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Abstract

Outliers often pose serious problems for statistical models since they can distort the

model fit and bias parameter estimation. Outliers are also worthy of attention in

their own rights, as they are often informative of substructures of the data. This

thesis aims to develop methods of detecting multivariate outliers in latent variable

modelling contexts. Outliers are defined as data subsets deviating from a baseline

model specified for the majority of the data. By this definition, we specify one-

way outliers on the basis of atypical attributes of either individuals or variables and

two-way outliers on the basis of atypical attributes of both individuals and variables.

In this thesis, we develop the Forward Search (FS) procedures for detecting outlying

individuals, latent groups of individuals and DIF variables. The FS does not examine

just one subset of the data but instead fits a sequence of augmented subsets in order

to decide which part of the data deviates from the baseline model. Outliers are

identified through monitoring the effect of the sequential addition of individuals or

items on the fitted model. The performance of the FS is assessed through simulated

data and cross-national survey data under latent class models, factor mixture models

and multiple-group latent variable models.

To detect two-way outliers, the thesis proposes to impose a latent class model com-

ponent for capturing two-way outliers upon a latent factor model component for

capturing normal item response behaviour. Statistical inference is carried out un-

der a fully Bayesian framework. The detection of two-way outliers is formulated

based on the proposed Bayesian decision rules and compound decision rules that

control local false discovery rate and local false non-discovery rate. The proposed

method proves to be particularly useful in simultaneously detecting compromised

items and test takers with item pre-knowledge in educational tests. To further im-

prove two-way outlier detection, the two-way outlier detection model is extended in

an explanatory framework by accounting for covariate effects and the relationships

between latent variables.
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Chapter 1

Introduction

Outliers are isolated or clustered observations which differ from the main bulk of

the data (Rousseeuw & Hubert, 2018). Outliers often pose serious problems for sta-

tistical models, as they may cause departures from model assumptions, distort the

model fit and often lead to biased parameter estimates. However, outliers are not

always seen as problematic data that need to be excluded from model estimation

procedures. Instead, they can be worthy of attention in their own rights, especially

when they contain information about substructures of the data. Outliers in uni-

variate data are clearly defined as extreme values and can be easily visualised. In

contrast, multivariate outliers are not necessarily defined by extreme values along a

single variable. For many multivariate datasets, especially the ones containing cat-

egorical variables, it is difficult to reveal their real structure using two-dimensional

or three-dimensional visualisations.

Outliers in this thesis are defined with respect to the postulated model. This defini-

tion specifies one-way outliers as individuals or variables that deviate from a specific

baseline model and specifies two-way outliers as item responses consisting of both

individuals and variables deviating from a specific baseline model. In illustrating

one-way and two-way outliers, we give the following examples.

14
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1.1 Examples of One-way and Two-way Outliers

von Davier and Lee (2019) mentioned a type of one-way outliers characterised by

individuals whose response patterns result from cheating, guessing, random respond-

ing and all other aberrant response behaviour in educational tests. Those who do

not conform to the standard response behaviour are likely to give unexpected cor-

rect responses to particularly difficult questions and wrong answers to very basic

questions. Aberrant response patterns as such threaten the validity of test scores

and therefore should be identified and accounted for by the model.

One-way outliers can also be defined as atypical items, for example, items exhibiting

Differential Item Functioning (DIF; Holland & Wainer, 1993; Millsap, 2012). Items

exhibiting DIF do not measure the same construct across groups of individuals.

Given a baseline model assuming measurement invariance (i.e. observed variables

in the data measure the same construct across groups), the items showing DIF

would be poorly fitted. One example of DIF variables (or DIF items) which are

extensively studied in the thesis is compromised items in educational tests. In many

computer-based testing programs, although new test items are developed for each

administration of the test, many test items have been used in previous tests. The

reused items are likely to get exposure prior to the time of administration, and

examinees with prior access to them will benefit from high scores on these items.

Compromised items have a harmful impact on test validity because they measure

person ability differently between those who have item preknowledge and those who

do not.

Since outliers are defined with respect to a hypothesised model, model misspec-

ifications could result in outliers and affect the way outliers are identified. The

heterogeneity among individuals and/or variables could lead to violation of local

independence, which is one of the underlying assumptions of latent variable models.

In the presence of population heterogeneity, individuals not captured by a baseline

model assuming population homogeneity or fewer homogeneous subpopulations can
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be seen as outliers. If one or more variables no longer measure the latent construct

in the same way across different subpopulations, the assumption of measurement

invariance may not hold as well. This shows that aberrations on both the individual

and variable levels, if not adequately addressed, can simultaneously result in depar-

tures from the hypothesised model. Therefore, the detection of outliers is essentially

a classification problem for individuals or/and items in the data not dominated by

outliers.

In following the definition of one-way outliers, two-way outliers are defined as the

data subsets consisting of outlying individuals’ responses to atypical variables. One

prominent example of two-way outliers arises from aberrant response behaviour

due to item preknowledge in educational tests. Individuals with preknowledge of

leaked or compromised items are expected to benefit from score inflation, but their

inflated scores on the compromised items cannot fairly reflect their ability. The

responses from persons with prior access to compromised items are not compatible

with a baseline model specified for honest response behaviour and are thus considered

as outliers. When the data that are used for parameter estimation contain the

test takers who respond to the compromised items based on their true ability and

preknowledge, estimates for item difficulties and person abilities will be distorted.

It is also worth mentioning that like univariate data, multivariate data in the pres-

ence of multiple outliers are also subject to masking and swamping effects. The

intuitive definitions of these two effects have been given by Acuna and Rodriguez

(2004); Barnett and Lewis (1984); Davies and Gather (1993); Iglewicz and Mar-

tinez (1982). The masking effect occurs when some outliers strongly affect the fitted

model, so much so that other outliers remain undetected. The swamping effect

occurs when some “good” observations are detected as outliers only because of de-

viations from the model caused by the existence of other outliers. Both issues have

been extensively studied in univariate contexts, particularly in linear models (Hadi

& Simonoff, 1993; Lawrance, 1995). Any methods designed to detect outliers in

multivariate data are expected to address these issues as well.
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1.2 The Purpose of the Thesis

This thesis aims to develop model-based approaches for detecting outliers in multi-

variate data. We base our study on different specifications of latent variable models

which have been widely used for modelling the associations in multivariate data

with latent variables. The types of latent variables can be categorical, continuous or

hybrid, leading to latent class models (Clogg, 1995; McLachlan & Peel, 2004), fac-

tor models with continuous outcomes (Reise, Widaman, & Pugh, 1993; Thompson,

2004) and with categorical outcomes, also known as Item Response Theory (IRT)

models (Embretson & Reise, 2013), and factor mixture models (Lubke & Muthén,

2005) which can be viewed as an extension to the classical factor models in the

presence of population heterogeneity.

We propose to develop methods of detecting one-way and two-way outliers in mul-

tivariate data within the latent variable modelling framework, without relying on

information as to which individuals or/and items are truly outliers. We adapt the

Forward Search (FS; Atkinson, 1994) for detecting one-way outliers, including out-

lying response patterns, latent groups of individuals and DIF items under latent

variable models through defining and monitoring appropriate context-specific diag-

nostic statistics. Moreover, we propose two-way outlier detection models for simul-

taneously detecting two-way outliers deviating from a baseline model due to latent

DIF. The two-way outlier detection model based on item responses is composed of

a latent factor model component as the baseline model for standard item response

behaviour and a latent class model component for capturing the effect of two-way

outliers due to atypical response behaviour. We further formulate the detections of

outlying individuals and items under a statistical decision framework and propose

Bayesian decision rules and compound decision rules that control the local false dis-

covery rate or local false non-discovery rate. The proposed models and compound

decision rules are applied to high-stake educational test data to simultaneously de-

tect test takers with preknowledge and compromised items.
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1.3 Overview of Chapters

The thesis is organised as follows. In Chapter 2, we first review the FS and its advan-

tages over conventional backward methods based on deletion diagnostics. We then

adapt the FS for detecting one-way outliers that cause deviations from a baseline

latent variable model and its assumptions. Specifically, we develop the FS algorithm

for detecting outlying response patterns, latent groups of individuals and DIF items

in multiple-group data within the latent variable modelling framework.

The models for detecting two-way outliers on the basis of item responses only (i.e.

the reduced model) and both item responses and response times (i.e. the full model)

are proposed in Chapter 3. Statistical inference is carried out under a fully Bayesian

framework. The detections of outlying individuals and DIF items are assessed based

on the proposed Bayesian decision rules and compound decision rules.

In Chapter 4, the reduced model is extended in an explanatory framework. The

resultant explanatory model incorporates covariate information into the structural

model as exogenous variables while relaxing the previous model assumption about

the independence between latent indicators of outliers and continuous latent vari-

ables. The reduced, full and explanatory models are applied to real data gathered

from a single administration of a computer-based non-adaptive licensure assessment.

The classification and detection under the two-way outlier detection models within

and without an explanatory framework are compared. Simulation studies are carried

out to address the impacts of sample sizes, numbers of items, and model misspeci-

fications on the performance of two-way outlier detection.

Finally, findings and directions for future research are summarised in Chapter 5. In

addition, details on derivations and algorithms not covered by the main text are

presented in Appendices.



Chapter 2

The Forward Search for One-way

Outlier Detection

2.1 Introduction

After defining and showing examples of outliers in multivariate data, this chapter

focuses in detail on the detection of one-way outliers in multivariate data using the

Forward Search (FS). Prior to the proposal of the FS, one-way outliers were detected

using a backward search based on deletion diagnostics derived for assessing the effect

of individual observations on parameter estimation and model fit. However, the

idea of monitoring the deletion diagnostics backwards raises several issues, most

notably, the masking effect. The FS, on the other hand, can overcome these issues

and therefore has been widely used to detect outliers and more generally, uncover

hidden structures in the data. In this chapter, we seek to build on the current

literature by extending the FS to the detection of outlying individuals and variables

in multivariate data within a latent variable modelling framework.

This chapter is organised as follows. In Section 2.1, we review the backward search

and deletion diagnostics. This is followed by a review of the FS, which includes its

advantages over the backward deletion, the use of diagnostics in the FS, and key

phases in the development of the FS. The latent variable modelling framework is in-
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troduced in Section 2.2. Under the modelling framework, we specify the latent class

model, factor mixture model, and their multiple-group representations. Section 2.3

describes the FS procedures for detecting outlying response patterns, latent groups

of individuals and variables exhibiting DIF. Diagnostics which appraise the effect of

the sequential addition of individuals or variables on the fitted model are developed.

Simulation examples are used to demonstrate the FS procedures for detecting one-

way outliers under latent class models, factor mixture models and multiple-group

latent class and factor models. This is followed by a real data example in Section

2.4, where the Round 7 European Social Survey dataset (European Social Survey,

2014) is used to demonstrate the detection of DIF items under multiple-group la-

tent class and multiple-group IRT models. This chapter concludes in Section 2.5 by

discussing findings and possible future developments of the FS in outlier detection

and beyond.

2.1.1 Review of Backward Search and Deletion Diagnostics

Starting with the whole dataset, the backward procedure searches backwards through

the data and alternates between measuring outlyingness and removing observations

until a certain number of potential outliers are excluded from the data. The mea-

sure of outlyingness typically includes problem-specific deletion diagnostics which

assess the influence of omitting individual observations on model fit and parameter

estimation. An observation is considered to be influential if its removal makes a

marked difference in the fit of the model and parameter estimates according to the

deletion diagnostic statistic used.

Deletion diagnostics have been widely used within and beyond the context of re-

gression analysis (Atkinson & Riani, 2000). Examples of deletion diagnostics in

regression analysis include deletion residuals and Cook’s Distance (Cook, 1977).

Observations for which the deletion residual is larger than a critical value are de-

tected as potential outliers. Cook’s Distance provides an overall measure of changes

in parameter estimates when an observation is omitted. A large value of Cook’s
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distance indicates the observation is influential. Outside the scope of regression

analysis, residual-implied Mahalanobis distance case diagnostic has been used to

detect response patterns that are inconsistent with a given model in factor analysis

(Yuan, Fung, & Reise, 2004), and more generally, structural equation models (SEM;

Yuan & Hayashi, 2010) for continuous data. Case-deletion diagnostics have also

been used to examine categorical data under SEMs.

The deletion diagnostic statistics we have discussed are all aimed at individuals.

Sawatzky et al. (2018) moved on to detect and remove variables lacking measurement

invariance (also known as measurement equivalence; Meredith, 1993; Widaman &

Reise, 1997) in a latent variable mixture modelling framework using a backward

deletion approach. In the exploratory stage of their proposed approach, mixture IRT

or latent factor models assuming different numbers of latent classes are compared in

order to determine the number of latent subpopulations. In the case of population

heterogeneity, the dataset goes on to the detection stage, where the variables which

contribute to the heterogeneity – i.e. the variables lacking measurement invariance

across the identified latent groups – are detected by item-level DIF analyses. After

removing these variables from the data, the reduced dataset once again goes through

the exploratory stage, and in the case of population heterogeneity, proceeds to the

detection stage. Such an iterative process goes on by removing variables lacking

measurement equivalence one by one until the remaining variables are well fitted

by the measurement-equivalent model. The remaining variables are considered the

most invariant.

The backward search is known to suffer from the masking effect. The masking effect

occurs when the data contain multiple outliers which strongly affect the fitted model

- so much so they may all together keep every single one of them from being identi-

fied. The backward search is, therefore, unable to detect these outliers all at once.

To cope with masked outliers, one needs to first calculate a robust estimator, which

is designed to be only slightly influenced by a few isolated outliers and less sensitive

to clusters of outliers and then use the residuals resulting from the robustly fitted
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model to find outliers. Another issue regarding the backward search is the swamping

effect. Not all observations removed under this procedure are outliers. Some of them

are removed only because the resultant deletion diagnostic statistics are distorted

by the existence of other outliers. The actual status of these observations remains

to be further investigated. Furthermore, in the case of multiple deletions, one may

want to check all possible combinations of observations to be removed, which could

be computationally demanding. It also remains to be seen how many observations

should be removed from the data.

2.1.2 Review of Forward Search

The Forward Search (FS; Atkinson, 1994) was proposed as a data-driven approach

for detecting masked outliers through monitoring the effect of sequentially adding

observations on the fit of a baseline model which is assumed to be compatible with

the majority of the data.

The FS starts with a small and “outlier-free” subset and gradually moves toward

the entire dataset. The initial subset is selected among a sufficiently large number

of random subsets of smaller size, to each of which the baseline model is fitted. The

subset that fits the baseline model best is chosen to initialise the search. This subset

is known as the “basic” set, and its size increases as the FS proceeds by adding the

observations closest to the established “basic” set. By moving forward from an

“outlier-free” subset to the whole dataset, the FS manages to overcome the masking

problem faced by the backward procedure in the presence of multiple outliers.

A sequence of subsets of increasing size established throughout the FS helps to

decide which part of the data is compatible with the baseline model and which

part is not. The effect of sequentially adding observations outside of the “basic”

set on the baseline model can be assessed by monitoring problem-specific diagnostic

statistics whenever a new observation is added to the “basic” set. Abrupt changes

in these statistics indicate that observations poorly fitted by the baseline model are



2.1. Introduction 23

present in the “basic” set. Since outliers are unlikely to join the “basic” set until

the very late stage of the search, we can use the “basic” set obtained just before this

stage to robustly estimate the baseline model. In doing this, the amount of data

used to robustly estimate the baseline model is conditional on or driven by the data,

which distinguishes the FS from the backward search and other robust methods.

The FS has since been extensively developed in the context of regression analysis.

The deletion diagnostics that measure the effect of omitting an observation (Sec-

tion 2.1.1) were adapted to suit the FS. For example, Atkinson and Riani (2000)

proposed to monitor the effect of outliers on the parameter estimates during the FS

via a modified Cook’s distance statistic. Moreover, the minimum deletion residual

among the observations outside of the “basic” set and the maximum studentised

residual among those in the “basic” set can also be monitored. Atkinson and Riani

(2006) proposed to generate simulation envelopes for the minimum deletion residual

whose distribution is unavailable. The progression of the minimum deletion residual

against the simulation envelopes was monitored. When the trajectory of the mini-

mum deletion residual exceeds an envelope, the newly added observation and all the

subsequently added observations are detected as outliers. The FS has been applied

to many other univariate contexts as well, including time series (Riani, 2004) and

spatial linear models (Cerioli & Riani, 1999).

Extensions have also been made to multivariate contexts, notably clustering (Atkin-

son & Riani, 2007), discriminant analysis (Riani & Atkinson, 2001), multidimen-

sional scaling (Solaro & Pagani, 2007), factor analysis for continuous data (Mavridis

& Moustaki, 2008), and factor analysis for binary data (Mavridis & Moustaki, 2009).

The book by Atkinson, Riani, and Cerioli (2013) summarises key phases in the de-

velopment of the FS in multivariate contexts.

It is worth noting that the FS is not limited to outlier detection but can be regarded

as a general diagnostic approach for uncovering the cluster structure of multivariate

data. For example, Atkinson and Riani (2007) applied the FS to find clusters in

multivariate normal data through monitoring minimum Mahalanobis distances com-
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puted based on a sequence of subsets of increasing size. The authors also elaborated

on the use of simulation envelopes for the robust Mahalanobis distance statistics.

When data are suspected to come from more than one population, implementing FS

multiple times is found to be useful in identifying clusters in the data. Atkinson et

al. (2013) empirically justified using multiple forward searches with random starts

rather than a single search starting from a carefully selected, “outlier-free” initial

subset. The rationale for using random starts is that all searches eventually converge

regardless of where they start once the presence of clusters is revealed. This strategy

is also applicable to the situation where the sources of population heterogeneity are

unknown a priori.

This brings us to the next point about simultaneously running multiple searches

with random starts to detect latent population heterogeneity in the presence of

outliers. The idea consists in finding a homogeneous group of observations using

a single search, removing individuals belonging to the tentatively identified latent

group, and repeating the FS procedure on the remaining data until all groups are

revealed. This strategy also involves reallocating the observations to the ‘nearest’

group. Latent class models, also known as finite mixture models (McCutcheon, 2002;

McLachlan & Peel, 2004), are often used to characterise population heterogeneity

and provide a model-based framework for classifying individuals. However, in the

presence of a heterogeneous population due to different unknown sources as well

as multiple isolated or clustered outliers, even conventional robust methods might

fail to reveal latent classes and outliers. The FS, on the other hand, is helpful in

this situation since it is able to identify latent groups of individuals while detecting

outliers.

Although the FS has been mainly used to detect individuals or groups of individuals,

it can be applied to detect variables based on a set of attributes, particularly those

exhibiting DIF across groups of individuals. By the logic of the FS, a sequence of

subsets of incremental item size can be established and fitted by a baseline model

assuming measurement equivalence. The change in model fit or item fit is monitored
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whenever an item is included in the subset.

The purpose of this chapter is therefore to extend the FS to detect outlying in-

dividuals and DIF variables within a latent variable modelling framework. More

specifically, an FS Algorithm is developed to address the detection of first outlying

response patterns under latent class models and mixture IRT models, second latent

dimensionality in terms of the number of distinct sub-populations under factor mix-

ture models, and third items lacking measurement equivalence under multiple-group

latent class and multiple-group IRT models.

2.2 Modelling Framework

In this section, we introduce a latent variable mixture modelling framework that

can be used to specify all baseline models appearing in the FS applications later.

Latent variable models (LVM) such as factor analysis models (with continuous latent

variables), latent class models (with categorical latent variables) and factor mixture

models (with both types of latent variables) have been used to handle multivariate

data. LVMs are particularly widely used in social sciences for measuring unobserved

constructs of interest such as ability, attitude, happiness, and state of health through

a set of observed indicators, also known as manifest variables or items. LVMs

are also used for data reduction and classification of individuals into unobserved

homogeneous groups.

LVMs postulate certain assumptions such as (i) conditional independence of the

items given the latent variables, (ii) normality for the continuous latent variables,

and (iii) measurement equivalence of items across multiple groups defined by de-

mographic, socio-economic or cultural categories (multiple group analysis). The

second and third assumptions may need to be relaxed to fit the data in the presence

of population heterogeneity.

Under LVMs, the number of latent variables or latent classes that are required

to adequately explain the associations among measured items, and the detection
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of non-equivalence of measured items across observable groups can be determined

based on full-information goodness-of-fit tests (e.g., Pearson chi-squared difference

tests, likelihood ratio tests etc.), limited-information goodness-of-fit tests based on

lower-order marginal contingency tables (Bartholomew & Leung, 2002; Maydeu-

Olivares & Joe, 2005), or model selection criteria such as the Akaike’s information

criterion (AIC; Akaike, 1974) and Bayesian information criterion (BIC; Schwarz,

1978). ( or information criteria are performed on a sequence of nested LVMs with

an increasing number of latent factors or latent classes or increasingly restrictive

across-group equality constraints on item parameters.

2.2.1 A general modelling framework for LVMs

We first define a general modelling framework for LVMs. Consider a dataset con-

sisting of N individuals’ responses to J measured items. Let η and ξ denote a single

continuous (classical factor analysis/latent trait model) and categorical (latent class

model) latent variable respectively for a single respondent i, for i = 1, . . . , N . For

simplicity of presentation, we focus on univariate latent variables, ηi and ξi, and

omit the person subscript i in the following sections. Let Y = (Y1, . . . , YJ) denote

J binary or continuous items that are regarded as measures of the latent variable, η

or ξ, depending on the type of latent variable used to summarise the associations in

the data. y = (y1, . . . , yJ) are the realised values of Y . For the multiple-group rep-

resentation, we assume that each respondent belongs to one of G observed groups:

g = 1, . . . , G. The joint distribution of Y and η within group g is given by

pg(y, η) = pg(y | η;Λ(g))pg(η;B
(g)). (2.2.1)

The subscript g denotes a distribution depends on a observed group g = 1, . . . , G,

and parameters with the superscript (g) are group-specific. pg(·) denotes a condi-

tional or marginal probability density function. Specifically, pg(y | η;Λ(g)) is the

measurement model that describes how the items measure the continuous latent
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variable, η, in group g. Parameters associated with the measurement model within

group g are represented by Λ(g). pg(η;B
(g)) is the structural model that specifies

the distribution of the latent variable in group g and the corresponding parameters

B(g).

Under the assumption that responses to the J items are conditionally independent

after accounting for the latent variable η, the measurement model pg(y | η;Λ(g)) can

be further represented by

pg(y | η;Λ(g)) =
J∏
j=1

pg(yj | η;Λ(g)
j ). (2.2.2)

It remains to specify the univariate measurement model for each of the J items,

pg(yj | η;Λ(g)
j ), for j = 1, . . . , J . This conditional independence assumption is held

for a latent class model with a categorical latent variable ξ.

The equations above provide a multiple-group representation of an LVM in the

presence of observed population heterogeneity. In single-group analysis (G = 1),

the group subscript g is dropped (and we also drop it in the rest of the chapter

depending on the application we discuss).

When a comparison is made across multiple groups of individuals, the assumption

that the items on which the comparison is based maintain measurement invariance

across groups of individuals is required so that the latent variable is comparable on

the same measurement scale across the groups. Any dependence of the measurement

model on the observable grouping variable after controlling for the latent factor or

conditioning on latent classes suggests a lack of measurement invariance; that is, pa-

rameter values pertaining to one or more items vary across the groups (Mellenbergh,

1989; Meredith, 1993; Widaman & Reise, 1997).

For the individual items, measurement invariance can be approached by using dif-

ferential item functioning (DIF; Thissen, Steinberg, & Wainer, 1993) analysis. The

DIF approach can be manifest or latent, depending on whether the population het-

erogeneity is observed or unobserved. The studies in this chapter involve manifest
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DIF, and latent DIF as a source of two-way outliers is the focus of the next two

chapters. The effect of DIF can be either uniform or non-uniform. Uniform DIF

is analogous to scalar non-invariance and non-uniform DIF is analogous to metric

non-invariance in factor models. A detailed explanation is provided in Sections 2.2.2

and 2.2.3.

When the sources of population heterogeneity and hence group memberships are

unobserved, the question of interest becomes whether the measurement model de-

pends on latent class memberships of individuals. A Factor mixture model which

integrates latent classes indicated by the categorical latent variable, ξ, with common

factor models can be used to accommodate unobserved population heterogeneity.

The normality of the continuous latent variable, η, is no longer necessary in this

case. Instead, a multi-modal distribution can be assumed for η to reflect latent

population heterogeneity.

The rest of this section focuses on three special cases of the general modelling frame-

work given by Equation (2.2.1), namely the latent class model for binary items with

single- and multiple-group analysis, the multiple-group factor analysis model for

binary items, and the factor mixture model for continuous items. In the following

sections, those models will be used as baseline models and their associated goodness-

of-fit measures will be monitored to indicate the effect of one-way outliers during

the progression of the FS.

2.2.2 Latent Class Model for Single- and Multiple-groups

Latent class analysis (LCA) aims to explain the associations among J items using

K latent classes indicated by a discrete latent variable ξ, where K is much smaller

than J (Clogg, 1995; McCutcheon, 1987). LCA is typically useful for clustering and

classifying multivariate data.

The latent class model for the J items in group g, for g = 1, . . . , G, under the
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conditional independence assumption is specified as

pg(y) =
∑K

k=1
c
(g)
k

J∏
j=1

pg(yj | ξ = k), (2.2.3)

where c
(g)
k = Pg(ξ = k) = pg(ξ;B

(g)), for k = 1, . . . , K, denotes the class probability

of belonging to Class k for group g. The structural model is characterised by the

structural parameter set, B(g) = (c
(g)
1 , . . . , c

(g)
K ), subject to c

(g)
k ⩾ 0,

∑K
k=1 c

(g)
k = 1.

For each binary item, we assume a Bernoulli distribution conditional on latent class

membership:

pg(yj | ξ = k) = (π
(g)
jk )

yj(1− π
(g)
jk )

1−yj , for yj = 0, 1 , (2.2.4)

where π
(g)
jk = Pg(Yj = 1 | ξ = k) (j = 1, . . . , J , k = 1, . . . , K) denotes the probability

of a positive response to item j conditional on latent class k and group g. The

measurement model is characterised by the item parameter matrixΛ(g) = {π(g)
jk }J×K .

For continuous items, a normal distribution given latent class and observed group

memberships can be assumed: yj | ξ = k ∼ N
(
µ
(g)
jk ,

(
σ
(g)
jk

)2)
, subject to identifiabil-

ity constraints.

In the single group case, g is dropped.

In the case of multiple groups, measurement equivalence is established when class-

conditional item response probabilities, {π(g)
jk }J×K , are equal across the groups so

that the latent classes have the same meaning for all groups and the measurements

in different groups are comparable. Complete measurement equivalence further re-

quires class probabilities to be equal across groups. The question of whether the

class probabilities are identical across groups can be addressed via a likelihood-ratio

difference test after the equivalence of class-conditional item response probabilities

has been established. The data-generating models in Sections 2.3.4 and 2.4.2 assume

partial measurement invariance (Collins & Lanza, 2010), meaning that some but not

all conditional item response probabilities to be equal across the observed groups.
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The multiple-group analysis allows parameters pertaining to non-equivalent items

to vary across the groups while setting parameters related to equivalent items equal.

To understand the ways in which measurement invariance could be untenable, con-

sider one or more items functioning differently as indicative of the latent classes

across different observed groups. In this case, measurement non-invariance is present

due to observed population heterogeneity, which is the source of DIF for the items

in question if we use the language of IRT. The difference in the expected responses

to an item showing uniform DIF across the groups would be the same within every

latent class, while the non-uniform DIF effect would be different for one or more of

the latent classes. DIF becomes a problem when the source of DIF is also associated

with the latent classes.

2.2.3 Factor Analysis Model

Factor analysis aims to explain the associations among items using continuous la-

tent variables or latent traits. The factor model we present here assumes a single

continuous latent variable denoted by η and is applied to data containing J items

and G observed groups. Again, subscript g = 1, . . . , G is used to label the groups

in the formulation. In the single group case, the subscript g is dropped. The model

can be generalised to include multiple latent factors.

Under the conditional independence assumption, the single-factor model for group

g is given by

pg(y) =

ˆ J∏
j=1

pg(yj | η(g);Λ(g))pg(η;B
(g))dη(g). (2.2.5)

The general form of the measurement model, pg(yj | η(g);Λ(g)), can be represented

by a generalised latent variable model (GLVM; Moustaki & Knott, 2000), in which

a link function denoted by h(·) relates the conditional expectation of the responses,

µ
(g)
j = E

[
Yj | η(g)

]
, to the latent factor η(g). The group-g-specific link for item j is

given by

h
(
µ
(g)
j

)
= ν

(g)
j + λ

(g)
j η(g), j = 1, . . . , J ; g = 1, . . . , G, (2.2.6)
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where group-specific item intercepts ν
(g)
j and item slopes (or factor loadings) λ

(g)
j ,

for j = 1, . . . , J , constitute the item parameter set Λ(g) = (ν(g),λ(g)).

If item j is continuous, an identity link is used:

h
(
µ
(g)
j

)
= µ

(g)
j = ν

(g)
j + λ

(g)
j η(g). (2.2.7)

The measurement model for continuous data is hence a single-factor model. For

binary items, the measurement model under the logit link is presented as

h(µ
(g)
j | η(g)) = logit(µ

(g)
j ) = ν

(g)
j + λ

(g)
j η(g), (2.2.8)

which is known as a (multiple-group) 2PL IRT model. ν
(g)
j and λ

(g)
j are also known

as group-specific item difficulty and item discrimination for item j, for j = 1, . . . , J .

In the case of multiple groups where g > 1, lack of measurement invariance implies

that the items may not measure the same latent construct across different groups

of individuals. In IRT, lack of measurement invariance is known as DIF. Scalar

non-invariance (uniform DIF items) exists when the intercept or item difficulty,

ν
(g)
j , differs across observed groups of individuals, while metric non-invariance (non-

uniform DIF items) implies that factor loadings or discrimination parameters, λ
(g)
j ’s,

(and possibly item difficulty as well) vary across known groups. Simulation 4 in

Section 2.3.5 and the case study in Section 2.4.3 aim to detect uniform DIF items

only. An item showing uniform DIF tends to be systematically more difficult or

easier for all individuals belonging to one observed group than individuals in other

groups, even for those with the same level of the latent trait (e.g., ability).

A normal distribution is typically assumed for the latent factor in the absence of

unobserved population heterogeneity and skewness: η(g) ∼ N
(
µ(g)
η , σ2,(g)

η

)
. The pa-

rameter set for the structural model is hence comprised of distributional parameters

for η, e.g., B(g) = (µ(g)
η , σ2,(g)

η ). For identifiability, η is assumed to follow a stan-

dard normal distribution in one of the G groups while its mean and variance in
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the other groups remain to be estimated. Simulations and case studies later in this

chapter assume configural invariance; that is, the latent factor structure remains

the same across the groups. Therefore, we can drop subscript (g) when it comes to

the distribution of η.

2.2.4 Factor Mixture Model

While the normality assumption for η is convenient for computational reasons, the

latent trait distribution in the population might be skewed or multi-modal when the

observed data come from more than one distinct population, and unlike multiple-

group data, the sources of population heterogeneity are unknown a priori. For this

reason, a more flexible distribution is needed for approximating the non-normal

latent trait η and accounting for unobserved population heterogeneity.

