
The London School of Economics and Political Science

Essays on Spatial Economics

Kohei Takeda

A thesis submitted for for the degree of Doctor of
Philosophy in Economics, May 2022

1



Declaration

I certify that the thesis I have presented for examination for the Ph.D. degree of the London School
of Economics and Political Science is solely my own work other than where I have clearly indicated
that it is the work of others (in which case the extent of any work carried out jointly by me and any
other person is clearly identi�ed in it).

The copyright of this thesis rests with the author. Quotation from it is permitted, provided that full
acknowledgement is made. This thesis may not be reproduced without my prior written consent.

I warrant that this authorization does not, to the best of my belief, infringe the rights of any third
party.

I con�rm that Chapter 2 is jointly co-authored with Daniel Sturm and Anthony Venables.

I declare that my thesis consists of approximately 43,400 words excluding bibliography and appen-
dices.

Kohei Takeda

2



Abstract

What are the causes and consequences of the spatial variation of economic activities both within
and across cities? To contribute to our understanding of this question, the two chapters in this PhD
thesis seek to advance two research agendas. The �rst is an understanding of the causes of the
spatial variation in structural transformation in a country and how this a�ects spatial inequality
and the upward income mobility of workers. The second is addressing the mechanisms that shape
the internal structure of a city in a developing country. The approach to both is a mix of theory and
empirics, leveraging the structure of the model for identi�cation.

The �rst chapter develops a dynamic overlapping generations model of economic geography
to explain variation in structural transformation across space and time. Despite the heterogeneity
across locations, sectors, and time, the model remains tractable and is calibrated to match metropoli-
tan area data for the U.S. economy from 1980 to 2010. The calibration allows us to back out measures
of upward mobility and inequality, thereby providing theoretical underpinnings to the geograph-
ical variation of upward mobility and spatial inequality. The counterfactual analysis shows that
structural transformation in the last decades has had substantial e�ects on mobility.

The second chapter studies how quantitative urban models can be calibrated in the data-sparse
environments in developing countries using data from Dhaka. In particular, this paper shows how
newly available satellite data on building heights can be used to estimate the housing supply elas-
ticity. With the model parameters, we can also estimate the price of land and �oor space in the city,
which are prices that are usually di�cult to observe for cities in developing countries directly. This
paper also presents model counterfactuals to illustrate how essential it is to understand the general
equilibrium impacts of the policy change.

(300 words)
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Chapter 1

The Geography of Structural Transformation:
E�ects on Inequality and Mobility

1 Introduction

The last half-century has seen a remarkable structural transformation of the world. While there has
been sustained deindustrialization and a general shift towards the service sector in most developed
countries, there is a signi�cant variation in the extent of this structural transformation across geog-
raphy within a given country. Figure 1.1 shows the change in employment shares for both the goods
and services sectors in the U.S. cities over the last half-century. In the left-hand panel, both the me-
dian share of people employed in the manufacturing sector and its spatial variation represented by
the inter-quartile bands have been declining in most cities since the 1970s, while in the right-hand
panel, there has been concurrent growth in the share employed in the service sector. However,
in contrast to the manufacturing sector, this continues to show large geographic variation. While

Figure 1.1: Change in Employment Share across the U.S. Cities (MSAs)

.1

.15

.2

.25

.3

.35

M
an

uf
ac

tu
ri

ng
 a

nd
 C

on
st

ru
ct

io
n 

E
m

pl
oy

m
en

t S
ha

re

1970 1980 1990 2000 2010 2020

Year

(a) Manufacturing and Construction

.4

.5

.6

.7

.8

Se
rv

ic
e 

E
m

pl
oy

m
en

t S
ha

re

1970 1980 1990 2000 2010 2020

Year

(b) Services

Note: These �gures show the change in employment share for the manufacturing and construction sector and the service sector (excluding public

services) over 1969-2019. The red line shows the median across MSAs in the U.S. and the blue lines show inter-quartile ranges for any particular

year. The data source is employment data from BEA.

11



the causes and consequences of structural transformation have been well documented at a national
level, we know very little about what drives its variation across space within countries. And, im-
portantly, the uneven impact of this structural transformation could explain both spatial inequality
and geographical variation in the social mobility of workers.

This paper (i) shows how amenities and productivity spillovers are the main drivers of the geo-
graphical unevenness of structural transformation and (ii) use the model and �tted data to perform
counterfactuals that allow us to trace out the consequences of this variation for inequality and mo-
bility across cities in the U.S. To this end, we build a dynamic economic geography model that
incorporates overlapping generations, multiple sectors and the frictional adjustment for workers
who switch locations and industries. In their youth, workers’ tastes for which industry to work
in is a function the industries represented in their location of birth. Given their tastes for indus-
try and locations, they choose cities and industries to work in later in their life, and this fuels the
dynamics of labor allocation across industries. Incorporating overlapping generations of workers
to characterize the evolution of labor allocation across space and industries is a novel extension of
the economic geography model. Structural transformation in a given locality provides a tractable
expression for understanding the key mechanisms that determine the spatial dynamics of total fac-
tor productivity (TFP), welfare, factor prices and intergenerational mobility. We then calibrate this
model using data on the U.S. metropolitan areas (CBSAs) from 1980 to 2010 to obtain the amenity
and productivity estimates that drive di�erential rates of structural transformation across locations
and then trace out their e�ects on inequality and mobility.

The dynamic economic geography model proposed in this paper has three key components: (i)
structural transformation caused by both non-homothetic preferences and di�erential productivity
growth across sectors, (ii) a multi-location and multi-sector version of the gravity model, and (iii)
barriers for workers to switch locations and industries. Conditional on the technological progress in
fundamental productivity, the non-homothetic preferences of individuals between the manufactur-
ing sector and services sector leads to a di�erent slope of the Engel curve across workers in di�erent
locations and industries. We embed this mechanism of structural transformation in the multi-sector
version of the gravity model and this enables us to consider the microstructure of spatial linkages in
production and consumption. Firms are competitive and �rms in each location bene�t from other
locations over time because they can exploit technology developed in other places through the in-
migration of workers who bring knowledge with them. The di�erent patterns of demand shifts
by workers imply heterogeneous gains from trade by geography and sector, and disparity in real
incomes leads to the localization and sector specialization of workers. These agglomerations are
essential in the endogenous mechanisms creating the spatial variation of structural transformation
and its relation to the spatial inequality in welfare.

Once we have de�ned the structure of demand, production and trade, we present an overlap-
ping generation theory for workers’ choice of local labor markets which drives the dynamics of
labor allocation. Individuals live for two periods. In the �rst period, individuals choose the location
and industry that will be the focus of the second period. Individual workers’ decisions on where
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to supply labor depend on two probabilities: (i) their location choice is determined by amenities,
real income and mobility costs; (ii) the choice of an industry that re�ects the future expected return
and exposure to the previous generation’s sectors of employment in their home local labor mar-
ket. Conditional on the choice of industry, lower migration costs increase the opportunity for labor
mobility on geography, allowing workers to move where higher returns from work exist, leading
to welfare gains. Turning to the industry choice of individuals in the �rst period, we introduce the
simple microfoundation for the in�uence of the industrial composition in the previous generation
on their choice. An individual receives information regarding jobs in an industry from the previous
generation in the local labor market where they live in the �rst period. If there are a large num-
ber of workers in any particular industry among the previous generation, an individual in the next
generation has more exposure to the industry and receives more information from it. This infor-
mation leads to di�erent taste values. An individual then decides on an industry that gives them
the highest expected utility, taking into account their speci�c taste values. This, in turn, creates a
path dependence in the local labor market over generations. Intuitively, an individual’s choice of
industry is a�ected by the degree of structural transformation in the local economy. This is consis-
tent with a large body of sociological literature and empirical evidence from the study of the local
labor market. In the model therefore, individuals’ decisions feature two probability choices that
take quite di�erent roles in the transition of local labor markets. The former accounts for how local
characteristics and spatial structure de�ne labor supply, and the latter explains why the transition
process of workers persists in some local economies.

Together with these key mechanisms which drive the geographical pattern of structural change,
we provide a quantitatively oriented theory to study the consequences of the distributional e�ects of
structural change on workers’ inequality over space and time. The model allows us to characterize
the local labor market dynamics with the Stolper-Samuelson e�ect and the Rybczynski theorem at
work in the spatial economy. In equilibrium, the disparity of wages, consumption and sector-speci�c
local agglomeration forces create cross-sectional inequality among workers. For upward mobility
over generations, the two sets of workers’ idiosyncratic preferences over locations and industries
and the extent of structural transformation determine the equilibrium intergenerational income
mobility. Therefore, our model speaks to the fundamental source of the variation of inequality and
upward income mobility with a focus on the role of the geography of structural transformation.

After exploring the key qualitative and quantitative insights in the theoretical model, we cal-
ibrate the model with the data from the U.S. metropolitan areas and multiple industries. We con-
sider 395 core based statistical areas (CBSAs) and 17 industries in the manufacturing sector and
the services sector, and a construction sector. We �rst estimate some parameters by exploiting the
structural equations in the model. We use gravity equations for internal trade and migration to
estimate their elasticities, and we then estimate key parameters that determine workers’ industry
choice based on the data on wage and employment by industry and CBSAs, leveraging the model
structure. Subsequently, we invert the model to recover the time-varying fundamental productivity
and amenities by industry and CBSAs for di�erent periods, 1980, 1990, 2000 and 2010. While we
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allow for high dimensions in locations, industries and time, we �nd that the model remains tractable
and allows us to compute these fundamentals in the real economy. Based on the inverted fundamen-
tals and computed workers’ choice, we calculate the measured TFP, welfare and intergenerational
inequality across space. The quanti�cation highlights the quantitative importance of di�erent mar-
gins in the model that determine the geographical variation of structural transformation and its
impact on welfare and upward mobility.

Armed with the estimated parameters and inverted fundamentals in the economy, we perform
two sets of counterfactual exercises varying (i) technological progress and (ii) local amenities. For
the former, we start by quantifying the e�ect of fundamental technological progress on the geo-
graphical pattern of structural transformation, welfare and upward mobility. To do this, we con-
duct a counterfactual exercise where the evolution of fundamental productivity in the service sector
shows di�erent patterns to the baseline. We also look at what happens if information technology
(IT) intensive services had not experienced technological advancement over time. Namely, we com-
pute the counterfactual equilibrium when the fundamental productivity of communication services
and �nance, insurance and real estate (FIRE) was �xed after a negative shock to the baseline econ-
omy in 1990. In addition, we look at a counterfactual to assess the role of technological progress
in the manufacturing sector due to the adoption of robots. We �nd that such fundamental pro-
ductivity growth drives spatial variation in structural change via di�erential productivity spillovers
and demand shifts. Technological progress, on average, lowers the upward mobility of workers
and we �nd pronounced geographical variation in this e�ect. For the latter, we carry out a set of
counterfactuals where we vary amenities across localities. In the model, fundamental amenities for
workers are location and industry speci�c, and they include location-speci�c migration barriers and
sector-speci�c taste shifters. To assess the importance of labor mobility, we �rst suppose that mi-
gration barriers are low. Further, we assume that the geographical variation of amenities becomes
uniform so that every worker in any particular industry enjoys the same bene�t from amenities
across space. In these model counterfactuals, we �nd that the persistent variation of fundamental
amenities is crucial for explaining the regional disparity in TFP changes and workers’ mobility. This
leads to the disparity in welfare and intergenerational income mobility among workers across CB-
SAs observed in the U.S. We also �nd that lower migration barriers yield higher geographical and
income mobility for workers.

The power of the framework developed in this paper is that it is tractable and is capable of per-
forming various counterfactual exercises to study policy interventions and their consequences of
inequality among workers from both cross-sectional and intergenerational perspectives. It is ap-
plicable to a whole range of settings beyond that examined in this paper. The key �nding is that
interplay between structural transformation in the aggregate and local economies is critical for un-
derstanding spatial inequality and worker mobility. The dynamic nature of our spatial model allows
us to study phenomena that have received limited scrutiny but which are of fundamental interest in
a country which is increasingly riven by growing inequality and barriers to upward mobility. This
paper addresses how the structure of the spatial economy - through trade and migration, local labor
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market exposures and agglomeration - shapes individual outcomes. We begin to understand why
citizens in di�erent cities in the same country have such di�erent outcomes. Why some remain
mired in the Rust Belt with limited prospects whilst others reside in the most dynamic cities on
earth. We also begin to glimpse why rising inequality might constrain upward mobility thus pro-
viding microfoundations for the Great Gatsby Curve that the late Alan Krueger originally pointed
to. These issues of inequality and limited mobility are perhaps the most important facing not just
the U.S. but a whole range of countries across the world. This paper contributes by opening the
black box of how the structure of economy can in�uence patterns of inequality and mobility in
di�erent locations.

This paper is related to the explanation of the structural transformation in macroeconomy (Mat-
suyama 1992, Caselli and Coleman II 2001, Ngai and Pissarides 2007, Matsuyama 2009, Buera and
Kaboski 2012, Herrendorf et al. 2014, Matsuyama 2019, Comin et al. 2020) and the neoclassical anal-
ysis of regional disparity (Barro et al. 1991, Barro and Sala-I-Martin 1992). In the context of the
spatial economy, there is a line of discussions about the sources of the diversity of spatial devel-
opment: input-output linkages (Puga and Venables 1996), innovation and entrepreneurship (Brezis
and Krugman 1997, Duranton and Puga 2001, citealtentrepreneurship2015), trade costs (Redding and
Venables 2004, Duranton and Turner 2012, Allen and Arkolakis 2014), spatial spillover of technology
(Desmet and Rossi-Hansberg 2009, Desmet and Rossi-Hansberg 2014), and amenities (Rappaport
2007, Glaeser et al. 2016). Our model integrates them to make these ideas quantitatively precise,
and we propose the structural approach relating to the recent empirical �ndings of Hornbeck and
Moretti (2020).

Theory adopts the recent modeling of non-homothetic preferences (Matsuyama 2019, Comin
et al. 2020) to consider the role of heterogeneous Engel curves across local labor markets in the
spatial pattern of structural transformation and inequality. We adopt the non-homothetic constant
elasticity of substitution (CES) demand system for keeping the tractability of the model compared to
previous works using di�erent types of preferences. The modeling approach of dynamics is similar
to that of Allen and Donaldson (2019). However, this study has di�erent motivations. The extension
of their framework to multiple sectors and the introduction of linkages between generations in
labor supply add new insights into spatial inequality and worker mobility. By its nature, the model
encompasses the interaction of comparative advantages and labor mobility that is focused on in
Pellegrina and Sotelo (2021).

There is a list of papers that analyze the theory of dynamic equilibrium in economic geogra-
phy (Krugman 1991, Matsuyama 1991, Ottaviano 1999, Baldwin 2001). At the expense of forward-
looking choices, our approach provides tractability to isolate the importance of migration barriers,
local labor market exposure, structural transformation and externalities in the workers’ response to
any particular shock. This is also our attitude toward the recent advancement in the formulation of
the spatial economy with perfect foresight in�nitely lived workers (Artuç et al. 2010, Dix-Carneiro
2014, Dix-Carneiro and Kovak 2017, Caliendo et al. 2018, Caliendo et al. 2019, Caliendo and Parro
2021, Kleinman et al. 2021). For labor mobility, our approach is also related to Porcher (2020) on
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the role of information friction in internal migration, although we underscore the past industry
distribution in the decision to work within the local labor market. Among others, Michaels et al.
(2012) provided the static model that studies the link between urbanization and the shift of labor
from agriculture to manufacturing. Eckert and Peters (2018) considered the dynamic version of the
structural transformation of the early U.S. economy. Fan et al. (2021) account for the regional dif-
ference in the service-led growth in India. Compared to them, we explicitly consider the role of
spatial linkages and frictions that are abstract in their model because the spatial structure matters
in assessing the fundamentals across locations.

Finally, as an essential contribution, we take an approach focused on the structural mechanisms
for the recent discussion on the dynamics of inequality by geography. In addition to the cross-
sectional inequality across locations (Glaeser et al. 2009), this paper derives an implication for the
heterogeneity in intergenerational mobility found in recent studies, including Ferrie (2005), Long
and Ferrie (2013), Chetty et al. (2014), Feigenbaum (2015), Bütikofer et al. (2019), Fogli and Guerrieri
(2019), and Boar and Lashkari (2021). This paper’s approach and quantitative results complement
their evidence, and we can obtain the absolute e�ects of structural change in the economy on the
upward income mobility of individual workers.

The rest of this paper is structured as follows. Section 2 describes the spatial variation of struc-
tural changes and its relation to upward mobility in the U.S. Section 3 develops the model, and
Section 4 describes the analytical results for accounting objectives in the model. The data and pa-
rameters for calibration and calibration procedure are described in Section 4. The results of calibra-
tion and quantitative analysis for the U.S. economy are discussed in Section 6. Armed with the data
and parameters, Section 7 presents the results of the counterfactual analysis of the U.S. economy.
Section 8 concludes. The Appendix contains technical details, including other results.

2 Spatial Variation of Structural Transformation in the U.S.

We start by documenting the spatial variation of structural transformation in the U.S. economy.
Figure 2.2 displays the relationship between changes in employment share and initial employment
level across CBSAs for the manufacturing sector and services sector over di�erent periods, using the
data on industry level employment from the county business pattern (CBP). In the left-hand panel,
cities with large initial employment in the manufacturing sector showed a signi�cant shift of work-
ers to the services sector during 1980-1990. Although this pattern became less pronounced in the
later periods, it shows that the deindustrialization of the U.S. economy has been led by cities where
the size of the manufacturing sector was large. This implies that employment in the manufacturing
sector has been dispersed across space over time. In the right-hand panel, the service sector exhib-
ited a weak relationship between the change in the employment share of the services sector and the
initial size of employment in the sector. This shows that the variation in the employment share of
services across cities has not declined over time in contrast to the manufacturing sector. Another
observation in these �gures is that there is a variation in the change of employment composition for
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Figure 2.2: Geography of Structural Transformation in the U.S.
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Note: These �gures show the polynomial �tted line (local mean smoothing) for the change in employment share between di�erent periods:

1980-1990, 1990-2000 and 2000-2010. Figure (a) shows that for the manufacturing sector, and Figure (b) shows that for the service sector. The sample

includes 395 core based statistical areas (CBSAs) in the U.S. The dotted lines show 95% con�dence intervals. Employment is normalized by the total

employment in the economy.

specialized cities. The con�dence intervals become large for cities with large size of employment
in a particular sector. One logic that creates the spatial variation in this structural transformation
is the di�erential productivity growth across space through fundamental technological di�erences
and productivity spillovers across space. Therefore, our model allows spatial heterogeneity in fun-
damental productivity growth and spillovers. Another driver of this geographical unevenness in
structural transformation is a signi�cant di�erence in demand. In the U.S., while the average ex-
penditure share of goods has declined and that for housing and services has increased in most places,
there is considerable variation in expenditure share across cities. In addition, a larger expenditure
share on services is associated with a large consumption expenditure and the relationship has been
observed for di�erent periods. See the Appendix for the expenditure share for some representa-
tive cities in the U.S. To reconcile this pattern, we incorporate the non-homothetic preferences of
individuals in the model. This leads to the di�erent slopes of the Engel curve of workers by their lo-
cations and industries. The Appendix also presents the changes in the U.S. economy in the average
and standard deviation of the house price index and its relation to the structural change. The vari-
ations in the housing prices and the underlying local amenities are essential margins that account
for the welfare disparity by place occurring in the structural transformation phase. Therefore, in
the model, we introduce the di�erent values of amenities for workers by location and sector and
developers that supply residential stocks.

Next, Figure 2.3a shows the relationship between inequality in the local labor markets (CBSAs)
and the change in service employment share. This con�rms the signi�cant income inequality in
large cities where employment of services increased in the early period 1980-1990 but turned out less
pronounced later. On intergenerational mobility, Figure 2.3b displays the variation in the measure
of upward mobility of workers across metropolitan areas constructed by Chetty et al. (2014) and its
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relation to the change in the service employment share in the last decades. The measure of upward
mobility represents the expected rank for children from families with below-median parents’ income
in the national distribution. They exploit residents born in 1980-82 and their income is evaluated
in the years 2011-12, and related to the income of their parents back in 1996-2000. There is a large
variation across U.S. cities in the upward mobility, and the structural transformation toward the
service sector in the local labor market is associated with lower intergenerational income mobility
for workers.

Figure 2.3: Inequality and Intergenerational Mobility across the U.S. Cities
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Together with Figure 2.2, we notice that locations with a high employment share in manufac-
turing in the initial period show lower social mobility of workers, but we also �nd the variation
of social mobility between cities, which show a similar pattern of the growth in the employment
share of services(see Detroit and El Paso). In the next section, we develop a quanti�able model to
consider the variation of upward mobility and its relation to structural transformation. Intuitively,
more structural transformation to services inherently low productivity growth in the local econ-
omy and the lower degree of labor mobility together lead to lower upward mobility. Therefore, the
current labor composition of the local economy and the pattern of structural transformation is im-
portant to create the variation of upward income mobility. Modeling with overlapping generations
and workers’ mobility speaks to the fundamental source of the variation of inequality and upward
income mobility, focusing on the role of the geography of structural transformation.

The heterogeneity in structural transformation across space gives rise to the question of its re-
distributive e�ects across space and over generations. What are the underlying drivers that create
the spatial variation of structural transformation? What is their quantitative importance in explain-
ing the spatial inequality and upward mobility of workers in the U.S. economy? To address these
questions, we build the quanti�able general equilibrium model that accommodates heterogeneous
geography, �ctional adjustment of workers across locations and industries, and structural transfor-
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mation.

3 The Model

This section presents a model to understand the spatial heterogeneity of structural transformation
and its consequence on workers over generations. The basic environment is the following. Time is
discrete. A single country consists of a discrete number of locations, indexed by i, ` or n ∈ N . We
let K denote the set of S + 1 industries. Among them, there are S tradable industries and a single
sector providing the structure or housing services, which we refer sector 0. Each sector is indexed
by j, k or s. Locations are di�erent in fundamental productivity and amenities. Immobile landlords
own the land and the total units of land are unchanged over time. At generic time t, the economy
is inhabited by two overlapping generations of equal size L̄: the old born at period t − 1 and the
young born at period t. Only the old work and consume with each of them supplying a unit of
labor inelastically. Accordingly, at any time, L̄ also represents the total number of consumers and
workers in the economy. Each local labor market is characterized by a combination of location and
industry. Young workers decide in which location to live and in which industry to work when old,
thus potentially giving rise to intergenerational changes in employment across local labor markets.
In this respect, the �rst period of individuals is the formative years. The Appendix A presents the
details of each element in the model not included in the main text.

3.1 Demand, Land of Opportunity, and Exposure in Local Labor Market

We consider the individuals’ decisions regarding the consumption, industry to work and location.
At the initial of time t−1, people of generation t are homogeneous ex ante.1 During the period t−1,
individuals in location i observe the idiosyncratic taste shocks relating to the industry choice. They
anticipate the wage and prices in the next period t and compute the expected payo� for the future.
Given the expected payo�, they decide the industry, and we take that choice to be unchanged later.
At the initial of period t, individuals draw and observe the taste shocks across locations and they
decide location n where they live in period t. They move to the destination at the initial of period
t subject to bilateral migration costs. In the location, they supply one unit of labor inelastically and
decide consumption allocations. The lifetime utility of a worker ω of generation t who lived in i in
period t− 1 and works and consumes in location n and industry s in period t is:

lnU s
ni,t(ω) = lnBs

n,t + lnCs
n,t(ω)− lnDni,t + ln zsi,t(ω) + ln vn,t(ω),

where Cs
n,t(ω) is subutility function associated with consumption of individuals. The utility bene�t

from amenities, Bs
n,t, is common to sector s workers living in n, and migration from location i

1This can be easily extended to allow exogenous heterogeneity, including race and gender.
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to n incurs the utility cost Dni,t that re�ects any impediments that movers across locations face.2

The idiosyncratic taste shocks from industry choice zsi,t(ω) depend on the origin of the worker.
The second idiosyncratic shock of amenities related to location choices, vn,t(ω), depends on the
destination but is independent across i and s. We describe them in detail later.

For the demand system, our objective is to study the implication of demand heterogeneity across
workers and locations along with the structural transformation in the economy. Therefore, we
depart from the standard CES aggregation by introducing a heterogeneous income e�ect across
sectors, keeping tractability in the substitution e�ect. In the baseline analysis, we adopt the implic-
itly additive separable consumption aggregator featuring non-homothetic CES demand discussed
in Hanoch (1975) and recently Matsuyama (2019) and Comin et al. (2020). While there are alter-
native non-homothetic preferences used in the international trade and macroeconomics literature3,
as we discuss below in detail, the non-homothetic CES demand system has advantages: �rst, we
keep non-homotheticity in the asymptotic; second, we easily accommodate multi-sectors; third, the
elasticity of substitution between sectors is constant; and fourth, the elasticity of relative sectoral
demand to aggregate demand is solely determined by parameter values. These gain tractability and
entail the core mechanisms of demand shift.

Workers of generation t working in location n and sector s receive income W s
n,t which include

labor earnings (wage) and surplus distributed among workers. We refer pt = {pkn,t} to price of
consumption of goods. The expenditure share of a worker with income W s

n,t is:

ψsk|n,t = ασ−1
k

(
pkn,t/Psn,t

)1−σ(
W s
n,t/Psn,t

)θk−1

, k ∈ K (1)

where α = {αk}, σ and θ = {θk} are exogenous preference parameters and we assume (θk −
σ)/(1 − σ) > 0 for all industries.4 Psn,t is the aggregate price index corresponding to the optimal
consumption patterns for workers in sector s and location n that solves:

Psn,t =

(∑
k∈K

ασ−1
k (pkn,t)

1−σ(W s
n,t/Psn,t)θk−1

)1/(1−σ)

(2)

Using the price index, we let Ws
n,t denote the real income for workers in location n and sector s:

Ws
n,t ≡ W s

n,t/Psn,t. We emphasize the three key elasticities for this demand system (1). First, the
elasticity of substitution between sectors is constant, 1−σ. Second, the elasticity of relative demand
between two di�erent sectors to the aggregate demand is speci�c to the pair of sectors and governed
by θk by sector. Third, income elasticity varies across sectors and depends on expenditure patterns:
individuals exhibit higher income elasticity of demand for the industry with a large θk. When ex-

2This conceptually includes moving costs between locations, the cost of job search in di�erent locations, as well as
the cost of searching for a place to live. In the quanti�cation of the model, we allow Dii,t may di�er across locations.

3The di�erent types of non-homothetic preferences include Stone-Geary preference; price independent generalized
linearity (PIGL) preference (Buera and Kaboski 2012, Eckert and Peters 2018); constant ratio of income elasticity (Fieler
2011, Caron et al. 2014); income speci�c elasticity of substitution between goods (Handbury 2019).

4This ensures the global monotonicity and quasi-concavity of the consumption aggregation.
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penditure shifts to an industry with a large θk, the income elasticity of consumption becomes lower
as the relative slopes of Engel decline for all sectors.

We let Y s
n,t be the aggregate income of workers in location n and sector s and Yn,t ≡

∑
s∈K Y

s
n,t.

We also de�ne the income share of workers in any particular industry: ysn,t ≡ Y s
n,t/Yn,t. Then, the

change of local expenditure share on sector k between time t and t − 1 at the �rst order approxi-
mation becomes:

d ln
Ek
n,t

Yn,t
=
∑
s∈K

ψsk|n,t−1Y
s
n,t−1

Ek
n,t−1

(
(1− σ)d ln

(
pkn,t
Psn,t

)
+ (θk − 1)d lnWs

n,t + d ln ysn,t

)
, (3)

where Ek
n,t is aggregate expenditure on sector k in location n. The local level Engel slope changes

over time through substitution e�ect, real income change (Ws
n,t) and the change of income distri-

bution (ysn,t) given previous expenditure patterns.
Turning to the location choice of workers, we formally posit the followings for the stochastic

factor:

ASSUMPTION 1 An individual draws vector v = {vi,t(ω)}i∈N from the time invariant multivariate
distribution: G({vi,t(ω)}) = exp

(
−
∑

i∈N (vi,t)
−ε). vi,t(ω) and vn,t(ω) are independent: vi,t(ω) ⊥

vn,t(ω) for any i 6= n conditional on industry choice.

The shape parameter re�ects the dispersion of the idiosyncratic utility. Low ε implies higher
heterogeneity in taste across places to live, and ε → ∞ implies that all individuals face the same
order of locations in terms of the utility bene�t. Under Assumption 1, the probability that a worker
born in i at period t− 1 ends up working in location n at period t conditional on choosing industry
s equals:

λsni,t =

(
Bs
n,tWs

n,t

Dni,tŪ s
i,t

)ε

with Ū s
i,t =

(∑
`∈N

(
Bs
`,tWs

`,t/D`i,t

)ε)1/ε

, (4)

where Ū s
i,t is expected utility conditional on job choice s. By the law of large numbers across contin-

uum of individuals, each element of matrix λs,t = {λsni,t} is the share of movers among individuals
of generation t conditional on industry choice s. The share becomes large when the destination ex-
hibits higher real income from consumption (Ws

n,t) associated with the adjustment of amenity value
(Bs

n,t) and discount of migration costs (Dni,t). Therefore, Ū s
i,t re�ects the land of job opportunities

for individuals born in i when working in industry s.
We turn to the distribution of idiosyncratic taste shocks relating to the choice of industry, zt =

{zsi,t(ω)}. An individual of generation t + 1 in location i receives the discrete number of taste
shocks for each sector from previous generation t during the formative period, t. An individual of
generation t+1 (young) spends an entire time for job choice during period t. An individual acquires
information containing taste shock from existing workers in the local labor market. An individual
split one unit of time into T time spans with intervals ∆. Let Jsi,t refer to the probability that she
receives the valuable information during ∆. Within each time span, an individual decides time
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allocation across di�erent industries to maximize the logit of probabilities of receiving the valuable
shocks. We letO(Jsi,t, L

s
i,t) denote the time required to achieve the probability Jsi,t. This is increasing

in Jsi,t and decreasing in Lsi,t. Intuitively, marginal time needed for obtaining valuable information
becomes small if there is a large pool of existing workers. For the objective function, an individual
maximizes the average of odds that captures the chance of receiving valuable taste shocks relative
to valueless ones regarding industries, with minimizing the average coe�cient of variation for the
binomial distribution of receiving the number of valuable taste shocks in a unit time.5 Speci�cally,
during time span ∆, an individual of generation t+ 1 in location i solves the following problem:

max
jsi ∈(0,1)

{∑
k∈K

ln
jki

1− jki
s.t.

∑
k∈K

O(jki , L
k
i,t) ≤ ∆, and O(jki , L

k
i,t) ≡

1

ζk,t
ln

(
1

1− jki

)
(Lki,t)

−η

}
,

(5)
and we let Jsi,t refer to its solution. The �rst constraint is time constraint. In the speci�cation for
O(Jsi,t, L

s
i,t), ζs,t and η are strictly positive constants. ζs,t is a scale shifter and η quanti�es how much

an individual can save time when there are more existing workers in the local labor market. Taking
the limit ∆ → 0, the problem above can lead to the number of shocks an individual of generation
t+ 1 receives during a unit of time following Poisson distribution with arrival rate Jsi,t. Further, to
gain the tractability, the value of each shock is supposed to be following Pareto distribution with
the shape parameter φ and shocks are independent. A small value of φ implies fat tail distribution
for the size of shocks. Intuitively, if φ becomes small, an individual is more likely to receive a higher
value of shock in job choice, leading to more idiosyncrasy in the industry choice. Summarizing the
assumptions about the taste shocks that an individual of cohort t+ 1 receives:

ASSUMPTION 2 An individual of cohort t + 1 solves (5) and consider the limit case ∆ → 0 to char-
acterize the distribution for the number of arrival shocks. The value of each taste shock follows inde-
pendent Pareto distribution with shape parameter φ > 1.

Intuitively, this assumption argues that individuals face the consideration set when deciding fu-
ture industry and location of work, and the set is in�uenced by workers’ exposure to the historical
employment composition. Given the set, individuals make their decisions following subjective ex-
pectations about future returns. Let ms

i,t(ω) be the number of shocks an individual receives from
location i and industry s. An individual decides industry s to work in if and only if:

s ∈

{
k : max

m∈{1,2,··· ,mki,t(ω)}
Ūk
i,tz

k
i,t

(m) ≥ max
s′∈K

max
m∈{1,2,··· ,ms′i,t}

Ū s′

i,tz
s′

i,t

(m)

}
.

Under Assumption 2, the share of cohorts t+ 1 in location i that choose industry s becomes:

ςsi,t+1 = ζs,t(L
s
i,t)

η

(
Ū s
i,t+1

Vi,t+1

)φ

with Vi,t+1 ≡

(∑
k∈K

ζk,t

(
Lki,t

)η(
Ūk
i,t+1

)φ)1/φ

. (6)

5The coe�cient of variation captures the relative variation of the number of valuable information over the average
number of valuable information. Minimizing such variation is isomorphic to maximizing the logit.
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The matrix ςt = {ςsi,t} closes the individuals’ decision process. The share of individuals, ςsi,t+1,
depends on three components. The shifter ζs,t translates the macro e�ect in the industry choice
that is common across locations. The large probability of choosing sector s is associated with large
size of employment in the previous generation (Lsi,t): more existing workers in the local labor market
can save the marginal cost of information acquisition and it turns to be a large expected number of
shocks that arrive to young generation ceteris paribus. Intuitively, the more people you meet who
work there, the more likely you meet someone who prefers it and transmits to you the love for the
profession. This result can be interpreted as a path dependence in job choices in the local labor
market over generations. Lastly, individuals of cohort t + 1 choose sector s with high probability
when conditional expected utility (Ū s

i,t) is large since it determines the advantage of industry s in
terms of net gain for their future.

This formulation under Assumption 2 is related to empirical evidences of intergenerational link-
age in job choices and work behavior in labor economics6. In particular, the speci�cation may cap-
ture the path dependence in the local labor market through education. Some U.S. manufacturing
cities, including Bu�alo, Cincinnati and Youngstown (Ohio), have underdeveloped the infrastruc-
ture to educate young generations for a long time, and the number of high schools and college
graduates has been low in these cities. For these cities, the industrial specialization leads to the
underinvestment into education: workers of steelmaking or paper-pulping tied to specialized in-
dustries did not have any motivations for higher education or education for the new technology in
services. Therefore, specialization of the industry has a long-term e�ect over generations through
the accumulation of schooling.7 The speci�cation of workers’ idiosyncratic taste shocks also re�ects
the recent literature in the intergenerational transmission of preference apart from the endogenous
creation of human capital or productivity.8

3.2 Technology and Trade

The production side builds on the multi-sector and multi-location Ricardian model embedded with
input-output linkages and externalities from agglomeration. In each sector, there are �nal good pro-

6The intergenerational linkage in the job choice found in the literature is one potential feature behind the recent
trend of intergenerational mobility, as discussed in Corak (2013). Loury (2006) showed that around half of jobs are found
in the network among relatives and friends in the U.S., and the highest wage was paid to workers who found the job
through male relatives in the prior generation, and Kramarz and Skans (2014) showed that young workers �nd the �rst
stable job in a parent’s �rm, and the e�ect is more substantial for low skilled jobs. Corak and Piraino (2011) found the
direct evidence on intergenerational transmission of employers in Canada;

7To consider the movement of people for education, we extend the baseline model to include the additional choice
of individuals for education. See subsection 3.5 for further discussion.

8The relationship between generations in the job choice can be explained by the (unobserved) transmission of taste or
preference through formal or informal social interactions (Manski (2000)) instead of investment of education or �nancial
assets. Doepke and Zilibotti (2008) highlighted the impact of the previous economic environment on the formation of the
preference among the future generation. Dohmen et al. (2012) found that the risk attitudes in preference are transmitted
from parents to children and there is a neighborhood e�ect in the transmission. Fernández et al. (2004) and Fernandez
and Fogli (2009) suggested that there are signi�cant e�ects of female labor participation in the previous generation
on the work and fertility behavior among the second generation, and this re�ects the persistence of the formation of
preference between generations.
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ducers and intermediate good producers. In each location, �nal good producers supply consumption
goods and materials in a competitive fashion that are consumed locally. They use sector-speci�c
intermediate goods, and their technology is constant elasticity of substitution. The time span of
each period is not too short, and �nal goods are produced and used as inputs simultaneously in
each period.

Intermediate goods’ as well as the factors’ markets are perfectly competitive. Intermediate goods
are produced using labor and materials exploiting a Cobb-Douglas function. Firms face location and
sector speci�c productivity Z = {Zs

i,t} and �rm speci�c productivity that is drawn from Fréchet
distribution with shape parameter κs > 1 in the wake of Eaton and Kortum (2002). Intermediate
goods can be traded incurring a sector-speci�c iceberg trade cost, so that delivering one unit of an
intermediate good from n to i requires τ sin,t ≥ 1 units, with τ sii,t = 1. The probability that �nal
producers of sector s in location i source intermediate goods from location n is:

πsin,t =
(τ sin,tΞ

s
n,t/Z

s
n,t)
−κs∑

`∈N (τ si`,tΞ
s
`,t/Z

s
`,t)
−κs

with Ξs
n,t = (wsn,t)

βs
∏
j∈K\0

(pjn,t)
βsj (7)

In turn, price of �nal good in location i for consumers is:

psi,t = Γs

(∑
`∈N

(
τ si`,tΞ

s
`,t/Z

s
`,t

)−κs)−1/κs

(8)

where Γs ≡ Γ
(

1− κ̃−1
κs

)1/(1−κ̃)

is constant. The gravity structure of regional trade characterized
by (7) and (11) summarize the spatial linkage of goods.

The aggregate productivity in the local production place is increasing in employment size and
evolves through the spatial spillovers. We make the following assumption:

ASSUMPTION 3

Zs
i,t = Asi,t

(∑
n∈N

Lsin,tZ
s
n,t−1

)ρ (
Lsi,t

)γs
for all i ∈ N and s ∈ K\0.

The fundamental productivityAsi,t changes over time to re�ect the technological change in sector
s in the local economy. Suppose that ρ = 0. Then, productivity increases in the size of local workers
to power γs > 0, which naturally arises when economies of scale exist. Suppose that ρ > 0.
Each location bene�ts from other locations through workers (including stayers) who have ideas of
sector s. Then, the formulation of productivity spillover in Assumption 3 captures has two features.
First, the "technology" is embodied with workers in tacit form (Polanyi 1958), and it moves across
locations over generations. Intuitively, a large in�ow of workers from productive places enhances
local productivity. This is microfounded by the movement of workers who produce ideas based
on the knowledge accumulated in the previous places. Second, technology spillover across space
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hinges on the local economic conditions. Intuitively, the in�ow of workers (Lin,t) re�ects the current
economic condition in location i. Therefore, gains from the productivity spillover are high in the
location with high real income. This is in line with the classical study of technology di�usion across
space (Griliches 1957). The exogenous environment may create a random di�erence in productivity
across space through Asi,t, while employment growth and �ow of "ideas" create the self-organizing
technological advancement across space that is related to labor mobility and demand-led growth.9

3.3 Development of Residential Stocks

Sector 0 denotes the residential structure. The structures are produced by a competitive developer
sector who can convert structures over the residential landT = {Ti}. We let hi,t refer to the stock of
structure per unit of land in period t and h̄i refer to the constant depreciation rate. The production
technology of a developer sector exhibits constant return to scale. Letting l0i,t be the employment
per unit of land for the development sector, the technology of developers is:

hi,t = νi(l
0
i,t)

χ((1− h̄i)hi,t−1)1−χ (9)

Therefore, we think of development as the process of adding structure to the previous stocks by
exploiting labor. The share of labor in construction is χ and the location speci�c productivity νi is
unchanged over time.10

We consider the bidding process for developers to obtain the right to develop the place by paying
rent to landlords. Letting ri,t be the bidding price per unit of land, the aggregate surplus extracted
from developers in location i through bidding becomes:

Ri,t = ri,tTi = (1− χ)νip
0
i,t(L

0
i,t)

χ((1− h̄i)Hi,t−1)1−χ (10)

Landlords in each location collect the surplus Ri,t and the total land rent is equal to the share of
land in the total cost of production. Given the �xed amount of land, the bidding price for a unit
of land is determined endogenously to balance the total endowment of land and the surplus from
development of land.

Lastly, we make an assumption about the division rule of the surplus among the population to
take the general equilibrium e�ects into account.

ASSUMPTION 4 In each location, individuals hold a portfolio of land that is proportional to their labor
earnings share.

9When ρ = 0 and γs = 1/κs, this speci�cation is isomorphic to the new economic geography model in which
the mass of �rms is proportional to the mass of labor due to the �xed cost of entry and monopolistic competition.
Nevertheless, in the present model, the agglomeration forces work as externalities in production, but not through love
of variety or extensive margins. Hence, the results of quanti�cation are di�erent. See discussion in the Appendix A.2.

10This is in line with Davis and Heathcote (2005) that show almost no change in productivity in the U.S. construction
sector.
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On top of the tractability, Assumption 4 does not distort the income distribution at the location
since income is proportional to wage.11 We refer W̃it to the total labor earnings of generation t in
location i and we let µi,t = 1 + Ri,t/W̃i,t. Then, income of each individual of sector s in location i
becomes W s

i,t = µi,tw
s
i,t.

3.4 Equilibrium and Aggregate Dynamics

This subsection describes the aggregation in the economy and de�nes the equilibrium. Combining
individuals’ choices in self-selection in (6) and the gravity structure of migration in (4) determine
the spatial allocation of labor and its dynamics:

Lsi,t =
∑
n∈N

λsni,tς
s
n,tLn,t−1, (11)

where Ln,t−1 is the total population of generation t − 1 that choose location n. This equilibrium
conditions supposes that the ex ante indirect utility of generation t born in i is equalized and the
value of the outside option for generation t born in i becomes equal to Vi,t to preserve the total
population over generations.12

The market clearing conditions for �nal goods imply that the total value of production of sector
s is:

Xs
i,t =

∑
j∈K\0

βjs
∑
n∈N

πjni,tX
j
n,t +

∑
k∈K

ψks|i,tW
k
i,tL

k
i,t, (12)

where, on the right-hand side, the �rst term is demand from intermediate producers in location i
for the use of materials, and the second term is aggregate demand from individuals consumption.13

Analogously, the market clearing condition for residential stocks is:

p0
i,tHi,t =

∑
k∈K

ψk0|i,tW
k
i,tL

k
i,t. (13)

The right-hand side is the total expenditure on housing of workers in location i and ψk0|i,t captures
the di�erent expenditure pattern of workers by their sector. The labor market of industry s in

11Another way of distribution rule is that the total land rent is divided among people with equal share. Then, the
income becomeswsi,t+Ri,t/Li,t. The drawback of this speci�cation is that the income ratio between workers in di�erent
sectors is not preserved. This feature is not convenient in the analysis of the inequality among workers. However, the
de�nition of competitive equilibrium is not largely di�erent from this assumption. In Caliendo et al. (2019), land is
owned by a national investment fund to which all workers participate with shares taken from the data. In the present
model, land is locally owned by local workers. Hence, in their case land prices do not a�ect the location decision, while
in ours they do.

12Let Vi,t be the value of outside option for workers of generation t born in location i. If Vi,t < Vi,t, people move to
outside option and total population of generation t is strictly lower than Li,t−1. If Vi,t = Vi,t, we suppose that people
stay in the economy and total population of generation t is equal to Li,t−1. When Vi,t > Vi,t, potentially people in
outside option enter into the economy, therefore total population of generation t is equal to or more than Li,t−1. The
baseline analysis supposes that Vi,t = Vi,t in equilibrium to equalize the total population of generation t to Li,t−1, and
Vi,t is determined endogenously according to (6).

13To simplify the discussion, the baseline analysis does not include the net export to the international market although
it is straightforward to include the exogenous term of the net export.
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location i clear at each point of time:

wsi,tL
s
i,t = βs

∑
n∈N

πsni,tX
s
n,t,

w0
i,tL

0
i,t = χνip

0
i,t(L

0
i,t)

χ[(1− h̄i)Hi,t−1]1−χ
(14)

where βs is the labor share of sector s in production of intermediate goods and χ is the labor share in
development of residential stocks. To close the description of the aggregate economy,

∑
i∈N Li,t =

L̄ for all period t. This implies that the total population size is �xed at the national level.
We now de�ne the equilibrium in the economy. The notations are following: F t denotes the

set of time-varying fundamentals including migration costs between locations (Dni,t), trade costs
(τ sin,t), exogenous productivity growth (Asi,t), amenities (Bs

i,t) and exogenous shifter of macroecon-
omy taste (ζs,t), and F denotes the set of time-invariant fundamentals that consist of e�ciency
in development of housing (νi), re-structuring parameter (h̄i) and endowment of land (Ti). The
initial state, G0 includes the initial population distribution in the economy, the initial productiv-
ity (Zs

i,0) and the initial endowment of residential structure (i.e., housing). Ω denotes the set of
parameters associated with demand system, choice of individuals, migration elasticity, production
technology, trade elasticities, and productivity spillover. Then, variables of interest are dynamics
of (ψt,λt, ςt,πt,pt,wt,Ht, rt): expenditure patterns, location choice of workers, sector choice of
workers, the pattern of trade, price of consumption goods and housing, wage, amount of residential
structure and land rent.

DEFINITION 1 Given (F t, F , G0, Ω), the dynamic equilibrium of the economy is characterized
by endogenous sequences of: ψt solving utility maximization, λt determined by (4), ςt determined by
(6), πt determined by (7), pt that solve market clearing conditions (12) and (13), wt that solves labor
market clearing condition (14), andHt and rt solving pro�t maximization of developers (9) and (13).

The dynamic equilibrium describes the full transition of economic activities over time and space.
The Appendix B.1 presents the forward solution in which model is solved given the pre-period state.
To guarantee the uniqueness of the forward solutions, we need assumptions on parameters of (i)
variation of idiosyncratic shocks, (ii) trade elasticity, (iii) non-homotheticity of demand system, and
(iv) externalities in productivity. Intuitively, larger variation in labor mobility (ε and φ) and trade
(κs) and di�erence in expenditure patterns (θs and σ) across workers are related to more labor
mobility in the equilibrium, while lower agglomeration forces (γs) prevents the concentration of
workers as in black hole. For the concrete discussion, we consider the special case in which ρ = 0

and χ = 1. This implies that the externalities in productivity are purely local economies of scale and
the supply of residential stocks is elastic. In this case, the dynamic equilibrium conditional on the
initial state is unique when γs ≤ θs−σ

κs+(1−σ)

(
1 + 1

ε

)
. This condition is intuitive. When ε → ∞, the

idiosyncratic shocks for migration are homogeneous across workers, and it requires a small value of
γs to avoid generating multiple equilibria. If θs becomes large, the condition becomes slack as large
heterogeneity in consumption across workers of di�erent incomes leads to more dispersion. This
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condition in the special case (ρ = 0 and χ = 1) is conservative since productivity spillover is purely
local agglomeration and congestion force from land is small. Therefore, we consider the condition
as a bound for the unique dynamic equilibrium conditional on the initial state. The Appendix B.1
displays the analytics for the special cases. We can also compute the dynamic path recursively from
any state of the economy, and this is the tractable way to analyze the spatial dynamics featuring
structural change, regional specialization and inequality. The Appendix B.2 describes the system
of equations and solution methods. While the main aim of the model is a characterization of the
transition process, the level of the spatial distribution of economic activities in the (very) long run is
characterized by the stationary steady-state equilibrium in which all aggregate variables are constant
given that the exogenous time-varying factors (F t) are constant (F∗). The following statement
gives su�cient conditions for the uniqueness of the steady-state equilibrium in this economy.

PROPOSITION 1 Suppose that there exists a sequence of fundamentals such thatF t → F∗. Then, the
stationary steady-state equilibrium exists. The steady-state is unique under the regularity conditions:

Υ ≥ 0, max
s∈K\0

max
(i,n)∈N×N

∣∣∣∣∂ lnXs
n

∂ lnLsi

∣∣∣∣ < 1,

sup

∣∣∣∣∣Esii +
∑
n∈N

Lsin
Lsi

∂ ln Esin
∂ lnLsi

∣∣∣∣∣ < 1,

∣∣∣∣∣∣
∑

(n,k) 6=(i,s)

Esin
∂Lkn
∂wsi

∣∣∣∣∣∣ ≥ max
(`,s′)6=(i,s)

∣∣∣∣∣∣
∑

(n,k) 6=(i,s)

Esin
∂Lkn
∂ws

′
`

∣∣∣∣∣∣
where Υ is matrix in which each entry is elasticity of export from local market (i, s) to wage of other
local market (`, s′). Esin ≡ λsin · ςsn is the transition probability for workers sorting into sector s and
moving from n to i.

The set of conditions argues the following. The �rst and second condition implies that the
linkage between the local labor market through trade shows the regularity conditions. The third
condition argues that labor mobility across space is large enough not to be clustered in one location,
and the last condition is about the regularity condition for the linkage in local labor markets. The
Appendix B.3 shows the manipulation of the system of equations for the steady-state equilibrium
and discusses its uniqueness.

3.5 Discussion of the assumptions and possible generalization

E�cient labor. The taste shock in the industry choice in the model is crucial to characterize the
aggregate equilibrium straightforwardly. It is not isomorphic to the model where an individual
worker draws a vector of idiosyncratic labor e�ciency she can supply. With non-homothetic pref-
erence, its realization determines a worker’s real income that is not linear in the labor e�ciency.
Therefore, the choice probabilities of workers become di�erent and depend on the realization of
labor e�ciency. This leads to complications in the characterization of the aggregate equilibrium
conditions.
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Education. The baseline model abstracts any endogenous mechanisms that generate heterogene-
ity of labor supply and productivity among workers. The framework can be extended to include an
explicit education choice. Workers are supposed to di�er in terms of not just sector and location
but also education level. Consider two di�erent education levels, for instance, graduate or non-
graduate. During the �rst period, an individual decides whether to obtain graduate education and
do so in the city of birth or other cities. Assume that she can only leave the city of birth to obtain
graduate education in the junior period. Other choices are the same as in the baseline model. Intro-
ducing additional idiosyncratic factors in the net return of education can formulate the probabilities
of education choice by similar representations. See the Appendix A.5 for details.

In�nitely lived workers with perfect foresight. Individuals work only in the second period of
their life. Other approaches to seeing the dynamics entail in�nitely lived workers with perfect fore-
sight (McLaren 2017, Caliendo et al. 2019, Caliendo and Parro 2021, Kleinman et al. 2021). In�nitely
lived workers and households determine the future path of mobility in a forward-looking way, tak-
ing into account future shocks. Their choice of a given location is based on current real income but
also an option value associated with that location. Comparing such an approach and the present
approach, forward solutions of the model upon the transitory shocks are di�erent, and therefore
di�erent transitions arise. At the expense of forward-looking choices, the present approach pro-
vides tractability to isolate the importance of migration barrier, local labor market exposure, struc-
tural transformation and externalities over space in the workers’ long-run response to the common
shocks. With such externalities and lower costs of labor mobility, there may exist the potential issue
of self-ful�lling prophecy and multiplicity of transitions that hinges on expectations rather than the
past, and it is challenging to characterize the option values by sector and geography and discuss the
intergenerational link (Krugman 1991, Matsuyama 1991, Ottaviano 1999, Baldwin 2001). It is also
noted that there is the equivalence between the two approaches when considering the backward
solution to back out the past fundamentals in the economy from the steady state. The Appendix
A.6 presents details.

4 Dynamics of Spatial Economy and Inequality

This section derives positive and normative analytical results regarding how changes in exoge-
nous fundamentals shape the spatial disparity of productivity, welfare and inequality along with
the transition. Throughout this section, the fundamental amenities, sector-speci�c taste parame-
ters and migration costs are assumed to be unchanged. First, subsection 4.1 considers the transition
dynamics for the total factor productivity (TFP) in local economy and its spatial variation, then
discuss welfare gains and losses in the transition. Next, subsection 4.2 derives the model’s implica-
tions for the dynamics of the equilibrium prices in the local labor market. Lastly, the model’s simple
framework speaks to the spatial di�erence in the degree of intergenerational mobility in subsec-
tion 4.3. In the Appendix, Section C provides details associated with these analytical results and
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other results and Section D presents the numerical results of equilibrium to explore the pattern of
structural transformation and inequality for the simple economy.

4.1 Measured Local TFP and Welfare Dynamics

The �rst objective is to see how exogenous shocks in the economy change the local level TFP dif-
ferently by geography. Intuitively, the remoteness of the production places in the regional trade
network, the pattern of migration and local labor exposure in the sectoral choice together de�ne
the geographical variation of local TFP change. Let δsi,t denote the local TFP of sector s in location
i, the following proposition summarizes them:

PROPOSITION 2 Suppose that there is a common shock in the fundamental productivity in period t.
The change in measured TFP in the local economy is:

d ln δsi,t
d lnAsi,t

= 1− 1
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d lnπsii,t
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+
∑
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is the contribution of location n in the baseline equilibrium; and l̃sin,t ≡
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is the share of workers’ in�ow. In the steady state, the local TFP converges to:
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where Ks
in is (i, n)-th element of the matrix Ks ≡

∑∞
m=0 ρ

m
{
λsinς

s
nl̃
s
in

}m
and ∆s

n is a small positive
constant.

To a common shock to the technology of sector s in the economy at period t, the second term in
(15) re�ects the gains from trade: an increase in local TFP is associated with more export to other
locations. A small trade elasticity (κs) leads to a large variation of local TFP gains ceteris paribus. The
third term in (15) con�ates the scale e�ect and spillover from the in-migration of workers. A large
value of scale economies (γs) and spillover e�ect (ρ) are associated with the signi�cant variation of
local TFP gains ceteris paribus. An increase in sectoral productivity leads workers away from the
sector, and its reallocation di�ers by location according to the industrial specialization. Therefore,
higher mobility of labor and a higher degree of industrial specialization leads to a large variation
of local TFP gains. In the steady state, the �rst term in (16) captures the comparative advantage in
trade, and the matrix {Kin} is the matrix summarizing the linkages between productivity in other
locations and the local labor market. See the Appendix C.1 for derivation.

Next, we consider the welfare dynamics in the transition of the economy. Our interests are the
spatial di�erence in welfare change and its decomposition into margins in the model. To this end,
Vi,t in (6) is a measure of welfare for individuals of generation twho have origin i. Then, the welfare
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change of individuals between two consecutive generations of workers who have the same origin
is given by the following proposition:

PROPOSITION 3 In the dynamic equilibrium, change of welfare measure over generations V̇i,t is pro-
portional to:

∏
s∈K\0
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λ̇sii,t

)−1/ε
(
ς̇si,t

(
L̇si,t−1

)−η)−1/φ

(ėss|i,t) 1
1−σ
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ẇji,t

δ̇ji,t

)βs (
π̇jii,t

)− 1−βs
κj

−β̃sj

θ̃s

(17)

where ess|i,t is expenditure on sector s by workers in sector s and location i, β̃sj is an element of matrix
(I− B̃)−1 with B̃ ≡ {βsk}, and θ̃s ≡ (1− σ)/(θs − σ).

The Appendix C.2 presents details of derivation. The �rst term is the change in non-migration
probability with elasticity−1/ε. Conditional on the sector choice, λ̇sii,t is expected to be declining as
migration frictions are smaller, ceteris paribus. This term depends on the responses of labor mobility
across all local labor markets to arbitrary changes in the environment and summarizes the degree
of the land of opportunity for workers. When ε → ∞, idiosyncratic shocks in location choice
are homogeneous, and gains from migration become zero. The second term captures how �exibly
workers move across sectors or how labor is speci�c to the sector. Greater job opportunity for
workers in location i is associated with less labor speci�city to the sectors in their origin. Instead, a
huge distortion in the sector choice (ςsi ) implies a lower opportunity for the future location choice,
and it turns out to lower welfare gain in dynamics. Given these endogenous responses, the large
heterogeneity in the taste shocks across industries (small φ) leads to greater welfare changes as it
allows the variety of industry choices during the young for workers or less labor speci�city. The
local labor market externalities lead to further job opportunities for sector swhen the sector exhibits
employment growth in the previous period.

Apart from these choice probabilities of individuals, the last part in the welfare dynamics stands
for the change of real income from the consumption of tradable goods. With a non-homothetic
demand system, change in demand for sector s is decomposed into the change in expenditure pat-
terns, change of purchasing power in the local market and change in terms of trade. Comparing
the non-homothetic demand and homothetic demand (θ̃s = 1), the welfare growth to the local price
change depends on the curvature of the local Engel curve. If the local Engel curve shows a relatively
high slope (i.e., θ̃s > 1), the size of welfare change and its spatial variation becomes large.

These welfare dynamics relate to the key mechanisms of reallocation of workers along with
the structural transformation in the model. Large migration opportunities, job opportunities, and
consumption opportunities provide an incentive for workers to move to the local labor market, and
production relocates to the place in response to the productivity changes and demand shift. The
spatial linkages between local labor markets determine the distributional e�ects of TFP change and
welfare change over time.
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4.2 Measures of Local Market Dynamics

In the model, the key measures for the local labor market are twofold. First, employment distribution
is given by the share of employment across industries, f si,t ≡ Lsi,t/

∑
k∈K L

k
i,t and its variation across

space represents the geography of structural transformation. Another one is the fraction of income
for di�erent industries ysi,t ≡ wsi,tL

s
i,t/
∑

k∈K w
k
i,tL

k
i,t characterize the income distribution. These two

measures are su�cient statistics of the local labor markets. By de�nition, the change of employment
(d ln L) and change of income (d ln Y = d ln w + d ln L) characterize the change of the fraction of
employment (f = {f sit}) and income (y = {ysi,t}) conditional on previous equilibrium state.

