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Abstract

This thesis studies how local economic, environmental and political conditions impact
local prosperity of communities and individuals. Within the first block, three chapters
focus on how the interplay between local geographical, institutional and political economy
mechanisms shape development outcomes. In the second block, two chapters examine how
urban and environmental conditions impact the outbreak of respiratory infectious diseases.
In more detail, the first essay examines the economic consequences of mineral mining on
local communities in Africa by analyzing changes in satellite images. While mining boosts
the local economy in democracies, gains in autocracies are meagre and come at the expense
of increases in localized conflict. Furthermore, mining does not automatically lead to self-
sustained growth after the closure of mine sites. The second essay studies how isolation
from the national capital city impacts economic performance in Sub-Saharan Africa. I
show that remote areas are less economically developed due to information frictions that
reduce the incentives of state executives to invest into isolated areas. The third essay
adds to this topic by documenting that proximity to the regional capital city has a similar
economic effect as national capital cities. The fourth essay revisits the debate about the
role of population density for the spread of Covid-19 in the United States. While denser
counties are hit earlier during the pandemic, overall they do not get hit harder. The fifth
and final essay studies how exposure to air pollution is associated with the propagation of
respiratory infectious diseases such as influenza and Covid-19 in the United States. The
study finds no evidence that air pollution affects case numbers of respiratory infectious
diseases in the short-run. The overriding contribution of this thesis is to provide detailed
insights on the relevance and mechanisms through which local geographical, environmental
and political frameworks impact economic and development outcomes.
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Introduction

This thesis consists of five chapters that study how local economic, environmental and
political conditions impact local prosperity of communities and individuals. The motivation
behind this focus is threefold. Firstly, by obtaining a more precise picture of the factors
and mechanisms that hinder or contribute to economic growth at the local level, we reach
a deeper understanding of the underlying processes that shape economic development.
Secondly, studying the characteristics that determine economic outcomes at the local level
fosters our understanding of the causes of the high levels of spatial heterogeneities across
cities, regions and countries. And third, by gaining a better understanding of the drivers
of economic development and spatial inequalities policy makers will be able to design more
effective policy interventions that lead to more equitable and sustainable development.

Thesis Overview and Common Themes

The thesis is divided into two blocks. Within the first block, three chapters are centered
around the question of how local economic, political and environmental framework condi-
tions impact local prosperity of communities and individuals. While the main geographical
focus of this work is on Africa, Chapter 3 further includes countries in the Americas and
Asia. More specifically, these chapters study how the interplay of local geographical and
institutional frameworks with political economy mechanisms shape development outcomes
such as local economic performance, urbanization, public goods provision and conflict.
In the second block, two chapters examine how urban and environmental conditions like
urban density and air pollution impact the outbreak and severity of respiratory infectious
diseases such as Covid-19 and influenza in the United States.

A common characteristic of all chapters is that economic and social phenomena are studied
from a quantitative-empirical perspective, leveraging a variety of unconventional large-scale
data sources to overcome data constraints and focus on new and innovative research ques-
tions. The empirical identification strategies are centered around obtaining quasi-random
variation in treatment to estimate causal effects. Chapter 1 uses a stacked event study
approach, Chapter 2 uses a boundary discontinuity design, Chapter 3 combines an event
study with a boundary discontinuity design and Chapters 4 and 5 apply instrumental vari-
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able approaches.

Further, the special consideration given to the spatial dimension of economic phenomena
is an important feature throughout this thesis. One of the advantages of the spatial per-
spective is that it allows to obtain additional insights about research subjects. Based on
the geolocation of individuals, households, cities and regions, it is possible to gather addi-
tional information from spatial data sources like geocoded surveys or satellite images. An
additional advantage of such a ‘spatial lens’ on economic phenomena is that it opens up
additional possibilities for the identification of causal effects. First of all, local economic,
geographical, institutional and political conditions vary across space which facilitates the
understanding of their relevance for development outcomes. Moreover, a spatial empirical
approach makes it feasible to exploit discontinuous cutoffs in space, such as certain na-
tional or regional boundaries, to obtain quasi-random variation in variables of interest.

Lastly, all chapters focus on current policy-relevant questions. The first three chapters
emphasize the context of developing countries and investigate societal challenges such as
spatial inequalities, accountability or the use of natural resources. In contrast, motivated
by the ongoing pandemic, the last two chapters focus on the United States and study the
consequences of urban density and air pollution for the spread and severity of infectious
diseases.

Contribution

The overriding contribution of this thesis is to provide detailed insights on the relevance
and mechanisms through which local geographical, environmental and political frameworks
impact economic and development outcomes.

More specifically, a central finding within the first block is that local geographical and
environmental conditions impact and interact with political and institutional frameworks,
and ultimately jointly determine local economic performance. In Chapter 2, I find that
distance from the national centers of political decision making, the capital city, has a neg-
ative impact on economic development through reducing political accountability. I show
that geographical isolation leads to isolation from information which ultimately impacts
voting behavior and reduces the incentives of state executives to invest into isolated areas.
These findings underline the importance of going beyond the national level and focus on
small geographical units to better understand the determinants of economic development
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and the causes of spatial heterogeneity. Furthermore, in Chapter 3, I document that the
positive effect of reducing the distance to regional capitals depends upon the institutional
context such as if the country is decentralized or a democracy. Similarly, in Chapter 1,
we show that it is primarily democracies that benefit from mineral mining of natural re-
sources. In contrast, mining in autocracies only leads to meagre economic gains that come
at the expense of an increase in localized conflict. These findings emphasize the need to
pay special attention to institutional frameworks and political economy mechanisms when
investigating the role of geographical factors on local communities.

The implications of these findings go beyond the academic discourse and provide import-
ant insights for policy makers seeking to foster economic development. Most importantly,
the findings of this thesis point at the importance of strengthening civic engagement and
citizen participation within the political process. One way of achieving this goal would
be to enable and encourage participation institutionally by reinforcing democratic rights,
as well as developing governance processes that explicitly include citizen participation, for
example when it comes to the management of natural resources. Another way of reaching
this goal would be to promote the propagation of information about the decisions and ac-
tions taken by the political leadership, especially in remote areas. Ultimately, these actions
could significantly improve political accountability and lead to more inclusive and effective
policies, as well as reduce conflict. Other important policy implications include: i) paying
more attention to the spatial distribution of public goods that is currently undersupplied
in certain areas ii) taking into consideration that public policies that were a success in
countries with strong institutions might be less effective or even net negative in a poor
institutional setting and iii) a period of local economic expansion, for example induced by
active mineral mining, does not automatically lead to self-sustained growth but requires
public policy to support the process of economic transformation.

Within the second block, we provide novel findings on the role of population density and
short-run air pollution for the propagation and severity of respiratory infectious diseases
that are in contrast to previous research.1 With regard to population density, we show that
dense places feature both, characteristics that reinforce as well as characteristics that re-
duce the disease spread and severity. For example, while the circumstance that more people

1See for example Angel et al. (2020); Whittle and Diaz-Artiles (2020); Zhang and Schwartz (2020); Wheaton
and Kinsella Thompson (2020) and Almagro and Orane-Hutchinson (2020) for evidence linking population
density to a faster disease spread, as well as Clay et al. (2018); Isphording and Pestel (2021); Persico and
Johnson (2021); Graff Zivin et al. (2021) for evidence linking air pollution to higher case numbers and
fatalities of the Spanish flu, influenza and Covid-19.
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live in close proximity in itself facilitates the spread of diseases, people in dense places re-
duce their activities more in response to disease outbreaks, have better access to healthcare
and are on average younger and more resistant to diseases. These offsetting characteristics
of density are often overlooked when considering risk factors for disease outbreaks, but
need to be taken into consideration by public officials when designing measures to contain
outbreaks. The contribution on the role of air pollution for influenza and Covid-19 out-
break is rather methodological and emphasizes the importance of using an identification
strategy that is able to account for the cyclicality and seasonality of air pollution.

Last but not least, this thesis, and in particular the methodological work in Chapter 1,
expands upon the current level and use cases of satellite images within economics and the
social sciences. We show how the applicability of satellite imagery goes beyond serving a
complementary role by adding one additional indicator to an existing dataset, but is well
suited to be the main unit of observation providing a wide variety of information, such as
urban, agricultural and mine land use or wealth index predictions. Satellite images allow
researchers to obtain a new and much more granular perspective on economic and social
processes that was previously out of reach. For example, it allows to precisely monitor
urban growth and decline around the world. Moreover, since some satellite configurations
such as Landsat have been taking similar images since the 1980s, we show that it is possible
to construct panel datasets that are not only extensive in space but also in time. This
especially opens up new opportunities for research seeking to better understand long-run
effects. Given the technological advances in remote sensing and the increase in the number
of orbiting satellites, remote sensing will continue to enable new perspectives on economic,
social and environmental phenomena. This will allow us to gain entirely new insights on
human organization, and will be particularly useful for studying developing countries where
research is currently often constrained by a lack of reliable data. It is my hope that this
thesis will contribute to further applications of earth observation data in the quantitative
social sciences in the future.

Chapter Overview

Chapter 1

Mining projects often gain support from communities through promises of benefits to the
local economy, though the empirical evidence is mixed: mineral assets are advantageous
in some circumstances but lead to corruption and violence in others. To shed light on this

Introduction 4



apparent discrepancy, we significantly extend the coverage of previous work in this area by
gathering satellite data that spans several decades and encompasses several institutional
environments. Our dataset consists of one million 30m-resolution Landsat images between
1984 and 2019 from a 40km radius around 1,658 mineral deposits across the continent.
Using state-of-the-art techniques in computer vision, we translate these images into eco-
nomically meaningful indicators measuring urban growth and material wealth. We then
use stacked event studies and difference-in-difference models to estimate the impact of mine
openings and closings. We find strong evidence of a political resource curse at the local
level. Although mining boosts the local economy in democratic countries, these gains are
meagre in autocracies and come at the expense of an increase in localized conflict. Fur-
thermore, our results show that the growth acceleration in mining areas is only temporary.
While former mining areas maintain their increased wealth and urban size with respect to
non-mining areas, there is no sustained divergence.

Chapter 2

This chapter documents that in Sub-Saharan Africa areas isolated from the capital city are
less economically developed and examines potential underlying mechanisms. We apply a
boundary-discontinuity design using national borders that divide pre-colonial ethnic home-
lands to obtain quasi-experimental variation in distance to the national capital city. Based
on nightlights and geocoded surveys, we find that a one percent increase in distance to the
capital city causes a decrease in the probability of detecting nightlights by 3 percentage
points and a reduction in household wealth corresponding to 3.5 percentiles of the national
wealth distribution. Our results suggest that a lower provision of public goods in isolated
areas is a key link between remoteness and economic performance. Despite receiving worse
services, people who are isolated exhibit a higher level of trust in their political leaders.
Further, isolated citizens consume the news less frequently and penalize their leaders less
for misgovernance. We interpret these findings as pointing towards dysfunctional account-
ability mechanisms that reduce the incentives of vote-maximizing state executives to invest
into isolated areas.

Chapter 3

Recent studies have emphasized the importance of proximity to national capital cities for
economic performance. In this chapter, we investigate if regional capital cities are similarly
relevant for local economic development. We focus on regional boundary reforms that split
regions into smaller entities with new designated regional capitals and thereby induce
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variation in distance from the regional capital city. Using satellite nightlights as a measure
of economic activity and combining an event study design with a boundary discontinuity
design, we document that proximity to regional capital cities has a strong positive causal
impact on economic growth. On average, a one percent decrease in distance to the regional
capital increases nightlight density by 0.16 percent within 8 years. Furthermore, we show
that the economic benefits of proximity to regional capitals are mainly relevant in less
developed, decentralized and democratic countries.

Chapter 4

This chapter revisits the debate around the link between population density and the sever-
ity of Covid-19 spread in the United States. We do so by conducting an empirical analysis
based on graphical evidence, regression analysis and instrumental variable strategies bor-
rowed from the agglomeration literature. Studying the period between the start of the
epidemic and the beginning of the vaccination campaign at the end of 2020, we find that
the cross-sectional relationship between density and Covid-19 deaths changed as the year
evolved. Initially, denser counties experienced more Covid-19 deaths. Yet, by December,
the relationship between Covid deaths and urban density was completely flat. This is con-
sistent with evidence indicating density affected the timing of the outbreak – with denser
locations more likely to have an early outbreak – yet had no influence on time-adjusted
Covid-19 cases and deaths. Using data from Google, Facebook, the US Census and other
sources, we investigate potential mechanisms behind these findings.

Chapter 5

Exposure to elevated levels of air pollution is linked with a wide range of adverse health
outcomes and, recently, it has been suggested that air pollution might also be associated
with the propagation of respiratory infectious diseases such as influenza-like illnesses (ILI)
and Covid-19. In this chapter, we examine the relationship between air pollution and res-
piratory infectious diseases empirically by analyzing US administrative data on ambient
air pollution and weekly cases of ILI and Covid-19. Assessing the link between pollution
and infectious diseases is challenging due to the presence of correlated omitted variables
and measurement error. We overcome these challenges by using an instrumental variable
approach that relies on satellite-derived atmospheric temperature inversions as an instru-
ment for air quality. Applying a variety of different specifications, we find no evidence that
exposure to elevated levels of air pollution affect influenza and Covid-19 cases in the US –
a finding that is in contrast to several recent papers in the economics literature.
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Chapter 1
The Local Economic Impact of Mineral Mining in

Africa: Evidence from four Decades of Satellite Im-

agery

1.1 Introduction

Africa’s great wealth in natural resources attracts very large investments by international
mining companies every year. Since the early 2000s, increased commodity prices have led
to a surge in investor interest and mine openings on the continent. Mining projects often
gain support from communities through promises of benefits to the local economy. Yet, we
still lack conclusive evidence on how industrial mining shapes local economic development
and the duration of this impact.

Using satellite data over multiple decades with wide-spanning geographic coverage, we can
measure local economic changes at different stages of mining under various institutional
contexts. We provide three key results on the local impact of mining. Firstly, mine open-
ings, and in particular large mine openings have the potential to considerably increase
urbanization, our main measure of economic development. Furthermore, mining also in-
creases agricultural activities and material wealth in the local area. Secondly, we find
strong support for the presence of a political resource curse at the local level. While min-
ing boosts the local economy in democratic countries, these gains are meagre in autocracies
and come at the expense of an increase in localized conflict. Thirdly, our results show that
the growth boost in mining areas is only temporary. Although former mining areas remain
more urbanized than comparable non-mining areas, there is no sustained divergence.

Previous research on the local impact of mineral mining has reached conflicting results:
some found that mine openings boost the local economy (Aragón and Rud, 2013; Mamo
et al., 2019), while others found no significant effects (Pokorny et al., 2019; Bazillier and
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Girard, 2020)1 and increases in corruption and conflict (Vicente, 2010; Berman et al., 2017;
Knutsen et al., 2017). We argue that the reason for the mixed results is due to data lim-
itations as these studies usually focus on a few mines or countries, and do not take into
consideration the institutional context. Yet, research on the macro level suggests only
countries with good quality institutions benefit from natural riches (Mehlum et al., 2006;
Bhattacharyya and Hodler, 2010). Accordingly, institutions might play a similar role for
the local impact of mining. Based on a recent field experiment in Northern Mozambique,
Armand et al. (2020) provide tangible evidence in support of the local political resource
curse hypothesis. The authors show that increased information and community particip-
ation helps to prevent civil conflict. In this study, we show that this mechanism applies
more broadly and can explain cross-country heterogeneities. While mining communities
in democracies benefit from mine openings, those in autocracies experience only meagre
gains and instead increases in localized conflict.

Our approach is novel as we use almost one million satellite images to create an extens-
ive panel covering 12% of the African landmass, tiling the area within 40km2 of 1,658
mines across 47 African countries, over a period 35 years. We exploit the fact that the
images are acquired from different stages in the mine life-cycle, including prior to the min-

Figure 1.1
Automatic Annotation of two Landsat Images Over Time

(a) 1991: A location prior to the onset of
mining, with a small urban area (magenta)

(b) 2018: The same location showing
development of the mine (cyan) and urban

growth (magenta)

Note: Automatic annotation of satellite images allows long term observation of urban growth, land use and material
wealth in mining areas. See Figure 1.A.1 for recent high-resolution images of this location.

1Note that these studies only found positive income and employment effects for small artisanal mines but
not industrial mines which are the focus of this study.
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eral discovery and after the mine’s closure. This allows us to observe the local effects of
mining over long periods of time and under strong and weak institutional contexts. We
use state-of-the-art techniques in machine learning and computer vision to translate this
vast collection of images into economically meaningful indicators including urban and ag-
ricultural land use and material wealth predictions2. Figure 1.1 illustrates how we can
successfully detect landcover changes before and after the mine opening using satellite im-
ages and machine learning. We track these indicators across the one million images from
12 three-year periods. Using stacked event study designs and difference-in-difference (DiD)
models, we estimate the impact of mine openings and closings on our satellite derived in-
dicators.

To pinpoint how mine opening and closing events impact the evolution of the local economy
we use a variety of counterfactuals. This includes comparing opening mines to areas where
minerals were discovered but where production has not yet started. Using event-study
graphs, we show that prior to the mine opening both groups evolve similarly in terms of
urban growth, and that opening mines diverge and gain relatively only after the onset of
mining. After 15 years, areas within 20km from opening mines gain on average around
80% in urban growth relative to not yet mined mine areas. In addition, we show that
mining primarily impacts the area within 20km of the mine and only to a lesser extent
areas further away, and that large mines tend to have a stronger effect as small mines.
Furthermore, we find that a part of the economic gains from mining are indirect due to
increased agricultural activities. As an alternative identification strategy, we use late mine
openings prior to treatment as controls for early mine openings and obtain similar results.

In addition, we provide evidence for the presence of a political resource curse at the local
level by showing that a democratic institutional setting is a decisive factor for making
mine operations a success for local communities. Regarding the underlying mechanism, we
demonstrate that one of the advantages of mining areas in democratic countries is that, as
opposed to mining areas in autocratic countries, they can avoid a rise in conflict following
the mine opening.

It is much harder to find a suitable control group for closing mines, as the mines exper-
ience two treatments, one of being an active mine as well as the subsequent closure. We
2Since wealth predictions are based on satellite images, ‘wealth’ does not explicitly refer to usual measures
of wealth such as assets or savings. While the underlying models are trained using household level asset
wealth indices as input, the wealth index ultimately reflects correlates and material manifestations of
wealth in a local area such as urban shape and density, infrastructure, or roof reflectance.
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can nevertheless benchmark the effects of mine closures by comparing their pre-treatment
and post-treatment trends to continuously operating and not yet treated areas. Prior to
the closure, communities around closing mines grow relative to both comparison groups.
However, after the mine’s closure, there is a trend break and sharp drop in the economic
growth rate around closing mines. Closed mines continue to evolve no different than areas
where mining had not yet started. These results indicates that the growth acceleration in
mining areas is only temporary. While former mining areas maintain their increased urban
size and wealth with respect to non-mining areas, there is no sustained divergence.

Related Work

The literature on the economic implications of the extractive resource sector in developing
countries is vast. There is extensive research in macroeconomics that investigates potential
underlying mechanisms regarding the ‘resource curse’ - the counter-intuitive finding that
countries with a larger natural resource sector tend to be less developed (Auty, 1993).
Researchers have made various attempts to solve the puzzle. In the 1980s and 90s, the
literature has pointed towards macroeconomic mechanisms such as the ‘dutch disease’,
i.e. a rise in the price level that make other exporting sectors less competitive (Corden
and Neary, 1982; van Wijnbergen, 1984; Krugman, 1987; Sachs and Warner, 2001). Other
explanations included the high volatility of commodity prices that make resource rich coun-
tries more vulnerable to macroeconomic shocks (Deaton, 1999). Subsequently, studies like
Lane and Tornell (1996), Tornell and Lane (1999), Torvik (2002), Hodler (2006) and Caselli
and Michaels (2013) saw the cause of resource misfortune in rent-seeking that prevent the
redistribution of resource windfalls to the population and additionally shifts the economy
towards less productive activities. Caselli and Michaels (2013) finds that only little of the
increased oil revenues of Brazilian municipalities actually benefits the population, probably
due to embezzlement. Finally, more recent research emphasizes the political dimension of
the resource curse. These studies argue that natural resources are only advantageous
in places with good institutions (Mehlum et al., 2006; Robinson et al., 2006; Collier and
Hoeffler, 2009; Bhattacharyya and Hodler, 2010). In places with poor institutions, resource
windfalls deteriorate institutions even further by increasing corruption and undermining
the political process which results in a net negative impact of resources on growth.3

The literature on the local economic impact of mining is relatively recent. In their seminal
paper, Aragón and Rud (2013) investigate a production expansion of a Peruvian Gold mine
3See van der Ploeg (2011) and Venables (2016) for extensive literature reviews and a discussion about the
challenges of resource governance in developing countries.
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over ten years. The authors find strong evidence for increases in real income in the mining
city and neighboring areas, albeit with a decreasing positive impact with distance from
the mining city. Moreover, service and agricultural workers also benefit from the mine
expansion, and the authors argue that this is due to backward linkages. Similarly, Lippert
(2014) studies the copper mining boom in Zambia and documents positive effects of mining
beyond the mining sector and immediate mine area. Mamo et al. (2019) find positive ef-
fects of mining on the district level in Africa at the intensive (increased mining production)
and especially at the extensive margin (new mineral discoveries and mine openings). Yet,
the authors find little evidence for spillovers to neighboring districts. In regard to evidence
from the developed world, Allcott and Keniston (2018) find positive effects of oil and gas
production at the US county level on real wages and no negative effects on the productivity
of the tradeable manufacturing sector.

In contrast, Hirschman (1958) and McMillan et al. (2014) maintain a more critical view
on mining and consider it to be a highly productive and capital intensive ‘enclave’. These
authors argue that mining ventures are without linkages to the local economy, do not
provide extensive employment opportunities for the local workforce and are therefore un-
able to induce structural change. Bazillier and Girard (2020) investigate the gold boom
in Burkina Faso and find that artisanal mines as opposed to industrial mines are having
a significantly positive impact on the local economy. Similarly, Pokorny et al. (2019) find
that artisanal small-scale mining creates jobs and income whereas industrial mines fail to
do so. Consequently, one of the reasons for different findings with regard to the effects of
mining could be related to heterogeneities between different mine types (large industrial
mines that are capital intensive that might provide relatively little job opportunities vs.
artisanal mines that provide a source of income to local workers). There are other reasons
why mining might not be beneficial for local communities. Aragón and Rud (2016) find
that mining has considerable negative effects on local agricultural productivity via pollu-
tion that might even outweigh the gains from mining. The authors leave open whether this
effect is mainly due to adverse effects on workers’ health and hence labor productivity or
due to soil and crop deterioration. The results of other studies that examine the impact of
mining on health are ambiguous, mainly because there appear to be direct negative effects
induced by pollution but positive indirect income effects. One the one hand, von der Goltz
and Barnwal (2019) find that mining related pollution induces adverse health outcomes
such as lead toxicity. On the other hand, Benshaul-Tolonen (2019) finds that gold mine
openings reduce child mortality by 50% arguing that the indirect positive employment and
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income effects outweigh direct negative health effects.

Lastly, recent studies point at the relevance of political economy mechanisms with regard
to the local impact of resource wealth. Vicente (2010) and Knutsen et al. (2017) show
that mining deteriorates local institutions through increasing corruption. Further, Dube
and Vargas (2013) and Berman et al. (2017) document that resource windfalls result in
political instability by increasing conflict.4 Out of these studies, only Berman et al. (2017)
examines if the effects are particularly relevant in countries with poor institutions as is
suggested by the political resource curse hypothesis. The authors do not detect significant
heterogenous effects of mining on conflict with regard to national institutions. However,
the authors do find that putting in place more stringent mining specific anti-corruption
measures and transparency initiatives helps to reduce conflict. Furthermore, based on a
field experiment in areas of recent natural gas discoveries in Northern Mozambique, Ar-
mand et al. (2020) provide tangible evidence in support of the local political resource curse
hypothesis. The authors show that information campaigns targeting communities and mo-
tivating them to participate in the decision-making led to decreases in conflict. In contrast,
when the information only reaches the local leader there is no reduction in conflict, but
instead increased elite capture and rent seeking.

The most important shortcoming in the existing literature on the local effects of mining
is associated to the fact that previous studies usually only have a relatively small sample,
often even focussing on only one or a handful of mines or countries. If the hypothesis of the
political resource curse at the local level was true, we would expect there to be important
heterogeneities between countries depending upon the institutional quality. Consequently,
relying on a small sample might undermine external validity, which could explain why some
studies reach conflicting conclusions about the impact of mining. A second limitation of
the existing literature is that they usually only cover a relatively short time period and do
not observe long-term effects of mine openings. Another drawback of short time periods
is that it makes it hard to validate the identification assumption when using DiD. There
are a few studies, such as Chuhan-Pole et al. (2016) and Mamo et al. (2019), that have a
relatively long panel over around 20 years and cover a wider sample of mines and countries.
Yet, these studies also face limitations as they rely on nightlights as a measure of economic
activity. The use of nightlights is likely to result in distorted estimates in this context as
4Berman et al. (2017) show that one important channel through which mining increases conflict is by
helping rebel groups in control of mine sites to finance their military capacity. Yet, the authors point
out that there might be other important mechanisms that link mining and conflict, such as increasing the
potential for rent-seeking.
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the authors have difficulties distinguishing between a change in nightlights that reflects
the mere activity of the mine and associated infrastructure, and the change that is related
to wealth and income changes. With our approach of using archives of Landsat satellite
images to track urban change and mask out the mines themselves, we extend previous
research by obtaining a more extensive and granular view on how 1,658 mineral deposits
across 47 African countries shape the surrounding area over a period of 35 years. One of
our focuses will be to leverage our database to investigate potential differences in the local
effects of mining between countries with good and poor institutions as is proposed by the
local political resource curse hypothesis. Lastly, with our extensive panel we can evaluate
how mining areas evolve after the closure of the mine, which is something that has not
been covered in previous research.

The remainder of this paper is organized into five sections. Firstly, Section 1.2 will intro-
duce the sample. Secondly, Section 1.3 will present the satellite data and machine learning
techniques to process the images. Thirdly, Section 1.4 will present and discuss the identi-
fication strategy. In Section 1.5, we present our findings on the impact of mine openings
and closings, investigate heterogeneities with respect to mine size and the institutional
context and examine conflict as a potential mechanism. Finally, Section 1.6 summarizes
our findings.

1.2 Sample

Our dataset on mining includes information on 1,658 mineral deposits and industrial mines
in Africa, including the size and type of mine, the date of discovery, the dates of activity
and the geographic location. Figure 1.2 summarizes the activity status of these mineral
deposits during our study period between 1984-2019 which we divide into 12 equal-length
periods of 3 years.5 This categorization of mines is key to our identification strategy and
defining treated and untreated units6, and refer to these categories throughout the re-
mainder of the article.

At the first level of grouping, we distinguish mines that were actively operating at any
point during our study period. At the second level of grouping, we distinguish active
mines into those mines that had been active in period 1 (1984-1986) and continued oper-

5The reason for using 3-year periods is to get a higher coverage of cloud-free satellite images in each period
which is especially important for earlier images.

6We discuss the assignment of mines into treatment and control groups in more detail in Section 1.4.3.
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ating throughout our study period and other mines that were only partially active. We
also distinguish inactive mines into mines that had ceased operation at some point prior to
1984 and mineral discoveries with no active mine as of 2019. At the third level of grouping,
we categorize mines that were partially active in our study period into three groups: areas
where a mine began operation some time between period 2 and 12 and continued operation
until period 12, mines that had been operating in period 1 but that closed at some point
during our study period and remained inactive, and mines that opened and closed or closed
and reopened during our study period.

Figure 1.2
Mine Status Overview in the Period of 1984-2019

Note: Active mines are active during our period of interest. Continuous mines are active throughout the whole
period while Partially active mines are not always active. Partially active mines may Open, Close or Open and Close
within our period of interest. Our identification strategy exploits differences between these categories in order to
measure the effect of active mining and mine closures on local communities.

Using the geolocalization of each mine, we assemble medium-resolution multi-spectral satel-
lite images from a radius of 40km of each mine throughout our study period from 1984
to 2019. Using state-of-the-art techniques in machine learning and computer vision, we
extract quantitatively meaningful economic indicators. In particular, we extract informa-
tion on land use, including monitoring the extent of urban area and agricultural areas, and
about the local material wealth level. Moreover, we are able to automatically segment the
area of the mine from each image, in order to exclude the mine itself when analyzing the
impact on the area surrounding the mine.
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Our final dataset thus covers an area within a 40km radius of 1,658 mineral deposits across
47 African countries. This amounts to a total study area of 3.6 million km2 (representing
12% of the total African landmass or 15 times the landmass of the United Kingdom). We
divide this area into 84,207 tiles of 6.5 × 6.5km ≈ 43km2, and observe the evolution of
each tile over our 12 periods from 1984 until 2019. We associate this observed evolution
to the respective neighboring mine activity. To the best of our knowledge, our dataset is
the longest and most extensive panel database on mineral mining. The area studied is
depicted in Figure 1.3. Further details on the assembling of this large panel dataset are
provided in Section 1.3 and App. 1.A.1.

Figure 1.3
Locations of Mineral Deposits and Tile Grid

(a) 1,658 mineral deposits (b) 40km radius around each mineral deposit

Note: The area within 40km surrounding a mineral deposit is divided into tiles of 6.5× 6.5km ≈ 43km2, providing
a total of 84,207 images covering 12% of African landmass. Each tile corresponds to a Landsat image with 224× 224
pixels at 30m resolution, with 7 multi-spectral bands. We acquire one image (3 year median) at each of the 12
three-year periods, corresponding to around one million tiles.

In order to assign tiles to mines, we compute the distance from each tile centroid to each
active mine in each period using the ‘Africa Sinusoidal’-projection that maps distances
using the metric system.7 In a next step, we classify tiles as either being within 20km of
a mine (close), between 20 and 40km from a mine (far) or being further than 40km from
a mine (non-mine area). We then classify these tiles as Continuous, Opening, Closing or
Inactive Mine depending on their distance to the closest mine and group assignments over
the periods. We remove a relatively small number of tiles that switch more than once
between different assignments, as these groups receive multiple treatments that are hard

7For more information about the ‘Africa Sinusoidal’ projection visit: http://spatialreference.org/ref
/esri/africa-sinusoidal.
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to distinguish. Lastly, we assign each tile to the first active mine (< 40km) for active
mine tiles and to the closest inactive deposit for inactive mine tiles to retrieve additional
information about the mine such as if the mine was active in the past (No Longer Active
vs. Not Yet Opened), mine size or which mineral is mined. The advantage of proceeding
like this and using distance intervals to determine treatment is that we can categorize tiles
into dichotomous treatment groups.8

1.3 Remote Sensing and Machine Learning

Our analysis requires using rich satellite imagery to extract variables on urban and agri-
cultural land use and material wealth as well as the extent of the mine. We train neural
networks to predict land use and mine areas from Landsat images, and use an existing
model to predict local material wealth (Yeh et al., 2020).

The satellite imagery consists of the Blue, Green, Red, Near Infrared, Short-wave Infrared
1, Short-wave Infrared 2 and Thermal bands from the atmospherically corrected surface
reflectance sensors of Landsat-5, 7 and 8. The Thermal band is at 120m resolution and
has been resampled to 30m pixels, and the remaining bands are at 30m resolution. We
take the median of all Landsat images over consecutive 3-year periods between 1984 and
2019, excluding any pixels with clouds, cloud shadows, or snow. We divide our area of
interest (within 40km of a mine) into square tiles of 224 × 224 pixels, or approximately
6.5 × 6.5km2. Thus, we obtain 84k 7-channel images of size 224 × 224 at each of the 12
three-year periods, or around one million satellite images. We download this data using
Google Earth Engine.

1.3.1 Land Use and Mine Segmentation

Our land use model learns to segment our image tiles into 4 mutually exclusive classes:
Urban Areas, Croplands, Water and Other. Our mine segmentation model predicts a bin-
ary outcome at each pixel, signaling the areas of mines. In order to train the land use
model, we create a new land use segmentation dataset by combining annotations from
multiple sources listed in App. 1.A.1. Annotations for the mine segmentation come from
Maus et al. (2020).

8Other approaches like assigning tiles to the closest mine overall would lead to confusion about what the
treatment is and distortions as a tile could be initially 30km and then 5 km away from the mine when
another mine opens closeby.
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To obtain land use indices, as well as the segmented area of each mine, we train two
convolutional neural networks (CNNs) with a U-Net backbone architecture (Ronneberger
et al., 2015) and with 16M parameters. The land use model and mine segmentation model
are both treated as pixel classification problems (image segmentation) and are trained
with cross-entropy loss. The encoder side of the U-Net model is a ResNet-50 model (He
et al., 2016), but adapted to input 7 image channels instead of 3 RGB channels at the
first convolutional layer. Moreover, the thermal band is at a resolution 4 times lower than
the remaining 6 bands, and so we use 4-pixel dilated convolutions on this channel. For
the land use model, the model weights are initialized by the ResNet-50 model pre-trained
model on ImageNet (Deng et al., 2009). The model weights corresponding to the non-RGB
bands in the first convolutional layer are initialized as the average weights corresponding
to the RGB bands. For the mine segmentation model, the weights are initialized using the
trained land use segmentation model.

Table 1.1
Data for Training and Evaluating the Land Use and Mine Segmentation
Task Land Use Segmentation Mine Segmentation
Landsat images 84k images (2014-6) 28k×2 images (2014-6, 2017-9)

Area 40km radius of mines
(Africa)

40km radius of mines
(Global)

Classes

Water
Urban Areas
Cropland
Other

Mine

Annotations

ESA (Water, Urban)
GHSL (Urban)
Facebook (Urban)
NASA (Croplands)

Maus et al. (2020)

Train-Val-Test 80%-5%-15% 80%-5%-15%
Note: Further details on land use annotation sources are listed in App. 1.A.1.

Our evaluation metric is the R2 value between the predicted shares of a class and the
ground truth shares of a class within each image tile. This is because in our analyses, our
observation unit is an image tile. We are interested in computing the share of each land
use category and the share of mines in each image tile and thus do not require pixel-level
accuracy. We firstly train the land use model for 75 epochs (passes of the training set
through the model) on a single NVIDIA Tesla K80 GPU (12 days) and choose epoch 72,
as it has the best evaluation metric on the validation set. We then initialize the weights of
the mine segmentation model with those of the land use model and train this model for a
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further 2 days or 40 epochs on a single NVIDIA Quadro RTX 3000 GPU and chose epoch
29.

Performance of the land use model and the mine segmentation model on the test set is
provided in Figure 1.4. The R2 value is 0.96 for urban areas, 0.82 for cropland areas and
0.98 for water bodies, demonstrating that our model is a strong predictor of the share of
land use categories in each image tile. The R2 value for mine prediction is also high, at
0.78. Our model is thus capable of predicting image tiles with a high or low presence of
mines. Qualitative examples of the land use and mine segmentation models are provided in
Figure 1.5. Visually, our model is good at segmenting urban, cropland, water and mining
areas.

Figure 1.4
Test Set: Predicted vs. Actual Shares by Segmentation Class

(a) R2 Urban: 0.96 (b) R2 Agric.: 0.82 (c) R2 Water: 0.98 (d) R2 Mine: 0.78

Note: The R2 values show strong correlations for all classes, but particularly for the Urban and Water classes.

When applying our trained land use and mine segmentation models to all image tiles across
all time periods, we firstly use the mine segmentation model to mask out the mines from
all the tiles. We then compute our outcome measures on land use by computing for each
image the log of the share of pixel that belongs to each land use class (urban, agriculture
or water). Moreover, we exclude outliers by first flagging all observations that are more
than 2 interquartile distances below the first quartile or above the third quartile. We then
conduct a generalized extreme studentized deviate (ESD) test to sequentially test if the
flagged observations are outliers at the 90% confidence level (Rosner, 1983).

1.3.2 Material Wealth Index

In Yeh et al. (2020), the authors train a CNN with ResNet-18 architecture (He et al.,
2016) to learn a local material wealth index from multi-spectral Landsat images. The idea
behind this approach is that there are material manifestations of local household wealth
in satellite images such as the shape, density and roof reflectance of the urban area, or the
length, size and color of road infrastructure. The CNN is trained using satellite images and
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Figure 1.5
Examples: Automatic Segmentation Results (2011-3)

(a) Urban (b) Cropland

(c) Water (d) Mine

Note: These examples show that our models are capable of identifying areas of interest.

corresponding asset wealth indices based on 43 Demographic and Health Surveys (DHS)
conducted in 23 countries in Africa from 2009 to 2016. In the cross-section, Yeh et al.
(2020) obtain an R2 value on the relationship between the predicted and true (survey)
values of the material wealth index on unseen data of around 0.65.

To assess the model performance in our context, we create a DHS-based asset wealth in-
dex for all tiles with DHS respondents in 2014-6 (N=1046) and compare it to the material
wealth predictions based on Landsat imagery.9 We obtain an R2 value of 0.67, in coherence
9To protect the privacy of DHS respondents, their geo-coordinates are generally displaced by up to 2km in
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with the results presented in Yeh et al. (2020). Figure 1.6 plots the wealth index values
from the DHS survey and our predictions for tiles in our study area.

Figure 1.6
DHS-Based Wealth Score and Satellite Based Predictions

Note: The wealth index shows a strong correlation with DHS survey results on our study area of interest in 2014-6
(R2 value of 0.67).

Moreover, the wealth index can be used to track changes in local material wealth over
time. Living Standards Measurement Surveys (LSMS) surveys from the World Bank con-
tain geolocalized household asset data for the same households at different points in time,
providing an estimate of the change in wealth.10. There is a positive correlation (coeffi-
cient 0.35) between the predicted wealth change from the model and the estimated wealth
change from LSMS panel data surveys, suggesting that the material wealth model is cap-
able of detecting changes in wealth over time (Figure 1.A.4). This correlation is relatively
weak for two main reasons. Firstly, the measurement error in the predictions of both,
predicted wealth index changes and LSMS changes, weigh higher because the variation in
changes over time is smaller (Yeh et al., 2020). Secondly, the LSMS wealth index relies on
a different set of variables and is not representative of the local area. Qualitative examples
show the coherence of the wealth index within a cross-section in Figure 1.A.3 and over
time in Figure 1.A.2.

Saliency maps in Yeh et al. (2020) suggest that the model appears to weight urban areas,
farmland, water bodies, and desert terrain when making predictions, in support of the view

urban areas and 5km in rural areas, but 1% of tiles are further displaced to up to 10km. We assign DHS
clusters to tiles when their geocoordinates lie within the central region of tile at least 1km from the edges.

10For each pair of years, we compute the mean of the households that were surveyed in both years. We
then run a PCA of these asset-differences across the 5 countries for which we have panel LSMS sur-
veys (Ethiopia, Malawi, Nigeria, Tanzania, Uganda). The value of the first principle component is the
household-level index of asset differences. Within each small geographical cluster, we then compute the
mean household-level index of asset differences to get the cluster-level index of asset differences.
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that the index actually reflects material wealth. However, the complexity of the model
makes it difficult to guarantee that the image characteristics learned by the model are
relevant explanatory variables for predicting material wealth. In our context, an additional
complication is that the model may learn to detect the mine itself and for example learn
that mines are associated with higher wealth. This would lead to spurious predictions of
wealth and might lead to overestimating the impact of mining. In our analyses requiring
the material wealth index, we exclude tiles with mines in order to alleviate this bias.
Moreover, we exclude outliers using the same method as for land use and mine classes as
described in Sec. 1.3.1.

1.4 Empirical Strategy

1.4.1 Descriptives

In the following, we provide descriptive evidence based on our main outcome, log urban
landcover share. The graphs in Figure 1.7 plot the urban landcover share in periods 1
(1984-86) and 12 (2017-19) at distances from the mine in 5km intervals.11 Mines with
different activity statuses are displayed separately (see Figure 1.2 for an overview of dif-
ferent mine categories). There are three striking patterns. Firstly, there appears to be a
gradient indicating that areas in closer proximity to the mine are more urban. Secondly,
undeveloped deposits (in period 1:Opening and Not Yet Opened, in period 12: Not Yet
Opened) tend to be at the bottom of the distribution. And thirdly, Opening and Continu-
ous mines tend to gain between period 1 and 12, in particular relative to mines that are
‘No Longer Active’).

These patterns suggest that mining does have a positive economic impact on local com-
munities in areas very close (< 20km) to the mine. Further, the positive impact of mining
does not seem to be only a one-off gain following the mine opening. Instead, mines appear
to continuously induce growth during their activity. Lastly, after a mine closes the local
area appears to stop growing at the same rate as before and loses relative to active mining
areas.

Yet, it is hard to draw any definite causal conclusion based on such comparisons. If mine
activity statuses were randomly distributed between mining areas, we would be able to infer

11The corresponding graphs for agricultural land use and material wealth index can be found in Fig-
ure 1.A.5.
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Figure 1.7
Cross-Sectional Comparisons in Periods 1 & 12

(a) Urban LC (Period 1) (b) Urban LC (Period 12)

Note: Urban landcover tends to decrease with distance from the mine. Mines that were open in period 1 tend to
have larger urban areas near the mines. Urban areas around Opening mines tend to grow between period 1 and 12,
relative to mines that are No Longer Active or Not Yet Opened.

causal effects from such comparison. For example, we would be able to estimate the impact
of mining in period 1 as the difference in the means between active mines (Closing and
Continuous) and inactive deposits (Not Yet Opened and Opening). However, comparisons
like these are likely distorted by underlying observable and unobservable characteristics of
mining areas that determine both, the level of economic performance as well as the activity
status itself. As an example, it could be that active mines are endogenously self-selected
in countries and locations that are more developed and offer higher investor protection
which would dramatically reduce the fixed costs and risks associated with opening a mine.
Consequently, we probably overestimate the impact of mining in such comparisons because
active mine areas would outperform inactive areas even in the absence of mining.

Similarly, while focussing on longitudinal variation and comparing one group of mines at
different points in time (e.g. Opening areas before and after opening) would solve the prob-
lem of endogenous selection into treatment, such comparisons are distorted by time variant
factors. Figure 1.8 displays the subset of Opening mines in period 1 (1984-86) when none
of the mines had started operation, as well as in period 12 (2017-19) when all of the mines
have started production. A naive interpretation of Figure 1.8a would suggest that mine
openings increase urban growth close to the mine and reduce it a bit further away. Yet,
such interpretations are fallacious, because they do not account for baseline changes over
time that are unrelated to the treatment itself. There are many conditions in the country
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or region that change simulataneously which could bias the estimate in either direction.
As an example, country specific changes such as economic downturns, wars or increasing
misgovernance would deteriorate the baseline economic condition and we would underes-
timate the impact of mining. Another potential bias might be the result of using Landsat
5 images in earlier periods and Landsat 7 and 8 images in later periods. The machine
learning model might have higher or lower baseline probabilities for predicting urban areas
with different satellite configurations due to slightly different technical configurations.

Figure 1.8
Mines in the Category Opening in Periods 1 & 12

(a) Urban LC (unadjusted) (b) Urban LC (adjusted)

Note: At period 1, the mine is Not Yet Opened and there is little difference in wealth index between areas close to
the mine and areas further from the mine. By period 12, these mines are active, and material wealth is much higher
in areas close to the mine than during period 1.

As a result, the differences between both years are the sum of the treatment effect plus
distortions. We can overcome this problem by using Not Yet Opened mine areas, that
are likely equally affected by country specific trends and changing satellite configurations
but not by mining, as a counterfactual to separate the changes induced by mining from
other changes. When preprocessing the data of Opening mines by subtracting the average
outcome in each country and period in the group of Not Yet Opened mines, we obtain
Figure 1.8b. The figure indicates that while areas close (< 20km) to the mine gained in
terms of urban extent after the onset of mining, areas farther away remained unchanged.

This result supports the view that the onset of mining has indeed a positive economic
impact on areas close to the mine, but there are still concerns about whether these are
causal effects of mining. Most importantly, we cannot be sure that Opening and Not Yet
Opened deposits would have evolved at the same rate in the absence of mine openings.
Mine openings might self-select into areas where investors expect and economic upturn or
where infrastructure investments occurred. For this reason, we require a more sophistic-
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ated identification strategy and conduct additional tests to validate that Not Yet Opened
deposits are valid counterfactuals.

1.4.2 Identification

In order to estimate the treatment effect of mine openings and closings, we elaborate on
the adjustment procedure used in Figure 1.8b and exploit the panel dimension of our
dataset using an event study approach with a control group. Over a time span of 15
years before until 15 years after treatment, we track the period-over-period development
of the treatment group (e.g. Opening mines) against a control group (e.g. Not Yet Opened
mine) to filter out unrelated shocks. While different mine categories are unlikely valid
counterfactuals for each other at any given point in time, they might be similarly affected
by spurious shocks. Hence, comparing one group to another within the same country and
period can be useful in giving us an indication of how a treated group would have evolved
in the absence of treatment and thereby facilitate the estimation of treatment effects. To
test the underlying identifying assumption that both groups are equally affected by ‘all
other changes’, we can test if both groups evolved similarly prior to the treatment onset
i.e. test for parallel pre-trends.

