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Abstract

Essays in Asset Pricing

by Ran Shi

This thesis contains three chapters studying asset prices from different financial markets

to understand the economic forces driving their movements and recover economic variables

of interest.

In Chapter 1, I develop and estimate a model to quantify the effects of financial con-

straints, arbitrage capital, and hedging demands on asset prices and their deviations from

frictionless benchmarks. Using foreign exchange derivatives data, I find that financial con-

straints and hedging demands contribute to 46 and 35 percent variation in the deviations

from covered interest parity of the one-year maturity. While arbitrage capital fluctuation

explains the remaining 19 percent variation on average, it periodically stabilizes prices

when the other two forces exert disproportionately large impacts. The model features

general financial constraints and produces a nonparametric arbitrage profit function. I

unveil the shapes and dynamics of financial constraints from estimates of this function.

In Chapter 2 (co-authored with Ian Martin), we propose a framework to compute sharp

bounds of the crash probability of an individual stock using option prices. Empirical tests

suggest that these bounds are close to the exact forward-looking crash probabilities. Out of

sample, either the lower or upper bound outperforms combinations of stock characteristics

in terms of forecasting stock-specific crash events. Applying the framework to study

the equity of global systemically important banks (G-SIBs) gives rise to forward-looking

fragility and stability measures of the global financial system.

In Chapter 3 (co-authored with Jiantao Huang), we develop a transparent Bayesian

approach to quantify uncertainty in linear stochastic discount factor (SDF) models. We

show that, for a Bayesian decision maker, posterior model probabilities increase with max-

imum in-sample Sharpe ratios and decrease with model dimensions. Entropy of posterior

probabilities represents model uncertainty. We apply our approach to quantify the time

series of model uncertainty in North American, European, and Asian Pacific equity mar-

kets. Model uncertainty is countercyclical in these markets before the 2008 financial crisis,

but remains high afterwards. It predicts investors’ asset allocation decisions across equity

and fixed-income funds. In survey data, investors tend to be more pessimistic about equity

performance during periods of high model uncertainty.
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Chapter 1

A Quantitative Model of Limited
Arbitrage in Currency Markets:
Theory and Estimation

Modern finance theory and practice build heavily on the assumption of no arbitrage. One
of the textbook no-arbitrage conditions is covered interest rate parity (CIP): risk-free rates
are the same for all countries after exchange rate risk is fully hedged. Before the 2008
global financial crisis, this condition broadly holds in the data.1 After the crisis, significant
and persistent CIP violations have emerged for all major currency pairs.2 A failure of the
no-arbitrage assumption has become a new normal in one of the largest financial markets
in the world.

Existing limits-to-arbitrage theory provides guidance to understanding this phenomenon.
First, hedging demand imbalances in the foreign exchange (FX) forwards and swaps mar-
kets can cause “price pressures”, misaligning forward premiums or currency swap rates.
Second, arbitrageurs such as trading desks of global FX dealer banks face binding limits
to arbitrage. As a result, they do not have the insatiable appetites to “arbitrage away”
the deviations.3

With all the valuable theoretical perspectives, we still do not understand how quan-
titatively important each economic force is for CIP deviations. More broadly speaking,
existing limits-to-arbitrage models generally fall short in their potential to be directly
mapped to data and offer quantitative answers.

1Frenkel and Levich (1975, 1977) attribute CIP deviations to transactions costs. Taylor (1987) confirms
the CIP condition using high-frequency data within time windows of approximately one minute. Working
with tick-by-tick data, Akram, Rime, and Sarno (2008, 2009) find that most profitable deviations last
less than five minute and the CIP condition holds on average in their sample period from February 13 to
September 30, 2004.

2Baba and Packer (2009) analyze large CIP violations during the global financial crisis. Ivashina,
Scharfstein, and Stein (2015) study short-maturity CIP deviations during the Eurozone sovereign crisis,
emphasizing their role as a barometer of wholesale dollar funding conditions. Du, Tepper, and Verdelhan
(2018) establish the new post-crisis benchmark of CIP deviations around 25 basis points and investigate
the causes.

3Du, Tepper, and Verdelhan (2018) and Borio, McCauley, McGuire, and Sushko (2016) provide sug-
gestive evidence linking CIP deviations to both hedging demands and dealers’ limited arbitrage capacity.
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This paper aims to bridge the gap. I incorporate hedging demands and arbitrage limits
in a parsimonious model. Yields on arbitrage opportunities such as CIP deviations are
direct equilibrium outcomes from the model. The model further distinguishes two deter-
minants of arbitrage limits: arbitrageurs’ capital and financial constraints. Arbitrageurs’
optimal trading decisions endogenously determine their capital accumulation. These de-
cisions are made under exogenously specified financial constraints that may arise from
agency concerns or regulatory requirements.

The key innovation of the model is that it allows for a general form of financial con-
straints and provides identifying conditions for estimating these constraints. I show that
arbitrageurs’ capital accumulates faster when arbitrage yields are large. In the meantime,
significant price gaps show up after adverse shocks that drain the arbitrage capital. How
arbitrageurs’ capital returns respond to yields on their arbitrage opportunities reveals the
shape and dynamics of binding financial constraints. I exploit this equilibrium relationship
to back out financial constraints from market price data.

I estimate hedging demands based on two additional equilibrium outcomes from the
model. On the one hand, financial constraints determine the maximized arbitrage prof-
its. In equilibrium, arbitrageurs “arbitrage alongside the margin” in the sense that their
arbitrage positions equal marginal increases in arbitrage profits regarding yields on their
arbitrage opportunities. I compute arbitrage positions based on estimates of financial con-
straints leveraging this equilibrium outcome. On the other hand, equilibrium arbitrage
yields such as CIP deviations must equate external hedging demands with these arbitrage
positions. After computing the arbitrage positions, I can estimate the hedging demand
functions for different currency pairs.

I propose a variance decomposition scheme using the estimated model by computing
counterfactual CIP deviations after holding different model ingredients constant. Accord-
ing to my decomposition, on average, 46 percent of variation in one-year CIP deviations of
G6 currencies against the US dollar is due to changing financial constraints (throughout
the paper, the term “G6 currencies” refers to the euro, yen, pound, Canadian dollar, Aus-
tralian dollar, and Swiss Franc.) Demands for dollars in forward markets due to FX risk
management practices of exporters and global bond investors (hedging demands) explain
another 35 percent. Fluctuations in arbitrageurs’ capital account for the remaining 19
percent.

Four sets of empirical findings emerge from analyzing the estimated model. First,
the importance of financial constraints and hedging demands in explaining CIP devia-
tions varies across currency pairs. Hedging demands account for 56 percent variation in
the Canadian dollar CIP deviations, but less than 30 percent in the context of yen and
euro. Varying financial constraints fill the vacancy left by hedging demands for these two
currencies, explaining almost 60 percent variation in their basis against the dollar.

Second, arbitrageurs’ capital plays a unique role in influencing the deviations. In
2009-2019, it contributes to a limited fraction of variation in CIP deviations (19 percent
on average, as pointed out earlier). However, it can stabilize the basis during periods of
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significant variation in financial constraints or hedging demands. According to the variance
decomposition results, shutting down hedging demand or financial friction variation al-
ways reduces variation in CIP deviations. However, holding arbitrageurs’ capital constant
can increase fluctuations in the currency basis for certain periods. During these peri-
ods, arbitrage capital counterbalances the other two forces and dampens variation in CIP
deviations. For example, in 2013-2014, the one-year Canadian dollar basis is overwhelm-
ingly driven by hedging demands. If arbitrage capital remains constant, (counterfactual)
variation in one-year Canadian dollar CIP deviations would double.

Third, shapes of financial constraints change dramatically before and after 2014. These
shapes can help understand arbitrageurs’ internal capital allocation decisions in response to
regulatory reforms. In 2009-2013, arbitrageurs can build CIP arbitrage positions that are
at least four times larger than their equity capital without significantly downsizing other
investment positions. However, in 2014-2019, building the same size of arbitrage positions
will force the arbitrageurs to decrease standard investment positions by 40 percent. More
importantly, a hard leverage cap of around seven (times the equity capital) emerges for the
same period. This finding appears to be consistent with the fact that the supplementary
leverage ratio (SLR) requirement was finalized in the third quarter of 2014. Overall, the
shape of constraints after 2014 can be interpreted as a risk-weighted capital requirement
plus a hard leverage ratio requirement.

Finally, bilateral net exports and net foreign security purchases are dominant forces
explaining currency hedging demands.4 For security purchases, all impacts on hedging
demands come from net bond purchases (as oppose to equity). The estimated demand
functions suggest that forward dollar demands increase in the US net exports and net bond
purchases. In other words, exporters and investors holding foreign bonds hedge more when
they need to repatriate more future incomes denominated in foreign currencies.

I now describe the model to provide intuitions on its mechanism and estimation. In
the model, competitive arbitrageurs trade with hedgers; trading determines equilibrium
arbitrage yields such as CIP deviations. Hedgers exchange specific currencies for dollars
forward. I build an optimizing foundation for this forward dollar demand in a two-country
setting. Hedgers from each country are subject to endowment shocks denominated in for-
eign currencies. They manage their exchange rate risk using forward contracts. Differences
in their foreign endowments create hedging demand imbalances described by the demand
functions specified in the model.

Competitive arbitrageurs maximize (additive) discounted log utilities over their life-
time consumption stream.5 They profit from multiple arbitrage opportunities by absorbing
demand imbalances in FX derivatives markets for different currency pairs. In the mean-
time, they have access to standard investment opportunities: one risk-free and one risky

4Net foreign security purchases are the difference between domestic (US) residents’ purchases of foreign
securities and foreign residents’ purchases of domestic securities. As a clarification, this measure does not
necessarily represent portfolio flows as “round-trip” trades can occur between international investors from
different countries.

5Simplified version of the model lasts two periods; the full model comes with infinite time horizon. I
also extend the theory for general constant relative risk-aversion (CRRA) utilities.
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asset. Arbitrage limits arise from financial constraints on both their arbitrage positions
and investment positions. The constraints induce a trade-off between deploying capital
to their standard investment business and diverting the resource to arbitrage activities.
Sizable arbitrage positions come at the cost of cutting back routine investment positions.

The model features an agnostic view regarding the specific form of financial con-
straints.6 This setup encompasses standard specifications of frictions such as the mar-
gin requirements, leverage ratio requirements, Value-at-Risk rules, transaction costs, and
credit/debt/funding valuation adjustments. This generality in modeling choice allows me
to reach robust theoretical conclusions and perform nonparametric estimation of the con-
straints. This approach is particularly helpful given the sophisticated nature of post-crisis
financial regulations. In this new era, numerous regulatory constraints exist and many of
them can be binding at the same time.

Even without the dedication to a certain form of financial constraints, the model still
yields strong predictions. Most importantly, the model argues that the absolute values
of present arbitrage yields (e.g., CIP deviations) predict future returns on arbitrageurs’
capital,7 and this predictive relationship is convex. This increasing and convex function (of
capital returns in response to arbitrage yields) reveals the form of financial constraints. For
example, under margin requirements, the function equals zero when deviations are small
and increases linearly after a threshold. However, with Value-at-Risk rules, arbitrageurs’
capital returns smoothly respond to all levels of deviations regardless how small they
are. The function is defined in the same way as the profit function in standard production
theories, thus named the arbitrage profit function. A more convex arbitrage profit function
implies a higher hurdle for arbitrageurs to covert CIP deviations into sizable arbitrage
profits.

Empirical evidence supports the prediction. Average CIP deviations among G6 cur-
rencies predict monthly and quarterly returns on arbitrageurs’ capital, after controlling
for common time-series return predictors. One basis point increase in the average devi-
ations forecasts at least two percentage point increase in the (annualized) returns. Two
statistical tests, one parametric and another semi-parametric confirm that the predictive
relationship is convex.

Model estimation takes two steps, both relying on equilibrium outcomes of the model.
The first step is to estimate the arbitrage profit function, which characterizes the increasing
and convex response of arbitrageurs’ capital returns to CIP deviations. The model allows
this function to change across time, reflecting varying stringency of financial constraints.

6In the model, arbitrageurs solve dynamic consumption and portfolio choice problems with one risk-
free asset, one risky asset, and multiple riskless arbitrage opportunities, under general position constraints:
a bounded, closed, and convex set. The specification of constraints is the same as Cvitanić and Karatzas
(1992), who solve the Merton model of one risk-free asset and multiple risky assets under general position
constraints. One theoretical contribution is that I characterize arbitrageurs’ optimality conditions using
a more accessible primal-dual approach.

7Though CIP basis can be positive (e.g., Australian dollars against US dollars) or negative (e.g., euro
or yen against US dollars), arbitrageurs can always profit from it by properly switching legs of their
positions. Thus, absolute values of the deviations contribute to arbitrage profits. I will stop mentioning
“the absolute values” later on in the introduction for the ease of exposition.
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I develop a new statistical procedure to estimate both the functional form and time-series
variation of arbitrage profit functions in the model. The functional form reveals how the
(binding) financial constraints look like collectively; the time-series variation describes
dynamics of the constraints. I compute equilibrium arbitrage positions using the these
estimates, which can be inferred from market prices once the arbitrage profit function is
known.

The second step is estimating parameters in hedging demand functions. In equilibrium,
CIP deviations in the model are such that arbitrage positions equal hedging demands.
Plugging-in the inferred arbitrage positions enable demand estimation without using po-
sition data in FX derivatives markets. To resolve the endogeneity concerns about CIP
deviations and latent demands (unobservable drivers of hedging demands), I construct an
instrumental variable estimator for demand elasticities. The instruments for the deviations
of one currency are observable hedging demand drivers of other currencies. The identifi-
cation strategy is motivated by the fact that FX arbitrageurs such as global dealer banks
can profit from multiple currency basis simultaneously. For a specific currency, hedging
demand drivers of other currencies shift arbitrage profits. Arbitrage positions exploiting
the CIP deviations of this particular currency change accordingly. The instruments ef-
fectively become “supply shifters” (if we interpret arbitrageurs as suppliers of “arbitrage
services”) that are uncorrelated with latent demands.

Broader contribution of this paper is twofold. Typically, there is a separation of the-
ory and empirics in the limits-to-arbitrage literature. I aim to partially bridge the gap
by building a model that synthesizes necessary ingredients in the existing theory and
maps directly to the data to quantify the economic forces at work. The backbone of
my model is close to Gabaix and Maggiori (2015), who study real imbalances in the cur-
rency spot markets absorbed by “financiers” facing commitment problems (which translate
into quadratic position limits). My model focuses on hedging demand imbalances in FX
forwards and swaps markets. It specifies financial frictions in a general format. I fur-
ther quantify demand imbalances and financial frictions to explain empirical patterns and
facilitate counterfactual exercises.

The second contribution is methodological: the estimation framework can be applied to
other violations of the no-arbitrage condition in today’s financial markets. I demonstrate
how to back out the financial constraints and arbitrage positions from arbitrageurs’ capital
returns and arbitrage yields. The flexible nonparametric arbitrage profit function approach
is particularly useful in light of the numerous regulatory reforms after 2008. Unlike the
demand system approach to asset pricing (Koijen and Yogo, 2019), my methodology for
estimating demand function parameters does not rely on position data (though high-
quality position data can help discipline my estimation), but instead draws inferences
using price data based on arbitrageurs’ optimality conditions.

Literature. The key ingredients of my model, demand shocks and the limited arbi-
trage capacity, follows the standard limits-to-arbitrage literature. Examples for demand
shocks in the FX derivatives markets include i. hedging demands of currency carry traders
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(Du, Tepper, and Verdelhan (2018) offer suggestive evidence based on the association be-
tween cross-sectional variation in CIP deviations and average interest rate differentials); ii.
financial institutions’ FX risk management practices (Puriya and Bräuning (2021) iden-
tify this driving force for short-maturity FX forward contracts). Price impacts of demand
shocks have also been investigated in markets of commodity futures by Acharya, Lochstoer,
and Ramadorai (2013), options by Gârrleanu, Pedersen, and Poteshman (2008), long-term
interest rate swaps by Klingler and Sundaresan (2019), government bonds by Greenwood
and Vayanos (2010), public equities by Coval and Stafford (2007) and Lou (2012). My
empirical findings on the importance of hedging demands from exporters and foreign cur-
rency long-term bond investors in driving forward dollar demands and determining CIP
deviations complement this literature.

The literature on financial constraints is enormous. In the field of international fi-
nance, see Gabaix and Maggiori (2015) for their impacts on spot exchange rates. In
financial economics, Gârleanu and Pedersen (2011) and Gromb and Vayanos (2002, 2018)
are examples of theories examining violations of the law of one price in light of margin or
collateral constraints. Andersen, Duffie, and Song (2019) explain CIP deviations in light
of debt-overhang costs to equity holders of derivatives dealers. In models such as Kyle
and Xiong (2001) and Kondor and Vayanos (2019), aggregate arbitrage capital endoge-
nously creates risk-aversion dynamics, inducing commonality in asset prices in response
to arbitrage capital fluctuations. My contribution to the literature is that I characterize
equilibrium outcomes which are robust to assumptions about the financial constraints,
and develop empirical methods for estimating functional form of the constraints.

Vayanos and Vila (2021) is an example of quantitative limits-to-arbitrage models for
government bond markets, calibrated to predictive regression coefficients. Jermann (2020)
presents and calibrates a model featuring holding costs for long-term bond to explain
negative swap spreads after the financial crisis. My empirical approach distinguishes from
their exercises by directly estimating the equilibrium conditions using asset price data.
To my knowledge, this paper presents the first fully estimated limits-to-arbitrage model,
which explains not just the level but also the variation in deviations from the law of one
price.

The paper is structured as follows. Section 1.1 briefly reviews the definition and
measurements of CIP deviations to provide additional backgrounds. Section 1.2 presents
a simplified version of the model to illustrate key intuitions. Section 1.3 introduces the full
model and characterizes its equilibrium outcomes. Section 1.4 describes additional data
and measurements, tests the model’s main prediction, enriches the model to map it to
data, and describes estimation methodologies. Section 1.5 performs quantitative exercises
using the estimated model. Section 1.6 concludes. All proofs are in the Appendix.
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1.1 CIP deviations and their measures

At time t, the CIP deviation for currency i of maturity τ is b such that the following
equation holds:

exp
(
r$
t→(t+τ)τ

)
= exp

(
rit→(t+τ)τ + bτ

)Ft→(t+τ)

Et
, (1.1)

where r$
t→(t+τ) and r

i
t→(t+τ) represent risk-free rates of the US dollar and currency i from

time t to (t + τ); Ft→(t+τ) is the forward price of currency i in dollars maturing at time
(t+ τ); Et is the spot price.

Following Du, Tepper, and Verdelhan (2018), I focus on two measures of CIP devi-
ations using different derivative contracts: FX forwards and cross-currency basis swaps
(currency or basis swaps in short). From FX forward contracts, observable currency for-
ward prices Ft→(t+τ) (thus observable forward premiums Ft→(t+τ)/Et) can be plugged in
to the equation above. The two risk-free rates r$

t and rit are commonly measured by over-
night index swap (OIS) rates for different countries. I call CIP deviations calculated from
equation (1.1) using these variables the forward-OIS bases.

A more direct measure of CIP deviations comes from the currency swap contracts.
In a currency swap contract, two parties (namely Alice and Bob) exchange currencies at
spot rates upfront and pay each other back effectively with floating rate bonds. Specif-
ically, Alice, receiving £100 from Bob initially, will pay Bob back with (cashflows of) a
pound floating rate bond (face value = £100); Bob, receiving $135 (let Et = 1.35 be
the GBP/USD spot rate) from Alice at beginning of the contract, will pay Alice back
with a dollar floating rate bond (face value = $135). Currency swap contracts quote b
such that Bob pays the the dollar floating rates {r$

t→(t+∆t), r
$
(t+∆t)→(t+2∆t), . . .}, and Alice

pays adjusted pound floating rates {r£t→(t+∆t), r
£
(t+∆t)→(t+2∆t), . . .}+ b. The payments are

usually made on a quarterly basis (i.e., ∆t = 0.25). Back to equation (1.1), we can inter-
pret this quoted currency swap rate as CIP deviations defined through treating r$

t→(t+τ)

and rit→(t+τ) as interest rate swap rates (swapping the two floating rates). Du, Tepper,
and Verdelhan (2018) and Augustin, Chernov, Schmid, and Song (2020) describe detailed
trading arrangements justifying this conclusion.

Throughout this paper, I focus on one-year currency swap rates and use forward-OIS
implied one-year CIP deviations for validation. At this maturity, both the FX forwards
and currency swaps have high trading volumes and low bid-ask spreads. I collect the
FX forward/spot prices, OIS rates, and currency swap rates from Bloomberg. Table 1.1
reports summary statistics of the two deviation measures; Figure 1.12 in the Appendix
plots these two measures for G6 currencies. Overall, currency swap rates offer more
conservative and less volatile measures of CIP deviations compared with the forward-OIS
bases at the one-year maturity.
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1.2 A simple model in a two-period deterministic economy

To begin with, I present a simple model with no uncertainty to illustrate key insights of
the model. As a preview, the model features an agnostic view about the specific con-
straints arbitrageurs face, predicts a convex relationship between arbitrageurs’ investment
return and their arbitrage profit (from CIP deviations), and determines CIP deviations as
tractable equilibrium outcomes.

The economy lasts for two periods: today and tomorrow.8 There are two types of
agents: arbitrageurs and hedgers. Each type composes an identical continuum of measure
one.

Arbitrageurs. Each arbitrageur is endowed with initial capital k today. They choose
their consumptions and derive utilities from them as follows:

log(y) +
1

1 + ρ
log(y′). (1.2)

The subjective time discount rate 1/(1 + ρ) belongs to the interval (0, 1), i.e., ρ > 0;
consumptions are y today and y′ tomorrow.

The arbitrageurs can invest in a risk-free asset earning a net return r (r > 0), or simply
store their capital safely with zero net return. I assume that the amount of capital stored
cannot be negative.9 Arbitrageurs can also profit from a riskless arbitrage opportunity,
yielding b per unit of position they enter. For currency markets, we can interpret b as CIP
deviations, which is either positive (e.g., Australian dollars) or negative (e.g., yen).

By consuming y today, arbitrageurs are saving (or equivalently, investing) s = (k− y)

amount of capital to fund their future consumption. Denote by π0 and π the “weights”
of their investment positions in the risk-free asset and the arbitrage opportunity, their
absolute positions are π0s and πs accordingly. To earn the risk-free rate of return, capital
is needed: (1+r)π0s units of capital next period come at a cost of π0s today. In comparison,
harvesting the arbitrage profits πsb next period requires no capital today. As a result, the
arbitrageurs’ capital next period k′ is given by

k′ = s+ π0s(1 + r)− π0s+ πsb− 0 = s [1 + π0r + πb] . (1.3)

According to equation (1.3), arbitrageurs store (1 − π0)s units of capital (after investing
π0s in the risk-free asset). As the economy lasts for only two periods, arbitrageurs consume
all their capital tomorrow, i.e., y′ = k′.

Replacing y′ in problem (1.2) with s [1 + π0r + πb], we can see that arbitrageurs are

8Notation-wise, variables tomorrow come with prime superscripts.
9This claim rules the possibility that arbitrageurs can raise fund by paying a gross interest rate of

one (the storage yield), for this itself leads to another riskless arbitrage within the model: borrowing
at cost one, investing in the risk-free asset yielding (1 + r). The storage technology is needed in the
model because, after introducing arbitrage limits later in the paper, arbitrageurs need to devote capital
to arbitrage positions. The capital buttressing their arbitrage activities is “stored” in the sense that they
cannot generate a return as high as r. We can treat the zero storage yield here as a normalization.
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solving two separate problems:

maximize
y, s=k−y

log(y) +
1

1 + ρ
log(s) and maximize

π0≤1, π∈R
log(1 + π0r + πb). (1.4)

The restriction π0 ≤ 1 appearing in the second problem is due to the assumption that
capital stored is nonnegative, that is, (1− π0)s ≥ 0.

Hedgers. Hedgers use currency forwards or swaps to manage their foreign exchange
exposures. Under the context of CIP deviations, I assume that their (aggregate) demand
for selling foreign currencies (say, pounds) in exchange for dollars in forward markets is

q(b) = γ0 − γb, γ > 0. (1.5)

These forward dollar demands are downward sloping with regard to the CIP deviation
b. This is because, according to equation (1.1), a smaller b for the pound is equivalent
to higher forward price of pounds against dollars. It propels hedgers’ willingness to sell
pounds for dollars forward, creating higher forward dollar demands.10

The equilibrium arbitrage yield. Arbitrageurs “take the opposite side” against
hedgers’ demands: their arbitrage positions are effectively forward dollar supplies. When
hedgers sell pounds for dollars forward (positive forward dollar demand, q > 0), press-
ing GBP/USD forward price to drop below the no-arbitrage benchmark, a positive CIP
deviation emerges.11 In response, arbitrageurs can take advantage of this opportunity
by borrowing pounds (yielding −r£), swapping pounds to dollars (yielding r£ + b − r$),
and lending dollars (yielding +r$). They supply dollars in the currency forward markets
because of the need to payback the dollars they received at the beginning of the swap
contract. A more simplistic view is that with b > 0, the forward price of GBP/USD is
relatively low, arbitrageurs tend to offer (supply) dollars to buy pounds forward. Their
total supply of dollars π(b)s is positive,12 in which π(b) solves (1.4) for a given b. The

10Appendix 1.7.3 provides an optimization foundation to the reduced form specification (1.5). I build a
two-country currency-risk hedging model, in which US hedgers manage their currency exposures through
selling pounds and UK hedgers conduct the opposite trade in pound-dollar forward market. Their hedging
needs do not necessarily cancel out, which give rise to the (net) demands specified in (1.5), representing
hedging demand imbalances in currency markets.
The hedging demand q(b) can take either positive or negative signs. According to the micro-foundation

in Appendix 1.7.3, US hedgers offer forward pounds for dollars while UK hedgers seek opposite trades.
When the US hedgers’ demand exceeds its UK counterpart, q(b) is positive. The net effect is a positive
demand for forward dollars. This demand becomes negative when the UK hedgers hedge more. In other
words, a negative q(b) can be interpreted as the net demand for foreign currencies (by selling dollars
forward).
When the demand q is negative, hedgers are selling forward dollars in exchange for pounds, causing

negative forward dollar demands. As b becomes smaller (thus a higher forward GBP/USD price F or,
to put it differently, a lower dollar forward price), hedgers tend to sell less dollar: q still increases as b
decreases.

11Without frictions, arbitrageurs absorb hedging demands imbalances “with ease” and equilibrium
deviations always equal zero. This ideal outcome As we will show later in Proposition 2, when there are
arbitrage limits, a positive forward dollar demand, q > 0, is equivalent to both γ0 > 0 and the equilibrium
CIP deviations b∗ to be 0 < b∗ ≤ γ0/γ.

12I provide rigorous theoretical arguments for this through Lemma 2 in the Appendix.
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equilibrium deviations solve the following equation:

π(b)s = q(b). (1.6)

Of note, all the analysis goes through in the same way when there is a negative forward
dollar demand, i.e., q < 0.13

The equilibrium b that solves (1.6) is such that

b =
γ0

γ + π(b)/b× s. (1.7)

The frictionless benchmark. Without friction, the second maximization problem in
(1.4) commands π0 = 1 and |π(b)| → ∞ whenever |b| > 0. This implies that π(b)/b→∞
for any b around a neighborhood of zero. According to equation (1.7), the equilibrium
deviation is zero. Absence of arbitrage in the model is a result of “hyper-elastic” arbitrage
positions in response to arbitrage yields.

Limits to arbitrage. Arbitrage limits that cause CIP deviations must prevent π(b)/b

from going to infinity whenever b deviates from zero. I assume that they arise from the
following position constraint on π0 and π:

(π0, π) ∈ C, (1.8)

in which C is a subset of (−∞, 1] × R (domains defined in the second problem of (1.4)),
outside of which the combination of π0 and π becomes infeasible. Under this assumption,
the second problem of (1.4) is equivalent to maximize (π0r+ πb) subject to the condition
that (π0, π) ∈ C. The outcome from solving this problem represents the optimal return
on investment for the arbitrageurs, denoted by

SC(r, b) = sup
(π0, π)∈C

{π0r + πb} . (1.9)

SC is often named the support function of the set C. It works the same way as the
profit function in the standard production theory, when the set C is a production set
(Mas-Colell, Whinston, and Green, 1995, Chapter 5.B-5.C, p. 128-143). We can call this
function the arbitrage profit function. As I will illustrate soon, this function defines the
optimal investment return per unit of capital for arbitrageurs.

The trade-off arbitrageurs face is fully characterized by the position constraint. When
they extend their positions to take advantage of an arbitrage opportunity, they have to
cut positions on the risk-free asset (i.e., put a fraction (1−π0) of their capital inefficiently
in storage). Facing this trade-off, arbitrageurs optimally allocate their capital such that
they enjoy a (net) return of SC(r, b) per unit of savings. As a result, in equilibrium,

13With negative forward dollar demand, i.e., q < 0, Proposition 2 presented later commands a negative
b. Arbitrageurs will borrow dollars (yielding −r$), swap dollars for pounds (yielding r$−r£−b), and lend
pounds (yielding r£). Their optimal arbitrage position π(b)s is negative, which implies a negative supply
of forward dollars (demanding dollars forward). This negative supply is due to the fact that arbitrageurs
will receive forward dollars and return pounds at the end of their swap contracts.
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k′ = s[1 + SC(r, b)]. Now I enumerate four assumptions about the constraint C and one
assumption about the arbitrageurs’ positions.

Assumption 1. C is a subset of [0, 1]× R.

The assumption that π0 ≤ 1 reiterates (1 − π0)s ≥ 0, that is, “negative storage” is
not allowed – arbitrageurs cannot borrow money at a zero net interest rate. Assuming
π0 ≥ 0 forbids arbitrageurs from borrowing at the rate r and then storing the proceeds
(to further enlarge their arbitrage positions after exhausting all their initial capital k).

Assumption 2. C is bounded, closed, and convex.

The boundedness assumption is straightforward, under which SC(r, b) <∞. Closeness
of the set C means that for any unattainable combination (π0, π) (falling in the comple-
ment of C, an open set), a small neighbor of this combined position is still infeasible for
the arbitrageurs to take on: unachievable positions do not suddenly become feasible. Con-
vexity of C means that convex combinations of feasible position pairs are still available to
the arbitrageurs.

Assumption 3. “Going all in” on the risk-free asset is allowed for the arbitrageurs, that
is, (1, 0) ∈ C.

From this assumption, we have SC(r, b) ≥ r, the optimal return per unit of savings
invested is at least r. Thus, taking advantage of arbitrage opportunities benefits the
arbitrageurs, although this activity may require inefficient storage of arbitrage capital.

Assumption 4. When the arbitrage yield b equals zero, the arbitrage position is zero, that
is, π(0) = 0.

This is a behavioral assumption about the arbitrageurs. When b = 0, the total arbi-
trage profit is always zero and arbitrage positions π can take any value. Assumption 4
restricts the positions to zero. We can interpret this assumption as arbitrageurs regard
the riskless arbitrage opportunity as simply nonexistent whenever its yield equals zero.

Three examples illustrate the set C under these assumptions and characterize arbi-
trageurs’ optimal choices.

Example 1 (Margin requirements). Margin requirements as highlighted in Gâr-
leanu and Pedersen (2011) can prevent arbitrageurs from building up a large derivative
position to “arbitrage away” the opportunities such as CIP deviations. Following their
convention (of symmetric margins14), I let C be {0 ≤ π0 ≤ 1, π ∈ R : π0 +m|π| ≤ 1}. Un-
der this specification, arbitrageurs need to post collaterals into margin accounts for their
derivative positions: for one unit increase in the notional value, m units of capital are oc-
cupied, thus not available for investing in the risk-free asset.15 With margin requirements,

14Extending the characterization to asymmetric margin requirements changes the constrain to π0 +
m+π+ + m−π− ≤ 1 where m+ and m− apply to long (π+) and short (π−) legs of derivative contracts
respectively.

15An implicit assumption here is that capital posted in the margin account are “stored” using the one-to-
one storage technology. In practice, money in the margin account earns interest. Then we could interpret
this implicit assumption as a normalization argument, that is, all prices r and b will be normalized by the
margin account compensation rate.
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the arbitrage position is

π(b) =
sgn(b)

m
I{|b|≥mr}.

16

Arbitrageurs behave in an “all-or-nothing” manner: they remain inactive when the arbi-
trage yield is small; otherwise, they build arbitrage positions to the fullest capacity. Panel
(A) of Figure 1.1 shows the shape of C and plots π(b).

Example 2 (Costs and adjustments). Now consider the case that a total arbitrage
position of value πs will incur a cost or adjustment of C(πs, s).17 Adopting a standard
specification for adjustment cost functions in investment theory (e.g., Hayashi (1982)), I
assume C(πs, s) = c(π)s, that is, the cost function is (positively) homogeneous of degree
one. As a result, the budget constraint (1.3) is now k′ = s [1 + π0r + πb− c(π)]. Define
π̂0 = π0− c(π)/r, the optimization problem of (1.9) becomes maximizing π̂0r+πb subject
to the condition that C = {0 ≤ π̂0 ≤ 1, π ∈ R : π̂0 + c(π)/r ≤ 1}. To make it more specific,
I let the function c(π) be quadratic with regard to |π|, that is, c(π) = G|π| + (1/2)gπ2

(G ≥ 0, g ≥ 0). I present C and the optimal arbitrage position π(b) in Panel (B) of
Figure 1.1 under this specification. Similar to margin requirements, there is still a region
of inaction for the arbitrageurs: they do not respond when |b| < G. However, when
arbitrage yields are moderately large, that is, when |b| is greater than G but still smaller
than

√
G2 + 2gr, arbitragers gradually increase their positions, until exhausting all their

capital. Clearly, if g = 0, meaning that the quadratic term (1/2)gπ2 disappears from the
cost function c(π), this example collapses to the one under margin requirements where
m = G/r.

Example 3 (Value-at-Risk constraints). Another family of constraints arbi-
trageurs can face result from Value-at-Risk (VaR) calculations as highlighted by Adrian
and Shin (2014) in the study of bank leverage. Under this rule, arbitrageurs need enough
equity capital to cover their VaRα, defined as

inf {V > 0 : P [change in asset value ≤ −V ] ≤ 1− α} ,

based on a pre-specified small threshold α. Arbitrageurs adjust their investment positions
to abide by the rule. As an illustration, I consider a simple Gaussian VaR setting, under
which changes in r and b are both normal; for simplicity, I further assume that these
changes are independent. In summary, ∆r ∼ N (µ∆r, σ∆r), ∆b ∼ N (µ∆b, σ∆b) and
∆r ⊥ ∆b. Under this setting, VaRα = z(1−α)

√
π2

0s
2σ2

∆r + π2s2σ2
∆b, where σ∆r and σ∆b

16The signum function sgn(b) equals −1 when b < 0, 0 when b = 0, and 1 when b > 0.
17In a standard (I,K) type of investment theory presented as early as by Lucas (1967), adjustment

costs are relate to both the investment I (πs here) and the capital stock K (s here). This is because
the relative size of I given K may help determine the cost. The costs or adjustments may be due to
funding value adjustments as demonstrated in Andersen, Duffie, and Song (2019), which is an implicit
debt-overhang cost to equity holders. Arbitrageurs’ effective funding costs and (opportunity) costs of
collaterals for different currency pairs may also render CIP arbitrage less profitable (Augustin, Chernov,
Schmid, and Song, 2020). And, as many may argue, counterparty credit risk adjustments may also plague
the seemingly riskless CIP arbitrage, for most currency derivatives are not centrally cleared (though
unfavorable evidence provided in Du, Tepper, and Verdelhan (2018)). The cost function here can also be
interpreted as (credit) risk adjustments.
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can be calibrated from historical data, z(1−α) is the [100(1−α)]th percentile of the standard
normal distribution. Thus the VaR constraint VaRα ≤ s yields z2

(1−α)

(
σ2

∆rπ
2
0 + σ2

∆bπ
2
)
≤

1. As a normalization, we can let z2
(1−α)σ

2
∆r = 1 and define v = σ∆b/σ∆r, then the set

C becomes
{

0 ≤ π0 ≤ 1, π ∈ R : π2
0 + v2π2 ≤ 1

}
. Under this VaR constraint, arbitrageurs

choose their arbitrage positions

π(b) =
b

v
√
r2v2 + b2

.

This setting features smooth arbitrage responses to the magnitude of arbitrage yeilds,
in sharp contrast to the outcomes under margin requirements. Panel (C) of Figure 1.1
illustrates the set C as well as the function π(b).

Panel (D) of Figure 1.1 compares the arbitrage profit function SC for the three exam-
ples. Of note, SC is positively homogeneous of degree one (e.g., Molchanov and Molinari
(2018, p. 75)), thus the plot shows SC(1, b/r) as a function of b/r for cleaner demonstra-
tion. SC(1, b/r) reaches its minimum value of one at b = 0. This is when the arbitrage
opportunity does not exist, so the investment return must be r. When |b| deviates from
zero, SC(1, b/r) will never decrease.

The three special cases of C exemplify the benefits of developing a theory without taking
a strong stand on the form of the constraint. Different shapes of C lead to distinctive
arbitrage responses, which translate into peculiar (in)elasticities of π(b), the supply of
forward dollars. From equation (1.7), equilibrium arbitrage yields thus differ. I summary
theoretical results based on this agnostic view of arbitrage limits in propositions below.

Proposition 1. The optimal behavior of arbitrageurs imposes the following equilibrium
conditions:

1

1 + ρ

(
y′

y

)−1

[1 + SC(r, b)] = 1

for their consumption growth (the Euler equation) and

1

r

(
k′ − k
k

)
=

(
1

2 + ρ

)
SC

(
1,
b

r

)
−
(

1 + ρ

2 + ρ

)
1

r

for their capital accumulation. All else equal, the net return on arbitrageurs’ capital [(k′−
k)/k]: i. increases in |b|;18 ii. is a convex function of b.

The consumption Euler equation is standard under the log utility, in which (1 + SC)

acts as the return on intertemporal savings. Motivated by this equation, we can concep-
tualize arbitrageurs’ decision problem as a two-stage one: they first optimize π0r + πb

subject to the constraint (1.8), which gives the optimal return SC ; next, they choose their
consumption plan y (and thus s, k′, and y′) according to the Euler equation, taking SC as
given. Arbitrage limits only prevent them from responding insatiably to arbitrage profits.

18Strictly speaking, all increasing or decreasing statements henceforward refer to nondecreasing or
nonincreasing respectively. I avoid invoking the latter terms for conceptual simplicity, disregarding math-
ematical rigor.
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Figure 1.1: Examples of arbitrage constraints C, arbitrage positions, and arbitrageurs’
optimal investment returns.

Their intertemporal saving behavior remains optimal under any predetermined position
constraints.

Specifications of C directly affects how arbitrageurs’ capital accumulation responds
to arbitrage yields. For example, under VaR constraints, a nonzero b lifts arbitrageurs’
investment return above r, regardless how small |b| is. However, with margin requirements,
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there exists a region around zero, within which no value of b increases the arbitrageurs’
investment return.

Now we turn to optimal arbitrage positions and the equilibrium arbitrage yield. The
proposition below summarizes the results.

Proposition 2. If C is such that the support function SC is differentiable, the arbitrageurs’
optimal arbitrage positions are

π(b) =
∂SC(r, b)

∂b
.

Furthermore, if C is such that SC is twice differentiable, the equilibrium deviation b∗ that
solves π(b)s = q(b) uniquely exists and

i. if γ0 ≥ 0, 0 ≤ b∗ ≤ γ0/γ and q(b∗) ≥ 0; otherwise, γ0/γ ≤ b∗ ≤ 0 and q(b∗) ≤ 0;

ii. |b∗| decreases as the arbitrageurs’ initial capital k increases.

From Proposition 2, we know that optimal arbitrage positions can be derived from
the arbitrage profit function SC .19 This function SC , on the other hand, reflects how
arbitrageurs’ investment return responds to arbitrage yields (Proposition 1). These ob-
servations lay foundations for identifying the forward dollar supply by the arbitrageurs.
If we can measure the capital return (k′− k)/k, a nonparametric regression of this return
on the arbitrage yield (e.g., CIP deviations) reveals the SC , which in turn gives us π(b).
We will revisit this idea later in the full quantitative model in Section 1.3.

The sign of equilibrium deviations is determined only by the hedgers’ demand q(b).
Negative CIP deviations indicate that there is a net demand for foreign currencies (q(b) <
0) while positive deviations imply a net demand for dollars (q(b) > 0), in currency forwards
and swaps markets. The largest possible absolute deviation in equilibrium |b∗| is always
less than |γ0|/γ, which is the outcome when no arbitrage force exists to absorb the hedging
demand imbalances. In this equilibrium, b∗ is such that q = 0.

The log-utility assumption brings up wealth effects, thus arbitrageurs’ capital k have
major impacts on their absolute arbitrage positions, which equals πs.20 Larger capital
stock increases arbitrage capacity, leading to smaller arbitrage yields in equilibrium.

1.3 A quantitative equilibrium model of limited arbitrage

In this section, I develop a quantitative model of limited arbitrage in currency market by
enriching the simple model of Section 1.2. The extension comes from four dimensions: (i) a
risky project is now available to the arbitrageurs; (ii) multiple (instead of only one) riskless
arbitrage opportunities exist; (iii) the model is dynamic in which arbitrageurs optimize
their discounted life-time utility; (iv) time-varying external hedging demand exists for

19At points that the partial derivative ∂SC(r, b)/∂b is not well-defined, indeterminacy can arise and
π(b) falls into a closed convex set, namely the subdifferential of SC . See Bertsekas (2009, p. 182-186) for
further expositions.

20As shown in the Appendix, in equilibrium, arbitrageurs’ savings s is proportional to their initial
capital endowment k, due to the log-utility assumption.
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Figure 1.2: Arbitrageurs’ balance sheet with and without arbitrage positions (A: asset,
L: liability).

each arbitrage opportunity. The risky project and random hedging demands make the
model stochastic. I characterize equilibrium outcomes of the model, test their predictions,
and use the equilibrium conditions to estimate the model.

1.3.1 Model setup

Time is continuous, going from zero to infinity. As before, there are two groups of agents:
arbitrageurs and hedgers, both of a continuum of mass one.

Of note, throughout the rest of the paper, I will omit the time subscripts whenever it
does not cause confusion.

Arbitrageurs. Arbitrageurs maximize a utility function

Et
[∫ ∞

0
e−ρs log (yt+s) ds

]
, (1.10)

in which ρ > 0 is the instantaneous time discount rate, and yt is their rate of consumption
at date t. At date 0, they are endowed with k0 > 0 amount of capital.

As before, with date-t capital kt at hand, arbitrageurs can borrow or save at a risk-free
rate rt, or safely store their capital (with zero net return). They can also profit from
multiple riskless arbitrage opportunities, yielding at rate bit, i = 1, . . . , n (n ≥ 1), per unit
of position they build up. In currency markets, these arbitrage yields are CIP deviations
for different currencies.

Arbitrageurs now have access to a risky project, the net return of which follows a
diffusion process dr̃t = (µtdt+ σtdzt) where {zt}∞t=0 is a standard Brownian motion on a
complete probability space. In other words, the date-t expected rate of return of this risky
project is µt and its volatility being σt. In the context of currency markets, large dealer
banks play an essential role in FX arbitrage. If we treat them as the arbitrageurs, this risky
project represents the a consolidated portfolio of their business activities (e.g., consumer
financing, commercial banking, investment banking, security brokerage and trading, asset
management, etc.), in addition to FX arbitrage.

Capital accumulation without arbitrage opportunities. Ignoring the arbitrage
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opportunities for now, with date-t capital kt, arbitrageurs choose their positions in the
risk project and the risk-free asset. Denote by wt the ratio of risky project investments to
total capital, their investment return within the time interval [t, t+ dt] is

dr(wt) = wt(dr̃t) + (1− wt)(rtdt),

where dr̃t = (µtdt+ σtdzt) by assumption. Their capital evolves according to kt+dt =

kt[1 + dr(wt)]− ytdt, that is,

dk

k
= rdt+ w(µ− r)dt+ wσdz − y

k
dt.

Following the literature (e.g., He and Krishnamurthy (2013); Brunnermeier and Sannikov
(2014)), I expect wt > 1, which means arbitrageurs build up leveraged positions in the
risky project, funded by risk-free debt. Their balance sheet is illustrated in Panel (A) of
Figure 1.2.

Capital accumulation with arbitrage opportunities. With arbitrage opportu-
nities, arbitrageurs’ date-t problem can be thought of as making two sets of decisions.
On the one hand, they choose the amount of capital, denoted by π0tkt (π0 ≤ 1), to sup-
port their “normal lines of business”, that is, borrowing at the risk-free rate and making
leveraged investment in the risky project. This investment, costing π0tkt initially, leads
to π0tkt[1 + dr(wt)] amount of capital at date (t + dt), where dr(wt) follows the same
definition above. The risk exposure wt is chosen optimally under the standard risk-return
trade-off. On the other hand, arbitrageurs also decide the size of arbitrage positions rela-
tive to their capital, denoted by the vector πt = (π1t, . . . , πnt)

>, for each of the n arbitrage
opportunities. Total arbitrage profits at date (t+ dt) are (

∑n
i=1 πitbitdt) kt, or (π>t btdt)kt

for simplicity, where bt = (b1t, . . . , bnt)
>. These arbitrage profits come at zero cost at

date-t. We can write down arbitrageurs’ total capital at date (t+ dt) as

kt+dt = kt + π0tkt[1 + dr(wt)]− π0tkt + (π>t btdt)kt − 0− ytdt,

which extends equation (1.3) under the new dynamic stochastic environment with multiple
arbitrage opportunities. Simplifying the equation above, arbitrageurs’ capital evolves
according to

dk

k
= π0 [rdt+ w(µ− r)dt+ wσdz] + π>bdt− y

k
dt. (1.11)

Panel (B) of Figure 1.2 illustrates the structure of arbitrageurs’ balance sheet after build-
ing up arbitrage positions. Their original balance-sheet composition are colored in blue
and arbitrage positions are colored in red. Taking advantage of arbitrage opportunities
potentially leads to downsizing the normal business. In doing so, arbitrageurs are effec-
tively setting a fraction (1−π0) of their capital aside in storage, earning zero net returns.
We can also view this amount of capital as necessary capital buffers to support arbitrage
positions (thus also colored in red). In the context of major FX dealer banks, (1 − π0)k
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represents the amount of bank capital deployed to their trading desks dedicated to CIP
arbitrage. The choice regarding π0 can also be interpreted as resource allocation decisions
in internal capital markets.

To sum up, arbitrageurs now choose i. π0 that determines the size of their “con-
ventional” investment as well as its leverage w, ii. arbitrage positions π in each of the
arbitrage opportunities, iii. consumption rate y, to maximize their utility (1.10) subject
to the capital accumulation equation (1.11).

Without arbitrage limits, arbitrageurs will choose π0 = 1 and |πi| → ∞ for any
i ∈ {1, . . . , n} such that bi 6= 0.

Arbitrage limits arise from financial constraints defined by the set C. Combinations
of π0 and π must fall within C. Arbitrageurs face the trade-off between chasing larger
arbitrage profits and downsizing their normal business operations, under this constraint.
Extending equation (1.9), the arbitrage profit function (the support function of C) is now
defined as

SC(r, b) = sup
(π0,π)∈C

{π0r + π>b}.

