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Abstract

Relational learning is learning in a context where we have a set of items with relation-

ships. For example, in a recommender system or advertising platform, items are grouped

into lists to attract user attention, and some items may be more popular than others. We

are often interested in learning individual abilities, approximating group performances

and making best set selection. However, it could be challenging as we have limited feed-

back and various uncertainties. We might only observe noisy aggregate feedback at the

set level (set level randomness), and each item could be a random variable following

some distributions (item level randomness). To tackle the problem, we model the group

performance using a set value function, defined as a function of item values within the

group of interest.

We first study the beta model for hypergraphs. The model treats relational data as hy-

pergraphs where nodes represent items and hyper-edges group items into sets. The goal

is to estimate individual beta values from the group outcomes. We study the inference

problem under different settings using maximum likelihood estimation (MLE).

We move on to consider more general set value functions and the second source of ran-

domness at the item level. The goal is to find good item representations (sketches) for

approximation of stochastic valuation functions, defined as the expectation of set value

functions of independent random variables. We present an approximation everywhere

guarantee for a wide range of stochastic valuation functions.

Finally, we study an online variant where an agent can draw samples sequentially. At

each time step, the agent chooses a group of items subject to constraints and receives

some form of feedbacks. The goal is to select a set of items with maximum performances

according to some stochastic valuation functions. We consider the regret minimization

setting and address the problem under value-index feedback.
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Chapter 1

Introduction

Relational data is widely used in our lives. Think of our daily routine. Nowadays, people

can shop online for almost every aspects of their lives. For example, we can order meals

on Deliveroo, buy groceries on Amazon, book taxis on Uber, work on online labour plat-

forms such as UpWork, study on knowledge exchange platforms such as StackExchange,

play various games such as League of Legends and etc. Many of us may be surprised

by the intelligence of the online system. When we order deliveries, we see lists of goods

attracting our interests. We can click individual pages to check details and select the one

we prefer. In the case we don’t find what we need, we can refresh the webpage and a

new list will appear. A convenient and interesting feature is that the more often we use

the platform, it knows better of our tastes. Another example is the knowledge exchange

platform. When we want to find answers or help others, we see a list of questions for

relevant topics. We can always find a thread of interest and study in an efficient way.

Relational learning is concerned with domain models that exhibit both uncertainty and

complex, relational structure. It enables effective and robust reasoning about richly struc-

tured systems and data building on ideas from probability theory and statistics (Koller

et al. (2007)). The online system is intelligent as it can learns from relational data. In the

examples given above, the relational data comes from meal and grocery orders, bookings

for taxis, information of online workers and players and etc.

1



2 Chapter 1. Introduction

1.1 Motivations and objectives

We elaborate more in details with three problems we are going to study in this thesis.

We will relate the applications with models and briefly outline the research questions for

each problem.

1.1.1 β-model for random hypergraphs

Many relational data can be represented by hypergraphs, where nodes represent items

or individuals, while hyperedges, defined as subsets of nodes, represent relationships

among entities. Graphs or networks are special cases of hypergraphs where entities are

grouped pair-wisely. Extensive empirical research has been done on social and economic

networks (Aral (2016); Breza (2016)).

Take the online labor platforms for example. We consider items to be experts and they are

grouped into teams to work on projects. Clearly, some teams may have higher chances of

success. In most cases, we are not able to directly measure individual abilities. Instead, we

may only observe past project outcomes for a given collection of teams. We are interested

in learning individual worker abilities that explain the group outcomes. Then we can use

these individual scores to select workers for future projects.

To model group performance, we introduce the concept of set value functions, defined

as function of item values within the group of interest. We start with statistical inference

on a simple model of group performance called the beta model, which is well-known for

graphs (Chatterjee et al. (2011)). We will study a generalized hypergraph variant. This is

motivated by the fact that complete graph data might be expensive to collect and we may

only have observations at the set level in real-world applications. The beta model assigns

each node a strength parameter and models the hypergraph according to some rules.

We are interested in estimating the individual strength parameters, which naturally leads

us to the framework of maximum likelihood estimation (MLE). We will derive conditions
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for MLE existence and uniqueness, and give bounds for MLE accuracy. Importantly, we

would like to link the MLE properties with graph-theoretic properties and see how the

experimental design would affect our learning. Realized the importance of experimental

design, we will further study the beta model under random design of experiments. This

is motivated by real-life settings where we have limited resources for experiments and

our designs may not be regular or complete. We are interested in MLE conditions and

threshold number of experiments that guarantee the MLE accuracy.

1.1.2 Sketching for stochastic valuation functions

In some application scenarios, a simple model may not suffice for our task. We may need

to take randomness in individual abilities into account. For example, in the case of online

gaming platforms where items are players and the platform assigns players to teams for

matches. In a competitive situation such as gaming, the performance of any individual

is not deterministic and varies greatly according to personalities (Minka et al. (2018)). In

particular, high-risk high-reward individuals may outperform stable-value individuals

even if the later has higher expected value. This means assigning a simple score to each

item may not be appropriate for such task. To tackle with this issue, we introduce the

notion of stochastic valuation function, defined as the expectation of set value functions

of independent random variables.

At the same time, we may need to consider more complex set value functions. The set

outcome may not depend linearly on the individual item values. On the other hand, we

may assume general properties such that the group performances grow with group size,

but grows more and more slowly as the size increases due to coordination inefficiency.

Randomness and complexity of set function structures make it hard for many optimiza-

tion problems. A natural way to solve this is to use approximations. In our second prob-

lem, we consider general set value functions and try to understand how can we approxi-

mate such functions everywhere using simple item representations in a computationally
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efficient manner. We look at one approach called sketching (Cohavi and Dobzinski (2017))

to achieve this for a class of stochastic valuation functions.

Our problem is challenging as we would like to have computationally efficient algorithms

that allows us to approximate a set valuation function everywhere, and controls over the

sketch size at the same time. We will propose one such algorithm based on the concept of

exponential binning, a method that discretizes item distribution into exponentially many

histograms. We characterize the distribution of each item as histogram, then we store and

compute set values based on these histograms. We will prove that the algorithm provides

a constant-factor approximation for a wide range of stochastic valuation functions.

1.1.3 The k-max problem with value-index feedback

We also consider the case when data comes in streams. This happens in many real-world

applications such as online shopping, advertising and question-answering platforms as

mentioned above. Consider an advertising platform where users interact with the plat-

form and their preferences are revealed by the choices they make through clicks. After

receiving user feedback, the platform learns their preferences and updates the list of items

presented to the users for better user experiences. It is important for the platform to accu-

rately learn the user preferences and update the list of items that best suit the user interest.

We call the problem k-max when we restrict the size of list to some constant k.

The problem is challenging since in most cases, we only observe the aggregate feedback

for a list of items. For the online advertising example, we may observe the most popular

item which receives the user click and rating. On the other hand, it is impossible to collect

information on those items not selected by the user. Moreover, there are considerable

uncertainties with the user click and item values. These all make it hard to select the best

set of items.

The final part of the thesis is concerned with a class of online combinatorial optimization

problem where an agent draws samples sequentially and receives the aggregate rewards
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and index values as feedback. We call it the k-max problem with value-index feedback.

Our goal is to maximize the expected cumulative reward over the time horizon. It is

challenging as we observe limited feedback, and the aggregate reward is nonlinear in the

individual rewards of constituent items. We will propose a new algorithm based on the

combinatorial UCB-style algorithm (Slivkins et al. (2019)) to solve this problem and will

show that the algorithm achieves satisfactory performances.

1.2 Summary of contributions

Our main contributions are summarized as follows.

Firstly, we study the maximum likelihood estimation (MLE) for the beta model of random

hypergraphs under different settings. The beta model (Chatterjee et al. (2011)) assumes

set level randomness such that a beta parameter is assigned to each item and the group

outcome is modelled as a binary random variable with success probability according to

a logistic function of the sum of item parameters in the group. In Chapter 3, we look

at the setting of fixed general design of experiments, which allow for different number

of experiments over candidate edges. We show easy-to-interpret conditions for the MLE

existence and uniqueness. We provide bounds for the MLE error that crucially depend

on the smallest eigenvalue of a signless Laplacian matrix, which corresponds to the corre-

lation matrix of vertex-experiment incidence vectors. This eigenvalue is related to some

parameters reflecting a graph non-bipartiteness, providing an intuitive interpretation of

the algebraic conditions.

In Chapter 4, we further consider the beta model of random hypergraphs with random

design matrices, defined by sampling candidate edges independently with replacement

from the set of all combinations of k vertices from the set of n vertices. We present a

sufficient and a necessary condition for a random design matrix to have full rank almost

surely and give conjecture of a tight condition that empirically holds. This requires the

number of edge experiments to be at least ckn log(n), for a fixed constant c > 2. We
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also show a sufficient condition for the MLE existence and uniqueness to hold with high

probability.

The second research paper is presented in Chapter 5, titled ‘Sketching stochastic valuation

functions’. There we consider the problem of sketching a stochastic valuation function.

We show that for monotone subadditive or submodular valuation functions that satisfy a

weak homogeneity condition, or certain other conditions, there exist discretized distribu-

tions of item values with O(k log(k)) support sizes that yield a sketch valuation function

which is a constant-factor approximation, for any value query for a set of items of cardi-

nality less than or equal to k. The sketches are computed by using an algorithm based

on the well-known concept of exponential binning. Besides being of interest in their own

right, the obtained sketch results are of interest for finding approximate solutions for vari-

ous optimization problems such as best set selection and welfare maximization problems.

Finally, in Chapter 6, we move to the online case where an agent can draw samples se-

quentially. At each time, the agent chooses a subset of k items and observes the maximum

value and the item which takes the maximum value. We call it the k-max problem with

value-index feedback. The goal is to select the set with maximum performances accord-

ing to the expected max reward while minimizing the total regret. Our problem can be

put into the general framework of combinatorial multi-armed bandits (Cesa-Bianchi and

Lugosi (2012); Chen et al. (2013)), with a setting in the middle ground of semi-bandit and

full-bandit. We propose two algorithms to solve the k-max problem, a UCB-style algo-

rithm and a new algorithm that is modified based on the UCB-style algorithm. We show

that the regret bound for UCB-style algorithm contains an undesirable factor. Our new

algorithm removes the factor and achieves comparable regret bound as standard combi-

natorial multi-armed bandit problems.



Chapter 2

Background Theory

2.1 Convex analysis and regression

This section provides background materials for Chapter 3 and Chapter 4.

Basic concepts in convex analysis

For any convex function f : Rn → R, the level sets of f are defined by

levα f = {x ∈ Rn : f (x) ≤ α}, for α ∈ R.

The level sets levα f are closed and convex. The union of levα f for α ∈ R is the effective

domain of f , which is denoted as dom f . The level set for which α = inf f is called the

minimum set of f . Function f has a unique minimizer if its minimum set is a singleton set.

Given a non-empty set C, a vector d is a direction of recession if starting at any x ∈ C and

going indefinitely along d, we never cross the relative boundary of C to points outside C,

i.e.

x + λd ∈ C, for all x ∈ C and all λ ≥ 0.

7



8 Chapter 2. Background Theory

The following two theorems are from Rockafellar (1997).

Theorem 2.1.1. For any closed proper convex function f , the minimum set of f is a non-empty

bounded set if, and only if, int(dom f ∗). This holds if, and only if, f has no direction of recession.

Theorem 2.1.2. If f is strictly convex on dom f , then the minimum set of f contains no more

than one point.

For a closed proper convex function f , the recession cone R f of the non-empty level sets is

called the recession cone of f . The linearity space of the recession cone R f is denoted by L f

such that L f = R f ∩ (−R f ).

Equivalently, d ∈ L f if, and only if, both d and −d are directions of recession of each of

the non-empty level sets. This happens if, and only if, the entire line {x + λd : λ ∈ R} is

contained in the same level set that contains x, for all x ∈ dom f . Thus, any d ∈ L f is a

direction in which f stays constant, and L f is also called the constance space of f .

The following theorem is from Bertsekas (2009).

Theorem 2.1.3. For any closed convex function f , the minimum set of f over dom f is non-empty

if R f = L f . Under this condition, the minimum set X? of f can be expressed as X? = X̄ + L f ,

where X̄ is some non-empty and compact set.

MLE for logistic regression models

The logistic regression model belongs to the exponential family of models.

It is well-known that for any exponential-family distribution, the negative log-likelihood

function is convex. Strict convexity of the negative log-likelihood function ensures the

existence and uniqueness of an optimal point over a compact convex set. However, in the

unconstrained case, an MLE may not exist, and if it exists may not be unique. Therefore,

it is not a sufficient condition to guarantee MLE existence over Rn.

A necessary an sufficient condition for MLE existence and uniqueness is given by Barndorff-

Nielsen (1978) for general exponential-family distributions.
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Theorem 2.1.4. For any exponential-family distribution with sufficient statistic t, the log-likelihood

function has a unique maximum if, and only if, t ∈ int(C) where C is the convex support of the

exponential family distribution.

This result follows from the theorems for general convex functions by Rockafellar (1997),

in particular from the necessary and sufficient conditions for the minimum set of a convex

function to be non-empty and bounded, and the strict convexity condition ensuring that

the minimum set is a singleton.

An alternative formulation of the necessary and sufficient condition for the MLE existence

and uniqueness uses the concept of overlap which was developed for logistic regression

models. (X, y) is said to satisfy the overlapping condition, if there exists no α ∈ Rn \ {0}

such that for all j ∈ [m],

x>j α ≥ 0 if yj = 1 and x>j α ≤ 0 if yj = 0.

In other words, we cannot separate the two classes of points using a hyperplane pass-

ing through the origin. The sign of the half-spaces is not important as we can always

exchange the two classes by replacing α with −α.

2.2 Properties of set functions

This section provides background materials for Chapter 5.

Set value functions map item values within the set of interest to set outcomes. Mathemat-

ically, they are defined on subsets of Rn, X = X1 × · · · × Xn, where each Xi is a compact

subset of R.

We review some known properties for this class of functions.
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Convexity and concavity

A function f is said to be convex on X if

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

for all x, y ∈ X and λ ∈ [0, 1]. Concavity requires the inequality to hold in the reverse

direction.

A function f is said to be coordinate-wise concave if for every x ∈ X , i ∈ [n], and u, v ∈ R+

such that x + uei ∈ X , x + vei ∈ X , and x + (u + v)ei ∈ X , it holds

f (x + uei)− f (x) ≥ f (x + (u + v)ei)− f (x + vei). (2.1)

If f is twice-differentiable, by Bian et al. (2017) the coordinate-wise concave property is

equivalent to ∂2 f (x)/∂x2
i ≤ 0, for all x ∈ X and i ∈ [n]. Hence, if f is twice-differentiable,

the coordinate-wise concave property corresponds to the standard notion of concave

functions holding for each coordinate.

There exist functions that are coordinate-wise concave but are not coordinate-wise con-

cave according to the classical notion of concave functions. An example is the max value

function f (x) = max{x1, . . . , xn} for n > 1. Example of a function that is concave ac-

cording to classical notion of concave functions is f (x) = g(∑n
i=1 xi) where g is a concave

function.

Submodularity

A function f is submodular if for every x, y ∈ X ,

f (x ∧ y) + f (x ∨ y) ≤ f (x) + f (y) (2.2)
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where ∧ and ∨ denote the coordinate-wise minimum and maximum operations, respec-

tively. This concept is an extension of the standard notion of a submodular set function

to vectors. If X = {0, 1}, then f is a submodular set function satisfying the well-known

diminishing returns property. If X = Z, then f is said to be a lattice submodular function.

By Topkis (1978), if f is twice-differentiable on its domain, then f is submodular if,

and only if, all off-diagonal elements of the Hessian matrix of f are nonpositive, i.e.

∂2 f (x)/∂xi∂xj ≤ 0, for all i 6= j, for every x in the domain of f . Submodular functions

may be concave, convex, or neither.

Equivalent definitions An equivalent definition of a submodular function is as follows:

a function f is submodular if for every x ∈ X , two distinct basis vectors ei, ej ∈ Rn , and

two non-negative real numbers zi and zj such that x + ziei ∈ X and x + zjej ∈ X ,

f (x + ziei) + f (x + zjej) ≥ f (x) + f (x + ziei + zjej) (2.3)

A function f is said to satisfy the weak DR (diminishing returns) property if for every x, y ∈ X

such that x ≤ y, i ∈ [n] such that xi = yi, z ∈ R+ such that x + zei ∈ X and y + zei ∈ X ,

f (x + zei)− f (x) ≥ f (y + zei)− f (y) (2.4)

where ei is a standard basis vector. By Bian et al. (2017), a function f is submodular if,

and only if, it satisfies the weak DR property.

DR-submodularity A subclass of submodular functions are DR (diminishing returns)-

submodular functions (Bian et al. (2017); Soma and Yoshida (2015)). A function f is said

to be DR-submodular, if for all x, y ∈ X such that x ≤ y and any ei and a non-negative

number z such that x + zei ∈ X and y + zei ∈ X , the diminishing returns property (3.15)

holds. By Bian et al. (2017), a function f is DR-submodular if, and only if, it is submodular

and coordinate-wise concave.
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Subadditivity

A function f is said to be subadditive if f (x+ y) ≤ f (x)+ f (y). A set function u is subaddi-

tive if u(S∪ T) ≤ u(S) + u(T), for every S, T ⊆ Ω. Clearly, any non-negative submodular

set function is subadditive.

We can show the following relationship between DR-submodular functions and subad-

ditive functions from definition.

Lemma 2.2.1. If a function f is DR-submodular on X ⊆ Rn
+, 0 ∈ X , and f (0) ≥ 0, then f is

subadditive on X .

Proof. For any x, y ∈ X , we have

f (x + y)− f (x) = f

(
x +

n

∑
i=1

yiei

)
− f

(
x +

n

∑
i=2

yiei

)

+ f

(
x +

n

∑
i=2

yiei

)
− f

(
x +

n

∑
i=3

yiei

)
...

+ f (x + enyn)− f (x)

≤ f

(
n

∑
i=1

yiei

)
− f

(
n

∑
i=2

yiei

)

+ f

(
n

∑
i=2

yiei

)
− f

(
n

∑
i=3

yiei

)
...

+ f (ynen)− f (0)

= f (y)− f (0)

where the inequalities hold by the DR-submodular property. Combining with f (0) ≥ 0,

we have f (x + y)− f (x) ≤ f (y), which is equivalent to saying that f is subadditive on

X .

However, such relationship does not hold for general submodular functions.
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Not all submodular functions are subadditive. Consider the success-probability value

function

f (x) = 1−
n

∏
i=1

(1− p(xi))

where p : R → [0, 1] is an increasing function. This function is submodular. This can

be verified by checking that it satisfies the weak DR property as follows. Consider any

x, y ∈ Rn such that x ≤ y. Since p is an increasing function, f (x) ≤ f (y). To check the

weak DR property, consider adding z to the j-th basis direction to x and y such that x ≤ y

and xj = yj. Then, the weak-DR condition is equivalent to

∏
i 6=j

(1− p(xi))(1− p(xj + z)) ≥∏
i 6=j

(1− p(yi))(1− p(yj + z))

which clearly holds since xj = yj and f (x) ≤ f (y). However, for some choices of function

p, function f is not subadditive. Consider, for example, the case when n = 1, then f is

subadditive if, and only if, p is subadditive.

Extended diminishing returns

A function f is said to satisfy the extended diminishing returns property Sekar et al. (2021)

if for any i ∈ [n] and v ≥ 0 that has a non-empty preimage under f , there exists y ∈ Rn
+

with yi = 0 such that (a) f (y) = v and (b) f (x + zei)− f (x) ≥ f (y + zei)− f (y) for any

z ∈ R and x such that f (x) ≤ f (y) = v and xi = 0. A simpler but stronger property is

that f is such that f (x + zei)− f (x) ≥ f (y + zei)− f (y) for every z ∈ R and x, y such that

f (x) ≤ f (y) and xi = yi = 0.

Function f satisfies the extended diminishing returns property as shown in Sekar et al.

(2021). There are functions that satisfy the extended diminishing returns property but

that are not DR-submodular. Consider, for example, f (x) = (∑n
i=1 xr

i )
1/r, for r > 1.

However, f is not DR-submodular. To see this note that f is twice-differentiable and is

a convex function, hence it is coordinate-wise convex according to standard notion of

convex functions. On the other hand, twice-differentiable DR-submodular functions are
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coordinate-wise concave according to the standard notion of concave functions.

Weakly homogeneity

A function f is homogeneous of degree d over a set Θ ⊆ R, if f (θx) = θd f (x) for all x in

the domain of f , and all θ ∈ Θ.

