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Abstract

Generative modelling aims to learn the data generating mechanism from observations without
supervision. It is a desirable and natural approach for learning unlabelled data which is easily
accessible. Deep generative models refer to a class of generative models combined with the
usage of deep learning techniques, taking advantage of the intuitive principles of generative
models as well as the expressiveness and flexibility of neural networks. The applications
of generative modelling include image, audio, and video synthesis, text summarisation and
translation, and so on. The methods developed in this thesis particularly emphasise on
domains involving data of sequential nature, such as video generation and prediction, weather
forecasting, and dynamic 3D reconstruction.

Firstly, we introduce a new adversarial algorithm for training generative models suitable
for sequential data. This algorithm is built on the theory of Causal Optimal Transport (COT)
which constrains the transport plans to respect the temporal dependencies exhibited in the
data. Secondly, the algorithm is extended to learn conditional sequences, that is, how a
sequence is likely to evolve given the observation of its past evolution. Meanwhile, we work
with the modified empirical measures to guarantee the convergence of the COT distance when
the sequences do not overlap at any time step. Thirdly, we show that state-of-the-art results in
the complex spatio-temporal modelling using GANs can be further improved by leveraging
prior knowledge in the spatial-temporal correlation in the domain of weather forecasting.
Finally, we demonstrate how deep generative models can be adopted to address a classical
statistical problem of conditional independence testing. A class of classic approaches for such
a task requires computing a test statistic using samples drawn from two unknown conditional
distributions. We therefore present a double GANs framework to learn two generative models
that approximate both conditional distributions. The success of this approach sheds light on
how certain challenging statistical problems can benefit from the adequate learning results as
well as the efficient sampling procedure of deep generative models.
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Chapter 1

Introduction

Given a collection of observations, learning the underlying data distribution has been a
central topic in statistics and machine learning. Nevertheless, the purposes of learning can
differ. In classic statistics, we learn the data distribution to obtain estimators based on the
observed samples in order to make inference about the characteristics of the population. In
comparison, generative modelling, which has become an appealing approach in machine
learning, learns to generate samples that are as similar as possible to those drawn from the
true data distribution. Generative modelling can be a more natural and appropriate approach
in the applications where an efficient sampling procedure is prioritised over the understanding
of the properties of the learned model parameters. A utilisation of generative models is
exemplified by realistic photograph generation, which is particularly useful when the models
allow generation conditioned on user inputs, e.g., an image generated based upon a user’s
description of a scenery or an activity.

Originated in the 1980s, deep generative models refer to the class of generative models
parametrised using neural networks. As an early attempt, energy-based models [74, 99]
started with simple fully connected networks trained to minimise an energy function on
the observations, which often associates with a likelihood function. Although theoretically
significant, energy-based models are hindered by its inability to scale to high dimensional data
as well as its inefficient inference procedure. More recently, more deep generative models
such as deep autoregressive models [165, 168, 169], normalising flows [123, 78, 40, 90],
variational auto-encoder [91, 120] and generative adversarial networks [67, 118, 104], have
been developed to leverage the advances in deep learning and the accessibility of large training
datasets. As an unsupervised approach, generative modelling learns through unlabelled
training data which is easily accessible. The direct applications of generative modelling
include image, audio, and video synthesis, text summarisation and translation, medical
imaging, chemical synthesis, and so on. Data synthesis is useful in the scenario where large
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datasets are needed for training but unavailable due to privacy concerns or the high cost of
data collection.

Deep generative models roughly fall into two categories. Prescribed generative models
(PGMs) [113] are models whose learning requires the specification of a likelihood function.
Most classic models are of the form of PGMs, which follow the conventional lines that allow
easy interpretability and straightforward inference. However, the model choice is restricted
by the families of likelihood functions that can be written down explicitly. Moreover, the
learning outcomes may be compromised to a great extent if a wrong or under-powered class
of functions is chosen.

In contrast, implicit generative models (IGMs) [44] only specify a data generating
procedure without defining a log-likelihood function. In deep generative modelling, IGMs
aim to learn a mapping from the latent space to the data space, under the assumption that the
high dimensional observations correspond to lower dimensional manifolds which contain
unobserved low level features of the observed. In other words, IGMs are typically trained to
generate samples that mimic the training data given some latent codes, without the need to
estimate the density of them. The learning of IGMs relies on estimating the discrepancy in
the empirical distributions of samples from the data distribution and those from the model.

While conceptually attractive, IGMs were long disfavoured due to the lack of efficient
learning methods. This has changed by the recent advances in training IGMs in machine
learning, driven by the work on generative adversarial networks (GANs) [67]. Since initially
proposed in 2014, GANs has become one of the most active area of research. GANs consist
of two components: a generator which is an IGM to be learned, and a discriminator which
provides information for inference by telling the samples from the model and those from
the data distribution apart. In the original GAN, this comparison was completed by a binary
classifier that indicates the source of a specific set of samples. The generator and discriminator
are then trained simultaneously in an adversarial manner by playing a zero-sum game. This
has led to the success of training IGMs that break new ground in terms of sample quality and
sampling speed.

Existing literature on GANs can be roughly categorised into three directions. Firstly,
a large portion of GAN research contributes to the field by discovering novel network
architectures and training techniques from a deep learning perspective. The notorious
instability in GAN training caused by the min-max optimisation has motivated this direction
of research. To give an example, Karras et al. [84] developed a progressive growing training
technique that allows the training process to start with smaller networks for both generator
and discriminator and an easier target in which the original images are down-sampled to a
lower resolution. As training progresses, more layers are gradually added to the networks
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and the resolution of the target images grows higher. In another line of work, the design of
generator and discriminator is determined by the domain of applications. For instance, Clark
et al. [36] proposed two discriminators in order to capture the spatial and temporal structure
of video data separately.

Secondly, another main direction aims to stabilise the training process and maximise
model potential by imposing more appropriate regularisers in the training objectives. In
generative modelling as well as various areas in machine learning, neural networks are often
used as a learned black-box model that approximates a function with constraints. However,
due to their complexity and flexibility, it is difficult to restrict them so that certain theoretical
requirements can be met by the learned networks. For example, the duality of Wasserstein
distance (see details in Chapter 2) computes the difference between two expectations of a
function with 1-Lipchitz constraint. To learn this function using neural networks, the initial
version of Wasserstein GANs in [8] enforced the constraint on the function space of the
discriminator by clipping its parameter values into a fixed interval. This naive implementation
can sometimes lead to a failure in generating realistic samples or in the convergence of the
loss curve.

Finally, as pointed out in [113], there are a number of approaches that can be used
measuring the dissimilarities between the samples from the model and those from the real
data distribution, upon which learning of IGMs depends. In GANs, the task of comparing
the two sets of samples is fulfilled by the discriminator. In particular, the discriminator in the
original GAN algorithm classifies the samples into two classes to indicate which distribution
they are drawn from. While this simple binary classifier serves the purpose for adversarial
training, the loss values of the GAN objective are not closely associated with the degree of
similarity between the generated samples and the real ones. Therefore, researchers placed
their attention to the exploration of alternative ways to construct the discriminator so that it
provides more meaningful information on how two (empirical) distributions differ. This is
the third direction of GAN research.

Unsurprisingly, many classic statistical measures with theoretically superior proper-
ties can be adopted for this task. To formulate adversarial training algorithms, existing
works along this line typically seek a worst-case comparison, i.e., a maximisation over a
parametrised version of a chosen distance, to play the role of the discriminator. Whilst the
discriminator learns to maximise a distance to better distinguish the two distributions, the
generator parameters are updated to minimise such a distance in order to generate samples
whose distribution is as close as possible to the real data distribution. In Chapter 2, we review
the variants of GANs derived from these alternative metrics. Our works included in the thesis
also fall into this category.
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Broadly speaking, statistical approaches compare two distributions using divergences,
e.g., Kullback–Leibler (KL) divergence, or metrics, e.g., Max Mean Discrepancy and the
Optimal Transport distance. Although widely adopted, the disadvantage of divergences that
involve computing a density ratio is well understood. When two distributions have disjoint
supports, the divergences from one distribution to another may not be well defined. For this
reason, comparison by statistical metrics has grown to be a promising direction of research
in the literature of generative modelling. This thesis offers a review of f -divergences, Max
Mean Discrepancy and Optimal Transport and their applications in generative modelling,
with an emphasise on the theory of Optimal Transport due to its close connection to our own
works.

Optimal Transport was first posed by French mathematician Gaspard Monge in 1781
[114]. In comparison to divergences, Optimal Transport imposes no restriction on the
supports of the distributions between which the distance is of interest. Put simply, the concept
of Optimal Transport concerns with the problem of finding a way to move the mass from
a starting distribution to a target one with the least cost. This cheapest moving cost can be
shown to form a metric over the set of distributions even when the supports of them do not
overlap at all. In recent years, this distance has been utilised to construct GAN algorithms,
see [8, 37]. For a more rigorous definition and detailed introduction, please refer to Chapter 2.

Sequential data are ubiquitous in the world, including audio and weather recordings,
natural languages, physiological and financial traces. In comparison, sequential data tracks a
sample over time and exhibits different characteristics from static data such as images. A
gap to be filled in the GAN literature is the absence of an appropriate distance measure for
learning sequential data. The majority of existing works in sequential generative modelling
merely rely on certain specific network architectures, e.g., Recurrent Neural Networks
(RNNs) or 1D Convolution Neural Networks (CNNs), to capture the sequential nature of the
data.

Nevertheless, when comparing the difference between two distributions on sequences,
the aforementioned statistical metrics are often applied to conduct a point-wise comparison,
i.e., treating the observations along the time dimension as if they are independent of the past
and future. This is not ideal. The inconsistency between a network design that respects the
temporal dependencies in the data and an objective function that ignores it may lead to a
compromise in model performance, especially if we want to give importance to apprehending
the evolution of sequences over time.

This issue persists in the modelling of data characterised by spatio-temporal complexities,
which has a range of impactful downstream applications such as video generation, weather
forecasting, and dynamic 3D reconstruction. Training IGMs on spatio-temporal dynamics
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poses a difficult challenge. On one hand, learning complex spatial structures of static images
has already received significant effort within the research community. On the other hand,
temporal dependencies are no less complicated since the dynamical features are strongly
correlated with spatial features. The success of a generative model is measured based upon
its ability to not only generate high-quality images at every time step but also understand the
evolution of motions in the images over the course of time.

Similarly, most GANs tackle spatio-temporal learning by using specialised network
architectures. A combination of Convolution Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are often deployed to capture the spatial and temporal features exhibited
in the training data separately, see e.g. [151, 4, 136, 172, 162]. Alternatively, Convolutional
LSTM [145] are also considered to be a more compact model, accompanied by a higher
computational cost.

Although these network structures have been proved successful to a certain degree in
learning the underlying dynamics of spatio-temporal data, an improvement may be achieved
if the training objective can also take the characteristics of the data into account. Ultimately,
the parameter learning in IGMs is guided by the information acquired from the comparison
between the generated and the real samples via an objective function. In fact, some attempted
to develop objective functions more suitable for sequential learning by dividing them into
static and dynamic components, see e.g. [190, 46]. However, this type of objective functions
are usually designed for empirical experiments in a specific domain. They are less generic
and lack theoretical justification and guarantees such as convergence, unlike the classic
statistical metrics.

All our works in this thesis are devoted to examining the adversarial algorithms for
training dynamic IGMs for sequential data. We first introduce a new adversarial objective
that builds on the theory of Causal Optimal Transport which constrains the transport plans
to respect causality: the probability mass moved to the target sequence at time t can only
depend on the source sequence up to time t, see [2, 12]. In this way, at every time we only use
information available up to that time, Causal Optimal Transport provides a natural distance
that compares how two processes evolves differently over time. A reformulation of the
causality constraint leads to a new adversarial training objective tailored to sequential data.
This is the foundation of COT-GAN, introduced in Chapter 3 (see also [186]). The success of
the algorithm also relies on a new, improved version of the Sinkhorn divergence [62] which
demonstrates less bias in learning.

In Chapter 4 (see also [185]), COT-GAN is extended to learn conditional sequences, that
is, how a sequence is likely to evolve given the observation of its past evolution. Meanwhile,
we address the issue that the Causal Optimal Transport distance between a distribution and
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the empirical measure of a sample from it may not vanish while the size of the sample goes to
infinity. We thereby proposed KCCOT-GAN (Kernel Conditional COT-GAN) which employs
a modification of the empirical measures via kernel smoothing [127] in order to yield better
convergence properties.

In Chapter 5 (see also [95]), we show that state-of-the-art results in the complex spatio-
temporal modelling can be further improved by leveraging human expert knowledge in
specific domains such as weather forecasting. Spatio-temporal autocorrelations based upon
human understanding can be then encoded as embedding loss into COT-GAN to formulate a
new GAN framework, named SPATE-GAN. We test this new objective on a diverse set of
complex spatio-temporal patterns: turbulent flows, log-Gaussian Cox processes and global
weather data. We show that this novel embedding loss improves performance without any
changes to the architecture of the COT-GAN backbone, highlighting the increased model
capacity for capturing the spatial-temporal structures in the training data.

Beyond the direct applications, conditional independence testing can also benefit from
learning about the data through generative modelling. Testing conditional independence is a
key building block and plays a central role in a wide variety of statistical learning problems,
for instance, causal inference [125], graphical models [96], dimension reduction [102],
among others. The key question to answer in conditional independence testing is whether
two random variables X and Y are conditionally independent given a set of confounding
variables Z. A class of approaches for such a task requires computing a test statistic using
samples drawn from the unknown conditional distributions P(X |Z) and P(Y |Z).

In Chapter 6 (see also [144]), we introduce a double GANs framework to learn two
generators of the conditional distributions for the problem of high-dimensional conditional
independence testing. We then integrate the two generators to construct a test statistic that
is doubly robust, and can both control type-I error and has the power approaching one
asymptotically. Also notably, we establish those theoretical guarantees under much weaker
and practically more feasible conditions compared to the existing tests. This gives a concrete
example of how to utilise the state-of-the-art machine learning models, such as GANs, to
help address a classical but challenging statistical problem.



Chapter 2

Foundations

In this chapter, we introduce classic deep generative models and the fundamental concepts of
Optimal Transport and Causal Optimal Transport which are the theoretical foundation for the
remainder of the thesis. In particular, we revise the most representative classes of generative
models from the perspective of probabilistic modelling. An emphasis is placed on a subset of
generative models, namely Generative Adversarial Networks, especially those derived from
the theory of Optimal Transport.

2.1 Deep generative models

Deep generative modelling includes a class of techniques that aim to learn the underlying data
generating process from observations using neural networks without supervision. Typically,
we assume that the high dimensional observations correspond to lower dimensional manifolds
which contains unobserved low level features of the data. This can be represented using
latent variables which are assumed to exist but not observed. To avoid confusion, we denote
the latent variables that are sampled from a distribution on some (low-dimensional) latent
space Z as z = {zi}M

i=1, whereas the learned latent variables in the model, also known as
hidden units in neural networks, are denoted as h = {hi}J

i=1 for hi ∈ X.
In Section 2.1, we briefly review classic prescribed generative models (PGMs) including

energy-based models, autoregressive models, normalising flows as well as variational auto-
encoders. Readers who are familiar with classic PGMs in the context of generative modelling
can safely skip this section. In Section 2.2, we discuss several variants of Generative
Adversarial Networks, and introduce the concepts of Optimal Transport and Causal Optimal
Transport.
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(a) Boltzmann Machines (b) Restricted Boltzmann Machines

Fig. 2.1 Diagrams for Boltzmann Machines and Restricted Boltzmann Machines.

2.1.1 Energy-based models

Given x ∈ RD, an energy function E : RD 7→ R associates high probability of a system being
in state x with low energy and low probability of a system being in state x with high energy.
Examples of functions of this nature include contrast functions, value functions, or negative
likelihood functions. Stemming from statistical mechanics, most energy-based generative
models eventually convert the energies for possible outcomes into a normalised probability
distribution through the Gibbs distribution (also called Boltzmann distribution),

p(x) =
e−βE(x)∫

x′∈X e−βE(x′)
, (2.1.1)

where β is an arbitrary positive constant representing the inverse temperature of the system.
The Gibbs distribution can describe a large class of distributions determined by a specific
choice of the energy function, provided that the integral in the denominator is well defined.

Boltzmann machines and Restricted Boltzmann machines

A Boltzmann machine is a class of energy-based model that utilises a fully connected
undirected network of binary neurons, see Figure 2.1 (a) for an illustration. The state of
a neuron is determined by a weighted sum of all neurons. Given all variables s = (x,h)
where x = {xi}N

i=1 are binary observations for xi ∈ {0,1}D (also called visible variables) and
h = {hi}J

i=1 are hidden variables for hi ∈ {0,1}M, the probability of state si is given by

p(si = 1) = σ(∑
j

wi, js j) (2.1.2)
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where σ(.) is the sigmoid function and wi, j is the weight at (i, j) position of the learned weight
matrix W . The resulting neuron can be seen as either on or off. It is known that Boltzmann
machines with only visible variables lack the capacity to capture the characteristics of the data
distribution beyond its first and second moments. Latent variables are therefore introduced in
order to increase the model capacity. Boltzmann machine chooses an energy function that
allows full connections between the visible and latent variables,

E(x,h) =−1
2

x⊤Wx− 1
2

h⊤Jh− 1
2

x⊤Lh, (2.1.3)

where W , J and L are symmetrical learned weight matrices.
As the latent variables are unobserved, the inference of the parameters involves integrating

them out. Due to the binary nature of the variables, the probability of visible variables can be
written as finite summations,

p(x) =
∑h e−E(x,h)

∑x,h e−E(x,h)
. (2.1.4)

To facilitate inference and parameter learning, one way is to constrain off-diagonal
entries in the weight matrices to zero, which can be seen as a restriction of connectivity.
This leads to the restricted Boltzmann machines which forbids communications between the
variables in the same layer, see Figure 2.1 (b). This approach simply sets J = 0 and L = 0 in
Equation (2.1.3).

Denoting the parameters by θ := (W,J,L) and the model by pθ (s) where s = (x,h) as
aforementioned, we can find the gradient of log pθ (s) with respect to W ,

∑
s

∂ log pθ (s)
∂wi, j

= Ex[xh⊤]−Eh[xh⊤]. (2.1.5)

The expectations in Equation (2.1.5) is called contrastive divergence which is intractable
in practice as the computational time required grows exponentially with the number of
hidden units in the model. As a result, an approximation is typically obtained by sampling
the observed and hidden units using a Gibbs sampler during both the training and inference
stages. This slow iterative process largely hinders the applicability of Boltzmann machines in
high dimensional data, making it impossible to be adopted for large-scale machine learning
tasks.

2.1.2 Autoregressive models

This class of generative models learns the data distribution directly in an autoregressive
manner. According to the chain rule of probability, autoregressive models predict the
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Fig. 2.2 Diagrams showing two different autoregressive models defined by different orderings
of the variables.

conditional distribution over visible variables one dimension at a time, following a particular
order. An observed variable of dimension D, i.e., x ∈ RD, can be decomposed as x1, ...,xD

over its dimensions. The probability of x can be expressed as as a product of a series of
conditional probabilities,

p(x) =
D

∏
d=1

p(xd|x1, ...,xd−1). (2.1.6)

The ordering of decomposition is to be determined, usually according to the nature of the
observations. For example, for a 1D time series x1, ...,xD over D time steps, the decompo-
sition is typically chosen to respect the fact that the data is generated in an autoregressive
manner over time. See Figure 2.2 for illustrations for autoregressive models defined by two
different orderings of the variables.

It is possible to directly maximise the likelihood given the observed variable x by min-
imising the negative log-likelihood,

− log p(x) =−
D

∑
d=1

log p(xd|x1, ...,xd−1). (2.1.7)

Autoregressive neural network models

Frey [55] and Bengio and Bengio [20] explored implementations of the autoregressive
conditionals in Equation (2.1.6) using neural networks. Frey [55] first implemented a
multidimensional binary variable with autoregressive connections by using logistic regression
to model each conditional distribution,

p(xd = 1|x≤d−1) = σ(W (d)x≤d−1 +bd) (2.1.8)
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(a) Logistic autoregressive Bayesian networks
models

(b) Autoregressive neural network models

Fig. 2.3 Diagrams for Logistic autoregressive Bayesian networks and Autoregressive neural
network models.

where x≤d−1 = (x1, ...,xd−1), σ(·) is the sigmoid function, the parameters W (d) ∈ Rd−1, and
bd is the bias that belongs to R. The diagram for logistic autoregressive Bayesian networks
(LABNs) is shown in Figure 2.3 (a).

To improve the model capacity, Bengio and Bengio [20] extended this model to include
hidden units in learning the autoregressive conditionals. The key idea is to restrict the model
to only allow k causal connections between the variables from connecting layers. For k = 2,
the variables in subsequent layers can only access two units from the past in the previous
layer, see Figure 2.3 (b) for an illustration for autoregressive neural network models with
causal connections with k = 2.

Formally, for hidden variables hi ∈ {0,1}M, the distribution over the dth dimension of x
is calculated as the following:

p(xd = 1|x≤d−1) = σ

( k(d−1)

∑
j=1

W d, jh j +bv
d

)
, (2.1.9)

h j = tanh
( j//k+1

∑
d=1

V j,dxd
i +bh

j

)
, (2.1.10)

where W and V are weight matrices, in which many entries are zero due to the restricted
connectivity. The autoregressive neural network models reported excellent statistical perfor-
mance [140, 169], as measured by the model likelihood on a test dataset. They also found it
advantageous to reduce the number of free parameters by further pruning the connectivity
between the inputs and hidden units.
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Neural autoregressive distribution estimators

The Neural autoregressive distribution estimator (NADE) [165] belongs to the class of
autoregressive neural network models, which also relied on binary units in a neural network
with a single hidden layer. NADE adopted the mean-field variational approximation (see [26])
to the conditionals in Equation (2.1.6), each of which was modelled by a binary restricted
Boltzmann machine. Thus, the conditional distribution is defined as a restricted Boltzmann
machine with the m hidden variables connected to the dth dimension of the visible variable
x ∈ {0,1}D:

p(xd|x≤d−1) =
p(xd,x≤d−1)

p(x≤d−1)
=

∑
D
k=d+1 ∑h e−E(xk,h)

∑
D
k=d ∑h e−E(xk,h)

. (2.1.11)

where we abuse the notation h to refer to the sets of hidden variables connected to the
corresponding visible variables involved in the numerator and denominator.

Unfortunately, most conditionals for the dimensions of visible variables are intractable in
practice as the normalising constant in the denominator requires a summation over an ex-
ponential number of configurations of the visible variables. Uria et al. [165] opted for
the mean-field variational approximation (see Blei et al. [26]) to the joint distribution
p(x≥d,h|x<d). The factorial nature of the mean-field variational approximation makes
it easy for the marginalisation of hidden variables. Furthermore, the variational distribution
q(x≥d,h|x<d) that approximates the joint distribution p(x≥d,h|x<d) is chosen to be a product
of two Bernoulli distributions due to the binary nature of the variables. To learning the
parameters of the variational distribution, NADE minimises the KL-divergence between
q(x≥d,h|x<d) and p(x≥d,h|x<d), from which the analytical forms of parameter updates can
be derived. Uria et al. [166] proposed real-valued NADE as an extension to model the joint
distribution p(x≥d,h|x<d) for real-valued visible variables and binary hidden variables.

Later developments in autoregressive models, such as PixelRNN [169], Wavenet [168],
and PixelCNN++ [140], are proved to be promising in multiple application areas, namely
image, audio, and language generation and prediction. Although powerful and straightfor-
ward to train, the disadvantages of autoregressive models are widely understood, including
compounding errors and inefficiency in sampling due to the sequential nature of its generating
process, see e.g., [82, 130]. A modelling challenge lies in the determination of the ordering
of decomposition based upon the dependencies between variables. Whilst the ordering is
apparent for some data such as audio and text, it is not for others such as images or videos.
This, however, can be crucial for the model performance.
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2.1.3 Flow-based models

Similar to autoregressive models, flow-based models, also known as normalising flows, are a
class of prescribed generative models that maximise a log-likelihood function.

Recall the result of change of variables in the probability density function: given a random
variable z∼ q(z) and an invertible, smooth function g : RD 7→ RD, the transformed random
variable x = g(z). The distribution of x can be determined via the change of variables rule,

p(x) = q(z)
∣∣∣∣det

∂g−1

∂x

∣∣∣∣= q(z)
∣∣∣∣det

∂g
∂ z

∣∣∣∣−1

. (2.1.12)

where g−1 is the inverse function of g.
Flow-based models cleverly make use of this transformation from one variable to another.

In the context of generative modelling, the random variable z plays the role of the latent
component, and the function g is the generative model that maps the latent space Z to the data
space X. The generative model is then trained to capture the characteristics of the underlying
data distribution.

Based upon this principle, the complexity of flow models can be built up by a series of
compositions of transformations from the original latent variable z. The transformed random
variable x after K transformations is therefore defined by

x = gK ◦ · · · ◦g2 ◦g1(z), (2.1.13)

where the composition of K functions, denoted as g(z) = gK ◦· · ·◦g2 ◦g1(z), is the generative
model that produces data x given some noise in the latent space.

The log likelihood function of the resulting distribution through this chain of transforma-
tions can be found by applying the change of variables rule in Equation (2.1.12),

log p(x) = logq(z)−
K

∑
k=1

log
∣∣∣∣det

∂gk

∂ zk−1

∣∣∣∣. (2.1.14)

Note that Equation (2.1.12) requires the generative model g to be invertible. To exploit
the power of deep learning techniques, many flow-based models focus on exploring the
options of constructing expressive invertible functions with neural networks. A coupling flow
[45] is a method that divides input data into two blocks and applies a bijection transformation
on one of the blocks.
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Let x ∈ RD, xI1 and xI2 partitions of x such that xI2 ∈ Rd and xI2 ∈ RD−d for d ∈
{1,2, ...,D−1}, and h a function h : Rd 7→ Rd , we can define y = (yI1,yI2) as

yI1 = xI1 ,

yI2 = g(xI2,h(xI1)),

where g : RD−d×Rd 7→RD−d is an invertible map with respect to its first argument given the
second, and h can be an arbitrary function, e.g., a neural network. Coupling flow improves
the computational efficiency of the Jacobian determinant in Equation (2.1.14) by choosing
an element-wise function g. To see this, we write the Jacobian matrix of y:

∂y
∂x

=

[
Id 0

∂yI2
∂xI1

∂yI2
∂xI2

]
, (2.1.15)

where Id is the identity matrix of size d. The det∂y
∂x is simply det

∂yI2
∂xI2

whose computation
sorely depends on the choice of function g.

Papamakarios et al. [123] introduced autoregressive flows which can be seen as a more
flexible generalisation of coupling flow by choosing a dynamic partition. Alternative flows
are also proposed, see [78, 40, 90]. In general, flow-based models are less efficient because
of the restriction on function invertibility as well as the computation of the determinant of
the Jacobian matrix.

2.1.4 Variational auto-encoders

Variational auto-encoders (VAEs) are a class of generative models that maximise a lower
bound on a log-likelihood function, derived from the study of variational inference (see [26]).
As latent variable models, the inference of VAEs also requires integrating out the latent
variables. In another word, the learning relies on the computing the following integral,

p(x) =
∫

p(x,z)dz =
∫

p(x|z)p(z)dz. (2.1.16)

However, the integral is only tractable for extremely limited choices of generative models
and prior distributions p(z) (see probabilistic principle component analysis [24] for an
example). In the cases of this integral being intractable, we can approximate the log of p(x)
using variational inference which obtains an approximation to the exact posterior distribution:

p(z|x) = p(x|z)p(z)
p(x)

. (2.1.17)
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For a variational distribution q(z|x) ∈ Q, where Q is a family of distributions, the key idea
of variational inference is to learn q(z|x) to approximate the posterior p(z|x), thereby turning
the inference problem into an optimisation problem. More specifically, the Kullback–Leibler
(KL) divergence from q(z|x) to p(z|x) is minimised when an optimal solution (q(z|x) =
p(z|x)) is found,

argmin
q(z|x)∈Q

DKL(q(z|x)||p(z|x)), (2.1.18)

where DKL(·||·) denotes the KL divergence, which can be expanded and rearranged into

DKL(q(z|x)||p(z|x)) = Eq(z|x)[logq(z|x)]−Eq(z|x)[log p(z,x)]+ log p(x). (2.1.19)

Due to the fact that DKL(q||p)≥ 0 for any two distributions p and q, we can set the right
hand side of Equation (2.1.19) to be greater than zero and rearrange the terms to obtain the
evidence lower bound (ELBO) on log p(x),

log p(x)≥−Eq(z|x)[logq(z|x)]+Eq(z|x)[log p(z,x)] (2.1.20)

= Eq(z|x)[log p(x|z)]−DKL(q(z|x)||p(z)). (2.1.21)

We proceed to explain how the ELBO can be used to train a generative model. VAEs
sample the latent variable z from a prior distribution p(z) and generate x from the conditional
distribution p(x|z). The conditional model mapping from the latent space to the data space
is called the decoder. In addition, VAEs also propose the variational model q(z|x) to be an
encoder which maps the observations into latent features. Both the encoder and decoder are
trained by maximising the ELBO on the log-likelihood function of p(x).

