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Abstract

Sparse Weighted Norm Minimum Variance Portfolio

In this paper, I propose a weighted L1 and squared L2 norm penalty in portfolio optimization to improve
the portfolio performance as the number of available assets N goes large. I show that under certain
conditions, the realized risk of the portfolio obtained from this strategy will asymptotically be less than that
of some benchmark portfolios with high probability. An intuitive interpretation for why including a fewer
number of assets may be beneficial in the high dimensional situation is built on a constraint between
sparsity of the optimal weight vector and the realized risk. The theoretical results also imply that the
penalty parameters for the weighted norm penalty can be specified as a function of N and sample size n.
An efficient coordinate-wise descent type algorithm is then introduced to solve the penalized weighted
norm portfolio optimization problem. I find performances of the weighted norm strategy dominate other
benchmarks for the case of Fama-French 100 size and book to market ratio portfolios, but are mixed for
the case of individual stocks. Several novel alternative penalties are also proposed, and their
performances are shown to be comparable to the weighted norm strategy.

Bond Variance Risk Premia (Joint work with Philippe Mueller and Andrea Vedolin)

Using data from 1983 to 2010, we propose a new fear measure for Treasury markets, akin to the VIX for
equities, labeled TIV. We show that TIV explains one third of the time variation in funding liquidity and that
the spread between the VIX and TIV captures flight to quality. We then construct Treasury bond variance
risk premia as the difference between the implied variance and an expected variance estimate using
autoregressive models. Bond variance risk premia display pronounced spikes during crisis periods. We
show that variance risk premia encompass a broad spectrum of macroeconomic uncertainty. Uncertainty
about the nominal and the real side of the economy increase variance risk premia but uncertainty about
monetary policy has a strongly negative effect. We document that bond variance risk premia predict
excess returns on Treasuries, stocks, corporate bonds and mortgage-backed securities, both in-sample
and out-of-sample. Furthermore, this predictability is not subsumed by other standard predictors.

Testing Jumps via False Discovery Rate Control

Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing
problems. For such multiple hypothesis tests, it is well known that controlling type I error often unavoidably
makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump
occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate
(FDR), an efficient compound error measure for erroneous rejections in multiple testing problems. We
perform the test via a nonparametric statistic proposed by Barndorff-Nielsen and Shephard (2006), and
control the FDR with a procedure proposed by Benjamini and Hochberg (1995). We provide asymptotical
results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate
the advantages of controlling FDR. The hybrid approach is then applied to empirical analysis on two
benchmark stock indices with high frequency data.
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Chapter 1

Sparse Weighted Norm Minimum

Variance Portfolio

Abstract: In this paper, I propose a weighted l1 and squared l2 norm penalty in portfolio

optimization to improve the portfolio performance as the number of available assets N goes

large. I show that under certain conditions, the realized risk of the portfolio obtained from

this strategy will asymptotically be less than that of some benchmark portfolios with high

probability. An intuitive interpretation for why including a fewer number of assets may be

beneficial in the high dimensional situation is built on a constraint between sparsity of the

optimal weight vector and the realized risk. The theoretical results also imply that the penalty

parameters for the weighted norm penalty can be specified as a function of N and sample

size n. An efficient coordinate-wise descent type algorithm is then introduced to solve the

penalized weighted norm portfolio optimization problem. I find performances of the weighted

norm strategy dominate other benchmarks for the case of Fama-French 100 size and book

to market ratio portfolios, but are mixed for the case of individual stocks. Several novel

alternative penalties are also proposed, and their performances are shown to be comparable to

the weighted norm strategy.

KEYWORDS: Sparsity and diversity; Weighted norm portfolio; Coordinate-wise

descent algorithm.

JEL Codes: C40, C61, G11.
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1.1 Introduction

How to select assets to form an optimal portfolio is one of the central issues in financial

studies. Since Markowitz (1952) formalized the mean-variance portfolio optimization in which

an investor is allowed to consider a portfolio’s return and risk, the mean-variance optimization

has become one of the principles in portfolio management for the past 60 years. However,

such a strategy is also well known to perform poorly when the number of available assets

N is relatively large to the sample size n. In this paper, I propose to impose a weighted l1

and squared l2 norm penalty on the portfolio weights to improve the portfolio performance in

such high dimensional situation. The l1 norm penalty facilitates sparsity (zero components) of

the portfolio weight vector, and in turn leads to automatically selecting and excluding certain

assets. Nevertheless, such sparsity may cause problems of under diversification and extreme

weights of the portfolio. On contrary, the squared l2 norm does not produce any sparsity, but

it can efficiently regularize size of the weight vector. Thus the squared l2 can function as a

solution to alleviate the problems of under diversification and extreme weights of the portfolio.

I call the optimal portfolio obtained by solving such weighted l1 and squared l2 norm penalized

portfolio optimization problem the weighted norm portfolio.

The motivation to use the l1 norm penalty for sparse estimation of the weight vector is

given as follows. In the situation when the number of available assets N becomes large relative

to the sample size n, if one wants to reduce impacts of estimation errors, then she can consider

to choose fewer number of assets, say N ′ ≤ N , for the portfolio optimization. It is equivalent

to imposing an l0 norm penalty on the weight vector and then optimize the objective function

with the l0 norm penalty. However, to obtain the optimal N ′, it needs to solve a combinatoric

optimization which in general is intractable for large N . An alternative way is to impose the

l1 norm penalty on the weight vector. One advantage of this replacement is that the l1 norm

is a convex function of the weights, and such convex relaxation makes the modified portfolio

optimization more tractable. In fact, except for the l1 norm, there does not exist a norm

penalty which can simultaneously produce sparsity as well as being a convex function of the

weight vector.

A main concern of the weighted norm penalty is that the resulting portfolio weight vector

is sparse, and only a subset of the whole assets is used to construct the portfolio, which violates

the principle of diversity. Besides reducing the parameter uncertainty, there are other reasons

of why concentrating on fewer certain assets may not be a bad idea as one might initially

think. For instance, an investor may want to limit the number of assets in her portfolio due

to high management and monitor costs. Simultaneously making many different decisions on

asset allocations may be harmful for quality of the overall decisions1. Cohen et al. (2009) find

1A related issue is that how the number of choices present affects an individual’s welfare. Plenty behavioral
economics and finance papers already have discussions on this issue, and conclude that a larger choice set may
not necessarily make an individual better off (e.g., Abaluck and Gruber, 2011; Beshears et al., 2006; Iyengar
and Kamenica, 2010).
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that a few number of assets that a fund manager concentrates on, which they termed the fund

manager’s best ideas, can consistently have higher risk adjusted returns and outperform the

rest of the positions in the manager’s portfolios. Having information advantages is another

reason of why investors are willing to concentrate on certain assets. For example, home in-

vestors can have superior access to information about domestic firms or economic conditions.

Such information asymmetry is often used to explain home bias phenomenon in international

portfolio management literature: the home investors often concentrate too much on domestic

assets and are reluctant to hold foreign assets. Moreover, Nieuwerburgh and Veldkamp (2009)

argue that even if the home investors can eliminate such home bias by learning, they will still

choose to learn more about the home assets, since it deepens their information advantages and

lets them enjoy more excess returns of home assets than the foreign investors.

Combining both the l1 and squared l2 norm penalties together in the portfolio optimization

is rarely seen in previous literature2, although using them separately is not a new idea. Brodie

et al. (2009), DeMiguel et al. (2009a), Fan et al. (2009), and Welsch and Zhou (2007) show

that superior portfolio performances can be obtained when the l1 norm or squared l2 norm

penalty is used in the portfolio optimization. Imposing the norm penalties is often viewed as a

way to reduce the size of the portfolio weight vector. It produces a similar effect as a shrinkage

estimator does for reducing the estimation errors.

However, the issue that different norm penalties result in different patterns of sparsity in

the portfolio weight vector seems not to be fully addressed in the relevant literatures. In this

paper, I show that the number of assets included in the portfolio (or the number of assets

with nonzero weights) is the key to explain why the weighted norm approach can work well

in the situation when the number of available assets N is large. I compare the out-of-sample

(oos) conditional variances of different portfolios. The oos conditional variance is a reasonable

measure for the risk that an investor will immediately face in the next period when she adopts

a certain portfolio strategy in the current period. I prove that under certain conditions, the oos

conditional variance of the weighted norm portfolio will be less than that of some benchmark

portfolios with high probability, as both of the number of available assets N and sample size

n increase. One of the sufficient conditions explicitly puts a constraint between sparsity of

the weight vector and the true conditional variances of these portfolios. While impacts from

the estimation errors can be mitigated by limiting size of the portfolio weight vector, this

condition characterizes a relationship between the other two fundamental factors affecting

portfolio performances: namely how many assets and which assets should to be included in

the portfolio, and in turn provides a heuristic justification on why including fewer assets may

be beneficial in the high dimensional situation.

2Various norm penalties have been widely used in statistics for model selections and ill-posed problems, and
there are plenty literatures devoted on studying their properties. Using the l1 norm penalty can be dated to
Tibshirani (1996). The squared l2 norm penalty was originally proposed by Russian mathematician Andrey N.
Tikhonov. Combining the l1 and squared l2 norm penalties for regression problems can be found in Zou and
Hastie (2005). Summary for recent developments on the norm penalty approaches in statistics can be found in
Hastie et al. (2009) and Buhlmann and van de Geer (2011).
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Using the weighted norm strategy is different from using an ordinary shrinkage estimator

that only shrinks particular elements of the estimated covariance matrix to their targets. The

weighted norm approach is an estimation strategy that not only shrinks particular elements

but also reduces dimension of the estimated covariance matrix.

In addition to the econometric side, I also give explanations on why using the norm penalty

in the portfolio optimization is reasonable from other perspectives. Imposing the norm penalty

is similar as an investor wants to limit transaction costs or exposure to risky assets, or faces

liquidity constraint such as margin requirements. This approach also can be viewed as an

investor making a decision based on marginal increment of the portfolio variance. The view

is closely related to Gabaix (2011), who shows that many different bounded rationality and

psychological phenomenons can be delineated by models that incorporate the l1 norm penalty

into individuals’ optimization problems. I also discuss the relationships between the weighted

norm approach, the maximum a posteriori probability (MAP) estimator and the minimum

mean square deviation problem.

The theoretical results also imply that the penalty parameters for the weighted norms

can be specified as a function of N and n. The specification helps us to tackle the problem

of choosing the optimal penalty parameters. Previous research suggests that one can use

nonparametric methods such as cross validation to choose the optimal penalty parameters

(DeMiguel et al., 2009a). However, cross validation is computational intensive and may produce

very unstable sequences of the penalty parameters. The instability of the penalty parameters

may damage the performance of the weighted norm strategy. On contrary, my specification

for the penalty parameters is easier for implementation and can produce stable sequences of

the penalty parameters, leading to satisfactory results in the empirical analysis.

To solve the weighted norm minimum variance portfolio (mvp) optimization problem, I use

coordinate-wise descent algorithm. The algorithm is fast, efficient and can be easily extended

to other kinds of norm penalties. In addition, unlike the popular Least Angle Regression

(LARS) type algorithm (Efron et al., 2004) adopted by previous studies (Brodie et al., 2009;

Fan et al., 2009), the coordinate-wise descent algorithm can deliver an exact solution to the

weighted norm mvp optimization problem.

I use two real data sets, Fama-French 100 size and book to market portfolios (FF100)

and three hundred stocks randomly chosen from CRSP data bank (CRSP300), to demonstrate

how the weighted norm approach performs in real world. The calibrated covariance matrix

is estimated via the sample covariance estimator with an expanding window scheme. The

covariance matrix estimated using the expanding window scheme may be less capable to capture

dynamics of the true conditional covariance matrix than that using rolling window schemes.

However, the expanding window scheme can make estimated covariances stable, leading to a

decrease in the portfolio turnover rate. The other source for reducing the portfolio turnover

rate is the l1 norm penalty. Unlike explicitly imposing constraint on the portfolio turnover rate

(e.g., DeMiguel et al., 2010; Kirby and Ostdiek, 2011), I find that the two sources are enough

9



to prevent high transaction costs.

For the case of FF100, the weighted norm portfolio yields an annualized variance from

82.97% to 98.60% and an annualized Sharp ratio from 1.06 to 1.18. On the other hand,

the annualized variances for other three benchmark strategies: 1/N , no-shortsales mvp and

global minimum variance portoflio (gmvp) are 311.16%, 176.21% and 77.66%, respectively.

The corresponding annualized Sharpe ratios are 0.45, 0.74 and 0.94, respectively. For the case

of CRSP300, the performances of the weighted norm mvp are mixed. Although it is able

to produce an annualized variance lower than those of other benchmark strategies, it fails to

achieve higher Sharpe ratio than the no-shortsales mvp. These empirical results are robust to

a change in the frequency of balancing the portfolios.

I further examine whether the weighted norm mvp can deliver a higher expected utility than

other benchmarks under the assumption that the investor’s utility function is nondecreaseing

and concave. I use the stochastic dominance tests with a subsampling scheme proposed by

Linton et al. (2005) for the assessment. The result shows that the weighted norm mvp is less

risky than other benchmark portfolios.

Previous literatures argue that adding the estimated return vector into the portfolio opti-

mization often damages portfolio performances (Jagannathan and Ma, 2003; DeMiguel et al.,

2009a)). I re-examine this argument by imposing an additional target return constraint into

the weighted norm portfolio optimization. I find that the performances are not as good as the

case without such target return constraint imposed, which are in line with what the previous

literatures find.

Finally, I investigate whether imposing different forms of norm penalties on the portfolio

optimization can obtain better portfolio performances than the weighted norm penalty does.

Three novel alternative penalty functions are introduced, and the reasons why they can be used

in the portfolio optimization are also discussed. I find they can deliver at least comparable

performances as the weighted norm mvp and other benchmarks.

In addition to the norm penalty approach, there are many other methods proposed for

improving portfolio performances as the number of asset N goes large. The most frequently

used one may be to assign the weights via some simple rules, and avoid massive estimations.

The value weighted and equally weighted (1/N) portfolios are such examples. DeMiguel et al.

(2009b) show how such simple strategies can outperform other sophisticated strategies. The

second way is to construct more robust statistical estimators for the mean vector and covariance

matrix of the asset returns, such as bias-adjusted or Bayesian shrinkage estimators (El Karoui,

2010; Jorion, 1986; Kan and Zhou, 2007; Ledoit and Wolf, 2003; Lai, Xing, and Chen, 2011).

Some of the improved estimations can be incorporated and transform the initial portfolio

optimization to a modified one, and a new class of optimal weight vectors can be obtained.

Frahm and Christoph (2011) and Tu and Zhou (2011) show that a suitable linear combination

of weights of a benchmark portfolio and a more sophisticated strategy often provides better

performances than either only one of them is considered. One also can treat the optimal
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portfolio weights as a function of parameters in certain structural models. These parameters

can be directly estimated and then used to construct the optimal portfolio weights. Brandt

et al. (2009) and Kirby and Ostdiek (2011) show such method can deliver better portfolio

performances than some benchmark portfolio strategies.

The rest of the paper is organized as follows. In Section 1.2, I introduce the weighted

norm approach and describe some basic properties of the weighted norm mvp. In Section 1.3

I give some explanations on the norm constrained mvp problem from various economic and

statistical perspectives. Section 1.4 details the main theoretical results. I then describe the

coordinate-wise descent algorithm for solving a benchmark case in Section 1.5. In Section 1.6,

I present the empirical results. Section 1.7 is the conclusion.

1.2 Methodology

1.2.1 Weighted Norm MVP Optimization

The weighted norm mvp (minimum variance portfolio) optimization is defined as

min
w

wTΣw + λ1 ‖w‖1 + λ2 ‖w‖22 , subject to Aw = u, (1.1)

where w is a N × 1 portfolio weight vector, Σ is a N ×N covariance matrix of asset returns

(or asset excess returns). The i, jth off-diagonal term of Σ is denoted by σij , i, j = 1, . . . , N ,

and i 6= j. The ith diagonal term of Σ is denoted by σii = σ2
i , i = 1, . . . , N . The optimization

problem (1.1) has the portfolio variance plus a penalty function on the portfolio weights as its

objective function, and subject to a set of linear constraints. The penalty function imposed

here is called the weighted norm penalty. Without such penalty, the portfolio optimization is

the global minimum variance portfolio (gmvp) optimization.

‖w‖1 =
∑N

i=1 |wi| and ‖w‖22 =
∑N

i=1w
2
i are the l1 norm and the squared l2 norm of the

portfolio weights. The parameters λ1, λ2 ∈ R+ are called the penalty parameters. Aw = u is

a system of linear constraints on the weights, where dim(A) = k ×N and dim(u) = k × 1. To

guarantee that the objective function of (1.1) is a convex function of w, Σ should be positive

semidefinite (psd). In addition, if the set of solution for Aw = u is non-empty, then w is

feasible. With positive semidefiniteness of Σ and feasibility of w, (1.1) is a well defined convex

optimization problem.

For the linear constraints, the most frequently used one is the full investment constraint,

which requires sum of portfolio weights equals to 1: 1T
Nw = wT1N = 1, where 1N is a N × 1

vector which elements are all 1’s. Another example is the target return constraint, in which

the expected portfolio return should satisfy a certain desired level: µTw = wTµ = µ, where µ

is a N × 1 vector of expected asset returns, and µ is the desired portfolio return.

Except the above commonly used settings, the linear constraints can be specified for other

purposes. Cochrane (2011) considers to constrain covariance of the portfolio return and a
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factor f ,

cov (Rp, f) =
N∑
i=1

wicov (Ri, f) = σTf,Rw = ξf , (1.2)

where σf,R is a N × 1 vector in which the jth element is the covariance of the jth asset return

and the factor f . ξf is the desired level of comovement of the portfolio return and the factor f .

The motivation of such linear constraint is that the investor may want to limit volatility of her

wealth while the factor f fluctuates. For instance, a high-tech company employee may fear that

her labor income declines simultaneously with values of her holding stocks. To prevent this

happen, she would like to hold a portfolio which has a low correlation with her labour income.

Such portfolio may be constructed by solving a mvp optimization with linear constraint (1.2)

by treating the factor f as her labor income stream.

1.2.2 Basic Properties

The Lagrangian of the optimization problem (1.1) is given by

L (w, γ;Σ, λ1, λ2) = wTΣw + λ1 ‖w‖1 + λ2 ‖w‖22 + +γT (u−Aw) ,

where γ is a k×1 vector of the Lagrange multipliers. Let w∗ = (w∗1, . . . , w
∗
N ) denote the optimal

solution of (1.1), and S = {i : w∗i 6= 0} and Sc = {i : w∗i = 0} denote the sets of assets with

nonzero and zero weights respectively. Also let |S| and |Sc| denote the cardinality of the set

S and Sc. Without loss of generality, one can do some rearrangements on the optimal weight

vector w∗. I let the first |S| elements of w∗ be the nonzero weights, and the rest |Sc| = N −|S|
be the zero weights. Then the following partition for Σ can be obtained,

Σ =

(
Σss Σssc

Σscs Σscsc

)
.

Here Σss (Σscsc) is a |S|× |S| (|Sc|× |Sc| ) sub-principal matrix of Σ, which can be constructed

by deleting N − |S| (N − |Sc|) columns and the corresponding rows from Σ. The matrix Σss

is the covariance matrix of the |S| assets which optimal weights are nonzero, and Σscsc is the

covariance matrix of the |Sc| assets which optimal weights are zero. In the off-diagonal parts,

Σssc = ΣT
scs, which have dimensions |S| × |Sc| and |Sc| × |S| respectively. They are matrices of

covariances between the nonzero weighted and zero weighted assets. Finally one also can have

the following similar partition for matrix A,

A = (As, Asc) ,

where dim(As) = k × |S| and dim(Asc) = k × |Sc|.
Let w∗s be the 1× |S| optimal nonzero weight vector from solving (1.1). At the stationary
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point, the following KKT conditions should hold,

2 (Σss + λ2Iss) w∗s = AT
s γ
∗ − λ1 × sign (w∗s) , (1.3)

Asw
∗
s = u, (1.4)∥∥2Σ′scsw

∗
s −AT

scγ
∗∥∥
∞ ≤ λ1. (1.5)

where Iss is a |S| × |S| identity matrix, sign (.) is the sign function, and ‖.‖∞ is the sup norm.

Let 0|Sc| be the 1× |Sc| zero vector. The optimal weight vector is then given by

w∗ =
(
w∗s ,0|Sc|

)
.

Let Σ′ss = Σss + λ2Iss, Ms = AsΣ
−1
ss A

T
s and M ′s = AsΣ

′−1
ss A

T
s . The optimal nonzero weights

can be solved by using the KKT conditions, which are shown in the following lemma.

Lemma 1 Let w∗s be the vector of nonzero portfolio weights and γ∗ be the Lagrange multiplier

of the constraint Aw = u from solving (1.1). Then

w∗s = w∗2,s +
λ1

2

(
Σ′−1
ss A

T
s δ2,s − Σ′−1

ss sign (w∗s)
)
,

γ∗ = γ∗2,s + λ1δ2,s,

where

w∗2,s = Σ′−1
ss A

T
s M

′−1
s u,

δ2,s = M ′−1
s AsΣ

′−1
ss sign (w∗s) ,

γ∗2,s = 2M ′−1
s u.

and sign (w∗s) is a |S| × 1 column vector which elements are sign of the nonzero weights.

Proof of Lemma 1 can be found in Appendix 1.8.1. It is not difficult to see that w∗2,s is the

optimal solution for the following mvp optimization, in which only asset i ∈ S are used,

w∗2,s = arg min
w

wTΣ′ssw, subject to Asw = u, (1.6)

and γ∗2,s is a vector of Lagrange multipliers for the linear constraints Asw = u. Note that

(1.6) is in fact an mvp optimization penalized by the squared l2 norm penalty3. Without such

squared l2 norm penalty, (1.6) becomes a gmvp optimization. Define w∗un,s as the optimal

solution of such gmvp optimization,

w∗un,s = arg min
w

wTΣssw, subject to Asw = u. (1.7)

3The objective function of (1.6) is sum of a portfolio variance and squared l2 norm penalty on the weight
vector with penalty parameter λ2.
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Similar to w∗2,s, w∗un,s and vector of the Lagrange multipliers γ∗un,s can be solved explicitly as

w∗un,s = Σ−1
ss A

T
s M

−1
s u,

γ∗un,s = 2M−1
s u.

Throughout the paper, I use the following notations to denote the portfolio variances via

solving different mvp optimizations,

σ2
s : = w∗TΣw∗,

σ2
un : = w∗TunΣw∗un,

σ2
2,s : = w∗T2,sΣssw

∗
2,s,

σ2
un,s : = w∗Tun,sΣssw

∗
un,s.

σ2
s is the minimum portfolio variance can be achieved via solving (1.1) 4. σ2

un is the gmvp

portfolio variance and w∗un is optimal gmvp weight vector. σ2
2,s and σ2

un,s are the portfolio

variances via using the optimal weight vector from (1.6) and (1.7).

With the above notations, I introduce the following lemma, which provides a key inequality

for the proof of the main results in Section 1.4.2.

Lemma 2 Let φj (Σss) , j = 1, . . . , |S| denote eigenvalues of Σss. Let

Σ′ss = Σss + λ2Iss,

φmin (Σss) = arg min
j=1,...,|S|

φj (Σss) ,

where Iss denote a |S| × |S| identity matrix. Suppose φmin (Σss) > 0. Then

0 ≤ σ2
s − σ2

un,s ≤ cs,1 (1 + cs,1)σ2
un,s − λ2 ‖w∗s‖

2
2 +

λ1

2

(∥∥w∗2,s∥∥1
− ‖w∗s‖1

)
,

where cs,1 = λ
1
2
2

(
φmin (Σss)

)− 1
2 .

Proof of Lemma 2 can be found in Appendix 1.8.2. The lemma indicates that σ2
s is bounded

by a linear combination of the scaled σ2
un,s, the penalty parameters and the norm penalties.

Lemma 1 and Lemma 2 are stated in a deterministic way, but these results still hold if Σ

is replaced by some positive semidefinite estimates of the covariance matrix. It is helpful,

since it provides useful tools to construct further asymptotical results when the simple sample

covariance estimator is calibrated for solving (1.1).

4Note that w∗TΣw∗ = w∗Ts Σssw
∗
s .
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1.2.3 Relation to the Benchmark Portfolios

It can be easily seen that one can solve the weighted norm mvp optimization (1.1) as a l1

penalized portfolio optimization with the covariance matrix Σ′ = Σ + λ2INN , where INN

denotes a N × N identity matrix. In a special situation when λ1 = 0 and λ2 → ∞, the

optimal weights from solving (1.1) will converge to 1/N (DeMiguel et al., 2009a). When the

linear constraint is the full investment constraint wT1N = 1 and only the l1 penalty is active

(λ2 = 0), it can be shown that as λ1 is beyond some threshold λ > 0, the optimal weight

vectors of the weighted norm mvp and no-shortsales mvp will be identical (Brodie et al., 2009;

DeMiguel et al., 2009a; Fan et al., 2009). On the other hand, in this situation, using any

λ1 ≥ λ for solving (1.1) will only generate the optimal no-shortsales weight vector. Practically

to pin down the upper bound λ is important if one wants to search the optimal λ1 over a range

of possible values. Yen and Yen (2011) show that the upper bound λ can be easily obtained

by using the optimal no-shortsales solution.

Furthermore, from the KKT conditions, it can be shown that the optimal nonzero weights

of the no-shortsales mvp can be obtained by solving (1.7) if one replaces S with Sns =

{i : wns,i > 0}, where wns,i is the optimal no-shortsales weight for asset i and Sns is the set of

assets included in the optimal no-shortsales mvp. In other words, the no-shortsales mvp, as a

mvp with a heavy l1 norm penalty, can be equivalently obtained from the gmvp optimization

via using a dimensional reduction covariance matrix Σss with S = Sns, and assigning zero

weights to assets i /∈ Sns.
The way to construct the no-shortsales mvp is different from Jagannathan and Ma (2003),

in which the authors argue that the no-shorsales mvp can be equivalently constructed from

the gmvp optimization via using the following shrinkage type covariance matrix

ΣJM = Σ−
(
ν1T + νT1

)
,

where ν is the vector of the Lagrange multipliers for the nonnegativity constraint wi ≥ 0,

i = 1, . . . , N . Nevertheless, here shows that the no-shorsales mvp is a typical sparse portfolio

which can be constructed from casting the gmvp optimization on a suitable subset Sns of the

whole available assets, without shrinking any element in the covariance matrix used.

1.3 Explanations on the Weighted Norm MVP Optimization

1.3.1 Individual’s Financing Constraint

If one sets λ1 = λα and λ2 = λ (1− α) , where λ ∈ R+ and α ∈ [0, 1] , the portfolio optimiza-

tion of (1.1) is essentially the same as minimizing the portfolio variance subject to the linear

constraints and the following norm constraint,

α ‖w‖1 + (1− α) ‖w‖21 ≤ c. (1.8)

15



When α = 1, ‖w‖1 ≤ c is called a gross exposure constraint in Fan, Zhang, and Yu (2009).

It can be viewed as the investor wants to minimize the portfolio variance (or maximize the

mean-variance utility when the mean return vector of assets is taken into account), but still

trying to limit the investment positions exposed to the risky assets. The constant c is the

maximum allowable amounts of investments on the risky assets, which reflects the investor’s

concern on parameter uncertainty due to statistical estimation errors.

Now consider a more general version of the l1 norm constraint

N∑
i=1

νi |wi| ≤ c,

where νi is a nonnegative constant. In Brodie et al. (2009), νi is viewed as a measure of

transaction cost, such as bid-ask spread of asset i. One can also interpret νi as the requirement

of margin on asset i (Garleanu and Pedersen, 2011). As for the case of (1.1) with α = 1, it is

equivalent to treating all of such transaction costs being equal to one5.

1.3.2 Decision Based on Marginal Increment of the Portfolio Variance

Now suppose that, due to fear of estimation errors, the investor believe that the corrected

estimated covariance matrix is the regularized one Σ̂′ = Σ̂ + λ2INN rather than Σ̂. Also to

simplify the analysis, assume the investor only faces the full investment constraint wT1 = 1.

Then at the stationary point, the marginal change of the in sample portfolio variance due to

including asset i is given by

∂wTΣ̂′w

∂wi
= 2wi

(
σ̂2
i + λ2

)
+ 2

N∑
j 6=i

wj σ̂ij = γ − λ1 (1.9)

if wi > 0, and

∂wTΣ̂′w

∂wi
= 2wi

(
σ̂2
i + λ2

)
+ 2

N∑
j 6=i

wj σ̂ij = γ + λ1 (1.10)

if wi < 0. If λ1 = 0, the marginal change is the Lagrangian multiplier γ, which is the shadow

price to measure how the portfolio variance changes when the investor’s wealth changes. If

both λ1 > 0, the marginal change due to buying an asset is γ−λ1, and it is lower than the one

due to shorting an asset, γ + λ1. It can be shown that γ > λ1 always holds at the stationary

point. Therefore the marginal change is always positive. In general, absolute values of the

optimal weights obtained from solving (1.1) is smaller than those obtained from solving the

5When 0 < α < 1, the optimization problem (1.1) can be viewed as a l1 norm penalized mvp problem with
covariance matrix Σ + λ (1− α) INN , therefore the explanations given above still apply
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gmvp. In addition, from (1.5), if wi = 0,

γ − λ1 ≤
∂wT Σ̂′w

∂wi
≤ γ + λ1. (1.11)

If λ1 becomes large, it is more possible that ∂wT Σ̂′w/∂wi will fall into the interval [γ − λ1, γ + λ1].

Therefore more assets will be excluded6. Meanwhile, it is less likely that (1.10) will hold, since

γ + λ1 will also increase. Furthermore, as mentioned, if λ1 is beyond some upper bound λ̄,

only no-shortsales positions will be included. Note that in this extreme case, (1.9) still needs

to hold. Thus the optimal no-shortsales solution is equivalent to the solution of a gmvp with

a certain subset of the whole assets.

In summary, the weighted norm portfolio strategy can be viewed as a way that the investor,

with the believe that Σ̂′ is the corrected estimated covariance matrix, to choose the penalty

parameter λ1 to decide whether to include an asset or not. The decision is based on how

the portfolio variance changes due to including an asset. If including an asset causes a large

(small) enough increase in the portfolio variance, then the asset weight is negative (positive). If

including an asset only causes a mild change in the portfolio variance, the asset will be excluded.

One can interpret it as that the investor are concerned with both the sign and magnitude of

the asset weight, and the decision on assigning the weight hinges on how the portfolio variance

changes due to including the asset. If including the asset leads a change larger than γ + λ1 or

smaller than γ − λ1 in the portfolio variance, then the investor will consider the information

is sufficient to safely determine the sign of the asset weight. On contrary, if including an asset

only makes the portfolio variance change mildly, say at some level between γ − λ1 and γ + λ1,

then the investor will think that the information is too ambiguous to make any decisions, and

she had better make the asset redundant. It can be seen as the investor’s attitude to the

parameter uncertainty, and the penalty parameter λ1 controls the degree of such attitude.

When λ1 becomes extremely large, only few assets will be included, and only assets which

give a very large marginal increment to the portfolio variance can have negative weights.

However, including such assets is risky, since a small change in their weights will cause an

extremely large volatility in the portfolio return. Thus the investor will try to avoid such

assets. Finally, only assets which give a small enough marginal increment to the portfolio

variance will be included, and all their weights are positive.

1.3.3 Relation to Bounded Rationality and Psychological Phenomenons

Gabaix (2011) shows that adding the l1 norm penalty to an individual’s optimization problems

can generate rich bounded rationality and psychological effects. In his model, the individual

tries to simplify her optimal decision process by considering only a few important parameters

in the utility function. To achieve this, at first the individual minimizes a cost function for

6Here one can safely ignore the case when wi = 0 and ∂wT Σ̂′w/∂wi = γ − λ1 (or ∂wT Σ̂′w/∂wi = γ + λ1),
since the probability that the two events occur simultaneously is negligible
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choosing the important parameters in the utility function. The cost function has a quadratic

form plus the l1 norm penalty on the parameters. With the l1 norm penalty, it is easy to

achieve a sparse solution for the parameter vector. Such decision process can be explained as

the individual prefer to frame her view on the real world not too complex. It is a reasonable

setting in reality, since no one can freely consider a large amount of relevant information for her

decisions. If some of the relevant information is not so important, the individual had better to

damp it. Then the individual can consider her optimal actions based on the simplified utility

function.

To get more insights of Gabaix (2011), one can further generalize the l1 norm penalty used

in 1.1 as

‖w −w0‖1 .

As in the portfolio optimization, w0 can be viewed as the investor’s default decision on the asset

allocation. In my case, I set such default weight vector equal to zero. With such generalized

l1 norm penalty, one can image that some elements in the optimal weight vector will naturally

be the default weights, like the zero components resulted by ‖w‖1 . It means the investor’s

decision with respective to some of the assets will not be changed. In practice, this property

is helpful on reducing portfolio turnover rate, as shown in DeMiguel et al. (2010), which sets

w0 equal to optimal weight vector of the gmvp.

In economics, such sticking-to-default effect is called inattention, while in psychology, it is

called an endowment effect. This effect often arises in real world when the investor faces too

many assets to choose. The investor may be aware that simultaneously to make many different

decisions perhaps will lower overall quality of these decisions. A better way to do it is to keep

as many initial decisions as one can, and change some of them if it is really necessary.

1.3.4 The Maximum a Posteriori Probability (MAP) Estimator

Zou and Hastie (2005) show that regression coefficients regularized by the elastic net constraint

can be viewed as having a compromised prior between the Gaussian and Laplace distributions.

Based on this result, one can give the optimal weights in (1.1) a similar statistical explanation.

Let Rt be the N × 1 vector of asset returns at time t. Suppose that given w, estimated

mean return R, and portfolio variance σ2
por, the investor believes that the portfolio return

wTRt | w, R, σ2
por

iid∼ N
(
wTR, σ2

por

)
for all t. Also suppose that the investor has a prior

belief that the weight vector w follows a distribution with the density proportional to

exp
(
−ψ ×

(
α ‖w‖1 + (1− α) ‖w‖22

))
I {Aw = u} ,

where ψ > 0 and α ∈ [0, 1] . Then conditional on σ2
por, {Rt}nt=1 and R, the density of the
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posterior distribution of the portfolio weights w will be proportional to

exp

(
−T − 1

2σ2
por

wT Σ̂w − ψ ×
(
α ‖w‖1 + (1− α) ‖w‖22

))
I {Aw = u} , (1.12)

where Σ̂ is the sample covariance matrix of Rt. Thus maximizing the log posterior portfolio

weight density with respect to w is equivalent to solving problem (1.1) with Σ = Σ̂ and

λ1 =
2σ2

porψα

T − 1
,

λ2 =
2σ2

porψ (1− α)

T − 1
,

and the optimal w is the maximum a posteriori probability (MAP) estimator for w.

The above result is related to proposition 8 and 9 in DeMiguel et al. (2009a), in which they

stated the cases when α = 1. The posterior distribution of (1.12) can be rewritten as the one

proportional to

exp

(
−T − 1

2σ2
por

wT

(
Σ̂ +

2σ2
porψ (1− α)

T − 1
IN×N

)
w − ψα ‖w‖l1

)
I {Aw = u} ,

which implies the investor has a prior belief that w follows a distribution with the density

proportional to

exp
(
−ψα ‖w‖l1

)
I {Aw = u} .

In addition, the regularized covariance matrix estimator

Σ̂ +
2σ2

porψ (1− α)

T − 1
IN×N

is the calibrated covariance matrix estimation.

1.3.5 MVP Optimization as a Minimum Mean Square Deviation Problem

The mvp optimization has some similar characteristic to the squared loss-based linear regression

estimation. Consider the following minimum mean square deviation problem:

min
w

E(Y − sTw)2, subject to Aw = u, (1.13)

where the expectation is taken with respect to Y . To solve (1.13), one seeks a vector w to

minimize the mean square deviation between sTw and Y given that Aw = u. Suppose Y is

the dependent variable and s is a N × 1 vector of predictors. E(Y − sTw)2 can be interpreted

as the expected squared prediction error, and Aw = u is the constraint on the coefficient

vector. Now let R be a N × 1 random asset return vector. If one sets Y = RTw, s = E(R),

the objective function becomes the portfolio variance E((R−E(R))Tw)2. Consequently (1.13)
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becomes the mvp optimization. It is equivalent to seeking the minimum mean square deviation

between (R− E(R))Tw and zero, subject to Aw = u.

When the number of covariates becomes relatively large to the sample size, recent research

on large dimensional variable selections in the linear regression shows that regularization meth-

ods can work well not only for model selections but also for improving out-of-sample predictions.

Bai and Ng (2008) and De Mol, Giannone, and Reichlin (2008) show regression penalized by

the l1 norm penalty can perform at least equally well or better than traditional methods on

predicting important macroeconomic indicators when a large number of predictors are jointly

considered. As for the mvp, when the number of assets becomes relatively large to the sample

size, it is reasonable to see that the regularization methods can do the same improvements for

reducing the out-of-sample portfolio variance as it does for the mean squared prediction error

of the OLS regression, since the mvp optimization and the OLS estimation share a similar

property on searching the optimal solution: namely, finding the optimal coefficient vector w

to minimize the mean square deviation between two points.

1.4 An Econometric Analysis on the Weighted Norm MVP

1.4.1 Basic Settings

In this section I provide an analysis for the weighted norm mvp from econometric perspective. I

explicitly introduce randomness into the portfolio optimization problem: the problem is solved

via calibrating the estimated covariance matrix Σ̂. Let Rt ∈ RN , t = 1, . . . , n denote the

independent observed N asset return data points with mean µ = (µ1, . . . , µN ) and covariance

matrix Σ. Let Σ̂ denote some estimate of Σ from using these data points. The i, jth off-

diagonal term of Σ̂ is denoted by σ̂ij , i, j = 1, . . . , N , and i 6= j. The ith diagonal term of Σ̂ is

denoted by σ̂ii = σ̂2
i , i = 1, . . . , N . In order to distinguish the deterministic case, I let all of the

notations used in previous sections with a hat above to denote their analogues from solving the

same mvp when Σ is replaced by Σ̂. For example , ŵ∗ = (ŵ∗1, . . . , ŵ
∗
N ) will be used to denote

the optimal weight vector by solving (1.1) when Σ̂ is replaced by Σ, and Ŝ = {i : ŵ∗i 6= 0} and

Ŝc = {i : ŵ∗i = 0} will be used to denote the sets of nonzero and zero components in ŵ∗. Given

Ŝ and Ŝc, like the deterministic case, one can have the following partitions for ŵ∗, Σ̂ and A,

ŵ∗ =
(
ŵ∗ŝ ,0|Ŝc|

)
,

Σ̂ =

(
Σ̂ŝŝ Σ̂ŝŝc

Σ̂ŝcŝ Σ̂ŝcŝc

)
,

A = (Aŝ, Aŝc) .

Let the out-of-sample (oos) portfolio return of the weighted norm mvp at t = n + 1 be

Rwp,n+1 = ŵ∗TRn+1. Given {Rt}nt=1 , the out-of-sample (oos) conditional portfolio variance of
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(1.1) is given by

var (Rwp,n+1| {Rt}nt=1) = ŵ∗Tŝ Σŝŝŵ
∗
ŝ . (1.14)

(1.14) can be viewed as a measure of risk that an investor will immediately face at period

n + 1 if she allocates wealth according to ŵ∗. Thus the oos conditional portfolio variance is

also called realized risk or out-of-sample risk (El Karoui, 2009, 2010). By similar fashion, let

Runp,n+1 = ŵT
unRn+1 be the oos portfolio return of the gmvp. The oos conditional portfolio

variance of Runp,n+1 is then given by

var (Runp,n+1| {Rt}nt=1) = ŵT
unΣŵun, (1.15)

and the oos conditional portfolio variance of the 1/N portfolio,

var

(
1

N
1T
NRn+1| {Rt}nt=1

)
=

1

N2
1T
NΣ1N . (1.16)

Let σ2
1/N := N−21T

NΣ1N . Unlike (1.14) and (1.15), the oos conditional variance of 1/N portfolio

is non-random, since its weights are always deterministic 1/N .

1.4.2 Main Results

When the investor faces a large number of assets being available and has the estimated co-

variance matrix Σ̂, given two easily-implementable benchmark strategies: the gmvp and 1/N ,

is it still worth to undertake the weighted norm mvp strategy? To answer this question, one

can directly compare their realized risks, and see how large probability that (1.14) will be

smaller than (1.15) (or (1.16)). Such comparisons are discussed in this subsection. Before the

main results are stated, I shall introduce a definition and some conditions that are used in the

analysis.

Definition 1 (Asymptotical feasible active set) We call S the asymptotical feasible active set

of assets for the weighted norm portfolio optimization, if S is a subset of {1, . . . , N} such that

as n, N →∞, at the stationary point, the following KKT conditions hold,

2Σ̂′ssŵ
∗
s = AT

ksγ̂
∗
s − λ1 × sign (ŵ∗s) ,

Asŵ
∗
s = u,∥∥∥2Σ̂′scsŵ

∗
s −AT

sc γ̂
∗
s

∥∥∥
∞
≤ λ1.

In short, S ⊆ {1, . . . , N} is a possible realization of Ŝ as n, N →∞.

The following five conditions are needed for proof of the main results.

Condition 1 All elements in Σ have finite values, and all eigenvalues of Σ are bounded away

from 0 and ∞, i.e. 0� φmin(Σ) ≤ φmax (Σ)�∞.
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Condition 2 The number of linear constraints k is fixed, and the set of solution for Aw = u

is non-empty. The elements in A and u are nonrandom.

Condition 3 When Σ and Σ̂ are calibrated, for 0 ≤ λ1, λ2 <∞, the weighted norm optimiza-

tion is feasible as n, N → ∞. The definition of a feasible optimization problem is that there

exists at least one feasible point such that the optimal value of the objective function is finite.

Condition 4 There exists a constant B0 such that supS⊆{1,...,N} P (‖ŵ∗s‖1 > B0) = o (1).

Condition 5 N < n, and limn→∞N/n = ρN ∈ (0, 1) .

The main results are stated in the following.