An attempt in this direction is to propose a factor mixture model (Lubke & Muthén,

2005) in which a categorical latent variable indicating K latent classes, denoted as

ξ = 1, . . . , K, is used to characterise latent population heterogeneity. Under a (uni-

dimensional) factor mixture model, the latent factor η is assumed to follow a normal

mixture with K latent classes, and the associations among items in each class are

explained by a class-specific normally distributed η. The structure model is given

by

η ∼
∑K

k=1
ckN

(
µηk, σ

2
ηk

)
, (2.2.9)

where µηk and σ2
ηk, for k = 1, . . . , K, are the class-wise mean and variance. The

structural parameter set consists of class-specific distributional parameters for η

and class probabilities and is denoted by B = (µηk, σ
2
ηk, ck; k = 1, . . . , K), where the

probability of belonging to Class k is ck = P (ξi = k).

A factor mixture model for continuous data is thus defined by (2.2.9) and (2.2.6)

with an identity link. Replacing the identity link with a logit link, we have a factor

mixture model for binary data, also known as a mixture IRT model (Mislevy &

Verhelst, 1990; Rost, 1990; Rost & von Davier, 1995). To achieve identifiability, the
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overall mean and variance for the latent factor η can be set at 0 and 1, which is

equivalent to
∑K

k=1
ckµηk = 0 and

∑K

k=1
ck(µ

2
ηk + σ2

ηk) = 1.

2.3 Forward Search Overview

As previously mentioned in Section 2.1.2, the FS (Atkinson, 1994; Atkinson et al.,

2013) starts from an “outlier-free” subset which is well fitted by the baseline model,

and proceeds by iteratively adding observations according to their closeness to the

subset until all observations are included. During the search, model estimation and

statistical inference are based on a sequence of data subsets of increasing size. Out-

liers deviating from the baseline model can be detected by monitoring the effect

of sequential addition of observations on the fitted model. Atypical variables (e.g.,

variable showing DIF) can also be detected following a similar procedure, and rele-

vant statistics for assessing the effect of sequentially adding variables on model fit

or item fit can be monitored.

The key steps of the FS are summarised below.

Step I Choose an initial subset of sizem or p from the data of sizeN or J depending

on whether we search for outlying cases or variables. This is the “basic” set

formed at the beginning of the search while the remaining (N −m) cases or

(J − p) items constitute the “non-basic” set.

The “basic” and the “non-basic” sets are mutually exclusive throughout the

search. The ideal situation is to find a way of selecting the initial subset so

that it is free of outliers but this is not always feasible with large initial subsets.

Step II Proceed by including the least outlying observations or items from the

“non-basic” set so that eventually the whole dataset is included in the “basic”

set. Since we start with an initial subset of m cases or p items, there are at

most (N −m) or (J − p) steps until all observations/items are included.
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Step III Monitor quantities such as parameter estimates, residuals, item fit statis-

tics and goodness-of-fit statistics, during the progress of the search (step II).

We present below four examples that illustrate the success of the FS in detecting

outlying response patterns, items lacking measurement equivalence, and data di-

mensionality. For each case, we define the steps of the FS, in terms of the statistics

we use for selecting the initial subset, progressing in the search, and monitoring

the effect of the sequential addition of observations or items on the fitted model

depending on the aim of the application.

2.3.1 Forward Search for Outlier Detection in Latent Class

Analysis

The FS has been applied to detect outliers in continuous and (Mavridis & Mous-

taki, 2008) binary (Mavridis & Moustaki, 2009) data under latent variable models

with continuous latent factors. We now extend the FS to detect outlying response

patterns under a latent class model.

The single-group representation of the latent class model for data Y containing J

binary items and N individuals is defined in Section 2.2.2, which is

p(Y ) =
∑K

k=1
ck

J∏
j=1

(π
(g)
jk )

yj(1− π
(g)
jk )

1−yj , for yj = 0, 1 . (2.3.1)

Model parameters include a measurement parameter set, Λ = {πjk}J×K , and a

structural parameter set, B = (c1, . . . , cK).

Data Generation

We generated the data containing N = 250 individuals and J = 10 items from

a 2-class model (Equation 2.3.1 with K = 2). Table 2.3.1 presents the values of

class probabilities and class-conditional positive response probabilities in the data-

generating model. These values are chosen to mimic the item responses from a
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test that was administered to primary school students to evaluate their arithmetic

ability (Sijtsma & Molenaar, 2002). The conditional positive response probabilities

are made lower in Class 1 than Class 2 for all items, meaning that individuals in

Class 2, in general, are more capable than those in Class 1. Items 1-5 are made

more difficult than Items 6-10 for both classes.

A total of 20 out of the N = 250 individuals were randomly selected and their

responses were replaced by four outlying response patterns that are not expected to

be generated from the 2-class model. As Table 2.3.2 shows, these 20 individuals with

outlying response behaviour tend to correctly answer the ‘difficult’ items (Items 1-5)

and get the ‘easy’ ones (Items 6-10) wrong.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10
Class 1 (40%) 0.16 0.02 0.00 0.04 0.21 0.36 0.19 0.22 0.08 0.30
Class 2 (60%) 0.51 0.37 0.24 0.28 0.43 0.62 0.55 0.65 0.60 0.70

Table 2.3.1: Simulation 1: Class prevalences ck’s (shown in brackets) and conditional
item response probabilities πjk’s used in the data-generating model.

Frequency Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10
6 1 1 0 1 1 0 0 0 0 1
4 1 1 1 1 0 0 0 0 0 0
5 1 1 1 0 1 0 0 0 0 0
5 1 0 1 1 1 0 0 0 0 0

Table 2.3.2: Simulation 1: Outlying response patterns contained by the simulated data.

The simulation study aims to assess the performance of the FS in detecting outlying

response patterns not generated by the 2-class model (i.e. the baseline model). We

describe below in detail the three steps of the FS.

Step 1: Choosing the initial subset

The first step is to choose an “outlier-free” initial subset consisting of item responses

from m individuals (m < N). For the sake of the stable estimation and convergence

of latent variable models, m should not be too small. An initial subset usually

contains 5% and 15% of the entire sample depending on the sample size and the

complexity of the baseline model.
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Let h = (h1, . . . , hm)
′ be an m-dimensional vector of row indices in the data matrix

Y . h contains m indices selected from 1, . . . , N : 1 ⩽ h1, . . . , hm ⩽ N . Smh =

(yh1 , . . . ,yhm) refers to one possible initial subset of size m, e.g., the first row of the

subset Smh yh1 is the h1-th row of the data matrix Y .

The total number of all possible initial subsets of size m is
(
N
m

)
, but it is practically

infeasible to investigate all of them even for a small N . A feasible way is to randomly

select a reasonable number of subsets to investigate: Sm1 , . . . , S
m
H , for H <

(
N
m

)
.

The one most compatible with the baseline model, for example, the one having an

exact or an asymptotic p-value of a goodness-of-fit statistic greater than a certain

threshold, is chosen to initialise the FS. We can also start by checking all possible

initial subsets and stop once we find a subset that meets the selection criteria.

That brings us to discuss model adequacy measures that can be used for select-

ing the initial subset. The fit of a latent class model can be assessed using overall

goodness-of-fit test statistics (e.g., chi-squared or likelihood ratio test statistic), but

they are known to be sensitive to the sparseness of the contingency table associ-

ated with multivariate categorical data (e.g., Bartholomew & Leung, 2002; Reiser

& VandenBerg, 1994). The sparseness is likely to distort the asymptotic p-values

for these overall goodness-of-fit statistics and makes it unfit as a criterion for as-

sessing model adequacy. Alternatives that have been proposed include resampling

methods (van Kollenburg, Mulder, & Vermunt, 2015) and test statistics based on

limited-information methods (Maydeu-Olivares & Joe, 2006; Reiser, 1996). Limited-

information goodness-of-fit statistics based on lower order margins such as bivariate

residuals (BVR) are less sensitive to sparsity (Bartholomew, Steele, & Moustaki,

2008; Jöreskog & Moustaki, 2001). The BVR is given by

BVRjj′ =
∑

j∈{0,1}

∑
j′∈{0,1}

(njj′ − ejj′)
2

ejj′
, (2.3.2)

where njj′ and ejj′ are the observed and expected frequency under the latent class

model of a pair of binary variables, Yj and Yj′ , respectively. The expected frequency
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of the pair of variables can be calculated using the parameter estimates from the

fitted model. By summing BVR values across all pairs of variables, we have an

alternative overall fit measure, the total bivariate residuals (TBVR):

TBVR =
J−1∑
j=1

J∑
j′=j+1

BVRjj′ . (2.3.3)

To determine whether a realised TBVR indicates model misfit in the form of the

local dependence in residuals, an empirical finite-sample reference distribution of

TBVR is needed. This requires resampling techniques (van Kollenburg et al., 2015).

One popular resampling technique is parametric bootstrap. However, the para-

metric bootstrap approach is computationally time-consuming, because it requires

estimating the model hundreds of times with hundreds of replicated datasets. The

fast-bootstrap resampling method (van Kollenburg, Mulder, & Vermunt, 2018) of-

fers an alternative by directly comparing observed data with a large number of

model-generated datasets without having to repeat the model estimation procedure

on each of the replicated datasets. We use the fast-bootstrap p-value for the TBVR

statistic as the criterion for selecting the initial subset.

Let TBVR(Smh ) be the observed TBVR computed from a potential initial subset,

Smh . The p-value is calculated as the proportion of L model-generated datasets for

which the TBVR value is at least as large as the observed TBVR:

p(TBVR(Smh )) = L−1

L∑
l=1

1{TBVR(l) ⩾ TBVR(Smh )}. (2.3.4)

Among the potential initial subsets, Sm1 , . . . , S
m
H , the one with the highest fast-

bootstrap p-value for the TBVR statistic is selected as the initial subset, denoted

as Sm∗ .

Another criterion for choosing the initial subset is the (log-)likelihood contribution of

individual observations. Parameter estimates from the fitted model are first obtained

for each potential initial subset: B̂{Sm
h }, Λ̂{Sm

h }, where h = 1, . . . ,H represent H m-
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dimensional vectors of row indices of Y . For each set of parameter estimates, the

median of the absolute likelihood contributions for the whole sample is taken. The

log-likelihood contribution of individual i (for i = 1, . . . , N) is defined as

ℓi

(
B̂{Sm

h }, Λ̂{Sm
h };yi

)
= log

[∑K

k=1
ĉk{Sm

h }

J∏
j=1

π̂
yij
jk,{Sm

h }(1− π̂jk,{Sm
h })

1−yij
]
. (2.3.5)

Finally, the subset which has the minimum median of absolute likelihood contribu-

tions is selected as the initial subset, denoted by Sm∗ .

The initial subset Sm∗ is the one with the minimum median of the absolute log-

likelihood contributions:

median[Sm∗ , ℓ] = min
h

{
median

∣∣∣ℓ(B̂{Sm
h }, Λ̂{Sm

h };yi

)∣∣∣; i = 1, . . . , N
}
. (2.3.6)

In the example of the latent class model, we randomly selected H = 100 possible

initial subsets, each of size m = 50. The one with the highest p-value for the TBVR

was chosen to be the initial subset.

Step 2: Progressing in the Forward Search

The “basic” set at the beginning of the FS is the initial subset Sm∗ . Moving from

Sm∗ , it takes a maximum of (N − m) steps until all observations are included in

the “basic” set. At each step of the FS, one or more observations can be added

to the “basic” set. In addition, when the FS moves from Step m to m + 1, the

baseline model (i.e. the 2-class model) is fitted to the “basic” set Sm∗ . The standard

FS sorts all N observations, from the “basic” and the “non-basic” set according to

their closeness to the “basic” set. Closeness is established via a criterion based on

model estimates from Sm∗ . This allows observation to enter and leave the “basic” set

at each step of the FS. Alternatively, one can sort just the observations in the ‘non-

basic set by their ‘closeness’ to the “basic” set, which is the way used to progress in

the FS in our examples.
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Common progression criteria include residuals, goodness-of-fit statistics, and like-

lihood contributions. We used the likelihood contributions. Outliers are expected

to be poorly fitted by the baseline model that generates the majority of the data

and therefore have lower likelihood contributions. The contribution of individual

observation yi to the log-likelihood is defined as

ℓi = log
[∑K

k=1
ck

J∏
j=1

π
yij
jk (1− πjk)

1−yij
]
. (2.3.7)

One issue that may arise using this criterion is that for categorical data, the likeli-

hood contribution of a response pattern depends on its sample frequency. Therefore,

response patterns that are observed only once are unlikely to join until the late stage

of the search. To reduce the impact of sample frequencies, one can weight likelihood

contributions by dividing them by sample frequencies of corresponding response pat-

terns in the “basic” set, given that the sample frequency is non-zero (Mavridis &

Moustaki, 2009). We used the weighted likelihood contribution as the progression

criterion while illustrating this example.

Step 3: Monitoring the Forward Search

To reveal individual responses that deviate from the baseline model, we can use

forward plots, in which the evolution of goodness-of-fit statistics or model-implied

residuals is monitored through the progress of the search as a function of the subset

size. A substantial change in the value for the statistics monitored indicates the

addition of an outlier to the subset.

In this example, we monitored the fast-boostrap p-value for the total bivariate resid-

uals (TBVR) statistic during the progression of the search. As mentioned in Step

1, this fast-bootstrap p-value is less sensitive to sparseness and computationally effi-

cient. The p-value for the TBVR statistic was computed given a sequence of subsets

established during the progression: p(TBVR(St∗)) for t = m+ 1, . . . , N .

Figure 2.3.1 is a forward plot showing the evolution of the fast-bootstrap p-value for
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the TBVR computed from the “basic” set at each move t of the FS: p(TBVR(St∗)),

for t = 51, . . . , 250. There is a dramatic decrease from sets S234
∗ to S250

∗ . During

these steps, 17 out of the 20 constructed outliers join the subset, indicating that the

FS manages to distinguish them from the rest of the data. Three other outliers join

the “basic” set a bit earlier at t = 220, 221, 222.

Figure 2.3.1: Simulation 1: Forward plot of the fast-bootstrap p-value for the TBVR
computed from the “basic” set at each step of the search. 50 observations are included by
the initial subsets.

2.3.2 Simulation Study: Detecting Latent Dimensionality

The FS has been applied to detect response patterns not generated from the baseline

model. Now we are interested in the performance of the FS with the misspecification

of latent dimensionality. Specifically, we would like to see how the FS works when

the baseline model assumes a normal distribution for the latent trait in the presence

of latent population heterogeneity.
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Data Generation

In this study, we generated binary data mimicking zero-inflated data containing

an excessive number of zero responses. Zero-inflation is common in clinical data

and psychiatric data, where a large number of individuals are in good health and

therefore do not have symptoms (denoted as zeros) in response to all items that are

designed to measure a disorder (Kelley & Anderson, 2008). As a result, an all-zero

response pattern often dominates the data in contrast to other not-all-zero response

patterns which are very like to come from those with different levels of severity of

the disorder.

Wall, Park, and Moustaki (2015) mentioned that the assumption of normality for

the latent trait, which is often highly skewed due to zero inflation, leads to biased

parameter estimates in modelling zero-inflated data. A mixture IRT model, which

is formed by incorporating mixtures into an IRT model, is often used instead for

modelling zero-inflated data.

The data-generating model is a mixture IRT model given by Equations (2.2.8) and

(2.2.9), dropping the multiple-group label (g). The distribution of the latent trait η

is approximated by a 3-class mixture: a mixture of two normal distributions for the

heterogeneous pathological sub-population with two levels of severity (i.e. mild and

severe), and a degenerate component for the healthy sub-population. The structural

part of the mixture IRT model is denoted by

η ∼
∑3

k=1 ckN
(
µηk, σ

2
ηk

)
, subject to

∑3
k=1 ck = 1,

where ck for k = 1, 2, 3 are class proportions for the severe-pathological class, mild-

pathological class and non-pathological class, respectively. The non-pathological

class (k = 3) is fixed at an extremely negative value, because individual responses in

this class contribute nothing to the estimation of the latent trait: µη3 = −100 and

σ2
η3 = 0. To avoid the indeterminacy, the latent trait is scaled by fixing its overall

mean and variance based on the two non-degenerate pathological classes at 0 and
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1, without involving the non-pathological class
∑2

k=1 ckµηk = 0 and
∑2

k=1 ck(σ
2
ηk +

µ2
ηk) = 1.

We consider two simulation settings under different class probabilities. As shown

in Table 2.3.3, the non-pathological class (k = 3) accounts for 25% in Simulation

2.1 and 50% in Simulation 2.2, and the mild-pathological class (k = 2) takes up

50% and 25% in Simulations 2.1 and 2.2, respectively. The proportion of the severe-

pathological class (k = 2) remains the same in both settings. The table also presents

the values for structural parameters.

N J c1 c2 c3 µη1 µη2 σ2
η1 σ2

η2

“severe-” “mild-” “non-”
Simulation 2.1 1000 10 25% 50% 25% 1.00 -0.500 0.833 0.833
Simulation 2.2 1000 10 25% 25% 50% 0.800 -0.800 1.360 1.360

Table 2.3.3: Simulations 2.1 & 2.2: Class probabilities in the data-generating model.

Data consisting of N = 1000 individuals and J = 10 binary items were generated

from the above 3-class mixture unidimensional IRT model under the two settings.

Under the assumption of conditional independence, individual responses to different

items are independent given η. Item parameter values in the data-generating model

are specified as follows. Item slopes were fixed at 1: λj = 1 for j = 1, . . . , 10. The

values for item intercepts reflect a ladder of severity and are shown in Table 2.3.4.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10
ν -1.500 -1.167 -0.833 -0.500 -0.167 0.167 0.500 0.833 1.167 1.500

Table 2.3.4: Simulations 2.1 & 2.2: Values for item intercepts νj, for j = 1, . . . , 10, in
the data-generating model.

Now a 2-class model with a single pathological class and a non-pathological class is

used as the misspecified baseline model. With the assumption that the pathological

population is homogeneous, the latent trait for the pathological class under the

2-class model follows a normal distribution rather than a normal mixture.
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2.3.2.1 Implementation of Forward Search

We apply the FS procedure for detecting individual cases. To start with, 100 sub-

sets, each of size 200, were randomly drawn from the data. The subset with the

highest fast-bootstrap p-value for the TBVR was chosen to initialise the FS, de-

noted as S200
∗ . Among 200 individuals in the initial subset, S200

∗ , 143 individuals

are from the non-pathological class, 9 individuals are from the severe-pathological

class, and 48 individuals belong to the mildly pathological class. This means that

the initial subset was mainly established by individuals at the less severe end of

the latent trait. The FS proceeded with the augmented subset using the likelihood

contribution as the progression criterion. The fast-bootstrap p-value for the TBVR

was computed from the two-class model based on only the subset at each step of

the search “i.e.S201
∗ , . . . , S1000

∗ ). The evolution of the fast-bootstrap p-value is shown

in the forward plot (Figure 2.3.2). It is clear that a substantial drop in the p-value

starts when the subset size amounts to 534 (S534
∗ ). Before the p-value dives, only

3 observations from the severe-pathological class were added to the “basic” subset

when its size is between 201 and 533. S533
∗ mainly consists of individuals from the

non-pathological class and the mild-pathological class. The rest of the observations

from the severe-pathological class were added after the subset size amounts to 534.

It seems that the drop was largely due to the big inclusion of individuals from the

severe-pathological class. It is worth noting that the significant drop in the p-value

halfway through the search indicates the inadequacy of the 2-class model.

The same procedure is applied to the data under the second simulation setting. The

difference is that the data being analysed here are comprised of nearly 50% of all-zero

patterns, twice as many as the first simulation setting, and therefore more skewed.

An initial subset of size 100 was chosen based on their associated fast-bootstrap

p-value for the TBVR statistic, denoted as S100
∗ . S100

∗ contains 5 observations come

from the high-pathological class and the rest are all from the non-pathological class.

The “basic” set was mainly established by individuals in the non-pathological class.

Figure 2.3.3 shows how the fast-bootstrap p-value for the TBVR, an indicative of
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Figure 2.3.2: Simulation 2.1: Forward plot of fast-bootstrap p-value for the TBVR com-
puted from fitting a misspecified 2-class model assuming a homogeneous pathological group.
The x-axis label is the size of the “basic” set during the FS.

model misfit, evolves as more individuals are added to the “basic” set.

According to Figure 2.3.3, 282 individuals from the non-pathological class, 7 individ-

uals from the mild-pathological class, and 1 from the high-pathological class entered

the subset before subset size amounts to 390. Among the 100 observations added

during subset size t = 391 − 490, 78 observations come from the mild-pathological

class and the other 22 observations are from the non-pathological class. A sharp

decline in the p-value started when individuals from the severe-pathological class be-

gan to enter the “basic” set en masse. 196 individuals from the severe-pathological

class, 31 from the mild-pathological class, and 7 from the non-pathological entered

the “basic” set during the course of subset size t = 491 − 724. The inclusion of

a large number of individuals from the severe-pathological class makes the fast-

bootstrap p-value slump to nearly zero. From the moment when the subset size

reaches 725 until the very end of the search, among the newly added observations,

there are 48 individuals from the high-pathological class, 134 individuals from the

mild-pathological class, and 94 individuals from the non-pathological class.

To summarise, the p-value being monitored dramatically drops to nearly zero halfway
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Figure 2.3.3: Simulation 2.2: Forward plot of fast-bootstrap p-value for the TBVR com-
puted from fitting a misspecified 2-class model assuming a homogeneous pathological group.

through and maintains extremely low values for a while. This implies that the

severe-pathological class is not captured by the 2-class model assuming a homoge-

neous unhealthy class and a non-pathological class. After the subset size reaches

725, the p-value increases a bit but finally drops to nearly zero. The increase was

probably due to the inclusion of observations from the mild- or non-pathological

class. It is worth noting that the significant drop in the p-value halfway through the

search indicates the inadequacy of the 2-class model which assumes the pathological

population is homogeneous, although the number of sub-population is remained to

be detected.

The simulation study shows that an “outlier-free” initial subset is not always easily

found. Initial subsets under both simulation settings were comprised mainly of

response patterns well fitted by the baseline model, but there were a few exceptions.

For example, in the first setting, individuals at the high-severity level tend to be

poorly fitted, as the initial subset was primarily established by individuals belonging

to non-pathological and mild-pathological classes.

The presence of response patterns not incorporated by the baseline model in the
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initial subset might be problematic, but the problem can be fixed by repeating the

FS procedure with multiple randomly chosen initial subsets (Atkinson, 1994). This

leads to our next example in which multiple random-started forward searches are

carried out to detect latent groups of individuals under a factor mixture model.

2.3.3 Forward Search for Detecting Latent Population Het-

erogeneity under Factor Mixture Model

Simulation 2 in Section 2.3.2 shows that, in the presence of population heterogeneity,

when a carefully selected initial subset mainly consists of individuals from one sub-

population, the observations from other sub-populations would be considered as

outliers under the fitted model. It is difficult to pick out an “outlier-free” initial

subset in this case. The composition of initial subsets in Simulation 2 leads to

the idea of using multiple forward searches to explore the structure of multivariate

data. This idea is also mentioned in Section 2.1.2. The FS was carried out multiple

times to uncover clusters in continuous data through monitoring the Mahalanobis

distances whenever the “basic” set size increases (Atkinson et al., 2013).

We now apply multiple forward searches to detect latent population heterogene-

ity that manifests as latent classes in a factor mixture model. Assume that in-

dividual membership in latent classes is indicated by a categorical latent variable

ξ = 1, . . . , K. There are two strategies. The first one is running K forward searches,

each starting with a carefully-selected, almost “outlier-free” initial subsets solely

composed of individuals from one of the K homogeneous classes. However, find-

ing K robust initial subsets is computationally demanding and sometimes infeasible

without any prior information about latent classes. The second strategy is running

more than K forward searches, each starting with randomly selected initial subsets.

As pointed out by Atkinson et al. (2013), forward searches eventually converge re-

gardless of their starting points. The second strategy is also less computationally

time-consuming with parallel computation and does not require any prior informa-
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tion about the number of latent classes and latent class membership. Therefore, we

use the second strategy in the simulation study.

Data Generation

The data consisting of N = 500 individuals and J = 10 variables were simulated

from a single-factor mixture model. The measurement model is given by Equation

(2.2.7), and the structural model (2.2.9) assumes the single latent factor, η, to

follow a mixture of two normal distributions: η ∼
∑2

k=1 ckN(µηk, σ
2
ηk), subject to∑2

k=1 ckµηk = 0 and
∑2

k=1 ck(σ
2
ηk + µ2

ηk) = 1.

Values for structural parameters B = (µηk, σ
2
ηk, ck; k = 1, 2) in the data-generating

model are listed as follows. c1 = 0.400, c2 = 0.600, µη1 = −1.125, µη2 = 0.750,

σ2
η1 = 0.150, and σ2

η2 = 0.160. Values for item parameters Λ = (ν,λ) in the

measurement part of the data-generating model are shown in Table 2.3.5.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10
ν 0.941 0.369 -0.911 -1.042 -1.374 0.474 0.651 -0.990 0.942 0.160
λ 1.128 0.804 1.096 1.026 0.888 1.138 0.937 0.820 0.662 0.932

Table 2.3.5: Simulation 3: Values for item parameters in the data-generating model.

Now suppose we don’t know if the data were generated from more than one distinct

population. First, we need to determine whether the data is homogeneous with

respect to the baseline model, which is a single-class factor model assuming homo-

geneity (K = 1). The FS procedure for detecting outlying individuals is carried out

many times until the deviations from the baseline model show evidence of population

homogeneity or heterogeneity. If population heterogeneity is detected, the data are

partitioned into subsets consisting of individuals from identified latent classes. To

further confirm individuals’ latent class memberships, the FS is performed on each

partitioned data subset. This two-step procedure for detecting latent population

heterogeneity is described as follows.
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2.3.3.1 Phase I: Detecting Homogeneous Subgroups

An adequate number of forward searches are performed on the simulated data based

on the outlier detection procedure described in Section 2.3.1. Each search starts from

a randomly chosen initial subsets consisting of individuals accounting for 5% to 15%

of the data depending on sample size. In this simulation study, we ran 100 forward

searches, each starting from a random initial subset of size m = 50. Each search

proceeded by adding individuals to the subset according to their likelihood contri-

butions. No observations are allowed to leave the subset once they are included.

The baseline single-factor model assuming homogeneity (with K = 1) was fitted to

a sequence of data subsets established by each search. To monitor the deviations

from the baseline model, the standardised root mean squared residual (SRMR; Hu

& Bentler, 1999) which assesses the discrepancy between the sample and model-

implied covariance matrices were computed at each step of each FS. The SRMR

under a common factor model for continuous outcomes is defined as

SRMR =

√√√√∑
j

∑
j′⩽j

r2jj′

J(J + 1)/2
, (2.3.8)

where rjj′ =
sjj′√
sjjsj′j′

− σ̂jj′√
σ̂jjσ̂j′j′

. sjj′ and σ̂jj′ denote the sample and the model-

implied covariances between the observed outcome yj and y
′
j (j

′ ̸= j), respectively.

sjj and sj′j′ denote the sample variances for yj and y
′
j. SRMR ∈ [0, 1].

The forward plot of the SRMR is shown in the upper-left panel of Figure 2.3.4. The

trajectory of the SRMR for each FS is represented by a solid curve. Hu and Bentler

(1999) suggested that a value of 0.08 or less is indicative of an acceptable model fit

while some others suggested 0.06 as the cutting-off point. We, therefore, obtained

the empirical distribution of the SRMR from 100 replications in each step of the FS,

while the baseline model assuming homogeneity was fitted to the subsets established

during the FS. The 1%, 50% and 99% simulation envelopes are the values of the

99%, 50% and 1% points of the empirical distribution of the SRMR, respectively.
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They are represented by dashed curves.

The forward plot shows two peaks, where some trajectory curves of the SRMR exceed

the simulation envelops. The peaks are present because the initial subsets from

these 88 searches were mainly established by one homogeneous group of individuals.

Therefore, the addition of those belonging to the other latent group distorted the

fit of the baseline model assuming homogeneity. The presence of two peaks suggests

that it is reasonable to assume two sub-populations or two latent classes for the

continuous latent variable η.

41 searches pass through the first peak when the “basic” set size is 208, and an-

other 47 searches pass through the second peak when the “basic” set contains 291

individuals. Therefore, one latent class could be formed by the 208 individuals in

the “basic” set just before or at the first peak, and the other latent class could

be established by the 291 individuals in the “basic” set just before or at the second

peak. The sizes and memberships of the two latent classes need further confirmation,

which leads to Phase II.

The remaining 12 trajectories in grey do not cover either peak, because individuals

in both classes are present in initial subsets. All black and grey trajectories even-

tually settle down and converge regardless of their starting points, which justifies

the use of random initial subsets. The end of converged trajectories is still within

the simulation envelopes, meaning that the 500 individuals in the dataset belong to

either of the two tentatively identified classes.

2.3.3.2 Phase II: Partitioning the data into homogeneous subgroups

To confirm the sizes of two latent classes and the classification of individuals, an

adequate number of forward searches are performed solely on each homogeneous

class tentatively identified in Phase I. The upper-right and the lower-left panel

panels in Figure 2.3.4 show the evolution of the SRMR during 100 random-start

forward searches from the two tentative latent classes respectively. In Phase II,
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209 individuals from the “basic” set around the first peak in the upper-left panel

were allocated to the first latent class, while 292 individuals from the “basic” set

around the second peak in the upper-left panel were classified into the second latent

class. One individual is left out and can be allocated to either class. Again, the

forward plots do not show the presence of outliers as all trajectories are within their

simulation envelopes in the end. This result is consistent with our simulation design,

which involves generating the data from a 2-class single-factor model without the

presence of isolated or clustered outliers.

Figure 2.3.4: Simulation 3: Forward plots of the SRMR computed from the “basic”
sets during 100 Forward Searches. Dashed lines denote 1%, 50% and 99% simulation
envelopes.
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2.3.4 Forward Search for Detecting Items Showing DIF in

Multiple Group Analysis

Section 2.1.1 reviews a backward method of identifying DIF items within a latent

variable mixture modelling framework (Sawatzky et al., 2018). We now search items

lacking measurement invariance forwardly in the latent class modelling context.

Multiple-group latent class model (Equation 2.2.3, Clogg & Goodman, 1984) is used

to simultaneously analyse multiple-group data with the purpose of interpreting the

latent classes across these groups. The equivalence of latent class measurements

requires the class-conditional item response probabilities to be equal across the ob-

served groups (see Section 2.2.2), meaning that all individuals in the same latent

class have the same expected responses on manifest variables, regardless of which

observed group they belong to (McCutcheon, 2002).

As mentioned earlier in Section 2.2, the assumption of measurement invariance can

be tested using goodness-of-fit test statistics or evaluated based on model selection

criteria. If there is sufficient evidence against measurement invariance, the next step

is to identify DIF items. For example, Masyn (2017) carried out a likelihood-ratio

test to compare a model with complete invariance for all items with respect to the

grouping variable to a model with class-specific DIF on every item in regard to the

grouping variable. Once the test is rejected and there is evidence of measurement

invariance (i.e. DIF is identified in at least one item), nested models assuming

increasingly restrictive across-group invariance constraints on model parameters are

compared (adjusting for multiple testing) until a model in which some items show

DIF does not have a significantly worse fit than the model in which all items exhibit

DIF.

In this section, we propose to use the FS to directly detect items exhibiting uniform

DIF. A measurement-equivalent model is fitted to a sequence of data subsets es-

tablished throughout the FS, and any significant deviation from the baseline model

will be indicative of the inclusion of a DIF item in the subset. Unlike the previous
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approach (Masyn, 2017) which makes sequence comparisons among nested models

with different degrees of measurement non-equivalence, the FS produces a film of

data subsets while the baseline model remains measurement-equivalent. By moni-

toring the fit between the baseline model and the sequence of subsets, one can assess

the effect that each potential DIF item has on the measurement-equivalent model

once it is included in the subset.