2.1.5 Diffusion models

Diffusion probabilistic generative models (see e.g. [149, 76]) are latent variable models in
which the latent variables x1, ...,xT where xt ∈RD for all t = 1, ...,T are defined as a Markov
chain. In the forward (diffusion) process, the original data x0 ∈ RD is gradually corrupted
through T diffusion steps by x1, ...,xT . The key idea is that, if the corrupted data distribution
at diffusion step T tends to a noise distribution which permits efficient sampling, we can train
a generative model that learns the reverse process to convert the noise to the original data.
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Consider a Markov process with Gaussian transitions. The forward process can be written
as

q(x1:T |x0) =
T

∏
t=1

q(xt |xt−1), q(xt |xt−1) =N(
√

1−βtxt−1,βtI), (2.1.22)

where βt is the variance for the t th diffusion step.
Note that the product of the Gaussian distributions up to step t in the forward process is

equivalent to

q(xt |x0) =N(
√

ᾱtx0,(1− ᾱt)I), (2.1.23)

where αt = 1−βt , and ᾱt = ∏
t
s=1 αs. This formulation admits efficient transformation from

x0 to xt at an arbitrary step t.
The generative model, parameterised by θ , is defined as the reverse process that gradually

denoises the noisy inputs back to the original data:

pθ (x0:T ) = p(xT )
T

∏
t=1

pθ (xt−1|xt), pθ (xt−1|xt) =N(µθ (xt , t),Σθ (xt , t)), (2.1.24)

where the starting noise distribution is p(xT ) =N(0,I).
From the perspective of variational inference, the forward process can be viewed as the

variational distribution that approximates the posterior distribution of the latent variables in
the reverse process, i.e., pθ (x1:T |x0). This leads to a training objective that minimises the
evidence lower bound (ELBO) on the negative log-likelihood:

E[− log pθ (x0)]≤ Eq

[
log p(xT )−∑

t≥1
log

pθ (xt−1|xt)

q(xt |xt−1)

]
. (2.1.25)

Sohl-Dickstein et al. [149] showed that the ELBO (2.1.25) can be rewritten as a variance
reduced t-step comparison between the reverse process and the posteriors of the forward
process:

Eq

[
DKL(q(xT |x0)||p(xT ))+ ∑

t>1
DKL(q(xt−1|xt ,x0)||pθ (xt−1|xt))− log pθ (x0|x1)

]
,

(2.1.26)
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where q(xt−1|xt ,x0) is the forward process posterior conditioned on x0 with mean µ̃t and
variance β̃t :

µ̃t(xt ,x0) :=
√

ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t :=

1− ᾱt−1

1− ᾱt
βt . (2.1.27)

The KL divergence between two Gaussian distributions come down to mean and variance
matching. By choosing the variance of the reverse process Σθ (xt , t) = σ2I, the training loss
(2.1.26) at step t for all t = 1, ...,T −1 is reduced to

Eq

[
1

2σ2 ||µ̃t(xt ,x0)−µθ (xt , t)||2
]
+C, (2.1.28)

where C is a constant.
Whilst it is possible to parametrise a model to directly learn the forward posterior

mean [149], Ho et al. [76] opted for a different parameterisation that learns the noise
schedule in the forward process. Recall that we can obtain xt at any arbitrary step by
xt(x0,ε) =

√
ᾱtx0 +

√
1− ᾱtε for ε ∼N(0,I) from Equation (2.1.23). We then write x0 as a

function of xt , substitute it in the posterior mean (2.1.27), and yield an alternative expression:

µ̃t(xt ,x0) =
1
√

αt

(
xt(x0,ε)−

βt√
1− ᾱt

ε
)
. (2.1.29)

By parametrising the model as µ̃θ (xt ,x0) =
1√
αt

(
xt(x0,ε)− βt√

1−ᾱt
εθ

)
, Ho et al. [76]

arrived at a simplified objective that matches the noise at diffusion step t for t = 1, ...,T −1:

Ex0,ε,t

[
β 2

t

2σ2
t αt(1− ᾱt)

||ε− εθ (
√

ᾱ tx0 +
√

1− ᾱtε, t)||
]
. (2.1.30)

The sampling procedure of diffusion models is known to be inefficient due to its iterative
nature. A sequence xT , ...,x0 is sampled until the original x0 is recovered. Starting from a
prior distribution xT ∼N(0,I), we obtain xt−1 iteratively by

xt−1 =
1√
ᾱt

(
xt−

βt√
1− ᾱtεθ (xt , t)

)
+σtz (2.1.31)

where z ∼ N(0,I). The sampling procedure coincides with the Langevin dynamics if we
view the learned noise εθ as the gradient of data density. The slow sampling speed is one
of the major obstacles of diffusion models to be applied at large scale. Recent efforts have
focused on improving the sampling efficiency [32, 179, 139].
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2.2 Generative adversarial networks

As an extension to generative stochastic networks [5? ], generative adversarial networks
(GANs) [67] is a new class of training scheme that allows training an implicit generative
model (IGM) without explicitly specifying a representation of the likelihood function. Before
introducing a number of variants of GANs, we formally define the task of IGMs training:
given a (real) data distribution µ = 1

N ∑
N
i=1 δxi , xi ∈ X, and a distribution ζ on some latent

space Z, the generator is a function g : Z→ X trained so that the induced distribution
ν = ζ ◦g−1 is as close as possible to µ .

2.2.1 Original GAN

Initially proposed in 2014 [67], GANs introduced an training scheme which consists of
two components, a discriminator and a generator. While the generator learns to produces
plausible samples, the discriminator provides information on how the two distributions differ.
What’s special about GANs is that its generator and discriminator are trained simultaneously
in an adversarial manner by playing a zero-sum game.

In the original GAN, the discriminator is a function f : X→ [0,1] trained to output a high
value if the input is real (from µ), and a low value otherwise (from ν). Both the generator
and discriminator are parametrised as neural networks with parameters θ and ϕ , denoted
as gθ and fϕ respectively. The objective function of the original GANs is formulated as a
min-max optimisation over a binary classification loss:

min
θ

max
ϕ

Ex∼µ [log fϕ(x)]+Ey∼ν [log(1− fϕ(gθ (z)))]. (2.2.1)

The objective function is maximised over the discriminator parameter ϕ to learn a better
classifier, and minimised over the generator parameter θ to produce more realistic samples.
In the analysis of theoretical properties of the original GAN, the authors proved that when
the discriminator is optimal, minimising the GAN objective in Equation (2.2.1) is equivalent
to minimising the Jensen-Shannon divergence.

GANs have been proved successful in training IGMs, breaking new ground in terms of
visual fidelity and sampling speed. However, it suffers from a number of drawbacks such as
mode collapsing and training instability. Moreover, the fact that the values of training loss
cannot reliably reflect the quality of generated samples makes it difficult to judge whether
the learning is completed. Having said that, GANs opened the door for training IGMs using
an adversarial training algorithms with a learned comparison of real and fake samples.



2.2 Generative adversarial networks 19

Later studies realised that the discriminator can be replaced by a distance with superior
theoretically properties for the comparison between two empirical distributions of real and
fake samples. To formulate adversarial training algorithms, existing GAN frameworks
typically seek a worst-case distance, i.e., a maximisation over a parametrised distance, to act
as the discriminator, while the the role of the generator remains the same.

2.2.2 f -GAN

Nowozin et al. [118] proposed f -GAN whose training objective is derived from f -divergences.
Given probability measures µ and ν associated with densities p and q, both of which are
absolutely continuous on X, the f -divergence is defined as

D f (µ,ν) =
∫

q f (
p
q
)dµ, (2.2.2)

where the function f : R+→R is convex, lower-semicontinuous function satisfying f (1) = 0,
i.e., when µ = ν , any divergence D f (µ,ν) = 0. The choice of f function determines a
specific divergence. For example, the Kullback-Leibler (KL) divergence corresponds to
f (u) = log(u).

According to the Fenchel’s duality theorem (see [75]), every convex, lower-semicontinuous
function has a Fenchel conjugate dual function f ∗. In particular, the function f can be alter-
natively expressed using its dual function f ∗ as

f (u) = sup
g∈G
{gu− f ∗(g)}, (2.2.3)

where G is the domain of f ∗.
Plugging the above representation of f in the definition of the f -divergence in Equa-

tion (2.2.2) to obtain a lower bound on the divergence (see [116] for details), we have

D f (µ,ν) =
∫

qsup
g∈G
{g p

q
− f ∗(g)}dµ (2.2.4)

≥ sup
g∈G

∫ [
pg−q f ∗(g)

]
dµ (2.2.5)

= sup
g∈G

{∫
f dµ−

∫
f ∗(g)dν

}
, (2.2.6)

where the lower bound is a result of the Jensen’s inequality.
The f -divergence is reformulated into a maximisation over the difference between two

expectations. Nowozin et al. [118] parametrised the function fϕ : X→ R with parameter ϕ
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in order to distinguish the fake samples from the real ones. We denote the model distribution
of the fake samples as vθ , whose parameter θ is inherited from the generative model that
generates the samples. Finally, we arrive at the objective function for f -GAN,

inf
θ

sup
ϕ

{
Ex∼µ [ fϕ(x)]−Ey∼νθ

[ fϕ(y)]
}
. (2.2.7)

At the first glance, it may seem counter-intuitive to maximise a lower bound on a
divergence. It is worth to point out that the bound is maximised to match the divergences that
compare how two distributions differ before being minimised over the generator parameters.
With an appropriate function chosen for f , we can also recover the original GAN objective.

2.2.3 MMD-GAN

We start this section by formally defining the maximum mean discrepancy (MMD) which was
initially used for two-sample test in statistics to distinguish two sets of finite samples. Let x
and y be random variables defined on a topological space X, with respective Borel probability
measures µ and ν . Given observations X := {xi}M

i=1 and Y := {yi}N
i=1, independently and

identically distributed (i.i.d.) from µ and ν . Let F be a class of functions f : X→ R. The
MMD is defined as

Md(µ,ν) := sup
f∈F

{
Ex[ f (x)]−Ey[ f (y)]

}
, (2.2.8)

where Ex and Ey denote the expectations with respect to µ and ν .
This is also known as the integral probability metric, see [115]. Gretton et al. [68]

discussed the case when the class of functions is chosen to be in a Reproducing Kernel
Hilbert Space (RKHS), in which any function f can be alternatively expressed using a
reproducing kernel function k(x,x′) : X×X 7→ R. Through kernel mean embedding, the
squared MMD distance can be written using the kernel representation of f as

Mk(µ,ν) := Ex,x′[k(x,x
′)]−2Ex,y[k(x,y)]+Ey[k(y,y′)], (2.2.9)

where x′ is an independent sample of x drawn from µ , and y′ is an independent sample
of y from ν . It is shown that Mk(µ,ν) = 0 if and only if (iff) µ = ν , provided that k is a
characteristic kernel. For the detailed definitions and proofs, please refer to [68] section 2.2.
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Gretton et al. [68] also obtained an unbiased empirical estimate of Mk. For all samples
in x and y, we have

Mu(µ̂, ν̂) =
1

m(m−1)

m

∑
i=1

m

∑
j ̸=i

k(xi,x j)−
2

mn

m

∑
i=1

n

∑
j=1

k(xi,y j)+
1

n(n−1)

n

∑
i=1

n

∑
j ̸=i

k(yi,y j),

(2.2.10)
where µ̂ and ν̂ are the empirical distributions of x and y.

Li et al. [104] proposed MMD-GAN based upon Mu in Equation (2.2.10). The discrim-
inator in MMD-GAN intends to learn a worst-case distance by searching the space of all
characteristic kernels. However, it is difficult to guarantee that the kernels learned by neural
networks during training remain characteristic kernels. Li et al. [104] therefore utilised the
result that, for an injective function f and a characteristic kernel k, the composed kernel
k̃ = k ◦ f is still a characteristic kernel. Hence, the discriminator searches for an optimal
characteristic kernel by learning an injective function.

The key challenge becomes how to ensure a learned function fϕ , parametrized by a neural
network with parameters ϕ , to be injective. Recall that, for any injective function f , there
exists a function f−1 such that f−1( f (x)) = x. This can be approximated by an encoder-
decoder structure using two neural networks, i.e., fϕd( fϕe(x)) = x where ϕ := (ϕe,ϕd).
Denoting the learned characteristic kernel as k̃ϕe := k( fϕe(xi), fϕe(x j)), we finally arrive at
the objective function of MMD-GAN,

inf
θ

sup
ϕ

M
k̃ϕe
u (µ,νθ )−λEy∼νθ

||y− fϕd( fϕe(y))||2, (2.2.11)

where the second term ensures the injective property of fϕe(x) to be held.

2.2.4 Optimal Transport

In recent years, Optimal Transport (OT) has become a promising distance to compare the
difference between two distributions. In particular, it has been adopted as the objective
function for adversarial training. In this section, we proceed to review the variants of
GANs built on the theory of OT, for which we provide a detailed revision as it also lays the
foundation for our own works in this thesis.

OT was first posed by French mathematician Gaspard Monge in 1781 [114]. Put simply,
the concept of OT concerns with the problem of finding a way to move a pile of earth from a
starting location to another at a target location with the least cost. This cheapest moving cost
is regarded as the distance between the two piles of earth.
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Fig. 2.4 Monge’s transport map.

Monge formulation

We start with the definition of a Monge’s transport map. Given probability measures µ on X

and ν on Y, we call T : X→ Y a transport map if it transports mass from x ∈ X to y ∈ Y by

ν(B) = µ(T−1(B)) for all ν-measurable sets B⊆ Y. (2.2.12)

which is sometimes shorthanded as ν = T#µ if above condition is satisfied.
An illustration of the Monge’s transport map is shown in Figure 2.4. The mass moved

away from X is always equivalent to the amount received on Y, i.e., µ(A) = ν(B) for any
ν-measurable set B and A = {x : T (x) ∈ B}.

Let µ , ν , x, y, X and Y defined as above, and c be a cost function c : X×Y→ R, the
Monge’s Optimal Transport problem is formulated as

Mc(µ,ν) := inf
T

∫
X

c(x,T (x))dµ(x), (2.2.13)

where the cost of transporting one unit mass from X to Y is minimised over the µ-measurable
maps T subject to ν = T#µ .

Note that the mass on x is entirely mapped to T (x). In another word, the Monge
formulation does not permit any split of mass. This causes difficulties to guarantee the
existence of transport maps that satisfy ν = T#µ . For example, there exists no transport plan
T that allows us to move the mass from µ = 1

2δx1 +
1
2δx2 for x1 ̸= x2 to ν = 1

3δy1 +
2
3δy2 ,

because ν({y1}) = 1
3 but no such value can be taken for µ(x) for any x ∈ T−1(y1). However,

if allowing splitting mass, we can transport one third of the mass on x1 (i.e., 1
6 ) to y1 and the
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rest to y2. This relaxation to allow more flexible mass movements is the motivation of the
Kantorovich’s formulation.

Kantorovich’s formulation

To relax the constraint on the mass split in Monge’s formulation, we consider a transport
map π ∈ P(X×Y) that obeys the conservation law for the total mass transported. More
specifically, π satisfies the following constraints,

π(A×Y) = µ(A),π(X×B) = ν(B) for all measurable sets A⊆ X, B⊆ Y. (2.2.14)

Intuitively, this means that the total amount of mass removed from any measurable set A has
to equal to µ(A), and the total mount of mass received to any measurable set B has to equal
to ν(B).

Given probability measure µ on X and ν on Y, a cost function c : X× Y→ R, the
Kantorovich’s Optimal Transport Problem is defined as

Wc(µ,ν) := inf
π∈Π(µ,ν)

∫
X×Y

c(x,y)dπ(x,y), (2.2.15)

where Π(µ,ν) denotes the set of transport plans between µ and ν that satisfy the constraints
in Equation (2.2.14), and dπ(x,y) can be considered as the amount of mass transferred from
x to one or multiple locations of y.

It is well-understood that Kantorovich’s and Monge’s optimal transport problems do not
always coincide. The advantage of Kantorovich’s formulation is that when there exists a
transport map for the Monge’s problem, the optimal solution to the Kantorovich’s problem is
at least as good as that to the Monge’s problem, see [160].

Furthermore, the Kantorovich’s problem is convex and can be written as a linear pro-
gramming problem. We devote the next section to explaining how this can be used to
improve the computational efficiency of OT. In the remainder of the thesis, we use the term
classic OT to refer to the Kantorovich’s OT problem, and the primal form of OT to refer to
Equation (2.2.15).

Computation of Optimal Transport

Despite its intuitive formulation and appealing theoretical properties, the computation of
OT involves solving an optimisation problem to which the solution can quickly become too
expensive to compute when the size of the support or the data dimensions is large. To increase
the applicability of primal form of OT in large-scale applications, Cuturi [37] introduced the
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Sinkhorn distance to speed up the computation by adding an entropic regularisation to the
problem.

As a classic linear programming problem, OT is always solved on a vertex of the feasible
set of transport plans π . Such a vertex is a sparse matrix which is typically a solution
difficult to reach. To facilitate the search, Cuturi [37] proposed to have a regularisation that
encourages a smoother solution which is easier to obtain.

For two discrete marginal measures µ = ∑
N
i δxi on a finite set {xi}N

i=1 and ν = ∑
M
j δy j

on a finite set {y j}M
j=1, we write the Kantorovich’s OT problem as a linear programming

problem:

min
π

N

∑
i=1

M

∑
j=1

c(xi,y j)π(xi,y j),

subject to π(xi,y j)≥ 0 for all i = 1, ...,N and j = 1, ...,M, (2.2.16)
N

∑
i=1

π(xi,y j) = ν , and
M

∑
j=1

π(xi,y j) = µ, (2.2.17)

where π(xi,y j) is the joint distribution for (xi,y j), and c(xi,y j) is the cost for moving the
mass on xi to y j, both supported for all possible pairs {(xi,y j)}N,M

i=1, j=1.
Denoting πi j = π(xi,y j), we define an entropic regularisation to the OT problem as

the Shannon entropy of π: H(π) :=−∑i, j πi j log(πi j). For ε > 0, the regularized optimal
transport problem then reads as

Pc,ε(µ,ν) := inf
π∈Π(µ,ν)

{Eπ [c(x,y)]− εH(π)}, (2.2.18)

where Eπ [ f ] denotes the expectation of an arbitrary function f under transport plan π . The
entropy H(π) is be maximised when the table π is smooth. Alternatively, we denote the set
of regularised transport plans as Πε(µ,ν), and rewrite the regularised OT as

Wc,ε(µ,ν) := inf
π∈Πε (µ,ν)

{Eπ [c(x,y)]}. (2.2.19)

Such an entropic regularisation permits the utilisation of an iterative algorithm, i.e., the
Sinkhorn’s fixed point iteration, to speed up the computation. Denoting ci j = c(xi,y j), we
write the Lagrangian L(π,α,β ) of the regularised transport problem in Equation (2.2.19)
with the constraints for the transport plans in Equation (2.2.16) as

L(π,α,β ) = ∑
i j

ci jπi j +∑
i j

επi j log(πi j)+α
⊤(π1M−µ)+β

⊤(π⊤1N−ν), (2.2.20)



2.2 Generative adversarial networks 25

where 1M and 1N denote vectors filled with M and N ones, respectively.
Taking the partial derivative of L(π,α,β ) w.r.t πi j and set it to zero, we have

0 = ci j + ε log(πi j)+ ε +αi +β j,

1 = eci jeε log(πi j)eεeαieβ j , (take exponential on both sides)

e−ε log(πi j) = eci jeεeαieβ j ,

πi j = e−
1
2−

αi
ε e−

ci j
ε e−

1
2−

β j
ε .

For ε > 0, πi j can be expressed as the so-called scaling form,

πi j = aiKi, jb j where Ki j = e−
ci j
ε ,

ai = e−
1
2−

αi
ε ,

b j = e−
1
2−

β j
ε .

Note that Ki j is known because the cost function is pre-defined, whilst ai and b j are not due
to the unknown Lagrangian coefficients αi and β j. Sinkhorn theorem [109] states that if all
elements of matrix K are strictly positive, then the problem can be solved with the Sinkhorn
fixed point algorithm [147]. Initialising current iteration l = 0 and bl

j = 1, the Sinkhorn
algorithm finds the solution for the proposed problem by iterating the following computations
until convergence:

al+1
i =

1
Kibl

j
and bl+1

j =
1

K⊤j al+1
i

. (2.2.21)

The Sinkhorn algorithm has become a game changer for the applicability of the primal
form of OT in modern machine learning. This attributes to the empirical observation that
the number of iterations required for reaching an approximate solution of OT that leads
to decent empirical results is relatively low, as well as the fact that both computations
in Equation (2.2.21) only involve matrix-vector multiplication which can be computed
efficiently on the modern GPUs.

Duality of Optimal Transport

Every linear programming problem can be converted into a dual problem, providing a lower
bound to the solution of the original minimisation problem. Given µ ∈ P(X),ν ∈ P(Y) and
a cost function c ∈ C(X×Y) where C denotes the space of all continuous functions on R, we
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now write the dual problem of the primal form of the Kantorovich’s OT problem:

Wd := sup
{∫

X
φdµ(x)+

∫
Y

ψdν(y)
∣∣∣∣φ ∈ Cb(X),ψ ∈ Cb(Y),φ ⊕ψ ≤ c

}
(2.2.22)

where Cb(X) denotes the space of all bounded continuous functions on R and φ ⊕ψ :=
φ(x)+ψ(y). There is no duality gap if the primal value Wc of the OT problem equals the
dual value Wd , see analysis in [83, 134, 57, 49].

2.2.5 Wasserstein GAN

A special case for the classic OT defined in Equation (2.2.15) is when the spaces coincide,
i.e., X= Y, and the cost c thereby measures a distance between two samples in space X. This
leads to the definition of Wasserstein distance. Let µ and ν be two probability measures on
X, and c be a cost function c : X×X 7→ R. For p≥ 1, the pth order Wasserstein distance is
given by

Wp(µ,ν) :=
(

inf
π∈Π(µ,ν)

∫
X×X

c(x,y)pdπ(x,y)
) 1

p

, (2.2.23)

where Π(µ,ν) denotes the set of transport plans π ∈ P(X×X) with marginals µ and ν .
When the cost function is defined as the L1 norm c(x,y) = ||x−y||1, we have Wasserstein

distance of order 1, namely the Earth-Mover or Wasserstein-1 distance:

W1
c(µ,ν) := inf

π∈Π(µ,ν)

∫
X×X
||x− y||1dπ(x,y). (2.2.24)

To formulate a min-max GAN objective function, Arjovsky et al. [8] proposed Wasserstein
GAN (WGAN) utilising the special case of the duality theorem in Equation (2.2.22) for
Wasserstein-1 distance, written as

W1
d(µ,ν) := sup

{∫
X

f (x)dµ(x)−
∫
X

f (x)dν(x) : || f ||L ≤ 1
}
, (2.2.25)

where || f ||L ≤ 1 represents the space of 1-Lipschitz functions f : X 7→ R.
Given observations x := {xi}M

i=1 from µ and y := {yi}N
i=1 from ν , the Wasserstein-1 dis-

tance can be interpreted as the difference between the expectations of two sets of independent
samples. Arjovsky et al. [8] parametrised the Lipschitz functions fϕ with parameter ϕ to
learn a worst-case distance by searching through the space of 1-Lipschitz functions. Denoting
the distribution on samples generated from the generator gθ as νθ parametrised with θ , we
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write the WGAN objective function as

inf
θ

sup
ϕ

{
Ex∼µ [ fϕ(x)]−Ey∼νθ

[ fϕ(y)]
}
. (2.2.26)

In WGAN, the 1-Lipschitz constraint is naively enforced by weight clipping on the
discriminator parameter ϕ to a fixed box of values [−C,C]N where C is a constant. This is
not ideal. Later work [70] proposed a softer version of the Lipschitz constraint by forcing the
gradient norm to be in a unit ball, which further stabilised training and improved empirical
results.

As one of the earliest GAN frameworks that explored alternative discriminators, the
significance of WGAN lies in the demonstration that any worst-case distance between two
distributions can be constructed as the discriminator in adversarial training, shedding light
on the development of new adversarial training algorithms. Moreover, Wasserstein distance
provides a more meaningful indicator on the perceptual quality than a binary classifier which
is used as the discriminator in the original GAN. This is because a binary classifier is blind to
the differences in generated images once their similarity to the ground truth exceeds a certain
threshold, leading to a discriminator that’s unable to tell the "good enough" samples apart.

2.2.6 Sinkhorn GAN

Instead of tackling the dual problem of OT, Genevay et al. [62] presented Sinkhorn GAN
which takes advantage of speedy computation of the regularised OT in Equation (2.2.19).
Due to the entropic term added to the classic OT, the property Wc,ε(µ,µ) = 0 does not
hold in the regularised OT. To correct this bias, Genevay et al. [62] proposed the Sinkhorn
divergence,

W̃c,ε(µ,ν) = 2Wc,ε(µ,ν)−Wc,ε(µ,µ)−Wc,ε(ν ,ν). (2.2.27)

Furthermore, it is shown that W̃c,ε(µ,ν)→ 2Wc(µ,ν) as ε → 0, and W̃c,ε(µ,ν)→
Md(µ,ν) as ε →+∞ where Md(µ,ν) indicates the MMD distance when kernel is chosen
to be the same as the cost function in Wc(µ,ν), see Theorem 1 in [62].

The discriminator in Sinkhorn GAN learns a worst-case distance by parametrising the
cost function in OT with parameter ϕ ,

cϕ(x,y) = || fϕ(x)− fϕ(y)||, (2.2.28)

where fϕ : X 7→ Rp and p is an arbitrary dimensions of the output.
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Sinkhorn GAN trains the generator and discriminator by optimising over the Sinkhorn
divergence,

inf
θ

sup
ϕ

W̃cϕ ,ε(µ,νθ ). (2.2.29)

The OT distance in the Sinkhorn GAN is solved by the Sinkhorn algorithm described in a
previous section. This proves the applicability of the Sinkhorn algorithm for solving the OT
problem in practice. The formulation of Sinkhorn GAN is similar to that of MMD-GAN, both
of which learn a worst-case distance by maximising the difference between the projections
of two sets of samples.

In Chapter 3, we introduce the concept of Causal Optimal Transport for sequential
learning, construct an adversarial algorithm for training dynamic IGMs using the dual form
(??) of it, and investigate alternative formulations for bias correction in comparison to the
Sinkhorn divergence (2.2.27). The resulting algorithm forms a foundation for the works
presented in Chapter 4 and Chapter 5. In Chapter 6, however, we adopted the Sinkhorn GAN
instead because the data concerned in the experiments is not sequential.

2.3 Evaluation

The evaluation of probabilistic generative models is known to be challenging. The complexity
of the issue attributes to a number of factors. First, as a form of unsupervised learning, we do
not have access to the corresponding true labels to compare against as we do in supervised
learning. Second, generative models have a wide range of applications upon which the
evaluation metrics are determined. Evaluation metrics for time series generation differ, as
they should, from those for images. Third, different aspects of sample qualities must be
considered, such as distortion of the reconstructions and diversity in a set of samples.

For PGMs in which likelihood functions are specified, it is a natural choice to directly
compare the log-likelihood. However, log-likelihood has been shown to be poorly associated
with human-perceived sample qualities. Models with low log-likelihood can produce great
samples, whilst those with high log-likelihood may produce what are perceived as much
worse by humans [167, 158]. In comparison, evaluating IGMs are less straightforward as the
likelihood functions are usually intractable.

In the application of image and video generation, the gold standard for evaluation is
whether the samples are sharp and realistic to human eyes. Whilst evaluation by human
rating is sometimes provided in existing literature, the majority of works in this domain use
numerical evaluations only. On one hand, due to the costly and slow process of collecting
user ratings, it is not available to all members of the community. On the other hand, when the
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number of participants is small, the results can change drastically [138] based on subjective
judgements.

Commonly used numerical evaluation metrics in image and video generation roughly
fall into two main categories: pixel-based and distribution-based comparison between the
real and generated samples. The former includes classic metrics such as mean square error
(MSE) computed over all pixels, and Peak signal-to-noise ratio (PSNR) [50] which calculates
a log-scaled ratio of the highest value in all pixels over MSE. Although the pixel-based
comparison serves well as a measure for distortion, it is known to be poorly correlated with
human ratings for perceptual quality [200].

Recent advances in generative models have promoted new distribution-based metrics to
be developed. The new metrics typically extract latent features from the real and generated
samples using a pre-trained vision model, and compute a distance between two distributions,
often assumed to be Gaussian, fitted using the two sets of latent features. An example of
such metrics is Fréchet Inception Distance (FID) [73] which extracts the features using three
network layers pre-trained on ImageNet and computes the Fréchet distance between the
two distributions in the latent space. The Fréchet Video Distance (FVD) [164] is similar to
FID, except that it is designed and tested for comparing video sequences by extracting latent
features via pre-trained 3D convolutional networks. Their kernel counterparts KID and KVD
[23] obtain the latent features in a similar manner, but compute the MMD (2.2.8) between
two sets of features instead.

Some generative models suffer from mode collapse. This means that the trained models
can only produce a subset of the training data, causing reduced variety in the samples. This
phenomenon is particularly apparent with GANs [157, 150]. To measure the degree of mode
collapse, Sajjadi et al. [137] proposed the precision and recall method which trains a classifier
on the generated samples, and tests its accuracy on the real data and vice versa.





Chapter 3

COT-GAN: Generating Sequential Data
via Causal Optimal Transport

3.1 Introduction

Dynamical data are ubiquitous in the world, including natural scenes such as video and
audio data, and temporal recordings such as physiological and financial traces. Being able
to synthesise realistic dynamical data is a challenging unsupervised learning problem and
has wide scientific and practical applications. In recent years, training implicit generative
models (IGMs) has proven to be a promising approach to data synthesis, driven by the work
on generative adversarial networks (GANs) [67].

Nonetheless, training IGMs on dynamical data poses an interesting yet difficult challenge.
On one hand, learning complex spatial structures of static images has already received
significant effort within the research community. On the other hand, temporal dependencies
are no less complicated since the dynamical features are strongly correlated with spatial
features. Recent works, including [136, 190, 46, 172, 162], often tackle this problem by
separating the model or loss into static and dynamic components.

In this chapter, we examine training dynamic IGMs for sequential data. We introduce
a new adversarial objective that builds on optimal transport (OT) theory, and constrains
the transport plans to respect causality: the probability mass moved to the target sequence at
time t can only depend on the source sequence up to time t, see [2, 12]. A reformulation of
the causality constraint leads to a new adversarial training objective, in the spirit of [62] but
tailored to sequential data. In addition, we demonstrate that optimising the original Sinkhorn
divergence over mini-batches causes biased parameter estimation, and propose the mixed
Sinkhorn divergence which mitigates this problem. Our new framework, Causal Optimal
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Transport GAN (COT-GAN), outperforms existing methods on a wide range of datasets from
traditional time series to video sequences.

