18.00%
200 0.064 0.023 0.004 0.016 0.003 0.000 4.91% 20.19%

B-SDF, flat prior 600 0.072 0.033 0.005 0.041 0.019 0.003 3.56% 20.78%
1000 0.080 0.031 0.006 0.059 0.027 0.003 3.23% 21.46%
20000 0.068 0.019 0.002 0.103 0.052 0.010 2.74% 22.95%

100 0.073 0.034 0.006 0.003 0.001 0.000 -2.92% 8.17%
200 0.101 0.051 0.011 0.016 0.003 0.000 -3.91% 2.43%

B-SDF, normal prior 600 0.125 0.064 0.022 0.041 0.019 0.003 -4.27% -2.74%
1000 0.139 0.083 0.025 0.059 0.027 0.003 -4.31% -3.59%
20000 0.693 0.577 0.340 0.103 0.052 0.010 -4.35% -4.34%

Panel B. GLS
100 0.096 0.047 0.007 0.144 0.073 0.008 -4.06% 12.88%
200 0.105 0.056 0.008 0.239 0.154 0.039 -3.95% 12.69%

GMM 600 0.115 0.060 0.012 0.444 0.353 0.190 -3.53% 14.05%
1000 0.127 0.068 0.015 0.546 0.456 0.281 -3.41% 12.88%
20000 0.367 0.270 0.111 0.886 0.862 0.801 -2.85% 13.80%

100 0.117 0.058 0.014 0.026 0.007 0.000 -0.16% 6.83%
200 0.096 0.044 0.013 0.040 0.016 0.002 -0.89% 5.65%

B-SDF, flat prior 600 0.093 0.047 0.007 0.067 0.025 0.005 -1.36% 6.31%
1000 0.094 0.049 0.007 0.070 0.030 0.008 -1.38% 6.21%
20000 0.206 0.084 0.006 0.101 0.052 0.012 -0.88% 7.40%

100 0.127 0.071 0.016 0.026 0.007 0.000 -1.50% 4.62%
200 0.106 0.054 0.016 0.040 0.016 0.002 -2.76% 1.59%

B-SDF, normal prior 600 0.117 0.061 0.015 0.067 0.025 0.005 -3.74% -0.54%
1000 0.126 0.068 0.016 0.070 0.030 0.008 -3.86% -1.19%
20000 0.661 0.527 0.307 0.101 0.052 0.012 -3.20% -2.40%

Frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true value of λc and λ∗useless = 0 in a
misspecified model with an intercept and a useless factor. Last two columns: 5th and 95th percentiles of
cross-sectional R2

adj across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior

mean for B-SDF. The true value of R2 is 0%. B-SDF estimates credible intervals of risk prices under (1) a
flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT

d), where d is chosen to be 0.5, while ψ is equal to 5.
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Table 2.A.5: Price of risk tests in a correctly specified model with a strong factor

λintercept λHML R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.110 0.057 0.014 0.081 0.039 0.009 -3.69% 77.22%
200 0.107 0.054 0.011 0.084 0.043 0.007 -2.37% 82.54%

GMM 600 0.101 0.055 0.017 0.098 0.045 0.010 27.73% 91.62%
1000 0.099 0.054 0.012 0.109 0.053 0.009 51.47% 93.90%
20000 0.101 0.049 0.011 0.102 0.049 0.007 97.50% 99.61%

100 0.064 0.028 0.006 0.048 0.018 0.002 10.87% 48.55%
200 0.087 0.042 0.007 0.072 0.031 0.005 11.45% 59.80%

B-SDF, flat prior 600 0.087 0.048 0.018 0.096 0.043 0.009 22.39% 76.64%
1000 0.092 0.051 0.011 0.103 0.054 0.009 38.42% 83.06%
20000 0.098 0.051 0.011 0.103 0.050 0.008 96.39% 98.57%

100 0.064 0.029 0.006 0.050 0.018 0.002 10.86% 48.53%
200 0.088 0.042 0.007 0.074 0.032 0.005 11.44% 59.79%

B-SDF, normal prior 600 0.086 0.049 0.018 0.095 0.045 0.009 22.39% 76.63%
1000 0.092 0.051 0.011 0.103 0.055 0.010 38.42% 83.06%
20000 0.099 0.050 0.011 0.104 0.051 0.009 96.39% 98.57%

Panel B. GLS
100 0.107 0.052 0.009 0.059 0.029 0.004 -3.87% 23.28%
200 0.113 0.056 0.009 0.072 0.032 0.006 -3.44% 32.06%

GMM 600 0.106 0.053 0.014 0.088 0.044 0.008 3.14% 50.57%
1000 0.111 0.058 0.012 0.097 0.047 0.008 13.68% 60.17%
20000 0.099 0.052 0.012 0.111 0.051 0.007 88.68% 95.75%

100 0.136 0.071 0.014 0.055 0.026 0.003 0.00% 12.64%
200 0.125 0.065 0.015 0.074 0.037 0.007 -0.51% 16.42%

B-SDF, flat prior 600 0.109 0.057 0.016 0.095 0.045 0.008 2.56% 29.66%
1000 0.110 0.056 0.012 0.104 0.050 0.009 7.90% 38.25%
20000 0.098 0.050 0.013 0.117 0.053 0.008 82.06% 89.50%

100 0.136 0.071 0.014 0.056 0.027 0.003 0.00% 12.63%
200 0.125 0.064 0.015 0.075 0.040 0.007 -0.51% 16.41%

B-SDF, normal prior 600 0.109 0.058 0.016 0.095 0.044 0.008 2.56% 29.66%
1000 0.110 0.056 0.012 0.105 0.051 0.008 7.90% 38.25%
20000 0.099 0.050 0.013 0.117 0.052 0.009 82.06% 89.49%

Frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true values of λ∗i in a correctly specified
model with an intercept and a strong factor. Last two columns: 5th and 95th percentiles of cross-sectional
R2
adj across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior mean for

B-SDF. The hypothetical true value of R2 is 100%. B-SDF estimates credible intervals of risk prices under
(1) a flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT

d), where d is chosen to be 0.5, while ψ is equal to
5. The normal prior corresponds to a prior SR of the factor model equal to 1.239, 1.305, 1.386, 1.413, and
1.497 for T ∈ {100, 200, 600, 1, 000, and 20, 000}.
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Table 2.A.6: Price of risk tests in a correctly specified model with a useless factor

λintercept λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.076 0.038 0.010 0.069 0.019 0.002 -4.25% 45.71%
200 0.081 0.036 0.006 0.105 0.033 0.000 -4.29% 52.03%

GMM 600 0.086 0.038 0.008 0.269 0.112 0.008 -4.20% 55.98%
1000 0.091 0.041 0.006 0.365 0.184 0.013 -4.22% 57.63%
20000 0.174 0.104 0.036 0.842 0.683 0.266 -4.10% 62.61%

100 0.041 0.017 0.003 0.002 0.000 0.000 7.76% 19.56%
200 0.060 0.021 0.004 0.013 0.002 0.000 6.88% 22.42%

B-SDF, flat prior 600 0.067 0.033 0.003 0.038 0.015 0.003 7.28% 27.84%
1000 0.076 0.024 0.004 0.058 0.026 0.004 7.49% 31.19%
20000 0.054 0.011 0.000 0.093 0.049 0.009 8.01% 38.97%

100 0.072 0.033 0.006 0.002 0.000 0.000 -2.77% 9.52%
200 0.101 0.051 0.010 0.013 0.002 0.000 -3.84% 3.54%

B-SDF, normal prior 600 0.125 0.064 0.021 0.038 0.015 0.003 -4.24% -2.04%
1000 0.139 0.083 0.025 0.058 0.026 0.004 -4.29% -3.13%
20000 0.692 0.574 0.340 0.093 0.049 0.009 -4.35% -4.33%

Panel B. GLS
100 0.094 0.045 0.008 0.069 0.025 0.001 -4.14% 13.29%
200 0.109 0.056 0.009 0.091 0.038 0.004 -4.19% 12.99%

GMM 600 0.120 0.067 0.015 0.139 0.072 0.012 -4.13% 13.82%
1000 0.140 0.075 0.017 0.157 0.086 0.014 -4.19% 11.77%
20000 0.569 0.442 0.228 0.658 0.588 0.427 -4.28% 11.85%

100 0.119 0.061 0.010 0.011 0.002 0.000 0.35% 7.84%
200 0.111 0.053 0.012 0.012 0.005 0.000 -0.25% 5.56%

B-SDF, flat prior 600 0.108 0.057 0.010 0.017 0.003 0.000 -0.70% 4.65%
1000 0.118 0.070 0.016 0.013 0.005 0.000 -0.95% 4.06%
20000 0.567 0.415 0.178 0.080 0.037 0.008 -2.01% 5.38%

100 0.132 0.068 0.013 0.011 0.002 0.000 -1.17% 6.15%
200 0.119 0.061 0.012 0.012 0.005 0.000 -2.52% 2.30%

B-SDF, normal prior 600 0.120 0.065 0.015 0.017 0.003 0.000 -3.56% -1.09%
1000 0.136 0.077 0.020 0.013 0.005 0.000 -3.81% -2.00%
20000 0.692 0.569 0.338 0.080 0.037 0.008 -4.29% -4.03%

Frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true value of λc and λ∗useless = 0 in a
correctly specified model with an intercept and a useless factor. Last two columns: 5th and 95th percentiles of
cross-sectional R2

adj across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior

mean for B-SDF. The true value of R2 is 0%. B-SDF estimates credible intervals of risk prices under (1) a
flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT

d), where d is chosen to be 0.5, while ψ is equal to 5.
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Table 2.A.7: Price of risk tests in a correctly specified model with useless and strong factors

λintercept λHML λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.085 0.038 0.007 0.065 0.031 0.003 0.036 0.008 0.000 -2.65% 79.55%
200 0.090 0.037 0.004 0.062 0.023 0.003 0.031 0.008 0.000 3.19% 84.45%

GMM 600 0.075 0.035 0.010 0.069 0.033 0.005 0.041 0.012 0.000 35.99% 92.46%
1000 0.083 0.040 0.006 0.077 0.035 0.004 0.039 0.005 0.000 57.55% 94.54%
20000 0.073 0.038 0.006 0.072 0.032 0.003 0.035 0.007 0.001 97.95% 99.64%

100 0.035 0.013 0.001 0.033 0.008 0.000 0.002 0.000 0.000 20.39% 54.29%
200 0.057 0.021 0.002 0.044 0.016 0.001 0.002 0.001 0.000 20.05% 63.99%

B-SDF, flat prior 600 0.059 0.025 0.007 0.055 0.025 0.004 0.005 0.002 0.000 30.94% 79.15%
1000 0.069 0.033 0.005 0.065 0.029 0.002 0.004 0.000 0.000 45.76% 85.03%
20000 0.066 0.031 0.005 0.070 0.026 0.002 0.007 0.002 0.000 96.99% 98.73%

100 0.062 0.028 0.005 0.049 0.020 0.002 0.002 0.000 0.000 10.50% 48.47%
200 0.084 0.039 0.007 0.070 0.030 0.005 0.002 0.001 0.000 9.12% 58.83%

B-SDF, normal prior 600 0.087 0.047 0.018 0.090 0.044 0.009 0.005 0.002 0.000 19.32% 75.71%
1000 0.093 0.052 0.011 0.105 0.052 0.009 0.004 0.000 0.000 35.52% 82.38%
20000 0.099 0.050 0.011 0.103 0.050 0.009 0.006 0.002 0.000 96.23% 98.51%

Panel B. GLS
100 0.099 0.046 0.007 0.059 0.025 0.003 0.067 0.027 0.001 -7.36% 25.68%
200 0.105 0.050 0.009 0.068 0.030 0.004 0.069 0.029 0.002 -6.57% 34.26%

GMM 600 0.098 0.049 0.012 0.077 0.035 0.006 0.077 0.036 0.003 1.52% 52.00%
1000 0.106 0.052 0.010 0.085 0.040 0.007 0.075 0.030 0.003 12.51% 60.51%
20000 0.089 0.045 0.010 0.095 0.051 0.007 0.092 0.033 0.001 88.59% 95.77%

100 0.118 0.056 0.010 0.045 0.019 0.003 0.012 0.002 0.000 -0.92% 12.91%
200 0.109 0.056 0.012 0.059 0.029 0.004 0.010 0.004 0.000 -1.28% 16.54%

B-SDF, flat prior 600 0.101 0.049 0.012 0.076 0.034 0.005 0.009 0.001 0.000 2.31% 29.64%
1000 0.101 0.052 0.010 0.088 0.041 0.006 0.005 0.001 0.000 7.30% 38.35%
20000 0.090 0.041 0.007 0.096 0.045 0.008 0.005 0.000 0.000 82.07% 89.53%

100 0.131 0.064 0.013 0.054 0.023 0.003 0.012 0.002 0.000 -2.53% 10.97%
200 0.122 0.066 0.015 0.073 0.038 0.006 0.010 0.004 0.000 -3.64% 14.15%

B-SDF, normal prior 600 0.109 0.056 0.015 0.090 0.046 0.009 0.009 0.001 0.000 -1.37% 26.96%
1000 0.107 0.058 0.013 0.102 0.050 0.010 0.004 0.001 0.000 3.92% 35.71%
20000 0.100 0.048 0.012 0.113 0.054 0.009 0.005 0.000 0.000 81.20% 89.00%

Frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true values of λc and λstrong, λ
∗
useless ≡ 0

in a misspecified model with an intercept, a strong, and a useless factor. Last two columns: 5th and 95th
percentiles of cross-sectional R2

adj across 2,000 simulations, evaluated at the point estimates for GMM and at

the posterior mean for B-SDF. The true value of the cross-sectional R2 is 100%. B-SDF estimates credible
intervals of risk prices under (1) a flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT

d), where d is chosen
to be 0.5, while ψ is equal to 5. The normal prior corresponds to a prior SR of the factor model equal to
1.239, 1.305, 1.386, 1.413, and 1.497 for T ∈ {100, 200, 600, 1, 000, and 20, 000}.
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Table 2.A.8: Price of risk tests in a misspecified model with useless and strong factors,
robustness check: ψ ∈ {2, 10}

λc λstrong λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

100 0.062 0.029 0.005 0.050 0.020 0.002 0.002 0.001 0.000 5.98% 42.02%
B-SDF, normal prior 200 0.087 0.040 0.008 0.073 0.031 0.006 0.006 0.002 0.000 3.01% 47.81%
ψ = 2 600 0.087 0.048 0.018 0.096 0.044 0.009 0.020 0.006 0.001 4.76% 54.20%

1000 0.095 0.052 0.011 0.106 0.052 0.009 0.040 0.011 0.002 9.55% 54.10%
20000 0.100 0.050 0.010 0.105 0.053 0.009 0.089 0.043 0.009 34.47% 46.84%

100 0.060 0.027 0.005 0.047 0.019 0.002 0.003 0.001 0.000 8.98% 44.71%
B-SDF, normal prior 200 0.084 0.039 0.008 0.066 0.031 0.005 0.006 0.001 0.000 4.48% 48.88%
ψ = 10 600 0.085 0.048 0.017 0.093 0.043 0.010 0.019 0.006 0.001 4.99% 54.37%

1000 0.095 0.052 0.011 0.105 0.051 0.010 0.040 0.013 0.002 9.71% 54.16%
20000 0.100 0.050 0.011 0.102 0.050 0.009 0.089 0.043 0.009 34.47% 46.84%

Panel B: GLS
100 0.133 0.071 0.014 0.059 0.026 0.003 0.029 0.008 0.000 -4.19% 6.71%

B-SDF, normal prior 200 0.113 0.058 0.019 0.076 0.036 0.006 0.035 0.013 0.001 -5.64% 6.48%
ψ = 2 600 0.106 0.061 0.013 0.096 0.049 0.011 0.068 0.029 0.004 -5.53% 7.62%

1000 0.107 0.055 0.013 0.101 0.049 0.011 0.075 0.036 0.007 -4.55% 7.69%
20000 0.090 0.045 0.010 0.114 0.057 0.008 0.105 0.050 0.011 0.62% 4.10%

100 0.129 0.068 0.013 0.051 0.022 0.002 0.029 0.009 0.000 -2.88% 8.49%
B-SDF, normal prior 200 0.108 0.057 0.018 0.073 0.032 0.006 0.034 0.012 0.001 -4.48% 8.14%
ψ = 10 600 0.106 0.061 0.013 0.089 0.045 0.008 0.068 0.029 0.004 -5.00% 8.18%

1000 0.107 0.056 0.014 0.101 0.045 0.009 0.075 0.035 0.007 -4.19% 8.02%
20000 0.091 0.046 0.010 0.111 0.058 0.008 0.105 0.050 0.011 0.63% 4.10%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true values of λc
and λstrong, λ

∗
useless ≡ 0 in a misspecified model with an intercept, a strong and a useless factor. The

true value of the cross-sectional R2
adj is 43.87% (6.69%) for the OLS (GLS) estimation. B-SDF estimates

credible intervals of risk prices under a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT
d), where d is chosen to be 0.5,

while ψ is equal to 2 or 10. When ψ = 2, the normal prior implies a prior SR of the factor model equal
to 1.009, 1.104, 1.235, 1.285, and 1.459 for T ∈ {100, 200, 600, 1, 000, and 20, 000}. Similarly, if ψ = 10,
the normal prior implies a prior SR of the factor model equal to 1.359, 1.402, 1.450, 1.465, and 1.510 for
T ∈ {100, 200, 600, 1, 000, and 20, 000}
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2.A.3.1 Large N behavior

In this section we investigate the properties of the B-SDF procedure in estimating price of

risk and measure of fit, as well as successfully identifying irrelevant factors in the model,

when applied to a large cross-section.

We consider the same simulation design as described at the beginning of Section 2.4,

except for the choice of the cross-section of test assets, which time series and cross-sectional

features we mimic. In our baseline case in the previous subsections, we built a cross-section

to emulate the 25 Fama-French portfolios, sorted by size and value. Now instead we consider

the properties of the following composite cross-sections to simulate returns:

(a) N = 55: 25 Fama-French portfolios, sorted by size and value and 30 industry portfolios;

(b) N = 100: 25 Fama-French portfolios, sorted by size and value, 30 industry portfolios,

25 profitability and investment portfolios, 10 momentum portfolios, and 10 long-term

reversal portfolios.

The rest of the simulation design stays unchanged; that is, the strong factor mimics the

behavior of HML, with its betas and risk premia corresponding to their in-sample values,

cross-sectional R2
adj, portfolio average returns, and variance of the residuals.
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Table 2.A.9: Price of risk tests in a misspecified model with a strong factor (N = 55)

λc λstrong R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

100 0.113 0.059 0.010 0.072 0.032 0.004 -1.82% 30.72%
200 0.103 0.051 0.012 0.085 0.037 0.004 -1.83% 30.92%

GMM 600 0.092 0.045 0.008 0.090 0.040 0.006 -1.70% 27.37%
1000 0.106 0.050 0.009 0.099 0.047 0.009 -1.29% 25.41%
20000 0.108 0.053 0.013 0.106 0.057 0.014 6.44% 14.05%

100 0.053 0.016 0.001 0.002 0.001 0.000 -0.85% 0.81%
200 0.069 0.033 0.006 0.029 0.012 0.001 -1.27% 9.42%

B-SDF, flat prior 600 0.084 0.037 0.007 0.071 0.032 0.005 -1.52% 19.54%
1000 0.100 0.047 0.009 0.088 0.038 0.006 -1.55% 20.65%
20000 0.105 0.056 0.014 0.104 0.060 0.014 6.20% 13.73%

100 0.053 0.016 0.001 0.002 0.001 0.000 -0.85% 0.81%
200 0.069 0.032 0.006 0.030 0.012 0.001 -1.27% 9.42%

B-SDF, normal prior 600 0.084 0.037 0.007 0.072 0.032 0.005 -1.52% 19.54%
1000 0.100 0.047 0.009 0.087 0.038 0.006 -1.55% 20.65%
20000 0.105 0.056 0.014 0.104 0.058 0.014 6.20% 13.73%

Panel B: GLS
100 0.127 0.073 0.019 0.073 0.032 0.003 -1.07% 21.51%
200 0.112 0.061 0.016 0.102 0.054 0.005 -0.44% 22.63%

GMM 600 0.123 0.055 0.014 0.123 0.067 0.014 3.01% 21.13%
1000 0.124 0.065 0.015 0.141 0.074 0.014 4.43% 20.17%
20000 0.111 0.049 0.014 0.148 0.081 0.025 11.28% 15.27%

100 0.283 0.201 0.085 0.035 0.012 0.001 -0.48% 24.04%
200 0.174 0.106 0.036 0.068 0.029 0.006 -0.79% 19.81%

B-SDF, flat prior 600 0.119 0.065 0.018 0.083 0.039 0.005 1.27% 18.44%
1000 0.115 0.065 0.020 0.095 0.043 0.006 3.00% 18.57%
20000 0.103 0.047 0.009 0.111 0.059 0.012 11.04% 15.23%

100 0.283 0.201 0.085 0.037 0.013 0.001 -0.48% 24.04%
200 0.174 0.106 0.036 0.069 0.031 0.006 -0.79% 19.81%

B-SDF, normal prior 600 0.119 0.065 0.018 0.085 0.039 0.006 1.27% 18.44%
1000 0.115 0.065 0.020 0.096 0.045 0.006 3.00% 18.57%
20000 0.103 0.047 0.009 0.111 0.058 0.012 11.04% 15.23%

Frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true values of λ∗i in a misspecified model
with an intercept and a strong factor. Last two columns: 5th and 95th percentiles of cross-sectional R2

adj

across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior mean for B-SDF.
The true value of the cross-sectional R2

adj is 10.18% (13.34%) for the OLS (GLS) estimation. B-SDF estimates

credible intervals of risk prices under (1) a flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT
d), where d

is chosen to be 0.5, while ψ is equal to 5. The normal prior corresponds to a prior SR of the factor model
equal to 1.528, 1.636, 1.773, 1.822, and 1.978 for T ∈ {100, 200, 600, 1, 000, and 20, 000}.
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Table 2.A.10: Price of risk tests in a misspecified model with a useless factor (N = 55)

λintercept λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.096 0.045 0.010 0.091 0.033 0.004 -1.87% 18.05%
200 0.102 0.052 0.011 0.130 0.060 0.011 -1.87% 15.10%

GMM 600 0.101 0.051 0.011 0.258 0.158 0.030 -1.86% 13.29%
1000 0.128 0.064 0.014 0.342 0.239 0.084 -1.88% 14.23%
20000 0.288 0.200 0.083 0.821 0.775 0.662 -1.87% 12.69%

100 0.055 0.014 0.002 0.000 0.000 0.000 -1.02% -0.48%
200 0.084 0.034 0.007 0.002 0.000 0.000 -1.33% -0.54%

B-SDF, flat prior 600 0.102 0.050 0.011 0.012 0.003 0.001 -1.50% -0.45%
1000 0.121 0.064 0.014 0.030 0.010 0.000 -1.55% -0.28%
20000 0.264 0.154 0.029 0.090 0.037 0.008 -1.64% 0.10%

100 0.058 0.019 0.002 0.000 0.000 0.000 -1.09% -0.52%
200 0.087 0.043 0.007 0.002 0.000 0.000 -1.53% -0.81%