Theorem 1 Suppose that Rt
iid∼ N (µ,Σ), t = 1, . . . , n, Σ̂ is the sample covariance matrix,

and conditions 1 to 5 hold. Let S be the asymptotical feasible active set of assets such that

|S| >> k. Let amin = mini,j=1,...,N aij, and aij has the same definition as in Lemma 4. Set

λ1 = λ2 = λn,N = B0

√
2 logN

aminn
,

and assume the following maximum ratio of portfolio variances condition (MRPV) holds,

sup
S⊆{1,...,N}

(
σ2
un,s − σ2

un

σ2
un,s

− ρs

)
≤ 0, (1.17)

as n→∞, where ρs = limn→∞ |S| /n. Then as n, N →∞,

P
(
ŵ∗TΣŵ∗ ≤ ŵT

unΣŵun

)
→ 1.

If 0 < σ2
(
N−1 logN

) 1
2
−ε
< σ2

1
N

holds and (1.17) is changed to

sup
S⊆{1,...,N}

σ2
un,s − σ2

1
N

σ2
un,s

− ρs

 ≤ 0, (1.18)

where 0 < σ2 and 0 < ε < 1/2 are two constants. Then as n→∞,

P
(
ŵ∗TΣŵ∗ ≤ σ2

1
N

)
→ 1.

Proof of Theorem 1 can be found in Appendix 1.8.6. In addition to Lemma 1 and Lemma 2,

the proof also relies on Lemma 3, which shows bounded eignevalues of the sample estimate Σ̂,
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and Lemma 4, which provides an upper bound for the tail probability of the estimation errors

of elements in Σ̂ 7.

Theorem 1 says that under certain conditions, the conditional variance of the weighted

norm mvp will be less than that of the gmvp or 1/N with high probability as the number of

available assets N and sample size n both go to large. The weighted norm penalty tends to

result in sparsity of the weight vector, consequently only a smaller number of assets (say |S|)
will be included in the portfolio. When only a smaller number of assets is included, the true

risk of this portfolio σ2
un,s, may be well approximated by the realized risk of the weighted norm

mvp ŵ∗TΣŵ∗. On contrary, the conditional variance of the gmvp ŵT
unΣŵun may be a bad

approximation for its true risk σ2
un due to large N . Note that the true risk of the gmvp σ2

un,

is the minimum value that any realized risk can achieve. So if the true risk of the portfolio

with the smaller number of assets σ2
un,s is not too far from σ2

un, then the realized risk of the

weighted norm portfolio can have a large chance to be smaller than that of the gmvp, since

the later may be more away from σ2
un due to its bad empirical property.

The above result implies that, to ensure the weighted norm strategy work well, σ2
un,s and

σ2
un should not be too different. How closeness should the two have? It is stated by the

maximum ratio of portfolio variances condition (MRPV) of (1.17): for every possible feasible

active set of assets S, the maximum difference between the two should not exceed

σ2
un,sρs, (1.19)

where ρs = limn→∞ |S| /n.

While impacts from the estimation errors can be mitigated by shrinking size of the weight

vector, the MRPV condition characterizes a link between how many assets and which assets

should to be included in the portfolio. The MRPV condition implies that the number of

selected assets |S| should increase with the sample size n. Consider the case when |S| is fixed,

the upper bound (1.19) goes to zero as n → ∞, but σ2
un,s − σ2

un > 0 (or σ2
un,s − σ2

1/N > 0 )

holds, and this violates the MRPV condition.

However, this does not always mean including more assets is beneficial. In addition to

inducing more estimation errors, including more assets might not ease the MRPV condition.

Consider the case when |S′| assets is selected, and |S′| > |S| but S * S′, so ρs′ > ρs. Neverthe-

less it is possible that σ2
un,s < σ2

un,s′ , since S is not a subset of S′. In turn, the MRPV condition

might hold for the portfolio with S assets, but not hold for that with S′ assets. Therefore re-

quiring a suitable set of assets included in the portfolio is also important for ensuring the

weighted norm strategy work well 8.

7Some discussions on properties of the normal distributed returns, sample covariance matrix estimator,
estimation errors are also given in Appendix 1.8.3 to 1.8.5.

8Note that the situation |S′| > |S| but S * S′ is possible when the weighted norm strategy is used. Suppose
that λ1 > λ′1. The l1 norm penalty does not always guarantee that the set of assets being selected under λ1 is
a subset of those being selected under λ′1, since the optimal weights are not always monotonically decreasing
with the penalty parameter of the l1 norm penalty.
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For the case of comparing with σ2
1/N , the MRPV condition (1.18) is similar as (1.17). Given

every realized S, (1.18) can be explained as σ2
un,s should be closer to σ2

un than σ2
1/N does, and

the difference between the two distances σ2
un,s−σ2

un and σ2
un,s−σ2

1/N should not be over ρsσ
2
un,s.

The MRPV condition (1.18) is even easier to hold than (1.17), since σ2
un,s − σ2

1/N ≥ 0 may

not hold but σ2
un,s − σ2

un ≥ 0 always does. However, here σ2
1/N is required to not decrease too

fast with N. Note that as n, N go to large, approximation error of ŵ∗TΣŵ∗ to σ2
un,s vanishes

with the rate Op

(√
log n/n

)
(see section 1.8.6). If σ2

1/N were to decrease too fast with N , say

Op

(
(logN/N)

1
2

+ε
)

where ε > 0 is a constant9, approximation error of ŵ∗TΣŵ∗ to σ2
un,s would

be larger than σ2
1/N itself. Therefore in this situation, the weighted norm mvp is unlikely to

beat 1/N . An immediate example for such situation can be given is when Σ = INN . Suppose

that the linear constraint is wT1 = 1, then σ2
1/N = N−1 = σ2

un. It follows that

P
(
ŵ∗TΣŵ∗ ≤ σ2

1/N

)
= 0.

Another example is when Σ is a Toeplitz matrix. In this case, if σ2
i = 1 and σ2

ij = c|i−j|, where

i 6= j and 0 < c < 1, then

σ2
1
N

=
1

N2

[
2

(
(N − 1) ρ− c2−cN+1

1−c
1− ρ

)
+N

]
= O

(
N−1

)
,

which also violates the condition.

The number of assets selected is controlled by the penalty parameter of the l1 norm penalty,

which is specified as

λ1 = λn,N = B0

√
2 logN

aminn
.

The constant amin is related to the elements in Σ (see proof of Lemma 3). Such specification

satisfies the requirement that |S| should increase with n, and more importantly, it provides a

practical guideline to set the penalty parameters, as we will see in Section 1.6.2.

Finally, the property of causing sparsity makes the weighted norm strategy different from

the ordinary shrinkage estimators. The ordinary shrinkage estimators shrink particular el-

ements within the estimated covariance matrix to some targets, and in turn to reduce the

estimation errors. The weighted norm strategy, however, not only shrinks particular elements

within the estimated covariance matrix, but also reduces its dimension for the portfolio op-

timization. Consequently the resulting mvp is only constituted by a certain subset S of the

whole assets. Thus it can be viewed that the ordinary shrinkage estimators aim to approximate

σ2
un directly, while the weighted norm strategy aims to approximate σ2

un,s. As I show above,

how such norm penalty strategy performs hinges on how far σ2
un,s deviates from σ2

un.

9Note that here limn→∞N/n = ρN ∈ [0, 1] should hold.
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1.4.3 Unconditional Portfolio Variance

If asset returns are iid, by using total variance formula, it can be shown that

var (Rwp,n+1) = E
[
ŵ∗TΣŵ∗

]
+ µTvar (ŵ∗)µ,

var (Runp,n+1) = E
[
ŵT
unΣŵun

]
+ µTvar (ŵun)µ.

By Theorem 1, under certain conditions, P
(
ŵ∗TΣŵ∗ ≤ ŵT

unΣŵun

)
→ 1 as N and n both go

to large. It follows that

E
[
ŵ∗TΣŵ∗

]
≤ E

[
ŵT
unΣŵun

]
.

as N and n both go to large. Thus if µTvar (ŵ∗)µ ≤ µTvar (ŵun)µ, var (Rwp,n+1) ≤
var (Runp,n+1) will also hold.

As for 1/N , its unconditional variance also equals to σ2
1/N , and therefore var (Rwp,n+1) ≤

σ2
1/N if and only if

E
[
ŵ∗TΣŵ∗

]
+ µTvar (ŵ∗)µ ≤ σ2

1/N .

From Theorem 1, under certain conditions, P
(
ŵ∗TΣŵ∗ ≤ σ2

1/N

)
→ 1 as N and n both go to

large. It implies

E
[
ŵ∗TΣŵ∗

]
≤ σ2

1/N .

will hold asN and n both go to large. Thus to require var (Rwp,n+1) ≤ σ2
1/N , either µTvar (ŵ∗)µ

should not be too large or E
[
ŵ∗TΣŵ∗

]
should be small enough to σ2

1/N .

var (ŵ∗) and var (ŵ∗un) are covariance matrices of ŵ∗ and ŵ∗un, respectively, and their ana-

lytical expressions are not derived here. To gain some meaningful insights, one can assume that

covariances between elements in ŵ∗ are small. Then µTvar (ŵ∗)µ will be mainly determined

by
N∑
i=1

µ2
i var (ŵ∗i ) .

By similar fashion, µTvar (ŵ∗un)µ will be mainly determined by
∑N

i=1 µ
2
i var

(
ŵ∗un,i

)
. var (ŵ∗i )

and var
(
ŵ∗un,i

)
can be measured by their portfolio turnover rates, and we will see that em-

pirically, the weighted norm mvp tends to have a lower turnover rate than the gmvp.

1.5 Coordinate Wise Descent Algorithm

In this section we introduce a coordinate-wise descent algorithm developed by Yen and Yen

(2011), to solve the weighted norm mvp optimization problem. We focus on the benchmark

case in which the objective function only subjects to the full investment constraint. How a

coordinate-wise descent algorithm is implemented is as follows. Assume the objective function

f (w) = f (w1, . . . , wN ) is convex. The algorithm starts by fixing wi for i = 2, . . . , N and

finding a value for w1 to minimize f (w). The iteration is then done over i = 2, 3, · · · , N
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before going back to start again for i = 1. The procedure is repeated until the value of f (w)

converges.

Friedman et al. (2007) demonstrates that coordinate-wise descent algorithms can be pow-

erful tools in solving regression problems regularized by convex constraints. Since then, the

approach has gradually become popular in statistics to solve various norm constrained regres-

sion problems. Theoretical properties of this type of algorithm can be found in Tseng (2001).

Yen and Yen (2011) develops efficient coordinated-wise descent type algorithms for solving

various norm constrained portfolio optimizations.

As for the case of when wT1N = 1 is the only linear constraint, the proposed scheme to

update wi is
ST (γ − zi, λ1)

2
(
σ2
i + λ2

) , (1.20)

where ST (x, y) = sign (x) (|x| − y)+ is the soft thresholding function and zi = 2
∑N

j 6=iwjσij .

Let S+ = {i : wi > 0} and S− = {i : wi < 0}. The proposed scheme to update the Lagrangian

multiplier γ is

1 +
∑

i∈S+∪S−
zi

2(σ2
i+λ2)

− λ1

(∑
i∈S−

1
2(σ2

i+λ2)
−
∑

i∈S+

1
2(σ2

i+λ2)

)
[∑

i∈S+∪S−
1

2(σ2
i+λ2)

] . (1.21)

The derivations of (1.20) and (1.21) can be found in Appendix 1.8.7. The updating scheme is

essentially the same as using the Gauss-Seidel method to solve a system of equations of the

non-zero weights in the KKT conditions with γ fixed, and then using the solved weights and full

investment constraint to update γ. Under the Gauss-Seidel method, if the iteration converges,

the limit will be guaranteed to be the solution of the system (Saad, 2003). Furthermore, if

the set of non-zero weights S+ ∪ S− is correctly identified, convergence of the algorithm will

guarantee the minimum is attained (with γ fixed). Through the adjustment of γ, the full

investment constraint can be further satisfied. Thus if w and γ both converge, we can obtain

solution of (1.1).

The above approach of updating the weights and the Lagrangian multiplier can be gener-

alized. Considering instead that Aw = u should be satisfied. The Lagrangian, as shown in

Section 1.2.2 is the objective function plus γT(u−Aw), where γ = (γ1, . . . , γk) is a k×1 vector

of the Lagrange multipliers. One can follow procedures similar as above to derive the updated

forms of wi and γ, and then w, γ1, γ2, . . . , γp can be updated sequentially. An example of such

sequential update when an additional target return constraint is considered is shown in Yen

and Yen (2011).
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1.6 Empirical Results

1.6.1 Performance Measures

For estimating the covariance matrix, I adopt the expanding window scheme with initial win-

dow length τ0 = 1.2N . Suppose there are T̄ period observations. Let Σ̂t denote the estimated

covariance matrix for period t = τ0, . . . , T̄ − 1. The length of testing period (from τ0 + 1 to T̄ )

is T = T̄ − 1 − τ0. Σ̂t is calibrated into (1.1) at each period t, and the solved optimal weight

is denoted by ŵ∗i,t, i = 1, . . . , N . In the following, I use ŵ∗i,t as an example to illustrate how to

obtain the performance measures.

The out-of-sample portfolio return at period t+ 1 is defined as

R̂oos,p,t+1 =
N∑
i=1

ŵ∗i,tRi,t+1.

I then calculate turnover rate of the trading strategy. Suppose at the end of period t− 1, the

investor has wealth Πt−1 that can be invested on the assets. Given the optimal weight ŵi,t−1,

at the end of period t, the holding value of asset i is Πt−1ŵ
∗
i,t−1 (1 +Ri,t), and the total wealth

at period t is Πt = Πt−1

(
1 + R̂oos,p,t

)
. Then given ŵ∗i,t, the amount of wealth to invest on

asset i is Πtŵi,t. I define the turnover rate of asset i between t to t+ 1 as

TORi,t+1 =

∣∣∣∣∣∣ŵ∗i,t − ŵ∗i,t−1

(1 +Ri,t)(
1 + R̂oos,por,t

)
∣∣∣∣∣∣ , (1.22)

which is the proportion of wealth at the end of period t needed to invest on asset i in order to

satisfy the required amount Πtŵi,t. I further define the portfolio turnover rate at period t+ 1

as the sum of the turnover rate (1.22) over whole assets, i.e.

TORp,t+1 =

N∑
i=1

TORi,t+1.

I then impose transaction fee ε, and the oos net portfolio return at period t+ 1 is defined as

R̂netoos,p,t+1 = (1− εTORp,t+1)×
(

1 + R̂oos,p,t+1

)
− 1.

The oos net portfolio return is then used to calculate its sample variance, the Sharpe ratio and

certainty equivalent return 10.

To see how sparsity affects the portfolio performance, one can have a look of proportion of

10The certainty equivalent return used here is defined the same as in DeMiguel et al. (2009b) with the risk
aversion parameter ψ.
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active assets at period t,

PACt =

∣∣∣Ŝ+
t ∪ Ŝ

−
t

∣∣∣
N

,

where Ŝ+
t =

{
i : ŵ∗i,t > 0

}
and Ŝ−t =

{
i : ŵ∗i,t < 0

}
. One may also interest in whether the

strategy concentrates too much on certain assets. To measure this, I calculate Herfindahl-

Hirschman index for the portfolio weights at period t, which is defined as

HHIt =
N∑
i=1

∣∣∣ŵ∗i,t∣∣∣2(∑N
i=1

∣∣∣ŵ∗i,t∣∣∣)2 =
‖ŵ∗t ‖

2
2

‖ŵ∗t ‖
2
1

.

The norm penalty results in a sparse solution, and portfolio weights will concentrate on the

active assets. To know whether some of weights of the active assets may be too extreme or

not, measuring concentration among these active assets is more informative. For this purpose,

I also calculate the adjusted normalized Herfindahl-Hirschman Index at period t,

ANHHIt =
HHIt − 1

|Ŝt|
1− 1

|Ŝt|
,

where Ŝt =
{
i : ŵ∗i,t 6= 0

}
11. Finally, define the shortsales-long ratio at period t as

SLRt =

∑
i∈Ŝ−t

∣∣∣ŵ∗i,t∣∣∣∑
i∈Ŝ+

t

∣∣∣ŵ∗i,t∣∣∣ .
The ratio is helpful for clarifying how the norm penalty and the linear constraints have impacts

on the overall short and long positions of the portfolio.

1.6.2 Setting the penalty parameters

Theorem 1 suggests that one can set the penalty parameters as a function of sample size and

the number of assets. Let λ1,t and λ2,t denote penalty parameters for period t. Here, I propose

the following settings

λ1,t = αâtB̂t

√
2 logN

nt
,

λ2,t = (1− α) âtB̂t

√
2 logN

nt
,

11Note that for ANHHIt, I use 1/
∣∣∣Ŝt∣∣∣ rather than 1/N as the normalizing constant. The reason is that unlike

HHIt, which measures concentration of weights among all N assets, the ANHHIt measures concentration of
weights among the active assets.

28



where ât = mini=1,...,N σ̂
2
i,t, and B̂t =

∥∥ŵ∗t−1

∥∥
1
. The parameter nt is the sample size used at

period t, which will increase with time under the expanding window scheme. The specification

shown here keeps the form
√

2 logN/nt, but also uses some scale factors, ât, B̂t and α. ât is

the minimum diagonal term of the estimated covariance matrix (the minimum variance among

all the N assets). The reason for such setting is that, as shown in the proof of Lemma 3, aij

is inversely related to σ2
ij or σ4

i . Therefore amin should also inversely relate to σ2
ij or σ4

i . I find

approximate amin by ât works pretty well in practice. In addition, adding ât also makes the

penalty parameters are free to changes in units. The choice for B̂t here is trying to satisfy

condition 4 in Section 1.4.2, and I also find this choice works well. The parameter α ∈ [0, 1]

imposed here is used to adjust relative importance between the l1 and squared l2 norms. This

can help us to see how changing the relative weight imposed on the two penalties affects the

portfolio performances.

1.6.3 Main Results

I first compare performances of different portfolio strategies in which the full investment con-

straint wT1 = 1 is imposed. The benchmark strategies I consider are the no-shortsales mvp,

1/N and the gmvp. The data used are Fama-French 100 size and book-to-market ratio port-

folios (FF100) and 300 stocks randomly chosen from CRSP data bank (CRSP300)12. Figure

3.1 shows annualized mean returns and standard deviations of individual assets in FF100 and

CRSP300. The mean returns and standard deviations are calculated with daily data over the

whole sample period13.

Table 3.6 and 3.6 show the results as daily FF100 and CRSP300 data are used, and the

portfolios are balanced at daily basis. Testing period for FF100 is from Jan-02-1990 to Dec-

31-2010 and for CRSP300 is from Jan-03-2000 to Dec-31-2010. The tables include annualized

sample variance of the oos net returns (SV), the annualized Sharpe ratio (SR)14, and average

values of the other six measures: certainty equivalent return (CE), turnover rate (TOR),

proportion of active assets (PAC), Herfindahl-Hirschman Index (HHI), adjusted normalized

Herfindahl-Hirschman Index (ANHHI), and shortsales-long ratio (SLR). For each table, in the

parentheses are the bootstrap standard errors of the corresponding quantities, obtained from

using stationary bootstrap of Politis and Romano (1994). The net portfolio return is obtained

as transaction fee ε = 35 basis points is deducted.

12The data of FF100 can be downloaded from Professor Kenneth French’s website: http://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/datalibrary.html. I use average value weighted returns of the
100 portfolios. The return data of CRSP300 is available from the author.

13The sample period for FF100 is from July-12-1987 to Dec-31-2010 (5,415 observations), and for CRSP300
is from July-30-1998 to Dec-31-2010 (3,127 observations)

14Note that given SV and SR, and the annualized risk free rate, it is not difficult to calculate the annualized
average (oos net) portfolio return. For example, as α = 0, for FF100, the annualized average (oos net) portfolio
return (%) is

1.0666×
√

82.9718 + 3.63 ≈ 13.3455,

and as α = 0.2, the value is 14.2830%.
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For daily FF100, it can be seen that the weighted norm strategy can deliver a lower SV

than no-shortsales mvp (N.S.) and naive 1/N strategy. It is somehow surprising that1/N has

the highest volatility in this case. The result is different from DeMiguel et al. (2009b), in

which the authors show how 1/N dominates other sophisticated portfolio strategies in many

different performance measures. 1/N is often considered as a layman strategy: one just assigns

1/N to each asset without doing any adjustment according to the information one has. But

its extremely high volatility implies that it in fact heavily depends on market timing, and one

needs a professional skill to determine whether it is a good time or bad time to implement

such strategy. As for the annualized Sharpe ratio, the weighted norm performs pretty well and

completely dominates the three benchmarks strategies in this case. The annualized SR are all

above 1 and varies from 1.07 to 1.19 as α varies from 0 to 1. The weighted norm mvp also

dominates the benchmarks in the average certainty equivalent return (CE). Finally, one can

see the proportion of active assets is inversely related to the annualized portfolio variance. It

suggests that increasing sparsity seems not work for reducing portfolio volatility in this case.

As for the case of daily CRSP300, the weighted norm mvp can yield a lower SV than

the other three benchmarks for a range of α. The lowest SV occurs when α = 0.2, and on

average only 76% assets are selected. It suggests that optimally increasing sparsity may work

for reducing portfolio volatility in this case. However, now the weighted norm mvp does not

enjoy the highest SR and CE. The highest SR and CE is achieved by the no-shortsales mvp,

a special case of the mvp penalized by the l1 norm penalty.

The average turnover rates of 1/N is obviously lower than that of other strategies, and

the fact was widely documented in previous literatures. As for the weighted norm mvp, it can

be seen that the average turnover rate declines with α, which suggests that imposing more l1

penalty helps to stablize the weight vector. For the average proportion of active assets, the

weighted norm mvp with α > 0 and no-shortsales mvp constantly have less than N assets

included. The PAC also decreases with α, since increasing α is equivalent to imposing more l1

penalty, and it facilitates more sparsity in the portfolio weight vector. The no-shortsales mvp

on average has the sparsest optimal weight vector. It is expected, since the no sortsales-mvp

is essentially the same as the weighted norm mvp with a heavy l1 penalty.

The 1/N strategy assigns equal weights on each asset, so its HHI and ANHHI have the

lowest values (1/N and 0) among all strategies. In general, the portfolios with sparse weight

vectors will assign relatively more loadings on a few certain assets, and consequently problem

of extreme weights will arise. This phenomenon can been seen from their HHI and ANHHI.

For the weighted norm mvp, the HHI and ANHHI increase with α and the average proportion

of active assets. It is not surprising that the no-shortsales mvp, which has the lowest average

proportion of active assets, has the highest values of HHI and ANHHI. One thing worth to

note here is that the weighted norm mvp with α = 0, which only l2 norm penalty is activated,

has lower values of HHI and ANHHI than the gmvp. It suggests that putting l2 norm indeed

helps to alleviate the problem of extreme weights. Finally, the shortsales-long ratio SLR
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is positively related to α, which confirms that the l1 norm penalty, together with the full

investment constraint, facilitate long positions in the weighted norm portfolio.

1.6.4 Stochastic Dominance Test

The performance measures shown in Table 3.6 and 3.6, such as the Sharpe ratio or certainty

equivalent return, does not take into a general framework of utility maximization into account.

If an individual endowed with an arbitrary (nondecreasing) utility function, should she prefer

the weighted norm strategy to other benchmarks? The concepts of first-order (FSD) and

second-order (SSD) stochastic dominance can help us to answer the question. Given returns of

two portfolio strategies 1 and 2, say R1 and R2, if R1 first order stochastically dominates R2, it

is equivalent to saying that every expected utility maximizer will prefer strategy 1 to strategy

2. On the other hand, strategy 1 clearly deliver higher expected utility than strategy 2. If

R1 second order stochastically dominates R2, it is equivalent to saying that every risk-averse

expected utility maximizer will prefer strategy 1 to strategy 2. Or one can say strategy 1 is

less risky than strategy 2.

In practice, to see whether R1 first or second order stochastic dominates R2, one can

implement some formal statistical tests via comparing functionals of their cumulative distri-

bution functions. Now let strategy 1 as the weighted norm mvp and strategy 2 as the other

benchmarks. The null hypothesis used here for the test is

H0 : The weighted norm mvp FSD (SSD) the benchmarks.

If we cannot reject the null, there is not enough evidence to say that the weighted norm

mvp FSD (SSD) the benchmarks does not hold. To empirically construct critical values and

p-values, I adopt subsampling method suggested by Linton et al. (2005) 15.

Table 3.6 and 3.6 show subsample p-values of the stochastic dominance tests for the cases

of daily FF100 and CRSP30016. For the case of daily FF100, there is a strong evidence against

the hypotheses that the weighted norm mvp FSD naive 1/N and the no-shortsales mvp, but in

favour of the one that the weighted norm mvp FSD the gmvp. These results are inconsistent

with those presented in Table 3.6, in which 1/N and no-shortsales mvp both have high volatility

and low average annualized portfolio returns17. As for CRSP300, except the 1/N , there is some

evidence supporting that the weighted norm mvp FSD the other two benchmarks. Overall,

the FSD test suggests that it is still hard to say whether the weighted norm mvp is preferred

to the other three benchmarks by an individual endowed with an arbitrary risk preference.

Unlike the FSD test, the results for the SSD test are more consistent. For the two data sets,

15More detail discussions on the FSD, SSD and how the tests are implemented can be found in appendix
1.8.8.

16The data used here are daily net returns when transaction fee of 35 basis points is deducted.
17The annualized average (oos net) portfolio returns for 1/N and no-shortsales mvp are about 11.5416% and

13.4645%, respectively, while the lowest annualized average (oos net) portfolio returns for the weighted norm
mvp are around 13.3457% (α = 0) and 14.2830% (α = 0.2).
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the hypothesis that the weighted norm mvp second order stochastic dominates the benchmarks

cannot be rejected at the significant level 0.05. It suggests that an individual with risk averse

preference is more likely to choose the weighted norm strategy than the other benchmark ones

as she is making decisions on allocating assets.

1.6.5 Lower Frequency Data

Table 1.5 to 1.7 show the results of weekly FF100 and CRSP300 and monthly FF100 data

are used18. Since weekly and monthly data are used for estimating the covariance matrix,

accordingly, the portfolio is balanced weekly or monthly here. The results are qualitatively

similar as those when daily data are used. In the case of FF100, the weighted norm mvp

consistently yields higher Sharp ratio than the other three benchmarks, but for the case of

CRSP 300, it fails to achieve a higher Sharpe ratio than the no-shortsales mvp. Comparing

with the daily results, the annualized portfolio variances and Sharpe ratio are worse in the

lower frequency cases. One also can see that while the gmvp can yield the lowest annualized

portfolio variance in the case of daily and weekly FF100, it loses such merit in the case of

monthly FF100. This may be because a far fewer number of average sample size is used in the

monthly case than the daily and weekly cases, and therefore bias the estimates.

1.6.6 With the Target Return Constraint

Previous literatures argue that empirically, adding the estimated return vector into the portfolio

optimization often damages portfolio performances (Jagannathan and Ma, 2003; DeMiguel

et al., 2009a)). Indeed, accurately estimating the means of returns is more difficult than

accurately estimating the corresponding variances or covariances. This is the main reason why

people often focus on the portfolio optimization without imposing the target return constraint

wTµ = µ̄, in which the estimated mean return vector is needed. One may wonder whether

imposing the weighted norm penalty can help to boost portfolio performances in this situation.

Table 1.8 shows results when the additional target return constraint is imposed. The calibrated

mean return vector µ is again estimated via the sample mean estimation with the expanding

window scheme. The target return µ̄ (annualized) is set at high and low levels for each case.

I keep the penalty parameter settings as I use in the full investment constraint case.

Overall, the annualized portfolio variance, Sharpe ratio and average certainty equivalent

return shown here are still not as good as the case without such additional target return

constraint. One exception is the case of CRSP300 with µ̄ = 5%, in which the SR and CE are

higher than the case with the target return constraint. It also can be seen that the value of µ̄

18The testing periods are the same as the daily cases, but the sample periods are now different. For the weekly
return data, I construct them by aggregating the daily returns over a week. The sample period for the weekly
FF100 is from the 38th week of 1987 to the last week of 2010 (1,215 observations); for CRSP300 is from the sixth
week of 1993 to the last week of 2010 (933 observations). Again, the weekly CRSP300 return data is available
from the author. The sample period of monthly FF100 is from Jan-1980 to Dec-2010 (372 observations), and it
can be downloaded from Professor Kenneth French’s website.
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can have significant impacts on the performance measures. Also, higher µ̄ does not necessarily

result in higher SR and CE. For example, in CRSP300, the weighted norm mvp can yield

the Sharpe ratio around 0.59 to 1 when the annualized required return is 5%. But as the

required return is up to 10%, the resulting Sharpe ratio is only around 0.40 to 0.74. For the

case of FF100, the situation becomes opposite. The weighted norm mvp can yield Sharpe ratio

from 1.02 to 1.06 as the required return is 20%, while the required return is down to 10%,

the resulting Sharpe ratio is only around 0.59 to 0.64. In sum, the results shown here are in

line with what previous literatures find: adding the estimated mean returns into the portfolio

optimization does little or no help on improving the portfolio performances. However, one

should note that the penalty parameters used here do not incorporate any information about

the estimated means, and this perhaps is another reason for the inferior performances of the

weighted norm mvp with the target return constraint.

1.6.7 Alternative Norm Penalties

I then investigate whether imposing different forms of norm penalties on the portfolio opti-

mization can obtain better portfolio performances than the weighted norm penalty does. As

mentioned in Section 1.3.5, the penalized portfolio optimization can be viewed as a constrained

regression problem. I therefore borrow some ideas from statistics. The first alternative penalty

function I consider is the berhu penalty (Owen, 2007),

λ
N∑
i=1

(
|wi| I {|wi| < κ}+

w2
i + κ2

2κ
I {|wi| ≥ κ}

)
, (1.23)

where I{.} is the indicator function. The name berhu comes from the fact that (1.23) is the

reverse of Huber’s loss. The berhu penalty is convex and satisfies the additive separability

condition. Yen and Yen (2011) propose an efficient coordinate-wise descent algorithm for

solving the portfolio optimization with the berhu penalty. The penalty can be seem as a

compromise between the l1 and squared l2 norm regularizations: if |wi| is less than some

positive constant κ, then it will be regularized by the l1 norm; if |wi| is larger than or equal to

κ, then it will be regularized by the squared l2 norm.

I also consider the following generalized l1 norm penalty19,

λ1 ‖w‖1 + λ2 ‖w −w0‖1 .

This is a more general version of the norm penalty considered in DeMiguel et al. (2010) in

which only the part of ‖w −w0‖1 is active (λ1 = 0). The additional ‖w‖1 imposed here is

functioning as inducing more sparsity. We have seen the penalty ‖w −w0‖1 in Section 1.3.3,

where I relate it with individual’s inattention or the endowment effect. The vector w0 in the

19The derivation of the coordinate-wise descent algorithm for solving the mvp penalized the generalized l1
norm penalty can be found in Appendix 1.8.9
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second l1 norm penalty is called the target weight vector. DeMiguel et al. (2010) suggest to

use the optimal gmvp weight vector as the target weight vector, and shows that such choice

can help to reduce portfolio turnover rate. Unlike them, here I use 1/N or the optimal no-

shortsales weight vector as the the target weight vector. Choosing 1/N is because such setting

in general results in the lowest turnover rate among the benchmarks, while using the optimal

no-shortsales weight is because its dominant performances in the CRSP300 data.

I also try to assign different penalty values to different assets. To do this, I consider a

multiple-stage portfolio optimization with the following penalty

λ
N∑
i=1

ε

exp
(
ε
∣∣∣w∗(l)i

∣∣∣) |wi| , (1.24)

where w
∗(l)
i , l = 0, 1, . . . , is the portfolio weight for asset i obtained from some portfolio

optimizations, and ε > 0 is a turning parameter. I call (1.24) the adaptive penalty. Note

that all of the norm penalties I use so far treat each asset equally: the penalty parameter for

each of them has the same value. The above modified l1 norm penalty is trying to impose

different degrees of penalty on the assets by adding the term ε exp
(
−ε
∣∣∣w∗(l)i

∣∣∣). To obtain

w
∗(l)
i , I propose to use a multi-stage approach, which can be cast as follows.

• Step 1: Solve the l1 norm penalized portfolio optimization. Denote the solution w
∗(0)
i ,

i = 1, . . . , N.

• Step 2: Plug w
∗(0)
i into (1.24). Then solve the portfolio optimization with penalty (1.24),

and denote the solution w
∗(1)
i , i = 1, . . . , N.

• Step 3: Plug w
∗(1)
i into (1.24). Then solve the portfolio optimization with penalty (1.24),

and the solution, denoted by w
∗(2)
i , i = 1, . . . , N is used as the portfolio weight for asset

i.

In fact, one can continue to step 4, 5,... and obtain w
∗(3)
i , w

∗(4)
i , . . ., and terminate until

certain convergence condition is satisfied. However, I find in practice proceed to step 3 is

enough to ensure good convergence. Imposing (1.24) can be viewed as using the majorization-

minimization method to approximately solve an l0 norm penalized portfolio optimization, and

a more detail discussion on this can be found in Appendix 1.8.9.

For each penalty, I uniformly set the penalty parameters as âtB̂t
√

2 logN/nt. Table 1.9

and 1.10 show the results for the cases of daily FF100 and CRSP300, respectively. For FF100,

using berhu penalty can yield the Sharpe ratio from 0.83 to 1.11, average certainty equivalent

return from 0.04 to 0.05, as one vary the parameter κ from 0.02 to 0.1. For CRSP300, the

SR is from 0.99 to 1.08, and the CE is from 0.033 to 0.037, as κ is varied within the same

range. Both the SR and CE of the berhu penalty for the CRSP300 are better than those of

the weighted norm mvp, but still slightly worse than those of the no-shortsales mvp. As for
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the generalized l1 norm penalty, I use TWN − l1 (TWNS− l1) and TWN (TWNS) to denote

the cases with and without the additional l1 norm penalty when the target weight vector w0

is 1/N (or the optimal no-shortsales weight vector). It can be seen that using the optimal

no-shortsales weight vector as w0 yields higher SR and CE than using the 1/N weight does,

no matter whether the additional l1 norm penalty is considered. Imposing the additional l1

penalty works well for the CRSP300, but not for the FF100. As for the adaptive penalty, it is a

little surprising that it can obtain higher Sharpe ratio than the weighted norm mvp for FF100

and CRSP300, as one carefully set the parameter ε. The number of iteration l seems not have

effect on the performances. The SR for FF100 can achieve 1.21 as ε = 1. For the CRSP300,

setting ε = 1 and 2.5 yields SR up to 0.96 and 0.99, and the number is similar to the case

of the weighted norm mvp. Overall, the three alternative penalties used here have chances to

obtain at least comparable performances as the weighted norm penalty and the benchmarks.

1.7 Conclusion

This paper provides ample evidence, both theoretically and empirically, why imposing a l1 and

squared l2 norm penalties on the portfolio optimization can improve portfolio performance

when the number of available assets N is large. The paper also links the weighted norm

strategy to some interesting issues in finance, economics and statistics, and provides alternative

explanations on why using the weighted norm strategy is reasonable. An efficient algorithm

for solving the problem and optimal penalty parameter setting is introduced and tested and

applied to financial data.

The paper remains agnostic on several issues but they provide exiting avenues for future

research. For example, in the current version, I only use the sample covariance matrix and

sample mean return vector with the expanding window scheme, to solve for the optimal port-

folio. More sophisticated estimations, such as using high frequency data or factor models,

might provide better results. Another important issue is on how the theoretical properties

of the weighted norm portfolio changes when 1) one allows random components in the linear

constraints, 2) the data generating process becomes more complex and 3) more sophisticated

estimations are used. El Karoui (2009) and El Karoui (2010) provide some results on the first

two issues for the global minimum variance portfolio. The above three modifications will make

the statistical properties of the high dimensional covariance estimation far more complicated

than in this paper, and to the best of my knowledge, until now there is very little literature

focusing on these issues.
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1.8 Appendix

1.8.1 Proof of Lemma 1

Proof. The optimal nonzero weights w∗s and Lagrange multipliers can be solved via the following

system of equations(
2 (Σss + λ2Iss) AT

s

As 0

)(
w∗s
−γ∗

)
=

(
−λ1 × sign (w∗s)

u

)
.

By using matrix inverse formula, we can obtain expressions of w∗s and γ∗ as shown in Lemma 1.

1.8.2 Proof of Lemma 2

Proof. Multiplying both sides of (1.3) by w∗T yields

2σ2
s + 2λ1 ‖w∗s‖

2
2 = w∗Ts AT

s γ
∗ − λ1w

∗T
s sign (w∗s) .

By (1.4) and w∗Tsign (w∗) = ‖w∗‖1, It follows that

2σ2
s + 2λ2 ‖w∗s‖

2
2 = uT γ∗ − λ1 ‖w∗s‖1 .

From Lemma 1, uTγ∗ = uTγ∗2,s + λ1u
Tδ2,s. It can be shown that

uTγ∗2,s = 2
(
σ2

2,s + λ2

∥∥w∗2,s∥∥2

2

)
.

Therefore

σ2
s − σ2

un,s = σ2
2,s − σ2

un,s + λ2

(∥∥w∗2,s∥∥2

2
− ‖w∗s‖

2
2

)
+
λ1

2

(
uTδ2,s − ‖w∗s‖1

)
. (1.25)

Also

uTδ2,s = w∗T2,ssign (w∗s) ≤
∑
i∈S

∣∣w∗2,s,isign (w∗s,i)∣∣ ≤ ∥∥w∗2,s∥∥1
.

I then prove that

σ2
2,s − σ2

un,s + λ2

∥∥w∗2,s∥∥2

2
≤ cs,1 (cs,1 + 1)σ2

un,s.

To see this, since Σ′ss = Σss + λ2Iss, it can be shown that

AsΣ
−1
ss A

T
s −AsΣ′−1

ss A
T
s = λ2AsΣ

′−1
ss Σ−1

ss A
T
s . (1.26)

Furthermore,

σ2
2,s − σ2

un,s + λ2

∥∥w∗2,s∥∥2

2
= λ2

[
uTM ′−1

s

(
AsΣ

′−1
ss Σ−1

ss A
T
s

)
M−1
s u

]
.

Note that if a |S| × |S| matrix Ms is positive semidefinite, one can have the following Cauchy-Schwartz

type inequality ∣∣xTMsy
∣∣ ≤√xTMsx

√
yTMsy,
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where x and y are |S| × 1 column vectors. Note that since Σ′−1
ss and Σ−1

ss both positive semidefinite,

given |S| >> k, the matrix AsΣ
′−1
ss Σ−1

ss A
T
s is also positive semidefinite. It follows

uTM ′−1
s

(
AsΣ

′−1
ss Σ−1

ss A
T
s

)
M−1
s u ≤

√
uTM ′−1

s

(
AsΣ

′−1
ss Σ−1

ss AT
s

)
M ′−1
s u (1.27)

×
√

uTM−1
s

(
AsΣ

′−1
ss Σ−1

ss AT
s

)
M−1
s u (1.28)

In the following I derive the upper bound of (1.27) and (1.28). For (1.27), by φmin (Σss) > 0,

uTM ′−1
s

(
AsΣ

′−1
ss Σ−1

ss A
T
s

)
M ′−1
s u ≤ 1

φmin (Σss)

|S|∑
j=1

1

(φj (Σss) + λ2)
‖xsqj,s‖22

where xs = uTM ′−1
s As. The vector qj,s is the jth column of a square matirx Qs such that Σ′−1

ss Σ−1
ss =

QsΛsQ
T
s , QsQ

T
s = Iss and Λs is a diagonal matrix which jth diagonal element is (φj (Σss) (φj (Σss) + λ2))

−1
.

Then
s∑
i=1

1

(φj (Σss) + λ2)
‖xsqi,s‖22 = σ2

2,s + λ2

∥∥w∗2,s∥∥2

2
.

Combining the above results, (1.27) is bounded by
(
φmin (Σss)

)− 1
2

(
σ2

2,s + λ2

∥∥w∗2,s∥∥2

2

) 1
2

. For (1.28),

since the matrix AsΣ
′−1
ss Σ−1

ss A
T
s is positive semidefinite, by (1.26),

xTMsx− xTM ′sx = λ2x
TAsΣ

′−1
ss Σ−1

ss A
T
s x ≥ 0,

where x is a k × 1 column vector. By xTM ′sx ≥0,

xTMsx ≥λ2x
TAsΣ

′−1
ss Σ−1

ss A
T
s x

for any k × 1 column vector x. Therefore

uTM−1
s

(
AsΣ

′−1
ss Σ−1

ss A
T
s

)
M−1
s u ≤ uTM−1

s MsM
−1
s u

λ2
=
σ2
un,s

λ2
.

The second term (1.28) is bounded by λ
− 1

2
2 σun,s. Note that σ2

2,s ≥ σ2
un,s, since the former is obtained

by restricting the portfolio weights with the l2 norm, while the later is obtained without imposing any

constraint on the portoflio weights. Therefore

σ2
2,s − σ2

un,s + λ2

∥∥w∗2,s∥∥2

2
≤ cs,1

√(
σ2

2,s + λ2

∥∥w∗2,s∥∥2

2

)
σ2
un,s,

where cs,1 = λ
1
2
2

(
φmin (Σss)

)− 1
2 . Let a = σ2

2,s + λ2

∥∥w∗2,s∥∥2

2
, b = σ2

un,s. The above result shows that

a− b ≤ cs,1
√
ab. By a and b are both nonnegative, Then

√
a−
√
b ≤ cs,1

√
ab

√
a+
√
b
≤ cs,1

√
ab√
a

= cs,1
√
b.

Therefore
√
ab ≤ (cs,1 + 1) b, and

σ2
2,s − σ2

un,s + λ2

∥∥w∗2,s∥∥2

2
≤ cs,1 (cs,1 + 1)σ2

un,s.
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Combining the above results, the proof is completed.