Data Generation

We simulated data with N = 500 observations and J = 10 items from a two-group

two-class latent class model (Equation 2.2.3 in which G = K = 2), where class

probabilities B = (c1, c2) = (60%, 40%) remain the same for both groups. Tables

2.3.6 and 2.3.7 give the conditional item response probabilities Λ = {πjk}10×2 under

Settings A and B respectively. In both settings, Items 1-6 are equivalent while Items

9 and 10 exhibit strong non-equivalence. Setting B differs from Setting A in that its

conditional response probabilities for Items 7 and 8 are different for Groups 1 and

2, but the differences are not large enough to change the interpretation of the latent

classes. In Setting A, the difference between the two groups in terms of Items 7 and

8 is large and the interpretation of latent classes is different for the two groups.

Item1 Item2 Item3 Item4 Item5 Item6
Class 1 (60%) 0.06 0.12 0.02 0.11 0.21 0.36
Class 2 (40%) 0.49 0.47 0.24 0.38 0.53 0.62

Item7 Item8 Item9 Item10
Class 1 (60%) Group 1 0.19 0.35 0.22 0.30

Group 2 0.75 0.80 0.70 0.65
Class 2 (40%) Group 1 0.55 0.55 0.65 0.41

Group 2 0.45 0.40 0.60 0.55

Table 2.3.6: Simulation 3 Setting A: Conditional item response probabilities used in the
data-generating model.

The FS is carried out with the purpose of detecting non-equivalent items (which de-

viate from the measurement equivalent baseline model). We keep using the notation

from Section 2.3.1 for convenience.



2.3. Forward Search Overview 53

Item1 Item2 Item3 Item4 Item5 Item6
Class 1 0.06 0.12 0.02 0.11 0.21 0.36
Class 2 0.49 0.47 0.24 0.38 0.53 0.62

Item7 Item8 Item9 Item10
Class 1 Group 1 0.19 0.22 0.30 0.35

Group 2 0.30 0.40 0.70 0.65
Class 2 Group 1 0.55 0.65 0.41 0.46

Group 2 0.45 0.60 0.60 0.55

Table 2.3.7: Simulation 3 Setting B: Conditional item response probabilities in the data-
generating model.

Step 1: Choosing the initial subset

The FS starts from an initial subset containing m items (m < J) well fitted by the

measurement equivalent baseline model.

Let h = (h1, . . . , hm)
′ be an m-dimensional vector of column indices in Y . Smh =

(yh1 , . . . , yhm) denotes a candidate for the initial subset, where yh1 is the h1-th column

of Y (1 ⩽ h1, . . . , hm ⩽ J = 10 and hj ̸= hj′).

The total number of possible subsets comprised of m items is
(
J
m

)
. Whether it

is computationally feasible to investigate all of them depends on the number of

items contained in the data. In this study, it is computationally feasible to compare

the fit between the baseline model and all possible subsets containing 3 or 4 items

(the number is 120 or 210). For data consisting of a large number of items (e.g.,

Simulation 4 in Section 2.3.2, a feasible way is to randomly select a sufficiently large

number of subsets denoted by (Sm1 , . . . , S
m
H) where H is much smaller than

(
J
m

)
and

choose the one that the model fits best according to some criterion.

Since the dataset in this example is associated with a sparse contingency table, we

use limited-information goodness-of-fit test statistics as a criterion for selecting an

initial subset. In addition to goodness-of-fit test statistics, item-specific fit statistics

based on the comparison between observed and expected item responses are also

useful.

A family of limited-information statistics denoted by Mr (r < J) was introduced by

Maydeu-Olivares and Joe (2005) to identify the source of the model misfit through

examining residuals based on the lower margins up to order r. Mr of the r-th order
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under a latent model is given by

Mr =Mr(B̂, Λ̂) = (pr − πr(B̂, Λ̂))′(N−1Σr(B̂, Λ̂))−1(pr − πr(B̂, Λ̂)), (2.3.9)

where N−1Σr is the asymptotic covariance matrix of the sample moments up to

order r. Σr and πr are evaluated at model parameter estimates (B̂, Λ̂). pr and

πr represent vectors of sample moments and expected moments up to r-th order,

respectively. The limited information statistic of the second order M2 is most often

used for binary data. The M2 statistic asymptotically follows a chi-squared distri-

bution, where the degrees of freedom equal the difference between the number of

moments up to the second order and the number of model parameters q:

M2
·∼ χ2

dfM2
, (2.3.10)

with dfM2 = J + J(J − 1)/2 − q, where q refers to the number of parameters to

be estimated. Maydeu-Olivares and Joe (2005) pointed out that for the asymptotic

null distribution of M2 to be valid, the model needs to be correctly specified, the

second-order margins cannot be too sparse, and the sample size needs to be relatively

large.

A significantly low p-value for the M2 statistic indicates that one or more outliers

are present in the “basic” set. We may not be able to investigate all subsets. Once

we find a subset that yields a p-value greater than 5%, we can stop searching. The

initial subset is denoted by Sm∗ .

In our example, a 2-class model assuming measurement equivalence was fitted to

the “basic” set whose size increased as the FS proceeded. The initial subset was

comprised of m = 4 invariant items. There were
(
J
m

)
=

(
10
4

)
= 210 possible candi-

dates for the initial subset. For computational convenience, we only compared 100

candidates, Sm1 , . . . , S
m
100, and chose the one with the highest p-value (above 10%)

for the M2-statistic (Equation 2.3.10) as the “basic” set (denoted as S4
∗) to initialise

the search.
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Step 2: Progressing in the Forward Search

The “basic” set resulting from Step 1 is denoted by Sm∗ . The search moves to a

larger “basic” set Sm+1
∗ by adding one of the (J−m) items outside of the “basic” set.

The measurement equivalent 2-class model is fitted to (J −m) possible subsets and

then these subsets are ordered based on their associated p-value for theM2-statistic.

The one with the highest p-value is the new “basic” set Sm+1
∗ . The search moves

forward till the “basic” set includes every item in the data. A sequence of subsets

are established as the search progresses: St∗, for t = m+ 1, . . . , J .

Step 3: Monitoring the Forward Search

To indicate the presence of nonequivalent items in the “basic” set, we assessed how

likely the given invariant measurement model could have generated the “basic” sets

established throughout the search (Sm+1
∗ , . . . , SJ∗ ). Once a non-equivalent item is

present in a “basic” set, the invariant measurement model is no longer compatible

with the subset. As a result, we can see the change in the value for a goodness-of-fit

or an item fit statistic.

We calculated p-value associated with the M2-statistic, which has been described in

Step 1, and root mean square error of approximation (RMSEA; Steiger, 1990) for

the subsets established during the progress of the search. The RMSEA assesses the

approximate fit of the model in the population. It ranges from 0 to 1, with smaller

values indicating better model fit. A value of 0.06 or less is indicative of acceptable

model fit. An unbiased estimator for the RMSEA associated with the M2 statistic

(Maydeu-Olivares & Joe, 2006) is given by

̂RMSEA2 =

√
max {M2−dfM2

N−1
, 0}

dfM2

, (2.3.11)

where the degree of freedom dfM2 = J + J(J − 1)/2− q and q refers to the number

of parameters to be estimated (e.g., q = K − 1 + JK under a latent class model).
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Figure 2.3.5 shows forward plots under Settings A and B, where items newly added

at each step of the search are labelled. In Setting A, the p-value for M2-statistic

drops rapidly below 5% while the RMSEA increases, albeit still lower than 0.06 when

the first non-equivalent item is included in the subset. The p-value never recovers

and the RMSEA eventually exceeds 0.06 during the subsequent steps, when three

other non-equivalent items join the subset. In Setting B, the inclusion of moderately

non-equivalent items 7 and 8 does not make the p-value fall below 5% or make the

RMSEA exceed 0.06. When strongly non-equivalent Items 9 and 10 are included, the

p-value immediately drops almost to zero and the RMSEA increases, albeit below

0.06. It seems that the p-value for the M2 statistic is a more effective indicator of

the misfit between the subsets and the baseline model.

2.3.5 Simulation Study: Forward Search for Detecting DIF

in Factor Analysis

We have demonstrated how to use the FS to identify items that behave differently

across different observed groups in the context of latent class analysis. We are

interested in the performance of FS in detecting uniform DIF in high-dimensional

data. In this section, the proposed FS procedure for detecting items deviating from

the baseline model is applied to data generated from a multiple-group 2PL IRT

model with a relatively large number of items.

As mentioned in Section 2.2.3, item invariance in IRT modelling means that the

latent construct holds the same property across different groups of individuals. Pa-

rameters pertaining to item invariance are constrained to be equal even if they are

estimated based on different groups. This assumption is often violated, however.

In educational tests, for example, items could be more difficult for one group of

test takers than another. Lack of measurement invariance invalidates comparisons

between groups in regard to a latent construct because test takers with a certain

ability level from one group have different response probabilities than those with the
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same ability level from another group.

Data Generation

The FS is applied to a relatively high-dimensional dataset generated from a two-

group IRT model (Equation 2.2.8, where G = 2). The dataset contains N = 100

individuals and J = 40 binary items. Table 2.3.8 shows item difficulties for which

data were simulated. Four items (i.e. Items 37-40) out of the 40 items are more

difficult for Group 1 than Group 2, while the difficulty for the other 36 items remains

the same for both groups. To simplify the problem, uniform DIF is considered for

the data-generating model, where item discrimination parameters were set to be the

same for both groups, as shown in Table 2.3.9.

Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9
0.1692 -0.2943 0.1362 0.4041 -0.2777 -1.0902 -0.3839 0.1521 0.6393
Item10 Item11 Item12 Item13 Item14 Item15 Item16 Item17 Item18
1.0866 0.8877 0.5323 0.4614 0.4578 1.0892 0.2916 0.0196 -1.6562
Item19 Item20 Item21 Item22 Item23 Item24 Item25 Item26 Item27
0.3822 -0.0610 0.2582 -1.0083 0.6638 -1.1357 -0.9954 -1.5397 0.0716
Item28 Item29 Item30 Item31 Item32 Item33 Item34 Item35 Item36
-1.1907 1.1673 0.4559 1.0733 -0.0050 0.0451 0.9977 0.7672 -0.0867
Item37 Item38 Item39 Item40

Group 1 -0.4216 -0.7673 -0.2179 0.1226
Group 2 -0.1054 -0.1918 -0.0745 -0.0306

Table 2.3.8: Simulation 4: Item difficulty parameter values used in the data-generating
model.

Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10
0.9899 1.3203 0.6747 1.1697 0.9172 0.7523 1.1471 0.7220 1.4808 0.7417
Item11 Item12 Item13 Item14 Item15 Item16 Item17 Item18 Item19 Item20
0.8903 0.9981 0.2858 1.4562 0.8140 0.8548 0.7222 0.9142 1.4763 1.1977
Item21 Item22 Item23 Item24 Item25 Item26 Item27 Item28 Item29 Item30
1.3619 0.9926 0.7286 0.8659 1.0375 1.3444 1.1365 1.6066 0.7914 1.4812
Item31 Item32 Item33 Item34 Item35 Item36 Item37 Item38 Item39 Item40
1.4055 1.1319 1.4715 0.4776 0.5548 0.8334 0.5924 0.9752 0.8925 0.6133

Table 2.3.9: Simulation 4: Item discrimination parameter values used in the data-
generating model.
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2.3.5.1 Implementation of Forward Search

The FS was applied to the data generated from the above multiple-group 2PL IRT

model. The model fitted throughout the search was the IRT model assuming equiva-

lence in item difficulty parameters for both groups. The initial subset was established

by comparing the p-value for the M2 statistic among 100 subsets, each containing

20 items. The M2 statistic is in the form of

M2 =M2(B̂, Λ̂) = er(B̂, Λ̂)′(N−1Σ2(B̂, Λ̂))−1e2(B̂, Λ̂), (2.3.12)

where er(B̂, Λ̂) denotes the vector containing the model-implied first- and second-

order residual proportions, and the matrix Σ2(B̂, Λ̂) involves an asymptotic co-

variance matrix of the first- and second-order residual proportions and a matrix of

derivatives of the model-implied marginal probabilities up to the second order with

respect to the model parameters. The asymptotic properties of the M2 statistic in

the context of IRT modelling are similar to those under latent class analysis.

In this example, 50% of the items were included in the initial subset because a large

majority of items (36/40) were measurement equivalent. Since it is computationally

infeasible to examine every subset containing 20 items, which would be
(
J
m

)
=

(
40
20

)
in total, 100 subsets were sufficient to find a well-established initial subset free of

non-equivalent items. We chose the one with the highest p-value as the “basic” set

to initialise the FS.

The search proceeded by adding one least non-equivalent item to the “basic” set

at each step according to the p-values for the M2-statistic. Figure 2.3.6 shows the

evolution of the p-value for the M2 statistic based on the “basic” set during the

search. It can be seen that when item 39 (one of the non-equivalent items) is added,

the p-value drops below 5%, indicating that the model assuming item invariance is

not compatible with the subset including item 39. The subsequent entries are three

other non-equivalent items. All four non-equivalent items (i.e. Items 39, 49, 38 and

37) are identified hence.
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Figure 2.3.6: Simulation 4: Forward plot of p-value for the M2 statistic computed when-
ever an item is added to the “basic” set. The labels on x-axis denotes the entrance of an
item outside of the “basic” set.

2.4 Case Study: European Social Survey Data

2.4.1 Data Description

In this section, we apply the FS procedures for detecting uniform DIF in survey

data containing eight items (listed in Table 2.4.1) that measure public opinions on

immigration and its effect on the economy and society overall in Germany, UK and

Czech Republic from the 7th European Social Survey (ESS; European Social Survey,

2014). These three countries were chosen because they are representative of varying

attitudes towards immigration from more welcoming, holding no strong opinions

to less welcoming. In most of the 21 ESS countries, there are more respondents

who tend to believe that cultural life is enriched by immigrants (Items 4) or that

immigration makes the country a better place to live (Items 6) than those who

believe that immigration is good for the economy (Item 5) or immigrants make
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crime problems worse (Item 3). In terms of population-weighted average observed

scores for the eight items, Germany is one of the countries with the highest average

score for all the eight items. The Czech Republic, on the contrary, has one of

the lowest average scores for all eight items. The average score of the UK falls

somewhere in between. Therefore, we assumed that the Czech Republic, the UK

and Germany can well represent the 21 ESS countries with distinguishable levels

of preference for migration: Germany tends to be more positive towards migrants,

the UK comes second, and Czechia tends to be less welcoming. The sample sizes

vary across the three countries: the numbers of respondents from Germany, the UK

and the Czech Republic are 3,045, 2,264 and 2,148, respectively. The number of

incomplete responses goes from 127 for the Czech Republic and 110 for the other

countries. A sample of size N = 1, 700 was randomly drawn from the complete data

for each of these three countries.

Table 2.4.1 lists original and binary scales for item responses. The original response

categories for items are on a scale from 0 to 10. For the first six items, 0 stands for a

negative attitude towards immigration and 10 stands for a positive attitude towards

immigration. For items 7 and 8, 0 indicates a positive attitude towards immigrants

and 10 indicates for a negative attitude towards immigrants. Item responses are

dichotomised by coding ordinal categories 0 to 4 as 0 and categories 5 to 10 as 1.

We reversed the scale for items 7 and 8 in order to align with the responses to Items

1-6. As shown in the last column, on the binary scale 1 indicates a positive opinion

and 0 indicates a negative opinion towards immigration.

2.4.2 Multiple-group latent class model

Multiple-group latent class model is given by Equation 2.2.3 with G = 3 and K (the

number of latent classes) to be decided. An unconstrained latent class model, where

class prevalence, B(g) = (c
(g)
1 , . . . , c

(g)
K ), and conditional item response probabilities,

Λ(g) = {π(g)
jk }8×K (for j = 1, . . . , 8, k = 1, . . . , K), are freely estimated for each of

the three countries.
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Item Description Ordinal scale Binary scale
1 Immigrants generally take jobs

away or help to create new jobs
0 Take away - 10 Create new 1 positive - 0 negative

2 Immigrants take out more than
they put in regarding taxes and
welfare or not

0 Take out more - 10 Put in more 1 positive - 0 negative

3 Immigrants make country’s crime
problems worse or better

0 Worse - 10 Better 1 positive - 0 negative

4 The country’s cultural life is un-
dermined or enriched by immi-
grants

0 Undermined - 10 Enriched 1 positive - 0 negative

5 Immigration is bad or good for
country’s economy

0 Bad - 10 Good 1 positive - 0 negative

6 Immigrants make the country a
worse or better place to live

0 Worse - 10 Better 1 positive - 0 negative

7 Mind if an immigrant of a differ-
ent race or ethnic group was your
boss

0 Not at all - 10 A lot 1 positive - 0 negative

8 Mind if an immigrant of a dif-
ferent race or ethnic group would
marry close relative

0 Not at all - 10 A lot 1 positive - 0 negative

Table 2.4.1: ESS Data: A list of binary items concerning public attitudes towards immi-
grants.

Our first consideration is whether the same number of latent classes are required

to adequately explain the associations among the eight items in each country. The

number of latent classes in each country was selected based on the BIC. The smallest

BIC values led to three classes for the UK and four classes for Germany and Czechia.

A 3-class model (K = 3) was finally chosen for all three countries since for Czechia

and Germany the smallest class in the 4-class model (K = 4) accounts for less than

5% and does not distinguish from one of the other classes.

Table 2.4.2 shows class prevalences and conditional item response probabilities esti-

mated from the unconstrained 3-class model. Based on this result, we characterised

the classes as those with negative perceptions, holding no strong views and with pos-

itive perceptions of immigrants. However, the differences in class-conditional item

response probabilities across countries are striking, making it difficult to directly

compare the three countries. To the extent that class-conditional item response

probabilities differ across countries, the latent classes are likely to have different

meanings for a different country.

In the next step of our analysis, we examine whether equivalence of measured items
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Positive No strong views Negative
CZ 0.3440 0.2927 0.3633
UK 0.4412 0.3560 0.2028
DE 0.6519 0.2687 0.0795

Country Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8

Positive
CZ 0.6733 0.7297 0.6394 0.8599 0.8007 0.8639 0.7769 0.7304
UK 0.9091 0.9055 0.7412 0.9576 0.9534 0.9868 0.9391 0.9382
DE 0.9516 0.8534 0.4914 0.9752 0.9462 0.9730 0.9504 0.9296

No strong views
CZ 0.2511 0.3407 0.1951 0.2172 0.1797 0.1746 0.8378 0.8623
UK 0.5800 0.4478 0.3636 0.4333 0.4681 0.3843 0.8546 0.8592
DE 0.5782 0.3634 0.1504 0.5439 0.4529 0.2936 0.9449 0.9510

Negative
CZ 0.0771 0.1088 0.0693 0.1825 0.1382 0.1706 0.0961 0.1047
UK 0.1261 0.0475 0.0852 0.0359 0.1163 0.0134 0.6269 0.6800
DE 0.3927 0.2055 0.0557 0.2286 0.3214 0.1154 0.2342 0.2764

Table 2.4.2: ESS Data fitted by the unconstrained 3-class model model assuming non-
equivalence of items: Estimated class prevalences and conditional positive response proba-
bilities by country.

holds by comparing the unconstrained 3-class model with a restrictive 3-class model

in which across-country equality constraints are imposed on the item parameters

(Λ, dropping g). Since our focus is not on complete measurement equivalence (see

Section 2.2.2), class prevalences (B(g)) across three countries are freely estimated in

both models.

Table 2.4.3 shows class prevalences and conditional positive response probabilities

estimated from the restrictive model. Now we can clearly see three well-defined

classes. The class associated with ‘positive’ attitude towards immigration is defined

by generally positive responses to all items. Respondents holding ‘no strong views’

on immigration are characterised by negative to neutral responses to Items 1-6 and

positive responses to Items 7 and 8. Respondents belonging to the ‘negative views’

class are characterised by negative responses to all items.

Positive No strong views Negative
CZ 0.2406 0.3216 0.4379
UK 0.5067 0.4055 0.0878
DE 0.7123 0.2382 0.0495

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8
Positive 0.8933 0.8376 0.5906 0.9480 0.9225 0.9493 0.9235 0.9021

No strong views 0.4091 0.3305 0.2255 0.3162 0.3122 0.2189 0.8866 0.9036
Negative 0.1292 0.1523 0.1069 0.2102 0.1831 0.1923 0.1417 0.1633

Table 2.4.3: ESS Data fitted by the restrictive 3-class model assuming equivalence of
items: Estimated class prevalences and conditional positive response probabilities.
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BIC is used to compare these two models. The BIC values for the unconstrained

model and restrictive model are 42,578.95 and 43,090.78, respectively, suggesting the

unconstrained model that allows non-equivalence in item parameters is preferable.

Thus, the FS is carried out to detect the items exhibiting DIF. The baseline model

fitted throughout the search is the restrictive model assuming equivalence in item

parameters.

2.4.2.1 Implementation of Forward Search

The algorithm starts by searching an initial subset comprised of p = 3 least non-

equivalent items, which is the “basic” set at the beginning of the FS. There are

V =
(
J
p

)
=

(
8
3

)
= 56 possible choices for the initial subset denoted by (S3

1, . . . , S
3
V).

The baseline model was fitted to all 56 possible initial subsets. The subset consisting

of items 2, 4 and 6 has the highest p-value of the M2-statistic (Equation 2.3.10) and

is, therefore, the initial “basic” set, denoted by S3
∗ .

The search moves forward by adding an item from the remaining five items to the

“basic” set, (S4
∗). The baseline model was fitted to all possible S4

∗ subsets and then

ranked the subsets based on the p-value for the M2-statistic. The subset including

Item 7 produces the largest p-value and becomes the new “basic” set S4
∗ . The

next item that entered the “basic” set was Item 8, which is expected since group

differences in Items 7 and 8 given the latent classes are not striking. Following the

same progression criterion, a sequence of subsets of increasing sizes was established

throughout the search: S4
∗ , S

5
∗ , S

6
∗ , S

7
∗ , S

8
∗ .

Figure 2.4.1 visualises the progression of p-value for the M2-statistic throughout

the search. Once Item 5 was included in the “basic” set, the p-value for the M2

statistic dropped below 5%, meaning that the baseline model that imposes equality

constraints on class-conditional item response probabilities was no longer compatible

with the subset. As Items 1 and 3 joined following Item 5, the p-value for the M2

statistic became even lower. Therefore, Item 5 and the subsequently added Items 1

and 3 were flagged as non-equivalent or DIF items across the three groups of data.
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Figure 2.4.1: ESS Data under latent class analysis: Forward plot of p-value for the M2

statistic computed whenever an item is added to the “basic” set. The labels on x-axis
denotes the inclusion of an item outside of the “basic” set.

2.4.3 Multiple-group IRT Model

Since IRT models are widely applied to ESS survey data as well, we are interested

to know if the detection result is consistent when the baseline model is a 2PL IRT

model. Multiple group analysis of (2PL) IRT model is introduced in Section 2.2.3.

Before implementing the FS, one needs to evaluate which level of equivalence fits

the data best. Testing for measurement invariance involves comparing models that

impose more and more strict equality constraints on item parameters. Therefore,

we consider comparing three specific IRT models: (a) a model assuming metric

non-invariance (non-uniform DIF items), where item slopes and item intercepts are

allowed to vary across groups, and (b) a model assuming scalar non-invariance (uni-

form DIF items), where item slopes are set to be equal and item intercepts are

allowed to vary across groups, and (c) a measurement-equivalent model where item

slopes and item intercepts are constrained to be equal across groups.

Model comparison is based on chi-square difference tests and the Bayesian informa-

tion criterion. The chi-square test for comparing Models (a) and (b) is significant

(p-value < 1%) and hence suggests non-equivalence of item slopes across countries.
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Model (b), on the other hand, has a significantly (p-value < 0.1%) better fit than

Model (c). The BICvalues for the three models are 41,437, 41,388 and 41,829, re-

spectively, indicating that Model (b) is preferred due to its balance between model

parsimony and goodness of fit. Based on the chi-square tests and the BIC val-

ues, it can be concluded that there exists scalar non-invariance and uniform DIF is

identified in some items at least.

2.4.3.1 Implementation of Forward Search

Now we address the detection of uniform DIF items using the FS. Model (c) in

which the item intercepts ν and item slopes λ are constrained to be equal across

the three countries is the baseline model being fitted during the progression of the

FS. Uniform DIF items (with equivalent slopes but non-equivalent intercepts) were

not well fitted by Model (c), and we, therefore, expect that their inclusion leads to

model misfit.

Once again, the initial subset consisting of items 2, 4 and 6 was selected since its p-

value for the M2 statistic is the highest among all the 56 possible subsets consisting

of three items. The forward plot 2.4.2 shows the evolution of the p-value for the M2

statistic over the progression of the FS. Item 8 entered the “basic” set first, followed

by Items 7 and 1. The p-value for the M2 statistic dropped below 5% when item

5 was added to the “basic” set and dropped even further when the last item (item

3) was included. The forward plot indicates that the inclusion of Items 5 and 3

results in a poor fit of the baseline model assuming equal item intercepts. Therefore

the FS identifies uniform DIF in Items 5 and 3. This result is largely consistent

with the previous result when the baseline model is the latent class model assuming

measurement equivalence. The previous result indicates three items showing uniform

DIF, which are Items 5, 1 and 3 in order by the entrance.
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Figure 2.4.2: ESS Data under a 2PL IRT model: Forward plot of p-value for the M2

statistic computed whenever an item is added to the “basic” set. The labels on x-axis
denotes the entrance of an item outside of the “basic” set.

2.5 Concluding Remarks

In this chapter, we have explored the scope of the FS as a method of detecting

individuals and items that deviate from a baseline model in the latent class and

factor mixture modelling contexts.

The FS algorithm was first applied to detect outlying response patterns that depart

from a given latent class model for binary data. The effect of the sequential addi-

tion of individuals on the fitted model was assessed at each step of the search by

monitoring a fast-bootstrap p-value for the total bivariate residuals (TBVR). The

fast-bootstrap p-value for the TBVR has proved to be less sensitive to sparseness

than those associated with full-information goodness-of-fit statistics and more com-

putationally efficient than other resampling-based p-values. The forward plot of the

fast-bootstrap p-value for the TBVR during the FS provides insight into the hidden

structure of binary data and deviations from the baseline model.

We also provided simulation studies to show the importance of selecting an (almost)

“outlier-free” initial subset. Without a robust start, outliers may enter the “basic”
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set in the early stage rather than during the last few steps of the search, which makes

it difficult to separate them from the rest of the data. This leads to an alternative

strategy, which is running multiple random-start forward searches instead of a single

FS with a robust start. The alternative strategy was then applied to detect latent

population heterogeneity in the form of latent classes in a factor mixture model.

Multiple forward searches were simultaneously carried out and the resultant forward

plots clearly indicate the existence of population heterogeneity. The number of latent

classes is often determined using information criteria, for example, the Bayesian

Information Criterion (BIC; Fraley & Raftery, 1998). The main difference between

the BIC and FS in the detection of latent classes or mixture components is that the

latter can inform the classification of individuals while the former cannot. Plus, the

BIC could be sensitive to outliers (Atkinson & Riani, 2008) and tends to result in

overfitting by assuming an excessive number of mixture components for the latent

factor without sequential model comparison.

Another development of the FS made in this chapter was detecting variables showing

DIF. The FS starts from a subset established by a relatively small number of items

well fitted by a measurement-equivalent baseline model, and proceeds by adding

the least non-equivalent items to the “basic” set. The presence of non-equivalent

items in the “basic” set is expected to affect the fit of the baseline model assum-

ing measurement equivalence. This effect is assessed by the p-value for a limited-

information goodness-of-fit statistic. The FS algorithm for detecting non-equivalent

items was applied to an ESS dataset consisting of items for public attitudes towards

immigration among three European countries. The FS managed to identify non-

equivalent items under two baseline models, including a measurement-equivalent

latent class model assuming equivalent class-conditional item response probabilities

and a measurement-equivalent 2PL IRT model.

The advantage of using the FS to detect DIF is that the baseline model fitted to

subsets of the data is measurement-equivalent and thus leads to the least number

of parameters to be estimated. Measurement invariance is conventionally tested by
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evaluating how well a specified model fits the dataset and comparing a sequence

of nested models with increasingly restrictive across-group equality constraints on

item parameters (Masyn, 2017). As for the FS, there is no need to consider dif-

ferent specifications of measurement (non-)equivalence. Instead, the FS selects a

film of data subsets and monitors the fit (or misfit) between these subsets and the

measurement-equivalent baseline model.

In terms of future research, there are three areas that we would like to investigate.

First, we have yet to address the multiple testing issues. When the FS is used to

detect outliers, the issue of hypothesis testing appears whenever we declare indi-

viduals or items to be outliers. As a result, multiple hypotheses are being tested

simultaneously when the FS is applied to detect individuals or items in a dataset.

As Becker and Gather (1999) pointed out, it is not enough to test whether individ-

ual cases or items are outlying, we need to develop multiple outlier testing methods.

Riani, Atkinson, and Cerioli (2009) developed a simultaneous test of outlyingness

that is intended to find outliers in a proportion of the multivariate normal data.

Second, while the diagnostic statistics (e.g., the fast-bootstrap p-value for the TBVR,

the p-value for the M2 statistic) monitored in the FS proved to capture the effect of

the addition of outliers on model fit in our study, we may need to further assess their

reliability through comparing them to other types of residuals and goodness-of-fit

statistics.

Finally, the current work on FS is expected to be adapted to other latent variable

models for different types of data. The purpose of this method is to identify data

subsets that have not been generated by a baseline model. The type of the baseline

model does not change the procedure of the FS. What may need to be changed is the

criteria used in the progression of the search, and more importantly, the diagnostic

statistics used for assessing the effect of the sequential addition of individuals or

items on the baseline model throughout the FS.



Chapter 3

Two-way Outlier Detection Model

3.1 Introduction

In Chapter 2, the Forward Search (FS) is employed to detect individuals and items

deviating from a specified baseline model, including outlying response patterns,

latent population heterogeneity and items exhibiting DIF. The FS is capable of

detecting one-way outliers based on attributes of persons or items but not two-way

outliers defined by attributes of both persons and items. It is often the case that

item response data contain outliers among both the individuals and the items. Two-

way outliers as such can lead to a substantial deviation from a carefully specified

latent variable model which may be supported by substantive theory and historical

data. On the other hand, as mentioned in Section 1.1, two-way outliers often provide

valuable insight into the data, and thus, it is of substantive interest to detect them.

As mentioned earlier, two-way outliers may arise due to Differential Item Functioning

(DIF; Holland &Wainer, 1993; Millsap, 2012), a phenomenon that is widely observed

in educational testing, psychological measurement, as well as many other areas of

social research. It happens when a subset of items does not measure subgroups

of individuals in the same way. The subgroups are sometimes defined by observed

variables such as gender, ethnicity, years of education etc, but they can also be

unobserved due to unobserved sources of population heterogeneity. In the context

70
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of educational testing, it is often the case that a subset of items is “easier” or “more

difficult” for a certain subgroup than the others. In this case, responses from the

subgroup of test takers to the subset of items can be viewed as two-way outliers, as

they may be poorly fitted by a factor model that fits the rest of the data well.