B-SDF, normal prior 600 0.108 0.054 0.014 0.012 0.003 0.001 -1.82% -1.35%
1000 0.130 0.075 0.016 0.030 0.009 0.000 -1.85% -1.56%
20000 0.443 0.316 0.143 0.090 0.037 0.008 -1.89% -1.88%

Panel B. GLS
100 0.125 0.071 0.019 0.104 0.056 0.005 -1.33% 21.50%
200 0.104 0.052 0.014 0.202 0.120 0.032 -1.01% 22.14%

GMM 600 0.118 0.062 0.013 0.410 0.320 0.186 0.99% 19.94%
1000 0.129 0.070 0.016 0.510 0.437 0.294 2.33% 19.23%
20000 0.253 0.162 0.053 0.892 0.863 0.816 7.70% 15.65%

100 0.283 0.199 0.084 0.057 0.026 0.002 -0.42% 25.52%
200 0.178 0.109 0.038 0.041 0.009 0.001 -0.83% 19.54%

B-SDF, flat prior 600 0.128 0.077 0.021 0.059 0.027 0.004 -0.76% 17.53%
1000 0.129 0.080 0.025 0.068 0.030 0.005 0.43% 17.23%
20000 0.175 0.093 0.019 0.094 0.046 0.009 7.61% 12.41%

100 0.285 0.200 0.084 0.057 0.026 0.002 -0.43% 25.51%
200 0.180 0.110 0.038 0.041 0.009 0.001 -0.85% 19.47%

B-SDF, normal prior 600 0.139 0.079 0.024 0.059 0.027 0.004 -0.98% 16.90%
1000 0.145 0.089 0.027 0.068 0.030 0.005 -0.43% 16.27%
20000 0.342 0.234 0.095 0.094 0.046 0.009 6.86% 11.26%

Frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true value of λc and λ∗useless = 0 in a
misspecified model with an intercept and a useless factor. Last two columns: 5th and 95th percentiles of
cross-sectional R2

adj across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior

mean for B-SDF. The true value of R2 is 0%. B-SDF estimates credible intervals of risk prices under (1) a
flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT

d), where d is chosen to be 0.5, while ψ is equal to 5.
For the uncorrelated useless factor, the normal prior implies a prior SR of 0 as the sample size T goes to
infinity.
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Table 2.A.11: Price of risk tests in a misspecified model with useless and strong factors
(N = 55)

λc λstrong λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

100 0.102 0.047 0.010 0.058 0.027 0.004 0.090 0.035 0.003 -2.92% 34.26%
200 0.096 0.050 0.010 0.074 0.032 0.004 0.138 0.056 0.009 -2.99% 34.31%

GMM 600 0.088 0.039 0.006 0.084 0.038 0.005 0.257 0.167 0.040 -2.19% 30.22%
1000 0.101 0.050 0.010 0.089 0.040 0.005 0.344 0.243 0.084 -1.72% 28.88%
20000 0.113 0.059 0.015 0.080 0.033 0.006 0.816 0.773 0.654 5.92% 21.54%

100 0.049 0.013 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.23% 4.87%
200 0.065 0.025 0.004 0.024 0.006 0.000 0.002 0.000 0.000 -1.13% 18.26%

B-SDF, flat prior 600 0.072 0.031 0.006 0.059 0.020 0.003 0.016 0.003 0.000 -1.95% 22.44%
1000 0.080 0.036 0.008 0.064 0.026 0.003 0.030 0.008 0.001 -2.13% 23.23%
20000 0.041 0.017 0.002 0.023 0.010 0.001 0.086 0.040 0.006 5.78% 14.89%

100 0.051 0.014 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.08% 4.36%
200 0.071 0.030 0.004 0.030 0.008 0.001 0.002 0.000 0.000 -1.63% 16.04%

B-SDF, normal prior 600 0.083 0.034 0.007 0.070 0.031 0.004 0.017 0.003 0.000 -2.84% 19.26%
1000 0.094 0.049 0.010 0.085 0.039 0.007 0.030 0.008 0.001 -3.13% 19.08%
20000 0.107 0.054 0.015 0.104 0.061 0.012 0.086 0.040 0.006 4.36% 12.19%

Panel B: GLS
100 0.125 0.070 0.018 0.069 0.034 0.003 0.099 0.050 0.007 -2.13% 22.64%
200 0.104 0.055 0.014 0.101 0.047 0.006 0.196 0.114 0.027 -1.28% 22.85%

GMM 600 0.119 0.056 0.012 0.112 0.059 0.012 0.404 0.312 0.184 2.27% 21.91%
1000 0.113 0.059 0.013 0.134 0.068 0.014 0.512 0.431 0.292 3.65% 21.31%
20000 0.096 0.046 0.008 0.112 0.059 0.012 0.877 0.854 0.801 10.13% 17.87%

100 0.278 0.197 0.084 0.028 0.008 0.001 0.053 0.027 0.003 -1.63% 24.93%
200 0.167 0.102 0.034 0.064 0.027 0.003 0.038 0.009 0.001 -1.61% 19.05%

B-SDF, flat prior 600 0.113 0.061 0.015 0.077 0.033 0.005 0.059 0.028 0.003 0.81% 18.53%
1000 0.111 0.060 0.016 0.082 0.038 0.005 0.068 0.031 0.004 2.47% 18.70%
20000 0.049 0.018 0.000 0.036 0.015 0.001 0.092 0.042 0.009 10.02% 14.64%

100 0.280 0.197 0.084 0.031 0.009 0.001 0.052 0.027 0.003 -1.64% 24.99%
200 0.169 0.105 0.034 0.067 0.029 0.003 0.039 0.009 0.001 -1.67% 19.50%

B-SDF, normal prior 600 0.120 0.067 0.019 0.082 0.041 0.006 0.058 0.028 0.003 0.34% 17.73%
1000 0.119 0.068 0.019 0.095 0.043 0.006 0.068 0.031 0.004 1.68% 17.45%
20000 0.100 0.050 0.012 0.109 0.061 0.013 0.092 0.042 0.009 9.29% 13.60%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true values of λc and
λstrong, λ

∗
useless ≡ 0 in a misspecified model with an intercept, a strong, and a useless factor. The true value

of the cross-sectional R2
adj is 10.18% (13.34%) for the OLS (GLS) estimation. B-SDF estimates credible

intervals of risk prices under (1) a flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT
d), where d is chosen

to be 0.5, while ψ is equal to 5. The normal prior corresponds to a prior SR of the factor model equal to
1.528, 1.636, 1.773, 1.822, and 1.978 for T ∈ {100, 200, 600, 1, 000, and 20, 000}.
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Table 2.A.12: Price of risk tests in a misspecified model with a strong factor (N = 100)

λc λstrong R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

200 0.106 0.062 0.014 0.085 0.040 0.007 -0.98% 24.46%
GMM 600 0.101 0.048 0.013 0.097 0.045 0.010 -0.70% 23.52%

1000 0.101 0.058 0.012 0.097 0.048 0.014 -0.21% 20.38%
20000 0.091 0.043 0.009 0.103 0.051 0.010 6.23% 11.74%

200 0.082 0.039 0.006 0.022 0.006 0.000 -0.36% 1.74%
B-SDF, flat prior 600 0.089 0.043 0.008 0.065 0.032 0.004 -0.71% 17.12%

1000 0.094 0.048 0.013 0.079 0.041 0.011 -0.74% 16.60%
20000 0.092 0.042 0.010 0.098 0.047 0.011 6.02% 11.56%

200 0.082 0.039 0.006 0.022 0.006 0.000 -0.36% 1.74%
B-SDF, normal prior 600 0.090 0.043 0.008 0.064 0.033 0.004 -0.71% 17.12%

1000 0.094 0.048 0.013 0.079 0.041 0.011 -0.74% 16.60%
20000 0.092 0.042 0.010 0.098 0.047 0.011 6.02% 11.56%

Panel B: GLS
200 0.097 0.055 0.014 0.110 0.056 0.010 -0.19% 18.33%

GMM 600 0.121 0.071 0.015 0.163 0.101 0.025 1.68% 17.64%
1000 0.115 0.066 0.013 0.170 0.098 0.028 2.95% 16.54%
20000 0.104 0.054 0.013 0.177 0.105 0.036 8.37% 11.75%

200 0.194 0.123 0.039 0.089 0.039 0.002 0.04% 10.53%
B-SDF, flat prior 600 0.123 0.067 0.018 0.122 0.065 0.015 0.16% 13.30%

1000 0.109 0.062 0.012 0.119 0.066 0.016 1.26% 13.48%
20000 0.088 0.040 0.010 0.095 0.046 0.010 8.07% 11.73%

200 0.194 0.123 0.039 0.089 0.040 0.002 0.04% 10.53%
B-SDF, normal prior 600 0.123 0.067 0.018 0.126 0.067 0.016 0.16% 13.30%

1000 0.109 0.062 0.012 0.121 0.066 0.017 1.26% 13.48%
20000 0.088 0.040 0.010 0.094 0.045 0.010 8.07% 11.73%

Frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true values of λ∗i in a misspecified model
with an intercept and a strong factor. Last two columns: 5th and 95th percentiles of cross-sectional R2

adj

across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior mean for B-SDF.
The true value of the cross-sectional R2

adj is 8.98% (10.11%) for the OLS (GLS) estimation. B-SDF estimates

credible intervals of risk prices under (1) a flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT
d), where d

is chosen to be 0.5, while ψ is equal to 5. The normal prior corresponds to a prior SR of the factor model
equal to 1.858, 2.010, 2.210, 2.285, and 2.529 for T ∈ {100, 200, 600, 1, 000, and 20, 000}.
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Table 2.A.13: Price of risk tests in a misspecified model with a useless factor (N = 100)

λintercept λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

200 0.108 0.060 0.015 0.206 0.117 0.031 -1.01% 13.30%
GMM 600 0.116 0.064 0.014 0.406 0.296 0.130 -1.01% 13.39%

1000 0.130 0.070 0.020 0.477 0.383 0.219 -1.00% 12.64%
20000 0.357 0.251 0.110 0.875 0.841 0.764 -1.00% 12.49%

200 0.105 0.051 0.007 0.000 0.000 0.000 -0.54% -0.07%
B-SDF, flat prior 600 0.129 0.069 0.013 0.026 0.009 0.001 -0.72% 0.33%

1000 0.135 0.076 0.017 0.047 0.017 0.003 -0.75% 0.45%
20000 0.312 0.176 0.023 0.093 0.051 0.009 -0.79% 1.78%

200 0.105 0.054 0.008 0.000 0.000 0.000 -0.58% -0.11%
B-SDF, normal prior 600 0.142 0.077 0.019 0.026 0.009 0.001 -0.88% -0.20%

1000 0.153 0.087 0.025 0.047 0.017 0.003 -0.95% -0.39%
20000 0.623 0.500 0.274 0.093 0.051 0.009 -1.02% -1.00%

Panel B. GLS
200 0.101 0.055 0.014 0.158 0.095 0.030 -0.59% 17.85%

GMM 600 0.119 0.070 0.015 0.399 0.312 0.166 0.42% 16.67%
1000 0.118 0.068 0.013 0.506 0.416 0.282 1.20% 15.96%
20000 0.261 0.181 0.064 0.874 0.846 0.807 6.01% 11.11%

200 0.200 0.129 0.043 0.020 0.007 0.001 -0.09% 10.29%
B-SDF, flat prior 600 0.122 0.069 0.016 0.063 0.026 0.003 -0.43% 12.94%

1000 0.113 0.065 0.014 0.077 0.034 0.006 -0.25% 12.98%
20000 0.178 0.098 0.023 0.100 0.057 0.011 5.89% 9.84%

200 0.202 0.129 0.043 0.020 0.007 0.001 -0.10% 10.28%
B-SDF, normal prior 600 0.122 0.069 0.017 0.063 0.026 0.003 -0.48% 12.81%

1000 0.119 0.064 0.016 0.077 0.034 0.006 -0.39% 12.70%
20000 0.252 0.165 0.048 0.100 0.057 0.011 5.33% 9.07%

Frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true value of λc and λ∗useless = 0 in a
misspecified model with an intercept and a useless factor. Last two columns: 5th and 95th percentiles of
cross-sectional R2

adj across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior

mean for B-SDF. The true value of R2 is 0%. B-SDF estimates credible intervals of risk prices under (1) a
flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT

d), where d is chosen to be 0.5, while ψ is equal to 5.
For the uncorrelated useless factor, the normal prior implies a prior SR of 0 as the sample size T goes to
infinity.
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Table 2.A.14: Price of risk tests in a misspecified model with useless and strong factors
(N = 100)

λc λstrong λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

200 0.104 0.054 0.012 0.074 0.034 0.006 0.216 0.131 0.035 -1.26% 27.78%
GMM 600 0.101 0.051 0.012 0.099 0.041 0.004 0.403 0.302 0.146 -0.73% 26.62%

1000 0.095 0.056 0.008 0.094 0.040 0.009 0.488 0.398 0.231 0.22% 24.92%
20000 0.104 0.056 0.010 0.098 0.048 0.006 0.866 0.841 0.778 6.33% 19.62%

200 0.080 0.036 0.005 0.016 0.005 0.000 0.000 0.000 0.000 0.40% 9.23%
B-SDF, flat prior 600 0.081 0.040 0.007 0.060 0.024 0.002 0.023 0.005 0.001 -0.58% 19.69%

1000 0.085 0.041 0.008 0.062 0.030 0.005 0.042 0.017 0.001 -0.59% 19.47%
20000 0.024 0.004 0.001 0.020 0.003 0.001 0.087 0.042 0.009 6.16% 13.07%

200 0.084 0.037 0.005 0.018 0.005 0.000 0.000 0.000 0.000 0.31% 8.57%
B-SDF, normal prior 600 0.092 0.043 0.009 0.070 0.033 0.003 0.023 0.005 0.001 -1.02% 17.83%

1000 0.094 0.049 0.011 0.077 0.040 0.010 0.043 0.017 0.001 -1.23% 16.73%
20000 0.091 0.042 0.009 0.099 0.049 0.012 0.087 0.042 0.009 5.04% 10.68%

Panel B: GLS
200 0.101 0.056 0.014 0.108 0.051 0.009 0.161 0.099 0.033 -0.73% 18.64%

GMM 600 0.117 0.072 0.014 0.158 0.095 0.023 0.391 0.306 0.161 1.37% 17.53%
1000 0.120 0.064 0.014 0.158 0.089 0.023 0.502 0.410 0.273 2.76% 16.73%
20000 0.103 0.053 0.012 0.152 0.089 0.021 0.875 0.849 0.801 7.77% 12.81%

200 0.191 0.124 0.039 0.084 0.034 0.003 0.024 0.009 0.001 -0.33% 10.58%
B-SDF, flat prior 600 0.122 0.064 0.016 0.122 0.061 0.017 0.059 0.024 0.002 -0.10% 12.80%

1000 0.108 0.061 0.014 0.110 0.058 0.015 0.076 0.033 0.004 1.10% 13.36%
20000 0.056 0.025 0.004 0.051 0.017 0.002 0.100 0.052 0.010 7.72% 11.56%

200 0.193 0.123 0.040 0.087 0.036 0.003 0.024 0.009 0.001 -0.37% 10.57%
B-SDF, normal prior 600 0.121 0.064 0.017 0.127 0.064 0.019 0.059 0.024 0.002 -0.21% 12.75%

1000 0.111 0.064 0.015 0.117 0.063 0.015 0.076 0.033 0.004 0.82% 13.12%
20000 0.085 0.039 0.011 0.096 0.046 0.011 0.100 0.052 0.010 7.15% 10.81%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗i for pseudo-true values of λc
and λstrong, λ

∗
useless ≡ 0 in a misspecified model with an intercept, a strong, and a useless factor. The true

value of the cross-sectional R2
adj is 8.98% (10.11%) for the OLS (GLS) estimation. B-SDF estimates credible

intervals of risk prices under (1) a flat prior or (2) a normal prior bj ∼ N (0, σ2ψρ̃>j ρ̃jT
d), where d is chosen

to be 0.5, while ψ is equal to 5. The normal prior corresponds to a prior SR of the factor model equal to
1.858, 2.010, 2.210, 2.285, and 2.529 for T ∈ {100, 200, 600, 1, 000, and 20, 000}.
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2.A.3.2 Bayesian p-values
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Figure 2.A.1: Distribution of the Bayesian p-values for testing factor risk prices

Bayesian p-value, 1− Pr[γ = 1|data], of H0 : λ = λpseudo−true, in misspecified models with both useless and
strong factors, computed with the spike-and-slab prior of Section 2.3.1.2, as per Corollary 2.2, for different

sample sizes. We set ψ = 1 in the estimation (which corresponds to a prior of
√

Eπ[SR2
f | σ2] = 0.295) and

r = 0.001.
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2.A.4 Additional Results on the Main BMA Applica-

tion

Table 2.A.15: Values of ρ>k ρk and ρ̃>k ρ̃k for each factor

Factor ρ>k ρk ρ̃>k ρ̃k Factor ρ>k ρk ρ̃>k ρ̃k Factor ρ>k ρk ρ̃>k ρ̃k
LIQ NT 0.754 0.744 MKT 5.719 5.419 GR PROF 5.01 4.84
INTERM CAP RATIO 3.407 3.233 SMB 7.087 7.087 INV IN ASS 4.007 3.683
FIN UNC 0.353 0.339 HML 9.216 8.814 NetOA 2.252 2.103
REAL UNC 0.137 0.137 RMW 7.575 7.031 O SCORE 6.735 6.672
MACRO UNC 0.162 0.162 CMA 8.757 8.157 ROA 8.002 7.533
TERM 0.155 0.155 UMD 4.133 3.8 STOCK ISS 6.785 6.039
DEFAULT 0.145 0.144 STRev 2.573 2.51 BAB 4.439 3.981
DIV 0.108 0.108 LTRev 4.992 4.908 HML DEVIL 8.024 8.014
UNRATE 0.226 0.224 IA 8.36 7.779 QMJ 9.555 8.879
PE 0.158 0.158 ROE 7.408 6.97 BEH PEAD 2.604 2.466
BW ISENT 0.736 0.575 LIQ TR 1.3 1.28 BEH FIN 10.223 9.292
HJTZ ISENT 0.516 0.42 MGMT 9.603 8.714 MKT* 2.267 2.25
NONDUR 0.337 0.336 PERF 6.444 5.942 SMB* 3.426 3.321
SERV 0.152 0.152 ACCR 2.284 2.281 HML* 3.892 3.756
IPGrowth 0.116 0.115 DISSTR 7.553 6.954 RMW* 3.235 3.194
Oil 0.325 0.307 ASS Growth 6.904 6.398 CMA* 2.869 2.673
DeltaSLOPE 0.167 0.164 COMP ISSUE 7.455 6.72 SKEW 6.268 6.264

Values of ρ>k ρk and ρ̃>k ρ̃k for each factor k, where ρk (ρ̃k) is an N × 1 vector of (demeaned) correlation
between factor k and test assets. Sample: 1973:10 to 2016:12. Test assets: cross-section of 34 tradable
factors and 26 other investment anomalies. The 51 factors considered are described in Table 2.A.1.
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Table 2.A.16: Posterior factor probabilities, E [γj|data], and risk prices: 2.25 quadrillion
models, robustness check: ωj ∼ Beta(1, 9)

Factor inclusion prob., E [γj|data] Price of risk, E [λj|data]
Total prior SR: Total prior SR:

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
BEH PEAD 0.179 0.231 0.252 0.244 0.196 0.121 0.020 0.043 0.059 0.066 0.061 0.067
BW ISENT 0.108 0.120 0.129 0.162 0.189 0.141 0.002 0.006 0.012 0.027 0.055 0.063
CMA? 0.124 0.122 0.112 0.092 0.064 0.030 0.009 0.014 0.017 0.017 0.015 0.026
FIN UNC 0.113 0.113 0.104 0.102 0.095 0.067 0.001 0.002 0.003 0.006 0.009 0.013
DIV 0.104 0.101 0.113 0.111 0.130 0.145 0.000 0.001 0.002 0.004 0.011 0.038
NONDUR 0.106 0.108 0.102 0.108 0.097 0.072 0.001 0.001 0.003 0.006 0.010 0.016
PE 0.107 0.106 0.102 0.107 0.107 0.097 0.000 -0.001 -0.002 -0.003 -0.007 -0.018
BAB 0.119 0.118 0.103 0.080 0.048 0.018 0.012 0.017 0.018 0.016 0.014 0.027
UNRATE 0.097 0.105 0.106 0.103 0.104 0.081 0.000 0.001 0.002 0.004 0.008 0.015
MACRO UNC 0.103 0.098 0.108 0.100 0.092 0.066 0.000 0.000 0.001 0.001 0.001 -0.001
HJTZ ISENT 0.099 0.099 0.102 0.108 0.105 0.069 0.001 0.002 0.004 0.008 0.013 0.014
TERM 0.100 0.100 0.098 0.102 0.098 0.098 0.000 -0.001 -0.002 -0.004 -0.007 -0.021
Oil 0.103 0.101 0.098 0.091 0.084 0.057 0.000 0.000 0.000 0.001 0.001 0.004
REAL UNC 0.100 0.099 0.096 0.097 0.092 0.076 0.000 0.000 0.001 0.001 0.002 0.004
SERV 0.100 0.101 0.092 0.099 0.092 0.078 0.000 0.000 0.001 0.002 0.004 0.009
DeltaSLOPE 0.089 0.098 0.096 0.103 0.104 0.095 0.000 0.001 0.001 0.003 0.007 0.017
IPGrowth 0.091 0.094 0.096 0.095 0.101 0.086 0.000 0.000 -0.001 -0.002 -0.004 -0.011
DEFAULT 0.093 0.090 0.092 0.098 0.090 0.074 0.000 0.000 0.001 0.002 0.004 0.009
LIQ NT 0.093 0.093 0.087 0.078 0.062 0.032 0.000 0.000 0.001 0.001 0.002 0.001
STRev 0.097 0.088 0.090 0.073 0.049 0.022 0.005 0.008 0.011 0.012 0.010 0.020
RMW? 0.100 0.093 0.079 0.064 0.041 0.019 0.006 0.009 0.010 0.010 0.009 0.021
ROE 0.109 0.092 0.072 0.054 0.036 0.018 0.012 0.014 0.013 0.012 0.014 0.039
MKT? 0.095 0.087 0.080 0.063 0.049 0.025 0.005 0.007 0.009 0.009 0.010 0.019
NetOA 0.101 0.089 0.075 0.057 0.039 0.018 0.005 0.007 0.008 0.007 0.007 0.013
MKT 0.096 0.086 0.075 0.055 0.041 0.030 0.008 0.011 0.013 0.011 0.013 0.045
IA 0.102 0.084 0.069 0.051 0.032 0.013 0.011 0.012 0.012 0.011 0.013 0.028
INV IN ASS 0.100 0.080 0.068 0.048 0.032 0.013 0.006 0.007 0.008 0.007 0.007 0.014
MGMT 0.093 0.080 0.062 0.049 0.032 0.014 0.011 0.013 0.012 0.012 0.014 0.031
ACCR 0.093 0.077 0.063 0.049 0.031 0.015 0.003 0.003 0.004 0.004 0.003 0.010
LIQ TR 0.087 0.076 0.064 0.052 0.036 0.017 0.002 0.003 0.004 0.004 0.004 0.007
INTERM CAP RATIO 0.087 0.079 0.061 0.050 0.035 0.018 0.003 0.005 0.005 0.005 0.005 0.015
PERF 0.096 0.076 0.061 0.045 0.029 0.014 0.007 0.008 0.008 0.007 0.008 0.022
HML? 0.086 0.073 0.065 0.050 0.032 0.015 0.006 0.007 0.008 0.008 0.008 0.020
STOCK ISS 0.088 0.070 0.057 0.041 0.027 0.011 0.007 0.007 0.007 0.007 0.007 0.017
UMD 0.087 0.071 0.054 0.043 0.030 0.012 0.004 0.005 0.005 0.004 0.005 0.010
BEH FIN 0.086 0.071 0.053 0.039 0.024 0.010 0.008 0.009 0.008 0.008 0.010 0.019
QMJ 0.086 0.068 0.053 0.038 0.025 0.013 0.008 0.009 0.009 0.008 0.010 0.032
SMB? 0.082 0.064 0.052 0.040 0.024 0.011 0.003 0.003 0.004 0.003 0.003 0.008
SKEW 0.081 0.064 0.050 0.037 0.024 0.014 0.005 0.006 0.005 0.005 0.006 0.029
CMA 0.085 0.064 0.049 0.034 0.023 0.010 0.006 0.006 0.006 0.005 0.007 0.011
LTRev 0.077 0.066 0.049 0.034 0.022 0.010 0.002 0.003 0.003 0.003 0.003 0.005
HML DEVIL 0.073 0.063 0.052 0.038 0.026 0.012 0.003 0.005 0.006 0.006 0.007 0.020
ASS Growth 0.078 0.058 0.047 0.034 0.020 0.009 0.004 0.004 0.004 0.004 0.005 0.005
COMP ISSUE 0.075 0.060 0.046 0.034 0.020 0.010 0.004 0.004 0.004 0.004 0.004 0.007
RMW 0.073 0.061 0.046 0.033 0.021 0.010 0.003 0.004 0.003 0.004 0.005 0.007
GR PROF 0.073 0.058 0.042 0.032 0.020 0.010 0.001 0.001 0.000 0.000 0.000 0.002
ROA 0.075 0.054 0.041 0.031 0.020 0.010 0.004 0.003 0.004 0.003 0.005 0.013
HML 0.073 0.055 0.042 0.030 0.018 0.008 0.003 0.003 0.003 0.003 0.004 0.000
DISSTR 0.068 0.052 0.042 0.032 0.020 0.011 0.000 -0.001 -0.001 -0.001 -0.002 -0.012
O SCORE 0.070 0.053 0.038 0.028 0.017 0.009 -0.002 -0.002 -0.002 -0.002 -0.002 -0.007
SMB 0.063 0.055 0.041 0.030 0.019 0.010 0.003 0.004 0.003 0.004 0.005 0.021

Posterior probabilities of factors, E [γj |data], and posterior mean of factors’ risk prices, E [λj |data], are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 251 ≈ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1, 9), yielding a prior expectation for γj
equal to 10%. The data is monthly, 1973:10 to 2016:12. The 51 factors considered are described in Table
2.A.1 of the Appendix. Test assets: 34 tradable factors plus 26 investment anomalies.
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Table 2.A.17: Posterior factor probabilities, E [γj|data], and risk prices: 2.25 quadrillion
models with zero common intercept.

