
On Linear, Fractional, and
Submodular Optimization

Zhuan Khye Koh

Department of Mathematics
London School of Economics and Political Science

This dissertation is submitted for the degree of
Doctor of Philosophy

London, January 2023

I would like to dedicate this thesis to my loving parents.

Declaration

I certify that the thesis I have presented for examination for the PhD degree of the London
School of Economics and Political Science is solely my own work, with the following exceptions.

• Chapter 2 is based on [38] “An Accelerated Newton–Dinkelbach Method and its
Application to Two Variables per Inequality Systems”, co-authored with Daniel Dadush,
Bento Natura and László Végh. It has appeared in Proceedings of the 29th European
Symposium on Algorithms (ESA 2021) and was accepted to Mathematics of Operations
Research.

• Chapter 3 is based on [39] “On Circuit Diameter Bounds via Circuit Imbalances”,
co-authored with Daniel Dadush, Bento Natura and László Végh. It has appeared
in Proceedings of the 23rd International Conference on Integer Programming and
Combinatorial Optimization (IPCO 2022).

• Chapter 4 is based on [82] “On the Correlation Gap of Matroids”, co-authored with
Edin Husić, Georg Loho and László Végh. It was accepted to the 24th International
Conference on Integer Programming and Combinatorial Optimization (IPCO 2023).

• Chapter 5 is based on [96] “Beyond Value Iteration for Parity Games: Strategy Iteration
with Universal Trees”, co-authored with Georg Loho. It has appeared in Proceedings of
the 47th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2022).

The copyright of this thesis rests with the author. Quotation from it is permitted, provided
that full acknowledgement is made. In accordance with the Regulations, I have deposited
an electronic copy of it in LSE Theses Online held by the British Library of Political and
Economic Science and have granted permission for my thesis to be made available for public
reference. Otherwise, this thesis may not be reproduced without my prior written consent. I
warrant that this authorisation does not, to the best of my belief, infringe the rights of any
third party.

Zhuan Khye Koh
London, January 2023

Acknowledgements

First and foremost, I would like to express my gratitude to my advisor László Végh, for his
constant support and guidance over the past four years. This PhD journey has not been
an easy one, and I was fortunate to have his wisdom and encouragement in navigating the
research landscape. I have learned a great deal from him, both as a mathematician and as a
human being. Thank you Laci – it has been a privilege to be your student.

During my studies, I had the great pleasure of interacting and collaborating with other
fellow researchers. I am grateful to my co-authors Daniel Dadush, Edin Husić, Georg Loho
and Bento Natura on the joint work included in this thesis. I am also thankful to Neil Olver
and Sorrachai Yingchareonthawornchai for the insightful discussions that we have had, and
the knowledge you have shared with me.

I would like to thank Tugkan Batu, Alina Ene and Nathanaël Fijalkow for agreeing to be
my examiners. Thank you for reading my thesis and expressing interest in my work.

I thank all members of the Department of Mathematics at LSE for creating a friendly
and supportive environment. Special mention goes to Enfale, Kate, Ed, Sarah and Sharon
for their help with various administrative matters throughout my time here.

The friends that I have made constitute an integral part of my life in London. I will
fondly remember our academic discussions, hangouts and trips, not to mention the climbing,
squash, gym and running sessions which provided a perfect counterbalance to the demands of
research. Thank you Edin, Xinyi, Christoph, Franzi, Bento, Amedeo, Raymond, Jan, Keat,
Stan, Domenico, Justin, Sahar, Khairul, Neeraj Special thanks to my lovely housemates
for preserving my sanity during the lockdowns. I would also like to give a shout out to my
Waterloo friends Jimmy, Alex, Sharat, Akshay, Daniel and Dean, for being there with me. I
will always cherish the memories and good times we share.

This thesis was written and completed in the warm and conducive home of Nicola’s. I
thank her for taking care of me while I was ill, and also for the nourishing meals and moral
support leading up to the final days.

I am forever grateful to my parents Lai Kheng and Lai Chun, and to my brother Zhuan
Hao, for their unconditional love and support throughout the years.

I gratefully acknowledge the financial support provided by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant

viii |

agreement no. ScaleOpt–757481). Part of the work in this thesis was carried out while I
participated in the Discrete Optimization Trimester Program at the Hausdorff Research
Institute for Mathematics in Bonn during the fall of 2021.

Abstract

In this thesis, we study four fundamental problems in the theory of optimization.

1. In fractional optimization, we are interested in minimizing a ratio of two functions
over some domain. A well-known technique for solving this problem is the New-
ton–Dinkelbach method. We propose an accelerated version of this classical method and
give a new analysis using the Bregman divergence. We show how it leads to improved
or simplified results in three application areas.

2. The diameter of a polyhedron is the maximum length of a shortest path between any
two vertices. The circuit diameter is a relaxation of this notion, whereby shortest paths
are not restricted to edges of the polyhedron. For a polyhedron in standard equality
form with constraint matrix A, we prove an upper bound on the circuit diameter that is
quadratic in the rank of A and logarithmic in the circuit imbalance measure of A. We
also give circuit augmentation algorithms for linear programming with similar iteration
complexity.

3. The correlation gap of a set function is the ratio between its multilinear and concave
extensions. We present improved lower bounds on the correlation gap of a matroid
rank function, parametrized by the rank and girth of the matroid. We also prove
that for a weighted matroid rank function, the worst correlation gap is achieved with
uniform weights. Such improved lower bounds have direct applications in submodular
maximization and mechanism design.

4. The last part of this thesis concerns parity games, a problem intimately related to
linear programming. A parity game is an infinite-duration game between two players
on a graph. The problem of deciding the winner lies in NP and co-NP, with no known
polynomial algorithm to date. Many of the fastest (quasi-polynomial) algorithms have
been unified via the concept of a universal tree. We propose a strategy iteration
framework which can be applied on any universal tree.

Table of Contents

List of Figures xv

1 Introduction 1
1.1 Three Optimization Models . 1

1.1.1 Linear Optimization . 1
1.1.2 Fractional Optimization . 2
1.1.3 Submodular Optimization . 2

1.2 Strongly vs Weakly Polynomial . 3
1.3 Overview of our Results . 4

1.3.1 Fractional Optimization: An Accelerated Newton–Dinkelbach Method 4
1.3.2 Linear Optimization: Circuit Diameter Bounds 5
1.3.3 Submodular Optimization: Correlation Gap Bounds for Matroids . . . 6
1.3.4 Parity Games: Strategy Iteration with Universal Trees 8

1.4 Linear Programming and Parity Games . 10

2 Fractional Optimization: An Accelerated Newton–Dinkelbach Method 13
2.1 Introduction . 13

2.1.1 Our Contributions . 14
2.1.2 Two Variables per Inequality Systems 15

2.2 Preliminaries . 19
2.3 An Accelerated Newton–Dinkelbach Method 19

2.3.1 Linear Fractional Combinatorial Optimization 24
2.3.2 Linear Fractional Programming . 25

2.4 Monotone Two Variables per Inequality Systems 27
2.4.1 A Linear Fractional Programming Formulation 28
2.4.2 A Strongly Polynomial Label-Correcting Algorithm 32
2.4.3 Deterministic Markov Decision Processes 37

2.5 Parametric Submodular Function Minimization 39
2.5.1 Implementing the Accelerated Newton–Dinkelbach 40
2.5.2 Proof of the 2n2 + 2n+ 4 Iteration Bound 41

xii | Table of Contents

2.6 2VPI Analysis without Acceleration . 43

3 Linear Optimization: Circuit Diameter Bounds 49
3.1 Introduction . 49

3.1.1 Our Contributions . 51
3.2 Preliminaries . 54

3.2.1 Circuit Oracles . 55
3.2.2 Proximity Results . 57
3.2.3 Estimating Circuit Imbalances . 59

3.3 The Circuit Diameter Bound . 59
3.4 Circuit Diameter Bound for the Capacitated Case 62
3.5 A Circuit Augmentation Algorithm for Feasibility 63
3.6 A Circuit Augmentation Algorithm for Optimization 66
3.7 Circuits in General Form . 73

4 Submodular Optimization: Correlation Gap Bounds for Matroids 77
4.1 Introduction . 77

4.1.1 Monotone Submodular Maximization 79
4.1.2 Sequential Posted Price Mechanisms 82
4.1.3 Contention Resolution Schemes . 83
4.1.4 Our Techniques . 84
4.1.5 Further Related Work . 86

4.2 Preliminaries . 87
4.2.1 Properties of Multilinear Extension . 90

4.3 Correlation Gap Bounds for Submodular Maximization 90
4.3.1 Maximizing Sum of M ♮-Concave Functions 90
4.3.2 Concave Multicoverage Problems . 91

4.4 Locating the Correlation Gap . 93
4.5 Upper Bounds on the Correlation Gap . 97
4.6 The Correlation Gap Bound for Matroids . 98

4.6.1 Lower Bounding G(x∗) . 99
4.6.2 Lower Bounding H(x∗) . 99
4.6.3 Putting Everything Together . 109
4.6.4 Monotonicity . 111

5 Parity Games: Strategy Iteration with Universal Trees 115
5.1 Introduction . 115

5.1.1 Computing the Least Fixed Point of 1-Player Games 117
5.2 Preliminaries . 119

5.2.1 Ordered Trees and Universal Trees . 120

Table of Contents | xiii

5.2.2 Node Labelings from Universal Trees 121
5.2.3 Fixed Points in Lattices . 122

5.3 Strategy Iteration with Tree Labels . 123
5.3.1 The Least Fixed Point of 1-Player Games 125

5.4 Label-Correcting Method for Computing the Least Fixed Point 126
5.4.1 Width from a Chain of Subtrees in T 129
5.4.2 Estimating the Width of Base Nodes 131
5.4.3 The Label-Correcting Algorithm . 135
5.4.4 Application to Succinct Universal Trees 137
5.4.5 Application to Succinct Strahler Universal Trees 140

5.5 Label-Setting Method for Computing the Least Fixed Point 143
5.5.1 Application to Perfect Universal Trees 146

6 Conclusions and Future Work 149

References 153

Appendix A Further 2VPI Explanations 163
A.1 Reducing 2VPI to M2VPI . 163
A.2 Non-Existence of Shortest Paths . 163
A.3 From ymax to a Finite Feasible Solution . 164

Appendix B Identities for Alternating Sums of Binomial Coefficients 167

List of Figures

2.1 Two examples of f with no root. In the left picture, f(δ) = −∞ for all δ < δ∗. 19
2.2 An example run of the Newton–Dinkelbach method when f has a root. 20
2.3 The Bregman divergence Df (δ∗, δ(i)) of an example function f 21
2.4 An example run of Algorithm 1 where look-ahead failed in iteration i. 22

4.1 Our correlation gap bound as a function of the rank ρ, and as a function of
the girth γ separately. 79

5.1 A worst-case construction for the progress measure algorithm. Nodes in V0

and V1 are drawn as squares and circles, respectively. 116
5.2 The perfect (3,2)-universal tree. 121
5.3 The succinct (3,2)-universal tree. 121
5.4 The top and bottom rows illustrate an example run of Algorithm 9 with the

perfect (3,2)-universal tree and the succinct (3,2)-universal tree respectively.
In each row, the left figure depicts the game instance (nodes in V0 and V1 are
drawn as squares and circles respectively). The next two figures show Odd’s
strategy and the node labeling at the start of Iteration 1 and 2. The arcs not
selected by Odd are greyed out. In the right figure, e1 is loose, e2 is tight, and
e3 is violated. 124

5.5 An ordered tree T of height 3, and a cover Cj of Tj for all 0 < j < 3. Recall
that Tj is the set of distinct subtrees of T rooted at depth 3− j, while Ckj is
the kth chain in Cj . 129

5.6 An example of a 1-player game (Gτ , π) for Even is given on the left, with its
auxiliary digraph D on the right. Nodes in V0 and V1 are drawn as squares
and circles respectively. Base nodes are labeled as w1, w2, w3, w4. The light
gray region is Kw4 , while the dark gray region is Jw4 132

5.7 The succinct (7, 2)-universal tree . 139

A.1 A shortest path from u with respect to node labels y may not exist. 163

Chapter 1

Introduction

Optimization is the selection of a best element from a set of solutions based on some criterion.
Due to its extremely broad scope, it arises frequently in many areas such as engineering,
operations research, economics and computer science. Mathematically, given a domain D
and a function f : D → R, an optimization problem can be expressed as

inf
x∈D

f(x). (1.1)

In this thesis, we study the algorithmic and geometric aspects of solving optimization
problems. The results in Chapters 2 – 5 focus on three classical optimization models, as
detailed next.

1.1 Three Optimization Models

1.1.1 Linear Optimization

If D is a polyhedron and f is a linear function, then (1.1) is called a linear program (LP). For
a matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn, an LP in standard equality form is given by

min{c⊤x : Ax = b, x ≥ 0}.

Linear programming is widely used in theory and practice due to its expressibility and
tractibility. Many practical problems in operations research can be formulated as LPs.
Furthermore, LPs are often used as subproblems in algorithms for NP-hard problems.

LPs can be solved in polynomial time using the ellipsoid method [15] or interior point
methods [158]. Another method for solving LPs is the simplex method, which is commonly
used in practice due to its good empirical performance. It is parametrized by a pivot rule,
which sets out criteria for selecting the entering or leaving variable in every iteration. However,

2 | Introduction

many pivot rules have been shown to be exponential in the worst case. It is a major open
problem whether there exists a polynomial pivot rule for the simplex method.

The diameter of a polyhedron is the diameter of its associated vertex-edge graph, i.e. the
maximum length of a shortest path between any two vertices. In order to have a polynomial
pivot rule for the simplex method, a necessary condition is that the diameter of a polyhedron
is polynomially bounded in the number of facets. This is known as the polynomial Hirsch
conjecture, a central question in polyhedral combinatorics. The original Hirsch conjecture,
which stipulated that the diameter of a d-dimensional polytope (bounded polyhedron) with
f facets is at most f − d, was famously disproven by Santos [129]. The current best upper
bound on the diameter is quasi-polynomial [140], first given by Kalai and Kleitman [92].

1.1.2 Fractional Optimization

If f is a ratio of two functions, then (1.1) is called a fractional program. The numerator and
denominator are usually interpreted as the cost and weight of a solution respectively. Hence,
a fractional program is useful when one is interested in a solution with the best efficiency,
i.e. a solution with minimum cost-to-weight ratio. An important special case of fractional
programming is when both of these functions are linear:

inf
x∈D

c⊤x

d⊤x
. (1.2)

It is usually assumed that d⊤x > 0 for all x ∈ D. The domain D could be either a convex
set or a discrete set D ⊆ {0, 1}m. In the latter, (1.2) is called linear fractional combinatorial
optimization. Classical examples include finding a a minimum cost-to-time ratio cycle and a
maximum mean-weight cut in a graph.

One can equivalently reformulate (1.2) as a parametric optimization problem

sup
{
δ : inf

x∈D
(c− δd)⊤x ≥ 0

}
.

Assuming that (1.2) has a finite optimum, it corresponds to the unique root of the function
g(δ) := infx∈D(c− δd)⊤x, which is concave and decreasing. This perspective is suggestive of
solving (1.2) using a standard root-finding algorithm like Newton’s method. In this context,
Newton’s method is also known as Dinkelbach’s method [48].

1.1.3 Submodular Optimization

If D = {0, 1}n and f is a submodular function, then (1.1) is called submodular function
minimization (SFM). For a ground set [n] := {1, 2, . . . , n}, a set function f : 2[n] → R
is submodular if f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) for all S, T ⊆ [n]. Submodular
functions can be equivalently characterized by the diminishing marginal returns property, i.e.

1.2 Strongly vs Weakly Polynomial | 3

f(S + i)− f(S) ≥ f(T + i)− f(T) for all S ⊆ T ⊆ [n] and i ∈ [n] \ T . This natural property
makes them suitable for many applications, especially in economics and game theory where
they are used to model agents’ preferences. Examples of submodular functions include graph
cuts, matroid rank functions and coverage functions.

SFM can be solved in polynomial time in the value oracle model [74]. However, maximizing
a submodular function is NP-hard because it captures the maximum cut problem. If the
submodular function f is monotone, i.e. f(S) ≤ f(T) for all S ⊆ T ⊆ [n], then maximizing f
subject to a cardinality constraint, i.e. D = {x ∈ {0, 1}n : 1⊤x ≤ k}, remains NP-hard as it
captures the maximum coverage problem. In fact, it cannot be approximated within a factor
better than 1− 1/e if we are only allowed polynomially many queries to the value oracle of f
[113]. On the positive side, the greedy algorithm gives a matching (1− 1/e)-approximation
[65].

A natural generalization of this problem is to maximize a monotone submodular function
f subject to a matroid constraint, i.e.,

max
S∈J

f(S) (1.3)

where J is the family of independent sets of a matroid on ground set [n]. Note that the
cardinality version is a special case of (1.3), as it can be captured with a uniform matroid.
Interestingly, (1.3) also admits a (1− 1/e)-approximation, achieved by the continuous greedy
algorithm [25].

1.2 Strongly vs Weakly Polynomial

In this thesis, we differentiate between strongly polynomial and weakly polynomial algorithms.
Consider a problem whose input is given by N rational numbers in binary encoding. An
algorithm for this problem is strongly polynomial, if

(i) It only uses comparisons and elementary arithmetic operations (+,−,×, /);

(ii) The total number of such operations is bounded by poly(N);

(iii) The algorithm runs in polynomial space, that is, the size of the numbers occurring
throughout the algorithm remains polynomial in the size of the input.

For a rational number p/q with p, q ∈ Z, its size is ⌈log2(|p|+1)⌉+⌈log2(|q|+1)⌉, the number
of bits used in its binary encoding. The size of a vector of rational numbers is the sum of the
sizes of its components.

The notion of strongly polynomial is inherently related to the real model of computation.
In this model, the input is given by real numbers, which can be stored at unit cost per
number. There is also an oracle which carries out comparisons and elementary arithmetic

4 | Introduction

operations (with infinite precision) at unit cost per operation. An algorithm is polynomial in
this model if it satisfies (i) and (ii). Thus, an algorithm is strongly polynomial if and only if it
is polynomial in the Turing model and in the real model. An algorithm which is polynomial
(in the Turing model) but not strongly polynomial is said to be weakly polynomial.

In linear programming, the ellipsoid method and interior point methods are weakly
polynomial. In other words, their running times depend on the magnitude of the numbers
given in the input. On the other hand, submodular function minimization is solvable in
strongly polynomial time [83, 84, 99, 42, 85]. It is a major open problem whether there exists
a strongly polynomial algorithm for LP. This is listed by Fields medalist Stephen Smale
as one of the most important mathematical challenges for the 21st century [137]. Special
classes of LPs which are known to admit strongly polynomial algorithms include feasibility
of two variables per inequality systems [106], minimum-cost flow [144], maximum generalized
flow [150, 119], and discounted Markov decision processes [160, 161]. Furthermore, LPs
whose constraint matrices have bounded ‘condition numbers’ can also be solved in strongly
polynomial time [142, 40].

1.3 Overview of our Results

In this thesis, we contribute to the aforementioned three subareas of optimization (linear,
fractional, submodular), and to the notorious problem of solving parity games.

1.3.1 Fractional Optimization: An Accelerated Newton–Dinkelbach Method

In Chapter 2, we present an accelerated, or ‘look-ahead’ version of the Newton–Dinkelbach
method. Given a univariate concave function g : R→ R ∪ {−∞}, our goal is to compute the
largest root δ∗. For simplicity, let us assume that g is differentiable and has at least one root.
The standard Newton–Dinkelbach method proceeds through iterates δ(1) > δ(2) > · · · > δ(t)

such that g(δ(i)) ≤ 0, and updates δ(i+1) = δ(i)−g(δ(i))/g′(δ(i)). Our new variant uses a more
aggressive ‘look-ahead’ technique. At each iteration, we compute δ = δ(i) − g(δ(i))/g′(δ(i)),
and jump ahead to δ′ = 2δ − δ(i). In case g(δ′) ≤ 0 and g′(δ′) < 0, we update δ(i+1) = δ′.
Otherwise, we continue with the standard iterate δ.

This modification leads to an improved and at the same time simplified analysis based on
the Bregman divergence of g

Dg(δ∗, δ(i)) := g(δ(i)) + g′(δ(i))(δ∗ − δ(i))− g(δ∗).

In particular, we show that this decreases by a factor of two between two iterations. Using
the Bregman divergence as a potential in conjunction with combinatorial arguments, we
obtain strongly polynomial algorithms in three applications domains:

1.3 Overview of our Results | 5

(i) For linear fractional combinatorial optimization, we show a convergence bound of
O(m logm) iterations; the previous best bound was O(m2 logm) by Wang et al. [156].

(ii) We obtain a strongly polynomial label-correcting algorithm for solving the feasibility of
linear systems with two variables per inequality (2VPI). A 2VPI linear system is given
by Ax ≤ b, where the matrix A has at most two nonzero entries per row. For a 2VPI
system with n variables and m constraints, our algorithm runs in O(mn) iterations.
Every iteration takes O(mn) time for general 2VPI systems, and O(m+ n logn) time
for the special case of deterministic Markov Decision Processes (DMDPs). This extends
and strengthens a previous result by Madani [103] that showed a weakly polynomial
bound for a variant of the Newton–Dinkelbach method for solving DMDPs.

(iii) We give a simplified variant of the parametric submodular function minimization result
by Goemans et al. [71]. In this problem, we are given a nonnegative submodular
function g on a ground set [n], and a vector a ∈ Rn satisfying maxi∈[n] ai > 0. The goal
is to compute

max
{
δ : min

S⊆[n]
g(S)− δa(S) ≥ 0

}
,

where a(S) :=
∑
i∈S ai. This problem models the line-search problem inside a submod-

ular polyhedron [147, 112, 71]. Goemans et al. [71] showed an O(n2) bound on the
number of iterations taken by the Newton–Dinkelbach method. We prove that our
method also terminates in O(n2) iterations with a simpler analysis.

1.3.2 Linear Optimization: Circuit Diameter Bounds

Motivated by the polynomial Hirsch conjecture, in Chapter 3, we study the circuit diameter
of polyhedra, introduced by Borgwardt, Finhold, and Hemmecke [18] as a relaxation of the
(combinatorial) diameter. Consider a polyhedron in standard equality form

P = {x ∈ Rn : Ax = b, x ≥ 0},

where A ∈ Rm×n, rk(A) = m and b ∈ Rm. For the subspace ker(A), an elementary vector is a
support-minimal nonzero vector in ker(A). A circuit is the support of some elementary vector.
These are precisely the circuits of the linear matroid associated with A. All edge-directions
of P are elementary vectors, and the set of elementary vectors E(A) equals the set of all
possible edge-directions of P when varying b ∈ Rm.

A circuit walk is a sequence of points x(1), x(2), . . . , x(k+1) in P such that for each i ∈ [k],
x(i+1) = x(i) +g(i) for some elementary vector g(i) ∈ ker(A), and further, x(i) +(1+ε)g(i) /∈ P
for all ε > 0, i.e., each consecutive circuit step is maximal. The circuit diameter of P is
the maximum length (number of steps) of a shortest circuit walk between any two vertices
of P . The circuit analogue of Hirsch conjecture [18], asserts that the circuit diameter of a

6 | Introduction

d-dimensional polyhedron with f facets is at most f − d. This is still open, and may even be
true for unbounded polyhedra [19]. For P in standard equality form, we have d = n−m and
f ≤ n. Hence, the conjectured bound is m.

We prove that the circuit diameter of P is bounded by O(mmin{m,n−m} log(m+ κA)),
where

κA := max
g∈E(A)

{
|gi|
|gj |

: i, j ∈ supp(g)
}

is the circuit imbalance measure of the constraint matrix. This yields a strongly polynomial
circuit diameter bound if e.g., all entries of A have polynomially bounded encoding length in
n. We also consider polyhedra in capacitated form

Pu = {x ∈ Rn : Ax = b,0 ≤ x ≤ u}

and show a circuit diameter bound of O(mmin{m,n−m} log(m+ κA) + n logn).
The proof is via a simple ‘shoot towards the optimum’ scheme. It exploits the well-known

property that every vector x in a subspace W ⊆ Rn admits a conformal circuit decomposition.
Namely, x can be decomposed into at most n elementary vectors

∑k
i=1 h

(i) such that h(i)
j xj ≥ 0

and |h(i)
j | ≤ |xj | for all i ∈ [k] and j ∈ [n]. The scheme is described as follows. Given a target

vertex y ∈ P with corresponding basis B ⊆ [n], i.e., AByB = b and y[n]\B = 0, let x ∈ P
our current point. Consider a conformal circuit decomposition

∑k
i=1 h

(i) of y − x ∈ ker(A).
Then, we pick an elementary vector in arg maxi∈[k] ∥h

(i)
[n]\B∥1, and take a maximal step in

that direction. This procedure is repeated until x = y.
The above scheme is not algorithmic, as it requires knowing the target vertex y. To

this end, we complement our circuit diameter bounds with circuit augmentation algorithms.
These are algorithms that converge to an optimal solution via a circuit walk. Many network
optimization algorithms can be seen as special circuit augmentation algorithms, such as
the Edmonds–Karp–Dinic [55] algorithm for maximum flow, and various cycle cancelling
algorithms [72, 154] for minimum cost flow. Our algorithm is based on the minimum-ratio
circuit canceling rule. Even though the standard minimum-ratio circuit cancelling algorithm
is not finite in general [104], our variant can solve an LP in O(mn2 log(n+κA)) augmentation
steps. This is achieved by occasionally canceling circuits in the support of our current point.

1.3.3 Submodular Optimization: Correlation Gap Bounds for Matroids

An important special case of (1.3) is when f is given as a sum of weighted matroid rank
functions

f =
m∑
i=1

fi. (1.4)

1.3 Overview of our Results | 7

This model was considered by Calinescu et al. [26], who gave a (1 − 1/e)-approximation
algorithm. The crucial quantity which governs the approximation ratio of this algorithm is
the correlation gap of each weighted matroid rank function fi.

For a set function g : {0, 1}n → R, its correlation gap is the smallest ratio between two
natural extensions of g to the unit cube [0, 1]n

min
x∈[0,1]n

G(x)
ĝ(x) .

The function G : [0, 1]n → R is called the multilinear extension of g. For x ∈ [0, 1]n, G(x) is
equal to the expected value of g when each element i ∈ [n] is sampled independently with
probability xi

G(x) :=
∑
S⊆[n]

g(S)
∏
i∈S

xi
∏
i/∈S

(1− xi).

In other words, G(x) is the expectation under a product distribution. On the other hand, the
function ĝ : [0, 1]n → R is called the concave extension of g. For x ∈ [0, 1]n, ĝ(x) corresponds
to the probability distribution with marginals x which maximizes expectation, i.e.,

ĝ(x) := max

 ∑
S⊆[n]

λSg(S) :
∑

S⊆[n]:i∈S
λS = xi ∀i ∈ [n],

∑
S⊆[n]

λS = 1, λ ≥ 0

 .
Note that for every set S ⊆ [n], we have g(S) = G(χS) = ĝ(χS), where χS denotes the 0-1
indicator vector of S.

Calinescu et al. [26] proved that the correlation gap of a monotone submodular function
is at least 1− 1/e, and this is tight for the rank function of a uniform rank-1 matroid. Yan
[159] and Barman et al. [9] proved that the correlation gap of the rank function of a uniform
rank-ℓ matroid is 1− e−ℓℓℓ/ℓ! ≥ 1− 1/e. This bound yields a (1− e−ℓℓℓ/ℓ!)-approximation
algorithm for (1.3) in the form (1.4), if each fi is the rank function of a uniform rank-ℓ
matroid [9]. Furthermore, such an improved bound has direct applications in mechanism
design [159] and contention resolution schemes [30].

Motivated by these results, and the significance of correlation gap in algorithmic appli-
cations, we initiate a fine-grained study of the correlation gap of matroid rank functions in
Chapter 4. In particular, we are interested in identifying parameters of a matroid which affect
its correlation gap. A natural candidate is the rank of the matroid. However, as pointed out
by Yan [159], there exist matroids with arbitrarily high rank whose correlation gap is still
1− 1/e, e.g., a partition matroid with rank-1 parts. Another potential candidate is the girth
of the matroid – the minimum size of a dependent set. However, we show that for any γ ∈ N,
there exist matroids with girth γ whose correlation gap is arbitrarily close to 1− 1/e.

Our first result is an improved lower bound on the correlation gap, as parametrized by
the rank and the girth of the matroid. Our bound is an increasing function of the girth when

8 | Introduction

the rank is fixed, and a decreasing function of the rank when the girth is fixed. We also
provide a complementing albeit non-tight upper bound which behaves similarly with respect
to these two parameters. Note that a matroid is uniform if and only if the rank is one less
than the girth. In this case, our bound coincides with 1− eℓℓℓ/ℓ! [159, 9].

We briefly describe the overall proof strategy. Let r be the rank function of a matroid
with girth γ. The analysis starts by locating a point on which the correlation gap is realized,
i.e., x∗ ∈ arg minx∈[0,1]n R(x)/r̂(x). We show that such a point can always be found in
the independent set polytope of the matroid. This is useful because the concave extension
evaluates to r̂(x) = 1⊤x inside this polytope, in particular, r̂(x∗) = 1⊤x∗.

To analyze the multilinear extension R(x∗), we decompose the rank function into r = g+h,
where g is the rank function of a uniform matroid of rank-(γ − 1). The residual function h

is nonnegative and monotone, but no longer submodular. Since R(x∗) = G(x∗) +H(x∗) by
linearity of expectation, we can lower bound G(x∗) and H(x∗) separately. The former can be
done by simply mimicking the analysis of Yan [159] or Barman et al. [9] for uniform matroids.
In contrast, the latter is based on a non-trivial extension of the probabilistic analysis by
Calinescu et al. [26].

As our second result, we show that for any matroid, the smallest correlation gap of its
weighted rank function is achieved under uniform weights. Consequently, our correlation gap
bound for matroid rank functions applies to weighted matroid rank functions as well. The
proof crucially relies on the greedy maximization property of matroids.

1.3.4 Parity Games: Strategy Iteration with Universal Trees

A parity game is an infinite-duration game played between two players, Even and Odd, on
a sinkless directed graph G = (V,E). Let n = |V | and m = |E|. The graph G is equipped
with a priority function π : V → [d] for some integer d ≤ n. The node set V is partitioned
into V0 and V1, such that Even owns V0 and Odd owns V1. The game starts when a token is
placed on a node v ∈ V . In every turn, the owner of the current node gets to move the token
along an outgoing arc to the next node. Since the duration of the game is infinite and G is
sinkless, a play gives rise to an infinite walk P = v1v2v3 · · · in G, where vi ∈ V for all i ∈ N.
Let π(P) denote the maximum priority in P that occurs infinitely often, i.e.

π(P) := lim
k→∞

(
max
i≥k

π(vi)
)
.

Player Even’s objective is to make π(P) even, while Player Odd’s objective is to make π(P)
odd.

Parity games are determined [59]. That is, for every instance and every starting node
v ∈ V , either Even has a strategy which guarantees that π(P) is even, or Odd has a strategy
which guarantees that π(P) is odd. We say that Even wins in the former, and Odd wins in

1.3 Overview of our Results | 9

the latter. Furthermore, they can guarantee this outcome using positional strategies, which
are strategies that only depend on the current position of the token. A positional strategy for
Even (resp. Odd) is a choice of an outgoing arc from every node owned by Even (resp. Odd).
The main algorithmic problem is to decide the winner given a starting node. It lies in NP ∩
co-NP [60], with no known polynomial algorithm to date.

Besides having an intriguing complexity status, parity games play a fundamental role
in logic and automata theory [60, 97]. For example, the problem of solving parity games is
equivalent to the model-checking problem for modal µ-calculus [60, 21]. For these reasons,
it has been a subject of intense study over the past three decades. The current fastest
algorithms run in quasi-polynomial time, first given in the breakthrough result of Calude et
al. [27].

Since [27], parity games have witnessed several new quasi-polynomial algorithms [61,
88, 100, 122, 11]. Although they appear distinct at first sight, the central combinatorial
object underlying these approaches is a universal tree, as identified by Czerwiński et al. [35].
Roughly speaking, a universal tree is an ordered tree into which every ordered tree of a
certain size can be embedded. It is known that universal trees of quasi-polynomial size exist
[88, 43]. On the negative side, Czerwiński et al. [35] proved a quasi-polynomial lower bound
on the size of a universal tree. This lower bound highlights a barrier that must be overcome
by all existing approaches to attain polynomial running time, because there are worst case
instances which force these algorithms to explore a large portion of the tree.

As an attempt to overcome this barrier, in Chapter 5, we propose a strategy iteration
framework which can be applied on any universal tree. Strategy iteration is a well-known
method for solving games on graphs. It proceeds via a sequence of positional strategies
for one of the players, until the best strategy is reached. Like the simplex method, it is
also parameterized by a pivot rule, which determines how the strategy is modified in every
iteration.

Strategy iteration algorithms for parity games have been developed in the past [124,
152, 13, 130]. They usually perform well in practice, but tedious constructions of their
(sub)exponential complexity is known [67]. Our framework yields the first quasi-polynomial
strategy iteration algorithm when applied on known constructions of quasi-polynomial
universal trees [88, 43]. It is at least as fast as its value iteration counterparts, while allowing
one to take bigger leaps in the universal tree. Identifying a pivot rule that may provide
strictly improved (and possibly even polynomial) running time is left for future research.

Our main technical contribution is an efficient method for computing the least fixed point
of 1-player games. This is achieved via a careful adaptation of shortest path algorithms to
the setting of ordered trees. By plugging in the universal tree of Jurdziński–Lazić [88], or the
Strahler universal tree of Daviaud et al. [43], we obtain instantiations of the general framework
that take time O(mn2 logn log d) and O(mn2 log3 n log d) respectively per iteration.

10 | Introduction

1.4 Linear Programming and Parity Games

In this section, we illustrate the connection between linear programming and parity games.
Following Schewe [131], we give a reduction from parity games to LP, which is polynomial in
the real model but not polynomial in the Turing model. We remark that this section is not
required to understand the results in the thesis, and can be skipped if the reader wishes to.

The reduction goes through another infinite-duration two-player game on graphs, called
mean-payoff games (MPG). A mean-payoff game is played between two players, Min and
Max, on a sinkless directed graph G = (V,E) with arc weights w : E → Z. The node set V
is partitioned into Vmin and Vmax, such that Min owns Vmin and Max owns Vmax. The game
starts when a token is placed on a node v ∈ V . In every turn, the owner of the current node
gets to move the token along an outgoing arc to the next node. Since the duration of the
game is infinite and G is sinkless, a play gives rise to an infinite walk P = e1e2e3 · · · where
ei ∈ E for all i ∈ N. Player Min’s objective is to minimize the payoff

valmin(P) := lim sup
k→∞

k∑
i=1

w(ei)
k

,

while Player Max’s objective is to maximize the payoff

valmax(P) := lim inf
k→∞

k∑
i=1

w(ei)
k

.

A fundamental result [56] of mean payoff games states that for every instance and every
starting node v ∈ V , there exists a unique number val(v) ∈ Q such that Min has a strategy
which guarantees that valmin(P) ≤ val(v), and Max has a strategy which guarantees that
valmax(P) ≥ val(v). Moreover, they can guarantee this outcome using positional strategies.
For a starting node v ∈ V , we say that Max wins the game if val(v) ≥ 0, and Min wins the
game if val(v) < 0. The main algorithmic problem is to compute the nodes from which Max
wins, or equivalently, to decide the winner given a starting node. Like parity games, it also
lies in NP ∩ co-NP [94], with no known polynomial algorithm to date.

The problem of determining the winning nodes of Max can be formulated as the following
system of inequalities in (R ∪ {−∞})n:

yu ≤ w(uv) + yv ∀uv ∈ E, u ∈ Vmin

yu ≤ max{w(uv) + yv : uv ∈ δ+(u)} ∀u ∈ Vmax,
(1.5)

where δ+(u) denotes the set of outgoing arcs at node u. This system has a trivial feasible
solution given by yv = −∞ for all v ∈ V . More interestingly, if y is a feasible solution with
maximal finite support, then yv >∞ if and only if Max wins from v. Observe that if y is
feasible, then y + α1 is also feasible for any α ∈ R. Consequently, if (1.5) has a feasible

1.4 Linear Programming and Parity Games | 11

solution with at least one finite component, then it is unbounded. The system is actually a
system of linear inequalities in the tropical (max-plus) semiring (R ∪ {−∞},⊕,⊙), with the
operations a⊕ b = max{a, b} and a⊙ b = a+ b. In fact, tropical polyhedra and mean-payoff
games are equivalent [5].

Reducing Parity Game to MPG A parity game can be reduced to a mean-payoff game
as follows [124]. For each node v ∈ V , assign weight (−n)π(v) to every outgoing arc e ∈ δ+(v).
Then, player Even takes the role of Max, while player Odd takes the role of Min. Note that
this reduction is polynomial both in the Turing model and the real model.

Reducing MPG to LP For a sufficiently large t > 1, the system (1.5) can be approximated
by the following LP

xu ≤ tw(uv) · xv ∀uv ∈ E, u ∈ Vmin

xu ≤
∑

uv∈δ+(u)
tw(uv) · xv ∀u ∈ Vmax

0 ≤ x ≤ 1,

(1.6)

using the variable transformation xv = tyv for all v ∈ V . Observe that the first set of
inequalities in (1.5) and (1.6) are equivalent; the inaccuracy of this transformation stems
from the second set of inequalities. This LP is feasible because 0 is a feasible solution. It was
shown in [131] that if t > max{|δ+(u)|n : u ∈ Vmax}, then solving (1.6) with the objective
function max 1⊤x allows us to decide the winner of an MPG. In particular, if x∗ is an optimal
solution, then x∗v > 0 if and only if Max wins from v.

Due to the magnitude of the numbers in (1.6), this reduction is not polynomial in the
Turing model. In the real model, recall that exponentiation is not considered an elementary
arithmetic operation. One could still exponentiate tw(uv) with ⌈log(|w(uv)|)⌉ multiplications
via repeated squaring, but this is not a polynomial quantity in the real model. Nevertheless,
for MPGs that arise from parity games, the arc weights are of the form (−n)p for p ≤ d ≤ n.
So, the reduction is polynomial in the real model for this class of MPGs.

Thus, if we have a strongly polynomial algorithm for LP, then the sequence of reductions
above yields a polynomial algorithm for parity games in the real model. It is also conceivable
that a polynomial algorithm (in the Turing model) for parity games can be inferred from the
application of the strongly polynomial LP algorithm to (1.6).

Chapter 2

Fractional Optimization: An
Accelerated Newton–Dinkelbach
Method

2.1 Introduction

Linear fractional optimization problems are well-studied in combinatorial optimization. Given
a closed domain D ⊆ Rm and c, d ∈ Rm such that d⊤x > 0 for all x ∈ D, the problem is

inf
x∈D

c⊤x

d⊤x
. (2.1)

The domain D could be either a convex set or a discrete set D ⊆ {0, 1}m. Classical examples
include finding a minimum cost-to-time ratio cycle and a maximum mean-weight cut in a
graph. One can equivalently formulate (2.1) as a parametric search problem. Let

f(δ) = inf
x∈D

(c− δd)⊤x , (2.2)

be a concave and decreasing function. Assuming (2.1) has a finite optimum δ, it corresponds
to the unique root f(δ) = 0.

A natural question is to investigate how the computational complexity of solving the
minimum ratio problem (2.1) may depend on the complexity of the corresponding linear
optimization problem min c⊤x s.t. x ∈ D. Using the reformulation (2.2), one can reduce
the fractional problem to the linear problem via binary search; however, the number of
iterations needed to find an exact solution may depend on the bit complexity of the input. A
particularly interesting question is: assuming there exists a strongly polynomial algorithm
for linear optimization over a domain D, can we find a strongly polynomial algorithm for
linear fractional optimization over the same domain?

14 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

A seminal paper by Megiddo [105] introduced the parametric search technique to solve
linear fractional combinatorial optimization problems. He showed that if the linear opti-
mization algorithm only uses p(m) comparisons and q(m) additions, then there exists an
O(p(m)(p(m) + q(m)) algorithm for the linear fractional optimization problem. This in
particular yielded the first strongly polynomial algorithm for the minimum cost-to-time
ratio cycle problem. On a very high level, parametric search works by simulating the linear
optimization algorithm for the parametric problem (2.2), with the parameter δ ∈ R being
indeterminate.

A natural alternative approach is to solve (2.2) using a standard root finding algorithm.
Radzik [126] showed that for a discrete domain D ⊆ {0, 1}m, the discrete Newton method—in
this context, also known as Dinkelbach’s method [48]—terminates in a strongly polynomial
number of iterations. In contrast to parametric search, there are no restrictions on the
possible operations in the linear optimization algorithm. In certain settings, such as the
maximum ratio cut problem, the discrete Newton method outperforms parametric search;
we refer to the comprehensive survey by Radzik [125] for details and comparison of the two
methods.

2.1.1 Our Contributions

We introduce a new, accelerated variant of Newton’s method for univariate functions. Let
f : R→ R∪ {−∞} be a concave function. Under some mild assumptions on f , our goal is to
either find the largest root, or show that no root exists. Let δ∗ denote the largest root, or
in case f < 0, let δ∗ denote the largest maximizer of f . For simplicity, we now describe the
method for differentiable functions. This will not hold in general: functions of the form (2.2)
will be piecewise linear if D is finite or polyhedral. The algorithm description in Section 2.3
uses a form with supergradients (that can be choosen arbitrarily between the left and right
derivatives).

The standard Newton method, also used by Radzik, proceeds through iterates δ(1) >

δ(2) > . . . > δ(t) such that f(δ(i)) ≤ 0, and updates δ(i+1) = δ(i) − f(δ(i))/f ′(δ(i)).
Our new variant uses a more aggressive ‘look-ahead’ technique. At each iteration, we

compute δ = δ(i) − f(δ(i))/f ′(δ(i)), and jump ahead to δ′ = 2δ − δ(i). In case f(δ′) ≤ 0 and
f ′(δ′) < 0, we update δ(i+1) = δ′; otherwise, we continue with the standard iterate δ.

This modification leads to an improved and at the same time simplified analysis based on
the Bregman divergence Df (δ∗, δ(i)) = f(δ(i)) + f ′(δ(i))(δ∗ − δ(i))− f(δ∗). We show that this
decreases by a factor of two between any two iterations.

A salient feature of the algorithm is that it handles both feasible and infeasible outcomes
in a unified framework. In the context of linear fractional optimization, this means that the
assumption d⊤x > 0 for all x ∈ D in (2.1) can be waived. Instead, d⊤x > 0 is now added as

2.1 Introduction | 15

a feasibility constraint to (2.1). This generalization is important when we use the algorithm
to solve two variables per inequality systems.

This general result leads to improvements and simplifications of a number of algorithms
using the discrete Newton method.

• For linear fractional combinatorial optimization, namely the setting (2.1) with D ⊆
{0, 1}m, we obtain an O(m logm) bound on the number of iterations, a factor m
improvement over the previous best bound O(m2 logm) by Wang et al. [156] from 2006.
We remark that Radzik’s first analysis [126] yielded a bound of O(m4 log2m) iterations,
improved to O(m2 log2m) in [125].

• Goemans et al. [71] used the discrete Newton method to obtain a strongly polynomial
algorithm for parametric submodular function minimization. We give a simple new
variant of this result with the same asymptotic running time, using the accelerated
algorithm.

• For two variable per inequality (2VPI) systems, we obtain a strongly polynomial label-
correcting algorithm. This will be discussed in more detail next.

2.1.2 Two Variables per Inequality Systems

A major open question in the theory of linear programming is whether there exists a strongly
polynomial algorithm for LP. The notion of a strongly polynomial algorithm was formally
introduced by Megiddo [106] in 1983 (using the term ‘genuinely polynomial’), where he gave
the first such algorithm for two variables per inequality (2VPI) systems. These are feasibility
LPs where every inequality contains at most two variables. More formally, let M2(n,m) be
the set of n×m matrices with at most two nonzero entries per column. A 2VPI system is of
the form A⊤y ≤ c for A ∈M2(n,m) and c ∈ Rm.

If we further require that every inequality has at most one positive and at most one
negative coefficient, it is called a monotone two variables per inequality (M2VPI) system. A
simple and efficient reduction is known from 2VPI systems with n variables and m inequalities
to M2VPI systems with 2n variables and ≤ 2m inequalities [54, 79] (sketch in Section A.1).

Connection between 2VPI and parametric optimization An M2VPI system has a
natural graphical interpretation: after normalization, we can assume every constraint is of
the form yu − γeyv ≤ ce. Such a constraint naturally maps to an arc e = (u, v) with gain
factor γe > 0 and cost ce. Based on Shostak’s work [136] that characterized feasibility in
terms of this graph, Aspvall and Shiloach [7] gave the first weakly polynomial algorithm for
M2VPI systems.

We say that a directed cycle C is flow absorbing if
∏
e∈C γe < 1 and flow generating if∏

e∈C γe > 1. Every flow absorbing cycle C implies an upper bound for every variable yu

16 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

incident to C; similarly, flow generating cycles imply lower bounds. The crux of Aspvall and
Shiloach’s algorithm is to find the tightest upper and lower bounds for each variable yu.

Finding these bounds corresponds to solving fractional optimization problems of the form
(2.1), where D ⊆ Rm describes ‘generalized flows’ around cycles. The paper [7] introduced
the Grapevine algorithm—a natural modification of the Bellman-Ford algorithm—to decide
whether the optimum ratio is smaller or larger than a fixed value δ. The optimum value can
be found using binary search on the parameter.

Megiddo’s strongly polynomial algorithm [106] replaced the binary search framework
in Aspvall and Shiloach’s algorithm by extending the parametric search technique in [105].
Subsequently, Cohen and Megiddo [32] devised faster strongly polynomial algorithms for
the problem. The current fastest deterministic strongly polynomial algorithm is given by
Hochbaum and Naor [80], an efficient Fourier–Motzkin elimination with running time of
O(mn2 logm). Recently, Karczmarz [93] gave a randomized trade-off algorithm which runs
in Õ(nmh+ (n/h)3) time and uses Õ(n2/h+m) space for any parameter h ∈ [1, n].

2VPI via Newton’s method Since Newton’s method proved to be an efficient and viable
alternative to parametric search, a natural question is to see whether it can solve the parametric
problems occuring in 2VPI systems. Radzik’s fractional combinatorial optimization results
[126, 125] are not directly applicable, since the domain D in this setting is a polyhedron and
not a discrete set.1 Madani [103] used a variant of the Newton–Dinkelbach method as a tool
to analyze the convergence of policy iteration on deterministic Markov Decision Processes
(DMDPs), a special class of M2VPI systems (discussed later in more detail). He obtained a
weakly polynomial convergence bound; it remained open whether such an algorithm could be
strongly polynomial.

Our 2VPI algorithm We introduce a new type of strongly polynomial 2VPI algorithm
by combining the accelerated Newton–Dinkelbach method with a ‘variable fixing’ analysis.
Variable fixing was first introduced in the seminal work of Tardos [144] on minimum-cost
flows, and has been a central idea of strongly polynomial algorithms, see in particular [73, 127]
for cycle cancelling minimum-cost flow algorithms, and [119, 150] for maximum generalized
flows, a dual to the 2VPI problem.

We show that for every iterate δ(i), there is a constraint that has been ‘actively used’
at δ(i) but will not be used ever again after a strongly polynomial number of iterations.
The analysis combines the decay in Bregman divergence shown in the general accelerated
Newton–Dinkelbach analysis with a combinatorial ‘subpath monotonicity’ property.

Our overall algorithm can be seen as an extension of Madani’s DMDP algorithm. In
particular, we adapt his ‘unfreezing’ idea: the variables yu are admitted to the system

1The problem could be alternatively formulated with D ⊆ {0, 1}m but with nonlinear functions instead of
c⊤x and d⊤x.

2.1 Introduction | 17

one-by-one, and the accelerated Newton–Dinkelbach method is used to find the best ‘cycle
bound’ attainable at the newly admitted yu in the graph induced by the current variable
set. This returns a feasible solution or reports infeasibility within O(m) iterations. As every
iteration takes O(mn) time, our overall algorithm terminates in O(m2n2) time. For the
special setting of deterministic MDPs, the runtime per iteration improves to O(m+ n logn),
giving a total runtime of O(mn(m+ n logn)).

Even though our running time bound is worse than the state-of-the-art 2VPI algorithm
[80], it is of a very different nature from all previous 2VPI algorithms. In fact, our algorithm
is a label correcting algorithm, naturally fitting to the family of algorithms used in other com-
binatorial optimization problems with constraint matrices from M2(n,m) such as maximum
flow, shortest paths, minimum-cost flow, and generalized flow problems. We next elaborate
on this connection.

Label-correcting algorithms An important special case of M2VPI systems corresponds
to the shortest paths problem: given a directed graph G = (V,E) with target node t ∈ V
and arc costs c ∈ RE , we associate constraints yu − yv ≤ ce for every arc e = (u, v) ∈ E and
yt = 0. If the system is feasible and bounded, the pointwise maximal solution corresponds
to the shortest path labels to t; an infeasible system contains a negative cost cycle. A
generic label-correcting algorithm maintains distance labels y that are upper bounds on
the shortest path distances to t. The labels are decreased according to violated constraints.
Namely, if yu − yv > ce, then decreasing yu to ce + yv gives a smaller valid distance label
at u. We terminate with the shortest path labels once all constraints are satisfied. The
Bellman–Ford algorithm for the shortest paths problem is a particular implementation of the
generic label-correcting algorithm; we refer the reader to [3, Chapter 5] for more details.

It is a natural question if label-correcting algorithms can be extended to general M2VPI
systems, where constraints are of the form yu − γeyv ≤ ce for a ‘gain/loss factor’ γe > 0
associated with each arc. A fundamental property of M2VPI systems is that, whenever
bounded, a unique pointwise maximal solution exists, i.e. a feasible solution y∗ such that
y ≤ y∗ for every feasible solution y. A label-correcting algorithm for such a setting can be
naturally defined as follows. Let us assume that the problem is bounded. The algorithm
should proceed via a decreasing sequence y(0) ≥ y(1) ≥ . . . ≥ y(t) of labels that are all valid
upper bounds on any feasible solution y to the system. The algorithm either terminates with
the unique pointwise maximal solution y(t) = y∗, or finds an infeasibility certificate.

The basic label-correcting operation is the ‘arc update’, decreasing yu to min{yu, ce+γeyv}
for some arc e = (u, v) ∈ E. Such updates suffice in the shortest path setting. However, in
the general setting arc operations only may not lead to finite termination. Consider a system
with only two variables, yu and yv, and two constraints, yu− yv ≤ 0, and yv− 1

2yu ≤ −1. The
alternating sequence of arc updates converges to (y∗u, y∗v) = (−2,−2), but does not finitely

18 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

terminate. In this example, we can ‘detect’ the cycle formed by the two arcs, that implies
the bound yu − 1

2yu ≤ −1.
Shostak’s [136] result demonstrates that arc updates, together with such ‘cycle updates’

should be sufficient for finite termination. Our M2VPI algorithm amounts to the first strongly
polynomial label-correcting algorithm for general M2VPI systems, using arc updates and
cycle updates.

Deterministic Markov decision processes A well-studied special case of M2VPI sys-
tems in which γ ≤ 1 is known as deterministic Markov decision process (DMDP). A policy
corresponds to selecting an outgoing arc from every node, and the objective is to find a
policy that minimizes the total discounted cost over an infinite time horizon. The pointwise
maximal solution of this system corresponds to the optimal values of a policy.

The standard policy iteration, value iteration, and simplex algorithms can be all interpreted
as variants of the label-correcting framework.2 Value iteration can be seen as a generalization
of the Bellman–Ford algorithm to the DMDP setting. As our previous example shows, value
iteration may not be finite. One could still consider as the termination criterion the point
where value iteration ‘reveals’ the optimal policy, i.e. updates are only performed using
constraints that are tight in the optimal solution. If each discount factor γe is at most γ′ for
some γ′ > 0, then it is well-known that value iteration converges at the rate 1/(1− γ′). This
is in fact true more generally, for nondeterministic MDPs [102]. However, if the discount
factors can be arbitrarily close to 1, then Feinberg and Huang [63] showed that value iteration
cannot reveal the optimal policy in strongly polynomial time even for DMDPs. Post and
Ye [123] proved that simplex with the most negative reduced cost pivoting rule is strongly
polynomial for DMDPs; this was later improved by Hansen et al. [77]. These papers heavily
rely on the assumption γ ≤ 1, and does not seem to extend to general M2VPI systems.

Madani’s previously mentioned work [103] used a variant of the Newton–Dinkelbach
method as a tool to analyze the convergence of policy iteration on deterministic MDPs, and
derived a weakly polynomial runtime bound.

Chapter organization We start by giving preliminaries and introducing notation in
Section 2.2. In Section 2.3, we present an accelerated Newton’s method for univariate concave
functions, and apply it to linear fractional combinatorial optimization and linear fractional
programming. Section 2.4 contains our main application of the method to the 2VPI problem.
Our results on parametric submodular function minimization are in Section 2.5. Additional
results are given in Section 2.6.

2The value sequence may violate monotonicity in certain cases of value iteration.

2.2 Preliminaries | 19

2.2 Preliminaries

Let R+ and R++ be the nonnegative and positive reals respectively, and denote R̄ := R∪{±∞}.
Given a proper concave function f : R → R̄, let dom(f) := {x : −∞ < f(x) <∞} be the
effective domain of f . For a point x0 ∈ dom(f), denote the set of supergradients of f at
x0 as ∂f(x0) := {g : f(x) ≤ f(x0) + g(x− x0) ∀x ∈ R}. If x0 is in the interior of dom(f),
then ∂f(x0) = [f ′−(x0), f ′+(x0)], where f ′−(x0) and f ′+(x0) are the left and right derivatives.
Throughout, we use log(x) = log2(x) to indicate base 2 logarithm. For x, y ∈ Rm, denote
x ◦ y ∈ Rm as the element-wise product of the two vectors.

2.3 An Accelerated Newton–Dinkelbach Method

Let f : R → R̄ be a proper concave function such that f(δ) ≤ 0 and ∂f(δ) ∩ R<0 ̸= ∅ for
some δ ∈ dom(f). Given a suitable starting point, as well as value and supergradient oracles
of f , the Newton–Dinkelbach method either computes the largest root of f or declares that
it does not have a root. In this chapter, we make the mild assumption that f has a root or
attains its maximum. Consequently, the point

δ∗ := max({δ : f(δ) = 0} ∪ arg max f(δ))

is well-defined. It is the largest root of f if f has a root. Otherwise, it is the largest maximizer
of f (see Figure 2.1 for examples). Therefore, the Newton–Dinkelbach method returns δ∗ if
f has a root, and certifies that f(δ∗) < 0 otherwise.

δ
δ∗

δ
δ∗

Fig. 2.1 Two examples of f with no root. In the left picture, f(δ) = −∞ for all δ < δ∗.

The algorithm takes as input an initial point δ(1) ∈ dom(f) and a supergradient g(1) ∈
∂f(δ(1)) such that f(δ(1)) ≤ 0 and g(1) < 0. At the start of every iteration i ≥ 1, it maintains
a point δ(i) ∈ dom(f) and a supergradient g(i) ∈ ∂f(δ(i)) where f(δ(i)) ≤ 0. If f(δ(i)) = 0,
then it returns δ(i) as the largest root of f . Otherwise, a new point δ := δ(i) − f(δ(i))/g(i)

is generated. Now, there are two scenarios in which the algorithm terminates and reports
that f does not have a root: (1) f(δ) = −∞; (2) f(δ) < 0 and g ≥ 0 where g ∈ ∂f(δ) is
the supergradient given by the oracle. If both scenarios do not apply, the next point and
supergradient is set to δ(i+1) := δ and g(i+1) := g respectively. Then, a new iteration begins
(see Figure 2.2 for an example).

20 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

δ

δ(i)δ(i+1)δ(i+2)δ∗

Fig. 2.2 An example run of the Newton–Dinkelbach method when f has a root.

According to this update rule, observe that g(i) < 0 except possibly in the final iteration
when f(δ(i)) = 0. This proves the correctness of the algorithm. Indeed, δ(i) = δ∗ if f(δ(i)) = 0.
On the other hand, if either of the aforementioned scenarios apply, then combining it with
f(δ(i)) < 0 and g(i) < 0 certifies that f(δ∗) < 0.

The following lemma shows that δ(i) is monotonically decreasing while f(δ(i)) is monoton-
ically increasing. Furthermore, g(i) is monotonically increasing except in the final iteration
where it may remain unchanged. The lemma also illustrates the useful property that |f(δ(i))|
or |g(i)| decreases geometrically. These are well-known facts and similar statements can be
found in e.g. Radzik [125, Lemmas 3.1 & 3.2].

Lemma 2.1. For every iteration i ≥ 2, we have δ∗ ≤ δ(i) < δ(i−1), f(δ∗) ≥ f(δ(i)) > f(δ(i−1))
and g(i) ≥ g(i−1), where the last inequality holds at equality if and only if g(i) = infg∈∂f(δ(i)) g,
g(i−1) = supg∈∂f(δ(i−1)) g and f(δ(i)) = 0. Moreover,

f(δ(i))
f(δ(i−1))

+ g(i)

g(i−1) ≤ 1 .

Proof. Since f(δ(i)) ≤ 0 and g(i) < 0, by concavity of f we have that f(δ) ≤ f(δ(i)) +
g(i)(δ − δ(i)) < f(δ(i)) ≤ 0, for all δ > δ(i). Given this, we must have δ∗ ≤ δ(i) since either
f(δ∗) = 0 ≥ f(δ(i)) or 0 > f(δ∗) = maxz∈R f(z) ≥ f(δ(i)). As δ(i) = δ(i−1)− f(δ(i−1))

g(i−1) < δ(i−1),
since f(δ(i−1)), g(i−1) < 0, we have f(δ(i−1)) < f(δ(i)). Furthermore, g(i) ≥ g(i−1) is immediate
from the concavity of f .

To understand when g(i) = g(i−1), we see by concavity that

g(i) ≥ inf
g∈∂f(δ(i))

g ≥ f(δ(i−1))− f(δ(i))
δ(i−1) − δ(i) ≥ sup

g∈∂f(δ(i−1))
g ≥ g(i−1).