Time-varying financial constraint. I allow for time variation in the set C to reflect
changing financial constraints. Specifically, I assume

(π0t, πt) ∈ Ct. (1.12)

Arbitrage profit functions can be defined for each Ct accordingly.
I collect assumptions in the previous section about the constraint set and present a

summarized one below:

Assumption 5. At any time t, Ct is a bounded, closed and convex subset of [0, 1]× Rn,
which is nonempty with (1,0n) ∈ Ct; the arbitrage position πit = 0 when bit = 0.

Hedgers. I extend the hedging demand specification of (1.5) to each of the n arbitrage
opportunities by assuming

qt = γ0,t − γbt, γ > 0, (1.13)

where elements in qt = (q1t, . . . , qnt)
> are external (net) hedging demands. Following the

interpretations in Section 1.2 in the context of CIP arbitrage, qit represents the demand
for forward dollars via the exchange of currency i. The vector γ0,t = (γ01,t, . . . , γ0n,t)

>

captures the fundamental hedging demand differences among currencies, due to trade im-
balances or cross-border investment. The positive scaler γ indicates that hedging demands
for forward dollars are always decreasing in the CIP deviations. Appendix 1.7.3 further
discusses micro-foundation of this specification.

The equilibrium arbitrage yield. At time t, the equilibrium arbitrage yield b∗t is
a vector such that

πtkt = qt. (1.14)
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where qt is defined by (1.13); πt are (part of) the solutions to the arbitrageurs’ problem:
choosing {yt, wt, π0t, πt} to maximize the utility function (1.10) subject to the capital
accumulation equation (1.11) under the constraint (1.12).21

Before characterizing equilibrium outcomes, I add three remarks to finish describing
the model setup. First, the model does not consider risky arbitrage. As a result, it is
not suitable for investigating many intriguing pricing phenomena such as stock market
anomalies. For CIP arbitrage, instead of treating it as risky payoffs, standard practices
apply valuation adjustments, modify margin requirements, or resort to VaR calculations
to address risk-related concerns (e.g., the counterparty risk and the mark-to-market val-
uation risk). Financial constraints Ct in the current model encompass these scenarios, as
illustrated by examples discussed in the previous section. In addition, CIP arbitrage does
not involve convergence trading and is not subject to the (endogenous) risk induced by
random arbitrage horizons in models such as Kondor (2009). Thus, this riskless arbitrage
model tends to be a good fit for studying CIP deviations and other “near-arbitrage” bases,
such as the positive gap between the interest on excess reserve rate and the reverse repo
rate.

Second, the log-utility assumption, although inducing myopic behaviors, is not restric-
tive for analyzing riskless arbitrage. The intuition is that arbitrageurs cannot exploit
riskless arbitrage opportunities to hedge against future shocks to their assets and financial
constraints. In other words, they only adjust arbitrage positions in response to contempo-
raneous shocks. On the other hand, arbitrageurs do adjust risk exposures through their
positions on the risky project, taking into consideration their changing investment op-
portunities. Appendix 1.7.1 presents and characterizes equilibrium outcomes of the same
model under general CRRA utility specifications to clarify these points.

Third, the risky project in the model prevents us from carrying over model solutions
of Section 1.2 directly. To see this more clearly, in equation (1.4) of the previous section,
arbitrageurs’ log investment return is log(1+π0r+πb). Maximizing it under the constraint
(π0, π) ∈ C, it is almost trivial to see that, in equilibrium, π0r+ πb = SC(r, b). Under the
full model here, arbitrageurs’ instantaneous (expected) log investment return is E log[1 +

π0dr(w) + π>bdt] (ignoring consumption, long-horizon log investors effectively maximize
expected log returns period by period). Maximizing it under the constraint (1.12) is not
straightforward. I develop theoretical tools to solve this type of problems building on
the concept of convex conjugacy (also see Appendix 1.7.1 for details). These tools also
apply to the “true” dynamic setting under CRRA utilities. As a preview, the results
are surprisingly simple: a multivariate generalization π0r + π>b = SC(r, b) still holds in
equilibrium and risk exposures of arbitrageurs are adjusted through changing w (although
π0 also affects the size of their risky positions, it is completely pinned down by C).

21Assumption 8 in Appendix 1.7.1 summarizes additional technical assumptions regarding investment
opportunities (rt, µt, σt), financial constraints Ct, and external hedging demands γ0,t.
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1.3.2 Equilibrium characterization

This section characterizes the equilibrium outcomes. I first present arbitrageurs’ optimal
choices and their capital dynamics in equilibrium. Then I show the equation that equilib-
rium arbitrage yields must satisfy and analyze its properties. Again, most time subscripts
are suppressed.

Recall that arbitrageurs’ choice variables include their consumption rate y, the amount
of capital used for their “standard business” π0, their risky asset weight w, and the vector
π determining their arbitrage positions. I start presenting their choices of π0 and π in the
following proposition.

Proposition 3. If C is such that SC is differentiable, equilibrium arbitrage positions are
given by

πi =
∂SC(r, b)

∂bi
, for all i = 1, . . . , n.

In equilibrium, the fraction of capital maintained for investment opportunities other than
arbitrage is given by

π0 =
∂SC(r, b)

∂r
.

Optimal arbitrage positions are not affected by the profile of the risky project (i.e.,
its risk and return captured by µ and σ), but determined fully by the risk-free rate r in
combination with arbitrage yields b. The shape of C determines the specific functional
form of π with regard to “prices” (r, b) via the arbitrage profit function SC . Examples of
this function are available in Figure 1.1 discussed in the previous section.

According to Proposition 3, arbitrageurs have to set aside (1− ∂SC(r, b)/∂r) fraction
of their total equity capital to support their optimal choice of arbitrage positions. This
choice is again not affected by the risk and return characteristics defined by µ and σ. The
remaining fraction will be used for building up risky asset positions of size w(∂SC(r, b)/∂r).

In Appendix 1.7.1, I show that the optimal π0 and π given by Proposition 3 do not
change for general CRRA utility functions. Proposition 4 below provides arbitrageurs’
optimal choices of y and w. Its generalization for CRRA utility functions yields more
complicated results, which are provide in Proposition 7 of Appendix 1.7.1.

Proposition 4. In equilibrium, arbitrageurs’ optimal rate of consumption y is such that
y = ρk; their position on the risky project π0w equals (µ− r)/σ2, that is,

w =
µ− r
σ2

(
∂SC(r, b)

∂r

)−1

.

Arbitrageurs’ choice of total risky asset exposure (π0w) exhibits the behavior of classi-
cal “Mertonian” demand (Merton, 1973).22 The rate of consumption y = ρk is a standard

22Under the current log utility case, this quantity equals the myopic mean-variance efficient demand
(µ− r)/σ2 (Proposition 4 above). In Proposition 7 of the Appendix 1.7.1, I extend the result for general
CRRA utilities which account for both intertemporal hedging and endogenous dynamic risk aversion. Its
form still complies with the “Mertonian” demands under intertemporal settings.
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result under the log utility.23 We can always interpret their choices as a two-stage se-
quence. First, given the “price vector” (r, b) and knowing their constraints C, arbitrageurs
nail down the size of their arbitrage positions π and set aside (1−π0) fraction of their total
capital in support of these arbitrage activities. Second, with the remaining π0k amount
of capital ready for use, arbitrageurs solve the standard consumption-saving problem with
assets defined by the triplet (r, µ, σ).

I now present the dynamics of arbitrageurs’ capital in equilibrium, which serves as the
key identifying equation for quantitative analysis.

Proposition 5. In equilibrium, the arbitrageurs’ capital evolves according to the following
rule:

dk

k
=
[
SC(r, b)− ρ+ λ2

]
dt+ λdz, (1.15)

where λ = (µ− r)/σ is the Sharpe ratio of the risky project available to arbitrageurs.

Proposition 5 allows for intuitive interpretations. To see this, plugging the two equi-
librium conditions y = ρk and π0w = λ/σ from Proposition 4 into the budget constraint
(1.11), we have

dk

k
=
[ (
π0r + π>b

)
− ρ+ λ2

]
dt+ λdz.

Comparing the equation above with equation (1.15) in Proposition 5, we can see that, the
equilibrium π0 and π are such that

π0r + π>b = SC(r, b).

The result indicates that when solving the infinite horizon optimization problem, arbi-
trageurs still behave as if they were solving the simple problem of maximizing (π0r+π>b)

subject to (π0, π) ∈ C, when choosing π0 and π each period. This optimization problem
is a multivariate extension of solutions to the simple model presented in Section 1.2 in
which only one arbitrage opportunity exists.

Another way of looking at the dynamics of arbitrageurs’ capital is through the view
of Euler equations or, equivalently, stochastic discount factors (SDF). Let us define Λt =

e−ρt/yt. Then, under the log utility, optimal intertemporal choices of the arbitrageurs
enforce that dΛ/Λ is an SDF, pricing the risky asset(s) available to them. As y = ρk,
Λt = e−ρt/(ρyt), Proposition 5 indicates that

dΛ

Λ
= −SC(r, b)dt− λdz.

The risk premium of the risky project (µ− r)dt equals E[(−dΛ/Λ)dr̃], the opposite of its
return covariance with this specific SDF defined by the consumption (or capital) of the
arbitrageurs. In other words, the consumption Euler equation holds in the model. Con-
straints on the arbitrage positions do not render arbitrageurs’ intertemporal consumption

23For general CRRA utilities, the equilibrium ratio y/k varies according to the state of the economy.
Proposition 7 of the Appendix 1.7.1 presents the general result.
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and portfolio choice suboptimal. When b is a vector of zeros, that is, no arbitrage oppor-
tunity exists, SC(r, b) = r.24 The SDF takes the conventional form of (−rdt − λdz) in
continuous time. Riskless arbitrage opportunities effectively serve as a “booster technol-
ogy” to ramp up the risk-free rate available to the arbitrageurs.

The next proposition shows the system of equations determining the equilibrium level
of arbitrage yields. It also discusses sufficient conditions for the existence and uniqueness
of the equilibrium.

Proposition 6. The equilibrium arbitrage yields b under (1.14) solves

∂SC(r, b)

∂b
k = γ0 − γb. (1.16)

If the scalar γ > 0 and the set C satisfying Assumption 5 also guarantees that the arbitrage
profit function SC is twice continuously differentiable, a unique solution exists in a ball in
Rn centered at zero with a radius ‖γ0‖2/γ.25

Proof of existence relies on verifying sufficient conditions for the Brouwer fixed-point
theorem; uniqueness is a result of the implicit function theorem. Appendix 1.7.1 contains
details of the proof. The radius ‖γ0‖2/γ corresponds to the norm of arbitrage yields
without arbitrageurs, that is, when b = γ0/γ. Under this scenario, the vector b adjusts
such that all hedging demand imbalances equal zero. Arbitrageurs help reduce the overall
equilibrium arbitrage yields in the sense that their norms become smaller than ‖γ0‖2/γ.
Arbitrage forces dampen the influences of the “raw hedging demands” γ0 (hedging demands
when no CIP deviations exist) on b: the response of equilibrium b to changes in γ0 is less
than 1/γ whenever there are arbitrageurs taking advantage of the arbitrage opportunities
induced by demand imbalances.

1.4 Empirics: testing model predictions and estimating the
model

1.4.1 Data

Beyond CIP deviation measures described early on, I assemble data from several other
sources. I collect the trade-weighted broad dollar index, the VIX index, Fed fund rates,
treasury yields, euro implied volatilities (CBOE EuroCurrency ETF Volatility Index) from
Federal Reserve Economic Data (FRED). I download the yield curve of RefCorp strips
from Bloomberg (for calculating the dollar convenience yields following Longstaff (2004)).

I also collect bilateral trade data from IMF Direction of Trade Statistics; bilateral
portfolio transaction data as well as cross-border bank claim data from the US Treasury

24Recall that Assumption 5 requires C ⊂ [0, 1]× Rn, under which π0 is always smaller than one.
25Of note, C, γ0, k and r all vary across time in the model. The equilibrium condition holds one by

one at each time point. The existence and uniqueness results thus apply only to each time period for a
given collection of {C, γ0, k, r}. The proposition is silent on the Markovian equilibrium under which we
are interested in the property of a mapping from the state of the economy to equilibrium arbitrage yeilds
b such that the equation in this proposition always holds. I leave this exploration for future research.

36

https://fred.stlouisfed.org
https://data.imf.org/?sk=9d6028d4-f14a-464c-a2f2-59b2cd424b85
https://home.treasury.gov/data/treasury-international-capital-tic-system
https://home.treasury.gov/data/treasury-international-capital-tic-system
https://home.treasury.gov/data/treasury-international-capital-tic-system
https://home.treasury.gov/data/treasury-international-capital-tic-system
https://home.treasury.gov/data/treasury-international-capital-tic-system
https://home.treasury.gov/data/treasury-international-capital-tic-system
https://home.treasury.gov/data/treasury-international-capital-tic-system
https://home.treasury.gov/data/treasury-international-capital-tic-system


International Capital (TIC) System; bilateral foreign direct investment data from the US
Bureau of Economic Analysis.

I create a measure of arbitrageurs’ capital in currency markets. It is motivated by
the fact that these markets are predominantly dealer-intermediated. I consider 49 global
dealer banks which are participants of semi-annual foreign exchange turnover surveys
(FXS) by local monetary authorities in New York, London, Tokyo, Toronto, Sydney,
Singapore, and Hong Kong. Table 1.13 of Appendix 1.7.4 lists names of their holding
companies. The equity capital of these dealer banks’ holding companies is my intended
measure of arbitrageurs’ capital. Their fundamental and price data come from Compustat
and CRSP,26 I use Bloomberg to access their five-year credit default swap (CDS) rates.

1.4.2 Supporting evidence of the model

Without committing to specific financial constraints, the model still yields a strong predic-
tion: an increasing arbitrage yield (e.g., the CIP deviation) should predict higher returns
on arbitrageurs’ capital, and as the former goes up, the latter should go up increasingly
fast (a convex relationship). The equilibrium outcome stated in equation (1.15) illustrates
this point. On the left-hand side of this equation are arbitrageurs’ capital returns next
period, and on the right-hand, the function SC , which is increasing and convex in b, the
arbitrage yields. It is worthwhile reiterating that the convexity of this function is a direct
result of Assumption 6 that C is always convex.

Arbitrageurs’ capital returns in currency markets

The most direct measure of the 49 FX dealer banks’ equity capital is the book equity
(BE) of their holding companies. As suggested by the theory, if these banks are indeed
the arbitrageurs of FX derivatives markets, CIP deviations should predict returns on
their equity capital. I compute for each bank their book equity returns (growth of book
equities next quarter divided by present book equity levels) and estimate the following
panel regressions:

1

τ
returni,t+τ = αi + β bt + εi,t+τ ,

where returns on the left hand side are annualized by dividing τ = 0.25 (a quarter), the
subscript i denotes banks and t stands for quarters. The independent variable bt is the
cross-sectional average of absolute one-year basis swap rates for EUR, JPY, GBP, AUD,
CAD, and CHF (namely, the G6 currencies) against the dollar. Sample periods begin from
March 2009 and end at December 2019.27 The first two columns in Table 1.2 show the
regression results. Overall, average CIP deviations significantly predict these banks’ book
equity growth: one standard deviation increase in the deviations is associated with around
1.6 percentage points increase in FX dealer banks’ book equity. This finding is robust to

26All variables are calculated (or derived) based on data from database name ©CRSP daily stock,
Center for Research in Security Prices (CRSP®) The University of Chicago Booth School of Business.

27I use this sample period to avoid tumultuous periods of the global financial crisis and the COVID-19
pandemic.
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measurements of CIP deviations using either the currency swap rates or the forward-OIS
implied basis.

There is a major drawback in using the book equity measure: it is an accounting
variable that is observable only quarterly. This drawback will become more pronounced
as later model testing and estimation include nonparametric procedures. To circumvent
this issue, a the potential surrogate measure, the market equity (ME), becomes particularly
attractive. This measure comes from high quality real-time market price data. It is also
worthwhile noting that, for the 49 FX dealer banks under study, their average and median
market-to-book (MB) ratios equal 1.10 and 1.05 respectively (during the sample period
of 2009-2019).28 The time-series standard deviation of market-to-book ratios averaged
across these banks is 0.13. These features partially motivate the use of market equity.

An additional motivation for using the market equity measure (at least in the context
of testing the predictive relationship here) is the fact that CIP deviations do not predict
changes in the market-to-book ratios. As the equation

BEt+1

BEt
× MBt+1

MBt
=

MEt+1

MEt

holds by definition, if a predictor does not predict the ratio MBt+1/MBt which stands for
“returns” on the book-to-market ratio, it must simultaneously predict (or fail to predict)
book and market equity returns. The third and fourth columns of Table 1.2 verify this
conclusion by regressing (MBt+1/MBt − 1) on bt. The slope coefficients are statistically
indistinguishable from zero. Since we have already seen from the same table that bt predict
book equity returns of the 49 FX dealers, this variable should also predict their market
equity returns.

Now I redo the panel regression using market equity returns. Both measures of CIP
deviations are considered. For comparison, I still consider quarterly observations of quar-
terly returns. The last two columns of Table 1.2 document the results. Average CIP
deviations also significantly predict these banks’ market equity returns. The slope coef-
ficients are larger: one standard deviation increase in the deviations is associated with
six percentage points increase in expected market equity returns. The larger regression
coefficient (compared with the case for book equity returns) is mainly due to the fact that
market equity returns are more volatile than book equity returns: annualized time-series
volatilities are 28.8% for the former and 9.8% for the later.

From now on, I will use returns on market equity of the 49 FX dealer banks’ holding
companies to measure arbitrageurs’ capital returns in the model. Using market returns
raises concerns about confounding effects of other return predictors, such as valuations
ratios and volatilities. In the following section, I will further investigate the predictive
relationship and try to mitigate these concerns by adjusting for potential return predictors.

28Market-to-book ratios of bank equities are around one not only during the post crisis period under
study. In fact, these ratios have been close to one until the mid 1990s. During the exceptional period of
1996-2008, MB ratios of banks were over two. Explanations to these patterns are beyond the scope of this
paper. Interested readers may refer to papers such as Calomiris and Nissim (2014); Atkeson et al. (2019).
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CIP deviations predict arbitrageurs’ capital returns

I document additional evidence on the predictive power of CIP deviations on FX dealer
banks’ capital returns. Columns headed with “FXS” in Table 1.3 present results from the
following time-series regressions using quarterly observations:

1

τ
returnt+τ = β0 + β bt + εt+τ ,

where the dependent variable is one-quarter-ahead (τ = 0.25) value- or equal-weighted
stock returns of the 49 dealer banks’ holding companies. Returns are annualized by divid-
ing τ . The independent variable bt is still the cross-sectional average of absolute one-year
basis swap rates of G6 currencies against the dollar. Sample periods begin from March
2009 and end at December 2019. Regression coefficients are statistically significant in these
columns of Table 1.3. On average, one basis point increase in the average CIP deviations
predicts around two percentage points increase in the returns of arbitrageurs’ capital.

A set of placebo tests are included Table 1.3. The same predictive regressions are
repeated for returns of five exchange-traded funds (ETFs) tracking the S&P500 index
(SPY), the global financial sector (IXG), the US financial sector (IYF), US broker-dealers
and securities exchanges (IAI), and US insurance companies (KIE). Average CIP devia-
tions do not predict placebo outcomes, except for returns of the ETF tracking the global
financial sector. This unique positive finding is not surprising as the 49 FX dealer banks
are likely to be essential constituents of the fund. These placebo tests suggest that the 49
global dealer banks under consideration do play special roles in CIP arbitrage: they tend
to be the arbitrageurs both in my model and in reality.

Table 1.4 assembles additional results for the same time-series regression using daily
and monthly observations. Regression coefficients are remarkably stable for the main out-
come variable: value-weighted equity returns on the 49 FX dealers banks’ holding compa-
nies. One basis point increase in the average CIP deviations is still associated with around
two percentage point increase in these returns. Placebo test results remain consistently
negative (again, except for the ETF tracking the global financial sector). For monthly
observations, five hedge fund index returns are also included for placebo tests: one global
composite index from BarclaysHedge, four indices from Hedge Fund Research tracking
global composite, relative value arbitrage, global-macro, and macro-currency strategies.
CIP deviations do not predict the composite hedge fund return indices.29

Table 1.5 presents results from the adjusted version of the predictive regression:

1

τ
returnt+τ = β0 + β bt + φ · controlt + εt+τ ,

in which control variables include earnings yields and dividend yields averaged across the

29All results till now focus on quarterly returns. Table 1.14 in Appendix 1.7.4 also confirms the
predictive relationship (as well as negative results from placebo tests) for monthly returns. The regression
coefficients remain stable (around two) for the main outcome variable, though adjusted R2s drop for
monthly returns.
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49 FX dealer banks’ holding companies. Quarterly returns are annualized by dividing
τ = 0.25. The effective fed fund rates, as well as the VIX index are also incorporated.
Results for both monthly and daily observations are reported. Average G6 currency CIP
deviations still demonstrate significant predictive power, but the magnitude is reduced
by a half after controlling for the banks’ earnings yields, which also strongly predict the
returns. Table 1.15 reports results from repeating the same exercise for monthly returns.
All results remain largely unchanged, except for the declined adjusted R2s. To sum up,
this set of time-series regressions suggest that CIP deviations predict arbitrageurs’ capital
returns, both before and after controlling for common return predictors. In addition,
banks’ earnings yields also emerge as an important return predictor.

The predictive relationship is convex

I now further investigate whether the predictive relationship is convex, as suggested by
equation (1.15) in Proposition (5). As the term SC(r, b) contains both the risk-free rate
and the CIP deviations, I rewrite equation (1.15) as follows:

1

dt

dk/k

r
= SC

(
1,
b

r

)
− ρ

r
+
λ2

r
+
λdz

dt
,

after dividing both sides by rdt and leveraging the property of SC that it is positively
homogeneous of degree one. This motivates the following regression specification

1

τ

(
returnt+τ

rt

)
= S0

(
bt
rt

)
+ φ · controlt + εt+τ ,

in which rt denotes the risk-free rate; τ = 0.25 denotes the time interval of one quarter;
controls include the reciprocal of rt (as suggested by the theory in which −ρ/r shows up),
the earnings yield that emerges as a strong return predictor in the previous section, as
well as the VIX index; the function S0(·) captures the functional form of SC(1, ·).

To begin with, I contrast the parametric configuration of S0(x) = β0 +βx and S0(x) =

β0 + βx2 in Table 1.6.30 The slope coefficient β is significantly positive only under the
quadratic specification. Estimates of these coefficients are stable across daily and monthly
observations. To mitigate concerns about low risk-free rates creating large dependent
variables to the extent that some may become “outliers”, I redo the same regressions
using robust estimators based on the Huber loss function. Robust estimators confirm
that β is only significant under the quadratic specification, suggesting a convex predictive
relationship.

Next, I estimate the equation using semi-parametric techniques. The nonparametric
component S0 is expanded to shape-constrained B-spline basis (Eilers and Marx, 1996).
Table 1.7 reports the estimation results and tests for the significance of S0(bt/rt) using
both daily and monthly observations. I consider three types of configurations for S0:

30I do not incorporate the linear and quadratic terms simultaneously due to the potential multicollinear-
ity concern: correlation between b/r and (b/r)2 is 0.9 in the sample.
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i. both convex and increasing (as suggested by theory), ii. only increasing, and iii. no
restrictions. Under all conditions, regression coefficients for 1/rt are significantly negative,
as suggest by the theory. The nonparametric term S0(bt/rt) cannot be ignored. Figure 1.5
plots the estimated S0(x) (which equals SC(1, x)) under the three specifications. Convex
patterns consistently show up even without imposing the convexity constraint. A kink
exists around x = 3, before which S0 increases slowly and after which the function shoots
up, indicating substantial arbitrage profits when |b| > 3r. As the median level of r is
16 basis points, arbitrageurs appear to enjoy large arbitrage profits after CIP deviations
exceed 48 basis points.

This semi-parametric estimation implicitly adopts one crucial assumption: the finan-
cial constraint C does not change across time. Next, I will account for the dynamics of
financial constraints and formally estimate the model.

1.4.3 Quantitative specifications, identification, and estimation

In this section I enrich the theoretical model presented above with additional assumptions
to map it to data. The main goal is to quantify Ct (financial constraints) and (γ0,t, γ)

(hedging demands and the elasticity parameter) in equation (1.16) of Proposition 6. To
achieve this goal, I adopt a two-step estimation strategy. First, I estimate Ct using the
equilibrium capital accumulation equation (1.15). Then, knowing Ct and thus the function
SCt , I compute the equilibrium arbitrage positions on the left hand side of equation (1.16),
and then estimate hedging demands. I begin with an assumption simplifying the financial
constraints.

Separating shapes and dynamics of financial constraints

Time-varying financial constraints {Ct}t≥0 is a series of sets satisfying Assumption 5.
Estimating a sequence of random sets is challenging (if not impossible). To make progress,
I adopt a simplifying assumption about the financial constraints by separating their shapes
and dynamics.

Assumption 6. There exists a constant set C0, such that Ct = {(π0, αtπ) : (π0, π) ∈ C0}
for a sequence αt > 0.

This assumption implies that at any time, financial constraints defined by the set Ct is
derived from a “baseline” C0 by shifting the largest possible arbitrage positions. The time
series {αt} serves the role of “shifters”, which captures variation in the financial constraints.
When αt > 1, Ct subsumes the baseline specification C0, larger arbitrage positions become
feasible conditional on the same amount of capital dedicated to arbitrage activities (π0

fixed). When 0 < αt < 1, Ct shrinks, and arbitrageurs tend to cut back their arbitrage
positions.

Under Assumption 6, the shape and dynamics of financial constraints each has a
concrete characterization: the set C0 for the shape and the sequence {αt} for the dynamics.
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(A) baseline (B) time-t financial constraints
constraints i. 0 < αt < 1 ii. αt → 0 iii. αt > 1 iv. α→∞
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Figure 1.3: Dissecting the shape and dynamics of financial constraints

I discuss this dissection of financial constraints intuitively through Figure 1.3.31 The first
plot to the left of Figure 1.3 shows the baseline constraints defined by the set C0. This
set determines the shape of financial constraints. In this illustration, it represents a
VaR condition applied to the arbitrage positions (see examples from the previous section
for details). C0 can also depict other types of constraints or combinations of multiple
constraints. The other four plots in Figure 1.3 describe how a sequence of sets {Ct} is
generated from combining C0 and {αt}. The time series {αt} translates to the dynamics
of financial constraints, according to Assumption 6. Plot (B)-i. and (B)-iii of Figure 1.3
illustrate how the financial constraints become tighter or loser from their baseline level
according to the value αt (C0 boundaries outlined in the dashed curves for comparison).
Plot (B)-ii. and (B)-iv of Figure 1.3 are two extreme cases. Under the first scenario,
αt goes to zero and the set Ct collapses to a line segment: no arbitrage activities are
allowed. All hedging demand imbalances have to be counterbalanced by large arbitrage
yields. Under the second scenario, αt becomes infinitely large, and the constraints morph
into a band spanning to infinity: no limits to arbitrage exist. This corresponds to the
frictionless benchmark, under which CIP deviations must always be zero.

The arbitrage profit function for time-t financial constraints Ct under Assumption 6 is
given by the following lemma.

Lemma 1. Under Assumption 6, SCt(r, b) = SC0(r, αtb).

Lemma 1 translates Assumption 6 on sets {Ct} into properties of the arbitrage profit
function. The baseline set C0 determines the functional form of SC0 (shape); the series
{αt} induce time variation to the financial constraints, as well as arbitrage profit functions
(dynamics). Quantifying the financial constraints is equivalent to estimating both the
function SC0 and the sequence αt.

31For the ease of exposition, the illustrations cover the case of one arbitrage opportunity, while the
intuitions easily carry over to higher dimensions.
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π

Figure 1.4: The (baseline) financial constraint C0 and its two-dimensional generator C2D
0

under Assumption 7.

Parameterization

I introduce a simplifying assumption and parameterize three components of the model to
facilitate estimation, summarized by four items in this section.

Item 1: reducing the dimension of financial constraints. I begin by simplifying
the (baseline) shape of financial constraints, defined via the function SC0 . The challenge
to estimate this object comes from the “curse of dimensionality”: as a rule of thumb,
estimating a function of dimension d generally requires a sample size that is an exponential
of d (Stone, 1982). I adopt the following simplifying assumption to sidestep this challenge.

Assumption 7. SC0(1, b) = S0(b) where b =
∑n

i=1wi|bi| and
∑n

i=1wi = 1.

Interpretation of the assumption is straightforward. It treats the weighted average of
CIP deviations as a measure of overall arbitrage yields accessible to arbitrageurs. I use
over-the-counter FX derivatives trading volume to construct these weights. The derivatives
include FX forwards, FX swaps, and currency swaps. The trading volume data also
come from semi-annual FX surveys of local monetary authorities in New York, London,
Tokyo, Toronto, Sydney, Singapore, and Hong Kong. Figure A1 in the Appendix plot
the volume shares of G6 currencies and the remainder, beginning from the year 2009.
Though I suppress time subscripts here, these weights can vary across time when used for
aggregating CIP deviations at different time (at time t, bt =

∑n
i=1wit|bit|).

Figure 1.4 demonstrates implications from Assumption 7 in detail. The function S0(x)
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defines a support function
SC2D0

(x, y) = xS0(y/x)

for a set C2D
0 in R2. Combing this two-dimensional set with a vector of weights further

generates the financial constraint C0 in Rn+1. The top plot in Figure 1.4 illustrates a
three-dimensional set C0, the configuration of which satisfies Assumption 7. The three
plots at the bottom show its intersections with three planes {(π0, π1, π2) : πi = 0}, (i =

0, 1, 2). In the π0-π1 (sub)space, the intersection is indeed a set defined as {(π0, w1π1) :

(π0, π1) ∈ C2D
0 }. The same rule holds for the intersection in the π0-π2 (sub)space. The

weighted average term in Assumption 7 is reflected directly in the π1-π2 intersection (see
the diamond shape in the plot at the bottom right corner).

Combining Assumption 7 with Lemma 1,

SCt(rt, bt) = SC0(rt, αtbt) = rtSC0

(
1,
αtbt
rt

)
= rtS0

(
αt
bt
rt

)
. (1.17)

Substituting this result into equation (1.15), and dividing both sides by rtdt, we have

1

dt

dkt/kt
rt

=

[
S0

(
αt
bt
rt

)
− ρ

rt
+
λ2
t

rt

]
+
λt
rt

dzt
dt
. (1.18)

I now introduce two additional parameterization schemes for objects in equation (1.18):
the Shape-ratios of arbitrageurs’ risky project λt and the dynamics of financial constraints
αt.

Item 2: parameterizing Shape-ratios. I parametrize the whole term (λ2
t /rt−ρ/rt)

as the linear combination of variables that may predict the arbitrageurs’ capital return
dkt/kt other than the CIP deviations, that is, λ2

t /rt− ρ/rt = φ>vt. The vector vt include
variables such as earnings yields for the 49 dealer banks, and the VIX index, which are
potential predictors of the capital return dkt/kt. The reciprocal of rt is also included as
suggested by theory.

Item 3: parameterizing the dynamics of financial constraints. I parameter-
ize the positive process αt as exp(δ>ut) where ut is a vector containing variables that
may drive the time-series variation in financial constraints. It includes the dollar index,
quarterly lagged volatilities of average CIP deviations, changes in dealer banks’ CDS,
the TED spread (three-month dollar LIBOR rates minus the three-month Treasury bill
rates), the implied volatility of euro, the VIX index, and the dollar convenience yield (the
three-month RefCorp bond yield minus the three-month treasury yield).32

32The dollar index captures risk-bearing capacity of global banks as argued by Avdjiev, Du, Koch,
and Shin (2019). Past volatilities of CIP deviations may affect VaR calculations involving FX derivatives
positions. Bank CDS rates determine funding value adjustments as illustrate by Andersen, Duffie, and
Song (2019). The TED spread measures credit risk in the banking sector. I add the implied volatility of
euro and the VIX index as additional controls for risk appetite in currency markets and, more broadly,
global financial markets. The measurement of dollar convenience yields follows Longstaff (2004); Augustin
et al. (2020) find that swap dealers’ effective funding rates are related to convenience yields.
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Under these parameterization schemes, we can now write equation (1.18) as

1

τ

(
returnt+τ

rt

)
=

[
S0

(
exp(δ>ut)

bt
rt

)
+ φ>vt

]
+ εt+τ , (1.19)

after replacing dt by τ , in which the error term εt+τ are future shocks to arbitrageurs’
capital. Estimating equation (1.19) yields the function S0(·) as well as vectors δ and
φ. According to equation (1.17), knowledge regarding the function S0 and the vector δ
(which translates into αt) fully reveals SCt (the arbitrage profit function determined by
time-varying financial constraints). In equilibrium, arbitrage positions can be calculated
as

πit =
∂SCt(rt, bt)

∂bit
=
rt∂S0(αtbt/rt)

∂bit
= αtwitsgn(bit)S

′
0

(
αtbt
rt

)
, αt = exp(δ>ut).

(1.20)

Now shifting attention to equation (1.16) and writing it in an element-wise manner,
we have

πitkt = γ0,it − γbit.

The left-hand side of this equation becomes observable if we know S0 and δ, according to
equation (1.20). I now introduce parameterization for hedging demand intercepts γ0,it on
the right-hand side.

Item 4: parameterizing hedging demands. Hedgers’ demands are further speci-
fied as follows (optimization foundation for the hedging demands in Appendix 1.7.3 helps
motivate the specification):

γ0,it = β>i xit + `it,

where xit is a vector of observable hedging demand drivers including bilateral net exports,
net foreign direct investment flows, net security purchases (long-term bonds and equities),
changes in net cross-border bank claims, and interest rate differentials (all calculated
as domestic, the US, minus foreign, country i); an intercept term of constant one is also
included in xit; `it ∼ N (0, σ2

` ) captures unobservable components of hedging demands (or,
in extension, liquidity-driven demands for forward dollars which I do not model explicitly
in the micro-foundation section of Appendix 1.7.3). This specification implies that

πitkt = β>i xit − γbit + `it

= β
>
xit +

n−1∑
j=1

η>j (I[j = i]× xjt)− γbit + `it. (1.21)

The second equation in (1.21) adopts the transformation βi = β+ ηi where
∑n

i=1 ηi = 0.
As a result, the vector β is the cross-sectional average of βi, which accounts for mean
responses of hedging demands to observables in the model for all currencies in the sample.
Under this specification, estimating β1, . . . ,βn is equivalent to estimating β, η1, . . . ,ηn−1.
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Identification and estimation

Under the current parameterization scheme, model estimation takes two steps. First, I
estimate equation (1.19) to find the triplet {S0(·), δ,φ)}; these estimates allow me to
calculate arbitrage positions πit according to equation (1.20). Second, knowing πit as well
as kt, I estimate vectors β1, . . . ,βn and the “semi-elasticity” parameter γ from equation
(1.21).33

Step 1: estimating financial constraints. The first step relies on the following
identification assumption

E [εt+τ | bt, ut, vt] = 0,

in equation (1.19), which holds according to the theory. Specifically, this condition argues
that the current CIP deviations (bt), dynamics of financial constraints (determined by ut),
as well as drivers of arbitrageurs’ expected capital returns (vt) do not affect shocks to arbi-
trageurs’ future realized capital returns. This argument does not preclude the possibility
that current (or even past) shocks to arbitrageurs’ capital affect these variables. Arbi-
trageurs in the model do respond to contemporaneous shocks and adjust their arbitrage
positions. Moreover, since they are global dealer banks, these shocks can even have “real”
impacts through trade finance (Xu, 2020) and cross-border capital flows (Amiti, McGuire,
and Weinstein, 2019), thus affecting the hedging demands. This two-sided influence com-
plicates equilibrium CIP deviations and can induce co-movement between the arbitrage
yields and contemporaneous shocks to arbitrageurs’ capital. However, these relationships
should not apply to future unexpected shocks, as the identification condition commands.

The identifying condition can be violated if, for example, additional unobservable
risk premium drivers exist. To be more concrete, this corresponds to the case that the
φ>ut term in equation (1.19) should in fact be (φ>ut + `ut ) where `ut is the unobservable
component. This term must be correlated with bt through its impact on kt (recall that bt
must solve the equilibrium condition (1.16) at time t). Given the fact that powerful return
predictors are usually difficult to find beyond valuation ratios and volatility measures
(which I have included in the vector vt), this concern might not be of primary importance.

The current framework is in fact flexible enough to incorporate additional controls
that drive arbitrageurs’ equity returns. Future research could help improve the current
estimation when new dealer bank equity return predictors are identified, which will be
added into the vector vt.

If a meaningful unobserved risk premium driver does exist, my estimation may exag-
gerate the response of arbitrageurs’ capital returns to arbitrage yields. This is because
higher `ut is equivalent to higher expected capital returns, and is associated with lower
current capital valuations. According to result [ii] of Proposition 2, this leads to higher
(absolute) CIP deviations. In other words, cov(`ut , bt) > 0. As a result, the estimated

33I call the parameter γ “semi-elasticity” because b is related to logarithms of forward prices F according
to equation 1.1, the initial definition of CIP deviations. In addition, hedging demands in the model can be
interpreted as forward dollar demands as discussed in Section 1.2. Of course, (−γ) should be the proper
semi-elasticity.
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response of returns to CIP deviations will subsume both the direct effects from arbitrage
profits and (positively) confounded effects through `ut . The escalated level of arbitrage
profit functions map to a more lenient view of financial constraints: all else equal, relaxed
financial constraints allows arbitrageurs to build more aggressive arbitrage positions and
reap larger arbitrage profits. Under such scenario, I interpret my estimates of the financial
constraints as conservative ones (i.e., supersets) that must contain the truth at each time
period.

With the identifying condition E [εt+τ | bt, ut, vt] = 0, I estimate equation (1.19)
using semi-parametric nonlinear least squares. The algorithm for estimating this equation
is described in Appendix 1.7.2.

Table 1.8 reports estimation results from the first step. According to Table 1.8, in-
creases in dollar index, lagged currency swap volatility, and implied volatility of euro are
significantly associated with tightening financial constraints. I also consider equal weight-
ing (bt =

∑n
i=1 |bit|/n) for robustness and results remain largely unchanged.

I plot in Figure 1.6 the times series of αt (adjusted by sample mean) based on the
estimates of δ in Table 1.8 under the volume-weighting scheme. Smaller αt indicates
tighter financial constraints. According to Figure 1.6, arbitrageurs appear to face toughest
constraints during the year 2015-2016. The sharp tightening begins from the middle of
2014. Perhaps not coincidentally, the Volcker rule regulating proprietary trading becomes
in effect during the second quarter of 2014. In addition, the supplementary leverage ratio
requirement is finalized during the third quarter of this year. The estimated dynamics of
financial constraints seems to delineate FX Dealer banks’ responses to these regulatory
reforms. Another interesting period is the first quarter of 2017, witnessing extremely
tight constraints. It is during the same quarter that the liquidity coverage ratio (LCR)
requirement reaches its full effects.

Step 2: estimating hedging demands. In the second step, I estimate hedging
demand parameters. I calculate πit using equation (1.20) based on estimates of S0(·) and
δ from the first step. Now the goal is to estimate parameters βi and γ in equation (1.21).
Since the left-hand side of this equation are now observable, a standard panel-data linear
regression can generate estimators for (β1, . . . ,βn, γ). The main issue with this estimation
is that unobservable hedging demands `it will affect the equilibrium deviations bit, thus
contaminating the ordinary least-square estimator of γ.

To address this issue, I propose an instrumental variable (IV) for bit based on the
following assumption:

E [`it | xi′t] = 0, i′ 6= i.

This condition states that unobservable hedging demands for a particular currency are not
related to observable hedging demand drivers of other currencies. In other words, bilateral
trade and portfolio flows between the UK and US, which may drive hedging demands for
pounds, should not affect hedging demands for yen. If this condition is satisfied, we can
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instrument bit using estimators b̂it from the following (first-stage) regression:

bit = ψ>zit + φ
>
xit +

n−1∑
j=1

ξ>j (I[j = i]× xjt) + eit,

because the right-hand side instrumental vector zit =
∑

i′ 6=iwi′tx
(−ι)
i′t is not associated with

`it. The weights are calculated from the volume of FX derivatives, which also appear in
Assumption 7 and equation (1.20). The superscript “(−ι)” for x means that the constant
one for intercepts is excluded from this vector.

This instrument should not be a weak one in theory (ψ 6= 0), as it directly affects
levels of CIP deviations for other currencies (i.e., the vector b−i). Changes to b−i will
affect arbitrageurs’ equilibrium arbitrage positions not only for the involved currencies
(π−i), but also for currency i (πi). If we conceptualize arbitrageurs as “suppliers” of
arbitrage services, this instrument is effectively a supply shifter in the tradition of Berry,
Levinsohn, and Pakes (1995). The volume-weights reflect the belief that demands for
derivative contacts on dominant currencies should have larger impacts on arbitrageurs’
optimal positions, transmitting more pronounced “supply” shocks.

The exclusion restriction of the proposed instruments can be invalid when there are
common shocks to both observable hedging demand drivers x1t, . . . ,xnt, and latent hedg-
ing demands `1t, . . . , `nt, thus relating xi′t to `it. A necessary outcome of this scenario is
that x1t, . . . ,xnt present a strong factor structure. In the data, leading principle compo-
nents of variables in these vectors never explain more than 40% total variation (40% for
bilateral net exports as the highest, 23% for bilateral changes in net bank claims as the
lowest). This exploratory analysis provides suggestive evidence favoring the identification
condition.

If the identifying condition is indeed violated, then my estimate of the γ parameter
is likely to be downward biased. Adversarial shocks under tumultuous market conditions
suppressing all bilateral trades and portfolio investments (the observables) tend to be
associated with dollar shortages, boosting demands for spot dollars (via synthetic dollar
funding) and dampening the need for forward dollars. If we interpret the unobservables
absorbed by ` as forward dollar demands due to liquidity needs, the instrument constructed
using x−i will be positively correlated with `i in equation (1.21): they both drop in bad
times. Estimates of −γ (a negative object in theory) will be inflated by the instrument,
which is equivalent to downward biased γ estimates.

Table 1.9 reports the second-step demand estimation results. In these estimations,
I normalize arbitrageurs’ capital to one at the beginning of the sample (January 2009).
The key parameter of interest is γ. The OLS estimation of γ is negative, suggesting
that this simple approach is mired by unobservable demand drivers. IV estimations yield
γ estimates of around 1.4. Weak IV test statistics for the first-stage regression exceed
theory cutoffs calculated following Stock and Yogo (2005).

Interpreting the number γ = 1.4 relies on estimates of β, the components of which
are significantly positive for net purchases of long-term securities (only long-term bonds,
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not equities) and net exports. This finding itself is intuitive. Higher (US) net exports
indicate that US exporters expect more foreign-currency receivables. To hedge these cash
flows against currency risk, they sell foreign currencies forward in exchange for dollar. As
a result, increased net exports indicate higher forward dollar demands. Similar reasoning
apply to net foreign asset purchases which generate foreign-currency denominated cash
flows (and capital gains) in the future. The coefficient is around five for net long-term
bond purchases, which is 3.6 times of γ. This suggests that one basis point increase in
the CIP deviations is equivalent to 1/3.6 ≈ 0.28 billion decrease in this variable in terms
of impacts on hedging demands. Similarly, the coefficient for net exports is around ten
(≈ 7 × γ). Thus, one basis point increase in the CIP deviations tends to have the same
impact on hedging demands as 1/7 ≈ 0.14 billion decrease in net exports.34

1.5 Quantitative analysis

1.5.1 Model-implied CIP deviations

With estimates of the function S0(·), αt (determined by the vector δ), γ0,t = [γ01,t, . . . , γ0n,t]
>

(each element determined by β1, . . . ,βn respectively), and the parameter γ, the equilib-
rium condition (1.16) becomes a pricing system: at time-t, CIP deviations b solves

rt∂S0

(
αtw

>
t b
)

∂b
kt = γ0,t − γb, (1.22)

where wt contain weights calculated from FX derivatives trading volumes, kt is measured
by market equity of the 49 FX dealer banks. I solve for model-implied b each month from
this equation and compare it with data.

Denote by b̂ the model-implied CIP deviations for a specific currency and by b the true
data (one-year CIP deviations measured using currency swap rates). Figure 1.7 contrast
CIP deviations solved from equation (1.22) against data. Overall, the model-implied CIP
deviations track the data well. Panel (A) of Table 1.10 reports the means and standard
deviations of b and b̂ as well as their correlations. Sample periods are January 2009 to
December 2019. Overall, moments of model-implied CIP deviations closely track ones
from the data for G6 currencies.

If we decompose the variance of observed data b as

σ2[b] = cov[b, b] = cov[b, b̂] + cov[b, b− b̂],

the ratio cov[b, b̂]/σ2[b] measures the fraction of total variance in the data that the model
accounts for. This quantity is equivalent to the slope coefficient of the following regression

b̂t = β0 + βbt + εt,

34Since I do not rule out correlations between xit and `it in equation (1.21), β estimates cannot be
treated as causally identified. These results should be interpreted with caution. Calculation here may be
illustrative, but can at least help better understand the model.
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The last two columns of Table 1.10 report estimates of β in this regression and their
standard errors. For euro, yen, pounds, and Canadian dollars, model-implied CIP devia-
tions account for at least 57 percent of total variation in the data. For Australian dollar
and Swiss Franc, the model-implied CIP deviations explain over 30 percent of observed
variation. The relative poor performance for CHF is mainly due to low variation in the
model-implied quantities. The correlation between b and b̂ is 0.59 for CHF but the vari-
ance of b̂ is 46 percent lower. Overall, the model explains around 57 percent of variation
in one-year CIP deviations of G6 currencies.

Out-of-sample analysis: sample splitting. I repeat the two-step model estimation
exercise using the 2009-2015 subsample, and treat the 2016-2019 subsample as testing
data. Adopting a common “trick” facing the bias-variance trade-off (when performing out-
of-sample prediction tasks), I choose a more parsimonious hedging demand specification,
which only includes net exports and net bond purchases. Using parameters estimated
from the first subsample, I solve for CIP deviations according to equation 1.22. Figure 1.8
shows the out-of-sample prediction results. Levels of predictions align well with the data
in the testing sample.

Out-of-sample analysis: additional currencies. I further check model perfor-
mance by applying it to four currencies not used in the first-step model estimation: the
Swedish krona (SEK), Norwegian krone (NOK), New Zealand dollar (NZD) and Hong
Kong dollar (HKD). As an approximation, when solving for equilibrium CIP deviations
from equation (1.22) for these new currency pairs, I ignore all off-diagonal elements in
the partial differentiation on the left-hand side. I use β estimates from Table 1.9 to com-
puter their hedging demands (instead of finding βi for each currency). I compare model
outcomes with data in Figure 1.9. Although no information regarding these currencies
is used for estimation, CIP deviations solved from the model still align well with data.
Panel (B) of Table 1.10 compares moments for the model-implied ones with data and
repeat the regression analysis above. The model tracks data moments well. On average,
model-implied quantities explain over 30 percent variation in the data.

Restoring CIP deviations back to their pre-crisis levels. With equation (1.22),
we can investigate counterfactual CIP deviations when arbitrageurs are facing tighter or
loser financial constraints. I conduct this exercise via replacing αt in equation (1.22)
by (cααt) and resolve for equilibrium CIP deviations. A larger constant cα indicates
loser financial constraints. Table 1.11 reports time-series average of counterfactual CIP
deviations as well as their standard deviations for different cα. One particularly interesting
observation from Table 1.11 is that loosening the financial constraints by allowing for 2.5
times larger arbitrage legs (recalling the illustration in Figure 1.3) can restore the post-
crisis CIP deviations back to their pre-crisis levels (of around five basis points).