Yi,t =
5∑

t=−5,
t6=0

βt ∗Dt ∗ Treati + be,t + be,i + εi,t (1.1)

Equation 1.1 formulates the event study estimation equation with i referring to a tile, t
to relative 3-year periods where period 1 corresponds to the first period of active mining,
e to an event (all mine openings in a given country and period belong to one ‘event’), Dt

represents period dummies, Treati is a dummy for the treatment group, be,t are vectors of
event × period fixed effects and be,i are vectors of event × tile fixed effects. Standard errors
are double-clustered at the tile and mine level. As the event study time is centered around
the opening or closure event, we can keep only events for which we have observations over
the entire interval of five periods (15 years) before and after the event.12

There is relatively new literature that focuses on the biases that might arise in DiD models,
in particular in the presence of treatment heterogeneity and when treatment has a staggered
onset over time (Chaisemartin, 2020; Sant’Anna and Zhao, 2020; Goodman-Bacon, 2021).
For this reason, rather than relying on ordinary event studies and DiD estimations that

12This is necessary to ensure that in the presence of treatment heterogeneities between mines, time specific
β-coefficients are not sensitive to distortions caused by a varying composition of the treatment group.
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might be biased in either direction, we transform and stack our dataset such that there are
no comparisons between the late treated units after treatment using earlier treated units
that are also treated at the time as counterfactual (Cengiz et al., 2019). To do this, we
define events that refer to all mines that open (or close) in one period within one country.
In a second step, we assign each event as a control group all control units in the country.
Finally, we stack all events together. As a result, each event has its own control group,
which prevents implicit comparisons of late vs. early treated due to overlapping fixed
effects. Since this also means that observations in the control group can be duplicated, in
addition to clustering standard errors at the mine level, we also cluster standard errors on
the tile level.

1.4.3 Choice of Counterfactual Groups

Partially Active mines are most suitable for running event studies as we can track their
evolution before and after the treatment (mine opening or closure). Consequently, we use
Opening mines as the treatment group to assess the impact of mining onset, and Closing
mines as the treatment group to study what happens to mining areas after the closure of
the mine.13

For Opening mines, the most suitable counterfactual group are deposits that are in the
same country and also without an active mine in the beginning of our study period, but
remained undeveloped throughout the study period (Not Yet Opened). The advantage
for this comparison is that both groups are in the same state (inactive) in the beginning
of the study period with one group getting treated thereafter (becomes active) while the
other remains inactive. A potential pitfall of using Not Yet Opened areas as controls is
that they might not exhibit parallel trends due to being endogenously selected into their
group i.e. investors might have avoided certain deposits because the local economies are
underdeveloped. Yet, there are many potential reasons that determine whether a deposit
is mined at a certain point in time or not (time since discovery, support of local leader-
ship, legal obstacles or global commodity demand) and many of which are unrelated to
local economic performance. Our approach of dealing with this potential selection bias
is twofold. First, we will make both groups more comparable by restricting our sample
to recent discoveries at or after 1984. This means that deposits discovered a long time
ago without an active mine, which we interpret as a signal of endogenous obstacles to

13Mines that are both Opening & Closing are also of interest, but we have dropped these observations as
they usually change their status for short time intervals which makes it hard to separate the effects of
different treatments of being open or closed.
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mining, are dropped from our sample. Conducting balancing tests reveal that Opening
and Not Yet Opened deposits are indeed similar regarding geographical characteristics and
pre-treatment outcomes (see Figure 1.A.6). The only significant difference between both
groups is that Opening mines exhibit around 12% more agricultural land use prior to treat-
ment. More importantly, we will show that both groups exhibit parallel pre-trends when
conducting the event study analysis.

As an alternative to using Not Yet Opened mines as a counterfactual, we could use mines
that only start operating at a later point in time, and then compare the evolution of eco-
nomic development in areas with active mines to that of areas that will host mines in the
future - early vs. late (or future) treated (Goodman-Bacon, 2021). Using future treated
units as controls for current treated areas is a relatively common approach in studies of
the causal effect of place-based policy interventions - see for example (Busso et al., 2013).
In our setting, the applicability of such an approach is supported by the technical and
institutional context: There are various site specific obstacles that are unrelated to the
level of development before the treatment but determine the precise timing of the mine
opening. To support this argument empirically, we conducted pre-period balancing tests
that indicate that within the group of Opening mines the startup period is not related
to pre-treatment outcomes (see Figure 1.A.7). Therefore, future mine sites are likely to
constitute a valid counterfactual for current treated areas, and allow us to control for
confounding factors when investigating the local economic and environmental impact of
mining. A drawback of using future treated units as controls is that they might actually
already experience gains in anticipation of treatment during the development stage of the
mine. This would lead to underestimating the magnitude of the effects. For this reason,
we interpret estimates using future treated units as controls as lower bound estimates.

In addition to understanding how mine openings shape local communities, we aim to estim-
ate the effect of the closure of the mine site - which is mostly triggered by random geological
factors such as the exhaustion of the ore body. Since closing mines are experiencing two
treatments - being an active mine and closing - it is hard to find a valid counterfactual.
For this reason, rather than seeking to construct a counterfactual group, we will compare
the evolution of local economic indicators in closing mine areas to Not Yet Opened and
Continuously operating mines.14 These comparisons are unlikely to exhibit parallel pre-
trends prior to the closure, but it will nevertheless be informative to compare their relative

14The corresponding balancing tests that show how Closing mines compare to Not Yet Opened and Con-
tinuously active mines are in Figure 1.A.8 and Figure 1.A.9 respectively.
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evolution over time and have a close look at potential trend breaks induced by the mine
closure e.g. Closing mines might initially outperform their comparison groups prior to the
closure but not after. Furthermore, the comparison with Not Yet Opened deposits will
allow us to assess if former mining areas continue to outperform non-mining areas, evolve
at the same rate or potentially even lose relative to non-mining areas which might indicate
that former mining areas converge back to their pre-mined equilibrium. Methodologically,
we will proceed in the same way as for the Opening mines and conduct an event study.

1.5 Results

1.5.1 Mine Openings

In this section, we undertake the empirical analysis on the impact of mine openings as set
out in Section 1.4.2.

We begin with the event study and plot the βt-coefficients based on Equation 1.1 over
relative time t, where t = 1 is the first period of active mining (see Figure 1.9). Period 0
represents the period before the actual mining started and serves as the baseline period.
Therefore, the β-coefficients reflect to what extend the treatment group has gained (if
β > 0) or lost (if β < 0) relative to t = 0. The treatment group is restricted to either areas
close to the mine (left) or areas far from the mine (right).

Figure 1.9
Event Study: Opening vs. Not Yet Opened mines

(a) Close: Log Urban Area Share (b) Far: Log Urban Area Share

Note: In the years prior to the mine opening, areas near the mine (Opening) follow similar trends in terms of log of
urban area share to areas with a mineral discovery but no active mine (Not Yet Opened). In the periods after the
start of active mining, these two groups diverge, particularly in areas close to the mine (< 20km). A mine opening
sets areas close to the mine on a high urban growth trajectory. A similar but less pronounced trend can be seen for
areas further from the mine (20-40km).

One of the most important concerns of using Not Yet Opened (future/never-treated) areas
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as control group for Opening mines is that they might already be diverging prior to treat-
ment and therefore not constitute valid counterfactuals. However, the graphs in Figure 1.9
clearly indicate that prior to the onset of mining (−5 ≤ t ≤ 0) both groups evolve similarly.
In contrast, as soon as active mining starts at t = 1, treated units in areas close to the
mine significantly diverge from control areas. These gains are not just a one-off gain after
the mine opening, but rather indicate that the local economy experiences continuous and
persistent gains each period. Areas far away from the mine also diverge after the onset of
mining but to a smaller extent. Furthermore, the fact that the divergence exactly coin-
cides with the launch of the mine operation suggests that it is actually the mine activity
that boosts the local economy rather than other structural changes. The magnitude of the
effects is considerable. After 15 years, areas near Opening mines gain on average around
80%15 in urban area extent relative to Not Yet Opened mine areas. Figure 1.A.10 show
that the results are similar when conducting the event study with the sample based on the
time frame from -6 years to 18 years.

Yi,p = β ∗ Treati,p + be,p + be,i + εi,p (1.2)

Next, we estimate DiD regressions based on Equation 1.2. This is similar to Equation 1.1,
but without centering time around the event or estimating multiple coefficients for relative
time periods. Instead, we estimate the average treatment effect based on all units and time
periods p after treatment using all observations instead of only those that are observed at
least five periods before and after treatment. The results in Table 1.2 Panel A indicate
that our results are robust with regards to using an ordinary DiD or stacked DiD model,
as well as using Not Yet Opened deposits vs. Late Treated units (i.e. areas that get treated
during our study period and serve as controls prior to their treatment onset). The results
are in line with the event study results and indicate that mining does have a considerable
positive impact on urban agglomeration and that these effects are primarily relevant for
areas close to the mine. The results in Table 1.2 Panel B indicate that mining also increases
the proportion of agricultural fields in areas close to the mine by around 19%. This finding
is in line with previous studies that find that mining stimulates the local economy through
backward linkages (Aragón and Rud, 2013).16 Yet, these results are of a lower magnitude

15We compute the effect based on the coefficient in Figure 1.9 after 15 years (0.59) and retransforming it
since the outcome is transformed using the natural logarithm: exp(0.59) − 1 = 0.8.

16Mining investments might also have a positive impact on other local firms via knowledge spillovers (see
for example Ghebrihiwet (2019) for recent evidence on foreign direct investment (FDI) in South Africa’s
mining sector, or Abebe et al. (2022) for recent evidence on FDI in Ethiopia’s manufacturing sector.)
However, our dataset is not suitable to investigate such spillovers.

The Local Economic Impact of Mineral Mining in Africa: Evidence from four Decades of Satellite Imagery
28



Table 1.2
DiD Regressions: Mine Openings

Ordinary DiD Stacked DiD
Opening vs. Early vs. Late

Not Yet Opened Treated
(1) (2) (3) (4) (5) (6)

Panel A: Log Urban Landcover

Treatment Dummy 0.093∗ - 0.111∗ - 0.068 -
(0.051) (0.063) (0.064)

Treatment × Close - 0.223∗∗∗ - 0.243∗∗∗ - 0.173∗∗
(0.061) (0.072) (0.073)

Treatment × Far - 0.048 - 0.066 - 0.031
(0.050) (0.062) (0.063)

Panel B: Log Agriculture Landcover

Treatment Dummy 0.127∗ - 0.121 - −0.004 -
(0.067) (0.084) (0.083)

Treatment × Close - 0.182∗∗ - 0.173∗ - 0.011
(0.078) (0.094) (0.091)

Treatment × Far - 0.108 - 0.103 - −0.009
(0.066) (0.082) (0.083)

Panel C: Material Wealth Index (z-score)

Treatment Dummy 0.028 - 0.028 - 0.026 -
(0.031) (0.036) (0.048)

Treatment × Close - 0.105∗∗∗ - 0.109∗∗∗ - 0.097∗
(0.035) (0.041) (0.051)

Treatment × Far - 0.001 - 0.001 - 0.001
(0.030) (0.035) (0.048)

Country × Period FE Yes Yes - - - -
Tile FE Yes Yes - - - -
Event × Period FE - - Yes Yes Yes Yes
Tile × Event FE - - Yes Yes Yes Yes
Observations 400,239 400,239 1,297,985 1,297,985 626,035 626,035

Note: This table reports stacked DiD estimations based on Equation 1.2. The ‘Treatment Dummy’ (or ‘Treatment’)
indicates if a tile’s corresponding mine has started operating, it is always 0 for tiles in the control group. ‘Close’ and
‘Far’ in the interaction terms correspond to dummies indicating if a tile is within 20km from the mine or between
20km and 40km from the mine. Standard errors in parenthesis are clustered by mine in columns (1)-(2), and
double-clustered by mine and tile in columns (3)-(6). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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and less robust when using early vs. late treated units. As discussed in Section 1.4.2,
this is likely related to the fact that these estimates represent lower bounds as future
treated control units might already experience some of the gains of mining during their
development stage. In Table 1.2 Panel C, we document that mining increases the material
wealth index by around 0.1 standard deviations in areas close to the mine.

1.5.2 Heterogeneities

In the next step, we investigate heterogeneities with regard to the impact of mining. Since
previous research by Mamo et al. (2019), Pokorny et al. (2019) and Bazillier and Gir-
ard (2020) find that the mine size is important with regard to local economic outcomes,
we investigate heterogeneities between small and large mines.17 Further, since previous
research at the macro level found evidence for the ‘political resource curse’ i.e. natural
resources are only advantageous in countries with good institutions (Mehlum et al., 2006;
Bhattacharyya and Hodler, 2010), we test if this relationship also applies on the micro
level to mining areas. Based on the average Polity2 score18 during our study period, we
categorize countries as either being ‘democratic’ if they have a score greater than 0, or
‘autocratic’ for scores smaller than 0.

Table 1.3 presents the heterogeneity regression results based on Equation 1.2 for the sample
of areas within 20km from the mine site, as this is where the effects are most relevant (see
Table 1.2). The split between large vs. small and democratic vs. autocratic observations in
the treatment group is relatively even, treatment group tiles around large mine represent
39% and tiles in democratic countries 43% of all treated tiles. As compared to small
mines, large mines have a significantly stronger impact on urban growth and also lead
to significant gains in areas further away from the mine. The characteristic of being
a democracy appears even more important as the size and leads to significantly more
urban area growth. Furthermore, in democracies there is no significant difference in the
impact of different mine sizes. In contrast, in autocracies, small mines have a negative
impact on urbanization in areas further away from the mine. The corresponding results
for the agriculture land use and the material wealth index are similar and can be found
in Table 1.A.1. In Table 1.A.2 we compare the characteristic of being a democracy to
other measures of institutions as well as having a relatively high GDP per capita. We find

17The mine classification of ‘small’ or ‘large’ reflects the size of the mine operation and is based on a variety
of indicators including the pre-mined resource, ore value, by-products and the type of mineral.

18More information about the Polity project by the Center for Systemic Peace can be found at: www.syst
emicpeace.org/polityproject.html.

The Local Economic Impact of Mineral Mining in Africa: Evidence from four Decades of Satellite Imagery
30

www.systemicpeace.org/polityproject.html
www.systemicpeace.org/polityproject.html


Table 1.3
Stacked DiD Regressions Close to the Mine - Heterogeneities

Stacked DiD Regressions: Log Urban Area Share

Close Far

(1) (2) (3) (4)

Treatment Dummy 0.23∗∗∗ −0.03 0.07 −0.21∗∗
(0.08) (0.12) (0.06) (0.09)

Treat × Large Mine - 0.29∗ - 0.26∗∗
(0.17) (0.12)

Treat × Democracy - 0.53∗∗∗ - 0.60∗∗∗
(0.16) (0.13)

Treat × Large × Democracy - −0.46∗ - −0.40∗∗
(0.27) (0.19)

Event x Tile FE Yes Yes Yes Yes
Event x Country x Period FE Yes Yes Yes Yes
Observations 1, 172, 561 1, 172, 561 1, 254, 498 1, 254, 498
Adj. R2 0.76 0.76 0.76 0.77

Note: This table reports stacked DiD heterogeneity tests based on Equation 1.2. The ‘Treatment Dummy’ (or
‘Treat’) indicates if a tile’s corresponding mine has started operating, it is always 0 for tiles in the control group. In
Columns (1) and (2), we restrict the treatment group to tiles within 20km from the mine, and in Columns (3) and
(4) to tiles between 20km and 40km from the mine. Standard errors in parenthesis are double-clustered by mine and
tile. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

that democracy has a stronger effect than other institutional measures, and that GDP is
irrelevant to the impact of mining.

1.5.3 Mechanism

In order to get a better understanding of why mine openings are mainly beneficial under
democratic institutions, we now investigate a potential mechanism. Armand et al. (2020)
conduct a field experiment showing that increased information and community particip-
ation helps to prevent conflict, and so it is plausible that democratic institutions have a
similar effect. To test for the impact of mine openings on conflict, we combine our dataset
with information about conflict events and locations from the Uppsala Conflict Data Pro-
gram (UCDP) (Sundberg and Melander, 2013).19 A big advantage of the UCDP is that it

19The main source of this database is global newswires reporting, but also other sources such as local news
or NGO reports. The UCDP defines a conflict event as ‘An incident where armed force was used by an
organised actor against another organized actor, or against civilians, resulting in at least 1 direct death
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provides a homogenous database of geolocalized conflicts from around the world and spans
a relatively long time series starting in 1989 (which corresponds to period 2 of our dataset)
until today. We combine the UCDP with our dataset by creating a tile-level dummy that
indicates if a conflict event occurred in a tile during the respective period (or alternatively
the total number of conflict events). We then use our stacked DiD model and estimate the
impact of mine openings and closings separately for democracies and autocracies.20

In Table 1.4 column (1) and (3), we replicate the finding in the literature that mining fuels
conflict (Berman et al., 2017).21 When estimating regime specific effects for democracies
and autocracies separately, we find that the onset of mining only leads to in autocracies,
but not in democracies. The impact is also significant in areas further away but slightly
smaller in magnitude. The value of the estimates indicate that the onset of mining in-
creases the probability of conflict by 0.6% in areas close to the mine and 0.4% further
away. In order to benchmark this coefficient, we compare it to the average probability of
conflict prior to the onset of mining which is 0.16%. Hence, the increase in areas close
to the mine corresponds to 3.75 times the baseline probability of conflict which signals
a sizeable effect. This finding is novel in the literature. While Berman et al. (2017) un-
dertake a similar exercise, they do not find significant effects associated with institutions.22

Our findings in Sections 1.5.1, 1.5.2 and 1.5.3 indicate that the onset of mining has a
considerable positive impact on the local economy and that this is predominantly relevant
for areas close to the mine. However, there are important heterogeneities when it comes
to the gains from mine openings. Being a large mine and located in a democratic country
are important factors for determining the economic gains for local communities. Further,
mines that are small and in an autocratic setting might even have a negative impact on
the local economy. One mechanism that explains this differential finding with regard to
the institutional context is conflict. While mine openings lead to significant increases in
conflict in autocracies, democratic institutions prevent a rise in conflict.

at a specific location and a specific date’. For more information visit: https://ucdp.uu.se/downloads
/ged/ged211.pdf.

20The results are equivalent when alternatively using the model from Table 1.3 that also includes mine size
as there is no significant relationship between mine size and conflict.

21All regressions in Table 1.4 are linear probability models. Using binomial regressions like logit instead
is difficult to implement computationally given the high dimensional fixed effects and large number of
observations.

22The reason for this is likely related to the fact that their dataset is much smaller, less granular and covers
a much shorter time period between 1997-2010.
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Table 1.4
Mining & Conflict

Prob. of Conflict in Tile (baseline: 0.16%)
Close Far

(1) (2) (3) (4)
Treat 0.003∗∗ - 0.002∗ -

(0.001) (0.001)
Treat × Democracy - −0.001 - −0.001

(0.001) (0.001)
Treat × Autocracy - 0.006∗∗ - 0.004∗∗

(0.002) (0.002)

Event x Tile FE Yes Yes Yes Yes
Event x Country x Period FE Yes Yes Yes Yes
Observations 1, 078, 351 1, 078, 351 1, 153, 489 1, 153, 489
Adj. R2 0.12 0.12 0.12 0.12

Note: This table reports stacked DiD estimates for the impact of mine openings on conflict and is based on Equation
1.2. ‘Treat’ indicates if a tile’s corresponding mine has started operating, it is always 0 for tiles in the control group.
All models are linear probability models and the dependent variable indicates whether a tile experience any conflict
during a given period. In columns (1) and (2), the treatment group is restricted to areas within 20km from the
mine, and to areas between 20km and 40 km in Columns (3) and (4). Please note, that period 1 (1984-1986) is
omitted from the sample as the Uppsala Conflict Data Program (UCDP) only starts in period 2 (1989). The baseline
probability of conflict is 0.16% and refers to the average conflict probability in the treatment and control group prior
to treatment onset. Standard errors in parenthesis are double-clustered by mine and tile.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

1.5.4 Mine Closures

In this section, we investigate what happens to mine areas after the closure of the mine.
In order to estimate the effects, we analyze the evolution of mines that had been active
in period 1 followed by a closure during our study period. Since closing mines experience
two treatments, firstly of being an active mine and secondly ceasing operation, it is much
harder to find a suitable control group with similar pre-trends. For this reason, as discussed
in Section 1.4.3, rather than using a control group indicating what would have happened
if the mines had not closed, we use comparison groups to benchmark the performance of
areas with closing mines.

We use an event study following Equation 1.1. We center relative time around the last
period of active mining (t = 0), hence t = 1 is the first period without any mine activity.
Since we are ultimately interested in whether the mine closure triggers a trend break,
we need to compare the relative evolution between t = −5 and t = 0 (15 years prior to
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shutdown vs. shutdown period) to the evolution between t = 0 and t = 5 (shutdown period
vs. 15 years after shutdown). For this purpose, we add a dashed horizontal line with an
intercept corresponding to the coefficient in period t = 0. We can then test if Closing mines
gained relative prior to the closure by comparing the confidence interval of the estimate in
period t = 0 to the horizontal line at y = 0. In the next step, we can test if Closing mines
gained relative after the closure by comparing the confidence interval of the estimate at
t = 5 to the horizontal line with the intercept of the coefficient at period t = 0.

Figure 1.10
Event Study: Closing vs. Not Yet Opened Mines

(a) Close: Log Urban Area Share (b) Far: Log Urban Area Share

Note: Prior to closure, Closing mines have higher urban growth than Not Yet Opened mines. However, after
closure, areas in proximity to Closing mines evolving at the same rate as non-mine areas, while areas further away
only slightly outperform non-mine areas. This suggests that after the closure of the mine, mining areas grow no
faster than non-mine areas.

The first comparison group are Not Yet Opened deposits. By comparing the relative evol-
ution of Closing mines to mineral deposits that have not been mined yet, we can test if
Closing mine areas continue outperforming non-mine areas, converge towards their pre-
mined growth trajectory, or if they enter a state of economic decline back to the level they
would have been at, had they never had an active mine in the first place.

Figure 1.10 plots the results when using Not Yet Opened areas as comparison group. Prior
to the closure, Closing mines outperform Not Yet Opened mines in terms of urban growth.
However, after the closure of the mines, we observe a strong trend break with areas in prox-
imity to Closing mines evolving at the same rate as non-mine areas while areas further away
only slightly outperform non-mine areas. The effects are very similar for agricultural land
use and without any significant patterns for the material wealth index (see Figure 1.A.11).
Overall, these results indicate that after the closure of the mine, mining areas grow no
faster than non-mine areas.

In addition, we compare Closing mines to Continuously operating mines. The results in
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Figure 1.A.12 show that Closing mines outperform Continuous mines before closure, but
after closure, Closing mines have a slight but statistically insignificant downward trend.

These findings demonstrate that mining areas are unable to maintain elevated growth rates
after the closure of the mine. Further, while areas close to the mines benefited more from
the openings (see Section 1.5.1), they also suffer more when mines close.

1.6 Conclusion

In this study, we create a novel dataset based on large archives of satellite imagery covering
12% of the African continent over four decades to study the impact of mine openings on
the development of local communities. Specifically, we follow the trajectory of urban and
agricultural growth as well as material wealth in the villages and cities surrounding mines
throughout the period of active mining as well as after the mines’ closure.

Our results indicate that mineral mine operations, especially large operations, have the
potential to give a considerable boost to local economic growth in areas surrounding the
mine. A part of these gains are likely to be indirect gains due to backward linkages as is
reflected by increased agricultural activities around the mine. Yet, our study also points
out that there are important caveats with regard to the positive impact of mining.

Firstly, accelerated growth rates in mining areas are only temporary and are not sustained
beyond the closure of the mine. Secondly, our analysis suggests that the benefits for local
communities are mainly advantageous in democracies but not in autocracies. We show
that one mechanism through which mining areas in democratic countries, as opposed to
autocratic countries, avoid the resource curse is by avoiding conflict. There might be other
relevant mechanisms that link mining and institutions on the local level. One example
would be a fiscal channel through which the windfall gains from resource extraction might
be less redistributed to the population when institutions are extractive. Another potential
channel is that local corruption might rise under bad institutions with insufficient checks
and balances. Furthermore, under poor institutional framework conditions there might
be reduced incentives for local public officials to negotiate and enforce regulations such as
local procurement rules, employment opportunities for local residents and other forms of
resource governance that benefit local communities.

We conclude that not all mine operations benefit local communities, and mining could even
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be net negative for economic growth, in particular in areas with poor institutions. For this
reason, our study underlines the importance of paying special attention to the institutional
framework conditions when considering mine openings. Furthermore, in order to achieve
sustained growth in areas that benefit from mining, policy makers need to develop location-
specific strategies for economic transformation during operation and after the closure of
the mine.
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1.A Appendix

1.A.1 Data Sources and Description

Mineral deposits

We purchase data on mining deposits from MinEx Consulting. This dataset includes the
geolocalization, type, size and dates of discovery and activity of 1,658 mineral deposits in
47 African countries.

Land Use Label Data Sources

1. Agricultural Areas
- Nasa Global Food Security-support Analysis Data (GFSAD), Croplands Africa
2015, 30m resolution, available at: https://lpdaac.usgs.gov/products/gfs

ad30afcev001/

2. Urban Areas
- Global Human Settlement Layer (GHSL) 2015 by the European Commission,
available at: https://ghsl.jrc.ec.europa.eu/download.php?ds=buGHS_B

UILT_LDSMT_GLOBE_R2018A_3857_30_V2_0

- CCI Land Cover S2 Prototype Africa 2016, resolution: 20m, available at: http

s://2016africalandcover20m.esrin.esa.int/)
- Facebook (Meta) Population Map 2015, 30m resolution, available at: https:

//data.humdata.org/dataset/highresolutionpopulationdensitymaps,
does not cover South Sudan, Sudan, Somalia and Ethiopia

3. Water Bodies
- CCI Land Cover S2 Prototype Africa 2016, resolution: 20m, available at: http

s://2016africalandcover20m.esrin.esa.int/)

Geocovariates Sources

– Crop Caloric Index: A measure of agricultural suitability containing the po-
tential agricultural caloric output per year and hectar (excluding zero yields)
based on Galor and Özak (2016), available at: https://ozak.github.io/Cal

oric-Suitability-Index/.

– Elevation: NASA Shuttle Radar Topography Mission (SRTM) with 30m res-
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olution, available at:https://www2.jpl.nasa.gov/srtm/.

– African Cities: Data from OECD Sahel and West Africa Club in collaboration
with e-geopolis.org, available at: https://africapolis.org/data.

– Country Borders & Coastline: GADM (Version 3.6), available at: https:

//gadm.org/data.html.

– Climate Data: Annual precipitation (in mm), annual mean temperature, min-
imum temperature in the coldest month and maximum temperature in the
warmest month (all in ◦C) based on Karger et al. (2017) were obtained from
http://chelsa-climate.org/downloads/.

– Ruggedness: A measure for terrain ruggedness measured in degree of slope
with an initial resolution of (20 × 20 arcseconds) based on Nunn and Puga
(2012) was obtained from: https://diegopuga.org/data/rugged/.
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1.A.2 Additional Figures

Figure 1.A.1
High-Resolution Images Corresponding to Figure 1.1B

(a) 2020 high-resolution Google Earth image of city
corresponding to Figure 1.1B

(b) 2020 high-resolution Google Earth image of mine
corresponding to Figure 1.1B

Note: Current high-resolution satellite images can be used for better visualization of the 30m Landsat images in
Figure 1.1B. The fact that our model excluded the area that looks like a football field in image (A) from the urban
extent (see Figure Figure 1.1B) illustrates the ability of the model to identify the urban extent at a very precise and
granular level.
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Figure 1.A.2
Examples: Low to High Wealth over Time

(a) 1991: Pre-mine, low wealth (b) 2018: Post-mine, high wealth

(c) 1988: Low wealth index (d) 2018: High wealth index

Note: The growth in material wealth index over time seems to be coherent with our intuition for numerous examples
from our dataset. We see the index increasing over time when towns and cities become more developed. In our
analyses, we omit tiles with mines in order to remove any biases related to the presence of the mine in the image.
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Figure 1.A.3
Landsat and Corresponding High-Resolution Images
(a) Landsat: Poor (b) Landsat: Rich

(c) Google Earth: Poor (d) Google Earth: Rich

Note: High-resolution images from Google Earth provide a sanity check of the material wealth predictions using
medium resolution images from Landsat.
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Figure 1.A.4
Wealth Change: LSMS and Material Wealth Index

Note: There is a positive correlation (coefficient 0.35) between the predicted wealth change and the estimated wealth
change from Living Standards Measurement Study (LSMS) panel data surveys by the World Bank, suggesting that
the material wealth model is capable of detecting changes in wealth over time.
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Figure 1.A.5
Further Cross-Sectional Comparisons in Periods 1 & 12

(a) Wealth Index (Period 1) (b) Wealth Index (Period 12)

(c) Agricultural LC (Period 1) (d) Agricultural LC (Period 12)

Note: The wealth index tends to decrease with distance from the mine. Mines that were open in period 1 tend to
have a higher wealth index near the mines. The wealth index around Opening mines tend to grow between period 1
and 12, relative to mines that are No Longer Active or Not Yet Opened. The wealth index around Opening mines
tends to grow between period 1 and 12, relative to mines that are No Longer Active or Not Yet Opened. The
agricultural area around Opening mines also tends to grow between period 1 and 12, relative to mines that are No
Longer Active or Not Yet Opened, but this trend is less pronounced.
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1.A.3 Balancing Tests

Figure 1.A.6
Balancing Graphs: Opening vs. Not Yet Opened

(a) Time Invariant Covariates

(b) Outcomes in Period 1

Note: These figures report balancing test between Opening and Not Yet Opened deposits based on estimating:
Yi = β OpeningDummyi + bc + εi, where bc are country fixed effects and with SEs clustered at the mine level.
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Figure 1.A.7
Balancing Graphs: Early vs. Late Opening

(a) Time Invariant Covariates

(b) Outcomes in Period 1

Note: These figures report balancing test between early and late Opening mines based on estimating: Yi =
β log(OpeningY ear)i + bc + εi, where bc are country fixed effects and with SEs clustered at the mine level.
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Figure 1.A.8
Balancing Graphs: Closing vs. Not Yet Opened

(a) Balancing: Time Invariant Covariates

(b) Balancing: Outcomes in Period 1

Note: These figures report balancing test between Closing and Not Yet Opened deposits based on estimating:
Yi = β ClosingDummyi + bc + εi, where bc are country fixed effects and with SEs clustered at the mine level.
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Figure 1.A.9
Balancing Graphs: Closing vs. Continuous

(a) Balancing: Time Invariant Covariates

(b) Balancing: Outcomes in Period 1

Note: These figures report balancing test between Closing and Continuous deposits based on estimating: Yi =
β ClosingDummyi + bc + εi, where bc are country fixed effects and with SEs clustered at the mine level.
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1.A.4 Additional Results

Figure 1.A.10
Event Study: Opening vs. Not Yet Opened (Robustness)

(a) Close: Log Urban Area Share (b) Far: Log Urban Area Share

Note: See Figure 1.9 for similar results but using a shifted relative time scale.

Table 1.A.1
Stacked DiD Regressions Close to the Mine - Heterogeneities (Cont.)

Stacked DiD Regressions

Log Agricultural Area Share Material Wealth Index (z-score)
Close Far Close Far

(1) (2) (3) (4) (5) (6) (7) (8)

Treatment Dummy 0.15 −0.16 0.10 −0.25∗∗ 0.11∗∗∗ 0.07 0.00 −0.01
(0.10) (0.15) (0.08) (0.13) (0.04) (0.07) (0.04) (0.06)

Treat × Large Mine - 0.32∗ - 0.29∗∗ - 0.20∗∗ - 0.08
(0.18) (0.14) (0.10) (0.07)

Treat × Democracy - 0.60∗∗ - 0.68∗∗∗ - −0.09 - −0.06
(0.23) (0.20) (0.10) (0.08)

Treat × Large × Democracy - −0.36 - −0.27 - 0.02 - 0.01
(0.33) (0.25) (0.14) (0.11)

Event x Tile FE Yes Yes Yes Yes Yes Yes Yes Yes
Event x Country x Period FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1, 172, 561 1, 172, 561 1, 254, 498 1, 254, 498 1, 172, 561 1, 172, 561 1, 254, 498 1, 254, 498
Adj. R2 0.76 0.76 0.76 0.76 0.68 0.68 0.68 0.68

Note: This table reports stacked DiD heterogeneity tests based on Equation 1.2. The table corresponds to Table
1.3 and reports the results for the log of the agricultural landcover and the z-score of the material wealth index
as dependent variables. The ‘Treatment Dummy’ (or ‘Treat’) indicates if a tile’s corresponding mine has started
operating, it is always 0 for tiles in the control group. In Columns (1), (2), (5) and (6), we restrict the treatment
group to tiles within 20km from the mine, and in Columns (3), (4), (7) and (8) to tiles between 20km and 40km
from the mine. Standard errors in parenthesis are double-clustered by mine and tile. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.A.2
Heterogeneities: Country Characteristics

Dependent Variable: Log Urban Landcover Share
Democracy Voice & Account. Rule of Law Decentralization GDP

Treat 0.08 0.04 0.09 0.20 0.24∗∗
(0.10) (0.13) (0.11) (0.13) (0.09)

Treat × Democracy 0.36∗∗ - - - -
(0.15)

Treat × High Participation - 0.33∗∗ - - -
(0.16)

Treat × High ROL - - 0.27∗ - -
(0.15)

Treat × Decentralized - - - 0.07 -
(0.16)

Treat × High GDP - - - - −0.03
(0.16)

Event x Tile FE Yes Yes Yes Yes Yes
Event x Country x Period FE Yes Yes Yes Yes Yes
Observations 1, 172, 561 1, 172, 561 1, 172, 561 1, 083, 140 1, 172, 561
Adj. R2 0.76 0.76 0.76 0.76 0.76

Note: This table reports stacked DiD heterogeneity tests for the sample of treatment tiles within 20km from the
mine and is based on Equation 1.2. The ‘Treatment Dummy’ (or ‘Treat’) indicates if a tile’s corresponding mine has
started operating, it is always 0 for tiles in the control group. In each column, the treatment dummy is interacted
with a group dummy based on country specific institutional characteristics. ‘Democracy’ is based on the average
Polity2 score during the study period being larger than 0, ‘Voice & Accountability’ and ‘Rule of Law’ are based on the
being above or below the median of the World Bank’s Worldwide Governance Indicators (WGI), ‘Decentralization’
is based on the median decentralization index by Thomas Bijl and J. Vernon Henderson (LSE processed) and ‘GDP’
based on the median of the World Bank’s GDP per capita estimate (in PPP) for the year 2020. Standard errors in
parenthesis are double-clustered by mine and tile. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 1.A.11
Event Study: Closing vs. Not Yet Opened Mines

(a) Close: Log Agricultural Share (b) Far: Log Agricultural Share

(c) Close: Material Wealth Index (z-
score)

(d) Far: Material Wealth Index (z-
score)

Note: Prior to closure, Closing mines have higher agricultural growth than Not Yet Opened mines. However, after
closure, areas in proximity to Closing mines evolving at the same rate as non-mine areas, while areas further away
only slightly outperform non-mine areas. This suggests that after the closure of the mine, agriculture around mining
areas grow no faster than around non-mine areas. We do not observe any significant effects for the material wealth
index.
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Figure 1.A.12
Event Study: Closing vs. Continuous Mines

(a) Close: Log Urban Area Share (b) Far: Log Urban Area Share

(c) Close: Log Agricultural Share (d) Far: Log Agricultural Share

(e) Close: Material Wealth Index (z-
score)

(f) Far: Material Wealth Index (z-score)

Note: Closing mines outperform Continuous mines before closure. There even seems to be a negative but not
statistically significant trend in the urban area share and the material wealth index for areas close to a Closing mine
after its closure.
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Chapter 2
Accountability Failure in Isolated Areas: The Cost

of Remoteness from the Capital City

The spatial distribution of economic activity in Sub-Saharan Africa is shaped by large
differences in standards of living across regions (International Monetary Fund, 2015). Ac-
cordingly, gaining a better understanding of the underlying mechanisms that cause and
maintain these spatial disparities is key for designing policies that could lift millions of
individuals in the least developed regions out of poverty. Yet, the ongoing research on the
subject has been largely descriptive (Odusola et al., 2017) rather than seeking to reveal
underlying patterns and mechanisms. Only a limited number of scholars (see for example
Kanbur and Venables (2005), Hodler and Raschky (2014) or Addison et al. (2017)) have
examined spatial patterns and causes of inequality that go beyond the ‘urban-rural bias’
thematically (Lipton, 1977; Bates, 1981; Young, 2013; Lagakos, 2020).

For historical reasons, most African capital cities are located either at or close to the coast
rather than in a central location which is why large parts of the population live far away
from the capital city.1 Previous research has pointed out that isolated capital cities im-
pose important adverse effects on statewide outcomes such as aggregate corruption levels,
conflict and quality of governance (Campante and Do, 2014; Campante et al., 2019). Yet,
these studies look at capital city isolation as an aggregated state characteristics and do not
investigate if there are spatial heterogeneities i.e. how locations farther from the capital
perform economically relatively to their counterparts close to the capital.2 Other research
on the role of the capital city emphasizes that the ability of African states to broadcast
power and impose institutions is restricted beyond the capital city (Herbst, 2000; Michalo-
poulos and Papaioannou, 2014). What is still unclear in this strand of research is what the

1For European colonizers who targeted the extraction of resources but had little access to the hinterlands,
coastal trading points constituted suitable locations for colonial headquarters. Over the course of the
colonial period, these administrative centers flourished and the majority of them subsequently persisted
as post-colonial national capital cities in modern African states.

2Campante and Do (2014) include a few descriptives on the individual level and show that citizens further
away from state capitals are less engaged with state politics.
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reduced state presence means for the economic performance in areas far from the capital3,
as well as what the underlying mechanisms are that reduce the presence of the state in
remote areas.
In this study, we suggest that the answer to this question is connected to the literature on
accountability and public goods provision that emphasizes the importance of information
about government actions to incentivize the attention of politicians (Besley and Burgess,
2002; Strömberg, 2004; Guriev et al., 2020). We argue that geographical isolation leads
to information frictions which impair accountability mechanisms and leave the political
leadership with reduced incentives to invest into remote areas. To support our claims em-
pirically, we show that there is a significant and causal negative impact of distance from the
capital city on economic performance. We further document a significant drop in public
goods in remote areas, show that isolated citizens follow the news less frequently, have an
overly positive view of the government and penalize their leaders less for misgovernance.
Lastly, we show that alternative explanations such as market access or conflict are unlikely
to be relevant with regard to the observed patterns.

The core challenge when seeking to identify the impact of isolation from the capital city
is that capital cities are not randomly located in space. There are numerous geographical
characteristics, most notably isolation from the coast, that are simultaneously correlated
with isolation from the capital city and economic performance and thus confound ordinary
regressions. We overcome this obstacle by applying a boundary discontinuity design (BDD)
across national boundaries and comparing places with otherwise similar geographical fea-
tures but varying distances to their respective capital city. Moving across the boundary
might not constitute a valid counterfactual if the switch between countries coincides with
other variables that might themselves be linked with development such as ethnicity and
culture. We therefore restrict our analysis to boundary segments that divide pre-colonial
ethnic homelands. Figure 2.1 illustrates the intuition of our identification strategy using
the example of the Nyanja ethnic homeland that is divided into two adjacent countries,
Malawi and Mozambique. Our identification strategy exploits the jump in distance from
the capital city at the border to explain differences in economic outcomes.

Using remote sensing data on nightlights as a proxy for economic activity, our results in-
dicate that a one percentage point increase in distance from the capital city reduces the
3Michalopoulos and Papaioannou (2014) establish that there is a reduced state presence in isolated areas
using cross-border comparisons for areas with similar distance to the capital city (close vs. close and far vs.
far) between countries with good and bad institutions. In this paper, we focus on the relative performance
of remote areas and compare locations close vs. far from the capital while keeping institutions constant.
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Figure 2.1
Ethnic Homeland Partitioned between Malawi and Mozambique

(a) Lit vs. Not-Lit Pixels (b) Mean Light Density

Note: This figure illustrates Nyanja ethnic homeland that is partitioned between Malawi and Mozambique. We
observe that the Malawian side contains more lit pixels and features an overall higher average light density indicating
that the Malawian side is more advanced economically. The Mozambiquean side is located 1,262 km from its capital
city Maputo, while the Malawian side is situated only 251 km from its capital city Lilongwe. Our identification
strategy aims at exploiting this jump in distance from the capital city to explain differences in economic outcomes.

probability of a pixel to be lit by three percentage points (the average probability to be lit
is 2.5%). Alternatively, using DHS survey data we find that this corresponds to a reduction
in household wealth of 3.5 percentiles of the national wealth distribution. To confirm that
this effect is actually driven by isolation from the political center and not by remoteness
from a major city, we show that the effects are unique to the capital city and do not apply
to a set of placebo cities. Having established this reduced form relationship, we turn to
the question of how isolation from the capital city impacts economic performance. We
investigate three plausible mechanisms that are suggested by the literature: public goods
provision, market access and conflict. Our analysis indicates that the latter two are un-
likely to be relevant with regard to the effects under scrutiny. In contrast, we document
a significant and strong causal impact of distance from the capital city on the level and
quality of public goods provision suggesting that it plays and important role behind the
observed patterns.
We then explore two potential explanations for reduced public goods in isolated areas: (i)
isolated areas are less represented in national politics or (ii) isolated citizens are less able
to hold political leaders accountable for providing government services i.e. dysfunctional
accountability mechanisms. While political leaders are less likely to come from an isolated
region, those regions are more likely to participate in the ruling government coalition. This
finding contradicts the view that remote areas are systematically excluded from power. Yet,
we find clear evidence that isolated citizens are not able to incentivize the incumbent gov-
ernment for the provision of public services to the same extent as those close to the capital.
Despite being served with a lower level of public goods, people in isolated areas exhibit a
higher level of trust in their national political leadership, evaluate their performance better
and are less likely to believe that their leaders are corrupt. We argue that the positive
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view of the government is associated to the fact that isolated citizens consume the news
less frequently and therefore have less insights into government actions. To support this
hypothesis, we show that isolated citizens are less responsive to changes in the quality of
governance. In times of increased corruption and political misconduct, citizens close to the
capital city lose trust and reduce their electoral support of the incumbent government to a
significantly larger extent than citizens in isolated areas. This circumstance has important
adverse consequences for political accountability in isolated areas. Since isolated citizens
react less to government performance, vote-maximizing state executives are incentivized
to invest more government resources into areas closer to the capital city - as this is where
the marginal voters are.

Classical work on the origins of regional inequalities was conducted by Williamson (1965).
Since then, research on the determinants of regional development has provided ample
evidence that local geographical factors and endowments have a strong impact on the level
of economic prosperity (see for example Diamond (1997); Nunn and Wantchekon (2011);
Alesina et al. (2016); Jedwab and Moradi (2016); Bakker et al. (2018); Boxell (2019);
Michalopoulos et al. (2019); Alesina et al. (2021)). Other research points out that histor-
ical institutional framework conditions such as pre-colonial ethnic institutions are a key
factor for economic development (see for example Gennaioli and Rainer (2007), Michalo-
poulos and Papaioannou (2013) or Michalopoulos and Papaioannou (2020) for a recent
extensive literature review of African historiography). Hodler and Raschky (2014) and
Burgess et al. (2015), in turn, show that political factors such as the ethnic affiliation of
the incumbent president plays an important role for regional economic growth. The au-
thors document that under weak political institutions, public investments and economic
growth are biased in favor of the president’s home region. Thus, these studies clearly un-
derline that research on comparative development needs to go beyond the national level
and occupy itself with subnational patterns. Moreover, political mechanisms are a key
determinant of comparative regional development. These insights are especially relevant
in the African context where states are ‘artificial’, have not grown together as one over the
centuries and feature very high levels of heterogeneity and ethnic fractionalization (Alesina
et al., 2011; Michalopoulos and Papaioannou, 2020).

The remainder of this paper is organized into four sections. Firstly, Section 2.1 will intro-
duce the dataset, and establish the empirical identification strategy. Secondly, Section 2.2
will present our empirical results. In Section 2.3, we examine potential mechanisms that
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link isolation from the capital city and economic performance. Finally, Section 2.4 will
summarize the findings and conclude the paper.

2.1 Data and Empirical Strategy

There are 38 Sub-Saharan African countries in our sample (see Figure 2.A.7).4,5 Figure
2.1 presents the distribution of isolation from the capital city for our sample countries. As
becomes clear from the graph, isolation from the capital city is not a characteristic that
only applies to a small minority but with a median of 303 km (mean: 391 km) rather
represents the common case.

Figure 2.1
Isolation from the Capital City - Overview

Note: This figure is based on own calculations using the UN-adjusted population density grid for the year 2015
by Worldpop. It displays the density distribution of isolation from the capital city for our sample countries. The
population within a range of 20 km from the capital city that is omitted by default from all estimations (see Section
2.1.2). Each bar represents an interval of 25 km. The upper limit of isolation from the capital city is 2075 km. The
average person lives 391 km (median: 303 km) away from the capital city.

4We exclude small island states, Sudan and South Sudan due to their recent separation, as well as Somalia
and Somaliland due to the absence of a stable political power in Somalia and the special role of the
government in Somaliland (Eubank, 2012). We further exclude South Africa as it has subdivided its three
branches of government into three separate capital cities and Lesotho as it does not share a boundary with
any remaining country in the sample.