To have equality throughout, we must therefore have that g(i) and g(i−1) are equal to the
respective infimum and supremum. We must also have f(δ(i)) = 0 since

f(δ(i−1))− f(δ(i))
δ(i−1) − δ(i) = f(δ(i−1))− f(δ(i))

f(δ(i−1))
g(i−1)

= g(i−1)
(

1− f(δ(i))
f(δ(i−1))

)

2.3 An Accelerated Newton–Dinkelbach Method | 21

To have equality throughout, we must therefore have that g(i) and g(i−1) are equal to the
respective infimum and supremum and that f(δ(i)) = 0.

Lastly, since f is concave

f(δ(i−1)) ≤ f(δ(i)) + g(i)(δ(i−1) − δ(i)) = f(δ(i)) + g(i) f(δ(i−1))
g(i−1) .

The moreover now follows by dividing both sides by f(δ(i−1)) < 0.

Our analysis of the Newton–Dinkelbach method utilizes the Bregman divergence associated
with f as a potential. Even though the original definition requires f to be differentiable and
strictly concave, it can be naturally extended to our setting in the following way.

Definition 2.2. Given a proper concave function f : R → R̄, the Bregman divergence
associated with f is defined as

Df (δ′, δ) :=

f(δ) + sup

g∈∂f(δ)
g(δ′ − δ)− f(δ′) if δ ̸= δ′,

0 otherwise.

for all δ, δ′ ∈ dom(f) such that ∂f(δ) ̸= ∅.

Since f is concave, the Bregman divergence is nonnegative. See Figure 2.3 for an example.
The next lemma shows that Df (δ∗, δ(i)) is monotonically decreasing except in the final
iteration where it may remain unchanged.

δ
δ(i)

δ∗

Df (δ∗, δ(i))

Fig. 2.3 The Bregman divergence Df (δ∗, δ(i)) of an example function f .

Lemma 2.3. For every iteration i ≥ 2, we have Df (δ∗, δ(i)) ≤ Df (δ∗, δ(i−1)) which holds at
equality if and only if g(i−1) = infg∈∂f(δ(i−1)) g and f(δ(i)) = 0.

22 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

Proof. By Lemma 2.1, we know that δ∗ ≤ δ(i) < δ(i−1) and 0 ≥ f(δ(i)) > f(δ(i−1)). Hence,

Df (δ∗, δ(i−1)) = f(δ(i−1)) + sup
g∈∂f(δ(i−1))

g(δ∗ − δ(i−1))− f(δ∗)

≥ f(δ(i−1)) + g(i−1)(δ(i) − δ(i−1)) + g(i−1)(δ∗ − δ(i))− f(δ∗)

≥ f(δ(i)) + g(i−1)(δ∗ − δ(i))− f(δ∗) (by concavity of f)

≥ f(δ(i)) + sup
g∈∂f(δ(i))

g(δ∗ − δ(i))− f(δ∗)

= Df (δ∗, δ(i)).

For the equality condition, note that the first inequality holds at equality if and only if
g(i−1) = infg∈∂f(δ(i−1)) g. The second inequality holds at equality if and only if f(δ(i)) = 0
because f(δ(i−1)) + g(i−1)(δ(i) − δ(i−1)) = 0 from the definition of δ(i). If f(δ(i)) = 0, then
δ(i) = δ∗, and hence the third inequality holds at equality as well.

To accelerate this classical method, we perform an aggressive guess δ′ := 2δ − δ(i) on the
next point at the end of every iteration i. Note that this is twice the usual Newton step,
i.e., δ′ = δ(i) + 2(δ − δ(i)) < δ. We call this procedure look-ahead, which is implemented on
Lines 7–10 of Algorithm 1. Let g′ ∈ ∂f(δ′) be the supergradient returned by the oracle. If
−∞ < f(δ′) < 0 and g′ < 0, then the next point and supergradient are set to δ(i+1) := δ′

and g(i+1) := g′ respectively as δ′ ≥ δ∗. In this case, we say that look-ahead is successful in
iteration i. Otherwise, we proceed as usual by taking δ(i+1) := δ and g(i+1) := g (see Figure
2.4 for an example). It is easy to verify that Lemmas 2.1 and 2.3 also hold for Algorithm 1.

δ
δ(i)δ(i+1)δ∗δ′

Fig. 2.4 An example run of Algorithm 1 where look-ahead failed in iteration i.

If look-ahead is successful, then we have made significant progress. Otherwise, by our
choice of δ′, we learn that we are not too far away from δ∗. The next lemma demonstrates
the advantage of using the look-ahead Newton–Dinkelbach method. It exploits the proximity
to δ∗ to produce a geometric decay in the Bregman divergence of δ(i) and δ∗.

Lemma 2.4. For every iteration i > 2 in Algorithm 1, we have Df (δ∗, δ(i)) < 1
2Df (δ∗, δ(i−2)).

Proof. Fix an iteration i > 2 of Algorithm 1. Let g(i)
+ = ming∈∂f(δ(i)) g denote the right

derivative of f at δ(i). From Lemma 2.1, we know that δ∗ ≤ δ(i) < δ(i−1) < δ(i−2), 0 ≥

2.3 An Accelerated Newton–Dinkelbach Method | 23

Algorithm 1: Look-aheadNewton
input : Value and supergradient oracles for a proper concave function f , an initial

point δ(1) ∈ dom(f) and supergradient g(1) ∈ ∂f(δ(1)) where f(δ(1)) ≤ 0
and g(1) < 0.

output : The largest root of f if it exists; report NO ROOT otherwise.
1 i← 1
2 while f(δ(i)) < 0 do
3 δ ← δ(i) − f(δ(i))/g(i)

4 g ∈ ∂f(δ) ◃ Empty if f(δ) = −∞
5 if f(δ) = −∞ or (f(δ) < 0 and g ≥ 0) then
6 return NO ROOT

7 δ′ ← 2δ − δ(i) ◃ Look-ahead guess
8 g′ ∈ ∂f(δ′) ◃ Empty if f(δ′) = −∞
9 if −∞ < f(δ′) < 0 and g′ < 0 then ◃ Is the guess successful?

10 δ ← δ′, g ← g′

11 δ(i+1) ← δ, g(i+1) ← g
12 i← i+ 1
13 return δ(i)

f(δ∗) ≥ f(δ(i)) > f(δ(i−1)) > f(δ(i−2)) and 0 > g
(i)
+ ≥ g(i−1) > g(i−2). Since δ∗ ≤ δ(i), we see

that Df (δ∗, δ(i)) = f(δ(i)) + g
(i)
+ (δ∗ − δ(i))− f(δ∗).

Assume first that the look-ahead step in iteration i − 1 was successful. We now claim
that 0 < −2g(i)

+ ≤ −g(i−1). To see this, we have that

f(δ(i−1)) ≤ f(δ(i)) + g
(i)
+ (δ(i−1) − δ(i)) (by concavity of f)

≤ g(i)
+ (δ(i−1) − δ(i)) (since f(δ(i)) ≤ 0)

= 2g(i)
+
f(δ(i−1))
g(i−1) . (by definition of the accelerated step)

The desired inequality follows by multiplying through by − g(i−1)

f(δ(i−1)) < 0.
Using the above inequality, we compare Bregman divergences as follows:

Df (δ∗, δ(i−1)) ≥ f(δ(i−1)) + g(i−1)(δ∗ − δ(i−1))− f(δ∗) (Df is a max over supergradients)

> g(i−1)(δ∗ − δ(i))− f(δ∗) (f(δ(i−1)) + g(i−1)(δ(i) − δ(i−1)) > 0)

≥ g(i−1)(δ∗ − δ(i)) (−f(δ∗) ≥ 0)

≥ 2g(i)
+ (δ∗ − δ(i)) (−g(i−1) ≥ −2g(i)

+ and δ(i) > δ∗)

≥ 2(f(δ(i)) + g
(i)
+ (δ∗ − δ(i))− f(δ∗)) (since f(δ∗) ≥ f(δ(i)))

= 2Df (δ∗, δ(i)). (by our choice of g(i)
+)

24 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

The desired inequality nows follows from Df (δ∗, δ(i−2)) > Df (δ∗, δ(i−1)) by Lemma 2.3.
Now assume that the look-ahead step at iteration i− 1 was unsuccessful. This implies

that 2δ(i) − δ(i−1) ≤ δ∗ ⇔ 2(δ(i) − δ∗) ≤ δ(i−1) − δ∗, i.e. that the look-ahead step “went past
or exactly to” δ∗. We compare Bregman-divergences as follows:

Df (δ∗, δ(i−2)) ≥ f(δ(i−2)) + g(i−2)(δ∗ − δ(i−2))− f(δ∗) (Df is a max over supergradients)

≥ g(i−2)(δ∗ − δ(i−1))− f(δ∗) (f(δ(i−2)) + g(i−2)(δ(i−1) − δ(i−2)) ≥ 0)

≥ g(i−2)(δ∗ − δ(i−1)) (−f(δ∗) ≥ 0)

> g
(i)
+ (δ∗ − δ(i−1)) (0 > g

(i)
+ > g(i−2) and δ(i−1) > δ∗)

≥ 2g(i)
+ (δ∗ − δ(i)) (0 > g

(i)
+ and δ(i−1) − δ∗ ≥ 2(δ(i) − δ∗))

≥ 2(f(δ(i)) + g
(i)
+ (δ∗ − δ(i))− f(δ∗)) (since f(δ∗) ≥ f(δ(i)))

= 2Df (δ∗, δ(i)). (by our choice of g(i)
+)

This concludes the proof.

Remark 2.5. Instead of taking twice the usual Newton step during look-ahead, one could
consider δ′ := δ(i) + α(δ − δ(i)) for any α > 1. By redoing the proof of Lemma 2.4 with this
choice of δ′, one gets Df (δ∗, δ(i−2)) ≥ αDf (δ∗, δ(i)) if look-ahead was successful in iteration
i− 1, and Df (δ∗, δ(i−2)) ≥ α

α−1Df (δ∗, δ(i)) if look-ahead failed in iteration i− 1. So, choosing
α = 2 balances the decay in Bregman divergence for both cases.

In the remaining of this section, we apply the accelerated Newton–Dinkelbach method
to linear fractional combinatorial optimization and linear fractional programming. The
application to parametric submodular function minimization is in Section 2.5.

2.3.1 Linear Fractional Combinatorial Optimization

The problem (2.1) with D ⊆ {0, 1}m is known as linear fractional combinatorial optimization.
Radzik [126] showed that the Newton–Dinkelbach method applied to the function f(δ)
as in (2.2) terminates in a strongly polynomial number of iterations. Recall that f(δ) =
minx∈D(c−δd)⊤x. By the assumption d⊤x > 0 for all x ∈ D, this function is concave, strictly
decreasing, finite and piecewise-linear. Hence, it has a unique root. Moreover, f(δ) < 0 and
∂f(δ) ∩ R<0 ̸= ∅ for sufficiently large δ. To implement the value and supergradient oracles,
we assume that a linear optimization oracle over D is available, i.e. it returns an element in
arg minx∈D(c− δd)⊤x for any δ ∈ R.

Our result for the accelerated variant improves the state-of-the-art bound O(m2 logm) by
Wang et al. [156] on the standard Newton–Dinkelbach method. We will need the following
lemma, given by Radzik and credited to Goemans in [125]. It gives a strongly polynomial
bound on the length of a geometrically decreasing sequence of sums.

2.3 An Accelerated Newton–Dinkelbach Method | 25

Lemma 2.6 ([125]). Let c ∈ Rm+ and x(1), x(2), . . . , x(k) ∈ {−1, 0, 1}m. If 0 < c⊤x(i+1) ≤
1
2c
⊤x(i) for all i < k, then k = O(m logm).

Theorem 2.7. Algorithm 1 converges in O(m logm) iterations for linear fractional combi-
natorial optimization problems.

Proof. Observe that Algorithm 1 terminates in a finite number of iterations because f is
piecewise linear. Let δ(1) > δ(2) > · · · > δ(k) = δ∗ denote the sequence of iterates at the start
of Algorithm 1. Since f is concave, we have Df (δ∗, δ(i)) ≥ 0 for all i ∈ [k]. For each i ∈ [k],
pick x(i) ∈ arg minx∈D(c− δ(i)d)⊤x which maximizes d⊤x. This is well-defined because f is
finite. Note that −d⊤x(i) = min ∂f(δ(i)). As f(δ∗) = 0, the Bregman divergence of δ(i) and
δ∗ can be written as

Df (δ∗, δ(i)) = f(δ(i))+ max
g∈∂f(δ(i))

g(δ∗−δ(i)) = (c−δ(i)d)⊤x(i)−d⊤x(i)(δ∗−δ(i)) = (c−δ∗d)⊤x(i) .

According to Lemma 2.4, (c− δ∗d)⊤x(i) = Df (δ∗, δ(i)) < 1
2Df (δ∗, δ(i−2)) = 1

2(c− δ∗d)⊤x(i−2)

for all 3 ≤ i ≤ k. By Lemma 2.3, we also know that Df (δ∗, δ(i)) > 0 for all 1 ≤ i ≤ k − 2.
Thus, applying Lemma 2.6 yields k = O(m logm).

2.3.2 Linear Fractional Programming

We next consider linear fractional programming, an extension of (2.1) with the assumption
that the domain D ⊆ Rm is a polyhedron, but removing the condition d⊤x > 0 for x ∈ D.
For c, d ∈ Rm, the problem is

inf c⊤x/d⊤x s.t. d⊤x > 0, x ∈ D . (F)

For the problem to be meaningful, we assume that D∩
{
x : d⊤x > 0

}
̸= ∅. The common form

in the literature assumes d⊤x > 0 for all x ∈ D as in (2.1); we consider the more general setup
for the purpose of solving M2VPI systems in Section 2.4. It is easy to see that any linear
fractional combinatorial optimization problem on a domain X ⊆ {0, 1}m can be cast as a linear
fractional program with the polytope D = conv(X) because c⊤x̄/d⊤x̄ ≥ minx∈X c⊤x/d⊤x for
all x̄ ∈ D by the mediant inequality. The next theorem characterizes when (F) is unbounded.

Theorem 2.8. If D ∩
{
x : d⊤x > 0

}
≠ ∅, then the optimal value of (F) is −∞ if and only

if at least one of the following two conditions hold:

1. There exists x ∈ D such that c⊤x < 0 and d⊤x = 0;

2. There exists r ∈ Rm such that c⊤r < 0, d⊤r = 0 and x+ λr ∈ D for all x ∈ D, λ ≥ 0.

26 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

Proof. By the Minkowski-Weyl Theorem, the polyhedron D̄ := D ∩ {x : d⊤x ≥ 0} can be
written as

D̄ =

k∑
i=1

λigi +
ℓ∑

j=1
νjhj : λ ≥ 0, ν ≥ 0, ∥λ∥1 = 1

for some vectors g1, . . . , gk and h1, . . . , hℓ. Note that d⊤gi ≥ 0 for all i ∈ [k] and d⊤hj ≥ 0
for all j ∈ [ℓ]. Let x◦ ∈ D ∩ {x : d⊤x > 0}. If there exists i ∈ [k] such that c⊤gi < 0 and
d⊤gi = 0 or j ∈ [ℓ] such that c⊤hj < 0 and d⊤hj = 0, then,

lim
λ↗1

c⊤(λgi + (1− λ)x◦)
d⊤(λgi + (1− λ)x◦) = −∞ or lim

λ→∞

c⊤(x◦ + λhj)
d⊤(x◦ + λhj)

= −∞

as in Condition 1 or Condition 2.
Otherwise, the fractional value of any element in D∩{x : d⊤x > 0} can be lower bounded

by
c⊤(

∑k
i=1 λigi +

∑ℓ
j=1 νjhj)

d⊤(
∑k
i=1 λigi +

∑ℓ
j=1 νjhj)

≥
∑
i∈[k],d⊤gi>0 λic

⊤gi +
∑
j∈[ℓ],d⊤hj>0 νjc

⊤hj∑
i∈[k],d⊤gi>0 λid

⊤gi +
∑
j∈[ℓ],d⊤hj>0 νjd

⊤hj

≥ min
{

min
i∈[k],d⊤gi>0

c⊤gi
d⊤gi

, min
j∈[ℓ],d⊤hj>0

c⊤hj
d⊤hj

}
,

where the last expression is finite by the assumption that D∩{x : d⊤x > 0} is non-empty.

Example 2.9. Unlike in linear programming, the optimal value may not be attained even if
it is finite. Consider the instance given by inf(−x1 +x2)/(x1 +x2) subject to x1 +x2 > 0 and
−x1 + x2 = 1. The numerator is equal to 1 for any feasible solution, while the denominator
can be made arbitrarily large. Hence, the optimal value of this program is 0, which is not
attained in the feasible region.

We use the Newton–Dinkelbach method for f as in (2.2), that is, f(δ) = infx∈D(c−δd)⊤x.
Since D ̸= ∅, f(δ) <∞ for all δ ∈ R. By the Minkowski–Weyl theorem, there exist finitely
many points P ⊆ D such that f(δ) = minx∈P (c − δd)⊤x for all δ ∈ dom(f). Hence, f is
concave and piecewise linear. Observe that f(δ) > −∞ if and only if every ray r in the
recession cone of D satisfies (c − δd)⊤r ≥ 0. For f to be proper, we need to assume that
Condition 2 in Theorem 2.8 does not hold. Moreover, we require the existence of a point
δ′ ∈ dom(f) such that f(δ′) = (c−δ′d)⊤x′ ≤ 0 for some x′ ∈ D with d⊤x′ > 0. It follows that
f has a root or attains its maximum because dom(f) is closed. We are ready to characterize
the optimal value of (F) using f .

Lemma 2.10. Assume that there exists δ′ ∈ dom(f) such that f(δ′) = (c− δ′d)⊤x′ ≤ 0 for
some x′ ∈ D with d⊤x′ > 0. If f has a root, then the optimal value of (F) is equal to the
largest root and is attained. Otherwise, the optimal value is −∞.

Proof. Recall the definition of δ∗ = max({δ : f(δ) = 0} ∪ arg max f(δ)). By our assumption
on f , there exists x∗ ∈ D such that f(δ∗) = (c − δ∗d)⊤x∗ and d⊤x∗ > 0. If f has a root,

2.4 Monotone Two Variables per Inequality Systems | 27

then f(δ∗) = 0. This implies that c⊤x/d⊤x ≥ δ∗ = c⊤x∗/d⊤x∗ for all x ∈ D with d⊤x > 0
as desired. Next, assume that f does not have a root. Then f(δ∗) < 0 and 0 ∈ ∂f(δ∗). By
convexity, there exists x̄ ∈ D such that (c− δ∗d)⊤x̄ = f(δ∗) < 0 and d⊤x̄ = 0. Then c⊤x̄ < 0,
so x̄ is a point as in Condition 1 of Theorem 2.8.

2.4 Monotone Two Variables per Inequality Systems

Recall that an M2VPI system can be represented as a directed multigraph G = (V,E) with arc
costs c ∈ Rm and gain factors γ ∈ Rm++. For a u-v walk P in G with E(P) = (e1, e2, . . . , ek),
its cost and gain factor are defined as c(P) :=

∑k
i=1

(∏i−1
j=1 γej

)
cei and γ(P) :=

∏k
i=1 γei

respectively. If P is a single vertex, then c(P) := 0 and γ(P) := 1. The walk P induces the
valid inequality yu ≤ c(P) + γ(P)yv, implied by the sequence of arcs/inequalities in E(P).
It is also worth considering the dual interpretation. Dual variables on arcs correspond to
generalized flows: if 1 unit of flow enter the arc e = (u, v) at u, then γe units reach v, at a
shipping cost of ce. Thus, if 1 unit of flow enter a path P , then γ(P) units reach the end of
the path, incurring a cost of c(P).

Given node labels y ∈ R̄n, the y-cost of a u-v walk P is defined as c(P) + γ(P)yv. Note
that the y-cost of a walk only depends on the label at the sink. A u-v path is called a shortest
u-v path with respect to y if it has the smallest y-cost among all u-v walks. A shortest path
from u with respect to y is a shortest u-v path with respect to y for some node v. Such a
path does not always exist, as demonstrated in Section A.2.

If P is a u-u walk such that its intermediate nodes are distinct, then it is called a cycle
at u. Given a u-v walk P and a v-w walk Q, we denote PQ as the u-w walk obtained by
concatenating P and Q.

Definition 2.11. A cycle C is called flow-generating if γ(C) > 1, unit-gain if γ(C) = 1, and
flow-absorbing if γ(C) < 1. We say that a unit-gain cycle C is negative if c(C) < 0.

Note that c(C) depends on the starting point u of a cycle C. This ambiguity is resolved
by using the term cycle at u. For a unit-gain cycle C, it is not hard to see that the starting
point does not affect the sign of c(C). Hence, the definition of a negative unit-gain cycle is
sound. Observe that a flow-absorbing cycle C induces an upper bound yu ≤ c(C)/(1− γ(C)),
while a flow-generating cycle C induces a lower bound yu ≥ −c(C)(γ(C)− 1). Let Cabsu (G)
and Cgenu (G) denote the set of flow-absorbing cycles and flow-generating cycles at u in G

respectively.

Definition 2.12. Given a flow-generating cycle C at u, a flow-absorbing cycle D at v, and
a u-v path P , the walk CPD is called a bicycle. We say that the bicycle is negative if

c(P) + γ(P) c(D)
1− γ(D) <

−c(C)
γ(C)− 1 .

28 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

Using these two structures, Shostak characterized the feasibility of M2VPI systems.

Theorem 2.13 ([136]). An M2VPI system (G, c, γ) is infeasible if and only if G contains a
negative unit-gain cycle or a negative bicycle.

2.4.1 A Linear Fractional Programming Formulation

Our goal is to compute the pointwise maximal solution ymax ∈ R̄n to an M2VPI system if it
is feasible, where ymax

u :=∞ if and only if the variable yu is unbounded from above. It is well
known how to convert ymax into a finite feasible solution — we refer to Section A.3 for details.
In order to apply Algorithm 1, we first need to reformulate the problem as a linear fractional
program. Now, every coordinate ymax

u can be expressed as the following primal-dual pair of
linear programs, where ∇xv :=

∑
e∈δ+(v) xe −

∑
e∈δ−(v) γexe denotes the net flow at a node v.

min c⊤x (Pu)

s. t. ∇xu = 1

∇xv = 0 ∀v ∈ V \ u

x ≥ 0

max yu (Du)

s. t. yv − γeyw ≤ ce ∀e = (v, w) ∈ E

The primal LP (Pu) is a minimum-cost generalized flow problem with a supply of 1 at
node u. It asks for the cheapest way to destroy one unit of flow at u. Observe that it is
feasible if and only if u can reach a flow-absorbing cycle in G. If it is feasible, then it is
unbounded if and only if there exists a negative unit-gain cycle or a negative bicycle in G. It
can be reformulated as the following linear fractional program

inf c⊤x

1−
∑
e∈δ−(u) γexe

s.t. 1−
∑

e∈δ−(u)
γexe > 0, x ∈ D . (Fu)

with the polyhedron

D :=
{
x ∈ Rm+ : x(δ+(u)) = 1,∇xv = 0 ∀v ∈ V \ u

}
.

Indeed, if x is a feasible solution to (Pu), then x/x(δ+(u)) is a feasible solution to (Fu)
with the same objective value. This is because 1 −

∑
e∈δ−(u) γexe/x(δ+(u)) = 1/x(δ+(u)).

Conversely, if x is a feasible solution to (Fu), then x/(1−
∑
e∈δ−(u) γexe) is a feasible solution

to (Pu) with the same objective value. Even though the denominator is an affine function of x,
it can be made linear to conform with (F) by working with the polyhedron {(x, 1) : x ∈ D}.

Our goal is to solve (Fu) using Algorithm 1. For a fixed δ ∈ R, the value of the parametric
function f(δ) can be written as the following pair of primal and dual LPs respectively

2.4 Monotone Two Variables per Inequality Systems | 29

min c⊤x+ δ
∑

e∈δ−(u)
γexe − δ

s. t. x ∈ D

max yu − δ

s. t. yv − γeδ ≤ ce ∀e = (v, u) ∈ δ−(u)

yv − γeyw ≤ ce ∀e = (v, w) /∈ δ−(u).

We refer to them as the primal (resp. dual) LP for f(δ), and their corresponding feasi-
ble/optimal solution as a feasible/optimal primal (resp. dual) solution to f(δ).

Due to the specific structure of this linear fractional program, a suitable initial point for
the Newton–Dinkelbach method can be obtained from any feasible solution to (Fu). This is
a consequence of the unboundedness test given by the following lemma.

Lemma 2.14. Let x be a feasible solution to (Fu) and δ̄ := c⊤x/(1 −
∑
e∈δ−(u) γexe).

If either f(δ̄) = −∞ or f(δ̄) = c⊤x̄ − δ̄(1 −
∑
e∈δ−(u) γex̄e) < 0 for some x̄ ∈ D with

1−
∑
e∈δ−(u) γex̄e ≤ 0, then the optimal value of (Fu) is −∞.

Proof. First, assume that f(δ̄) > −∞. Let λ := (1 −
∑
e∈δ−(u) γexe)/

∑
e∈δ−(u) γe(x̄e − xe).

Note that λ ∈ (0, 1]. Consider the convex combination x̂ := λx̄ + (1 − λ)x ∈ D. Then,
c⊤x̂ < 0 and 1 −

∑
e∈δ−(u) γex̂e = 0. Hence, the optimal value of (Fu) is unbounded by

Condition 1 of Theorem 2.8. Next, assume that f(δ̄) = −∞. There exists a ray r in the
recession cone of D such that c⊤r − δ̄

∑
e∈δ−(u) γere < 0. Note that r ≥ 0. If r(δ−(u)) = 0,

then r satisfies Condition 2 of Theorem 2.8. So, the optimal value is unbounded. Otherwise,
for a sufficiently large α > 0, we have c⊤(x + αr) + δ̄(1 −

∑
e∈δ−(u) γe(xe + αre)) < 0 and

1−
∑
e∈δ−(u) γe(xe + αre) < 0. Then, taking an appropriate convex combination of x+ αr

and x like before produces a point in D which satisfies Condition 1 of Theorem 2.8.

In order to characterize the finiteness of f(δ), we introduce the following notion of a
negative flow-generating cycle.

Definition 2.15. For a fixed δ ∈ R and u ∈ V , a flow-generating cycle C is said to be
(δ, u)-negative if there exists a path P from a node v ∈ V (C) to node u such that

c(C) + (γ(C)− 1)(c(P) + γ(P)δ) < 0

where C is treated as a v-v walk in c(C).

Lemma 2.16. For any δ ∈ R, f(δ) = −∞ if and only if D ≠ ∅ and there exists a negative
unit-gain cycle, a negative bicycle, or a (δ, u)-negative flow-generating cycle in G \ δ+(u).

Proof. The primal LP for f(δ) is unbounded if and only if D ≠ ∅ and there exists an
extreme ray r in the recession cone of D such that c⊤r + δ

∑
e∈δ−(u) γere < 0. Note that

the recession cone of D is
{
x ∈ Rm+ : x(δ+(u)) = 0,∇xv = 0 ∀v ̸= u

}
. By the generalized flow

decomposition theorem, r belongs to one of the following three fundamental flows in G\δ+(u):

30 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

(1) a unit-gain cycle, (2) a bicycle, (3) a flow-generating cycle C and a path P from C to u.
In the first two cases, re = 0 for all e ∈ δ−(u). Thus, the unit-gain cycle or bicycle is negative.
In the last case, we have c(C) + (γ(C)− 1)(c(P) + γ(P)δ) = c⊤r + δ

∑
e∈δ−(u) γere.

It turns out that if we have an optimal dual solution y to f(δ) for some δ ∈ R, then we
can compute an optimal dual solution to f(δ′) for any δ′ < δ. A suitable subroutine for this
task is the so called Grapevine algorithm (Algorithm 2), developed by Aspvall and Shiloach
[7].

Algorithm 2: Grapevine
input : A directed multigraph G = (V,E) with arc costs c ∈ Rm and gain factors

γ ∈ Rm++, node labels y ∈ R̄n, and a node u ∈ V .
output : Node labels y ∈ R̄n and a walk P of length at most n starting from u.

1 for i = 1 to n do
2 foreach v ∈ V do
3 y′v ← min(yv,minvw∈δ+(v) cvw + γvwyw)
4 if y′v < yv then
5 pred(v, i)← arg minvw∈δ+(v) cvw + γvwyw ◃ Break ties arbitrarily
6 else
7 pred(v, i)← ∅

8 y ← y′

9 Let P be the walk obtained by tracing from pred(u, n)
10 return (y, P)

Given initial node labels y ∈ R̄n and a specified node u, Grapevine runs for n iterations.
We say that an arc e = (v, w) is violated with respect to y if yv > ce + γeyw. In an iteration
i ∈ [n], the algorithm records the most violated arc with respect to y in δ+(v) as pred(v, i),
for each node v ∈ V (ties are broken arbitrarily). Note that pred(v, i) = ∅ if there are
no violated arcs in δ+(v). Then, each yv is decreased by the amount of violation in the
corresponding recorded arc. After n iterations, the algorithm traces a walk P from u by
following the recorded arcs in reverse chronological order. During the trace, if pred(v, i) = ∅
for some v ∈ V and i > 1, then pred(v, i− 1) is read. Finally, the updated node labels y and
the walk P are returned. Clearly, the running time of Grapevine is O(mn).

Given an optimal dual solution y ∈ Rn to f(δ) and δ′ < δ, the dual LP for f(δ′) can be
solved using Grapevine as follows. Define the directed graph Gu := (V ∪ {u′} , Eu) where
Eu := (E \ δ−(u))∪ {vu′ : vu ∈ δ−(u)}. The graph Gu is obtained from G by splitting u into
two nodes u, u′ and reassigning the incoming arcs of u to u′. These arcs inherit the same
costs and gain factors from their counterparts in G. Let ȳ ∈ Rn+1 be node labels in Gu

defined by ȳu′ := δ′ and ȳv := yv for all v ̸= u′. Then, we run Grapevine on Gu with input

2.4 Monotone Two Variables per Inequality Systems | 31

node labels ȳ and node u. Note that ȳu′ remains unchanged throughout the algorithm. The
next lemma verifies the correctness of this method.

Lemma 2.17. Given an optimal dual solution y ∈ Rn to f(δ) and δ′ < δ, define ȳ ∈ Rn+1

as ȳu′ := δ′ and ȳv := yv for all v ∈ V . Let (z̄, P) be the node labels and walk returned
by Grapevine(Gu, ȳ, u). If z̄V is not feasible to the dual LP for f(δ′), then f(δ′) = −∞.
Otherwise, z̄V is a dual optimal solution to f(δ′) and P is a shortest path from u with respect
to ȳ in Gu.

Proof. Since f(δ) = yu − δ is finite, we have D ≠ ∅. First, assume that z̄V is not feasible
to the dual LP for f(δ′). Then, there exists a violated arc in Gu with respect to z̄. Let
w be the head of this arc and let R be the walk obtained by tracing pred(w, n) in reverse
chronological order. Then, R ends at u′ because y is dual feasible to f(δ). Since R has n
edges, decompose it into R = QCP ′ where Q is a w-v walk, C is a nontrivial cycle at v, and
P ′ is a v-u′ path for some node v. Then, we have c(CP ′) + γ(CP ′)δ′ < c(P ′) + γ(P ′)δ′ ≤ ȳv.
Due to Lemma 2.16, it suffices to show that γ(C) > 1, as this would imply that C is a
(δ′, u)-negative flow-generating cycle in G. Suppose otherwise for a contradiction. Since y
is dual feasible to f(δ) and u′ /∈ V (C), we have ȳv ≤ c(C) + γ(C)ȳv. If γ(C) = 1, then we
obtain 0 ≤ c(C) < 0 from the previous two inequalities. Otherwise, we get the following
contradiction

ȳv ≤
c(C)

1− γ(C) < c(P ′) + γ(P ′)δ′ ≤ ȳv.

Next, assume that z̄V is a dual feasible solution to f(δ′). Then, P is a u-t path for
some node t. This is because if P is not simple, repeating the argument from the previous
paragraph proves that the dual LP for f(δ′) is infeasible. Note that ȳt = z̄t. Moreover,
z̄v ≤ cvw + γvwz̄w for all vw ∈ Eu, with equality on E(P). Let cz̄ ∈ Rm+ be the reduced cost
defined by cz̄vw := cvw + γvwz̄w − z̄v for all vw ∈ Eu. Since for every u-t walk P ′ we have

c(P) + γ(P)z̄t − z̄u = cz̄(P) = 0 ≤ cz̄(P ′) = c(P ′) + γ(P ′)z̄t − z̄u,

it follows that P is a shortest u-t path with respect to ȳ.
It is left to show that z̄V is a dual optimal solution to f(δ′). Let z∗ be an optimal dual

solution to f(δ′). Note that z∗u ≤ yu because δ′ < δ. For the purpose of contradiction, suppose
that z̄u < z∗u. Since z̄u < ȳu, the path P ends at u′ because y is dual feasible to f(δ). Thus,
z̄u = c(P) + γ(P)δ′. However, P also implies the valid inequality z∗u ≤ c(P) + γ(P)δ′, which
is a contradiction.

If z̄V is an optimal dual solution to f(δ′), a supergradient in ∂f(δ′) can be inferred from
the returned path P . We say that an arc e = (v, w) is tight with respect to z̄ if z̄v = ce + γez̄w.
By complementary slackness, every optimal primal solution to f(δ′) is supported on the
subgraph of Gu induced by tight arcs with respect to z̄. In particular, any u-u′ path or any

32 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

path from u to a flow-absorbing cycle in this subgraph constitutes a basic optimal primal
solution to f(δ′). As P is also a path in this subgraph, we have γ(P)− 1 ∈ ∂f(δ′) if P ends
at u′. Otherwise, u can reach a flow-absorbing cycle in this subgraph because δ′ < δ. In this
case, −1 ∈ ∂f(δ′).

2.4.2 A Strongly Polynomial Label-Correcting Algorithm

Using Algorithm 1, we develop a strongly polynomial label-correcting algorithm for solving
an M2VPI system (G, c, γ). The main idea is to start with a subsystem for which (Du)
is trivial, and progressively solve (Du) for larger and larger subsystems. Throughout the
algorithm, we maintain node labels y ∈ R̄n which form valid upper bounds on each variable.
They are initialized to ∞ at every node. We also maintain a subgraph of G, which initially is
G(0) := (V, ∅).

Algorithm 3: Label-correcting algorithm for M2VPI systems
input : An M2VPI system (G, c, γ).
output : The pointwise maximal solution ymax or the string INFEASIBLE.

1 Initialize graph G(0) ← (V, ∅) and counter k ← 0
2 Initialize node labels y ∈ R̄n as yv ←∞ ∀v ∈ V
3 foreach u ∈ V do
4 k ← k + 1
5 G(k) ← G(k−1) ∪ δ+(u)
6 yu ← minuv∈δ+(u) cuv + γuvyv

7 if yu =∞ and Cabsu (G(k)) ̸= ∅ then
8 yu ← c(C)/(1− γ(C)) for any C ∈ Cabsu (G(k))
9 if yu <∞ then

10 Define node labels ȳ ∈ R̄n+1 as ȳu′ ← yu and ȳv ← yv ∀v ∈ V
11 (ȳ, P)← Grapevine(G(k)

u ,ȳ,u)
12 if ∃ a violated arc w.r.t. ȳ in G

(k)
u or (|E(P)| > 0 and γ(P) ≥ 1) then

13 return INFEASIBLE

14 ȳu′ ←Look-aheadNewton(Grapevine(G(k)
u , ·, u), ȳu′ , γ(P)− 1)

15 if ȳu′ = NO ROOT then
16 return INFEASIBLE

17 y ← ȳV

18 return y

The algorithm (Algorithm 3) is divided into n phases. At the start of phase k ∈ [n], a new
node u ∈ V is selected and all of its outgoing arcs in G are added to G(k−1), resulting in a
larger subgraph G(k). Since yu =∞ at this point, we update it to the smallest upper bound
implied by its outgoing arcs and the labels of its outneighbours. If yu is still infinity, then we

2.4 Monotone Two Variables per Inequality Systems | 33

know that δ+(u) = ∅ or yv = ∞ for all v ∈ N+(u). In this case, we find a flow-absorbing
cycle at u in G(k) using the multiplicative Bellman–Ford algorithm, by treating the gain
factors as arc costs. If there is none, then we proceed to the next phase immediately as yu
is unbounded from above in the subsystem (G(k), c, γ). This is because u cannot reach a
flow-absorbing cycle in G(k) by induction. We would like to point out that this does not
necessarily imply that the full system (G, c, γ) is feasible (see Section A.3 for details). On
the other hand, if Bellman–Ford returns a flow-absorbing cycle, then yu is set to the upper
bound implied by the cycle. Then, we apply Algorithm 1 to solve (Du) for the subsystem
(G(k), c, γ).

The value and supergradient oracle for the parametric function f(δ) is Grapevine. Let
G

(k)
u be the modified graph and ȳ ∈ R̄n+1 be the node labels as defined in the previous

subsection. In order to provide Algorithm 1 with a suitable initial point and supergradient,
we run Grapevine on G(k)

u with input node labels ȳ. It updates ȳ and returns a walk P from
u. If ȳV is not feasible to the dual LP for f(ȳu′) or P is a non-trivial walk with γ(P) ≥ 1,
then we declare infeasibility. Otherwise, we run Algorithm 1 with the initial point ȳu′ and
supergradient γ(P)− 1. We remark that Grapevine continues to update ȳ throughout the
execution of Algorithm 1.

Theorem 2.18. If Algorithm 3 returns y ∈ R̄n, then y = ymax if the M2VPI system is
feasible. Otherwise, the system is infeasible.

Proof. It suffices to prove the theorem for the subsystem (G(k), c, γ) encountered in each
phase k. We proceed by induction on k. For the base case k = 0, the system (G(0), c, γ)
is trivially feasible as it does not have any constraints. Hence, ymax = (∞,∞, . . . ,∞) = y,
where the second equality is due to our initialization. For the inductive step, assume that
the theorem is true for some 0 ≤ k < n and consider the system (G(k+1), c, γ). If Algorithm
3 terminated in phase k, then (G(k+1), c, γ) is infeasible by the inductive hypothesis. So, let
y ∈ R̄n be the node labels maintained by the algorithm during Line 9 of phase k+ 1. We have
yu =∞ if and only if Cabsu (G(k+1)) = ∅ and yv =∞ for all v ∈ N+(u). For each v ̸= u, we
also have yv =∞ if and only if v cannot reach a flow-absorbing cycle in G(k). So, if yu =∞,
then u cannot reach a flow-absorbing cycle in G(k+1). By the inductive hypothesis, y = ymax

if the system (G(k+1), c, γ) is feasible.
Next, assume that yu <∞. Without loss of generality, we may assume that every node v

with yv =∞ can reach u in G(k+1). Let W := {v ∈ V : yv =∞}. Note that the cut W does
not have any outgoing edges in G(k+1). If there exists a negative unit-gain cycle in G(k+1)[W],
then it contains a violated arc with respect to any finite labels. In this case, the algorithm
correctly detects infeasibility. Otherwise, by Lemma 2.16, f(δ′) > −∞ for a sufficiently high
δ′ ∈ R because there are no flow-absorbing cycles in G(k+1)[W]. Pick δ′ > yu big enough
such that an optimal dual solution y′ ∈ Rn to f(δ′) satisfies y′v = yv for all v ∈ V \W .
Among all such optimal dual solutions, choose y′ as the pointwise maximal one. Then, every

34 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

vertex v ∈W has a tight path to u in G(k+1). Now, let ȳ′ ∈ Rn+1 be node labels defined by
ȳ′u′ := yu and ȳ′v := y′v for all v ∈ V . It is easy to see that running Grapevine on G

(k+1)
u

with input node labels ȳ and ȳ′ yields the same behaviour. Let (z̄, P) be the node labels and
walk returned by Grapevine.

Let x ∈ RE(G(k+1))
+ be a feasible solution to (Fu) such that yu = c⊤x/(1−

∑
e∈δ−(u) γexe).

Clearly, such an x exists if yu = c(C)/1−γ(C) for some flow-absorbing cycle C ∈ Cabsu (G(k+1)).
Otherwise, if yu = cuv + γuvyv for some uv ∈ δ+(u), then yv = c(Q) + γ(Q)(c(C)/1− γ(C))
where Q is a path leading to a flow-absorbing cycle C in G(k)[V \W]. This is because yV \W is
the pointwise maximal solution to the feasible subsystem (G(k)[V \W], c, γ) by the inductive
hypothesis. Hence, x can be chosen as the fundamental flow from u to the cycle C via the
path Q+ uv.

Now, according to Lemma 2.17, if z̄V is not feasible to the dual LP for f(yu), then
f(yu) = −∞. By Lemma 2.14, the optimal value of (Fu) is −∞. On the other hand, if
z̄V is a feasible solution to the dual LP for f(yu), then it is also optimal. Moreover, P is
a shortest path from u with respect to ȳ′ in G

(k+1)
u . If |E(P)| > 0 and γ(P) ≥ 1, then

the path ends at u′ because ȳ′ is dual feasible to f(δ′). Let x̄ be the fundamental u-u′

flow on P . By complementary slackness, x̄ is an optimal primal solution to f(yu) < 0 and
1 −

∑
e∈δ−(u) γex̄e = 1 − γ(P) ≤ 0. Applying Lemma 2.14 again yields unboundedness of

(Fu). In both cases, as (Pu) is feasible, (G(k+1), c, γ) is infeasible.
If the above cases do not apply, then z̄u and γ(P)− 1 constitute a suitable initial point

and supergradient for Algorithm 1 respectively. Note that the node labels ȳ are updated to
z̄ ∈ Rn+1. Throughout the execution of Algorithm 1, it is easy to see that ȳV remains an
upper bound on every feasible solution to the system (G(k+1), c, γ). If phase k+ 1 terminates
with node labels y := ȳV , then yu is the largest root of f . By Lemma 2.10, yu is the optimal
value of (Fu). Since y is an optimal solution to (Du), we obtain y = ymax as desired. On
the other hand, if phase k + 1 terminates with INFEASIBLE, then f does not have a root.
By Lemma 2.10, the optimal value of (Fu) is −∞. As (Pu) is feasible, this implies that
(G(k+1), c, γ) is infeasible.

We would like to point out that Algorithm 3 may return node labels y ∈ R̄n even if the
M2VPI system is infeasible. This happens when y contains ∞ entries. It is well-known how
to ascertain the system’s feasibility status in this case (see Section A.3 for details).

To bound the running time of Algorithm 3, it suffices to bound the running time of
Algorithm 1 in every phase. Our strategy is to analyze the sequence of paths whose gain
factors determine the right derivative of f at each iterate of Algorithm 1. The next property
is crucial in our arc elimination argument.

Definition 2.19. Let P = (P (1), P (2), . . . , P (ℓ)) be a sequence of paths from u. We say that
P satisfies subpath monotonicity at u if for every pair P (i), P (j) where i < j and for every
shared node v ̸= u, we have γ(P (i)

uv) ≤ γ(P (j)
uv).

2.4 Monotone Two Variables per Inequality Systems | 35

Lemma 2.20. Let δ(1) > δ(2) > · · · > δ(ℓ) be a decreasing sequence of iterates. For each
δ(i) ∈ R, let P (i) be a u-u′ path in Gu on which a unit flow is an optimal primal solution to
f(δ(i)). Then, the sequence (P (1), P (2), . . . , P (ℓ)) satisfies subpath monotonicity at u.

Proof. For each i ∈ [ℓ], let y(i) ∈ Rn be an optimal dual solution to f(δ(i)). Let ȳ(i) ∈ Rn+1 be
the node labels in Gu defined by ȳ(i)

u′ := δ(i) and ȳ(i)
v := y

(i)
v for all v ̸= u′. By complementary

slackness, every edge in P (i) is tight with respect to ȳ(i). Hence, P (i) is a shortest u-u′ path
in Gu with respect to ȳ(i). Now, pick a pair of paths P (i) and P (j) such that i < j and they
share a node v ̸= u. Then, the subpaths P (i)

uv and P (j)
uv are also shortest u-v paths in Gu with

respect to ȳ(i) and ȳ(j) respectively. Observe that ȳ(i)
v > ȳ

(j)
v because ȳ(i)

u′ = δ(i) > δ(j) = ȳ
(j)
u′ .

Define the function ψ : [ȳ(j)
v , ȳ

(i)
v]→ R̄ as

ψ(α) := inf {c(P) + γ(P)α : P is a u-v walk in Gu} .

Clearly, it is increasing and concave. It is also finite because ψ(ȳ(i)
v) = c(P (i)

uv) + γ(P (i)
uv)ȳ(i)

v

and ψ(ȳ(j)
v) = c(P (j)

uv) + γ(P (j)
uv)ȳ(j)

v . Subpath monotonicity then follows from concavity of
ψ.

Theorem 2.21. In each phase k of Algorithm 3, Algorithm 1 terminates in O(|E(G(k))|)
iterations.

Proof. Fix a phase k ∈ [n] and denote mk := |E(G(k))|. Let Ȳ = (ȳ(1), ȳ(2), . . . , ȳ(ℓ)) be
the sequence of node labels at the start of every iteration of Algorithm 1 in phase k. Note
that ȳ(i) ≥ ȳ(i+1) and ȳ

(i)
u′ > ȳ

(i+1)
u′ for all i < ℓ. Let f : R→ R̄ be the parametric function

associated with the linear fractional program (Fu) for the subsystem (G(k), c, γ). We may
assume that ℓ ≥ 1, which in turn implies that f(y(1)

u′) is finite by Lemma 2.14. By Lemma
2.16, there are no negative unit-gain cycles or bicycles in G(k) \ δ+(u). It follows that all
negative unit-gain cycles and negative bicycles in G(k) contain u. Hence, there exists a
smallest ε ≥ 0 such that the subsystem (G(k), ĉ, γ) is feasible, where ĉ ∈ Rmk are modified
arc costs defined by ĉe := ce + ε if e ∈ δ+(u) and ĉe := ce otherwise.

For each i > 1, every basic optimal primal solution to f(ȳ(i)
u′) is a path flow from u to

u′ in G
(k)
u . This is because u cannot reach a flow-absorbing cycle in the subgraph of G(k)

u

induced by tight arcs with respect to ȳ(i)
u . Indeed, such a cycle would impose an upper bound

of ȳ(i)
u on the variable yu. As ȳ(i−1)

u > ȳ
(i)
u , this contradicts the feasibility of ȳ(i−1)

V to the dual
LP for f(ȳ(i−1)

u′). For each i > 1, let P (i) be a u-u′ path with the smallest gain factor in the
subgraph of G(k)

u induced by tight arcs with respect to ȳ(i). Note that P (i) is well-defined
due to the same reason as above. Then, γ(P (i))− 1 = min ∂f(ȳ(i)

u′). Denote this sequence of
u-u′ paths as P := (P (2), P (3), . . . , P (ℓ)).

Without loss of generality, we may assume that ȳ(i) is finite for all i ≥ 1. Since every vertex
can reach a flow-absorbing cycle in G(k), there exists a pointwise maximal solution y∗ ∈ Rn to
the modified system (G(k), ĉ, γ). Define the reduced cost c∗ ∈ Rmk

+ as c∗vw := ĉvw +γvwy
∗
w−y∗v

36 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

for all vw ∈ E(G(k)). Since f(y∗u) = −ε, we obtain

c∗(P (i)) = c(P (i))− (1− γ(P (i)))y∗u + ε

= f(ȳ(i)
u′)− (1− γ(P (i)))(y∗u − ȳ(i)

u)− f(y∗u)

= Df (y∗u, ȳ
(i)
u′) ≤

1
2Df (y∗u, ȳ

(i−2)
u′) = 1

2c
∗(P (i−2))

for all i > 3, where the inequality is due to Lemma 2.4.
Consider the vector x ∈ Rmk

+ defined by

xvw :=

maxi∈[ℓ]
{
γ(P (i)

uv) : vw ∈ E(P (i))
}

if vw ∈ ∪ℓi=1E(P (i)),

0 otherwise.

By Lemma 2.20, the sequence P satisfies subpath monotonicity at u. Hence, xvw is equal to
the gain factor of the u-v subpath of the last path in P that contains vw. Let 0 ≤ c∗1x1 ≤
c∗2x2 ≤ · · · ≤ c∗mk

xmk
be the elements of c∗ ◦ x in nondecreasing order. Let e1, e2, . . . , emk

denote the arcs in G(k) according to this order, and define di :=
∑i
j=1 c

∗
jxj for every i ∈ [mk].

Then, c∗(P (i)) ∈ [d1, dmk
] for all i ∈ [ℓ] because c∗(P (ℓ)) ≥ d1 and c∗(P (1)) ≤ dmk

. To prove
that ℓ = O(mk), it suffices to show that every interval (di, di+1] contains the cost of at most
two paths from P.

Pick j < mk. Among all the paths in P whose costs lie in (dj , dj+1], let P (i) be the most
expensive one. If dj ≥ dj+1/2, then

c∗(P (i+2)) ≤ 1
2c
∗(P (i)) ≤ 1

2dj+1 ≤ dj .

On the other hand, if dj < dj+1/2, then

c∗(P (i+2)) ≤ 1
2c
∗(P (i)) ≤ 1

2dj+1 = dj+1 −
1
2dj+1 = c∗j+1xj+1 + dj −

1
2dj+1 < c∗j+1xj+1.

By subpath monotonicity, the paths from P (i+2) onwards do not contain an arc from the set
{ej+1, ej+2, . . . , emk

}. Therefore, their costs are at most dj each.

The runtime of every iteration of Algorithm 1 is dominated by Grapevine. Thus,
following the discussion in Section A.3, we obtain the following result.

Corollary 2.22. Algorithm 3 solves the feasibility of M2VPI linear systems in O(m2n2)
time.

One might wonder if Algorithm 3 is still strongly polynomial if we replace the look-ahead
Newton–Dinkelbach method on Line 14 with the standard version. In Section 2.6, we show
that this is indeed the case, though with a slower convergence.

2.4 Monotone Two Variables per Inequality Systems | 37

2.4.3 Deterministic Markov Decision Processes

In this subsection, we replace Grapevine with a variant of Dijkstra’s algorithm (Algorithm
4) in order to speed up Algorithm 3 for solving a special class of 2VPI linear programs, known
as deterministic Markov decision processes (DMDPs). This idea was briefly mentioned by
Madani in [103]; we will supply the details. Recall that an instance of DMDP is described
by a directed multigraph G = (V,E) with arc costs c ∈ Rm and discount factors γ ∈ (0, 1]m.
The goal is to select an outgoing arc from every node so as to minimize the total discounted
cost over an infinite time horizon. It can be formulated as the following pair of primal and
dual LPs.

min c⊤x (P)

s. t. ∇xv = 1 ∀v ∈ V

x ≥ 0

max 1⊤y (D)

s. t. yv − γeyw ≤ ce ∀e = (v, w) ∈ E

Since the discount factor of every cycle is at most 1, there are no bicycles in G. Con-
sequently, by Theorem 2.13, the linear program (D) is infeasible if and only if there is a
negative unit-gain cycle in G. This condition can be easily checked by running a negative
cycle detection algorithm on the subgraph induced by arcs with discount factor 1.

Algorithm 4 is slightly modified from the standard Dijkstra’s algorithm [47] to handle
our notion of shortest paths that depends on node labels. As part of the input, it requires a
target node t with out-degree zero, node labels y ∈ Rn which induce nonnegative reduced
costs, and a parameter α < yt. As output, it returns a shortest path tree T to t when yt is
decreased to α. It also returns node labels z ∈ Rn which certify the optimality of T , i.e. z
induces nonnegative reduced costs with zero reduced costs on T , and zt = α.

An iteration of Algorithm 4 refers to a repetition of the while loop. In the pseudocode,
observe that c̄e ≥ 0 for all e ∈ E \ δ−(u).

Lemma 2.23. Algorithm 4 is correct.

Proof. We proceed by induction on the number of elapsed iterations k. Let z be the
node labels at the end of iteration k. For each i ≤ k, let vi be the node added to S

in iteration i. Note that zS remains unchanged in future iterations. We first show that
zv2 ≤ zv3 ≤ · · · ≤ zvk

< zv1 = 0. The base case k = 1 is true due to our initialization, while
the base case k = 2 is true because v2 ∈ R. For the inductive step, suppose that the claim is
true for some k ≥ 2. Let vk+1 = arg minv∈R {zv} and vj = pred(vk+1) for some j ≤ k. We
know that zvk+1 < 0 because vk+1 ∈ R. If j < k, then zvk+1 ≥ zvk

, as otherwise vk would
not have been chosen to enter S in iteration k. If j = k, using the fact that γvk+1vk

≤ 1 and
c̄vk+1vk

≥ 0, we obtain
zvk+1 = c̄vk+1vk

+ γvk+1vk
zvk
≥ zvk

.

38 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

Algorithm 4: Recompute shortest paths to t
input : A directed multigraph G = (V,E) with arc costs c ∈ RE and discount

factors γ ∈ (0, 1]E , a target node t ∈ V where δ+(t) = ∅, node labels y ∈ RV
such that cvw + γvwyw − yv ≥ 0 for every vw ∈ E, and a parameter α < yt

output : An in-tree T rooted at t and node labels z ∈ RV such that z ≤ y, zu = α
and cvw + γvwzw − zv ≥ 0 for every vw ∈ E, with equality on every arc of T .

1 yu ← α
2 Define reduced cost c̄ ∈ RE by c̄vw ← cvw + γvwyw − yv for all vw ∈ E
3 Initialize node labels z ∈ RV by zv ← 0 for all v ∈ V
4 Initialize sets R← {t} and S ← ∅
5 while R ̸= ∅ do
6 w ← arg minv∈R {zv}
7 R← R \ {w}
8 S ← S ∪ {w}
9 foreach vw ∈ E where v /∈ S do

10 if zv > c̄vw + γvwzw then
11 zv ← c̄vw + γvwzw
12 pred(v)← vw
13 R← R ∪ {v}

14 Let T be the in-tree defined by pred()
15 z ← y + z
16 return (z, T)

It is left to show that c̄vw + γvwzw − zv ≥ 0 for all vw ∈ E(G[S]). The base case k = 1 is
trivially true. For the inductive step, suppose that the statement is true for some k ≥ 1.
We know that zvk+1 ≤ c̄vk+1v + γvk+1vzv for every outgoing arc vk+1v ∈ E(G[S]). For every
incoming arc vvk+1 ∈ E(G[S]), using the fact that γvvk+1 ≤ 1 and c̄vvk+1 ≥ 0, we get

zv ≤ c̄vvk+1 + γvvk+1zv ≤ c̄vvk+1 + γvvk+1zvk+1 ,

where the second inequality follows from zv ≤ zvk+1 .

In every phase k of Algorithm 3, Algorithm 4 now replaces Grapevine as the new
value and supergradient oracle of f . Given an optimal dual solution y to f(α) for some
α ∈ R, Algorithm 4 is used to compute an optimal dual solution to f(α′) for any α′ < α. In
particular, we run it on the modified graph G(k)

u with input node labels ȳ defined by ȳu′ := α

and ȳv := yv for all v ̸= u′, target node t = u′, and parameter α′ < α. Note that u′ has
out-degree zero in G

(k)
u by construction. Let (z̄, T) be the node labels and tree returned

by Algorithm 4, where z̄V is an optimal dual solution to f(α′). A supergradient at f(α′)
can be inferred from the output via complementary slackness. Specifically, if u ∈ V (T),

2.5 Parametric Submodular Function Minimization | 39

then γ(P) − 1 ∈ ∂f(α′) where P is the unique u-u′ path in T . Otherwise, u can reach a
flow-absorbing cycle in the tight subgraph with respect to z̄, so −1 ∈ ∂f(α′).

An efficient implementation of Dijkstra’s algorithm using Fibonacci heaps was given by
Fredman and Tarjan [66]. It can also be applied to our setting, with the same running time
of O(m+ n logn). Consequently, we obtain a faster running time of Algorithm 3 for DMDPs.

Corollary 2.24. Algorithm 3 solves deterministic MDPs in O(mn(m+ n logn)) time.

2.5 Parametric Submodular Function Minimization

Let V be a set with n elements and define 2V := {S : S ⊆ V } to be the set of all subsets of
V . A function h : 2V → R is submodular if

h(S) + h(T) ≥ h(S ∩ T) + h(S ∪ T) ∀S, T ⊆ V .

Given a non-negative submodular function h : 2V → R+ and a vector a ∈ RV satisfying
maxi∈V ai > 0, we examine the problem of computing

δ∗ := max{δ : min
S⊆V

h(S)− δa(S) ≥ 0}, (2.3)

where a(S) :=
∑
i∈S ai. As the input model, we assume access to an evaluation oracle for h,

which allows us to query h(S) for any set S ⊆ V . The above problem models the line-search
problem inside a submodular polyhedron and has been studied in [71, 112, 147].

To connect to the root finding problem studied in previous sections, for δ ∈ R, we define

f(δ) := min
S⊆V

hδ(S) := min
S⊆V

h(S)− δa(S).

Since f is the minimum of 2n affine functions, f is a piecewise linear concave function. Noting
that f is continuous, problem (2.3) can be equivalently restated as that of computing the
largest root of f , i.e., the largest δ∗ ∈ R such that f(δ∗) = 0. The assumption that h is
non-negative ensures that f(0) ≥ 0, and the assumption that maxi∈V ai > 0 ensures that δ∗

exists and δ∗ ≥ 0 (see the initialization section below). Given the root finding representation,
we may apply the Newton–Dinkelbach method on f to compute δ∗. This approach was taken
by Goemans, Gupta and Jaillet [71], who were motivated to give a more efficient alternative
to the parametric search based algorithm of Nagano [112]. Their main result is as follows:

Theorem 2.25 ([71]). The Newton-Dinkelbach method requires at most n2 + O(n log2 n)
iterations to solve (2.3).

The goal of this section is to give a simplified potential function based proof of the above
theorem using the accelerated Newton–Dinkelbach method (Algorithm 1), where we will give

40 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

a slightly weaker 2n2 + 2n + 4 bound on the iteration count. Our analysis uses the same
combinatorial ring family analysis as in [71], but the Bregman divergence enables considerable
simplifications.

2.5.1 Implementing the Accelerated Newton–Dinkelbach

We explain how to implement and initialize the accelerated Newton–Dinkelbach method in
the present context. To begin, Algorithm 1 requires access to the supergradients of f . For
δ ∈ R, it is easy to verify that

S ∈ argmin{hδ(T) : T ⊆ V } ⇒ −a(S) ∈ ∂f(δ).