The employment evolves by location and industry choice of workers (11), and labor market
clearing condition for each industry and location pins down income distribution that is consistent
with the employment growth in the local labor market. For the transition dynamics of wages, the
closed-form representation is given by the following proposition:

PROPOSITION 4 Suppose that µi,t = 1. Then, wage growth for generation t satis�es:
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∑
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where we use the following notations: ψ̄si,t ≡
∏

j(ψ
s
j|i,t)

Ψji,t−1 is the weighted geometric mean of expendi-
ture share for each type of worker with expenditure share on s among tradable goods in previous period
Ψs
i,t−1, θ̄i,t−1 =

∑
j Ψj

i,t−1θj is the weighted average of Engel slope, λ̃
j
in,t−1 is an element of the matrix

(I − {λjni,t−1}>n,i)−1, Ψ̃j
i,t−1 ≡

∑
s Ψs

i,t−1β̃sj , %
sj
i,t−1 is the element of the matrix (I − {βjΨ̃j

i,t−1}j,j)−1

and %si,t−1 =
∑

j %
sj
i,t−1.

To keep the discussion clear, we assume that the revenue from land goes to landlords absent
in the economy. See the Appendix C.3 for details and further general discussion. This proposition
states how wage evolves in the dynamic equilibrium. We consider a change of productivity over
time but keep labor mobility costs �xed and assume land development revenue is distributed to the
absentee landlords. Then, the wage dynamics combine the Rybczinski derivatives and the Stolper-
Samuelson derivatives in the spatial economics framework. In the �rst term on the right-hand side
in (18), the pre-determined elements {%sji,t−1} summarize the substitution of labor between sector s
and j. Within the parenthesis, the �rst term is about the workers’ heterogeneity in consumption.
Analytically, {ψ̄ji,t} evaluates the distortion in expenditure patterns relative to the uniform expendi-
ture share. The second term factors the change of real income and the slope of the local Engel curve.
When considering homothetic demand system, θ̄i,t−1 = 1 and this term is reduced to pure change
of real income, d lnWj

i,t. These two terms together determine the expansion of labor in industry j
in location i, and its impact on industry s depends on the labor intensity in production. Hence, this
term is about the Rybczinski derivatives.

The second parenthesis on the right-hand side in (18) states the relationship between TFP changes
and wage growth. As we discussed in Proposition 2, change in the import penetration and pro-
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ductivity contribute to the change in TFP. Therefore, the matrix {%si,t−1} gives information of the
Stolper-Samuelson derivatives that summarize how the change in trade patterns a�ect the wage.
The input-output linkages and expenditure patterns together characterize the derivative. These
two derivatives determine wage changes to the common shocks in the economy. The di�erences in
elements {%s,ji,t−1} govern the di�erence in wage growth between industries, and the spatial variation
of wage growth results from the variation in the probabilities of labor reallocation (i.e., migration)
and trade conditional on the local expenditure patterns.

4.3 Upward Mobility

We are now in a position to discuss income mobility. We aim to understanding the relationship
between spatial structural transformation and intergenerational mobility of workers – how does
the next generation climb up the income ladder compared to the previous generation? The model
abstracts the exact linkage between individual pairs of parents and children, and therefore there is
no explicit inter-generational link between speci�c pair of parents among generation t−1 and chil-
dren among generation t. Nevertheless, the model emphasizes the importance of location choices
and sector choices in shaping the geography of intergenerational mobility. In particular, for each
location, the model allows us to characterize (i) income distribution of generation t (i.e., parents)
working there, and (ii) income distribution of generation t + 1 (i.e., children) who have the origin
there. Therefore, we assess the general equilibrium relationship of income distribution between
parents and children in each location.14 We start with the discussion of the measure. We letRo

i,t be
the average percentile in the national income distribution for generation tworking in location i, and
Ry
i,t+1 refers to the expected percentile in the national income distribution for the next generation

who are born in location i. Using these percentiles, the baseline index of intergenerational mobility
for individuals in location i is:

Mi,t+1 = Ry
i,t+1/Ro

i,t (19)

The ratio between the expected income percentile of generation t + 1 and the average income
percentile of generation t,Mi,t+1, shows the expected climb up on the income ladder for individuals
who have origin in location i. When location i exhibits greater land of opportunity in terms of
upward income mobility for the future, Mi,t+1 returns a high value. The measure (19) becomes
large when workers of generation t+ 1 sort into the industry with high wage growth and move to
the location with relatively high wages and a large surplus from land. The relationship between the
measure and the equilibrium of the model is summarized in the following proposition:

PROPOSITION 5 De�ne the income distribution in the whole economy Qt such that:

Qt(W s
i,t) =

∑
n∈N

∑
j∈K

f jn,t1[W j
n,t ≤ W s

i,t]
Ln,t
L̄
≡ Qsi,t

14Note that the income distribution in the model is characterized by the probability mass function across di�erent
income levels. Income levels take N × (S + 1) di�erent values.
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The upward income mobility measure for generation t+ 1 in terms of average rank is:

Mi,t+1 =
∑
s∈K

ςsi,t+1

(∑
n∈N

λsni,t+1

Qt+1(W s
n,t+1)∑

j∈K f
j
i,tQt(W

j
i,t)

)
, (20)

The measure (20) is intuitive. It is useful to see the decomposition of this measure into the
di�erent margins in the model:

Mi,t+1 =
∑
j∈K

ςji,t+1︸︷︷︸
Job Opportunity

Qji,t∑
s∈K f

s
i,tQsi,t︸ ︷︷ ︸

Local Inequality

Qji,t+1

Qji,t︸ ︷︷ ︸
Local Growth

(∑
n∈N

λjni,t+1

Qjn,t+1

Qji,t+1

)
︸ ︷︷ ︸

Spatial Mobility

.

The �rst term of sector choice probability re�ects the job opportunity in location i for generation
t + 1. The second term is about the local income inequality for generation t as it is the relative
position of workers in sector s to the local average in terms of income. The third term is the growth
of the local labor market over generations represented by the change of positions in national income
distribution between two generations for each industry. The last term in parenthesis captures gains
from the geography of labor mobility for generation t+ 1. Thus, the variation of intergenerational
mobility in geography is the consequence of the di�erent extent of structural change and evaluates
the importance of spatial economy regarding how further the young generation can climb up the
income ladder.

To understand this measure more concretely, we consider the special cases. The �rst case sup-
poses no geographical mobility of workers and two di�erent sectors. Then, this measure is reduced
to:

Mi,t+1|Dij,t→∞ =
∑
j∈K

ςji,t+1

Qji,t∑
s∈K f

s
i,tQsi,t

Qji,t+1

Qji,t
(21)

Assume that sector j is su�ciently productive compared to k and becomes more productive in the
next period. Then, Qj

i,t > Qk
i,t and Q

j
i,t+1

Qji,t
>
Qki,t+1

Qki,t
. Then, if location i shows large inequality if f ji,t <

fki,t. Suppose workers are sorting more into industry k in the next period due to persistence in their
job choices. In that case, we see lower social mobility in location i compared to the case in which
labor is fully adjusted to the expected growth of an industry. This is one important mechanism that
relates inequality in the local economy to low social mobility there. Another extreme case is the
economy, where industries are di�erentiated by their locations, a lá Armington model. Then, the
measure of intergenerational mobility is:

Mi,t+1 =
∑
n∈N

λni,t+1
Qn,t+1

Qi,t
(22)

This is the weighted average of the relative expected income ranking (Qn,t+1/Qi,t) with migration
patterns (λni,t+1). Therefore, intergenerational mobility becomes low when the origin shows low
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productivity growth or the high migration costs to the growing regions. This relationship relates
the geography of industrial growth to the degree of intergenerational mobility. In our model, these
mechanisms work together to de�ne how the location shows high social mobility along with a
geographical variation of structural transformations.

We can de�ne alternative measures for intergenerational income mobility. One index is related
to absolute upward mobility: what is the likelihood of earning more than parents? We can represent
them by the probability of earning higher than a worker at α-th quantile in the previous generation
with any particular value of α. Another measure captures the upward mobility from the bottom
to the top by comparing the workers at the bottom of the quantile and the top of the quantile.
Intuitively, a large value of such index in particular place i implies that the top income individuals
arise from the cohort of generation t + 1 born in i where workers in the previous generation are
relatively lower income group at the national level. Therefore, this can be seen as the "American
Dream." The Appendix C.6 discusses these measures. As a baseline, however, we use (20) since it is
robust and shows continuity over time compared to other measures.

5 Model’s Calibration

The goal is to quantitatively assess the extent of spatial structural change and its impact on indi-
vidual consequences of welfare and inequality. To this end, we use data and model structure to
estimate parameters and obtain the fundamentals of the real economy.

The model is mapped into the U.S. economy. The spatial unit of locations is the core based statis-
tical area (CBSA). The time range is from 1980 to 2010 when there have been a considerable decline
in the relative price of goods to services and an increase in real housing prices in the macroecon-
omy. The set of industries in the model is mapped into 18 industries. Among them, we consider the
construction sector, 9 manufacturing industries, and 8 service industries. The construction sector
corresponds to sector index 0 that develops the residential stock in the model. All of the sectors
classi�ed in the manufacturing sector are tradable, while one sector among service sectors, retail, is
non-tradable. For CBSAs and sectors, data of employment and industry wage are from the County
Business Pattern (CBP), the American Community Survey (ACS) and decennial censuses. Through
the analysis, we focus on 395 CBSAs where we are able to construct these data for di�erent periods.
For each pair of CBSAs, geographical distance is computed between the reference points for the
pair of most populated counties.

Model calibration proceeds in two parts. Subsection 5.1 discusses the parameters in the model.
First, we set parameters in the demand system (αs, θs, σ), production technology for manufactur-
ing and service sectors (βsj) and residential stocks (χ). Second, we exploit the gravity structure for
manufacturing sectors and tradable services and determine the trade elasticity (κs). Third, we com-
bine the structure of the model and parameter value of migration elasticity (ε) from the literature
to obtain the industry choice parameters (η, φ). Fourth, we discuss the parameter choice for the
economies of scale (γs) and productivity spillover (ρ).
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In subsection 5.2, we leverage the structure of the model to back out the fundamentals in the
U.S. economy. This procedure is sequential, and therefore we discuss it step by step. We assume
that the economy is in the stationary steady state equilibrium in the last period of 2010. Then,
the structural relationships allow us to derive the fundamentals in the development of residential
stocks, amenities and productivity that are consistent with the distribution of workers to be the
steady state equilibrium. Then, the inversion of the equilibrium conditions leads to fundamentals
in past periods. The details of data construction and technical details are in the Appendix E.

5.1 Parameters

We explain the parameters in the baseline analysis. Table 5.1 reports the summary.

Demand and production. The demand system has three parameters. We set the elasticity of
substitution between di�erent industries σ = 0.40 which ensures their complementarity. We assign
the slope of the Engel curve based on the estimation from Comin et al. (2020) and set di�erent values
between two large categories of manufacturing sector and service sector. Namely, θs is normalized
to 1.0 for the construction sector and manufacturing sector. For service sector, we set θs such that
(θs − σ)/(1 − σ) = 1.75, which is in the middle of estimates from Table I in Comin et al. (2020).
Therefore, the expenditure share on manufacturing sectors is independent of real income, while that
on service sectors increases in real income. For the rest of the parameters in the demand system,
the parameters of demand shift (αs) are chosen to match the year 2010 expenditure shares in the
manufacturing and service sector.

We need input share for each industry. Using the US Bureau of Economic Analysis (BEA) table
of input-output accounting, we compute these shares to match the average values during 2011-15.
Since we do not consider the international trade of intermediate goods as a baseline, we need to
adjust the input-output identity, and the labor share is computed as the share of labor compensa-
tion in the adjusted total production values based on the identity. The parameters of input-output
linkages are equal to the share of input purchases from other industries. On the development of
residential stock, the production technology exhibits the labor share equal to χ. The input-output
accounting from BEA gives χ = 0.35 for labor share in the construction sector on average.

Trade elasticity. The regional trade in the model is the gravity fashion. We parametrize the
impediment of trade such that trade costs between di�erent locations are elastic function of geo-
graphical distance with elasticity d̄. Then, the restricted gravity equation for the value of export
from n to i is:

lnXs
in,t = Ds

i,t + Os
n,t − (κsd̄) ln distin + εsin,t (23)

where Ds
i,t factors destination characteristics and Os

n,t factors characteristics of source locations,
respectively. We estimate κs × d̄ for manufacturing sector by using U.S. Commodity Flow Survey
(CFS) in 2012. After the estimation of the gravity equation, to decompose the trade elasticity of
each industry (κs) and trade cost elasticity (d̄), we assume that d̄ = 0.125 = 1/8. The value is
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close to the estimates in Eaton and Kortum (2002) and lower than trade cost elasticities estimated
for international trade. This gives the inferred di�erent trade elasticities (κs) by manufacturing
industries that are in the range of estimates in the literature of international trade (Head and Mayer
2014, Simonovska and Waugh 2014) as well as domestic trade (Gervais and Jensen 2019). Turning
to the service sector, we cannot directly observe the trade �ows and we rely on the estimation by
Anderson et al. (2014). Their estimates can be directly used in our de�nition of service sectors
to pin down the trade elasticity of services. We assume the same value of trade cost elasticity as
manufacturing sectors and obtain the di�erent trade elasticity by service industries. They are within
the range of estimates in Gervais and Jensen (2019). See Table E.3 in the Appendix for numbers.

Migration costs and elasticities in labor supply. There are three parameters in the choice of
workers and also need to characterize the migration frictions. The �rst parameter is the shape
parameter of Fréchet distribution of the idiosyncratic shocks in location choice, which captures the
elasticity of labor allocation across di�erent locations with respect to real income: ε =

∂ ln(Lsi,t/Lsn,t)
∂ ln(Ws

i,t/Ws
n,t)

.
Following Fajgelbaum et al. (2019), we set ε = 1.5. Next, we consider the migration costs. Suppose
that the bilateral migration cost is decomposed into an elastic function of bilateral distance and
destination characteristics. In particular, we parametrize lnDin,t = d̃ ln distin+lnMi,t for migration
cost from n to i. d̃ is positive constant andMi,t is destination characteristics that can very over time.
Under this parametrization, the model derives the gravity equation of labor mobility across space
conditional on sector choice:

lnLsin,t = Ws
i,t − (εd̃) ln distin + Hs

n,t (24)

where Ws
i,t and Hs

n,t contain source location and industry characteristics, and destination and in-
dustry characteristics, respectively. To estimate d̃, we use American Community Survey (ACS) 5
year sample data between 2006-10 and 2011-15. In their sample, the ACS data allows us to identify
the current county, previous county and industry of the worker. We extract workers in sectors of
our analysis and map their locations to the CBSA level and focus on workers who moved between
di�erent CBSAs in the sample to estimate the gravity equations. Based on the estimates during
di�erent sample periods, 2006-10, 2011-15 and 2006-10, we set d̃ = 0.50.15

Once we have the migration elasticity and bilateral term in migration cost, we leverage the
structural equations for labor mobility to calibrate the other two key parameters in the choice of
individuals (η and φ). Given the parameters (ε, d̃), the model allows us to characterize the mobility
of workers in equilibrium. For each pair of values (φ, η), exploiting the equilibrium condition for the
labor allocation (11), we uniquely determine the set of endogenous characteristics that rationalize
the observed change in the distribution of workers. In turn, we can compute predicted migration

15The estimates of the gravity equation are similar to the �ndings for intra-national migration elasticity to distance
in the literature (e.g., Bryan and Morten 2019). Compared to Allen and Arkolakis (2018), estimates are small. This
di�erence may arise from the di�erence in periods. For the old period, it would be large because of the higher moving
cost per unit of distance.
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�ow in equilibrium, L̂in,t, between any particular pair of CBSAs. Therefore, we can de�ne the mo-
ment conditions that argue the di�erences between the observed pattern of labor mobility (LDatain,t )
between CBSAs and the predicted one in the model (L̂in,t) are not systematically correlated to the
bilateral distances between source and destination within the same range of distances. As an obser-
vation of labor mobility, we exploit Internal Revenue Service (IRS) county-to-county migration data
and aggregate them to the CBSA pairs for two time periods, 1990-2000 and 2000-2010. Comparing
the pattern of labor mobility between data and prediction in the moment conditions, we obtain the
estimated value of two parameters: φ = 2.50 and η = 0.80.

Productivity spillovers. We assign the value of parameters in agglomeration economies (γs)
based on the discussion in theory. The one condition imposed on the parameter argues that the
dynamic equilibrium converging to the stationary steady state equilibrium is unique when γs is not
too large to avoid the degenerate equilibria. Since the long-run equilibrium in history does not show
such a degenerate equilibrium, we use the condition to set γs. As we discussed in Section 3, one of
the condition that is related to the uniqueness of the dynamic equilibrium conditional on the initial
state is given by γs ≤ θs−σ

κs+(1−σ)

(
1 + 1

ε

)
. This condition gives the upper bound of the parameter

when allowing labor mobility across locations, productivity spillover happens only locally (ρ = 0),
and the supply of residential stocks is perfectly elastic (χ = 1). In the quanti�cation, however, we al-
low ρ 6= 0. The spillover in productivity across space through migration of workers leads to further
agglomeration forces in the steady state since favorable locations attract workers while the remote
places lose. Therefore, we take the conservative values that satisfy the condition with additional
restriction ε→∞. This assures that the dynamic equilibrium is unique when idiosyncratic shocks
for location choices are even homogeneous. This gives us the parameter values by industry such
that γs = θs−σ

κs+(1−σ)
. For comparison to the existing values in empirical studies, we also refer values

in Combes et al. (2012) and Bartelme et al. (2021) in the Appendix E.2. It is worth emphasizing that
we assume that χ = 1 to derive the condition. If χ < 1, the supply of residential stocks becomes
less elastic and congestion force arises. Therefore, setting χ = 1 keeps the conservative value for
the purpose. Lastly, for the parameter of spatial spillover (ρ), we discuss it in the next subsection
along with the inversion of productivity.

5.2 Calibration of Fundamentals

Next, we solve the model for the fundamentals of the economy conditional on the information
about the local labor markets. The inversion of the fundamental productivity (Asi,t), fundamental
location characteristics (Bs

i,t, Mi,t, νi and h̄i) and fundamental sectoral parameter (ζs,t) proceeds in
two steps. In the �rst step, we assume that the economy is in the steady state level in 2010 and
compute the time-invariant location characteristics in the development of residential stock (νi and
h̄i) by using the information on the price of housing. Then, we use the system of equations in the
equilibrium to back out the overall productivity (Zs

i ) and attractiveness of locations that combine
amenities (Bs

i ) and migration friction (Mi). Once we obtain the overall productivity, we compute the
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exogenous part of productivity (Asi ) and estimate parameter ρ. In the next step, we solve the model
for the time-varying fundamentals. We match the dynamic equilibrium and observation of wage
and employment for the inversion of the path of exogenous part of productivity (Asi,t), amenities
(Bs

i,t), migration frictions (Mi,t) and sectoral shifter (ζs,t). The whole process is sequential, so we
explain the procedure by step.

E�ciency of development of residential stock. In the steady state, (9) implies that

ν̃i ≡ νi(1− h̄i)1−χ = exp
(
χ(− lnχ+ lnw0

i − ln p0
i )
)

(25)

where we have equilibrium wage (w0
i ) and housing price (p0

i ) from Federal Housing Finance Agency
(FHFA). We exploit the Housing Price Index (HPI) of all-transactions index across CBSAs for 2010.
In the Appendix E.3, we show the spatial distribution of e�ciency of development across CBSAs
inverted in the model. Intuitively, CBSAs with large values ν̃i implies that there is a persistence of
residential stock and higher e�ciency of construction. In equilibrium, the geographical di�erences
in {ν̃i} a�ect the spatial variation of housing supply and price changes.

Productivity. The zero pro�t condition of producers (11) implies:

Γκss (psi )
−κs =

∑
n

(
(τ̂ sin)−κs(Zs

n)κs

(
(wsn)βs

∏
j

(pjn)βsj

)−κs)
(26)

where τ̂ sin ≡ (distin)d̄ is bilateral trade costs. Given productivity, wages and the set of parameters
(κs, d̄, βs, βsj), solving this allows us to characterize the equilibrium prices. Turning to the demand
system, we solve (2) for the non-homothetic aggregate price index:

(Psi )1−σ =
∑
j

ασ−1
j (pji )

1−σ
(
W s
i

Psi

)θj−1

(27)

where income of workers (W s
i ) is constructed from the wage and employment. Given the parameters

of preference (σ, θs, αs) and θs ≥ σ and σ ∈ (0, 1), we obtain the unique matrix of price index {Psi }
solving (27).

Combining (26), (27) and the labor market clearing condition (14) allows inversion of produc-
tivity {Zs

i } that is consistent with the observation to be the equilibrium. Figure 5.4 shows the
relationship between overall productivity (Zs

i ) implied by the model and employment (Lsi ) in 2010.
Each mark shows CBSA in the analysis. The left-hand panel 5.4a shows the relationship for three
industries in the manufacturing sector: textile, chemical/petro/coal products and electric/computer
industry. We �nd a larger variation in overall productivity for the electric/computer industry than
for the other two industries. This is consistent with the dispersion of workers in the industry over
space. The right-hand panel 5.4b presents four industries in the service sector: retail, �nance, insur-
ance and real estate (FIRE), health and education/legal services. FIRE and education services exhibit
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Figure 5.4: Productivity and Employment for CBSAs
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Note: These �gures show log scale of overall productivity (Zsi ) and log scale of employment for particular industries in 2010.

relatively large variation across CBSAs in overall productivity compared to retail and health.

Amenities and industry taste. As a next step, we use the model structure for the inversion of
amenities and location characteristics in the migration frictions – location attractiveness. In the
steady state, amenities (Bs

i,t) and migration barriers (Mi,t) are constant. These two location funda-
mentals decide the exogenous gains for workers who choose the destination, and we are unable to
isolate them. In addition, there are another fundamental constant parameters {ζs} that capture the
tastes of workers by sector. Therefore, we let Ωs

i ≡ (Bs
i /Mi)ζ

1/φ
s con�ate these fundamentals. (4)

implies that the adjusted average utility of a worker in location n in sector s is:

Ūs
n = ζ1/φ

s Ū s
n =

(∑
i

(
Ωs
i D̂in

W s
i

Psi

)ε)1/ε

(28)

where D̂in ≡ dist−d̃in is the inverse of bilateral migration frictions. Using this, we compute the in-
ferred probabilities of location choice for workers in sector s ({λ̂sin}) and the probabilities of industry
choice ({ς̂sn}). Then, we use the labor mobility condition (11) for computing the attractiveness of
location i and sector s with implementing the aggregate price index derived in (27). In this step
of inversion, we also compute the predicted labor mobility ({L̂sin}) in the steady state and use this
information in the next step.

Fundamental productivity. We proceed to the inversion of fundamental productivity and cali-
bration of parameter ρ. In the steady state, the exogenous fundamental productivity satis�es:

lnAsi = lnZs
i − ρ ln

(∑
n

L̂sinZ
s
n

)
− γs lnLsi (29)
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We implement the productivity ({Zs
i }) that we have derived in the previous step and the labor

mobility ({L̂sin}) into this and given the employment data ({Lsi}) and parameter values ({γs}), we are
able to compute the fundamental productivity for any particular value of parameter ρ. To estimate
ρ, we consider the following moment conditions:

E

[(
lnAsi −

1

N

∑
n

lnAsn −
1

S

∑
k

lnAki

)
× Ig

]
= 0, g ∈ G0,G1, · · · ,GP (30)

where Ig is an indicator that the location i and sector s is in the group of g. The group is de�ned
by the labor market potential for each location and sector. Namely, for location i and sector s,
we compute the measure

∑
n6=i(distni)

−εd̃Lsn, and we order locations and sectors by this measure.
Based on the order, we use 20 groups de�ned by 5 percentile of the measure. Therefore, the moment
condition assumes that the location and industry speci�c fundamental productivity after eliminating
the sector-level and location-level averages is not systematically related to the labor market access
since the spatial dependence of productivity is captured by the second term in (29). We use (30) and
search parameter ρ that minimizes the distances of the moment conditions. We obtain ρ̂ = 0.0284

that is reported in Table 5.1.

Dynamics of Fundamentals. Once we have characterized the steady state fundamentals, we
compute the change in fundamental productivity and location attractiveness for 2000-2010, 1990-
2000, and 1980-1990. We suppose that the economy reached the steady state equilibrium in 2010
and compute the change of these fundamentals in the past. We follow the steps close to the previous
procedure for the steady state equilibrium.

First, we compute the residential stock and their prices in the past conditional on the current
observations. The production function of developers (9) implies the previous residential stocks:

(1− χ) lnHi,t−1 = lnHi,t − ln ν̃i − χ lnL0
i,t (31)

and market clearing condition implies the price of residential stocks:

ln p0
i,t−1 = − lnχ+ lnw0

i,t−1 + lnL0
i,t−1 − lnHi,t−1 (32)

Implementing parameters in production technology of residential structure (χ), observed wage
and employment in the construction sector and location fundamentals ({ν̃i}), it gives the path of
({p0

i,t−1}, {Hi,t−1}, {Ri,t−1}) in the dynamic equilibrium that are not directly observable. The HPI
have limited data of prices for CBSAs in 1990 and 1980 that can gauge the model speci�cation in
(31) and (32). The Appendix E.3 shows the comparison between prices across CBSAs predicted by
the model and the limited data for 1980 and 1990.

Second, we compute the change in productivity over periods d lnZs
i,t, such that wage and em-

ployment in the past are consistent with the dynamic equilibrium. We guess the productivity in the
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past (d lnZs
i,t) and compute the change in prices and trade patterns. We solve the static equation

(27) for the aggregate price index and use the market clearing condition to update the productivity
change.

Third, we use the forward equations in the model for computing the path of location attrac-
tiveness. The labor mobility condition (11) implies that the adjusted attractiveness for workers in
location i and sector s satis�es:

Ωs
i,t =

(
1

Lsi,t

∑
n∈N

(
D̂in

Us
n,t

W s
i,t

Psi,t

)ε
(Lsn,t−1)η(Us

n,t)
φ∑

j(L
j
n,t−1)η(Uj

n,t)
φ
Ln,t−1

)−1/ε

(33)

where {Us
n,t} are derived for each generation as in (28). Conditional on the observation about

employment ({Lsi,t}) and income and aggregate price index constructed by the model, we obtain the
location and sector speci�c adjusted amenities ({Ωs

i,t}) in each period and we are able to compute
the two probabilities of workers’ choice ({λsin,t}, {ςsn,t}) predicted by the model. Lastly, we compute
the development of fundamental productivity in the analogous way to (29). The overall productivity
of two consecutive periods ({Zs

i,t}, {Zs
i,t−1}), employment ({Lsi,t}) and labor mobility ({Lsin,t}) give

fundamental productivity ({Asi,t}) that is consistent with the dynamic equilibrium. For the initial
period, we set Asi,t = Zs

i,t in 1980.

6 Quantitative Analysis

Having an inversion of the model to obtain the fundamentals in the economy and estimated pa-
rameters, we assess the role of these fundamentals and analyze the dynamics of TFP, welfare and
upward mobility across CBSAs in the U.S. economy that we have discussed in Section 4. We �rst see
the role of industry and location speci�c amenities for workers’ distribution along with the struc-
tural transformation. Then, we derive the measured TFP predicted by the model and discuss the
industry level and aggregate TFP at the sector level: manufacturing and service. Next, we discuss
the welfare di�erences of individuals between two generations and how they are di�erent across
locations. Following theoretical results in Proposition 3, we present the di�erent margins in welfare
dynamics. Lastly, we explain how the measure of intergenerational income mobility derived in the
model shows spatial variation and investigate its relationship to the underlying mechanisms in the
general equilibrium.

Amenities. As we discussed in the previous section, the amenities in each local labor market,
{Ωs

i,t} is obtained by exploiting the model structure. Figure 6.5 shows the relationship between the
real income of workers and employment share for di�erent industries in 2010. The vertical axis
is the real income of workers in any particular industry in each CBSA ({Ws

i,t}) derived using the
calibrated income and nonhomothetic price index in the equilibrium relationship. The horizontal
axis shows the de-meaned employment share of each industry in CBSA.
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Figure 6.5: Real income and Employment
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total employment in 2010 for CBSAs. The real income of workers is computed in the model.

The left-hand panel 6.5a displays three industries in the manufacturing sector. The employment
share exhibits large variation relative to real income, and the pattern is di�erent across industries.
This con�rms that there exist industry-speci�c amenities for workers. The right-hand panel 6.5b
shows two distinctive industries – �nance, insurance and real estate (FIRE) and retail among the ser-
vices sector. For FIRE, a large employment share is associated with higher real income for workers.
In contrast, the retail industry exhibits the importance of amenities to explain the spatial variation
of workers. These results are consistent with industry and location speci�c amenities for workers’
location choices and such amenities are crucial to explaining the spatial variation of employment
shifts. In the Appendix D.2, we also con�rm the relationship between the average level of amenities
and the size of employment in CBSA. The relationship is stable over time, suggesting the importance
of location fundamentals for the persistence in the aggregate size of employment in CBSA. Further-
more, in the Appendix F.1, we report the geographical distribution of the average value of amenities,
CBSAs with the highest average amenities and the correlation between average amenities and some
observed characteristics in CBSA.

Productivity. As we discussed in Section 4 and proposition 2, we are able to compute measured
TFP for each CBSA and industry given overall productivity ({Zs

i,t}) and trade probabilities ({πsii,t}).
We �nd distinctive dynamics of the spatial distribution of measured TFP by industry. These spa-
tial distributions are in the Appendix F.1. For instance, we can identify an increase in the spatial
variation of TFP for the electric and computer industry, along with the development of clusters in
California and large metropolitan areas on the East coast. We also see the di�erent evolution of TFP
for FIRE. Over time, there has been a remarkable increase in its level and variation. The industry has
seen a signi�cant development on the East coast (New York metropolitan area) and in large cities
that are the hub of the �nancial market in each region (Chicago, Dallas, Atlanta and Nashville) from
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1980 to 1990. Then, these clusters show persistent development over time, while some other inland
cities also have seen a rise in FIRE. The developments of TFP over time are the combination of ex-
ogenous productivity change and endogenous spillovers in theory. We �nd a signi�cant variation
in the fundamental productivity for the service sector.

Having measured TFP of each industry, we compute the aggregate TFP for the aggregate sectors:
manufacturing and services sector. Namely, for an aggregate sector, we compute:

δSi,t =
∑
j∈S

Xj
i,t∑

k∈S X
k
i,t

δji,t (34)

where δji,t is measured TFP of industry j in location i for period t and Xj
i,t is the value of output

of the industry. S is the set of industries in aggregated sectors, manufacturing or service sector.
In an analogous way, we can compute aggregated fundamental productivity. Figure 6.6 shows the
relationship between change in aggregate sector level TFP and fundamental productivity for the
manufacturing and services sector. This corresponds to the implication in Proposition 2. In the
left-hand panel, changes in TFP and fundamental productivity for the manufacturing sector exhibit
a similar pattern. In contrast, changes in TFP of the services sector show large values relative to
the fundamental changes. This implies that TFP growth in the services sector over these periods is
driven by the endogenous mechanisms of labor reallocation and productivity spillovers.

Figure 6.6: Change in TFP and Fundamental Productivity for Manufacturing and Service
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Note: These �gures show the change in log of fundamental productivity for aggregate sector (d lnAKi,t) and the change in log of TFP for aggregate

sector (d ln δKi,t).

Welfare. Next, we quantitatively evaluate the welfare dynamics discussed in Proposition 3. There
is a large variety of welfare e�ects across CBSAs.16 In sum, the welfare gains between generations

16See the Appendix D.2 for the map of its spatial pattern.
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t and t− 1 can be decomposed into three di�erent terms:

V̇i,t = GMi,t︸ ︷︷ ︸∏
s(λ̇

s
ii,t)
−1/ε

× GJOi,t︸ ︷︷ ︸∏
s(ς̇

s
i,t)
−1/φ(L̇si,t−1)η/φ

× GCi,t (35)

where GMi,t represents gains from labor mobility across space, GJOi,t summarizes gains from
job opportunities in the local labor market and GCi,t stands for local gains from consumption and
amenities. Figure 6.7 presents this relationship for U.S. CBSAs.

Figure 6.7: Welfare Di�erences
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Note: These �gures show the di�erent margins in welfare di�erences for

CBSAs. Each circle represents the employment size of CBSA in the base-

line year (i.e., employment size in 1990 for the blue circle). All variables

are normalized by their means.

In the �rst panel (a), higher gains from migration are associated with small welfare di�erences.
The logic is clear. Conditional on industry choice and growth of real income, an increase in the
probability of staying in the original location requires higher welfare gains for individuals who stay
in the local labor market. Comparing the two periods, the elasticity of welfare di�erence to gains
of migration becomes small. This is consistent with the recent decline of the migration rate in the
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U.S. economy. The second panel (b) shows the positive relationship between job opportunities in
the local labor market and welfare. Individuals gain from the labor speci�city in relatively small
local labor markets. In these CBSAs, the specialization of workers into a particular industry in a
growing sector leads to signi�cant welfare di�erences over generations. The positive relationship
is steady for these two periods. The third panel (c) exhibits the positive relationship between the
change in real income adjusted with amenities and welfare di�erences. The change in average real
income shows large variation and the role of real income disparity in the welfare change is large
in the early period. The smaller elasticity of welfare di�erences to gains of migration and growth
in the real income account for a decline of welfare di�erences over periods, while the gains of job
opportunities account for the persistence in local labor market adjustment. These three margins are
quantitatively consistent with the theoretical implications.

Inequality. The �nal objectives in this section are worker inequality and upward income mobility.
For the inequality, we use the coe�cient of variation in income within CBSA as a measure of income
inequality. For the intergenerational income mobility, we compute normalized measure based on
Mi,t+1 de�ned in Proposition 5. Speci�cally, we let M̃i,t+1 = (Mi,t+1/M̄t+1)× 25 where M̄t+1 is
average ofMi,t+1 in the economy. Intuitively, this measure gives an expected rank of individuals
in CBSA iwhen their previous generations are in the 25 percentile in the income distribution in the
economy.17 Figure 6.8 display the measure for di�erent generations.

We �nd a considerable variation in upward mobility. For the �rst generation who worked in
1990, central cities in the region show relatively higher upward mobility. In later periods, upward
mobility becomes lower on average. Given this spatial variation, we consider the relation of upward
mobility to the underlying mechanisms in equilibrium. Following the discussion in Section 4.3, the
measure of upward mobility can be written as:

M̃i,t+1 ∝
∑
s∈K

LLsi,t+1︸ ︷︷ ︸
Qs
i,t∑

k f
k
i,t
Qk
i,t

Qs
i,t+1
Qs
i,t

× ISM s
i,t+1︸ ︷︷ ︸

ςsi,t+1

× GLM s
i,t+1︸ ︷︷ ︸∑

n λ
s
ni,t+1Qsn,t+1/Qsi,t+1

(36)

where LLsi,t+1 captures the inequality in the local labor market in period t and local economic
growth, ISMi,t+1 is patterns of industry choice and GLM s

i,t+1 is the geographical labor mobility.
Figure 6.9 present these margins.

17See the Appendix D.2 for further discussion about the measure and relation to measures in the literature.
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Figure 6.8: Geography of Upward Mobility
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Figure 6.9: Intergenerational Income Mobility
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The �rst panel (a) displays the relationship between upward mobility and local inequality for
two generations. The vertical axis is the upward mobility measures for generations 1990 and 2010,
and the horizontal axis is inequality in CBSA in 1980 and 2000, respectively. We �nd a negative
relationship: individuals from CBSAs with large income inequality among workers are likely to ex-
perience lower upward mobility. This is related to the Great Gatsby curve in the U.S., showing the
negative relationships between local inequality and upward mobility. In my model, this arises from
the specialization and wage disparity in the local labor market, leading to less opportunity in the
choice of industry for the next generation. The second panel (b) shows the structural transformation
and upward mobility. As seen in Figure 2.2, CBSAs of large employment size in the manufacturing
sector exhibited structural transformation to services. Therefore, panel (b) implies that structural
transformation lowers the upward mobility of individuals. This accounts for the part of LLsi,t+1.
In the third panel (c), we consider the land of opportunities for individuals that are related to in-
tersectoral mobility (ISM s

i,t+1). The horizontal axis is an expected utility from industry choice for
individuals in CBSAs: large values correspond to the land of opportunities for the future. Therefore,
such CBSAs exhibit high upward mobility. Over generations, the relationship becomes more robust.
This con�rms that the disparity in the land of opportunities drives an increase in the spatial varia-
tion of upward mobility. The last panel (d) describes the role of labor mobility across CBSAs that is
related to GLM s

i,t+1. Intuitively, the low mobility of workers in geography predicts less possibility
of climbing up the location ladder ceteris paribus. This panel shows the probability of non-migration
for individuals from the CBSAs on the horizontal axis. As predicted in theory, a high probability of
staying in origin is associated with low intergenerational income mobility. This is consistent with
the decline of upward mobility along with a lower migration rate in the U.S. economy during the
last decades.

This section has presented the calibrated results for the U.S. CBSAs and quantitative analysis for
the general equilibrium implications for measured TFP, workers’ welfare, inequality and intergen-
erational income inequality. The quantitative analysis reveals the underlying mechanisms to create
their spatial variation and dynamics. In the next section, we perform counterfactual exercises to
understand the contribution of these mechanisms when there are shocks in the fundamentals.

7 Counterfactual Experiments

Armed with the data and parameters calibrated above, we undertake counterfactual experiments
to understand the quantitative impact of the development of fundamental productivity and ameni-
ties in shaping the variation of structural transformation, welfare and intergenerational income
mobility. The calibration yields the trajectory of fundamental productivity (Asi,t) and fundamental
amenities (Ωs

i,t) that con�ates location and industry speci�c amenities for workers (Bs
i,t), migra-

tion barrier to CBSA (Mi,t) and sector speci�c taste parameters (ζs). The objective of undertaking
counterfactuals is to understand their quantitative importance of these fundamentals to explain the
spatial heterogeneity of workers’ location choices and industry choices and �nds that the changes
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in workers’ mobility across locations and industries determine their welfare gains relative to the
previous generation and their position on the income ladder. Shocks to fundamental productivity
are salient in shaping individual consequences. Consider the sector level negative shock to the pro-
ductivity in any particular period. The standard mechanisms are the following: it directly lowers
TFP and overall productivity and lowers labor demand and wage, and workers are less likely to
sort into the sector, and lower labor supply counteracts the negative impact on wages. However,
the present model has additional channels to amplify the general equilibrium e�ects. First, change
in income leads to demand shift of workers due to non-homothetic preference, therefore feedback
loop in the goods market: lower income leads to less demand for the services sector. Second, there
are frictions in the workers’ adjustment due to the exposure e�ect in the local labor market. These
e�ects play out across space, leading to di�erent consequences on their mobility.

We undertake counterfactuals for the fundamental productivity and amenities, respectively. In
the �rst subsection, we consider the impact of productivity shocks on structural change, welfare and
intergenerational income mobility of workers. This allows us to study the importance of technolog-
ical progress in shaping individual-level consequences in the last decades. In the second subsection,
we undertake the counterfactuals when there are shocks in the fundamental amenities. Speci�cally,
we consider the lower barrier for migration across CBSAs. The counterfactual experiment reveals
the importance of the location speci�c environment in explaining the spatial pattern of structural
change and labor mobility. In addition, for amenities, we undertake the counterfactuals where
amenities become uniform across space. The motivation for this counterfactual is to understand
the persistent role of di�erences in fundamentals to explain the equilibrium allocation in the later
period. In the counterfactual experiments, the economy starts from the actual equilibrium observed
in the data in 1980 and we implement the changes in the fundamentals to solve the counterfactual
equilibrium.18

7.1 Productivity Changes

The �rst set of counterfactuals assumes that there are negative shocks to the fundamental produc-
tivity. We undertake the �rst counterfactual where the fundamental productivity of the services
sector ({Aji,t}j∈Service) is dropped by 10 percent in 1990 relative to the observed level and �xed at
the level for the later periods, 2000 and 2010. Therefore, the fundamental productivity of all service
industries is �xed at 90 percent of the level of 1990 throughout time. The second exercise focuses
on particular industries. As discussed in the previous section, the IT-intensive industry such as
FIRE has shown a signi�cant increase in TFP in CBSAs in the U.S. economy. To see the role of such
a rise in IT-intensive industries in the service sector, we assume that there was no such positive
technological progress in FIRE and communication services. We set their productivity at 90 percent

18The uniqueness of the dynamic equilibrium is not guaranteed in the presence of spillovers in productivity and inter-
sectoral linkages in production. Therefore, we compute the counterfactual equilibrium with the observed equilibrium
as a starting point and run the model with a small perturbation of the initial equilibrium to assess the local uniqueness
of the counterfactual equilibrium.
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of the level in 1990 throughout time. Further, we also consider the technological progress in the
manufacturing sector for the comparison of their impacts. In particular, we focus on industries that
use robots intensively, the electric and computer industry and transport equipment.19 We set lower
productivity for these two industries in the same manner as services.

The Panel A of Table 7.2 reports the results for these three counterfactuals about the TFP changes
and structural changes. The rows for the �rst counterfactual experiment (i) shows the negative im-
pact on services sector TFP (δService

i,t ) de�ned in (34). In 1990, it shows 8.5 percent lower than the
baseline economy. Since the TFP is determined by both fundamental productivity and endogenous
mechanisms through labor mobility (Proposition 2), the absolute e�ect is less than 10 percent, and it
implies that the workers’ adjustment mitigates the negative shock on average. More interestingly,
the negative e�ect becomes smaller over time. This implies that the negative impact of funda-
mental productivity shocks in the initial period can be faded out through workers’ mobility over
generations. We also �nd an increase in the variation of the negative e�ect over time, implying large
heterogeneity in adopting the negative shocks across CBSAs. Row 2 in Panel A shows the di�erence
in the employment share of services to the baseline economy. When turning o� the technological
progress in the service sectors, we see a signi�cant drop in the employment share of services. This
happens for two reasons. The �rst channel is the traditional e�ect of factor mobility across sec-
tors. The second channel is an additional impact of the demand-driven structural changes. When
we abstract the exogenous fundamental productivity growth, the real income of workers becomes
low and the expenditure shift from goods (manufacturing and housing) to services is slowed down.
Therefore, it further prevents the labor shift to services. This mechanism through the demand side
is fundamental as we see its e�ect in the counterfactual (iii) in the table. The counterfactual (iii)
does not introduce the direct negative shocks to the services sector, but we see a low employment
share compared to the baseline.

Table 7.3 reports the results for the impact on welfare. For each counterfactual, the �rst row
shows the average percentage change of the welfare dynamics (d lnVi,t), and other rows show those
for di�erent margins in (35). The average of changes in welfare dynamics is small over periods, but
there is a signi�cant variation. The standard deviation of the changes shows 3.2 for generation 2000
and 1990 and 3.1 for generation 2010 and 2000. The pattern is the same for other counterfactuals (ii)
and (iii). When we investigate the margins, the main contribution to the change of welfare dynamics
is the gains from consumption, and the gains exhibit large variation. This con�rms that the adverse
productivity shocks create a large variation in real income across CBSAs. Part of this result is due
to the �uctuation of housing prices, as a large variation in real income is associated with a large
variation in housing prices. Among other mechanisms, counterfactual migration gains show large
values compared to the job opportunity gains. We �nd substantial di�erences in these two margins
across CBSAs. Their inter-quantile ranges are similar to those of changes in welfare dynamics.

Figure 7.10 presents the welfare e�ects and change in intergenerational income mobility across
395 CBSAs when undertaking the counterfactual for the low productivity in all service industries.

19These industries show the highest penetration rate of robots in the U.S. economy (Acemoglu and Restrepo 2020).
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Panel (a) displays the variation of welfare e�ects across CBSAs. For the welfare di�erence between
generation 1990 and 2000, the CBSAs with welfare losses in the baseline show further welfare losses
in the counterfactual. The technological progress in services and structural transformation bene�t
these CBSAs in the baseline economy. Panel (b), (c) and (d) displays the distribution of the upward
income mobility across CBSAs for di�erent generations. An important takeaway from the �rst
generation, in Panel (b), is that the negative impact on the productivity of services leads to a large
variation of upward income mobility for the generation 1990. Once the productivity of services
is �xed after 1990, Panels (c) and (d) show less variation of upward mobility. Table 7.4 reports
the impact on intergenerational income mobility. Row 1 to 3 show the results for the �rst set of
counterfactuals. For each generation, we report the percentile change of M̃i,t from the baseline
economy. For the �rst generation, the average impact is relatively small since the 10 percent decline
in productivity for all CBSAs does not alter the location choice of workers much, and it turns out
to be a smaller e�ect. However, the generations of 2000 and 2010 show higher upward mobility
on average. For generation 2000, individuals experience around 5 to 6 percentage increase in the
upward mobility compared to the baseline economy. The logic for this result is the following. When
the exogenous productivity is absent, the endogenous spillover in productivity becomes salient,
and workers sort into the place with agglomeration. In addition, as we see in welfare results, a
larger variation of real income growth creates workers’ mobility both across locations and sectors.
Together with these endogenous responses of workers, we see higher upward mobility on average,
but with large variation in its gain. The variation in the change of intergenerational income mobility
becomes large over time.

7.2 Amenities and Migration Barriers

The second set of experiments undertakes the counterfactuals for the fundamental location charac-
teristics in amenities. By construction, the variation of overall amenities across space include both
the variation of fundamental bene�t (Bs

i,t) and migration barrier (Mi,t). Then, we start with the
lower migration barrier by 10 percent uniformly for every location. This bene�ts any workers in
the economy, as it is isomorphic to an increase of bene�t from residing and working in any partic-
ular location. Yet, workers’ choices are not necessarily the same as the baseline since workers are
ex-ante di�erent in their origin, and the bilateral cost of migration de�nes the aggregate bene�t of
labor market access di�erently across workers. As another counterfactual about the migration bar-
rier, we set a 10 percent lower migration barrier for top CBSAs. We de�ne the top 50 CBSAs based
on the total employment size in 1980, selecting them for the counterfactual experiments. Given that
most migration occurs from small towns or cities to large cities, this counterfactual is of interest to
consider whether such directed migration is important to explain the variation of structural change,
welfare and upward mobility.

Panel B in Table 7.2 shows the results. In (iv), we can �nd TFP growth in the services sector.
On average, service sector TFP exhibits 1.2 percent higher than the baseline economy in 1990, in-
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Figure 7.10: Welfare E�ects and Intergenerational Income Mobility for the Productivity Change in Services
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Note: These �gures show the results for welfare and intergenerational income mobility for the counterfactual when fundamental productivity of

all service industries (transport service, wholesale trade, retail, FIRE, health service, education and legal, communication service and other services)

is dropped by 10 percent in 1990 and �xed over time. Panel (a) shows the welfare di�erence for the baseline and the counterfactual between two

generations, d lnVi,t. Blue dots (black triangles) show the welfare di�erences between generations 1990 and 2000 (2000 and 2010), respectively. In

panels (b), (c) and (d), we report the distribution of upward income mobility for di�erent three generations, generation 1990, 2000 and 2010. In each

panel, gray bars show the distribution of the upward income mobility measure across CBSAs in the baseline, and the blue bars show that for the

counterfactual economy.

creasing to 4.5 percent in 2010. In contrast, the employment share of the services sector is dropped
compared to the baseline economy and the change shows large variation. This is rationalized by
the specialization of workers in CBSAs that exhibit relatively high amenity and productivity. Once
the migration barrier is lower, workers are directed to such CBSAs and the clustering of work-
ers counteracts the movement of workers across sectors due to the persistence in their job choice.
More interestingly, comparing the results between counterfactuals (iv) and (v) �nds that lowering
the migration barriers for the top 50 CBSAs has a similar impact to lowering them for all CBSAs.
This suggests that workers directed sorting to the large cities is essential to consider the role of the
migration barriers in shaping the extent of structural change and TFP dynamics.

Turning to welfare, Panel B in Table 7.3 shows similar results as in the previous counterfactuals.
The main driver of welfare dynamics is the change in the gains from consumption and their e�ects
are persistent over generations. In Table 7.4, we �nd that upward mobility becomes high when
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we have a low migration barrier. This is consistent with the theory and quantitative analysis in
the previous sections. Individuals are able to sort into the location with a higher return for any
particular industry, and they have more opportunities to climb up the income ladder by the location
choices. We also con�rm that this mechanism is mainly at work for the migration to the large cities
by comparing the similar magnitude in two counterfactuals (v) and (vi).

Spatial variation of amenities. Lastly, we investigate the role of di�erences in fundamental
amenities across CBSAs. To this end, we perform the counterfactual in which overall amenities
develop at the same rate across all CBSAs given any particular industry. As reported in (vi) in Table
7.2, this further bene�ts the TFP growth of the services sector. Once we turn o� the di�erence in
fundamental amenities among CBSAs, we predict a 7.1 percent increase in service sector TFP on
average in 1990, and it becomes 14.16 percent in 2010. In Table 7.3, we �nd the largest welfare gains.
In (vi), welfare dynamics are larger than the baseline economy by 2.8 percent for the generations
1990 and 2000, and it is 0.3 percent for generations 2000 and 2010. Seeing the decomposition of
the e�ect, this substantial e�ect arises through the gains from a job opportunity. When equalizing
the value of amenities, workers’ industry choice and location choice are purely determined by the
return of industry choice in the current location. Therefore, individuals achieve large gains from
job opportunities. In Table 7.4, we also �nd substantial positive e�ects on intergenerational income
mobility. This is also consistent with the bene�t of job opportunities in the local labor market.
Individuals are more likely to achieve a higher position of income rank compared to the previous
generation. The measure of upward mobility becomes 9.2 percent higher for those in generation
2000 and 10.8 percent higher for generation 2010 on average. However, endogenous agglomeration
of industries and ex-ante distribution of workers keep such gains substantially di�erent across space.

Figure 7.11 presents the welfare e�ects and change in intergenerational income mobility for this
counterfactual experiment. In Panel (a), the spatial variation in welfare di�erences between gener-
ations 1990 and 2000 is magni�ed in the counterfactual. Intuitively, equalizing amenities allows the
�rst generation to change their location choices such that they move to productive and high real
income places. This magni�es the di�erences of such gains among CBSAs, and, therefore, more
spatial inequality in welfare gains. For the generations 2000 and 2010, the spatial variation of such
gains becomes small since workers’ location choices show the path dependency for each industry.
Panel (b), (c) and (d) shows that the upward income mobility for generation 1990 exhibits a larger
variation in the counterfactual than the baseline, while the negative impact on average. For other
generations, the distribution becomes small in the counterfactual since the spatial variation in the
labor mobility is less relative to the baseline once the geographical distribution of workers shows
persistence after the change in the early period.
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Figure 7.11: Welfare E�ects and Intergenerational Income Mobility for the Uniform Distribution of Amenities
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8 Conclusion

The interplay between structural transformation in the aggregate and local economies is key to
understanding spatial inequality and worker mobility. To look at this, we have developed a dy-
namic economic geography model with overlapping generations that accommodates the frictional
adjustment of workers across locations and industries, non-homothetic preference and produc-
tivity spillovers in a tractable way. The theoretical framework provides insights into the cross-
sectional disparity and intergenerational income inequality among workers that arise due to struc-
tural changes in the economy. We have calibrated the model with the U.S. economy and despite
the high number of dimensions – on location, industry and time – the model structure allows us to
back out productivity and amenities from the data. And this, in turn, enables us to quantitatively
assess the importance of di�erent mechanisms that drive spatial variation in total factor productiv-
ity (TFP), welfare dynamics, inequality and intergenerational income mobility. The dynamic nature
of the spatial model therefore allows us to study phenomena that have received limited scrutiny but
which are of fundamental interest in a country which is increasingly riven by growing inequality
and barriers to upward mobility.

This paper allows us to understand how the structure of the spatial economy - through trade
and migration, local labor market exposures and agglomeration - shapes individual outcomes. We
begin to understand why in the same country, the citizens of San Jose are on entirely di�erent tra-
jectories than those in Cleveland. Why rising levels of inequality might constrain upward mobility
as characterized by the Gatsby Curve. These are issues at the top of the policy agenda not just in the
U.S. but in countries across the world. In e�ect, this paper is trying to open the black box of how the
structure of economy not just across space but also across time can in�uence patterns of inequal-
ity and mobility in di�erent locations. To do this, we perform counterfactual experiments using
the parameterized model, which enables us to quantify the importance of technological progress
and spatial variation in amenities in determining the pace of structural transformation across lo-
cations. Through such counterfactual analysis, we �nd that the productivity growth of industries
that drive structural change and higher migration barriers limit upward mobility. In addition, the
persistent variation in productivity and amenities across geographies is critical to explaining the
regional disparity in TFP changes and workers’ mobility. These results suggest they are critical to
understanding how mobility can be encouraged and inequality in an economy that is increasingly
dominated by services.

As seen in Figure 1.1, structural transformation shows uneven patterns across space in the U.S.
While there has been sustained deindustrialization over the last half-century, manufacturing em-
ployment share remains high in most cities in the Rust Belt, including Bu�alo, Cleveland, Detroit,
Pittsburgh, and St. Louis. As late as the 1990s, the majority of Silicon Valley technology jobs were
still in hardware, and the region was surrounded by fabrication plants building silicon semicon-
ductors. Today, Silicon Valley has a very limited number of fabrication plants; however, it remains
the dynamic global center of the communication service industries. Using the U.S. data, we show
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that the geographical variation of amenities and productivity spillovers are the main driver of such
unevenness, and historical exposure to di�erent industries creates persistence in the occupational
structure. This paper demonstrates how di�erent patterns of structural change across both space
and time determine the geographical variation of welfare and the upward mobility of workers. Un-
derstanding this is critical to understanding how the U.S. as a whole and not just a few cities within
it can regain the “land of opportunity” mantle.

The framework proposed is easily extended to quantify the e�ects of various shocks on local
economies and workers within them in the long run. Amongst possible shocks, the interaction
between locations and the rapidly changing international market is perhaps the most important to
look at. Globalization and in particular the U.S. relationship with China is very much in the spotlight
in terms of understanding why some cities in the U.S. have prospered whilst others have declined.
The recent work with Italo Colantone and Gianmarco Ottaviano (Colantone et al. 2021) is looking at
whether higher trade exposure to Chinese imports in the U.S. reduces social mobility, both in abso-
lute and relative terms, conditioning for the initial level of inequality. The foundation of that paper
is the framework developed in this paper, which allows us to quantify the redistributive impacts
of the trade shock across space and time. Our model can also serve as a stepping-stone for analy-
sis of the e�ects of other dynamic processes. Using the model, we can look at how environmental
damages including climate change and air and water pollution might a�ect inequality and mobility
across locations in the U.S. Another research avenue we are to pursue is applying my framework
to locations within developing countries where the overall pace of structural change tends to be
more rapid but where we understand little about distributional e�ects across space and time. The
framework developed in this paper when combined with developing country data serves as an in-
teresting laboratory for understanding variation in inequality and mobility. This understanding is
fundamental to designing policies to equalize opportunities across locations within countries, some-
thing which is very much at the top of the global policy agenda as the world moves gradually out
of the pandemic.
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Appendices for Chapter 1

A Appendix: Model details

An index is omitted when it does not cause any confusion in some expressions. Subsection A.1
presents the details of the demand system featuring non-homothetic constant elasticity of substi-
tution. Subsection A.2 provides micro foundations and derivation of the choice of industry job.
Subsection A.2 explains the details of production side and Subsection A.4 provides problem of de-
velopers. Subsection A.5 discusses an extension of the baseline framework with introducing educa-
tional choices. Subsection A.6 discusses the comparison between the present model and the in�nite
horizon forward-looking model.

A.1 Demand system

The utility from consumption C is implicitly de�ned as a solution to

∑
s∈K

u0
s

(
cs

u1
s(U)

)
= 1 (A.1)

u0
s(·) is strictly decreasing and strictly convex function, and u1

s(·) is monotonically increasing func-
tion. See Hanoch 1975 and Matsuyama 2019 for further discussion about the class of implicitly
additive separable utility functions. The representation (A.1) nests (i) homothetic constant elastic-
ity of substitution (CES) sectoral consumption across sectors, as well as (ii) non-homothetic CES
structure (Comin et al. 2020). This paper adopts the latter by parametrizing two functions by

u0
s(x) = α(σ−1)/σ

s x
σ−1
σ , u1

s(x) = x(θs−σ)/(1−σ)

where (αs, σ, θs) are exogenous preference parameter. Throughout our analysis, these parameters
satisfy:

σ ∈ (0, 1), θs ≥ σ (A.2)

where the sectoral consumptions are gross complement and utility function is concave. Alterna-
tively, σ ∈ (1,∞) and σ > θs for the case of substitution between sectors in consumption.

Letting W be income of individuals and p be price vector, utility maximization problem of an
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individual is:
c ∈ arg max U s.t. p · c ≤ W and (A.1) (A.3)

Taking the �rst order condition associated with the dual problem of (A.3), the expenditure share
becomes:

ψs = ασ−1
s (ps/P)1−σ(W/P)θs−1 (A.4)

with the aggregate price index for workers in local market (i, k) satisfying:

Pki =

(∑
s∈K

ασ−1
s (psi )

1−σ(W k
i /Pki )θs−1

)1/(1−σ)

⇐⇒ Pki =

(∑
s∈K

(
ασ−1
s (psi )

1−σ(W k
i )θs−1

) 1−σ
θs−σ (ψs|ik)

1−θs
σ−θs

)1/(1−σ)
(A.5)

The aggregate price index P is the unique solution to this �xed point equation given (p, W ). The
aggregate price index is the homogeneous of degree one in (p, W ), that is the expenditure share
is homogeneous of degree zero in (p, W ). Expenditure on sector s, Es(p,W ) is increasing and
concave in p, and homogeneous of degree one in (p,W ).