1.8.3 Normality of Asset Returns

Suppose that Rt
iid∼ N (µ,Σ) , t = 1, . . . , n, where µ = (µ1, . . . , µN ) is the mean return vector and Σ is

the covariance matrix, and the calibrated Σ̂ is the sample covariance matrix. Let 1n denote an n × 1

column vector in which all components are 1. It can be shown that

Σ̂ =
1

n− 1
Σ

1
2 ZTHnZΣ

1
2 ,

where R = 1
n

∑n
t=1 Rt is the sample mean return, R = (R1, . . . ,Rn)

T
is an n × N return matrix,

Hn = Inn − n−11n1Tn is an idempotent matrix, and HR = R−R. The vector Z = (Z1, . . . ,Zn)
T

is an

n×N matrix for standard normal random vector,

Zt
iid∼ N (0, INN ) ,

i = 1, . . . , n. Obviously, Rt = µt + ZtΣ
1
2 .

With iid normal distributed returns and the sample covariance estimator, it is well known that

Σ̂ ∼ W (Σ, N, n− 1)

n− 1
, (1.29)

where W (Σ, N, n− 1) is the Wishart distribution with parameter Σ, N, and n − 1. If A is a k × N
deterministic matrix, then

AΣ̂AT ∼
W
(
AΣAT, k, n− 1

)
n− 1

. (1.30)

If Σ̂ is positive definite with probability one, then

(
AΣ̂−1AT

)−1

∼
W
((
AΣ−1AT

)−1
, k, n− 1−N + k

)
n− 1

. (1.31)

Following similar way in previous section, one can also do partition on the return vector Ri. Given

some nonrandom sets S and Sc, let Rs,t ∈ R|S|, and Rsc,t ∈ R|Sc|, t = 1, . . . , n be the first |S| and the

rest |Sc| = N − |S| elements of Rt, then

Rs,t
iid∼ N (µs,Σss) ,

Rsc,t
iid∼ N (µsc ,Σscsc) ,

where

µ = (µs, µsc) , and Σ =

(
Σss Σscs

Σscs Σscsc

)
.

Furthermore, when Σ̂ is the sample covariance matrix, then

Σ̂ss ∼ W (Σss, |S| , n− 1)

n− 1
,

Σ̂scsc ∼ W (Σscsc , |Sc| , n− 1)

n− 1
,
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where Σ̂ss and Σ̂scsc are sample covariance estimates of Σss and Σscsc respectively. Furthermore, (1.30)

and (1.31) also hold when Σ̂ and Σ are replaced by these submatrices Σ̂ss and Σ̂scsc and A replaced

by deterministic matrices As (with dimension k × |S|) and Asc (with dimension k × |Sc|). The above

property holds for any S ⊆ N , and is useful on the following proof as we want to construct probability

of a certain event.

1.8.4 Eigenvalues of the Sample Covariance Matrix

I then discuss some issues on the convergence of the extreme eigenvalues of a sample covariance matrix.

By using Theorem 5.11 in Bai and Silverstein (2010), one can obtain an useful result on bounded

eigenvalues of the sample covariance matrix with iid normal samples.

Lemma 3 Suppose Zi
iid∼ N

(
0, σ2 ⊗ INN

)
, and

Σ̂ =
Σ

1
2 ZTHnZΣ

1
2

n− 1
,

where Z is a n×N matrix which ith row is Zi, Σ is a N×N symmetric and positive semidefinite matrix,

and Hn = Inn−n−11n1T
n . Let φj (M) , j = 1, . . . , N, denote eigenvalues of matrix M , and φmin (M) and

φmax (M) denote the smallest and largest eigenvalues of M , respectively. As limn→∞N/n = ρN ∈ (0, 1) ,

almost surely

σ2 (1−√ρN )
2
φmin (Σ) ≤ lim

n→∞
φj

(
Σ̂
)
≤ σ2 (1 +

√
ρN )

2
φmax (Σ) ,

for every j, j = 1, . . . , N .

To prove Lemma 3, I will use Theorem 5.11 in Bai and Silverstein (2010). For completeness, I restate

the theorem here.

Theorem 2 (Bai and Silverstein, 2010) Let CN denote the set of N dimensional complex numbers.

Assume Zi ∈ CN , i = 1, . . . , n be iid with mean 0N and covariance matrixΣ in which its diagonal term

Σjj = σ2, and off-diagonal terms Σjl = 0, j, l = 1, . . . , N, j 6= l. Suppose Zi also has finite fourth

moment. As limn→∞N/n = ρN ∈ (0, 1) , then almost surely one can have

lim
n→∞

φmin
(

Σ̂
)

= σ2 (1−√ρN )
2
,

lim
n→∞

φmax
(

Σ̂
)

= σ2 (1 +
√
ρN )

2
,

whereΣ̂ = (n− 1)
−1∑n

i=1 ZZT
i .

The proof of Lemma 3 is straightforward, and can be accomplished by applying the above result to

the matrix ZTHnZ.

Proof. Since Σ and Σ̂ are both positive semidefinite, for any arbitrary 1×N vectorx

0 ≤ φmin

(
ZTHnZ

n− 1

)
xTΣx ≤ xTΣ̂x

n− 1
≤ φmax

(
ZTHnZ

n− 1

)
xTΣx.
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Then it can be shown that

φmax
(

Σ̂
)
≤ φmax

(
ZTHnZ

n− 1

)
φmax (Σ) ,

φmin
(

Σ̂
)
≥ φmin

(
ZTHnZ

n− 1

)
φmin (Σ) .

Note that the above inequalities hold for every n > 1 and N ≥ 1. Since Hn is idempotent, it can be

shown that

ZTHnZ =
(
ZTHn

)
(HnZ) =

n∑
i=1

(
Zi − Z

) (
Zi − Z

)T
,

where Z = n−1
∑n
i=1 Zi. Since Zi

iid∼ N
(
0, σ2 ⊗ INN

)
, Zi − Z has mean 0N and diagonal covariance

matrix which diagonal elements equal to n−1 (n− 1)σ2. By Theorem 5.11 in Bai and Silverstein (2010),

it can be shown that as limn→∞N/n = ρN ∈ (0, 1), almost surely

lim
n→∞

φmin

(
ZTHnZ

n− 1

)
= σ2 (1−√ρN )

2
,

lim
n→∞

φmax

(
ZTHnZ

n− 1

)
= σ2 (1 +

√
ρN )

2
,

by n−1 (n− 1)σ2 → σ2. Therefore as limn→∞N/n = ρN ∈ (0, 1) , almost surely

lim
n→∞

φmax
(

Σ̂
)
≤ σ2 (1 +

√
ρN )

2
φmax (Σ) ,

lim
n→∞

φmin
(

Σ̂
)
≥ σ2 (1−√ρN )

2
φmin (Σ) .

1.8.5 Estimation Errors

Suppose that σ̂ij and σ̂2
i and are consistent estimators for σij and σ2

i , respectively. Without loss of

generality, one may assume σ̂ij and σij have the following linear relationship,

σij = σ̂ij + ωij (n) ,

σ2
i = σ̂2

i + ωii (n) ,

where ωij (n) (ωii (n)) is the estimation error for σij (σ2
i ) by using σ̂ij (σ̂ij), and is a function of sample

size n. If σij and σ2
i are consistent, as n → ∞, ωij (n) and ωii (n) should vanish to zero with a high

probability. Σ may be expressed as

Σ = Σ̂ + Ω (n) (1.32)

where Ω (n) is an N ×N estimation error matrix with the (i, j)th elements ωij (n) , i, j = 1, . . . , N . It

is also symmetric but may not be positive semidefinite.

Furthermore, by similar partition used in Σ̂, it follows that

Ω (n) =

(
Ωŝŝ (n) Ωŝŝc (n)

Ωŝcŝ (n) Ωŝcŝc (n)

)
.
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Then the difference between the oos variances of weighted norm mvp and gmvp can be expressed as

ŵ∗Tŝ Σŝŝŵ
∗
ŝ − ŵ∗TunΣŵ∗un = D̂1,ŝ + D̂2,ŝ, (1.33)

where

D̂1,ŝ = σ̂2
ŝ − σ̂2

un, (1.34)

D̂2,ŝ = ŵ∗Tŝ Ωŝŝ (n) ŵ∗ŝ − ŵ∗TunΩ (n) ŵ∗un. (1.35)

That is, the sum of the difference between their in-sample variances and the difference between the

estimation errors.

Given Ŝ = S, Fan et al. (2009) shows that

ŵ∗Ts Ωss (n) ŵ∗s ≤ max
i,j
|ωij (n)| ‖ŵ∗s‖

2
1 .

Therefore if ‖ŵ∗s‖
2
1 is bounded, the estimation error term of the weighted norm mvp is bounded by

the maximum|ωij (n)| scaled by ‖ŵ∗s‖
2
1 . Here, size of the optimal weight vector plays an important

role in reducing the estimation errors. If ŵ∗s is the optimal no-shortsales weight with ŵ∗Ts 1N = 1,

then ‖ŵ∗s‖
2
1 = 1. The no-shortsales mvp has the smallest ‖ŵ∗s‖

2
1 over the mvp with the full investment

constraint, and it is main reason why it can efficiently eliminate the estimation errors.

The term D̂1,ŝ can be further expressed as

(
σ̂2

2,ŝ − σ̂2
un

)
+ λ2

(∥∥ŵ∗2,s∥∥2

2
− ‖ŵ∗s‖

2
2

)
+
λ1

2

(
uTδ̂2,s − ‖ŵ∗s‖1

)
. (1.36)

The first term of (1.36) is the difference between the optimal in-sample portfolio variances from (1.6)

and (1.7), and it is nonnegative. To see this, at first note that σ̂2
un ≤ σ̂2

ŝ,un, since the in-sample portfolio

variance from optimally choosing a larger set of assets will always be no greater than that from optimally

choosing a smaller subset of the same assets. Furthermore, σ̂2
ŝ,un ≤ σ̂2

2,ŝ, since the later is obtained by

restricting the portfolio weights by the l2 norm on the assets in Ŝ, while the former is obtained without

such constraint. For the second and third term of (1.36), as shown in the proof of Lemma 2, is the

difference between the optimal in-sample portfolio variances of (1.1) and (1.6), and it is nonnegative.

Therefore (1.36) in general is nonnegative.

The term D̂2,ŝ is the difference between the estimation errors, and it is determined by the estimation

error matrix and its principal submatrix, and the two optimal weight vectors. Given that D̂1,ŝ ≥ 0,

to make (1.44) nonpositive, D̂2,ŝ needs to be large enough to offset the nonnegativity caused by D̂1,ŝ.

Furthermore, we can have the following lemma for the estimation error omegai when the returns are

i.i.d. normal and the sample variance and covariance estimators are used.

Lemma 4 Suppose Ri
iid∼ N (µ,Σ), i = 1, . . . , n, and every element in the covariance Σ is finite. If Σ̂

is the sample covariance matrix. Then

P (|ωij (n)| ≥ v) = O
(
n−

1
2 exp

(
−aijv2n

))
,

where aij is positive and dependent on σ2
i , σ

2
j and σij .
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Proof. Note that

|ωij (n)| = |σ̂ij − σij |

≤

∣∣∣∣∣ 1

n− 1

n∑
k=1

(RikRjk − σij)

∣∣∣∣∣+

∣∣∣∣ 1

n− 1

(
nRiRj − σij

)∣∣∣∣ . (1.37)

The first term can be shown to satisfy∣∣∣∣∣ 1

n− 1

n∑
k=1

(RikRjk − σij)

∣∣∣∣∣ ≤ En,1 + En,2,

where

En,1 =

∣∣∣∣∣ 1

4 (n− 1)

n∑
k=1

(
(Rik +Rjk)

2 −
(
2σij + σ2

i + σ2
j

))∣∣∣∣∣
En,2 =

∣∣∣∣∣ 1

4 (n− 1)

n∑
k=1

(
(Rik −Rjk)

2 −
(
σ2
i + σ2

j − 2σij
))∣∣∣∣∣ .

Let V ar+
ij = σ2

i + σ2
j + 2σij and V ar−ij = σ2

i + σ2
j − 2σij . It is known that

Rik +Rjk ∼ N
(
0, V ar+

ij

)
,

Rik −Rjk ∼ N
(
0, V ar−ij

)
,

Then

P (En,1 ≥ v) = P


∣∣∣∣∣∣∣
n∑
k=1


Rik +Rjk√

V ar+
ij

2

− 1


∣∣∣∣∣∣∣ ≥

4 (n− 1) v

V ar+
ij


= P

(
χ2
n ≥ n+

4 (n− 1) v

V ar+
ij

)
+ P

(
χ2
n ≤ n−

4 (n− 1) v

V ar+
ij

)
, (1.38)

where v ≥ 0 is a constant. By similar arguments,

P (En,2 ≥ v) ≤ P

(
χ2
n ≥ n+

4 (n− 1) v

V ar−ij

)
+ P

(
χ2
n ≤ n−

4 (n− 1) v

V ar−ij

)
. (1.39)

I first discuss the second terms in (1.38) and (1.46). If

v ≥ n

4 (n− 1)
max

(
V ar−ij , V ar

+
ij

)
,

then

P

(
χ2
n ≤ n−

4 (n− 1) v

V ar+
ij

)
= P

(
χ2
n ≤ n−

4 (n− 1) v

V ar−ij

)
= 0,

since χ2
n is nonnegative with probability one. Let

θij =
4

max
(
V ar−ij , V ar

+
ij

) .
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Suppose that

0 < n− 4 (n− 1) v

max
(
V ar−ij , V ar

+
ij

) = n− θijvn+ θijv ≤ n.

Then

max

(
P

(
χ2
n ≤ n−

4 (n− 1) v

V ar−ij

)
, P

(
χ2
n ≤ n−

4 (n− 1) v

V ar+
ij

))
= P

(
χ2
n ≤ (1− θijv)n+ θijv

)
≤ P

(
χ2
n ≤ (1− θijv)n

)
+ P

(
χ2
n ≤ θijv

)
.

We know that

P
(
χ2
n ≤ (1− θijv)n

)
=

Γ
(
n
2 ,

(1−θijv)n
2

)
Γ
(
n
2

) ,

P
(
χ2
n ≤ θijv

)
=

Γ
(
n
2 ,

θijv
2

)
Γ
(
n
2

) ,

where Γ (u, z) =
∫ u

0
xz−1 exp (−x) dx is the lower incomplete gamma function, and Γ (u) is the gamma

function. It can be shown that

Γ (u, z) ≤ zu exp (−z)
u− uz

u+1

≤ zu exp (−z)
u− uz

u+1

=
u+ 1

u

zu exp (−z)
u+ 1− z

.

Then

ln Γ (u, z) ≤ ln (u+ 1)− lnu+ u ln z − z − ln (u+ 1− z)

ln Γ (u, τu) ≤ ln (u+ 1)− lnu+ u (ln τ + lnu)− τu− ln (u+ 1− τu) .

If u > 0, the logrithm of the gamma function is

ln Γ (u) =

(
u− 1

2

)
lnu− u+

1

2
ln 2π + 2

∫ ∞
0

(
arctanx/u

exp (2πx)− 1
dx

)
=

(
u− 1

2

)
lnu− u+

1

2
ln 2π +O (1) .

Therefore

ln
Γ (u, z)

Γ (u)
≤ ln

(
u+ 1

u

)
+ ln

u
1
2

u− z
− (lnu− (ln z + 1))u− z − 1

2
ln 2π −O (1) ,

ln
Γ (u, τu)

Γ (u)
≤ ln

(
u+ 1

u

)
− 1

2
lnu− (τ − (1 + ln τ))u− ln (1− τ)− 1

2
ln 2π −O (1) .

Note that τ > 1 + ln τ if τ ∈ (0, 1) . Furthermore, if τ ∈ (0, 1) ,

(1− τ)
2 . τ − (1 + ln τ) .

43



Then if I set u = n
2

P
(
χ2
n ≤ τn

)
=

Γ
(
n
2 ,

τn
2

)
Γ
(
n
2

) = O

(
n−

1
2 exp

(
− (1− τ)

2
n

2

))
.

Replacing τ with (1− θijv) and z with n−1θijv, then

Γ
(
n
2 ,

(1−θijv)n
2

)
Γ
(
n
2

) = O

(
n−

1
2 exp

(
−
θ2
ijv

2n

2

))
Γ
(
n
2 ,

θijv
2

)
Γ
(
n
2

) = O

(
n−

1
2 exp

(
− (lnn)n

2

))
.

Therefore when n goes large

max

(
P

(
χ2
n ≤ n−

4 (n− 1) v

V ar−ij

)
, P

(
χ2
n ≤ n−

4 (n− 1) v

V ar+
ij

))
= O

(
n−

1
2 exp

(
−
θ2
ijv

2n

2

))
(1.40)

For the first terms in (1.38) and (1.46), it can be shown that

max

(
P

(
χ2
n ≥ n+

4 (n− 1) v

V ar−ij

)
, P

(
χ2
n ≥ n+

4 (n− 1) v

V ar+
ij

))
≤ P

(
χ2
n ≥ (1 + θijv)n− θijv

)
=

Γ
(
n
2 ,

(1+θijv)n−θijv
2

)
Γ
(
n
2

) ,

where Γ (u, z) =
∫∞
z
xu−1 exp (−x) dx is the upper incomplete gamma function. By similar arguments

to prove (1.40), one can derive the upper bound for these terms. In sum, we can conclude that

P

(∣∣∣∣∣ 1

n− 1

n∑
k=1

(RikRjk − σij)

∣∣∣∣∣ ≥ v
)

= O
(
n−

1
2 exp

(
−a′ijv2n

))
, (1.41)

where a′ij is positive and dependent on σ2
i , σ

2
j and σij . As for the second term of (1.37), it can be shown

that ∣∣∣∣ 1

n− 1

(
nRiRj − σij

)∣∣∣∣ ≤ E3,n + E4,n,

where

E3,n =

∣∣∣∣∣ 1

n (n− 1)

n∑
k=1

(RikRjk − σij)

∣∣∣∣∣
E4,n =

∣∣∣∣∣ 1

n− 1

n∑
k=2

Ri1Rjk

∣∣∣∣∣ .
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Then it follows

P (E3,n ≥ v) ≤ P

(
χ2
n ≥ n+

4 (n− 1)nv

V ar+
ij

)
+ P

(
χ2
n ≤ n−

4 (n− 1)nv

V ar+
ij

)

+P

(
χ2
n ≥ n+

4 (n− 1)nv

V ar−ij

)
+ P

(
χ2
n ≤ n−

4 (n− 1)nv

V ar−ij

)
(1.42)

and

P (E4,n ≥ v) ≤ 2P

(
χ2
n−1 ≥ n+

4 (n− 1) v

σ2
i + σ2

j

)
+ 2P

(
χ2
n−1 ≥ n−

4 (n− 1) v

σ2
i + σ2

j

)
. (1.43)

by cov (Ri1, Rjk) = 0 for k = 2, . . . , n (i.i.d. of the returns). By similar arguments to prove (1.41) it is

not difficult to see (1.42) and (1.43) have the same order as (1.41). Thus in sum

P (|ωij (n)| ≥ v) = O
(
n−

1
2 exp

(
−aijv2n

))
,

where aij is positive and determined by a′ij , σ
2
i , σ

2
j and σij .

1.8.6 Proof of Theorem 1

Proof. Given S ⊆ {1, . . . , N}, by Lemma 2, one can have

ŵ∗Ts Σssŵ
∗
s − ŵ∗TunΣŵ∗un =

(
σ̂2
s − σ̂2

un

)
−
(
ŵ∗TunΩ (n) ŵ∗un − ŵ∗Ts Ωss (n) ŵ∗s

)
(1.44)

= (ĉs,1 (ĉs,1 + 1) + 1) σ̂2
un,s − σ̂2

un − λ2 ‖ŵ∗s‖
2
2

+
λ1

2

(
uTδ̂2,s − ‖ŵ∗s‖1

)
−
(

ŵ∗TunΩ (n) ŵ∗un − max
i,j∈S

|ωij (n)| ‖ŵ∗s‖
2
1

)
≤ ĉs,2σ̂

2
un,s −

(
σ̂2
un + ŵ∗TunΩ (n) ŵ∗un

)
+ (λ1ĉs,3 − λ2ĉs,4)

−λ1 ‖ŵ∗s‖1 + max
i,j∈S

|ωij (n)| ‖ŵ∗s‖
2
1

where ĉs,1 = λ
1
2
2

(
φmin

(
Σ̂ss

))− 1
2

, ĉs,2 = ĉs,1 (ĉs,1 + 1) + 1, ĉs,3 = 2−1
(
uTδ̂2,s + ‖ŵ∗s‖1

)
, and ĉs,4 =

‖ŵ∗s‖
2
2 . As shown by El Karoui (2009),

ŵ∗TunΣŵ∗un
∼=

1

1− ρN
σ2
un,

and it follows that ŵ∗TunΩ (n) ŵ∗un−ρNσ2
un = Op

(
ρN (1− ρN )

−1
)

, and it is positive. Therefore the last

inequality is bounded by

ĉs,2σ̂
2
un,s − σ̂2

un − ρNσ2
un + (λ1ĉs,3 − λ2ĉs,4) + λ1 ‖ŵ∗s‖1 + max

i,j∈S
|ωij (n)| ‖ŵ∗s‖

2
1

Then we have a look of ĉs,3. With some algebra, it can be shown that λ1ĉs,3 is the difference between

two optimal values of objective functions: the weighted norm and squared l2 norm optimizations, when

Σ̂ss is used. Note that squared l2 norm optimization is a special case of the weighted norm optimization

when λ1 = 0. By the assumption that the weighted norm optimization is feasible for for 0 ≤ λ1, λ2 <∞,

as n, N → ∞, we can conclude that ĉs,3 = Op (1). With similar arguments, ĉs,4 = Op (1) , since it is

the squared l2 norm penalty of the objective function of the weighted norm portfolio optimization.
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Let

A1,s =

{
ĉs,2σ̂

2
un,s − ρNσ2

un + (λ1ĉs,3 − λ2ĉs,4) + max
i,j∈S

|ωij (n)| ‖ŵ∗s‖
2
1 ≤ σ̂

2
un + λ1 ‖ŵ∗s‖1

}
,

A1,s is a sufficient condition to make (1.44) nonpositive. Define the following three events,

B1,s = {λ1ĉs,3 − λ2ĉs,4 ≤ B1,n} ,

B2,s =

{
max
i,j∈S

|ωij (n)| ‖ŵ∗s‖
2
1 ≤ λ1 ‖ŵ∗s‖1

}
,

B3,s =
{
ĉs,2σ̂

2
un,s − ρNσ2

un ≤ σ̂2
un −B1,n

}
,

where B1,n is a finite nonnegative constant. It follows that
⋂3
i=1 Bi,s ⊆ A1,s. Therefore

P
(
ŵ∗Ts Σŝŝŵ

∗
ŝ ≤ ŵ∗TunΣŵ∗un|Ŝ = S

)
= P

(
ŵ∗Ts Σssŵ

∗
s ≤ ŵ∗TunΣŵ∗un

)
≥ P (A1,s)

≥ 1−
3∑
i=1

P
(
Bci,s

)
.

I set

λ1 = λ2 = λn,N = B0

√
2 logN

aminn
,

λ2 = o (1) and B1,n = (log n)
− 1

2 , where B0 > 0 is a constant such that supS⊆{1,...,N} P
(
‖ŵ∗s‖l1 > B0

)
=

o (1). For P (Bc1,s), we can have

P (Bc1,s) = P

(
ĉs,3 − ĉs,4 > B2

√
n

log n logN

)
≤ P

(
ĉs,3 − ĉs,4 >

B2
√
n

log n

)
, (1.45)

where B2 =
√
amin/

(√
2B0

)
. Since ĉs,3 − ĉs,4 = Op (1) and B2

√
n/ log n → ∞, (1.45) converges

to zero as n, N → ∞. Then we have a look of P
(
Bc2,s

)
. By Lemma 4 and the assumption that

supS⊆{1,...,N} P (‖ŵ∗s‖1 > B0) = o (1), one can show that

P
(
Bc2,s

)
= P

(
max
i,j∈S

|ωij (n)| ‖ŵ∗s‖1 > λ1

)
≤ P

({
max
i,j∈S

|ωij (n)|B0 > λ1

}⋂
{‖ŵ∗s‖1 ≤ B0}

)
+ o (1)

≤ P

(
max
i,j∈S

|ωij (n)|B0 > λ1

)
+ o (1) .

= N2O

(
n−

1
2 exp

(
−aminλ

2
1n

B2
0

))
+ o (1) .

= O
(
n−

1
2

)
.

For P
(
Bc3,s

)
, I at first show that

ĉs,2σ̂
2
un,s

p.→ n− |S| − 1 + k

n− 1
σ2
un,s, (1.46)
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as n and n− |S| go large. Apply Lemma 3 to Σ̂ss, it can be shown that almost surely,

lim
n→∞

φmin
(

Σ̂ss

)
≥ φmin (Σss) (1−√ρs)2

> 0,

where ρs = limn→∞ |S| /n. Therefore

lim
n→∞

ĉs,1 = lim
n→∞

√√√√ λ2

φmin
(

Σ̂ss

) ≤ 1

1−√ρs

√
λ2

φmin (Σss) ,
=

cs,1
1−√ρs

.

Now with λ2 = λn,N , cs,1 = o (1), thus ĉs,1 = op (1). Therefore ĉs,2 = ĉs,1 (ĉs,1 + 1) + 1
p.→ 1. For σ̂2

un,s,

it has been shown that given S,

σ̂2
un,s = uT

(
AsΣ̂

−1
ss A

T
s

)−1

u = uT
(
AsΣ

−1
ss A

T
s

)−1
u
χn−1−|S|+k

n− 1
= σ2

un,s

χ2
n−1−|S|+k

n− 1
.

Thus as n and n−|S| go large, σ̂2
un,s

p.→ (n− 1)
−1

(n− |S| − 1 + k)σ2
un,s by χ2

n−1−|S|+k
p.→ n−|S|−1+k.

Combining the results, the claim (1.46) follows. Furthermore, as k is fixed and k � |S| , we can have

n− |S| − 1 + k

n− 1
σ2
un,s → (1− ρs)σ2

un,s,

as n and |S| go large. Thus

P
(
Bc3,s

)
= P

(
ĉs,2σ̂

2
un,s − ρNσ2

un > σ̂2
un −B1,n

)
→ P

(
(1− ρs)σ2

un,s > σ2
un

)
,

by setting B1,n = (log n)
− 1

2 .

I then prove that if (1.17) hold, P
(
ŵ∗TΣŵ∗ ≤ ŵ∗TunΣŵ∗un

)
→ 1 as n→∞. We are hoping to con-

struct the lower bound of the unconditional probability by aggregating P
(
ŵ∗Tŝ Σŝŝŵ

∗
ŝ ≤ ŵ∗TunΣŵ∗un|Ŝ

)
over different realized Ŝ:

P
(
ŵ∗TΣŵ∗ ≤ ŵ∗TunΣŵ∗un

)
=

∑
S⊆{1,...,N}

P
(
ŵ∗Tŝ Σŝŝŵ

∗
ŝ ≤ ŵ∗TunΣŵ∗un|Ŝ = S

)
P
(
Ŝ = S

)

≥
∑

S⊆{1,...,N}

(
1−

3∑
i=1

P
(
Bci,s

))
P
(
Ŝ = S

)

= 1−
3∑
i=1

∑
S⊆{1,...,N}

P
(
Bci,s

)
P
(
Ŝ = S

)

First, note that upper bound of the third term P
(
Bc2,s

)
is independent of Ŝ, thus

∑
S⊆{1,...,N}

P
(
Bc2,s

)
P
(
Ŝ = S

)
= O

(
n−

1
2

)
.
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For the other two terms, we have∑
S⊆{1,...,N}

P
(
Bc1,s

)
P
(
Ŝ = S

)
=

∑
S⊆{1,...,N}

P (λ1ĉs,3 − λ2ĉs,4 > B1,n)P
(
Ŝ = S

)
≤ sup

S⊆{1,...,N}
P

(
ĉs,3 − ĉs,4 >

B2
√
n

log n

)
, (1.47)∑

S⊆{1,...,N}

P
(
Bc3,s

)
P
(
Ŝ = S

)
=

∑
S⊆{1,...,N}

P
(
ĉs,2σ̂

2
un,s − ρNσ2

un > σ̂2
un −B1,n

)
P
(
Ŝ = S

)
≤ sup

S⊆{1,...,N}
P

(
ĉs,2σ̂

2
un,s − ρNσ2

un > σ̂2
un −

1√
log n

)
. (1.48)

By the assumption that the weighted norm optimization is feasible, ĉs,3 − ĉs,4 = Op (1) holds for every

S as n, N →∞, thus (1.47) converges to zero as n→∞. For (1.48), as n, n− |S| → ∞,

P
(
ĉs,2σ̂

2
un,s − ρNσ2

un > σ̂2
un −B1,n

)
→ P

(
(1− ρs)σ2

un,s > σ2
un

)
= P

(
σ2
un,s − σ2

un

σ2
un,s

− ρs > 0

)

≤ P

(
sup

S⊆{1,...,N}

(
σ2
un,s − σ2

un

σ2
un,s

− ρs

)
> 0

)
= 0

for every S, if the MRPV condition holds. Combining the above results, the conclusion follows.

By similar fashion, for comparing ŵ∗Ts Σssŵ
∗
swith N−21T

NΣ1N , we can have

ŵ∗Ts Σssŵ
∗
s − σ2

1
N

= σ̂2
s + ŵ∗Ts Ωss (n) ŵ∗s − σ2

1
N

≤ ĉs,2σ̂
2
un,s − σ2

1
N

+ (λ1ĉs,3 − λ2ĉs,4)− λ1 ‖ŵ∗s‖1 + max
i,j∈S

|ωij (n)| ‖ŵ∗s‖
2
1(1.49)

Let

A′1,s =

{
ĉs,2σ̂

2
un,s + (λ1ĉs,3 − λ2ĉs,4) + max

i,j∈S
|ωij (n)| ‖ŵ∗s‖

2
1 ≤ σ

2
1
N

+ λ1 ‖ŵ∗s‖1

}
.

A′
1,Ŝλ

is a sufficient condition to make (1.49) non-positive. Define the following event,

B′1,s = {λ1ĉs,3 − λ2ĉs,4 ≤ B3,n} ,

B′3,s =
{
ĉs,2σ̂

2
un,s ≤ σ2

1
N
−B3,n

}
.

whereB3,n = σ2
(
N−1 logN

) 1
2−ε. Note that σ2

1/N−B3,n > 0, since by assumption that 0 < σ2
(
N−1 logN

) 1
2−ε <

σ2
1
N

, where σ2 and ε > 0 are two constants. It then can be shown that B′1,s ∩ B2,s ∩ B′3,s ⊆ A′1,s. For

P (B′c1,s), it follows that

P (B′c1,s) = P

(
ĉs,3 − ĉs,4 > B′2

(
n

logN

)ε)
≤ P

(
ĉs,3 − ĉs,4 > B′2

(
n

log n

)ε)
,

where

B′2 = σ2B2ρ
ε− 1

2

N

is a constant. Since ĉs,3 − ĉs,4 = Op (1), and B′2 (n/ log n)
ε → ∞, P (B′c1,s) converges to zero as n,
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N →∞. By similar fashion for (1.47), as n→∞

sup
S⊆{1,...,N}

P

(
ĉs,3 − ĉs,4 > B′2

(
n

log n

)ε)
→ 0

since ĉs,3 − ĉs,4 = Op (1) holds for every S as n, N →∞. We then only need to show that∑
S⊆{1,...,N}

P
(
B′c3,s

)
P
(
Ŝ = S

)
→ 0.

Following the same strategy used in previous proof and setting λ1 = λ2 = λn,N , it can be shown that

P
(
ĉs,2σ̂

2
un,s > σ2

1
N
−B3,n

)
= P

(
ĉs,2σ̂

2
un,s − σ2

1
N
> −B3,n

)
→ P

(
(1− ρs)σ2

un,s − σ2
1
N
> 0
)

= P

(
σ2
un,s − σ2

1
N

σ2
un,s

− ρs > 0

)

≤ P

(
sup

S⊆{1,...,N}

(
σ2
un,s − σ2

1
N

σ2
un,s

− ρs

)
> 0

)
= 0

for every S, if the MRPV condition (1.18) holds. Therefore the proof is completed.

1.8.7 Derivation of the Coordinate Wise Descent Algorithm

From the KKT conditions, when the linear constraint is wT1N = 1, by fixing wj , j = 1, . . . , N, j 6= i,

one can solve wi as
ST (γ − zi, λ1)

2 (σ2
i + λ2)

,

where ST (x, y) = sign (x) (|x| − y)+ is the soft thresholding function and zi = 2
∑N
j 6=i wjσij . Let

S+ = {i : wi > 0} and S− = {i : wi < 0}. Then we know that

wT1N = γ

 ∑
i∈S+∪S−

1

2 (σ2
i + λ2)

− ∑
i∈S+∪S−

zi
2 (σ2

i + λ2)
+

λ1

∑
i∈S−

1

2 (σ2
i + λ2)

−
∑
i∈S+

1

2 (σ2
i + λ2)

 .

Since wT1N = 1, one can solve for γ as

1 +
∑
i∈S+∪S−

zi
2(σ2

i+λ2)
− λ1

(∑
i∈S−

1

2(σ2
i+λ2)

−
∑
i∈S+

1

2(σ2
i+λ2)

)
[∑

i∈S+∪S−
1

2(σ2
i+λ2)

] .

To implement the algorithm, I set initial value of each weight w
(0)
1 = w

(0)
2 = · · · = w

(0)
p = N−1,

and γ(0) > λ1. The algorithm starts from updating w1, w2, . . . , and wN sequentially, and then use the
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updated vector w to update γ. The procedure terminates until w and γ converge. The algorithm can

be summarized as follows.

Algorithm 1 Coordinate-wise descent update for the weighted norm mvp optimization with

the full investment constraint

1. Fix λ1 and λ2 at some constant levels.

2. Initialize w(0) = N−11N and γ(0) > λ1

3. For i = 1, . . . , N , and k > 0,

w
(k)
i ←

ST
(
γ(k−1) − z(k)

i , λ1

)
2 (σ2

i + λ2)
,

where

z
(k)
i = 2(

∑
j<i

w
(k)
j σij +

∑
j>i

w
(k−1)
j σij).

4. For k > 0, update γ as

γ(k) ←

[ ∑
i∈S(k)

+ ∪S
(k)
−

1

2 (σ2
i + λ2 (1− α))

]−1

×

[
1 +

∑
i∈S(k)

+ ∪S
(k)
−

z
(k)
i

2 (σ2
i + λ2)

−

λ1

 ∑
i∈S(k)

−

1

2 (σ2
i + λ2)

−
∑
i∈S(k)

+

1

2 (σ2
i + λ2)

],
where S

(k)
+ =

{
i : w

(k)
i > 0

}
and S− =

{
i : w

(k)
i < 0

}
.

5. Repeat 3 and 4 until w(k) and γ(k) converge.

1.8.8 More Discussions on the Stochastic Dominance Test

The formal definitions for the FSD and SSD are as follows.

Definition 2 Let u (.) be an nondecreasing (u′ (.) ≥ 0 ) von Neumann-Morgenstern utility function,

and F1 (r) and F2 (r) be the cumulative distribution functions (c.d.f.) of random variables R1 and R2

respectively. R2 is first order stochastic dominated by R1, i.e. R1 �FSD R2, if and only if

E (u (R1)) ≥ E (u (R2)) ,

for all u (.) and with strict inequality for some u (.) ; or

F1 (r) ≤ F2 (r) ,

for all r and with strict inequality for some r.
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Definition 3 Let u (.) be an nondecreasing (u′ (.) ≥ 0 ) and concave (u” (.) ≤ 0 ) von Neumann-

Morgenstern utility function, and F1 (r) and F2 (r) be the cumulative distribution functions (c.d.f.) of

random variables R1 and R2 respectively. R2 is second order stochastic dominated by R1, i.e. R1 �SSD
R2, if and only if

E (u (R1)) ≥ E (u (R2)) ,

for all u (.) and with strict inequality for some u (.) ; or∫ r

−∞
F1 (x) dx ≤

∫ r

−∞
F2 (x) dx,

for all r and with strict inequality for some r.

Note that the above definition of SSD does not require the property of equal mean of R1 and R2.

Does it matter? To see this,

E (u (R1))− E (u (R2)) =

∫ ∞
−∞

u (r) dF1 (r)−
∫ ∞
−∞

u (r) dF1 (r)

=

∫ ∞
−∞

u′ (r) (F2 (r)− F1 (r)) dr

= u′ (r)

∫ r

−∞
(F2 (x)− F1 (x)) dx

∣∣∣∣∞
−∞

−
∫ ∞
−∞

u” (r)

(∫ r

−∞
(F2 (x)− F1 (x)) dx

)
dr.

Clearly, if the second condition in definition 2 holds, and u (r) is nondecreasing and concave, E (u (R1)) ≥
E (u (R2)) no matter whether R1 and R2 have the same mean or not.

The concepts of FSD and SSD state whether one portfolio strategy can generate higher expected

utility than another, and also whether the portfolio strategy can be less risky than another. If R1 �FSD
R2 holds, it is equivalent to saying that every expected utility maximizer will prefer F1 (r) to F2 (r) .

On the other hand, F1 (r) clearly deliver higher expected utility than F2 (r) . If R1 �SSD R2 holds, it

is equivalent to saying that every risk-averse expected utility maximizer will prefer F1 (r) to F2 (r). Or

we can say F1 (r) is less risky than F2 (r) .

To see whether one random variable first or second order stochastic dominates the other random

variable, one can implement some formal statistical tests via comparing functionals of their c.d.f’s. We

can empirically estimate the c.d.f. by

F̂i (r) =
1

T

T∑
t=1

1 {Rit ≤ r} ,

i = 1, 2. Let ∆
(1)
1,2 (r) := F1 (r)− F2 (r) , and δ∗(1) := supr

(
∆

(1)
1,2 (r)

)
. To test whether R1 �FSD R2, we

can form a null hypothesis as the following

H0 : δ∗(1) ≤ 0.

The above null hypothesis states that for all r, F1 (r) ≤ F2 (r) . On the other hand, if we cannot reject

the null, there is not enough evidence to say that R1 �FSD R2 does not hold. The empirical analogue
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of δ∗(1) can be

δ̂∗(1) = sup
r

√
T
(

∆̂
(1)
1,2 (r)

)
,

where ∆̂
(1)
1,2 (r) = F̂1 (r)− F̂2 (r) .

Let CFi (r) :=
∫ r
−∞ Fi (x) dx. For testing SSD, at first note that by intergating by parts, given

Fi (−∞) := 0, it can be shown that

CFi (r) = Fi (r) r −
∫ r

−∞
xdFi (x)

=

∫ r

−∞
rdFi (x)−

∫ r

−∞
xdFi (x)

=

∫ r

−∞
(r − x) dFi (x) .

Therefore we can empirically estimate CFi (r) by

ˆCFi (r) =
1

T

T∑
t=1

(r −Rit) 1 {Rit ≤ r} .

Let ∆
(2)
1,2 (r) := CF1 (r) − CF2 (r) , and δ∗(2) := supr

(
∆

(2)
1,2 (r)

)
. To test whether R1 �SSD R2, we can

form a null hypothesis as the following

H0 : δ∗(2) ≤ 0.

The above null hypothesis states that for all r, CF1 (r) ≤ CF2 (r) . On the other hand, if we cannot

reject the null, there is not enough evidence to say that R1 �SSD R2 does not hold. The empirical

analogue of δ∗(2) can be

δ̂∗(2) = sup
r

√
T
(

∆̂
(2)
1,2 (r)

)
,

where ∆̂
(2)
1,2 (r) = ĈF 1 (r)− ĈF 2 (r) . Let

R = min (R11, . . . , R1T , R21, . . . , R2T ) ,

R = max (R11, . . . , R1T , R21, . . . , R2T ) .

To numerically evaluate δ̂∗(1)and δ̂∗(2), we divide the interval
[
R, R̄

]
into 200 equally spaced grids and

search the value of r ∈
[
R, R̄

]
over the grids to maximize∆̂

(1)
1,2 (r) or ∆̂

(2)
1,2 (r)

We are interested in is whether the weighted norm mvp first (or second) order stochastic dominates

the other three strategies (1/N , no-shortsales and GMVP). Formally, it can be stated as Rα �FSD Rl

(or Rα �SSD Rl ), where Rα is return of the weighted norm mvp with parameter value α and Rl

is return of strategy l, l = 1/N , no-shortsales and GMVP. To empirically construct critical values

and p-values, I adopt subsampling method suggested by Linton et al. (2005). I briefly describe the

scheme as follows. Suppose we have T realized return observations, R1, R2 . . . , RT . The test statistic,√
TθT (R1, R2 . . . , RT ), is a function of the T observations, and is determined by supr ∆̂

(1)
1,2 (r) for the

FSD test and by supr ∆̂
(2)
1,2 (r) for the SSD test. Let GT (x) = P

(√
TθT (R1, R2 . . . , RT ) ≤ x

)
be the

distribution function of the test statistic. Following Linton et al. (2005), I approximate the distribution
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of GT (x)by

ĜT,b (x) =
1

T − b+ 1

T−b+1∑
t=1

1
{√

bθT,b,t ≤ x
}
,

where θT,b,t := θb (Rt, Rt+1 . . . , Rt+b−1) , t = 1, . . . , T − b + 1, is just the function of θ evaluated with

subsample Rt, Rt+1 . . . , Rt+b−1. Note that each
√
bθT,b,t is the test statistic for the FSD (or SSD test)

obtained from b subsamples Rt, Rt+1 . . . , Rt+b−1, and it can be seen that the subsampling scheme

is essentially very similar as the rolling window scheme. With this approximation, I then define the

subsample critical value at significant level δ as ĝT,b (δ) = inf
{
x : δ ≥ 1− ĜT,b (x)

}
, and the subsample

p-values p̂T,b = 1 − ĜT,b
(√

TθT

)
. The decision rule is that we reject the null if

√
TθT > ĝT,b (δ) or

p̂T,b < δ.

1.8.9 Coordinate-Wise Descent on MVP Penalized by the Generalized l1

Penalty

The subsection provides a derivation of the coordinate-wise descent algorithm for solving the mvp

penalized by the generalized l1 norm penalty in Section 1.6.7. As the linear constraint is the full

investment constraint, the penalized mvp optimization is given by

min
w

wTΣw + λ1 ‖w‖1 + λ2 ‖w −w0‖1 , subject to wT1 = 1.