1.5.2 Shapley-value decomposition of the model-implied CIP deviations

To determine the relative contribution of (the dynamics of) financial constraints (αt),
hedging demands γ0,t, and arbitrageurs’ capital (kt) to time-series variation in CIP devi-
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ations, I adapt a Shapley decomposition (see Shorrocks (2013) for its application in linear
models) to the equilibrium pricing function. For each of the three forces, Shapley de-
composition determines its marginal contribution to total variation in model-implied CIP
deviations. This decomposition scheme is especially useful as the three economic forces
interact with each other to determine equilibrium CIP deviations nonlinearly through
equation (1.22). Conceptually, the three economic forces are teammates who cooperate
on a task – producing variation in b. The Shapley decomposition calculates their “wages”
for finishing the task in an efficient, fair, and easy-to-interpret manner.

I begin by adapting the Shapley decomposition to my equilibrium model. Equation
(1.22) defines an implicit function b = L(α, k, γ0) that maps the three variables to the
equilibrium CIP deviations. For variable v ∈ {α, k, γ0}, I compute

Iv =
∑

V⊂{α,k,γ0}\{v}

|V |
6

{
σ2[L(V, v)]− σ2[L(V, v)]

}
,

where σ2[L(V, v)] denotes the variance of counterfactual CIP deviations calculated from
the implicit function, holding {αt, kt, γ0,t}\{V, v} constant (as its sample average) while
allowing both v and variables in V to vary; σ2[L(V, v)] denotes the variance calculated
similarly holding both {αt, kt, γ0,t}\{V, v} and the variable of interest v constant (only
variables in V are allow to change across time). For each v, the identity sums across all
configurations excluding itself. Under this decomposition scheme, the variance of model-
implied CIP deviations satisfies

σ2[b̂] = Iα + Ik + Iγ0 .

Of note, for the vector γ0, when computing counterfactual CIP deviations of currency i,
only its ith element is held constant when needed.

Table 1.12 reports the fraction of variation in model-implied CIP deviations (Iv/σ2[b̂])
that can be attributed to each of the three drivers. On average, financial constraints
are responsible for 46.4 percent of variation in model-implied CIP deviations. Hedging
demands and arbitragers’ capital explain the other 38.0 and 15.6 percents.

For variation in the data, consider the following equation

σ2[b] = σ2[b̂] + cov[b− b̂, b̂] + cov[b, b− b̂].

Since σ[b̂]/σ[b] ≈ 1 for most currencies according to Table 1.10, ratios above also approx-
imate the fraction of variation in the data that can be attributed to each of the three
economic forces.

These impacts differentiate across currencies. For euro and yen, the dynamics of
financial constraints plays a crucial role in driving CIP deviations, accounting for 60-
70 percent CIP deviations in the model. For commodity currencies including Canadian
dollars and Australian dollars, hedging demands account for approximately 70 and 40
percent variation respectively. Arbitrageurs’ capital dynamics exerts substantial impacts
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(30 percent) only on pound-dollar CIP deviations.
To further investigate the dynamics of variance attribution, I perform the Shapley

decomposition on a four-year rolling-window basis. Figure 1.10 presents the results. The
most striking pattern from plots in Figure 1.10 is that arbitrageurs’ capital can stabilize the
CIP basis when financial constraints or hedging demands exert disproportionately large
impacts. That is, under the counterfactual settings of holding arbitrageurs’ capital con-
stant, fluctuations in CIP deviations can increase. For example, in 2013-2014, Canadian
dollar basis is overwhelmingly driven by hedging demands. If arbitrage capital remains
constant, (counterfactual) variation in Canadian dollar CIP deviations would double.

One limitation to the Shapley decomposition due to the fact that arbitrageurs’ capital
is endogenously determined according to equation (1.15). Thus counterfactual CIP devia-
tions lead to alternative dynamics of kt, the variation of which further generates feedbacks
to the equilibrium basis. I do not account for this interaction in my current decomposition
exercise. Failing to do so may exaggerate influences of arbitrageurs’ capital. A potential
channel is that higher CIP deviations due to relatively low levels of (contemporaneous) kt
help replenish arbitrageurs’ capital in the future, enabling arbitrageurs to better absorb
future financial and hedging demand shocks.

1.5.3 The shape of financial constraints

The (basline) shape of financial constraints, namely C0, can be recovered from estimates
of the function S0(x) as follows⋂

0<θ<π/2

{(x, y) : x+ y tan θ ≤ S0(tan θ)} .

Intuitively, C0 is a set containing all points “inside” the envelope of half planes x+y tan θ ≤
S0(tan θ) for varying θ. Layering the half planes will unveil the shape of of financial con-
straints, a procedure similar to tomography: the shape of an object can be reconstructed
from its shadows when light beams shine on it from many different angles. angles.35

One particularly interesting exercise would be figuring out how the baseline shapes
of financial constraints morph across time. This shape-shifting variation can capture
additional dynamics of financial constraints beyond the series αt. To make progress, I
reestimate model (1.19) for subsample periods of 2009-2013 and 2015-2019 and compare
the recovered shape estimates.

Figure 1.11 presents the estimated S0 functions as well as the recovered sets C0. The top
and bottom panels correspond to results for 2009-2013 and 2014-2019 respectively. White
areas enclosed by blue half planes are the sets C0. The x-axis corresponds to π0 (fractions
of equity capital deployable to support routine business) and y-axis is for π (arbitrage

35Rigorously speaking, the set “C0” recovered from S0 using this procedure is the two-dimensional
generator C2D0 under Assumption 7. Readers may revisit Figure 1.4 for illustration. I will use the two
notations interchangeably here. I also restrict the range of θ such that the recovered set is in the first
quadrant. According to Assumption 7, C0 is symmetric to the horizontal axis, thus its shape in the fourth
quadrant is trivial.
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positions). Shapes of these sets contain important information regarding arbitrageurs’
internal capital allocation decisions. Let us shift our focus to the bottom right corner of
C0 in Panel (A). The pattern suggests that, in 2009-2013, arbitrageurs can build arbitrage
positions that are almost three times of their equity capital without the need to curtail
other investment positions. If arbitrage positions are four times larger than the equity
capital, their routine investments will shrink about 10 percent. Going beyond this level,
increased π leads to sharp decreases in π0 and the response is almost linear, indicating
pronounced balance sheet costs.

Panel (B) of Figure 1.11 suggests that during 2014-2019, the balance sheet space
becomes more costly. Arbitrage positions quickly translate into downsized routine invest-
ments. For an arbitrage position that is five times of arbitrageurs’ equity capital, the
size of normal business position (π0) is reduced by more than one half (compared with 10
percent during 2009-2013). A hard leverage cap of around seven emerges in this period.
This outcome appears to be consistent with the fact that the supplementary leverage ratio
(SLR) requirement was finalized in the third quarter of 2014.

1.6 Conclusion

Most existing limits-to-arbitrage models lack the potential to be mapped to data directly,
thus the valuable insights they offer are hard to quantify. This paper attempts to partially
bridge the gap by developing a quantitative model of limited arbitrage with a special focus
on deviations from covered interest rate parity (CIP) conditions.

The model and its estimation methods can be a useful framework for understanding
other “anomalous” pricing phenomena in today’s financial markets, such as the IOER-RRP
arbitrage (interest rates on excess reserves being greater than the over overnight reverse
repo rates), the CDS-bond basis (the difference between credit spreads and credit default
swap rates of the same bond), and negative swap spreads (thirty-year Treasury yields
exceeding the corresponding swap rates). Common research questions arise in response to
these phenomena. For example, who are the main arbitrageurs in these markets? What
types of constraints they face (that are binding)? What are the main drivers of demands for
the involved derivatives contracts? What explains time-series variation of the underlying
arbitrage opportunities? The current paper illustrates how to use the framework to answer
such questions.

My main contribution is to combine potential drivers of price dislocations such as
hedging demands, financial constraints, and arbitrageurs’ capital in a parsimonious equi-
librium model. The model is flexible enough to incorporate existing knowledge about
these economic forces and estimate their influences on asset prices (and their deviations
from frictionless benchmarks). The key innovation is a general specification of financial
constraints, and the theoretical and econometric tools developed for unveiling their shapes
and capturing their dynamics.
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Table 1.1: Summary statistics of one-year CIP deviation measures for G6 currencies
against the dollar.

currency swap rates forward-OIS bases
mean s.d. median min max mean s.d. median min max

EUR −28.59 16.22 −26.60 −107.75 −17.00 −37.65 19.29 −35.97 −81.87 −23.24
JPY −34.43 14.91 −30.75 −82.38 −23.00 −53.06 22.50 −53.28 −109.38 −33.54
GBP −9.93 11.43 −7.62 −77.07 −1.88 −13.49 12.93 −10.05 −55.89 −3.64
CAD −10.56 10.98 −11.50 −32.88 −3.60 −8.73 12.20 −4.57 −74.27 −0.59
AUD 14.35 6.67 13.50 −4.12 18.90 13.51 14.43 13.93 −53.19 21.04
CHF −26.52 13.10 −24.75 −80.75 −16.00 −54.21 23.53 −50.18 −102.76 −34.72

Table 1.2: Predictive regressions: book equity and market equity returns of global dealer
banks on one-year basis swap rates

This table presents results from the following panel regressions

1

τ
returni,t+τ = αi + βbt + εi,t+τ ,

for quarterly observations. The dependent variables are one-quarter-ahead net returns on the book equity
(BE), market equity (ME), or (artificially defined “returns” on) market-to-book ratio (MB) of 49 dealer
banks surveyed by FX committees of New York, London, Tokyo, Toronto, Sydney, Singapore and Hong
Kong. Variables are collected for their holding companies. All returns are annualized (divided by τ = 0.25)
net ones in percentage points. The subscript i represents banks and t denotes quarters. The independent
variable bt is the cross-sectional average of absolute one-year basis swap rates or forward-OIS bases for
EUR, JPY, GBP, AUD, CAD, and CHF against the dollar. Sample periods begin from January 2009
and end at December 2019. Specifications with and without (αi = α for all i = 1, . . . , 49) bank fixed
effects are both included. Sample periods begin from March 2009 and end at December 2019. Numbers
in parentheses are Driscoll-Kraay standard errors robust to general forms of serial correlations and cross-
sectional correlations among banks (Driscoll and Kraay, 1998).

(BEi,t+τ/BEi,t − 1)% (MBi,t+τ/MBi,t − 1)% (MEi,t+τ/MEi,t − 1)%

Panel A: CIP deviations measured by currency swap rates

b (b.p.) 0.244 0.227 0.627 0.639 0.875 0.871
(0.114) (0.108) (0.426) (0.420) (0.397) (0.395)

const. 0.62 −14.59 −14.53
(2.88) (10.22) (9.66)

Bank f.e. 7 3 7 3 7 3

N obs. 1713 1713 1713 1713 1713 1713
adj.-R2 (%) 1.0 4.0 1.5 1.4 2.9 2.4

Panel B: CIP deviations measured by forward-OIS implied bases

b (b.p.) 0.168 0.158 0.604 0.617 0.780 0.785
(0.082) (0.078) (0.356) (0.352) (0.341) (0.338)

const. 2.01 −15.02 −13.66
(2.76) (9.28) (8, 72)

Bank f.e. 7 3 7 3 7 3

N obs. 1713 1713 1713 1713 1713 1713
adj.-R2 (%) 0.7 3.7 1.9 1.8 3.1 2.7
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Table 1.3: Predictive regressions: quarterly returns of FX committee surveyed (FXS)
dealer banks on one-year basis swap rates and placebo tests

This table presents results from the following time-series regressions:

1

τ
returnt+τ = β0 + βbt + εt+τ ,

for quarterly observations. The dependent variables are one-quarter-ahead value- or equal-weighted equity
returns of 49 dealer banks participating FX surveys (FXS) conducted by local monetary authority at New
York, London, Tokyo, Toronto, Sydney, Singapore and Hong Kong. Variables are collected for their
holding companies. Additional placebo tests use returns from five ETFs tracking the S&P500 index
(SPY), the global financial sector (IXG), the US financial sector (IYF), US broker-dealers and securities
exchanges (IAI), and US insurance companies (KIE). All returns are net ones in percentage, as well as
annualized (divided by τ = 0.25 as shown in the regression specification). The independent variable bt is
the cross-sectional average of absolute one-year one-year basis swap rates or forward-OIS bases for EUR,
JPY, GBP, AUD, CAD, and CHF against the dollar. Sample periods begin from January 2009 and end
at December 2019. Numbers in parentheses are Newey-West standard errors under automatic bandwidth
selection.

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

Panel A: CIP deviations measured by currency swap rates

b (b.p.) 1.98 1.67 0.61 1.52 1.10 1.43 1.20
(0.87) (0.77) (0.44) (0.72) (0.67) (0.82) (0.76)

const. −32.0 −26.6 3.7 −20.4 −7.4 −17.2 −7.1
(19.7) (17.5) (10.4) (16.7) (15.7) (20.6) (17.7)

N obs. 44 44 44 44 44 44 44
R2-adj. (%) 6.2 4.5 0.6 4.9 2.5 4.0 2.1

Panel B: CIP deviations measured by forward-OIS implied bases

b (b.p.) 1.50 1.28 0.40 1.16 0.79 0.90 0.78
(0.64) (0.66) (0.26) (0.54) (0.45) (0.53) (0.49)

const. −28.4 −23.9 6.9 −17.5 −3.5 −10.4 −0.6
(17.4) (17.3) (8.1) (15.3) (13.6) (18.5) (15.5)

N obs. 43 43 43 43 43 43 43
R2-adj. (%) 13.5 10.6 1.6 11.1 5.6 4.7 3.6
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Table 1.4: Predictive regressions: quarterly returns of FX committee surveyed (FXS)
dealer banks on one-year basis swap rates and placebo tests

This table presents results from the following time-series regressions:

1

τ
returnt+τ = β0 + βbt + εt+τ ,

for daily and monthly observations. The dependent variables are one-quarter-ahead value- or equal-
weighted equity returns of 49 dealer banks surveyed by FX committees of New York, London, Tokyo,
Toronto, Sydney, Singapore and Hong Kong. Variables are collected for their holding companies. Addi-
tional placebo tests use returns from five ETFs tracking the S&P500 index (SPY), the global financial
sector (IXG), the US financial sector (IYF), US broker-dealers and securities exchanges (IAI), and US
insurance companies (KIE). For monthly observations, five hedge fund index returns are also included:
one global composite index from BarclaysHedge (BCH), four indices from Hedge Fund Research (HFR)
tracking global composite, relative value arbitrage, global-macro, and macro-currency strategies. All re-
turns are net ones in percentage, as well as annualized (divided by τ = 0.25 as shown in the regression
specification). The independent variable bt is the cross-sectional average of absolute one-year basis swap
rates for EUR, JPY, GBP, AUD, CAD, and CHF against the dollar. Sample periods begin from Jan-
uary 2009 and end at December 2019. Numbers in parentheses are Newey-West standard errors under
automatic bandwidth selection.

Panel A: daily observations

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

b (b.p.) 2.46 2.25 0.53 1.93 1.27 1.47 1.30
(0.71) (0.71) (0.30) (0.62) (0.51) (0.65) (0.54)

const. −39.8 −36.4 4.9 −28.5 −10.5 −15.2 −8.7
(13.8) (13.4) (7.1) (12.4) (10.9) (14.5) (12.0)

N obs. 2859 2859 2761 2761 2761 2761 2761
R2-adj. (%) 12.0 10.3 2.3 9.6 5.9 5.6 5.3

Panel B: monthly observations

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

b (b.p.) 2.18 1.97 0.46 1.69 1.03 1.27 1.06
(0.79) (0.79) (0.36) (0.74) (0.64) (0.80) (0.72)

const. −34.3 −30.9 6.7 −23.5 −4.8 −10.7 −3.1
(16.3) (15.6) (9.2) (16.2) (14.6) (19.6) (16.1)

N obs. 132 132 132 132 132 132 132
R2-adj. (%) 9.7 7.9 1.0 7.1 3.3 3.6 2.8

ret. (p.p.) BCH HFR HFR HFR HFR
(Gl. Com.) (Gl. Com.) (Re. Val.) (Macro) (Macro. Cur)

|b| (b.p.) 0.27 0.21 0.17 −0.11 0.12
(0.16) (0.14) (0.12) (0.10) (0.12)

const. 0.1 0.4 2.6 4.0 −1.5
(4.0) (3.5) (2.9) (2.6) (2.5)

N obs. 132 132 132 132 132
R2-adj. (%) 1.9 1.2 1.1 0.4 1.5
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Table 1.5: Predictive regressions: quarterly returns of FX committee surveyed dealer
banks on one-year basis swap rates adjusted by controls

This table presents results from the following time-series regressions:

1

τ
returnt+τ = β0 + βbt + φ · controlt + εt+τ

for daily and monthly observations. The dependent variable is the one-quarter-ahead value-weighted
equity return of 49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto,
Sydney, Singapore and Hong Kong. All returns are net ones in percentage, as well as annualized (divided
by τ = 0.25 as specified in the regression equation). The independent variable bt is the cross-sectional
average of absolute one-year basis swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the
dollar. Control variables include the average smoothed earnings yield (E/P) and dividend yield (D/P)
for the 49 dealer banks, the effective Fed fund rate (FFR), and the CBOE volatility index (VIX). Sample
periods begin from January 2009 and end at December 2019. Numbers in parentheses are Newey-West
standard errors under automatic bandwidth selection.

ret. (p.p.) Daily observations Monthly observations

b (b.p.) 2.46 1.18 1.90 2.18 1.00 1.69
(0.71) (0.49) (0.57) (0.79) (0.55) (0.68)

E/P 17.1 16.6
(3.5) (4.4)

D/P 3.99 3.96
(2.33) (2.74)

FFR 5.26 −1.34 4.53 −1.28
(4.61) (5.19) (5.75) (6.48)

VIX 0.00 2.85 0.47 3.28
(0.70) (1.09) (0.96) (1.40)

const. −39.8 −157.7 −92.2 −34.3 −157.7 −96.9
(13.8) (23.8) (23.5) (16.3) (29.8) (32.1)

N obs. 2859 2859 2859 132 132 132
R2-adj. (%) 12.0 43.1 27.2 9.7 42.4 27.8
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Table 1.6: Testing predictions from Proposition 1: linear regressions

This table presents results from the following time-series regressions:

1

τ

(
returnt+τ

rt

)
= β0 + β1Xt + ψ ×

(
1

rt

)
+ φ · controlt + εt+τ , Xt =

bt
rt

or
(
bt
rt

)2

using both daily and monthly observations. The notation “returnt+τ ” denotes one-quarter-ahead value-
weighted equity returns of 49 dealer banks surveyed by FX committees of New York, London, Tokyo,
Toronto, Sydney, Singapore and Hong Kong. All returns are net ones in percentage, as well as annualized
(divided by τ = 0.25 as shown in the regression specification). The cross-sectional average of absolute
one-year basis swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the dollar is denoted by
|b|. The effective Fed fund rate is denoted by r. The independent variable X is the time-series of either
|b|/r or its square (|b|/r)2. Another independent variable of interest is the inverse of the effective Fed
fund rate (1/rt), inspired by the capital accumulation formula in Proposition 1. Control variables include
the smoothed earnings yield (E/P) averaged across the 49 dealer banks, and the CBOE volatility index
(VIX). Sample periods begin from January 2009 and end at December 2019. Robust regressions use the
Huber loss function to accommodate potential outliers. Numbers in parentheses are Newey-West standard
errors under automatic bandwidth selection.

Daily observations Monthly observations
ret./r OLS Robust OLS Robust

b/r 138.5 104.1 117.1 84.9
(109.7) (102.3) (113.9) (103.0)

(b/r)2 33.4 30.0 24.7 27.2
(14.0) (12.5) (8.9) (3.63)

1/r −0.27 −0.21 −0.15 −0.11 −0.19 −0.18 −0.12 −0.12
(0.18) (0.11) (0.12) (0.06) (0.18) (0.10) (0.12) (0.07)

E/P 79.9 88.2 68.8 76.2 59.4 64.0 69.5 79.6
(26.7) (27.3) (27.0) (27.8) (31.3) (33.2) (17.6) (18.2)

VIX 0.91 −0.19 1.45 0.53 7.79 7.51 5.05 2.52
(7.07) (6.56) (4.62) (4.43) (8.90) (8.13) (6.03) (4.96)

const. −625.9 −621.9 −545.8 −559.3 −599.3 −566.4 −599.7 −604.6
(133.2) (132.9) (177.5) (186.4) (149.4) (153.8) (89.3) (84.8)

N obs. 2859 2859 2859 2859 132 132 132 132
R2-adj. (%) 28.7 32.6 − − 22.5 30.3 − −
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Table 1.7: Testing predictions from Proposition 1: semi-parametric regressions

This table presents results from the following semi-parametric regressions:

1

τ

(
returnt+τ

rt

)
= S0

(
bt
rt

)
+ ψ ×

(
1

rt

)
+ φ · controlt + εt+τ

using both daily and monthly observations. The notation “returnt+τ ” denotes one-quarter-ahead value-
weighted equity returns of 49 dealer banks surveyed by FX committees of New York, London, Tokyo,
Toronto, Sydney, Singapore and Hong Kong. All returns are net ones in percentage, as well as annualized
(divided by τ = 0.25 as shown in the regression specification). The cross-sectional average of absolute
one-year basis swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the dollar is denoted by |b|.
The effective Fed fund rate is denoted by r. Out of robustness concerns, only observations with |b|/r falling
within the their sample 5% − 95% IQR are considered. Another independent variable of interest is the
inverse of the effective Fed fund rate (1/rt), inspired by the capital accumulation formula in Proposition
1. Control variables include the smoothed earnings yield (E/P) averaged across the 49 dealer banks, and
the CBOE volatility index (VIX). Sample periods begin from January 2009 and end at December 2019.
Semi-parametric estimation of the model uses shape-constrained B-splines basis for the functional term s.
Numbers in parentheses are standard errors calculated from parametric block bootstrap procedures (that
is, residuals of the fitted models are re-sampled). Block sizes are ninety for daily observations and three
for monthly observations. The table also presents specification tests of whether the functional term should
be included (S0 ≡ 0 or not) by showing the test statistics, their (approximate) theoretical distributions,
and test p-values.

ret./r Daily observations Monthly observations

1/r −0.30 −0.39 −0.54 −0.22 −0.22 −0.31
(0.10) (0.10) (0.09) (0.10) (0.09) (0.10)

E/P 15.8 18.0 55.6 2.3 0.66 20.7
(38.8) (39.7) (37.5) (46.9) (48.1) (50.9)

VIX 6.64 4.59 −2.30 9.73 10.47 6.24
(5.95) (6.06) (5.27) (7.17) (6.88) (7.19)

Test H0 : S0 ≡ 0 v.s. H1 : S0 6≡ 0
F-stat 189 189 133 13.9 7.37 6.07

Appr. dist. F (3, 2538) F (3, 2538) F (8, 2538) F (1, 116) F (2, 116) F (4, 116)
p-value < 10−6 < 10−6 < 10−6 3× 10−4 9× 10−4 3× 10−4

Shape constraints for f(·):
increasing 3 3 7 3 3 7

convex 3 7 7 3 7 7

N obs. 2541 2541 2541 119 119 119
R2-adj. (%) 28.0 28.7 40.2 18.7 18.6 21.6

59



−20

−10

0

10

20

30

0 1 2 3 4 5
x=b/r

S
C
(1

,x
)=

S
0(

x)

(A) SC(1, x): estimates under both monotonic increasing and convex constraints

−20

−10

0

10

20

30

0 1 2 3 4 5
x=b/r

S
C
(1

,x
)=

S
0(

x)

(B) SC(1, x): estimates under the monotonic increasing constraint

−20

−10

0

10

20

30

0 1 2 3 4 5
x=b/r

S
C
(1

,x
)=

S
0(

x)

(C) SC(1, x): estimates without shape constraints

Figure 1.5: Estimates of SC(1, x) under different configurations
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Table 1.8: First-step model estimation: the financial constraints

This table presents results from the following semi-parametric regressions:

1

τ

(
returnt+τ

rt

)
=

[
S0

(
exp(δ>ut)

bt
rt

)
+ φ>vt

]
+ εt+τ

using daily observations. Model parameters are δ and φ. The functional form of S0(·) is treated as
unknown and also estimated. The notation “returnt+τ ” denotes one-quarter-ahead value-weighted equity
returns of 49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto, Sydney,
Singapore and Hong Kong. All returns are net ones in percentage, as well as annualized (divided by
τ = 0.25 as shown in the regression specification). The cross-sectional average of absolute one-year basis
swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the dollar is denoted by bt. Both volume
and equal weighted results are reported. The first set of independent variables in vector ut are the
dollar index, quarterly lagged volatilities of average CIP deviations, changes in dealer banks’ CDS, the
TED spread (three-month dollar LIBOR rates minus the three-month Treasury bill rates), the implied
volatility of euro, the VIX index, and the three-month dollar convenience yield (the RefCorp bond yield
minus the treasury yield). The second set of variables in vector vt are reciprocals of the Fed fund rates
(1/r), the earnings yields for the 49 dealer banks (E/P), and the VIX index. Numbers in parentheses are
standard errors from parametric bootstrap procedures.

weighted by volume equally weighted

δ: dynamics of financial constraint
dollar index −0.018 −0.013

(0.009) (0.005)

lagged vol bt (b.p.) −0.037 −0.036
(0.035) (0.029)

∆ bank CDS (%) 0.096 0.047
(0.358) (0.294)

TED spread (%) 3.84 2.49
(2.12) (1.38)

ivol euro −0.156 −0.124
(0.079) (0.040)

VIX 0.059 0.040
(0.039) (0.030)

$ conv. yield (%) −0.933 −0.522
(0.218) (0.150)

φ: return controls
1/r −0.275 −0.376

(0.099) (0.111)
E/P 74.5 76.1

(21.0) (20.8)
VIX 0.389 1.88

(5.523) (5.37)

N obs. 2541 2541
Deviance R2 (%) 44.6 43.8
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Table 1.9: Second-step model estimation: hedging demands

This table presents results from the following panel regressions:

πitkt = β
>
xit +

n−1∑
j=1

η>j (I[j = i]× xjt)− γbit + `it

using monthly observations. πit in the dependent variable is arbitrage positions calculated based on the
first-step estimation. kt is the total market equity of the 49 FX dealer banks, normalized to one on January
2009. The independent variables in xit include a constant one (for the intercept), bilateral net foreign
direct investment, net purchases of long-term securities (sovereign and local government bonds, corporate
bonds, equities), changes in net bank claims of deposits and short-term securities, and net exports (all in
billions). Interest rate differentials (calculated using three-month inter-bank rates, in basis points) are also
included. All “net” terms are calculated as “US minus foreign” (taking the US perspective). bit stands for
one-year CIP deviations for currency i at time t. The instrumental variable for bit is zit =

∑
i′ 6=i wi′tx

(−ι)
i′t ,

weighted average of xi′t (i′ 6= i) vectors excluding the constant one (thus the “−ι” superscript). The first-
stage regression is then

bit = ψ>zit + φ
>
xit +

n−1∑
j=1

ξ>j (I[j = i]× xjt) + eit,

Currencies under consideration are EUR, JPY, GBP, AUD, CAD, and CHF. The sample period is January
2009-December 2019. Numbers in parentheses are Driscoll-Kraay standard errors robust to general forms
of serial correlations and correlations among currency pairs (Driscoll and Kraay, 1998).

OLS IV

γ 0.18 1.31 1.43
(0.22) (0.51) (0.45)

Weak IV test:
Cragg-Donald Statistic 28.7 23.5
theory cutoff (5% relative bias) 18.4 18.4

β:
net direct investment flows 0.92 0.47 0.37

(0.64) (0.79) (0.85)
net purchase of long-term securities −0.77 3.39

(0.70) (1.59)
• bond 5.12

(1.64)
• equity −1.03

(2.15)
net change in bank claims −0.49 −0.11 −0.10

(0.33) (0.33) (0.32)
bilateral net exports 4.01 11.00 10.00

(4.78) (4.63) (4.06)

rforeign − r$ (%) −0.03 −0.07 −0.06
(0.03) (0.03) (0.03)

const. −19.5 −45.0 −48.7
(5.9) (12.9) (11.5)

N obs 784 784 784
R2-adj. (%) 54.6 55.9 55.9
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Figure 1.7: One-year CIP deviations for G6 currencies: model-implied and observations
from currency swaps
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Figure 1.8: One-year CIP deviations for G6 currencies: model-implied (in-sample 2009-
2015 in black, out-of-sample 2016-2019 in red) and observations from currency swaps
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Figure 1.9: One-year CIP deviations for currencies not used for estimation: model-
implied and observations from currency swaps

Table 1.10: Model-implied CIP deviations

This table documents CIP deviations solved from the estimated equilibrium equation (1.22), denoted by b̂
and compares it with b, the true data (one-year currency swap rates). The parameter β = cov[b̂, b]/σ2[b]
measures the fraction of variation in the data explained by the model, estimated from regressing b̂ on b.

Currency E[b] σ[b] E[b̂] σ[b̂] Corr[b, b̂] β (s.e.)

Panel A: G6 currencies used for estimation

EUR −29.2 16.8 −32.4 18.6 0.56 0.62 (0.13)
JPY −35.1 14.9 −35.4 17.8 0.61 0.73 (0.12)
GBP −9.3 10.3 −9.7 9.0 0.59 0.52 (0.08)
CAD −10.8 11.1 −10.6 12.2 0.83 0.91 (0.10)
AUD 14.0 6.3 15.6 6.3 0.40 0.40 (0.09)
CHF −26.8 13.0 −26.6 7.4 0.57 0.32 (0.07)

Panel B: currencies not used for model estimation

SEK −20.6 9.5 −20.4 4.7 0.58 0.29 (0.06)
NOK −24.7 14.6 −24.6 10.1 0.69 0.47 (0.08)
HKD −12.1 9.1 −11.2 7.3 0.75 0.60 (0.07)
NZD 17.2 5.9 17.3 3.9 0.54 0.35 (0.07)

66



Table 1.11: Model-implied CIP deviations: counterfactual time-series average

This table reports counterfactual time-series average CIP deviations from 2009 to 2019. The constant cα
relaxes (cα < 1) or tightens (cα > 1) the financial constraint. Numbers in parentheses are standard errors
for these (counterfactual) sample mean statistics.

Currency cα = 0.5 cα = 1 cα = 1.5 cα = 2 cα = 2.5

EUR −51.4 −32.2 −19.2 −11.2 −6.1
(15.3) (17.3) (15.1) (11.8) (7.1)

JPY −50.2 −35.3 −24.1 −16.2 −8.5
(15.3) (17.2) (17.1) (14.8) (8.2)

GBP −14.0 −9.7 −6.5 −4.2 −2.6
(11.2) (9.0) (7.5) (6.1) (4.5)

CAD −13.7 −10.7 −7.5 −6.3 −4.5
(13.7) (12.2) (14.3) (9.4) (7.3)

AUD 21.0 15.6 11.8 7.6 5.2
(5.3) (6.3) (10.3) (6.5) (5.7)

CHF −30.8 −26.6 −22.6 −19.0 −14.2
(5.4) (6.9) (8.0) (8.4) (6.6)

Table 1.12: Shapley decomposition of model-implied CIP deviations

The table reports the full-sample Shapley decomposition results for G6 currencies. The decomposition
quantifies marginal contribution from each of the three economic forces to variation in model-implied CIP
deviations.

Currency financial constraints hedging demands arbitrage capital

EUR 0.553 0.287 0.160
JPY 0.596 0.187 0.217
GBP 0.415 0.294 0.291
CAD 0.235 0.558 0.207
AUD 0.519 0.318 0.163
CHF 0.432 0.470 0.098

Avg. 0.458 0.352 0.190

67



Date

C
on

tr
ib

ut
ed

 V
ar

ia
nc

e/
To

ta
l V

ar
ia

nc
e

2013−06−28 2014−12−31 2016−06−30 2017−12−29 2019−06−28

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Date
C

on
tr

ib
ut

ed
 V

ar
ia

nc
e/

To
ta

l V
ar

ia
nc

e

2013−06−28 2014−12−31 2016−06−30 2017−12−29 2019−06−28

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(A) EUR (B) JPY

Date

C
on

tr
ib

ut
ed

 V
ar

ia
nc

e/
To

ta
l V

ar
ia

nc
e

2013−06−28 2014−12−31 2016−06−30 2017−12−29 2019−02−28

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Date

C
on

tr
ib

ut
ed

 V
ar

ia
nc

e/
To

ta
l V

ar
ia

nc
e

2013−06−28 2014−12−31 2016−06−30 2017−12−29 2019−06−28

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

(C) GBP (D) CAD

Date

C
on

tr
ib

ut
ed

 V
ar

ia
nc

e/
To

ta
l V

ar
ia

nc
e

2013−06−28 2014−12−31 2016−06−30 2017−12−29 2019−06−28

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Date

C
on

tr
ib

ut
ed

 V
ar

ia
nc

e/
To

ta
l V

ar
ia

nc
e

2013−06−28 2014−12−31 2016−06−30 2017−12−29 2019−06−28

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(E) AUD (F) CHF

Figure 1.10: Rolling window Shapley decomposition of variation in CIP deviations (gray:
financial constraints, purple: hedging demands, blue: arbitrageurs’ capital)
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Figure 1.11: Estimates of the baseline arbitrage profit function and shapes of financial
constraints
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1.7 Appendices

1.7.1 Proofs

Proof of Proposition 1

I begin the proof by stating the following lemma:

Lemma 2. Let the pair (π∗0, π
∗) be such that π∗0r+ π∗b = SC(r, b), then if b > 0, π∗ ≥ 0;

if b < 0, π∗ ≤ 0.

Proof of Lemma 2. By Assumption 3, (1, 0) ∈ C, as a result SC(r, b) ≥ r. If b > 0 and
π∗ < 0 or b < 0 and π∗ > 0, then SC(r, b) < π0r ≤ r (it is alway the case that π0 ≤ 1), a
contradiction, thus the lemma holds.

This lemma says that when b > 0, arbitrageurs profit from selling dollars forward36,
i.e., π∗ ≥ 0 (positive forward dollar supplies). In the same vein, when b < 0, they will buy
dollar forward, i.e., π∗ ≤ 0 (negative forward dollar supplies).

Now we prove Proposition 1. The arbitrageurs’ optimization problem is equivalent to

maximize
y, s=k−y

log(y) +
1

1 + ρ
log(k − y) and maximize

(π0, π)∈C
π0r + πb. (1.23)

The first order condition with regard to y and s commands s = y/(1 + ρ). Combining
this condition with s = k − y, we have y = [(1 + ρ)/(2 + ρ)]k and s = k/(2 + ρ). By the
definition of SC and the boundedness of C, optimal combination of π0 and π must be such
that π0r + πb = SC(r, b) <∞. As a result,

k′ = s+ π0sr + πsb = [1 + SC(r, b)] s =
1 + SC(r, b)

2 + ρ
k.

Noticing the fact that support functions are positively homogeneous of degree one (e.g.,
Molchanov and Molinari (2018, p. 75-76)), divide both sides of the equation above by
r > 0 and then minus 1/r yield the capital accumulation equation. Substituting k by
[(2 + ρ)/(1 + ρ)]y and k′ by y′, we have

y′ =
1 + SC(r, b)

1 + ρ
y,

which agrees with the consumption Euler equation in the proposition.
Since C is convex, the support function SC is subadditive and (thus) convex (e.g.,

Molchanov and Molinari (2018, p. 75-76)). It follows directly that (k′ − k)/k is a convex
function of b.

To prove that arbitrageurs’ capital gain return (k′ − k)/k is increasing in |b|, we only
need to show that, with r fixed, if b ≥ 0 (b ≤ 0), SC(r, b) increases (decreases) in b.

36They can offer pounds for dollars to earn the favorable rate r£ + b (b > 0) in cross-currency swap
markets now and return dollars to reclaim pounds later, or simply buy pounds forward (with dollars) in
FX swap/forward markets. Either way, they are supplying forward dollars.
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Consider b′ ≥ b ≥ 0,

SC(r, b
′) = π∗

′
0 r + π∗

′
b′ ≥ π∗0r + π∗b′ = π∗0r + π∗b+ π∗(b′ − b) ≥ SC(r, b),

where the pair (π∗
′

0 , π
∗′
0 ) ∈ C maximize π0r + πb′, and the pair (π∗0, π

∗
0) ∈ C maximize

π0r + πb. The last inequality above holds because π∗ ≥ 0 when b ≥ 0 (Lemma 2). Using
the same notation, for b ≤ b′ ≤ 0,

SC(r, b) = π∗0r + π∗b ≥ π∗′0 r + π∗
′
b = π∗

′
0 r + π∗

′
b′ + π∗

′
(b− b′) ≥ SC(r, b′).

The last inequality above follows from the fact that π∗′ ≤ 0 when b′ ≤ 0 (Lemma 2).
Q.E.D.

Proof of Proposition 2

The arbitrageurs’ optimal positions π∗0 and π∗ are such that π∗0r + π∗b = SC(r, b). Since
SC is positively homogeneous of degree one, and is differentiable (by assumption), we can
apply Euler’s homogeneous function theorem (Mas-Colell, Whinston, and Green, 1995,
Theorem M.B.2, p. 929), which implies that π(b) = π∗ = ∂SC(r, b)/∂b.

Then we turn to the existence and uniqueness result. Plugging the result for π(b) =

∂SC(r, b)/∂b and the expression (1.5) for q(b) into equation (1.6), we have

b =
γ0

γ +
∂SC(r, b)

b∂b
s

. (1.24)

Noticing that, by assumption, π(0) = ∂SC(r, 0)/∂b = 0 and SC is twice differentiable,

∂SC(r, b)

b∂b
=

1

b− 0

(
∂SC(r, b)

∂b
− ∂SC(r, 0)

b∂b

)
=
∂2SC(r, b)

∂b2

∣∣∣∣∣
b=b̂∈[0, b]

.

Due to the convexity of the support function SC , the condition ∂2SC(r, b)/∂b
2 ≥ 0 holds

against any values of b for which SC is well-defined, thus the right hand side of equation
(1.24), namely F (b), uniformly falls within the interval [0, γ0/γ] if γ0 ≥ 0 or [γ0/γ, 0] if
γ0 < 0. Since SC is twice differentiable, π(b) = ∂SC(r, b)/∂b is continuous, and so is the
function F (b) (notice that its denominator is always positive as γ > 0). By Brouwer’s
fixed point theorem (Mas-Colell, Whinston, and Green, 1995, Theorem M.I.1, p. 952), the
equation F (b) = b admits a solution b∗ in [0, γ0/γ] if γ0 ≥ 0 or [γ0/γ, 0] if γ0 < 0, thus
the existence result.

The uniqueness result follows naturally from the monotonicity of π(b)s − q(b) in b.
Since π′(b)s−q′(b) = ∂2SC(r, b)/∂b

2s+γ > 0 as long as γ > 0, π(b)s−q(b) monotonically
increases, thus the solution b∗ to π(b)s− q(b) = 0 is unique.

Next, we prove the conclusion that |b∗| is decreasing in the arbitrageurs’ initial capital
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k. From the proof of Proposition 1, the arbitrageurs’ saving s = k/(2 + ρ), thus

k =
(ρ+ 2)(γ0 − γb)

π(b)
. (1.25)

The right-hand side function of b in equation (1.25), denote by G(b), has a derivative

G′(b) = −(ρ+ 2)
γπ(b) + (γ0 − γb)π′(b)

[π(b)]2
,

in which π′(b) ≥ 0 for all b and γ > 0 by the assumption. When γ0 ≥ 0, γ0 − γb ≥ 0 and
b ≥ 0, which implies π(b) ≥ 0 from Lemma 2. As a result, G′(b) ≤ 0: an increase in k

will leads to a smaller b∗ ≥ 0 such that G(b∗) = k. When γ0 < 0, γ0 − γb ≤ 0 and b ≤ 0,
indicating π(b) ≤ 0 from Lemma 2. Then G′(b) ≥ 0: a increase in k will require a larger
b∗ ≤ 0 such that G(b∗) = k. Summing up the conclusions, |b∗| decreases in k.

Q.E.D.

Proofs (and possible generalizations) of propositions and lemmas in Section
1.3

Here I consider the general case: replacing the log utility with a power utility function
u(y) = (y1−γ − 1)/(1 − γ). The log utility specification is the special case when γ = 1.
The arbitrageurs’ problem is to maximize

Jt = Et
[∫ ∞

0
e−ρsu (yt+s) ds

]
,

under the budget constraint (as defined in equation (1.11))

dk

k
= π0 [rdt+ w(µ− r)dt+ wσdz] + π>bdt− y

k
dt,

and position constraint
(π0, π) ∈ C,

by choosing (y, w, π0,π). It is worthwhile mentioning that all time-t subscripts are omit-
ted here. For example, the constraint (π0, π) ∈ C indeed represents (π0t, πt) ∈ Ct.

The Hamilton-Jacobi-Bellman (HJB) equation for arbitrageurs’ optimization problem
is

ρJ = sup
y, w, π0,π

{u(y) +DJ} , where (π0, π) ∈ C. (1.26)

The value function J(k, K, s) is defined for the capital k of each arbitrageur, as well as
the aggregate capital K =

∫
[0, 1] kdi of all arbitrageurs (Kyle and Xiong, 2001; Kondor

and Vayanos, 2019). K is effectively an additional state variable because it determines
the equilibrium arbitrage yield vector b. Given that arbitrageurs are identical and of mass
one, K = k in equilibrium. The vector s ∈ Rp incorporates all other state variables such
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as ones that determine i. the hedging demands; ii. time variation of the constraint; iii.
the triplet (rt, µt, σt) characterizing arbitrageurs’ other investment opportunities. I make
clear the assumptions about s as follows:

Assumption 8. The dynamics of s = (s1, . . . , sp)
> is written as a vector Itô process

defined in a complete probability space, that is,

ds = P (s)dt+Q(s)dzs,

where {zs} is a p-dimensional vector of independent standard Brownian motions; the
vector-valued function P : Rp 7→ Rp is such that sups ‖P (s)‖2 < ∞; the matrix-valued
function Q : Rp 7→ Rp×p is such that Q(s)Q(s)> is positive definite with a finite dominant
eigenvalue for all s.

The time-varying elements of the model γ0,t (hedging demand intercepts), Ct (financial
constraints), and (rt, µt, σt) (investment opportunities beyond riskless arbitrage) all relate
to s as follows:

i. γ0,t = γ0(s) where the mapping γ0 : Rp 7→ Rn is continuously differentiable;

ii. Ct is such that its support function SCt(x) = S0(s, x) for all x ∈ dom(SCt) where S0

is continuously differentiable in s;

iii. rt = r(s), µt = µ(s), σt = σ(s) where the three mappings r : Rp 7→ R, µ : Rp 7→ R
and σ : Rp 7→ R+ are all continuously differentiable.

Under the assumption above, I calculate the infinitesimal generator for the value func-
tion J(k, K, s) as follows:

DJ =Jk
E [dk]

dt
+

1

2
Jkk

E [dkdk]

dt
+ J>ks

E [dkds]

dt
+ JkK

E [dkdK]

dt

+ JK
E [dK]

dt
+ J>s

E [ds]

dt
+

1

2
tr

{
Jss

E
[
dsds>

]
dt

}
+

1

2
JKK

E [dKdK]

dt
+ J>Ks

E [dKds]

dt︸ ︷︷ ︸
constant w.r.t. (y, w, π0, π)

=Jk

{
kπ0 [r + w(µ− r)] + kπ>b− y

}
+

1

2
Jkkk

2π2
0w

2σ2

+

p∑
j=1

Jksjkπ0wσ
E [dzdsj ]

dt
+ J>kKkπ0wKΠ0Wσ2 + constant,

where Π0 =
∫

[0, 1] π0di and w =
∫

[0, 1]wdi aggregate positions π0 and w of all arbitrageurs.
In equilibrium, Π0 = π0 and W = w.

For the ease of exposition below, I introduce two definitions first.

Definition 1. (Bertsekas, 2009, Chapter. 1, p. 7, Properness of a function) A proper
function f is one such that f(x) < ∞ for at least one x in its domain and f(x) > −∞
for all x in its domain.
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Definition 2. (Bertsekas, 2009, Chapter. 1, p. 83, Conjugate functions) Consider a real-
valued function f , the conjugate function of f is the function f? defined by f?(y) =

sup{x>y − f(x)}.

Now I begin to list and prove a set of lemmas.

Lemma 3. Define the indicator function for C:

IC(x) =

{
0, x ∈ C
+∞, x /∈ C

. (1.27)

IC is a proper closed convex function.

Proof. First, it is always true that IC ≥ 0 > −∞, and, as long as C is nonempty (true by
assumption), IC = 0 <∞, for x ∈ C. As a result, IC is proper.

Second, consider the epigraph of IC , defined as {(x, α) : IC(x) ≤ α}. By definition,
this set is C × [0, ∞), which is convex as long as C is convex. Thus, IC must be convex
(Bertsekas, 2009, Chapter. 1, p. 8, Definition 1.1.3).

Third, consider the set {x : IC(x) ≤ α}, which equals C (a closed set by assumption)
when α ≥ 0 and ∅ (always closed) otherwise. Thus, IC is a closed function.

Lemma 4. The indicator function of the set C is such that IC(x) = supy
{
x>y − SC(y)

}
,

that is, IC = S?C.

Proof. First, noticing that

SC(y) = sup
x∈C

x>y = sup
{
x>y − IC(x)

}
,

that is, SC is the conjugate of IC , or simply SC = I?C .
Next, since IC is a proper closed convex function, by the Conjugacy Theorem (Bert-

sekas, 2009, Chapter. 1, p. 85-86), I??C = IC , that is, the conjugate function of I?C is IC
itself. Thus, S?C = IC .

Lemma 5. The HJB equation of (1.26) under the constraint (π0, π) ∈ C is equivalent to

ρJ = inf
ν

sup
y, w, π̂

{
u(y) +DJ + SC(ν)− π̂>ν

}
, (1.28)

without any constraints, where

π̂ =

(
π0

π

)
is a vector concatenating π0 and π, ν = (ν0, ν1, . . . , νn)> is a vector of (n+1) dimensions.

Proof. Under the definition of indicator functions introduced in (1.27), the problem of
(1.26) is equivalent to

ρJ = sup
y, w, π̂

{u(y) +DJ − IC(π̂)} .
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This equivalence is easy to understand. When π̂ ∈ C, the optimization problem is exactly
the original one. Otherwise, the indicator function penalizes the objective function so
harshly that regardless how carefully the choice variables are picked, the outcome is always
−∞.

From Lemma 4, −IC(π̂) = infν
{
SC(ν)− π̂>ν

}
. Thus

ρJ = sup
y, w, π̂

{
u(y) +DJ + inf

ν

{
SC(ν)− π̂>ν

}}
,

= sup
y, w, π̂

inf
ν

{
u(y) +DJ + SC(ν)− π̂>ν

}
(1.29)

= inf
ν

sup
y, w, π̂

{
u(y) +DJ + SC(ν)− π̂>ν

}
.

The last equation follows from the fact that the function {u(y) +DJ +SC(ν)− π̂>ν} as a
whole is concave in (y, w, π̂) with fixed ν and convex in ν with fixed (y, w, π̂), satisfying
the saddle point property.