A related, while more challenging, the problem is the detection of two-way outliers

due to latent DIF (Cho, Suh, & Lee, 2016), for which not only the DIF items but

also the group membership of individuals are not known a priori. One such example

is the two-way detection of item compromise that benefits test takers through their

preknowledge of compromised items in educational tests (Cizek & Wollack, 2017).

Item compromise is a type of cheating behaviour which is increasingly common

in computer-based tests. Since those tests are administrated on a regular basis

(C. Wang, Xu, Shang, & Kuncel, 2018), items used in previous tests tend to be

reused later. Test takers who participate in a test earlier may share test material

with those who take it later (C. Wang, Zheng, & Chang, 2014). Newly issued items

might also be leaked to online forums or test-prep or firms. Davey and Nering (2002)

mentioned a typical item compromise scandal that occurred in 1994. Kaplan, a test-

prep firm, sent its employees to take ETS tests. They then prepared their pupils for

ETS tests based on the test items they had memorised and reconstructed. The leaked

or exposed items are known as compromised items. Test takers with preknowledge

of compromised items before the administration of an exam are expected to gain

score inflation. Therefore, it is important to know which items are compromised

and which test takers have preknowledge of them, and the failure to do so threatens

the validity of test scores and the fairness of tests.

Looking beyond this, latent DIF may also exist in educational tests due to other

reasons according to Cho et al. (2016). Similar problems associated with latent

DIF also occur in other areas besides educational testing. For example, in polit-

ical science, it has been well recognised that roll call voting data of the United

States Congress can largely be described by a liberal-conservative latent dimension

with some minor deviations (Poole & Rosenthal, 1991; Poole, Rosenthal, & Koford,
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1991). Through a two-way outlier-detection formulation, i.e., by detecting outlying

legislators and roll calls that do not fit the unidimensional model, one may gain a

better understanding of the patterns of roll call voting that cannot be explained

by the liberal-conservative dimension. Latent DIF may also exist in psychological

measurement data in which a two-way outlier-detection formulation can facilitate

the discovery of minor psychological traits and the relevant groups. The promising

prospect for practical use further motivates us to develop a model-based method of

detecting two-way outliers due to latent DIF.

A two-way outlier detection model is supposed to have a baseline model for stan-

dard or honest response behaviour and an additional model component for atypical

response behaviour because of latent DIF. The choice for the baseline model is

discussed as follows. As mentioned earlier in Section 2.2.4, latent factor models

(Bartholomew, Knott, & Moustaki, 2011) have been widely applied to multivariate

data, particularly item response data consisting of individuals’ responses to a set of

measured items. Unidimensional and multidimensional factor models, also known as

Item Response Theory (IRT) models (Embretson & Reise, 2000; Reckase, 2009), are

commonly used to model test takers’ responses to items in educational tests. In this

context, a latent factor is often interpreted as the ability that the test is designed to

assess. In psychology, multidimensional factor models are typically used to describe

respondents’ answers to items in a psychological questionnaire (Wirth & Edwards,

2007), where the latent factors are interpreted as psychological traits (e.g., personal-

ity traits). In political science, similar models, also known as ideal point models, are

used to model voting behaviours (Bafumi, Gelman, Park, & Kaplan, 2005), where

the latent factors are typically interpreted as voters’ political standing.

To account for latent DIF, an additional model component needs to be built upon the

baseline model. While statistical methods have been well established for modelling

and detecting DIF (Millsap, 2012), models for detecting two-way outliers due to

latent DIF and procedures for statistical decisions remain to be developed. We,

therefore, propose a two-way outlier detection model to fill the gap that adds a
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latent class model component to a factor model. The factor model component serves

as a baseline model for data without outliers, and a latent class model component

is used to capture the two-way outliers. Specifically, the proposed model imposes

latent class structures among both the individuals and the items, rather than only

assuming latent classes among the individuals as in the classical latent class analysis

(Allman, Matias, & Rhodes, 2009; Goodman, 1974; Lazarsfeld & Henry, 1968). The

proposed model is closely related to, but also substantially different from, existing

statistical models and methods for the detection of outliers in multivariate data (see

e.g., Candès, Li, Ma, & Wright, 2011; Hadi, 1992; Mavridis & Moustaki, 2008, 2009;

Reiser, 1996; C. Wang & Xu, 2015; C. Wang, Xu, & Shang, 2018; Zhou, Li, Wright,

Candès, & Ma, 2010)

Under the proposed model, statistical decision theory is established for the detection

of two-way outliers. Motivated by compound decision theory for multiple testing

(Benjamini & Hochberg, 1995; Efron, 2004, 2008, 2012; Efron, Tibshirani, Storey,

& Tusher, 2001; Robbins, 1951; Sun & Cai, 2007; C.-H. Zhang, 2003), we propose

the local False Discovery Rate (FDR) and local False Non-discovery Rate (FNR)

as compound risk measures for the detection of two-way outliers. Decision rules

are developed based on these measures, for which optimality results are established.

The statistical inference and decision-making are performed under a fully Bayesian

framework, for which a Markov chain Monte Carlo (MCMC) algorithm is developed.

Since our model involves many discrete latent variables, standard MCMC algorithms

such as Gibbs and Metropolis-Hastings can suffer from slow mixing (e.g., Celeux,

Hurn, & Robert, 2000; Richardson & Green, 1997). We tackle this problem by

applying the parallel tempering technique (Geyer, 2011).

The proposed method is applied to cheating detection based on data from the single

administration of a non-adaptive test. It simultaneously detects outlying test takers

and items as potential cheaters and compromised items. The proposed method

uses item response data and item response time data, which are often collected

in computer-based testing, for improving outlier detection. As shown via our real
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data analysis and simulation studies, incorporating response time information can

improve outlier detection accuracy. Our simulation results further suggest that the

proposed model is quite robust against various forms of model misspecification, even

though it relies on some parametric assumptions that may not be satisfied perfectly

in practice.

The detection of test takers who benefit from item preknowledge (cheaters) and

compromised items has received much attention among quantitative researchers in

education. Specifically, McLeod, Lewis, and Thissen (2003) proposed a person-fit

index for the detection of cheaters in computerised adaptive testing, under an IRT

model. For non-adaptive testing, Belov (2013) proposed a person-fit index for char-

acterising the outperformance of a student on the compromised items, assuming

that the set of compromised items is known. Under a similar setting, Sinharay

(2017a) proposed likelihood-ratio and score tests for the detection of cheaters, and

Segall (2002) and Shu, Henson, and Luecht (2013) proposed IRT models for item

preknowledge and developed Bayesian classification procedures. For the detection

of compromised items, O’Leary and Smith (2017) and X. Wang and Liu (2020)

proposed methods based on data from the single administration of a non-adaptive

test. These approaches require knowledge of a subset of non-compromised items to

first identify a set of potential cheaters. The detection of compromised items relies

on the identified cheaters in the first stage. Under an online setting where data

from multiple tests are sequentially collected, Veerkamp and Glas (2000), J. Zhang

(2014), Chen and Li (2019), and Chen, Lee, and Li (2020) formulated the detec-

tion of compromised items as a sequential change detection problem and proposed

sequential procedures. We refer the readers to three edited volumes, Wollack and

Fremer (2013), Kingston and Clark (2014) and Cizek and Wollack (2017), for a

comprehensive review of related works. Note that most of the existing methods

focus on the detection of either cheaters or compromised items, and often require

prior information which is not always available, for example, a given subset of non-

compromised items. In contrast, the proposed method can simultaneously detect
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both test takers with item preknowledge and compromised items without such prior

information.

The rest of the chapter is organised as follows. In the following section 3.2, we

propose a statistical model for detecting two-way outliers in multivariate data and

discuss its application to simultaneous detection of cheaters and compromised items

due to item preknowledge in an educational assessment. Statistical decision theory

is developed under a fully Bayesian framework in Section 3.3. In the next section

3.4, we describe the Bayesian inference procedures. The proposed two-way outlier

detection model is applied to a real dataset from a computer-based licensure test

in Section 3.5. Simulation studies are presented in Section 3.6, where we further

evaluate the classification and detection performance of the proposed model under

various situations. Concluding remarks are given in Section 3.7. The proof of a

theoretical result from Section 3.3 and details of the developed MCMC algorithm

are presented in Appendix C.1.

3.2 Models

3.2.1 A Two-Way Outlier Detection Model for Multivariate

Data

3.2.1.1 Background and Notation

Consider N individuals responding to J items. Let Yij be individual i’s response

to item j. We focus on binary responses, i.e., Yij = 0, 1, where the two types of

responses may correspond to incorrect and correct answers in educational testing,

and “no” and “yes” responses in psychological measurement, among others. We

use Y i = (Yi1, . . . , YiJ) to denote the response vector from individual i and use

Y = (Yij)N×J to denote the response matrix. When item-response data are collected

digitally rather than by paper and pencil, which is becoming more and more popular

these days, response time data may also be collected. Let Tij denote the amount of
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time individual i spends to answer item j and T = (Tij) denote the data matrix for

response times.

In what follows, we discuss the two-way outlier detection model for (Y ,T ). We

introduce a latent binary variable ξi that takes the value 1 when individual i is an

outlier and 0 otherwise. Similarly, ηj is a latent binary variable that takes the value

1 when item j is an outlier and 0 otherwise. Table 3.2.1 illustrates how data are

affected by the two-way outliers in the proposed model. (Yij, Tij) are modelled with

the outlier model if, and only if, both ξi = 1 and ηj = 1, which represents a typical

phenomenon of latent DIF. In the cheating detection application, items with ηj = 1

correspond to the leaked/compromised items and individuals with ξi = 1 correspond

to test takers who have preknowledge about all the compromised items before taking

the test. In this context, a baseline model will capture the normal item-response

behaviour, and the outlier model will capture the behaviour of the test takers with

preknowledge when responding to the compromised items. In particular, the outlier

model will allow test takers to have a higher probability of answering leaked items

correctly and with a shorter response time (see, e.g. C. Wang, Xu, & Shang, 2018).

The proposed model is described below.

Item j
ηj = 0 ηj = 1

Person i
ξi = 0 Baseline Model Baseline Model
ξi = 1 Baseline Model Outlier Model

Table 3.2.1: The two-way outlier structure in the proposed model.

3.2.1.2 Proposed model

We start with a relatively more general model and then give specific examples. We

introduce θi and τ i as the person-specific parameters, also known as the factors,

that drive the item responses and the response times, respectively. Both θi and

τ i can be unidimensional or multidimensional, but their dimensions are typically

assumed to be much smaller than J . We also introduce βj and αj to denote the
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item-specific parameters for the item responses and the response times, respectively.

To simplify the notation, we use Θi = (θi, ξi, τ i) and ∆j = (βj, ηj,αj) to denote

the person- and item-specific parameter vectors, respectively.

The proposed model consists of two submodels, one for binary item responses and

one for continuous response times. The item-response submodel takes the following

logistic form

P (Yij = 1|Θi,∆j, δ) := p(Θi,∆j, δ) =
exp(h1(θi,βj) + ξiηjδ)

1 + exp(h1(θi,βj) + ξiηjδ)
,

where δ is a non-negative parameter and h1(·, ·) is a pre-specified function. Given

ξi = 0 or ηj = 0,

p(Θi,∆j, δ) =
exp(h1(θi,βj))

1 + exp(h1(θi,βj))

is the baseline item-response submodel for non-outlying item responses. When ξi =

ηj = 1, the term ξiηjδ ̸= 0 captures the deviation from the baseline model. In

particular, for our application, the parameter δ is set to be non-negative to let the

probability of providing a correct answer (i.e., Yij = 1) increase when individual

i and item j are outliers. In this context, δ may be interpreted as the advantage

that a test taker gains from item preknowledge. In other applications, this sign

constraint can be removed if such prior information is not available. To keep the

model parsimonious, the parameter δ is assumed to be the same across all the

outlying individuals and items. As will be discussed in Section 3.2.2, this assumption

can be relaxed.

The function h1 should be chosen based on knowledge about the baseline model

from substantive theory and/or historical data. We give two parametric examples

of h1 below, but point out that h1 can also take a non-parametric form as in non-

parametric IRT models (Douglas, 1997; Duncan & MacEachern, 2008; Ramsay &

Winsberg, 1991).

Example 1. The Rasch model (Rasch, 1960) is one of the most popular IRT models

in educational testing and is also widely used in many other areas. In particular, the
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licensure test to be studied in Section 3.5 is designed and scored under this model.

The Rasch model assumes that both θi and βj are unidimensional. With slight abuse

of notation, we denote them by non-bold typeface θi and βj, respectively. This model

assumes that h1(θi, βj) = θi − βj, which leads to

p(Θi,∆j, δ) =
exp(θi − βj + ξiηjδ)

1 + exp(θi − βj + ξiηjδ)
. (3.2.1)

In the context of educational testing, θi and βj are interpreted as the ability of test

taker i and the difficulty of item j, respectively. When there are no outliers, the

probability of correctly answering an item is monotone increasing with one’s ability

θi and monotone decreasing with the item’s difficulty βj. When ξi = 1 and ηj = 1,

logit(P (Yij = 1|Θi,∆j, δ)) = θi − βj + δ. That is, the item response function still

takes a Rasch form, but the log odds increases by a constant drift δ. This Rasch-type

item-response submodel given by Equation (3.2.1) will be further discussed in the

rest of the chapter, given its suitability for our case study in Section 3.5.

Example 2. It may be the case that the J items simultaneously measure K factors,

θi = (θi1, . . . , θiK), for which a multidimensional factor model is needed. In that sit-

uation, we may set h1(θi,βj) = βj0+βj1θi1+· · ·+βjKθiK , where βj = (βj0, . . . , βjK)

contains K + 1 item-specific parameters. The item-response submodel then becomes

p(Θi,∆j, δ) =
exp(βj0 + βj1θi1 + · · ·+ βjKθiK + ξiηjδ)

1 + exp(βj0 + βj1θi1 + · · ·+ βjKθiK + ξiηjδ)
. (3.2.2)

When ξi = 0 or ηj = 0, (3.2.2) becomes the multidimensional two-parameter logistic

model (Reckase, 2009) which includes the two-parameter logistic model (Birnbaum,

1968) as a special case when K = 1.

The response-time submodel is specified similarly to the item-response submodel.

Specifically, we consider a log-normal model which assumes that

log(Tij)|Θi,∆j, γ, κ ∼ N (h2(τ i,αj)− ξiηjγ, κ) ,
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where γ is another non-negative parameter that plays a similar role to δ in the item-

response submodel, h2(·, ·) is a pre-specified function, and κ > 0 is the variance

of the normal distribution. In our application, the parameter γ is set to be non-

negative to allow the response time for outlying individuals and items to be shorter

(test takers with preknowledge tend to answer the compromised items faster). That

is, when ξi = 1 and ηj = 1, the mean log-time is reduced from the baseline level

h2(τ i,αj) to h2(τ i,αj)−γ. In that context, γ may be interpreted as the reduction in

response time due to item preknowledge. Similar to the discussion about parameter

δ, the sign constraint on γ can also be removed if there is no such prior knowledge

about the response times. We assume that the same γ and κ are shared by all the

individuals and items for model parsimony, which can be relaxed.

The choice of function h2 is similar to the choice of function h1 in the item-response

submodel. In what follows, we give a specific example, but also point out that

other choices of h2 are possible. In particular, one can choose h2 so that the base-

line response-time submodel is consistent with the one proposed in van der Linden

(2007).

Example 3. Similar to the Rasch-type model in Example 1, we let both τ i and αj

be unidimensional and denote them by non-bold typeface τi and αj. We let function

h2 take the form h2(τi, αj) = αj − τi, which leads to

log(Tij)|Θi,∆j, γ, κ ∼ N (αj − τi − ξiηjγ, κ) . (3.2.3)

When ξi = 0 or ηj = 0, we obtain the baseline model for response times

log(Tij)|Θi,∆j, γ, κ ∼ N (αj − τi, κ) .

In the context of educational testing, τi can be interpreted as the speed factor of

test taker i and αj can be interpreted as the time-consumingness of item j. When

there are no outliers, the mean response time is monotone increasing with the item-

specific time-consumingness αj and monotone decreasing with the person-specific
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speed factor τi. This response-time submodel will be applied to our case study in

Section 3.5.

Like many other latent variable models, conditional independence assumptions are

imposed. We first assume that (Yij, Tij), j = 1, . . . , J , are conditionally independent

given Θi, ∆j, δ, γ, and κ. Such a conditional independence assumption across items

is often known as the local independence assumption. We further assume that Yij

and Tij are conditionally independent given Θi, ∆j, δ, γ, and κ, meaning that all

the person effects on the response and response time distribution are captured by

the person parameters. Such conditional independence assumptions are commonly

made in latent variable models for item responses and response times. We refer the

readers to van der Linden (2007) for the substantive justifications.

We further adopt a Bayesian hierarchical modelling framework, under which param-

eters Θi, ∆j, δ, γ, and κ are treated as random variables. Specifically, we let Θi,

i = 1, . . . , N , be independent and identically distributed (i.i.d.) samples from distri-

bution g1(Θ|ν1) and ∆j, j = 1, . . . , J , be i.i.d. samples from distribution g2(∆|ν2),

respectively, where g1 and g2 characterise the population of individuals and the do-

main of items, respectively. Both g1 and g2 are taken to be parametric distributions

and use ν1 and ν2 as generic notations for the hyperparameters of the two distri-

butions, respectively. This hierarchical modelling structure is visualised in Figure

3.4.1b using a graphical model representation. We showcase the specification of g1,

g2, and the priors for ν1,ν2, δ, γ, and κ in Section 3.4.1 under the specific model

with item-response submodel (3.2.1) and response-time submodel (3.2.3).

3.2.1.3 Model without response time data

Sometimes, response time information is not collected, for example, in paper-and-

pencil-based educational tests. In that case, response times are missing completely

at random and the proposed model reduces to a model for item responses. This

reduced model only contains parameters from the item-response submodel and the
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corresponding hyperpriors. The graphical representation of this reduced model is

given in Figure 3.2.1a, where the reduced person and item parameters are denoted by

Θi = (θi, ξi) and ∆j = (βj, ηj), respectively, and the corresponding hyperparameters

are still denoted by ν1 and ν2, respectively.

Yij

Θi

∆j

δ

ν1

ν2

i

j

(a) General graphical representation of the
reduced model for item responses Yij’s when
all the response times Tij’s are missing com-
pletely at random. The reduced person pa-
rameters are denoted by Θi = (θi, ξi) and
the reduced item parameters are denoted by
∆j = (βj , ηj).

Yij

TijΘi

∆j

δ

ν1

γ κ

ν2

i

j

(b) Graphical representation of the proposed
model for the joint distribution of item re-
sponses Yij’s and response times Tij’s. The
full person parameters are denoted by Θi =
(θi, τ i, ξi) and the full item parameters are
denoted by ∆j = (βj ,αj , ηj).

Figure 3.2.1: General graphical representation of the reduced model and the full model.
The boxes are plates representing replicates. The two outer plates represent individuals
and items, respectively, and the inner plate presents an item response in Figure 3.2.1a
and item response and response time in Figure 3.2.1b.

3.2.1.4 Application to the detection of item preknowledge

The proposed model framework requires that the baseline model is correctly spec-

ified. Any deviation from it is solely attributed to item preknowledge and not to

other aberrant situations, such as more than one latent dimension (multidimension-

ality) needed to explain the associations among the items. Although this assumption

might appear to be strong, it can still be examined using historical test data with

no leaked items and test takers from the same population.

Furthermore, the validity of the model interpretation also depends on the extent to

which our parametric assumptions hold. Section 3.7 discusses how some of those

parametric assumptions can be violated in practice and can be also relaxed. In ad-
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dition, as shown via simulation studies in Section 3.6, the proposed two-way outlier

detection model tends to be robust against several forms of model misspecification.

Finally, we emphasise that, given the sensitivity of decisions regarding cheating

in tests and the relatively strong assumptions of the proposed model, the latent

classes resulting from the two-way detection should be interpreted with caution

(i.e. leaked items and test takers with preknowledge). Results from our model can

provide warnings to the test administrators, but the detected outlying cases should

be further investigated and verified using additional sources of information.

3.2.2 Model Generalisations

Key components of the proposed two-way outlier detection model are the inter-

action terms ξiηjδ and ξiηjγ in the item-response and response-time submodels,

respectively. Specifically, the effects of the two-way outliers are characterised by

the parameters δ and γ in the two submodels, respectively, and they are assumed

to be the same across all the outliers. This assumption can be relaxed to allow

for heterogeneity among the outliers. One way to relax this assumption is by as-

suming each drift parameter to be the sum of a person-specific parameter and an

item-specific parameter. For example, one may replace ξiηjδ by ξiηj(δi + δ′j) in the

item-response submodel, where δi and δ
′
j are non-negative person- and item-specific

drift parameters, respectively.

Moreover, in the current framework, the outlier model is essentially unidimensional,

as a result of the imposed two-way latent class structure. In the application to

the detection of item preknowledge, it means that a test taker has preknowledge of

either all or none of the leaked items. However, when there are multiple sources of

item leakage and test takers with item preknowledge have access to one or more of

those sources, this assumption can be relaxed by assuming multiple latent classes

among both the individual and item outliers.
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3.2.3 Related Works

Factor analysis in the presence of outliers has received much attention in the lit-

erature, but mainly focuses on the detection of outlying cases/individuals rather

than items as well. One line of research is on the robust estimation of factor mod-

els (Moustaki & Victoria-Feser, 2006; Pison, Rousseeuw, Filzmoser, & Croux, 2003;

Yuan & Bentler, 1998, 2001). Another line of research focuses on the detection of

outliers among the individuals who do not fit a baseline factor model, using residual-

based procedures (Reiser, 1996) or forward search procedures (Hadi, 1992; Mavridis

& Moustaki, 2008, 2009). All these works only consider outlying individuals. The

proposed two-way outlier detection method is among the very few attempts to si-

multaneously classify individuals and items as outliers.

Although several models that combine factor and latent class modelling have been

proposed for detecting aberrant behaviours (Bolt, Cohen, &Wollack, 2002; Boughton

& Yamamoto, 2007; Goegebeur, De Boeck, Wollack, & Cohen, 2008; Shu et al., 2013;

C. Wang & Xu, 2015; C. Wang, Xu, & Shang, 2018), none of them is about the two-

way classification of individuals and items.

Another feature of our model is that it does not require any prior knowledge about

the outlying individuals and items (e.g. a subset of compromised items). Shu et

al. (2013) proposed a Deterministic, Gated item response theory Model (DGM) for

data consisting only of item responses. This model makes similar assumptions to our

item-response submodel, except that (1) the DGM assumes the known status of each

item (i.e., whether each item is compromised or not), and (2) the drift parameter

for cheating (i.e., δ in the current model) is assumed to be person-specific in the

DGM. Our model is more closely related to C. Wang and Xu (2015) and C. Wang,

Xu, and Shang (2018) who also assume a mixture of log-normal distribution for

response times from normal and aberrant response behaviours. Like the proposed

method, these works also do not require prior knowledge about the test takers with

preknowledge of the leaked items. The main difference is that C. Wang and Xu
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(2015) and C. Wang, Xu, and Shang (2018) focus on identifying person-item pairs

for which aberrant behaviours are involved, rather than directly classifying test

takers and items. Therefore, they allow aberrance in any person-item combination,

by introducing a person-and-item specific latent variable to indicate the status of

each response. By having person-and-item specific latent variables, the models of

C. Wang and Xu (2015) and C. Wang, Xu, and Shang (2018) tend to be more

flexible than the proposed model, in the sense that these models allow data to

deviate from the baseline model along more directions. Consequently, these models

may be preferred when data involve multiple types of aberrant behaviours, such as

rapid guessing and cheating. On the other hand, unlike the proposed method, the

models of C. Wang and Xu (2015) and C. Wang, Xu, and Shang (2018) do not

directly lead to classifications of the test takers and items, let alone quantifying

the uncertainty of the classifications. To detect test takers with preknowledge and

leaked items, follow-up analysis is needed based on the posterior distributions of

the person-and-item specific latent variables. Therefore, these methods are not as

straightforward as the proposed one, if the main goal is to perform the two-way

detection of individuals with preknowledge and leaked items.

3.3 Statistical Decision Theory for Two-way Out-

lier Detection

In what follows, we provide statistical decision theory for the detection of two-way

outliers under the proposed model, assuming the model is correctly specified. We

start with the classical Bayesian decision theory and then develop compound decision

rules for the detection of outlying individuals and items.
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3.3.1 Introduction to Bayesian Decision Theory

As individuals and items are essentially mathematically exchangeable, we only dis-

cuss the Bayesian decision theory for the detection of outlying individuals. We

denote Di as the decision on individual i, where Di = 1 means flagging the individ-

ual as an outlier and Di = 0 otherwise. A false positive error happens when Di = 1

and ξi = 0 and a false negative error happens when Di = 0 and ξi = 1. Decisions

on the detection of outlying individuals involve a trade-off between these two types

of errors, whose importance may be asymmetric. For example, in the application to

the detection of item preknowledge, a false positive error corresponds to an inno-

cent test taker being flagged as a cheater and a false negative error corresponds to

a cheater not being flagged. These two types of errors have substantially different

consequences (Skorupski & Wainer, 2017).

To apply Bayesian decision theory to this classification problem, we need to specify

the relative cost of a false positive error, denoted by ζ ∈ (0, 1), which further implies

that the relative cost of a false negative error is 1−ζ. Then the Bayes risk is defined

as

R(Di) := ζP (Di = 1, ξi = 0) + (1− ζ)P (Di = 0, ξi = 1). (3.3.1)

Following the classical Bayesian decision theory (see, e.g., Chapter 2, Shao, 2003),

the optimal decision rule which minimises the Bayes risk is obtained by comparing

the posterior probabilities with the relative cost ζ. That is, an individual is classified

as an outlier if the posterior probability is larger than ζ.

This Bayesian decision rule depends on the relative cost ζ. However, this parameter

may not be easy to specify in practice, as the relative importance of a false positive

error is often hard to quantify. In what follows, we discuss how this parameter may

be chosen adaptively based on a compound risk which is obtained by aggregating

information from the entire set of individuals.
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3.3.2 Compound Decision for Detecting Outlying Persons

We evaluate decision-making at an aggregated level for all individuals. This involves

solving N decision problems simultaneously and thus is called a compound decision

problem (Robbins, 1951; Sun & Cai, 2007; C.-H. Zhang, 2003). Given a decision

rule, hypothetically, the results can be classified into four categories, as summarised

in Table 3.3.1, where N00, N01, N10, and N11 denote the numbers of true negative,

false positive, false negative, and true positive, respectively. The quality of decisions

can be quantified by two quantities. One is the False Discovery Proportion (FDP)

N01/max {N·1, 1}, which is the proportion of non-outliers among the detections.

In the application to cheating detection, this gives the proportion of innocent test

takers among those who are flagged as cheaters. The denominator is chosen so

that this proportion is well-defined even when N·1 = 0. The other quantity is the

False Non-discovery Proportion (FNP) N10/max {N·0, 1}, which is the proportion of

outliers among the non-detections. It is worth noting that, however, the FDP and

FNP cannot be directly used because the outliers are not directly observable. As an

alternative, we use the posterior means of the FDP and FNP, which are known as

the local FDR and local FNR, respectively. Similar measures have been proposed

for solving compound decision problems in Efron (2004, 2008, 2012); Efron et al.

(2001), among others. Given data and a decision rule, the local FDR and local FNR

are completely determined under the proposed model.

Not flagged as outlier Flagged as outlier Total
Non-outlier N00 N01 N0·
Outlier N10 N11 N1·
Total N·0 N·1 N

Table 3.3.1: A summary of the outcomes of detecting outlying individuals. Note that
this table is hypothetical, as in real applications, outliers and non-outliers are directly
observable.

Suppose that the consequence of a false positive error is more severe than that

of a false negative error, which may be the case for the detection of cheaters in

educational testing. Then a sensible decision criterion is to minimise the local FNR
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while controlling the local FDR to be below a pre-specified threshold ρ. Given the

practical meaning of local FDR, the threshold ρ should be much easier to specify than

the relative cost in the Bayesian decision rule discussed previously. For instance,

by setting ρ = 0.01, we approximately control the proportion of non-outliers to be

below 1% among those who are detected as outliers.

Now consider a Bayesian decision rule with a relative cost ζ. We discuss how the

optimal ζ is determined by the above decision criterion based on the local FDR and

local FNR with a given threshold ρ. For ease of exposition, we use Ỹ as a generic

notation for the data, where Ỹ = Y when only item responses are collected and

Ỹ = (Y ,T ) when both item responses and response times are available. Specifically,

given relative cost ζ, the Bayesian decision for each test taker i can be written as

Di(ζ) = 1
{P (ξi=1| ˜Y )>ζ}

. (3.3.2)

Under our fully Bayesian setting and given threshold ζ, the local FDR becomes

fdrζ(Ỹ ) =

∑N
i=1Di(ζ)P (ξi = 0|Ỹ )

max {
∑N

i=1Di(ζ), 1}
, (3.3.3)

which only depends on the posterior probabilities P (ξi = 1|Ỹ ), i = 1, . . . , N . The

local FNR can be obtained similarly as

fnrζ(Ỹ ) =

∑N
i=1(1−Di(ζ))P (ξi = 1|Ỹ )

max {
∑N

i=1(1−Di(ζ)), 1}
.

As summarised in Proposition 1 below, the optimal relative cost is given by ζ∗ =

inf{ζ : fdrζ(Ỹ ) ⩽ ρ}. That is, the decision rule given by Di(ζ
∗), i = 1, . . . , N ,

minimises the local FNR under the constraint that the local FDR is below ρ. The

proof of Proposition 1 is given in Appendix B.

Proposition 1. Given data Ỹ = Y or (Y ,T ), the local FDR fdrζ(Ỹ ) as a func-

tion of ζ is non-increasing and left-continuous, and the local FNR fnrζ(Ỹ ) is non-
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decreasing in ζ. Thus,

ζ∗ = inf{ζ : fdrζ(Ỹ ) ⩽ ρ} (3.3.4)

solves the optimisation

min
ζ

fnrζ(Ỹ ), s.t. fdrζ(Ỹ ) ⩽ ρ. (3.3.5)

The corresponding optimal decision rule is Di(ζ
∗) = 1

{P (ξi=1| ˜Y )>ζ∗}
.

Given posterior probabilities P (ξi = 1|Ỹ ), the optimal decision is easy to obtain.

The computation is described in Algorithm 1.

Algorithm 1 (Optimal compound decision). Let the posterior probabilities P (ξi =

1|Ỹ ) and threshold ρ for local FDR be given. The optimal relative cost ζ∗ is given

by the following steps.

1. Sort the posterior probabilities in an increasing order. Denote the sorted values

as p(1) ⩽ p(2) ⩽ · · · ⩽ p(N).

2. Compute the cumulative means c(0) ⩽ c(1) ⩽ c(2) ⩽ · · · ⩽ c(N), where

c(0) = 0, and c(i) =

∑i
j=1 p(j)

i
, i = 1, . . . , N.

3. Let i∗ = max {i : c(i) ⩽ ρ}.

Then the optimal relative risk is given by ζ∗ = p(i∗), if i
∗ > 0, and ζ∗ = 0, if i∗ = 0.

This local FDR control procedure can be viewed as the Bayesian version of the

well-known Benjamini-Hochberg (BH) procedure (Benjamini & Hochberg, 1995) for

multiple hypothesis testing. The BH procedure is designed to control the FDR,

which is defined as the unconditional expectation of the FDP. Unlike the proposed

procedure that is based on posterior probabilities, the BH procedure achieves the

control of FDR using p-values from multiple testing. Under the proposed Bayesian
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framework, it seems more straightforward to control local FDR as in the proposed

procedure. Also note that the FDR is automatically controlled by controlling local

FDR, due to the relationship between conditional and unconditional expectations.