Factor inclusion prob., E [γj|data] Price of risk, E [λj|data]
Total prior SR: Total prior SR:

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
BEH PEAD 0.552 0.625 0.705 0.790 0.866 0.840 0.020 0.047 0.092 0.159 0.252 0.311
MKT 0.531 0.579 0.634 0.676 0.714 0.626 0.023 0.055 0.099 0.154 0.231 0.278
CMA? 0.518 0.534 0.560 0.595 0.632 0.553 0.012 0.027 0.048 0.080 0.126 0.151
STRev 0.505 0.519 0.552 0.589 0.615 0.480 0.010 0.023 0.045 0.076 0.115 0.113
RMW? 0.502 0.516 0.533 0.574 0.610 0.492 0.011 0.024 0.045 0.079 0.128 0.135
HML DEVIL 0.477 0.476 0.496 0.553 0.632 0.548 0.012 0.027 0.055 0.112 0.227 0.291
SKEW 0.504 0.517 0.529 0.540 0.533 0.376 0.018 0.038 0.062 0.091 0.124 0.110
QMJ 0.500 0.496 0.511 0.533 0.569 0.467 0.020 0.037 0.063 0.105 0.181 0.213
ROE 0.523 0.527 0.528 0.520 0.490 0.344 0.024 0.044 0.065 0.087 0.110 0.101
BW ISENT 0.505 0.507 0.512 0.522 0.539 0.571 0.002 0.005 0.010 0.018 0.037 0.126
FIN UNC 0.501 0.500 0.504 0.509 0.519 0.516 0.001 0.002 0.005 0.009 0.020 0.063
UNRATE 0.503 0.503 0.502 0.504 0.508 0.514 0.000 0.001 0.002 0.004 0.009 0.038
DIV 0.501 0.501 0.499 0.502 0.508 0.541 0.000 0.001 0.002 0.004 0.009 0.042
DEFAULT 0.498 0.498 0.500 0.503 0.506 0.505 0.000 0.001 0.001 0.003 0.007 0.023
MKT? 0.504 0.510 0.514 0.508 0.466 0.373 0.009 0.019 0.030 0.041 0.049 0.064
PE 0.498 0.501 0.500 0.497 0.503 0.498 0.000 -0.001 -0.001 -0.002 -0.006 -0.022
TERM 0.496 0.498 0.498 0.501 0.504 0.507 0.000 -0.001 -0.002 -0.003 -0.008 -0.031
HJTZ ISENT 0.501 0.500 0.496 0.500 0.491 0.464 0.001 0.002 0.003 0.004 0.006 0.019
Oil 0.503 0.501 0.498 0.494 0.491 0.466 0.000 0.000 0.000 0.001 0.003 0.017
REAL UNC 0.496 0.495 0.498 0.497 0.499 0.492 0.000 0.000 0.001 0.002 0.005 0.010
DeltaSLOPE 0.498 0.496 0.498 0.494 0.497 0.489 0.000 0.001 0.001 0.002 0.003 0.012
SERV 0.495 0.497 0.496 0.497 0.494 0.500 0.000 0.001 0.001 0.002 0.004 0.023
MACRO UNC 0.497 0.498 0.495 0.493 0.494 0.480 0.000 0.000 0.001 0.002 0.005 0.006
NONDUR 0.492 0.493 0.496 0.495 0.499 0.491 0.001 0.002 0.003 0.006 0.012 0.048
IPGrowth 0.490 0.489 0.490 0.490 0.494 0.485 0.000 0.000 0.000 -0.001 -0.002 -0.003
INTERM CAP RATIO 0.497 0.504 0.499 0.485 0.462 0.358 0.008 0.017 0.027 0.034 0.035 0.019
LIQ NT 0.492 0.490 0.488 0.482 0.480 0.424 0.000 0.000 0.000 -0.004 -0.013 -0.038
HML? 0.506 0.506 0.501 0.483 0.427 0.272 0.013 0.024 0.038 0.049 0.054 0.043
ACCR 0.489 0.485 0.486 0.479 0.475 0.329 0.005 0.012 0.023 0.038 0.058 0.053
PERF 0.504 0.495 0.490 0.474 0.439 0.289 0.015 0.027 0.039 0.053 0.068 0.058
BAB 0.511 0.511 0.498 0.463 0.413 0.285 0.017 0.029 0.039 0.045 0.051 0.051
MGMT 0.511 0.494 0.488 0.468 0.431 0.280 0.022 0.035 0.049 0.064 0.081 0.068
LIQ TR 0.499 0.494 0.492 0.479 0.428 0.274 0.004 0.009 0.015 0.023 0.028 0.022
NetOA 0.499 0.496 0.482 0.467 0.411 0.269 0.008 0.015 0.023 0.030 0.033 0.030
IA 0.506 0.489 0.473 0.437 0.384 0.227 0.021 0.031 0.040 0.048 0.053 0.040
SMB 0.488 0.486 0.472 0.448 0.386 0.226 0.015 0.030 0.043 0.052 0.052 0.036
UMD 0.492 0.482 0.458 0.437 0.405 0.308 0.009 0.014 0.016 0.019 0.031 0.055
INV IN ASS 0.499 0.490 0.467 0.435 0.372 0.214 0.010 0.018 0.025 0.030 0.031 0.021
SMB? 0.486 0.473 0.456 0.435 0.390 0.246 0.007 0.012 0.018 0.025 0.032 0.029
STOCK ISS 0.490 0.478 0.449 0.411 0.340 0.186 0.013 0.020 0.025 0.027 0.023 0.015
DISSTR 0.470 0.454 0.438 0.418 0.372 0.227 0.001 -0.004 -0.012 -0.022 -0.029 -0.025
GR PROF 0.477 0.459 0.443 0.410 0.357 0.212 0.004 0.007 0.012 0.016 0.018 0.010
ROA 0.482 0.467 0.441 0.406 0.342 0.197 0.012 0.018 0.021 0.021 0.015 0.005
RMW 0.472 0.458 0.434 0.402 0.371 0.252 0.008 0.009 0.006 -0.004 -0.028 -0.038
HML 0.471 0.450 0.424 0.399 0.388 0.281 0.008 0.006 -0.002 -0.018 -0.053 -0.071
BEH FIN 0.487 0.462 0.439 0.402 0.341 0.200 0.017 0.021 0.022 0.019 0.010 0.006
CMA 0.483 0.457 0.431 0.397 0.348 0.206 0.013 0.014 0.011 0.003 -0.014 -0.017
COMP ISSUE 0.483 0.459 0.433 0.392 0.324 0.182 0.008 0.010 0.010 0.008 0.003 0.002
LTRev 0.479 0.458 0.427 0.380 0.317 0.173 0.007 0.009 0.009 0.006 0.001 0.001
ASS Growth 0.477 0.452 0.424 0.382 0.317 0.173 0.009 0.010 0.008 0.004 -0.001 -0.003
O SCORE 0.467 0.447 0.421 0.377 0.316 0.176 0.000 0.001 0.005 0.008 0.006 0.002

Posterior probabilities of factors, E [γj |data], and posterior mean of factors’ risk prices, E [λj |data], are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 251 ≈ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj
equal to 50%. The data is monthly, 1973:10 to 2016:12. The 51 factors considered are described in Table
2.A.1 of the Appendix. Test assets: 34 tradable factors plus 26 investment anomalies.
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Table 2.A.18: Posterior factor probabilities, E [γj|data], and risk prices: 2.25 quadrillion
models with zero common intercept and non-demeaned correlations

Factor inclusion prob., E [γj|data] Price of risk, E [λj|data]
Total prior SR: Total prior SR:

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
BEH PEAD 0.556 0.621 0.701 0.793 0.863 0.838 0.020 0.047 0.091 0.158 0.250 0.310
MKT 0.529 0.579 0.631 0.682 0.718 0.630 0.023 0.055 0.099 0.156 0.232 0.279
CMA? 0.517 0.532 0.561 0.595 0.636 0.554 0.013 0.027 0.049 0.080 0.127 0.151
STRev 0.500 0.518 0.549 0.587 0.617 0.484 0.009 0.023 0.044 0.075 0.113 0.113
RMW? 0.507 0.508 0.532 0.571 0.618 0.492 0.010 0.023 0.044 0.077 0.127 0.134
HML DEVIL 0.481 0.477 0.493 0.545 0.638 0.553 0.011 0.026 0.053 0.107 0.225 0.293
SKEW 0.505 0.516 0.529 0.537 0.532 0.389 0.017 0.037 0.060 0.088 0.122 0.114
BW ISENT 0.506 0.508 0.515 0.525 0.550 0.583 0.003 0.006 0.012 0.022 0.045 0.142
QMJ 0.499 0.498 0.511 0.527 0.568 0.472 0.020 0.037 0.062 0.103 0.181 0.216
ROE 0.520 0.528 0.526 0.518 0.495 0.347 0.024 0.044 0.064 0.086 0.111 0.103
FIN UNC 0.500 0.501 0.506 0.504 0.511 0.512 0.001 0.002 0.005 0.009 0.019 0.061
UNRATE 0.504 0.504 0.502 0.503 0.504 0.513 0.000 0.001 0.002 0.004 0.009 0.037
DIV 0.501 0.501 0.500 0.501 0.509 0.540 0.000 0.001 0.002 0.004 0.009 0.040
DEFAULT 0.499 0.499 0.502 0.502 0.505 0.501 0.000 0.001 0.001 0.003 0.007 0.022
MKT? 0.503 0.508 0.517 0.507 0.470 0.381 0.008 0.018 0.029 0.040 0.049 0.065
HJTZ ISENT 0.501 0.502 0.503 0.500 0.495 0.462 0.001 0.002 0.003 0.005 0.007 0.018
TERM 0.495 0.498 0.500 0.500 0.506 0.510 0.000 -0.001 -0.001 -0.003 -0.007 -0.030
PE 0.498 0.498 0.501 0.498 0.501 0.503 0.000 -0.001 -0.001 -0.002 -0.006 -0.021
Oil 0.501 0.501 0.503 0.498 0.491 0.468 0.000 0.000 0.000 0.001 0.003 0.017
DeltaSLOPE 0.498 0.497 0.497 0.501 0.495 0.493 0.000 0.001 0.001 0.002 0.003 0.012
REAL UNC 0.496 0.495 0.498 0.497 0.501 0.491 0.000 0.000 0.001 0.002 0.004 0.010
MACRO UNC 0.497 0.496 0.493 0.494 0.497 0.478 0.000 0.000 0.001 0.002 0.004 0.005
SERV 0.495 0.496 0.494 0.496 0.492 0.496 0.000 0.001 0.001 0.002 0.004 0.022
NONDUR 0.491 0.494 0.497 0.495 0.495 0.490 0.001 0.001 0.003 0.005 0.012 0.046
INTERM CAP RATIO 0.497 0.501 0.502 0.491 0.466 0.357 0.008 0.017 0.027 0.035 0.035 0.019
IPGrowth 0.489 0.489 0.488 0.490 0.491 0.486 0.000 0.000 0.000 -0.001 -0.002 -0.002
LIQ NT 0.492 0.491 0.489 0.482 0.479 0.421 0.000 0.000 0.000 -0.003 -0.013 -0.037
ACCR 0.489 0.488 0.485 0.489 0.481 0.335 0.005 0.011 0.022 0.038 0.058 0.054
HML? 0.505 0.502 0.498 0.478 0.426 0.275 0.012 0.024 0.037 0.048 0.053 0.043
LIQ TR 0.500 0.499 0.494 0.480 0.431 0.276 0.004 0.009 0.015 0.022 0.027 0.022
MGMT 0.511 0.501 0.488 0.468 0.430 0.274 0.023 0.036 0.050 0.065 0.081 0.067
PERF 0.500 0.494 0.484 0.468 0.440 0.286 0.015 0.027 0.039 0.052 0.068 0.056
BAB 0.514 0.513 0.491 0.461 0.407 0.278 0.017 0.030 0.039 0.046 0.051 0.049
NetOA 0.498 0.494 0.487 0.466 0.405 0.267 0.008 0.015 0.023 0.029 0.032 0.029
SMB 0.484 0.490 0.481 0.454 0.394 0.230 0.015 0.029 0.042 0.052 0.053 0.035
IA 0.508 0.488 0.470 0.442 0.378 0.225 0.021 0.031 0.040 0.048 0.052 0.041
UMD 0.493 0.479 0.458 0.432 0.402 0.306 0.009 0.014 0.016 0.019 0.030 0.055
INV IN ASS 0.498 0.489 0.464 0.433 0.370 0.212 0.011 0.018 0.025 0.030 0.031 0.021
SMB? 0.489 0.475 0.459 0.437 0.391 0.248 0.007 0.012 0.018 0.025 0.032 0.028
DISSTR 0.471 0.454 0.439 0.418 0.373 0.224 0.001 -0.005 -0.013 -0.022 -0.029 -0.025
STOCK ISS 0.490 0.471 0.448 0.406 0.332 0.182 0.014 0.020 0.025 0.027 0.023 0.015
RMW 0.479 0.458 0.430 0.404 0.373 0.254 0.008 0.009 0.006 -0.003 -0.029 -0.039
GR PROF 0.478 0.458 0.441 0.411 0.355 0.210 0.004 0.007 0.011 0.016 0.018 0.010
ROA 0.482 0.465 0.440 0.403 0.346 0.195 0.012 0.018 0.021 0.020 0.014 0.006
HML 0.472 0.443 0.423 0.403 0.387 0.284 0.008 0.005 -0.002 -0.017 -0.052 -0.072
BEH FIN 0.485 0.463 0.435 0.398 0.337 0.196 0.017 0.021 0.022 0.019 0.009 0.006
CMA 0.479 0.461 0.431 0.399 0.348 0.207 0.013 0.014 0.011 0.002 -0.014 -0.017
COMP ISSUE 0.486 0.459 0.429 0.384 0.322 0.177 0.009 0.010 0.010 0.008 0.003 0.003
LTRev 0.478 0.455 0.430 0.384 0.319 0.177 0.006 0.009 0.009 0.006 0.001 0.000
ASS Growth 0.478 0.458 0.426 0.382 0.317 0.172 0.009 0.010 0.008 0.004 -0.001 -0.003
O SCORE 0.468 0.444 0.420 0.383 0.324 0.179 -0.001 0.001 0.005 0.008 0.006 0.002

Posterior probabilities of factors, E [γj |data], and posterior mean of factors’ risk prices, E [λj |data], are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 251 ≈ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj
equal to 50%. The data is monthly, 1973:10 to 2016:12. The 51 factors considered are described in Table
2.A.1 of the Appendix. Test assets: 34 tradable factors plus 26 investment anomalies.
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Table 2.A.19: Posterior model dimensionality and its implied Sharpe ratio

(a) Number of factors (b) Model-implied Sharpe ratio
Total prior SR: Total prior SR:

1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
mean 25.14 24.93 24.62 24.12 23.02 17.91 0.85 1.17 1.47 1.80 2.19 2.70
median 25 25 25 24 23 18 0.82 1.15 1.46 1.78 2.18 2.69
2.5% 18 18 18 17 16 11 0.47 0.70 0.93 1.17 1.46 1.75
5% 19 19 19 18 17 12 0.52 0.76 1.00 1.27 1.58 1.89
95th 31 31 31 30 29 24 1.26 1.65 2.00 2.37 2.83 3.57
97.5th 32 32 32 31 30 25 1.36 1.76 2.12 2.49 2.96 3.75

Summary statistics for posterior number of the factors included in the model and the model-implied Sharpe
ratio. Both are summarized for values of total prior Sharpe ratio ∈ [1, 3.5]. All the parameters are estimated
over the 1973:10-2016:12 sample using a cross-section of 34 tradable factors plus 26 investment anomalies,
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 251 ≈ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj
equal to 50%. The 51 factors considered are described in Table 2.A.1 of the Appendix.
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(a) Model dimensionality with PCs
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(b) Model dimensionality with RP-PCs

Figure 2.A.2: Model dimensionality with principal components added to the space of
factors

Posterior density of the true SDF having the number of factors listed on the horizontal axis computed
using the continuous spike-and-slab approach of Section 2.3.1.3 and 59 factors yielding 259 models. The
factors included are the 51 factors described in Table 2.A.1 of the Appendix, plus two i.i.d. useless factors,
and five principal components. Panel A uses simple time series principal components, while Panel B uses
the RP-PCs of Lettau and Pelger (2020b). Test assets: 34 tradable factors plus 26 investment anomalies,
sampled monthly, 1973:10 to 2016:12. Results are tabulated for different values of the prior Sharpe ratio,√
Eπ[SR2

f | σ2].
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2.A.5 Additional Results on Sparse Models
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Figure 2.A.3: Posterior model probabilities, 2.6 mln sparse models

Posterior model probabilities of the 2,000 most likely models computed using the Dirac spike-and-slab of
Section 2.3.1.2 and 51 factors. The horizontal axis uses a log scale. Sample: 1973:10–2016:12. Test assets:
34 tradable factors plus 26 investment anomalies, sampled monthly, 1973:10 to 2016:12. Results are reported

for the prior Sharpe ratio,
√

Eπ[SR2
f | σ2] = 2.
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Chapter 3

Model Uncertainty in the Cross

Section

Jiantao Huang and Ran Shi 1

3.1 Introduction

Recent literature has provided a wide spectrum of real and financial uncertainty measures.2

They display pronounced time-series variations, and their innovations appear to be associated

with business cycle fluctuations and investment decisions.

Uncertainty has ambiguous implications for investors’ asset allocation decisions in equity

markets. The conventional wisdom of flight-to-safety and flight-to-liquidity3 claims that

investors respond to uncertainty by curtailing risk exposures. However, uncertainty may

arise in periods of “Schumpeterian growth,” during which investors chase glamour stocks

(which tend to be riskier) in search of the new El Dorado.4

Existing equity market uncertainty measures focus on second-moment uncertainty, such

as realized/implied volatilities of major index returns and prediction uncertainty of economic

indicators (e.g., financial uncertainty in Ludvigson, Ma, and Ng (2021)). These uncertainty

1We thank Svetlana Bryzgalova, Thummim Cho, Vicente Cuñat, Christian Julliard, Péter Kondor, Dong
Lou, Ian Martin, and Cameron Peng for their comments.

2Bloom (2009) measures macroeconomic uncertainty using jumps in the VIX index and investigates their
real impacts. Ludvigson, Ma, and Ng (2021) and Jurado, Ludvigson, and Ng (2015) construct and compare
real and financial uncertainty indices. Baker, Bloom, and Davis (2016) develop economic policy uncertainty
indices based on news coverage. Manela and Moreira (2017) use textual analysis of the Wall Street Journal
articles to construct long-history uncertainty measures.

3Many theoretical papers study such phenomena, including Vayanos (2004), Caballero and Krishnamurthy
(2008), Brunnermeier and Pedersen (2009), etc.

4This argument relates to growth options theories of uncertainty. Examples include Abel (1983), Segal,
Shaliastovich, and Yaron (2015), Kraft, Schwartz, and Weiss (2018), etc.
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measures do not take into account a crucial challenge equity investors face, a phenomenon

dubbed the “factor zoo.” If we interpret existing uncertainty measures as time-series uncer-

tainty, a vital dimension they neglect is the cross-section.

We attempt to bridge this gap by creating a cross-sectional uncertainty measure and

exploring its implications for investors’ asset allocation decisions. Specifically, we take the

perspective of Bayesian investors adopting linear stochastic discount factor (SDF) models to

price assets. Investors are not clairvoyant as they do not know the “true” model. Instead,

they “learn” both model parameters and specifications through Bayesian updating.

The first key innovation is that we generalize the g-prior of Zellner (1986), from which

Bayesian investors update their posterior beliefs. As originally exposited in Zellner (1986),

the g-prior is a natural outcome from an uninformative prior in a sequential decision-making

setup. In the meantime, it induces well-defined posteriors conformative to the criteria empha-

sized by Chib, Zeng, and Zhao (2020). Under this prior, posterior model probabilities have

simple closed-form solutions, which increase with model-implied Sharpe ratios and decrease

with model dimensions. The result crystallizes two competing forces when forming beliefs

regarding one particular model: higher in-sample profits (on paper) and model simplicity.