Now I prove the Proposition 3. From Lemma 5, the initial maximization problem of
(1.28) leads to the following first-order condition with regard to w:

Jkkπ0(µ− r) + Jkkk
2π2

0wσ
2 +

p∑
j=1

Jksjkπ0σ
E [dzdsj ]

dt
+ JkKkπ0KΠ0Wσ2 = 0. (1.30)

For elements in π̂, the first order condition with regard to π0 is

Jkk [r + w(µ− r)] + Jkkk
2π0w

2σ2 +

p∑
j=1

Jksjkwσ
E [dzdsj ]

dt
+ JkKkwKΠ0Wσ2 − ν0 = 0.

(1.31)

Performing the calculation of (1.31)-[(1.30)×w/π0], for both sides of the two equations,
we have

Jkkr = ν0. (1.32)

For π1, . . . , πn in the vector π̂, Lemma 5 commands choosing πi to maximize (Jkkbi−νi)πi.
As long as Jkkbi does not equal νi, the maximized objective function reaches infinity. Thus,
in equilibrium,

Jkkbi = νi, (1.33)

for all i = 1, . . . , n.

Now consider the equation (1.29) shown in the proof of Lemma 5. The initial mini-
mization problem with regard to ν,

inf
ν

{
u(y) +DJ + SC(ν)− π̂>ν

}
,

75



will only yield two possible outcomes: −∞ or {u(y) +DJ}. In equilibrium, this outcome
cannot be −∞, thus ν must be such that SC(ν)− π̂>ν = 0, that is

π0ν0 +
n∑
i=1

πiνi = SC(ν0, ν1, . . . , νn). (1.34)

Noticing that SC is positively homogeneous of degree one, divide both sides of equation
(1.34) by Jkk

π0
ν0

Jkk
+

n∑
i=1

πi
νi
Jkk

= SC

(
ν0

Jkk
,
ν1

Jkk
, . . . ,

νn
Jkk

)
,

and combine the result above with equation (1.32) as well as the set of equations (1.33),

π0r + π>b = SC(r, b).

Proposition 3 then follows from the equation above as well as Euler’s homogeneous function
theorem (Mas-Colell, Whinston, and Green, 1995, Theorem M.B.2, p. 929).

Q.E.D.
For Proposition 4, I state the following generalized version (for CRRA utility functions)

and then present its proof.

Proposition 7. Under Assumption 8, in equilibrium, there exist a function g(K, s) :

R×Rp 7→ R of the aggregate capital and the state variables, such that arbitrageurs’ optimal
rates of consumption y satisfy

log
(y
k

)
=

1

γ
[log ρ− (1− γ)g(K, s)] ;

their total positions on the risky project (π0w) are

1

A(K, s)

µ− r
σ2

+

p∑
j=1

λj(K, s)βj

 ,

where
βj =

cov [dr̃, dsj ]

var[dr̃]
,

is the regression coefficient of the changes in the j-th state variable, namely dsj, regressed
on the risky project return dr̃; functions A and λj are

A(K, s) = γ − (1− γ)
∂g(K, s)

∂K
K,

λj(K, s) = (1− γ)
∂g(K, s)

∂sj
.

Proof. From Lemma 5, the maximization problem yields the following first-order-condition
for y:

u′(y) = Jk.
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Homogeneity of u′(y) = y−γ implies that the value function is of the following format:

J(k, K, s) =
1

ρ
u (kG(K, s)) , where G(K, s) = exp(g(K, s)).

For the special case of log utility (γ = 1), the specification still holds and

J(k, K, s) =
1

ρ
log(k) + g(K, s).

Noticing that

Jk =
1

ρ
u′(kG)G =

1

ρ
k−γG1−γ ,

the equation u′(y) = Jk is equivalent to ρy−γ = k−γG1−γ . Taking logarithm and rear-
ranging terms,

log
(y
k

)
=

1

γ
[log ρ− (1− γ)g(K, s)] .

From (1.30),

π0w = − Jk
kJkk

(
µ− r
σ2

)
−

p∑
j=1

Jksj
kJkk

E [(σdz)dsj ]

E [(σdz)(σdz)]︸ ︷︷ ︸
=βj

− JkK
kJkk

KΠ0W.

Second order derivatives of the value function are given by

Jkk = −γ
ρ
k−γ−1G1−γ = −γJk

k
, Jksj =

1− γ
ρ

k−γG−γ
∂G

∂sj
, JkK =

1− γ
ρ

k−γG−γ
∂G

∂K
.

Plugging all expressions above to the equation for π0w:

π0w =
µ− r
γσ2

+

p∑
j=1

1− γ
γ

∂G

G∂sj
βj +

1− γ
γ

∂G

G∂K
KΠ0W

=
µ− r
γσ2

+

p∑
j=1

1− γ
γ

∂g

∂sj
βj +

1− γ
γ

∂g

∂K
KΠ0W

=
µ− r
γσ2

+

p∑
j=1

λj(K, s)

γ
βj +

1− γ
γ

∂g

∂K
KΠ0W

Noticing that the aggregate positions Π0 and W equal π0 and w respectively, then

(
1− 1− γ

γ

∂g

∂K
K

)
π0w =

1

γ

µ− r
σ2

+

p∑
j=1

λj(K, s)βj

 ,

that is,

π0w =
1

A(K, s)

µ− r
σ2

+

p∑
j=1

λj(K, s)βj

 .
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Proposition 4 is the special case of the results above when γ = 1. Results collected
here in Proposition 7 have natural interpretations. The consumption-to-wealth ratio y/k
is a function of the state variables s and aggregate capital K when γ 6= 1. It equals the
constant ρ for the log utility case.

Arbitrageurs’ demand for the risky project (proportional to their capital) is “Merto-
nian”, both the myopic mean-variance demand and state-variable hedging demands (driven
by the betas) appear when γ 6= 1. The ratio −λj/A can be interpreted as the risk pre-
mium of the risky project due to its exposure to the risk factor sj . With the log utility,
λj(K, s) = 1 for all j = 1, . . . , p, and all hedging demands disappear.

Since the aggregate capital also becomes an endogenous state-variable, a dynamic
risk-aversion function A(K, s) emerges and replaces the constant relative risk-aversion
parameter γ, similar to the exposition of Kondor and Vayanos (2019). With the log utility
specification, the dynamic risk-aversion A(K, s) equals one. Proof of Proposition 4 thus
follows through.

Q.E.D.
Next I present and prove a generalized version of Proposition 5.

Proposition 8. In equilibrium, the arbitrageurs’ capital evolves according to the following
rule:

dk

k
=
[
λσ̂ − y

k
+ SC(r, b)

]
dt+ σ̂dz (1.35)

where

σ̂ =
1

dt
E

[(
dk

k

)2
]

=
1

A(K, s)

λ+

p∑
j=1

σλj(K, s)βj

 ;

y

k
= exp

{
1

γ
[log ρ− (1− γ)g(K, s)]

}
;

functions λj(K, s), j = 1, . . . , p, and A(K, s) are defined as in Proposition 7; λ = (µ −
r)/σ is the Sharpe ratio of the risky project available to arbitrageurs.

Proof. Plugging results from Proposition 7 into the dynamic budget constraint of arbi-
trageurs, we have

dk

k
= π0 [rdt+ w(µ− r)dt+ wσdz] + π>bdt− y

k
dt

=
(
π0r + π>b

)
dt+ π0w(µ− r)dt− y

k
+ π0wσdz

= SC(r, b)dt+
1

A(K, s)

λ2 +

p∑
j=1

λσλj(K, s)βj

dt− y

k
dt+

1

A(K, s)

λ+

p∑
j=1

σλj(K, s)βj

dz,

in which
y

k
= exp

{
1

γ
[log ρ− (1− γ)g(K, s)]

}
in equilibrium. The proposition follows through.

With γ = 1 (the log-utility case), functions A = 1 and λj = 0, as a result, σ̂ = λ.
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Also, the ratio y/k is the constant ρ in equilibrium under the log utility as in Proposition
4. Plugging these quantities back to equation (1.35), we have

dk

k
=
[
λ2 − ρ+ SC(r, b)

]
dt+ λdz,

completing the proof for Proposition 5.

Q.E.D.

I now prove Proposition 6. First, I show that it is alway the case that k > 0. From
Proposition 5, arbitrageurs’ date-t capital in equilibrium is

kt = k0 exp

{∫ t

0

[
1

2
λ2
s − ρ+ SC(rs, bs)

]
ds+

∫ t

0
λsdzs

}
,

which is greater than zero as long as k0 > 0 (by model assumption).

Now consider the closed ball B(0, ‖γ0‖2/γ) in Rn and an arbitrary vector b in this
ball. For any fixed r and k > 0, since

∂SC(r, b)

∂b
=
∂SC(r, 0)

∂b
+
∂2SC(r, b

∗)

∂b∂b>
b

= π(0) +HC(r, b
∗)b,

= HC(r, b
∗)b (π(0) = 0 By Assumption 6)

for some b∗ (as a function of b) such that b∗ ∈ B(0, b) ⊂ B(0, ‖γ0‖2/γ), where HC =

∂2SC/∂b∂b
> defines the Hessian matrix of SC , we have b = (γ +HC(r, b

∗)k)−1 γ0. Con-
vexity of the support function SC commands thatHC is positive semi-definite everywhere.
Let

HC(r, b
∗) = Γ>diag(d1, . . . , dn)Γ, d1 ≥ d2 ≥ · · · ≥ dn ≥ 0

be its eigen-decomposition (forHC(r, b∗) is real-valued and symmetric, this decomposition
must exist), then

(γ +HC(r, b
∗)k)−1 = Γdiag

(
1

γ + d1k
, . . . ,

1

γ + dnk

)
Γ>

and

‖ (γ +HC(r, b
∗)k)−1 γ0‖2 ≤

1

γ + dnk
‖γ0‖2 ≤

1

γ
‖γ0‖2.

Thus (γ +HC(r, b
∗(b))k)−1 γ0 is a continuous mapping from B(0, ‖γ0‖2/γ) to itself. By

Brouwer’s fixed point theorem (Mas-Colell, Whinston, and Green, 1995, Theorem M.I.1,
p. 952), the original equation, which finds the fixed point of this mapping, admits a
solution.

Uniqueness of the solution is due to the fact that the Jocabian matrix of function
(∂SC(r, b)/∂b)k + γb is

J(r, b) = HC(r, b) + γ,
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the determinant of which equals
∏n
i=1(di + γ) > 0 everywhere. Thus, by the implicit

function theorem (Mas-Colell, Whinston, and Green, 1995, Theorem M.E.1, p. 941-942),
within the ball B(0, ‖γ0‖2/γ), equation (∂SC(r, b)/∂b)k + γb = γ0 admits a unique
solution.

Q.E.D.
I finish this section by proving Lemma 1. For (π∗0, π

∗) ∈ Ct such that SCt(r, b) =

π∗0r + π∗>b, we have that

SCt(r, b) = π∗0r +

(
π∗

αt

)>
(αtb) ≤ SC0 (r, αtb)

because (π∗0t, π
∗
t /αt) ∈ C0. For any (π0, π) ∈ C0, since (π0, αtπ) ∈ Ct, it must be that

SCt(r, b) ≥ π0r + (αtπ)>b = π0r + π>(αtb).

Since the inequality above holds for an arbitrary pair of (π0, π) ∈ C0, SCt(r, b) ≥ SC0(r, αtb).
Combining results above, SCt(r, b) = SC0(r, αtb), which is the conclusion of Lemma 1.

Q.E.D.
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1.7.2 Algorithmic details for the first-step estimation

The statistical model is equivalent to

E [yt] = λ>zt + S (xtαt) ,

αt = exp
(
δ>ut

)
.

The semi-parametric nonlinear least square problem to solve is

minimize
λ, δ, S(·)

T∑
t=1

[
yt − λ>zt − S (xtαt)

]2
.

To start the algorithm, initialize δ with a guess δ(0). At iteration i,

• Treating δ(i) as known, calculate α(i)
t . Then fit the semi-parametric model

minimize
λ, S

T∑
t=1

[
yt − λ>zt − S

(
xtα

(i)
t

)]2

to find λ(i), S(i)(·) and the residuals ε(i)
t ;

• Define ŷ(i)
t = yt − λ(i)>zt, solve the following problem

minimize
δ

L =
T∑
t=1

[
ŷ

(i)
t − S(i)

(
xt exp

(
δ>ut

))]2
.

Specifically, consider the Taylor expansion at xtα
(i)
t

L ≈
T∑
t=1

[
ŷ

(i)
t − S(i)

(
xtα

(i)
t

)
− S(i)′

(
xtα

(i)
t

)
xt

(
exp

(
δ>ut

)
− α(i)

t

)]2

=

T∑
t=1

[
ŷ

(i)
t − S(i)

(
xtα

(i)
t

)
+ S(i)′

(
xtα

(i)
t

)
xtα

(i)
t − S(i)′

(
xtα

(i)
t

)
xt exp

(
δ>ut

)]2
.

Define
wt = S(i)′

(
xtα

(i)
t

)
xt

ỹ
(i)
t =

1

wt

[
ŷ

(i)
t − S(i)

(
xtα

(i)
t

)]
︸ ︷︷ ︸

ε
(i)
t

+α
(i)
t ,

the approximate problem becomes

minimize
δ

L =

T∑
t=1

w2
t

[
ỹ

(i)
t − exp(δ>ut)

]2
.

which is a weighted nonlinear least square problem. Solve the problem to get δ(i+1).
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• Start iteration i+ 1

The algorithm iterates the above loop until convergence.
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1.7.3 Microfoundation of (net) hedging demands

There are two countries, country d (domestic, the US) and f (foreign, the UK). Each
country issues its own currency. We call the domestic (d) currency “dollar” and foreign
(f) currency “pound”. The exchange rate (pounds against dollars) at date t is Et. In
other words, one pound is exchanged for Et amount of dollars (in practice, the GBP/USD
currency pair). I assume that the dynamics of this exchange rate follows a Geometric
Brownian motion:37

dE

E
= µedt+ σedze,

where µe measures the expected rate of appreciation for pounds, σe captures its volatility,
the process {ze} is a standard Brownian motion.

There is a continuum of mass one identical hedgers in each country, namely d-hedgers
and f -hedgers. Hedgers are exposed to currency risks due to their endowments abroad.
Specifically, j-hedgers’ (j ∈ {d, f}) endowments at time t is Dj

t from abroad, denomi-
nated in foreign currencies (i.e., Df

t is denominated in dollars, and Dd
t is denominated in

pounds). These endowments can be interpreted as cash flows from each country’s Balance
of Payments (BOP) items, such as export receivables, (changes in) direct or portfolio in-
vestment, as well as returns received from existing asset positions abroad. I assume that
these endowments, denominated in dollars, satisfy multi-factor structures:

DdE = λ>d x+ λd,0,

Df = λ>f x+ λf,0,

in which the vector of factors, denoted by x, is a multivariate Itô process:

dx = µ(x)dt+ σ(x)dzx.

Elements in the vector {zx} are standard Brownian motions. Functions µ and σ are
such that E [dx] = µ(x)dt and E

[
dxdx>

]
= σ(x)σ(x)>dt are well defined in a complete

probability space.
Hedgers of type j maximize mean-variance utilities over instantaneous wealth changes

in [t, t+ dt] denominated in their home currency

E
[
dW j

]
− Aj

2
var
[
dW j

]
, j ∈ {d, f}, (1.36)

where dW j represents these instantaneous wealth changes. The parameter Aj captures
the level of risk-aversion of the type-j hedgers who face the trade-off between the mean and
variance of wealth change dW j . Agents optimizing (1.36) can be interpreted as overlapping
generations who are born at date t, manage their wealth from t to (t + dt), consume
everything and then die at time (t+ dt). If their preferences over final consumptions are
characterized by the von Neumann-Morgenstern expected utility E[u(·)], the risk-aversion

37Again, all time subscripts are omitted whenever there is no confusion caused.
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parameter Aj in problem (1.36) can be regarded as Aj = −u′′(W j)/u′(W j).38 I assume
that

Ad =
Af

E
= A,

just to guarantee that the risk aversion parameters are invariant against the exchange
rate.

In the baseline setting, dW d = d
(
DdE

)
(d-hedgers in the US repatriating pound en-

dowments) and dW f = d
(
Df/E

)
(f -hedgers in the UK repatriating dollar endowments).

Hedgers cannot manage their wealth changes from time t to (t+ dt).
Beyond the baseline setting, I allow hedgers to alter their currency risk exposures using

forward contracts.39 These contracts, signed at time t, allow hedges to exchange F units
of dollars for one pound at time (t + dt). Taking CIP deviations as given, the forward
price F satisfy

F exp
(
rfdt+ bdt

)
= E exp

(
rddt

)
,

where rf and rd are pound and dollar risk-free rates. For d-hedgers managing their pound
exposures, they can sign a forward contract exchanging hd pounds for hdF dollars. As a
result, their wealth changes is now

dW d =
[
hdF +

(
Dd + dDd − hd

)
(E + dE)

]
−DdE

=hdE

(
F

E
− 1− dE

E

)
+ d

(
DdE

)
=hdE

[(
rd − rf − b− µe

)
dt− σedze

]
+ d

(
DdE

)
. (1.37)

Choosing hd to maximize (1.36) for j = d under (1.37) yields the following first-order
condition:

E
(
rd − rf − b− µe

)
−Ad

{
hdE2σ2

e −
Eσe
dt

E
[
dzed

(
DdE

)]}
= 0,

38This is, of course, also due to the fact that shocks to hedgers’ endowment factors x and spot exchange
rate return dE/E are all Gaussian.

39In practice, other forward-like derivative contracts such as foreign exchange swaps (FX swaps in short)
and cross-currency basis swaps (currency swaps in short) can serve similar purposes, though preferred by
agents of different business models and cash flow durations.
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from which we solve for hd as

hd =
rd − rf − µe
EAdσ2

e

− b

EAdσ2
e

+
1

Eσedt
E
[
dzed

(
DdE

)]
=
rd − rf − µe

EAσ2
e

− b

EAσ2
e

+
Dd

σ2
edt

E
[

dE

E

(
dDd

Dd
+

dE

E
+

dDd

Dd

dE

E

)]
=
rd − rf − µe

EAσ2
e

− b

EAσ2
e

+
Dd

σ2
edt

E
[

dE

E

dDd

Dd
+ σ2

edt

]
= −µe + rf − rd

EAσ2
e

− b

EAσ2
e

+
cov

[
dE/E, dDd/Dd

]
var [dE/E]︸ ︷︷ ︸

βd

Dd +Dd. (1.38)

The equation above conveys straightforward intuitions. Consider (Dd − hd), which
represents the d-hedgers’ unhedged pound exposure. We can also treat the quantity as
if it is a pure speculative position on GBP/USD. This term increases in (µe + rf − rd),
which is the (expected) excess return from a GBP/USD carry trade (borrowing dollars,
exchanging for pounds in spot markets, then lending pounds). This excess return over the
variance (scaled by the risk-aversion parameter) is the canonical mean-variance portfolio
demand.

The d-hedgers’ pure (unhedged) pound exposure (Dd − hd) increases when βd, the
regression coefficient of d-hedgers’ endowment growth rates on the currency returns, de-
creases. Lower βd makes the exchange rate E itself a better hedge against a future drop
in d-hedgers’ endowments, thus incentives hedgers to take on more the currency risk.

Hedged position hd decreases in the CIP deviations. Recall that hd represents the
quantity of pounds d-hedgers are selling forward. As higher b translates to relatively lower
forward pound price: selling pounds for dollar forward becomes less favorable, thus a
smaller hedged position.

Similarly, for f -hedgers hedging against USD/GBP exchange risk, they will sell hf

units of dollar for hf/F units of pounds forward. The resulting wealth change is

dW f =
hf

F
+
(
Df + dDf − hft

)( 1

E
+ d

(
1

E

))
− Df

E

=
hf

E

[
E

F
− 1− Ed

(
1

E

)]
+ d

(
Df

E

)
=
hf

E

[(
rf − rd + b+ µe − σ2

e

)
dt+ σedze

]
+ d

(
Df

E

)
. (1.39)

f -hedgers will choose hf to maximize (1.36) for j = f under their budget constraint (1.39),
will lead to the following first-order condition:

1

E

(
rf − rd + b+ µe − σ2

e

)
−Af

{(
1

E

)2

hfσ2
e +

σe
Edt

E
[
dzed

(
Df

E

)]}
= 0.
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From the equation above, we can solve for hf :

hf =
rf − rd + µe − σ2

e

(Af/E)σ2
e

+
b

(Af/E)σ2
e

− E

σedt
E
[
dzed

(
Df

E

)]
=
rf − rd + µe − σ2

e

Aσ2
e

+
b

Aσ2
e

− Df

σ2
edt

E
[

dE

E

(
dDf

Df
− dE

E
+

dE

E

dE

E
− dDf

Df

dE

E

)]
=
rf − rd + µe − σ2

e

Aσ2
e

+
b

Aσ2
e

− Df

σ2
edt

E
[

dE

E

dDf

Df
− σ2

edt

]
=
µe + rf − rd

Aσ2
e

− 1

A
+

b

Aσ2
e

− cov
[
dE/E, dDf/Df

]
var [dE/E]︸ ︷︷ ︸

βf

Df +Df . (1.40)

The f -hedgers optimal choice of hf delivers similar intuitions as the d-hedgers’. Now
that hf represents the amount of dollars f -hedgers are selling forward for pounds, thus
a long position on pounds, it increases in the (expected) GBP/USD risk premium, and
decreases in βf as defined above (a higher βf means pounds do not offer protection against
f -hedgers’ endowment risk).

Based on equation (1.38) and (1.40), we can calculate the net demand for dollars in
forward markets, in dollar terms. Since d-hedgers sell hd units of pounds for dollars and
f -hedgers sell hf units of dollar for pounds, the net forward dollar demand is

hdE − hf = −2(µe + rf − rd)
Aσ2

e

+
1

A
+DdE(1 + βd)−Df (1− βf )︸ ︷︷ ︸
γ0

− 2

Aσ2
e︸︷︷︸

γ>0

b.

This expression agrees with the specification of hedgers’ demand given in equation (1.5).
Plugging in the assumptions that

DdE = λ>d x+ λd,0,

Df = λ>f x+ λf,0,

we have

hdE − hf

=
[
λ

(o)
d (1 + βd)− λ(o)

f (1− βf )
]>

︸ ︷︷ ︸
β>

x(o)+

=
[
λ

(u)
d (1 + βd)− λ(u)

f (1− βf )
]>
x(u) + λd,0(1 + βd)− λf,0(1− βf ) +

1

A
− 2(µe + rf − rd)

Aσ2
e︸ ︷︷ ︸

`

−γb,

where x(o) denotes observable components in x (λ(o)
d and λ(o)

f being loadings for the

observable factors) and x(u) denotes the unobservables (λ(u)
d and λ(u)

f being their loadings).
Thus the net hedging demands have three parts: the linear combination of observable
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factors β>x(o), the latent unobservable demand `, and the downward sloping response
term −γb.
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1.7.4 Additional tables and figures
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Figure 1.12: One-year CIP deviations for G6 currencies: currency swap rates and
forward-OIS basis
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Table 1.13: Dealer banks surveyed by foreign exchange committees, October 2004-April
2020

Australia and New Zealand Banking Group Limited Bank of America Corporation
Bank of China Bank of East Asia Limited
Bank of Montreal Bank of New York Mellon Corporation
Bank of Nova Soctia Barclays Plc
BNP Paribas SA Canadian Imperial Bank of Commerce
China Bank of Communications Citigroup Inc
Commerzbank AG Commonwealth Bank of Australia
Crédit Agricole Corporate and Investment Bank Credit Suisse Group AG
DBS bank Ltd Deutsche Bank AG
Goldman Sachs Group Inc Hang Seng Bank Limited
HSBC Holdings Industrial and Commercial Bank of China
The ING Group JP Morgan Chase & Co
Lloyds Banking Group Plc Macquarie Bank Limited
Mizuho Bank Limited Morgan Stanley
Mitsubishi UFJ Financial Group National Australia Bank
National Bank of Canada NatWest Group Plc
Nomura Holdings Inc Oversea-Chinese Banking Corporation Limited
Resona Holdings Inc Royal Bank of Canada
Shinsei Bank Limited Skandinaviska Enskilda Banken AB
Société Générale SA Standard Chartered Plc
State Street Corporation Sumitomo Mitsui Financial Group Inc
Sumitomo Mitsui Trust Holdings Inc Toronto-Dominion Bank
UBS AG UniCredit SpA
United Overseas Bank Limited Wells Fargo & Co
Westpac Banking Corporation
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Table 1.14: Predictive regressions: monthly returns of FX committee surveyed (FXS)
dealer banks on one-year basis swap rates and placebo tests

This table presents results from the following linear regressions:

1

τ
returnt+τ = β0 + β|bt|+ εt+τ ,

for daily and monthly observations. The dependent variables are one-month-ahead value- or equal-
weighted equity returns of 49 dealer banks surveyed by FX committees of New York, London, Tokyo,
Toronto, Sydney, Singapore and Hong Kong. Additional placebo tests use returns from five ETFs tracking
the S&P500 index (SPY), the global financial sector (IXG), the US financial sector (IYF), US broker-
dealers and securities exchanges (IAI), and US insurance companies (KIE). For monthly observations, five
hedge fund index returns are also included: one global composite index from BarclaysHedge (BCH), four
indices from Hedge Fund Research (HFR) tracking global composite, relative value arbitrage, global-macro,
and macro-currency strategies. All returns are net ones in percentage, as well as annualized (divided by
τ = 1/12 as shown in the regression specification). The independent variable |bt| is the cross-sectional
average of absolute one-year basis swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the
dollar. Sample periods begin from January 2009 and end at December 2019. Numbers in parentheses are
Newey-West standard errors under automatic bandwidth selection.

Panel A: daily observations

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

|b| (b.p.) 2.17 2.03 0.41 1.85 1.18 1.30 1.11
(0.82) (0.81) (0.41) (0.78) (0.70) (0.80) (0.73)

const. −33.3 −31.0 7.8 −26.2 −8.4 −10.6 −4.7
(15.2) (15.1) (8.9) (14.7) (13.5) (17.0) (14.5)

N obs. 2859 2859 2761 2761 2761 2761 2761
R2-adj. (%) 3.5 3.4 0.3 2.8 1.4 1.6 1.1

Panel B: monthly observations

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

|b| (b.p.) 1.71 1.58 0.35 1.66 0.96 1.23 0.97
(0.63) (0.64) (0.40) (0.67) (0.59) (0.78) (0.67)

const. −23.4 −21.7 9.3 −22.1 −3.4 −8.6 −1.7
(13.0) (12.9) (9.4) (13.4) (13.4) (18.3) (14.2)

N obs. 132 132 132 132 132 132 132
R2-adj. (%) 1.8 1.7 −0.5 1.7 0.3 0.7 0.2

ret. (p.p.) BCH HFR HFR HFR HFR
(Gl. Com.) (Gl. Com.) (Re. Val.) (Macro) (Macro. Cur)

|b| (b.p.) 0.13 0.08 0.09 −0.17 0.04
(0.14) (0.14) (0.10) (0.10) (0.11)

const. 3.5 3.6 4.7 5.3 0.2
(3.5) (3.3) (2.6) (2.9) (2.5)

N obs. 132 132 132 132 132
R2-adj. (%) −0.5 −0.6 −0.4 0.0 −0.7
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Table 1.15: Predictive regressions: monthly returns of FX committee surveyed dealer
banks on one-year basis swap rates adjusted by controls

This table presents results from the following linear regressions:

1

τ
returnt+τ = β0 + βbt + φ · controlt + εt+τ

for daily and monthly observations. The dependent variable is the one-month-ahead value-weighted equity
return of 49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto, Sydney,
Singapore and Hong Kong. All returns are net ones in percentage, as well as annualized (divided by
τ = 0.25 as specified in the regression equation). The independent variable bt is the cross-sectional
average of absolute one-year basis swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the
dollar. Control variables include the average smoothed earnings yield (E/P) and dividend yield (D/P)
for the 49 dealer banks, the effective Fed fund rate (FFR), and the CBOE volatility index (VIX). Sample
periods begin from January 2009 and end at December 2019. Numbers in parentheses are Newey-West
standard errors under automatic bandwidth selection.

ret. (p.p.) Daily observations Monthly observations

b (b.p.) 2.17 1.15 1.81 1.71 1.02 1.53
(0.82) (0.64) (0.67) (0.63) (0.56) (0.59)

E/P 14.7 10.8
(8.9) (7.6)

D/P 1.28 0.41
(1.85) (2.22)

FFR 5.03 0.26 3.17 0.20
(6.99) (6.27) (6.59) (6.92)

VIX −0.44 1.95 −0.34 1.42
(1.11) (1.80) (1.44) (1.79)

const. −33.3 −128.2 −65.1 −23.4 −93.4 −47.4
(15.2) (68.3) (36.7) (13.0) (53.5) (36.2)

N obs. 2859 2859 2859 132 132 132
R2-adj. (%) 3.5 10.8 6.1 1.8 3.6 1.0
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Chapter 2

Option-Implied Bounds for the
Crash Probability of a Stock

This chapter is joint work with Dr. Ian Martin.
Using option prices, we develop a theoretical framework to bound the expectation of

a payoff that is contingent on the return of a stock. Both the lower and upper bounds are
available from this framework and they are sharp in theory. We apply this framework to
calculating forecasting bounds for stock crash probabilities. The crash probability bounds
appear to be tight throughout empirical tests.1 We show further that these bounds can
forecast crash events out-of-sample, and they outperform combinations of various stock
characteristics documented in the existing literature that are related to crash risk.2

The bounds are constructed from (and only from) current security prices, thus no
historical data are needed. This feature enables real-time forecasting, which can offer
timely insights into the downside risk of an individual stock. In theory, they can bound
the probability of a single-stock crash event any time in the future (of course, in reality,
their forecasting horizons are limited by maturities of option contracts). Their timeliness
is only constrained by “freshness” of security prices.

Compared with interval forecasts generated from statistical procedures, these option-
implied bounds are probabilistic with guaranteed coverage in theory. In other words,
these forecasting bounds have 100% “confidence levels” in the sense of traditional statis-
tical inference. As Keynes has noted in his 1921 book A Treatise on Probability : “Many
probabilities, which are incapable of numerical measurement, can be placed nevertheless
between numerical limits.” It is exactly the same notion that motivates these forecasting
bounds with guaranteed coverage.

These forecasting bounds are robust in that they do not impose any distributional

1To clarify, sharpness refers to the result that the bounds cannot be further improved without leverag-
ing additional data (for example, high-quality basket option prices in deep markets, which are not available
in practice) or making additional assumptions (which can be fragile). Tightness describes the fact that
both the lower and upper bounds are close to the true crash probability. The former is a theoretical
property and the latter is an empirical phenomenon.

2See, for example, Chen, Hong, and Stein (2001); Boyer, Mitton, and Vorkink (2009) and Greenwood,
Shleifer, and You (2019).
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assumptions on the stock returns. Their sharpness remains when stock returns contain
components like stochastic volatilities and jumps. This important feature is a strength
of our methodology, since stock returns exhibit complicated time-varying distributional
patterns (Andersen, Bollerslev, Diebold, and Ebens, 2001; Andersen, Benzoni, and Lund,
2002).

The methodological framework consists of two steps: recovering risk-neutral (marginal)
distributions of stock and market returns from option prices first (applying the well-known
approach of Breeden and Litzenberger (1978)), then bounding the physical (in contrast
to the risk-neutral) expectations using theories of copula functions (namely, the Fréchet-
Hoeffding bounds). In short, the method can be branded as “Breeden-Litzenberger meets
Fréchet-Hoeffding”.

The underlying theory guarantees sharpness of the proposed bounds. We demonstrate
that, in order to get sharper results, one needs solid knowledge regarding risk-neutral cor-
relations between single-stock and market returns, that is, the market prices of correlation
risks. This type of knowledge is elusive. Practically, it is difficult to observe correlation
prices that are not mired by microstructural issues, as no deep markets of rainbow options
on both single-stock prices and the market index exist. Theoretically, it is dangerous to
impose ad-hoc assumptions on correlation risks and their prices: the 2008 financial crisis
offers hard lessons on the mispricing of correlation risks.

We compute the crash probability bounds for stocks belonging to the S&P 500 index.
These bounds target on the probabilities of 5%, 10% and 20% crashes in one month, one
quarter, six months and one year. They demonstrate significant variations across firms.
For example, the time-series averaged probabilities of a 20% crash in one year can be
as low as within [4.6%, 13.0%] for some firm, and as high as within [34.0%, 55.7%] for
another firm.

These forecasting bounds also vary significantly across time. In Figure 2.1, we plot
the monthly forecasting bounds for the probability of a crash that is worse than 20% over
the one-year horizon for two companies: Cisco and AIG. Cisco had the largest market
capitalization on March, 2000 during the dot-com bubble. According to Figure 2.1, its
crash probabilities started climbing up during the second half of 2000 and peaked in early
2001, being over 35% to 50%. In reality, its market capitalization had dropped more than
70% by the end of 2001. The other company in Figure 2.1 is AIG, which was in the eye of
the tornado during the subprime crisis. Its crash probability started surging rapidly from
the late 2007, almost one year ahead of the paramount outbreak of the crisis in October,
2008. The crash probability peaked at over 55% to 80% during the crisis.

We examine the tightness of these bounds by regressing the future crash event indica-
tors directly on the crash probability bounds.3 If the bounds are tight, they should both
be very close to the true crash probability. Since the crash probability is the expectation
of the crash event indicator, tight bounds will deliver intercepts of zero and slopes of one

3A crash event is defined as the stock return being smaller than a certain threshold, say, the gross
return of a stock being smaller than 0.80 is a 20% crash event. A crash event indicator is a binary variable
that equals one if the crash does happen and zero otherwise.
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Figure 2.1: Monthly forward-looking probabilities of a crash (one-year net returns being
less than −20%): Cisco stock, AIG stock, and the market (S&P 500). The forecasting
bounds for stocks are based on the approach presented in this paper. The point forecast
for the crash probability of the market is based on the approach in Martin (2017).

consistently throughout the regressions. These hypotheses are strongly supported by the
data. Across different regression settings, the intercepts are mostly not significantly dif-
ferent from zero. On the contrary, the slopes are highly significant and, more importantly,
they are extremely close to one, especially for the lower bound.

We then include stock characteristics, which have been reported in the previous litera-
ture to be related to crashes, into the regressions. The regression slopes for our bounds are
still significantly different from zero, suggesting that they continue explaining variation
in the crash probability. The slopes for the lower bound are still very close to one. The
adjusted-R2s in most of these regressions drop after including these characteristics. These
evidence further suggest that the theory-motivated bounds drive out stock characteristics
in terms of explaining variation in the crash probability.

Out-of-sample predictive performance of the bounds is evaluated against the combi-
nation of over ten stock characteristics. We design a procedure to emulate an avid “data-
snooper” in order to compete against our single forecasting variable (either the lower or
the upper bound). In doing so, we split the dataset into a training and a testing sample.
The stock characteristics are combined through linear regressions, as well as logistic re-
gressions, by fitting them to the training sample. In addition, when fitting these models,
we add-in a “machine learning” flavor by using `1 penalty (as known as the LASSO in the
statistics literature, see, for example, Tibshirani (1996)) to select “best” possible models
through cross-validation (in the training sample). The predictive power of forecasting
bounds is then compared with this pure data-mining procedure. The theory motivated
bounds consistently outperform predictors extracted from stock characteristics across all
forecasting horizons.

These crash probability bounds is then applied to study the declines in the equity of

95



global systemically important banks (G-SIBs). We first compute the crash probability
bounds for the majority of G-SIBs across different time. Then we aggregate these bounds
across banks based on simple probability inequalities to created fragility and stability
measures of the global banking system. These two measures help illustrate the many
potential applications of these bounds in terms of creating macroeconomic indicators.

Related Literature. Asset pricing bounds have been derived for contingent claims in the
context of incomplete markets or market imperfections (Cochrane and Saá-Requejo, 2000;
Bernardo and Ledoit, 2000; Constantinides et al., 2008). Instead of bounding contingent
claim prices that are determined by risk-neutral expectations, this paper establishes a new
robust framework to compute bounds for physical expectations of contingent claims.

A large literature proposes methods to recover risk-neutral probabilities from option
prices. An incomplete list includes Breeden and Litzenberger (1978); Jackwerth and Ru-
binstein (1996); Aït-Sahalia and Lo (1998); Rubinstein (1994). While the starting point
of our derivation relies on the insights of Breeden and Litzenberger (1978), the major
challenge of bounding the physical expectations are addressed by the new approaches
introduced in this paper.

A few papers have attempted to forecast crashes in the stock market. Chen, Hong,
and Stein (2001) use characteristics such as (detrended) trading volume and past returns
to forecast negative skewness in the cross-section of individual stocks. Greenwood et al.
(2019) use characteristics to forecast crashes at the industry level conditional on observing
past price surge. Bates (1991) finds evidences from put option prices that forecast the
stock market crash of 1987 (Black Monday). There is also a (downside/skewness/tail)
risk literature that measures related objects as this paper does, but their main focus are
how these risks manifest themselves into the cross-section of expected stock returns (see,
for example, Ang, Chen, and Xing (2006); Boyer, Mitton, and Vorkink (2009); Kelly and
Jiang (2014)). Martin (2017) has a section on recovering the physical crash probability of
the market (which we have adapted to include in Figure 2.1), but going from the market
crash to individual stock crash is not straightforward.

The rest of this paper is organized as follows. Section 2.1 introduces the underlying
theory and method, as well as discusses theoretical properties of the bounds. Section ??
provides details of our data sample. Section 2.3 presents our empirical results. Section ??
concludes. All proofs for theoretical results are available in the Appendix.

2.1 Theory

2.1.1 Physical and risk-neutral expectations

To begin with, consider an investor who chooses to invest fully into the market of risky
assets. The investor derives utility from her terminal wealth with a power utility function
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u(x) = u1−γ/(1− γ). The investor’s portfolio choice problem is then4

maximize
w

E
[
u
(
w>R

)]
,
∑n

i
wi = 1,

where the random vector R = [R1, . . . , Rn]> concatenates gross returns on all risky assets;
the choice variables in w = [w1, . . . , wn]> capture the investor’s portfolio weights. The
first-order conditions for this problem are

E
[(
w?>R

)−γ
Ri

]
= λ for all i,

where λ is a Lagrangian multiplier; the superscript ? represents solutions to the optimiza-
tion problem. By assumption, this investor chooses to invest fully in the market, thus the
market return, denoted by Rm, is such that Rm = w?>R. Plugging Rm into the first-
oder conditions, a direct implication is that R−γm /λ is a stochastic discount factor (SDF)
because

E[MRi] = 1 for all i,

where
M = R−γm /λ

is the SDF of this specific marginal investor.
Assuming that there is no arbitrage, for any random payoff of interest X, the risk-

neutral expectation of X must satisfy the following equation

1

Rf
E∗[X] = E[MX],

where Rf is the risk-free rate. The equation holds because both sides calculate today’s
price of a claim to the random payoff X.5 This equation, combined with the SDF induced
by the investor’s marginal behavior, can be used to determine physical expectations for
the random payoff of interest.6 To be specific, as MλRγm ≡ 1,

E[X] = E[MλRγmX] = λE[M(RγmX)] =
λ

Rf
E∗[RγmX].

Plugging in a special constant payoff X = 1 to the equation above,

1 =
λ

Rf
E∗[Rγm].

4For clarity and the ease of exposition, we suppress unnecessary time subscripts because our theory
and its derived methodologies are static in nature. It is worthwhile noting that all expectations can be
regarded as conditional ones evolving in time.

5Here an implicit assumption is that the power-utility investor is marginal across all markets, including
the option markets. In the mean time, she still chooses to hold the market portfolio according to our initial
assumption.

6Strictly speaking, the expectation operator here is taken under the investor’s subjective probabilities
instead of the “objective” probabilities of an oracle.
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Dividing the two equations we just have,

E[X] =
E∗[RγmX]

E∗[Rγm]
. (2.1)

There are many potential applications of equation (2.1) in terms of characterizing
the behaviors of individual stock returns. For example, for a given constant q, if we let
X = I(Ri ≤ q), where I(·) equals one if the event in the parentheses is true and zero if
not, equation (2.1) implies that

P[Ri ≤ q] =
E∗[RγmI(Ri ≤ q)]

E∗[Rγm]
, (2.2)

because P[Ri ≤ q] = E[I(Ri ≤ q)]. Equation (2.2) shows that one can fully recover
the physical probability distribution of a particular stock return, as perceived by the
power-utility investor who is holding the market, from risk-neutral distributions. Physical
distributions computed this way are forward-looking, which make them useful for real-time
forecasting. A direct application is forecasting the crash probability of a stock, as we will
demonstrate throughout the rest of this paper.

Another case is that one can simply let X be the return on a stock, that is, X = Ri

for some i, the expected return of this stock, E[Ri], can be given as

E[Ri] =
E∗[RγmRi]
E∗[Rγm]

. (2.3)

A special case of equation (2.3) is when the relative risk aversion parameter γ equals one.
Since E∗[Rm] = Rf , equations (2.3) becomes

E[Ri] =
1

Rf
E∗[RmRi], (2.4)

where the market portfolio, Rm, by assumption, is equivalent to the optimal portfolio
return for the log investor (because the investor chooses to invest fully in the market).
This return is also called the growth-optimal (portfolio) return (Latane, 1959; Breiman,
1960). Martin and Wagner (2019), based on this special case of equation (2.4), derive an
equation for the expected return of a stock in terms of the risk-neutral variances.

The assumptions and results above will hold through the rest of this paper.

2.1.2 Recovering the risk-neutral marginal distributions

Option prices carry rich information about the risk-neutral distributions of stock or mar-
ket index returns. The static replication logic of Breeden and Litzenberger (1978) can
recover these risk-neutral distributions from prices of options with various strike prices.
We outline our implementation of the Breeden-Litzenberger method to begin the method-
ological framework. Let the constant S0 be the price of the underlying (e.g., a stock or the
market index) today and the random variable S be the underlying asset price at maturity.

98



Assume that the underlying asset does not pay dividends, then S = RS0 where R ∼ Q

is the gross return on the underlying asset; Q is the risk-neutral distribution of this gross
return. Our goal is to recover Q from the prices of European options on this asset, which
can be expressed as

put(K) =
1

Rf

∫ ∞
0

max(K − xS0, 0) dQ(x), (2.5)

where put(K) denotes the price of a put option with a strike price K. Integrating (2.5)

by parts yields:
∫ K
S0

0 Q(x) dx = Rfput(K)/S0. Taking derivatives with regard to K,

Q

(
K

S0

)
= Rfput′(K).

Combine the result above with the put-call parity, i.e., call(K) − put(K) = S0 −K/Rf ,
where call(K) represents the corresponding call option price with a strike K,

Q

(
K

S0

)
= Rfcall′(K) + 1.

Throughout our execution, we only use the prices of out-of-the-money options, that is,

Q

(
K

S0

)
=

{
Rfput′(K), K ≤ RfS0

Rfcall′(K) + 1, K > RfS0

, (2.6)

because these contracts are much more liquid ones.
In reality, prices of options are only available at a limited number of strikes. Differ-

entiation might be inaccurate when available strikes (with observable option prices) are
not dense enough. To overcome this difficulty, We fit nonparametric shape-constrained
models for option prices as functions of their moneyness. This procedure has two benefits:
1) it rules out arbitrage across different strikes at a given maturity horizon; 2) it smoothly
interpolates between strikes to enable stable numerical differentiation when implementing
(2.6). Technical details of this approach are available in the Appendix.

2.1.3 Bounds on physical expectations from option prices

Denote byQmi the joint cumulative distribution function (CDF) of market and single stock
returns (Rm, Ri) under the risk-neutral probability, and by Qm, Qi the marginal CDFs
of Rm, Ri, also under the risk-neutral probability. Consider a very general specification
for the payoff X: let X = h(Ri), where h : R+ 7→ R is an arbitrary continuous function.7

That is, we would like to investigate the physical expectation of any well-behaved payoffs
contingent on the return of a stock. Equation (2.1) can be rewritten more explicitly as

E[h(Ri)] =

∫
xγh(y) dQmi(x, y)∫

xγ dQm(x)
. (2.7)

7Strictly speaking, h is continuous almost everywhere.

99



Equation (2.7) simply tells us that if we can fully characterize the risk-neutral joint dis-
tribution Qmi,8 we can evaluate the expectation of any well-behaved payoff contingent on
the return Ri. As illustrated through equation (2.2) and (2.3), we can then calculate the
forward-looking probability of a crash (let h(Ri) = I(Ri ≤ q)) or the expected return (let
h(Ri) = Ri) of a stock.

As described in the earlier section, we can use prices of market index options to recover
the risk-neutral marginal Qm and prices of options for stock i to recover the risk-neutral
marginal Qi.

It is, however, almost impossible to fully characterize the risk-neutral joint distribu-
tion Qmi. Widely traded index and equity options with liquid market places are almost
exclusively written on one underlying asset. To recover the risk-neutral joint distribution,
one needs to observe the prices of many options written on both the stock index and the
stock of interest.9 In addition, these options have to vary not only in terms of strike prices,
but also in terms of their contingent payoff formats.10 Needless to say, all these options
have to be smoothly traded with high volume and deep market to avoid microstructural
issues. In reality, these options are rare (if not nonexistent) and thinly traded, making it
infeasible to back out the whole risk-neutral joint distribution of the market return and
the stock return. This poses difficulties to the exact evaluation of E[h(Ri)] using equation
(2.7).

Although no exact answer can be given to E[h(Ri)] under the current framework,
sharp bounds can be obtained for it. Bounding this expectation term relies on dissecting
the joint distribution into two parts: the marginals and the dependence structure. The
marginals can both be regarded as known, as a result of applying the Breeden-Litzenberger
approach to option prices. Then minimizing/maximizing across all possible dependence
structures can bound the integral in the numerator of (2.7). To proceed and formalize
these arguments, we will introduce some basic probability theories on copula functions
first.11

Definition 3. (A two-dimensional copula, or briefly, a copula) A two-dimensional copula
is a function C : [0, 1]2 7→ [0, 1] with the following properties:

1. C is grounded: C(x, 0) = C(0, y) = 0 for any (x, y) in its domain;
2. C(x, 1) = x and C(1, y) = y for any (x, y) in its domain;
3. C is two-increasing: for all rectangles B = [x1, y1] × [x2, y2] ⊂ [0, 1]2, the “volume”

of B, which is defined by

VH(B) = C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1)

is non-negative, that is, VH(B) ≥ 0.
8As a by-product, the risk-neutral marginal Qm(x) = limy→∞Qmi(x, y) will be known to us
9Ross (1976b) illustrates the use of numerous options to recover the risk-neutral joint densities; Martin

(2018) refines Ross’s argument and points out the limitations in practice.
10Martin (2018) illustrates the use of butterfly option strategies contingent on (Rm + αRi) with finely

varying α to recover the joint risk-neutral distribution in theory.
11See Nelsen (2007) for a theoretical monologue on this topic.
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Copula functions play a central role in the distribution theory of multivariate random
variables. They are the joint CDFs of two random variables whose marginals are both
uniform on [0, 1]. In general, for any two random variables, treating their marginals as
given, their joint distribution is uniquely determined by a copula function. This conclusion
is due to a theorem by Sklar (1959).

Theorem 1. (Sklar, 1959) Let Q be the joint CDF for the random vector (X,Y ) with
marginal CDFs FX and FY . Then there exists a copula C, such that for all x, y ∈ R,

Q(x, y) = C(FX(x), FY (y)).