Therefore, computing supergradients of f can be reduced to computing minimizers of the
submodular functions hδ(S) := h(S) − δa(S), δ ∈ R. Submodular function minimization
(SFM) is a classic problem in combinatorial optimization and has been extensively studied
from the viewpoint of strongly polynomial algorithms [42, 83, 84, 99, 85]. The fastest strongly
polynomial running time is due to Jiang [85] who gave an algorithm for SFM using O(n3)
calls to the evaluation oracle.

In what follows, we assume access to an SFM oracle, that we will call on the submodular
functions hδ, for δ ∈ R. Each iteration of Algorithm 1 requires two calls to a supergradient
oracle, one for the standard step and one for the look-ahead step, and hence can be imple-
mented using two calls to the SFM oracle. Gupta, Goemans and Jaillet [71] were directly
concerned with the number of calls to an SFM oracle, which is exactly equal to the number
of iterations of standard Newton–Dinkelbach (it requires only one SFM call per iteration
instead of two). As mentioned above, we will prove a 2n2 + 2n+ 4 bound on the iteration
count for accelerated Newton–Dinkelbach, which will recover the bound on the number of
SFM calls of [71] up to a factor 4. Since accelerated Newton–Dinkelbach is always as fast
as the standard method (it goes at least as far in each iteration), the iteration bound in
Theorem 2.25 in fact applies to the accelerated method as well.

We now explain how to initialize the method. For this purpose, Algorithm 1 requires
δ(1) ∈ R and g(1) ∈ ∂f(δ(1)) such that f(δ(1)) ≤ 0 and g(1) < 0. We proceed as in [71] and
let δ(1) := min{h({i})/ai : i ∈ V, ai > 0} ≥ 0, which is well-defined by assumption on a. We
compute f(δ(1)) by the SFM oracle. Note that

f(δ(1)) = min
S⊆V

hδ(S) ≤ min
i∈V,ai>0

h({i})− δ(1)ai = 0.

If f(δ(1)) = 0, we return δ(1), as we are already done. Otherwise if f(δ(1)) < 0, set
g(1) = −a(S(1)), where S(1) ∈ argminS⊆V hδ(1)(S) as returned by the oracle. From here, note

2.5 Parametric Submodular Function Minimization | 41

that

0 > f(δ(1)) = hδ(1)(S(1)) = h(S(1))− δ(1)a(S(1)) = h(S(1)) + g(1)δ(1) ≥ g(1)δ(1),

where the last inequality follows by non-negativity of h. Since δ(1) ≥ 0, the above implies
that δ(1) > 0 and g(1) < 0. We may therefore initialize Algorithm 1 with δ(1) and g(1).

Assuming f(δ(1)) < 0, the largest root δ∗ of f is guaranteed to exist in the interval [0, δ(1)).
This follows since f is continuous, f(0) = minS⊆V h(S) ≥ 0 (by non-negativity of h) and
f(δ(1)) < 0. Note that there does not exist a root larger than δ(1) due to the concavity of f .
So, Algorithm 1 on input f, δ(1), g(1) is guaranteed to output the desired largest root δ∗ in a
finite number of iterations (recalling that f is piecewise affine with 2n pieces). In the next
subsection, we prove a 2n2 + 2n+ 4 bound on the number of iterations.

2.5.2 Proof of the 2n2 + 2n + 4 Iteration Bound

Let δ(1) > · · · > δ(ℓ) = δ∗ denote the iterates of Algorithm 1 on input f and δ(1) > 0, g(1) < 0
as above. For each i ∈ [ℓ], let S(i) be any set satisfying

S(i) ∈ argmax{a(S) : S ∈ argminT⊆V hδ(i)(T)}.

It is not hard to verify that S(i), i ∈ [ℓ], is a minimizer of hδ(i) inducing the right derivative
of f at δ(i). Precisely, −a(S(i)) = infg∈∂f(δ(i)) g, ∀i ∈ [ℓ]. We note that the sets S(i), i ∈ [ℓ],
need not be the sets outputted by the SFM oracle, and are only required for the analysis of
the algorithm.

Our goal is to prove that ℓ ≤ 2n2 + 2n + 4. For this purpose, we rely on the key idea
of [71], which is to extract an increasing sequence of ring-families from the sets S(i), i ∈ [ℓ].

A ring family R ⊆ 2V is a subsystem of sets that is closed under unions and intersections,
precisely A,B ∈ R ⇒ A ∩ B,A ∪ B ∈ R. Given T ⊆ 2V , we let R(T) denote the smallest
ring-family containing T . We will use the following lemma of [71] which bounds the length
of an increasing sequence of ring-families:

Lemma 2.26 ([71, Theorem 2]). Let ∅ ̸= R1 (R2 (· · · (Rk ⊆ 2V , where |V | = n. Then
k ≤

(n+1
2
)

+ 1.

The proof of the above lemma is based on the Birkhoff representation of a ring family.
Precisely, for any ring-family R ⊆ 2V , with ∅, V ∈ R, there exists a directed graph G on V ,
such that the sets S ∈ R are exactly the subsets of vertices of G having no out-neighbors.
The main idea for the bound is that the digraph representation of Ri, i ∈ [k], must lose edges
as i increases. The next statement is a slightly adapted version of [71, Theorem 5] that is
sufficient for our purposes. It shows that a sequence of sets with geometrically increasing h
values forms an increasing sequence of ring families. We include a proof for completeness.

42 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

Lemma 2.27. Let h : 2V → R+ be a non-negative submodular function. Consider a
sequence of distinct sets T1, T2, . . . , Tq ⊆ V such that h(Ti+1) > 4h(Ti) for i ∈ [q − 1]. Then
Ti+1 /∈ R({T1, . . . , Ti}) for all i ∈ [q − 1].

Proof. Let Ri := R({T1, . . . , Ti}), ∀i ∈ [q]. We claim that maxS∈Ri h(S) ≤ 2h(Ti), ∀i ∈ [q].
This proves Ti+1 /∈ Ri, for i ∈ [q − 1], since h(Ti+1) > 4h(Ti) ≥ 2h(Ti) ≥ maxS∈Ri h(S),
noting that the second inequality uses that h is non-negative.

We now prove the claim by induction on i ∈ [q]. The base case i = 1 is trivial since
R1 = {T1}. We now assume that maxS∈Ri h(S) ≤ 2h(Ti), for 1 ≤ i ≤ q − 1, and prove the
corresponding bound for Ri+1. Recalling that Ri+1 is the ring-family generated by Ri and
Ti+1, it is easy to verify that the set system

Ri ∪ {Ti+1} ∪ {S ∪ Ti+1 : S ∈ Ri} ∪ {S ∩ Ti+1 : S ∈ Ri} ∪ {S1 ∪ (S2 ∩ Ti+1) : S1, S2 ∈ Ri}

is a ring-family and hence is equal to Ri+1. It therefore suffices to upper bound h(X) for
a set X of the above type. For X ∈ Ri or X = Ti+1, the bound is by assumption. For
X = S1 ∪ (S2 ∩ Ti+1), S1, S2 ∈ Ri+1, we prove the bound as follows:

h(S1 ∪ (S2 ∩ Ti+1)) ≤ h(S1) + h(S2 ∩ Ti+1)− h(S1 ∩ S2 ∩ Ti+1) (by submodularity of h)

≤ h(S1) + h(S2) + h(Ti+1)− h(S2 ∪ Ti+1)− h(S1 ∩ S2 ∩ Ti+1)

≤ h(S1) + h(S2) + h(Ti+1) (by non-negativity of h)

≤ 4h(Ti) + h(Ti+1) (by the induction hypothesis)

≤ 2h(Ti+1). (since 4h(Ti) < h(Ti+1))

For X = S ∪ Ti+1 or X = S ∩ Ti+1, S ∈ Ri, similarly to the above, one has

h(X) ≤ h(S) + h(Ti+1) ≤ 2h(Ti) + h(Ti+1) ≤ 3
2h(Ti+1),

as required.

We now use the Bregman-divergence analysis to show that for the function hδ∗ , the
sequence of sets Ti = S(ℓ−4(i−1)), 1 ≤ i ≤ ⌊ ℓ+3

4 ⌋ satisifes the conditions of this lemma.
Combined with Lemma 2.26, we get that the number of iterations satisfies

⌊(ℓ+ 3)/4⌋ ≤
(
n+ 1

2

)
+ 1⇒ ℓ ≤ 2n2 + 2n+ 4, as needed.

Lemma 2.28. Let us define

Ti := S(ℓ−4(i−1)) , i ∈ [q] for q :=
⌊
ℓ+ 3

4

⌋
.

2.6 2VPI Analysis without Acceleration | 43

Then, the function hδ∗ and the sequence of sets T1, T2, . . . , Tq satisfy the conditions in
Lemma 2.27.

Proof. The function hδ∗ is clearly submodular, and its minimum is 0 since 0 = f(δ∗) =
minS⊆V hδ∗(S) = hδ∗(S(ℓ)) = hδ∗(T1). In particular, hδ∗ is non-negative. It is left to show
hδ∗(Ti+1) > 4hδ∗(Ti) for i ∈ [q − 1]. For each δ(i), i ∈ [ℓ], we see that

Df (δ∗, δ(i)) = f(δ(i)) + sup
g∈∂f(δ(i))

g(δ∗ − δ(i))− f(δ∗)

= hδ(i)(S(i))− a(S(i))(δ∗ − δ(i)) (by our choice of S(i) and f(δ∗) = 0)

= h(S(i))− δ(i)a(S(i))− a(S(i))(δ∗ − δ(i)) = hδ∗(S(i)).

By Lemma 2.4 and the above, we get for 3 ≤ i ≤ ℓ that

Df (δ∗, δ(i)) < 1
2Df (δ∗, δ(i−2))⇔ hδ∗(S(i)) < 1

2hδ
∗(S(i−2)). (2.4)

Then, hδ∗(Ti+1) > 4hδ∗(Ti) for i ∈ [q − 1] follows by the definition of the Ti sets.

2.6 2VPI Analysis without Acceleration

In this section, we analyze the convergence of Algorithm 3 when the look-ahead Newton–
Dinkelbach method is replaced with the standard version. Interestingly, we also obtain a
strongly polynomial runtime in this case, albeit slower than the accelerated version by a
factor of O(logn). To achieve the desired runtime, we slightly strengthen Lemma 2.6, whose
proof remains largely the same.

Lemma 2.29. Let c ∈ Rm+ and x(1), x(2), . . . , x(k) ∈ Zm such that
∥∥∥x(i)

∥∥∥
1
≤ n for all i ∈ [k].

If
0 < c⊤x(i+1) ≤ 1

2c
⊤x(i)

for all i < k, then k = O(m logn).

Proof of Lemma 2.29. Consider the polyhedron P ⊆ Rm defined by the following constraints:

(x(i) − 2x(i+1))⊤z ≥ 0 ∀i < k

(x(k))⊤z = 1

z ≥ 0.

Let A ∈ R(k+m)×m and b ∈ Rk+m denote the coefficient matrix and right-hand side vector
of this system. The polyhedron P is nonempty because it contains the vector c/(x(k))⊤c.
Moreover, since P does not contain a line, it has an extreme point. So there exists a vector

44 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

c′ ∈ P such that A′c′ = b′ for some nonsingular submatrix A′ ∈ Rm×m of the matrix A and a
subvector b′ ∈ Rm of the vector b. Cramer’s rule says that for each i ∈ [m],

c′i = detA′i
detA′

where the matrix A′i is obtained from matrix A′ by replacing the i-th column with vector
b′. The 1-norm of the rows of A′i is bounded by 3n and so by Hadamard’s inequality
|det(A′i)| ≤ (3n)m.

As the matrix A′ is nonsingular, we also have |detA′| ≥ 1, which implies that c′i ≤ (3n)m

for all i ∈ [m]. Finally, using the constraints which define the polyhedron P , we obtain

1 = (x(k))⊤c′ ≤ (x(1))⊤c′

2k−1 ≤ n(3n)m

2k−1 .

So, k ≤ log(3mnm+1) + 1 = O(m logn) as desired.

Fix a phase k ∈ [n] and denote mk = |E(G(k))|. It is helpful to classify the iterations of
the Newton–Dinkelbach method based on the magnitude by which the supergradient changes.
Recall that the supergradient at the start of iteration i > 1 is given by γ(P (i))− 1, where
P (i) is the u-u′ path returned by Grapevine in the previous iteration.

Definition 2.30. For every i > 1, we say that iteration i is good if 1 − γ(P (i)) ≤ 1
2(1 −

γ(P (i−1))). Otherwise, we say that it is bad.

The next lemma gives a strongly polynomial bound on the number of good iterations.

Lemma 2.31. In each phase k ∈ [n], the number of good iterations is O(mk log k).

Proof. Let P be a sequence of u-u′ paths in G(k)
u at the start of every iteration of the Newton–

Dinkelbach method. Let P∗ = (P (1), P (2), . . . , P (t)) be the subsequence of P restricted to
good iterations. We claim that γ(P (i+1)) ≥

√
γ(P (i)) for all i < t. We use the simple

inequality that (1 − x)/2 ≤ 1 −
√
x for all x ∈ R+; one can derive this by rearranging

(
√
x− 1)2/2 ≥ 0. This gives

1− γ(P (i+1)) ≤ 1
2
(
1− γ(P (i))

)
≤ 1−

√
γ(P (i)),

which proves the claim. Next, enumerate the arcs of each path by P (i) = (e(i)
1 , e

(i)
2 , . . . , e

(i)
ℓi

).
By taking logarithms, the claim can be equivalently stated as

ℓi+1∑
j=1

log γ
e

(i+1)
j

≥ 1
2

ℓi∑
j=1

log γ
e

(i)
j

.

Note that both sides of the expression above are negative because γ(P (i)) < 1 for all i ∈ [t].
Let c ∈ Rmk

+ be the vector defined by ce = |log γe| for all e ∈ E(G(k)). In addition, for every

2.6 2VPI Analysis without Acceleration | 45

i ∈ [t], define the vector x(i) ∈ Zm as

x(i)
e = − sgn(log γe)

∣∣∣{j ∈ [ℓi] : e(i)
j = e

}∣∣∣ .
Then, we obtain

0 < c⊤x(i+1) =
ℓi+1∑
j=1
− log γ

e
(i+1)
j

≤ 1
2

ℓi∑
j=1
− log γ

e
(i)
j

= 1
2c
⊤x(i).

for all i < t. Since ∥x(i)∥1 ≤ k for all i ∈ [t], we conclude that t = O(mk log k) by Lemma
2.29.

It is left to bound the number of bad iterations. We approach this by arguing that in a
strongly polynomial number of bad iterations, an arc will no longer appear in future paths
produced by the Newton–Dinkelbach method.

Lemma 2.32. In each phase k ∈ [n], the number of bad iterations is O(mk log k).

Proof. Let Ȳ = (ȳ(1), ȳ(2), . . . , ȳ(ℓ)) and P = (P (1), P (2), . . . , P (ℓ)) be a sequence of node labels
and u-u′ paths in G(k)

u respectively at the start of every iteration of the Newton–Dinkelbach
method. Without loss of generality, we may assume that ȳ(i) is finite for all i ∈ [ℓ]. For
each i ∈ [ℓ], define y(i) ∈ Rn as y(i)

u := ȳ
(i)
u′ and y

(i)
v := ȳ

(i)
v for all v /∈ {u, u′}. Now, pick

an iteration j ∈ [ℓ] such that more than log(2n) bad iterations have elapsed. Consider the
reduced cost c′ ∈ Rmk given by c′vw := cvw + γvwy

(j)
w − y(j)

v for all vw ∈ E(G(k)). Note that
c′vw ≥ 0 for all v ̸= u.

According to Lemma 2.17, each P (i) is a shortest u-u′ path with respect to ȳ(i). By
complementary slackness, the unit flow on P (i) is an optimal primal solution to f(ȳ(i)

u′). Since
ȳ

(i)
u′ > ȳ

(i+1)
u′ for all i < ℓ, the sequence P satisfies subpath monotonicity at u by Lemma 2.20.

Define the vector x ∈ Rm+ as

xvw :=

maxi∈[ℓ]
{
γ(P (i)

uv) : vw ∈ E(P (i))
}

if vw ∈ ∪ℓi=1E(P (i)),

0 otherwise.

Observe that xvw is the gain factor of the u-v subpath of the last path in P which contains
vw, due to subpath monotonicity.

Claim 2.33. We have −f(ȳ(j)
u′) < ∥c′ ◦ x∥∞.

Proof. For every i ∈ [ℓ], we have

f(ȳ(i)
u′) = c(P (i))− ȳ(i)

u′ (1− γ(P (i))) = c′(P (i))− (ȳ(i)
u′ − ȳ

(j)
u′)(1− γ(P (i))).

46 | Fractional Optimization: An Accelerated Newton–Dinkelbach Method

By applying the definition of ȳ(i)
u′ , we can upper bound its negation by

−f(ȳ(i)
u′) = −c′(P (i)) + 1− γ(P (i))

1− γ(P (i−1))
c′(P (i−1)) ≤

∣∣∣c′(P (i))
∣∣∣+ ∣∣∣c′(P (i−1))

∣∣∣ ≤ 2k
∥∥c′ ◦ x∥∥∞ .

Lemma 2.1 tells us that −f(ȳ(i)
u′) is nonnegative and monotonically decreasing. Moreover, it

decreases geometrically by a factor of 1/2 during bad iterations. Hence, by our choice of j,
we obtain

−f(ȳ(j)
u′) <

(1
2

)log(2n)
· 2k

∥∥c′ ◦ x∥∥∞ =
∥∥c′ ◦ x∥∥∞ .

Let d ∈ Rmk be the arc costs defined by

dvw =

c
′
vw if v ̸= u,

c′vw − f(ȳ(j)
u′) if v = u.

Since f(ȳ(j)
u′) = ȳ

(j)
u − ȳ(j)

u′ , observe that d ≥ 0 because ȳ(j)
V is feasible to the dual LP for

f(ȳ(j)
u′).

Claim 2.34. We have ∥d ◦ x∥∞ ≥ ∥c′ ◦ x∥∞.

Proof. Let e∗ = arg maxe∈E(G(k)) |c′exe|. The claim is trivial unless e∗ ∈ ∪ℓi=1E(P (i)) and the
tail of e∗ is u. Since f(ȳ(j)

u′) ≤ 0 and de∗ = c′e∗ − f(ȳ(j)
u′), it suffices to show that c′e∗ ≥ 0.

For the purpose of contradiction, suppose that c′e∗ < 0. Since de∗ ≥ 0, this implies that
|c′e∗ | ≤ −f(ȳ(j)

u′) < ∥c′ ◦ x∥∞ using Claim 2.33. By the definition of x, xe∗ = 1 because e∗ is
the first arc of any path in P which uses it. However, this implies that

∣∣c′e∗∣∣ =
∣∣c′e∗xe∗ ∣∣ =

∥∥c′ ◦ x∥∥∞ ,
which is a contradiction.

Consider the arc e∗ := arg maxe∈E |dexe|. We claim that e∗ does not appear in subsequent
paths in P after iteration j. For the purpose of contradiction, suppose that there exists an
iteration i > j such that e∗ ∈ E(P (i)). Pick the iteration i such that P (i) is the last path in
P which contains e∗. Since the iterates ȳ(·)

u′ are monotonically decreasing, we have

0 > ȳ
(i+1)
u′ − ȳ(j)

u′ = c(P (i))
1− γ(P (i))

− ȳ(j)
u′ = c′(P (i))

1− γ(P (i))
=
d(P (i))− f(ȳ(j)

u′)
1− γ(P (i))

This implies that d(P (i)) < f(ȳ(j)
u′) < ∥c′ ◦ x∥∞. However, it contradicts

d(P (i)) ≥ de∗xe∗ = ∥d ◦ x∥∞ ≥
∥∥c′ ◦ x∥∥∞ ,

2.6 2VPI Analysis without Acceleration | 47

where the first inequality is due to our choice of i and the nonnegativity of d, while the
second inequality is due to Claim 2.34. Repeating the argument above for m times yields the
desired bound on the number of bad iterations.

The runtime of every iteration of the Newton–Dinkelbach method is dominated by
Grapevine. Thus, following the discussion in Section A.3, we obtain the following result.

Corollary 2.35. If we replace Algorithm 1 with the Newton–Dinkelbach method in Algorithm
3, then it solves the feasibility of M2VPI linear systems in O(m2n2 logn) time.

Chapter 3

Linear Optimization: Circuit
Diameter Bounds

3.1 Introduction

The combinatorial diameter of a polyhedron P is the diameter of the vertex-edge graph
associated with P . Hirsch’s famous conjecture from 1957 asserted that the combinatorial
diameter of a d-dimensional polytope (bounded polyhedron) with f facets is at most f − d.
This was disproved by Santos in 2012 [129]. The polynomial Hirsch conjecture, i.e., finding a
poly(f) bound on the combinatorial diameter remains a central question in the theory of
linear programming.

The first quasipolynomial bound was given by Kalai and Kleitman [91, 92], see [140]
for the best current bound and an overview of the literature. Dyer and Frieze [53] proved
the polynomial Hirsch conjecture for totally unimodular (TU) matrices. For a system
{x ∈ Rd : Mx ≤ b} with integer constraint matrix M , polynomial diameter bounds were
given in terms of the maximum subdeterminant ∆M [16, 23, 57, 36]. These arguments can
be strengthened to using a parametrization by a ‘discrete curvature measure’ δM ≥ 1/(d∆2

M).
The best such bound was given by Dadush and Hähnle [36] as O(d3 log(d/δM)/δM), using a
shadow vertex simplex algorithm.

As a natural relaxation of the combinatorial diameter, Borgwardt, Finhold, and Hemmecke
[18] initiated the study of circuit diameters. Consider a polyhedron in standard equality form

P = {x ∈ Rn : Ax = b, x ≥ 0 } (P)

for A ∈ Rm×n, b ∈ Rm; we assume rk(A) = m. For the linear space W = ker(A) ⊆ Rn,
g ∈ W is an elementary vector if g is a support-minimal nonzero vector in W , that is, no
h ∈ W \ {0} exists such that supp(h) (supp(g). A circuit in W is the support of some
elementary vector; these are precisely the circuits of the associated linear matroid M(A).

50 | Linear Optimization: Circuit Diameter Bounds

We let E(W) = E(A) ⊆ W and C(W) = C(A) ⊆ 2n denote the set of elementary vectors
and circuits in the space W = ker(A), respectively. All edge directions of P are elementary
vectors, and the set of elementary vectors E(A) equals the set of all possible edge directions
of P in the form (P) for varying b ∈ Rm [139].

A circuit walk is a sequence of points x(1), x(2), . . . , x(k+1) in P such that for each
i = 1, . . . , k, x(i+1) = x(i) +g(i) for some g(i) ∈ E(A), and further, x(i) +(1+ε)g(i) /∈ P for any
ε > 0, i.e., each consecutive circuit step is maximal. The circuit diameter of P is the maximum
length (number of steps) of a shortest circuit walk between any two vertices x, y ∈ P . Note
that, in contrast to walks in the vertex-edge graph, circuit walks are non-reversible and
the minimum length from x to y may be different from the one from y to x; this is due to
the maximality requirement. The circuit-analogue of Hirsch conjecture, formulated in [18],
asserts that the circuit diameter of d-dimensional polyhedron with f facets is at most f − d;
this may be true even for unbounded polyhedra, see [19]. For P in the form (P), d = n−m
and the number of facets is at most n; hence, the conjectured bound is m.

Circuit diameter bounds have been shown for some combinatorial polytopes such as
dual transportation polyhedra [18], matching, travelling salesman, and fractional stable set
polytopes [90]. The paper [17] introduced several other variants of circuit diameter, and
explored the relation between them. We note that [90] considers circuits for LPs given in the
general form {x ∈ Rn : Ax = b, Bx ≤ d}. In Section 3.7, we show that this setting can be
reduced to the form (P).

Circuit augmentation algorithms Circuit diameter bounds are inherently related to
circuit augmentation algorithms. This is a general algorithmic scheme to solve an LP

min ⟨c, x⟩ s.t. Ax = b , x ≥ 0 . (LP)

The algorithm proceeds through a sequence of feasible solutions x(t). An initial feasible x(0)

is required in the input. For t = 0, 1, . . . , the current x(t) is updated to x(t+1) = x(t) + αg for
some g ∈ E(A) such that ⟨c, g⟩ ≤ 0, and α > 0 such that x(t) +αg is feasible. The elementary
vector g is an augmenting direction if ⟨c, g⟩ < 0 and such an α > 0 exists; by LP duality, x(t)

is optimal if and only if no augmenting direction exists. The augmentation is maximal if
x(t) +α′g is infeasible for any α′ > α; α is called the maximal stepsize for x(t) and g. Clearly,
an upper bound on the number of steps of a circuit augmentation algorithm with maximal
augmentations for arbitrary cost c and starting point x(0) yields an upper bound on the
circuit diameter.

Simplex is a circuit augmentation algorithm that is restricted to using special elementary
vectors corresponding to edges of the polyhedron. Many network optimization algorithms
can be seen as special circuit augmentation algorithms. Bland [14] introduced a circuit
augmentation algorithm for LP, that generalizes the Edmonds–Karp–Dinic maximum flow

3.1 Introduction | 51

algorithm and its analysis, see also [98, Proposition 3.1]. Circuit augmentation algorithms were
revisited by De Loera, Hemmecke, and Lee in 2015 [45], analyzing different augmentation rules
and also extending them to integer programming. De Loera, Kafer, and Sanità [46] studied
the convergence of these rules on 0/1-polytopes, as well as the computational complexity of
performing them. We refer the reader to [45] and [46] for a more detailed overview of the
background and history of circuit augmentations.

The circuit imbalance measure For a linear space W = ker(A) ⊆ Rn, the circuit
imbalance κW = κA is defined as the maximum of |gj/gi| over all elementary vectors g ∈ E(W),
i, j ∈ supp(g). It can be shown that κW = 1 if and only if W is a unimodular space, i.e., the
kernel of a totally unimodular matrix. This parameter and related variants have been used
implicitly or explicitly in many areas of linear programming and discrete optimization, see [58]
for a recent survey. It is closely related to the Dikin–Stewart–Todd condition number χ̄W that
plays a key role in layered-least-squares interior point methods introduced by Vavasis and Ye
[149]. An LP of the form (LP) for A ∈ Rm×n can be solved in time poly(n,m, log κA), which
is strongly polynomial if κA ≤ 2poly(n); see [37, 41] for recent developments and references.

Imbalance and diameter The combinatorial diameter bound O(d3 log(d/δM)/δM) from
[36] mentioned above translates to a bound O((n −m)3mκA log(κA + n)) for the system
in the form (P), see [58]. For circuit diameters, the Goldberg-Tarjan minimum-mean cycle
cancelling algorithm for minimum-cost flows [72] naturally extends to a circuit augmentation
algorithm for general LPs using the steepest-descent rule. This yields a circuit diameter
bound O(n2mκA log(κA + n)) [58], see also [70]. However, note that these bounds may be
exponential in the bit-complexity of the input.

3.1.1 Our Contributions

Our first main contribution improves the κA dependence to a log κA dependence for circuit
diameter bounds.

Theorem 3.1. The circuit diameter of a system in the form (P) with constraint matrix
A ∈ Rm×n is O(mmin{m,n−m} log(m+ κA)).

The proof in Section 3.3 is via a simple ‘shoot towards the optimum’ scheme. We need
the well-known concept of conformal circuit decompositions. We say that x, y ∈ Rn are
sign-compatible if xiyi ≥ 0 for all i ∈ [n]. We write x ⊑ y if they are sign-compatible and
further |xi| ≤ |yi| for all i ∈ [n]. It follows from Carathéodory’s theorem and Minkowski–
Weyl theorem that for any linear space W ⊆ Rn and x ∈ W , there exists a decomposition
x =

∑k
j=1 h

(j) such that h(j) ∈ E(W), h(j) ⊑ x for all j ∈ [k] and k ≤ n. This is called a
conformal circuit decomposition of x.

52 | Linear Optimization: Circuit Diameter Bounds

Let B ⊆ [n] be a feasible basis and N = [n] \ B, i.e., x∗ = (A−1
B b,0N) ≥ 0n is a

basic feasible solution. This is the unique optimal solution to (LP) for the cost function
c = (0B, 1N). Let x(0) ∈ P be an arbitrary vertex. We may assume that n ≤ 2m, by
restricting to the union of the support of x∗ and x(0), and setting all other variables to 0. For
the current iterate x(t), let us consider a conformal circuit decomposition x∗−x(t) =

∑k
j=1 h

(j).
Note that the existence of such a decomposition does not yield a circuit diameter bound of
n, due to the maximality requirement in the definition of circuit walks. For each j ∈ [k],
x(t) + h(j) ∈ P , but there might be a larger augmentation x(t) + αh(j) ∈ P for some α > 1.

Still, one can use this decomposition to construct a circuit walk. Let us pick the most
improving circuit from the decomposition, i.e., the one maximizing −

〈
c, h(j)

〉
= ∥h(j)

N ∥1, and
obtain x(t+1) = x(t) + α(t)h(j) for the maximum stepsize α(t) ≥ 1. The proof of Theorem 3.1
is based on analyzing this procedure. The first key observation is that

〈
c, x(t)

〉
= ∥x(t)

N ∥1
decreases geometrically. Then, we look at the set of indices Lt = {i ∈ [n] : x∗i > nκA∥x(t)

N ∥1}
and Rt = {i ∈ [n] : x(t)

i ≤ (n−m)x∗i }, and show that indices may never leave these sets once
they enter. Moreover, a new index is added to either set every O(m log(m+ κA)) iterations.
In Section 3.4, we extend this bound to the setting with upper bounds on the variables.

Theorem 3.2. The circuit diameter of a system in the form Ax = b, 0 ≤ x ≤ u with
constraint matrix A ∈ Rm×n is O(mmin{m,n−m} log(m+ κA) + (n−m) logn).

There is a straightforward reduction from the capacitated form to (P) by adding n slack
variables; however, this would give an O(n2 log(n+ κA)) bound. For the stronger bound, we
use a preprocessing that involves cancelling circuits in the support of the current solution;
this eliminates all but O(m) of the capacity bounds in O(n logn) iterations, independently
of κA.

For rational input, log(κA) = O(LA) where LA denotes the total encoding length of
A [37]. Hence, our result yields an O(mmin{m,n −m}LA + n logn) diameter bound on
Ax = b, 0 ≤ x ≤ u. This can be compared with the bounds O(nLA,b) using deepest descent
augmentation steps in [45, 46], where LA,b is the encoding length of (A, b). (Such a bound
holds for every augmentation rule that decreases the optimality gap geometrically, including
the minimum-ratio circuit rule discussed below.) Note that our bound is independent of
b. Furthermore, it is also applicable to systems given by irrational inputs, in which case
arguments based on subdeterminants and bit-complexity cannot be used.

In light of these results, the next important step towards the polynomial Hirsch conjecture
might be to show a poly(n, log κA) bound on the combinatorial diameter of (P). Note that—in
contrast with the circuit diameter—not even a poly(n,LA,b) bound is known. In this context,
the best known general bound is O((n−m)3mκA log(κA + n)) implied by [36].

Circuit augmentation algorithms The diameter bounds in Theorems 3.1 and 3.2 rely
on knowing the optimal solution x∗; thus, they do not provide efficient LP algorithms. We

3.1 Introduction | 53

next present circuit augmentation algorithms with poly(n,m, log κA) bounds on the number
of iterations. Such algorithms require subroutines for finding augmenting circuits. In many
cases, such subroutines are LPs themselves. However, they may be of a simpler form, and
might be easier to solve in practice. Borgwardt and Viss [20] exhibit an implementation of a
steepest-descent circuit augmentation algorithm with encouraging computational results.

We assume that a subroutine Ratio-Circuit(A, c, w) is available; this implements the
well-known minimum-ratio circuit rule. It takes as input a matrix A ∈ Rm×n, c ∈ Rn,
w ∈ (R+ ∪ {∞})n, and returns a basic optimal solution to the system

min ⟨c, z⟩ s.t. Az = 0 ,
〈
w, z−

〉
≤ 1 , (3.1)

where (z−)i := max{0,−zi} for i ∈ [n]. We use the convention wizi = 0 if wi =∞ and zi = 0.
This system can be equivalently written as an LP using auxiliary variables. If bounded, a
basic optimal solution is an elementary vector z ∈ E(A) that minimizes ⟨c, z⟩ / ⟨w, z−⟩.

Given x ∈ P , we use weights wi = 1/xi (with wi = ∞ if xi = 0). For minimum-cost
flow problems, this rule was proposed by Wallacher [154]; such a cycle can be found in
strongly polynomial time for flows. The main advantage of this rule is that the optimality gap
decreases by a factor 1− 1/n in every iteration. This rule, along with the same convergence
property, can be naturally extended to linear programming [104], and has found several
combinatorial applications, e.g., [155, 157], and has also been used in the context of integer
programming [134].

On the negative side, Wallacher’s algorithm is not strongly polynomial: it does not termi-
nate finitely for minimum-cost flows, as shown in [104]. In contrast, our algorithms achieve a
strongly polynomial running time whenever κA ≤ 2poly(n). An important modification is the
occasional use of a second type of circuit augmentation step Support-Circuit that removes
circuits in the support of the current (non-basic) iterate x(t) (see Subroutine 3.2.1); this can
be implemented using simple linear algebra. Our first result addresses the feasibility setting:

Theorem 3.3. Consider an LP of the form (LP) with cost function c = (0[n]\N , 1N) for
some N ⊆ [n]. There exists a circuit augmentation algorithm that either finds a solution x

such that xN = 0 or a dual certificate that no such solution exists, using O(mn log(n+ κA))
Ratio-Circuit and (m+ 1)n Support-Circuit augmentation steps.

Such problems typically arise in Phase I of the Simplex method when we add auxiliary
variables in order to find a feasible solution. The algorithm is presented in Section 3.5. The
analysis extends that of Theorem 3.1, tracking large coordinates x(t)

i . Our second result
considers general optimization:

Theorem 3.4. Consider an LP of the form (LP). There exists a circuit augmentation
algorithm that finds an optimal solution or concludes unboundedness using O(mn2 log(n+κA))
Ratio-Circuit and (m+ 1)n2 Support-Circuit augmentation steps.

54 | Linear Optimization: Circuit Diameter Bounds

The proof is given in Section 3.6. The main subroutine identifies a new index i ∈ [n] such
that x(t)

i = 0 in the current iteration and x∗i = 0 in an optimal solution; we henceforth fix
this variable to 0. To derive this conclusion, at the end of each phase the current iterate x(t)

will be optimal to (LP) with a slightly modified cost function c̃; the conclusion follows using
a proximity argument (Theorem 3.14). The overall algorithm repeats this subroutine n times.
The subroutine is reminiscent of the feasibility algorithm (Theorem 3.3) with the following
main difference: whenever we identify a new ‘large’ coordinate, we slightly perturb the cost
function.

Comparison to black-box LP approaches An important milestone towards strongly
polynomial linear programming was Tardos’s 1986 paper [143] on solving (LP) in time
poly(n,m, log ∆A), where ∆A is the maximum subdeterminant of A. Her algorithm makes
O(nm) calls to a weakly polynomial LP solver for instances with small integer capacities and
costs, and uses proximity arguments to gradually learn the support of an optimal solution.
This approach was extended to the real model of computation for an poly(n,m, log κA) bound
[41]. The latter result uses proximity arguments with circuit imbalances κA, and eliminates
all dependence on bit-complexity.

The proximity tool Theorem 3.14 derives from [41], and our circuit augmentation algo-
rithms are inspired by the feasibility and optimization algorithms in this paper. However,
using circuit augmentation oracles instead of an approximate LP oracle changes the setup.
Our arguments become simpler since we proceed through a sequence of feasible solutions,
whereas much effort in [41] is needed to deal with infeasibility of the solutions returned by
the approximate solver. On the other hand, we need to be more careful as all steps must be
implemented using circuit augmentations in the original system, in contrast to the higher
degree of freedom in [41] where we can make approximate solver calls to arbitrary modified
versions of the input LP.

Chapter organization The rest of the chapter is organized as follows. We first provide
the necessary preliminaries in Section 3.2. In Section 3.3, we upper bound the circuit diameter
of (P). In Section 3.4, this bound is extended to the setting with upper bounds on the
variables. Then, we develop circuit-augmentation algorithms for solving (LP). In particular,
Section 3.5 contains the algorithm for finding a feasible solution, whereas Section 3.6 contains
the algorithm for solving (LP) given an initial feasible solution. Section 3.7 shows how circuits
in LPs of more general forms can be reduced to ours.

3.2 Preliminaries

We use the conventions ∞ · 0 = 0 and 1/0 = ∞. For α ∈ R, we denote α+ = max{0, α}
and α− = max{0,−α}. For a vector z ∈ Rn we define z+, z− ∈ Rn as (z+)i = (zi)+,

3.2 Preliminaries | 55

(z−)i = (zi)− for i ∈ [n]. For z ∈ Rn we let supp(z) = {i ∈ [n] : zi ̸= 0} denote its
support, and 1/z ∈ (R ∪ {∞})n denote the vector (1/zi)i∈[n]. We use ∥ · ∥p to denote the
ℓp-norm; we simply write ∥ · ∥ for ∥ · ∥2. For A ∈ Rm×n and S ⊆ [n], we let AS ∈ Rm×|S|

denote the submatrix corresponding to columns S. We denote rk(S) := rk(AS), i.e., the
rank of the set S in the linear matroid associated with A. The closure of S is defined as
cl(S) := {i ∈ [n] : rk(S ∪ {i}) = rk(S)}.

For A ∈ Rm×n, let W = ker(A). Recall that C(W) = C(A) and E(W) = E(A) are the set
of circuits and elementary vectors in W respectively. The circuit imbalance measure of W is
defined as

κW = κA = max
g∈E(W)

{
|gi|
|gj |

: i, j ∈ supp(g)
}
.

According to the next lemma, this is also equal to the imbalance of the dual space Im(A⊤):

Lemma 3.5 ([37]). For a linear space {0} ≠ W ⊆ Rn, we have κW = κW⊥.

For P as in (P), x ∈ P and an elementary vector g ∈ E(A), we let augP (x, g) := x+ αg

where α = arg max{ᾱ : x+ ᾱg ∈ P}.

Definition 3.6. [44] We say that x, y ∈ Rn are sign-compatible if xiyi ≥ 0 for all i ∈ [n]. We
write x ⊑ y if they are sign-compatible and further |xi| ≤ |yi| for all i ∈ [n]. For a linear
space W ⊆ Rn and x ∈ W , a conformal circuit decomposition of x is a set of elementary
vectors h(1), h(2), . . . , h(k) in W such that x =

∑k
j=1 h

(j), k ≤ n, and h(j) ⊑ x for all j ∈ [k].

The following lemma shows that every vector in a linear space has a conformal circuit
decomposition. It is a simple corollary of the Minkowski–Weyl and Carathéodory theorems.

Lemma 3.7. For a linear space W ⊆ Rn, every x ∈W has a conformal circuit decomposition
x =

∑k
j=1 h

(j) such that k ≤ min{dim(W), | supp(x)|}.

3.2.1 Circuit Oracles

In Sections 3.4, 3.5, and 3.6, we use a simple circuit finding subroutine Support-Circuit(A, c, x, S)
that will be used to identify circuits in the support of a solution x. This can be implemented
easily using Gaussian elimination. Note that the constraint ⟨c, z⟩ ≤ 0 is superficial as −z is
also an elementary vector for every elementary vector z.

Subroutine 3.2.1. Support-Circuit(A, c, x, S)

For a matrix A ∈ Rm×n, vectors c, x ∈ Rn and S ⊆ [n], the output is an elementary
vector z ∈ E(A) with supp(z) ⊆ supp(x), supp(z)∩S ̸= ∅ with ⟨c, z⟩ ≤ 0, or concludes
that no such elementary vector exists.

The circuit augmentation algorithms in Sections 3.5 and 3.6 will use the subroutine
Ratio-Circuit(A, c, w).

56 | Linear Optimization: Circuit Diameter Bounds

Subroutine 3.2.2. Ratio-Circuit(A, c, w)

The input is a matrix A ∈ Rm×n, c ∈ Rn, w ∈ (R+ ∪ {∞})n, and returns a basic
optimal solution to the system:

min ⟨c, z⟩ s.t. Az = 0 ,
〈
w, z−

〉
≤ 1 , (3.2)

and a basic optimal solution (y, s) to the following dual program:

max −λ s.t. s = c+A⊤y 0 ≤ s ≤ λw (3.3)

Note that (3.2) can be reformulated as an LP using additional variables, and its dual
LP can be equivalently written as (3.3). If (3.2) is bounded, then a basic optimal solution
is an elementary vector z ∈ E(A) that minimizes ⟨c, z⟩ / ⟨w, z−⟩. Moreover, observe that
every feasible solution to (3.3) is also feasible to the dual of (LP). The following lemma is
well-known, see e.g., [104, Lemma 2.2].

Lemma 3.8. Let OPT denote the optimum value of (LP). Given a feasible solution x to (LP),
let g be the elementary vector returned by Ratio-Circuit(A, c, 1/x), and x′ = augP (x, g).
Then, α ≥ 1 for the augmentation stepsize, and

〈
c, x′

〉
−OPT ≤

(
1− 1
| supp(x)|

)
(⟨c, x⟩ −OPT) .

Proof. The stepsize bound α ≥ 1 follows since ⟨1/x, g−⟩ ≤ 1; thus, x + g ∈ P . Let x∗ be
an optimal solution to (LP), and let z = (x∗ − x)/| supp(x)|. Then, z is feasible to (3.2) for
w = 1/x. Therefore,

α ⟨c, g⟩ ≤ ⟨c, g⟩ ≤ ⟨c, z⟩ = OPT− ⟨c, x⟩
| supp(x)| ,

implying the second claim.

Remark 3.9. It is worth noting that Lemma 3.8 shows that applying Ratio-Circuit to
vectors x with small support gives better convergence guarantees. Algorithms 7 and 8 for
feasibility and optimization in Sections 3.5 and 3.6 apply Ratio-Circuit to vectors x which
have large support | supp(x)| = Θ(n) in general. These algorithms could be reformulated in
that one first runs Support-Circuit to reduce the size of the support to size O(m) and
only then runs Ratio-Circuit. The guarantees of Lemma 3.8 now imply that to reduce
the optimality gap by a constant factor we would replace O(n) calls to Ratio-Circuit
with only O(m) calls. On the other hand, this comes at the cost of n additional calls to
Support-Circuit for every call to Ratio-Circuit.

3.2 Preliminaries | 57

3.2.2 Proximity Results

The imbalance measure κA is mainly used for proving norm bounds that can be interpreted
as special forms of Hoffman-proximity results. We formulate such statements that will be
needed for our analyses. These can be derived from more general results in [41]; see also
[58]. The references also explain the background and similar results in previous literature, in
particular, to proximity bounds via ∆A in e.g., [143] and [34]. For completeness, we include
the proofs.

Lemma 3.10. For A ∈ Rm×n, let N ⊆ [n] such that A[n]\N has full column rank. Then, for
any z ∈ ker(A), we have ∥z∥∞ ≤ κA∥zN∥1.

Proof. Let h(1), . . . , h(k) be a conformal circuit decomposition of z. Conformality implies
that ∥z∥∞ ≤

∑k
t=1 ∥h(t)∥∞. For each h(t), we have supp(h(t)) ∩N ̸= ∅ because A[n]\N has

full column rank. Hence, ∥h(t)∥∞ ≤ κA|h(t)
j | for some j ∈ N . By conformality again, we

obtain
∑k
t=1 ∥h(t)∥∞ ≤ κA∥zN∥1 as desired.

The next technical lemma will be key in our arguments. See Corollay 3.13 below for a
simple implication.

Lemma 3.11. Let A ∈ Rm×n and x ∈ Rn. Let L ⊆ supp(x) and S ⊆ [n] \ L. If there is no
circuit C ⊆ supp(x) such that C ∩ S ̸= ∅, then

∥xS∥∞ ≤ κA min
z∈ker(A)+x

∥z[n]\cl(L)∥1 .

Proof. First, observe that xS∩cl(L) = 0 due to our assumption. Indeed, any i ∈ S ∩ cl(L)
with xi ̸= 0 gives rise to a circuit in L ∪ {i} ⊆ supp(x). It follows that ∥xS∥∞ = ∥xS\cl(L)∥∞;
let j ∈ S \ cl(L) such that |xj | = ∥xS∥∞. Let z ∈ ker(A) + x be a minimizer of the RHS in
the statement. We may assume that |xj | > |zj |, as otherwise we are done because κA ≥ 1.

Let h(1), . . . , h(k) be a conformal circuit decomposition of z − x ∈ ker(A). Among these
elementary vectors, consider the set R := {t ∈ [k] : h(t)

j ̸= 0}.

Claim 3.12. For each t ∈ R, there exists an index it ∈ supp(h(t)) \ cl(L) such that xit = 0
and zit ̸= 0.

Proof. For the purpose of contradiction, suppose that supp(h(t)) \ cl(L) ⊆ supp(x). For
every i ∈ cl(L), we can write Ai = ALy

(i) for some y(i) ∈ RL. By applying this to the
coordinates in cl(L)\L, we can transform h(t) into a vector h ∈ ker(A) such that hcl(L)\L = 0

and h[n]\cl(L) = h
(t)
[n]\cl(L). However, we now have supp(h) ⊆ supp(x) because L ⊆ supp(x).

Moreover, supp(h) ∩ S ̸= ∅ because j ∈ S \ cl(L). Then, supp(h) must contain a circuit C
with C ∩ S ̸= ∅, contradicting the assumption of the lemma.

58 | Linear Optimization: Circuit Diameter Bounds

By the claim above, we get |h(t)
j | ≤ κA|zit | for all t ∈ R. Note that it ̸= j for all t ∈ R

because we assumed that |xj | > 0. By the conformality of the decomposition, we obtain

|xj − zj | =
∑
t∈R
|h(t)
j | ≤ κA∥z[n]\(cl(L)∪{j})∥1.

This gives us
∥xS∥∞ = |xj | ≤ |zj |+ |xj − zj | ≤ κA∥z[n]\cl(L)∥1

as desired.

For L = ∅ and S = [n], we obtain the following corollary.

Corollary 3.13. Let x be a basic (but not necessarily feasible) solution to (LP). Then, for
any z where Az = b, we have ∥x∥∞ ≤ κA∥z∥1.

The following proximity theorem will be key to derive x∗i = 0 for certain variables in our
optimization algorithm; see [41] and [58, Theorem 6.5]. For c̃ ∈ Rn, we use LP(c̃) to denote
(LP) with cost vector c̃, and OPT(c̃) as the optimal value of LP(c̃).

Theorem 3.14. Let c, c′ ∈ Rn be two cost vectors, such that both LP(c) and LP(c′) have
finite optimum values. Let s′ be a dual optimal solution to LP(c′). For all indices j ∈ [n]
such that

s′j > (m+ 1)κA∥c− c′∥∞ ,

it follows that x∗j = 0 for every optimal solution x∗ to LP(c).

Proof. We may assume that c ̸= c′, as otherwise we are done by complementary slackness.
Let x′ be an optimal solution to LP(c′). By complementary slackness, s′jx′j = 0, and therefore
x′j = 0. For the purpose of contradiction, suppose that there exists an optimal solution x∗ to
LP(c) such that x∗j > 0. Let h(1), . . . , h(k) be a conformal circuit decomposition of x∗ − x′.
Then, h(t)

j > 0 for some t ∈ [k], and therefore ∥h(t)∥1 ≤ (m + 1)∥h(t)∥∞ ≤ (m + 1)κAh(t)
j

Observe that for any i ∈ [n] where h(t)
i < 0, we have s′i = 0 because x′i > x∗i ≥ 0. Hence,〈

c, h(t)
〉

=
〈
c− c′, h(t)

〉
+
〈
c′, h(t)

〉
≥ −∥c− c′∥∞∥h(t)∥1 +

〈
s′, h(t)

〉
≥ −(m+ 1)κA∥c− c′∥∞ h(t)

j + s′jh
(t)
j > 0 .

The first inequality here used Hölder’s inequality and that
〈
c′, h(t)

〉
=
〈
s′, h(t)

〉
since c′ − s′

and h(t) are in orthogonal spaces. Since x∗ − h(t) is feasible to LP(c), this contradicts the
optimality of x∗.

The following lemma provides an upper bound on the norm of the perturbation c− c′ for
which the existences of an index j as in Theorem 3.14 is guaranteed.

3.3 The Circuit Diameter Bound | 59

Lemma 3.15. Let c, c′ ∈ Rn be two cost vectors, and let s′ be an optimal dual solution to
LP(c′). If c ∈ ker(A), ∥c∥2 = 1 and ∥c − c′∥∞ < 1/(

√
n(m + 2)κA) for some κA ≥ 1, then

there exists an index j ∈ [n] such that

s′j >
m+ 1√
n(m+ 2) .

Proof. Let r = c− c′. Note that s′ + r ∈ Im(A⊤) + c. Then,

∥s′∥∞ + ∥r∥∞ ≥ ∥s′ + r∥∞ ≥
1√
n
∥s′ + r∥2 ≥

1√
n
∥c∥2 = 1√

n
,

where the last inequality is due to s′ + r − c and c being orthogonal. This gives us

∥s′∥∞ ≥
1√
n
− ∥r∥∞ >

(m+ 2)κA − 1√
n(m+ 2)κA

≥ m+ 1√
n(m+ 2)

as desired because κA ≥ 1.

3.2.3 Estimating Circuit Imbalances

The circuit augmentation algorithms in Sections 3.5 and 3.6 explicitly use the circuit imbalance
measure κA. However, this is NP-hard to approximate within a factor 2O(n), see [148, 37].
We circumvent this problem using a standard guessing procedure, see e.g., [149, 37]. Instead
of κA, we use an estimate κ̂, initialized as κ̂ = n. Running the algorithm with this estimate
either finds the desired feasible or optimal solution (which one can verify), or fails. In case
of failure, we conclude that κ̂ < κA, and replace κ̂ by κ̂2. Since the running time of the
algorithms is linear in log(n+ κ̂), the running time of all runs will be dominated by the last
run, giving the desired bound. For simplicity, the algorithm descriptions use the explicit
value κA.

3.3 The Circuit Diameter Bound

In this section, we show Theorem 3.1, namely the bound O(mmin{m,n−m} log(m+κA)) on
the circuit diameter of a polyhedron in standard form (P). As outlined in the Introduction,
let B ⊆ [n] be a feasible basis and N = [n] \ B such that x∗ = (A−1

B b,0N) is a basic
solution to (LP). We can assume n ≤ 2m: the union of the supports of the starting vertex
x(0) and the target vertex x∗ is at most 2m; we can fix all other variables to 0. Defining
ñ := | supp(x∗) ∪ supp(x(0))| ≤ 2m and restricting A to these columns, we show a circuit
diameter bound O(ñ(ñ−m) log(m+ κA)). This implies Theorem 3.1 for general n. In the
rest of this section, we use n instead of ñ, but assume n ≤ 2m. The simple ‘shoot towards
the optimum’ procedure is shown in Algorithm 5.

60 | Linear Optimization: Circuit Diameter Bounds

Algorithm 5: Diameter-Bound
Input : Polyhedron in standard form (P), basis B ⊆ [n] with its corresponding

vertex x∗ = (A−1
B b,0N), and initial vertex x(0).

Output : Length of a circuit walk from x(0) to x∗.
1 t← 0
2 while x(t) ̸= x∗ do
3 Let h(1), h(2), . . . , h(k) be a conformal circuit decomposition of x∗ − x(t)

4 g(t) ← h(j) for any j ∈ arg maxi∈[k] ∥h
(i)
N ∥1

5 x(t+1) ← augP (x(t), g(t)); t← t+ 1
6 return t

A priori, even finite termination is not clear. The first key lemma shows that ∥x(t)
N ∥1

decreases geometrically, and bounds the relative error to x∗.

Lemma 3.16. For every iteration t ≥ 0 in Algorithm 5, we have ∥x(t+1)
N ∥1 ≤ (1− 1

n−m)∥x(t)
N ∥1

and for all i ∈ [n] we have |x(t+1)
i − x(t)

i | ≤ (n−m)|x∗i − x
(t)
i |.

Proof. Let h(1), . . . , h(k) with k ≤ n−m be the conformal circuit decomposition of x∗ − x(t)

used in Algorithm 5. Let α(t) be such that x(t+1) = x(t) + α(t)g(t). Clearly, α(t) ≥ 1 since
x(t) + g(t) ∈ P .

Note that h(i)
N ≤ 0N for i ∈ [k] as x∗N = 0N and x(t) ≥ 0. Then

∥g(t)
N ∥1 = max

i∈[k]
∥h(i)

N ∥1 ≥
1
k

∑
i∈[k]
∥h(i)

N ∥1 = 1
k
∥x(t)

N ∥1 and so

∥x(t+1)
N ∥1 = ∥ augP (x(t), g(t))N∥1 ≤ ∥x(t)

N + g
(t)
N ∥1

= ∥x(t)
N ∥1 − ∥g

(t)
N ∥1 ≤

(
1− 1

k

)
∥x(t)

N ∥1 ,

(3.4)

where the last equality uses conformality of the decomposition. Further, using that 0 ≤
x

(t+1)
N ≤ x(t)

N , we see that

α(t) = ∥x
(t+1)
N − x(t)

N ∥1
∥g(t)
N ∥1

≤ ∥x
(t)
N ∥1

∥g(t)
N ∥1

≤ k,

and so for all i we have |x(t+1)
i − x(t)

i | = α(t)|g(t)
i | ≤ k|g

(t)
i | ≤ k|x∗i − x

(t)
i |.

We analyze the sets

Lt := {i ∈ [n] : x∗i > nκA∥x(t)
N ∥1} , Tt := [n] \ Lt , Rt := {i ∈ [n] : x(t)

i ≤ (n−m)x∗i } .

Lemma 3.17. For every iteration t ≥ 0, we have Lt ⊆ Lt+1 ⊆ B and Rt ⊆ Rt+1.

3.3 The Circuit Diameter Bound | 61

Proof. Clearly, Lt ⊆ Lt+1 as ∥x(t)
N ∥1 is monotonically decreasing by Lemma 3.16, and Lt ⊆ B

as x∗N = 0N . Next, let j ∈ Rt. If x(t)
j ≥ x∗j , then x

(t+1)
j ≤ x

(t)
j by conformality. If x(t)

j < x∗j ,
then x

(t+1)
j ≤ x

(t)
j + (n − m)(x∗j − x

(t)
j) ≤ (n − m)x∗j by Lemma 3.16. In both cases, we

conclude that j ∈ Rt+1.

Our goal is to show that either Rt or Lt is extended within O((n − m) log(n + κA))
iterations. First, note that by the maximality of the augmentation, there is a variable
i ∈ supp(x(t)) \ supp(x(t+1)) in each iteration. Clearly, i ∈ Rt+1. First, we show that if
∥x(t)

Tt
− x∗Tt

∥∞ is sufficiently large, then i /∈ Rt for all such coordinates.

Lemma 3.18. If ∥x(t)
Tt
− x∗Tt

∥∞ > 2mn2κ2
A

∥∥∥x∗Tt

∥∥∥
∞

, then Rt (Rt+1.

Proof. Let i ∈ supp(x(t)) \ supp(x(t+1)); such a variable exists by the maximality of the
augmentation. Lemma 3.10 for x(t+1) − x∗ ∈ ker(A) implies that

x∗i ≤ ∥x(t+1) − x∗∥∞ ≤ κA∥x(t+1)
N − x∗N∥1 = κA∥x(t+1)

N ∥1 < κA∥x(t)
N ∥1, (3.5)

and so i /∈ Lt. Noting that x(t+1) − x(t) = α(t)g(t) is an elementary vector and x
(t+1)
i = 0, it

follows that ∥∥∥x(t)
N − x

(t+1)
N

∥∥∥
1
≤ (mκA + 1)x(t)

i ≤ 2mκAx(t)
i . (3.6)

On the other hand, let h(1), . . . , h(k) with k ≤ n−m be the conformal circuit decomposition
of x∗−x(t) used in iteration t in Algorithm 5. Let j ∈ Tt such that |x(t)

j −x∗j | = ∥x
(t)
Tt
−x∗Tt

∥∞.
There exists h̃ in this decomposition such that |h̃j | ≥ 1

k |x
(t)
j − x∗j |. Since AB has full column

rank, we have supp(h̃) ∩N ̸= ∅ and so

∥h̃N∥1 ≥
|h̃j |
κA
≥
|x(t)
j − x∗j |
kκA

. (3.7)

From (3.6), (3.7) and noting that ∥h̃N∥1 ≤ ∥g(t)
N ∥1 ≤ ∥x

(t)
N − x

(t+1)
N ∥1 we get

x
(t)
i ≥

∥x(t)
N − x

(t+1)
N ∥1

2mκA
≥ ∥h̃N∥12mκA

≥
∥x(t)

Tt
− x∗Tt

∥∞
2mkκ2

A

. (3.8)

In particular, if as in the assumption of the lemma ∥x(t)
Tt
− x∗Tt

∥∞ > 2mn2κ2
A∥x∗Tt

∥∞, then
x

(t)
i > n∥x∗Tt

∥∞ ≥ nx∗i . We conclude that i /∈ Rt and i ∈ Rt+1 as x(t+1)
i = 0.

We are ready to give the convergence bound. Above we have shown that a large ∥x(t)
Tt
−

x∗Tt
∥∞ guarantees the extension of Rt. Using the geometric decay of ∥x(t)

N ∥ (Lemma 3.16),
we show that whenever this distance is small, Lt must be extended.

62 | Linear Optimization: Circuit Diameter Bounds

Proof of Theorem 3.1. In light of Lemma 3.17, it suffices to show that either Lt or Rt is
extended in every O((n − m) log(n + κA)) iterations; recall the assumption n ≤ 2m. By
Lemma 3.18, if ∥x(t)

Tt
− x∗Tt

∥∞ > 2mn2κ2
A

∥∥∥x∗Tt

∥∥∥
∞

, then Rt (Rt+1 is extended.

Otherwise, ∥x(t)
Tt
− x∗Tt

∥∞ ≤ 2mn2κ2
A

∥∥∥x∗Tt

∥∥∥
∞

, that is, ∥x(t)
Tt
∥∞ ≤ (2mn2κ2

A + 1)
∥∥∥x∗Tt

∥∥∥
∞

.