We define cross-sectional uncertainty regarding linear SDF models as the entropy of

posterior model probabilities. The intuition is straightforward. Suppose that there are only

two candidate factor models, and we are uncertain about which one is true ex-ante. One

extreme case is that the first model dominates the other with a high posterior probability,

i.e., 99%. Under this scenario, entropy is close to its lower bound zero (and we are clearly

facing low uncertainty). On the contrary, if the two models’ posterior probabilities are 50-50,

the entropy reaches its maximum (a coin-tossing exercise is needed to pick one model). To

sum up, the higher the entropy is, the more uncertain Bayesian investors are about the factor

models.

We document four sets of empirical findings based on our cross-sectional model uncer-

tainty measures, summarized as follows.

First, we measure uncertainty regarding 14 popular factor strategies in the US stock

market. Model uncertainty displays considerable time-series variations and exhibits counter-

cyclical behaviours, as in Figure 3.1. Particularly, model uncertainty increases before stock

market crashes and peaks under tumultuous market conditions. It reaches its upper bound

at the bust of the dot-com bubble and the 2008 global financial crisis. In other words, poste-

rior model probabilities are almost equalized during these two periods: all models are wrong

(or right, which does not make any difference). Under extreme market conditions, investors

do not only face higher second-moment (volatility) and third-moment (skewness) risk but

they are also confronted with higher (if not the highest) model uncertainty, i.e., they are
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Figure 3.1: Time-Series of Model Uncertainty (3-Year Rolling Window)

The figure plots the time-series of model uncertainty about the linear stochastic discount factor (SDF). We
consider 14 prominent factors from the past literature (see Section 3.3 for details). At the end of each month,
we compute the posterior model probabilities using the daily factor returns in the past three years. We use
the entropy of model probabilities to quantify model uncertainty in the cross-section. The sample ranges
from July 1972 to December 2020. Since we use a three-year rolling window, the model uncertainty index
starts from June 1975. The red line and green lines show the lower (0) and upper bounds (1) of model
uncertainty. Shaded areas are NBER-based recession periods for the US.

incredibly uncertain about which model can help navigate them out of the storm.

We repeat the exercise in European and Asian Pacific stock markets. While the time-

series pattern in Europe is roughly the same as the US stock market, the Asian Pacific equity

market displays certain unique behaviours. For example, model uncertainty in this market

is exceptionally high during the 1997 Asian financial crisis.

Second, we show the time-varying importance of Bayesian model averaging (BMA) in

portfolio choice. Following past literature (e.g., Barillas and Shanken (2018a)), we use as

the criterion the out-of-sample (OOS) Sharpe ratio implied by factor models. We split the

full sample into three equal subsamples based on model uncertainty and denoted them as

low, middle, and high model uncertainty dates. In particular, we compare BMA with the

top one model ranked by posterior model probabilities. The critical observation is that BMA

outperforms the top model only in high model uncertainty dates, whereas they have almost

identical performance in other periods. Therefore, when model uncertainty is relatively high,

investors are better off if they aggregate the information over the space of all models instead

of selecting a specific high probability model.

Third, model uncertainty is a crucial determinant of mutual fund flows, regardless of being

an exogenous cause or a merely propagating mechanism. We adopt the canonical Vector

Autoregression (VAR) model to study the dynamic responses of fund flows to uncertainty
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shocks. Most strikingly, model uncertainty innovations induce sharp outflows from the US

equity funds and inflows to US government bond funds, with effects persisting for around

three years. These outflows mainly come from small-cap and style funds but not large-cap

or sector funds. In addition, we do not observe significant inflows to money market funds,

so there is little evidence of “flight-to-liquidity” following high model uncertainty. Hence,

investors’ asset allocation decisions tend to respond to our uncertainty measure consistent

with the conventional wisdom of “flight-to-safety”: Facing high cross-sectional uncertainty,

they reduce risky asset positions, especially in small-cap stocks and actively-managed (style)

funds, and reallocate proceeds into safe assets such as government bonds.

It is also worth noting that similar fund flows patterns do not emerge when using

volatility-driven uncertainty indices such as VXO and financial uncertainty. We document

some evidence that VXO and financial uncertainty innovations relate to future inflows to

money market funds, consistent with “flight-to-liquidity.” However, dynamic responses of

fund flows to these two uncertainty measures tend to be transitory and sensitive to identifi-

cation assumptions, while those to model uncertainty shocks are very persistent and robust.

Fourth, we find that high cross-sectional model uncertainty is associated with investors’

expectations and confidence about the stock market. We quantify investors’ expectations

using surveys from the American Association of Individual Investors (AAII) and their con-

fidence levels using the Investor Behavior Project at Yale University. When our uncertainty

measure goes up, both individual and institutional investors become more pessimistic about

the stock market. More intriguingly, individual investors tend to “react” more aggressively

(in terms of pessimism) to our cross-sectional uncertainty measure.

3.1.1 Related Literature

This article mainly relates to two strands of literature. First, there is an increasing interest

in developing uncertainty measures of both asset markets and economic activities. Bloom

(2009) identifies 17 jumps in stock market volatility (VIX/VXO index) and uses them as

proxies for uncertainty shocks. He further shows in a VAR analysis that a positive uncertainty

shock predicts declining industrial production, productivity, and employment over the next

several years. Jurado, Ludvigson, and Ng (2015) measure macroeconomic uncertainty and

show that their indices spike up in major economic recessions, but there is no apparent

increase in macro uncertainty during some market crashes, such as the 1987 flash crash.

Ludvigson, Ma, and Ng (2021) further propose real and financial uncertainty indices. These

two papers use the conditional volatility of prediction errors as proxies for uncertainty, so

they belong to volatility-based measures. Finally, Baker, Bloom, and Davis (2016) develop

economic policy uncertainty indices based on news coverage.
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Unlike their measures, our goal is to quantify how uncertain investors are about the

true model in the cross-section. Our regression analysis shows that model uncertainty is

positively correlated with financial uncertainty and the VXO index but almost orthogonal

to real, macro, and economic policy uncertainty mentioned above. Moreover, we detect

persistent dynamic responses of mutual fund flows following model uncertainty shocks. In

contrast, traditional volatility-based measures such as VXO and financial uncertainty do

not have similar implications for the portfolio choice decisions of mutual fund investors.

Therefore our measure is conceptually and empirically novel. Our entropy-based measure

also enjoys a distinct property: its lower and upper bounds are always known and allow

straightforward interpretations. This property makes our measure more like a barometer

(which always comes with a range).

Second, our paper contributes to the literature on Bayesian inference for factor models

and Bayesian portfolio choice. The main idea behind our g-prior is the implied “imaginary”

prior sample with the size related to g. Similar ideas of specifying priors are adopted in past

finance and economics literature (e.g. Kandel and Stambaugh (1996) and Avramov (2002)).

However, we also point out the potential Barlett’s paradox (see Bartlett (1957)) in g-prior.

We avoid Barlett’s paradox by proposing a hyper-prior on g, following Liang, Paulo, Molina,

Clyde, and Berger (2008). According to our knowledge, we are the first paper to adopt this

prior in finance literature.

Some other papers, such as Barillas and Shanken (2018a), Chib, Zeng, and Zhao (2020),

and Bryzgalova, Huang, and Julliard (2021), also develop Bayesian methods to estimate

factor models. Unlike their papers, we aim to propose a direct measure of model uncertainty

and investigate its implications for portfolio choice. Although past literature has introduced

model uncertainty under the portfolio choice specification (e.g., Avramov (2002), Barillas

and Shanken (2018b)), we have different motivations in the first place.

3.2 Methodology

Throughout our analysis, we focus on excess returns and study their risk premia in the

cross-section. Denote by R, a random vector of dimension N , the excess returns under

consideration5. Out of these excess returns, some would be regarded as factors in a linear

factor model. Common examples include the market excess return in the CAPM and long-

short portfolios in empirical multi-factor asset pricing models. In terms of notation, we

5Our definition of excess returns is in a relatively broader sense, which means that they can be returns
on assets less the risk-free rate, and more generally, returns on long-short portfolio positions with zero initial
costs.
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denote by f , a subset of R with dimension p, the factors under consideration6. A linear

factor model for these excess returns in the discount factor form can be written as (see

Chapter 13 of Cochrane (2009) for a detailed exposition):

m = 1− (f − E[f ])> b, (3.1)

E[R×m] = 0, (3.2)

or equivalently

E[R] = Cov[R,f ]b, (3.3)

where m is the stochastic discount factor that prices assets, i.e., it is such that the prices of

excess returns all equal zero. Since the pricing equation (3.2) is scale-invariant, we normalize

the constant term in the SDF to one. The covariance term, Cov[R,f ], is an N × p matrix.7

Its entry in the ith row and jth column is the covariance between excess return Ri and factor

fj.

Remark. Linear factor characterization of SDFs relates to the results of Hansen and

Jagannathan (1991): Assuming no arbitrage, an SDF within the space spanned by all the

excess returns under consideration can be written as

m = 1− (R− E[R])> (Var[R])−1 E[R].

Clearly, the equation E[m × R] ≡ 0 always holds under the specification above. This

corresponds to the case where factors under consideration are all the excess returns, i.e.,

f = R and b = (Var[R])−1 E[R] in equation (3.3).

3.2.1 A Simple Framework for Incorporating Model Uncertainty

Now we would like to formalize our notion of model uncertainty. In practice, we do not know

exactly which factors contribute to the pricing of assets given the other ones. From a model

choice perspective, we are uncertain about which subset of factors to include into our linear

SDF specification. Under our setting, given the p factors f = [f1, . . . , fp]
>, a total number

of 2p models for the linear SDF are possible candidates. To capture uncertainty regarding

this pool of models, we index the whole set of 2p models using a p-dimensional vector of

indicator variables γ = [γ1, . . . , γp]
>, with γj = 1 representing that factor fj is included into

the linear SDF, while with γj = 0 meaning that fj is excluded. This vector γ thus defines a

6We intentionally let the factors f be a subset of excess returns R to make sure that factors themselves
are correctly priced, that is, their price being zero, by the factor models we write down next.

7Cov[R,f ] = E
[
(R− E[R])(f − E[f ])>

]
= E

[
R(f − E[f ])>

]
.
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model for the SDF8, denoted by Mγ , as follows: Under Mγ , the linear SDF is

mγ = 1− (fγ − E[fγ ])> bγ , (3.4)

and the expected excess returns are such that

E[R] = Cov[R,fγ ]bγ , (3.5)

where fγ is a pγ-dimensional vector that contains all the factors included under the current

model;9 bγ is a pγ-dimensional vector of nonzero factor loading; Cov[R,fγ ] is now an N ×
pγ covariance matrix. The two equations above are counterparts of (3.1) and (3.3) after

introducing model uncertainty.

Models in economics and finance set restrictions on variables under investigation, most

commonly through moment conditions. The linear factor SDF under modelMγ does so for

the distribution of all excess returnsR (conditional on vector γ), according to equation (3.5).

The expectations of this random vector R are linked to a block of its variance-covariance

matrix, namely Cov[R,fγ ]10, through a vector of coefficients bγ .

We choose to study model uncertainty under the linear SDF specification mainly for

three reasons. First, this specification enables us to focus only on the cross section of

expected excess returns. Adding in the time-series dimension, model uncertainty has been

introduced to panel regressions of realized returns on multiple factors in the literature (see

Avramov (2002) and Barillas and Shanken (2018a)). Factor models in these panel regressions

are purely statistical, just as they are assumptions (instead of results) in Ross’s arbitrage

pricing theory Ross (1976). Bringing in the no arbitrage condition using a linear SDF imposes

moment restrictions for the expected excess returns as (3.5). What we would like to explore

is model uncertainty after imposing these sensible restrictions, not model uncertainty based

only statistical assumptions.

Second, linear factor models in the SDF form enable us to ask the following question:

Does one set of factors drive out another? To understand which set of factors survive

in presence of the others in terms of explaining the cross sectional variations, we should

study whether the parameters in vector b are zeros or not. The latent variable γ for model

8For notation simplicity, we use “−γ” to denote the set of factors that are excluded from now on. That
is, it is always the case that elements in vector f are unions of elements in fγ and f−γ , and the intercept of
elements in fγ and f−γ is empty.

9pγ =
∑p
j=1 I[γj = 1] is the total number of factors that are included under model Mγ .

10Recall that under our setting, factors are a predetermined subset of excess returns, that is, fγ ⊆ f ⊆ R.
Thus Cov[R,fγ ] is a sub-block of the full N ×N variance-covariance matrix Var[R]. It is in fact an N × pγ
matrix consisting of pγ columns of Var[R]. These columns are ones such that the corresponding elements in
γ are equal to one, just as what we have done for indexing the vector b.
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uncertainty should be introduced to elements in b, not the factor risk premia or the factor

loadings (those betas). This is because, given the other factors, we may not need to include

one new factor (its b is zero) even if it is priced (its market price of risk λ is not zero).

Specifically, if elements in f are all regarded as “common risk factors” à la Fama and

French (1993), the vector bγ is related to market prices of risk, because from equation (3.5)

E[R] = Cov[R,fγ ]{Var[fγ ]}−1Var[fγ ]bγ

= B>γ λγ ,

where Bγ = {Var[fγ ]}−1Cov[fγ ,R] are the “beta” risks and λγ = Var[fγ ]bγ are the factors’

risk premia.

Noticing the link between bγ and λγ , one may consider introducing the latent variable γ

for the risk premia instead of for the coefficients in b like we do. However, this specification

can lead to outcomes that are hard to interpret. If we arrange f as f> = [f>γ , f
>
−γ ], then

from equation (3.5),

E[R] = B>

[
λγ

Cov[f−γ ,fγ ]bγ

]
,

where B = {Var[f ]}−1Cov[f ,R]. As a result, if we let λ> =
[
λ>γ , b

>
γCov[fγ ,f−γ ]

]
, it is

always the case that E[R] = B>λ regardless of which model Mγ is under consideration.

That is, the full model including all factors always holds. Thus, we introduce the latent

model index parameter for the coefficients in vector b, which can help distinguish among

different linear SDF models without ambiguity.

The third reason is due to parameter stability concerns. In equilibrium models, the vector

b tends to concatenate deep structural parameters, while parameters such as factor loadings

(the “beta”s) and factor risk premia are more likely to be driven by additional variables that

could be time-varying. For example, under the setting of the CAPM, this coefficient equals

the risk premium on the tangency portfolio over its variance. With a representative agent

holding the market, this ratio is the risk-aversion parameter in the mean-variance utility.

Thus, the b coefficient in this single factor model can be regarded as the (average) level of

risk aversion. Another example looks at the consumption-based models with the Epstein-Zin

preferences. According to the results in Epstein and Zin (1991), the linear SDF for this type

of models can be approximated (using one plus the log SDF) as

m ≈ constant +
γ − 1

ψ − 1
[log consumption growth] +

1− ψγ
ψ − 1

[log return on wealth],
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where γ and ψ are the relative risk aversion and elasticity of intertemporal substitution

parameters respectively. In this case, the two ratios, (γ − 1)/(ψ − 1) and (1− ψγ)/(ψ − 1),

consist the vector b, which is determined only by parameters in the preference, and is not

changing across time.

3.2.2 Prior Specification and Empirical Bayes Inference

We now present a Bayesian framework to understand and quantify model uncertainty in the

cross-section of expected stock returns, under the linear SDF setting. With observed data

for excess returns, denoted by D = {Rt}Tt=1, our primary goal is to evaluate the probability

of each model Mγ given the observed data p[Mγ | D]. Bayesian inference offers a natural

way of computing these posterior model probabilities.

We (as have many others) assume that the observed excess returns are generated from a

multivariate Gaussian distribution:

R1, . . . ,RT
iid∼ N (µ, Σ). (3.6)

The linear SDF modelMγ then sets a restriction on this distribution through the following

moment condition:

µ = Cγbγ , (3.7)

where Cγ = Cov[R,fγ ] consists of a subset of columns in Σ. We adopt an empirical

Bayes strategy by treating the variance-covariance matrix Σ as known initially to derive the

posterior model probability p[Mγ | D], and then substituting this matrix with a moment

estimator.11

Now we proceed to assign priors for bγ . Our prior specification is motivated by the g-prior

proposed by Arnold Zellner (see Zellner (1986)). We assume that conditional on choosing

model Mγ ,

bγ | Mγ ∼ N
(
0,

g

T

(
C>γ Σ−1Cγ

)−1
)
, g > 0 (3.8)

where T is the sample size for the observed excess returns. The parameter g is related to

the effective sample size or level of uncertainty for an “conceptual or imaginary sample”

according to Zellner (1986).

Following the reasoning of Zellner (1986), we generalize the original g-prior and adapt

11Empirical Bayes approaches use data to facilitate prior assignments. Here although the matrix Σ is
a likelihood parameter, it also enters the prior for bγ , as will become clear next when we introduce our
prior specification. Thus we are still using data to pin down (hyper)parameters in the priors. The use of
moment estimators to replace parameters in the prior distributions dates all the way back to the seminal
James-Stein estimator (James and Stein (1961)). For a monograph on modern empirical Bayes methods, see
Efron (2012).
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it to our specific setting. Before making inference about different linear SDF models using

the observed excess return data D, we consider an “imaginary” sample of size T ′, denoted

by D′ = {R′t}T
′

t=1, where the sample size is allowed to be different from T by a scalar g such

that T ′ = T/g. This parameter g also governs level of uncertainty about our imaginary

sample relative to the data sample we have.12 Under model Mγ , excess returns observed

in this sample are distributed as follows: R′1, . . . ,R
′
T ′

iid∼ N (Cγbγ , Σ). Assigning a non-

informative prior on bγ , which is flat everywhere,13 we can derive the “posterior” of bγ given

this conceptual data sample as [bγ | Mγ ,D′] ∼ N
(
b′γ , g/T ×

(
C>γ Σ−1Cγ

)−1
)
, where the

posterior mean b′γ is related to the particular hypothetical data set D′ in mind, while the

posterior variance is not (a celebrated result for conditional normal distributions). This

leaves the posterior mean b′γ largely undetermined for we can have infinite degrees of freedom

“imagining” the data setD′. If we would like to use this posterior as our prior for bγ , resorting

to the Bayesian philosophy that “today’s posterior is tomorrow’s prior” in Lindley (2000),

we at lease need to find a way of determining b′γ , the current posterior mean.

Zellner (1986) relies on the rational expectation hypothesis to pin down b′γ . Suppose that

we have an anticipatory value for bγ , denoted by baγ , in addition to the imaginary sample

D′ (as well as the initial diffuse prior for bγ). The rational expectation hypothesis says that

baγ = E[bγ | Mγ ,D′] = b′γ . Now we have a reference informative prior distribution that does

not depend on the hypothetical sample, which is

bγ | Mγ ∼ N
(
baγ ,

g

T

(
C>γ Σ−1Cγ

)−1
)
.

To determine whether a model Mγ is sensible or not, we are basically testing H0 : bγ = 0

versus H1 : bγ ∈ Rpγ . These tests help us distinguish between different models as modelMγ

already imposes the condition that b−γ = 0. Following the suggestion of Zellner (1986), we

set baγ = 0, that is, the anticipatory expectations are the values under the null. This finally

12In Zellner (1986), the scalar g is used to capture the fact that the variance of the hypothetical sample
can be different from the variance of the sample under study. These two arguments (effective sample size v.s.
variance of the hypothetical data set) are isomorphic because they will lead to the same g-prior specification.
Our sample-size based arguments echo the ideas of factional and intrinsic Bayes factor in the mid 90’s (see
O’Hagan (1995) and Berger and Pericchi (1996)), which aim to “transform” improper priors to proper ones.
Similar ideas for specifying priors are adopted in the paper by Shmuel Kandel and Robert F. Stambaugh in
the finance literature to discipline the specification of informative priors Kandel and Stambaugh (1996).

13This flat prior is non-informative in the sense that it is a Jeffreys prior, a common notion of prior
objectiveness or non-informativeness in Bayesian analysis Jeffreys (1946). Under our setting, we treat Σ as
known. As a result, Jeffreys prior for bγ is proportional to a constant, i.e., it is flat. Of remark, this flatness
outcome is not true if the covariance matrix is unknown, under which the Jeffreys prior would specify that

the joint density of π(bγ , Σ) is proportional to Σ−
N+2

2 . Some existing work (e.g. Barillas and Shanken

(2018a)) specifies a prior such that π(bγ , Σ) ∝ Σ−
N+1

2 , which is the so-called independence Jeffreys prior
(not the original Jeffreys-rule prior) imposing the assumption that bγ and Σ are independent at the prior
level.
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gives us the prior specification in (3.8).

Remark. One might attempt to assign an objective prior, such as the Jeffreys prior, to

bγ . In this case, it is an improper flat prior as we have discussed early on. This would be

desirable without model uncertainty, for it will lead to proper posterior distributions. How-

ever, with model uncertainty, improper priors can only be assigned to common parameters

across models, which is clearly not the case for bγ . Otherwise, posterior model probability

would be indeterminate. This is a well-known result in Bayesian statistics and has also been

pointed out in the finance literature (e.g., Cremers (2002)).

Our g-prior specification in (3.8) leads to a surprisingly simple expression for the variance

of the SDF, which is summarized in Proposition 3.1.

Proposition 3.1 Under model Mγ, in which mγ = 1− (fγ − E[fγ ])> bγ, the g-prior spec-

ification for bγ implies that

Var[mγ | g] =
gpγ
T
.

According to Proposition 3.1, volatility of the SDF (=
√
gpγ/T ) under a certain model is

determined by the conditionality of that model, at least at the prior level. The renowned

Hansen-Jagannathan bound states that this volatility (times the gross risk-free rate) sets

an upper bounds on any achievable Shape ratios in the economy Hansen and Jagannathan

(1991); Cochrane and Saa-Requejo (2000) regards portfolio positions with high Sharpe ratios

as deals that are too good to be realized in the market. These arguments imply that models

with too many factors are not likely to be realistic a priori.

The g-prior offers us an analytically tractable framework to make posterior inference.

Under the g-prior, we can integrate out bγ and calculate the marginal likelihood of observing

the excess return data D based on each model. All these marginal likelihoods are available

in closed form and results are collected in Proposition 3.2.

Proposition 3.2 The marginal likelihood of observing excess return data D under model

Mγ is

p[D | Mγ , g] = exp

{
−T − 1

2
tr
(
Σ−1S

)
− T

2

(
SR2

max −
g

1 + g
SR2

γ

)}
(1 + g)−

pγ
2

(2π)
NT
2 |Σ|T2

,

where

S =
1

T − 1

T∑
t=1

(R−R)(R−R)>,

is the in-sample variance-covariance matrix for the excess returns; SR2
max is the maximal

squared Sharpe ratio achievable from forming portfolios using all excess returns under con-

sideration; SR2
γ is the maximal squared Sharpe ratio from combining all factors under model
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Mγ. These two Sharpe ratios are both in-sample values and it is always the case that

SR2
γ ≤ SR2

max for all γ.