De�ne the average of θs weighted by expenditure shares:

θ̄(p,W ) ≡
∑
s∈K

ψs(p,W )θs (A.6)

Using this, the elasticity of aggregate demand and sectoral expenditure with respect to sectoral price
change are:

∂ lnU(p,W )

∂ ln ps
= −(1− σ)

ψs(p,W )

θ̄(p,W )
,

∂ lnEs(p,W )

∂ ln ps
= (1− σ)

(
1− θs

θ̄(p,W )
ψs(p,W )

)
(A.7)

The sector with higher expenditure share exhibits lower elasticity of expenditure to the change in
price. Alternatively,

∂ lnEs(p,W )

∂ lnW
= θs −

θs − σ
1− σ

(
θ̄(p,W )− 1

)
, EψW ≡

∂ ln(ψs(p,W )/ψs′(p,W ))

∂ lnW
= θs − θs′

(A.8)
This describes how household expenditure on a particular good or service varies with household
income. As (real) income changes, the expenditure pattern shifts between sectors di�erently. This
feature of the Engel curve matters to explain the interplay between structural change and sectoral
specialization along with growth. Lastly, we note that the elasticity of substitution conditional on
the aggregate demand is constant:

EψP ≡
∂ ln(ψs(p,W )/ψs′(p,W ))

∂ ln(ps/ps′)

∣∣∣∣
W/P

= 1− σ (A.9)
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The same proportional change in relative price a�ects consumption patterns in the same way as the
homothetic CES demand system.

A.2 Geography of job opportunities

There are measure of Lsi,t workers in sector s in location i at period t. Without population growth,
the total population of cohort t + 1 (i.e., next generation) with origin i is L̄i,t+1 =

∑
s∈K L

s
i,t. The

discussion is not altered when introducing the uniform birth rate across locations. The young gen-
eration is ex ante homogeneous and an individual has a unit time for job choice during the young
period. Since the young generation does not obtain utility from consumption or leisure, there is no
incentive to spend any time other than a job choice.

Consider young individuals in location i in period t. During the young period, an individual
acquires information from existing workers in location i. Suppose one unit of time is divided into
T spans and let ∆ = 1/T . In each span ∆, an individual spends the time to acquire information
regarding a job in each sector. During time span ∆, an individual receives the valuable(positive)
information about sector s with probability Jsi , and the valueless(negative) information with prob-
ability 1− Jsi . To achieve the probability Jsi , an individual must spend time:

O(Jsi , L
s
i,t) = Λs ln

(
1

1− Jsi

)(
Lsi,t

)−η
(A.10)

where Λs and η are strictly positive constant. Λs is a scalar for the time used for information acqui-
sition, and η quanti�es how much workers can save time when there are more existing workers in
the local labor market.

Then, an individual decide time allocation across di�erent sectors to maximize the logit of prob-
abilities. The large value of logit corresponds to a large value of odds, and maximizing logit implies
maximizing odds of acquiring positive information over acquiring negative information. Alterna-
tively, people minimize the coe�cient of variation for the number of valuable information they
receive during the period. The coe�cient of variation captures the relative variation of successful
information acquisition over the average success rate given by

√
1−Jsi
Jsi

. Thus, minimizing it is the
same as maximizing the logit.

In summary, an individual solves:

Jsi,t = arg max
jki ∈(0,1)

{∑
k

ln
jki

1− jki
s.t.

∑
k

O(jki , L
k
i,t) ≤ ∆

}
(A.11)

Solution for this is:
Jsi,t =

(Lsi,t)
η

ΛsOi

(A.12)
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where Oi is Lagrangian multiplier for individuals that solves:

∑
k∈K

Λk ln

(
ΛkOi

ΛkOi − (Lki,t)
η

)
(Lki,t)

−η = ∆ (A.13)

Then, the probability that an individual of cohort t + 1 successfully acquires valuable information
during each time ∆ is Jsi,t. The probability of realization of T ′ successful information acquisition
becomes TCT ′ (J

s
it)
T ′ (1− Jsit)

T−T ′ for T ′ ≤ T . Taking its limit ∆ → 0, for one unit of time, the
ralization of the number of valuable information follows:

Bsi,t(m) =
(Jsi,t)

m

m!
exp
(
−Jsi,t

)
(A.14)

The number of shocks that arrive to individuals of cohort t+1 exhibits the average Jsi,t and variance
Jsi,t. Intuitively, when η > 0, the average number is large as existing workers increase as marginal
cost for acquiring positive information is low when Lsi,t is large. Further, many existing workers
lead to a large variance of arrivals.

Next, the value of tastes follows Pareto distribution. The distribution is tractable and �tted to
our context in which people have interests in the large value of tastes. Suppose that taste across
employees has a distribution with density g(υ), where υ can be negative and positive values. Using
constant φ > 1, the taste value is transformed to z = υ−1/φ and its density is:

f(z) = g(υ) ·
∣∣∣∣dυdz

∣∣∣∣ = φz−(φ+1)g(z−φ)

People have interests in the large value of taste z. Therefore, the tail distribution of the large values
z is approximated by density function and its associated distribution function:

f(z) ∼ φg(0)z−(φ+1), F (z) ∼ 1− g(0)z−φ

Therefore, Pareto distribution for the taste values is a simple transformation of variables from gen-
eral distribution.

Summarizing our discussion, individuals of generation t+1 receive taste shocks for each indus-
try and the number of shocks mk

i,t is following Poisson distribution:

Bsi,t(m) = Pr(ms
i,t = m) =

(Jsi,t)
me−J

s
i,t

m!
, Jsi,t =

(Lsi,t)
η

ΛsOi

(A.15)

Value of the each shock is supposed to be following Pareto distribution for every sector:

F (z) = 1− (z/z)−φ, φ > 1 (A.16)

The important assumption is that the number of arrival shocks is speci�c to pair of industry and
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location, while the size of shocks is independent to industry and location.

An individual picks up the largest value from the tastes. Its cumulative distribution function is:

F si,t(z) = Pr
(
zsi,t ≤ z

)
=

∞∑
m=1

(
m∏

m′=1

Pr
(
zsi,t(m

′) ≤ z
))
Bsi,t(m) + Bsi,t(0)

=
∞∑
m=0

(
1− (z/z)−φ

)m (Jsi,t)
me−J

s
i,t

m!

= e−J
s
i,t(z/z)

−φ

(A.17)

De�ne:
Gs
i,t(u) = Pr

(
Ū s
i,tz

s
i,t ≤ u

)
= e−V

s
i,tu
−φ

with Vsi,t = Jsi,t(zŪ
s
i,t+1)φ (A.18)

The pattern of choosing industry s among cohort t+ 1 in location i becomes:

Pr(Ū s
i,tz

s
i,t ≥ Ūk

i,tz
k
i,t, ∀k 6= s) =

∫ ∞
u

gsi,t(u)
∏
k 6=s

Gk
i,t(u)du

=
Vsi,t∑
k∈K Vki,t

[
e−

∑
k∈K Vki,tu−φ

]∞
u

→
Jsi,t(Ū

s
i,t+1)φ∑

k∈K J
k
i,t(Ū

k
i,t+1)φ

(as z → 0)

(A.19)

The last equation takes the minimum of Pareto distribution (i.e., lower bound of the Pareto distri-
bution) to zero and expands its support to (0,∞). Therefore, the share of cohort t+ 1 in location i
who choose industry s when they are young is:

ln ςsi,t+1 = ln ζs + η lnLsi,t + φ ln Ū s
i,t+1 − ln

(∑
k∈K

ζk(L
k
i,t)

η(Ūk
i,t+1)φ

)
(A.20)

where we denote ζs = 1/Λs. The distribution of indirect utility satis�es:

1−Gi,t(u) = 1−
∏
s∈K

e−V
s
i,tu
−φ

= 1− e−Vi,tu−φ , Vi,t =
∑
s∈K

Vsi,t (A.21)

and the average welfare for the generation t born in i is:

∫ ∞
u

udGi,t(u) =

∫ Vi,tu−φ
0

(y/Vi,t)−1/φe−ydy → V1/φ
i,t (A.22)

The average welfare among individuals of generation t who has an origin in location i is equalized
ex ante because of the free mobility between sectors (i.e., self-selection) ex ante. Yet, there are
idiosyncratic shocks in both location choice (i.e., idiosyncratic shocks in amenity) and idiosyncratic
shocks in self-selection, so ex post utility of individuals is not equalized. Lastly, the measure of
welfare is the ex ante expected utility of the cohort with adjustment of local labor market condition.

66



The adjustment is given by Oi,t which is de�ned above. Oi,t is Lagrangian multiplier for the cohort
and it re�ects the composition of workers among previous generation before sector choice. De�ne
the ex-ante average utility of cohort t+ 1 with this adjustment by Vi,t+1:

lnVi,t+1 =
1

|K|
∑
s∈K

(
ln ζ̃s +

η

φ
lnLsi,t −

1

φ
ςsi,t+1 + ln Ū s

i,t+1

)
(A.23)

where ζ̃s = ζ
1/φ
s .

A.3 Production

This subsection summarizes the production side of the economy and regional trade pattern charac-
terized by gravity structure with externalities. We start with the baseline speci�cation. Then, we
describe di�erent models nested in the framework.

Baseline. Each �nal producers use intermediate goods available in location i. Their production
is CES combination of intermediate goods with elasticity κ̃. The corresponding ideal price for �nal
goods:

psi,t =

[∑
n∈N

∫
Vsin,t

(
psin,t(v)

)1−κ̃
dv

]1/(1−κ̃)

(A.24)

whereVs
in,t is set of available intermediate goods. The �nal goods are used for �nal consumption and

materials in the production of intermediate goods. Intermediate goods producers have a constant
return to scale technology with agglomeration economies. Share of labor and materials in inputs is
given by βs and βss′ respectively and βs +

∑
s′K\0 βss′ = 1 for any s ∈ K\0. The cost minimization

problem for �rms leads to the unit cost of production:

csi,t(ι) =
1

asi,t(ι)

Ξs
i,t

Zs
i,t

, Ξis,t = (wsi,t)
βs
∏

s′∈K\0

(ps
′

i,t)
βss′ (A.25)

Consider regional trade of intermediate goods. Given iceberg trade cost τ sint ≥ 1., prices of inter-
mediate goods satisfy:

psi,t(ι) ∈ min
n∈N

{
τ sin,tc

s
n,t(ι)

}
(A.26)

In the wake of Eaton and Kortum (2002), the productivity of �rms asit(ι) is following Fréchet distri-
bution with unite location parameter and shape parameter κs > 1. The bilateral sector level trade
pattern is given by:

πsin,t =
(τ sin,tΞ

s
n,t/Z

s
n,t)
−κs∑

`∈N (τ si`,tΞ
s
`,t/Z

s
`,t)
−κs

, ∀i, n, ` ∈ N ∀s ∈ K\0 (A.27)
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Price of the �nal goods in location i and sector s is given by:

psi,t = Γ−1
s ·

(∑
`∈N

(
τ si`,tΞ

s
`,t/Z

s
`,t

)−κs)−1/κs

, Γs ≡ Γ

(
1− κ̃+ κs

κs

)1/(1−κ̃)

(A.28)

with assumption 1− κ̃+ κs > 0. The market clearing condition is:

Xs
i,t = Es

i,t +
∑
s′∈K\0

βs′s
∑
n∈N

πs
′

ni,tX
s′

n,t, ∀i ∈ N , ∀s ∈ K\0 (A.29)

NEGmodel for intermediate goods. The production technology of intermediate goods producers
is increasing return to scale and they follow monopolistic competition. The �nal goods producers
in location i and sector s has nested CES with two di�erent sector speci�c elasticities between
intermediate goods. Within the source location n, �nal good producers have constant elasticity
of substitution between intermediate goods available in n, σFs . While, �nal good producers have
constant elasticity between source locations, σLs .

The production cost of a intermediate producer ι in sector s in location i is:

csi,t(ι) =

[
Fs +

ysi,t(ι)

Zs
i,t

]
Ξs
i,t (A.30)

where Fs is �xed cost for production. Given the demand for intermediate variety, each intermediate
�rm produces di�erent variety and monopolistic competition leads to price of variety in location
i with constant markup. Letting M s

i,t be the measure of intermediate producers in location i and
sector s,

πsin,t =
(M s

n,t)
1−σLs
1−σFs

(
τsin,tΞ

s
n,t

Zsn,t

)1−σLs

∑
`∈N (M s

`,t)
1−σLs
1−σFs

(
τsi`,tΞ

s
`,t

Zs`,t

)1−σLs
, psi,t =

σFs
σFs − 1

[∑
n∈N

(M s
n,t)

1−σLs
1−σFs

(
τ sin,tΞ

s
n,t

Zs
n,t

)1−σLs
] 1

1−σLs

(A.31)
Let `si,t denote the average mass of labor of intermediate producers, and we obtain:

M s
i,t =

Lsi,t

`
s

i,tFsσ
F
s

(A.32)

When `sn,t → `
s in the limit case, price becomes:

(psi,t)
1−σLs =

∑
n∈N

(
1

`
s
FsσFs

) 1−σLs
1−σFs

[
σFs

σFs − 1

τ sin,tΞ
s
nt

Zs
n,t

(Lsnt)
1

1−σFs

]1−σLs
(A.33)

NEG model with multi-sectors can be one representation of the baseline model in (A.27) and (A.28).
Particularly, the trade elasticity with respect to trade cost is given by 1 − σLs = −κs, and larger
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amount of labor (Lsi,t) leads to higher trade share. The market clearing condition is modi�ed to:

Xs
it = Es

it +
∑
s′∈K\0

βs′s
∑
n∈N

σFs′ − 1

σFs′
πsnitX

s′

nt (A.34)

Heterogeneous �rms with Pareto productivity. In Melitz (2003) model, there are mass of �rms
with di�erent productivity that follows Pareto distribution. The Pareto distribution is σMs and sup-
pose that σMs + 1 > σFs . The �nal good producers is the same as in NEG framework. Under the
monopolistic competition, �rm set price with constant markup, and the price index for �nal good
exported from n to i becomes:

(psin,t)
1−σFs = M s

n,t

(
σFs

σFs − 1

τ sin,tΞ
s
n,t

Zs
n,t

)1−σFs σMs (ys
in,t

)σ
F
s −σMs −1

1 + σMs − σFs
(A.35)

Assume that �rm’s �xed cost for exporting is paid by composite goods of destination instead of
origin. Therefore, the free entry condition pins down the productivity cuto� for export from n to i
of sector s:

ys
in,t

=
σFs

σFs − 1

τ sin,tΞ
s
n,t

Zs
n,t

(
Y s
i,t

σFs Ξs
i,tFs

) 1

1−σFs 1

psin,t

(
psin,t
psit

) 1−σLs
1−σFs (A.36)

Using this, psin,t satis�es:

(psin,t)
(1−σLs )σ̃s =

(
σMs

1 + σMs − σFs

) (1−σFs )(σLs −1)

σMs

(M s
n,t)

σLs −1

σMs

(
σFs

σFs − 1

τ sin,tΞ
s
n,t

Zs
n,t

)1−σLs

×
[(

Xs
i,t

µsΞs
i,tFs

)
(psi,t)

1−σLs

]σ̃s−1

where
σ̃s ≡ 1 +

(σLs − 1)(1 + σMs − σFs )

(σFs − 1)σMs
> 1

The free entry condition leads to the mass of �rms proportional to labor. Namely,

M s
it =

σFs − 1

σFs σ
M
s

Lsit
`
s

itFs

and in the limit case with su�ciently small size of �rms,

πsin,t =
(Lsn,t)

σLs −1

σ̃sσ
M
s

(
τsin,tΞ

s
n,t

Zsn,t

) 1−σLs
σ̃s

∑
`∈N (Ls`,t)

σLs −1

σMs σ̃s

(
τsi`tΞ

s
`,t

Zs`,t

) 1−σLs
σ̃s

(A.37)
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A.4 Developers

Units of residential land endowment in location i are given by Ti, and it is �xed over time. Devel-
opers in each location produce structures that can be used for housing (i.e., residential use). The
market is competitive, and there is a potentially large number of developers entering the market in
each location. Developers require labor and stock of developed land. This implies that developers
build a structure (i.e., housing) by adding structure to the previous stocks. Developers are homo-
geneous in production technology, and it is characterized by the neoclassical production function.
Namely, the production function exhibits homogeneous of degree one and concave, and it satis�es
Inada condition.

We let fH(`0
i,t, (1 − h̄i)hi,t−1) be production function for developers, where h̄i ∈ (0, 1) is

depreciation rate. Each developer in location i solves pro�t maximization problem for each unit of
land development

max
`0i,t

p0
i,tf

H(`0
i,t, (1− h̄i)hi,t−1)− w0

i,t`
0
i,t − ri,t (A.38)

where ri,t is competitive bidding price by developers to develop land. Each developer has to pay ri,t
for land development to get permission. Developers are homogeneous in production technology
and aggregate surplus extracted from developers is given by

Ri,t = ri,tTi = p0
i,t

(
1−

∂ ln fH(L0
i,t, (1− h̄i)Hi,t−1)

∂ lnL0
i,t

)
fH(L0

i,t, (1− h̄i)Hi,t−1) (A.39)

With the speci�cation of Cobb-Douglas technology for fH with constant share of labor χ, we have:

Ri,t = ri,tTi = (1− χ)p0
i,tHi,t, w0

i,tL
0
i,t = χp0

i,tHi,t (A.40)

Units of residential land endowment in location i is given by Ti and it is �xed over time. Then,
revenue from land is distributed across local workers proportional to wage bill. This is Assumption
4. Then, land rent per worker is given by:

r̃si,t = Ri,t ×
wsi,t∑
j w

j
i,tL

j
i,t

=
1− χ
χ

w0
i,tL

0
i,t∑

j w
j
i,tL

j
i,t

wsi,t (A.41)

A.5 Educational choices

The baseline model abstracts the endogenous choice of human capital. It can be extended to incor-
porate the additional dimension of endogenous heterogeneity. In particular, it is relevant to allow
people to move to other places for the purpose of education. This subsection discusses a simple
extension to this direction. The extension shares the spirit of the self-selection of education a lá
Willis and Rosen (1979).

Consider generation t throughout the discussion here. People are ex-ante homogeneous. They
choose the education level, graduate (G) or non-graduate (NG). If an individual chooses to be non-
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graduate, she stays in the city of birth. She can move to other cities for education if she chooses
to be graduate. The timing is followings. An individual decides the sector. After the sector choice,
she decides whether she goes to graduate or not, and the place of education if they choose to be
graduate. If she decides to stay in the city, her skill in the future is at the non-graduate level. When
she decides to leave the city for graduate education, her skill in the future is at the graduate level.
She pays the cost of education and receives the education. Then, turning to the period t, she moves
from the place of study to the other location to work and consume. To simplify the discussion,
we suppose that amenities are di�erent across locations but the same across workers in di�erent
sectors and education levels.

Solve the workers’ decision backwards. A worker with education level e in sector s and location
` yields:

W̃s,e
`,t = B`

W s,e
`,t

Ps,e`,t
(A.42)

This is independent of the place of education. Workers with the same educational level (e ∈
{G,NG}) receive the same wage in a sector. Given the mobility costs and idiosyncratic location
preference, the probability that an individual move to location ` from n is:

λe`n|s,t =
(W̃s,e

`,t /D`n,t)
ε∑

`′∈N (W̃s,e
`′,t/D`′n,t)ε

(A.43)

and the conditional expected utility for an individual who chooses sector s and education level e in
location n is given by:

Ũ s,e
n,t =

[∑
`∈N

(
W̃s,e

`,t /D`n,t

)ε]1/ε

(A.44)

This captures the average return from education in location n for workers in sector s. Next, consider
the educational choice of a worker. During period t − 1, a worker has no cost if she chooses non-
graduate, e = NG. The expected utility for an individual who is born in location i and chooses
e = NG is:

Ũ s,NG
i,t × us,NG (A.45)

where us,NG is an idiosyncratic utility of non-graduate. When an individual chooses education level
e = G in location n, the expected utility is:

Ũ s,G
n,t × us,Gn
gsni,t−1

(A.46)

where gsni,t−1 is common bilateral cost for education, and us,Gn is an idiosyncratic utility from grad-
uate in location n. We let us = (us,NG, us,G1 , us,G2 , · · · , us,GN ) be the vector of idiosyncratic shocks in
education choices. Assume that the idiosyncratic costs are drawn from the nested Gumbel distribu-
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tion:

GE(u; s) = exp

−(us,NG
)−αE

−

(∑
n∈N

(us,Gn )−α
G

)αE/αG
 (A.47)

where αE and αG are exogenous parameters in the distribution. αG > αE > 0. With this distri-
bution, the probability that an individual worker of sector s in location i chooses education choice
e = G in location n:

Gs,n
i,t =

(
Ũ s,G
n,t /g

s
ni,t−1

)αG
∑

`∈N

(
Ũ s,G
`,t /g

s
`i,t−1

)αG ×
(∑

`∈N (Ũ s,G
`,t /g

s
`i,t−1)α

G
)αE/αG

(
Ũ s,NG
i,t

)αE
+
(∑

`∈N (Ū s,G
`,t /g

s
`i,t−1)αG

)αE/αG (A.48)

and the probability that an individual chooses e = NG is:

Ns
i,t =

(
Ũ s,NG
i,t

)αE
(
Ũ s,NG
i,t

)αE
+
(∑

`∈N (Ũ s,G
`,t /g

s
`i,t−1)αG

)αE/αG (A.49)

and the average utility:

Ws
i,t = γ̄

((
Ũ s,NG
i,t

)αE
+
(∑
`∈N

(Ũ s,G
`,t /g

s
`i,t−1)α

G
)αE/αG)1/αE

(A.50)

Lastly, the choice of the sector depends on the average utility Ws
i,t and taste shocks as in the baseline

model. Therefore, the probability of choosing sector s in location i is:

ςsi,t = ζs(L
s
i,t−1)η

(Ws
i,t

Vi,t

)φ
(A.51)

Together these probabilities, the mass of workers in location n in period t for sector s and graduate
G is given by:

Ls,Gn,t =
∑
`∈N

∑
i∈N

λG
n`|st ×Gs,`

i,t × ςsi,t × Li,t−1 (A.52)

and that for non-graduate NG is given by:

Ls,NG
nt =

∑
`∈N

∑
i∈N

λNG
n`|st × Ns,NG

i,t × ςsi,t × Li,t−1 (A.53)

For the production side, consider the CES substitution between non-graduate and graduate. Specif-
ically, the unit cost for production of tradable intermediates is:

Ξs
n,t =

((
ws,NG
n,t

)1−β
+$s,t

(
ws,Gn,t

)1−β
)1/(1−β)

(A.54)
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where β controls the elasticity of substitution between non-graduate and graduate, and $s,t is the
sector speci�c premium for the graduates.

In this extension, the education choice leads to an additional channel creating inequality in
income and welfare. Intuitively, if the birthplace has better access to graduate study (gsni), young
people are more likely to self-selection into graduate study. When they choose to start the graduate
study, they show a high probability of moving to an educational place with better accessibility to
the labor market (D`n,t). Therefore, the birthplace a�ects the educational choice of workers.

A.6 In�nite horizon with perfect foresight

Recent papers ( Dix-Carneiro 2014, McLaren 2017, Caliendo et al. 2019, Kleinman et al. 2021) propose
the framework of individual agents in the in�nite horizon with perfect foresight. This subsection
discuss the comparison between our model and such framework by presenting a simple model of
forward-looking agents and derive workers’ choices. There is no exogenous population growth in
the economy as in the baseline model.

For workers in location i and sector s, instantaneous utility is lnWs
i,t with amenity adjusted

real incomeWs
i,t. An individual ω decides the location and sector for the next period together. An

individual solves

vsi,t(ω) = lnWs
i,t + max

n∈N
max
k∈K

[
ρV k

n,t+1 − dni,t+1 − µki,t+1 + ϕkni,t+1(ω)
]

(A.55)

where dni,t+1 is migration cost, µki,t+1 is cost of choosing sector, and ϕkni,t+1(ω) is idiosyncratic
shocks that are related to both location choice and sector choice, and V k

n,t+1 is expected future
utility:

V k
n,t+1 = E

[
vkn,t+1(ω)

]
(A.56)

To derive the analytical formulae, assume that ϕkni,t+1(ω) is drawn from the independent Type I
extreme distribution such that:

Φt+1(ϕ) = Pr(ϕkni,t+1 ≤ ϕ) = e−(ϕ−γΩ)/Ω, φt+1(ϕ) =
1

Ω
e−ϕ/ΩG(ϕ) (A.57)

where γ is Euler-Mascheroni constant. Letting

Υk
ni,t+1 = ρV k

n,t+1 − dni,t+1 − µki,t+1, V ∗i,t = max
n∈N

max
k∈K

Υk
ni,t+1 + ϕkni,t+1(ω),

we have

Pr[Υk
ni,t+1 + ϕkni,t+1(ω) ≤ v] = e−e

1
Ω

(
v−Υkni,t+1−γΩ

)
(A.58)
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Therefore,

Φ∗i,t(v) = Pr[V ∗i,t ≤ v] =
∏
n

∏
k

Φt+1

(
−Υk

ni,t+1 + v
)

= e−e

[
− v−γΩ

Ω
+ln

∑
n

∑
k e

(Υkni,t+1/Ω)

]

so that

Ei,t(v) = Ω ln

[∑
n

∑
k

exp(Υni,t+1)1/Ω

]
(A.59)

and

V s
i,t = lnWs

i,t + Ω ln

[∑
n

∑
k

exp
(
ρV k

n,t+1 − dni,t+1 − µki,t+1

)1/Ω
]

(A.60)

In the followings, we transform variable such that % = ε− γΩ. The choice probability is:

πsn|i,t+1 =

∫ ∞
−∞

∏
`,k

e−e
− 1

Ω

(
%+Υsni,t+1−Υk`i,t+1

) e−%/Ω

Ω
d%

=

∫ ∞
−∞

exp

(
−e−

%
Ω

∑
`,k

e
− 1

Ω

(
Υsni,t+1−Υk`i,t+1

))
e−%/Ω

Ω
d%

(A.61)

Letting %̃ = e−%/Ω,

πsn|i,t+1 =

∫ ∞
0

exp

(
−%̃
∑
`

∑
k

e
− 1

Ω

(
Υsni,t+1−Υk`i,t+1

))
d%̃

=
exp
(
Υs
ni,t+1

)1/Ω∑
`

∑
k exp

(
Υk
`i,t+1

)1/Ω

=
exp
(
ρV s

n,t+1 − dni,t+1 − µsi,t+1

)1/Ω∑
`

∑
k exp

(
ρV k

`,t+1 − d`i,t+1 − µki,t+1

)1/Ω

(A.62)

Workers in n and s in period t+ 1 is:

Lsn,t+1 =
∑
i

∑
k

πsn|i,t+1L
k
i,t (A.63)

The probability of choosing s among workers from i is:

Ssi,t+1 =

[
Ws

i,t

exp
(
V s
i,tµ

s
i,t+1

)]1/Ω∑
n

exp
(
ρV s

n,t+1 − dni,t+1

)1/Ω

(A.64)
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And among workers whose origin is i and who choose sector s, probability of moving to n is:

Mn|is,t+1 =
exp

(
ρV s

n,t+1 − dni,t+1

)1/Ω

∑
` exp

(
ρV s

`,t+1 − d`i,t+1

)1/Ω
(A.65)

Since idiosyncratic shocks are independent across sector and location choices, they satisfy

πsn|i,t+1 = Ssi,t+1 ×Mn|is,t+1 (A.66)

In the comparison between our baseline framework of overlapping generations and the forward-
looking model, key probabilities are (A.64) and (A.65). First, the probability of migration among
workers of sector s and origin i (A.65) takes a similar form to the probability (λni|s,t+1) in the baseline
model. The probability is determined by the expected value of location n and sector s in period
t + 1 and common friction in labor mobility. The main di�erence is the characterization of the
expected utility in (A.60). In the baseline model, determinants of future value in workers’ choice
are fully characterized by the real income in the next period t+ 1, while the forward-looking model
is, by its nature, the future value depends on the entire path of future in the economy. Second,
the probability of choosing sector (A.64) depends on current local economy, common barrier of
sector choice (µsi,t+1), and future return of sector s. The current value of real income and a common
barrier correspond to the stickiness in workers’ choice of sectors in the baseline model, and the
future return of sector s corresponds to Ū s

i,t+1. Therefore, it also depends on the entire future path
in the economy.

This di�erence plays an essential role in the transition process. Suppose that there is a transi-
tory common shock in the economy. Since in�nitely lived households (workers) choose the future
path of mobility in a forward-looking way, taking into account future shocks, their choice of a
given location is based on current real income and an option value associated with that location.
Transitory e�ect changes the option value and adjustment of workers must take account for the
updated path of shocks in the future, which leads to di�erent speed of transition compared to the
overlapping generation framework in which individuals that work only in the second period of their
life. In addition, the baseline framework can isolate the relative importance of migration barrier,
local labor market exposure, structural transformation, and agglomeration economies in workers’
response to the common shocks since incorporating the externalities in the forward-looking model
make it challenging to analyze the e�ect of change in option values along with the transition (e.g.,
Krugman 1991, Matsuyama 1991, Ottaviano 1999, Baldwin 2001).

At the same time, there is the equivalence between the two approaches when focusing on back-
ward solution to back out the past fundamentals in the economy from steady state. By using the
sequence of economic outcomes up to a certain period of the stationary steady state T , the model
can be solved backward using the transition probabilities in both approaches. This process gives
a path of shocks between period T − 1 and T that rationalizes the change of states from period
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T − 1 to T . In both approaches, the change between two consecutive periods is fully characterized
by shocks between these two periods so that we can map the past equilibrium as long as the path is
unique. However, as being discussed above, forward solution shows the di�erence between the two
approaches.

B Appendix: Equilibrium

This section describes the analytical characterization of the dynamic equilibrium in subsection B.1
and shows the system of equations for the transition of equilibrium and propose the solution method
in subsection B.2. The last subsection B.3 discusses the steady state of the economy.

B.1 Solving for Dynamic Equilibrium

This subsection solves the equilibrium in period t + 1 given the economy of period t. Given infor-
mation of the time-varying fundamentals for both period t (F t) and t+1 (F t+1) and time-invariant
fundamentals (F̄ ) and conditional on the equilibrium in period t, the model is solved for the equi-
librium in period t+ 1.

To economize notation, use the following notations for exogenous factors:

As
in,t = (τ sin,t)

−κs(Asi,t)
κs , Bsin,t = (Din,t)

−ε(Bs
i,t)

ε

The distribution of land rent in the local labor market is:

µi,t+1 = 1 +
Ri,t+1∑

sw
s
i,t+1L

s
i,t+1

= 1 + (1− χ)
p0
i,t+1Hi,t+1∑
sw

s
i,t+1L

s
i,t+1

(B.1)

The income of workers is:

W s
i,t+1 = µi,t+1w

s
i,t+1 =

[
1 + (1− χ)

p0
i,t+1Hi,t+1∑
sw

s
i,t+1L

s
i,t+1

]
wsi,t+1 (B.2)

Labor mobility implies that:

Lsin,t+1 = λsin,t+1ς
s
n,t+1Ln,t

= Bsin,t+1

(
W s
i,t+1

Psi,t+1Ū
s
n,t+1

)ε

ζs

(
Lsn,t

)η( Ū s
n,t+1

Vn,t+1

)φ

Ln,t
(B.3)

Employment size in location i and sector s in period t+ 1 is

Lsi,t+1 =
∑
n∈N

Lsin,t+1 (B.4)
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with

(Ū s
i,t+1)ε =

∑
`∈N

Bs`i,t+1(W s
`,t+1)ε(Ps`,t+1)−ε

(Vi,t+1)φ =
∑
s∈K

ζs(L
s
it)
η(Ū s

i,t+1)φ
(B.5)

The expected utility conditional on sector choice (Ū s
i,t+1) and welfare measure (Vi,t+1) are deter-

mined by the real income, Ws
i,t+1. (B.4) determines labor supply. In other words, equilibrium real

incomeWs
i,t+1 and labor allocation Lsi,t+1 solve (B.4) and (B.5) together. Combining them yields:

Lsi,t+1 = (Ws
i,t+1)ε

∑
n∈N

Bsin,t+1

ζs(L
s
nt)

η(Ū s
n,t+1)φ∑

k∈K ζk(L
k
nt)

η(Ūk
n,t+1)φ

(Ū s
n,t+1)−εLn,t (B.6)

Manipulating this,

Ū s
i,t+1 =

∑
`∈N

B̃s
`i,t+1

Ls`,t+1∑
n∈N

(
Bs`n,t+1

ζs(Lsnt)
η(Ūsn,t+1)φ∑

k∈K ζk(Lknt)
η(Ūkn,t+1)φ

(Ū s
n,t+1)−εLn,t

)



1/ε

(B.7)

when ε < φ, there is unique mapping between the expected utility Ū s
i,t+1 and employment distri-

bution Lsi,t+1. Lsi,t+1 is homogeneous of degree zero in Ū s
i,t+1. Labor supply Lsi,t+1 is increasing in

Ū s
i,t+1, and it is larger than marginal e�ect of other local labor market, Ūk

j,t+1 of j 6= i and k 6= s.
From (B.5), we can also uniquely map real income (Ws

i,t+1) and welfare measure (Vi,t+1) to labor
supply, Lsi,t+1. In particular, real income solves:

(Ū s
i,t+1)ε =

∑
`∈N

B`i,t+1(Ws
`,t+1)ε (B.8)

Lsi,t+1 is homogeneous of degree zero inWs
i,t+1. Inserting (B.3) into the productivity spillover yields

Zs
i,t+1 = Asi,t+1Zsi,t+1 (B.9)

with

Zsi,t+1 =

[
(Ws

i,t+1)ε
∑
n

Bsin,t+1

ζs(L
s
n,t)

η(Ū s
n,t+1)φ∑

k ζk(L
k
n,t)

η(Ūk
n,t+1)φ

(Ū s
n,t+1)−εLn,tZ

s
n,t

]ρ
(Lsi,t+1)γs (B.10)

(B.9) and (B.10) determine the productivity of period t + 1 given previous labor allocation (Lsi,t),
previous productivity (Zs

i,t) and employment of period t + 1 (Lsi,t+1) as the right-hand-side can be
fully characterized by them.

77



And tradable goods price in location n and sector s becomes

(psn,t+1)−κs = Γ−κss

∑
i

As
ni,t+1

Zsi,t+1(wsi,t+1)−βs

 ∏
s′∈K\0

(ps
′

i,t+1)−βss′

κs (B.11)

Since ∣∣∣∣ d ln psi,t+1

d ln ps
′
n,t+1

∣∣∣∣ = βss′π
s
in,t+1 < 1

for any combination of (i, s) and (n, s′), (B.11) is solved for unique prices psi,t+1 conditional on wages
(wsi,t+1) and productivity (Zs

i,t+1). To simplify the discussion in the following, we set βss′ = 0, that
is βs = 1 for any s ∈ K\0. Therefore, (B.11) is reduced to

(psn,t+1)−κs = Γ−κss

∑
i

As
ni,t+1

(
wsi,t+1

Zsi,t+1

)−κs
(B.12)

Price index satis�es:

Psi,t+1
1−σ =

∑
k∈K

ασ−1
k (pki,t+1)1−σ(W s

i,t+1/Psi,t+1)θk−1 (B.13)

Plugging (B.2) and (B.12) into this,

[
1 +

p0
i,t+1H̄i,t(L

0
i,t+1)χ∑

sw
s
i,t+1L

s
i,t+1

]1−σ

(wsi,t+1)1−σ =
∑
k

α̃k

[∑
n

Ak
in,t+1

(
wkn,t+1

Zkn,t+1

)−κk]−(1−σ)/κk

Ws
i,t+1

θk−σ

(B.14)
for all s ∈ K, where α̃k = ασ−1

k and H̄i,t = νi(1− χ)[(1− h̄i)Hi,t]
1−χ.

Inserting sectoral price and price index, the expenditure share becomes:

ψks|n,t+1 = α̃sΓs
1−σ

[∑
i

As
ni,t+1

(
wsi,t+1

Zsi,t+1

)−κs]−(1−σ)/κs

W k
n,t+1

−(1−σ)Wk
n,t+1

θs−σ (B.15)

Labor market clearing condition for tradables is:

wsi,t+1L
s
i,t+1 =

∑
n

πsni,t+1

(∑
k

ψks|n,t+1W
k
n,t+1L

k
n,t+1

)
(B.16)

where bilateral trade probabilities are

πsni,t+1 =
Ãsni,t+1

(
wsi,t+1/Z̃

s
i,t+1

)−κs
∑

`∈N Ã
s
n`,t+1

(
ws`,t+1/Z̃

s
`,t+1

)−κs (B.17)
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Together (B.15), (B.16) and (B.17) yields

Γs
−(1−σ)Lsi,t+1 =

α̃s
wsi,t+1

∑
n

 As
ni,t+1

(
wsi,t+1/Zsi,t+1

)−κs
∑

`∈N As
n`,t+1

(
ws`,t+1/Zs`,t+1

)−κs
∑

k

(∑
i

As
ni,t+1

(
wsi,t+1

Zsi,t+1

)−κs)−(1−σ)/κs

×

1 +
p0
n,t+1H̄n,t

(
L0
n,t+1

)χ
∑

j w
j
n,t+1L

j
n,t+1

wkn,t+1

σ (
Wk

n,t+1

)θs−σ
Lkn,t+1


(B.18)

for tradables. For sector 0, market clearing condition is

p0
i,t+1

σ
H̄i,tL

0
i,t+1

χ
= α̃0

∑
k

Wk
i,t+1

θ0−σ
W k
i,t+1

σ
Lki,t+1 (B.19)

Manipulating this,

p0
i,t+1

σ
L0
i,t+1

χ
H̄i,t

[
1 +

p0
i,t+1H̄i,t(L

0
i,t+1)χ∑

j w
j
i,t+1L

j
i,t+1

]−σ
= α̃0

∑
k

Wk
i,t+1

θ0−σ
wki,t+1

σ
Lki,t+1 (B.20)

The equilibrium in period t+ 1 is fully characterized by (Ū s
i,t+1,Ws

i,t+1, Lsi,t+1, wsi,t+1, Z̃s
i,t+1, p0

i,t+1)
that solve (B.7), (B.8), (B.10), (B.14), (B.18) and (B.20).

In order to discuss the uniqueness of equilibrium analytically, consider the conservative case:
ρ = 0 and χ = 1. ρ = 0 implies that productivity spillover happened locally, and χ = 1 implies
that supply of residential stocks is elastic. This implies:

W s
i,t+1 = wsi,t+1, Zsi,t+1 = Lsi,t+1

γs (B.21)

and further, we can set p0
i,t+1 = w0

i,t+1. (B.18) becomes

Γs
−(1−σ)Lsi,t+1 =

α̃s
wsi,t+1

∑
n

[
As
ni,t+1(wsi,t+1)−κs(Lsi,t+1)γsκs∑

`′ As
n`′,t+1(ws`′,t+1)−κs(Ls`′,t+1)γsκs

×

(∑
`

As
n`,t+1(ws`,t+1)−κs(Ls`,t+1)γsκs

)−(1−σ)/κs (∑
k

(wkn,t+1)σ(Wk
n,t+1)θs−σLkn,t+1

) (B.22)
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Manipulating this yields

Γ−(1−σ)
s Lsi,t+1

1−γsκs =
α̃s

wsi,t+1
1+κs

∑
n

As
ni,t+1

(∑
`

As
n`,t+1(ws`,t+1)−κs(Ls`,t+1)γsκs

)−1−(1−σ)/κs

×

∑
k

(wkn,t+1)σ

(
Lkn,t+1∑

` Bkn`,t+1ς
k
`,t+1(Ūk

`,t+1)−εL`,t

)(θs−σ)/ε

Lkn,t+1


(B.23)

Suppose the following general form of equations:

F j
i (x) = (xji )

a −
∑
n

[
zjin

(∑
`

Bj
n`(x

j
`)
b

)−c(∑
k

Ck
n(Dk

n)d(xkn)e

)]
= 0 (B.24)

where a, b, c, d and e are positive constant parameters. Let

Y j
n =

∑
`

Bj
n`(x

j
`)
b, Zn =

∑
k

Ck
n(Dk

n)d(xkn)e

Then, we let:
f ji (x) = a lnxji − ln

∑
n

zjinY
j
n

−c
Zn = 0 (B.25)

and

∂f ji (x)

∂ lnxjp
= aI[i=p]

−
∑
n

zjinY
j
n
−c
Zn∑

` z
j
i`Y

j
`

−c
Z`

[
−bc

Bj
np(x

j
p)
b

Y j
n

+
∑
k

Ck
n(Dk

n)d(xkn)e

Zn

(
d
∂d lnDk

n

∂ lnxjp
+ e

∂ lnxkn
∂ lnxjp

)]

Suppose that a ≤ 1. Then, the gross substitute property holds for F j
i (x) when

bc− d− e < −1

Seeing (B.23), this condition corresponds to

γs ≤
θs − σ

κs + (1− σ)

(
1 +

1

ε

)
(B.26)

When gross substitute holds, unique solution exists when

a < −bc+ d+ e
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In (B.23), this condition corresponds to

1− γsκs < γsκs

(
−1− 1− σ

κs

)
+
θs − σ
ε

+ 1 ⇐⇒ γs <
1

ε

θs − σ
1− σ

(B.27)

Therefore, su�cient condition for unique solution of Lsi,t+1 that solve (B.23) is

γs ≤
θs − σ

κs + (1− σ)

(
1 +

1

ε

)
(B.28)

This condition is intuitive. When ε → ∞, idiosyncratic shocks in migration is homogeneous and
it leads to lower threshold for γs as weak agglomeration forces are required to avoid generating
multiple equilibria. If θs becomes large, this condition becomes slack. This implies that large het-
erogeneity in consumption across workers of di�erent income leads to more dispersion of workers
to avoid multiple equilibria. Further discussion about (B.28) can be found later for quanti�cation.
Labor demand schedule solving (B.23) downward slope of wage. For labor supply, (B.7) argues that
the labor supply schedule is upward slope of wage, therefore pinning down wage vector that clear
the labor market.

B.2 Forward Solution for Transition in Dynamic Equilibrium

This subsection describes the solution method for the transition equilibrium. The aim is computing
the transition process response to the changes in productivity (d lnAsi,t) and spatial frictions (d ln τin

and d lnDin). Fundamental amenities are kept unchanged, while including shock to amenity is
straightforward. The outcome of our interests are the trajectory of endogenous variables in the
economy conditional on some initial state. To this end, the process starts o� with the guess of the
trajectory of wage (d lnwsi,t+1), employment (d lnLsi,t+1) and housing price (d ln p0

i,t+1).

Productivity. The initial guess for aggregate productivity change is

d lnZs
i,t+1 = d lnAsi,t+1 + γsd lnLsi,t+1 (B.29)

In the loop, the productivity change is updated using:

d lnZs
i,t+1 = d lnAsi,t+1 + γsd lnLsi,t+1 + ρ · d ln

(∑
n

Lsin,t+1Z
s
n,t

)
(B.30)

where previous labor mobility (Lsin,t), previous productivity (Asi,t,Zs
i,t) are given, and change of labor

mobility (d lnLsin,t+1) is updated in the loop.

Income. Zero pro�t condition for developing residential stock implies that

d ln p0
i,t+1 + d lnHi,t+1 = d lnw0

i,t+1 + d lnL0
i,t+1 = d lnRi,t+1 (B.31)
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and change in distribution of land rent is

µi,t exp(d lnµi,t+1) = 1 +
Ri,t exp(d lnRi,t+1)∑

sw
s
i,tL

s
i,t exp

(
d lnwsi,t+1 + d lnLsi,t+1

) (B.32)

Together, change in income of workers is

d lnW s
i,t+1 = d lnµi,t+1 + d lnwsi,t+1 (B.33)

where change in total income is decomposed into change in land rent distribution and change in
wage.

Trade. For tradable sectors, change in trade pattern shows

d lnπsin,t+1 = −κsd ln τin,t+1 − κsd ln Ξs
n,t+1 + κsd lnZs

n,t+1 + κsd ln psi,t+1 (B.34)

with
d ln Ξs

n,t+1 = βsd lnwsn,t+1 +
∑
s′

βss′d ln ps
′

n,t+1 (B.35)

and
d ln ps

′

i,t+1 =
1

κs
d lnπsii,t+1 − d lnZs

i,t+1 + d ln Ξs
i,t+1 (B.36)

Solutions to N2S + NS + NS equations of (B.34)-(B.36) are corresponding to the change of trade
pattern and consumer price (d lnπsin,t+1, d ln psi,t+1).

Demand shift. Turing to consumers’ demand system, change in price index satis�es N × (S + 1)

equations:

exp
[
(1− σ)d lnPki,t+1

]
=
∑
s

ψksi,t exp
[
(1− σ)d ln psi,t+1 + (1− θs)d lnPki,t+1 + (θs − 1)d lnW k

i,t+1

] (B.37)

Given the previous expenditure patterns (ψksi,t) and change in price and income (d ln psi,t+1, d lnW s
i,t+1),

solving (B.37) gives change d lnPki,t+1 and N(S+ 1)2 equations for change of expenditure patterns:

d lnψksi,t+1 = (1− σ)d ln psi,t+1 − (θs − σ)d lnPki,t+1 + (θs − 1)d lnW k
i,t+1 (B.38)

In turn, change in real income and expenditure are

d lnWk
i,t+1 = d lnW k

i,t+1 − d lnPki,t+1 (B.39)

and
d lnEk

si,t+1 = d lnψksi,t+1 + d lnW k
i,t+1 (B.40)
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Labor mobility. Change in workers’ mobility over space is described by

d lnλin|s,t+1 = d lnλnn|s,t+1 − εd lnDin,t+1 + ε
(

d lnWs
i,t+1 − d lnWs

n,t+1

)
(B.41)

with the change in conditional average utility is:

d ln Ū s
i,t+1 = −1

ε
d lnλii|s,t+1 + d lnWs

i,t+1 (B.42)

For each sector, change in worker sorting between generation t− 1 and generation t shows:

d ln ςsi,t+1 = η · d lnLsi,t − φ · d lnVi,t+1 −
φ

ε
d lnλii|s,t+1 + φ · d lnWs

i,t+1 (B.43)

By construction, they satisfy:∑
n∈N

λni|s,t · exp
(
d lnλni|s,t+1

)
= 1,

∑
s∈K

ςsi,t · exp
(
d ln ςsi,t+1

)
= 1 (B.44)

Together, change in worker distribution in the economy is speci�ed by:

d lnLsi,t+1 =
∑
n∈N

λin|s,tς
s
n,t

Lsi,t
exp
(
d lnλin|s,t+1 + d ln ςsn,t+1

)
Ln,t (B.45)

These N2(S+ 1) +N(S+ 1) +N(S+ 1) +N equations of (B.41)-(B.45) characterize the transition
of the economy in terms of (d lnλni|s,t+1, d ln ςsi,t+1, d lnLsi,t+1, d lnVi,t+1).

Market clearing conditions. Change in production solves N × S market clearing conditions:

d lnXs
i,t+1 =

∑
s′∈K\0

βs′s
∑
n∈N

πs
′
ni,tX

s′
n,t

Xs
i,t

exp
(

d lnπs
′

ni,t+1 + d lnXs′

n,t+1

)
+
∑
k∈K

Ek
si,t

Xs
i,t

exp
(
d lnEk

si,t+1

) (B.46)

Labor market clearing condition is given by N × S +N equations:

d lnwsi,t+1 + d lnLsi,t+1 =
∑
n∈N

πsni,tX
s
n,t∑

` π
s
`i,tX

s
`,t

exp
(
d lnπsni,t+1 + d lnXs

n,t+1

)
(B.47)

d lnw0
i,t+1 + d lnL0

i,t+1 = d ln p0
i,t+1 + d lnHi,t+1 (B.48)

And market clearing condition for residential stocks provides N equations:

d ln p0
i,t+1 + d lnHi,t+1 =

∑
k∈K

Ek
0i,t

p0
i,tHi,t

exp
(
d lnEk

0i,t+1

)
(B.49)
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TogetherN×S+N+N equations are su�cient to determine the transition of (d lnwsi,t+1, d ln p0
i,t+1).

Update vectors. We update (d lnwsi,t+1, d lnLsi,t+1, d ln p0
i,t+1) until their convergence.

B.3 Steady State Equilibrium

In steady-state equilibrium, the exogenous time-variant factors are constant: (D, τ , A,B) and the
economy is characterized by the steady-state level of basic equilibrium vectors/matrix: (p, w, L)
and auxiliary equilibrium vectors and matrices (ψ, π, X, H , V ). Once economy reaches in the
steady state, the aggregate variables are unchanged in the following periods but there is mobility
of workers and goods.

Income and Price. Disposable income is uniquely determined by (w, L) such that W = FW(w,L).
FW is continuous and it shows

∂ lnW s
i

∂ lnwki
= I[s=k] −

1− χ
χ

µi − 1

µi
ysi , with ysi =

wsiL
s
i∑

k∈K w
s
iL

s
i

(B.50)

Income is decreasing in other sector’s wage. The small 1 − χ in development of land assures that
the worker’s income is increasing in wage.

Consider prices in steady state equilibrium. For sector 0, zero pro�t condition pins down p0

givenw0. The price p0
i is strictly increasing in w0

i . For other sectors s ∈ K\0, zero pro�t conditions
and labor market clearing condition give the system of equations that characterize p conditional on
(w,L). We have

(psi )
−κs = Γ−κss

∑
n

(τ sin)−κs(Zs
n)κs(wsi )

−βsκs
∏

s′∈K\0

(ps
′

n )
−βss′κs (B.51)

and ∣∣∣∣ d ln psi
d ln ps′n

∣∣∣∣ = βss′π
s
in < 1

for any combination of (i, s) and (n, s′). (B.51) pins down unique price matrix p conditional on w

and productivity Z . Productivity Zs
n is a �xed point of:

Zs
i = Asi

(∑
n

LsinZ
s
n

)ρ (
Lsi

)γs
(B.52)

Taking its logarithm,
lnZs

i = lnAsi + ρ ln
∑
n

LsinZn + γs lnLsi (B.53)

For any i, n ∈ N , we have:

∑
n

∣∣∣∣∂ lnZs
i

∂ lnZs
n

∣∣∣∣ =
∑
n

∣∣∣∣ρ · LsinZ
s
n∑

` L
s
i`Z

s
`

∣∣∣∣ < 1 (B.54)
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if ρ < 1. Therefore, price of tradables is uniquely determined by (w,L) such that p = Fp(w,L) by
continuous mapping Fp.

Consider the demand system. GivenFp(w,L) and p0, the aggregate price index {Pki }k∈Ki∈N solves
the N × (S + 1) equations:∑

s∈K

ασ−1
s (psi/Pki )1−σ(W k

i /Pki )θs−1 = 1 ∀ i ∈ N , k ∈ K (B.55)

When the sign of θs−σ is same for any s ∈ K, this allows us to characterize unique set of aggregate
price {Pki }k∈Ki∈N by solving this equation. Accordingly, we obtain the expenditure share matrix ψ.
The aggregate price index Pki is homogeneous of degree one in (p, w), and it is increasing in any
sectoral price changes and income. Particularly, price index shows

∂ lnPki
∂ ln psi

> 0,
∂ lnPki
∂ lnW k

i

> 0, ∀ k, s ∈ K (B.56)

and expenditure share shows

dψps =
∂ lnψs|ik
∂ ln psi

= 1− σ > 0, dψws =
∂ lnψs|ik
∂ lnW ik

= θs− 1 > 0,
∂ lnψs|ik

∂ lnPki
= σ− θs < 0 (B.57)

for any k and s. Real income is de�ned byWs
i = W s

i /Psi and

∂ lnPki
∂ lnWk

i

=
∑
s∈K

ψs|ik
1− σ

(θs − 1),
∂ lnψs|ik

∂ lnWk
i

= θs − 1 > 0 (B.58)

Combining the characterization of population movement, λni|s(w,L), and industry choice ςsi (w,L),
de�ne:

Esni(w,L) = λni|s(w,L)× ςsi (w,L) (B.59)

and labor supply is:

Lsi =
∑
n∈N

Esin(w,L)

[∑
k

Lkn

]
≡ LF si (w,L), ∀i ∈ N , ∀s ∈ K (B.60)

where LF si (·, ·) is continuous mapping. The equilibrium labor supply L solves this �xed point
equation given wage w. For any 0 < w <∞ and 0 ≤ L ≤ L̄, de�ne:

EM(w) = sup Esni(w,L) < 1, LFM = sup EM(w)L̄ (B.61)

Using them, de�ne compact and convex subset:

ΣL ≡
{
l ∈ R|N |×|K|+ : 0 ≤ lsi ≤ LFM, ∀ i ∈ N , s ∈ K

}
⊂ ∆|N |×|K|(R+) (B.62)
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Therefore, there exists solution L to (B.60) on ΣL given w. Then, refer LS(w) to a continuous
function for labor supply given w, and the su�cient condition for unique L is:

sup

∣∣∣∣∣Esii(w,L) +
∑
n∈N

dEsin(w,L) · ϑin|s(w,L)

∣∣∣∣∣ < 1, ∀i ∈ N , s ∈ K (B.63)

where notations are

dEsin(w,L) =
d ln Esin(w,L)

d lnLsi
, ϑin|s(w,L) = Lsin/L

s
i

This condition argues that labor mobility across space is large enough not to generating the degener-
ated equilibrium, and the gains from agglomeration is small enough not to dominate the congestion
forces that arise from immobile factor price or lower wage (i.e., excess supply of labor). When this
is hold for a given w, we can construct the unique labor supply function LS(·) : RN×(S+1)

++ →
RN×(S+1)

++ .

Next, consider the property of labor supply function. Taking any sequence wm → w,LS(wm)→
LS(w). The supply function is bounded above by construction. Since the total population is �xed,
L̄, the supply function must satisfy LS(w) ≤ L̄ for any w. In the steady state equilibrium,

(
1− Esii

)∂Lsi
∂wj`

=
∑

(n,k)6=(i,s)

Esin

(
Lkn
Esin

∂Esin
∂wj`

+
∂Lkn
∂wj`

)
(B.64)

for any combination of (i, s) and (`, j). When∣∣∣∣∣∣
∑

(n,k)6=(i,s)

Esin
∂Lkn
∂wsi

∣∣∣∣∣∣ ≥ max
(`,s′)6=(i,s)

∣∣∣∣∣∣
∑

(n,k)6=(i,s)

Esin
∂Lkn
∂ws

′
`

∣∣∣∣∣∣ (B.65)

for any i and s, {
∇wLS is(w)

}
(i,s)

>
{
∇wLS is(w)

}
(`,s′)6=(i,s)

(B.66)

(B.65) is intuitive. The increase in wage wsi attracts more worker from other local labor market
(n, k) 6= (i, s) with higher probability Esin, and this dominates the e�ect of other local market e�ect
of increase in ws′` .

Market clearing condition. Now, consider labor demand function: LD(·) : RN×(S+1)
++ → RN×(S+1)

++ .
The market clearing conditions for goods lead to total value of production (Xs

i ) and then labor mar-
ket clearing condition leads to the labor demand function. Denote the matrix of variables:

X =
{
Xs
i

}
, π ≡

{
βs′sπ

s′

ni(w,L)
}
, E ≡

{∑
k

ψks|iW
k
i L

k
i

}
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The goods market clearing condition is represented by

π̃ · vec(X) = vec(E) with π̃ ≡ I− π (B.67)

The elements in the diagonal of π̃ are strictly positive, and let π̃d denote matrix of the diagonal
elements. De�ne:

π̃−1
d > 0, T ≡ π̃π̃−1

d − I, e ≡ (I−T) · vec
(
E
)
> 0 (B.68)

Then, the spectral radius of |T| is less than one when
∑

s′ βs′s < 1, and followings are satis�ed:∑
n6=i

|T|in ≤ 1, ρ(T2) = ρ(|T|2) < 1,

π̃−1vec(E) = π̃−1
d (I + T)−1vec(E) = π̃−1

d (I + T)−1(I−T)−1e,

(I + T)−1(I−T)−1 = (I−T2)−1 =
∞∑
j=0

T2j ≥ I,

(B.69)

where ρ(·) is spectral radius of matrix. Since there exists some positive number π∗ such that π−1
d ≥

π∗I, we have
π̃−1 · vec(E) ≥ π−1

d · e > 0. (B.70)

Therefore, there is unique X > 0 given (w,L): X = FX(w,L).

Letting

Zsin = (τ sin)−κs(Zs
n)κs = (τ sin)−κs

[
Asi (L

s
i )
γs

(∑
n

EsinLnZs
n

)ρ]κs
(B.71)

For s ∈ K\0 and i ∈ N ,

Lsi =
βs
wsi

∑
n∈N

Zsni
(

(wsi )−βs∏
s′∈K\0(ps

′
i (w,L))βss′

)κs
∑

`∈N Zsn`

(
(ws` )−βs∏

s′∈K\0(ps
′
` (w,L))βss′

)κs{FX(w,L)
}
ns

(B.72)

and for development of residential stocks,

L0
i =

χ

w0
i

∑
s∈K

ψ0|isW
s
i L

s
i (B.73)

Denote J (·) be the mapping of (w,L) such that L = J (w,L) satisfying the above equations of
the labor market clearing condition.