Let w0,i ≥ 0, i = 1, . . . , N denote elements in w0. At the stationary point, the following subgradient

equation should hold

2σ2
iwi + 2

N∑
j 6=i

σijwj + λ1sign (wi) + λ2sign (wi − w0,i)− γ = 0,

for i = 1, . . . , N, and also wT1 = 1. Again, let zi =
∑N
j 6=i σijwj . By fixing wj , j 6= i, one can solve wi

as

wi =



γ−zi−(λ1+λ2)
2σ2
i

if γ − zi > (λ1 + λ2) + 2σ2
iwi,0,

wi,0 if (λ1 − λ2) + 2σ2
iwi,0 ≤ γ − zi ≤ (λ1 + λ2) + 2σ2

iwi,0,

γ−zi−(λ1−λ2)
2σ2
i

if λ1 − λ2 < γ − zi < (λ1 − λ2) + 2σ2
iwi,0,

0 if − λ1 − λ2 ≤ γ − zi ≤ λ1 − λ2,

γ−zi+(λ1+λ2)
2σ2
i

if γ − zi < −λ1 − λ2.

Let ∆1 = {i : wi,0 < wi <∞}, ∆2 = {i : wi = wi,0}, ∆3 = {i : 0 < wi < wi,0}, and ∆4 = {i : −∞ < wi < 0}.
One can solve γ by using the full investment constraint,

γ =
1−

∑
i∈∆2

wi,0 +
∑
i∈∆1

zi+(λ1+λ2)
2σ2
i

+
∑
i∈∆3

zi+(λ1−λ2)
2σ2
i

+
∑
i∈∆4

zi−(λ1+λ2)
2σ2
i∑

i∈∆1∪∆3∪∆4

1
2σ2
i

.

The algorithm can be summarized as follows.

Algorithm 2 Coordinate-wise descent update for mvp penalized by the generalized l1 penalty.

1. Fix λ1 and λ2 at some constant levels.
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2. Initialize w(0) = N−11N and γ(0) > max (λ1, λ2)

3. For i = 1, . . . , N , and k > 0,

w
(k)
i ←



γ(k−1)−z(k)i −(λ1+λ2)

2σ2
i

if γ(k−1) − z(k)
i > (λ1 + λ2) + 2σ2

iwi,0,

wi,0 if (λ1 − λ2) + 2σ2
iwi,0 ≤ γ(k−1) − z(k)

i ≤ (λ1 + λ2) + 2σ2
iwi,0,

γ(k−1)−z(k)i −(λ1−λ2)

2σ2
i

if λ1 − λ2 < γ(k−1) − z(k)
i < (λ1 − λ2) + 2σ2

iwi,0,

0 if − λ1 − λ2 ≤ γ(k−1) − z(k)
i ≤ λ1 − λ2,

γ(k−1)−z(k)i +(λ1+λ2)

2σ2
i

if γ(k−1) − z(k)
i < −λ1 − λ2.

where

z
(k)
i = 2(

∑
j<i

w
(k)
j σij +

∑
j>i

w
(k−1)
j σij).

4. For k > 0, update γ as

γ(k) ←

[ ∑
i∈∆

(k)
1 ∪∆

(k)
3 ∪∆

(k)
4

1

2σ2
i

]−1

×

[
1−

∑
i∈∆

(k)
2

wi,0 +
∑
i∈∆

(k)
1

z
(k)
i + (λ1 + λ2)

2σ2
i

+
∑
i∈∆

(k)
3

z
(k)
i + (λ1 − λ2)

2σ2
i

+
∑
i∈∆

(k)
4

z
(k)
i − (λ1 + λ2)

2σ2
i

]
,

where

∆
(k)
1 =

{
i : γ(k−1) − z(k)

i > (λ1 + λ2) + 2σ2
iwi,0

}
,

∆
(k)
2 =

{
i : (λ1 − λ2) + 2σ2

iwi,0 ≤ γ(k−1) − z(k)
i ≤ (λ1 + λ2) + 2σ2

iwi,0

}
,

∆
(k)
3 =

{
i : −λ1 − λ2 ≤ γ(k−1) − z(k)

i ≤ λ1 − λ2,
}
,

∆
(k)
4 =

{
i : γ(k−1) − z(k)

i < −λ1 − λ2.
}
,

5. Repeat 3 and 4 until w(k) and γ(k) converge.

1.8.10 The Multistage Portfolio Optimization and the l0 norm Penalty

In the following, I show that the multistage portfolio optimization in section 1.6.7 can be viewed

as using the majorization-minimization method to approximately solve a l0 norm penalized portfolio

optimization. The l0 norm of w is defined as ‖w‖0 =
∑N
i=1 |wi|

0
, where

|wi|0 :=

1 if wi 6= 0

0 if wi = 0
.
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Therefore to penalize the portfolio weights by the l0 norm is equivalent to restricting the number of

assets included in a portfolio. The penalized mvp optimization is given by

min
w

wTΣw + λ ‖w‖0 , subject to Aw = u, (1.50)

As mentioned in the beginning of the paper, an optimization problem involved with the l0 norm penalty

in practice is difficult to solve. To make the problem tractable, one may approximate the l0 norm penalty

by

AP (w,ε) =

N∑
i=1

1− 1

exp (ε |wi|)
.

and then solve the optimization with the approximated penalty AP (w,ε). It can be seen that AP (w,ε)

converges to ‖w‖0 as ε goes large,

lim
ε→∞

AP (w,ε) = ‖w‖0 .

Then (1.50) becomes

min
w

(
lim
ε→∞

wTΣw + λAP (w,ε)
)
, subject to Aw = u, . (1.51)

However, we now meet another difficulty. Since AP (w,ε) is concave in wi, the objective function is not

guaranteed to be a convex function of w, thus a coordinate-descent type algorithm is not applicable

here. To circumstance this, one can adopt the majorization-minimization approach. A real valued

function f (x, y) is said to majorize a real valued function g (x) at point y if

f (x, y) ≥ g (x) for all x, y ∈ R,

f (y, y) = g (y) for all x ∈ R.

Suppose x = y∗ minimizes f (x, y) , then

g (y∗) = f (y∗, y) + g (y∗)− f (y∗, y)

≤ f (y∗, y) + g (y)− f (y, y)

≤ g (y) .

Now let y∗ = v(l+1), and y = v(l), then

g
(
v(l+1)

)
≤ g

(
v(l)
)
.

That says, if one wants to find a sequence of v(l) to decrease the function g (x) , one can achieve this by

sequentially minimizing its majorization function f
(
x, v(l)

)
with respect to x,

v(l+1) = arg min
x
f
(
x, v(l)

)
,

An algorithm which sequentially minimizes a majorization function of a certain objective function in

order to find its global minimizer is called the minimization-majorization (MM) algorithm. For solving

(1.51), we can try to find a majorization function of the objective function of (1.51), and cast the MM

algorithm to find its global minimizer. However, the majorization should be convex for w, otherwise

we still will have the same difficulty as we have in solving (1.51).
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Since wTΣw is already a convex function of w, one can just find a convex majorization function

of AP (w,ε) to replace AP (w,ε), and the new objective function will be a convex function of w. Note

that for all x ≥ 0 and ε > 0 , 1− exp (−εx) is a concave function of x . And it can shown that

1− exp (−εx) ≤ 1− exp (−εy) + ε exp (−εy) (x− y) ,

for all x, y ≥ 0 and ε > 0. The right hand side of the above inequality is a linear function of x which is

tangent to the graph of 1− exp (−εx) at the point y. Let

APM
(
w,w∗(l), ε

)
=

N∑
i=1

1− 1

exp
(
ε
∣∣∣w∗(l)i

∣∣∣) +
ε

exp
(
ε
∣∣∣w∗(l)i

∣∣∣)
(
|wi| −

∣∣∣w∗(l)i

∣∣∣)
 .

It can be seen that APM
(
w,w∗(l), ε

)
majorizes AP (w,ε) at point w∗(l), and it is also a convex function

of w. Therefore the global minimizer of wTΣw + λAP (w,ε) can be obtained by sequentially solving

min
w

wTΣw + λAPM
(
w,w∗(l), ε

)
, subject to Aw = u,

where

w∗(l) = arg min
w,Aw=u

wTΣw + λAPM
(
w,w∗(l), ε

)
,

which is equivalent to solving

min
w

wTΣw + λ

N∑
i=1

ε

exp
(
ε
∣∣∣w∗(l)i

∣∣∣) |wi| , subject to Aw = u,

sequentially. As only the full investment constraint is imposed, the above optimization can be easily

solved by using algorithm 1 with λ1 = ε exp
(
−ε
∣∣∣w∗(l)i

∣∣∣) and λ2 = 0.
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Figure 1.1: The figure shows annualized mean returns (%) and standard deviations (%) of
individual assets in FF100 and CRSP300. The mean returns and standard deviations are
calculated with daily data over the whole sample period. The sample period for FF100 is from
July-12-1987 to Dec-31-2010 (5,415 observations), and for CRSP300 is from July-30-1998 to
Dec-31-2010 (3,127 observations).
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Table 1.1: The table shows results of performances for daily FF100 data when the full in-
vestment constraint wT1 = 1 is imposed. We estimate Σ by sample covariance matrix with
expanding window scheme. Here N = 100 and initial window length τ0 = 120. For the
weighted norm constraint, we set λ1 = λ1,t, λ1 = λ2,t and vary α at six different levels. Testing
period is from Jan-02-1990 to Dec-31-2010 and T = 5, 295. SV denotes sample variance of
out-of-sample net returns (when the transaction fees are deducted). The sample variance is
annualized. The transaction fee we consider is 35 basis points. SR denotes annualized Sharpe
ratio, and the yearly risk free rate used is 3.63%. Certainty equivalence is obtained with ψ = 5.
Column TOR and PAC show average turnover rate and average proportion of active assets,
respectively. Column HHI and ANHHI show average values of Herfindahl–Hirschman index,
and average values of adjusted normalized Herfindahl–Hirschman index. Column SLR shows
average short-long ratio. In the parentheses are the bootstrap standard errors obtained from
using stationary bootstrap of Politis and Romano (1994).

SV(%) SR CE(%) TOR PAC HHI ANHHI SLR

α = 0 82.9718 1.0666 0.0451 0.0407 1.0000 0.0202 0.0103 0.5696
(14.6744) (0.4704) (0.0158) (0.0034) (0.0000) (0.0004) (0.0005) (0.0037)

α = 0.2 86.6844 1.1442 0.0485 0.0301 0.6496 0.0323 0.0170 0.4713
(16.0203) (0.4721) (0.0160) (0.0026) (0.0077) (0.0007) (0.0008) (0.0050)

α = 0.4 90.3660 1.1752 0.0502 0.0257 0.5207 0.0422 0.0230 0.4163
(17.1536) (0.4709) (0.0162) (0.0022) (0.0091) (0.0011) (0.0012) (0.0054)

α = 0.6 93.4194 1.1827 0.0509 0.0231 0.4316 0.0515 0.0284 0.3758
(17.9204) (0.4697) (0.0164) (0.0020) (0.0083) (0.0015) (0.0015) (0.0057)

α = 0.8 96.1646 1.1861 0.0514 0.0215 0.3714 0.0608 0.0340 0.3432
(18.5558) (0.4682) (0.0166) (0.0019) (0.0078) (0.0018) (0.0018) (0.0061)

α = 1 98.6034 1.1847 0.0517 0.0202 0.3204 0.0700 0.0389 0.3173
(19.0446) (0.4648) (0.0167) (0.0019) (0.0072) (0.0023) (0.0023) (0.0063)

N.S. 176.2114 0.7409 0.0362 0.0082 0.1049 0.1650 0.0709 0.0000
(38.2327) (0.3494) (0.0182) (0.0012) (0.0034) (0.0075) (0.0048) (0.0000)

1/N 311.1636 0.4485 0.0150 0.0051 1.0000 0.0100 0.0000 0.0000
(67.1655) (0.2488) (0.0195) (0.0004) (0.0000) (0.0000) (0.0000) (0.0000)

GMVP 77.6752 0.9444 0.0400 0.0726 1.0000 0.0212 0.0113 0.6263
(12.0891) (0.4802) (0.0160) (0.0133) (0.0000) (0.0005) (0.0005) (0.0053)
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Table 1.2: The table shows results of performances for daily CRSP300 data when the full
investment constraint wT1 = 1 is imposed. We estimate Σ by sample covariance matrix
with expanding window scheme. Here N = 300 and initial window length τ0 = 360. For the
weighted norm constraint, we set λ1 = λ1,t, λ1 = λ2,t and vary α at six different levels. Testing
period is from Jan-03-2000 to Dec-31-2010 and T = 2, 767. SV denotes sample variance of
out-of-sample net returns (when the transaction fees are deducted). The sample variance is
annualized. The transaction fee we consider is 35 basis points. SR denotes annualized Sharpe
ratio, and the yearly risk free rate used is 2.50%. Certainty equivalence is obtained with ψ = 5.
Column TOR and PAC show average turnover rate and average proportion of active assets,
respectively. Column HHI and ANHHI show average values of Herfindahl–Hirschman index,
and average values of adjusted normalized Herfindahl–Hirschman index. Column SLR shows
average short-long ratio. In the parentheses are the bootstrap standard errors obtained from
using stationary bootstrap of Politis and Romano (1994).

SV(%) SR CE(%) TOR PAC HHI ANHHI SLR

α = 0 50.7208 0.5576 0.0208 0.0468 1.0000 0.0132 0.0099 0.3539
(15.2769) (0.4650) (0.0124) (0.0052) (0.0000) (0.0003) (0.0003) (0.0084)

α = 0.2 49.7156 0.8009 0.0276 0.0320 0.7619 0.0221 0.0178 0.2361
(16.4991) (0.4928) (0.0120) (0.0030) (0.0077) (0.0005) (0.0005) (0.0092)

α = 0.4 50.8529 0.8865 0.0302 0.0267 0.6417 0.0289 0.0238 0.1795
(17.5011) (0.5073) (0.0121) (0.0025) (0.0095) (0.0008) (0.0007) (0.0092)

α = 0.6 51.9853 0.9265 0.0315 0.0236 0.5544 0.0344 0.0285 0.1440
(18.2561) (0.5122) (0.0122) (0.0023) (0.0096) (0.0009) (0.0009) (0.0086)

α = 0.8 52.9633 0.9514 0.0324 0.0215 0.4911 0.0390 0.0324 0.1198
(18.8245) (0.5134) (0.0122) (0.0020) (0.0085) (0.0011) (0.0010) (0.0079)

α = 1 53.8325 0.9705 0.0331 0.0201 0.4499 0.0431 0.0359 0.1021
(19.2547) (0.5152) (0.0123) (0.0019) (0.0076) (0.0012) (0.0011) (0.0074)

N.S. 67.4157 1.1038 0.0395 0.0126 0.2054 0.0734 0.0574 0.0000
(24.1749) (0.5062) (0.0134) (0.0010) (0.0067) (0.0014) (0.0010) (0.0000)

1/N 404.4271 0.6587 0.0225 0.0157 1.0000 0.0033 0.0000 0.0000
(112.3455) (0.3344) (0.0293) (0.0009) (0.0000) (0.0000) (0.0000) (0.0000)

GMVP 52.3428 0.4147 0.0168 0.0537 1.0000 0.0144 0.0111 0.3673
(15.3964) (0.4513) (0.0127) (0.0080) (0.0000) (0.0003) (0.0003) (0.0104)
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Table 1.3: The table shows p-values of the stochastic dominance tests proposed by Linton et al.
(2005). The data used here is the realized daily net returns (when the transaction fees are
deducted) of FF100 as different portfolio strategies are used. The transaction fee we consider
is 35 basis points. Testing period is from Jan-02-1990 to Dec-31-2010 and T = 5, 295. FSD
and SSD denote first and second order stochastic dominances, respectively. The p-values are
obtained from the subsampling method, and the subsample size is set to 300.

1/N N.S. GMVP

FSD SSD FSD SSD FSD SSD

α = 0 0.0000 0.4235 0.0000 0.4582 0.7714 0.1229
α = 0.2 0.0000 0.3881 0.0000 0.4023 0.5783 0.1111
α = 0.4 0.0000 0.3811 0.0000 0.3805 0.6769 0.1087
α = 0.6 0.0000 0.3755 0.0000 0.3765 0.4658 0.1063
α = 0.8 0.0000 0.3705 0.0000 0.3717 0.4660 0.1019
α = 1 0.0000 0.3639 0.0000 0.3647 0.3004 0.0915

Table 1.4: The table shows p-values of the stochastic dominance tests proposed by Linton
et al. (2005). The data used here is the realized daily net returns (when the transaction fees
are deducted) of CRSP300 as different portfolio strategies are used. The transaction fee we
consider is 35 basis points. Testing period is from Jan-03-2000 to Dec-31-2010 and T = 2, 767.
FSD and SSD denote first and second order stochastic dominances, respectively. The p-values
are obtained from the subsampling method, and the subsample size is set to 300.

1/N N.S. GMVP

FSD SSD FSD SSD FSD SSD

α = 0 0.0000 0.0539 0.1803 0.0960 0.5985 0.7848
α = 0.2 0.0000 0.0636 0.0045 0.0985 0.1864 0.5733
α = 0.4 0.0000 0.0827 0.0446 0.1102 0.3165 0.3780
α = 0.6 0.0000 0.0879 0.1001 0.1179 0.4652 0.3383
α = 0.8 0.0000 0.0891 0.0713 0.1216 0.4344 0.3428
α = 1 0.0000 0.0900 0.0928 0.1240 0.9955 0.3408
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Table 1.5: The table shows results of performances for weekly FF100 data when the full
investment constraint wT1 = 1 is imposed. We estimate Σ by sample covariance matrix
with expanding window scheme. Here N = 100 and initial window length τ0 = 120. For the
weighted norm constraint, we set λ1 = λ1,t, λ1 = λ2,t and vary α at six different levels. Testing
period is from from first week of 1990 to the last week of 2010 and T = 1, 095. SV denotes
sample variance of out-of-sample net returns (when the transaction fees are deducted). The
sample variance is annualized. The transaction fee we consider is 35 basis points. SR denotes
annualized Sharpe ratio, and the yearly risk free rate used is 3.63%. Certainty equivalence
is obtained with ψ = 5. Column TOR and PAC show average turnover rate and average
proportion of active assets, respectively. Column HHI and ANHHI show average values of
Herfindahl–Hirschman index, and average values of adjusted normalized Herfindahl–Hirschman
index. Column SLR shows average short-long ratio. In the parentheses are the bootstrap
standard errors obtained from using stationary bootstrap of Politis and Romano (1994).

SV(%) SR CE(%) TOR PAC HHI ANHHI SLR

α = 0 122.1502 0.9108 0.2047 0.0934 1.0000 0.0162 0.0063 0.6038
(26.1549) (0.4318) (0.0850) (0.0082) (0.0000) (0.0003) (0.0003) (0.0020)

α = 0.2 128.6224 0.9074 0.2059 0.0686 0.5393 0.0317 0.0134 0.4608
(28.5429) (0.4291) (0.0865) (0.0071) (0.0059) (0.0011) (0.0010) (0.0032)

α = 0.4 135.7170 0.9254 0.2119 0.0588 0.3781 0.0461 0.0200 0.3801
(30.5520) (0.4167) (0.0859) (0.0063) (0.0050) (0.0018) (0.0016) (0.0042)

α = 0.6 141.8157 0.9331 0.2153 0.0558 0.2904 0.0616 0.0278 0.3205
(32.0246) (0.4061) (0.0856) (0.0063) (0.0056) (0.0026) (0.0023) (0.0051)

α = 0.8 146.9892 0.9144 0.2123 0.0534 0.2278 0.0786 0.0355 0.2758
(33.2714) (0.3976) (0.0857) (0.0071) (0.0054) (0.0038) (0.0032) (0.0059)

α = 1 151.2552 0.8700 0.2029 0.0598 0.1853 0.0992 0.0464 0.2446
(34.0646) (0.3896) (0.0861) (0.0134) (0.0056) (0.0060) (0.0048) (0.0068)

N.S. 211.963 0.5994 0.1357 0.0260 0.0936 0.1795 0.0756 0.0000
(50.4148) (0.3053) (0.0874) (0.0033) (0.0043) (0.0118) (0.0082) (0.0000)

1/N 317.9742 0.4641 0.0761 0.0119 1.0000 0.0100 0.0000 0.0000
(77.8459) (0.2417) (0.0945) (0.0011) (0.0000) (0.0000) (0.0000) (0.0000)

GMVP 118.647 0.8010 0.1806 0.3160 1.0000 0.0176 0.0076 0.7558
(18.5033) (0.4428) (0.0892) (0.0599) (0.0000) (0.0004) (0.0004) (0.0084)
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Table 1.6: The table shows results of performances for monthly FF100 data when the full
investment constraint wT1 = 1 is imposed. We estimate Σ by sample covariance matrix
with expanding window scheme. Here N = 100 and initial window length τ0 = 120. For the
weighted norm constraint, we set λ1 = λ1,t, λ1 = λ2,t and vary α at six different levels. Testing
period is from January 1990 to December 2010 and T = 252. SV denotes sample variance of
out-of-sample net returns (when the transaction fees are deducted). The sample variance is
annualized. The transaction fee we consider is 35 basis points. SR denotes annualized Sharpe
ratio, and the yearly risk free rate used is 3.63%. Certainty equivalence is obtained with ψ = 5.
Column TOR and PAC show average turnover rate and average proportion of active assets,
respectively. Column HHI and ANHHI show average values of Herfindahl–Hirschman index,
and average values of adjusted normalized Herfindahl–Hirschman index. Column SLR shows
average short-long ratio. In the parentheses are the bootstrap standard errors obtained from
using stationary bootstrap of Politis and Romano (1994).

SV(%) SR CE(%) TOR PAC HHI ANHHI SLR

α = 0 144.469 0.7928 0.7957 0.1990 1.0000 0.0153 0.0053 0.5760
(27.1036) (0.3711) (0.3508) (0.0287) (0.0000) (0.0001) (0.0002) (0.0009)

α = 0.2 157.8873 0.7550 0.7642 0.1514 0.4785 0.0366 0.0159 0.3847
(30.3782) (0.3643) (0.3630) (0.0294) (0.0092) (0.0005) (0.0007) (0.0020)

α = 0.4 167.6569 0.7416 0.7534 0.1150 0.2926 0.0612 0.0277 0.2844
(34.3140) (0.3534) (0.3635) (0.0190) (0.0065) (0.0015) (0.0019) (0.0030)

α = 0.6 174.3271 0.7361 0.7493 0.0973 0.2050 0.0807 0.0331 0.2270
(37.5616) (0.3401) (0.3578) (0.0156) (0.0043) (0.0022) (0.0029) (0.0041)

α = 0.8 180.8716 0.7119 0.7236 0.0911 0.1629 0.0996 0.0401 0.1892
(40.6771) (0.3271) (0.3536) (0.0147) (0.0033) (0.0042) (0.0047) (0.0038)

α = 1 187.1527 0.6869 0.6957 0.0987 0.1397 0.1245 0.0563 0.1605
(42.8446) (0.3148) (0.3500) (0.0168) (0.0033) (0.0062) (0.0060) (0.0041)

N.S. 219.3593 0.5222 0.4900 0.0581 0.1001 0.1692 0.0738 0.0000
(49.5957) (0.2663) (0.3453) (0.0077) (0.0054) (0.0101) (0.0074) (0.0000)

1/N 305.5895 0.5053 0.4019 0.0287 1.0000 0.0100 0.0000 0.0000
(62.2650) (0.2234) (0.3597) (0.0042) (0.0000) (0.0000) (0.0000) (0.0000)

GMVP 255.2823 0.3886 0.2881 1.2783 1.0000 0.0170 0.0071 0.8379
(36.0606) (0.2874) (0.3937) (0.2674) (0.0000) (0.0002) (0.0002) (0.0114)
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Table 1.7: The table shows results of performances for weekly CRSP300 data when the full
investment constraint wT1 = 1 is imposed. We estimate Σ by sample covariance matrix with
expanding window scheme. HereN = 300 and initial window length τ0 = 360. For the weighted
norm constraint, we set λ1 = λ1,t, λ1 = λ2,t and vary α at six different levels. Testing period is
from the first week of 2000 to the last week of 2010 and T = 573. SV denotes sample variance
of out-of-sample net returns (when the transaction fees are deducted). The sample variance is
annualized. The transaction fee we consider is 35 basis points. SR denotes annualized Sharpe
ratio, and the yearly risk free rate used is 2.50%. Certainty equivalence is obtained with ψ = 5.
Column TOR and PAC show average turnover rate and average proportion of active assets,
respectively. Column HHI and ANHHI show average values of Herfindahl–Hirschman index,
and average values of adjusted normalized Herfindahl–Hirschman index. Column SLR shows
average short-long ratio. In the parentheses are the bootstrap standard errors obtained from
using stationary bootstrap of Politis and Romano (1994).

SV(%) SR CE(%) TOR PAC HHI ANHHI SLR

α = 0 75.5405 0.4162 0.0813 0.1473 1.0000 0.0082 0.0049 0.4822
(25.9349) (0.4583) (0.0743) (0.0143) (0.0000) (0.0003) (0.0003) (0.0059)

α = 0.2 69.3276 0.6094 0.1123 0.0884 0.6555 0.0177 0.0126 0.2800
(27.6839) (0.5044) (0.0716) (0.0095) (0.0037) (0.0004) (0.0004) (0.0079)

α = 0.4 70.1200 0.6767 0.1233 0.0693 0.5160 0.0247 0.0183 0.2038
(29.3341) (0.5194) (0.0717) (0.0078) (0.0042) (0.0005) (0.0005) (0.0089)

α = 0.6 71.3702 0.7241 0.1314 0.0603 0.4410 0.0300 0.0226 0.1634
(30.5486) (0.5275) (0.0717) (0.0069) (0.0048) (0.0005) (0.0006) (0.0089)

α = 0.8 72.6740 0.7605 0.1378 0.0550 0.3974 0.0344 0.0262 0.1363
(31.4910) (0.5310) (0.0715) (0.0063) (0.0060) (0.0006) (0.0006) (0.0086)

α = 1 74.3669 0.7836 0.1423 0.0515 0.3668 0.0386 0.0297 0.1153
(32.5348) (0.5310) (0.0715) (0.0060) (0.0073) (0.0006) (0.0007) (0.0084)

N.S. 95.4867 0.9127 0.1737 0.0340 0.1956 0.0656 0.0491 0.0000
(43.6905) (0.4872) (0.0705) (0.0039) (0.0069) (0.0023) (0.0018) (0.0000)

1/N 393.5178 0.6621 0.1115 0.0347 1.0000 0.0033 0.0000 0.0000
(132.7015) (0.3422) (0.1421) (0.0030) (0.0000) (0.0000) (0.0000) (0.0000)

GMVP 88.2586 0.2131 0.0441 0.2131 1.0000 0.0086 0.0053 0.5492
(26.6200) (0.3741) (0.0709) (0.0315) (0.0000) (0.0003) (0.0003) (0.0128)
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Table 1.8: The table shows results of performances of weighted norm mvp for daily CRSP300
and FF100 data when the full investment constraint wT1 = 1 and target return constraint
wTµ = µ̄ are imposed. The target return µ̄ shown in the table is annualized. We estimate µ
and Σ by sample mean and covariance matrix with expanding window scheme. Here N = 100
and 300 for FF100 and CRSP300 respectively, and initial window length τ0 = 1.2N . For the
weighted norm constraint, we set λ1 = λ1,t, λ1 = λ2,t and vary α at three different levels. SV
denotes sample variance of out-of-sample net returns (when the transaction fees are deducted).
The sample variance is annualized. The transaction fee we consider is 35 basis points. SR
denotes annualized Sharpe ratio, and the yearly risk free rates for FF100 and CRSP300 are
3.63% and 2.5%, respectively. Certainty equivalence is obtained with ψ = 5. Column PAC
shows average proportion of active assets. In the parentheses are the bootstrap standard errors
obtained from using stationary bootstrap of Politis and Romano (1994).

FF100, Jan-02-1990 to Dec-31-2010, T = 5, 295

µ̄ = 10% µ̄ = 20%

SV(%) SR CE(%) TOR PAC SV(%) SR CE(%) TOR PAC

α = 0 96.6592 0.5857 0.0279 0.0615 1.0000 83.7073 1.0200 0.0435 0.0502 1.0000
(18.6169) (0.4286) (0.0167) (0.0034) (0.0000) (13.8393) (0.4591) (0.0157) (0.0053) (0.0000)

α = 0.6 111.2906 0.6429 0.0305 0.0488 0.4938 94.7331 1.0596 0.0463 0.0382 0.4328
(22.2266) (0.4135) (0.0171) (0.0027) (0.0111) (16.8293) (0.4509) (0.0163) (0.0049) (0.0075)

α = 1 118.5553 0.6170 0.0295 0.0468 0.3801 100.7166 1.0592 0.0470 0.0373 0.3212
(23.5070) (0.4017) (0.0173) (0.0030) (0.0096) (17.9121) (0.4453) (0.0166) (0.0052) (0.0069)

CRSP300, Jan-03-2000 to Dec-31-2010, T = 2, 767

µ̄ = 5% µ̄ = 10%

SV(%) SR CE(%) TOR PAC SV(%) SR CE(%) TOR PAC

α = 0 52.5846 0.5876 0.0218 0.0530 1.0000 50.2325 0.4033 0.0164 0.0474 1.0000
(16.4380) (0.4681) (0.0127) (0.0049) (0.0000) (14.6432) (0.4542) (0.0125) (0.0053) (0.0000)

α = 0.6 53.6010 0.9629 0.0328 0.0320 0.5674 51.0724 0.7185 0.0254 0.0246 0.5585
(19.2751) (0.5067) (0.0123) (0.0019) (0.0081) (17.4733) (0.4937) (0.0124) (0.0024) (0.0088)

α = 1 55.3200 0.9966 0.0341 0.0290 0.4603 52.9987 0.7406 0.0263 0.0213 0.4549
(20.1596) (0.5111) (0.0124) (0.0015) (0.0068) (18.5730) (0.4948) (0.0126) (0.0020) (0.0069)
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Table 1.9: The table shows results of performances for daily FF100 data when three alternative
penalties: berhu, generalized l1 norm, and adaptive penalties are imposed. The linear con-
straint is the full investment constraint wT1 = 1. We estimate Σ by sample covariance matrix
with expanding window scheme. Here N = 100 and initial window length τ0 = 120. For each
penalty, we uniformly set the penalty parameter equal to âtB̂t

√
2 logN/nt. Testing period is

from Jan-02-1990 to Dec-31-2010 and T = 5, 295. SV denotes sample variance of out-of-sample
net returns (when the transaction fees are deducted). The sample variance is annualized. The
transaction fee we consider is 35 basis points. SR denotes annualized Sharpe ratio, and the
yearly risk free rate used is 3.63%. Certainty equivalence is obtained with ψ = 5. Column TOR
and PAC show average turnover rate and average proportion of active assets, respectively. In
the parentheses are the bootstrap standard errors obtained from using stationary bootstrap of
Politis and Romano (1994).

Berhu Penalty

SV(%) SR CE(%) TOR PAC

κ = 0.02 146.0434 0.8283 0.0400 0.0143 0.5483
(32.1981) (0.3924) (0.0180) (0.0010) (0.0049)

κ = 0.05 119.1196 0.9940 0.0460 0.0178 0.4142
(25.0352) (0.4391) (0.0176) (0.0013) (0.0062)

κ = 0.1 106.9375 1.1123 0.0498 0.0191 0.3531
(22.1391) (0.4676) (0.0175) (0.0016) (0.0074)

Generalized l1 Norm Penalty

SV(%) SR CE(%) TOR PAC

TWN 104.0272 1.0798 0.0482 0.0221 1.0000
(20.2157) (0.4463) (0.0166) (0.0018) (0.0000)

TWN − l1 114.8295 1.0561 0.0483 0.0166 0.6677
(23.2896) (0.4355) (0.0170) (0.0014) (0.0047)

TWNS 98.5689 1.1792 0.0515 0.0200 0.3090
(18.9658) (0.4638) (0.0166) (0.0018) (0.0068)

TWNS − l1 111.5312 1.0922 0.0495 0.0155 0.2196
(22.5187) (0.4421) (0.0169) (0.0015) (0.0055)

Adaptive Penalty

SV(%) SR CE(%) TOR PAC

ε = 1, l = 1 96.5597 1.2096 0.0524 0.0208 0.2978
(18.2046) (0.4696) (0.0163) (0.0019) (0.0075)

ε = 2.5, l = 1 107.2337 1.1244 0.0504 0.0178 0.1778
(20.2679) (0.4479) (0.0166) (0.0019) (0.0052)

ε = 1, l = 2 96.4462 1.2107 0.0524 0.0210 0.2952
(18.1246) (0.4692) (0.0163) (0.0020) (0.0077)

ε = 2.5, l = 2 107.8656 1.1139 0.0500 0.0190 0.1519
(20.0121) (0.4452) (0.0166) (0.0025) (0.0052)
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Table 1.10: The table shows results of performances for daily FF100 data when three alter-
native penalties: berhu, generalized l1 norm, and adaptive penalties are imposed. The linear
constraint is the full investment constraint wT1 = 1. We estimate Σ by sample covariance
matrix with expanding window scheme. Here N = 100 and initial window length τ0 = 120.
For each penalty, we uniformly set the penalty parameter equal to âtB̂t

√
2 logN/nt. Testing

period is from Jan-03-2000 to Dec-31-2010 and T = 2, 767. SV denotes sample variance of
out-of-sample net returns (when the transaction fees are deducted). The sample variance is
annualized. The transaction fee we consider is 35 basis points. SR denotes annualized Sharpe
ratio, and the yearly risk free rate used is 2.5%. Certainty equivalence is obtained with ψ = 5.
Column TOR and PAC show average turnover rate and average proportion of active assets, re-
spectively. In the parentheses are the bootstrap standard errors obtained from using stationary
bootstrap of Politis and Romano (1994).

Berhu Penalty

SV(%) SR CE(%) TOR PAC

κ = 0.02 57.2220 1.0880 0.0372 0.0230 0.4932
(18.1071) (0.5389) (0.0133) (0.0019) (0.0054)

κ = 0.05 54.3572 1.0274 0.0349 0.0210 0.4617
(18.6517) (0.5264) (0.0125) (0.0018) (0.0064)

κ = 0.1 53.7601 0.9926 0.0337 0.0201 0.4517
(19.1032) (0.5181) (0.0122) (0.0018) (0.0075)

Generalized l1 Norm Penalty

SV(%) SR CE(%) TOR PAC

TWN 54.9798 0.7611 0.0271 0.0286 1.0000
(18.7627) (0.4787) (0.0126) (0.0023) (0.0000)

TWN − l1 57.5252 0.9593 0.0333 0.0196 0.6340
(20.7838) (0.5066) (0.0127) (0.0017) (0.0070)

TWNS 55.2197 0.9643 0.0331 0.0191 0.4346
(19.5056) (0.4856) (0.0119) (0.0018) (0.0063)

TWNS − l1 58.2940 1.0160 0.0352 0.0158 0.3240
(20.7498) (0.4924) (0.0123) (0.0014) (0.0045)

Adaptive Penalty

SV(%) SR CE(%) TOR PAC

ε = 1, l = 1 53.8823 0.9597 0.0328 0.0200 0.4468
(18.8170) (0.4949) (0.0119) (0.0018) (0.0076)

ε = 2.5, l = 1 59.0413 0.9925 0.0346 0.0151 0.2851
(20.8862) (0.4926) (0.0123) (0.0013) (0.0053)

ε = 1, l = 2 53.8860 0.9592 0.0328 0.0200 0.4467
(18.8191) (0.4949) (0.0119) (0.0018) (0.0076)

ε = 2.5, l = 2 59.2664 0.9842 0.0344 0.0151 0.2808
(20.9691) (0.4914) (0.0124) (0.0013) (0.0053)
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Chapter 2

Bond Variance Risk Premia

(Joint Work with Philippe Mueller

and Andrea Vedolin)

Abstract: Using data from 1983 to 2010, we propose a new fear measure for Treasury markets,

akin to the VIX for equities, labeled TIV. We show that TIV explains one third of the time

variation in funding liquidity and that the spread between the VIX and TIV captures flight

to quality. We then construct Treasury bond variance risk premia as the difference between

the implied variance and an expected variance estimate using autoregressive models. Bond

variance risk premia display pronounced spikes during crisis periods. We show that variance

risk premia encompass a broad spectrum of macroeconomic uncertainty. Uncertainty about the

nominal and the real side of the economy increase variance risk premia but uncertainty about

monetary policy has a strongly negative effect. We document that bond variance risk premia

predict excess returns on Treasuries, stocks, corporate bonds and mortgage-backed securities,

both in-sample and out-of-sample. Furthermore, this predictability is not subsumed by other

standard predictors.

KEYWORDS: Variance risk premium, Treasury implied volatility, predictability,

uncertainty, Treasury bond returns, stock returns, corporate bond returns.

JEL Codes: E43, E47, G12, G17.
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2.1 Introduction

During the recent financial crisis one sector generated significant profits for the leading invest-

ment banks: Volatility arbitrage trading in forex, fixed income, and commodities. According

to a BIS (2010) survey on foreign exchange and derivatives markets activity, the interest rate

derivatives market has grown by 24% over the last three years to reach an average daily

turnover of USD 2.1 trillion. As a consequence, both market and academic interest in equity-

index volatility measures and their associated risk premia has grown rapidly. For instance,

the VIX index—also dubbed the ”investors’ fear index”—is believed to be a good proxy of

aggregate uncertainty or risk aversion.1 The VIX is also shown to be a good predictor for

the cross-section of stocks (Ang et al., 2006), corporate credit spreads (Collin-Dufresne et al.,

2001) and bond excess returns (Baele et al., 2010). Furthermore, the associated variance risk

premium extracted from equity markets predicts the equity premium (Drechsler and Yaron,

2011), as well as corporate credit spreads (Wang et al., 2010). Given this extensive literature

for equity markets, it is rather surprising that no effort has been undertaken to measure these

risk premia in fixed income markets. Filling this gap is one goal of this paper.

The importance of understanding interest rate volatility and the risk premia associated

with it is manifested in Figure 2.1, where we plot the Mortgage Bankers Association (MBA)

Refinancing index together with the variance risk premium calculated from 30 year Treasury

futures. The MBA refinancing index is based on the number of applications for mortgage

refinancing. The figure nicely displays that mortgage refinancing is subject to distinct waves

such as the peak of the housing boom in May 2003 or the bust during the most recent financial

crisis. During these periods, the bond variance risk premium also peaks and it has moved

almost in tandem with the MBA index since 2005. The intuition is relatively straightforward.

If interest rates drop, the duration of any mortgage-backed security portfolio decreases due to a

higher refinancing rate. To hedge the duration, the portfolio manager must either buy Treasury

bonds or bond options. This hedging activity not only affects the price of the underlying but

also its volatility (Duarte, 2008). Consequently, risk-averse investors demand a premium for

the associated risks.

We contribute to the literature in the following ways. First, we construct a new measure

of fear for Treasury markets (akin to the VIX for equities), which we label TIV for Treasury

Implied Volatility.2 Second, we construct and describe the term structure of bond variance

risk premia for 30 year, 10 year and 5 year Treasury futures and investigate the underlying

economic drivers of these risk premia. Finally, we document the strong predictive power of

bond variance risk premia for excess returns on Treasury bonds, stocks, corporate bonds and

mortgage-backed securities. The predictability is in-sample and out-of-sample and robust to

1See, e.g., Bollerslev et al. (2011), Korteweg and Polson (2010) and Bekaert et al. (2011), among others.
2We calculate both equity and bond implied volatilities using newly available high frequency data. The

time-series for the TIV starts in 1983. In addition, we calculate our own VIX measure, also with a start date in
1983, thus considerably longer than the Chicago Board of Option Exchange (CBOE) VIX available since 1991.
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the inclusion of other standard predictors.

To construct the TIV, we follow the recent literature and calculate implied variance mea-

sures using a model-free approach (Britten-Jones and Neuberger, 2000).3 Moreover, we are the

first to estimate and study a term structure of variance risk premia for the Treasury market.

Even though there is ample evidence of priced variance risk in both the index and single stock

equity market, we know surprisingly little about the compensation for variance risk in fixed

income markets.

The variance risk premium is defined as the difference between the expected risk-neutral and

physical variance. While the risk-neutral expectation can be estimated in a completely model-

free fashion using a cross-section of options written on the underlying asset, the calculation of

the objective expectation requires some mild auxiliary modeling assumptions. A priori, it is

not clear, what the best proxy for this objective expectation should be. Andersen et al. (2007a)

show that simple autoregressive type models estimated directly for the realized volatility often

perform better than parametric approaches designed to forecast the integrated volatility. In

calculating our benchmark bond variance risk premium, we thus use the HAR-TCJ model for

realized variance proposed by Corsi et al. (2010). We augment the model by including lagged

implied variance as additional regressors.4

Using data from 1983 to 2010, we find that the implied volatility measures we derive in both

equity and bond markets are remarkably similar, which is manifested in the high unconditional

correlation of around 60% on average.5 Increases in the VIX index are often dubbed as an

increase in economic uncertainty. We find a similar pattern for the bond market. Implied

volatility in bond markets spikes in crisis times and it therefore offers itself as a gauge of fear

for fixed income markets. The construction of the TIV measure has an economic merit which

goes beyond that of the VIX itself. First, we show that TIV is strongly related to proxies

of funding liquidity. A one standard deviation change in the TIV implies more than half a

standard deviation change in a funding liquidity proxy and spikes in the TIV can therefore

be interpreted as shocks to funding liquidity. This empirical finding relates to the theoretical

work of (Brunnermeier and Pedersen, 2009), who show that lower liquidity can lead to higher

asset volatility. Moreover, the authors demonstrate that in periods of flight to quality, highly

liquid assets are characterized by relatively low volatility. Thus, the spread between low and

high volatility assets can explain part of the liquidity spread. In our empirical analysis, we

3In addition, we also construct implied variance measures as in Martin (2011), using so called simple variance
swaps. Whereas the replication of standard variance swaps relies on the Itô assumption which is violated in
case there are jumps, simple variance swaps provide a genuine measure of implied variance under very general
assumptions. While this distinction is important from a methodological perspective, the main results are robust
to the choice of method.