Weakly homogeneity is a relaxed notion of homogeneity: we say that a function f is

weakly homogeneous of degree d and tolerance η over a set Θ ⊆ R if

(1/η) θ f (x) ≤ f (θx) ≤ θd f (x)

for every x in the domain of f and all θ ∈ Θ.

Weakly homogeneous with constant degree and tolerance 1. Clearly, any homoge-

neous function f of degree 1 over Θ is weakly homogeneous of degree 1 and tolerance

η = 1 over Θ. For example, f (x) = max{x1, . . . , xn} and f (x) = (∑n
i=1 xr

i )
1/r are homo-

geneous functions of degree 1 over R. Note that any function that is convex on a domain

that includes 0 and is such that f (0) ≤ 0 is weakly homogeneous of degree 1 over [0, 1].

Some concave functions are weakly homogeneous with a strictly positive degree. For

example, f (x) = (∑n
i=1 xi)

r with domain Rn
+, for r ∈ (0, 1], is weakly homogeneous of

degree r over R+. A differentiable function f is weakly homogeneous of degree d over

[0, 1] if, and only if,

x>∇ f (x) ≥ d f (x) for every x ∈ dom( f ). (2.5)

For example, consider f (x) = g(∑n
i=1 xi) where g is an increasing, differentiable and

concave function on R+. Then, the inequality in (2.5) is equivalent to η(z) ≥ d for all

z ∈ R+, where η(z) is the elasticity of function g, defined as η(z) = zg′(z)/g(z), which is

always less than or equal to 1 for any increasing, differentiable and concave function g.
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Function g has a constant elasticity r if, and only if, g(z) = czr for an arbitrary constant

c > 0. Some concave functions have zero minimum elasticity, e.g. g(z) = 1− e−λz, for

parameter λ > 0, has decreasing elasticity from value 1 at z = 0 to value 0 as z goes to

infinity.

Weakly homogeneous with constant tolerance. Many functions are weakly homoge-

neous over [0, 1] with a constant tolerance parameter η, which we discuss next.

Any monotone subadditive function f : Rn → R+ is weakly homogeneous over [0, 1]

with tolerance η = 2. To see this, we note that if f is a monotone, subadditive function,

with X ⊆ Rn
+, then for every λ ∈ (0, 1], and x ∈ X ,

f (x) ≤ d1/λe f (λx). (2.6)

Therefore, for any monotone subadditive function f (θx) ≥ (1/d1/θe) f (x). Note that

1/d1/θe ≥ 1/(1/θ + 1) ≥ θ/2. This implies (1/2)λ f (x) ≤ f (λx), which may be inter-

preted as a weak homogeneity condition.

Any function f that is subadditive and convex on a domain that includes 0, and is such

that f (0) = 0, is weakly homogeneous over [0, 1] with tolerance η = 1. If f is a subad-

ditive and convex function on a domain that includes 0 and f (0) ≤ 0, then it is weakly

homogeneous with tolerance η = 1. This follows from

f (θx) ≥ f (x)− f ((1− θ)x)

≥ f (x)− (1− θ) f (x)

= θ f (x)

where the first inequality is by subadditivity and the second inequality is by convexity.

Finally, note that any concave function on a domain that includes 0 such that f (0) ≥ 0

is weakly homogeneous with tolerance η = 1. This follows straightforwardly from the
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definition of concave functions.

Properties for stochastic valuation functions

In the following chapters, we will mainly work with stochastic valuation functions, de-

fined as expectation of set value functions of independent random variables. The fol-

lowing is a known relation between a set value function f and the stochastic valuation

function u s.t. u(S) = E[ f ((Xi, i ∈ S))], where X1, . . . , Xn are some independent random

variables.

Lemma 2.2.2 (Lemma 3 Asadpour and Nazerzadeh (2016)). Assume that f is a monotone

submodular function, then u is a monotone submodular set function.

We can generalize this relationship to subadditive functions.

Lemma 2.2.3. Assume that f is a monotone function that is either subadditive or submodular,

then u is a monotone subadditive set function.

Proof. If f is a monotone submodular function, then by Lemma 2.2.2, u is a monotone

submodular set function, hence, it is a monotone subadditive function. Consider now the

case when f is a monotone subadditive function. For any S, T ⊆ Ω,

u(S) + u(T) = E[ f ((Xi, i ∈ S))] + E[ f ((Xi, i ∈ T))]

= E

[
f

(
∑
i∈S

Xiei

)]
+ E

[
f

(
∑
i∈T

Xiei

)]
.

By monotonicity and subadditivity of f , for every x in the domain of f , we have

f

(
∑
i∈S

xiei

)
+ f

(
∑
i∈T

xiei

)
≥ f

(
∑
i∈S

xiei + ∑
i∈T

xiei

)

= f

(
∑

i∈S∪T
xiei + ∑

i∈S∩T
xiei

)

≥ f

(
∑

i∈S∪T
xiei

)
.
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Thus, it follows

u(S) + u(T) ≥ E[ f ((Xi, i ∈ S ∪ T))] = u(S ∪ T).

2.3 Basic inequalities

Concentration inequalities

In this thesis, we will use the following well-known tail bounds for our analysis.

Lemma 2.3.1 (Hoeffding’s Inequality Hoeffding (1994)). Let X1, . . . , Xn be independent and

identically distributed random variables with common support [0, 1] and mean µ. Let Y =

∑n
j=1 Xj. Then for all δ > 0,

Pr[|Y− nµ| ≥ δ] ≤ 2e−2δ2/n.

Lemma 2.3.2 (Multiplicative Chernoff bound Mitzenmacher and Upfal (2017)). Let X1, . . . , Xn

be independent Bernoulli random variables taking values in {0, 1}with mean µ. Let Y = ∑n
j=1 Xj.

Then for all δ > 0,

Pr[Y ≤ (1− δ)nµ] ≤ e−δ2nµ/2.

We will treat these two lemmas as facts. The following lemma provides a vector version

of Azuma-Hoeffding probability of deviation bound, which is from Hayes (2005).

Lemma 2.3.3. Let Sm = ∑m
j=1 Xj be a martingale where X1, . . . , Xm are random variables taking

values in Rn and satisfying E[Xj] = 0 and ||Xj|| ≤ σ, for σ > 0. Then, for every x ≥ 0,

Pr[||Sm|| ≥ x] ≤ 2e2e−
x2

mσ2 .
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The next lemma states a matrix version of Chernoff type bound for the smallest eigen-

value of certain random matrices. The lemma follows from a more general result in The-

orem 5.1.1 in Tropp (2015).

Lemma 2.3.4. Let Sm = ∑m
j=1 Xj where X1, . . . , Xm are random, independent real symmetric

matrices in Rn×n such that λ1(Xj) ≥ 0 and ||Xj||2 ≤ σ for all j ∈ [m]. Then, for every

ε ∈ (0, 1], we have

Pr[λ1(Sm) ≤ (1− ε)λ1(E[Sm])] ≤ ne−
ε2λ1(E[Sm ])

2σ .

where λ1(M) denotes the smallest eigenvalue of a square real symmetric matrix M.

We also introduce the famous Cauchy-Schwartz inequality and its applications.

Lemma 2.3.5. For all x and y of an inner product space,

|x||y| ≥ xᵀy

The Cauchy-Schwartz inequality is a special case of Hölder’s inequality with p = q = 2.

The following lemma by Costello and Vu (2008) is an application of the Cauchy-Schwartz

inequality.

Lemma 2.3.6. Let X and Y be random variables, and let E(X, Y) be an event depending on X

and Y. Let X′ be an independent copy of X. Then

Pr(E(X, Y)) ≤ (Pr(E(X, Y) ∧ E(X′, Y)))1/2

Negative association

As we can see from the previous section, independent random variables allow many

powerful theorems to apply. However, in real life examples, we cannot always expect

random variables we observe to be independent. Nonetheless, these random variables
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may satisfy other special dependence properties. In this thesis, we will need one special

dependence structure called negative association.

Definition 2.3.7. A collection of random variables Y = (Y1, Y2, . . . , Yn) is said to be negatively

associated if for disjoint index sets I, J ⊆ [n] and two functions f and g both monotone increasing

or both monotone decreasing,

Cov
(

f (Xi, i ∈ I), g(Xj, j ∈ J)
)
≤ 0

Negative association allows many useful properties of independence to carry over. Next,

we list some of the useful properties that will be needed for the thesis. Proofs and more

discussions can be found in the original paper by Joag-Dev and Proschan (1983).

The following properties are called closure of negative association (NA). It allows the NA

property to be transferred to another set of random variables without calculation from

definition. Joag-Dev and Proschan (1983) showed that the second property is unique to

NA among a wide range of negative correlation structures.

Lemma 2.3.8. The union of independent sets of NA random variables is negatively associated.

Lemma 2.3.9. Concordant monotone functions defined on disjoint subsets of a set of NA random

variables are negatively associated.

Many standard distributions possess the NA property. In particular, we point out the

class of permutation distributions.

Lemma 2.3.10. Let x1 ≤ x2 ≤ . . . ≤ xn and X1, X2, . . . , Xn be random variables such that

{X1, X2, . . . , Xn} = {x1, x2, . . . , xn} always, with all possible assignments equally likely. Then

X1, X2, . . . , Xn are NA.



Chapter 3

The β-model for hypergraphs

3.1 Overview

Let G be an undirected simple graph on n vertices and d1, . . . , dn be the degrees of vertices

of G. The study of degree distributions of networks is a classical topic in network anal-

ysis. The surveys (Newman (2003); Goldenberg et al. (2010)) contain many references

for existing studies. The β-model for random graphs, originally introduced by Chatterjee

et al. (2011), is the simplest instance of statistical network model that based exclusively on

node degrees. Each vertex v is associated with a parameter βv and edge (u, v) is present

with probability pu,v(β) = σ(βu + βv), where σ is the logistic function, independently

of other edges. This model is an undirected version of the p1 directed exponential ran-

dom model originally proposed by Holland and Leinhardt (1981), and can be seen as a

generalization of the classic random graph model by Erdös and Rényi (1959).

In real-world applications, collecting complete network data is often expensive and time-

consuming. As discussed in the introduction chapter, in some cases we may only have

limited observations at the set level. In this chapter, we study the β-model of random

hypergraphs, defined for a given number n ≥ 2 of vertices and parameter vector β ∈

Rn such that edge S ⊆ V := {1, . . . , n} is present, independently of other edges, with

20
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Figure 3.1: An example of partial design of experiments for a 3-uniform random hyper-
graph: not all combinations of 3 vertices are experimented but only those indicated in the
figure.

probability

pS(β) := σ

(
∑
i∈S

βi

)
.

Each edge S can consist of two more vertices. In particular, a k-uniform hypergraph is

a hypergraph such that each edge has has cardinality k ≥ 2. The β-model for random

graphs is a special case where each edge S consists of two vertices. Our setting differs

from previous works in that we allow for a partial design of experiments that does not

require all possible combinations of vertices of given cardinality to be experimented. See

Figure 3.1 for an example of a partial design of experiments for k-uniform random hyper-

graph. In real examples, it happens when we have limited resources for experiments and

we only observe group outcomes for a given collection of sets.

We are interested in understanding what are the fundamental statistical inference lim-

its for inferring parameters of vertices from observed outcomes of edge experiments for

the β-model of random hypergraphs. This naturally falls in the framework of maximum

likelihood estimation. Specifically, we are interested in understanding conditions for ex-

istence and uniqueness of the MLE parameter estimator, and the MLE parameter esti-

mation error bounds when an MLE exists and is unique. We consider this for random

graphs and more general case of random hypergraphs according to the β-model, for both

full and partial design of experiments.
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3.1.1 Related work

The β-model of random graphs has attracted a substantial research interest, with much

work devoted to finding conditions for the existence and uniqueness of the maximum

likelihood estimation (MLE) of parameter vector β from given observation data. In the

original paper, Chatterjee et al. (2011) proved uniform consistency of the MLE in the limit

when the number of parameters goes to infinity. Subsequently, Yan and Xu (2013) es-

tablished its asymptotic normality. Rinaldo et al. (2013) found a necessary and sufficient

condition for the MLE existence and uniqueness for a given sample of observations. This

condition requires the expected degree sequence to be in the interior of a polytope of de-

gree sequences. Hillar and Wibisono (2013) used the general theory of exponential family

distributions to derive the existence and uniqueness of the MLE estimator, and proved

consistency of the MLE from a single sample in the limit of large graphs. Yan et al. (2016)

established consistency and asymptotic normality of a moment estimator for a model of

undirected random graphs parametrized by the strength of vertices, which includes the

β-model as a special case. Mukherjee et al. (2016) identified sharp detection thresholds

for the hypothesis testing problem asking to detect whether the parameter vector β of the

β-model random graph is a null vector, given observations of edge experiment outcomes

for all distinct pairs of vertices. A sparse β-model was studied by Chen et al. (2021).

We note that most of the above-mentioned previous studies considered beta model for

graphs with complete design. Our setting differs from previous work in that we allow for

a partial design of experiments that does not require all possible combinations of vertices

of given cardinality to be experimented. The β-model of random graphs is a special case

where each edge S consists of two vertices.

The beta model is a simple model of group outcomes. Other related work include the

log-linear model of random graphs by Chung and Lu (2002). Alaoui and Montanari

(2019) studied the question of estimating discrete vertex variables from noisy edge ob-

servations, showing that linear-time algorithms can achieve a reconstruction accuracy

arbitrarily near to the information-theoretic optimum, for graph sequences converging to
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so-called amenable graphs. Another related work is on inference for statistical ranking

models, e.g. Huang et al. (2006a,b), where the goal is to estimate parameters representing

strengths of items from noisy observations of group comparisons.

3.1.2 Summary of contributions

Our results can be summarized in the following points.

• For the β-model of random graphs with a fixed partial design matrix, we found a

succinct and easy to interpret condition for the MLE existence and uniqueness. This

condition requires that the expected degree sequence is sufficiently bounded away

from facets of the polytope of degree sequences. Specifically, for any c > 1/2, the

MLE exists and is unique with probability at least 1− 2/n2c−1, under condition

E(E[d]) ≥

√
c

H(M)

log(n)
n− 1

where E(E[d]) is a ”distance” of the expected degree sequence E[d] from a facet of

the polytope of degree sequences, and H(M) is a ”norm” of the correlation matrix

M = X>X where X is the m × n design matrix. Note that M admits an intuitive

interpretation as Mu,v is the number of (u, v) edge experiments.

In particular, for the β-model of random graphs with the full design matrix and

parameter β such that ε ≤ pu,v(β) ≤ 1− ε, for all u, v ∈ V, for some ε ∈ (0, 1),

the condition boils down to the condition on the number of experiments m of the

following simple form

m ≥ c
1
ε2 n log(n)

for some constant c > 0.

These results are obtained by lower bounding the distance between the expected

degree vector and facets of the polytope of degree sequences. The proof is based
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on the Erdös-Gallai necessary and sufficient condition for graph degree sequences

Erdös and Gallai (1960) and concentration of measure.

• We identified sufficient conditions for the MLE existence and uniqueness for the

β-model of k-uniform hypergraphs. These conditions are derived from a neces-

sary Erdös-Gallai type condition for k-uniform hypergraphs. The conditions are

on the expected degree sequence and the expected density of edges for all suffi-

ciently large sets of vertices. Specifically, for the β-model with parameter β such

that ε ≤ pS(β) ≤ 1 − ε, for all S ⊆ V with |S| = k, the MLE exists with high

probability provided that ε = Ω(1/n(k−1)/(k+2)).

• We derived bounds on the MLE error ||β̂ − β||, where a key role has the smallest

eigenvalue of matrix M, we denote with λ1(M). The bound allows for arbitrary

design matrices X as long as λ1(M) > 0, i.e. rank(X) = n. The eigenvalue λ1(M)

is related to graph property known as graph non-bipartiteness. This connection

provides an intuitive interpretation of the algebraic condition λ1(M) > 0.

Organization of chapter The chapter is organized as follows. In section 3.2 we define

the model formally. We present three different MLE existence and uniqueness conditions

in section 3.3. Section 3.4 contains our results on the MLE error bounds and the relation

between the full rank condition for the design matrix and the graph non-bipartiteness.

3.2 Problem formulation

3.2.1 Model specification

Let V = {1, . . . , n} be a set of vertices with n ≥ 2. For any given collection of non-empty

sets S1, . . ., Sm ⊆ V, let y1, . . . , ym be binary variables taking values in {0, 1}. Under the
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β-model, y1, . . . , ym are independent random variables with distribution

Pr[yj = 1] = 1− Pr[yj = 0] = σ

∑
i∈Sj

βi


where β = (β1, . . . , βn)> is the parameter vector in Rn.

The general case, defined above, allows us to model random hypergraphs, where each

edge consists of two or more vertices. In particular, it allows us to model k-uniform

hypergraphs.

The β-model is a logistic regression model with binary-valued covariate vectors. Let X ∈

{0, 1}m×n be the design matrix with row (covariate) vectors x>1 , . . . , x>m . Then, we can write

Pr[yj = 1] = 1− Pr[yj = 0] = σ(x>j β).

Using standard graph theory terminology, we may refer to B := X> as a graph incidence

matrix, where Bv,e = 1 if, and only if, vertex v is an element of edge e. Note that, in

general, we allow for hypergraphs with multiple edges, i.e. we allow for xe = xe′ for

some 1 ≤ e < e′ ≤ m. We also define the correlation matrix M s.t.

M =
m

∑
j=1

xjx>j = X>X.

The (u.v) entry of the correlation matrix M denotes the number of experiments involving

vertex u and v.

3.2.2 The log-likelihood function

We study the maximum likelihood estimation (MLE) for the β-model of random hyper-

graphs. We are interested in understanding to which extent we can estimate parameters

associated with individual vertices from group (edge) experiments. This naturally leads
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us to use the framework of maximum likelihood estimation.

The log-likelihood function of the β-model can be written as

`(β) =
m

∑
j=1

(
yj log(σ(x>j β)) + (1− yj) log(1− σ(x>j β))

)
. (3.1)

An MLE parameter vector β̂ in a given convex set Θ ⊆ Rn is a point β̂ ∈ Θ satisfying

β̂ ∈ arg max
β∈Θ

`(β).

We are primarily focused on the unconstrained case when Θ = Rn. In this case, an MLE

may not exist, and if it exists may not be unique. If Θ is a bounded convex set, then an

MLE β̂ in Θ always exists because −`(β) is a convex function.

The logistic regression model belongs to the exponential family of models, hence, we can

express the log-likelihood function as follows

`(β) = t(y)>β− κ(β) (3.2)

where t(y) is the minimal sufficient statistic given by

t(y) =
m

∑
j=1

yjxj

and κ(β) is the log-partition function given by

κ(β) =
m

∑
j=1

log(1 + ex>j β
).

Note that the sufficient statistic t(y) has an intuitive interpretation as each tv(y) is the

number of successful experiments that involve item v.

We will also use a different but equivalent formulation that is defined as follows. Let

X̃ ∈ {0, 1}m̃×n be a design matrix with distinct row vectors x̃>1 , . . . , x̃>m̃ . Here we may
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interpret X̃ to specify all possible distinct covariate vectors. Let mj denote the number of

occurrences of x̃j in the observed data. Note that ∑m̃
j=1 mj = m. Let ỹj be the number of

successful experiments with the covariate vector x̃j.

The log-likelihood function (3.1) can be written as (up to a constant additive term that we

can ignore),

`(β) =
m̃

∑
j=1

(
ỹj log(σ(x̃>j β)) + (mj − ỹj) log(1− σ(x̃>j β))

)
.

Using the exponential-family parametrization, the log-likelihood function can be further

expressed as

`(β) = t̃(y)>β− κ̃(β)

where t̃(y) = ∑m̃
j=1 ỹj x̃j and κ̃(β) = ∑m̃

j=1 mj log(1 + ex̃>j β
).

3.3 MLE existence and uniqueness condition

The necessary and sufficient conditions for the MLE existence and uniqueness for the β-

model can be expressed in different forms by drawing from the literature on statistical

inference for exponential-family models and logistic regression models.

3.3.1 Overlapping condition

The necessary and sufficient condition for MLE existence and uniqueness can be derived

from the overlapping condition developed for logistic models. As introduced in section

2.1, (X, y) is said to satisfy the overlapping condition, if there exists no α ∈ Rn \ {0} such

that for all j ∈ [m],

x>j α ≥ 0 if yj = 1 and x>j α ≤ 0 if yj = 0.

A theorem by Albert and Anderson (1984) implies that under condition that X has full
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rank, an MLE exists for the β-model if, and only if, (X, y) satisfies the overlapping condi-

tion.

Silvapulle (1981) has also derived a necessary and sufficient condition, under condition

that X has full rank, using convex cones

S =

 ∑
j∈[m]:yj=1

wjxj : w ∈ Rm
+

 and F =

 ∑
j∈[m]:yj=0

wjxj : w ∈ Rm
+


which reads us

S ∩ F = ∅ or one of S, F is Rn. (3.3)

The overlapping condition is equivalent to condition (3.3) as stated next.