Proposition 3.2 has a couple of implications. To begin with, we can calculate the marginal

likelihood for a very special model, the null model, in which γ = 0. SDF mγ in this case is a

constant, characterizing a risk-neutral market. Under this setup, pγ equals zero because no

factors are included, and the maximal squared Sharpe ratio SR2
γ is also zero. Plugging these

two quantities into the expression in Proposition 3.2, we have p[D | M0, g] ≡ p[D | M0],

because the posterior marginal likelihood under the null model does not depend on the scalar

g. The Bayes factor that compares model Mγ with the null model M0 is defined as the

ratio between marginal likelihoods under two different models; that is,

BFγ(g) =
p[D | Mγ , g]

p[D | M0]

= exp

{
Tg

2(1 + g)
SR2

γ −
pγ
2

log(1 + g)

}
. (3.9)

This Bayes factor can be regarded as evidence of model Mγ against the null model. To

further compare two arbitrary models Mγ and Mγ′ , we can calculate the Bayes factor

BFγ,γ′(g) =
BFγ(g)

BFγ′(g)

= exp

{
Tg

2(1 + g)

(
SR2

γ − SR2
γ′

)
− pγ − pγ′

2
log(1 + g)

}
, (3.10)

which is, by definition, the (marginal) likelihood ratio p[D | Mγ , g]/p[D | Mγ′ , g]. A large

Bayes factor BFγ,γ′(g) lends evidence to favor model Mγ against model Mγ′ .

A first observation based on equation (3.10) is that although the marginal likelihood in

Proposition 3.2 depends on the test assets (the pre-specified set of excess returns that define

R), the Bayes factors do not. The Bayes factors are only determined by the in-sample time

series of the factors that enter the linear SDF, through the model-implied Sharpe ratios

(SRγ) and the number of factors. A key assumption driving this outcome is that factors

are a subset of the testing assets. In other words, the linear factor SDF model must price

the factors themselves correctly. This finding is reminiscent of the observation that, when

estimating factor risk premia in linear factor models, the efficient GMM objective function

assigns zero weights to the testing assets except for the factors entering the SDF (See for

example, (Cochrane, 2009, Page 244-245)).

The Bayes factor above illustrates a clear trade-off when comparing models. With the

number of factors fixed, models in which factors can generate larger in-sample Sharpe ratios

are always preferred. This echoes the intuitions behind the GRS tests in Gibbons, Ross, and
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Shanken (1989), which show the link between time-series tests of the factor models and the

mean-variance efficiency of factor portfolios. Under our setting, when the factor portfolios

deliver large maximal Sharpe ratios, it is evidence that they are more likely to span the

excess return space, thus favoring the linear SDF constructed from these factors. On the

other hand, it is a simple mechanical phenomenon that maximal Sharpe ratio SRγ increases

as additional assets are added into the factor portfolio. Thus the penalty term on model

dimensionality pγ imposed by the g-prior plays an key role in preventing the Bayes factor

to favor large models blindly. In order to properly penalize large models, g cannot be too

small, as SRγ always increases after one augments the linear SDF.

Perhaps the most desirable feature of our Bayes factor calculation in equation (3.10)

is that it helps us understand the aforementioned trade-off quantitatively. When model

dimension is increased by one (pγ − pγ′ = 1), the maximal squared Sharpe ratio (times the

sample size T ) of the factor portfolio has to increase by at least (1 + g)/g × log(1 + g) to

lend support to the augmented model, that is,

T
(
SR2

γ − SR2
γ′

)
>

1 + g

g
log(1 + g).

However, it is always the case that T
(
SR2

γ − SR2
γ′

)
≤ TSR2

max. Then for g large enough, the

inequality above will always be violated, as the function (1+g)/g×log(1+g) is monotonically

increasing and unbounded. As a result, smaller models will always be supported by the

Bayes factor. Under the extreme case that g → ∞, from equation (3.9), BFγ(g) → 0.

Paradoxically, the most favorable model will always be the null model. The case under

which g →∞ corresponds to the conventional diffuse priors; and the fact that, with model

uncertainty, diffuse priors always support the null model is sometimes called the Bartlett’s

paradox (Bartlett (1957)). Of note, this paradox poses another refutation to the use of

improper diffuse priors under model uncertainty, in addition to posterior indeterminacy that

has been pointed out earlier.

3.2.3 A Prior for the Parameter g

Discussions above point to the subtlety of choosing the parameter g. Instead of plugging

in particular numbers for g, a natural way under our Bayesian framework is to integrate

out g with a proper prior for it. A prior on g, namely π[g], is equivalent to assigning a

scale-mixture of g priors for bγ . This idea is adapted from Liang, Paulo, Molina, Clyde, and

Berger (2008), who argues that this type of mixture priors provides more robust posterior
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inference. As a result, our g prior specification will be modified to

π[bγ | Mγ ] ∝
∫ ∞

0

N
(
bγ

∣∣∣ 0,
g

T

(
C>γ Σ−1Cγ

)−1
)
π[g] dg, (3.11)

where the prior for g is such that

π[g] =
a− 2

2
(1 + g)−

a
2 , g > 0.

This prior π[g] is improper when a ≤ 2. A special case when a = 2 corresponds to the

Jeffreys prior according to Liang, Paulo, Molina, Clyde, and Berger (2008). Because the

marginal likelihood of the null model does not depend on g (recall that p[D | M0, g] ≡ p[D |
M0]), improper priors will lead to indeterminacy in the ratio

BFγ =

∫∞
0
p[D | Mγ , g]π[g] dg∫∞

0
p[D | M0]π[g] dg

=

∫ ∞
0

p[D | Mγ , g]

p[D | M0]
π[g] dg (3.12)

up to an arbitrary constant, which is the Bayes factor under the new mixture of g prior

specification. Thus we force a > 2.

This additional prior on g also leads to refinements on the volatility of the SDF. Based

on the result from Proposition 3.1, the unconditional volatility of the SDF for model Mγ

must satisfy

Var[mγ ] ≥ E[Var[mγ | g]] =
pγ
T
E[g].

The prior π[g] is such that E[g] = ∞ if a ≤ 4, and that E[g] = 2/(a − 4) if a > 4. To

make sure that the variance of the SDF does not explode, we need a > 4. And if we follows

the argument of Cochrane and Saa-Requejo (2000) to set an upper limit on the maximal

achievable Sharpe ratio in the economy14, denoted by SR∞, then

R2
fSR2

∞ = Var[mγ ] ≥ E[Var[mγ | g]] =
2pγ

T (a− 4)
,

where Rf represents the risk-free rate. For the investor in the economy to be not risk-neutral,

the SDF must include at least one factor, that is, pγ ≥ 1 (for example, under the CAPM

14Note that this must be larger than the maximal in-sample Sharpe ratio of portfolios formed using excess
returns under our consideration, denoted by SRmax in Proposition 3.2.
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world). As a result, we will require that

a ≥ 4 +
2

TR2
fSR2

∞
.

Another way of looking at our prior for g is that it is equivalent to

g

1 + g
∼ Beta

(
1,
a

2
− 1
)
.

This ratio is crucial in that it determines the contribution of data evidence when making

posterior inferences. It is sometimes referred to as the “shrinkage factor.” To see this more

clearly, we can calculate the posterior of the cross-sectional expected return µ = Cγbγ ,

which is given as follows

E[µ | Mγ , g, D] =
g

1 + g
Cγ {Var[fγ ]}−1

(
1

T

T∑
t=1

fγ,t

)
.

Under all models, the posterior mean of expected returns are scaled by a fixed factor g/(1 +

g) ∈ (0, 1). Our prior specification is equivalent to a Beta distribution for this shrinkage

factor, and the prior mean for it is

E
[

g

1 + g

]
=

2

a
≤ 1

2 +
(
TR2

fSR2
∞
)−1 .

In order to give enough credit to the data-driven estimates and avoid over-shrinkage, we

choose the smallest possible a such that E [g/(1 + g)] is as large as possible a priori ; that

is, we pick a = 4 + 2/(TR2
fSR2

∞). Under this choice, the prior expectation for the shrinkage

factor is still strictly smaller than one half, but can be very close (the ratio 2/(TR2
fSR2

∞) is

usually very small).

3.2.4 Posterior Probability of Models

We next integrate out the parameter g according to equation (3.12) to find the Bayes factors

under the mixture of g-priors. Proposition 3.3 presents the results.

Proposition 3.3 The Bayes factor for comparing model Mγ with the null model M0 is

BFγ =

(
a− 2

2

)
exp

(
T

2
SR2

γ

)(
T

2
SR2

γ

)−sγ
Γ

(
sγ ,

T

2
SR2

γ

)
,
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where

Γ(s, x) =

∫ x

0

ts−1e−t dt

is the lower incomplete Gamma function (Abramowitz and Stegun, 1965, Page 263); the

scalar sγ is defined as

sγ =
pγ + a

2
− 1.

This Bayes factor is always increasing in SR2
γ always decreasing in pγ.

The Bayes factor that compares any two models can be computed as

BFγ,γ′ =
BFγ
BFγ′

,

which is the same as what we have done earlier. Bayes factors decide the posterior odds of

one model against another:

p[Mγ | D]

p[Mγ′ | D]
=
π[Mγ ]

π[Mγ′ ]
× BFγ,γ′ .

Equivalently, the posterior odds give us the posterior model probabilities: for model Mγ ,

its posterior probability given the excess return data is

p[Mγ | D] =
BFγπ[Mγ ]∑
γ BFγπ[Mγ ]

,

which is a direct outcome of the Bayes’ rule. We can then define a model uncertainty measure

as the entropy of the posterior model probabilities:

E [Mγ | D] =
∑
γ

log(p[Mγ | D])p[Mγ | D]. (3.13)

Roughly speaking, larger entropy corresponds to higher model uncertainty. For example,

suppose that we have only two candidate models. If one of them has a posterior model

probability of 99%, we should be confident about this high-probability model. Actually, the

model uncertainty is almost zero in this scenario. However, if the posterior probability of

each model is around 50%, then choosing the true model is equivalent to flipping a fair coin.

In this case, model uncertainty in equation (3.13) is maximized.
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3.3 Data Description

In our primary empirical implementation, we combine 14 prominent factors from the past

literature and measure model uncertainty in this small zoo of factors. First, we include

notable Fama-French five factors (Fama and French (2015)) plus the momentum factor (Je-

gadeesh and Titman (1993)). In addition, we consider the q-factor model from Hou, Xue,

and Zhang (2015) and include their size, investment, and profitability factors. The factor

models mentioned earlier are based on rational asset pricing theory. Taking the insights

from behavioural models, Daniel, Hirshleifer, and Sun (2020) propose a three-factor model

consisting of the market factor, the short-term behavioural factor (PEAD), and the long-

term behavioural factor (FIN). Finally, we include the HML devil, the quality-minus-junk

factor, and the betting-against-beta factor from the AQR library. Appendix 3.A.1 presents

the detailed description of these factors.

Table 3.A.1 reports the annualised mean returns and Sharpe ratios of 14 factors. First,

most of them (except for two size factors) have enormous Sharpe ratios in the full sample

from July 1972 to December 2020. In particular, the short-term behavioural factor (PEAD)

seems to be the most profitable historically. Furthermore, I split the entire sample into two

equal subsamples. Consistent with past literature (e.g., McLean and Pontiff (2016)), the

performance of many factor strategies decline significantly from subsample one to two. Most

strikingly, the annualised Sharpe ratio of the value factors has plunged from above 0.9 to

nearly zero in the second subsample. This observation suggests that we should focus on the

out-of-sample instead of the in-sample Sharpe ratio in evaluating factor models.

With the estimate of model uncertainty, we next compare it with other uncertainty

measures and economic variables. Bloom (2009) uses the jumps in VXO/VIX indices as the

stock market uncertainty shock. We download the time-series of VXO/VIX indices from

Wharton Research Data Services (WRDS). Baker, Bloom, and Davis (2016) develop indices

of economic policy uncertainty (EPU), which can be downloaded from Nick Bloom’s website.

Other uncertainty measures that we use include the macro, real and financial uncertainty

measures in Ludvigson, Ma, and Ng (2021) and Jurado, Ludvigson, and Ng (2015). We

download them from the authors’ websites. In addition, we compare our model uncertainty

with the intermediary factor from He, Kelly, and Manela (2017), the term yield spread (the

yield on ten-year government bonds minus the yield on three-month treasury bills), and the

credit spread (the yield on BAA corporate bonds minus the yield on AAA corporate bonds).

We download the intermediary factor from the authors’ websites and the bond yields from

the Federal Reserve Bank of St. Louis.

Moreover, we obtain mutual fund data from the Center for Research in Security Prices

(CRSP) survivorship-bias-free mutual fund database. In particular, we are interested in
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monthly mutual fund flows, so we download the monthly total net assets, monthly fund

returns, and the codes of fund investment objectives. To normalise the aggregate fund

flows, we divide the equity (fixed-income) fund flows across all funds within a particular

investment objective by the total market capitalisation of all listed companies in CRSP

(2021) (US GDP). In addition, we download the total market value of all US-listed stocks

from CRSP.

Finally, we study the relationship between our model uncertainty measure and investors’

expectations about future stock market performance. In our paper, we use the survey data

from the American Association of Individual Investors (AAII) survey and Shiller’s survey

conducted by the International Center for Finance at the University of Yale. We download

the related data from their official websites.

3.4 Measuring Model Uncertainty

We now adopt the perspective of Bayesian investors and construct the time series of model

uncertainty. At the end of each month, we use all daily factor returns in the past three years

to estimate the posterior model probabilities, p[Mγ | D], and compute the entropy as in

equation (3.13). We choose the hyper-parameter a to be four in the benchmark case. We

also present the results obtained from alternative rolling windows and other choices of a in

robustness checks (see Section 3.8).

The behavioural factors in Daniel, Hirshleifer, and Sun (2020) are available only from July

1972, and we use 36-month data in the estimation, so the model uncertainty measure starts

from June 1975. Since some factors are highly correlated, we consider models that contain at

most one version of the factors in each of the following categories: (a) size (SMB or ME); (b)

profitability (RMW or ROE); (c) value (HML or HML Devil); (d) investment (CMA or IA).

We refer to size, profitability, value, and investment as categorical factors. Therefore, there

are ten effective factors, including market, size, profitability, value, investment, short-term

and long-term behavioural factors, momentum, QMJ, and BAB.

The blue line in Figure 3.1 plots the time series of model uncertainty of linear SDFs, and

the sample period spans from June 1975 to December 2020. The red and green dotted lines

show the lower and upper bounds of model uncertainty, respectively. The lower entropy

bound is always zero, i.e., when there is one dominant model with the posterior model

probability of 100%. On the contrary, uncertainty is maximized when the posterior model

probabilities are equalized across all models. Because we have 14 factors, and only one of the

categorical factors could be selected into the true model, there are 5,184 different candidate
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models.15 The upper bound of model uncertainty is around 8.55.16 To normalize the model

uncertainty index, we divide it by 8.55. Hence, the upper bound is one in Figure 3.1.

The model uncertainty index has several interesting features that could shed light on

the nature of uncertainty about the linear SDF. First, we observe a surprisingly high level

of model uncertainty. Specifically, the average (median) model uncertainty is around 0.70

(0.75), with the first and third quartiles equal to 0.53 and 0.87, respectively. Hence, most

of the time, Bayesian investors are not confident about the true SDF model. Second, model

uncertainty fluctuates significantly over time. In particular, the index varies from the lowest

value of 0.27 to the highest 0.99, representing economic states in which Bayesian investors

find it almost unlikely to determine the true SDF model. The standard deviation of the index

is 0.21. Overall, model uncertainty is a dynamic phenomenon. Finally, model uncertainty

is persistent by construction since we use a rolling window of 36 months in the estimation.

The first-order autocorrelation is 0.98, and the autocorrelation coefficients strictly decrease

in time lags, with insignificant autocorrelations after 30 lags.

Figure 3.1 also suggests the countercyclical nature of model uncertainty. In particular,

the 1990s was a remarkable period: it was remembered as a period of strong economic

growth, low inflation and unemployment rate, and high stock returns. During the 1990s,

model uncertainty is the lowest across our sample. As the orange dots in Figure 3.2 suggest,

posterior probabilities of the top two models are significantly larger than others. Hence,

investors are relatively confident about the true SDF model.

In addition, peaks in model uncertainty tend to coincide with major events in the US

stock markets and economy. Important examples include the dot-com crash in 2000 and

the global financial crisis in 2008 when model uncertainty almost touches its upper bound.

Specifically, the blue dots in Figure 3.2 show that posterior probabilities of the top 50

models, in December 2007, are almost equalized. In other words, it is virtually infeasible to

distinguish models based on the observed data. The 2008 crisis is noteworthy because model

uncertainty stays at a high level for a prolonged period. In contrast, it declines shortly after

other crises/recessions. In the recent five years, model uncertainty has slowly increased from

0.7 to 1 at the end of 2020.

Interestingly, we do not observe a spike in model uncertainty during the 1987 flash crash.

The potential reason is that the 1987 market crash was not long-lasting. Even though S&P

500 index declined by more than 20% in one day, the crisis was not caused by any economic

15The model in our framework is indexed by γ: γj ∈ {0, 1} and γj = 1 implies that the factor j should be
included into true SDF. We do not have restrictions on the market, short-term reversal, long-term reversal,
momentum, QMJ, and BAB, so the number of models for these 6 factors is 26. For SMB and ME, we only
allow three cases: (0,0), (1,0) or (0,1). Therefore, each categorical factor has 3 (instead of 4) possibilities.
The total number of candidate models equals 26 × 34 = 5184.

16upper bound = −
∑
γ

1
5184 × log( 1

5184 ) = log(5184) ' 8.55..
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recession, and the market recovered rapidly. Instead, the leading cause was synchronous

program trading, illiquidity in the market, and the subsequent market panic. Since our

uncertainty measure is based on past-three-year daily data, the impact of short-term market

chaos is averaged out.

In conclusion, our model uncertainty measure displays considerable time-series variations:

it is particularly sizable in bad economic states. The stock market crash that lasts only for a

short period, such as the 1987 flash crash, is not captured by our model uncertainty measure.

Furthermore, the cyclical behaviours of model uncertainty imply another layer of investment

risk: when investors experience bear stock markets, they are also the most uncertain about

the true model in the cross-section, or equivalently, which portfolio of factor strategies they

should hold. This further motivates us to study how model uncertainty relates to investors’

portfolio choices and expectations. We investigate these topics in section 3.5 and 3.6.
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Figure 3.2: Posterior Probabilities of Top 50 models: High vs. Low Model Uncertainty

The figure plots the posterior probabilities of the top 50 models ranked by their posterior probabilities. At
the end of each month, we compute the posterior model probabilities using the daily factor returns in the
past three years. We use the entropy of model probabilities to quantify model uncertainty in the cross-
section. We observe low model uncertainty in February 1994 (orange diamonds) but high model uncertainty
in December 2007 (blue dots).

3.4.1 Does Model Uncertainty Matter?

Should investors take into account model uncertainty in the cross-section? A natural hypoth-

esis is that model uncertainty plays a more critical role when it is more sizable. The logic is

as follow. When model uncertainty is relatively low, the factor model with the highest model
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probability dominates others, such as the orange diamonds in Figure 3.2. Hence, investors

are more willing to trust the top model ranked by the Bayesian posterior probabilities. In

contrast, the top model is not informative if model uncertainty is relatively high, such as

during market crashes. In this case, they may prefer to aggregate the information over the

space of all models.

The Bayesian model averaging (BMA) is one common approach to aggregating models.

It enables us to flexibly model investors’ uncertainty about potentially relevant factors. In

the SDF model, we are interested in the risk prices, b. The BMA of b is defined as

bbma := E[b | D] =
∑
γ

E[b | Mγ , D]× P (Mγ | D). (3.14)

Rather than considering the expectation of b conditional on a specific model, we take the

weighted average of the model-implied expectations, where the weights are posterior model

probabilities. Intuitively, models with high probabilities are more influential in BMA.

BMA deviates sharply from the traditional model selection, in which researchers always

use a particular criterion (e.g., adjusted R2, model probabilities, etc.) to select a single model

and presume that the selected model is correct. Past literature also shows the importance

of model averaging in asset pricing (e.g., Avramov (2002), Bryzgalova, Huang, and Julliard

(2021), Avramov, Cheng, Metzker, and Voigt (2021)).

We now compare the performance of BMA with the top Bayesian model. The perfor-

mance metric that we use is the out-of-sample (OOS) Sharpe ratio of factor models. We also

compare our Bayesian procedure with several candidate models: (1) All 14 factors (All), (2)

Carhart (1997) four-factor model (Carhart4), (3) Fama and French (2015) five-factor model

(FF5), (4) Hou, Xue, and Zhang (2015) q-factor model (HXZ4), and (5) Daniel, Hirshleifer,

and Sun (2020) behavioural factor model (DHS3).

For each factor model γ in month t, we estimate the risk prices of fγ via the standard

GMM estimation: b̂γ = (Var[fγ ])−1( 1
T

∑T
t=1 fγt), where the covariance matrix and mean

returns of fγ are estimated using the data from month t − 35 to month t, consistent with

Figure 3.1. The tangency portfolio conditional on model γ is b̂>γ fγ,t+1, and the BMA

tangency portfolio is b>bmaft+1.17 We update the tangency portfolio each month.18

We also test the null hypothesis that BMA and the model γ have an identical Sharpe

ratio, i.e., H0 : SR2
bma = SR2

γ , using the non-parametric Bootstrap. Under H0, the expected

return of the tangency portfolio implied by the model γ is linear in that of BMA: E[Rγt ] =

E[Rbma
t ]σ(Rγt )/σ(Rbma

t ). We adjust the average return of Rγt using the previous equality and

17For model γ, we scale the tangency weights b̂γ each month such that the target monthly portfolio
volatility is 1% based on historical data from month t− 35 to month t.

18Moreover, the top Bayesian model (with the highest model probability) is time-varying.
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draw 100,000 sample paths of {Rγt? , Rbma
t? }Tt?=1 with replacement, where T is the sample size

in the observed dataset. If the difference in Sharpe ratios between BMA and model γ in

the observed dataset is larger than 90% (95%, 99%) of those in simulated datasets, we claim

that H0 is rejected by the data at 10% (5%, 1%) significance level.19

Table 3.1: Out-of-Sample Model Performance

(1) (2) (3) (4) (5) (6) (7)
BMA Top 1 All Carhart4 FF5 HXZ4 DHS3

Full Sample: 07/1975 - 12/2020 1.818 1.750 1.772 0.736 0.938 1.135 1.639
- ** - *** *** *** -

Subsample I: 07/1975 - 08/1990 2.327 2.226 2.293 1.014 1.589 1.853 2.142
- ** - *** *** * -

Subsample II: 09/1990 - 10/2005 2.094 2.145 2.095 0.927 0.916 1.222 2.072
- - - *** *** *** -

Subsample III: 11/2005 - 12/2020 1.106 0.940 0.986 0.317 0.452 0.517 0.795
- ** - *** *** ** *

Low Model Uncertainty 2.572 2.565 2.568 1.288 1.624 1.829 2.282
- - - *** *** *** -

Middle Model Uncertainty 1.717 1.653 1.771 0.450 0.677 1.232 1.818
- - - *** *** ** -

High Model Uncertainty 1.251 1.125 1.106 0.564 0.584 0.552 0.897
- * * *** *** *** **

This table reports the out-of-sample (annualised) Sharpe ratio of (1) BMA: the Bayesian model averaging of
factor models, (2) Top 1: the top Bayesian model ranked by posterior model probabilities, (3) All: include
all 14 factors, (4) Carhart4: Carhart (1997) four-factor model, (5) FF5: Fama and French (2015) five-factor
model, (6) HXZ4: Hou, Xue, and Zhang (2015) q-factor model, and (7) DHS3: the market factor plus two
behavioural factors in Daniel, Hirshleifer, and Sun (2020). We also report the results on testing the null
hypothesis that the Sharpe ratio of BMA is equal to the model γ, i.e., H0 : SR2

bma = SR2
γ . We use the

non-parametric Bootstrap to test the null hypothesis. *, ** and *** denote significance at the 90%, 95%,
and 99% level, respectively.