Another possible decision criterion is to control the posterior probability of making at

least one false discovery, which corresponds to the Family-Wise Error Rate (FWER)

under the frequentist setting. This FWER-type criterion exerts a more stringent

control over false discovery than the proposed one by its definition. Therefore, the

proposed procedure has greater power at the cost of increased rates of false positives.

In this sense, the proposed local FDR control procedure is more suitable when having

a large number of individuals and thus a large number of decisions need to be made

simultaneously.

For certain applications, false negatives may have a more significant consequence

than false positives. Then it may be more suitable to minimise the local FDR

while controlling local FNR. As the definitions of local FDR and local FNR are

mathematically symmetric, the above procedure can be easily adapted.

3.3.3 Compound Decision for Detecting Outlying Items

The compound decision theory developed above can be adapted to the detection

of outlying items, based on the posterior probabilities for the item-specific binary

indicators ηj. In the application to the detection of item preknowledge, when there

is sufficient evidence suggesting that an item is compromised, it should be removed

to maintain the quality of the item pool. This decision problem faces a trade-off

between the financial cost of item pool replenishment and the need of maintaining

the quality of the item pool. For high-stake tests, test fairness is usually the first

priority and thus false negatives may have a more significant consequence than false

positives. In that case, it becomes more sensible to minimise the local FDR, under

the constraint that the local FNR is below a suitable threshold (e.g., 1%).
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3.4 Bayesian Inference

The proposed two-way outlier detection model is estimated under a fully Bayesian

framework, where model parameters are all treated as random variables. In this

section, we first specify the hierarchical models for the full model for item response

and response times and the reduced model for item responses. We then propose a

parallel tempering MCMC algorithm to sample model parameters from their joint

posterior distribution. The details are presented in Appendix C.1. Finally, we

discuss model comparison methods in the Bayesian framework.

3.4.1 Hierarchical Model Specification

The hierarchical frameworks for the reduced model and the full model are shown in

Figures 3.4.1a and 3.4.1b. In the full Bayesian framework, global parameters (ν1,

ν2, δ, γ, and κ), person- (Θi’s) and item-specific (∆j’s) parameters are all treated

as random effects (represented by circles in the figures below). In both figures, the

boxes are plates representing replicates. The two outer plates represent persons and

items, and the inner plate presents an item response.

3.4.1.1 Prior and Hyperprior Specification

We showcase the specification of prior and hyperprior distributions under the specific

model with item-response submodel (3.2.1) and response-time submodel (3.2.3).

We start with the specification of g1, the joint distribution of Θi = (θi, ξi, τi). It

is assumed that (θi, τi) follows a bivariate normal distribution N(0,Σ), where Σ =

(σij)2×2. Note that a person’s ability and speed are typically correlated, which is why

we assume a bivariate normal distribution for (θi, τi). Similar settings are adopted

in existing models for item responses and response times; see e.g., van der Linden

(2007). We further assume that the latent indicator ξi is independent of (θi, τi),

following a Bernoulli distribution Bern(π1). This independence assumption can be
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(a) Hierarchical framework for the two-way
outlier detection model based on item re-
sponse data only. The boxes with i =
1, . . . , N in the top-left corner indicates that
each parameter inside is specific to a value
of i. The same explanation is also applied
to the boxes with j = 1, . . . , J in the bottom-
right corner. Note that the mean of the per-
son parameters θi’s is fixed at 0 for the sake
of identifiability.
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(b) Hierarchical framework for the two-
way outlier detection model that incorporates
item responses and response times. Note
that µ = (µ1, µ2) and Ω are the mean and
covariance matrix for the two item parame-
ter, (βj , αj), for j = 1, . . . , J , while Σ is the
covariance matrix for the two person param-
eters (θi, τi) for i = 1, . . . , N . The mean for
(θi, τi) is fixed at (0, 0) for identifiability.

Figure 3.4.1: Hierarchical framework for the reduced and the full models for detecting
two-way outliers.

relaxed by modelling the conditional distribution of ξi given (θi, τi), for example, by

a logistic regression model. This relaxation is left for future investigation.

We now specify g2, the joint distribution of ∆j = (βj, ηj, αj). Similar to that of g1, we

first let (βj, αj) follow a bivariate normal distribution N(µ,Ω), where µ = (µ1, µ2)

and Ω = (ωij)2×2. It is further assumed that ηj is an independent Bernoulli random

variable, Bern(π2).

It remains to specify the prior for positive parameters δ, γ, κ, as well as the priors
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for hyperparameters π1, π2, µ1, µ2, Ω, and Σ.

1. As δ is positive, we assume a half-Cauchy prior distribution with scale 2.5.

This is regarded a weakly informative prior, following the suggestions given in

Gelman (2006), Gelman, Jakulin, Pittau, and Su (2008) and Polson and Scott

(2012).

2. γ is assumed to follow the same half-Cauchy prior distribution as δ.

3. κ is assumed to follow an inverse Gamma distribution, IG(0.001, 0.001), where

the shape and scale parameters are both set to 0.001. This choice follows

the suggestion in Chapter 5, Lunn, Jackson, Best, Thomas, and Spiegelhalter

(2012).

4. π1 and π2 are assumed to be i.i.d., following a beta distribution Beta(2, 2).

This prior distribution can be regarded as a weakly-informative prior given the

sample and item sizes in our application. It is suggested in Agresti and Coull

(1998) and Carlin and Louis (2000), Chapter 2, as the prior for a proportion

parameter. We choose this distribution rather than a uniform distribution,

because π1 and π2 are believed to not locate on the boundaries of the interval

[0, 1].

5. µ1 and µ2 are assumed to be i.i.d., following a normal distribution N(0, 52).

The standard deviation 5 is chosen based on the scales of µ1 and µ2 in the

current application, under which this prior may be regarded as weakly infor-

mative.

6. Σ and Ω are assumed to be i.i.d., following an inverse Wishart distribution

where the scale matrix, IW(Ψ, ν), Ψ = ((2, 0)⊤, (0, 2)⊤), and the degree of

freedom ν = 2. This choice follows the suggestion in Chapter 6, Lunn et al.

(2012). Under this prior distribution, σ11, σ22, ω11, and ω22 marginally follow

an inverse Gamma distribution IG(1/2, 1).
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3.4.1.2 Induced Priors and Hyperpriors for Reduced Model

For the reduced model of item response data, the priors and hyperpriors are in-

duced by those for the full model. For completeness, we list the induced priors and

hyperpriors below.

1. For Θi = (θi, ξi), θi and ξi are independent, following normal distribution

N(0, σ11) and Bernoulli distribution Bern(π1), respectively.

2. Similarly, for ∆j = (βj, ηj), βj and ηj are independent, following normal dis-

tribution N(µ1, ω11) and Bernoulli distribution Bern(π2), respectively.

3. δ follows a half-Cauchy prior distribution with scale 2.5.

4. π1 and π2 are i.i.d., following a beta distribution Beta(2, 2).

5. µ1 follows a normal distribution N(0, 52).

6. σ11 and ω11 are i.i.d. IG(1/2, 1).

3.4.2 Computation

Statistical inference is carried out under a full Bayesian setting. An MCMC algo-

rithm is developed for the computation1.

3.4.2.1 Parallel Tempering MCMC

This computation is non-trivial, due to the presence of many discrete variables and

the interactions between them. More specifically, the model involves person- and

item-specific binary latent variables ξi and ηj. The complexity of simulating these

variables by MCMC is similar to the simulation of discrete systems like mixture

models and Ising-type models. Such systems typically involve many well-separated

1The R code for the MCMC algorithm can be found on https://github.com/YanLu-stats/

OD2WIRT.

https://github.com/YanLu-stats/OD2WIRT
https://github.com/YanLu-stats/OD2WIRT
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local modes and thus suffer from the issue of slow mixing (e.g., Celeux et al., 2000;

Katzgraber, Trebst, Huse, & Troyer, 2006; Richardson & Green, 1997). Temper-

ing methods (Geyer, 2011) provide a powerful tool for exploring distributions with

many local modes. Specifically, parallel tempering (PT), which is also known as the

Metropolis-coupled Markov chain Monte Carlo or replica exchange MCMC sampling,

is chosen for the computation of the proposed model. More precisely, parallel tem-

pering simulates multiple MCMC chains simultaneously, and a Metropolis-Hastings

sampler can be used for the MCMC sampling within each chain.

In parallel tempering, multiple MCMC chains interact in order to effectively explore

the state space and thus improve the performance of mixing. The target distribu-

tions of these chains are obtained by tempering the original posterior density, i.e.,

raising the original posterior density to different powers T−1 ∈ [0, 1], where T is

known as the ‘temperature’. The original posterior density is included by setting

T = 1. A chain corresponding to a higher temperature tends to have a flatter target

distribution, for which the MCMC sampler is less likely to be trapped at local modes

and thus has fast mixing. In contrast, when the temperature is low, the MCMC chain

is more likely to be trapped and thus suffer from slow mixing. Parallel tempering

improves the mixing of the low-tempered MCMC chains, by exchanging informa-

tion between chains with adjacent temperatures. That is, at each iteration, a pair

of chains with adjacent temperatures is randomly chosen and a Metropolis-Hastings

update is used to decide whether to swap their parameter states.

The use of the algorithm requires some tuning, including (a) the step sizes of random-

walk Metropolis-Hastings updates within each chain, (b) the number of temperature

levels, and (c) the temperature values. For (a), we follow the suggestion given by

Roberts and Rosenthal (2001); that is, we tune the step sizes to achieve an accep-

tance rate of around 2.3. For (b) and (c), it is suggested to follow the theoretical

guidance given in Atchadé, Roberts, and Rosenthal (2011). Further details of this

algorithm are given in Appendix C.1. For the implementation of the decision pro-

cedures in Section 3.3, the posterior distributions of ξi and ηj are approximated by
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the posterior samples from this MCMC algorithm.

3.4.2.2 Remarks: Thinning

MCMC chains are likely to be strongly autocorrelated and therefore produce clumpy

samples that do not characterise the posterior distribution in question accurately if

the chains are not long enough. To obtain a more accurate estimation of the target

distribution, one should get rid of as much autocorrelation as possible.

Thinning can be used to reduce autocorrelation. M samples from a thinned chain

with sufficiently small autocorrelation will almost certainly produce a more precise

estimation of the posterior thanM unthinned steps with high autocorrelation. How-

ever, to get M samples from a thinned chain, M × n steps are needed for keeping

every n-th sample. With such a long chain, the autocorrelation has probably been

averaged out anyway. As Link and Eaton (2012) mentioned, a longer unthinned

chain usually yields better estimates of the true posterior than the shorter thinned

chain. Furthermore, Link and Eaton (2012) also mentioned that thinning is not use-

ful if we aim to reduce standard errors in parameter estimates from MCMC samples.

Therefore, to reduce autocorrelation through thinning by n steps, we can simply run

an unthinned chain n times as long. As Jackman (2009) pointed out, thinning is not

a strategy for avoiding long runs required for obtaining more precise estimates, but

a strategy for manipulating the otherwise overwhelming number of MCMC samples.

3.4.2.3 Remarks: Empirical Bayes Estimation

Instead of taking a fully Bayesian setting, it is also possible to adopt an empirical

Bayes framework (Casella, 1985; Efron, 2014; Robbins, 1956), under which ν1,ν2,

δ, γ, and κ are treated as fixed parameters and estimated by maximum likelihood

estimation, while the person- and item-specific parameters Θi and ∆j are treated

as random variables. However, due to the complex structure of the current model,

the expectation-maximisation algorithm, which is a standard approach to empirical
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Bayes inference, is computationally infeasible. Without specifying priors, the tricky

thing is how to constrain certain parameters (e.g. π1 and π2) to avoid a local optimal

solution. A tailored stochastic optimisation algorithm needs to be developed.

3.4.3 Model Comparison

We use model comparison methods to answer the following questions that may be

of substantive interest in specific applications. That is, does our item response

data show evidence of the existence of outlying individuals and items? If so, does

item response time information help detect these outliers? These questions may be

answered by Bayesian model comparison.

To answer the first question, we compare the proposed model for item responses

with the baseline item-response model which does not contain outliers. These two

models are the same, including the specification of the priors and hyperpriors, except

that the hyperparameters π1 and π2 are set to be 0 and thus ξiηjδ = 0 for all i and

j in the baseline model. The preference of the proposed model against the baseline

model suggests the existence of outliers.

To answer the second question, we compare the proposed model for item responses

and response times with a null model for the same data. This null model is the

same as the proposed model, except that the drift parameter γ in the response-time

submodel is set to be zero. When γ = 0, it means that there is no difference between

the outlying and non-outlying individuals in their response-time distributions. If the

proposed model is preferred to the null model, it suggests that response times contain

information about the outliers. Thus, incorporating response time information may

better inform the detection of outliers.

3.4.3.1 Introduction to Deviance Information Criterion

Deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde,

2002) has been employed to find the most adequate and yet parsimonious model
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among several candidate models given observed data. This model comparison cri-

terion has also been applied to hierarchical IRT models, particularly. The DIC is

proposed as an alternative for model comparison when it is difficult to determine

the number of effective parameters. It is defined as the sum of a deviance measure

and a penalty term for the effective number of parameters based on a measure of

model complexity. In comparing two models, the one with a smaller DIC value is

preferred.

The models mentioned earlier in this section are compared based on the DIC, and

more specifically, a marginalised DIC in which the person- and item-specific param-

eters are treated as latent variables or random effects and integrated out. We choose

the marginalised DIC, instead of the conditional DIC that incorporates the person-

and item-specific variables in the focus of the analysis, because the marginalised DIC

often performs better in comparing hierarchical models (e.g., Quintero & Lesaffre,

2018). The marginalised DIC is computed by MCMC sampling. The calculation of

the marginal DIC (mDIC) is described below.

3.4.3.2 Calculation of Marginal DIC

The marginal deviance is defined as

D(ν1,ν2) = −2 logL(ν1,ν2;y) (3.4.1)

where ν1, ν2 are the second-level model parameters. L(·) represents the marginal

likelihood function. In the context of our generalised modelling framework, the

marginal likelihood is given by

L(ν1,ν2;y) =

˙

Θ,∆

N∏
i=1

J∏
j=1

{
p(yij; Θi,∆j)g1(Θi|ν1)g2(∆|ν2) dΘi d∆j

}
.

(3.4.2)
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This marginal likelihood leads to the second-level marginalised DIC since the first-

level parameters (i.e. Θi’s and ∆j’s) are all integrated out.

According to Spiegelhalter et al. (2002), the DIC is defined as the difference between

doubled posterior expected deviance

DIC = 2D(ν1,ν2)−D(ν̂1, ν̂2). (3.4.3)

The posterior mean of the deviance is expressed as

D(ν1,ν2) =
1

T

T∑
t=1

(−2)
N∑
i=1

J∑
j=1

log

{
1

K

K∑
k=1

p(yij|ν(t)
1 ,ν

(t)
2 ,Θ

(t),k
i,rep,∆

(t),k
j,rep)

}
.

(3.4.4)

K denotes the number of replicates at each post-burnin MCMC iteration t = m +

1, . . . , T , with m being the number of MCMC iterations till the burnin. K is typical

as large as 1,000 to reduce the sampling error. Θ
(t),k
i,rep and ∆

(t),k
j,rep for k = 1, . . . , K are

posterior samples drawn K times at each post-burnin MCMC iteration t.

Next, we calculate the point estimate of the deviance by evaluating Equation (3.4.1)

at posterior mean estimates:

D(ν̂1, ν̂2) = −2 logL(ν̂1, ν̂2;y), (3.4.5)

where ν̂1 and ν̂2 represent posterior means computed from the MCMC sampler after

convergence. The mDIC is then calculated based on its definition given by Equation

(3.4.3).

It is worth noting that the above interpretations of model comparison results are

obtained under the assumption that the two-way outlier detection model is cor-

rectly specified and the two-way outliers in the model correspond to cheaters and

compromised items.
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3.4.3.3 Remarks

While computationally convenient, the DIC suffers from several caveats, including

the lack of model selection consistency and the possibility of selecting overfitted

models (Spiegelhalter, Best, Carlin, & Van der Linde, 2014). Therefore, we note

that the results based on the DIC need to be interpreted with caution in practice.

In future research, other model comparison criteria will be investigated and com-

pared with the DIC, including the Bayes factor (Kass & Raftery, 1995) and the

Bayesian information criterion (BIC; Schwarz, 1978) that approximates the loga-

rithm of the Bayes factor. The BIC is well-known to the full Bayesian framework.

It is calculated based on the likelihood with a penalty term as a measure of model

complexity, which is determined by the effective number of model parameters. The

calculation of the effective number of model parameters in the hierarchical modelling

context is found to be difficult, however, since the presence of priors constrains the

effective dimension of the parameter space, according to the work by Entink, Fox,

and van der Linden (2009); Fox (2010). The Bayes factor may be theoretically more

attractive because it yields consistent model selection under suitable regularity con-

ditions. However, its computation tends to be less straightforward than the DIC.

Algorithms remain to be developed for computation under the current modelling

framework.

3.5 Case Study: Licensure Test Data

We apply the proposed method to a dataset from a computer-based non-adaptive

licensure test. The test is designed and operated under the Rasch model, which is

consistent with the proposed baseline item-response submodel. This dataset has also

been analysed for the detection of cheating in several chapters of Cizek and Wollack

(2017) and journal articles including Sinharay (2017a) and Sinharay (2017b). We

point out that the methods in these analyses require prior information about the

items’ statuses. For example, Sinharay (2017a) and Sinharay (2017b) require to
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know the compromised items a priori and focus on the detection of cheaters. Unlike

these existing analyses, we focus on the simultaneous detection of cheaters and

compromised items, without requiring such prior knowledge.

The test contains 170 binary-scored items (J = 170), for which test takers’ item

responses and response times are available. The dataset is preprocessed by removing

12 test takers with zero response time in one or multiple items, which is believed to

be a data recording error. This leads to a final dataset containing 1,624 test takers

(N = 1, 624). The testing program flagged 41 among these 1,624 test takers as likely

cheaters, through a combination of statistical analysis and a careful investigative

process which brought in other pieces of information. By a similar investigation

process and data forensics, the testing program also believed that 64 among the 170

items were compromised. The identity of the testing program remains confidential

to protect the test takers. We were asked to respect the desire of the program

to remain anonymous. Therefore, we are unable to get into detail about how the

testing program flagged the individuals or items.

The labels of test takers and items will be used as partial truth for validating our

data analysis results, but the proposed models do not rely on these labels at all. It is

worth noting that these labels are not the ground truth and it is possible that there

were test takers and items which ought to have been flagged but were not (Chapter

1, Cizek & Wollack, 2017). It is believed that the given labels are of good quality so

that they can be used for the evaluation of detection methods. On the other hand,

evaluation criteria based on these labels are not perfect, due to possible labelling

errors.

The purpose of this analysis is two-fold. First, it is used to show the effectiveness

of the proposed method, through a comparison between our results and the partial

truth given by the testing program. Second, it is used to demonstrate the use of the

proposed method in real tests, which may be of interest to practitioners.
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3.5.1 Descriptive Analysis

We start with a descriptive analysis to give an overview of the dataset. Panel

(a) of Figure 3.5.1 shows the histogram of test takers’ total scores by the testing

program’s cheating labels. Similarly, Panel (b) of Figure 3.5.1 gives the histogram

of items’ correct rates by the testing program’s compromisation labels. Similarly,

the two panels of Figure 3.5.2 show the histograms of the mean response time in the

logarithm scale for test takers and items, respectively.

From these plots, it is not difficult to see that the corresponding summary statistics

do not have much information about the labels on the test takers and items. In

fact, the area under the curves (AUC) of the corresponding receiver operating char-

acteristic (ROC) curves are 55.2% and 71.7% for the classification of the cheating

labels based on the total score and mean log-time, respectively. Similarly, the corre-

sponding AUCs for the classification of items are 52.4% and 60.6%, respectively. As

we will see in the sequel, the proposed method substantially improves upon these

benchmarks.
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Figure 3.5.1: Licensure Test Data: Descriptive analysis. Panel (a): Histogram of test
takers’ total scores by the testing program’s cheating labels. Panel (b): Histogram of items’
correct rates by the testing program’s labels of compromise status.
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Figure 3.5.2: Licensure Test Data: Descriptive analysis. Panel (a): Histogram of test
takers’ mean log response time by the testing program’s labels of cheating. Panel (b):
Histogram of mean log-time spent on items by the testing program’s labels of compromise
status.

3.5.2 Detection based on Item Response Data

We start with analysing item responses using the reduced model (i.e. only analyse

item responses and not time responses). Using the algorithm given in Appendix C.1.,

three MCMC chains were run with random starting points. Their convergence was

assessed by trace plots and the Gelman and Rubin (GR) diagnostic statistic (Gelman

& Rubin, 1992). The Gelman-Rubin R statistics applied to the parameters which

are not person- or item-specific (see Table 3.5.2 for the list of these parameters) are

below 1.20, suggesting that the chains converged to their equilibrium distributions

after 10,000 iterations.

The inference is drawn based on 24,000 posterior samples from the three converged

chains, where each contributes 8,000 samples. We first compare the fitted model

with its null version using the DIC measure described in Section 3.4.3, to answer

the question “does our item response data show evidence of cheating?”. Recall that

π1 = π2 = 0 in the null model, meaning that there are no cheaters or compromised

items. The DIC value for the null model is also based on 24,000 posterior samples

from an MCMC algorithm. The DIC values for the proposed and the null models

are 138,282.6 and 218,308.4, respectively. The smaller DIC for the proposed model
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Figure 3.5.3: Licensure Test Data: Box plots of posterior means of latent indicators
from the reduced model for item responses. Panel (a): Box plots of the posterior means of
ξi for the cheating and non-cheating groups (defined by the testing program). Panel (b):
Box plots of the posterior means of ηj for the compromised and non-compromised items
(defined by the testing program).

suggests that item preknowledge is likely to exist among the test takers.

We then examine the classification results. Panel (a) of Figure 3.5.3 gives the box

plots of the posterior means of ξi for the cheating and non-cheating groups (defined

by the testing program), respectively. As we can see, the posterior means of ξi

for the cheating group tend to be close to 1 and those for the non-cheating group

tend to be close to 0, with some exceptions. Panel (b) of Figure 3.5.3 gives box

plots of the posterior means of ηj for the compromised and non-compromised items

(defined by the testing program), respectively. Similarly, the posterior means of ηj

for the compromised items tend to be close to 1 and those for the non-compromised

items tend to be close to 0. The corresponding ROC curves for the classification of

the labels for cheaters and compromised items by the posterior means of ξi/ηj are

presented in Figure 3.5.4. The AUCs for these two ROC curves are 0.868 and 0.836,

respectively. They are substantially larger than the ones given by the summary

statistics discussed in Section 3.5.1. We remark that these results on the detection

accuracy should be interpreted with caution, due to possible labelling errors.

Now consider a yes or no question about multiple hypotheses of whether each person

(or item) is flagged. We previously flagged all test takers who have a posterior
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Figure 3.5.4: Licensure Test Data: ROC curves for classification under the reduced model
for item responses. Panel (a): ROC curve for the classification of cheaters (labelled by the
testing program) by the posterior means of ξi. Panel (b): ROC curve for the classification
of compromised items (labelled by the testing program) by the posterior means of ηj. The
x- and y-axes of a ROC curve give the true positive rate (TPR) and false positive rate
(FPR) for classification, respectively.

probability of being involved in cheating greater than 0.5. In practice, we could

afford to flag as many test takers as we can, but we need a principled approach to

decide which test takers are worth flagging based on the information from the entire

set of individuals rather than the information of each individual. The problem of

hypothesis testing appears whenever we are attempting to classify individuals (or

items) as potential cheaters (or compromised items). To solve the multiple testing

issue, we apply the Bayesian decision framework proposed in Section 3.3.2 to false

discovery rate control, a statistical procedure for dealing with multiple testing.

Moreover, Panel (a) of Figure 3.5.5 shows the local FDR and the local FNR as

functions of the number of detections, respectively, when applying the proposed

compound decision rule to test takers. As we can see, as the number of detections

increases, the local FDR increases and the local FNR decreases. The same plot for

items is given in Panel (b) of Figure 3.5.5. Specifically, the numbers of detections

under different thresholds are given in Table 3.5.1, where we control local FDR for

test takers and control local FNR for items. Again, we remark that the validity of

the detection results depends on the extent to which our model assumptions hold.
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Figure 3.5.5: Licensure Test Data: Detections based on the reduced model for item re-
sponses: The local FDR (represented by black solid curves) and the local FNR (represented
by blue dashed curves) as functions of the number of detections.

1% 5% 10%
Test takers 25 46 61
Items 100 91 71

Table 3.5.1: Licensure Test Data: The number of detections based on the reduced model
for item response data. The first row shows the numbers of detections for test takers when
controlling the corresponding local FDR at 1%, 5%, and 10% levels, respectively. The
second row shows the numbers of detections for items when controlling the corresponding
local FNR at 1%, 5%, and 10% levels, respectively.

Therefore, we suggest treating such detection results as initial screening results,

rather than as the final decisions.

Finally, posterior means and 95% credible intervals for the global parameters are

presented in Table 3.5.2, where the global parameters refer to the parameters that

are not person-specific or item-specific. In particular, the posterior mean of the

proportion of cheaters is 2.8%, with a 95% credible interval (2.0%, 3.6%). This

estimate is close to the proportion of 2.5% calculated based on the cheating labels

from the testing program. The posterior mean of the proportion of compromised

items is 40.1%, with a 95% credible interval (38.7%, 43.3%). This estimate is close

to, but slightly higher than, the proportion of 37.6% given by the testing program. It

may be the case that the testing program missed several compromised items during

its labelling process. Furthermore, the posterior mean of δ is 0.895. That is, the

odds ratio of correctly answering a compromised item is about exp(0.895) = 2.447

when comparing a cheater and a non-cheater with the same ability level. Again, we

point out that these interpretations depend on the extent to which our model holds
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σ11 π1 π2 ω11 µ1 δ
EAP 0.285 0.028 0.401 0.685 −1.004 0.895
95% CI (0.261, 0.319) (0.020, 0.036) (0.387, 0.433) (0.669, 0.854) (−1.237,−0.912) (0.758, 0.959)

Table 3.5.2: Licensure Test Data: Parameter estimation based on posterior samples from
the reduced model for item responses. The row labelled “EAP” shows the posterior means
of the global parameters, where EAP represents the Expected A Posteriori, and the row
labelled “95% CI” provides the corresponding 95% credible intervals.

and thus should be taken with caution.

3.5.3 Detection based on Item Responses & Response Times

We continue the modelling process by incorporating information from response

times. The full model is applied to the dataset consisting of both item responses

and response times. Three MCMC chains were used to fit the model. According

to the GR statistics applied to the global parameters, the chains converged to their

equilibrium distributions after 18,000 iterations.

The inference is drawn based on 24,000 posterior samples from the three chains after

convergence. We compare this model with its null version by DIC, to answer the

question “does item response time information help detect cheating?” Recall that

these two models are the same, except that the response-time drift parameter γ = 0

in the null model. The DIC values for the proposed full model and its null version

are 176,935.2 and 214,201.3, respectively. The smaller DIC value for the proposed

full model suggests that response times contain substantial information about the

cheating indicators.

The classification results are similar to those based only on item responses, and thus

some plots shown above are omitted here. In particular, the ROC curves based

on the posterior means of ξi and ηj have AUCs of 0.892 and 0.867, respectively,

where these AUC values are slightly higher than those from the reduced model. In

addition, the numbers of detections for test takers and items are shown in Table

3.5.3, where we still control local FDR for test takers and control local FNR for

items. Comparing the results in Tables 3.5.1 and 3.5.3, generally more detections
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1% 5% 10%
Test takers 26 47 65
Items 101 89 74

Table 3.5.3: Licensure Test Data: Detection based on the full model for item responses
and response times. The first row shows the numbers of detections for test takers when
controlling the corresponding local FDR at 1%, 5%, and 10% levels, respectively. The
second row shows the numbers of detections for items when controlling the corresponding
local FNR at 1%, 5%, and 10% levels, respectively.

tend to be made under the full model. This is likely due to the fact that the posterior

distributions tend to be more concentrated under the full model as it utilises more

information.

Posterior means and 95% credible intervals for the global parameters are given in

Table 3.5.4. Comparing Tables 3.5.2 and 3.5.4, we find that the estimates of the

common parameters shared by the two models are close to each other. In particular,

the 95% credit intervals overlap for each parameter. In addition, based on the

posterior mean of Σ, the correlation between the ability and speed factors is as

high as 0.410. This result indicates that test takers with higher abilities tend to

answer the items faster. Such a high correlation between the two factors is not

uncommon for high-stake tests. For example, C. Wang, Chang, and Douglas (2013)

report a similar level of correlation between the ability and speed factors in a high-

stake computerised adaptive test, under a similar Bayesian hierarchical model but

without a cheating component. The estimated correlation between the two item-

specific parameters is 0.237. This positive correlation suggests that solving more

difficult items tends to take more time, which is consistent with our intuition.

3.6 Simulation Study

We now present two simulation studies for evaluating the finite-sample performance

of the proposed method. The first study focuses on settings where our model is

correctly specified, and the second study investigates the sensitivity of the proposed

method under various forms of model misspecification.
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σ11 π1 π2 ω11 µ1 δ
EAP 0.289 0.027 0.410 0.699 −0.867 0.807
95% CI (0.259, 0.298) (0.022,0.036) (0.365, 0.432) (0.626, 0.789) (−0.993,−0.795) (0.732, 0.852)

σ22 σ12 ω22 ω12 µ2 γ
EAP 0.248 0.110 0.397 0.125 −0.472 0.620
95% CI (0.213, 0.285) (0.986, 0.139) (0.334, 0.427) (0.082, 0.132) (−0.879,−0.291) (0.451, 0.907)

κ
EAP 0.802
95% CI (0.589, 1.037)

Table 3.5.4: Licensure Test Data: Parameter estimation based on posterior samples
from the full model for item responses and response times. The row labelled “EAP” shows
the posterior means of the global parameters and the row labelled “95% CI” provides the
corresponding 95% credible intervals.

3.6.1 Study I

3.6.1.1 Settings

We consider simulation settings that mimic real educational tests. Specifically, we

consider two settings for the sample size N and item size J , (1) N = 2, 000, J = 200,

and (2)N = 4, 000, J = 400. This leads to two different settings, where the detection

is expected to be more accurate under the second setting given its larger sample

and item sizes. In what follows, these two settings are referred to as S1 and S2,

respectively.

For each setting, we generate 50 independent datasets under the full model, with

the global parameters fixed across the datasets. The proportion parameters π1 and

π2 are set to 10% and 40%, respectively, the drift parameters δ and γ are both set to

be 1.2, and the rest of the global parameters are set to be the same as the posterior

means in Table 3.5.4 from the real data analysis above. For each dataset, we apply

both the reduced model for item responses and the full model for item responses

and response times. An additional simulation study is presented in Appendix D

that shares a similar setting with the current study, except that the item size J is

set to mimic educational tests with a smaller number of items. More specifically,

this additional study considers two settings for N and J : (S1) N = 2, 000, J = 50,
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Test taker Item
S1 S2 S1 S2

AUC Reduced Full Reduced Full Reduced Full Reduced Full
25% 0.953 0.954 0.951 0.959 0.951 0.959 0.951 0.959
50% 0.981 0.983 0.984 0.987 0.976 0.980 0.979 0.981
75% 0.990 0.994 0.993 0.993 0.992 0.994 0.997 0.996

Table 3.6.1: Simulation Study I: Overall classification performance based on the posterior
means of the person-specific latent indicator ξi and the item-specific latent indicator ηj.
For each model, each setting, and each target (person/item), we show the 25%, 50%, and
75% quantiles of the AUCs of the corresponding ROC curves from 50 independent datasets.

and (S2) N = 4, 000, J = 100, and the rest of the settings remain the same. Similar

results are observed in this additional study as those below from Study I.