Lemma 3.3.1. (X, y) satisfies the overlapping condition if, and only if, the convex cones S and F

satisfy S ∩ F = ∅.

We first note that it is necessary to have a full rank design matrix.

Lemma 3.3.2. The negative log-likelihood function of the β-model is strictly convex if, and only

if, the design matrix X has linearly independent columns, i.e. X has full rank, rank(X) = n.

The strict convexity of the log-likelihood function ensures the uniqueness of an optimal

point if it exists. The overlapping condition further ensures that the minimum set is non-

empty and bounded, therefore the MLE exists and is unique.

We further note that for the β-model, the overlapping condition and the rank of matrix X

satisfy the following relation.

Lemma 3.3.3. If (X, y) satisfies the overlapping condition, then X has full rank.

The theorem by Albert and Anderson (1984) and Lemma 3.3.3 imply the following fact

for the β-model.

Proposition 3.3.4. For any given (X, y), there exists a unique MLE for the β-model if, and only

if, (X, y) satisfies the overlapping condition.
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We are also interested in the case when the MLE exists but is not unique. By Proposi-

tion 3.3.4, this could happen when (X, y) does not satisfy the overlapping condition and

X does not have full rank. The following result provides a necessary and sufficient con-

dition for the MLE existence in the case when X does not have full rank.

Proposition 3.3.5. If (X, y) is such that X is not of full rank, then non-unique MLE exist for the

β-model if, and only if,

0 < ỹj < mj for all j ∈ {1, . . . , m̃}.

The condition in Proposition 3.3.5 means that for each distinct set of vertices that partic-

ipate in an experiment, the fraction of successful experiments involving these vertices is

bounded away from 0 and 1.

An intuitive example comes from the binary-valued beta models. Suppose the experi-

ments are drawn according to a bipartite graph such that all left nodes are of a low type

and all right nodes are of high type. Then given any data, we cannot identify between

the left and right nodes. In this case, we can have MLE solutions but there cannot exist

a unique MLE β̂. For contradiction, assume that β̂ is a unique MLE parameter vector.

Then, by changing the sign for all entries β̂v for v ∈ S ∪ T, the resulting parameter vector

is also a MLE parameter vector. This contradicts the assumption that β̂ is a unique MLE

parameter vector.

3.3.2 Polytope-typed condition

An alternative formulation of the necessary and sufficient condition for the MLE existence

and uniqueness can be derived from the statistical inference theory for exponential-family

distributions. By Theorem 2.1.4 in section 2.1, for any exponential-family distribution

with sufficient statistic t, the log-likelihood function has a unique maximum if, and only

if, t ∈ int(C) where C is the convex support of the exponential family distribution.



30 Chapter 3. The β-model for hypergraphs

For the β-model, the sufficient statistic is t(y) = ∑m
j=1 yjxj = X>y, where y is the vec-

tor of experiment outcomes. This can be interpreted as a graph degree sequence. The

support of an exponential-family distribution is the set of all possible values of sufficient

statistic t(y). Thus the condition in the theorem by Barndorff-Nielsen (1978) corresponds

to the following for the MLE existence and uniqueness for the β-model: for any given

experiment outcomes y ∈ {0, 1}m, there is a unique MLE for the β-model if, and only if,

t(y) ∈ int conv({t(z) : z ∈ {0, 1}m})

where conv(S) denotes the convex-hull of a set S and int conv(S) denotes the interior of

this set. In other words, a unique MLE exists if, and only if, the sufficient statistic t(y)

is in the interior of a polytope of graph degree sequences. We call this the polypote-type

condition.

However, this condition is hard to interpret intuitively and to test computationally. Chat-

terjee et al. (2011) provided more explicit conditions for the MLE existence and unique-

ness, under assumption that for each pair of distinct vertices there is exactly one experi-

ment (hence, graph is simple). Rinaldo et al. (2013) provided a condition that allows for

random graphs with one or more experiments for distinct pairs of vertices. This condition

involves a normalized degree sequence d(y) with entries defined as

du(y) = ∑
v∈V\{u}:Mu,v>0

ỹu,v

Mu,v

which for each vertex corresponds to the sum of empirical success frequencies of edge

experiments incident to this vertex.

Both results are based on the well-known Erdös-Gallai characterization of graph degree

sequences. By Erdös and Gallai (1960), a sequence of non-negative integers d1, . . . , dn

is a degree sequence of a finite simple graph G = (V, E) on n vertices if, and only if,
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d1 + · · ·+ dn is even and for every non-empty set S ⊆ [n],

∑
v∈S

dv ≤ |S|(|S| − 1) + ∑
v∈V\S

min{dv, |S|}. (3.4)

It has been shown that the Erdös-Gallai inequalities determines the polytope Pn of graph

degree sequences. Peled and Srinivasan (1989) explicitly showed that the facets of Pn are

defined by the following linear inequalities, for any n ≥ 4,

dv ≥ 0 for all v ∈ [n] (3.5)

dv ≤ n− 1 for all v ∈ [n] (3.6)

f (S, T, d, n) ≥ 0 for all (S, T) ∈ Ω (3.7)

where

f (S, T, d, n) := |S|(n− 1− |T|)−
(

∑
v∈S

dv − ∑
v∈T

dv

)
(3.8)

and

Ω := {(S, T) ⊆ [n] : S ∩ T = ∅, |S ∪ T| ∈ {2, . . . , n− 3} ∪ {n}} (3.9)

and, for n = 3, the facets are only as given by (3.7).

Therefore, for the β-model of random graphs, a necessary and sufficient condition for the

MLE existence is that the degree sequence t(y) satisfies the linear inequalities (3.5)-(3.7)

with strict inequalities.

3.3.3 Interpretable MLE condition

We next present our main results for MLE existence and uniqueness. These conditions are

expressed using two key parameters, one quantifying a “distance” of the expected nor-

malized degree sequence to a facet of polytope Pn and other quantifying “connectivity”

of a graph associated with M.
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The first parameter is E(d) defined as, for d ∈ [0, n− 1]n,

E(d) = 1
n− 1

min
{

min
v∈V
{dv}, min

v∈V
{n− 1− dv}, min

(S,T)∈Ω

{
f (S, T, d, n)
|S ∪ T|

}}

where f and Ω are defined in (3.8) and (3.9). Intuitively, we can interpret (n − 1)E(d)

as a minimum slack for the linear inequalities in (3.5)-(3.7) at point d with respect to the

constraints defining the facets of Pn. Condition that d is in the interior of Pn is equivalent

to minimum slack being strictly positive. We scale the minimum slack with factor n− 1

as this is a natural normalization.

The second parameter is H(M), defined as H(M) = minu∈V Hu(M), where for u ∈ V,

Hu(M) =
n− 1

∑v∈V\{u}:Mu,v>0
1

Mu,v

.

Theorem 3.3.6. For any β-model of random graphs with correlation matrix M with n ≥ 3 and

no null rows, for any c > 1/2, there exists a unique MLE with probability at least 1− 2/n2c−1,

under condition

E(E[d]) ≥

√
c

H(M)

log(n)
n− 1

.

Furthermore, if m ≤ H(M)(n
2), then the condition can be written as

m ≥ c
2

1
E(E[d])2 n log(n).

In particular, the theorem applies to the complete graph case, where Mu,v = r ≥ 1 for

every u 6= v, as follows. In this case, H(M) = r and m = r(n
2), and the condition is

equivalent to the condition on the number of experiments per distinct pair of vertices

given as follows

r ≥ max
{

c
1

E(E[d])2
log(n)
n− 1

, 1
}

.

Next, we give a bound for the function of expected degree sequence E(E[d]) and give a
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corollary of the main theorem that explicitly writes the condition in terms of minimum

number of experiments.

Corollary 3.3.7 (of Theorem 3.3.6). Consider the case where n ≥ 3 and for each distinct pair

of vertices there is at least one experiment. Assume that β is such that ε ≤ pu,v(β) ≤ 1− ε for

all u, v ∈ V, u 6= v, for some ε ∈ (0, 1), then we have E(E[d]) ≥ 1
4 ε. For any c > 1/2, an

MLE exists and is unique with probability at least 1− 2/n2c−1, provided that the number of edge

experiments m satisfies

m ≥ 12c
1
ε2 n log(n).

Note that m ≥ (n
2) under the assumptions of the corollary, so the asserted condition for

the number of edge experiments is non-trivial only for sufficiently small ε, in particular

when ε = O(
√

log(n)/n).

The condition in Theorem 3.3.6 is a generalization of a condition in Rinaldo et al. (2013).

Compared to their condition, we relax the assumption of testing each edge the same num-

ber of times. It is interpretable as we expressed it in terms of two specific parameters with

graph-theoretical meanings. Moreover, we define and give a bound for the function of ex-

pected degree sequence E(E[d]). This enables us to explicitly convert the condition to the

requirement on the number of experiments.

The proof for Theorem 3.3.6 is given at the end of the chapter. It is based on the Erdös-

Gallai condition for graph degree sequences and concentration of measure. We define a

bad event such that the linear inequalities (3.5)-(3.7) holds with equality. Then we bound

the probability of this bad event by a concentration of measure for the normalized degree

sequences d. Finally, we apply the Hoeffding’s bound on d−E[d] and take a union bound

to arrive at the final condition.

Lower bound results We next discuss a lower bound for the number of edge experi-

ments m. Suppose that for each distinct pair of items there are r ≥ 1 experiments and that
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β is such there exists u such that pu,v(β) = ε, for all v 6= u, for some ε ∈ (0, 1). Note that

the probability that the degree sequence d is on a facet of the degree sequence polytope is

greater than or equal to the probability of the event {du = 0}, and

Pr[du = 0] = ∏
v∈V\{u}

(1− pu,v(β))r.

Since m = r(n
2), we have Pr[du = 0] = (1− ε)

2m
n . From this it follows that for Pr[du = 0] ≤

1/na to hold, for some a > 0, it is necessary that

m ≥ a
2

1
log( 1

1−ε )
n log(n).

This establishes the lower bound Ω(1
ε n log(n)) for the number of edge experiments for

the normalized degree sequence d to be in the interior of the polytope with probability at

least 1− 1/na. This matches the bound in Corollary 3.3.7 up to a factor 1/ε. The factor

1/ε2 in Corollary 3.3.7 comes from using a concentration bound for the deviation of the

normalized degree sequence from the expected normalized degree sequence in the proof

of Corollary 3.3.7.

3.3.4 Results for hypergraphs

As mentioned in the overview, collecting complete network data is often expensive and

infeasible. Therefore, it is important to consider the case of β-model of random hyper-

graphs. We consider the case of k-uniform random hypergraphs with full design matrix.

It is challenging to extend the results for random graphs to random hypergraphs. Note

that the previous analysis relies heavily on the Erdös-Gallai characterization of graph de-

gree sequences and the facet definition of the degree sequences polytope. However, the

Erdös-Gallai condition only holds for graphs and facet definition for hypergraph Pn has

not been established yet.

To claim a sufficient condition on the number of experiments such that MLE almost surely
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exists, we first provide an Erdös-Gallai typed necessary condition for a sequence to be a

degree sequence of a k-uniform hypergraph.

Lemma 3.3.8. If d = (d1, . . . , dn) is a degree sequence of a k-uniform hypergraph H = (V, E)

with |V| = n, then, for every S ⊆ V such that |S| ≥ k,

∑
v∈S

dv ≤ k
(
|S|
k

)
+ ∑

v∈V\S
min

{
(k− 1)dv,

|S|
n− |S|

((
n− 1
k− 1

)
−
(
|S| − 1
k− 1

))}
.

For the graph case G = (V, E), the claim of the lemma boils down to the Erdös-Gallai

conditions (3.4).

Based on the Erdös-Gallai typed characterization of hypregraph degree sequences, we

next introduce a set of conditions that are sufficient to guarantee MLE existence.

Suppose d = (d1, . . . , dn) is a point in the set of expected degree sequences of a k-uniform

random hypergraph with, for some β̂ ∈ (R∪ {∞})n,

dv = ∑
S⊆V:|S|=k,v∈S

pS(β̂), for all v ∈ V.

Assume there exist constants α1, α2, α3, and α4 ∈ (0, 1) such that

(C1) For all v ∈ V,

α1

(
n− 1
k− 1

)
≤ dv ≤ (1− α2)

(
n− 1
k− 1

)
(3.10)

and

(C2) For all S ⊆ V such that |S| ≥ α1n,

α3

(
|S|
k

)
≤ ∑

S′⊆S:|S′|=k
pS′(β̂) ≤ (1− α4)

(
|S|
k

)
. (3.11)

Condition (C1) requires that the expected degree of each vertex is within specified factors

of the maximum possible degree of a vertex. Condition (C2) requires that the expected
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number of edges contained in every sufficiently large set of vertices is within specified

factors of the maximum possible number of edges.

Lemma 3.3.9. Under conditions (C1) and (C2), ||β̂||∞ ≤ c, where c is a positive constant de-

pending on α1, α2, α3, α4, and k.

The proof is given at the end of the chapter. It based on a contradiction argument sim-

ilar to the proof in Chatterjee et al. (2011) for β-model of random graphs. If we further

have the design matrix X to be of full rank, then the uniqueness of MLE follows from

Theorem 1.5 in Chatterjee et al. (2011).

We next present the following theorem which provides a sufficient condition for the exis-

tence of MLE for the β-model of a k-uniform random hypergraph with high probability.

Theorem 3.3.10. Suppose H = (V, E) is a k-uniform random hypergraph drawn from the β-

model with parameter β such that ε ≤ pS(β) ≤ 1− ε, for all S ⊆ V with |S| = k, for some ε ∈

(0, 1). Then, for any c > 0, conditions (3.10) and (3.11) hold with α1 = α2 = α3 = α4 = ε/2,

with probability at least 1− 1/nc, provided that

ε ≥ max{ fn,k, gn,k} (3.12)

where

fn,k =
√

2k
k−1

2

√
(c + 1) log(n) + log(4)

nk−1

gn,k = 2
k+1
k+2 k

k
k+2

(
log(2)
nk−1 +

c log(n) + log(4)
nk

) 1
k+2

.

The key idea of the proof is similar as the random graph case. We define bad events such

that conditions (3.10) and (3.11) do not hold. We bound the probability of bad events

in terms of concentration measure of expected degree sequences. We arrive at the final

result by giving a bound for the expected degree sequences in terms of ε.
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Note that the right-hand side in (3.12) scales with n as 1/n(k−1)/(k+2), asymptotically for

large n. In particular, for k = 2, it scales as 1/n1/4. By Theorem 3.3.6, we know that for

k = 2, it suffices that ε ≥ Ω(
√

log(n)/n). The extra n1/4/
√

log(n) factor is due to using

union bound for the events over sets S ⊆ V such that |S| ≥ α1n to ensure (3.11) holds with

high probability. Note, however, that the right-hand side in (3.12) is O(1/n2/5) for k = 3,

and O(1/
√

n), for all k ≥ 4. Hence, in the latter case, the condition for the existence of

MLE is weaker for a k-uniform random graph than for the graph case, for any sufficiently

large n.

3.4 MLE error bounds

In this section, we consider the MLE error under condition that MLE exists and is unique.

We consider the estimation error measured by the L2-norm of the difference of the maxi-

mum likelihood estimate β̂ and the true parameter vector β, i.e. ||β̂− β||. We will show

that the key parameter that determines the parameter estimation error is the smallest

eigenvalue λ1(M) of the the correlation matrix M. Recall that

M =
m

∑
j=1

xjx>j = X>X.

We will then show how λ1(M) is related to to some parameters reflecting non-bipartiteness

of the graph with adjacency matrix M.

3.4.1 Parameter estimation error bounds

We first show the following parameter estimation bound for any β-model with edges of

cardinality k ≥ 2.

Proposition 3.4.1. Suppose X is the design matrix with row vectors x>j satisfying ||~xj||1 = k

for all j ∈ [m], λ1(M) > 0, and that experiment outcomes y are according to the β-model with
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parameter vector β such that ||β||∞ ≤ b, for some b > 0. Then, under condition ||β̂||∞ ≤ b,

||β̂− β|| ≤ ckb

√
mk(log(n) + 2)

λ1(M)
(3.13)

with probability at least 1− 2/(n Pr[||β̂||∞ ≤ b]), where ckb is a positive constant depending

only on the product kb. In particular, we can take ckb = 2
√

2(1 + ekb).

The proof mainly relies on the Taylor expansion. We can see that λ1(M) > 0 is necessary

for a finite mean square error bound. Condition λ1(M) > 0 is equivalent to matrix X

having full rank. Moreover, as shown in section 3.3.4, if the design matrix X is of full

rank and ||β̂||∞ ≤ b, (X, y) satisfies the MLE existence and uniqueness condition. If

the MLE parameter vector β̂ is defined as the minimizer of the negative log-likelihood

function over a bounded convex set, then Pr[||β̂||∞ ≤ b] = 1.

It is insightful to consider the parameter estimation bound in Proposition 3.4.1, for the

case of a complete k-uniform hypergraph, i.e. when rows of X consist of all distinct vec-

tors in {0, 1}n with k entries equal to 1 and the remaining entries equal to 0. In this case,

we have

m =

(
n
k

)
, Mu,v =

(
n− 2
k− 2

)
for u 6= v and Mu,u =

(
n− 1
k− 1

)
.

It can be readily shown that

λ1(M) =
k2

n

(
n
k

)
.

For the complete k-uniform hypergraph, from (3.13), we have

1√
n
||β̂− β|| ≤ ckb

√
n(log(n) + 2)

k3(n
k)

≤ ckb2k
k−3

2

√
log(n)
nk−1 .

Thus, for every fixed k ≥ 2, 1√
n ||β̂− β|| = O(

√
log(n)/nk−1). Hence, we observe that the

parameter estimation error bound decreases faster with n for larger values of k.
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For the complete graph case, we have

1√
n
||β̂− β|| ≤ cb

√
log(n)

n

where cb is a positive constant. This bound is of the same form as the bound for the L∞

norm in Theorem 1.3 of Chatterjee et al. (2011). Specifically, their theorem says that if

||β||∞ ≤ b, then there exists cb > 0 such that with probability at least 1− cb/n2, there

exists a unique MLE β̂, which satisfies

||β̂− β||∞ ≤ cb

√
log(n)

n
.

3.4.2 Key property of graph bipartiteness

We further investigate if the eigenvalue λ1(M) relates to any graph-theoretic properties

of the inputs for beta model.

We first consider the graph case. The key property is known as graph non-bipartiteness. For

a given graph G = (V, E), let G(S) be the subgraph of G with the set of vertices restricted

to set S ⊆ V. For any non-empty S ⊆ V, let cut(S) be the set of edges between vertices in

S and V \ S and emin(S) be the minimum number of edges that need to be removed from

G(S) so that the resulting subgraph is bipartite. Let

ψ = min
S⊆V

|cut(S)|+ emin(S)
|S| .

The quantity ψ is a natural measure of a graph non-bipartiteness. If ψ = 0, then clearly

the graph has a bipartite component. Intuitively, the larger the ψ for a graph, in some

sense the further away is the graph from a graph with a bipartite component. We make

note of the following basic fact:

ψ > 0 if, and only if λ1(M) > 0. (3.14)
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By definition, ψ = 0 if, and only if, the underlying graph has a bipartite component.

It is well known that the rank of the incidence matrix X> is related to the number of

bipartite components in the associated graph. By Theorem 8.2.1 in Godsil and Royle

(2001), if a graph has n vertices and c bipartite components with incidence matrix X>,

then rank(X>) = n − c. Therefore, ψ = 0 if, and only if, the graph has no bipartite

components.

It is readily observed that if ψ = 0, then there cannot exist a unique MLE β̂. To see this,

note that ψ = 0 implies that there exists an isolated bipartite component, i.e. there exist

two non-empty disjoint sets S, T ⊆ N such that no edge exists with both vertices in S,

or T, and no edge exists with exactly one vertex contained in S ∪ T. Recall our intuitive

example given at the end of section 3.3.1. For contradiction, assume that β̂ is a unique

MLE. Then, we can obtain another MLE parameter vector by changing the sign for all

entries β̂v for v ∈ S ∪ T. This contradicts the assumption of unique MLE.

The eigenvalue λ1(M) and the non-bipartiteness measure ψ satisfy a stronger relation

than (3.14). By Desai and Rao (1994), for a graph G with incidence matrix X>, the smallest

eigenvalue of M = X>X satisfies

1
4d∗

ψ2 ≤ λ1(M) ≤ 4ψ (3.15)

where d∗ is the largest degree of a vertex in G (or, equivalently, the maximum column

sum of X). Indeed, (3.15) implies (3.14). Further relationships can be found in the more

recent work by Fallat and Fan (2012).