From above discussion, for any w > 0 and L > 0, X = FX(w,L) > 0 and there exists positive
number x > 0 such that Xs

i ≥ x for any i and s. Further, for any L > 0, de�ne z > 0 and z < ∞
such that Z̃s

ni ∈ [z, z] for any i, n and s. Solving for tradable prices can de�ne p > 0 and p < ∞
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such that tradable prices are within the range [p, p]. In addition, ψ can be constructed as in the same
manner. Using them, de�ne:

Ls ≡ βs
w

∑
n

zw−βsκsp−(1−βs)κs

zw−βsκsp−(1−βs)κs
x, Ls ≡ max

{
L̄,

βs
w

∑
n

zw−βsκsp−(1−βs)κs

zw−βsκsp−(1−βs)κs
x

}
, (B.74)

where
w ≡ min

i∈N

(
min
s∈K

wis

)
, w ≡ max

i∈N

(
max
s∈K

wis

)
Further, de�ne

L0 ≡ χ

w

w

1− χψ
∑
s∈K\0

ψLs, L0 ≡ L̄ (B.75)

for sector 0. Together, de�ne the simplex:

ΣD ≡
{
l ∈ RN×(S+1)

++ : Ls ≤ lsi ≤ L
s
, ∀i ∈ N , s ∈ K

}
⊂ ∆|N |×|K|(R++) (B.76)

This is compact and convex subset. Since J (·) is continuous for any sequence of L given w, L is
characterized as a �xed point of the labor market clearing condition such that L = J (L,w). Given
that J is continuous for w and parameters, and class C1 for L, the solution L is also continuous in
w and parameters. The condition for unique labor demand function is given by:

max
s∈K\0

max
(i,n)∈N×N

∣∣∣∣∂ lnXs
n

∂ lnLsi

∣∣∣∣ < 1 (B.77)

The function LD(·) exhibits downward slope for the local wage. First,

L0
i =

1

w0
i

χ

1− χψ0
0|iµi

∑
s∈K\0

ψs0|iµiw
s
iL

s
i (B.78)

that shows downward slope in local wage w0
i and non-decreasing in {wsi }s 6=0. Other sectors show:

∂ lnLsi
∂ lnws′n

= −I{n,s′}={i,s} +
∑
n∈N

Xs
ni∑

`∈N X̃
s
`i

∂ lnXs
ni

∂ lnws′n
(B.79)

where Xs
ni is value of export from location i to n in sector s. The last condition for the unique steady

state is:
Υ
{n,k}
{i,s} =

∑
n∈N

Xs
ni∑

`∈N Xs
`i

∂ lnXs
ni

∂ lnwkn
≥ 0 (B.80)

This implies the marginal wage change in local market (n, k) 6= (i, s) induces the export of local
market (i, s) to other markets on average, and it is because of the competitive advantage of (i, s).
Since LD(·) is homogeneous of degree zero in w, the function exhibits gross substitutability under
this condition.
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Excess demand. De�ne the excess demand function for labor market such thatLZ(w) ≡ LD(w)−
LS(w). For this function, consider the following properties.

(i) LZ(·) is continuous and bounded below : continuity follows by the augment that both LD(·) and
LS(·) are continuous as in the above discussion. Since LS(w) < L̄ for any w by construction,
LZ(w) is bounded below for w ∈ R|N |×|K|++ .

(ii) LZ(·) satis�es Walras’ law : for any w ∈ R|N |×|K|++ , market clearing condition implies:

I>|N|(w ◦LZ(w))I|K| =
∑
i

∑
s∈K\0

wsiL
s
i −

∑
i

∑
s∈K\0

βs
∑
n

πsni

∑
k∈K\0

βksX
k
n + Es

n


+
∑
i

w0
iL

0
i − χ

∑
i

E0
i = 0

(B.81)

(iii) LZ(·) satis�es the boundary condition such that: max {LZ(wm)} → ∞ for any sequence
wm ⊂ R|N |×|K|++ with wm → w ∈ R|N |×|K|+ \(R|N |×|K|++ ∪ {0}) : for labor supply, LS(w) ≥ 0 for
every i and s, and {LS(w)}{i,s} > 0 for at least one element. Therefore, it is su�cient to show that
{LD(wm)}{i,s} → ∞ as m → ∞ for such {i, s}. Suppose that {LD(wm)}m{i,s} is bounded above.
Since {LD(wm)}m{i,s} ≥ 0 for all m, the sequence {LD(wm)}m{i,s} has convergent subsequence and
we let {LD(wm)}m{i,s} be the subsequence and Lsi be its limit.

(iv) LZ(w) is homogeneous of degree zero in w : by construction, LS(w) is homogeneous of degree
zero in w. To verify this, W and p are homogeneous of degree one in w, and it implies aggregate
price index is homogeneous of degree zero in w. Therefore, E(·) is homogeous of degree zero in
w, and therefore labor supply is homogeneous of degree zero in w. For demand of labor, LD(w)

is also homogeneous of degree zero in w. It follows immediately from labor market clearing condi-
tions. They are homogeneous of degree zero in w, and therefore solution for them LD(w) is also
homogeneous of degree zero in w.

(v) LZ(·) exhibits gross substitutability : the gross substitute property follows under the assump-
tions discussed above.

In summary, steady state equilibrium uniquely exists under the su�cient conditions discussed
in (B.65), (B.77) and (B.80).

C Appendix: Spatial dynamics of the economy

This section presents TFP measure and its change (subsection C.1), welfare (subsection C.2), wage
changes (subsection C.3) and change in housing price (subsection C.4) in equilibrium. Given them,
subsection C.5 considers measure of inequality in a local economy and subsection C.6 discusses
measure of social mobility of workers and its changes.
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C.1 Local Measured TFP

The measured total factor productivity (TFP) in location i and sector s at time t is given by:

ln δsi,t = − 1

κs
ln πsii,t + lnZs

i,t (C.1)

and the overall productivity is

lnZs
i,t = lnAsi,t + ρ ln

∑
n

Lsin,tZ
s
n,t−1 + γs lnLsi,t (C.2)

The change of local TFP to exogenous productivity shock is:

d ln δsi,t
d lnAsi,t

= 1− 1

κs

d lnπsii,t
d lnAsi,t

+ ρ
∑
n

Lsin,tZ
s
n,t−1∑

` L
s
i`,tZ

s
`,t−1

d lnLsin,t
d lnAsi,t

+ γs
d lnLsi,t
d lnAsi,t

(C.3)

Letting

z̃sin,t =
Lsin,tZ

s
n,t−1∑

` L
s
i`,tZ

s
`,t−1

, l̃sin,t =
Lsin,t∑
` L

s
i`,t

,

the change of local TFP is

d ln δsi,t
d lnAsi,t

= 1− 1

κs

d lnπsii,t
d lnAsi,t

+
∑
n

(
ρz̃sin,t + γsl̃

s
in,t

)(d lnλin|s,t
d lnAsi,t

+
d ln ςsn,t
d lnAsi,t

)
(C.4)

(C.4) gives the spatial variation of TFP growth along with the technological shock. The second term
translates the comparative advantage in trade and its gain is di�erent across locations. The third
term captures the migration e�ects and persistency of workers’ choice of industry. These e�ects
change the TFP gains or losses through economies of scale and spillover through workers’ mobility.
Further, (C.2) can be expressed by

ln δsi,t +
1

κs
ln πsii,t = lnAsi,t + ρ ln

∑
n

Lsin,t

((
πsnn,t−1

)1/κs
δsn,t−1

)
+ γs lnLsi,t (C.5)

In the steady state, this implies:

ln δsi +
1

κs
lnπsii = lnAsi + (γs + ρ) lnLsi + ρ∆s

i + ρ
∑
n

Lsin
Lsi

(
ln δsn +

1

κs
lnπsnn

)
(C.6)

where ∆s
i > 0 is appropriate positive value. Letting

δ̃s =
{

ln δsi +
1

κs
ln πsii

}
, Ãs =

{
lnAsi + (γs + ρ) lnLsi + ρ∆s

i

}
, Ls =

{
l̃sin

}
,
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denote N × 1 vectors and N ×N matrix respectively, the equation leads to:

δ̃s =
(
I− ρLs

)−1

Ãs (C.7)

If the spectral radius of ρLs is less than 1, the local TFP in the steady state is given by:

ln δsi = − 1

κs
lnπsii +

∑
n

{
∞∑
m=0

(ρLs)
m

}
in

[
lnAsn + (γs + ρ) lnLsn + ρ∆s

n

]
(C.8)

where {
∑∞

m=0(ρLs)
m}in is i − n th element of the matrix. The level of local TFP is decomposed

into import penetration and spillover in productivity through labor mobility. The latter e�ect is
governed by the matrix:

K =
∞∑
m=0

(ρLs)
m =

∞∑
m=0

ρm
{
λin|sς

s
nL

s
n

}m
(C.9)

This is given in Proposition 2 in the main text.

C.2 Welfare Implications

Location choice probability satis�es:

λii|s,t =

(
Bs
i,tWs

i,t

Dii,tŪ s
i,t

)ε

=

Bs
i,tζ

1/φ
s Ws

i,t

(
Lsi,t−1

)η/φ
Dii,tVi,t

(
ςsi,t

)1/φ


ε

(C.10)

Using the expenditure share on tradable goods, this becomes:

λii|s,t =

ζ1/φ
s Bs

i,t

(
αsW

s
i,t

)(1−σ)/(θs−σ)(
Lsi,t−1

)η/φ(
ψss|i,t

)1/(θs−σ)

(
psi,t

)(1−σ)/(θs−σ)

Vi,t

(
ςsi,t

)1/φ


ε

(C.11)

In the followings, Bs
i,t is constant to focus on the endogenous mechanisms. Price of tradable �nal

goods satisfy

ln psi,t = ln

[
Γs(w

s
i,t)

βs(πsii,t)
1/κs

1

Zs
i,t

]
+
∑
j

βsj ln pji,t (C.12)

Letting

p̃i,t =
{

ln psi,t

}
, B̃ =

{
βsk

}
, Ci,t =

{
ln Γs(w

s
i,t)

βs(πsii,t)
1/κs

1

Zs
i,t

}
(C.13)

be corresponding vector and matrix. Then, price of �nal goods is:

p̃i,t =
(
I− B̃

)−1

Ci,t (C.14)
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Letting β̃sk be elements of matrix
(
I− B̃

)−1

, price of tradable goods are:

psi,t =
∏
j

[
Γj(w

j
i,t)

βj

Zj
i,t

(πjii,t)
1/κj

]β̃sj
(C.15)

Plugging this into above and manipulating it, we derive:

Vi,t = γ̄sλ
−1/ε
ii|s,t

(∏
j

(πjii,t)
−β̃sj/κj

)θ̃s
∏

j

(
(wji,t)

βj

Zj
i,t

)−β̃sjθ̃s

W s
i,t
θ̃sψss|i,t

θ̃s/(1−σ)ςsi,t
−1/φLsi,t−1

η/φ

(C.16)
where θ̃s = (1−σ)/(θs−σ) and γ̄s is constant. Therefore, welfare of generation t born in i relative
to that of generation t− 1 born in i is:

d lnVi,t =
1

S

∑
s∈K\0

[
θ̃s

(
d lnW s

i,t −
∑
j

β̃sj

(
βsd ln

wji,t

Zj
i,t

+
d lnπjii,t
κj

))
−

d lnλii|s,t
ε

+θ̃s
d lnψss|i,t

1− σ
−

d ln ςsi,t
φ

+
η

φ
d lnLsi,t−1

] (C.17)

Using local TFP change (C.4), it can be expressed by:

d lnVi,t ∝
∑
s∈K\0

[
θ̃sβs

∑
j

β̃sj
(
d ln δji,t − d lnwji,t

)
− θ̃s

(
(1− βs)

∑
j

β̃sj
d lnπjii,t
κj

)

−
d lnλii|s,t

ε
+ θ̃s

d ln ess|i,t
1− σ

−
d ln ςsi,t
φ

+
η

φ
d lnLsi,t−1

] (C.18)

where ess|i,t = ψss|i,tw
s
i,t. This is given in Proposition 3 in text. Alternatively, using expenditure on

housing (sector 0), the welfare measure becomes

Vi,t = γ̄0λ
−1/ε
ii|s,t

(
W s
i,t

p0
i,t

)θ̃0
ψs0|i,t

θ̃0/(1−σ)ςsi,t
−1/φLsi,t−1

η/φ (C.19)

for any s ∈ K. Therefore,

d lnVi,t = θ̃0

(
d lnW s

i,t − d ln p0
i,t

)
−

d lnλii|s,t
ε

+ θ̃0

d lnψs0|i,t
1− σ

−
d ln ςsi,t
φ

+
η

φ
d lnLsi,t−1 (C.20)

Consider welfare loss of migration barrier. Letting Din,t = 1 for all i and n. Therefore, bilateral
migration cost is negligible for any location pairs. Then, the average utility conditional on the sector
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choice is equalized across locations and location choice probabilities depend on only the destination:

˜̄U s

n,t =

[∑
i

(
W̃s

i,t

)ε]1/ε

= ˜̄U s

t , λin|s,t =
(
W̃s

i,t/
˜̄U s

t

)ε
= λ̃i|s,t (C.21)

and

ς̃sn,t =
ζs(L

s
n,t−1)η( ˜̄U s

t)
φ

∑
j ζj(L

j
n,t−1)

η
( ˜̄U j

t)
φ

=

ζs(Lsn,t−1)η/φW̃s
n,t(λ̃

s
n,t)
−1/ε

Ṽn,t

φ (C.22)

Comparing welfare for generation t when eliminating migration barrier,

Ṽi,t
Vi,t

=

(
λii|s,t
λsi,t

)−1/ε
(
W̃s

i,t

Ws
i,t

)(
ς̃si,t
ςsi,t

)−1/φ

(C.23)

When migration cost is high enough, removing the cost leads to high expected utility, Ū s
i,t <

˜̄U s

i,t.
Then, ς̃si,t > ςsi,t.

If taking φ → ∞, Ṽi,t/Vi,t is greater than the baseline where φ < ∞. Therefore, gains from
eliminating migration costs is large when φ→∞. Intuitively, when φ→∞, workers are homoge-
neous ex ante and it allows workers to choose the sector and location which returns highest return.
Such less speci�city of workers ex ante leads to larger welfare gains compared to φ <∞.

C.3 Local labor market

This subsection considers the income inequality in local labor market and wage changes given in
Proposition 4. To simplify the discussion, suppose that µit = 1 (i.e., absentee land ownership). The
wage income share of each sector in local labor market is

ysi,t =
wsi,tL

s
i,t∑

k w
k
i,tL

k
i,t

= f si,t
Li,t

W̃i,t

wsi,t = f si,t
wsi,t
w̄i,t

d ln ysi,t = d lnY s
i,t −

∑
k

yki,t−1d lnY k
i,t −

1

2
V ary(d lnY k

i,t)
(C.24)

The local labor supply shows changes over time:

d lnLsi,t = εd lnWs
i,t + d lnHs

i,t (C.25)

where Hs
i,t stands for labor market access:

Hs
i,t =

∑
n∈N

D−εin,t

((
ζs(L

s
n,t−1)η

ςsn,t

)−1/φ

Vn,t

)−ε
ςsn,tLn,t−1 (C.26)
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The generalized CES price index implies:

(θk − σ)d lnWs
i,t = d lnψsk|i,t − (1− σ)d ln pki,t + (1− σ)d lnW s

i,t (C.27)

for any s and k. Letting

p̄i,t =
∏
k 6=0

(pki,t)
Ψki,t−1 , θ̄i,t−1 =

∑
k 6=0

Ψk
i,t−1θk, ψ̄si,t =

∏
k 6=0

(
ψsk|i,t

)Ψki,t−1

,

with

Ψs
i,t =

∑
k ψ

k
s|itW

k
i,tL

k
i,t∑

j 6=0

∑
k ψ

k
j|i,tW

k
i,tL

k
i,t

. (C.28)

Ψs
i,t is the aggregate expenditure share on sector s among total expenditure on tradable goods. Then,

p̄i,t is Törnqvist price index using pre-period expenditure share, and θ̄i,t−1 is weighted average of
Engel slope parameter. ψ̄si,t is the information about how much workers of sector s’s consumption
pattern is distorted. To see this,

ψ̄si,t ≤
∑
j

Ψj
i,t−1ψ

s
j|i,t

where the inequality holds with equality whenψsj|i,t is equalized across all j ∈ K\0. By construction,

d ln p̄i,t =
∑
k

Ψk
i,t−1d ln pki,t,

d ln ψ̄si,t =
∑
k

Ψk
i,t−1d lnψsk|i,t

(C.29)

Then, using (C.25) and (C.27), change in employment is:

d lnLsi,t = ε
1− σ

θ̄i,t−1 − σ
(
d lnW s

i,t − d ln p̄i,t
)

+
ε

θ̄i,t−1 − σ
d ln ψ̄si,t + d lnHs

i,t (C.30)

for all s ∈ K. On the right-hand side, the �rst term is real income growth, the second term is change
in consumption patterns and the last term is change in labor market access. Further, using (C.25),
change in wage can be expressed by

d lnwsi,t = −d lnµi,t + d ln p̄i,t −
d ln ψ̄si,t
1− σ

+
θ̄i,t−1 − σ

1− σ
d lnWs

i,t (C.31)

The labor mobility implies that

Ws
i,t =

(
λii|s,t
λni|s,t

)1/ε

Ws
n,tD

−1
in,t
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Manipulating the probability of location choice, change in real income is approximated by:

d lnWs
i,t =

1

ε
d lnλii|s,t +

∑
n

λni|s,t−1

(
d lnWs

n,t − d lnDni,t

)
(C.32)

Let

Λs =
{
λni|s,t−1

}
n∈N ,i∈N

, Ws =
{

d lnWs
i,t

}
i∈N

Cs =
{1

ε
d lnλii|s,t −

∑
n

λni|s,t−1d lnDni,t

}
i∈N

Λs is matrix of migration patterns of generation t− 1, Ws is a vector of change in real income for
workers in sector s, andCs is a vector of change in other variables. Then, the change in real income
is represented by:

Ws =
(
I−Λ>s

)−1

Cs (C.33)

and Let λ̃in|s,t−1 refer to a element of the matrix
(
I−Λ>s

)−1

, change in real income is:

d lnWs
i,t =

∑
n

λ̃in|s,t−1

(
1

ε
d lnλnn|s,t −

∑
`

λ`n|s,t−1d lnD`n,t

)
(C.34)

If d lnDni,t = 0, change in real income is

Ws =
1

ε

(
I−Λ>s

)−1

λs (C.35)

where λs =
{

d lnλii|s,t

}
is a vector of changes in non-migration probabilities. In addition, (C.15)

implies that change of price is:

d ln psi,t =
∑
j

β̃sj

(
βjd lnwji,t +

1

κj
d lnπjii,t − d lnZj

i,t

)
=
∑
j

β̃sj
(
βjd lnwji,t − d ln δji,t

) (C.36)

for s ∈ K\0. Therefore, we have:

d ln p̄i,t =
∑
s

Ψs
i,t−1

[∑
j

β̃sj

(
βjd lnwji,t − d ln δji,t

)]
(C.37)
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Combining (C.31), (C.35) and (C.37) yields

d lnwsi,t =
∑
j

βjΨ̃
j
i,t−1d lnwji,t −

∑
j

Ψ̃j
i,t−1d ln δji,t −

d ln ψ̄si,t
1− σ

+
1

ε

θ̄i,t−1 − σ
1− σ

∑
n

λ̃in|s,t−1d lnλnn|s,t

(C.38)

where Ψ̃j
i,t−1 =

∑
s Ψs

i,t−1β̃sj . Let

wi =
{

d lnwsi,t

}
s
, Ψ̃i =

{
βjΨ̃

j
i,t−1

}
j
,

be S × 1 vector of change in wages and S × S matrix. We also de�ne

P̃i ≡ −
∑
j

Ψ̃j
i,t−1d ln δji,t,

Xi ≡

{
−

d ln ψ̄si,t
1− σ

+
1

ε

θ̄i,t−1 − σ
1− σ

∑
n

λ̃in|s,t−1d lnλnn|s,t

}
s

P̃i is scalar andXi is S × 1 vector. Using them, (C.38) is represented by:

wi = Ψ̃iwi + P̃i +Xi (C.39)

Let %sji denote the element of inverse matrix
(
I− Ψ̃i

)−1

. Then, change of wage is:

d lnwsi,t =
∑
j

%sji

(
−

d ln ψ̄ji,t
1− σ

+
1

ε

θ̄i,t−1 − σ
1− σ

∑
n

λ̃in|j,t−1d lnλnn|j,t −
∑
k

Ψ̃k
i,t−1d ln δki,t

)
(C.40)

This is hold for any tradables, and this expression is given in Proposition 4.

We see the special case to consider how employment share across di�erent sectors in the local
labor market is determined in equilibrium. Consider the economy without migration costs, Din,t =

1 for all i and n. We also let ζs = ζ for all s. Then, employment share in the local labor market is:

f si,t ≡
Lsi,t∑
j L

j
i,t

=
λsi,t∑
j λ

j
i,t

×
∑

j λ
j
i,t∑

j λ
j
i,tL

j
t

× Lst (C.41)

Using (C.22),
λsi,t∑
j λ

j
i,t

=
(Lsi,t−1)εη/φ(Ws

i,t)
ε(ςsi,t)

−ε/φ∑
j (Lji,t−1)

εη/φ
(Wj

i,t)
ε
(ςji,t)

−ε/φ (C.42)
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Therefore, relative labor share between sector s and j is:

f si,t

f ji,t
=
Lst
Ljt

(
Ws

i,t

Wj
i,t

)ε(
ςsi,t

ςji,t

)−ε/φ(
f si,t−1

f ji,t−1

)εη/φ

(C.43)

When φ → ∞, workers are homogeneous ex-ante location choice and relative labor share is a
combination of macro-level employment growth (Lst/L

j
t ) and real income di�erence, (Ws

i,t/W
j
i,t).

The parameter ε controls the "curvature" of labor supply. When φ < ∞, the relative propensity
to choose the sector (ςsi,t/ς

j
i,t) is negatively associated with the labor ratio. Intuitively, a higher

propensity to sort into the sector implies a higher average utility of the sector. In turn, conditional
on the real income di�erence, a higher average utility leads to a small probability of staying in the
location. The last term is related to persistence in the labor market. Larger externalities in the labor
market lead to the persistence of the local labor market.

C.4 Price Dynamics of Immobile Structure

This subsection derives �rst-order change of prices for the immobile structure. Assume that µit = 1.
De�ne the share of demand from workers of sector s in housing demand:

ξsi,t ≡
ψs0|i,tw

s
i,tL

s
i,t

p0
i,tHi,t

= χψs0|i,t
ysi,t
y0
i,t

(C.44)

The �rst-order change of demand for housing in location i:

d ln p0
i,t + d lnHi,t =

∑
s∈K

ξsi,t−1

(
d lnYi,t + d ln ysi,t + d lnψs0|i,t

)
=
∑
s∈K

ξsi,t−1

(
d ln ri,t − d ln y0

i,t + d ln ysi,t + d lnψs0|i,t

) (C.45)

where d lnYi,t is given by the zero pro�t condition for developers. An increase in the stock of
structure over time is given by:

d lnHi,t = χd lnL0
i,t − (1− χ)

t−1∑
ω=1

(−χ)ωd lnL0
i,t−ω + (1− χ)t ln(1− νi) (C.46)

Together, price change is

d ln p0
i,t = −χd lnL0

i,t + d ln ri,t +
∑
s∈K

ξsi,t−1

(
d ln ysi,t − d ln y0

i,t

)
+
∑
s∈K

ξsi,t−1d lnψs0|i,t (C.47)

For the last term on the right-hand side,(
θ0 − θ̄i,t−1

)
d lnWs

i,t =
(

d lnψs0|i,t − d ln ψ̄si,t

)
− (1− σ)

(
d ln p0

i,t − d ln p̄i,t

)
(C.48)
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Letting

p̃0
t =

{
p0
i,t

p̄i,t

}
, r̃t =

{
ri,t
p̄i,t

}
,

be a vector of prices and land rents normalized by average prices, the �rst-order change of price for
building structure is:

σd ln p̃0 = −χd lnL0 + d ln r̃ +
∑
s∈K

ξt−1(d ln ysi,t − d ln y0
i,t)

+
∑
s∈K

ξt−1(θ0 − θ̄t−1)d ln Ws +
∑
s∈K

ξt−1d ln ψ̄
(C.49)

On the right-hand side, the �rst term is an increase of supply controlled by the share of labor in
the production of structure, the second term is a change in land rent, the third term is a change
in income distribution with weighting demand share, and the last two terms together de�ne the
change in expenditure share.

C.5 Dynamics of Local Inequality

This part corresponds to Section 4.3 in main text.
The income distribution in location i is discrete and it is determined by the employment distri-

bution across sectors. The average and variance of income in location i in period t is given by:

W̄i,t ≡
∑
s∈K

f si,tW
s
i,t = µi,tw̄i,t and Vars(W

s
i,t) =

∑
s∈K

f si,t(W
s
i,t)

2 − W̄ 2
i,t (C.50)

Using them, the coe�cient of variation of income in location i is given by:

CVi,t =

√
Vars(W s

i,t)

W̄i,t

=

(
1

W̄ 2
i,t

∑
s∈K

Lsi,tW
s
i,t

Li,t
W s
i,t − 1

)1/2

=

[∑
s∈K

ysi,t

(
ysi,t − f si,t
f si,t

)]1/2

. (C.51)

The coe�cient of variation in location i is characterized by convex combination of wage di�erence
using weight of income share. Further, manipulating this,

CV2
i,t + 1 =

∑
s∈K

ysi,t
wsi,t
w̄i,t

=
∑
s∈K

f si,t

(
wsi,t
w̄i,t

)2

(C.52)

This is the monotonic transformation of the coe�cient of variation, and therefore the right-hand-
side can be used as a measure of intra-location income inequality. Let

Ii,t =
∑
s∈K

ysi,t
wsi,t
w̄i,t

=
∑
s∈K

ysi,t
ysi,t
f si,t

=
∑
s∈K

f si,t

(
ysi,t
f si,t

)2

Large value of this measure is corresponding to larger income inequality in the local labor market.
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This is the convex combination of relative wage (wsi,t/w̄i,t) or ratio of income share and labor share
(ysi,t/f si,t). The change of this measure from period t− 1 to period t is given by:

d ln Ii,t =
∑
s∈K

f si,t−1(ysi,t−1/f
s
i,t−1)2

Ii,t−1︸ ︷︷ ︸
ιsi,t−1

(
d ln ysi,t + (d ln ysi,t − d ln f si,t)

)

=
∑
s∈K

ιsi,t−1

(
d ln ysi,t +

(
d lnwsi,t − d ln w̄i,t

))
=
∑
s∈K

ιsi,t−1

[
d ln ysi,t +

(
d lnY s

i,t −
∑
k∈K

yki,t−1d lnY k
i,t

)
−

(
d lnLsit −

∑
k∈K

fkit−1d lnLkit

)]
(C.53)

where ιsit−1 is the contribution of sector s in the income inequality in the previous generation. This
captures the trend of income inequality in location i. In the parenthesis, the second term is relative
income growth and the third term is relative employment growth.

The slope of Lorenz curve depends on the relative wage (wsit/w̄it) and it is equal to ysit/f sit, so
that change of (f , y) are su�cient to characterize this. In particular, the di�erence between growth
rate of wage and growth rate of labor across sectors changes the convexity of the Lorenz curve. The
Gini coe�cient for the local labor market for generation t becomes:

Ginii,t ≡
1

2w̄i,t

∑
s∈K

∑
k∈K

f si,tf
k
i,t|wsi,t − wki,t|

∝
∑
s∈K

∑
k∈K

f si,tf
k
i,t

∣∣∣∣∣ysi,tf si,t
−
yki,t
fki,t

∣∣∣∣∣ =
∑
s∈K

∑
k∈K

∣∣ysi,tfki,t − yki,tf sit∣∣ (C.54)

Another index is Theil index. Theil index for local labor market i is de�ned as:

Theili,t ≡
∑
s∈K

f si,t
wsit
w̄i,t

ln

(
wsi,t
w̄i,t

)
=
∑
s∈K

f si,t
ysi,t
f si,t

ln

(
ysi,t
f si,t

)
(C.55)

To sum, the model based inequality measure in the local labor market takes a form:

Ii,t =
∑
s∈K

f si,t ×G
(
ysi,t
f si,t

)
(C.56)

where G(·) is appropriate function for the slope of Lorenz curve. When G(·) is speci�ed such that
G(x) = x2, it is based on the coe�cient of variation. If G(x) = x lnx, it is Theil index.

The following discussion focus on the change of measure (C.53) over time. Incorporating

1− σ
θ0 − σ

∑
s∈K

ωsi,t−1d lnW s
i,t =

1− σ
θ0 − σ

d ln W̄i,t −
1− σ
θ0 − σ

∑
s∈K

ωsi,t−1d ln f sit (C.57)
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and
d lnψ0|is,t

θ0 − σ
=

1− σ
θ0 − σ

d ln p0
i,t +

σ − 1

θ0 − σ
d lnW s

i,t + d lnWs
i,t (C.58)

into (C.19) leads to:∑
s

ωsi,t−1

(
d ln f si,t +

(
d lnwsi,t − d ln w̄i,t

))
=
θ0 − σ
1− σ

[
−d lnVi,t +

∑
s

ωsi,t−1

(
η

φ
d lnLsi,t−1 −

d ln ςsi,t
φ

− 1

ε
d lnλii|s,t + d lnWs

i,t

)] (C.59)

where ωsi,t−1 is appropriate weight such that
∑

s ω
s
i,t−1 = 1. Manipulating this,

1− σ
θ0 − σ

∑
s

ωsi,t−1d ln ysi,t = −d lnVi,t +
∑
s

ωsi,t−1

[
η

φ
d lnLsi,t−1 −

d ln ςsi,t
φ

+
1

ε

(∑
n

λ̃in|s,t−1d lnλnn|s,t − d lnλii|s,t

)] (C.60)

For variable x, de�ne the following notation for its normalization by weighted geometric mean:

x̃si,t ≡
xsi,t∏

s∈K(xsi,t)
ωsi,t−1

(C.61)

Using this notation,

1− σ
θ0 − σ

d ln ỹsi,t = −η
φ

d ln L̃si,t−1 +
1

φ
d ln ς̃si,t +

1

ε
λ̃Nis,t (C.62)

where
λNis,t = λii|s,t

∏
n

λ
λ̃in|s,t−1

nn|s,t (C.63)

Therefore,

1− σ
θ0 − σ

(
d lnwsit − d ln w̄it

)
= −η

φ
d ln L̃t−1 +

1

φ
d ln ς̃t +

1

ε
d ln λ̃N

t −
1

θ0 − σ
d ln ψ̃0

t

− 1− σ
θ0 − σ

∑
s∈K

ysit−1d ln f sit

(C.64)

Manipulating this,

d ln ysit = −η
φ

θ0 − σ
1− σ

d ln L̃t−1 +
1

φ

θ0 − σ
1− σ

d ln ς̃t +
1

ε

θ0 − σ
1− σ

d ln λ̃N
t −

1

1− σ
d ln ψ̃0

t + d ln f̃t

Summarizing the discussion for the measure of income inequality based on the coe�cient of
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variation, the change of income inequality at the local level over generations is:

d ln Ii,t =
∑
s∈K

ιsi,t−1d lnGs
i,t −

∑
s∈K

(
ysi,t−1 − f si,t−1

)
d lnLsi,t︸ ︷︷ ︸

Composition e�ect

(C.65)

with

d lnGs
i,t = d ln Ỹ s

i,t︸ ︷︷ ︸
Industry

− η

φ

θ0 − σ
1− σ

d ln L̃si,t−1︸ ︷︷ ︸
Persistence

+
1

φ

θ0 − σ
1− σ

d ln ς̃si,t︸ ︷︷ ︸
Sectoral choice

+
1

ε

θ0 − σ
1− σ

d ln λ̃sii,t︸ ︷︷ ︸
Location choice

− 1

1− σ
d ln ψ̃s

0|i,t︸ ︷︷ ︸
Expenditure on housing

(C.66)
where ιsi,t−1 is the contribution of sector s in the income inequality among previous generation
t − 1, and let x̃si,t refers the transformed variables using previous income share such that x̃si,t ≡

xsit∏
s∈K(xsit)

ys
it−1

.

This illustrates how income inequality in the local market is related to spatial structural change.
The composition e�ect is a standard: employment shift from industry with relatively lower wage to
higher wage suppress the inequality. Other than this, relative growth of industry (d ln Ỹt), pre-trend
of employment growth (d ln L̃t−1), change of workers’ sorting pattern in the sectoral choice (d ln ς̃t),
di�erence in no-mobility workers (d ln λ̃N

t ) and di�erence in expenditure share in housing (d ln ψ̃0
t )

shift the income inequality together. First, the industrial agglomeration creates the uneven labor
adjustment process across industries in the �rst and second terms. The relative wage growth in the
sector is positively associated with the sector’s contribution to an expansion of income inequality.
Without heterogeneity in sectoral choice (φ → ∞), these mechanisms of factor speci�city are
absent in the change of income inequality. A small probability of staying in the place is positively
associated with a change in income inequality. When idiosyncratic shocks are more heterogeneous
(ε → 1), its contribution becomes large as workers must face a large gap in wage growth to stay
conditional on industry choice. The last term says that the strong congestion force counteracts the
positive composition e�ects.20 Given that congestion forces are substantial when more substitutes,
this countere�ect is magni�ed by lower 1−σ. So far, this gives the general equilibrium relationship
between the di�erent trends of income inequality in local labor markets along with spatial structural
transformation, factor speci�city, and labor mobility.

C.6 Intergenerational mobility

This subsection is appendix for the discussion about intergenerational income mobility in Section
4.3.

Notation. W o
i,t(ω) is income of individual workerω of generation tworking in location i. W y

i,t+1(ω)

is income of individual of generation t+ 1 (i.e., children) who has origin in location i. In the model,

20We present the dynamics of price for immobile factors in Appendix C.4.
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income distribution in the economy is the probability mass function, as the model derives the dis-
crete �nite number of possible income levels in the economy. Let Yt denote the set of income levels
in the economy and Yi,t denote that in location i. Qt(·) is the probability distribution function for
the income in period t in the whole economy in our model, and Qt+1(·) is that for period t + 1.
They are model based distribution, while we refer toQ∗t (·) andQ∗t+1(·) as those in data, so they are
continuous distribution.

Pi,t(y) denotes the probability mass function for income y in location i at period t andMt+1(y|i→
n) denotes the probability mass function of income level y among people of generation t + 1 who
move from location i to n. They satisfy:∑

y∈Yi,t

Pi,t(y) = 1,
∑
y∈Yt

Mt+1(y|i→ n) = 1 (C.67)

Measure of average upward mobility. De�ne:

Ro
n,t = E[Q∗t (W o

n,t(ω))] =

∫ ∞
0

Pn,t(y)Q∗t (y)dy,

Ry
n,t+1 = E[Q∗t+1(W y

n,t+1(ω))] =
∑
`∈N

∫ ∞
0

Mt+1(y|n→ `)Q∗t+1(y)dy

Then, a measure for the average upward mobility corresponding is the ratio of these two measures:

Mn,t+1 = Ry
n,t+1/Ro

n,t (C.68)

This measure is related to the equilibrium variables in the model. First,

Ro
i,t =

∑
s∈K

f si,t ×Qt(µi,twsi,t) (C.69)

whereQt(µi,twsi,t) is the percentile of workers with income µi,twsi,t in the entire economy. Given the
probability mass function for the income in each location across sectors, Pi,t(y) is corresponding to
the share of employment in di�erent sector.

Next, income of generation t + 1 from location i can yield N × (S + 1) possible incomes in
equilibrium. The proportion of each income level is identical to the choice probability of the industry
and destination for work. Hence, the corresponding measure is:

Ry
i,t+1 =

∑
n∈N

∑
s∈K

λni|s,t+1ς
s
i,t+1 ×Qt+1(µn,t+1w

s
n,t+1) (C.70)

This is the average rank of generation t+ 1 from the origin i. Combining them, the measure (C.68)
becomes:

Mi,t+1 =
∑
s∈K

ςsi,t+1

[∑
n∈N

λni|s,t+1

Qt+1(µn,t+1w
s
n,t+1)∑

k∈K f
k
i,tQt(µi,twki,t)

]
(C.71)
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Using the mass probability function, the rank of income is represented by:

Qki,t ≡ Qt(µi,twki,t) =
∑
n∈N

∑
s∈K

f sn,t · 1Z
(
µn,tw

s
n,t ≤ µi,tw

k
i,t

)Ln,t
L̄

(C.72)

This is the percentile of workers with income µi,twki,t at the national level. Then, the measure (C.71)
is rewritten by:

Mi,t+1 =
∑
s∈K

ςsi,t+1

Qsi,t∑
k∈K f

k
i,tQki,t

Qsi,t+1

Qsi,t

[∑
n∈N

λni|s,t+1

Qsn,t+1

Qsi,t+1

]
(C.73)

This representation is very intuitive for understanding the upward mobility. The �rst term is the job
opportunity in location i for generation t+1. The second term captures the local income inequality
for generation t. The third term is growth of local labor market over generations represented by the
rank-up for each sector. The last term in parenthesis is gains from labor mobility for generation t+1.
This is given in the proposition in main text. High value ofMi,t+1 implies that the next generation
(t+ 1) are expected to be climbing up the income ladder compared to the average standard of their
parents (generation t). Its heterogeneity across space comes from the di�erence in each elements at
work in (C.73).

To see the asymmetric e�ect between emigrants and stayers in the location i, consider the de-
composition of (C.73) into di�erent types of workers. First, let

Qs
i,t+1 =

Qsi,t∑
k∈K f

k
i,tQki,t

Qsi,t+1

Qsi,t
(C.74)

This part in (C.73) shows the relative wage growth of the sector in the local economy. Apart from
workers’ choice of industry and location, the industry growth of ex-ante high-wage sector is asso-
ciated with an increase of upward mobility. Now, we straightforward obtain:

Mi,t+1 =
∑
s∈K

Qs
i,t+1ς

s
i,t+1 +

∑
s∈K

Qs
i,t+1ς

s
i,t+1

∑
n∈N\i

λni|s,t+1

(Qsn,t+1

Qsi,t+1

− 1

)
(C.75)

The �rst term is the sector speci�city in the local labor market and income growth of natives in
i (i.e., workers of generation t + 1 who do not move to other locations). The second term is the
location i’s land of opportunity for emigrants. When location i has greater labor market access for
the growing industries, this allows workers to climb up the income ladder by reallocation.

Absolute upward mobility. Another measure of upward mobility is the probability that children
(workers of generation t + 1) obtain higher income than their parents. To construct the measure,
we introduce some additional notations. Given α ∈ (0, 1) and for probability mass function of
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generation t, Gi,t(y), de�ne

inf {y|Gi,t(y) ≥ α} = arg min
ν

∑
{s|µi,twsi,t≤ν}

−f si,t(1− α)(µi,tw
s
i,t − ν) +

∑
{s|µi,twsi,t>ν}

f si,tα(µi,tw
s
i,t − ν)

= arg min
ν

∑
s∈K

f si,t

(
α− 1(µi,tw

s
i,t ≤ ν)

)(
µi,tw

s
i,t − ν

)
≡ ξi,t(α)

(C.76)

ξi,t(α) is the α-th quantile of income distribution of generation t in location i. For instance, ξi,t(α =

0.5) gives the median of income distribution. Using this, de�ne the measure:

Li,t+1(α) =
∑
n∈N

∑
y∈Yt+1

λni|s,t+1Mt+1(y|i→ n)× 1Y (y > ξi,t(α)), α ∈ (0, 1) (C.77)

where 1Y (y > ξi,t(α)) is an indicator function that returns to one if income of generation t + 1 is
higher than the quantile level of parents, ξi,t(α). Further, using the probabilities in the model, this
becomes

Li,t+1(α) =
∑
s∈K

∑
n∈N

λni|s,t+11W

(
W s
n,t+1 > ξi,t(α)

)
ςsi,t+1, α ∈ (0, 1) (C.78)

This is the probability that workers of generation t + 1 from i will get higher income relative to
α-th quantile of income among previous generation. Compared to the measure (C.73), this measure
does not rely on the income distribution at the national level. By construction, Li,t+1(α) takes the
value between 0 and 1, and higher value corresponds to the higher absolute upward mobility. This
measure is showing the similar pattern to the numerator ofMi,t+1 when there are small variations
in ξi,t(α) across locations given α.

Possibility of American Dream. The index (19) re�ects the �rst-order moment of the income
distribution. To see another measure of upward mobility from the bottom to the top, ”American
Dream”, the next measure compares the people at the bottom of the quantile and the top of the
quantile. Let Gi,t(·) : R+ → [0, 1] refer the income distribution of among workers of generation t
in i andHi,t+1(·) : R+ → [0, 1] denote the income distribution of generation t+ 1 whose origin is i.
Qt(·) is probability distribution function for income in period t at the economy-wide. Using them,
we de�ne:

κi,t+1 =
Qt+1

(
inf{y|Hi,t+1(y) ≥ α}

)
Qt
(

inf{y|Gi,t(y) ≥ α}
) , 0 < α << α < 1 (C.79)

The intuition for (C.79) is followings. The position in the whole economy for a worker of generation
t in location i at α-th quantile is the denominator in (C.79). When location i is relatively wealthy in
the economy, this returns a large value. The numerator of (C.79) identi�es the position of the top
income cohort originated from i. For workers of generation t + 1 born in location i, their future
income distribution is Hi,t+1(·) and α-th quantile among the cohort is given by inf{y|Hi,t+1(y) ≥
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α}. Therefore, a large value of (C.79) suggests the American Dream in location i: the top income
people arise from the cohort of generation t+1 born in location iwhere the workers in the previous
generation are relatively lower income group.

The value of quantile, α and α can be any value in (0, 1), to construct the robust measure of
the upward mobility. For instance, α = 0.20 implies that a worker is at the bottom of income
distribution in location i. Then, her position in the whole economy is given by the denominator in
(C.79). Next, consider a worker of generation t+1 born in location i. For instance, α = 0.80 implies
that a worker is at the top 80% among her cohort in the economy.

We let ξi,t(α) be the α-th quantile for income distribution in location i among workers of gen-
eration t. For generation t+ 1,

inf{y|Hi,t+1(y) ≥ α} = arg min
ν

∑
n∈N

∑
s∈K

λni|s,t+1ς
s
i,t+1

(
α− 1(µn,t+1w

s
n,t+1 ≤ ν)

)(
µn,t+1w

s
n,t+1 − ν

)
≡ ξ̃i,t+1(α)

(C.80)

Therefore, (C.79) is:

κi,t+1 =
Qt+1

(
ξ̃i,t+1(α)

)
Qt
(
ξi,t(α)

) (C.81)

for any 0 < α << α < 1. where ξi,t(α) is α-th quantile of income distribution of workers among
generation t in location i.

D Appendix: Simulated economy

This section provides a numerical illustration of an equilibrium. The goal is to understand the
equilibrium implications discussed above more concretely. To this end, this section considers the
simplest spatial economy. Imagine the hypothetical one-dimensional space (i.e., line economy) in
which there are discrete locations over unit space. They locate with even geographical intervals.
Speci�cally, there are 250 discrete locations over unit space [0, 1]. The simulation requires speci�-
cations for some fundamental environment and parameters in the model.

D.1 Line economy

Trade Costs and Migration Costs. There are 250 locations on one-dimensional space. The geo-
graphical distance between the edge of the economy and the other edge is normalized to one. The
geographical distances between any two neighboring locations on the line are exactly the same;
therefore, cities are located with even geographical intervals.

There are four sectors: construction, manufacturing, non-tradable service and tradable service.
For manufacturing, trade costs between locations i and n are given by τM(i, n) = exp

(
τM|i− n|

)
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where |i−n| is geographical distance between i and n. τM is trade e�ciency of manufacturing and
set to τM = 0.15. This is similar value to the �ndings in international trade. The functional form of
trade costs for tradable services is the same as manufacturing sector. To eliminate exogenous factors
that a�ect the di�erence between tradable services and the manufacturing sector, the parameter is
set to the same number with manufacturing, τS = 0.15. For the nontradable goods, the parameter
is set to τR = 1.0 that is su�ciently large value compared to other sectors.

Turning to the migration costs, suppose that they are the function of geographical distances
and the functional form that is the same as trade costs. Namely, migration costs from i to n is
Din,t = exp(d|i− n|) with parameter value d = − ln 0.5. This implies that the remaining utility
for individuals after moving from edge to edge (i.e., unite distance) is 50 percent. The analysis for
high migration costs assumes a higher value of d such that d = − ln 0.1.

Productivity and Amenities. There is no variation in amenities across space: Bi,t = 1 for all
i. In contrast, fundamental productivity for manufacturing exhibits di�erences across locations.
The initial productivity of manufacturing in location i is: A0(i) = 1.20 − 0.40 × i, which implies
that location at the left edge of the economy (location index 0) is highest and it is decreasing to
the right edge of the economy, and productivity is minimum in the right edge of the economy
(location index 1). The highest productivity is 50 percent higher than the lowest productivity. This
rationalizes the concentration of manufacture in the early period in the economy and enables to
eliminate the potential multiplicity of equilibria. If the initial productivity is a uniform distribution
of fundamental productivity, potentially multiple equilibria arise where one sector is concentrated
in either the central place or the edges.

In every city, the fundamental productivity of manufacturing grows at a constant rate, 5 percent
in the baseline, whereas it becomes 10 percent when there are positive shocks. The fundamen-
tal productivity of both nontradable and tradable services is uniform across locations, and they
are constant over time. Therefore, change in productivity for services arises through endogenous
mechanisms – agglomerations.

Basic Parameters. Except for the parameters in the demand system, same values are assigned to
other parameters across sectors to focus on the role of non-homothetic demand across sectors.

We set the followings for the sector speci�c parameter of Engel slope: θM = 1.0 for manufactur-
ing, θS = 1.5 for tradable service, θR = 0.8 for nontradable service, and θH = 0.8 for housing. They
are in line with numbers in Comin et al. (2020). Firms in the manufacturing and service sectors
only use labor in production. For all sectors, trade elasticity is set to be 6.0. For the spillover in
productivity, ρ = 0 and γs = 0.2. This implies that there is no productivity spillover across loca-
tions, and there is a pure scale economy for all sectors. The number of scale e�ects (γs) is relatively
large compared to the agglomeration economies, but recent estimates by Bartelme et al. (2021) show
similar values for some manufacturing industries.

The construction sector produces immobile structures (housing) by combining labor and the
current stock of structures. The share of labor in production is χ = 0.35 that is the same value we
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use in the calibration. The residential stock is depreciated in every period and we let h̄i = 0.20

based on Harding et al. (2007).

Parameters in Labor Supply. We use the same values for parameters in labor supply as in cal-
ibration. The elasticity of migration to real income is ε = 1.5 base on Fajgelbaum et al. (2019);
the elasticity of sector choices to average utility φ = 2.5; and local labor market exposure e�ect is
η = 0.8.

D.2 Solution methods and baseline results

We set out the characterization of the initial equilibrium. Given the initial distribution of productiv-
ity, we suppose that the initial equilibrium is in the steady state. Then, we change the fundamental
productivity for the manufacturing sector and obtain the forward solution of the economy.

First, we solve the model for the steady state. We guess the steady state level of wage (wsi,0)
and employment distribution (Lsi,0). The law of motion for productivity (Zs

i,0) gives the steady state
productivity distribution. We use goods market clearing condition to obtain prices (psi,0) and trade
probabilities. Then, we update wages and employment by using labor market clearing conditions.
Next, we follow the discussion in B.2 to obtain the dynamic equilibrium for the rest periods.

We �rst describe the baseline equilibrium and then proceed to see di�erent scenarios. Figure D.1
displays the structural change and variation in housing prices in the aggregate economy. Panel D.1a
con�rms the shift of aggregate employment from goods (manufacturing sector and construction
sector) to services (non-tradable service and tradable service). The employment ratio of goods to
services declines over time, driven by the productivity growth of the manufacturing sector and
nonhomothetic demand. Panel D.1b shows the standard deviation of housing prices and land rent.
The spatial variation of housing prices increases as the agglomeration of services arises in the right
edge of space along with the decline of the manufacturing sector.

Figure D.1: Structural Change and Variation of Housing Prices
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(a) Aggregate Employment Change
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(b) Variation of Housing Prices and Land Rent

Figure D.2 shows the distribution of workers for three sectors. The gradation represents the
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share of employment in each sector for any particular location. The left edge locations keep the
manufacturing sector’s comparative advantages over time but move to service sectors. On the
other hand, the right edge cities show specialization of nontradable services in early stages with
shrinking of the manufacturing sector. This leads to demand shift to tradable service sectors due
to non-homothetic preference. Therefore, the right cities give rise to tradable services. In the later
period, the right-edge cities are specializing tradable services and the right-central cities see the
agglomeration of nontradable services. The di�erence in the location of agglomeration between
panel D.2b and D.2c is due to the di�erence in trade costs.

Figure D.2: Geography of Structural Change

5 10 15 20 25 30 35 40 45 50

Period

50

100

150

200

250

L
o

c
a

ti
o

n

0.1

0.15

0.2

0.25

0.3

0.35

(a) Manufacturing

5 10 15 20 25 30 35 40 45 50

Period

50

100

150

200

250

L
o

c
a

ti
o

n

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

(b) Tradable Service
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(c) Nontradable Service

Figure D.3 graphics the welfare change for individuals between two generations. The �rst panel
D.3a shows welfare di�erence between generations (d lnVi,t). The overall welfare change for work-
ers is high in the right edge places. The other three panels give the di�erent margins to determine
the welfare changes as we discussed in Proposition 3. Panel D.3b shows that the left places exhibit
larger gains for workers from migration to the right locations where real income is high, and such
gains decline over time as service sectors are dispersed in the later period.

Panel D.3c shows the spatial variation of gains from job opportunities. Individuals in the hot-
colored locations bene�t from the local labor markets in their choice of the sector. This margin
takes an important role in the overall welfare changes in its magnitude. In contrast, individuals in
the left-edge cities bene�t less. The logic is clear; a higher probability to sort into the manufacturing
sector leads to less opportunity to move to other labor markets. The last Panel D.3d shows the gains
from trade. The right cities are net exporters of services to the left cities so that the measure of
gains from trade exhibits large values in these areas. These three margins are compounded in the
overall welfare changes in Panel D.3a.

Next, we show inequality and upward mobility in Figure D.4. Panel D.4a con�rms the intuition
discussed in Appendix C.5. In the initial period, the left-edge cities show a concentration of the
manufacturing sector, leading to lower inequality compared to the right places. Conditional on this
fundamental pattern of sectoral contribution in income inequality, persistence of sorting and lower
mobility keep the income inequality in the right cities high.

We investigate the implication of upward mobility in Panel D.4b where we show the measure
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Figure D.3: Welfare Changes
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(b) Migration Gains
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(c) Job Opportunity Gains
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(d) Trade Gains

of the intergenerational mobility proposed in Proposition 5, lnMi,t+1. We �nd that there is a huge
di�erence in intergenerational mobility over space. In early periods, workers who originate from
the service cities in the right area can climb up the position of income distribution compared to
manufacturing cities. They are able to migrate to other cities and sort into the service sector with
high likelihood. The central places exhibit the lowest upward mobility over time. The logic behind
this is the low degree of dynamics among workers in the central places for both location choice
and sector choice. Ultimately, the service cities exhibit lower upward mobility of workers. This
is intuitive. In these cities, the service sector grows and more workers sort into both sectors of
service. Then, conditional on the job opportunity, the change in the position of the income ladder
becomes small. In contrast, the left-edge cities show higher upward mobility in the later period.
This is because of the structural change from manufacturing to services and the spread of service
sectors to the left cities where individuals from left-edge cities can move into.

Lastly, we show the additional results for the baseline economy. Figure D.5 display change in
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Figure D.4: Inequality and Upward Income Mobility

5 10 15 20 25 30 35 40 45 50

Period

50

100

150

200

250

L
o

c
a

ti
o

n

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) Coe�cient of Variation in Income
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(b) Upward Mobility: lnMi,t+1

average prices of manufacturing, tradable service and nontradable service sectors in Panel (a) and
change in average expenditure share in the economy in Panel (b).

Figure D.5: Structural Change
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(a) Prices
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(b) Expenditure Share

These �gures con�rm the pattern of structural transformation in the aggregate economy. The
relative price of service to the manufacturing sector increases over time. This results from the
fundamental productivity growth of the manufacturing sector. The right-hand panel (b) shows the
results of the non-homothetic demand system. The aggregate expenditure share in the economy
shifts from the manufacturing sector to tradable services, while expenditure shares on the housing
and non-tradable service sector are stable over time.
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D.3 Productivity Shock and Migration Costs

Next, we consider the di�erent two scenarios in the simple economy. First, suppose that there is
technological progress in the manufacturing sector. In the baseline, we assume that the fundamental
productivity of manufacturing grows at 5 percent each period. We now set 10 percent for the growth
rate. Intuitively, this captures the continuous innovation in the manufacturing sector. Second, we
consider high migration costs. In the baseline, we set d = − ln 0.5. Now, we set d = − ln 0.1, which
implies that only 10 percent of utility remains when individuals migrate from the edge city to the
other edge city. For these two scenarios, we consider how cross-sectional inequality and upward
mobility are changed.

Figure D.6: Di�erent Scenarios
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(a) Aggregate Employment Change
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(b) Variation of Housing Prices

In Figure D.6, the left-hand panel D.6a shows the change of employment ratio corresponding
to Figure D.1a, and the right-hand panel D.6b shows the variation of housing prices for di�erent
scenarios. When the productivity of manufacturing grows at a higher rate, the structural transfor-
mation from manufacturing to services proceeds and it generates more variation of housing prices
due to the agglomeration of services. For the high migration costs, we can see a similar pattern of
structural transformation in the macroeconomy. However, the spatial variation of housing prices
becomes large compared to the baseline since high migration costs prevent individuals from adjust-
ing their locations and agglomerations are reinforced.

We turn to inequality and upward mobility in Figure D.7.
The left-hand panel D.7a shows an increase in income inequality in the left cities due to the rapid

structural transformation compared to the baseline. In contrast, the right cities show small income
inequality due to the further specialization of tradable services than the baseline. The right-hand
panel D.8a gives the spatial variation of upward mobility corresponding to Figure D.4b. Comparing
these two �gures, we �nd that central places exhibit lower upward mobility from the early period.
The structural change due to the technological progress of manufacturing leads to specialization
of workers in the edge cities and worse o� individuals in the central cities in terms of mobility.
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Figure D.7: Inequality and Upward Income Mobility When Productivity Growth of Manufacturing
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(a) Coe�cient of Variation in Income
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(b) Upward Mobility

Intuitively, this suggests the role of technology-driven structural transformation in the declining
upward mobility of workers.

Figure D.8: Inequality and Upward Income Mobility When High Migration Cost
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(b) Upward Mobility

Next, Figure D.8 give these patterns for the case of high migration costs. The left-hand panel
D.8a shows a similar pattern of inequality in the local labor market to the baseline results. This
implies that the bilateral migration costs have a limited impact on inequality within the city. Nev-
ertheless, the right-hand panel D.8b shows that upward mobility is small for most locations relative
to baseline when migration is costly. With high migration frictions, workers are unable to leverage
geographical mobility, and therefore, workers are less able to climb up the income ladder by moving
across cities.
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D.4 Role of Local Labor Market Exposure

Lastly, we exploit the simple economy to understand the role of local labor market exposure in the
sector choice of workers by setting a lower value of η.

The parameter controls the limited exposure of individuals to the local labor market as we dis-
cussed in Assumption 2. As a contrast to the baseline value of η, we set η = 0.10. This implies that
the e�ect of the previous generation in the local labor market has less impact on the choice of the
sector. Figure D.9 give inequality and upward income mobility for the alternative parameter value.

Figure D.9: Inequality and Upward Income Mobility When η = 0.10
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First, we see signi�cant income inequality compared to the baseline. All locations show an
increase in income inequality over time. When the persistent e�ect of local labor market exposure
is weak, less speci�city to sector and location fosters the mobility of workers and it leads to less
specialization of workers in equilibrium. Therefore, we see a rise in income inequality within a city
and less variation of housing prices (Panel D.6b).

In the right-hand panel D.9b, we see the relatively low intergenerational income mobility. The
less specialization and structural transformation lead to a small variation of real income across
locations and a small gap in expected return from sector choice between the tradable service sector
and non-tradable service sector. Together, the intergenerational income mobility becomes low and
shows small geographical variation. Overall, the local labor market exposure impacts inequality and
upward mobility by the direct e�ect in the sector choice of workers and an indirect e�ect through
the specialization of workers in local labor markets.

E Appendix: Quanti�cation of the model

Here, we explain the procedure of calibration for the quantitative analysis. We start with the de-
scription of data in subsection D where we de�ne the economy. We explain the calibration of the
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parameters in subsection E.2. Using the data and parameters, we discuss how to use the model
structure to obtain fundamentals in our model in subsection E.3. We �rst explain how to invert the
model for steady state and then extend it to the inversion of dynamics in fundamentals: fundamental
productivity and amenities over time.

E.1 Data

Cities. We focus on U.S. Core Based Statistical Areas (CBSAs). We use the de�nition of CBSAs
based on Census 2010. Each CBSA consists of a unique county or multiple counties anchored by an
urban center of at least 10,000 population and adjacent counties. We use 395 CBSAs in the calibra-
tion, where we are able to compute wages and employment throughout time. The list of 395 CBSAs
includes all metropolitan areas in the U.S., excluding Alaska and Hawaii and some large microp-
olitan areas. Since the de�nition of CBSAs is based on the social and economic linkages between
counties and commuting, we take them as our units of cities in the U.S. economy. Throughout
time, we �x the de�nition of CBSAs to exclude the potential problem arising from the change of
geographical size that is outside our model.