3.6.1.2 Results

The analysis is conducted using our parallel tempering MCMC algorithm. For each

dataset, we run 10,000 iterations, with the first 3,000 iterations as the burn-in. The

results are based on the posterior samples from the last 7,000 iterations.

We first examine the classification results. For each model and each simulated

dataset, we classify the test takers based on the posterior means of ξi and evaluate

the classification based on the AUC value of the corresponding ROC curve. A

larger AUC value implies higher classification accuracy. Similarly, the classification

of the items is based on the posterior means of ηj and the accuracy is measured by

the corresponding AUC value. These results are shown in Table 3.6.1. It can be

observed that the classification is slightly more accurate under setting S2, due to

the increased sample and item sizes. Moreover, the AUC values given by the full

model tend to be slightly larger than those from the reduced model, thanks to the

additional information from response times.

We further evaluate the proposed compound decision rules. For each dataset, we

control local FDR and local FNR at levels 1%, 5%, and 10% for test takers and

items, respectively. We evaluate each decision rule by examining the resulting FDP

and FNP; see Section 3.3 for the definitions of FDP and FNP. The results are given

in Tables 3.6.2 and 3.6.3 for the classifications of test takers and items, respectively.
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S1 S2
Reduced Full Reduced Full

FDP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.009 0.038 0.088 0.007 0.037 0.086 0.004 0.026 0.067 0.004 0.025 0.072
50% 0.012 0.048 0.091 0.011 0.048 0.092 0.007 0.031 0.079 0.006 0.029 0.083
75% 0.016 0.052 0.099 0.015 0.056 0.096 0.009 0.039 0.092 0.007 0.033 0.088

Table 3.6.2: Simulation Study I: Local FDR control for individuals. For each model,
each setting, and each local FDR target (1%/5%/10%), we show the 25%, 50%, and 75%
quantiles of the FDPs of the corresponding classifications from 50 independent datasets.

S1 S2
Reduced Full Reduced Full

FNP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.009 0.049 0.091 0.010 0.045 0.089 0.006 0.024 0.063 0.007 0.025 0.065
50% 0.011 0.051 0.098 0.012 0.048 0.092 0.010 0.031 0.079 0.011 0.033 0.077
75% 0.013 0.059 0.104 0.012 0.057 0.096 0.015 0.039 0.091 0.012 0.037 0.089

Table 3.6.3: Simulation Study I: Local FNR control for items. For each model, each set-
ting, and each local FNR target (1%/5%/10%), we show the 25%, 50%, and 75% quantiles
of the FNPs of the corresponding classifications from 50 independent datasets.

According to these tables, the FDP is well-controlled for test takers and so is the

FNP for items.

Finally, we show the results on the estimation of the global parameters, as these

parameters have substantive interpretations in cheating detection. Specifically, we

focus on the posterior mean estimator, for which bias and variance are estimated

based on the results from 50 independent replications. These results are presented

in Table 3.6.4. The bias, in general, tends to be close to zero for all the global

parameters from both models and both settings. In addition, the estimation tends

to be more accurate under setting S2, due to the increased sample and item sizes.

3.6.2 Study II

3.6.2.1 Settings

In this study, we investigate the sensitivity of the proposed method under several

forms of model misspecification. For the clarity of simulation settings, we focus

on the misspecification of the item-response submodel. That is, we generate item-

response data from a misspecified model and then apply our reduced model to
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S1 Reduced model S2 Reduced model
π1 π2 σ11 µ1 ω11 δ π1 π2 σ11 µ1 ω11 δ

Bias 0.13 0.09 -0.15 -0.19 -0.11 0.13 Bias 0.09 0.05 0.11 -0.08 -0.08 0.09
Variance 0.14 0.12 0.37 0.23 0.27 0.31 Variance 0.11 0.15 0.29 0.25 0.21 0.27

S1 Full model
π1 π2 σ11 µ1 ω11 δ σ22 σ12 µ2 ω22 ω12 κ

Bias 0.11 -0.08 0.07 -0.24 -0.08 0.08 -0.12 -0.04 0.07 0.14 0.09 -0.16
Variance 0.16 0.11 0.34 0.19 0.32 0.35 0.09 0.07 0.12 0.13 0.08 0.77

S2 Full model
π1 π2 σ11 µ1 ω11 δ σ22 σ12 µ2 ω22 ω12 κ

Bias 0.07 -0.03 0.11 -0.18 -0.05 0.11 -0.08 -0.06 0.09 0.15 0.05 -0.11
Variance 0.12 0.08 0.33 0.21 0.34 0.31 0.05 0.09 0.08 0.10 0.12 0.63

Table 3.6.4: Simulation Study I: Accuracy of the posterior mean estimator of the global
parameters. The bias and variance for the posterior mean estimator are calculated based
on the 50 replications.

Setting Misspecification N J
S3 (1) 2,000 200
S4 (2) 2,000 200
S5 (3) 2,000 200
S6 (1) 4,000 400
S7 (2) 4,000 400
S8 (3) 4,000 400

Table 3.6.5: Study II: Six simulation settings, where (1)-(3) correspond to three forms
of model misspecification, including the misspecification of (1) the baseline model, (2) the
relationship between ξi and θi, and (3) the common drift parameter.

classify the test takers and items. The overall classification performance, as well as

the performance of the proposed compound decision rules, is evaluated. We focus on

three forms of model misspecification whose details are discussed below, including

the misspecification of (1) the baseline model, (2) the relationship between ξi and

θi, and (3) the common drift parameter. The three forms of model misspecification,

together with two settings for N and J as in Study I, lead to six different settings

as summarised in Table 4.5.1. For each setting, except for the misspecified part,

the global parameters are set the same as those in Study I. For each setting, 50

independent datasets are generated.

We now discuss the three forms of model misspecification in detail. For the baseline

model, we replace the Rasch model by the two-parameter logistic model, an IRT

model that is widely used in educational testing. That is, the following item-response
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submodel is assumed

P (Yij = 1|Θi,∆j, αj, δ) =
exp(αj(θi − βj) + ξiηjδ)

1 + exp(αj(θi − βj) + ξiηjδ)
,

where αj is known as the discrimination parameter. Note that the proposed model

can be viewed as a special case where αj = 1 for all j. In the misspecified model,

we generate the discrimination parameters αj from a uniform distribution U [1, 1.5].

In the proposed model, θi and ξi are assumed to be independent, meaning that

whether a test taker cheats or not is independent of his/her ability. This assumption

may not hold and it is likely that these two variables are negatively associated,

i.e., test takers with lower ability are more likely to cheat in an exam. To mimic

this situation, we generate (θi, ξi) jointly from a Gaussian copula. That is, we first

generate (θi, ξ
∗
i ) from a bi-variate normal distribution, with mean vector (−0.867, 0)⊤

and covariance matrix ((0.289,−0.134)⊤, (−0.134, 1)⊤). Under this bivariate normal

distribution, the correlation between θi and ξ
∗
i is −0.25. We then let ξi = 1{ξ∗i ⩾z0.9},

which is obtained by truncating ξ∗i at z0.9, the 90% quantile of the standard normal

distribution, so that P (ξi = 1) = 0.1. Under this Gaussian copula model, the

marginal distributions of θi and ξi remain the same as those in Study I, while a

negative association is introduced between the two variables.

For model parsimony, it is also assumed in the proposed model that the drift pa-

rameter δ is common across all the test takers and items. This assumption may not

hold in practice. Therefore, in this misspecified model, instead of using a constant

drift, we assume the drift parameter to be both item- and person-specific. That is,

we assume

P (Yij = 1|Θi,∆j, δij) =
exp(θi − βj + ξiηjδij)

1 + exp(θi − βj + ξiηjδij)
,

where the drift parameters δij are generated i.i.d. from a uniform distribution

U [1, 1.5].
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Test takers Item
AUC S3 S4 S5 S6 S7 S8 S3 S4 S5 S6 S7 S8

25% 0.904 0.889 0.945 0.912 0.922 0.947 0.921 0.903 0.949 0.947 0.937 0.945
50% 0.965 0.927 0.975 0.969 0.950 0.981 0.965 0.936 0.964 0.962 0.951 0.976
75% 0.983 0.989 0.994 0.980 0.984 0.993 0.981 0.971 0.988 0.985 0.984 0.991

Table 3.6.6: Simulation Study II: Overall classification performance based on the poste-
rior means of ξi and ηj. For each model, each setting, and each target (test taker/item),
we show the 25%, 50%, and 75% quantiles of the AUCs of the corresponding ROC curves
from 50 independent datasets.

3.6.2.2 Results

We evaluate the proposed method under the six settings above. Similar to Study

I, we evaluate the overall classification performance by AUC and the performance

of the compound decision rules by the corresponding FDP and FNP. The results

are given in Tables 3.6.6 through 3.6.8. Specifically, the AUC values in Table 3.6.6

are comparable to those from the correctly specified model in Table 3.6.1, though

the AUCs from settings S3, S4, S6, and S7 are slightly smaller. As further shown

in Tables 3.6.7 and 3.6.8, the compound decision rules tend to control the corre-

sponding FDP and FNP under the targeted levels, except when the target level is

1%. That is, when controlling the local FDR and local FNR to be below 1% for

test takers and items, respectively, the resulting FDP and FNP tend to exceed the

targeted level under all six settings. This is likely due to the fact that the posterior

probabilities cannot be accurately obtained when they are close to 0 or 1, under

model misspecification.

Overall, the proposed method is reasonably robust against several forms of model

specification, though the performance may be slightly affected. However, under

potential model misspecification, the method should be used with caution if we aim

to control local FDR or local FNR to be below a very small threshold (e.g., 1%).
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S3 S4 S5
FDP 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.013 0.031 0.061 0.018 0.042 0.059 0.012 0.028 0.067
50% 0.015 0.039 0.072 0.023 0.048 0.065 0.026 0.039 0.072
75% 0.019 0.046 0.074 0.026 0.059 0.070 0.029 0.043 0.079

S6 S7 S8
FDP 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.004 0.029 0.075 0.014 0.036 0.059 0.009 0.025 0.061
50% 0.007 0.041 0.089 0.017 0.043 0.066 0.014 0.041 0.064
75% 0.012 0.045 0.093 0.024 0.047 0.072 0.023 0.052 0.075

Table 3.6.7: Study II: Local FDR control for individuals. For each model, each setting,
and each local FDR target (1%/5%/10%), we show the 25%, 50%, and 75% quantiles of
the FDPs of the corresponding classifications from 50 independent datasets.

S3 S4 S5
FNP 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.007 0.021 0.061 0.019 0.032 0.078 0.015 0.039 0.072
50% 0.014 0.032 0.074 0.022 0.037 0.073 0.028 0.043 0.081
75% 0.017 0.038 0.076 0.024 0.041 0.085 0.030 0.047 0.087

S6 S7 S8
FNP 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.009 0.024 0.045 0.012 0.031 0.072 0.014 0.036 0.064
50% 0.011 0.025 0.059 0.015 0.036 0.079 0.026 0.046 0.073
75% 0.014 0.032 0.082 0.025 0.041 0.086 0.029 0.054 0.083

Table 3.6.8: Simulation Study II: Local FNR control for items. For each model, each
setting, and each local FNR target (1%/5%/10%), we show the 25%, 50%, and 75% quan-
tiles of the FNPs of the corresponding classifications from 50 independent datasets.
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3.7 Concluding Remarks

In this chapter, we propose a Bayesian hierarchical model for detecting two-way

outliers due to latent DIF in item-response-type multivariate data. The proposed

method is able to simultaneously detect outlying individuals and items that deviate

from a given baseline model. Furthermore, a compound decision theory is proposed

for the detection of two-way outliers under a Bayesian decision framework. Statis-

tical inference is carried out under a fully Bayesian framework for which a parallel

tempering MCMC algorithm is developed. The algorithm presented in Appendix

C.1 is a powerful tool for improving the sampling of multi-modal posterior distri-

butions. It is relatively easy to implement, as the algorithm can be performed on

multiple processors to improve computational efficiency. The algorithm can fit a

dataset consisting of 4,000 persons and 400 items in 2 minutes 27 seconds on an

Intel machine (2.2GHz Intel Core i7) with 8 threads.

The proposed two-way outlier detection model is largely motivated by, and applied

to, the simultaneous detection of test takers who benefit from item preknowledge and

compromised items in educational tests. The proposed method does not rely on prior

knowledge about either the test takers with item preknowledge or the compromised

items, and thus is directly applicable to operational tests as a monitoring tool or

more generally about outlying cases and items in other applications.

The proposed method is successfully applied to data from a licensure test which

is known to suffer from item preknowledge. In this study, two models are applied,

including the reduced model for item responses and the full model for item responses

and response times. Both models accurately detect the potential cheaters and com-

promised items identified by the testing program, suggesting their usefulness in

practice. In addition, the full model performs slightly better than the reduced one,

suggesting that response-time information may help detect cheating. However, it

should be noted that the labels provided by the testing program in this example

are not the ground truth and thus the accuracy measures may be compromised.
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The validity of the proposed method remains to be checked through applications to

other educational tests. We note that a simple model, such as the one applied in

the case study, may be preferable for the detection of cheating in educational tests,

even though more general models are available as discussed in Section 3.2. This is

because the numbers of test takers with preknowledge and compromised items are

usually small in an educational test, which makes the effective sample sizes small for

estimating parameters related to the outlier classes. In that case, a more complex

model may lead to a high variance in the estimation, which further yields inaccurate

classifications.

Limitations of the proposed method have been discussed in Section 3.2.1.4 as well

as its robustness against model misspecification in Section 3.6.2. Another limitation

is that it only models a specific type of cheating, i.e., preknowledge due to item

leakage. It does not handle other types of cheating behaviours, such as copying

others’ answers, electronic transmission of data, hiring stand-ins, and bribing test

administrators to correct one’s answers. To investigate different types of cheating

behaviours, different sources of information are needed and suitable statistical meth-

ods remain to be developed. For example, to detect copying behaviour, a statistical

model is needed to characterise the similarity between the item responses from two

test takers, possibly taking into account their response process information (e.g.,

response time), and seat locations in a test centre, etc. We leave these problems for

future investigation.

Missing data are widely encountered in educational tests that may be informative

for the detection of cheating, though not observed in our real data example. For

an educational test with cheating test takers, the missingness of response likely de-

pends on whether the test taker is cheating and whether the item is compromised.

If many missing responses are observed, then the current framework should be ex-

tended by modelling the probabilities of responding. This problem is left for future

development, for which ideas may be borrowed from latent variable models for non-

ignorable missingness (e.g., Kuha, Katsikatsou, & Moustaki, 2018; O’Muircheartaigh
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& Moustaki, 1999).

Besides the applications to cheating detection in educational tests, future research

will be conducted to investigate the computation, model evaluation and comparison

in other areas of application, such as voting behaviours and psychological measure-

ment. Specifically, MCMC algorithms for the Bayesian inference of the proposed

two-way classification model will be further explored. Although our parallel temper-

ing algorithm works well for the current analysis, its performance will be evaluated

under more settings, especially large-scale settings (larger numbers of individuals

and items). In addition, other tempering methods, such as simulated tempering,

can be explored. Moreover, goodness-of-fit issues and model selection will be fur-

ther studied. In particular, the use of Bayes factors and BIC for comparing the

proposed model with several relevant models will be investigated.



Chapter 4

Explanatory Two-way Outlier

Detection Model

4.1 Introduction

We have proposed a method for detecting two-way outliers in multivariate data

without any prior knowledge of the outlying status of individuals and items. The

two-way outlier detection model proposed in the previous chapter incorporates a

double mixture structure with an IRT-type model. In the absence of two-way out-

liers, the model reduces to an IRT model for fitting the standard item-response

behaviour. In the presence of two-way outliers, the latent class component captures

the effect of outliers while the IRT model component still captures the standard

item-response behaviour.

The outlier detection has thus far been informed by item responses (and response

times in the full model case), without relying on any information contained by exter-

nal covariates for individuals and items. It is worth mentioning that in a wide range

of studies in social research, education or behavioural science, covariate information

is routinely gathered through questionnaires or institutional records in addition to

item responses. Covariates often contain demographic and contextual characteris-

tics such as gender, ethnicity, country of residence, and education level. The licence

118



4.1. Introduction 119

test dataset previously used in Section 3.5, for example, contains external variables

indicating one’s attempt count, education background and item usage, to name a

few. These external variables may provide more insights into the difference between

compromised and uncompromised items, and between test takers with and with-

out prior access to the compromised items. While the observed covariates may not

be directly associated with item responses, they can indirectly affect the response

probabilities through their relations with latent indicators of outlyingness. More-

over, they may also affect the distributions of the latent person-specific (e.g. person

ability) and item-specific parameters (e.g. item difficulty). Therefore, it remains

to be seen whether the inclusion of covariates would improve the classification of

persons and items and hence inform the two-way outlier detection.

Another limitation of the two-way outlier detection model is that it assumes the

independence between the latent indicators of outlyingness and the latent person

and item parameters. This assumption may be too restrictive. In the example of

detecting cheating due to item preknowledge, it is often the case that more chal-

lenging items are more likely to be leaked because they are often considered to be

more beneficial to test takers with preknowledge in a sense that they serve to dis-

tinguish top candidates amongst those others. The dependence also goes for the

person-specific latent indicator and latent trait. Research (Cizek & Wollack, 2016;

Simha & Cullen, 2012) suggests that person ability and one’s chance of cheating are

related. Therefore, we have a practical reason to relax this assumption. The latent

parameters can be viewed as latent covariates that are used to predict the latent

class memberships of individuals and items along with observed covariates.

In this chapter, we extend the previously proposed two-way outlier detection model

for item response data in an explanatory framework. The extension aims to incor-

porate covariates into the two-way outlier detection model through their relations

with the latent class indicators as well as the distributions of latent person and item

parameters. The assumption that the latent class indicators do not depend on the

latent parameters is also relaxed within the explanatory framework.
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Review of Covariate Inclusion in (Mixture) IRT Models

The two-way outlier detection model can be viewed as a double-mixture IRT model

that reduces to an IRT-type model in absence of two-way outliers. In what follows we

review research of relevance to covariate inclusion in IRT and mixture IRT contexts.

An IRT model in its basic form does not incorporate covariates, but extensions can

be made to allow for covariates. Covariates can be included in IRT models (and

mixture IRT models) in different ways depending upon whether they are person-

specific or item-specific, whether they are observed or latent, and if they are observed

covariates, whether they are directly associated with item responses (conditioning on

the latent variables) or indirectly associated with item responses through affecting

the distributions of latent parameters.

De Boeck and Wilson (2004) presented a doubly explanatory item response theory

(EIRT) modelling framework incorporating the effects of observed and latent co-

variates on person and item sides with an IRT-type model. Wilson, De Boeck, and

Carstensen (2008) applied the EIRT framework to Rasch and 2PL IRT models. This

leads to a doubly explanatory model which allows person-specific observed and latent

covariates, and item-specific observed covariates to be directly associated with item

responses. It is worth noting that item parameters in this specification are treated

as fixed effects as opposed to random effects or latent variables, as item difficulty

is assumed to be perfectly predicted by item-specific observed covariates. Janssen,

Schepers, and Peres (2004) relaxed this assumption and proposed an EIRT model to

further account for random item variation. The full EIRT model is estimated using

a Gibbs sampling method in a Bayesian setting.

The explanatory analysis has also been used outside the scope of the conventional

IRT modelling framework, including mixture IRT and other mixture modelling

frameworks. Recall that mixture IRT models are built upon the IRT models with

latent class analysis and are known for their capacity to handle population hetero-

geneity and latent DIF (Cohen & Bolt, 2005). Covariates can be incorporated in
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mixture IRT models through their relations with person- or item-specific latent class

indicators, which is found to be useful in improving model parameter estimation and

explaining members in the latent classes (Smit, Kelderman, & van der Flier, 1999).

Rost (1990) addressed a mixture Rasch model (MRM) in the case when person-

specific covariates may be associated with an individual’s latent class membership.

The classification of individuals was substantially improved by relating latent class

membership to external covariates. Cohen and Bolt (2005) extended the MRM to

identify items exhibiting DIF across both observed and latent groups of individuals.

Dai (2013) directly included person-specific covariates in a mixture Rasch model

(MRM) under a logistic regression to estimate proportions of latent classes and hence

more accurately recovered the latent classes and improved parameter estimation.

Park, Xing, and Lee (2018) extended the explanatory framework to a cognitive

diagnostic model (CDM) and proposed to integrate observed and latent predictors on

both person and item levels into a CDM. Recall that a CDM consists of a latent class

model component for allocating individuals to different skill profiles (also known as

attributes) and an IRT model component for assessing the diagnostic efficiency of

individuals based on their responses to measured items. In the proposed explanatory

CDM, observed covariates are directly associated with the response probabilities and

also indirectly associated with the responses by affecting the attributes.

The studies mentioned above, with the exception of Park et al. (2018), used a

two-step approach to estimate explanatory mixture IRT models. According to the

two-step approach, a mixture IRT model without involving covariates is estimated

first to obtain estimates for latent variables, including person- or item specific- la-

tent class memberships and latent parameters, and then the estimates for latent

class memberships and latent parameters are regressed on covariates. However, the

explanatory framework allows latent class membership and latent parameters to be

estimated while at the same time accounting for their relationships with covariates.

Smit, Kelderman, and van der Flier (2000) showed that the classification can bene-

fit substantially from incorporating covariates during the estimation process of the
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latent class membership. Park et al. (2018) also emphasised the value of simultane-

ously estimating latent variables and covariate effects within the explanatory CDM

framework.

The study in this chapter builds upon the previous research on the explanatory

analysis of IRT and mixture IRT models and differs from them in the sense that

person and item covariates are included in a double-mixture IRT model to estimate

their relations with the latent person and latent item parameters, and along with

the latent parameters, to predict latent class memberships for persons and items.

We anticipate that covariate inclusion will improve the detection of two-way outliers

and be helpful in explaining the relations between latent variables and person and

item characteristics. In addition, performances of the two-way outlier detection

model with covariates and the two-way outlier detection model without covariates

are compared to examine the possible advantages of including covariate information.

The rest of this chapter is structured as follows. In Section 4.2, we review the pre-

viously proposed two-way outlier detection model and propose to extend the model

in an explanatory framework. In the following section 4.3, we specify the details of

the Bayesian inference procedures and revisit compound decision rules and model

comparison under the proposed explanatory two-way outlier detection framework.

In Section 4.4, we revisit the licensure test data and use the proposed model for

cheating detection. In order to see whether covariate inclusion and relaxation of the

independence assumption would improve cheating detection, the classification per-

formance under the current model is compared with that under the reduced model

proposed in the previous chapter. We also look at the interpretation of the estimates

for parameters that characterise the relationship between latent class memberships

and covariates. Simulation studies are conducted in Section 4.5 to examine the

stability of parameter estimation and classification under the proposed model in

simulation settings with different sample sizes, item sizes and levels of the outlier ef-

fect. Furthermore, the classification and detection results under the proposed model

are compared with those under its two submodels, in which covariate effects on per-
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son ability, item difficulty, and latent class membership for persons and items are

not fully accounted for, or not incorporated at all. Finally, key findings and future

work are discussed in Section 4.6. The details for the parallel tempering MCMC

algorithm can be found in Appendix C.2.

4.2 Model Setup

Recall that in Section 3.2, we propose a two-way outlier detection model for item

response data (i.e. the reduced model). The item response data consist of binary

outcomes Y N×J in response to J item from N persons. In this section, we review

the reduced model, the assumptions that the model relies on, and why some model

assumptions may be restrictive. The need for relaxing some assumptions, together

with the necessity of covariate inclusion, leads to the proposal of the explanatory

two-way outlier detection model.

4.2.1 Review of the Two-way Outlier Detection Model

The two-way outlier detection model relies upon an IRT model component as the

baseline model for fitting standard item-response behaviour. The baseline model

used in the previous chapter is the Rasch model, which connect the response from

person i to item j with their ability level θi (i = 1, . . . , N) and item difficulty βj

(j = 1, . . . , J). To capture atypical item-response behaviour, a latent class model

or a double mixture component is added to the baseline model component. The

latent class component introduces two latent indicators of whether person i or item

j is outlying, denoted as ξi and ηj, respectively. The inclusion of the latent class

component essentially makes the problem of two-way outlier detection a two-way

classification problem. The effect of two-way outliers on item responses is modelled

by a drift parameter δ, which is assumed to be constant for all outlying individuals

and items. The drift can be made person- or/and item-specific, non-positive or

non-negative, depending on context.
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The item response function (IRF) with an additional latent class component for

capturing the effect of two-way outliers is given by Equation (3.2.1):

P (Yij = 1|θi, ξi, βj, ηj) =
exp(θi − βj + ξiηjδ)

1 + exp(θi − βj + ξiηjδ)
. (4.2.1)

The model is applied to the detection of cheating due to item preknowledge in a

licensure test in Section 3.5.2. In absence of cheating (i.e. ξi = 0 and ηj = 0), the

model reduces to the baseline model for fitting standard item-response behaviour. In

the presence of cheating (i.e. ξi = 1 and ηj = 1), test takers with preknowledge are

more likely to give correct responses to compromised items. To reflect the potential

boost in their response probability as a result of cheating, the drift parameter δ is

constrained to be non-negative.

All parameters in the two-way outlier detection model are simultaneously estimated

under a fully Bayesian framework. The hierarchical structure of the two-way outlier

detection is shown in Figure 4.3.1a. The classifications of persons and items are

made based on posterior probabilities of ξi and η given observed data: P (ξi = 1|Y )

and P (ηj = 1|Y ), for i = 1, . . . , N and j = 1, . . . , J .

There are several key assumptions are made for the two-way outlier detection model.

First, item responses are conditionally independent given person- and item-specific

latent parameters θi, βj, ξi, and ηj. Second, for either a person or an item, the

latent indicator of outlyingness (ξi or ηj) is assumed to be independent of the latent

parameter (θi or βj). The second assumption, however, may not be widely supported

by empirical evidence. In the context of cheating detection, one’s chance of cheating

is believed to be associated with one’s ability level. Both Cizek and Wollack (2016)

and He, Meadows, and Black (2020) suggested that one’s ability may be negatively

associated with the chance of cheating on compromised items, meaning that less

capable test takers are more likely to have the motivation to cheat on compromised

items to get by. Cizek and Wollack (2016) also provided an alternative view that

above-average examinees are more likely to get prior access to difficult items. The
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potential relation between item leakage and item difficulty cannot be overlooked

as well. Studies undertaken by Cizek and Wollack (2016) and Wagner-Menghin,

Preusche, and Schmidts (2013) suggested that more challenging exam material is

more likely to be leaked and meanwhile item preknowledge on easier items is more

difficult to detect. Therefore, the independence assumption needs to be relaxed to

account for the potential relationship between latent indicators of outlyingness and

continuous latent parameters.

4.2.2 Proposed Model

To improve the classification and further inform the detection of two-way outliers,

we propose to extend the two-way outlier detection model (4.2.1) in an explanatory

framework, where latent indicators of outlyingness are allowed to be associated with

covariates and latent predictors which include individual ability and item difficulty.

Let xi ∈ Rp be a p-dimensional column vector of covariates specified for person i

and zj ∈ Rq be a q-dimensional column vector containing covariates for item j. We

assume that covariates are not associated with the item responses Yij’s directly, but

through the latent indicators of outlying status, ξi’s and ηj’s.

The conditional relationships between latent indicators of outlyingness and covari-

ates given continuous latent variables can then modelled by logistic regressions:

P (ξi = 1|xi, θi) =
exp[a⊤x̃i + g1(θi,λ)]

1 + exp[a⊤x̃i + g1(θi,λ)]

P (ηj = 1|zj, βj) =
exp[z̃⊤

j b+ g2(βj,ϕ)]

1 + exp[z̃⊤
j b+ g2(βj,ϕ)]

,

(4.2.2)

where x̃⊤
i = (1,x⊤

i ), z̃
⊤
j = (1, z⊤

j ), a = (a0, a1, . . . , ap), and b = (b0, b1, . . . , bq). a0

and b0 denote intercepts and their values correspond to the proportions of outlying

individuals and items in the data. a1, . . . , ap, b1, . . . , bq are regression coefficients

corresponding to observed predictors xi and zj, respectively.

Functions g1 and g2 serve to flexibly determine the functional shapes of the rela-
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tionships between the latent indicators and latent parameters θi and βj. g1 and

g2 can be represented using regression splines. Specifically, the regression spline of

a latent predictor can be comprised of a linear combination of known basis func-

tions and unknown regression parameters, λ and ϕ. A common choice for the basic

functions is polynomial functions. In the application of cheating detection, if the

average test takers are believed to be more likely to cheat than the struggling or

top test takers, then g1 takes a quadratic function of θi: g1(θi,λ) = λ1θi + λ2θ
2
i ,

where λ = (λ1, λ2). If the chance of an item being compromised is positively corre-

lated with item difficulty, it is not unreasonable to assume g2(βj,ϕ) = ϕ1βj, where

ϕ = (ϕ1).

The explanatory model assumes that item responses are conditionally independent

given person- and item-specific latent variables, θi, βj, ξi, and ηj, while allowing for

the dependence between the latent indicators and latent parameters, and between

the latent parameters and covariates. The explanatory model still assumes that out-

lying individuals and items are not dominant in the data, which can be guaranteed

by imposing weakly informative priors on the intercept parameters a0 and b0. Dif-

ferent from the previous models, the explanatory model allows the means of person-

and item-specific latent parameters to depend on relevant covariates. By doing this,

the distributions of person ability can vary across the demographic groups. More

details are provided in the following Section 4.3.1.

4.3 Bayesian Inference and Compound Decision

The explanatory two-way outlier detection model (Equations 4.2.1 & 4.2.2) is esti-

mated under a full Bayesian framework, where model parameters, including θi’s, ξi’s,

βj’s, ηj’s, δ, a, λ, b, and ϕ are all treated as random variables. A parallel tempering

MCMC algorithm is applied to the explanatory model to sample model parameters

from their joint posterior distribution. The details are presented in Appendix C.2.

Convergence is assessed based on trace plots and the Gelman-Rubin (GR) statistic
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(Gelman & Rubin, 1992). When the trace plots show that the deviance of each chain

is stabilised, and the juxtaposition of multiple chains with different starting points

makes it clear that the convergence is reached, the GR statistic is computed for the

global parameters which are not person- or item-specific. The GR statistic value is

at around 1.01 for all the global parameters, suggesting these chains converged to

their equilibrium distributions.

In this section, we first specify priors and hyperpriors and then briefly revisit the

compound decision framework for the detection of two-way outliers under the ex-

planatory model.

4.3.1 Hierarchical Model Specification

The hierarchical structure of the explanatory two-way outlier detection model is

displayed in Figure 4.3.1b. Two outer plates represent persons and items and the

inner plate represents item responses. We specify the priors and hyperpriors for the

nodes in Figure 4.3.1b under a full Bayesian setting.