Assuming ∥x(t)
N ∥1 > 0, by Lemma 3.16, there is an iteration r = t+O((n−m) log(n+κA)) =

t+O(min{n−m,m} log(n+κA)) such that n2κA(2mn2κ2
A+1)∥x(r)

N ∥1 < ∥x
(t)
N ∥1. In particular,

(2mn2κ2
A + 1)∥x∗Tt

∥∞ ≥ ∥x(t)
Tt
∥∞ ≥ ∥x(t)

N ∥∞ ≥
1
n
∥x(t)

N ∥1 > nκA(2mn2κ2
A + 1)∥x(r)

N ∥1. (3.9)

Therefore ∥x∗Tt
∥∞ > nκA∥x(r)

N ∥1 and so Lt (Lr.

3.4 Circuit Diameter Bound for the Capacitated Case

In this section we consider diameter bounds for systems of the form

Pu = {x ∈ Rn : Ax = b,0 ≤ x ≤ u}. (Cap-P)

The theory in Section 3.3 carries over to Pu at the cost of turning m into n via the
standard reformulation

P̃u =
{

(x, y) ∈ Rn+n :
[
A 0
I I

] [
x

y

]
=
[
b

u

]
, x, y ≥ 0

}
, Pu = {x : (x, y) ∈ P̃u}. (3.10)

Corollary 3.19. The circuit diameter of a system in the form (P) with constraint matrix
A ∈ Rm×n is O(n2 log(n+ κA)).

Proof. Follows straightforward from Theorem 3.1 together with the reformulation (3.10). It
is easy to check that κA of the constraint matrix of (3.10) coincides with κA, and that there
is a one-to-one mapping between the circuits and maximal circuit augmentations of the two
systems.

Intuitively, the polyhedron should not become more complex; related theory in [22] also
shows how two-sided bounds can be incorporated in a linear program without significantly
changing the complexity of solving the program.

We prove Theorem 3.2 via the following new procedure. A basic feasible point x∗ ∈ Pu
is characterised by a partition B ∪ L ∪H = [n] where AB is a basis (has full column rank),
x∗L = 0L and x∗H = uH . In O(n logn) iterations, we fix all but 2m variables to the same bound
as in x∗; for the remaining system with 2m variables, we can use the standard reformulation.

Proof of Theorem 3.2. We show that Algorithm 6 has the claimed number of iterations. First,
note that ⟨c, x∗⟩ = −|H| is the optimum value. Initially,

〈
c, x(0)

〉
= −

∑
i∈H

x(0)

ui
+
∑
i∈L

x(0)

ui
≤

3.5 A Circuit Augmentation Algorithm for Feasibility | 63

Algorithm 6: Capacitated-Diameter-Bound
Input : Polyhedron in the form (Cap-P), partition B ∪ L ∪H = [n] with its

corresponding vertex x∗ = (A−1
B b,0L, uH), and initial vertex x(0).

Output : Length of a circuit walk from x(0) to x∗.
1 Set the cost c ∈ Rn as ci = 0 if i ∈ B, ci = 1/ui if i ∈ L, and ci = −1/ui if i ∈ H
2 t← 0
3 S0 ← {i ∈ L ∪H : x(0)

i ̸= x∗i }
4 while |St| ≤ m do
5 if ⟨c, x(t)⟩ ≥ −|H|+ 1 then
6 Let h(1), h(2), . . . , h(k) be a conformal circuit decomposition of x∗ − x(t)

7 g(t) ← h(j) for any j ∈ arg mini∈[k]⟨c, h(i)⟩
8 else
9 g(t) ← Support-Cirtcuit(A, c, x(t), St)

10 x(t+1) ← augP (x(t), g(t))
11 St+1 ← {i ∈ L ∪H : x(t+1)

i ̸= x∗i }; t← t+ 1

12 Run Algorithm 5 on Ã :=
[
AB∪St 0
I I

]
and b̃ =

[
b
u

]
to get t′ ∈ Z+

13 return t+ t′

n. Similar to Lemma 3.16, due to our choice of g(t) from the conformal circuit decomposition,
we have

〈
c, x(t+1)

〉
+ |H| ≤ (1 − 1

n−m)(
〈
c, x(t)

〉
+ |H|). In particular, O((n − m) logn)

iterations suffice to find an iterate t such that ⟨c, x(t)⟩ < −|H|+ 1.
Note that the calls to Support-Circuit do not increase

〈
c, x(t)

〉
, so from now we will

never make use of the conformal circuit decomposition again. A call to Support-Circuit
will set at least one variable i ∈ supp(g(t)) to either 0 or ui. We claim that either x(t+1)

i = 0
for some i ∈ L, or x(t+1)

i = ui for some i ∈ H, that is, we set a variable to the ‘correct’
boundary. To see this, note that if x(t+1)

i hits the wrong boundary, then the gap between〈
c, x(t+1)

〉
and −|H| must be at least 1, a clear contradiction to

〈
c, x(t+1)

〉
< −|H|+ 1.

Thus, after at most n calls to Support-Circuit, we get |St| ≤ m, at which point we call
Algorithm 5 with ≤ 2m variables, so the diameter bound of Theorem 3.1 applies.

3.5 A Circuit Augmentation Algorithm for Feasibility

In this section we prove Theorem 3.3: given a system (LP) with cost c = (0[n]\N ,1N) for
some N ⊆ [n], find a solution x with xN = 0, or show that no such solution exists.

As an application, assume we are looking for a feasible solution to the program (P).
We can construct an auxiliary linear program, that has trivial feasible solutions and whose
optimal solutions correspond to feasible solutions of the original program (P). This is in the
same tune as Phase I of the Simplex method.

64 | Linear Optimization: Circuit Diameter Bounds

min ⟨1n, z⟩ s.t. Ay −Az = b , y, z ≥ 0 . (Aux-LP)

For the constraint matrix Ã =
[
A −A

]
it is easy to see that κ

Ã
= κA and that any solution

Ax = b can be converted into a feasible solution to (Aux-LP) via (y, z) = (x+, x−). Hence, if
the subroutines Support-Circuit and Ratio-Circuit are available for (Aux-LP), then we
can find a feasible solution to (P) in O(mn log(n+ κA)) augmentation steps.

Our algorithm is presented in Algorithm 7. We maintain a set Lt ⊆ [n] \N , initialized as
∅. Whenever x(t)

i ≥ 4mnκA∥x(t)
N ∥1 for the current iterate x(t), we add i to Lt. The key part

of the analysis is to show that rk(Lt) increases in every O(n log(n+ κA)) iterations.
Whenever rk(Lt) increases, we run a sequence of at most n Support-Circuit(A, c, x(t), N)

iterations. This is repeated as long as there exists a circuit in supp(x(t)) intersecting N .
Afterwards, we run a sequence of Ratio-Circuit iterations until rk(Lt) increases again.

Algorithm 7: Feasibility-Algorithm
Input : Linear program in standard form (LP) with cost c = (0[n]\N , 1N) for some

N ⊆ [n], and initial feasible solution x(0).
Output : A solution x with xN = 0, or a dual solution y with ⟨b, y⟩ > 0.

1 t← 0 ; Lt−1 ← ∅
2 while x(t)

N ̸= 0 do
3 Lt ← Lt−1 ∪ {i ∈ [n] : x(t)

i ≥ 4mnκA∥x(t)
N ∥1}

4 if t = 0 or rk(Lt) > rk(Lt−1) then
5 while ∃ a circuit in supp(x(t)) intersecting N do
6 g(t) ← Support-Circuit(A, c, x(t), N)
7 x(t+1) ← augP (x(t), g(t)); t← t+ 1 ; Lt ← Lt−1

8 (g(t), y(t), s(t))← Ratio-Circuit(A, c, 1/x(t))
9 if

〈
b, y(t)

〉
> 0 then

10 Terminate with infeasibility certificate ;
11 x(t+1) ← augP (x(t), g(t)); t← t+ 1
12 return x(t)

Proof of Theorem 3.3. Clearly, Algorithm 7 performs at most (m+ 1)n Support-Circuit
iterations. So, it is left to show that rk(Lt) increases after a sequence of O(n log(n+ κA))
Ratio-Circuit iterations. Let us first analyze what happens at Ratio-Circuit iterations.

Claim 3.20. If Ratio-Circuit is used in iteration t, then either ∥x(t+1)
N ∥1 ≤

(
1− 1

n

)
∥x(t)

N ∥1,
or the algorithm terminates with a dual certificate.

Proof. The oracle returns g(t) that is optimal to (3.2) and (y(t), s(t)) with optimum value −λ.
Recall that we use weights wi = 1/x(t)

i . If
〈
b, y(t)

〉
> 0, the algorithm terminates. Otherwise,

3.5 A Circuit Augmentation Algorithm for Feasibility | 65

note that 〈
c, x(t)

〉
=
〈
b, y(t)

〉
+
〈
s(t), x(t)

〉
≤ λ

〈
w, x(t)

〉
≤ nλ ,

implying λ ≥
〈
c, x(t)

〉
/n, and therefore

〈
c, g(t)

〉
= −λ ≤ −

〈
c, x(t)

〉
/n. This implies the

claim, noting that

∥x(t+1)
N ∥1 =

〈
c, x(t+1)

〉
≤
〈
c, x(t)

〉
+
〈
c, g(t)

〉
≤
(

1− 1
n

)
∥x(t)

N ∥1 .

Observe that during a Ratio-Circuit iteration t, if a coordinate j ∈ [n] satisfies
x

(t)
j ≥ 2nκA∥x(t)

N ∥1, then

x
(t+1)
j

∥x(t+1)
N ∥1

≥
x

(t)
j − κA∥x

(t+1)
N − x(t)

N ∥1
(1− 1

n)∥x(t)
N ∥1

≥
x

(t)
j − 2κA∥x(t)

N ∥1
(1− 1

n)∥x(t)
N ∥1

≥
(1− 1

n)x(t)
j

(1− 1
n)∥x(t)

N ∥1
=

x
(t)
j

∥x(t)
N ∥1

.

(3.11)

Claim 3.21. For every iteration t and every coordinate j ∈ Lt, we have x(t)
j ≥ 2mnκA∥x(t)

N ∥1.

Proof. We proceed by induction on the number of iterations t ≥ 0. The base case t = 0
is clearly true. To verify the claim for iteration t + 1, consider any index j ∈ Lt, and let
r ≤ t be the iteration when j was added to Lr; the claim clearly holds at iteration r. We
analyse the ratio x(t′)

j /∥x(t′)
N ∥1 for iterations t′ = r, . . . , t+ 1. At every iteration that performs

Ratio-Circuit, if x(t′)
j /∥x(t′)

N ∥1 ≥ 2nκA, then the ratio does not decrease according to (3.11).
Let us analyze the situation when Support-Circuit is called. We have g(t)

i < 0 for some
i ∈ N because supp(g(t)) ∩N ̸= ∅ and

〈
c, g(t)

〉
≤ 0. Hence,

∥x(t+1) − x(t)∥∞ ≤ κA|x(t+1)
i − x(t)

i | ≤ κAx
(t)
i ≤ κA∥x

(t)
N ∥1.

There are at most m + 1 sequences of at most n Support-Circuit augmentations
throughout the algorithm. By the above argument, each augmentation may decrease x(t′)

j

by at most κA∥x(t′)
N ∥1. Thus, the total decrease in x

(t′)
j /∥x(t′)

N ∥1 throughout the algorithm is
upper bounded by (m+ 1)nκA ≤ 2mnκA. Since the starting value was ≥ 4mnκA, it follows
that this ratio does not drop below 2mnκA.

In the first iteration and whenever rk(Lt) increases, we perform a (possibly empty)
sequence of support circuit cancellations. Let us consider an iteration t right after we
are done with the support circuit cancellations. Thus, there is no circuit in supp(x(t))
intersecting N . We show that rk(Lt) increases within O(n log(n+ κA)) consecutive calls to
Ratio-Circuit; this completes the proof.

66 | Linear Optimization: Circuit Diameter Bounds

Within O(n log(n+ κA)) consecutive Ratio-Circuit augmentations, we reach an iterate
r = t + O(n log(n + κA)) such that ∥x(r)

N ∥1 ≤ (4mn3κ2
A)−1∥x(t)

N ∥1. Since Lt ⊆ supp(x(t)),
N ⊆ [n] \ Lt, and there is no circuit in supp(x(t)) intersecting N , applying Lemma 3.11 with
x = x(t) and z = x(r) yields

∥x(r)
[n]\cl(Lt)∥∞ ≥

∥x(r)
[n]\cl(Lt)∥1

n
≥ ∥x

(t)
N ∥∞
nκA

≥ ∥x
(t)
N ∥1

n2κA
≥ 4mnκA∥x(r)

N ∥1 ,

showing that some j ∈ [n] \ cl(Lt) must be included in Lr.

3.6 A Circuit Augmentation Algorithm for Optimization

In this section, we give a circuit-augmentation algorithm for solving (LP), assuming an initial
feasible solution x(0) is provided. In every iteration t, the algorithm maintains a feasible
solution x(t) to (LP), initialized with x(0). The goal is to augment x(t) using the subroutines
Support-Circuit and Ratio-Circuit until the emergence of a set ∅ ≠ N ⊆ [n] which
satisfies x(t)

N = x∗N = 0 for every optimal solution x∗ to (LP). When this happens, we have
reached a lower dimensional face of the polyhedron that contains the optimal face. Hence,
we can fix x

(t′)
N = 0 in all subsequent iterations t′ ≥ t. In particular, we repeat the same

procedure on a smaller LP with constraint matrix A[n]\N , RHS vector b, and cost c[n]\N ,
initialized with the feasible solution x

(t)
[n]\N . Note that a circuit walk of this smaller LP is

also a circuit walk of the original LP. This gives the overall circuit-augmentation algorithm.

In what follows, we focus on the aforementioned variable fixing procedure (Algorithm
8), since the main algorithm just calls it at most n times. An instance of (LP) is given by
A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

We fix parameters

δ := 1
2n3/2(m+ 2)κA

, Γ := 4(m+ 2)
√
nκ2

AT

δ
, T := O(n log(n+ κA)).

Throughout the procedure, A and b will be fixed, but we will sometimes modify the cost
function c. Recall that for any c̃ ∈ Rn, we use LP(c̃) to denote the problem with cost vector
c̃, and the optimum value is OPT(c̃). We will often use the fact that if s̃ = Im(A⊤) + c̃ then
the systems LP(s̃) and LP(c̃) are equivalent.

Let us start with a high level overview before presenting the algorithm. The inference
that x(t)

N = x∗N = 0 for every optimal x∗ will be made using Theorem 3.14. To apply this,
our goal is to find a cost function c′ and an optimal dual solution s′ to LP(c′) such that the
set of indices N := { j : s′j > (m+ 1)κA∥c− c′∥∞ } is nonempty.

Without loss of generality, we may assume that ∥c∥ = 1. Let us start from any basic
feasible solution x(0) and basic feasible dual solution s(0); we can obtain one from a call

3.6 A Circuit Augmentation Algorithm for Optimization | 67

to Ratio-Circuit. Within O(n log(n + κA)) Ratio-Circuit augmentations, we arrive
at a pair of primal and dual feasible solutions (x, s) = (x(t), s(t)) such that ⟨x, s⟩ ≤ ε :=〈
x(0), s(0)

〉
/poly(n, κA).

Suppose that for every i ∈ supp(x), si is small, say si < δ. Let c̃i := si if i /∈ supp(x) and
c̃i := 0 if i ∈ supp(x). Then, x is optimal to LP(c̃) and ∥c̃− s∥∞ < δ. Since c− s ∈ Im(A⊤),
the vector c′ := c− s+ c̃ satisfies ∥c− c′∥∞ < δ, and LP(c′) and LP(c̃) are equivalent. Thus,
x and c̃ are primal and dual optimal solutions to LP(c′). Then, Theorem 3.14 is applicable
for the costs c, c′ and the dual optimal solution c̃; however, we also need to guarantee that
N ̸= ∅. Following Tardos [145, 143], this can be ensured if we pre-process by projecting the
cost vector c to ker(A); this guarantees that ∥s∥—and thus ∥c̃∥—must be sufficently large.

The above property may however not hold for (x, s): for certain coordinates we could
have xi > 0 and si ≥ δ. In this case, we start the second phase of the algorithm. Since xisi ≤
⟨x, s⟩ ≤ ε, this implies xi ≤ ε/δ. Let S be the set of all such violating indices. Since ∥xS∥ is
sufficiently small, one can show that the set of ‘large’ indices L = {i ∈ [n] : xi ≥ Γ∥xS∥1}
is nonempty. We proceed by defining a new cost function c̃i := si if i ∈ S and c̃i := 0 if
i /∈ S. We perform Support-Circuit iterations as long as there exist circuits in supp(x)
intersecting supp(c̃), and then perform further O(n log(n+ κA)) ratio cycle iterations for the
cost function c̃. If we now arrive at an iterate (x, s) = (x(t′), s(t′)) such that si < δ for every
i ∈ supp(x), then we truncate s as before to an optimal dual solution to LP(c′′) for some
vector c′′ where ∥c− c′′∥∞ < 2δ. After that, Theorem 3.14 is applicable for the costs c, c′′

and said optimal dual solution. Otherwise, we continue with additional phases.
The algorithm formalizes the above idea, with some technical modifications. The algorithm

comprises at most m+ 1 phases; the main potential is that the rank of the large index set L
increases in every phase. We show that if an index i was added to L in any phase, it must
have si < δ at the beginning of every later phase. Thus, these indices cannot be violating
anymore.

We now turn to a more formal description of Algorithm 8. We start by orthogonally
projecting the input cost vector c to ker(A). This does not change the optimal face of (LP).
If c = 0, then we terminate and return the current feasible solution x(0) as it is optimal.
Otherwise, we scale the cost to ∥c∥2 = 1, and use Ratio-Circuit to obtain a basic feasible
solution s̃(−1) to the dual of LP(c).

The rest of Algorithm 8 consists of repeated phases, ending when
〈
s̃(t−1), x(t)

〉
= 0. In

an iteration t, let St = {i ∈ [n] : s̃(t−1)
i ≥ δ} be the set of coordinates with large dual slack.

The algorithm keeps track of the following set

Lt := Lt−1 ∪
{
i ∈ [n] : x(t)

i ≥ Γ∥x(t)
St
∥1
}
.

68 | Linear Optimization: Circuit Diameter Bounds

Algorithm 8: Variable-Fixing
Input : Linear program in standard form (LP), and initial feasible solution x(0).
Output : Either an optimal solution to (LP), or a feasible solution x and

∅ ≠ N ⊆ [n] such that xN = x∗N = 0 for every optimal solution x∗ to (LP).
1 t← 0; k ← 0; L−1 ← ∅
2 c← Πker(A)(c)
3 if c = 0 then
4 return x(0)

5 c← c/∥c∥2
6 (·, ·, s̃(−1))← Ratio-Circuit(A, c,1) ◃ Or any bfs to the dual of LP(c)
7 while

〈
s̃(t−1), x(t)

〉
> 0 do

8 St ← {i ∈ [n] : s̃(t−1)
i ≥ δ}

9 Lt ← Lt−1 ∪ {i ∈ [n] : x(t)
i ≥ Γ∥x(t)

St
∥1}

10 if t = 0 or rk(Lt) > rk(Lt−1) then
11 k ← k + 1 ◃ New phase

12 Set modified cost c̃(k) ∈ Rn+ as c̃(k)
i ← s̃

(t−1)
i if i ∈ St, and c̃

(k)
i ← 0 otherwise

13 while ∃ a circuit in supp(x(t)) intersecting supp(c̃(k)) do
14 g(t) ← Support-Circuit(A, c̃(k), x(t), supp(c̃(k)))
15 x(t+1) ← augP (x(t), g(t))
16 Lt+1 ← Lt; t← t+ 1

17 (g(t), y(t), s(t))← Ratio-Circuit(A, c̃(k), 1/x(t))
18 x(t+1) ← augP (x(t), g(t))
19 s̃(t) ← arg mins∈{c̃(k),s(t)}

〈
s, x(t+1)

〉
; t← t+ 1

20 N ← {i ∈ [n] : s̃(t−1)
i > κA(m+ 1)nδ}

21 return (x(t), N)

These are the variables that were once large with respect to ∥x(t′)
S′t
∥1 in iteration t′ ≤ t. Note

that |Lt| is monotone nondecreasing.
The first phase starts at t = 0, and we enter a new phase k whenever rk(Lt) > rk(Lt−1).

The iteration t is called the first iteration in phase k. At the start of the phase, we define
a new modified cost c̃(k) from the dual slack s̃(t−1) by truncating entries less than δ to
0. This cost vector will be used until the end of the phase. Then, we call Support-
Circuit(A, c̃(k), x(t), supp(c̃(k))) to eliminate circuits in supp(x(t)) intersecting supp(c̃(k)).
Note that there are at most n such calls because each call sets a primal variable x(t)

i to zero.
In the remaining part of the phase, we augment x(t) using Ratio-Circuit(A, c̃(k), 1/x(t))

until rk(Lt) increases, triggering a new phase. In every iteration, Ratio-Circuit(A, c̃(k), 1/x(t))
returns a minimum cost-to-weight ratio circuit g(t), where the choice of weights 1/x(t) follows
Wallacher [154]. It also returns a basic feasible solution (y(t), s(t)) to the dual LP(c̃(k)). After

3.6 A Circuit Augmentation Algorithm for Optimization | 69

augmenting x(t) to x(t+1) using g(t), we update the dual slack as

s̃(t) := arg min
s∈{c̃(k),s(t)}

〈
s, x(t+1)

〉
.

This finishes the description of a phase.
Since rk(A) = m, clearly there are at most m + 1 phases. Let k and t be the final

phase and iteration of Algorithm 8 respectively. As
〈
s̃(t−1), x(t)

〉
= 0, and x(t), s̃(t−1) are

primal-dual feasible solutions to LP(c̃(k)), they are also optimal. Now, it is not hard to see
that c̃(k) ∈ Im(A⊤) + c − r for some 0 ≤ r ≤ (m + 1)δ (Claim 3.25). Hence, s̃(t−1) is also
an optimal solution to the dual of LP(c − r). The last step of the algorithm consists of
identifying the set N of coordinates with large dual slack s̃(t−1)

i . Then, applying Theorem 3.14
for c′ = c− r allows us to conclude that they can be fixed to zero.

In order to prove Theorem 3.4, we need to show that N ̸= ∅. Moreover, we need to show
that there are at most T iterations of Ratio-Circuit per phase. First, we show that the
objective value is monotone nonincreasing.

Claim 3.22. For any two iterations r ≥ t in phases ℓ ≥ k ≥ 1 respectively, we have〈
c̃(ℓ), x(r)

〉
≤
〈
c̃(k), x(t)

〉
.

Proof. We proceed by strong induction on ℓ− k. For the base case ℓ− k = 0, iterations r
and t occur in the same phase. So, the objective value is nonincreasing from the definition of
Support Circuit and Ratio-Circuit. Now, suppose that the statement holds if ℓ− k ≤ d
for some d ≥ 0, and consider the case ℓ − k = d + 1. Let q be the first iteration in phase
k + 1; note that r ≥ q > t. Then, we have〈

c̃(ℓ), x(r)
〉
≤
〈
c̃(k+1), x(q)

〉
≤
〈
s̃(q−1), x(q)

〉
≤
〈
c̃(k), x(q)

〉
≤
〈
c̃(k), x(t)

〉
.

The first inequality uses the inductive hypothesis. In the second inequality, we use that c̃(k+1)

is obtained from s̃(q−1) by setting some nonnegative coordinates to 0. The third inequality is
by the definition of s̃(q−1). The final inequality is by monotonicity within the same phase.

The following claim gives a sufficient condition for Algorithm 8 to terminate.

Claim 3.23. Let t be an iteration in phase k ≥ 1. If Ratio-Circuit returns an elementary
vector g(t) such that

〈
c̃(k), g(t)

〉
= 0, then

〈
s̃(t), x(t+1)

〉
= 0.

Proof. Recall that the weights w in Ratio-Circuit are chosen as w = 1/x(t). The constraint
s(t) ≤ λw in (3.3) and strong duality λ = −

〈
c̃(k), g(t)

〉
, therefore imply that s(t)

i x
(t)
i ≤ λ =

−
〈
c̃(k), g(t)

〉
and in particular

〈
s(t), x(t)

〉
≤ −n

〈
c̃(k), g(t)

〉
= 0. Since s̃(t), x(t+1) ≥ 0 , we

have
0 ≤

〈
s̃(t), x(t+1)

〉
≤
〈
s(t), x(t+1)

〉
≤
〈
s(t), x(t)

〉
= 0.

70 | Linear Optimization: Circuit Diameter Bounds

Corollary 3.24. Let t be an iteration in phase k ≥ 1. If
〈
c̃(k), x(t)

〉
= 0, then Algorithm 8

terminates in iteration t or t+ 1.

Proof. Suppose that the algorithm does not terminate in iteration t. Then, Ratio-Circuit
is called in iteration t because there is no circuit in supp(x(t)) which intersects c̃(k). Since x(t)

is an optimal solution to LP(c̃(k)), Ratio-Circuit returns an elementary vector g(t) such
that

〈
c̃(k), g(t)

〉
= 0. By Claim 3.23, the algorithm terminates in the next iteration.

The next two claims provide some basic properties of the modified cost c̃(k).

Claim 3.25. For every phase k ≥ 1, we have c̃(k) ∈ Im(A⊤) + c− r for some 0 ≤ r ≤ kδ1.

Proof. Let us define c̃(0) := c; we proceed by induction on k ≥ 0. The base case k = 0 is trivial.
Now, suppose that the statement holds for some k ≥ 0, and consider the case k + 1. Let t
be the iteration in which c̃(k+1) is set, i.e., c̃(k+1)

i = s̃
(t−1)
i if i ∈ St, and c̃

(k+1)
i = 0 otherwise.

Note that s̃(t−1) ∈ {c̃(k), s(t−1)}. Since both of them are feasible to the dual of LP(c̃(k)), we
have s̃(t−1) ∈ Im(A⊤) + c̃(k). By the inductive hypothesis, c̃(k) ∈ Im(A⊤) + c − r for some
0 ≤ r ≤ kδ1. Hence, from the definition of c̃(k+1), we have c̃(k+1) ∈ Im(A⊤) + c− r − q for
some 0 ≤ q ≤ δ1 as required.

Claim 3.26. In every phase k ≥ 1, we have ∥c̃(k)∥∞ ≤ 2
√
nκA.

Proof. Let us define c̃(0) := c; we proceed by induction on k ≥ 0. The base case k = 0 is
easy because ∥c∥∞ ≤ ∥c∥2 = 1. Now, suppose that the statement holds for some k ≥ 0,
and consider the case k + 1. Let t be the iteration in which c̃(k+1) is set. If s̃(t−1) = c̃(k),
then c̃(k+1) = c̃(k) and we are done by the inductive hypothesis. Otherwise, s̃(t−1) = s(t−1).
We know that s(t−1) is a basic feasible solution to the dual of LP(c̃(k)). We also know that
c − r ∈ Im(A⊤) + c̃k for some 0 ≤ r ≤ kδ1 by Claim 3.25. Let B be a matrix such that
ker(B) = Im(A⊤). Then, applying Corollary 3.13 to the system Bs(t−1) = Bc̃(k) yields

∥s(t−1)∥∞ ≤ κB∥c− r∥1 = κA∥c− r∥1 ≤ κA(∥c∥1 + ∥r∥1)

≤ κA
(√
n+ nkδ

)
≤ κA

(√
n+ n(m+ 1)δ

)
≤ 2
√
nκA.

The equality is by Lemma 3.5, the 3rd inequality is due to ∥c∥2 = 1, while the 4th inequality
follows from the fact that there are at most m+ 1 phases.

We next show a primal proximity lemma that holds for iterates throughout the algorithm.

Lemma 3.27. For iterations t′ ≥ t we have

∥x(t′) − x(t)∥∞ ≤ (t′ − t)2
√
nκ2

A

δ
∥x(t)

St
∥1 . (3.12)

3.6 A Circuit Augmentation Algorithm for Optimization | 71

Proof. Consider any iteration r ≥ t, and assume that Algorithm 8 does not terminate in
iteration r + 1. Let ℓ and k be the phase in which iteration r and t occurred respectively.
The elementary vector g(r) is returned by either Support-Circuit or Ratio-Circuit. We
claim that g(r)

i < 0 for some i ∈ supp(c̃(ℓ)). In the former, this trivially follows from the
definition of Support-Circuit. In the latter, we know that

〈
c̃(ℓ), g(r)

〉
< 0 by Claim 3.23

because Algorithm 8 does not terminate in iteration r + 1. It follows that g(r)
i < 0 for some

i ∈ supp(c̃(ℓ)). Then,

∥x(r+1) − x(r)∥∞ ≤ κA|x(r)
i | ≤

κA
δ

〈
c̃(ℓ), x(r)

〉
≤ κA

δ

〈
c̃(k), x(t)

〉
≤ 2
√
nκ2

A

δ
∥x(t)

St
∥1.

The second inequality uses that all nonzero coordinates of c̃(ℓ) are ≥ δ. The third inequality is
by Claim 3.22, whereas the fourth inequality is by Claim 3.26. The result follows by summing
over all iterations in {t, . . . , t′ − 1}.

We next show that once a variable enters Lt, it is lower bounded by poly(n, κA)∥x(t)
St
∥1 in

the next Θ(mT) iterations.

Claim 3.28. Let t be the iteration in which coordinate j is added to Lt. Let t′ ≥ t be a
non-final iteration such that t′ − t ≤ 2(m+ 1)T . We have

x
(t′)
j ≥ 3

√
nκA
δ
∥x(t)

St
∥1.

Proof. By definition, we have that x(t)
j ≥ Γ∥x(t)

St
∥1. With Lemma 3.27 we get

x
(t′)
j ≥ x(t)

j − ∥x
(t′) − x(t)∥∞ ≥

(
Γ− 4(m+ 1)

√
nκ2

AT

δ

)
∥x(t)

St
∥1 ≥

3
√
nκA
δ
∥x(t)

St
∥1 .

Consequently, the set Lt is disjoint from the support of the modified cost c̃(k) in the next
Θ(mT) iterations.

Corollary 3.29. Let t be an iteration in phase k ≥ 1 such that t ≤ 2(m+ 1)T . If t is not
the final iteration, then

Lt ∩ supp(c̃(k)) = ∅ .

Proof. For the purpose of contradiction, suppose that there exists an index i ∈ Lt∩ supp(c̃(k))
in some iteration t ≤ 2(m+ 1)T in phase k. Let r ≤ t be the iteration in which i was added
to Lr. Let j and k be the phase which contains iteration r and t respectively. Since r is
the first iteration in phase j, we have Sr = supp(c̃(j)). Hence, we have r < t, as otherwise it
would contradict the definition of Lt. Moreover, we have ∥x(r)

Sr
∥1 > 0 by Corollary 3.24, as

otherwise the algorithm would have terminated in iteration r + 1 ≤ t. However, we get the

72 | Linear Optimization: Circuit Diameter Bounds

following contradiction

3
√
nκA∥x(r)

Sr
∥1 ≤ δx(t)

i ≤
〈
c̃(k), x(t)

〉
≤
〈
c̃(j), x(r)

〉
≤ 2
√
nκA∥x(r)

Sr
∥1.

The 1st inequality is by Claim 3.28, the 3rd inequality is by Claim 3.22, while the 4th
inequality is by Claim 3.26.

The next claim shows that Ratio-Circuit geometrically decreases the norm ∥x(t)
St
∥1.

Claim 3.30. Let t be the first Ratio-Circuit iteration in phase k ≥ 1. After p ∈ N
consecutive Ratio-Circuit iterations in phase k,

∥x(t+p)
St+p
∥1 ≤

2n1.5κA
δ

(
1− 1

n

)p−1
∥x(t)

supp(c̃(k))∥1,

Proof.

∥x(t+p)
St+p
∥1 ≤

1
δ

〈
s̃(t+p−1), x(t+p)

〉
≤ 1
δ

〈
s(t+p−1), x(t+p)

〉
(from the definition of s̃(t+p−1))

≤ 1
δ

〈
s(t+p−1), x(t+p−1)

〉
(as

〈
s(t+p−1), g(t+p−1)

〉
=
〈
c̃(k), g(t+p−1)

〉
≤ 0)

≤ −n
δ

〈
c̃(k), g(t+p−1)

〉
(due to the constraints in (3.3))

≤ n

δ

(〈
c̃(k), x(t+p−1)

〉
−OPT(c̃(k))

)
(by step size α ≥ 1 in Lemma 3.8)

≤ n

δ

(
1− 1

n

)p−1 (〈
c̃(k), x(t)

〉
−OPT(c̃(k))

)
(by geometric decay in Lemma 3.8)

≤ n

δ

(
1− 1

n

)p−1 〈
c̃(k), x(t)

〉
(because c̃(k) ≥ 0)

≤ 2n1.5κA
δ

(
1− 1

n

)p−1
∥x(t)

supp(c̃(k))∥1. (by Claim 3.26)

Before proving the main result of this section, we recall Lemma 3.15 which guarantees
the existence of a coordinate with large dual slack. It explains why we chose to work with a
projected and normalized cost vector in Algorithm 8.

Proof of Theorem 3.4. We first prove the correctness of Algorithm 8. Suppose that the
algorithm terminates in iteration t. Since

〈
s̃(t−1), x(t)

〉
= 0 and x(t), s̃(t−1) are primal-

dual feasible solutions to LP(c̃(k)), they are also optimal. By Claim 3.25, we know that
c̃(k) ∈ Im(A⊤) + c − r for some ∥r∥∞ ≤ (m + 1)δ. Hence, s̃(t−1) is also an optimal dual
solution to LP(c′) where c′ := c− r. Since c ∈ ker(A), ∥c∥2 = 1 and ∥c− c′∥∞ ≤ (m+ 1)δ <
1/(
√
n(m+2)κA), by Lemma 3.15, there exists an index j ∈ [n] such that s(t)

j > (m+1)κAnδ ≥

3.7 Circuits in General Form | 73

(m+ 1)κA∥c− c′∥∞. Thus, the algorithm returns N ̸= ∅. Moreover, for all j ∈ N , Theorem
3.14 allows us to conclude that x(t)

j = x∗j = 0 for every optimal solution x∗ to LP(c).
Next, we prove the running time of Algorithm 8. Clearly, there are at most m+ 1 phases.

In every phase, there are at most n Support-Circuit iterations because each call sets a
primal variable to 0. It is left to show that there are at most T Ratio-Circuit iterations in
every phase.

Fix a phase k ≥ 1 and assume that every phase ℓ < k consists of at most T many
iterations. Further, let t be the first iteration in phase k. Note that St = supp(c̃(k)). Without
loss of generality, we may assume that ∥x(t)

St
∥1 > 0. Otherwise, the algorithm would have

terminated in iteration t+ 1 by Corollary 3.24. Note that this assumption also implies that
∥x(t′)

St′
∥1 > 0 for all t′ < t. This is because if ∥x(t′)

St′
∥1 = 0 for some t′ < t, then Lt′ = [n] and

rk(Lt′) = m, which contradicts rk(Lt′) < rk(Lt).
Let r ≥ t be the first Ratio-Circuit iteration in phase k. Since r is not the final

iteration, we have x(r)
Lr
> 0 due to Claim 3.28 and our assumptions. We split the remaining

analysis into the following 2 cases:

Case 1: rk(Lr) = m. In this case, we have x(r)
supp(c̃(k)) = 0. Indeed, if x(r)

i > 0 for some
i ∈ supp(c̃(k)), then Lr ∪ {i} ⊆ supp(x(r)) contains a circuit. So, Support-Circuit would
have been called in iteration r, which is a contradiction. By Corollary 3.24, the algorithm
terminates in the next iteration.

Case 2: rk(Lr) < m. In this case, we show that rk(Lr) increases in at most T iterations
of Ratio-Circuit. We already know that Lr ⊆ supp(x(r)). Moreover, there is no circuit in
supp(x(r)) which intersects supp(c̃(k)). Since supp(c̃(k)) ⊆ [n] \ Lr by Corollary 3.29, we can
apply Lemma 3.11 to get

∥x(r+T)
[n]\cl(Lr)∥∞ ≥

∥x(r+T)
[n]\cl(Lr)∥1

n
≥
∥x(r)

supp(c̃(k))∥∞
nκA

≥
∥x(r)

supp(c̃(k))∥1
n2κA

≥ Γ∥x(r+T)
Sr+T

∥1 ,

where the last inequality follows from Claim 3.30. Thus, there exists an index i ∈ [n] \ cl(Lr)
which is added to Lr+T , showing that rk(Lr+T) > rk(Lr) as required.

Since the main circuit-augmentation algorithm consists of applying Algorithm 8 at most
n times, we obtain the desired runtime.

3.7 Circuits in General Form

In [90], circuits are defined for polyhedra in the general form

P = {x ∈ Rn : Ax = b, Bx ≤ d} , (3.13)

74 | Linear Optimization: Circuit Diameter Bounds

where A ∈ RmA×n, B ∈ RmB×n, b ∈ RmA , c ∈ RmB . For this setup, they define g ∈ Rn to be
an elementary vector if

(i) g ∈ ker(A), and

(ii) Bg is support minimal in the collection {By : y ∈ ker(A), y ̸= 0}.

In [90], they use the term ‘circuit’ also for elementary vectors.
Let us assume that

rk
(
A

B

)
= n . (3.14)

This assumption is needed to ensure that P is pointed; otherwise, there exists a vector z ∈ Rn,
z ̸= 0 such that Az = 0, Bz = 0. Thus, the lineality space of P is nonempty. Note that the
circuit diameter is defined as the maximum length of a circuit walk between two vertices;
this implicitly assumes that vertices exists and therefore the lineality space is empty.

Under this assumption, we show that circuits in the above definition are a special case
of our definition in the Introduction, and explain how our results in the standard form are
applicable. Consider the matrix and vector

M :=
(
A 0
B ImB

)
, q :=

(
b

d

)
,

and let W̄ := ker(M) ⊆ Rn+mB . Let J denote the set of the last mB indices, and W := πJ(W̄)
denote the coordinate projection to J . The assumption (3.14) guarantees that for each s ∈W ,
there is a unique (x, s) ∈ W̄ ; further, x ̸= 0 if and only if s ̸= 0.

Note that P is the projection of the polyhedron

P̄ = {(x, s) ∈ Rn × RmB : M(x, s) = q , s ≥ 0}

to the x variables. Let Q := πJ(P) ⊆ RmB denote the projection of P̄ to the s variables. It
is easy to verify the following statements.

Lemma 3.31. If (3.14) holds, then there is an invertible affine one-to-one mapping ψ

between Q and P , defined by
M(ψ(s), s) = q .

Further, g ∈ Rn is an elementary vector as in (i),(ii) above if and only if there exists h ∈ RmB

such that (g, h) ∈ W̄ , h ̸= 0 and h is support minimal.
Given such a pair (g, h) ∈ W̄ of elementary vectors, let s ∈ Q and let s′ := augQ(s, h)

denote the result of the circuit augmentation starting from s. Then, ψ(s′) = augP (ψ(s), g).

Consequently, the elementary vectors according to the definition in [90] are in one-to-one
mapping to elementary vectors in the subspace W as used in this chapter. By the last part

3.7 Circuits in General Form | 75

of the statement, analyzing circuit walks on P reduces to analyzing circuit walks of Q that is
given in the subspace form Q = {s ∈ RmB : s ∈W + r, s ≥ 0}.

Chapter 4

Submodular Optimization:
Correlation Gap Bounds for
Matroids

4.1 Introduction

A continuous function h : [0, 1]E → R+ is an extension of a set function f : 2E → R+ if
for every x ∈ [0, 1]E , h(x) = Eλ[f(S)] where λ is a probability distribution over 2E with
marginals x, i.e.

∑
S:i∈S λS = xi. Note that this in particular implies f(X) = h(χX) for every

X ⊆ E, where χX denotes the 0-1 indicator vector of X.
Two natural extensions are the following. The first one corresponds to sampling each

i ∈ E independently with probability xi, i.e., λS =
∏
i∈S xi

∏
i/∈S(1− xi). Thus,

F (x) =
∑
S⊆E

f(S)
∏
i∈S

xi
∏
i/∈S

(1− xi) . (4.1)

This is known as the multilinear extension in the context of submodular optimization, see [26].
The second extension corresponds to the probability distribution with maximum expectation:

f̂(x) = max

∑
S⊆E

λSf(S) :
∑

S⊆E:i∈S
λS = xi ∀i ∈ E ,

∑
S⊆E

λS = 1 , λ ≥ 0

 . (4.2)

Equivalently, f̂(x) is the upper part of the convex hull of the graph of f ; we call it the concave
extension following the terminology of discrete convex analysis [109].

Agrawal, Ding, Saberi and Ye [2] introduced the correlation gap as the worst case ratio

CG(f) := min
x∈[0,1]E

F (x)
f̂(x)

. (4.3)

78 | Submodular Optimization: Correlation Gap Bounds for Matroids

It captures the maximum gain achievable by allowing correlations as opposed to independently
sampling the variables. This ratio plays a fundamental role in stochastic optimization [2,
115], mechanism design [12, 78, 159], prophet inequalities [29, 51, 128], and a variety of
submodular optimization problems [6, 30].

The focus of this chapter is on monotone nondecreasing submodular functions. A function
f : 2E → R+ is submodular if

f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) ∀X,Y ⊆ E .

Throughout the chapter, we assume the submodular function also satisfies f(∅) = 0.
The lower bound CG(f) ≥ 1− 1/e holds for every submodular function [26]. In fact, the

extreme case 1− 1/e is already taken in the limit by the rank function of a rank-1 uniform
matroid if |E| → ∞.

We study the correlation gap of matroid rank functions and weighted matroid rank
functions, which are monotone submodular; see Section 4.2 for the definitions. First, we
show that among all weighted rank functions of a matroid, the worst case correlation gap is
realized by its (unweighted) rank function.

Theorem 4.1. Fix a matroid M = (E, I), and consider the weighted matroid rank functions
for every choice of nonnegative weights on E. The worst case correlation gap is realized by
the uniform-1 weighting.

For matroid rank functions, we give a lower bound on the correlation gap as a function of
the rank and girth of the matroid. Recall that the girth is the minimum length of a circuit in
the matroid, or equivalently, the smallest size of a dependent set.

Theorem 4.2. Let M = (E, I) be a loopless matroid with rank function r, rank r(E) = ρ,
and girth γ. Then,

CG(r) ≥ 1− 1
e

+ e−ρ

ρ

γ−2∑
i=0

(γ − 1− i)
[(
ρ

i

)
(e− 1)i − ρi

i!

] > 1− 1
e
.

We refer the reader to Figure 4.1 to understand the behaviour of the expression in
Theorem 4.2. For any fixed girth γ, it is monotone decreasing in ρ (Lemma 4.38). On the
other hand, for any fixed rank ρ, it is monotone increasing in γ.

In Section 4.1.4, we explain the motivation for studying the girth and rank as relevant
parameters, and highlight the key proof ideas. Other than for uniform matroids, we are not
aware of any previous work on giving better than (1− 1/e) bounds on the correlation gaps of
specific matroids. We remark that for the purpose of determining CG(r), we may assume
that the matroid M is connected, that is, it cannot be written as a direct sum of at least
two nonempty matroids. If M =M1 ⊕ · · · ⊕Mk, let ri be the rank function of Mi for all

4.1 Introduction | 79

Fig. 4.1 Our correlation gap bound as a function of the rank ρ, and as a function of the girth
γ separately.

i ∈ [k]. Then, the concave and multilinear extensions of r can be written as r̂ =
∑k
i=1 r̂i and

R =
∑k
i=1Ri respectively. Hence, we have CG(r) ≥ mini∈[k] CG(ri) by the mediant inequality.

As the reverse inequality holds trivially, it follows that CG(r) = mini∈[k] CG(ri).

Proposition 4.3. Let M be a matroid with rank function r. If M =M1 ⊕ · · · ⊕Mk where
each Mi is a matroid with rank function ri, then CG(r) = mini∈[k] CG(ri).

As a corollary, the correlation gap of a partition matroid is equal to the smallest correlation
gap of its parts (uniform matroids).

In what follows we give an overview of a number of areas in submodular optimization and
mechanism design where the correlation gap is a critical parameter. For example, Theorem 4.1
enables to focus only on matroid rank functions as worst-case instances; this finds a direct
application e.g., in the context of sequential posted price mechanisms. Together with
Proposition 4.4 below, Theorem 4.2 leads to improved bounds in submodular maximization,
extending and strengthening previous results. In all these contexts, this leads to improvements
on the general (1− 1/e) bound for particular cases. We expect that our work will lead to
further investigations to derive improved correlation gap bounds for important classes of
submodular functions.

4.1.1 Monotone Submodular Maximization

Let f : 2E → R+ be a monotone submodular function, and let (E,J) be a matroid with
independent sets J . We consider the problem of maximizing f subject to a matroid constraint,

max
X∈J

f(X) . (4.4)

80 | Submodular Optimization: Correlation Gap Bounds for Matroids

For uniform matroids (i.e., cardinality constraints), a classical result by Fisher, Nemhauser,
and Wolsey [114] showed a (1 − 1/e)-approximation guarantee for the greedy algorithm.
Moreover, this factor cannot be improved if we are only allowed polynomially many calls to
the value oracle of f , see Nemhauser and Wolsey [113].

The factor (1 − 1/e) being the natural target for (4.4), Calinescu, Chekuri, Pál, and
Vondrák [26] obtained it for the special case when f is a sum of weighted matroid rank
functions. The journal version of the same paper [25], see also [153], shows a (1 − 1/e)-
approximation for arbitrary nondecreasing submodular functions, achieving the best possible
general guarantee for (4.4).

These algorithms proceed in two steps. Let

P(r) :=
{
x ∈ RE+ : x(S) ≤ r(S) ∀S ⊆ E

}
(4.5)

denote the independent set polytope, where r is the rank function of the matroid (E,J).
When clear from the context, we use the shorthand P.

In the first step, the goal is to find a (1− 1/e)-approximation algorithm for the relaxation

max
x∈P

F (x) . (4.6)

Let x∗ be the solution obtained in the first step. In the second step, they use pipage rounding
to find an integer solution X ∈ J with f(X) ≥ F (x∗).

Thus, approximation loss only happens in the first step. To solve this non-concave
maximization problem, [26] introduced another relaxation f̃(x) such that F (x) ≤ f̃(x) ≤ f̂(x)
for all x ∈ [0, 1]E , and showed that maxx∈P f̃(x) can be formulated as an LP. The (1− 1/e)-
approximation to (4.6) is obtained by solving this LP optimally. Subsequently, Shioura [135]
showed that when f is a sum of M ♮-concave functions, the analogous convex program can also
be solved optimally. M ♮-concave functions form a special class of submodular functions, and
are a central concept in discrete convex analysis, see Murota’s monograph [108]. They are also
known as gross substitutes functions and play an important role in mathematical economics [76,
95, 101, 116]. In particular, every weighted matroid rank function is M ♮-concave.

The (1− 1/e)-approximation for arbitrary monotone submodular f in [25, 153] uses a
different approach: instead of using another relaxation, they perform a continuous greedy
algorithm directly on F (x). Improved approximations were subsequently given for submodular
functions with bounded curvature; we discuss these results in Section 4.1.5.

Bounding via correlations gaps We focus on submodular functions that are given as a
sum of M ♮-concave functions, as in Shioura’s work [135]. For technical reasons, we assume all
of them are rational valued; the relevant complexity parameter µ(f) is defined in Section 4.2.

4.1 Introduction | 81

Proposition 4.4. Let f1, f2, . . . , fm : 2E → R be monotone M ♮-concave functions, and let
f =

∑m
j=1 fj. Then, a minmj=1 CG(fj)-approximation algorithm for (4.4) can be obtained in

time polynomial in |E|, m and µ(f).

The simple proof is given in Section 4.3.1. The algorithm is the same as the one by
Shioura [135]; we observe that the general (1− 1/e)-bound can be improved to the bound on
the correlation gaps.

Combinatorial public projects

A direct application of the model in Proposition 4.4 arises in the combinatorial public
projects problem, introduced by Papadimitriou, Schapira, and Singer [121], see also Dughmi,
Roughgarden, Yan [52]. Let f1, f2, . . . , fm : 2E → R be monotone submodular functions
and consider (4.4) for f =

∑m
j=1 fj . The interpretation is that a public planner chooses an

independent subset from a set of possible projects (e.g., at most k projects), or from a set of
shared resources. There are m stakeholders, with valuations f1, f2, . . . , fm. The goal is to
maximize the welfare the stakeholders derive from the chosen set of public projects/shared
resources.

The problem admits a (1 − 1/e)-approximation algorithm for any m as the sum of
submodular functions is submodular. This ratio is optimal even for m = 1 in the value
oracle model. On the other hand, Proposition 4.4 yields stronger guarantees in terms of the
correlation gap of these functions, assuming the functions fj are M ♮-concave.

Concave multicoverage problems

A fundamental special case of the above model is the coverage problem. For m given subsets
Ej ⊆ E, the corresponding coverage function is defined as f(X) = |{j ∈ [m] : Ej ∩ X ≠
∅}|. Note that this is a special case of maximizing the sum of matroid rank functions:
f(X) =

∑m
j=1 rj(X), where rj(X) is the rank function of a rank-1 uniform matroid with

support Ej . Even for maximizing under cardinality constraint, there is no better than
(1− 1/e)-approximation for this problem unless P = NP , see Feige [62].

Recently, tight approximations have been established for the special case when the function
values fj(S) are determined by the size of the set S. Barman, Fawzi, and Fermé [8] studied
concave multicoverage problems: for nondecreasing concave ϕ : N→ R+ and weights w ∈ Rm+ ,
the submodular function is defined as f(X) =

∑m
j=1wjϕ(|X ∩ Ej |).1 The usual coverage

problem corresponds to ϕ(x) = min{1, x}; on the other extreme, for ϕ(x) = x we get the
trivial problem f(X) =

∑
i∈X |{j ∈ [m] : i ∈ Ej}|. In [8], they present a tight approximation

guarantee for maximizing such an objective subject to a matroid constraint, parametrized by
the Poisson curvature of the function ϕ.

1We note that such functions are exactly the one dimensional M ♮-concave functions fi : N → R+.

82 | Submodular Optimization: Correlation Gap Bounds for Matroids

This extends previous work by Barman, Fawzi, Ghoshal, and Gürpinar [9] which considered
ϕ(x) = min{ℓ, x} (for ℓ > 1), motivated by the list decoding problem in coding theory. It also
extends the work by Dudycz, Manurangsi, Marcinkowski, and Sornat [50] which considered
geometrically dominated concave functions ϕ, motivated by approval voting rules such as
Thiele rules, proportional approval voting, and p-geometric rules. In both cases, the obtained
approximation guarantees improve over the 1− 1/e factor.

In Section 4.3.2, we explain how the results in [8, 9, 50] can be derived from Proposition 4.4:
the Poisson curvature bound turns out to be equal to the correlation gap of the functions
ϕ(|X ∩ Ej |).

4.1.2 Sequential Posted Price Mechanisms

Following Yan [159], consider a seller with a set of identical services (or goods), and a
set E of agents where each agent is only interested in one service (unit demand). Agent
i ∈ E has a private valuation vi if they get a service and 0 otherwise, where each vi is
drawn independently from a known distribution Fi over [0, L] for large L ∈ R+ with positive
smooth density function. The seller can offer the service only to certain subsets of the agents
simultaneously; this is captured by a matroid (E, I) where the independent sets represent
feasible allocations of the services to the agents.

A mechanism uses an allocation rule x : RE+ → {0, 1}E to choose the winning set of agents
based on the reported valuations v ∈ RE+ of the agents, and uses a payment rule p : RE+ → RE+
to charge the agents.

Myerson’s mechanism [24, 111] guarantees the optimal revenue, but is highly intricate
and there has been significant interest in simpler mechanisms such as sequential posted price
mechanisms proposed by Chawla, Hartline, Malec, and Sivan [28].

For a given ordering of agents and a price pi for each agent i, a sequential posted-price
mechanism (SPM) initializes the allocated set A to be ∅, and for all agents i in the order,
does the following: if serving i is feasible, i.e., A ∪ {i} ∈ I, then it offers to serve agent i at
the pre-determined price pi, and adds i to A if agent i accepts.

Thus, the seller makes take-it-or-leave-it price offers to agents one by one. This type of
mechanism is easy to run for the sellers, limits agents’ strategic behaviour, and keeps the
information elicited from agents at a minimum level. Simplicity comes at a cost as it does not
deliver optimal revenue, but as it turns out, this cost can be lower bounded by the correlation
gap of the underlying matroid (E, I).

Theorem 4.5 ([159, Theorem 3.1]). If the correlation gap of the weighted rank function is
at least β for no matter what nonnegative weights, then the expected revenue of greedy-SPM
is a β-approximation to that of Myerson’s optimal mechanism.

4.1 Introduction | 83

Note that in Theorem 4.1, we show that the worst case correlation gap of a weighted
matroid rank function is achieved with uniform weights. Hence, it suffices in this context to
bound the correlation gap of the unweighted rank function.

Similarly, the same paper [159] shows that a greedy-SPM mechanism recovers a constant
factor of the VCG mechanism [31, 75, 151] that maximizes the optimal welfare instead of
revenue. The factor here is also the correlation gap of the (weighted) rank function of the
underlying matroid. The analysis of greedy-SPM in both revenue and welfare maximization
settings is tight. For details we refer to [159].

4.1.3 Contention Resolution Schemes

Chekuri, Vondrák, and Zenklusen [30] introduced contention resolution (CR) schemes as
a tool for maximizing a general submodular function f (not necessarily monotone) under
various types of constraints. For simplicity, let us illustrate it for a single matroid constraint,
i.e. (4.4) without the monotonicity assumption on f . It consists of first approximately solving
the continuous problem (4.6). After obtaining an approximately optimal solution x ∈ P
to (4.6), it is rounded to an integral and feasible solution — i.e. an independent set in J

— without losing too much in the objective value. At a high level, given a fractional point
x ∈ P, a CR scheme first generates a random set R(x) by independently including each
element i with probability xi. Then, it removes some elements of R(x) to obtain a feasible
solution. We say that a CR scheme is c-balanced if, conditioned on i ∈ R(x), the element
i is contained in the final independent set with probability at least c; see [30] for a formal
definition. A c-balanced scheme delivers an integer solution with expected cost at least cF (x).
Thus, the goal is to design c-balanced CR schemes with the highest possible value of c.

There is a tight relationship between CR schemes and the correlation gap. Namely, the
correlation gap of the weighted rank function of (E,J) is equal to the maximum c such
that it admits c-balanced CR scheme [30, Theorem 4.6]. We would like to point out that
the correlation gap here concerns the matroid in the constraint, unlike in Proposition 4.4
where the correlation gap concerns the objective function. Note that again by Theorem 4.1,
it suffices to bound the correlation gap of the (unweighted) rank function of (E,J).

The benefit of CR schemes is that we can obtain good guarantees for submodular function
maximization under an intersection of different (downward-closed) constraints, including
multiple matroid constrains, knapsack constraints, matching etc. Moreover, in this case
the CR scheme can be simply obtained by combining the CR schemes for the individual
constraints.2

2We note however that CR schemes are not optimal for rounding (4.6): for this particular case, pipage or
swap rounding finds a feasible integer solution of value F (x), without any loss.

84 | Submodular Optimization: Correlation Gap Bounds for Matroids

4.1.4 Our Techniques

We now give a high-level overview of the proofs of Theorem 4.1 and Theorem 4.2, and
motivate the usage of the rank and girth parameters.

Weighted rank functions The starting point of the proofs of both Theorem 4.1 and
Theorem 4.2 is to deduce structural properties of correlation gap minimizer solutions. In
Theorem 4.21, we show that there is such a minimizer x in the independent set polytope P.
This implies r̂w(x) = w⊤x for any weighting w ∈ RE+; moreover, we deduce that x(E) must
be integral.

To prove Theorem 4.1 (in the restated form of Theorem 4.24), we fix a matroid M and
derive a contradiction for a non-uniform weighting. More precisely, we consider a weighting
w and a fractional solution x∗ that give a smaller ratio Rw(x∗)/r̂w(x∗) of the weighted
multilinear and weighted concave extensions than achievable by uniform weighting. By the
above, we can use the simpler form Rw(x∗)/r̂w(x∗) = Rw(x∗)/w⊤x. We assume that the
weight function w has the smallest number of different values. If the number of distinct
wi values is at least 2, we derive a contradiction by showing that a better solution can be
obtained by increasing the weights in a carefully chosen value class until they become equal
to the next smallest value. The greedy maximization property of matroids is essential for
this argument.

Girth and rank To get some understanding of the correlation gap of an (unweighted)
matroid rank function, let us first focus on uniform matroids. Let n = |E| and let ρ = r(E)
denote the rank of the matroidM = (E, I). If ρ = 1, then it is easy to verify that the solution
xi = 1/n for all i ∈ E has correlation gap 1− (1− 1/n)n. This point is in the independent
set polytope P and hence r̂(x) = x(E) = 1. If one samples each i with probability 1/n, the
probability of selecting at least one element is 1 − (1 − 1/n)n. This yields the multilinear
extension at that point, and 1− (1− 1/n)n goes to 1− 1/e as n→∞.

If ρ > 1, one can similarly argue that the symmetric solution xi = ρ/n gives the worst
case, and that CG(M) increases as ρ grows. Clearly, for ρ = n we get CG(M) = 1. In
Section 4.3.2, we show that the bounds in [9] can be interpreted as tight correlation gap
bounds for uniform matroids. In Proposition 4.20, we show that these coincide with the
bounds in Theorem 4.2 for the case of uniform matroids, i.e., γ = ρ+ 1.

Recall that the girth γ is the smallest size of a dependent set. For the well-studied class of
paving matroids, we have γ ∈ {ρ, ρ+ 1}. Intuitively, the correlation gap of a paving matroid
should be very close to that of a uniform matroid with the same rank, since the rank of any
set differs by at most 1 in the two matroids. Decreasing γ leads to more restrictive matroid
structures, and hence worse correlation gaps.

4.1 Introduction | 85

It turns out that the correlation gap heavily depends on the relative values of ρ and γ. In
Section 4.5, we give simple upper bounds on the correlation gap as parameterized by these
parameters. The first construction (Claim 4.25) shows that for a fixed girth γ, increasing the
rank ρ of the matroid does not improve the correlation gap. In other words, it is always upper
bounded by the correlation gap of a rank-(γ − 1) uniform matroid. The second construction
(Proposition 4.26) gives a bound which exhibits a similar behaviour to the lower bound in
Theorem 4.2: it is a decreasing function of ρ when γ is fixed, and an increasing function of γ
when ρ is fixed. We remark however, that these bounds are not tight.