Our analysis reveals a connection between the maximum likelihood error bound and the

non-bipartiteness property of a graph associated with the design matrix. For paired com-

parisons and ranking models, it is well-known that the bound depends on the algebraic

connectivity of the matrix of paired comparison counts, which is captured by the smallest

eigenvalue of the Laplacian matrix Shah et al. (2016); Hajek et al. (2014); Vojnovic and Yun

(2016). To the best of our knowledge, such connection has not been established previously
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for β-model of hypergraphs.

We next show that a similar relation between λ1(M) and graph non-bipartitness measure

ψ holds for the more general case of hypergraphs, which allow for design matrices X to

have binary-valued elements with one or more unit-valued elements per row.

The key is to project a hypergraph to a weighted graph. For the graph case, M is the

signed Laplacian matrix as it can be decomposed as the sum M = D + A where D is the

degree matrix and A is the adjacency matrix. We can decompose M in a similar way for

the more general case of a hypergraph. Note that M has elements given by

Mu,v =
m

∑
j=1

xj,uxj,v for u 6= v and Mu := Mu,u =
m

∑
j=1

xj,u.

Let A be the adjacency matrix defined as

Au,v =

 Mu,v if u 6= v

0 if u = v

and let N and D be two diagonal matrices defined as

Du,v =

 ∑w 6=u Mu,w if u = v

0 if u 6= v
and Nu,v =

 Mu if u = v

0 if u 6= v
.

In this way, we can write M = N + A. Note that A and D can be treated as the adjacency

matrix and degree matrix defined on the weighted graph projected from the hypergraph,

such that Au,v denotes the number of experiments vertex u co-participate with vertex v

and Du sums up the total number of times vertex u co-participate with another vertex

in the experiments. On the other hand, D is the diagonal matrix of hypergraph degree

and denotes the number of experiments in which vertex u takes part. It is clear that

Du,u ≥ Nu,u, for all u ∈ V, with equality holds for the graph case. For the uniform case,

when each experiment involves exactly k items, we have Du,u = (k− 1)Nu,u.

Proposition 3.4.2. Assume G = (V, E) is a hypergraph with matrices M, A, D and N and ψ is
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the graph non-bipartiteness measure of a graph with adjacency matrix A. Then, we have

1
4d∗

ψ2 −max
u∈V

du ≤ λ1(M) ≤ 4ψ−min
u∈V

du

where du = (D− N)u and d∗ = maxu Du,u.

For the graph case, the inequalities of Proposition 3.4.2 correspond to those in (3.15).

For the k-uniform hypergraph case, when each experiment involves exactly k vertices, we

have du = (k− 2)Mu and Du,u = (k− 1)Mu. In this case, the inequalities in Theorem 3.4.2

can be written as

1
4(k− 1)maxu∈V Mu

ψ2 − (k− 2)max
u∈V

Mu ≤ λ1(M) ≤ 4ψ− (k− 2)min
u∈V

Mu.

Note that

ψ > Ak max
u∈V

Mu ⇒ λ1(M) > 0

λ1(M) > 0 ⇒ ψ > Bk min
u∈V

Mu

where Ak = 2
√
(k− 1)(k− 2) and Bk = (k − 2)/4. Both Ak and Bk are with constants

factors of k.

3.5 Conclusion

In this chapter, we study the maximum likelihood estimation for the β-model of ran-

dom hypergraphs under general design of experiments, which allow for different num-

ber of experiments over candidate edges. We reviewed the overlapping and polytope-

typed MLE conditions. We derived easy-to-interpret conditions for the MLE existence

and uniqueness based on the polytope-typed condition. We also provided bounds on the

MLE accuracy in terms of mean-square error and related it to a graph-theoretic property

known as graph non-bipartiteness.
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We derived a matching lower bound for the graph case when k = 2. We noted in the main

text that our MLE condition for the k-uniform hypergraph is weaker than for the graph

case. This is mainly because the Erdös-Gallai condition only holds for graphs and facet

definition for hypergraphs has not been established yet. Proving a tight MLE condition

for the hypergraph case remains an open problem.
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3.6 Proofs

Proof of Lemma 3.3.1

Using the separating hyperplane theorem for cones, S ∩ F = ∅ if, and only if, there exists

α ∈ Rn such that

∀s ∈ S, f ∈ F, s>α ≤ 0 ≤ f>α

which is equivalent to the overlapping condition:

∃α ∈ Rn such that ∀j ∈ {1, . . . , m} : (2yj − 1)x>j α ≥ 0.

Proof of Lemma 3.3.2

Let gj(β) = log(1 + e−x>j β
). Then, we can write

`(β) =
m

∑
j=1

[
yjgj(β) + (1− yj)gj(−β)

]
.

If gj(β) is strictly convex for all j ∈ {1, . . . , m}, then so is `(β).

For every β, β′ ∈ Rn and 0 ≤ λ ≤ 1, we have

λgj(β) + (1− λ)gj(β′) = log
(
(1 + e−x>j β

)λ(1 + e−x>j β′
)1−λ

)
≥ log

(
1 + e−(λx>j β+(1−λ)x>j β′)

)
= gj(λβ + (1− λ)β′).

If gj(β) is strictly convex for all j ∈ {1, . . . , m}, then the equality holds only when x>j β =

x>j β′ for all j ∈ {1, . . . , m}, i.e.

X(β− β′) = 0
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and vice versa. Hence, f is strictly convex if, and only if, null(X) = 0. This is equivalent

to rank(X) = n.

Proof of Lemma 3.3.3

Suppose that X is not of full rank. Then there exists α 6= 0 such that X>α = 0, i.e. there

exists α 6= 0 such that x>j α = 0 for all j ∈ {1, . . . , m}. Thus, there exists no overlap in the

dataset (X, y).

It follows that if (X, y) satisfies the overlapping condition, then this implies that X has

full rank.

Proof of Proposition 3.3.4

Let f denote the negative log-likelihood function of the β-model.

Necessity Suppose that (X, y) does not satisfy the overlapping condition and f attains

its minimum at β̂. Then, there exists α 6= 0 such that x>j α ≥ 0 if yj = 1 and x>j α ≤ 0 if

yj = 0 for all j ∈ {1, . . . , m}. Without loss generality, we assume that the first r points

have value 1 and the remaining points have value 0. Then, we can write

f (β) =
r

∑
j=1

log
(

1 + e−x>j β
)
+

m

∑
j=r+1

log
(

1 + ex>j β
)

.

From the last equation, it is easy to observe that f (β̂ + cα) ≤ f (β̂) for any c ≥ 0. This

means that the MLE cannot be unique.

Sufficiency If there is an overlap in (X, y), then for all α ∈ Rn, there exists some 1 ≤ j ≤

r such that x>j α < 0 or there exists some r + 1 ≤ j ≤ m such that x>j α > 0. We can see that

for all β′ ∈ dom f and α ∈ Rn, f (β′ + cα) → +∞, which implies that f has no directions
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of recession. By Theorem 2.1.1, the minimum set of f is non-empty and bounded. Then,

the uniqueness follows from Theorem 2.1.2 and Lemma 3.3.3.

Proof of Proposition 3.3.5

Necessity If X is not of full rank but we have extreme observations such that ỹj ∈

{0, mj} for some j ∈ {1, . . . , m̃}, then there exists α ∈ Rn such that x>j α ≥ 0 for 1 ≤ j ≤ r

and x>j α ≤ 0 for r + 1 ≤ j ≤ m and x>j α 6= 0 for some j ∈ {1, . . . , m̃}.

For any β′ ∈ dom f , we consider the sequence of vectors β(l) = β′ + lα. The negative

log-likelihood function at β(l) is of value

f (β(l)) =
r

∑
j=1

log
(

1 + e−(x>j β′+lx>j α)
)
+

m

∑
j=r+1

log
(

1 + ex>j β′+lx>j α
)

.

Since there is at least one i such that x>j α > 0 for 1 ≤ i ≤ r, or x>j α < 0 for r + 1 ≤ i ≤ m,

f (β(l)) is strictly decreasing with l. Hence, the MLE is at infinity on the boundary of

dom f , i.e. MLE does not exist.

Sufficiency Assume that X is not of full rank, i.e. rank(X) < n, and 0 < ỹj < mj for

all j ∈ {1, . . . , m̃}. Assumption rank(X) < n implies that there exists α 6= 0 such that

x>j α = 0 for all j ∈ {1, . . . , m̃}. These directions α belong to the constancy space of f .

Since 0 < ỹj < mj for all j ∈ {1, . . . , m̃} for every vector β not in the null space of X, there

exists some 1 ≤ i ≤ r such that x>j β < 0 or some r + 1 ≤ i ≤ m such that x>j β > 0. From

Theorem 2.1.1, we know that these vectors are not directions of recession of f . Therefore,

vectors in the null space of X are the only recession directions which also belong to the

constancy space of f . By Theorem 2.1.3, the minimum set of f is non-empty. Since the

overlapping condition does not hold in this case, the minimum set of f is unbounded.

Thus, we conclude that non-unique MLE exist.
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Proof of Theorem 3.3.6

We first show a lemma that allows us to turn the problem of showing that the normalized

degree sequence d is in the interior of the polytope of degree sequences with high prob-

ability to a problem of concentration of measure for the normalized degree sequence d.

Let B denote the event that d is on a facet of the polytope of degree sequences.

Lemma 3.6.1. The following inequality holds:

Pr[B] ≤ Pr [||d−E[d]||∞ ≥ (n− 1)E(E[d])] .

Proof. For any given mu,v, for u, v ∈ V with u 6= v, ỹu,v are independent random variables

with ỹu,v having binomial distribution with parameters mu,v and pu,v(β) = σ(βu + βv).

Recall the facet defining inequalities (3.5), (3.6), and (3.7).

For every S, T ⊆ [n] and x, y ∈ Rn, we have

| f (S, T, x, n)− f (S, T, y, n)| ≤ |S ∪ T|||x− y||∞.

This yields the following inequality

f (S, T, d, n) ≥ f (S, T, E[d], n)− |S ∪ T|||d−E[d]||∞.

Let B = B1 ∪ B2 ∪ B3 where

B1 = ∪v∈V{dv = 0}

B2 = ∪v∈V{dv = n− 1}

B3 = ∪(S,T)∈Ω{ f (S, T, d, n) = 0}.
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Note that we have

B1 = ∪v∈V{dv = 0}

⊆ ∪v∈V{dv ≤ 0}

= ∪v∈V{E[dv]− dv ≥ E[dv]}

⊆
{
||d−E[d]||∞ ≥ min

v∈V
E[dv]

}
,

B2 = ∪v∈V{dv = n− 1}

⊆ ∪v∈V{dv ≥ n− 1}

= ∪i∈V{dv −E[di] ≥ n− 1−E[dv]}

⊆
{
||d−E[d]||∞ ≥ min

v∈V
{n− 1−E[dv]}

}
,

and

B3 = ∪(S,T)∈Ω{ f (S, T, d, n) = 0}

⊆ ∪(S,T)∈Ω{ f (S, T, d, n) ≤ 0}

⊆ ∪(S,T)∈Ω

{
||d−E[d]||∞ ≥

f (S, T, E[d], n)
|S ∪ T|

}
⊆

{
||d−E[d]||∞ ≥ min

(S,T)∈Ω

{
f (S, T, E[d], n)
|S ∪ T|

}}
.

It follows that

Pr[B] ≤ Pr [||d−E[d]||∞ ≥ (n− 1)E(E[d])] .

We proceed with the proof of the theorem. By using union bound and Hoeffding’s bound,
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for every x ≥ 0,

Pr [||d−E[d]||∞ ≥ x] ≤ 2n exp
(
− 2x2

n− 1
H(M)

)
.

From this, with probability at least 1− 2/n2c−1,

||d−E[d]||∞ ≤

√
c

H(M)

log(n)
n− 1

.

Combining with Lemma 3.6.1, it follows that Pr[B] ≤ 2/n2c−1 under condition

E(E[d]) ≥

√
c

H(M)

log(n)
n− 1

. (3.16)

By assumption, we have

m ≤ H(M)

(
n
2

)
,

hence, (3.16) can be rewritten as,

m ≥ c
2

1
E(E[d])2 n log(n).

Proof of Corollary 3.3.7

First, note that

min
u∈V

E[du] = min
u∈V

∑
v∈V\{u}

pu,v(β) ≥ ε(n− 1). (3.17)

Second, note that

min
u∈V
{n− 1−E[du]} ≥ ε(n− 1). (3.18)
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Third, note that

∑
u∈S

E[du]− ∑
u∈T

E[du] ≤ ∑
u,v∈S:u 6=v

pu,v(β) + ∑
u∈S,v∈S∪T

pu,v(β)

− ∑
u,v∈T:u 6=v

pu,v(β)− ∑
u∈T,v∈S∪T

pu,v(β).

Hence, we have

f (S, T, E[d], n) ≥ ∑
u,v∈S:u 6=v

(1− pu,v(β)) + ∑
u∈S,v∈S∪T

(1− pu,v(β))

+ ∑
u,v∈T:u 6=v

pu,v(β) + ∑
u∈T,v∈S∪T

pu,v(β)

and, thus

f (S, T, E[d], n) ≥ ε|S|(n− 1− |T|) + ε|T|(n− 1− |S|)

= ε[(n− 1)(|S|+ |T|)− 2|S||T|].

Combining this with S and T being disjoint sets, we have

f (S, T, E[d], n)
|S ∪ T| ≥ ε

(
n− 1− 2

|S||T|
|S|+ |T|

)
.

Now, since |S|, |T| ≥ 1 and |S|+ |T| ≤ n, we have

|S||T|
|S|+ |T| =

1
1
|S| +

1
|T|
≤ 1

1
|S| +

1
n−|S|

≤ n
4

.

Thus, we have

f (S, T, E[d], n) ≥ ε

(
1
2

n− 1
)

. (3.19)

The right-hand sides in (3.17)-(3.19) are greater than or equal to ε(n− 1)/4, for all n ≥ 3.

Hence, for all n ≥ 3,

E(E[d]) ≥ 1
4

ε.



3.6. Proofs 51

Using this, condition in Theorem 3.3.6 holds for all n ≥ 3, under condition

m ≥ 12c
ε2 n log(n).

Proof of Lemma 3.3.8

Fix an arbitrary set of vertices S ⊆ V such that |S| ≥ k. Note that

∑
u∈S

du = Z1 + Z2

where

Z1 = ∑
u∈S

∑̃
S∈E

1I{S̃⊆S}1I{u∈S̃} and Z2 = ∑
u∈S

∑̃
S∈E

1I{S̃ 6⊆S}1I{u∈S̃}.

We obviously have

Z1 ≤ |S|
(
|S| − 1
k− 1

)
= k

(
|S|
k

)
.

We next upper bound Z2. Note that

Z2 = ∑
u∈V\S

∑̃
S∈E

|S ∩ S̃|
|S̃ \ S|

1I{S̃ 6⊆S}1I{u∈S̃}.

Under S̃ 6⊆ S, we have
|S ∩ S̃|
|S̃ \ S|

≤ k− 1.

Hence,

∑̃
S∈E

|S ∩ S̃|
|S̃ \ S|

1I{S̃ 6⊆S}1I{u∈S̃} ≤ (k− 1) ∑̃
S∈E

1I{S̃ 6⊆S}1I{u∈S̃} ≤ (k− 1)du.
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We use the notation Sn,k = {S ⊆ V : |S| = k}. We have

∑̃
S∈E

|S ∩ S̃|
|S̃ \ S|

1I{S̃ 6⊆S}1I{u∈S̃} ≤ ∑
S̃∈Sn,k

|S ∩ S̃|
|S̃ \ S|

1I{S̃ 6⊆S}1I{u∈S̃}

=
k−1

∑
s=1

s
k− s ∑

S̃∈Sn,k :|S∩S̃|=s

1I{u∈S̃}

=
k−1

∑
s=1

s
k− s

(
|S|
s

)(
n− |S| − 1
k− s− 1

)
=

|S|
n− |S|

k−1

∑
s=1

(
|S| − 1
s− 1

)(
n− |S|
k− s

)
=

|S|
n− |S|

k−2

∑
s=0

(
|S| − 1

s

)(
n− |S|

k− 1− s

)
=

|S|
n− |S|

((
n− 1
k− 1

)
−
(
|S| − 1
k− 1

))
.

Hence,

Z2 ≤ ∑
u∈V\S

min
{
(k− 1)du,

|S|
n− |S|

((
n− 1
k− 1

)
−
(
|S| − 1
k− 1

))}
.

Proof of Lemma 3.3.9

We first show a key step for proving the lemma. The goal is to show the existence of a

sufficiently large set that contains vertices with sufficiently large values of parameters, as

stated in the following lemma.

Lemma 3.6.2. Assume d = (d1, . . . , dn) is the expected degree sequence of a k-uniform random

hypergraph H = (V, E) with |V| = n satisfying (3.10) and k < (1 − α1)n, for constants

α1, α2 ∈ (0, 1). Then, if ||β̂||∞ ≥ C(α1, α2, k), there exists a set S ⊆ V such that |S| ≥ α1n and

β̂v ≥ ||β̂||∞/k2 for all v ∈ S.

Proof. Without loss of generality, assume that β̂max := maxv∈V β̂v > 0. Consider the set

S̄ = {v ∈ V : β̂v > −β̂max/k}. Let m be the cardinality of S̄. We will next show that

m < n. If m < k, then m < n obviously holds. Hence, we assume m ≥ k. By the moment
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equations, we have

dmax := max
v∈V

dv ≥ dv∗ ≥
(

m− 1
k− 1

)
σ(β̂max/k)

where v∗ denotes the index maximizing dv. As dmax ≤ (1− α2)(
n−1
k−1), this implies

(
n− 1
k− 1

)
−
(

m− 1
k− 1

)
>

(
n− 1
k− 1

) [
1− (1− α2)(1 + e−β̂max/k)

]
.

Thus, if β̂max > C(α2, k), then we have m < n.

Under m < n, the set V \ S̄ is non empty. Fix u ∈ V \ S̄. Consider the set Su = {v ∈ V :

β̂v < −β̂i/k}. Let mu denote the cardinality of Su. We next show that mu < n. Since we

assumed k < (1− α1)n, if mu < k− 1 then mu < (1− α1)n obviously holds. Hence, we

assume mu ≥ k− 1.

By the moment equations, we have

dmin := min
v∈V

dv ≤ du <

(
mu

k− 1

)
σ(β̂max/k) +

(
n− 1
k− 1

)
−
(

mu

k− 1

)
.

As dmin ≥ α1(
n−1
k−1), this implies

(
mu

k− 1

)
<

(
n− 1
k− 1

)
(1− α1)

(
1 + e−β̂max/k

)
.

Using the bounds
(n

i
)i ≤ (n

i ) ≤
( en

i
)i, it follows

mu < e[(1− α1)(1 + e−β̂max/k)]
1

k−1 n.

If β̂max > C(α1, k), then we have mu < (1− α1)n.

By assumption u ∈ V/S̄ and definition of Su, there are at least n−mu vertices v ∈ V such

that β̂v > β̂max/k2. Hence, if β̂max > C(α1, α2, k), then there are at least α1n vertices v ∈ V

such that β̂v > β̂max/k2.
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Assume β̂max := maxv∈V β̂v > 0. By Lemma 3.6.2, if β̂max > C(α1, α2, k), there exists a set

S? of cardinality |S?| ≥ α1n such that β̂v ≥ β̂max/k2 for all v ∈ S?. Hence,

∑
S′⊆S? :|S′|=k

pS′(β̂) ≥
(
|S?|

k

)
σ(β̂max/k).

By taking β̂max large enough, we obtain a contradiction with (3.11). Hence, β̂ must be

such that ||β̂||∞ ≤ C(α1, α2, α3, k).

The case when β̂max ≤ 0 follows by the same arguments by considering complements of

experiment outcomes and the reparametrization β̂′ := −β̂.

Proof of Theorem 3.3.10

Let us define the following events:

B1 = ∪v∈V

{
dv ≤ α1

(
n− 1
k− 1

)}
B2 = ∪v∈V

{
dv ≥ (1− α2)

(
n− 1
k− 1

)}

B3 = ∪S⊆V:|S|≥α1n

 ∑
S′⊆S:|S′|=k

yS′ ≤ α3

(
|S|
k

)
B4 = ∪S⊆V:|S|≥α1n

 ∑
S′⊆S:|S′|=k

yS′ ≥ (1− α4)

(
|S|
k

) .