We start with describing the full-sample performance, as shown in the first row of Table

3.1. First, our Bayesian procedure successfully selects the model that outperforms traditional

factor models in the out-of-sample. The top Bayesian model (see column (2)) has an OOS

Sharpe ratio of 1.75, which is virtually comparable to the model composed of all 14 factors

(see column (3)). Second, BMA beats the top Bayesian model. The outperformance is

statistically significant, but its economic magnitude is not substantial.

One may be concerned that these 14 factors are data-mined, so choosing the top model

only reflects data snooping rather than the outperformance of our Bayesian procedure. We

19In other words, we calculate the approximate achieved significance level, ASLboot, by

ASLboot =

∑B
n=1 1{SR(Rbma

t?
)−SR(Rγ

t?
)≥SR(Rbma

t )−SR(Rγt )}

B

where B is the number of Bootstraps (B = 100, 000). If ASLboot is smaller than 10% (5%, 1%), we claim
that H0 is rejected by the data at 10% (5%, 1%) significance level.
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further split the whole sample into three equal subsamples to tackle this concern. Consis-

tent with past literature, the performance of factor models tends to decline over time, and

the drops in Sharpe ratios are particularly enormous from subsample II (September 1990 -

October 2005) to subsample III (November 2005 - December 2020). In addition, BMA is

more valuable in the third subsample: its Sharpe ratio (1.106) is significantly higher than

other models except for the one composed of all 14 factors.

Whether the performance of factor models is related to model uncertainty? The short

answer is yes. On average, the performance of factor models declines as model uncertainty

increases. Specifically, when model uncertainty is low, both the top model and BMA have

similar Sharpe ratios of around 2.57, which are exceptionally high. In other words, investors

should be confident about the top model chosen by our Bayesian procedure in low uncertainty

states. On the contrary, it is particularly beneficial to incorporate model uncertainty into

portfolio choice when model uncertainty is high. As the last row suggests, BMA has an OOS

Sharpe ratio of 1.25, significantly larger than any other specifications.

In summary, there are two takeaways from Table 3.1. First, our Bayesian procedure

is competent to pick the model that has satisfactory OOS performance. Second, model

uncertainty matters and is particularly noteworthy when it is relatively high. In this scenario,

BMA, which aggregates the information across all models, is salient for real-time portfolio

choice.

3.4.2 Decomposing Model Uncertainty

The posterior model probabilities (see Proposition 3.3) are closely related to the model-

implied squared Sharpe ratio, SR2
γ . As we include more factors, the in-sample SR2

γ always

rises. Only when a few factor models dominate others can we be confident about the true

model. In other words, when the distances in SR2
γ are sizable across different factor models,

we can easily differentiate them and observe low model uncertainty. In contrast, when factor

models have similar SR2
γ , model uncertainty tends to be high.

Figure 3.3 plots the time-series of distances in SR2
γ . More precisely, we show the difference

between the maximal SR2
γ and the 90th-quantile of SR2

γ , as well as the difference between

the maximal SR2
γ and medium SR2

γ . Strikingly, the difference in SR2
γ decreases obviously

before the stock market crashes and remains at a low level during the bear markets. For

example, the distance between the highest and medium in-sample SR2
γ is close to 0.2 (daily)

between 1997 and 1998, but it plunges to almost 0 from 1998 to 2000. After the tech bubble,

factor models have been becoming more similar in terms of in-sample SR2
γ .

Theoretically, SR2
γ is determined by mean returns of factors and their covariance matrix.

We further analyze SR2
γ by dipping into three parts: (a) average daily factors returns in
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Figure 3.3: Time-Series of Model-Implied Squared Sharpe Ratio (3-Year Rolling Window)

The figure plots the time series of distances in SR2
γ from June 1975 to December 2020. We present the

difference between the highest SR2
γ and the 90th-quantile of SR2

γ , as well as the difference between the

highest SR2
γ and medium SR2

γ . SR2
γ is the model-implied squared Sharpe ratio, ET [fγ ]TV −1

γ ET [fγ ]. ET [fγ ]
and Vγ are estimated using the daily factor returns in the past 36 months.

the past three years; (b) average daily factor volatility in the past three years; (c) average

pairwise correlation among daily factor returns in the past three years. Figure 3.4 plots these

time series.

In Figure 3.4a, we show that the average daily return of all 14 factors is incredibly volatile.

The average daily return also exhibits cyclical patterns. Specifically, it declines during the

run-ups of stock markets. However, it plummets to the bottom during the market crash and

recovers gradually after the bear markets. In the recent three most influential market crashes

(dot-com bubble, 2008 global financial crisis, and the Covid-19), the average factor returns

decline to near zeros. In the past decade, the profitability of these 14 factors is no longer

comparable to their historical performance. One potential reason is that more investors

implement the same investment strategies after the publication of these factors (see McLean

and Pontiff (2016)).

Figure 3.4b plots the average volatility of 14 factors. Even though the average factor

volatility increases in the bear markets, the factor returns before the dot-com bubble are not

as volatile as after 2000. Typically, the average standard deviation of 14 factors is between

0.2% and 0.4%. During the dot-com bubble and recent global financial crisis, it surges to

higher than 1% daily. However, it is evident from figure 3.4b that model uncertainty does

not have the same time-series pattern as the average factor volatility.

During market crashes, it is highly likely that arbitrageurs who invest in these factor

strategies will exit the market simultaneously, thus driving up comovements among factors.
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(a) Time-Series of Average (Daily) Return of 14 Factors
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(b) Time-Series of Average (Daily) Volatility of 14 Factors
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(c) Time-Series of Average Pairwise Correlation of 14 Factors

Figure 3.4: Decomposing the Model Uncertainty

The figures plot the time-series of (a) average daily returns of factors, (b) average daily factor volatility,
and (c) average pairwise (absolute) correlation among daily factor returns in the past three years, and these
statistics are estimated using the daily factor returns in the past 36 months.
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Since the correlation matrix of factors determines the extent to which investors can diversify

their investment, it could potentially influence the distances in SR2
γ . To illustrate this point,

we plot the time series of the average pairwise correlation of 14 factors.20 The average

correlation exhibits a similar cyclical pattern as model uncertainty. However, there are two

key differences: (a) the average correlation decreases before the 2008 crisis while our model

uncertainty starts to climb up from 2006, and (b) model uncertainty increases from 2015 to

2019, while the average correlation among factors declines during the same period.

To sum up, model uncertainty is high when the distances in SR2
γ among different factor

models are low. Since the in-sample SR2
γ always increases with more factors included, we are

uncertain about whether to include an additional factor if the benefit of including it is only

marginal. Furthermore, model uncertainty about linear SDFs increases dramatically during

the run-ups and stands at the peak during bear markets because different factor models are

highly analogous.

3.4.3 Correlation with Other Economic Variables

Figure 3.1 indicates that model uncertainty increases during times of extreme uncertainty in

the financial markets and economy. A natural question is how our model uncertainty index

correlates with a number of key financial and macroeconomic variables known as capturing

critical financial and economic fluctuations.

There are several notable uncertainty measures in the literature. The first measure is

VXO/VIX index21 (used in Bloom (2009)), which quantifies forward-looking market volatil-

ity. Subsequent to Bloom (2009), Ludvigson, Ma, and Ng (2021) and Jurado, Ludvigson, and

Ng (2015) develop the real, macro and financial uncertainty measures by exploiting a large

set of macro and financial variables.22 Baker, Bloom, and Davis (2016) use the coverage of

economic or policy-related keywords in the media as proxies for economic policy uncertainty.

In addition to uncertainty measures, we compare model uncertainty with the intermediary

factor from He, Kelly, and Manela (2017), the term yield spread (the yield on ten-year

20At the end of each month t, we use daily factor returns from month t − 35 to month t to compute the
pairwise correlation between any two factors, denoted as ρij . The average is computed as 1

N×(N−1)
∑
i 6=j |ρij |.

21VIX and VXO index are essentially the same: the correlation between them is higher than 0.98.
22They quantify the h-period ahead uncertainty by the extent to which a particular set of economic vari-

ables (either real, macro, or financial) become more or less predictable from the perspective of economic
agents. Suppose there is a set of economic indicators, Yt = (y1t, ..., yLt)

T. For each variable, they find the
conditional volatility of the prediction errors: ujt(h) =

√
E[(yj,t+h − E[yj,t+h|It])2|It]. The aggregate un-

certainty is quantified by the average conditional volatility of the prediction error of each economic indicator:
ut(h) =

∑L
j=1 ωjujt(h), where ωj is the weight on the j-th economic indicator. The detailed econometric

framework could be found in the original papers. Our paper considers their one-period ahead uncertainty
measures.
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government bonds minus the yield on three-month treasury bills), and the credit spread (the

yield on BAA corporate bonds minus the yield on AAA corporate bonds).

We report in Table 3.2 the results from the regression of model uncertainty on its one-

period lag and some contemporaneous economic variables. By running these regressions, we

do not intend to study the causal relationship between model uncertainty and other economic

variables. Instead, our objective is to describe the contemporaneous relation between them.

We also want to point out that model uncertainty is persistent23 since it is constructed in a

rolling window of 36 months. Therefore, we need to be careful in statistical inference. In all

following tables, we use Newey-West standard errors (see Newey and West (1987)) with 36

lags in the regressions involving model uncertainty.

As Table 3.2 shows, a number of economic variables are significantly related to model

uncertainty, even after we control one-period lagged entropy in the regressions. For exam-

ple, model uncertainty is positively correlated with financial uncertainty and the VXO index

but almost orthogonal to real, macro, and two economic policy uncertainty measures. This

finding is intuitive since model uncertainty mainly refines information in financial markets.

In addition, the intermediary factor and term yield spread negatively relate to model uncer-

tainty. In column (10), we run horse racing among the VXO index, the intermediary factor,

and term yield spread: While the coefficient estimates of the VXO index and term yield

spread still remain significant, the intermediary factor becomes inconsequential.

Comments. Conceptually, our model uncertainty index quantifies a different layer of

uncertainty from other measures. The stock market volatility, proxied by the VXO index,

measures the second-moment investment risk. Three uncertainty measures in Ludvigson,

Ma, and Ng (2021) and Jurado, Ludvigson, and Ng (2015) are essentially volatilities of

prediction errors. In other words, they measure the dispersion of unexpected changes in

economic indicators. Two economic policy uncertainty indices in Baker, Bloom, and Davis

(2016) are to quantify public attention to economic policy. In contrast, our paper quantifies

model uncertainty about linear SDFs. Since we know the lower and upper bounds of en-

tropy, we can easily detect the degree of model uncertainty in the cross-section. For example,

model uncertainty reaches its upper bound in some periods, implying that different models’

posterior probabilities are almost identical. In short, our model uncertainty index is comple-

mentary to other uncertainty measures developed in the past literature. More importantly,

ours provides a new angle of analyzing and understanding investment uncertainty.

23Strong persistence of the time-series process is ubiquitous in other uncertainty measures. Table 3.A.2
shows the AR(1) coefficients of the other six uncertainty sequences, and we find that the real, macro and
financial uncertainty measures also have AR(1) coefficients less than but close to 1. It is well-known that
the volatility of asset returns tends to cluster. When we run the AR(1) for the VXO index, the coefficient
estimate of ρ is 0.812. Only the second economic policy uncertainty measure (EPU2) suffers less from
massive autocorrelations.
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Table 3.2: Regressions of Model Uncertainty on Contemporaneous Variables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Lagged Entropy 0.979∗∗∗ 0.982∗∗∗ 0.983∗∗∗ 0.985∗∗∗ 0.983∗∗∗ 0.983∗∗∗ 0.986∗∗∗ 0.985∗∗∗ 0.986∗∗∗ 0.983∗∗∗

(128.85) (142.76) (146.97) (106.55) (105.75) (129.25) (161.37) (150.06) (154.04) (131.19)
Financial Uncertainty 0.212∗

(1.95)
Macro Uncertainty 0.174

(1.53)
Real Uncertainty 0.140

(1.20)
EPU I 0.000

(0.33)
EPU II 0.000

(1.07)
VXO 0.005∗∗ 0.004∗∗

(2.20) (2.34)
Intermediary Factor -0.503∗∗ -0.196

(-2.01) (-0.71)
Term Spread -0.034∗∗∗ -0.033∗∗

(-3.44) (-2.44)
Default Spread -0.003

(-0.09)
Sample size 546 546 546 432 432 420 546 546 546 420

The table reports the results from the regression of model uncertainty on its one-period lag and some
contemporaneous economic variables (Xt+1):

Entropyt+1 = β0 + β1Entropyt + ρXt+1 + εt+1.

Xt+1 include a) financial, macro, and real uncertainty measures from Ludvigson, Ma, and Ng (2021) and
Jurado, Ludvigson, and Ng (2015) in columns (1) - (3), b) two economic policy uncertainty (EPU) indices
from Baker, Bloom, and Davis (2016) in columns (4) and (5), c) VXO index in column (6), d) the intermediary
factor from He, Kelly, and Manela (2017) in column (7), e) term spread in column (8), f) default spread in
column (9), and g) VXO index, the intermediary factor, and the term spread in column (10). The t-statistics
are computed using Newey-West standard errors with 36 lags. *, ** and *** denote significance at the 90%,
95%, and 99% level, respectively.

3.5 Mutual Fund Flows

If investors consider model uncertainty a crucial source of investment risk, a natural predic-

tion is that their portfolio choice decisions are related to our model uncertainty measure.

The difficulty in empirical tests arises due to the lack of observations in their complete port-

folio choice. To tackle this issue, we rely on mutual fund flows, which have been studied

extensively by the past literature due to their availability. Also, the mutual fund sector is

one of the largest financial intermediaries through which individual investors participate in

the US stock markets. Hence, we use mutual fund flows as proxies for investors’ portfolio

rebalancing and study how mutual fund investors react to model uncertainty shocks.

The data is available on CRSP survivor-bias-free US mutual fund database. The database

includes investment style or objective codes from three different sources over the whole life
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of the database.24 The CRSP style code consists of up to four letters. For example, a fund

with the style “EDYG” means that i) this fund mainly invests in domestic equity markets (E

= Equity, D = Domestic), and ii) it has a specific investment style “Growth” (Y = Style, G

= Growth).25 The quality of data before 1991 is low because the CRSP investment objective

code is incomplete. For example, only domestic equity “style” funds and mixed fixed income

and equity funds are recorded before 1991. Also, the market values of institutional holdings

proportional to the total market value of all stocks (in CRSP) were tiny. Therefore, we focus

on the sample from January 1991 to December 2020.

To begin with, we define the aggregate mutual fund flows. Following the literature (see

Lou (2012)), we calculate the net fund flows to each fund i in period t as

Flowi,t = TNAi,t − TNAi,t−1 × (1 +RETi,t) (3.15)

where TNAi,t and RETi,t are total net assets and gross returns of fund i in period t. Next,

we aggregate individual fund flows in each period across all funds in a specific group (e.g.

all large-cap funds) and scale the aggregate flows by the lagged total market capitalization

of all stocks in CRSP:

FlowsYt =

∑
i∈Y Flowi,t

CRSP-Market-Capt−1

, (3.16)

where Y specifies a certain investment objective, such as small-cap funds.

We use the canonical Vector Autoregression (VAR) model to study the dynamic responses

of fund flows to model uncertainty shocks. Specifically, we consider the following reduced-

form VAR(l) model:

Yt = B0 +B1Yt−1 + · · ·+BlYt−l + ut, (3.17)

where l denotes the lag order, Yt is a k× 1 vector of economic variables, ut is a k× 1 vector

of reduced-form innovations with the covariance matrix Σu, and (B0,B1, . . . ,Bl) are the

coefficient matrices.

Past literature often relates reduced-form innovations to structural shocks, i.e., ut = Sεt,

where S is a k × k non-singular matrix, and εt is a k × 1 vector of structural shocks, which

are orthogonal to each other by definition. We use the Cholesky decomposition to identify

the dynamic responses to uncertainty shocks, so the ordering of economic variables in Yt is

equivalent to different identification assumptions, which are specified below.

24From 1962 to 1993, Wiesenberger objective codes are used. Strategic insight objective codes are pop-
ulated between 1993 and 1998. Lipper objective codes start in 1998. Instead of using the three measures
mentioned above directly, CRSP builds its objective codes based on them.

25More details are in the handbook of CRSP survivor-bias-free US mutual fund database.
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3.5.1 Aggregate Equity vs Fixed-Income Funds

Since our model uncertainty measure is based on factors in the US, we delete all foreign

mutual funds. In the baseline analysis, we consider the aggregate mutual fund flows to the

entire equity and fixed-income markets. That is, we study the VAR regression in equa-

tion (3.17), where Y >t = (Entropyt, F lows
FI
t , F lowsEquityt ). We next use impulse response

functions (IRFs) to better understand the dynamic effects and propagating mechanisms of

uncertainty shocks.

IRFs greatly depend on the identification assumption, i.e., whether model uncertainty is

an exogenous source of fluctuations in fund flows or an endogenous response. In the first

case, model uncertainty is a cause of fund flows, while it acts as a propagating mechanism in

the latter case. Without taking a strong stance on the identification assumption, we aim to

investigate the dynamic relationship between fund flows and several uncertainty measures,

either as a cause or propagating mechanism. To make as few assumptions as possible, we

focus only on the dynamic responses to uncertainty shocks and are silent on how innovations

in fund flows affect model uncertainty. This simplification allows us to ignore the ordering

of other economic variables beyond model uncertainty.

In the benchmark case, we place model uncertainty first in the VAR. Hence, the implicit

identification assumption is that fund flows react to the contemporaneous uncertainty shocks,

while model uncertainty does not respond to the shocks to mutual funds in the current period.

We consider a different identification assumption in robustness checks in Section 3.8; that

is, we put model uncertainty as the last element in Yt. As shown below, the IRFs to model

uncertainty shocks are essentially robust to the alternative identification strategy, whereas

the IRFs to other uncertainty measures are not.

Table 3.3 reports the results from the VAR estimation. The sample ranges from January

1991 to December 2020. The lag is chosen by BIC and equals one. In addition, we standardize

all economic variables such that they have unit variances. We also include the lagged market

return and VXO index as control variables in each regression. The reported t-statistics

are based on the Newey-West estimate of the covariance matrix with 36 lags. First, model

uncertainty only relates to its lag. Second, the VXO index positively predicts the aggregate

flows to fixed-income funds: one standard deviation increase in VXO predicts 0.17 standard

deviation inflows to fixed-income funds. Third, model uncertainty negatively forecasts equity

fund flows, and the coefficient estimate is sizable in both economic and statistical senses.

In particular, one standard deviation increase in model uncertainty implies 0.34 standard

deviation equity fund outflows. Although we cannot interpret the regression results as causal,

we still find that investors in domestic equity mutual funds tend to decrease their exposures

when model uncertainty increases.
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Table 3.3: VAR Estimation of Monthly Entropy, Flows to Domestic Equity Funds, and
Flows to Domestic Fixed-Income Funds

Entropyt+1 FlowsFIt+1 FlowsEquityt+1

Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
Intercept 0.042 1.266 -0.064 -0.259 1.615*** 8.197
Entropyt 0.985*** 140.610 -0.012 -0.178 -0.344*** -8.106
FlowsFIt 0.009 1.198 0.247*** 3.856 -0.081 -1.329

FlowsEquityt -0.003 -0.331 -0.093 -1.500 0.240*** 4.044
MKTt -0.008 -0.980 -0.054 -0.642 0.062 0.970
V XOt 0.006 0.483 0.170** 2.115 -0.010 -0.251

This table reports the results from the VAR estimation in equation (3.17), where Y >t =

(Entropyt, F lows
FI
t , F lowsEquityt ). Entropyt is the model uncertainty measure, and FlowsFIt (FlowsEquityt )

is the aggregate flows to the domestic fixed-income (equity) mutual funds, normalized by the lagged total
market capitalization of all stocks in CRSP (see equation (3.16)). The lag is chosen by BIC and equals one.
In addition, we standardize all economic variables such that they have unit variances. We also control for the
lagged market return (MKTt) and VXO index (V XOt) in each regression. The sample spans from January
1991 to December 2020. We report both coefficient estimates and t-statistics, calculated using Newey-West
standard errors with 36 lags. *, ** and *** denote significance at the 90%, 95%, and 99% level, respectively.

Figure 3.5 shows the dynamic responses of fund flows to model uncertainty shocks in

VAR-1. Most strikingly, model uncertainty innovations sharply induce fund outflows from

the US equity market, with the effects persisting even after 36 months, as depicted in Panel

(a). The impulse response functions (IRFs) start from around -0.6 in period zero and slowly

decline to -0.35 in period 36, significantly negative based on the 90% standard error bands.

In contrast, model uncertainty has negligible effects on fixed-income fund flows (see Panel

(b)).

3.5.2 Different Equity Mutual Funds

We further study the heterogeneous responses of different equity mutual funds to model

uncertainty shocks. In particular, we split equity mutual funds into four categories: (a) style

funds that specialize in factor investing, (b) sector funds that invest in specific industries

(e.g., gold, oil, etc.), (c) small-cap funds that invest in relatively small stocks,26 and (d)

large-cap funds that invest in large stocks.

Table 3.4 reports the results from the VAR estimation in equation (3.17), where Y >t =

(Entropyt, F lows
style
t , F lowssectort , F lowssmallt , F lowslarget ). The lag of VAR is chosen by BIC

and equals one. Since the cap-based investment objective code is available after 1997, the

sample begins in January 1998. First, after controlling its lag, model uncertainty is negatively

predicted by large-cap fund flows and small-cap fund returns. Second, model uncertainty

26When we mention small funds, we refer to the funds with the CRSP investment objective codes equal
“EDCM”, “EDCS”, and “EDCI”.
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Figure 3.5: Impulse Responses of Equity and Fixed-Income Mutual Fund Flows using
Entropy as Uncertainty

This figure shows the dynamic impulse response functions (IRFs) of fund flows to model uncertainty shocks
in VAR-1. The shaded area denotes the 90 percent standard error bands. We consider mutual fund flows to
aggregate equity and fixed-income markets in the US. We normalize the IRFs such that the model uncertainty
shock increases one standard deviation model uncertainty. We place model uncertainty first in the VAR.
Hence, the implicit identification assumption is that fund flows react to the contemporaneous uncertainty
shocks, while model uncertainty does not respond to the shocks to mutual funds in the current period. The
data are monthly and span the period 1991:01 - 2020:12.

negatively forecasts style and small-cap fund flows, and the coefficients are sizable. Specifi-

cally, if model uncertainty rises by one standard deviation, style (small-cap) fund flows tend

to drop by 0.26 (0.12) standard deviation over the next period. On the contrary, we do not

discover a significant relationship between model uncertainty and sector (large-cap) fund

flows.