5For the most part, the assignment of capital cities is uncontroversial as the majority have persisted as such
since the colonial era. The exceptions are Ivory Coast and Nigeria where the capital city was ultimately
shifted in 1983 from Abidjan to Yamoussoukro and in 1991 from Lagos to Abuja respectively. Tanzania
has also been planning to move its capital from Dar es Salaam to Dodoma since 1973. However, since the
Tanzanian parliament had not been relocated till 2019, we use Dar es Salaam as capital city of Tanzania.
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2.1.1 Measuring Economic Performance Locally

To examine the impact of distance from the capital city, we require information on eco-
nomic activity for small spatial units. Since reliable administrative data on the local level
is not available in Sub-Saharan Africa, we use the 2016 VIIRS nighttime lights as our
main measure for local economic performance. Additionally, in order to cross-validate our
findings and address potential shortcomings of nightlights6, we complement our analysis
using the survey-based DHS wealth index.

Nighttime Lights (VIIRS):
The use of nighttime luminosity data as a proxy for economic activity has greatly increased
in recent years. Several studies have investigated and validated the consistency of nighttime
lights as a proxy for GDP (Henderson et al., 2012; Michalopoulos and Papaioannou, 2013;
Donaldson and Storeygard, 2016). As is common in the literature, we use two measures of
nightlights:

• Intensive approach (log nightlight intensity7):

Yi = ln(Lightsi + 0.002000212) (2.1)

• Extensive approach (the extent to which cells are lit or not lit):

Yi =

 1 if Lightsi > 0
0 if Lightsi = 0

(2.2)

Wealth Index (DHS):
The DHS (Demographic and Health Surveys Program) has collected nationally represent-
ative and geocoded8 data on sociodemographic, economic and health characteristics and
covers 30 out of the 38 countries in our sample. We use the most recent household recode
survey available for each available country and illustrate the DHS sample in Figure 2.A.8a.
Based on a household’s ownership of selected assets (such as car, bicycle, refrigerator, com-
puter, television) and household facilities (such as roof and floor material or type of toilet
facility), the DHS estimates a household’s ‘wealth index’ using principal component ana-

6Chen and Nordhaus (2011) and Cogneau and Dupraz (2014) point out that the predictive power of
nightlights for economic activity is low and noisy for areas of low population and nightlight density.

7Since the vast majority of pixels has a light density of 0, we add the minimal observed light density that is
greater than zero as a constant term before taking the natural logarithm. The results remain qualitatively
equivalent when using alternative constant terms such as 0.0001 or 0.001.

8The longitude and latitude of each respondent is recorded using a GPS receiver. Note that to protect the
privacy of respondents, the DHS displaces the GPS coordinates randomly up to 2 km for urban clusters
and up to 5 km for rural clusters with 1% of rural clusters being displaced up to 10 km. This displacement
is restricted such that respondents always stay within the same country and region.
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lysis (PCA).9 The PCA represents a composite measure of a household’s cumulative living
standard relative to other households within each country and year which makes it suitable
for applications that seek to understand the relative distribution of living standards within
countries. We normalize the PCA for each survey to make a household’s wealth index
more comparable to the relative position of households in other countries. As a second
alternative measure, we rank and assign each household its relative position in the national
wealth distribution. While the second measure loses valuable information regarding the
absolute difference between two consecutive households, its interpretation is more intuitive
as differences between households can be expressed in terms of percentile changes within
the national wealth distribution.

2.1.2 Identification

Challenge:
The most intuitive way to assess the effect of isolation from the capital city10 on local
economic development is a simple univariate analysis. In Figure 2.2, we plot the share of
lit pixels over distance from the capital city. The graph reveals that, on average, the prob-
ability of detecting nightlights in a pixel decreases exponentially with distance from the
respective capital city. Yet, this correlation is hard to interpret as it is shaped by a variety
of confounders. Most notably, isolation from the capital city is correlated with a range of
location-specific geographical factors, that are themselves determinants of economic per-
formance. For instance, African capitals tend to be located at the coast which means that
proximity to capital cities concurrently translates into the advantages of proximity to ports
and international trade (Henderson et al., 2017). Also, it is highly doubtful whether the
relationship actually reverses for very high distance as is suggested by the slightly positive
slope starting at around 1,250 km. It is more likely that these pixels just happen to be in
economically more dynamic areas such as the mining areas in the South-Eastern part of
DR Congo. Consequently, local economic framework conditions such as endowments with
natural resources or local institutions and culture (Michalopoulos and Papaioannou, 2013)

9For more information about the construction of the DHS wealth index visit: https://dhsprogram.com/t
opics/wealth-index/Wealth-Index-Construction.cfm.

10We measure isolation from the capital city as the Euclidean distance between a location (a pixel) and
the respective capital city. A drawback of this measure, as compared to more sophisticated travel time
or travel cost estimates, is that it is less precise. However, measures that take into consideration the
infrastructure development would induce reverse causality bias. This is due to the fact that places that
are more dynamic economically tend to be better connected and are therefore closer to the capital city
in terms of travel time. Combes and Lafourcade (2005, 346) underline the consistency of our metric by
showing that simple distance measures “do a very good job in capturing transport costs in cross-section
analysis”. Nevertheless, in Section 2.A.6, we report estimates using travel time based on OpenStreetMap
instead.
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confound simple correlations.

Figure 2.2
Isolation from the Capital City - Nighttime lights

Note: This figure plots the share of lit pixels over distance from the capital city. The population within a range of
20 km from the capital city that is omitted by default from all estimations (see Section 2.1.2). Each bar represents
an area of 75 km.

One way of addressing these shortcomings would be attempting to explicitly model all
relevant relationships by including a wide set of geographical covariates, Xi, and country
and ethnicity fixed effects, bc and be. Equation 2.3 illustrates the respective OLS model
equation where Yi refers to our measure of Nightlight Density in pixel i and CAPi to
log distance from the capital city.11 Yet, since we have to assume that we only control
for a subset, X̂i, of all relevant location-specific factors (Xi = X̂i + X̃i), CAPi is likely
to remain endogenous with unobserved location-specific characteristics εi = X̃i + ui and
E(εi|CAPi) 6= 0. As a result, OLS-estimations based on Equation 2.3 are likely biased.

Yi = βCAPi + γXi + bc + be + εi (2.3)

Construction of the BDD Model:
In the African context, a tangible solution is to establish counterfactuals in a BDD model at
national borders. Since African borders were arbitrarily drawn by the colonial powers and
divide pre-colonial ethnic homelands with similar geographical, social and historical traits,
11We log-transform distance to the capital city using the natural logarithm to account for the exponential
relationship suggested by Figure 2.2. The qualitative intuition behind the log-transformation is that the
effects of isolation from the capital city are decreasing with distance from the capital city. Yet, given
that the relationship in Figure 2.2 is strongly confounded and should therefore be taken with caution,
we confirm the adequacy of the log-transformation statistically based on the Akaike information criteria
applied to our more sophisticated BDD model.
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the assignment of areas close to the boundary to a particular country and its respective
capital city can consequently be interpreted as accidental (Asiwaju, 1985; Michalopoulos
and Papaioannou, 2016, 2020). Hence, national borders constitute an arbitrary cutoff
with a quasi-random jump in distance from the capital city. However, as opposed to Dell
(2010), Basten and Betz (2013), Michalopoulos and Papaioannou (2014) or Dell et al.
(2018), simply pooling areas around boundaries does not remove the heterogeneity in un-
observables with respect to treatment intensity. As opposed to country-wide indicators,
isolation from the capital city is autocorrelated i.e. evolves gradually along the bound-
ary which induces a cross-border correlation and induces a spurious relationship between
isolation from the capital city and other autocorrelated (un-)observable location-specific
factors that concurrently gradually evolve along both sides of the boundary. For example,
when considering the national boundary between Ghana and Togo (see Figure 2.3), dis-
tance from the capital city increases for both sides from South to North. The problem
is that (un-)observable factors such as distance from the coast or climatic conditions sim-
ultaneously evolve along the boundary. As a consequence, a pooled BDD would still be
confounded by unobservables.

Figure 2.3
The Ghana-Togo Border

(a) Accurate Map - Boundary Area
(b) Schematic Map - Border Seg-
ments

We overcome this problem by subdividing shared national boundary areas into smaller
and more homogenous segments and conduct the BDD within these segments. In Figure
2.3, s1-s11 sketch such segments for the example of the Ghana-Togo border schematically.
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Technically, we implement this step by including segment fixed effects that essentially
partial out anything that equally exists on either side of each boundary segment. Hence,
under the assumption that segments are balanced with regard to geographic covariates,
this procedure solves the problem of spurious geographic characteristics. We therefore
reduce our sample to a small buffer of 25 km around those boundary segments and conduct
balancing tests on observables. Yet, we still need to account for (i) the switch in the country
and hence the institutional environment as well as (ii) national boundaries that coincide
with ethnic boundaries. Firstly, since country characteristics are common across pixels
within a country, we can resolve the former by using country fixed. Therefore, our BDD
can be interpreted as a localized DID that compares the relative performance of different
areas within a country relative to their respective counterfactual segment sides. Secondly,
we can avoid that ethnic boundaries confound our estimation by nesting each segment
within a partitioned ethnic homeland p. Thereby, this procedure does not only balance
geographical covariates12 but also historical, political and cultural framework conditions.
Furthermore, we include polynomials of our running variable Distance from the Boundary
in km (DFB) for each ethnic homeland in each country separately into our model. These
polynomials pick up any potentially remaining heterogeneity within segments. Equation
2.4 presents our main BDD model equation.

Yi = βCAPi + ϕXi + bc + bs +
3∑

n=1
λn,c,pDFB

n
i + ξi (2.4)

Placebo Tests:
A potential caveat might stem from the circumstance that isolation from the capital city
always simultaneously means isolation from a major city and market. In order to affirm
that it is in fact isolation from the political center that is driving the effects of isolation
from the capital city, we run placebo tests. If hosting the political center is in fact the key
characteristic of capital cities with respect to the effects under scrutiny, then the effects
of isolation from other major cities within the country should be fundamentally different.
For this purpose, we create PLC, representing the log of distance from the placebo city
(in km), as a new variable. A placebo city is defined as the largest non-capital city in the
country.13 We then include PLC into Equation 2.4 and compare the estimated coefficients

12Michalopoulos and Papaioannou (2014, 172) provide an in-depth discussion about the origin of Sub-
Saharan African national boundaries and conclude that “differences in geography-ecology, location, and
natural resources across the border within partitioned ethnic homelands are small and not systematically
linked to differences in national institutions”. Conducting a range of balancing tests, we validate that
local (un-)obversable characteristics are also balanced with respect to isolation from the capital city.

13In order to avoid collinearity with the capital city, we further require the placebo city to be at least 50
km away from the capital city.
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for capital and placebo city isolation. However, this placebo test might be confounded by
the fact that capital cities tend to be the largest city within the country. To this end, we
decompose the effect of isolation from a city into a city type (capital vs. placebo city) and
city size effect (big vs. small city in terms of city population). We do so by partialling out
the size effect by additionally including interactions between CAP and PLC with their
respective population counts.

Yi = β1CAPi + τ1CAPi × Popcap,c + β2PLCi + τ2PLCi × Popplc,c (2.5)

+ ϕXi + bc + bs +
3∑

n=1
λn,c,pDFB

n
i + εi

2.2 Empirical Analysis

2.2.1 OLS

The results of the OLS estimations based on Equation 2.3 for a variety of alternative
specifications can be found in Table 2.1. As becomes clear from the table, irrespective of
the precise model specification, isolation from the capital city is significantly negatively
related to both the probability and the intensity with which a pixel is lit. A one percent
increase in distance from the capital city, on average, decreases the probability that a pixel
is lit by around 1.5 percentage points and the nightlight density by around 0.07 percent.
Figure 2.A.13 presents the respective OLS estimates conducted for each country separately.
Figure 2.A.13a compares the estimates of the full sample to those of the boundary sample
using extensive nightlights corresponding to columns (1) and (2). Likewise, Figure 2.A.13b
corresponds to the intensive margin corresponding to columns (5) and (6). The associated
balancing tests, for the example of distance from the coast, can be found in Table 2.A.14.

2.2.2 Border Discontinuity Graphs

In the next step, the goal is to overcome the imbalance in location-specific characteristics
with respect to the treatment intensity of isolation from the capital city. Yet, prior to
moving to the most elaborate BDDmodel based on Equation 2.4, we undertake a simplified,
yet more intuitive, graphical approach.
We begin by subdividing all national boundaries into segments of 50 km line length with
a buffer of 50 km on either side (see 2.A.9 for an illustrative map).14 Each segment side

14To obtain balanced subgroups, we drop segments where the minimum distance from the border on either
side is greater than 5 km or the maximum distance less than 45 km (which occurs mostly around very
uneven boundaries). This reduces our sample from 729,093 to 480,149 pixels.
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Table 2.1
OLS Results

Dependent variable:

Probability Pixel is Lit Log Light Density
in 2016 (VIIRS) in 2016 (VIIRS)

OLS Ethnicity FE OLS Ethnicity FE

All Border All Border All Border All Border

(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance from -0.020∗∗∗ -0.021∗∗∗ -0.025∗∗∗ -0.014∗∗ -0.068∗∗∗ -0.083∗∗∗ -0.101∗∗∗ -0.065∗∗∗
the Capital City (0.005) (0.006) (0.005) (0.005) (0.021) (0.026) (0.023) (0.024)

Geography Cov. YES YES YES YES YES YES YES YES
Country FE 37 37 37 37 37 37 37 37
Ethnicity FE NO NO 706 351 NO NO 706 351
Observations 3,518,146 416,667 3,518,146 416,664 3,518,146 416,667 3,518,146 416,664
Adjusted R2 0.080 0.082 0.130 0.133 0.069 0.069 0.126 0.120

Note: This table reports OLS and boundary area regression results based on Equation 2.3. In order to avoid
capturing the break between the capital city and the hinterlands, we exclude 20 km around each capital city from
our sample. To prevent misassignment of detected nightlights between countries due to blooming, we exclude 3 km
on each side of the border. The boundary area regressions (‘Border’) are restricted to all pixels with centroids within
the range of 25 km from shared national borders. The ‘Geographical Cov.’ include: distance from the coast (in km),
ruggedness (in % slope), % surface covered with water, mean annual temperature, minimum average temperature
during the coldest month, maximum average temperature during the warmest month (in ◦C), crop caloric index,
annual precipitation (in mm), longitude and latitude (projected in km). The ‘Ethnicity FE’ are based on the ethnic
homelands in the ‘Tribal Map of Africa’ (Murdock, 1959). Standard errors in parenthesis are clustered by ethnic
homeland. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

belongs to a different country (and capital city). Next, we determine the average distance
to the capital city for each segment side and assign them into the group ‘close’ if they
are relatively closer to their capital city as their opposing boundary segment and into the
group ‘far’ otherwise. Through this procedure, we obtain two groups that are balanced
with respect to location-specific covariates but with systematically different distances from
their respective capital cities. Thereby, this procedure enables us to assess the impact of
crossing the boundary from ‘far’ to ‘close’ to the capital city on nightlight density while
keeping geographical factors constant.
Figure 2.1 plots the border discontinuity graphs with 2.1a referring to the extensive and
2.1b to the intensive scale of nightlights. Areas on the left are on average 830 km and
areas on the right 430 km away from the capital city. The graph indicates a large jump
of around 25% in the probability with which pixels are lit when moving from relatively
remote to areas near the capital city.
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Figure 2.1
Boundary Discontinuity Graphs

(a) Extensive (b) Intensive

Note: The graphs illustrate the graphical BDD. The gray buffer around the lines represent the 95% confidence
interval. The bins on the left-hand side are, with an average distance of 830 km, relatively far from the capital city
and represent a total of 241,241 pixels. In contrast, pixels on the right-hand side are, with an average of around 430
km, relatively close to the capital city and represent 238,908 pixels.

Even if (un-)observable geographical factors should by construction be balanced between
the two regimes (‘far’ and ‘close’), this needs to be empirically confirmed. Figure 2.A.11
illustrates the respective graphs for a range of geographical indicators. All covariates,
except for distance from the capital city, move smoothly across the cutoff and do not
exhibit significant discontinuities. Based on the balancing tests, we can thus conclude that
the jump in nightlight density stems from differences in isolation from the capital city.
A remaining concern is that the results might be confounded by country characteristics.
For example, supposing that small countries perform better economically, and given that
small countries tend to constitute the ‘close’ group, we would expect to see comparable
patterns even in the absence of effects induced by isolation from the capital city. Moreover,
it might be that the effects are a result of isolation from a major city rather than isolation
from the political center. Yet, if either of the two concerns were valid, we should observe a
similar result when using the location of other major cities instead. Figure 2.2 depicts the
graphs when conducting the analogous analysis but for isolation from the placebo city.
As it turns out, the placebo graphs clearly indicate that there are no effects associated
with isolation from other cities.15 Yet, despite these highly encouraging results, at this
stage, we cannot be entirely sure that the estimated effects are causal. While the graphical
BDD, balancing and placebo tests give strong support to our hypothesis, in the next step,

15The respective balancing graphs, once again, indicate that (un-)observable geographical factors are bal-
anced and move smoothly across the cutoff (see Figure 2.A.12).
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Figure 2.2
Boundary Discontinuity Graphs - Placebo

(a) Placebo City Isolation - Extensive (b) Placebo City Isolation - Intensive

Note: The graphs illustrate the placebo tests regarding the graphical BDD. A placebo city is the largest non-capital
city in the country. The gray buffer around the lines represent the 95% confidence interval. The bins on the left-hand
side are, with an average distance of 820 km, relatively far from the placebo city and represent a total of 238,980
pixels. In contrast, pixels on the right-hand side are, with an average of around 440 km, relatively close to the
placebo city and represent 237,153 pixels.

we need to properly account for the switch between countries and ethnic homelands at the
cutoff.

2.2.3 Boundary Regression Discontinuity

In order to tackle the remaining shortcomings pointed out in Section 2.2.2, we move to
a more sophisticated BDD regression model based on Equation 2.4. In this setting, the
switch between countries at the boundary cutoff is accounted for using country fixed effects.
Furthermore, we identify arbitrary borders by exclusively using border pieces that divide
ethnic homelands. Additionally, we nest our boundary segments within the restricted
partitioned ethnic homelands to prevent ethnic shifts within segments (see Section 2.1.2).
Table 2.2 presents the BDD results for the extensive (columns (1)-(4)) and intensive
(columns (5)-(8)) scales of nightlight density. Columns (1) and (5) exclude all geograph-
ical covariates and serve as a reference to assess the extend to which potentially omitted
location-specific characteristics might confound our estimates. When comparing column
(1) to (2) and column (5) to (6), it becomes clear that our identification strategy proves
to be effective. Whether or not we include an extensive set of geographical covariates
changes the magnitude of our estimates only by a small and statistically insignificant mar-
gin. With the exception of ruggedness, all balancing tests confirm that in our BDD model,
(un-)observable factors are balanced with respect to treatment intensity - the coefficients
are either insignificant and/or very close to zero and economically negligible (see Table
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Table 2.2
Boundary Discontinuity Estimation

Dependent variable:
Probability Pixel is Lit Log Light Density

in 2016 (VIIRS) in 2016 (VIIRS)
(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance from -0.023∗∗ -0.025∗∗ -0.031∗∗ -0.031∗∗ -0.104∗∗ -0.112∗∗ -0.137∗∗ -0.143∗∗
the Capital City (0.010) (0.010) (0.012) (0.013) (0.048) (0.048) (0.058) (0.061)

Polynomials for: distance from the border × country × ethnicity (305 groups)
2nd order x x - - x x - -
3rd order - - x - - - x -
4th order - - - x - - - x
Geography Cov. NO YES YES YES NO YES YES YES
Country FE 36 36 36 36 36 36 36 36
Segment FE 569 569 569 569 569 569 569 569
Observations 168,620 168,620 168,620 168,620 168,620 168,620 168,620 168,620
Adjusted R2 0.175 0.177 0.182 0.185 0.155 0.156 0.161 0.164

Note: This table reports our main BDD regression results corresponding to Equation 2.4. In order to avoid capturing
the break between the capital city and the hinterlands, we exclude 20 km around each capital city from our sample.
To prevent misassignment of detected nightlights between countries due to blooming, we exclude 3 km on each side
of the boundary. The ‘Geographical Cov.’ include: distance from the coast (in km), ruggedness (in % slope), %
surface covered with water, mean annual temperature, minimum average temperature during the coldest month,
maximum average temperature during the warmest month (in ◦C), crop caloric index, annual precipitation (in mm),
longitude and latitude (projected in km). Boundary segments corresponds to a buffer of 25 km around border pieces
of 50 km line length and are entirely nested within a restricted ethnic homeland based on the ‘Tribal Map of Africa’
(Murdock, 1959). The observations are weighted such that each segment side has the same aggregated weight as its
counterfactual. Standard errors in parenthesis are clustered by boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.A.15). The models in columns (2)-(4) as well as (6)-(8) feature an increasing number
of polynomials of the running variable, distance from the border. In order to allow for
a sufficient degree of flexibility regarding the dynamics of nightlights around the bound-
ary, we choose third order polynomials as our default option. Consequently, applying our
BDD estimation framework, we can verify that isolation from the capital city has a neg-
ative causal impact on economic development. A one percent increase in distance from
the capital city decreases the probability of a pixel to be lit by 3 percentage points and
the nightlight intensity by 0.14 percent. The causal estimates are therefore of a slightly
higher absolute magnitude than the OLS and boundary area estimates (see Table 2.1).
This differential is likely triggered by the fact that OLS estimates are confounded by local
economic conditions. One such example are the economically high performing mining areas
in the South-Eastern part of DR Congo far away from the capital city Kinshasa.

Regarding inference, it is important to account for spatial autocorrelation which is why
we cluster standard errors at the boundary segment level by default. Alternatively, when
double-clustering standard errors at the country and country-pair border level for our
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baseline estimates in columns (3) and (7), we obtain -0.031∗ (0.017) and -0.137∗ (0.081)
respectively, and when double-clustering at the country and broad ethnicity family level
instead, we obtain -0.031∗ (0.018) and -0.137 (0.084) respectively (Cameron et al., 2011).
Furthermore, we apply the methodology by Conley (1999), that accounts for arbitrary
spatial dependence within a radius around each unit with and without Bartlett correction
for various distance cutoffs (50, 100, 200, 500 or 1000 km; see Table 2.A.18). These
alternative cluster specifications tend to yield slightly larger but overall similar standard
errors.

2.2.4 Placebo Tests

In this section, we use our BDD framework to test whether the driving characteristic of
isolation from the capital city is rooted in isolation from the political center or, alternatively,
based on isolation from a major city within the country. In order to answer this question
we compare the effects of isolation from the capital city to isolation from other major cities
within the country, the placebo cities, using our estimation approach specified in Equation
2.5.
The results in Table 2.A.19 indicate very clearly that the effects of isolation from the capital
city differ fundamentally from those of isolation from the placebo city. While, the impact
of isolation from the capital city is significantly negative across all model specifications16,
the effects associated with placebo city isolation are insignificant and very close to zero.
This result holds when decomposing isolation from a city into a city type and city size effect
(see column (6) and (8) where we additionally control for the interactions of capital and
placebo city isolation with their respective city population counts). These results imply
that the type of a city (capital vs. other cities) is more important than the city size. We
conclude that hosting the political center of the country is the driving force behind the
effects of remoteness from the capital city.

2.2.5 Sensitivity Analysis Summary

This section contains a summary of the robustness and sensitivity tests (see Section 2.A.5
in the appendix for more detail). In Table 2.A.6, we show that the results are robust
with regard to reducing the bandwidth of the segments around the boundary from 25 km
to 15 km, only exclude pixels within 1.5 km instead of 3 km around the boundary, and
applying a varying degree of zero up to fourth order polynomials of the running variable.

16Due to some collinearity between capital and placebo city isolation, the coefficient of isolation from the
capital city is slightly lower as compared to Table 2.2.
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We then show that the results are stable when increasing the sample restriction from
excluding 20 km (default) around the capital city to 50, 75 and 100 km (Table 2.A.6).
In Figure 2.A.5, we demonstrate that the results are not driven by an individual country
or boundary. Further, in Table 2.A.8, we examine if there are heterogeneities between
groups of countries. We find that the effects seem to be more relevant in democracies, as
opposed to autocracies, and more relevant in relatively underdeveloped countries. In Table
2.2, we show that the pattern of newly lit pixels since 1992 is also negatively associated
to remoteness. This finding supports the view that the adverse effects of isolation from
the capital city are still actively shaping local economic growth as opposed to reflecting a
persistent pattern from the past. We also show that the representation of ethnicities i.e.
whether they are a minority or majority within the country are not driving the effects.
In addition, we demonstrate that the implications of isolation from the capital city go
beyond population agglomeration and hold when controlling for population density or
using measures of light per capita as dependent variable (see Table 2.A.9). We also show
that our results hold when controlling for distance to the closest river, waterbody, mine,
city of varying thresholds and regional capital city17 within the country (see Tables 2.A.10
and 2.A.11). Finally, in Table 2.A.12, we cross-validate our findings using the DHS wealth
index as an alternative measure of economic performance.
Consequently, based on a wide range of sensitivity tests, we conclude that our results
are highly robust to a wide range of alternative specifications and considerations. The
robustness results thereby confirm our estimated negative causal impact of remoteness
from the capital city on economic performance.

2.3 Mechanisms

So far, we have shown that isolation from the political center within the country, the capital
city, has strong adverse causal net effects on local economic performance. Since isolation
from the capital city itself is not an economic variable, there must be a more concrete
economic link between remoteness from the capital city and economic performance.
The provision of public goods is a fundamental driver of economic development (Besley
and Ghatak, 2006; Dittmar and Meisenzahl, 2019) and Campante and Do (2014) find that
US states with isolated capital cities provide less public goods. This result might reflect

17We define the regional capital city as the first-level administrative capital city as defined in the global
administrative unit layer (GAUL) by the Food and Agriculture Organization of the United Nations
(FAO). We retrieved information about the name of the respective regional capital city from various
sources including Wikipedia and geocoded the data using OpenStreetMaps. In a last step, we manually
examined and corrected the shapefile of regional capital cities to avoid geocoding errors.
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aggregations of the local economic patterns that are under scrutiny in this study and might
be a result of low levels of public goods in isolated areas. Using a fixed effects OLS model,
Michalopoulos and Papaioannou (2014) find that distance from the capital city is negat-
ively correlated with law enforcement, which represents a public good in the wider sense.
The authors’ finding can therefore be interpreted as early suggestive evidence that points
at reduced levels of public goods in African regions isolated from the capital city.

Using our BDD model, in this section, we show that a variety of local public goods are
undersupplied in isolated areas which supports the view that the level of public goods
provision constitutes an important mediator between isolation and economic development.
In a subsequent step, we shed light into the causes of the low levels of public goods provision
in remote areas and investigate political representation and accountability as potential
mechanisms. While the results on political representation are ambiguous, the results on
accountability clearly suggest that dysfunctional feedback and accountability mechanisms
are relevant with regard to the effects. Lastly, we investigate two alternative potential
channels that might constitute important mediators: Market access and conflict. We show
that neither market access nor conflict are likely to be relevant with regard to the observed
patterns.

2.3.1 Public Goods

Based on rounds 5, 6 and 7 of the Afrobarometer, we generate an index on the provision
of public goods reflecting whether a cluster is provided with paved roads, electricity grid
access, piped water and a sewage system. The public goods index is the average of binary
responses about the availability of the respective provisions. Consequently, the index can
take the values of 0, 0.25, 0.5, 0.75 and 1 corresponding to the respective share of public
goods being present. Table 2.1 combines the results of OLS, boundary area and BDD
regression models, similar to those in Section 2.2. We include a range of cluster and geo-
graphy controls by default into all models. This includes a dummy variable corresponding
to whether the cluster is located in an urban or rural area as this is directly related to
public goods provision. However, since the degree of urbanization is an outcome of remote-
ness and thereby endogenous to the model, the estimated absolute magnitudes constitute
lower bound estimates.18 Furthermore, it should be noted that the Afrobarometer dataset
has less observations than the nightlights sample. In order to avoid the sample size from

18When excluding the urban dummy, the estimated coefficient corresponding to Table 2.1 column (3) is
-0.124∗∗ (0.057). Additionally or alternatively measuring agglomeration as the mean population density
in a 5 or 10 km buffer around the cluster has no significant impact on the estimated coefficient.
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getting too small, we do not restrict the ethnic homelands with a negative buffer before
defining the boundary segments. Moreover, since Afrobarometer respondents are clustered
in enumeration areas, with in some cases just one or two clusters per segment side, we do
not account for distance from the boundary disaggregated but rather focus on capturing
the general relationship.

Table 2.1
Channel Analysis: Public Goods Provision (Afrobarometer)

Dependent variable: Public Goods Index
OLS Boundary Area BDD

(1) (2) (3)

Log Distance from -0.020∗∗ -0.034∗∗∗ -0.088∗∗
the Capital City (0.009) (0.012) (0.038)

Polynomials for: distance from the border
3rd order - - x
Cluster Cov. YES YES YES
Geography Cov. YES YES YES
Country × Round FE 73 71 63
Segment FE - - 138
Observations 11,959 1,868 1,069
Adjusted R2 0.480 0.487 0.670

Note: This table reports the regressions on the impact of isolation from the capital city on the level of public
goods provision using the Afrobarometer survey. The ‘Cluster Cov.’ include the average age, age squared and sex
of all respondents in the cluster. The ‘Geographical Cov.’ include: distance from the coast (in km), longitude and
latitude (projected in km) and whether the cluster is located in an urban or rural setting. Column (1) correspond
to the full sample OLS regression, columns (2) to the 25 km boundary area regression and column (3) to the BDD
regression. Boundary segments corresponds to a buffer of 25 km around border pieces of 50 km line length and are
entirely nested within an ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock, 1959). In column (1),
the observations are weighted according to the Afrobarometer survey weights. In column (3), the observations are
weighted such that each side of a segment has the same aggregated weight as its counterfactual. Standard errors in
parenthesis are clustered by Afrobarometer cluster and ethnic homeland (columns (1) and (2)) and Afrobarometer
cluster and boundary segment (column (3)). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A one percent increase in isolation from the capital city decreases the probability index
of public goods provision by around 10 percentage points.19 This relationship also holds,
albeit with a slight upward bias, for the OLS and boundary area regressions.

To cross-validate our findings on public goods we use alternative geocoded measures of
public goods including (i) a large dataset on roads based on Michelin maps that were geo-
coded and digitized by Jedwab and Storeygard (2020) based on which we create dummies
indicating whether a pixel intersects with a road or tarred road and (ii) an extensive data-
set on the location of health facilities across the African continent assembled by Maina
et al. (2019) based on which we compute distance to the closest health facility (including
19The corresponding placebo tests and associated F-tests indicate that the effects are indeed specific to
isolation from the capital city and do not hold for placebo cities.
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public and private lower tier health centers and hospitals), the closest hospital as well as
the closest public health facility (public health center or hospital).
Column (2) in Table 2.A.20 indicates that a one percent increase in distance from the
capital city reduces the probability of a pixel to be connected to a tarred road by 1.9 per-
centage points. Columns (4) and (5) report that a one percent increase in distance from the
capital city increases the distance to the closest higher tier hospitals or publicly provided
health facility by around 0.4 and 0.6 percent respectively. In contrast, for coarser measures
like the availability of any type of road (column (1)) or any medical center (column (3)),
there are no significant differences between areas close and far from the capital city. This
finding underlines that it is important to use detailed data and take into consideration the
quality when evaluating public goods provision.

We conclude that people in areas isolated from the capital city receive significantly less and
lower quality public goods and services from their political leaders as compared to those
closer to the capital city. Public goods are therefore likely to be an important mediator
between isolation from the capital city and economic development.
However, it is not obvious why the provision of public goods in isolated areas is reduced. It
might be that for economic reasons such as high transport costs, lack of specialized labor
and intermediary goods the provision of public goods is simply more costly and therefore
reduced in isolated areas. In context of India’s national rural road program, Asher et al.
(2018) document that the cost of road construction is the same in areas close and far from
regional headquarters. While we do not have access to data to explicitly test for this po-
tential channel in our context, these findings are indicative that the cost of public goods
provision such as road infrastructure is generally similar across locations. Furthermore,
if the cost of certain public goods would be a central mechanism, it should not primarily
be determined by distance from the capital city but rather by remoteness from cities and
markets in general. Yet, the fact that our placebo tests indicate that distance from other
major cities has no comparable effect on public goods (Table 2.A.22), and that the effects
of remoteness from the capital city are not primarily associated to market access or re-
moteness from the regional capital or closest city (see Tables 2.5 and 2.A.10) puts the cost
argument as a key driver into question. We therefore consider it more likely that there are
political mechanisms at play that lead to a reduced public goods provision in areas isolated
from the capital city.

In the next step, we empirically investigate two potential political explanations. Firstly,
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geographical isolation might translate into political isolation and thereby exclusion from
government resources. For example, isolated areas might be less represented within the
incumbent government and therefore benefit less from ethnic or regional favoritism (Hodler
and Raschky, 2014; Dreher et al., 2019). Another explanation could be that public goods
might be lower due to dysfunctional feedback and accountability mechanisms. Political
agents might simply lack the incentives to provide those in isolated areas with public
goods.

2.3.2 Public Goods and Political Representation

We start by investigating whether political representation and ‘political favoritism’ are
relevant in this context and test whether segment sides farther away from the capital
city exhibit a lower access to power. For this purpose, we examine whether the national
leaders are more likely to come from the region of segment sides closer to the capital city
using an updated version of the database by Dreher et al. (2016, 40-41). Since measuring
an area’s political representation and access to power solely based on the head of state
might not sufficiently reflect the overall power access, we complement the analysis using
the Ethnic Power Relations Core Dataset 2019 (EPR) (Vogt et al., 2015) and combine it
with spatial information about the location of the respective politically relevant groups
(Wucherpfennig, 2011). The results in Table 2.2 indicate that a one percent increase in
distance from the capital city decreases the probability that the incumbent political leader
comes from the region of the segment side by 9 percentage points. In contrast, it turns out
that a one percent increase in isolation increases the number of years participated in the
ruling government by 3.6 years (within a period of 18 years since 2000).20 Since the results
go in opposite directions, it remains ambiguous which of the two outweighs the other.
Given that these results indicate that isolated areas are not systematically excluded from
power, we conclude that political representation is unlikely to be the central mechanism.

2.3.3 Public Goods and Accountability

Next, we examine whether accountability is relevant to the mechanism between isolation
and public goods provision. The idea behind this channel is that due to information fric-
tions isolated citizens are less aware about government actions and, as compared to their
counterparts close to the capital, penalize their leaders less for a low provision with public

20A simple explanation for this phenomenon might be that incumbent governments tend to include isolated
groups into the government to counteract secessive aspirations. Another possible reason could be that
isolated groups are striving to have an impact politically and overcompensate for their geographical
isolation.
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Table 2.2
Channel Analysis: Political Representation Balancing Tests

Dependent variable: Political Representation

Region of Birth of Leader (1/0) EPR Power Coalition Status (in years since 2000)

All Since 2000 Ongoing Irrelevant Powerless Junior Senior In Power

(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance from -0.026 -0.152∗∗∗ -0.091∗∗∗ -2.569∗∗∗ -1.096∗∗ 2.278∗∗∗ 1.386∗∗ 3.664∗∗∗
the Capital City (0.039) (0.032) (0.027) (0.838) (0.530) (0.785) (0.667) (0.909)

Population Share 1.232∗∗∗ 1.188∗∗∗ 0.837∗∗∗ - - - - -
of Region (0.308) (0.247) (0.224)

Country FE 35 35 35 33 33 33 33 33
Segment FE 568 568 568 531 531 531 531 531
Observations 1,138 1,138 1,138 1,064 1,064 1,064 1,064 1,064
Adjusted R2 0.438 0.347 0.248 0.468 0.704 0.442 0.612 0.564

Note: This table reports the balancing tests on political representation with regard to isolation from the capital city.
The observational unit in these models are the BBD boundary segments. The dependent variables in column (1)-(3)
are dummies indicating whether a head of state came from the same admin-1 region as the boundary segment side
(since independence, since 2000 and only refering to incumbent state leaders). The dependent variables in columns
(4)-(8) correspond the total number of years a segment side has spent under the respective power access status in
the period between 2000 and 2018 (more information on these categories can be found in Section 2.A.1). Boundary
segments corresponds to a buffer of 25 km around border pieces of 50 km line length and are entirely nested within
a restricted ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock, 1959). Standard errors in parenthesis
are clustered by boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

goods. As a consequence, the marginal benefit of politicians to provide local public goods
is reduced in isolated areas.
We begin by analyzing how people in different geographical locations relate to their polit-
ical leaders. Given the reduced provision of public goods, we might expect that isolated
groups demonstrate mistrust towards their government. However, as it turns out, people
farther isolated from the capital exhibit a significantly higher level of trust in their political
leadership (see column (1) in Table 2.3). The results in Table 2.A.21 demonstrate that the
increased trust in politicians is associated with the ruling party but not with the opposi-
tion party suggesting that the reason for the higher trust does not stem from a generally
higher level of trust or credulity in isolated areas. Instead, it seems that the increased
trust in state leaders is a result of a lower corruption perception and a higher perform-
ance evaluation of national leaders (see columns (1) and (2) in Table 2.3). These patterns
support the view that isolated citizens are not aware of their disadvantaged position and
therefore do not demand a higher provision of public services. Isolated citizens might trust
their national leaders more because they know less about them. In line with this view,
we find significant imbalances with regard to the frequency of news consumption which is

Accountability Failure in Isolated Areas: The Cost of Remoteness from the Capital City 73



considerably smaller in isolated areas (see Table 2.3).21 The limited exposure of media and
information might also be the reason why isolated citizens are less aware of the importance
of accountability mechanisms in politics and are less inclined to advocate for checks and
balances on the government (Table 2.3).

Table 2.3
Channel Analysis: Perception of Political Leadership and Accountability

BDD Model with dependent variable z-score of:
Trust in Government Government Frequency Advocate
Political Corruption Performance of News Checks and
Leaders Perception Evaluation Consumption and Balances

(1) (2) (3) (4) (5)
Log Distance from 0.191∗∗∗ -0.078∗ 0.171∗∗∗ -0.139∗∗ -0.094∗∗
the Capital City (0.061) (0.043) (0.064) (0.066) (0.041)

Polynomials for: distance from the border
3rd order x x x x x
Household Cov. YES YES YES YES YES
Geography Cov. YES YES YES YES YES
Country × Round FE 70 71 71 71 71
Segment FE 140 140 140 140 140
Observations 7,812 6,705 6,593 8,113 7,763
Adjusted R2 0.178 0.164 0.202 0.169 0.135

Note: This table reports the regressions on the impact of isolation from the capital city on the perception of political
leaders and accountability. The ‘Household Cov.’ include: age, age squared and sex of respondent. The ‘Geographical
Cov.’ include: distance from the coast (in km), longitude and latitude (projected in km) and whether the household is
in an urban or rural setting. Columns (1)-(3) correspond to trust, corruption perception and performance evaluation
of their national political leadership. Column (4) corresponds to the frequency of news consumption and column (5)
to the extent to which respondents are advocating a system of checks and balances to monitor the actions of their
political leaders. All models are BDD regressions using ‘Segment FE’ for boundary segments of 50 km length with
a buffer of 25 km that are nested within an ethnic homelands based on the ‘Tribal Map of Africa’ (Murdock, 1959).
All observations are weighted such that each side of a segment has the same aggregated weight as its counterfactual.
Standard errors in parenthesis are clustered by Afrobarometer cluster and boundary segment.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

To confirm that it is information frictions and not other differences between areas close
and far from the capital city that lead to an asymmetric perception and trust in political
leaders, we need to show that the difference in the perception of political leaders changes
when their performance changes. Hence, if our hypothesis was true, we should observe that
isolated citizens adjust their perception and evaluation of the political leadership less when
the level of misgovernance and corruption changes. We can test this empirically by creating
a panel of Afrobarometer rounds 5 (2011-2013), 6 (2014-2015) and 7 (2016-2018) and add
information on government performance using the corruption perception index (CPI) by
Transparency International as a proxy.22 We define the ‘curruption level’ as 100 − CPI,
21This result is in line with Campante and Do (2014) who find that people further away from US state
capitals are less informed about state politics.

22Transparency International defines corruption as ‘abuse of entrusted power for private gain’ and produces
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hence ranging from 0 to 100 with higher values indicating higher levels of corruption.

In Table 2.4, we analyze how citizens update their beliefs about their political leaders over
time using a panel including all respondents23 and a panel reduced to boundary segments.
The estimate on the interaction of the corruption level and log distance from the capital
city explicitly compares how people further from the capital city react relative to those
closer to the capital city when the corruption level changes. The results indicate that when
the corruption level rises, isolated citizens increase their corruption perception less than
those closer to the capital city, vice versa. Similarly, isolated citizens lose less trust and
reduce their marginal propensity to vote for the incumbent government less when the level
of corruption and misgovernance is rising, vice versa.
Using the CPI as a proxy for government performance would be problematic when com-
paring levels across countries, as the level of the CPI could be related to endogenous
characteristics such as institutions that could also be related to how citizens perceive the
government perception of citizens. However, by including country fixed effects, we specific-
ally focus on how changes in corruption relate to changes in perception and voting. One
of the disadvantages of focussing on changes is that it introduces even larger measurement
error in proxying government performance using the CPI. Since this measurement error
is likely to be idiosyncratic and orthogonal to unobservables, the estimates suffer from
attenuation bias - hence the absolute magnitude of the effects should be interpreted as a
lower bound estimate.

These results have important repercussions on the functioning of effective accountability
mechanisms that keep the actions of political agents aligned with the interest of the people.
Since isolated citizens are less reactive to their political agents - including both penalties
for bad and rewards for good government actions - national leaders are left with reduced
incentives to allocate government resources to isolated areas. From the perspective of
political leaders, the marginal increase in votes from improved government performance
is lower in isolated areas. This can explain why we observe a reduced level and quality
of public goods and services in areas isolated from the capital city. Moreover, the corres-
ponding placebo tests indicate that these patterns and dynamics are specific to isolation

the CPI every year based on a variety of sources including assessments from several international institu-
tions as well as a range of surveys with experts. Unfortunately, we cannot integrate earlier rounds of the
Afrobarometer because the CPI uses a new methodology since 2012 and some of Afrobarometer questions
that we use are not available for earlier rounds.

23Note that, as always, we exclude respondents within 20 km from the capital city by default.
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Table 2.4
Channel Analysis: Dynamic Political Support

Dependent variable:
Corruption Perception Trust Pol. Leaders Vote for Government

Panel BDD-Panel Panel BDD-Panel Panel BDD-Panel
(1) (2) (3) (4) (5) (6)

Log Corruption Level × -0.392∗∗∗ -0.464 0.177∗ 1.318∗∗ 0.165∗∗∗ 0.963∗∗
Log Dist CAP (0.113) (0.703) (0.100) (0.576) (0.058) (0.448)

Polynomials for: distance from the border
3rd order - x - x - x
Log Corruption Level absorbed Yes absorbed Yes absorbed Yes
Log Distance from Yes Yes Yes Yes Yes Yes
the Capital City
Geography Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Cnt × Ethn × Round FE Yes No Yes No Yes No
Country FE No Yes No Yes No Yes
Ethnicity FE No Yes No Yes No Yes
Round FE No Yes No Yes No Yes
Segment × Round FE - 161 - 161 - 149
Observations 77,712 4,089 86,678 4,755 63,137 3,195
Adjusted R2 0.158 0.108 0.193 0.152 0.280 0.226

Note: This table reports the regressions on how Afrobarometer respondents adjust their beliefs about corruption
among politicians, trust into the political leadership and whether they would vote for the incumbent government
with regard to changes in degree of political misconduct as measured by the CPI as well as with regard to how far
away they live from the capital city. The ‘Household Cov.’ include: age, age squared and sex of respondent. The
‘Geographical Cov.’ include: distance from the coast (in km), longitude and latitude (projected in km) and whether
the household is in an urban or rural setting. The dependent variable in columns (1)-(2) is the normalized corruption
perception among political leaders, in columns (3)-(4) it is the normalized level of trust into the political leadership
and in columns (5)-(6) it is a dummy indicating whether the respondent would vote for the incumbent government if
there was an election held. All observations are weighted such that each side of a segment has the same aggregated
weight as its counterfactual. Standard errors in parenthesis are clustered by Afrobarometer cluster and ethnicity ×
round. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

from the capital city and do not apply to isolation from placebo cities (see Tables 2.A.22
and 2.A.23).