Assume that for all S ⊆ V such that |S| ≥ α1n,

max{α1, α3} ≤
1

(|S|k )
∑

S′⊆S:|S′|=k
pS′(β) ≤ min{1− α2, 1− α4}.
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By Hoeffding’s bound, we have:

Pr[B1] ≤ n exp

−2
(

n− 1
k− 1

)min
i∈n

 1

(|S|k )
∑

S′⊆V:|S′|=k,i∈S′
pS′(β)− α1


2


Pr[B2] ≤ n exp

−2
(

n− 1
k− 1

)min
i∈n

1− α2 −
1

(|S|k )
∑

S′⊆V:|S′|=k,i∈S′
pS′(β)


2


Pr[B3] ≤ 2n max
S⊆V:α1n≤|S|≤n

exp

−2
(
|S|
k

)α3 −
1

(|S|k )
∑

S′⊆S:|S′|=k
pS′(β)

2


Pr[B4] ≤ 2n max
S⊆V:α1n≤|S|≤n

exp

−2
(
|S|
k

)1− α4 −
1

(|S|k )
∑

S′⊆S:|S′|=k
pS′(β)

2
 .

Assuming ε ≤ pS(β) ≤ 1− ε, for all S ⊆ V with |S| = k, we have

Pr[B1] ≤ n exp
(
−2(ε− α1)

2
(n

k

)k−1
)

Pr[B2] ≤ n exp
(
−2(ε− α2)

2
(n

k

)k−1
)

Pr[B3] ≤ 2n exp
(
−2(ε− α3)

2
(α1n

k

)k
)

Pr[B4] ≤ 2n exp
(
−2(ε− α4)

2
(α1n

k

)k
)

under condition α1, α2, α3, α4 ≤ ε.

Taking α1 = α2 = α3 = α4 = ε/2, we have

Pr[B1] ≤ n exp
(
−1

2
ε2
(n

k

)k−1
)

Pr[B2] ≤ n exp
(
−1

2
ε2
(n

k

)k−1
)

Pr[B3] ≤ 2n exp
(
−1

2
ε2
(nε

2k

)k
)

Pr[B4] ≤ 2n exp
(
−1

2
ε2
(nε

2k

)k
)

.



56 Chapter 3. The β-model for hypergraphs

By union bound, for event B defined by B = B1 ∪ B2 ∪ B3 ∪ B4, we have Pr[B] ≤ Pr[B1] +

Pr[B2] + Pr[B3] + Pr[B4]. For Pr[B] ≤ 1/nc to hold, for a positive constant c > 0, it suffices

that

n exp
(
−1

2
ε2
(n

k

)k−1
)
≤ 1

4nc (3.20)

and

2n exp
(
−1

2
ε2
(nε

2k

)k
)
≤ 1

4nc . (3.21)

Equation (3.20) is equivalent to

ε ≥
√

2k
k−1

2

√
(c + 1) log(n) + log(4)

nk−1 .

Equation (3.21) is equivalent to

ε ≥ 2
k+1
k+2 k

k
k+2

(
log(2)
nk−1 +

c log(n) + log(4)
nk

) 1
k+2

.

Proof of Proposition 3.4.1

We first establish the following lemma:

Lemma 3.6.3. If minβ′∈[β̂,β] λ1(∇2(−`(β′))) > 0, then

||β̂− β|| ≤ 2||∇`(β)||
minβ′∈[β̂,β] λ1(∇2(−`(β′)))

.

Proof. Let f denote the negative log-likelihood function and ∆ = β̂− β. By limited Taylor

expansion, we have

f (β̂) ≥ f (β) +∇ f (β)>∆ +
1
2

min
λ∈[0,1]

∆>∇2 f (β + λ∆)∆.
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Combining with f (β̂) ≤ f (β), we have

min
λ∈[0,1]

∆>∇2 f (β + λ∆)∆ ≤ −2∇ f (β)>∆.

Next, note

min
λ∈[0,1]

∆>∇2 f (β + λ∆)∆ ≥ min
λ∈[0,1]

λ1( f (β + λ∆))||∆||2.

Hence,

min
λ∈[0,1]

λ1( f (β + λ∆))||∆||2 ≤ −2∇ f (β)>∆.

By Cauchy-Schwartz inequality, | − ∇ f (β)>∆| ≤ ||∇ f (β)||||∆||, hence,

min
λ∈[0,1]

λ1( f (β + λ∆))||∆|| ≤ 2||∇ f (β)||.

For every β′ ∈ Rn, the gradient vector of the log-likelihood function is given by

∇`(β′) =
m

∑
j=1

(
yj −

1

1 + e−x>j β′

)
xj (3.22)

and the Hessian matrix of the log-likelihood function is given by

∇2(−`(β′)) =
m

∑
j=1

exjβ
′

(1 + exjβ′)2
xjx>j . (3.23)

We next show that under the overlapping condition,

||∇`(β)|| ≤ 1
1 + e−bk

√
2mk(log(n) + 2) (3.24)

with probability larger than or equal to 1− 2/(n Pr[||β̂||∞ ≤ b]).

From (3.22), note that ∇`(β) is the sum of independent random vectors zj = (yj −
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σ(x>j β))xj for j = 1, . . . , m satisfying

E[zj] = 0 and ||zj|| ≤
1

1 + e−bk

√
k.

Using this in Azuma-Hoeffding’s inequality (Lemma 2.3.3), we have

Pr
[
||∇`(β)|| > 1

1 + e−bk

√
2mk(log(n) + 2)

]
≤ 2

n
.

Combining this with

Pr
[
||∇`(β)|| > 1

1 + e−bk

√
2mk(log(n) + 2) | ||β̂||∞ ≤ b

]

≤
Pr
[
||∇`(β)|| > 1

1+e−bk

√
2mk(log(n) + 2)

]
Pr[||β̂||∞ ≤ b]

we prove the statement in (3.24).

We next show that

min
β′∈[β̂,β]

λ1(∇2(−`(β))) ≥ ekb

(1 + ekb)2 λ1(M). (3.25)

Since ||β̂||∞ ≤ b and ||β||∞ ≤ b, for every β′ ∈ [β̂, β], |x>j β′| ≤ kb for all j ∈ {1, . . . , m},

and
exjβ

′

(1 + exjβ′)2
≥ ekb

(1 + ekb)2 for all β′ ∈ [β̂, β] and j ∈ {1, . . . , m}.

It follows that

∇2(−`(β′)) � ekb

(1 + ekb)2 M for all β′ ∈ [β̂, β]

from which (3.25) follows.

The statement of Lemma 3.4.1 follows from Lemma 3.6.3, (3.24) and (3.25).
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Proof of Theorem 3.4.2

Let x be the normalized eigenvector (||x|| = 1) corresponding to the smallest eigenvalue

of M. We can write

λ1(M) = x>Mx = x>(D + A)x− x>(D− N)x.

By definition the smallest eigenvalue, x>(D + A)x ≥ λ1(D + A). By (3.15), λ1(D + A) ≥

ψ2/(4d∗). Since D − N is a diagonal matrix, we have x>(D + A)x ≤ maxu Du,u. This

proves the lower bound.

Similarly, we consider λ1(D + A) and bound it as follows:

λ1(D + A) = x>Mx + x>(D− N)x ≥ λ1(M) + min
u∈V

Du,u.

Again, by (3.15), λ1(D + A) ≤ 4ψ. This proves the upper bound.



Chapter 4

The β-model with random design

4.1 Overview

The experimental design is important to our analysis. In the previous chapter, we have

discussed about the accuracy of MLE and how the experiment design affects it. So far,

our results are for β-model with fixed design of experiments, i.e. the design matrix X is

assumed to be fixed. However, in real life settings, we may have limited resources for

experiments and our designs may not be regular or complete. Consider the testing phase

of a new game. We have limited number of volunteers and we do not allow too many

rounds of play. In order to gather as much information as possible, we may consider

grouping players randomly and uniformly into subsets of fixed size. It is important to

know the threshold number of experiments that guarantee the estimation accuracy for

model parameters under such random design cases.

In this chapter, we consider the beta model of random hypergraphs with random de-

sign matrix X. We add another level of randomness and consider the setting where the

underlying design matrix corresponds to a k-uniform random hypergraph, where exper-

iments are conducted for edges drawn by sampling with replacement from the set of all

combinations of k vertices of n vertices.

60
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Our model formulation is the similar to the fixed design case in the previous chapter.

Let V = {1, . . . , n} be a set of vertices with n ≥ 2. The beta model assigns individual

βi ∈ R for each vertex i and constructs a random hypergraph by putting a hyperedge yj

independently for a group of nodes Sj ⊆ V with probability

Pr[yj = 1] = 1− Pr[yj = 0] = σ

∑
i∈Sj

βi


We say that X ∈ {0, 1}m×n is the design matrix. We also define the correlation matrix M

s.t.

M =
m

∑
j=1

xjx>j = X>X.

Previously, we assumed that X is fixed. Now we consider random design matrix X

with independent rows sampled with replacement from the set of vectors {x ∈ {0, 1}n :

||x||1 = k}. We are interested in the conditions that are necessary and sufficient for X

to be of full rank. As for the fixed design case, we also study the MLE conditions and

MLE error bounds in this random design setting. The learning problem is more challeng-

ing due to the randomness. We note that the correlation matrix M does not conform to

the classical definition of adjacency matrix, as its diagonal elements are dependent on its

off-diagonal elements. Due to this complicated dependency structure, existing results on

random matrices cannot be directly applied to our setting.

4.1.1 Related work

The β-model of random hypergraphs is a logistic regression model with covariate vectors

x such that x ∈ {0, 1}n and ||x||1 = k. In this view, it is worth mentioning some recent

work on statistical inference for high-dimensional logistic regression models. Candés

and Sur (2020) established a sharp phase transition threshold for the MLE of a logistic

regression model with Gaussian covariates, using the framework of convex geometry

(Amelunxen et al. (2014)). Candés and Sur (2020) showed that for logistic regression with
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independent covariate vectors with dimension that is a constant-factor of the number of

observations, the MLE is biased and has greater variability than suggested by classical

estimation theory. Salehi et al. (2019) extended these results to high-dimensional logistic

regression models with regularization. Note that the randomness results from the Gaus-

sian covariates. An important property used in their analysis is the rotational invariance

of Gaussian random variables, which does not apply in our setting.

The necessary condition is that X does not have a null-column almost surely, which can

be reduced to the coupon subset selection problem (Stadje (1990); Adler and Ross (2001)).

It is much more challenging to derive the sufficient condition. There are few existing

work (Costello and Vu (2008, 2010); Cooley et al. (2018, 2019); Karoński and Łuczak (2002))

on deriving full rank condition for adjacent matrices of random graphs. In particular,

Costello and Vu (2008) considers the adjacency matrix of Erdő-Rényi G(n, p) random

graphs and further extend it to a class of symmetric sparse matrices. They have devel-

oped a generalized framework for identifying full rank conditions which we will follow

for our analysis. However, our setting does not conform to the definition of adjacency

matrices and requires new proofs and techniques in the analysis.

4.1.2 Summary of contributions

Our results can be summarized in the following points.

• We established new results for the β-model of random hypergraphs with a random

design matrix X, which has independent rows sampled with replacement from the

set of vectors {x ∈ {0, 1}n : ||x||1 = k}. We prove a necessary condition for the X

to have full rank almost surely, i.e. rank(X) = n. This is a sharp threshold for X to

not have a null-column almost surely, which we established by a reduction to the

coupon subset selection problem. We also conjectured the following sufficient condition
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for X to have full rank almost surely:

m ≥ max
{

c
1
k

n log(n), n
}

for any fixed constant c > 2, under assumption 2 ≤ k = o(n/ log(n)). This suf-

ficient condition is tight in the sense of being within a factor two of the necessary

condition m ≥ c(n/k) log(n), for a fixed constant c > 1. We have tested numeri-

cally to show that this condition empirically holds. We give a partial proof for the

sufficient condition, which is established by a framework for deriving full rank con-

ditions for adjacency matrices of random graphs Costello and Vu (2008, 2010). The

proof required new results to accommodate the class of random matrices we con-

sider in our case. Our results may be of an independent interest for the line of work

on the rank of random matrices.

• We found a sufficient condition for the MLE existence and uniqueness for the β-

model of random graphs with random design matrices. Specifically, for any β-

model with parameter β such that ε ≤ pu,v(β) ≤ 1− ε for all u, v ∈ V and u 6= v,

for some ε ∈ (0, 1), there exists a unique MLE with high probability provided that

the number of experiments is Ω(1
ε n5/4(log(n))1/4).

• On the applications side, we believe that our results provide useful insights into

statistical inference of β-model of random hypergraphs. Many relational data can

be represented by hypergraphs, where data entities are represented by vertices and

their group responses are represented by edges (sets of vertices). Our results pro-

vide theoretical guarantees for the MLE estimation under real-life settings where

experiment resources are limited.

Organization of chapter The chapter is organized as follows. We explore the condition

for the random design matrix to have full rank in section 4.2. The full rank condition is

necessary for the MLE uniqueness when the MLE exists and of interest for bounding the

parameter estimation error. Then, in section 4.3 we consider the MLE conditions and the
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MLE error bounds for the random design.

4.2 Rank of the design matrices

Since X is of full rank if, and only if, λ1(M) > 0, we focus our attention to finding

conditions under which λ1(M) > 0 with high probability. For every pair of vertices (u, v)

such that u 6= v, Mu,v is the number of experiments involving both u and v. Hence, for a

random design matrix, we have

E[Mu,v] =
(n−2

k−2)

(n
k)

m =
k(k− 1)
n(n− 1)

m.

Similarly, for every vertex u, Mu,u is the number of experiments involving vertex u.

Hence, we have

E[Mu,u] =
(n−1

k−1)

(n
k)

m =
k
n

m.

It can be readily shown that

λ1(E[M]) =
k(n− k)
n(n− 1)

m. (4.1)

4.2.1 Necessary condition

The first necessary condition asserted in the following proposition is derived by estab-

lishing a condition for λ1(M) > 0 to hold with high probability, using a concentration of

measure for sums of random matrices.

Proposition 4.2.1. Assume k = o(n). For every a > 0 and ε ∈ (0, 1], there exists a constant

ca,ε > 0 such that if

m > ca,εn log(n) (4.2)
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then, with probability at least 1− 1/na,

λ1(M) ≥ (1− ε)λ1(E[M]).

In particular, we can take ca,ε = 2(a + 1)/ε2.

Proposition 4.2.1 has the following two implications. First, it implies that X has full rank

with probability at least 1 − 1/na provided that k ≤ cn for some fixed c ∈ (0, 1) and

the number of experiments is Ω(n log(n)). Second, for the MLE error bound in Proposi-

tion 3.4.1 when ||β̂||∞ ≤ b with probability 1, if m > 4
ε2 n log(n), then with probability at

least 1− 3/n,
1√
n
||β̂− β|| ≤ ckb

1− ε

√
n(log(n) + 2)

km
. (4.3)

This implies 1
n ||β̂ − β||2 = O(1) with high probability, provided that k ≤ cn for some

fixed c ∈ (0, 1) and the number of experiments is Ω(n log(n)/k).

We next present a sharper necessary condition for the correlation matrix M of a random

design matrix X to have full rank, in terms of the constant factor and its dependency on

the size of experiments k. A necessary condition for M to have full rank is that X does

not have a null column. We first provide a tight condition for X to have non-null columns

with high probability.

Theorem 4.2.2. For any a > 0, a random design matrix X with m rows and n columns, with

each row having k elements equal to 1 and other elements equal to 0, has no null column with

probability at least 1− 1/na, if

m ≥ (1 + a)
1
k

n log(n). (4.4)

Moreover, this condition is tight in the sense that if k = o(n/ log(n)), then there exists a sequence

cn such that cn = O(1/ log(n)), so that for m = (1+ cn)
1
k n log(n), X has a null column almost

surely.

The sufficiency of (4.4) is straightforward to establish by using union bound and the prob-

ability of the event that an arbitrarily fixed column is null. The necessity of (4.4) is more
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intricate and follows from the solution of the coupon set selection problem, where each

edge experiment is seen as drawing a set of k coupons uniformly at random with replace-

ment from the set of n distinct coupons.

We illustrate the condition of Theorem 4.2.1 by the following numerical example.

Example 4.2.1. We randomly sample design matrices X by drawing m independent rows from

from the set of vectors with {0, 1}-valued entries with exactly k entries equal to 1. For each such

random design matrix X, we check whether X has a null-column. We repeat this for a set number

of independent repetitions to evaluate the fraction of instances for which X does not have a null-

column. We report numerical results for n = 100 and the number of repetitions equal to 1000.

In Figure 4.1 we show the fraction of realizations of matrix X with no null-column. The solid line

shows the probability that X has a null-column that follows from the coupon collector problem.

The dots are results of empirical evaluations.

Figure 4.1: Estimated probability for matrix X having a null column versus the normal-
ized number of experiments, for different values of parameter k.
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4.2.2 Sufficient condition

We next present a conjecture that identifies a sufficient number of experiments for X to

have full rank. Proving this conjecture is of interest as it provides a tight sufficient condi-

tion, which is within a factor of two of the necessary condition in Theorem 4.2.2.

Conjecture 4.2.3. Consider a random design matrix X with m rows and n columns such that

m ≥ n, with each row drawn independently with replacement from the set of vectors {x ∈

{0, 1}n : ||x||1 = k}, with k ≥ 2 and k = o(n/ log(n)). Under the given assumptions, if

the number of rows m is such that

m ≥ c
1
k

n log(n)

for any fixed constant c > 2, then X (and M equivalently) has full rank with probability at least

1−O(1/(log(log(n)))1/4).

We tested numerically by the following example.

Example 4.2.2. We tested whether X has full rank for independent samples of X. We fixed n =

100 and the number of samples to 1000, and varied the number of experiments m. In Figure 4.2

we show the fraction of instances for which X has full rank for different values of m.

We conclude that the results agree with our conjecture from Figure 4.2, which indicate that

the threshold number of experiments m for X to have full rank is max{c(n/k) log(n), n},

for a constant c greater than 1. Moreover, the results indicate that X has full rank al-

most surely, if m ≥ max{c(n/k) log(n), n}, for any fixed constant c > 2. All these results

conform to the necessary condition in Theorem 4.2.2 and the sufficient condition in Con-

jecture 4.2.3. Note that for larger values of k there is a sharp phase transition. The reason

is that for X to have rank n, it is necessary that m ≥ n. Hence, if m = cn log(n)/k, then it

must hold c ≥ k/ log(n), which fails to hold for large enough values of k in our numerical

example.

We propose to prove by following the same framework as in the work by Costello and Vu

(2008). Specifically, it is based on analysis of a graph growth process defined by adding
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Figure 4.2: Estimated probability of X having full rank versus the normalized number of
experiments, for different values of parameter k.

vertices one at a time, following a similar approach used for identifying full rank con-

ditions for adjacency matrices of random graphs. This amounts to studying a sequence

of correlation matrices that converges to correlation matrix M. The major difference be-

tween our setting and the setting in Costello and Vu (2008) is that the correlation matrix

M does not conform to the definition of adjacency matrices, as the diagonal elements

of M are dependent on its off-diagonal elements. Specifically, M is a signless Laplacian

matrix, with diagonal element of a row equal to the sum of off-diagonal elements of this

row.

However, proving the conjecture appears to be tricky due to this extra dependency struc-

ture of the correlation matrix M. Unfortunately, as of yet we were unable to prove it

exactly. In the following paragraphs, we will list key properties of interest and outline

the major steps of the general framework for proving the conjecture. Detailed proofs and

discussions can be found in section 4.5.
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Key properties The key property we discovered for the matrix M and its corresponding

graph G is negative association, which is a special form of dependence that allows many

useful properties of independence to carry over.

Recall the following definition of negative association mentioned in section 2.3.

Definition 4.2.4. A collection of random variables Y = (Y1, Y2, . . . , Yn) is said to be negatively

associated if for disjoint index sets I, J ⊆ [n] and two functions f and g both monotone increasing

or both monotone decreasing,

Cov
(

f (Xi, i ∈ I), g(Xj, j ∈ J)
)
≤ 0

We first note a simple fact of the random design matrix X.

Lemma 4.2.5. For each experiment t, RVs {Xtu, u ∈ V} are NA.

Note that we can write Muv = ∑t XtuXtv where (u, v) ∈ E. Intuitively, if some edges are

chosen, each of the others is less likely to be chosen. The next lemma proves the negative

dependency structure of the RVs {Muv, (u, v) ∈ E}.

Lemma 4.2.6. The RVs {Muv, (u, v) ∈ E} are NA.

The key point of the proof uses a common property first derived by Feder and Mihail

(1992) for balanced matroid. Specifically, any monotone property m over the variables in

a set S\{e} is negatively correlated with e.

Next, we show that the NA property can be transferred to the corresponding graph G.