The Sklar’s theorem formalizes the idea of dissecting the dependence structure from
the marginals. It applies to any joint distribution. With the two marginals fixed, any
joint distribution is uniquely defined by a copula function, which “glues” together the two
marginals. Based on the Sklar’s theorem, there exists a copula function C(·, ·) such that
the joint risk-neutral distribution between the market return and the stock return can be
expressed as Qmi = C(Qm(x), Qi(y)). A simple change of variable gives the following12

∫
xγh(y) dQmi(x, y) =

∫
[0,1]2

[
Q−1
m (u)

]γ
h
(
Q−1
i (v)

)
dC(u, v). (2.8)

Now we can formalized the idea of bounding the term E[h(Ri)], which is equivalent to
bounding the integral in (2.8), because the denominator in (2.7) can be treated as known
(The marginal Qm is recovered from the index option prices). Let C be the set of all
two-dimensional copula functions, our bounds are defined as follows:

min
C∈C

∫
[0,1]2

k (u, v) dC(u, v) ≤
∫
xγh(y) dQmi(x, y) ≤ max

C∈C

∫
[0,1]2

k (u, v) dC(u, v), (2.9)

where the integrand k(u, v) is fully specified as

k (u, v) =
[
Q−1
m (u)

]γ
h
(
Q−1
i (v)

)
. (2.10)

The integrand term absorbs all the information about the risk-neutral marginals, leaving
the copula function the only unknown ingredient. This integrand is completely specified
because the marginals Qm and Qi (as well as their inverses) are recovered from the option
prices.

Calculating the two bounds in (2.9) is an optimization problem defined within a func-
tional space (the space of all copula functions, as denoted by C), which makes it difficult
to solve. However, if the integrand k(u, v), as defined in (2.10), is also two-increasing like

12Strictly speaking, the inverse notations for the two marginal CDFs (which might not be continuous)
in (2.8) should be treated as generalized inverse distribution functions. That is, the notations Q−1

j in
equation (2.8) carry the following definition: Q−1

j (p) = inf{x ∈ R : Qj(x) ≥ p}, for j ∈ {m, i}.
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the copula function,13 Corollary 2.2 of Tchen (1980) simplifies the problem as follows:

min
C∈C

∫
[0,1]2

k (u, v) dC(u, v) =

∫
[0,1]2

k (u, v) d

(
min
C∈C

C(u, v)

)
, (2.11)

max
C∈C

∫
[0,1]2

k (u, v) dC(u, v) =

∫
[0,1]2

k (u, v) d

(
max
C∈C

C(u, v)

)
, (2.12)

where minC∈C C(u, v) and maxC∈C C(u, v) are defined point-wise for any (u, v) ∈ [0, 1]2.
Sufficient conditions for this simplification to hold (i.e., for k(u, v) to be two-increasing)
is summarized in Assumption 9.

Assumption 9. The payoff function h defined on [0, ∞) satisfies the following two con-
ditions:

1. it does not cross the x-axis, that is for any R and R′ in [0, ∞), h(R)h(R′) ≥ 0;

2. it is an increasing function.

If we are interested in evaluating E[Ri], that is h(x) = x, Assumption 9 is satisfied.
For crash probabilities, h(x) = I(x ≤ q), which is decreasing. We can apply equations
(2.11) and (2.12) to −h, for which Assumption 9 still holds. An exception arises when
we are interested in log returns of stocks E[logRi]. Since h(x) = log x always crosses
the x-axis, violating Assumption 9, the simplification we presented does not apply. As
a result, no analytical bounds are available for the expectation. In Section 2.5, we will
provide a numerical solution to bounding E[h(Ri)] for any well behaved payoff function h.

Point-wise bounds for copulas appearing in equations (2.11) and (2.12) are character-
ized by the following theorem.

Theorem 2. (Fréchet-Hoeffding theorem) If C(u, v) is a copula, then

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v), (u, v) ∈ [0, 1]2.

One can easily verify that both the lower bound max(u+v−1, 0) and the upper bound
min(u, v) are themselves copula functions according to Definition 3.

The Fréchet-Hoeffding theorem has broad implications, which is not limited to our
specific application (bounding E[h(Ri)] according to equation (2.7)). Consider, for ex-
ample, the problem of finding feasible domains of risk-neutral correlations between stock
and market returns, corr∗[Rm, Ri], with known marginals Qi and Qm. This is equivalent
to bounding E∗[RmRi]: the lower bound is achieved when max(u + v − 1, 0) is the cop-
ula function connecting the two marginals; the upper bound is reached when the copula
function is min(u, v).

As an illustration, in Figure 2.2, we plot the maximum and minimum achievable risk-
neutral correlations between one-year returns of three stocks and the market. We selec-
tively present three companies: CISCO, AIG (ones chosen for the motivating plot in Fig-
ure 2.1), as well as the cruise line company Carnival (demonstrating paramount crash risk

13See the definition of this concept in bullet point 3. of Definition 3.
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during the COVID-19 period), all of which have long histories belonging to the S&P500
index. Risk-neutral marginals at each time point are fixed by option prices. We can
see that corr∗[Ri, Rm] is always greater than minus one and smaller than one: marginal
distributions contain information on dependence structures. With fixed marginals, the
conventional wisdom that correlations can be any number between minus one and one
does not hold. It is also worthwhile noticing that the possible range of risk-neutral corre-
lations becomes much smaller when stock crash risks are mounting (e.g., around −0.6 to
0.4 for Carnival in the early stage of the pandemic).
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Figure 2.2: Bounds for the risk-neutral correlations between one-year returns
corr∗[Rm, Ri]: the case of CISCO, AIG, and Carnival (marginal distributions determined
by option prices).

Substituting the Fréchet-Hoeffding lower bound into the right hand side of (2.11) and
the upper bound into the right hand side of (2.12), we have the following result.

Proposition 9. (bounds for general payoffs contingent on a stock return) Under Assump-
tion 9,

E∗
[
Rγmh

(
Q−1
i (1−Qm(Rm))

)]
E∗ [Rγm]

≤ E[h(Ri)] ≤
E∗
[
Rγmh

(
Q−1
i (Qm(Rm))

)]
E∗ [Rγm]

.

Bounds for E[h(Ri)] are sharp in the sense that

1. the lower bound is achieved if Qi(Ri)+Qm(Rm) = 1, that is, if the risk-neutral stock
and market returns are countermonotonic; and

2. the upper bound is achieved if Qi(Ri) = Qm(Rm), that is, if the risk-neutral stock
and market returns are comonotonic14.

14Two random variables are said to be countermonotonic if one is a monotonically decreasing transfor-
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Result 9 lays foundations of our methodological framework. Sharpness of the bounds is
due to the fact that both the lower and upper bounds for copula functions in the Fréchet-
Hoeffding theorem are themselves copulas, summarized by conditions under which these
bounds are achieved.

As our primary interest is on crash probabilities, we can let h(x) = −I(x ≤ q) in
Proposition 9 (the minus sign here is added to guarantee that h satisfies Assumption 9).
Bounds for the crash probabilities of stocks are presented in Proposition 10.

Proposition 10. (bounds for stock crash probabilities) We can bound the crash probability
of a stock P[Ri ≤ q] by

E∗ [RγmI (Rm ≤ ql)]
E∗ [Rγm]

≤ P[Ri ≤ q] ≤
E∗ [RγmI (Rm ≥ qu)]

E∗ [Rγm]
,

where ql = Q−1
m (Qi(q)) and qu = Q−1

m (1−Qi(q)) and

1. the lower bound is achieved when the risk-neutral stock and market returns are
comonotonic and the upper bound is achieved when the two risk-neutral returns are
countermonotonic;

2. the lower bound is always smaller than the upper bound.

As most stocks typically move with, rather than against, the market, we anticipate
that comonotonicity is closer to the truth than countermonotonicity. Hence, a priori, we
would expect that the lower bound is more likely to be tighter (i.e., closer to the “true”
crash probability) than the upper bound. Our empirical results in Section 2.3.1 confirm
this intuition, showing that the lower bounds do indeed track the forward-looking crash
probabilities better in the panel of S&P 500 stocks.

Under our framework, calculating E∗ [RγmI (Ri ≤ q)] /E∗ [Rγm] gives us P[Ri ≤ q], ac-
cording to equation (2.2). This calculation is infeasible without knowing the price of
correlation risks between the market and stock returns. Bounds provided in Proposition
10 sidestep this obstacle and provide approximate answers: Knowing ql and qu, knowledge
regarding the (risk-neutral) market return distributions is sufficient for us to compute the
bounds.

The two quantiles ql and qu define tail regions for calculating the two bounds. By
definition, they are such that

P∗[Rm ≤ ql] = P∗[Ri ≤ q] = P∗[Rm ≥ qu].

Panel (A) of Figure 2.3 illustrates this point in detail. From prices of option on stock i, we
know the risk-neutral marginalQi(·) and thus P∗[Ri ≤ q], the risk-neutral crash probability
of this stock. “Inverting” this probability with the marginal Qm (available from market

mation of the other (Ri = Q−1
i (1−Qm(Rm)) here as Q−1

i (1−Qm(·)) is a decreasing function); they are said
to be comonotonic if one is a monotonically increasing transformation of the other (Ri = Q−1

i (Qm(Rm))
here as Q−1

i (Qm(·)) is an increasing function.
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index options) gives us the two quantiles ql and qu. Recall from equation (2.2), the lower
and upper bounds in Proposition 10 are effectively P[Rm ≤ ql] and P[Rm ≥ qu], that is,
under the “true” probability, ql and qu are such that

P[Rm ≤ ql] ≤ P[Ri ≤ q] ≤ P[Rm ≥ qu].

These inequalities are in stark contrast to the risk-neutral case under which the three
probabilities are equal.

Panel (B) of the same figure further shows how we can find ql and qu directly from
option prices. According to equation (2.6), slopes of single-stock put option prices (the
black solid line) as a function of option strikes (the blue dotted curve) defines Qi(q).
Shifting this line in parallel to the point that it becomes tangent to the index put options
(also as a function of strike prices, shown as a blue solid curve) nails down ql. Similarly, a
red solid line tangent to index call options, which has an opposite slope (−Qi(q)), defines
qu.
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Figure 2.3: Defining the crash probability bounds: the two quantiles ql and qu in Propo-
sition 10.

With ql and qu determined from our earlier discussions, now a natural follow-up ques-

105



tion is: can the bounds in Proposition 10 relate directly to option prices? Corollary 1
expounds on this issue.

Corollary 1. (crash probability bounds and the valuation of “power” contracts) If γ = 1,
the lower bound in Proposition 10 can be written as

P[Rm ≤ ql] = ql

[
put′m(Kl)−

putm(Kl)

Kl

]
and the upper bound can be written as

P[Rm ≥ qu] = qu

[
callm(Ku)

Ku
− call′m(Ku)

]
,

in which Kl = qlSm0, Ku = quSm0, and Sm0 is the spot price of the market index.
More generally, for any γ > 0, we can evaluate the three risk-neutral expectations in

Proposition 10 as follows:

E∗ [Rγm] = Rγf +
Rf
Sγm0

[∫ F

0
γ(γ − 1)Kγ−2put(K) dK +

∫ ∞
F

γ(γ − 1)Kγ−2call(K) dK

]

E∗ [RγmI (Rm ≤ ql)] = Rfq
γ
l

[
put′m(Kl)− γ

putm (Kl)

Kl

]
+
Rf
Sγm0

∫ Kl

0
γ(γ−1)Kγ−2putm (K) dK

E∗ [RγmI (Rm ≥ qu)] = Rfq
γ
u

[
γ

callm(Ku)

Ku
− call′(Ku)

]
+
Rf
Sγm0

∫ ∞
Ku

γ(γ−1)Kγ−2callm (K) dK

where F = RfSm0 is the forward price of the market index.

Our evaluation of E [Rγm] is due to a well-known result in Carr and Madan (2001).
Results for the case of γ = 1, that is, the log utility case are the same as findings in
Martin (2017) for the tail probabilities of the market. The difference between gradients of
option prices as a function of strikes (e.g., put′(K)) and option prices divided by strikes
(e.g., put′(K)/K) reveals objective tail probabilities. The differences are determined by
the convexity of option prices at the two critical strike prices, Kl = qlSm0 andKu = quSm0.

For an arbitrary γ, all options with strikes falling into the tail regions [0, Kl] and
[Ku, ∞) matter, in addition to option price convexities at Kl and Ku. Integrals with
respect to call and put options represent prices of option portfolios. When γ > 1, all else
equal, higher out-of-the-money option prices translate into greater physical probability of
crash, echoing the conventional wisdom. This is untrue when 0 < γ < 1, that is, when
γ(γ − 1) < 0.

To further understand the theoretical properties of bounds in Proposition 10, we now
resort to a simple example, under which the risk-neutral distribution of (Ri, Rm) is jointly
log-normal.

Example 1. Assume that, under the risk-neutral measure,[
logRi

logRm

]
∼ N

([
µi

µm

]
,

[
σ2
m ρσmσi

ρσmσi σ2
i

])
,
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where µi + 1
2σ

2
i = µm + 1

2σ
2
m = logRf . Relevant results regarding this example are

summarized in the following corollary.

Corollary 2. Define p∗ = P∗[Ri ≤ q] and denote by Φ(·) the CDF of standard normal
distribution, our bounds under Proposition 10 for the log-normal example are

Φ
(
Φ−1(p∗i )− γσm

)
≤ P[Ri ≤ q] ≤ Φ

(
Φ−1(p∗i ) + γσm

)
. (2.13)

The exact expression of P[Ri ≤ q] according to equation (2.2) for the example is

P[Ri ≤ q] = Φ
(
Φ−1(p∗i )− γρσm

)
. (2.14)

In Corollary 2, letting the correlation ρ be minus one or one in equation (2.14), we
have the same bounds as ones derived directly from Proposition 10. As the domain for ρ
being in [−1, 1] is a result of the Cauchy-Schwartz inequality, one may consider bounding
the crash probability using this inequality. Specifically, for any h(·), as E∗[Rγmh(Ri)] =

cov∗[Rγm, h(Ri)] + E∗[Rγm]E∗[h(Ri)], knowing the risk-neutral marginals (and thus, all
marginal moments), the expectation can then be bounded without resorting to Proposition
9 and 10, because |cov∗[Rγm, h(Ri)]| ≤

√
var∗[h(Ri)]var∗[Rγm].
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Figure 2.4: Comparing the proposed crash probability bounds with bounds derived from
the Cauchy-Schwartz inequality: forward-looking crash probabilities of CISCO, AIG, and
Carnival at one-year horizon (marginal distributions recovered from option prices).

Figure 2.4 compares the behaviors of our proposed bounds and the ones based on the
Cauchy-Schwartz inequality, with marginal distributions recovered from market prices of
options. We selectively present three companies: CISCO, AIG (ones chosen for the mo-
tivating plot in Figure 2.1), as well as the cruise line company Carnival (demonstrating
paramount crash risk during the COVID-19 period), all of which have long histories be-
longing to the S&P500 index. Overall, widths of our bounds are around 40-50% narrower
than those computed using the Cauchy-Schwartz inequality.

The example helps illustrate two variables that determine the widths of our bounds.
The first is the risk-aversion parameter γ. We can see its influences clearly from inequalities
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in (2.13) of the example: increased γ widens the bounds. We summarize general theoretical
properties regarding this parameter in Corollary 3.

Corollary 3. The effects of risk-aversion parameter γ on the crash probability bounds in
Proposition 10 are summarized as follows:

1. when γ = 0, the lower and the upper bounds agree and they both equal P∗[Ri ≤ q],
the risk-neutral crash probability;

2. for any 0 < γ < ∞, as γ increases, the lower bound decreases and the upper bound
increases;

3. as γ → ∞, for any q such that 0 < Qi(q) < 1, the lower bound goes to 0 and the
upper bound goes to 1, the option-implied bounds become trivial.

The second variable determining widths of our bounds is the price of market volatilities
(i.e., the risk-neutral variance of market returns). According to the log-normal example,
it appears that our bounds tend to become wider when the market volatility is higher.
As high market volatility regimes quest for more accurate answers to crash probabilities,
wider bounds during these periods pose serious concerns regarding the usefulness of our
framework. However, this is not what we observe empirically: our bounds narrow when
(if not before) crisis emerges (as can be seen from Figure 2.1), providing more definitive
guidance to the forward-looking crash probabilities.

The reason behind the above phenomenon is that, in addition to the risk-aversion
parameter and prices of market volatilities, the range of (risk-neutral) correlations between
Ri and Rm, corr∗[Ri, Rm], also determines the widths of our bounds. The conventional
wisdom is that corr∗[Ri, Rm] can take any value from minus one to one, which simply
reiterates the Cauchy-Schwartz inequality. This is not true once marginals of (Ri, Rm)

are taken as given (from option prices). The fallacy directly points out the slackness of
bounds derived using the Cauchy-Schwartz inequality. On the contrary, our proposed
bounds are sharp as we account for the implications of marginal distributions on the
dependence structure using the Fréchet-Hoeffding inequality.

To sum up, bounds derived using our approach are sharp without additional data (e.g.,
rainbow options on both individual stocks and the market) or assumptions (regarding the
dependence structure). They have the potential to be useful forward-looking measures of
single-stock crash probabilities. We now turn to the data to evaluate their performance.

2.2 Data

We focus on firms included in the S&P 500 index. The index constituent data are from
Compustat. S&P 500 index options and equity options data are from OptionMetrics. The
sample is monthly from January 1996 to December 2020. For the last trading day of each
month, we query OptionMetrics for the volatility surfaces of equity options. Firms under
consideration are ones that have been included into the S&P 500 index before the start of
the calendar year. The monthly volatility surface data of S&P 500 index option (SPX) are
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also collected. We keep the volatility surface data with time-to-maturity of one month,
three months, six months and one year. Risk-free rates are linearly interpolated from the
yield curves, provided also by OptionMetrics. Prices, returns, share volumes and shares
outstanding of individual stocks are monthly from CRSP15. All other firm characteristics
that are used in the remaining parts of this paper come from Compustat. Table 2.1
provides summary statistics of the sample counts.

[Table 2.1 about here]

Additional concerns may rise because 1) equity pays dividends and 2) equity options
are American options. Our choice of using volatility surface data helps mitigate these con-
cerns. For all options (including the S&P 500 index option), OptionMetrics accommodates
the dividend effects by projecting dividend yields from historical dividend records. For
American options of single stocks, OptionMetrics computes the implied volatilities through
a proprietary binomial tree algorithm which already accounts for the early-exercise pre-
mia. Given the relatively short maturity horizon under consideration and the use of only
out-of-money options, the European and American implied volatility tend to be close.
Thus, we take the volatility surfaces as measures of European implied volatility, following
Carr and Wu (2009) and Martin and Wagner (2019).

When recovering risk-neutral marginals according to Section 2.1.2, the lack of observ-
able deep out-of-the-money options prices leaves the tail behaviors undetermined. We
extrapolate a flat volatility smile outside the range of observed strikes following exist-
ing literature (e.g., Carr and Wu (2009) for index options). Theoretical literatures on
the asymptotic behavior of the volatility surface provide guidance on this approach (e.g.,
Hodges (1996); Rogers and Tehranchi (2010)). In light of these theories, we tend to assign
heavier tails to the risk-neutral marginals.

2.3 Empirical tests

2.3.1 In-sample tests

At the end of each month, we compute the forward-looking bounds for the probabilities of
(gross) stock returns being less than q = 80%, 90% or 95%. The forecasting horizons under
consideration are τ = 1, 3, 6 or 12 months. For stock i, we denote by ProbLoweri,t(τ, q)

the lower bound and by ProbUpperi,t(τ, q) the upper bound, both forecasted over horizon
τ conditioning on information at time t. The risk-aversion parameter is fixed as 1.5

throughout our execution.16

15All variables are calculated (or derived) based on data from database name ©CRSP Daily Stock,
Center for Research in Security Prices (CRSP®), The University of Chicago Booth School of Business.

16The main regression results and out-of-sample forecasts are robust against any specification from one
to three. If the risk-aversion parameter is too large, the bounds become loose, according to the theoretical
property in Result 3.
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We report in Table 2.2 and 2.3 the summary statistics of these forecasting bounds.

[Table 2.2 and 2.3 about here]

Since the bounds are computed for each firm at the end of each month, the two tables
focus on different aspects. Table 2.2 summarizes variation across firms by first averaging
the bounds for each firm along the time dimension. Table 2.3 summarizes variation across
time by first averaging the bounds for each month across all firms. Results in these tables
suggest pronounced variation both across time and cross-sectionally. Across all three cases,
there are more cross-sectional variation than time-series variation on average, especially
for lower bound.

Denote by Ri,t→t+τ the τ period ahead gross returns when the current time is t. To
test whether these forecasting bounds are tight or not, we first run linear regressions with
the following specification: for the lower bound

I(Ri,t→t+τ ≤ q) = α+ β ProbLoweri,t(τ, q) + εi,t+τ ,

or for the upper bound

I(Ri,t→t+τ ≤ q) = α+ β ProbUpperi,t(τ, q) + εi,t+τ ,

with q = 0.80, 0.90 and 0.95. Notice that the expectations of I(Ri,t→t+τ ≤ q), that is,
E[I(Ri,t→t+τ ≤ q)] should be the true crash probability P[Ri,t→t+τ ≤ q].17 If the bounds
are tight, which means that they are close to the true crash probability, the parameter β
should be close to one and α should be approximately zero.

The regression results are shown in Table 2.4. The standard errors in parentheses are
two-way cluster following Petersen (2009). The standard errors in square brackets are from
block bootstrap procedures according to Martin and Wagner (2019) with 2500 simulations.
The intercept parameters are mostly not significantly different from zero, specially over
longer maturity horizons. The slope parameters are always significant, meaning that the
bounds can explain variation in the crash probability. Most importantly, the estimates
agree reasonably well with the a prior belief that β ≈ 1 and α ≈ 0. The slope coefficients
for the lower bounds almost equal one perfectly for all four maturity horizons. The same
coefficients are around 0.7 to 0.9 when the forecasting horizon is one month for the upper
bound. The smallest case is when the forecasting horizon is one year, under which the slope
coefficients for the upper bound are around 0.5 to 0.6. These slightly smaller regression
coefficients suggest that the upper bound might not be as tight as the lower bound: our
prior would be that the price of correlation risks between the stock and the market returns
tend to be positive (positive risk-neutral correlations).

[Table 2.4 about here]

17Both the probability and the expectation here should be conditional. We omit the time subscript for
simplicity.
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Next, we adjust for stock characteristics in the linear regression tests. Eleven charac-
teristics are under consideration, which are rolling-window stock beta (five-year window),
momentum (past twelve month return excluding the last month), (log) size, book-to-
market ratio, past volatility (last one month), gross profitability over book asset, leverage
(debt-to-asset), solvency (cash or cash equivalent to current liability), turnover, detrended
turnover, and short interest. These characteristics are ones that have been reported to be
related to expected returns (Fama and French, 1993; Jegadeesh and Titman, 1993) and
crashes (Chen et al., 2001; Greenwood et al., 2019). Table 2.5, 2.6 and 2.7 report the
regression outcomes for a crash of over 20%, 10% and 5% separately. Through these tests,
the crash probability bounds stay consistently significant. Most importantly, these multi-
variate regressions including stock characteristics are have smaller adjusted R2 compared
with the univariate case including only crash probability bounds. These evidences suggest
that the option-implied bounds drive out characteristics in terms of explaining variation
in the crash probabilities.

[Table 2.5, 2.6 and 2.7 about here]

2.3.2 Out-of-sample forecasts

The crash probability bounds rely on no free parameters, as they are observable in real
time together with the security prices. This feature makes them natural candidates for
out-of-sample forecasting. In this section, we demonstrate that they do perform well
forecasting crash events at the stock level, which can be done by simply thresholding the
forward-looking crash probability bounds.

To pose some real challenges, we design a procedure to emulate an avid “data-snooper”.
In doing so, we split the dataset into a training and a testing sample. The stock charac-
teristics are combined through linear regressions, as well as logistic regressions, by fitting
them to the training sample. In addition, when fitting these models, we select the “best”
possible models through cross-validation using the LASSO.

The predictive power of forecasting bounds is then compared with the pure data-
mining procedure. The forecasting target is the events of individual stock crashes. The
performance measure is the ROC curve and the area under the curve (AUC) measure,
which balance the type-I and type-II forecasting errors.

We report in Table 2.8 the AUC statistics for the option-implied bounds and the sta-
tistical procedures. The results in Table 2.8 confirm that simply thresholding the option-
implied crash probability bounds outperform the statistical procedure combining various
stock characteristics. The lower bounds consistently dominate the statistical procedures.
For all approaches, the forecasting power in general is more pronounced when q becomes
smaller (AUC becomes larger). Out-of-sample forecasting accuracy in general declines
as the forecasting horizon becomes longer. To visualize the performances of different
approach, we also plot the ROC curves for a crash over 20% in Figure 2.5.
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[Table 2.8 about here]

[Figure 2.5 about here]

2.4 Application

2.4.1 Fragility and stability measures of the global banking system

Baron, Verner, and Xiong (2020) report the link between the large declines in bank eq-
uity and macroeconomic downturn, as well as the predicative power of large bank equity
declines on banking crisis. Since the bank equity returns can only be calculated ex post,
the forward-looking equity crash bounds that we have introduced in this paper is a clear
ex ante alternative to consider.

In this section, we demonstrate a specific application of the derived bounds to monitor-
ing the crash probability of global systemically important banks (G-SIBs), and construct
two global banking fragility measures from the crash probability bounds.

The G-SIBs under consideration are listed in Table 2.9. Twenty-one G-SIBs that have
been included by the Financial Stability Board since 2011 are considered. These chosen
G-SIBs all have their stocks traded in the US stock market or have issued American
depositary receipts. Banks that are not traded in the US stock market are not considered
in this study. Table 2.9 also reports the time periods during which option data are available
for the equity of these banks.

We compute the forward-looking crash probability bounds for the equity value of these
global banks using the method described in Section 2.1. Then we define two aggregate
measures using these bounds for individual banks to monitor their overall fragility. For
a given set of banks, the probability of at least one crash can be bounded from below as
follows:

P [at least one crash] = P [∪i{Ri ≤ q}]
≥ max

i
P[Ri ≤ q]

≥ max
i

inf P[Ri ≤ q],

where q is a pre-specified return level (for example, 80%) to define a crash (large equity
decline), inf P[Ri ≤ q] is the lower bound for the crash probability derived from option
data for individual bank i. We define the quantity, maxi inf P[Ri ≤ q], as the fragility
measure: the higher this measure is, the more likely that a banking crisis will emerge. On
the other hand, for the same set of banks, the probability that all of them are facing large
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equity value declines is bounded from above because

P [all crash] = P [∩i{Ri ≤ q}]
≤ min

i
P[Ri ≤ q]

≤ min
i

supP[Ri ≤ q],

then the probability of no system-wide crash is bounded from below:

1− P [all crash] ≥ 1−min
i

supP[Ri ≤ q],

where supP[Ri ≤ q] is the upper bound for the crash of bank i. We define 1−mini supP[Ri ≤
q] as a measure of stability : if this quantity is large, the probability of a full-scale melt
down of the global banking system will be small.

We show in Figure 2.6 these two measures over the one-year horizon. The crash events
is defined by specifying q as 0.80 (a 20% crash), 0.70 (a 30% crash) and 0.60 (a 40% crash).
The time scale is monthly from January 1996 to December 2017. The two measures move
in opposite direction as expected. The fragility measure surges and the stability measure
plunges during the period of subprime crisis. The stability measure begins to decline from
mid 2007, which predates the onset of the crisis.

[Figure 2.6 about here]

2.5 Bounds for general contingent payoffs

For a general function h, there is no guarantee that xγh(y) is two-increasing, which pre-
vents us from using the Fréchet and Hoeffding bounds for solving the optimization problem
defined in (2.9).

Hofer and Iacò (2014) propose an algorithm to solve this problem. For any well-behaved
function k in (2.9),18

max
C∈C

∫
[0,1]2

k (u, v) dC(u, v) ≈ max
π∈Pn

1

n

n∑
i=1

k

(
i

n+ 1
,
π(i)

n+ 1

)
, as n is large enough,

(2.15)
where Pn is the set of all possible permutations (the total number of which is n!) of the
set {1, . . . , n}; π ∈ Pn selects one specific permutation of {1, . . . , n}, that is, π is a one-
to-one mapping from the n-elements to themselves. The right-hand side of (2.15) is a
canonical problem in combinatorial optimization called the linear assignment problem.19

Algorithmic solution to this problem is due to Kuhn (1955), which is called the Hun-
garian algorithm. This algorithm reduces the complexity of solving the right-hand side
optimization problem in (2.15) from O(n!) (brute-force searching) to O(n3).

18Here, it means that: 1) the function guarantees that the integral is finite; 2) the function is continuous
almost everywhere within its domain.

19See Burkard et al. (2012) for an extensive coverage on this topic
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In terms of the lower bounds, one can apply the Hungarian algorithm to the inte-
gral involving −k(u, v) to get an upper bound. The negative of the upper bound for∫

[0,1]2 [−k(u, v)] dC(u, v) minimizes the original integral over the space of copula functions.
Applying the Sklar’s theorem and the methods presented above gives us the following

result:

Proposition 11. Let h be a function that is continuous almost everywhere. Define func-
tion k(u, v) on [0, 1]2 as in equation (2.10). Let πmin be a permutation of {1, . . . , n} that
minimizes

∑n
k=1 k

(
i

n+1 ,
π(i)
n+1

)
, and πmax be a permutation of {1, . . . , n} that maximizes∑n

k=1 k
(

i
n+1 ,

π(i)
n+1

)
, then

1

nC

n+1∑
i=1

k

(
i

n+ 1
,
πmin(i)

n+ 1

)
≤ E[h(Ri)] ≤

1

nC

n+1∑
i=1

k

(
i

n+ 1
,
πmax(i)

n+ 1

)
,

holds approximately for n being large enough, where the constant C equals
∫ 1

0

[
Q−1
m (u)

]γ
du.

Proposition 11 is valid for a very general class of functions. One simple but important
example is when h(Ri) = I(q1 ≤ Ri ≤ q2), that is, when we are interested in evaluating
the probability that stock i’s return falls in the interval [q1, q2].

2.6 Conclusion

This paper has proposed a new framework to derived bounds for the expectation of a
payoff that is contingent on an individual stock return. The bounds are computed directly
from option prices and are forward-looking by nature. The sharpness of these bounds
are theoretically guaranteed. The framework is general enough and may be of interest by
itself.

Applying this framework, we compute bounds for the stock crash probabilities. Through
panel regressions, we show that these crash probability bounds are close to the true crash
probabilities. Out-of-sample analysis shows that they perform well in forecasting crash
events and consistently outperform the combination of various stock characteristics.

At the micro-level, these bounds can provide real-time monitoring of crash risks at the
firm level. Compared with a point forecast, having a forecasting bounds can be beneficial
in that forecasting uncertainties are quantified and sensitivity analysis based on crash
probabilities can be guided.

These crash probability bounds are potentially useful for constructing forward-looking
macroeconomic indicators through thoughtful aggregation. For example, when applied to
the study of G-SIBs, the maximum of the lower bounds and the minimum of the upper
bounds can be used to construct fragility and stability measures of the global banking
system.

114



Table 2.1: Sample Summary

This table summarizes the data sources. The sample period is monthly from January 1996 to
December 2017. For each months, we query the OptionMetrics database for firms that have been
included to the S&P 500 index before the beginning of that year. The data we use are the implied
volatility surface data from which we collect the (implied) option premiums and corresponding
strike prices. The time horizons, i.e., the date to maturity are one month, two months, six months
and one year. The total number of firm-month pairs, unique firms, unique months, and the median
and mean of average number of firms per month are reported. .

Maturity 1 3 6 12
Total no. of observations 128,259 127,540 126,472 126,470
No. of sample months 264 264 264 264
No. of sample firms 1033 1032 1029 1029
Median no. of firms/month 485 484 480 480
Average no. of firms/month 486 483 479 479
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Table 2.2: Variation of crash probability bounds across firms

This table presents the summary statistics of time-series averages of crash probability bounds.
The sample period is monthly from January 1996 to December 2017. The crash probabilities
under consideration are Pt[Ri ≤ q] for q = 0.80, 0.90, 0.95. The time-series averages are taken
for each firm separately. To rule out the impact of outliers, the time-series average is taken and
reported only for firms with over four-year observations. Maturity horizons are one month, two
months, six months and one year.

Lower bound Upper bound
Maturity 1 3 6 12 1 3 6 12

No. of firms 700 699 695 695 700 699 695 695

Panel A: q = 0.80, down by over 20%

Min. 0.003 0.017 0.031 0.046 0.012 0.042 0.078 0.130
1st Qu. 0.015 0.051 0.083 0.110 0.032 0.097 0.172 0.271
Median 0.025 0.072 0.110 0.141 0.046 0.130 0.214 0.317
3rd Qu. 0.038 0.098 0.141 0.174 0.064 0.165 0.257 0.364
Max. 0.145 0.240 0.292 0.340 0.196 0.344 0.440 0.557
Mean 0.031 0.080 0.116 0.146 0.053 0.138 0.220 0.320
Std.dev. 0.023 0.040 0.047 0.050 0.031 0.056 0.068 0.074

Panel B: q = 0.90, down by over 10%

Min. 0.031 0.066 0.091 0.103 0.051 0.121 0.187 0.244
1st Qu. 0.077 0.147 0.182 0.200 0.114 0.229 0.312 0.397
Median 0.105 0.182 0.217 0.232 0.147 0.272 0.357 0.441
3rd Qu. 0.135 0.217 0.252 0.265 0.184 0.316 0.398 0.480
Max. 0.295 0.360 0.379 0.402 0.358 0.468 0.534 0.618
Mean 0.112 0.186 0.220 0.234 0.155 0.276 0.357 0.439
Std.dev. 0.047 0.054 0.052 0.050 0.057 0.067 0.066 0.065

Panel C: q = 0.95, down by over 5%

Min. 0.104 0.166 0.174 0.170 0.139 0.240 0.292 0.330
1st Qu. 0.191 0.248 0.265 0.260 0.247 0.348 0.410 0.473
Median 0.223 0.280 0.295 0.290 0.282 0.385 0.446 0.508
3rd Qu. 0.257 0.310 0.323 0.318 0.320 0.420 0.478 0.540
Max. 0.389 0.426 0.425 0.436 0.456 0.536 0.583 0.647
Mean 0.227 0.282 0.296 0.290 0.286 0.386 0.446 0.507
Std.dev. 0.050 0.047 0.044 0.044 0.056 0.054 0.052 0.053
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Table 2.3: Variation of crash probability bounds over time

This table presents summary statistics of the cross-sectional averages of crash probability bounds.
The sample period is monthly from January 1996 to December 2017. The sample period is monthly
from January 1996 to December 2017. The crash probabilities under consideration are Pt[Ri ≤ q]
for q = 0.80, 0.90, 0.95. The cross-sectional averages are take year by year. Maturity horizons are
one month, two months, six months and one year.

Lower bound Upper bound
Maturity 1 3 6 12 1 3 6 12

No. of months 264 264 264 264 264 264 264 264

Panel A: q = 0.80, down by over 20%

Min. 0.003 0.031 0.061 0.103 0.012 0.052 0.110 0.189
1st Qu. 0.014 0.049 0.086 0.120 0.026 0.083 0.146 0.238
Median 0.019 0.061 0.100 0.133 0.034 0.105 0.186 0.288
3rd Qu. 0.038 0.097 0.131 0.158 0.065 0.176 0.273 0.379
Max. 0.126 0.176 0.197 0.216 0.245 0.410 0.517 0.633
Mean 0.028 0.075 0.111 0.142 0.049 0.131 0.212 0.313
Std.dev. 0.022 0.033 0.033 0.029 0.037 0.066 0.079 0.088

Panel B: q = 0.90, down by over 10%

Min. 0.039 0.122 0.173 0.197 0.057 0.168 0.249 0.316
1st Qu. 0.076 0.152 0.194 0.215 0.101 0.215 0.293 0.375
Median 0.092 0.168 0.205 0.224 0.126 0.246 0.331 0.418
3rd Qu. 0.135 0.211 0.236 0.243 0.189 0.327 0.414 0.497
Max. 0.219 0.280 0.298 0.302 0.371 0.508 0.598 0.691
Mean 0.106 0.181 0.216 0.232 0.148 0.270 0.352 0.436
Std.dev. 0.041 0.038 0.030 0.023 0.062 0.071 0.072 0.075

Panel C: q = 0.95, down by over 5%

Min. 0.139 0.240 0.262 0.256 0.170 0.298 0.351 0.395
1st Qu. 0.193 0.260 0.279 0.276 0.234 0.335 0.396 0.457
Median 0.212 0.269 0.288 0.286 0.263 0.364 0.425 0.491
3rd Qu. 0.250 0.292 0.302 0.298 0.326 0.428 0.491 0.556
Max. 0.319 0.360 0.360 0.349 0.450 0.560 0.639 0.719
Mean 0.221 0.278 0.293 0.289 0.279 0.382 0.443 0.505
Std.dev. 0.038 0.026 0.021 0.019 0.059 0.057 0.059 0.064
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Table 2.4: Tightness of the crash probability bounds: linear regression tests

This table reports the results from regressing the indicator function of realized equity returns being
less than a threshold, q, on the option-implied bounds, ProbLoweri,t(τ, q) and ProbUpperi,t(τ, q),
for firms belonging to the S&P 500 index. The data are monthly from January 1996 to December
2017. The return horizons, denoted by τ , are one month, three month, six months, and one year.
Results in Panel A, B, C are from the linear regressions,

I(Ri,t→t+τ ≤ q) = α+ β ProbLoweri,t(τ, q) + εi,t+τ ,

or
I(Ri,t→t+τ ≤ q) = α+ β ProbUpperi,t(τ, q) + εi,t+τ ,

with q = 0.80, 0.90 and 0.95. Values in parentheses are standard errors with two-way clustering
following Petersen (2009). Values in square brackets are standard errors from block bootstrap using
2500 bootstrap samples following Martin and Wagner (2019). Adjusted R2s are also reported.

Lower bound Upper bound
Maturity 1 3 6 12 1 3 6 12

Panel A: q = 0.80, down by over 20%

α −0.005 −0.014 −0.021 −0.045 −0.011 −0.017 −0.017 −0.051
(0.002) (0.005) (0.008) (0.009) (0.003) (0.007) (0.012) (0.016)
[0.002] [0.009] [0.015] [0.025] [0.004] [0.008] [0.022] [0.036]

β 1.034 1.152 1.193 1.105 0.703 0.680 0.602 0.519
(0.136) (0.105) (0.097) (0.085) (0.104) (0.076) (0.074) (0.065)
[0.129] [0.162] [0.177] [0.170] [0.117] [0.094] [0.151] [0.145]

R2-Adj. 6.88% 6.84% 5.90% 5.31% 6.67% 6.08% 4.46% 3.99%

Panel B: q = 0.90, down by over 10%

α −0.023 −0.039 −0.063 −0.068 −0.031 −0.041 −0.044 −0.068
(0.007) (0.011) (0.015) (0.018) (0.009) (0.017) (0.026) (0.033)
[0.008] [0.011] [0.039] [0.060] [0.010] [0.026] [0.046] [0.076]

β 1.121 1.165 1.257 1.195 0.861 0.791 0.717 0.634
(0.093) (0.079) (0.081) (0.081) (0.084) (0.079) (0.086) (0.087)
[0.082] [0.121] [0.203] [0.211] [0.069] [0.143] [0.194] [0.213]

R2-Adj. 7.05% 5.02% 4.27% 3.45% 7.04% 4.64% 3.22% 2.60%

Panel C: q = 0.95, down by over 5%

α −0.037 −0.049 −0.080 −0.021 −0.045 −0.042 −0.034 −0.009
(0.016) (0.021) (0.026) (0.028) (0.022) (0.037) (0.046) (0.051)
[0.017] [0.029] [0.045] [0.059] [0.026] [0.043] [0.087] [0.107]

β 1.129 1.144 1.239 1.051 0.923 0.813 0.717 0.578
(0.083) (0.078) (0.087) (0.092) (0.090) (0.104) (0.112) (0.108)
[0.088] [0.088] [0.145] [0.178] [0.092] [0.118] [0.214] [0.202]

R2-Adj. 3.99% 2.54% 2.42% 1.77% 4.10% 2.35% 1.71% 1.26%
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Table 2.5: Tightness of the crash probability bounds: linear regression tests adding
characteristics for a 20% crash

This table reports the results from regressing the indicator function of realized equity returns being
less than 0.80 on the option-implied bounds as well as other characteristics for firms belonging
to the S&P 500 index. The data are monthly from January 1996 to December 2017. The return
horizons are one month, three month, six months, and one year. Values in parentheses are standard
errors with two-way clustering following Petersen (2009). Adjusted R2s are also reported.

Lower bound Upper bound
Maturity 1 3 6 12 1 3 6 12

intercept 0.009 0.077 0.079 0.093 −0.0004 0.072 0.094 0.094
(0.024) (0.051) (0.068) (0.069) (0.025) (0.053) (0.069) (0.069)

bounds 0.809∗∗∗ 0.948∗∗∗ 1.277∗∗∗ 1.054∗∗∗ 0.535∗∗∗ 0.452∗∗∗ 0.451∗∗∗ 0.335∗∗∗

(0.116) (0.126) (0.142) (0.126) (0.109) (0.082) (0.084) (0.069)

beta 0.0003 −0.008 −0.040 −0.049∗ 0.007 0.016 0.016 0.018
(0.007) (0.017) (0.026) (0.027) (0.007) (0.016) (0.024) (0.024)

mom −0.008∗ −0.007 0.003 0.001 −0.006 −0.005 0.007 0.006
(0.004) (0.011) (0.015) (0.015) (0.004) (0.011) (0.015) (0.015)

logsize −0.0001 −0.003 −0.001 −0.003 −0.0003 −0.005 −0.005 −0.006
(0.001) (0.003) (0.004) (0.004) (0.001) (0.003) (0.004) (0.004)

bm −0.010∗∗∗ −0.021∗∗∗ −0.042∗∗∗ −0.042∗∗∗ −0.009∗∗∗ −0.017∗∗ −0.036∗∗∗ −0.036∗∗∗
(0.003) (0.007) (0.009) (0.009) (0.003) (0.007) (0.010) (0.010)

past_vol 0.022 0.031 −0.039 0.023 0.018 0.056∗∗ 0.027 0.064
(0.014) (0.029) (0.039) (0.039) (0.012) (0.022) (0.039) (0.039)

gross_prof −0.010∗∗ −0.019∗ −0.037∗∗ −0.038∗∗ −0.010∗∗ −0.017 −0.031∗ −0.030∗
(0.004) (0.011) (0.017) (0.017) (0.004) (0.011) (0.018) (0.018)

debt/asset −0.001 −0.011 −0.042∗∗ −0.048∗∗ 0.001 −0.008 −0.037∗ −0.040∗∗
(0.004) (0.011) (0.019) (0.019) (0.004) (0.012) (0.020) (0.020)

cce/cliab. −0.002∗∗ −0.005∗∗ −0.010∗∗∗ −0.011∗∗∗ −0.002∗ −0.004∗ −0.008∗∗ −0.009∗∗
(0.001) (0.002) (0.003) (0.003) (0.001) (0.002) (0.003) (0.003)

turnover 0.029 −0.017 0.012 0.072 0.020 −0.003 0.050 0.070
(0.050) (0.108) (0.133) (0.134) (0.050) (0.110) (0.135) (0.134)

d_turnover 0.023 0.141 0.281 0.165 0.038 0.088 0.143 0.096
(0.060) (0.133) (0.184) (0.183) (0.063) (0.134) (0.186) (0.183)

shortint. 0.002∗ 0.007∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 0.002∗∗ 0.008∗∗∗ 0.015∗∗∗ 0.015∗∗∗

(0.001) (0.002) (0.004) (0.004) (0.001) (0.002) (0.004) (0.004)

R2-Adj. 5.0% 5.3% 5.2% 4.9% 4.9% 4.8% 4.0% 3.9%
Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 2.6: Tightness of the crash probability bounds: linear regression tests adding
characteristics for a 10% crash

This table reports the results from regressing the indicator function of realized equity returns being
less than 0.90 on the option-implied bounds as well as other characteristics for firms belonging
to the S&P 500 index. The data are monthly from January 1996 to December 2017. The return
horizons are one month, three month, six months, and one year. Values in parentheses are standard
errors with two-way clustering following Petersen (2009). Adjusted R2s are also reported.

Lower bound Upper bound
Maturity 1 3 6 12 1 3 6 12

intercept −0.003 0.092 0.063 0.167∗ −0.023 0.085 0.108 0.180∗

(0.051) (0.076) (0.096) (0.100) (0.055) (0.080) (0.098) (0.100)

bounds 0.941∗∗∗ 1.074∗∗∗ 1.381∗∗∗ 1.110∗∗∗ 0.730∗∗∗ 0.672∗∗∗ 0.642∗∗∗ 0.445∗∗∗

(0.096) (0.128) (0.136) (0.134) (0.094) (0.092) (0.103) (0.096)

beta −0.0005 −0.036 −0.065∗ −0.061∗ 0.020 0.012 0.021 0.027
(0.017) (0.028) (0.035) (0.034) (0.017) (0.026) (0.032) (0.032)

mom −0.011 −0.0003 0.012 0.014 −0.008 0.006 0.022 0.022
(0.012) (0.018) (0.019) (0.019) (0.012) (0.018) (0.020) (0.020)

logsize 0.001 −0.003 −0.0004 −0.006 0.0001 −0.005 −0.006 −0.010∗
(0.003) (0.004) (0.005) (0.005) (0.003) (0.004) (0.005) (0.005)

bm −0.017∗∗ −0.039∗∗∗ −0.064∗∗∗ −0.066∗∗∗ −0.015∗∗ −0.037∗∗∗ −0.061∗∗∗ −0.062∗∗∗
(0.007) (0.010) (0.011) (0.011) (0.007) (0.010) (0.012) (0.012)

past_vol 0.064 0.060 −0.010 0.081∗ 0.043 0.047 0.006 0.078
(0.040) (0.054) (0.047) (0.047) (0.035) (0.036) (0.047) (0.048)

gross_prof −0.014 −0.028∗ −0.060∗∗∗ −0.054∗∗ −0.013 −0.024 −0.049∗∗ −0.045∗∗
(0.010) (0.016) (0.020) (0.021) (0.010) (0.016) (0.022) (0.022)

debt/asset −0.012 −0.051∗∗∗ −0.084∗∗∗ −0.098∗∗∗ −0.009 −0.048∗∗∗ −0.081∗∗∗ −0.090∗∗∗
(0.010) (0.017) (0.024) (0.024) (0.010) (0.018) (0.025) (0.026)

cce/cliab. −0.003∗ −0.009∗∗∗ −0.015∗∗∗ −0.016∗∗∗ −0.003 −0.007∗∗ −0.012∗∗∗ −0.013∗∗∗
(0.002) (0.003) (0.005) (0.005) (0.002) (0.003) (0.005) (0.005)

turnover −0.007 −0.051 −0.061 0.007 −0.023 −0.063 −0.080 −0.041
(0.106) (0.151) (0.163) (0.165) (0.106) (0.153) (0.165) (0.165)

d_turnover 0.032 0.251 0.340 0.150 0.066 0.254 0.315 0.195
(0.149) (0.204) (0.234) (0.236) (0.153) (0.199) (0.239) (0.236)

shortint. 0.005∗∗ 0.010∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.006∗∗∗ 0.012∗∗∗ 0.020∗∗∗ 0.020∗∗∗

(0.002) (0.003) (0.004) (0.004) (0.002) (0.003) (0.004) (0.004)

R2-Adj. 6.1% 4.8% 4.4% 3.8% 6.1% 4.4% 3.4% 3.0%
Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

120



Table 2.7: Tightness of the crash probability bounds: linear regression tests adding
characteristics for a 5% crash

This table reports the results from regressing the indicator function of realized equity returns being
less than 0.95 on the option-implied bounds as well as other characteristics for firms belonging
to the S&P 500 index. The data are monthly from January 1996 to December 2017. The return
horizons are one month, three month, six months, and one year. Values in parentheses are standard
errors with two-way clustering following Petersen (2009). Adjusted R2s are also reported.