Industries. We consider the �xed set of industries throughout time. The economy consists of three
di�erent groups of industries. We let KM refer to the set of manufacturing industries, KS refer to
the set of service industries, andK0 refer to the single sector related to the immobile structure in the
model. We use a crosswalk between industry codes to de�ne each industry for di�erent years based
on 4 digit SIC 87. We assign industries to each group as follows. The group of manufacturing sector
KM consists of: Food, beverage, and tobacco product (4 digit: 2000 to 2141); Textile, textile product
mills, apparel, leather, and allied product (4 digit: 2200 to 2399); Wood product, paper, printing, and
related support activities (4 digit: 2400 to 2796); Chemical, petroleum, rubber and coal products,
and nonmetallic mineral product (4 digit: 2800 to 3299); Metal and fabricated metal product (4 digit:
3300 to 3499); Machinery (4 digit: 3500 to 3599); Computer and electronic product, and Electrical
equipment and appliance (4 digit: 3600 to 3699); Transportation equipment (4 digit: 3700 to 3799);
Furniture and related product, and Miscellaneous manufacturing (4 digit: 3800 to 3999).

The group of industries KS consists of: Transport services and storage (4 digit: 4000 to 4789);
Wholesale trade (4 digit: 5000 to 5199); Retail (4 digit: 5200 to 5999); Finance, insurance and real
estate (4 digit: 6000 to 6799); Health service and social services (4 digit: 8000 to 8099, 8300 to 8399);
Legal service and education service (4 digit: 8100 to 8299); Communication service (4 digit: 4800 to
4971); Other local services (4 digit: 7000 to 7999, 8400 to 8811).

The construction sector includes 4 digit: 1500 to 1799. We do not include agriculture, forestry,
�shing (4 digit: 0100 to 0971), mining (4 digit: 1000 to 1499) and the rest (4 digit over 9000) in our
analysis since these sectors show a small share of employment in the period we analyze.

Wages and employment. Wages and employment are essential to calibrate the model. We con-
struct wages and employment by industry and CBSA. Our data source for employment is the County
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Business Pattern (CBP) in 1980, 1990, 2000 and 2010. Following procedures to impute employment
counts by county and 4-digit SIC 87 industry in David et al. (2013) and using the methodology in
Acemoglu et al. (2016), we imputed employment for each county. After the imputation, we aggre-
gate them at the CBSA level to de�ne industry employment.

For wages, we use the American Community Survey (ACS) and decennial censuses. The datasets
are downloaded from IPUMS using standardized variables. For the years 1980, 1990 and 2000, we
exploit a 5 sample of the respective censuses. For the year 2010, we are based on ACS data. Within
each CBSA, we compute the log of average wages across counties for each industry. Wages are
in�ated to the year 2010 using the Personal Consumption Expenditure Index. Through this process,
we can obtain 395 CBSAs that we focus on.

E.2 Parameters

We �rst set parameters in the nonhomothetic demand system based on the literature. Then, we
calibrate the set of parameters in technology by using the information on input-output linkages.
Then, we exploit the gravity equation of trade to estimate trade elasticity for manufacturing sectors,
while for the service sector, we use the values from the literature. Then, we use the parameters in
labor mobility across locations and sectors by exploiting the equilibrium relationships.

Demand parameters

We set the elasticity of substitution σ = 0.4 as a baseline value. This is consistent with the traditional
values in the macroeconomic literature on structural transformation. We have non-homothetic
demand system, and it has two sets of parameters across di�erent sectors. Namely, we have:

∑
j

α
(σ−1)/σ
j

( cj
U(θj−σ)/(1−σ)

)(σ−1)/σ

= 1 (E.1)

The parameter θj de�nes the sector-speci�c Engel slope andαj is the shift of expenditure. Following
Comin et al. (2020), we normalize θj = 1 if sector j is manufacturing sector. For the service sectors
and residenti, we set: (θj − σ)/(1 − σ) = 1.75 which is the middle in the range of estimates in
Table I in Comin et al. (2020). This implies that θj = 1.375 for service sectors. For the consumption
of residential stocks, we set θ0 = 1. This implies that we captures the demand driven structural
transformation at the aggregated level between manufacturing, service, and housing by setting
three di�erent parameters.

Turning to the scale parameters (αj), we also consider three di�erent parameters for each ag-
gregation. We set αj = 3.0 for manufacturing. For the other two aggregated sectors, we match
the parameter αj such that the average expenditure share is matched to the aggregate expenditure
share. These parameters of the shifter are constant over time.
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Technology parameters

The BEA table allows us to specify the following identity for input-output in each sector at period
t (year):

Y s
t =

∑
j

Qsj
t + IM s

t + LW s
t + V Sst + TXs

t (E.2)

where Y s
t is value of output of sector s, Qsj

t is value of input purchases from other sectors j, IM s
t

is value of import in intermediate goods for sector s, LW s
t is value of labor compensation of sector

s, V Sst is value of gross operating surplus in sector s, and TXs
t is value of taxes on production in

sector s. We use this identity to set the parameters in production technology. Before adjustment,
we map our de�nition of industries to NAICS codes.

First, we adjust the identity by subtracting the import of intermediate goods since the baseline
model does not consider the international trade of intermediate goods. We subtract IM s

t from
both input purchases and output. Next, we consider the term, V Sst . Following Caliendo et al.
(2018), we decompose this term into two parts. We deduct 17 percent of value added of sector s
from the operating surplus, adding this to the material purchase by splitting across di�erent sectors
proportional to its input share. Then, the rest of the surplus is assumed to be exploited by the
landlords. The value of the remaining surplus is added to the real estate sector and other local
services proportional to their ratio for each sector. When the 17 percent of value added is greater
than the operating surplus, we deduct the total surplus from the right-hand side of (E.2) and put it
in the real estate sector and other local services proportional to their ratio. Given this, we compute
the labor share and other input shares including input-output linkages in the straightforward way:

βs =
LW s

t

Y s
t − TXs

t

, βsj =
Qsj
t

Y s
t − TXs

t

(E.3)

We average them over �ve years, 2011-15. For the production technology of residential stocks, we
set χ = 0.35 based on labor compensation in the construction sector.

Gravity of trade

The regional trade in the model takes a form of gravity equation. We assume that the regional trade
costs are given by:

ln τ sin,t = δ̄ + δs ln distin + εsin,t(τ) (E.4)

where distin is geographical distance between n and i in kilometers and εsin,t(τ) is other factors that
are orthogonal to other characteristics. Given this, trade pattern (A.27) leads to:

lnXs
in,t = Ds

i,t + Os
n,t − κsδs ln distin + εsin,t (E.5)

with
Ds
i,t = κs ln psi,t + κs ln Γs (E.6)
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and
Os
n,t = −κs ln Ξs

n,t + κs lnZs
n,t (E.7)

where Ds
i,t factors destination characteristics and Os

n,t factors origin characteristics, respectively.
Therefore, the coe�cient estimated in the restricted gravity (E.5) gives an information about κsδs
that is a composite of Fréchet shape parameter (κs > 1) and industry speci�c parameter for in trade
costs, δs.

For commodities, we estimate (E.5) for κsδs using U.S. Commodity Flow Survey in 2012. As
we cannot back to the past, we only use the cross sectional data. Once we obtain the estimate
κ̂sδs, we compute Fréchet shape parameter κs given δs. We assign value of δs for commodities
based on literature. Ramondo et al. (2016) proposed the value of trade cost elasticity with respect
to distance, 0.27, for international trade. This value is close to the estimates in Hummels (2001).
Further, Eaton and Kortum (2002) use the relationship between international trade and prices to
estimate the Fréchet shape parameter 8.28 and coe�cient of gravity equation such that 1.10. This
implies the trade cost elasticity is around 0.13. Our analysis is the domestic trade, therefore we use
the lower value of the cost elasticity δs = 0.125 = 1/8 for all sectors in both manufacturing and
services.

For the service sectors, we do not direct observation of bilateral trade values. Therefore, we
rely on estimates by Anderson et al. (2014). For non-tradables (i.e., retail), we set∞ for the trade
cost elasticity and Fréchet parameter is set to be 5.0 that is in around the middle of estimates for
trade elasticities. Table E.1 summarizes numbers. The values of trade elasticity are in the range
of estimates from the trade literature (Head and Mayer 2014, Simonovska and Waugh 2014). In
addition, manufacturing shows a larger value of elasticity relative to services except for health and
education services, which are consistent with �ndings in Gervais and Jensen (2019).

Labor Mobility

In the model, the conditional probability that people migrate from location n to i conditional on the
industry choice s is given by:

λin|s,t = (Din,t)
−ε(Dnn,t)

ε(Wis,t)
ε(Wns,t)

−ελnn|s,t (E.8)

Therefore, mass of workers who move from n to i is:

Lsin,t = (Din,t)
−ε(Wis,t)

ε(Wns,t)
−εEsnn,tLn,t−1 (E.9)

Then, we obtain:

lnLsin,t − lnLsnn,t = −ε lnDin,t + ε(lnBi,t − lnBn,t) + ε

(
ln
W s
i,t

Psi,t
− ln

W s
n,t

Psn,t

)
(E.10)
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Table E.1: Gravity coe�cients estimated for commodities

(1) (2) (3) (4) (5)
Industry κsδs (GC) κsδs (Route) κs Source
1. Food/Beverage/Tobacco .990 .996 7.92 CFS 2012
2. Textile/Apparel .824 .834 6.59 CFS 2012
3. Wood/Paper/Printing 1.13 1.134 9.04 CFS 2012
4. Chemical/Petro/Coal/ Nonmetalic 1.035 1.04 8.28 CFS 2012
5. Metal 1.029 1.036 8.23 CFS 2012
6. Machinery .803 .812 6.42 CFS 2012
7. Electric/Computer .626 .638 5.00 CFS 2012
8. Transport Equipment .961 .966 7.68 CFS 2012
9. Miscellaneous Manufacture .816 .828 6.53 CFS 2012
10. Transportation Service .617 .617 4.94 Anderson et al. (2014)
11. Wholesale Trade 1.379 1.391 11.03 CFS 2012
12. Retail ∞ ∞ 5.0 –
13. FIRE .678 .678 5.42 Anderson et al. (2014)
14. Health Service 1.42 1.42 11.36 Anderson et al. (2014)
15. Education and Legal 1.01 1.01 8.08 Anderson et al. (2014)
16. Communication Service .297 .297 2.38 Anderson et al. (2014)
17. Other Services .724 .724 5.79 Anderson et al. (2014)

Note: This table reports the estimated gravity coe�cients and inferred trade elasticities for relevant industries. Column
(2) uses the great circle distance for distance, and column (3) uses the route distance. In column (4), we compute trade
elasticities based on estimates in column (2).

Therefore, for the small di�erence of real income, di�erence of labor mobility becomes:

ε =
lsin,t − lsnn,t

(w̃si,t − p̃si,t)− (w̃sn,t − p̃sn,t)
(E.11)

where lsin,t, w̃si,t and p̃si,t are log of corresponding variables. Hence, ε re�ects the elasticity of local
labor supply across di�erent locations to the real income, and we set ε = 1.5 that lies in the middle
of the estimates in Fajgelbaum et al. (2019) for the U.S. economy.

Now, we consider the friction in labor mobility. We cannot identify the spatial friction of labor
mobility, Din,t, directly in the data. Therefore, we derive the spatial friction in the process of model
inversion, which we discuss later. To this end, we assume that the friction takes the following form:

Din,t = (distin)δ̃Mi,t, ∀i 6= n (E.12)

where δ̃ is positive constant andMi,t is positive value that explains the migration barrier for workers
who choose i. (E.9) implies that mass of workers moving from n to i is:

Lsin,t = (distin)−εδ̃(Mi,t)
−ε
(
ςsn,t
Ū s
n,t

)ε
(Ws

i,t)
εLn,t−1 (E.13)
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Taking logs, (E.13) can be written as:

lnLsin,t = Ws
i,t − εδ̃ ln distin + Hs

n,t (E.14)

where
Ws

i,t ≡ ε lnWs
i,t − ε lnMi,t (E.15)

and
Hs
n,t ≡ ε ln ςsn,t − ε ln Ū s

n,t + lnLn,t−1 (E.16)

contain source location and industry characteristics, and destination and industry characteristics,
respectively.

We use (E.14) to obtain estimated value of εδ̃. To this end, we need information on labor mobility
between locations for workers in di�erent sectors. We use ACS 5 year sample data between 2006-
2010 and 2011-2015. The ACS data allows us to know the current location (county), previous location
(county), and industry of workers in the sample. We extract workers in our sectors and map their
locations to the CBSA level. Then, we focus on workers who moved between di�erent CBSAs during
the sample periods and compute average distances at the aggregation of state level. Therefore, the
�nal data contains the number of workers in each sector who move from state to state and the
average distance of the mobility pattern. We construct the data for 5-year period 2006-10, 2011-15
and 10-year period, 2006-2015. Using the data, we estimate (E.14) by ordinary least squares (OLS).
We replace Ws

i,t and Hs
n,t by origin-sector indicators and destination-sector indicators, respectively.

Table E.2 shows the estimates of εδ̃. The estimates are similar to the �ndings for intra-national
migration elasticity to distance in Bryan and Morten (2019) for Indonesia. Compared to Allen and
Arkolakis (2018) for migration cost in U.S. history, estimates are small. This di�erence arises from
the di�erent periods of our data. For the old period, it would be large because of the higher moving
cost per unit of distance. Based on the results, our preferable values for migration elasticity is 0.75,
and therefore we set δ̃ = 0.50 in our analysis.

Table E.2: Coe�cients estimated for workers mobility

(1) (2) (3)
Year 2006-10 Year 2011-15 Year 2006-15

ln dist -.743 -.728 -.806
(0.0296) (0.0317) (0.0282)

Observations 11,292 11,374 14,852

Note: Robust standard errors in parenthesis.

We consider the parameters in labor supply, η and φ. We let Us
n,t+1 ≡ ζ

1/φ
s Ū s

n,t+1. Then, we use
the structural equations in our model. As we discussed in Appendix B.1 and using migration costs
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(E.12), our model derives:

Us
i,t+1 =


∑
`∈N


(dist`i)

−εδ̃ Ls`,t+1

∑
n∈N

dist−εδ̃`n

(
Lsnt

)η(
Usn,t+1

)φ
∑
k∈K

(
Lknt

)η(
Ukn,t+1

)φ(Us
n,t+1

)−ε
Ln,t







1/ε

(E.17)

for every s and i. This is labor mobility clearing condition. (E.17) gives the relationship between
employment {Lsi,t+1}, {Lsi,t}, geographical distance and {Us

i,t+1}. Then, we solveN×(S+1) system
of equations (E.17) for {Us

i,t+1}.

First, we use the above parameters (ε, δ̃) and guess two key parameters (φ, η). Implementing
the observation of employment

(
{Lsi,t+1}, {Lsi,t}

)
, we solve N × (S + 1) equations for {Us

i,t+1}

as a �xed point of (E.17). We denote this as Ûs
i,t+1. Then, we compute the inferred probability in

industry choice,

ς̂sn,t+1 =

(
Lsn,t

)η(
Ûs
n,t+1

)φ
∑

k

(
Lkn,t

)η(
Ûk
n,t+1

)φ (E.18)

where we use employment in observation, Lsn,t. Further, by construction, we have:

Ū s
i,t+1 =

(∑
`

dist−εδ̃`i

(
Ws

`,t+1/M`

)ε)1/ε

(E.19)

Therefore, we can write:

Us
i,t+1 =

(∑
`

dist−εδ̃`i

(
T̃ s`,t

)ε)1/ε

(E.20)

where we let
T̃ s`,t ≡

Ws
`,t

ζ
1/φ
s M`

We de�ne:
Ũt+1 ≡

{(
Us
i,t+1

)ε}
, D ≡

{
dist−εδ̃`i

}
, Tt+1 ≡

{(
T̃ s`,t

)ε}
(E.21)

Ũt+1 is N × (S + 1) matrix of average utility conditional on industry choice, D is N ×N matrix of
distances, and Tt+1 is N × (S + 1) matrix of adjusted real income by migration cost. (E.20) implies
that we can compute ̂̃T s`,t by using these matrix:

T̂t+1 =
(
D>
)−1 ̂̃Ut+1 (E.22)

where ̂̃Ut+1 is matrix Ũt+1 by substituting {Ûs
i,t+1}. After we compute this, we derive the model
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inferred location choice probabilities:

λ̂in|s,t+1 =

dist−δ̃in ×
̂̃
T
s

i,t+1

Ûs
n,t+1

ε

(E.23)

Combining (E.18) and (E.23), we obtain the mobility of workers between two locations during period
t and t+ 1:

L̂in,t+1 =
∑
s

λ̂in|s,t+1ς̂
s
n,t+1Ln,t (E.24)

This is the labor mobility from n to i for any particular generation t + 1 predicted in the model.
Using (E.24), we compute ϑ̂in,t+1 = L̂in,t+1/

∑
`6=i L̂`n,t+1 for i 6= n, which is the predicted pattern

of migration from location n in the model.

In turn, we exploit IRS county-to-county migration data and aggregate the �ow of people to the
CBSA pairs which we use. We process this for two time periods, 1990-2000 and 2000-2010. The
period 1990-2000 corresponds to the movement of workers in generation 2000, while the period
2000-2010 corresponds to the movement of workers in generation 2010. We compute ϑin,t+1 =

Lin,t+1/
∑
6̀=n L`n,t+1 where Lin,t+1 is the migration from source n to destination i. This is the

pattern of labor mobility given the source location.

Then, we argue that the pattern of emigration in the data is equal to the pattern predicted in the
model. Namely, we consider the following moment condition:

E
[(
ϑin,t+1 − ϑ̂in,t+1

)
× Iin

]
= 0

The underlying assumption for this is that any errors between the observed pattern of migration
and the migration pattern predicted in the model are unrelated to the level of distances within the
same range of distances. In particular, we de�ne 6 ranges of distances between two locations, and
we use the moment condition. The �gure E.1 shows the moment conditions based on the sum of
the squared di�erence in the migration patterns across the distance ranges. We construct contours
for the 1800 combinations of values of (φ, η) in the parameter space (shown on the horizontal and
vertical axes). The �gure shows a unique global minimum in the parameter space. We use the
parameter φ = 2.50 and η = 0.80 in our analysis.

Economies of scale

The parameters for economies of scale, γ = {γs}, are �xed over time. The estimation of these
parameters is not straightforward as it is impossible to decompose the overall productivity {Zs

i,t}
into the contribution of the fundamentals {Asi,t} and the endogenous factors. Instead of using the
empirical approach, we use the model restriction to pin down the parameters, {γs}.

As we discussed in Appendix B.1, the su�cient condition for parameters to characterize unique
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Figure E.1: Moment Condition for ‖ϑ̃in,t+1 − ϑ̂in,t+1‖
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dynamic equilibrium when ρ = 0 and χ = 1 is given by (B.28). We state the condition again here:

γs ≤
θs − σ

κs + (1− σ)

(
1 +

1

ε

)
(E.25)

This condition gives the upper bound of the parameters, γ. In our model, small parameter ε leads
to dispersion of workers in their location choice, which turns out to be the dispersion force of
workers. For the trade elasticity, a small parameter of κs implies that production is more dispersed
across locations as idiosyncratic productivity shocks have a large variation. On the demand side, a
large value of θs means that expenditure share expands more as real income grows. Then, we have
more heterogeneity in consumption patterns across workers with di�erent incomes. Therefore, this
leads to the dispersion of workers. If we introduce the partially inelastic supply of structure, χ < 1,
it also leads to additional dispersion force.

To understand the condition (E.25) more concretely, we think about the extreme cases. When
κs →∞, the right-hand-side of (E.25) becomes zero, and therefore we need no economies of scale,
γs = 0. In words, when there is no variation in idiosyncratic shocks in productivity, all workers are
located in the fundamentally productive places, and economies of scale lead to multiplicity of equi-
librium. When ε → ∞, the right-hand-side of (E.25) becomes strictly small. If idiosyncratic taste
shocks are homogeneous, weak agglomeration forces are required to avoid the multiple equilibria.
Instead, suppose that θs = 1, γs = 1/κs and ε → ∞. As we described in Appendix A.2, the pa-
rameter {γs} is the inverse of the trade elasticity for the conventional models of trade: Armington
model, NEG model and Melitz model with Pareto. ε → ∞ implies that workers’ taste shocks are
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homogeneous as in the conventional models of Ricardian trade and NEG. Then, the condition (E.25)
is reduced to be:

κs ≤
1− σ
σ

Therefore, trade elasticity must be su�ciently small, and the elasticity of substitution is relatively
small to avoid the black-hole equilibria.

In our framework, we allow ρ 6= 0. If we introduce the spillover in productivity (ρ > 0), it leads
to agglomeration forces in our model since favorable locations attract workers while the remoted
places lose as they do not bene�t from the in�ow of workers. Therefore, we take the conservative
values that satisfy the condition (E.25) when ε → ∞. This implies that the equilibrium is unique
when idiosyncratic shocks for location choice are homogeneous. Namely, we set γs such that:

γs =
θs − σ

κs + (1− σ)
(E.26)

Table E.3 gives parameters across di�erent sectors (E.26).

Table E.3: Parameters {γs}

(1) (2) (3) (4)
Industry γs Combes et al. (2012) Bartelme et al. (2021)
1. Food/Beverage/Tobacco .070 .064 .22
2. Textile/Apparel .083 .040 .12
3. Wood/Paper/Printing .062 .084 .13
4. Chemical/Petro/Coal/ Nonmetalic .068 .073 .15
5. Metal .068 .069 .09
6. Machinery .085 .083 .24
7. Electric/Computer .107 .076 .08
8. Transport Equipment .072 .086 .18
9. Miscellaneous Manufacture .084 – –
10. Transportation Service .176 – –
11. Wholesale Trade .084 – –
12. Retail .174 – –
13. FIRE .162 – –
14. Health Service .082 – –
15. Education and Legal .112 – –
16. Communication Service .328 – –
17. Other Services .153 – –

In the table, column (2) reports the parameter values of {γs} that are given as a upper bound
of the condition (E.26). Column (3) reports the values of {γs} in Table I from Combes et al. (2012).
Column (4) reports estimated values in Bartelme et al. (2021) for manufacturing sector as a reference.
The values in column (2) are close to those in column (3) while lower than those in column (4). This
re�ects the spatial scale of the economy. As a baseline, we use the parameters in column (2).

Lastly, we need parameter ρ, which governs the spillover in productivity over time. We do not
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have a direct estimation for the value, so we calibrate the value during the inversion of fundamental
productivity in our model. We discuss that in the next section.

E.3 Calibration of fundamentals

Inversion of fundamentals in the steady state equilibrium

Our goal in this subsection is to solve the model for the time-variant environment of the economy
conditional on our information about the local labor markets. To this end, we compute the baseline
level of the environment as we need to obtain the endogenous variables for the baseline economy
that we cannot directly observe in the data at the disaggregated level.

We drop the subscript t for the steady state equilibrium. Suppose that we have data for wage
{wsi }, workers {Lsi} and price of housing {p0

i } in the steady state. Then, we obtain values of fun-
damentals in space: (i) migration cost adjusted amenity; (ii) fundamental productivity; (iii) funda-
mental features in the development of residential stocks. We explain the procedures and relevant
results step by step. We suppose that economy is in the steady state in 2010.

Step 1: Development and income. Developers’ problem implies that revenue from land and sur-
plus distributed across workers are:

Ri = riTi =
1− χ
χ

w0
iL

0
i , µi = 1 +

Ri∑
j w

j
iL

j
i

(E.27)

Thus, income for workers in location i and sector s is:

W s
i = µiw

s
i (E.28)

Further, in the steady state, we obtain:

Hi = ν
1/χ
i (1− h̄i)(1−χ)/χL0

i (E.29)

and we also derive

ν̃i ≡ νi(1− h̄i)1−χ = exp
(
χ
(
− lnχ+ lnw0

i − ln p0
i

))
(E.30)

As we discussed previously in the subsection E.2, we use χ = 0.35. We also implement the price
of housing in 2010 into {p0

i }. Our data for the housing price comes from Federal Housing Finance
Agency (FHFA). We exploit the Hosing Price Index (HPI) of the all-transactions index across CBSAs.

We also implement wage of sector 0 (i.e., construction sector) in 2010 for {w0
i }. Then, (E.30)

gives value of fundamental e�ciency, {ν̃i}, for CBSAs. In Figure E.2, We can see the variation of
{ν̃i} for our sample CBSAs. There is a large variation in {ν̃i}. Intuitively, locations with large value
ν̃i implies persistency of residential stocks (i.e., small h̄i) and high e�ciency of construction (i.e.,
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large νi). In equilibrium, they are related to the variation of housing supply and price change.

Figure E.2: Distribution of Development E�ciency
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Note: This map shows variation of log scale exogenous e�ciency in production of residential stock (ln ν̃i) across CBSAs.

Step 2: Inversion of overall endogenous productivity. We solve for overall productivity in lo-
cation i and sector s for tradables, Zs

i . Guess the vector of overall productivity, {Zs
i }. Letting

τ sin ≡ distδ̄in based on the discussion in the subsection E.2, we compute price vector of tradables:

Γκss

(
psi

)−κs
=
∑
n

((
τ sin

)−κs(
Zs
n

)κs ((
wsn

)βs∏
j

(
pjn

)βsj)−κs)
(E.31)

Solution for this is {psi}. Further, sector level trade probability is:

πsin =
(
τ sin

)−κs (Zs
n

psi

)κs ((
wsn

)βs∏
j

(
pjn

)βsj)−κs
(E.32)

Once we have
(
{psi}, p0

i , {W s
i }
)

, we solve the following N ×N × (S + 1) dimensional �xed point
system of equations: (

Psi
)1−σ

=
∑
j

ασ−1
j

(
pji

)1−σ
(
W s
i

Psi

)θj−1

(E.33)

for non-homothetic price index, {Psi }. Using this, we obtain the implied expenditure for sector s in
location i such that

Es
i =

∑
j

ασ−1
s

(
psi

)1−σ(
Pji
)σ−θs(

W j
i

)θs
Lji =

∑
j

ασ−1
s

(
psi

)1−σ(
Pji
)σ(
Wj

i

)θs
Lji (E.34)

Now, we use the market clearing condition. The market clearing condition states:

Xs
i =

∑
j

βjs
∑
n

πjniX
j
n + Es

i (E.35)
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for �nal goods production {Xs
i }. Labor market clearing condition implies that

Xs
i =

∑
j

βjs
wjiL

j
i

βj
+ Es

i (E.36)

Combining (E.32), (E.34), (E.36), we obtain:

wsiL
s
i

βs
=
∑
n

(
τ sni

)−κs (Zs
i

psn

)κs ((
wsi

)βs∏
j

(
pji

)βsj)−κs

×

(∑
j

βjs
wjnL

j
n

βj
+
∑
j

ασ−1
s

(
psn

)1−σ(
Pjn
)σ−θs(

W j
n

)θs
Ljn

) (E.37)

Manipulating this,

Zs
i =

(
wsiL

s
i

βs

) 1
κs

((
wsi

)βs∏
j

(
pji

)βsj)

×

(∑
n

(
τ snip

s
n

)−κs∑
j

(
βjs

wjnL
j
n

βj
+ ασ−1

s

(
psn

)1−σ(
Pjn
)σ (W j

n

Pjn

)θs
Ljn

))−1/κs
(E.38)

We solve (E.38) for {Zs
i }. The inner loop calculation for this procedure gives inferred overall pro-

ductivity, {Zs
i }, and other endogenous variables used in the inner loop,

(
{psi}, {Psi }

)
.

Step3: Inversion of amenities and labor mobility. Now, we consider labor mobility. Once the
economy reaches the steady state, the mass of workers in the local labor market becomes constant.
Yet, we have the move of workers due to idiosyncratic shocks.

We have three fundamentals here. First, we have fundamental amenity, {Bs
i }. Second, as we

have introduced migration barrier in each location in (E.12), {Mi}. These two fundamentals decide
the exogenous gains for workers who choose the destination, and it is impossible to isolate them.
Further, we have another fundamental in the industry choice, {ζs}.

Therefore, we consider the construction of inferred fundamental for location choice,

Ωs
i = Bs

i ×
1

Mi

× ζ1/φ
s (E.39)

that con�ates them. We begin with the guess of {Ωs
i}. Letting D̃in ≡ dist−δ̃in based on estimation in

the subsection E.2, we compute the adjusted average real income:

Ūs
n =

(∑
i

[
Ωs
i D̃in

W s
i

Psi

]ε)1/ε

= ζ1/φ
s Ū s

n (E.40)

We also compute the probability of labor mobility conditional on the sector choice and the proba-
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bility of sectoral choice:

λin|s =

(
Ωs
i D̃in

Ūs
n

[
W s
i

Psi

])ε

, ςsn =

(
Lsn

)η(
Ūs
n

)φ
∑

j

(
Ljn
)η(

Ūj
n

)φ (E.41)

Then, we use labor mobility condition:

Lsi =
∑
n

λin|sς
s
nLn (E.42)

Plugging the above equations into this yields:

Ωs
i =

 1

Lsi

∑
n

(
D̃in

Ūs
n

[
W s
i

Psi

])ε
(
Lsn

)η(
Ūs
n

)φ
∑

j

(
Ljn
)η(

Ūj
n

)φLn

−1/ε

(E.43)

In the right-hand-side, we use (E.40) inside the loop. Inner loop for this step gives inferred funda-
mental amenity, {Ωi} and other endogenous variables. In particular, we derive:

Lsin = λin|sς
s
nLn (E.44)

{Lsin} is mass of workers in sector s who move from n to i.

Step4: Inversion of productivity. As a last step, we consider the inversion of fundamental pro-
ductivity and calibration of parameter ρ. In the steady state, overall productivity satis�es:

Zs
i = Asi

(∑
n

LsinZ
s
n

)ρ (
Lsi

)γs
(E.45)

Therefore, the exogenous fundamental productivity is:

lnAsi = lnZs
i − ρ ln

(∑
n

LsinZ
s
n

)
− γs lnLsi (E.46)

We implement overall productivity {Zs
i } in Step 2, inferred labor mobility {Lsin} in Step 3 and

employment in data {Lsi} and parameters {γs} we discussed in the subsection E.2 into this. To
estimate ρ, we use the following moment conditions:

E

[(
lnAsi −

1

N

∑
n

lnAsn −
1

S

∑
k

lnAki

)
× Ig

]
= 0, g ∈ G0,G1, · · · ,GP (E.47)

where Ig is an indicator that the labor market potential of location i is in the group of g. The
group of locations is de�ned by the accessibility of the location i. We ordered locations by the sum
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of population in other places with an inverse of bilateral migration cost as weights. Namely, for
location i and sector s, we compute the measure∑

n6=i

D̃ε
inL

s
n (E.48)

Then, we de�ne the group of location and sector pairs based on this measure. As a baseline, we use
P = 20 groups de�ned by 5 percentile of the measure. The moment conditions assume that the
location and sector speci�c exogenous part after eliminating averages is not systematically related
to the labor market access of the location as the spatial dependence of productivity is captured by
the endogenous terms in (E.46) through labor mobility. We use (E.47) and search parameter ρ that
minimize the distances of the moment conditions.

Figure E.3 shows the log of residuals for inverted productivity in (E.47) in the vertical axis and
value of (E.48) in the horizontal axis for di�erent pairs of CBSAs and sectors.

Figure E.4 displays value of the objective function of (E.47). The estimated ρ that minimizes the
objective function is given by the dashed line, ρ̂ = 0.0284. In the computation, we de�ne the grid of
ρ over [0, 0.5] by 0.0001. In Figure E.3, we only report the value of objective functions in the range
[0, 0.05] as it is increasing in other region.

Figure E.3: Moment Conditions (E.47): Value of residuals
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Computing past fundamentals

Our aim is solving the model for time-variant environment of the economy conditional on our in-
formation about the local labor markets. To this end, we compute the path of {Asi,t}. In period
t = 2010, we assume Asi,t = Asi that is derived in (E.46) and it is unchanged after then. So, we
compute the path of {Asi,T}T=t−1,t−2,··· back to the previous periods. For fundamental amenities,
our interests are dynamics of residential amenity {Bs

i,t} and migration barrier {Mi,t}. Our obser-
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Figure E.4: Moment Conditions (E.47): Estimate of ρ̂
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vation over periods is the equilibrium wage and employment in 2000, 1990 and 1980, {wsi,t} and
{Lsi,t}. Given other exogenous environments and parameters discussed above, they are su�cient to
compute the pattern of fundamental productivity and amenities in the past, starting from the steady
state equilibrium.

Step1: Housing and land market clearing conditions. Given
(
{w0

i,t−1}, {L0
i,t−1}

)
, zero pro�t con-

dition and distribution of land rent implies:

Ri,t−1 =
1− χ
χ

w0
i,t−1L

0
i,t−1, W s

i,t−1 =

(
1 +

Ri,t−1∑
j w

j
i,t−1L

j
i,t−1

)
wsi,t−1 (E.49)

Using zero pro�t condition, in the steady state equilibrium (i.e., t = 2010) or any period t, we
compute the stock of residential stocks such that:

Hi,t =
1

χ

w0
i,tL

0
i,t

p0
i,t

(E.50)

Once we obtain this, we compute the residential stock in the previous period that solves:

lnHi,t−1 =
1

1− χ
(lnHi,t − ln ν̃i − χ lnLi,t) (E.51)

where we use {ν̃i} in the subsection E.3. Then, market clearing condition leads to price in period
t− 1:

p0
i,t−1 =

1

χ

w0
i,t−1L

0
i,t−1

Hi,t−1

(E.52)

This procedure obtain the path of
(
{p0

i,t−1}, {Hi,t−1}, {Ri,t−1}, {W s
i,t−1}

)
in equilibrium that are

not directly observable.
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Step2: Overall productivity path. To derive the overall productivity in the past, we guess the path
of productivity, {d lnZs

i,t}. Therefore, we guess {Zs
i,t−1}, given pre-determined {Zs

i,t}. Then, we
compute price {psi,t−1} that solve:

d ln psi,t ≡ ln psi,t − ln psi,t−1 = − 1

κs
ln


∑

n

(
τ sin

(
wsn,t

)βs∏
j

(
pjn,t

)βsj)−κs (
Zs
n,t

)κs
∑

n

(
τ sin

(
wsn,t−1

)βs∏
j

(
pjn,t−1

)βsj)−κs (
Zs
n,t−1

)κs


(E.53)
and we compute the trade pattern {πsin,t−1} such that:

d lnπsin,t ≡ lnπsin,t − ln πsin,t−1 = κs

(
d lnZs

n,t − d ln psi,t − d lnwsn,t +
∑
j

βsjd ln pjn,t

)
(E.54)

Given income and price in period t − 1,
(
{psi,t−1}, {W s

i,t−1}
)

, we solve for aggregate price index
{Psi,t−1} as in (E.33). Then, we use the static equation of market clearing conditions, as in (E.38), to
solve for the overall productivity ({Ẑs

i,t−1}) that rationalize observed wage and number of workers
as an equilibrium.

Step3: Casting the workers’ move and path of amenities. The procedures Step 1 and 2 allow us
to compute the spatial distribution of prices, real income and overall productivity, starting from the
steady state level set to the year 2010. Next, we use the model structure forward from the initial
period. This allows us to derive the path of location attractiveness. We start from the guess of overall
attractiveness of location and sector, Ωj

i,t as in the subsection E.3: Ωj
i,t ≡ Bj

i,tζ
1/φ
j /Mi. This overall

amenity becomes large when the value of utility bene�t from residential amenity for workers in
location i (Bj

i,t) is high, migration barrier of location i (Mi) is small and sector level taste parameter
(ζj) is large for workers in the sector.

Guess Ωs
i,t. Given income (W s

i,t) derived in Step1 and aggregate price index (Psi,t) derived in
Step2, we compute the average real income

Ûs
n,t =

(∑
i

(
D̃inΩs

i,t

W s
i,t

Psi,t

)ε)1/ε

(E.55)

Then, we compute

Ω̂s
i,t =

 1

Lsi,t

∑
n

(
D̃in

Ûs
n,t

(
W s
i,t

Psi,t

))ε
(
Lsn,t−1

)η(
Ûs
n,t

)φ
∑

j

(
Ljn,t−1

)η(
Ûj
n,t

)φLn,t−1


−1/ε

(E.56)

We update Ωj
i,t until ‖Ω̂j

i,t − Ωj
i,t‖ < ε for su�cient small number ε and appropriate norm ‖ · ‖.

This procedure allows us to cast the workers’ choice across locations and sectors predicted in
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the model. This is essential as an overidenti�cation test to assess the performance of our model for
workers’ choice. In particular, we compute two probabilities:

λ̂in|s,t =

(
Ω̂s
i,tD̃in

Ũs
n,t

(
W s
i,t

Psi,t

))ε

, with Ûs
n,t =

(∑
i

(
D̃niΩ̂

s
i,t

W s
i,t

Psi,t

)ε)1/ε

(E.57)

and

ς̂sn,t =

(
Lsn,t−1

)η(
Ûs
n,t

)φ
∑

j

(
Ljn,t−1

)η(
Ûj
n,t

)φ (E.58)

where we use pre-period population in data (Lsi,t−1). We lastly compute

L̂sin,t =
∑
n

λ̂in|s,tς̂
s
n,tLn,t−1 (E.59)

where Ln,t−1 is total number of workers in data for previous generation. (E.59) is predicted move
of workers for generation t.

Step 4: Fundamental productivity. For the initial period, we set Asi,t = Zs
i,t. In our setting, it is

applied for 1980. For other period, we compute

ln Âsi,t = ln Ẑs
i,t − ρ̂ ln

(∑
n

L̂sin,tẐ
s
n,t−1

)
− γs lnLsi,t (E.60)

where ρ̂ is obtained in the subsection E.3 and {Ẑs
i,t} are computed in Step2.

====================================

F Appendix: Calibration Results

This section presents the results of calibration that we explained in the previous section. The sub-
section F.1 shows the results for an inversion of development, amenities and productivity. We also
compute TFP. The subsection F.2 shows the welfare and intergenerational mobility in the baseline.

F.1 Inverted Environment

Housing Prices and Development E�ciency

We can gauge our model speci�cation in (E.51) and (E.52) by comparing the predicted value of {p̂0
i,t}

in the past. Among 395 CBSAs in our calibration, FHFA data for housing prices are limited for the
past years. Therefore, we compare housing prices predicted in the model for past years, 1980 and
1990, and those in data for limited number of CBSAs.
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Figure F.1: Housing Prices
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(b) 1980

Figures F.1 show such comparison. Panel F.1a shows the comparison between predicted price
and limited data for 1990, where values are demeaned log price. The number of CBSAs is 386. The
dashed line shows a 45-degree line. This con�rms that the model prediction for housing prices is
closely related to the observation. The correlation between model inferred prices and limited data
for 1990 is 0.746. Panel F.1b displays those for 1980. The correlation becomes 0.568 for 331 CBSAs.

Figure F.2: E�ciency of Development and Housing Prices
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Figure F.2 shows the relationship between e�ciency of development for housing (ν̃i) inverted
in E.3 and housing prices for 1980 and 2010. Housing prices are demeaned log prices, and the line
shows a �tted polynomial �tted line. Intuitively, a large value of e�ciency for development leads
to lower housing prices ceteris paribus.
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Amenities

Using the local data, we obtain the local amenities for workers, Ωs
i,t. For each year, 2010, 2000

and 1990, Table F.1 reports the mean and standard deviation of the logarithm of the amenity vector
across di�erent sectors. We �nd the di�erence in their variations across industries, and the standard
deviation becomes large in the last period compared to the previous periods.

Table F.1: Summary of Local Amenities {Ωs
i,t}

2010 2000 1990
Industry Mean S.D. Mean S.D. Mean S.D.
0. Construction -0.004 1.054 0.028 0.840 -0.004 0.905
1. Food/Beverage/Tobacco 0.006 0.944 0.025 0.770 0.022 0.881
2. Textile/Apparel -0.047 1.082 -0.026 0.883 0.018 0.938
3. Wood/Paper/Printing 0.014 1.002 0.007 0.813 0.027 0.858
4. Chemical/Petro/Coal/ Nonmetalic 0.007 1.007 0.026 0.786 -0.002 0.831
5. Metal 0.036 0.989 0.058 0.805 0.028 0.864
6. Machinery 0.003 1.010 -0.033 0.823 0.014 0.879
7. Electric/Computer 0.013 0.998 -0.036 0.867 -0.032 0.928
8. Transport Equipment 0.026 0.916 -0.007 0.788 0.003 0.834
9. Miscellaneous Manufacture -0.006 1.029 0.004 0.827 0.035 0.841
10. Transportation Service -0.015 1.016 -0.043 0.885 -0.002 0.893
11. Wholesale Trade 0.023 0.928 -0.001 0.784 0.000 0.885
12. Retail -0.016 1.047 0.022 0.788 -0.008 0.913
13. FIRE 0.013 0.962 0.012 0.752 -0.024 0.895
14. Health Service -0.023 0.998 0.004 0.741 -0.001 0.843
15. Education and Legal 0.008 1.008 -0.019 0.852 -0.013 0.920
16. Communication Service -0.035 1.073 -0.008 0.856 -0.049 0.998
17. Other Services -0.005 1.006 -0.013 0.863 -0.012 0.934

Large value of amenity in location i and sector s (Ωs
i,t) is associated with large number of workers

of sector s. Therefore, the average of Ωs
i,t at the CBSA level is related to the total size of CBSA. To see

this, we compute geometric mean of local amenities, Ω̃i,t =
(∏

s Ωs
i,t

)1/|K|
for each CBSA. Figure

F.3 shows the positive relationship between the average of amenities and size of CBSA for 1990 and
2010. Table F.2 list the top 15 CBSAs showing highest value of average amenities for each period.

Table F.3 reports relationship between inverted average amenities and characteristics of CB-
SAs. In column (1), we include the average temperature of CBSAs in January and July, which are
constructed in Rappaport (2007). Column (2) includes annual precipitation from Rappaport (2007)
and the air quality index from U.S. Environmental Protection Agency. Column (3) adds a log of the
crime rate per 100,000 inhabitants in 2010 from Uniform Crime Reporting (UCR). Column (4) also
includes the share of commuters who take more than 30 minutes to the workplace. We con�rm that
the amenities are related to weather characteristics, but most inverted amenities are less related to
other characteristics. This is similar to �ndings in Glaeser et al. (2016).
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Figure F.3: Amenities and Total Employment Size
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Table F.3: Average Amenities and Characteristics

(1) (2) (3) (4)
ln Ω̃i,2010

Jan. Temperature 0.206** 0.244** 0.365** 0.479*
(0.0996) (0.106) (0.148) (0.275)

Jul. Temperature -1.073* -1.236** -1.281** -1.499
(0.546) (0.565) (0.646) (0.977)

Precipitation 0.00988 0.00582 -0.0228
(0.0817) (0.0882) (0.110)

Air Quality 0.185 0.230 0.297
(0.153) (0.164) (0.226)

Violent Crime -0.0006 0.0272
(0.103) (0.140)

Property Crime -0.0411 -0.0606
(0.183) (0.280)

Long Commuting 0.276
(0.852)

Observations 278 256 229 128
R2 0.015 0.027 0.037 0.080

Productivity

Step 2 in the subsection E.3 yields overall productivity (Zs
i,t) for past years: 1980, 1990, 2000 and

2010. In addition, we obtain trade patterns (πsin,t). Using them, we can compute TFP for each sector
and location as we discussed in the subsection C.1, ln δsi,t.

Figure F.4 and F.5 show the spatial distribution of log of TFP for two di�erent industries: electric
and computer industry and �nance, insurance and real estate (FIRE). In both maps, blue colored
CBSAs show lower TFP, while red colored CBSAs show higher TFP. We see large variation of TFP
across CBSAs for each industry, and it has shown the transition over periods.

From these maps, we can identify an increase in the spatial variation of TFP for the electric
and computer industry, along with the development of clusters in California and large metropolitan
areas on the East coast. We also see the di�erent evolution of TFP for FIRE. Over time, there has been
a remarkable increase in its level and variation. The industry has seen a signi�cant development
on the East coast (New York metropolitan area) and in large cities that are the hub of the �nancial
market in each region (Chicago, Dallas, Atlanta and Nashville) from 1980 to 1990. Then, these
clusters show persistent development over time, while some other inland cities also have seen a
rise in FIRE.

In Table F.4, we report the standard deviation of the measured TFP and inverted fundamental
productivity across CBSAs. The fundamental productivity shows the large spatial variation relative

136



to TFP. This implies that the covariance of the import penetration (πsii,t) and fundamental produc-
tivity is signi�cant. Intuitively, �rms in a city demand for own products more when the location
exhibits high fundamental productivity.

Table F.5 reports CBSAs that have shown largest TFP changes between di�erent years in Ta-
ble F.5. For each sector, we compute d ln δsi,t and we identify CBSAs that exhibited largest value of
d ln δsi,t during each period 1980-1990, 1990-2000 and 2000-2010.

Figure F.4: Geography of TFP: Electric and Computer Industry
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(d) 2010

Note: These maps show the measured TFP for the electric and computer industry in our calibration of the baseline economy.
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Figure F.5: Geography of TFP: Finance, Insurance and Real Estate
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Note: These maps show the measured TFP for the �nance, insurance and real estate (FIRE) industry in our calibration of the baseline economy.

Table F.4: Spatial Variation of TFP and Fundamental Productivity

1980 1990 2000 2010
Industry S.D.(δsi ) S.D.(Asi ) S.D.(δsi ) S.D.(Asi ) S.D.(δsi ) S.D.(Asi ) S.D.(δsi ) S.D.(Asi )
1. Food/Beverage/Tobacco .037 .050 .042 .102 .051 .098 .055 .103
2. Textile/Apparel .077 .115 .096 .102 .100 .136 .164 .225
3. Wood/Paper/Printing .040 .044 .044 .115 .053 .108 .059 .111
4. Chemical/Petro/Coal/Nonmetalic .035 .044 .038 .120 .052 .114 .057 .108
5. Metal .045 .053 .042 .114 .050 .110 .093 .144
6. Machinery .060 .107 .073 .105 .087 .108 .082 .111
7. Electric/Computer .087 .209 .112 .112 .159 .143 .178 .179
8. Transport Equipment .044 .060 .047 .111 .054 .094 .061 .097
9. Miscellaneous Manufacture .090 .131 .078 .111 .094 .121 .105 .124
10. Transportation Service .067 .207 .063 .159 .067 .150 .070 .155
11. Wholesale Trade .038 .038 .047 .153 .058 .148 .072 .156
12. Retail .045 .045 .059 .269 .068 .261 .060 .270
13. FIRE .054 .158 .082 .164 .102 .158 .103 .145
14. Health Service .055 .056 .066 .150 .060 .142 .068 .148
15. Education and Legal .081 .093 .097 .160 .100 .160 .110 .142
16. Communication Service .064 .615 .073 .120 .092 .157 .103 .191
17. Other Services .102 .183 .119 .128 .171 .156 .142 .141

Note: This table reports the standard deviation of measured TFP (δsi,t) and fundamental productivity (Asi,t) for any particular year and industry.
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Having TFP of each industry, we compute the TFP aggregated to large sector level: manufac-
turing and services. We compute TFP of aggregated level:

δKi,t =
∑
j∈K

Xj
i,t∑

k∈K X
k
i,t

δji,t (F.1)

where K is aggregate level of sector and Xj
i,t is value of production of sector j in location i. We

compute two aggregate sectors, the manufacturing sector and the services sector, for K . Figure F.6
show log of TFP of manufacturing sector in di�erent period: 1980, 1990, 2000 and 2010. Red colored
areas show high TFP for the manufacturing sector, while blue colored CBSAs exhibit low TFP for
the manufacturing sector. As we can see in the maps, cities around the Rust Belt show persistence
in their relatively high productivity in manufacturing, while the South and East coast areas show
growth in productivity in manufacturing. These di�erences across space re�ect the set of industries
in the manufacturing sector across di�erent cities.

Figure F.6: TFP of Manufacturing Sector
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In turn, �gure F.7 show the log of TFP of the service sector in di�erent periods. Red colored
areas show high TFP for the service sector, while blue colored CBSAs exhibit low TFP. We can see
the TFP growth over time in the U.S. economy with clustering. Throughout time, the TFP of services
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grows in large cities, while there are variations across regions. From 1980 to 1990, the services grow
in cities on the East coast and the West coast. The period 1990 to 2000 exhibits growth of TFP in the
South. In the last period, 2000-10, the persistent growth in these areas led to the country’s service
growth.

Figure F.7: TFP of Services Sector
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Fundamental productivity. The last step of inversion for fundamental environment in the econ-
omy is inversion of fundamental productivity (Asi,t) for each industry. Following the de�nition of
aggregated level TFP, we can also de�ne fundamental productivity aggregated at manufacturing
and service:

AKi,t =
∑
j∈K

Xj
i,t∑

k∈K X
k
i,t

Aji,t (F.2)

Figure F.8 show fundamental productivity of manufacturing sector for 1990, 2000 and 2010. The
hot (Red) colored CBSAs exhibit relatively high exogenous productivity, while cool (Blue) colored
CBSAs show relatively low exogenous productivity for the manufacturing sector. We can con�rm
the strong agglomeration forces when we compare these maps and previous maps of TFP. In the
Rust belt, we see lower fundamental productivity, which is o�set by the agglomeration of workers
in the manufacturing sector. This is important in our model since more concentration of workers
instead of exogenous advantage leads to persistent over generations in their job opportunity. Figure
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F.9 display the distribution of fundamental productivity for the services sector.

Figure F.8: Fundamental Productivity of Manufacturing Sector
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Figure F.9: Fundamental Productivity of Service Sector
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F.2 Welfare and upward mobility

Figure F.10 displays the distribution of welfare di�erences between individuals who have the same
origin of CBSA. Panel (a) shows the welfare di�erence between generation 2000 and 1990, and
panel (b) is for generation 2010 and 2000. Figures F.11 show the distribution of welfare changes.
Most locations exhibit a welfare decline from 2000 to 2010. This re�ects the lower wage growth and
higher increases in housing prices during the period, while the e�ects show large variation across
locations.

The income inequality in each local labor market is evaluated by coe�cient of variation (CV)
in income. For each year, Figure F.12 shows the distribution of CV in income for 395 CBSAs. The
horizontal axis is log of CV in income. In our theory, we assume that income of workers in location
i and sector s is proportional to their wage and distribution of surplus µi is same across workers in
the same location. Therefore, CV in income within CBSA is equal to that of wages.

Next, we see the upward mobility for individuals of each generation. Figure F.13 shows, for each
CBSA, the income percentile for generation t working in the CBSA and the income percentile for
generation t+ 1 who have origin in the CBSA.

For each CBSA, the horizontal axis shows the average income percentile of workers (i.e., old
generations) in the country; the vertical axis shows the average income percentile of individuals in
the next generation. The black colored ones show the relationship for generations 1980 and 1990,

143



Figure F.10: Welfare Di�erences
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Note: These �gures show the spatial pattern of welfare di�erences between generations.

Figure F.11: Distribution of Welfare Dynamics
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while red colored ones show that for 2000 and 2010. Each circle represents the size of generation
1980 and 2000 respectively, and the dashed line is the 45-degree line. Therefore, locations above the
reference line show upward mobility of the generation compared to their previous generation, while
those below the line are the places with relatively low upward mobility. From this �gure, we �nd that
large CBSAs exhibit lower upward mobility in 2000-10 compared to 1980-90, which leads to lower
upward mobility on average. As we discuss in the main text, we compute M̃i,t = (Mi,t/M̄t)× 25.
Figure F.14 show the distribution of the measure for two generations, 1990 and 2010. We �nd large
variation in the measure across locations for both generations.

We also see the relationship between local inequality and upward mobility. Figures F.15 show
such relationship for CBSAs in 1990, 2000 and 2010. In Figure F.15a displays the upward mobility
for generation 1990 on the vertical axis and CV of income in 1980 on the horizontal axis. Figure
F.15b and F.15c display the same relationships for generation 2000 and generation 2010 respectively.
They are related to the Great Gatsby curve in U.S., which shows the negative relationships between
local inequality and upward mobility for individuals who have the origin in the CBSA.
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Figure F.12: Distribution of Inequality in CBSA
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Lastly, we compare our measure and the measure by Chetty et al. (2014) that is computed by
exploiting the microdata of the U.S. samples. Figure F.16 shows the comparison between the model
predicted average income percentile for workers of generation 1990 and the absolute upward mo-
bility measure in Chetty et al. (2014) across locations. Their absolute upward mobility measures the
expected income rank for people born in 1980-82, which is based on income in 2011-12 relative to
that of their parents in 1996-2000 and de�nes the expected income rank for children from families
with below-median parents’ income in the national distribution. We use their measures at the MSA
level. In the �gure, we only use the CBSAs that correspond to their metropolitan areas. The size of
each circle shows the size of the location.

As we see in this �gure, the average income percentile for workers of generation 1990 is related
to their measure of upward mobility. This implies that there is a correlation between the aggregate
measures of the possibility of upward mobility for workers and the micro evidence across cities in
the U.S, with relatively large opportunities in large cities.

Figure F.17 displays comparison of our measures of upward mobility (M̃i,t) and the absolute
upward measure from Chetty et al. (2014). The correlations show that our measure of upward
income mobility based on the aggregate data and model structure is related to the results based on
the individual level data in the sample of Chetty et al. (2014) at the city level.
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Figure F.13: Average Income Percentile of Individuals
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Figure F.14: Distribution of Upward Mobility
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Figure F.15: Inequality and Upward Mobility
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Figure F.16: Average Income Percentile of Children and Measure of Absolute Upward Mobility by Chetty
et al. (2014)
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Figure F.17: Aggregate Average Upward Mobility and Measure of Absolute Upward Mobility by Chetty et al.
(2014)
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G Appendix: Counterfactuals

Spatial variation of fundamental productivity. We can consider another counterfactual for fun-
damental productivity: eliminating the variation of fundamental productivity di�erences on geog-

raphy. We set the fundamental productivity of industry j in period t such that Ãjt =
(∏

iA
j
i,t

)1/N

.
The average productivity grows over time, but the evolution is same across CBSAs.

Table G.6 reports the percentage change of aggregate TFP in the services sector and the change
of employment shares in the service sector from the baseline economy. For each year, 1990, 2000
and 2010, we show the mean, standard deviation, 25 percentile and 75 percentile values across 395
CBSAs in the U.S. economy. Units of all entries are percentages. The counterfactual undertakes
when productivity growth of all industries is uniform across CBSAs. We take the geometric mean
of fundamental productivities across locations for each sector in each period, and we assume that
all CBSAs experience the same rate of fundamental productivity growth. Compared to the baseline
economy, service sector TFP shows 7.6 percent higher in 1990 and reaches 15.1 percent in 2010
on average, and most CBSAs exhibit TFP growth in the service sector. This is consistent with the
implication of the agglomeration economies. Once we abstract the exogenous variation, industrial
locations are subject to strong agglomeration forces due to the spillover in productivity. Since the
strength of local agglomeration economies is strong for service sectors (γj), we can see an increase
of service sectors TFP and an increase of the standard deviation. The decline of employment share
is small relative to other counterfactuals about productivity shocks in main text, implying that the
bene�t of agglomerations counteracts the slow structural change.

In Table G.7, welfare di�erences are de�ned for between generation 2000 to 1990 and 2010 to
2000. We show the mean, standard deviation, 25 percentile and 75 percentile values of their changes
across 395 CBSAs in the U.S. economy. Units of all entries are percentages. The endogenous spillover
works for the welfare changes. Comparing the numbers to counterfactuals (i) to (iii) in the main
text, both average welfare change and change in standard deviation show signi�cant increases.

In Table G.8, we report percentage change of the intergenerational income mobility from the
baseline values. We �nd the positive e�ects on the upward mobility of workers. These �ndings
conclude that the spatial variation of productivity mitigates the polarization of locations in terms of
welfare dynamics and upward income mobility. Without such exogenous productivity di�erences,
individual consequences in terms of intergenerational income mobility are crucially shaped by the
place they have an origin, while they may bene�t on average.

Table G.6: Counterfactual Experiments – Impact on Service TFP and Change in Service Employment Share

1990 2000 2010
Mean SD 25prc 75prc Mean SD 25prc 75prc Mean SD 25prc 75prc

Service TFP 7.639 7.473 3.041 11.855 7.891 7.702 3.559 12.236 15.167 11.354 7.888 22.172
Service Emp. Share −10.195 5.274 −13.712 −6.698 −13.972 6.295 −18.615 −9.7854 −18.194 6.687 −22.77 −13.72
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Table G.7: Counterfactual Experiments – Impact on Welfare

1990− 2000 2000− 2010
Mean SD 25 prc 75 prc Mean SD 25 prc 75 prc

Welfare 0.09 4.232 −2.277 2.507 0.067 3.664 −2.179 2.234
Consumption 0.228 6.858 −3.65 3.735 0.229 6.772 −3.324 3.781
Migration Gain 0.136 5.176 −2.165 2.94 0.164 5.796 −2.898 2.829
Job Opportunity Gain 0.068 3.686 −1.818 2.349 0.06 3.454 −2.214 2.498

Table G.8: Counterfactual Experiments – Impact on Intergenerational Income Mobility

1990 2000 2010
Mean SD 25prc 75prc Mean SD 25prc 75prc Mean SD 25prc 75prc
−1.089 15.73 −9.982 10.029 6.399 44.263 −22.205 24.941 7.511 52.466 −26.36 29.747

H Appendix: Additional �gures

This section provides additional �gures that are related to the elements in our model.