Take a set S ⊂ V and denote du(S) = ∑v∈S 1{Muv > 0} as the number of distinct neigh-

bors of vertex u in the set S for all u ∈ V \ S.

Lemma 4.2.7. The RVs {du(S), u ∈ V \ S} are NA.

We also specify the following property of the set of vertices.
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Definition 4.2.8 (nice set). For any graph G = (V, E), set over vertices S ⊆ V is said to be nice

if there are at least two vertices u, v in V such that du(S) = dv(S) = 1.

Let us define, for 0 < c < 1,

γn = c
log(log(n))
(k− 1) log(n)

. (4.5)

Definition 4.2.9 (good). A graph G = (V, E) is said to be good if every set S ⊆ V that is not

nice has cardinality |S| > γnn. A symmetric matrix A is said to be good if the graph G with

adjacency matrix equal to the support of A is good.

Outline of the framework We follow the graph growth process exposing M minor by

minor. The framework consists of two major steps.

First, we find Mr such that its rank is close to r, where Mr is the upper r× r minor of M.

Let δn denote such an r, for 0 < δ ≤ 1. Such a value of δ can be chosen by the following

lemma. The proof relies on Lemma 4.2.6.

Lemma 4.2.10. Suppose p ≥ c1(k − 1) log(n)/n and c1(1− 1/k)(δk)2 > 2. Then, for any

ε > 0,

Pr[rank(Mδn) < (1− ε)δn] = O(e−ε2 1
k n log(n)).

Then, for δn ≤ r < n, we augment Mr with a new row and a new column to obtain

Mr+1 and show that the number of such augmentations is sufficient to remove any row

and column dependencies in Mn. This can be proved by showing that the augmentation

process runs into good matrices with high probability.

Lemma 4.2.11. For any r ∈ {δn, . . . , n}, we have that Mδn, . . . , Mr is good with probability

1−O(1/nc1δ−2−ε), for any fixed ε > 0.

We note that this lemma follows from the following conjecture on nicety.

Conjecture 4.2.12. For any r ∈ {δn, . . . , n}, δ ∈ [1/k, 1) and p ≥ c1(k − 1) log(n)/n with

c1 > 1, Gr = (Vr, Er) is such that every set S ⊆ Vr such that |S| ≤ γnn is nice, with probability

1−O(1/n2c1δ−1−ε), for any fixed ε > 0.
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Fix an arbitrary r ∈ {δn, . . . , n}. Recall that we defined du(S) = ∑v∈S 1{Muv > 0} as the

number of distinct neighbors of vertex u. Let Zu = 1 if du(S) = 1 and Zu = 0 otherwise.

Denote the sum of all Zu as N(V \ S, S). Since a set is nice if there are at least two vertices

u, v such that du(S) = dv(S) = 1, our goal is to upper bound the event that N(V \ S, S)

is smaller or equal to 1. Note that we can simply apply the Chebyshev’s inequality, but

the resulting bound is not tight. It will be a tight bound if we can prove that the set

of random variables {Zu, u ∈ V \ S} are negatively associated. However, proving this

is tricky as Zu is not an increasing function of du(S). Perhaps it is possible to prove it

directly by definition. We leave the analysis of this approach as a future work. We will

assume that this lemma holds in the full proof of the main conjecture.

Let ∆r := rank(Mr+1)− rank(Mr). Next, we prove that good matrices have the following

good properties.

Lemma 4.2.13. For every δn ≤ r < n, and real r× r matrix A, we have

1. If rank(A) < r and A is good,

Pr[∆r < 2 | Mr = A] = O

(
1√

log(log(n))

)

2. If rank(A) = r and A is good,

Pr[∆r < 1 | Mr = A] = O
(

1
(log(log(n)))1/4

)
.

Note that

rank(Mr) ≤ rank(Mr+1) ≤ min{rank(Mr) + 2, r + 1}. (4.6)

It is obvious that rank(Mr+1) ≤ r + 1. Since in each step we only add one new row and

one new column, the rank increases at most by two. Lemma 4.2.13 shows that the second

inequality in (4.6) holds with equality for all r such that δn ≤ r < n with high proba-

bility. Thus sufficient number of augmentation steps can remove any row and column

dependencies in the matrix M.
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Under Lemma 4.2.10 and Lemma 4.2.13, we can prove the main conjecture. The full proof

is given at the end of the chapter.

4.3 MLE conditions and MLE accuracy

As for the fixed design case, we are interested in the conditions that guarantee MLE ex-

istence and uniqueness in the random design case, as well as the MLE error under the

condition that MLE exists and is unique.

4.3.1 MLE existence and uniqueness

We present sufficient conditions for (X, y) to satisfy the overlapping condition, when X

is a random design matrix.

Theorem 4.3.1. Assume that design matrix X is random with m rows and n columns and ob-

servations are according to the β-model with parameter β such that ε ≤ pu,v(β) ≤ 1− ε for all

1 ≤ u < v ≤ n, for some ε ∈ (0, 1). Then, for any c > 1/2, an MLE exists and is unique with

probability at least 1− 2/n2c−1, provided that the number of experiments m satisfies

m ≥ 2c3/4 1
ε

n5/4(log(n))1/4.

The proof follows similar ideas we used to establish results in Section 3.3.3 but also makes

additional steps to bound the probability of the degree sequence being on a facet of the

degree sequence polytope due to random design matrix.

From Theorem 4.3.1, we observe that the sufficient number of edge experiments m is

sublinear in n2, for any sufficiently large ε.
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In Candés and Sur (2020), the authors established a sharp phase transition threshold for

the MLE for logistic regression with Gaussian covariates. The design matrix thus has

a different structure compared to our case. Our result only gives a sufficient condition

for the existence of a unique MLE. This condition is interpretable in the sense that it

explicitly describes the condition in terms of the number of experiments. Establishing

a sharp condition for the MLE existence for the type of design matrices considered in this

paper is an open problem.

Similarly as in the discussion of Theorem 3.3.7, we can derive a lower bound for the

number of edge experiments needed for the normalized degree sequence to be in the

interior of the degree sequence polytope. Assume that β is such that there exists u ∈ V

such that pu,v(β) = ε for all v 6= u. Note that

Pr[du = 0] = Pr[(1− ε)Mu ]

where Mu is the number of edge experiments in which vertex u takes part in. Note that

Mu is a random variable with binomial distribution with parameters m and 2/n. It fol-

lows that

E[(1− ε)Mu ] =

(
1− 2ε

n

)m
.

Hence, for the normalized degree sequence d to be in the interior of the degree sequence

polytope with probability at least 1− 1/na, for some a > 0, it is necessary that the number

of edge experiments m is such that

m ≥ a
2

1
ε

n log(n)(1 + o(1)). (4.7)

This matches the upper bound in Theorem 4.3.1 with respect to 1/ε while the upper

bound has an extra factor of n1/4/ log(n)3/4 with respect to n.

The lower bound (4.7) for the MLE existence and the sufficient number of edge experi-

ments for the full rank condition in Theorem 4.2.3 imply that there can be an arbitrarily

large gap between the two by taking an instance for which the expected normalized de-
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Figure 4.3: Root-mean-square error versus the normalized parameter k, for different val-
ues of n: (left) n = 10, (middle) n = 20 and (right) n = 40.

gree sequence is sufficiently close to a facet of the degree sequence polytope.

4.3.2 MLE error bounds

By Proposition 3.4.1 and (4.1), we have

1√
n
||β̂− β|| / ckb

√
log(n) + 2

m
1√

k
n

(
1− k

n

) . (4.8)

The upper bound on the MLE parameter estimation error increases as k goes to the bound-

ary points 2 and n− 1, for sufficiently small b. We validate that this holds the MLE pa-

rameter estimation error by experiments.

Example 4.3.1. We consider k-uniform hypergraph instances with even number n of items ac-

cording to the β-model with parameter vector β such that a half of items have parameter of value

−b and the other half have parameter of value b, for some b > 0. We fix the number of items

n and the number of experiments m and evaluate the root-mean-square-error of the MLE β̂ for

a sample of independently drawn random design matrices. In our experiments, we set b = 1,

m = n(n− 1)/2, and the number of repeated experiments to 100.

The MLE β is estimated using gradient descent algorithm, which produces a sequence β(t), with

initial vector β(0) having independent entries, sampled from uniform distribution on [−b, b]. The



4.4. Conclusion 75

gradient descent algorithm returns the estimate β(t?) where t? is the smallest integer t such that

||β(t)− β(t−1)||∞ < δ, and we set δ = 0.0001. In Figure 4.3 we show the root-mean-square error

||β(t?) − β||/
√

n versus the normalized parameter k/n for three different values of n.

From the figure, we observe that the root-mean-square error follows a ”U” shaped curve

for large enough n, as suggested by equation (4.8).

4.4 Conclusion

In this chapter, we studied the β-model of random hypergraphs with random design

matrices, defined by sampling candidate edges independently with replacement from the

set of all combinations of k vertices from the set of n vertices. We showed conditions for

the random design matrix to have full rank almost surely. We conjectured the condition is

tight, which requires the number of edge experiments to be at least c 1
k n log(n) , for a fixed

constant c > 2. Similarly as the fixed design case, we also derived a sufficient condition

for MLE existence and uniqueness.

Note that we tested numerically that our conjecture holds. However, it is challenging to

prove it exactly. As discussed in the sketch proof, this would require another conjecture

on the nicety property to hold. We leave this as future work.



76 Chapter 4. The β-model with random design

4.5 Proofs

Proof of Proposition 4.2.1

We consider random matrix M, defined as the sum of independent random matrices, as

given by

M =
m

∑
j=1

xjx>j .

Note that λ1(xjx>j ) ≥ 0 and ||xjx>j ||2 ≤ k for all j ∈ {1, . . . , m}. Note, also, that λ1(E[M])

is given in (4.1). The statement of the lemma follows by applying the matrix Chernoff

bound in Lemma 2.3.4.

Proof of Theorem 4.2.2

Sufficiency We first establish the first claim of the theorem, which states a sufficient

number of experiments for X to have all columns being non-null vectors with probability

at least 1− 1/na. To prove this, we bound the probability that an arbitrarily fixed column

is null. For every v ∈ V,

Pr[v-th column of X is null] =
(

1− k
n

)m
.

By union bound, we have

Pr[X has a null column] = Pr[∪n
v=1{v-th column of X is null}]

≤ n Pr[1-st column of X is null]

= n
(

1− k
n

)m

≤ ne−
km
n .
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Hence, for Pr[X has a null column] ≤ 1/na to hold it suffices that

m ≥ (1 + a)
1
k

n log(n).

Necessity We next prove the second claim of the theorem, by using the solution of the

coupon subset selection problem that is defined as follows. Let N = {1, . . . , n} be a ground

set of coupons. Let S1, . . . , Sm be subsets of coupons, each of cardinality k, drawn inde-

pendently, uniformly at random with replacement from N. For any given set A ⊆ N, let

Y(A) be the number of coupons in A each contained in at least one set S1, S2, . . . , Sm. The

coupon subset selection problem asks to solve for the distribution of Y(A). The classical

coupon collector problem, where the goal is to evaluate the probability of collecting all

distinct coupons by sampling one coupon at a time uniformly at random with replace-

ment, is accommodated as a special case where each subset selection is of cardinality 1.

By Theorem 1 in Stadje (1990), the distribution of Y(A) is given by

Pr[Y(A) < x] =
x−1

∑
i=0

(−1)x−i+1
(
|A|

i

)(
|A| − i− 1
|A| − x

)(
(n−|A|+i

k )

(n
k)

)m

where x = 0, 1, . . . , |A|.

Note that the probability of the event that X has a null column is equal to the probability

of the event {Y(N) < n}. Therefore, it follows

Pr[X has a null column] =
n

∑
i=1

(−1)i−1
(

n
i

)(
(n−i

k )

(n
k)

)m

.

This can be equivalently written as

Pr[X has a null column] =
n−k

∑
i=1

ai (4.9)

where

ai := (−1)i−1
(

n
i

)((
1− k

n

)
· · ·
(

1− k
n− i + 1

))m
.
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Now, note that ai ≥ 0 for all odd 1 ≤ i ≤ n− k and ai + ai+1 ≥ 0 for all odd 1 ≤ i < n− k

if, and only if,

i + 1
n− i

−
(

1− k
n− i

)m
≥ 0 for all odd 1 ≤ i ≤ n− k.

The left-hand side in the last inequality is increasing in i. Hence, the condition is equiva-

lent to

m ≥
log
(

n−1
2

)
log
(

1 + k
n−1−k

) . (4.10)

Note that the right-hand side in the last inequality is equal to 1
k n log(n)(1 − an) when

k = o(n/ log(n)) for any sequence an such that an = O(1/ log(n)).

From (4.9), under condition (4.10), we have

Pr[X has a null column] ≥ a1 + a2.

Note that

a1 + a2 = n
(

1− k
n

)m (
1− n− 1

2

(
1− k

n− 1

)m)
.

Now, assume that m = (1+ cn)
k
n log(n) where cn is a positive valued sequence. Then, we

obtain

a1 + a2 =
1

ncn

(
1− 1

2
1

ncn

)
(1 + o(1)).

Under condition cn = O(1/ log(n)), it follows that a1 + a2 = Ω(1), and hence, we have

Pr[X has a null column] = Ω(1).

Proof of Lemma 4.2.5

Define Euv = 1{Muv > 0}. Note that this is an increasing function on Muv. Thus RVs

{Euv, (u, v) ∈ E} are negatively associated. We can write du(S) = ∑v∈S Euv for all u ∈
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V \ S. Since du(S) is an increasing function on disjoint subset of RVs {Euv, (u, v) ∈ E}, we

can conclude that RVs {du(S), u ∈ V \ S} are also negatively associated.

Proof of Lemma 4.2.6

Let ηtuv = XtuXtv where (u, v) ∈ E for each experiment t. We omit t for a while as we

fix a particular experiment t and simply write ηe where e ∈ E when we do not refer to a

particular pair of elements.

Lemma 4.5.1. The RVs {ηuv, (u, v) ∈ E} are non-positively correlated.

Proof. Consider a pair of edges (u, v) and (u′, v′). If u 6= u′ and v 6= v′, then ηuv and

ηu′v′ are increasing functions defined on disjoint subsets of the set of random variables

{Xtu, u ∈ V}. By Lemma 4.2.5, {Xtu, u ∈ V} are NA, thus ηuv and ηu′v′ are NA, implying

Cov(ηuv, ηu′v′) ≤ 0.

If u = u′, we consider the covariance conditioning on Xu,

Cov(ηuv, ηu′v′) = E Cov(ηuv, ηu′v′ | Xu) + Cov(E(ηuv | Xu), E(ηu′v′ | Xu))

Note that the second term is zero. By Lemma 4.2.5 the first term is nonpositive. Thus

we can conclude that Cov(ηuv, ηu′v′) ≤ 0. The same argument works for the case when

v = v′.

From Lemma 4.5.1, we can derive an important property on the negative correlation be-

tween ηk and any monotone increasing property m over the variables ηe where e ∈ E \ k.

This is a common property firstly derived by Feder and Mihail (1992) for the balanced

matroid.

Lemma 4.5.2. For any set U ∈ E, monotone increasing function f defined over the random

variables ηe where e ∈ U, and all k ∈ E \U, we have

Cov(ηk, f (ηe, e ∈ U)) ≤ 0
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Proof. The proof in Feder and Mihail (1992) can be adapt to our case, To simplify the nota-

tion, denote by m the random variable f (ηe, e ∈ U). The goal is to show that Pr(m | ηk) ≤

Pr(m). We use induction on |E|. The case |E| = 1 is true as f is monotone increasing. For

the general case, note that

Pr(m | ηk) = Pr(ηe | ηk)Pr(m | ηeηk) + Pr(η̄e | ηk)Pr(m | η̄eηk)

Pr(m) = Pr(ηe)Pr(m | ηe) + Pr(η̄e)Pr(m | η̄e)

By Lemma 4.5.1, Pr(ηe | ηk) ≤ Pr(ηe). By the induction hypothesis applied to graph G

with deleted edge k, Pr(m | ηeηk) ≤ Pr(m | ηe). If in addition we have Pr(m | ηeηk) ≤

Pr(m | η̄eηk), then the lemma would follow by averaging principles. But such e can

always be chosen. Note that

∑
e 6=k

Pr(ηe | mηk) =

(
k
2

)
− 1 = ∑

e 6=k
Pr(ηe | ηk)

Hence there exist some e such that Pr(ηe | mηk) ≥ Pr(ηe | ηk), which is equivalent to the

condition Pr(m | ηeηk) ≤ Pr(m | η̄eηk) as required.

Using Lemma 4.5.1 and 4.5.2, we prove that the set of random variables {ηuv, (u, v) ∈ E}

satisfies a strong negative dependency structure, the negative association.

Lemma 4.5.3. The RVs {ηuv, (u, v) ∈ E} are NA.

Proof. We use induction on |E|. The case |E| = 1 is trivial. For the general case, let η1, η2

be an arbitrary partition of η and f , g be binary increasing functions. We want to show

that

Cov{ f (η1), g(η2)} ≤ 0

Since ∑e∈E ηe = (k
2), we have
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0 = Cov{ f (η1),
(

k
2

)
} = ∑

e∈E
Cov{ f (η1), ηe}

This means there exists some k ∈ E such that

Cov{ f (η1), ηk} ≥ 0 (4.11)

By conditional covariance formula,

Cov{ f (η1), g(η2)} = E Cov{ f (η1), g(η2) | ηk}+ Cov{E( f (η1) | ηk), E(g(η2) | ηk)}

(4.12)

The first term of eqn.(4.12) is nonpositive by induction hypothesis applied to graph G

deleting edge k. Note that E( f (η1) | ηk) and E(g(η2) | ηk) inside the second term are

binary random variables. If the covariance (4.11) is zero, then ηk and f (η1) are indepen-

dent and the second term is zero. If the covariance (4.11) is positive, by Lemma 4.5.2,

we know that E( f (η1) | ηk) and E(g(η2) | ηk) are discordant functions of ηk. Then, by

the Chebyshev inequality we can conclude that the second term is nonpositive. Thus the

whole expression is nonpositive.

Finally, we consider m independent experiments t = 1, . . . , m. Since union of indepen-

dent sets of negatively associated random variables are NA, the set of RVs {ηtuv, t =

1, . . . , m, (u, v) ∈ E} are NA.

Note that we can write Muv = ∑m
t=1 ηtuv. We immediately conclude the lemma as increas-

ing functions defined on disjoint subsets of the set of RVs are NA.

Proof of Lemma 4.2.7

Define Euv = 1{Muv > 0}. Note that this is an increasing function on Muv. Thus RVs

{Euv, (u, v) ∈ E} are negatively associated. We can write du(S) = ∑v∈S Euv for all u ∈

V \ S. Since du(S) is an increasing function on disjoint subset of RVs {Euv, (u, v) ∈ E}, we
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can conclude that RVs {du(S), u ∈ V \ S} are also negatively associated.

Proof of Lemma 4.2.10

To ease the proof, we introduce some notation. Let p be the probability that Mu,v takes a

non-zero value,

p = 1− Pr[Mu,v = 0] = 1−
(

1− k(k− 1)
n(n− 1)

)m

. (4.13)

In what follows, we assume that

c1
1
k

n log(n) ≤ m ≤ c2
1
k

n log(n) (4.14)

for some constants c2 > c1 > 1. From (4.13) and (4.14), it follows

p ≥ c1(k− 1)
log(n)

n

(
1− 1

2
c1(k− 1)

log(n)
n

)

and

p ≤ c2(k− 1)
log(n)

n

(
1 +

1
n− 1

)
.

By assumption, k = o(n/ log(n)), hence

c1(k− 1)
log(n)

n
(1− o(1)) ≤ p ≤ c2(k− 1)

log(n)
n

(1 + o(1)).

We need to upper bound the probability of the event {rank(Mδn) < (1− ε)δn} for any

fixed 0 < δ < 1 and 0 < ε < 1. Let E denote the event that the last εδn columns of Mδn

are in the span of remaining columns of Mδn. By symmetry and union bound, we have

Pr[rank(Mδn) < (1− ε)δn] ≤
(

δn
εδn

)
Pr[E].
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We decompose Mδn as follows

Mδn =

 A B

B> C


where A is a (1 − ε)δn × (1 − ε)δn matrix, B is a (1 − ε)δn × εδn matrix, and C is a

εδn× εδn matrix.

We condition on the values of A and B. Then, under event E, B = AF for a (1− ε)δn×

εδn matrix F and C = B>F. Note that F is not necessarily unique but B>F is unique.

Therefore, to bound Pr[E] it suffices to find a uniform upper bound for Pr[C = B>F∗ |

A = A′, B = B′] where F∗ is a solution to A′F∗ = B′ that holds for all A′ and B′.