3.2 Background

3.2.1 Causal Optimal Transport

We now focus on data that consists of d-dimensional (number of channels), T -step long
sequences, so that µ and ν are distributions on the path space Rd×T . In this setting we
introduce a special class of transport plans, between X = Rd×T and Y = Rd×T , that will
be used to define our objective function. On X× Y, we denote by x = (x1, ...,xT ) and
y=(y1, ...,yT ) the first and second half of the coordinates, and we let FX=(FX

t )
T
t=1 and FY=

(FY
t )

T
t=1 be the canonical filtrations (for all t, FX

t is the smallest σ -algebra s.t. (x1, ...,xT ) 7→
(x1, ...,xt) is measurable; analogously for FY).

A transport plan π ∈Π(µ,ν) is called causal if

π(dyt |dx1, · · · ,dxT ) = π(dyt |dx1, · · · ,dxt) for all t = 1, · · · ,T −1. (3.2.1)

The set of all such plans will be denoted by ΠK(µ,ν).
Roughly speaking, the amount of mass transported by π to a subset of the target space

Y belonging to FY
t depends on the source space X only up to time t. Thus, a causal plan

transports µ into ν in a non-anticipative way, which is a natural requirement in a sequential
framework. In the present chapter, we will use causality in the sense of Equation (3.2.1).
Note that, in the literature, the term causality is often used to indicate a mapping in which
the output at a given time t depends only on inputs up to time t.

Restricting the space of transport plans to ΠK in the OT problem Equation (2.2.15) gives
the COT problem

Kc(µ,ν) := inf
π∈ΠK(µ,ν)

Eπ [c(x,y)]. (3.2.2)

COT has already found wide application in dynamic problems in stochastic calculus and
mathematical finance, see e.g. [3, 1, 2, 14, 10]. The causality constraint can be equivalently
formulated in several ways, see [12, Proposition 2.3]. We recall here the formulation most
suited for our purposes. Let M(FX,µ) be the set of (X,FX,µ)-martingales, and define

H(µ) := {(h,M) :h = (ht)
T−1
t=1 , ht ∈ Cb(Rd×t), M = (Mt)

T
t=1 ∈M(FX,µ), (3.2.3)

Mt ∈ Cb(Rd×t) for all t = 1, ...,T},
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where, as usual, Cb(X) denotes the space of continuous, bounded functions on X. Then, a
transport plan π ∈Π(µ,ν) is causal if and only if

Eπ
[
∑

T−1
t=1 ht(y≤t)∆t+1M(x≤t+1)

]
= 0 for all (h,M) ∈H(µ), (3.2.4)

where x≤t := (x1,x2, . . . ,xt) and similarly for y≤t , and ∆t+1M(x≤t+1) := Mt+1(x≤t+1)−
Mt(x≤t). Therefore H(µ) acts as a class of test functions for causality. Intuitively, causality
can be thought of as conditional independence (“given x≤t , yt is independent of x>t”), that
can be expressed in terms of conditional expectations. This in turn naturally lends itself to a
formulation involving martingales. Where no confusion can arise, with an abuse of notation
we will simply write ht(y),Mt(x),∆t+1M(x) rather than ht(y≤t),Mt(x≤t),∆t+1M(x≤t+1).

3.2.2 Regularised Causal Optimal Transport

In the same spirit of [62], we include an entropic regularisation in the COT problem (3.2.2)
and consider

PK
c,ε(µ,ν) := inf

π∈ΠK(µ,ν)
{Eπ [c(x,y)]− εH(π)} . (3.2.5)

The solution to such problem is then unique due to strict concavity of H. We denote by
πK

c,ε(µ,ν) the optimiser to the above problem, and define the regularised COT distance by

Kc,ε(µ,ν) := EπK
c,ε (µ,ν)[c(x,y)].

Remark 3.2.1. In analogy to the non-causal case, it can be shown that, for discrete measures
µ and ν (as in practice), the following limits holds:

Kc(µ,ν)←−−
ε→0

Kc,ε(µ,ν)−−−→
ε→∞

Eµ⊗ν [c(x,y)],

where µ⊗ν denotes the independent coupling.

We now prove the limits stated in Remark 3.2.1.

Lemma 3.2.2. Let µ and ν be discrete measures, say on path spaces XT and YT , with
|X|= m and |Y|= n where m and n are positive integers. Then

Kc,ε(µ,ν)−−→
ε→0

Kc(µ,ν).
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Proof. We mimic the proof of Theorem 4.5 in [2], and note that the entropy of any π ∈
Π(µ,ν) is uniformly bounded:

0≤ H(π)≤C := mT nT e−1. (3.2.6)

This yields

inf
π∈ΠK(µ,ν)

Eπ [c(x,y)]− ε C+ εH(πK
c,ε(µ,ν))≤ inf

π∈ΠK(µ,ν)
{Eπ [c(x,y)]− ε H(π)}

+ εH(πK
c,ε(µ,ν))

≤ inf
π∈ΠK(µ,ν)

Eπ [c(x,y)]+ εH(πK
c,ε(µ,ν)).

(3.2.7)

Now, note that inf
π∈ΠK(µ,ν) {Eπ [c]− ε H(π)}=Kc,ε(µ,ν)− εH(πK

c,ε(µ,ν)), and that, for
ε → 0, the LHS and RHS in Section 3.2.2 both tend to Kc(µ,ν).

Lemma 3.2.3. Let µ and ν be discrete measures. Then

Kc,ε(µ,ν)−−−→
ε→∞

Eµ⊗ν [c(x,y)].

Proof. Being µ and ν discrete, Eπ [c] is uniformly bounded for π ∈ ΠK(µ,ν). Therefore,
for ε big enough, the optimizer in PK

c,ε(µ,ν) is π̂ := argmax
π∈ΠK(µ,ν)H(π) = µ⊗ν , the

independent coupling, for which H(µ⊗ν) = H(µ)+H(ν); see [159] and [66]. Therefore,
for ε large enough, we have Kc,ε(µ,ν) = Eµ⊗ν [c(x,y)].

This means that the regularized COT distance is between the COT distance and the
loss obtained by independent coupling, and is closer to the former for small ε . Optimizing
over the space of causal plans ΠK(µ,ν) is not straightforward. Nonetheless, the following
proposition shows that the problem can be reformulated as a maximization over non-causal
problems with respect to a specific family of cost functions.

Proposition 1. The regularized COT problem (3.2.5) can be reformulated as

PK
c,ε(µ,ν) = sup

l∈L(µ)
Pc+l,ε(µ,ν), (3.2.8)

where Pc+l,ε represents the regularised OT (2.2.18) with cost function c : X×Y 7→ R and

L(µ) :=

{
J

∑
j=1

T−1

∑
t=1

h j
t (y)∆t+1M j(x) : J ∈ N,(h j,M j) ∈H(µ)

}
. (3.2.9)
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Fig. 3.1 Regularised distance (2.2.19), Sinkhorn divergence (2.2.27) and mixed Sinkhorn
divergence (3.2.12) computed for mini-batches of size m from µ and νθ , where µ = ν0.8.
Colour indicates batch size. Curve and errorbar show the mean and sem estimated from 300
draws of mini-batches.

This means that the optimal value of the regularized COT problem equals the maximum
value over the family of regularized OT problems w.r.t. the set of cost functions {c+ l : l ∈
L(µ)}. The proof for this result mimics the one that has been proven for the classic OT in
[2].

Recall the alternative definition of regularised OT in Equation (2.2.19), Proposition 1
suggests the following worst-case distance between µ and ν :

sup
l∈L(µ)

Wc+l,ε(µ,ν), (3.2.10)

as a regularized Sinkhorn distance that respects the causal constraint on the transport plans.
In the context of training a dynamic IGM, the training dataset is a collection of paths

{xi}N
i=1 of equal length T , xi = (xi

1, ..,x
i
T ), xi

t ∈ Rd . As N is usually very large, we proceed
as usual by approximating Wc+l,ε(µ,ν) with its empirical mini-batch counterpart. Precisely,
for a given IGM gθ , we fix a batch size m and sample {xi}m

i=1 from the dataset and {zi}m
i=1

from ζ . Denote the generated samples by yi
θ
= gθ (zi), and the empirical distributions by

x̂ =
1
m

m

∑
i=1

δxi, ŷθ =
1
m

m

∑
i=1

δyi
θ

.

The empirical distance Wc+l,ε(x̂, ŷθ ) can be efficiently approximated by the Sinkhorn algo-
rithm.
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3.2.3 Reducing the bias with mixed Sinkhorn divergence

When implementing the Sinkhorn divergence in Equation (2.2.27) at the level of mini-batches,
one canonical candidate clearly is

2Wcϕ ,ε(x̂, ŷθ )−Wcϕ ,ε(x̂, x̂)−Wcϕ ,ε(ŷθ , ŷθ ), (3.2.11)

which is indeed what is used in [62]. While the expression in (3.2.11) does converge in
expectation to (2.2.27) for m→ ∞ ([60, Theorem 3]), it is not clear whether it is an adequate
loss given data of fixed batch size m. In fact, we find that this is not the case, and demonstrate
it here empirically.

Example 3.2.4. We build an example where the data distribution µ belongs to a parameterised
family of distributions {νθ}θ , with µ = ν0.8 (details in Section 3.4.3). As shown in Figure 3.1
(top two rows), neither the expected regularised distance (2.2.19) nor the Sinkhorn divergence
(2.2.27) reaches minimum at θ = 0.8, especially for small m. This means that optimizing ν

over mini-batches will not lead to µ .

Instead, we propose the following mixed Sinkhorn divergence at the level of mini-batches:

Ŵmix
c,ε (x̂, x̂′, ŷθ , ŷ′θ ) :=Wc,ε(x̂, ŷθ )+Wc,ε(x̂′, ŷ′θ )−Wc,ε(x̂, x̂′)−Wc,ε(ŷθ , ŷ′θ ), (3.2.12)

where x̂ and x̂′ are the empirical distributions of mini-batches from the data distribution, and
ŷθ and ŷ′

θ
from the IGM distribution ζ ◦g−1

θ
. The idea is to take into account the bias within

both the distribution µ as well as the distribution νθ when sampling mini-batches.
Similar to (3.2.11), when the batch size m→ ∞, (3.2.12) also converges to (2.2.27) in

expectation. So, the natural question arises: for a fixed m ∈ N, which of the two does a
better job in translating the idea of the Sinkhorn divergence at the level of mini-batches? Our
experiments suggest that (3.2.12) is indeed the better choice. As shown in Figure 3.1 (bottom
row), Ŵmix

c,ε finds the correct minimizer for all m in Example 3.2.4. To support this finding,
note that the triangular inequality implies

E
[∣∣Wcϕ ,ε(x̂, ŷθ )+Wcϕ ,ε(x̂

′, ŷ′θ )−2Wc,ε(µ,ν)
∣∣]≤ 2E

[∣∣Wcϕ ,ε(x̂, ŷθ )−Wc,ε(µ,ν)
∣∣] .

One can possibly argue that in (3.2.12) we are using two batches of size m, thus simply
considering a larger mini-batch in (3.2.11), say of size 2m, may perform just as well. However,
we found this not to be the case and our experiments confirm that the mixed Sinkhorn
divergence (3.2.12) does outperform (3.2.11) even when we allow for larger batch size.
This reasoning can be extended by considering Wc,ε(., .) with more terms for different
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combinations of mini-batches. In fact, this is what is done in [141], which came to our
attention after submitting this chapter for review. We have tested different variations in
several experiments and while empirically there is no absolute winner, adding more mini-
batches increases the computational cost; see Appendix 3.4.3.

3.2.4 COT-GAN: adversarial learning for sequential data

We now combine the results in Section 3.2.2 and Section 3.2.3 to formulate an adversarial
training algorithm for IGMs. First, we approximate the set of functions (3.2.9) by truncating
the sums at a fixed J, and we parameterize hϕ1 := (h j

ϕ1)
J
j=1 and Mϕ2 := (M j

ϕ2)
J
j=1 as two

separate neural networks, and let ϕ :=(ϕ1,ϕ2). To capture the adaptedness of those processes,
we employ architectures where the output at time t depends on the input only up to time
t. The mixed Sinkhorn divergence between x̂ and ŷθ is then calculated with respect to a
parameterized cost function

cKϕ (x,y) := c(x,y)+
J

∑
j=1

T−1

∑
t=1

h j
ϕ1,t(y)∆t+1M j

ϕ2(x). (3.2.13)

Second, it is not obvious how to directly impose the martingale condition (3.2.4), as
constraints involving conditional expectations cannot be easily enforced in practice. Rather,
we penalize processes M for which increments at every time step are non-zero on average.
For an (X,FX)-adapted process M j

ϕ2 and a mini-batch {xi}m
i=1 (∼ x̂), we define the martingale

penalization for Mϕ2 as

pMϕ2
(x̂) :=

1
mT

J

∑
j=1

T−1

∑
t=1

∣∣∣∣∣ m

∑
i=1

∆t+1M j
ϕ2(x

i)√
Var[M j

ϕ2]+η

∣∣∣∣∣,
where Var[M] is the empirical variance of M over time and batch, and η > 0 is a small
constant. Third, we use the mixed normalization introduced in (3.2.12). Each of the four
terms is approximated by running the Sinkhorn algorithm on the cost cKϕ for an a priori fixed
number of iterations L.

Altogether, we arrive at the following adversarial objective function for COT-GAN:

Ŵ
mix,L
cKϕ ,ε

(x̂, x̂′, ŷθ , ŷ′θ )−λ pMϕ2
(x̂), (3.2.14)
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Algorithm 1: training COT-GAN by SGD
Data: {xi}N

i=1 (real data), ζ (probability distribution on latent space Z)
Parameters: θ0, ϕ0, m (batch size), ε (regularization parameter), L (number of

Sinkhorn iterations), α (learning rate), λ (martingale penalty
coefficient)

Result: θ , ϕ

Initialize: θ ← θ0, ϕ ← ϕ0
for k = 1,2, . . . do

Sample {xi}m
i=1 and {x′i}m

i=1 from real data;
Sample {zi}m

i=1 and {z′i}m
i=1 from ζ ;

(yi
θ
,y′i

θ
)← (gθ (zi),gθ (z′i));

Compute Ŵ
mix,L
cKϕ ,ε

(x̂, x̂′, ŷθ , ŷ′θ ) (3.2.12) by the Sinkhorn algorithm, with cKϕ
given by (3.2.13);

ϕ ← ϕ +α∇ϕ

(
Ŵ

mix,L
cKϕ ,ε

(x̂, x̂′, ŷθ , ŷ′θ )−λ pMϕ2
(x̂)
)

;

Sample {xi}m
i=1 and {x′i}m

i=1 from real data;
Sample {zi}m

i=1 and {z′i}m
i=1 from ζ ;

(yi
θ
,y′i

θ
)← (gθ (zi),gθ (z′i));

Compute Ŵ
mix,L
cKϕ ,ε

(x̂, x̂′, ŷθ , ŷ′θ ) (3.2.12) by the Sinkhorn algorithm, with cKϕ

given by (3.2.13); θ ← θ −α∇θ

(
Ŵ

mix,L
cKϕ ,ε

(x̂, x̂′, ŷθ , ŷ′θ )
)

;

end

where x̂ and x̂′ are empirical measures corresponding to two samples of the dataset, ŷθ and
ŷ′

θ
are the ones corresponding to two samples from νθ , and λ is a positive constant. We

update θ to decrease this objective, and ϕ to increase it.
While the generator gθ : Z→ X acts as in classical GANs, the adversarial role here is

played by hϕ1 and Mϕ2 . In this setting, the discriminator, parameterized by ϕ , learns a robust
(worst-case) distance between the real data distribution µ and the generated distribution νθ ,
where the class of cost functions as in (3.2.13) originates from causality. The algorithm is
summarized in Algorithm 3. Its time complexity scales as O((J+d)LT m2) for each iteration.

3.3 Related work

Early video generation literature focuses on dynamic texture modeling [48, 154, 180]. Recent
efforts in video generation within the GAN community have been devoted to designing GAN
architectures of a generator and discriminator to tackle the spatio-temporal dependencies
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separately, e.g., [172, 136, 162]. VGAN [172] explored a two-stream generator that combines
a network for a static background and another one for moving foreground trained on the
original GAN objective. TGAN [136] proposed a new structure capable of generating
dynamic background as well as a weight clipping trick to regularize the discriminator. In
addition to a unified generator, MoCoGAN [162] employed two discriminators to judge both
the quality of frames locally and the evolution of motions globally.

The broader literature of sequential data generation attempts to capture the dependencies
in time by simply deploying recurrent neural networks in the architecture [112, 52, 72, 190].
Among them, TimeGAN [190] demonstrated improvements in time series generation by
adding a teacher-forcing component in the loss function. Alternatively, WaveGAN [46]
adopted the causal structure of WaveNet [168]. Despite substantial progress made, existing
sequential GANs are generally domain-specific. We therefore aim to offer a framework
that considers (transport) causality in the objective function and is suitable for more general
sequential settings.

Whilst our analysis is built upon [37] and [62], we remark two major differences between
COT-GAN and the algorithm in [62]. First, we consider a different family of costs. While
[62] learns the cost function c( fϕ(x), fϕ(y)) by parameterising f with ϕ , the family of costs
in COT-GAN is found by adding a causal component to c(x,y) in terms of hϕ1 and Mϕ2 . The
second difference is the mixed Sinkhorn divergence we propose, which reduces biases in
parameter estimation and can be used as a generic divergence for training IGMs not limited
to time series settings.

3.4 Experiments

3.4.1 Time series

We now validate COT-GAN empirically1. For times series that have a relatively small
dimensionality d but exhibit complex temporal structure, we compare COT-GAN with
the following methods: TimeGAN [190] as reviewed in Section 3.3; WaveGAN [46] as
reviewed in Section 3.3; and SinkhornGAN, similar to [62] with cost c( fϕ(x), fϕ(y)) where
ϕ is trained to increase the mixed Sinkhorn divergence with weight clipping. All methods
use c(x,y) = ∥x− y∥2

2. The networks h and M in COT-GAN and f in SinkhornGAN share
the same architecture. Details of models and datasets are in Section A.2.1.

1Code and data are available at github.com/tianlinxu312/cot-gan

https://github.com/tianlinxu312/cot-gan
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Fig. 3.2 Results on learning the multivariate AR(1) process. Top row shows the auto-
correlation coefficient for each channel. Bottom row shows the correlation coefficient
between channels averaged over time. The numbers on top of each panel are the mean and
standard deviation (in brackets) of the sum of the absolute difference between the correlation
coefficients computed from real (leftmost) and generated samples for 16 runs with different
random seeds.
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Fig. 3.3 Results on EEG data. The same correlations as Figure 3.2 are shown.

Autoregressive processes. We first test whether COT-GAN can learn temporal and spatial
correlation in a multivariate first-order auto-regressive process AR(1).

For these experiments, we report two evaluation statistics: the sum of the absolute
difference of the correlation coefficients between channels averaged over time, and the
absolute difference between the correlation coefficients of real samples and those of generated
samples. We evaluate the performance of each method by taking the mean and standard
deviation of these two evaluation statistics over 16 runs with different random seeds.

In Figure 3.2, we show an example plot of results from a single run, as well as the
evaluation statistics aggregated over all 16 runs on top of each panel. COT-GAN samples
have correlation structures that best match the real data. Neither TimeGAN, WaveGAN
nor SinkhornGAN captures the correlation structure for this dataset. The small standard
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Fig. 3.4 Ablation investigation.

deviation of the evaluation statistics demonstrates that COT-GAN is the most stable model at
least in the AR(1) experiment since it produces similar results from each run of the model.

Noisy oscillations. The noisy oscillation distribution is composed of sequences of 20-
element arrays (1-D images) [182]. Figure A.1 in Section A.2.1 shows data as well as
generated samples by different training methods. To evaluate performance, we estimate two
attributes of the samples by Monte Carlo: the marginal distribution of pixel values, and the
joint distribution of the location at adjacent time steps. COT-GAN samples match the real
data best.

Electroencephalography (EEG). We obtain EEG dataset from [197] and take the record-
ings of all the 43 subjects in the control group with 80 trials under the matching condition
(S2). For each subject, we choose 75% of the trials as training data and the remaining for
evaluation, giving 2841 training sequences and 969 test sequences in total. All data are
subtracted by channel-wise mean, divided by three times the channel-wise standard deviation,
and then passed through a tanh nonlinearity.

We truncated the sequences to only use the first 100 time steps, each of which has 64
channels. We compare performance of COT-GAN with respect to other baseline models. We
evaluate model performance by investigating how well the generated samples match with
the real data in terms of temporal and channel correlations in the same manner as done in
the AR(1) experiment, except that the correlation matrix of the real samples is estimated
using observations in this experiment since the true underlying data generating mechanism
is unknown. See the results in Figure 3.3. We also examine how the coefficient λ affects
sample quality, see Section A.2.1. COT-GAN generates the best samples compared with
other baselines across two metrics.
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In addition, we provide an ablation investigation of COT-GAN, in which we study the
impact of the components of the model by excluding each of them in the multivariate AR(1)
experiment. In Figure 3.4, we compare the real samples with COT-GAN, COT-GAN using
the original Sinkhorn divergence without the mixing, COT-GAN without the martingale
penalty pM, direct minimization (without a discriminator) of the mixed and original Sinkhorn
divergences from (3.2.12) and (3.2.11). We conclude that each component of COT-GAN
plays a role in producing the best result in this experiment, and that the mixed Sinkhorn
divergence is the most important factor for improvements in performance.

3.4.2 Videos

We train COT-GAN on animated Sprites [105, 131] and human action sequences [25]. We
pre-process the Sprites sequences to have a sequence length of T = 13, and the human action
sequences to have length T = 16. Each frame has dimension 64×64×3. We employ the
same architecture for the generator and discriminator to train both datasets. Both the generator
and discriminator consist of a generic LSTM with 2-D convolutional layers. Details of the
data pre-processing, GAN architectures, hyper-parameter settings, and training techniques
are reported in Appendix A.2.2.

Baseline models chosen for the video datasets are MoCoGAN from [162], and direct
minimization of the mixed Sinkhorn divergence (3.2.12), as it achieves a good result when
compared to the other methods addressed in Figures 3.2 and 3.4. We show the real data and
generated samples from COT-GAN side by side in Figure 3.5. Generated samples from all
methods, without cherry-picking, are provided in Appendix A.3. The evaluation metrics
we use to assess model performance are the Fréchet Inception Distance (FID) [73] which
compares individual frames, the Fréchet Video Distance (FVD) [164] which compares the
video sequences as a whole by mapping samples into features via pretrained 3D convolutional
networks, and their kernel counterparts (KID, KVD) [23]. Previous studies suggest that FVD
correlates better with human judgement than KVD for videos [164], whereas KID correlates
better than FID on images [200].

In Table 5.1 the evaluation scores are estimated using 10,000 generated samples. For
Sprites, COT-GAN performs better than the other two methods on FVD and KVD. However,
minimization of the mixed Sinkhorn divergence produces slightly better FID and KID scores
when compared to COT-GAN. The results in [164] suggest that FID better captures the
frame-level quality, while FVD is better suited for the temporal coherence in videos. For the
human action dataset, COT-GAN is the best performing method across all metrics except for
KVD.
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Fig. 3.5 Animated (top) and human (bottom) action videos. Left column reports real data
samples, and right column samples from COT-GAN.

3.4.3 Mixed Sinkhorn divergence at various mini-batch levels

In the experiment mentioned in Example 3.2.4, we consider a set of distributions ν’s as
sinusoids with random phase, frequency and amplitude. We let µ be one element in this set
whose amplitude is uniformly distributed between minimum 0.3 and maximum 0.8. On the
other hand, for each ν , the amplitude is uniformly distributed between the same minimum 0.3
and a maximum that lies in {0.4,0.5, . . . ,1.2}. Thus, the only parameter of the distribution
being varied is the maximum amplitude. We may equivalently take the maximum amplitude
as a single θ that parameterises νθ , so that µ = ν0.8. Figure 3.1 illustrates that the sample
Sinkhorn divergence Equation (3.2.11) (or regularised distance (2.2.19)) does not recover the
optimiser 0.8, while the proposed mixed Sinkhorn divergence (3.2.12) does.

Comparison of various implementations. Motivated by Bellemare et al. [18], Salimans
et al. [141] address the problem of bias in the mini-batch gradients of Wasserstein distance
by proposing a mini-batch Sinkhorn divergence that is closely related to (3.2.12). We denote
the implementation of a mini-batch Sinkhorn divergence in Salimans et al. [141] as

Ŵ6
c,ε :=Wc,ε(x̂, ŷθ )+Wc,ε(x̂, ŷ′θ )+Wc,ε(x̂′, ŷθ )+Wc,ε(x̂′, ŷ′θ )

−2Wc,ε(x̂, x̂′)−2Wc,ε(ŷθ , ŷ
′
θ ).
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Table 3.1 Evaluations for video datasets. Lower value indicates better sample quality.

Sprites FVD FID KVD KID
MoCoGAN 1 108.2 280.25 146.8 0.34
minŴmix

c,ε 498.8 81.56 83.2 0.078
COT-GAN 458.0 84.6 66.1 0.081
Human actions
MoCoGAN 1 034.3 151.3 89.0 0.26
minŴmix

c,ε 507.6 120.7 34.3 0.23
COT-GAN 462.8 58.9 43.7 0.13

In addition to (3.2.11) and (3.2.12), we further consider other possible variations of the
Sinkhorn divergence at the level of mini-batches, including

Ŵ3
c,ε := 2Wc,ε(x̂, ŷθ )−Wc,ε(x̂, x̂′)−Wc,ε(ŷθ , ŷ

′
θ )

and

Ŵ8
c,ε :=Wc,ε(x̂, ŷθ )+Wc,ε(x̂, ŷ′θ )+Wc,ε(x̂′, ŷθ )+Wc,ε(x̂′, ŷ′θ )

−Wc,ε(x̂, x̂′)−Wc,ε(ŷθ , ŷ
′
θ )−Wc,ε(x̂, x̂)−Wc,ε(ŷθ , ŷθ ).

The superscripts in Ŵ3
c,ε , Ŵ6

c,ε and Ŵ8
c,ε indicate the number of terms used in the mini-

batch implementation of the Sinkhorn divergence. In the same spirit, our choice of mixed
Sinkhorn divergence Ŵmix

c,ε corresponds to Ŵ4
c,ε .

We compare the performance of all the variations in the low-dimensional applications
of multivariate AR(1) and 1-D noisy oscillation (see Appendix A.2 for experiment details)
in Figure 3.6 and Figure 3.7, and in the high-dimensional applications of Sprite animations
and the Weizmann Action dataset in Table 3.2. The superscripts on COT-GAN correspond
to the Sinkhorn divergence used in the experiments. We replace the COT-GAN objective
(3.2.12) with (3.2.11) in the experiment of COT-GAN2, with Ŵ3

c,ε in COT-GAN3, with Ŵ6
c,ε

in COT-GAN6, and with Ŵ8
c,ε in COT-GAN8, respectively.

In the low-dimensional experiments, COT-GAN outperforms COT-GAN6 on the 1-D
noisy oscillation, but underperforms it on the multivariate AR(1) experiment. Both COT-GAN
and COT-GAN6 obtain better results than all other variations of the mini-batch Sinkhorn
divergence. Given the low-dimensional results, we only compare COT-GAN and COT-GAN6

in the high-dimensional experiments. As shown in Table 3.2, COT-GAN performs the
best in all evaluation metrics except for KVD for Sprites animation. Both COT-GAN
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Fig. 3.6 Results on learning the multivariate AR(1) process.

and COT-GAN6 perform better than MoCoGAN in these two tasks. However, because
COT-GAN6requires more mini-batches in the computation, it is about 1.5 times slower than
COT-GAN.

Table 3.2 Evaluations for video datasets. Lower value indicates better sample quality.

Sprites FVD FID KVD KID
MoCoGAN 1 108.2 280.25 146.8 0.34
COT-GAN6 620.1 109.1 64.5 0.091
COT-GAN 458.0 84.6 66.1 0.081
Human actions
MoCoGAN 1 034.3 151.3 89.0 0.26
COT-GAN6 630.8 109.2 46.79 0.19
COT-GAN 462.8 58.9 43.7 0.13

3.5 Discussion

In this chapter, we introduce the use of causal transport theory in the machine learning
literature. As already proved in other research fields, we believe it may have a wide range of
applications here as well. The performance of COT-GAN already suggests that constraining
the transport plans to be causal is a promising direction for generating sequential data. The
approximations we introduce, such as the mixed Sinkhorn distance (3.2.12) and truncated
sum in (3.2.9), are sufficient to produce good experimental results, and provide opportunities
for more theoretical analyses in future studies. Directions of future development include ways
to learn from data with flexible lengths, extensions to conditional COT-GAN, and improved
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Fig. 3.7 1-D noisy oscillation. Top two rows show two samples from the data distribution
and generators trained by different methods. Third row shows marginal distribution of pixels
values (y-axis clipped at 0.07 for clarity). Bottom row shows joint distribution of the position
of the oscillation at adjacent time steps.

methods to enforce the martingale property for the process M and better parameterize the
causality constraint.



Chapter 4

Conditional COT-GAN with Kernel
Smoothing

4.1 Introduction

Time series prediction is a challenging task. Given past observations, a desirable model
should not only capture the distribution of features at each time step, but also predict its
complex evolution over time. Autoregressive models which predict one time step after another
seem to be a natural choice for learning such a task, see e.g. [41, 82, 119, 181]. However, the
drawbacks of autoregressive models are the compounding error due to multi-step sampling
and their high computational cost, see e.g. [82, 130]. Most existing models for time series
prediction tend to ignore the temporal dependencies in sequences in the loss function, merely
relying on certain specific network architectures, such as recurrent neural network (RNN)
and 1D and 3D convolutional neural network (CNN), to capture the underlying dynamics,
see e.g. [151, 4, 136, 172, 162]. For this learning task, the loss function used to compare
prediction and real evolution plays a crucial role. However, a loss function that is blind to the
sequential nature of data will almost certainly disappoint.