Our results give the first nontrivial bound in terms of these two parameters. We hope
that it will motivate further studies into more refined correlation gap bounds, exploring the
dependence on further matroid parameters, as well as obtaining tight bounds for special
matroid classes.

A continuous time Markov chain analysis To obtain the (1 − 1/e) lower bound on
the correlation gap of a monotone submodular function, Calinescu et al. [26] introduced an
elegant probabilistic analysis. Instead of sampling all i ∈ E with probability xi, we consider
n independent Poisson clocks of rate xi that are active during the time interval [0, 1]. They
may send at most one signal from a Possion process. Let Q(t) be the set of elements where
the signal was sent between time 0 and t; the output is Q(1). This process can also be viewed
as a continuous time Markov chain. It is easy to see that E[f(Q(1))] ≤ F (x).

In [26], they show that the derivative of E[F (Q(t))] can be lower bounded as f∗(x) −
E[f(Q(t))] for every t ∈ [0, 1], where

f∗(x) := min
S⊆E

(
f(S) +

∑
i∈E

fS(i)xi

)
(4.7)

is an extension of f such that f∗ ≥ f̂ . The bound E[f(Q(1))] ≥ (1− 1/e)f∗(x) is obtained by
solving a differential inequality. Thus, F (x) ≥ E[f(Q(1))] ≥ (1− 1/e)f∗(x) ≥ (1− 1/e)f̂(x)
follows.

A two stage approach If f is a matroid rank function, then we have f∗ = f̂ (see
Theorem 4.7). Still, the factor (1− 1/e) in the analysis cannot be improved. In fact, already
for an integer x ∈ P, we lose a factor (1 − 1/e) due to E[f(Q(1))] = (1 − 1/e)F (x), even
though the extensions coincide: F (x) = f̂(x).

Our analysis in Section 4.6 proceeds in two stages. Given a matroid M = (E, I) with
rank ρ and girth γ, we decompose the rank function as r = g + h, where g(X) = min{|X|, ℓ}
is the rank function of a uniform matroid of rank ℓ = γ − 1. Note that h := f − g may not
be submodular, as h(S) = 0 for all |S| ≤ ℓ. We lower bound the multilinear extensions G(x)

86 | Submodular Optimization: Correlation Gap Bounds for Matroids

and H(x) separately. As above, G(x) can be lower bounded by showing that the worst case
is taken at a symmetric solution, i.e., where xi = x(E)/n for all i ∈ E.

Bounding H(x) is based on a Poisson clock analysis as in [26], but is significantly more
involved. Due to the monotonicity of h, directly applying the result in [26] still yields
E[h(Q(1)] ≥ (1 − 1/e)h∗(x). However, h∗(x) = 0 whenever M is loopless (ℓ ≥ 1). Indeed,
h(∅) = 0 and h∅(i) = 0 for all i ∈ E. So, the previous inequality becomes E[h(Q(1))] ≥ 0,
which is trivial and too weak for our purpose. Nevertheless, one can still show that, conditioned
on the event |Q(t)| ≥ ℓ, the derivative of E[H(Q(t))] is at least r∗(x)− ℓ− E[H(Q(t))]. Let
T ≥ 0 be the earliest time such that |Q(T)| ≥ ℓ, which we call the activation time of Q. Then,
solving a similar differential inequality produces E[h(Q(1))|T = t] ≥ (1− e−(1−t))(r∗(x)− ℓ)
for all t ≤ 1.

To lower bound E[h(Q(1))], it is left to take the expectation over all possible activation
times T ∈ [0, 1]. Let h̄(x) = (r∗(x)− ℓ)

∫ 1
0 Pr[T = t](1− e−(1−t))dt be the resulting expression.

We prove that h̄(x) is concave in each direction ei − ej for i, j ∈ E. This allows us to round
x to an integer x′ ∈ [0, 1]E such that x′(E) = x(E) and h̄(x′) ≤ h̄(x); recall that x(E) ∈ Z
by Theorem 4.21. After substantial simplification of h̄(x′), we arrive at the formula in
Theorem 4.2, except that ρ is replaced by x(E). So, the rounding procedure effectively shifts
the dependency of the lower bound from the value of x to the value of x(E). Since x(E) ≤ ρ
by Theorem 4.21, the final step is to prove that the formula in Theorem 4.2 is monotone
decreasing in ρ. This is shown in Lemma 4.38 using the relationship between the Poisson
distribution and the incomplete gamma function. Additionally, in Lemma 4.37 we show that
the obtained lower bound is always strictly greater than 1− 1/e when ℓ > 1.

4.1.5 Further Related Work

In the context of submodular maximization (4.4), Proposition 4.4 allows for improved
approximation bounds if f =

∑m
i=1 fi, where the fi’s are M ♮-concave functions.

A different approach to give fine-grained approximation guarantees for (4.4) is via curva-
ture notions; this is applicable to any submodular function and does not require the form
f =

∑m
i=1 fi. A well-studied measure is the total curvature of the submodular function,

namely, c(f) = 1−mini∈E(f(E)−f(E \{i}))/f({i}). Monotonicity and submodularity guar-
antee c(f) ∈ [0, 1]; the best case c(f) = 0 corresponds to additive (modular) functions. For
cardinality constraints, such a bound was given by Conforti and Cornuéjols [33], strengthened
and extended to matroid constraints by Sviridenko, Vondrák, and Ward [141].

However, there are important cases of submodular functions where the total curvature
bound is not tight. For a nondecreasing concave univariate function ϕ : N → R+ with
ϕ(0) = 0, f(X) = ϕ(|X|) is a submodular function. Exact maximization over matroid
constraints is straightforward for such a function, yet the total curvature can be 1. This is a

4.2 Preliminaries | 87

simple example of an M ♮-concave function; submodular function maximization can be done
in polynomial time for all such functions (see Proposition 4.10).

Motivated by this, Soma and Yoshida [138] proposed the following generalization of total
curvature: assume our monotone submodular function can be decomposed as f = g + h,
where g is monotone submodular and h is M ♮-concave. They define the h-curvature as
γh(f) = 1−minX⊆E h(X)/f(X), and provide approximation guarantees in terms of γh(f).
If this is close to 0, then the function can be well-approximated by an M ♮-concave functions.
The usual notion of total curvature arises by restricting h to additive (modular) functions.

A common thread in [138] and our approach is to exploit special properties of M ♮-concave
functions for submodular maximization. However, there does not appear to be any direct
implication between them.

Chapter organization In Section 4.2, we recall the definitions of matroids, M ♮-concave
functions, submodular functions, related paremeters, and some classical results that we will
use in our proofs. In Section 4.3.1, we recall Shioura’s algorithm for maximizing a sum of
M ♮-concave functions under matroid constraints and observe that the performance of this
algorithm is bounded by the correlation gap of the input functions. Then, in Section 4.3.2,
we explain how the results on concave multicoverage problems [8, 9, 50] can be derived using
the aforementioned algorithm and that the Poisson curvature bounds are equal to correlation
gaps of the same functions.

The rest of the chapter is devoted to showing our two main results. In Section 4.4, we
prove Theorem 4.1 and show that the minimizer of the correlation gap can always be found in
the independent set polytope of the matroid. Before we prove Theorem 4.2 in Section 4.6; we
give upper-bounds on the correlation gap of a matroid with rank ρ and girth γ in Section 4.5.

4.2 Preliminaries

We let Z+ and R+ denote the set of nonnegative integers and nonnegative reals, respectively.
For n, k ∈ Z+, we define

(n
k

)
= n!

k!(n−k)! if n ≥ k and as 0 otherwise.
For a set X and i ∈ X, j /∈ X, we will use the shorthands X−i = X \{i}, X+j = X∪{j},

X − i+ j = (X \ {i}) ∪ {j}. For x ∈ RE and S ⊆ E, we use x(S) =
∑
i∈S xi.

All set functions in the chapter will be given by value oracles; our running time bounds
will be polynomial in the number of oracle calls and arithmetic operations. We further assume
that all set functions are rational valued, and for f : 2E → Q, we let µ(f) denote an upper
bound on the encoding length of any value f(S). That is, for any S ⊆ V , the oracle returns
f(S) = p/q represented by p, q ∈ Z such that ⌈log2 p⌉+ ⌈log2 q⌉ ≤ µ(f).

Matroids For a detailed introduction to matroids, we refer the reader to Oxley’s book
[120] or Schrijver’s book [133]. A matroid M = (E, I) is given by a set of independent sets

88 | Submodular Optimization: Correlation Gap Bounds for Matroids

I ⊆ 2E of a ground set E. We require that I ≠ ∅, and the following axiom:

∀X,Y ∈ I with |X| < |Y | : ∃j ∈ Y \X : X + j ∈ I . (4.8)

A basis is an inclusion-wise maximal independent set. Let B ⊆ I be the set of bases. The
above axiom implies that all bases are of the same size, called the rank of M.

The rank function r : 2E → N is defined as r(S) = max{|Z| : Z ⊆ S,Z ∈ I}. This is a
monotone submodular function. A circuit is an inclusion-wise minimal dependent set. The
size of a smallest circuit is called the girth of M.

For a set T ⊆ E, M|T is the restriction of M to T , that is a matroid on ground set
T with independent sets I|T := {I ∈ I : I ⊆ T}. For a fixed set T ⊆ E, M/T is the
contraction of M by T , that is a matroid on ground set E \ T with independent sets
I/T := {S ⊆ E \ T : S ∪B ∈ I for some basis B of M|T }.

The rank function ofM/T is given by rM/T (S) = r(S∪T)−r(S). For a set S ⊆ E and an
element i ∈ E, let rS(i) denote the marginal gain of adding i to S, i.e., rS(i) := r(S+i)−r(S).

The closure of S is defined as cl(S) := {i ∈ E : rS(i) = 0}. A set S ⊆ E is spanning, if
cl(S) = E; equivalently, if S contains a basis. A flat of M is a set S ⊆ E where cl(S) = S.

Recall the independent set polytope defined in (4.5).

Theorem 4.6 (Edmonds, [133, Theorem 40.2]). For a matroid M = (E, I) with rank
function r, P(r) defined in (4.5) is the convex hull of the incidence vectors of the independent
sets in I.

We also recall another classical result by Edmonds on intersecting the independent set
polytope by a box.

Theorem 4.7 (Edmonds, [133, Theorem 40.3]). Let r : 2E → R be a matroid rank function
and x ∈ R+. Then,

max{y(E) : y ∈ P(r), y ≤ x} = min{r(T) + x(E \ T) : T ⊆ E} .

M ♮-concave functions A set function g : 2V → R ∪ {−∞} is M ♮-concave if

∀X,Y ⊆ with |X| < |Y | :

f(X) + f(Y) ≤ max
j∈Y \X

{f(X + j) + f(Y − j)} (4.9a)

∀X,Y ⊆ E with |X| = |Y | and ∀i ∈ X \ Y :

f(X) + f(Y) ≤ max
j∈Y \X

{f(X − i+ j) + f(Y + i− j)}. (4.9b)

We refer the reader to Murota’s monography [108] for a comprehensive treatment of M ♮-
concave functions. These functions can be defined more generally on the integer lattice Zn.

4.2 Preliminaries | 89

In this chapter, we restrict our attention to M ♮-concave set functions, also known as valuated
generalized matroids. These are closely related to valuated matroids introduced by Dress
and Wenzel [49]. The definitions above are from [69, 110] and are equivalent to the standard
definition in [108].

The definition can be seen as a generalization of the matroid independence axiom (4.8).
Given a matroid M = (E, I), the indicator function f defined as f(S) = 0 if S ∈ I and
f(S) = −∞ is M ♮-concave. More generally, given also a weight function w ∈ RE , the weighted
matroid rank function

rw(S) := max{w(Z) : Z ⊆ S ,Z ∈ I} (4.10)

is M ♮-concave. These functions form a nontrivial subclass of submodular functions [76, 101].

Proposition 4.8 ([108, Theorem 6.19]). Every M ♮-concave function is submodular.

We recall that submodular functions can be minimized in polynomial time, but submodular
maximization is NP-complete. However, it is polynomial time solvable for M ♮-concave
functions; in fact, they can be maximized using the greedy algorithm.

Proposition 4.9 ([49]). If g : 2E → R ∪ {−∞} is M ♮-concave function and z ∈ RE, then
maxT⊆E g(T)− z(T) can be computed in polynomial time.

Recall the concave extension ĝ(y) defined in (4.2). It is NP-complete to evaluate this
function for general submodular functions. However, for M ♮-concave functions, it can be
efficiently computed. To see this, we formulate the dual LP, and notice that separation
corresponds to maximizing g(T)− z(T).

min z⊤y + α

s.t. z(T) + α ≥ g(T) ∀T ⊆ U .
(4.11)

Proposition 4.10. If g : 2E → R∪{−∞} is M ♮-concave function and y ∈ [0, 1]E, then ĝ(y)
can be computed in polynomial time.

We note that the existence of a concave extension satisfying desirable combinatorial
properties is equivalent to the function being M ♮-concave, see [108, Theorem 6.43].

Probability distributions Let Bin(n, p) denote the binomial distribution with parameters
n and p, and Poi(λ) the Poisson distribution with parameter λ. Recall that P (Poi(λ) = k) =
e−λλk/k! for any k ∈ Z+.

Definition 4.11. Given random variables X and Y , we say that X is at least Y in the
concave order if for every concave function ϕ : R→ R, we have E[ϕ(X)] ≥ E[ϕ(Y)] whenever
the expectations exist. It is denoted as X ≥cv Y .

90 | Submodular Optimization: Correlation Gap Bounds for Matroids

In particular, we will use the following relation between the binomial and Poission
distributions:

Lemma 4.12 ([9, Lemma 2.1]). For any n ∈ N and p ∈ [0, 1], we have Bin(n, p) ≥cv Poi(np).

4.2.1 Properties of Multilinear Extension

Let f : 2E → R+ be an arbitrary set function, and F : [0, 1]E → R+ be its multilinear
extension. We will use the following well known properties, see e.g. [25].

Proposition 4.13. For any x ∈ [0, 1]E and i ∈ E, the function φ(t) := F (x+ tei) is linear.

Proposition 4.14. If f is monotone, then F (x) ≥ F (y) for all x ≥ y.

Proposition 4.15. If f is submodular, then for any x ∈ [0, 1]E and i, j ∈ E, the function
φ(t) := F (x+ t(ei − ej)) is convex.

4.3 Correlation Gap Bounds for Submodular Maximization

4.3.1 Maximizing Sum of M ♮-Concave Functions

In this section, we prove Proposition 4.4. Throughout, let f1, f2, . . . , fm : 2E → R be
monotone M ♮-concave functions, and let f =

∑m
j=1 fj . Let us define f̃ : [0, 1]E → R+ as the

sum of the concave extensions.
f̃(x) :=

m∑
j=1

f̂j(x) (4.12)

Note that f̃(x) ≤ f̂(x), however, this equality may be strict.
Shioura [135] gave an (1− 1/e)-approximation for (4.4) for a function f in this form. His

algorithm starts by solving
max
x∈P

f̃(x) (4.13)

This is a convex optimization problem, and is also a relaxation of (4.4), noting that for any
S ⊆ E, f̃(χS) = f(S).

The number of constraints in P is exponential, but can be efficiently separated over.
The objective function f̃(x) can be evaluated by solving m exponential-size linear programs.
Shioura showed that (4.13) can be solved using the ellipsoid method by implementing a
subgradient oracle. The algorithm returns an exact solution in time polynomial in n, m, and
the complexity parameter µ(f), assuming the functions are rational valued.

Given an optimal solution x∗ to (4.13), the pipage rounding technique first introduced by
Ageev and Sviridenko [1] can be used to obtain a set S ∈ I with f(S) ≥ F (x∗). Hence, we
obtain an α-approximation for (4.4) as long as we can show F (x∗) ≥ αf̃(x∗). The proof of
Proposition 4.4 is complete by the following lemma.

4.3 Correlation Gap Bounds for Submodular Maximization | 91

Lemma 4.16. Let α := minmj=1 CG(fj). Then, for every x ∈ [0, 1]E, F (x) ≥ αf̃(x).

Proof. Let Fj be the multilinear extension of fj . Note that F (x) =
∑m
j=1 Fj(x). By the

definition of the correlation gap,

F (x) =
m∑
j=1

Fj(x) ≥ α
m∑
j=1

f̂j(x) = αf̃(x) .

4.3.2 Concave Multicoverage Problems

We now discuss the concave multicoverage model in Barman et al. [8], and show that the
Poisson curvature studied in this paper can be interpreted as a correlation gap bound. Further,
in Proposition 4.20, we show that the tight bounds in [9] for the maximum multicoverage
problems coincide with the correlation gap bound in Theorem 4.2 for uniform matroids, i.e.,
γ = ρ+ 1.

Let M = (E,J) be a matroid, and let ϕ : Z+ → R+ be a normalized nondecreasing
concave function, i.e., ϕ(0) = 0, ϕ(1) = 1, ϕ(i+1) ≥ ϕ(i) and ϕ(i+1)−ϕ(i) ≥ ϕ(i+2)−ϕ(i+1)
for all i ∈ Z+. For every j ∈ [m], we are given a subset Ej ⊆ E, a weight wj ∈ R+, and a
function fj : 2E → R+ defined by fj(X) := ϕ(|X ∩ Ej |). In the ϕ-MaxCoverage problem,
the goal is to maximize f(X) :=

∑m
j=1wjfj(X) subject to X ∈ J . Barman et al. [8] gave

an approximation algorithm for this problem, whose approximation factor is the so-called
Poisson concavity ratio of ϕ, defined as

αϕ := inf
λ∈R+

E[ϕ(Poi(λ))]
ϕ̂(E[Poi(λ)]) = inf

λ∈R+

E[ϕ(Poi(λ))]
ϕ̂(λ) .

Here, ϕ̂ : R+ → R+ is the concave extension of ϕ, i.e. ϕ̂(λ) = ϕ(⌊λ⌋) + (ϕ(⌊λ⌋ + 1) −
ϕ(⌊λ⌋))(λ− ⌊λ⌋).

In this subsection, we show that the correlation gap of each fj is at least the Poisson
concavity ratio of ϕ. To this end, fix a j ∈ [m]. The following lemma relates the concave
extensions of fj and ϕ.

Lemma 4.17. For any x ∈ [0, 1]E, we have f̂j(x) = ϕ̂(x(Ej))

Proof. Fix an x ∈ [0, 1]E . Let λ = x(Ej) and β = ϕ(⌊λ⌋ + 1) − ϕ(⌊λ⌋). Based on the LP
formulation of f̂j , it suffices to show that (z, α) := (βχEj , ϕ(⌊λ⌋)−β ⌊λ⌋) is an optimal solution
to (4.11). Note that z⊤x+ α = ϕ(⌊λ⌋) + β(λ− ⌊λ⌋) = ϕ̂(λ). Feasibility is straightforward
because for any T ⊆ E, we have

z(T) + α = βχ⊤Ej
χT + ϕ(⌊λ⌋)− β ⌊λ⌋ = ϕ(⌊λ⌋) + β(|T ∩ Ej | − ⌊λ⌋) ≥ ϕ(|T ∩ Ej |) = fj(T),

where the inequality follows from the concavity of ϕ̂, and the fact that β is a supergradient of
ϕ̂ at ⌊λ⌋. Observe that the inequality is tight if |T ∩Ej | ∈ {⌊λ⌋ , ⌊λ+ 1⌋}. To show optimality,

92 | Submodular Optimization: Correlation Gap Bounds for Matroids

we consider the dual LP (4.2). By complementary slackness, it is left to prove that x be can
be written as a convex combination of the indicator vectors of these sets. Define the polytope

P := {y ∈ [0, 1]E : ⌊λ⌋ ≤ y(Ej) ≤ ⌊λ⌋+ 1}.

It is easy to see that the vertices of P are precisely the aforementioned indicator vectors.
Since x ∈ P , it lies in their convex hull.

The next lemma shows that the multilinear extension Fj is minimized at ‘symmetric’
points.

Lemma 4.18. symmetric For any x ∈ [0, 1]E, let x̄ ∈ [0, 1]E be the vector given by

x̄i :=

x(Ej)
|Ej | , if i ∈ Ej
xi, otherwise.

.

Then, Fj(x) ≥ Fj(x̄).

Proof. Fix an x ∈ [0, 1]E , and let x̄ ∈ [0, 1]E be the vector as defined above. Let y∗ ∈
arg miny∈[0,1]E{Fj(y) : y(Ej) = x(Ej)} such that ∥y∗ − x̄∥1 is minimized. It suffices to prove
that y∗ = x̄. Note that y∗i = x̄i for all i /∈ Ej because these coordinates do not affect the
value of Fj .

For the purpose of contradiction, suppose that there exist a, b ∈ Ej such that y∗a < x̄a

and y∗b > x̄b. Let φ(t) := Fj(y∗ + t(ea − eb)) be the function obtained by restricting Fj

along the direction ea − eb at y∗. Since fj is submodular, φ is convex by Proposition 4.15.
Moreover, φ(0) = φ(y∗b − y∗a) because Fj becomes a symmetric polynomial after fixing the
coordinates in E \ Ej . It follows that φ(t) ≤ φ(0) = Fj(y∗) for all 0 ≤ t ≤ y∗b − y∗a. Thus,
if we pick t = min{x̄a − y∗a, y∗b − x̄b}, then ∥y∗ + t(ea − eb) − x̄∥1 < ∥y∗ − x̄∥1, which is a
contradiction.

We show that the Poisson concavity ratio is a lower bound on the correlation gap:

Proposition 4.19. We have CG(fj) ≥ αϕ. If ϕ(x) = o(x), then CG(fj) = αϕ unless P =
NP.

Proof. To show the inequality, let x ∈ [0, 1]E such that CG(fj) = Fj(x)/f̂j(x). Let λ = x(Ej)
and nj = |Ej |. Define the vector x̄ ∈ [0, 1]E as x̄i := λ/nj if i ∈ Ej , and x̄i := xi otherwise.
According to Lemmas 4.12 and 4.18,

Fj(x) ≥ Fj(x̄) =
nj∑
k=0

ϕ(k)
(
nj
k

)(
λ

nj

)k (
1− λ

nj

)nj−k

= E
[
ϕ

(
Bin

(
nj ,

λ

nj

))]
≥ E [ϕ(Poi(λ))] ,

Moreover, we have f̂j(x) = ϕ̂(λ) by Lemma 4.17. Hence, CG(fj) ≥ E [ϕ(Poi(λ))] /ϕ̂(λ) ≥ αϕ.

4.4 Locating the Correlation Gap | 93

For the case ϕ(x) = o(x), [8, Theorem 4] shows that it is NP-hard to approximate
ϕ-MaxCoverage by a ratio αϕ + ε for any ε > 0. By Proposition 4.4, we have P = NP in
case CG(fj) > αϕ.

When fj is the rank function of a rank-ℓ uniform matroid, [9] gave a tight approximation
ratio 1− e−ℓℓℓ

ℓ! . We show that this coincides with the lower bound in Theorem 4.2.

Proposition 4.20. For every ℓ ∈ N, we have

1− 1
e

+ e−ℓ

ℓ

(
ℓ−1∑
i=0

(ℓ− i)
[(
ℓ

i

)
(e− 1)i − ℓi

i!

])
= 1− e−ℓℓℓ

ℓ! .

Proof. First, observe that

ℓ−1∑
i=0

(ℓ− i)
(
ℓ

i

)
(e− 1)i = ℓ

ℓ−1∑
i=0

(
ℓ

i

)
(e− 1)i −

ℓ−1∑
i=1

ℓ!
(i− 1)!(ℓ− i)! (e− 1)i

= ℓ

(
ℓ−1∑
i=0

(
ℓ− 1
i

)
(e− 1)i +

ℓ−1∑
i=1

(
ℓ− 1
i− 1

)
(e− 1)i −

ℓ−1∑
i=1

(
ℓ− 1
i− 1

)
(e− 1)i

)
= ℓeℓ−1.

Similarly, we have

ℓ−1∑
i=0

(ℓ− i)ℓ
i

i! = ℓ
ℓ−1∑
i=0

ℓi

i! −
ℓ−1∑
i=1

ℓi

(i− 1)! = ℓ

(
ℓ−1∑
i=0

ℓi

i! −
ℓ−2∑
i=0

ℓi

i!

)
= ℓℓ

(ℓ− 1)! .

Putting them together yields

1−e−1+ e−ℓ

ℓ

(
ℓ−1∑
i=0

(ℓ− i)
[(
ℓ

i

)
(e− 1)i − ℓi

i!

])
= 1−e−1+ e−ℓ

ℓ

(
ℓeℓ−1 − ℓℓ

(ℓ− 1)!

)
= 1− e

−ℓℓℓ

ℓ!

as desired.

4.4 Locating the Correlation Gap

In this section, we prove some structural results to locate the minimizer x of the correlation
gap CG(rw) of a weighted matroid rank function, and prove Theorem 4.1, i.e., the worst case
correlation gap over all possible weightings is attained by the uniform weights. Our first goal
is to show the following.

Theorem 4.21. Let M = (E, I) be a matroid, w ∈ RE+ a weight vector. Let rw denote
the weighted matroid rank function with multilinear extension Rw. Then, there exists an

94 | Submodular Optimization: Correlation Gap Bounds for Matroids

x∗ ∈ P(r) and a set S∗ ⊆ E such that x∗(S∗) = r(S∗), x∗E\S = 0, and

CG(r) = Rw(x∗)
r̂w(x∗) = Rw(x∗)

w⊤x∗
.

We start by giving two alternative descriptions of r̂w. Recall the definition of r̂w in
(4.2) and the dual form (4.11). We first show that the equalities in (4.2) can be relaxed to
inequalities for any monotone submodular function:

Lemma 4.22. For any monotone submodular function f : 2E → R and x ∈ [0, 1]E, the
concave extension f̂(x) can be equivalently written as

max

∑
S⊆E

λSf(S) :
∑

S⊆E:i∈S
λS ≤ xi ∀i ∈ E ,

∑
S⊆E

λS = 1 , λ ≥ 0

 . (4.14)

Proof. Clearly, the optimal value of (4.14) is at least f̂(x). Take an optimal solution λ

to (4.14) such that δ(λ) :=
∑
i∈E

(
xi −

∑
S⊆E:i∈S λS

)
is minimal. If δ = 0, then λ is also

feasible to (4.2), proving the claim. Assume that δ > 0, and take any i ∈ E for which
xi >

∑
S⊆E:i∈S λS . Since xi ≤ 1 and

∑
S⊆E λS = 1, there exists a set T ⊆ E with λT > 0,

i /∈ T .
Let us modify this solution to λ′ defined as λ′T+i = λT+i + ε, λ′T = λT − ε, and λ′S = λS

otherwise. For small enough ε > 0, λ′ is also a feasible solution with δ(λ′) < δ(λ). Moreover,
λ′ is also optimal, since

∑
S⊆E λ

′
Sf(S) ≥

∑
S⊆E λSf(S) by the monotonicity of f . This

contradicts the choice of λ; consequently, δ(λ) = 0 must hold and the claim follows.

Lemma 4.23. Let M = (E, I) be a matroid with rank function r and weight w ∈ RE+. Then,
for x ∈ [0, 1]E

r̂w(x) = max{w⊤y : y ∈ P(r), y ≤ x} .

Proof. Consider an optimal solution λ to the LP in (4.14) for f = rw with
∑
S⊆E λS |S|

minimal. We claim that every S ⊆ E with λS > 0 must be independent. Indeed, recall that
rw(S) = w(X) for some independent set X ⊆ S. If S /∈ I, then we can simply replace S in
the combination by this set X. The solution remains feasible with the same objective value,
but smaller

∑
S⊆E λS |S|.

Consequently, we may assume that rw(S) = w(S) for every S ∈ supp(λ). Letting
yi =

∑
S: i∈S λi, the objective of (4.14) can be written as

∑
S⊆V

λSrw(S) = w⊤y .

Note that y ≤ x and y ∈ P(r), since y can be written as a convex combination of incidence
vectors of independent sets. Hence, (4.14) for f = rw is equivalent to maximizing w⊤y over
y ∈ P(r), y ≤ x, proving the statement.

4.4 Locating the Correlation Gap | 95

Proof of Theorem 4.21. First, we show that the minimum of Rw(x)/r̂w(x) is taken at some
x ∈ P(r). Take a minimizer x /∈ P(r). By Lemma 4.23, r̂w(x) = w⊤y for some y ∈ P(r),
y ≤ x. Clearly, r̂w(y) = w⊤y. By Proposition 4.14, we have Rw(y) ≤ Rw(x). This proves
that Rw(x)/r̂w(x) ≥ Rw(y)/r̂w(y), thus, equality must hold and y is also a minimizer of the
correlation gap.

For the rest of the proof, consider a minimizer x ∈ P(r). Note that Rw(x)/r̂w(x) =
Rw(x)/w⊤x. Among such minimizers, let us pick x such that supp(x) is minimal. The proof
is complete by showing that x(S∗) = r(S∗) for S∗ = supp(x).

For a contradiction, assume x(S∗) < r(S∗). We claim that there exists a j ∈ S∗ such
that x + εχj ∈ P(r) for some ε > 0. If no such j exists, then there exists a set Tj for
each j ∈ S∗ such that j ∈ Tj , and x(Tj) = r(Tj). A standard uncrossing algorithm shows
that x(T) = r(T) for T = ∪j∈S∗Tj . Clearly, S∗ ⊆ T . But this implies x(S∗) = r(S∗) since
x(S∗) = x(T) and r(S∗) ≤ r(T). Thus, there exists a j ∈ S∗ such that x+ εχj ∈ P(r) for
some ε > 0.

For γ ∈ [0, 1], let xγ be the vector obtained from x by replacing xj by γ. Let Γ = max{γ :
xγ ∈ P(r)}. By the choice of j, xj < Γ.

According to Proposition 4.13, h(γ) = Rw(xγ) is a linear function in γ; we can write
h(γ) = a+ bγ for a, b ∈ R+. For γ ∈ [0,Γ], xγ ∈ P(r), and therefore r̂(xγ) = w⊤xγ ; this is
also a linear function and can be written as r̂(xγ) = c+ dγ, where c =

∑
i ̸=j wixi and d = wj .

Hence, for γ ∈ [0,Γ], we can write

Rw(xγ)
r̂w(xγ) = a+ bγ

c+ dγ
.

It is easy to see that if a/c < b/d, then the unique minimizer on γ ∈ [0,Γ] is γ = 0; if
a/c > b/d, then the unique minimizer is γ = Γ. Both these cases contradict the optimal
choice of x. Hence, we must have a/c = b/d, in which case the ratio is constant on γ ∈ [0,Γ].
Therefore, x0 is also a minimizer. This is a contradiction to the minimal choice of supp(x).

We are ready to prove Theorem 4.1, restated as follows.

Theorem 4.24. Let M = (E, I) be a matroid with rank function r, and rw the weighted
rank function for some weights w ∈ RE+, w ̸= 0. Then,

CG(rw) ≥ CG(r) .

Proof. For a contradiction, assume there exists a weight vector w ≥ 0 and a point x∗ ∈ [0, 1]E

such that Rw(x∗)/r̂w(x∗) < CG(r). According to Theorem 4.21, we can assume x∗ ∈ P(r)
and thus r̂w(x∗) = w⊤x∗.

96 | Submodular Optimization: Correlation Gap Bounds for Matroids

Let w1 > w2 > · · · > wk ≥ 0 denote the distinct values of w. For each i ∈ [k], let Ei ⊆ E
denote the set of elements with weight wi. Clearly, k ≥ 2 as otherwise Rw(x∗)/r̂w(x∗) =
w1R(x∗)/(w1x∗(E)) = R(x∗)/x∗(E) ≥ CG(r). Let us pick a counterexample with k minimal.

First, we claim that wk > 0. Indeed, if the smallest cost is wk = 0, then Rw(x∗)/r̂w(x∗) is
unchanged by modifying to we = w1 and x∗e = 0 for all e ∈ Ek; this contradicts the minimal
choice of k.

Let X be the random variable for the set obtained by sampling every element e ∈ E
independently with probability x∗e. Let IX ⊆ X denote a maximum weight independent subset
of X. Recall the well-known property of matroids that a maximum weight independent set
can be selected greedily in decreasing order of the costs we. We fix an arbitrary tie-breaking
rule inside each set Ei.

The correlation gap of rw is given by

Rw(x∗)
r̂w(x∗) =

∑
S⊆E Pr(X = S)rw(S)

w⊤x∗
=
∑
e∈E we Pr(e ∈ IX)∑

e∈E wex
∗
e

=
∑k
i=1w

i∑
e∈Ei

Pr(e ∈ IX)∑k
i=1w

i
∑
e∈Ei

x∗e
.

Consider the set
J := arg min

i∈[k]

∑
e∈Ei

Pr(e ∈ IX)∑
e∈Ei

x∗e
.

We claim that J \ {1} ̸= ∅. Suppose that J = {1} for a contradiction. Define the point
x′ ∈ P(r) as x′e := x∗e if e ∈ E1, and x′e := 0 otherwise. Then, we get a contradiction from

CG(r) ≤ R(x′)
r̂(x′) =

w1∑
e∈E1 Pr(e ∈ IX)
w1x∗(E1) <

∑k
i=1w

i∑
e∈Ei

Pr(e ∈ IX)∑k
i=1w

ix∗(Ei))
= Rw(x∗)

r̂w(x∗) .

The first equality holds because for each element e ∈ E1, Pr(e ∈ IX) only depends on
x∗E1

= x′E1
. This is by the greedy choice of IX : elements in E1 are selected regardless of

X \ E1. The strict inequality is due to J = {1}, k ≥ 2 and w2 > 0.
Now, pick any index j ∈ J \ {1}. Since wj > 0, we have

wj
∑
e∈Ej

Pr(e ∈ IX)
wj
∑
e∈Ej

x∗e
≤
∑k
i=1w

i∑
e∈Ei

Pr(e ∈ IX)∑k
i=1w

ix∗(Ei)
.

So, we can increase wj to wj−1 without increasing the correlation gap. That is, defining
w̄ ∈ RE+ as w̄e := wj−1 if e ∈ Ej and w̄e := we otherwise, we get

Rw(x∗)
r̂w(x∗) ≥

∑
i ̸=j w

i∑
e∈Ei

Pr(e ∈ IX) + wj−1∑
e∈Ej

Pr(e ∈ IX)∑
i ̸=j w

ix∗(Ei) + wj−1x∗(Ej)

=
∑
S⊆E Pr(X = S)fw̄(S)

w̄⊤x∗
≥ min

x∈[0,1]E
Fw̄(x)
f̂w̄(x)

.

4.5 Upper Bounds on the Correlation Gap | 97

The equality holds because for every S ⊆ E, IS remains a maximum-weight independent set
with the new weights w̄. This again contradicts the minimal choice of k.

4.5 Upper Bounds on the Correlation Gap

Recall that for uniform matroids (with γ = ρ + 1 and ℓ = ρ) the bound in Theorem 4.2
simplifies to 1− e−ℓℓℓ

ℓ! , and in this case, the bound is tight. We now give simple upper bounds
on the correlation gap of a matroid rank function with a given rank ρ and girth γ. We start
with the simple observation that the correlation gap of a uniform rank γ − 1 matroid gives
such an upper bound.

Claim 4.25. For every ρ, ℓ ∈ N where ρ ≥ ℓ, there exists a matroid M = (E, I) with rank ρ
and girth ℓ+ 1 whose correlation gap is equal to 1− e−ℓℓℓ

ℓ! .

Proof. Let M1 be a rank-ℓ uniform matroid on n > ℓ elements with rank function r1. Let
M2 be a free matroid on ρ − ℓ elements with rank function r2. Consider the matroid
M = M1 ⊕ M2 with rank function r. Note that M has rank ρ and girth ℓ + 1. By
Proposition 4.3, CG(r) = min{CG(r1), CG(r2)}. Let us define the function ϕ : Z+ → Z+

as ϕ(i) := min{i, ℓ}. Clearly, r1(S) = ϕ(|S|). From Proposition 4.19 and [8], we have
CG(r1) ≥ αϕ = 1− e−ℓℓℓ

ℓ! . Let x∗ ∈ [0, 1]n be the point given by x∗ = ℓ
n · 1. Then,

R(x∗)
r̂(x∗) = E[ϕ(Bin(n, ℓ/n))]

1⊤x∗
= E[ϕ(Bin(n, ℓ/n))]

ℓ
→ E[ϕ(Poi(ℓ))]

ℓ
= 1− e−ℓℓℓ

ℓ!

as n→∞. The first equality is due to Lemma 4.23, while the last equality is by [9, Lemma
2.2]. Thus, CG(r1) = 1− e−ℓℓℓ

ℓ! . It is left to show that CG(r2) = 1. For any x ∈ [0, 1]ρ−ℓ, we
have R2(x) = 1⊤x. Moreover, r̂(x) = 1⊤x by Lemma 4.23.

We now give a better, albeit still non-tight upper bound.

Proposition 4.26. For every ρ, ℓ ∈ N where ρ ≥ ℓ, there exists a matroid M = (E, I) with
rank ρ and girth ℓ+ 1 whose correlation gap is at most 1− 1

e + ℓ
eρ .

Proof. Let k := ρ−ℓ. For some n ∈ N, n ≥ ℓ+1, let the ground set be E = E0⊔E1⊔· · ·⊔Ek,
where |E0| = ℓn and |Ei| = n for all i ∈ [k]. Our matroid M is constructed as the union of
two matroids Mu and Mp. The first matroid Mu = (E, Iu) is the uniform matroid of rank
ℓ on ground set E. The second matroid Mp = (E, Ip) is the partition matroid on ground
set E, where each Ei is a part of rank 1 for all i ≥ 1; every element of E0 is a loop in this
matroid.

Matroid union is a well known matroid operation where every independent set of the
union matroid is the union of two independent sets from each of the two matroids. We can

98 | Submodular Optimization: Correlation Gap Bounds for Matroids

write the rank function of M as (see e.g., [133, Corollary 42.1a]):

r(X) =
k∑
i=1

min{1, |Ei ∩X|}+ min
{
ℓ, |E0 ∩X|+

k∑
i=1

max{0, |Ei ∩X| − 1}
}
.

Note that the rank of the matroid is r(E) = γ + k = ρ, and the girth is γ = ℓ+ 1, since every
γ element set is indepedent, but any γ + 1 element subset of E0 is dependent.

Let us now fix F ⊆ E0, |F | = ℓ, and define x as xi = 1 if i ∈ F , xi = 0 if i ∈ E0 \ F , and
xi = 1/n if i ∈ E \ E0. It is easy to verify that x ∈ P(r) as it can be written as a convex
combination of n bases. Thus, r̂(x) = x(E) = ℓ+ k = ρ.

Let us now compute the multilinear extension R(x). Let S ⊆ E be the random set
sampled independently according to the probabilities xi. We have F ⊆ S with probability 1.
From the above rank function expression, we get

r(S) = ℓ+
k∑
i=1

min{1, |Ei ∩ S|} ,

therefore,

R(x) = E [r(S)] = ℓ+
k∑
i=1

Pr[|Ei ∩ S| ≥ 1] = ℓ+ k

(
1−

(
1− 1

n

)n)
→ ρ− ρ− γ

e
,

as n→∞. From here, we see that

lim
n→∞

R(x)
r̂(x) = 1− 1

e
+ γ

eρ
.

4.6 The Correlation Gap Bound for Matroids

This section is dedicated to the proof of Theorem 4.2. For the matroid M = (E, I), let r
denote the rank function, ρ = r(E) the rank, and γ the girth. We have γ > 1 since the
matroid is assumed to be loopless.

According to Theorem 4.21, there exists a point x∗ ∈ P(r) and a set S ⊆ E such that
x∗(S) = r(S), x∗(E \ S) = 0, and CG(r) = R(x∗)/r(x∗). For notational convenience, let us
define

ℓ := γ − 1 , λ := x∗(E) = x∗(S) = r(S) .

Note that if λ < ℓ, then S is independent. As x∗(S) = r(S) = |S| and x∗ ≤ 1, we have x∗i = 1
for all i ∈ S. In this case, it follows that x∗ is integral and R(x∗) = r̂(x∗), so the correlation
gap is 1. Henceforth, we will assume that λ ≥ ℓ.

In this section, we analyze the multilinear extension of r. Let g : 2E → Z+ be the rank
function of a uniform matroid of rank ℓ over ground set E, and define the function h := r− g.

4.6 The Correlation Gap Bound for Matroids | 99

Clearly, r = g + h. By linearity of expectation, the multilinear extension of r can be written
as

R(x) = E[r(S)] = E[g(S) + h(S)] = E[g(S)] + E[h(S)] = G(x) +H(x) , (4.15)

where G and H are the multilinear extensions of g and h respectively. To lower bound R(x∗),
we will lower bound G(x∗) and H(x∗) separately.

4.6.1 Lower Bounding G(x∗)

Observe that G is a symmetric polynomial because g is the rank function of a uniform
matroid. As g is submodular, Proposition 4.15 indicates that G is convex along ei− ej for all
i, j ∈ E. The next lemma is an easy consequence of these two properties. We have already
proven it in a more general form in Lemma 4.18.

Lemma 4.27. For any x ∈ [0, 1]E, we have G(x) ≥ G((x(E)/n) · 1).

By Lemma 4.27, we have

G(x∗) ≥ G
(
λ

n
· 1
)

=
n∑
k=0

min{k, ℓ}
(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
= E

[
min

{
Bin

(
n,
λ

n

)
, ℓ

}]
.

In other words, we can lower bound G(x∗) by the expected value of Bin(n, λ/n) truncated at
ℓ. We now use Lemma 4.12 on the concave order of the binomial and Poisson distributions
to obtain

E
[
min

{
Bin

(
n,
λ

n

)
, ℓ

}]
≥ E [min {Poi(λ), ℓ}] =

∞∑
k=0

min{k, ℓ}λ
ke−λ

k! .

Using Pr(Poi(λ) ≥ j) =
∑∞
k=j

λke−λ

k! , this amounts to

G(x∗) ≥
ℓ∑

j=1
Pr(Poi(λ) ≥ j) =

ℓ∑
j=1

1−
j−1∑
k=0

λke−λ

k!

 = ℓ−
ℓ−1∑
k=0

(ℓ− k)λ
ke−λ

k! . (4.16)

4.6.2 Lower Bounding H(x∗)

Next, we turn to the extension H. We first describe the general setup, which is to incrementally
build a set Q(1) as follows. For each element i ∈ E, we put a Poisson clock of rate x∗i on
it. We initialize with Q(0) = ∅, and start all the clocks simultaneously at time t = 0. For
t ∈ [0, 1], if the clock on an element rings at time t, we add that element to our current set.
This process is terminated at time t = 1. This gives rise to the time-dependent set-valued
random variable Q such that, for t ∈ [0, 1], Q(t) is the random variable for the set at time t.
This process can also be viewed as a continuous-time Markov chain, where the state space
is the power set 2E . From a set/state S, the possible transitions are to those sets S′ where

100 | Submodular Optimization: Correlation Gap Bounds for Matroids

S ⊂ S′ and |S′| = |S| + 1. Note that the Markov property is satisfied because both the
holding time and transitions only depend on the current state Q(t).

Due to the independence of the Poisson clocks, for every set S ⊆ E, we have

Pr[Q(1) = S] =
∏
i∈S

Pr[i ∈ Q(1)]
∏
i/∈S

Pr[i /∈ Q(1)] =
∏
i∈S

(1− e−x∗i)
∏
i/∈S

e−x
∗
i .

Since h is monotone and x∗i ≥ 1− e−x∗i for all i ∈ E, Proposition 4.14 gives

H(x∗) ≥ H(1− e−x∗) = E[h(Q(1))] . (4.17)

So, it suffices to lower bound E[h(Q(1))].
Let t ∈ [0, 1) and consider an infinitesimally small interval [t, t+ dt]. For every element

i ∈ E, the number of times its clock rings is a Poisson random variable with rate x∗i dt. Hence,
the probability that an element i is added to our set during this interval is

Pr(Poi(x∗i dt) ≥ 1) = 1− e−x∗i dt = 1− (1− x∗i dt+O(dt2)) = x∗i dt+O(dt2) ,

where the second equality follows from Taylor’s theorem. Observe that the probability of
adding two or more elements during this interval is also O(dt2). Since dt is very small, we
can effectively neglect all O(dt2) terms. Conditioning on the event Q(t) = S, the expected
increase of h(Q(t)) (up to O(dt2) terms) is

E[h(Q(t+ dt))− h(Q(t))|Q(t) = S] =
∑
i∈E

hS(i)x∗i dt.

From the definition of h, for each element i ∈ E, we have hS(i) = rS(i) if |S| ≥ ℓ, and
hS(i) = 0 otherwise. This motivates the following definition.

Definition 4.28. We say that Q is activated at time t′ if |Q(t)| < ℓ for all t < t′ and
|Q(t)| ≥ ℓ for all t ≥ t′. We call t′ the activation time of Q.

We denote the random variable for the activation time of Q by T .

For a fixed t′ ∈ R+, if we further condition on the event T = t′, the expected increase of
h(Q(t)) (up to O(dt2) terms) is

E[h(Q(t+ dt))− h(Q(t))|Q(t) = S ∧ T = t′] =
∑
i∈E

rS(i)x∗i dt (4.18)

for all t ≥ t′ and S ⊆ E where |S| ≥ ℓ. For such a set S, we have

h(S) +
∑
i∈E

rS(i)x∗i = r(S)− ℓ+
∑
i∈E

rS(i)x∗i ≥ r∗(x∗)− ℓ = r̂(x∗)− ℓ = 1⊤x∗ − ℓ = λ− ℓ.

4.6 The Correlation Gap Bound for Matroids | 101

The inequality follows from the definition of r∗ in (4.7). The second equality is by Theorem
4.7, while the third equality is by Lemma 4.23 because x∗ ∈ P(r). Hence, (4.18) becomes

E[h(Q(t+ dt))− h(Q(t))|Q(t) = S ∧ T = t′] ≥ (λ− ℓ− h(S))dt

Dividing by dt and taking expectation over S, we obtain for all t ≥ t′,

1
dt
E[h(Q(t+ dt))− h(Q(t))|T = t′] ≥ λ− ℓ− E[h(Q(t))|T = t′]. (4.19)

Let φ(t) := E[h(Q(t))|T = t′]. Then, (4.19) can be written as dφ
dt ≥ λ − ℓ − φ(t). To solve

this differential inequality, let ψ(t) := etφ(t) and consider dψ
dt = et(dφdt + φ(t)) ≥ et(λ − ℓ).

Since ψ(t′) = φ(t′) = 0, we get

ψ(t) =
∫ t

t′

dψ

ds
ds ≥

∫ t

t′
es(λ− ℓ)ds = (et − et′)(λ− ℓ)

for all t ≥ t′. It follows that E[h(Q(t))|T = t′] = φ(t) = e−tψ(t) ≥ (1− et′−t)(λ− ℓ) for all
t ≥ t′. In particular, at time t = 1, we have E[h(Q(1))|T = t′] ≥ (1− e−(1−t′))(λ− ℓ) for all
t′ ≤ 1. By the law of total expectation,

E[h(Q(1))] = ET [E[h(Q(1))|T = t]] =
∫ ∞

0
Pr(T = t)E[h(Q(1))|T = t]dt

=
∫ 1

0
Pr(T = t)E[h(Q(1))|T = t]dt

≥ (λ− ℓ)
∫ 1

0
Pr(T = t)(1− e−(1−t))dt. (4.20)

Now, the cumulative distribution function of T is given by

Pr(T ≤ t) = 1−
∑
S⊆E:
|S|<ℓ

∏
i∈S

(1− e−x∗i t)
∏
i/∈S

e−x
∗
i t

= 1−
∑
S⊆E:
|S|<ℓ

∑
T⊆S

(−1)|T |e−x∗(T∪(E\S))t

= 1−
∑
S⊆E

∑
T⊆S:

|T |+|E\S|<ℓ

(−1)|T |e−x∗(S)t (Change of variables S ← T ∪ E \ S)

= 1−
∑
S⊆E

|S|+ℓ−n−1∑
k=0

(−1)k
(
|S|
k

)
e−x

∗(S)t (|T | ≤ ℓ− (n− |S|)− 1)

= 1−
∑
S⊆E

(−1)|S|+ℓ−n−1
(

|S| − 1
|S|+ ℓ− n− 1

)
e−x

∗(S)t (Claim B.1)

102 | Submodular Optimization: Correlation Gap Bounds for Matroids

= 1−
∑
S⊆E

(−1)|S|+ℓ−n−1
(
|S| − 1
n− ℓ

)
e−x

∗(S)t.

Differentiating with respect to t yields the probability density function of T

Pr(T = t) = d

dt
Pr(T ≤ t) =

∑
S⊆E

(−1)|S|+ℓ−n−1
(
|S| − 1
n− ℓ

)
x∗(S)e−x∗(S)t.

Note that
(|S|−1
n−ℓ

)
> 0 if and only if |S| ≥ n+ 1− ℓ. Plugging this back into (4.20) gives us

E[h(Q(1))] ≥ (λ− ℓ)
∑
S⊆E

(−1)|S|+ℓ−n−1
(
|S| − 1
n− ℓ

)
x∗(S)

∫ 1

0
e−x

∗(S)t − e−1−(x∗(S)−1)tdt

= (λ− ℓ)
∑
S⊆E

(−1)|S|+ℓ−n−1
(
|S| − 1
n− ℓ

)(
1− e−1 − e−1 − e−x∗(S)

x∗(S)− 1

)
, (4.21)

where the equality is due to

x∗(S)
∫ 1

0
e−x

∗(S)t − e−1−(x∗(S)−1)tdt = x∗(S)
[
−e
−x∗(S)t

x∗(S) + e−1−(x∗(S)−1)t

x∗(S)− 1

]1

0

=
[
−e−x∗(S)t +

(
1 + 1

x∗(S)− 1

)
e−1−(x∗(S)−1)t

]1

0

= −e−x∗(S) + 1 +
(

1 + 1
x∗(S)− 1

)(
e−x

∗(S) − e−1
)

= 1− e−1 − e−1 − e−x∗(S)

x∗(S)− 1 .

Observe that (4.21) is well-defined because whenever x∗(S) = 1, L’Hôpital’s rule gives us

e−1 − e−x∗(S)

x∗(S)− 1 = lim
t→1

e−1 − e−t

t− 1 = lim
t→1

e−t

1 = e−1.

Since ℓ > 0 (asM has no loops), Claim B.2 allows us to extract the first part of (4.21) as

∑
S⊆E

(−1)|S|+ℓ−n−1
(
|S| − 1
n− ℓ

)
(1− e−1) = (1− e−1)

n∑
k=0

(−1)k+ℓ−n−1
(
n

k

)(
k − 1
n− ℓ

)
= 1− e−1.

Pulling out a factor −1 from the remaining term, (4.21) becomes

E[h(Q(1)] ≥ (λ− ℓ)

1− e−1 + e−1 ∑
S⊆E

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
1− e−(x∗(S)−1)

x∗(S)− 1

 . (4.22)

4.6 The Correlation Gap Bound for Matroids | 103

Rounding x∗ to an integer point

Consider the function ρ : R+ → R+ defined by

ρ(t) := 1− e−t

t
.

and the last part of (4.22)

ψ(x) :=
∑
S⊆E

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
1− e−(x(S)−1)

x(S)− 1

=
∑
S⊆E

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
ρ(x(S)− 1) .

(4.23)

as a function on [0, 1]n. The next observation is well-known, and underpins the pipage
rounding technique by Ageev and Sviridenko [1]. For the sake of completeness, we include a
proof.

Observation 4.29. Let f : [0, 1]n → R be a function such that for any x ∈ [0, 1]n and
i, j ∈ [n],

fxij(t) := f(x+ t(ei − ej))

is a concave function on the domain {t ∈ [−1, 1]: x + t(ei − ej) ∈ [0, 1]n}. Then, for any
y ∈ [0, 1]n where 1⊤y ∈ Z, there exists an integral z ∈ {0, 1}n such that f(y) ≥ f(z) and
1⊤y = 1⊤z.

Proof. We proceed by strong induction on the number k of non-integral coordinates in y.
The base case k = 0 is trivial by picking z = y. Suppose that there exists an ℓ ∈ Z+ such
that the statement is true for all k ∈ {0, 2, 3, . . . , ℓ}. Consider the case k = ℓ+ 1. Note that
k ̸= 1 because 1⊤y ∈ Z. Let i, j ∈ [n] be distinct indices such that yi, yj ∈ (0, 1). Since fyij
is concave, for all t ≥ 0 or for all t ≤ 0, we have fyij(t) ≤ fyij(0). Let ε′ = min{1 − yi, yj}
and ε′′ = min{yi, 1 − yj}, along with their corresponding points y′ = y + ε′(ei − ej) and
y′′ = y − ε′′(ei − ej). Then,

min{f(y′), f(y′′)} = min{fyij(ε
′), fyij(−ε

′′)} ≤ fyij(0) = f(y) .

Let k′ and k′′ be the number of non-integral coordinates in y′ and y′′ respectively. Note that
k′, k′′ ̸= 1 because 1⊤y′ = 1⊤y′′ = 1⊤y ∈ Z. Since k′, k′′ ≤ ℓ, by the inductive hypothesis
there exist integral z′, z′′ ∈ {0, 1}n such that f(z′) ≤ f(y′) and f(z′′) ≤ f(y′′). Thus, our
desired z ∈ {0, 1}n can be chosen as

z = arg min
x∈{z′,z′′}

f(x) .

104 | Submodular Optimization: Correlation Gap Bounds for Matroids

We would like to round x∗ to a binary vector using Observation 4.29. Hence, we need to
prove concavity of ψ along the directions ei − ej . Taking the second partial derivatives of
(4.23) yields

∂2ψ

∂xi∂xj
(x) =

∑
S⊆E:
i,j∈S

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
ρ′′(x(S)− 1) . (4.24)

The following claim provides a closed-form expression for all the derivatives of ρ, and
highlights the alternating behaviour of their signs.

Claim 4.30. For any k ∈ Z+, the kth derivative of ρ is given by

ρ(k)(t) = (−1)kk!
(

1− e−t
∑k
i=0 t

i/i!
tk+1

)
.

Consequently, if k is even, then ρ(k)(t) > 0 for all t ≥ 0. Otherwise, ρ(k)(t) < 0 for all t ≥ 0.

Proof. We prove the first part by induction on k ≥ 0. The base case k = 0 is clear. For the
inductive step,

ρ(k+1)(t) = (−1)kk! ·

(
e−t

∑k
i=0 t

i/i!− e−t
∑k−1
i=0 t

i/i!
)
tk+1 −

(
1− e−t

∑k
i=0 t

i/i!
)

(k + 1)tk

t2k+2

= (−1)kk! ·
e−ttk+1/k!−

(
1− e−t

∑k
i=0 t

i/i!
)

(k + 1)
tk+2

= (−1)k(k + 1)! · e
−ttk+1/(k + 1)!− 1 + e−t

∑k
i=0 t

i/i!
tk+2

= (−1)(k+1)(k + 1)! · 1− e−t
∑k+1
i=0 t

i/i!
tk+2

as required. For the second part, note that at t = 0, applying L’Hôpital’s rule yields

ρ(k)(0) = lim
t→0

(−1)kk!
(
e−t

∑k
i=0 t

i/i!− e−t
∑k−1
i=0 t

i/i!
(k + 1)tk

)
= lim

t→0
(−1)kk!

(
e−ttk/k!
(k + 1)tk

)
= (−1)k

k + 1 .

Hence, ρ(k)(0) > 0 if k is even, and ρ(k)(0) < 0 if k is odd. Now, let us rewrite ρ(k)(t) as

ρ(k)(t) = (−1)k k!e−t

tk+1

(
et −

k∑
i=0

1
i! t

i

)
.

By the Maclaurin series of et, for all t > 0, we have ρ(k)(t) > 0 if k is even, and ρ(k)(t) < 0 if
k is odd.

For the proof of concavity, we need the following notion of finite difference.

4.6 The Correlation Gap Bound for Matroids | 105

Definition 4.31. Given a function φ : R→ R and a scalar x ∈ R+, the forward difference of
φ(t) is

∆x[φ](t) := φ(t+ x)− φ(t) .

More generally, for a vector (x1, . . . , xn) = (x̃, xn) ∈ Rn+, the nth-order forward difference of
φ(t) is

∆x[φ](t) := ∆xn [∆x̃[φ]](t) = ∆xn [∆xn−1 [· · ·∆x1 [φ] · · ·]](t) .

Claim 4.32. For any function φ : R→ R and vector x ∈ Rn+, we have

∆x[φ](t) =
∑
S⊆[n]

(−1)n−|S|φ(t+ x(S)). (4.25)

Proof. The claim follows by induction on n. For n = 1, the formula simplifies to ∆x[φ](t) =
(−1)1−1φ(t+ x)− (−1)1−0φ(t), which holds by definition. So, let n > 1 and (x1, . . . , xn) =
(x̃, xn) ∈ Rn+. Using the induction hypothesis and linearity of the difference operator, we get

∆n
x[φ](t) = ∆xn [∆x̃[φ]](t) =

∑
S⊆[n−1]

(−1)n−1−|S| (φ(t+ x̃(S) + xn)− φ(t+ x̃(S)))

=
∑
S⊆[n]

(−1)n−|S|φ(t+ x(S)) .

Therefore, in the definition of ∆x, the order in which the difference operators {∆xi : i ∈ [n]}
are applied does not matter. The next claim relates the signs of φ(n) and ∆x[φ].

Claim 4.33. Let φ : R → R be an n-times differentiable function. For any x ∈ Rn+ and
t ∈ R, if φ(n)(s) ≥ 0 for all t ≤ s ≤ t+ 1⊤x, then ∆x[φ](t) ≥ 0.

Proof. We proceed by induction on n ≥ 1. The base case n = 1 is clear as

0 ≤
∫ t+x

t
φ(1)(s)ds = φ(t+ x)− φ(t) = ∆x[φ](t) .