4Recently, Bollerslev et al. (2012) use a simple heterogeneous autoregressive RV model to construct the stock
market variance risk premium while Busch et al. (2011) use the augmented HAR-RV model with lagged IV to
improve forecasts of realized volatility. In the Online Appendix we show that the HAR-TCJ model with lagged
IV performs best in predicting out-of-sample realized variance.

5The correlation between the implied volatility measures for 30 year Treasury futures and equities is as high
as 69%, whereas the correlation between the implied volatility measures for 5 year Treasury futures and equities
is around 53%.
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find that the volatility spread between the VIX and the TIV provides a useful measure of

flight to quality periods: While the spread is most of the time no more than 10%, it almost

triples during the October 1987 crash, the LTCM default in August 1998, and the Lehman

bankruptcy in September 2008.

While the co-movement between the time-series is high, the TIV and VIX differ in their

magnitude. For our sample period, the average model-free implied volatility of the S&P 500

index is 20% with a standard deviation of 8.4, in contrast, the 30 year Treasury implied

volatility is 10% on average with a standard deviation of merely 2.4. Thus, in the case of the

S&P 500 index, volatility risk accounts for a much larger proportion of overall risk than in

Treasury markets. Despite the high co-movement, we find that variance risk premia in bond

and equity markets can behave differently. While the variance risk premium in the equity

market is essentially always positive (i.e., it acts as an insurance premium), the variance risk

premium in the Treasury market can switch sign. To grasp a better intuition for this behavior,

we study macroeconomic determinants of bond versus equity variance risk premia. Proxies

of macroeconomic uncertainty from forecast data explain up to 45% of the time variation in

bond and equity variance risk premia. Higher uncertainty usually implies a higher variance

risk premium. However, uncertainty about short term yields (which can be interpreted as

uncertainty about monetary policy actions) has a significant negative impact on bond variance

risk premia. Larger uncertainty about the short end makes investors with negative expectations

about future interest rates willing to buy long term bonds, because these provide a hedge

against the increased duration due to a drop in short term yields. Hence, investors pay a

premium for holding these bonds. Inline with recent findings (Joslin, 2010), we also document

that the shape of the term structure significantly affects bond variance risk premia.

If bond variance risk premia encompass general macroeconomic uncertainty, do they contain

any useful information about asset returns? A principal components analysis of the bond

variance risk premia time series allows us to summarize the information in the term structure of

bond variance risk premia in a parsimonious way. We show that the three principal components

have economically significant predictive power for excess returns across different assets. The

results can be summarized as follows: A one standard deviation change in the third principal

component of Treasury bond variance risk premia, a curvature factor, induces a 0.17 standard

deviation decrease in bond excess returns, while the same kind of shock has an opposite effect

of roughly the same magnitude on stock market excess returns. A one standard deviation

change in the second principal component, a slope factor, induces a 0.24 standard deviation

increase in stock excess returns and up to half a standard deviation change in corporate bond

and mortgage-backed securities excess returns. Finally, a one standard deviation shock to the

first principal component, a level factor, has a strong positive effect on corporate bond and

mortgage-backed securities excess returns. Bond variance risk premia explain roughly 3% of

the time variation in Treasury excess returns, around 9% of stock excess returns and up to

35% of corporate and mortgage-backed securities excess returns.
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When we add the equity variance risk premium to the regressions, the significance of the

bond variance risk premia remains economically and statistically high, whereas the equity

variance risk premium adds very little predictive power. We show that the predictability of

bond variance risk premia prevails in-sample and out-of-sample and is robust to the inclusion

of other standard predictors in the literature. We conclude that bond variance risk premia

broadly capture uncertainty about the macroeconomy and monetary policy, as well as addi-

tional information about the term structure that is relevant for all asset classes. Moreover,

bond variance risk premia have a great advantage over most of the other predictor variables

that rely on either macroeconomic fundamentals or forecast data: They can be obtained on a

daily basis (or at even higher frequencies) while the other variables are often only available at

the monthly frequency at best.

Our paper is related to two strands of the literature. First, it fits into the large body of

research that has focused on the stock market variance risk premium and—to a lesser degree—

on variance risk premia of individual stocks or commodities.6 To the best of our knowledge,

our paper is the first to study variance risk premia in the Treasury market.

One reason why variance risk in fixed income markets has been neglected in the past could

be that standard dynamic term structure models assume that the fixed income market is

complete and therefore, interest rate derivatives are redundant assets. Only recently, there is

emerging (albeit sometimes mixed) evidence for the existence of unspanned stochastic volatility,

the second body of research that is related to our paper.7

To summarize, in this paper, we provide new empirical facts about variance risk premia

in the fixed income markets. We construct a term structure of Treasury bond variance risk

premia and investigate its determinants. In addition, we document the strong predictive power

for a wide range of assets. However, we remain agnostic about the form of structural model

that could rationalize our findings and leave this for future research.

The rest of the paper is organized as follows. Section 2.2 describes our data set and Section

2.3 describes the econometric methods used to estimate the TIV measure and the variance risk

premia. Section 2.4 presents the results of our empirical study and Section 2.5 concludes. To

save space, we defer additional data description, alternative methods to estimate implied and

realized variance, and robustness checks to the Online Appendix.8

6For literature on the stock market variance risk premium, see, e.g., Driessen et al. (2009), Bollerslev et al.
(2011), Carr and Wu (2009), Cremers et al. (2010) and Todorov (2010), among others. Bakshi and Kapadia
(2003) and Vedolin (2010) for example study the variance risk premia of individual stocks and Trolle and
Schwartz (2009) investigate variance risk premia in commodity markets.

7Joslin (2010) studies the variance risk premium using swap data and proposes a model that under certain
restrictions can generate unspanned stochastic volatility. Additionally, see Collin-Dufresne and Goldstein (2002),
Heidari and Wu (2003), Casassus et al. (2005), Collin-Dufresne et al. (2008), Bibkov and Chernov (2009), Trolle
and Schwartz (2009), Andersen and Benzoni (2010) and Almeida et al. (2010) among others.

8The Online Appendix is available on the authors’ webpage.
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2.2 Data

In this section, we briefly introduce the data used in our analysis. Firstly, we use futures and

options data to construct the bond and equity variance risk premia. Secondly, we calculate

excess returns for Treasury, stock, corporate bond and mortgage-backed securities portfolios.

Finally, we use a large set of macro and forecast data as controls to explore the determinants

and the predictive power of the variance risk premia. The summary statistics for excess returns

and additional variables are contained in the Online Appendix.

2.2.1 Futures and Options Data

Treasury Futures and Options: To calculate implied and realized variance measures for Trea-

sury bonds, we use futures and options data from the Chicago Mercantile Exchange (CME).

We use high-frequency intra-day price data of the 30 year Treasury bond futures, the 10 year

and 5 year Treasury notes futures and end-of-day prices of options written on the underlying

futures. The data runs from October 1982, May 1985 and May 1990 to June 2010 for the 30

year, 10 year, and 5 year Treasury bond futures and options, respectively. Using a monthly

frequency throughout the paper, we have at most 333, 302, and 242 observations available,

respectively.

Treasury futures are traded electronically as well as by open outcry. While the quality of

electronic trading data is higher, the data only becomes available in August 2000. To maximize

our time span, we use data from electronic as well as pit trading sessions. We only consider

trades that occur during regular trading hours (07:20–14:00) when the products are traded

side-by-side in both markets.9

The contract months for the Treasury futures are the first three (30 year Treasury bond

futures) or five (10 year and 5 year Treasury notes futures) consecutive contracts in the March,

June, September, and December quarterly cycle. This means that at any given point in time,

up to five contracts on the same underlying are traded. To get one time series, we roll the

futures on the 28th of the month preceding the contract month.

For options, the contract months are the first three consecutive months (two serial expira-

tions and one quarterly expiration) plus the next two (30 year futures) or four (10 year and

5 year futures) months in the March, June, September, and December quarterly cycle. Se-

rials exercise into the first nearby quarterly futures contract, quarterlies exercise into futures

contracts of the same delivery period. We roll our options data consistent with the procedure

applied to the futures.10

S&P 500 Index Futures and Options: Inline with our approach for Treasuries, we calculate the

implied and realized variance measures for the stock market using futures and options on the

9Liquidity in the after-hours electronic market is significantly smaller than during regular trading hours.
10Detailed information about the contract specifications of Treasury futures and options can be found on the

CME website, www.cmegroup.com.
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S&P 500 index from CME. The sample period is from January 1983 to June 2010.11

2.2.2 Excess Returns Data

Treasury Bonds: We use the Fama-Bliss discount bond database from CRSP to calculate

annual Treasury bond excess returns for two to five year bonds. We denote the return on a

τ -year bond with log price p
(τ)
t by r

(τ)
t+1 = p

(τ−1)
t+1 − p

(τ)
t . The annual excess bond return is

defined as rx
(τ)
t+1 ≡ r

(τ)
t+1 − y

(1)
t , where y

(1)
t is the one year yield.

Stocks: To proxy for the market portfolio, we use the value-weighted index from CRSP. The

growth and value portfolio returns are constructed using the six portfolios formed on size and

book-to-market from Ken French’s data library. The respective returns are the average of the

returns of the small and big growth and value portfolio, respectively. The three, six and twelve

month excess returns are defined as the cumulative return on the respective portfolio minus

the Treasury yield.

Corporate Bonds and CMBS: We use corporate bond and commercial mortgage-backed secu-

rities (CMBS) indices from Barclays Capital to calculate three, six and twelve month excess

returns. We use AAA, BBB, and CCC indices for long and intermediate corporate bonds and

AAA, BBB, and B indices for CMBS. CMBS data is available starting in 1997.

2.2.3 Other Data

Forecasts:We use forecast data from BlueChip Economic Indicators (BCEI) to calculate proxies

of uncertainty about macroeconomic variables. BCEI collects monthly forecasts of twelve key

financial and macroeconomic indicators from about fifty professional economists in leading

financial and economic advisory firms.12 The forecasts are made for different time horizons.

This data exhibits strong seasonality and thus, we adjust the series using a 12-period ARIMA

filter. We use the cross sectional standard deviation of the filtered panel data within each

month as the monthly gauge of uncertainty. We calculate the time series of the cross sectional

standard deviation using the forecasts for the current and the subsequent calendar year for each

forecast variable i. Thus, for each variable we have two time series reflecting the uncertainty

of the forecaster. Our uncertainty proxy Û i is the first principal component extracted from

11We compare our results to the VIX and VXO measures that are calculated using options on the S&P500
cash index instead of S&P500 index futures. The VIX is the implied volatility calculated using a model-free
approach, whereas the VXO is calculated using the (Black and Scholes, 1973) implied volatility. The VIX is
available starting in January 1990 and the VXO is available since January 1986. Over the common sample
period, the VIX and our implied volatility measure from index futures options using the same methodology
have a correlation of over 99.4% and the root mean squared error is below 1%.

12The twelve series are the real gross domestic product (RGDP), the GDP chained price index (GDPI), the
consumer price index (CPI), industrial production (IP), real disposable personal income (DPI), non-residential
investment (NRI), the unemployment rate (UNEM), housing starts (HS), corporate profits (CP), total US auto
and truck Sales (AS), the three-month secondary market T-bill rate (SR) and the ten year constant maturity
Treasury yield (LR).
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these two time series.13 In our analysis, we use uncertainty about the real (RGDP) and the

nominal (CPI) side of the economy, as well as uncertainty about short and long rates (SR and

LR), where ÛSR can also be interpreted as uncertainty about monetary policy. The forecast

data is available until December 2009.

Macroeconomic Factors: We compute the eight static macroeconomic factors F̂j , j = 1 . . . , 8,

from Ludvigson and Ng (2009) and Ludvigson and Ng (2011) for an updated data set through

June 2010.14 We also estimate volatility proxies for inflation and consumption, σπ and σg. We

calculate these by estimating a GARCH process for monthly CPI inflation and consumption

(non-durables and services). The data is from Global Insight and the Federal Reserve Economic

Data base (FRED).

Additional Variables: Using the Fama-Bliss data, we also construct a tent-shaped factor from

forward rates, the Cochrane and Piazzesi (2005) factor, CP. Furthermore, we calculate the

slope of the term structure as the difference between the ten year and the one month Treasury

yield (SLOPE). In addition, we use the log dividend yield (DY), the log earnings/price ratio

(E/P), and the net equity expansion (NTIS) from Goyal and Welch (2008), and REF, the

Mortgage Bankers Association refinancing index.

2.3 Estimation of Bond Variance Measures and Variance Risk

Premia

In this section, we describe the methods used to estimate the expected risk-neutral and ob-

jective variance, EQ
t

(∫ T
t σ2

udu
)

and EP
t

(∫ T
t σ2

udu
)

, and the variance risk premium, defined as

the difference between the two.15

Moreover, we define a Treasury Implied Volatility or TIV measure in the spirit of the well

known VIX index that is calculated by CBOE for the S&P500 index. Our proposed TIV

measure is the 30 year Treasury bond futures implied volatility, i.e. the square root of the

implied variance.16 We calculate a daily TIV measure going back to October 1982.17

13As the principal components are latent, we ensure that the first principal component is positively correlated
with the two uncertainty proxies.

14The original data set was previously used in Stock and Watson (2002). Some of the macroeconomic variables
are no longer available after 2007. Consequently, we use 125 instead of 132 macroeconomic time series. In
addition, we exclude all stock market and interest rate time series and work with a set of 104 variables. We also
use the full data set with 125 variables and the original factors for shorter sample period ending in 2007 as a
robustness check. Our results remain unchanged. A detailed description of the macroeconomic data is provided
in the Online Appendix.

15We present and discuss additional methods to estimate expected variance in the Online Appendix. Overall,
our empirical results are robust to using reasonable alternative methods to what is described in this section.

16Unlike the 10 year and 5 year instruments, the 30 year Treasury futures and options have the longest
available history and they are very liquid even in the 1980s.

17The time series for the TIV measure will be made available on the authors’ website. As mentioned in Section
2.2, we construct our own VIX measure, which is based on options on S&P500 index futures rather than on the
underlying cash index. This allows us to obtain a longer time series as options data on S&P500 index futures
date back to the 1980s with high trading volumes, whereas the VIX only starts in 1990.
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2.3.1 Implied Variance

As is commonly done, we use options to back out a proxy for the expected variance under the

risk-neutral measure, EQ
t

(∫ T
t σ2

udu
)

.18 We implement a model-free method as proposed by

Britten-Jones and Neuberger (2000) that only requires current option prices to calculate the

implied variance (subsequently denoted MIV).

One well-established application of the model-free implied variance is the VIX, which is

an index of implied volatility (i.e. the square root of the MIV) calculated using options on

the S&P500.Neuberger (1994) shows that the VIX corresponds to the quadratic variation of

the forward price of the S&P500 index under the risk-neutral measure. One issue with the

replication of the variance swap is that it heavily relies on the Itassumption for the underlying

process. In the presence of skewness, Carr and Lee (2009) show that the VIX will be upward

biased compared to the true risk-neutral quadratic variation. Martin (2011) introduces the

simple variance swap for which the realized leg can be computed from simple returns of the

underlying index and the index forward. He shows that—just as the VIX—the SVIX can

also be approximated as a portfolio of out-of-the-money options and can be constructed under

slightly weaker assumptions and in the presence of jumps.19

To implement the methods for calculating the implied variance for options on Treasury

futures, we treat the American options as European20. Furthermore, we assume that the short

risk-free rate is non-stochastic (or at least not too volatile) such that the forward and futures

prices coincide.21

To calculate the model-free implied variance, MIV, we then follow Demeterfi et al. (1999)

and Britten-Jones and Neuberger (2000). They show that if the underlying asset price is

continuous, the risk-neutral expectation of total return variance is defined as an integral of

option prices over an infinite range of strike prices. Since in practice, the number of traded

options for any underlying asset is finite, the available strike price series is a finite sequence.

Denote C (T,K) the spot call price with strike price K expiring at time T . Suppose the

18The simplest way to calculate the implied variance would be to invert the standard Black (1976) formula
(we denote the implied variance from this method BIV). Black’s model is often used to value interest rate
options. Busch et al. (2011) for example use this measure to study the forecasting power of implied volatility for
realized volatility of Treasury bond futures. However, one of the relevant assumptions underlying the model is
constant volatility, which is inconsistent with the application to forecasting changes in volatility. Nevertheless,
the empirical results are qualitatively robust to using the BIV measure instead of a model-free approach.

19For robustness checks, we also implement this method and denote the resulting implied variance measure
SIV. Again, results are robust. Summary statistics are provided in the Online Appendix.

20Jorion (1995) shows that early exercise premia are small for short maturity at-the-money options on futures,
while Overdahl (1988) demonstrates that early exercise of options on Treasury futures happens about 0.1% of
the time and happens both with calls and puts but only with options that are significantly in the money. In the
empirical implementation, we use only out-of-the money options and thus assume that the early exercise option
will not distort the option price.

21Similar to the issue with the Black (1976) implied volatility, this is a slight inconsistency in the approach
as interest rates are clearly assumed to be stochastic when it comes to calculating the payoff of the option
(which is written on a futures contract that is dependent on an underlying interest rate process). However, the
assumption we have to make to implement the method concerns the short risk-free rate and not directly the
interest rate underlying the Treasury futures option.

75



available strike prices of the call options belong to
[
Kc, K

c
]
, where K

c ≥ Kc ≥ 0. As shown

in Jiang and Tian (2005), a truncated version of the integral over the infinite range of strike

prices can be used to evaluate the model-free implied volatility. We use the trapezoidal rule

to numerically calculate the integral:

2

∫ K
c

Kc

C (T,K)−max (0, Ft −K)

K2
dK ≈ K

c −Kc

m

m∑
i=1

[
gt,T (Kc

i ) + gt,T
(
Kc
i−1

)]
,

where

gt,T (Kc
i ) =

C (T,Kc
i )−max (0, Ft −Kc

i )

(Kc
i )

2 , (2.1)

Ft is the forward price and Kc
i is the ith largest strike price for the call option. To implement

the trapezoidal rule, we now need the option prices C (T,Kc
i ), for i = 1, . . . ,m. Since some

of these prices are not available, we apply a cubic spline interpolation method as proposed in

Forsythe et al. (1977) to obtain the missing values.22

Then,

MIVt,τ =
K

c −Kc

m

m∑
i=1

[
gt,T (Kc

i ) + gt,T
(
Kc
i−1

)]
, (2.2)

where τ = T − t denotes the time horizon or time to maturity. As mentioned above, we replace

Ft in equation (2.1) by the futures price. Since in-the-money options are less liquid, equation

(2.2) is evaluated for out-of-the money options whose strike prices are no less than 0.94 × Ft
(calls) or no bigger than 1.06 × Ft (puts)23. Finally, we set m = 100 and restrict MIVt,τ = 0

when t = T .

We estimate the MIV at the end of each month for a τ = 30 day horizon to get our monthly

time series, denoted MIV
(i)
t , where i = {30y, 10y, 5y,E} stands for either the 30 year, 10 year

of 5 year Treasuries or the equity index 24.

2.3.2 Realized Variance

To estimate EP
t

(∫ T
t σ2

udu
)

, the daily expected variance under the physical measure, we first

consider the daily realized variance RVt,oneday, which is defined as:

RVt,oneday =
M∑
i=1

r2
t,i,

22Jiang and Tian (2005) take a different approach: They first calculate the implied volatilities of available
options with the Black and Scholes formula, and then use the interpolation method to obtain the Black and
Scholes implied volatilities of the unavailable options. Using these implied volatilities, they use the Black and
Scholes formula again to obtain a continuum of option prices. They claim that their method can avoid the
nonlinearity problem in the option prices. However, we find a direct use of the interpolation method on the
option prices to be more robust.

23Following Jiang and Tian (2005) we use out-of-the-money puts to get prices for the in-the-money calls.
24Note that we drop the subscript τ as we focus on the monthly horizon.
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where rt,i = logP (t−1 + i/M)− logP (t−1 + (i−1)/M) is the intra-daily log return in the ith

sub-interval of day t and P (t− 1 + i/M) is the asset price at time t− 1 + i/M. For each day,

we take rt,i between 7:25 and 14:00. Inline with Andersen et al. (2007a), we use five minute

intervals to calculate RVt,oneday.

The normalized monthly realized variation RVt,mon is defined by the average of the 21 daily

measures.25 The normalized weekly realized variation RVt,week is correspondingly defined by

the average of the five daily measures:

RVt,week =
1

5

4∑
j=0

RVt−j,oneday, and RVt,mon =
1

21

20∑
j=0

RVt−j,oneday.

To better capture the long memory behavior of volatility, Corsi (2009) proposes the het-

erogenous autoregressive model for realized variance using the daily, weekly and monthly re-

alized variance estimates. Andersen, Bollerslev, and Diebold (2007)Andersen et al. (2007a)

extend the standard HAR-RV model to show that the predictability for realized variance over

different time intervals almost always comes from the continuous component of the total price

variation, rather than the discontinuous jump component. Corsi, Pirino, and Ren(2010) intro-

duce the concept of threshold bipower variation and show that it is well suited for estimating

models of volatility dynamics where continuous and jump components are used as explanatory

variables. They document that jumps can have a highly significant impact on the estimation

of future volatility. Their HAR-TCJ model for forecasting daily realized variance is expressed

as:

RVt+1,oneday = α+ βDT̂Ct,oneday + βW T̂Ct,week + βM T̂Ct,mon + βJ T̂ J t,oneday + εt+1,

where the threshold bipower variation measure is used to estimate the jump component,

T̂ J t,oneday = IC−Tz>Ψα×(RVt,oneday − TBPVt)+ and the continuous part T̂Ct,oneday = RVt,oneday−
T̂ J t,oneday.

26

This simple method avoids some difficulties in long memory time series modeling and the

parameters can be consistently estimated by OLS. However, a Newey-West correction is needed

to make appropriate statistical inference. Moreover, such a HAR-TCJ type model can be easily

modified, for example, by adding extra covariates that contain predictive power.

We aim to obtain the monthly estimates directly, so we replace the daily realized variance

RVt+1,oneday by the normalized monthly measure RVt+21,mon. Moreover, we include lagged

estimates of implied variance to further improve the realized variance forecasts. Hence, we run

25On average, we have 21 trading days per month.
26The expression for the threshold bipower variation, TBPVt, is given in Corsi, Pirino, and Ren(2010). We

use the confidence level α = 99.9%.
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the following OLS regression for the projection:

RVt+21,mon = α+βDT̂Ct,oneday+βW T̂Ct,week+βM T̂Ct,mon+βJ T̂ J t,oneday+β
′
IV IV(L)t+εt+21,mon,

(2.3)

where IV(L)t contains lagged implied variances up to lag L.27

We implement this regression using an expanding window. This allows us to obtain real-

time forecasts R̂V t+21,mon for RVt+21,mon without any look ahead bias.28 As the HAR-TCJ

predictor for the one month horizon, denoted RV
(HARIV J)
t , we use:

RV
(HARIV J)
t = 21× R̂V t+21,mon,

where R̂V t+21,mon is the projected value from regression (2.3). Furthermore, we denote the

simple realized variance estimator obtained from summing RVt+1,oneday over the past month

RV
(RV s)
t .

The left Panels in Figure 2.2 show time series plots for the annualized monthly implied

volatility measures for the 30 year, 10 year, and 5 year Treasury bond futures, respectively as

well as the S&P500 index (i.e. we take the square root of the corresponding variance measures

to make the magnitudes comparable to the VIX).29 The right Panels plot the realized volatility

measures. The first two Panels in Table 2.1 present summary statistics of implied and realized

volatility measures. Again, all numbers shown are annualized and expressed in percent. The

implied volatility measures are on average larger than the realized quantities, both for the

Treasury and the equity market, implying a positive variance risk premium. The equity im-

plied and realized volatility is notably higher than the measures for the Treasury markets. The

magnitudes of Treasury volatilities are increasing with the maturity of the underlying bonds.

Moreover, all measures exhibit positive skewness and excess kurtosis. The autocorrelation co-

efficients range between roughly 70% and 80%. Finally, as previously mentioned, the summary

statistics of the implied volatility measure calculated using options on S&P500 index futures

are almost identical to the summary statistics of the original VIX.

Remark: In principle, there exist many different measures of realized variance and a priori,

it is not clear what measure we should use. In the Online Appendix, we show that the HAR-

TCJ model augmented by lagged implied variance terms performs the best when predicting

out-of-sample future variance. The results are robust to the different loss functions we use to

evaluate the performance.

27We choose the lag length to be four using the Akaike and Bayesian information criteria.
28We use daily realized variance estimates from the first 222 trading days as the input for initial estimation:

Daily realized variances from day 1 to day 200 are used to construct RVt,oneday, RVt,week, and RVt,mon. Daily
realized variances from day 22 to day 222 are used to construct RVt+21,mon. On day 222, the first out of sample

forecast R̂V t+21,mon from the fitted model is constructed by using RV222,oneday, RV222,week, and RV222,mon as
the input data to the initial fitted model. The same method is applied for day 223, 224, . . . with the corresponding
parameters.

29As mentioned before, we use options on S&P500 index futures to be consistent with our calculations for the
Treasury implied variance measure.
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2.3.3 Variance Risk Premia

We define the variance risk premium for horizon τ as follows:

V RPt,τ ≡ EQ
t

(∫ T

t
σ2
udu

)
− EP

t

(∫ T

t
σ2
udu

)
,

where τ = T − t denotes the time horizon.30 Economic theory suggests that the variance risk

premium should be positive in order to compensate investors who bear risks from expected

price fluctuations. The general positiveness of the variance risk premia can be confirmed

empirically from comparing the means of the different volatility measures in Table 2.1.

In Figure 2.3 we plot the annualized variance risk premia (expressed in percent), defined as

the difference between the model-free implied variance MIV (i) and the realized variance esti-

mate RV (HARIV J,i) for the 30 year, 10 year and 5 year Treasury futures (V RP (30y), V RP (10y)

and V RP (5y), respectively), and the S&P 500 index futures (V RP (E)). As we can see, the

three Treasury time series share a lot of co-movement: The unconditional correlations between

the 5 year, 10 year and 30 year bond variance risk premia is between 57% and 75%. We also

note that V RP (30y) displays the largest volatility, especially during crisis periods indicated

by the shaded areas. The bond variance risk premia are positive on average but they change

sign. In contrast, the equity variance risk premium V RP (E) is essentially always positive and

on average significantly higher in magnitude. The correlations between the bond and the eq-

uity variance risk premia range between 44% (V RP (5y)) and 66% (V RP (30y)). The summary

statistics of the annualized variance risk premia expressed in percent are reported in Table 2.1,

Panel C.

2.3.4 Treasury Implied Volatility (TIV)

In this section, we introduce a measure for Treasury Implied Volatility in the spirit of the

VIX. The TIV measure is the square root of the one month implied variance for futures on

30 year Treasuries, MIV (30y). The top Panel in Figure 2.4 plots the annualized TIV measure

and our VIX measure (backed out from options on futures) for the common sample period

1983 to 2010. The unconditional correlation between the two monthly time series is 46%. The

unconditional correlation between the TIV measure and the original VIX for the period 1990

to 2010 is 62%.31

The construction of the TIV measure has an economic merit, which goes beyond that of

the VIX measure alone. First, the TIV measure can be related to funding liquidity in Treasury

markets and second, the spread between the VIX and the TIV can be interpreted as a proxy

30For notational simplicity, we subsequently drop the subscript τ as we always consider the one month horizon.
31The correlation between the TIV and our VIX measure for the same time period is exactly the same, which

is not surprising given the near perfect correlation between the original VIX calculated using options on the
cash index and our measure calculated using options on futures. We also calculate the implied volatilities using
simple returns, STIV and SVIX. The correlation for the full sample period is 49% and the correlation since 1990
is 64%.

79



for flight to quality.

Theoretical work by Gromb and Vayanos (2002) and Brunnermeier and Pedersen (2009)

predicts that higher volatility leads to a tightening of funding constraints for market makers.

Moreover, Fontaine and Garcia (2011) establish a robust link between market uncertainty

(measured by the VIX) and funding liquidity. In their paper, funding liquidity is estimated

through price differentials of Treasuries of different age. Empirically, our TIV measure is

strongly related to funding liquidity. When regressing the funding liquidity proxy on the TIV

measure, we find a highly significant slope coefficient with a t-statistic larger than five and

an R2 of 30%.32 The relationship is also economically significant: A one standard deviation

change in the TIV implies more than half a standard deviation change in the funding liquidity

proxy. Thus, spikes in the TIV can be interpreted as funding shocks, which lead to an increase

in the funding liquidity premium.

Brunnermeier and Pedersen (2009) also show that in periods of flight to quality, highly

liquid assets are characterized by relatively low volatility. As a consequence, the volatility

spread between low and high volatility assets explains part of the liquidity spread. We plot

the volatility spread between the VIX and the TIV in Figure 2.4 (middle Panel). Most of the

time, the spread is no larger than 10% but sometimes experiences sudden extreme spikes. For

example during the October 1987 crash, the LTCM default in August 1998 or the Lehman

default in September 2008, the spread tripled within a month. These are periods usually

associated with flight to quality (see, e.g. Caballero and Krishnamurthy (2008).

Apart from the TIV measure, there is a Treasury option volatility measure available in

the market, the Merrill Lynch Option Volatility Estimate (MOVE) index. The MOVE is a

yield curve weighted index of the normalized implied volatility on one month Treasury options,

which are weighted on the 2, 5, 10, and 30 year contracts. This index is available since 1988.

The bottom Panel of Figure 2.4 plots our TIV measure along with the MOVE index. The

correlation for the common time period is 81%. Two main differences between the MOVE and

the TIV make the latter a more appealing proxy for volatility risk in the Treasury market.

First, the MOVE is calculated using Treasury options while we use options on Treasury futures.

Treasury options are options on benchmark Treasury securities, which are not exchange traded

and hence are significantly less liquid. In practice, they are thus marked at some fixed spread

to swaptions. Second, there is no transparent market for out-of-the money Treasury options,

so the MOVE index is calculated using the Black (1976) model to compute implied volatility

of at-the-money options.33 In the next section, we study the determinants of the variance risk

premia and document the strong predictive power of the bond variance risk premia for excess

returns on Treasury, stock, corporate bond and CMBS portfolios.

32We thank Ren Garcia for sharing the data.
33Moreover, the MOVE would not suitable to calculate bond variance risk premia as this would require high

frequency data on benchmark Treasury securities.
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2.4 Empirical Evidence

In this section, we first investigate the economic determinants of bond and equity variance

risk premia. Inline with intuition, we find that the variance risk premia are largely driven by

uncertainty about real and nominal variables. Secondly, we study the predictive power of the

Treasury bond variance risk premia for Treasury, stock, corporate bond and mortgage-backed

security excess returns. We do this univariate and multivariate, i.e. we run regressions using

only information from the bond variance risk premia measures as regressors before including

additional explanatory variables. Due to multicollinearity concerns with regards to the bond

variance risk premia, we perform a principal components analysis and use the three principal

components as regressors instead of the individual Treasury variance risk premia. We find

that estimated coefficients of bond variance risk premia are both economically and statistically

significant, in- and out-of-sample, even if we include standard predictors suggested in the

literature.

We calculate the variance risk premia using the methods described in the previous section.

In our main specification, the variance risk premium is the difference between the model-free

implied variance and the augmented HAR-TCJ projection. However, the results in this section

are also robust to using other IV or RV measures.34

To study the determinants and predictability of bond variance risk premia, we choose July

1991 to June 2010 as the sample period. Starting in mid 1990, we have data for all variance

risk premia and we can calculate the principal components. However, since we calculate the

variance risk premia using an expanding window to remove any look-ahead bias, we allow for

a burn-in period of one year.

2.4.1 What Drives Bond Variance Risk Premia?

It is natural to assume that variance risk premia are associated with higher uncertainty. Op-

tions provide investors with a hedge against high variance in the underlying returns and high

variance usually occurs when unexpected shocks affect macroeconomic variables. The premium

that investors are willing to pay or receive to hedge against such events is related to their un-

certainty. Equilibrium models that study variance risk premia focus on the equity market

only. Drechsler and Yaron (2011) link the variance risk premium of the stock market index to

uncertainty about fundamentals. In particular, time variation in economic uncertainty and a

preference for early resolution of uncertainty are required to generate a positive variance pre-

mium that is time varying and predicts excess stock market returns. Drechsler (2010) reports

a high correlation between the variance risk premium and the dispersion in the forecasts of

next quarter’s real GDP growth from the Survey of Professional Forecasters.

To examine whether uncertainty affects bond variance risk premia as well, we regress the

34We also implement implied variance measures based on simple variance swaps (as in Martin (2011)) and by
inverting the Black (1976) formula for ATM options. As for the realized variance measures, the results are for
example robust to using the standard HAR-RV projection proposed by Corsi (2009).
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monthly variance risk premia measures on uncertainty factors constructed from BlueChip Eco-

nomic Indicator forecast data. We proxy for uncertainty about the real and nominal side of the

economy by the cross sectional standard deviation of the forecasts of CPI (ÛCPI) and real GDP

(ÛRGDP ) for the current and the next calendar year, respectively. We also construct uncer-

tainty proxies for the three month Treasury bill rate (which can be interpreted as uncertainty

about monetary policy) and the ten year Treasury note yield (ÛSR and ÛLR, respectively).35 In

addition to the uncertainty measures, we include two variables that measure the time-varying

volatility of inflation and consumption (σπ and σg, respectively) and two macro factors that

can be interpreted as a real (F̂1) and a nominal (or inflation) factor (F̂2) in the regression. The

macro volatilities are calculated by estimating a GARCH(1,1) process using monthly CPI and

per capita consumption (non-durables and services). The macro factors are constructed using

the first two principal components of a large set of macro variables as in Ludvigson and Ng

(2009, 2011).36 Finally, we add the slope of the term structure (SLOPE) and the refinancing

index from the Mortgage Bankers Association (REF) as additional regressors. Hence, we run

the following regression:

V RP
(i)
t = β′UÛt + β′F F̂t + β′SŜt + ε

(i)
t ,

where V RP
(i)
t is the bond or equity variance risk premium (i = {30y, 10y, 5y,E}) at time t, Ût

is a vector of the uncertainty measures, F̂t contains the real and nominal macro factors, and Ŝt

contains the macro volatilities, the slope of the term structure and the refinancing index. ε
(i)
t is

the error term. All coefficients are estimated with ordinary-least squares and standardized to

allow for a straightforward assessment of the economic significance. We report t-statistics that

are calculated using Newey and West (1987) standard errors. The sample spans the period

from July 1991 to December 2009.37

In order to avoid multicollinearity concerns in this regression, we consider the cross-

correlations of the potential determinants presented in Table 2.2. The uncertainty proxies

for the short and the long end of the yield curve are positively correlated, but the coefficient

is merely 42%. Both uncertainty measures also exhibit a positive correlation with uncertainty

about real GDP. Apart from this, only F̂1 and σπ exhibit sizable correlations with other deter-

minants: the correlation for the two time series is −0.61. Moreover, F̂1 and σπ are correlated

with ÛCPI (−0.74 and 0.57, respectively). Overall, correlations are fairly moderate and give

no reason for concern.

The determinant regression results are presented in Table 2.3. In summary, the results

confirm that uncertainty variables have relevant explanatory power for variance risk premia

35See Section 2.2 for details.
36Given that the factors are principal components, the economic interpretation is not straightforward. We

calculate the marginal correlations of the individual time series with the respective factors for our data set. As
in Ludvigson and Ng (2009), it is reasonable to interpret the first factor as a real factor. The second factor can
be interpreted as a nominal or inflation factor. See the Online Appendix for additional information.

37We only have the BlueChip data available until the end of 2009.
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but there are distinct differences between the Treasury maturities and also between Treasury

and equity variance risk premia.

The four uncertainty factors alone explain around 45% of the variation in 30 year bond and

equity variance risk premia. For 10 year and 5 year bond variance risk premia, this number

drops to 21% and 12%, respectively. In general, higher uncertainty is associated with an

increase in bond and equity variance risk premia. However, uncertainty about the short rate is

a notable exception, as 30 year Treasury and equity variance risk premia significantly decrease

given an increase in uncertainty about monetary policy. Intuitively, we can explain this as

follows: Larger uncertainty about the short end makes investors with negative expectations

more willing to buy long term bonds, because these provide a hedge against an increased

duration due to a drop in the short term yields. Hence, investors pay a premium for holding

these bonds. It should be noted, however, that interpreting signs with proxies of uncertainty

can be difficult. First, the impact of uncertainty on risk premia in equilibrium models usually

depends on the amount of pessimists versus optimists, where pessimists are those agents who

have a lower than the consensus forecast (see, e.g., Jouini and Napp (2007) for equity markets,

and Xiong and Yan (2010), for bond markets). Uncertainty only implies a positive impact on

risk premia if wealth-weighted beliefs are dominated by pessimists. Second, it is not mandatory

that higher uncertainty is always associated with worsening economic conditions (see, e.g.,

Patton and Timmermann (2010)).

Uncertainty about inflation has the largest economic impact on the variance risk premia: A

one standard deviation change in inflation uncertainty implies on average almost half a standard

deviation change in the variance risk premia. Inline with intuition, uncertainty about the long

rate predominantly affects 30 year bond variance risk premia and uncertainty about real GDP

is only significant for equity variance risk premia. The shape of the term structure, i.e. the

slope, affects both bond and equity variance risk premia. A one standard deviation move in

the slope moves bond variance risk premia by between 0.2 and 0.35 standard deviations.

These results are robust to adding levels and volatilities of macro variables to the regression.

The macro volatilities are at most marginally significant, while the real factor has a negative

effect on both bond and equity variance risk premia with an increasing statistical significance

in the maturity of the underlying. For bond variance risk premia, the coefficient is around

−0.14 and the effect almost doubles for equity variance risk premia. In addition, the price

factor has a significantly positive effect on equity variance risk premia. At the same time,

adding F̂1 and F̂2 to the bond variance risk premia regressions only marginally improves the

adjusted R2, further supporting the notion that variance risk premia are driven predominantly

by uncertainty and not by actual macro fundamentals.38

As shown in Figure 2.1, the MBA refinancing index is highly correlated with Treasury

variance risk premia. In a regression of the individual variance risk premia on the refinancing

index, the coefficients are positive and strongly significant. A one standard deviation move in

38Adding even more macro factors does not further improve the fit of the regression.
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the refinancing index is associated with 0.3 to 0.45 standard deviation moves in the variance risk

premia. In the multivariate regressions, however, the effect is muted. The strong statistical

significance only remains for the equity variance risk premia, while the uncertainty proxies

largely drive out the refinancing index for bond variance risk premia.

2.4.2 Principal Components

Next we want to assess the predictive power of bond variance risk premia for different assets.

To this end, we regress excess returns on bond variance risk premia. Since the average pair-

wise correlation between the individual bond variance risk premia is very high, we calculate

the principal components of the bond variance risk premia to circumvent the issue of multi-

collinearity.39 The principal components analysis allows us to summarize in a parsimonious

way the information in the term structure of bond variance risk premia.

We denote by V RP (PC1), V RP (PC2) and V RP (PC3), the first, second, and third principal

component, respectively. The first principal component explains roughly 77% of the variation

in the Treasury variance risk premia, while the second and third principal components explain

the remaining 15% and 8%, respectively. Table 2.4 reports the factor loadings for the three

bond variance risk premia. It seems appropriate to interpret the three principal components

in analogy to the term structure literature as level, slope and curvature (see, e.g., Litterman

and Scheinkman (1991)).

In interpreting the loadings, one has to keep in mind our setup, where the horizon for the

variance risk premia is constant while the underlying bond maturity is changing. To calculate

a term structure in the usual sense, we would need longer maturity options for each futures.

Due to a lack of liquidity and availability of longer maturity options, this is not possible.40

Adding the equity variance risk premium to the principal components analysis does not

significantly alter the pattern. The first principal component still explains almost 70% of

the total variation and can be interpreted as a level factor for the Treasury variance risk

premia (the correlation with V RP (PC1) is 98%). The second factor explains 15% and can be

interpreted as a slope factor for bond variance risk premia. Moreover, the equity variance risk

premium strongly loads on this factor. The correlation with V RP (PC2) is 53%. The third

factor explains 10% and is again a slope factor, exhibiting a correlation with V RP (PC2) of

almost 85%. Finally, the last factor is a curvature factor. It explains the remaining 5% of the

variation and its correlation with V RP (PC3) is 84%.

In the next section, we use the three principal components instead of the individual variance

risk premia to examine the predictive ability of the bond variance risk premia. However, we

include the regression results using the original variance risk premia in the Online Appendix.

The principal components analysis allows to better understand some of the regression results

39The pairwise correlations between the bond variance risk premia range between 57% and 75% for our sample.
40Feunou et al. (2011) estimate a term structure of uncertainty using equity options. They use multiple

horizons for the same underlying and then perform a principal components analysis. They find that the first
three principal components can also be interpreted as level, slope and curvature.
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using the actual variance risk premia. It turns out for example that the third PC, the curvature

factor, has significant predictive power for Treasury bond excess returns. As shown in Table

2.4, the loadings of the 30 year and the 10 year Treasury variance risk premia on this factor

are exactly opposite. Hence, it is not too surprising that the sign of the coefficients for these

two variance risk premia is exactly opposite as well.

2.4.3 In-Sample Predictability

Using the principal components for the Treasury variance risk premia, we study the in-sample

predictive power of bond variance risk premia for fixed income and equity excess returns. To

do this, we run the following type of regression:

rx
(i)
t+h = β

′(i)
h VRPt + γ

′(i)
h Mt + ε

(i)
t+h,

where rx
(i)
t+h denotes the h-period excess returns for asset i. V RPt is a vector containing the

principal components of the bond variance risk premia, V RP (PC1), V RP (PC2) and V RP (PC3).

Mt denotes a vector of additional predictor variables and ε
(i)
t+h is the error term.

We calculate excess returns for two to five year Treasury bonds, the stock market, a growth

and value portfolio, corporate bond indices for AAA, BBB and CCC rated securities, and

commercial mortgage-backed securities indices for AAA, BBB and B rated securities. For

Treasuries, we only calculate annual excess returns, whereas for all other assets we calculate

three, six and twelve month excess returns as the difference between the respective portfolio

returns and the corresponding Treasury rate.