Yoon et al. [190] proposed TimeGAN to tackle this problem by introducing an auxiliary
step-wise loss function to the original GAN objective, which indeed leads to more coherent
and accurate predictions. More recently, the advances in the field of causal optimal transport
(COT) have shown a promising direction for sequential modelling, see e.g. [13, 11, 126, 186].
This type of transport constrains the transport plans to respect temporal causality, in that the
arrival sequence at any time t depends on the starting sequence only up to time t. In this way,
at every time we only use information available up to that time, which is a natural request in
sequential learning. This is the foundation of COT-GAN [186], where the training objective
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is tailored to sequential data. This proved to be an efficient tool, leading to generation of
high-quality video sequences. Although the sharpness of single frames remains a challenge
in video modelling, COT-GAN demonstrates that the evolution of motions can be reproduced
in a smooth manner without further regularisation.

While COT-GAN is trained to produce sequences, the algorithm we propose here is learn-
ing conditional sequences, that is, how a sequence is likely to evolve given the observation of
its past evolution. For this task, we employ a modification of the empirical measure that was
introduced by Backhoff et al. [11] in the framework of adapted Wasserstein (AW) distance.
AW-distance is the result of an optimal transport problem where the plans are constrained
to be causal in both direction (so-called bicausal optimal transport); see [126, 127]. This
turns out to be the appropriate distance to measure how much two processes differ, when
we want to give importance to the evolution of information, see e.g. [14]. As noted in [127]
and [11], the AW-distance between a distribution and the empirical measure of a sample
from it may not vanish while the size of the sample goes to infinity. To correct for this, Pflug
and Pichler [127] proposed a convoluted empirical measure with a scaled smoothing kernel,
while Backhoff et al. [11] suggested an adapted empirical measure obtained by quantization -
both aiming to smooth the empirical measure in some way in order to yield a better conver-
gence. In this chapter, we follow the approach of adapting the empirical measure by kernel
smoothing as done in [127], and show that this smoothed empirical measure improves the
performance of conditional COT-GAN.

The process described above gives rise to kernel conditional COT-GAN. The main
contributions of the current chapter can then be summarised as follows:

• we extend the COT-GAN to a conditional framework, powered by an encoder-decoder
style generator structure;

• we employ a new kernel empirical measure in the learning structure, which is a strongly
consistent estimator with respect to COT;

• we show that our kernel conditional COT-GAN algorithm achieves state-of-the-art
results for video prediction.

4.2 Framework

We are given a dataset consisting of n i.i.d. d-dimensional sequences {xi
1, . . . ,x

i
T}n

i=1 where
T ∈N is the number of time steps and d ∈N is the dimensionality at each time. This is thought
of as a random sample from an underlying distribution µ on Rd×T , from which we want



4.3 COT-GAN and CCOT-GAN 49

to extract other sequences. More precisely, we want to learn the conditional distribution of
(xk+1, . . . ,xT ) given (x1, . . . ,xk) under µ , for any fixed k ∈ {1, . . . ,T −1}. In the application
of video prediction, an entire video contains T frames, each of which has resolution d. The
first k frames of the video are taken as an input sequence, and later frames from time k+1 to
T are the target sequence. We will use the notation xs:t = (xs, ...,xt), for 1≤ s≤ t ≤ T .

The conditional learning will be done via a conditional generative adversarial structure,
based on a specific type of optimal transport tailored for distributions on path spaces, as
introduced in the next section.

4.3 COT-GAN and CCOT-GAN

We now extend the analysis developed in Chapter 2 to a conditional framework for sequence
prediction. Given the past history of a sequence up to time step k, the aim of CCOT-GAN
is learning to predict the evolution from time step k + 1 to T . The learning is done by
stochastic gradient descent (SGD) on mini-batches. Given a sample {xi

1:T}m
i=1 from the

dataset and a sample {zi
k+1:T}

m
i=1 from a distribution ζ (noise) on some latent space Z, we

define the generator as a conditional model gθ , parameterised by θ , which predicts the
future evolution x̂i

k+1:T = gθ (xi
1:k,z

i
k+1:T ). The prediction x̂i

k+1:T is then concatenated with
the corresponding input sequence xi

1:k over the time dimension in order to be compared with
the training sequence xi

1:T by the discriminator. We denote the empirical distributions of real
and concatenated data by

µ̂ :=
1
m

m

∑
i=1

δxi
1:T
, ν̂

c
θ :=

1
m

m

∑
i=1

δconcat(xi
1:k,x̂

i
k+1:T )

,

where ν̂c
θ

incorporates the parameterisation of gθ through {x̂i
k+1:T}

m
i=1, and concat(.) per-

forms a concatenation operation over the channel dimension. Following COT-GAN’s formula-
tion of adversarial training, we arrive at the parameterised objective function for CCOT-GAN:

ŴcKϕ ,ε(µ̂, ν̂
c
θ )−λ pMϕ2

(µ̂). (4.3.1)

In the implementation of CCOT-GAN, the generator gθ is broken down into two components:
an encoder that learns the features of input sequences {xi

1:k}
m
i=1 and a decoder that predicts

future evolutions given the features of inputs and noise {zi
k+1:T}

m
i=1. The discriminator role

is played by hϕ1 and Mϕ2 , which are parameterised separately by two neural networks that
respect temporal causality. These can be implemented as RNNs or 1D or 3D CNNs that
are constrained to causal connections only, see Appendix B for details. We maximise the
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objective function (4.3.1) over ϕ to search for a robust (worst-case) distance between the
two empirical measures µ̂ and ν̂c

θ
, and minimise it over θ to learn a conditional model that

produces sequential prediction.

4.4 Adapted empirical measure and KCCOT-GAN

It was noted by Backhoff et al. [11] and Pflug and Pichler [127] that the (classical) empirical
measures are not necessarily consistent estimators with respect to distances originating from
transport problems where transports plans respect causality constraints. The nested distance
[126] or adapted Wasserstein distance [11] is the result of an optimal transport problem
where plans are required to satisfy the causality constraint (3.2.1) as well as its symmetric
counterpart, when inverting the role of x and y:

AWc(µ,ν) := inf{Eπ [c(x,y)] : π ∈Π
K(µ,ν),π ′ ∈Π

K(ν ,µ)}, (4.4.1)

where π ′(dx,dy) = π(dy,dx).
Now, for any measure µ , and for the empirical measures µ̂m relative to a random sample

of size m from µ , it is known (see e.g. [54]) that

Wc(µ, µ̂m)→ 0 as m→ ∞,

whereas [11, 127] observe that this is not necessarily true when substituting the Wasserstein
distance Wc with the adapted Wasserstein distance AWc. This is of course undesirable, in
particular thinking of the fact that the discriminator will evaluate discrepancies between real
and generated measures by relying on empirical measures of the corresponding minibatches,
see Section 4.3 and [186].

In [11] and [127], two different ways of adapting the empirical measure are suggested:
by smoothing using a scaled kernel and by a quantization technique, respectively. The
quantization technique [11] divides the data space into sub-cubes, and maps every value
to the centre of the sub-cube to which it belongs. We did not adopt this approach for
two reasons: first, the convergence property proved in Theorem 1.3 in [11] only holds
when the number of sub-cubes is extremely small if the dimensionality of the data is large
(typically a few hundreds). To see why too few sub-cubes can be problematic, consider
this technique with two sub-cubes. This will map all data into only two possible values,
which discards substantial information from the original data. Second, the quantization
technique is non-differentiable, requiring an approximation so the gradients can flow back via
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back-propagation in the stage of learning. We therefore adopt the kernel smoothing approach
which we describe in detail in the remainder of this section.

For a probability measure µ with density f , and a density function kh(x) := 1
hk( x

h) where
h is the bandwidth parameter, the density estimator f̂ is defined as

f̂ (x) =
∫

kh(x− y) f (y)dy = f ∗ kh(x), (4.4.2)

where ∗ denotes the convolution of densities.
Denoting the measure induced by density kh as K f , we can write the convoluted measures

with density kh as the weighted empirical measures of µ̂ and ν̂c
θ

:

µ̂
f := µ̂ ∗K f =

m

∑
i=1

wiδxi
1:T
, (4.4.3)

ν̂
c, f
θ

:= ν̂
c
θ ∗K f =

m

∑
i=1

wiδconcat(xi
1:k,x̂

i
k+1:T )

, (4.4.4)

where the weight wi is determined by kh. Intuitively, this smooths the observations by taking
a weighted average of all observations, typically with more influence from neighboring
points.

Pflug and Pichler [127] proved that the adapted Wasserstein distance of the convoluted
measures converges, i.e.,

P(AWc(µ̂
f , ν̂

c, f
θ

)> ε)→ 0 as m→ ∞,

provided that

1. the kernel kh is nonnegative and compactly supported on RD,

2. the density f is bounded and uniformly continuous,

3. the bandwidth h is a function of the sample size m that satisfies

hm→ 0,
mhm

| loghm|
→ ∞,

| loghm|
log logm

→ ∞,

and mhm→ ∞, as m→ ∞, (4.4.5)

4. the measures µ and ν are conditionally Lipschitz.

For proofs and detailed discussions, please see Theorem 2 and 4 in [127].
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Note that convergence result above is derived for the adapted Wasserstein distance AWc.
In order to deduce the results on WK

c , notice that

WK
c (µ,ν)≤AWc(µ,ν) (4.4.6)

for any probability measures µ,ν and any cost function c, given that the set of transports over
which minimization is done for causal optimal transport is bigger than that for AW-distance,
cf. (3.2.2) and (4.4.1).

Relying on the above convergence result (4.4.6), we now introduce the CCOT-GAN with
kernel smoothing (KCCOT-GAN). The objective function of KCCOT-GAN at the level of
minibatches is computed on the adapted empirical measures:

ŴcKϕ ,ε(µ̂
f , ν̂

c, f
θ

)−λ pMϕ2
(µ̂ f ). (4.4.7)

We maximise the objective function over ϕ to search for a worst-case distance between the
two adapted empirical measures, and minimise it over θ to learn a conditional distribution that
is as close as possible to the real distribution. The algorithm is summarised in Algorithm 3. Its
time complexity scales as O((J+2d)2LT m2) in each iteration. The distance ŴcKϕ ,ε(µ̂

f , ν̂
c, f
θ

)

is approximated by the means of the Sinkhorn algorithm iteratively with a fixed number of
iterations, see Appendix A.

4.5 Implementation of KCCOT-GAN

The generator of KCCOT-GAN consists of an encoder that learns features from the input
sequences, and a decoder that generates predictions conditioned on the input features and
noise, supported by convolutional LSTM (convLSTM) [145]. The decoder was trained using
a hierarchical version of the Teacher Forcing algorithm [184] which feeds the real values from
observations as inputs during the training stage, in order to reduce the compounding error
from multi-step predictions. To make it concrete, we proceed to formulate the implementation
of KCCOT-GAN.

To avoid confusion, we refer to the entire input x1:T as the input sequence, and to the
sequence x1:k upon which the prediction xk+1:T is made as the context sequence. Since the
full input sequence is available to us at the stage of training, we first learn the hierarchical
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Algorithm 2: training KCCOT-GAN by SGD
Data: {xi

1:T}n
i=1(data), ζ (distribution on latent space)

Parameters: θ0, ϕ0(initialisation of parameters), m(batch size), ε(regularisation
parameter), α(learning rate), λ (martingale penalty coefficient),
h(bandwidth parameter)

Result: θ , ϕ

Initialize: θ ← θ0, ϕ ← ϕ0
for k = 1,2, . . . do

(1) Sample {xi
1:T}m

i=1 from real data; (2) Learn features from input sequences:
{ei

1:T}m
i=1← fθe({xi

1:T}m
i=1); (3) Sample {zi

k:T−1}
m
i=1 from ζ ;

(4) Predict conditioned on features and inputs:
{x̂i

k+1:T}
m
i=1
← fθd({ei

1:T}m
i=1,{xi

k:T−1}
m
i=1,{zi

k:T−1}
m
i=1); (5) Obtain smoothed

measures: µ̂ f and ν̂
c, f
θ

; (6) Compute ŴcKϕ ,ε(µ̂
f , ν̂

c, f
θ

) by the Sinkhorn
algorithm; (7) Update discriminator parameter:

ϕ ← ϕ +α∇ϕ

(
ŴcKϕ ,ε(µ̂

f , ν̂
c, f
θ

)−λ pMϕ2
(µ̂ f )

)
;

(8) Repeat step (2) - (6); (9) Update generator parameter:
θ ← θ −α∇θ

(
ŴcKϕ ,ε(µ̂

f , ν̂
c, f
θ

)
)

;

end

features of it through an encoder with n layers,

e1
1:T = fθ 1

e
(x1:T ),

e2
1:T = fθ 2

e
(e1

1:T ),

...

en
1:T = fθ n

e
(en−1

1:T ).

From here on, we denote the encoder as fθe parametrized by θe := {θ 1
e ,θ

2
e , ...,θ

n
e }, and the

features extracted by the encoder as e1:T := {e1
1:T , ...,e

n
1:T}.

To deploy the teacher forcing algorithm, we make use of the hierarchical features as well
as the input sequence. At time step k+ 1, we predict x̂k+1 conditioned on (ek,xk), under
the assumption that the feature ek contains all the information about the context sequence.
Instead of feeding the prediction x̂k+1 back to the model to make next prediction, we continue
to predict x̂k+2 conditioned on (ek+1,xk+1) in an effort to prevent the model to derail from
the truth by making a mistake in an intermediate step. As a result, we train the model to
predict x̂k+1:T conditioned on (ek:T−1, xk:T−1). In the inference stage, however, we do not
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have the information beyond the context sequence. The prediction is therefore completed in
an auto-regressive manner.

Given Gaussian noise zk:T−1, the decoder fθd with l layers for l ≥ n+1 learns to predict
the future steps by

d1
k+1:T = f

θ 1
d
(en

k:T−1,zk:T−1),

...

dl−1
k+1:T = f

θ
l−1
d

(e1
k:T−1,d

l−2
k+1:T )

x̂k+1:T = f
θ l

d
(xk:T−1,dl−1

k+1:T ).

As usual, the generator parameters θ := {θe,θd} and discriminator parameters ϕ are
learned on the level of mini-batches via SGD. To yield better convergence property, we
smooth the mini-batches in each iteration using a scaled Gaussian kernel with zero mean,

kh(x) =
1
h

e−
x2

2h2 .

Differently from the technique of Gaussian blur widely used in image processing, see
e.g. [71, 133, 117, 64], we apply a 3D scaled Gaussian kernel to both spatio and temporal
dimensions. In another line of work, Zhang et al. [195] show that convoluting measures with
a kernel density estimator is also a valid approach to tackle the problem of disjoint supports
in divergence minimization.

The choices of the bandwidth parameter h are restricted by the conditions in Equa-
tion (4.4.5). In the implementation, we relax this assumption by deploying a decaying
bandwidth as a function of the number of the training iterations, rather than a function of
sample size m. We realise that this simplification may lead to inferior theoretical guarantee
of convergence. However, we will leave the exploration of a more appropriate approach to
satisfy the theoretical assumptions to future research.

4.6 Related work

Video prediction is an active area of research. Methods relying on Variational inference
[26] and VAE [91], e.g. SV2P [9], SVP-LP [41], VTA [88], and VRNN [30], have shown
promising results. The majority of adversarial models adopted in this domain were trained
on the original GAN objective [67] or the Wasserstein GAN objective [8], both of which
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provide step-wise comparison of sequences. SAVP [100] combined the objective function of
the original GAN and VAE to achieve the state of the art performance.

Substantial efforts have been devoted to designing specific architectures that tackle the
spatio-temporal dependencies, e.g. [172, 136, 162, 35, 110, 171], and training schemes that
facilitate learning, e.g. [110, 171, 4]. Whilst some works such as TGAN [136] and VGAN
[172] combined a static content generator with a motion generator, others, e.g. [162, 35],
designed two discriminators to evaluate the spatial and temporal components separately.
Mathieu et al. [110] explored a loss that measures gradient difference at frame level on top of
an adversarial loss trained with a multi-scale architecture. As a result, better performance was
achieved in comparison to a simple mean square error loss commonly used in the literature.
MCnet [171] extended [110] by adopting convolutional long short-term memory (ConvLSTM)
[145] in the networks. Alternatively, 3D CNN with progressively growing training scheme
[85] was also shown to be successful by FutureGAN [4].

However, it may not be sufficient to rely solely on the network architecture to capture
the temporal structure of data. An important development in time series synthesis and
prediction is the identification of more suitable loss functions. TimeGAN [190] combined the
original GAN loss with a step-wise loss that computes the distance between the conditional
distributions in a supervised manner. By matching a conditional model to the real conditional
probability p(xt |x1:t−1) at every time step, it explicitly encouraged the model to consider the
temporal dependencies in the sequence. In comparison, COT-GAN [186] explored a more
natural formulation for sequential generation which leads to convincing results.

4.7 Experiments

We compare KCCOT-GAN to CCOT-GAN without kernel smoothing as an ablation study,
to SVP-LP (Denton and Fergus [41]), to SAVP (Lee et al. [100]), and to VRNN (Castrejon
et al. [30]), on three well-established video prediction datasets. The source code and video
results are available at https://github.com/neuripss2020/kccotgan. In all our experiments,
the choice of cost function is c(x,y) = ∑t ∥xt − yt∥2

2, and initial bandwidth h is 1.5 and is
gradually decayed to 0.1 as training progresses. We select the first 15 frames and downsample
them to a resolution of 64×64. We use the first 5 frames as the context sequence and the rest
10 frames as the target sequence. All results are evaluated on test sets. Note that the maximum
number of hidden units used for the layers in the generator and discriminator networks is
256 for the GQN Mazes and BAIR Push Small datasets and 128 for the Moving MNIST
dataset, due to the constraint of available computation power. This is at most half of the
baseline model sizes. Although a compromised model capacity is expected, KCCOT-GAN

https://github.com/neuripss2020/kccotgan
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Fig. 4.1 GQN Mazes results on the test set. Only the last 2 frames from the context sequence
are shown.

still produces excellent results on various tasks. Network architectures and more training
details are given in Appendix B.

GQN Mazes. The GQN Mazes was first introduced by [51] for training agents to learn
their surroundings by moving around. The dataset contains random mazes generated by a
game engine. A camera traverses one or two rooms with multiple connecting corridors in
each maze. The dataset comes with a training set that contains 900 sequences and a test set
with a size of 120. The original sequences have a length of 300 and resolution of 84 × 84.

Figure 4.1 demonstrates that all models successfully captured the spatial structure in the
frames well. However, predictions produced by SVG-LP lack of the evolution of motions,
which is observed in many reproduced results of the model across various dataset. This could
be attributed to the fact that SVG-LP is conditioned on a single frame from the previous time
step, which makes it impossible for the model to pick up any information about past evolution.
Visually, KCCOT-GAN and VRNN produced the sharpest frames out of all. Whilst samples
from VRNN show more variations, those from KCCOT-GAN tend to be closer to the ground
truth which may contribute to the better numerical evaluations in Table 5.1.

BAIR Push Small. Due to computation and storage constraint, we opted for this smaller
version of the original BAIR Push dataset. The BAIR Push Small contains about 44,000
example with a resolution of 64×64. Each example shows a sequence of motions of robot
arm pushing objects on a table.
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Fig. 4.2 BAIR Push Small results on the test set. Only the last 2 frames from the context
sequence are shown.

For this dataset, the results from SVG-LP and VRNN are extremely good in terms of both
the image quality and the variation in samples, see Figure 4.2. It is clearly a very difficult
task to outperform these two baselines. On the other hand, SAVP has failed in producing
high quality predictions.

On this dataset, although KCCOT-GAN underperforms the SVG-LP and VRNN baselines,
we observe a clear improvement in sharpness from CCOT-GAN to KCCOT-GAN. As these
two models share the same network structure and hyper-parameter settings, we can confirm
that this improvement solely comes from the adaption of empirical measures via kernel
smoothing.

Moving MNIST Dataset. Moving MINST [151] contains two digits that move with
velocities sampled uniformly in the range of 2 to 6 pixels per frame and bounce within the
edges of each frame. The dataset has 10000 sequences, of which we use 8000 for training
and the rest for testing. Each of the original sequence contains 20 frames with resolution
64×64. Results are given in Table 5.1 and Appendix C.

Evaluation. We evaluate the video predictions using three metrics: Structural Similarity
index [178] (SSIM, higher is better), Learned Perceptual Image Patch Similarity[196] (LPIPS,
lower is better), Fréchet Video Distance [164] (FVD, lower is better).

The evaluation scores are reported in Table 5.1. We can see that KCCOT-GAN outper-
forms the baseline models on GQN Mazes dataset based on the three metrics. However,
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VRNN are well ahead other models in BAIR Push Small dataset. The performances of VRNN
and KCCOT-GAN on the Moving MMNIST dataset is reasonably close with KCCOT-GAN
leading in SSIM and LPIPS but VRNN having better FVD score.

Table 4.1 Evaluations for video datasets. Lower values in the metrics indicate better sample
quality for LPIPS and FVD, whereas higher values in SSIM are better.

GQN Mazes SSIM LPIPS FVD
SAVP 0.49 0.077 488.35
VRNN 0.56 0.062 345.51
SVG-LP 0.43 0.094 575.22
CCOT-GAN 0.60 0.061 323.28
KCCOT-GAN 0.64 0.060 267.90
BAIR Push Small
SAVP 0.502 0.090 280.32
VRNN 0.825 0.054 148.51
SVG-LP 0.822 0.059 158.80
CCOT-GAN 0.723 0.063 201.72
KCCOT-GAN 0.765 0.060 167.94
Moving MMNIST
SAVP 0.571 0.123 129.33
VRNN 0.770 0.116 59.14
SVG-LP 0.668 0.160 101.39
CCOT-GAN 0.661 0.139 74.20
KCCOT-GAN 0.788 0.975 60.33

4.8 Discussion

In the present chapter we introduce KCCOT-GAN, the first algorithm for sequence prediction
that is based on recently developed modifications of optimal transport specifically tailored
for path spaces. For this we build on the results by [186], where COT was first applied for
the task of sequential generation. Our experiments show the ability of KCCOT-GAN to not
only capture the spatial structure in the frames, but also learn the complex dynamics evolving
over time.

A limitation of the KCCOT-GAN algorithm is the lack of variations exhibited in the
video sequences generated, in comparison to the baseline models that emphasise stochastic
components in the model design. An improvement on KCCOT-GAN could be achieved by
encoding more stochasiticity in the model. Another direction for future work is to explore
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alternative choices of the kernel function convoluted over the empirical measures as well as a
bandwidth parameter that better satisfies the conditions required for the convergence guar-
antee. One may also construct a learned kernel in a similar manner as done in MMD-GAN
[104], whose parameters are updated along with those in the generator and discriminator.





Chapter 5

SPATE-GAN: Improved Generative
Modelling of Dynamic Spatio-Temporal
Patterns with an Autoregressive
Embedding Loss

5.1 Introduction

Over the last decade, deep learning has emerged as a powerful paradigm for modelling
complex data structures. It has also found successful applications in the video domain, for
example for trajectory forecasting, video super-resolution or object tracking. Nevertheless,
data observed over (discrete) space and time can take many more shapes than just RGB
videos: many of the systems and processes governing our planet, from ocean streams to
the spread of viruses, exhibit complex spatio-temporal dynamics. Current deep learning
approaches often struggle to account for these, as a recent survey by Reichstein et al. [132]
highlights. The authors call for more concerted research efforts aiming to improve the
capacity of deep neural networks for modelling earth systems data. Recently, the emergence
of physics-informed deep learning has reinforced the integration of physical constraints as a
research domain [193, 129, 175, 86].

In this chapter, we propose a novel GAN tailored to the challenges of spatio-temporal
complexities. We first devise a novel measure of spatio-temporal association—SPATE—
expanding on the Moran’s I measure of spatial autocorrelation (see definition in Section 5.3.1).
SPATE uses the deviance of an observation from its space-time expectation, and compares it
to neighbouring observations to identify regions of (relative) change and regions of (relative)
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homogeneity over time. We propose three different approaches to calculate the space-time
expectations, coming with varying assumptions and advantages for different applications.
We then encode a SPATE-based embedding into COT-GAN [187] to formulate a new GAN
framework, named SPATE-GAN. The motivation of choosing COT-GAN as the base model
is that its principle of respecting temporal dependencies in sequential modelling is in line
with our intuition for SPATE, see details in the methods section. Lastly, we test our approach
on a range of different datasets. Specifically, we select data characterised by complex
spatio-temporal patterns such as fluid dynamics [173, 175], disease spread [28] and global
surface temperatures [148]. We observe that SPATE-GAN outperforms baseline models.
This finding is particularly interesting as we do not change the architecture of the existing
COT-GAN backbone, implying that our performance gains can be solely attributed to our
novel SPATE-based embedding loss.

To summarise, the contributions of this study are as follows:

• We introduce SPATE, a new measure of spatio-temporal association, by expanding the
intuition of the Moran’s I metric into the temporal dimension.

• We introduce SPATE-GAN, a novel GAN for complex spatio-temporal data utilising
SPATE to construct an embedding loss "nudging" the model to focus on the learning
of autoregressive structures.

• We test SPATE-GAN against baseline GANs designed for image/video generation on
datasets representing fluid dynamics, disease spread and global surface temperature.
We show performance gains of SPATE-GAN over the baseline models.

5.2 Related work

5.2.1 Autocorrelation metrics for spatio-temporal phenomena

Analysing autoregressive patterns in spatial and spatio-temporal data has a long tradition in
different academic domains (e.g, GIS, ecology) which over time developed diverse measures
to describe these phenomena. The most commonly known of these metrics is the Moran’s I
index of global and local spatial autocorrelation. Originally proposed by Anselin [6], Moran’s
I identifies both homogeneous spatial clusters and outliers. Applications of the metric range
from identifying rare earth contamination [191] to analysing land cover change patterns
[38]. Throughout the years, Moran’s I has also motivated several methodological expansions,
analysing for example spatial heteroskedasticity [121] and local spatial dispersion [183].
Moran’s I has also seen some expansions into the spatio-temporal domain. Matthews et al.
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[111] use the metric iteratively to model disease spread over time. Lee and Li [101] and Gao
et al. [58] propose novel spatio-temporal expansions of the Moran’s I metric, returning static
outputs at a purely spatial resolution. Siino et al. [146] design an extended Moran’s I for
spatio-temporal point processes. However, to the best of our knowledge, neither the Moran’s
I nor its spatio-temporal extensions have been applied to discrete spatio-temporal video
data. It is evident that metrics of spatio-temporal autocorrelation can provide meaningful
embeddings of complex data, capturing underlying patterns throughout a range of different
application domains.

5.2.2 Deep learning & GANs for spatial and spatio-temporal data

Deep learning describes a powerful family of methods capable of dealing with the highly
complex and non-linear nature of many real world spatial and spatio-temporal patterns
[188, 7, 34, 16, 63]. Paradigms like physics-informed deep learning aim to devise methods
which integrate (geo)physical constraints explicitly into neural network models [175]. There
is also an increasing number of studies tackling specific challenges associated with geographic
data: Mai et al. [108] and Yin et al. [189] propose context-aware vector embeddings for
geographic coordinates. Zammit-Mangion et al. [192] propose to learn deep neural networks
for spatial covariance patterns using injective warping functions. Intuitions for spatial
autocorrelation, including the Moran’s I metric, have been integrated into machine learning
frameworks tackling model selection for ensemble learners [92], spatial representation
learning [198], auxiliary task learning [93] or residual correlation graph neural networks
[81]. All these studies highlight the benefits of explicitly encoding spatial context into neural
networks to improve performance.

Narrowing down on the GAN context specifically, we find that spatio-temporal appli-
cations have mostly focused on video data [187, 163, 87]. Beyond this, GANs have been
used for conditional density estimation of traffic [199], trajectory prediction [79] or extreme
weather event simulation [94]. Nevertheless, to the best of our knowledge, metrics capturing
spatio-temporal autocorrelation have never been integrated into GANs. As previous studies
highlight the value on encoding spatial context, this work seeks to provide a first-principle
approach of integrating metrics of spatio-temporal autocorrelation into GANs for modelling
of complex spatio-temporal patterns.

5.2.3 Embedding loss functions

SPATE-GAN integrates spatio-temporal metrics into COT-GAN as embeddings upon which
the loss function is computed. We refer such loss functions as embedding losses which
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have become popular in computer vision over the last years: Ghafoorian et al. [65] use
embedding losses to improve GAN-based lane detection. Filntisis et al. [53] use visual-
semantic embedding losses to improve predictions of bodily expressed emotions. Wang et al.
[174] introduce CLIFFNet, utilising hierarchical embeddings of depth maps for molecular
depth estimation. Bailer et al. [15] introduce a threshold loss to improve optical flow
estimation. It is clear that embedding losses have shown great potential for particularly
challenging visual problems, especially those involving complex spatio-temporal dynamics.
They have led to desirable outcomes, such as improving training stability or facilitating the
recognition of specific patterns in the data.

5.3 Methods

5.3.1 SPATE: Spatio-temporal association
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Fig. 5.1 Illustrating the three proposed options to obtain spatio-temporal expectations µit
used in the computation of SPATE for single-channel data.