2.3.4 Market Access and Trade

As an alternative potential channel, distance to the capital city might affect economic
growth through reduced market access (Redding and Sturm, 2008; Buys et al., 2010; Bo-
sker and Garretsen, 2012; Storeygard, 2016; Donaldson and Hornbeck, 2016; Jedwab and
Moradi, 2016; Gibbons and Wu, 2017; Jedwab et al., 2017). Places that are farther away
from the capital city might be farther from markets in general and face higher costs when
buying and selling intermediate and final goods and services. This, in turn, might have
negative consequences on the opportunities for economies of scale and productivity growth.
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For this reason, we test if segment sides closer to the capital city exhibit higher levels of
market access, MAs. Since in a BDD framework market access would by construction we
balanced across the boundary under the assumption of open borders, for this exercise we
restrict market access to within the country and keep in mind that this inevitably overes-
timates potential differences in market access across the border. We apply the conceptual
framework of Harris (1954), Donaldson and Hornbeck (2016) and other recent applications
in the African context by Chiovelli et al. (2018) and Jedwab and Storeygard (2020) and
approximate market access as:

MAs ≈
D∑
d=1

τ−θs,d Nd (2.6)

In Equation 2.6, τs,d refers to travel time between segment side s and all destination cit-
ies d within the country, θ represents the trade elasticity parameter that captures how
trade declines with travel time, and Nd measures the market size that we approximate
with the destination city population. We obtain a comprehensive database of geolocated
African cities including their population size from Africapolis and compute travel times
using OpenStreetMaps via the OSRM routing engine. Regarding the trade elasticity para-
meter, we follow Donaldson and Hornbeck (2016), Chiovelli et al. (2018) and Jedwab and
Storeygard (2020) and use 3.8 as default but also report results when alternatively using
2.79 and 4.46 based on the estimations conducted by Simonovska and Waugh (2014). The
results in Table 2.5 indicate that there is no significant different in market access in areas
close or far from the capital city when we exclude the capital city itself irrespective of which
trade elasticity parameter we chose. Moreover, the fact that market access is significantly
reduced when including the capital city itself is not surprising as distance to the capital
city mechanically decreases market access if the capital city is itself defined as a market.
Nevertheless, since capital cities constitute important markets within the country, these
effects might be significant. Yet, if the capital city actually mattered as a market rather
than a capital city, we should observe similar effects for remoteness from other major mar-
kets within the country. The fact that, even when accounting for city and hence market
size, the coefficients associated with placebo cities are insignificant (see Table 2.A.19) raises
doubt on the relevance of market access in this context.
Another way of testing for this channel makes use of the fact that the shared national
boundaries in our sample feature different degrees of border permeability with regard to
trade. If borders did not constitute barriers for trade, in our BDD design, counterfactual
pixels on both sides of the boundary would by construction have the same market access.
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Table 2.5
Channel Analysis: Market Access

Dependent variable: Market Access Index

Trade Elasticity Parameter
τ = 2.79 τ = 3.8 τ = 4.46

incl. CAP excl. CAP incl. CAP excl. CAP incl. CAP excl. CAP

(1) (2) (3) (4) (5) (6)

Log Distance from -0.772∗∗∗ -0.220 -0.748∗∗∗ -0.208 -0.716∗∗ -0.205
the Capital City (0.169) (0.193) (0.275) (0.306) (0.348) (0.381)

Geography Cov. Yes Yes Yes Yes Yes Yes
Country FE 35 35 35 35 35 35
Segment FE 551 551 551 551 551 551
Observations 1,104 1,104 1,104 1,104 1,104 1,104
Adjusted R2 0.692 0.666 0.630 0.611 0.607 0.592

Note: This table reports the results on market access statistics. For each segment side we estimate a market index
indicator based on Equation 2.6 using the OSRM routing engine and applying different trade elasticity parameters.
Columns (2), (4) and (6) exclude the capital city itself as a destination market. The ‘Geographical Cov.’ include a
segment side’s average of distance from the coast (in km), ruggedness (in % slope), % surface covered with water,
mean annual temperature, minimum average temperature during the coldest month, maximum average temperature
during the warmest month (in ◦C), crop caloric index, annual precipitation (in mm), longitude and latitude (projected
in km). Boundary segments corresponds to a buffer of 25 km around border pieces of 50 km line length and are
entirely nested within a restricted ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock, 1959). Standard
errors in parenthesis are clustered by boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Therefore, if market access was indeed a relevant channel, we should observe that the
effects of remoteness from the capital city are strongest at relatively closed and lower
at relatively open national boundaries. In Table 2.A.24, we therefore test whether the
impact of isolation from the capital city is lower at boundaries within trade blocs such as
within free trade agreements (FTA), customs and monetary unions. For this purpose, we
include interactions between Log Distance from the Capital City and dummies indicating
low barrier boundaries into our main BDD model (see Equation 2.4). In columns (1) and
(2) in Table 2.A.24, we focus on boundaries within FTAs. The results suggest that the
effects are stronger within FTAs than at more restrictive boundaries which is in contrast
to the idea that market access is driving the results. In columns (3) and (4), we tighten the
criterion for relatively open borders and only consider customs unions and in columns (5)
and (6) only those that also share a common currency. In both cases, we cannot reject the
hypothesis that the effects at relatively open boundaries are any different than at restrictive
ones.
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2.3.5 Conflict

There is vast empirical evidence that conflict has negative implications for economic de-
velopment (see for example Ray and Esteban (2017) for a general overview and Serneels
and Verpoorten (2015) or Besley and Reynal-Querol (2014) for evidence from the African
continent). Further, there are multiple ways in which isolation from the capital city might
affect conflict, hence ultimately economic performance. Since a conflict or protest farther
away from the capital represents a lower threat to a government (Johnson and Thyne,
2018; Campante et al., 2019), the state might be less inclined to prevent or resolve such
isolated conflicts. Also, the capacity of a state to counter conflicts in isolated areas might
simply be restricted and even attract conflict parties to target remote areas (Müller-Crepon
et al., 2021). Moreover, a potentially lower state presence might impact the propensity
for ethnic cleavages and conflict. Lastly, conflict might be a result of inequalities between
areas close and far from the capital city and thereby reinforce the adverse implications
of isolation from the capital city. On the other hand, conflict might be less prevalent in
isolated areas because isolated citizens consume the news less frequently and potentially
have less media and communication channels to get access to information or coordinate
for protest (Manacorda and Tesei, 2020).

In order to assess whether conflict is actually relevant in this context, we test whether
there is any pattern of increased or perhaps even decreased conflict in isolated areas. To
this end, we use our ACLED dataset of conflicts by type (Violent Events, Demonstration
Events and Non-Violent Action) (Raleigh et al., 2010). Out of the total 88,853 conflict
events in our sample countries between 01.01.2000 and 27.11.2019, a total of 3,446 fall into
the area of our boundary segments. We aggregate the frequency of conflict that fall within
each segment side and run BDD regressions with segment sides as the observational unit
(see Table 2.6). Since conflict frequency might directly increase with population density,
in columns (5)-(8), we additionally account for the total population count in each segment
side. Our results demonstrate that there is no significant relationship between distance
from the capital city and the frequency of any type of conflict (or all types of conflicts
aggregated). This result is in contrast to Campante et al. (2019) who find that conflict
is more likely to emerge closer to the capital city. One reason for the different findings
could be related to spatial spillovers of conflicts across the border along ethnic lines which
is common in Africa (Bosker and de Ree, 2014; Michalopoulos and Papaioannou, 2016).
As a results we might underestimate the true impact of remoteness on conflict. However,
even if this was the case, as long as conflict has a similarly adverse effect on economic
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performance irrespective of whether it originates or was spilled over to a segment side, it is
very unlikely to be related to the difference in economic outcomes between segment sides
close and far from the capital city.

Table 2.6
Channel Analysis: Conflict

Dependent variable: Conflict frequency (ACLED)

Viol Demo Non-V All Viol Demo Non-V All

(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance from 0.356 0.061 0.130 0.547 0.413 0.186 0.151 0.751
the Capital City (0.720) (0.632) (0.146) (1.344) (0.732) (0.573) (0.149) (1.318)

Population Count - - - - 0.026 0.056∗∗ 0.010∗ 0.092∗
in Segment Side (0.021) (0.026) (0.006) (0.050)

Country FE 35 35 35 35 35 35 35 35
Segment FE 568 568 568 568 568 568 568 568
Observations 1,138 1,138 1,138 1,138 1,138 1,138 1,138 1,138
Adjusted R2 0.415 0.055 0.188 0.325 0.423 0.247 0.246 0.377

Note: This table reports the balancing tests on conflict with regard to isolation from the capital city. The observa-
tional unit in these models are the BBD boundary segments. The dependent variables are instances of conflict by
type in the respective side of the boundary segment in the period between 01.01.2000 and 27.11.2019. Column (1)
refers to ‘violent conflicts’, column (2) to ‘demonstrations’, column (3) to the number of ‘non-violent actions’ and
column (4) aggregates all three kinds of conflict (for more information on these categories please refer to the ACLED
homepage at: https://www.acleddata.com/resources/general-guides/). Boundary segments corresponds to a
buffer of 25 km around border pieces of 50 km line length and are entirely nested within a restricted ethnic homeland
based on the ‘Tribal Map of Africa’ (Murdock, 1959). Standard errors in parenthesis are clustered by boundary
segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

To conclude, our analysis suggests that public goods provision is an important mediator
between remoteness from the capital city and economic performance. Furthermore, our
results support the view that dysfunctional accountability mechanisms are important re-
garding the reduced level of public goods provision. In contrast, based on our analysis, it
is unlikely that market access, trade or conflict are relevant with regard to the implications
of isolation from the capital city.

2.4 Conclusion

We investigate the impact of isolation from the capital city on economic development in
Sub-Saharan Africa using extensive remote sensing data and large collections of geocoded
and survey data. We obtain quasi-random variation in treatment at arbitrarily set national
borders that divide ethnic homelands with similar geographical, social and historical char-
acteristics. Conducting our analysis in a BDD regression framework, we deliver tangible
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evidence that isolation from the capital city imposes strong adverse effects on the level
of local economic performance. We perform a series of alternative specifications, balan-
cing and robustness tests that underline that our estimates are in fact causal. Moreover,
comparing the effects of isolation from the capital city to isolation from other major cities
confirms that hosting the political center is the driving force behind the effects of isolation.

In addition, we investigate potential channels through which isolation from the capital city
might affect economic performance: public goods provision, market access and conflict. We
document that remoteness from the capital city, as opposed to other major cities, is linked
to a significant drop in the level of public goods provision. In order to understand the im-
balances in public goods, we explore two potential explanations: (i) geographical isolation
translates into political isolation and thereby exclusion from government resources and (ii)
due to limited accountability political leaders have lower incentives to allocate government
resources to isolated areas. Our findings regarding political representation are ambiguous
- the head of state is more likely to come from regions closer to the capital city but remote
regions are more often part of the coalition in power. In contrast, our findings provide clear
support for the accountability channel. Despite receiving less public goods, isolated cit-
izens have more trust in their national political leaders, evaluate their performance better,
believe less that they are corrupt or that their actions should be monitored. At the same
time, people in isolated areas follow the news less frequently. We interpret this as reflecting
an asymmetry in information about political affairs between areas far and close from the
capital. We confirm this hypothesis empirically by showing that citizens in isolated areas
are less sensitive to changes in the quality of governance - they are less likely to withdrawal
government support in times of rising misgovernance and corruption but also reward them
less for good governance. As a consequence, political leaders that seek to gain popular
support with limited government resources are incentivized to allocate more public goods
to areas closer to the capital where the expected political return to investment is higher.
We therefore conclude that dysfunctional accountability mechanisms are likely to be a root
cause behind the unequal spatial distribution of public goods and economic development
in Sub-Saharan Africa.

Our findings are novel in the literature and provide new insights into the political economy
of the location of the capital city (Campante and Do, 2014; Campante et al., 2019). Ad-
ditionally, we provide new insights into the literature regarding the limited institutional
outreach of the state beyond the capital city (Herbst, 2000; Michalopoulos and Papaioan-
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nou, 2013) and the literature on power sharing and political representation in SSA (Francois
et al., 2015). Furthermore, we add to the literature about information, accountability and
public goods provision (Besley and Burgess, 2002; Strömberg, 2004; Guriev et al., 2020).
Last but not least, by identifying proximity to the capital as an important dimension of
spatial inequality, we contribute to the debate about the causes of the very high levels of
regional economic disparity in Sub-Saharan Africa.

The results of this study underline the importance of considering political and, in par-
ticular, accountability mechanisms when seeking to understand the reasons for the large
differences in living standards across African regions. Accordingly, policy makers should
aim at strengthening information and feedback channels between citizens and their political
leaders to improve and align public policy more with the interest of the people. Ensuring a
good functioning of local media markets or increasing the awareness about the importance
of active civic engagement in the political process represent two viable actions to this end.
Lastly, targeted investments into public goods in isolated areas could provide remedy by
boosting the local economy in these areas currently lagging behind.
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2.A Appendix

2.A.1 Data Sources and Description

In the following, we present the various datasets that we collected from different sources
and merged into the final dataset for the remote sensing analysis including an URL for
download. Furthermore, we present in more detail our data sources for the mechanism
analysis.

Remote Sensing Grids

Regarding nighttime luminosity data, there are currently two products: the ‘new’ VIIRS
(Visible Infrared Imaging Radiometer Suite) by the Suomi National Polar Partnership
between NOAA and NASA and the ‘old’ Version 4 DMSP-OLS (Defense Meteorological
Satellite Program - Operational Linescan System) by the U.S. Air Force and the Na-
tional Oceanic and Atmospheric Administration (NOAA). The VIIRS images are more
recent and are superior to the DMSP-OLS with regard to their accuracy and resolution
(Elvidge et al., 2013). We use the latest cleaned annual VIIRS product from 2016 that
underwent extensive filtering including outlier (such as fires or ephemeral lights) and back-
ground (non-lights) removal as our main proxy for economic activity (see Elvidge et al.
(2017) for details on the algorithms used to pre-process and filter the annual VIIRS
images). This dataset is publicly available and can be downloaded from: https://

www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html. The draw-
back of the VIIRS is that the earliest available grids (unfiltered and monthly) are avail-
able for April 2012 while the DMSP-OLS span from 1992-2013. Therefore, in order to
obtain an ‘early’ disaggregated proxy for economic activity, we supplement our data-
set with the annual DMSP-OLS nighttime lights from 1992 (available for download at:
https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html#AVSLCFC).

We combine the nightlights data with a wide range of geographical covariates from various
remote sensing data sources (see below). For the purpose of curbing measurement error
and mismatching resulting from small inaccuracies between the datasets and to facilitate
the computational intensity of the analysis, the data grids are aggregated to a resolution
of 75 × 75 arcseconds which is equivalent to approximately 2.3 × 2.3 kilometers at the
equator. The nightlight grids have an initial resolution of 15× 15 arcseconds which means
that 25 original pixels (5 × 5) constitute a new pixel and inherit the average value of its
predecessors. This leaves us with around 3.5 million pixels for the 38 countries in our
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sample. In order to be able to stack nighttime lights and other geographical covariates
together, we interpolate all other grids bilinearly to match the nightlight grid resolution.
We further transform our grids from the standard CRS ‘WGS 84’ using decimal degrees to
‘Africa Sinusoidal’ which properly maps distances in Sub-Saharan Africa using the metric
system (see http://spatialreference.org/ref/esri/africa-sinusoidal/ for more
information).

The water surface grid (5 × 5 arcseconds) is aggregated to reflect the percentage of the
surface that is covered with water and was obtained from the European Space Agency
(ESA). It is publicly available for download at: http://maps.elie.ucl.ac.be/CCI/view

er/index.php.

The land elevation (in m) grid (30×30 arcseconds) by the NASA in context of the Shuttle
Radar Topography Mission (SRTM) based on the work of Jarvis et al. (2008) is available
for download at: http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-da

tabase-v4-1.

A measure for terrain ruggedness measured in degree of slope with an initial resolution
of (20 × 20 arcseconds) based on Nunn and Puga (2012) was obtained from: https:

//diegopuga.org/data/rugged/.

The ‘Crop Caloric Index’, a measure of agricultural suitability containing the potential agri-
cultural caloric output per year and hectar (excluding zero yields) based on Galor and Özak
(2016) was obtained from https://ozak.github.io/Caloric-Suitability-Index/.

Annual precipitation (in mm), annual mean temperature, minimum temperature in the
coldest month and maximum temperature in the warmest month (all in ◦C) based on Kar-
ger et al. (2017) were obtained from http://chelsa-climate.org/downloads/.

The population grid (30× 30 arcseconds) for 2015 was obtained from Worldpop (available
for download at: http://www.worldpop.org.uk/data/summary/?doi=10.5258/SOTON/W

P00004) and contains the (UN-adjusted) total number of inhabitants per pixel.

Accountability Failure in Isolated Areas: The Cost of Remoteness from the Capital City 84

http://spatialreference.org/ref/esri/africa-sinusoidal/
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
https://diegopuga.org/data/rugged/
https://diegopuga.org/data/rugged/
https://ozak.github.io/Caloric-Suitability-Index/
http://chelsa-climate.org/downloads/
http://www.worldpop.org.uk/data/summary/?doi=10.5258/SOTON/WP00004
http://www.worldpop.org.uk/data/summary/?doi=10.5258/SOTON/WP00004


Vectorized Data

The list of capital and placebo cities including their population size were obtained from
various sources including United Nations Department of Economic and Social Affairs Pop-
ulation Division (2018) (https://population.un.org/wup/Download/), CityPopulation
(see here for further information: https://www.citypopulation.de/) and WorldPopu-
lationReview (see here for further information: http://worldpopulationreview.com/).
In a next step, these cities were geocoded in R using an OpenStreetMap (https://www.

openstreetmap.org/) interface.

The country shapefiles were obtained from GADM (currently Version 3.6) and are available
for download at: https://gadm.org/data.html.

Based on the above sources we have calculated the following indicators on the pixel level
using the projected coordinate reference system ‘Africa Sinusoidal’ which properly maps
distances in Sub-Saharan Africa using the metric system (in km): distance from the capital
city, distance from the placebo city, distance from the coast, distance from shared national
boundaries, latitude and longitude.

The ethnographic ‘Tribal Map of Africa’ based on Murdock (1959) was recently digitized
by Nathan Nunn and is available for download at: https://worldmap.harvard.edu/dat

a/geonode:murdock_ea_2010_3.

The African rivers data is provided by FAO and is derived from the World Wildlife Fund
HydroSHEDS drainage direction layer and a stream network layer and can be downloaded
at: http://www.fao.org/geonetwork/srv/en/main.home?uuid=b891ca64-4cd4-4efd

-a7ca-b386e98d52e8.

We obtained the shapefile on African waterbodies that was create by the Regional Centre
for Mapping of Resources for Development (RCMRD) from the World Bank https:

//datacatalog.worldbank.org/dataset/africa-water-bodies-2015.

The dataset of African cities including their population size for the market access analysis
was created by the OECD Sahel and West Africa Club in collaboration with e-geopolis.org
and can be downloaded from: https://africapolis.org/data.
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The dataset on African roads and road quality was obtained from Jedwab and Storeygard
(2020) who digitized an geocoded Michelin maps.

The data on medical centers based on an extensive data collection by Maina et al. (2019)
can be obtained at: https://www.who.int/malaria/areas/surveillance/public-se

ctor-health-facilities-ss-africa/en/

Afrobarometer Data

The Afrobarometer surveys comprise questions on household characteristics, public goods,
public perception, as well as political attitudes and opinion. The surveys are conduc-
ted every few years in most African countries and provide the geolocation of their re-
spondents which makes it highly suitable for studies in economic geography. We use
rounds 5, 6 and 7 of the Afrobarometer covering 26 out of the 38 countries in our sample
as is illustrated in Figure 2.A.8b. The data is available upon application at: https:

//www.afrobarometer.org.
The Afrobarometer is especially useful to investigate the spatial pattern of public goods
provision as it contains information on whether the enumeration area (cluster) in which the
respondent is located is supplied with certain public goods: paved road, electricity grid,
piped water system and sewage system. Moreover, based on the Afrobarometer, we can
examine how distance from the capital city affects corruption perception, trust into the
political leadership, news readership and other characteristics reflecting how people think
about their leaders and the political organization of their country. A complete list of all
Afrobarometer survey questions and indicators can be found in Section 2.A.1.

In the following, we provide details about the construction of the indicators that are based
on the Afrobarometer survey data including extracts from the underlying questions in
the Afrobarometer codebook (Isbell, 2017). Note that respondents who answered ‘Do not
know’, ‘Refused to answer’ or ‘Missing’ are excluded from the sample for the respective
indicator.

Public Goods Index

Average of responses to each of the following questions. Note that the response was filled
in by the interviewee prior to approaching the individual households within the cluster/
enumeration area:
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Piped Water System: Are the following services present in the primary sampling unit/ enu-
meration area: Piped water system that most houses could access? Value Labels: 0=No,
1=Yes.

Electricity Grid: Are the following services present in the primary sampling unit/ enumer-
ation area: Electricity grid that most houses could access? Value Labels: 0=No, 1=Yes.

Paved Road: Thinking of your journey here: Was the road at the start point in the primary
sampling unit/ enumeration area paved/ tarred/ concrete? Value Labels: 0=No, 1=Yes.

Sewage System: Are the following services present in the primary sampling unit/ enumer-
ation area: Sewage system that most houses could access? Values Labels: 0=No, 1=Yes.

Trust into the Political Elite

Average of responses to each of the following questions (see parenthesis): How much do you
trust each of the following, or have you not heard enough about them to say: The Presid-
ent (Parliament)? Value Labels: 0 = Not at all, 1 = Just a little, 2 = Somewhat, 3 = A lot.

Corruption Perception of Political Leadership

Average of responses to each of the following questions (see parenthesis): How many of
the following people do you think are involved in corruption, or haven’t you heard enough
about them to say: The President and Officials in his Office (Members of Parliament, Gov-
ernment Officials)? Value Labels: 0 = Not at all, 1 = Just a little, 2 = Somewhat, 3 = A lot.

Evaluation of Government Performance

Average of responses to each of the following questions (see parenthesis):

Now let’s speak about the present government of this country. How well or badly would
you say the current government is handling the following matters, or haven’t you heard
enough to say: Managing the economy (handling improving living standards of the poor,
handling creating jobs, handling keeping prices down, handling narrowing income gaps,
handling reducing crime, handling improving basic health services, handling addressing
educational needs, handling providing water and sanitation services, handling ensuring
enough to eat, handling fighting corruption, handling and maintaining roads and bridges,
handling providing reliable electric supply)? Value Labels: 1 = Very badly, 2 = Fairly
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badly, 3 = Fairly well, 4 = Very well.

Voter Turnout

Understanding that some people were unable to vote in the most recent national election
in [20xx], which of the following statements is true for you? Value Labels: 0 = You were
not registered to vote Or you decided not to vote Or you could not find the polling station
Or you were prevented from voting Or you did not have time to vote Or you did not vote
because you could not find your name in the voters’ register Or Did not vote for some
other reason, 1 = You voted in the elections

National vs. Ethnic Identity

Let us suppose that you had to choose between being a [NATIONALITY] and being a
[Respondent’s Ethnic Group]. Which of the following best expresses your feelings? Value
Labels: 1 = I feel only (Respondent’s ethnic group), 2 = I feel more (Respondent’s ethnic
group) than [NATIONALITY], 3 = I feel equally [NATIONALITY] and (Respondent’s
ethnic group), 4 = I feel more [NATIONALITY] than (Respondent’s ethnic group), 5 = I
feel only [NATIONALITY].

Vote for Government

Based on the response to the following question and the time of the interview we decode
whether the respondent expresses to vote for the political party of the incumbent president
(value of 1) or not (value of 0).

If a presidential election were held tomorrow, which party’s candidate would you vote for?
The variable labels correspond to the political parties in the country at the time of the
interview.

Advocate Check and Balances

Average of support for statement 2 in the two respective questions:

Checks by citizens:
Statement 1: It is more important to have a government that can get things done, even if
we have no influence over what it does.
Statement 2: It is more important for citizens to be able to hold government accountable,

Accountability Failure in Isolated Areas: The Cost of Remoteness from the Capital City 88



even if that means it makes decisions more slowly.

Checks by parliament:
Statement 1: The President should be able to devote his full attention to developing the
country rather than wasting time justifying his actions.
Statement 2: Parliament should ensure that the President explains to it on a regular basis
how his government spends taxpayers’ money.

Value Labels: 1 = Agree very strongly with Statement 1, 2 = Agree with Statement 1, 3 =
Agree with Statement 2, 4 = Agree very strongly with Statement 2, 5 = Agree with neither.

News Consumption

How often do you get news from any of the following sources: Radio, Television, Newspaper
or Internet? 0 = Never, 1 = Less than once a month, 2 = A few times a month, 3 = A
few times a week, 4 = Every day.

Public Goods Data

To measure road infrastructure provision, we use a road network dataset created by Jedwab
and Storeygard (2020) based on 2014 Michelin maps. The great advantage of this dataset
is that it consistently maps a variety of roads across the African continent and provides
information about the quality of the infrastructure such as whether or not a road is tarred.

We measure health care provision using an extensive database on the locations of 98,745
health facilities across 50 African countries sourced from a variety governmental and non-
governmental sources (Maina et al., 2019). This dataset also includes information about
whether the health facility is a hospital or lower tier facility and whether it is a public
(e.g. run by the ministry of health or municipality) or non-public (e.g. NGOs, private or
denominational) institution. Since the data for Angola and Guinea-Bissau is incomplete,
we omitted those countries from our analysis.

Access to Power

In order to explore whether areas close and far from the capital city are, conditional
on their respective population shares, equally represented in the government, we require a
dataset on the origins of state executives. Francois et al. (2015) create an extensive dataset
on the ethnicity of cabinet ministers in African countries since independence. Based on
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their analysis, the authors are able to infer that ruling coalitions are large and ethnicities
represented proportionally. However, the authors do not study if geographical locations are
equally represented. Since their dataset is not geocoded and there exists no complementary
dataset that corresponds to their categorization of ethnic groups, we are unable proceed
with their database. For this reason, we limit our analysis to the heads of state using and
supplementing the database by (Dreher et al., 2016, 40-41). We update this list regarding
the period of office and region of origin up to the year of 2016 using publicly available
information from various sources including Wikipedia.
Yet, solely mapping out the origins of heads of state might be imprecise and not give a
holistic image about an area’s access to power. Therefore, we complement the analysis
with a second dataset comprising the degree of access to power for various politically rel-
evant ethnic groups from 1946 to 2017: the Ethnic Power Relations Core Dataset 2019
(EPR) (Vogt et al., 2015). The advantage of the EPR dataset is that it can be combined
with a complementary dataset on the geolocation (polygons) of the respective ethnic groups
(Wucherpfennig, 2011). The EPR status indicators categorizes groups as in power : ‘mono-
poly’, ‘dominance’, ‘senior partner’, ‘junior partner’ as well as excluded groups: ‘powerless’,
‘discrimination’, ‘self-exclusion’ and areas that have are not been identified as being polit-
ically relevant which are coded as irrelevant. To obtain an image of contemporary patterns,
we restrict the dataset to the period 2000-2017. We assign each pixel the total number
of years in each respective status category as our variable of interest. Since some of the
groups are overlapping geographically, we assign each area the status of the respective most
powerful group.

Conflict Data (ACLED)

In order to investigate whether conflict is a relevant channel linking remoteness from the
capital city and economic development, we use the Armed Conflict Location & Event Data
(ACLED) containing the geolocation of conflicts between 1997 and today by type: ‘violent
events’, ‘demonstration events’ and ‘non-violent action’ (Raleigh et al., 2010). For more
information on the definition of different conflict types refer to the ACLED homepage
at: https://www.acleddata.com/resources/general-guides/. Our conflict event
sample comprises 88,853 instances between 01.01.2000 and 27.11.2019 distributed all over
our sample countries.
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2.A.2 Further Technical Details

In order to identify boundary segments that partition ethnic homelands, we use the ethno-
graphic ‘Tribal Map of Africa’ on pre-colonial ethnic homelands by Murdock (1959) that
is widely used in economics when marking out different ethnicities (Nunn, 2008; Michalo-
poulos and Papaioannou, 2013, 2014, 2016). Murdock subdivides the entire African con-
tinent into 843 distinct polygons that each relate to a local ethnic majority group. The
map refers roughly to the era around the Berlin Conference and the establishment of ar-
tificial African boundaries. This circumstance makes this map well suited for our purpose
as it is free from more recent and potentially endogenous migration movements. Moreover,
“case study and anecdotal evidence suggest that in spite of population movements ethnic
populations tend to reside in their respective historical homelands” (Michalopoulos and
Papaioannou, 2014, 162). Since Murdock’s map was originally printed in his book and
only later digitized by Suzanne Blier and Nathan Nunn, there might be some inaccuracies
with the precise delimination of ethnic homelands (Michalopoulos and Papaioannou, 2013,
143). To account for this potential shortcoming, we restrict each ethnic homeland by (a
negative buffer of) -15 km prior to further processing the map.
In the next step, we subdivide all national borders that divide ethnic homelands into seg-
ments of 50 km length with a buffer of 25 km (15km, 50 km in sensitivity tests) on each side
of the boundary. To verfy that segments are sufficiently small and homogenous, we con-
duct a range of balancing tests. In our econometric model, we implicitly assume that both
segment sides are of equal size. However, in practice, since national borders are not always
straight lines, opposing segment sides are not of equal size in all instances either. There-
fore, we weight each pixel such that both segment sides have the same aggregated weight.24

For the purpose of preventing that inaccuracies and blooming confound the assignment of
nightlights to a segment side (country), we exclude pixels whose centroid is within a range
of 3 km (1.5 km in sensitivity tests) from the boundary from all estimations. Further, to
account for uninhabitable areas, we exclude pixels that are entirely covered with water or
are completely unpopulated. Additionally, in order to ensure that the estimates of isola-
tion from the capital city are not simply capturing the break between the capital city and
the hinterland, we exclude pixels within a radius of 20 km (but also 50 km, 75 km and
100 km in sensitivity tests) around the capital city (and placebo city) by default from all

24We maintain the overall weight of segments relative to each other (proportional to their total segment
size). Further, in order to avoid overrepresenting very small segment sides, if a segment side contains less
than 20 pixels, we drop the entire segment.
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estimations.

Last but not least, our causal estimate of isolation from the capital city might be distor-
ted by spillovers across the boundary. It might be that those living in the economically
weak segment side migrate to the more dynamic segment side to seek employment (brain
drain). Another possibility is that segment sides that are relatively disadvantaged benefit
positively from the market access and resources on the other side (scale economies). Since
negative spillovers would lead to overestimations and positive spillovers to underestima-
tions of the effects, it remains unclear in what direction a potential bias would go. In
addition, since potential spillovers at the boundary are likely a function of proximity, they
are most probably being picked up by the polynomials terms of distance to the border.
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2.A.3 Maps

Figure 2.A.1
VIIRS Nightlights Sample Map
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Figure 2.A.3
Unrestricted Segments

(a) Simple Border Segments

(b) Simple Border Segments - Magnified
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Figure 2.A.4
Restricted Segments

(a) Border Segments nested within Restricted Partitioned Ethnic Homelands

(b) Nested Border Segments - Magnified
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2.A.5 Sensitivity Analysis

In this section, we examine whether the results from Section 2.2.3 are robust to variations
in the precise model specification.

Firstly, we reduce the bandwidth of the segments around the boundary from 25 km to 15
km. Simultaneously, we only exclude pixels within 1.5 km, instead of 3 km, around the
boundary. In addition, we run the regressions with a varying degree of up to fourth order
polynomials of the running variable. As can be clearly seen in Table 2.A.6, the results are
very similar to the previous findings in direction, magnitude and significance.

Table 2.A.6
Border Discontinuity Estimation - Robustness Bandwidth

Dependent variable:
Probability Pixel is Lit Log Light Density

in 2016 (VIIRS) in 2016 (VIIRS)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Distance from -0.009 -0.019∗∗ -0.031∗∗∗ -0.033∗∗∗ -0.035∗∗∗ -0.051∗ -0.078∗∗ -0.124∗∗∗ -0.149∗∗∗ -0.159∗∗∗
the Capital City (0.006) (0.008) (0.010) (0.011) (0.012) (0.029) (0.036) (0.045) (0.054) (0.059)

Polynomials for: distance from the border × country × ethnicity (325 groups)
1nd order - x - - - - x - - -
2nd order - - x - - - - x - -
3rd order - - - x - - - - x -
4th order - - - - x - - - - x
Geography Cov. YES YES YES YES YES YES YES YES YES YES
Country FE 36 36 36 36 36 36 36 36 36 36
Segment FE 608 608 608 608 608 608 608 608 608 608
Observations 106,746 106,746 106,746 106,746 106,746 106,746 106,746 106,746 106,746 106,746
Adjusted R2 0.171 0.198 0.207 0.212 0.215 0.161 0.187 0.194 0.200 0.203

Note: This table reports robustness tests on our main BDD regression results in Table 2.2 based on Equation 2.4
and feature variations on the boundary thickness, boundary buffer and the number of polynomials of the running
variable. In order to avoid capturing the break between the capital city and the hinterlands, we exclude 20 km
around each capital city from our sample. To prevent misassignment of detected nightlights between countries due
to blooming, we exclude 1.5 km (instead of 3 km) on each side of the national boundary. The ‘Geographical Cov.’
include: distance from the coast (in km), ruggedness (in % slope), % surface covered with water, mean annual
temperature, minimum average temperature during the coldest month, maximum average temperature during the
warmest month (in ◦C), crop caloric index, annual precipitation (in mm), longitude and latitude (projected in km).
Boundary segments corresponds to a buffer of 15 km (instead of 25 km) around border pieces of 50 km line length
and are entirely nested within a restricted ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock, 1959).
The observations are weighted such that each side of a segment has the same aggregated weight as its counterfactual.
Standard errors in parenthesis are clustered by boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We then investigate whether the effects of isolation from the capital city are limited to areas
close to the capital city. Therefore, in the next step, we increase the sample restriction
from excluding 20 km (default) around the capital city to 50, 75 and 100 km. Once again,
the results in Table 2.A.7 reveal that the estimated effects are very stable with respect to
this modification. This finding implies that isolation from the capital city is a more general
phenomenon that is relevant for wide areas within the country.
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Table 2.A.7
Border Discontinuity Estimation: Robustness - Capital City Buffer

Dependent variable: VIIRS Nightlights 2016

Exclude all Pixels with a Distance from the Capital City
< 50 km < 75 km < 100 km

Prob Log Prob Log Prob Log

(1) (2) (3) (4) (5) (6)

Log Distance from -0.030∗∗ -0.135∗∗ -0.034∗∗ -0.151∗∗ -0.037∗∗ -0.164∗∗
the Capital City (0.012) (0.060) (0.014) (0.067) (0.016) (0.077)

Polynomials for: distance from the border × country × ethnicity
305 groups 295 groups 290 groups

3rd order x x x x x x
Geography Cov. YES YES YES YES YES YES
Country FE 36 36 36 36 36 36
Segment FE 563 563 548 548 531 531
Observations 166,741 166,741 163,014 163,014 158,033 158,033
Adjusted R2 0.180 0.160 0.179 0.160 0.170 0.152

Note: This table reports robustness tests on our main BDD regression results in Table 2.2 based on Equation 2.4
and includes some variations on the exclusion around the capital city. In order to avoid capturing the break between
the capital city and the hinterlands, we exclude 50, 75 and 100 km (instead of 20 km) around each capital city
from our sample. To prevent misassignment of detected nightlights between countries due to blooming, we exclude
3 km on each side of the national boundary. The ‘Geographical Cov.’ include: distance from the coast (in km),
ruggedness (in % slope), % surface covered with water, mean annual temperature, minimum average temperature
during the coldest month, maximum average temperature during the warmest month (in ◦C), crop caloric index,
annual precipitation (in mm), longitude and latitude (projected in km). Boundary segments corresponds to a buffer
of 25 km around border pieces of 50 km line length and are entirely nested within a restricted ethnic homeland based
on the ‘Tribal Map of Africa’ (Murdock, 1959). The observations are weighted such that each side of a segment has
the same aggregated weight as its counterfactual. Standard errors in parenthesis are clustered by boundary segment.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In the subsequent step, we test whether the estimated effects of isolation from the capital
city are driven by individual countries or boundaries. To this end, in Figure 2.A.5, we
iteratively exclude both sides of boundary segments adjoining a particular country and
compare the estimated coefficient to our unrestricted baseline coefficients (in Table 2.2
columns (3) and (7)). The figures clearly illustrate that the estimated coefficients are
highly robust to excluding particular countries/boundaries. Even when excluding large
amounts of border segments for large or centrally located countries, all confidence bands
overlap clearly with that of the baseline estimate.
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While the coefficients prove themselves to be very stable to excluding even large parts of
the sample, it might be that the deviations in the estimated coefficients are systematic.
Therefore, we test whether there are heterogeneities with respect to the implications of
isolation from the capital city depending upon a country’s level of decentralization, demo-
cratization or overall level of development. For this purpose we categorize all boundaries
as either delimiting two relative decentralized25 (democratic26, developed27) or two relat-
ively non-decentralized (autocratic, underdeveloped) countries or one of each. We then run
regressions allowing for heterogenous coefficients for the different boundary pair categories
and compare the coefficients using F-tests (see Table 2.A.8).28

The results for decentralization in Table 2.A.8 in columns (1)-(4) are ambiguous and we
cannot reject the hypothesis that the effects are the same for relatively decentralized and
non-decentralized countries. In contrast, columns (5)-(8) reveal that the average effect in
democracies is higher than in autocracies where they are consistently very close to zero.
The difference is statistically significant for the 20-year average measure of democracy. Re-
garding GDP per capita, irrespective of whether we split countries at the median or mean,
the results consistently indicate that the effect are significantly stronger in less developed
countries. We conclude that the implications of isolation from the capital city seem to be
more relevant under democratic, as opposed to autocratic, institutional framework condi-
tions and more relevant in relatively underdeveloped countries. Yet, these results should
be interpreted with caution as the patterns might be confounded by other characteristics
these groups of countries have in common.

Next, we study whether the effects of isolation from the capital city had been relevant
at some point in the past and have persisted until today or, alternatively, whether the
effects are still ongoing and relevant today. For this exercise, we exclude all pixels that
have already been lit in 199229 from the sample and thereby focus on the pattern of newly
emerging nightlights (see Table 2.A.9). While the coefficients are, as expected, slightly

25We define countries as decentralized if they exceed the median decentralization value (based on a decent-
ralization index by Thomas Bijl for J. Vernon Henderson (LSE processed)).

26Democratic countries are defined as having a Polity2 index score of greater than zero (Marshall et al.,
2017).

27Since there is no obvious cutoff for distinguishing between relatively developed and underdeveloped coun-
tries, we categorize them as such depending on whether they exceed the sample median or mean GDP
level based on estimates by the World Bank (2016).

28As policy indicators usually have a lot of fluctuations, we conduct the analysis based on the most recent
snapshot of the indicators as well as a 20-year average.

29We use the earliest available DMSP-OLS nightlight grid from 1992 as VIIRS nightlights only date back
to 2012.
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smaller in magnitude as in Table 2.2, they are still strong and highly significant which
underlines the present-day importance of the effects.

Table 2.A.8
Border Discontinuity Estimation - Heterogeneity

Dependent variable: Nightlight Density in 2016 (Prob/Log)
Decentralization Democracy (Polity2) GDP per capita (World Bank 2016)

Mean 1990-2010 2010 Mean 1996-2016 2016 Split at median Split at mean
Prob Log Prob Log Prob Log Prob Log Prob Log Prob Log
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

CAP × Non-Decentr. -0.045∗ -0.229∗ -0.041 -0.217 - - - - - - - -
(0.024) (0.125) (0.028) (0.146)

CAP × Decentralized -0.031 -0.121∗ -0.055∗∗∗ -0.204∗∗∗ - - - - - - - -
(0.021) (0.070) (0.017) (0.060)

CAP × Mixed -0.026∗∗ -0.107∗∗ -0.025∗∗∗ -0.101∗∗∗ - - - - - - - -
(0.010) (0.047) (0.008) (0.032)

CAP × Autocracy - - - - -0.001 0.007 -0.017 -0.041 - - - -
(0.010) (0.042) (0.013) (0.049)

CAP × Democracy - - - - -0.064∗∗∗ -0.292∗∗ -0.027∗ -0.117∗∗ - - - -
(0.023) (0.114) (0.014) (0.051)

CAP × Mixed - - - - -0.019 -0.089∗ -0.041∗ -0.206∗ - - - -
(0.013) (0.053) (0.023) (0.117)

CAP × Underdeveloped - - - - - - - - -0.033∗∗∗ -0.140∗∗∗ -0.041∗∗∗ -0.177∗∗
0.011) (0.049) 0.015 0.072

CAP × Developed - - - - - - - - 0.012 0.013 0.020 0.046
(0.021) (0.083) 0.022 0.096

CAP × Mixed - - - - - - - - -0.049∗∗∗ -0.210∗∗ -0.027∗ -0.114∗∗
(0.017) (0.083) 0.014 0.057

Coefficient Tests Non-Decentralized = Decentralized Autocracy = Democracy High GDP = Low GDP

F-Statistic 0.23 0.68 0.21 0.01 6.66∗∗ 6.15∗∗ 0.27 1.18 4.67∗∗ 3.66∗∗ 5.62∗∗ 3.71∗

Polynomials for: distance from the border × country × ethnicity (302 groups columns (1)-(4) and 305 groups columns (5)-(12))
3rd order x x x x x x x x x x x x
Geography Cov. YES YES YES YES YES YES YES YES YES YES YES YES
Country FE 35 35 35 35 36 36 36 36 36 36 36 36
Segment FE 563 563 563 563 569 569 569 569 569 569 569 569
Observations 166,833 166,833 166,833 166,833 168,620 168,620 168,620 168,620 168,620 168,620 168,620 168,620
Adjusted R2 0.182 0.162 0.182 0.162 0.182 0.161 0.182 0.161 0.182 0.161 0.182 0.161

Note: This table reports the heterogeneity test corresponding to our main BDD regression results based on Equation
2.4. For this purpose we categorize all boundaries as either delimiting two relatively decentralized, democratic or
developed countries and interact the respective dummies with log distance from the capital city. In columns (1)-(4),
we group boundaries based on the mean over 20 years and 2010 level of the decentralization index, in columns (5)-(8)
based on the 20-year mean and 2016 level of the Polity2 score and in columns (9)-(12) based on the median and
the mean of the 2016 GDP per capita value. We report the F-tests on the equality of the respective coefficients.
In order to avoid capturing the break between the capital city and the hinterlands, we exclude 20 km around each
capital city from our sample. To prevent misassignment of detected nightlights between countries due to blooming,
we exclude 3 km on each side of the border. The ‘Geographical Cov.’ include: distance from the coast (in km),
ruggedness (in % slope), % surface covered with water, mean annual temperature, minimum average temperature
during the coldest month, maximum average temperature during the warmest month (in ◦C), crop caloric index,
annual precipitation (in mm), longitude and latitude (projected in km). Boundary segments corresponds to a buffer
of 25 km around border pieces of 50 km line length and are entirely nested within a restricted ethnic homeland based
on the ‘Tribal Map of Africa’ (Murdock, 1959). The observations are weighted such that each side of a segment has
the same aggregated weight as its counterfactual. Standard errors in parenthesis are clustered by boundary segment.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Further, we want to examine whether a potential shift in the role of the ethnicity within
the country distorts our findings. One factor that we have not accounted for in our iden-
tification strategy is that a partitioned ethnic homeland might represent a minority group
in one but a majority group in another country. This circumstance makes it necessary to
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include a measure of ethnic representation within the country into our model. In columns
(3) and (4) in Table 2.A.9, we include the share of pixels of an ethnic homeland in the
overall number of pixels within a country. The results indicate that ethnic representation
does not confound the effects of isolation from the capital city.

Table 2.A.9
Border Discontinuity Estimation - Robustness

Dependent variable: Nightlight Density in 2016 (Prob/Log/PC)
Exclude Pixels Ethnic Minority Population Log Lights
Lit in 1992 vs. Majority Density Per Capita

Prob Log Prob Log Prob Log Log pc
(1) (2) (3) (4) (5) (6) (7)

Log Distance from -0.022∗∗∗ -0.085∗∗∗ -0.032∗∗∗ -0.142∗∗ -0.026∗∗ -0.107∗∗ -0.263∗∗
the Capital City (0.008) (0.031) (0.012) (0.058) (0.011) (0.049) (0.115)

Polynomials for: distance from the border × country × ethnicity (305 groups)
3rd order x x x x x x x
Population Density No No No No YES YES No
Ethnicity Share No No YES YES No No No
Geography Controls YES YES YES YES YES YES YES
Country FE 36 36 36 36 36 36 36
Segment FE 569 569 569 569 569 569 569
Observations 167,841 167,841 168,620 168,620 168,620 168,620 168,620
Adjusted R2 0.165 0.141 0.182 0.161 0.214 0.251 0.179

Note: This table reports robustness tests for our main BDD regression results in Table 2.2 and extends the model
in Equation 2.4. In order to avoid capturing the break between the capital city and the hinterlands, we exclude 20
km around each capital city from our sample. To prevent misassignment of detected nightlights between countries
due to blooming, we exclude 3 km on each side of the national boundary. The ‘Geographical Cov.’ include: distance
from the coast (in km), ruggedness (in % slope), % surface covered with water, mean annual temperature, minimum
average temperature during the coldest month, maximum average temperature during the warmest month (in ◦C),
crop caloric index, annual precipitation (in mm), longitude and latitude (projected in km). Boundary segments
corresponds to a buffer of 25 km around border pieces of 50 km line length and are entirely nested within a restricted
ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock, 1959). In columns (1)-(2), we exclude pixels that
were already lit in 1992. In columns (3)-(4), we account for the share of the ethnicity with respect to the total area of
the home country. In columns (5)-(6), we include population density as a covariate and in column (7), we use the log
of lights per capita as our dependent variable. The observations are weighted such that each side of a segment has
the same aggregated weight as its counterfactual. Standard errors in parenthesis are clustered by boundary segment.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Since increased economic performance generally boosts population agglomeration by at-
tracting migration inflows as well as potentially increasing net fertility, we would expect
that the gains in economic performance reinforce population agglomeration. Moreover, the
two variables are likely in a mutually reinforcing relationship due to the reverse positive
impact of agglomeration on economic performance (Marshall, 1920; Ahlfeldt et al., 2015).
Moreover, population density maps do not exhibit a very high accuracy on the very fine
pixel level and are themselves usually based on indicators of economic activity such as
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schools, hospitals, roads or even nightlights. For this reason population agglomeration is
endogenous to our outcome variable from a theoretical and technical point of view and
there is no straightforward way to disentangle the two. In line with this hypothesis, we
show that when we include population density as a control variable, the absolute mag-
nitude of the estimated impact of distance from the capital city on economic performance
decreases (see columns (5) and (6) in Table 2.A.9). While, we have to be cautious about
interpreting this estimate due to endogeneity concerns, the fact that the coefficient remains
significant and is not significantly different from the estimate in Table 2.2 suggests that
the implications of isolation from the capital city on economic development go beyond
population agglomeration. This is view is also supported by the fact that distance from
the capital city also significantly reduces nightlight intensity per capita (column (7)).