For the inductive step, let x ∈ Rn+, y ∈ R+, and assume that φ(n+1)(s) ≥ 0 for all t ≤ s ≤
t + 1⊤x + y. Applying the inductive hypothesis to φ(1), we have ∆x[φ(1)](s) ≥ 0 for all
t ≤ s ≤ t+ y. Using the linearity of the derivative applied to the representation (4.25), we
obtain

0 ≤
∫ t+y

t
∆x[φ(1)](s)ds =

∫ t+y

t

(
d

ds
∆x[φ](s)

)
ds

= ∆x[φ](t+ y)−∆x[φ](t) = ∆y[∆x[φ]](t) = ∆(x,y)[φ](t)

We are now ready to show concavity.

Lemma 4.34. The function ψ(x) is concave along the direction ea − eb for all a, b ∈ E.

106 | Submodular Optimization: Correlation Gap Bounds for Matroids

Proof. Fix a, b ∈ E and consider the function φ(t) := ψ(x+ t(ea−eb)), obtained by restricting
ψ along the direction ea − eb. By substituting y := x+ t(ea − eb) and applying chain rule,
the second derivative of φ(t) is given by

φ′′(t) = d

dt

(∑
i∈E

∂ψ

∂yi

dyi
dt

)
= d

dt

(
∂ψ

∂ya
− ∂ψ

∂yb

)

=
∑
i∈E

(
∂2ψ

∂ya∂yi
− ∂2ψ

∂yb∂yi

)
dyi
dt

= ∂2ψ

∂y2
a

+ ∂2ψ

∂y2
b

− 2 ∂2ψ

∂ya∂yb
.

By (4.24), this is equal to

φ′′(t) =
∑
S⊆E:
a∈S

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
ρ′′(y(S)− 1) +

∑
S⊆E:
b∈S

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
ρ′′(y(S)− 1)

− 2
∑
S⊆E:
a,b∈S

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
ρ′′(y(S)− 1)

=
∑
S⊆E:

a∈S,b/∈S

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
ρ′′(y(S)− 1) +

∑
S⊆E:

a/∈S,b∈S

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
ρ′′(y(S)− 1).

We show that each of the two sums above is nonpositive. Let us consider the first sum;
the second sum follows by symmetry. In the first sum, every set S ⊆ E \ b where a ∈ S has
an associated factor

(|S|−1
n−ℓ

)
. It can be interpreted as the number of subsets in S \ a of size

n− ℓ. By charging the term associated with S to these subsets, we can rewrite the first sum
as

∑
S⊆E:

a∈S,b/∈S

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
ρ′′(y(S)− 1) =

∑
C⊆E\{a,b}:
|C|=n−ℓ

∑
D⊆E\(C∪{a,b})

(−1)|D|+1ρ′′(y(C ∪D ∪ a)− 1).

Hence, for a fixed set C ⊆ E \ {a, b} with |C| = n− ℓ, it suffices to show that

∑
D⊆E\(C∪{a,b})

(−1)|D|+1ρ′′(α+ y(D)) (4.26)

is nonpositive, where we denote α := y(C ∪ a)− 1. Note that α ≥ 0 because

y(C ∪ a) = y(E)− y(E \ (C ∪ a)) ≥ λ− |E \ (C ∪ a)| = λ− (n− (n− ℓ+ 1)) = λ− ℓ+ 1 ≥ 1,

4.6 The Correlation Gap Bound for Matroids | 107

where the first inequality is due to y(E) = x(E) = λ and y ≤ 1. Since |E \ (C ∪ {a, b})| =
n−(n−ℓ+2) = ℓ−2, we can express (4.26) as the following (ℓ−2)th-order forward difference

(−1)1−ℓ ∑
D⊆E\(C∪{a,b})

(−1)ℓ−2−|D|ρ′′(α+ y(D)) (4.25)= (−1)1−ℓ∆yE\(C∪{a,b}) [ρ
′′](α) . (4.27)

Recall that ρ(k)(t) > 0 for all t ≥ 0 if k is even, and ρ(k)(t) < 0 for all t ≥ 0 if k is odd by
Claim 4.30. As y ∈ Rℓ−2

+ and α ≥ 0, applying Claim 4.33 yields ∆yE\(C∪{a,b}) [ρ′′](α) ≥ 0 if ℓ
is even, and ∆yE\(C∪{a,b}) [ρ′′](α) ≤ 0 if ℓ is odd. In both cases, (4.27) is nonpositive.

Lemma 4.34 allows us to round x∗ according to Observation 4.29. In particular, there
exists an integral vector x′ ∈ {0, 1}n such that ψ(x∗) ≥ ψ(x′) and x∗(E) = x′(E) = λ. Note
that x′ has exactly λ ones and n− λ zeroes; recall that λ ∈ Z by Theorem 4.21. Let T be
the set of elements i ∈ E where x′i = 1. Then, applying (4.23) yields

ψ(x′) =
∑
S⊆E

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
1− e−(x′(S)−1)

x′(S)− 1

=
∑
S⊆E

(−1)|S|+ℓ−n
(
|S| − 1
n− ℓ

)
1− e−(|S∩T |−1)

|S ∩ T | − 1 . (4.28)

Simplifications for an integer point

In (4.28), every term in the sum only depends on the cardinality of S and S ∩ T , instead of
the actual set S. This allows us to rearrange the sum based on |S ∩ T | ranging from 0 to
|T | = λ, and |S \ T | ranging from 0 to |E \ T | = n− λ:

ψ(x′) =
λ∑
i=0

n−λ∑
j=0

(
λ

i

)(
n− λ
j

)
(−1)i+j+ℓ−n

(
i+ j − 1
n− ℓ

)
1− e−(i−1)

i− 1

=
λ∑
i=0

(
λ

i

)
1− e−(i−1)

i− 1

n−λ∑
j=0

(−1)i+j+ℓ−n
(
n− λ
j

)(
i+ j − 1
n− ℓ

)

=
λ∑
i=0

(
λ

λ− i

)
1− e−(λ−i−1)

λ− i− 1

n−λ∑
j=0

(−1)ℓ−i−j
(

n− λ
n− λ− j

)(
n− i− j − 1

n− ℓ

)
. (i←λ−i

j←n−λ−j)

Recall that, by our convention, a binomial coefficient is zero if the upper part is smaller
than the lower part. So, by the last binomial coefficient above, we may restrict to n− ℓ ≤
n− i− j − 1 ≤ n− i− 1, which is equivalent to i ≤ ℓ− 1 and j ≤ ℓ− 1− i. This yields

ψ(x′) =
ℓ−1∑
i=0

(
λ

i

)
1− e−(λ−i−1)

λ− i− 1

ℓ−1−i∑
j=0

(−1)ℓ−i−j
(
n− λ
j

)(
n− i− j − 1
ℓ− i− j − 1

)
.

108 | Submodular Optimization: Correlation Gap Bounds for Matroids

Note that we introduced additional terms to the inner sum if n − λ < ℓ − 1 − i, but they
are all 0 due to the binomial coefficients

(n−λ
j

)
. Applying Claim B.4 with j ← ℓ − 1 − i,

k ← λ− 1− i, n← n− 1− i to the inner sum gives (−1)ℓ−i
(λ−i−1
ℓ−i−1

)
, leading to

ψ(x′) =
ℓ−1∑
i=0

(−1)ℓ−i
(
λ

i

)(
λ− i− 1
ℓ− i− 1

)
1− e−(λ−i−1)

λ− i− 1 . (4.29)

Observe that (4.22) evaluates to 0 if λ = ℓ. So, we may now assume that λ > ℓ.
This allows us to apply the simple reformulation 1

λ−i−1
(λ−i−1
ℓ−i−1

)
= 1

λ−i−1
(λ−i−1)!

(ℓ−i−1)!(λ−ℓ)! =
(λ−i−2)!

(ℓ−i−1)!(λ−ℓ−1)!
1
λ−ℓ = 1

λ−ℓ
(λ−i−2
ℓ−i−1

)
to obtain

ψ(x′) = 1
λ− ℓ

ℓ−1∑
i=0

(−1)ℓ−i
(
λ

i

)(
λ− i− 2
ℓ− i− 1

)(
1− e−(λ−i−1)

)
. (4.30)

Applying Claim B.6 with j ← ℓ − 1 and n ← λ to
∑ℓ−1
i=0(−1)i

(λ
i

)(λ−i−2
ℓ−i−1

)
gives (−1)ℓ−1ℓ,

resulting in

ψ(x′) = 1
λ− ℓ

(
−ℓ−

ℓ−1∑
i=0

(−1)ℓ−i
(
λ

i

)(
λ− i− 2
ℓ− i− 1

)
e−(λ−i−1)

)

= 1
λ− ℓ

(
−ℓ+ e−λ+1

ℓ−1∑
i=0

(−1)ℓ−i−1
(
λ

i

)(
λ− i− 2
ℓ− i− 1

)
ei
)

.

(4.31)

Further simplifications

To simplify the expression in (4.31), we consider the sum as a function of x for x = e. More
precisely, given integral parameters λ, ℓ > 0, we define the function wλ,ℓ : R→ R as

wλ,ℓ(x) :=
ℓ−1∑
i=0

(−1)ℓ−1−i
(
λ

i

)(
λ− 2− i
ℓ− 1− i

)
xi .

Note that wλ,ℓ is a polynomial on R.

Claim 4.35. For any integers λ > ℓ, we have wλ,ℓ(1) = ℓ and w′λ,ℓ(x) = λwλ−1,ℓ−1(x). In
particular, w(i)

λ,ℓ(1) = λ!
(λ−i)!(ℓ− i).

4.6 The Correlation Gap Bound for Matroids | 109

Proof. The first property follows from Claim B.6. For the second property,

w′λ,ℓ(x) =
ℓ−1∑
i=1

(−1)ℓ−1−i λ!
(i− 1)!(λ− i)!

(
λ− 2− i
ℓ− 1− i

)
xi−1

= λ
ℓ−1∑
i=1

(−1)ℓ−2−(i−1)
(
λ− 1
i− 1

)(
(λ− 1)− 2− (i− 1)
(ℓ− 1)− 1− (i− 1)

)
xi−1

= λ
ℓ−2∑
i=0

(−1)ℓ−2−i
(
λ− 1
i

)(
(λ− 1)− 2− i
(ℓ− 1)− 1− i

)
xi = λwλ−1,ℓ−1(x).

The formula for the derivatives follows by induction.

By Taylor’s Theorem and Claim 4.35, we get

wλ,ℓ(x) =
ℓ−1∑
i=0

w
(i)
λ,ℓ(1)
i! (x− 1)i =

ℓ−1∑
i=0

λ!
i!(λ− i)! (ℓ− i)(x− 1)i =

ℓ−1∑
i=0

(
λ

i

)
(ℓ− i)(x− 1)i .

Plugging this back into (4.31) gives us

ψ(x′) = 1
λ− ℓ

(
−ℓ+ e−λ+1wλ,ℓ(e)

)
= 1
λ− ℓ

(
−ℓ+ e−λ+1

ℓ−1∑
i=0

(
λ

i

)
(ℓ− i)(e− 1)i

)
. (4.32)

Therefore, the multilinear extension of h at x∗ is lower bounded by

H(x∗) ≥ E[h(Q(1))] (by (4.17))

≥ (λ− ℓ)
[
1− e−1 + e−1ψ(x∗)

]
(by (4.22))

≥ (λ− ℓ)
[
1− e−1 + e−1ψ(x′)

]
(rounding via Observation 4.29 and Lemma 4.34)

= (λ− ℓ)
[
1− e−1 + e−1

λ− ℓ

(
−ℓ+ e−λ+1

ℓ−1∑
i=0

(
λ

i

)
(ℓ− i)(e− 1)i

)]
(by (4.32))

= (λ− ℓ)(1− e−1)− ℓe−1 + e−λ
ℓ−1∑
i=0

(
λ

i

)
(ℓ− i)(e− 1)i

= λ− ℓ− λe−1 + e−λ
ℓ−1∑
i=0

(
λ

i

)
(ℓ− i)(e− 1)i . (4.33)

4.6.3 Putting Everything Together

We are finally ready to lower bound the correlation gap of the matroid rank function r. Recall
that we assumed that λ > ℓ in the previous subsection. Combining the lower bounds in (4.16)

110 | Submodular Optimization: Correlation Gap Bounds for Matroids

and (4.33) gives us

CG(r) = R(x∗)
r̂(x∗) = G(x∗) +H(x∗)

1⊤x∗

≥ 1
λ

[
ℓ−

ℓ−1∑
i=0

(ℓ− i)λ
ie−λ

i! + λ− ℓ− λe−1 + e−λ
ℓ−1∑
i=0

(
λ

i

)
(ℓ− i)(e− 1)i

]

= 1− e−1 + e−λ

λ

ℓ−1∑
i=0

(ℓ− i)
[(
λ

i

)
(e− 1)i − λi

i!

]
(4.34)

On the other hand, if λ = ℓ, then h = 0. In this case, we obtain

CG(r) = R(x∗)
r̂(x∗) = G(x∗) +H(x∗)

1⊤x∗
= G(x∗)

ℓ

(4.16)
≥ 1−

ℓ−1∑
k=0

(
1− k

ℓ

)
ℓke−ℓ

k! = 1− ℓℓ−1e−ℓ

(ℓ− 1)! ,

which also agrees with (4.34) by Proposition 4.20.
To better understand the sum in (4.34), consider the function φξλ : [λ]→ R defined as

φξλ(i) := ξ

(
λ

i

)
(e− 1)i − λi

i! , (4.35)

with parameters ξ ∈ R+ and λ ∈ N. The next claim illustrates the behaviour of φξλ when
ξ ≥ 1/(e− 1).

Claim 4.36. Given parameters ξ ≥ 1
e−1 and λ ∈ N, the function φξλ satisfies the following

properties:

(a) If 1 ≤ i ≤ (e−2
e−1)λ+ 1, then φξλ(i) ≥ 0.

(b) If φξλ(i) < 0, then φξλ(i+ 1) < 0.

Proof. Fix parameters ξ ≥ 1
e−1 and λ ∈ N. For i ∈ [λ], we can write

φξλ(i) = ξ

(
λ

i

)
(e− 1)i − λi

i! = 1
i!

ξ i−1∏
j=0

((e− 1)(λ− j))− λi

= λ

i!

ξ(e− 1)
i−1∏
j=1

((e− 1)(λ− j))− λi−1

 .
To prove the first statement, note that

i ≤
(
e− 2
e− 1

)
λ+ 1 ⇐⇒ λ ≤ (e− 1)(λ− i+ 1).

Hence, λ ≤ (e−1)(λ−j) for all j ∈ [i−1]. As we also have ξ(e−1) ≥ 1, it follows that φξλ(i) ≥ 0.
Next, we prove the second statement. Since φξλ(i) < 0, we obtain λ > (e− 1)(λ− i+ 1) by

4.6 The Correlation Gap Bound for Matroids | 111

the first statement. Therefore,

φξλ(i+ 1) = λ

(i+ 1)!

ξ(e− 1)
i∏

j=1
((e− 1)(λ− j))− λi

= λ2

(i+ 1)!

ξ(e− 1)(e− 1)(λ− i)
λ

i−1∏
j=1

((e− 1)(λ− j))− λi−1

<

λ2

(i+ 1)! · φ
ξ
λ(i) < 0 .

Applying Claim 4.36 with ξ = 1 allows us to show that the bound in Theorem 4.2 is
strictly greater than 1− 1/e.

Lemma 4.37. For every λ, ℓ ∈ N such that λ ≥ ℓ, we have

ℓ−1∑
i=0

(ℓ− i)
[(
λ

i

)
(e− 1)i − λi

i!

]
> 0 .

Proof. We fix λ and apply Claim 4.36 with ξ = 1. If λ
λ−ℓ < e − 1, then all summands are

nonnegative and we are done.
Otherwise, if there is a k ≤ λ such that φξλ(k) ≤ 0, then we get for k < j ≤ λ

j∑
i=0

φ1
λ(i) ≥

λ∑
i=0

φ1
λ(i) =

λ∑
i=0

[(
λ

i

)
(e− 1)i − λi

i!

]
= (e− 1 + 1)λ −

λ∑
i=0

λi

i! = eλ −
λ∑
i=0

λi

i! > 0 .

In particular, this entails

ℓ−1∑
i=0

(ℓ− i)
[(
λ

i

)
(e− 1)i − λi

i!

]
=

ℓ−1∑
i=0

(ℓ− i)φ1
λ(i) =

ℓ−1∑
j=0

j∑
i=0

φ1
λ(i) > 0,

which concludes the proof.

4.6.4 Monotonicity

To complete the proof of Theorem 4.2, recall that λ ≤ ρ. Hence, we need to show that the
expression in (4.34) is monotone decreasing in λ. We derive a stronger statement, noting
that the bound is g(λ, ℓ)/λ.

Lemma 4.38. For any fixed ℓ ∈ N, the expression

g(λ, ℓ) := e−λ
ℓ−1∑
i=0

(ℓ− i)
[(
λ

i

)
(e− 1)i − λi

i!

]
,

is monotone decreasing in λ.

112 | Submodular Optimization: Correlation Gap Bounds for Matroids

We will use the following properties of the Poisson distribution. For k ∈ Z+ and x > 0,
let us denote

θk(x) := Pr(Poi(x) ≤ k) = e−x
k∑
i=0

xi

i! . (4.36)

Claim 4.39. For any fixed k ∈ Z+, θk(x) is monotone decreasing with derivative θ′k(x) =
− e−xxk

k! . Furthermore, θk(x) is convex on the interval (k,∞).

Proof. Using d
dx

(
e−x x

i

i!

)
= −e−x xi

i! + e−x xi−1

(i−1)! , the derivative of θk(x) is

θ′k(x) = −e−x
k∑
i=0

xi

i! + e−x
k∑
i=1

xi−1

(i− 1)! = −e
−xxk

k! ,

which is negative for all x > 0. The second derivative of θk(x) is θ′′k(x) = e−x if k = 0, and

θ′′k(x) = e−xxk−1

(k − 1)!

(
x

k
− 1

)

if k ≥ 1. In both cases, θ′′k(x) > 0 when x > k.

Claim 4.40. For every λ ∈ N, we have θλ+1(λ+ 1) ≤ θλ(λ).

Proof. Let Γ: R++ × R+ → R+ be the upper incomplete gamma function (see [118, §8]), i.e.

Γ(s, x) =
∫ ∞
x

ts−1e−tdt .

We will use the property

1
(s− 1)!Γ(s, x) = 1

(s− 1)!

∫ ∞
x

ts−1e−tdt = e−x
s−1∑
i=0

xi

i! , (4.37)

which holds for s ∈ N and follows by iterated integration by parts.

To show the nonnegativity of θλ(λ)− θλ+1(λ+ 1), recall the definition (4.36)

θλ(λ)− θλ+1(λ+ 1) = e−λ
λ∑
i=0

λi

i! − e
−(λ+1)

λ∑
i=0

(λ+ 1)i

i! − e−(λ+1)(λ+ 1)λ

λ! .

Applying (4.37) to the two sums yields

θλ(λ)− θλ+1(λ+ 1) = 1
λ!Γ(λ+ 1, λ)− 1

λ!Γ(λ+ 1, λ+ 1)− e−(λ+1)(λ+ 1)λ

λ!
= 1
λ!

(∫ ∞
λ

tλe−tdt−
∫ ∞
λ+1

tλe−tdt− e−(λ+1)(λ+ 1)λ
)

= 1
λ!

(∫ λ+1

λ
tλe−tdt− e−(λ+1)(λ+ 1)λ

)
.

4.6 The Correlation Gap Bound for Matroids | 113

The integrand is monotone decreasing in the interval (λ, λ+ 1] because d
dt

(
tλe−t

)
= (λtλ−1−

tλ)e−t < 0 for all t > λ. Hence, we can lower bound the integral by the value of the integrand
at t = λ+ 1

θλ(λ)− θλ+1(λ+ 1) ≥ 1
λ!
(
(λ+ 1)λe−(λ+1) − e−(λ+1)(λ+ 1)λ

)
= 0 .

With these tools we are ready to prove monotonicity.

Proof of Lemma 4.38. We first prove the cases ℓ ∈ {1, 2, 3} separately:

g(λ, 1) = 0 , g(λ, 2) = e−λλ(e− 2) , g(λ, 3) = e−λ

2
[
e(e− 2)λ2 − (e− 3)2λ

]
.

Their derivatives are given by

g′(λ, 2) = e−λ(−λ+1)(e−2) , g′(λ, 3) = e−λ

2
[
−e(e− 2)λ2 + ((e− 3)2 + 2e(e− 2))λ− (e− 3)2

]
.

It is easy to check that g′(λ, 2) < 0 for λ ≥ 2, and g′(λ, 3) < 0 for λ ≥ 3. Henceforth, we will
assume that ℓ ≥ 4.

The inequality g(λ+ 1, ℓ) ≤ g(λ, ℓ) can be reformulated as

ℓ−1∑
i=0

(ℓ− i)
[(
λ+ 1
i

)
(e− 1)i − (λ+ 1)i

i!

]
≤ e

ℓ−1∑
i=0

(ℓ− i)
[(
λ

i

)
(e− 1)i − λi

i!

]
⇐⇒

ℓ−1∑
i=0

(ℓ− i)
[
e
λi

i! −
(λ+ 1)i

i!

]
≤ e

ℓ−1∑
i=0

(ℓ− i)
(
λ

i

)
(e− 1)i −

ℓ−1∑
i=0

(ℓ− i)
(
λ+ 1
i

)
(e− 1)i .

(4.38)

For the RHS, using
(λ+1
i

)
=
(λ
i

)
+
(λ
i−1
)
, we get

ℓ−1∑
i=0

(ℓ− i)
(
λ

i

)
(e− 1)i+1 −

ℓ−1∑
i=1

(ℓ− i)
(

λ

i− 1

)
(e− 1)i

=
ℓ−1∑
i=0

(ℓ− i)
(
λ

i

)
(e− 1)i+1 −

ℓ−2∑
i=0

(ℓ− i− 1)
(
λ

i

)
(e− 1)i+1

=
ℓ−1∑
i=0

(
λ

i

)
(e− 1)i+1

Using the definition of θi(λ) from (4.36), the LHS equals

eλ+1
ℓ−1∑
i=0

θi(λ)− θi(λ+ 1)

114 | Submodular Optimization: Correlation Gap Bounds for Matroids

For every i = 0, . . . , ℓ− 1, we have λ > i. Therefore, using the convexity and derivative
of θi(x) from Claim 4.39 leads to

θi(λ)− θi(λ+ 1) ≤ θ′i(λ)(λ− (λ+ 1)) = e−λλi

i! .

Hence, (4.38) follows by showing

0 ≤
ℓ−1∑
i=0

(
λ

i

)
(e− 1)i+1 − eλi

i! . (4.39)

For the sake of brevity, we denote

ϕλ(i) =
(
λ

i

)
(e− 1)i+1 − eλi

i! .

Then, our goal is to show that
∑ℓ−1
i=0 ϕλ(i) ≥ 0.

Observing that ϕλ(i) = e
(
e−1
e

(λ
i

)
(e− 1)i − λi

i!

)
, we will apply Claim 4.36 with ξ = e−1

e >
1
e−1 . Consider the following two cases:

Case 1: ϕλ(ℓ− 1) ≥ 0. In this case, ϕλ(i) ≥ 0 for all 0 < i < ℓ by Claim 4.36 (b). Since
λ ≥ ℓ ≥ 4,

ℓ−1∑
i=0

ϕλ(i) = ϕλ(0) + ϕλ(1) + ϕλ(2) +
ℓ−1∑
i=3

ϕλ(i)

= −1 + λ((e− 1)2 − e) + λ

2
[
λ((e− 1)3 − e)− (e− 1)3

]
+
ℓ−1∑
i=3

ϕλ(i) >
ℓ−1∑
i=3

ϕλ(i) ≥ 0 .

Case 2: ϕλ(ℓ− 1) < 0. In this case, ϕλ(i) < 0 for all ℓ ≤ i ≤ λ by Claim 4.36 (b). Thus,

ℓ−1∑
i=0

ϕλ(i) >
λ∑
i=0

ϕλ(i) = (e− 1)
λ∑
i=0

(
λ

i

)
(e− 1)i −

λ∑
i=0

eλi

i! = (e− 1)eλ − e
λ∑
i=0

λi

i!

= eλ+1
(

1− 1
e
− θλ(λ)

) Clm. 4.40
≥ eλ+1

(
1− 1

e
− θ4(4)

)
> 0.

The second inequality holds due to Claim 4.40 together with the assumption λ ≥ ℓ ≥ 4,
whereas the last inequality follows from 1− 1/e− Pr(Poi(4) ≤ 4) > 0.

Chapter 5

Parity Games: Strategy Iteration
with Universal Trees

5.1 Introduction

A parity game is an infinite duration game between two players Even and Odd. It takes place
on a sinkless directed graphG = (V,E) equipped with a priority function π : V → {1, 2, . . . , d}.
Let n = |V | and m = |E|. The node set V is partitioned into V0 ⊔ V1 such that nodes in V0

and V1 are owned by Even and Odd respectively. The game starts when a token is placed
on a node. In each turn, the owner of the current node moves the token along an outgoing
arc to the next node, resulting in an infinite walk. If the highest priority occurring infinitely
often in this walk is even, then Even wins. Otherwise, Odd wins.

By the positional determinacy of parity games [59], there exists a partition of V into
two subsets from which Even and Odd can force a win respectively. The main algorithmic
problem of parity games is to determine this partition, or equivalently, to decide the winner
given a starting node. This is a notorious problem that lies in NP ∩ co-NP [60], and also in
UP ∩ co-UP [86], with no known polynomial algorithm to date.

Due to its intriguing complexity status, as well as its fundamental role in automata theory
and logic [60, 97], parity games have been intensely studied over the past three decades. Prior
to 2017, algorithms for solving parity games, e.g. [162, 87, 152, 13, 130, 89, 132, 107, 10], are
either exponential or subexponential. In a breakthrough result, Calude et al. [27] gave the
first quasi-polynomial algorithm. Since then, many other quasi-polynomial algorithms [61, 88,
100, 122, 11] have been developed. Most of them have been unified by Czerwiński et al. [35]
via the concept of a universal tree. A universal tree is an ordered tree into which every ordered
tree of a certain size can be isomorphically embedded. They proved a quasi-polynomial lower
bound on the size of a universal tree.

116 | Parity Games: Strategy Iteration with Universal Trees

Value iteration The starting point of this chapter is the classic progress measure algorithm
[87, 88] for solving parity games. It belongs to a broad class of algorithms called value iteration
– a well-known method for solving more general games on graphs such as mean payoff games
and stochastic games. In value iteration, every node v in G is assigned a value µ(v) ∈ V
from some totally ordered set V , and the values are locally improved until we reach the least
fixed point of a set of operators associated with the game. The set V is called the value
domain, which is usually a bounded set of real numbers or integers. For the progress measure
algorithm, its value domain is the set of leaves L(T) in a universal tree T . As the values
are monotonically improved, the running time is proportional to |L(T)|. The first progress
measure algorithm of Jurdziński [87] uses a perfect n-ary tree, which runs in exponential
time. Its subsequent improvement by Jurdziński and Lazić [88] uses a quasi-polynomial-sized
tree, which runs in nlog(d/ logn)+O(1) time.

Despite having good theoretical efficiency, the progress measure algorithm is not robust
against its worst-case behaviour. In fact, it is known to realize its worst-case running time
on very simple instances. As an example, let (G, π) be an arbitrary instance with maximum
priority d, with d being even. For a small odd constant k, if we add two nodes of priority k
as shown in Figure 5.1, then the progress measure algorithm realizes its worst-case running
time. This is because the values of those nodes are updated superpolynomially many times.

(G, π) k kd

Fig. 5.1 A worst-case construction for the progress measure algorithm. Nodes in V0 and V1
are drawn as squares and circles, respectively.

Strategy iteration A different but related method for solving games on graphs is strategy
iteration. For a parity game (G, π), a (positional) strategy τ for a player (say Odd) is a
choice of an outgoing arc from every node in V1. Removing the unchosen outgoing arcs from
every node in V1 results in a strategy subgraph Gτ ⊆ G. A general framework for strategy
iteration is given, e.g., in [68]. Following that exposition, to rank the strategies for Odd, one
fixes a suitable value domain V and associates a valuation µ : V → V to each strategy. This
induces a partial order over the set of strategies for Odd. Note that most valuations used
in the literature can be thought of as fixed points of a set of operators associated with the
1-player game (Gτ , π) for Even. In every iteration, the algorithm maintains a strategy τ for
Odd and its corresponding valuation µ : V → V. Based on a pivot rule, it modifies τ to a
better strategy τ ′, and updates µ to the valuation µ′ of τ ′. Note that µ′ ≥ µ. This process is
repeated until we reach the optimal strategy for Odd.

Originally introduced by Hoffman and Karp for stochastic games [81], variants of strategy
iteration for parity games have been developed [124, 152, 13, 130]. They usually perform

5.1 Introduction | 117

well in practice, but tedious constructions of their worst case (sub)exponential complexity
are known [67]. Motivated by the construction of small universal trees [88, 43], a natural
question is whether there exists a strategy iteration algorithm with value domain L(T) for
a universal tree T . It is not hard to see that with value domain L(T), unfortunately, the
fixed point of a 1-player game (Gτ , π) may not be unique. Moreover, in a recent thesis [117],
Ohlmann showed that a valuation that is fit for strategy iteration cannot be defined using
L(T).

Our contribution We show that an adaptation of strategy iteration with value domain
L(T) is still possible. To circumvent the impossibility result of Ohlmann [117], we slightly
alter the strategy iteration framework as follows. After pivoting to a strategy τ ′ in an iteration,
we update the current node labeling µ to the least fixed point of (Gτ ′ , π) that is pointwise at
least µ. In other words, we force µ to increase (whereas this happens automatically in the
previous framework). Since the fixed point of a 1-player game may not be unique, this means
that we may encounter a strategy more than once during the course of the algorithm. The
motivation of our approach comes from tropical geometry, as discussed in Section 1.4.

To carry out each iteration efficiently, we give a combinatorial method for computing
the least fixed point of 1-player games with value domain L(T). It relies on adapting the
classic techniques of label-correcting and label-setting from the shortest path problem to the
setting of ordered trees. When T is instantiated as a specific universal tree constructed in
the literature, we obtain the following running times:

• The universal tree of Jurdziński and Lazić [88] takes O(mn2 logn log d).

• The Strahler universal tree of Daviaud et al. [43] takes O(mn2 log3 n log d).

• The perfect n-ary tree of height d/2 takes O(d(m+ n logn)).

The total number of strategy iterations is trivially bounded by n|L(T)|, the same bound
for the progress measure algorithm. Whereas we do not obtain a strict improvement over
previous running time bounds, it is conceivable that our algorithm would terminate in fewer
iterations than the progress measure algorithm on most examples. Moreover, our framework
provides large flexibility in the choice of pivot rules. Identifying a pivot rule that may provide
strictly improved (and possibly even polynomial) running time is left for future research.

5.1.1 Computing the Least Fixed Point of 1-Player Games

Let (Gτ , π) be a 1-player game for Even, and µ∗ be its least fixed point with value domain L(T)
for some universal tree T . Starting from µ(v) = minL(T) for all v ∈ V , the progress measure
algorithm successively lifts the label of a node based on the labels of its out-neighbours
until µ∗ is reached. However, this is not polynomial in general, even on 1-player games. So,

118 | Parity Games: Strategy Iteration with Universal Trees

instead of approaching µ∗ from below, we approach it from above. This is reminiscent of
shortest path algorithms, where node labels form upper bounds on the shortest path distances
throughout the algorithm. In a label-correcting method like the Bellman–Ford algorithm, to
compute shortest paths to a target node t, the label at t is initialized to 0, while the label
at all other nodes is initialized to +∞. By iteratively checking if an arc violates feasibility,
the node labels are monotonically decreased. We refer to Ahuja et al. [4] for an overview on
label-correcting and label-setting techniques for computing shortest paths.

In our setting, the role of the target node t is replaced by a (potentially empty) set of
even cycles in Gτ . A cycle is said to be even if its maximum priority is even. However, this
set is not known to us a priori. To overcome this issue, we define base nodes as candidate
target nodes. A node w ∈ V is a base node if it dominates an even cycle in Gτ , that is, it is
a node with the highest priority in the cycle. Note that π(w) is even.

To run a label-correcting method, we need to assign initial labels ν to the nodes in Gτ .
The presumably obvious choice is to set ν(w)← minL(T) if w is a base node, and ν(w)← ⊤
otherwise, where ⊤ is bigger than every element in L(T) (⊤ is analogous to +∞ for real
numbers). However, this only works when T is a perfect n-ary tree. For a more complicated
universal tree, the number of children at each internal vertex of T is not the same. Hence, it
is possible to have ν(w) < µ∗(w) for a base node w. We also cannot make ν(w) too large, as
otherwise we may converge to a fixed point that is not pointwise minimal.

To correctly initialize ν(w) for a base node w, let us consider the cycles dominated by w
in Gτ . Every such cycle C induces a subgame (C, π) on which Even wins because C is even.
The least fixed point of (C, π) consists of leaves of an ordered tree TC of height j := π(w)/2.
Initializing ν(w) essentially boils down to finding such a cycle C with the ‘narrowest’ TC .
To this end, let Tj be the set of distinct subtrees of height j of our universal tree T . We
will exploit the fact that Tj is a poset with respect to the partial order of embeddability. In
particular, let Cj be a set of chains covering Tj , and fix a chain Ckj in Cj . We define the width
of a cycle C as the ‘width’ of the smallest tree in Ckj into which TC is embeddable. Then, we
show that our problem reduces to finding a minimum width cycle dominated by w in Gτ .

To solve the latter problem, we construct an arc-weighted auxiliary digraph D on the set
of base nodes. Every arc uv in D represents a path from base node u to base node v in Gτ ,
in such a way that minimum bottleneck cycles in D correspond to minimum width cycles in
Gτ . It follows that the desired cycle C can be obtained by computing a minimum bottleneck
cycle in D containing w. After getting C, we locate the corresponding subtree T ′ of T into
which TC is embeddable. Then, the label at w is initialized as ν(w)← minL(T ′).

With these initial labels, we show that a generic label-correcting procedure returns the
desired least fixed point µ∗ in O(mn) time. The overall running time of this label-correcting
method is dominated by the initialization phase, whose running time is proportional to the
size of the chain cover Cj . We prove that the quasi-polynomial universal trees constructed

5.2 Preliminaries | 119

in the literature [88, 43] admit small chain covers. Using this result, we then give efficient
implementations of our method for these trees.

In Section 5.5, we also develop a label-setting method for computing µ∗, which is faster
but only applicable when T is a perfect n-ary tree. Unlike the label-correcting approach, in a
label-setting method such as Dijkstra’s algorithm, the label of a node is fixed in each iteration.
In the shortest path problem, Dijkstra’s algorithm selects a node with the smallest label to
be fixed in every iteration. When working with labels given by the leaves of a universal tree,
this criterion does not work anymore. Let H be the subgraph of Gτ obtained by deleting all
the base nodes. For p ∈ N, let Hp be the subgraph of H induced by the nodes with priority
at most p. We construct a suitable potential function by interlacing each node label with a
tuple that encodes the topological orders in H2, H4, In every iteration, a node with the
smallest potential is selected, and its label is fixed.

Chapter organization In Section 5.2, we introduce notation and provide the necessary
preliminaries on parity games and universal trees. Section 5.3 contains our strategy iteration
framework based on universal trees. In Section 5.4, we give a label-correcting method for
computing the least fixed point of 1-player games. The label-setting method is given in
Section 5.5.

5.2 Preliminaries

A parity game instance is given by (G, π), where G = (V,E) is a sinkless directed graph
with V = V0 ⊔ V1, and π : V → [d] is a priority function. Without loss of generality, we may
assume that d is even. In this chapter, we are only concerned with positional strategies. A
strategy for Odd is a function τ : V1 → V such that vτ(v) ∈ E for all v ∈ V1. Its strategy
subgraph is Gτ = (V,Eτ), where Eτ := {vw ∈ E : v ∈ V0} ∪ {vτ(v) : v ∈ V1}. A strategy for
Even and its strategy subgraph are defined analogously. We always denote a strategy for
Even as σ, and a strategy for Odd as τ . If we fix a strategy τ for Odd, the resulting instance
(Gτ , π) is a 1-player game for Even.

For the sake of brevity, we overload the priority function π as follows. Given a subgraph
H ⊆ G, let π(H) be the highest priority in H. The subgraph H is said to be even if π(H)
is even, and odd otherwise. For a fixed π, we denote by Π(H) the set of nodes with the
highest priority in H. If v ∈ Π(H), we say that v dominates H. For p ∈ [d], Hp refers to the
subgraph of H induced by nodes with priority at most p. For a node v, let δ−H(v) and δ+

H(v)
be the incoming and outgoing arcs of v in H respectively. Similarly, let N−H (v) and N+

H (v)
be the in-neighbors and out-neighbors of v in H respectively. When H is clear from context,
we will omit it from the subscripts.

The win of a player can be certified by node labels from a universal tree, as stated in
Theorem 5.3. We give the necessary background for this now.

120 | Parity Games: Strategy Iteration with Universal Trees

5.2.1 Ordered Trees and Universal Trees

An ordered tree T is a prefix-closed set of tuples, whose elements are drawn from a linearly
ordered set M . The linear order of M lexicographically extends to T . Equivalently, T can be
thought of as a rooted tree, whose root we denote by r. Under this interpretation, elements
in M correspond to the branching directions at each vertex of T (see Figures 5.2 and 5.3 for
examples). Every tuple then corresponds to a vertex v ∈ V (T). This is because the tuple
can be read by traversing the unique r-v path in T . Observe that v is an h-tuple if and only
if v is at depth h in T . In particular, r is the empty tuple.

In this chapter, we always use the terms ‘vertex’ and ‘edge’ when referring to an ordered
tree T . The terms ‘node’ and ‘arc’ are reserved for the game graph G.

Given an ordered tree T of height h, let L(T) be the set of leaves in T . For convenience,
we assume that every leaf in T is at depth h throughout. The tuple representing a leaf
ξ ∈ L(T) is denoted as ξ = (ξ2h−1, ξ2h−3, . . . , ξ1), where ξi ∈ M for all i. We refer to ξ2h−1

as the first component of ξ, even though it has index 2h − 1. For a fixed p ∈ [2h], the
p-truncation of ξ is

ξ|p :=

(ξ2h−1, ξ2h−3, . . . , ξp+1), if p is even

(ξ2h−1, ξ2h−3, . . . , ξp), if p is odd.

In other words, the p-truncation of a tuple is obtained by deleting the components with index
less than p. Note that a truncated tuple is an ancestor of the untruncated tuple in T .

Definition 5.1. Given ordered trees T and T ′, we say that T embeds into T ′ (denoted T ⊑ T ′)
if there exists an injective and order-preserving homomorphism from T to T ′ such that leaves
in T are mapped to leaves in T ′. Formally, this is an injective function f : V (T) → V (T ′)
which satisfies the following properties:

1. For all u, v ∈ V (T), uv ∈ E(T) implies f(u)f(v) ∈ E(T ′);

2. For all u, v ∈ V (T), u ≤ v implies f(u) ≤ f(v).

3. f(u) ∈ L(T ′) for all u ∈ L(T).

We write T ≡ T ′ if T ⊑ T ′ and T ′ ⊑ T . Also, T @ T ′ if T ⊑ T ′ and T ̸≡ T ′.

In the definition above, since f is order-preserving, the children of every vertex in T are
mapped to the children of its image injectively such that their order is preserved. As an
example, the tree in Figure 5.3 embeds into the tree in Figure 5.2. It is easy to verify that ⊑
is a partial order on the set of all ordered trees.

Definition 5.2. An (ℓ, h)-universal tree is an ordered tree T ′ of height h such that T ⊑ T ′

for every ordered tree T of height h and with at most ℓ leaves, all at depth exactly h.

5.2 Preliminaries | 121

The simplest example of an (ℓ, h)-universal tree is the perfect ℓ-ary tree of height h, which
we call a perfect universal tree. The linearly ordered set M for this tree can be chosen as
{0, 1, . . . , ℓ− 1} (see Figure 5.2 for an example). It has ℓh leaves, which grows exponentially
with h. Jurdziński and Lazić [88] constructed an (ℓ, h)-universal tree with at most ℓlog h+O(1)

leaves, which we call a succinct universal tree. In this tree, every leaf ξ corresponds to an
h-tuple of binary strings with at most ⌊log(ℓ)⌋ bits in total1. We use |ξ| and |ξi| to denote the
total number of bits in ξ and ξi respectively. The linearly ordered set M for this tree consists
of finite binary strings, where ε ∈ M is the empty string (see Figure 5.3 for an example).
For any pair of binary strings s, s′ ∈ M and a bit b, the linear order on M is defined as
0s < ε < 1s′ and bs < bs′ ⇐⇒ s < s′.

0 1 2

0 1 2 0 1 2 0 1 2

Fig. 5.2 The perfect (3,2)-universal tree.

0 ε 1

ε 0 ε 1 ε

Fig. 5.3 The succinct (3,2)-universal tree.

5.2.2 Node Labelings from Universal Trees

Let (G, π) be a parity game instance and T be an ordered tree of height d/2. We augment
the set of leaves with an extra top element ⊤, denoted L̄(T) := L(T) ∪ {⊤}, such that ⊤ > v

for all v ∈ V (T). We also set ⊤|p := ⊤ for all p ∈ [d]. A function µ : V → L̄(T) which maps
the nodes in G to L̄(T) is called a node labeling. For a subgraph H of G, we say that µ is
feasible in H if there exists a strategy σ : V0 → V for Even with vσ(v) ∈ E(H) whenever
δ+
H(v) ̸= ∅, such that the following condition holds for every arc vw in H ∩Gσ:

• If π(v) is even, then µ(v)|π(v) ≥ µ(w)|π(v).

• If π(v) is odd, then µ(v)|π(v) > µ(w)|π(v) or µ(v) = µ(w) = ⊤.

An arc vw which does not satisfy the condition above is called violated (with respect to µ).
On the other hand, if µ(v) is the smallest element in L̄(T) such that vw is non-violated, then
vw is said to be tight. Any arc which is neither tight nor violated is called loose. We say that
a subgraph is tight if it consists of tight arcs.

In the literature, a node labeling which is feasible in G is also called a progress measure.
The node labeling given by µ(v) = ⊤ for all v ∈ V is trivially feasible in G. However, we are
primarily interested in progress measures with minimal top support, i.e. such that the set of
nodes having label ⊤ is inclusion-wise minimal.

1A slightly looser bound of ⌈log ℓ⌉ was derived in [88, Lemma 1]. It can be strengthened to ⌊log ℓ⌋ with
virtually no change in the proof.

122 | Parity Games: Strategy Iteration with Universal Trees

Theorem 5.3 ([87, Corollaries 7–8]). Given an (n, d/2)-universal tree T , let µ∗ : V → L̄(T)
be a node labeling which is feasible in G and has minimal top support. Then, Even wins from
v ∈ V if and only if µ∗(v) ̸= ⊤.

The above theorem formalizes the following intuition: nodes with smaller labels are more
advantageous for Even to play on. Note that if µ is a minimal node labeling which is feasible
in G, i.e. µ′ is infeasible in G for all µ′ < µ, then there exists a strategy σ for Even such that
vσ(v) is tight for all v ∈ V0. The next observation is well-known (see, e.g., [88, Lemma 2])
and follows directly from the definition of feasibility.

Lemma 5.4 (Cycle Lemma). If a node labeling µ is feasible in a cycle C, then µ(v)|π(C) =
µ(w)|π(C) for all v, w ∈ V (C). Furthermore, if µ(v) ̸= ⊤ for some v ∈ V (C), then C is even.

We assume to have access to the following algorithmic primitive, whose running time we
denote by γ(T). Its implementation depends on the ordered tree T . For instance, γ(T) = O(d)
if T is a perfect (n, d/2)-universal tree. If T is a succinct (n, d/2)-universal tree, Jurdziński
and Lazić [88, Theorem 7] showed that γ(T) = O(logn log d).

Subroutine 5.2.1. Tighten(µ, vw)

Given a node labeling µ : V → L̄(T) and an arc vw ∈ E, return the unique element
ξ ∈ L̄(T) such that vw is tight after setting µ(v) to ξ.

Given a node labeling µ : V → L̄(T) and an arc vw ∈ E, let lift(µ, vw) be the smallest
element ξ ∈ L̄(T) such that ξ ≥ µ(v) and vw is not violated after setting µ(v) to ξ. Observe
that if vw is violated, lift(µ, vw) is given by Tighten(µ, vw). Otherwise, it is equal to µ(v).
Hence, it can be computed in γ(T) time.

5.2.3 Fixed Points in Lattices

We recall a fundamental result on the existence of fixed points. Let L be a non-empty finite
lattice, and let µ, ν ∈ L. An operator φ : L → L is monotone if µ ≤ ν ⇒ φ(µ) ≤ φ(ν), and it
is inflationary if µ ≤ φ(µ). Given a family G of inflationary monotone operators on L, we
denote µG as the least (simultaneous) fixed point of G which is pointwise at least µ.

Proposition 5.5 (Knaster–Tarski). Let G be a family of inflationary monotone operators
on L. For any µ ∈ L and H ⊆ G,

(i) The least fixed point µH exists.

(ii) The least fixed point is non-decreasing with the set of operators: µH ≤ µG.

(iii) The least fixed point is monotone: if µ ≤ ν then µH ≤ νH.

5.3 Strategy Iteration with Tree Labels | 123

An operator ψ : L → L is deflationary if µ ≥ ψ(µ). Considering the lattice through an
order-reversing poset isomorphism implies that the analogous statements of Proposition 5.5
hold for deflationary monotone operators. Given a family G of deflationary monotone
operators on L, we denote µG as greatest (simultaneous) fixed point of G which is pointwise
at most µ.

In this chapter, L will be the finite lattice of node labelings mapping V to L̄(T) for a
universal tree T . For a sinkless subgraph H ⊆ G, consider the following operators. For every
node v ∈ V0, define Liftv : L × V → L̄(T) as

Liftv(µ, u) :=

minvw∈E(H) lift(µ, vw), if u = v

µ(u), otherwise.

For every arc vw ∈ E(H) where v ∈ V1, define Liftvw : L × V → L̄(T) as

Liftvw(µ, u) :=

lift(µ, vw), if u = v

µ(u), otherwise.

We denote H↑ := {Liftv : v ∈ V0} ∪ {Liftvw : v ∈ V1} as the operators in H. Since they are
inflationary and monotone, for any µ ∈ L, the least fixed point µH↑ exists by Proposition 5.5
(i). Note that a node labeling is a fixed point of H↑ if and only if it is feasible in H. The
progress measure algorithm [87, 88] is an iterative application of the operators in G↑ to µ to
obtain µG

↑ .

5.3 Strategy Iteration with Tree Labels

In this section, we present a strategy iteration algorithm (Algorithm 9) whose pivots are
guided by a universal tree. It takes as input an instance (G, π), a universal tree T , and
an initial strategy τ1 for Odd. Throughout, it maintains a node labeling µ : V → L̄(T),
initialized as the least simultaneous fixed point of G↑τ1 . At the start of every iteration, the
algorithm maintains a strategy τ for Odd, and a node labeling µ : V → L̄(T) which is feasible
in Gτ . Furthermore, there are no loose arcs in Gτ with respect to µ. So, every arc in Gτ is
either tight (usable by Even in her counterstrategy σ) or violated (not used by Even). Note
that our initial node labeling satisfies these conditions with respect to τ1.

For v ∈ V1, we call a violated arc vw ∈ E with respect to µ admissible (as it admits
Odd to perform an improvement). If there are no admissible arcs in G, then the algorithm
terminates. In this case, µ is feasible in G. Otherwise, Odd pivots to a new strategy τ ′ by
switching to admissible arc(s). The choice of which admissible arc(s) to pick is governed by a
pivot rule. Then, µ is updated to µG

↑
τ ′ . Due to the minimality of µG

↑
τ ′ , there are no loose arcs

in Gτ ′ with respect to µG
↑
τ ′ , so this invariant continues to hold in the next iteration.

124 | Parity Games: Strategy Iteration with Universal Trees

Algorithm 9: Strategy iteration with tree labels
Input : Parity game instance (G, π), universal tree T , and initial strategy τ1 for

Odd
Output : A strategy for Odd and node labeling from T

1 µ(v)← minL(T) ∀v ∈ V
2 τ ← τ1, µ← µG

↑
τ

3 while ∃ an admissible arc in G with respect to µ do
4 Pivot to a strategy τ ′ by selecting admissible arc(s) ◃ requires a pivot rule

5 τ ← τ ′, µ← µG
↑
τ

6 return τ , µ

We remark that a strategy τ may occur more than once during the course of the algorithm,
as mentioned in the description of strategy iteration in Section 5.1. This is because the fixed
points of G↑τ are not necessarily unique. See Figure 5.4 for an example run with a perfect
universal tree and a succinct universal tree.

(0, 0)

(0, 0)

1

2

1
(0, 0)

3
(0, 0)

4
(0, 0)

(0, ε)

(0, ε)

1

2

1
(0, ε)

3
(0, ε)

4
(0, ε)

(1, 0)

(0, 1)

1

2

1
(0, 2)

3
(1, 0)

4
(0, 0)

(ε, 0)

(ε, 0)

1

2

1
(ε, ε)

3
(ε, 0)

4
(0, ε)

(1, 0)

⊤
1

2

1
⊤

3
(1, 0)

4
(0, 0)

e2

e3

e1

(ε, 0)

⊤
1

2

1
⊤

3
(ε, 0)

4
(0, ε)

e2

e3

e1

Fig. 5.4 The top and bottom rows illustrate an example run of Algorithm 9 with the perfect
(3,2)-universal tree and the succinct (3,2)-universal tree respectively. In each row, the left
figure depicts the game instance (nodes in V0 and V1 are drawn as squares and circles
respectively). The next two figures show Odd’s strategy and the node labeling at the start of
Iteration 1 and 2. The arcs not selected by Odd are greyed out. In the right figure, e1 is
loose, e2 is tight, and e3 is violated.

The correctness of Algorithm 9 is an easy consequence of Proposition 5.5.

Theorem 5.6. Algorithm 9 returns the pointwise minimal node labeling µ∗ : V → L̄(T)
which is feasible in G.

Proof. The node labeling µ is monotone increasing in every iteration. Since L is finite and
the all-top node labeling is feasible in G, the algorithm terminates. Let µ∗ be the pointwise

5.3 Strategy Iteration with Tree Labels | 125

minimal node labeling which is feasible in G. Note that µ∗ is the least simultaneous fixed
point of G↑ in L. By induction and Proposition 5.5 (ii), we have µG

↑
τ ≤ µ∗ in every iteration.

As the algorithm terminates with a simultaneous fixed point of G↑, it terminates with µ∗.

Thus, by Theorem 5.3, the algorithm correctly determines the winning positions for Even.

Runtime In Algorithm 9, a naive method for computing the least fixed point µG
↑
τ is to

iterate the operators in G↑τ on µ until convergence. The operators Liftv and Liftvw can be
implemented to run in O(|δ+(v)|γ(T)) time. Since µ is monotone increasing throughout, the
total running time of Algorithm 9 is

O

(∑
v∈V
|δ+(v)|γ(T)|L(T)|

)
= O(mγ(T)|L(T)|),

which matches progress measure algorithms [87, 88]. However, this method of computing µG
↑
τ

can take Ω(γ(T)|L(T)|) time; recall that |L(T)| is at least quasi-polynomial for a universal
tree T [35]. Our goal is to compute µG

↑
τ in polynomial time. Nevertheless, running this

method in parallel with a more efficient algorithm for computing µG
↑
τ is still useful in ensuring

that we are not slower than the progress measure algorithm overall.

5.3.1 The Least Fixed Point of 1-Player Games

Let (Gτ , π) be a 1-player game for Even, and let µ ∈ L be a node labeling such that there
are no loose arcs in Gτ . In the rest of the chapter, we focus on developing efficient methods
for computing µG

↑
τ . We know that applying the operators in G↑τ to µ is not polynomial in

general. So, we will approach µG
↑
τ from above instead.

Given a node labeling ν : V → L̄(T) and an arc vw ∈ E, let drop(ν, vw) be the largest
element ξ ∈ L̄(T) such that ξ ≤ ν(v) and vw is not loose after setting ν(v) to ξ. Observe
that if vw is loose, then drop(ν, vw) is given by Tighten(ν, vw). Otherwise, it is equal to
ν(v). Hence, it can be computed in γ(T) time.

We are ready to define the deflationary counterpart of Liftvw. For every arc vw ∈ Eτ ,
define the operator Dropvw : L × V → L̄(T) as

Dropvw(ν, u) :=

drop(ν, vw), if u = v

ν(v), otherwise.

For a subgraph H ⊆ Gτ , we denote H↓ := {Drope : e ∈ E(H)} as the operators in H. Since
they are deflationary and monotone, for any ν ∈ L, the greatest simultaneous fixed point νH↓

exists by Proposition 5.5 (i). Note that a node labeling is a simultaneous fixed point of H↓ if
and only if there are no loose arcs in H with respect to it.

126 | Parity Games: Strategy Iteration with Universal Trees

Our techniques are inspired by the methods of label-correcting and label-setting for the
shortest path problem. In the shortest path problem, we have a designated target node t
whose label is initialized to 0. For us, the role of t is replaced by a (potentially empty) set of
even cycles in Gτ , which we do not know a priori. So, we define a set of candidates nodes
called base nodes, whose labels need to be initialized properly.

Definition 5.7. Given a 1-player game (Gτ , π) for Even, we call v ∈ V a base node if
v ∈ Π(C) for some even cycle C in Gτ . Denote B(Gτ) as the set of base nodes in Gτ .

The base nodes can be found by recursively decomposing Gτ into strongly connected
components (SCCs). Initially, for each SCC K of Gτ , we delete Π(K). If π(K) is even and
|V (K)| > 1, then Π(K) are base nodes and we collect them. Otherwise, we ignore them.
Then, we are left with a smaller subgraph of G, so we repeat the process. Using Tarjan’s
SCCs algorithm [146], this procedure takes O(dm) time.

In Section 5.4, we develop a label-correcting method for computing µG
↑
τ , and apply it to

the quasi-polynomial universal trees constructed in the literature [88, 43]. The label-setting
method, which is faster but only applicable to perfect universal trees, is given in Section 5.5.

5.4 Label-Correcting Method for Computing the Least Fixed
Point

The Bellman–Ford algorithm for the shortest path problem is a well-known implementation
of the generic label-correcting method [4]. We start by giving its analogue for ordered
trees. Algorithm 10 takes as input a 1-player game (Gτ , π) for Even and a node labeling
ν : V → L̄(T) from some ordered tree T . Like its classical version for shortest paths, the
algorithm runs for n− 1 iterations. In each iteration, it replaces the tail label of every arc
e ∈ Eτ by drop(ν, e). Clearly, the running time is O(mnγ(T)). Moreover, if ν ′ is the returned
node labeling, then ν ′ ≥ νG

↓
τ .

Algorithm 10: Bellman–Ford
Input : 1-player game (Gτ , π) for Even, node labeling ν : V → L̄(T) from an

ordered tree T
Output : Node labeling from T

1 for i = 1 to n− 1 do
2 foreach vw ∈ E do ◃ In any order
3 ν(v)← drop(ν, vw)

4 return ν

Recall that we have a node labeling µ ∈ L such that Gτ does not have loose arcs, and
our goal is to compute µG

↑
τ . We first state a sufficient condition on the input node labeling ν

5.4 Label-Correcting Method for Computing the Least Fixed Point | 127

such that Algorithm 10 returns µG
↑
τ . In the shortest path problem, we set ν(t) = 0 at the

target node t, and ν(v) =∞ for all v ∈ V \ {t}. When working with node labels given by
an ordered tree, one has to ensure that the algorithm does not terminate with a fixed point
larger than µG

↑
τ , motivating the following definition.

Definition 5.8. Given a node labeling µ ∈ L, the threshold label of a base node v ∈ B(Gτ)
is

µ̂(v) := min
µ̃∈L
{µ̃(v) : µ̃(v) ≥ µ(v) and µ̃ is feasible in a cycle dominated by v in Gτ} .

The next lemma follows directly from the pointwise minimality of µG
↑
τ .

Lemma 5.9. Let µ ∈ L be a node labeling such that Gτ does not have loose arcs. For every
base node v ∈ B(Gτ), we have µ̂(v) ≥ µG

↑
τ (v).

Proof. Fix a base node v. Let C be a cycle dominated by v in Gτ . Let µ̃ ∈ L be a node
labeling which is feasible in C and satisfies µ̃(v) ≥ µ(v). It suffices to prove that µ̃(v) ≥ µG

↑
τ (v),

as C and µ̃ were chosen arbitrarily. Without loss of generality, we may assume that µ̃(w) = ⊤
for all w ∈ V \ V (C). Then, µ̃ is feasible in Gτ . Since there are no loose arcs in C with
respect to µ and µ̃(v) ≥ µ(v), we also have µ̃(w) ≥ µ(w) for all w ∈ V (C). It follows that
µ̃ ≥ µ. Hence, µ̃ is a fixed point of G↑τ that is pointwise at least µ. From the pointwise
minimality of µG

↑
τ , we get µ̃ ≥ µG

↑
τ .

The next theorem shows that if we initialize the base nodes with their corresponding
threshold labels, then Algorithm 10 returns µG

↑
τ . Even more, it suffices to have an initial

node labeling ν ∈ L such that µG
↑
τ (v) ≤ ν(v) ≤ µ̂(v) for all v ∈ B(Gτ). For the other nodes

v /∈ B(Gτ), we can simply set ν(v)← ⊤.

Theorem 5.10. Let µ ∈ L be a node labeling such that Gτ does not have loose arcs. Given
input ν ∈ L where ν ≥ µG

↑
τ and ν(v) ≤ µ̂(v) for all v ∈ B(Gτ), Algorithm 10 returns µG

↑
τ .

Proof. Given input ν ∈ L, let ν ′ be the node labeling returned by Algorithm 10. Then, we
have

µ ≤ µG
↑
τ ≤ νG

↓
τ ≤ ν ′ ≤ ν.