For a static, discrete spatial pattern (e.g, a grid of pixels forming an image) consisting of
continuous values x ∈ Rn where n ∈ N, we use xi for i ∈ {1, . . . ,n} to represent the i’th pixel
value on a regular grid. The local Moran’s I statistic Ii is computed as follows:

Ii = (ni−1)
zi

∑
ni
j=1 z2

j

ni

∑
j=1, j ̸=i

wi, jz j (5.3.1)

where zi = xi− x̄ is the deviance of observation xi from the global mean x̄, ni is the number of
spatial neighbours of pixel xi, j indexes neighbours of xi for j ∈ {1, ...,ni} and j ̸= i, and wi, j

is a binary spatial weight matrix, indicating spatial neighbourhood of observations i and j. Ii

can be interpreted as a measure of similarity to neighbouring pixels: positive values imply
homogeneous clusters, while negative values suggest outliers, change patterns or edges.
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Now, let us assume that we observe a sequence of spatial patterns over time t: x =

(x1, ...,xT ) ∈ Rn×T where n is the dimensionality of xt at each time t and T is the length of
the sequence. Of course, a naive adoption of the approach above is simply to ignore the time
component of a sequence and compute the local Moran’s I values Iit around pixel i using
mean values x̄t at each time t. Unfortunately, this approach would strictly separate spatial
and temporal effects. In fact, a much more realistic assumption is that space and time are
not separable, but do in fact interact and form joint patterns. For this reason, we expand the
concept of Moran’s I for spatio-temporal expectations. First, we follow the intuition outlined
in Kulldorff et al. [97] and define expected values of µit(x). We refer to this approach as
Kulldorff spatio-temporal expectation ("k"):

µ
(k)
it =

∑ j x jt ∑t ′ xit ′

∑ j ∑t ′ x jt ′
. (5.3.2)

µ
(k)
it in (5.3.2) involves utilising all spatial units (pixels) available at time step t and

across all time steps at a single spatial unit (pixel position) i. This computation of the
spatio-temporal expectations assumes independence of space and time, and thus the residual
zit = xit−µ

(k)
it can be thought of as a local measure of space-time interaction at pixel i and

time t. Moreover, this formulation of µit makes two critical assumptions: (1) Different time
steps are equally important, irrespective of how distant they are from the current time step. (2)
At each time step, we assume availability of the whole time series (i.e. looking into the future
is possible). We can modify the computation of µit by imposing alternative assumptions.

First, assuming that distant time steps have less significant impact on the current time
step, we can integrate temporal weights into the computation, and apply decreasingly lower
weights to more distant time steps. For example, one can consider an exponential kernel:

µ
(kw)
it =

∑ j x jt ∑t ′ btt ′xit ′

∑ j ∑t ′ btt ′x jt ′
, (5.3.3)

where btt ′ = exp(−|t− t ′|/l) and l is the lengthscale of the exponential kernel. We refer to
this approach as Kulldorff-weighted spatio-temporal expectation ("kw").

Second, we can restrict the computation of µit at time step t to only account for time steps
< t, so that the expectation at each time step is independent of future observations. Thus, the
computation respects the generating logic of sequential data. We refer to this last approach
as Kulldorff-sequential-weighted spatio-temporal expectation ("ksw"):

µ
(ksw)
it =

∑ j x jt ∑t ′<t btt ′xit ′

∑ j ∑t ′<t btt ′x jt ′
. (5.3.4)
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Note that for the first time step t = 0, we cannot access past time steps to calculate
spatio-temporal expectations µ

(ksw)
i0 .

We can now simply plug in our new spatio-temporal expectations into the Moran’s I
metric at time t by replacing spatial only expectations with a spatio-temporal expectation of
our choice. As such, we define our novel measure of spatio-temporal association (SPATE),

Sit(x,w) = (ni−1)
zit

∑
nx
j=1 z2

jt

nx

∑
j=1, j ̸=i

wi, jz jt (5.3.5)

where zit = xit − µit and µit can be any option from µ
(k)
it , µ

(kw)
it and µ

(ksw)
it . When using

µ
(ksw)
it , SPATE does not return values for t = 0, as no previous time steps are available to

calculate spatio-temporal expectations. See Fig 5.1 for an illustration of the three proposed
options.

SPATE measures spatio-temporal autocorrelation at the input resolution. Its behaviour
can be closely related to that of the Moran’s I metric. While Moran’s I evaluates the
deviance zi between each pixel and the spatial expectation, SPATE does so by using the
spatio-temporal expectation zit . Like Moran’s I, SPATE acts as a detector of spatio-temporal
clusters and change patterns. Like Moran’s I, SPATE identifies positive and negative space-
time autocorrelation, i.e. homogeneous areas of similar behaviour and outliers that behave
differently from their immediate neighbourhood. The difference between Moran’s I and
SPATE is that the later explicitly captures space-time interactions. For example, if pixel xi

and all other data points (not just its neighbours) are increased at a given time step t, Moran’s
I at time t (for all points) will be high, but SPATE will not be. SPATE of xit will be high
if (a) pixel xit is high compared to its expectation at the same time t, (b) its neighbours are
high compared to their expectations, while (c) its non-neighbours are not particularly high
compared to their expectations.

In the kw and ksw settings, the lengthscale parameter l governs whether the metric
captures longer or shorter term temporal patterns. For example, if pixel xit and its neigh-
bours increase slowly over time, that change will only cause SPATE to be high for larger
lengthscales l, while smaller l values imply that current values are compared to those that
are close in time. As such, the lengthscale determines what changes are considered "slow"
(incorporated into the mean, not detected as space-time interaction) and "fast" (current values
are different from the mean, detected as space-time interaction). The ksw setting further
allows for scenarios where we might wish to compute the metric based on previous time-steps
alone, i.e. to preserve sequential logic.
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Fig. 5.2 The SPATE metric in its different forms computed for an example from the LGCP
datasets. While SPATEk and SPATEkw are visually undistinguishable, SPATEksw changes
as increasingly more past time steps become available, converging to SPATEkw at time T .
We can also observe how the Moran’s I metric remains static in time, while all versions of
SPATE behave dynamically in space and time.

5.3.2 SPATE-GAN

Recall that COT can be considered as a maximisation over the classical (Kantorovich) optimal
transport (OT) with a temporal causality constraint, which restricts the transporting of mass
on the arrival sequence at any time t to depend on the starting sequence only up to time
t. This motivated us to design the spatio-temporal expectation µksw

it in order to respect the
nature of sequential data that are generated in an autoregressive manner.

In SPATE-GAN, we integrate our newly devised spatio-temporal metric into the COT-
GAN objective function. We compute the embedding for each xd

it and yd
it in minibatches

{xd
1:T}m

d=1 and {yd
1:T}m

d=1 by

x̂d
it = Sit(xd

1:T ,w) and ŷd
it = Sit(yd

1:T ,w),

where the binary spatial weight matrix w is pre-defined.
The corresponding embeddings are then concatenated with the training data and generated

samples on the channel dimension. We define the empirical measures for the concatenated
sequences as

µ̂
e :=

1
m

m

∑
d=1

δconcat(xd
1:T ,x̂

d
1:T ))

,

ν̂
e
θ :=

1
m

m

∑
d=1

δconcat(yd
1:T ,ŷ

d
1:T )

,

where concat(., .) is an operator that concatenates inputs along the channel dimension.
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We thus arrive at the objective function for SPATE-GAN:

inf
θ

sup
ϕ

{
Ŵmix

cKϕ ,ε
(µ̂e, ν̂e

θ , µ̂
e′, ν̂e′

θ ) −λ
[
pMϕ2

(µ̂e)+ pMϕ2
(µ̂e′)

]}
.

We maximise the objective function over ϕ to search for a worst-case distance between
the two empirical measures, and minimise it over θ to learn a distribution that is as close
as possible to the real distribution. The algorithm is summarised in Algorithm 3. Its time
complexity scales as O((J+2n)LT m2) in each iteration where J is the output dimension of
the discriminator (see Appendix A for details), and L is the number of Sinkhorn iterations
(see Genevay et al. [62], Cuturi [37] for details).

In the experiment section, we will compare SPATE-GAN with three different expectations
µ
(k)
it , µ

(kw)
it and µ

(ksw)
it in the computation of SPATE. Hence, we denote the corresponding

models as SPATE-GANk, SPATE-GANkw, and SPATE-GANksw, respectively.
Last, we would like to emphasise that, although all three embeddings consider the space-

time interactions in a certain way, the non-anticipative assumption of µ
(ksw)
it is consistent with

the generating process of the type of data we are investigating. As the causality constraint in
COT-GAN also restricts the search of transport plans to those that satisfy non-anticipative
transporting of mass, SPATE-GANksw is a model that fully respects temporal causality in
learning, whilst SPATE-GANk and SPATE-GANkw also combine information from the future.

5.4 Experiments

To empirically evaluate SPATE-GAN, we use three datasets characterised by different spatio-
temporal complexities.

Extreme Weather (EW) This dataset, introduced by Racah et al. [128], was originally
proposed for detecting extreme weather events from a range of climate variables (e.g. zonal
winds, radiation). Each of these climate variables is observed four times a day for a 128×192
pixel representation of the whole earth. We chose to model surface temperatureas it comes
with several interesting spatio-temporal characteristics: It exhibits both static (e.g. continent
outlines) and dynamic patterns as well as abnormal patterns (e.g. in the presence of tropical
cyclones or atmospheric rivers). Furthermore, simulating climate data is an important
potential downstream application of deep generative models.
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Algorithm 3: training SPATE-GAN by SGD
Data: {xd

1:T}n
d=1 (input data), ζ (latent distribution)

Parameters: θ0, ϕ0 (parameter initialisation), m (batch size), ε (regularisation
parameter), α (learning rate), λ (martingale penalty coefficient)

initialise: θ ← θ0, ϕ ← ϕ0
for b = 1,2, . . . do

Sample {xd
1:T}m

d=1 from real data;

Sample {zd
1:T}m

d=1 from ζ ;

Generate sequences from latent: (yd
1:T )← gθ (zd

1:T );
Compute the embeddings: x̂d

it = Sit(xd
1:T ,w), ŷi

it = Sit(yi
1:T ,w);

Concatenated the data with embeddings: concat(xd
1:T , x̂

d
1:T ),concat(yd

1:T , ŷ
d
1:T ) ;

Update discriminator parameter:

ϕ ← ϕ +α∇ϕ

(
Ŵmix

cKϕ ,ε
(µ̂e, ν̂e

θ
, µ̂e′, ν̂e′

θ
)−λ

[
pMϕ2

(µ̂e)+ pMϕ2
(µ̂e′)

])
;

Sample {zd
1:T}m

d=1 from ζ ;

Generate sequences from latent: (yd
1:T )← gθ (zd

1:T );
Compute the embeddings: x̂d

it = Sit(xd
1:T ,w), ŷd

it = Sit(yd
1:T ,w);

Concatenated the data with embeddings: concat(xd
1:T , x̂

d
1:T ),concat(yd

1:T , ŷ
d
1:T ) ;

Update generator parameter: θ ← θ −α∇θ

(
Ŵmix

cKϕ ,ε
(µ̂e, ν̂e

θ
, µ̂e′, ν̂e′

θ
)
)

;

end

LGCP This dataset represents the intensities (number of events in a grid cell) of a log-
Gaussian Cox process (LGCP), a continuous spatio-temporal point process. LGCPs are a
popular class of models for simulating contagious spatio-temporal patterns and have various
applications, for example in epidemiology. We simulate 300 different LGCP intensities on a
64×64 grid over 10 time steps using the R package LGCP [156].

Turbulent Flows (TF) This dataset, proposed by [175], simulates velocity fields according
to the Navier-Stokes equation. This is a class of partial differential equations describing the
motion of fluids. Fluid dynamics and simulation is another potential application of deep
generative models. Following the approach of Wang et al. [175], we divide the data into 7
steps of 64×64 pixel frames. Please note that we only utilise the first velocity field, so that
all our utilised datasets are single-channel.
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Fig. 5.3 Selected samples for LGCP dataset.

5.4.1 Baselines and evaluation metrics

We use COT-GAN [186] and GAN proposed by [62], which we name as SinkGAN, as base
models. We augment both models with our new embedding loss, using SPATE with k, kw
and ksw configurations. We refer to all models using a COT-GAN backbone in combination
with our new embedding loss as SPATE-GAN. We further denote the SinkGAN models
corresponding to three SPATE settings as SinkGANk, SinkGANkw and SinkGANksw. To
compare our approach to a non-time-sensitive embedding, we also deploy models using the
Moran’s I metric using the same embedding loss procedure, denoted as COT-GANM and
SinkGANM.

To compare our GAN output to real data samples, we use three different metrics: Earth
Mover Distance (EMD), Maximum Mean Discrepancy (MMD) [27] and a classifier two-
sample test based on a k-nearest-neighbour (KNN) classifier with k = 1 [107]. All these
measures are general purpose GAN metrics. While GAN metrics specialised on video
data exist, they rely on extracting features from models pre-trained on three-channel RGB
video data. As we are working with single-channel, non-image data, these methods are not
applicable in our case.

5.4.2 Experimental Setting

We compare SPATE-GAN to a range of baseline configurations. We use the same GAN
architecture for all these settings to ensure comparability. Our GAN generators feed the
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Fig. 5.4 Selected samples for Extreme Weather dataset.

noise input through two LSTM layers to obtain time-dependent features. These are then
mapped into the desired shape for deconvolutional operations using a fully-connected layer
with a leaky ReLU activation. Lastly, 4 deconvolutional layers map the output into video
frames, all also with leaky ReLU activation. Our discriminators initially feed video input
through three convolutional layers with leaky ReLU activation. The outputs from the
convolutional operations are then reshaped and fed through two LSTM layers to create the
final discriminator outputs.

All our models are implemented in PyTorch [124] and optimised using the Adam algo-
rithm [89]. Our experiments are conducted on a single Geforce 1080Ti or RTX 3090 GPU.
Further training details can be found in Appendix B.

5.4.3 Results

Results from our experiments are shown in Table 5.1. Visual comparisons between real and
generated data from the different models are shown in Figures 5.3,5.4, and 5.5. For larger
figures including results from all tested model configurations, please see the Appendix D.
Through all experiments we can observe that SPATE-GANksw consistently outperforms the
competing approaches, achieving the best scores across all datasets and evaluation metrics.

This finding is interesting as the ksw setting theoretically looses information over the k
and kw approaches, which both have access to future time steps when calculating the SPATE
metric. Nevertheless, this result underlines the strong synergies between SPATEksw and the
COT-GAN backbone: The metric is calculated in sequential fashion and thus respects the
same causality constraints that restrict COT-GAN. As such, the outcome, while noteworthy,
is not surprising.



72
SPATE-GAN: Improved Generative Modelling of Dynamic Spatio-Temporal Patterns with

an Autoregressive Embedding Loss

Table 5.1 Evaluations for LGCP, EW and TF datasets. Lower values in EMD and MMD
indicate better sample quality, while values close to 0.5 are more desirable for KNN.

LGCP EMD MMD KNN
SinkGAN 12.46 (0.02) 0.38 (0.001) 0.14 (0.001)
SinkGANM 12.46 (0.02) 0.38 (0.001) 0.14 (0.001)
SinkGANk 12.65 (0.03) 0.38 (0.001) 0.15 (0.001)
SinkGANkw 10.60 (0.01) 0.63 (0.008) 0.30 (0.002)
SinkGANksw 13.33 (0.01) 0.36 (0.001) 0.38 (0.003)
COT-GAN 12.38 (0.02) 0.30 (0.001) 0.20 (0.004)
COT-GANM 12.38 (0.02) 0.30 (0.001) 0.20 (0.004)
SPATE-GANk 11.56 (0.02) 0.32 (0.01) 0.31 (0.01)
SPATE-GANkw 10.92 (0.03) 0.64 (0.035) 0.15 (0.006)
SPATE-GANksw 10.47 (0.02) 0.30 (0.001) 0.39 (0.01)
Extreme Weather
SinkGAN 29.40 (0.05) 0.49 (0.001) 0.41 (0.004)
SinkGANM 29.27 (0.05) 0.72 (0.002) 0.22 (0.01)
SinkGANk 32.57 (0.03) 0.81 (0.001) 0.16 (0.004)
SinkGANkw 32.78 (0.05) 0.81 (0.001) 0.18 (0.004)
SinkGANksw 30.00 (0.04) 0.50 (0.001) 0.41 (0.004)
COT-GAN 26.66 (0.09) 0.43 (0.002) 0.42 (0.002)
COT-GANM 36.42 (0.14) 0.65 (0.002) 0.09 (0.01)
SPATE-GANk 33.58 (0.07) 0.73 (0.002) 0.15 (0.01)
SPATE-GANkw 33.36 (0.09) 0.72 (0.002) 0.13 (0.003)
SPATE-GANksw 26.24 (0.07) 0.42 (0.002) 0.42 (0.002)
Turbulent Flows
SinkGAN 26.52 (0.007) 1.23 (0.001) 0.15 (0.001)
SinkGANM 28.02 (0.005) 1.22 (0.0002) 0.01 (0.002)
SinkGANk 28.14 (0.002) 1.32 (0.002) 0.08 (0.001)
SinkGANkw 30.98 (0.001) 1.50 (0.001) 0.03 (0.001)
SinkGANksw 25.47 (0.008) 1.24 (0.0002) 0.13 (0.002)
COT-GAN 27.03 (0.01) 1.22 (0.001) 0.16 (0.002)
COT-GANM 24.93 (0.01) 1.19 (0.001) 0.09 (0.002)
SPATE-GANk 25.70 (0.02) 1.21 (0.001) 0.12 (0.003)
SPATE-GANkw 24.30 (0.002) 1.42 (0.001) 0.13 (0.004)
SPATE-GANksw 22.98 (0.01) 1.16 (0.001) 0.16 (0.002)

This result is strengthened by a comparison with the SinkGAN-based approaches:
SinkGAN does not follow the same restrictions and, as we observe, is not improved as con-
sistently by the SPATE-based embedding losses. In fact, in some cases the naive SinkGAN
performs better than its derivatives using SPATE or Moran’s I based embedding losses.
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Fig. 5.5 Selected samples for Turbulent Flows dataset.

We also observe that throughout all settings, models using Moran’s I perform similarly
to their naive counterparts. This confirms that in fact, simply using measures of spatial
autocorrelation computed over a sequence is not sufficient for capturing complex spatio-
temporal effects. On the contrary, the other two SPATE settings, k and kw, both appear to
have beneficial effects and improve performance.

In summary, our results highlight how COT-GAN combined with a non-anticipative
measure of space-time association can improve the modelling of complex spatio-temporal
patterns. This finding represents another step on the way towards deep learning methods
specialised on the dynamics driving many systems on our planet.

Furthermore, we provide an investigation on the impact of the lengthscale parameter l in
the spatio-temporal expectations for l ∈ {1,10,20,30,50}. As shown in Figure 5.6, l = 20
leads to better EMD and KNN results whilst all MMD scores remain unchanged. For the
results presented in this chapter, we set l = 20 in all our experiments.

5.5 Conclusion

Recent studies have called for more research into improving deep learning models for spatio-
temporal earth systems data [132]. Other academic domains have dealt with these data for
many decades and have developed methods for capturing specific spatial and spatio-temporal
effects. Inspired by their approaches, we devise SPATE, a measure of spatio-temporal
association capable of detecting emerging space-time clusters and homogeneous areas in the
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Fig. 5.6 Evaluations of SPATE-GANksw (left: EMD, middle: MMD, and right: KNN) on
LGCP dataset given lengthscale l ∈ {1,10,20,30,50}.

data. We then develop a novel embedding loss for video GANs utilising SPATE as a means of
reinforcing the learning of these patterns-of-interest. Our new generative modelling approach,
SPATE-GAN, shows performance increases on a range of different datasets emulating the
real-world complexities of spatio-temporal dynamics. As such, this study highlights how
domain expertise from applied academic areas can help to motivate methodological advances
in machine learning.



Chapter 6

Double Generative Adversarial Networks
for Conditional Independence Testing

6.1 Introduction
Conditional independence (CI) is a fundamental concept in statistics and machine learning.
Testing conditional independence is a key building block and plays a central role in a wide
variety of statistical learning problems, for instance, causal inference [125], graphical models
[96], dimension reduction [102], among others. It is frequently used in a wide range of
scientific and business applications, and we demonstrate its application with a cancer genetics
example later.

In this chapter, we aim at testing whether two random variables X and Y are conditionally
independent given a set of confounding variables Z. That is, we test the hypotheses:

H0 : X ⊥⊥ Y | Z versus H1 : X ̸⊥⊥ Y | Z, (6.1.1)

given the observed data of n i.i.d. copies {(Xi,Yi,Zi)}1≤i≤n of (X ,Y,Z). For our problem,
X ,Y and Z can all be multivariate. However, the main challenge arises when the confounding
set of variables Z is high-dimensional. As such, we primarily focus on the scenario with a
univariate X and Y , and a multivariate Z. Meanwhile, our proposed method is applicable
to the multivariate X and Y scenario as well. Another challenge is the limited sample size
compared to the dimensionality of Z. As a result, many existing tests are ineffective, with
either an inflated type-I error, or not having enough power to detect the alternatives. See
Section 6.2 for a detailed literature review.

To deal with those challenges, we propose a testing procedure based on double gener-
ative adversarial networks [GANs, 67] for the CI testing problem in (6.1.1). GANs have



76 Double Generative Adversarial Networks for Conditional Independence Testing

recently stood out as a powerful approach for learning and generating random samples from
a complex, high-dimensional data distribution. They have been successfully applied in
numerous applications, ranging from image processing and computer vision, to sequential
data modelling such as natural language, music, speech, and to medical fields such as DNA
design and drug discovery; see [69] for a review of the GANs applications. Moreover, there
have recently emerged works studying the consistency and rate of convergence of the GANs
estimators; see, e.g., [106, 31].

Our proposal involves two key components: a double GANs framework to learn two
generators that approximate the conditional distribution of X given Z, and Y given Z, respec-
tively, and a test statistic that is taken as the maximum of generalised covariance measures of
multiple transformation functions of X and Y . We first show that our test statistic is doubly-
robust, which offers an additional layer of protection against potential misspecification of
the conditional distributions; see Theorems 6.4.1 and 6.4.2. We then show that the resulting
test achieves a valid control of the type-I error asymptotically, and more importantly, under
the set of conditions that are much weaker and practically more feasible compare to the
existing tests; see Theorem 6.4.3. Besides, we prove that the power of our test approaches
one asymptotically; see Theorem 6.4.4, and we demonstrate through simulations that it is
more powerful than numerous competing tests empirically. In addition, we employ data
splitting and cross-fitting that allow us to derive the asymptotic properties under minimal
conditions on the generators, and employ multiplier bootstrap to obtain the corresponding
p-value of the test.

Our contributions are multi-fold. We develop a useful testing procedure for a fundamen-
tally important statistical inference problem. We establish the statistical guarantees under
much weaker conditions. We also give an example of how to utilise some state-of-the-art
deep learning tools, such as GANs, to address a classical but challenging statistical problem.

The rest of the chapter is organised as follows. Section 6.2 reviews some key existing CI
testing methods. Section 6.3 develops the double GANs-based testing procedure. Section 6.4
derives the theoretical properties. Section 6.5 presents the simulations and a cancer genetics
data example. Section 6.6 concludes the chapter. The Appendix collects all technical proofs.

6.2 Related work
There has been a large and growing literature on conditional independence testing; see
Li and Fan [103] for a review. Broadly speaking, the existing tests can be cast into four
main categories, the metric-based tests [e.g., 152, 153, 177, 122, 176], the conditional
randomisation-based tests [e.g., 29, 19], the kernel-based tests [e.g., 56, 194], and the
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regression-based tests [e.g., 77, 143]. There are also some other types of tests [e.g., 21, 22,
to name a few].

The metric-based tests typically employ some kernel smoothers to estimate the conditional
characteristic function or the distribution function of Y given X and Z. Kernel smoothers,
however, are known to suffer from the curse of dimensionality, and as such, these tests are
usually not suitable when the dimension of Z is high. The conditional randomisation-based
tests require the knowledge of the conditional distribution of X |Z [29]. If unknown, the type-I
error rates of these tests rely critically on the quality of the approximation of this conditional
distribution. Kernel-based tests are built upon the notion of maximum mean discrepancy
[MMD, 68], and could have inflated type-I errors. Regression-based tests have valid type-I
error control, but may suffer from inadequate power.

Next, we discuss in detail the conditional randomisation-based tests, in particular, the
work of [19], the regression-based tests, and the MMD-based tests, as our proposal is related
to and built on those methods. For each family of tests, we first lay out the main ideas, then
discuss their potential limitations.

6.2.1 Conditional randomisation-based tests
The family of conditional randomisation-based tests is built upon the following basis. If the
conditional distribution PX |Z of X given Z is known, then one can independently draw X (1)

i ∼
PX |Z=Zi , for i = 1, . . . ,n, where the superscript denotes the first round of draws. Besides, these
samples are independent of the observed samples Xi’s and Yi’s. Write XXX = (X1, . . . ,Xn)

⊤,
XXX (1) = (X (1)

1 , . . . ,X (1)
n )⊤, YYY = (Y1, . . . ,Yn)

⊤, and ZZZ = (Z1, . . . ,Zn)
⊤. Hereinafter we use

boldface letters to denote data matrices that consist of n samples. Since the joint distributions
of (XXX ,YYY ,ZZZ) and (XXX (1),YYY ,ZZZ) are the same under H0, any large difference between the two
distributions can be interpreted as evidence against H0. Therefore, one can repeat the
sample drawing process M times, i.e., X (m)

i ∼ PX |Z=Zi , i = 1, . . . ,n, m = 1, . . . ,M. Write

XXX (m) = (X (m)
1 , . . . ,X (m)

n )⊤. Then, for a given test statistic ρ = ρ(XXX ,YYY ,ZZZ), the associated
p-value is

p =
1
M

[
M

∑
m=1

I
{

ρ(XXX (m),YYY ,ZZZ)≥ ρ(XXX ,YYY ,ZZZ)
}]

,

where I(·) denotes the indicator function. Since the triplets (XXX ,YYY ,ZZZ),(XXX (1),YYY ,ZZZ), . . . ,
(XXX (M),YYY ,ZZZ) are exchangeable under H0, the above p-value is valid, in the sense that it
equals the significance level under the null hypothesis, i.e.,

Pr(p≤ α|H0) = α, for any 0 < α < 1.
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In practice, however, PX |Z is rarely known. [19] proposed to approximate PX |Z using
GANs. Specifically, they learned a generator GX(·, ·) from the observed data, then took
Zi along with an independent noise variable as the input to obtain a sample X̃ (m)

i , which
minimizes the divergence between the distributions of (Xi,Zi) and (X̃ (m)

i ,Zi). They computed

the p-value by replacing XXX (m) with X̃XX
(m)

= (X̃ (m)
1 , . . . , X̃ (m)

n )⊤. They called this test the
generative conditional independence test (GCIT). By Theorem 1 of [19], the excess type-I
error of this test is upper bounded as,

Pr(p≤ α|H0)−α ≤ E
{

dTV

(
P̃XXX |ZZZ,PXXX |ZZZ

)}
= E

{
sup

A

∣∣∣Pr(XXX ∈ A|ZZZ)−Pr(X̃XX
(m)
∈ A|ZZZ)

∣∣∣}≡ D,
(6.2.1)

where dTV is the total variation norm between two probability distributions P and Q such that
dTV(P,Q) = supA |P(A)−Q(A)|, the supremum is taken over all measurable sets A, and the
expectations in (6.2.1) are taken with respect to ZZZ.

By definition, the error term D in (6.2.1) measures the quality of the conditional distribu-
tion approximation. [19] argued that this error term is negligible due to the capacity of deep
neural networks in terms of estimating the conditional distribution. To the contrary, we find
this approximation error is usually not negligible, and consequently, it may inflate the type-I
error and invalidate the test. We consider a simple example to further elaborate this.

Example 6.2.1. Suppose X is one-dimensional, and follows a simple linear regression model,
X = Z⊤β0 + ε , where the error ε is independent of Z, and ε ∼ N(0,σ2

0 ) for some σ2
0 > 0.

Suppose we know a priori that the linear regression model holds. We thus estimate β0 by
ordinary least squares, and denote the resulting estimator by β̂ . For simplicity, suppose
σ2

0 is known too. For this simple example, we have the following result regarding the
approximation error D.

Proposition 2. Suppose the linear regression model holds, the dimension of Z is much
smaller than the sample size n, and the derived distribution P̃XXX |ZZZ is Normal(ZZZβ̂ ,σ2

0 In), where
In is the n×n identity matrix. Then D does not decay to zero.

To facilitate the understanding of the convergence behaviour of D, we sketch a few
lines of the proof of Proposition 2. The complete proof is given in the Appendix. Let
P̃X |Z=Zi denote the conditional distribution of X̃ (m)

i given Zi, which is Normal(Z⊤i β̂ ,σ2
0 ) in

this example. If D = o(1), then,

D̃≡ n1/2
√

E
{

d2
TV

(
P̃X |Z=Zi,PX |Z=Zi

)}
= o(1). (6.2.2)
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In other words, in order to control the type-I error, GCIT requires the total variation distance
measure in (6.2.2) to converge at a faster rate than n−1/2. However, this rate cannot be
achieved in general. In our Example 1, we have D̃≥ c for some constant c > 0. Consequently,
D in (6.2.1) is not o(1). Proposition 2 shows that, even if we know a priori that the linear
model holds, D does not decay to zero as n tends to infinity. In practice, we do not have such
prior model information. Then it would be even more difficult to estimate the conditional
distribution PX |Z . Therefore, using GANs to approximate PX |Z does not guarantee a negligible
approximation error.

6.2.2 Regression-based tests

The family of regression-based tests is built upon the generalised covariance measure,

GCM(X ,Y ) =
1
n

n

∑
i=1

{
Xi− Ê(Xi|Zi)

}{
Yi− Ê(Yi|Zi)

}
,

where Ê(X |Z) and Ê(Y |Z) are the estimated condition means E(X |Z) and E(Y |Z), respec-
tively, obtained by some supervised learner. When the prediction errors of Ê(X |Z) and
Ê(Y |Z) satisfy certain convergence rates, [143] proved that GCM is asymptotically normal
under H0, in which the asymptotic mean is zero, and the standard deviation can be consis-
tently estimated by some standard error estimator, denoted by ŝ(GCM). Therefore, at level
α , we reject H0, if |GCM|/ŝ(GCM) exceeds the upper α/2th quantile of a standard normal
distribution.