Due to the design of our BDD model, distance controls are generally balanced by construc-
tion. Yet, for certain variables, it might matter whether the access point lies within the
country or beyond the other side of the border. We therefore show that our results hold
when we control for distance to the closest river, waterbody (lake, lagoon and reservoir)
and mine within the country (see Table 2.A.10). We also report estimates when including
distance to the closest city of a certain size and distance to regional capital city as controls
because these variables might also be more relevant when within one’s own border. Table
2.A.11 reveals that in these models the magnitude of the estimates associated with distance
from the capital city are slightly smaller and insignificant for some of the models using the
intensive margin of nightlights. Yet, due to the fact that population agglomeration is endo-
genous (see discussion in Section 2.A.5), these estimates should be interpreted with caution.
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Table 2.A.10
Boundary Discontinuity Estimation: Additional Geographic Covariates

Dependent variable:
Probability Pixel is Lit Log Light Density

in 2016 (VIIRS) in 2016 (VIIRS)
(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance from -0.031∗∗ -0.026∗∗ -0.031∗∗ -0.027∗∗ -0.137∗∗ -0.122∗∗ -0.132∗∗ -0.118∗
the Capital City (0.012) (0.012) (0.014) (0.013) (0.058) (0.059) (0.064) (0.062)

Log Distance to -0.001∗∗ - - - -0.003 - - -
the closest River (0.000) (0.002)
Log Distance to the - -0.016∗∗∗ - - - -0.073∗∗∗ - -
Closest Waterbody (0.006) (0.028)
Log Distance to the - - -0.037∗∗∗ - - - -0.190∗∗∗ -
Closest Mine (0.011) (0.063)
Log Distance Closest - - - -0.033∗∗ - - - -0.185∗∗
Mine (opened > 1960) (0.014) (0.078)

Polynomials for: distance from the border × country × ethnicity
3rd order x x x x x x x x
Geography Cov. YES YES YES YES YES YES YES YES
Country FE 36 35 29 28 36 35 29 28
Segment FE 569 539 475 457 569 539 475 457
Observations 168,620 161,545 142,231 138,252 168,620 161,545 142,231 138,252
Adjusted R2 0.182 0.186 0.194 0.196 0.161 0.164 0.173 0.175

Note: This table reports regressions including additional geographic distance controls and corresponds to our baseline
BDD estimates in columns (3) and (7) in Table 2.2 based on Equation 2.4. Waterbodies include lakes, lagoons and
reservoirs. The ‘Geographical Cov.’ include: distance from the coast (in km), ruggedness (in % slope), % surface
covered with water, mean annual temperature, minimum average temperature during the coldest month, maximum
average temperature during the warmest month (in ◦C), crop caloric index, annual precipitation (in mm), longitude
and latitude (projected in km). Columns (2) and (6) additionally include a dummy indicating whether the centroid
of a pixel is inside a waterbody polygons. The observations are weighted such that each side of a segment has the
same aggregated weight as its counterfactual. Standard errors in parenthesis are clustered by boundary segment.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.11
Boundary Discontinuity Estimation: City Distance Controls

Dependent variable:
Probability Pixel is Lit Log Light Density

in 2016 (VIIRS) in 2016 (VIIRS)
(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance from -0.022∗ -0.026∗ -0.037∗∗ -0.018∗ -0.092 -0.103 -0.157∗∗ -0.063
the Capital City (0.013) (0.013) (0.015) (0.011) (0.065) (0.065) (0.074) (0.050)
Log Dist City ≥ 25 -0.076∗∗∗ - - - -0.387∗∗∗ - - -

(0.009) (0.054)
Log Dist City ≥ 50 - -0.076∗∗∗ - - - -0.414∗∗∗ - -

(0.012) (0.074)
Log Dist City ≥ 100 - - -0.081∗∗∗ - - - -0.473∗∗∗ -

(0.015) (0.099)
Log Dist Regional Capital - - - -0.053∗∗∗ - - - -0.291∗∗∗

(0.011) (0.068)
Polynomials for: distance from the border × country × ethnicity

3rd order x x x x x x x x
Geography Cov. YES YES YES YES YES YES YES YES
Country FE 36 34 29 36 36 34 29 36
Segment FE 569 556 425 560 569 556 425 560
Observations 168,620 164,616 125,570 165,004 168,620 164,616 125,570 165,004
Adjusted R2 0.204 0.197 0.204 0.193 0.200 0.192 0.200 0.180

Note: This table reports regressions including endogenous city distance controls and corresponds to our baseline
BDD estimates in columns (3) and (7) in Table 2.2 based on Equation 2.4. The city distance controls include
the log of the distance to the closest city with at least 25,000 (50,000 and 100,000) inhabitants and the log of the
distance to the corresponding first level administrative capital city. In each column, we exclude pixels where the
closest respective city is the capital city itself. The ‘Geographical Cov.’ include: distance from the coast (in km),
ruggedness (in % slope), % surface covered with water, mean annual temperature, minimum average temperature
during the coldest month, maximum average temperature during the warmest month (in ◦C), crop caloric index,
annual precipitation (in mm), longitude and latitude (projected in km). The observations are weighted such that
each side of a segment has the same aggregated weight as its counterfactual. Standard errors in parenthesis are
clustered by boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Finally, we cross-validate our results using the DHS wealth index as an alternative data
source for measuring the spatial distribution of economic performance. For this purpose,
we combine the latest available round for each country in our dataset. While the DHS
comprises a geocoded wealth index for the vast majority of our sample countries, eight
countries are not covered (see Figure 2.A.8a). Since the granularity of the data structure
differs from nightlight grids, we have to implement some simplifications compared to the
estimation framework underlying Table 2.2. Firstly, due to the lower sample size, we re-
strict the ethnic homelands by a negative buffer 5 km rather than 15 km. Secondly, the
geographical accuracy of the DHS is lower than remote sensing sources. DHS households
are clustered with an average of 26 households sharing the same coordinate pair leaving
us with a minimum of one and a median of seven clusters per segment side. Additionally,
the assigned geolocation is randomized by up to 10 km. As a consequence, there is too
little variation and too much noise in the data to model the running variable disaggregated
for each ethnicity in each country separately which is why we just focus on accounting for
the general trend. Thirdly, as the observational unit are households, we include household
level control variables: age of head of household, age of head of household squared and
number of de jure household members. Lastly, since there are some concerns about the
comparability of the DHS wealth index with regard to urban vs. rural households, we
include a urban/rural dummy variable in our model. Yet, whether a location is urban
or rural is endogenous as it is an outcome of economic development. As a consequence,
the magnitude of our estimated coefficients in Table 2.A.12 constitute lower bounds estim-
ates.30

The results in Table 2.A.12 confirm our finding about the adverse economic consequences
of remoteness from the capital city. A one percent increase in distance from the capital city
results in a drop of household wealth by around 0.12 standard deviations. This corresponds
to a drop of 3.5 percentiles of the national wealth distribution. The respective balancing
tests in columns (1)-(6) in Table 2.A.16 underline valid inference. The respective placebo
tests in columns (7)-(8) in Table 2.A.16 once again validate that the effects are specific to
isolation from the capital city and do not hold for other cities.

30When excluding the urban/rural dummy, the estimated coefficients corresponding to columns (2) and (4)
in Table 2.A.12 are -0.183∗ (0.095) and -0.051∗ (0.029).
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Table 2.A.12
DHS Wealth Index

Dependent variable:
DHS Wealth Index DHS Wealth Rank

(z-score) (percentile)

(1) (2) (3) (4)

Log Distance from -0.121∗∗∗ -0.121∗∗ -0.035∗ -0.033∗
the Capital City (0.045) (0.052) (0.018) (0.019)

Polynomials for: distance from the border
3rd order - x - x
Household Cov. YES YES YES YES
Geography Cov. YES YES YES YES
Country FE 28 28 28 28
Segment FE 107 107 107 107
Observations 24,582 24,582 24,582 24,582
Adjusted R2 0.426 0.381 0.453 0.455

Note: This table reports the BDD regressions results on household wealth using the DHS sample. The z-score of
the wealth index constitutes the dependent variable in columns (1)-(2). The percentile rank within the country
constitutes the dependent variable in columns (3)-(4). The ‘Household Cov.’ include: age of household head, age of
houshold head squared, number of household members. The ‘Geographical Cov.’ include: distance from the coast
(in km), mean annual temperature, minimum average temperature during the coldest month, maximum average
temperature during the warmest month (in ◦C), annual precipitation (in mm), longitude and latitude (projected in
km) and whether the household is in an urban or rural setting. Boundary segments corresponds to a buffer of 25
km around border pieces of 50 km line length and are entirely nested within a restricted ethnic homeland based on
the ‘Tribal Map of Africa’ (Murdock, 1959). The observations are weighted such that each side of a segment has
the same aggregated weight as its counterfactual. Standard errors in parenthesis are clustered by DHS cluster and
boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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2.A.6 Travel Time Estimates

As an alternative to using the Euclidean distance to measure isolation from the capital
city, in Table 2.A.13, we report estimates based on travel time and road distance based
on OSRM which is a routing engine for OpenStreetMaps (http://project-osrm.org)
instead. However, as discussed above, these estimates are likely to be endogenous and
overestimate the true effect because underdeveloped areas are less likely to have equal ac-
cess to good infrastructure. ‘Travel Time’ captures the estimated travel time (in minutes)
from the pixel to the capital city. Yet, if a pixel is not adjacent to a road, the algorithm
first searches for the nearest road to use as a starting point. Therefore, the variable ‘Log
adjusted Travel time’ accounts for this additional distance by adding the time needed to
get from the pixel to the closest road (assuming that there is a direct way and a reduced
average speed of 10 km/h). Lastly, ‘Road Distance’ is computed as the sum of the Eu-
clidean distance from the pixel to the nearest road (if applicable) and the distance from
there to the capital city via roads (in km).31

The results in Table 2.A.13 demonstrate that our findings are similar irrespective of whether
we use the Euclidean distance or other travel time estimates as our measure of isolation.
Further, as expected, the estimated coefficients between isolation and economic perform-
ance are larger than in Table 2.2. This is most likely a result of the reverse causality bias
that inflates the magnitude of the estimated effects.

31Note that Malabo, the capital city of Equatorial Guinea, is located on an island and therefore not in
reach from the mainland via roads. Therefore, in this analysis, we replace Malabo with Bata, the main
coastal city of Equatorial Guinea that serves Malabo via ferry or plane.
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Table 2.A.13
Boundary Discontinuity Estimation - Travel Time

Dependent variable:
Probability Pixel is Lit Log Light Density

in 2016 (VIIRS) in 2016 (VIIRS)
(1) (2) (3) (4) (5) (6)

Log Travel Time -0.051∗∗∗ - - -0.209∗∗∗ - -
(0.009) (0.043)

Log adjusted - -0.073∗∗∗ - - -0.291∗∗∗ -
Travel Time (0.011) (0.050)
Log Road Distance - - -0.039∗∗∗ - - -0.165∗∗∗

(0.009) (0.041)
Polynomials: distance from the border × country × ethnicity (305 groups)

3rd order x x x x x x
Geography Cov. NO YES YES YES NO YES
Country FE 36 36 36 36 36 36
Segment FE 569 569 569 569 569 569
Observations 168,620 168,620 168,620 168,620 168,620 168,620
Adjusted R2 0.183 0.185 0.182 0.163 0.165 0.162

Note: This table reports estimation results using travel time and road distance instead of the Euclidean distance as
explanatory variables and corresponds to our main BDD regressions in Table 2.2 based on Equation 2.4. In order to
avoid capturing the break between the capital city and the hinterlands, we exclude 20 km around each capital city
from our sample. To prevent misassignment of detected nightlights between countries due to blooming, we exclude 3
km on each side of the boundary. The ‘Geographical Cov.’ include: distance from the coast (in km), ruggedness (in
% slope), % surface covered with water, mean annual temperature, minimum average temperature during the coldest
month, maximum average temperature during the warmest month (in ◦C), crop caloric index, annual precipitation
(in mm), longitude and latitude (projected in km). Boundary segments corresponds to a buffer of 25 km around
border pieces of 50 km line length and are entirely nested within a restricted ethnic homeland based on the ‘Tribal
Map of Africa’ (Murdock, 1959). The observations are weighted such that each segment side has the same aggregated
weight as its counterfactual. Standard errors in parenthesis are clustered by boundary segment.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 2.A.6
Euclidean Distance vs. Travel Time

(a) Travel Time

(b) Road Distance

Note: The graphs illustrate the relationship between the Euclidean distance from the capital city and travel time
or road distance as alternative distance measures. The blue lines represent the respective linear regression lines.
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2.A.7 Maps

Figure 2.A.7
VIIRS Nightlights Sample Map
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Figure 2.A.9
Unrestricted Segments

(a) Simple Border Segments

(b) Simple Border Segments - Magnified
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Figure 2.A.10
Restricted Segments

(a) Border Segments nested within Restricted Partitioned Ethnic Homelands

(b) Nested Border Segments - Magnified
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2.A.8 Balancing Tests

Table 2.A.14
OLS - Balancing Tests

Dependent variable: Normalization of

Distance from the Coast Crop Caloric Index

All Pixels Border Area All Pixels Border Area

OLS Ethnicity FE OLS Ethnicity FE OLS Ethnicity FE OLS Ethnicity FE

(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance from 0.178∗∗∗ 0.077∗∗∗ 0.152∗∗∗ 0.044∗∗∗ -0.137∗∗∗ -0.042∗ -0.046∗ 0.008
the Capital City (0.022) (0.016) (0.029) (0.013) (0.022) (0.022) (0.024) (0.014)
Geography Cov. YES YES YES YES YES YES YES YES
Country FE 37 37 37 37 37 37 37 37
Ethnicity FE - 706 - 351 - 706 - 351
Observations 3,518,146 3,518,146 416,667 416,664 3,518,146 3,518,146 416,667 416,664
Adjusted R2 0.838 0.974 0.792 0.980 0.785 0.935 0.670 0.930

Note: This table reports the balancedness tests for the examples of distance from the coast (in km) and crop
caloric index corresponding to the OLS and boundary area regressions in Table 2.1 based on Equation 2.3. We
normalize the dependent variables by dividing them by their sample mean. In order to avoid capturing the break
between the capital city and the hinterlands, we exclude 20 km around each capital city from our sample. To prevent
misassignment of detected nightlights between countries due to blooming, we exclude 3 km on each side of the border.
The boundary area regressions (‘Border’) are restricted to all pixels with centroids within the range of 25 km from
shared national borders. The ‘Geographical Cov.’ include: distance from the coast (in km), ruggedness (in % slope),
% surface covered with water, mean annual temperature, minimum average temperature during the coldest month,
maximum average temperature during the warmest month (in ◦C), crop caloric index, annual precipitation (in mm),
longitude and latitude (projected in km) - except for when the respective variable is the dependent variable itself.
The ‘Ethnicity FE’ are based on the ethnic homelands in the ‘Tribal Map of Africa’ (Murdock, 1959). Standard
errors in parenthesis are clustered by ethnic homeland. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.15
Border Discontinuity Estimation - Balancing Tests

Dependent variable: Normalization of
Dist. Coast Elevation Water Rugged. ∅ Temp. Crop Precip. Lon. Lat.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log Distance from 0.008∗∗∗ 0.006 -0.002 -0.367∗∗ 0.000 -0.005 0.010 0.006∗∗∗ 0.018∗∗
the Capital City (0.003) (0.004) (0.004) (0.156) (0.000) (0.006) (0.017) (0.001) (0.009)

Polynomials for: distance from the border × country × ethnicity (305 groups)
3rd order x x x x x x x x x
Geography Cov. YES YES YES YES YES YES YES YES YES
Country FE 36 36 36 36 36 36 36 36 36
Segment FE 569 569 569 569 569 569 569 569 569
Observations 168,620 168,620 168,620 168,620 168,620 168,620 168,620 168,620 168,620
Adjusted R2 1.000 0.999 0.311 0.680 1.000 0.990 0.971 1.000 1.000

Note: This table reports the balancedness tests corresponding to our main BDD regressions in Table 2.2 based
on Equation 2.4. We normalize the dependent variables by dividing them by their sample mean. In order to avoid
capturing the break between the capital city and the hinterlands, we exclude 20 km around each capital city from our
sample. To prevent misassignment of detected nightlights between countries due to blooming, we exclude 3 km on
each side of the national boundary. The ‘Geographical Cov.’ include: distance from the coast (in km), ruggedness (in
% slope), % surface covered with water, mean annual temperature, minimum average temperature during the coldest
month, maximum average temperature during the warmest month (in ◦C), crop caloric index, annual precipitation
(in mm), longitude and latitude (projected in km) - except for when the respective variable is the dependent variable
itself. Boundary segments corresponds to a buffer of 25 km around border pieces of 50 km line length and entirely
nested within a restricted ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock, 1959). The observations
are weighted such that each segment side has the same aggregated weight as its counterfactual. Standard errors in
parenthesis are clustered by boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.16
DHS - Balancing and Placebo Tests

Dependent variable:

Balancing Tests: Normalization of Placebo Tests

Distance Longitude Latitude Elevation Mean Precip- DHS wealth index
to Coast Temperature itation (z-score)

(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance from 0.000 0.000 0.029 -0.035 -0.000∗∗ -0.008 -0.094∗ -0.086
the Capital City (0.004) (0.001) (0.092) (0.029) (0.000) (0.010) (0.054) (0.061)

Log Distance from - - - - - - 0.071 0.082
the Placebo City (0.064) (0.065)

Placebo Tests CoefCAP=CoefP LC

F-Statistic - - - - - - 8.76∗∗∗ 8.40∗∗∗

Polynomials for: distance from the border
3rd order x x x x x x - x
Household Cov. YES YES YES YES YES YES YES YES
Geography Cov. YES YES YES YES YES YES YES YES
Country FE 36 36 36 36 36 36 36 36
Segment FE 569 569 569 569 569 569 569 569
Observations 24,582 24,582 24,582 24,582 24,582 24,582 23,671 23,671
Adjusted R2 1.000 1.000 1.000 0.974 1.000 0.985 0.464 0.465

Note: This table reports the DHS balancing (columns (1)-(6)) and placebo tests (columns (7)-(8)) corresponding
to Table 2.A.12. In columns (1)-(6), we normalize the dependent variables by dividing them by their sample mean.
Regarding the placebo tests, we report the respective F-tests on the equality of the coefficients. The ‘Geographical
Cov.’ include: age of household head, age of houshold head squared, number of household members. The ‘Household
Cov.’ include: mean annual temperature, minimum average temperature during the coldest month, maximum average
temperature during the warmest month (in ◦C), annual precipitation (in mm), longitude and latitude (projected
in km) and whether the household is in an urban or rural setting - except for when the respective variable is the
dependent variable itself. Boundary segments corresponds to a buffer of 25 km around border pieces of 50 km line
length and are entirely nested within a restricted ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock,
1959). The observations are weighted such that each side of a segment has the same aggregated weight as its
counterfactual. Standard errors in parenthesis are clustered by DHS cluster and boundary segment.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.17
Channel Analysis: Afrobarometer Balancing Tests

Dependent variable: Normalization of
Distance from the Coast Longitude Latitude

OLS Boundary BDD OLS Boundary BDD OLS Boundary BDD

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log Distance from 0.154∗∗∗ 0.204∗∗∗ 0.015∗∗∗ 0.036∗∗∗ 0.061∗∗∗ 0.001 -0.185 -0.228 0.057∗∗∗
the Capital City (0.023) (0.050) (0.005) (0.010) (0.013) (0.001) (0.128) (0.229) (0.020)

Polynomials for: distance from the border
3rd order - - x - - x - - x
Household Cov. YES YES YES YES YES YES YES YES YES
Geography Cov. YES YES YES YES YES YES YES YES YES
Country × Round FE 73 72 71 73 72 71 73 72 71
Segment FE - - 140 - - 140 - - 140
Observations 93,242 15,419 8,347 93,242 15,419 8,347 93,242 15,419 8,347
Adjusted R2 0.856 0.891 0.999 0.991 0.994 1.000 0.988 0.989 1.000

Note: This table reports the Afrobarometer balancing tests for distance from the coast (in km), latitude and longitude
(in km) corresponding to Table 2.1, 2.3 and 2.A.21. We normalize the dependent variables by dividing them by their
sample mean. The ‘Household Cov.’ include: age, age squared and sex of respondent. The ‘Geographical Cov.’
include: distance from the coast (in km), longitude and latitude (projected in km) and whether the household is in
an urban or rural setting - except for when the respective variable is the dependent variable itself. The segments
are entirely nested within an ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock, 1959). In the full
sample OLS regressions, the observations are weighted according to the Afrobarometer survey weights. In the BDD
regressions, the observations are weighted such that each side of a segment has the same aggregated weight as its
counterfactual. Standard errors in parenthesis are clustered by Afrobarometer cluster and ethnic homeland in the
OLS and boundary area regressions and Afrobarometer cluster and boundary segment in the BDD regressions.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 2.A.11
Discontinuity Balancing Graphs: Capital City

(a) Distance from Coast (b) Mean Temperature (c) Min Temperature

(d) Max Temperature (e) Ruggedness (f) Elevation

(g) Latitude (h) Longitude (i) Precipitation

(j) Crop Suitability (k) Water Bodies (l) Distance Capital City

Note: The graphs illustrate the graphical balancing tests corresponding to Figure 2.1. The gray buffer around the
lines represent the 95% confidence interval. The bins on the left-hand side are, with an average distance of 830 km,
relatively far from the capital city and represent a total of 241,241 pixels. In contrast, pixels on the right-hand side
are, with an average of around 430 km, relatively close to the capital city and represent 238,908 pixels.
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Figure 2.A.12
Discontinuity Balancing Graphs: Placebo City

(a) Distance from Coast (b) Mean Temperature (c) Min Temperature

(d) Max Temperature (e) Ruggedness (f) Elevation

(g) Latitude (h) Longitude (i) Precipitation

(j) Crop Suitability (k) Water Bodies (l) Distance Capital City

Note: The graphs illustrate the graphical placebo balancing tests corresponding to Figure 2.2. The gray buffer
around the lines represent the 95% confidence interval. The bins on the left-hand side are, with an average distance
of 820 km, relatively far from the capital city and represent a total of 238,980 pixels. In contrast, pixels on the
right-hand side are, with an average of around 440 km, relatively close to the capital city and represent 237,153
pixels.
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Table 2.A.18
Border Discontinuity Estimation - Conley Standard Errors

Dependent variable:
Probability Pixel is Lit Log Light Density

in 2016 (VIIRS) in 2016 (VIIRS)
Distance Cutoff (in km):

50 100 200 500 1,000 50 100 200 500 1,000
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Conley Standard Erros w/o Bartlett Correction
Log Distance from -0.031∗∗ -0.031∗∗ -0.031∗ -0.031∗ -0.031∗∗ -0.137∗ -0.137∗∗ -0.137 -0.137 -0.137∗
the Capital City (0.015) (0.015) (0.018) (0.017) (0.015) (0.075) (0.070) (0.085) (0.084) (0.073)

Conley Standard Erros w/ Bartlett Correction
Log Distance from -0.031∗∗∗ -0.031∗∗ -0.031∗∗ -0.031∗ -0.031∗ -0.137∗∗ -0.137∗∗ -0.137∗∗ -0.137∗ -0.137∗
the Capital City (0.012) (0.014) (0.014) (0.017) (0.016) (0.058) (0.067) (0.068) (0.080) (0.079)

Polynomials for: distance from the border × country × ethnicity (305 groups)
3rd order x x x x x x x x x x
Geography Cov. YES YES YES YES YES YES YES YES YES YES
Country FE 36 36 36 36 36 36 36 36 36 36
Segment FE 569 569 569 569 569 569 569 569 569 569
Observations 168,620 168,620 168,620 168,620 168,620 168,620 168,620 168,620 168,620 168,620
Adjusted R2 0.182 0.182 0.182 0.182 0.182 0.161 0.161 0.161 0.161 0.161

Note: This table reports robustness tests for our baseline BDD estimates in columns (3) and (7) in Table 2.2 based on
Equation 2.4 using Conley standard errors with and without Bartlett correction for various distance cutoffs (Conley,
1999). We estimate these SEs using the STATA package ‘acreg’ developed by Colella et al. (2019). The ‘Geographical
Cov.’ include: distance from the coast (in km), ruggedness (in % slope), % surface covered with water, mean annual
temperature, minimum average temperature during the coldest month, maximum average temperature during the
warmest month (in ◦C), crop caloric index, annual precipitation (in mm), longitude and latitude (projected in km).
The observations are weighted such that each side of a segment has the same aggregated weight as its counterfactual.
Conley standard errors are in parenthesis. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.19
Placebo Tests

Dependent variable:

Boundary Area Regression Boundary Discontinuity Regression

Probability Pixel is Log Light Density Probability Pixel is Log Light Density
Lit in 2016 (VIIRS) in 2016 (VIIRS) Lit in 2016 (VIIRS) in 2016 (VIIRS)

OLS Ethn FE OLS Ethn FE BDD City Size BDD City Size

(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance from -0.022∗∗∗ -0.014∗∗ -0.087∗∗∗ -0.065∗∗∗ -0.018∗∗ -0.019∗∗ -0.070∗ -0.072∗
the Capital City (0.006) (0.005) (0.027) (0.025) (0.009) (0.009) (0.037) (0.037)

Log Distance from -0.008 -0.009 -0.035 -0.038 -0.005 -0.010 -0.041 -0.065
the Placebo City (0.005) (0.007) (0.024) (0.030) (0.018) (0.017) (0.081) (0.073)

CAP × SIZECAP - - - - - 0.001 - 0.004
- - - - - (0.001) - (0.005)

PLC × SIZEPLC - - - - - 0.006 - 0.029
- - - - - (0.010) - (0.047)

Polynomials for: distance from the border × country × ethnicity (299 groups)
3rd order - - - - x x x x
Geography Controls YES YES YES YES YES YES YES YES
Country FE 37 37 37 37 35 35 35 35
Ethnicity FE NO 351 NO 351 - - - -
Segment FE - - - - 554 554 554 554
Observations 414,879 414,876 414,879 414,876 164,337 164,337 164,337 164,337
Adjusted R2 0.083 0.133 0.071 0.122 0.179 0.179 0.156 0.156

Note: This table reports our boundary area and BDD placebo test based on Equation 2.5. In order to avoid
capturing the break between the capital or placebo cities and the hinterlands, we exclude 20 km around each capital
and placebo city from our sample. To prevent misassignment of detected nightlights between countries due to
blooming, we exclude 3 km on each side around shared national boundaries. The ‘Geographical Cov.’ include:
distance from the coast (in km), ruggedness (in % slope), % surface covered with water, mean annual temperature,
minimum average temperature during the coldest month, maximum average temperature during the warmest month
(in ◦C), crop caloric index, annual precipitation (in mm), longitude and latitude (projected in km). Columns
(1)-(4) constitute boundary area regressions and columns (2) and (4) additionally include ethnicity fixed effects.
Boundary segments corresponds to a buffer of 25 km around border pieces of 50 km line length and entirely nested
within a restricted ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock, 1959). Columns (6) and (8)
include interactions between isolation from the capital and placebo city and their respective population counts. The
observations in columns (5)-(8) are weighted such that each side of a segment has the same aggregated weight as
its counterfactual. Standard errors in parenthesis are clustered by ethnic homeland in columns (1)-(4) and border
segment in columns (5)-(8) ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.20
Boundary Discontinuity Estimation: Public Goods

Dependent variable:
Road Infrastructure Provision Health Care Provision
Prob. Road Prob. Tarred Log Dist to Log Dist Log Dist Public

Exists Road Exists Health Center to Hospital Health Center
(1) (2) (3) (4) (5)

Log Distance from 0.004 -0.019∗∗ 0.123 0.435∗∗∗ 0.567∗∗
the Capital City (0.018) (0.007) (0.150) (0.123) (0.281)

Polynomials for: distance from the border × country × ethnicity
3rd order x x x x x
Population Density YES YES YES YES YES
Geography Cov. YES YES YES YES YES
Country FE 36 36 34 34 27
Segment FE 569 569 483 483 327
Observations 168,620 168,620 141,578 141,578 93,937
Adjusted R2 0.088 0.203 0.715 0.872 0.751

Note: This table reports results on public goods as outcome variables using our BDD framework and is based on
Equation 2.4. The road infrastructure depend variables are a dummy indicating if a road intersects with a pixel and
if a tarred road intersects with a pixel. The health care provision variables include the log of the distance to the
closest health center, the closest hospital and the closest public health center. The drop in the number of observations
in column (5) is due to the fact that the ownership of the health facility is missing for Equatorial Guinea, Guinea,
Liberia, Mauritania, Mozambique and Niger. The ‘Geographical Cov.’ include: distance from the coast (in km),
ruggedness (in % slope), % surface covered with water, mean annual temperature, minimum average temperature
during the coldest month, maximum average temperature during the warmest month (in ◦C), crop caloric index,
annual precipitation (in mm), longitude and latitude (projected in km). In addition, in column (2) we include as
dummy indicating if there exists a road. The observations are weighted such that each side of a segment has the
same aggregated weight as its counterfactual. Standard errors in parenthesis are clustered by boundary segment.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.21
Channel Analysis: Supplementary Results on Political Attitude

BDD Model with dependent variable z-score of:
Trust in Trust in Voter National
Ruling Opposition Turnout (vs Ethnic)
Party Party Identity
(1) (2) (3) (4)

Log Distance from 0.169∗∗∗ 0.023 0.232∗∗∗ 0.039
the Capital City (0.060) (0.052) (0.051) (0.049)

Polynomials for: distance from the border
3rd order x x x x
Household Cov. YES YES YES YES
Geography Cov. YES YES YES YES
Country × Round FE 67 67 70 68
Segment FE 140 140 140 140
Observations 7,794 7,809 7,702 8,007
Adjusted R2 0.163 0.057 0.086 0.113

Note: This table reports the supplementary regressions on the impact of isolation from the capital city on the
perception of political leaders and accountability. The ‘Household Cov.’ include: age, age squared and sex of
respondent. The ‘Geographical Cov.’ include: distance from the coast (in km), longitude and latitude (projected in
km) and whether the household is in an urban or rural setting. Columns (1) and (2) correspond to trust into the
ruling and opposition party respectively. Column (3) to voter turnout and column (4) to the extent to which the
respondent identifies with the nation rather than the ethnicity. All models are BDD regressions using ‘Segment FE’
for boundary segments of 50 km length with a buffer of 25 km that are nested within an ethnic homelands based on
the ‘Tribal Map of Africa’ (Murdock, 1959). All observations are weighted such that each side of a segment has the
same aggregated weight as its counterfactual. Standard errors in parenthesis are clustered by Afrobarometer cluster
and boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.22
Channel Analysis: Afrobarometer Placebo Tests

BDD Model with dependent variable z-score of:
Public Trust Corrupt Perform Trust Trust Voter National Educ News Checks
Goods Leader Percept Eval Rule Oppos Turnout Identity Level Reader Balance

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Log Distance from -0.064∗ 0.173∗∗ -0.070 0.226∗∗ 0.177∗∗ 0.064 0.122∗∗∗ 0.070 0.064 -0.092 -0.147∗∗
the Capital City (0.038) (0.071) (0.068) (0.105) (0.081) (0.070) (0.027) (0.068) (0.090) (0.083) (0.059)

Log Distance from 0.059∗ -0.024 0.023 0.080 0.012 0.062 0.041 0.037 0.003 0.097 -0.077
the Placebo City (0.031) (0.071) (0.074) (0.124) (0.076) (0.066) (0.028) (0.061) (0.083) (0.070) (0.055)

Placebo Tests CoefCapitalCity = CoefP laceboCity

F-Statistic 15.50∗∗∗ 8.49∗∗∗ 4.27∗∗ 3.51∗ 7.00∗∗∗ 0.0 9.82∗∗∗ 0.46 1.29 11.90∗∗∗ 2.16

Polynomials for: distance from the border
3rd order x x x x x x x x x x x
Household Cov. YES YES YES YES YES YES YES YES YES YES YES
Geography Cov. YES YES YES YES YES YES YES YES YES YES YES
Country × Round FE 70 70 71 71 67 67 70 68 71 71 71
Segment FE 70 138 138 138 138 138 138 138 138 138 138
Observations 8,053 7,601 6,525 6,414 7,590 7,598 7,501 7,802 8,096 7,902 7,556
Adjusted R2 0.614 0.183 0.162 0.202 0.168 0.058 0.087 0.110 0.296 0.173 0.137

Note: This table reports the BDD placebo tests corresponding to the Afrobarometer regressions in Table 2.1, 2.3
and 2.A.21. We report the respective F-tests on the equality of the coefficients. The ‘Household Cov.’ include: age,
age squared and sex of respondent. The ‘Geographical Cov.’ include: distance from the coast (in km), longitude and
latitude (projected in km) and whether the household is in an urban or rural setting. The BDD sample is restricted
to a buffer of 25 km around the shared national boundaries. The ‘Segment FE’ are nested within an ethnic homeland
based on the ‘Tribal Map of Africa’ (Murdock, 1959). The observations are weighted such that each side of a segment
has the same aggregated weight as its counterfactual. Standard errors in parenthesis are clustered by Afrobarometer
cluster and boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.23
Channel Analysis: Dynamic Political Support - Placebo Tests

Dependent variable:
Corruption Perception Trust Pol. Leaders Vote for Government

Panel BDD-Panel Panel BDD-Panel Panel BDD-Panel
(1) (2) (3) (4) (5) (6)

Log Corruption Level × -0.326∗∗∗ -0.552 0.107 1.278∗∗ 0.144∗∗ 1.107∗∗
Log Dist Cap (0.093) (0.730) (0.095) (0.579) (0.056) (0.469)
Log Corruption Level × 0.277∗∗ 0.490 -0.366∗∗ -0.373 -0.123∗ -0.645
Log Dist PLC (0.120) (0.721) (0.148) (0.780) (0.063) (0.547)

Polynomials for: distance from the border
3rd order - x - x - x
Log Corruption Level absorbed Yes absorbed Yes absorbed Yes
Log Distance from Yes Yes Yes Yes Yes Yes
the Capital City
Log Distance from Yes Yes Yes Yes Yes Yes
the Placebo City
Geography Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Cnt × Ethn × Round FE Yes No Yes No Yes No
Country FE No Yes No Yes No Yes
Ethnicity FE No Yes No Yes No Yes
Round FE No Yes No Yes No Yes
Segment × Round FE - 157 - 157 - 146
Observations 73,203 3,968 81,760 4,623 60,026 3,123
Adjusted R2 0.158 0.111 0.195 0.156 0.284 0.232

Note: This table reports the placebo regressions corresponding to Table 2.4. The ‘Household Cov.’ include: age,
age squared and sex of respondent. The ‘Geographical Cov.’ include: distance from the coast (in km), longitude
and latitude (projected in km) and whether the household is in an urban or rural setting. The dependent variable
in columns (1)-(2) is the normalized corruption perception among political leaders, in columns (3)-(4) it is the
normalized level of trust into the political leadership and in columns (5)-(6) it is a dummy indicating whether the
respondent would vote for the incumbent government if there was an election held. All observations are weighted
such that each side of a segment has the same aggregated weight as its counterfactual. Standard errors in parenthesis
are clustered by Afrobarometer cluster and ethnicity × round. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.A.24
Channel Analysis: Market Access and Trade

Dependent variable: VIIRS Nightlights in 2016 (Prob/Log)

Prob Log Prob Log Prob Log

(1) (2) (3) (4) (5) (6)

Log Distance from -0.013 -0.067 -0.037∗∗∗ -0.164∗∗ -0.035∗∗ -0.158∗∗
the Capital City (0.011) (0.044) (0.014) (0.068) (0.014) (0.066)

CAP × FTA -0.028∗∗∗ -0.113∗∗∗ - - - -
(0.011) (0.044)

CAP × Customs Union - - 0.023 0.098 - -
(0.015) (0.061)

CAP × Customs Union and - - - - 0.018 0.083
CAP × Monetary Union (0.015) (0.060)

Polynomials: dist. to border × country × ethnicity (305 groups)
3rd order x x x x x x
Geography Cov. YES YES YES YES YES YES
Country FE 36 36 36 36 36 36
Segment FE 569 569 569 569 569 569
Observations 168,620 168,620 168,620 168,620 168,620 168,620
Adjusted R2 0.182 0.161 0.182 0.161 0.182 0.161

Note: This table reports the tests for heterogeneities at boundaries that are less restrictive to trade and extend
the model in Equation 2.4. In order to avoid capturing the break between the capital city and the hinterlands, we
exclude 20 km around each capital city from our sample. To prevent misassignment of detected nightlights between
countries due to blooming, we exclude 3 km on each side of the border. The ‘Geographical Cov.’ include: distance
from the coast (in km), ruggedness (in % slope), % surface covered with water, mean annual temperature, minimum
average temperature during the coldest month, maximum average temperature during the warmest month (in ◦C),
crop caloric index, annual precipitation (in mm), longitude and latitude (projected in km). Boundary segments
corresponds to a buffer of 25 km around border pieces of 50 km line length and are entirely nested within a restricted
ethnic homeland based on the ‘Tribal Map of Africa’ (Murdock, 1959). We include interactions of CAP (Log Distance
to the Capital City) and a dummy for boundaries between countries with FTAs (columns (1)-(2)), customs unions
(columns (3)-(4)) and those that additionally share a common currency (columns (5)-(6)). The observations are
weighted such that each side of a segment has the same aggregated weight as its counterfactual. Standard errors in
parenthesis are clustered by boundary segment. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 3
The Economic Impact of Proximity to Regional

Capitals: Evidence from Boundary Reforms

3.1 Introduction

Capital cities are the centers of political decision making in a country and as such con-
stitute a core building block of the political geography of states. Recent studies found
that the location of national capitals has a strong impact on economic outcomes at the
country and local level (Campante and Do, 2014; Michalopoulos and Papaioannou, 2014)
(see also Chapter 2). In addition to national capital cities that serve as seat of the central
government, countries usually have a set of multiple regional capital cities that serve as
an extended arm of the national government and also have some autonomy to rule over
certain regional and local matters.1 Yet, only little is known about the economic relevance
of regional capitals for the spatial distribution of economic activity within the region. In
this paper, we aim to fill this gap by using a worldwide sample of region splits that led to
the creation of new regional capital cities.

The literature on the role of capital cities has emphasized the challenge of states to impose
rules and broadcast power beyond the capital cities into the hinterlands (Herbst, 2000;
Michalopoulos and Papaioannou, 2014). Further, Campante and Do (2014) and Campante
et al. (2019) show that states with isolated capital cities exhibit negative outcomes such
as increased corruption, conflict and misgovernance. In Chapter 2, we investigate the
micro-level impact of remoteness from the capital city on locations in Sub-Saharan African
countries. We find that isolation from the capital city reduces public goods provision and
ultimately economic performance by creating information frictions that disincentivizes the
attention of the political leadership.
Regional capital cities might shape the spatial distribution of economic activity within
regions in a similar way. On the one hand, regional capitals might serve as outposts of

1We use the Global Administrative Unit Layer (GAUL) by the Food and Agriculture Organization of the
United Nations (FAO) and define regions as the first level of government subdivision.
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national capital cities and reduce the distance between the central government and the
hinterlands. On the other hand, regions can be viewed as mini-countries that, depending
upon the level of decentralization, also have a regional government that is in charge of cer-
tain local affairs. In a related paper, Asher et al. (2018) provide first evidence from rural
India that remoteness from subnational centers of political administration might have a
similarly negative impact as the national capital city. The authors find that distance to
district headquarters reduces income and public goods provision. Similarly, Henn (2021)
shows that distance to administrative headquarters in Sub-Saharan Africa reduces eco-
nomic performance.2 However, both studies are facing a number of methodological caveats
with regard to providing a final answer about the causal impact of distance to regional
administrative headquarters that we seek to address in this study.3 Another study by
Richard Bluhm (2021) investigates the effects of designating new regional capital cities
but mainly focuses on the impact on the new capital itself.4 The authors document that
gaining capital city status spurs city growth through public and private investments and
migration, at least in places with favorable geographical conditions such as good market
access. We extend this analysis by shifting the focus away from the new regional capital
itself and give a more detailed picture of the effects on the wider region.

Another strand in the literature, in particular in political science, has studies the increased
proliferation of administrative units across developing countries. This topic is very relevant
in this context as the creation of new regional capital cities is a corollary of administrative
unit proliferation. A potential advantage for breaking down regions into smaller ones could
be a higher degree of ethnic homogeneity that reduces political violence and conflict (Ce-
derman et al., 2015; Pierskalla, 2016). Another advantage of smaller constituencies could
be related to more homogenous preferences that allow a more efficient provision of public
goods (Oates, 1972). In line with this theory, Grossman et al. (2017) find that public goods
provision increased following region splits in Sub-Saharan Africa between 1960 and 2012.
In contrast, Billing (2019) find that newly created regions in Burkina Faso are significantly

2It should be mentioned that the methodological design of Henn (2021) does not aim at understanding
the role of administrative headquarters. The author uses regional and local administrative headquarters
to obtain variation in state capacity to study the constitutional framework conditions under which the
traditional leadership serves as a substitute or as a complement of the state when state capacity is low.

3Most importantly, both studies use subnational boundaries in a boundary discontinuity design (BDD).
However, as we will discuss in more detail below, subnational borders are not arbitrary and induce dis-
continuous variation in other covariates. In addition to a change in the identification strategy, we focus
exclusively on regional rather than local headquarters. Moreover, we exclude the local area around the
regional capitals to avoid picking up effects on the cities themselves.

4The authors document positive spillovers within the wider urban area around the new regional capital up
to 75-100km away but not beyond.
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weakened and lack the resources and administrative ability to provide public goods. Like-
wise, Lewis (2017) finds that region splits decreased public goods such as water and san-
itation provision in Indonesia. A reason for this might be that region splits are sometimes
aimed at reinforcing patronage and recentralizing power by weakening local constituencies
(Green, 2010; Grossman and Lewis, 2014). Another intention behind region splits could
be grouping constituencies in a specific way to win elections (Hassan, 2016). Baskaran
and Blesse (2019) provide aggregate evidence from a large sample of African boundary
splits and mergers between 1992 and 2013. This study finds that both splits and mergers
have a positive impact on economic development. The authors argue that splits have a
small positive effect by reducing conflict and mergers have a larger effect by improving
administrative efficiency.
What becomes clear from this literature is that the motives behind region split might play
an important role for the outcomes. Region splits might be advantageous if they aim to
resolve ethnic cleavages or bring locations closer to their administrative center. However,
any potential positive effects from getting closer to a regional capital city might be un-
dermined when the entire administrative capacity of the new region is weakened. For this
reason, we will attempt to shed light into how political framework conditions impact the
effects of region splits. More specifically, we will show that being closer to the regional
capital city only has positive effects under democratic but not under autocratic institutions.

The main challenge for identifying the causal effect of proximity to the regional capital
city is that the location of capital cities is not random. There are a range of confounding
geographical and geological factors like distance from the closest river or infrastructure
that simultaneously change with distance from the regional capital. In Chapter 2, we
induces quasi-random variation in distance from the national capital city in Sub-Saharan
African countries by applying a boundary discontinuity design (BDD) at national borders.
More specifically, we exploit the special circumstance that African national borders were
arbitrarily set and imposed from the outside by the colonial powers.5 As a result, certain
boundary segments divide pre-colonial ethnic homelands with common geographical, social
and historical characteristics.6 Similarly, Asher et al. (2018) and Henn (2021) use a BDD
at subnational administrative boundaries in an attempt to obtain quasi-random variation
in distance from the administrative headquarter. However, using a BDD in this context
is problematic as regional boundaries are not random but delineate ethnic and geographic

5See Michalopoulos and Papaioannou (2014, 172) for a detailed discussion of the origin of national borders
in Sub-Saharan Africa.

6See Section 2.1.2 for a detailed discussion of the identification strategy used in Chapter 2.
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shifts. For this reason, Asher et al. (2018) discovers other discontinuities such as that the
boundary side that is closer to the headquarter is simultaneously closer to the next mid-
sized city or river, and in case of Henn (2021) closer to colonial railroads and the national
boundary. As a consequence, cross-sectional and BDD comparisons are not suitable to
identify the causal impact of distance from the regional capital in this context.