Different from model uncertainty, the traditional volatility-based uncertainty measure

(VXO) plays a limited role in the VAR regression. It can marginally predict small-cap fund

flows, but the sign of coefficient estimate is counter-intuitive: when uncertainty goes up,

investors tend to invest more in small-cap funds. Instead, we observe a negative response

of small-cap funds when using entropy as the uncertainty measure. Therefore, we argue

that our model uncertainty index captures an essential source of investment risk for equity

investors, which is omitted by the traditional VXO index.

Figure 3.6 shows the dynamic responses of four different types of equity fund flows to

model uncertainty shocks in VAR-1. Consistent with Table 3.4, model uncertainty shocks

reduce future style fund flows, and the effects are long-lasting (see Panel (a)). This obser-

vation is intuitive. Style funds refer to the growth, income, growth & income and “hedged”

funds, so they are more likely to rely on the factor strategies used in constructing model

uncertainty. Therefore, the outflows from style equity funds are remarkably enormous when

the model uncertainty is high.
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Table 3.4: VAR Estimation of Monthly Entropy and Flows to Domestic Equity Funds with
Different Investment Objectives

Entropyt+1 Flowsstylet+1 Flowssectort+1 Flowssmallt+1 Flowslarget+1

Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
Intercept 0.268*** 3.270 1.582*** 5.195 0.180 0.974 0.533 1.525 0.347 0.746
Entropyt 0.952*** 67.064 -0.261*** -5.672 -0.021 -0.525 -0.121** -1.967 -0.014 -0.209

Flowsstylet -0.012 -1.048 0.211*** 2.936 -0.056 -1.034 -0.003 -0.054 0.003 0.034
Flowssectort 0.031 1.553 -0.056 -1.089 0.254* 1.686 -0.059 -0.664 -0.123** -2.266
Flowssmallt -0.001 -0.035 0.010 0.169 0.039 0.541 0.424*** 6.081 0.089 1.225

Flowslarget 0.019* 1.682 0.062 1.181 -0.043 -0.661 -0.107* -1.731 0.092 1.164

Rstyle
t 0.191 0.987 0.627 0.682 0.401 0.944 -0.192 -0.215 -1.891* -1.652

Rsector
t 0.043 0.900 0.121 0.956 0.367 0.957 -0.210 -1.115 0.010 0.056

Rsmall
t -0.165** -2.566 -0.212 -0.983 -0.126 -0.363 0.535** 1.967 0.383 1.527

Rlarge
t -0.099 -0.741 -0.437 -0.576 -0.605 -1.610 -0.022 -0.034 1.468* 1.653

V XOt 0.006 0.510 -0.027 -0.467 0.067 1.022 0.093* 1.957 -0.013 -0.151

This table reports the results from the VAR estimation in equation (3.17), where Y >t =

(Entropyt, F lows
style
t , F lowssectort , F lowssmallt , F lowslarget ). Entropyt is the model uncertainty measure,

and Flowsstylet (Flowssectort , Flowssmallt , Flowslarget ) is the aggregate flows to the domestic style (sector,
small-cap, large-cap) mutual funds, normalized by the lagged total market capitalization of all stocks in
CRSP (see equation (3.16)). The lag is chosen by BIC and equals one. In addition, we standardize all
economic variables such that they have unit variances. We also control for the lagged fund returns of each
type and VXO index in each regression. The sample spans from January 1998 to December 2020. We report
both coefficient estimates and t-statistics, calculated using Newey-West standard errors with 36 lags. *, **
and *** denote significance at the 90%, 95%, and 99% level, respectively.

Moreover, we observe significantly negative IRFs of small-cap funds (see Panel (c)),

although the effects are not as persistent as in style funds. This observation is reasonable

since we include two size factors in model uncertainty. On the contrary, sector and large-cap

funds almost do not respond to model uncertainty shocks. One potential explanation is that

these two types of funds are primarily passive-investing funds, but model uncertainty mainly

affects actively-managed funds.

3.5.3 Different Fixed-Income Mutual Funds

Similar to the previous section, we divide all fixed-income mutual funds into four categories:

(a) government bond funds, (b) money market funds, (c) corporate bond funds, and (d)

municipal bond funds. This subsection repeats a similar VAR estimation and investigates

the dynamic responses of fixed-income fund flows to model uncertainty shocks.

Table 3.5 shows the results from the VAR-1 regression. According to columns (3) and

(4), model uncertainty positively predicts the aggregate fund flows in US government bonds.

US government bonds are notable for their superior safety over other asset classes. Hence,

investors tend to allocate more wealth to safe assets when model uncertainty is more sub-

stantial. In contrast, model uncertainty negatively forecasts corporate fund flows, so mutual

fund investors reduce their exposure to corporate bonds following high model uncertainty.

Next, we report the IRFs of different fixed-income funds to entropy shocks in Figure
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Figure 3.6: Impulse Responses of Equity Fund Flows with Different Investment Objective
Codes using Entropy as Uncertainty

This figure shows the dynamic impulse response functions (IRFs) of fund flows to model uncertainty shocks
in VAR-1. The shaded area denotes the 90 percent standard error bands. We consider equity fund flows
with different investment objective codes (style, sector, small-cap, and large-cap). We normalize the IRFs
such that the model uncertainty shock increases one standard deviation model uncertainty. We place model
uncertainty first in the VAR. Hence, the implicit identification assumption is that fund flows react to the
contemporaneous uncertainty shocks, while model uncertainty does not respond to the shocks to mutual
funds in the current period. The data are monthly and span the period 1998:01 - 2020:12.
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Table 3.5: VAR Estimation of Monthly Entropy and Flows to Domestic Fixed-Income
Funds with Different Investment Objectives

Entropyt+1 Flowsgovt+1 Flowsmoneyt+1 Flowscorpt+1 Flowsmunit+1

Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
Intercept 0.381*** 2.812 -0.574*** -3.305 -0.191 -0.724 1.033*** 4.198 -0.132 -0.576
Entropyt 0.983*** 97.964 0.182** 2.535 -0.049 -0.816 -0.189*** -2.712 0.093 1.621
Flowsgovt 0.016** 2.407 0.341*** 4.580 0.090 1.325 0.094 1.448 0.136** 1.991
Flowsmoneyt 0.011 1.528 -0.017 -0.369 0.252*** 3.125 -0.064 -1.072 0.016 0.299
Flowscorpt -0.012 -0.990 0.008 0.235 0.029 0.709 0.161** 2.264 0.166*** 2.591
Flowsmunit -0.022** -2.067 0.131** 2.064 -0.095 -1.380 0.200 1.455 0.193 1.336
V XOt 0.006 0.590 0.044 0.623 0.191** 2.298 -0.007 -0.084 -0.094 -1.422

This table reports the results from the VAR estimation in equation (3.17), where Y >t =
(Entropyt, F lows

gov
t , F lowsmoneyt , F lowscorpt , F lowsmunit ). Entropyt is the model uncertainty measure, and

Flowsgovt (Flowsmoneyt , Flowscorpt , Flowsmunit ) is the aggregate flows to the domestic government bond
(money market, corporate bond, and municipal bond) mutual funds, normalized by the lagged total market
capitalization of all stocks in CRSP (see equation (3.16)). The lag is chosen by BIC and equals one. In
addition, we standardize all economic variables such that they have unit variances. We also control for the
VXO index in each regression. The sample spans from January 1998 to December 2020. We report both
coefficient estimates and t-statistics, calculated using Newey-West standard errors with 36 lags. *, ** and
*** denote significance at the 90%, 95%, and 99% level, respectively.

3.7. Not surprisingly, we document sharp dynamic inflows to government bond funds. As

Panel (a) suggests, one standard deviation increase in model uncertainty corresponds to

more than 0.7 standard deviation increase in government bond fund inflows at time zero,

and the dynamic response persists for more than 36 periods. On the contrary, the IRFs of

other fixed-income fund flows are not significant.

In addition, it is worth noting that we do not observe a significant relationship between

model uncertainty and money market funds. The difference between money market and

government bond funds is that the first type has a smaller duration and more liquid, while

the latter consists of government bonds of different maturities. Unlike model uncertainty, the

VXO index significantly predicts positive inflows to money market funds. We interpret these

facts as evidence that high model uncertainty induces “flight to safety”, whereas high VXO

implies “flight to liquidity”. Combined with the previous analyses, we conclude that mutual

fund investors transfer their wealth from style and small-cap equity funds to government

bonds, which are famous for their superior safety.

3.5.4 Comparison with Other Uncertainty Measures

One major concern about the previous analyses is that model uncertainty is correlated with

other uncertainty indicators, so the dynamic responses of mutual fund flows to model un-

certainty shocks are confounded by them. Hence, we study how other uncertainty measures

affect mutual fund flows in this section and compare their dynamic responses with the previ-

ous results. We consider the VXO index and financial uncertainty in Jurado, Ludvigson, and
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Figure 3.7: Impulse Responses of Fixed-Income Fund Flows with Different Investment
Objective Codes using Entropy as Uncertainty

This figure shows the dynamic impulse response functions (IRFs) of fund flows to model uncertainty shocks
in VAR-1. The shaded area denotes the 90 percent standard error bands. We consider fixed-income fund
flows with different investment objective codes (government bonds, money market, corporate bonds, and
municipal bonds). We normalize the IRFs such that the model uncertainty shock increases one standard
deviation model uncertainty. We place model uncertainty first in the VAR. Hence, the implicit identification
assumption is that fund flows react to the contemporaneous uncertainty shocks, while model uncertainty
does not respond to the shocks to mutual funds in the current period. The data are monthly and span the
period 1991:01 - 2020:12.
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Ng (2015) since these two measures are significantly associated with our model uncertainty

measure, as we show in Table 3.2.

Figure 3.8 plots the dynamic responses of four different types of equity fund flows to

VXO or financial uncertainty shocks in VAR-1. Consistent with the previous identification

assumption, We place VXO or financial uncertainty first in the VAR. We also control the

lagged model uncertainty in each regression. First, as Panels (a) and (b) indicate, style funds

experience massive outflows when VXO or financial uncertainty increases. However, these

effects are temporary; that is, the IRFs of fund flows reverse back to zeros immediately after

time zero. On the contrary, model uncertainty shocks are followed by persistent outflows

from style funds even beyond 36 periods. Similarly, the dynamic responses of fund flows to

sector/small-cap/large-cap funds are also transitory and not significant (except for Panel (c)

at period zero).

We further consider the dynamic responses of fixed-income funds in Figure 3.9. When

VXO or financial uncertainty goes up, government bond funds tend to experience massive

inflows, although these effects are less than 50% of those following model uncertainty shocks

(see Figure 3.7(a)). Most strikingly, we document massive inflows to money market funds

after positive VXO and financial uncertainty shocks. In contrast, model uncertainty does

not play a part in money market funds. In other words, model uncertainty shocks primarily

induce “flight to safety”, while other volatility-based uncertainty measures are mainly related

to “flight to liquidity”.

In summary, our model uncertainty measure captures some unique dynamic responses

of fund flows, and notably, they are different from traditional volatility-based measures,

such as VXO and financial uncertainty. In particular, we observe significant fund inflows

to government bond funds and outflows from style and small-cap equity funds. In contrast,

VXO and financial uncertainty shocks fail to generate similar dynamic responses. Finally, as

we will show in Section 3.8, the IRFs of fund flows to model uncertainty shocks are virtually

robust to an alternative identification assumption, whereas the effects of VXO or financial

uncertainty shocks tend to be fairly sensitive.

3.6 Investors’ Expectations

This section investigates whether our model uncertainty measure correlates with investors’

expectations of the stock markets. The first measure is from the American Association of

Individual Investors (AAII). The survey is completed weekly by registered members of AAII,

and it asks the investors whether they are bearish, neutral, or bullish on the stock market

for the next six months. Since our model uncertainty measure is of monthly frequency, we
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Figure 3.8: Impulse Responses of Equity Fund Flows with Different Investment Objective
Codes using VXO and Financial Uncertainty as Uncertainty Measures

This figure shows the dynamic impulse response functions (IRFs) of equity fund flows to VXO and financial
uncertainty shocks in VAR-1. Other details can be found in the footnote of Figure 3.6.
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Figure 3.9: Impulse Responses of Fixed-Income Fund Flows with Different Investment
Objective Codes using VXO and Financial Uncertainty as Uncertainty Measures

This figure shows the dynamic impulse response functions (IRFs) of fixed-income fund flows to VXO and
financial uncertainty shocks in VAR-1. Other details can be found in the footnote of Figure 3.7.
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use the expectation measures in the last week of each month.

We also consider Robert Shiller’s stock market confidence indices from the survey con-

ducted by the International Center for Finance at the University of Yale. Our paper focuses

on the US one-year confidence index and US crash confidence index. Specifically, the one-

year confidence index is the percentage of the individual or institutional investors expecting

an increase in the Dow in a year. In contrast, the crash confidence index is the percentage of

individual or institutional investors who believe the probability of a catastrophic stock mar-

ket crash in the next six months is lower than 10%. Roughly speaking, the higher the indices

are, the more confident individual or institutional investors are about the stock market.

We consider the following time-series regression:

Expt+1 = β0 + γEntropyt + ψXt + εt+1 (3.18)

where Expt+1 is the one-period ahead expectation measure, Entropyt is the model uncer-

tainty measure in period t, and Xt includes other control variables up to time t, such as

lagged expectation indices, VXO and etc. Since all expectation indices are autocorrelated,

we control their one and two-period lags in all regressions.27 We further control lagged mar-

ket returns (S&P 500 index) in the regression for investors’ expectations on the market are

extrapolative (see Greenwood and Shleifer (2014)).

In table 3.6(a), we regress AAII sentiment indices on model uncertainty to explore how

individual investors change their attitudes towards the stock market in response to variations

in model uncertainty. To increase the interpretability of our results, we standard model

uncertainty to have unit variance, so coefficient estimates of Entropyt are interpreted as

the increases in the percentages of bullish/neutral/bearish investors when model uncertainty

grows by one standard deviation.

In columns (1) and (2), Entropyt cannot predict the next-period percentage of bullish

investors. Specifically, the average investors become less bullish if model uncertainty in the

cross-section goes up, but this prediction is not sharp. Columns (3) and (4) regress the

percentage of neutral investors on lagged model uncertainty: If model uncertainty increases

by one standard deviation, the fraction of neutral investors declines by 0.605% or 0.434%,

depending on the regression setup.

The next question is, in which direction do bullish investors change their attitudes?

Columns (5) and (6) indicate that investors are more likely to be bearish following an increase

in model uncertainty. Our interpretation is that some neutral investors become bearish after

observing a higher level of model uncertainty. Finally, we regress the difference between

27The coefficient estimate of 3-period lagged variable is close to zero and insignificant, so we include only
the first two lags.
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fractions of bullish and bearish investors on entropy. The coefficient estimate of entropy is

negative and significant at the 10% level. Overall, when model uncertainty goes up, market

participants tend to be more pessimistic about the future stock market performance.

Table 3.6: Investors’ Expectations, Confidence Indices, and Model Uncertainty

Panel (a). AAII Sentiment Index
Expt+1 = Bullish Neutral Bearish Bullish - Bearish

(1) (2) (3) (4) (5) (6) (7) (8)
Entropyt -0.280 -0.374 -0.605** -0.434** 1.043** 1.036*** -1.511* -1.574**

(-0.683) (-1.122) (-2.121) (-2.102) (2.499) (2.656) (-1.826) (-2.127)
V XOt 0.022 0.079 0.016 -0.009 -0.008 -0.034 0.016 0.118

(0.311) (1.500) (0.211) (-0.161) (-0.169) (-0.500) (0.157) (1.060)
Expt 0.418*** 0.373*** 0.487*** 0.452*** 0.367*** 0.335*** 0.373*** 0.331***

(8.593) (6.954) (9.709) (10.249) (9.238) (7.155) (7.325) (5.983)
Expt−1 0.098** 0.158*** 0.213*** 0.253*** 0.182*** 0.208*** 0.118*** 0.160***

(2.434) (3.531) (6.103) (6.209) (5.676) (5.850) (3.151) (3.623)
Lagged Market Returns NO YES NO YES NO YES NO YES
Sample Size 400 396 400 396 400 396 400 396
R2
adj 21.76% 22.53% 43.11% 44.98% 27.24% 26.79% 20.92% 21.01%

Panel (b). Shiller’s Confidence Indices
Expt+1 = 1-Year Confidence 1-Year Confidence Crash Confidence Crash Confidence

Index - Institution Index - Individual Index - Institution Index - Individual
(1) (2) (3) (4) (5) (6) (7) (8)

Entropyt -0.365*** -0.379*** -0.546*** -0.682*** -0.562*** -0.635*** -0.754*** -0.754***
(-2.727) (-2.952) (-2.733) (-5.405) (-3.265) (-3.335) (-5.790) (-6.048)

V XOt 0.025* 0.030 0.044* 0.080*** -0.058** -0.034 -0.046*** -0.001
(1.767) (0.829) (1.705) (4.204) (-2.153) (-1.066) (-2.712) (-0.047)

Expt 1.133*** 1.165*** 0.931*** 0.949*** 1.068*** 1.065*** 1.086*** 1.071***
(16.820) (18.984) (11.730) (15.898) (19.165) (21.126) (16.459) (13.272)

Expt−1 -0.270*** -0.304*** -0.015 -0.045 -0.217*** -0.219*** -0.241*** -0.208***
(-3.603) (-4.449) (-0.212) (-0.823) (-3.540) (-4.000) (-4.268) (-3.078)

Lagged Market Returns NO YES NO YES NO YES NO YES
Sample Size 232 228 232 228 232 228 232 228
R2
adj 82.70% 83.38% 93.17% 93.25% 87.44% 87.01% 92.24% 92.82%

The table reports empirical results in regression: Expt+1 = β0 + γEntropyt + ψXt + εt+1, where Expt+1 is
the one-period ahead expectation/confidence index, Entropyt is the model uncertainty measure in period t,
and Xt includes other control variables up to time t, such as lagged expectation/confidence indices, VXO
and etc. Since all expectation/confidence indices are autocorrelated, we control their one and two-period lags
(Expt and Expt−1) in all regressions. We further control lagged market returns in the regression (we include
six lags). In Panel (a), expectation indices come from the survey conducted by the American Association of
Individual Investors (AAII). The survey is completed weekly by registered members of AAII, and it asks the
investors whether they are bearish, neutral or bullish on the stock market for the next six months. Therefore,
we have the data regarding the percentages of bearish, neutral or bullish respondents each week. Since our
model uncertainty measure is monthly, we use the expectation index in the final week of each month. In
Panel (b), confidence indices come from Shiller’s survey. We focus on the US one-year confidence index and
US crash confidence index. The one-year confidence index is the percentage of the individual or institutional
investors expecting an increase in the Dow in a year. In contrast, the crash confidence index is the percentage
of individual or institutional investors who think that the probability of a catastrophic stock market crash
in the next six months is lower than 10%. The t-statistics are computed using Newey-West standard errors
with 36 lags. *, ** and *** denote significance at the 90%, 95%, and 99% level.

Table 3.6(b) regresses Shiller’s confidence indices on entropy. Unlike the AAII sentiment

index, we also observe the expectations of institutional investors. The results are generally

similar to table 3.6: Investors tend to be more pessimistic about the stock market when model
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uncertainty increases. They also believe that a market crash is more likely to occur following

higher model uncertainty. One interesting empirical fact is that the coefficient estimates

of Entropyt in the regressions of individual investors’ confidence indices are always more

negative than institutional investors. Hence, individual investors react more dramatically to

the changes in model uncertainty than institutional ones.

In short, we conclude that higher model uncertainty generally predicts that investors in

the survey, be it individual or institutional, will become more pessimistic about the future

stock market performance.

3.7 Evidence in European and Asian Pacific Markets

This section presents the time series of model uncertainty in European and Asian Pacific

stock markets. Instead of using all 14 factors in the US stock market, we include only

nine of them because of the limited data availability. Specifically, short-term and long-term

behavioural factors are excluded because they are unavailable in international markets. For

the same reason, we ignore the size (ME), profitability (ROE), and investment (IA) in Hou,

Xue, and Zhang (2015), and we believe that the Fama-French five factors capture similar

systematic risks. Finally, we end up with nine candidates: MKT, SMB, HML, RMW, CMA,

MOM, QMJ, BAB, and HML devil. Either HML or HML devil can enter the true SDF.

Since the AQR library only provides the QMJ factor from July 1993, and we use a three-year

rolling window, our model uncertainty measure starts from June 1996.

Figure 3.10a plots the time series of model uncertainty in the European stock market

from June 1996 to December 2020. Several results stand out. The time-series patterns in

European markets28 are remarkably similar to the US stock market. In particular, model

uncertainty increases from 1999 and reaches its first peak between 2000 and 2001 because of

the dot-com bubble burst. During these periods, model uncertainty almost touches its upper

bound. After 2002, model uncertainty declines gradually and remains relatively low until the

start of the 2008 global financial crisis. During this long-lasting economic and stock market

crisis, model uncertainty stays close to the upper bound from 2008 to 2012 and only declines

gradually after 2012. Finally, the uncertainty index shoots up again after 2015, similar to

what we observe in the US market.

We next turn to discuss the findings in Asian Pacific markets.29 It is worth noting that we

observe some unique time-series variations in Asian stock markets. According to figure 3.10b,

28European markets include the following countries: Austria, Belgium, Switzerland, Germany, Denmark,
Spain, Finland, France, UK, Greece, Ireland, Italy, Netherlands, Norway, Portugal, and Sweden.

29By saying the Asian Pacific market, we refer to the stock markets in Australia, Hong Kong, New Zealand,
and Singapore.
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Figure 3.10: Model Uncertainty in European and Asian Pacific Markets

The figure plots the time series of model uncertainty about the linear stochastic discount factor (SDF) in
European and Asian Stock Markets. The construction of model uncertainty is the same as in figure 3.1 except
that we use only nine factors to calculate the posterior model probabilities. Details about used factors could
be found in section 3.7. The sample ranges from July 1993 to December 2020. Since we use 3-year rolling
window, the model uncertainty index starts from June 1996. The red line and green lines in the figure show
the lower (0) and upper bounds (1) of model uncertainty.

model uncertainty is high starting from 1997 due to the profound 1997 Asian financial crisis.

Asian stock markets were over-heated, and market crashes appeared in almost every Asian

country. The dot-com bubble in 2000 led to another peak in model uncertainty, which almost

reaches the upper bound. However, the Asian markets recovered quickly after 2000, so the

model uncertainty index declines afterwards. Another steady increase in model uncertainty

appears before and during the 2008 crisis, but the entropy is not as high as in the late 1990s

and drops immediately from 2009. This particular pattern is unlike the US and European
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markets, in which we observe higher model uncertainty of the 2008 crisis than the dot-com

bubble.

Another steady increase in model uncertainty appears before and during the 2008 crisis,

but the entropy is not as high as in the late 1990s and drops immediately from 2009. This

particular pattern is unlike the US and European markets, in which we observe higher model

uncertainty of the 2008 crisis than the dot-com bubble. One potential explanation is that

the 1997 Asian financial crisis, combined with the burst of the dot-com bubble in 2000,

was more destructive than the 2008 financial crisis. There is a short-term upward jump in

model uncertainty between 2011 and 2012 when the US government bonds were downgraded.

Similar to US and European markets, model uncertainty surges from the beginning of 2015.