Such a test can control the type-I error. Nevertheless, it may not have sufficient power
to detect H1. Consider the asymptotic mean of GCM, which is GCM∗(X ,Y ) = E{X −
E(X |Z)}{Y −E(Y |Z)}. The regression-based tests require |GCM∗| to be nonzero under H1

to have power. However, it may be difficult to satisfy such a requirement. We again consider
a simple example.

Example 6.2.2. Suppose X∗, Y and Z are independent random variables. Besides, X∗ has
mean zero, and X = X∗g(Y ) for some function g.

For this example, we have E(X |Z) = E(X), since both X∗ and Y are independent of Z, and so
is X . Besides, E(X) =E(X∗)E{g(Y )}= 0, since X∗ is independent of Y and E(X∗) = 0. Thus
GCM∗(X ,Y ) = E{X −E(X)}{Y −E(Y |Z)} = 0 for any function g. On the other hand, X
and Y are conditionally dependent given Z, as long as g is not a constant function. Therefore,
for this example, the regression-based tests would fail to discriminate between H0 and H1.
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6.2.3 MMD-based tests

The family of MMD-based tests involves the maximum mean discrepancy as a measure of
independence. For any two probability measures P, Q and a function space F, define

MMD(P,Q|F) = sup f∈F {E f (W1)−E f (W2)} , where W1 ∼ P, W2 ∼ Q.

Let H1, H2 denote some function spaces of X and Y . Define

φXY = MMD(PXY ,QXY |H1⊗H2),

where ⊗ is the tensor product, PXY is the joint distribution of (X ,Y ) whose definition does
not rely on Z, and QXY is the conditionally independent distribution with the same X and
Y margins as PXY . Let X ′ and Y ′ be independent copies of X and Y , such that they are
conditionally independent given Z. Then QXY corresponds to the joint distribution of (X ′,Y ′).
Note that, to generate (X ′,Y ′), we need to first sample Z according to PZ , then generate X ′

and Y ′ that follow PX |Z and PY |Z , respectively. As such, QXY depends on Z, and φXY depends
on Z through QXY . Furthermore, since E{h1(X ′)h2(Y ′)}= E[E{h1(X ′)|Z}E{h2(Y ′)|Z}], we
have,

φXY = sup
h1∈H1,h2∈H2

[
E{h1(X)h2(Y )}−E{h1(X ′)h2(Y ′)}

]
= sup

h1∈H1,h2∈H2

(
E{h1(X)h2(Y )}−E[E{h1(X)|Z}E{h2(Y )|Z}]

)
= sup

h1∈H1,h2∈H2

(
E{h1(X)h2(Y )}−E[h1(X)E{h2(Y )|Z}]−E[{h1(X)|Z}h2(Y )]

+E[E{h1(X)|Z}E{h2(Y )|Z}]
)

= sup
h1∈H1,h2∈H2

E
[
h1(X)−E{h1(X)|Z}

][
h2(Y )−E{h2(Y )|Z}

]
.

As such, φXY measures the average conditional association between X and Y given Z. Under
H0, it equals zero, and hence an estimator of this measure can be used as a test statistic for
H0. Moreover, if H1 and H2 are reproducing kernel Hilbert spaces (RKHSs), then φXY has
a closed form expression in terms of the reproducing kernels of the RKHS [47, 68], which
makes the tests based on an estimator of φXY easier to evaluate.

A notable example of this family is the kernel MMD-based test (KCIT) of Zhang et al.
[194]. We next further discuss this test. To control the type-I error asymptotically, KCIT
requires the dimension dZ of Z to be fixed [194, Proposition 5], since it uses the continuous
mapping theorem to derive the limiting distribution of its test statistic. However, the continu-
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ous mapping theorem may not hold when dZ diverges with n. In addition, KCIT requires the
ℓ1 distance between the covariance operator and its empirical estimator to decay to zero. It
remains unknown whether such an assertion holds as dZ diverges. By contrast, the test we
develop allows dZ to diverge while maintaining the asymptotic control of the type-I error.
This implies that our test is expected to have a better size control than KCIT when dZ is large.
We later further verify this through numerical simulations. Moreover, the maximisation of
KCIT is done over unit balls in an RKHS, while our proposed test can deal with much more
general function spaces such as those generated by neural networks. Consequently, the power
of our test can be tailored to more general alternatives than KCIT. For instance, it is known
that deep neural networks learn certain non-smooth functions at a faster rate than kernel
methods [80]. This implies that our test is expected to have a better power than KCIT under
certain types of alternatives.

6.3 A new double GANs-based testing procedure

Moreover, to improve the power of the test, we consider a collection of the generalised
covariance measures, {GCM(h1(X),h2(Y )) : h1,h2}, for multiple combinations of trans-
formation functions h1(X) and h2(Y ). We then take the maximum of all these GCMs
as our test statistic. This essentially yields a type of maximum mean discrepancy mea-
sure φXY . To see why this statistic can enhance the power, we quickly revisit Exam-
ple 2. When g is not a constant function, there exists some nonlinear function h1 such
that h∗1(Y ) = E{h1(X)|Y} is not a constant function of Y . Set h2 = h∗1. We then have
GCM∗ = E[h1{X∗g(Y )}{Y −E(Y )}] = Var{h∗1(Y )} > 0, which enables us to discriminate
H1 from H0.

We note that the maximum of GCMs yields MMD. Instead of using kernels, we have
chosen GANs, because they have been shown to give good approximations of complex
distributions [80]. This allows the transformation functions h1 and h2 to be arbitrary function
spaces. We set these function spaces to the class of neural networks in our implementation.
In contrast, kernel based measures such as KCIT are limited to vector spaces of functions,
which can be problematic for a high-dimensional conditioning variable [47].

We also remark that, even though our proposal is built upon the existing CI tests, our test
is far from a simple extension. The major challenge lies in how to properly utilise the GAN
estimators for the purpose of high-dimensional conditional independence testing. Despite
the fact that GANs are capable of approximating complex high-dimensional probability
distributions, the GAN estimators have non-negligible bias that decays slower than the
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Fig. 6.1 Illustration of the conditional independence test with double GANs.

parametric root-n rate. Naively plugging the GAN estimators in the test statistic can invalidate
the subsequent inference.

We give a graphical overview of our proposed testing procedure in Figure 6.1. We
first employ double GANs to compute the test statistic that is the maximum of the GCMs
over multiple transform functions. We then employ multiplier bootstrap to compute the
corresponding p-value. We next detail the main components of our testing procedure.

6.3.1 Test statistic

We begin with two function spaces, H1 =
{

h1,θ1 : θ1 ∈ Rd1
}

and H2 =
{

h2,θ2 : θ2 ∈ Rd2
}

,
indexed by some parameters θ1 and θ2, respectively. In our implementation, we set H1 and
H2 to the classes of neural networks with a single-hidden layer, finitely many hidden nodes,
and the sigmoid activation function. However, a broad range of other function spaces may be
considered, as appropriate for the application at hand. We next randomly generate B functions,
h1,1, . . . ,h1,B ∈H1, h2,1, . . . ,h2,B ∈H2, where we independently generate i.i.d. multivariate
normal variables θ1,1, . . . ,θ1,B ∼ N(0,2Id1/d1), and θ2,1, . . . ,θ2,B ∼ N(0,2Id2/d2). We then
set h1,b = h1,θ1,b , and h2,b = h2,θ2,b , b ∈ [B] = {1, . . . ,B}. Consider the following maximum-
type test statistic,

T = max
b1,b2∈[B]

σ̂
−1
b1,b2

∣∣∣∣∣1n n

∑
i=1

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

][
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]∣∣∣∣∣ ,
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where σ̂2
b1,b2

is the sampling variance estimator,

σ̂
2
b1,b2

=
1

n−1

n

∑
i=1

([
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

][
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]
−1

n

n

∑
i=1

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

][
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

])2

.

To compute T , we need to estimate the conditional means, E{h1,b1(X)|Z} and E{h2,b2(Y )|Z},
which can be done by applying some supervised learning methods. However, this needs to be
performed for all b1,b2 ∈ [B]. In theory, B should diverge to infinity to guarantee the power
property of the test. As such, this approach is computationally very expensive. Instead, we
propose to implement this step based on the generators GX and GY estimated using GANs,
which is much more efficient computationally.

Specifically, we first randomly generate i.i.d. samples {v(m)
i,X }M

m=1, {v(m)
i,Y }M

m=1 from multi-

variate normal distribution, for i = 1, . . . ,n. We then feed Zi and v(m)
i,X into GANs to obtain the

pseudo samples X̃ (m)
i =GX(Zi,v

(m)
i,X ), and feed Zi and v(m)

i,Y to obtain Ỹ (m)
i =GY (Zi,v

(m)
i,Y ), for

i = 1, . . . ,n,m = 1, . . . ,M. These pseudo samples approximate the conditional distribution of
Xi and Yi given Zi, respectively. We then compute

Ê{h1,b1(X̃i)|Zi}=
1
M

M

∑
m=1

h1,b1(X̃
(m)
i ), Ê{h2,b2(Yi)|Zi}=

1
M

M

∑
m=1

h2,b2(Ỹ
(m)
i ),

for b1,b2 = 1, . . . ,B. Plugging the estimated means into T produces the sample test statistic,

T̂ = max
b1,b2

∣∣∣∣∣n−1/2
n

∑
i=1

ψb1,b2,i

∣∣∣∣∣ , where (6.3.1)

ψb1,b2,i = σ̂
−1
b1,b2

{
h1,b1(Xi)−

1
M

M

∑
m=1

h1,b1

(
X̃ (m)

i

)}{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2

(
Ỹ (m)

i

)}
.

To help reduce the type-I error, we further employ a data splitting and cross-fitting
strategy, which has been commonly used in statistical inferences in recent years [135]. That
is, we use different subsets of data samples to learn GANs and to construct the test statistic.
We begin by dividing the data into L folds of equal size. We use I(ℓ) to denote the set of
indices of subsamples in the ℓth fold, and I(−ℓ) its complement. We next learn two generators
G(ℓ)

X and G(ℓ)
Y , based on {(Xi,Zi)}i∈I(−ℓ) and {(Yi,Zi)}i∈I(−ℓ) , to approximate the conditional

distributions of X |Z and Y |Z, for ℓ= 1, · · · ,L. Finally, for each ℓ and i ∈ I(ℓ), we generate
the pseudo samples X̃ (m)

i and Ỹ (m)
i using G(ℓ)

X and G(ℓ)
Y , and construct T̂ as in (6.3.1). In this
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Algorithm 4: Algorithm for computing the test statistic.
Input: The number of transformation functions B, the number of pseudo samples M, and

the number of data splits L.
Step 1: Divide {1, . . . ,n} into L folds I(1), . . . ,I(L). Denote I(−ℓ) = {1, . . . ,n}\I(ℓ).
Step 2: For ℓ= 1, . . . ,L, train two generators G(ℓ)

X and G(ℓ)
Y based on {(Xi,Zi)}i∈I(−ℓ) and

{(Yi,Zi)}i∈I(−ℓ) , to approximate the conditional distributions of X |Z and Y |Z.

Step 3: For ℓ= 1, . . . ,L and i ∈ Iℓ, generate i.i.d. random noises
{

v(m)
i,X

}M

m=1
,
{

v(m)
i,Y

}M

m=1
.

Set X̃ (m)
i =G(ℓ)

X

(
Zi,v

(m)
i,X

)
, and Ỹ (m)

i =G(ℓ)
Y

(
Zi,v

(m)
i,Y

)
, m = 1, . . . ,M.

Step 4: Randomly generate h1,1, . . . ,h1,B ∈H1 and h2,1, . . . ,h2,B ∈H2.
Step 5: Compute the test statistic T̂ .

way, X̃ (m)
i and Ỹ (m)

i are conditionally independent of the observations in I(ℓ) given Zi. Such a
cross-fitting strategy allows us to derive the asymptotic properties of the test under minimal
conditions on the generators.

We summarise our procedure of computing the test statistic in Algorithm 4.

6.3.2 Approximation of conditional distribution via GANs

There are numerous GANs methods available for learning high-dimensional distributions.
We adopt the proposal of [61] to learn the conditional distributions PX |Z and PY |Z in our
setting thanks to its competitive performance. Recall that P̃X |Z is the distribution of pseudo
outcome generated by the generator GX given Z. We consider estimating PX |Z by optimising

min
GX

max
c

D̃c,ε(PX |Z, P̃X |Z).

Here D̃c,ε denotes the Sinkhorn loss function between two probability measures with respect
to some cost function c and some regularisation parameter ε > 0,

D̃c,ε(µ,ν) = 2Dc,ε(µ,ν)−Dc,ε(µ,µ)−Dc,ε(ν ,ν),

Dc,ε(µ,ν) = inf
π∈Π(µ,ν)

∫
x,y

{
c(x,y)− εH(π|µ⊗ν)

}
π(dx,dy),

where Π(µ,ν) is a set containing all probability measures π whose marginal distributions
correspond to µ and ν , H is the Kullback-Leibler divergence, and µ ⊗ ν is the product
measure of µ and ν . When ε = 0, Dc,0(µ,ν) measures the optimal transport of µ into ν with
respect to the cost function c(·, ·) [37]. When ε ̸= 0, an entropic regularisation is added to
this optimal transport. As such, the objective function Dc,ε is a regularised optimal transport
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metric, and the regularisation is to facilitate the computation, so that Dc,ε can be efficiently
evaluated.

Intuitively, the closer the two probability measures, the smaller the Sinkhorn loss. As such,
maximising the loss with respect to the cost function learns a discriminator that can better
discriminate the samples generated between PX |Z and P̃X |Z . On the other hand, minimising the
maximum cost with respect to the generator GX makes it closer to the true distribution PX |Z .
This yields the minimax formulation minGX maxc D̃c,ε(PX |Z, P̃X |Z) that we target. In practice,
we approximate the cost and the generator based on neural networks. Integrations in the
objective function D̃c,ε(PX |Z, P̃X |Z) are approximated by sample averages. The conditional
distribution of PY |Z is estimated similarly.

6.3.3 Bootstrap for the p-value

Next, we propose a multiplier bootstrap method to approximate the distribution of T̂ under H0

and compute the corresponding p-value. Let ψb1,b2 = n−1
∑

n
i=1 ψb1,b2,i. The key observation

is that {ψb1,b2}B
b1,b2=1 are asymptotically multivariate normal with zero mean under H0; see

the proof of Theorem 6.4.3 for details. Consequently, T̂ = maxb1,b2 |n−1/2
∑

n
i=1 ψb1,b2,i| is to

converge to a maximum of normal variables in absolute values.
To approximate this limiting distribution, we first estimate the covariance matrix of a

B2-dimensional vector formed by {n−1/2ψb1,b2}B
b1,b2=1 using the sample covariance matrix

Σ̂, whose {b1 +B(b2−1),b3 +B(b4−1)}th entry is given by

1
n

n

∑
i=1

(ψb1,b2,i−ψb1,b2)(ψb3,b4,i−ψb3,b4), b1,b2,b3,b4 = 1, . . . ,B.

We then generate i.i.d. random vectors with the covariance matrix equal to Σ̂. This can
be achieved by generating i.i.d. standard normal variables {Wi, j}i, j for 1 ≤ i · · · ≤ n and
j = 1, · · · ,J, then compute B2-dimensional normal random vectors WWW j whose {b1 +B(b2−
1)}th entry is given by n−1/2

∑
n
i=1(ψb1,b2,i−ψb1,b2)Wi, j for j = 1, · · · ,J. We next compute

T̃j = ∥WWW j∥∞, for j = 1, . . . ,J, where ∥ · ∥∞ is the maximum element of a vector in absolute
value, and J is the number of bootstrap samples. Finally, we use these maximum absolute
values to approximate the distribution of T̂ under the null hypothesis. This yields the p-value,
p = J−1

∑
J
j=1 I(T̂ ≥ T̃j). We summarise this bootstrap procedure in Algorithm 5.
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6.4 Asymptotic theory

To derive the theoretical properties of the test statistic T̂ , we first introduce the concept of the
“oracle" test statistic T ∗. If PX |Z and PY |Z were known a priori, then one can draw {X (m)

i }m

and {Y (m)
i }m from PX |Z=Zi and PY |Z=Zi directly, and can compute the test statistic by replacing

{X̃ (m)
i }m and {Ỹ (m)

i }m with {X (m)
i }m and {Y (m)

i }m. We call the resulting T ∗ an “oracle" test
statistic. We next establish the double-robustness property of T̂ , which helps explain why
our test can relax the requirement in (6.2.2). Roughly speaking, the double-robustness means
that T̂ is asymptotically equivalent to T ∗ when either the conditional distribution of X |Z, or
that of Y |Z, is well approximated by GANs. It guarantees that T̂ converges to T ∗ at a faster
rate than the estimated conditional distribution. In contrast, the convergence rate of the GCIT
test statistic is the same as the rate of the estimated conditional distribution. For this reason,
our procedure only requires a weaker condition.

Theorem 6.4.1 (Double-robustness). Suppose M is proportional to n, and B=O(nc) for some
constant c> 0. Suppose minh1∈H1,h2∈H2 Var[{h1(X)−E{h1(X)|Z}}{h2(Y )−E{h2(Y )|Z}}]≥
c∗ for some constant c∗ > 0. Then, T̂ −T ∗ = op(1), when

E
[
d2

TV

{
Q̃(ℓ)

X (·|Z),QX(·|Z)
}]

= o(log−1 n), or E
[
d2

TV

{
Q̃(ℓ)

Y (·|Z),QY (·|Z)
}]

= o(log−1 n).

We note that the conditions on M and B are mild, as these are user-specified parameters. As
we have mentioned, when both total variation distances converge to zero, the test statistic T
converges at a faster rate than those total variation distances. Therefore, we can greatly relax
the condition in (6.2.2), and replace it with,[

E
{

d2
TV

(
P̃(ℓ)

X |Z,PX |Z

)}]1/2
= O(n−κx), and

[
E
{

d2
TV

(
P̃(ℓ)

Y |Z,PY |Z

)}]1/2
= O(n−κy),(6.4.1)

for some constants 0 < κx,κy < 1/2 and any ℓ ∈ [L], where P̃(ℓ)
X |Z and P̃(ℓ)

Y |Z denote the condi-
tional distributions approximated via GANs trained on the ℓ-th subset of data samples. The
next theorem summarises this discussion.

Algorithm 5: Algorithm for computing the p-value.

Input: The number of bootstrap samples J, and {ψb1,b2,i}
B,n
b1,b2=1,i=1.

Step 1: Generate i.i.d. standard normal variables Wi, j for i = 1, · · · ,n, j = 1, . . . ,J.
Step 2: Compute B2-dimensional normal random vectors WWW j whose {b1 +B(b2−1)}th

entry is given by n−1/2
∑

n
i=1(ψb1,b2,i−ψb1,b2)Wi, j and set T̃j = ∥WWW j∥∞ for j = 1, · · · ,J.

Step 3: Compute the p-value, p = J−1
∑

J
j=1 I(T̂ ≥ T̃j).
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Theorem 6.4.2. Suppose the conditions in Theorem 6.4.1. Furthermore, suppose (6.4.1)
holds. Then, T̂ −T ∗ = Op

(
n−(κx+κy) logn

)
.

Since κx,κy > 0, the convergence rate of (T̂ −T ∗) is faster than that in (6.4.1). To ensure
√

n(T −T ∗) = op(1), it suffices to require κx +κy > 1/2. In contrast to (6.2.2), this rate is
achievable. We consider two examples in [22] to illustrate this, while the condition holds in
a much wider range of settings.

Example 6.4.1 (Parametric setting). Suppose the parametric forms of QX and QY are correctly
specified. Then under certain regularity conditions, the requirement κx +κy > 1/2 holds if
kx = O(ntx) and ky = O(nty) for some tx + ty < 1/2, where kx and ky are the dimensions of
the parameters defining the parametric models for QX and Qy, respectively.

Example 6.4.2 (Nonparametric setting with binary data). Suppose X ,Y are binary variables.
Then the requirement κx + κy > 1/2 holds if the mean squared prediction errors of the
nonparametric estimators of the conditional means of X and Y given Z are O(n−tx) and
O(n−ty) for some tx, ty, such that tx + ty > 1/2.

We briefly remark that, there is no explicit specification on dZ in the statement of Theorem
6.4.2. It is implicitly imposed due to the requirement that κx+κy > 1/2, and dZ is allowed to
diverge with the sample size. In addition, the condition κx +κy > 1/2 can be further relaxed
to κ1,κ2 > 0 using the theory of higher order influence functions [? ? ? ]. However, the
resulting estimators would be considerably much more complicated, and thus we do not
pursue those estimators.

Next, we show that our proposed test can control the type-I error asymptotically.

Theorem 6.4.3. Suppose the conditions in Theorem 6.4.1 hold. Suppose (6.4.1) holds for
some κx, κy such that κx + κy > 1/2. Then, the p-value from Algorithm 5 satisfies that
Pr(p≤ α|H0) = α +o(1).

Next, to derive the asymptotic power of the test, we introduce the pair of hypotheses
based on the notion of weak conditional independence [39],

H∗0 : E[cov{ f (X),g(Y )|Z}] = 0, for any f ∈ L2
X ,g ∈ L2

Y versus

H∗1 : E[cov{ f (X),g(Y )|Z}] ̸= 0, for some f ∈ L2
X ,g ∈ L2

Y ,

where L2
X and L2

Y denote the class of all squared integrable functions of X and Y , respectively.
We note that conditional independence implies weak conditional independence, i.e., H0

implies H∗0, and H∗1 implies H1. We consider an example to further elaborate on the
difference between weak CI and CI.
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Example 6.4.3. Let X ,Y,Z be binary random variables with the distribution functions,(
Pr(X = 0,Y = 0|Z = 0) Pr(X = 0,Y = 1|Z = 0)
Pr(X = 1,Y = 0|Z = 0) Pr(X = 1,Y = 1|Z = 0)

)
=

(
1/6 1/3
1/3 1/6

)
,(

Pr(X = 0,Y = 0|Z = 1) Pr(X = 0,Y = 1|Z = 1)
Pr(X = 1,Y = 0|Z = 1) Pr(X = 1,Y = 1|Z = 1)

)
=

(
1/3 1/6
1/6 1/3

)
,

and Z takes the value {0,1} with equal probability. We can show that, for any x,y ∈ {0,1},

E{Pr(X = x|Z)Pr(Y = y|Z)}= 1
2
× 1

2
=

1
4
,

Pr(X = x,Y = y) =
1
2

{
Pr(X = x,Y = y|Z = 0)+Pr(X = x,Y = y|Z = 1)

}
=

1
2
×
(

1
6
+

1
3

)
=

1
4
.

By definition, this implies that X and Y are weakly conditionally independent given Z, since

E[cov{ f (X),g(Y )|Z}] = ∑
x,y

f (x)g(y)
{

Pr(X = x,Y = y)

−E
{

Pr(X = x|Z)Pr(Y = y|Z)
}}

= 0.

However, Pr(X = 0,Y = 0|Z = 0) ̸= Pr(X = 0|Z = 0)Pr(Y = 0|Z = 0), since the former
equals 1/6, and the latter equals 1/4. As such, X and Y are not conditionally independent
given Z.

The next theorem shows that our proposed test is consistent against the alternatives in
H∗1, but not against all alternatives in H1.

Theorem 6.4.4. Suppose the conditions in Theorem 6.4.3 hold, B = c0nc for some c0,c > 0,
and X , Y are bounded random variables. Then the p-value from Algorithm 5 satisfies that
Pr(p≤ α|H∗1)→ 1, as n→ ∞.

Finally, we remark that our test is constructed based on φXY . Meanwhile, we may consider
another test based on φXY Z = MMD(PXY Z,QXY Z|H1⊗H2⊗H3), where PXY Z is the joint
distribution of (X ,Y,Z), QXY Z = PX |ZPY |ZPZ , and H3 is a neural network class of functions
of Z. This type of test is consistent against all alternatives in H1. However, in our numerical
experiments, we find it less powerful compared to our test. This agrees with the observation
by [103] in that, even though the tests based on weak CI cannot fully summarise CI, they
potentially enjoy an improved power.
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6.5 Numerical studies

We begin with a discussion of some implementation details. We then carry out simulations to
study the empirical size and power of the proposed test, and compare with several alternative
methods. We further illustrate with an application to a cancer genetics example.

6.5.1 Implementation details

For the number of functions B in Algorithm 6.4.1, it represents a trade-off. By Theorem 6.4.4,
B should be as large as possible to guarantee a good power. In practice, the computation
complexity increases as B increases. Our numerical studies suggest that the value of B
between 30 and 50 achieves a good balance between the power and the computational cost,
and we fix B = 30. For the number of pseudo samples M, and the number of sample splittings
L, we find the results are not overly sensitive to their choices, and thus we fix M = 100 and
L = 3. Besides, we set the number of bootstrap samples J = 1000.

For the GANs, we use a single-hidden layer neural network to approximate both the
discriminator and the generator. The number of nodes in the hidden layer is set at 128.
The dimension of the input noise v(m)

i,X and v(m)
i,Y is set at 10. These tuning parameters are

chosen following the common practice in the GANs literature, and also by investigating the
goodness-of-fit of the resulting generator, which can be done by comparing the conditional
histogram of the generated samples to that of the true samples. In our experiments, we find
such an approach yields GANs with satisfactory performances. More specifically, let dZ

denote the dimension of Z, and µ̂Z the sample average n−1
∑i Zi. Let Ỹi = GY (Zi,vi,Y ) denote

a simulated sample to approximate the distribution of Y |Z = Zi obtained by the generator
GY . When GY is accurate, we expect the conditional distribution of Ỹi and Yi given Zi are
similar. As such, for any dZ-dimensional vector a, the histograms {Ỹi : a⊤(Z̃i− µ̂Z)> 0} and
{Yi : a⊤(Zi− µ̂Z)> 0} should be similar. We sample i.i.d. vectors {ag}g from Normal(0, IdZ).
For each g, we plot the histogram {Yi : a⊤g (Zi− µ̂Z)> 0} and {Ỹ (m)

i : a⊤g (Zi− µ̂Z)> 0}. See
Figures 6.2 (a) and (b) for the conditional histograms with two choices of ag. It is seen that
the GANs fit the conditional density reasonably well. The fitted conditional distribution for
PX |Z can be checked in a similar fashion.
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(a) One random value of ag (b) Another random value of ag

Fig. 6.2 Conditional histograms. GANs are trained using data generated from the simulation
study in Section 6.5.2.

6.5.2 Simulations

We generate the data following the post nonlinear noise model similarly as in [194, 47, 19],
i.e.,

X = sin(a⊤f Z + ε f ), and Y = cos(a⊤g Z +bX + εg).

The entries of a f ,ag are randomly and uniformly sampled from [0,1], then normalized to the
unit ℓ1 norm. The noise variables ε f ,εg are independently sampled from a normal distribution
with mean zero and variance 0.25. In this model, the parameter b determines the degree of
conditional dependence. When b = 0, H0 holds, and otherwise H1 holds. The sample size is
set at n = 1000.

We call our test DGCIT, short for double GANs-based conditional independence test. We
compare it with the GCIT test of [19], the regression-based test (RCIT) of [143], the kernel
MMD-based test (KCIT) of [194], and the classifier CI test (CCIT) of [142].

We first study the empirical size when b = 0. We vary the dimension of Z as dZ =

50,100,150,200,250, and consider two generation distributions. We first generate Z from a
standard normal distribution, then from a Laplace distribution. We set the significance level
at α = 0.05 and 0.1. Figure 6.3 reports the empirical size of the tests aggregated over 500
data replications. We make the following observations. First, the type-I error rates of our
test and RCIT are close to or below the nominal level in nearly all cases. Second, KCIT
fails in that its type-I error is considerably larger than the nominal level in all cases. We
suspect it is due to the high-dimensional setting where dZ ≥ 50. We have experimented with
dZ = 5, and found that KCIT is able to control the type-I error in that case. This is consistent
with Proposition 5 of [194], which suggests that KCIT should work in a low-dimensional
setting. Third, GCIT and CCIT both have inflated type-I errors in some cases. Take GCIT
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Fig. 6.3 The empirical type-I error rate of various tests under H0. Left panels: α = 0.05,
right panels: α = 0.1. Top panels: Z is normal, bottom panels: Z is Laplacian.

as an example. When Z is normal, dZ = 250 and α = 0.1, its empirical size is close to 0.15.
This is consistent with our discussion in Section 6.2.1, since GCIT requires a rather strong
condition to control the type-I error.

We then study the empirical power when b > 0. We generate Z from a standard normal
distribution, with dZ = 100,200, and vary the value of b = 0.3,0.45,0.6,0.75,0.9 that con-
trols the magnitude of the alternative. Figure 6.4 reports the empirical power of the tests over
500 data replications. We observe that our test is the most powerful, and the empirical power
approaches 1 as b increases to 0.9, demonstrating the consistency of the test. Meanwhile,
both GCIT and RCIT have no power in all cases. We do not report the power of KCIT,
because as we have shown earlier, it cannot control the size, and thus its empirical power is
not meaningful.

Finally, we discuss the computation time. All experiments were run on a 16 N1 CPUs
Google Cloud Computing platform. The wall clock time for running the entire GCIT test for
one data replication was about 2.5 minutes. In contrast, the running time for CCIT was about
2 minutes, for KCIT about 30 seconds, and for GCIT and RCIT about 20 seconds.
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Fig. 6.4 The empirical power of various tests under H1. Left panels: α = 0.05, right panels:
α = 0.1. Top panels: dZ = 100, bottom panels: dZ = 200.