We start by specifying the prior distribution for person-specific parameters. The

latent indicator, ξi, depends on the person ability parameter, θi. The conditional

distribution of ξi given θi is defined by the model (4.2.2). The previous outlier

detection model assigns a normal prior, denoted by N(0, σ2), to θi. The normal prior

is also independent of person-specific covariates. Under the explanatory framework,

we can take into account the ways in which θi differs among groups of individuals or

changes with observed covariates. Thus, the hierarchical structure of the explanatory

model shown in Figure 4.3.1b includes the relation between the latent parameter and

covariates for indicating individual or contextual characteristics.

The prior for θi is assumed to be normal and the prior mean is allowed to depend

on person-level covariates xi: θi ∼ N(υi, σ
2), where υi = c⊤x̃i, x̃

⊤
i = (1,x⊤

i ), and

parameters c = (c0, c1, . . . , cp). The prior mean of θi, for i = 1, . . . , N , is subject

to an identifiability constraint
∑

i c
⊤x̃i = 0 or c0 = −c⊤x̄i. This can be achieved
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(a) Two-way Outlier Detection Model using
item response data.
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(b) Explanatory Two-way Outlier Detection
Model using covariates and item response
data.

Figure 4.3.1: Hierarchical framework for the two-way outlier detection model in Section
4.2.1 and the explanatory two-way outlier detection model in Section 4.2.2. The box with
i = 1, . . . , N in the top-left corner indicates that each parameter inside is specific to a value
of i. The same explanation is also applied to the box with j = 1, . . . , J in the bottom-right
corner.

by mean-centring person-specific covariates xi and leaving the intercept, c0, out

of model fitting. In the special case where the person-specific covariate column

vector xi is empty, the model assumes that θi does not depend on the covariates:

θi ∼ N(0, σ2). We can also make θi heteroscedastic by allowing its variance to depend

on relevant covariates if the variance varies across regions and subpopulations, or

changes over time. This possible extension is discussed in Section 4.6.

The similar covariate-dependent prior can be specified for the item parameter, βj.

The conditional distribution of ηj given βj is also defined in Equation (4.2.2). βj is
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assumed to follow a normal prior with the prior mean depending on the item-specific

covariates zj: βj ∼ N(µj, ω
2), where µj = d⊤z̃j, z̃

⊤
j = (1, z⊤

j ), and parameters d =

(d0, d1, . . . , dq). In the special case where the item-specific covariate column vector zi

is empty, the model assumes βj to be independent of the covariates: βj ∼ N(µ, ω2),

where µ = d0.

It remains to assign the hyperpriors to parameters that do not vary across individuals

and items. The same weakly informative priors previously used in Section 3.4.1 are

assigned to ω2, σ2 and δ again.

1. σ2 and ω2 independently follow an inverse-Gamma distribution with shape 0.5

and scale 1, denoted as IG(0.5, 1).

2. Outliers may positively or negatively affect item response probabilities, de-

pending on context. This needs to be reflected by the prior for the drift

parameter. A half-Cauchy distribution with a scale of 2.5 is assigned to δ in

the application of cheating detection because cheating on compromised items

would increase the positive response probabilities.

The intercepts a0 and b0 are constrained to be strictly negative since the proportions

of outlying individuals and items are on the interval (0, 1) and assumed to be lower

than 50%. Ideally, the prior distribution for the intercepts is expected to be slowly

approaching zero, because the proportion of outlying individuals or items should

avoid the boundaries of the (0, 1) interval. Therefore, a Gamma distribution with

shape parameter 3 and scale parameter 1, denoted as Gamma(3, 1), is independently

assigned to −a0 and −b0.

Finally, we move on to regression coefficients in Equation 4.2.2, a, λ, b and ϕ

bar a0 and b0. Without sufficient information about whether these coefficients are

positive or negative, we have good reason to assume a weakly informative hyper-

prior centred at zero. Moreover, we would like to restrict these coefficients away

from extremely large values and meanwhile do not want to avoid any possible large

value. Therefore, a Normal distribution with mean 0 and variance 25 is assumed:
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a1, . . . , ap, b1, . . . , bq, λ1, λ2, ϕ1
i.i.d∼ N(0, 52). The same choice is made for c and d:

c1, . . . , cp, d0, d1, . . . , dq
i.i.d∼ N(0, 52).

4.3.2 Compound Decision

The detection of outlying individuals and items is assessed within a compound deci-

sion based on the item responses and the covariate information from all individuals

and all items. The classification is made according to the posterior probabilities

of the latent indicators given item responses and covariates: P (ξi = 1|Y ,xi) and

P (ηj = 1|Y , zj), where i = 1, . . . , N and j = 1, . . . , J . However, as mentioned

earlier on, the posterior probability that a person or an item is an outlier is an

individual-wise measure. To evaluate decision-making at an aggregated level of all

individuals and all items, the compound decision theory developed in Sections 3.3.2

and 3.3.3 is needed. The quality of decisions is again determined by the False

Discovery Proportion (FDP) and the False Non-discovery Proportion (FNP). Since

both FDP and FNP cannot be directly obtained without knowing the status of each

person and each item, the posterior means of the FPP and FNP, which are known

as the local FDR and local FNR, are used instead. Given data and a decision rule,

the local FDR and local FNR are completely determined under the proposed model

(Efron, 2008; Efron et al., 2001; Robbins, 1951).

4.3.3 Model Comparison

The model comparison is carried out using the deviance information criterion (DIC;

Spiegelhalter et al., 2002), which can be computed while estimating marginal likeli-

hood using MCMCmethods. Again we base the DIC on the marginal (log-)likelihood

in which the person- and item-specific parameters are treated as latent variables or

random effects and integrated out.The calculation details are already provided in

Section 3.4.3. The model with a smaller DIC value would be more compatible with

a replicated dataset of the same structure as the observed data and is therefore pre-
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ferred. In the case study, the marginal DIC is used to determine whether covariates

provide substantial information about the latent indicators for persons and items.

4.4 Case Study: Licensure Test Data

The proposed explanatory outlier detection model is applied to the same computer-

based licensure test dataset introduced in Section 3.5.1. The data have been applied

to the previously proposed two-way outlier detection models to simultaneously de-

tect test takers with preknowledge and compromised items without knowing a priori

the status of each test taker and each item. As described in Section 3.5.1, the dataset

contains N = 1624 test takers and J = 170 test items. There is one person whose

attempt count was recorded as zero. Since a score of 1 indicates that the person is

a first-time test taker, a score of zero is likely to be an input error. The final version

of the dataset consists of the responses from 1623 test takers (N = 1623). The

testing program flagged a proportion of test takers and items as suspects. These

flagged candidates or items may not be the actual cheaters or compromised items,

but again we use this information as partial truth to evaluate classifications based

on the explanatory model.

4.4.1 Description of Potential Covariates

The Licensure test data contain the background information of each candidate,

including their attempt count, the country where they were schooled, the state where

they applied for a licence, test centre, test training institution etc. The description

and coding for external variables of interest are presented in Table 4.4.5.

The first person-specific observed covariate under consideration is attempt count

since a test taker’s performance in terms of total scores is negatively correlated to

their number of attempts, according to Cizek and Wollack (2016). Table 4.4.1 shows

the frequency for attempt counts ranging from 0 to 4 and more than 4. Since the
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median and the mode are 1, we used a binary variable for the attempt count: x1i = 0

if person i is a first-time test taker, and x1i = 1 if person i has attempted more than

once and is a repeat examinee.

The second person-specific observed covariate of our interest indicates the country

where a test taker was educated. Table 4.4.2 lists the countries and their corre-

sponding frequencies. We grouped this variable into a binary indicator denoted by

x2i: 0 for “USA” and 1 for “non-USA”.

Cizek and Wollack (2016) mentioned that one’s pass rate tends to be related to the

country where they went to schools across their previous attempts. Among those

who were educated in the United States, the pass rates tend to be much lower for

repeat test takers than those for first-time candidates. By contrast, pass rates tend

to remain similar across attempts for those who were schooled in Asian countries,

regardless of their attempt counts. Therefore, an interaction between the attempt

count and the country is incorporated to account for the potential difference between

first-time and repeat candidates given the countries where they were schooled.

No. Attempts 0 1 2 3 4 4+
Frequency 1 1161 207 104 47 104

Table 4.4.1: Licensure Test Data: Fre-
quency table of the number of attempts
made by test takers. A score of 1 indi-
cates that candidate is a new, first-time
examinee. Score for any person sitting
for the test for the fourth time or more
is marked as 4+.

Country USA Non-USA
Frequency 1239 384

Table 4.4.2: Licensure Test Data: Fre-
quency table of countries where test tak-
ers were educated.

Observed covariates on the item side include item usage and variables related to the

location of the testing centre. The latter is way too sparse and barely informative.

Items usage is considered by previous research (Cizek & Wollack, 2017) to be helpful

in explaining the chance of leakage. So our focus is on item usage as a predictor to

inform the latent indicator of outlying items.

Table 4.4.3 shows the frequencies of the times the J = 170 items have been used.

There are 78 items that have been used more than twice, 69 items that have been
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used twice, and only 23 items that have not been used in previous tests. We used

the median (“2”) as the cutting-off point and regrouped the item usage using two

dummy variables z1 and z2, as shown in the first two panels in Table 4.4.4. Panel

4.4.4c shows that the two dummy variables indicate three categories from “never

used before” to “repeatedly used”: “less than twice” if z1 = 0 and z2 = 0; “exactly

twice” if z1 = 1 and z2 = 0; “more than twice” if z1 = 0 and z2 = 1.

Item Usage 1 2 3 4 5 6 7 8 9 10 11 12
Frequency 23 69 37 19 5 7 3 1 3 1 1 1

Table 4.4.3: Licensure Test Data: Frequency table of the times items have been used in
tests.

Item Usage ̸= 2 = 2
z1 0 1
Frequency 101 69

(a) Item usage coded by a sin-
gle dummy variable z1.

Item Usage ⩽ 2 > 2
z2 0 1
Frequency 92 78

(b) Item usage coded by a
single dummy variable z2.

Item Usage < 2 = 2 > 2
z1 0 1 0
z2 0 0 1
Frequency 23 69 78

(c) Item usage coded by two
dummy variables z1 and z2.

Table 4.4.4: Licensure Test Data: Frequency table of item usage.

Finally, we include two continuous covariates relating to response times: averaged

response time taken by each test taker and averaged response time spent on each

item, denoted by xi3 and zj2, respectively. Cizek and Wollack (2016) based the

detection of compromised items on response times. The comparison between the

reduced and the full model in Chapter 3 also suggests that response time data contain

substantial information about the test takers with preknowledge and compromised

items. We, therefore, expect that the inclusion of response times would improve the

prediction of latent class memberships of individuals and items.

4.4.2 Model Specification

We first specify the relationships between the latent indicators of outlyingness, ξi

and ηj, and predictors on both person and item levels. As mentioned in Section

4.2.2, the latent indicators of test takers with preknowledge and compromised items

may also depend on the latent person and item parameters, in addition to observed
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covariates. Person ability has been used to predict the chance of cheating (Cizek,

1999). Cizek and Wollack (2016) gave the empirical evidence that candidates at the

top are less likely to be flagged by the testing program. Simha and Cullen (2012),

however, pointed out that the average test takers are more likely to cheat than

the struggling or top candidates. For these reasons, we use a quadratic function

to represent the relationship between person-specific latent indicator ξi and person

parameter θi.

Item difficulty is believed to be associated with the chance of being compromised.

Presumably, most test takers are able to correctly respond to easy questions and

therefore don’t really have the motive for gaining inappropriate access to this con-

tent. It is the difficult test items that distinguish top candidates from the rest.

Therefore, difficult items are more likely to be compromised. Under the assump-

tion of a positive association between item difficulty and an item’s chance of being

compromised, the difficulty level is included in the explanatory model as a linear

predictor. Cizek and Wollack (2016) also pointed out item difficulty level might

change as item usage increases. Therefore, it might be also worth investigating

whether the impact of item difficulty exerts on the chance of being compromised

varies from new items to frequently recycled items.

In Table 4.4.5, we describe observed and latent predictors and their associated co-

efficients (Equation 4.2.2).

Predictor Coef. Definition Variable Type
xi1 a1 No. of attempts made by person i Binary (1 for ”more than once”)
xi2 a2 Country where person i was educated Binary (0 for US, 1 for non-US)

xi1 · xi2 a3 Interaction effect between Binary
attempt count and country for person i

xi3 a4 Average response time taken by person i Continuous
θi λ1 Ability of person i Continuous, latent
θ2i λ2 Squared ability of person i Continuous, latent
zj1 b1 Times item j has been used in tests Binary (1 for ‘twice’)
zj2 b2 Times item j has been used in tests Binary (1 for ‘more than twice’)
zj3 b3 Average response time spent on item j Continuous
βj ϕ1 Difficulty level of item j Continuous, latent

Table 4.4.5: Licensure Test Data: A list of predictors along with their corresponding
coefficients in the explanatory model.
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We now move on to specify the distributions of continuous latent variables, condi-

tional on covariates. One’s attempt count (xi1) is likely to be indicative of one’s

ability. One’s proficiency in test items may also be related to the country where

a candidate was schooled (xi2) since different solution strategies had been taught

through different education experiences and may have varying degrees of effective-

ness. Moreover, the average time taken by a test taker (xi3) may be associated with

their ability as those who spend more time on test items are likely to be less capable.

Thus, θi is assumed to follow a normal linear model with a constant variance in the

form of

θi ∼ N(c1x
∗
i1 + c2x

∗
i2 + c3x

∗
i3, σ

2), (4.4.1)

where x∗i1, x
∗
i2 and x∗i3 refer to the mean-centred covariates so that the arithmetic

mean of the prior means of θi, for i = 1, . . . , N , can be fixed at zero.

Item difficulty may depend on item usage since a decrease in mean item difficulty

is likely to happen when test items are recycled, according to Wood (2009). Fur-

thermore, the amount of time spent on an item (zj3) is likely to be associated with

the item’s difficulty, as the items which cost test takers more time are likely to be

more difficult. The item difficulty, βj, is therefore assumed to follow a normal linear

model with a constant variance given by

βj ∼ N(d0 + d1zj1 + d2zj2 + d3zj3, ω
2). (4.4.2)

Table 4.4.6 presents the covariates used for characterising the distributions of latent

parameters, θi and βj, under the explanatory model.

Predictor Coef. Definition Variable Type
xi1 c1 No. of attempts made by person i Binary (1 for ”more than once”)
xi2 c2 Country where person i was educated Binary (0 for US, 1 for non-US)
xi3 c3 Average response time taken by person i Continuous
zj1 d1 Times item j has been used in tests Binary (1 for ‘twice’)
zj2 d2 Times item j has been used in tests Binary (1 for ‘more than twice’)
zj3 d3 Average response time spent on item j Continuous

Table 4.4.6: Licensure Test Data: A list of covariates and their associated coefficients
used for characterising the distributions of latent parameters.
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4.4.3 Results

The item response data with covariates were analysed using the proposed explana-

tory model. Based on the MCMC algorithm given in Appendix C.1, we ran 10

MCMC chains with random starting points. For those parameters which also ap-

pear in the outlier detection model, we used the posterior means obtained in the

previous chapter as the baseline for their initial values. Through inspecting trace

plots for the deviance of each chain and calculating the Gelman-Rubin (GR) statistic

for global parameters (GR is below 1.116 for all the global parameters), we concluded

that these chains converged to their equilibrium distributions after 35,000 iterations.

The inference is made based on 100,000 posterior samples from the ten converged

chains, where each chain contributes 10,000 samples. Posterior means and 95%

credible intervals for global parameters (i.e. the parameters that do not vary across

different individuals or items) are presented in Tables 4.4.7, 4.4.8 and 4.4.9. The pos-

terior means are used as parameter estimates and the credible intervals summarise

the uncertainty in parameter estimates.

We are particularly concerned about the intercepts a0 and b0 since they are related to

the proportions of compromised individuals and items. Notice that the proportions

of test takers and items flagged by the internal testing program are approximately

2.5% and 37.6%, respectively. The priors specified for the intercepts, a0 and b0,

restrain their values to be negative so that the proportions can be constrained below

50%. The details for weakly-informative priors are already provided in Section 4.3.1.

The interpretation of posterior mean estimates for the parameters in Equation 4.2.2

is described as follows.

1. The posterior mean for a0 is -3.2564, meaning that the odds that a first-

time test taker who was schooled in the US cheats is exp(−3.2564) = 0.0385,

without taking into account θ and the average response time x3.

2. The posterior mean for a1 can be interpreted as the difference in the log-odds

between repeat and first-time test takers for those who were schooled in the
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US, holding the person ability and the average response time at constant levels

or values. Table 4.4.7 shows that there is a 95% probability that the “true”

effect of x2 lies within an interval containing zero, given the observed data.

3. The posterior mean for a2 can be interpreted as the difference in the log-

odds between those who were educated outside the US and those who were

educated in the US among first-time candidates, holding the person ability

and the average response time constant. The posterior mean for a2 is 2.2648

and therefore the odds are exp(2.2648) = 9.6292, indicating that getting prior

access to compromised items is more than nine times as likely for those who

were educated outside the US while controlling for other covariates, given the

observed item response data.

4. The posterior mean for a3 can be interpreted as the additional difference in

the log-odds between those whose education was based outside the US and

those who were educated in the US if they are repeat test takers rather than

first-time takers.The posterior mean for a3 is -1.4376 and therefore the odds

are exp(−1.4376) = 0.2375, indicating that obtaining prior access to the com-

promised item is over four times as likely for the repeat test takers who were

also educated outside the US while controlling for other covariates, given the

observed item response data.

5. The posterior mean for a4 is -0.1374, and the 95% credible interval does not in-

clude zero, meaning that for an extra second spent on test items, the expected

change in the log odds ratio is -0.1374. This leads to a nearly 13% decrease

in the odds of cheating (exp(−0.1374) = 87.16%) for first-time examinees who

were educated in the US while holding other predictors constant.

6. The posterior mean for b0 can be interpreted as the log-odds for items that

have been reused less than twice if values for other continuous predictors are

fixed at zero. Table 4.4.7 shows that the odds for items that have been reused

less than twice is exp(−0.7438) = 0.4753, meaning that the estimated π2 would
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be 0.3195 if we fix z1 and z2 at their reference categories (i.e. items are used

less than twice) and ignore the effects of β and the average response time z3.

7. The posterior mean for b0 + b1 can be interpreted as the log-odds for items

that have been reused twice, controlling for other predictors. The posterior

mean for b0 + b2 can be interpreted as the log-odds for items that have been

reused more than twice, controlling for other predictors. According to Table

4.4.7, there is a 95% probability that the “true” effect estimate b1 or b2 lies

within an interval containing zero, given the observed item response data.

8. The posterior mean for b3 can be interpreted as the expected change in the

log-odds for an extra second spent on items. The posterior mean is -0.0343

and the 95% does not include zero, indicating that holding other predictors

constant, for an extra second spent answering test items, the expected change

in the odds is exp(−0.0343) = 0.9663. This change implies that items are

slightly less likely to be compromised as the average response time increases.

Note that the following inferences drawn about subpopulation groups informed by

covariates containing demographic information (e.g. x2) are used as a guide as to

how to interpret a covariate effect on latent class membership. It is necessary to

be cautious about making inferences about the subpopulations indicated by demo-

graphic variables while making high-stakes decisions (Adams, Wilson, & Wu, 1997).

Table 4.4.8 shows the estimation results for parameters that define the relationships

between the latent traits and covariates. According to the table, we are 95% con-

vincing that the “true” effect that each covariate exerts on the means of person

ability and item difficulty falls in an interval excluding zero. The posterior means

for c1, c2 and c3 are negative, meaning that the three person-specific covariates are

negatively associated with the latent indicator of test takers with preknowledge. To

be more specific, while holding other parameters constant, repeat test takers, those

who were schooled outside the US, and those who spent more time on average in

response to test questions tend to be less proficient in contrast to first-time test tak-
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ers, those who were schooled in the US, and those who respond to test items faster.

The posterior means for d1 and d2 are negative, suggesting that reusing items is

negatively associated with item difficulty. The posterior mean for d3 is positive,

meaning that items which cost test takers more time on average tend to be more

difficult. The estimation of the relationships is in line with our expectations.

Predictor Coefficient Posterior Mean 95% CI
a0 -3.2564 (-3.7378, -2.8288)

x1 (attempt) a1 -0.9333 (-2.7905, 0.3436)
x2 (country) a2 2.2648 (1.3026, 3.2954)∗

x1 · x2 (interaction) a3 -1.4376 (-1.9427, -0.9596)∗

x3 (time.person) a4 -0.1374 (-0.1739, -0.1034)∗

θ (ability) λ1 0.3265 (0.0210, 0.6694)∗

θ2 (ability2) λ2 -0.1624 (-0.2833,-0.0658)∗

b0 -0.7438 (-1.3174, -0.6366)
z1 (usage1) b1 -0.3540 (-0.8600, 0.1484)
z2 (usage2) b2 -0.2694 (-0.7682, 0.2267)
z3 (time.item) b3 -0.0343 (-0.0577, -0.0128)∗

β (difficulty) ϕ1 0.3941 (0.0115, 0.7907)∗

Table 4.4.7: Licensure Test Data: Posterior means and 95% credible intervals for pa-
rameters in the explanatory part of the model. The superscript ∗ for 95% credible interval
indicates that given the observed data, we can be 95% sure that the “true” effect that the
predictor exerts on the log-odds ratio falls within the range excluding zero.

Predictor Coefficient Posterior Mean 95% CI
x1 (attempt) c1 -0.5678 (-0.7162, -0.4195)∗

x2 (country) c2 -1.0849 (-1.1876, -0.9822)∗

x3 (time.person) c3 -0.1027 (-0.1125, -0.0114)∗

d0 -0.4216 (-0.9984, -0.1976)
z1 (usage1) d1 -0.7831 (-1.1387, -0.4275)∗

z2 (usage2) d2 -0.8823 (-1.2163, -0.5483)∗

z3 (time.item) d3 0.0346 (0.0174,0.1223)∗

Table 4.4.8: Licensure Test Data: Posterior means and 95% credible intervals for pa-
rameters characterising the relationship between θi and xi, βj and zj. The superscript ∗
for 95% credible interval indicates that we can be 95% sure that the “true” effect that the
predictor exerts on the prior means of θi and βj falls within the range excluding zero given
the observed covariates.

The classification performance is assessed based on the AUCs under the ROC curves

for the two-way classification while tactically using the labels provided by the testing

program as the “true” status. Figure 4.4.1 displays the ROC curves for the clas-

sification of test takers and items by posterior means of latent indicators ξi’s and
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Parameter Posterior Mean 95% CI
σ2 0.3083 (0.1823, 0.4151)
ω2 0.4978 (0.3941, 0.7680)
δ 0.6582 (0.5420, 0.8359)

Table 4.4.9: Licensure Test Data: Posterior means and 95% credible intervals for pa-
rameters in the measurement model.

ηj’s. Compared with the AUCs (86.8% for individuals and 83.6% for items) based

on the reduced model with the cheating effect but without covariate effects given by

Equation (3.2.1), the AUC values under the explanatory model are slightly higher

for test takers (87.1%) but substantially higher for items (91.0%).

We then assess the detections made under the compound decision-making frame-

work. The goal of the compound decisions is to flag as many suspicious test takers

as possible while ensuring that no more than 1%, 5% or 10% of the test takers are

mistakenly flagged. Put another way, if a person is detected, their probability of

cheating is at least 99%, 95% or 90%. As for the detection of compromised items,

the goal is to control the quality of the remaining items, while not removing too

many items. Figure 4.4.2 shows how the local FDR or the local FNR changes as

the number of detections for test takers or items increases. Table 4.4.10 shows the

numbers of detections in regard to test takers and items when the local FDR and

the local FNR are set at three different thresholds (1%, 5% and 10%). We use an

example to explain the table in regard to the curves above. When the local FDR

is controlled at 1%, 19 test takers are detected as cheaters. This is reflected by the

intersection between the local FDR (the black curve) and the 1% threshold (the

red dashed line) in Panel (a), Figure 4.4.2, when applying the proposed compound

decision rule to test takers. As we can see in Panel (a), as the number of detections

increases, the local FDR increases. The number of detections for individuals under

the reduced model without the structural model component in Chapter 3 are 25, 46

and 61, respectively, while controlling the local FDR at 1%, 5% and 10% levels. In

contrast to the previous result, the current model detects slightly fewer individuals

when the FDR is set at 1% and 5%, but slightly more when the FDR is set at
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Figure 4.4.1: Licensure Test Data: ROC curves for classification under the explanatory
model for item response data. Panel (a): ROC curve for the classification of cheaters
(labelled by the testing program) by the posterior means of ξi. Panel (b): ROC curve for
the classification of compromised items (labelled by the testing program) by the posterior
means of ηj. The x- and y-axes of a ROC curve give the true positive rate (TPR) and
false positive rate (FPR) for classification, respectively.

10%. The same plot for items is given in Panel (b), where we control local FNR

for items. Panel (b) shows that the local FNR decreases as the number of detected

items increases. The results under the current model (i.e. 103, 92, 71) are close

to the results under the reduced model without covariates in Chapter 3 (i.e. 100,

91 and 71) It seems that the inclusion of covariate effects and the dependence of

classification on the continuous latent variables changes the decisions on flagging

individuals, but does not contribute much to the decisions on flagging items. Again,

we remark that the validity of the detection results depends on the extent to which

our model assumptions hold. Therefore, we suggest treating such detection results

as initial screening results, rather than as the final decisions.

1% 5% 10%
Test takers 18 48 70

Item 103 92 71

Table 4.4.10: Licensure Test Data: The number of detections for test takers while the
local FDR is controlled at 1%, 5% and 10%, and the number of detections for items while
controlling the local FNR at 1%, 5% and 10%.

We then compare marginal DIC values in Table 4.4.11 between three models, namely
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Figure 4.4.2: Licensure Test Data: Detections based on the explanatory model for item
responses: The local FDR (represented by black solid curves) and the local FNR (repre-
sented by blue dashed curves) as functions of the number of detections.

the null model (without the cheating effect), the reduced model (with the cheating

effect, without the explanatory framework) and the explanatory model (with the

cheating effect, within the explanatory framework). The marginal DIC for the null

model (218,867) is considerably higher than the marginal DIC for the other two,

suggesting that cheating in the form of item preknowledge is likely to exist among

some test takers. This result is also consistent with the analysis in Section 3.5.2.

Between the reduced model and the explanatory model, the latter is preferred due

to a smaller marginal DIC, meaning that the explanatory model is more compatible

with replicated data of the same structure as the licensure test data.

a = 0 & b = 0 a ̸= 0 & b ̸= 0
λ = 0 & ϕ = 0 λ ̸= 0 & ϕ ̸= 0

ξiηj = 0 218,867 –
ξiηj = 1 141,026 135,295

Table 4.4.11: Licensure Test Data: Marginal DIC values under different specifications
of the proposed model.

4.5 Simulation Study

4.5.1 Settings

We use a simulation study for assessing the performance of the proposed model in

terms of classification and model adequacy under different sizes of the data and
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varying degrees of separation between classes. Table 4.5.1 displays the four simu-

lation settings with respect to the sample size, the number of items and the drift

parameter value. We consider two different sample sizes and the number of items:

N = 1000, 2000, and J = 100, 200. Class separation is set to be low and high by

fixing the drift parameter δ in the measurement model at 0.5 and 1.0, respectively.

δ = 0.5 corresponds to a limited advantage that a test taker can benefit from their

prior access to compromised items. δ = 1.0 corresponds to a bigger advantage taken

by a test taker’s preknowledge of compromised items.

For each setting 100 independent datasets were generated from an explanatory model

that accounts for covariate effects on the latent indicators and the continuous latent

variables. To be more specific, we consider two binary covariates: x1i, for person

i = 1, . . . , N , and z1j for item j = 1, . . . , J . The explanatory framework in the

data-generating model is specified below.

P (ξi = 1|xi, θi) =
exp(a0 + a1x1i + λ1θi)

1 + exp(a0 + a1x1i + λ1θi)

P (ηj = 1|zj, βj) =
exp(b0 + b1z1j + ϕ1βj)

1 + exp(b0 + b1z1j + ϕ1βj)

, (4.5.1)

where the means of person and item parameters depend on covariates: θi ∼ N(c1x
∗
i1, σ

2),

where the person-specific covariate is mean-centred, and βi ∼ N(d0 + d1zj1, ω
2).

The model component for item responses is given by Equation (4.2.1). Aside from

the drift parameter δ, the values for parameters are set at the posterior means

obtained from the licensure test data analysis (Tables 4.4.7, 4.4.8 and 4.4.9).

For each dataset, we apply (A) the explanatory model, (B) the explanatory model

without accounting for covariate effects on the continuous latent variables θi and

βj, and (C) the explanatory model without accounting for covariate effects on the

continuous latent variables and the latent indicators (i.e. the reduced model pro-

posed in Chapter 3). The comparisons are made in regard to the classifications and

the decisions across the four settings under the explanatory model. In order to see

whether the inclusion of covariate effects can improve classifications and contribute
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to the decision-making, we also compare the performance of the explanatory model

(A) and its two submodels (B, C) under each setting.

Setting δ N J
S1 0.5 1000 50
S2 1.0 1000 50
S3 0.5 2000 100
S4 1.0 2000 100

Table 4.5.1: Simulation study: Four settings which differ by the benefits from cheating
and the sample and item sizes.

4.5.2 Results

The MCMC algorithm (Appendix C.1) is applied. For each simulated dataset, we

ran 15,000 iterations, with the first 5,000 iterations being discarded as the burn-in.

The estimation and classification results are based on the posterior samples from

the last 10,000 iterations.

We first present the estimation results of the global parameters in the explanatory

model. Table 4.5.2 shows the bias and variance of the posterior mean estimator for

each global parameter based on the 100 replicated datasets. In general, the bias is

close to zero for all global parameters under the four settings. We also find that

the estimation under S3 tends to be more accurate in contrast to S1 because of the

increased sample size and number of items The same conclusion can be drawn when

comparing the estimation results under S2 and S4.

We assess the performance of the explanatory two-way outlier detection model at

all possible classification thresholds by comparing posterior samples of person- and

item-specific latent indicators, ξi and ηj, and their true status, the values used for

simulating the data. The area under the ROC curve (AUC) provides an overall

measure of the classification performance across all classification thresholds. As

mentioned in Chapter 3, the AUC indicates the probability that the model ranks a

random person or item with the compromised status more highly than a random per-

son or item without the compromised status. Table 4.5.3 shows the first, the second
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a0 a1 λ1 b0 b1 ϕ1 c1 d0 d1 σ2 ω2 δ
(S1)
Bias -0.12 -0.04 0.18 0.08 0.24 -0.18 0.07 0.12 0.13 0.18 -0.21 0.13
Var 0.49 0.46 0.24 0.56 0.51 0.31 0.18 0.28 0.17 0.34 0.32 0.31
(S2)
Bias 0.14 -0.15 0.07 -0.08 0.11 0.10 0.06 -0.14 0.09 0.11 0.13 -0.08
Var 0.51 0.44 0.21 0.52 0.44 0.25 0.12 0.29 0.19 0.32 0.34 0.34
(S3)
Bias 0.17 0.15 -0.09 -0.05 0.07 0.06 -0.01 0.06 0.08 -0.13 -0.25 -0.11
Var 0.36 0.38 0.18 0.27 0.25 0.19 0.07 0.22 0.13 0.29 0.27 0.27
(S4)
Bias 0.17 0.15 -0.09 -0.05 0.07 0.06 -0.01 0.06 0.08 0.09 -0.17 -0.09
Var 0.25 0.31 0.14 0.23 0.26 0.15 0.09 0.14 0.09 0.23 0.26 0.29

Table 4.5.2: Simulation Study: The bias and variance for the posterior mean of the
second-level parameters in the explanatory model based on the 100 replicated datasets under
four simulation settings.

and the third quartiles of AUC values for persons and items under the explanatory

model and its two submodels in the four settings. From S1 to S3 or from S2 to

S4, as the sample and item sizes increase, the overall classification for both items

and persons is more satisfactory when the drift is held constant. By comparing the

AUCs under S1 and S2 (or under S3 and S4), when the drift gets larger, meaning

that individuals would benefit more from their preknowledge of compromised items,

the overall classification gets better in general when the sample and item sizes are

held constant. Both tendencies are in line with what we expected; that is, a larger

number of outlying individuals or items, and a stronger outlier effect would better

inform the classification.