Lower bound Upper bound
Maturity 1 3 6 12 1 3 6 12

intercept 0.029 0.066 0.051 0.217∗ −0.007 0.068 0.127 0.261∗∗

(0.073) (0.097) (0.114) (0.117) (0.079) (0.103) (0.119) (0.121)

bounds 0.908∗∗∗ 1.002∗∗∗ 1.259∗∗∗ 0.881∗∗∗ 0.777∗∗∗ 0.662∗∗∗ 0.593∗∗∗ 0.326∗∗∗

(0.112) (0.158) (0.155) (0.150) (0.107) (0.121) (0.132) (0.121)

beta 0.001 −0.041 −0.057 −0.041 0.028 0.012 0.028 0.032
(0.028) (0.032) (0.037) (0.037) (0.027) (0.031) (0.036) (0.035)

mom −0.004 0.007 0.015 0.018 0.0002 0.014 0.025 0.025
(0.019) (0.022) (0.021) (0.021) (0.019) (0.022) (0.022) (0.021)

logsize −0.0005 −0.0003 0.00003 −0.006 −0.001 −0.002 −0.004 −0.008
(0.004) (0.005) (0.006) (0.006) (0.004) (0.005) (0.006) (0.006)

bm −0.027∗∗∗ −0.051∗∗∗ −0.079∗∗∗ −0.081∗∗∗ −0.025∗∗ −0.050∗∗∗ −0.077∗∗∗ −0.078∗∗∗
(0.010) (0.011) (0.012) (0.012) (0.010) (0.012) (0.013) (0.013)

past_vol 0.113∗∗ 0.110∗ 0.067 0.135∗∗∗ 0.071 0.076∗ 0.053 0.124∗∗

(0.054) (0.063) (0.051) (0.051) (0.046) (0.044) (0.050) (0.051)

gross_prof −0.026∗ −0.032 −0.055∗∗∗ −0.047∗∗ −0.025∗ −0.028 −0.045∗∗ −0.039∗
(0.014) (0.020) (0.021) (0.022) (0.014) (0.020) (0.022) (0.023)

debt_asset −0.033∗∗ −0.070∗∗∗ −0.114∗∗∗ −0.123∗∗∗ −0.029∗∗ −0.066∗∗∗ −0.108∗∗∗ −0.114∗∗∗
(0.015) (0.021) (0.026) (0.027) (0.015) (0.021) (0.027) (0.028)

cce/cliab. −0.005∗ −0.011∗∗∗ −0.016∗∗∗ −0.016∗∗∗ −0.004 −0.009∗∗ −0.013∗∗ −0.013∗∗
(0.003) (0.004) (0.005) (0.005) (0.003) (0.004) (0.005) (0.005)

turnover −0.061 −0.060 −0.094 −0.054 −0.087 −0.091 −0.143 −0.104
(0.147) (0.168) (0.177) (0.178) (0.146) (0.170) (0.179) (0.178)

d_turnover −0.028 0.205 0.253 0.115 0.033 0.251 0.302 0.179
(0.219) (0.232) (0.258) (0.262) (0.220) (0.224) (0.260) (0.258)

shortint. 0.007∗∗ 0.014∗∗∗ 0.019∗∗∗ 0.018∗∗∗ 0.008∗∗∗ 0.015∗∗∗ 0.020∗∗∗ 0.019∗∗∗

(0.003) (0.004) (0.004) (0.004) (0.003) (0.004) (0.005) (0.005)

R2-Adj. 3.8% 2.8% 2.9% 2.4% 3.8% 2.5% 2.2% 1.9%
Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 2.8: Area under the curve (AUC) statistics of out-of-sample forecasting using
option-implied bounds and characteristic-based procedures

This table reports AUCs of forecasting whether a stock’s net return will be less than −20% using
the option-implied bounds, as well as statistical procedures. Stocks of firms belonging to the S&P
500 index are considered. The data are monthly from January 1996 to December 2017. The return
horizons are one month, three month, six months, and one year. The two statistical procedures
under consideration are logistic regression and linear regression, both fine tuned by the LASSO
variable selection method. The training sample consists the first half of the data (1996-2006) and
the testing sample consists the rest. AUC are all calculated from the testing sample.

Maturity 1 3 6 12

Panel A: q = 0.80, down by 20%

Lower Bound 0.871 0.771 0.723 0.721
Upper Bound 0.874 0.764 0.703 0.695
Char.Logistic-Lasso 0.802 0.720 0.675 0.676
Char.Linear-Lasso 0.832 0.729 0.680 0.679

Panel B: q = 0.90, down by 10%

Lower Bound 0.760 0.680 0.657 0.644
Upper Bound 0.760 0.673 0.626 0.605
Char.Logistic-Lasso 0.732 0.656 0.625 0.626
Char.Linear-Lasso 0.733 0.639 0.616 0.614

Panel C: q = 0.95, down by 5%

Lower Bound 0.645 0.609 0.610 0.593
Upper Bound 0.646 0.604 0.578 0.585
Char.Logistic-Lasso 0.636 0.597 0.585 0.584
Char.Linear-Lasso 0.629 0.587 0.574 0.572

122



A: Down by 20% in one month B: Down by 20% in three months
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C: Down by 20% in six months D: Down by 20% in one year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Method:

OIB

Char: Logistic−Lasso

Char: Linear−Lasso

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Method:

OIB

Char: Logistic−Lasso

Char: Linear−Lasso

Figure 2.5: ROC curves of out-of-sample forecasting of crash events: option-implied
bounds (OIC) v.s. characteristics-based procedures

The figures report ROC curves of forecasting whether a stock’s net return will be less than −20%

using the option-implied bounds, as well as statistical procedures. Stocks of firms belonging to
the S&P 500 index are considered. The data are monthly from January 1996 to December 2017.
The return horizons are one month, three month, six months, and one year. The two statistical
procedures under consideration are logistic regression and linear regression, both fine tuned by
the LASSO variable selection method. The training sample consists the first half of the data
(1996-2006) and the testing sample consists the rest. ROC curves are all based on the testing
sample.
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Table 2.9: G-SIBs under consideration

This table lists the twenty-one global systemically important banks (G-SIBs) under study, as
subset of all the G-SIBs ever defined by the Financial Stability Board since 2011. The third
column reports the period considered as a G-SIB for each bank. The forth column reports the
time window within which the option data on each bank’s equity are available. To be considered in
this analysis, a G-SIB must be either publicly traded in the US or have issued American depositary
receipts.

Bank name Country FSB G-SIB period Option sample period

Mizuho FG Japan 2011-present 2008.10-2017.12
Sumitomo Mitsui FG Japan 2011-present 2011.06-2017.12
Mitsubishi UFJ FG Japan 2011-present 1998.02-2017.12
Deutsche Bank Germany 2011-present 2001.11-2017.12
ING Bank Netherlands 2011-present 1997.07-2017.12
BBVA Spain 2012-2015 1998.10-2017.12
Santander Spain 2011-present 1997.11-2017.12
Credit Suisse Switzerland 2011-present 2005.03-2017.12
UBS Switzerland 2011-present 2000.07-2014.12
Barclays United Kingdom 2011-present 2007.11-2017.12
HSBC United Kingdom 2011-present 1999.12-2017.12
Lloyds United Kingdom 2011-2012 2008.10-2017.12
Royal Bank of Canada Canada 2017-present 2000.10-2017.12
Bank of America United States 2011-present 1996.01-2017.12
Bank of New York Mellon United States 2011-present 1996.01-2017.12
Citi United States 2011-present 1996.01-2017.12
Goldman Sachs United States 2011-present 1999.08-2017.12
JP Morgan Chase United States 2011-present 1996.01-2017.12
Morgan Stanley United States 2011-present 1996.01-2017.12
State Street United States 2011-present 1996.01-2017.12
Wells Fargo United States 2011-present 1996.01-2017.12
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A: Crash defined as 20% bank equity declines
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B: Crash defined as 30% bank equity declines
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C: Crash defined as 40% bank equity declines
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Figure 2.6: Fragility and stability measures of the global banking system

The figures present the two measures constructed from the crash probability bounds for the global
systemically important banks (G-SIBs) introduced in Section 2.4.1. Both measures are based
on one-year crash probability bounds. At the end of each month from 1996-2017, the (cross-
sectional) maximum of the lower bounds among the G-SIBs is the fragility measure, and one
minus the minimum of the upper bounds is the stability measure. Each panel corresponds to a
specific choice of q in defining a crash event.
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2.7 Appendices

2.7.1 Proofs

Proof of Proposition 9

Proof. When the function h satisfies Assumption 9, the integrand

k(u, v) =
[
Q−1
m (u)

]γ
h
(
Q−1
i (v)

)
is two-increasing. Based on Corollary 2.2 of Tchen (1980) and the Fréchet-Heoffding (F-H)
theorem,∫

[0,1]2

[
Q−1
m (u)

]γ
h
(
Q−1
i (v)

)
dudv ≥

∫
[0,1]2

[
Q−1
m (u)

]γ
h
(
Q−1
i (v)

)
d (max(u+ v − 1, 0)) ,

and ∫
[0,1]2

[
Q−1
m (u)

]γ
h
(
Q−1
i (v)

)
dudv ≤

∫
[0,1]2

[
Q−1
m (u)

]γ
h
(
Q−1
i (v)

)
d (min(u, v)) .

The probability densities of the F-H lower bound, max(u+ v − 1, 0), and the F-H upper
bound, min(u, v), are uniformly distributed along the two diagonals of the square [0, 1]2

in R2, illustrated as follows:

0
u

v

0
u

v

density of max(u+ v − 1, 0)

density of min(u, v)

1

1

1

1

Integrating the right hand sides of the two inequalities above (with regard to these two
densities), the numerators of the lower and upper bounds are∫ 1

0

[
Q−1
m (u)

]γ
h
(
Q−1
i (1− u)

)
du

Rm=Q−1
m (u)

==

∫ ∞
0

Rγmh(Q−1
i (1−Qm(Rm))) dRm,

∫ 1

0

[
Q−1
m (u)

]γ
h
(
Q−1
i (u)

)
du

Rm=Q−1
m (u)

==

∫ ∞
0

Rγmh(Q−1
i (Qm(Rm))) dRm,

which deliver bounds summarized in the proposition.
The lower bound is achieved when the copula function linking Qm and Qi is max(u+

v−1, 0), that is, the joint risk-neutral CDF of (Qm(Rm), Qi(Ri)) is max(u+v−1, 0). This
implies thatQm(Rm)+Qi(Ri) ≡ 1. Similarly, the upper bound is a achieved when the joint
risk-neutral CDF of (Qm(Rm), Qi(Ri)) is min(u, v), that is, when Qi(Ri) = Qm(Rm).
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Proof of Proposition 10.

Proof. In Proposition 9, let h(Ri) = −I(Ri ≤ q), which satisfies Assumption 9, then

P[Ri ≤ q] =− E[h(Ri)]

≥− E∗
[
Rγmh(Q−1

i (Qm(Rm)))
]

E∗ [Rγm]

=
E∗ [RγmI(Qm(Rm) ≤ Qi(q))]

E [Rγm]

=
E∗ [RγmI (Rm ≤ ql)]

E [Rγm]
(ql = Q−1

m (Qi (q)) by definition).

For the inequality in the second step, "=" is achieved if and only if Rm and Ri are
comonotonic such that Qi(Ri) = Qm(Rm). Similarly, we have

P[Ri ≤ q] = −E[h(Ri)]

≤ −E∗
[
Rγmh(Q−1

i (1−Qm(Rm)))
]

E∗ [Rγm]

=
E∗ [RγmI (1−Qm(Rm) ≤ Qi(q))]

E∗ [Rγm]

=
E∗ [RγmI (Rm ≥ qu)]

E∗ [Rγm]
(qu = Q−1

m (1−Qi (q)) by definition).

Again, the inequality in the second step can be strictly equal if and only if Rm and Ri are
coutermonotonic satisfying Qi(Ri) +Qm(Rm) = 1.

The upper bound is always greater than the lower bound. A bridge between them is
the risk-neutral crash probability. Specifically, by the continuous version of Chebyshev’s
sum inequality20,

E∗ [RγmI (Rm ≤ ql)]
E [Rγm]

≤ E∗ [Rγm]E∗ [I (Rm ≤ ql)]
E∗ [Rγm]

= Qm(ql) = Qi(q) = P∗[Ri ≤ q],

E∗ [RγmI (Rm ≥ qu)]

E∗ [Rγm]
≥ E∗ [Rγm]E∗ [I (Rm ≥ qu)]

E∗ [Rγm]
= 1−Qm(qu) = Qi(q) = P∗[Ri ≤ q].

Proof of Corollary 1

Proof. A proof for the case of γ = 1 follows from Martin (2017). Here we prove the general
results for any γ > 0 and then recast the proof for the γ = 1 case in light of our new

20For functions f and g which are integrable over [0, 1], both non-increasing or both non-decreasing,
then ∫ 1

0

f(x)g(x) dx ≥
∫ 1

0

f(x) dx

∫ 1

0

g(x) dx.

And if one is non-increasing and the other is non-decreasing, the inequality above is reversed. Let f(x) =
[Q−1

m (x)]γ (non-decreasing), then specifying g(x) = I(x ≤ Qi(q)) yields the first inequality below and
g(x) = I(x ≥ Qi(q)) the second.
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general results.

First, the Carr-Madan formula (Carr and Madan, 2001) says that for any smooth
function g(·),

g(S) = g(F )+g′(F )(S−F )+

∫ F

0
g′′(K) max{K−S, 0} dK+

∫ ∞
F

g′′(K) max{S−K, 0}dK.

Let Sm0 and F = Sm0Rf be the spot and forward level of the market index, the function
g(S) be Sγ . Treating S, a random variable, as the level of market index next period,
taking the risk-neutral expectations on both sides of the equation above (changing orders
of integrals when needed), we have

E∗ [Sγ ] =Sγm0R
γ
f + γSγ−1

m0 R
γ−1
f (E∗[S]− F )

+

∫ F

0
γ(γ − 1)Kγ−2Rfput(K) dK +

∫ ∞
F

γ(γ − 1)Kγ−2Rfcall(K) dK.

Dividing both sides by Sγm0 and noticing that Rm = S/Sm0 and that E∗[S] = F , we have
the first equation.

Next, noticing that

E∗ [RγmI(Rm ≤ ql)] =
E∗ [SγI(S ≤ Kl)]

Sγm0

=
Rf
Sγm0

∫ Kl

0
Kγput′′(K) dK

where the second equation comes from (2.6) following the Breeden-Litzenberger static
replication logic (Breeden and Litzenberger, 1978). Integrating the last integral by parts
and using the fact that put(0) = put′(0) = 0, we have∫ Kl

0
Kγput′′(K) dK = Kγput′(K)

∣∣∣Kl
0
−
∫ Kl

0
γKγ−1put′(K) dK

= Kγ
l put′(Kl)−

(
γKγ−1put(K)

∣∣∣Kl
0
−
∫ Kl

0
γ(γ − 1)Kγ−2put(K) dK

)
= Kγ

l put′(Kl)−
(
γKγ−1

l put(Kl)−
∫ Kl

0
γ(γ − 1)Kγ−2put(K) dK

)
.

Plugging the expression back to the equation for E∗ [RγmI(Rm ≤ ql)] yields the second
equation.

Finally, as

E∗ [RγmI(Rm ≥ qu)] =
Rf
Sγm0

∫ ∞
Ku

KγRfcall′′(K) dK,
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following the same logic, we integrate the right-hand side integral by parts∫ ∞
Ku

Kγcall′′(K) dK = Kγcall′(K)
∣∣∣∞
Ku
−
∫ ∞
Ku

γKγ−1call′(K) dK

= −Kγ
ucall′(Ku)−

(
γKγ−1call(K)

∣∣∣∞
Ku
−
∫ ∞
Ku

γ(γ − 1)Kγ−2call(K) dK

)
= −Kγ

ucall′(Ku) +

(
γKγ−1

u call(Kl) +

∫ ∞
Ku

γ(γ − 1)Kγ−2call(K) dK

)
where the second and third equations rely on the fact that call′(∞) = 0 and call(∞) = 0

respectively. Again, multiplying the last formula by Rf/S
γ
m0 leads to the third equation.

Letting γ = 1 in the three equations of the general results and calculating the ratios
of expectations for the bounds generates the formulas for the special case.

Proof of Corollary 2

Proof. We prove results related to the log-normal example here. First, we state a simple
fact that, for a log-normal random variable X such that logX ∼ (µ, σ2),

E [XI(X ≤ q)] = Φ

(
log q − µ− σ2

σ

)
E[X], E [XI(X ≥ q)] = Φ

(
µ+ σ2 − log q

σ

)
E[X]

Noticing that Rγm is also log-normal, i.e., log(Rγm) ∼ N (γµm, γ
2σ2
m), the lower bound

according to Proposition 10 is

E∗[RγmI(Rm ≤ ql)]
E∗[Rγm]

=
E∗
[
RγmI

(
Rγm ≤

[
Q−1
m (Qi(q))

]γ)]
E∗[Rγm]

=Φ

(
γ log

[
Q−1
m (Qi(q))

]
− γµm − γ2σ2

m

γσm

)
,

while log
[
Q−1
m (Qi(q))

]
= log q−µi

σi
σm + µm due to the log-normality of both Ri and Rm.

Plugging this equation in and simplifying the terms, we have

E∗[RγmI(Rm ≤ ql)]
E∗[Rγm]

= Φ

(
log q − µi

σi
− γσm

)
.

For the upper bound

E∗[RγmI(Rm ≥ qu)]

E∗[Rγm]
=
E∗
[
RγmI

(
Rγm ≥

[
Q−1
m (1−Qi(q))

]γ)]
E∗[Rγm]

=Φ

(
γµm + γ2σ2

m − γ log
[
Q−1
m (1−Qi(q))

]
γσm

)
.

Given that log
[
Q−1
m (1−Qi(q))

]
= µi−log q

σi
σm + µm, plugging into the expression above
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for the upper bound,

E∗[RγmI(Rm ≥ qu)]

E∗[Rγm]
= Φ

(
log q − µi

σi
+ γσm

)
.

The risk-neutral crash probability P∗[Ri ≤ q] is simply Φ
(

log q−µi
σi

)
, thus,

Φ−1(p∗) =
log q − µi

σi
.

Plugging this equation back to the expressions for the lower and upper bounds leads to
equation (2.13).

Now we turn our attention to results in equation (2.14). Noticing that,

[logRγm | logRi = ri] ∼ N
(
γµm + γρ

σm
σi

(ri − µi), γ2(1− ρ2)σ2
m

)
,

we have

E∗ [Rγm | Ri ≤ q] =E∗ [Rγm | logRi ≤ log q]

= exp

(
γµm − γρ

σm
σi
µi +

1

2
γ2(1− ρ2)σ2

m

)
E∗
[
exp

(
γρ
σm
σi
ri

) ∣∣∣∣ ri ≤ log q

]

= exp

(
γµm − γρ

σm
σi
µi +

1

2
γ2(1− ρ2)σ2

m

) ∫ log q
−∞ exp

(
γρσmσi x

)
φ(x ; µi, σ

2
i ) dx∫ log q

−∞ φ(x ; µi, σ2
i ) dx

,

where φ(x;µ, σ2) represents the probability density function of N (µ, σ2). On the one
hand, ∫ log q

−∞
exp

(
γρ
σm
σi
x

)
φ(x ; µi, σ

2
i ) dx

=

∫ log q

−∞

1√
2πσi

exp

(
γρ
σm
σi
x− x2

2σ2
i

− µ2
i

2σ2
i

+
µix

σ2
i

)
dx

=

∫ log q

−∞

1√
2πσi

exp

{
−(x− µi − γρσmσi)2

2σ2
i

+
(µi + γρσmσi)

2 − µ2
i

2σ2
i

}
dx

= exp

(
2µiγρσmσi + γ2ρ2σ2

mσ
2
i

2σ2
i

)
Φ

(
log q − µi − γρσmσi

σi

)
on the other hand, ∫ log q

−∞
φ(x ; µi, σ

2
i ) dx = Φ

(
log q − µi

σi

)
.
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Thus, we can simplify terms for calculating E∗ [Rγm | Ri ≤ q] as follows,

E∗ [Rγm | Ri ≤ q]

= exp

{
γµm − γρ

σm
σi
µi +

1

2
γ2(1− ρ2)σ2

m + γµiρ
σm
σi

+
1

2
γ2ρ2σ2

m

} Φ
(

log q−µi−γρσmσi
σi

)
Φ
(

log q−µi
σi

)
= exp

(
γµm +

1

2
γ2σ2

m

) Φ
(

log q−µi
σi

− γρσm
)

Φ
(

log q−µi
σi

)
=E∗ [Rγm]

Φ
(
Φ−1(p∗)− γρσm

)
P∗[Ri ≤ q]

.

As a result, under our framework,

P[Ri ≤ q] =
E∗[RγmI(Ri ≤ q)]

E∗[Rγm]
=

E∗[Rγm | Ri ≤ q]× P∗[Ri ≤ q]
E∗[Rγm]

= Φ
(
Φ−1(p∗)− γρσm

)
.

Proof of Corollary 3

Proof. First, when γ = 0, the bounds become

P∗[Rm ≤ ql] ≤ P[Ri ≤ q] ≤ P∗[Rm ≥ qu].

By definition, both the lower and upper bounds equal P∗[Ri ≤ q].
Second, define ψ(x) = I(Qm(x) ≤ Qi(q)), which is a decreasing function. The lower

bound is then E∗[Rγmψ(Rm)]/E∗[Rγm]. Differentiating with regard to γ ∈ (0,∞):

d

dγ

{
E∗[Rγmψ(Rm)]

E∗[Rγm]

}
=

E∗[Rγm log(Rm)ψ(Rm)]E∗[Rγm]− E∗[Rγmψ(Rm)]E∗[Rγm log(Rm)]

{E∗[Rγm]}2

=
1

{E∗[Rγm]}2
∫∫

(xγ log(x)ψ(x)yγ − xγψ(x)yγ log(y)) dQm(x) dQm(y)

≤ 1

{E∗[Rγm]}2

[∫∫
x≥y

xγyγψ(y) log

(
x

y

)
dQm(x) dQm(y)

+

∫∫
x≤y

xγyγψ(x) log

(
x

y

)
dQm(x) dQm(y)

]

=
1

{E∗[Rγm]}2

[∫∫
x≤y

xγyγψ(x) log
(y
x

)
dQm(x) dQm(y)

+

∫∫
x≤y

xγyγψ(x) log

(
x

y

)
dQm(x) dQm(y)

]
= 0.

The only inequality is due to that fact that when x ≥ y, ψ(x) ≤ ψ(y). Thus the lower
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bound is decreasing with regard to the risk-aversion parameter γ. Similar technique can
be applied to ψ(x) = I(Qm(x) ≥ 1 − Qi(q)), an increasing function, which leads to the
conclusion that the upper bound is increasing with regard to γ.

Third, notice that the lower bound is such that

E∗ [RγmI (Rm ≤ ql)]
E [Rγm]

≤ qγl
E∗[Rγm]

.

To show that the lower bound converges to zero, we only need that E∗[(Rm/ql)γ ] → ∞
as γ → ∞. This holds if P∗[Rm/ql > 1] > 0. If this condition does not hold, Rm ≤ ql =

Q−1
m (Qi(q)) with probability one, which violates the assumption that Qi(q) < 1. Thus,

E∗[(Rm/ql)γ ]→∞ and the lower bound converges to zero as γ →∞.

To show that the upper bound goes to one as γ →∞, note that

1 =
E∗[RγmI(Rm < qu)] + E∗[RγmI(Rm ≥ qu)]

E∗[Rγm]
.

As a result, we only need to show that E∗[RγmI(Rm<qu)]
E∗[Rγm]

→ 0 as γ → ∞. Again, this is
satisfied when P∗[Rm/qu > 1] > 0. If this is untrue, Rm ≤ qu = Q−1

m (1 − Qi(q)) with
probability one, thus, 1−Qi(q) = 1, violating the assumption that Qi(q) > 0.

2.7.2 Details about recovering risk-neutral marginals

This section presents implementation details about recovering the risk-neutral marginal
distributions from the option prices. At a specific date, let xi = Ki, i = 1, 2, . . . , be
the available strike prices of a certain option contract (on a specific underlying with a
given maturity); let yi = put(Ki) if Ki ≤ RfS0 (i.e., out-of-the-money put prices), and
yi = call(Ki) + Ki/Rf − S0 if Ki > RfS0 (i.e., put prices implied by the out-of-the-
money call prices under the put-call parity). Treating the (xi, yi) pairs as observables, the
following nonparametric shape-constrained model is fitted:

min
f∈F

{∑
i

[yi − f(xi)]
2 +

1

2
λ‖f‖22

}

where F = {f ∈ C(R+) : f > 0, f ′ > 0, f ′′ > 0} is the set of continuous functions
defined on R+ that are both monotonically increasing and convex (to rule out arbitrage
opportunities along the moneyness dimension). This nonparametric fitting is implemented
via the shape-constrained B-spline basis approach of Pya and Wood (2015). The tuning
parameter λ is chosen via standard generalized cross-validation procedures following Pya
and Wood (2015).

Based on the nonparametric fitting outcomes, smooth relationship between option
prices and strike prices is obtained with refined details. Arbitrage is also ruled out along
side the moneyness dimension. Taking derivatives according to (2.6) generates the risk-
neutral marginal distribution.
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2.7.3 Additional Tables and Figures

Table 2.10: Summary statistics for realized correlations

mean quantiles

5% 25% 50% 75% 95%

Panel A: Average across time (resulting N = 1055)

Correlation 0.508 0.290 0.412 0.497 0.609 0.748
Spearman-ρ 0.498 0.268 0.404 0.489 0.600 0.723
Kendall-τ 0.373 0.194 0.295 0.359 0.452 0.569

Panel B: Average across firms (resulting T = 312)

Correlation 0.475 0.260 0.400 0.480 0.566 0.656
Spearman-ρ 0.466 0.257 0.396 0.473 0.556 0.637
Kendall-τ 0.347 0.186 0.288 0.350 0.418 0.487
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Chapter 3

Model Uncertainty in the Cross
Section

This chapter is joint work with Jiantao Huang.

Introduction

Recent literature has provided a wide spectrum of real and financial uncertainty measures.1

They display pronounced time-series variation, and their innovations are associated with
business cycle fluctuations through impacts on firms’ investment and hiring activities.

A relatively understudied direction is measures of uncertainty that matters for firms’
investors. Uncertainty has ambiguous implications for investors’ asset allocation decisions.
The conventional wisdom of “flight-to-safety” or “flight-to-liquidity” claims that investors
respond to large uncertainty shocks by curtailing risk exposures or hoarding liquid as-
sets.2 However, uncertainty may also arise endogenously during periods of “Schumpeterian
growth,” when new technologies lead to unforeseeable disruptive industry dynamics. In-
stead of seeking safety or liquidity, investors respond by chasing glamour stocks in search
of a new El Dorado: examples include the “railway mania” in the mid 1840s and the “tech
bubble” in the late 1990s.3

This paper creates an uncertainty measure for the equity market and examines its
implications to investors’ asset allocation decisions. Existing equity market uncertainty
measures focus on volatilities (as well as their unexpected innovations) of aggregate market
returns. These measures do not take into account a fundamental challenge equity investors

1Bloom (2009) constructs uncertainty shocks using jumps in the (price) of stock market volatilities.
Ludvigson, Ma, and Ng (2021) and Jurado, Ludvigson, and Ng (2015) construct and compare real and
financial uncertainty indices. Baker, Bloom, and Davis (2016) develop economic policy uncertainty indices
based on news coverage. Manela and Moreira (2017) use textual analysis and machine learning methods
to extrapolate the VIX index back in history.

2The underlying drivers include institutional redemption pressures (Vayanos, 2004), preferences fea-
turing robustness concerns (Caballero and Krishnamurthy, 2008), and asymmetric information (Guerrieri
and Shimer, 2014)

3This argument is related to the literature on “growth options”, see, for example, Abel (1983); Pástor
and Veronesi (2006, 2009).
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face: identifying factors that determine the cross section of expected returns. This chal-
lenge is more demanding nowadays as investors cohabit with the “factor zoo:” too many
factors have been proposed. If we interpret existing financial uncertainty measures as
“time-series uncertainty,” a missing dimension is the cross section: in addition to uncer-
tainties about which direction the market is going, there are also enormous uncertainties
about which stocks and factors will outperform.

We attempt to bridge this gap by creating a cross-sectional uncertainty measure.
Specifically, we take the perspective of a Bayesian investor adopting the linear stochastic
discount factor (SDF) models to price assets. Investors are not clairvoyant as they do
not know the “true” model. Instead, they learn both model parameters and specifications
through Bayesian updating.

Our key innovation is a generalized g-prior along the line of Zellner (1986), from
which Bayesian investors update their posterior beliefs. As originally exposited in Zellner
(1986), the g-prior is a natural prior choice in a sequential decision-making setup. We
revisit Zellner’s original arguments and tailor his g-prior for linear SDF models. Our prior
specification naturally rules out extremely high Sharpe ratio investment opportunities,
guaranteeing the absence of (near) arbitrage as pointed out in Ross (1976a); Cochrane
and Saá-Requejo (2000); Kozak, Nagel, and Santosh (2018).

Drawing inferences based on our prior, a Bayesian investor then comes up with well-
defined posterior probabilities of asset pricing models. These derived posteriors address
the indeterminacy issue induced by “flat” priors as emphasized by Chib, Zeng, and Zhao
(2020). Most importantly, the posterior model probabilities have intuitive closed-form
solutions; they increase with model-implied (in-sample) Sharpe ratios and decrease with
model dimensions. The result crystallizes two competing forces for an asset pricing model
to be (optimally) chosen by a Bayesian investor: higher in-sample profits (on paper or in
back tests) and model simplicity.

We define cross-sectional uncertainty regarding linear SDF models as the entropy of
posterior model probabilities. The intuition is straightforward. Suppose that there are
only two candidate factor models, and we are uncertain about which one is true. One
extreme case is that the first model dominates the other with a high posterior probability,
i.e., 99%. Under this scenario, entropy is close to its lower bound zero (and we are clearly
facing low uncertainty). On the contrary, if the two models’ posterior probabilities are
50-50, the entropy reaches its maximum (picking a model boils down to the exercise of
coin tossing). To sum up, the higher the entropy measure is, the more uncertain Bayesian
investors are about factor models.

We then examine the behaviors and implications of our cross-sectional model uncer-
tainty measure. We document four sets of empirical findings, summarized as follows.

First, we measure uncertainty regarding 14 popular factor strategies in the US stock
market. Model uncertainty displays considerable time-series variation and exhibits coun-
tercyclical behaviours, as in Figure 3.1. Particularly, model uncertainty increases before
stock market crashes and peaks under tumultuous market conditions. It reaches its upper
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bound at the bust of the dot-com bubble and the 2008 global financial crisis. In other
words, posterior model probabilities are almost equalized during these two periods: all
models are wrong (or right, which does not make any difference). Under extreme market
conditions, investors do not only face higher second-moment (volatility) and third-moment
(skewness) risk but they are also confronted with higher (if not the highest) model uncer-
tainty, i.e., they are incredibly uncertain about which model can help navigate them out
of the storm.
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Figure 3.1: Time-Series of Model Uncertainty (3-Year Rolling Window)

The figure plots the time-series of model uncertainty about the linear stochastic discount factor (SDF).
We consider 14 prominent factors from the past literature (see Section 3.2 for details). At the end of each
month, we compute the posterior model probabilities using the daily factor returns in the past three years.
We use the entropy of model probabilities to quantify model uncertainty in the cross-section. The sample
ranges from July 1972 to December 2020. Since we use a three-year rolling window, the model uncertainty
index starts from June 1975. The red line and green lines show the lower (0) and upper bounds (1) of
model uncertainty. Shaded areas are NBER-based recession periods for the US.

We repeat the exercise in European and Asian Pacific stock markets. While the time-
series pattern in Europe is roughly the same as the US stock market, the Asian Pacific
equity market displays certain unique behaviours. For example, model uncertainty in this
market is exceptionally high during the 1997 Asian financial crisis.

Second, we show the time-varying importance of Bayesian model averaging (BMA) in
portfolio choice. Following past literature (e.g., Barillas and Shanken (2018)), we use as the
criterion the out-of-sample (OOS) Sharpe ratio implied by factor models. We split the full
sample into three equal subsamples based on model uncertainty and denoted them as low,
middle, and high model uncertainty dates. In particular, we compare BMA with the top
one model ranked by posterior model probabilities. The critical observation is that BMA
outperforms the top model only in high model uncertainty dates, whereas they have almost
identical performance in other periods. Therefore, when model uncertainty is relatively
high, investors are better off if they aggregate the information over the space of all models
instead of selecting a specific high probability model. Third, model uncertainty is a crucial
determinant of mutual fund flows, regardless of being an exogenous cause or a merely
propagating mechanism. We adopt the canonical Vector Autoregression (VAR) model to
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study the dynamic responses of fund flows to uncertainty shocks. Most strikingly, model
uncertainty innovations induce sharp outflows from the US equity funds and inflows to
US government bond funds, with effects persisting for around three years. These outflows
mainly come from small-cap and style funds but not large-cap or sector funds. In addition,
we do not observe significant inflows to money market funds, so there is little evidence
of “flight-to-liquidity” following high model uncertainty. Hence, investors’ asset allocation
decisions tend to respond to our uncertainty measure consistent with the conventional
wisdom of “flight-to-safety”: Facing high cross-sectional uncertainty, they reduce risky
asset positions, especially in small-cap stocks and actively-managed (style) funds, and
reallocate proceeds into safe assets such as government bonds.

It is also worth noting that similar fund flows patterns do not emerge when using
volatility-driven uncertainty indices such as VXO and financial uncertainty. We document
some evidence that VXO and financial uncertainty innovations relate to future inflows to
money market funds, consistent with “flight-to-liquidity." However, dynamic responses
of fund flows to these two uncertainty measures tend to be transitory and sensitive to
identification assumptions, while those to model uncertainty shocks are very persistent
and robust.

Fourth, we find that high cross-sectional model uncertainty is associated with investors’
expectations and confidence about the stock market. We quantify investors’ expectations
using surveys from the American Association of Individual Investors (AAII) and their
confidence levels using the Investor Behavior Project at Yale University. When our un-
certainty measure goes up, both individual and institutional investors become more pes-
simistic about the stock market. More intriguingly, individual investors tend to “react”
more aggressively (in terms of pessimism) to our cross-sectional uncertainty measure.

Literature. Our paper belongs to three strands of literature. The first is on new
methodologies for factor models and risk premia, with a particular focus on adapting and
refining methods from the machine learning and high-dimensional statistics literature (see
Giglio, Kelly, and Xiu (2021) for a review of recent advancement). The most related
paper to ours is Kozak, Nagel, and Santosh (2020), who carefully examines sparsity under
the linear SDF framework. They conclude that a sparse linear SDF model constructed
from characteristics-sorted factors cannot explain the cross-sectional variation out-of-the-
sample. Complementing their findings, our model uncertainty index further rules out the
possibility of any dominant model (even “dense” ones with many factors). However, we
also find that a smaller number of parsimonious models do perform well in explaining the
cross section of expected returns within specific sample periods.

There is an increasing interest in developing uncertainty measures for both real (e.g.,
Bloom (2009); Baker et al. (2016); Jurado et al. (2015)) and financial activities (e.g.,
Manela and Moreira (2017)). Dew-Becker and Giglio (2021) propose a cross-sectional
uncertainty measure using long history of option prices, which can be interpreted as un-
certainties about general firm outcomes. Our contribution to the literature is to propose
a conceptually new index capturing equity investors’ uncertainty about factor models de-
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scribing the cross section of returns.
Our paper also contributes to the literature on Bayesian inferences about factor mod-

els and Bayesian portfolio choices (Kandel and Stambaugh, 1996; Barberis, 2000; Pástor,
2000; Avramov, 2002; Barillas and Shanken, 2018; Chib et al., 2020). The use of Zellner’s
g-priors for parameter uncertainties in time-series return regressions first appears in Kan-
del and Stambaugh (1996). Avramov (2002) extends the their framework to account for
both parameter and model uncertainties. In comparison, we assign the g-prior to factor
loadings of linear SDF models. We develop an approach for hyper-prior tuning, addressing
the issue of artificially favoring sparse models that may appear in existing Bayesian meth-
ods. Our posteriors are analytically tractable, which depend only on in-sample maximal
Sharpe ratios and model dimensions, recasting the classical GRS test intuition (Gibbons,
Ross, and Shanken, 1989) in light of the factor zoo. Empirically, the existing Bayesian
factor model and portfolio choice literature focuses on normative questions: what should
a Bayesian investor do (in terms of choosing factors and building portfolios)? We, on the
other hand, take a positive perspective and examine implications of the Bayesian view (on
model uncertainties) to aggregate flow of funds.

3.1 Theory and method

Throughout our analysis, we focus on the cross section of excess returns and their risk
premia. Denote by R, a random vector of dimension N , the excess returns under con-
sideration.4 Out of these excess returns, some would be regarded as asset pricing factors
that drive the whole cross section of E[R]. Common examples of these factors include the
market excess return in the CAPM and long-short portfolios in multi-factor asset pricing
models. We use the notation f , a subset of p excess returns from R (p ≤ N), to rep-
resent these factors.5 A linear factor model for excess returns in the stochastic discount
factor (SDF) form can be written as (see Chapter 13 of Cochrane (2005) for a detailed
exposition):

m = 1− (f − E[f ])> b, (3.1)

E[R×m] = 0, (3.2)

or equivalently,
E[R] = cov[R,f ]b, (3.3)

where m is an SDF that prices assets, i.e., it is such that the prices of excess returns all
equal zero. Since the pricing equation (3.2) is scale-invariant, we normalize the constant
term in the SDF to one. The covariance term, cov[R,f ], is an N × p matrix.6 Its entry
in the ith row and jth column is the covariance between excess return Ri (i = 1, . . . , N)

4Excess returns in our context can be returns on risky assets less the risk-free rate, and more generally,
returns on long-short portfolio positions with zero initial costs.

5We intentionally let the factors f be a subset of excess returns R to enforce that factors themselves
are correctly priced, that is, their price being zero, by the factor models we write down next.

6The simplified equation (3.3) is due to cov[R,f ] = E
[
(R− E[R])(f − E[f ])>

]
= E

[
R(f − E[f ])>

]
.
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and factor fj (j = 1 . . . , p).
Remark. Linear factor characterization of SDFs relates to the results of Hansen and

Jagannathan (1991): Assuming no arbitrage, an SDF within the space spanned by all
tradable excess returns R can be written as

m = 1− (R− E[R])> (var[R])−1 E[R].

Clearly, E[m × R] ≡ 0 under the specification of m above. This SDF treats all excess
returns as asset pricing factors, i.e., f = R and b = (var[R])−1 E[R] under the specification
of equation (3.1).

3.1.1 A simple framework for incorporating model uncertainty

Now we would like to formalize the concept of model uncertainty. A priori, we do not know
factors that enter the SDF. As a result, for a given set of p factors f = [f1, . . . , fp]

>, a total
number of 2p models for the linear SDF are possible candidates. To capture uncertainty
regarding this pool of models, we index the whole set of 2p models using a p-dimensional
vector of indicator variables γ = [γ1, . . . , γp]

>, with γj = 1 representing that factor fj is
included into the linear SDF, while with γj = 0 meaning that fj is excluded. This vector
γ uniquely defines a model for the SDF,7 denoted byMγ : UnderMγ , the linear SDF is

mγ = 1− (fγ − E[fγ ])> bγ (3.4)

and the expected excess returns are such that

E[R] = cov[R,fγ ]bγ (3.5)

where fγ is a pγ-dimensional vector that contains all the factors that are included under
the current model;8 bγ is a pγ-dimensional vector, the elements of which are market prices
of risk; cov[R,fγ ] is now an N × pγ covariance matrix. The two equations above are
counterparts of (3.1) and (3.3) after incorporating model uncertainty.

We choose to study model uncertainty under the linear SDF specification for two
reasons. First, linear SDF models enable us to focus on the cross section of expected
returns. Adding in the time-series dimension, model uncertainty has been introduced
to panel regressions of returns on characteristics (e.g., Avramov (2002)) or asset pricing
factors (e.g., Barillas and Shanken (2018) and Chib et al. (2020)). Model uncertainties
under these settings blend in information regarding time-series predictability.

Most importantly, linear factor models in the SDF form enable us to ask the following
question: Does one set of factors drive out another? As in Cochrane (2005, p. 261), the
elements of b address the question of “should I include factor j given the other factors?”

7For notation simplicity, we use “−γ” to denote the set of factors that are excluded from now on.
That is, it is always the case that elements in vector f are unions of elements in fγ and f−γ , and the
intercept of elements in fγ and f−γ is empty.

8pγ =
∑p
j=1 I[γj = 1] is the total number of factors that are included under modelMγ .
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For js such that bj = 0, the answer would be “no”, which maps directly into our model
uncertainty framework.

Another object of interests is the factor risk premia λ = [λ1, . . . , λp]
>. Under model

Mγ , λ = cov[f , fγ ]bγ . Clearly, for factors that do not enter the SDF (their market prices
of risk b−γ = 0), their risk premia λ−γ are not necessarily zero. Thus, there is no clear
theory guidance to introducing the latent variable γ for the risk premia. Knowing whether
factors’ risk premia equal zero or not does not help distinguish factor models. Then, of
course, to capture the uncertainty regarding factor models, we need to account for the
uncertainty regarding whether the elements in b are zero or not.

3.1.2 Prior specification and empirical Bayes inference

We now present a Bayesian framework to understand and quantify model uncertainty in
the cross-section of expected stock returns, under the linear SDF setting. With observed
data for excess returns, denoted by D = {Rt}Tt=1, our primary goal is to evaluate the
probability of each model Mγ given the observed data p[Mγ | D]. Bayesian inference
offers a natural way of computing these posterior model probabilities.

We (as have many others) assume that the observed excess returns are generated from
a multivariate Gaussian distribution:

R1, . . . ,RT
iid∼ N (µ, Σ). (3.6)

The linear SDF modelMγ then sets a restriction on this distribution through the following
moment condition:

µ = Cγbγ , (3.7)

where Cγ = cov[R,fγ ] consists of a subset of columns in Σ. We adopt an empirical
Bayes strategy by treating the variance-covariance matrix Σ as known initially to derive
the posterior model probability p[Mγ | D], and then substituting this matrix with a
moment estimator9.

Now we proceed to assign priors for bγ . Our prior specification is motivated by the
g-prior proposed by Arnold Zellner (see Zellner (1986)). We assume that conditional on
choosing modelMγ ,

bγ | Mγ ∼ N
(

0,
g

T

(
C>γ Σ−1Cγ

)−1
)
, g > 0 (3.8)

where T is the sample size for the observed excess returns. The parameter g is related to
the effective sample size or level of uncertainty for an “conceptual or imaginary sample”
according to Zellner (1986).

9Empirical Bayes approaches use data to facilitate prior assignments. Here although the matrix Σ is
a likelihood parameter, it also enters the prior for bγ , as will become clear next when we introduce our
prior specification. Thus we are still using data to pin down (hyper)parameters in the priors. The use of
moment estimators to replace parameters in the prior distributions dates all the way back to the seminal
James-Stein estimator (James and Stein (1961)). For a monograph on modern empirical Bayes methods,
see Efron (2012).
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Following the reasoning of Zellner (1986), we generalize the original g-prior and adapt
it to our specific setting. Before making inference about different linear SDF models using
the observed excess return data D, we consider an “imaginary” sample of size T ′, denoted
by D′ = {R′t}T

′
t=1, where the sample size is allowed to be different from T by a scalar g such

that T ′ = T/g. This parameter g also governs level of uncertainty about our imaginary
sample relative to the data sample we have 10. Under modelMγ , excess returns observed
in this sample are distributed as follows: R′1, . . . ,R′T ′

iid∼ N (Cγbγ , Σ). Assigning a non-
informative prior on bγ , which is flat everywhere11, we can derive the “posterior” of bγ given
this conceptual data sample as [bγ | Mγ ,D′] ∼ N

(
b′γ , g/T ×

(
C>γ Σ−1Cγ

)−1
)
, where

the posterior mean b′γ is related to the particular hypothetical data set D′ in mind, while
the posterior variance is not (a celebrated result for conditional normal distributions).
This leaves the posterior mean b′γ largely undetermined for we can have infinite degrees
of freedom “imagining” the data set D′. If we would like to use this posterior as our prior
for bγ , resorting to the Bayesian philosophy that “today’s posterior is tomorrow’s prior”
(Lindley, 2000), we at lease need to find a way of determining b′γ , the current posterior
mean.

Zellner (1986) relies on the rational expectation hypothesis to pin down b′γ . Suppose
that we have an anticipatory value for bγ , denoted by baγ , in addition to the imaginary
sample D′ (as well as the initial diffuse prior for bγ). The rational expectation hypoth-
esis says that baγ = E[bγ | Mγ ,D′] = b′γ . Now we have a reference informative prior
distribution that does not depend on the hypothetical sample, which is

bγ | Mγ ∼ N
(
baγ ,

g

T

(
C>γ Σ−1Cγ

)−1
)
.

To determine whether a modelMγ is sensible or not, we are basically testing H0 : bγ = 0

versus H1 : bγ ∈ Rpγ . These tests help us distinguish between different models as model
Mγ already impose the condition that b−γ = 0. Following the suggestion of Zellner
(1986), we set baγ = 0, that is, the anticipatory expectations are the values under the null.
This finally gives us the prior specification in (3.8).

Remark. One might attempt to assign an objective prior, such as the Jeffreys prior,

10In Zellner (1986), the scalar g is used to capture the fact that the variance of the hypothetical sample
can be different from the variance of the sample under study. These two arguments (effective sample
size v.s. variance of the hypothetical data set) are isomorphic because they will lead to the same g-prior
specification. Our sample-size based arguments echo the ideas of factional and intrinsic Bayes factor in
the mid 90’s (see O’Hagan (1995) and Berger and Pericchi (1996)), which aim to “transform” improper
priors to proper ones. Similar ideas for specifying priors are adopted in the paper by Shmuel Kandel and
Robert F. Stambaugh in the finance literature to discipline the specification of informative priors Kandel
and Stambaugh (1996).

11This flat prior is non-informative in the sense that it is a Jeffreys prior, a common notion of prior
objectiveness or non-informativeness in Bayesian analysis Jeffreys (1946). Under our setting, we treat Σ
as known. As a result, Jeffreys prior for bγ is proportional to a constant, i.e., it is flat. Of remark, this
flatness outcome is not true if the covariance matrix is unknown, under which the Jeffreys prior would
specify that the joint density of π(bγ , Σ) is proportional to Σ−

N+2
2 . Some existing work (e.g. Barillas

and Shanken (2018)) specifies a prior such that π(bγ , Σ) ∝ Σ−
N+1

2 , which is the so-called independence
Jeffreys prior (not the original Jeffreys-rule prior) imposing the assumption that bγ and Σ are independent
at the prior level.
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to bγ . In this case, it is an improper flat prior as we have discussed early on. This would
be desirable without model uncertainty, for it will lead to proper posterior distributions.
However, with model uncertainty, improper priors can only be assigned to common pa-
rameters across models, which is clearly not the case for bγ . Otherwise, posterior model
probability would be indeterminate. This is a well-known result in Bayesian statistics and
has also been pointed out in the finance literature (e.g., Cremers (2002)).