In short, the international market evidence in this section lends further support to the

time-varying nature of model uncertainty. First, model uncertainty is high in many periods,

way above its lower bound. Second, it fluctuates significantly over time and coincides with

major events in corresponding asset markets. However, model uncertainty is not all alike.

For example, Asian markets display unique behaviours that distinguish them from the US

and European markets.

3.8 Robustness Checks

This section considers several robust checks, including alternative hyper-parameter a in es-

timating factor models, alternative rolling windows in constructing the time series of model

uncertainty, and a different identification assumption under which we re-estimate the dy-

namic responses of fund flows to uncertainty shocks.

3.8.1 Alternative Hyper-Parameter a

One important choice in our Bayesian inference is the value of hyper-parameter a. In the

benchmark case, we assign a to be 4. Just as Section 3.2 shows, a higher a implies a stronger

shrinkage for factors’ risk prices, b.

Figure 3.A.2 plots the time series of model uncertainty using different values of a, includ-

ing 3, 8, 16. Several findings stand out. First, we find that the time-series patterns in model

uncertainty are not sensitive to the choice of a. In fact, the sequences under different values

of a are virtually identical. Second, model uncertainty is increasing in a. This observation is

not surprising since a larger a mechanically shrinks all candidate models to the null model,

rendering factor models to become more similar and driving up model uncertainty.
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3.8.2 Alternative Rolling Windows

There is a trade-off in choosing the length of the rolling window. On the one hand, we prefer

a larger time-series sample to achieve higher precision in estimating model parameters. The

one-year or two-year daily sample is insufficient since estimating factors’ expected returns

and their covariance matrix is challenging. On the other hand, larger sample size is not

always desirable since it implicitly assumes that factor models remain constant and robust

over a long period. As many research (e.g. McLean and Pontiff (2016)) suggest, factors’

performances deteriorate post-publication. Moreover, a long estimation period of 10 or 20

years will average valuable information concerning factors’ cyclical behaviours.

Motivated by the above discussion, we consider four-year and five-year rolling windows in

Figure 3.A.3. There is one tiny difference: Model uncertainty tends to be smoother in longer

rolling windows, especially the five-year window. Beyond that, the time-series properties are

similar to those found in a three-year rolling window.

3.8.3 Alternative Identification Assumption in VAR

Another robustness check concerns the identification assumption in our VAR analysis. In

Section 3.5, we put uncertainty measures first in Yt. We now consider an alternative setup, in

which uncertainty measures are the last variables in Yt. In other words, we allow uncertainty

measures to correlate with contemporaneous shocks to mutual fund flows, but uncertainty

shocks do not affect mutual fund flows simultaneously. Although model uncertainty is an

endogenous response to innovations in fund flows under this assumption, it is still worth

investigating whether model uncertainty is a key player to propagate those exogenous shocks

over a long-lasting period.

Figures 3.A.5 and 3.A.6 plot the IRFs of fund flows to three uncertainty measures. Under

the current assumption, the IRFs are zeros at period zero by construction. The first column

shows the dynamic responses to model uncertainty shocks. Similar to the observations in

Figures 3.6 and 3.7, an increase in model uncertainty relates to persistent outflows from

style and small-cap funds but sharp inflows to government bond funds. The dynamic effects

are bounded well away from zero even beyond 36 months, although they decline slowly over

time. Hence, the main results in Figures 3.6 and 3.7 are largely robust.

The second and third columns show the IRFs of fund flows using VXO and financial

uncertainty. Surprisingly, VXO shocks imply positive inflows to small-cap funds. On average,

one standard deviation increase in the VXO index corresponds to more than 0.1 standard

deviation fund inflows, and these positive dynamic responses last for around 20 months.

However, the 90% confidence interval of IRFs covers zero effects, so they are on the edge of
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being consequential. Beyond that, the IRFs in other panels are virtually zeros, so there is

little evidence that mutual fund investors react to VXO or financial uncertainty shocks.

Finally, we observe significant inflows to money market funds following positive VXO

shocks, and the dynamic responses have similar economic sizes to those in Figure 3.9. The

key difference under the new identification assumption is that the IRFs of money market

funds to financial uncertainty shocks are no longer significant. In other words, the dynamic

responses to financial uncertainty shocks in Figure 3.9 are driven mainly by the identification

assumption.

To conclude, model uncertainty has robust and persistent effects on mutual fund flows,

particularly the style, small-cap, and government bond funds. We argue that model uncer-

tainty is a crucial determinant of mutual fund flows, regardless of being an exogenous cause

or a merely propagating mechanism. On the contrary, the dynamic responses of fund flows

to volatility-based measures, be it VXO or financial uncertainty, are more or less sensitive to

different identification assumptions. In fact, there is little evidence that equity mutual fund

investors respond to VXO or uncertainty shocks.

3.9 Conclusions

We develop a new measure of model uncertainty in the cross-sectional asset pricing under the

linear SDF specification. Roughly speaking, the measure is based on the entropy of Bayesian

posterior probabilities for all possible factor models. The critical observation is that model

uncertainty is countercyclical: it begins to climb up right before the stock market crashes

and remains at its peaks during bear markets. Since we can calculate the lower and upper

bound of entropy, we can easily discern when model uncertainty is abnormally high or low. In

contrast, other uncertainty measures in past literature do not have this satisfactory property.

We find that model uncertainty almost touches its upper bounds in the burst of the dot-com

bubble and the 2008 financial crisis.

If investors consider model uncertainty as another source of investment risk, their port-

folio choice and expectations of the stock market should be naturally related to model un-

certainty. Our second key observation is that model uncertainty can predict the next-period

mutual fund flows, even after controlling past fund flows, VXO, and the past performance of

mutual funds. In particular, investors seem to reduce their investment in style and small-cap

mutual funds but allocate more of their wealth to safer US government bond funds. Model

uncertainty is also closely related to investors’ expectations and confidence. We document

that investors in the survey, no matter individual or institutional investors, are more pes-

simistic about the stock market when confronted with higher model uncertainty. We find
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similar countercyclical behaviours of model uncertainty in European and Asian Pacific stock

markets.

As model uncertainty in the cross-section is an important source of investment risk,

future theoretical research on portfolio choice should incorporate it into the model. Even

though a few partial equilibrium models have considered model uncertainty of mean-variance

portfolios, no such a general equilibrium model exists, at least according to our knowledge.

Future research could attempt to endogenize model uncertainty in the general equilibrium

model and explain its countercyclical behaviours.
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3.A.1 Description of Factors

CAPM. The CAPM in Sharpe (1964) and Lintner (1965) is the pioneer of linear factor

models. The only factor in CAPM is the excess return on the market portfolio (MKT). The

data comes from Ken French’s website.

Fama-French Five-factor model. Fama and French (1993) extend CAPM by introducing

SMB and HML, where SMB is the return difference between portfolios of small and large

stocks, and HML is the return difference between portfolios of stocks with high and low book-

to-market ratios. Fama and French (2015) further include a profitability factor (RMW) and

one investment factor (CMA). Again, the data comes from Ken French’s website.

Momentumn. Jegadeesh and Titman (1993) find that stocks that perform well or poorly

in the past three to 12 months continue their performance in the next three to 12 months.

Therefore, investors can outperform the market by buying past winners and selling past

losers. We download the momentum (MOM) factor from Ken French’s data library.

q-factor model. Hou, Xue, and Zhang (2015) introduce a four-factor model that includes

market excess return (MKT), a new size factor (ME), an investment factor (IA), and finally,

the profitability factor (ROE).

Behavioral Factors. Daniel, Hirshleifer, and Sun (2020) propose a three-factor model

consisting of the market factor and two theory-based behavioural factors. The short-term

behavioural factor is based on the post-earnings announcement drift (PEAD) and captures

the underreaction to quarterly earnings announcements in the short horizon. Instead, the

long-term behavioural factor (FIN) is based on the one-year net and five-year composite

share issuance.

Quality-minus-junk. Asness, Frazzini, and Pedersen (2019) groups the listed companies

into the quality and junk stocks. They find that a quality-minus-junk (QMJ) strategy

generate high positive abnormal returns. We download the QMJ factor from the AQR data

library.

Betting-against-beta. One of the most prominent failures of CAPM is that the security

market line is too flat, so the risk premia of high-beta stocks are not as substantial as

CAPM suggests. Frazzini and Pedersen (2014) constructs market-neutral betting-against-

beta (BAB) factor that longs the low-beta stocks and shorts high-beta assets. We download

the BAB factor from the AQR data library.

HML Devil. Asness and Frazzini (2013) propose an alternative way to construct the value

factor, which relies on more timely market value information. We download the HML Devil

factor from the AQR data library.
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3.A.1.1 Additional Tables

Table 3.A.1: Summary Statistics of 14 Factors

Full Sample Subsample I Subsample II
Mean (%) SR Mean (%) SR Mean (%) SR

MKT 7.36 0.43 5.54 0.40 9.18 0.47
ME 1.97 0.22 1.79 0.23 2.16 0.21
IA 3.92 0.66 6.36 1.38 1.48 0.21
ROE 6.21 0.91 8.50 1.72 3.92 0.47
SMB 1.24 0.14 0.89 0.12 1.58 0.16
HML 3.39 0.37 6.30 1.03 0.48 0.04
RMW 3.26 0.52 2.77 0.73 3.74 0.47
CMA 3.42 0.59 4.76 1.05 2.07 0.30
MOM 6.89 0.55 8.94 1.22 4.85 0.30
QMJ 4.31 0.63 3.76 0.94 4.85 0.55
BAB 10.10 1.00 11.99 1.81 8.21 0.65
HML devil 3.03 0.30 5.80 0.90 0.27 0.02
FIN 8.47 0.73 11.67 1.36 5.28 0.38
PEAD 7.57 1.30 9.34 2.00 5.80 0.85

This table reports the annualised mean returns and annualised Sharpe ratios of 14 factors listed in Appendix
3.A.1. The full sample starts from July 1972 to December 2020. We further split the entire sample into two
equal subsamples.

Table 3.A.2: Summary of First-Order Autoregression

(1) (2) (3) (4) (5) (6) (7)
Entropy Financial Macro Real EPU1 EPU2 V XO

AR(1) 0.986∗∗∗ 0.977∗∗∗ 0.985∗∗∗ 0.984∗∗∗ 0.844∗∗∗ 0.700∗∗∗ 0.812∗∗∗

(158.08) (98.78) (73.92) (46.84) (24.64) (14.30) (23.40)
Sample size 546 546 546 546 431 431 419
R2 0.9697 0.9523 0.9667 0.9514 0.6929 0.5945 0.6586

t statistics in parentheses: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table reports empirical results in the first-order autoregression of seven uncertainty measures: yt+1 =
α+ ρyt + εt+1. Entropy is our model uncertainty measure. Financial, macro and real uncertainty measures
come from Ludvigson, Ma, and Ng (2021) and Jurado, Ludvigson, and Ng (2015). EPU1 and EPU2 are two
economic policy uncertainty sequences from Baker, Bloom, and Davis (2016). VXO is the forward-looking
market volatility traded in CME. The t-statistics are computed using Newey-West standard errors with 36
lags. *, ** and *** denote significance at the 90%, 95%, and 99% level, respectively.

3.A.1.2 Additional Figures
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(b) Size (SMB or ME)
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(c) Value (HML or HML devil)
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(d) Profitability (ROE or RMW)

Figure 3.A.1: Time Series of Posterior Factor Probabilities
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(e) Investment (IA or CMA)
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(f) Momentum
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(g) BAB
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(h) QMJ

Figure 3.A.1: Time Series of Posterior Factor Probabilities (Continued)
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(i) FIN
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(j) PEAD

Figure 3.A.1: Time Series of Posterior Factor Probabilities (Continued)

The figures plot the time series of posterior marginal probabilities of 14 factors. At the end of each month,
we estimate models using the daily factor returns in the past three years. The sample ranges from July 1972
to December 2020. Since we use a three-year rolling window, the time series of factor probabilities start from
June 1975. Shaded areas are NBER-based recession periods for the US.

213



1975-12 1980-12 1985-12 1990-12 1995-12 2000-12 2005-12 2010-12 2015-12 2020-12
Date

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 U

nc
er

ta
in

ty

a = 3
a = 8
a = 16
Lower Bound
Upper Bound

Figure 3.A.2: Time-Series of Model Uncertainty (3-Year Rolling Window) using different
values of the hyper-parameter, a ∈ {3, 8, 16}
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(a) Model Uncertainty in 4-Year Rolling Window
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(b) Model Uncertainty in 5-Year Rolling Window

Figure 3.A.3: Alternative Rolling Windows
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Figure 3.A.4: Robustness Check: Impulse Responses of Equity and Fixed-Income Fund
Flows under Alternative Identification Assumption

This figure shows the dynamic impulse response functions (IRFs) of equity and fixed-income fund flows to
uncertainty shocks in VAR-1. We identity the IRFs by putting uncertainty last in VAR.
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Figure 3.A.5: Robustness Check: Impulse Responses of Equity Fund Flows with Different
Investment Objective Codes under Alternative Identification Assumption

This figure shows the dynamic impulse response functions (IRFs) of equity fund flows to uncertainty shocks
in VAR-1. We identity the IRFs by putting uncertainty last in VAR.
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Figure 3.A.6: Robustness Check: Impulse Responses of Fixed-Income Fund Flows with
Different Investment Objective Codes under Alternative Identification Assumption

This figure shows the dynamic impulse response functions (IRFs) of fixed-income fund flows to uncertainty
shocks in VAR-1. We identity the IRFs by putting uncertainty last in VAR.
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3.A.2 Proofs

Lemma 3.A.1 Suppose that the vector of test assets, R, includes all candidate factors,

f . Let Vγ = Var[fγ ], Cγ = Cov[R,fγ ], and Σ denotes the covariance matrix of R. The

following two equalities always hold:

Σ−1Cγ =

(
Ipγ

0(N−pγ)

)
, (19)

C>γ Σ−1Cγ = Vγ . (20)

Proof. Without loss of generality, the vector Rt, t = 1, . . . , T, can be arranged as

Rt =

 fγ,t

f−γ,t

ret


where ret is a vector of test assets excluding candidate factors ft. Under this specification,

Σ = Var[R] =

(
Vγ U>γ

Uγ V−γ

)
, Cγ = Cov[R,fγ ] =

(
Vγ

Uγ

)
,

where

Vγ = Var[fγ ], V−γ = Var

[(
f−γ

re

)]
, Uγ = Cov

[(
f−γ

re

)
, fγ

]
.

Then

Σ−1 =

(
(Vγ −U>γ V −1

−γUγ)−1 −V −1
γ U>γ (V−γ −UγV −1

−γU
>
γ )−1

−V −1
−γUγ(Vγ −U>γ V −1

γ Uγ)−1 (V−γ −UγV −1
γ U>γ )−1

)
.

or equivalently

Σ−1 =

(
(Vγ −U>γ V −1

−γUγ)−1 −(Vγ −U>γ V −1
γ Uγ)−1U>γ V

−1
−γ

−(V−γ −UγV −1
−γU

>
γ )−1UγV

−1
γ (V−γ −UγV −1

γ U>γ )−1

)
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Thus

Σ−1Cγ =

(
(Vγ −U>γ V −1

−γUγ)−1 −(Vγ −U>γ V −1
γ Uγ)−1U>γ V

−1
−γ

−(V−γ −UγV −1
−γU

>
γ )−1UγV

−1
γ (V−γ −UγV −1

γ U>γ )−1

)
·

(
Vγ

Uγ

)

=

(
(Vγ −U>γ V −1

−γUγ)−1Vγ − (Vγ −U>γ V −1
γ Uγ)−1U>γ V

−1
−γUγ

−(V−γ −UγV −1
−γU

>
γ )−1Uγ + (V−γ −UγV −1

γ U>γ )−1Uγ

)

=

(
Ipγ

0(N−pγ)

)
,

which directly implies that C>γ Σ−1Cγ = Vγ .

3.A.2.1 Proof of Proposition 3.1

Proof. As in section 3.2.2, we assign g-prior for bγ : bγ | Mγ , g ∼ N
(
0, g

T

(
C>γ Σ−1Cγ

)−1
)

.

From lemma 3.A.1, C>γ Σ−1Cγ = Vγ , so the prior distribution for bγ is simplified as

N
(
0, g

T
V −1
γ

)
. Thus, the variance of linear SDF mγ , conditioned that g and Vγ are known,

is

Var[mγ ] = E
[
Var

[
(fγ − E[fγ ])> bγ | bγ

]]
+ Var

[
E
[
1− (fγ − E[fγ ])> bγ | bγ

]]
= E

[
tr
(
b>γVγbγ

)]
+ Var

[
1− 0>bγ

]
= tr

(
VγE

[
bγb

>
γ

])
+ 0

= tr
(
Vγ

g

T
V −1
γ

)
=
gpγ
T

This completes the proof of Proposition 3.1.

3.A.2.2 Proof of Proposition 3.2 and 3.3

Proof. Now we prove proposition 2 and 3. We assume that the observed excess returns are

generated from a multivariate Gaussian distribution:

R1, . . . ,RT | Mγ , b, g
iid∼ N (Cγbγ , Σ). (21)

The likelihood function of observed data D = {Rt}Tt=1 is

p[D | Mγ , b, g] = (2π)−
NT
2 |Σ|−

T
2 exp{−1

2

T∑
t=1

(Rt −Cγbγ)TΣ−1(Rt −Cγbγ)}. (22)
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In order to find the posterior model probabilities, we need to derive the marginal likeli-

hood of data D conditional on model Mγ . First of all, we find p[D | Mγ , g] by integrating

out bγ . We assign g-prior for bγ : bγ | Mγ ∼ N
(
0, g

T

(
C>γ Σ−1Cγ

)−1
)

, thus

p[D | Mγ , g] =

∫
p[D | Mγ , b, g]π[bγ | Mγ , g]dbγ

=

∫
(2π)−

NT
2 |Σ|−

T
2 exp{−1

2

T∑
t=1

(Rt −Cγbγ)TΣ−1(Rt −Cγbγ)}

(2π)−
pγ
2 | g
T

(
C>γ Σ−1Cγ

)−1 |−
1
2 exp

{
− T

2g
bTγ
(
C>γ Σ−1Cγ

)
bγ
}
dbγ

= (2π)−
pγ+NT

2 |Σ|−
T
2 | g
T

(
C>γ Σ−1Cγ

)−1 |−
1
2 exp

{
− 1

2
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RT
t Σ−1Rt

}
∫
exp
{
− T

2
[
1 + g

g
bTγ
(
C>γ Σ−1Cγ

)
bγ − 2bTγC

>
γ Σ−1R]

}
dbγ ,

where R = 1
T

∑T
t=1Rt. Let

b̂γ =
g

1 + g

(
C>γ Σ−1Cγ

)−1
C>γ Σ−1R,

Σ̂b =
1

T

g

1 + g

(
C>γ Σ−1Cγ

)−1
,

so the posterior distribution of b conditional on (D, g,Mγ) is

bγ | D, g,Mγ ∼ N (b̂γ , Σ̂b),

b−γ | D, g,Mγ = 0.

We further simplify the integral term in p[D | Mγ , g]:∫
exp
{
− T

2
[
1 + g

g
bTγ
(
C>γ Σ−1Cγ

)
bγ − 2bTγC

>
γ Σ−1R]

}
dbγ

= exp{1

2
b̂>γ Σ̂−1

b b̂γ}
∫
exp{−1

2
(bγ − b̂γ)>Σ̂−1

b (bγ − b̂γ)}dbγ

= exp{ gT

2(1 + g)
R

T
Σ−1Cγ

(
C>γ Σ−1Cγ

)
CT
γΣ−1R}(2π)

pγ
2 |Σ̂b|

1
2

= (2π)
pγ
2 | 1
T

g

1 + g

(
C>γ Σ−1Cγ

)−1 |
1
2 exp{ gT

2(1 + g)
R

T
Σ−1Cγ

(
C>γ Σ−1Cγ

)
CT
γΣ−1R}

= (1 + g)−
pγ
2 (2π)

pγ
2 | g
T

(
C>γ Σ−1Cγ

)−1 |
1
2 exp{ gT

2(1 + g)
R

T
Σ−1Cγ

(
C>γ Σ−1Cγ

)
CT
γΣ−1R}
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whereR
T
Σ−1Cγ

(
C>γ Σ−1Cγ

)
CT
γΣ−1R = f

T

γV
−1
γ fγ = SR2

γ , the in-sample maximal squared

Sharpe ratio that can be achieved by investing in the factors under modelMγ . Plug it into

the expression of p[D | Mγ , g] above, we have

p[D | Mγ , g] =
(1 + g)−

pγ
2

(2π)
NT
2 |Σ|T2

exp
{
− 1

2

T∑
t=1

RT
t Σ−1Rt +

gT
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T
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(
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)
CT
γΣ−1R

}
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(1 + g)−
pγ
2
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2 |Σ|T2

exp
{
− 1

2
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RT
t Σ−1Rt +

gT

2(1 + g)
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γ

}
To make p[D | Mγ , g] more transparent, we rewrite

∑T
t=1R

T
t Σ−1Rt:

T∑
t=1

RT
t Σ−1Rt =

T∑
t=1

(Rt −R+R)TΣ−1(Rt −R+R)

=
T∑
t=1

(Rt −R)TΣ−1(Rt −R) + TR
T
Σ−1R

= tr(Σ−1

T∑
t=1

(Rt −R)(Rt −R)T) + TSR2
max

Finally, we end up with the formula in Proposition 3.2, that is,

p[D | Mγ , g] = exp
{
− 1

2
tr(Σ−1

T∑
t=1

(Rt −R)(Rt −R)T)− T

2

(
SR2
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1 + g
SR2
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2
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= exp
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2
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NT
2 |Σ|T2

(23)

However, when we compare different models, the common factor unrelated to (Mγ , g) can

be ignored, so we simplify the marginal likelihood of data as following:

p[D | Mγ , g] ∝ (1 + g)−
pγ
2 exp

{
gT

2(1 + g)
SR2

γ

}
(24)

An equivalent way to think about equation (24) is to treat it as the Bayes factor of

model Mγ relative to M0. One amazing fact is that p[D | M0, g] does not depend on g30.

30p[D | M0, g] = (2π)−
NT
2 |Σ|−T

2 exp
{
−T−12 tr

(
Σ−1S

)
− T

2 SR2
max

}
.
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Therefore, the Bayes factor could be defined as

BFγ(g) =
p[D | Mγ , g]

p[D | M0, g]
= (1 + g)−

pγ
2 exp

{
gT

2(1 + g)
SR2

γ

}
The prior for g is such that π[g] = a−2

2
(1 + g)−

a
2 . We calculate the marginal likelihood of

data only conditional on model Mγ by integrating out g in equation (24).
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)
where Γ(s, x) =

∫ x
0
ts−1e−t dt is the lower incomplete Gamma function; the scalar sγ is defined

as sγ = pγ+a

2
− 1. We have proved the formula of Bayes factor BFγ in Proposition 3. To

prove that the Bayes factor is always increasing in SR2
γ always decreasing in pγ , we use the

original representation of Bayes Factor, that is,

BFγ =
a− 2

2

∫ ∞
0

(1 + g)−
pγ+a

2 exp

{
gT

2(1 + g)
SR2

γ

}
dg

Take the first-order derivative with respect to SR2
γ and pγ :
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This completes the proof of Proposition 3.
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