We further apply the compound decision rules to estimate whether the test takers

or the items are compromised in aggregate. The compound decision rules are ap-

plied under the explanatory model and its two sub-models. For each independent

replicated dataset, the local FDR and local FNR are controlled at 1%, 5% and 10%,

respectively, for all individuals and items. Each decision rule is evaluated by ex-

amining the resultant FDP and FNP which are shown in Tables 4.5.4 and 4.5.5.

In general, both the FDP for the classification of individuals and the FNP for the

classification of items are well controlled under the explanatory model. The only

exceptions occur when the local FDR and local FNR are controlled to be below 1%
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(A) Individuals Items
AUC S1 S2 S3 S4 S1 S2 S3 S4
25% 0.925 0.935 0.933 0.947 0.921 0.933 0.941 0.961
50% 0.947 0.969 0.962 0.978 0.956 0.970 0.968 0.979
75% 0.984 0.991 0.987 0.993 0.982 0.990 0.994 0.995

(B) Test takers Items
AUC S1 S2 S3 S4 S1 S2 S3 S4
25% 0.917 0.923 0.916 0.938 0.918 0.924 0.923 0.938
50% 0.929 0.957 0.961 0.978 0.958 0.947 0.965 0.980
75% 0.978 0.990 0.984 0.989 0.974 0.980 0.979 0.992

(C) Test takers Items
AUC S1 S2 S3 S4 S1 S2 S3 S4
25% 0.905 0.915 0.913 0.931 0.909 0.921 0.925 0.938
50% 0.918 0.954 0.949 0.965 0.947 0.959 0.956 0.975
75% 0.946 0.963 0.971 0.985 0.972 0.979 0.984 0.995

Table 4.5.3: Simulation Study: Overall classification performance based on the posterior
means of ξi and ηj under (A) the explanatory model, (B) the explanatory model without
accounting for covariate effects on the continuous latent variables, and (C) the reduced
model. For each setting, and each target (test taker/item), we show the 25%, 50%, and
75% quantiles of the AUCs of the corresponding ROC curves from 100 replicated datasets.

for individuals and items, respectively, the resultant FDP and FNP slightly exceed

the target level in the settings where the sample and item sizes are smaller. In S4,

where the sample and item sizes are 2000 and 100, and the outlier effect is stronger,

both the FDP and the FNP are below 1%. Under the model without covariate ef-

fects on person ability and item difficulty and the reduced model, the FDP and FNP

are not as well-controlled as they are under the explanatory model. That said, their

values are still close to or under the target levels, especially in S3 and S4, where the

size of the data is larger.

4.6 Concluding Remarks

In this chapter, we have extended the Bayesian hierarchical two-way outlier detec-

tion model in an explanatory framework. In doing so, covariates are linked with

individuals’ and items’ latent class memberships, and the distributions of contin-

uous latent parameters. The explanatory framework also enables us to relax the

assumption of the independence between latent indicators and latent traits, which
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(A) S1 S2 S3 S4
FDP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.008 0.039 0.072 0.009 0.037 0.065 0.007 0.029 0.063 0.006 0.032 0.069
50% 0.011 0.043 0.084 0.009 0.041 0.078 0.009 0.031 0.071 0.008 0.035 0.080
75% 0.013 0.052 0.096 0.011 0.048 0.083 0.012 0.045 0.079 0.009 0.044 0.085

(B) S1 S2 S3 S4
FDP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.008 0.038 0.089 0.009 0.041 0.086 0.007 0.036 0.082 0.008 0.034 0.081
50% 0.012 0.047 0.095 0.012 0.047 0.094 0.007 0.043 0.091 0.009 0.041 0.088
75% 0.014 0.054 0.104 0.013 0.056 0.108 0.010 0.051 0.098 0.011 0.048 0.101

(C) S1 S2 S3 S4
FDP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.013 0.047 0.091 0.010 0.046 0.089 0.008 0.041 0.083 0.008 0.038 0.080
50% 0.014 0.051 0.098 0.012 0.054 0.095 0.011 0.047 0.091 0.010 0.046 0.093
75% 0.017 0.055 0.111 0.016 0.058 0.109 0.012 0.051 0.104 0.012 0.052 0.103

Table 4.5.4: Simulation Study: Local FDR control for individuals under (A) the ex-
planatory model, (B) the explanatory model without accounting for covariate effects on the
continuous latent variables, and (C) the reduced model. For each setting and each local
FDR target (1%/5%/10%), we show the 25%, 50%, and 75% quantiles of the FDPs of the
corresponding classifications from 100 independent datasets.

(A) S1 S2 S3 S4
FNP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.008 0.039 0.076 0.008 0.041 0.078 0.007 0.038 0.074 0.007 0.033 0.069
50% 0.010 0.044 0.085 0.009 0.043 0.085 0.008 0.042 0.083 0.007 0.043 0.082
75% 0.011 0.054 0.092 0.012 0.051 0.091 0.010 0.047 0.086 0.009 0.048 0.088

(B) S1 S2 S3 S4
FNP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.007 0.042 0.088 0.009 0.039 0.089 0.008 0.042 0.084 0.007 0.039 0.085
50% 0.009 0.049 0.093 0.012 0.048 0.092 0.008 0.047 0.089 0.009 0.046 0.091
75% 0.013 0.056 0.101 0.012 0.055 0.106 0.011 0.052 0.097 0.011 0.051 0.094

(C) S1 S2 S3 S4
FNP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.011 0.044 0.092 0.012 0.047 0.090 0.008 0.045 0.087 0.007 0.044 0.086
50% 0.013 0.052 0.095 0.013 0.052 0.097 0.010 0.049 0.092 0.011 0.048 0.094
75% 0.014 0.058 0.102 0.014 0.056 0.104 0.013 0.053 0.098 0.012 0.053 0.099

Table 4.5.5: Simulation Study: Local FNR control for items under (A) the explanatory
model, (B) the explanatory model without accounting for covariate effects on the contin-
uous latent variables, and (C) the reduced model. For each setting and each local FNR
target (1%/5%/10%), we show the 25%, 50%, and 75% quantiles of the FNPs of the cor-
responding classifications from 100 replicated datasets.

is held by the previous outlier detection model.

Statistical inference is carried out under a full Bayesian setting for which a parallel

tempering MCMC algorithm is used, and the compound decision rules are applied

to the detection of two-way outliers under the Bayesian decision framework. The

explanatory model is applied to the licensure test data which is known to contain

individuals who benefit from preknowledge of compromised items and covariate in-
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formation. We compare the explanatory model and the reduced model proposed in

Chapter 4 in terms of classification results, detections of individuals and items, and

model adequacy. Overall, the explanatory model performs better than the previ-

ously proposed two-way outlier detection model, suggesting that covariate inclusion

and less restrictive model assumptions may be helpful in improving outlier detection.

The performance of the explanatory model is evaluated under four simulation set-

tings with different degrees of outlier effect, sample size and item size. The results

show that the overall classification under the explanatory model tends to be more

accurate, and the FDP and FNP tend to be better controlled, when the sample

size and item size are larger, and when outliers have a stronger effect on response

probabilities. The comparisons are also drawn among the explanatory model and

its two sub-models, i.e the explanatory model without covariate effects on contin-

uous latent variables, and the explanatory model without covariate effects on both

continuous latent variables and latent indicators of outlyingness under the four set-

tings. In conclusion, the overall classification results for both individuals and items

given by the explanatory model are better than those under the two sub-models.

Furthermore, the FDP and FNP are better controlled under the explanatory model

in every simulation setting.

There are several directions that we believe are important and require developments

in future studies. As mentioned in Section 4.3.1, the explanatory model allows the

distributions of latent traits to depend on relevant covariates. In the case where

the dispersion of latent traits varies across different demographic groups, or changes

over regions and time, we can make the latent traits θi’s (and βj) heteroscedastic

by assuming their variance to depend on relevant covariates as well: log σ2
i = h⊤x̃i,

for i = 1, . . . , N .

Another research direction would be developing measures for evaluating the effects of

including covariates on two-way outlier detection. Covariates are involved in outlier

detection through their relationships with latent class memberships of individuals

and items. In Section 4.4, covariates are selected based on relevant research on the
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topic of item preknowledge. In the presence of a large number of external covariates,

it is necessary to simultaneously estimate latent class memberships while carrying

out the variable selection. This can be achieved by imposing shrinkage priors on

regression coefficients for covariates under a Bayesian framework. Shrinkage priors

serve to lead the estimates of coefficients for covariates toward zero. One type of

priors used to achieve the lasso-style shrinkage is spike-and-slab priors (Ishwaran &

Rao, 2005). Lu, Chow, and Loken (2016) developed the Bayesian structural equa-

tion modelling with spike-and-slab priors (BSEM-SSP). The BSEM-SSP specifically

quantifies the probabilities that single or multiple factor loadings should be included

by evaluating whether the posterior probability of the inclusion of each of these pa-

rameters exceeds a pre-determined threshold. This SSP method accounts for the

uncertainty in model selection and therefore provides more reliable parameter es-

timates. It would be of interest to develop an effective Bayesian variable selection

method for the explanatory two-way outlier detection model. It is also worthwhile

to investigate the sensitivity of the two-way classification to the prior specifications

of model parameters other than regression coefficients.



Chapter 5

Conclusions

The purpose of this thesis is to develop model-based approaches for detecting one-

way and two-way outliers in multivariate data without relying on prior knowledge

of the outlying status of individuals and items. One-way outliers are defined as

individuals or items deviating from a baseline model specified for the majority of

the data, while two-way outliers are defined as item responses that deviate from a

given baseline model due to atypical attributes of both individuals and items. In

what follows we summarise key findings of our one-way and two-way outlier detection

approaches, and discuss the limitations of the current study and directions for future

research.

The Forward Search (FS) is used to detect one-way outliers. The FS bases statis-

tical inference and parameter estimation on a sequence of augmented subsets built

during the progression of the FS. The baseline model assumed for the majority of

the data is fitted and problem-tailored diagnostic statistics are calculated whenever

new individuals or items are introduced to the subset. The effect that one-way out-

liers have on the fitted model can be revealed by inspecting the evolution of the

problem-tailored model fit measures. While in the literature the FS was applied to

detect isolated and clustered outliers in multivariate modelling contexts (e.g., factor

models and multivariate normal mixture models), its potential has not been ex-

plored in latent class and factor mixture modelling contexts with a general purpose

150
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of understanding the hidden structure of the data.

In this thesis, we have applied the FS to detect outlying response patterns deviating

from specified latent class models and mixture IRT models. The effect of sequentially

adding individual responses on the baseline model was assessed through monitor-

ing a fast-bootstrap p-value for a limited-information goodness-of-fit statistic, which

proved to be computationally efficient and less sensitive to sparse binary data. In

simulation studies, we addressed the importance of choosing an “outlier-free” initial

subset that leads to the robust estimation of the baseline model. When it is compu-

tationally infeasible to find an “outlier-free” initial subset, it is important to adopt

an alternative strategy; that is, running a sufficiently large number of searches with

randomly selected initial subsets. This alternative way of conducting the FS was

found to be useful in detecting latent population heterogeneity, e.g., latent classes

in a factor mixture model, and determining latent class memberships of individuals.

While the FS in the literature has been primarily used to detect individuals, we have

proposed to detect items on the basis of their atypical attributes using the FS. Our

contribution to the literature on the FS is to adapt the FS to detect items showing

DIF in multiple-group data. In the detection of items deviating from a latent class

or an IRT model assuming measurement equivalence, the FS starts from an initial

subset formed by equivalent items and proceeds by including the least non-equivalent

items at each step of the search. In the simulation and real case studies, the p-

value for a limited-information goodness-of-fit statistic was monitored throughout

the search to indicate the effect of items lacking measurement equivalence on the

measurement-equivalent baseline model.

In summary, the FS has provided valuable insight into the hidden structure of mul-

tivariate data in latent variable modelling contexts. It is helpful in determining

which part of the data deviates from a baseline model and its assumptions. The

proposed FS procedures for detecting outlying individuals, individuals belongings to

latent groups, and items exhibiting DIF can be easily adapted to different modelling

contexts for different types of data by specifying the baseline model and defining
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problem-specific diagnostic statistics for assessing the effect of the sequential addi-

tion on the baseline model.

It is concluded that future research needs to address the reliability of different diag-

nostic statistics monitored during the progression of the FS and the multiple testing

issues. Multiple testing arises at the application level and it is important to find

an acceptable trade-off between the number of detected outliers and the power of

the FS (Riani et al., 2009). It is worth looking into measures such as a p-value

adjusted for multiple tests (i.e. false discovery rate; Benjamini & Hochberg, 1995)

under simulation settings with different sample sizes and proportions of outliers.

The limitation of the FS as an outlier detection method is that it is unable to simul-

taneously identify outlying individuals and DIF items. The simultaneous detection

of outlying individuals and DIF items is essentially a problem of unsupervised two-

way classification, where the status of individuals and items is unknown, and the

data are not dominated by either outlying individuals or DIF items. Therefore, we

proposed a model-based two-way outlier detection method in which a latent class

model component for capturing two-way outliers is built upon an IRT-type baseline

model component specified for standard item response behaviour free from outliers.

Depending on whether response time data and external covariates are used, three

specifications of the two-way outlier detection model have been proposed in the

thesis: the reduced model for item responses, the full model for item responses

and response times, and the explanatory model for item responses and observed

covariates. Aside from incorporating covariate effects on latent class indicators and

distributions of latent parameters, the explanatory model also relaxes the assump-

tion of the independence between latent class indicators and latent parameters.

We have proposed a parallel-tempering MCMC algorithm to carry out Bayesian in-

ference for the hierarchical two-way outlier detection models. The reduced model,

the full model and the explanatory model were applied to a licensure test dataset

known to suffer from item pre-knowledge and containing response times and covari-

ate information. To formulate simultaneous detection of individuals with preknowl-
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edge and compromised items in a Bayesian decision framework, we further proposed

compound decision rules that control the local false discovery rate for persons or

local false non-discovery rate for items. The classification of persons and items un-

der the three models are close to the labels provided by the dataset, suggesting

the proposed models provide accurate detection results, although the validity of the

proposed models remains to be further checked through extensive applications to

data gathered from many other educational tests in the future.

We used simulation studies to investigate the performance of the reduced model, the

full model and the explanatory model under varying conditions of sample and item

sizes, model misspecifications, and strength of the outlier effect indicated by the drift

parameter. It is concluded that the three proposed models are robust against most

of the model misspecifications. The classification tends to be more accurate as the

sample and item sizes increase and when the signals of two-way outliers are stronger.

The two-way classification and detection results were compared across the three

proposed models under the same simulation settings. The results indicate that the

inclusion of response time data or covariate effects on the latent class memberships

and the distribution of latent parameters has improved the classification and better

controlled the FDP and FNP.

In terms of future research on model-based two-way outlier detection, we have several

directions in mind. First, the proposed two-way outlier detection method is designed

to tackle one type of two-way outliers due to latent DIF, e.g., test takers with prior

knowledge of compromised items. In the case of multiple sources of outliers, or

multiple types of cheating in an educational testing example, a two-way outlier

detection method is needed to be developed.

The second research area is concerned with missing data. If a great proportion

of item responses are missing in observed data, we need to investigate whether

the missing data mechanism is related to covariates and latent class memberships of

individuals and items. As missing data might be informative for the detection of two-

way outliers, the model-based two-way outlier detection method can be generalised
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by the inclusion of covariates and latent class memberships of persons and items in

a missing data model.

Another future development is to evaluate the effect of covariate inclusion on the

detection of two-way outliers, particularly when there are a large number of ex-

ternal variables in the dataset. The variable selection procedure under a Bayesian

framework is needed to determine which covariates should be used to estimate the

distributions of latent parameters and latent class memberships of individuals and

items. The relevant idea of Bayesian feature selection is discussed in Section 4.6.
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A. Simulation Studies in Chapter 2

In Chapter 2, we describe the FS algorithm for detecting outlying response patterns,

latent classes and items lacking measurement invariance in the latent variable mod-

elling framework. The R code for the FS Algorithm applied to simulation examples

in Section 2.3 can be found at https://github.com/YanLu-stats/FSLVM.

B. Proof of Proposition 1

Proof. We let p(1) < · · · < p(n) ∈ (0, 1) be all the distinct values for P (ξi = 1|Y ),

i = 1, ..., N , where n is less than or equal to N as there might be ties. We further

let p(0) = 0 and p(n+1) = 1. Then by the form of local FDR in (3.3.3), it is easy to

verify that fdrζ(Y ) is a step function of ζ, where fdrζ(Y ) is a constant in interval

[p(t−1), p(t)), for any t = 1, ..., n+ 1. Therefore, fdrζ(Y ) is left continuous in ζ.

We further show that fdrζ(Y ) > fdrζ′(Y ), when ζ ∈ [p(t−1), p(t)) and ζ
′ ∈ [p(t), p(t+1)),

for any t = 1, ..., n. When t < n, we have

fdrζ′(Y ) =

∑N
i=1(1− P (ξi = 1|Y ))1{P (ξi=1|Y )⩾p(t+1)}∑N

i=1 1{P (ξi=1|Y )⩾p(t+1)}

,

and

fdrζ(Y ) =

(∑N
i=1(1− P (ξi = 1|Y ))1{P (ξi=1|Y )⩾p(t+1)}

)
+
(∑N

i=1(1− p(t))1{P (ξi=1|Y )=p(t)}

)
∑N

i=1 1{P (ξi=1|Y )⩾p(t+1)}
+
∑N

i=1 1{P (ξi=1|Y )=p(t)}

.

As 1−p(t) > 1−P (ξi = 1|Y ) when P (ξi = 1|Y ) ⩾ p(t+1), fdrζ(Y ) > fdrζ′(Y ). When

t = n, it is easy to see that fdrζ(Y ) > fdrζ′(Y ) as fdrζ′(Y ) = 0. This completes the

proof for the properties of fdrζ(Y ). The proof for the non-decreasing property of

fnrζ(Y ) is similar and thus is omitted here.

By the left-continuity of fdrζ(Y ), we have

fdr
ζ∗(Y ;ρ)

(Y ) ⩽ ρ.
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In addition, by the construction of ζ∗(Y ; ρ), ζ ′ > ζ∗(Y ; ρ) for any ζ ′ ̸= ζ∗(Y ; ρ) also

satisfying fdrζ′(Y ) ⩽ ρ. Then by the non-decreasing property of fnrζ(Y ), fnrζ′(Y ) ⩾

fnr
ζ∗(Y ;ρ)

(Y ). Therefore, ζ∗(Y ; ρ) solves the optimisation problem (3.3.5).

Note that the posterior distributions in the compound decision framework are further

conditional on person- and item-specific covariates, X and Z, under the explanatory

two-way outlier detection model proposed in Chapter 4: P (ξi = 1|Y ,X) and P (ηj =

1|Y ,Z).

C.1. Parallel Tempering MCMC Algorithm

As mentioned in Section 3.4.2, the standard MCMC algorithms, such as the Metropolis-

Hastings algorithm, suffer from slow-mixing for our problem, due to the presence of

many discrete variables and the interactions between these discrete variables in the

current problem.

Let Ξ be a generic notation for the parameters and hyperparameters to be sampled.

Note that Ξ = {θi, ξi, βj, ηj,ν1,ν2, δ : i = 1, ..., N, j = 1, ..., J} for the reduced

model, and Ξ = {θi, ξi, τi, βj, ηj, αj,ν1,ν2, δ, γ, κ : i = 1, ..., N, j = 1, ..., J} for the

full model, respectively. Recall that Ỹ is used as the generic notation for data,

where Ỹ = Y and (Y ,T ) for the reduced model and the full model, respectively.

We use f(Ξ|Ỹ ) as a generic notation for the posterior distribution of interest. The

goal is to sample Ξ from the target posterior distribution f(Ξ|Ỹ ).

The algorithm involves sampling K MCMC chains with tempered target distribu-

tions. More specifically, let 0 < ψ1 < ψ2 < . . . < ψK = 1 be a pre-specified sequence

of temperature levels. Then the kth chain has a target distribution fk(Ξ|Ỹ ) ∝

(f(Ξ|Ỹ ))(1/ψk), where ∝ means that the two sides differ by a normalising constant

which does not depend on Ξ. The target distribution of the Kth chain is our tar-

get posterior distribution. Let t be the current iteration number and Ξk,t be the

current samples from the kth chain. The parallel tempering algorithm performs the
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following steps in the t+ 1th iteration.

1. For each of the chains, sample Ξk,t+1 given Ξk,t using a Metropolis-Hastings

within Gibbs sampler, which will be further discussed below.

2. Randomly sample a pair of adjacent chains, k and k+1, and use a Metropolis-

Hastings update to decide whether to swap the statuses of Ξk,t+1 and Ξk+1,t+1.

That is, a Bernoulli random variable with success probability

min

{
1,
fk(Ξ

k+1,t+1|Ỹ )fk+1(Ξ
k,t+1|Ỹ )

fk(Ξk,t+1|Ỹ )fk+1(Ξk+1,t+1|Ỹ )

}

is generated to decide whether to swap or not. If the Bernoulli random variable

takes value 1, then we swap the statuses of Ξk,t+1 and Ξk+1,t+1 and otherwise,

we reject the swap and keep their statuses unchanged.

For simplicity, the MCMC sampling within each chain is conducted by using a

Metropolis-Hastings within Gibbs sampler. That is, Ξ is split into multiple blocks.

Each block is sampled given all the others, using a random-walk Metropolis-Hastings

sampler, for which the step size is tuned following Roberts and Rosenthal (2001)

that is based on the Metropolis-Hastings acceptance rate. For the reduced model,

Ξ is split into 10 blocks, including (1) θi, i = 1, ..., N , (2) ξi, i = 1, ..., N , (3) βj,

j = 1, ..., J , (4) ηj, j = 1, ..., J , (5) δ, (6) π1, (7) σ11, (8) π2, (9) µ1, and (10) ω11.

For the full model, Ξ is split into 14 blocks, including (1) θi, i = 1, ..., N , (2) τi,

i = 1, ..., N , (3) ξi, i = 1, ..., N , (4) βj, j = 1, ..., J , (5) αj, j = 1, ..., J , (6) ηj,

j = 1, ..., J , (7) δ, (8) γ, (9) κ, (10) π1, (11) Σ, (12) π2, (13) µ, and (14) Ω.

The specification of the number and levels of the temperatures also needs some

tuning. A fine-tuned system tends to have faster mixing. We suggest choosing the

number and levels of the temperatures by following the theoretical guidance given

in Atchadé et al. (2011) that is based on the Metropolis-Hastings acceptance rate.

The R code for the MCMC algorithm can be found on https://github.com/YanLu

-stats/OD2WIRT.
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C.2. Parallel Tempering Algorithm

Let Ξ be a generic notation for the parameters and hyper-parameters to be sampled.

Note that Ξ = {θi, ξi, βj, ηj,ν1,ν2, δ : i = 1, ..., N, j = 1, ..., J} for the explanatory

model, where the hyper-parameters include ν1 = (a,λ, c, σ2) and ν2 = (b,ϕ,d, ω2).

The goal is to sample Ξ from the target posterior distribution f(Ξ|Y ,X,Z).

The algorithm involves sampling K MCMC chains with tempered target distribu-

tions. More specifically, let 0 < ψ1 < ψ2 < . . . < ψK = 1 be a pre-specified sequence

of temperature levels. Then the kth chain has a target distribution fk(Ξ|Y ,X,Z) ∝

(f(Ξ|Y ,X,Z))(1/ψk), where ∝ means that the two sides differ by a normalising con-

stant which does not depend on Ξ. The target distribution of the Kth chain is our

target posterior distribution. Let t be the current iteration number and Ξk,t be the

current samples from the kth chain. The parallel tempering algorithm performs the

following steps in the t+ 1th iteration.

1. For each of the chains, sample Ξk,t+1 given Ξk,t using a Metropolis-Hastings

within Gibbs sampler, which will be further discussed below.

2. Randomly sample a pair of adjacent chains, k and k+1, and use a Metropolis-

Hastings update to decide whether to swap the statuses of Ξk,t+1 and Ξk+1,t+1.

That is, a Bernoulli random variable with success probability

min

{
1,
fk(Ξ

k+1,t+1|Y ,X,Z)fk+1(Ξ
k,t+1|Y ,X,Z)

fk(Ξk,t+1|Y ,X,Z)fk+1(Ξk+1,t+1|Y ,X,Z)

}

is generated to decide whether to swap or not. If the Bernoulli random variable

takes value 1, then we swap the statuses of Ξk,t+1 and Ξk+1,t+1 and otherwise,

we reject the swap and keep their statuses unchanged.

For simplicity, the MCMC sampling within each chain is conducted by using a

Metropolis-Hastings within Gibbs sampler. For the explanatory model, Ξ is split

into 10 blocks, including (1) θi, i = 1, ..., N , (2) ξi, i = 1, ..., N , (3) βj, j = 1, ..., J ,
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(4) ηj, j = 1, ..., J , (5) δ, (6) a0, (7) b0, (8) a, (9) b, (10) λ, (11) ϕ, (12) c, (13) σ
2,

(14) d, and (15) ω2. Each block is sampled given all the others, using a random-walk

Metropolis-Hastings sampler, for which the step size is tuned following Roberts and

Rosenthal (2001) that is based on the Metropolis-Hastings acceptance rate.

The R code for the MCMC algorithm can be found on https://github.com/YanLu

-stats/OD2WEIRT..

D. Additional Simulation Study to Chapter 3

We provide an additional simulation study under settings similar to Study I in

Section 3.6.1, but with smaller values of J to mimic educational tests with relatively

smaller item sizes.

D.1. Settings

We consider two settings which are referred to as settings (D.S1) N = 2, 000, J = 50,

and (D.S2) N = 4, 000, J = 100, respectively. The rest of the simulation setting

is exactly the same as that of Study I in Section 3.6. For each simulation setting,

100 independent data sets are simulated from the full model. We apply both the

reduced model for item responses and the full model for item responses and response

times to these data sets.

D.2. Results

The analysis is conducted using the parallel tempering MCMC algorithm described

above. For each data set, we run 10,000 iterations, with the first 3,000 iterations

as the burn-in. The results are based on the posterior samples from the last 7,000

iterations.

The results are given in Tables D.1 through D.4. The results are similar to those

from Study I. We first examine the classification results. For each model and each
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simulated data set, we classify the test takers based on the posterior means of ξi

and evaluate the classification based on the AUC value of the corresponding ROC

curve. The AUC values are shown in Table D.1. It can be observed that the

classification is slightly more accurate under setting D.S2, due to the increased

sample and item sizes. Moreover, the AUC values given by the full model tend

to be slightly larger than those from the reduced model, thanks to the additional

information from response times.

We further evaluate the proposed compound decision rules. For each data set, we

control local FDR and local FNR at levels 1%, 5%, and 10% for test takers and

items, respectively. We evaluate each decision rule by examining the resulting FDP

and FNP. The results are given in Tables D.2 and D.3 for the classifications of test

takers and items, respectively. According to these tables, the FDP is well-controlled

for test takers and so is the FNP for items.

Finally, we show the results on the estimation of the global parameters, as these

parameters have substantive interpretations in cheating detection. Specifically, we

focus on the posterior mean estimator, for which bias and variance are estimated

based on the results from 100 independent replications. These results are presented

in Table D.4. The bias, in general, tends to be close to zero for all the global

parameters from both models and both settings. In addition, the estimation tends

to be more accurate under setting D.S2, due to the increased sample and item sizes.

Test taker Item
D.S1 D.S2 D.S1 D.S2

AUC Reduced Full Reduced Full Reduced Full Reduced Full
25% 0.934 0.936 0.956 0.962 0.937 0.944 0.954 0.961
50% 0.955 0.954 0.960 0.971 0.964 0.963 0.972 0.976
75% 0.969 0.967 0.971 0.978 0.973 0.975 0.978 0.981

D.1 Overall classification performance based on the posterior means of ξi and ηj. For
each model, each setting, and each target (test taker/item), we show the 25%, 50%, and
75% quantiles of the AUCs of the corresponding ROC curves from 100 independent data
sets.
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D.S1 D.S2
Reduced Full Reduced Full

FDP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.008 0.032 0.089 0.008 0.035 0.085 0.007 0.028 0.072 0.008 0.029 0.069
50% 0.012 0.047 0.092 0.011 0.046 0.091 0.011 0.043 0.078 0.009 0.037 0.073
75% 0.013 0.051 0.098 0.013 0.053 0.099 0.013 0.047 0.084 0.012 0.044 0.087

D.2 Local FDR control for test takers. For each model, each setting, and each local FDR
target (1%/5%/10%), we show the 25%, 50%, and 75% quantiles of the FDPs of the
corresponding classifications from 100 independent data sets.

S1 S2
Reduced Full Reduced Full

FNP 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
25% 0.009 0.033 0.063 0.007 0.032 0.061 0.007 0.029 0.059 0.006 0.031 0.062
50% 0.012 0.037 0.068 0.009 0.036 0.067 0.009 0.038 0.067 0.007 0.036 0.065
75% 0.013 0.046 0.071 0.010 0.043 0.069 0.012 0.045 0.072 0.012 0.041 0.071

D.3 Local FNR control for items. For each model, each setting, and each local FNR
target (1%/5%/10%), we show the 25%, 50%, and 75% quantiles of the FNPs of the
corresponding classifications from 100 independent data sets.

D.S1 Reduced model D.S2 Reduced model
π1 π2 σ11 µ1 ω11 δ π1 π2 σ11 µ1 ω11 δ

Bias 0.11 -0.02 -0.05 -0.11 0.17 0.22 Bias 0.05 0.15 -0.04 -0.13 0.20 -0.07
Variance 0.16 0.09 0.32 0.43 0.17 0.30 Variance 0.21 0.11 0.39 0.25 0.22 0.22

D.S1 Full model
π1 π2 σ11 µ1 ω11 δ σ22 σ12 µ2 ω22 ω12 κ

Bias -0.11 -0.08 0.07 0.24 -0.08 0.11 -0.12 -0.04 -0.12 0.14 -0.08 -0.16
Variance 0.17 0.19 0.32 0.32 0.21 0.30 0.11 0.17 0.15 0.23 0.00 0.37
D.S2 Full model

π1 π2 σ11 µ1 ω11 δ σ22 σ12 µ2 ω22 ω12 κ
Bias -0.04 0.06 0.08 -0.15 -0.17 -0.15 -0.04 -0.11 -0.15 0.11 -0.04 -0.11
Variance 0.21 0.18 0.23 0.29 0.31 0.35 0.07 0.19 0.12 0.12 0.18 0.46

D.4 Accuracy of the posterior mean estimator of the global parameters. The bias and
variance for the posterior mean estimator are calculated based on the 100 replications.
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