Our g-prior specification in (3.8) leads to a surprisingly simple expression for the
variance of the SDF, which is summarized in Proposition 12.

Proposition 12. Under model Mγ , in which mγ = 1 − (fγ − E[fγ ])> bγ , the g-prior
specification for bγ implies that

var[mγ | g] =
gpγ
T
.

According to Proposition 12, volatility of the SDF (=
√
gpγ/T ) under a certain model

is determined by the conditionality of that model, at least at the prior level. The renowned
Hansen-Jagannathan bound states that this volatility (times the gross risk-free rate) sets
an upper bounds on any achievable Shape ratios in the economy Hansen and Jagannathan
(1991); Cochrane and Saá-Requejo (2000) regards portfolio positions with high Sharpe
ratios as deals that are too good to be realized in the market. These arguments imply
that models with too many factors are not likely to be realistic a priori.

The g-prior offers us an analytically tractable framework to make posterior inference.
Under the g-prior, we can integrate out bγ and calculate the marginal likelihood of ob-
serving the excess return data D based on each model. All these marginal likelihoods are
available in closed form and results are collected in Proposition 13.

Proposition 13. The marginal likelihood of observing excess return data D under model
Mγ is

P[D | Mγ , g] = exp

{
−T − 1

2
tr
(
Σ−1S

)
− T

2

(
SR2

max −
g

1 + g
SR2

γ

)}
(1 + g)−

pγ
2

(2π)
NT
2 |Σ|T2

,

where

S =
1

T − 1

T∑
t=1

(R−R)(R−R)>,

is the in-sample variance-covariance matrix for the excess returns; SR2
max is the maximal

squared Sharpe ratio achievable from forming portfolios using all excess returns under
consideration; SR2

γ is the maximal squared Sharpe ratio from combining all factors under
model Mγ . These two Sharpe ratios are both in-sample values and it is always the case
that SR2

γ ≤ SR2
max for all γ.

Proposition 13 has a couple of implications. To begin with, we can calculate the
marginal likelihood for a very special model, the null model, in which γ = 0. SDF mγ

in this case is a constant, characterizing a risk-neutral market. Under this setup, pγ
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equals zero because no factors are included, and the maximal squared Sharpe ratio SR2
γ

is also zero. Plugging these two quantities into the expression in Proposition 13, we have
p[D | M0, g] ≡ p[D | M0], because the posterior marginal likelihood under the null model
does not depend on the scalar g. The Bayes factor, which is the ratio between marginal
likelihoods under two different models, that compares modelMγ with the null modelM0

is

BFγ(g) =
p[D | Mγ , g]

p[D | M0]

= exp

{
Tg

2(1 + g)
SR2

γ −
pγ
2

log(1 + g)

}
. (3.9)

This Bayes factor can be regarded as evidence of model Mγ against the null model.
To further compare two arbitrary modelsMγ andMγ′ , we can calculate the Bayes factor

BFγ,γ′(g) =
BFγ(g)

BFγ′(g)

= exp

{
Tg

2(1 + g)

(
SR2

γ − SR2
γ′
)
− pγ − pγ′

2
log(1 + g)

}
, (3.10)

which is, by definition, the (marginal) likelihood ratio p[D | Mγ , g]/p[D | Mγ′ , g]. A
large Bayes factor BFγ,γ′(g) lends evidence to favor modelMγ against modelMγ′ .

A first observation based on equation (3.10) is that although the marginal likelihood
in Proposition 13 depends on the test assets (the pre-specified set of excess returns that
define R), the Bayes factors do not. The Bayes factors are only determined by the in-
sample time series of the factors that enter the linear SDF, through the maximal Sharpe
ratios and the number of factors. A key assumption driving this outcome is that factors
are a subset of the testing assets. In other words, the linear factor SDF model must price
the factors themselves correctly. This finding is reminiscent of the observation that, when
estimating factor risk premia in linear factor models, the efficient GMM objective function
assigns zero weights to the testing assets except for the factors entering the SDF (See for
example, (Cochrane, 2005, Page 244-245)).

The Bayes factor above illustrates a clear trade-off when comparing models. With
the number of factors fixed, models in which factors can generate larger in-sample Sharpe
ratios are always preferred. This echoes the intuitions behind the GRS tests in Gibbons
et al. (1989), which show the link between time-series tests of the factor models and the
mean-variance efficiency of factor portfolios. Under our setting, when the factor portfolios
deliver large maximal Sharpe ratios, it is evidence that they are more likely to span the
excess return space, thus favoring the linear SDF constructed from these factors. On
the other hand, it is a simple mechanical phenomenon that maximal Sharpe ratio SRγ

increases as additional assets are added into the factor portfolio. Thus the penalty term
on model dimensionality pγ imposed by the g-prior plays an key role in preventing the
Bayes factor to favor large models blindly. In order to properly penalize large models, g
cannot be too small, as SRγ always increases after one augments the linear SDF.
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Perhaps the most desirable feature of our Bayes factor calculation in equation (3.10)
is that it helps us understand the aforementioned trade-off quantitatively. When model
dimension is increased by one (pγ − pγ′ = 1), the maximal squared Sharpe ratio (times
the sample size T ) of the factor portfolio has to increase by at least (1 + g)/g× log(1 + g)

to lend support to the augmented model, that is,

T
(
SR2

γ − SR2
γ′
)
>

1 + g

g
log(1 + g).

However, it is always the case that T
(

SR2
γ − SR2

γ′

)
≤ TSR2

max. Then for g large enough,
the inequality above will always be violated, as the function (1 + g)/g × log(1 + g) is
monotonically increasing and unbounded. As a result, smaller models will always be
supported by the Bayes factor. Under the extreme case that g →∞, from equation (3.9),
BFγ(g)→ 0. Paradoxically, the most favorable model will always be the null model. The
case under which g →∞ corresponds to the conventional diffuse priors; and the fact that,
with model uncertainty, diffuse priors always support the null model is sometimes called
the Bartlett’s paradox (Bartlett (1957)). Of note, this paradox poses another refutation
to the use of improper diffuse priors under model uncertainty, in addition to posterior
indeterminacy that has been pointed out earlier.

3.1.3 A prior for the parameter g

Discussions above point to the subtlety of choosing the parameter g. Instead of plugging
in particular numbers for g, a natural way under our Bayesian framework is to integrate
out g with a proper prior for it. A prior on g, namely π[g], is equivalent to assigning a
scale-mixture of g priors for bγ . This idea is adapted from Liang et al. (2008), who argues
that this type of mixture priors provides more robust posterior inference. As a result, our
g prior specification will be modified to

π[bγ | Mγ ] ∝
∫ ∞

0
N
(
bγ

∣∣∣ 0,
g

T

(
C>γ Σ−1Cγ

)−1
)
π[g] dg, (3.11)

where the prior for g is such that

π[g] =
a− 2

2
(1 + g)−

a
2 , g > 0.

This prior π[g] is improper when a ≤ 2. A special case when a = 2 corresponds to the
Jeffreys prior in Liang et al. (2008). Because the marginal likelihood of the null model
does not depend on g (recall that p[D | M0, g] ≡ p[D | M0]), improper priors will lead
to indeterminacy in the ratio

BFγ =

∫∞
0 p[D | Mγ , g]π[g] dg∫∞

0 p[D | M0]π[g] dg

=

∫ ∞
0

p[D | Mγ , g]

p[D | M0]
π[g] dg (3.12)
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up to an arbitrary constant, which is the Bayes factor under the new mixture of g prior
specification. Thus we force a > 2.

This additional prior on g also leads to refinements on the volatility of the SDF. Based
on the result from Proposition 12, the unconditional volatility of the SDF for modelMγ

must satisfy
var[mγ ] ≥ E[var[mγ | g]] =

pγ
T
E[g].

The prior π[g] is such that E[g] =∞ if a ≤ 4, and that E[g] = 2/(a−4) if a > 4. To make
sure that the variance of the SDF does not explode, we need a > 4. And if we follows
the argument of Cochrane and Saá-Requejo (2000) to set an upper limit on the maximal
achievable Sharpe ratio in the economy12, denoted by SR∞, then

R2
fSR2

∞ = var[mγ ] ≥ E[var[mγ | g]] =
2pγ

T (a− 4)
,

where Rf represents the risk-free rate. For the investor in the economy to be not risk-
neutral, the SDF must include at least one factor, that is, pγ ≥ 1 (for example, under the
CAPM world). As a result, we will require that

a ≥ 4 +
2

TR2
fSR2

∞
.

Another way of looking at our prior for g is that it is equivalent to

g

1 + g
∼ Beta

(
1,
a

2
− 1
)
.

This ratio is crucial in that it determines the contribution of data evidence when making
posterior inferences. It is sometimes referred to as the “shrinkage factor”. To see this more
clearly, we can calculate the posterior of the cross-sectional expected return µ = Cγbγ ,
which is given as follows

E[µ | Mγ , g, D] =
g

1 + g
Cγ {var[fγ ]}−1

(
1

T

T∑
t=1

fγ,t

)
.

Under all models, the posterior mean of expected returns are scaled by a fixed factor
g/(1 + g) ∈ (0, 1). Our prior specification is equivalent to a Beta distribution for this
shrinkage factor, and the prior mean for it is

E
[

g

1 + g

]
=

2

a
≤ 1

2 +
(
TR2

fSR2
∞

)−1 .

In order to give enough credit to the data-driven estimates and avoid over-shrinkage, we
choose the smallest possible a such that E [g/(1 + g)] is as large as possible a priori, that
is, we pick a = 4+2/(TR2

fSR2
∞). Under this choice, the prior expectation for the shrinkage

12Note that this must be larger than the maximal in-sample Sharpe ratio of portfolios formed using
excess returns under our consideration, denoted by SRmax in Proposition 13.
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factor is still strictly smaller than one half, but can be very close (the ratio 2/(TR2
fSR2

∞)

is usually very small).

3.1.4 Posterior probability of models

We can integrate out the parameter g according to equation (3.12) to find the Bayes factors
under the mixture of g-priors. Proposition 14 presents the results.

Proposition 14. The Bayes factor for comparing modelMγ with the null modelM0 is

BFγ =

(
a− 2

2

)
exp

(
T

2
SR2

γ

)(
T

2
SR2

γ

)−sγ
Γ

(
sγ ,

T

2
SR2

γ

)
,

where
Γ(s, x) =

∫ x

0
ts−1e−t dt

is the lower incomplete Gamma function (Abramowitz and Stegun, 1965, Page 263); the
scalar sγ is defined as

sγ =
pγ + a

2
− 1.

This Bayes factor is always increasing in SR2
γ always decreasing in pγ .

The Bayes factor that compares any two models can be computed as

BFγ,γ′ =
BFγ
BFγ′

,

which is the same as what we have done earlier. Bayes factors decide the posterior odds
of one model against another:

P[Mγ | D]

P[Mγ′ | D]
=
π[Mγ ]

π[Mγ′ ]
× BFγ,γ′ .

Equivalently, the posterior odds give us the posterior model probabilities: for modelMγ ,
its posterior probability given the excess return data is

P[Mγ | D] =
BFγπ[Mγ ]∑
γ BFγπ[Mγ ]

,

which is a direct outcome of the Bayes’ rule. We can then define a model uncertainty
measure as the entropy of the posterior model probabilities:

entropy[Mγ | D] =
∑
γ

log(p[Mγ | D])p[Mγ | D]. (3.13)

Roughly speaking, larger entropy corresponds to higher model uncertainty. For exam-
ple, suppose that we have only two candidate models. If one of them has a posterior model
probability of 99%, we should be confident about this high-probability model. Actually,
the model uncertainty is almost zero in this scenario. However, if the posterior probability
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of each model is around 50%, then choosing the true model is equivalent to flipping a fair
coin. In this case, the model uncertainty in equation (3.13) is maximized.

3.2 Data

In our primary empirical implementation, we combine 14 prominent factors from the past
literature and measure model uncertainty in this small zoo of factors. First, we include
notable Fama-French five factors (Fama and French (2016)) plus the momentum factor
(Jegadeesh and Titman (1993)). In addition, we consider the q-factor model from Hou
et al. (2015) and include their size, investment, and profitability factors. The factor models
mentioned earlier are based on rational asset pricing theory. Taking the insights from
behavioural models, Daniel et al. (2020) propose a three-factor model consisting of the
market factor, the short-term behavioural factor (PEAD), and the long-term behavioural
factor (FIN). Finally, we include the HML devil, the quality-minus-junk factor, and the
betting-against-beta factor from the AQR library. Appendix 3.9.1 presents the detailed
description of these factors.

Table 3.7 reports the annualised mean returns and Sharpe ratios of 14 factors. First,
most of them (except for two size factors) have enormous Sharpe ratios in the full sam-
ple from July 1972 to December 2020. In particular, the short-term behavioural factor
(PEAD) seems to be the most profitable historically. Furthermore, I split the entire sam-
ple into two equal subsamples. Consistent with past literature (e.g., McLean and Pontiff
(2016)), the performance of many factor strategies decline significantly from subsample
one to two. Most strikingly, the annualised Sharpe ratio of the value factors has plunged
from above 0.9 to nearly zero in the second subsample. This observation suggests that
we should focus on the out-of-sample instead of the in-sample Sharpe ratio in evaluating
factor models.

With the estimate of model uncertainty, we next compare it with other uncertainty
measures and economic variables. Bloom (2009) uses the jumps in VXO/VIX indices as
the stock market uncertainty shock. We download the time-series of VXO/VIX indices
from Wharton Research Data Services (WRDS). Baker et al. (2016) develop indices of
economic policy uncertainty (EPU), which can be downloaded from Nick Bloom’s website.
Other uncertainty measures that we use include the macro, real and financial uncertainty
measures in Ludvigson et al. (2021) and Jurado et al. (2015). We download them from the
authors’ websites. In addition, we compare our model uncertainty with the intermediary
factor from He et al. (2017), the term yield spread (the yield on ten-year government bonds
minus the yield on three-month treasury bills), and the credit spread (the yield on BAA
corporate bonds minus the yield on AAA corporate bonds). We download the intermediary
factor from the authors’ websites and the bond yields from the Federal Reserve Bank of
St. Louis.

Moreover, we obtain mutual fund data from the Center for Research in Security Prices
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(CRSP) survivorship-bias-free mutual fund database.13 In particular, we are interested in
monthly mutual fund flows, so we download the monthly total net assets, monthly fund
returns, and the codes of fund investment objectives. To normalise the aggregate fund
flows, we divide the equity (fixed-income) fund flows across all funds within a particular
investment objective by the total market capitalisation of all listed companies in CRSP
(US GDP). In addition, we download the total market value of all US-listed stocks from
CRSP.14

Finally, we study the relationship between our model uncertainty measure and in-
vestors’ expectations about future stock market performance. In our paper, we use the
survey data from the American Association of Individual Investors (AAII) survey and
Shiller’s survey conducted by the International Center for Finance at the University of
Yale. We download the related data from their official websites.

3.3 Measuring model uncertainty

We now adopt the perspective of Bayesian investors and construct the time series of model
uncertainty. At the end of each month, we use all daily factor returns in the past three
years to estimate the posterior model probabilities, p[Mγ | D], and compute the entropy
as in equation (3.13). We choose the hyper-parameter a to be four in the benchmark case.
We also present the results obtained from alternative rolling windows and other choices
of a in robustness checks (see Section 3.7).

The behavioural factors in Daniel et al. (2020) are available only from July 1972, and
we use 36-month data in the estimation, so the model uncertainty measure starts from
June 1975. Since some factors are highly correlated, we consider models that contain at
most one version of the factors in each of the following categories: (a) size (SMB or ME);
(b) profitability (RMW or ROE); (c) value (HML or HML Devil); (d) investment (CMA or
IA). We refer to size, profitability, value, and investment as categorical factors. Therefore,
there are ten effective factors, including market, size, profitability, value, investment,
short-term and long-term behavioural factors, momentum, QMJ, and BAB.

The blue line in Figure 3.1 plots the time series of model uncertainty of linear SDFs,
and the sample period spans from June 1975 to December 2020. The red and green
dotted lines show the lower and upper bounds of model uncertainty, respectively. The
lower entropy bound is always zero, i.e., when there is one dominant model with the
posterior model probability of 100%. On the contrary, uncertainty is maximized when
the posterior model probabilities are equalized across all models. Because we have 14
factors, and only one of the categorical factors could be selected into the true model, there
are 5,184 different candidate models.15 The upper bound of model uncertainty is around

13All variables are calculated (or derived) based on data from database name ©CRSP survivor-bias-free
Mutual Funds, Center for Research in Security Prices (CRSP®), The University of Chicago Booth School
of Business.

14All variables are calculated (or derived) based on data from database name ©CRSP Monthly Stock,
Center for Research in Security Prices (CRSP®), The University of Chicago Booth School of Business.

15The model in our framework is indexed by γ: γj ∈ {0, 1} and γj = 1 implies that the factor j should
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8.55.16 To normalize the model uncertainty index, we divide it by 8.55. Hence, the upper
bound is one in Figure 3.1.

The model uncertainty index has several interesting features that could shed light on
the nature of uncertainty about the linear SDF. First, we observe a surprisingly high level
of model uncertainty. Specifically, the average (median) model uncertainty is around 0.70
(0.75), with the first and third quartiles equal to 0.53 and 0.87, respectively. Hence, most
of the time, Bayesian investors are not confident about the true SDF model. Second,
model uncertainty fluctuates significantly over time. In particular, the index varies from
the lowest value of 0.27 to the highest 0.99, representing economic states in which Bayesian
investors find it almost unlikely to determine the true SDF model. The standard deviation
of the index is 0.21. Overall, model uncertainty is a dynamic phenomenon. Finally, model
uncertainty is persistent by construction since we use a rolling window of 36 months in
the estimation. The first-order autocorrelation is 0.98, and the autocorrelation coefficients
strictly decrease in time lags, with insignificant autocorrelations after 30 lags.

Figure 3.1 also suggests the countercyclical nature of model uncertainty. In particular,
the 1990s was a remarkable period: it was remembered as a period of strong economic
growth, low inflation and unemployment rate, and high stock returns. During the 1990s,
model uncertainty is the lowest across our sample. As the orange dots in Figure 3.2
suggest, posterior probabilities of the top two models are significantly larger than others.
Hence, investors are relatively confident about the true SDF model.

In addition, peaks in model uncertainty tend to coincide with major events in the US
stock markets and economy. Important examples include the dot-com crash in 2000 and
the global financial crisis in 2008 when model uncertainty almost touches its upper bound.
Specifically, the blue dots in Figure 3.2 show that posterior probabilities of the top 50
models, in December 2007, are almost equalized. In other words, it is virtually infeasible
to distinguish models based on the observed data. The 2008 crisis is noteworthy because
model uncertainty stays at a high level for a prolonged period. In contrast, it declines
shortly after other crises/recessions. In the recent five years, model uncertainty has slowly
increased from 0.7 to 1 at the end of 2020.

Interestingly, we do not observe a spike in model uncertainty during the 1987 flash
crash. The potential reason is that the 1987 market crash was not long-lasting. Even
though S&P 500 index declined by more than 20% in one day, the crisis was not caused
by any economic recession, and the market recovered rapidly. Instead, the leading cause
was synchronous program trading, illiquidity in the market, and the subsequent market
panic. Since our uncertainty measure is based on past-three-year daily data, the impact
of short-term market chaos is averaged out.

In conclusion, our model uncertainty measure displays considerable time-series varia-
tion: it is particularly sizable in bad economic states. The stock market crash that lasts

be included into true SDF. We do not have restrictions on the market, short-term reversal, long-term
reversal, momentum, QMJ, and BAB, so the number of models for these 6 factors is 26. For SMB and
ME, we only allow three cases: (0,0), (1,0) or (0,1). Therefore, each categorical factor has 3 (instead of
4) possibilities. The total number of candidate models equals 26 × 34 = 5184.

16upper bound = −
∑
γ

1
5184
× log( 1

5184
) = log(5184) ' 8.55..
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only for a short period, such as the 1987 flash crash, is not captured by our model uncer-
tainty measure. Furthermore, the cyclical behaviours of model uncertainty imply another
layer of investment risk: when investors experience bear stock markets, they are also the
most uncertain about the true model in the cross-section, or equivalently, which portfo-
lio of factor strategies they should hold. This further motivates us to study how model
uncertainty relates to investors’ portfolio choices and expectations. We investigate these
topics in section 3.4 and 3.5.
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Figure 3.2: Posterior Probabilities of Top 50 models: High vs. Low Model Uncertainty

The figure plots the posterior probabilities of the top 50 models ranked by their posterior probabilities.
At the end of each month, we compute the posterior model probabilities using the daily factor returns
in the past three years. We use the entropy of model probabilities to quantify model uncertainty in the
cross-section. We observe low model uncertainty in February 1994 (orange diamonds) but high model
uncertainty in December 2007 (blue dots).

3.3.1 Does model uncertainty matter?

Should investors take into account model uncertainty in the cross-section? A natural
hypothesis is that model uncertainty plays a more critical role when it is more sizable.
The logic is as follow. When model uncertainty is relatively low, the factor model with
the highest model probability dominates others, such as the orange diamonds in Figure
3.2. Hence, investors are more willing to trust the top model ranked by the Bayesian
posterior probabilities. In contrast, the top model is not informative if model uncertainty
is relatively high, such as during market crashes. In this case, they may prefer to aggregate
the information over the space of all models.

The Bayesian model averaging (BMA) is one common approach to aggregating models.
It enables us to flexibly model investors’ uncertainty about potentially relevant factors.
In the SDF model, we are interested in the risk prices, b. The BMA of b is defined as

bbma := E[b | D] =
∑
γ

E[b | Mγ , D]× P (Mγ | D). (3.14)
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Rather than considering the expectation of b conditional on a specific model, we take the
weighted average of the model-implied expectations, where the weights are posterior model
probabilities. Intuitively, models with high probabilities are more influential in BMA.

BMA deviates sharply from the traditional model selection, in which researchers always
use a particular criterion (e.g., adjusted R2, model probabilities, etc.) to select a single
model and presume that the selected model is correct. Past literature also shows the
importance of model averaging in asset pricing (e.g., Avramov (2002), Bryzgalova et al.
(2021), Avramov et al. (2021)).

We now compare the performance of BMA with the top Bayesian model. The perfor-
mance metric that we use is the out-of-sample (OOS) Sharpe ratio of factor models. We
also compare our Bayesian procedure with several candidate models: (1) All 14 factors
(All), (2) Carhart (1997) four-factor model (Carhart4), (3) Fama and French (2016) five-
factor model (FF5), (4) Hou et al. (2015) q-factor model (HXZ4), and (5) Daniel et al.
(2020) behavioural factor model (DHS3).

For each factor model γ in month t, we estimate the risk prices of fγ via the standard
GMM estimation: b̂γ = (var[fγ ])−1( 1

T

∑T
t=1 fγt), where the covariance matrix and mean

returns of fγ are estimated using the data from month t− 35 to month t, consistent with
Figure 3.1. The tangency portfolio conditional on model γ is b̂>γ fγ,t+1, and the BMA
tangency portfolio is b>bmaft+1.17 We update the tangency portfolio each month.18

We also test the null hypothesis that BMA and the model γ have an identical Sharpe
ratio, i.e., H0 : SR2

bma = SR2
γ , using the non-parametric Bootstrap. Under H0, the

expected return of the tangency portfolio implied by the model γ is linear in that of
BMA: E[Rγt ] = E[Rbmat ]σ(Rγt )/σ(Rbmat ). We adjust the average return of Rγt using the
previous equality and draw 100,000 sample paths of {Rγt? , Rbmat? }Tt?=1 with replacement,
where T is the sample size in the observed dataset. If the difference in Sharpe ratios
between BMA and model γ in the observed dataset is larger than 90% (95%, 99%) of
those in simulated datasets, we claim that H0 is rejected by the data at 10% (5%, 1%)
significance level.

We start with describing the full-sample performance, as shown in the first row of
Table 3.1. First, our Bayesian procedure successfully selects the model that outperforms
traditional factor models in the out-of-sample. The top Bayesian model (see column (2))
has an OOS Sharpe ratio of 1.75, which is virtually comparable to the model composed
of all 14 factors (see column (3)). Second, BMA beats the top Bayesian model. The per-
formance gain is statistically significant, thought its economic magnitude being relatively
small.

One may be concerned that these 14 factors are data-mined, so choosing the top model
only reflects data snooping rather than the outperformance of our Bayesian procedure. We
further split the whole sample into three equal subsamples to tackle this concern. Consis-
tent with past literature, the performance of factor models tends to decline over time, and

17For model γ, we scale the tangency weights b̂γ each month such that the target monthly portfolio
volatility is 1% based on historical data from month t− 35 to month t.

18Moreover, the top Bayesian model (with the highest model probability) is time-varying.
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Table 3.1: Out-of-Sample Model Performance

(1) (2) (3) (4) (5) (6) (7)
BMA Top 1 All Carhart4 FF5 HXZ4 DHS3

Full Sample: 07/1975 - 12/2020 1.818 1.750 1.772 0.736 0.938 1.135 1.639
- ** - *** *** *** -

Subsample I: 07/1975 - 08/1990 2.327 2.226 2.293 1.014 1.589 1.853 2.142
- ** - *** *** * -

Subsample II: 09/1990 - 10/2005 2.094 2.145 2.095 0.927 0.916 1.222 2.072
- - - *** *** *** -

Subsample III: 11/2005 - 12/2020 1.106 0.940 0.986 0.317 0.452 0.517 0.795
- ** - *** *** ** *

Low Model Uncertainty 2.572 2.565 2.568 1.288 1.624 1.829 2.282
- - - *** *** *** -

Middle Model Uncertainty 1.717 1.653 1.771 0.450 0.677 1.232 1.818
- - - *** *** ** -

High Model Uncertainty 1.251 1.125 1.106 0.564 0.584 0.552 0.897
- * * *** *** *** **

This table reports the out-of-sample (annualised) Sharpe ratio of (1) BMA: the Bayesian model averaging
of factor models, (2) Top 1: the top Bayesian model ranked by posterior model probabilities, (3) All:
include all 14 factors, (4) Carhart4: Carhart (1997) four-factor model, (5) FF5: Fama and French (2016)
five-factor model, (6) HXZ4: Hou et al. (2015) q-factor model, and (7) DHS3: the market factor plus two
behavioural factors in Daniel et al. (2020). We also report the results on testing the null hypothesis that
the Sharpe ratio of BMA is equal to the model γ, i.e., H0 : SR2

bma = SR2
γ . We use the non-parametric

Bootstrap to test the null hypothesis. *, ** and *** denote significance at the 90%, 95%, and 99% level,
respectively.

the drops in Sharpe ratios are particularly enormous from subsample II (September 1990
- October 2005) to subsample III (November 2005 - December 2020). In addition, BMA is
more valuable in the third subsample: its Sharpe ratio (1.106) is significantly higher than
other models except for the one composed of all 14 factors.

Whether the performance of factor models is related to model uncertainty? The short
answer is yes. On average, the performance of factor models declines as model uncertainty
increases. Specifically, when model uncertainty is low, both the top model and BMA
have similar Sharpe ratios of around 2.57, which are exceptionally high. In other words,
investors should be confident about the top model chosen by our Bayesian procedure in
low uncertainty states. On the contrary, it is particularly beneficial to incorporate model
uncertainty into portfolio choice when model uncertainty is high. As the last row suggests,
BMA has an OOS Sharpe ratio of 1.25, significantly larger than any other specifications.

In summary, there are two takeaways from Table 3.1. First, our Bayesian procedure
is competent to pick the model that has satisfactory OOS performance. Second, model
uncertainty matters and is particularly noteworthy when it is relatively high. In this
scenario, BMA, which aggregates the information across all models, is salient for real-time
portfolio choice.
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3.3.2 Decomposing model uncertainty

The posterior model probabilities (see Proposition 14) are closely related to the model-
implied squared Sharpe ratio, SR2

γ . As we include more factors, the in-sample SR2
γ always

rises. Only when a few factor models dominate others can we be confident about the
true model. In other words, when the distances in SR2

γ are sizable across different factor
models, we can easily differentiate them and observe low model uncertainty. In contrast,
when factor models have similar SR2

γ , model uncertainty tends to be high.
Figure 3.3 plots the time-series of distances in SR2

γ . More precisely, we show the
difference between the maximal SR2

γ and the 90th-quantile of SR2
γ , as well as the difference

between its maximum and median. T4he difference in SR2
γ decreases obviously before the

stock market crashes and remains at a low level during the bear markets. For example, the
distance between the highest and medium in-sample SR2

γ is close to 0.2 (daily) between
1997 and 1998, but it plunges to almost 0 from 1998 to 2000. After the tech bubble, factor
models have been becoming more similar in terms of in-sample SR2

γ .
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Figure 3.3: Time-Series of Model-Implied Squared Sharpe Ratio (3-Year Rolling Win-
dow)

The figure plots the time series of distances in SR2
γ from June 1975 to December 2020. We present the

difference between the highest SR2
γ and the 90th-quantile of SR2

γ , as well as the difference between the
highest SR2

γ and medium SR2
γ . SR2

γ is the model-implied squared Sharpe ratio, ET [fγ ]TV −1
γ ET [fγ ].

ET [fγ ] and Vγ are estimated using the daily factor returns in the past 36 months.

Theoretically, SR2
γ is determined by mean returns of factors and their covariance ma-

trix. We further analyze SR2
γ by dipping into three parts: (a) average daily factors returns

in the past three years; (b) average daily factor volatility in the past three years; (c) av-
erage pairwise correlation among daily factor returns in the past three years. Figure 3.4
plots these time series.

In Figure 3.4a, we show that the average daily return of all 14 factors is incredibly
volatile. The average daily return also exhibits cyclical patterns. Specifically, it declines
during the run-ups of stock markets. However, it plummets to the bottom during the
market crash and recovers gradually after the bear markets. In the recent three most in-
fluential market crashes (dot-com bubble, 2008 global financial crisis, and the Covid-19),
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the average factor returns decline to near zeros. In the past decade, the profitability of
these 14 factors is no longer comparable to their historical performance. One potential rea-
son is that more investors implement the same investment strategies after the publication
of these factors (see McLean and Pontiff (2016)).
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(a) Time-Series of Average (Daily) Return of 14 Factors
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(b) Time-Series of Average (Daily) Volatility of 14 Factors
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(c) Time-Series of Average Pairwise Correlation of 14 Factors

Figure 3.4: Decomposing the Model Uncertainty

The figures plot the time-series of (a) average daily returns of factors, (b) average daily factor volatility,
and (c) average pairwise (absolute) correlation among daily factor returns in the past three years, and
these statistics are estimated using the daily factor returns in the past 36 months.

Figure 3.4b plots the average volatility of 14 factors. Even though the average factor
volatility increases in the bear markets, the factor returns before the dot-com bubble are
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not as volatile as after 2000. Typically, the average standard deviation of 14 factors is
between 0.2% and 0.4%. During the dot-com bubble and recent global financial crisis,
it surges to higher than 1% daily. However, it is evident from figure 3.4b that model
uncertainty does not have the same time-series pattern as the average factor volatility.

During market crashes, it is highly likely that arbitrageurs who invest in these factor
strategies will exit the market simultaneously, thus driving up comovements among fac-
tors. Since the correlation matrix of factors determines the extent to which investors can
diversify their investment, it could potentially influence the distances in SR2

γ . To illus-
trate this point, we plot the time series of the average pairwise correlation of 14 factors.19

The average correlation exhibits a similar cyclical pattern as model uncertainty. However,
there are two key differences: (a) the average correlation decreases before the 2008 crisis
while our model uncertainty starts to climb up from 2006, and (b) model uncertainty
increases from 2015 to 2019, while the average correlation among factors declines during
the same period.

To sum up, model uncertainty is high when the distances in SR2
γ among different factor

models are low. Since the in-sample SR2
γ always increases with more factors included, we

are uncertain about whether to include an additional factor if the benefit of including it is
only marginal. Furthermore, model uncertainty about linear SDFs increases dramatically
during the run-ups and stands at the peak during bear markets because different factor
models are highly analogous.

3.3.3 Correlation with other economic variables

Figure 3.1 indicates that model uncertainty increases during times of extreme uncertainty
in the financial markets and economy. A natural question is how our model uncertainty
index correlates with a number of key financial and macroeconomic variables known as
capturing critical financial and economic fluctuations.

There are several notable uncertainty measures in the literature. The first measure
is VXO/VIX index20 (used in Bloom (2009)), which quantifies forward-looking market
volatility. Subsequent to Bloom (2009), Ludvigson et al. (2021) and Jurado et al. (2015)
develop the real, macro and financial uncertainty measures by exploiting a large set of
macro and financial variables.21 Baker et al. (2016) use the coverage of economic or
policy-related keywords in the media as proxies for economic policy uncertainty.

19At the end of each month t, we use daily factor returns from month t − 35 to month t to com-
pute the pairwise correlation between any two factors, denoted as ρij . The average is computed as

1
N×(N−1)

∑
i 6=j |ρij |.

20VIX and VXO index are essentially the same: the correlation between them is higher than 0.98.
21They quantify the h-period ahead uncertainty by the extent to which a particular set of economic

variables (either real, macro, or financial) become more or less predictable from the perspective of economic
agents. Suppose there is a set of economic indicators, Yt = (y1t, ..., yLt)

T. For each variable, they find
the conditional volatility of the prediction errors: ujt(h) =

√
E[(yj,t+h − E[yj,t+h|It])2|It]. The aggregate

uncertainty is quantified by the average conditional volatility of the prediction error of each economic
indicator: ut(h) =

∑L
j=1 ωjujt(h), where ωj is the weight on the j-th economic indicator. The detailed

econometric framework could be found in the original papers. Our paper considers their one-period ahead
uncertainty measures.
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In addition to uncertainty measures, we compare model uncertainty with the interme-
diary factor from He et al. (2017), the term yield spread (the yield on ten-year government
bonds minus the yield on three-month treasury bills), and the credit spread (the yield on
BAA corporate bonds minus the yield on AAA corporate bonds).

We report in Table 3.2 the results from the regression of model uncertainty on its one-
period lag and some contemporaneous economic variables. By running these regressions,
we do not intend to study the causal relationship between model uncertainty and other
economic variables. Instead, our objective is to describe the contemporaneous relation
between them. We also want to point out that model uncertainty is persistent22 since
it is constructed in a rolling window of 36 months. Therefore, we need to be careful
in statistical inference. In all following tables, we use Newey-West standard errors (see
Newey and West (1987)) with 36 lags in the regressions involving model uncertainty.

As Table 3.2 shows, a number of economic variables are significantly related to model
uncertainty, even after we control one-period lagged entropy in the regressions. For ex-
ample, model uncertainty is positively correlated with financial uncertainty and the VXO
index but almost orthogonal to real, macro, and two economic policy uncertainty mea-
sures. This finding is intuitive since model uncertainty mainly refines information in
financial markets. In addition, the intermediary factor and term yield spread negatively
relate to model uncertainty. In column (10), we run horse racing among the VXO in-
dex, the intermediary factor, and term yield spread: While the coefficient estimates of the
VXO index and term yield spread still remain significant, the intermediary factor becomes
inconsequential.

Comments. Conceptually, our model uncertainty index quantifies a different layer of
uncertainty from other measures. The stock market volatility, proxied by the VXO index,
measures the second-moment investment risk. Three uncertainty measures in Ludvigson
et al. (2021) and Jurado et al. (2015) are essentially volatilities of prediction errors. In
other words, they measure the dispersion of unexpected changes in economic indicators.
Two economic policy uncertainty indices in Baker et al. (2016) are to quantify public
attention to economic policy. In contrast, our paper quantifies model uncertainty about
linear SDFs. Since we know the lower and upper bounds of entropy, we can easily detect the
degree of model uncertainty in the cross-section. For example, model uncertainty reaches
its upper bound in some periods, implying that different models’ posterior probabilities
are almost identical. In short, our model uncertainty index is complementary to other
uncertainty measures developed in the past literature. More importantly, ours provides a
new angle of analyzing and understanding investment uncertainty.

22Strong persistence of the time-series process is ubiquitous in other uncertainty measures. Table 3.8
shows the AR(1) coefficients of the other six uncertainty sequences, and we find that the real, macro and
financial uncertainty measures also have AR(1) coefficients less than but close to 1. It is well-known that
the volatility of asset returns tends to cluster. When we run the AR(1) for the VXO index, the coefficient
estimate of ρ is 0.812. Only the second economic policy uncertainty measure (EPU2) suffers less from
massive autocorrelations.
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Table 3.2: Regressions of Model Uncertainty on Contemporaneous Variables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Lagged Entropy 0.979∗∗∗ 0.982∗∗∗ 0.983∗∗∗ 0.985∗∗∗ 0.983∗∗∗ 0.983∗∗∗ 0.986∗∗∗ 0.985∗∗∗ 0.986∗∗∗ 0.983∗∗∗

(128.85) (142.76) (146.97) (106.55) (105.75) (129.25) (161.37) (150.06) (154.04) (131.19)
Financial Uncertainty 0.212∗

(1.95)
Macro Uncertainty 0.174

(1.53)
Real Uncertainty 0.140

(1.20)
EPU I 0.000

(0.33)
EPU II 0.000

(1.07)
VIX/VXO 0.005∗∗ 0.004∗∗

(2.20) (2.34)
Intermediary Factor -0.503∗∗ -0.196

(-2.01) (-0.71)
Term Spread -0.034∗∗∗ -0.033∗∗

(-3.44) (-2.44)
Default Spread -0.003

(-0.09)
Sample size 546 546 546 432 432 420 546 546 546 420

The table reports the results from the regression of model uncertainty on its one-period lag and some
contemporaneous economic variables (Xt+1):

Entropyt+1 = β0 + β1Entropyt + ρXt+1 + εt+1.

Xt+1 include a) financial, macro, and real uncertainty measures from Ludvigson et al. (2021) and Jurado
et al. (2015) in columns (1) - (3), b) two economic policy uncertainty (EPU) indices from Baker et al.
(2016) in columns (4) and (5), c) VXO index in column (6), d) the intermediary factor from He et al.
(2017) in column (7), e) term spread in column (8), f) default spread in column (9), and g) VXO index,
the intermediary factor, and the term spread in column (10). The t-statistics are computed using Newey-
West standard errors with 36 lags. *, ** and *** denote significance at the 90%, 95%, and 99% level,
respectively.

3.4 Mutual fund flows

If investors consider model uncertainty a crucial source of investment risk, a natural predic-
tion is that their portfolio choice decisions are related to our model uncertainty measure.
The difficulty in empirical tests arises due to the lack of observations in their complete
portfolio choice. To tackle this issue, we rely on mutual fund flows, which have been stud-
ied extensively by the past literature due to their availability. Also, the mutual fund sector
is one of the largest financial intermediaries through which individual investors partici-
pate in the US stock markets. Hence, we use mutual fund flows as proxies for investors’
portfolio rebalancing and study how mutual fund investors react to model uncertainty
shocks.

The data is available on CRSP survivor-bias-free US mutual fund database. The
database includes investment style or objective codes from three different sources over
the whole life of the database.23 The CRSP style code consists of up to four letters.
For example, a fund with the style “EDYG" means that i) this fund mainly invests in
domestic equity markets (E = Equity, D = Domestic), and ii) it has a specific investment

23From 1962 to 1993, Wiesenberger objective codes are used. Strategic insight objective codes are
populated between 1993 and 1998. Lipper objective codes start in 1998. Instead of using the three
measures mentioned above directly, CRSP builds its objective codes based on them.
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style “Growth" (Y = Style, G = Growth).24 The quality of data before 1991 is low because
the CRSP investment objective code is incomplete. For example, only domestic equity
“style" funds and mixed fixed income and equity funds are recorded before 1991. Also, the
market values of institutional holdings proportional to the total market value of all stocks
(in CRSP) were tiny. Therefore, we focus on the sample from January 1991 to December
2020.

To begin with, we define the aggregate mutual fund flows. Following the literature
(see Lou (2012)), we calculate the net fund flows to each fund i in period t as

Flowi,t = TNAi,t − TNAi,t−1 × (1 +RETi,t) (3.15)

where TNAi,t and RETi,t are total net assets and gross returns of fund i in period t. Next,
we aggregate individual fund flows in each period across all funds in a specific group (e.g.
all large-cap funds) and scale the aggregate flows by the lagged total market capitalization
of all stocks in CRSP:

FlowsYt =

∑
i∈Y Flowi,t

CRSP-Market-Capt−1

, (3.16)

where Y specifies a certain investment objective, such as small-cap funds.
We use the canonical Vector Autoregression (VAR) model to study the dynamic re-

sponses of fund flows to model uncertainty shocks. Specifically, we consider the following
reduced-form VAR(l) model:

Yt = B0 +B1Yt−1 + · · ·+BlYt−l + ut, (3.17)

where l denotes the lag order, Yt is a k × 1 vector of economic variables, ut is a k × 1

vector of reduced-form innovations with the covariance matrix Σu, and (B0,B1, . . . ,Bl)

are the coefficient matrices.
Past literature often relates reduced-form innovations to structural shocks, i.e., ut =

Sεt, where S is a k× k non-singular matrix, and εt is a k× 1 vector of structural shocks,
which are orthogonal to each other by definition. We use the Cholesky decomposition to
identify the dynamic responses to uncertainty shocks, so the ordering of economic variables
in Yt is equivalent to different identification assumptions, which are specified below.

3.4.1 Aggregate equity vs fixed-income funds

Since our model uncertainty measure is based on factors in the US, we delete all foreign
mutual funds. In the baseline analysis, we consider the aggregate mutual fund flows to the
entire equity and fixed-income markets. That is, we study the VAR regression in equation
(3.17), where Y >t = (Entropyt, F lows

FI
t , F lowsEquityt ). We next use impulse response

functions (IRFs) to better understand the dynamic effects and propagating mechanisms
of uncertainty shocks.

IRFs greatly depend on the identification assumption, i.e., whether model uncertainty

24More details are in the handbook of CRSP survivor-bias-free US mutual fund database.
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is an exogenous source of fluctuations in fund flows or an endogenous response. In the first
case, model uncertainty is a cause of fund flows, while it acts as a propagating mechanism
in the latter case. Without taking a strong stance on the identification assumption, we
aim to investigate the dynamic relationship between fund flows and several uncertainty
measures, either as a cause or propagating mechanism. To make as few assumptions as
possible, we focus only on the dynamic responses to uncertainty shocks and are silent on
how innovations in fund flows affect model uncertainty. This simplification allows us to
ignore the ordering of other economic variables beyond model uncertainty.

In the benchmark case, we place model uncertainty first in the VAR. Hence, the implicit
identification assumption is that fund flows react to the contemporaneous uncertainty
shocks, while model uncertainty does not respond to the shocks to mutual funds in the
current period. We consider a different identification assumption in robustness checks in
Section 3.7; that is, we put model uncertainty as the last element in Yt. As shown below,
the IRFs to model uncertainty shocks are essentially robust to the alternative identification
strategy, whereas the IRFs to other uncertainty measures are not.

Table 3.3: VAR Estimation of Monthly Entropy, Flows to Domestic Equity Funds, and
Flows to Domestic Fixed-Income Funds

Entropyt+1 FlowsFIt+1 FlowsEquityt+1

Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
Intercept 0.042 1.266 -0.064 -0.259 1.615*** 8.197
Entropyt 0.985*** 140.610 -0.012 -0.178 -0.344*** -8.106
FlowsFIt 0.009 1.198 0.247*** 3.856 -0.081 -1.329
FlowsEquityt -0.003 -0.331 -0.093 -1.500 0.240*** 4.044
MKTt -0.008 -0.980 -0.054 -0.642 0.062 0.970
V XOt 0.006 0.483 0.170** 2.115 -0.010 -0.251

This table reports the results from the VAR estimation in equation (3.17), where Y >t =
(Entropyt, F lows

FI
t , F lowsEquityt ). Entropyt is the model uncertainty measure, and FlowsFIt

(FlowsEquityt ) is the aggregate flows to the domestic fixed-income (equity) mutual funds, normalized
by the lagged total market capitalization of all stocks in CRSP (see equation (3.16)). The lag is chosen by
BIC and equals one. In addition, we standardize all economic variables such that they have unit variances.
We also control for the lagged market return (MKTt) and VXO index (V XOt) in each regression. The
sample spans from January 1991 to December 2020. We report both coefficient estimates and t-statistics,
calculated using Newey-West standard errors with 36 lags. *, ** and *** denote significance at the 90%,
95%, and 99% level, respectively.

Table 3.3 reports the results from the VAR estimation. The sample ranges from
January 1991 to December 2020. The lag is chosen by BIC and equals one. In addition, we
standardize all economic variables such that they have unit variances. We also include the
lagged market return and VXO index as control variables in each regression. The reported
t-statistics are based on the Newey-West estimate of the covariance matrix with 36 lags.
First, model uncertainty only relates to its lag. Second, the VXO index positively predicts
the aggregate flows to fixed-income funds: one standard deviation increase in VXO predicts
0.17 standard deviation inflows to fixed-income funds. Third, model uncertainty negatively
forecasts equity fund flows, and the coefficient estimate is sizable in both economic and
statistical senses. In particular, one standard deviation increase in model uncertainty
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implies 0.34 standard deviation equity fund outflows. Although we cannot interpret the
regression results as causal, we still find that investors in domestic equity mutual funds
tend to decrease their exposures when model uncertainty increases.

Figure 3.5 shows the dynamic responses of fund flows to model uncertainty shocks in
VAR-1. Most strikingly, model uncertainty innovations sharply induce fund outflows from
the US equity market, with the effects persisting even after 36 months, as depicted in
Panel (a). The impulse response functions (IRFs) start from around -0.6 in period zero
and slowly decline to -0.35 in period 36, significantly negative based on the 90% standard
error bands. In contrast, model uncertainty has negligible effects on fixed-income fund
flows (see Panel (b)).
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Figure 3.5: Impulse Responses of Equity and Fixed-Income Mutual Fund Flows using
Entropy as Uncertainty
This figure shows the dynamic impulse response functions (IRFs) of fund flows to model uncertainty shocks
in VAR-1. The shaded area denotes the 90 percent standard error bands. We consider mutual fund flows
to aggregate equity and fixed-income markets in the US. We normalize the IRFs such that the model
uncertainty shock increases one standard deviation model uncertainty. We place model uncertainty first
in the VAR. Hence, the implicit identification assumption is that fund flows react to the contemporaneous
uncertainty shocks, while model uncertainty does not respond to the shocks to mutual funds in the current
period. The data are monthly and span the period 1991:01 - 2020:12.