6.5.3 Anti-cancer drug data example

We illustrate our proposed test with an anti-cancer drug dataset from the Cancer Cell Line
Encyclopedia (CCLE) [17]. We concentrate on a subset, the CCLE data, that measures the
treatment response of drug PLX4720. It is well known that the patient’s cancer treatment
response to drug can be strongly influenced by alterations in the genome [59]. This data
measures 1638 genetic mutations of n = 472 cell lines, and the goal of our analysis is to
determine which genetic mutation is significantly correlated with the drug response after
conditioning on all other mutations. The same data was also analysed in [155] and [19]. We
adopt the same screening procedure as theirs to screen out irrelevant mutations, which leaves
a total of 466 potential mutations for our conditional independence testing.

The ground truth is unknown for this data. Instead, we compare with the variable
importance measures obtained from fitting an elastic net (EN) model and a random forest
(RF) model as reported in [17]. In addition, we compare with the GCIT test of [19]. Table 6.1
reports the corresponding variable importance measures and the p-values, for 10 mutations
that were also reported by [19]. We see that, the p-values of the tests generally agree well with
the variable important measures from the EN and RF models. Meanwhile, the two conditional
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Table 6.1 The variable importance measures of the elastic net and random forest models,
versus the p-values of the GCIT and DGCIT tests for the anti-cancer drug example.

BRAF.V600E BRAF.MC HIP1 FTL3 CDC42BPA THBS3 DNMT1 PRKD1 PIP5K1A MAP3K5

EN 1 3 4 5 7 8 9 10 19 78
RF 1 2 3 14 8 34 28 18 7 9

GCIT <0.001 <0.001 0.008 0.521 0.050 0.013 0.020 0.002 0.001 <0.001
DGCIT 0 0 0 0 0 0 0 0 0 0.794

independence tests agree relatively well, except for two genetic mutations, MAP3K5 and
FTL3. GCIT concluded that MAP3K5 is significant (p < 0.001) but FTL3 is not (p = 0.521),
whereas our test leads to the opposite conclusion that MAP3K5 is insignificant (p = 0.794)
but FTL3 is (p = 0). Besides, both EN and RF place FTL3 as an important mutation. We
then compare our findings with the cancer drug response literature. Actually, MAP3K5 has
not been previously reported in the literature as being directly linked to the PLX4720 drug
response. Meanwhile, there is strong evidence showing the connections of the FLT3 mutation
with cancer response [161, 98]. Combining the existing literature with our theoretical and
synthetic results, we have more confidence about the findings of our proposed test.

6.6 Discussion

In this chapter, we have developed a new inferential procedure for high-dimensional condi-
tional independence testing, where the dimension of the conditional variables can diverge
with the sample size. Our proposal utilises a set of state-of-the-art deep learning tools to
help address a classical statistics and machine learning problem. It integrates GANs, neural
networks, cross-fitting and multiplier bootstrap. It achieves the asymptotic guarantees under
much weaker conditions, and enjoys better empirical performances, when compared to the
existing tests. As a tradeoff, our test is computationally more complicated. Nevertheless, the
wall clock time for running the entire test for one data replication is in the order of a few
minutes and is deemed reasonable. Finally, the computer code is publicly available on the
GitHub repository: https://github.com/tianlinxu312/dgcit.

https://github.com/tianlinxu312/dgcit




Chapter 7

Future Research

In this thesis, we reviewed the most representative deep generative models from the proba-
bilistic modelling perspective, explained the concept of Optimal Transport and its application
in generative modelling, and introduced the theory of Causal Optimal Transport (COT) which
enforces a causality constraint on the transport plans. In the presented works, we demon-
strated the applicability of COT for various tasks in machine learning. The performance
of algorithms built on COT suggests that constraining the transport plans to be causal is a
promising direction for learning sequential data.

The results of COT-GAN in Chapter 3 (see also [187]) and KCCOT-GAN in Chapter 4
(see also [185]) indicate that the models are capable of capturing both the spatial and temporal
features for video generation and prediction. Furthermore, SPATE-GAN in Chapter 5 (see
also [95]) shows that performance increases on a range of different datasets emulating the
real-world complexities of spatio-temporal dynamics can be achieved by leveraging human
expert knowledge. In addition, Chapter 6 (see also [144]) shows how to utilise the state-of-
the-art generative models to help address the classical but challenging statistical problem of
conditional independence testing.

As a generic metric, COT has a wide range of potential applications. For example, the
conditional version of COT-GAN can be used to predict the movement of stock prices. Whilst
the noise in video data can be negligible, financial data typically requires special care before
modelling in order to achieve reliable predictions. In particular, neural networks are sensitive
to outliers which need to be dealt with in the stage of data pre-processing. Another potential
application of COT is the field of natural language processing. It is known that a word
in a sentence can be determined by not only those that appear before but also those that
come after. For this reason, some state-of-the-art language models assume bi-directional
correlation in the sequences of language data, see e.g. [170, 42]. An interesting direction for
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future research would be to utilise COT to capture the correlation from both directions of the
sequences.
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Appendix A

COT-GAN

A.1 Specifics on regularized Causal Optimal Transport

A.1.1 The MMD limiting case.

In the limit ε → ∞, Genevay et al. [62] showed that Wc,ε(µ,ν)→MMD−c(µ,ν) under the
kernel defined by −c(x,y). Here we want to point out an interesting fact about the limiting
behavior of the mixed Sinkhorn divergence.

Remark A.1.1. Given distributions of mini-batches x̂ and ŷ formed by samples from µ and
ν , respectively, in the limit ε → ∞, the Sinkhorn divergence Ŵc,ε(x̂, ŷ) converges to a biased
estimator of MMD−c(µ,ν); given additional x̂′ and ŷ′ from µ and ν , respectively, the mixed
Sinkhorn divergence Ŵmix

c,ε (x̂, x̂′, ŷ, ŷ′) converges to an unbiased estimator of MMD−c(µ,ν).

Proof. The first part of the statement relies on the fact that MMD−c(x̂, ŷ) is a biased estimator
of MMD−c(µ,ν). Indeed, we have

Ŵc,ε(x̂, ŷ)
ε→∞−→MMD−c(x̂, ŷ) =−

1
m2

m

∑
i=1

m

∑
j=1

[c(xi,x j)+ c(yi,y j)−2c(xi,y j)].

Now note that

1
m2

m

∑
i=1

m

∑
j=1

E[c(xi,x j)] =
1

m2

[
m

∑
i=1

Eµ [c(xi,xi)]+∑
i ̸= j

Eµ⊗µ [c(xi,x j)]

]

=
m−1

m
Eµ⊗µ [c(x,x′)],
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where we have used the fact that c(xi,xi) = 0. A similar result holds for the sum over c(yi,y j).
On the other hand, 1

m2 ∑i jE[c(xi,y j)] = Eµ⊗ν [c(x,y)]. Therefore

EMMD−c(x̂, ŷ) =−
m−1

m
[Eµ⊗µ [c(x,x′)]+Eν⊗ν [c(y,y′)]]+2Eµ⊗ν [c(x,y)]

̸= MMD−c(µ,ν),

which completes the proof of the first part of the statement.
For the second part, note that Wc,ε(µ,ν)→ Eµ⊗µ [c(x,x′)] as ε → ∞ [62, Theorem 1],

thus

Ŵmix
c,ε (x̂, x̂

′, ŷ, ŷ′)→ Ex̂⊗ŷ[c(x,y)]+Ex̂′⊗ŷ′[c(x
′,y′)]−Ex̂⊗x̂′[c(x,x

′)]−Eŷ⊗ŷ′[c(y,y
′)]

=
1

m2

m

∑
i=1

m

∑
j=1

[c(xi,yi)+ c(x′i,y′i)− c(xi,x′i)− c(yi,y′i)].

The RHS is an unbiased estimator of MMD, since its expectation is

Eµ⊗ν [c(x,y)]+Eµ⊗ν [c(x′,y′)]−Eµ⊗µ [c(x,x′)]−Eν⊗ν [c(y,y′)] = MMD−c(µ,ν).

The mixed divergence may still be a biased estimate of the true Sinkhorn divergence.
However, in the experiment of Example 3.2.4 we note that the minimum is reached for the
parameter θ close to the real one (Figure 3.1, bottom).

A.2 Experimental details

A.2.1 Low dimensional time series

Here we describe details of the experiments in Section 3.4.1.

Autoregressive process. The generative process to obtain data xt for the autoregressive
process is

xt = Axt−1 +ζζζ t , ζζζ t
i.i.d∼ N(0,ΣΣΣ), ΣΣΣ = 0.5I+0.5,

where A is diagonal with ten values evenly spaced between 0.1 and 0.9. We initialize x0

from a 10-dimensional standard normal, and ignore the data in the first 10 time steps so that
the data sequence begins with a more or less stationary distribution. We use λ = 0.1 and
ε = 10.0 for this experiment.
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Fig. A.1 1-D noisy oscillation. Same distributions as in 3.7 are shown.

Noisy oscillation. This dataset comprises paths simulated from a noisy, nonlinear dynami-
cal system. Each path is represented as a sequence of d-dimensional arrays, T time steps
long, and can be displayed as a d×T -pixel image for visualization. At each discrete time
step t ∈ {1, . . . ,T}, data at time t, given by xt ∈ [0,1]d , is determined by the position of a
“particle” following noisy, nonlinear dynamics. When shown as an image, each sample path
appears visually as a “bump” travelling rightward, moving up and down in a zig-zag pattern
as shown in Figure A.1 (top left).

More precisely, the state of the particle at time t is described by its position and velocity
st = (st,1,st,2) ∈ R2, and evolves according to

st = f(st−1)+ζζζ t , ζζζ t =N(0,0.1I),

f(st−1) = ctAst−1; ct =
1

∥st−1∥2 exp(−4(∥st−1∥2−0.3)+1)
,

where A ∈ R2×2 is a rotation matrix, and s0 is uniformly distributed on the unit circle.
We take T = 48 and d = 20 so that xt is a vector of evaluations of a Gaussian function at

20 evenly spaced locations, and the peak of the Gaussian function follows the position of the
particle st,1 for each t:

xt,i = exp
[
−
(loc(i)− st,1)

2

2×0.32

]
,

where loc : {1, . . . ,d}→ R maps pixel indices to a grid of evenly spaced points in the space
of particle position. Thus, xt , the observation at time t, contains information about st,1 but
not st,2. A similar data generating process was used in [182], inspired by ? ].
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We compare the marginal distribution of the pixel values xt,i and joint distribution of the
bump location (argmaxi xt,i) between adjacent time steps. See Figure A.1.

Electroencephalography. For COT-GAN, we train three variants corresponding to λ being
one of {1.0,0.1,0.01}, and ε = 100.0 for all OT-based methods.

Model and training parameters. The dimensionality of the latent state is 10 at each time
step, and there is also a 10-dimensional time-invariant latent state. The generator common to
COT-GAN, direct minimization and SinkhornGAN comprise a 1-layer (synthetic) or 2-layer
(EEG) LSTM networks, whose output at each time step is passed through two layers of fully
connected ReLU networks. We used Adam for updating θ and ϕ , with learning rate 0.001.
Batch size is 32 for all methods except for direct minimization of the mixed and original
Sinkhorn divergence which is trained with batch size 64. These hyperparameters do not
substantially affect the results.

The same discriminator architecture is used for both h and M in COT-GAN and the
discriminator of the SinkhornGAN. This network has two layers of 1-D causal CNN with
stride 1, filter length 5. Each layer has 32 (synthetic data) or 64 neurons (EEG) at each time
step. The activation is ReLU except at the output which is linear for autoregressive process,
sigmoid for noisy oscillation, and tanh for EEG.

For COT-GAN, λ = 10.0 and ε = 10 for synthetic datasets, and λ ∈ {0.01,0.1,1.0} and
ε = 100.0 for EEG. The choice of ε is made based on how fast it converges to a particular
threshold of the transport plan, and each iteration takes around 1 second on a 2.6GHz Xeon
CPU.

A.2.2 Videos datasets

Sprite animations

Data pre-processing. The sprite sheets can be created and downloaded from 1. The data
can be generated with various feature options for clothing, hairstyle and skin color, etc.
Combining all feature options gives us 6352 characters in total. Each character performs
spellcast, walk, slash, shoot and hurt movements from different directions, making up to
a total number of 21 actions. As the number of frames T ranges from 6 to 13, we pad
all actions to have the same length T = 13 by repeating previous movements in shorter

1Original dataset is available at gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
and github.com/jrconway3/Universal-LPC-spritesheet. To facilitate the use of large dataset in
TensorFlow, we pre-shuffled all data used and wrote into tfrecord files. Links for download can be found on the
Github repository.

https://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator
https://github.com/jrconway3/Universal-LPC-spritesheet


A.2 Experimental details 115

sequences. We then crop the characters from sheets to be in the center of each frame, which
gives a dimension of 64×64×4 for each frame. We decide to drop the 4th color channel
(alpha channel) to be consistent with the input setting of baseline models. Finally, the
resulting dataset has 6352 data points consisting of sequences with 13 frames of dimensions
64×64×3.

The Weizmann Action database

Data pre-processing. The videos in this dataset consists of clips that have lengths from
2 to 7 seconds. Each second of the original videos contains 25 frames, each of which has
dimension 144x180x3. To avoid the absence of objects at the beginning of the videos and to
ensure an entire evolution of motions in each sequence, we skip the first 5 frames, then skip
every 2 frames and collect 16 frames in a whole sequence as a result. Due to limited access
to hardware, we also downscale each frame to 64×64×3. The training set used contains 89
data points with dimensions 16×64×64×3.

GAN architectures. We detail the GAN architectures used in the experiment of the
Weizmann Action database in Table C.1 and Table C.2. A latent variable z of shape 5×5 per
time step is sampled from a multivariate standard normal distribution and is then passed to
a 2-layer LSTM to generate time-dependent features, followed by 4-layer deconvolutional
neural network (DCONV) to map the features to frames. In order to connect two different
types of networks, we map the features using a feedforward (dense) layer and reshape them
to the desired shape for DCNN. In Table C.1 and C.2, the DCONV layers have N filter size,
K kernel size, S strides and P padding option. We adopted batch-normalisation layers and
the LeakyReLU activation function. We have two networks to parameterize the process h
and M as discriminator share the same structure, shown in Table C.2.

We use a fixed length T = 16 of LSTM. The state size in the last LSTM layer corresponds
to the dimensions of ht and Mt , i.e., j in (3.2.13). We also applied exponential decay to
learning rate by ηt = η0rs/c where η0 is the initial learning rate, r is decay rate, s is the
current number of training steps and c is the decaying frequency. In our experiments, we
set the initial learning rate to be 0.001, decay rate 0.98, and decaying frequency 500. The
batch size m and time steps T used are both 16. We have λ = 0.01, ε = 6.0 and the Sinkhorn
L = 100 in this experiment. We train COT-GAN on a single NVIDIA Tesla P100 GPU for 3
or 4 days. Each iteration takes roughly 1.5 seconds.
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Table A.1 Generator architecture.

Generator Configuration
Input z∼N(0,I)

0 LSTM(state size = 128), BN
1 LSTM(state size = 256), BN
2 Dense(8*8*512), BN, LeakyReLU
3 reshape to 4D array of shape (m, 8, 8, 512) as input for DCONV
4 DCONV(N512, K5, S1, P=SAME), BN, LeakyReLU
5 DCONV(N256, K5, S2, P=SAME), BN, LeakyReLU
6 DCONV(N128, K5, S2, P=SAME), BN, LeakyReLU
7 DCONV(N3, K5, S2, P=SAME)

Table A.2 Discriminator architecture.

Discriminator Configuration
Input 64x64x3

0 CONV(N128, K5, S2, P=SAME), BN, LeakyReLU
1 CONV(N256, K5, S2, P=SAME), BN, LeakyReLU
2 CONV(N512, K5, S2, P=SAME), BN, LeakyReLU
3 reshape to 3D array of shape (m, T, -1) as input for LSTM
4 LSTM(state size = 512), BN
5 LSTM(state size = 128)
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A.3 Sprites and human action results without cherry-picking

In this section we show random samples of Sprites and human actions generated by COT-
GAN, mixed Sinkhorn minimization, and MoCoGAN without cherry-picking. The back-
ground was static for both experiments. In the Sprites experiments (see Figure A.2), the
samples from mixed Sinkhorn minimization and COT-GAN are both of good quality, whereas
those from MoCoGAN only capture a rough pattern in the frames and fail to show a smooth
evolution of motions.

Fig. A.2 Random samples with no cherry picking from models trained on animated Sprites.
Top row: real sequences on the left and mixed Sinkhorn minimization on the right; bottom
row: MoCoGAN on the left and COT-GAN on the right.

In Figure A.3, we show a comparison of real and generated samples for human action
sequences. Noticeable artifacts of COT-GAN and mixed Sinkhorn minimization results
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include blurriness and even disappearance of the person in a sequence, which normally
happens when the clothing of the person has a similar color as the background. MoCoGAN
also suffers from this issue and, visually, there appears to be some degree of mode collapse.
We used generators of similar capacity across all models and trained COT-GAN, mixed
Sinkhorn minimization and MoCoGAN for 65000 iterations.
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Fig. A.3 Random samples with no cherry picking from models trained on human actions.
Top row: real sequences on the left and mixed Sinkhorn minimization on the right; bottom
row: MoCoGAN on the left and COT-GAN on the right.
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KCCOT-GAN

B.1 Experiment details

B.1.1 Network architectures and training details

All experiments on the three datasets share the same GAN architectures. The generator is
split into an encoder and a decoder, supported by convolutional LSTM (convLSTM). The
encoder learns both the spatial and temporal features of the input sequences, whereas the
decoder predicts the future evolution conditioned on the learned features and a latent variable.

The features from the last encoding layer has a shape of 4× 4 (height × width) per
time step. A latent variable z is sampled from a multivariate standard normal distribution
with the same shape as the features (same number of channels too depending on the model
size). We then concatenate the features, input sequence, and latent variables over the channel
dimension as input for the decoder. The encoder and decoder structures are detailed in
Table C.1. As the discriminator, the process h and M are parameterized with two separate
networks that share the same structure, shown in Table C.2. In all tables, we use DCONV to
represent a de-convolutional (convolutional transpose) layer. The layers may have N filter
size, K kernel size, S strides and P padding option. We adopt both batch-normalization(BN)
and layer-normalization(LN), and the LeakyReLU activation function. All hyperparameter
setting are the same for all three datasets except that the filter size is halved for the Moving
MNIST dataset.

During training, we apply exponential decay to the learning rate by ηt = η0rs/c where
η0 is the initial learning rate, r is decay rate, s is the current number of training steps and
c is the decaying frequency. The bandwidth parameter h are also annealed from 1.5 to 0.1
in a similar manner. In all experiments, the initial learning rate is 0.0005, decay rate 0.985,
decaying frequency 10000, and batch size m = 8. The settings of hyper-parameters in the
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Table B.1 Encoder and decoder architecture.

Encoder Configuration
Input x1:T with shape T ×64×64×3

1 convLSTM2D(N32, K6, S2, P=SAME), LN
2 convLSTM2D(N64, K6, S2, P=SAME), LN
3 convLSTM2D(N128, K5, S2, P=SAME), LN
4 convLSTM2D(N256, K5, S2, P=SAME), LN
5 output features e1:T with shape T ×4×4×256

Decoder Configuration
Input zk:T−1, ek:T−1, xk:T−1

1 DCONV(N256, K2, S2, P=SAME), LN
2 convLSTM2D(N128, K4, S1, P=SAME), LN
3 DCONV(N128, K4, S2, P=SAME), LN
4 convLSTM2D(N64, K6, S1, P=SAME), LN
5 DCONV(N64, K6, S2, P=SAME), LN
6 convLSTM2D(N32, K6, S1, P=SAME), LN
4 DCONV(N16, K6, S1, P=SAME), LN
5 convLSTM2D(N8, K8, S1, P=SAME), LN
7 DCONV(N3, K8, S1, P=SAME), Sigmoid

Table B.2 Discriminator architecture.

Discriminator Configuration
Input 64x64x3

0 CONV(N32, K5, S2, P=SAME), BN
1 CONV(N64, K5, S2, P=SAME), BN
2 CONV(N128, K5, S2, P=SAME), BN
3 reshape 3D array for LSTM
4 LSTM(state size = 128), LN
5 LSTM(state size = 64), LN
6 LSTM(state size = 32), LN

Sinkhorn algorithm are also shared across the three datasets with λ = 1.0, ε = 0.8 and the
Sinkhorn iterations L = 100. We train KCCOT-GAN and CCOT-GAN on a single NVIDIA
GTX 1080 Ti GPU. Each iteration takes roughly 3.5 seconds. Each experiment is run for
around 100000 iterations.

B.1.2 KKCOT-GAN results on Moving MNIST

Predictions for the Moving MNIST test set are presented in Figure B.1.
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Fig. B.1 Moving MNIST results on test set. The first 5 frames are context sequence and last
10 frames are predictions from KCCOT-GAN, separated by the yellow vertical line.
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SPATE-GAN

C.1 Training details

We used a smaller size of model with the same network architectures as COT-GAN to train
all three datasets. The architectures for generator and discriminator are given in Tables C.1
and C.2.

Hyperparameter settings are as follows: the Sinkhorn regularizer ε = 0.8, Sinkhorn
iteration L = 100, the lengthscale l = 20 and martingale penalty λ = 1.5. We used Adam
optimizer with learning rate 0.0001, β1 = 0.5 and β2 = 0.9. All models are trained for
60,000 iterations.

Table C.1 Generator architecture.

Generator Configuration
Input z∼N(0,I)

0 LSTM(state size = 64), BN
1 LSTM(state size = 128), BN
2 Dense(8*8*256), BN, LeakyReLU
3 reshape to 4D array of shape (m, 8, 8, 256)
4 DCONV(N256, K5, S1, P=SAME), BN, LeakyReLU
5 DCONV(N128, K5, S2, P=SAME), BN, LeakyReLU
6 DCONV(N64, K5, S2, P=SAME), BN, LeakyReLU
7 DCONV(N1, K5, S2, P=SAME)
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Table C.2 Discriminator architecture.

Discriminator Configuration
Input

0 CONV(N64, K5, S2, P=SAME), BN, LeakyReLU
1 CONV(N128, K5, S2, P=SAME), BN, LeakyReLU
2 CONV(N256, K5, S2, P=SAME), BN, LeakyReLU
3 reshape to 3D array of shape (m, T, -1)
4 LSTM(state size = 256), BN
5 LSTM(state size = 64)

C.2 Evaluation metrics

To compute our three metrics, let us first assume that we have a set of real data samples (P)
and synthetic data samples (S). EMD is defined as:

EMD(P,S) = min
φ :P→S

∑
p∈P
∥p−φ(p)∥ (C.2.1)

where φ : P→ S is a bijection. MMD is defined as:

M̂MD
2
(P,S) =

1
n(n−1)∑k(p, p)+

1
n(n−1)∑k(s,s)− 2

n2 ∑k(p,s)
(C.2.2)

where k denotes a positive-definite kernel (e.g. RBF kernel) and n is the number of (real or
synthetic) samples.

Lastly, to compute the KNN score, we first split our real and synthetic samples P and S

into training and test datasets Dtr and Dte so that D=Dtr∪Dte. We train the KNN classifier
f : Xtr→ [0,1] using training data. The accuracy of the trained classifier is then obtained
using test samples Dte and given as:

t̂ =
1

nte
∑

(zi,li)∈Dte

I
[(

f (zi)>
1
2

)
= li

]
(C.2.3)

where f (zi) estimates the conditional probability distribution p(l = 1|zi). A classifier accu-
racy approaching random chance (50%) indicates better synthetic data. As suggested by
Lopez-Paz and Oquab [107], we use a 1-NN classifier to obtain the score.
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C.3 More figures

In this section, we provide more results in larger figures for visual comparisons.

Fig. C.1 Larger version of Figure 2 for the purpose of visual comparison.
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Fig. C.2 More selected samples for log-Gaussian Cox process (LGCP) dataset.
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Fig. C.3 More selected samples for extreme weather (EW) dataset.
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Fig. C.4 More selected samples for turbulent flow (TF) dataset.



Appendix D

Double GANs for Conditional
Independence Testing

D.1 Proofs

We provide the proofs of Proposition 2, Theorems 6.4.2, 6.4.3, and 6.4.4. We omit the
proof of Theorem 6.4.1, since it is similar to that of Theorem 6.4.2. We note that Theorems
6.4.1-6.4.4 are established under our choice of the function classes H1 and H2, which are set
to the classes of neural networks with a single-hidden layer, finitely many hidden nodes, and
the sigmoid activation function, as used in our implementation. Meanwhile, our results can
be extended to more general choices of the function classes.

D.1.1 Proof of Proposition 2

Note that the total variation distance is bounded by 1. Suppose EdTV(P̃XXX |ZZZ,PXXX |ZZZ) = o(1).
Then we have dTV(P̃XXX |ZZZ,PXXX |ZZZ) = op(1). By the dominated convergence theorem, we have
Ed2

TV(P̃XXX |ZZZ,PXXX |ZZZ) = o(1).
By Theorem 1.2 of [43], we have dTV(P̃XXX |ZZZ,PXXX |ZZZ) is proportional to

min

[
1,σ−1

0

√
n

∑
i=1

{
Z⊤i (β̂ −β0)

}2
]
.

It follows that

1
σ0

E
n

∑
i=1
{Z⊤i (β̂ −β0)}2 = o(1).



132 Double GANs for Conditional Independence Testing

Applying Theorem 1.2 of [43] again, we obtain that dTV(P̃X |Z=Zi,PX |Z=Zi) is proportional to

min
{

1,σ−1
0 |Z

⊤
i (β̂ −β0)|

}
.

Therefore, we obtain that,

n

∑
i=1

Ed2
TV

(
P̃X |Z=Zi,PX |Z=Zi

)
= o(1).

Since the data is exchangeable, we have that,

Ed2
TV

(
P̃X |Z=Zi,PX |Z=Zi

)
= o(n−1). (D.1.1)

This shows that when RHS of (6.2.1), i.e., E{dTV(P̃XXX |ZZZ,PXXX |ZZZ)} is o(1), (D.1.1) holds.
Next, we show (D.1.1) is violated in the linear regression example. By the data exchange-

ability, it suffices to show ∑
n
i=1 Ed2

TV{P̃X |Z=Zi,PX |Z=Zi} is not o(1). With some calculations,
we obtain that,

n

∑
i=1

Emin
{

1,σ−2
0 |Z

⊤
i (β̂ −β0)|2

}
=

n

∑
i=1

Eσ
−2
0 |Z

⊤
i (β̂ −β0)|2I

{
σ
−2
0 |Z

⊤
i (β̂ −β0)|2 ≤ 1

}
+

n

∑
i=1

EI
{

σ
−2
0 |Z

⊤
i (β̂ −β0)|2 > 1

}
=

n

∑
i=1

Eσ
−2
0 |Z

⊤
i (β̂ −β0)|2−

n

∑
i=1

E
{

σ
−2
0 |Z

⊤
i (β̂ −β0)|2−1

}
I
{

σ
−2
0 |Z

⊤
i (β̂ −β0)|2 > 1

}
.

(D.1.2)

By the definition of β̂ , we have

n

∑
i=1

Eσ
−2
0 |Z

⊤
i (β̂ −β0)|2 =

1
σ2

0
E(β̂ −β )⊤ZZZ⊤ZZZ(β̂ −β ) =

1
σ2

0
Eεεε
⊤ZZZ(ZZZ⊤ZZZ)−1ZZZ⊤εεε,

where εεε = (ε1, · · · ,εn)
⊤ consist of i.i.d. copies of ε defined in Example 1. It follows that,

n

∑
i=1

Eσ
−2
0 |Z

⊤
i (β̂ −β0)|2 =

1
σ2

0
Eεεε
⊤ZZZ(ZZZ⊤ZZZ)⊤ZZZ⊤εεε =

1
σ2

0
trace

{
Eεεεεεε

⊤ZZZ(ZZZ⊤ZZZ)−1ZZZ⊤
}

= trace
{

EZZZ(ZZZ⊤ZZZ)−1ZZZ⊤
}
= dZ,

(D.1.3)

where dZ is the dimension of Z.
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Next, we show that,

n

∑
i=1

Eσ
−2
0 |Z

⊤
i (β̂ −β0)|2I

{
σ
−2
0 |Z

⊤
i (β̂ −β0)|2 ≥ 1

}
= o(1), (D.1.4)

or equivalently,

Enσ
−2
0 |Z

⊤
i (β̂ −β0)|2I

{
σ
−2
0 |Z

⊤
i (β̂ −β0)|2 ≥ 1

}
= o(1).

We have already shown that Enσ
−2
0 |Z⊤i (β̂ − β0)|2 = dZ . By the dominated convergence

theorem, it suffices to show that,

nσ
−2
0 |Z

⊤
i (β̂ −β0)|2I

{
σ
−2
0 |Z

⊤
i (β̂ −β0)|2 ≥ 1

}
= op(1).

By definition, it in turn suffices to show that,

Pr
{

σ
−2
0 |Z

⊤
i (β̂ −β0)|2 ≥ 1

}
→ 0.

This holds by Markov’s inequality, as

Eσ
−2
0 |Z

⊤
i (β̂ −β0)|2 =

dZ

n
→ 0.

Combining (D.1.4) together with (D.1.2) and (D.1.3) yields that,

n

∑
i=1

Emin
{

1,σ−2
0 |Z

⊤
i (β̂ −β0)|2

}
≥ dZ−o(1)≥ 1−o(1),

and hence ∑
n
i=1 Ed2

TV{P̃X |Z=Zi,Q
(n)
X (·|Zi)} ≥ 1−o(1).