Note that we always report standardized regression results, meaning that, for all regressors

and regressands, we de-mean and divide by the standard deviation. This makes coefficients

comparable across different predictors and allows to directly interpret not only the statistical

but also the economic significance. We report t-statistics that are calculated using Newey and

West (1987) standard errors. The sample period is always from July 1991 to June 2010, except

for CMBS excess returns, which are only available starting in January 1997.

For the fixed income excess return regressions (Treasuries, corporates, CMBS), Mt includes

the equity variance risk premium, the Cochrane and Piazzesi (2005) factor, CP, and the eight

macro factors from Ludvigson and Ng (2009, 2011), F̂j , j = 1 . . . , 8. For the stock portfolio

excess return regressions, we include the log dividend yield, DY, the log earnings to price

ratio, E/P, and NTIS, the net equity expansion as additional regressors as in Goyal and Welch

(2008).41

In Tables 2.5 and 2.6 we present the regression results excluding the additional control

variables.42 Panel A in Table 2.5 contains the results for Treasury bond excess returns. The

41We exclude some of the additional regressors from Goyal and Welch (2008) as the updated data is not
available. We also exclude the book-to-market ratio as it exhibits a correlation of almost 80% with DY over the
sample period. Moreover, it is not significant.

42Slightly abusing the language, we refer to these results as the univariate regression results.
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coefficients for the third PC are significant and negative for all maturities, implying that spikes

in this PC lead to lower excess returns. A one standard deviation positive shock roughly results

in a 0.18 standard deviation reduction in bond excess returns for all maturities. The third PC

is the curvature factor, meaning that an increase in the curvature of bond variance risk premia

predicts lower Treasury bond excess returns. The average adjusted R2 is roughly 3%.

Univariate regression results for stock excess returns are reported in Panel B of Table 2.5.

We find predictability in the second and third principal components for the market, growth and

value portfolio excess returns for horizons between six and twelve months. The statistical and

economic significance for the second PC, the slope factor, is particularly high. A one standard

deviation move in the slope factor results in 0.2 to 0.3 standard deviation larger excess returns

for longer horizons. The third PC is significant for the market and growth portfolios. However,

unlike for Treasury bond excess returns, the coefficient for stock excess returns is now positive

and is estimated at 0.17 for six month excess returns. Adjusted R2 range between 7% and 9%

for the market and growth portfolio and reach 11% for the value portfolio.

Table 2.6 presents the regression results for long and intermediate corporate bond excess

returns (Panels A and B), and commercial mortgage-backed securities excess returns (Panel

C). Overall, the predictability is strong with adjusted R2 ranging between 5% for three month

excess returns on intermediate AAA rated bonds and reaching 38% for twelve month BBB rated

CMBS. The predictive power increases with the horizon and is strongest for intermediate rating

categories, i.e. BBB rated securities. Predictability for intermediate maturity bonds is slightly

higher than for long maturity bonds. Unlike for Treasuries and stocks, the curvature factor

does not contain any predictive power. However, the first PC, the level factor, is very strongly

significant, both statistically and empirically. For twelve month corporate bond excess returns,

the coefficients range between 0.35 for intermediate AAA bonds and 0.52 for intermediate BBB

bonds. For CMBS, the first PC is strongly significant for AAA and BBB rated securities and

six to twelve month excess returns. The second PC is also almost uniformly strongly significant

at all horizons. However, it works less well for high yield corporate bonds and CMBS. As with

the first PC, the coefficients almost reach 0.5 for six and twelve month excess returns.

To summarize the univariate regressions, bond variance risk premia have significant pre-

dictive power for a wide range of assets at various horizons. It is also worth noting that the

predictability is not concentrated in one specific latent factor. Relevant information is con-

tained in the whole ”term structure” of bond variance risk premia. In a separate analysis,

we also run truly univariate regressions, i.e. using only one variance risk premium at a time.

The main results hold, meaning that we do find predictability. However, as the predictability

for Treasury excess returns for example is mainly contained in the third PC, it is not always

straightforward to pick it up. In addition, the variance risk premia may load with different

signs on principal components with predictive power, further complicating the detection and

interpretation of the predictability when using only one bond variance risk premium time series

at a time.
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To check the robustness of our univariate results, we next add different established predic-

tors of bond and equity excess returns to the regression. The results are reported in Tables

2.7 to 2.10.

To summarize, the results from the multivariate regressions with respect to the principal

components of Treasury variance risk premia are remarkably robust to the inclusion of a host

of control variables. Moreover, Treasury variance risk premia truly seem to pick up information

that is relevant for a wide range of asset classes and that goes beyond what is contained in

standard macroeconomic variables and the term structure of interest rates. In particular, the

predictive power of Treasury variance risk premia is much more general than the documented

predictability of the equity market variance risk premium, which predominantly works for stock

excess returns.

The coefficients for Treasury bond excess returns presented in Table 2.7 are still significantly

negative and economically relevant. Now, all three PCs are significant with the same sign. The

coefficients range between −0.14 and −0.27. Thus, an increase in the level, slope or curvature

of the term structure of bond variance risk premia results in lower Treasury excess returns.

Including the CP factor and the macro factors increases the adjusted R2 to almost 30% across

all maturities for the Treasury bond excess return regressions. As in Ludvigson and Ng (2009),

the macro factors explain a significant fraction of the variation in bond excess returns over the

sample period, and the CP factor is highly significant as well. Unlike the bond variance risk

premia, the equity variance risk premium does not seem to contain any relevant information

for forecasting bond excess returns at an annual horizon.43

Table 2.8 presents the results for the stock excess return regressions including as additional

control variables the equity market variance risk premium, the dividend yield (DY), the earn-

ings to price ratio (E/P) and net equity expansion (NTIS). The equity variance risk premium

has significant predictive power for the market and growth portfolios, a result which is inline

with the findings in Bollerslev et al. (2010). NTIS is strongly significant for six and twelve

month excess returns, while DY only has predictive power for twelve month excess returns on

the market and growth portfolios. As in the univariate regressions, the second and third PCs

are statistically significant for six to twelve month excess returns while the economic signifi-

cance remains largely unchanged. Overall, the adjusted R2 raise to between 30% and 40% for

twelve month excess returns.

Not very surprisingly at this stage, the univariate results for corporate bonds and CMBS

largely carry over to the multivariate regressions.44 The second PC, i.e. the slope factor

emerges as the strongest and most robust predictor while the first PC seems to be driven out

at short horizons by the additional controls, the CP factor in particular.

43These findings echo the results in Mueller et al. (2011) who find that the equity variance risk premium
heavily loads on short-term bond risk premia but does not predict excess returns at the annual horizon.

44We report the regression results for intermediate corporate bond and CMBS excess returns in Tables 2.9
and 2.10. The results for long-term corporate bonds are qualitatively similar but in the interest of space they
are deferred to the Online Appendix.
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In summary, we find that excess returns on Treasuries, stocks, corporate bonds and CMBS

are predictable using bond variance risk premia. Overall, the reported in-sample predictability

is strong, both statistically and economically.

2.4.4 Out-of-Sample Predictability

There is ample evidence in the literature for the fact that in-sample predictability does not

necessarily imply out-of-sample predictability. For instance, Goyal and Welch (2008) show that

a large number of predictors have very little out-of-sample predictive power for stock market

excess returns and they attribute the inconsistent out-of-sample performance of individual

predictive regression models to structural instability. In this section, we report results on the

out-of-sample forecasting performance of the regression models studied in the previous section.

We run out-of-sample regressions using the bond variance risk premia directly instead of the

principal components, since these are estimated using an expanding window. We therefore use

data only through time t for forecasting excess returns at time t+ 1.

We run the out-of-sample test for the Treasury, long corporate bond, and the stock excess

returns but not the mortgage-backed securities, as the available sample period for these is too

short. We obtain the initial estimates based on the period from July 1991 to July 1999 and

study the out-of-sample predictability for the period starting in July 2000 and ending in June

2010.

For the corporate bond and stock excess returns, we compare the out-of-sample forecasting

performance of the bond variance risk premia to a constant expected returns benchmark. For

the Treasury excess returns, we have two different model specifications. First, we compare the

out-of-sample forecasting performance of the bond variance risk premia to a constant expected

returns benchmark where, apart from an MA(12) error term, excess returns are unforecastable

as in the expectations hypothesis. Second, since the expectations hypothesis is violated in the

data, we compare the out-of-sample forecasting performance of a specification that includes

bond variance risk premia plus the CP factor to a benchmark model that only includes CP

factor and a constant.

To check whether the bond variance premia have out-of-sample predictive power, we con-

sider two different metrics for the evaluation. The first one is the out-of-sample R2 statistic,

denoted by R2
OOS (Campbell and Thompson, 2008). The R2

OOS measures the proportional

reduction in the mean squared error for a competing model relative to the benchmark forecast.

It is akin to the in-sample R2 and has the following form:

R2
OOS = 1−

1
T

∑T
t=1

(
yt − ŷit

)2
1
T

∑T
t=1

(
yt − ŷjt

)2 ,

where ŷit is the forecast of the variable yt from the competing model i and ŷjt is the forecast

of variable yt from the benchmark model j. Note that both ŷit and ŷjt are obtained based on
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the data up to period t− 1. If the R2
OOS is positive, the competing predictive regression has a

lower average out-of-sample mean-squared prediction error than the benchmark.

The second metric we employ is the ENC-NEW test statistic of Clark and McCracken

(2001). The null hypothesis of the ENC-NEW test is that the model with additional variables

does not have better predictive power for excess returns than the benchmark or restricted

model. The alternative is that these additional variables have additional information and they

could be used to obtain a better forecast.45

We report the results in Table 2.11. The R2
OOS are positive for all assets, which indicates

that a model which includes the bond variance risk premia improves both over the constant

expected returns benchmark and a model that includes the CP factor. We draw the same con-

clusion from the reported ENC-NEW statistics. The test statistics reveal that the improvement

in forecasting power is strongly statistically significant.

2.5 Conclusion

In this paper, we construct daily measures of implied and realized variance in fixed income

markets. To calculate the implied variance, we use daily options on 30 year, 10 year and 5

year Treasury futures. We use high frequency futures data to calculate the realized variance.

Using thirty years of options data, we propose a new measure of fear for Treasury markets, the

TIV, calculated as the square root of the implied variance for 30 year Treasury futures. The

TIV measure has two interesting properties: First, it is strongly related to a proxy of funding

liquidity and second, the spread between the VIX and TIV can be interpreted as a measure

of flight to quality. The behavior of the TIV resembles in many ways the one of the VIX,

however, while the unconditional correlation is high, the two series differ in their magnitudes.

Not very surprisingly, we find that the compensation for variance risk in fixed income markets

is considerably smaller than in the equity market.

The bond variance risk premia we derive are akin to the variance risk premium for the

S&P 500 index. However, while the variance risk premium for the equity index is essentially

always positive, i.e. it acts like an insurance premium, the variance risk premia in Treasury

markets can turn negative. To grasp a better intuition of this behavior, we explore the eco-

nomic determinants of both equity and bond variance risk premia in more detail. We find

that both are strongly driven by proxies of macroeconomic uncertainty, however, a proxy of

uncertainty about monetary policy strongly reduces the variance risk premia in bond markets,

especially for longer maturities. We also find that the shape of the term structure of Treasury

yields significantly affects bond variance risk premia. These findings corroborate the intuition

that bond variance risk premia encompass general macroeconomic uncertainty together with

information from the term structure of yields.

45The limiting distribution of ENC-NEW is non-standard. Following Ludvigson and Ng (2009), we base our
inference on comparing the calculated test statistics with the corresponding 95th percentile of the asymptotic
distribution of the ENC-NEW test statistic. Critical values can be found in Clark and McCracken (2001).
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We then study whether bond variance risk premia contain any predictive power for excess

returns on Treasury bonds, stocks, corporate bonds and commercial mortgage-backed securi-

ties. We find that bond variance risk premia explain a significant proportion of the variation in

excess returns both in-sample and out-of-sample. Moreover, the predictive power is very robust

to the horizon and in particular the inclusion of standard predictors found in the literature.

We are primarily interested in documenting the facts. Is there a compensation for volatility

risk in fixed income markets? If yes, how large is it? How does it compare to equity markets?

However, ultimately, our paper remains agnostic about the theoretical underpinnings of the

empirical results but instead raises new research questions. First, many papers have argued

that in times of uncertainty, there is a so-called flight to quality, i.e. investors move from

relatively more risky stocks to relatively less risky bonds. Comparing the two implied volatility

measures for equity and bond markets, we find that during certain periods, there is a decoupling

of the two time series while during other time periods, the time series almost move in lock

step. A next step would be to study the lead and lag relationships and the feedback effects

between the equity and bond markets in greater detail using the implied volatility measures

we introduce for Treasuries.

Secondly, if bond variance risk premia have predictive power across different asset classes,

we would expect that these risk premia pick up more than just information contained in the

term structure of interest rates. Since we do not find a similar result for the equity variance

risk premium, we conclude that bond variance risk premia capture macroeconomic uncertainty

which goes beyond that contained in equity variance risk. Moreover, there is also information

contained in the term structure of bond variance risk premia that is orthogonal to what can be

learned from standard macroeconomic variables. In particular, our results hint that the term

structure of uncertainty, i.e. how uncertainty evolves at any given point in time for different

horizons, could have opposing effects on variance risk premia. Exploring the effects of different

uncertainty horizons on risk compensation is another interesting topic for future research.
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Table 2.1: Summary Statistics. Panels A and B report summary statistics for the implied and
realized volatility measures. MIV denotes the model-free implied variance for a one month
horizon. RV (TCJ) denotes monthly realized variance sampled at the five minute frequency,
and RV (5m) denotes the HAR-TCJ realized variance estimator augmented with lagged implied
variance terms. The VIX is obtained from CBOE. All quantities are annualized and expressed
in percent. Note that we report the summary statistics for the implied and realized volatilities,
which are obtained as the square root of the respective variance measures. Panel C presents
summary statistics for bond and equity variance risk premia. The variance risk premia are
annualized and expressed in percent. They are calculated as the difference of the model-
free implied variance and the projected value from the HAR-TCJ realized variance estimator
augmented with lagged implied variance terms. All data is monthly and the sample spans the
period from July 1991 to June 2010.

PANEL A: IMPLIED VOLATILITY
30y Treasury 10y Treasury 5y Treasury S&P500

MIV MIV MIV MIV VIX
Mean 10.00 6.86 4.43 20.11 20.22
StDev 2.38 1.65 1.22 8.39 8.13
Min 6.03 3.70 1.95 9.97 10.42
Max 21.96 13.26 9.53 58.46 58.89
Skewness 1.95 0.68 0.78 1.55 1.61
Kurtosis 8.92 3.97 4.15 6.53 6.80
AC(1) 0.83 0.72 0.72 0.86 0.86

PANEL B: REALIZED VOLATILITY
30y Treasury 10y Treasury 5y Treasury S&P500

RV (TCJ) RV (5m) RV (TCJ) RV (5m) RV (TCJ) RV (5m) RV (TCJ) RV (5m)

Mean 8.43 8.38 5.57 5.52 3.77 3.72 14.65 14.22
StDev 1.42 2.03 0.80 1.45 0.57 1.04 6.10 7.97
Min 6.25 4.77 4.07 2.87 2.72 1.86 7.37 5.04
Max 15.95 18.46 9.24 10.79 6.71 7.55 51.80 73.79
Skewness 1.99 1.22 1.48 0.83 1.50 0.84 2.18 3.13
Kurtosis 8.76 5.79 6.59 3.89 7.69 3.63 11.20 19.45
AC(1) 0.84 0.71 0.78 0.67 0.76 0.62 0.83 0.77

PANEL C: VARIANCE RISK PREMIUM
30y Treasury 10y Treasury 5y Treasury S&P500

VRP VRP VRP VRP
Mean 0.33 0.18 0.07 2.23
StDev 0.35 0.17 0.08 2.19
Min -0.07 -0.16 -0.04 -0.01
Max 2.44 1.05 0.50 13.22
Skewness 3.14 1.30 1.88 2.38
Kurtosis 16.21 6.18 8.96 9.82
AC(1) 0.68 0.50 0.57 0.77
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Table 2.2: Correlations of Determinants. The table reports correlations between determinants
of variance risk premia. The uncertainty variables are defined as the cross sectional standard
deviation of the forecasts of the short and long end of the term structure (Û (SR) and Û (LR)),
real GDP (Û (RGDP )), and CPI (Û (CPI)). SLOPE is the slope of the term structure calculated
as the difference between the ten year and the one month Treasury yield. The macro volatilities
σπ and σg are estimated using a GARCH(1,1) process for inflation and per capita consumption

(non durables and services). The macro variables F̂j , j = 1, 2 are estimated as the first two
principal components from a data set of 104 macroeconomic variables. They can be interpreted
as a real and a nominal or inflation factor, respectively. REF is the refinancing index published
by the Mortgage Bankers Association. All data is monthly and the sample spans the period
from July 1991 to December 2009.

ÛLR ÛRGDP ÛCPI SLOPE σπ σg F̂1 F̂2 REF

ÛLR 0.42 0.42 0.00 -0.04 -0.28 0.47 -0.06 0.03 -0.24

ÛRGDP 0.27 -0.03 0.04 -0.34 0.29 0.07 -0.08 -0.12

ÛCPI 0.33 0.18 -0.07 0.32 -0.37 0.01 -0.06
SLOPE 0.12 0.57 -0.23 -0.74 0.07 0.26
σπ 0.04 -0.01 -0.18 -0.10 0.09
σg -0.46 -0.61 0.05 0.35

F̂1 0.16 -0.02 -0.20

F̂2 0.01 -0.40
REF -0.09
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Table 2.3: Economic Drivers of Bond Variance Risk Premia. The table reports the results
from regressing the respective variance risk premia on uncertainty measures Ût and additional

variables F̂t and Ŝt: VRP
(i)
t = β′UÛt + β′F F̂t + β′SŜt + ε

(i)
t . The uncertainty variables are

defined as the cross sectional standard deviation of the forecasts of the short and long end of
the term structure (Û (SR) and Û (LR)), real GDP (Û (RGDP )), and CPI (Û (CPI)). Ŝt includes
SLOPE, the slope of the term structure calculated as the difference between the ten year and
the one month Treasury yield, the macro volatilities σπ and σg estimated using a GARCH(1,1)
process for inflation and per capita consumption (non durables and services) and REF, the
MBA refinancing index. The macro variables F̂j , j = 1, 2 are estimated as the first two principal
components from a data set of 104 macroeconomic variables. They can be interpreted as a
real and a nominal or inflation factor, respectively. Regressions are standardized, meaning all
variables are de-meaned and divided by their standard deviation. Coefficients are estimated
with ordinary-least squares, t-statistics are in parentheses and are calculated using Newey and
West (1987)Newey and West (1987) standard errors. Data is monthly and the sample spans
the period from July 1991 to December 2009.

V RP (30y) V RP (10y) V RP (5y) V RP (E)

ÛSR -0.213 -0.160 -0.145 -0.062 -0.048 -0.034 -0.011 0.033 0.053 -0.319 -0.282 -0.252
(-2.45) (-2.05) (-1.87) (-0.51) (-0.41) (-0.29) (-0.09) (0.29) (0.47) (-4.40) (-3.81) (-4.89)

ÛLR 0.225 0.215 0.214 0.160 0.109 0.105 0.070 0.007 0.015 0.123 0.158 0.172
(3.98) (3.62) (3.00) (1.76) (1.25) (1.12) (0.68) (0.06) (0.15) (1.39) (1.98) (2.94)

ÛRGDP 0.025 0.007 -0.013 0.129 0.051 0.028 0.107 0.072 0.052 0.182 0.246 0.214
(0.25) (0.09) (-0.17) (1.32) (0.57) (0.31) (0.97) (0.60) (0.44) (2.13) (2.73) (2.10)

ÛCPI 0.630 0.441 0.370 0.381 0.251 0.182 0.308 0.285 0.188 0.553 0.536 0.376
(3.76) (2.94) (2.28) (3.00) (1.77) (1.18) (1.99) (1.37) (0.92) (4.13) (4.54) (3.89)

SLOPE 0.284 0.256 0.370 0.347 0.239 0.194 -0.125 -0.199
(3.57) (3.28) (4.42) (4.19) (2.61) (2.18) (-1.30) (-2.57)

σπ 0.168 0.090 0.096 0.019 -0.125 -0.228 0.009 -0.158
(1.61) (0.88) (1.02) (0.20) (-0.86) (-1.60) (0.08) (-1.86)

σg -0.156 -0.155 -0.079 -0.079 -0.225 -0.221 -0.085 -0.078
(-1.59) (-1.60) (-0.75) (-0.78) (-1.89) (-1.95) (-1.05) (-1.07)

F̂1 -0.137 -0.142 -0.169 -0.273
(-1.68) (-1.45) (-1.39) (-2.61)

F̂2 -0.035 -0.061 0.037 0.075
(-0.61) (-1.02) (0.84) (2.20)

REF 0.114 0.099 0.182 0.294
(1.58) (1.09) (1.58) (2.79)

R2 0.45 0.53 0.55 0.21 0.31 0.32 0.12 0.17 0.20 0.44 0.45 0.57

Table 2.4: Principal Components of Treasury Variance Risk Premia. The table reports the
loadings for the three principal components of the bond variance risk premia, V RP (PC1),
V RP (PC2) and V RP (PC3), respectively. We also report the the percentage of the explained
variation. Data is monthly and the sample spans the period from July 1991 to June 2010.

V RP (PC1) V RP (PC2) V RP (PC3)

V RP (30y) 0.58 0.57 0.59

V RP (10y) 0.60 0.19 -0.77

V RP (5y) 0.55 -0.80 0.23
Percent explained 77.33 14.93 7.74
Cum. percent explained 77.33 92.26 100.00
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Table 2.5: Excess Bond and Stock Returns. We run the following regression: rx
(i)
t+h =

β′(i)(h)VRPt + ε
(i)
t+h. For bonds (Panel A), rx

(i)
t+h is the one year (h = 12 months) excess

return for i = {24, 36, 48, 60} month Treasury bonds. For stocks (Panel B), rx
(i)
t+h is the three,

six, or twelve month excess return on the market (value-weighted CRSP index), value and
growth portfolio (from Ken French’s Data Library), respectively. VRPt is a vector contain-
ing the principal components of the bond variance risk premia, V RP (PC1), V RP (PC2) and
V RP (PC3). Regressions are standardized, meaning all variables are de-meaned and divided
by their standard deviation. Coefficients are estimated with ordinary-least squares, t-statistics
are in parentheses and are calculated using Newey and West (1987) standard errors. Data is
monthly and the sample spans the period from July 1991 to June 2010.

PANEL: FAMA BLISS TREASURY BONDS
2y 3y 4y 5y

V RP (PC1) 0.014 0.037 0.032 0.066
(0.15) (0.41) (0.37) (0.81)

V RP (PC2) -0.080 -0.060 -0.057 -0.045
(-0.99) (-0.73) (-0.68) (-0.53)

V RP (PC3) -0.166 -0.173 -0.191 -0.189
(-2.15) (-2.15) (-2.42) (-2.39)

AdjR2 0.03 0.03 0.03 0.03
PANEL B: STOCKS

MARKET GROWTH VALUE
3m 6m 12m 3m 6m 12m 3m 6m 12m

V RP (PC1) 0.028 0.091 0.150 0.079 0.123 0.188 -0.051 0.053 0.162
(0.19) (0.91) (1.42) (0.67) (1.42) (1.94) (-0.28) (0.41) (1.33)

V RP (PC2) 0.118 0.241 0.212 0.058 0.193 0.177 0.138 0.276 0.304
(1.11) (2.34) (1.86) (0.58) (2.10) (1.90) (1.20) (2.49) (2.38)

V RP (PC3) 0.120 0.176 0.137 0.090 0.162 0.140 0.069 0.122 0.038
(1.83) (2.59) (1.58) (1.40) (2.38) (1.65) (0.96) (1.65) (0.43)

AdjR2 0.02 0.09 0.08 0.01 0.07 0.08 0.02 0.09 0.11
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Table 2.6: Excess Corporate Bond and Commercial Mortgage-Backed Securities Returns. We

run the following regression: rx
(i)
t+h = β′(i)(h)VRPt + ε

(i)
t+h, where rx

(i)
t+h is the three, six, or

twelve month excess return on long and intermediate maturity corporate bond (Panels A and
B) or commercial mortgage-backed securities indices (Panel C), respectively. We use AAA,
BBB and CCC indices for corporate bonds and AAA, BBB, and B indices for CMBS. VRPt

is a vector containing the principal components of the bond variance risk premia, V RP (PC1),
V RP (PC2) and V RP (PC3). Regressions are standardized, meaning all variables are de-meaned
and divided by their standard deviation. Coefficients are estimated with ordinary-least squares,
t-statistics are in parentheses and are calculated using Newey and West (1987) standard errors.
Data is monthly and the sample spans the period from July 1991 to June 2010. CMBS data
start in January 1997.

PANEL A: LONG CORPORATE BONDS

AAA BBB CCC
3m 6m 12m 3m 6m 12m 3m 6m 12m

V RP (PC1) 0.163 0.257 0.423 0.209 0.346 0.508 0.158 0.254 0.397
(2.04) (2.81) (5.32) (2.05) (3.67) (5.48) (2.00) (2.84) (-4.21)

V RP (PC2) 0.270 0.245 0.166 0.190 0.285 0.183 0.089 0.115 0.087
(3.24) (3.10) (2.03) (2.48) (3.35) (2.19) (1.36) (1.27) (0.94)

V RP (PC3) -0.046 -0.025 -0.105 0.074 0.093 0.000 0.016 0.074 0.043
(-0.65) (-0.30) (-1.35) (1.05) (1.16) (0.00) (0.24) (0.97) (0.53)

AdjR2 0.090 0.120 0.210 0.080 0.200 0.290 0.020 0.080 0.160

PANEL B: INTERMEDIATE CORPORATE BONDS

AAA BBB CCC
3m 6m 12m 3m 6m 12m 3m 6m 12m

V RP (PC1) 0.130 0.185 0.352 0.237 0.400 0.517 0.238 0.363 0.452
(1.90) (2.33) (3.99) (2.30) (4.18) (4.79) (1.98) (3.77) (3.74)

V RP (PC2) 0.201 0.216 0.195 0.277 0.340 0.238 0.211 0.261 0.132
(2.94) (2.70) (2.32) (3.63) (3.97) (2.66) (2.11) (2.96) (1.33)

V RP (PC3) -0.073 -0.060 -0.057 0.120 0.132 0.046 0.216 0.195 0.070
(-1.29) (-0.86) (-0.79) (1.48) (1.65) (0.57) (-0.58) (-0.20) (0.80)

AdjR2 0.050 0.080 0.160 0.140 0.290 0.320 0.140 0.230 0.220

PANEL C: COMMERCIAL CORPORATE BONDS

AAA BBB CCC
3m 6m 12m 3m 6m 12m 3m 6m 12m

V RP (PC1) 0.161 0.245 0.361 0.051 0.127 0.321 -0.206 -0.133 -0.048
(1.55) (2.61) (2.75) (0.31) (0.86) (2.75) (-1.28) (-0.92) (-0.33)

V RP (PC2) 0.287 0.363 0.416 0.351 0.469 0.488 0.197 0.211 0.353
(3.35) (3.34) (2.99) (2.73) (3.29) (3.46) (1.59) (1.29) (2.01)

V RP (PC3) 0.172 0.196 0.057 0.032 0.095 0.062 -0.041 -0.014 -0.106
(1.56) (1.68) (0.45) (0.41) (1.34) (0.66) (-0.48) (-0.17) (-0.96)

AdjR2 0.160 0.270 0.340 0.120 0.270 0.380 0.060 0.040 0.110

95



Table 2.7: Treasury Bonds Excess Return Predictability. We run the following regression:

rx
(i)
t+h = β′(i)(h)VRPt + γ′(i)(h)Mt + ε

(i)
t+h, where rx

(i)
t+h is the one year excess return for

i = {24, 36, 48, 60} month Treasury bonds. VRPt is a vector containing the principal compo-
nents of the bond variance risk premia, V RP (PC1), V RP (PC2) and V RP (PC3). Mt includes

the equity market variance risk premium (VRP
(E)
t ), the Cochrane and Piazzesi (2005) factor

(CP) and the macro factors F̂j , j = 1 . . . , 8 from Ludvigson and Ng (2009). Regressions are
standardized, meaning all variables are de-meaned and divided by their standard deviation.
Coefficients are estimated with ordinary-least squares, t-statistics are in parentheses and are
calculated using Newey and West (1987) standard errors. Data is monthly and the sample
spans the period from July 1991 to June 2010.

2y 3y 4y 5y

V RP (PC1) -0.265 -0.237 -0.209 -0.142
(-2.56) (-2.33) (-2.22) (-1.54)

V RP (PC2) -0.169 -0.162 -0.162 -0.149
(-2.30) (-2.16) (-2.14) (-1.92)

V RP (PC3) -0.174 -0.175 -0.174 -0.158
(-2.80) (-2.74) (-2.72) (-2.44)

V RP (E) 0.102 0.133 0.113 0.104
(0.73) (0.93) (0.78) (0.70)

CP 0.357 0.359 0.376 0.374
(3.78) (3.96) (4.26) (4.36)

F̂1 -0.433 -0.380 -0.331 -0.276
(-4.30) (-3.63) (-3.16) (-2.58)

F̂2 0.025 0.024 0.023 0.030
(0.65) (0.65) (0.64) (0.94)

F̂3 0.145 0.175 0.226 0.250
(2.03) (2.68) (3.76) (4.10)

F̂4 0.028 0.055 0.089 0.123
(0.43) (0.79) (1.25) (1.68)

F̂5 0.027 0.042 0.057 0.073
(0.47) (0.74) (1.04) (1.33)

F̂6 -0.012 0.040 0.078 0.093
(-0.15) (0.49) (0.94) (1.13)

F̂7 0.146 0.192 0.217 0.254
(1.74) (2.23) (2.53) (2.95)

F̂8 0.044 0.095 0.126 0.150
(0.63) (1.33) (1.76) (2.14)

AdjR2 0.280 0.280 0.300 0.310
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Table 2.8: Stock Excess Returns Predictability. We run the following regression: rx
(i)
t+h =

β′(i)(h)VRPt + γ′(i)(h)Mt + ε
(i)
t+h, where rx

(i)
t+h is the three, six, or twelve month excess return

on the market (value-weighted CRSP index), value and growth portfolio (from Ken French’s
Data Library), respectively. VRPt is a vector containing the principal components of the bond
variance risk premia, V RP (PC1), V RP (PC2) and V RP (PC3). Mt includes the equity market

variance risk premium (V RP
(E)
t ), the log dividend yield (DY), the log earnings to price ratio

(E/P), and the net equity expansion (NTIS) from Goyal and Welch (2008). Regressions are
standardized, meaning all variables are de-meaned and divided by their standard deviation.
Coefficients are estimated with ordinary-least squares, t-statistics are in parentheses and are
calculated using Newey and West (1987) standard errors. Data is monthly and the sample
spans the period from July 1991 to June 2010.

MARKET GROWTH VALUE

3m 6m 12m 3m 6m 12m 3m 6m 12m

V RP (PC1) -0.029 0.043 0.084 -0.024 0.013 0.054 -0.056 0.064 0.173
(-0.24) (0.43) (0.80) (-0.23) (0.14) (0.57) (-0.43) (0.55) (1.43)

V RP (PC2) 0.090 0.219 0.197 0.026 0.162 0.144 0.105 0.251 0.292
(1.00) (2.71) (2.55) (0.28) (2.12) (2.03) (1.12) (2.75) (3.29)

V RP (PC3) 0.129 0.203 0.162 0.069 0.153 0.128 0.098 0.173 0.102
(1.51) (2.07) (2.56) (0.87) (1.71) (1.87) (1.21) (1.50) (1.58)

V RP (E) 0.207 0.298 0.333 0.267 0.383 0.412 -0.006 0.085 0.190
(1.70) (3.42) (3.99) (2.47) (4.16) (4.71) (-0.04) (0.78) (1.57)

DY 0.146 0.169 0.282 0.149 0.174 0.275 0.085 0.082 0.136
(1.25) (1.35) (2.37) (1.29) (1.35) (2.10) (0.74) (0.63) (1.20)

E/P 0.073 0.153 0.200 0.093 0.172 0.180 -0.091 -0.012 0.083
(0.43) (0.89) (1.38) (0.64) (1.06) (1.24) (-0.57) (-0.08) (0.55)

NTIS 0.285 0.429 0.470 0.213 0.363 0.409 0.193 0.346 0.487
(1.62) (2.13) (2.75) (1.41) (2.12) (2.83) (1.16) (1.64) (2.67)

AdjR2 0.11 0.30 0.39 0.07 0.25 0.33 0.05 0.19 0.34
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Table 2.9: Excess Intermediate Corporate Bond Returns Predictability. We run the following

regression: rx
(i)
t+h = β′(i)(h)VRPt + γ′(i)(h)Mt + ε

(i)
t+h, where rx

(i)
t+h is the three, six, or twelve

month excess return on a intermediate-term corporate bond portfolio for rating classes AAA,
BBB and CCC, respectively. VRPt is a vector containing the principal components of the
bond variance risk premia, V RP (PC1), V RP (PC2) and V RP (PC3). Mt includes the equity

market variance risk premium (V RP
(E)
t ), the Cochrane and Piazzesi (2005) factor (CP) and

the macro factors F̂j , j = 1 . . . , 8 from Ludvigson and Ng (2009). Regressions are standardized,
meaning all variables are de-meaned and divided by their standard deviation. Coefficients are
estimated with ordinary-least squares, t-statistics are in parentheses and are calculated using
Newey and West (1987) standard errors. Data is monthly and the sample spans the period
from July 1991 to June 2010.

AAA BBB CCC
3m 6m 12m 3m 6m 12m 3m 6m 12m

V RP (PC1) -0.043 0.014 0.143 0.021 0.181 0.238 0.114 0.214 0.216
(-0.52) (0.15) (1.56) (0.31) (2.40) (2.61) (1.19) (2.27) (2.18)

V RP (PC2) 0.135 0.150 0.083 0.200 0.274 0.145 0.179 0.249 0.093
(1.50) (2.02) (1.39) (3.02) (2.89) (1.61) (2.45) (2.61) (0.93)

V RP (PC3) -0.084 -0.053 -0.065 0.069 0.098 -0.002 0.198 0.188 0.051
(-1.24) (-0.77) (-1.09) (0.95) (1.42) (-0.04) (3.06) (2.48) (1.00)

V RP (E) 0.174 0.056 0.055 0.220 0.173 0.170 0.149 0.169 0.127
(1.69) (0.46) (0.37) (1.85) (1.42) (1.46) (0.98) (1.19) (1.26)

CP 0.203 0.229 0.202 0.170 0.197 0.185 0.140 0.202 0.205
(2.34) (2.41) (2.34) (2.26) (2.25) (2.56) (2.05) (2.33) (2.50)

F̂1 -0.121 -0.257 -0.324 -0.128 -0.208 -0.339 -0.044 -0.094 -0.324
(-1.29) (-2.66) (-3.40) (-0.86) (-1.39) (-3.62) (-0.30) (-0.62) (-3.85)

F̂2 0.003 0.075 0.107 -0.001 0.039 0.092 -0.095 0.004 0.059
(0.09) (1.87) (3.16) (-0.01) (1.08) (2.17) (-1.27) (0.100) (1.65)

F̂3 0.193 0.192 0.244 0.172 0.111 0.115 0.017 -0.077 -0.107
(2.04) (2.01) (2.99) (3.01) (1.71) (2.18) (0.28) (-1.02) (-1.13)

F̂4 0.094 0.080 0.106 -0.139 -0.096 -0.027 -0.302 -0.277 -0.243
(1.16) (0.93) (1.50) (-1.12) (-0.90) (-0.32) (-2.55) (-2.70) (-2.55)

F̂5 -0.012 -0.035 -0.011 -0.012 -0.029 -0.061 -0.025 -0.042 -0.099
(-0.13) (-0.40) (-0.20) (-0.18) (-0.4) (-1.14) (-0.43) (-0.84) (-1.78)

F̂6 -0.010 0.021 0.132 0.159 0.113 0.100 0.204 0.174 0.188
(-0.16) (0.33) (1.97) (2.36) (1.65) (1.43) (2.96) (2.86) (2.84)

F̂7 0.133 0.235 0.281 0.088 0.118 0.202 0.016 0.047 0.140
(2.11) (3.69) (3.80) (1.48) (1.96) (3.97) (0.35) (0.88) (2.73)

F̂8 0.079 0.087 0.189 -0.021 0.009 0.115 -0.013 -0.008 0.077
(0.99) (1.41) (3.82) (-0.36) (0.16) (2.55) (-0.22) (-0.13) (1.79)

AdjR2 0.13 0.23 0.43 0.27 0.40 0.52 0.29 0.38 0.46
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Table 2.10: Excess Commercial Mortgage-Backed Securities Returns Predictability. We run

the following regression: rx
(i)
t+h = β′(i)(h)VRPt + γ′(i)(h)Mt + ε

(i)
t+h, where rx

(i)
t+h is the three,

six, or twelve month excess return on a commercial mortgage-backed securities portfolio for
rating classes AAA, BBB and B, respectively. VRPt is a vector containing the principal
components of the bond variance risk premia, V RP (PC1), V RP (PC2) and V RP (PC3). Mt

includes the equity market variance risk premium (V RP
(E)
t ), the Cochrane and Piazzesi (2005)

factor (CP) and the macro factors F̂j , j = 1 . . . , 8 from Ludvigson and Ng (2009). Regressions
are standardized, meaning all variables are de-meaned and divided by their standard deviation.
Coefficients are estimated with ordinary-least squares, t-statistics are in parentheses and are
calculated using Newey and West (1987) standard errors. Data is monthly and the sample
spans the period from July 1991 to June 2010.

AAA BBB CCC
3m 6m 12m 3m 6m 12m 3m 6m 12m

V RP (PC1) 0.081 0.140 0.095 0.119 0.067 0.098 0.087 0.178 0.053
(1.09) (1.58) (0.61) (1.49) (0.92) (0.74) (0.69) (1.44) (0.36)

V RP (PC2) 0.241 0.336 0.391 0.257 0.412 0.456 0.212 0.260 0.392
(3.73) (2.86) (2.70) (3.19) (3.62) (3.12) (2.83) (2.08) (2.80)

V RP (PC3) 0.201 0.215 0.056 0.044 0.105 0.047 0.080 0.138 0.040
(1.70) (1.95) (0.75) (0.52) (1.32) (0.70) (0.95) (1.24) (0.42)

V RP (E) -0.041 -0.073 -0.025 -0.260 -0.120 0.033 -0.318 -0.285 -0.138
(-0.76) (-0.84) (-0.28) (-2.14) (-1.52) (0.35) (-1.71) (-2.16) (-1.27)

CP 0.125 0.135 0.139 0.028 0.079 0.099 0.170 0.162 0.184
(2.16) (1.63) (1.68) (0.42) (1.19) (1.15) (2.47) (2.13) (2.34)

F̂1 -0.066 -0.166 -0.402 -0.058 -0.128 -0.269 0.266 0.309 0.120
(-0.40) (-0.94) (-5.02) (-0.37) (-0.71) (-2.53) (1.61) (1.62) (0.81)

F̂2 -0.141 0.010 0.115 -0.125 -0.005 0.057 -0.154 -0.089 -0.055
(-1.21) (0.23) (2.15) (-1.65) (-0.13) (1.17) (-1.43) (-1.52) (-1.48)

F̂3 0.245 0.197 0.145 0.360 0.263 0.142 0.259 0.051 -0.017
(4.53) (2.83) (1.75) (2.98) (2.88) (1.36) (2.58) (0.34) (-0.09)

F̂4 -0.220 -0.217 -0.159 -0.283 -0.255 -0.191 -0.187 -0.292 -0.365
(-1.59) (-1.81) (-1.80) (-2.26) (-2.72) (-2.17) (-1.22) (-2.03) (-2.70)

F̂5 -0.027 -0.064 -0.123 0.012 -0.074 -0.119 0.028 -0.036 -0.118
(-0.40) (-0.93) (-1.96) (0.19) (-1.62) (-1.91) (0.37) (-0.61) (-1.62)

F̂6 0.169 0.088 0.021 0.226 0.210 0.073 0.102 0.179 0.233
(1.74) (1.09) (0.31) (2.66) (2.49) (1.14) (1.11) (1.95) (2.66)

F̂7 0.033 -0.009 0.062 -0.102 -0.127 -0.034 0.019 -0.047 0.001
(0.64) (-0.12) (1.17) (-1.59) (-2.06) (-0.71) (0.28) (-0.60) (0.01)

F̂8 -0.170 -0.127 -0.041 -0.181 -0.158 -0.084 -0.156 -0.162 -0.107
(-1.65) (-1.48) (-0.72) (-2.17) (-1.84) (-1.50) (-1.86) (-1.56) (-1.23)

AdjR2 0.33 0.38 0.49 0.42 0.48 0.50 0.34 0.34 0.37
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Table 2.11: Out-of-Sample Predictability. This table reports the results of the out-of-sample
forecast evaluation for one year excess returns for Treasury bonds, the market, growth and
value portfolio, and long corporate bonds. VRPt is a vector containing the individual bond
variance risk premia, V RP (30y), V RP (10y) and V RP (5y). VRPt vs const’ reports forecast com-
parisons of an unrestricted model with bond variance risk premia versus a restricted constant
expected return benchmark model. VRPt+CP vs const+CP’ reports forecast comparisons of
an unrestricted model with bond variance risk premia and the CP factor versus a restricted
benchmark model including a constant and the CP factor. R2

OOS denotes the out-of-sample R2

of Campbell and Thompson (2008). A positive number indicates that the unrestricted model
has a lower forecast error than the restricted benchmark model. ENC-NEW denotes the test
statistic of Clark and McCracken (2001) for the null hypothesis that the benchmark model
encompasses the unrestricted model with additional predictors. The alternative is that the
unrestricted model contains information that could be used to improve the benchmark model’s
forecast. * indicates significance for the ENC-NEW test statistic at minimally the 95% level.
We obtain the initial estimates based on the period from July 1991 to July 1999 and study the
out-of-sample predictability for the period starting in July 2000 and ending in June 2010.