We note that C is still random and the entries of C are not independent. We further

explore the dependency structure of the upper diagonal elements of C. Conditioning on

the values of A and B, the randomness of C is due to experiments containing only the last

δεn vertices. Let V denote the set of last δεn vertices and E the edge set. By Lemma 4.5.3,

RVs {Cuv, (u, v) ∈ E} are negatively associated.

Now we find a uniform bound for Pr[Cuv = Zuv, ∀u, v] with arbitrary values of Z. Let

I = {(u, v) | Zuv > 0} and J = {(u, v) | Zuv = 0}. Note that conditioning on Z, I and J

are fixed sets s.t. |I|+ |J| = (δεn− 1)δεn/2. We define CI = min{Cu,v | (u, v) ∈ I} and

CJ = max{Cu,v | (u, v) ∈ J}.

Pr(Cuv = Zuv, ∀u, v) ≤ Pr(CI > 0, CJ = 0)

≤ Pr[CJ = 0]Pr(CI > 0|CJ = 0)

≤ (1− p)|J| Pr(CI > 0|CJ = 0) (4.15)

The last inequality is by the negative association property of {Cuv, (u, v) ∈ J}.
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When the set of zero elements is larger, |J| ≥ (δεn− 1)δεn/4. In this case, we have

Pr[rank(Mδn) ≤ (1− ε)δn] ≤
(

δn
εδn

)
e−p (εδn−1)εδn

4

≤
(

δne
εδn

)εδn
e−p (εδn−1)εδn

4

≤ e
−
(

pk(εδn−1)εδn
4ε2n log(n)

− δk
ε log( e

ε)
1

log(n)

)
ε2 1

k n log(n)

≤ e−
(

c1
1−1/k

4 (δk)2(1− 1
εδn)−

δk
ε log( e

ε)
1

log(n)

)
ε2 1

k n log(n).

Under assumed condition c1
1−1/k

4 (δk)2 > 1, we have

Pr[rank(Mδn) ≤ (1− ε)δn] = O(e−ε2 1
k n log(n)).

On the other hand, when the set of non-zero elements is larger, we have |I| ≥ (δεn −

1)δεn/4. In this case, we condition the other way and we have,

Pr(Cuv = Zuv) ≤ Pr(CI > 0, CJ = 0)

≤ Pr[CI > 0]Pr(CJ = 0|CI > 0)

≤ (1− p)|I| Pr(CJ = 0|CI > 0) (4.16)

We can obtain the bound using the same argument as the case above. Combining the

results for both cases, we can prove the lemma.

Proof of Lemma 4.2.13

Fix an arbitrary r ∈ {δn, . . . , n}. To simplify the notation, let A be the upper left r× r mi-

nor of M and A′ be the augmentation of A by adding a new column x = (x1, . . . , xm+1)
>

and its transpose as a new row.

We prove the lemma by separately considering the following two cases: Case 1: rank(A) <

r and Case 2: rank(A) = r.
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Case 1 Consider the null space of A. Since A is singular, the dimension of its null space

is non zero. Hence, there exists ξ 6= 0 such that Aξ = 0.

Let sn be the number of nonzero elements of ξ. If sn ≤ γnn, then because A is good, there

exists some vertex v that has only one neighbor in the support of ξ. This implies that the

product of the v-th row of A and ξ is non-zero, which contradicts Aξ = 0. Thus, we have

sn > γnn.

Consider the new column x. By definition, the new column x specifies the number of

experiments containing both the new vertex (say, vertex r + 1) and each of the old vertices

u, 1 ≤ u ≤ r such that

xu =
m

∑
t=1

Xt,uXt,r+1.

Let us define the notation zt,u = Xt,uXt,r+1.

If x does not satisfy
r

∑
u=1

ξuxu = 0 (4.17)

then the new column is independent from the columns of A, and augmenting A by x

increases its rank by 2. Therefore, we bound the probability of the event {∑r
u=1 ξuxu = 0}.

We rewrite (4.17) as ξ>x = ∑m
t=1 ξ>zt. Let χt = ξ>zt. Since the experiments are indepen-

dent for all t = 1, . . . , m, χt are independent and identically distributed random variables

satisfying

χt =
r

∑
u=1

ξuzt,u = Xt,r+1

r

∑
u=1

ξuXt,u.

By the Littlewood-Offord theorem for sum of random variables Esseen (1968), if

2α ≤ Pr[χt = 0] ≤ 1− 2α (4.18)

with α = Ω((log(log(n))/ log(n))(k/n)), then

Pr

[
m

∑
t=1

χt = 0

]
= O

(
1√

mk/n

)
= O

(
1√

log(log(n))

)
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which is our desired result. This requires the number of non-zero elements of ξ to be

sufficiently large.

Lemma 4.5.4. If sn ≥ γnn with γn defined in (4.5), then

α = Ω
(

log(log(n))
log(n)

k
n

)
.

Proof. Let s+n and s−n denote the number of positive and negative elements of ξ. Without

loss of generality, we can assume s+n ≥ s−n . If this inequality does not hold, then we can

simply consider the vector −ξ. For the random variable χ1, we have

Pr[χ1 = 0] = 1− k
n
+

k
n

Pr[χ′1 = 0 | X1,r+1 = 1] (4.19)

where χ′1 = ∑r
u=1 ξuX1,u. From (4.19), Pr[χ1 = 0] ≥ 1− k/n and hence Pr[χ1 = 0] ≥ 2α,

for 0 < α ≤ (1/2)(1 − k/n). Furthermore, if Pr[χ′1 = 0 | X1,r+1 = 1] ≤ 1 − β, then

Pr[χ1 = 0] ≤ 1− 2α for 0 < α ≤ (β/2)k/n.

Now, let E′ denote the event that by sampling without replacement k − 1 balls from an

urn of n− 1 balls, none of the sampled balls are from S− and at least one of the sampled

balls is from S+, where S− and S+ are two disjoint sets of balls of cardinalities s+n and s−n ,

respectively. Then, we have

Pr[χ′1 > 0 | X1,r+1 = 1] ≥ Pr[E′]

and

Pr[E′] =
(n−1−s−n

k−1 )

(n−1
k−1)

1−
(n−1−sn

k−1 )

(n−1−s−n
k−1 )


=

(
1− s−n

n− 1

)
· · ·
(

1− s−n
n− (k− 1)

)
(

1−
(

1− s+n
n− s−n − 1

)
· · ·
(

1− s+n
n− s−n − (k− 1)

))
≥

(
1− 1

2
sn

n− (k− 1)

)k−1
(

1−
(

1− 1
2

sn

n

)k−1
)

.
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Hence, Pr[χ′1 = 0] ≤ 1− β(k, n, sn) where

β(k, n, sn) =

(
1− 1

2
sn

n− (k− 1)

)k−1
(

1−
(

1− 1
2

sn

n

)k−1
)

.

Now, note

β(k, n, γnn) =
c
2

log(log(n))
log(n)

(1 + o(1)).

Hence,

α = Ω
(

log(log(n))
log(n)

k
n

)
.

Case 2 In this case A is a non-singular r × r matrix. The determinant of A′ can be ex-

pressed as

det(A′) =
r

∑
u=1

r

∑
v=1

cu,vxuxv + det(A)xr+1 (4.20)

where cu,v is the (u, v) cofactor matrix of A. Our goal is to bound the probability of the

event {det(A′) = 0}.

As in Case 1, we define zt,u = Xt,uXt,r+1. Then we can rewrite the first term in the right-

hand side of equation (4.20) as follows

r

∑
u=1

r

∑
v=1

cu,vxuxv =
r

∑
u=1

r

∑
v=1

cu,v

(
m

∑
t=1

zt,u

)(
m

∑
s=1

zs,v

)

=
m

∑
t=1

m

∑
s=1

r

∑
u=1

r

∑
v=1

cu,vzt,uzs,v =
m

∑
t=1

m

∑
s=1

Qt,s

(4.21)

where

Qt,s :=
r

∑
u=1

r

∑
v=1

cu,vzt,uzs,v.

Define sets X = {zu,· : u ≤ m/2} and Y = {zu,· : u > m/2}. Then,

m

∑
t=1

m

∑
s=1

Qt,s = Q(X, Y)
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where Q(X, Y) is the quadratic form of X and Y satisfying

Q(X, Y) = QX,X + 2QX,Y + QY,Y

where

QX,X :=
m

∑
t=1

m

∑
s=1

r

∑
u=1

r

∑
v=1

xt,uxs,v

QX,Y :=
m

∑
t=1

m

∑
s=1

r

∑
u=1

r

∑
v=1

xt,uys,v

QY,Y :=
m

∑
t=1

m

∑
s=1

r

∑
u=1

r

∑
v=1

yt,uys,v.

Let c = −det(A)xr+1 be a fixed constant. By an application of Cauchy-Schwartz inequal-

ity, we bound the event {det(A′) = 0} by considering

Pr[Q(X, Y) = c]2 ≤ Pr[Q(X, Y) = Q(X̃, Y) = c] ≤ Pr[Q(X, Y)−Q(X̃, Y) = 0] (4.22)

where X̃ is an independent copy of X.

We next bound the difference between Q(X, Y) and Q(X̃, Y). Note that

Q(X, Y)−Q(X̃, Y) = 2(QX,Y −QX̃,Y) + QX,X −QX̃,X̃

= 2 ∑
s>m/2

r

∑
v=1

(
∑

t≤m/2

r

∑
u=1

cu,v(zt,u − z̃t,u)

)
zs,v + f (X, X̃)

where f (X, X̃) is independent of set Y. Let ξv be the term inside the large bracket. Then,

we can write

Pr[Q(X, Y)−Q(X̃, Y) = 0] = Pr

[
∑

s>m/2

r

∑
v=1

ξvzs,v = −1
2

f (X, X̃)

]
.

As in Case 1, if the number of non-zero elements of ξ is sufficiently large, then we can

bound the term using the result from Case 1. Conditioning on the number of zero ele-
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ments of ξ we have,

Pr[Q(X, Y)−Q(X̃, Y) = 0]

≤ Pr

[
∑

s>m/2

r

∑
v=1

ξvzs,v = −1
2

f (X, X̃) |
r

∑
v=1

1I{ξv=0} < γnn

]
(4.23)

+Pr

[
r

∑
v=1

1I{ξv=0} ≥ γnn

]
. (4.24)

Further condition the first term (4.23) on the possible values of ξ such that

∑
x

Pr

[
∑

s>m/2

r

∑
v=1

ξvzs,v = −1
2

f (X, X̃) |
r

∑
v=1

1I{ξv=0} < γnn, ξ = x

]
Pr[ξ = x]

Since each conditional probability term is bounded by O(1/
√

log(log(n))) for any fixed

ξ, the whole sum is bounded by O(1/
√

log(log(n))).

For the second term (4.24), we first consider the probability that each ξv takes value zero.

Since z and z̃ are independent copies, we have

Pr

[
∑

t≤m/2

r

∑
u=1

cu,v(zt,u − z̃t,u) = 0

]

= ∑
x

Pr

[
∑

t≤m/2

r

∑
u=1

cu,vzt,u = x

]
Pr

[
∑

t≤m/2

r

∑
u=1

cu,vz̃t,u = x

]

where the sum is over all possible values the second copy can take. If we can show that

for each v there are sufficiently many indices u for which cu,v 6= 0, then we can use the

result from Case 1 to bound the term (4.24).

Consider the cofactors of matrix A. Since A is non-singular, dropping any columns of

A will lead to a matrix Ã with exactly one linear combination of its rows equal to zero.

The cofactor is non-zero when we drop any of the rows in this combination. With high

probability, this combination of rows has size greater than γnn. This can be proved by

contradiction. Take a set S of rows in the column-deleted matrix Ã with size at most γnn.

If S is not independent, there exists ξ 6= 0 such that ASξ = 0 where AS is the transpose

of the matrix Ã with columns restricted to set S. Since |S| ≤ γnn, then by condition that
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A is good there exist at least two vertices with only one neighbor in the set S. Thus, after

column deletion, there exists at least one row in AS, say ASu with exactly one non-zero

element. This means ASu ξ 6= 0, which contradicts Aξ = 0. Therefore, it follows that for

each index v there are at least γnn indices u such that cu,v 6= 0.

These together give Pr[ξv = 0] = O(1/
√

log(log(n))) for all v. Thus,

E

[
r

∑
v=1

1I{ξv=0}

]
= O

(
n√

log(log(n))

)
.

By Markov’s inequality, the second term in (4.24) is O(1/
√

log(log(n))).

We have shown that

Pr[Q(X, Y)−Q(X̃, Y) = 0] = O

(
1√

log(log(n))

)
.

Combining with (4.22) we obtain

Pr[det(A′) = 0] = O
(

1
(log(log(n)))1/4

)
.

Proof of Conjecture 4.2.3

Assuming the conjecture 4.2.12 holds, we have the full proof for the main conjecture.

Let Gr denote the event that Mδn, . . . , Mr are good, for r ∈ {δn, . . . , n}. It can be readily

seen that

Pr[rank(Mn) < n] ≤ A + B + C (4.25)

where

A := Pr [{rank(Mn) < n} ∩ Gn | rank(Mδn) ≥ (1− ε)δn] ,

B := Pr [rank(Mδn) < (1− ε)δn]
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and

C := Pr[Gn].

By lemma 4.2.10, B = O(e−(ε
2/k)n log(n)). Assume that the conjecture 4.2.12 holds, we

have C = O(1/nc1δ−2−ε). In the following, we bound A. Let Yr = r − rank(Mr) and Xr

be defined as

Xr = 4Yr1{Yr>0}1Gr .

Matrix Mn is not of full rank if, and only if, Yn ≥ 1, or Xn ≥ 4 equivalently. We bound the

event that Xn ≥ 4 as follows.

Lemma 4.5.5. For every δn ≤ r < n,

E[Xr+1 | Mδn, . . . , Mr] ≤
3
5

Xr + O
(

1
(log(log(n)))1/4

)
.

Proof. If Yr = y > 0, by Lemma 4.2.13, Yr+1 = y− 1 with probability 1−O(1/
√

log(log(n))),

otherwise Yr+1 is at most y + 1. Thus,

E[Xr+1 | Mδn, . . . , Mn, Yr = y] ≤ 4y−1

(
1−O

(
1√

log(log(n))

))

+4y+1O

(
1√

log(log(n))

)
≤ 3

5
4y.

If Yr = 0, by Lemma 4.2.13, Yr+1 = 0 with probability 1−O(1/(log(log(n)))1/4), other-

wise Yr+1 = 1. Thus,

E[Xr+1 | Mδn, . . . , Mn, Yr = 0] = O
(

1
(log(log(n)))1/4

)
.

The proof of the lemma follows from the bounds shown above.
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By Lemma 4.5.5 and the law of total expectation,

E[Xr+1 | Mδn] ≤
3
5

E[Xr | Mδn] + O
(

1
(log(log(n)))1/4

)
.

By induction from δn to n, we have

E[Xn | Mδn] ≤
(

3
5

)n−δn
Xδn + O

(
1

(log(log(n)))1/4

)
.

For Mδn satisfying the condition rank(Mδn) ≥ (1− ε)δn where ε = (1− δ)/(4δ), we have

Xδn ≤ (
√

2)n−δn, and

E[Xn | rank(Mδn) ≥ δn(1− ε)] ≤
(

3
√

2
5

)n−δn

+ O
(

1
(log(log(n)))1/4

)
= O

(
1

(log(log(n)))1/4

)
.

By Markov inequality, it follows that

Pr [Xn ≥ 4 | rank(Mδn) ≥ (1− ε)δn] = O
(

1
(log(log(n)))1/4

)
.

This implies A = O(1/(log(log(n)))1/4).

From (4.25) and the established bounds on A, B and C, we have that for any c1 and δ such

that 1/5 < δ < 1 and c1δ > 2, we have

Pr[rank(Mn) < n] = O
(

1
(log(log(n)))1/4

)

which completes the proof of the theorem.

Proof of Theorem 4.3.1

Note that (Mu,v, 1 ≤ u < v ≤ n) is a random vector with multinomial distribution with

parameter m and uniform probability parameters equal to 1/(n
2).
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Let us condition on that each u ∈ V takes part in mu experiments. Then, we have

E

[
du | ∑

w 6=u
Mu,w = mu

]
= ∑

v 6=u
E

[
ỹu,v

Mu,v
1I{Mu,v>0} | ∑

w 6=u
Mu,w = mu

]

= ∑
v 6=u

pu,v(β)Pr

[
Mu,v > 0 | ∑

w 6=u
Mu,w = mu

]

=

(
1−

(
1− 1

n− 1

)mu)
∑

v 6=u
pu,v(β).

Now, note that the number of experiments in which vertex u ∈ V participates, mu, is a

random variable that has binomial distribution with parameters m and 2/n. Hence, it

follows

E[du] =

(
1−E

[(
1− 1

n− 1

)mu])
∑

v 6=u
pu,v(β)

=

(
1−

(
1− 2

n(n− 1)

)m)
∑

v 6=u
pu,v(β).

We can write

E[du] = cm,n ∑
v 6=u

pu,v(β)

where

cm,n := 1−
(

1− 2
n(n− 1)

)m
.

Under m = o(n2), we have

cm,n =
2m
n2 (1 + o(1)).

We show the following lemma.

Lemma 4.5.6. For any γ > 0 and c > 1/2, under condition γ2c2
n,m(n− 1) ≥ c log(n), with

probability at least 1− 2/n2c−1,

||d−E[d]||∞ ≤
√

c(1 + γ)cn,m(n− 1) log(n).
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Proof. By using union bound, we have

Pr[||d−E[d]||∞ ≥ x] ≤ n max
v∈V

Pr[|dv −E[dv]| ≥ x].

Fix an arbitrary u ∈ V. Conditional on Mu := (Mu,v, v 6= u) = mu, by Hoeffding’s

inequality, we have

Pr[|du −E[du]| ≥ x | Mu = mu]

= Pr

[∣∣∣∣∣∑v 6=u

ỹu,v

mu,v
1I{mu,v>0} −E

[
∑
j 6=i

ỹu,v

mu,v
1I{mu,v>0}

]∣∣∣∣∣ ≥ x | Mu = mu

]

≤ 2 exp

(
− 2x2

∑v 6=u
1

mu,v
1I{mu,v>0}

)
.

Hence, we have

Pr[|du −E[du]| ≥ x] ≤ 2 E

[
exp

(
− 2x2

∑v 6=u
1

Mu,v
1I{Mu,v>0}

)]
.

We next use the obvious fact

∑
v 6=u

1
mu,v

1I{mu,v>0} ≤ ∑
v 6=u

1I{mu,v>0}

which yields

Pr[|du −E[du]| ≥ x] ≤ 2 E

[
exp

(
− 2x2

∑v 6=u 1I{Mu,v>0}

)]
.
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Now, for γ > 0, we have

E

[
exp

(
− 2x2

∑v 6=u 1I{Mu,v>0}

)]

≤ exp

− 2x2

(1 + γ)E
[
∑v 6=u 1I{Mu,v>0}

]


+Pr

[
∑

v 6=u
1I{Mu,v>0} ≥ (1 + γ)E

[
∑

v 6=u
1I{Mu,v>0}

]]
.

Random variables 1IMu,v>0, v 6= u, are negatively associated, hence by Dubhashi and

Ranjan (1998), we can apply Hoeffding’s bound,

Pr

[
∑

v 6=u
1I{Mu,v>0} ≥ (1 + γ)E

[
∑

v 6=u
1I{Mu,v>0}

]]
≤ e−

2γ2 E[∑v 6=u 1I{Mu,v>0}]
2

n−1 .

Therefore, we have

1
2

Pr[|du −E[du]| ≥ x]

≤ exp
(
− 2x2

(1 + γ)cn,m(n− 1)

)
+ exp

(
−2γ2[cn,m(n− 1)]2

n− 1

)
.

We have Pr[|du − E[du]| ≥ x] ≤ 2/n2c, under the condition that each term in the right-

hand side of the last inequality is bounded by 1/n2c, which is equivalent to

x ≥
√

c(1 + γ)cn,m(n− 1) log(n) (4.26)

and

γ2c2
n,m(n− 1) ≥ c log(n). (4.27)

We next show the following lemma.
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Lemma 4.5.7. For all n ≥ 3,

E(E[d]) ≥ 1
4

cm,nε.

Proof. First, note that

min
u∈V

E[du] ≥ cm,nε,

and

min
u∈V
{n− 1−E[du]} ≥ (n− 1) (1− cm,n(1− ε)) ≥ cm,nε(n− 1).

For every (S, T) ∈ Ω, we have

∑
u∈S

E[du]− ∑
u∈T

E[du] ≤ ∑
u,v∈S:u 6=v

cm,n pu,v(β) + ∑
u∈S,v∈S∪T

cm,n pu,v(β)

− ∑
u,v∈T:u 6=v

cm,n pu,v(β)− ∑
u∈T,v∈S∪T

cm,n pu,v(β).