Housing prices. The population distribution is uneven across cities and agglomerations change
the value of local amenities, which is re�ected in land and housing prices. Figure F.1 shows the
changes in the U.S. economy in the average and standard deviation of the house price index and its
relation to the employment structure.

The left-hand panel F.1a shows the change in the average house price index (HPI) and the stan-
dard deviation of HPI across MSAs. The black line (corresponding to the left axis) is the average HPI,
and the dashed line (corresponding to the right axis) is the standard deviation of HPI across MSAs.
The standard deviation decreased before 1995, while it increased over time until around 2007. This
dropped after the �nancial crisis, but it again increased in the last decade.

The right-hand panel F.1b con�rms that changes in housing prices are related to the initial em-
ployment patterns. We focus on the employment share of the manufacturing sector in the initial
period. In the 1980-90 period, housing prices were high in the place where services were concen-
trated and where structural transformation proceeded from manufacturing to services. During this
period, the structural transformation in a large number of cities drives the decline in the variation
of housing prices. In the later periods, 1990-2000 and 2010-2010, the negative relationship con�rms
that housing prices have grown in the service cities, where workers are concentrating. This creates
an increase in the variation of housing prices over time.

These variations in the housing prices and the underlying local amenities are essential margins
that account for the welfare disparity by place occurring in the structural transformation phase. In
the model, we introduce the di�erent values of amenities for workers by location and sector and de-
velopers that supply residential stocks. This allows us to see the variation of the price of residential
stocks across space and time and how it is related to the pattern of structural transformation.
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Figure F.1: Spatial Variation of Housing Prices in the U.S.
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(b) Housing Price and Employment Change

Note: Panel (a) shows the change in the average house price index (HPI) and the standard deviation of HPI across MSAs. The black line

(corresponding to the left axis) is the average HPI, and the dashed line (corresponding to the right axis) is the standard deviation of HPI across

MSAs. HPI is normalized to the �rst quarter of 1995; therefore, the standard deviation of HPI in the quarter is zero. Panel (b) shows the relationship

between the change in the log of HPI and the the manufacturing employment share. Di�erent lines show the polynomial �tted line across MSAs,

and the dotted lines are 95% con�dence intervals. The data source for HPI is Federal Housing Finance Agency (FHFA).

Expenditure. We consider the di�erent slopes of the Engel curve of consumers by geography and
sector as a driver of consumption-led growth in our model.

The idea behind this can be seen in Figure F.2 that shows (i) the relation between employment
pattern and income per capita across large U.S. states and (ii) the expenditure composition for large
MSAs after eliminating the trend and MSA speci�c factor.

Figure F.2: Spatial Variation of Expenditure
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Panel (a) shows the consumption expenditure ratio between services and goods and the log of
income per capita across the U.S. states (we drop two states, Hawaii and Alaska), and its comparison
between 2000 (red points) and 2018 (blue points). The data source is BEA personal consumption ex-
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penditure. Panel (b) shows the variation of expenditure share and size of consumption expenditure
across top MSAs in the U.S. The x-axis indicates de-meaned the expenditure share of service (includ-
ing housing) and housing in 1986 and 2015, respectively. The y-axis indicates the de-meaned log
of average consumption expenditure in 1986 and 2015. The data source is Consumer Expenditure
Survey in the U.S. We classify the expenditure into di�erent categories: goods, housing, transport,
and non-housing services. Goods include alcoholics, food, apparel and tabacco. Non-housing ser-
vice includes the rest of the expenditure after deducting other categories. It includes healthcare,
entertainment, personal care, reading, education and insurance. Service is de�ned as a sum of non-
housing service and housing. From these �gures, we can �nd the heterogeneity in expenditure
composition and its change over time. In our model, beyond the conventional channel of struc-
tural transformation, the expenditure shift leads to the dynamics of agglomeration and dispersion.
Therefore, the response of expenditure patterns to the policy shocks is an essential margin that
interacts with the dynamic gains from agglomeration.
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Chapter 2

How Useful are Quantitative Urban Models
for Cities in Developing Countries? Evidence
from Dhaka

1 Introduction

A new class of quantitative urban models allows us to capture the rich heterogeneity of real world
cities and evaluate the impact of di�erent policy interventions. With few exceptions these models
have been used to analyze cities in developed countries, where rich data at a �ne geographical scale
is available. However, the majority of the world’s urban population lives in cities in developing
countries for which we often only observe very limited data from censuses and other traditional
data sources. An obvious question is therefore how useful quantitative urban models are when it
comes to guiding policy analysis in cities in developing countries.

In this paper, we calibrate a quantitative urban model that builds closely on the literature fol-
lowing Ahlfeldt et al. (2015) on a typical developing country city, the city of Dhaka in Bangladesh.
Building on recent work by Kreindler and Miyauchi (2021), who use increasingly available mobile
phone data together with Google travel times to estimate commuting costs in Dhaka, we show how
their results can be combined with newly available satellite data on building heights to estimate the
key structural parameters of an urban model. With these estimates we show how the model can be
used to estimate the price of �oor space and land in each ward of Dhaka, which are prices that are
di�cult to reliably measure for many developing country cities. To illustrate how the model can be
used for policy analysis, we examine two model counterfactuals: (i) an increase in density of the
city modeled as an increase in the �oor space supply elasticity and (ii) a reduction in commuting
times in Dhaka due to a new radial road.

The main idea behind our approach of using satellite data on heights is that information on the
variation in quantities can be used to infer variation in prices. While it is often impossible to obtain
reliable data on land or �oor space prices for cities in developing countries, newly available data
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on building heights can be interpreted as the equilibrium outcome of the interplay between the
demand and supply of �oor space. Demand for �oor space is created by both �rms and residents in
each ward of the city. We combine these two sources of demand for �oor space with the help of our
model to estimate the demand curve for �oor space in each location, which allows us to infer both
the �oor space supply elasticity and the price of �oor space and land.

The paper presents six main results. First, we estimate a �oor space supply elasticity for Dhaka of
1.45 which is not far below the average elasticity for U.S. cities estimated by Saiz (2010). Second, we
estimate that land prices in Dhaka vary by nearly an order of magnitude across di�erent locations
in the city. Third, we estimate productivity and amenities in each ward of Dakha, which vary
in plausible ways, using information on land prices and model-derived wages. Fourth, we use a
simple cross-sectional moment condition to estimate an elasticity of productivity with respect to
the employment density of 0.045, which is in the middle of estimates for this parameter for cities
in developed countries. Fifth, we show that changes in density modeled as an increase in the �oor
space supply elasticity have a number of surprising implications, including that average commuting
times in the city remain the same despite a much larger agglomeration of workers and residents in
the center of the city. Finally, we show that a new road would attract both residents and employment
to wards in the immediate proximity of the new road at the expense of other parts of the city.

Our paper contributes to several strands of literature. First, we build on the recent urban lit-
erature following Ahlfeldt et al. (2015), which has developed quantitative models of the internal
organisation of cities. Recent contributions to this literature include Allen et al. (2015), Redding and
Rossi-Hansberg (2017), Monte et al. (2018), Owens III et al. (2020), Heblich et al. (2020), Tsivanidis
(2020). We use a benchmark model from the literature to demonstrate how the key parameters of
this model can be estimated in a data-scarce developing country context exploiting mobile phone
data and satellite data on building heights.

Second, our paper is closely related to the literature that estimates housing supply elasticities.
A seminal contribution to this literature is Saiz (2010) who estimates housing supply elasticities for
a large number of U.S. cities and shows how the substantial variation in housing supply elasticities
depends on features of the natural geography. Ahlfeldt and McMillen (2018) is a recent contribution
that examines the economics of extremely tall buildings and Ahlfeldt and Barr (2022) provides a syn-
thesis of this literature. Baum-Snow and Han (2021) is a recent contribution that estimates housing
supply elasticities across thousands of US census tracks using variation in labor demand shocks to
commuting destinations as a source of exogenous variation. Our main contribution relative to this
literature is to develop a methodology that uses satellite data on building heights in combination
with a quantitative urban model to estimate a housing supply elasticity in settings where housing
prices are not observed. Due to the widespread lack of reliable house price data, we know very little
about housing supply elasticities in developing country cities where the majority of the world’s
urban population resides.

Third, our paper contributes to the large literature that uses satellite data to understand eco-
nomic phenomena. See Donaldson and Storeygard (2016) for a recent survey of this literature.
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Henderson et al. (2011) is a prominent example of the large number of papers that uses night-lights
as a proxy for GDP. Burch�eld et al. (2006) is an early example of the literature that has used satellite
data to determine di�erent forms of land-use. There are only few economic applications of satellite
data on building heights with Henderson et al. (2021) being an important example. Our contribution
relative to this literature is to show how satellite data on building heights can be combined with a
quantitative urban model to estimate key parameters, such as the �oor space supply elasticity, and
infer �oor space and land prices, for which there are few reliable conventional data sources in many
developing countries.

Fourth, our paper is related to the growing literature using mobile phone data. Kreindler and
Miyauchi (2021) use data on the �ow of mobile phones between phone towers in Dhaka together
with Google driving times to estimate a gravity equation for commuting �ows. They use the des-
tination �xed e�ects of the gravity equation as an estimate of wages in di�erent parts of Dhaka.
Miyauchi et al. (2021) use �ne-grained GPS location data from mobile phone apps to estimate com-
muting and consumption trips in Tokyo and quantify the importance of consumption trips and trip
chaining for quantitative urban models. Allen et al. (2020) combine mobile phone data with credit
card transaction data for Barcelona to estimate the impact of tourism on di�erent parts of the city.
Our contribution to this literature is to demonstrate how mobile phone �ow data can be combined
with satellite height data to estimate key parameters of an urban model in data sparse settings.

The rest of the paper proceeds as follows. Section 2 presents the model. Section 3 describes
the data for Dhaka, and Section 4 discusses the calibration of the model and our estimates of key
structural parameters. Section 5 presents the results of the two policy counterfactuals. Section 6
concludes. The Appendix provides additional derivations and a detailed description of the data and
additional information on the calibration of the model.

2 Theoretical Framework

In this section, we outline a simple quantitative urban model, which builds closely on the literature
on quantitative urban models that has developed in the wake of Ahlfeldt et al. (2015). We consider
a city that consists of a discrete number of locations denoted by n, i ∈ S = {1, 2, · · · , N}.1 Each
location is endowed with a �xed amount of land, Ki. Locations di�er in terms of their productivity
and residential amenities, which can both be exogenously given or a function of externalities. A
transport network connects all locations and determines the commuting times between all locations
in the city.

The city is populated by a continuum of ex ante homogeneous workers with a total city pop-
ulation of L. Workers supply one unit of labor and consume both housing, which we refer to as
�oor space, and a freely tradable �nal good. The city is embedded in a wider economy that o�ers
a constant level of utility U to workers. Conditional on moving to the city, workers receive an in-

1We typically use the subscript n to refer to the place of residence of a worker and subscript i to refer to her place
of work. Where necessary, we also use the subscript k to denote residence locations and j for workplaces.
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dependent idiosyncratic taste shock for each combination of workplace and residence in the city.
Taking into account this taste shock, wages, house prices and the cost of commuting, workers make
optimal location choices in the city. Production of the freely tradable �nal good is carried out by
perfectly competitive �rms who use labor, �oor space and �nal goods as material. Their produc-
tivity depends on employment density. Free entry implies that all �rms make zero pro�ts. Floor
space is supplied by a competitive construction sector using both land and freely tradable, which
is available at a �xed price that we normalize to one. Firms and residents compete over �oor space
in each location of the city. Land in the city is owned by land owners, who, for simplicity, only
consume the freely tradable �nal good. The Appendix A presents the details of each element in the
model.

2.1 Workers

Workers in the city consume both the freely tradable �nal good and �oor space. We assume that
their preferences take the Cobb-Douglas form, so that the indirect utility for a worker ω residing in
location n and working in location i is:

Vni(ω) =
bni(ω)Bn

dni

wi
Pα
n Q

1−α
n

(1)

wherewi is the wage the worker earns at location i, Pn denotes the price of the �nal good in location
n, and Qn denotes the price of residential �oor space in location n. The worker faces a commuting
cost between locations n and i of dni ≥ 1. We assume that commuting costs are a constant elasticity
function of travel time, ln dni = δ ln tni, where tni is the time it takes to travel from location n to i
in minutes and δ is the elasticity of commuting costs with respect to travel time. Workers enjoy a
common residential amenity Bn in location n and receive an idiosyncratic shock to their utility for
each combination of workplace and residence in the city bni(ω). Intuitively, the indirect utility of
a worker depends positively on the real wage that the worker receives, which is the ratio of wages
to house price and the price of the �nal good; negatively on the commuting costs between her
residence and work location; and positively on the level of common and idiosyncratic amenities.

We assume that the idiosyncratic utility shocks bni(ω) are independent draws from a Fréchet
distribution with a cumulative probability distribution:

Prob
[
bni(ω) ≤ b

]
= e−b

−ε
, (2)

where ε > 1 is the shape parameter of the distribution which regulates the variance of the idiosyn-
cratic utility shock, with larger values of the shape parameter corresponding to a smaller variance
of the shocks. After observing the realizations for their idiosyncratic utility draw for each residence
and workplace combination in the city, workers choose the residence and workplace combination
that maximizes their indirect utility (1). As shown in the Appendix A this results in bilateral com-
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muting probabilities:

λni =
(Bnwi)

ε (dniP
α
nQ

1−α
n )

−ε∑
k∈S
∑

j∈S (Bkwj)
ε (dkjPα

k Q
1−α
k

)−ε . (3)

The numerator of this expression shows that the probability that a worker chooses a particular
combination of workplace and residence depends positively on the residential amenities and wages
of this combination and negatively on commuting costs, the price of residential �oor space and the
price of the �nal good. The attractiveness of any bilateral residence and workplace combination
is compared to all other possible such pairs (“multilateral resistance” in the trade literature) in the
denominator.

The model also yields a simple expression for the conditional probability of commuting from n

to i conditional on living in location n:

λni|n =
(wi/dni)

ε∑
j∈S(wj/dkj)ε

. (4)

The conditional commuting probability depends only on the wage earned at workplace i and the cost
of commuting to this workplace dni and is independent of the characteristics of a residence location,
such as its amenity levelBn or residential �oor space priceQn. The total number of residentsRn in
location n is equal the sum of the unconditional commuting probabilities (3) involving this residence
location times the total population of the city:

Rn =
∑
i∈S

λniL. (5)

Similarly the total number of workers Li in location i is equal to the sum of the unconditional
commuting probabilities (3) involving this workplace times the total population of the city:

Li =
∑
n∈S

λniL. (6)

The total population of the city (L) depends on the attractiveness of the city relative to the wider
economy, which o�ers reservation level of utility U. We assume that labor supply to the city is a
simple constant elasticity function:

L =

(
Ū

U

)σ
L̄, σ > 1 (7)

where L̄ is a constant, σ is the elasticity of labor supply to the city and Ū is the expected utility of
moving to the city. This expected utility takes the form:

Ū = γ̄

(∑
n∈S

∑
i∈S

(Bnwi)
ε (dniPα

nQ
1−α
n

)−ε)1/ε

, (8)
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where γ̄ = Γ
(
ε−1
ε

)
is the value of the Gamma function and the expectation is taken over the id-

iosyncratic utility shocks to each combination of residence and workplace, which are only revealed
once a worker has decided to move to the city.2 For large values of σ, even small increases in the
expected utility of moving to the city relative to the utility o�ered by the wider economy would
result in large in�ows of workers. In contrast, as σ approaches zero the population of the city is
constant.

2.2 Production

In each location of the city, perfectly competitive �rms produce a composite �nal good using labor,
�oor space and intermediate inputs. Their production function takes the Cobb-Douglas form:

Yi = Ai(Li)
β(HB

i )γ(Xi)
1−β−γ, β, γ ∈ (0, 1), (9)

where Li is labor input in location i, HB
i is �oor space used for production in location i, and Xi

denotes �nal goods used as an intermediate input. The expenditure share Ai is a Hicks-neutral
productivity shifter that determines the productivity of location i. We assume that the productivity
of a location can depend both on externalities and fundamental factors, such as access to a river. In
particular, we assume that:

Ai = ai

(
Li
Ki

)χ
, (10)

where the fundamental advantage in the overall productivity ai is exogenous. In this speci�cation
overall productivity is assumed to increases with the employment density in a location, Li/Ki, and
χ is the elasticity of productivity with respect to employment density and regulated the strength
of agglomeration forces in production. As the spatial units in our analysis are relatively large, we
abstract from externalities that might spillover from other locations in the city.

Cost minimization of �rms combined with free entry and zero pro�ts implies the following
relationship between input prices and the output price of �rms in each location i:

Pi =
ψ

Ai
wβi q

γ
i , (11)

where qi is the price of commercial �oor space and ψ collects a number of constants.3 We assume
that the �nal good is freely tradable in the city and hence its price is the same everywhere, and we
use it as the numeraire.

2This timing assumption implies that workers move to the city based on the expected value of living in the city and
hence might prefer to leave the city once their utility draws are revealed. Heblich et al. (2020) relax this assumption
and consider a world where workers choose from all locations in the economy simultaneously.

3Speci�cally, the constant is: ψ = ββγγ(1− β − γ)1−β−γ
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2.3 Developers

There are a large number of perfectly competitive developers who combine land and freely tradable
capital to produce �oor space. Location n in the city is endowed with Kn units of land. In each
location, we assume that Tn units of land are available for construction and treat Tn as a policy
parameter, which depends on the number of parks, for example, and other open spaces in the city.4

The �oor space produced by developers in each location can be used by residents or �rms. We
assume that there are no distortions in the allocation of �oor space between these two uses and
therefore arbitrage requires that the price of residential �oor space (Qn) and commercial �oor space
(qn) is the same in each location, Qn = qn.5

The construction costs of a building of height hn on one unit of land is ξ(hn) = κnhn
ν , where we

assume that ν > 1 and κn is a cost shifter that we allow to vary across locations.6 When developers
maximize pro�ts πn = Qnhn − ξ(hn) the height of buildings in location n is:

hn =

(
Qn

νκn

) 1
ν−1

. (12)

This �oor space supply function implies that variation in the height of buildings in the city re�ects
both the variation of �oor space prices and variation in the cost shifters κn across locations. As we
discuss in detail in Section 4.3, we treat these unobserved cost shifters as structural residuals in our
empirical analysis. Note that (12) implies that the elasticity of building height with respect to the
common price of �oor space (Qn) is 1/(ν − 1). The total amount of �oor space Hn in a location is
the height of buildings multiplied with the area available for construction, i.e. Hn = hnTn.7 With a
large number of developers competing for land in each location, the price of a unit of land rn will
be equal to the equilibrium pro�ts π∗n that developers make by developing a unit of land:

rn = π∗n = κn(ν − 1)

(
Qn

νκn

) ν
ν−1

, (13)

which implies that total land rents received by land owners in location n are therefore rnTn.

4It is natural to assume that the available land area for development is smaller than the total land endowment:
Tn ≤ Kn. In our data, the size of the developed land area is smaller than the total area size in every ward.

5The assumption that the price of residential and commercial �oor space is equalized relies on there being no lo-
cations in which �oor space is either entirely used by residents or �rms. For applications in developing countries,
where we are typically dealing with larger spatial units, such specialization is empirically unlikely and we see both
employment and residents in all locations of Dhaka in our empirical application.

6As shown in the Appendix A.3, this cost function is derived from a Cobb-Douglas production function using de-
veloped land and capital. Combes et al. (2021) have provided evidence for the Cobb-Douglas production function of
housing.

7For ease of exposition we refer toHn as the amount of �oor space in a location even though it is strictly the volume
of housing. We measure the volume of housing in cubic meters in the calibration below. If we assume that �oors are
typically 3 m high including the �oor space, then dividing the estimates of the volume of housing by a factor of three
re-scales this volume measure to a measure of �oor space.
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2.4 Commuter and Floor Space Clearing

To close the model, we introduce two market clearing conditions. Commuter market clearing re-
quires that the number of workers that are working in location i is equal to the number of workers
commuting to this location in equilibrium:

Li =
∑
n∈S

λni|nRn (14)

The right-hand side of this equation is the product of the residential population in each location n
of the city with the conditional commuting probability (4) from residence n to workplace i.

The second market clearing condition is a �oor space clearing condition:

(1− α)w̄nRn

Qn

+
γ

β

wnLn
Qn

= Hn (15)

The �rst term on the left-hand side is demand for �oor space from residents, while the second term
is demand for �oor space from �rms. The sum of these two sources of demand has to be equal to
the supply of �oor space Hn. Commercial demand for �oor space is a function of the wage bill paid
by �rms in this location. Demand for �oor space from residents depends on the average income
of residents w̄n, which is a function of their commuting choices and wages in the entire city. In
particular, average labor income of the residents in location n is w̄n =

∑
i∈S λni|nwi where λni|n is

given in (4).

2.5 City Equilibrium and Model Inversion

We are now in a position to de�ne a competitive equilibrium of the city economy:

DEFINITION 1 (City Equilibrium) Given the set of structural parameters of the city (α, β, γ, ε, δ, ν,
χ, σ), a level of utility in the wider economy (U), the constant (L̄) in the labor supply function (7) and
the constants (κn) in the �oor space supply equation (12), and fundamentals in each location of the city
(a,B, T ), and a matrix of travel times between each location in the city (t), the general equilibrium of
a city is characterized by the total city populationL and vectors of wages (w), land rents (r), �oor space
prices (Q) residential populations (R), employment at each workplace (L), total �oor spaces (H) that
are determined by a system of seven equations: utility maximization and optimal residential choice of
by workers (5); commuter market clearing (14); zero pro�t condition in production (11); supply of �oor
space (12); zero pro�ts of developers (13); �oor space market clearing (15) and labor supply to the city
(7).

We will use this de�nition of the competitive equilibrium of the city when we compute model
counterfactuals to evaluate the impact of a particular policy. When we do such counterfactual anal-
ysis, the multiplicity of equilibria becomes a problem. Intuitively, workers may be concentrated in
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the location just because their clustering is self-ful�lling. Then, an alternative equilibrium could ex-
ist where workers are concentrated in another location. As we extensively discuss in the Appendix
B, we establish the existence and uniqueness of the competitive equilibrium in our model.

PROPOSITION 1 (Existence and Uniqueness) (i) The competitive equilibrium exists. (ii) When γ =

0, the su�cient condition for the unique competitive equilibrium is χ ≤ β
2ε+1

. (iii) In other cases, we
may have a multiplicity of equilibria.

The �rst part states that the existence of the competitive equilibrium is guaranteed for any pa-
rameters value and positive values of fundamentals in the model. The second statement implies
that, when there is no land input in production, we have a unique equilibrium if either the ag-
glomeration force (χ) is su�ciently small or the value of the parameter of Fréchet distribution (ε) is
su�ciently small, which implies that there is a large variation in the idiosyncratic shocks to location
choices. In general, however, we may have a multiplicity of equilibria. The su�cient condition for
the uniqueness in the general case is the gross substitute property of the excess demand function
for land, which are more likely to hold when congestion forces dominate the agglomeration forces
– the local spillover is small, the parameter of Fréchet distribution is large, expenditure share on
�oor space (1− α) is large, and cost share on �oor space (γ) is large.

To calibrate the model to data, we use a procedure of model inversion. The basic idea is to use
the observed values of endogenous variables together with the structure of the model to infer other
endogenous variables and the fundamental productivity (Ai) and residential amenities (Bn) of each
location in the city. This approach is formalized in the following proposition, which builds closely
on similar results in Ahlfeldt et al. (2015):

PROPOSITION 2 (Inversion) Conditional on the city-wide structural parameters (α, β, γ, ε, δ, ν),
data on employment (L), residents (R) and built-up area (T ) in each location of the city, and travel
times (t) between all locations in the city, we can solve for unique values of all other endogenous vari-
ables and the unobserved productivity (A) and residential amenities (B) in each location. Furthermore,
given an elasticity of productivity with respect to density (χ) and the land area of each location (K), we
can uniquely decompose productivity (A) into the contribution of spillovers and unobserved location
fundamentals (a).

A proof of this proposition is contained in the Appendix C. This proposition implies that we
can solve for all other endogenous variables and obtain unique values for the unobserved vector of
productivity (A) and residential amenities in each location (B) if we observe level of employment,
the number of residents in each location and travel times between each of these locations. Note that
this result holds also if we are in the parameter range where the model has multiple equilibria.

3 Data for Dhaka

In this section, we describe the cross-section of data required for the calibration of the model. The
basic population and employment data have previously been used in Bird et al. (2018) and Bird and
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Venables (2019). In addition to this data we use a number of additional types of data to inform key
parameters of the model. In particular, the cell phone data exploited in Kreindler and Miyauchi
(2021) informs our choice of the commuting parameters of the model, and the new satellite data on
buildings enables us to estimate the �oor space supply elasticity. Additional information about the
data that we are using is contained in Appendix D.

Area and spatial units. The �rst component of our data is a de�nition of the metropolitan area
of Dhaka and a partition of this area into a set of locations. We follow Bird and Venables (2019)
in our de�nition of the metropolitan area of Dhaka. They partition the metropolitan area into 266
wards (“unions”) which are based on the Bangladesh Population and Housing Census 2011. The
total area of the city is approximately 1465 km2, and the size of the wards varies considerably. The
central part of Dhaka is divided into many smaller wards, while wards on the outskirts of Dhaka are
typically much larger. The smallest ward is just 0.023 km2, while the largest ward is 48.37 km2, and
the average size is 5.51 km2. The area covered by this de�nition of Dhaka should contain most of the
functional city of Dhaka, as many of the peripheral wards have very low densities of employment
and residents.8

Figure 3.1: Population and Employment Density in Dhaka

Population Density
< 5.0
5.1 - 10.0
10.1 - 20.0
20.1 - 30.0
30.1 - 50.0
50.1 - 80.0
80.1 - 120.0
120.1 - 180.0
180.1 - 250.0
> 250

(a) Population Density (person per hectare)

Employment Density
< 10.0
10.1 - 30.0
30.1 - 60.0
60.1 - 100.0
100.1 - 150.0
150.1 - 250.0
250.1 - 350.0
350.1 - 500.0
500.1 - 750.0
> 750

(b) Employment Density (person per hectare)

Note: This �gure shows the population and employment density across 264 wards of Dhaka. Density is expressed as
persons per hectare (ha = 0.01km2). The population data comes from the 2010 Population Census for Dhaka while
the employment data comes from the 2013 Employment Census for Dhaka.

8The spatial disaggregation of Dhaka that we are using should be su�ciently detailed for most interesting policy
questions. A disaggregation of the city into smaller spatial units quickly increases the computational cost of the model
and may also increase the measurement error in the data for a developing country city.
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Population and employment. Dhaka has experienced rapid population growth since the partition
of India in 1947, and it continues to attract new population at a rapid pace. The second component
of our data is counts of employment at workplace, which we often refer to as employment for sim-
plicity, and employment at the place of residence, which we often refer to as residents for simplicity,
for each location in the city. We use data on the population from the 2010 Population Census while
the employment data comes from the 2013 Employment Census and both of these datasets have
previously been used in Bird and Venables (2019). To convert population counts to employment at
the place of residence, the population data is scaled down with a constant labor force participation
rate. In this scaling, we implicitly assume that everyone working in the city also has a place of
residence in the city and does not commute to work across the outer boundary of our de�nition
of Dhaka. Given the low density of the districts on the periphery of our de�nition of Dhaka this
should be a plausible approximation.9

Figure 3.1 shows the density of population and employment across the wards of Dhaka.10 The
�gure shows that both population and employment density vary sharply across locations within the
city. In line with data for other cities, the variation in employment density is substantially larger
than the variation in population density. Employment density is highest in the old center of Dhaka
and there is also an employment spike in the south of the city close to the harbor area. Population
density is highest in areas that are surrounding the highest employment density wards. Figure D.2
in the Appendix shows the variation in population density and employment density as a function

of distance from the center of the city. These �gures show that close to the city center employment
density exceeds population density.

Satellite data on heights and built-up area. The third component of our data is satellite data
on the built-up area and the average height of buildings in all wards of Dhaka from the German
Aerospace Center (DLR). The data is based on their World Settlement Footprint 3D product (WSF-
3D). The original satellite data, the 12m WSF-3D layer, provides information about the height of
all buildings in 12 meter × 12 meter pixels. Using the height data of all 12 meter WSD-3D pixels
that belong to a building structure in a ward, the average height of buildings at the ward level is
computed. We also obtain the total built-up area within the ward. Based on these two measures, the
total volume of all buildings within a ward is the product of the total built-up area and the average
building height in the ward. Figure 3.2 shows both the built-up area and average height estimated
by the DLR for each ward of Dhaka. The �gure shows substantial variation both in the height of
buildings and the share of the built-up land area. In large parts of the periphery of the metropolitan

9We use 264 of the 266 wards in our analysis as one very small ward in the center has neither employment nor
population and one ward on the periphery of Dhaka has inconsistent data on built-up area, employment and population.

10The population, employment and built-up area data for a small ward on the north-east fringe of the metropolitan
area of Dhaka has a ratio of employment and population to built-up area that is two orders of magnitude higher than in
any other ward. We therefore exclude this ward, which has low levels of population and employment, from the analysis
and show this ward as a white area on all maps. There is also a very small ward in the center of Dhaka which has
neither employment nor population and this area is also shown as a white area on the maps. This leaves us with 264
wards for our analysis.
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Figure 3.2: Satellite Data on Build up Area and Height of Buildings

Built Up Share
< 0.06

0.07 - 0.11

0.12 - 0.17

0.18 - 0.28

0.29 - 0.36

0.37 - 0.43

0.44 - 0.50

0.51 - 0.56

0.57 - 0.75

> 0.76 

(a) Share of Developed Land in the DLR data

Heightdata
< 3.5

3.6 - 4.5

4.6 - 5.5

5.6 - 6.5

6.6 - 7.5

7.6 - 8.5

8.6 - 10.0

10.1 - 11.0

11.1 - 12.0

> 12.1

(b) Average Height in the DLR data (meters)

Note: This �gure shows the share land in each ward that is built-up and the average height of building as estimated by
the DLR from satellite images.

area of Dhaka, less than 6 percent of the land area of wards is covered by buildings, while in several
central wards over three-quarters of the land area is built-up. The variation in average heights is
similarly striking, with average heights of less than 5.5 meters in much of the metropolitan area
with much larger heights of buildings in the very center of Dhaka. Building heights at the 90th
percentile of the height distribution are 11.8 meters, while those at the 10th percentile are just 3.6
meters.

Commuting time The fourth component of our data is information on travel times between each
ward in our data. To estimate these travel times, we use the data of Kreindler and Miyauchi (2021),
who compute the car travel times between 1,859 cell phone towers in Dhaka using the Google Maps
API.11 We have merged the locations of these mobile phone towers into our wards and computed the
travel time between wards n and i as the average travel time across all pairs of mobile phone towers
in these two wards. There are a small number of wards that do not contain any cell phone towers.
For these wards, we have selected the three closest cell phone towers to the ward and use these to
compute travel times to and from these wards. Finally, we need to make an assumption about the
own travel time in each ward and assume that it is 5 minutes. As discussed further in subsection 4.2
below, this assumption of travel times generates an average own commuting probability of 0.366 in
the baseline calibration, which is in line with the own commuting probability in the 2001 census for

11We are very grateful to Gabriel Kreindler and Yuhei Miyauchi for sharing this data along with the coordinates of
the cell phone towers with us.
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the Greater London Area using local authorities as to the spatial units. If data for own commuting
�ows in each ward in Dhaka was available, this information could be used to calibrate a di�erent
own travel time for each ward in Dhaka.12

Cell phone data. Kreindler and Miyauchi (2021) use cell phone data for Dhaka to infer commuting
�ows between di�erent mobile phone masts in Dhaka. They use this data together with the data on
car travel times discussed above to estimate the spatial decay of commuting �ows in Dhaka. They
also report a number of checks on the representativeness of the cell phone commuting �ows. We
use the results of their analysis to specify the structural parameters governing commuting behavior
as discussed in detail in subsection 4.2 below.

4 Calibrating the Model on Dhaka

In this section, we discuss how we calibrate the model using our data for Dhaka. In Section 4.1 we
summarize the key structural parameters of the model and provide an intuitive discussion of what
data we are using to inform the value of each of these parameters. The following subsections go
step-by-step through the calibration of the model. In Section 4.2 we discuss how the estimates of
Kreindler and Miyauchi (2021) for commuting costs in Dhaka using cell phone data can be used
to estimate wages in every ward of Dhaka in our model. These wage estimates are combined in
Section 4.3 with our satellite data to estimate the elasticity of �oor space supply in Dhaka. The
estimated �oor space supply elasticity is used in Section 4.4 to estimate �oor space and land prices
in each ward of Dhaka. The estimated wage and �oor space prices are used in Section 4.5 to invert
the model and back out the level of productivity and residential amenities in each ward of Dhaka.
Finally, in Section 4.6 we use a simple moment condition to estimate the elasticity of productivity
with respect to employment density. The Appendix C contains additional information on each step
of the calibration process.

4.1 Overview of the Calibration

The urban model developed in Section 2 has a total of 8 structural parameters, which are summarized
in Table 4.1 below. These parameters can be grouped into four groups of parameters. The �rst group
contains the elasticity of commuting costs with respect to travel time (δ), the shape parameter of
the Fréchet shocks to location choices (ε) and the elasticity of the labor supply to the city (σ). The
product of the �rst two parameters determines how quickly commuting �ows in the city fall with
travel time. Kreindler and Miyauchi (2021) estimate how quickly commuting �ows decline with
travel time in Dhaka using commuting �ows observed in mobile phone movements between cell
phone towers. They combine this with evidence on the spatial variation in wages in Dhaka to
decompose the overall e�ect of travel time on commuting �ows into the contribution of δ and ε.

12In settings where no reliable census data on employment and residents population is available the cell phone �ow
data used by Kreindler and Miyauchi (2021) and others is an alternative source to estimate such data.
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Table 4.1: Structural Parameters of the Model

Parameter De�nition
δ Elasticity of commuting cost with respect to travel time
ε Fréchet shape parameter of the idiosyncratic taste shocks to location choices
σ Elasticity of labor supply to the city with respect to average utility in the city
ν Elasticity of construction costs with respect to building height
χ Elasticity of productivity with respect to employment density
α Consumer spend share α on the tradeable good and 1− α on �oor space
β Firm expenditure share on labor
γ Firm expenditure share on �oor space

Note: This table summarizes the structural parameters of the model presented in Section 2.

The elasticity of labor supply to the city captures in a simple reduced form way how open the city
is to migration from the wider economy. We set this parameter to central estimates of the spatial
labor supply elasticity in the literature.

The second key structural parameter of the model is the elasticity of building costs with respect
to height ν, which implies a �oor space supply elasticity of 1/(ν − 1). We show how this elasticity
can be identi�ed using the information on the volume of buildings in each ward of the city from our
satellite data. Intuitively, information on quantities, such as the volume of buildings, can be used
to infer prices given the structure of demand for �oor space by residents and �rms in the model.
The �oor space supply elasticity is the key model parameter that determines whether an increase
in demand for �oor space leads to higher buildings or whether a city remains low rise and sprawls
further out. While there are a number of estimates of the �oor space supply elasticity of cities in
developed countries, we know little about �oor space supply elasticities in the developing world
due to the limited availability of reliable price data in these settings.

The third key structural parameter of the model is the elasticity of productivity with respect to
employment density (χ), which governs the strength of agglomeration forces in production in the
city. If these agglomeration forces are strong, employment in the city will cluster more strongly in
the center of the city. We estimate this elasticity using the distribution of productivity in Dhaka
implied by the model together with a simple moment condition. We discuss the advantages and
disadvantages of this approach relative to the existing literature in Section 4.6.

The �nal group of structural parameters is the expenditure share of consumers on the tradable
good (α) and �oor space (1−α) and the expenditure share of �rms on labor (β), �oor space (γ) and
�nal good used as an intermediate input (1 − β − γ). To set the expenditure share of consumers
on housing, we use information from a household survey for Dhaka. There is no direct evidence of
�rm expenditure shares for Dhaka and we set the parameters of the production function to central
parameters in the literature.

In the following subsections, we exploit the recursive structure of the model to estimate the
structural parameters of the model in several steps. Having estimated subsets of the structural
parameters, we can use these estimates to infer the values of key endogenous variables such as
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wages or �oor space prices. Finally, we use estimated wages and �oor space prices together with the
structural parameters of the model to infer productivity and residential amenities in each location
of the city.

4.2 Commuting Flows and Implied Wages

The �rst step of the calibration uses the commuting market clearing condition (14) to solve for
wages that are consistent with a competitive equilibrium in the model. This approach was �rst used
in Ahlfeldt et al. (2015). Combining the commuting market clearing condition with the conditional
commuting probabilities in (4) and the assumed relationship between commuting costs and travel
time, dni = (tni)

δ , results in:

Li =
∑
n∈S

wεi t
−εδ
ni∑

j∈S w
ε
j t
−εδ
nj

Rn (16)

In our data, we observe both employment in each location (Li), residents in each location (Rn)
and travel times between each location of the city (tni). We can therefore solve this system of N
equations for a unique vector of wages (wi) in each employment location i if we have values for the
two structural parameters governing commuting �ows: the shape parameter of Fréchet distribution
of location tastes (ε) and the elasticity of commuting costs with respect to time (δ). Intuitively,
there is a unique wage vector (up to a multiplicative scalar) that generates commuting �ows from
each place of residence so that the number of commuters arriving at each work location equals the
number of workers that we observe working at this destination in the data.

Kreindler and Miyauchi (2021) use commuting �ows observed in mobile phone data for Dhaka
to estimate an elasticity of commuting �ows with respect to the travel time of approximately -2.5.
They decompose this overall e�ect of travel time on commuting �ows using the information on
the dispersion of wages in Dhaka into a Fréchet shape parameter of approximately 8.0 and the
elasticity of commuting costs with respect to the travel time of 0.31. Using these estimates, �gure
D.4 in the Appendix shows our estimated wage distribution in Dhaka. In the estimated wages, the
ratio between the 95th percentile and the 5th percentile is around 1.53 and the interquartile range is
[1.08, 0.92]. Using the estimated wages, we can also compute income per capita for each residential
place (w̄n). Figure D.6 in the Appendix shows that locations close to concentrations of employment
have relatively high income per capita.13

13Kreindler and Miyauchi (2021) interpret the destination �xed e�ects of their commuting gravity estimates as the
wage in each location in Dhaka. As their spatial units are not identical to ours, we cannot directly compare their wage
estimates to ours. While closely related, both approaches do not necessarily result in the same wage estimates even with
identical spatial units. Intuitively, their approach uses actual commuting �ows, including bilaterals with zero �ows, to
estimate a gravity regression. Our approach, which is based on Ahlfeldt et al. (2015), imposes a gravity structure on
commuting �ows and uses this assumption to solve for wages that are consistent with the distribution of residents and
employment.
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4.3 Estimating the Floor Space Supply Elasticity

The key innovation of our calibration approach is to use the satellite data on the volume of buildings
in each location to estimate the �oor space supply elasticity in Dhaka. In a second step, we use the
estimated �oor space supply elasticity to solve for �oor space and land prices in each location of
the city. Our starting point to estimate the �oor space supply elasticity is to combine the �oor space
clearing condition (15) with the housing supply function (12), taking into account that Hn = hnTn,
which yields:

(1− α)w̄nRn

Qn

+
γ

β

wnLn
Qn

=

(
Qn

νκn

) 1
ν−1

Tn. (17)

The �rst term on the left-hand side of (17) captures demand for �oor space from residents, which
depends on the number of residents (Rn), the average residential income in this location (w̄n), the
price of �oor space (Qn) and the share of income that residents spend on �oor space (1− α). Using
data from the 2016 Household Income and Expenditure Survey (HIES) for Bangladesh, we set 1−α
to be 0.25, which is approximately the sum of average household expenditure on housing and rent
(17.25%), household e�ects (3.03%) and lighting and fuel (5.02%) reported in this survey.14

The second term on the left-hand side of (17) is demand for �oor space by �rms, which is a
function of the wage bill in a location (wnLn) and the parameters β and γ, which are the expenditure
share of �rms on labor and �oor space respectively, and the price of �oor space (Qn). We assume
that the share of labor in �rm expenditure is 0.6 and the share of expenditure on �oor space is 0.2.
This implies that the share of expenditure on the �nal good as an intermediate input is 0.2, which
is broadly in line with values reported in Table 5 of Valentinyi and Berthold (2008) for the United
States. The right-hand side of (17) is the supply of �oor space in the model, which is a function of
the build up areas (Tn), the �oor space supply elasticity (1/(ν−1)), the price of �oor space (Qn) and
the constant of the housing supply function (κn), which we allow for varying across locations. We
treat the built-up area in each location Tn as an exogenous parameter that we take from the satellite
data, but in a richer model, this parameter could be endogenously determined.

To estimate the �oor space supply elasticity, we use a moment condition on the location speci�c
intercept of the housing supply function κn, which we treat as structural residuals of the model.
Treating κn as a structural residual implies that the model can exactly match the observed distri-
bution of building heights across wards of Dhaka. In particular, by substituting the inverse of the
housing supply function (12) into the market clearing condition for �oor spaces (17) and replacing
the predicted height (hn) with the observed height (h∗n) in the data, we can express the structural

14Heblich et al. (2020) use a related approach in which they multiply (15) with Qn and combine this equation with
data on the value of land and buildings in each borough of London, i.e., the product of the price of �oors space (Qn) and
the volume of buildings (Hn), and use this to estimate wages in each borough of London. While they do not observe
the price and volume of buildings separately, we directly observe the volume of buildings in each location from satellite
data and use this information to estimate the �oor space supply elasticity (1/(ν − 1)) and the price of �oor space in
each location (Qn).
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residual in each location κn as:

lnκn = −ν lnh∗n − ln ν − lnTn + ln

[
(1− α)wnRn +

γ

β
wnLn

]
. (18)

The key idea behind our moment condition to estimate the �oor space supply elasticity is to
minimize the contribution that variation in the structural residuals (κn) makes to explaining the
observed height distribution of Dhaka. In particular, we require that across 10 density deciles the
contribution of the structural residuals towards explaining the observed height distribution is mini-
mized. We compute these density deciles by adding up the total employment and residents in a ward
and divide this sum by the area of the ward. These density deciles are a �exible way of capturing
the distance of a ward to the center of Dhaka without having to impose an arbitrary location as the
center of the city. Formally, we require that:

E
[
In(k)× (lnκn − lnκ)

]
= 0, (19)

where In(k) are indicator variables for each of the k grid cells and lnκ is the average of the logarithm
of the structural residuals. Intuitively, this moment condition requires that variation in building
heights across our grid cells is explained by variation in the demand for �oor space rather than
variation in the average level of the structural residuals κn. In other words, we assume that variation
in average heights across these 10 grid cells is due to shifts in the demand for �oor space rather than
shifts in the supply curve for �oor space due to variation in the average value of κn across these
grid cells.

We think that this identifying assumption has at least three attractive features. First, the iden-
tifying variation in demand for �oor space implied by our model is very large. Using the left-hand
side of (17), the demand for �oor space at the 90th percentile of wards is more than 10 times larger
than the demand at the 10th percentile of wards. The vast majority of this substantial variation is
due to the highly uneven distribution of employment and population across wards of Dhaka rather
than spatial variation in our estimated wages. Second, essentially using the height gradient of the
city, which has developed over many decades of construction activity, to identify the �oor space
supply elasticity ensures that we capture a long-run supply elasticity, and do not rely on a small
source of variation that is also often only observed for short time periods. Third, Dhaka is not
known for possessing well-enforced urban planning that is able to enforce planning restrictions
that vary substantially across locations in Dhaka. This suggests that the large di�erences in the
height of buildings are primarily driven by di�erences in demand rather than shifts in the supply
curve due to regulatory di�erences that are correlated with our grid cells.

Using this moment condition, we estimate an elasticity of building costs with respect to building
height (ν) of 1.69, which implies a �oor space supply elasticity (1/(ν − 1)) of 1.45. This elasticity is
somewhat smaller than the average housing supply elasticity that Saiz (2010) estimates across US
cities but larger than his estimates for supply constrained large cities, such as San Francisco and
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New York.15 It is important to bear in mind that our estimated �oor space supply elasticity captures
both technological and regulatory factors. The �oor space supply elasticity in Dhaka could be lower
than the US average due to higher costs of building tall structures in developing countries such as
Bangladesh or due to restrictions on the supply of tall structures in Dhaka. We return to this question
when we consider model counterfactuals in Section 5 below.

Figure 4.3: Examining the Housing Supply Moment Condition
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Note: Each observation is the logarithm of the estimated cost shifter of the �oor space supply function in a ward (κn)
minus the overall average for this parameter across all wards. The red line is the average value of this di�erence in
each of the 10 cells used by the moment condition. Total density is the sum of employment and residents divided by
the overall area of a ward.

Figure 4.3 examines the �t of our housing supply model, i.e. the ability of the model to explain
the variation of heights in Dhaka with a constant �oor space supply elasticity. Each point on the
graph is the logarithm of the estimated cost shifter of the �oor space supply function (κn) in a ward
minus the overall average for this parameter across all wards. The red line is the average value of this
di�erence in each of our 10 grid cells. If the red line was a straight line at zero, this would imply that
our model can perfectly explain the height variation in Dhaka across grid cells with our constant
elasticity �oor space supply function, without any variation in the average value of the structural
residuals across grid cells. In addition, if all points were to lie on top of this red line, this would
imply that the constant �oor space supply elasticity can also perfectly explain all the variation in
building heights within each grid cell, which is highly unlikely given the many idiosyncratic factors
not captured by our model that could in�uence the average height of buildings in a particular ward.

Figure 4.3 has at least two striking features. First, the variance of the structural residuals (κn) is

15Saiz (2010) estimates a population weighted average housing supply elasticities of 1.75 for U.S. MSAs, while the
estimated housing supply elasticity of New York is just 0.76 and 0.66 for San Francisco.
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much higher in the lower density wards of Dhaka. One explanation for this �nding is that measure-
ment error in the satellite data is plausibly additive, suggesting that the percentage measurement
error in heights is much more pronounced at lower heights than for taller buildings. Another pos-
sible explanation for this �nding is that our population and employment come from earlier years
than the satellite data. Rapid growth in employment or population particularly at the periphery of
the city could have added further measurement error to our estimates at lower densities. Second,
while the red line is not a perfectly straight line, it is close to zero for much of the upper part of the
density distribution. However, in the highest grid cell, the average structural residual is somewhat
more positive, which implies that the model needs a leftward shift in the supply curve to explain
the lower heights observed in the data relative to what a constant elasticity supply curve would
suggest.16

Figure 4.4: Average Height and Volume of Buildings: Data versus Model
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Note: The left-hand panel compares the average height of buildings in meters in the satellite data to the average height
predicted by the model when we set the cost shifter of the �oor space supply function (κn) to its average value. The
right-hand side panel compares the volume of the housing stock in millions of cubic meters in the satellite data to the
volume predicted by the model again setting (κn) to its average value. The red lines are 45-degree lines.

Figure 4.4 is a complementary approach to examining the �t of our housing supply function.
The left-hand side panel compares the height of buildings across wards in the satellite data to the
model predicted heights when we use the best �t value of the �oor space supply elasticity and set the
shifters of the �oor space supply function κn to their average value in Dhaka. While the correlation
between the satellite height data and the model-predicted heights is not perfect, the two are clearly
strongly correlated and locations lie close to the 45-degree line. The correlation coe�cient between
the height predicted by the model and the height in the data is 0.496. Similar to Figure, 4.3, the �gure
shows that the correlation between the model heights and heights observed in the data is lower at

16The �nding that the �oor space supply elasticity in the very center of Dhaka is plausibly smaller than in other parts
of the city is consistent with the �nding of Baum-Snow and Han (2021) who �nd that the �oor space supply elasticity
of US cities increases with distance to the center.
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lower densities. Furthermore, the model predicts higher buildings in the very center of Dhaka if
we do not allow variation in the supply shifter κn. The right-hand panel of Figure 4.4 repeats this
exercise for the volume of buildings. Here the correlation between the model and the data is much
higher. Note that we use the built-up area in the data also in the model. The same built-up area
therefore enters the volume calculations on either axis of the graph.

To explore the robustness of our estimate of the �oor space supply elasticity, we examine how
sensitive this estimate is to the value of ε, which controls the variance of the idiosyncratic shocks
to combinations of the workplace and residential locations. When we set ε to be 3.0, which is in
the middle of estimates by Tsivanidis (2020), we estimate a �oor space supply elasticity of 1.37. If
we instead set ε to 6.0, which is close to the value estimated by Heblich et al. (2020), we obtain
a �oor space supply elasticity of 1.43. While variation in the value of ε changes the estimated
distribution of wages in the city considerably, this only changes the estimated �oor space supply
elasticity marginally because much of the variation in demand for �oor space is due to variation in
the distribution of employment and residents and not variation in wages across wards.

4.4 Estimating Floor Space and Land Prices

We now turn to estimating the �oor space and land prices consistent with market clearing in the
housing market. In principle, we can estimate the price of �oor space in each ward of Dhaka without
knowing the �oor space supply elasticity, which we have estimated in the previous subsection. The
left-hand side of the housing market clearing condition (15) is a function of the distribution of
population and employment across wards and the expenditure shares in the utility and production
function. If we substitute the volume of housing in each ward observed in the satellite data on the
right-hand side of (15), we can solve this system of equations for �oor space prices in each ward.
With these �oor space prices, we can, in turn, also solve for the implied land prices using the zero
pro�t condition of developers (13).

However, using this approach results in often very noisy estimates of �oor space and land prices,
particularly in the lower density periphery of Dhaka. The reason is the likely larger measurement
error in the satellite data in lower density areas and the mismatch in timing between our key data
components that we have already discussed in the context of Figures 4.3 and 4.4 above. Suppose,
for example, that the satellite data underestimates the height of buildings in a location substantially.
The model rationalizes the low heights with a large value of the shifter of the �oor space supply
function κn) resulting in a leftward shift of the housing supply function. This implies that �oor
space prices will be very high in this ward to depress the �oor space demand of both residents
and workers that reside in this ward according to the census so that their demand matches the
mistakenly low estimate of �oor space supply.

To overcome this problem and essentially smooth our estimated �oor space and land price esti-
mates, we use our estimated �oor space supply elasticity. In particular, we assume that the housing
supply function in each ward has our estimated �oor space supply elasticity and the average value
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Figure 4.5: Estimated Land Rents

Log Land Rent
< 2.1
2.2 - 2.7
2.8 - 3.0
3.1 - 3.5
3.6 - 3.8
3.9 - 4.0
4.1 - 4.3
4.3 - 4.5
4.6 - 5.0
> 5.0

Note: This map shows the logarithm of the estimated land rents that result from imposing our best �t �oor space supply
elasticity on the model.

of κ in the grid cell in which the ward is located. Our estimate of the �oor space price in a ward
is the �oor space price at which this housing supply function supplies buildings of the height that
we observe in the satellite data. Using the zero pro�t condition of developers (13), we can then also
estimate the implied land prices. This approach is similar to using the predicted values of a regres-
sion line rather than the actual observations to separate the underlying relationship from random
measurement error.17

Figure 4.5 shows the land prices that we estimate for each ward in Dhaka using this procedure.
The �gure shows substantial variation in land prices that is closely correlated with employment and
population density in the city. The estimated land prices vary by a factor of 8.5 between the 10th
and 90th percentile of the distribution. In contrast, the estimated variation in �oor space prices only
varies by a factor of 2.8 between the 10th and 90th percentile. The much smaller variation in �oor
space prices than in land prices highlights the role of building height as a margin of adjustment to
respond to increases in the demand for �oor spaces. In the Appendix, Figure D.11 displays the land
rents as a function of distance to the center, which suggests that Dhaka is largely a mono-centric
city.

17The �oor space prices estimated in this way combined with the number of residents and �rms imply a level of
demand for �oor space from (15). This level of demand will now no longer exactly match the supply of �oor space in
a location as we have constrained the variation in the supply shifter κ. To make the calibration internally consistent
for model counterfactuals, we adjust the built-up area in each ward until the �oor space clearing condition (15) holds
again.
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4.5 Estimating Productivity and Amenities

Having estimated wages and �oor space prices in each ward of Dhaka, we are in a position to use the
results of Proposition 2 to invert the model to determine the productivity and residential amenity
level of each ward that are consistent with the observed equilibrium and the structural parameters
of the model. Intuitively, in a zero pro�t equilibrium, �rm productivity must be high in locations
where �rms pay high wages and �oor space prices. Similarly, given spatial arbitrage residents in
locations with high �oor space prices and low levels of commuting market access to work locations
must be enjoying high residential amenities.

Figure 4.6: Productivity and Residential Amenities in the City

Productivity
< 0.80
0.81 - 0.88
0.89 - 0.93
0.94 - 0.97
0.98 - 1.00
1.01 - 1.04
1.05 - 1.08
1.09 - 1.14
1.15 - 1.24
> 1.25

(a) Workplace Productivity

Amenity
< 0.82
0.83 - 0.90
0.91 - 0.96
0.97 - 1.01
1.02 - 1.04
1.05 - 1.07
1.08 - 1.11
1.12 - 1.17
1.18 - 1.25
> 1.25

(b) Residential Amenities

Note: The left-hand panel shows the estimated level of productivity (Ai) in each ward and the right-hand panel shows
the level of the estimated residential amenities (Bn).

The left-hand panel of Figure 4.6 displays the level of productivity in each ward of Dhaka implied
by our model.18 We �nd that productivity is high in central locations, such as in the central business
district area (Motijheel) and in areas with a dense cluster of businesses (Gulshan and Tejgaon).
Productivity declines dramatically as we move away from the city center. There are also several
notable clusters with higher productivity on the outskirts of Dhaka. Among them is the city of
Naratanganj in the south of Dhaka, which is the oldest port in Bangladesh and the hub of the
country’s textile industry. Productivity is also high in the north of the city where high technology
industries have located, such as in Gazipur and Kaliakair. The variation in productivity across wards
is substantial. The ward at the 90th percentile of the productivity distribution has around 36 percent

18Our estimates of overall productivity in a ward di�er from the existing literature in that we have estimated both
wages and the price of �oor space while the existing literature typically observes proxies for �oor space prices. Our
productivity estimates therefore leverage the structure of the model even more than the existing literature.
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higher productivity than the ward at the 10th percentile.
The right-hand panel of Figure 4.6 displays the level of residential amenities in each ward of

Dhaka implied by our model. We �nd that residential amenities are not highest in the locations
where the productivity distribution peaks. The highest residential amenities are often adjacent to
areas of high productivity. The variation in residential amenities is even larger than the variation
in productivity, with the ward at the 90th percentile having 40 percent higher amenities than the
ward at the 10th percentile.

4.6 Estimating the Elasticity of Productivity with Respect to Density

The overall level of productivity in each ward that we have estimated in the previous subsection is a
combination of the fundamental productivity advantages of a location and spillovers as captured by
(10). How strong productivity spillovers depend on the value of χ. Figure 4.7 shows the correlation
between the logarithm of the overall level of productivity Ai and the logarithm of employment
density in each ward. The �gure reveals a suggestive log linear relationship between the overall
level of productivity in a ward and the employment density in the ward.

Figure 4.7: Productivity and Employment Density
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Note: Graph shows the correlation between the logarithm of the model estimated productivity in each ward and the
employment density in this ward.

To separate how much of this variation in overall productivity is driven by spillovers and vari-
ation in fundamental productivity, the existing literature has used changes in employment density
triggered by exogenous shocks such as the construction of new transport infrastructure in Tsivanidis
(2020). With only one cross section of data and no obvious exogenous shock, we will use a simpler
moment condition to separate the contribution of fundamentals and spillovers. In particular we
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assume that the fundamental level of productivity ai is uncorrelated with the same 10 grid cells that
we have used to estimate the �oor space supply elasticity. In other words, this moment condition
imposes that changes in overall productivity across these grid cells are driven by spillovers rather
than variation in fundamentals.

While this is a strong assumption to identify the role of spillovers, we think it has at least three
attractive features. First, this condition can be used in data sparse environments where we do not
have access to panel data. Second, Dhaka lies on a largely featureless plane and it is di�cult to point
to natural features of the geography that could make the central parts of Dhaka inherently more
productive than more peripheral areas. Third, the condition uses cross-sectional variation, which
plausibly re�ects a steady state of the city. Using changes over a relatively short period of time as
often used in this literature, makes it much harder to argue that we are observing changes between
two steady states.

Using this moment condition, we estimate an elasticity of productivity with respect to employ-
ment density (χ) of 0.045. This estimate lies in the (0, 0.08) range for the elasticity of labor pro-
ductivity with respect to density reported in the recent meta analysis in Ahlfeldt and Pietrostefani
(2019). This estimate is substantially smaller than the elasticity of productivity with respect to the
employment estimated by Tsivanidis (2020) for Bogota. If agglomeration forces in Dhaka were as
large as these estimates suggest, fundamental productivity ai would have to decline rapidly as one
approaches the center of Dhaka, which seems counterintuitive.

5 Counterfactuals

Having estimated the key structural parameters of the model using data from Dhaka we now illus-
trate the usefulness of the model for policy analysis with two model counterfactuals. In particular,
we consider the e�ects of two changes: (i) an increase in the �oor space supply elasticity and (ii)
the building of a north-south road through the city. The �oor space supply elasticity re�ects both
the state of the local building technology and local geological conditions, as well as regulatory
constraints on the construction of new buildings. Our �rst counterfactual explores the e�ects of
a uniform increase in the �oor space supply elasticity by 25 percent. The second counterfactual
investigates the e�ects of a traditional infrastructure policy, the construction of a new north-south
radial road through Dhaka, which reduces travel times along this corridor.