PANEL A: FAMA BLISS TREASURY BONDS

VRPt v.s. const. R2
OOS ENC-NEW

2y Treasury Bond 0.06 7.74*
3y Treasury Bond 0.06 7.63*
4y Treasury Bond 0.07 8.57*
5y Treasury Bond 0.07 8.31*

VRPt+CP v.s. const.+CP R2
OOS ENC-NEW

2y Treasury Bond 0.13 16.72*
3y Treasury Bond 0.14 16.97*
4y Treasury Bond 0.17 20.02*
5y Treasury Bond 0.18 20.30*

PANEL B: STOCKS

VRPt v.s. const. R2
OOS ENC-NEW

MARKET 0.12 17.10*
GROWTH 0.13 18.04*
VALUE 0.17 23.78*

PANEL C: LONG CORPORATE BONDS

VRPt v.s. const. R2
OOS ENC-NEW

AAA 0.32 38.36*
BBB 0.38 52.72*
CCC 0.24 35.93*
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Figure 2.1: MBA Refinancing Index and 30 Year Bond Variance Risk Premium. This figure
plots the time-series of the Mortgage Bankers Association (MBA) refinancing index (dashed
line) and the bond variance risk premium for 30 year Treasury futures (solid line). The 30
year Treasury variance risk premium is calculated as the difference between the model-free
implied variance (MIV) and the expected realized variance using a HAR-TCJ realized variance
estimator augmented with lagged implied variance terms (RV (HARIV J)). The MBA refinancing
index reflects the number of applications for mortgage refinancing and covers about three
quarters of all new residential mortgage loans made. The index is seasonally adjusted and
divided by a factor of 1,000. Data is monthly and the sample spans the period from January
2000 to June 2010.
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Figure 2.2: Realized and Implied Volatilities of Treasury and equities. In the left Panels we
plot implied volatility measures (IV) for the 30 year, 10 year and 5 year Treasury futures (solid
lines) together with the implied volatility of the S&P 500 index (dashed lines), all for a one
month horizon. The implied volatilities are the square root of the model-free implied variance
(MIV) calculated using options on the respective underlying futures. In the right Panels we
plot the realized volatility measures (RV), which are the square root of the HAR-TCJ realized
variance estimator augmented with lagged implied variance terms (RV (HARIV J)). All numbers
are annualized and in percent. Shaded areas correspond to recessions as defined by the NBER.
Data is monthly and the sample spans the period from July 1991 to June 2010.
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Figure 2.3: Treasury Bond and Equity Variance Risk Premia. This figure plots annualized
variance risk premia for the 30 year, 10 year and 5 year Treasury bonds (left axis, solid, dotted
and dashed-dotted lines) and the S&P500 index (right axis, bold dashed line). The variance
risk premia are calculated as the difference between the model-free implied variance (MIV)
and the expected realized variance using a HAR-TCJ realized variance estimator augmented
with lagged implied variance terms (RV (HARIV J)). Shaded areas correspond to recessions as
defined by the NBER. Data is monthly and the sample spans the period from July 1991 to
June 2010.
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Figure 2.4: Treasury and Equity Implied Volatility. The top Panel plots the Treasury (solid
line) and equity (dashed line) implied volatility measures TIV and VIX, respectively. The
measures are calculated using options on the 30 year Treasury bond and the S&P 500 index
futures, respectively, as the square root of the model-free implied variance MIV. The uncon-
ditional correlation between the TIV and the VIX is 46% over the whole sample period and
63% since 1990, the start date of the CBOE VIX. The middle Panel plots the spread between
the VIX and the TIV. The bottom Panel plots the TIV (solid line) together with the Merrill
Option Volatility Estimate (MOVE) index (dashed line). The MOVE index is a yield curve
weighted index of normalized implied volatility on one month Treasury options for 2, 5, 10 and
30 year Treasuries. Shaded areas correspond to recessions as defined by the NBER. Data is
monthly and the sample spans the period from January 1983 to June 2010.
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Chapter 3

Testing Jumps via False Discovery

Rate Control

Abstract: Many recently developed nonparametric jump tests can be viewed as multiple hy-

pothesis testing problems. For such multiple hypothesis tests, it is well known that controlling

type I error often unavoidably makes a large proportion of erroneous rejections, and such sit-

uation becomes even worse when the jump occurrence is a rare event. To obtain more reliable

results, we aim to control the false discovery rate (FDR), an efficient compound error measure

for erroneous rejections in multiple testing problems. We perform the test via a nonparametric

statistic proposed by Barndorff-Nielsen and Shephard (2006), and control the FDR with a

procedure proposed by Benjamini and Hochberg (1995). We provide asymptotic results for the

FDR control. From simulations, we examine relevant theoretical results and demonstrate the

advantages of controlling FDR. The hybrid approach is then applied to empirical analysis on

two benchmark stock indices with high frequency data.

KEYWORDS: False discovery rate, BH procedure, Nonparametric BNS jump test.
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3.1 Introduction

Recently, many hypothesis testing procedures have been proposed for detecting asset price

jumps (Ait-Sahalia and Jacod, 2009; Bollerslev et al., 2008; Barndorff-Nielsen and Shephard,

2006; Fan and Fan, 2008; Jacod and Todorov, 2009; Jiang and Oomen, 2008; Lee and Mykland,

2008). These procedures use high frequency data to calculate test statistics for a certain period

and then use these test statistics to test whether jumps occur in that period. Formally, the

null hypothesis for such test at each period i, i = 1, . . . ,m, can be stated as

H0
i : No jump occurs in period i. (3.1)

In addition to know whether there are price jumps, the ”one test statistic for one period”

approach for testing (3.1) also allows us to extract information about when and how frequently

jumps occur in the whole sampling period. Such information is even more important for

research on event study, derivative pricing and portfolio management.

If the number of periods m is greater than one, the jump test can be naturally viewed

as a multiple hypothesis testing problem. Previous research used different test statistics, but

often followed a similar decision procedure: rejecting the null hypothesis if the corresponding

p-value is less than the controlled type I error α. Nevertheless, controlling type I error often

unavoidably makes a large proportion of erroneous rejections. Such situation becomes even

worse when the jump occurrence is a rare event.

To solve the problem described above, one may look for a more sensible compound error

rate measure. In this paper we focus on false discovery rate (FDR). We will use the test

statistic proposed by Barndorff-Nielsen and Shephard (2006) to obtain a p-value for each single

hypothesis test, and then use the procedure proposed by Benjamini and Hochberg (1995) to

control the FDR when simultaneously carrying out these hypothesis tests.

Several literatures on jump tests also tried to deal with the multiplicity issue. For example,

Lee and Mykland (2008) set the significance level based on the distribution of the extreme value

of the test statistic under the null hypothesis. This ensures that the jump test can achieve the

probability of global misclassification to zero under some regular conditions. Applying FDR

control to identify jump components also has been adopted by Fan and Fan (2008), who used

an improved version of the test statistic proposed by Ait-Sahalia and Jacod (2009) to obtain

a p-value for each single hypothesis test. The main difference between Fan and Fan (2008)

and our paper is that we will give theoretical justifications on performance of the jump test

statistic in a multiple hypothesis testing context. We will also conduct a simulation study to

support our theoretical results.

The paper is organized as follows. In Section 2, we briefly describe the Benjamini-Hochberg

(BH) procedure and the Barndorff-Nielsen-Shephard (BNS) nonparametric test. We then dis-

cuss some asymptotic results in Section 3. We focus on the case when p-values are calculated

based on the asymptotic distributions of the test statistics. We show that with some appropri-
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ate conditions, the FDR can be asymptotically controlled by the BH procedure when p-values

are obtained via the asymptotic distributions. In addition, magnitude of the approximate er-

ror for the asymptotic FDR control is bounded by a non-decreasing function of the expected

number of true null hypotheses. This property indicates that the more the false null hypothe-

ses there are, the better performance the asymptotic FDR control will have. In Section 4,

we conduct a simulation study to show that performance of the BNS-BH hybrid procedure is

positively related to the number of false hypotheses and sampling frequency of data, and is

stable when the number of hypotheses and the required FDR level change. In Section 5, we

apply the proposed procedure to analyze high frequency data of S&P500 in cash index and

Dow Jones industrial average. Section 6 is the conclusion.

3.2 The Methodology

3.2.1 FDR and the BH procedure

For i = 1, 2, . . .m, let H0
i and pi denote the ith null hypothesis and the corresponding p-value,

respectively. Among the m hypotheses, we let m0 be the number of true hypotheses and

m1 = m − m0 be the number of false hypotheses. Table 1 shows different situations when

a multiple testing is performed. The numbers of hypotheses we reject and do not reject are

denoted by R and m − R, respectively. In addition, U, T, V and S denote the numbers of

hypotheses we correctly accept, falsely accept, falsely reject and correctly reject, respectively.

The false discovery rate (FDR) is then defined as the expectation of false discovery proportion

(FDP), i.e.

FDR = E (FDP) ,

where

FDP =

{
0 if R = 0
V
R if R 6= 0.

In testing jump hypotheses, controlling the FDR has several advantages over controlling other

compound error rate. First, if the price processes really have no jump component, i.e. all

the null hypotheses are true, then controlling the FDR will be equivalent to controlling the

familywise error rate Pr (V ≥ 1). Second, if the intensity of the jump process λ 6= 0, then as

time goes on (m increases), the proportion of false hypotheses among all hypotheses will be

a nonzero constant with a high probability. Although such proportion may not be large, one

may still expect the more (fewer) rejections there are, the more (fewer) erroneous rejections

are allowed to occur; or at least the number of rejections should be proportional to m. In this

situation, controlling error measures associated with proportion of erroneous rejections, like

the FDR, makes sense. In addition, compound error rates such as the FWER are sometimes

too stringent to get rejections when the number of hypotheses becomes large. The FDR

criterion is less conservative in this aspect. Also, controlling the FDR currently seems to be
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more acceptable than controlling other compound error rates in many different research fields

(Romano et al., 2008b).

Let p(1) ≤ . . . ≤ p(m) be the ordered pi’s and H0
(1), . . . ,H

0
(m) be the corresponding null

hypotheses. Benjamini and Hochberg (1995) proposed a stepwise procedure to control the

FDR at the required level γ. The BH procedure can be simplified as the following two-step

decision rule:

1. Obtain i∗ = max
i=1,2,...,m

{
i : p(i) ≤ i

mγ
}

.

2. Reject H0
(i) for all i ≤ i∗.

Unlike some computational intensive methods, which often need a resampling scheme to con-

struct the rejection region, the BH procedure is far easier to implement. The only computa-

tional burden of the BH procedure is to rank the p-values. Such advantage becomes even more

obvious when the number of hypotheses goes large.

It can be shown that there is a relationship between type I error α and the FDR. For

example, if we reject H0
i when pi ≤ α, then it will be possible to know what level of the FDR is

controlled. In addition, if hypotheses are identical and the test statistics are all independent,

Storey (2002) proposed the following estimator:

F̂DRκ (α) =
# {pi > κ}α

(1− κ) max (# {pi ≤ α} , 1)
,

to estimate the FDR, where κ is a turning parameter.

How the BH procedure performs relies on dependent structure of test statistics. In Ben-

jamini and Yekutieli (2001), they showed that the BH procedure can still control the FDR

when the test statistics are not independent, if the positive regression dependency (PRDS)

for each test statistic under the true null hypotheses can be satisfied. In addition, simulation

study in Romano et al. (2008b) showed that if the PRDS condition is violated, e.g. there exist

negative common correlations between test statistics or the covariance matrix has an arbitrary

structure, the BH procedure can still provide a satisfactory control of the FDR. Finally, if the

test statistics have an arbitrary dependent structure, it can be shown that the BH procedure

still guarantees that

FDR ≤ γ
m∑
k=1

1

k
≈ γ

(
log (m) +

1

2

)
.

A more detailed discussion on the theoretical properties of the FDR and the BH procedure is

provided in section 3.

3.2.2 The BNS nonparametric jump test

Barndorff-Nielsen and Shephard (2006) proposed a nonparametric test statistic (henceforth

the BNS test statistic), which utilizes realized variance and bi-power variation, to test jump
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components for the Brownian semimartingale plus jump class. A random variable X (i) is said

to belong to the Brownian semimartingale plus jump class if

X (i) =

∫ i

0
µ (t) dt+

∫ i

0
σ (t) dW (t) +

N(i)∑
j=1

D (j) ,

where µ (t) and σ (t) are assumed to be càdlàg, W (t) is a standard Brownian Motion, D (j)

is the quantity of j th jump within (0, i], and N (i) is total number of the jumps occurring

within (0, i]. Here N (i)−N (i− 1) is assumed to be finite.

The realized variance and the realized bi-power variation in period i are defined as

RVi =
M∑
h=1

r2
i,h, (3.2)

BVi =
π

2

(
M

M − 1

)M−1∑
h=1

|ri,h| |ri,h+1| , (3.3)

respectively, where

ri,h := logP

(
i− 1 +

h

M

)
− logP

(
i− 1 +

h− 1

M

)
is the intra-period log return in sub-interval h of period i, and P (i− 1 + h/M) is the asset

price at time point i−1+h/M . Assume that for t ∈ (i− 1, i] , logP (t) belongs to the Brownian

semimartingale plus jump class. Then it can be shown that under some regular conditions,

RVi
P.→
∫ i

i−1
σ2 (t) dt+

N(i)∑
j=N(i−1)+1,

D2 (j) ,

BVi
P.→
∫ i

i−1
σ2 (t) dt

as M → ∞. Here BVi
P.→
∫ i
i−1 σ

2 (t) dt can hold without any further assumption on the jump

process, the joint distribution of the jump process and σ (t).

Barndorff-Nielsen and Shephard (2006) showed that

JVi = RVi −BVi

can consistently estimate
∑N(i)

j=N(i−1)+1D
2 (j). In addition, if some regular conditions hold,

the joint distribution of (3.2) and (3.3) will converge asymptotically to a bivariate normal
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distribution. Moreover, under the null hypothesis, when no jump presents on period i,

√
M (RVi −BVi)√
A
∫ i
i−1 σ

4 (t) dt

L.→ N (0, 1) ,

where A = (π/2)2 + π − 5. To estimate integrated quarticity
∫ i
i−1 σ

4 (t) dt, we can use the

realized tri-power quarticity

TPi = µ−3
4
3

(
M2

M − 2

)M−2∑
h=1

(|ri,h| |ri,h+1| |ri,h+2|)
4
3 ,

where µa = E (|Z|a) and Z ∼ N (0, 1).

In the following analysis, we will also use some improved versions of the BNS statistic. The

first one is proposed by Barndorff-Nielsen and Shephard (2006) themselves, which uses the log

transformation and is defined as

Zlog,i =

√
M (log (RVi)− log (BVi))√

Amax (1, B)
,

where

B =

∫ i
i−1 σ

4 (t) dt(∫ i
i−1 σ

2 (t) dt
)2 .

The second one is the Box-Cox transformed test statistic with ρ = −1.5, which is defined

as

Z−1.5,i =

√
M
(∫ i

i−1 σ
2 (t) dt

)3 (
BV −1.5

i −RV −1.5
i

)
1.5
√
Amax (1, B)

.

Here the Box-Cox transformation for a positive number x is defined as

gρ (x) =

{
xρ−1
ρ if ρ 6= 0

log (x) if ρ = 0.

The third one is the ratio type test statistic (Huang and Tauchen, 2005):

Zratio,i =

√
M RVi−BVi

RVi√
Amax (1, B)

.

Under the null hypothesis that there is no jump occurring in period i, the test statistics Z−1.5,i,

Zlog,i and Zratio,i will have the standard normal distribution as the limiting joint distribution.

When jumps occur in period i, the test statistics will approach to infinity as M →∞. It can

also be shown that given jump variation and the integrated quarticity, as M →∞, the limiting

joint distribution of the test statistic for each hypothesis is a mixed distribution (Veraart,
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2010).

3.3 Asymptotically controlling FDR with the BH procedure

3.3.1 Asymptotic results

Let {Xi = (Xi,1 . . . Xi,M ) : i ∈ N} be a vector of samples defined on a probability space (Ω,F ,P) .

Let {FM,i : i ∈ N} be the smallest sub-σ field of F such that for j = 1, . . .M, Xi,j is FM,i

measurable. Let Fi = limM→∞FM,i. A test statistics for testing marginal hypothesis i with M

samples is a function T̂M,i : Xi 7−→ R, and T̂M,i is FM,i measurable. Let T̂M=
(
T̂M,1, . . . , T̂M,m

)
denote the vector of the test statistics for testing m (m ≥ 1) hypotheses. Given each Fi, sup-

pose that there exists a vector of random variables T = (T1, . . . , Tm) such that for i = 1, . . .m,

Ti is Fi measurable. Also assume T̂M,i
L.→Ti for each i as M →∞. Let Ψi be the limiting distri-

bution function of the test statistic under the null hypothesis i. For one-sided test, p-value of

the i th one-sided hypothesis is defined by pi (x) = 1−Ψi (x) (pi (x) = 1−2Ψi (x) for two-sided

hypothesis). Let pi = 1 − Ψi (Ti) . A feasible estimated p-value for hypothesis i is then given

by

p̂M,i = pi

(
T̂M,i

)
= 1−Ψi

(
T̂M,i

)
.

In our case of testing jumps, since our null hypotheses are homogeneous, Ψi is the c.d.f. of

N (0, 1) for all i.

Let I0 =
{
i : H0

i is true
}

and I1 =
{
i : H0

i is false
}
. Let ΨM,i be the exact distribution

of T̂M,i under the null hypothesis i. The p- value under such distribution for hypothesis i is

pM,i = 1−ΨM,i

(
T̂M,i

)
. For a ∈ (0, 1) , as M →∞, Pr (p̂M,i ≤ a)→ Pr (pi ≤ a) , if T̂M,i

L.→Ti.
If T1, . . . , Tm are continuous random variables, then

Pr (pi ≤ a) = a,

for i ∈ I0. If T̂M,1, . . . , T̂M,m are also continuous random variables, then Pr (pM,i ≤ a) = a for

i ∈ I0.

Before we proceed to discuss our main results, we need the following two definitions. Let

B denote the Borel set. Let (Rm,Bm) =
∏m
i=1 (R,B) define the m−fold products of the real

line R with the Borel sets B. Let

Im = {{i1, . . . im} :ik ∈ {1, . . .m} for k = 1, . . .m, ik 6= il for k 6= l} .

Let Qm be a probability measure on (Rm,Bm) where m ∈ Im.

Definition 4 A collection of {Qm}m∈Im is consistent if it satisfies

• Let m = {i1, . . . , im} , and m′ = {ik1 , . . . ikm}∈ Im but m′ 6= m. Then for each Bi ∈ B,

111



i = 1, . . .m,

Qm (B1 × . . .×Bm) = Qm′ (Bk1 × . . .×Bkm)

• For each Bi ∈ B, i = 1, . . .m,

Qm (B1 × . . . Bk−1 × R×Bk+1 . . .×Bm) = Qm/ik (B1 × . . . Bk−1 ×Bk+1 . . .×Bm) .

Definition 5 Let Y = (Y1, . . . , Yl), X = (X1, . . . , Xm), and I0 be a collection of index i ∈
{1, . . . ,m}. For any decreasing set Θ and increasing set Λ, an l−dimensional random vec-

tor Y is said to be positive regression dependency on each one from a subset (PRDS) I0

of a m−dimensional random vector X is that Pr (Y ∈ Θ|Xi = x) is non-increasing in x or

Pr (Y ∈ Λ|Xi = x) is non-decreasing in x for any i ∈ I0.

In the above definition, a decreasing set Θ is that X = (X1, . . . , Xm)∈ Θ implies Z = (Z1, . . . , Zm)∈ Θ

if Zi ≤ Xi for any i = 1, . . . ,m. An increasing set Λ is that Y = (Y1, . . . , Yl)∈ Λ implies

Z′= (Z ′1, . . . , Z
′
l)∈ Λ if Z ′i ≥ Yi for any i = 1, . . . , l.

Let p = (p1, . . . , pm) and p̂M= (p̂M,1, . . . , p̂M,m) . Suppose we want to control FDR at the

level γ with the BH procedure with p. FDR conditional on m0 true null hypotheses is given

by

E
(
V

R
| m̃0 = m0

)
=

m1∑
s=0

m0∑
v=1

v

v + s
Pr
(
p ∈ Dv,s

m0

)
. (3.4)

Dv,s
m0 is a well constructed union of m−dimensional cubes such that

{
p ∈ Dv,s

m0

}
is the event

that v true and s false null hypotheses are rejected when the BH procedure is implemented

with p. Benjamini and Yekutieli (2001) and Sarkar (2002) showed that if the joint distribution

of pi is PRDS on I0, then E (V/R | m̃0 = m0) ≤ m0γ/m. Since m̃0 is bounded by m, we can

get

E
(
V

R

)
≤ γE (m̃0)

m
≤ γ.

If p̂M is used, the analogue of (3.4) is then given by

Ep̂M

(
V

R
| m̃0 = m0

)
=

m1∑
s=0

m0∑
v=1

v

v + s
Pr
(
p̂M∈ Dv,s

m0

)
,

where
{
p̂M∈ Dv,s

m0

}
is the event that v true and s false hypotheses are rejected when the BH

procedure is implemented with p̂M .

Ideally, if we know ΨM,i, and the joint distribution of pM,i is PRDS on I0, we can implement

the BH procedure directly with pM,1, . . . , pM,m. However, such information is often unknown,

and instead only p̂M is feasible. In the following, we show that under appropriate conditions,

FDR can be asymptotically controlled with p̂M under a desired level. Our strategy is to show

that under appropriate conditions, Pr
(
p̂M∈ Dv,s

m0

)
→ Pr

(
p ∈ Dv,s

m0

)
as M → ∞ and then to
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prove

Ep̂M

(
V

R
| m̃0 = m0

)
→ E

(
V

R
| m̃0 = m0

)
.

as M →∞. Therefore implementing the BH procedure with p̂M is asymptotically equivalent

to implementing the procedure with p.

The main results are the following two theorems, and their proofs are given in the supple-

mentary materials.

Theorem 3 Suppose we have m hypotheses to be tested simultaneously. If the following con-

ditions hold,

1. The joint distribution of pi and the joint distribution of p̂M,i satisfy the consistency for

multivariate distribution.

2. The joint distribution of pi is PRDS on pi for i ∈ I0 and all m ≥ 1.

3. Pr (pi ≤ a) ≤ a for i ∈ I0 and a ∈ (0, 1) .

4. sup1≤k≤m supi∈I0 |Pr (pi ≤ qk)− Pr (p̂M,i ≤ qk)| = O
(
1/M δ

)
, where qk = kγ/m and δ >

0.

5. Given m0 true null hypotheses, let p(−i) and p̂
(−i)
M denote the random m− 1 dimensional

vectors obtained by eliminating pi and p̂M,i from the m−dimensional random vectors p

and p̂M respectively. Let p
(−i)
(1) ≤ · · · ≤ p

(−i)
(m−1) and p̂

(−i)
M,(1) ≤ · · · ≤ p̂

(−i)
M,(m−1) denote the

ordered components of p(−i) and p̂
(−i)
M respectively. For every m ≥ 1,

sup
1≤k≤m

sup
i∈I0

∣∣∣∣∣∣m
 Pr

(
p̂M,i ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

)
−Pr

(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) ∣∣∣∣∣∣ = o (1) , (3.5)

then the BH procedure implemented with the estimated p-values p̂M asymptotically control

FDR at the required level γ in the sense that

lim
M⇀∞

Ep̂M

(
V

R

)
= E

(
V

R

)
≤ γ.

Theorem 4 Suppose we have m hypotheses to be tested simultaneously. If conditions 1 and 4

in Theorem 1 and the following conditions hold,

1. Pr (p̂M,i ≤ a) ≤ a for i ∈ I0 and a ∈ (0, 1)

2. T1, . . . , Tm are mutually independent and continuous random variables.

3. T̂M,1, . . . , T̂M,m are mutually independent,
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then the BH procedure implemented with the estimated p-values p̂M asymptotically control

FDR at the required level γ in the sense that

lim
M⇀∞

Ep̂M

(
V

R

)
= E

(
V

R

)
≤ γ.

3.3.2 Discussions on the asymptotical results

The two theorems say that under some regular conditions, we can asymptotically control FDR.

The results still hold even we let the number of hypotheses m→∞. A key condition making

the two theorems different is the requirement on dependent structure of elements in vector

p and p̂M . If dependent structure of pi satisfies PRDS on I0, it ensures that E (V/R) ≤ γ.

Here we only require the PRDS should hold on I0, and the dependent structure of pi on I1

can be arbitrary. Marginal distributions of pi and p̂M,i converging with the rate O
(
1/M δ

)
simultaneously for all i is also needed for the consistent control. In addition, we also require

the convergence of the joint distribution of the ordered p-values. But as stated in Theorem 2,

such condition can be ignored if other conditions hold.

The approximation error ε =
∣∣Ep̂M (V/R)− E (V/R)

∣∣ essentially vanishes to zero when

M ⇀ ∞. Magnitude of ε, as shown in our proof, is bounded by a non-decreasing function of

E (m̃0). This property indicates that the more the false null, the better the convergence.

We then have a look of condition 1 in Theorem 1. This is a sufficient condition to en-

sure that Pr (p ∈ Dv,s) ( and Pr (p̂M∈ Dv,s)) exists as m → ∞. It is due to Kolmogorov’s

extension theorem (Karatzas and Shreve, 1991, pg. 50): an extension of any consistent family

of probability measures on (Rm,Bm) to a probability measures on (R∞,B∞) =
∏∞
i=1 (R,B)

necessarily exists and is unique. Conversely, if we have a probability measure on (R∞,B∞) ,

we can induce a family of finite-dimensional distributions on (Rm,Bm), and these induced

finite-dimensional distributions all satisfy consistency for multivariate distribution.

Condition 2 in Theorem 1 requires that the joint distribution of the p- values should satisfy

PRDS on the subset I0. It is a sufficient condition for E (V/R) ≤ γ when we implement the

BH procedure with p. Since our purpose is to control FDR with p̂M , if we can guarantee that

limM⇀∞ Ep̂M (V/R) = E (V/R), only the distribution of p satisfying the condition is needed.

For practically using the BH procedure, Benjamini and Yekutieli (2001) listed many situations

when the condition holds. For example, if T ∼N (µ,Σ) , where µ = (µ1, . . . , µm) and Σ is a

m ×m covariance matrix with element σij . Suppose for each i ∈ I0, and each j 6= i, σij ≥ 0,

then the distribution of T is PRDS on I0, regardless what the covariance structure of i ∈ I1 is.

Mutual independence of T1, . . . , Tm can be easily seen as a special case of PRDS on I0. As for

the nonparametric jump test in this paper, since the limiting distribution of the test statistics

is a multivariate normal with σij = 0 for each i ∈ I0 and each j 6= i, it implies PRDS on I0.

The condition that Pr (pi ≤ a) ≤ a for a ∈ (0, 1) is called the distribution of pi is stochas-

tically dominated by the Uniform(0, 1). If limM→∞ Pr (p̂M,i ≤ a) ≤ a, it is called that the

distribution of p̂M,i is stochastically dominated by the Uniform(0, 1) distribution asymptot-
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ically. In order to control FDR with the BH method asymptotically, we at least need that

Pr (pi ≤ a) ≤ a for a ∈ (0, 1) and i ∈ I0. The condition is more liberal than that pi has the

exact Uniform(0, 1) distribution for i ∈ I0, and applies to the case when the test statistics are

discrete random variables.

As shown in the proof of Theorem 1,∣∣∣∣Ep̂M

(
V

R
| m̃0 = m0

)
− E

(
V

R
| m̃0 = m0

)∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈I0

m∑
k=1

1

k

 Pr
(
p̂M,i ≤ qk, p̂

(−i)
M,(k−1) ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
(m−1) > qm

)
−Pr

(
pi ≤ qk, p

(−i)
(k−1) ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) ∣∣∣∣∣∣ (3.6)

≤

∣∣∣∣∣∣
∑
i∈I0

m−1∑
k=1

1

k (k + 1)

 Pr
(
p̂M,i ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

)
−

Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) ∣∣∣∣∣∣ (3.7)

+

∣∣∣∣∣∣
∑
i∈I0

1

m
(Pr (p̂M,i ≤ qm)− Pr (pi ≤ qm))

∣∣∣∣∣∣ . (3.8)

In the first equality, Pr
(
pi ≤ qk, p

(−i)
(k−1) ≤ qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)
is the probability

that in addition to rejecting the hypothesis i, we also reject other k−1 hypotheses. If m0 = m,

Sarkar (1998) showed that

∑
i∈I0

m∑
k=1

1

k
Pr
(
pi ≤ qk, p

(−i)
(k−1) ≤ qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)
= 1− Pr

(
p̂M,(1) > q1, . . . , p̂M,(m) > qm

)
.

Therefore if m0 = m, (3.6) becomes

∣∣(1− Pr
(
p̂M,(1) > q1, . . . , p̂M,(m) > qm

))
−
(
1− Pr

(
p(1) > q1, . . . , p(m) > qm

))∣∣ . (3.9)

(3.9) is the difference between the probability that we at least have one false rejection (or the

familywise error rate, FWER), when the BH procedure is implemented with p and p̂M . The

result is not surprising since when all null hypotheses are true, FDR=FWER.

To make (3.7) vanish as M →∞, (3.5) in condition 5 of Theorem 1 is one of the sufficient

conditions. However, as shown in Theorem 2, such condition is redundant when test statistics

are independent and continuous.

We finally have a look of the assumption:

sup
1≤k≤m

sup
i∈I0
|Pr (pi ≤ qk)− Pr (p̂M,i ≤ qk)| = O

(
1

M δ

)
. (3.10)

The assumption says that the convergence in law should hold simultaneously at the points qk

for 1 ≤ k ≤ m, and for all i ∈ I0. Such convergence is reasonable for test statistics with limiting
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normal distribution if we set δ = s/2, s = 1, 2, . . .. Note that if Ti and T̂M,i are continuous,

Pr (pi ≤ qk)− Pr (p̂M,i ≤ qk)

= Pr
(
T̂M,i ≤ Ψ−1

i (1− qk)
)
− Pr

(
Ti ≤ Ψ−1

i (1− qk)
)
.

If T̂M,i and Ti are asymptotically normal, and satisfy T̂M,i = Ti + Op

(
1/M

s
2

)
for an integer

s ≥ 1, then by theory of Edgeworth expansion of the distributions of T̂M,i and Ti (Hall, 1992,

pg.76 ),

Pr
(
T̂M,i ≤ a

)
= Pr (Ti ≤ a) +O

(
1

M
s
2

)
.

So Pr (p̂M,i ≤ 1−Ψi (a)) can converge to Pr (pi ≤ 1−Ψi (a)) with the rate of O
(

1/M
s
2

)
.

In our nonparametric jump test, standard normal is used to approximate Pr
(
T̂M,i ≤ a

)
under the null. There are several methods to improve the approximation, for example, the

bootstrap approximation and the Box-Cox transformation. Some theoretical results about

how the methods perform have been established. Goncalves and Meddahi (2009) showed that

when no jump presents, distribution of the test statistic for standardised realized volatility can

be approximated by N (0, 1) with the rate of convergence O
(

1/
√
M
)

. They also documented

that under some situations, the bootstrap approximation is better than the standard normal

approximation, and the error rate can be reduced to op

(
1/
√
M
)

. For the Box-Cox transfor-

mation, Goncalves and Meddahi (2011) showed that without jump component, the skewness

of the test statistic for realized volatility can be efficiently reduced via optimally choosing the

parameter for the Box-Cox transformation.

In practice, the number of samples M within a hypothesis, may be less than the number

of hypotheses m. How such the large m, small M (or in statisticians’ view: Large p (number

of dimensions), small n (number of samples)) situation affects statistical inferences has been

intensively studied recently, especially in simultaneously convergence of the test statistics. For

example, when the samples are iid, sufficient conditions for p̂M,i
P.→ pi uniformly for all i

already was provided by Kosorok and Ma (2007). Clarke and Hall (2009) documented that

the difficulties caused by dependence of test statistics can be alleviated when m grows, but

the result subjects to that distributions of test statistics should have light tails such as normal

or Student’s t. Fan et al. (2007) proved that if normal or Student’s t distribution is used to

approximate the exact null distribution, the rejection area is accurate when logm = o(M
1
3 );

but if the bootstrap methods are applied, then logm = o(
√
M) is sufficient to guarantee the

asymptotic-level accuracy.

In practice, high frequency returns might not be iid distributed. Instead of assuming that

samples have certain distributional properties, here we assume that (3.10) need to hold. How-

ever, by jointly restricting growth rates of M and m, and together with other mild conditions,

(3.10) also can be achieved. It can be seen in the following proposition.
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Proposition 5 For all i ∈ I0 and every a, if there exists some constant M0 > 0 such that

for M ≥ M0, Pr
(

maxi∈I0

∣∣∣M δ
(
Ti − T̂M,i

)∣∣∣ > a
)
≤ c1 exp (−c2a

p), where c1 and c2 are

two constants and δ > 0, and p ≥ 1. Also (log (m))
1
p /M δ = o (1) as M → ∞ hold, then

sup1≤k≤m supi∈I0 |Pr (p̂M,i ≤ qk)− Pr (pi ≤ qk)| = o(1).

3.4 Simulation study

3.4.1 The model

For the simulation study, we consider the following stochastic volatility with a jump component

(SVJ) model:

d logP (t) =

(
µ− 1

2
σ2 (t)

)
dt+ σ (t) dW1 (t) + dJ (t) ,

dσ2 (t) = a
(
b− σ2 (t)

)
dt+ ωσ (t) dW2 (t) ,

J (t) =

N(t)∑
j=1

D (t, j) , D (t, j)
iid∼ N (0, 1) ,

N (t)
iid∼ Poisson (λdt) ,

where dW1 (t) and dW2 (t) follow the standard Brownian motion, and σ2 (t) follows the CIR

process. J (t) follows a Compound Poisson Process (CPP) with a constant intensity λdt, and

N (t) is the number of jumps occurring within the small interval (t−4t, t]. The leverage effect

is not allowed in this model, and the correlation between dW1 (t) and dW2 (t) is set to zero.

We use the following parameter values for the simulation:

µ = 0.05, a = 0.015, b = 0.2, and ω = 0.05.

In the simulation, the unit of a period is one day. We vary the (daily) jump intensity λ at five

different levels: 0, 0.02, 0.05, 0.1, 0.15, and 0.2. Here λ is essentially the expected number of

jumps occurring per day. Different values of λ tend to have different numbers of jump days

over the whole sampling period, therefore result in different numbers of false null hypotheses.

This allows us to see how such differences affect outcomes of the method.

We mimic the US stock market and generate 1-min intradaily log prices over 6.5 hours each

day. Thus in our simulation, M = 6.5×60 = 390, dt ≈ 4t = 1
M , and λdt ≈ λ

M . After obtaining

a sample path, the jump test statistics Z−1.5,i, Zlog,i and Zratio,i and their corresponding p-

values are calculated. We test hypothesis (3.1) with the test statistics and control the FDR at

the level γ with the BH procedure.
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3.4.2 Simulation results

We first focus on the case when the FDR control level γ = 0.05 and the number of null

hypotheses m = 1000. Figure 3.1 to Figure 3.5 show the plots of average values of relevant

quantities from 1000 simulation runs. Figure 3.1 is for performances of the three different test

statistics when FDR is controlled with the BH procedure. In the top left panel, ability to

satisfy the required FDR level is shown. The solid horizontal line is at the level γ = 0.05.

It can be seen that the realized FDR of Z−1.5,i is almost around or under the required level,

while Zlog,i has the largest realized FDR for all different values of λ. Overall, as λ increases,

no matter which test statistic we use, the desired level can be achieved.

Let Ŝ denote the realized number of correct rejections. We use Ŝ/m1 to measure the ability

of the test statistics to correctly reject the false hypotheses. As shown in the top right panel of

Figure 3.1, the three test statistics have small differences in Ŝ/m1. In addition, Ŝ/m1 increases

slightly as λ increases.

As can be seen in the bottom left panel of Figure 3.1, the significance level î∗γ/m obtained

from the BH procedure increases as λ increases. As λ goes up, the number of false hypotheses

m1 tends to increase, and we have less possibility that the test statistic will signal a true null

as a false one. Consequently, we do not need a more stringent î∗γ/m to prevent the false

rejections, and more rejections can be obtained.

The average number of rejections Ŝ made by the BH procedure is constantly less than the

average value of m1, as shown in the bottom right panel of Figure 3.1. It might be due to that

γ = 0.05 is too restricted to obtain more rejections. A remedy is that we can use a more liberal

level (γ = 0.1 or 0.15), but tolerate more false rejections. One thing worth to note here is that

the average values of m1/m would in general be less than their corresponding λ, since there

may be more than one jump on a day, and this becomes even more obvious when λ becomes

large.

We then compare performances of the BH procedure with the conventional procedure of

controlling type I error in each hypothesis: H0
i is rejected if its realized p-value is no greater

than α. Here α we specify are two frequently used levels: 0.01 and 0.05. Relevant results are

shown in Figure 3.2. As can be seen in the first row, when different test statistics are used,

the conventional procedure results in high realized FDR, especially when the jump intensity

λ is small (the number of the false null hypotheses tends to be relatively low). An extremely

case is that when there is no jump (λ = 0), rejecting H0
i when p̂i ≤ 0.01 (or 0.05) results in

100% false rejections. It says that the probability we at least make one false rejection (the

familywise error rate) is one as we follow the conventional procedure. The reason is that when

all the null are true and the test statistics for each hypothesis are almost serially independent,

if we reject H0
i when p̂i,M ≤ α, on average we would reject mα hypotheses, and all of these

rejections are wrong. However, the BH procedure performs far better in this situation. Even

in the worst case, on average it only takes about probability 0.276 to make such an error.

Since the specified α′s are on average greater than î∗γ/m, it is expected that more rejections
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can be obtained under the conventional procedure than the BH procedure. This can be seen

in the second row of Figure 3.2. Ŝ/m1 of the conventional procedure tends to be better than

that of the BH procedure, but as λ goes up, their gap becomes small.

Figure 3.3 shows performances of the method when lower frequency (5-min, 10-min and

15-min) data is used. Z−1.5,i still has the best ability to satisfy the required FDR levels, but it

suffers the greatest loss of Ŝ/m1 when the data frequency goes lower. Zlog,i does not perform

better than the case when 1-min data is used, no matter in satisfying the required FDR level

or Ŝ/m1. For Zratio,i, its performance still is in the middle, but overall its performance is more

stable than the other two competitors.

We then look at how the method performs when the number of hypotheses changes. We

vary m at several different levels, ranging from 50 to 2000 and keep γ = 0.05. The results are

shown in Figure 3.4. It can be seen that when λ 6= 0 and m is large (no less than 100), the

realized FDR and Ŝ/m1 are stable over different m.

How does the method perform when FDR is controlled at different required levels? Figure

3.5 shows different required levels γ and the realized FDR. The thick line is a 45-degree line,

and the vertical dotted line is for γ = 1/2. Ideally the realized FDR needs to be equal or below

the 45-degree line. For λ = 0.05 and 0.15, the method performs well, especially when γ goes

large. However, when λ = 0, there is a significant difference between the three test statistics,

and the required FDR level becomes difficult to achieve in this situation.

The above results suggest that performances of the hybrid method are positively related to

M and λ. Although the BH procedure results in quite stringent rejection criteria, it still can

keep Ŝ/m1 at a satisfying level. Fixing rejection region at α = 0.01 and 0.05 indeed can have

better Ŝ/m1, but it can suffer far higher false rejections when the number of true null is large.

In sum, the simulations show that combining the BNS test with the BH procedure, FDR can

be well controlled and the test statistics can also keep substantial ability to correctly identify

jump components.

3.5 Real data applications

3.5.1 Summary statistics

The raw data used for the empirical application is the 1-min recorded prices of S&P500 in cash

(SPC500) and Dow Jones Industrial Average (DJIA), spanning from January 2003 to December

2007. In order to reduce estimation errors caused by microeconomic structure noise, we use 5-

min log returns to estimate RVi, BVi and JVi and the jump test statistics. Some descriptions

of the data and discussions on the microstructure issue can be found in the supplementary

materials.

Table 2 shows summary statistics of the price variations, different types of T̂i,M , their

corresponding p̂i,M and mutual correlations of these quantities of the two indices. Results

of the Ljung-Box test (denote by LB.10) indicate that the price variations are highly serially
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correlated. However, for T̂i,M and p̂i,M , the Ljung-Box test instead suggests that they exhibit

almost no serial correlation, and the property allows us to use the BH procedure to control the

FDR.

The daily test statistics of the two indices have high mutual correlations. This property is

quite different from that between individual stocks and the market index. As shown in Boller-

slev et al. (2008), the jump test statistics of individual stocks and the market index almost have

no mutual correlation, even though their returns are highly correlated. Such low correlation

is due to a large amount of idiosyncratic noise in the individual stock returns, which causes a

low signal-to-noise ratio in the nonparametric test (the high mutual correlation between the

two benchmark indices implies that the idiosyncratic noise of returns is not significant). It

suggests that we can have more reliable results when we perform the jump test at the market

level.

3.5.2 Common jump days

To measure daily price variation induced by jumps, we use sum of squared intradaily jumps,

which can be estimated by the following estimator:

JVi,γ = JVi × 1

{
p̂i,M ≤

î∗

m
γ

}
, (3.11)

where JVi = RVi−BVi. Table 3 shows summary statistics of JVi,γ when FDR is controlled at

level γ = 0.01 and 0.05. The mean and standard deviation of (3.11) shown here are conditional

on p̂i,M ≤ î∗γ/m. The conditional mean is around 0.14 to 0.22 for SPC500 and 0.13 to 0.16

for DJIA. For SPC500 and DJIA, the significant levels î∗γ/m for the three statistics are all

below 0.006 when the FDR control level γ = 0.05. Depending on different test statistics, the

proportion of identified jump days among all days, is around 1.5% to 11.6% for SP500 and

around 2.4% to 8.6% for DJIA.