To overcome the challenges associated with identifying the impact of distance to the re-
gional capital city, we exploit the longitudinal variation induced by region splits. Whenever
a region is split, there are two types of newly created regions. Firstly, there are the regions
that contain the old regional capital which usually persists as such. However, those regions
do not experiences a change in distance from the capital city which is why we omit them
from the analysis. Secondly, the remaining ‘splinter regions’ require the assignment of a
new regional capital city. Consequently, all areas in these new regions experience a change
in distance from the capital city that can be exploited in an event study to analyze the
effect of proximity to regional capitals. However, a simple before vs. after event study
might still be biased by local economic shocks. To be able to effectively control for such
confounders, we focus on the boundary area of these splinter regions and use neighboring
regions which did not undergo a boundary reform themselves as control areas. To test
if these controls are suitable counterfactuals, we run an event study and test for parallel
pre-trends.
Our sample comprises of 17 countries in Africa, the Americas and Asia where in the period
between 1996 and 2005 35 regions split and 37 splinter regions with new regional capitals
were created. While areas that experienced a strong as compared to those that experi-
enced only a small decline in distance to the regional capital city evolved similarly prior to
the reform, they significantly gained relatively after the reform. On average, a 1 percent
decrease in distance from the regional capital city increases the intensity of nightlights by
0.16 percent within 8 years. Furthermore, we find strong differences in the relevance of re-
gional capital cities between countries. Regional capitals appear to be primarily relevant in
democratic and decentralized countries, and less relevant in relatively developed countries.
Finally, we do not document an impact of proximity to regional capitals on the propensity
of conflict which makes it unlikely that conflict is a driver behind the economic gains.

The remainder of the paper is organized into 3 sections. Firstly, Section 3.2 will introduce
the identification strategy and dataset. Secondly, Section 3.3 will present our empirical
results. Finally, Section 3.4 summarizes the findings and concludes the paper.
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3.2 Data and Empirical Strategy

3.2.1 Empirical Strategy

This study aims to examine if proximity to regional capital cities has a positive impact on
a location’s economic performance. The main challenge of estimating the causal effect is
the endogenous selection of regional capitals. The choice for the capital usually falls on
the largest and best performing city within the region. We therefore have to assume that
distance from the capital is correlated with a variety of other factors that are themselves
related to economic performance such as market access, proximity to infrastructure, lakes,
rivers, the coastline or other geographic variables such as soil quality or climate. One
potential solution might be to conduct a BDD at regional boundaries, however regional
borders usually delineate geographic and ethnic shifts which is why areas on both sides of
the boundary are unlikely to be valid counterfactuals in a cross-sectional comparison.

For this reason, we pursue a longitudinal identification strategy and focus on areas within
regions that underwent boundary reforms and experienced a shift in their distance to the
regional capital. More specifically, we will target region splits7 i.e. the division of the
original area of a region into two or more smaller regions. There are two types of new re-
gions: i) regions containing the old regional capital city which usually persists as regional
capital city - we never use these regions in our analysis as they do not experience a change
in the capital city and ii) regions that do not contain the old regional capital city that
get assigned a new designated regional capital city - which we refer to as ‘splinter region’.
As a consequence, after the region split, all locations within these newly created splinter
regions experience a shift in distance to the new regional capital city. Our identification
strategy seeks to exploit this shift in distance from the regional capital to study its impact
on economic development.

In Figure 3.1, we illustrate a region split based on the Indian region ’Madhya Pradesh’
which in November 2000 was split into the regions ’Madhya Pradesh’ and ’Chhattisgarh’.
Bhopal used to be the capital city of the original region and persisted as capital of the
new Madhya Pradesh region after the split (the green stars in Figure 3.1 represent the
capital cities). Raipur was selected as the new capital city of the newly formed region of

7There are two other less common types of regional boundary reforms: mergers and complete redrawings
of boundaries. While mergers refer to aggregating the original area of two or more regions into one large
region, there are a few rare cases where boundaries get redrawn entirely without following the original
demarcation lines or only following them partially.
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Figure 3.1
Region Split Example: Madhya Pradesh Region Nigeria

(a) Indian Regions in 2000

(b) Pre-split (2000) (c) Post-split (2001)

(d) ∆ Proximity to Reg. Capital

Note: These figures illustrate the split of the Indian state ‘Madhya Pradesh’ into ‘Madhya Pradesh’ and ‘Chhat-
tisgarh’ in 2001. In this example, Chhattisgarh is the splinter region with ‘Raipur’ as the new state capital. ‘∆
Proximity to Reg. Capital’ is computed as the distance from the old regional capital minus distance from the new
regional capital. Figure 3.1d illustrates that only the areas in Chhattisgarh experience a change in their distance to
the capital.
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’Chhattisgarh’. Consequently, after the split the location of the corresponding capital city
remained the same for all areas inside the new Madhya Pradesh region and changed for
all areas in the splinter region Chhattisgarh (see Figure 3.1d). For this reason, we only
focus on the splinter regions in our sample to study the impact of proximity to the regional
capital city, and exclude all areas in new regions that contain the old regional capital city.

3.2.2 Identification

Our identification strategy is centered around the idea of exploiting the shift in distance
from the regional capital cities in splinter regions to study the economic impact of proxim-
ity to regional capitals. For this reason, our explanatory variable is a continuous treatment
intensity that captures the change in log distance from the regional capital city. Figure 3.2a
illustrates the distribution of distance from the regional capital city in our study sample
of splinter regions before and after the split, and Figure 3.2b presents the distribution of
the treatment intensity.

Figure 3.2
Distance to the Regional Capital City

(a) Distribution: Before & After (b) Distribution: Change

Note: These figures illustrate how the region split and establishment of a new regional capital city in the splinter
region has altered how close locations are situated relative to the regional capital city. Figure 3.2a displays the
histograms of distance to the regional capital city before and after the split. Figure 3.2b plots the histogram of the
difference in log distance to the regional capital city, which is our measure of treatment intensity.

One way of estimating the relationship between distance from the regional capital city
would be to use an event study that tracks locations in splinter regions a few years before
until a few years after the region split. We can then examine if locations with a higher
treatment intensity evolve similarly prior to the region split and diverge thereafter.
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Yi,t =
8∑

t=−4,
t6=−1

βt ∆CAPi + bi + br,t + εi,t (3.1)

Equation 3.1 presents the corresponding estimation equation where i refers to a pixel, t
to relative time (e.g. t = 1 is one year after the split), Yi,t to our measure of economic
performance in each pixel and relative time period and ∆CAPi to the change in log dis-
tance from the regional capital city for pixel i. To account for time invariant pixel specific
characteristics such as climate, ruggedness or distance from a river, we include pixel fixed
effects bi. In addition, we include region-year fixed effects, br,t, to control for all potential
time-variant confounders that impact a specific region such as economic cycles or the effects
of the split on the region. We cluster double-cluster standard errors by region-year and on
the pixel level to account for the autocorrelation of residuals over space and time. Since
we are interested in how proximity to the regional capital city impacts the distribution of
economic activity in the wider region and not the capital cities themselves, we exclude the
area within 20km of the capital city by default from all estimations. Furthermore, to avoid
inaccuracies in the assignment of locations to the respective region as well as blooming of
nightlights across borders, we exclude all pixels within 5km on either side of the boundary
by default from all estimations.

The potential shortcomings of this approach are twofold. Firstly, it relies on the assump-
tion that the change in distance from the capital city is unrelated to economic performance
in the absence of the split. Yet, it could be that areas with a higher change in distance to
the regional capital grow at a faster rate. One way of checking if this is a relevant caveat is
to analyze if areas that subsequently gain more in terms of proximity to the regional capital
city are already growing at a higher rate before the region split. Practically, this can be
done by testing for parallel pre-trends. A second concern associated with this approach is
that it does not control for local economic shocks that might distort the estimated effect.
As an example, it could be that there happen to be mineral discoveries in areas with a
higher or lower treatment intensity and thereby lead to over- or underestimations of the
effects. Consequently, estimates based on this approach might be biased in either direction.

As a solution, we propose to combine the event study approach with a BDD approach.
The idea is to focus on boundary areas and use locations in neighboring regions as controls
for local economic shocks that are unrelated to the shift in distance from the regional
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Figure 3.3
Illustrate Identification: Chhattisgarh

Note: This figure illustrates the boundary segments for the example of the splinter region ‘Chhattisgarh’. The
boundary segments play an important role for the identification strategy and allow us to absorb local economic
shocks that equally affect both sides of the boundary for each period.

capital city. In practice, we divide the boundary of the splinter region into segments of
100 km line length with a buffer of 25 km on each side of the boundary.8 Using segment-
year fixed effects, we control for any events and local economic shock in each period that
impact both sides of the boundary, as long as it spills over across the boundary. Figure 3.3
illustrates the boundary segments for the example of the Chhattisgarh region. In principle,
we could use all areas in neighboring regions just across the boundary as controls. However,
to avoid that the estimates are distorted, the ideal control group should not be affected
by the treatment itself. In our example, areas in the new Madhya Pradesh region are
not a suitable control as they were also affected by the region split (which is why there
are no segments around the border between Chhattisgarh and the new Madhya Pradesh
region). Moreover, neighboring regions that are themselves going through a boundary
reform during the same period are also not a suitable control group. In our example the
neighboring regions in the north also underwent splits with Jharkhand splitting from Bihar
and Uttarakhand splitting from Uttar Pradesh in the year 2000.

Yi,t =
8∑

t=−4,
t6=−1

βt ∆CAPi + bi + br,t + bs,t + εi,t (3.2)

8We only keep boundary segments that have at least 10 pixels on each segment side, to avoid that in some
instances at very uneven boundaries only few pixels serve as counterfactuals for the respective other side.
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Equation 3.2 presents the corresponding new estimation equation. It is very similar to
Equation 3.1, but additionally includes segment-year fixed effects bs,t. To account for the
spatial and temporal autocorrelation of residuals, we double-cluster standard errors at the
segment-year and at the pixel level. Since there is no overlap between split events i.e. each
split event has its own control group without overlapping fixed effects, we are not facing
the challenges of staggered onset such as the comparison between early vs. late treated
units (Goodman-Bacon, 2021). As in the simple event study analysis, we exclude areas
within 20km around the capital cities and 5km around the borders from the sample.

3.2.3 Data

For our empirical approach, we require three core inputs: (i) data on the annual spatial
extent and demarcation of regions (which we define as first-level administrative regions),
(ii) the respective new and old capital cities for splinter regions and (iii) an indicator of
economic performance for small geographical units over time.

To map first-level administrative regions for all countries across the world, we use the
global administrative unit layer (GAUL) by the Food and Agriculture Organization of the
United Nations (FAO). This database contains annual shapefiles with polygons of regions
and covers the period 1990-2014. This dataset allow us to correctly map administrative
regions across the world, and also identify if and when regions were divided into two or
more regions. Furthermore, we use these shapefiles to create the boundary segments.

The second data input is a geocoded list of regional capital cities. Since there exists no
comprehensive off-the-shelf dataset on regional capital cities, we collected information on
relevant old and new regional capital cities ourselves from various sources including Wiki-
pedia.9 We geocoded this list of cities using OpenStreetMaps.

The third input is a measure of economic performance for small spatial units across re-
gional boundaries in different parts of the world. Despite some shortcomings related to
the fact that nightlights are a noisy measure of economic activity (Chen and Nordhaus,
2011; Cogneau and Dupraz, 2014), they have become a widely used proxy for economic
development at the local level (see for example Henderson et al. (2012); Michalopoulos and
Papaioannou (2013); Donaldson and Storeygard (2016)). The big advantage of nightlights
is that they provide a detailed and consistent global coverage over time with a resolution
9Note that since Wikipedia is not an official administrative data base and given that users can edit data
entries, we cannot exclude the possibility of misassigning capitals.
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of 30 arc seconds (∼ 1km at the equator). We use the Version 4 Defense Meteorological
Satellite Program - Operational Linescan System (DSMP-OLS) nightlighs by the U.S.
Air Force and the National Oceanic and Atmospheric Administration (NOAA) as they
are available annually from 1992-2013.10 While there are newer and improved11 satellite
nightlights available from the VIIRS (Visible Infrared Imaging Radiometer Suite) by the
Suomi National Polar Partnership between NOAA and NASA, they are not suitable for
our purposes as they are only available starting April 2012 (Elvidge et al., 2013).
Since our sample covers a very large area, we aggregate the nightlights grid by a factor
of 5 which means that each block of 5 × 5 original pixels get converted into a new pixel
with the average nightlight density. Further, it is common practice to use two measures of
nightlights: i) a measure at the intensive margin computed as12: ln(Lightsi + 0.08) and
ii) a measure at the extensive margin which is a dummy that is 1 if there are nightlights
detected in a pixel and zero otherwise. The advantage of the extensive measure of night-
lights is that it deemphasizes the magnitude of nightlights which might be distorted by
confounding factors such as local cultural preferences or the presence of waterbodies that
increase the reflected light density. Yet, the disadvantage of an extensive measurement of
nightlights is that it is unable to recognize continuous and gradual changes over time. This
circumstance makes the use of nightlight dummies particularly problematic in longitudinal
analyses as changes in nightlight density in pixels that are lit can no longer be detected.
For this reason, we will focus on the intensive margin of nightlights in our analyses but
report results based on the extensive margin in the appendix.

3.2.4 Sample

During our study period between 1992 and 2013, there were a total of around 190 region
splits in 39 countries.13 In our event study analysis, we only focus on a subsample con-
sisting of 35 regions splits in 17 countries (6 in Africa, 2 in the Americas and 9 in Asia)
that led to the creation of 37 splinter regions with new capitals. One reason for the large
reduction in the sample is related to our event study approach in which we only consider
splits between 1996 and 2005, to observe all areas 4 years prior and 8 years post treatment
to be able to test for parallel pre-trends and leave enough time for the effects to material-

10The annual DMSP-OLS nightlights are publicly available for download at: https://www.ngdc.noaa.go
v/eog/dmsp/downloadV4composites.html#AVSLCFC.

11The main advantages of the VIIRS nightlights is that they are not top-coded like the DMSP-OLS, have
a higher resolution and suffer less from blooming.

12The constant term of 0.08 equals the minimum detected nightlight density greater than 0 and is added
before taking the log to avoid losing all observations with a density of 0.

13We focus on this study period because the DSMP-OLS nightlights, that allow us to obtain a consistent
measure of economic activity at the local level, are only available within this time frame.
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ize. In addition, we exclude all regions that experienced more than one boundary reform
during this period to avoid confusing the impact of different reforms. Furthermore, given
our focus on boundary areas, we exclude a few regions with mostly unpopulated boundary
areas that do not emit nightlights such as the Northwest Territories in Canada. Moreover,
some newly created splinter regions such as the Indonesian region and island Bangka Bel-
itung do not have land boundaries with neighboring regions, or have two capitals such as
the Indian state Uttarakhand. Finally, a few additional region splits are omitted because
of missing data on capitals. Table 3.A.1 provides and overview of all region splits in our
sample, and Table 3.A.2 provides summary statistics on key variables for all region splits
and the split sample respectively. Figure 3.4 illustrates all countries that experienced region
splits between 1992 and 2013 (in red) as well as our study sample of region splits (in yellow).

Figure 3.4
Overview Map: Region Splits & Sample

Note: This figure provides and overview of countries that experience region splits between 1992-2013 (in red), as
well as our sample of region splits for our event study analysis (in yellow).

3.3 Results

In this section, we conduct the empirical analysis on how distance from the regional capital
city impacts economic performance as set out in Section 3.2. We begin with a simpler event
study before turning to a more complex estimation approach that combines an event study
with BDD. After that, we will conduct a range of robustness test, and subsequently take a
closer look at heterogeneities between continents and countries with different institutional
settings.
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3.3.1 Simple Event Study

In the simple event study analysis, we use all locations in the splinter region14, but no
areas in regions that contain the old regional capital as they experience no shift in the
capital city, and track the association between the change in log distance from the regional
capital and economic performance before and after the split. Equation 3.1 specifies the
corresponding estimation equation. Figure 3.1 plots the event study results using the log
of a pixel’s nightlight density as dependent variable, the change in log distance from the
old vs. the new regional capital city as the treatment intensity and the period prior to the
split as the omitted baseline period.

Figure 3.1
Simple Event Study (without local control group)

Note: This figure plots the estimated coefficients from our simple event study based on Equation 3.1. The dependent
variable is the log of nightlight density in a pixel in a given period, and the β-coefficients correspond to an interaction
between the relative period and the change in the log of the distance to the regional capital city. The relative period
t = −1 represents the period before the region split occurred and serves as the baseline for the estimates. Standard
errors are double-clustered at the splinter region-year and at the pixel level. The blue lines around each point
estimate represent the 95%-confidence interval.

As can be seen in the figure, prior to the region split, areas with a high as compared
to those with a low or even negative treatment intensity (i.e. those areas that ended up
further away from the new as compared to the old capital city) evolved similarly. However,
14By default, we exclude the area within 20km from the regional capital city to avoid capturing the effect
of the split on the regional capital cities themselves e.g. induced by the construction of government
buildings. We also exclude the area within 5km from the regional boundary to avoid capturing nightlights
from neighboring regions due to blooming.
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after the split the curve exhibits a positive trend which means that, on average, areas with
a higher treatment intensity gained relative to those with a lower one. The coefficient of
0.09 at t=8 implies that 8 years after the region split, areas that were located one percent
closer to the new (as compared to the old capital city) on average experienced an increase
in nightlight density of approximately 0.09 percent. The results are similar when using
the extensive margin of nightlights instead (see Figure 3.A.1). Yet, we should be cautious
about interpreting this estimate as indicating a positive causal impact of proximity to the
regional capital city as i) it has a t-value of 1.75 which means that it is not statistically
different from 0 at the 95%-confidence interval and ii) most importantly, in this estimation
design, we are not accounting for local economic trends that could be confounding the
estimates in either direction. As an example, it could be that areas with a lower (or
higher) treatment intensity experienced a simultaneous economic upturn e.g. induced by
mineral resource discoveries.

3.3.2 Event Study with Boundary Controls

In the next step, we conduct a similar event study but with a more restrictive design that
combines an event study design with a boundary discontinuity design. For this reason, we
reduce the sample to areas around borders with neighboring regions that are in the same
country and did not undergo a boundary reform themselves. Further, we include areas
within the boundary area from these neighboring regions as controls for changes in local
economic conditions. Based on this design, we control for local economic shocks that are
unrelated to the change in distance to regional capital city by partialling out anything that
equally affects both sides of each boundary segment in a any given year.

As can be seen in Figure 3.2, the pre-trends with respect to treatment intensity are par-
allel. After the new capital city was assigned, locations that reduced their distance more
as a result of the capital shift gained relative to the others. After 8 years, a one percent
decrease in distance from the regional capital city caused an increase in nightlight density
by around 0.16 percent. The results are similar to the previous ones without a local control
group (see Figure 3.1), but the coefficient 8 years after the split is larger in magnitude and
highly significant. This finding might reflect that there were local economic shocks that
distorted the simple event study. Figure 3.A.2 presents qualitatively similar results using
the extensive margin of nightlights. In this figure, it looks like areas with higher treatment
intensity actually lost relatively during the pre-period, which could indicate a violation
of the parallel pre-trends assumption. However, firstly, the pre-trends go into the other
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Figure 3.2
Event Study with Boundary Controls

Note: This figure plots the estimated coefficients from our event study with boundary controls based on Equation
3.2. The dependent variable is the log of nightlight density in a pixel in a given period, and the β-coefficients
correspond to an interaction between the relative period and the change in the log of the distance to the regional
capital city. The relative period t = −1 represents the period before the region split occurred and serves as the
baseline for the estimates. Standard errors are double-clustered at the segment-year and at the pixel level. The blue
lines around each point estimate represent the 95%-confidence interval.

direction which suggest that we would underestimate the true treatment effect. Secondly,
as discussed in Section 3.2.3, the extensive margin of nightlights is unable to capture all
the variation in nightlights. Considering the fact that there are no pre-trends in Figure
3.2 which is based on the intensive margin that is more reliable in this context, we remain
confident about our identification strategy and that our treatment and control group are
valid counterfactuals.

Figure 3.A.3 reports the results using the simple event study methodology from Section
3.3.1 and using the boundary area sample in treated regions from Figure 3.2, but without
the boundary controls in neighboring regions. This exercise is helpful to understand if the
change in the estimates between Figures 3.1 and 3.2 is driven by a change in the sample15,
or by adding a local control group. The results in Figure 3.A.3 indicate that both aspects
matter. Focussing on the boundary sample shifts the coefficients closer to those in Figure
3.2, which might reflect that reducing the sample to only boundary areas makes areas with

15Figure 3.2 focusses only on the boundary area while Figure 3.1 is based on the whole splinter region,
except for the area within 20km from the capital which is excluded by default from all analyses.
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different treatment intensities more comparable. However, without the local boundary
controls that help with accounting for unrelated economic shocks, the estimates are less
precise as is reflected in larger confidence intervals in Figure 3.A.3 as compared to Figure
3.2.

3.3.3 Robustness Tests

In the following, we conduct a range of robustness and sensitivity tests. First, we run
difference-in-difference (DiD) regressions based on Equation 3.3 where Postt is a dummy
that is 1 after the region split and 0 before. The model is similar to Equation 3.2 but with
just one treatment estimate reflecting the average effect within the first 8 years after the
split relative to the period within 4 years before the split.

Yi,t = β ∆CAPi ∗ Postt + bi + br,t + bs,t + ξi,t (3.3)

In Table 3.1 column (1), we estimate the default DiD model. In columns (2)-(4), we in-
clude a vector of polynomials of distance to the boundary for each boundary side and
period separately as additional controls. In a classical cross-sectional boundary discon-
tinuity design, it is vital to include these polynomials of the ‘running variable’ to account
for the fact that by moving away from the discontinuous boundary cutoff, locations on
either side become increasingly different from one another. In our case, it is important to
account for the fact that local economic conditions and geographical differences become
more pronounced the further we move away from the boundary. As an example, the new
regional capital city shapes the spatial distribution of economic activity not only due to its
role as administrative center for locations within the region, but also by providing market
access to all surrounding areas (Donaldson and Hornbeck, 2016). While market access is
continuously decreasing with distance, it equally affects locations closely around either side
of the regional boundary (as these locations are at the same distance from the regional
capital). However, the further we move away from the border, the more locations within
the same region tend to gain in terms of market access if the new capital grows, while go-
ing further away on the side of the neighboring region decreases such gains. Consequently,
by not accounting for these effects, we might obtain significant coefficients even if the
new capital city was not relevant as a capital city in the first place. Another advantage
of including these polynomials is to control for potential positive (or negative) spillovers
from the treatment region to the neighboring region which might result in underestimating
(overestimating) the true magnitude of the effects. Given that these spillovers would likely
also be a function of distance, they should be absorbed by these polynomials.
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As we would expect if market access was in fact a source of bias, the coefficients in column
(2)-(4) are slightly smaller as compared to our default model. However, the coefficients
are not significantly different from the default estimates and still significantly different
from 0 which indicates that our results are not driven by this potential source of bias and
underlines the robustness of our results.

Table 3.1
Event Study with Boundary Controls: Robustness

Dependent variable: Log Nightlight Density
Default 1st Poly 2nd Poly 3rd Poly Dist Bound Dist Cap Dist Cap

(Dist Bound) (Dist Bound) (Dist Bound) < 50km > 50km > 100km
(1) (2) (3) (4) (5) (6) (7)

∆ Dist Reg. Cap 0.075∗∗∗ 0.067∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.036∗∗ 0.086∗∗∗ 0.116∗∗∗
× Post Dummy (0.022) (0.023) (0.022) (0.023) (0.017) (0.032) (0.045)

Polynomials for: distance from the border × boundary side × period (1,690 groups)
1st order - x - - - - -
2nd order - - x - - - -
3rd order - - - x - - -
Pixel FE Yes Yes Yes Yes Yes Yes Yes
Region x Period FE Yes Yes Yes Yes Yes Yes Yes
Segment x Period FE Yes Yes Yes Yes Yes Yes Yes
Observations 238,654 238,654 238,654 238,654 449,449 208,650 146,848
Adjusted R2 0.91 0.91 0.91 0.91 0.91 0.92 0.92

Note: This table reports DiD estimations with boundary controls based on Equation 3.3. In order to avoid capturing
the effect on the new capital cities themselves, we exclude 20 km around each regional capital from our sample. To
prevent misassigning detected nightlights from a neighboring region due to blooming, we exclude 5 km on each side
of the boundary. Boundary segments corresponds to a buffer of 25 km (in column (5) 50 km) around border pieces
of 100 km line length. Standard errors in parenthesis are double-clustered at the segment-year and at the pixel level.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Next, we test the robustness of our results regarding changing the boundary buffer from
25km to 50km. The estimate in column (5) is a bit smaller which could be due to opposing
sides being less comparable. Yet, the fact that it is still highly significantly positive in-
dicates that our results are robust regarding this modification. In column (6) and (7), we
exclude a larger area around the capital cities to make sure that our results are not driven
by direct spillovers from cities on their immediate surrounding, but rather relevant for
larger areas in the hinterlands. When removing 50km or 100km (rather 20km by default)
around the capital cities, the estimated coefficients are still highly significant and even a
bit larger in magnitude. However, we interpret this increase in the magnitude to be more
likely a result of the shift in the sample and underlying characteristics as some smaller
regions drop out of the sample - rather than reflecting that the effects get stronger in areas
further away from the regional capitals.
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As an additional robustness test, to make sure that our results are not driven by an
individual segment or boundary, we iteratively exclude each boundary and re-estimate
the coefficient. The results in Figure 3.A.4 show that the 95% confidence interval of all
estimates largely overlaps with the aggregate estimate and that all estimated coefficients
are significantly different from 0 which supports the robustness of our results.

3.3.4 Heterogeneity Tests

In Figure 3.A.5, we estimate continent specific effects and find that there are large differ-
ences in the effect of proximity to regional capitals on economic performance. The average
effects are strongest in the Americas which is followed by Asia. In contrast, the effect is
very close to zero and insignificant in Africa. This circumstance might reflect that there
are important region or country characteristics that determine the impact of proximity to
regional capital cities.

A potential reason for the large difference in the effects between countries could be re-
lated to political framework conditions. Firstly, decentralization might be important in
this context. If regional governments have a low level of political decision making power,
then regional capitals should be less relevant. Furthermore, African countries, for which
the location of regional capitals appear to be less relevant (Figure 3.A.5), are among the
least decentralized countries in the world (Ivanyna and Shah, 2014).

To estimate the relevance of political frameworks empirically, we run heterogeneity regres-
sions based on Equation 3.3 and report the results in Table 3.2. Column (1) in Table 3.2
reveals that there are stark differences between centralized and decentralized countries16,
with proximity to regional capitals being significant only in the latter.
Another country characteristic that could be relevant in this context is democracy vs.
autocracy17 It might be that in autocracies region splits are more likely to be used as a
political tool to weaken or reduce the bargaining power of lower tiers of government (Green,
2010; Grossman and Lewis, 2014; Billing, 2019) or win elections (Hassan, 2016). In such
countries, there might not actually be a political will to create functioning new regions,
which might undermine any potential gains in proximity to the regional capital city. The
estimate in column (2) is in line with this suspicion by indicating that proximity to capital

16We use the decentralization index by (Ivanyna and Shah, 2014) and split countries into either centralized
or decentralized depending on whether they are below or above the median score in our sample.

17We classify countries as democratic if their average polity2 score during our study period between 1992
and 2013 exceeds 0 (Marshall et al., 2017).
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cities is only significantly positive in democracies, but very close to 0 and insignificant in
autocracies.
Finally, in column (3), we find that capital cities appear to be more important in poor
rather than rich countries.18 This finding is similar to remoteness from national capital cit-
ies that also entails stronger effects in less developed countries (see Table 2.A.8 in Chapter
2). A potential explanation for this results could be related to distance being less relevant
in more developed countries.
However, it is important to bear in mind that all of these estimates are based on different
groupings of countries that share many other characteristics that might actually be driving
the effects. For this reason, the results should be interpreted with caution. One way of
trying to get more clarity about the relevance of these characteristics is to simultaneously
estimate different group specific effects - but keeping in mind that there are always omitted
relevant characteristics. For all paired combinations in column (4)-(6), decentralization is
always significant and the other two once respectively. Finally, when including all three
groupings at once, all coefficients remain significant. We interpret this as underlining that
all three characteristics are relevant with regard to the effects.

Table 3.2
Event Study with Boundary Controls: Heterogeneity

Dependent variable: Log Nightlight Density

(1) (2) (3) (4) (5) (6) (7)

∆ Dist Reg. Cap × Post Dum. −0.00 0.03 0.08∗∗∗ −0.03 −0.00 0.03 −0.04∗∗
(0.01) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02)

∆ Dist Reg. Cap × Post Dum. × Decentralized 0.13∗∗∗ - - 0.11∗∗∗ 0.17∗∗∗ - 0.15∗∗∗
(0.04) (0.03) (0.04) (0.04)

∆ Dist Reg. Cap × Post Dum. × Democracy - 0.08∗∗ - 0.05 - 0.12∗∗ 0.10∗∗
(0.04) (0.04) (0.05) (0.04)

∆ Dist Reg. Cap × Post Dum. × Developed - - −0.05 - −0.13∗ −0.10 −0.17∗∗
(0.07) (0.08) (0.07) (0.08)

Pixel FE Yes Yes Yes Yes Yes Yes Yes
Region x Period FE Yes Yes Yes Yes Yes Yes Yes
Segment x Period FE Yes Yes Yes Yes Yes Yes Yes
Num. obs. 238, 654 238, 654 238, 654 238, 654 238, 654 238, 654 238, 654
Adj. R2 0.91 0.91 0.91 0.91 0.91 0.91 0.91

Note: This table reports DiD heterogeneity estimations with boundary controls based on Equation 3.3. In order to
avoid capturing the effect on the new capital cities themselves, we exclude 20 km around each regional capital from
our sample. To prevent misassigning detected nightlights from a neighboring region due to blooming, we exclude 5
km on each side of the boundary. Boundary segments corresponds to a buffer of 25 km around border pieces of 100
km line length. Standard errors in parenthesis are double-clustered at the segment-year and at the pixel level.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

18We classify countries as poor or rich based on whether they exceed the average GDP per capital between
1992 and 2013 based on World Bank data.
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Overall, these results indicate that proximity to regional capital cities might not always
be advantageous for locations, but only boosts the local economy when the country is
decentralized and democratic. Moreover, the spatial disparities associated with distance
from the regional capital city appear to be less relevant in countries with a relatively high
level of GDP per capita. Yet, as mentioned above, these group-specific estimates are rather
descriptive than causal and should be interpreted with caution.

3.3.5 Regional Capitals and Conflict

Previous research found that region splits decrease conflict (Cederman et al., 2015; Pier-
skalla, 2016; Baskaran and Blesse, 2019). It could be that the pacifying nature of region
splits actually stem from the presence of regional capital cities in closer proximity. In
the following, we therefore explore if proximity to the regional capital city has a negative
impact on the occurrence of conflict using our event study BDD estimation approach.

To obtain information on conflict occurrence, we extend our dataset with the Uppsala
Conflict Data Program (UCDP) (Sundberg and Melander, 2013). This database features
information about the location of conflicts across the world starting in the year 1989. The
UCDP has a rather broad definition of conflict which it defines as: ‘An incident where
armed force was used by an organised actor against another organized actor, or against
civilians, resulting in at least 1 direct death at a specific location and a specific date’.19 We
spatially match the UCDP with our database based on whether the geolocation of conflict
events falls within a segment side, which will be the unit of observation in this analysis.20

We create a dummy that equals 1 if a segment side has experienced conflict in a given year
and is 0 otherwise.21

Figure 3.3 plots the results of the event study BDD estimation using conflict occurrence
as dependent variable. As can be seen in the figure, there is no evidence that proximity
to regional capital cities has an impact on the probability of conflict in a segment side.
Similarly, when splitting the sample by decentralization, democracy or national GDP per
capita, there are no significant changes in conflict after the region split (see Figure 3.A.6).
It should be noted that conflict might spill over across the border to the neighboring region
19Visit: https://ucdp.uu.se/downloads/ged/ged211.pdf for more information about the UCDP
database.

20To capture a larger number of conflict events in the local area, we increase the boundary buffer to 50km.
But the results are equivalent to using the default boundary buffer of 25km. It should be noted that
Mongolia, Vietnam and Yemen are not part of this analysis as we do not record any conflict events in
the boundary segments in these countries.

21As an alternative we measure the conflict frequency in a segment side and obtain similar results.
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which would bias our coefficients towards zero. Nevertheless, this potential caveat does
not change the fact that we find a relative imbalance in economic performance across the
boundary but no imbalance in conflict. This circumstance makes it unlikely that conflict
is a key mechanism behind the observed patterns.

Figure 3.3
Regional Capitals and Conflict

Note: This figure plots the estimated coefficients from our event study with boundary controls based on Equation
3.2. The dependent variable is a dummy indicating if a segment side experience conflict in a given period, and the
β-coefficients correspond to an interaction between the relative period and the change in the log of the distance to
the regional capital city. The relative period t = −1 represents the period before the region split occurred and serves
as the baseline for the estimates. Standard errors are clustered by boundary. The blue lines around each point
estimate represent the 95%-confidence interval.

3.4 Conclusion

This paper studies the impact of proximity to regional capital cities on local economic
development. To obtain quasi-random variation in distance from the regional capital, we
examine a worldwide sample of region splits that induce a shift in the location of the as-
signed regional capital city. Combining an event study with a BDD, we find that over
a period of 8 years a decrease in distance from the regional capital city by 1 percent, on
average increases nightlight density by 1.6 percent. Yet, there are stark differences between
countries. Most importantly, the effects are primarily relevant in countries that are de-
centralized and feature democratic institutions. In contrast, the effects seem to be weaker
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in relatively developed countries.

This paper contributes to at least two main streams of the literature. Firstly, by showing
that regional capital cities have a similar effect on the spatial distribution of economic
activity as national capitals, it contributes to the literature on the role of the location of
capital cities (Campante and Do, 2014; Michalopoulos and Papaioannou, 2014; Campante
et al., 2019) (see also Chapter 2). Secondly, it contributes to the literature on decentral-
ization and administrative region proliferation by studying the impact of assigning new
capital cities under different institutional settings.

Our findings highlight that regional capital cities are important determinants of the distri-
bution of economic activity within a region. However, as the positive effects of proximity to
regional capitals do not unfold in all settings, policy makers need to take the administrat-
ive organization and institutional context into consideration when considering assigning
new capital cities. More specifically, creating new regional capitals appear ineffective when
countries are too centralized, developed or autocratic. More research is required to study
the precise mechanisms through which these framework conditions impact the effects. One
possibility is that these contextual characteristics determine the political intentions behind
the reforms, which might play a critical role for their outcomes (Green, 2010; Grossman
and Lewis, 2014; Hassan, 2016). Similar to national capital cities, we have shown that
conflict is unlikely to be a mediating factor. However, whether information frictions and
accountability mechanisms play a similar role for regional as for national capitals is yet to
be confirmed (see Chapter 2). Future research can build upon the methodology developed
in this study and extend this research by gathering additional information about public
goods provision, the performance of public officials and their perception and support from
local communities over time. While there are still open questions, with this research we
have shown that assigning regional capital cities strategically has the potential to promote
economic development in remote hinterlands.
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3.A Appendix

3.A.1 Descriptives

Table 3.A.1
Overview: Study Sample of Region Splits

Split Country Original Region New Region Old Capital New Capital
1 1996 Guinea Labe Mamou Labe Mamou
2 1996 Jordan Amman Madaba Amman Madaba
3 1996 Mongolia Dornogovi Govisu’mber Sainshand Choir
4 1997 DR Congo Kivu Maniema Bukavu Kindu
5 1997 DR Congo Kivu Nord-Kivu Bukavu Goma
6 1997 Morocco Nord Ouest Gharb-Chrarda-Beni Hssen Rabat Kenitra
7 1997 Nigeria Rivers Bayelsa Port Harcourt Yenagoa
8 1997 Nigeria Ondo Ekiti Akure Ado-Ekiti
9 1997 Nigeria Bauchi Gombe Bauchi Gombe

10 1997 Nigeria Plateau Nassarawa Jos Lafia
11 1997 Nigeria Sokoto Zamfara Sokoto Gusau
12 1997 Vietnam Bac Thai Bac Kan Thai Nguyen Bac Kan
13 1997 Vietnam Song Be Binh Phuoc Thu Dau Mot City Dong Xoai
14 1997 Vietnam Minh Hai Ca Mau Bac Lieu Ca Mau
15 1997 Vietnam Vinh Phu Phu Tho Vinh Yen Viet Tri
16 1997 Vietnam Quang Nam-Da Nang Quang Nam Da Nang City Tam Ky
17 1998 Bangladesh Chittagong Sylhet Chittagong Sylhet
18 1998 Ecuador Napo Orellana Tena P. Franc. Orellana
19 2000 Chad Ouaddai Assongha Abeche Adre
20 2000 Chad Bourkou Ennedi Tibesti Ennedi Faya-Largeau Fada
21 2000 Chad Moyen Chari Lac Iro Sarh Kyabe
22 2000 Chad Lougoume Oriental Mont De Lam Doba Baibokoum
23 2000 Chad Ouaddai Sila Abeche Goz Beida
24 2000 Chad Tandjile Tandjile Ouest Lai Kelo
25 2001 India Madhya Pradesh Chhattisgarh Bhopal Raipur
26 2001 India Bihar Jharkhand Patna Ranchi
27 2001 Indonesia Sulawesi Utara Gorontalo Manado Gorontalo
28 2002 Philippines Southern Tagalog Calabarzon Quezon City Calamba
29 2002 Tanzania Arusha Manyara Arusha Babati
30 2003 Haiti Grande Anse Nippes Jeremie Miragoane
31 2004 Afghanistan Uruzgan Daykundi Tarin Kut Nili
32 2004 Afghanistan Parwan Panjsher Charikar Bazarak
33 2004 Vietnam Dak Lak Dak Nong Buon Ma Thuot Gia Nghia
34 2004 Vietnam Lai Chau Dien Bien Lai Chau Dien Bien Phu
35 2004 Vietnam Can Tho Hau Giang Can Tho Vi Thanh
36 2004 Yemen Sana’a Raymah Sanaa Al Jabin
37 2005 Indonesia Sulawesi Selatan Sulawesi Barat Makassar Mamuju

Note: This table provides an overview of the splinter regions in our event study sample.
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Table 3.A.2
Summary Statistics

All Splits Sample Splits
mean sd mean sd

Nightlights 1992 0.47 3.15 0.61 3.56
Area 1992 (in km2) 263,556 223,054 271,224 213,683
Share Africa 0.72 - 0.54 -
Share Asia 0.26 - 0.45 -
Share Americas 0.03 - 0.01 -

Note: This table reports the mean and the standard deviation of key indicators for the all areas that underwent
a split between 1992 and 2013, as well as our sample of splits respectively. Please note that the region ‘Northwest
Territories’ in Canada was omitted from the computation of statistics for ‘All Splits’.
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3.A.2 Additional Results

Figure 3.A.1
Simple Event Study: Extensive Margin

Note: This figure corresponds to Figure 3.1 using the extensive rather than the intensive margin of nightlights as
dependent variable. The figure plots the estimated coefficients from our simple event study based on Equation 3.1.
The dependent variable is a dummy variable indicating whether a pixel emits nightlights in a given period, and the
β-coefficients correspond to an interaction between the relative period and the change in the log of the distance to
the regional capital city. The relative period t = −1 represents the period before the region split occurred and serves
as the baseline for the estimates. Standard errors are double-clustered at the splinter region-year and at the pixel
level. The blue lines around each point estimate represent the 95%-confidence interval.

The Economic Impact of Proximity to Regional Capitals: Evidence from Boundary Reforms 158



Figure 3.A.2
Event Study with Boundary Controls: Extensive Margin

Note: This figure corresponds to Figure 3.2 using the extensive rather than the intensive margin of nightlights as
dependent variable. The figure plots the estimated coefficients from our event study with boundary controls based
on Equation 3.2. The β-coefficients correspond to an interaction between the relative period and the change in the
log of the distance to the regional capital city. The relative period t = −1 represents the period before the region
split occurred and serves as the baseline for the estimates. Standard errors are double-clustered at the segment-year
and at the pixel level. The blue lines around each point estimate represent the 95%-confidence interval.

Figure 3.A.3
Event Study: Boundary Sample without Boundary Controls

Note: This figure plots the estimated coefficients from our simple event study without boundary controls based on
Equation 3.1, using the sample of boundary areas in splinter regions that serve as treatment group in Figure 3.2.
The dependent variable is the log of nightlight density in a pixel in a given period, and the β-coefficients correspond
to an interaction between the relative period and the change in the log of the distance to the regional capital city.
The relative period t = −1 represents the period before the region split occurred and serves as the baseline for the
estimates. Standard errors are double-clustered at the splinter region-year and at the pixel level. The blue lines
around each point estimate represent the 95%-confidence interval.
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Figure 3.A.4
Drop Boundaries Iteratively

Note: This figure plots the estimated coefficients and 95%-confidence interval corresponding to Table 3.1 column (1)
when iteratively dropping one boundary. The aggregate estimate based on the whole sample is number 20 (in black).
The red lines around each point estimate represent the 95%-confidence interval. Standard errors are double-clustered
at the segment-year and at the pixel level.
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Figure 3.A.5
Heterogeneity: Continent

Note: This figure plots the estimated coefficients from our continent specific heterogeneity event study with boundary
controls based on Equation 3.2 and corresponding to Figure 3.2. The dependent variable is the log of nightlight
density in a pixel in a given period, and the β-coefficients correspond to an interaction between continent dummies,
the relative period and the change in the log of the distance to the regional capital city. The relative period t = −1
represents the period before the region split occurred and serves as the baseline for the estimates. Standard errors
are double-clustered at the segment-year and at the pixel level. The blue lines around each point estimate represent
the 95%-confidence interval.
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Figure 3.A.6
Conflict Heterogeneity

(a) Decentralized vs. Centralized

(b) Democracy vs. Autocracy

(c) High vs. Low GDP

Note: This figure plots the estimated coefficients from our conflict heterogeneity event studies with boundary controls
based on Equation 3.2 and corresponding to Figure 3.3. The dependent variable is a dummy indicating if a segment
side experience conflict in a given period, and the β-coefficients correspond to an interaction between continent
dummies, the relative period and the change in the log of the distance to the regional capital city. The relative
period t = −1 represents the period before the region split occurred and serves as the baseline for the estimates.
Standard errors are clustered by boundary. The blue lines around each point estimate represent the 95%-confidence
interval.
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Chapter 4
Urban Density and COVID-19: Understanding the

US Experience

4.1 Introduction

Historically, cities have been associated with the propagation of infectious diseases.1 It is
therefore not surprising that the impact of density – the defining feature of cities – on the
spread of COVID-19 was a frequent talking point from the very outset of the COVID-19
pandemic. As early as 22nd of March 2020, in the context of a critical outbreak in New
York City, state governor Andrew Cuomo tweeted “There is a density level in NYC that is
destructive. It has to stop and it has to stop now. NYC must develop an immediate plan
to reduce density”.2

The notion that dense cities would be hotbeds of virus transmission prompted a flurry
of academic research on the topic. Initial empirical work – especially that looking at the
United States’ experience – suggested urban density fostered a faster spread of the dis-
ease.3 Similar evidence was reported for other countries including India (Bhadra et al.,
2021), Brazil (Pequeno et al., 2020) and Germany (Ehlert, 2021). However, subsequent
research exploring a longer time series yielded mixed findings (see for example McFarlane
2021; Kim et al. 2021; Florida et al. 2021). This prompted a more nuanced approach to
the question, and subsequent work on the roles of crowding, experienced density and other

1See Duranton and Puga (2020); Voigtländer and Voth (2013) for treatments of this relationship in eco-
nomics.

2The attribution of detrimental effects of density for the evolution of the epidemic was not specific to
the United States. On December the 9th 2020 Michael Gove (Chancellor of the Duchy of Lancaster and
Minister for the UK Cabinet Office) said on ITV’s Good Morning Britain that population density is one
of the reasons why the UK has more COVID-19 related deaths in comparison to Germany.

3See for example Angel et al. (2020); Whittle and Diaz-Artiles (2020); Zhang and Schwartz (2020); Wheaton
and Kinsella Thompson (2020) and Almagro and Orane-Hutchinson (2020). For a review of the empirical
literature on the topic – covering papers in urban planning, economics and medical sciences – see Teller
(2021).
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more direct measures of social interactions.4

Now that massive vaccination campaigns have gradually reduced the threat of COVID-19
worldwide, can we draw any definitive conclusions about the mediating role of density in
shaping the health impact of COVID-19 in cities? We turn to this question by looking at
the evolution of the epidemic in the contiguous United States, in the period between the
first registered cases in January 2020 and the beginning of the vaccination campaign in
mid-December. By looking at the whole of 2020, we seek to understand how the results of
initial studies indicating density was an important determinant of the impact of COVID-
19 progressively led to more ambiguous findings as the pandemic evolved. Our empirical
analysis combines descriptive evidence with an instrumental variable strategy borrowed
from the agglomeration literature in economics. In doing so, our methodological approach
avoids some of the pitfalls of conventional regression estimates and is close to methods that
are familiar to both economists and economic geographers.

We find convincing evidence that density affected the timing of the outbreak in each county,
with denser locations more likely to have an early outbreak. We show this leads to an ini-
tially positive and significant relationship between the impact of COVID-19 and population
density at the county level, consistent with the results of early studies on the spread of
the virus in the United States. However, after adjusting for the timing of the onset of the
disease in each county, we find no evidence that population density is positively associated
with the impact of COVID-19. Interestingly, we find a negative relationship between dens-
ity and the spread of COVID-19 within a county at the very beginning of an outbreak,
but this relationship fades completely within 2 months. We also show that, by the end
of 2020, density could no longer explain the cross-sectional pattern of accumulated cases
or deaths. Dense locations were hit first, but, as the pandemic evolved, they were not hit
harder. Combined, these results help us frame other studies on this topic, and understand
how the results in that literature changed as the pandemic developed.