For both counterfactuals we solve for a new steady-state equilibrium of the model holding all
other parameters of the model at their baseline level. If productivity and residential amenities in
the city are exogenous or agglomeration forces in production are below the su�cient condition
characterized by Proposition 1, the model has a unique equilibrium. Outside this parameter range,
the model can exhibit multiple equilibria. For the estimated parameter values we have not been
able to �nd evidence of multiple equilibria using di�erent starting values. In these counterfactuals,
we can either hold the total population of the city constant or allow the size of the city to adjust
endogenously. We concentrate on the case of an open city where the total population of Dhaka
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changes according to (7) with an assumed labor supply elasticity to the city of σ = 2. We also mainly
concentrate on the case where productivity is endogenous and set the elasticity of productivity to
employment density to the value of 0.045 that we have estimated in Section 4.6.

Figure 5.8: Increasing the Building Supply Elasticity in the City: Height and Land Rent

Change in Height
< 1.14
1.15 - 1.22
1.23 - 1.29
1.30 - 1.35
1.36 - 1.40
1.41 - 1.44
1.45 - 1.48
> 1.49

(a) Change in Average Height

Change in Land Rent
< 0.84
0.85 - 0.90
0.91 - 0.93
0.94 - 0.96
0.97 - 1.00
1.01 - 1.03
1.04 - 1.05
> 1.06

(b) Change in Land Rent

Note: The left-hand panel shows the counterfactual changes in average height of buildings relative to the DLR data
and the right- hand panel shows those in estimated land rent relative to the baseline.

5.1 Increasing the Floor Space Supply Elasticity

In our �rst counterfactual we increase the �oor space supply elasticity by 25 percent relative to the
value of 1.45 that we have estimated in Section 4. The �oor space supply elasticity depends both on
the available building technology, geological conditions in the city and planning constraints. The
counterfactual illustrates the outcomes of an increase in the �oor space supply elasticity without
taking a stand on whether this change would be achieved through an improvement in building
technology or regulatory changes. An increase in the �oor space supply elasticity is a simple way to
capture the idea of “densi�cation” policies, which are popular among many urban commentators and
decision makers. The impact of this change is more complex than one would expect and highlights
the value of using a general equilibrium framework to evaluate the impact of policy changes in
cities.

Figures 5.8 display the counterfactual impact of a 25 percent increase in the �oor space supply
elasticity on building heights and land rents. Panel (a) shows that building heights increase in all
wards of Dhaka in response to this change, but the impact is much more pronounced in the most
central wards where average building heights increase by more than 50 percent. Intuitively, even
though the �oor space supply elasticity increases by the same amount in all locations of the city,
this change is much more valuable in locations where buildings are tall already before this change.
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In contrast, in low-rise areas of the city making it easier to build taller buildings has little impact.
Panel (b) shows that land rents in the periphery of Dhaka fall in response to this change, while land
rents in the center increase. To assess the average impact of this change on land owners we compute
the change in total land revenue (

∑
n rnTn) in the city, which falls by 3.0 percent. Intuitively, an

increase in the �oor space supply elasticity reduces the importance of land in the housing production
function and leads, on average, to a fall in the demand for land. This occurs despite the fact that the
total city population increases signi�cantly in this counterfactual.19

Figure 5.9: Increasing the Building Supply Elasticity in the City: Population and Employment

Change in Population
< 0.90
0.91 - 0.96
0.97 - 1.04
1.05 - 1.09
1.10 - 1.13
1.14 - 1.17
1.18 - 1.20
> 1.21

(a) Change in Residents

Change in Employment
< 0.90
0.91 - 0.96
0.97 - 1.04
1.05 - 1.09
1.10 - 1.13
1.14 - 1.17
1.18 - 1.20
> 1.21

(b) Change in Employment

Note: The left-hand panel shows the counterfactual changes in population, and the right-hand panel shows those in
employment relative to the baseline data.

Figure 5.9 displays the impact of a 25 percent increase in the �oor space supply elasticity on the
distribution of residents and employment. Panels (a) and (b) of the �gure show that residents and
employment both increase by more than 20 percent in the central wards of Dhaka and decrease in
the peripheral wards. The decrease in residents and employment in the periphery of the city occurs
even though the total population of Dhaka increases by 10.1 percent in this counterfactual.

Figure 5.10 and 5.11 unpack the general equilibrium impact of an increase in the �oor space
supply elasticity further. Panel (a) of Figure 5.10 shows that increases in employment density are
strongly correlated with the productivity of wards in the baseline, suggesting that higher density
allows more workers to work in high productivity locations of the city. Panel (b) shows that in
locations that experience greater increases in the average height of buildings (i.e. more central
wards of Dhaka) the share of land used for residential purposes declines. Despite the large increases
in the number of residents in central wards of the city in the counterfactual, there is an even larger
increase in employment in these locations. As a result the center specializes further in being a place

19Consistent with this we �nd that total land revenue falls by 13.2 percent if we compute the same counterfactual in
the closed city version of the model.
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of employment while more peripheral wards become more residential. Intuitively, central locations
are very productive but do not have equally high residential amenities. As density in the center
increases due to higher average building heights, more workers are within commuting distance
from the most productive locations of the city making these locations even more attractive for �rms
to locate in. With endogenous productivity, this increased employment density further increases
productivity, in the process enhancing the attractiveness of these locations for employment further.

Figure 5.10: Examining the Employment and Residential Land Use Changes
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(b) Changes in Residential Land

Note: Each point shows the change in a ward in response to a 25 percent increase in the �oor space supply elasticity.
The left-hand panel shows the relationship between the percentage change in employment density in a ward and its
productivity (Ai) in the baseline. The right-hand panel shows the relationship between the percentage change in the
share of land used for residential purposes and the percentage change in the average height of buildings.

Figure 5.11 shows the implications of the pattern visible in Figure 5.10 for the change in average
commuting in the counterfactual. Figure 5.11 considers both the case where productivity is exoge-
nous (black dots) and the case where productivity is a function of the employment density (green
dots). The �gure shows that while average commuting times decline in the counterfactual for res-
idents of wards that gain residents (which are wards close to the center of Dhaka), the opposite is
true in more peripheral wards. If the peripheral wards become more residential while the central
wards become more specialized in employment, some residents in the peripheral wards will have
to commute longer distances to work. This pattern holds for both the case of exogenous produc-
tivity and endogenous productivity. Due to this asymmetric change in average commuting times
across wards, average commuting times in the city remain largely unchanged between the baseline
and the counterfactual with the average commuting time weighted by the number of commuters
increasing by 0.84 percent. These results highlight that policies based on “densi�cation” of cities to
reduce the need for commuting may not be successful once the full general equilibrium impact of
higher density is taken into account.
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Figure 5.11: Changes in Average Commuting Times of Residents
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Note: This �gure shows the relationship between the percentage change in average commuting times of residents in
each ward and the percentage change in population. The black dots show the results of the model counterfactual with
exogenous productivity (i.e., productivity Ai is �xed), and the green dots show the results of the model counterfactual
with the estimated agglomeration forces in production (χ = 0.045). For the latter, the 95 percentile of the average
commuting time change is 7.10 percent, the average is 0.84 percent, and the 5 percentile is -1.99 percent.

We now turn to the welfare e�ects of the economic changes triggered by an increase in the �oor
space supply elasticity. Our welfare measure for workers is their expected utility of residing in the
city Ū de�ned in (8). Combining the unconditional commuting probabilities (3) with the expected
utility of residing in the city (8) we can express the expected utility of workers in the city as:

Ū = γ̄
Bn

dnn

wn
Pα
nQ

1−α
n

λ
− 1
ε

nn (20)

Therefore, for any location n in the city, welfare of workers is a combination of exogenous loca-
tion characteristics (Bn/dnn), the real income of workers (wnP−αn Q

−(1−α)
n ) and the non-commuting

probability (λnn). Note that this equation implies that while the di�erent components of (20) can
vary across locations in the city, expected utility is the same for all locations. Higher values of,
for example, residential amenities (Bn) in a location relative to another location have to be exactly
compensated by another component on the right-hand side of (20).

To compute welfare changes between the baseline equilibrium and the counterfactual equilib-
rium we can write (20) in relative changes as:

ˆ̄U =
B̂n

d̂nn
× ŵn

P̂αQ̂1−α
n

× λ̂−
1
ε

nn (21)

where the hat notation denotes the ratio between the counterfactual value of a variable and its
baseline value. We use (E.10 ) to decompose the change in expected utility into three components: (i)
changes in residential amenities and commuting costs, which will not change in this counterfactual
(and therefore B̂n and d̂nn are equal to one) (ii) the change in real income, which is the ratio of
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wages and the price index consisting of goods prices and the price of �oor space and (iii) the change
in the own commuting probability. Taking the geometric mean of both sides of (E.10 ) over all N
locations in the city results in:

ˆ̄U = ̂̃w ˆ̃P
−α ˆ̃Q

−(1−α) ˆ̃λN

− 1
ε

, (22)

where x̃ refers to geometric mean of variable xi. This shows that the overall change in worker
welfare consists of the change in average real income and the change in the average non-commuting
probability.

Table 5.2: Welfare E�ects of a Change in the Floor Space Supply Elasticity

(1) (2) (3) (4)
Closed City Open City

Counterfactuals (relative to baseline) Exogenous Productivity Exogenous Productivity
Productivity Spillovers Productivity Spillovers

Average Welfare of Workers (Ū ) 1.0627 1.0719 1.0520 1.0533

– Average Non-Commuting Probability (λ̃−1/ε
N ) 1.0010 1.0087 1.0020 1.0033

– Average Real Income 1.0616 1.0627 1.0499 1.0499

Total Land Revenue (
∑

n rnTn) 0.8605 0.8671 0.9660 0.9703

Total Population (L̄) 1.1067 1.1095

Note: These counterfactuals explore an increase in the �oor space supply elasticity by 25 percent. For each coun-
terfactual, we report the change relative to the baseline equilibrium (with 1 meaning no change). In counterfac-
tuals (1) and (2), we assume that city population is �xed. Counterfactual (1) supposes that overall productivity
(Ai) is �xed at the baseline level. In counterfactual (2), we assume that productivity is a function of employment
density in each ward. In counterfactuals (3) and (4), we consider the open city where workers can move into and
out of the city. Counterfactual (3) again assumes that overall productivity is �xed while counterfactual (4) allows
for endogenous productivity.

Table 5.2 reports the welfare changes relative to the baseline for our counterfactual 25 percent
increase in the �oor space supply elasticity. Columns (1) and (2) assume that the city is closed while
Columns (3) and (4) assume that the total population of Dhaka changes according to (7) with an
assumed labor supply elasticity to the city of σ = 2. Columns (1) and (3) assume that productivity
(Ai) is exogenous while columns (2) and (4) allow productivity to change in response to changes
in employment density. The results in this table have three main features. First, worker expected
utility increases by between 5.3 and 7.2 percent across all four scenarios that we have considered.
Second, most of this welfare gain is driven by changes in real income rather than changes in the
non-commuting probabilities. Finally, total land revenue is substantially higher when the total pop-
ulation of the city is allowed to increase in response to this change, although it is below its baseline
also in this case. The reason is that the increase in city population by just over 10 percent increases
demand for �oor space and hence land rents.
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5.2 Changes in Travel Time

Our second counterfactual examines the impact of the construction of a hypothetical new north-
south road through Dhaka. We assume that travel times will be reduced by 25 percent for any pair
of wards intersected by this north-south road. We also adjust the travel times for wards that are not
intersected by the new road if a faster indirect connection between two wards that involves traveling
to a ward intersected by the road and then along the new road to a �nal destination is now available.
The key purpose of this counterfactual is to demonstrate that infrastructure improvements will have
important general equilibrium e�ects on the city, which are di�cult to predict in the absence of a
quantitative model.

Figure 5.12 shows the hypothetical new road as a straight black line and displays its e�ects
on building heights and land prices. Panel (a) shows that average building heights increase by
more than 10 percent in some of the wards intersected by the new road. Panel (b) shows that
while land prices fall very slightly in large parts of the city, they increase in most but not all of the
wards intersected by the new road with the largest increases being around 25 percent. Figure 5.13
displays the changes in residents and employment as a result of the new road. The �gure has a
number of striking features. First, the road acts as a magnet for both employment and population
while areas further away from this new piece of infrastructure marginally decline. First, population
declines in some of the very central wards intersected by the road and increases in more peripheral
wards consistent with the idea that faster transportation speeds allow residents to relocate to higher
amenity locations while still commuting to their previous places of work. Finally, the increases
in employment are clustered in a small number of locations that are close to concentrations of
employment in the baseline.

Figure 5.12: Impact of a New North-South Road: Height and Land Rent

Highway
Change in Height

0.981 - 0.988
0.989 - 0.993
0.994 - 1.000
1.001 - 1.049
1.050 - 1.092
1.093 - 1.146

(a) Change in Average Height

Highway
Change in Land Rent

0.969 - 0.980
0.981 - 0.988
0.989 - 1.000
1.001 - 1.089
1.090 - 1.161
1.162 - 1.259

(b) Change in Land Rent

Note: The left-hand panel shows the counterfactual changes in the average height of buildings relative to the DLR
data, and the right-hand panel shows those in estimated land rent relative to the baseline.
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Figure 5.13: Impact of a New North-South Road: Population and Employment

Highway
Change in Residents

< 0.910
0.911 - 0.980
0.981 - 1.000
1.001 - 1.100
1.101 - 1.200
> 1.201

(a) Change in Residents

Highway
Change in Employment

< 0.910
0.911 - 0.980
0.981 - 1.000
1.001 - 1.100
1.101 - 1.200
> 1.201

(b) Change in Employment

Note: The left-hand panel shows the counterfactual changes in population, and the right-hand panel shows those in
employment relative to the baseline data. The black line is the hypothetical highway.

Table 5.3 presents the impact of the new road on worker welfare and the income of land owners.
The highway raises aggregate welfare of workers by just under 0.5 percent in the closed city version
of the model. A change in the average non-commuting probability accounts for the majority of this
increase in welfare, while average real income e�ects are modestly positive. Total land revenue
marginally increases. When we allow the population of Dhaka to adjust in response to this shock,
the population of the city grows by approximately 0.8 percent. This population growth causes
land revenue to increase by nearly 1 percent if productivity is endogenous. Worker welfare still
increases substantially also in this case, but the gains are smaller relative to the gains in the case of
a closed city. The distribution of the bene�ts of the new road between workers and land owners is
determined by the elasticity of labor supply to the city. A larger labor supply elasticity to the city
implies that a larger share of the bene�ts of the new road are capitalized into land rents rather than
worker welfare.
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Table 5.3: Welfare E�ects of a New North-South Road

(1) (2) (3) (4)
Closed City Open City

Counterfactuals (relative to baseline) Fix With Productivity Fix With Productivity
Productivity Spillovers Productivity Spillovers

Average Welfare of Workers (Ū ) 1.0054 1.0053 1.0037 1.0040

– Average Non-Commuting Probability (λ̃−1/ε
N ) 1.0049 1.0054 1.0049 1.0054

– Average Real Income 1.0005 1.0000 0.9988 0.9987

Total Land Revenue (
∑

n rnTn) 1.0007 1.0017 1.0080 1.0097

Total Population (L̄) 1.0073 1.0080

Note: These counterfactual exercises assume the construction of the new highway from the north to the south of Dhaka,
reducing travel times along the network by 25 percent relative to the current travel times. In counterfactuals (1) and (2),
we assume the closed city. Counterfactual (1) supposes that overall productivity (Ai) is �xed at the baseline level. In coun-
terfactual (2), we also allow spillovers in productivity so that overall productivity changes with employment density. In
counterfactual (3) and (4), we consider the open city where workers can move into and out of the city. Counterfactual (3)
�xes overall productivity as in (1), and counterfactual (4) allows productivity spillovers as in (2).

This counterfactual analysis of the hypothetical highway through Dhaka illustrates that im-
provements in commuting speeds will bene�t not only commuters on the road network but will
also be capitalized into land prices in general equilibrium. These e�ects are highly unequal, with
land rents close to the new road increasing while other parts of Dhaka experience small declines.
Our counterfactual analysis suggests that the welfare e�ects of local improvements in the speed of
commuting are well approximated by the change in non-commuting probabilities.

6 Conclusion

The urban populations of developing countries are increasing rapidly, making it imperative to de-
velop better tools to model the e�ects of policy interventions in developing country cities. While
recent advances in quantitative spatial modeling can capture the rich heterogeneity of real world
cities, many developing-country cities have very limited data from traditional data sources to inform
such models. To overcome this challenge, we propose a method for calibrating a quantitative urban
model of a typical developing-country city using mobile phone data and satellite data on building
heights using Dhaka in Bangladesh as our application. Having estimated the key structural param-
eters of the model we show how the estimated model can be used for policy analysis. We use the
calibrated models to quantify the impacts of two policies in Dhaka, an increase in the �oor space
supply elasticity and the construction of a new radial road that reduces travel times.

We believe that the approach we suggested in this paper can be a stepping stone for the future
analysis of a wide range of urban policies, particularly in developing countries. Amongst possible
policies, clearance or creation of slums is perhaps the most important to look at in developing
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countries. Given the recent �ner satellite data for buildings and their quality, our framework can be
easily extended to include informal housing. A more challenging way forward is introducing the
dynamic aspects into the framework where people’s expectation for future growth of the city drives
the dynamic adjustment of economic activities across the space and building process of the city. The
dynamic model, when combined with developing country data, serves as an interesting laboratory
for understanding the long run e�ects of urban policy. Calibration of such a dynamic urban model
is ambitious and would be crucial for designing sustainable cities in developing countries as the
world moves out of the pandemic.
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Appendices for Chapter 2

A Appendix: The baseline framework

We start with a relatively simple model that provides the idea of spatial equilibrium in a city. Par-
ticularly, we consider the urban structure for the economy with homogeneous agents, single sector
in production, and competitive developers of land. The number of locations within a city is �nite,
and each location is indexed by i, j, k, n ∈ S = {1, 2, · · · , N}. Each location is endowed with
exogenous value of amenities {Bn} ∈ RN

++0 and productivity {Ai} ∈ RN
++. There is a continuum

of homogeneous agents in a city, L.

Subsection A.1 describes the utility of workers and their decision in location choices. Subsection
A.2 explains the production side. There is a single sector that produces consumption goods on the
production side, and we assume free trade. The production technology is given by Cobb-Douglas
technology combining labor, land and capital. Subsection A.3 provides details of developers’ prob-
lem and characterize the supply of �oor spaces. Subsection A.4 discusses the details of competitive
equilibrium. The last subsection A.5 explains how to consider the labor supply function of the city
in a large economy.

A.1 Workers

Individuals choose a residential place n and workplace i in a city and receive utility from residential
amenities and disutility from commuting. They also receive an idiosyncratic shock from location
decisions. Preference is represented by Cobb-Douglas utility function:

Uni(ω) =
bni(ω)Bn

dni

(
Cni(ω)

α

)α(
Hni(ω)

1− α

)1−α

(A.1)

where bni(ω) is an idiosyncratic shock, dni is disutility from commuting which takes the value
greater than one, Cni(ω) is consumption of goods, and Hni(ω) is consumption of housing (�oor
spaces for residence).

Utility maximization leads to consumption expenditure and housing expenditure of individuals:

PnCni(ω) = αwi, QnHni(ω) = (1− α)wi (A.2)
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where Pn is price of consumption good and Qn is price of a unit of �oor space. We suppose that
consumption happens in the residential place. This gives the indirect utility for individuals given
commuting choice from residential place n to workplace i:

Vni(ω) =
bni(ω)Bn

dni

wi
Pn

αQ1−α
n

(A.3)

Suppose that, for every worker, the idiosyncratic term of utility bni(ω) is independently drawn from
the common Fréchet distribution:

F(b) = Pr[bni(ω) ≤ b] = e−b
−ε (A.4)

and shocks are independent across any choices of (i, n). The shape parameter ε is greater than one.
The cumulative distribution function of the indirect utility is:

Gni(v) = Pr(Vni(ω) ≤ v) = Pr

[
bni(ω) ≤ dni

Bn

Pα
nQ

1−α
n

wi
v

]
= e−Ωniv

−ε (A.5)

where the location parameter is given by:

Ωni =

(
Bn

dni

wi
Pα
nQ

1−α
n

)ε
(A.6)

The corresponding probability density function is:

gni(v) =
d

dv
Gni(v) = εΩniv

−ε−1e−Ωniv
−ε (A.7)

The cumulative distribution function of the maximum of indirect utility across pairs is:

G(v) = Pr
[

max
(n,i)

Vni ≤ v
]

= Pr

[
bni(ω) ≤ dni

Bn

Pα
nQ

1−α
n

wi
v ∀n, i

]
=
∏
n∈S

∏
i∈S

F
(
dni
Bn

Pα
nQ

1−α
n

wi
v

)
= e−Ωv−ε

(A.8)

where we let Ω =
∑

n∈S
∑

i∈S Ωni. Given them, probability that (n, i) pair gives the highest utility
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becomes:

λni = Pr
(
Vni ≥ max

(k,j)6=(n,i)
Vkj

)
=

∫ ∞
0

Pr(Vkj ≤ v; ∀(k, j) 6= (n, i))gni(v)dv

=

∫ ∞
0

e−(Ω−Ωni)v
−ε
εΩniv

−ε−1e−Ωniv
−ε
dv

= εΩni
1

εΩ

∫ ∞
0

e−Ωv−εεΩv−ε−1dv =
Ωni

Ω

By the law of large numbers over the continuum of agents, this probability is identical to the share
of people who choose location pair (n, i) in a city. Thus, the residential population in n is given by:

Rn =
∑
i∈S

λniL = Ω−1LBε
n(Pα

nQn
1−α)−ε

∑
i∈S

d−εni w
ε
i (A.9)

and population in workplace i is:

Li =
∑
n∈S

λniL = Ω−1Lwεi
∑
n∈S

d−εni B
ε
n(Pα

nQn
1−α)−ε (A.10)

The share of residents in n who commute to workplace i is given by the conditional probability:

λni|n ≡
λni∑
j∈S λnj

=
(wi/dni)

ε∑
j∈S(wj/dnj)ε

(A.11)

Further, we consider the feature of utility conditional on the residential choice. The cumulative
distribution function of the indirect utility conditional on the choice of locations (residential place
n and workplace i) becomes:

G̃ni(v) =
Pr
(
Vni ≤ v and Vni ≥ max(k,j) 6=(n,i) Vkj

)
Pr
(
Vni ≥ max(k,j)6=(n,i) Vkj

)
=

1

λni

∫ v

0

∏
j 6=i

Gnj(u)

(∏
k 6=n

∏
j∈S

Gkj(u)

)
gni(u)du

=
1

λni

∫ v

0

e−Ωu−εεΩniu
−ε−1du

= G(v)

(A.12)

This implies that the distribution of indirect utility conditional on the location choice of workers
is independent of the location choice. The intuition is the following. When residential place n
exhibits lower living costs (Qn, Pn) and workplace i exhibits higher return to work (wi), the expected
utility of a worker living in n and working in i is high conditional on idiosyncratic shock. On the
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other hand, when residential place n shows high living costs and workplace i shows a lower wage
rate, the expected utility is low. These two opposite e�ects, together with Fréchet distribution of
idiosyncratic shocks, lead to the same average utility level across all location pairs.

Assuming that agents can freely choose the pair of locations, the average utility of an individual
is given by:

Ū =

∫ ∞
0

vdG(v) =

∫ ∞
0

εΩv−ε−1e−Ωv−εvdv = γ̄Ω1/ε = γ̄

(∑
n∈S

∑
i∈S

(
Bn

dni

wi
Pα
nQ

1−α
n

)ε)1/ε

(A.13)

with γ̄ = Γ
(
ε−1
ε

)
is the value of Gamma function. This is the expected utility of agents ex-ante,

and agents receive a di�erent level of utility ex-post due to the idiosyncratic shocks. Further, we
can express the average utility by:

Ū = γ̄
Bn

dnn

wn

Pα
nQn

1−αλ
− 1
ε

nn (A.14)

The right-hand side is de�ned for any location n, and this is equalized in equilibrium. This implies
that a location exhibiting a high value of amenities (Bn) and high real income ( wn

PαnQ
1−α
n

) is associ-
ated with high non-commuting probability (λnn) since workers have less incentive to commute to
other locations. On the other hand, when location n has less attractive characteristics, it must be
associated with lower non-commuting probability. Since this holds for any n. Taking the geometric
mean of this, we obtain:

Ū = γ̄
B̃

d̃

w̃

P̃αQ̃1−α
λ̃
−1/ε
N (A.15)

where x̃ = (
∏

i∈S xi)
1/N represents geometric mean of variables {xi}. We back to the discussion

about this measure in our counterfactual experiments in the section E.

A.2 Production

There are representative �rms in each location and they produce consumption goods under perfect
competition. Firms produce a consumption good by combining labor, developed land and interme-
diate numeraire.

Production technology of a representative �rm is Cobb-Douglas technology:

Yn = AnLn
βHB

n

γ
Xn

1−β−γ, β, γ ∈ (0, 1) (A.16)

whereAn is Hicks-neutral productivity in n, Ln is employment,HB
n is �oor spaces used for produc-

tion, and Xn is intermediate use of �nal goods. Therefore, �nal goods are consumed by people in
the city and also used in production of the �nal goods as a material. The cost minimization problem
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of �rms and zero pro�t condition leads to the price to consumers:

Pn =
ψ

An
wn

βqγn

where qn is �oor space price for commercial use. The consumption goods are freely traded within
a city following the traditional assumptions in urban economics, therefore we normalize the price:

1 = P = Pn =
ψ

An
wβnq

γ
n (A.17)

Letting Yn denote the total revenue of �rms in location n, zero pro�t conditions imply:

wnLn = βYn, qnH
B
n = γYn, Xn = (1− β − γ)Yn, (A.18)

where qn represents price of �oor space for �rms.

A.3 Construction

In each location i, there are Ti units of land to be developed. The developed area is exogenous and
�xed. There is a large number of developers that can freely enter to develop land in each location.
Developers supply hRi units of �oor space for residential use on one unit of land, and hBi units for
commercial use. Therefore, total supply of �oor spaces per unit of land is hi = hRi + hBi and this is
equal to height of buildings.

In the baseline, we suppose that construction technology is same between two di�erent uses.
This is primary because that we do not distinguish the buildings for di�erent uses in the data in pre-
cise. Therefore, �oor space price is equalized between two uses: Qi = qi in equilibrium. Developers
use composite goods (�nal goods) for their construction. Namely, we suppose that the construction
costs of hi units of �oor space per unit of land is

ξ(hi) = κih
ν
i , ν > 1 (A.19)

where κi is constant cost shifter that can vary across locations. The construction cost features
iso-elastic and convex variable costs.

Developers in i decide the amount of �oor space such that:

hi = arg max
h∈R++

Qih− ξ(h) = Qih− κihν (A.20)

This leads to the �oor space per unit of land and pro�ts:

hi =

(
Qi

κiν

) 1
ν−1

, πi = κi(ν − 1)

(
Qi

κiν

) ν
ν−1

(A.21)
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Since developers freely enter to the market and perfect competition leads to the land rent per unit
of land

ri = πi (A.22)

and the total amount of land rent for landlords is riTi. The total �oor spaces in each location is
given by:

Hi = hiTi =

(
Qi

κiν

) 1
ν−1

Ti (A.23)

Therefore, given the �xed amount of developed land Ti, the supply elasticity of �oor spaces is
constant 1/(ν − 1).

Microfoundation for production technology of �oor spaces Suppose that �oor spaces in each
location (Hi) is produced by a competitive developers using the stock of developed land (Ti) and
homogeneous tradable goods (Xi). The production technology takes a form of Cobb-Douglas:

Hi = Λi

(
Ti
µ

)µ(
Xi

1− µ

)1−µ

, µ ∈ (0, 1) (A.24)

where µ is the input share of developed land, 1 − µ is the input share of numeraire, and Λi is
Hicks-neutral productivity of developers. Given the size of developed area (Ti), the representative
construction �rm chooses the input of numeraire to maximize the pro�t:

Xi = arg max
x∈R++

QiΛi

(
Ti
µ

)µ(
x

1− µ

)1−µ

− x (A.25)

Therefore, Xi = (1− µ)QiHi. Using this, the total supply of �oor spaces by developers is:

Hi =
1

µ
Λ

1
µ

i Q
1−µ
µ

i Ti (A.26)

and the average height – �oor spaces per unit of developed land – is given by:

hi =
Hi

Ti
=

1

µ
Λ

1
µ

i Q
1−µ
µ

i (A.27)

Therefore, in our speci�cation of baseline model, the parameter of �oor space supply elasticity is
corresponding to the production technology parameter such that:

1

ν − 1
=

1− µ
µ

⇔ 1− µ =
1

ν
(A.28)
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A.4 City equilibrium

The average income per capita among workers residing in location n is:

w̄n =
∑
i∈S

λni|nwi =
∑
i∈S

(wi/dni)
ε∑

j∈S(wj/dnj)ε
wi (A.29)

Since landlords consume homogeneous goods, the total expenditure on consumption in location n
is given by:

En = αw̄nRn + (1− α)w̄nRn + (1− β − γ)Yn = w̄nRn +
1− β − γ

β
wnLn (A.30)

where we use the zero pro�t condition of �rms.

We start with the commuter market clearing condition. The supply of labor in location i is given
by:

Li =
∑
n∈S

λni|nRn (A.31)

The demand for labor in location i is:

Li =
βYi
wi

=
β

γ

(
1

κiν

) 1
ν−1 Q

ν
ν−1

i

wi
TBi (A.32)

where TBi is developed land used for commercial use and we substituted the zero pro�t condition
of �rms. Inserting price of �oor space for commercial use

Qi = A
1
γ

i w
−β
γ

i ψ−
1
γ (A.33)

into the above, we obtain the demand for labor:

Li =
β

γ

(
1

κiν

) 1
ν−1

Ai
ν

γ(ν−1)wi
−(1+ βν

γ(ν−1))ψ−
1
γ

ν
ν−1TBi (A.34)

Combining them, the labor market clearing condition is:

OiA
ν

γ(ν−1)

i w
−(1+ βν

γ(ν−1))
i TBi =

∑
n∈S

λni|nRn, ∀ i (A.35)

where we let constant O ≡ β
γ

(
1
κiν

) 1
ν−1

ψ−
1
γ

ν
ν−1 . The left-hand side is a downward sloping demand

curve for labor, while the right-hand-side is upward sloping supply curve for labor. Therefore, this
relationship pins down unique wage in equilibrium given {Ai} and {Rn}.

Next, we formulate the land market clearing condition. Combining utility maximization of
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workers and pro�t maximization of developers, the demand for housing is:

(1− α)w̄nRn =

(
1

κnν

) 1
ν−1

Q
ν
ν−1
n TRn (A.36)

Hence, demand for land by developers to construct housing is:

TRn =
(1− α)w̄nRn(

1
κnν

) 1
ν−1

Q
ν
ν−1
n

(A.37)

Inserting the zero pro�t condition of developers to this, we derive:

TRn =
ν − 1

ν

(1− α)w̄nRn

rn
(A.38)

Turning to the land demand for construction of commercial �oor space, zero pro�t condition of
developers implies:

TBn =
ν − 1

ν

γYn
rn

=
ν − 1

ν

γ

β

wnLn
rn

=
ν − 1

ν

γ

β

An
1
βQ
− γ
β

n ψ−
1
β

rn
Ln (A.39)

where we inserted the zero pro�t condition of �rms. We again substitute zero pro�t condition of
developers into this, and it gives:

TBn =
ν − 1

ν

γ

β
ψ−

1
βAn

1
β rn

−( ν−1
ν

+1)Ln (A.40)

Together them, we derive the (developed) land market clearing conditions:

ν − 1

ν

(1− α)w̄nRn

rn
+
ν − 1

ν

γ

β
ψ−

1
βAn

1
β rn

−( ν−1
ν

+1)Ln = Tn, ∀ n (A.41)

The left-hand side is a downward sloping demand curve for land. This pins down the land rent in
equilibrium given {Rn} and {Ln}. Further discussion about solving equilibrium and its existence
is in the section B.

A.5 Labor mobility

We consider labor mobility in the wide economy, where workers choose to live in a city or the
rest of the economy. For tractability, we consider the Rosen-Roback framework for labor mobility.
Therefore, workers in the economy anticipate the average real income Ū from a city and the average
real income U from the rest of the economy. The real income level U is given exogenously. Besides,
we assume that workers di�er in additional utility bene�t from the choice of a city or the rest of the
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economy. Speci�cally, workers choose a city when:

Ū · zco(ω) ≥ U · zco(ω)

where zco(ω) is a idiosyncratic shock measuring preferences for a city and outside of a city by
individual worker ω. A large value of zco(ω) implies that worker ω is attached to a city or its
outside for idiosyncratic reasons.

We assume that workers follow two steps in location choices. First, they draw zco(ω) and an-
ticipate the average real income Ū in a city, and they decide to live in a city (c) or the rest of the
economy (o). This determines the total population of a city. Second, conditional on residing in a
city, they decide the residential place and workplace within a city as we described in the subsection
A.1. Suppose that the idiosyncratic shock follows Fréchet distribution with shape parameter σ, and
the total population in the wide economy is L̄ that is large constant.

Then, the total measure of workers that choose to live in a city is given by:

L =
Ūσ

Ūσ + Uσ
L̄ =

(
Ū
U

)σ
(
Ū
U

)σ
+ 1

L̄ (A.42)

Notice that in our application, we can consider
∣∣∣( ŪU)σ∣∣∣ << 1, as population in a city is not large

part of the total population in a country. Therefore, we can approximate:

L =

1− 1(
Ū
U

)σ
+ 1

 L̄ ≈
(
Ū

U

)σ
L̄ (A.43)

Using the expected utility of workers in a city, this becomes:

L =

 γ̄
(∑N

n=1

∑N
i=1

(
Bn
dni

wi
PαnQ

1−α
n

)ε)1/ε

U


σ

L̄ (A.44)

Therefore, city population (L) relative to wide economy (L̄) increases in the expected utility relative
to the exogenous level of utility in the wide economy U. The parameter σ captures the elasticity
of this adjustment. Note that we posit that workers cannot change their locations after choosing
the city or outside of the city. Therefore, a realization of the worker’s utility can be lower than the
outside utility U in equilibrium.
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B Appendix: Solving the model

In this section, we investigate the details of the constitution of competitive equilibrium. In subsec-
tion B.1, we start with the system of equations that characterize the competitive equilibrium. The
subsection B.2 shows the existence of the competitive equilibrium, and subsection B.3 extends the
discussion to its uniqueness.

B.1 System of equations

We introduce local spillovers in productivity:

An = ānL
χ
n, with ān ≡ anK

−χ
n (B.1)

where χ > 0 is the strength of the spillovers. We keep amenities exogenous. As we derived in the
previous section, we have characterized the equilibrium by the following equations. First, popula-
tion is:

Ri = LŪ−εBε
iQ
−(1−α)ε
i

∑
n∈S

d−εin w
ε
n, ∀ i ∈ S (B.2)

Commuter market clearing condition is:

Ln =
∑
i∈S

wεnd
−ε
in∑

k∈S w
ε
kd
−ε
ik

Ri, ∀ n ∈ S (B.3)

Pro�t maximization and zero pro�t condition for producers in location n is:

wn = ā
1
β
nL

χ
β
nQ
− γ
β

n , ∀ n ∈ S (B.4)

Using pro�t maximization and zero pro�t condition for producers and developers together, the �oor
space market clearing condition is:

(1− α)Rn

Qn

∑
k∈S

wεkd
−ε
nk∑

`∈S w
ε
`d
−ε
n`

wk +
γ

β

wnLn
Qn

=

(
Qn

κnν

) 1
ν−1

Tn, ∀ n (B.5)

where the �rst term on the left-hand-side is demand for �oor space by residents and the second
term is demand for �oor space by producers. The labor mobility is:

L = L̄

(
Ū

U

)σ
(B.6)

These 4N + 1 equations (B.2 ) to (B.6 ) determine four endogenous vectors of population (R),
employment (L), wage rate (w), and �oor space price (Q) and one scalar of city population L.

We now solve the system of these equations. The parameters of the model are: (α, ε, β, γ, χ,
ν, σ). Without loss of generality, we set L = L̄ and Ū = U, therefore the average real income Ū
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is equal to the reservation utility level in outer economy, U. This implies that the free mobility of
labor is hold in the spatial equilibrium. Then, combining (B.2 ) and (B.4 ) leads to population:

Ri = L̄U−εBε
iQ
−(1−α)ε
i

∑
n∈S

d−εin ā
ε
β
nL

χ
β
ε

n Q
− γ
β
ε

n (B.7)

For employment, commuter market clearing condition (B.3 ) becomes:

Ln =
∑
i∈S

d−εin

(
ā

1
β
nL

χ
β
nQ
− γ
β

n

)ε
∑

k∈S d
−ε
ik

(
ā

1
β

k L
χ
β

k Q
− γ
β

k

)εRi (B.8)

Plugging (B.7 ) into this, we derive:

L
1−χ

β
ε

n = L̄U−εā
ε
β
nQ
− γ
β
ε

n

∑
i∈S

d−εin B
ε
iQ
−(1−α)ε
i (B.9)

Given the �oor space price (Q), we �nd the unique set of vectors (R,L) that solve the 2N equations
(B.7 ) and (B.9 ) together. We now turn to the �oor space clearing condition. Plugging (B.2 ) and
(B.4 ) into (B.5 ),

(1− α)Rn

Qn

∑
k∈S

d−εnk

(
ā

1
β

k L
χ
β

k Q
− γ
β

k

)ε+1

RnL̄−1UεB−εn Q
(1−α)ε
n
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β

ā
1
β
nL

χ
β
nQ
− γ
β

n

Qn

Ln =

(
Qn

κν

) 1
ν−1

Tn (B.10)

Further, plugging (B.7 ) into above, �oor space market clearing condition is:

(1− α)L̄U−εBε
nQ
−(1−α)ε
n

∑
k∈S

d−εnk

(
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1
β

k L
χ
β

k Q
− γ
β
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+
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β
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1
β
nL

χ
β

+1
n Q

− γ
β

n =

(
1

κν

) 1
ν−1

Q
ν
ν−1
n Tn. (B.11)

We then use pro�t maximization and zero pro�t condition to transform the �oor space clearing
condition to the land market clearing condition. Pro�t maximization and zero pro�t condition for
developers relates the �oor space price and price per unit of developed land uniquely:

Qn = κ̄nr
ν−1
ν

n (B.12)

where κ̄n = κnν
(

1
κn(ν−1)

) ν−1
ν is constant. Substituting (B.12 ) into (B.11 ),
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nLn(r)

χ
β

+1κ̄
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ν
γ
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n =

(
1

κν

) 1
ν−1

κ̄
ν
ν−1
n rnTn, ∀ n ∈ S

(B.13)

This is the market clearing condition for developed land. The right hand side is proportional to
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the endowment of developed land (Tn). The left hand side summarizes the demand for developed
land. The �rst term in the left hand side is demand for developed land to construct residential �oor
spaces, and the second term is demand for developed land to construct commercial �oor spaces. In
(B.13 ), we denote employment as a function of land price, Ln(r), as we can characterize unique
mapping from land rent to employment from above discussion. Then, we de�ne:

Jn(r) = c1,nŨr
− ν−1

ν
(1−α)ε−1

n

(∑
k∈S

d−εnkc2,kLk(r)
χ
β

(ε+1)r
− ν−1

ν
γ
β

(ε+1)

k

)
+ c3,nLn(r)

χ
β

+1r
− ν−1

ν
γ
β
−1

n

− c4,nTn

(B.14)

where we let

Ũ = (1− α)L̄U−ε, c1,n = Bε
nκ̄
−(1−α)ε− γ

β
(ε+1)

n , c2,n = ā
ε+1
β
n κ̄

− γ
β

(ε+1)
n ,

c3,n =
γ

β
ā

1
β
n κ̃
− γ
β

n , c4,n =

(
1

κν

) 1
ν−1

κ̄
ν
ν−1
n

refer positive parameters. This operator Jn(r) is excess demand function for developed land. Thus,
the equilibrium price per unit of developed land satis�es:

Jn(r) = 0 (B.15)

for every n ∈ S .

B.2 Existence of equilibria

We turn to check properties of the excess demand function: (B-I) the excess demand function is
continuous, (B-II) the excess demand function satis�es Warlas law, and (B-III) the excess demand
function satis�es boundary condition. These three properties establish the existence of equilibrium.

B-I. The excess demand function Jn(·) is continuous in r, since Jn(rm)→ Jn(r) for any sequence
such that rm → r.

B-II. The excess demand function satis�es Warlas’ law for any land rent r, as immediately follow
by construction.

B-III. The excess demand function is obviously bounded below for any r ∈ RN
++. Letting T̄ ≡

maxn Tn, the excess demand function must satisfy Jn(r) ≥ −c3,nT̄ > −∞ for any vector r by its
construction. Further, the excess demand function satis�es the boundary behavior: for a sequence
rm → r̂ ∈ RN

+\(RN
++ ∪ 0), the excess demand function satis�es maxn Jn(rm)→∞.

It is su�cient to show that the demand for land exhibits Dn(rm) → ∞ as m → ∞ for some
location n, and we show that by contradiction. Suppose that a sequence Dn(rm) is bounded above.
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Since Dn(rm) ≥ 0 for all m, Dn(rm) is bounded below. Thus, the sequence is bounded and it has a
convergent subsequence. Without loss of generality, let Dn(rm) be the subsequence and D∗n be its
limit. By Warlas law, rm · Dn(rm) = rm · T . Taking its limit, r · D∗n = r · T . We also consider Dn
such that r · Dn = r · T , and we take

Dmn =
rm · T
rm · Dn

Dn

for each m. By its construction, we obtain rm · Dmn = rm · T . Hence, Dmn ≤ Dn(rm). Taking the
limit for both sides,

r · T
r · Dn

Dn = Dn ≤ D∗n

that leads to contradiction to the strong monotonicity of the demand for land.

These properties of the excess demand function (B-I)-(B-III) concludes the existence of equi-
librium land price vector (r). Note that it is not required that the excess demand function is ho-
mogeneous of degree zero for the statement of existence of equilibrium. Next, we investigate the
uniqueness of equilibrium.

B.3 Uniqueness of equilibrium

In general, with local spillovers, there are potentially multiple equilibria. We start with the special
case, and then discuss the general cases.

No �oor spaces in production (γ = 0) Suppose that production does not require �oor spaces, γ =

0. Then, (B.9 ) becomes:
Uε

L̄ā
ε/β
n

L
1−χε

β
n =

∑
j

d−εjnB
ε
jQ
−(1−α)ε
j (B.16)

The �oor space market clearing condition (B.11 ) is:

UεTn
(1− α)L̄Bε

n

Q
1+(1−α)ε+ 1

ν−1
n = (κν)

1
ν−1

∑
j

d−εnj ā
ε+1
β

j L
χ(ε+1)
β

j (B.17)

Then, we can apply the results by Allen et al. (2015) to �nd unique solution ({Qn}, {Ln}). The
matrix of coe�cients of these equations are:

M0 =

(
1− (1− α)ε+ 1

ν−1
0

0 1− χ
β
ε

)
, M1 =

(
0 χ

β
(ε+ 1)

−(1− α)ε 0

)
(B.18)

The matrix M0 is invertible if χε/β 6= 1, and we can obtain:

|M1M
−1
0 | =

(
0 χ

β
(ε+ 1)|1− χ

β
ε|−1

(1− α)ε
[
1 + (1− α)ε+ 1

ν−1

]−1
0

)
(B.19)
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The system of equations has a unique up-to-scale solution if eigenvalues of this matrix are no larger
than one. Therefore, the su�cient conditions for a unique up-to-scale solution are:

χ

β
(ε+ 1)

(
1− χ

β
ε

)−1

≤ 1 ⇔ χ ≤ β

2ε+ 1
(B.20)

Intuitively, when the local spillover is not strong and taste shocks across locations show large vari-
ation, the solution is unique.

No local spillovers (χ = 0) Consider no agglomeration economies in our model. If χ = 0, (B.14 )
becomes:

Jn(r) = c1,nŨr
− ν−1

ν
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n
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and (B.9 ) gives mass of workers in workplace n:

Ln(r) = c5,nL̄U−εr
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n

∑
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d−εin c6,ir
− ν−1
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where c5,n ≡ ā
ε
α
n κ̄
− γ
β
ε

n and c6,i = Bε
i κ̄
−(1−α)ε
i . Plugging this into (B.21 ) yields:

Jn(r) = J0
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n(r)− J̄n (B.23)

where we let:
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− ν−1
ν

(1−α)ε−1
n

(∑
i∈S

d−εni c2,ir
− ν−1

ν
γ
β

(ε+1)

i

)
,

J1
n(r) = c3,nc5,nL̄U−εr

− ν−1
ν

γ
β

(ε+1)−1
n

(∑
i∈S

d−εin c6,ir
− ν−1

ν
(1−α)ε

i

)
,

J̄n = c4,nTn.

(B.24)

Then, we have:
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with p1
nj =

d−εjn c6,jr
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. Then, we can immediately see that Jn(r) exhibits:
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Then, we need the condition such that:

∑
j 6=n

∣∣∣∣dJn(r)

drj

∣∣∣∣ ≤ ∣∣∣∣dJn(r)

drn

∣∣∣∣ (B.28)

for every n. Mathematically, this implies the negative of the normalized Jacobian is a diagonally
dominant matrix, and economically, this corresponds to the gross substitute properties.

With local spillovers (χ > 0) Next, we allow agglomeration economies in production place, χ 6=
0. Employment (B.9 ) becomes:

Ln(r) =

(
L̄U−εc

ε
ε+1

2,n r
− γ
β
ν−1
ν
ε

n

∑
i∈S

d−εin B
ε
i κ̄
−(1−α)ε
i r

− ν−1
ν

(1−α)ε

i

) β
β−χε

(B.29)

When we substitute this into (B.14 ), the excess demand function becomes:
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(B.30)

where c7,n = c1,n(1− α)−
χ(ε+1)
β−χε . Therefore, if χε < β, the excess demand function exhibits (B.27 ).

The intuition for this condition is followings: �rst, the idiosyncratic shocks in commuting choices
exhibit large variation as it prevents the perfect concentration of employment (i.e., small value of ε);
second, the agglomeration force in production place, χ, is not too strong to dominate the dispersion
forces.

When we compare this condition to the case of γ = 0, we see the condition becomes tight.
Intuitively, without land in production, an increase in employment directly increases the wage of
workers, which leads to further agglomeration forces and an increase in demand for housing. This
e�ect is captured by χ(ε + 1). Therefore, we have this part in the condition for the case with
γ = 0. However, when production requires land, the dispersion force from the land o�sets such
a wage increase. Yet, we need the condition of gross substitute properties for the uniqueness of
equilibrium.
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C Appendix: Calibration of the model

C.1 Gravity equation for commuting

We parametrize the commuting costs (loss of utility) by a function of commuting time, dni = tδni

with positive parameter δ. The commuting pattern within a city shows:

log λni = −εδ ln tni + µn + φi + λ0 (C.1)

where
µn ≡ ε logBn − (1− α)ε logQn, φi ≡ ε logwi (C.2)

whereµn is the residential �xed e�ect that compounds residential amenity (Bn) and price of residen-
tial �oor spaces (Qn), and φi is the workplace �xed e�ect that re�ects wage rate (wi) in equilibrium.
λ0 is a constant that corresponds to the denominator of commuting probability. Therefore the com-
bination of two parameters, the shape parameter of Fréchet distribution (ε) and the parameter for
commuting cost (δ), governs the elasticity of commuting �ows to travel time.

Estimating (C.1 ) using all positive commuting �ow in log λni and travel time tni yields estimates
for the combination of two parameters: θ̂ = ε̂δ̂. Kreindler and Miyauchi (2021) have estimated the
gravity equation for Dhaka and obtain the coe�cient of 2.5.

To decompose the coe�cient, our benchmark value of ε is the estimated value in Kreindler and
Miyauchi (2021). They estimated the Fréchet shape parameter around 8.0 by using the variation of
workplace labor earnings for the �xed e�ects φi. This implies that the parameter in the commuting
costs, δ, is equal to δ = 2.5/8.0 ≈ 0.31. We use this value (δ) as a benchmark throughout our
quanti�cation.

There are various estimates for the commuting elasticity in the literature; therefore, we also do
some robustness checks for di�erent values for the elasticity ε.

C.2 Citywide parameters

We feed some parameters based on the descriptive statistics. In particular, we look into the data
on expenditure share on housing and other consumer goods for the target city to determine the
parameter in the preference. For the production technology, we set cost share from the literature.

Our data source for Dhaka is the Household Income and Expenditure Survey (HIES) in 2016.
It reports average expenditure share across di�erent consumption segments: food and beverage
(42.59 %), cloth and footwear (6.42 %), housing and house rent (17.25 %), fuel and lighting (5.02 %),
household e�ect (3.03 %), medical and education (10.69 %) and others including transportation and
recreation (15.0 %). Given these numbers, we set α to be 0.75.

We also set 0.60 for input share of labor in production (β) and 0.20 for input share of commercial
�oor spaces in production (γ) based on Valentinyi and Berthold (2008).
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C.3 Model inversion and estimation of key parameters

Our aim in the next step is to recover the location-speci�c fundamentals (Ai, Bi) and estimate key
parameters in the determinants in the supply of �oor spaces and spillovers. Conditional on city-
wide parameters (α, ε, β, γ, ν, κ) and observations in data about workers in residential places (R),
workers in workplaces (L), average height of buildings (h), size of built up area (T ) and commuting
costs (d), we recover unobserved vector of productivity (A) and amenities (B) to make the equilib-
rium allocation consistent with observations. Furthermore, given parameters for local externalities
in productivity (χ) and size of the area (K), we can obtain the unobserved location fundamentals
in workplaces (a), and they are unique. We use this process to estimate the strength of spillover.

The process is sequential, and therefore we explain it step by step. In step 1, we calibrate wages
across locations by exploiting commuting market clearing conditions. Intuitively, we can infer wage
by plugging employment, population and commuting costs into the commuting market clearing
condition. In step 2, we estimate the parameter related to �oor supply elasticity. Speci�cally, we
estimate cost elasticity in building ν by using the data on height and land market clearing condi-
tions. We consider the moment conditions for the residuals of �oor space supply to estimate the
parameter. At the end of this step, we can also compute the �oor space prices and land rents across
locations to be consistent with market clearing conditions. In step 3, we back out productivity (A)
and amenities (B). The zero pro�t condition of �rms allows us to recover productivity, while popu-
lation distribution can be used to back out amenities. Finally, in step 4, we decompose the estimated
productivity into the exogenous part and spillovers. We consider the moment conditions for the
fundamental advantages to estimate the strength of spillover (χ).

Back out wages (STEP 1)

First, the model leads to a system of equations that relate workplace and residential population:

Ln =
∑
i∈S

(wn/din)ε∑
k∈S(wk/dik)ε

Ri (C.3)

where we can plug travel time into the commuting cost, din = tδin. Given the information of (L,R),
commuting cost (d) and parameter of idiosyncratic shocks ε, we solve the system of N equations
for wages w = {wi}Ni=1.

Conditional on the observation of (L,R), this system of equations is homogeneous degree zero
inw, and the solution for (C.3 ) is unique up to scale. To see this, suppose that there are two linearly
independent vectorsw andw′ solving the system of equations. We let∇k ≡ w′k/wk for every k ∈ S
and without loss of generality we set n ∈ arg maxk∈S ∇k. Using this, we de�ne w̃ = ∇n · w. By
construction, w̃n = w′n and w̃k = ∇n · wk > ∇k · wk = w′k for other elements k 6= n.
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Therefore, for such n, we have:

0 = Ln −
∑
i∈S

(w′n/din)ε∑
k∈S(w′k/dik)

ε
Ri < Ln −

∑
i∈S

(wn/din)ε∑
k∈S(wk/dik)ε

Ri (C.4)

and this leads to contradiction. Therefore, the solution for the system of equations (C.3 ) is unique
up to scale. We normalize the vector by its geometric mean, (

∏
nwn)1/N = 1.

Given the inverted wage vectorw = {wn}, we compute the wage earnings per capita at location
i:

w̄i =
∑
n∈S

(wn/din)ε∑
k∈S(wk/dik)ε

wn (C.5)

Using this, we infer the aggregate income of workers living in location i by wiRi.

Estimate parameter of elasticity ν, �oor space prices and land rent (STEP 2)

Next, we consider the estimation of the elasticity in the construction of �oor spaces, ν, together
with back up of relevant variables in equilibrium: �oor space price (Q), average height (h) and
price of developed land (r). First, given the parameter ν, we compute land price and �oor space
price by using land market clearing conditions and pro�t maximization in the construction of �oor
spaces. Then, we predict the average height in each location and de�ne the target of matching the
predicted height and observations. Using the moment condition, we search the parameter value ν.
In our data, we cannot distinguish the average height of housing and commercial �oors. We only
observe the average of all buildings in a neighborhood which includes any di�erent uses. Hence,
we cannot identify di�erent parameters for each use, and we only estimate the single parameter ν.

Given the elasticity in construction of �oor spaces, ν, we use land market clearing condition for
developed land to back out the inferred unit land price (r). We compute unit land price by:

ri =
1

Ti

(
ν − 1

ν
(1− α)w̄iRi +

γ

β

ν − 1

ν
wiLi

)
(C.6)

where Ti is the area of developed land. In the bracket, the �rst term is the demand for developed
land to be used for residential places, and the second term is the demand for developed land to build
commercial �oors.

Further, the pro�t maximization of developers in the supply of �oor spaces to compute their
unit prices:

Qi = κiν

(
ri

κi(ν − 1)

)(ν−1)/ν

(C.7)

The elasticity of �oor space price Q to land price r is given by 1 − 1/ν ∈ (0, 1]. The height of
buildings in each location is:

hi =

(
Qi

κiν

)1/(ν−1)

(C.8)
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Combining them, we can express the height by:

hi =

(
ri

κi(ν − 1)

)1/ν

. (C.9)

Inserting the land market cleating condition into this, we obtain:

ν lnhi = − lnTi − ln ν − lnκi + ln

(
(1− α)w̄iRi +

γ

β
wiLi

)
(C.10)

The left-hand side is the log of height. On the right-hand side, the �rst term is the log of the size of
developed land, the second term is constant, the third term is the supply shifter, and the last term
is the demand for �oor spaces. Among them, we can use the data on height for the left-hand side,
data on developed area, and demand for �oor spaces is computed by using wages and income we
calculated in step 1.

The supply shifter can be seen as structural residuals. Therefore, we use the residuals to estimate
the parameter ν. Namely, we compute the structural residuals:

lnκi = −ν lnhi − lnTi − ln ν + ln

(
(1− α)w̄iRi +

γ

β
wiLi

)
(C.11)

given parameter ν and observation of heights (hi) and developed land Ti and demand. Using them,
we de�ne the moment conditions for the structural residuals:

E[Mh(X; ν)] ≡ E
[
Ii(g)×

(
lnκi − lnκ

)]
= 0 (C.12)

where we group locations into G di�erent bins based on the total population density (the sum of
population and employment) and Ii(g) is an indicator function for location i that is in the g-th bin.
lnκi is the computed residuals and lnκ is their average. The key identifying assumption for this
is: that any di�erences between the structural residuals in the average height are unrelated to the
level of total population density among the same group.

In our baseline, we use total density, which sums population density and employment density
to de�ne G = 10 bins. Therefore, we sort all locations by the level of population density and
employment density, and we group locations for di�erent 10 bins based on their total density. Our
target of parameters is:

ν̂ = arg min

(
1√
N

N∑
i=1

Mh(Xi;ν)

)>
V−1

(
1√
N

N∑
i=1

Mh(Xi;ν)

)
(C.13)

where V is positive semide�nite matrix.

The reason that we use total density, which sums population density and employment density,
to de�ne bins in the baseline is that the variation of �oor spaces in the city is mainly driven by the
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total demand for both housing and business use. We also consider other de�nitions for the grouping.

Floor space prices and land rent. Once we estimated ν, we can back out �oor space prices from:

lnQi = (ν − 1) lnhi + lnκi + ln ν (C.14)

On the right-hand side, we plug the data on average height and residuals κi. In practice, we smooth
the residuals since we �nd that the structural residuals are noisy in the periphery of the city. Based
on the grouping of locations used for the moment condition, we compute the average of the struc-
tural residuals within the group. Then, we use such averages instead of the original values of κi.
Plugging such average values into the de�nition of the structural residuals, we adjust the size of
developed land area (Ti) such that zero pro�t conditions for developers hold.

Finally, we substitute the adjusted land area into the land market cleating conditions to estimate
land rents. The land market clearing condition implies the developed land used for housings and
that for commercial �oor spaces are given by:

TRi =
ν − 1

ν

(1− α)wiRi

ri
, TBi =

γ

β

ν − 1

ν

wiLi
ri

(C.15)

Back out productivity and amenities (STEP 3)

Productivity We use the zero pro�t condition for producers of homogeneous tradable goods to
back out the productivity in each location:

An ∝ wβnQ
γ
n (C.16)

Note that trade costs are negligible in a city, therefore we normalize the price to be one (numeraire).
Given parameter of cost share for labor (β) and �oor spaces (γ), we can compute the overall pro-
ductivity for each location. 1− β − γ is the share of numeraire for intermediate use in production.

Amenities The model states that residential population in i is:

Ri = U−εγ̄εLBε
iQi

−(1−α)εWi Wi ≡
∑
n∈S

d−εin w
ε
n (C.17)

where U is utility level in the large economy, γ̄ is constant value of Gamma function, L is total
number of workers in a city, and Bi is overall amenity. Wi is the proximity to the labor market
potential of location i which summarizes the accessibility to labor returns in a city.