This completes the proof of Proposition 2. □

D.1.2 Proof of Theorem 6.4.2

We begin by providing an upper bound for the function classes H1 and H2. Recall that both
H1 and H2 are classes of neural networks with a single-hidden layer, finitely many hidden
nodes, and the sigmoid activation function. Because of that, each function h1,θ1 ∈H1 and
h2,θ2 ∈H2 can be represented as

h1,θ1(x) =
M

∑
j=1

θ
(1)
1, j sigmoid(x⊤θ

(2)
1, j ), h2,θ2(x) =

M

∑
j=1

θ
(1)
2, j sigmoid(y⊤θ

(2)
2, j ),
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where θ1 and θ2 correspond to the sets of parameters
{
(θ

(1)
1, j ,θ

(2)
1, j ) : 1 ≤ j ≤ M

}
and{

(θ
(1)
2, j ,θ

(2)
2, j ) : 1≤ j ≤M

}
, respectively, and M is a finite integer. Note that the sigmoid func-

tion is bounded. As such, the functions h1,θ1 and h2,θ2 are uniformly bounded by ∑
M
j=1 |θ

(1)
1, j |

and ∑
M
j=1 |θ

(2)
2, j |, respectively. Since we sample B many functions {h1,θb}B

b=1 and {h2,θb}B
b=1,

these functions are uniformly bounded by

M max
b, j

(
|θ (1)

b, j |+ |θ
(2)
b, j |
)
.

Since these parameters θ1,θ2 are sampled from standard normal distributions, and that

Pr(W > t) =
1√
2π

∫
∞

t
exp
(
−w2

2

)
dw≤ 1√

2π

∫
∞

t
wexp

(
−w2

2

)
dw =

exp(−t2/2)√
2π

,

for any t ≥ 1, we can show that maxb, j

(
|θ (1)

b, j |+ |θ
(2)
b, j |
)

is upper bounded by
√

logB, with
probability approaching one. Note that B grows polynomially with respect to the sample
size n. Therefore, we have that the functions in H1 and H2 are upper bounded by logn in
absolute values.

Define a test statistic

T ∗∗ = max
b1,b2

σ̂
−1
b1,b2

∣∣∣∣∣1n n

∑
i=1

{
h1,b1(Xi)−

1
M

M

∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ ,
where the σ̂b1,b2 is constructed based on {X̃ (m)

i }m and {Ỹ (m)
i }m, instead of {X (m)

i }m and
{Y (m)

i }m. It suffices to show that |T̂−T ∗∗|=Op(n−2κ logn), and |T ∗−T ∗∗|=Op(n−2κ logn).

Step 1. We first consider the difference |T̂ −T ∗∗|. For any sequences {an}n, {bn}n, we have
that,

|max
n
|an|−max

n
|bn|| ≤max

n
|an−bn|. (D.1.5)
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Consequently, we have |T̂ −T ∗∗| ≤ I1 + I2 + I3, where

I1 = max
b1,b2

σ̂
−1
b1,b2

∣∣∣∣∣1n n

∑
i=1

[
1
M

M

∑
m=1

{
h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )

}]{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ ,
I2 = max

b1,b2
σ̂
−1
b1,b2

∣∣∣∣∣1n n

∑
i=1

{
h1,b1(Xi)−

1
M

M

∑
m=1

h1,b1(X
(m)
i )

}[
1
M

M

∑
m=1

{
h2,b2(Y

(m)
i )−h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ ,
I3 = max

b1,b2
σ̂
−1
b1,b2

∣∣∣∣∣1n n

∑
i=1

[
1
M

M

∑
m=1

{
h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )

}][ 1
M

M

∑
m=1

{
h2,b2(Y

(m)
i )−h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ .
If min σ̂b1,b2 ≥ c0 for some constant c0 > 0, then it suffices to show that I∗j =Op(n−(κx+κy) logn),
for j = 1,2,3, where

I∗1 = max
b1,b2

∣∣∣∣∣1n n

∑
i=1

[
1
M

M

∑
m=1

{
h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )

}]{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ ,
I∗2 = max

b1,b2

∣∣∣∣∣1n n

∑
i=1

{
h1,b1(Xi)−

1
M

M

∑
m=1

h1,b1(X
(m)
i )

}[
1
M

M

∑
m=1

{
h2,b2(Y

(m)
i )−h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ ,
I∗3 = max

b1,b2

∣∣∣∣∣1n n

∑
i=1

[
1
M

M

∑
m=1

{
h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )

}][ 1
M

M

∑
m=1

{
h2,b2(Y

(m)
i )−h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ .
The number of folds L is finite, as such, it suffices to show that I(ℓ)j = Op(n−(κx+κy) logn),
for j = 1,2,3 and ℓ= 1, . . . ,L, where

I(ℓ)1 = max
b1,b2

∣∣∣∣∣1n ∑
i∈I(ℓ)

[
1
M

M

∑
m=1

{
h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )

}]{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ ,
I(ℓ)2 = max

b1,b2

∣∣∣∣∣1n ∑
i∈I(ℓ)

{
h1,b1(Xi)−

1
M

M

∑
m=1

h1,b1(X
(m)
i )

}[
1
M

M

∑
m=1

{
h2,b2(Y

(m)
i )−h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ ,
I(ℓ)3 = max

b1,b2

∣∣∣∣∣1n ∑
i∈I(ℓ)

[
1
M

M

∑
m=1

{
h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )

}][ 1
M

M

∑
m=1

{
h2,b2(Y

(m)
i )−h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ .
We divide the rest of the proof into four sub-steps. We first show that I(ℓ)j =Op(n−(κx+κy) logn),
for j = 1,2,3. Finally, we show Pr(min σ̂b1,b2 ≥ c0)→ 1 for some constant c0 > 0.

Step 1.1. Recall we have shown that the functions in H1 and H2 are bounded by logn in
absolute values at the beginning of the proof of Theorem 6.4.2. By Bernstein’s inequality,
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we have that,

Pr

[∣∣∣∣∣ M

∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣≥ t

]
≤ 2exp

{
− t2

2(M logn+ t
√

logn/3)

}
,

for any b and i. Set t =
√

3(c+2)M logn, where the constant c is as defined in the statement
of Theorem 6.4.1. For a sufficiently large n, we have t

√
logn/3≤M logn/2. It follows that

Pr

[∣∣∣∣∣ M

∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣≥√3(c+2)M logn

]
≤ 2

nc+2 .

By Bonferroni’s inequality, we obtain that,

Pr

[
max

b∈{1,··· ,B}
max

i∈{1,··· ,n}

∣∣∣∣∣ M

∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣≥√3(c+2)M logn

]

≤ Bn max
b∈{1,··· ,B}

max
i∈{1,··· ,n}

Pr

[∣∣∣∣∣ M

∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣≥√3(c+2)M logn

]
≤ 2Bn

nc+2 .

Under the condition B = O(nc), we obtain with probability 1−O(n−1) that,

max
b∈{1,··· ,B}

max
i∈{1,··· ,n}

∣∣∣∣∣ M

∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣≤ O(1)n−1/2 logn, (D.1.6)

as M is proportional to n, and O(1) denotes some positive constant.
Similarly, we can show that,

max
b∈{1,··· ,B}

max
i∈I(ℓ)

∣∣∣∣∣ M

∑
m=1

h1,b(X̃
(m)
i )−M

∫
x
h1,b(x)P̃

(ℓ)
X |Z=Zi

(dx)

∣∣∣∣∣≤ O(1)
√

n logn,

with probability 1−O(n−1). Combining this with (D.1.6), we obtain with probability
1−O(n−1) that,

max
b∈{1,...,B}

i∈I(ℓ)

∣∣∣∣∣ M

∑
m=1

{
h1,b(X

(m)
i )−h1,b(X̃

(m)
i )

}

−M
∫

x
h1,b(x)

{
PX |Z=Zi(dx)− P̃(ℓ)

X |Z=Zi
(dx)

}∣∣∣∣≤ O(1)
√

n logn.

(D.1.7)
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Conditional on Zi, the expectation of h2,b2(Yi)−M−1
∑

M
m=1 h2,b2(Y

(m)
i ) equals zero. Under

the null hypothesis, the expectation of M−1
∑

M
m=1{h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )}{h2,b2(Yi)−

M−1
∑

M
m=1 h2,b2(Y

(m)
i )} equals zero as well. Applying Bernstein’s inequality again, we can

show with probability tending to 1 that,

I(ℓ)1 ≤ O(1)
(

σn−1/2 log3/2 n+n−1 log2 n
)
, (D.1.8)

where

σ
2 = max

b1,b2
E

∣∣∣∣∣ 1
M

M

∑
m=1

{
h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )

}{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣
2

≤max
b1

E

∣∣∣∣∣ 1
M

M

∑
m=1

{
h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )

}∣∣∣∣∣
2

logn.

Let A denote the event in (D.1.7). The last term on the second line can be bounded from
above by

max
b1,i

E

∣∣∣∣∣ 1
M

M

∑
m=1
{h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )}

∣∣∣∣∣
2

I(A) logn (D.1.9)

+ max
b1,i

E

∣∣∣∣∣ 1
M

M

∑
m=1
{h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )}

∣∣∣∣∣
2

I(Ac) logn. (D.1.10)

Since M is proportional to n, by (D.1.5), (D.1.9) is upper bounded by

O(1)

n−1 log2 n+ max
b∈{1,··· ,B}

i∈I(ℓ)

E
∣∣∣∣∫x

h1,b(x)
{

P̃(ℓ)
X |Z=Zi

(dx)−PX |Z=Zi(dx)
}∣∣∣∣2
 logn.

By the boundedness of the function class H1, it can be further bounded from above by

O(1)
{

n−1 log3 n+Ed2
TV(P̃

(ℓ)
X |Z,PX |Z) log2 n

}
. (D.1.11)

The above quantity is of order O(n−2κx log2 n). Consequently, (D.1.9) is of the order
O(n−2κx log2 n).

Note that the event A occurs with probability at least 1−O(n−1). By the boundedness of
the function class H1, (D.1.10) is of the order O(n−1 log2 n).
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Therefore, σ2 is of the order O(n−2κx log2 n). This implies that I(ℓ)1 can be bounded
from above by O(n−1/2−κx log5/2 n), which in turn yields that I(ℓ)1 = Op(n−κx−κy logn), since
κx,κy < 1/2.

Step 1.2. This step can be proven in a similar way as Step 1.1, and is omitted.

Step 1.3. Under H0, the expectation of

1
|I(ℓ)| ∑

i∈I(ℓ)

[
1
M

M

∑
m=1

{
h1,b1(X

(m)
i )−h1,b1(X̃

(m)
i )

}][ 1
M

M

∑
m=1

{
h2,b2(Y

(m)
i )−h2,b2(Ỹ

(m)
i )

}]

equals

E
∫

x
h1,b1(x)

{
P̃(ℓ)

X |Z(dx)−PX |Z(dx)
}∫

y
h2,b2(y)

{
P̃(ℓ)

Y |Z(dy)−PY |Z(dy)
}
.

Similar to (D.1.11), its absolute value can be upper bounded by

EdTV

{
P̃(ℓ)

X |Z=Zi
,PX |Z

}
dTV

{
P̃(ℓ)

Y |Z=Zi
,PY |Z

}
logn.

Following Cauchy-Schwarz inequality, we have that,

EdTV

{
P̃(ℓ)

X |Z=Zi
,PX |Z

}
dTV

{
P̃(ℓ)

Y |Z=Zi
,PY |Z

}
≤

√
Ed2

TV

{
P̃(ℓ)

X |Z=Zi
,PX |Z

}
Ed2

TV

{
P̃(ℓ)

Y |Z=Zi
,PY |Z

}
= O(n−(κx+κy)).

This yields that,

max
b1,b2

∣∣∣∣E∫x
h1,b1(x)

{
P̃(ℓ)

X |Z(dx)−PX |Z(dx)
}∫

y
h2,b2(y)

{
P̃(ℓ)

Y |Z(dy)−PY |Z(dy)
}∣∣∣∣= O(n−(κx+κy) logn).

Following similar arguments as in Step 1.1, we obtain that,

I(ℓ)3 −max
b1,b2

∣∣∣∣E∫x
h1,b1(x)

{
P̃(ℓ)

X |Z(dx)−PX |Z(dx)
}∫

y
h2,b2(y)

{
P̃(ℓ)

Y |Z(dy)−PY |Z(dy)
}∣∣∣∣

= Op(n−(κx+κy) logn).

Therefore, we obtain that I(ℓ)3 = Op(n−(κx+κy) logn).

Step 1.4. Recall that σ̂2
b1,b2

is defined by

1
n−1

n

∑
i=1

([
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

][
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]
−GCM{h1,b1(X),h2,b2(Y )}

)2

.



D.1 Proofs 139

With some calculations, it is equal to

1
n−1

n

∑
i=1

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2

− n
n−1

GCM2{h1,b1(X),h2,b2(Y )},
(D.1.12)

where the estimated conditional expectation Ê is computed using GANs.
Consider the second term GCM{h1,b1(X),h2,b2(Y )} in (D.1.12). Following similar argu-

ments as in Steps 1.1 and 1.3, we have that,

max
b1,b2

∣∣GCM{h1,b1(X),h2,b2(Y )}−GCM′{h1,b1(X),h2,b2(Y )}
∣∣= Op(n−(κx+κy) logn),

where GCM′{h1,b1(X),h2,b2(Y )} equals

1
n

n

∑
i=1

{
h1,b1(Xi)−

1
M

M

∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}
.

Similar to (D.1.7), we can show that,

max
b1,b2

∣∣GCM′{h1,b1(X),h2,b2(Y )}−GCM∗{h1,b1(X),h2,b2(Y )}
∣∣= Op

(
n−1/2

√
logn

)
.

Consequently, we have that,

max
b1,b2

∣∣GCM{h1,b1(X),h2,b2(Y )}−GCM∗{h1,b1(X),h2,b2(Y )}
∣∣= Op

(
n−1/2

√
logn

)
.

Since the function classes H1 and H2 are bounded, both GCM and GCM∗ are bounded by
logn in absolute values. Consequently,

max
b1,b2

∣∣GCM2{h1,b1(X),h2,b2(Y )}−GCM∗2{h1,b1(X),h2,b2(Y )}
∣∣= Op

(
n−1/2 log3/2 n

)
.(D.1.13)

Next, consider the first term in (D.1.12). Note that it can be represented by

n
n−1

1
L

L

∑
ℓ=1

(
1
|Iℓ| ∑

i∈I(ℓ)

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2
)
.
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Similar to (D.1.7), we can show that,

max
b1,b2

∣∣∣∣∣ 1
|Iℓ| ∑

i∈I(ℓ)

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2

− E
[
h1,b1(X1)− Ê{h1,b1(X1)|Z1}

]2 [
h2,b2(Y1)− Ê{h2,b2(Y1)|Z1}

]2
∣∣∣∣= Op(n−1/2 log3/2 n).

Following similar arguments as in Steps 1.1 and 1.3, we can show that,

max
b1,b2

∣∣∣∣E[h1,b1(X1)− Ê{h1,b1(X1)|Z1}
]2 [

h2,b2(Y1)− Ê{h2,b2(Y1)|Z1}
]2

− E
[
h1,b1(X1)−E{h1,b1(X1)|Z1}

]2 [h2,b2(Y1)−E{h2,b2(Y1)|Z1}
]2∣∣∣= Op(n−c̄),

for some constant 0 < c̄ < 1/2. It follows that,

max
b1,b2

∣∣∣∣∣ 1
|Iℓ| ∑

i∈I(ℓ)

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2

− E
[
h1,b1(X)−E{h1,b1(X)|Z}

]2 [h2,b2(Y )−E{h2,b2(Y )|Z}
]2∣∣∣= Op(n−c̄),

and henceforth,

max
b1,b2

∣∣∣∣∣1n n

∑
i=1

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2

− E
[
h1,b1(X)−E{h1,b1(X)|Z}

]2 [h2,b2(Y )−E{h2,b2(Y )|Z}
]2∣∣∣= Op(n−c̄).

Combining this together with (D.1.13) yields that,

max
b1,b2

∣∣∣∣σ̂2
b1,b2
− n

n−1
Var
([

h1,b1(X)−E{h1,b1(X)|Z}
][

h2,b2(Y )−E{h2,b2(Y )|Z}
])∣∣∣∣= Op(n−c̄).

Then, we have that,

min
b1,b2

Var
([

h1,b1(X)−E{h1,b1(X)|Z}
][

h2,b2(Y )−E{h2,b2(Y )|Z}
])
≥ c∗,

for some constant c∗ > 0. Therefore, we have that

min
b1,b2

σ̂
2
b1,b2
≥ 2−1c∗,

with probability tending to 1.
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Step 2. We next consider the difference |T ∗ − T ∗∗|, and show that it is of the order
Op(n−2κ logn). Denote by σ̂∗2b1,b2

the variance estimator with {X̃ (m)
i }m and {Ỹ (m)

i }m re-

placed by {X (m)
i }m and {Y (m)

i }m. Using (D.1.5), the difference between T ∗ and T ∗∗ is upper
bounded by

max
b1,b2
|σ̂−1

b1,b2
− σ̂

∗−1
b1,b2
|

∣∣∣∣∣1n n

∑
i=1

{
h1,b1(Xi)−

1
M

M

∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ .
Under H0, similar to (D.1.7), we can show that,

max
b1,b2
|

∣∣∣∣∣1n n

∑
i=1

{
h1,b1(Xi)−

1
M

M

∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣
= Op(n−1/2 log3/2 n).

To show |T ∗− T ∗∗| = Op(n−2κ logn), it suffices to show that maxb1,b2 |σ̂
−1
b1,b2
− σ̂

∗−1
b1,b2
| =

Op(n−c̄) for some constant c̄ > 0. Since both σ̂
−1
b1,b2

and σ̂b1,b2 are bounded away from zero,
it suffices to show that maxb1,b2 |σ̂2

b1,b2
− σ̂∗2b1,b2

|= Op(n−c̄).
Following similar arguments as in Steps 1.1 and 1.3, we can show that,

max
b1,b2

∣∣∣∣σ̂2
b1,b2
− n

n−1
Var
([

h1,b1(X)−E{h1,b1(X)|Z}
][

h2,b2(Y )−E{h2,b2(Y )|Z}
])∣∣∣∣= Op(n−c̄),

max
b1,b2

∣∣∣∣σ̂∗2b1,b2
− n

n−1
Var
([

h1,b1(X)−E{h1,b1(X)|Z}
][

h2,b2(Y )−E{h2,b2(Y )|Z}
])∣∣∣∣= Op(n−c̄).

This completes the proof of Theorem 6.4.2. □

D.1.3 Proof of Theorem 6.4.3

In the proof of Theorem 6.4.2, we have already shown that T̂−T ∗=Op(n−(κx+κy) logn). Fol-
lowing similar arguments as in Step 1.4, we can show that T ∗−T ∗∗∗ = Op(n−(κx+κy) logn),
where

T ∗∗∗ = max
b1,b2

σ
−1
b1,b2
|

∣∣∣∣∣n−1
n

∑
i=1

{
h1,b1(Xi)−

1
M

M

∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ ,
where

σ
2
b1,b2

=
n

n−1
Var
([

h1,b1(X)−E{h1,b1(X)|Z}
][

h2,b2(Y )−E{h2,b2(Y )|Z}
])

.



142 Double GANs for Conditional Independence Testing

By (D.1.6), following similar arguments as in the proof regarding the term I1 in Theorem
6.4.2, we can show that T ∗∗∗−T ∗∗∗∗ = Op(n−(κx+κy) logn), where

T ∗∗∗∗ = max
b1,b2

σ
−1
b1,b2
|

∣∣∣∣∣n−1
n

∑
i=1

[
h1,b1(Xi)−E{h1,b1(Xi)|Zi}

]{
h2,b2(Yi)−

1
M

M

∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ .
Similarly, we can show that T ∗∗∗∗−T0 = Op(n−(κx+κy) logn), where

T0 = max
b1,b2

σ
−1
b1,b2
|

∣∣∣∣∣n−1
n

∑
i=1

[
h1,b1(Xi)−E{h1,b1(Xi)|Zi}

][
h2,b2(Yi)−E{h2,b2(Yi)|Zi}

]∣∣∣∣∣ .
Therefore, we have shown that T̂ −T0 = Op(n−(κx+κy) logn). Since κx +κy > 1/2, we have
that,

√
n(T̂ −T0) = op(log−1/2 n). (D.1.14)

Define a B2×B2 matrix Σ0 whose {b1 +B(b2−1),b3 +B(b4−1)}th entry is given by

cov
(

σ
−1
b1,b2

[
h1,b1(Xi)−E{h1,b1(Xi)|Zi}

][
h2,b2(Yi)−E{h2,b2(Yi)|Zi}

]
,

σ
−1
b3,b4

[
h1,b3(Xi)−E{h1,b3(Xi)|Zi}

][
h2,b4(Yi)−E{h2,b4(Yi)|Zi}

])
.

In the following, we show that,

sup
t

∣∣∣Pr
(√

nT̂0 ≤ t|H0

)
−Pr(∥N(0,Σ0)∥∞ ≤ t)

∣∣∣= o(1). (D.1.15)

When B is finite, this is implied by the classical weak convergence results. When B diverges
with n, we require B = O(nc) for some constant c > 0. By the definition of σb1,b2 , the
variance of

σ
−1
b1,b2

[
h1,b1(Xi)−E{h1,b1(Xi)|Zi}

][
h2,b2(Yi)−E{h2,b2(Yi)|Zi}

]
is bounded from above by (n−1)/n. Moreover, combining the boundedness of the function
spaces H1 and H2 together with the definition of σb1,b2 yields that,{

σ
−1
b1,b2

[
h1,b1(Xi)−E{h1,b1(Xi)|Zi}

][
h2,b2(Yi)−E{h2,b2(Yi)|Zi}

]
: b1,b2 ∈ {1, · · · ,B}

}
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are uniformly bounded from infinity by O(logn), with probability tending to 1. We can show
that (D.1.15) holds. This implies that,

σ
−1
b1,b2

n−1/2
n

∑
i=1

[
h1,b1(Xi)−E{h1,b1(Xi)|Zi}

][
h2,b2(Yi)−E{h2,b2(Yi)|Zi}

]
is asymptotically normal with zero mean.

Combining (D.1.15) together with (D.1.14) yields that,

Pr
(√

nT̂ ≤ t|H0

)
≥ Pr

(
∥N(0,Σ0)∥∞ ≤ t− ε0 log−1/2 n

)
−o(1),

Pr
(√

nT̂ ≤ t|H0

)
≤ Pr

(
∥N(0,Σ0)∥∞ ≤ t + ε0 log−1/2 n

)
+o(1),

(D.1.16)

for any sufficiently small ε0 > 0, where the little-o terms are uniform in t.
Following similar arguments as in Step 1.4 and Step 2 of the proof of Theorem 6.4.2, we

can show that ∥Σ̂−Σ0∥∞,∞ = Op(n−c̄) for some constant c̄ > 0. Following similar arguments
for (D.1.16), we have that,

Pr
(√

nT̂ ≤ t|H0

)
≥ Pr

(
∥N(0, Σ̂)∥∞ ≤ t−2ε0 log−1/2 n|Σ̂

)
−o(1),

Pr
(√

nT̂ ≤ t|H0

)
≤ Pr

(
∥N(0, Σ̂)∥∞ ≤ t +2ε0 log−1/2 n|Σ̂

)
+o(1),

for any sufficiently small ε0 > 0. Since the little-o terms are uniform in t ∈ R, we obtain that,

sup
t
|Pr(
√

nT̂ ≤ t|H0)−Pr(∥N(0, Σ̂)∥∞ ≤ t|Σ̂)| ≤ o(1)

+ sup
t
|Pr(∥N(0, Σ̂)∥∞ ≤ t +2ε log−1/2 n|Σ̂)−Pr(∥N(0, Σ̂)∥∞ ≤ t−2ε0 log−1/2 n|Σ̂)|.

By Theorem 1 of [33], the term on the second line can be bounded by O(1)ε0 log1/2 B log−1/2 n,
where O(1) denotes some positive constant. Since B = O(nc), log1/2 B log−1/2 n = O(1). As
ε0 grows to zero, this term becomes negligible. Consequently, we obtain that,

sup
t

∣∣∣Pr
(√

nT̂ ≤ t|H0

)
−Pr

(
∥N(0, Σ̂)∥∞ ≤ t|Σ̂

)∣∣∣≤ o(1).

As such, the distribution of our test statistic can be well-approximated by that of the bootstrap
samples. This completes the proof of Theorem 6.4.3. □
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D.1.4 Proof of Theorem 6.4.4

We break the proof into two steps. In Step 1, we show that, under H∗1, there exist two neural
networks functions f (X) ∈H1 and g(Y ) ∈H2, such that

I( f ,g) = E[ f (X)−E{ f (X)|Z}][g(Y )−E{g(Y )|Z}] ̸= 0,

In Step 2, we prove the power of our test approaches one, as the sample size diverges to
infinity.

Step 1. We first observe that the measure I( f ,g) =E[ f (X)−E{ f (X)|Z}][g(Y )−E{g(Y )|Z}]
is continuous in f and g. That is, for any f1, f2 ∈ L2

X and g1,g2 ∈ L2
Y , the difference I( f1,g1)−

I( f2,g2) decays to zero as both E| f1(X)− f2(X)|2 and E|g1(X)−g2(X)|2 decay to zero.
Under H∗1, there exist functions f ∗ ∈ L2

X and g∗ ∈ L2
Y , such that I( f ∗,g∗) ̸= 0. Without

loss of generality, assume f ∗ and g∗ are bounded. Otherwise, we can find sequences of
bounded functions { f ∗n }n and {g∗n}n that converge to f ∗ and g∗ under L2-norm, respectively.
As a result, we would have I( f ∗n ,g

∗
n) ̸= 0 for some n.

By Lusin’s theorem, we can find a sequence of bounded and continuous functions { f ∗∗n }n,
such that limn Pr( f ∗∗n (X) ̸= f ∗(X)) = 0. By dominated convergence theorem, it follows
that f ∗∗n converges to f ∗ under L2-norm. Similarly, we can find a sequence of continuous
functions {g∗∗n }n, such that g∗∗n converges to g∗ under L2-norm. This together with the fact
that I( f ,g) is continuous in ( f ,g) implies that there exist some continuous functions f ∗∗ and
g∗∗, such that I( f ∗∗,g∗∗) ̸= 0.

A key observation here is that, the class of neural networks have universal approximation
property. Since the support of X and Y are bounded, it follows from Theorem 1 of [? ]
that the class of single-layered neural networks with sigmoid activation function is dense in
the class of bounded, continuous functions with a compact support. As such, we can find
some neural network functions f ∗∗∗ and g∗∗∗ such that I( f ∗∗∗,g∗∗∗) ̸= 0. We then argue that
there must exist f ∈H1 and g ∈H2, such that I( f ,g) = 0. Otherwise, f ∗∗∗ and g∗∗∗ can be
represented as linear combinations of neural network functions in H1, H2 with finitely many
number of parameters, and we would have I( f ∗∗∗,g∗∗∗) = 0 as a result. This completes Step
1.

Step 2. We first show that I(h1,θ1,h2,θ2) is a Lipschitz continuous function of (θ1,θ2). Note
that h1,θ1(X) and h2,θ2(Y ) are Lipschitz continuous functions of θ1 and θ2, respectively. For
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any θ1,1,θ1,2 ∈ Rd1 , θ2,1,θ2,2 ∈ Rd2 , we have that,

|I(h1,θ1,h2,θ2)− I(h1,θ1,h2,θ2)|
≤
∣∣E[h1,1(X)−E{h1,1(X)|Z}−h1,2(X)+E{h2,1(X)|Z}][h2,1(Y )−E{h2,1(Y )|Z}]

∣∣
(D.1.17)

+
∣∣E[h1,2(X)−E{h1,2(X)|Z}][h2,1(Y )−E{h2,1(Y )|Z}−h2,2(Y )+E{h2,2(Y )|Z}]

∣∣ .
(D.1.18)

Since the class of functions in H2 are upper bounded by O(
√

logn) with probability tending
to 1, the right-hand-side of (D.1.17) is bounded from above by

O(1)E
∣∣h1,1(X)−E{h1,1(X)|Z}−h1,2(X)+E{h2,1(X)|Z}

∣∣√logn,

with probability tending to 1. By Jensen’s inequality, the above quantity can be further
bounded from above by

O(1)E
∣∣h1,1(X)−h1,2(X)

∣∣2√logn≤ K∥θ1,1−θ1,2∥2
√

logn,

for some constant K > 0. Following similar arguments, we can show that the right-hand-side
of (D.1.18) is bounded from above by K∥θ2,1− θ2,2∥2

√
logn, for any θ2,1 and θ2,2, with

probability tending to 1. To summarize, conditional on the event that H1 and H2 are bounded
function classes, we have shown that

|I(h1,θ1 ,h2,θ2)− I(h1,θ1,h2,θ2)| ≤ K (∥θ1,1−θ1,2∥2 +∥θ2,1−θ2,2∥2)
√

logn.

Consequently, for any sufficiently small ε > 0, there exists a neighborhood N = {(θ1,θ2) :
∥θ j−θ ∗j ∥2≤ δ log−1/2 n} for some constant δ > 0 around (θ ∗1 ,θ

∗
2 ), such that I(h1,θ1,h2,θ2)≥

ε for any (θ1,θ2) that belongs to this neighborhood.
Since (θ1,b,θ2,b) are generated from the multivariate normal distribution, and the dimen-

sions d1 and d2 are finite, the probability that (θ1,b,θ2,b) belongs to this neighborhood is
strictly greater than O(log−c1 n) for some constant c1 > 0. Since B = c0nc, the probability
that at least one pair of parameters (θ1,b1,θ2,b2) belongs to this neighborhood approaches
one. Consequently, we have that,

max
b1,b2

GCM∗
{

h1,b1(X),h2,b2(Y )
}
≥ ε,

with probability tending to 1.
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Following similar arguments as in the proof of Theorems 6.4.2 and 6.4.3, we can show
that |T −maxb1,b2 GCM∗{h1,b1(X),h2,b2(Y )}|= op(1), and T̃j = op(1). Consequently, both
probabilities Pr(T < ε/2) and Pr(T̃j ≥ ε/2) converge to zero. Therefore, the probability
that the p-value is greater than α is bounded by the probability that Pr(T < ε/2), which
converges to zero. This completes the proof of Theorem 6.4.4.
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