The fact that – by the end of 2020 – density had no effect on the local impact of COVID-19
appears counter-intuitive. The virus spreads via human contact and denser areas provide
more opportunities for human interaction. Yet, this is not the only way in which dens-
ity can affect the spread of disease. Several mediating factors can make the direction of

4For example, there is evidence that a higher percentage of overcrowded households and poor housing
conditions in US counties have both lead to higher mortality from COVID-19 (Ahmad et al. 2020; Krieger
et al. 2020; Kamis et al. 2021).
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this relationship theoretically ambiguous. We analyze social/behavioral factors that could
explain our findings, bearing in mind that the spread of disease is a social as well as a biolo-
gical phenomenon (Papageorge et al., 2020). To do so we use data from Google, Facebook,
the US Census and The County Health Rankings and Roadmaps program. First, we show
that density is positively associated with the reduction in work and leisure related activit-
ies throughout the pandemic, suggesting that compliance with social distancing measures
was higher in denser locations. Second, we use our empirical strategy to illustrate the
well-known fact that density is negatively associated with the share of Republican voters,
which have been shown to be less engaged in social distancing and other efforts to reduce
transmission (Allcott et al., 2020). Third, we show population density is positively associ-
ated with access to healthcare and income and negatively associated with inhabitants’ age.
Collectively, these results yield suggestive evidence of mechanisms generating offsetting
negative effects of density on the spread and severity of the COVID-19 outbreak, and help
us rationalize the estimates of the overall effects reported in our main analysis.

Estimating how population density shaped the spread and severity of the COVID-19 out-
break, as well as its effects on local behavioral responses and demographics is challenging
for several reasons. First, population densities are not randomly assigned and they might
be correlated with unobserved confounding factors. For example, population densities
can be affected by locational productive advantages, whether natural or man-made (e.g.
soil quality or transportation infrastructure), that may also simultaneously affect local
economic conditions. Insofar as the COVID-19 outbreak is affected by economic factors,
unobservable locational advantages can confound the effect of density on the spread and
severity of the disease. Second, differences in the timing of the onset of the disease can
generate cross-sectional differences in the severity of the outbreak at one point in time in
the absence of true differences in the local reproduction rate. Finally, data on COVID-
19 cases might be reported with error due to variation in local testing strategy and capacity.

We overcome the empirical challenges mentioned above in several ways. We use two Instru-
mental Variable (IV) strategies borrowed from the agglomeration literature in economics
to induce plausibly exogenous variation in population density without affecting COVID-19
cases and deaths directly. More specifically, in our geological IV approach, we use the pres-
ence of aquifers, earthquake risk, and soil drainage capacity to as instruments for density
(as in Duranton and Turner 2018). In our historical IV strategy, we use the traditional
long-lag instrument, which measures urban population density in the 1880 US Census (as
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in Ciccone and Hall 1996 and a large subsequent literature). We use these tools to study
both how density affected the timing of the outbreak in each county and the time-adjusted
number of deaths after that outbreak. We focus on the daily number of confirmed COVID-
19 deaths rather than cases as our main outcome of interest since this is considered to be
a more accurate indicator of local COVID-19 prevalence (Subbaraman 2020), and discuss
COVID-reported cases as a robustness check. Finally, we cross-validate our COVID-19
figures with official data from the CDC to ensure reported deaths are consistent with other
measures of COVID-19 mortality.

As discussed above, a number of papers have examined the link between density and
COVID-19 incidence in the United States.5 Alongside these studies, a vast number of
papers in economics and economic geography have focused on other social determinants
of differences in the spread of COVID-19 such as mobility Glaeser et al. (2020); Almagro
et al. (2020), racial composition Benitez et al. (2020); Hamman (2021), social capital
and institutions Ding et al. (2020); Rodríguez-Pose and Burlina (2021) as well as on the
predicted long-run impact of the pandemic on cities (Florida et al., 2021; Nathan and
Overman, 2020). We contribute to this literature by looking specifically at density –
arguably one of the first explanatory factors that attracted the attention of the field in early
2020 – and its changing role throughout the US epidemic. Given that density is associated
with many of the factors that were studied subsequently – mobility, race, urbanization –
our findings also help interpret the results reported in the broader literature.

4.2 Data

Our dataset combines information on COVID-19 cases and deaths, population density,
demographics, social connectedness, behavioral changes, voting behavior, healthcare pro-
vision, income and geological features at the US county level. We will use COVID data
extending over the period between the 22nd of January, when the first US case was con-
firmed in King County, up until the 15th of December 2020, the day after the COVID vac-

5The literature on the relationship between the 1918 Influenza pandemic (the Spanish Flu) and population
density is naturally more developed and can shed light on the link between pandemics and density more
broadly. Interestingly, while it may seem intuitive that the influenza pandemic was positively associated
with population density as the virus spread via human contact, a review of the literature produce mixed
results. For example, Garrett (2007) finds a positive relationship between mortality rates and population
density in the US. In contrast, Mills et al. (2004) find no statistical association between population density
and the initial reproductive number (R) using data on 45 US cities. Chowell et al. (2008) also find no
association between transmissibility, death rates and indicators of population density in England and
Wales. Ferguson et al. (2006) studies the development of the 1918 pandemic and finds evidence for an
early onset in dense urban cores before a more smooth development of the disease across space.
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cination campaign began in the United States. We restrict our sample to urban counties6

in the contiguous United States which leaves us with 1,759 counties comprising ∼ 93% of
the total US population. When analyzing the pace of the outbreak, we further restrict
the sample further to those counties that had at least one confirmed COVID-19 related
death 60 days before the end of our sample period. This Outbreak Sub-sample consists of
1,441 counties representing ∼ 89 % of the total US population (see Figure 4.A.1). In the
following, we describe the dataset and provide further information about the sources and
URLs for download in Appendix 4.A.2 and descriptive statistics in Table 4.A.1.

COVID-19 Cases and Deaths
We obtain a panel of daily confirmed COVID-19 fatalities and cases for US counties from
usafacts.org.7 The most intuitive indicator to monitor the COVID-19 outbreak is the
daily number of confirmed cases. However, this figure is likely to be distorted by vary-
ing local testing strategy and capacity. Furthermore, the ability of the virus to spread
across asymptomatic people makes the task of recording the number of infections in the
community extremely difficult (Subbaraman, 2020). Therefore, we mainly use the daily
number of confirmed COVID-19 deaths as this is a more accurate indicator of the local
COVID-19 prevalence.8 In order to ensure that our COVID-19 data is reliable, we cross-
validate our COVID-19 figures with official data from the Centers for Disease Control and
Prevention (CDC). In the left panel of Figure 4.A.2, we compare our total COVID-19 fatal-
ity counts by county to the latest figures on officially confirmed deaths due to COVID-19.
In the right panel, we compare total fatalities to CDC excess death estimates. Both graphs
exhibit strong linear relationships and support the validity of our COVID-19 data.9 The
evolution of daily COVID-19 fatality numbers used in this paper is illustrated in Appendix
Figure 4.A.3. In our analysis below, when we refer to deaths taking place in the first-wave,
we refer to those taking place up to the 5th of July, which is the minimum in the moving
average of deaths after April 2020.

6Urban counties are those that are classified as either ‘metropolitan’ or ‘micropolitan’ core-based statistical
areas in the 2010 census.

7These are obtained from county-level reports by local health authorities across the United States. See
Appendix 4.A.2 for further details.

8Recent work led by Diego Puga looks at the relationship between density and COVID-19 incidence in
Spain using prevalence data obtained from randomized serological tests. Cross-sectional correlations using
this information point to a flat (or weakly negative) relationship between the disease’s spread and density.

9In contrast, the correlation between county level COVID-19 fatalities and USAFacts is -0.001 and insig-
nificant indicating that COVID-19 mortality is not simply an amplification of fatalities occurring under
normal circumstances but rather follows distinct patterns that are consistently capture by our database.
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Population Density
Based on the US census for 2010, we compute two measures of population density. The
first is simply the total population of a county over its total area. This will constitute
the independent variable of interest throughout most of our analysis. The second vari-
able takes the population density for all census-blocks within a county and computes the
associated population-weighted mean. Population-weighted density is meant to measure
average “experienced” density and was popularized in economics by Glaeser and Kahn
(2004) and Rappaport (2008). It can be computed using spatially disaggregated data on
the distribution of population and weighting each small unit of population density by its
relative population in the county.

Instrumental Variables:
For our geological instrumental variable estimates we use three different instruments. More
specifically, we use variables measuring earthquake risks and presence of aquifers from the
United States Geological Survey (USGS) (also used in Duranton and Turner 2018), and
data on soil drainage quality from NRCS State Soil Geographic Data Base. We match
our grid cells to the geological data using grid cell centroids to spatially impute data on
aquifers, earthquake risks and soil drainage quality. For our historical instrument, we use
population density obtained from the 1880 United States census. We impute this data on
the county level using spatial matching based on the assumption of uniform population
distribution within 1880 counties.10

Behavioral Adjustment/Social Distancing:
To measure how much people in different counties adjusted their behavior as a response to
the COVID-19 outbreak we use the ‘COVID-19 Community Mobility Reports’ by Google
(Google CMR). This database aggregates extensive anonymized mobile device GPS user
data and estimates the percentage change in activities (such as work, retail or transit) by
county and day. The five week period from January 3rd to February 6th before the start
of the COVID-19 outbreak in the US serves as the corresponding baseline period.

Other Variables:
We obtain data on county-level demographic characteristic estimates for 2018 from the

10Note that, while the assumption of uniform distribution is clearly a simplification which could lead to
measurement error, this should not have a substantial impact on our main estimates. This is because
measurement error in the instruments could affect the relevance of the instruments but should not gen-
erate bias in the coefficients of interest unless the measurement error itself is correlated with COVID-19
incidence.
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US census. Social connectedness is measured with Facebook’s Social Connectedness In-
dex (Facebook SCI), which captures the intensity of the link between locations using the
number of friend links in this social network (see Bailey et al. 2018 for further details on
the SCI). Finally, data on access to healthcare and income comes from the County Health
Rankings and Roadmaps program. Specifically, we use three indicators: (1) the ratio of
population to primary care physicians (2) the percentage of adults under the age of 65
without health insurance and (3) median household income.

4.3 Empirical Analysis

Our empirical analysis proceeds in two ways. We first provide a series of figures that
illustrate the main results, both in terms of the relationship between density and COVID-
19 deaths, the evolution of that relationship over time and the explanations behind this
evolution. We then provide formal quantitative estimates for these relationships using our
OLS and IV strategies. The fact that by-and-large the quantitative findings are the same
regardless of the methods employed in the analysis gives us confidence on the robustness
of our results to methodological decisions made in the research process.

4.3.1 Graphical Evidence

The top-left panel of Figure 4.1 illustrates the positive cross-sectional correlation between
a county’s population density - calculated as the total population over the surface area
- and the number of COVID-19 related deaths per capita by the end of the first wave
on the 5th of July.11 This is the basic fact that had been noticed in Wheaton and Kin-
sella Thompson (2020) and Dubner (2020) as early as April 2020. Similar graphs, again
displaying positive relationships using population-weighted densities and number of cases,
are reported in Appendix Figure 4.A.4.

Naturally, these cross-sectional patterns do not constitute conclusive evidence that urban
density results in faster or more deadly COVID-19 spread. There are at least two prob-
lems that could arise in this context. First, the positive correlation in the top left panel of
Figure 4.1 can be the result of differences in the timing of the onset of the disease across
locations. Second, certain location characteristics which are correlated with both density
and COVID-19 spread and severity could induce a correlation in the absence of any actual

11We define the first wave as the period between the onset of the disease in the United States in February
2020 and the minimal daily death rate before the second rise in COVID-19 fatalities. See Appendix
Figure 4.A.3.
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Figure 4.1
Population Density and COVID-19 in 2020

(a) Deaths by 5th of July (b) Deaths by 15th of December

(c) Days to First Death (d) Deaths 60 Days after 10th Case

Notes: The horizontal axis represents the logarithm of the county’s population density. Top left panel vertical axis
represents the logarithm of the accumulated number of fatalities per hundred thousand inhabitants by the 5th of
July 2020. Top right panel vertical axis represents the logarithm of the accumulated number of fatalities per hundred
thousand inhabitants by the 1st of December 2020. Bottom-left panel vertical axis represents the number of days
between the 22nd of January and the first fatality in each county. Bottom-right panel vertical axis represents the
logarithm of the number of dead 60 days after the 10th case was reported in the county. Black markers correspond to
counties forming part of a CBSA. Fitted lines estimated via Ordinary Least Squares. Univariate R-squared included
in all Figures alongside fitted line.

causal link. We discuss this second issue in detail in the next section.

The top right panel of Figure 4.1 illustrates the point on differences in the timing of the
onset of the disease across locations by showing that the positive correlation between pop-
ulation density and COVID-19 related deaths observed in the first-wave becomes almost
flat when we use data extending to the 15th of December 2020. We investigate the timing
dimension further in the bottom left panel of Figure 1 where we show the relationship
between population density and the number of days between the 22nd of January and the
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first fatality in each county. The figure exhibits a clear negative relationship, indicating
that dense locations experienced COVID-19 fatalities earlier than more sparsely populated
locations.

We can adjust for the differences in the timing of the onset of the disease by computing the
number of deaths after a fixed number of days from that onset. This is what is typically
shown in cross-country comparisons of the early evolution of the pandemic. In our case,
we can compute the number of COVID-19 deaths at a specified time after the outbreak
started in a county. We define the start of the outbreak as the first day with 10 reported
cases and compute the number of deaths 60 days after this date for all counties.12 The link
between this time-adjusted variable and density is illustrated in the bottom-right panel of
Figure 4.1. The relationship is almost flat after time-adjusting, suggesting that density
does not simply translate into a higher rate of COVID-19 fatalities.

How is it possible that initial studies reported a clear positive influence of density on the
impact of COVID-19, yet we report no relationship here? The answer is illustrated in
Panel A of Figure 4.2, where we report how the slope of the relationship between popula-
tion density and accumulated deaths evolved over 2020. These are simply the coefficients
of a univariate regressions of the logarithm of total accumulated deaths – up to the period
in the horizontal axis – on the logarithm of a county’s population density.13 Panel A of
Figure 4.2 shows a positive relationship between deaths and density appeared at the be-
ginning of the US epidemic, with the positive relationship peaking by May 15th 2020. Yet,
in subsequent months the relationship progressively flattened, with the slopes of interest
shrinking progressively until becoming statistically insignificant by November 15th. Thus,
there was an apparently positive relationship at the beginning of the US epidemic, but this
relationship became flat as the pandemic evolved.

Several factors could explain this result. We will turn to these in detail when we discuss
mechanisms in Section 4.3.4, but consider as an illustration the role of changes in mobility
across cities. Figure 4.3 shows the change in mobility relative to the January 2020 baseline

12The choice of 10 cases as marking the start of an outbreak from which we take the 60-day window is
taken so as to ensure that there is some degree of within-county transmission at the time the window
starts. We study how results change using different post-onset time windows in Section 3.2.

13Specifically, we estimate Ln(Acc. Deathst
i + 1) = α0 + αtLn(Pop.Densi) + εi, where i is an index for

counties and t indicates the end period, so that Acc. Deathst
i corresponds to accumulated deaths in

county i from the start of the pandemic up to date t (e.g. the 15th of April).
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Figure 4.2
Accumulated Covid Deaths-Density Elasticities over Time

(a) OLS Estimates

(b) IV Estimates

Notes: Both panels depict the cross-sectional relationship between the natural logarithms of accumulated deaths
and population density for every monthly period ending in the 15th, from March through December 2020. Panel A:
coefficients from univariate OLS regressions. Panel B: IV estimates obtained using both the geological and historical
instruments for density. For each estimate we report the 95% confidence interval based on standard errors clustered
at the CBSA level.

for sparse and dense counties, with the split based on median county density.14 The left
panel corresponds to changes in workplace-related mobility, the middle panel corresponds
to changes in mobility for leisure activities and the right panel for transit. As expected,
we observe a sharp reduction in mobility starting around mid-March. Importantly, in all
cases we observe that this reduction is more acute in denser counties. Glaeser et al. (2020)
show reductions in mobility had a substantial effect on the spread of COVID-19 over our
sample period. Therefore, a sharper reduction in mobility in denser cities could contain
the spread of the disease in these locations.

14The data is based on COVID-19 Community Mobility Reports released by Google and is based on data
from portable device users in United States counties.
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Figure 4.3
Changes in Mobility Relative to January Baseline (2020)

Notes: The figures plot the daily change and local regression curve (LOESS) over time in mobility relative to the
January 2020 baseline for sparse counties and dense counties, with the split based on median weighted county
density. The top left panel refers to adjustment of workplace-related activity. The top right panel refers to leisure
time activities including restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie theaters.
The bottom panel refers to transit including public transport hubs such as subway, bus, and train stations.

4.3.2 Estimation

To obtain credible quantitative estimates of the relationship between time-adjusted COVID-
19 related mortality and density, we also need to deal with potential confounders affecting
both density and the prevalence and severity of the disease. Climate conditions, for ex-
ample, can simultaneously influence household location decisions (see Glaeser et al. 2001)

Urban Density and COVID-19: Understanding the US Experience 173



and COVID-19 spread.15 Local amenities such as waterfronts or low precipitation levels
can themselves influence travel patterns – e.g. by increasing tourist arrivals – which could
in turn affect COVID-19 rates. Insofar as some of these elements are observable, we can
include them as controls in our regressions. Yet, some confounders may be unobservable
due to their inherent nature or lack of accurate data. For instance, locational productive
advantages can simultaneously affect local economic conditions and increase local densit-
ies.16 Examples range from natural factors such as fertile or irrigable lands to man-made
infrastructures such as ports or highways. Insofar as COVID-19 incidence and deaths are
affected by economic conditions, unobservable locational advantages can confound the ef-
fect of density on the spread and severity of the disease.

To overcome the problem posed by potential unobservable confounding factors, we borrow
canonical instruments for density from the agglomeration literature Combes et al. (2011)
and our previous work on the relationship between density and air pollution Carozzi and
Roth (2020). Specifically, we will instrument population density with either geological
factors which can affect the costs of compact urban development or a long-lags in popula-
tion density.

We use three geological instruments: the fraction of the urban footprint with aquifer pres-
ence, a measure of average earthquake risks and an estimate of soil drainage quality. The
rationale for the aquifer instrument is that new dwellings in the periphery of urban areas
need to either to pay for a costly connection with the municipal network or to directly con-
nect with an underwater source. Given that the option of the underwater source is only
available if there is an aquifer where the dwelling is located, cities with more land over
aquifers can sprawl out further, contain more sparse development and lower densities. This
instrument is motivated by the work in Burchfield et al. (2006) which reports that aquifers
in the urban fringe are associated with urban sprawl. The rationale for our earthquake
risk instrument is the expectation that the risk of an earthquake might influence building
regulations, construction practices and the space between buildings, thus also affecting
urban density. We also expect this instrument to satisfy the exogeneity condition, once
we condition for distance to sea, average precipitation, latitude, longitude, and state fixed
effects. Finally, the soil drainage quality variable is expected to affect land suitability for
building at different densities. In fully urbanized land, a significant fraction of rainfall is
15A number of recent papers document a negative effect of temperature on COVID-19 incidence, at least
in temperate weathers. See for example Prata et al. (2020); Tobías and Molina (2020).

16Locational advantages increase local densities because higher land prices in these areas trigger a substi-
tution of land for capital in the production of structures (i.e. an increase in building heights).
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drained through drainage networks and sewage systems (Konrad, 2003). However, at lower
densities, soil drainage capacity is important to avoid stagnant water and, possibly, floods.
In addition, high drainage soil is not ideal for laying down heavy infrastructure, making
the task of building high density development more expensive.

We use a separate instrument for density based on historical population as recorded in the
1880 US census. Settlements in this period were in place before much of the technological
revolutions in transportation that have affected location patterns in the last decades and
also precede current patterns of industrial location. The use of historical population in-
struments for density was popularized by Ciccone and Hall (1996) and has been featured
recurrently in the literature on agglomeration economies since (see Combes and Gobillon
2015 for a review).

Our main estimating equation will regress measures of COVID-19 presence on the logarithm
of population density:

Yi = αs + βLn(Pop.Density)i + γ′Xi + εi (4.1)

where i indexes individual counties, αs is a set of state effects and Xi is a set of controls.
In all specifications, we control for average maximum and minimum temperatures, aver-
age yearly precipitation, latitude, longitude, distance between the county centroid and the
closest sea front and distance to the closest waterfront. Our outcomes include different
measures of COVID-19 presence. In most of our analysis, these are either variables cap-
turing the time it took for the disease to arrive at a county or a time-adjusted measure of
COVID-19 presence - the logarithm of the number of COVID-19 fatalities in the county
60 days after the 10th case was confirmed.

Before presenting our results, it is important to highlight that our estimates of parameter
β from equation 4.1 will capture the overall effect of density on the outcome of interest.
This includes the effect of geographic proximity facilitating transmission but also effects
operating through the impact of density on agglomeration economies, personal behavior,
local population compositions, healthcare systems, etc. After reporting estimates of the
overall effect of density, we will turn to investigate the specific mediating factors behind it
in Section 3.4 below.
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4.3.3 Main Results

We first report baseline cross-sectional correlations between population density and COVID-
19 cases and deaths during the first-wave. In Table 4.1, we estimate Equation 1 via Ordin-
ary Least Squares (OLS) using the logarithm of the number of cases per 100,000 inhabitants
and the logarithm of the number of deaths per 100,000 inhabitants as outcome variables.
We find positive and statistically significant effects of population density on COVID-19
incidence, in line with the descriptive evidence reported in the top-left panel of Figure 4.1.
Specifically, when using the conventional measure of population density we find elasticities
of 22% and 13% for cases and deaths, respectively. This suggests that a 1% increase in
population density increases cases and deaths per 100,000 people by 0.22% and 0.13%.
When using our population-weighted measure of density, we also find very similar positive
elasticities. The findings for COVID-19 cases are consistent with the evidence presented
by Wheaton and Kinsella Thompson (2020) and Almagro and Orane-Hutchinson (2020).
Yet, this should not be taken as conclusive evidence that density has a causal effect on
the spread of COVID-19. As argued above, potential differences in the timing of the onset
of the disease across locations or the presence of potential unobservable confounders can
induce substantial bias in these coefficients.

Estimates reported in Table 4.2 deal with these empirical issues by looking explicitly at
differences in the onset of the COVID-19 epidemic across locations and incorporating our
instrumental variable strategy. In panels A and B, we report estimates for the effect of
density on the number of days to the first case and the number of days to the first death.
These numbers are measured relative to the date of the first reported case in the United
States, so that small numbers correspond to an earlier onset of an outbreak. In column
1, we report OLS estimates obtained after controlling for state effects and covariates. In
columns 2 and 3, we show IV estimates obtained using our Geological and Historical instru-
ments, respectively. Note that the first-stage F-stats lie at 25 or above and the instruments
explain between 5% and 10% of the variance in population density, indicating that they are
not weak. Our second-stage estimates confirm that denser areas have indeed experienced
earlier onsets of the disease whether we use days to the first case or days to the first death.
A one log-point increase in density reduces the time to the first case by between 4 and
6 days depending on the specification. The effect on the time to the first deaths is even
larger. These estimates demonstrate the importance of adjusting for differences in the
timing of the onsets across locations when estimating the relationship between population
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Table 4.1
Cases and Deaths in First COVID-19 Wave in 2020: Baseline OLS Estimates

A. Density
Log(Cases per 100,000) Log(Deaths per 100,000)

Log(Population Density) 0.218*** 0.217*** 0.130** 0.126***
(0.027) (0.021) (0.051) (0.034)

R2 0.20 0.42 0.11 0.36
Obs. 1,756 1,756 1,414 1,414

B. Weighted Density
Log(Cases per 100,000) Log(Deaths per 100,000)

Log(Weight. Density) 0.229*** 0.219*** 0.150** 0.110***
(0.027) (0.020) (0.059) (0.036)

State Effects No Yes No Yes
R2 0.21 0.42 0.11 0.35
Obs. 1,756 1,756 1,414 1,414

Notes: Baseline OLS estimates. Columns (1) and (2) use the log of cases per 100,000, columns (3) and (4) the
log of deaths per 100,000 inhabitants as dependent variables, both taken as accumulated by the 5th of July. In
Panel A, we report estimates for the effect of log of population density. In Panel B, we use the log of population-
weighted density. In all models, we include controls for average maximum and minimum temperatures, average
yearly precipitation, latitude, longitude, distance between the county centroid and the closest sea front and distance
to the closest waterfront. The specifications in columns (2) and (4) add state effects. Standard errors in parenthesis
are clustered at the CBSA level. ***p<0.01, **p<0.05, *p<0.1.

density and COVID-19 health outcomes.

In Panel C of Table 4.2, we examine our main outcome of interest; the effect of population
density on time-adjusted COVID-19 related mortality. As mentioned previously, we focus
on confirmed COVID-19 related deaths rather than cases as our main outcome of interest
because it is considered to be a more accurate indicator of local COVID-19 prevalence.
We provide a complementary analysis using reported cases in Section 4.3.5. In column
1, we find that the cross-sectional correlation observed in Table 4.1 becomes negative and
statistically insignificant, suggesting that the positive link between population density and
COVID-19 deaths might have been confounded by differences in the timing of the local
outbreak. In columns 2 and 3, we use our instrumental variable approach to test this
hypothesis more convincingly. Our second-stage results reveal a statistically insignificant
relationship between population density and COVID-19 related deaths in both columns,
portraying a similar picture as the OLS estimate presented in column 1. Our 2SLS results
are unsurprisingly less precise, but the overall picture is clear. We find no evidence that
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Table 4.2
Onset of the Disease and Deaths after 60 Days in 2020

OLS IV

A. Days to First Case
Log(Population Density) -5.957*** -4.288*** -5.034***

(0.447) (0.864) (0.870)
IV F-stat 25.9 111.0
R2 0.44 0.42 0.43
Obs. 1,759 1,759 1,733

B. Days to First Fatality
Log(Population Density) -15.935*** -6.673** -13.384***

(1.132) (3.247) (2.443)
IV F-stat 24.9 95.3
R2 0.34 0.29 0.33
Obs. 1,667 1,667 1,642

C. Log(Deaths per 100,000, 60 Days after 10th Case)
Log(Population Density) -0.046 -0.053 0.043

(0.040) (0.125) (0.077)
IV F-stat 25.6 60.5
R2 0.30 0.30 0.29
Obs. 1,441 1,441 1,418

Notes: The main explanatory variable in all models is the natural logarithm of population density. Panels A and
B report the estimates for the number of days to the first case and death respectively. Panel C reports the result
for the log of the number of deaths per 100,000 residents in a county, 60 days after the 10th reported case. Column
(1) corresponds to OLS estimates, column (2) and (3) presents 2SLS estimates using the Geological and Historical
instruments respectively. In all models, we include controls for average maximum and minimum temperatures,
average yearly precipitation, latitude, longitude, distance between the county centroid and the closest sea front and
distance to the closest waterfront. The specifications in columns (2) and (3) add state effects. Standard errors in
parenthesis are clustered at the CBSA level. ***p<0.01, **p<0.05, *p<0.1.

population density is positively linked with COVID-19 related deaths.

We can use our IV strategy to reproduce the findings illustrated in Panel A of Figure 4.2
showing the evolution of the cross-sectional relationship between COVID-19 deaths and
population density over time. For this purpose, we estimate modified versions of equation
4.1 where the dependent variable is now the accumulated number of deaths up to the 15th
day of each month in 2020 from March to December. Estimates of the different βt slope
coefficients obtained using 2SLS are reported in Panel B of Figure 4.2. In this case, we
use both our geological and historical instruments as a source of exogenous variation. We
observe that these results mimic those in Panel A, with an initially positive and signific-
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ant relationship emerging by April 15th giving way to a progressive flatter relationship
throughout 2020.

Finally, we test whether the relationship between density and time-adjusted COVID-19
deaths changes with the window used. To do this, we obtain estimates corresponding to
21, 30, and 45 day windows, all measured after the 10th case is reported in each county.
The results are reported in Table 4.3 and show that the time-adjusted number of deaths
is not positively affected by density, regardless of the window used. Interestingly, we find
that at a beginning of an outbreak in a given county this relationship is in fact negative
but becomes flat within two months.

Table 4.3
Density and Time-Adjusted Deaths in 2020 for Different Post-Onset

Windows

OLS IV

A. Log(Deaths per 100,000, 21 Days after 10th Case)
Log(Population Density) -0.377*** -0.357*** -0.194**

(0.044) (0.116) (0.076)
First stage F-stat 20.1 67.2
Obs. 1,159 1,159 1,141

B. Log(Deaths per 100,000, 30 Days after 10th Case)
Log(Population Density) -0.240*** -0.234* -0.072

(0.046) (0.130) (0.074)
First stage F-stat 20.4 72.8
Obs. 1,264 1,264 1,242

C. Log(Deaths per 100,000, 45 Days after 10th Case)
Log(Population Density) -0.126*** -0.162 -0.021

(0.045) (0.129) (0.078)
First stage F-stat 24.0 77.7
Obs. 1,367 1,367 1,345

Instrument Geological Historical
State Effects Yes Yes Yes

Notes: Estimates of the effect of the natural logarithm of population density on time-adjusted COVID-19 deaths
per 100,000 population. Different panels correspond to different choices of the time-adjustment windows in the
dependent variable. Standard errors clustered at the CBSA level. ***p<0.01, **p<0.05, *p<0.1

On first reflection, the null (or negative) results for COVID-19 spread in this section
appear surprising given that the virus spreads via human contact and denser areas can

Urban Density and COVID-19: Understanding the US Experience 179



provide more opportunities for human interactions. Nevertheless, there are several medi-
ating factors that might offset this intuitive mechanism. For example, density itself might
attract younger residents who are less likely to develop significant symptoms. In addi-
tion, both behavioral and/or policy induced changes in behavior may be different in dense
counties. In fact, studies on previous pandemics (e.g. the 1918 influenza pandemic) also
show that population density is not necessarily linked with the spread and severity of a
disease (Mills et al., 2004). In the next section, we explore potential mechanisms that can
explain our reduced-form findings.

4.3.4 Mechanisms

Variation in density might lead to changes in several local conditions, which can themselves
affect the spread and severity of the disease. These types of changes may provide mechan-
isms that reinforce or offset the hypothesized positive effects that have been suggested in
the literature, both in terms of timing of the local onset of the pandemic and subsequent
spread. We turn to study some of these mechanisms by estimating the effect of density on
other determinants of COVID-19 spread and severity. To do so, we re-estimate Equation
1 using these hypothetical mediators as outcomes. The resulting estimates do not provide
definite proof regarding the mechanisms explaining the effect of density on COVID-19 in-
cidence and mortality, but should be interpreted as suggestive evidence in this regard.

We begin by looking at possible factors explaining the early onset of the disease in denser
cities and show that density is associated with higher social connectedness with other US
counties. Our proxy for this variable relies on Facebook’s Social Connectedness Index
(SCI).17 This index is based on the relative frequency of friendship links between users of
the social-network, with higher index values corresponding to a larger number of friend-
ship links. To proxy for social connectedness with other counties we aggregate the SCI of
each county with all other counties and normalize it by the own-county SCI. The resulting
variable is large when inhabitants in a county are disproportionately connected to other
counties. Coefficients resulting from estimating Equation 4.1 using the logarithm of this
proxy as an outcome variable are provided in Panel A of Table 4.4. As above, we report
both OLS estimates (column 1) and 2SLS estimates using our geological and historical
instruments (columns 2 and 3). We observe consistently positive elasticities of roughly 0.4-
0.5 across columns, indicating denser counties are more intensely related to other counties

17Kuchler et al. (2020) study how interpersonal networks provided a channel for the spread of the disease
based on the SCI.
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in the US.18 These results provide a plausible explanation to our findings of early onsets
of COVID-19 cases and deaths in denser counties illustrated in Figure 4.1 and Table 4.2.

Table 4.4
Suggested Mechanisms: Social Connectedness and Behavioral Responses

OLS IV

A. Social Connectedness
Log(Population Density) 0.619*** 0.452*** 0.372***

(0.017) (0.045) (0.034)
IV F-stat 25.9 111.0
Obs. 1,758 1,758 1,732

B. ∆ Workplace Related Activity
Log(Population Density) -3.789*** -4.860*** -3.796***

(0.156) (0.478) (0.301)
IV F-stat 19.5 56.8
Obs. 1,355 1,355 1,336

C. ∆ Retail Related Activity
Log(Population Density) -2.519*** -2.615** -3.471***

(0.325) (1.022) (0.641)
IV F-stat 19.7 50.4
Obs. 1,289 1,289 1,270

D. Republican Vote Share 2016
Log(Population Density) -0.050*** -0.009 -0.080***

(0.003) (0.011) (0.008)
IV F-stat 25.9 111.0
Obs. 1,759 1,759 1,733

Instrument Geological Historical
State Effects Yes Yes Yes

Notes: The main explanatory variable in all models is the natural logarithm of population density. In Panel A, we
present the results for the social connectedness of a county based on Facebook’s Social Connectedness Index. Pan-
els B and C report the results on behavioral adjustment of workplace and retail activities relative to the January
baseline respectively. Panel D features the results on votes for the Republican party in the 2016 presidential elec-
tion. Column (1) corresponds to OLS estimates, column (2) and (3) presents 2SLS estimates using the Geological
and Historical instruments respectively. In all models, we include controls for average maximum and minimum tem-
peratures, average yearly precipitation, latitude, longitude, distance between the county centroid and the closest sea
front and distance to the closest waterfront. The specifications in columns (2) and (3) add state effects. Standard
errors in parenthesis are clustered at the CBSA level. ***p<0.01, **p<0.05, *p<0.1.

Next, we study how density affects behavioral responses to the pandemic (e.g. compliance
with social distancing measures). We use data from the Google COVID-19 Community

18Dense counties are also candidates to have higher connectedness with locations outside of the United
States.
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Mobility Reports (CMR) to measure how mobility patterns in each county have changed
relative to baseline levels measured in January 2020. In Panels B and C of Table 4.4, we
show the relationship between county density and the change in mobility to workplaces
and retail activity respectively. We find that population density is associated with a lar-
ger decline in mobility for both indicators. Doubling density reduces workplace-related
mobility and retail related activity by approximately 2.6-3.4% and 1.7-2.4%, respectively.
Given the significant variation in density across US counties, these estimates are large.
Insofar as social distancing reduces the spread of the disease, these differences in behavior
might explain why we find limited differences in spread by location after accounting for
the timing of onset of the disease and confounding factors.

Several factors could explain this difference in behavior across dense and sparse counties.
One candidate that could account for both policy responses and individual differences
in behavior relates to ideological or political views. Allcott et al. (2020) show that the
Republican county vote share has a positive and significant association with the number
of weekly visits to points of interest during the peak of the social distancing measures in
April. Anecdotal evidence also reveals substantial differences in the tone of the Democratic
and Republican parties when discussing the pandemic and its consequences. If density is
associated with reduced support for the Republican party, residents of denser areas may
be more likely to comply with the social distancing advise. In Panel D of Table 4.4, we
estimate this link using voting data from the 2016 presidential election as a proxy for
Republican support. We find that population density has a negative association with the
share of Republican voters, an observation that should come as no surprise for observers of
US politics.19 This difference in political preferences across locations could explain, at least
in part, the observed differences in the behavioral response to the pandemic illustrated in
Figure 4.3 and Table 4.4.

We can arrive at two conclusions from the results reported in Table 4.4. First, dense
counties are more connected with other locations and this may account for earlier onset
of the COVID-19 epidemic in these areas. Second, the behavioral response to the disease
was larger in denser counties, with less mobility for work and leisure and reduced use of
public transit in these locations.

19This relationship remains highly robust upon controlling for the share of black population as well as the
population above 60 years of age. In fact, when adding these additional controls, the relationship remains
between -0.04 and -0.05 and significant at the 99% confidence level for all three estimation approaches.
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Finally, in Table 4.5, we examine the effect of density on access to healthcare and demo-
graphics, as these are likely to affect COVID-19 related mortality. In Panels A and B,
we examine the effect of density on access to healthcare using the ratio of population to
primary care physicians and the percentage of adults under the age of 65 without health
insurance as proxies. We find that density is positively associated with the former and
negatively associated with the latter, suggesting that denser locations benefit from better
access to healthcare. In our context, this could be an important mediating factor for two
main reasons. First, access to primary healthcare might affect the presence and man-
agement of underlying health conditions which consider being risk factors for COVID-19
mortality (Zhou et al., 2020). Second, access might also affect the probability of seeking
and receiving medical treatment once infected with COVID-19. Relatedly, we also examine
the link between population density and income in Panel C as it is likely to affect access
to healthcare and also health status more broadly. As expected, we find that the density is
positively associated with median household income, offering an additional explanation for
our headline results. Finally, in Panel D, we examine the effect of density on the share of
the population above 60 years of age. This is of particular importance given that older age
considered to be a significant risk factor (Zhou et al., 2020) and that population density
is likely to affect the age structure of local areas via its impact on employment oppor-
tunities Glaeser (1999). Indeed, we find some evidence that population density is linked
with a smaller share of residents above 60 years of age. In other words, dense counties are
“younger” than sparse counties and this could reduce the number of deaths in these areas.

Overall, our points relating to behavioral responses, healthcare provision and demographics
provide probable explanations for the surprisingly flat relationship between density and
COVID-19 related mortality reported in panel C of Tables 4.2.

4.3.5 Robustness Checks

In this section, we provide several tests to evaluate the robustness of our main findings.
We first revisit our results for the time-adjusted COVID-19 deaths by controlling for time
of onset. In Panel A of Appendix Table 4.A.2, we test whether the null effect of density is
robust to flexibly controlling by week of onset in each state. This goes beyond simply time-
adjusting the outcome variable of interest as it also incorporates differences in knowledge
regarding the disease or country-wide behavioral adjustments. We find that our qualitat-
ive results remain unchanged, with coefficients being insignificantly different from 0 across
specifications. In panel B, we test whether our results are affected by excluding the New
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Table 4.5
Mechanisms: Healthcare Provision and Demographics

OLS IV

A. Log Primary Care Physicians per Capita
Log(Population Density) 0.244*** 0.180*** 0.148***

(0.014) (0.042) (0.024)
IV F-stat 25.9 97.8
Obs. 1,714 1,714 1,688

B. Share of Pop. Uninsured
Log(Population Density) -0.003*** -0.005 -0.010***

(0.001) (0.003) (0.002)
IV F-stat 25.9 111.0
Obs. 1,759 1,759 1,733

C. Median Houshold Income
Log(Population Density) 3.975*** 7.051*** 2.167***

(0.349) (1.068) (0.816)
IV F-stat 25.9 111.0
Obs. 1,759 1,759 1,733

D. Share of Pop. Above 60 Years
Log(Population Density) -0.019*** -0.002 -0.014***

(0.001) (0.005) (0.003)
IV F-stat 25.9 111.0
Obs. 1,759 1,759 1,733

Instrument Geological Historical
State Effects Yes Yes Yes

Notes: The main explanatory variable in all models is the natural logarithm of population density. In Panel A, we
present the results for primary health care supply measured as the natural logarithm of the number of primary health
care physicians in each county divided by population. Panels B refers to the share of adults without health insurance.
Panel C reports the results on median household income in 1,000 USD. Panel D features the estimates for the share
of population above 60 years of age. Column (1) corresponds to OLS estimates, column (2) and (3) presents 2SLS
estimates using the Geological and Historical instruments respectively. In all models, we include controls for aver-
age maximum and minimum temperatures, average yearly precipitation, latitude, longitude, distance between the
county centroid and the closest sea front and distance to the closest waterfront. The specifications in columns(2) and
(3) add state effects. Standard errors in parenthesis are clustered at the CBSA level. ***p<0.01,**p<0.05, *p<0.1.

York metropolitan area.20 In this case, we find a negative and statistically significant re-
lationship between density and time-adjusted COVID-19 deaths in our OLS estimate but
statistically insignificant effects when we use our IV methodologies. We interpret these

20We use the census 2010 definition corresponding to the New York-Northern New Jersey-Long Island
CBSA.
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results with caution, as we are imposing sample selection that simultaneously exclude the
MSA with the largest initial outbreak and the highest density.

Much of the evidence featured in the discussion around the role of urban density in shaping
the impact of COVID-19 has focused on the conventional, area-weighted definition of dens-
ity (i.e., population divided by surface). In order to speak to that debate, this has been
the object of our main analysis. But we can evaluate the robustness of our results to the
definition of density by studying the effect of population-weighted densities. In Appendix
Table 4.A.3 we reproduce our main results using this variable as our main independent
variable of interest. Unfortunately, since our geological instruments do not provide a strong
first stage for this variable, our IV analysis relies solely on our long lag instrument. Re-
assuringly, we find that the overall results are qualitatively similar to those obtained in
Table 4.2. Panels A and B show denser counties had earlier onsets of the disease compared
to sparse counties. In panel C, we find a negative association between weighted density
and COVID-19 related deaths when using OLS. However, our IV estimates again show a
statistically insignificant elasticity. We therefore conclude that variation in density did not
result in more COVID-19 incidence and deaths in the United States beyond the effect on
early onset of the disease despite prior descriptive evidence. We also check the robustness
of our results regarding suggested mechanisms using population-weighted density as our
main regressor of interest in Appendix Table 4.A.4. Reassuringly, we find that the overall
results are qualitatively analogous to those reported in Table 4.2.

Finally, we test whether density affects the time-adjusted number of reported cases of
COVID-19. As argued above, the number of cases is more likely to be affected by variation
in testing resources and by the presence of asymptomatic cases. This motivates our focus
on number of deaths in much of the main analysis. In Table 4.A.5, we report estimates of
the relationship between density and the number of cases per 100,000 inhabitants measured
21, 30, 45 and 60 days after the 10th reported case in the county. IV estimates for the
effect of density on time-adjusted cases are similar to estimates reported in Table 4.3. We
conclude that the data does not yield any evidence indicating a positive effect of density
on the spread of the disease.

4.4 Conclusions

Urban areas are often places of intense social interaction, crowded living and close contact.
Whether Justinian’s Constantinople, fourteenth century Florence or 1918 Philadelphia -
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cities have historically been associated with the propagation of infectious disease. In the
first three months of the global COVID-19 pandemic, large, dense urban areas around the
world such as New York, Madrid and London were identified as disease hotspots. Increased
awareness of the risks of present and future epidemics has understandably prompted a de-
bate about the future of cities. Did density - the defining feature of cities - promote the
spread of the disease?

Our analysis of the onset of the COVID-19 pandemic in the United States raises a series
of important points regarding these questions. First, density is associated with an early
arrival of COVID-19, so that urban cores and superstar cities get a head start on the spread
of the disease. Second, the subsequent spread - once COVID-19 has arrived - is not faster
or deadlier than in smaller towns or sparsely populated peripheries. Cities get hit first, but
do not necessarily get hit harder. We argue this is one of the reasons why many of the early
studies of the impact of density on the impact of COVID-19 reported positive findings. A
wider look at the whole period before vaccination began yields a different overall view of
this relationship.

Several mechanisms may explain these findings. Large cities are intensely inter-connected
with other locations, which can explain early onset. Yet, in the case of within-city spread,
different offsetting forces may be at play. Crowding may promote the spread of the disease
but differences in precautionary measures, access to healthcare and demographics may
contain it. As a result, our findings emphasize the importance of distinguishing between
differences in spread between and within locations.

Our study contributes to the understanding of how a summary feature of urban structure –
population density – shapes spread of disease and deaths. The way in which other elements
or urban form, cities’ transport infrastructure or housing conditions (e.g., overcrowding)
shaped the impact of the COVID-19 pandemic is not addressed here and remains an active
area of research (see e.g., Kamis et al. 2021, Borsati et al. 2022 and Brotherhood et al.
2022).
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4.A Appendix

4.A.1 Additional Figures and Tables

Table 4.A.1
Descriptive Statistics

Mean Standard Deviation
A. Full Sample
Population Density 147 696
Weighted Population Density 522 1,117
Population 173,406 432,333
COVID Deaths 60 Days after 10th case 49 272
COVID Cases 60 Days after 10th case 841 3,376
Share of Population above 60 Years 0.24 0.05
∆ Workplace Related Activity -40.61 7.82
∆ Retail Related Activity -35.62 11.98
Number of Counties 1,759
Share of US population: 93%

Mean Standard Deviation
B. COVID Outbreak Subsample
Population Density 173 766
Weighted Population Density 585 1,220
Population 203,190 472,196
COVID Deaths 60 Days after 10th case 59 299
COVID Cases 60 Days after 10th case 1,008 3,704
Share of Population above 60 Years 0.24 0.05
∆ Workplace Related Activity -41.17 7.92
∆ Retail Related Activity -35.94 11.39
Number of Counties 1,441
Share of US population: 89%

Notes: Descriptive statistics presenting the mean and standard deviation for a set of key variables of interest. Panel
A corresponds to the whole sample of urban counties (i.e. counties belonging to a CBSA). Panel B corresponds to
the Outbreak sub-sample consisting of counties that had at least one confirmed COVID-19 death 60 days before the
end of our sample period on the 15th of December 2020.
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Figure 4.A.1
Sample Maps

(a) Sample Counties

(b) COVID-19 Fatalities 60 Days after the First Case

(c) Population Density

Notes: The map at the top shows which counties are part the urban county sample as well as the COVID-19 outbreak
subsample. The map in the middle illustrates the distribution of the log COVID-19 mortality rate 60 days after the
first case, and the map at the bottom the log population density for all counties that are part of the COVID-19
outbreak subsample.
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Figure 4.A.2
Validating Covid-19 Figures

Notes: In the left panel, the vertical axis represents the log of the officially confirmed COVID-19 mortality rate per
county by the CDC and the horizontal axis the COVID-19 mortality rate by USAFacts. The right panel plots the
USAFacts state-level mortality rate (vertical axis) over the excess death estimates by the CDC (horizontal axis).
Blue fit lines estimated via Ordinary Least Squares including the 95% confidence interval in gray.