Since the probability of location choice is homogeneous of degree zero in overall amenity, we
can back out the amenity vector up to scale. We take geometric mean for relevant variables:

B̃ =

(∏
i∈S

Bi

) 1
N

, R̃ =

(∏
i∈S

Ri

) 1
N

, Q̃ =

(∏
i∈S

Qi

) 1
N

, W̃ =

(∏
i∈S

Wi

) 1
N

, (C.18)
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Using them, we back out the amenity vector normalized by its geometric mean:

Bi

B̃
=

(
Ri

R̃

)1/ε(
Qi

Q̃

)1−α(
Wi

W̃

)−1/ε

(C.19)

The vector of overall amenity (B) is uniquely determined with this normalization. We �nally set
B̃ = 1.

Estimate the agglomeration parameters (STEP 4)

Finally, we consider the parameter of agglomeration economy. In this paper, we allow that the lo-
cal productivity increases in employment density in the place and the strength of agglomeration
economy is governed by a single parameter χ. In this last step, we consider estimation of the pa-
rameter and exogenous fundamental productivity (a = {an}Nn=1). Using our speci�cation the local
agglomeration economy, the fundamental productivity is:

an = An

(
Ln
Kn

)−χ
(C.20)

where Kn is size of location and Ln/Kn is employment density. Given information of employment
(L) and area size (K), we can compute fundamentals (a) conditional on parameter values χ.

We search the best �tted values for the parameter χ̂ that minimizes the variation of fundamentals
within each bin of locations relative to the global (city-level) average of fundamentals. Speci�cally,
we de�ne the moment conditions for fundamental productivity:

E[MA(X;χ)] ≡ E
[
IAi (g)× (ln āi − ln ā)

]
= 0 (C.21)

Where a is geometric mean of fundamentals at the city level.
We de�ne the bins in a similar manner as in (C.12 ) of Step 2. Namely, we de�ne G = 10

bins based on the information of the total density, which is the sum of employment density and
population density. The key identifying assumption here is that any di�erences between the average
of exogenous fundamentals in a group and their overall average are unrelated to the level of total
density.

D Appendix: Data for Dhaka

This part presents additional �gures about the data for Dhaka. Subsection D.1 presents basic data
for the city. The data is based on the earlier work by Bird et al. (2018). Subsection D.2 shows the
results of calibration.
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D.1 Data

Dhaka We study the City of Dhaka, Bangladesh, which is a typical developing country city in
many ways. Dhaka has experienced rapid population growth since the partition of India in 1947,
and it continues to attract new populations at a rapid pace. Figure D.1 (a) shows the area of the
city that we use in our quantitative analysis. Each partition on the map represents a union, which
de�nes a location in our quanti�cation. The number of unions in our analysis is 264. As we see
on the map, the size of unions is signi�cantly di�erent. The central area of the city shows small
partitions while the peripheral areas are large.

Figure D.1 (b) shows how each union is far from the central business district (CBD). The CBD
is de�ned as a union with the highest employment density. On the map, dark areas in the North of
the city show the longest travel time to the CBD, and travel time for people living in these places
takes more than 90 minutes if they commute to the CBD. We observe the large heterogeneity across
wards in the city area, which shows the importance of the commuting costs for workers in the
city. In our analysis, we use the average travel time instead of the travel time with congestion. The
transport network is mapped in 2011 using data from the Revised Strategic Transport Plan (DTCA
2015) and OpenStreetMap (2015). Travel times are estimated for both pedestrians traveling at 5
km/h and motorists traveling at di�erent speeds according to di�erent types of roads: 15km/h on
one-lane roads, 20 km/h on two-lane roads, and 60km/h for four-lane or wider roads. Then, travel
time between unions is computed on the shortest path. See Bird et al. (2018) for further details.

Table D.4 reports the basic statistics for 264 unions used in our analysis: population, employ-
ment, population density, employment density, size of unions, size of the developed area within
unions, the share of the developed area within unions, average height of buildings in unions and
travel time to the CBD. Employment density shows signi�cant variation relative to population den-
sity. We also �nd remarkable di�erences in the degree of developed area in the city.
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Figure D.1 : The Area of Dhaka and Travel Time to CBD

Source: Esri, DigitalGlobe, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AEX,
Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS
User Community

(a) Dhaka

Time to CBD
< 15.0
15.1 - 25.0
25.1 - 30.0
30.1 - 35.0
35.1 - 45.0
45.1 - 50.0
50.1 - 60.0
60.1 - 75.0
75.1 - 90.0
> 90.0

(b) Travel time to CBD

Note: The left panel shows the area of Dhaka and ward used in our analysis. The right panel shows the travel time
(minutes) to CBD in Dhaka.

Table D.4 : Summary Statistics

Variable in data Average 1 percentile 25 percentile 50 percentile 75 percentile 99 percentile

Population 11,883 495 4,742 8,113 14,770 58,717

Employment 11,883 328 3,726 7,581 14,417 64,342

Population density (per ha) 79.80 1.983 12.22 53.26 136.7 311.9

Employment density (per ha) 102.5 1.527 8.620 41.18 112.6 944.1

Area size (ha) 552.8 5.403 74.25 180.6 550.8 3,669

Area of developed land (ha) 91.58 1.858 28.66 55.08 110.5 621.7

Share of developed land area (percent) 36.4 0.809 13.7 37.2 52.8 91.2

Average height of buildings (metres) 7.620 2.007 5.384 7.085 10.30 12.90

Travel time to CBD (minutes) 48.00 5.556 27.73 46.92 61.85 112.6

Note: This table reports summary statistics about the main data for 264 unions in Dhaka.

Density The population and residential data are based on the Population and Housing Census of
2010 (BBS 2011) at the union level. Following Bird and Venables (2019), we take households as the
unit of observation and re-scale the resulting spatial distribution of households by average house-
hold size. Our data for employment is built up from employment data at the establishment location
taken from the Economic Census 2013 (BBS2014). The Economic Census reports 4-digit industry
codes (BSIC 2009) and allows us to establish employment in di�erent sectors (manufacturing, non-
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tradable services and tradable services). In the baseline, we do not distinguish di�erent sectors and
use the sum of total employment in each union.

The city shows the concentration of population and employment in the central area. Figure D.2
show population density and employment density across di�erent unions by their distances from

the CBD. Both panels show the highest density around the CBD, consistent with the monocentric
city framework. The employment density quickly drops as locations are far from the CBD. In the
peripheral areas, population density and employment density show a similar level, implying less
commuting in these areas.

Figure D.2 : Workplace Density and Residential Density
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(a) Worker Density at Residents
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(b) Worker Density at Workplace (Employment)

Note: The left panel shows the population density in residential places, and the right panel shows the employment
density. Each point shows a ward in Dhaka, and red lines are �tted lines.

Satellite data We use the data on the build-up area and the average height of buildings in all
wards of Dhaka from the German Aerospace Center (DLR). These data are produced by DLR, using
their World Settlement Footprint 3D (WSF 3D). The methodologies of WSF 3D are described in
Marconcini et al. (2020) and Esch et al. (2020).

The WSF 3D is a three-dimensional model of the built environment worldwide. The WSF 3D
estimates building area, height, and density at an aggregated 90 m spatial resolution. The original
satellite data, 12m WSF-3D layer, provides information about the height of all buildings in 12 meters
× 12 meters pixels. Using the height data of all 12m WSD-3D pixels that belong to a building
structure in each union, the average height of buildings at the union level is computed. We also
obtain the total built-up area within the union. Based on these two measures, the total volume of
all buildings within the ward results from multiplying the total building footprint area per ward by
the average building height per ward.

Figure D.3 shows this data for Dhaka. Panel (a) presents the variation of the share of built-up
area in the data. The variation is signi�cant. The central area of the city exhibits more than 80
percent of the developed area share, while many locations show less than 10 percent. Panel (b)
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shows the average height of buildings that decline from the center of the city toward the periphery.
Together with these �gures, the total volume of �oor spaces is relatively large in the central area
that is used for both �rms and households. In contrast, housings in the peripheral area show lower
height on the small share of developed area.

Figure D.3 : Built-up Area and Average Height
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(a) Share of Built-up area in Data
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(b) Average Height in Data

Note: The left panel shows the share of built-up areas. The measure is computed by: the estimated developed area
divided by the total area size in each ward. The right panel shows estimated average height of buildings in each ward.
Each point shows a ward and the red lines are �tted lines.

D.2 Calibration results

This subsection presents additional results for our calibration omitted in the main text. Following
the sequential steps in the calibration we described in the section C, we show the results step by
step here. We start with calibration of wages and commuting patterns in Dhaka, then estimate �oor
space supply elasticity. Given the results, we estimate �oor space prices and land rent. Lastly, we
estimate spillovers in productivity. In the last step, we also show the results when we shut down
the spillover components.

Calibration of wage and commuting

Figure D.4 display the results for the estimated wage rate in step 1. Panel (a) shows the spatial
variation of the wage rate. The red-colored areas show high wage rates, and the blue-colored areas
show lower wage rates. We can identify the high wage rate around the center of the city (Tejgaon,
Hazaribagh), the north part of the city (Savar), where the Bangladesh Export Processing Zone is
located, and the south part of the portage (Narayanganj). By construction, our estimated wages are
correlated to the employment size. Panel (b) con�rms a positive relationship between high wage
rate and employment density. Intuitively, people commute to the unions with high wage rates as
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their return from commuting is solely high wages. Table D.5 shows the summary statistics. In this
process, we can also compute the estimated commuting patterns. Figure D.5 con�rms the gravity
pattern of commuting, which relates the predicted number of bilateral commuters between unions
and the commuting time between them.

Once we obtain the estimated wages across unions and predicted patterns of commuting, we can
compute the estimated wage income for workers. Figure D.6 displays the variation of the estimated
income per worker. Since workers residing in unions around the central area have high accessibility
to the places exhibiting high wage rates, workers in these places show high income per capita. In
contrast, in the peripheral areas with a small number of employment, less accessibility to jobs leads
to lower income per capita for workers residing there.

Figure D.7 presents that the variation of the volume of buildings in DLR data is strongly cor-
related with the total population (i.e., sum of employment and residents). Figure D.8 con�rms that
the variation in the demand for �oor spaces re�ects the total population. In this �gure, we compare
the total demand �oor spaces based on the model and total population across wards in the city.

Figure D.4 : Estimated Wage Rate
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(a) Estimated Wages in Dhaka
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(b) Estimated Wage and Employment Density

Note: The left panel shows mapping of calibrated wages. The right panel shows the relationship of calibrated wages
and employment density.

Table D.5 : Summary Statistics for Estimated Wage Rate

Variable in calibration Average 1 percentile 25 percentile 50 percentile 75 percentile 99 percentile

Wage rate 1.008 0.726 0.923 1.007 1.083 1.389

Income per capita 1.108 0.966 1.076 1.101 1.130 1.373

Note: This table reports summary statistics about the calibrated wages and income for 264 unions in Dhaka.
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Figure D.5 : Gravity for Commuting
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Note: The graph shows the gravity relationship between number of commuters predicted in the model and commuting
time for each pair of di�erent wards.

Figure D.6 : Estimated Income
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Note: The graph shows the income per capita calibrated in the model and employment density for di�erent wards.
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Figure D.7 : Volume of Buildings and Total Population
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Note: Each observation in this �gure is logarithm of the volume of buildings estimated by the DLR data from satellite
images and logarithm of total population (sum of residential population and employment) for each ward in Dhaka. The
red line is �tted line.

Figure D.8 : Demand for Floor Spaces and Total Population

4

6

8

10

12

Lo
g 

D
em

an
d 

fo
r F

lo
or

 S
pa

ce
s i

n 
C

al
ib

ra
tio

n

7 8 9 10 11 12
Log Total Population (Residents and Employment) in Data

Note: Each observation in this �gure shows the logarithm of demand for �oor spaces computed by using estimated
wages and the logarithm of total population that is sum of residential population and employment.
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Estimation of �oor space supply elasticity

Next, we estimate the parameter ν. Figure D.9 shows the value of the objective function for the
moment condition. The dashed line corresponds to the value of ν, which achieves the minimum of
the objective function and we use it as a baseline estimate, ν = 1.69. The objective function has a
unique minimum.

In the baseline, we de�ne 10 di�erent bins of unions based on the sum of population density
and employment density. This is based on the idea that the variation of demand for �oor spaces
stems from both usages of business and residence. However, we can also de�ne such bins based
on di�erent measures. In Figure D.10 shows the value of objective functions for two di�erent
de�nitions. The line shows the values when we de�ne 10 bins based on the population density.
Therefore, we weigh more on the demand for housing. This gives the unique minimum and the
estimate is ν = 1.59. In contrast, the dashed line shows the values when we de�ne 10 bins based
on the employment density. Then, we obtain the estimate ν = 1.77. Intuitively, when we estimate
the cost elasticity by weighting more on employment density, we obtain higher cost elasticity for
the development of �oor spaces. Our baseline estimate is in the middle of these two estimates.

Figure D.9 : Objective function for the moment condition of ν
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Note: The graph shows the value of the objective function of the moment condition for housing supply elasticity (ν).
We de�ne the 10 di�erent bins based on the total population density.
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Figure D.10 : Objective function for the moment condition of ν based on di�erent bins
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Note: The graph shows the value of the objective function of the moment condition for housing supply elasticity (ν)
when we use di�erent de�nitions of bins. The line shows the objective function when we de�ne 10 bins solely based
on population density (i.e., density of workers in residential places). The dotted line shows that when we de�ne 10 bins
solely based on employment density (i.e., density of workers in workplaces).

Calibration of �oor space prices and land rent

Table D.6 shows the summary statistics for the estimated land rent and �oor space prices for 264
unions. Figure D.11 presents the variation of the estimated land rent and �oor space prices across
the distance from the CBD.

The estimated land rent shows a huge di�erence across locations in the city. Unions in the
central area show relatively high land rent, and the land rent curve shows a negative slope from
the city center. This is consistent with the monocentric city structure of Dhaka, and the demand
for �oor spaces in the central area for both production and housing drives high land rent and �oor
space prices.

Figure D.12 shows the relationship between the estimated share of �oor spaces used by �rms
and employment density. In the central district of the city, almost all of the �oor spaces are used
for production instead of housing. The concentration of �rms in these areas is the primary source
of the signi�cant di�erence in �oor space prices between the city center and the outer area.

Table D.6 : Summary Statistics for Estimated Land Rent and Floor Space Price

Variable in calibration Average 1 percentile 25 percentile 50 percentile 75 percentile 99 percentile

Land rent 52.64 4.486 21.19 39.82 74.31 174.0

Floor space price 14.91 4.623 9.874 13.78 17.48 34.31

Note: This table reports summary statistics about the calibrated land rent and �oor space prices for 264 unions in Dhaka.
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Figure D.11 : Estimated Land Rent and Floor Prices
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(a) Estimated Land Rent
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(b) Estimated Floor Space Price

Note: The left panel shows the land rent calibrated in the model and distance to CBD for di�erent wards. The right
panel shows the �oor space prices (Qi) calibrated in the model and distance to CBD for di�erent wards.

Figure D.12 : Estimated Floor Space Usage
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Note: The graph shows the share of �oor space used for busienss calibrated in the model and employment density for
di�erent wards.

Estimation of productivity spillovers

Next, we back out (overall) productivity and amenities. Using the estimated wages and �oor space
prices above, we compute the overall productivity by using the zero pro�t conditions in the pro-
duction of tradable goods. We also exploit the population distribution across locations to infer the
amenities.

Table D.7 reports the summary of the estimated productivity and amenities. As we show in the
main text, the overall productivity is positively correlated with the employment density. The cor-
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relation is 0.6741. In contrast, the value of amenities is not signi�cantly correlated with population
density. Figure D.13 shows the variation of amenities and population density and the correlation
is 0.2644. Given this, we decompose the overall productivity into the spillover term and exogenous
term by estimating the spillover parameter (χ). As we discuss in the main text, we consider the
moment condition for the fundamental advantage in productivity. Figure D.14 displays the values
of objective function. The objective function shows the unique minimum at χ = 0.045, and we
use this estimate as a benchmark value for the local spillover. Using the value, we can compute the
exogenous productivity (ai). The third row in Table D.7 shows its summary statistics.

Our assumption for the identi�cation for estimating the parameter of local spillover suppose that
there is no systematic relationship between exogenous productivity and distance from the center.
Figure D.15 shows the variation of the fundamental advantage in productivity and distance from
the CBD. The correlation between the log of fundamental advantage and total population density
(sum of employment density and residential population density) is -0.0182. This con�rms that there
is no systematic relationship between fundamental productivity advantages and total population
density or distance from CBD.

To gauge the role of spillovers, we also run the model by shutting down the spillovers. Namely,
using the calibrated amenities, fundamental advantages and estimated parameters, we compute the
equilibrium when setting χ = 0. We compare such equilibrium and the baseline calibration. Figure
D.16 shows the variation of �oor space prices when we abstract the spillovers. The red line shows
the �tted line for that case, and the dashed line is the �tted line for the baseline case. When there are
no spillovers, the �oor space prices in the central area of the city become lower than the baseline,
but it does not show a dramatic drop. The di�erence re�ects the gains from the agglomeration of
workers. Figure D.17 displays the results for height of buildings. The central area shows the drop
of height compared to the baseline in our data.

Table D.7 : Summary Statistics for Productivity and Amenities

Variable in calibration Average 1 percentile 25 percentile 50 percentile 75 percentile 99 percentile

Productivity 1.007 0.750 0.927 0.995 1.073 1.377

Amenities 1.009 0.699 0.921 1.022 1.107 1.283

Exogenous productivity 0.856 0.687 0.803 0.852 0.897 1.066

Note: This table reports summary statistics about the calibrated productivity (Ai), amenities (Bi) and fundamental advantages (ai) for
264 unions in Dhaka.
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Figure D.13 : Amenities and Population Density
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Note: The graph shows logarithm of the value of estimated amenities and logarithm of population density in each ward.

Figure D.14 : Objective function for moment condition of productivity spillovers
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Note: The graph shows the value of objective functions for the moment condition of productivity spillovers.
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Figure D.15 : Examining the productivity moment condition
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Note: This �gure shows the variation in fundamental advantage in productivity. Each point shows the logarithm of
fundamental advantage and distance to CBD for each location. The red horizontal line is the average log of fundamental
productivity in the city.

Figure D.16 : Floor space price when χ = 0
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Note: This �gure shows the variation in �oor space prices in equilibrium when χ = 0. Each point shows the �oor space
prices and distance to CBD for each location. The red line is the �tted line for the equilibrium �oor space prices, while
the dashed line is the �tted line for the baseline estimates.
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Figure D.17 : Average Height when χ = 0
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Note: This �gure shows the variation in heights in equilibrium when χ = 0. Each point shows the average height and
distance to CBD for each location. The red line is the �tted line for the equilibrium height, while the dashed line is for
the average height in the baseline (data).
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E Appendix: Counterfactuals

The model allows us to do counterfactual policy experiments in the city. This section provides the
details about the counterfactual experiments. Subsection E.1 and E.2 explains the procedure of com-
puting counterfactual change of the equilibrium for di�erent types of counterfactual experiments.
The former considers the change in the fundamentals, while the latter considers the change in the
parameter. Subsection E.3 provides the additional counterfactual results.

E.1 Computing counterfactuals when fundamentals are changed

Suppose that any exogenous variables of location characteristics in the model have changed. For
instance, we can consider change in commuting cost (dni), fundamental productivity (ai), amenities
(Bn) and development of land (Ti). For these changes, we can use the exact hat algebra. For any
variable x, we let x̂ denote the change of the variable relative to the baseline. We can solve the
equilibrium conditions for the relative change of endogenous variables (ŵ, R̂, L̂, q̂, Q̂, Ĥ) in the
counterfactual equilibrium relative to their levels in the baseline equilibrium. We describe how to
compute these counterfactual results in the followings.

Closed city As an example, we consider the proportional change in travel time in a city. That is,
we have d̂in 6= 1 for some i and n. We guess the proportional change in employment (L̂0) and
population (R̂0). In a closed city case, total population in the city is �xed. Therefore, we must have∑

i λ
L
i L̂i = 1 and

∑
n λ

R
n R̂n = 1 where λLi is employment share in i and λRn is population share in

n for the baseline (i.e., observation).

1. Given the guess of proportional change in employment L̂0, we compute the proportional
change in productivity

Âi =
(
L̂0
i

)χ
(E.1)

2. We solve the commuting market clearing conditions for the change in wage. Namely, we solve
the system of N equations:

L̂iLi =
∑
n∈S

(ŵiwi)
ε(d̂indin)−ε∑

j∈S(ŵjwj)ε(d̂jndjn)−ε
R̂nRn (E.2)

for ŵi, and it is unique. Using the proportional change in wages, we compute the proportional
change in income per worker residing in location n is:

ˆ̄wnw̄n =
∑
i∈S

(ŵiwi)
ε(d̂indin)−ε∑

j∈S(ŵjwj)ε(d̂njdnj)−ε
ŵiwi (E.3)

3. We substitute these changes into the land market clearing conditions to obtain the propor-
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tional change in land rent:

r̂n = ˆ̄wnR̂
0
n

( ν−1
ν

(1− α)w̄nRn

rnTn

)
+ ŵnL̂

0
n

(
ν−1
ν

γ
β
wnLn

rnTn

)
(E.4)

where on the right-hand side, the �rst parenthesis is share of developed land used for housing
in the baseline and the second one is that for production.

4. Using the condition of pro�t maximization for developers, we obtain:

Q̂n = (r̂n)
ν−1
ν ,

Ĥn = (Q̂n)
1

ν−1

(E.5)

5. we compute the proportional change of commuting probabilities:

λ̂ni =
(ŵi)

εd̂−εni (Q̂n)−(1−α)ε∑
k∈S
∑

j∈S λkj(ŵj)
εd̂−εkj (Q̂k)−(1−α)ε

(E.6)

where λkj is the probability in baseline.

6. Using this change in commuting probabilities, λ̂, we compute proportional changes in popu-
lation and employment:

R̂1
n =

∑
i∈S

λ̂ni
λniL

Rn

,

L̂1
i =

∑
n∈S

λ̂ni
λniL

Li

(E.7)

7. We update the vector of proportional change in employment and residents:

L̂ = (1− ς)L̂0 + ςL̂1,

R̂ = (1− ς)R̂0 + ςR̂1
(E.8)

with some update scalar ς ∈ (0, 1). We continue this until |L̂1
i − L̂0

i | and |R̂1
n − R̂0

n| converge
to zero for appropriate norm.

Welfare change Using the proportional change in these variables, the change in expected utility
of workers in the city can be computed by:

ˆ̄U =
B̂n

d̂nn

ŵn

P̂αQ̂1−α
n

λ̂−1/ε
nn (E.9)

This holds for every location n as expected utility ex-ante is equalized across location choices.
Therefore, given the change in amenities (B̂n) and own commuting costs (d̂nn), the welfare gains in
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the counterfactuals are determined by change in wage (ŵn), change in �oor space prices (Q̂n) and
change of noncommuting probability (λ̂nn). Each component of welfare change may di�er across
locations n, but their net e�ect becomes same in terms of expected utility at the city level. This
formula is close to the idea of gains from trade in the context of international trade (Arkolakis et al.
(2012)). To investigate this, we consider each part in (E.9 ) such that:

ˆ̄U =
B̂n

d̂nn︸︷︷︸
Exogenous

× ŵn

P̂αQ̂1−α
n︸ ︷︷ ︸

Real income

× λ̂−1/ε
nn︸ ︷︷ ︸

No commuting

(E.10)

The �rst term is a change in an exogenous component in the utility of workers. The second term
is a change in the real income of workers residing in n and working in n (i.e., no commuters). If
we do not allow change in location choices of workers in response to the shock, the change in
average utility of workers residing in n depends on the exogenous change and real income changes.
However, that cannot be equilibrium since workers do not maximize their utility, taking account
of taste shocks. The real income changes can di�er across locations n. The last term counteracts
such real income changes. For locations with an increase in real income for no commuters, their
no-commuting probabilities increase in response to the shocks. Therefore, these workers are less
bene�t from commuting. In contrast, workers residing in a place with lower real income changes
exhibit a small probability of non-commuting. They largely gain from commuting through the third
term in (E.10 ). In the equilibrium after the re-optimization of workers in their location choices, the
net e�ect is equalized across locations. The last term in (E.10 ) depends on the commuting elasticity
ε. A small value of ε leads to large e�ects of this part of gains from commuting since workers with
large heterogeneity in tastes across locations are able to choose location pairs more freely.

In particular, change in non-commuting probability is:

λ̂nn =
(B̂nŵn)εd̂−εnn(Q̂n)−(1−α)ε∑

k∈S
∑

j∈S λkj(B̂kŵj)εd̂
−ε
kj (Q̂k)−(1−α)ε

(E.11)

and λ̂nn < 1 when bilateral commuting costs are reduced with keeping the own commuting cost
unchanged (d̂nn = 1). This leads to welfare gains through the last term of λ̂−1/ε

nn .

Taking the geometric mean for the welfare changes, we derive:

ˆ̄U = ˆ̄B × ˆ̄d−1 × ˆ̄w × ˆ̄Q−(1−α) × ˆ̄λ−1/ε (E.12)

This equation allows us to decompose the welfare change into the di�erent margins: (i) average
change in the bene�t from amenity, (ii) average change of own commuting time, (iii) average change
in wage rate, (iv) average change in �oor space prices, and (v) average changes in the residential
place advantage.
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Open city with total population change When we depart from the closed city framework, the
total city population (L) relative to the population in the wider economy (L̄) increases as follows:

L =

(
Ū

U

)σ
L̄ (E.13)

where L̄ and U are exogenous. Suppose that there is a positive shock to the exogenous location
characteristics in a city, which leads to a higher average utility Ū . The increase in the attractiveness
of the city induces more in�ow of workers to the city; therefore, the total population L increases.
This creates an additional e�ect in general equilibrium. An increase in workers is associated with
higher productivity through agglomeration economies. In contrast, a larger population may lead to
increase congestion in a city through higher �oor space prices and it o�sets the part of the utility
gain of workers. This mechanism generates the di�erence in welfare e�ect compared to the closed
city framework.

The procedure to compute the counterfactual equilibrium is similar to the closed city case.

1. Same as in (E.1 ) to compute proportional change of productivity.

2. We compute proportional change in wage by solving (E.2 ) and compute change in income
per capita (E.3 ).

3. We compute the proportional change for �oor space production (E.5 ) and commuting prob-
abilities (E.6 ).

4. Given them, we compute the proportional change of expected utility:

ˆ̄U =

(∑
n∈S

∑
i∈S

λni(B̂nŵi)
εd̂−εni (Q̂n)−(1−α)ε

)1/ε

(E.14)

Then, the labor mobility condition leads to the proportional change in total city population:

L̂ =
(

ˆ̄U
)σ

(E.15)

5. We compute proportional changes in population and employment:

R̂1
n =

∑
i∈S

λ̂niL̂
λniL

Rn

,

L̂1
i =

∑
n∈S

λ̂niL̂
λniL

Li

(E.16)

6. We update the vector of proportional change in employment and residents as in (E.8 ).
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E.2 Computing counterfactuals when structural parameter is changed

OtherOther counterfactual experiments entail the change in the structural parameter. For instance,
we consider the di�erent values of parameter ν related to �oor supply elasticity. For such counter-
factual experiments, we cannot use the exact hat algebra. Therefore, we solve the whole system of
equations for endogenous variables after replacing the parameter.

We start from the guess of employment and population, (L0
i , R0

n).

1. Given commuting costs (din) and the shape parameter of Fréchet distribution (ε), we solve the
commuting market clearing conditions for wages {wi} and compute average income {w̄n}.

2. Given parameters (α, β, γ), new parameter ν ′ and size of developed land (Tn), land market
clearing conditions lead to land rent:

rn =
ν ′ − 1

ν ′
1

Tn

(
(1− α)w̄nR

0
n +

γ

β
wnL

0
n

)
(E.17)

3. Given fundamentals in �oor space supply (κn) and new parameter nu′, we compute �oor
space price:

Qn = κnν
′
(

rn
κn(ν ′ − 1)

)(ν′−1)/ν′

(E.18)

4. Plugging wage and �oor space prices into commuting probabilities yield λni.

5. Using these probabilities, we compute the population and employment:

R1
n =

∑
i

λniL,

L1
i =

∑
n

λniL
(E.19)

and we update population and employment vectors until they converge.

We start with the baseline equilibrium, and this process leads to the new equilibrium.
Note that the formula (E.9 ) also holds for this case as long as we �x the values of parameters in

preference (α) and commuting elasticity (ε). Letting Ū ′ refer to the average utility under the new
parameter of ν ′, the welfare change for workers in the city relative to the baseline is:

Ū ′

Ū
=

(
w′n
wn

)(
P ′

P

)−α(
Q′n
Qn

)−(1−α)(
λ′nn
λnn

)−1/ε

(E.20)

where we have used that amenities and commuting times are unchanged.

E.3 Additional results for counterfactuals

This subsection includes additional results for the counterfactual experiments.
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Changes in �oor space supply elasticity

Our �rst counterfactual experiment is about the �oor space supply elasticity. As a baseline scenario,
we consider an increase in �oor space supply elasticity by 25 percent, which implies a change in
parameter ν.

Table E.1 summarizes the relative change in variables of interest from the baseline. There are
large variation in the change in population density and employment density. The average height of
buildings increases by 33 percent on average, and more than 50 percent in 99 percentile.

Figure E.1 show mapping of the results about change in log of wages and change in log of �oor
space prices from the baseline equilibrium. In response to an increase in �oor supply elasticity,
more �oor spaces for production are supplied in the central area and workers are concentrated in
these area. This leads to increase in wages and drop in price of �oor spaces.

Figure E.2 shows the change in average commuting time of workers. For each union, we com-
pute the average commuting time of workers residing there, and we �nd decline in commuting time
in the central area, while increase in the peripheral area. Since we �x travel time as in the base-
line, the source of these changes is workers’ location changes response to concentration of jobs in
the central area and further supply of housing in peripheral areas. Workers in peripheral area face
longer commuting time compared to the baseline because their workplaces are more concentrated
in the central area.

Table E.2 shows the results when we increase �oor supply elasticity by 50 percent, while Table
E.3 shows when we decrease �oor supply elasticity by 25 percent. We �nd large e�ects in the
real income changes of workers and total population changes, while change in non-commuting
probabilities are modest.

Table E.4 shows the counterfactual results for di�erent values of labor supply, σ. When we set
large value σ = 6.0, total population in the city increase by 27 percent and it o�set the decline in land
revenue. The total land revenue increases by more than 10 percent. If we set σ = 1.0, population
increases by around 5 percent. The small increase leads to large welfare gains for workers in the
city and loss of revenue for landlords.

Lastly, we describe the mathematical implications for the counterfactual e�ects with focus on
the �rst counterfactual experiment. Considering the change in the parameter ν in the �rst coun-
terfactual experiment. Using pro�t maximization of developers, changes in heights and changes in
�oor space prices response to change in the parameter satisfy:

lnhn +
ν − 1

ν

d lnhn
d ln ν

=
1

ν

d lnQn

d ln ν
− 1

ν

d lnκn
d ln ν

− 1

ν
(E.21)

Assuming that d lnκn
d ln ν

= 0 and d lnTn
d ln ν

= 0, we obtain:

d lnQn

d ln ν
= ν lnhn + (ν − 1)

d lnhn
d ln ν

+ 1 (E.22)

This presents the relationship between the spatial variation in the e�ects on �oor space prices and
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that in heights. The important feature in this relationship is that the change in �oor space price
with respect to the small change in ν depends on the heights in the baseline (lnhn). In our main
counterfactual analysis, we set smaller value of ν from the baseline value, and we �nd:

d lnhn
d ln ν

< 0 (E.23)

When we compare the central area of the city and periphery, we �nd very large di�erence in the
response of heights. The central area shows further negative values. However, in the city center,
the average height of buildings in the baseline is high and therefore the variation in the �oor space
prices across locations becomes small. Comparing Figure E.3 and Figure E.4 , the change in average
height of buildings shows larger variation relative to the change in �oor space prices.

Table E.1 : Summary Statistics for Impact of an 25 % Increase of Floor Supply Elasticity

Variable in change Average 1 percentile 25 percentile 50 percentile 75 percentile 99 percentile

Population density 1.104 0.915 1.062 1.107 1.171 1.212

Employment density 1.084 0.840 1.017 1.088 1.173 1.230

Wage rate 1.000 0.972 0.994 1.001 1.009 1.015

Floor space prices 0.823 0.811 0.816 0.823 0.828 0.845

Land rent 0.958 0.753 0.913 0.959 1.030 1.072

Average height 1.337 1.023 1.263 1.338 1.448 1.516

Productivity 1.000 0.989 0.997 1.000 1.004 1.006

Note: This table reports summary statistics about the counterfactual changes when elasticity of �oor space supply increases by 25
percent for 264 unions.
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Figure E.1 : Impact of an 25% Increase of Floor Supply Elasticity in the City: Wage and Floor Space Prices

Change in Log Wage
< -0.0063
-0.0062 - -0.0020
-0.0019 - 0.00070
0.00071 - 0.0028
0.0029 - 0.0046
> 0.0047

(a) Change in Log Wage

Change in Log Floor Space Price
< -0.089
-0.088 - -0.087
-0.086 - -0.085
-0.084 - -0.083
-0.082 - -0.079
> -0.078

(b) Change in Log Floor Space Price

Note: The left hand panel shows the counterfactual changes in log of wages (wi) and the right hand panel shows those
in �oor space prices (Qi) to the baseline data.

Figure E.2 : Impact of an 25% Increase of Floor Supply Elasticity in the City: Commuting Time

Change in Average Commuting Time
< 0.980
0.981 - 0.985
0.986 - 0.992
0.993 - 1.002
1.003 - 1.013
1.014 - 1.033
1.034 - 1.063
> 1.064

Note: This shows the change in average commuting time relative to the baseline.
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Table E.2 : Counterfactuals for Building Supply Elasticity: 50 percent increase

(1) (2) (3) (4)
New parameter: ν = 1.46 Closed City Open City

Counterfactuals (relative to baseline) Fix With Fix With
Productivity Spillovers Productivity Spillovers

Average Welfare of Workers (Ū ) 1.1143 1.1262 1.0971 1.1003

– Average Non-Commuting Probability (λ̃−1/ε
N ) 1.0034 1.0130 1.0042 1.0072

– Average Real Income 1.1106 1.1118 1.0924 1.0925

Total Land Revenue (
∑

n rnTn) 0.7644 0.7717 0.9326 0.9425

Total Population (L̄) 1.2035 1.2107

Note: These counterfactual exercises assume that building supply elasticity increases. For each counterfactual, the numbers are
relative values to the baseline equilibrium. In counterfactuals (1) and (2), we assume the closed city. Counterfactual (1) supposes
that overall productivity (Ai) is �xed at the baseline level. In counterfactual (2), we also allow spillovers in productivity so that
overall productivity changes with employment density. In counterfactual (3) and (4), we consider the open city where workers
can move into and out of the city. Counterfactual (3) �xes overall productivity as in (1), and counterfactual (4) allows productivity
spillovers as in (2).

Table E.3 : Counterfactuals for Building Supply Elasticity: 25 percent decline

(1) (2) (3) (4)
New parameter: ν = 1.92 Closed City Open City

Counterfactuals (relative to baseline) Fix With Fix With
Productivity Spillovers Productivity Spillovers

Average Welfare of Workers (Ū ) 0.9266 0.9319 0.9395 0.9388

– Average Non-Commuting Probability (λ̃−1/ε
N ) 0.9966 1.0015 0.9983 0.9975

– Average Real Income 0.9297 0.9305 0.9412 0.9412

Total Land Revenue (
∑

n rnTn) 1.1533 1.1600 1.0343 1.0316

Total Population (L̄) 0.8827 0.8814

Note: These counterfactual exercises assume that building supply elasticity decreases. For each counterfactual, the numbers are
relative values to the baseline equilibrium. In counterfactuals (1) and (2), we assume the closed city. Counterfactual (1) supposes
that overall productivity (Ai) is �xed at the baseline level. In counterfactual (2), we also allow spillovers in productivity so that
overall productivity changes with employment density. In counterfactual (3) and (4), we consider the open city where workers
can move into and out of the city. Counterfactual (3) �xes overall productivity as in (1), and counterfactual (4) allows productivity
spillovers as in (2).
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Table E.4 : Counterfactuals for Building Supply Elasticity for di�erent values of σ

(1) (2) (3) (4)
Increase �oor supply elasticity by 25 % σ = 6.0 σ = 1.0

Counterfactuals (relative to baseline) Fix With Fix With
Productivity Spillovers Productivity Spillovers

Average Welfare of Workers (Ū ) 1.0397 1.0407 1.0563 1.0578

– Average Non-Commuting Probability (λ̃−1/ε
N ) 1.0020 1.0033 1.0020 1.0033

– Average Real Income 1.0376 1.0373 1.0542 1.0543

Total Land Revenue (
∑

n rnTn) 1.1025 1.1111 0.9221 0.9251

Total Population (L̄) 1.2631 1.2705 1.0563 1.0578

Note: This table shows the results for di�erent values σ. Column (1) and (2) set σ = 6.0, and Column (3) and (4) set σ = 1.0.
The counterfactual scenario is the same as in the main text. The �oor space supply elasticity is increased by 25 percent.

Figure E.3 : Changes in Average Height of Buildings
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Note: Each observation in this �gure is percentage change in average height of buildings and distance from the CBD.
The counterfactual experiment is a 25 percent increase in �oor supply elasticity.
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Figure E.4 : Changes in Floor Space Prices
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Note: Each observation in this �gure is percentage change in �oor space prices and distance from the CBD. The coun-
terfactual experiment is a 25 percent increase in �oor supply elasticity.
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E.4 Changes in travel time

Our second counterfactual experiment undertakes the change in travel time. In the main text, we
focus on building a highway through the city, which decreases travel time through treated areas. In
this subsection, we consider di�erent scenarios.

Table E.5 shows the results for the scenario where all bilateral travel time between any di�erent
unions decreases by 25 percent. Travel time within own union is unchanged. Welfare increases
around 6 percent for closed city case and 4 percent for the case where we allow population growth
(population grows around 9 percent). Real income slightly changes, and the source of welfare gains
for workers in the city depends on the change in commuting patterns.

Table E.5 : Counterfactuals for Travel Time: Uniform Change

(1) (2) (3) (4)
Uniform change in travel time by -25 % Closed City Open City

Counterfactuals (relative to baseline) Fix With Fix With
Productivity Spillovers Productivity Spillovers

Average Welfare of Workers (Ū ) 1.0631 1.0632 1.0423 1.0473

– Average Non-Commuting Probability (λ̃−1/ε
N ) 1.0707 1.0726 1.0707 1.0726

– Average Real Income 0.9930 0.9912 0.9736 0.9764

Total Land Revenue (
∑

n rnTn) 1.0049 1.006 1.0918 1.1044

Total Population (L̄) 1.0865 1.0968

Note: These counterfactual exercises assume that travel time between di�erent unions uniformly decrease by 25 percent. For
each counterfactual, the numbers are relative values to the baseline equilibrium. In counterfactuals (1) and (2), we assume the
closed city. Counterfactual (1) supposes that overall productivity (Ai) is �xed at the baseline level. In counterfactual (2), we also
allow spillovers in productivity so that overall productivity changes with employment density. In counterfactual (3) and (4), we
consider the open city where workers can move into and out of the city. Counterfactual (3) �xes overall productivity as in (1),
and counterfactual (4) allows productivity spillovers as in (2).

F Appendix: Extensions

As an example of the extension of our baseline model, we describe (i) how amenities at workplaces
change the process of our calibration (subsection F.1), and (ii) how we can introduce home produc-
tion (subsection F.2).
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F.1 Amenities at workplaces

Suppose that workers receive utility bene�ts from amenities in the workplace. This re�ects the idea
that workers’ location choice for the workplace partially depends on amenities they can enjoy in
the workplace. This may include the consumption of amenities in the workplace.

Set up The indirect utility of individual worker ω becomes:

Uni(ω) =
bni(ω)Bni

dni

wi
Pα
nQ

1−α
n

(F.1)

where worker commuting from n to i receives the bene�t from residential amenities (BR
n ) and

workplace amenities (BW
i ):

Bni = BR
n ×BW

i (F.2)

This alters commuting probability of workers:

λni =
d−εni (BR

nB
W
i )

ε
wεiP

−αε
n Q

−(1−α)ε
n∑

k∈S
∑

`∈S d
−ε
k` (BR

k B
W
` )

ε
wε`P

−αε
k Q

−(1−α)ε
k

(F.3)

This share of population is determined by wage distribution across workplaces (wi), cost of the
residential place (Pn and Qn), amenities of the residential place (BR

n ) and workplace (BW
i ), and

commuting disutility (dni).

Let λni|n be the conditional probability of commuting to i conditional on living in location n.
This conditional probability is equal to:

λni|n =
λni∑
k∈S λnk

=
d−εni (BW

i wi)
ε∑

k∈S d
−ε
nk (BW

k wk)
ε (F.4)

Other parts of the model remain the same as in baseline model. In particular, we consider only
homogeneous tradable goods that are treated as numeraire. Therefore, amenities do not include
any endogenous values.

Model inversion We consider the model inversion when there are workplace amenities. When
we introduce the workplace amenities, we cannot identify wage rate (wi) itself, but we can solve
the commuting market clearing condition for amenity adjusted wage, w̃i:

Li =
∑
n∈S

d−εni w̃
ε
i∑

k∈S d
−ε
nk w̃

ε
k

Rn, w̃i = BW
i wi (F.5)

The only di�erence to the baseline model is that we have amenity adjustment. This is unique up to
scale, therefore we normalize the vector such that

(∏
i∈S w̃i

)1/N
= 1.
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The residential choice probability in location n is:

λRn =
Rn

L
=

∑
i∈S

[
BRnB

W
i

dni

wi
Q1−α
n

]ε
(Ū/γ̄)ε

=

[
BRn
Q1−α
n

]ε∑
i∈S d

−ε
ni w̃

ε
i

(Ū/γ̄)ε
(F.6)

When we observe the average height in location n, hn, pro�t maximization and zero pro�t condition
states:

Qn = κnνh
ν−1
n (F.7)

Therefore, we have:

κnν
(1−α)ε

(
Ū

γ̄

)ε
Rn

L
= (BR

n )εh−(ν−1)(1−α)ε
n W̃n, W̃n =

∑
i∈S

d−εni w̃
ε
i (F.8)

Taking the geometric means for variables, we obtain:

Rn

R̄
=

[
BR
n

B̄R

]ε [
hn
h̄

]−(ν−1)(1−α)ε
[
W̃n

¯̃
W

]
(F.9)

Plugging the population (Rn/R̄), average height of buildings (hn/h̄) and calibrated workers’ return
(W̃n/

¯̃
W ) into this equation, we can back out the value of amenities in residential place (BR

n ) up to
scale.

Next, we consider productivity. The pro�t maximization and zero pro�t condition implies:

Ai = wβi Q
γ
i = (κiν)γ

(
w̃i
BW
i

)β
h
γ(ν−1)
i (F.10)

Then, we de�ne the amenity adjusted productivity in workplace:

Ãi = Ai(B
W
i )β = (κiν)γw̃βi h

γ(ν−1)
i (F.11)

Taking its geometric mean,
Ãi
¯̃
A

=

[
w̃i
¯̃w

]β [
hi
h̄

]γ(ν−1)

(F.12)

Plugging adjusted wages (w̃i/ ¯̃w) and average height of buildings (hi/h̄) into this, we back out the
amenity adjusted productivity.

Summary In sum, conditional on the set of citywide parameters (α, ε, β, γ, ν) and observations in
data about commuting cost (d), workers in residential places (R), workers in workplaces (L), and
the average height of buildings (h), we can obtain the unique unobserved vector of residential place
amenity (BR) and amenity adjusted productivity in the workplace (Ã) that are consistent with the
observed data to be equilibrium. The only di�erence to the baseline model is that wage rate and
productivity are adjusted with the value of workplace amenities since their combination de�nes the
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return for workers, and they cannot be separately identi�ed.
In practice, our calibrated wages (w) in the baseline analysis become exactly the same as work-

place amenity adjusted wages (w̃) in this extension. Therefore, W in the baseline and W̃ in this
extension are also the same, and our estimated residential amenities must be the same between
the baseline and the extension: Bn = BR

n . Furthermore, we use the same conditions to back out
the productivity and estimated productivity (A) in the baseline and that in the extension (Ã) are
also the same. These results conclude that all results in our counterfactuals are unchanged in this
extension, as long as amenities are exogenous and �xed.

F.2 Employment e�ects with home production

We only consider workers who participate in the labor market in our baseline. When we take into
account the population in general, there is a large number of people in home production. This is
important when we do a counterfactual analysis of a policy. A policy change may alter the value of
working, and more people choose to work or quit their job. It changes the labor participation and
production in a city.

To see this e�ect in our framework, we consider two stages in workers’ decisions. First, every
worker ω in a city draws productivity for home production zH(ω) and productivity in the formal
sector of homogeneous tradable goods zT (ω). The vector of productivity follows Fréchet distribu-
tion: G(z) = ez

−θ with θ > 1. Given this productivity draw, people choose whether they work in
the formal sector or stay home production. Next, workers who choose to work in the formal sec-
tor draw idiosyncratic shocks for commuting, bin(ω), from Fréchet distribution as in the baseline
model, and they decide where they live and where they work. This nested Fréchet structure allows
us to characterize the employment e�ect in a city. The one thing to be noted is that we need the
assumption for the shape parameter of Fréchet distribution such that ε ≤ θ: where the elasticity of
substitution between home production and employment is lower than that of substitution between
locations.

Set up We solve the two steps decision by backward. Conditional on the choice of workplaces,
individuals with productivity zT (ω) for formal sector anticipate the average real income:

WT (ω) = Ū · zT (ω) (F.13)

with

Ū = γ̄

[∑
n∈S

∑
i∈S

d−εni B
ε
n(wi)

ε(Pα
nQ

1−α
n )−ε

]1/ε

(F.14)

Suppose an individual chooses home production after the draw of productivity zO(ω). In that case,
they operate a potentially less productive home production technology, with a return given by
zO(ω) · wO. The wage rate per e�cient unit of labor is wO and it is an exogenous parameter in
a city. Voluntary unemployment has the same preference as workers. Their preference is charac-
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terized by Cobb-Douglas function over tradable homogeneous goods and residential �oor spaces.
In addition, they receive utility bene�ts from the residential place and draw idiosyncratic bene�ts
from residential choice. In particular, their indirect utility conditional on location choice is given
by:

V O
n (ω) = Bnbn(ω)

wOzO(ω)

Pα
nQ

1−α
n

(F.15)

where bn(ω) follows the same distribution as workers: Fréchet distribution with shape parameter
ε. Therefore, expected real income from home production for individual worker ω becomes:

WO(ω) = ŪO · zO(ω) (F.16)

with

ŪO = γ̄

[∑
n∈S

Bε
n(wO)ε(Pα

nQ
1−α
n )−ε

]1/ε

(F.17)

Now, we derive the probability of working in formal sector and home production. Since zT (ω)

and zO(ω) are following independent Fréchet distribution with shape parameter θ, we have:

πT =

(
Ū

W

)θ
, πO =

(
ŪO

W

)θ
, (F.18)

with
W =

{
(Ū)θ + (ŪO)θ

}1/θ (F.19)

Using this, we obtain the measure of workers and home production in a city:

L = πTM, LO = πOM (F.20)

whereM is total population in a city. Once people observe the realization of productivity zT (ω)

and decide to work in the formal sector, the commuting pattern is given by

λni =
d−εni B

ε
nw

ε
iP
−αε
n Q

−(1−α)ε
n∑

k∈S
∑

`∈S d
−ε
k` B

ε
kw

ε
`P
−αε
k Q

−(1−α)ε
k

(F.21)

Note that formal workers’ probability of location choices is independent of their productivity since
their indirect utility is proportional to productivity. For home production, the probability that they
choose to live in location n is:

λOn =
Bε
nP
−αε
n Q

−(1−α)ε
n∑

k∈S B
ε
kP
−αε
k Q

−(1−α)ε
k

(F.22)

We let
Φz ≡ {z : Ū · zT ≥ ŪO · zO} (F.23)
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and people in a city choose to work in the formal sector if and only if their productivity draw is
z ∈ Φz . We also let G(z) refer to the joint distribution of productivity z for people in the city.
Then, the total units of e�cient labor in a city is:

E =M
∫

Φz

zdG(z) = ζ̄π
1− 1

θ
T M = ζ̄π

−1/θ
T L (F.24)

where ζ̄ is value of Gamma function Γ
(
θ−1
θ

)
. Therefore average units of e�cient labor per worker

is:
ē =

E

L
= ζ̄π

−1/θ
T (F.25)

The residential population in n is the sum of workers residing in n and total home production
residing in n:

Rn =
∑
i∈S

λniL+ λOnL
O =

[
πT
∑
i∈S

λni + (1− πT )λOn

]
M (F.26)

Production and developers The production technology in the formal sector is similar to the base-
line model and constant return to scale. Therefore, the wage rate per unit of e�cient labor and
commercial �oor space price satis�es:

Pn =
wβnQ

γ
n

An
, ∀ n ∈ S (F.27)

The developers are same as in the baseline model. Height of buildings and land rent are given
by:

hi =

(
Qi

κiν

) 1
ν−1

, ri = κi(ν − 1)

(
Qi

κν

) ν
ν−1

(F.28)

The �oor spaces are used for both housing and production.

General equilibrium The total income in location n is the sum of the total labor income and total
return from home production:

Wn =
∑
i∈S

wiEni + wOE
O
n (F.29)

whereEni is the total e�cient units of labor along the commuting from n to i, andEO
n is the e�cient

units of labor for hompe production in n. The former is given by:

Eni =

∫
Φz

Lniz dG(z) = ζ̄λniLπ
−1/θ
T = ζ̄π

−1/θ
T λni|nλ

R
nL (F.30)

where we use the independence of two Fréchet distributions in work choice (�rst stage) and location
choices (second stage). We also obtain:

EO
n = ζ̄π

−1/θ
H λOnL

O (F.31)
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Therefore, total income in location n becomes:

Wn = ζ̄
(
π
−1/θ
T w̄nRn + π

−1/θ
H wOR

O
n

)
(F.32)

where Rn is the measure of workers of the formal sector living in n, and RO
n is that in home pro-

duction. w̄n is the average wage rate for workers living in n. The total e�cient labor in the formal
sector in location i is:

Ei = ζ̄π
−1/θ
T Li (F.33)

where Li is measure of workers working in location i. Lastly, the �oor space market clearing con-
dition becomes:

Hn =
(1− α)ζ̄(π

−1/θ
T w̄nRn + π

−1/θ
H wOR

O
n )

Qn

+
γ

β

ζ̄wnπ
−1/θ
T Ln
Qn

(F.34)

where the �rst terms is the aggregate demand for residential �oor spaces and the second terms is
the demand for commercial �oor spaces in the formal production sector.

Inversion We consider how the process of model inversion is similar and di�erent from the base-
line model. Only workers in the formal sector commute. First, we only use the data for workers
in the formal sector about their population (Rn) and employment (Li). Their commuting market
clearing condition is exactly the same as in the baseline; therefore, we back out exactly the same
wage rate (wi) for them to the baseline calibration. Using this, we can also compute the average
wage per unit of e�cient labor w̄n that is also the same as in the baseline model.

Next, we letM be the total population in a city, including both workers in the formal sector
and home production. We compute the share of workers in the formal sector πT = L/M and home
production πH = 1 − πT . Then, we consider how to pin down the return from home production,
wO. By de�nition, we have:

ŪO

Ū
= wO

[∑
n

λnn
d−εnnw

ε
n

]1/ε

(F.35)

Therefore, using the share of employment in the formal sector and outside, we obtain:

wO =
πO
πT

[∑
n

λnn
d−εnnw

ε
n

]−1/ε

(F.36)

The right-hand side can be computed by using the share of workers in the formal sector (πT ), that
in home production (πO), commuting of workers (λnn), and estimated wage (wn).

In turn, we compute the total income in each location, Wn, based on (πT , πH , w̄n, wO, Rn, RO
n ).

Then, we solve the �oor space market clearing condition:

Hn =
(1− α)Wn

Qn

+
γ

β

w̄nζ̄π
−1/θ
T Ln
Qn

(F.37)
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for �oor space price, Qn. On the right-hand side, calibrated total income Wn determines the �rst
term of housing demand, and average wage rate w̄n, share of workers in the formal sector πT and
total number of the workers in the formal sectorLn determine the total demand for �oor spaces used
in production. This second step introduces a change in the calibrated �oor space prices compared
to the baseline.

In the last step, we use the zero pro�t condition in the formal sector to back out the productivity
(An). Finally, we use the residential distribution of workers in the formal sector to back out the
residential amenity (Bn) with normalization. Since estimated �oor space prices are di�erent from
the baseline, these estimates of productivity and amenities also show di�erences.

Welfare e�ects The welfare measure of people in a city is exante average utility. In this extension,
we can de�ne:

W = ζ̄

{(
Ū
)θ

+
(
ŪO
)θ}1/θ

= ζ̄ γ̄π
−1/θ
T (λnn)−1/εBnwnP

−α
n Q−(1−α)

n

(F.38)

Therefore, �xing value of amenities, change in welfare of people in a city is:

Ŵ = (π̂T )−1/θ × (̂̄λ)−1/ε × ̂̄w × ( ̂̄P )−α × ( ̂̄Q)−(1−α) (F.39)

The �rst term on the right-hand side is the additional term in this extension. Any policy changes
can change the share of voluntary unemployment in the city (π̂H ). Note that we �x the value of
hope production wO in the counterfactuals.

Calibration The main di�erence to the baseline calibration is that we allow a di�erence between
total employment and total population in the city. Our Census data �nds such di�erence and a pos-
itive number of excess population. Aggregating 264 wards in Dhaka, the Population Census shows
a total population of 3,294,420, while the total employment in Employment Census is 3,137,200.
We suppose that their di�erence captures the population outside the formal sector. Following the
same step in our calibration in Section 4, we �rst estimate the wage of the formal workers using
commuting market clearing conditions. The challenge in the next step is estimating the return of
home production, wO. The present model, however, allows to compute it to match the observed
commuting pattern of workers in the formal sector and estimated wages such that:

wO =
πO
πT

(∑
n∈S

λnn
d−εnnw

ε
n

)−1/ε

(F.40)

On the right-hand side, πO/πT is the ratio of the total number of workers in the home production to
those in the formal sector. In Dhaka, we see πO/πT = 0.050. For reference, the unemployment rate
in Bangladesh in 2013 was 4.43 percent. Once we obtain wage rates in both formal sector and home
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production, we use land market clearing conditions to estimate land rent and �oor space prices, and
other procedures are the same as the baseline. We posit the parameter value for the substitution
between formal sector and home production, θ = 8.0 that is the same value as the commuting
elasticity, ε.

The estimated value of housing supply elasticity is 1.492, which is close to the baseline value.
The estimated return for home production is wO = 0.037, which is signi�cantly low compared to
the wage rate in the formal sector.20 The parameter for productivity spillovers is 0.045, which is the
same value as the baseline estimate.

Quantitative implications Based on the estimation results, we now explore the quantitative im-
plications of the extended model with home production. We focus on the counterfactual analysis
of housing supply elasticity for the comparison to the baseline results in our main counterfctual
experiment. Housing supply elasticity increases by 25 percent, from 1.49 to 1.86. Table F.1 report
results.

As expected from the theory, an improvement in building supply elasticity leads to workers’
concentration in productive places, and wage rates of workers in these areas increase. Therefore, the
value of expected return from working in the formal sector becomes high, and the total number of
workers in the formal sector would increase. The fourth row of F.1 con�rms that total employment
in the formal sector would grow by around 5 percent. At the same time, this composition e�ects
increase the demand for land and prices for �oor spaces, and it partially o�sets the gains from an
increase in housing supply elasticity. As seen in the third row of Table F.1 , we see a slightly small
loss of landlords compared to the baseline.

Turning to welfare, the existence of home production adds the composition e�ect and its conse-
quences on price changes. The welfare gains when we see Column (4) in Table F.1 , the impact on
aggregate welfare of people is 4.93 percent, slightly below the baseline results for workers’ welfare.

20For comparison, wage rates of the formal sector are normalized such that their geometric mean is one.
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Table F.1 : Counterfactuals for Building Supply Elasticity: When Home production exists

(1) (2) (3) (4)
Closed City Open City

Counterfactuals (relative to baseline) Fix With Fix With
Productivity Spillovers Productivity Spillovers

Average Welfare of Workers (Ū ) 1.0574 1.0663 1.0480 1.0493

– Average Real Income of Workers in the Formal Sector 1.0566 1.0576 1.0459 1.0459

Total Land Revenue (
∑

n rnTn) 0.8731 0.8796 0.9721 0.9764

Total Number of Workers in the Formal Sector 1.0501 1.0501 1.0501 1.0501

Total Population (L̄) 1.0983 1.1011

Note: These counterfactual exercises assume that building supply elasticity increases by 25 percent. For each counterfactual, the numbers
are relative values to the baseline equilibrium. In counterfactuals (1) and (2), we assume the closed city. Counterfactual (1) supposes
that overall productivity (Ai) is �xed at the baseline level. In counterfactual (2), we also allow spillovers in productivity so that overall
productivity changes with employment density. In counterfactual (3) and (4), we consider the open city where workers can move into and
out of the city. Counterfactual (3) �xes overall productivity as in (1), and counterfactual (4) allows productivity spillovers as in (2).
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