The second inequality is justified as follows. Since Gτ does not have loose arcs with respect
to µ, it also does not have loose arcs with respect to µG

↑
τ due to the pointwise minimality

of µG
↑
τ . Hence, µG

↑
τ is a fixed point of G↓τ . As µG

↑
τ ≤ ν, we get µG

↑
τ ≤ νG

↓
τ by the pointwise

maximality of νG
↓
τ . The third inequality, on the other hand, follows from the fact that νG

↓
τ

and ν ′ are obtained by iterating the operators in G↓τ on ν.
First, we show that µG

↑
τ = νG

↓
τ . Consider the set S := {v ∈ V : µG

↑
τ (v) < νG

↓
τ (v)}, and

suppose that S ̸= ∅ for the sake of contradiction. Observe that every arc in δ+
Gτ

(S) is violated

128 | Parity Games: Strategy Iteration with Universal Trees

with respect to µG
↑
τ because there are no loose arcs in Gτ with respect to νG

↓
τ . Since µG

↑
τ is

feasible in Gτ , there exists a strategy σ for Even such that Gστ does not contain violated
arcs with respect to µG

↑
τ . Hence, it follows that δ+

Gστ
(S) = ∅. As Gστ is a sinkless graph,

there exists a cycle C in Gστ [S]. By the Cycle Lemma, C is even because µG
↑
τ (v) < ⊤ for

all v ∈ S. Thus, every w ∈ Π(C) is a base node and satisfies µ̂(w) ≤ µG
↑
τ (w). However, we

obtain the following contradiction

µ̂(w) ≤ µG
↑
τ (w) < νG

↓
τ (w) ≤ ν(w) ≤ µ̂(w).

Next, we show that νG
↓
τ = ν ′, or equivalently, ν ′ is a fixed point of G↓τ . Let T = (n−1)|Eτ |

be the total number of steps carried out by the algorithm. For each 0 ≤ t ≤ T , let νt ∈ L be
the node labeling at the end of step t. Note that ν0 = ν and νT = ν ′. We will prove that for
each 0 ≤ t ≤ T , if an arc uv is loose with respect to νt, then there exists a tight path P with
respect to νt from v to some w ∈ V such that u /∈ V (P) and νt(w) = ν(w). This would then
imply the absence of loose arcs with respect to νT = ν ′. Indeed, if there were a loose arc
uv, concatenating uv with the tight v-w path P yields a u-w path. However, this u-w path
certifies that ν ′(u) would have been smaller because ν ′(w) = ν(w) and the algorithm ran for
n− 1 iterations; a contradiction.

We now prove the statement by induction on t ≥ 0. The base case t = 0 is trivially true
with the singleton path P = {v}. Suppose that the statement is true for some t ≥ 0, and let
uv be the arc processed in step t+ 1. We may assume that uv is loose with respect to νt, as
otherwise νt+1 = νt and we are done. By the inductive hypothesis, there exists a tight path
P with respect to νt from v to some w ∈ V such that u /∈ V (P) and νt(w) = ν(w). Pick a
shortest such P . Then, νt(s) < ν(s) for all s ∈ V (P) \ (w).

Consider the u-w path P ′ := P ∪ {uv}. At the end of step t+ 1, P ′ is tight with respect
to νt+1 and νt+1(w) = ν(w). Let qu be a loose arc with respect to νt+1. To finish the
proof, it suffices to show that q /∈ V (P ′). For the purpose of contradiction, suppose that
q ∈ V (P ′). Let C ′ be the unique cycle in P ′ ∪ {qu}. Since νt+1(s) < ⊤ for all s ∈ V (P ′),
C ′ is even by the Cycle Lemma. Let p ∈ Π(C ′), which is a base node. If p = q, then
µ̂(p) < νt+1(p) ≤ ν(p) ≤ µ̂(p), where the strict inequality is due to qu being loose. If p ̸= q,
then µ̂(p) ≤ νt+1(p) < ν(p) ≤ µ̂(p), where the strict inequality is due to p ≠ w. Both cases
result in a contradiction.

Our strategy for computing such a node labeling ν is to find the cycles in Definition 5.8.
In particular, for every base node v ∈ B(Gτ), we aim to find a cycle C dominated by v in Gτ
such that µ̂(v) can be extended to a node labeling that is feasible in C. To accomplish this
goal, we first introduce the notion of width in Section 5.4.1, which allows us to evaluate how
‘good’ a cycle is. It is defined using chains in the poset of subtrees of T , where the partial

5.4 Label-Correcting Method for Computing the Least Fixed Point | 129

order is given by ⊑. Then, in Section 5.4.2, we show how to obtain the desired cycles by
computing minimum bottleneck cycles on a suitably defined auxiliary digraph.

5.4.1 Width from a Chain of Subtrees in T

Two ordered trees T ′ and T ′′ are said to be distinct if T ′ ̸≡ T ′′ (not isomorphic in the sense
of Definition 5.1). Let h be the height of our universal tree T . For 0 ≤ j ≤ h, denote Tj as
the set of distinct (whole) subtrees rooted at the vertices of depth h− j in T . For example,
Th = {T}, while T0 contains the trivial tree with a single vertex. Since we assumed that all
the leaves in T are at the same depth, every tree in Tj has height j. We denote T = ∪hj=0Tj
as the union of all these subtrees. The sets T and Tj form posets with respect to the partial
order ⊑. The next definition is the usual chain cover of a poset, where we additionally require
that the chains form an indexed tuple instead of a set.

Definition 5.11. For 0 ≤ j ≤ h, let Cj = (C0
j , C1

j , . . . , Cℓj) be a tuple of chains in the poset
(Tj ,⊑). We call Cj a cover of Tj if ∪ℓk=0Ckj = Tj . A cover of T is a tuple C = (C0, C1, . . . , Ch)
where Cj is a cover of Tj for all 0 ≤ j ≤ h. We refer to Cj as the jth-subcover of C. Given a
cover C of T , we denote the trees in the chain Ckj as T k0,j @ T k1,j @ · · · @ T k|Ck

j |−1,j .

An example of an ordered tree with its cover is given in Figure 5.5. We are ready to
introduce the key concept of this subsection.

T1 = , , C0
1 = , ,

T2 =
, ,

C0
2 =

C1
2 =

,

Fig. 5.5 An ordered tree T of height 3, and a cover Cj of Tj for all 0 < j < 3. Recall that Tj
is the set of distinct subtrees of T rooted at depth 3− j, while Ckj is the kth chain in Cj .

Definition 5.12. Let C be a cover of T . Let H be a subgraph of Gτ and j = ⌈π(H)/2⌉. For
a fixed chain Ckj in Cj , the kth-width of H, denoted αkC(H), is the smallest integer i ≥ 0 such

130 | Parity Games: Strategy Iteration with Universal Trees

that there exists a node labeling ν : V (H) → L(T ki,j) which is feasible in H. If i does not
exist, then αkC(H) =∞.

Note that T ki,j is the (i+ 1)-th smallest tree in the chain Ckj . We are mainly interested
in the case when H is a cycle, and write αk(H) whenever the cover C is clear from context.
Observe that the definition above requires ν(v) ̸= ⊤ for all v ∈ V (H). Hence, an odd cycle
has infinite kth-width by the Cycle Lemma. As (Ckj ,⊑) is a chain, for all finite i ≥ αk(H),
there exists a node labeling ν : V (H) → L(T ki,j) which is feasible in H. The next lemma
illustrates the connection between the kth-width of an even cycle and its path decomposition.

Lemma 5.13. Let C be a cover of T . For an even cycle C, let Π(C) = {v1, v2, . . . , vℓ} and
j = π(C)/2. Decompose C into arc-disjoint paths P1, P2, . . . , Pℓ such that each Pi ends at vi.
Then, αk(C) = maxi∈[ℓ] α

k(Pi) for all 0 ≤ k < |Cj |.

Proof. Fix a chain Ckj and let α∗ = maxi∈[ℓ] α
k(Pi). Clearly, any node labeling which is

feasible in C is also feasible in Pi for all i ∈ [ℓ]. So, αk(C) ≥ α∗. Next, we prove the reverse
inequality. For each i ∈ [ℓ], there exists a node labeling νi : V (Pi) → L(T kα∗,j) which is
feasible in Pi. Without loss of generality, we may assume that νi(vi) = minL(T kα∗,j) for all
i ∈ [ℓ]. Let us define a new node labeling ν as follows. For v ∈ V (C), set ν(v) := νi(v) where
i ∈ [ℓ] is the unique index such that δ−Pi

(v) ̸= ∅. Then, ν is feasible in C because ν(v) ̸= ⊤
for all v ∈ V (C). Hence, αk(C) ≤ α∗.

For a base node v ∈ B(Gτ), let us consider the cycles in Gτ which are dominated by v.
Among these cycles, we are interested in finding one with the smallest kth-width. So, we
extend the notion of kth-width to base nodes in the following way.

Definition 5.14. Let C be a cover of T . Let v ∈ B(Gτ) be a base node and j = π(v)/2. For
0 ≤ k < |Cj |, the kth-width of v is defined as

αkC(v) := min
{
αkC(C) : C is a cycle dominated by v in Gτ

}
.

Again, we write αk(v) whenever the cover C is clear from context. Observe that T k
αk(v),π(v)/2

is the smallest tree in the chain Ckπ(v)/2 which can encode a node labeling that is feasible on
some cycle dominated by v.

Given a leaf ξ ∈ L(T) and integers i, j, k ∈ Z≥0, the following subroutine locates a member
of the chain Ckj in T whose leaves are at least ξ and into which T ki,j is embeddable.

Subroutine 5.4.1. Raise(ξ, i, j, k)

Given a leaf ξ ∈ L(T) and integers i, j, k ∈ Z≥0, return the smallest leaf ξ′ ∈ L(T)
such that (1) ξ′ ≥ ξ; and (2) ξ′ is the smallest leaf in the subtree T ki′,j for some i′ ≥ i.
If ξ′ does not exist, then return ⊤.

5.4 Label-Correcting Method for Computing the Least Fixed Point | 131

This subroutine allows us to relate the kth-width αk(v) of a base node v to its threshold la-
bel µ̂(v). In particular, for any 0 ≤ k < |Cπ(v)/2|, the element returned by Raise(µ(v), αk(v), π(v)

2 , k)
is at least µ̂(v). Moreover, the smallest such element over all k is precisely µ̂(v).

Lemma 5.15. Let µ ∈ L be a node labeling such that Gτ does not have loose arcs. Let
v ∈ B(Gτ) be a base node and j = π(v)/2. If ξk ∈ L̄(T) is the element returned by
Raise(µ(v), αk(v), j, k), then

µ̂(v) = min
0≤k<|Cj |

ξk.

Proof. First, we prove that µ̂(v) ≤ ξk for all 0 ≤ k < |Cj |. Fix a k and assume that ξk ̸= ⊤.
Then, ξk is the smallest leaf in a subtree T ki,j of T for some i ≥ αk(v). From the definition of
αk(v), there exists a cycle C dominated by v in Gτ and a node labeling ν : V (C)→ L(T ki,j)
which is feasible in C. Since π(v) = 2j and ν(w) ̸= ⊤ for all w ∈ V (C), we may assume
that ν(v) = minL(T ki,j). Let us define a new node labeling µ̃ : V → L̄(T) as follows. If
w ∈ V (C), set µ̃(w) as the concatenation of ξk|2j and ν(v), which is a leaf in T . Otherwise,
set µ̃(w) := ⊤. Then, µ̃ is feasible in C and µ̃(v) = ξk ≥ µ(v), where the equality is due to
our assumption ν(v) = minL(T ki,j). Hence, µ̃(v) ≥ µ̂(v) from the definition of µ̂(v).

It is left to show that µ̂(v) ≥ ξk for some 0 ≤ k < |Cj |. We may assume that µ̂(v) ̸= ⊤.
Let T ki,j be the subtree of T rooted at µ̂(v)|2j . We claim that µ̂(v) ≥ ξk. From the definition
of µ̂(v), there exists a node labeling µ̃ ∈ L and a cycle C dominated by v in Gτ such that
µ̃ is feasible in C and µ̃(v) = µ̂(v) ≥ µ(v). By the Cycle Lemma, µ̃(v)|2j = µ̃(w)|2j for
all w ∈ V (C). Since µ̃ is feasible in C and µ̃(w) ̸= ⊤ for all w ∈ V (C), it follows that
i ≥ αk(C) ≥ αk(v). So, the only way to get µ̂(v) < ξk is when µ̂(v) = µ(v) and µ(v) is
not the smallest leaf in the subtree of T rooted at µ(v)|2j . However, this cannot happen.
Indeed, denoting s as the out-neighbour of v in C, we have µ(v)|2j = µ̃(v)|2j = µ̃(s)|2j . So, if
µ̃(s)|2j ≥ µ(s)|2j , then vs is loose with respect to µ. Otherwise, the s-v path in C contains a
loose arc with respect to µ.

The necessary number of chains in the subcover Cπ(v)/2 can be large if T is an arbitrary
ordered tree. Fortunately, the universal trees constructed in the literature admit covers with
small subcovers. We prove that a succinct (n, h)-universal tree has a cover with only 1 chain
per subcover in Section 5.4.4, whereas a succinct Strahler (n, h)-universal tree (introduced by
Daviaud et al. [43]) has a cover with at most logn chains per subcover in Section 5.4.5.

Let ρ(T, C) denote the running time of Raise. We provide efficient implementations of
Raise for succinct universal trees and succinct Strahler universal trees in Sections 5.4.4–5.4.5.
They have the same running time as Tighten, i.e., ρ(T, C) = O(logn log h).

5.4.2 Estimating the Width of Base Nodes

In light of the previous discussion, we can now focus on computing the kth-width of a
base node w ∈ B(Gτ). Fix a 0 ≤ k < |Cπ(w)/2|. Since we ultimately need a label that

132 | Parity Games: Strategy Iteration with Universal Trees

lies between µG
↑
τ (w) and µ̂(w) in order to initialize Algorithm 10, it suffices to compute a

‘good’ under-estimation of αk(w). In this subsection, we reduce this problem to computing a
minimum bottleneck cycle in an auxiliary digraph D with nonnegative arc costs ck ≥ 0.

For a base node w ∈ B(Gτ), let Kw denote the SCC containing w in (Gτ)π(w), the
subgraph of Gτ induced by nodes with priority at most π(w). Let K ′w ⊆ Kw be the subgraph
obtained by deleting the incoming arcs δ−(v) for all v ∈ Π(Kw) \ {w}. Then, we define Jw as
the subgraph of K ′w induced by those nodes which can reach w in K ′w. These are the nodes
which can reach w in Kw without encountering an intermediate node of priority π(w).

1

4 w4

5

4

w2

2 1

2

w1

4w3

3

w1

w2

w3 w4

Fig. 5.6 An example of a 1-player game (Gτ , π) for Even is given on the left, with its auxiliary
digraph D on the right. Nodes in V0 and V1 are drawn as squares and circles respectively.
Base nodes are labeled as w1, w2, w3, w4. The light gray region is Kw4 , while the dark gray
region is Jw4 .

The auxiliary digraph D is constructed as follows. Its node set is B(Gτ). For every
ordered pair (v, w) of base nodes where π(v) = π(w), add the arc vw if v has an outgoing arc
in Jw. Note that if (v, w) ∈ D, then v can reach w by only seeing smaller priorities on the
intermediate nodes. As ordered pairs of the form (v, v) are also considered, D may contain
self-loops. Observe that D is a disjoint union of SCCs, each of which consists of base nodes
with the same priority (see Figure 5.6 for an example). For w ∈ B(Gτ), we denote Dw as the
component in D which contains w.

To finish the description of D, it is left to assign the arc costs ck. Note that the graph
structure of D is independent of k. We give a range in which the cost of each arc should lie. Fix
a base node w ∈ B(Gτ) and let j = π(w)/2. Recall that J ↓w = {Drope : e ∈ E(Jw)} is the set
of Drop operators in the subgraph Jw ⊆ Gτ . For each 0 ≤ i < |Ckj |, let λki,w : V (Jw)→ L̄(T ki,j)
be the greatest simultaneous fixed point of J ↓w subject to λki,w(w) = minL(T ki,j). Then, for
each arc vw ∈ E(D), the lower and upper bounds of ck(vw) are given by

ck(vw) := min
{
i : λki,w(u) ̸= ⊤ for some u ∈ N+

Jw
(v)
}

ck(vw) := min
{
αk(P) : P is a u-w path in Jw where u ∈ N+

Jw
(v)
} (5.1)

5.4 Label-Correcting Method for Computing the Least Fixed Point | 133

respectively. The lower bound ck(vw) is the smallest integer i ≥ 0 such that the greatest
simultaneous fixed point λki,w assigns a non-top label to an out-neighbor of v in Jw. On
the other hand, the upper bound ck(vw) is the minimum kth-width of a path from an
out-neighbor of v to w in Jw. Note that these quantities could be equal to +∞.

Lemma 5.16. For every arc vw ∈ E(D), we have ck(vw) ≤ ck(vw).

Proof. We may assume that ck(vw) <∞. Let P be a u-w path in Jw where u ∈ N+
Jw

(v) and
αk(P) = ck(vw). Let j = π(w)/2. From the definition of αk(P), there exists a node labeling
ν : V (P)→ L(T k

αk(P),j) which is feasible in P . Note that ν(s) ̸= ⊤ for all s ∈ V (P). Moreover,
ν(s) ≥ λk

αk(P),w(s) for all s ∈ V (P) because ν(w) ≥ minL(T k
αk(P),j) = λk

αk(P),w(w) and there
are no loose arcs in P with respect to λk

αk(P),w. It follows that λk
αk(P),w(u) ≤ ν(u) < ⊤, which

gives ck(vw) ≤ αk(P) as desired.

The next lemma concerns the greatest simultaneous fixed point of J ↓w when comparable
trees are used as codomains.

Lemma 5.17. For every node u ∈ V (Jw), if λki,w(u) ̸= ⊤, then λki′,w(u) ̸= ⊤ for all i′ ≥ i.

Proof. Let j = π(w)/2 and fix integers i′ ≥ i. Define the node labelings ν(0)
i : V (Jw) →

L̄(T ki,j) and ν
(0)
i′ : V (Jw) → L̄(T ki′,j) by ν

(0)
i (w) = minL(T ki,j), ν

(0)
i′ (w) = minL(T ki′,j), and

ν
(0)
i (u) = ν

(0)
i′ (u) = ⊤ for all u ̸= w. We know that λki,w can be obtained by applying a

sequence R of Drop operators from Jw to ν(0)
i . For each 0 ≤ ℓ ≤ |R|, let Rℓ be the sequence

consisting of the first ℓ elements in R. Let ν(ℓ)
i and ν

(ℓ)
i′ be the node labelings obtained

by applying Rℓ to ν
(0)
i and ν

(0)
i′ respectively. Since T ki,j ⊑ T ki′,j , there exists an injective

and order-preserving homomorphism f : V (T ki,j) → V (T ki′,j). Let us extend f by setting
f(⊤) := ⊤. As λki′,w ≤ ν

(|R|)
i′ , it suffices to show that ν(ℓ)

i′ (u) ≤ f(ν(ℓ)
i (u)) for all u ∈ V (Jw)

and 0 ≤ ℓ ≤ |R|. We proceed by induction on ℓ. The base case ℓ = 0 is true by construction.
Suppose that this is true for some ℓ ≥ 0, and let Dropuv(·, ·) be the (ℓ+ 1)-th element in R.
Since f is order-preserving and Dropuv is monotone with respect to its input node labeling,
we obtain ν

(ℓ+1)
i′ (u) ≤ f(ν(ℓ+1)

i (u)) by the inductive hypothesis.

For a cycle C in D, its (bottleneck) ck-cost is defined as ck(C) := maxe∈E(C) c
k(e). Note

that self-loops in D are considered cycles. The next theorem enables us to obtain the desired
initial node labeling ν for Algorithm 10 by computing minimum bottleneck cycles in D.

Theorem 5.18. Let C be a cover of T . Let µ ∈ L be a node labeling such that Gτ does not
have loose arcs. For a base node w, let ck be arc costs in Dw such that ck ≤ ck ≤ ck for all
0 ≤ k < |Cπ(w)/2|. For each k, let ik be the minimum ck-cost of a cycle containing w in Dw,
and ξk be the label returned by Raise(µ(w), ik, π(w)

2 , k).2 Then, µG
↑
τ (w) ≤ mink ξk ≤ µ̂(w).

2We set ξk = ⊤ if ik = ∞.

134 | Parity Games: Strategy Iteration with Universal Trees

Proof. Let j = π(w)/2. We first prove the lower bound µG
↑
τ (w) ≤ ξk for all 0 ≤ k < |Cj |.

Fix a k and assume that ξk ̸= ⊤. Let C be a minimum ck-cost cycle containing w in D.
Denote C = (w1, w2, . . . , wℓ) where w = w1 = wℓ. For every s ∈ [ℓ], let νs : V → L̄(T) be the
node labeling defined by νs(ws) := ξk and νs(v) := ⊤ for all v ̸= ws. Consider the greatest
simultaneous fixed point νJ

↓
ws

s . Since π(Jws) = π(ws) = 2j, we have νJ
↓
ws

s (ws) = νs(ws) = ξk

because ξk is the smallest leaf in the subtree of T rooted at ξk|2j . This also implies that
ν
J ↓ws
s (v) ≥ ξk for all v ∈ V . Furthermore, νJ

↓
ws

s is feasible in Gτ \ δ+(ws), as νs is feasible in
Gτ \ δ+(ws).

Claim 5.19. For each 1 < s ≤ ℓ, there exists a node us ∈ N+
Jws

(ws−1) such that νJ
↓
ws

s (us)|2j =
ξk|2j.

Proof. Fix an s and let i = ck(ws−1ws). From the definition of ck in (5.1), there exists a
node us ∈ N+

Jws
(ws−1) such that λki,ws

(us) ̸= ⊤. Recall that λki,ws
: V (Jws)→ L̄(T ki,j) is the

greatest simultaneous fixed point of J ↓ws
subject to λki,ws

(ws) = minL(T ki,j). We will show

that νJ
↓
ws

s (us)|2j = ξk|2j . First, observe that νJ
↓
ws

s : V → L̄(T) is the greatest simultaneous
fixed point of J ↓ws

subject to νJ
↓
ws

s (ws) = ξk. Since ξk is returned by Raise(µ(w), ik, j, k), it
is the smallest leaf in a copy of T ki′,j in the main tree T for some i′ ≥ ik. As ck(C) = ik and
ws−1ws ∈ E(C), we also have ik ≥ ck(ws−1ws) ≥ ck(ws−1ws) = i, where the last inequality
is due to our choice of the arc costs ck. It follows that i′ ≥ i and T ki,j ⊑ T ki′,j . Thus, we obtain

ν
J ↓ws
s (us)|2j = ξk|2j by Lemma 5.17 because λki,ws

(us) ̸= ⊤.

Now, consider the node labeling ν defined by ν(v) := mins∈[ℓ] ν
J ↓ws
s (v) for all v ∈ V . Note

that ν(ws) = ξk for all s ∈ [ℓ]. It suffices to show that ν is feasible in Gτ and ν ≥ µ. This
is because it would then imply ν ≥ µG

↑
τ by the pointwise minimality of µG

↑
τ . In particular,

ξk = ν(w) ≥ µG
↑
τ (w).

We first prove that ν is feasible in Gτ . Notice that ν is feasible in Gτ \ ∪ℓs=1δ
+(ws)

because νs is feasible in Gτ \ δ+(ws) for all s ∈ [ℓ]. So, it suffices to show that every ws has a
non-violated outgoing arc in Gτ with respect to ν. Fix an 1 < s ≤ ℓ. By Claim 5.19, there
exists a node us ∈ N+

Jws
(ws−1) such that νJ

↓
ws

s (us)|2j = ξk|2j . Hence, ν(us)|2j = ξk|2j . As
ν(ws−1) = ξk and π(ws−1) = 2j, the arc ws−1us is non-violated with respect to ν.

Next, we prove that νJ
↓
ws

s ≥ µ for all s ∈ [ℓ], which will then imply ν ≥ µ as desired.

We proceed by induction on s. For the base case s = ℓ, we know that νJ
↓
wℓ

ℓ is the greatest

simultaneous fixed point of J ↓wℓ
subject to νJ

↓
wℓ

ℓ (wℓ) = ξk. Observe that µ is also a simul-
taneous fixed point of J ↓wℓ

because there are no loose arcs in Gτ with respect to µ. As

ν
J ↓wℓ
ℓ (wℓ) = ξk ≥ µ(wℓ) due to wℓ = w, we obtain ν

J ↓wℓ
ℓ ≥ µ. For the inductive step, suppose

that νJ
↓
ws

s ≥ µ for some 1 < s ≤ ℓ. By Claim 5.19, there exists a node us ∈ N+
Jws

(ws−1) such

that νJ
↓
ws

s (us)|2j = ξk|2j . Then, µ(ws−1) ≤ νJ
↓
ws

s (ws−1) = ξk, where equality follows from the

5.4 Label-Correcting Method for Computing the Least Fixed Point | 135

tightness of ws−1us with respect to νJ
↓
ws

s . Since ν
J ↓ws−1
s−1 is the greatest simultaneous fixed

point of J ↓ws−1 subject to ν
J ↓ws−1
s−1 (ws−1) = ξk ≥ µ(ws−1), we get ν

J ↓ws−1
s−1 ≥ µ because µ is also

a simultaneous fixed point of J ↓ws−1 .

It is left to show that ξk ≤ µ̂(w) for some 0 ≤ k < |Cj |. We may assume that µ̂(w) ̸= ⊤.
By Lemma 5.15, µ̂(w) is returned by Raise(µ(w), αk(w), j, k) for some 0 ≤ k < |Cj |. Let H be
a cycle in Gτ such that w ∈ Π(H) and αk(H) = αk(w). We denote Π(H) = {w1, w2, . . . , wr}
and decompose H into arc-disjoint paths P1, P2, . . . , Pr such that Ps is a ws−1-ws path for
all s ∈ [r], with the convention w0 := wr. Since each Ps lies in the subgraph Jws , we have
ws−1ws ∈ E(D) for all s ∈ [r], and their union induces a cycle H ′ containing w in D. Then,

ik ≤ ck(H ′) = max
s∈[r]

ck(ws−1ws) ≤ max
s∈[r]

ck(ws−1ws) ≤ max
s∈[r]

αk(Ps) = αk(H) = αk(w).

The third inequality follows from the definition of ck in (5.1), while the second equality is
due to Lemma 5.13. Therefore, ξk ≤ µ̂(w) because Raise is monotone with respect to its
second argument.

5.4.3 The Label-Correcting Algorithm

The overall algorithm for computing µG
↑
τ is given in Algorithm 11. The main idea is to

initialize the labels on base nodes via the recipe given in Theorem 5.18, before running
Algorithm 10. The labels on V \B(Gτ) are initialized to ⊤. The auxiliary graph D serves as
a condensed representation of the ‘best’ paths between base nodes. The arc costs are chosen
such that minimum bottleneck cycles in D give a good estimate on the width of base nodes.

Algorithm 11: Label-correcting algorithm for computing the least fixed point
Input : 1-player game (Gτ , π) for Even, universal tree T with cover C, node

labeling µ : V → L̄(T) with no loose arc in Gτ

Output :µG
↑
τ

1 ν(v)← ⊤ for all v ∈ V
2 Construct auxiliary digraph D
3 foreach component H in D do
4 for k = 0 to |Cπ(H)/2| − 1 do
5 Assign arc costs ck to H where ck ≤ ck ≤ ck
6 foreach w ∈ V (H) do
7 ik ← minimum ck-cost of a cycle containing w in H

8 if ik <∞ then
9 ν(w)← min(ν(w),Raise(µ(w), ik, π(H)

2 , k))

10 ν ← BellmanFord((Gτ , π), ν)
11 return ν

136 | Parity Games: Strategy Iteration with Universal Trees

In the next two paragraphs, we elaborate on how the arc costs ck and minimum bottleneck
cycles are computed.

Computing arc costs Fix a component H in D and let j = π(H)/2. If the chain Ckj
is short, then for every node w ∈ V (H), we can obtain ck for its incoming arcs δ−D(w) by
running Algorithm 10 on the subgraph Jw |Ckj | times. In every run 0 ≤ i < |Ckj |, we use the
initial node labeling νi : V (Jw)→ L̄(T ki,j) given by νi(w) := minL(T ki,j) and νi(u) := ⊤ for
all u ̸= w. Let ν ′i be the returned node labeling. Observe that ν ′i ≥ λki,w. Moreover, for each
node u ∈ V (Jw), if ν ′i(u) = ⊤, then αk(P) > i for all u-w paths P in Jw. This is due to our
choice of the initial node labeling νi, and the fact that Algorithm 10 ran for n− 1 iterations.

For every arc vw ∈ δ−D(w), we set its cost as

ck(vw) := min
u∈N+

Jw
(v)

{
i : ν ′i(u) ̸= ⊤

}
.

Since λk
ck(vw),w(u) ≤ ν ′

ck(vw)(u) ̸= ⊤ for some u ∈ N+
Jw

(v), we have ck(vw) ≥ ck(vw). We also
have ck(vw) ≤ ck(vw) because ν ′i(u) = ⊤ for all i < ck(vw) and u ∈ N+

Jw
(v).

If the chain Ckj is long, then we combine the above approach with binary search. Start
by selecting the middle tree T ki,j in the chain, i.e. i = ⌊|Ckj |/2⌋. Run Algorithm 10 on the
subgraph Jw with the initial node labeling νi : V (Jw)→ L̄(T ki,j) as defined above, and let ν ′i be
the returned node labeling. For each node u ∈ V (Jw), if ν ′i(u) = ⊤, then we restrict ourselves
to the trees in the chain which are bigger than T ki,j . Otherwise, we disregard these trees. This
process is repeated until we find the optimal tree T ki,j for every node u ∈ V (Jw). Hence, the
time taken to compute ck for the component H is O(|V (H)|mnγ(T) ·min{|Ckj |, n log |Ckj |}).

Computing Minimum Bottleneck Cycles It is well-known how to compute a minimum
bottleneck directed cycle in a digraph with arbitrary arc costs. For the sake of completeness,
we give a brief description. Let H be a component in D and ck1 < ck2 < · · · < ckℓ be the
distinct arc costs in H. Consider the subgraph of H induced by arcs with cost at most ck⌈ℓ/2⌉,
and let K1,K2, . . . ,Kt be its SCCs. For each i ∈ [t], if |E(Ki)| > 0, then every node in Ki

has a cycle going through it with cost at most ck⌈ℓ/2⌉. Otherwise, Ki is a singleton with no
self-loops. Hence, every cycle going through it has cost greater than ck⌈ℓ/2⌉. This observation
allows us to split the instance into two. The first instance is given by the disjoint union of
K1,K2, . . . ,Kt. The second instance is obtained by contracting each Ki into a node in H,
destroying any self-loops on the resulting node. Then, the procedure is repeated on these
two smaller instances. Since H contains O(|V (H)|2) arcs, and each arc appears in at most
O(log ℓ) = O(log |V (H)|) instances, the running time is O(|V (H)|2 log |V (H)|) using Tarjan’s
SCCs algorithm.

We are ready to prove a generic bound on the running time of Algorithm 11 for an
arbitrary universal tree T with an arbitrary cover C.

5.4 Label-Correcting Method for Computing the Least Fixed Point | 137

Theorem 5.20. In O(mn2γ(T) ·maxj,k |Cj |min{|Ckj |, n log |Ckj |}+nρ(T, C) ·maxj |Cj |) time,
Algorithm 11 returns µG

↑
τ .

Proof. Correctness follows immediately from Theorem 5.18 and Theorem 5.10. In terms of run-
ning time, identifying the base nodes takes O(dm) time (see Section 5.3.1), while constructing
the auxiliary digraph D takes O(mn) time. Next, for every component H in D and 0 ≤ k <
|Cπ(H)/2|, computing the arc costs ck takes O(|V (H)|mnγ(T) ·min{|Ckπ(H)/2|, n log |Ckπ(H)/2|}).
Then, finding minimum ck-cost cycles in H takes O(|V (H)|2 log |V (H)|) time, while applying
Raise takes O(|V (H)|ρ(T, C)) time. Finally, Bellman–Ford runs in O(mnγ(T)) time.

In the next two subsections, we apply Algorithm 11 to the quasi-polynomial universal trees
constructed in the literature [88, 43]. It runs in time O(mn2 logn log d) time for a succinct
(n, d/2)-universal tree, and O(mn2 log3 n log d) for a succinct Strahler (n, d/2)-universal tree.
The vertices in these trees are encoded using tuples of binary strings. For working with these
tuples, we introduce the following notation.

Definition 5.21. Given a tuple ξ = (ξ2h−1, ξ2h−3, . . . , ξ1) of binary strings, denote ζ(ξ) as
the number of leading zeroes in ξ2h−1. We also define ζ(⊤) := −1.

For a pair of tuples ξ, ξ′ of binary strings, note that if ξ ≥ ξ′, then ζ(ξ) ≤ ζ(ξ′) by the
lexicographic order on tuples.

Definition 5.22. Given a tuple ξ = (ξ2h−1, ξ2h−3, . . . , ξ1) of binary strings and an integer
κ ≥ 0, let ξκ be the tuple obtained by deleting κ leading zeroes from ξ2h−1. If κ > ζ(ξ), then
ξκ := ⊤. We also define ⊤κ := ⊤.

5.4.4 Application to Succinct Universal Trees

Let T be a succinct (n, h)-universal tree. Recall that every leaf ξ ∈ L(T) corresponds to an
h-tuple of binary strings where |ξ| ≤ ⌊logn⌋. First, we show that each Tj has a cover of size
1. Equivalently, each (Tj ,⊑) is a chain.

Lemma 5.23. There exists a cover C of T such that |Cj | = 1 for all 0 ≤ j ≤ h.

Proof. Fix 0 ≤ j ≤ h and pick two vertices r1, r2 ∈ V (T) at depth h− j. Let T1 and T2 be
the subtrees of T rooted at r1 and r2 respectively. Every leaf ξ1 ∈ L(T1) and ξ2 ∈ L(T2)
corresponds to a j-tuple of binary strings where |ξ1| ≤ ⌊logn⌋ − |r1| and |ξ2| ≤ ⌊logn⌋ − |r2|.
Without loss of generality, assume that |r1| ≥ |r2|. Then, the identity map from V (T1) to
V (T2) is an order-preserving and injective homomorphism. Hence, T1 ⊑ T2.

Since each subcover Cj of C consists of a single chain, we write Cj = Tj and omit the
superscript k. The subtrees in Tj are T0,j @ T1,j @ · · · @ T⌊logn⌋,j . Observe that every leaf
ξ ∈ L(Ti,j) corresponds to a j-tuple of binary strings where |ξ| ≤ i.

Next, we give an efficient implementation of the Raise subroutine.

138 | Parity Games: Strategy Iteration with Universal Trees

Lemma 5.24. For a succinct (n, d/2)-universal tree T with cover C = (T0, T1, . . . , Td/2), the
Raise(ξ, i, j, k) subroutine runs in O(logn log d) time.

Proof. We may assume that ξ is the smallest leaf in the subtree rooted at ξ|2j . Otherwise,
we can set it to the smallest leaf of the next subtree rooted at that depth using Tighten.
Recall that the Tighten subroutine for T also runs in O(logn log d) time. It follows that
ξ2j−1 ∈ {0 · · · 0, ε} and ξq = ε for all odd q < 2j − 1. If |ξ2j−1| ≥ i, then we simply return ξ.
Otherwise, let p ∈ [d] be the smallest even integer such that ξ|p has a child bigger than ξ|p−1

with at most ⌊logn⌋ − i bits. If p does not exist, then we return ⊤. Otherwise, p > 2j. Let
r = ⌊logn⌋ − i− |ξ|p−1|. There are two cases.

Case 1: r > 0. Return

(ξd−1, . . . , ξp−11 0 · · · 0︸ ︷︷ ︸
r−1

, ε, . . . , ε, 0 · · · 0︸ ︷︷ ︸
i

, ε, . . . , ε)

where the string of i zeroes is at index 2j − 1.

Case 2: r ≤ 0. Denote ξp−1 = b1b2 · · · bℓ where bq ∈ {0, 1} for all q ∈ [ℓ]. Note that
ℓ ≥ 1 by our choice of p. Furthermore, there exists a largest t ∈ [ℓ] such that bt = 0 and
r′ := r + ℓ− t+ 1 ≥ 0. Then,

• If p = 2j + 2, return

(ξd−1, . . . , ξp+1, b1 · · · bt−1, 0 · · · 0︸ ︷︷ ︸
i+r′

, ε, . . . , ε)

• If p > 2j + 2, return

(ξd−1, . . . , ξp+1, b1 · · · bt−1, 0 · · · 0︸ ︷︷ ︸
r′

, ε, . . . , ε, 0 · · · 0︸ ︷︷ ︸
i

, ε, . . . , ε)

where the string of i zeroes is at index 2j − 1.

Due to the structure of succinct universal trees, the running time of Algorithm 11 given
in Theorem 5.20 can be improved. The following lemma yields a faster method for computing
arc costs for the auxiliary digraph Dτ . The key observation is that for any pair of trees
in a chain Tj , the smaller tree can be obtained from the larger tree by deleting vertices in
decreasing lexicographic order. For example, a succinct (3,2)-universal tree can be obtained
from a succinct (7,2)-universal tree by deleting vertices whose first component does not
contain a leading zero (compare Figures 5.3 and 5.7).

5.4 Label-Correcting Method for Computing the Least Fixed Point | 139

00 0 01 ε 10 1 11

ε 0 ε 1 ε 00 0 01 ε 10 1 11 ε 0 ε 1 ε

Fig. 5.7 The succinct (7, 2)-universal tree

Lemma 5.25. Given integers 0 ≤ i1 ≤ i2 and j ≥ 0, let ν1 : V → L̄(Ti1,j) and ν2 : V →
L̄(Ti2,j) be node labelings such that ν1(u) = ν2(u)i2−i1 for all u ∈ V . For any arc vw ∈ Eτ
where π(v) < 2j, we have drop(ν1, vw) = drop(ν2, vw)i2−i1.

Proof. Let ξ1 = drop(ν1, vw) and ξ2 = drop(ν2, vw). First, assume that vw is violated with
respect to ν1. Then, ν1(v) ̸= ⊤, which implies that ν2(v) ̸= ⊤. In particular, ζ(ν2(v)) ≥ i2−i1.
We claim that vw is also violated with respect to ν2. This is clear if ν1(w) ̸= ⊤. If ν1(w) = ⊤,
then ζ(ν2(w)) < i2 − i1. As ν2(v)|2j−1 < ν2(w)|2j−1 and π(v) < 2j, the arc vw is indeed
violated with respect to ν2. Hence, ξ1 = ν1(v) and ξ2 = ν2(v).

Next, assume that vw is not violated with respect to ν1. If ν1(w) ̸= ⊤, then vw is also
not violated with respect to ν2. It is easy to verify that ξ1 = ξi2−i12 . On the other hand, if
ν1(w) = ⊤, then ν1(v) = ⊤. So, we have ζ(ν2(v)) < i2 − i1 and ζ(ν2(w)) < i2 − i1. Since
π(v) < 2j, we also have ζ(ξ2) < i2 − i1. Thus, ξ1 = ⊤ = ξi2−i12 as required.

Pick a node w ∈ V (H) and let j = π(w)/2. For each 0 ≤ i ≤ ⌊logn⌋, let νi : V (Jw) →
L̄(Ti,j) be the node labeling defined by νi(w) := minL(Ti,j) and ν̄(u) := ⊤ for all u ̸= w.
To compute the cost of incoming arcs δ−Dτ

(w), we only need to run Algorithm 10 on Jw

once, with the input node labeling ν⌊logn⌋. Let ν be the returned node labeling. Note that
ν(u) ̸= ⊤ for all u ∈ V (Jw) because T⌊logn⌋,j is an (n, j)-universal tree. Without loss of
generality, we may assume that Algorithm 10 is run on the subgraph Jw \ δ+(w) instead,
as ν(w) = ν⌊logn⌋(w). Then, by Lemma 5.25, for any 0 ≤ i ≤ ⌊logn⌋, ν⌊logn⌋−i is the node
labeling returned by Bellman–Ford on Jw with input node labeling νi. Hence, the cost of
each arc vw ∈ δ−Dτ

(w) is set as c(vw) := ⌊logn⌋ −maxu∈N+
Jw

(v) ζ(ν(u)).
We are ready to prove the running time of Algorithm 11 for succinct universal trees.

Theorem 5.26. For a succinct (n, d/2)-universal tree T with cover C = (T0, T1, . . . , Td/2),
Algorithm 11 runs in O(mn2 logn log d) time.

Proof. By Lemma 5.23, we have |Cj | = 1 for all 0 ≤ j ≤ h. Computing arc costs for the
auxiliary digraph Dτ takes O(mn2γ(T)) time. Hence, the running time of Algorithm 11

140 | Parity Games: Strategy Iteration with Universal Trees

becomes O(nρ(T, C)+mn2γ(T)). The result then follows from γ(T) = O(logn log d) = ρ(T, C),
where the latter equality is due to Lemma 5.24.

5.4.5 Application to Succinct Strahler Universal Trees

In this subsection, we apply Algorithm 11 to succinct Strahler universal trees. Let us start by
introducing the necessary definitions. The Strahler number of a rooted tree T is the largest
height of a perfect binary tree that is a minor of T . For example, a perfect (ℓ, h)-universal
tree has Strahler number 0 if ℓ = 1, and h otherwise.

Definition 5.27. A g-Strahler (ℓ, h)-universal tree is an ordered tree T ′ such that T ⊑ T ′

for every ordered tree T of Strahler number at most g, height at most h, and with at most ℓ
leaves.

In the definition above, we may assume that g ≤ min(h, ⌊log ℓ⌋). Daviaud et al. [43]
constructed a g-Strahler (ℓ, h)-universal tree with ℓO(1)(h/g)g leaves. Note that this is
quasipolynomial in ℓ and h by our previous remark. We call it a succinct g-Strahler (ℓ, h)-
universal tree. Every leaf ξ = (ξ2h−1, ξ2h−3, . . . , ξ1) in this tree corresponds to an h-tuple of
binary strings which satisfies the following three properties:

1. There are g nonempty bit strings, i.e. |{i : ξi ̸= ε}| = g;

2. The total number of bits |ξ| is at most g + ⌊log ℓ⌋;

3. For each odd i ∈ [2h],

(a) If there are f < g nonempty bit strings in ξ|i and |ξ|i| = f + ⌊log ℓ⌋, then ξi = 0.

(b) If xj ̸= ε for all odd j ∈ [i], then xj starts with 0 for all odd j ∈ [i].

This is the construction of Bkt,h in [43, Definition 19]. In each string ξi, the first bit is called
the leading bit, while the remaining bits are the non-leading bits. Properties 1 and 2 imply
that ξ contains exactly g leading bits and at most ⌊log ℓ⌋ non-leading bits. Observe that if
g = h, then the tree is identical to a succinct (ℓ, h)-universal tree. Indeed, one can arrive at
the encoding of Jurdziński and Lazić [88] by removing the leading zero in every string.

Let T be a succinct g-Strahler (ℓ, h)-universal tree. Let v ∈ V (T) be a vertex at depth
h− j for some 0 ≤ j ≤ h. If v has k nonempty strings and i non-leading bits, then the subtree
rooted at v is a succinct (g − k)-Strahler (2⌊log ℓ⌋−i, j)-universal tree. Note that if i = ⌊log ℓ⌋,
then the subtree is a path. This fact is actually independent of k. Indeed, varying k only
yields different encodings of the same path.

The crucial fact for obtaining a small cover is that the subtrees of T with fixed height j
and fixed Strahler number k form a chain. This leads to the following statement.

Lemma 5.28. There exists a cover C of T such that |Cj | ≤ g for all 0 ≤ j ≤ h.

5.4 Label-Correcting Method for Computing the Least Fixed Point | 141

Proof. Fix a 0 ≤ j ≤ h. For each 0 ≤ k ≤ g, let Ckj be the set of k-Strahler (·, j)-universal
trees in Tj . Then, ∪kCkj = Tj . Note that Ckj ≠ ∅ if and only if max(0, g − j) ≤ k ≤ min(j, g).
It is left to show that (Ckj ,⊑) is a chain for all k. Fix a k and pick two vertices r1, r2 ∈ V (T)
such that they each have g−k nonempty bit strings. Let T1 and T2 be the subtrees of T rooted
at r1 and r2 respectively. Observe that T1 is a succinct k-Strahler (⌊logn⌋ − |r1|+ g − k, j)-
universal tree. Similarly, T2 is a succinct k-Strahler (⌊logn⌋ − |r2|+ g − k, j)-universal tree.
Without loss of generality, assume that |r1| ≥ |r2|. Then, the identity map from V (T1) to
V (T2) is an order-preserving and injective homomorphism. Hence, T1 ⊑ T2.

Let C be the cover given in the proof of Lemma 5.28, i.e. Cj = (C0
j , C1

j , . . . , C
g
j) for all

0 ≤ j ≤ h. Note that T k0,j = T k
′

0,j for all k, k′ where Ckj , Ck
′
j ≠ ∅. The next lemma shows that

the Raise subroutine can be implemented efficiently using this cover.

Lemma 5.29. For a succinct g-Strahler (n, d/2)-universal tree T with cover C, the Raise(ξ, i, j, k)
subroutine runs in O(logn log d) time.

Proof. We may assume that ξ is the smallest leaf in the subtree of T rooted at ξ|π(v).
Otherwise, we can set it to the smallest leaf of the next subtree rooted at that depth using
Tighten. Recall that the Tighten subroutine for T also runs in O(logn log d) time. It
follows that ξ2j−1 ∈ {0 · · · 0, ε} and ξq ∈ {0, ε} for all q < 2j − 1. If i = 0, then we output ξ
because T k0,j is identical for all 0 ≤ k < |Cj |. So, let us assume that i > 0 from now on.

If there are at least i non-leading bits in ξ2j−1 and exactly k non-empty strings among
ξ2j−1, . . . , ξ1, then we simply return ξ. Otherwise, let p ∈ [d] be the smallest even integer
such that ξ|p has a child bigger than ξ|p−1 with at most ⌊logn⌋ − i non-leading bits and
exactly x nonempty strings for some g − k − (p/2− j) + 1 ≤ x ≤ g − k. If p does not exist,
then we return ⊤. Otherwise, p > 2j.

Our goal is to increase ξ minimally such that it can accommodate a label from T ki′,j
for some i′ ≥ i, using only the components after ξ|p. Let z be the number of non-empty
strings in ξ|p−1 and let y be the number of non-leading bits in ξ|p−1. We set s = g − k − z,
representing the discrepancy on the number of nonempty bit strings (Property 1). We also
set r = ⌊logn⌋ − i − y, representing the discrepancy on the number of non-leading bits
(Property 2). We split the remaining analysis into cases based on the emptiness of ξp−1 and
the signs of r, s.

Case 1: ξp−1 = ε. Note that y ≤ ⌊logn⌋ − i and z < g − k. So, r ≥ 0 and s > 0. Return

(ξd−1, . . . , ξp+1, 1 0 · · · 0︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
s−1

, ε, . . . , ε, 0 · · · 0︸ ︷︷ ︸
i+1

, 0, . . . , 0︸ ︷︷ ︸
k−1

, ε, . . . , ε)

where the string of i + 1 zeroes is at index 2j − 1. Property 3b holds because there is at
least one empty string among the last p/2 components. As all the other properties are also
fulfilled by construction, this is a valid tuple encoding a leaf.

142 | Parity Games: Strategy Iteration with Universal Trees

Case 2: ξp−1 ̸= ε and s < 0. Note that s = −1 and ξp−1 has a leading zero due to our
choice of p. Let t be the number of non-leading bits in ξp−1. Then, y− t ≤ ⌊logn⌋ − i, which
implies that r + t ≥ 0. Return

(ξd−1, . . . , ξp+1, ε, ε, . . . , ε, 0 · · · 0︸ ︷︷ ︸
i+1+r+t

, 0, . . . , 0︸ ︷︷ ︸
k−1

, ε, . . . , ε)

where the string of i+ 1 + r + t zeroes is at index 2j − 1.
Case 3: ξp−1 ̸= ε, r > 0 and s ≥ 0. Return

(ξd−1, . . . , ξp−11 0 · · · 0︸ ︷︷ ︸
r−1

, 0, . . . , 0︸ ︷︷ ︸
s

, ε, . . . , ε, 0 · · · 0︸ ︷︷ ︸
i+1

, 0, . . . , 0︸ ︷︷ ︸
k−1

, ε, . . . , ε)

where the string of i+ 1 zeroes is at index 2j − 1.
Case 4: ξp−1 ̸= ε, r ≤ 0 and s ≥ 0. Denote ξp−1 = b1b2 · · · bℓ where bq ∈ {0, 1}

for all q ∈ [ℓ]. By our choice of p, there exists a largest t ∈ [ℓ] such that bt = 0 and
r′ := r + ℓ−max(t− 1, 1) ≥ 0. Then,

• If t = 1, return

(ξd−1, . . . , ξp+1, ε, 0 · · · 0︸ ︷︷ ︸
r′+1

, 0, . . . , 0︸ ︷︷ ︸
s

, ε, . . . , ε, 0 · · · 0︸ ︷︷ ︸
i+1

, 0, . . . , 0︸ ︷︷ ︸
k−1

, ε, . . . , ε)

where the string of i+ 1 zeroes is at index 2j − 1.

• If s = 0 and t > 1, return

(ξd−1, . . . , ξp+1, b1 · · · bt−1, ε, . . . , ε, 0 · · · 0︸ ︷︷ ︸
i+1+r′

, 0, . . . , 0︸ ︷︷ ︸
k−1

, ε, . . . , ε)

where the string of i+ 1 + r′ zeroes is at index 2j − 1.

• If s > 0 and t > 1, return

(ξd−1, . . . , ξp+1, b1 · · · bt−1, 0 · · · 0︸ ︷︷ ︸
r′+1

, 0, . . . , 0︸ ︷︷ ︸
s−1

, ε, . . . , ε, 0 · · · 0︸ ︷︷ ︸
i+1

, 0, . . . , 0︸ ︷︷ ︸
k−1

, ε, . . . , ε)

where the string of i+ 1 zeroes is at index 2j − 1.

We are ready to prove the running time of Algorithm 11 for succinct Strahler universal
trees. Recall that g ≤ logn.

Theorem 5.30. For a succinct g-Strahler (n, d/2)-universal tree T with cover C, Algorithm
11 runs in O(mn2g log2 n log d) time.

5.5 Label-Setting Method for Computing the Least Fixed Point | 143

Proof. By Lemma 5.28, we have |Cj | ≤ g for all 0 ≤ j ≤ h. Furthermore, |Ckj | ≤ logn for all
0 ≤ j ≤ h and 0 ≤ k < |Cj |. As γ(T) = O(logn log d) = ρ(T, C), where the latter equality is
due to Lemma 5.29, the result follows from Theorem 5.20.

5.5 Label-Setting Method for Computing the Least Fixed
Point

The epitome of a label-setting algorithm is none other than Dijkstra’s algorithm [47]. In this
section, we develop its analogue for ordered trees. Despite having a faster running time than
Algorithm 10, it requires prior knowledge of µG

↑
τ (v) for all v ∈ B(Gτ) in order to compute

µG
↑
τ . Nevertheless, we demonstrate its applicability to perfect universal trees.
The algorithm takes as input a 1-player game (Gτ , π) for Even and a node labeling

ν : V → L̄(T) from some ordered tree T . During its execution, the node labeling ν : V → L̄(T)
is updated. The algorithm also maintains a growing node set S ⊆ V such that ν(v) remains
fixed for all v ∈ S. For the sake of brevity, let us denote H := Gτ \B(Gτ).

In every iteration, a new node is added to S, whose label is fixed. To determine this node,
we introduce a label function Φ, which remains fixed throughout the algorithm. It encodes a
family of topological orders in H induced by the even priorities. The node is then selected
using a potential function Φν , defined based on the labels Φ and ν. This selection criteria
accounts for the fact that the representation of a parity game as a mean payoff game could
have negative arc weights.

To describe Φ, we define a family of functions Φp, parametrized by the even priorities
in H. For an even p ∈ [d], Φp encodes the topological order of nodes in the subgraph Hp.
Recall that Hp is the subgraph of H induced by the nodes with priority at most p. Formally,
Φp : V (H)→ Z+ is any function which satisfies the following three properties:

• Φp(v) = 0 if and only if π(v) > p;

• Φp(v) ≤ Φp(w) if v can be reached from w in Hp;

• Φp(v) = Φp(w) > 0 if and only if v and w are strongly connected in Hp.

The label function Φ : V (H)→ Zd/2
+ is then defined as

Φ(v) := (Φd(v),Φd−2(v), . . . ,Φ2(v)).

A linear order on Φ(v) is obtained by extending the linear order of its components lexico-
graphically.

Remark 5.31. Given a pair of nodes v and w, comparing Φ(v) and Φ(w) amounts to finding
the largest p ∈ [d] such that Φp(v) ̸= Φp(w). Observe that if Φq(v) = Φq(w) > 0 for some

144 | Parity Games: Strategy Iteration with Universal Trees

q ∈ [d], then Φr(v) = Φr(w) for all r ≥ q. On the other hand, if Φq(v) = Φq(w) = 0, then
Φr(v) = Φr(w) = 0 for all r ≤ q. Hence, such a p can be computed in O(log d) time via
binary search.

Given a node labeling ν : V → L̄(T), the potential function Φν : V (H)→ (Zd/2
+ ×L(T))∪

{∞} is obtained by interlacing the components of Φ and ν in the following way

Φν(v) :=

(Φd(v), ν(v)d−1, . . . ,Φ2(v), ν(v)1), if ν(v) ̸= ⊤.

∞ otherwise.

A linear order on Φν(v) is acquired by extending the linear order of its components lex-
icographically. For any p ∈ [d], the p-truncation of Φ(v) and Φν(v), denoted Φ(v)|p and
Φν(v)|p respectively, are obtained by deleting the components with index less than p, with
the convention ∞|p :=∞.

We are ready to state Dijkstra’s algorithm for ordered trees (Algorithm 12). First, it
initializes the node set S as B(Gτ), and sets ν(v) := ⊤ for all v ∈ V \ S. Then, for each even
p ∈ [d], it computes the topological order Φp by running Tarjan’s SCCs algorithm on Hp.
Next, ν is updated by dropping the tail labels of the incoming arcs δ−(S). At the start of
every iteration, the algorithm selects a node u with minimum potential Φν(u) among all the
nodes in V \ S (ties are broken arbitrarily). Then, it adds u to S and updates ν by dropping
the tail labels of the incoming arcs δ−(u) ∩ δ−(S). The algorithm terminates when S = V .

Algorithm 12: Dijkstra
Input : 1-player game (Gτ , π) for Even, node labeling ν : V → L̄(T) from an

ordered tree T
Output : Node labeling from T

1 S ← B(Gτ)
2 ν(v)← ⊤ for all v ∈ V \ S
3 Compute Φp for all even p ∈ [d] ◃ Using Tarjan’s SCCs algorithm
4 foreach vw ∈ δ−(S) do
5 ν(v)← drop(ν, vw)
6 while S (V do
7 u ∈ arg minv∈V \S Φν(v) ◃ Break ties arbitrarily
8 S ← S ∪ {u}
9 foreach vu ∈ δ−(u) where v /∈ S do

10 ν(v)← drop(ν, vu)

11 return ν

An efficient implementation of Dijkstra’s algorithm using Fibonacci heaps was given by
Fredman and Tarjan [66]. Its running time is O(m+ n logn) when the keys in the heap are
real numbers, assuming that each elementary operation on the reals takes constant time. In

5.5 Label-Setting Method for Computing the Least Fixed Point | 145

our setting, the keys are the node potentials Φν . Since computing drop(ν, e) takes γ(T) time
while comparing the potential of two nodes takes γ(T) + log d time, their result translates to
O(γ(T)m+ (γ(T) + log d)n logn) time here. We also need to compute the base nodes B(Gτ)
and the topological orders Φp, which take O(dm) time. Hence, the total running time of
Algorithm 12 is O((γ(T) + d)m+ (γ(T) + log d)n logn).

Before proving the algorithm’s correctness, we illustrate an important connection between
the potential function Φν and even cycles in H.

Lemma 5.32. Let vw ∈ E(H) be a tight arc with respect to some node labeling ν. If
Φν(v) < Φν(w), then there exists an even cycle C in H such that vw ∈ E(C) and π(C) = π(v).

Proof. First, note that ν(v) ̸= ⊤ because Φν(v) < Φν(w). This in turn implies that ν(w) ̸= ⊤
as vw is tight with respect to ν. Next, since v can reach w in H, we have Φ(v)|π(v) ≥ Φ(w)|π(v).
We also have ν(v)|π(v) ≥ ν(w)|π(v) due to the tightness of vw. Then, combining these
two inequalities yield Φν(v)|π(v) ≥ Φν(w)|π(v). In fact, we get Φν(v)|π(v) = Φν(w)|π(v)

because Φν(v) < Φν(w). Since vw is tight, we conclude that π(v) is even. It follows that
0 < Φπ(v)(v) = Φπ(v)(w), which implies that v and w are strongly connected in Hπ(v). Thus,
there exists a cycle C in Hπ(v) such that vw ∈ E(C). Clearly, π(C) = π(v).

The next theorem shows that Algorithm 12 returns the pointwise minimal node labeling
which is ‘almost’ feasible in Gτ . The key observation is that the sequence of node potentials
admitted to S during the algorithm is monotonically nondecreasing.

Theorem 5.33. Given initial node labeling ν, Algorithm 12 returns the pointwise minimal
node labeling ν∗ which is feasible in Gτ \ ∪v∈B(Gτ)δ

+(v) and satisfies ν∗(v) = ν(v) for all
v ∈ B(Gτ).

Proof. For every i ≥ 1, let νi be the node labeling at the start of iteration i. So, the algorithm
returns νn. To show the feasibility of νn, we prove that νi is feasible in Gτ \ ∪v∈B(Gτ)δ

+(v)
by induction on i ≥ 1. The base case i = 1 is clearly true, and the inductive step is
straightforward. Furthermore, it is easy to see that νn(v) = ν(v) for all v ∈ B(Gτ) due to
our initialization.

For every i ≥ 1, let ui be the node added to S in iteration i. We start by showing
that Φνn(ui) ≥ Φνn(ui−1) for all i > 1. For the purpose of contradiction, suppose that
Φνn(ui) < Φνn(ui−1) for some i > 1. We claim that uiui−1 ∈ E(H) and it is tight with respect
to νi. Suppose otherwise for a contradiction. Then, νi(ui) = νi−1(ui). As νn(ui) = νi(ui)
and νn(ui−1) = νi−1(ui−1), it follows that Φνi−1(ui) < Φνi−1(ui−1). This is a contradiction
because ui would have been added to S in iteration i− 1 instead of ui−1. By the claim above
and Lemma 5.32, there exists an even cycle C in H. However, Π(C) ⊆ B(Gτ), which is a
contradiction.