Figure 4.A.3
Aggregate Daily Number of COVID-19 Deaths (2020)

Notes: Daily COVID related deaths reported in the United States between February and the 15th of December 2020.
Solid line represents moving average of daily deaths.
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Figure 4.A.4
Cases and Deaths in First-Wave (Weighted Density)

Notes: The horizontal axis represents the logarithm of the county’s population-weighted density. In the left panel,
the vertical axis represents the logarithm of the number of cases per 100,000 inhabitants. In the right panel, the
vertical axis represents the logarithm of the number of fatalities per thousand inhabitants. Black markers correspond
to counties forming part of a CBSA. Black fit lines estimated via Ordinary Least Squares.
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Table 4.A.2
Robustness: Density and Deaths

OLS IV

A. Controlling for Week of Onset Effects
Log(Population Density) -0.092** -0.089 0.106

(0.046) (0.173) (0.103)
First stage F-stat 23.8 60.6
Obs. 1,441 1,203 1,181

B. Excluding New York State
Log(Population Density) -0.128** -0.053 0.043

(0.053) (0.125) (0.077)
First stage F-stat 25.6 60.5
Obs. 1,203 1,441 1,418

Instrument Geological Historical
State Effects Yes Yes Yes

Notes: Robustness tests corresponding to Table 4.2 Panel C, additionally controlling for the the week of the onset
(Panel A) and excluding New York State (Panel B). The main explanatory variable in all models is the natural
logarithm of population density. The dependent variable is the log of the number of deaths per 100,000 inhabitants
in a county 45 days after the first case. Column (1) corresponds to OLS estimates, column (2) and (3) refer to
2SLS estimates using the Geological and Historical instruments respectively. In all models, we include controls for
average maximum and minimum temperatures, average yearly precipitation, latitude, longitude, distance between
the county centroid and the closest sea front and distance to the closest waterfront. The specifications in columns
(2) and (3) add state effects. Standard errors in parenthesis are clustered at the CBSA level.
_ ***p<0.01, **p<0.05, *p<0.1.
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Table 4.A.3
Weighted Densities: Onset of the Disease and Deaths after 60 Days (2020)

OLS IV

A. Days to First Case
Log(Weight. Density) -5.867*** -9.789***

(0.573) (1.745)
IV F-stat 27.9
R2 0.44 0.34
Obs. 1,759 1,733

B. Days to First Fatality
Log(Weight. Density) -15.886*** -30.336***

(1.205) (7.102)
IV F-stat 20.8
R2 0.32 0.23
Obs. 1,667 1,642

C. Log(Deaths per 100,000, 60 Days after 10th Case)
Log(Weight. Density) -0.078** 0.090

(0.039) (0.160)
First stage F-stat 14.7
R2 0.30 0.28
Obs. 1,441 1,418

Instrument Historical
State Effects Yes Yes

Notes: The main explanatory variable in all models is the natural logarithm of weighted density. Panels A and B
report the estimates for the number of days to the first case and death respectively. Panel C reports the result for the
log of the number of deaths per 100,000 inhabitants in a county, 60 days after the tenth case. Column (1) corresponds
to OLS estimates and column (2) presents 2SLS estimates using the Historical instrument. In all models, we include
controls for average maximum and minimum temperatures, average yearly precipitation, latitude, longitude, distance
between the county centroid and the closest sea front and distance to the closest waterfront. The specifications in
columns (2) and (3) add state effects. Standard errors in parenthesis are clustered at the CBSA level.
_ ***p<0.01, **p<0.05, *p<0.1.
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Table 4.A.4
Robustness: Suggested Mechanisms and Weighted Densities

OLS IV

A. Social Connectedness
Log(Weight. Density) 0.532*** 0.724***

(0.021) (0.091)
IV F-stat 27.7
Obs. 1,758 1,732

B. ∆ Workplace Related Activity
Log(Weight. Density) -2.968*** -7.501***

(0.200) (1.248)
IV F-stat 15.6
Obs. 1,355 1,336

C. ∆ Retail Related Activity
Log(Weight. Density) -1.893*** -7.293***

(0.413) (1.765)
IV F-stat 13.0
Obs. 1,289 1,270

D. Republican Vote Share 2016
Log(Weight. Density) -0.048*** -0.156***

(0.004) (0.023)
IV F-stat 27.9
Obs. 1,759 1,733

Instrument Historical
State Effects Yes Yes

Notes: Corresponds to Table 4.4, using the log of weighted density as the main explanatory variable.
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Table 4.A.5
Robustness: Cases

OLS IV

A. Log(Cases per 100,000, 21 Days after 10th Case)
Log(Population Density) -0.249*** -0.334*** -0.148**

(0.033) (0.110) (0.059)
IV F-stat 25.9 111.0
Obs. 1,759 1,759 1,733

B. Log(Cases per 100,000, 30 Days after 10th Case)
Log(Population Density) -0.187*** -0.269** -0.076

(0.035) (0.117) (0.063)
IV F-stat 25.4 109.8
Obs. 1,758 1,758 1,732

C. Log(Cases per 100,000, 45 Days after 10th Case)
Log(Population Density) -0.133*** -0.200* -0.047

(0.035) (0.116) (0.066)
IV F-stat 25.3 109.5
Obs. 1,757 1,757 1,731

D. Log(Cases per 100,000, 60 Days after 10th Case)
Log(Population Density) -0.107*** -0.145 -0.023

(0.035) (0.111) (0.064)
IV F-stat 25.6 108.6
Obs. 1,754 1,754 1,728

Instrument Geological Historical
State Effects Yes Yes Yes

Notes: The dependent variables are the log of the number of cases 60 days per 100,000 inhabitants after the 10th
confirmed case. Column (1) corresponds to OLS estimates, column (2) and (3) refer to 2SLS estimates using
the Geological and Historical instruments respectively. In all models, we include controls for average maximum
and minimum temperatures, average yearly precipitation, latitude, longitude, and the distance between the county
centroid and the closest sea front. The specifications in columns (2) and (3) add state effects. Standard errors in
parenthesis are clustered at the CBSA level. ***p<0.01, **p<0.05, *p<0.1.
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4.A.2 Data Sources

• USAfacts.org COVID-19 Data
USAFacts is a non-profit civic initiative that provides data on the US population and
government and works in partnership with the Penn Wharton Budget Model and the
Stanford Institute for Economic Policy Research (SIEPR). The data can be retrieved
at: https://usafacts.org/visualizations/coronavirus-covid-19-spread-ma

p/. [Last visited: December 18th 2020]
• CDC Official COVID-19 Mortality Rate This database comprises confirmed or

presumed COVID-19 fatalities and is limited to counties with at least 10 COVID-
19 deaths. It should be noted, the dataset is incomplete because of the time lag
between the death and the official certificate submitted to the National Center for
Health Statistics (NCHS). For this reason, we this data corresponds only to 514
counties. The latest figures can be downloaded at: https://data.cdc.gov/NCHS/

Provisional-COVID-19-Death-Counts-in-the-United-St/kn79-hsxy. [Last
visited: December 18th 2020]

• CDC Excess Mortality Excess mortality corresponds to the deviation of total
deaths to average expected deaths based on the experience in past years for each
state. The latest estimates can be downloaded at: https://www.cdc.gov/nchs/n

vss/vsrr/covid19/excess_deaths.htm. [Last visited: December 18th 2020]
• US Census contains information about demographics on the country level and can

be accessed via: https://www.census.gov/data/tables/time-series/demo/pope

st/2010s-counties-detail.html. [Last visited: May 14th 2020]
• ‘COVID-19 Community Mobility Reports’ by Google

This report contains information about the behavioral activity change and social
distancing in response to the COVID outbreak by county and day. For more detail
on this database visit: https://www.google.com/covid19/mobility/data_docum

entation.html?hl=en. [Last visited: December 18th 2020]
• Social Connectedness Data Obtained after presenting a brief email application

for the data based on this paper’s outline to Mike Bailey and others at Facebook.
April 6 2020 Release Version.

• Healthcare and Income Data from The County Health Rankings and
Roadmaps program contains information on healthcare access and various so-
cial and economics indicators at the country level and can be accessed via: https:

//www.countyhealthrankings.org. [Last visited: July 3rd 2020]

Urban Density and COVID-19: Understanding the US Experience 195

https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-in-the-United-St/kn79-hsxy
https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-in-the-United-St/kn79-hsxy
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-detail.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-detail.html
https://www.google.com/covid19/mobility/data_documentation.html?hl=en
https://www.google.com/covid19/mobility/data_documentation.html?hl=en
https://www.countyhealthrankings.org
https://www.countyhealthrankings.org


Chapter 5
Air Pollution and Respiratory Infectious Diseases

5.1 Introduction

Exposure to elevated levels of air pollution is linked with a wide range of adverse health out-
comes such as lower life expectancy, infant mortality, and emergency room visits (Dockery
et al., 1993; Chay and Greenstone, 2003; Currie and Neidell, 2005; Schlenker and Walker,
2016). Recently, it has been suggested that air pollution might also be associated with the
propagation of respiratory infectious diseases such as influenza (‘the flu’) and COVID-19.
This potential link is of particular importance as respiratory infectious diseases lead to
substantial disruptions and costs to health care systems and economies around the world.
For example, it is estimated that the total annual economic burden of influenza on the US
economy is $87.1 billion, and COVID-19 is projected to cost the US more than $16 trillion
(Molinari et al., 2007; Cutler and Summers, 2020). As such, examining the potential link
between air pollution and infectious diseases is important from a public health and eco-
nomic standpoint.

In this paper, we study whether air pollution is linked with the most common and costly
respiratory infectious diseases, namely influenza-like illnesses (ILI) and COVID-19. In
theory, air pollution can affect respiratory infectious diseases in three main ways: First,
exposure to air pollution can affect the body directly, either by making the respiratory
system more vulnerable to such diseases or by inducing inflammatory reactions which im-
pair the immune response to new infections (Ciencewicki and Jaspers, 2007). Second, the
existence of pollution in the air might affect the airborne survival of respiratory viruses,
allowing the virus to remain in the air for longer (Martelletti and Martelletti, 2020). Third,
air pollution might also lead to changes in human behavior (e.g. staying indoors to avoid
pollution exposure) that in turn can impact virus transmission via changes to the frequency
and mode of social interactions. While the first two channels suggest that there might be
a positive link between pollution and respiratory diseases, the last one is more ambiguous.
We, therefore, aim to estimate the relationship between air pollution and respiratory infec-
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tious diseases empirically by analyzing U.S administrative data on ambient air pollution
and weekly cases of ILI and COVID-19.

Assessing the link between pollution and infectious disease is challenging due to the pres-
ence of correlated omitted variables and measurement error. More specifically, the volume
of economic activity in a given region and time is just one of the many possible omitted
variables that can lead to biased estimates as it is likely to affect both, air pollution and
the propagation of infectious diseases. In terms of measurement, the assignment of air
quality to the unit of analysis is bound to introduce some degree of measurement error due
to variation within spatial units and across time. We overcome these challenges by using
an Instrumental Variable (IV) approach that relies on deviations from long term atmo-
spheric temperature inversion mean within a county/state and calendar week. The use of
deviations of atmospheric temperature inversion rather than the popular straightforward
inversion instrument is essential in this context due to the seasonal correlated pattern of
inversions within a geography and infectious diseases that we find in the data.

Using our instrumental variable approach and considering a time frame of up to 6 weeks,
we find no evidence that exposure to elevated levels of air pollution affect weekly influenza
and COVID-19 cases in the U.S. Our results are precise, based on several time windows
of exposure and are robust to different specifications. Importantly, our findings are in
contrast to several recent papers in the economics literature which document positive links
between pollution exposure and respiratory infectious diseases. Clay et al. (2018) docu-
mented a positive link between short-term exposure to air pollution and the number of
deaths during the 1918 Spanish flu pandemic across U.S. cities, exploiting differential tim-
ing of the Spanish flu pandemic to overcome confounding factors. Using more recent data
and exploiting random variation in wind direction as an instrument for air pollution, Graff
Zivin et al. (2021) find that elevated levels of contemporaneous air pollution significantly
increase influenza hospitalizations in the U.S. Austin et al. (2020) and Isphording and
Pestel (2021) apply similar IV approaches to study the impact of particulate matter (PM)
concentrations on COVID-19 cases and deaths in the U.S and Germany respectively. Both
studies found significant positive effects. Finally, Persico and Johnson (2021) document
that air pollution increases both the number of cases and case fatality of COVID-19, using
the rollback of environmental regulations in the U.S as an instrument.

Our study provides two important contributions to the growing literature on the possible
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link between air pollution and respiratory infectious diseases and to the literature on air
pollution more broadly. First, our results are based on quasi-experimental methodology but
yield very different results from previous studies. In contrast to other studies that document
a positive association between pollution concentrations and respiratory infectious diseases,
we find no link between the two looking at various lengths of exposure. We believe that
given the precision of our estimates in conjunction with a sound methodology, it is vital to
document such null results to foster further academic investigation on this matter. Second,
we document that atmospheric inversion, which is widely used as an instrumental variable
for air pollution in the economics literature (e.g. Arceo et al. (2016) or Bondy et al. (2020)),
is subject to seasonal patterns (see Figure 5.A.1c). This is a serious concern to the validity
of such instrument as it can also be correlated with other seasonal factors and the outcome
itself. As such, we provide an alternative specification using deviations from long term
inversion mean count within a county (or state) and calendar week, which overcomes this
identification issue and still constitutes a strong predictor of pollution. We think that
this is an important methodological contribution to the literature that examines the effect
of air pollution on health but also on other aspects of human life including productivity,
happiness, and human capital.

5.2 Data

To study the impact of ambient air pollution on the prevalence and severity of respirat-
ory infectious diseases, we assemble two datasets. The first dataset is a weekly panel on
influenza-like illnesses (ILI) at the US state level for the study period between 2010 to
2019, covering all 50 states as well as the District of Columbia. The second dataset is
a weekly panel on COVID-19 covering 1,004 US counties representing 79.6% of the US
population from early until late 2020 when the vaccination program rolled out. Summary
statistics for our key variables in our data are presented in Table 1. In panel A, we show
key statistics for our state level data on ILI and in Panel B for our county level COVID-19
sample. There are five main data inputs to create these datasets:

Influenza-like Illness Surveillance Network (ILINet): The first data source is provided by
the Center for Disease Control (US CDC) in collaboration with the state and local health
departments and health care providers. From this dataset, we obtain information about
weekly counts of ILI patients across US states over 9 years/full flu seasons - from the
2010/11 flu season beginning in October 2010 until the 2018/19 flu season ending in Oc-
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tober 2019.1 We exclude more recent flu seasons to avoid an overlap with the COVID-19
pandemic. The CDC defines ILI patients as reporting symptoms of ‘fever (temperature of
100◦F [37.8◦C] or greater) and a cough and/or a sore throat.2 The ILINet data is based
on information from over 3,000 healthcare providers across the US and allows to track the
weekly ILI prevalence for all states over several years.

COVID-19: The second dataset covers weekly counts of COVID-19 cases and fatalities from
usafacts.org, which is based on county-level reports by local health authorities across the
US. This dataset covers the period between the start of the pandemic in the US in January
2020 until the launch of the vaccination program in December 2020. The dataset includes
two measures of COVID-19 prevalence, cases and fatalities.3 While cases might in principle
be a better measure of disease prevalence, this indicator is hard to measure in practice.
More specifically, the limited testing capacity, especially during the beginning of the pan-
demic, in conjunction with the virus’ ability to spread in asymptomatic people limits the
reliability of Covid cases as a main outcome of interest (Subbaraman, 2020). This type of
reporting error is less likely to occur when using COVID-19 fatalities instead. Yet, fatalit-
ies are also a noisy measure of disease prevalence as the time between infection and death
can take several weeks and vary a lot between cases. In addition, fatalities are not only a
measure of disease prevalence but also of severity. Consequently, there are advantages and
disadvantages from using either cases or fatalities. For this reason, we decided to focus on
cases but we will show that we obtain similar results using deaths as an alternative measure.

Air Quality Index (AQI): We complement the health data with measures of air quality from
the US Environmental Protection Agency (US EPA). The AQI is calculated on a daily basis
using a variety of measures including carbon monoxide, nitrogen dioxide, ozone, sulfur di-
oxide as well as inhalable particulate matters (PM2.5 and PM10). For the period between
2010 and 2019, the EPA provides a daily AQI for 1,173 counties representing 83% of the
US population. A higher AQI indicates a higher ambient air pollution level and ranges
between 0 and 213.8 with a mean of 43.6 and standard deviation of 13.1 in our ILI sample,
and between 0 and 848.6 with a mean of 36.9 and a standard deviation of 19.6 in our Covid
sample (see Figure 5.A.1.4 The AQI represents as noisy measure of air pollution since the

1Following the US CDC convention of an epidemiological week, we define weeks as starting on Sundays. A
flu season is defined to run for one year starting in October.

2More information about the ILINet data can be found at: https://gis.cdc.gov/grasp/fluview/flupor
taldashboard.html.

3More information about the COVID-19 data can be found at: https://usafacts.org/visualizations/
coronavirus-covid-19-spread-map/.

4As a reference, an AQI between 0-50 is considered as ‘Good’.
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defining parameter varies across space and time, and measuring stations are capturing the
air pollution at the station but not the average across the county. To combine the daily
county-level AQI data with the ILI and COVID-19 data, we aggregate the AQI by week,
and for ILI additionally by state weighing by county population.

Atmospheric Temperature Inversions: To obtain quasi-random variation in local air quality,
we will use atmospheric temperature inversions as an instrument. Temperature inversions
are short-term atmospheric episodes, usually occurring over a day or less, which lead to
a reversal of temperature profiles that reduce atmospheric ventilation and consequently
increase ground-level pollution levels. In other words, inversions might satisfy the condi-
tion of instrument relevance because they significantly impact air quality on the ground.
Furthermore, while inversion episodes tend to be associated with other atmospheric and
weather conditions, they are arguably independent of human behavior on the ground which
makes them particularly popular as an instrument for air pollution at the daily (Jans et al.,
2018; Sager, 2019) or weekly level (Arceo et al., 2016). Nevertheless, as we will show, inver-
sions also follow cyclical patterns which is why it is important to either control for calendar-
week fixed effects, or alternatively focus on deviations of inversions from long-run averages.
We measure the occurrence of inversions based on satellite-derived three-dimensional tem-
perature profiles of the atmosphere, which come from the MERRA-2 reanalysis project.5

These provide 3-hourly mean temperatures by latitude, longitude and atmospheric pressure
levels6, which correspond to altitude. To match the inversions data with the other data in-
puts, we first spatially match inversion grid centroids with US counties to measure on how
many days per week inversions occurred in a given county.7 Specifically, we assign each
grid point to the county it falls into and calculating mean temperature levels in a county
on a day and each pressure level.8 Whenever the daily mean temperature at the pressure
level closest to the ground is lower than the temperature at the next higher-up level (25hPa
less pressure which corresponds to roughly 200m in altitude), we define an inversion in that
county on that day. Our final instrument measures the share of days within each week
during which such an inversion occurred. To combine the inversions data with the ILINet
data, we aggregate inversions to the state level using the county population share as weight.

5Further information about the dataset can be found at: https://disc.gsfc.nasa.gov/datasets/M2I3
NVASM_5.12.4/summary.

6Location by latitude and longitude is divided into grid cells of size 0.625◦×0.5◦. Altitude is divided into
42 atmospheric pressure levels with 25hPa intervals, which corresponds to approximately 200 meters.

7Note that we lose observation at this step as not all counties overlap with grid centroids.
8For those few counties which do not contain a grid point, we assign readings from the grid point closest
to the county centroid.
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Additional Weather Controls: While inversions may well be independent of human beha-
vior, they are known to covary with certain weather conditions—including precipitation
patterns, frozen rain, and fog formation—that may themselves affect human behavior.
Consequently, we add control variables measuring surface air temperature, precipitation as
well as relative humidity from the North American Regional Reanalysis (NARR) project
by the National Oceanic and Atmospheric Administration (NOAA).

5.3 Methodology

Our aim is to estimate the hypothesized effect of contemporaneous air pollution exposure
on the prevalence of respiratory infections. To do so, we use two samples with two different
measures of the spread of respiratory infections:
(1) Weekly cases of influenza-like illness (ILI) at the state-level (2010-2019), and
(2) Weekly cases of COVID-19 at the county-level

We use similar methods for both of these. First, consider the case of ILI where we model
the expected number of ILI cases in state i and during week t, denoted Casesi,t, as the
following exponential function:

E(Casesi,t) = exp[β AQIi,t + f(Weatheri,t) + µt + γi] (5.1)

The expected number of ILI cases exponentially depends on air quality, weather and ad-
ditional invariant factors. Specifically, AQIi,t is the average air quality index (AQI) in
state i and during week t, Tempi,t is average temperature, RHi,t is relative humidity, and
Raini,t is cumulative rainfall. We flexibly account for weather conditions in f(Weatheri,t)
by including 20 temperature bins9, a measure of relative humidity, an interaction between
relative humidity and temperature, as well as a measure of cumulative rainfall and its
square. In addition, we account for unobserved time-invariant heterogeneity using state
fixed effects γi, and we account for common variation across time with year-week fixed
effects, µt. We will show that this choice of fixed effects influences the results due to the
likely strong degrees of seasonality and periodicity in both respiratory outcomes and air
quality.

For our second sample, Casesi,t denotes the number of COVID-19 cases in county i and
during week t, and all other variables are also measured at the county-level. In both cases,
our coefficient of interest is β, which describes the relationship between air pollution and
9We include dummies for average temperature bins defined by the following cutoff values: -30, -10, -5, 0,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 45 (all in ◦C.).
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(exponential) cases of respiratory disease.

We estimate Equation 5.1 using the Poisson pseudo-maximum likelihood (PPML) regres-
sion as proposed by Silva and Tenreyro (2006) and implemented using the computationally
efficient routine in the presence of high-dimensional fixed effects as developed by Correia
et al. (2020). However, estimation of Equation 5.1 might yield biased results for two reas-
ons - identification and measurement. In terms of the former, any observed association
between air quality and respiratory outcomes as measured by β̂ could be biased when cer-
tain variables are omitted from Equation 5.1 that affect both air quality and respiratory
outcomes. The volume of economic activity in a given region and during a given week
is just one of the many possible candidates for such an omitted variable. Regarding the
latter, the assignment of air quality is bound to be imprecise due to variation within spatial
units, be it counties or states, and throughout the week. Such measurement error may well
also bias estimates β̂, generally towards 0.

To address these concerns, we turn to a second identification strategy that relies on atmo-
spheric temperature inversions as an instrument to induce plausibly exogenous variation
in the levels of air quality. Temperature inversions are short-term atmospheric episodes,
usually occurring over a day or less, which lead to a reversal of temperature profiles that
lower atmospheric ventilation and thus temporarily increase ground-level pollution levels.
They are thus best suited as instruments for short-term fluctuations in air quality at the
daily (Jans et al., 2018; Sager, 2019) or weekly level (Arceo et al., 2016).

Specifically, we estimate the following linear first-stage relationship:

AQIi,t = ρ INVi,t + δ(Weatheri,t) + ηt + θi + vi,t (5.2)

Air quality in a given county or state i and during week t, AQIi,t, is a linear function of the
share of days in that week during which inversions occurred, INVi,t, as well as the same
covariates for weather and fixed effects as in Equation 5.1. As we will show, inversions
are systematically associated with higher levels of air pollution throughout all specifica-
tions and both samples. To leverage the inversion instrument to estimate the exponential
relationship between pollution and respiratory diseases as stipulated in Equation 5.1, we
employ a control function approach as proposed by Wooldridge (2015). In a first step, we
estimate Equation 5.2 using Ordinary Least Squares (OLS) estimation. We then add the
residuals from that regression, v̂i,t, to the PPML estimation of Equation 5.1.
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5.4 Results

5.4.1 PPML Estimates

We now turn to the results, beginning with the ILI state-year sample. Results from the
non-instrumented PPML regression of Equation 5.1 are shown in Table 5.1. In column (1),
we include weather controls but not fixed effects. Like in several previous studies, we find
a positive association between pollution and ILI cases. Specifically, our estimate suggests
that each additional 1-point increase in AQI10 in a given state and week is associated with
an increase in the expected number of ILI cases by about 1.2%. However, once we include
fixed effects for time-invariant differences between states and for common shocks at the
year-week level, results change. As shown in column (2), we find a precisely estimated
zero effect of AQI on ILI cases. In column (3), we add one-week lags of ILI cases and AQI
to account for any potential autocorrelation across time that may lead to either biased
estimates or exaggerated precision. The coefficient of interest hardly moves and remains
statistically and economically insignificant.

Another key concern is that both respiratory disease and air quality are highly seasonal
(see Figure 5.A.1a and 5.A.1e). The year-week fixed effects may factor out some seasonal
elements, but those that are common across all spatial units. However, if seasonal patterns
of disease and pollution differ across states and counties - as indeed it seems quite plausible
that they would - we may obtain biased estimates. Simply put, we may see more pollution
and more flu cases during late January in some states that routinely experience severe win-
ters, but less so in other states that have milder temperatures. In our view, this introduces
a substantial risk of bias when trying to identify a hypothesized relationship between air
quality and respiratory disease without accounting for region-specific seasonality trends.
We take two approaches to region-specific seasonality.

First, we include state-calendar week fixed effects in column (4) of Table 5.1. Simply put,
we take out all variation that is repeated across years in a given state and calendar week,
such as the second week of each year in Texas. The coefficient of interest falls somewhat,
but remains small and negative. Second, we take a different approach to seasonality-
adjustments in column (5) of Table 5.1, by including the AQI only as deviations from
the long-run average in each state and each calendar week. Perhaps unsurprisingly, given
the similarity to the approach with calendar week fixed effects, the coefficient is also zero.

10As a reference, the standard deviation in our ILI Sample is 13.1 (see Figure 5.A.1).
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Table 5.1
The Association between AQI and ILI Cases (PPML)

Dependent variable: ILI Cases

(1) (2) (3) (4) (5)

AQI 0.012∗∗∗ 0.000 0.001 0.000 0.000
(0.004) (0.001) (0.001) (0.001) (0.001)

Weather Controls Yes Yes Yes Yes Yes
State FE No Yes Yes N/A Yes
Week FE No Yes Yes Yes Yes
Flu/AQI Lags No No Yes No No
State-calendar week FE No No No Yes No
AQI Deviations No No No No Yes
Observations 21,519 21,519 21,418 21,519 21,519
Pseudo R2 0.09 0.87 0.88 0.89 0.87

Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on Equation 5.1 for the
influenza-like illnesses (ILI) sample. The dependent variable are weekly ILI cases at the US state level provided
by the Center for Disease Control (US CDC), and the main explanatory variable is the air quality index (AQI) (in
column (5) deviations) by the US Environmental Protection Agency (US EPA), with higher AQI values indicating
higher air pollution. Standard errors in parentheses are cluster-robust to autocorrelation within each flu season by
state. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

However, using deviations of AQI from long-run averages in each state-calendar week, is
our preferred specification as it will enable us to apply it to the COVID-19 sample where
the calendar week fixed effects approach is infeasible.

Table 5.2 shows equivalent results for COVID-19 cases reported by each county in each
week. Accordingly, the state fixed effects are replaced with county fixed effects. Due to the
recency of the COVID-19 outbreak in the United States, we do not yet have data spanning
multiple years and are thus not able to estimate a specification with county-calendar week
fixed effects. While the simple specification without fixed effects in column (1) suggest a
positive association between higher levels of AQI and reported COVID-19 cases, we de-
tect no such positive relationship after appropriately accounting for time-invariant factors,
common time-varying shocks, and region-specific seasonality. In fact, our results are small
but the sign of the coefficient actually reverse, suggesting that higher level of pollution
reduces the number of COVID-19 cases. As discussed in the data section, we also examine
the effect of air pollution on COVID-19 fatalities - with a time lag of two weeks to allow
for more time for the potential effects to materialize - as an alternative outcome measure,
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given the limited testing capacity during the beginning of the pandemic and the virus’
ability to spread in asymptomatic people which limits the reliability of the data on Covid
cases. The results are presented in Table 5.A.2 and are qualitatively similar to those ob-
tained in Table 3 in the sense that once we use AQI deviations, we find no evidence for a
link between pollution and COVID-19 related mortality.

Table 5.2
The Association between AQI and COVID-19 Cases (PPML)

Dependent variable: Covid-19 Cases

(1) (2) (3) (4) (5)

AQI 0.008∗∗∗ −0.002∗∗∗ −0.001 - −0.003∗∗∗
(0.0012) (0.0008) (0.0008) (0.0007)

Weather Controls Yes Yes Yes - Yes
County FE No Yes Yes - Yes
Week FE No Yes Yes - Yes
Flu/AQI Lags No No Yes - No
AQI Deviations No No No - Yes
Observations 47,431 47,430 46,325 000-000 47,430
Pseudo R2 0.11 0.90 0.90 - 0.90

Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on Equation 5.1 for the
Covid sample. The dependent variable are weekly COVID-19 cases at the US county level provided by usafacts.org,
and the main explanatory variable is the air quality index (AQI) (in column (5) deviations) by the US Environmental
Protection Agency (US EPA), with higher AQI values indicating higher air pollution. Standard errors in parentheses
are cluster-robust to autocorrelation at the level of counties. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.4.2 Control Function Estimates with Instruments

Next, we turn to the control function approach that uses inversions (columns (1)-(4)) and
inversions deviations (column (5)) as an instrument for air quality. Table 5.3 shows OLS
estimates for the linear first-stage relationship between inversions and AQI according to
Equation 5.2. Reassuringly, we consistently find a positive and statistically significant (at
the 1% level) relationship between more frequent inversions and higher AQI levels at the
state and county levels. Specifically, we estimate that increasing the share of days with
inversions from 0 to 1, i.e. going from a week with 0 inversions to one with 7, is associated
with an increase in average AQI of between 12 and 18 points in our state level sample.
Importantly, columns (4) and (5) show that the inversion instrument is robust to the two
ways of accounting for region-specific seasonality. In column (4), this is done via state-
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calendar week fixed effects. In column (5), we use the deviation of inversions from the
long-run mean in each state and calendar week to predict the deviation of AQI from the
long-run mean.

Table 5.3
The Association between Inversions and AQI (First stage - OLS)

Dependent variable: AQI

(1) (2) (3) (4) (5)

Inversions 12.3∗∗∗ 15.9∗∗∗ 16.4∗∗∗ 17.7∗∗∗ 17.8∗∗∗
(1.6) (0.8) (0.7) (0.9) (0.9)

Weather Controls Yes Yes Yes Yes Yes
State FE No Yes Yes N/A Yes
Week FE No Yes Yes Yes Yes
Flu/AQI Lags No No Yes No No
State-calendar week FE No No No Yes No
AQI Deviations No No No No Yes
IV F-stat 59.9 378.4 506.5 432.3 414.4
Observations 21,519 21,519 21,418 21,519 21,519
Adj. R2 0.36 0.68 0.74 0.77 0.39

Note: This table reports OLS first-stage regression estimates based on Equation 5.2 for the influenza-like illnesses
(ILI) sample. The dependent variable is the air quality index (AQI) by the US Environmental Protection Agency
(US EPA), with higher AQI values indicating higher air pollution. The instruments are the share of days in a week
with inversions (columns (1)-(4)) and inversions deviations from their long-run average in the respective calendar
week (column (5)). Standard errors in parentheses are cluster-robust to autocorrelation within each flu season by
state. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

After confirming that inversions are indeed associated with higher levels of pollution, we
now turn to our instrumental variable estimates of the relationship between air quality
and respiratory disease. Our identification assumption is that the frequency of inversion
episodes in a given week is not, after controlling for weather conditions and fixed effects,
associated with any change in respiratory health other than through changes in air qual-
ity. We are not aware of any mechanism that would lead to such confounding, though we
cannot be certain. In our view, the consistently strong first-stage estimates shown in Table
A1, where coefficient hardly move between specifications, is very reassuring.

We begin by investigating the effect of air pollution on ILI. These results are shown in
Table 5.4, with each column again showing equivalent specifications to those in Tables 2.
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Table 5.4
The Association between AQI and ILI Cases (CF/PPML)

Dependent variable: ILI Cases

(1) (2) (3) (4) (5)

AQI 0.063∗∗∗ 0.022∗∗∗ 0.017∗∗∗ 0.001 0.005
(0.012) (0.003) (0.002) (0.004) (0.003)

Weather Controls Yes Yes Yes Yes Yes
State FE No Yes Yes N/A Yes
Week FE No Yes Yes Yes Yes
Flu/AQI Lags No No Yes No No
State-calendar week FE No No No Yes No
AQI Deviations No No No No Yes
Observations 21,519 21,519 21,418 21,519 21,519
Pseudo R2 0.09 0.87 0.89 0.89 0.87

Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on the control function
approach as proposed by Wooldridge (2015) that uses inversions (column (1)-(4)) and inversions deviations (column
(5)) as instruments for air quality (columns (1)-(4)) and air quality deviations (column (5)) for the influenza-like
illnesses (ILI) sample. The dependent variable are weekly ILI cases at the US state level provided by the Center
for Disease Control (US CDC), and the main explanatory variable is the air quality index (AQI) (in column (5)
deviations) by the US Environmental Protection Agency (US EPA), with higher AQI values indicating higher air
pollution. The corresponding first-stage regressions can be found in Table 5.3. Standard errors in parentheses are
bootstrapped using cluster-wise resampling at the level of flu seasons by state. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As shown in column (1), we estimate a positive relationship between AQI and ILI cases
when we do not account for any fixed effects. After including state and week fixed effects
(column 2) and controlling for one-week lags for ILI cases, AQI and inversions (column
3), the coefficient of interest falls by more than half, but remains positive and statistically
significant. These results may support the positive relationship between pollution and in-
fluenza cases found in other contributions. However, as we already discussed above, we
believe that it is crucial to account for region-specific seasonality in such analyses. When
we do so, by including state-calendar week fixed effects (column 4) or by taking deviations
from the long-run mean for ILI cases, AQI and inversions (column 5), the coefficients of
interest fall significantly and are no longer significantly different from 0.

The equivalent control function results for the COVID-19 sample are shown in Tables 5.A.4.
Again, we fail to detect any systematic relationship between air quality and COVID-19
cases after appropriately accounting for region-specific seasonality patterns through de-
meaning our instrument in column (5) of Table 5. Table 5.A.5, shows similar results, using

Air Pollution and Respiratory Infectious Diseases 207



Figure 5.1
Association between Leads/Lags of AQI Deviations and Disease

(a) ILI Cases: PPML (b) ILI Cases: CF/PPML

(c) COVID-19 Cases: PPML (d) COVID-19 Cases: CF/PPML

(e) COVID-19 Fatalities: PPML (f) COVID-19 Fatalities: CF/PPML

Note: The figures on the left plot the estimates based on Equation 5.1 equivalent to column (5) of Tables 5.1, 5.2
and 5.A.2 respectively, but with 6 leads and lags. The figures on the right plot the estimates based on the control
function approach equivalent to column (5) of Tables 5.4, 5.A.4 and 5.A.5 respectively, but with 6 leads and lags.
The 95% confidence interval is included in gray.
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COVID-19 fatalities instead of cases, as an outcome.

So far, we have failed to detect a systematic, positive relationship between air pollution,
as measured by AQI, and ILI case counts, both when looking directly at the relationship
hypothesized in Equation 5.1 and when instrumenting AQI with inversions. However, our
analysis has thus far focussed at the contemporaneous relationship at the weekly level.11

However, it might be the case that the effect of pollution exposure takes some time to
materialize in more infections, and ultimately in higher confirmed case counts. We thus
extend our preferred specifications to include 6 weeks of leads and lags of air quality. The
results are shown in Figure 5.1. Figure 5.1a, show results from a specification equivalent
to that in column (5) of Tables 5.1, but with leads and lags. Quite evidently, there is no
association between ILI case counts and air quality in either the preceding or following
weeks. This is confirmed in Figure 5.1b, which show estimates from the control function
approach, equivalent to column (5) in Tables 5.1, but with leads and lags.12 In Figures 5.1c
and 5.1d, we conduct the same analysis using COVID-19 cases as our outcome variable,
and in Figures 5.1e and 5.1f using COVID-19 fatalities. Again, we find no association
between air quality and COVID-19 cases in either the preceding or following weeks.

5.5 Conclusion

This paper has examined the relationship between air pollution and respiratory infectious
diseases. In the first part of our analysis, we use a traditional fixed effects model which
shows that exposure to air pollution is indeed associated with weekly cases of ILI and
Covid-19 as suggested by previous papers in the economic and epidemiology literature.
However, we later show how this relationship fades completely when we use our instru-
mental variable approach or a more accurate fixed-effect model that adequately accounts for
seasonality. Importantly, our null results are precise, robust to different specifications, and
remain virtually the same for different time windows of exposure. Given the growing body
of literature on this topic which shows a positive relationship between air pollution and in-
fectious diseases, we believe that it is vital to document our precisely estimated null results
to foster further academic investigation on this matter. Finally, we also demonstrate that
the widely used atmospheric inversion instrument is subject to a seasonal pattern, which

11With the exception of fatalities where we allow for a time lag of 2 weeks.
12Specifically, we estimate Equation (2) for AQI in different time periods (same week + 6 lags + 6 leads),
including each time all inversion instruments (same week + 6 lags + 6 leads). We then estimate one
second-stage relationship akin to Equation (1), but including the leads and lags of AQI, along with the
residuals from all first-stage regressions.
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cast a serious concern about its validity as it can also be correlated with other seasonal
factors and the outcome itself. To overcome this empirical issue, we modify the instrument
such that we use deviations from long-term inversion mean counts within a county (or
state) and calendar week. This approach is crucial for the accuracy of our estimates, but
it is also an important methodological contribution to the literature that examines the
various health and well-being effects of air pollution and uses this instrument.
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5.A Appendix

5.A.1 Summary Statistics

Table 5.A.1
Summary Statistics

Min. Max. Mean Median SD.

A. ILI Sample (State Level)
ILI Patient Rate 0 161.9 6.0 2.4 10.3
Air Quality Index 15.4 213.8 43.6 41.4 13.1
Inversions per Week 0 1.0 0.2 0.2 0.2
Relative Humidity 8.2 94.7 69.9 74.1 14.7
Precipitation (in mm) 0 25.5 2.6 1.8 2.7
Temperature (in ◦C) -23.2 40.3 13.2 14.2 10.8
Population (in 1,000) 494 33,872 5,626 4,042 6,118
Observations: 21,519

B. Covid Sample (County Level)
COVID-19 Case Rate 0 5,675.4 136.4 47.2 224.4
COVID-19 Fatality Rate 0 161.5 2.1 0 4.6
Air Quality Index 0 848.6 36.9 36.4 19.6
Inversions per Week 0 1.0 0.2 0.1 0.2
Relative Humidity 9.9 96.1 69.5 74.5 16.2
Precipitation (in mm) 0 43.5 2.6 1.6 3.1
Temperature (in ◦C) -17.9 40 14.6 15.2 10.2
Population (in 1,000) 0.6 9,519.3 232.4 91.8 500.6
Observations: 47,430

Note: This figure presents key summary statistics for the ILI and Covid sample respectively.
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5.A.2 Additional Figures

Figure 5.A.1
Aggregate Seasonality Patterns

(a) AQI (b) AQI Deviations

(c) Inversions (d) Inversions Deviations

(e) ILI Cases

Note: These figures use the ILI sample to plot key variables over calendar week (the weekly bins are in orange). The
AQI and inversions exhibit clear seasonal patterns, with the AQI being elevated during the summer and inversions
during the winter. In contrast, taking the deviations from their respective long-term mean helps with removing
the seasonality. ILI cases are displayed at the bottom and also exhibit a seasonality with elevated levels during
the winter. It should be noted that these figures illustrate the aggregate seasonality across US states, and that the
seasonality within states or counties is likely to be even more pronounced and vary across locations. By demeaning
the AQI and inversions by state (or county) and calendar week, we remove this location specific seasonality.
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5.A.3 Additional Tables

Table 5.A.2
The Association between AQI and COVID-19 Fatalities (PPML)

Dependent variable: Covid-19 Fatalities

(1) (2) (3) (4) (5)

AQI 0.008∗∗∗ −0.001 0.000 - −0.000
(0.001) (0.001) (0.001) (0.001)

Weather Controls Yes Yes Yes - Yes
County FE No Yes Yes - Yes
Week FE No Yes Yes - Yes
Flu/AQI Lags No No Yes - No
AQI Deviations No No No - Yes
Observations 44,250 44,250 42,295 000-000 44,250
Pseudo R2 0.10 0.75 0.76 0.75

Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on Equation 5.1 for the Covid
sample. The dependent variable are weekly COVID-19 fatalities at the US county level two weeks later provided
by usafacts.org, and the main explanatory variable is the air quality index (AQI) (in column (5) deviations) by the
US Environmental Protection Agency (US EPA), with higher AQI values indicating higher air pollution. Standard
errors in parentheses are cluster-robust to autocorrelation at the level of counties. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.A.3
County-level Association between Inversions and AQI (First stage - OLS)

Dependent variable: Covid-19 Cases

(1) (2) (3) (4) (5)

Inversions 6.1∗∗∗ 7.6∗∗∗ 7.4∗∗∗ - 7.8∗∗∗
(1.2) (0.7) (0.5) (0.6)

Weather Controls Yes Yes Yes - Yes
County FE No Yes Yes - Yes
Week FE No Yes Yes - Yes
Flu/AQI Lags No No Yes - No
AQI Deviations No No No - Yes
IV F-stat 25.2 129.6 189.6 - 198.1
Observations 47,431 47,430 46,325 00-00 47,430
Adj. R2 0.15 0.52 0.62 - 0.27

Note: This table reports OLS first-stage regression estimates based on Equation 5.2 for the Covid sample. The
dependent variable is the air quality index (AQI) by the US Environmental Protection Agency (US EPA), with
higher AQI values indicating higher air pollution. The instruments are the share of days in a week with inversions
(columns (1)-(3)) and inversions deviations from their long-run average in the respective calendar week (column (5)).
Standard errors in parentheses are cluster-robust to autocorrelation at the level of counties.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.A.4
The Association between AQI and COVID-19 Cases (CF/PPML)

Dependent variable: Covid-19 Cases

(1) (2) (3) (4) (5)

AQI 0.126∗∗∗ 0.019∗∗ 0.023∗∗∗ - −0.006
(0.023) (0.007) (0.008) (0.007)

Weather Controls Yes Yes Yes - Yes
County FE No Yes Yes - Yes
Week FE No Yes Yes - Yes
Flu/AQI Lags No No Yes - No
AQI Deviations No No No - Yes
Observations 47,431 47,430 46,325 000-000 47,430
Pseudo R2 0.12 0.90 0.90 - 0.90

Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on the control function
approach as proposed by Wooldridge (2015) that uses inversions (column (1)-(3)) and inversions deviations (column
(5)) as instruments for air quality (columns (1)-(3)) and air quality deviations (column (5)) for the Covid sample.
The dependent variable are weekly Covid cases at the US county level provided by usafacts.org, and the main
explanatory variable is the air quality index (AQI) (in column (5) deviations) by the US Environmental Protection
Agency (US EPA), with higher AQI values indicating higher air pollution. The corresponding first-stage regressions
can be found in Table 5.A.3. Standard errors in parentheses are bootstrapped using cluster-wise resampling at the
level of counties. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.A.5
The Association between AQI and COVID-19 Fatalities (CF/PPML)

Dependent variable: Covid-19 Fatalities

(1) (2) (3) (4) (5)

AQI 0.090∗∗∗ 0.068∗∗∗ 0.045∗∗∗ - −0.017
(0.026) (0.015) (0.007) (0.011)

Weather Controls Yes Yes Yes - Yes
County FE No Yes Yes - Yes
Week FE No Yes Yes - Yes
Flu/AQI Lags No No Yes - No
AQI Deviations No No No - Yes
Observations 44,250 44,250 42,295 000-000 44,250
Pseudo R2 0.11 0.75 0.77 0.75

Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on the control function
approach as proposed by Wooldridge (2015) that uses inversions (column (1)-(3)) and inversions deviations (column
(5)) as instruments for air quality (columns (1)-(3)) and air quality deviations (column (5)) for the Covid sample. The
dependent variable are weekly Covid fatalities at the US county level two weeks later provided by usafacts.org, and
the main explanatory variable is the air quality index (AQI) (in column (5) deviations) by the US Environmental
Protection Agency (US EPA), with higher AQI values indicating higher air pollution. The corresponding first-
stage regressions can be found in Table 5.A.3. Standard errors in parentheses are bootstrapped using cluster-wise
resampling at the level of counties. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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