3.4.2 Different equity mutual funds

We further study the heterogeneous responses of different equity mutual funds to model
uncertainty shocks. In particular, we split equity mutual funds into four categories: (a)
style funds that specialize in factor investing, (b) sector funds that invest in specific
industries (e.g., gold, oil, etc.), (c) small-cap funds that invest in relatively small stocks,25

and (d) large-cap funds that invest in large stocks.
Table 3.4 reports the results from the VAR estimation in equation (3.17), where Y >t =

(Entropyt, F lows
style
t , F lowssectort , F lowssmallt , F lowslarget ). The lag of VAR is chosen by

BIC and equals one. Since the cap-based investment objective code is available after 1997,
the sample begins in January 1998. First, after controlling its lag, model uncertainty is

25When we mention small funds, we refer to the funds with the CRSP investment objective codes equal
“EDCM”, “EDCS”, and “EDCI”.
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Table 3.4: VAR Estimation of Monthly Entropy and Flows to Domestic Equity Funds
with Different Investment Objectives

Entropyt+1 Flowsstylet+1 Flowssectort+1 Flowssmallt+1 Flowslarget+1

Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
Intercept 0.268*** 3.270 1.582*** 5.195 0.180 0.974 0.533 1.525 0.347 0.746
Entropyt 0.952*** 67.064 -0.261*** -5.672 -0.021 -0.525 -0.121** -1.967 -0.014 -0.209
Flowsstylet -0.012 -1.048 0.211*** 2.936 -0.056 -1.034 -0.003 -0.054 0.003 0.034
Flowssectort 0.031 1.553 -0.056 -1.089 0.254* 1.686 -0.059 -0.664 -0.123** -2.266
Flowssmallt -0.001 -0.035 0.010 0.169 0.039 0.541 0.424*** 6.081 0.089 1.225
Flowslarget 0.019* 1.682 0.062 1.181 -0.043 -0.661 -0.107* -1.731 0.092 1.164
Rstylet 0.191 0.987 0.627 0.682 0.401 0.944 -0.192 -0.215 -1.891* -1.652
Rsectort 0.043 0.900 0.121 0.956 0.367 0.957 -0.210 -1.115 0.010 0.056
Rsmallt -0.165** -2.566 -0.212 -0.983 -0.126 -0.363 0.535** 1.967 0.383 1.527
Rlarget -0.099 -0.741 -0.437 -0.576 -0.605 -1.610 -0.022 -0.034 1.468* 1.653
V XOt 0.006 0.510 -0.027 -0.467 0.067 1.022 0.093* 1.957 -0.013 -0.151

This table reports the results from the VAR estimation in equation (3.17), where Y >t =
(Entropyt, F lows

style
t , F lowssectort , F lowssmallt , F lowslarget ). Entropyt is the model uncertainty measure,

and Flowsstylet (Flowssectort , Flowssmallt , Flowslarget ) is the aggregate flows to the domestic style (sector,
small-cap, large-cap) mutual funds, normalized by the lagged total market capitalization of all stocks in
CRSP (see equation (3.16)). The lag is chosen by BIC and equals one. In addition, we standardize all
economic variables such that they have unit variances. We also control for the lagged fund returns of each
type and VXO index in each regression. The sample spans from January 1998 to December 2020. We
report both coefficient estimates and t-statistics, calculated using Newey-West standard errors with 36
lags. *, ** and *** denote significance at the 90%, 95%, and 99% level, respectively.

negatively predicted by large-cap fund flows and small-cap fund returns. Second, model
uncertainty negatively forecasts style and small-cap fund flows, and the coefficients are
sizable. Specifically, if model uncertainty rises by one standard deviation, style (small-
cap) fund flows tend to drop by 0.26 (0.12) standard deviation over the next period. On
the contrary, we do not discover a significant relationship between model uncertainty and
sector (large-cap) fund flows.

Different from model uncertainty, the traditional volatility-based uncertainty measure
(VXO) plays a limited role in the VAR regression. It can marginally predict small-cap fund
flows, but the sign of coefficient estimate is counter-intuitive: when uncertainty goes up,
investors tend to invest more in small-cap funds. Instead, we observe a negative response
of small-cap funds when using entropy as the uncertainty measure. Therefore, we argue
that our model uncertainty index captures an essential source of investment risk for equity
investors, which is omitted by the traditional VXO index.

Figure 3.6 shows the dynamic responses of four different types of equity fund flows to
model uncertainty shocks in VAR-1. Consistent with Table 3.4, model uncertainty shocks
reduce future style fund flows, and the effects are long-lasting (see Panel (a)). This obser-
vation is intuitive. Style funds refer to the growth, income, growth & income and “hedged"
funds, so they are more likely to rely on the factor strategies used in constructing model
uncertainty. Therefore, the outflows from style equity funds are remarkably enormous
when the model uncertainty is high.

Moreover, we observe significantly negative IRFs of small-cap funds (see Panel (c)),
although the effects are not as persistent as in style funds. This observation is reasonable
since we include two size factors in model uncertainty. On the contrary, sector and large-
cap funds almost do not respond to model uncertainty shocks. One potential explanation is
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that these two types of funds are primarily passive-investing funds, but model uncertainty
mainly affects actively-managed funds.
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Figure 3.6: Impulse Responses of Equity Fund Flows with Different Investment Objective
Codes using Entropy as Uncertainty
This figure shows the dynamic impulse response functions (IRFs) of fund flows to model uncertainty shocks
in VAR-1. The shaded area denotes the 90 percent standard error bands. We consider equity fund flows
with different investment objective codes (style, sector, small-cap, and large-cap). We normalize the IRFs
such that the model uncertainty shock increases one standard deviation model uncertainty. We place
model uncertainty first in the VAR. Hence, the implicit identification assumption is that fund flows react
to the contemporaneous uncertainty shocks, while model uncertainty does not respond to the shocks to
mutual funds in the current period. The data are monthly and span the period 1998:01 - 2020:12.

3.4.3 Different fixed-income funds

Similar to the previous section, we divide all fixed-income mutual funds into four cate-
gories: (a) government bond funds, (b) money market funds, (c) corporate bond funds,
and (d) municipal bond funds. This subsection repeats a similar VAR estimation and in-
vestigates the dynamic responses of fixed-income fund flows to model uncertainty shocks.

Table 3.5 shows the results from the VAR-1 regression. According to columns (3)
and (4), model uncertainty positively predicts the aggregate fund flows in US government
bonds. US government bonds are notable for their superior safety over other asset classes.
Hence, investors tend to allocate more wealth to safe assets when model uncertainty is
more substantial. In contrast, model uncertainty negatively forecasts corporate fund flows,
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so mutual fund investors reduce their exposure to corporate bonds following high model
uncertainty.

Table 3.5: VAR Estimation of Monthly Entropy and Flows to Domestic Fixed-Income
Funds with Different Investment Objectives

Entropyt+1 Flowsgovt+1 Flowsmoneyt+1 Flowscorpt+1 Flowsmunit+1

Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
Intercept 0.381*** 2.812 -0.574*** -3.305 -0.191 -0.724 1.033*** 4.198 -0.132 -0.576
Entropyt 0.983*** 97.964 0.182** 2.535 -0.049 -0.816 -0.189*** -2.712 0.093 1.621
Flowsgovt 0.016** 2.407 0.341*** 4.580 0.090 1.325 0.094 1.448 0.136** 1.991
Flowsmoneyt 0.011 1.528 -0.017 -0.369 0.252*** 3.125 -0.064 -1.072 0.016 0.299
Flowscorpt -0.012 -0.990 0.008 0.235 0.029 0.709 0.161** 2.264 0.166*** 2.591
Flowsmunit -0.022** -2.067 0.131** 2.064 -0.095 -1.380 0.200 1.455 0.193 1.336
V XOt 0.006 0.590 0.044 0.623 0.191** 2.298 -0.007 -0.084 -0.094 -1.422

This table reports the results from the VAR estimation in equation (3.17), where Y >t =
(Entropyt, F lows

gov
t , F lowsmoneyt , F lowscorpt , F lowsmunit ). Entropyt is the model uncertainty measure,

and Flowsgovt (Flowsmoneyt , Flowscorpt , Flowsmunit ) is the aggregate flows to the domestic government
bond (money market, corporate bond, and municipal bond) mutual funds, normalized by the lagged total
market capitalization of all stocks in CRSP (see equation (3.16)). The lag is chosen by BIC and equals
one. In addition, we standardize all economic variables such that they have unit variances. We also control
for the VXO index in each regression. The sample spans from January 1998 to December 2020. We report
both coefficient estimates and t-statistics, calculated using Newey-West standard errors with 36 lags. *,
** and *** denote significance at the 90%, 95%, and 99% level, respectively.

Next, we report the IRFs of different fixed-income funds to entropy shocks in Figure
3.7. Not surprisingly, we document sharp dynamic inflows to government bond funds. As
Panel (a) suggests, one standard deviation increase in model uncertainty corresponds to
more than 0.7 standard deviation increase in government bond fund inflows at time zero,
and the dynamic response persists for more than 36 periods. On the contrary, the IRFs
of other fixed-income fund flows are not significant.

In addition, it is worth noting that we do not observe a significant relationship between
model uncertainty and money market funds. The difference between money market and
government bond funds is that the first type has a smaller duration and more liquid, while
the latter consists of government bonds of different maturities. Unlike model uncertainty,
the VXO index significantly predicts positive inflows to money market funds. We interpret
these facts as evidence that high model uncertainty induces “flight to safety”, whereas
high VXO implies “flight to liquidity”. Combined with the previous analyses, we conclude
that mutual fund investors transfer their wealth from style and small-cap equity funds to
government bonds, which are famous for their superior safety.

3.4.4 Comparison with other uncertainty measures

One major concern about the previous analyses is that model uncertainty is correlated
with other uncertainty indicators, so the dynamic responses of mutual fund flows to model
uncertainty shocks are confounded by them. Hence, we study how other uncertainty
measures affect mutual fund flows in this section and compare their dynamic responses with
the previous results. We consider the VXO index and financial uncertainty in Jurado et al.
(2015) since these two measures are significantly associated with our model uncertainty
measure, as we show in Table 3.2.
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Figure 3.7: Impulse Responses of Fixed-Income Fund Flows with Different Investment
Objective Codes using Entropy as Uncertainty
This figure shows the dynamic impulse response functions (IRFs) of fund flows to model uncertainty
shocks in VAR-1. The shaded area denotes the 90 percent standard error bands. We consider fixed-
income fund flows with different investment objective codes (government bonds, money market, corporate
bonds, and municipal bonds). We normalize the IRFs such that the model uncertainty shock increases one
standard deviation model uncertainty. We place model uncertainty first in the VAR. Hence, the implicit
identification assumption is that fund flows react to the contemporaneous uncertainty shocks, while model
uncertainty does not respond to the shocks to mutual funds in the current period. The data are monthly
and span the period 1991:01 - 2020:12.
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Figure 3.8 plots the dynamic responses of four different types of equity fund flows to
VXO or financial uncertainty shocks in VAR-1. Consistent with the previous identification
assumption, We place VXO or financial uncertainty first in the VAR. We also control
the lagged model uncertainty in each regression. First, as Panels (a) and (b) indicate,
style funds experience massive outflows when VXO or financial uncertainty increases.
However, these effects are temporary; that is, the IRFs of fund flows reverse back to zeros
immediately after time zero. On the contrary, model uncertainty shocks are followed
by persistent outflows from style funds even beyond 36 periods. Similarly, the dynamic
responses of fund flows to sector/small-cap/large-cap funds are also transitory and not
significant (except for Panel (c) at period zero).

We further consider the dynamic responses of fixed-income funds in Figure 3.9. When
VXO or financial uncertainty goes up, government bond funds tend to experience massive
inflows, although these effects are less than 50% of those following model uncertainty
shocks (see Figure 3.7(a)). Most strikingly, we document massive inflows to money market
funds after positive VXO and financial uncertainty shocks. In contrast, model uncertainty
does not play a part in money market funds. In other words, model uncertainty shocks
primarily induce “flight to safety", while other volatility-based uncertainty measures are
mainly related to “flight to liquidity".

In summary, our model uncertainty measure captures some unique dynamic responses
of fund flows, and notably, they are different from traditional volatility-based measures,
such as VXO and financial uncertainty. In particular, we observe significant fund inflows
to government bond funds and outflows from style and small-cap equity funds. In contrast,
VXO and financial uncertainty shocks fail to generate similar dynamic responses. Finally,
as we will show in Section 3.7, the IRFs of fund flows to model uncertainty shocks are
virtually robust to an alternative identification assumption, whereas the effects of VXO
or financial uncertainty shocks tend to be fairly sensitive.

3.5 Investors’ expectations

This section investigates whether our model uncertainty measure correlates with investors’
expectations of the stock markets. The first measure is from the American Association
of Individual Investors (AAII). The survey is completed weekly by registered members
of AAII, and it asks the investors whether they are bearish, neutral, or bullish on the
stock market for the next six months. Since our model uncertainty measure is of monthly
frequency, we use the expectation measures in the last week of each month.

We also consider Robert Shiller’s stock market confidence indices from the survey
conducted by the International Center for Finance at the University of Yale. Our paper
focuses on the US one-year confidence index and US crash confidence index. Specifically,
the one-year confidence index is the percentage of the individual or institutional investors
expecting an increase in the Dow in a year. In contrast, the crash confidence index is
the percentage of individual or institutional investors who believe the probability of a
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Figure 3.8: Impulse Responses of Equity Fund Flows with Different Investment Objective
Codes using VXO and Financial Uncertainty as Uncertainty Measures
This figure shows the dynamic impulse response functions (IRFs) of equity fund flows to VXO and financial
uncertainty shocks in VAR-1. Other details can be found in the footnote of Figure 3.6.
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Figure 3.9: Impulse Responses of Fixed-Income Fund Flows with Different Investment
Objective Codes using VXO and Financial Uncertainty as Uncertainty Measures
This figure shows the dynamic impulse response functions (IRFs) of fixed-income fund flows to VXO and
financial uncertainty shocks in VAR-1. Other details can be found in the footnote of Figure 3.7.
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catastrophic stock market crash in the next six months is lower than 10%. Roughly
speaking, the higher the indices are, the more confident individual or institutional investors
are about the stock market.

We consider the following time-series regression:

Expt+1 = β0 + γEntropyt + ψXt + εt+1 (3.18)

where Expt+1 is the one-period ahead expectation measure, Entropyt is the model uncer-
tainty measure in period t, and Xt includes other control variables up to time t, such as
lagged expectation indices, VXO and etc. Since all expectation indices are autocorrelated,
we control their one and two-period lags in all regressions.26 We further control lagged
market returns (S&P 500 index) in the regression for investors’ expectations on the market
are extrapolative (see Greenwood and Shleifer (2014)).

In table 3.6(a), we regress AAII sentiment indices on model uncertainty to explore
how individual investors change their attitudes towards the stock market in response
to variation in model uncertainty. To increase the interpretability of our results, we
standard model uncertainty to have unit variance, so coefficient estimates of Entropyt are
interpreted as the increases in the percentages of bullish/neutral/bearish investors when
model uncertainty grows by one standard deviation.

In columns (1) and (2), Entropyt cannot predict the next-period percentage of bullish
investors. Specifically, the average investors become less bullish if model uncertainty in
the cross-section goes up, but this prediction is not sharp. Columns (3) and (4) regress
the percentage of neutral investors on lagged model uncertainty: If model uncertainty
increases by one standard deviation, the fraction of neutral investors declines by 0.605%
or 0.434%, depending on the regression setup.

The next question is, in which direction do bullish investors change their attitudes?
Columns (5) and (6) indicate that investors are more likely to be bearish following an
increase in model uncertainty. Our interpretation is that some neutral investors become
bearish after observing a higher level of model uncertainty. Finally, we regress the differ-
ence between fractions of bullish and bearish investors on entropy. The coefficient estimate
of entropy is negative and significant at the 10% level. Overall, when model uncertainty
goes up, market participants tend to be more pessimistic about the future stock market
performance.

Table 3.6(b) regresses Shiller’s confidence indices on entropy. Unlike the AAII senti-
ment index, we also observe the expectations of institutional investors. The results are
generally similar to table 3.6: Investors tend to be more pessimistic about the stock mar-
ket when model uncertainty increases. They also believe that a market crash is more
likely to occur following higher model uncertainty. One interesting empirical fact is that
the coefficient estimates of Entropyt in the regressions of individual investors’ confidence
indices are always more negative than institutional investors. Hence, individual investors

26The coefficient estimate of 3-period lagged variable is close to zero and insignificant, so we include
only the first two lags.

169



Table 3.6: Investors’ Expectations, Confidence Indices, and Model Uncertainty

Panel (a). AAII Sentiment Index
Expt+1 = Bullish Neutral Bearish Bullish - Bearish

(1) (2) (3) (4) (5) (6) (7) (8)
Entropyt -0.280 -0.374 -0.605** -0.434** 1.043** 1.036*** -1.511* -1.574**

(-0.683) (-1.122) (-2.121) (-2.102) (2.499) (2.656) (-1.826) (-2.127)
V XOt 0.022 0.079 0.016 -0.009 -0.008 -0.034 0.016 0.118

(0.311) (1.500) (0.211) (-0.161) (-0.169) (-0.500) (0.157) (1.060)
Expt 0.418*** 0.373*** 0.487*** 0.452*** 0.367*** 0.335*** 0.373*** 0.331***

(8.593) (6.954) (9.709) (10.249) (9.238) (7.155) (7.325) (5.983)
Expt−1 0.098** 0.158*** 0.213*** 0.253*** 0.182*** 0.208*** 0.118*** 0.160***

(2.434) (3.531) (6.103) (6.209) (5.676) (5.850) (3.151) (3.623)
Lagged Market Returns NO YES NO YES NO YES NO YES
Sample Size 400 396 400 396 400 396 400 396
R2
adj 21.76% 22.53% 43.11% 44.98% 27.24% 26.79% 20.92% 21.01%

Panel (b). Shiller’s Confidence Indices
Expt+1 = 1-Year Confidence 1-Year Confidence Crash Confidence Crash Confidence

Index - Institution Index - Individual Index - Institution Index - Individual
(1) (2) (3) (4) (5) (6) (7) (8)

Entropyt -0.365*** -0.379*** -0.546*** -0.682*** -0.562*** -0.635*** -0.754*** -0.754***
(-2.727) (-2.952) (-2.733) (-5.405) (-3.265) (-3.335) (-5.790) (-6.048)

V XOt 0.025* 0.030 0.044* 0.080*** -0.058** -0.034 -0.046*** -0.001
(1.767) (0.829) (1.705) (4.204) (-2.153) (-1.066) (-2.712) (-0.047)

Expt 1.133*** 1.165*** 0.931*** 0.949*** 1.068*** 1.065*** 1.086*** 1.071***
(16.820) (18.984) (11.730) (15.898) (19.165) (21.126) (16.459) (13.272)

Expt−1 -0.270*** -0.304*** -0.015 -0.045 -0.217*** -0.219*** -0.241*** -0.208***
(-3.603) (-4.449) (-0.212) (-0.823) (-3.540) (-4.000) (-4.268) (-3.078)

Lagged Market Returns NO YES NO YES NO YES NO YES
Sample Size 232 228 232 228 232 228 232 228
R2
adj 82.70% 83.38% 93.17% 93.25% 87.44% 87.01% 92.24% 92.82%

The table reports empirical results in regression: Expt+1 = β0 +γEntropyt+ψXt+εt+1, where Expt+1 is
the one-period ahead expectation/confidence index, Entropyt is the model uncertainty measure in period
t, and Xt includes other control variables up to time t, such as lagged expectation/confidence indices, VXO
and etc. Since all expectation/confidence indices are autocorrelated, we control their one and two-period
lags (Expt and Expt−1) in all regressions. We further control lagged market returns in the regression
(we include six lags). In Panel (a), expectation indices come from the survey conducted by the American
Association of Individual Investors (AAII). The survey is completed weekly by registered members of
AAII, and it asks the investors whether they are bearish, neutral or bullish on the stock market for the
next six months. Therefore, we have the data regarding the percentages of bearish, neutral or bullish
respondents each week. Since our model uncertainty measure is monthly, we use the expectation index
in the final week of each month. In Panel (b), confidence indices come from Shiller’s survey. We focus
on the US one-year confidence index and US crash confidence index. The one-year confidence index is
the percentage of the individual or institutional investors expecting an increase in the Dow in a year. In
contrast, the crash confidence index is the percentage of individual or institutional investors who think
that the probability of a catastrophic stock market crash in the next six months is lower than 10%. The
t-statistics are computed using Newey-West standard errors with 36 lags. *, ** and *** denote significance
at the 90%, 95%, and 99% level.

react more dramatically to the changes in model uncertainty than institutional ones.
In short, we conclude that higher model uncertainty generally predicts that investors

in the survey, be it individual or institutional, will become more pessimistic about the
future stock market performance.

3.6 Evidence in European and Asia-pacific markets

This section presents the time series of model uncertainty in European and Asian Pacific
stock markets. Instead of using all 14 factors in the US stock market, we include only nine
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of them because of the limited data availability. Specifically, short-term and long-term
behavioural factors are excluded because they are unavailable in international markets.
For the same reason, we ignore the size (ME), profitability (ROE), and investment (IA)
in Hou et al. (2015), and we believe that the Fama-French five factors capture similar
systematic risks. Finally, we end up with nine candidates: MKT, SMB, HML, RMW,
CMA, MOM, QMJ, BAB, and HML devil. Either HML or HML devil can enter the true
SDF. Since the AQR library only provides the QMJ factor from July 1993, and we use a
three-year rolling window, our model uncertainty measure starts from June 1996.
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(b) Asian Pacific Stock Markets

Figure 3.10: Model Uncertainty in European and Asian Pacific Markets

The figure plots the time series of model uncertainty about the linear stochastic discount factor (SDF) in
European and Asian Stock Markets. The construction of model uncertainty is the same as in figure 3.1
except that we use only nine factors to calculate the posterior model probabilities. Details about used
factors could be found in section 3.6. The sample ranges from July 1993 to December 2020. Since we use
3-year rolling window, the model uncertainty index starts from June 1996. The red line and green lines
in the figure show the lower (0) and upper bounds (1) of model uncertainty.

Figure 3.10a plots the time series of model uncertainty in the European stock market
from June 1996 to December 2020. Several results stand out. The time-series patterns in
European markets27 are remarkably similar to the US stock market. In particular, model

27European markets include the following countries: Austria, Belgium, Switzerland, Germany, Den-
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uncertainty increases from 1999 and reaches its first peak between 2000 and 2001 because
of the dot-com bubble burst. During these periods, model uncertainty almost touches its
upper bound. After 2002, model uncertainty declines gradually and remains relatively low
until the start of the 2008 global financial crisis. During this long-lasting economic and
stock market crisis, model uncertainty stays close to the upper bound from 2008 to 2012
and only declines gradually after 2012. Finally, the uncertainty index shoots up again
after 2015, similar to what we observe in the US market.

We next turn to discuss the findings in Asian Pacific markets.28 It is worth noting
that we observe some unique time-series variation in Asian stock markets. According to
figure 3.10b, model uncertainty is high starting from 1997 due to the profound 1997 Asian
financial crisis. Asian stock markets were over-heated, and market crashes appeared in
almost every Asian country. The dot-com bubble in 2000 led to another peak in model
uncertainty, which almost reaches the upper bound. However, the Asian markets recovered
quickly after 2000, so the model uncertainty index declines afterwards. Another steady
increase in model uncertainty appears before and during the 2008 crisis, but the entropy is
not as high as in the late 1990s and drops immediately from 2009. This particular pattern
is unlike the US and European markets, in which we observe higher model uncertainty of
the 2008 crisis than the dot-com bubble.

Another steady increase in model uncertainty appears before and during the 2008 crisis,
but the entropy is not as high as in the late 1990s and drops immediately from 2009. This
particular pattern is unlike the US and European markets, in which we observe higher
model uncertainty of the 2008 crisis than the dot-com bubble. One potential explanation
is that the 1997 Asian financial crisis, combined with the burst of the dot-com bubble in
2000, was more destructive than the 2008 financial crisis. There is a short-term upward
jump in model uncertainty between 2011 and 2012 when the US government bonds were
downgraded. Similar to US and European markets, model uncertainty surges from the
beginning of 2015.

In short, the international market evidence in this section lends further support to
the time-varying nature of model uncertainty. First, model uncertainty is high in many
periods, way above its lower bound. Second, it fluctuates significantly over time and
coincides with major events in corresponding asset markets. However, model uncertainty
is not all alike. For example, Asian markets display unique behaviours that distinguish
them from the US and European markets.

3.7 Robustness

This section considers several robust checks, including alternative hyper-parameter a in
estimating factor models, alternative rolling windows in constructing the time series of
model uncertainty, and a different identification assumption under which we re-estimate

mark, Spain, Finland, France, UK, Greece, Ireland, Italy, Netherlands, Norway, Portugal, and Sweden.
28By saying the Asian Pacific market, we refer to the stock markets in Australia, Hong Kong, New

Zealand, and Singapore.
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the dynamic responses of fund flows to uncertainty shocks.

3.7.1 Alternative hyper-parameter a

One important choice in our Bayesian inference is the value of hyper-parameter a. In the
benchmark case, we assign a to be 4. Just as Section 3.1 shows, a higher a implies a
stronger shrinkage for factors’ risk prices, b.

Figure 3.12 plots the time series of model uncertainty using different values of a,
including 3, 8, 16. Several findings stand out. First, we find that the time-series patterns
in model uncertainty are not sensitive to the choice of a. In fact, the sequences under
different values of a are virtually identical. Second, model uncertainty is increasing in
a. This observation is not surprising since a larger a mechanically shrinks all candidate
models to the null model, rendering factor models to become more similar and driving up
model uncertainty.

3.7.2 Alternative rolling windows

There is a trade-off in choosing the length of the rolling window. On the one hand, we pre-
fer a larger time-series sample to achieve higher precision in estimating model parameters.
The one-year or two-year daily sample is insufficient since estimating factors’ expected
returns and their covariance matrix is challenging. On the other hand, larger sample size
is not always desirable since it implicitly assumes that factor models remain constant and
robust over a long period. As many research (e.g. McLean and Pontiff (2016)) suggest,
factors’ performances deteriorate post-publication. Moreover, a long estimation period of
10 or 20 years will average valuable information concerning factors’ cyclical behaviours.

Motivated by the above discussion, we consider four-year and five-year rolling windows
in Figure 3.13. There is one tiny difference: Model uncertainty tends to be smoother in
longer rolling windows, especially the five-year window. Beyond that, the time-series
properties are similar to those found in a three-year rolling window.

3.7.3 Alternative VAR identification assumption

Another robustness check concerns the identification assumption in our VAR analysis.
In Section 3.4, we put uncertainty measures first in Yt. We now consider an alternative
setup, in which uncertainty measures are the last variables in Yt. In other words, we allow
uncertainty measures to correlate with contemporaneous shocks to mutual fund flows,
but uncertainty shocks do not affect mutual fund flows simultaneously. Although model
uncertainty is an endogenous response to innovations in fund flows under this assumption,
it is still worth investigating whether model uncertainty is a key player to propagate those
exogenous shocks over a long-lasting period.

Figures 3.15 and 3.16 plot the IRFs of fund flows to three uncertainty measures. Under
the current assumption, the IRFs are zeros at period zero by construction. The first column
shows the dynamic responses to model uncertainty shocks. Similar to the observations in
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Figures 3.6 and 3.7, an increase in model uncertainty relates to persistent outflows from
style and small-cap funds but sharp inflows to government bond funds. The dynamic
effects are bounded well away from zero even beyond 36 months, although they decline
slowly over time. Hence, the main results in Figures 3.6 and 3.7 are largely robust.

The second and third columns show the IRFs of fund flows using VXO and financial
uncertainty. Surprisingly, VXO shocks imply positive inflows to small-cap funds. On
average, one standard deviation increase in the VXO index corresponds to more than 0.1
standard deviation fund inflows, and these positive dynamic responses last for around 20
months. However, the 90% confidence interval of IRFs covers zero effects, so they are on
the edge of being consequential. Beyond that, the IRFs in other panels are virtually zeros,
so there is little evidence that mutual fund investors react to VXO or financial uncertainty
shocks.

Finally, we observe significant inflows to money market funds following positive VXO
shocks, and the dynamic responses have similar economic sizes to those in Figure 3.9.
The key difference under the new identification assumption is that the IRFs of money
market funds to financial uncertainty shocks are no longer significant. In other words, the
dynamic responses to financial uncertainty shocks in Figure 3.9 are driven mainly by the
identification assumption.

To conclude, model uncertainty has robust and persistent effects on mutual fund flows,
particularly the style, small-cap, and government bond funds. We argue that model un-
certainty is a crucial determinant of mutual fund flows, regardless of being an exogenous
cause or a merely propagating mechanism. On the contrary, the dynamic responses of
fund flows to volatility-based measures, be it VXO or financial uncertainty, are more or
less sensitive to different identification assumptions. In fact, there is little evidence that
equity mutual fund investors respond to VXO or uncertainty shocks.

3.8 Conclusions

We develop a new measure of model uncertainty in the cross-sectional asset pricing under
the linear SDF specification. Roughly speaking, the measure is based on the entropy of
Bayesian posterior probabilities for all possible factor models. The critical observation
is that model uncertainty is countercyclical: it begins to climb up right before the stock
market crashes and remains at its peaks during bear markets. Since we can calculate
the lower and upper bound of entropy, we can easily discern when model uncertainty is
abnormally high or low. In contrast, other uncertainty measures in past literature do not
have this satisfactory property. We find that model uncertainty almost touches its upper
bounds in the burst of the dot-com bubble and the 2008 financial crisis.

If investors consider model uncertainty as another source of investment risk, their
portfolio choice and expectations of the stock market should be naturally related to model
uncertainty. Our second key observation is that model uncertainty can predict the next-
period mutual fund flows, even after controlling past fund flows, VXO, and the past
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performance of mutual funds. In particular, investors seem to reduce their investment in
style and small-cap mutual funds but allocate more of their wealth to safer US government
bond funds. Model uncertainty is also closely related to investors’ expectations and con-
fidence. We document that investors in the survey, no matter individual or institutional
investors, are more pessimistic about the stock market when confronted with higher model
uncertainty. We find similar countercyclical behaviours of model uncertainty in European
and Asian Pacific stock markets.

As model uncertainty in the cross-section is an important source of investment risk,
future theoretical research on portfolio choice should incorporate it into the model. Even
though a few partial equilibrium models have considered model uncertainty of mean-
variance portfolios, no such a general equilibrium model exists, at least according to our
knowledge. Future research could attempt to endogenize model uncertainty in the general
equilibrium model and explain its countercyclical behaviours.
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3.9 Appendices

3.9.1 Description of factors

CAPM. The CAPM in Sharpe (1964) and Lintner (1965) is the pioneer of linear factor
models. The only factor in CAPM is the excess return on the market portfolio (MKT).
The data comes from Ken French’s website.

Fama-French Five-factor model. Fama and French (1992) extend CAPM by introduc-
ing SMB and HML, where SMB is the return difference between portfolios of small and
large stocks, and HML is the return difference between portfolios of stocks with high and
low book-to-market ratios. Fama and French (2016) further include a profitability factor
(RMW) and one investment factor (CMA). Again, the data comes from Ken French’s
website.

Momentumn. Jegadeesh and Titman (1993) find that stocks that perform well or
poorly in the past three to 12 months continue their performance in the next three to
12 months. Therefore, investors can outperform the market by buying past winners and
selling past losers. We download the momentum (MOM) factor from Ken French’s data
library.

q-factor model. Hou et al. (2015) introduce a four-factor model that includes market
excess return (MKT), a new size factor (ME), an investment factor (IA), and finally, the
profitability factor (ROE).29

Behavioral Factors. Daniel et al. (2020) propose a three-factor model consisting of
the market factor and two theory-based behavioural factors. The short-term behavioural
factor is based on the post-earnings announcement drift (PEAD) and captures the under-
reaction to quarterly earnings announcements in the short horizon. Instead, the long-term
behavioural factor (FIN) is based on the one-year net and five-year composite share is-
suance.

Quality-minus-junk. Asness et al. (2019) groups the listed companies into the quality
and junk stocks. They find that a quality-minus-junk (QMJ) strategy generate high
positive abnormal returns. We download the QMJ factor from the AQR data library.

Betting-against-beta. One of the most prominent failures of CAPM is that the security
market line is too flat, so the risk premia of high-beta stocks are not as substantial as
CAPM suggests. Frazzini and Pedersen (2014) constructs market-neutral betting-against-
beta (BAB) factor that longs the low-beta stocks and shorts high-beta assets. We down-
load the BAB factor from the AQR data library.

HML Devil. Asness and Frazzini (2013) propose an alternative way to construct the
value factor, which relies on more timely market value information. We download the
HML Devil factor from the AQR data library.

3.9.2 Additional tables and figures

29We are grateful to the authors for sharing the data with us.
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Table 3.7: Summary Statistics of 14 Factors

Full Sample Subsample I Subsample II
Mean (%) SR Mean (%) SR Mean (%) SR

MKT 7.36 0.43 5.54 0.40 9.18 0.47
ME 1.97 0.22 1.79 0.23 2.16 0.21
IA 3.92 0.66 6.36 1.38 1.48 0.21
ROE 6.21 0.91 8.50 1.72 3.92 0.47
SMB 1.24 0.14 0.89 0.12 1.58 0.16
HML 3.39 0.37 6.30 1.03 0.48 0.04
RMW 3.26 0.52 2.77 0.73 3.74 0.47
CMA 3.42 0.59 4.76 1.05 2.07 0.30
MOM 6.89 0.55 8.94 1.22 4.85 0.30
QMJ 4.31 0.63 3.76 0.94 4.85 0.55
BAB 10.10 1.00 11.99 1.81 8.21 0.65
HML_devil 3.03 0.30 5.80 0.90 0.27 0.02
FIN 8.47 0.73 11.67 1.36 5.28 0.38
PEAD 7.57 1.30 9.34 2.00 5.80 0.85

This table reports the annualised mean returns and annualised Sharpe ratios of 14 factors listed in Ap-
pendix 3.9.1. The full sample starts from July 1972 to December 2020. We further split the entire sample
into two equal subsamples.

Table 3.8: Summary of First-Order Autoregression

(1) (2) (3) (4) (5) (6) (7)
Entropy Financial Macro Real EPU1 EPU2 V XO

AR(1) 0.986∗∗∗ 0.977∗∗∗ 0.985∗∗∗ 0.984∗∗∗ 0.844∗∗∗ 0.700∗∗∗ 0.812∗∗∗

(158.08) (98.78) (73.92) (46.84) (24.64) (14.30) (23.40)
Sample size 546 546 546 546 431 431 419
R2 0.9697 0.9523 0.9667 0.9514 0.6929 0.5945 0.6586
t statistics in parentheses: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table reports empirical results in the first-order autoregression of seven uncertainty measures: yt+1 =
α+ρyt+εt+1. Entropy is our model uncertainty measure. Financial, macro and real uncertainty measures
come from Ludvigson et al. (2021) and Jurado et al. (2015). EPU1 and EPU2 are two economic policy
uncertainty sequences from Baker et al. (2016). VXO is the forward-looking market volatility traded in
CME. The t-statistics are computed using Newey-West standard errors with 36 lags. *, ** and *** denote
significance at the 90%, 95%, and 99% level, respectively.
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(c) Value (HML or HML_devil)
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(d) Profitability (ROE or RMW)

Figure 3.11: Time Series of Posterior Factor Probabilities
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(h) QMJ

Figure 3.11: Time Series of Posterior Factor Probabilities (Continued)
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(j) PEAD

Figure 3.11: Time Series of Posterior Factor Probabilities (Continued)

The figures plot the time series of posterior marginal probabilities of 14 factors. At the end of each month,
we estimate models using the daily factor returns in the past three years. The sample ranges from July
1972 to December 2020. Since we use a three-year rolling window, the time series of factor probabilities
start from June 1975. Shaded areas are NBER-based recession periods for the US.
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Figure 3.12: Time-Series of Model Uncertainty (3-Year Rolling Window) using different
values of the hyper-parameter, a ∈ {3, 8, 16}

180



1980-12 1985-12 1990-12 1995-12 2000-12 2005-12 2010-12 2015-12 2020-12
Date

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 U

nc
er

ta
in

ty

4-year rolling window
Lower Bound
Upper Bound

(a) Model Uncertainty in 4-Year Rolling Window
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(b) Model Uncertainty in 5-Year Rolling Window

Figure 3.13: Alternative Rolling Windows
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Figure 3.14: Robustness Check: Impulse Responses of Equity and Fixed-Income Fund
Flows under Alternative Identification Assumption
This figure shows the dynamic impulse response functions (IRFs) of equity and fixed-income fund flows
to uncertainty shocks in VAR-1. We identity the IRFs by putting uncertainty last in VAR.
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Figure 3.15: Robustness Check: Impulse Responses of Equity Fund Flows with Different
Investment Objective Codes under Alternative Identification Assumption
This figure shows the dynamic impulse response functions (IRFs) of equity fund flows to uncertainty
shocks in VAR-1. We identity the IRFs by putting uncertainty last in VAR.
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Figure 3.16: Robustness Check: Impulse Responses of Fixed-Income Fund Flows with
Different Investment Objective Codes under Alternative Identification Assumption
This figure shows the dynamic impulse response functions (IRFs) of fixed-income fund flows to uncertainty
shocks in VAR-1. We identity the IRFs by putting uncertainty last in VAR.
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3.9.3 Proofs

Proof of Proposition 12

Proof. As in section 3.1.2, we assign g-prior for bγ : bγ | Mγ , g ∼ N
(
0, g

T

(
C>γ Σ−1Cγ

)−1
)
.

From lemma 6,C>γ Σ−1Cγ = Vγ , so the prior distribution for bγ is simplified asN
(
0, g

T V
−1
γ

)
.

Thus, the variance of linear SDF mγ , conditioned that g and Vγ are known, is

var[mγ ] = E
[
var
[
(fγ − E[fγ ])> bγ | bγ

]]
+ var

[
E
[
1− (fγ − E[fγ ])> bγ | bγ

]]
= E

[
tr
(
b>γVγbγ

)]
+ var

[
1− 0>bγ

]
= tr

(
VγE

[
bγb

>
γ

])
+ 0

= tr
(
Vγ

g

T
V −1
γ

)
=
gpγ
T

This completes the proof of Proposition 12.

Proof of Proposition 13

We begin the proof of Proposition 13 with the following lemma.

Lemma 6. Define Vγ = var[fγ ], Cγ = cov[R,fγ ], and Σ = var[R], then

Σ−1Cγ =

(
Ipγ

0(N−pγ)

)
, RΣ−1Cγ = fγ , C>γ Σ−1Cγ = Vγ .

Proof. Recall that under our specification, it is always that fγ ⊆ f ⊆ R. Without loss of
generality, the vector R can be arranged as

R =

 fγ

f−γ

re


where ret is a vector of test assets that are excess returns themselves but are excluded from
factors under consideration (i.e., f). Then

Σ = var[R] =

(
Vγ U>γ

Uγ V−γ

)
, Cγ = cov[R,fγ ] =

(
Vγ

Uγ

)
,

where

Vγ = var[fγ ], V−γ = var

[(
f−γ

re

)]
, Uγ = cov

[(
f−γ

re

)
, fγ

]
.

Inverting Σ blockwise, we have

Σ−1 =

(
(Vγ −U>γ V −1

−γUγ)−1 −V −1
γ U>γ (V−γ −UγV −1

−γU
>
γ )−1

−V −1
−γUγ(Vγ −U>γ V −1

γ Uγ)−1 (V−γ −UγV −1
γ U>γ )−1

)
.
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or exchanging the two off-diagonal blocks and taking transposes,

Σ−1 =

(
(Vγ −U>γ V −1

−γUγ)−1 −(Vγ −U>γ V −1
γ Uγ)−1U>γ V

−1
−γ

−(V−γ −UγV −1
−γU

>
γ )−1UγV

−1
γ (V−γ −UγV −1

γ U>γ )−1

)
.

Thus

Σ−1Cγ =

(
(Vγ −U>γ V −1

−γUγ)−1 −(Vγ −U>γ V −1
γ Uγ)−1U>γ V

−1
−γ

−(V−γ −UγV −1
−γU

>
γ )−1UγV

−1
γ (V−γ −UγV −1

γ U>γ )−1

)(
Vγ

Uγ

)

=

(
(Vγ −U>γ V −1

−γUγ)−1Vγ − (Vγ −U>γ V −1
γ Uγ)−1U>γ V

−1
−γUγ

−(V−γ −UγV −1
−γU

>
γ )−1Uγ + (V−γ −UγV −1

γ U>γ )−1Uγ

)

=

(
Ipγ

0(N−pγ)

)
,

which directly implies that RΣ−1Cγ = fγ and that C>γ Σ−1Cγ = Vγ .

Under this lemma, we prove Proposition 13 as follows.

Proof. Since
[Rt | bγ ,Mγ ]

iid∼ N (Cγbγ , Σ), t = 1, . . . , T,

under our distributional assumption and

[bγ | Mγ , g] ∼ N
(

0,
g

T

(
C>γ Σ−1Cγ

)−1
)
,

under our g-prior specification, we can integrate out bγ and reach the following distribu-
tional results for the observed dataset D = {R1, . . . ,RT }:

[R>1 , . . . ,R
>
T ]> , R[1:T ] ∼ N

(
0, IT ⊗Σ +

g

T
(1T ⊗Cγ)

(
C>γ Σ−1Cγ

)−1
(1T ⊗Cγ)>

)
,

where ⊗ performs the matrix Kronecker product. As a result,

P[D | Mγ , g]

= exp

{
−1

2
R>[1:T ]

[
IT ⊗Σ−1 +

g

T
(1T ⊗Cγ)

(
C>γ ΣCγ

)−1
(1T ⊗Cγ)>

]−1

R[1:T ]

}

×
∣∣∣∣IT ⊗Σ−1 +

g

T
(1T ⊗Cγ)

(
C>γ ΣCγ

)−1
(1T ⊗Cγ)>

∣∣∣∣− 1
2

(2π)−
NT
2 .
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By the Sherman-Morrison-Woodbury formula,30

[
IT ⊗Σ +

g

T
(1T ⊗Cγ)

(
C>γ Σ−1Cγ

)−1
(1T ⊗Cγ)>

]−1

=IT ⊗Σ−1−

[1T ⊗ (Σ−1Cγ)]

(
T

g
C>γ Σ−1Cγ + (1T ⊗Cγ)>(IT ⊗Σ−1)(1T ⊗Cγ)

)−1

[1>T ⊗ (C>γ Σ−1)]

=IT ⊗Σ−1 − g

(1 + g)T
[1T ⊗ (Σ−1Cγ)]

(
C>γ Σ−1Cγ

)−1
[1>T ⊗ (C>γ Σ−1)].

By the generalized Sylvester’s theorem for determinants,31

∣∣∣∣IT ⊗Σ +
g

T
(1T ⊗Cγ)

(
C>γ Σ−1Cγ

)−1
(1T ⊗Cγ)>

∣∣∣∣
=
|Tg−1C>γ Σ−1Cγ + (1T ⊗Cγ)>(IT ⊗Σ−1)(1T ⊗Cγ)|

|Tg−1C>γ Σ−1Cγ | × |IT ⊗Σ−1|

=
|(g−1 + 1)C>γ Σ−1Cγ |

|g−1C>γ Σ−1Cγ | × |IT ⊗Σ−1|

=
(1 + g)pγ

|Σ−1|T ,

the last equation of which is due to the fact that C>γ Σ−1Cγ = Vγ according to the lemma.
Plugging the two results above back to our original formula of P[D | Mγ , g], we get

P[D | Mγ , g]

= exp

{
−1

2
R>[1:T ]

[
IT ⊗Σ−1 − g

(1 + g)T
[1T ⊗ (Σ−1Cγ)]

(
C>γ Σ−1Cγ

)−1
[1>T ⊗ (C>γ Σ−1)]

]
R[1:T ]

}
× |Σ−1|T2

(1 + g)
pγ
2 (2π)

NT
2

= exp

−1

2

T∑
t=1

R>t Σ−1Rt +
g

1 + g

T

2

(
1

T

T∑
t=1

fγ,t

)>
V −1
γ

(
1

T

T∑
t=1

fγ,t

) (1 + g)−
pγ
2

(2π)
NT
2 |Σ|T2

= exp

{
− T − 1

2
tr
(
SΣ−1

)
− T

2

(
R
>

Σ−1R︸ ︷︷ ︸
SR2

max

− g

1 + g
f
>
γV

−1
γ fγ︸ ︷︷ ︸

SR2
γ

)} (1 + g)−
pγ
2

(2π)
NT
2 |Σ|T2

where R =
(∑T

t=1Rt

)
/T, fγ =

(
fγ,t

)
/T ; the second equation is due to the fact that

RΣ−1Cγ = fγ and that C>γ Σ−1Cγ = Vγ as demonstrated in the lemma.

30(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 for “well-behaved” matrices A,U,C, V .
31|X +ACB| = |X| × |C| × |C−1 +BX−1A| for “well-behaved” matrices A,B,C,X.
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Proof of Proposition 14

Proof. When comparing different models, the common factor unrelated to (Mγ , g) can
be ignored, so we simplify the marginal likelihood of data as following:

p[D | Mγ , g] ∝ (1 + g)−
pγ
2 exp

{
gT

2(1 + g)
SR2

γ

}
(3.19)

An equivalent way to think about equation (3.19) is to treat it as the Bayes factor of
model Mγ relative to M0. One amazing fact is that p[D | M0, g] does not depend on
g32. Therefore, the Bayes factor could be defined as

BFγ(g) =
p[D | Mγ , g]

p[D | M0, g]
= (1 + g)−

pγ
2 exp

{
gT

2(1 + g)
SR2

γ

}
The prior for g is such that π[g] = a−2

2 (1 + g)−
a
2 . We calculate the marginal likelihood of

data only conditional on modelMγ by integrating out g in equation (3.19).

p[D | Mγ ] ∝ a− 2

2

∫ ∞
0

(1 + g)−
pγ+a

2 exp

{
g

1 + g

[
T

2
SR2

γ

]}
dg

=
a− 2

2
exp

{
T

2
SR2

γ

}∫ ∞
0

(1 + g)−
pγ+a

2 exp

{
− 1

1 + g

[
T

2
SR2

γ

]}
dg

=
a− 2

2
exp

{
T

2
SR2

γ

}∫ 1

0
k
pγ+a

2
−2 exp

{
−k
[
T

2
SR2

γ

]}
dk

=
a− 2

2
exp

{
T

2
SR2

γ

}(
T

2
SR2

γ

)1− pγ+a

2
∫ T

2
SR2
γ

0
t
pγ+a

2
−2e−t dt

=
a− 2

2
exp

{
T

2
SR2

γ

}(
T

2
SR2

γ

)−sγ
Γ

(
sγ ,

T

2
SR2

γ

)
where Γ(s, x) =

∫ x
0 t

s−1e−t dt is the lower incomplete Gamma function; the scalar sγ is
defined as sγ =

pγ+a
2 −1. We have proved the formula of Bayes factor BFγ in Proposition

3. To prove that the Bayes factor is always increasing in SR2
γ always decreasing in pγ , we

use the original representation of Bayes Factor, that is,

BFγ =
a− 2

2

∫ ∞
0

(1 + g)−
pγ+a

2 exp

{
gT

2(1 + g)
SR2

γ

}
dg

Take the first-order derivative with respect to SR2
γ and pγ :

∂BFγ

∂SR2
γ

=
a− 2

2

∫ ∞
0

gT

2(1 + g)
(1 + g)−

pγ+a

2 exp

{
gT

2(1 + g)
SR2

γ

}
dg > 0,

∂BFγ
∂pγ

=
a− 2

2

∫ ∞
0
− log(1 + g)

2
(1 + g)−

pγ+a

2 exp

{
gT

2(1 + g)
SR2

γ

}
dg < 0,

32p[D | M0, g] = (2π)−
NT
2 |Σ|−

T
2 exp

{
−T−1

2
tr
(
Σ−1S

)
− T

2
SR2

max

}
.
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