Next, we show that there are no loose arcs in Gτ \ ∪v∈B(Gτ)δ
+(v) with respect to νn. It

suffices to prove that uiuj is not loose with respect to νn for all 1 ≤ i < j where uiuj ∈ E(H).

146 | Parity Games: Strategy Iteration with Universal Trees

For the purpose of contradiction, let uiuj ∈ E(H) be a loose arc with respect to νn. Note
that νn(ui) ̸= ⊤, as otherwise it would imply νn(uj) = ⊤ because Φνn(ui) ≤ Φνn(uj). Since
the label νn(ui) was given by Tighten, it is the smallest leaf in the subtree of T rooted at
νn(ui)|π(ui). Therefore, νn(ui)|π(ui) > νn(uj)|π(ui). Let p be the smallest even integer such
that p ≥ π(ui). Then, Φ(ui)|p ≥ Φ(uj)|p because either π(uj) > p or uiuj ∈ E(Hp). However,
these two inequalities yield Φνn(ui) > Φνn(uj), which is a contradiction.

It is left to show the pointwise minimality of νn. For the purpose of contradiction, let
ν ′ : V → L̄(T) be a node labeling feasible in Gτ \ ∪v∈B(Gτ)δ

+(v) such that ν ′(v) = ν(v)
for all v ∈ B(Gτ) and ν ′(u) < νn(u) for some u ∈ V (H). Note that ν ′(u) ̸= ⊤. From the
definition of feasibility, there exists a strategy σ for Even such that Gστ \∪v∈B(Gτ)δ

+(v) does
not contain violated arcs with respect to ν ′. In this subgraph, u can reach a node in B(Gτ).
Indeed, if it reaches a cycle C, then C is even by the Cycle Lemma because ν ′(v) ̸= ⊤ for all
v ∈ V (C). So, Π(C) ⊆ B(Gτ). Let P be a u-w path in this subgraph for some w ∈ B(Gτ).
Since νn(u) > ν ′(u) and νn(w) = ν ′(w), there exists a loose arc in P with respect to νn. We
have reached a contradiction.

Consequently, if we can determine µG
↑
τ (v) for all v ∈ B(Gτ) beforehand, then we can use

Algorithm 12 to compute µG
↑
τ .

Corollary 5.34. Given initial node labeling ν where ν(v) = µG
↑
τ (v) for all v ∈ B(Gτ),

Algorithm 12 returns µG
↑
τ .

Proof. Let ν be the node labeling returned by Algorithm 12. By Theorem 5.33, we have
ν ≤ µG

↑
τ . Since ν(v) = µG

↑
τ (v) for all v ∈ B(Gτ), this implies that ν is feasible in Gτ . To

show that ν ≥ µG
↑
τ , it suffices to prove that ν ≥ µ due to the pointwise minimality of µG

↑
τ .

For the purpose of contradiction, suppose that ν(u) < µ(u) for some u ∈ V (H). Let σ be
a strategy for Even such that Gστ does not contain violated arcs with respect to ν. Since
ν(u) ̸= ⊤, there exists a u-w path P in Gστ for some w ∈ B(Gτ). As µ(u) > ν(u) and
µ(w) ≤ µG

↑
τ (w) = ν(w), there exists a loose arc in P with respect to µ. This contradicts our

assumption on µ.

5.5.1 Application to Perfect Universal Trees

In this subsection, we show that Algorithm 12 yields a faster method for computing µG
↑
τ than

Algorithm 11, when a perfect universal tree is used.

Theorem 5.35. Given a 1-player game (Gτ , π) for Even, let µ : V (Gτ)→ L̄(T) be a node
labeling with no loose arc in Gτ . If T is a perfect (n, d/2)-universal tree, then µG

↑
τ can be

computed in O(d(m+ n logn)) time.

Proof. First, we show that for every v ∈ V , we may assume that µ(v) is either ⊤ or the
smallest leaf in the subtree of T rooted at µ(v)|π(v). If a node w violates this condition, then

5.5 Label-Setting Method for Computing the Least Fixed Point | 147

we know that µG
↑
τ (w) > µ(w) because there are no loose arcs in Gτ with respect to µ. Hence,

we can set µ(w) as the smallest leaf of the next subtree rooted at that depth using Tighten.
Recall that the Tighten subroutine for T takes O(d) time. In the worst case, we incur O(dn)
extra time.

By Corollary 5.34, it suffices to prove that µ(v) = µG
↑
τ (v) for all v ∈ B(Gτ). Fix a base

node w ∈ B(Gτ). We may assume that µ(w) ̸= ⊤. Let C be a cycle dominated by w in Gτ ,
and consider the path P := C \ wu where wu ∈ E(C). Let µ̄ : V → L̄(T) be a node labeling
such that µ̄(v) = ⊤ for all v /∈ V (P), µ̄(w) = µ(w) and P is tight with respect to µ̄. Then, µ̄
is feasible in Gτ \ δ+(w). Moreover, µ̄ ≥ µ because there are no loose arcs in P with respect
to µ. Now, recall that µ(w) is the smallest leaf in the subtree of T rooted at µ(w)|π(w). Since
π(v) ≤ π(w) for all v ∈ V (P), we have µ̄(u)|π(w) = µ̄(w)|π(w) because |V (P)| ≤ n. As π(w)
is even, the arc wu is tight with respect to µ̄. It follows that µ̄ is feasible in Gτ . Thus,
µ ≤ µG

↑
τ ≤ µ̄. In particular, µ(w) = µG

↑
τ (w).

Chapter 6

Conclusions and Future Work

An Accelerated Newton–Dinkelbach Method

In Chapter 2, we have presented an accelerated version of the Newton–Dinkelbach method
for univariate concave functions, and illustrated its utility on three application domains. For
linear fractional combinatorial optimization, we obtain an improved O(m logm) iteration
bound. For 2VPI LP feasibility, we get a strongly polynomial label-correcting algorithm
which runs in O(mn) iterations. Finally, the method yields a simplified analysis of the
parametric submodular function minimization result by Goemans et al. [71].

The key idea is to analyze the Newton–Dinkelbach method using the Bregman divergence;
previous work [125, 156] analyzed the gradient and function value of the iterates. With the
look-ahead step, we show that the Bregman divergence halves every two iterations. The
Bregman divergence has a useful interpretation in terms of a ‘modified’ cost function, which
allows us to derive convergence bounds for various problems. We expect that this accelerated
method and its analysis find more applications in other fractional/parametric optimization
problems.

For 2VPI LP feasibility, every iteration of the Newton–Dinkelbach method takes O(mn)
time, which results in a total running time of O(m2n2) for the overall label-correcting
algorithm. We do not know whether our analysis is tight; it may be possible to amortize over
the O(mn) iterations. It is interesting to see whether the running time can be lowered to
match the O(mn2 logm) bound of Hochbaum and Naor [80].

Circuit Diameter Bounds for Polyhedra

In Chapter 3, we have derived circuit diameter bounds for polyhedra in standard equality
form (P) and capacitated form (Cap-P). For a constraint matrix A ∈ Rm×n, our bounds
are polynomial in m, n and log(κA), where κA is the circuit imbalance measure of A. It
is independent of the costs c ∈ Rn, the RHS vector b ∈ Rm, and the capacities u ∈ Rn.

150 | Conclusions and Future Work

Since log(κA) is polynomial in the encoding size of A, this yields a weakly polynomial circuit
diameter bound. In particular, it is strongly polynomial if all the entries inA have polynomially
bounded encoding length in n. Moreover, we have developed circuit-augmentation algorithms
for LP with similar iteration complexity.

The key idea of the bounds is to analyze the following procedure. In every iteration, we
first decompose the difference between the target vertex x∗ and the current point x(t) into
conformal circuits. Then, we pick one which yields the largest gain per unit step, and move
along it maximally. This ensures geometric decay in the ‘distance’ to the target vertex. The
analysis involves considering coordinates of x∗ which are large with respect to the current
‘distance’, and showing that this set grows monotonically every O(n log(κA + n) iterations.

Since we now have a weakly polynomial circuit diameter bound, it is natural to wonder
whether the combinatorial diameter also admits a weakly polynomial bound. Another
interesting line of research is to derive a strongly polynomial bound on the circuit diameter.
In particular, is the circuit analogue of Hirsch conjecture true?

Correlation Gap Bounds for Matroids

In Chapter 4, we have derived an improved lower bound on the correlation gap of matroid
rank functions, as parametrized by the rank and girth of the matroid. Parametrizing by the
rank or the girth alone does not lead to a correlation gap better than 1 − 1/e, the lower
bound that applies to all monotone submodular functions. We have also shown that for any
matroid, the smallest correlation gap of its weighted rank function is attained under uniform
weights. Consequently, our bound applies to weighted matroid rank functions as well.

The key ideas are as follows. Let r : 2[n] → {0, 1, . . . , n} be the rank function of a matroid
with girth γ. We first show that the correlation gap is realized inside the independent set
polytope, which allows us to replace the concave extension r̂(x) by 1⊤x. To lower bound the
multilinear extension R(x), we split the rank function into r = g + h, where g is the rank
function of a uniform matroid of rank-(γ − 1). Then, R = G+H by linearity of expectation.
Since G(x) ≥ G(1⊤x

n · 1), this lends itself to an analysis via the binomial distribution. On
the other hand, H(x) is analyzed by extending the Poisson clock argument of Calinescu et
al. [26] to handle periods with zero expected marginal gain.

Since our lower and upper bounds on the correlation gap do not match, an obvious next
step is to derive tighter bounds with respect to these two parameters. It is also interesting to
identify other matroid parameters which better capture its correlation gap.

Strategy Iteration with Universal Trees

In Chapter 5, we have presented a strategy iteration framework for parity games that works
with valuations from a universal tree. We have also demonstrated the efficiency of our

| 151

framework by applying it to known constructions of universal trees [88, 43]. In particular,
every iteration takes O(mn2 logn log d) time for the universal tree of Jurdzinski–Lazić [88],
and O(mn2 log3 n log d) time for the Strahler-universal tree of Daviaud et al. [43]. As these
trees have quasi-polynomial size, this immediately yields strategy iteration algorithms with
quasi-polynomial worst-case complexity.

The valuation of a strategy can be seen as the least fixed point of a set of operators
associated with the corresponding strategy subgraph. Ohlmann [117] showed that valuations
from a universal tree are not compatible with the standard strategy iteration framework
[68]. In order to circumvent this impossibility result, we force the valuation to increase in
every iteration (whereas this happens automatically in the standard framework). To compute
the valuation in every iteration, we adapt label-correcting and label-setting techniques from
the shortest path problem to our setting. The key observation that we often exploit is that
subtrees of a universal tree form a poset with respect to embedability. This allows us to take
advantage of the recursive nature of universal trees in [88, 43] to obtain fast running times.

Unlike value iteration algorithms which are known to realize their worst-case complexity
over all possible runs on an instance [87, 64], our framework provides large flexibility in
the choice of pivot rules. The most tantalizing open question is whether there exist a
pivot rule and a universal tree such that when instantiated with our framework runs in
subquasi-polynomial time, i.e. nO(log1−ε d) for some constant ε > 0.

References

[1] A. A. Ageev and M. Sviridenko. “Pipage Rounding: A New Method of Constructing
Algorithms with Proven Performance Guarantee”. In: J. Comb. Optim. 8.3 (2004),
pp. 307–328.

[2] S. Agrawal, Y. Ding, A. Saberi, and Y. Ye. “Price of correlations in stochastic
optimization”. In: Operations Research 60.1 (2012), pp. 150–162.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows - Theory, Algorithms
and Applications. Prentice Hall, 1993.

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Theory, algorithms, and
applications. English. Englewood Cliffs, NJ: Prentice Hall, 1993, pp. xvi + 846. isbn:
0-13–617549-X.

[5] M. Akian, S. Gaubert, and A. E. Guterman. “Tropical Polyhedra are Equivalent to
mean Payoff Games”. In: Int. J. Algebra Comput. 22.1 (2012).

[6] A. Asadpour, R. Niazadeh, A. Saberi, and A. Shameli. “Sequential Submodular
Maximization and Applications to Ranking an Assortment of Products”. In: EC ’22:
The 23rd ACM Conference on Economics and Computation. 2022, p. 817.

[7] B. Aspvall and Y. Shiloach. “A Polynomial Time Algorithm for Solving Systems of
Linear Inequalities with Two Variables per Inequality”. In: SIAM J. Comput. 9.4
(1980), pp. 827–845.

[8] S. Barman, O. Fawzi, and P. Fermé. “Tight Approximation Guarantees for Concave
Coverage Problems”. In: 38th International Symposium on Theoretical Aspects of
Computer Science (STACS). Vol. 187. LIPIcs. Saarbrücken, Germany, 2021, 9:1–9:17.

[9] S. Barman, O. Fawzi, S. Ghoshal, and E. Gürpinar. “Tight approximation bounds for
maximum multi-coverage”. In: Math. Program. 192.1 (2022), pp. 443–476.

[10] M. Benerecetti, D. Dell’Erba, and F. Mogavero. “Solving parity games via priority
promotion”. In: Formal Methods Syst. Des. 52.2 (2018), pp. 193–226.

[11] M. Benerecetti, D. Dell’Erba, F. Mogavero, S. Schewe, and D. Wojtczak. “Priority
Promotion with Parysian Flair”. In: ArXiv abs/2105.01738 (2021).

[12] A. Bhalgat, T. Chakraborty, and S. Khanna. “Mechanism design for a risk averse
seller”. In: International Workshop on Internet and Network Economics. Springer.
2012, pp. 198–211.

[13] H. Björklund, S. Sandberg, and S. G. Vorobyov. “A Discrete Subexponential Algorithm
for Parity Games”. In: 20th Annual Symposium on Theoretical Aspects of Computer
Science, STACS. Vol. 2607. Lecture Notes in Computer Science. Berlin, Germany,
2003, pp. 663–674.

[14] R. G. Bland. “On the generality of network flow theory”. Presented at the ORSA/TIMS
Joint National Meeting, Miami, FL. 1976.

154 | References

[15] R. G. Bland, D. Goldfarb, and M. J. Todd. “Feature Article - The Ellipsoid Method:
A Survey”. In: Oper. Res. 29.6 (1981), pp. 1039–1091.

[16] N. Bonifas, M. Di Summa, F. Eisenbrand, N. Hähnle, and M. Niemeier. “On sub-
determinants and the diameter of polyhedra”. In: Discrete & Computational Geometry
52.1 (2014), pp. 102–115.

[17] S. Borgwardt, J. A. De Loera, and E. Finhold. “Edges versus circuits: a hierarchy of
diameters in polyhedra”. In: Advances in Geometry 16.4 (2016), pp. 511–530.

[18] S. Borgwardt, E. Finhold, and R. Hemmecke. “On the circuit diameter of dual
transportation polyhedra”. In: SIAM Journal on Discrete Mathematics 29.1 (2015),
pp. 113–121.

[19] S. Borgwardt, T. Stephen, and T. Yusun. “On the circuit diameter conjecture”. In:
Discrete & Computational Geometry 60.3 (2018), pp. 558–587.

[20] S. Borgwardt and C. Viss. “An implementation of steepest-descent augmentation for
linear programs”. In: Operations Research Letters 48.3 (2020), pp. 323–328.

[21] J. Bradfield and I. Walukiewicz. “The mu-calculus and Model Checking”. In: Handbook
of Model Checking. Ed. by E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem.
Cham: Springer International Publishing, 2018, pp. 871–919.

[22] J. van den Brand, Y. P. Liu, Y.-T. Lee, T. Saranurak, A. Sidford, Z. Song, and D.
Wang. “Minimum Cost Flows, MDPs, and L1-Regression in Nearly Linear Time for
Dense Instances”. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing (STOC). 2021, pp. 859–869.

[23] T. Brunsch and H. Röglin. “Finding short paths on polytopes by the shadow ver-
tex algorithm”. In: Proceedings of the 40th International Colloquium on Automata,
Languages, and Programming (ICALP). Springer. 2013, pp. 279–290.

[24] J. Bulow and J. Roberts. “The simple economics of optimal auctions”. In: Journal of
political economy 97.5 (1989), pp. 1060–1090.

[25] G. Călinescu, C. Chekuri, M. Pál, and J. Vondrák. “Maximizing a Monotone Submod-
ular Function Subject to a Matroid Constraint”. In: SIAM J. Comput. 40.6 (2011),
pp. 1740–1766.

[26] G. Călinescu, C. Chekuri, M. Pál, and J. Vondrák. “Maximizing a Submodular Set
Function Subject to a Matroid Constraint (Extended Abstract)”. In: 12th Interna-
tional Conference on Integer Programming and Combinatorial Optimization (IPCO).
Vol. 4513. Lecture Notes in Computer Science. Ithaca, NY, USA, 2007, pp. 182–196.

[27] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. “Deciding parity
games in quasipolynomial time”. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC. Montreal, Canada, 2017, pp. 252–263.

[28] S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan. “Multi-parameter mechanism
design and sequential posted pricing”. In: Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010. Ed. by L. J. Schulman. 2010, pp. 311–320.

[29] C. Chekuri and V. Livanos. “On Submodular Prophet Inequalities and Correla-
tion Gap”. In: 14th International Symposium on Algorithmic Game Theory, SAGT.
Vol. 12885. Lecture Notes in Computer Science. 2021, p. 410.

[30] C. Chekuri, J. Vondrák, and R. Zenklusen. “Submodular function maximization via
the multilinear relaxation and contention resolution schemes”. In: SIAM Journal on
Computing 43.6 (2014), pp. 1831–1879.

References | 155

[31] E. H. Clarke. “Multipart pricing of public goods”. In: Public choice (1971), pp. 17–33.
[32] E. Cohen and N. Megiddo. “Improved Algorithms for Linear Inequalities With Two

Variables per Inequality”. In: SIAM J. Comput. 23.6 (1994), pp. 1313–1347.
[33] M. Conforti and G. Cornuéjols. “Submodular set functions, matroids and the greedy

algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds
theorem”. In: Discret. Appl. Math. 7.3 (1984), pp. 251–274.

[34] W. Cook, A. M. Gerards, A. Schrijver, and É. Tardos. “Sensitivity theorems in integer
linear programming”. In: Mathematical Programming 34.3 (1986), pp. 251–264.

[35] W. Czerwinski, L. Daviaud, N. Fijalkow, M. Jurdzinski, R. Lazic, and P. Parys.
“Universal trees grow inside separating automata: Quasi-polynomial lower bounds for
parity games”. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA. San Diego, California, USA, 2019, pp. 2333–2349.

[36] D. Dadush and N. Hähnle. “On the shadow simplex method for curved polyhedra”.
In: Discrete & Computational Geometry 56.4 (2016), pp. 882–909.

[37] D. Dadush, S. Huiberts, B. Natura, and L. A. Végh. “A scaling-invariant algorithm for
linear programming whose running time depends only on the constraint matrix”. In:
Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC).
2020, pp. 761–774.

[38] D. Dadush, Z. K. Koh, B. Natura, and L. A. Végh. “An Accelerated Newton-Dinkelbach
Method and Its Application to Two Variables per Inequality Systems”. In: 29th Annual
European Symposium on Algorithms, ESA 2021. Vol. 204. LIPIcs. 2021, 36:1–36:15.

[39] D. Dadush, Z. K. Koh, B. Natura, and L. A. Végh. “On Circuit Diameter Bounds
via Circuit Imbalances”. In: 23rd International Conference on Integer Programming
and Combinatorial Optimization, IPCO 2022. Vol. 13265. Lecture Notes in Computer
Science. 2022, pp. 140–153.

[40] D. Dadush, B. Natura, and L. A. Végh. “Revisiting Tardos’s Framework for Linear
Programming: Faster Exact Solutions using Approximate Solvers”. In: Proceedings
of the 61st Annual IEEE Symposium on Foundations of Computer Science. 2020,
pp. 931–942.

[41] D. Dadush, B. Natura, and L. A. Végh. “Revisiting Tardos’s Framework for Linear
Programming: Faster Exact Solutions using Approximate Solvers”. In: Proc. 61st
IEEE Symposium on Foundations of Computer Science (FOCS). 2020, pp. 931–942.

[42] D. Dadush, L. A. Végh, and G. Zambelli. “Geometric Rescaling Algorithms for Submod-
ular Function Minimization”. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’18. New Orleans, Louisiana: Society for
Industrial and Applied Mathematics, 2018, pp. 832–848. isbn: 9781611975031.

[43] L. Daviaud, M. Jurdzinski, and K. S. Thejaswini. “The Strahler Number of a Parity
Game”. In: 47th International Colloquium on Automata, Languages, and Programming,
ICALP. Vol. 168. LIPIcs. Saarbrücken, Germany, 2020, 123:1–123:19.

[44] J. A. De Loera, R. Hemmecke, and M. Köppe. Algebraic and Geometric Ideas in the
Theory of Discrete Optimization. USA: Society for Industrial and Applied Mathematics,
2012. isbn: 1611972434.

[45] J. A. De Loera, R. Hemmecke, and J. Lee. “On Augmentation Algorithms for Linear
and Integer-Linear Programming: From Edmonds–Karp to Bland and Beyond”. In:
SIAM Journal on Optimization 25.4 (2015), pp. 2494–2511.

[46] J. A. De Loera, S. Kafer, and L. Sanità. “Pivot Rules for Circuit-Augmentation
Algorithms in Linear Optimization”. In: arXiv preprint arXiv:1909.12863 (2019).

156 | References

[47] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
Mathematik 1 (1959), pp. 269–271.

[48] W. Dinkelbach. “On Nonlinear Fractional Programming”. In: Management Science
13.7 (1967), pp. 492–498.

[49] A. W. M. Dress and W. Wenzel. “Valuated matroids”. In: Advances in Mathematics
93.2 (1992), pp. 214–250. issn: 0001-8708.

[50] S. Dudycz, P. Manurangsi, J. Marcinkowski, and K. Sornat. “Tight Approximation
for Proportional Approval Voting”. In: Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020. Ed. by C. Bessiere. 2020,
pp. 276–282.

[51] S. Dughmi. “Matroid Secretary Is Equivalent to Contention Resolution”. In: 13th
Innovations in Theoretical Computer Science Conference, ITCS. Vol. 215. LIPIcs.
2022, 58:1–58:23.

[52] S. Dughmi, T. Roughgarden, and Q. Yan. “Optimal mechanisms for combinatorial
auctions and combinatorial public projects via convex rounding”. In: Journal of the
ACM (JACM) 63.4 (2016), pp. 1–33.

[53] M. Dyer and A. Frieze. “Random walks, totally unimodular matrices, and a randomised
dual simplex algorithm”. In: Mathematical Programming 64.1 (1994), pp. 1–16.

[54] H. Edelsbrunner, G. Rote, and E. Welzl. “Testing the Necklace Condition for Shortest
Tours and Optimal Factors in the Plane”. In: Theor. Comput. Sci. 66.2 (1989), pp. 157–
180.

[55] J. Edmonds and R. M. Karp. “Theoretical improvements in algorithmic efficiency for
network flow problems”. In: Journal of the ACM (JACM) 19.2 (1972), pp. 248–264.

[56] A. Ehrenfeucht and J. Mycielski. “Positional strategies for mean payoff games”. In:
Int. J. Game Theory 8 (1979), pp. 109–113.

[57] F. Eisenbrand and S. Vempala. “Geometric random edge”. In: Mathematical Program-
ming 164.1-2 (2017), pp. 325–339.

[58] F. Ekbatani, B. Natura, and L. A. Végh. “Circuit imbalance measures and linear
programming”. In: Surveys in Combinatorics 2022. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2022, pp. 64–114.

[59] E. A. Emerson and C. S. Jutla. “Tree Automata, Mu-Calculus and Determinacy”.
In: 32nd Annual Symposium on Foundations of Computer Science, FOCS. San Juan,
Puerto Rico, 1991, pp. 368–377.

[60] E. A. Emerson, C. S. Jutla, and A. P. Sistla. “On Model-Checking for Fragments of
µ-Calculus”. In: 5th International Conference on Computer-Aided Verification, CAV.
Vol. 697. Lecture Notes in Computer Science. Elounda, Greece, 1993, pp. 385–396.

[61] J. Fearnley, S. Jain, B. de Keijzer, S. Schewe, F. Stephan, and D. Wojtczak. “An
ordered approach to solving parity games in quasi-polynomial time and quasi-linear
space”. In: Int. J. Softw. Tools Technol. Transf. 21.3 (2019), pp. 325–349.

[62] U. Feige. “A threshold of lnn for approximating set cover”. In: Journal of the ACM
(JACM) 45.4 (1998), pp. 634–652.

[63] E. A. Feinberg and J. Huang. “The value iteration algorithm is not strongly polynomial
for discounted dynamic programming”. In: Oper. Res. Lett. 42.2 (2014), pp. 130–131.

[64] N. Fijalkow. “An Optimal Value Iteration Algorithm for Parity Games”. In: ArXiv
abs/1801.09618 (2018).

References | 157

[65] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. “An analysis of approximations for
maximizing submodular set functions – II”. In: Polyhedral combinatorics. Springer,
1978, pp. 73–87.

[66] M. L. Fredman and R. E. Tarjan. “Fibonacci heaps and their uses in improved network
optimization algorithms”. In: J. ACM 34.3 (1987), pp. 596–615.

[67] O. Friedmann. “An Exponential Lower Bound for the Parity Game Strategy Improve-
ment Algorithm as We Know it”. In: Proceedings of the 24th Annual IEEE Symposium
on Logic in Computer Science, LICS. Los Angeles, CA, USA, 2009, pp. 145–156.

[68] O. Friedmann. “Exponential Lower Bounds for Solving Infinitary Payoff Games
and Linear Programs”. PhD thesis. University of Munich, 2011. url: http://files.
oliverfriedmann.de/theses/phd.pdf.

[69] S. Fujishige and H. Hirai. “Compression of M♮-convex Functions – Flag Matroids and
Valuated Permutohedra”. arXiv:2005.12526. 2020.

[70] J. B. Gauthier and J. Desrosiers. “The Minimum Mean Cycle-Canceling Algorithm
for Linear Programs”. In: European Journal of Operational Research (2021).

[71] M. X. Goemans, S. Gupta, and P. Jaillet. “Discrete Newton’s algorithm for para-
metric submodular function minimization”. In: Proceedings of the 19th International
Conference on Integer Programming and Combinatorial Optimization. Waterloo, ON,
Canada, 2017, pp. 212–227.

[72] A. V. Goldberg and R. E. Tarjan. “Finding minimum-cost circulations by canceling
negative cycles”. In: Journal of the ACM (JACM) 36.4 (1989), pp. 873–886.

[73] A. V. Goldberg and R. E. Tarjan. “Finding minimum-cost circulations by canceling
negative cycles”. In: J. ACM 36.4 (1989), pp. 873–886.

[74] M. Grötschel, L. Lovász, and A. Schrijver. “The ellipsoid method and its consequences
in combinatorial optimization”. In: Comb. 1.2 (1981), pp. 169–197.

[75] T. Groves. “Incentives in teams”. In: Econometrica: Journal of the Econometric Society
(1973), pp. 617–631.

[76] F. Gul and E. Stacchetti. “Walrasian equilibrium with gross substitutes”. In: Journal
of Economic theory 87.1 (1999), pp. 95–124.

[77] T. D. Hansen, H. Kaplan, and U. Zwick. “Dantzig’s pivoting rule for shortest paths,
deterministic MDPs, and minimum cost to time ratio cycles”. In: Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms. Portland, OR, USA,
2014, pp. 847–860.

[78] J. D. Hartline. “Mechanism design and approximation”. In: ().
[79] D. S. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. “Tight bounds and 2-approximation

algorithms for integer programs with two variables per inequality”. In: Math. Program.
62 (1993), pp. 69–83.

[80] D. S. Hochbaum and J. Naor. “Simple and Fast Algorithms for Linear and Integer
Programs With Two Variables per Inequality”. In: SIAM J. Comput. 23.6 (1994),
pp. 1179–1192.

[81] A. J. Hoffman and R. M. Karp. “On Nonterminating Stochastic Games”. In: Manage.
Sci. 12.5 (1966), pp. 359–370.

[82] E. Husić, Z. K. Koh, G. Loho, and L. A. Végh. “On the Correlation Gap of Matroids”.
In: CoRR abs/2209.09896 (2022). arXiv: 2209.09896. url: https://arxiv.org/abs/2209.
09896.

http://files.oliverfriedmann.de/theses/phd.pdf
http://files.oliverfriedmann.de/theses/phd.pdf
https://arxiv.org/abs/2209.09896
https://arxiv.org/abs/2209.09896
https://arxiv.org/abs/2209.09896

158 | References

[83] S. Iwata. “Submodular function minimization”. In: Mathematical Programming 112.1
(2008), pp. 45–64.

[84] S. Iwata and J. B. Orlin. “A simple combinatorial algorithm for submodular function
minimization”. In: Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms. SIAM. 2009, pp. 1230–1237.

[85] H. Jiang. “Minimizing convex functions with integral minimizers”. In: Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM. 2021,
pp. 976–985.

[86] M. Jurdzinski. “Deciding the Winner in Parity Games is in UP ∩ co-UP”. In: Inf.
Process. Lett. 68.3 (1998), pp. 119–124.

[87] M. Jurdzinski. “Small Progress Measures for Solving Parity Games”. In: 17th Annual
Symposium on Theoretical Aspects of Computer Science, STACS. Vol. 1770. Lecture
Notes in Computer Science. Lille, France, 2000, pp. 290–301.

[88] M. Jurdzinski and R. Lazic. “Succinct progress measures for solving parity games”. In:
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS. Reykjavik,
Iceland, 2017, pp. 1–9.

[89] M. Jurdzinski, M. Paterson, and U. Zwick. “A Deterministic Subexponential Algorithm
for Solving Parity Games”. In: SIAM J. Comput. 38.4 (2008), pp. 1519–1532.

[90] S. Kafer, K. Pashkovich, and L. Sanità. “On the circuit diameter of some combinatorial
polytopes”. In: SIAM Journal on Discrete Mathematics 33.1 (2019), pp. 1–25.

[91] G. Kalai. “A subexponential randomized simplex algorithm”. In: Proceedings of the
24th annual ACM Symposium on Theory of Computing. 1992, pp. 475–482.

[92] G. Kalai and D. J. Kleitman. “A quasi-polynomial bound for the diameter of graphs
of polyhedra”. In: Bulletin of the American Mathematical Society 26.2 (1992), pp. 315–
316.

[93] A. Karczmarz. “Improved Strongly Polynomial Algorithms for Deterministic MDPs,
2VPI Feasibility, and Discounted All-Pairs Shortest Paths”. In: Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms (SODA). 2022, pp. 154–172.

[94] R. M. Karp. “A characterization of the minimum cycle mean in a digraph”. In: Discret.
Math. 23.3 (1978), pp. 309–311.

[95] A. S. Kelso Jr and V. P. Crawford. “Job matching, coalition formation, and gross
substitutes”. In: Econometrica: Journal of the Econometric Society (1982), pp. 1483–
1504.

[96] Z. K. Koh and G. Loho. “Beyond Value Iteration for Parity Games: Strategy Iteration
with Universal Trees”. In: 47th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2022. Vol. 241. LIPIcs. 2022, 63:1–63:15.

[97] O. Kupferman and M. Y. Vardi. “Weak Alternating Automata and Tree Automata
Emptiness”. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC. 1998, pp. 224–233.

[98] J. Lee. “Subspaces with well-scaled frames”. In: Linear Algebra and its Applications
114 (1989), pp. 21–56.

[99] Y. T. Lee, A. Sidford, and S. C.-w. Wong. “A faster cutting plane method and its
implications for combinatorial and convex optimization”. In: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science. IEEE. 2015, pp. 1049–1065.

References | 159

[100] K. Lehtinen. “A modal µ perspective on solving parity games in quasi-polynomial time”.
In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS. Oxford, UK, 2018, pp. 639–648.

[101] R. P. Leme. “Gross substitutability: An algorithmic survey”. In: Games and Economic
Behavior 106 (2017), pp. 294–316.

[102] M. L. Littman, T. L. Dean, and L. P. Kaelbling. “On the Complexity of Solving Markov
Decision Problems”. In: Proceedings of the 11th Annual Conference on Uncertainty in
Artificial Intelligence (UAI). Montreal, Quebec, Canada, 1995, pp. 394–402.

[103] O. Madani. “On Policy Iteration as a Newton’s Method and Polynomial Policy Iteration
Algorithms”. In: Proceedings of the 18th National Conference on Artificial Intelligence.
Edmonton, AB, Canada, 2002, pp. 273–278.

[104] S. T. McCormick and A. Shioura. “Minimum ratio canceling is oracle polynomial for
linear programming, but not strongly polynomial, even for networks”. In: Operations
Research Letters 27.5 (2000), pp. 199–207.

[105] N. Megiddo. “Combinatorial Optimization with Rational Objective Functions”. In:
Math. Oper. Res. 4.4 (1979), pp. 414–424.

[106] N. Megiddo. “Towards a Genuinely Polynomial Algorithm for Linear Programming”.
In: SIAM J. Comput. 12.2 (1983), pp. 347–353.

[107] M. Mnich, H. Röglin, and C. Rösner. “New deterministic algorithms for solving parity
games”. In: Discret. Optim. 30 (2018), pp. 73–95.

[108] K. Murota. Discrete convex analysis. Vol. 10. SIAM monographs on discrete mathe-
matics and applications. SIAM, 2003.

[109] K. Murota. “On basic operations related to network induction of discrete convex
functions”. In: Optim. Methods Softw. 36.2-3 (2021), pp. 519–559.

[110] K. Murota and A. Shioura. “Simpler exchange axioms for M-concave functions on
generalized polymatroids”. In: Japan Journal of Industrial and Applied Mathematics
35.1 (2018), pp. 235–259. issn: 0916-7005.

[111] R. B. Myerson. “Optimal auction design”. In: Mathematics of operations research 6.1
(1981), pp. 58–73.

[112] K. Nagano. “A strongly polynomial algorithm for line search in submodular polyhedra”.
In: Discrete Optimization 4.3-4 (2007), pp. 349–359.

[113] G. L. Nemhauser and L. A. Wolsey. “Best Algorithms for Approximating the Maximum
of a Submodular Set Function”. In: Math. Oper. Res. 3.3 (1978), pp. 177–188.

[114] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. “An analysis of approximations for
maximizing submodular set functions – I”. In: Math. Program. 14.1 (1978), pp. 265–
294.

[115] E. Nikolova. “Approximation algorithms for reliable stochastic combinatorial optimiza-
tion”. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques. Springer, 2010, pp. 338–351.

[116] N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, eds. Algorithmic Game
Theory. Cambridge University Press, 2007. isbn: 9780511800481.

[117] P. Ohlmann. “Monotonic graphs for parity and mean-payoff games”. PhD thesis.
Université Paris Cité, 2021. url: https://tel.archives-ouvertes.fr/tel-03771185.

[118] F. Olver, D. Lozier, R. Boisvert, and C. Clark. The NIST Handbook of Mathematical
Functions. Cambridge University Press, New York, NY, 2010.

https://tel.archives-ouvertes.fr/tel-03771185

160 | References

[119] N. Olver and L. A. Végh. “A Simpler and Faster Strongly Polynomial Algorithm for
Generalized Flow Maximization”. In: J. ACM 67.2 (2020), 10:1–10:26.

[120] J. G. Oxley. Matroid theory. Oxford University Press, 1992. isbn: 978-0-19-853563-8.
[121] C. Papadimitriou, M. Schapira, and Y. Singer. “On the hardness of being truthful”.

In: 2008 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE.
2008, pp. 250–259.

[122] P. Parys. “Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time”. In: 44th
International Symposium on Mathematical Foundations of Computer Science, MFCS.
Vol. 138. LIPIcs. Aachen, Germany, 2019, 10:1–10:13.

[123] I. Post and Y. Ye. “The Simplex Method is Strongly Polynomial for Deterministic
Markov Decision Processes”. In: Math. Oper. Res. 40.4 (2015), pp. 859–868.

[124] A. Puri. “Theory of hybrid systems and discrete event systems”. PhD thesis. EECS
Department, University of California, Berkeley, 1995.

[125] T. Radzik. “Fractional Combinatorial Optimization”. In: Handbook of Combinatorial
Optimization: Volume 1–3. Ed. by D.-Z. Du and P. M. Pardalos. Springer US, 1998,
pp. 429–478.

[126] T. Radzik. “Newton’s Method for Fractional Combinatorial Optimization”. In: Proceed-
ings of the 33rd Annual Symposium on Foundations of Computer Science. Pittsburgh,
PA, USA, 1992, pp. 659–669.

[127] T. Radzik and A. V. Goldberg. “Tight bounds on the number of minimum-mean cycle
cancellations and related results”. In: Algorithmica 11.3 (1994), pp. 226–242.

[128] A. Rubinstein and S. Singla. “Combinatorial prophet inequalities”. In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM.
2017, pp. 1671–1687.

[129] F. Santos. “A counterexample to the Hirsch conjecture”. In: Annals of Mathematics
(2012), pp. 383–412.

[130] S. Schewe. “An Optimal Strategy Improvement Algorithm for Solving Parity and
Payoff Games”. In: 22nd International Workshop on Computer Science Logic, CSL.
Vol. 5213. Lecture Notes in Computer Science. Bertinoro, Italy, 2008, pp. 369–384.

[131] S. Schewe. “From Parity and Payoff Games to Linear Programming”. In: 34th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS).
Vol. 5734. Lecture Notes in Computer Science. 2009, pp. 675–686.

[132] S. Schewe. “Solving parity games in big steps”. In: J. Comput. Syst. Sci. 84 (2017),
pp. 243–262.

[133] A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. 24. Springer,
2003.

[134] A. S. Schulz and R. Weismantel. “An oracle-polynomial time augmentation algorithm
for integer programming”. In: Proceedings of the 10th annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). 1999, pp. 967–968.

[135] A. Shioura. “On the Pipage Rounding Algorithm for Submodular Function Maximiza-
tion - a View from Discrete Convex Analysis”. In: Discret. Math. Algorithms Appl. 1.1
(2009), pp. 1–24.

[136] R. E. Shostak. “Deciding Linear Inequalities by Computing Loop Residues”. In: J.
ACM 28.4 (1981), pp. 769–779.

[137] S. Smale. “Mathematical problems for the next century”. In: The Mathematical
Intelligencer 20 (1998), pp. 7–15.

References | 161

[138] T. Soma and Y. Yoshida. “A New Approximation Guarantee for Monotone Submodular
Function Maximization via Discrete Convexity”. In: 45th International Colloquium on
Automata, Languages, and Programming (ICALP). Vol. 107. LIPIcs. Prague, Czech
Republic, 2018, 99:1–99:14.

[139] B. Sturmfels and R. R. Thomas. “Variation of cost functions in integer programming”.
In: Mathematical Programming 77.2 (1997), pp. 357–387.

[140] N. Sukegawa. “Improving bounds on the diameter of a polyhedron in high dimensions”.
In: Discrete Mathematics 340.9 (2017), pp. 2134–2142.

[141] M. Sviridenko, J. Vondrák, and J. Ward. “Optimal Approximation for Submodular
and Supermodular Optimization with Bounded Curvature”. In: Math. Oper. Res. 42.4
(2017), pp. 1197–1218.

[142] É. Tardos. “A Strongly Polynomial Algorithm to Solve Combinatorial Linear Pro-
grams”. In: Operations Research 34.2 (1986), pp. 250–256.

[143] É. Tardos. “A strongly polynomial algorithm to solve combinatorial linear programs”.
In: Operations Research (1986), pp. 250–256.

[144] É. Tardos. “A strongly polynomial minimum cost circulation algorithm”. In: Combi-
natorica 5.3 (1985), pp. 247–256.

[145] É. Tardos. “A strongly polynomial minimum cost circulation algorithm”. In: Combi-
natorica 5.3 (Sept. 1985), pp. 247–255.

[146] R. E. Tarjan. “Depth-First Search and Linear Graph Algorithms”. In: SIAM J. Comput.
1.2 (1972), pp. 146–160.

[147] D. M. Topkis. “Minimizing a submodular function on a lattice”. In: Operations research
26.2 (1978), pp. 305–321.

[148] L. Tunçel. “Approximating the complexity measure of Vavasis-Ye algorithm is NP-
hard”. In: Mathematical Programming 86.1 (Sept. 1999), pp. 219–223.

[149] S. A. Vavasis and Y. Ye. “A primal-dual interior point method whose running time
depends only on the constraint matrix”. In: Mathematical Programming 74.1 (1996),
pp. 79–120.

[150] L. A. Végh. “A Strongly Polynomial Algorithm for Generalized Flow Maximization”.
In: Math. Oper. Res. 42.1 (2017), pp. 179–211.

[151] W. Vickrey. “Counterspeculation, auctions, and competitive sealed tenders”. In: The
Journal of finance 16.1 (1961), pp. 8–37.

[152] J. Vöge and M. Jurdzinski. “A Discrete Strategy Improvement Algorithm for Solving
Parity Games”. In: 12th International Conference on Computer-Aided Verification,
CAV. Vol. 1855. Lecture Notes in Computer Science. Chicago, USA, 2000, pp. 202–215.

[153] J. Vondrák. “Optimal approximation for the submodular welfare problem in the value
oracle model”. In: Proceedings of the fortieth annual ACM symposium on Theory of
computing. 2008, pp. 67–74.

[154] C. Wallacher. “A generalization of the minimum-mean cycle selection rule in cycle
canceling algorithms”. unpublished manuscript, Institute für Angewandte Mathematik,
Technische Universität Braunschweig. 1989.

[155] C. Wallacher and U. T. Zimmermann. “A polynomial cycle canceling algorithm for
submodular flows”. In: Mathematical programming 86.1 (1999), pp. 1–15.

162 | References

[156] Q. Wang, X. Yang, and J. Zhang. “A Class of Inverse Dominant Problems under
Weighted ℓ∞ Norm and an Improved Complexity Bound for Radzik’s Algorithm”. In:
J. Global Optimization 34.4 (2006), pp. 551–567.

[157] K. D. Wayne. “A polynomial combinatorial algorithm for generalized minimum cost
flow”. In: Mathematics of Operations Research (2002), pp. 445–459.

[158] S. J. Wright. Primal-Dual Interior-Point Methods. Other Titles in Applied Mathemat-
ics. SIAM, 1997.

[159] Q. Yan. “Mechanism design via correlation gap”. In: Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms. SIAM. 2011, pp. 710–719.

[160] Y. Ye. “A new complexity result on solving the Markov decision problem”. In: Math.
Oper. Res. 30.3 (2005), pp. 733–749.

[161] Y. Ye. “The simplex and policy-iteration methods are strongly polynomial for the
Markov decision problem with a fixed discount rate”. In: Math. Oper. Res. 36.4 (2011),
pp. 593–603.

[162] W. Zielonka. “Infinite Games on Finitely Coloured Graphs with Applications to
Automata on Infinite Trees”. In: Theor. Comput. Sci. 200.1-2 (1998), pp. 135–183.

Appendix A

Further 2VPI Explanations

A.1 Reducing 2VPI to M2VPI

Following [54, 79], the idea is to replace each variable yu with (y+
u − y−u)/2, where y+

u and y−u
are newly introduced variables. Then, an inequality ayu + byv ≤ c becomes

a

(
y+
u − y−u

2

)
+ b

(
y+
v − y−v

2

)
≤ c,

which contains four variable, but will be adjusted based on the signs of a and b: If a or b
is zero, then the resulting inequality is already monotone and contains two variables. Next,
if sgn(a) = sgn(b), then we replace the inequality with ay+

u − by−v ≤ c and −ay−u + by+
v ≤ c.

Otherwise, we replace it with ay+
u + by+

v ≤ c and −ay−u − by−v ≤ c. Observe that every
inequality in the new system is monotone and supported on exactly two variables. If ŷ is a
feasible solution to the original system, then setting y+ = ŷ and y− = −ŷ yields a feasible
solution to the new system. Conversely, if (ŷ+, ŷ−) is a feasible solution to the new system,
then setting y = (ŷ+ − ŷ−)/2 yields a feasible solution to the original system. It follows that
the two systems are equivalent.

A.2 Non-Existence of Shortest Paths

u v w
(γuv, cuv) = (1, 0)

γvw, cvw

γwv, cwv

Fig. A.1 A shortest path from u with respect to node labels y may not exist.

164 | Further 2VPI Explanations

Consider Figure A.1. We will sketch three different scenarios in which a shortest path
from u with respect to node labels y ∈ R3 does not exist. Throughout, let C be the unique
directed cycle and Ck be the v-v walk that traverses C exactly k ∈ N times.

Negative unit gain cycle Let γwv = γvw = 1 and cwv = cvw = −1. Then the cycle C
fulfils γ(C) = 1 and c(C) = −2 < 0. The concatenation of (u, v) and Ck leads to arbitrarily
short walks from u. In particular, there exists no shortest path from u. This observation is
independent of the node labels y. Recall as well, that the existence of such a cycle renders
the M2VPI instance infeasible (Theorem 2.13).

Flow-absorbing cycle for large node labels Let γvw = 1 and γwv = 1/2. Then
γ(C) = γvwγwv = 1/2, so C is flow-absorbing. Let further cwv = cvw = 0 and yw = yv = 1.
Label-correcting for the cycle C then updates yv and yw in two strictly decreasing sequences,
which both converge towards 0. Again, the concatenation of (u, v) and Ck leads to a sequence
of u-v walks that have no smallest element.

Flow-generating cycle for small node labels Let γvw = 1 and γwv = 2. Then γ(C) =
γvwγwv = 2, so C is flow-generating. Let further cwv = −1, cvw = 0 and yw = yv = 0.
Label-correcting for the cycle C then updates yv and yw in two strictly decreasing and
unbounded sequences. Again, the concatenation of (u, v) and Ck leads to a sequence of u-v
walks that have no smallest element.

A.3 From ymax to a Finite Feasible Solution

In this section, we show how to convert the node labels y ∈ R̄n obtained from Algorithm 3
into a finite feasible solution or an infeasibility certificate of the M2VPI system (G, c, γ) in
question. We summarize the classical arguments already used by Aspvall and Shiloach [7]. If
y is finite, then we are done because there are no violated arcs in G with respect to y. In
fact, y is the pointwise maximal solution by Theorem 2.18. So, we may assume that yu =∞
for some u ∈ V .

Define ymin ∈ R̄n as the pointwise minimal solution to (G, c, γ) if the system is feasible,
where ymin

v := −∞ if and only if the variable yv is unbounded from below. Consider the
reversed graph

←
G = (V,

←
E), where

←
E := {vu : uv ∈ E} denotes the set of reversed arcs. The

cost and gain factor of each arc vu ∈
←
E are given by ←

cvu := cuv/γuv and ←
γvu := 1/γuv

respectively. The M2VPI system defined by (
←
G,
←
c,
←
γ) is equivalent to the original system

(G, c, γ), which can be verified by performing the change of variables z = −y. Let us run
Algorithm 3 on (

←
G,
←
c,
←
γ). By Theorem 2.18, if it returns node labels z ∈ R̄n, then z = −ymin

if the system is feasible. Otherwise, the system is infeasible. If z is finite, then we are again

A.3 From ymax to a Finite Feasible Solution | 165

done because there are no violated arcs in
←
G with respect to z. So, we may assume that

zv =∞ for some v ∈ V .
If yw = zw =∞ for some w ∈ V , then we know that w cannot reach a flow-absorbing cycle

in G and
←
G. The inability to reach a flow-absorbing cycle in

←
G is equivalent to the inability to

be reached by a flow-generating cycle in G. Denote W := {w ∈ V : yw = zw =∞}. Observe
that every node w ∈ W is not strongly connected to any v /∈ W in G. Thus, checking the
feasibility of the system amounts to checking whether there exists a negative unit-gain cycle
in G[W]. This can be done by running Grapevine on G[W]. Let C1, C2, . . . , Ck be the
sink components in the strongly connected component decomposition of G[W], and pick any
vi ∈ V (Ci) for all i ∈ [k]. Then, the input node labels y′ ∈ R̄W to Grapevine are set as
y′vi
∈ R for all i ∈ [k] and y′v := ∞ for all other nodes. Let z′ ∈ RW be the returned node

labels. It is easy to see that there exists a negative unit-gain cycle in G[W] if and only if
there exists a violated arc in G[W] with respect to z′.

If the check above reveals that the system is feasible, then we have y = ymax and −z = ymin

by Theorem 2.18. Then, we can apply a result of Aspvall and Shiloach which states that the
interval [ymin

u , ymax
u] is the projection of the feasible region onto the coordinate yu for every

u ∈ V . To obtain a feasible solution, we simply fix a coordinate yu ∈ [ymin
u , ymax

u], update
ymin and ymax using a generic label-correcting algorithm like Grapevine, and repeat.

Appendix B

Identities for Alternating Sums of
Binomial Coefficients

Claim B.1. For any 0 ≤ ℓ ≤ n, we have

ℓ∑
k=0

(−1)k
(
n

k

)
= (−1)ℓ

(
n− 1
ℓ

)
.

Proof. We proceed by induction on ℓ. The base case ℓ = 0 is trivial. For the inductive step,
let ℓ ≥ 1. Then,

ℓ∑
k=0

(−1)k
(
n

k

)
= (−1)ℓ

(
n

ℓ

)
+

ℓ−1∑
k=0

(−1)k
(
n

k

)

= (−1)ℓ
(
n

ℓ

)
+ (−1)ℓ−1

(
n− 1
ℓ− 1

)

= (−1)ℓ
((

n− 1
ℓ− 1

)
+
(
n− 1
ℓ

))
+ (−1)ℓ−1

(
n− 1
ℓ− 1

)
= (−1)ℓ

(
n− 1
ℓ

)
.

Claim B.2. For any 0 ≤ j < n, we have

n∑
k=0

(−1)k−1−j
(
n

k

)(
k − 1
j

)
= 1 .

Proof. We proceed by induction on n− j ≥ 1. For the base case n− j = 1, we have

n∑
k=0

(−1)k−1−j
(
n

k

)(
k − 1
j

)
= (−1)n−1−(n−1)

(
n

n

)(
n− 1
n− 1

)
= 1.

168 | Identities for Alternating Sums of Binomial Coefficients

For the inductive step, assume that n− j > 1. Then,

n∑
k=0

(−1)k−1−j
(
n

k

)(
k − 1
j

)
=

n∑
k=0

(−1)k−1−j
((

n− 1
k − 1

)
+
(
n− 1
k

))(
k − 1
j

)

=
n−1∑
k=0

(−1)k−j
(
n− 1
k

)(
k

j

)
+
n−1∑
k=0

(−1)k−1−j
(
n− 1
k

)(
k − 1
j

)

=
n−1−j∑
i=0

(−1)i
(
n− 1
i+ j

)(
i+ j

j

)
+
n−1∑
k=0

(−1)k−1−j
(
n− 1
k

)(
k − 1
j

)

=
(
n− 1
j

) n−1−j∑
i=0

(−1)i
(
n− 1− j

i

)
+
n−1∑
k=0

(−1)k−1−j
(
n− 1
k

)(
k − 1
j

)

=
n−1∑
k=0

(−1)k−1−j
(
n− 1
k

)(
k − 1
j

)
= 1.

The second last equality is due to n− 1− j > 0, while the last equality is by the inductive
hypothesis.

Claim B.3. For any 0 < j ≤ n, we have

j∑
i=0

(−1)i
(
n

i

)(
n− i
j − i

)
= 0.

Proof. Using
(n
i

)(n−i
j−i
)

= n!
i!(n−i)!

(n−i)!
(j−i)!(n−j)! = n!

i!
j!
j!

1
(j−i)!(n−j)! =

(n
j

)(j
i

)
, we get

j∑
i=0

(−1)i
(
n

i

)(
n− i
j − i

)
=

j∑
i=0

(−1)i
(
n

j

)(
j

i

)
=
(
n

j

)
(1− 1)j = 0 .

Claim B.4. For any 0 ≤ j ≤ k ≤ n, we have

j∑
i=0

(−1)i
(
n− k
i

)(
n− i
j − i

)
=
(
k

j

)

Proof. Let {A,B} be a partition of [n] such that |A| = k and |B| = n− k. In the sum, every
set S ⊆ [n] of size j is counted

∑|S∩B|
i=0 (−1)i

(|S∩B|
i

)
times. If |S ∩B| = 0, then S is counted

once. Otherwise, it is counted 0 times. Thus, every set S ⊆ A of size j is counted once.

Claim B.5. For any 0 ≤ j ≤ n− 1, we have

j∑
i=0

(−1)i
(
n

i

)(
n− 1− i
j − i

)
= (−1)j .

| 169

Proof. We proceed by induction on j ≥ 0. The base case j = 0 is clear as

(−1)0
(
n

0

)(
n− 1

0

)
= 1.

For the inductive step, assume that j > 0. Then,

j∑
i=0

(−1)i
(
n

i

)(
n− 1− i
j − i

)
=

j∑
i=0

(−1)i
(
n

i

)((
n− i
j − i

)
−
(
n− 1− i
j − 1− i

))

= −
j∑
i=0

(−1)i
(
n

i

)(
n− 1− i
j − 1− i

)
(Claim B.3)

= −
j−1∑
i=0

(−1)i
(
n

i

)(
n− 1− i
j − 1− i

)
= (−1)j . (Inductive hypothesis)

Claim B.6. For any 0 ≤ j ≤ n− 2, we have

j∑
i=0

(−1)i
(
n

i

)(
n− 2− i
j − i

)
= (−1)j(j + 1).

Proof. We proceed by induction on j ≥ 0. The base case j = 0 is clear as

(−1)0
(
n

0

)(
n− 2

0

)
= 1.

For the inductive step, assume that j > 0. Then,

j∑
i=0

(−1)i
(
n

i

)(
n− 2− i
j − i

)
=

j∑
i=0

(−1)i
(
n

i

)((
n− 1− i
j − i

)
−
(
n− 2− i
j − 1− i

))

= (−1)j −
j∑
i=0

(−1)i
(
n

i

)(
n− 2− i
j − 1− i

)
(Claim B.5)

= (−1)j −
j−1∑
i=0

(−1)i
(
n

i

)(
n− 2− i
j − 1− i

)
= (−1)j − (−1)j−1j = (−1)j(1 + j). (Inductive hypothesis)

	Table of Contents
	List of Figures
	1 Introduction
	1.1 Three Optimization Models
	1.1.1 Linear Optimization
	1.1.2 Fractional Optimization
	1.1.3 Submodular Optimization

	1.2 Strongly vs Weakly Polynomial
	1.3 Overview of our Results
	1.3.1 Fractional Optimization: An Accelerated Newton–Dinkelbach Method
	1.3.2 Linear Optimization: Circuit Diameter Bounds
	1.3.3 Submodular Optimization: Correlation Gap Bounds for Matroids
	1.3.4 Parity Games: Strategy Iteration with Universal Trees

	1.4 Linear Programming and Parity Games

	2 Fractional Optimization: An Accelerated Newton–Dinkelbach Method
	2.1 Introduction
	2.1.1 Our Contributions
	2.1.2 Two Variables per Inequality Systems

	2.2 Preliminaries
	2.3 An Accelerated Newton–Dinkelbach Method
	2.3.1 Linear Fractional Combinatorial Optimization
	2.3.2 Linear Fractional Programming

	2.4 Monotone Two Variables per Inequality Systems
	2.4.1 A Linear Fractional Programming Formulation
	2.4.2 A Strongly Polynomial Label-Correcting Algorithm
	2.4.3 Deterministic Markov Decision Processes

	2.5 Parametric Submodular Function Minimization
	2.5.1 Implementing the Accelerated Newton–Dinkelbach
	2.5.2 Proof of the 2n^2+2n+4 Iteration Bound

	2.6 2VPI Analysis without Acceleration

	3 Linear Optimization: Circuit Diameter Bounds
	3.1 Introduction
	3.1.1 Our Contributions

	3.2 Preliminaries
	3.2.1 Circuit Oracles
	3.2.2 Proximity Results
	3.2.3 Estimating Circuit Imbalances

	3.3 The Circuit Diameter Bound
	3.4 Circuit Diameter Bound for the Capacitated Case
	3.5 A Circuit Augmentation Algorithm for Feasibility
	3.6 A Circuit Augmentation Algorithm for Optimization
	3.7 Circuits in General Form

	4 Submodular Optimization: Correlation Gap Bounds for Matroids
	4.1 Introduction
	4.1.1 Monotone Submodular Maximization
	4.1.2 Sequential Posted Price Mechanisms
	4.1.3 Contention Resolution Schemes
	4.1.4 Our Techniques
	4.1.5 Further Related Work

	4.2 Preliminaries
	4.2.1 Properties of Multilinear Extension

	4.3 Correlation Gap Bounds for Submodular Maximization
	4.3.1 Maximizing Sum of M-Natural-Concave Functions
	4.3.2 Concave Multicoverage Problems

	4.4 Locating the Correlation Gap
	4.5 Upper Bounds on the Correlation Gap
	4.6 The Correlation Gap Bound for Matroids
	4.6.1 Lower Bounding G(x*)
	4.6.2 Lower Bounding H(x*)
	4.6.3 Putting Everything Together
	4.6.4 Monotonicity

	5 Parity Games: Strategy Iteration with Universal Trees
	5.1 Introduction
	5.1.1 Computing the Least Fixed Point of 1-Player Games

	5.2 Preliminaries
	5.2.1 Ordered Trees and Universal Trees
	5.2.2 Node Labelings from Universal Trees
	5.2.3 Fixed Points in Lattices

	5.3 Strategy Iteration with Tree Labels
	5.3.1 The Least Fixed Point of 1-Player Games

	5.4 Label-Correcting Method for Computing the Least Fixed Point
	5.4.1 Width from a Chain of Subtrees in T
	5.4.2 Estimating the Width of Base Nodes
	5.4.3 The Label-Correcting Algorithm
	5.4.4 Application to Succinct Universal Trees
	5.4.5 Application to Succinct Strahler Universal Trees

	5.5 Label-Setting Method for Computing the Least Fixed Point
	5.5.1 Application to Perfect Universal Trees

	6 Conclusions and Future Work
	References
	Appendix A Further 2VPI Explanations
	A.1 Reducing 2VPI to M2VPI
	A.2 Non-Existence of Shortest Paths
	A.3 From ymax to a Finite Feasible Solution

	Appendix B Identities for Alternating Sums of Binomial Coefficients