Common components in two highly correlated asset prices are often one of the most widely

studied issues in empirical finance. Here we document some relevant empirical findings. Figure

3.6 shows the time series plots of the identified JVi,γ on the common jump days, and Table 4

shows their summary statistics. The term common jump days used here only means that the

two indices both have jumps on these days. It does not necessarily mean that the two indices

jump exactly at the same time within these days. Since the daily BNS test statistic is obtained

by integrated quantities over one day, it cannot tell us how many and what exact time the

jumps occur within that day. Nevertheless such test at least let us know what common days

they have jumps, and this information is still valuable for further research.

Two different approaches are implemented to identify common jump days. The first ap-

proach identifies the jump days of the two indices separately under the same FDR control

level, and then find common days among these identified days. Therefore in general we get

two different significant levels for the two indices. However, since we take all of the rejections
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from the two indices together, the separate method cannot guarantee that they satisfy the

same FDR level when they are pooled together. Thus the second approach is to pool all the

nulls together, and perform the BH procedure to obtain a unified significant level.

It can be seen that the results from the two methods are very similar. When the FDR

control level γ = 0.05, the proportion of common jump days among all jump days is around

41% for SPC500. In addition, this proportion varies from 31% to 51% for DJIA, depending

on different test statistics. Comparing magnitudes of the variations in Table 4 with those in

Table 3, the two indices tend to have larger jumps on these common days. The result seems

to imply that a common shock such as announcements of macroeconomic news, may induce a

larger jump than that induced from the shock of the news of individual stocks.

3.5.3 Jump intensity estimation

Jump intensity of an asset price process is a very crucial parameter for evaluating risks of the

asset. As shown in Tu and Zhou (2011) and Andersen et al. (2007b), the jump intensity seems

to change over time, which implies that clustering of jump variations is time varying. The

time varying jump intensity also demonstrates very different dynamic behavior across different

assets. In the previous literatures, the time varying jump intensity is estimated via moving

average of the number of identified jump days, but the threshold for identifying these jump

days is a fixed type I error. Here, rather than controlling the fixed type I error over the whole

sampling period, we try to incorporate the FDR control into the rolling window estimation.

The simple moving average (rolling window) intensity estimator for the kth day is defined

as

λ̂movk =
1

K

k∑
i=k−K+1

1 {p̂i,M ≤ θ} ,

where θ is a threshold, and K is length of the rolling window. The estimator can serve as

a local approximation for the true intensity of the jump process, if we assume that number

of jumps occurring at most once per day. In the following analysis, we set K = 120, and

θ is chosen based on two different ways: The first one is the FDR criterion using the whole

m = 1247 hypotheses, and the second one is the FDR criterion using the K hypotheses within

that window.

While the first method always has θ fixed, the later method leads to an adaptive FDR

criterion which may change over time, since including new p̂i,M sometimes makes a different

FDR criterion. As shown in our simulations, a lower value of γ causes an underestimation

on the number of jump days, we therefore set a higher γ = 0.15. Time series plots for the

estimations with the three different jump test statistics are illustrated in Figure 3.7. In the

left panel are plots for SPC500 and the right panel are plots for DJIA. It can be seen that with

Z−1.5,i, λ̂
mov
k tends to be constantly lower than with the other two test statistics. When θ is

chosen adaptively over the whole sampling period, λ̂movk is more volatile; and it tends to be

higher (lower) when more (less) jump days are identified. This phenomenon holds no matter
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which test statistic is used. On the other hand, with fixed θ, λ̂movk is less sensitive to inform such

large price movements. Finally, one should note that adaptively choosing θ is only meaningful

if the control procedure can lead to different choices of θ as different information appended,

which is possible for the BH procedure but can never be achieved via the conventional type I

error control.

3.6 Conclusion

In this paper, we have tested whether a stochastic process has jump components by the BNS

nonparametric statistics, and controlled FDR of the multiple testing with the BH procedure.

Theoretical and simulation results are presented to support validity of the hybrid method.

Under appropriate conditions, FDR can be asymptotically controlled if the p-values are ob-

tained via the asymptotical distributions. The simulation results show that the transformed

BNS test statistics can perform well in satisfying the required FDR level with the BH proce-

dure. Their ability to correctly reject false hypotheses is also improved as the frequency of

jumps increases. By controlling FDR, we can have a large chance to avoid any wrong rejection

even when the stochastic process does not have any jump component. Overall, our simulation

results suggest that performance of the method is positively related to jump intensity and

sampling frequency, and is stable over different numbers of hypotheses and the required FDR

levels.

As for the empirical results, we find the daily nonparametric test statistics and their cor-

responding p-values almost have no serial correlation, either for SPC500 or for DJIA. But the

test statistics between the two indices are highly mutually dependent. The two indices tend to

have larger jumps on the common jump days. We also demonstrate different properties of jump

intensity estimations from fixed and adaptive threshold methods. Jump intensity estimated

from adaptive threshold method is more sensitive to inform large price movements.
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Table 3.1: Number of hypotheses and rejections when a multiple testing is performed

Test statistic is Test statistic is
not significant significant Total number

True null U V m0

hypotheses

Non-true null T S m1

hypotheses

Total number m−R R m

Table 3.2: The table shows summary statistics of the price variations, different types of T̂i,M ,
their corresponding p̂i,M and mutual correlations of these quantities of SPC500 and DJIA. The
column LB.10 shows p-values of the Ljung-Box statistic based on autocorrelation coefficients
with 10 lagged values. The quantities of price variations shown are all scaled by 10000.

SPC500 DJIA
LB.10 LB.10

Mean Std. p-value Mean Std. p-value Corr.

RVi 0.4842 0.4817 0.0000 0.4793 0.4505 0.0000 0.9580
BVi 0.4314 0.4348 0.0000 0.4298 0.4013 0.0000 0.9713
JVi 0.0368 0.0830 0.0000 0.0326 0.0800 0.0000 0.5311

ρ = −1.5

T̂i,M 0.7782 1.0842 0.5096 0.7034 1.1005 0.4902 0.6925
p̂i,M 0.3024 0.2674 0.8873 0.3222 0.2755 0.6606 0.6767

Log Type

T̂i,M 0.9390 1.2945 0.3319 0.8568 1.3026 0.4456 0.6814
p̂i,M 0.2916 0.2697 0.8765 0.3113 0.2777 0.6594 0.6741

Ratio Type

T̂i,M 0.8274 1.1427 0.4499 0.7504 1.1564 0.4772 0.6901
p̂i,M 0.2987 0.2683 0.8837 0.3184 0.2764 0.6598 0.6760
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Table 3.3: The table shows summary statistics of significant daily discontinuous quadratic
variation JVi,γ (sum of squared intradaily jumps) of SPC500 and DJIA. FDR is controlled at
level 0.01 and 0.05. The quantities of price variations shown are all scaled by 10000.

SPC500, m = 1247
γ = 0.01 γ = 0.05

ρ = −1.5 Log Type Ratio Type ρ = −1.5 Log Type Ratio Type
î∗

mγ 2.41e-05 0.0004 8.82e-05 0.0008 0.0058 0.0023
No. of days 3 55 11 19 144 58
Mean 0.1464 0.1816 0.2232 0.2163 0.1376 0.1744
Std. 0.0727 0.1885 0.2863 0.2311 0.1492 0.1861

DJIA, m = 1247
γ = 0.01 γ = 0.05

ρ = −1.5 Log Type Ratio Type ρ = −1.5 Log Type Ratio Type
î∗

mγ 4.01e-05 0.0004 0.0002 0.0012 0.0044 0.0020
No. of days 5 52 22 30 107 51
Mean 0.1458 0.1649 0.1642 0.1662 0.1324 0.1634
Std. 0.0501 0.1198 0.0896 0.1088 0.1053 0.1205

Table 3.4: The table shows summary statistics of significant daily discontinuous quadratic
variation JVi,γ (sum of squared intradaily jumps) of SPC500 and DJIA on the common jump
days by adopting separate and pool methods. The term common jump days used here only
means that the two indices both have jumps on these days. The mean and standard deviation
of JVi,γ are calculated conditional on p̂i,M ≤ î∗γ/m. The quantities of price variations shown
are all scaled by 10000.

Separate
γ = 0.01 γ = 0.05

ρ = −1.5 Log Type Ratio Type ρ = −1.5 Log Type Ratio Type
No.of common days 1 22 6 8 55 22
Mean, SPC500 0.2304 0.2289 0.3115 0.2769 0.1690 0.2289
Std., SPC500 N.A. 0.2234 0.3759 0.3244 0.1836 0.2234
Mean, DJIA 0.2101 0.2067 0.2060 0.2021 0.1582 0.2067
Std., DJIA N.A. 0.1271 0.1459 0.1249 0.1286 0.1271
Corr. N.A. 0.8503 0.9694 0.9556 0.8889 0.8503

Pool, m = 2494
γ = 0.01 γ = 0.05

ρ = −1.5 Log Type Ratio Type ρ = −1.5 Log Type Ratio Type
î∗

mγ 3.21e-05 0.0004 0.0001 0.0010 0.0051 0.0021
No.of common days 1 22 7 9 58 22
No.of days, SPC500 3 55 12 21 140 55
Mean, SPC500 0.2304 0.2289 0.2877 0.2720 0.1647 0.2289
Std., SPC500 N.A. 0.2234 0.3489 0.3038 0.1797 0.2234
No.of days, DJIA 5 52 22 29 114 52
Mean, DJIA 0.2101 0.2067 0.1989 0.2102 0.1535 0.2067
Std., DJIA N.A. 0.1271 0.1345 0.1193 0.1270 0.1271
Corr. N.A. 0.8503 0.9694 0.9249 0.8897 0.8503
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Figure 3.1: Realized FDR, Ŝ/m1, significance level obtained from the BH procedure and
number of rejections. In the graphs, each point is an average value from 1000 simulations.
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Figure 3.2: Realized FDR and Ŝ/m1 of the hybrid method and the conventional procedure.
In the graphs, each point is an average value from 1000 simulations.
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Figure 3.3: Realized FDR and Ŝ/m1 of the hybrid method with lower frequency data. In the
graphs, each point is an average value from 1000 simulations.
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Figure 3.4: Realized FDR and Ŝ/m1 of the hybrid method when the number of hypotheses
varies. Here m = 50, 100, 200, 500, 800, 1000, 1200, 1500 and 2000. In the graphs, each point
is an average value from 1000 simulations.
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Figure 3.5: Realized FDR of the hybrid method under different required γ. We fix m = 1000
in the simulation. In the graphs, each point is an average value from 1000 simulations.
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Figure 3.6: Time series plots for identified jump variation on common jump days with the
three different jump test statistics. Left: FDR controlled by using the pool method. Right:
FDR controlled by using the separate method. The quantities shown here are all scaled by
10000.
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Figure 3.7: Time series plots for jump intensity estimations when different jump test statistics
are used.
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SUPPLEMENTARY MATERIALS

Supplementary Materials contain the following sections:

7. Some Proofs: This section provides proofs of theoretical results in section 3.

8. The PRDS condition: This section provides a more detailed discussion on the

PRDS condition.

9. Simulation with SV1FJ model: This section provides simulation results from

another stochastic jump model (SV1FJ).

10. Data descriptions and summary statistics: This section provides descriptions

of the real data used in section 5 and summary statistics of realized variance, realized

bi-power and jump test statistics derived from the data.

3.7 Proofs of some theoretical results

3.7.1 Proof of Theorem 1

Proof. Let’s start our proof from how to construct the Dv,s
m0 . Without loss of generality,

suppose that the first m0 hypotheses are true, and the rest m1 = m−m0 hypotheses are false.

Now consider events such that we reject the first v true null hypotheses and the first s false

hypotheses. Let the optimal significance level selected by the BH procedure i∗γ/m = qv+s.

Then

Pr

(
p̂M,1 ≤ qv+s, . . . , p̂M,v ≤ qv+s, p̂M,v+1 > qv+s+1, . . . , p̂M,m0 > qm0+s,

p̂M,m0+1 ≤ qv+s, . . . , p̂M,m0+s ≤ qv+s, p̂M,m0+s+1 > qm0+s+1, . . . , p̂M,m > qm

)

represents probability of one of such events. Note that here i∗ = v + s, and qi = iγ/m for

i = v + s+ 1, . . . ,m is the crietria corresponding to a hypothesis which is not rejected. Let

Dv,s
1,1,m0

= [0, qv+s]
v ×

m0+s∏
i=v+s+1

(qi, 1]× [0, qv+s]
s ×

m∏
i=m0+s+1

(qi, 1] ,

and the above probability can be rewritten as Pr
(
p̂M∈Dv,s

1,1,m0

)
. Let Em =

m∏
i=1

[0, 1] be the

m−fold products of interval [0, 1] . Note that joint density of p̂M is integrable over the set

Em. Apparently Dv,s
1,1,m0

⊆ Em, so Pr
(
p̂M∈Dv,s

1,1,m0

)
exists. By suitably varying permutations

of intervals [0, qv+s] and (qi, 1] (i = v + s+ 1, . . . ,m), we can obtain different m−dimensional

cubes to construct sets for events of rejecting s false and v true null hypotheses, and the total

number of such permutations is

(
m0

v

)
×
(
m1

s

)
× (m− s− v)!.

To see this, at first we focus on the events when p̂M,1 ≤ qv+s, . . . , p̂M,v ≤ qv+s and

p̂M,m0+1 ≤ qv+s, . . . , p̂M,m0+s ≤ qv+s occur, and the rest p-values are greater than their corre-
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sponding significance levels. In this case, there are total (m− s− v)! possible permutations of

(qi, 1] for these non-rejected hypotheses. Let

Dv,s
1,m0

=

(m−s−v)!⋃
j=1

Dv,s
1,j,m0

,

be union of such events, and also obviously Dv,s
1,m0
⊆ Em. Furthermore, if we vary permutations

of the interval [0, qv+s] for the s false (the v true null) hypotheses, there are

(
m1

s

)
(

(
m0

v

)
) such

different permutations. Therefore for the s false and the v true null hypotheses, total number

of possible permutations of the interval [0, qv+s] is

(
m0

v

)
×
(
m1

s

)
. Let hv,sm0 =

(
m0

v

)
×
(
m1

s

)
,

and Dv,s
h,m0

=
(m−s−v)!⋃

j=1
Dv,s
h,j,m0

, for h = 1, . . . , hv,sm0 denote such union of the m−dimensional

cubes. Finally, let

Dv,s
m0

=

hv,sm0⋃
h=1

Dv,s
h,m0

=

hv,sm0⋃
h=1

(m−s−v)!⋃
j=1

Dv,s
h,j,m0

.

Dv,s
m0 ⊆ Em, since all Dv,s

h,j,m0
⊆ Em. When there are m0 true null hypotheses, the probability

of rejecting v true null and s false hypotheses under the BH procedure is thus given by

Pr

hv,sm0⋃
h=1

(m−s−v)!⋃
j=1

{
p̂M∈Dv,s

h,j,m0

} = Pr

p̂M∈
hv,sm0⋃
h=1

(m−s−v)!⋃
j=1

Dv,s
h,j,m0

 = Pr
(
p̂M∈ Dv,s

m0

)
.

The same approach can be used to construct the probability of rejecting v true null and s false

hypotheses when we implement the BH procedure with p, and it is given by Pr
(
p ∈ Dv,s

m0

)
. Fur-

thermore, if the consistency for multivariate distribution holds, Pr
(
p̂M∈ Dv,s

m0

)
and Pr

(
p ∈ Dv,s

m0

)
exist when m→∞.

Then E (V/R | m̃0 = m0) and Ep̂M (V/R | m̃0 = m0) can be expressed as a function of the

marginal distributions of p-values. Let us use E (V/R | m̃0 = m0) as an example. As shown in

Lemma 4.1 of Benjamini and Yekutieli (2001), Pr
(
p ∈ Dv,s

m0

)
can be further expressed as

1

v

∑
i∈I0

Pr

pi ≤ qv+s

⋂p ∈
hv,sm0⋃
h=1

Dv,s
h,m0


 ,
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and therefore

E
(
V

R
| m̃0 = m0

)
=

m1∑
s=0

m0∑
v=1

(
v

v + s
Pr
(
p ∈ Dv,s

m0

))

=

m1∑
s=0

m0∑
v=1

 v

v + s
Pr

p ∈
hv,sm0⋃
h=1

Dv,s
h,m0


=

m1∑
s=0

m0∑
v=1

 v

v + s

1

v

∑
i∈I0

Pr

pi ≤ qv+s

⋂p ∈
hv,sm0⋃
h=1

Dv,s
h,m0




=

m1∑
s=0

m0∑
v=1

∑
i∈I0

1

v + s
Pr

pi ≤ qv+s

⋂p ∈
hv,sm0⋃
h=1

Dv,s
h,m0


 .

Let Λv,s(i),m0
denote the event that if pi ≤ qv+s occurs and then v − 1 true null and s false

hypotheses are rejected. We can see that

{pi ≤ qv+s}
⋂p ∈

hv,sm0⋃
h=1

Dv,s
h,m0

 = {pi ≤ qv+s}
⋂

Λv,s(i),m0
.

Also let

qk = {qv+s : v + s = k} =
k

m
α, and Λk(i),m0

=
⋃{

Λv,s(i),m0
: v + s = k

}
.

Note that Λv,s(i),m0
is mutually disjoint for different v and s. Λk(i),m0

is the event that except

H0
i , we reject the other k − 1 hypotheses given m0 true null hypotheses, and it is disjoint for

different i. Then

E
(
V

R
| m̃0 = m0

)
=

m1∑
s=0

m0∑
v=1

∑
i∈I0

1

v + s
Pr

pi ≤ qv+s

⋂p ∈
hv,sm0⋃
h=1

Dv,s
h,m0




=

m1∑
s=0

m0∑
v=1

∑
i∈I0

1

v + s
Pr
(
pi ≤ qv+s

⋂
Λv,s(i),m0

)
=

m∑
k=1

∑
i∈I0

1

k
Pr
(
pi ≤ qk

⋂
Λk(i),m0

)
.

Considering Pr
(
p̂M,i ≤ qk

⋂
Λ̂k(i),m0

)
, an analog of Pr

(
pi ≤ qk

⋂
Λk(i),m0

)
when p̂M is used.

Following the same way,

Ep̂M

(
V

R
| m̃0 = m0

)
=

m∑
k=1

∑
i∈I0

1

k
Pr
(
p̂M,i ≤ qk

⋂
Λ̂k(i),m0

)
.
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Thus ∣∣∣∣Ep̂M

(
V

R
| m̃0 = m0

)
− E

(
V

R
| m̃0 = m0

)∣∣∣∣
=

∣∣∣∣∣∣
m∑
k=1

∑
i∈I0

1

k

(
Pr
(
p̂M,i ≤ qk

⋂
Λ̂k(i),m0

)
− Pr

(
pi ≤ qk

⋂
Λk(i),m0

))∣∣∣∣∣∣ .
Note that the consistency for multivariate distribution should hold, then the above joint prob-

ability functions exist when m → ∞. Pr
(
pi ≤ qk

⋂
Λk(i),m0

)
is just the probability that if

pi ≤ qk, then the other k− 1 hypotheses are rejected. Therefore Pr
(
pi ≤ qk

⋂
Λk(i),m0

)
can be

explicitly expressed as

Pr
(
pi ≤ qk

⋂
Λk(i),m0

)
= Pr

(
pi ≤ qk, p

(−i)
(k−1) ≤ qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)
= Pr

(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)
−Pr

(
pi ≤ qk, p

(−i)
(k−1) > qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)
.

Then

m∑
k=1

1

k
Pr
(
pi ≤ qk

⋂
Λk(i),m0

)
=

m∑
k=1

1

k

 Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)
−Pr

(
pi ≤ qk, p

(−i)
(k−1) > qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)  .

The first term of the above summation (k = 1) is Pr
(
pi ≤ q1, p

(−i)
(1) > q2, . . . p

(−i)
(m−1) > qm

)
,

while the last term (k = m) is1/m
(

Pr (pi ≤ qm)− Pr
(
pi ≤ qm, p(−i)

(m−1) > qm

))
. Summation

of the middle m− 2 terms is

m−1∑
k=2

1

k

 Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)
−Pr

(
pi ≤ qk, p

(−i)
(k−1) > qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

) 
=

m−1∑
k=2

1

k
Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)
−
m−2∑
k=1

1

k + 1
Pr
(
pi ≤ qk+1, p

(−i)
(k) > qk+1, p

(−i)
(k+1) > qk+2, . . . p

(−i)
(m−1) > qm

)
=

m−1∑
k=1

1

k
Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . p

(−i)
(m−1) > qm

)
−

m−1∑
k=1

1

k + 1
Pr
(
pi ≤ qk+1, p

(−i)
(k) > qk+1, p

(−i)
(k+1) > qk+2, . . . p

(−i)
(m−1) > qm

)
−

Pr
(
pi ≤ q1, p

(−i)
(1) > q2+1, . . . p

(−i)
(m−1) > qm

)
+

1

m
Pr
(
pi ≤ qm, p(−i)

(m−1) > qm

)
.
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Therefore

m∑
k=1

1

k
Pr
(
pi ≤ qk

⋂
Λk(i),m0

)

=
m−1∑
k=1

 1
k Pr

(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

)
− 1
k+1 Pr

(
pi ≤ qk+1, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) +
1

m
Pr (pi ≤ qm)

By similar way,

m∑
k=1

1

k
Pr
(
p̂M,i ≤ qk

⋂
Λ̂k(i),m0

)

=
m−1∑
k=1

 1
k Pr

(
p̂M,i ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

)
− 1
k+1 Pr

(
p̂M,i ≤ qk+1, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

) 
+

1

m
Pr (p̂M,i ≤ qm) .

Note that qk = kγ/m, so in general as m goes large,

Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

)
≈ Pr

(
pi ≤ qk+1, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

)
.

Then

m−1∑
k=1

 1
k Pr

(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

)
− 1
k+1 Pr

(
pi ≤ qk+1, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) 
≈

m−1∑
k=1

 1
k Pr

(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

)
− 1
k+1 Pr

(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) 
=

m−1∑
k=1

1

k (k + 1)
Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

)
.

Also

m−1∑
k=1

 1
k Pr

(
p̂M,i ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

)
− 1
k+1 Pr

(
p̂M,i ≤ qk+1, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

) 
≈

m−1∑
k=1

1

k (k + 1)
Pr
(
p̂M,i ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

)
.

135



Finally ∣∣∣∣Ep̂M

(
V

R
| m̃0 = m0

)
− E

(
V

R
| m̃0 = m0

)∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈I0

m∑
k=1

1

k

(
Pr
(
p̂M,i ≤ qk

⋂
Λ̂k(i),m0

)
− Pr

(
pi ≤ qk

⋂
Λk(i),m0

))∣∣∣∣∣∣
≈

∣∣∣∣∣∣∣∣
∑

i∈I0
∑m−1

k=1
1

k(k+1)

 Pr
(
p̂M,i ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

)
−

Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) 
+
∑

i∈I0
1
m (Pr (p̂M,i ≤ qm)− Pr (pi ≤ qm))

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈I0

m−1∑
k=1

1

k (k + 1)

 Pr
(
p̂M,i ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

)
−

Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) ∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i∈I0

1

m
(Pr (p̂M,i ≤ qm)− Pr (pi ≤ qm))

∣∣∣∣∣∣ .
If condition 4 holds, the second term of the last inequality is bounded by O

(
1/M δ

)
. If condition

5 hold, the first term of the last inequality becomes∣∣∣∣∣∣
∑
i∈I0

m−1∑
k=1

1

k (k + 1)

 Pr
(
p̂M,i ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

)
−

Pr
(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) ∣∣∣∣∣∣
≤ m0

(
1− 1

m

)
m

m
× sup

1≤k≤m
sup
i∈I0

∣∣∣∣∣∣
 Pr

(
p̂M,i ≤ qk, p̂

(−i)
M,(k) > qk+1, . . . , p̂

(−i)
M,(m−1) > qm

)
−Pr

(
pi ≤ qk, p

(−i)
(k) > qk+1, . . . , p

(−i)
(m−1) > qm

) ∣∣∣∣∣∣
=

m0

m

(
1− 1

m

)
o (1) .

We then can conclude that∣∣∣∣Ep̂M

(
V

R
| m̃0 = m0

)
− E

(
V

R
| m̃0 = m0

)∣∣∣∣ ≤ m0

m

(
1− 1

m

)
o (1) +

m0

m
O

(
1

M δ

)
.
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Then ∣∣∣∣Ep̂M

(
V

R

)
− E

(
V

R

)∣∣∣∣
=

∣∣∣∣∣
∑m

m0=0 Ep̂M
(
V
R | m̃0 = m0

)
× Pr (m̃0 = m0)

−
∑m

m0=0 E
(
V
R | m̃0 = m0

)
× Pr (m̃0 = m0)

∣∣∣∣∣
=

∣∣∣∣∣
m∑

m0=0

(
Ep̂M

(
V

R
| m̃0 = m0

)
− E

(
V

R
| m̃0 = m0

))
× Pr (m̃0 = m0)

∣∣∣∣∣
≤

m∑
m0=0

(
m0

m

(
1− 1

m

)
o (1) +

m0

m
O

(
1

M δ

))
× Pr (m̃0 = m0)

= E (m̃0)

(
1

m

(
1− 1

m

)
o (1) +

1

m
O

(
1

M δ

))
= o (1) .

As shown in the proof of Theorem 1.2 of Benjamini and Yekutieli (2001), if condition 2 holds,

then
∑m

k=1 Pr
(

Λk(i),m0
|pi ≤ qk

)
≤ 1. By the assumption that Pr (pi ≤ qk) ≤ k

mγ,

Pr
(
{pi ≤ qk}

⋂
Λk(i),m0

)
≤ Pr

(
Λk(i),m0

|pi ≤ qk
) k

m
γ.

Thus

E
(
V

R
| m̃0 = m0

)
=

m∑
k=1

∑
i∈I0

1

k
Pr
(
{pi ≤ qk}

⋂
Λk(i),m0

)
=

m∑
k=1

∑
i∈I0

1

k
Pr
(

Λk(i),m0
|pi ≤ qk

)
Pr (pi ≤ qk)

≤
m∑
k=1

∑
i∈I0

1

k
Pr
(

Λk(i),m0
|pi ≤ qk

) k

m
γ

=
γ

m

∑
i∈I0

m∑
k=1

Pr
(

Λk(i),m0
|pi ≤ qk

)
≤ m0γ

m
≤ γ,

E
(
V

R

)
=

m∑
m0=0

E
(
V

R
| m̃0 = m0

)
× Pr (m̃0 = m0)

≤
m∑

m0=0

m0

m
γ × Pr (m̃0 = m0) =

E (m̃0) γ

m
≤ γ.

Finally we can conclude that

lim
M⇀∞

Ep̂M

(
V

R

)
= E

(
V

R

)
≤ γ.
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3.7.2 Proof of Theorem 2

Proof. To start our proof, at first we have a look of the inequality,

Pr (p̂M,i ≤ a) ≤ a,

where a ∈ (0, 1) and i ∈ I0. Suppose that a = qk = kγ/m, k = 1, . . . ,m, and γ ∈ (0, 1) , then

the above inequality becomes

Pr (p̂M,i ≤ qk) ≤
k

m
γ.

It implies mPr (p̂M,i ≤ qk) ≤ kγ for all k = 1, . . . ,m and and i ∈ I0. Let

m

k
Pr (p̂M,i ≤ qk) = Fp̂i,M (qk) ,

therefore for i ∈ I0, Fp̂i,M (qk) is bound by γ as m → ∞. Furthermore, since T1, . . . , Tm are

continuous random variables, Pr (pi ≤ qk) = kγ/m. Let Fpi (qk) = mPr (pi ≤ a) /k, then for

i ∈ I0, Fpi (qk) is also bounded. Since both Fpi (qk) and Fp̂i,M (qk) are bound and continuous

functions of Pr (pi ≤ qk) and Pr (p̂M,i ≤ qk) respectively, we can conclude that as M →∞, if

sup
1≤k≤m

sup
i∈I0
|Pr (p̂M,i ≤ qk)− Pr (pi ≤ qk)| = O

(
1

M δ

)
,

then

sup
1≤k≤m

sup
i∈I0

∣∣Fp̂M,i (qk)− Fpi (qk)
∣∣

= sup
1≤k≤m

sup
i∈I0

∣∣∣m
k

Pr (p̂M,i ≤ qk)−
m

k
Pr (pi ≤ qk)

∣∣∣ = O

(
1

M δ

)
.

Since T1, . . . , Tm are independent, then p1, . . . , pm are also independent. Therefore the event

Λk(i),m0
and {pi ≤ qk} are independent, and Pr

(
Λk(i),m0

|pi ≤ qk
)

= Pr
(

Λk(i),m0

)
. Furthermore,

by Λk(i),m0
are mutually exclusive for k and

m⋃
k=1

Λk(i),m0
is the whole space, therefore

m∑
k=1

Pr
(

Λk(i),m0
|pi ≤ qk

)
=

m∑
k=1

Pr
(

Λk(i),m0

)
= Pr

(
m⋃
k=1

Λk(i),m0

)
= 1.

138



Since T̂M,1, . . . , T̂M,m are also mutually independent, by similar argument as above,
m∑
k=1

Pr
(

Λ̂k(i),m0

)
=

Pr

(
m⋃
k=1

Λ̂k(i),m0

)
= 1. From proof of Theorem 1, we know that

∣∣∣∣Ep̂M

(
V

R
| m̃0 = m0

)
− E

(
V

R
| m̃0 = m0

)∣∣∣∣
=

∣∣∣∣∣∣
m∑
k=1

∑
i∈I0

1

k

(
Pr
(
p̂M,i ≤ qk

⋂
Λ̂k(i),m0

)
− Pr

(
pi ≤ qk

⋂
Λk(i),m0

))∣∣∣∣∣∣ .
It can be shown that

Pr
(
p̂M,i ≤ qk

⋂
Λ̂k(i),m0

)
− Pr

(
pi ≤ qk

⋂
Λk(i),m0

)
= Pr

(
Λ̂k(i),m0

|p̂M,i ≤ qk
)

Pr (p̂M,i ≤ qk)− Pr
(

Λ̂k(i),m0
|p̂M,i ≤ qk

)
Pr (pi ≤ qk)

+ Pr
(

Λ̂k(i),m0
|p̂M,i ≤ qk

)
Pr (pi ≤ qk)− Pr

(
Λk(i),m0

|pi ≤ qk
)

Pr (pi ≤ qk)

= Pr
(

Λ̂k(i),m0
|p̂M,i ≤ qk

)
(Pr (p̂M,i ≤ qk)− Pr (pi ≤ qk))

+
(

Pr
(

Λ̂k(i),m0
|p̂M,i ≤ qk

)
− Pr

(
Λk(i),m0

|pi ≤ qk
))

Pr (pi ≤ qk) .
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Therefore∣∣∣∣Ep̂M

(
V

R
| m̃0 = m0

)
− E

(
V

R
| m̃0 = m0

)∣∣∣∣
=

∣∣∣∣∣∣
m∑
k=1

∑
i∈I0

1

k

(
Pr
(
p̂M,i ≤ qk

⋂
Λ̂k(i),m0

)
− Pr

(
pi ≤ qk

⋂
Λk(i),m0

))∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈I0

m∑
k=1

1

k
Pr
(

Λ̂k(i),m0
|p̂M,i ≤ qk

)
(Pr (p̂M,i ≤ qk)− Pr (pi ≤ qk))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i∈I0

m∑
k=1

1

k

(
Pr
(

Λ̂k(i),m0
|p̂M,i ≤ qk

)
− Pr

(
Λk(i),m0

|pi ≤ qk
))

Pr (pi ≤ qk)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈I0

m∑
k=1

1

k
Pr
(

Λ̂k(i),m0
|p̂M,i ≤ qk

) k

m

m

k
(Pr (p̂M,i ≤ qk)− Pr (pi ≤ qk))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i∈I0

m∑
k=1

1

k

(
Pr
(

Λ̂k(i),m0
|p̂M,i ≤ qk

)
− Pr

(
Λk(i),m0

|pi ≤ qk
)) k

m

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈I0

m∑
k=1

1

k
Pr
(

Λ̂k(i),m0

) k

m
sup

1≤k≤m
sup
i∈I0

∣∣∣m
k

Pr (p̂M,i ≤ qk)−
m

k
Pr (pi ≤ qk)

∣∣∣
∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑
i∈I0

m∑
k=1

1

k

(
Pr
(

Λ̂k(i),m0

)
− Pr

(
Λk(i),m0

)) k

m
γ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈I0

m∑
k=1

Pr
(

Λ̂k(i),m0

) 1

m
×O

(
1

M δ

)∣∣∣∣∣∣+

∣∣∣∣∣∣ γm
∑
i∈I0

m∑
k=1

(
Pr
(

Λ̂k(i),m0

)
− Pr

(
Λk(i),m0

))∣∣∣∣∣∣
=

m0

m
O

(
1

M δ

)
,

since
∑m

k=1

(
Pr
(

Λ̂k(i),m0

)
− Pr

(
Λk(i),m0

))
= 0. So

∣∣∣∣Ep̂M

(
V

R

)
− E

(
V

R

)∣∣∣∣
=

∣∣∣∣∣
m∑

m0=0

(
Ep̂M

(
V

R
| m̃0 = m0

)
− E

(
V

R
| m̃0 = m0

))
× Pr (m̃0 = m0)

∣∣∣∣∣
≤ E (m̃0)

m
O

(
1

M δ

)
= o (1) .

Finally, if T1, . . . , Tm are mutually independent, their joint distribution is PRDS on the subset

of p-values corresponding to true null hypotheses. Thus the conclusion follows.
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3.7.3 Proof of Proposition 1

Similar as in Kosorok and Ma (2007), we apply Orlicz norm to prove the proposition. The

Orlicz norm ‖U‖ψis defined by

‖U‖ψ = inf

{
c3 > 0 : E

(
ψ

(
|U |
c3

))
≤ 1

}
,

where ψ is a non-decreasing, convex function with ψ (0) = 0. As suggested by van der Vaart

and Wellner (1996),

ψp (u) = exp (up)− 1,

is particular useful in proving consistency. The corresponding Orlicz norm of ψp (u) is called

an exponential Orlicz norm. For all nonnegative u, up ≤ ψp (u) , which implies that

‖U‖p ≤ ‖U‖ψp

for each p. Thus the Lp−norm is bounded by ‖U‖ψp .

Proof. LetM δ
(
T̂M,i − Ti

)
= Ui,M .With ψp (u) = exp (up)−1 and ψ−1

p (m) = (log (1 +m))
1
p ,

the proof directly follows from lemma 2.2.1 and 2.2.2 in van der Vaart and Wellner (1996).

Given m0 true null hypotheses, as M ≥M0∥∥∥∥max
i∈I0
|Ui,M |

∥∥∥∥
p

≤
∥∥∥∥max
i∈I0
|Ui,M |

∥∥∥∥
ψp

≤ c5 (log (1 +m0))
1
p max
i∈I0
‖Ui,M‖ψp

≤ c5 (log (1 +m))
1
p

(
1 + c1

c2

) 1
p

≤ 2c5 (log (m))
1
p

(
1 + c1

c2

) 1
p

,

by log (1 +m) ≤ 2 logm. Thus

∥∥∥∥max
i∈I0

∣∣∣Ti − T̂M,i

∣∣∣∥∥∥∥
p

=

∥∥∥∥max
i∈I0

|Ui|
M δ

∥∥∥∥
p

≤ c6
(log (m))

1
p

M δ
,

where c6 = 2c5

(
1+c1
c2

) 1
p
< ∞. Therefore if (log(m))

1
p

Mδ = o (1) as M → ∞, we can conclude

that T̂M,i
P.→ Ti for all i ∈ I0, and sup1≤k≤m supi∈I0 |Pr (p̂M,i ≤ qk)− Pr (pi ≤ qk)| = o(1) since

convergence in probability implies convergence in law.

141



3.8 More discussions on the PRDS condition

PRDS is a special case of positive regression dependent. Lehmann (1966) defined a random

variable Y positive regression dependent on a random variable X as

Pr (Y ≤ y | X = x) is non-increasing in x, (3.12)

while Y is negative regression dependent on X if Pr (Y ≤ y | X = x) is non-decreasing in

x. Y positive (negative) regression dependent on X is also called stochastic monotonicity of

Pr (Y ≤ y | X = x).

Y positive regression dependent on X also implies that

Pr (Y ≤ y | X ≤ x) ≥ Pr
(
Y ≤ y | X ≤ x′

)
, (3.13)

for all x ≤ x′ and

Pr (Y ≤ y,X ≤ x) ≥ Pr (Y ≤ y) Pr (X ≤ x) . (3.14)

(3.14) is called X and Y are positively quadrant dependent. It says that the more possibility

of X being small (large), the more possibility of Y also being small (large). If we let x′→∞,

then (3.13) becomes (3.14). With simple algebra, it can be shown that (3.12) implies (3.13),

and (3.13) implies (3.14). All of the three conditions can be extended to multiple variables.

Positive regression dependent of an l−dimensional random vector Y on a m−dimensional

random vector X is that

Pr (Y1 ≤ y1, . . . , Yl ≤ yl | X1 = x1, . . . , Xm = xm) (3.15)

is non-increasing in x1, . . . xm. Obviously Y is PRDS on a subset I0 of X is less stringent than

(3.15).

Another frequently used but more restricted criteria for dependency of multivariate random

variables is the multivariate totally positive of order 2 (MTP2). Karlin and Rinott (1981)

defined a m−dimensional random vector X to have an MTP2 distribution if the corresponding

joint density fX satisfies

fX (y ∨ z) fX (y ∧ z) ≥ fX (y) fX (z) ,

where

y = (y1, . . . , ym) , z = (z1, . . . , zm) ,

y ∨ z = (max (y1, z1) , . . . ,max (ym, zm)) ,

y ∧ z = (min (y1, z1) , . . . ,min (ym, zm)) .

The number of dimension m can be extended to infinity or even continuous. MTP2 implies
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positive regression dependent, and therefore implies PRDS (Sarkar, 2002). It can be shown

that joint density of m random variables Xi satisfying MTP2 implies Cov (Xi, Xj) ≥ 0 for

i, j = 1, . . . ,m. Nevertheless, except multivariate normal, PRDS and Cov (Xi, Xj) ≥ 0 may

not imply each other (Benjamini and Yekutieli, 2001). In a more general situation, empirically

verifying whether data structure satisfies the above conditions may be difficult. But some

solutions have been suggested, for example, a nonparametric test for stochastic monotonicity

proposed by Lee et al. (2009).

3.9 A Simulation study with SV1FJ

For an additional simulation study, we use the following stochastic volatility with one jump

component model (SV1FJ), which also was considered in Huang and Tauchen (2005),

d logP (t) = µdt+ exp (β0 + β1σ (t)) dW1 (t) + dJ (t) ,

dσ (t) = aσ (t) dt+ dW2 (t) ,

J (t) =

N(t)∑
j=1

D (t, j) , D (t, j)
iid∼ N (0, 1) ,

N (t)
iid∼ Poisson (λdt) ,

where dW1 (t) and dW2 (t) follow the standard Brownian motion, and σ2 (t) follows a simple

stochastic process. J (t) follows a Compound Poisson Process (CPP) with a constant intensity

λdt, and N (t) is the number of jumps occurring within the small interval (t−4t, t].
For the simulation, we set the parameter to the following values.

µ = 0.03, β0 = 0, β1 = 0.125, and a = −0.1.

In addition, we also add the leverage effect into the model, and the correlation between dW1 (t)

and dW2 (t) is set to −0.62.

All of the other settings for the simulation are the same as in the SVJ case. Relevant results

are shown in Figure 3.8 to Figure 3.12. It can be seen that all the results are qualitatively

similar to those of the SVJ case.

3.10 Data descriptions

The raw data used for the empirical application is the 1-min recorded prices of S&P500 in cash

(SPC500) and Dow Jones Industrial Average (DJIA) from January 2003 to December 2007.

The data sets are provided by Olsen Financial Technologies in Zūrich, Switzerland. During

this period, market closed at 1 pm on a few days. Such days were inactive trading days, and

we do not include them in our samples. After eliminating these inactive trading days, we have
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1247 active trading days for both indices. In section 5, all estimated realized price variations

and test statistics are based on the data from the 1247 active trading days.

To estimate the intradaily price variations, we use 5-min log returns but exclude overnight

returns. Some issues of microstructure noise are also concerned here. When observed prices

contain microstructure noise, realized variations estimated with different sampling frequencies

will have different degrees of biasness. Since the two indices are not really traded, their price

series would be less likely to suffer distortions from the microstructure noise than those of

traded futures. The property of immunizing the microstructure noise can be seen in 3.13,

which shows volatility signature plots. The horizontal dashed line in each plot is the average

daily realized variance when the 5-min log returns are used. It can be seen that the average

values of the realized variances are downward biased when their sampling intervals are small.

As the sampling interval becomes moderately large, the average values become stable, and the

biasness is mitigated. However, the downward biasness reappears when the sampling interval

increases beyond one hour. From the figure, we can see that the realized variances estimated

from the 5-min log return data seem to suffer little microstructural effect. This is the reason

why the 5-min log return data is used to construct the realized variance estimations.

We then calculate the three different jump test statistics Z−1.5,i, Zlog,i and Zratio,i and

their corresponding p-values. To avoid effects of abnormal trades, we omit data of the first

five minutes (09:31-09:35) and the last ten minutes (16:01-16:10), so the number of samples

for each day equals to 77. This additional step of screening the data makes our estimates

reflect intradaily dynamics of the two indices more homogeneously and efficiently. Note that

the additional screening step only applies to JVi and the daily jump test statistics. For RVi

and BVi, we still keep the 80 samples each day. Figure 3.14 shows time series plots of RV , BV

and JVi,0.05 for the two indices. It can be seen that the log type statistic have most identified

jump days.
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Figure 3.10: Realized FDR and Ŝ/m1 of the hybrid method with lower frequency data. In the
graphs, each point is an average value from 1000 simulations.
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Figure 3.11: Realized FDR and Ŝ/m1 of the hybrid method when the number of hypotheses
varies. Here m = 50, 100, 200, 500, 800, 1000, 1200, 1500 and 2000. In the graphs, each point
is an average value from 1000 simulations.
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Figure 3.12: Realized FDR of the hybrid method under different required γ. We fix m = 1000
in the simulation. In the graphs, each point is an average value from 1000 simulations.
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