Hence, we have

f (S, T, E[d], n) ≥ ∑
u,v∈S:u 6=v

(1− cm,n pu,v(β)) + ∑
u∈S,v∈S∪T

(1− cm,n pu,v(β))

+ ∑
u,v∈T:u 6=v

cm,n pu,v(β) + ∑
u∈T,v∈S∪T

cm,n pu,v(β)

and, thus

f (S, T, E[d], n)

≥ (1− cm,n(1− ε))|S|(n− 1− |T|) + cm,nε|T|(n− 1− |S|)

= (1− cm,n)|S|(n− 1− |T|) + cm,nε[(n− 1)(|S|+ |T|)− 2|S||T|].

Combining this with S and T being disjoint sets, we have

f (S, T, E[d], n)
|S ∪ T| ≥ (1− cm,n)

|S|(n− 1− |T|)
|S|+ |T| + cm,nε

(
n− 1− 2

|S||T|
|S|+ |T|

)
.
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Using this with (3.19), we have

f (S, T, E[d], n)
|S ∪ T| ≥ cm,nε

(
1
2

n− 1
)

.

It follows that for n ≥ 3,

E(E[d]) ≥ 1
4

cm,nε.

Now, take x such that

x =
1
4

cm,nε ≤ E(E[d]).

For this choice of x, (4.26) reads as

cm−1 ≥
16c(1 + γ)

ε2 log(n).

Since cm,n = 2m
n2 (1 + o(1)), we have

m ≥ 8c(1 + γ)

ε2 n log(n)(1 + o(1))

and

m ≥
√

c
2γ

n3/2
√

log(n)(1 + o(1)).

From this it follows that for Pr[B] ≤ 2
n2c−1 , for every fixed ε ∈ (0, 1], it suffices

m ≥ max

{
8c(1 + γ)

ε2

√
log(n)

n
,
√

c
2γ

}
n3/2

√
log(n)(1 + o(1)).

Thus, m can be chosen such that m = O(n3/2
√

log(n)) which indeed is sublinear in n2

but grows faster with n than n log(n). This scaling comes from the concentration bound

for ∑v 6=u 1I{Mu,v>0}.
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The value of the parameter γ can be optimized by choosing γ? such that

8c(1 + γ?)

ε2

√
log(n)

n
=

√
c

2γ?
.

It follows that

γ? =
ε

4c1/4

(
n

log(n)

)1/4

.

This yields the sufficient number of experiments:

m ≥ 2c3/4

ε
n5/4(log(n))1/4.



Chapter 5

Sketching stochastic valuation functions

5.1 Overview

Evaluation of sets of items arises in various applications such as for ranking and selecting

items in assortment optimization, team selection in online gaming, freelancing platforms,

web search, and other online platforms. We have mentioned some of the typical examples

in the introduction chapter.

In these applications, we often model set outcomes using set valuation functions, defined

as function of item values within the group of interest. It is important to enable computing

a set valuation function accurately and in a computation cost-efficient manner. A general

approach to achieve this is to use compact summaries of items and use these summaries

to approximate the underlying valuation function with a sketch valuation function. We

call such approximation as sketching. Formally, given a set function u, function v is an

α-sketch for u if for every set S ⊆ N we have

αv(S) ≤ u(S) ≤ v(S)

for every S ⊆ Ω, for some α ∈ (0, 1].

Our goal is to find a γ-sketch v for a set function u that allows us to approximate u every-

99
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where. At the same time, we are interested in finding good representations Q1, . . . , Qn of

respective item value distributions P1, . . . , Pn such that we have control of their represen-

tation sizes. Importantly, we require that the sketch v can be evaluated by only having

access to summaries Q1, . . . , Qn. It is desired for these summaries to be compact while

allowing for (a) the sketch function to be an α-approximation and (b) efficient evaluation

of value queries for sketch function v.

Having an α-approximate sketch valuation function is useful for different optimization

problems. For example, consider the best set selection problem that asks to find a set S∗

that maximizes u(S) over S ⊆ Ω subject to the cardinality constraint |S| = k. If there exists

an algorithm that provides a c-approximation for the best selection problem with respect

to a α-sketch function v, then using the output of this algorithm is a αc-approximation

for the original best set selection problem. Another example is the welfare maximization

problem, where the goal is to find disjoint sets of items that maximize a welfare function

defined as the sum of expected group values subject to cardinality constraints. It is of

interest in online platforms where individuals are assigned to multiple disjoint groups.

The key problem is how to construct such summaries and how to use them to evaluate

the sketch valuation function so that the sketch function provides a good approximation

and can be evaluated efficiently for any queried set of items. We note that compact item

summaries can be constructed in many different ways. However, our goal is not only to

approximate the stochastic valuation function with high accuracy, but also to find good

representations for item distributions such that we have control of their representation

sizes. It is challenging to attain both requirements at the same time. Moreover, we require

the approximation to hold everywhere, not only for the best set, while most of the existing

works focus solely on the optimization problem.

5.1.1 Related work

Goemans et al. (2009) were first to formulate the problem of approximating a submodular
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function everywhere, i.e. approximating its value for points of the domain. Given a value

oracle access to a function u on a ground set of size n, the goal is to design an algorithm

that performs a polynomial number in n of value queries to the oracle, and then construct

an oracle for a function v such that for every set S, v(S) approximates u(S) to within a fac-

tor α. The authors have shown that there exists an algorithm that for any non-negative,

monotone, submodular function u, achieves approximation factor α = O(
√

n log n). It

was also shown that no algorithm can achieve a factor better than Ω(
√

n/ log n). The

approximation function is the root-linear function v(S) =
√

∑i∈S ci for some coefficients

c1, . . . , cn in R+. Balcan and Harvey (2011) showed that for some matroid rank functions,

a subclass of submodular set functions, every sketch fails to provide an approximation

ratio better than n1/3. Badanidiyuru et al. (2012) showed that every subadditive set func-

tion u has an α-sketch where α = O(
√

npolylog(n)), and that there is an algorithm that

can achieve this with a polynomial number of demand queries. They have also shown

that every deterministic algorithm that only has access to a value oracle cannot guarantee

a sketching ratio better than n1−ε.

The sketches in references discussed so far used geometric constructions, by finding an

ellipsoid that approximates well the polymatroid that is associated with u. Cohavi and

Dobzinski (2017) showed how to obtain faster and simpler sketches for valuation func-

tions, using an algorithm that finds a Õ(
√

n) sketch of a submodular set function with

only Õ(n3/2) value queries, and an algorithm that finds a Õ(
√

n) sketch of a subadditive

function with O(n) value queries.

The problem of approximating the expected value of a function of independent random

variables was studied as early as by Klass (1981), focused on approximating expected

value of a function of a sum of independent random variables, by a function that involves

expectations only with respect to univariate marginal distributions.

In this chapter, we consider a different class of set valuation functions called stochas-

tic valuation function, defined as the expectation of a valuation function of independent

random item values. Various instances of stochastic valuation functions have been con-
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sidered in previous works with different aims. Most of them focused on valuation max-

imization problems subject to some constraints, such as best set selection subject to a

cardinality or more general budget constraints, or more general welfare maximization

problems.

Asadpour and Nazerzadeh (2016) studied the problem of maximizing a monotone sub-

modular function, defined as the expected value of a monotone submodular value func-

tion, subject to a matroid constraint. Kleinberg and Raghu (2018) studied this problem

for the special case of cardinality constraints, for the class of test score algorithms, which

use one-dimensional representations of item value distributions. They showed that for

a sum of top-order statistics objective function, there exist test scores that guarantee a

constant-factor approximation. They also showed that a constant-factor approximation

is the best achievable. Using a framework based on sketch functions, Sekar et al. (2021)

showed that there exist test scores that guarantee a constant-factor approximation for a

subset of monotone submodular functions that satisfy an extended diminishing returns

property. In particular, they found a O(log n)-approximate sketch function using a k-

dimensional test score. To the best of our knowledge, this is the best previously-known

sketch for stochastic valuation functions, for monotone submodular functions that satisfy

the extended diminishing returns property. Compared to this work, our work achieves a

better approximation guarantee (constant factor), at the cost of an extra factor of log(n)

in the representation size. We work with comparable function classes. The current work

applies to monotone subadditive or submodular set functions defined for valuation func-

tions satisfying a weak homogeneity or an extendable concavity property, while Sekar

et al. (2021) is about monotone submodular set functions for valuation functions satis-

fying an extended diminishing returns property. Lee et al. (2021) further extended the

framework of test scores for stochastic valuation maximization subject to more general

budget constraints.

Mehta et al. (2020) showed a PTAS (Polynomial Time-Approximation Scheme) for a stochas-

tic valuation maximization problem with the maximum valuation function subject to

a cardinality constraint with budget k, by representing each item’s distribution with a



5.1. Overview 103

O(k log(k))-size histogram. Our discretization algorithm uses a similar binning strategy

as in Mehta et al. (2020) (exponential binning). An important difference is that our algo-

rithm computes a discretized distribution for each item separately without any computa-

tions involving multiple items, while Mehta et al. (2020) require using the same binning

boundaries for all discretized distributions which are computed by a computation in-

volving all items. This means that our algorithm is more practical and can be computed

more efficiently without relying on joint item distributions. Importantly, our guarantees

are different as they hold for the problem of approximating a stochastic valuation func-

tion everywere, while Mehta et al. (2020) is focused on best set selection problem only

for a specific valuation function. We note that neither Lee et al. (2021) nor Mehta et al.

(2020) provided results on sketching for approximating a stochastic valuation function

everywhere.

Our work is also related to the concept of tensor estimation. Note that we can construct

a k-order tensor where the value of each entry corresponds to utility of a set S of size k.

Existing works in high-order tensor estimation (Gandy et al. (2011); Tomioka et al. (2010);

Shah et al. (2016)) assume independent additive noises for tensor entries, and the goal

is find algorithms that achieve consistent estimation for all tensor entries with minimum

sample complexity. Compared to the line of works in high-order tensor estimation, we

consider a different framework and goal, but share the same idea of approximation ev-

erywhere. Our work can be seen as exploring different approaches for tensor estimation,

instead of using direct sampling.

Finally, we point to the line of work on data summaries, which considered sketching of

various properties of sets, multisets, ordered data, vectors and matrices, and graph data.

We refer the reader to the book Cormode and Yi (2020) and the references therein.

5.1.2 Summary of contributions

Our results can be summarized in the following points.
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• We present an approximation everywhere guarantee for different classes of stochas-

tic valuation functions. Our work is the first step towards understanding approx-

imation of stochastic valuation functions everywhere. The existing related work fo-

cused instead on optimization problems only, or approximation schemes using one-

dimensional item value distribution representations.

• We show that for weakly homogeneous valuation functions f with degree d and

tolerance η, a constant-factor approximation can be guaranteed for approximating a

stochastic valuation function everywhere, for any cardinality of a set of items, with

a summary of each item’s distribution of size O(n log(n)). More specifically, an α-

approximate sketch function can be found where α is arbitrarily close to 1/(4η),

with the support size of each discretized distribution s = O((1/d)k log(k)) for sets

of cardinality less than or equal to k. Several commonly used valuation functions

are weakly homogeneous with degree d = 1 and tolerance η = 1. Hence, for these

valuation functions, we have an α-sketch with α arbitrarily close to 1/4 and s =

O(k log(k)). By extending the approximation guarantee to other conditions and

using univariate transformations, we are able to cover a wide range of stochastic

valuation functions. Note that most work on best set selection problem using score

representations of item value distributions is focused on specific functions, such as

maximum value, concave function of the sum of values, and other similar functions.

Our work goes much beyond this in providing results for a class of functions, which

include all these special functions.

• The discretized distributions are computed by using an algorithm based on the

well-known concept of exponential binning, as, for example, used in Mehta et al.

(2020). This algorithm uses two input parameters, ε and a, that allow us to con-

trol the size of the support of the output discretized distribution. For an item value

distribution, the algorithm outputs a discretized distribution with support of size

s = O((1/ε) log(1/a)). Our work shows that this disretization algorithm can pro-

vide a constant-factor approximation for the problem of approximating a stochas-

tic valuation set function everywhere. Previous work Mehta et al. (2020) showed
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that similar discretization algorithm can achieve an approximation guarantee for

a different problem, maximizing the expected value of the maximum of random

item values subject to a cardinality constraint. Our results are established by using

different proof techniques as we consider the problem of approximating a stochas-

tic valuation function everywhere, and allow for a more general class of valuation

functions. The disretization algorithm uses value oracle access to item value dis-

tribution. This is a natural and mild assumption in applications where an item

value distribution is the empirical distribution of item values in a dataset. In any

case, the algorithm uses simple properties of a distribution such as quantile values,

which can be efficiently estimated from samples when item value distributions are

unknown.

• Our numerical results, obtained by using both randomly generated and real-world

data, validate various hypotheses suggested by our theoretical analysis and demon-

strate that accurate function approximations can be obtained by our proposed method.

5.2 Problem formulation

Let Ω = {1, . . . , n} be a ground set of items. Each item i ∈ Ω has a value according to

a random variable Xi with distribution Pi, and item values X1, . . . , Xn are assumed to be

independent. We consider the class of stochastic valuation functions, which for a ground

set of items Ω, are defined as

u(S) = E[ f (XS)] for S ⊆ Ω

where f : Rn
+ → R+ is a monotone function and XS is a n-dimensional vector with the

i-th component equal to Xi if i ∈ S and is equal to 0, otherwise.
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Alternatively, we can write the stochastic valuation function as

u(S) = E[ f ((Xi, i ∈ S))] (5.1)

where for any S ⊆ Ω and x ∈ Rn, we write (xi, i ∈ S) to denote z ∈ Rn such that zi = xi

if i ∈ S, and zi = 0, otherwise. We will use these two forms interchangeably.

We have two specific goals in mind.

First goal We aim to find good representations of items for approximating the stochas-

tic valuation function u(S). We compute Q1, . . . , Qn as representations of P1, . . . , Pn which

correspond to distributions of some new discrete random variables Y1, . . . , Yn. Then we

compute a sketch set function v(S) defined as the expected value of function f with re-

spect to item value distributions Q1, . . . , Qn. The sketch function should approximate the

stochastic valuation function u(S) for any set of items S within a multiplicative approxi-

mation error tolerance, i.e., for some β ≥ α > 0,

αv(S) ≤ u(S) ≤ βv(S).

When this guarantee holds we say that v is an (α, β)-approximation of u that allows us to

approximate u everywhere. Note that αv(S) ≤ u(S) ≤ βv(S) can always be interpreted

as an approximation guarantee γṽ(S) ≤ u(S) ≤ ṽ(S) where γ = α/β and ṽ(S) = βv(S).

In this case we say that ṽ is a γ-approximation of u.

Second goal We are also interested in two optimization problems: best set selection and

welfare maximization. The best set selection problem asks to find a set S∗ that maximizes

u(S) over S ⊆ Ω subject to cardinality constraint |S| = k. A set S is said to provide a

c-approximation for the best selection problem of function u if for some c > 0,

u(S) ≥ c ·max{u(S) : |S| = k}
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where sketch v is evaluated by only having access to summaries Q1, . . . , Qn. Preferably,

the approximation factor should not depend on the cardinality of set k and we have con-

trol of the representation size.

The welfare maximization problem is a strict generalization of the best set selection prob-

lem. Specifically, we are given a positive integer m and cardinality constraints k1, . . . , km,

the goal is to find disjoint sets S1, . . . , Sm ⊆ Ω of cardinalities k1, . . . , km that maximize

∑m
j=1 uj(Sj), where u1, . . . , um are monotone submodular set functions.

5.3 Approximation everywhere guarantees

In this section, we first present a discretization algorithm and then study its approxima-

tion guarantees for approximating the set function u(S) = E[ f ((Xi, i ∈ S))]. We assume

that valuation function f and items’ value distributions P1, . . . , Pn satisfy the following

condition: E[ f (Xi) | Xi > τ] is finite, for all i ∈ Ω and τ ∈ R+. This condition is used to

summarise the tail of an item’s value distribution. For some valuations functions, such as

maximum value ( f (x) = max{x1, . . . , xn}) and CES1 function ( f (x) = (xr
1 + · · ·+ xr

n)
1/r,

for r > 0), this condition is equivalent to E[Xi] being finite for all i ∈ Ω.

We also assume that distributions P1, . . . , Pn have a mass on any atom bounded by ∆ ∈

[0, 1), i.e. for all i ∈ Ω,

Pi(x)− lim
z↑x

Pi(z) ≤ ∆, for all x ∈ R. (5.2)

In fact, it suffices that (5.2) holds only for x = τi where τi is the (1− ε)-quantile of Pi. If

for each i ∈ Ω, Pi is continuous and strictly increasing on its support, then ∆ = 0.

Under this assumption, for all x ∈ R, we have for all i ∈ Ω,

1− ε ≤ P(Xi ≤ τi) ≤ 1− ε + ∆. (5.3)
1CES refers to constant elasticity of substitution, which is a terminology used in economic theory literature.
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5.3.1 Discretization algorithm

We consider a discretization algorithm that transforms input distributions P1, . . . , Pn to

discrete distributions Q1, . . . , Qn with finite supports. For each item’s distribution, this

discretization algorithm first constructs a random variable with distribution that has a

bounded support, and then uses an exponential binning to obtain final discretized dis-

tribution. For each random variable Xi we define τi to be the (1− ε)-quantile of its dis-

tribution Pi, i.e. τi = inf{x ∈ R : Pi(x) ≥ 1− ε}, where ε is a parameter in (0, 1]. The

method first limits the upper end of the support of each item’s value distribution. This

is done by defining Hi = E[ f (Xi) | Xi > τi] for each i ∈ Ω, and letting X̂i be a new

random variable that is equal to Xi if Xi ≤ τi and, is equal to f−1(Hi), otherwise. Here

f−1 denotes the inverse of function f (x, 0, . . . , 0) with respect to x. Note that X̂i has dis-

tribution with support contained in [0, τi]∪ { f−1(Hi)}. The method then limits the lower

end of the support by assigning values of X̂i smaller than aτi to 0, where a ∈ (0, 1) is

a parameter. This results in a new random variable X̃i = X̂i1I{X̂i>aτi}, whose support is

contained in [aτi, τi] ∪ { f−1(Hi)}.2 Finally, each random variable X̃i is transformed by

using an exponential binning of the interval [aτi, τi] and mapping each value in a bin

to the lower boundary of this bin. Formally, let q be the quantization function defined as

q(x; τ, ε, a) = aτ/(1− ε)j−1, for x ∈ Ij(τ, ε, a) and 1 ≤ j ≤ l, where l is the largest inte-

ger j′ such that j′ ≤ log1/(1−ε)(1/a) and Ij(τ, ε, a) = (aτ/(1− ε)j−1, aτ/(1− ε)j]. Then,

Yi = q(X̃i; τi, ε, a). Note that Yi is a random variable with discrete distribution Qi with

finite support of size

s = O
(

1
ε

log(1/a)
)

.

It is noteworthy that the discretization algorithm only uses two properties of an item’s

value distribution to compute the discretized distribution, specifically, for each item i ∈

Ω, it uses (a) the value of the (1− ε)-quantile of the input distribution Pi and (b) the value

of Hi = E[ f (Xi) | Xi > τi]. The discretized distribution for each item can be computed

independently, not requiring any joint computation over the ground set of items. This is

2Hereinafter, 1IA, for some event A, is equal to 1 if A is true, and is equal 0, otherwise.
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a desirable property for practical applications, especially in cases when the ground set of

items can change over time.

The discretization algorithm can be efficiently implemented in distributed systems when

an item’s value distribution corresponds to the empirical distribution of values in a multi-

set partitioned across nodes in a distributed system. Computing a discretized distribution

requires to compute a quantile value and evaluate range queries for a multiset of values,

both of which can be efficiently computed.

5.3.2 Guarantees for weakly homogeneous functions

We will show approximation guarantees for a class of functions that satisfy a weak homo-

geneity condition. Recall that a function f is weakly homogeneous of degree d and tolerance η

over a set Θ ⊆ R if

(1/η) θ f (x) ≤ f (θx) ≤ θd f (x)

for every x in the domain of f and all θ ∈ Θ. Many functions are weakly homogeneous

with a positive degree and tolerance equal to 1. In Table 5.1 we show properties of some

functions f . In the table, elasticity of a differentiable function g : R → R at a point

z is defined as zg′(z)/g(z). Most of the functions in the table are introduced earlier in

section 2.2. The last one is called the success probability function. We will prove its

properties in section 5.7.

Table 5.1: Properties of some functions f .

f (x) subadditive submodular convex concave d η
max{x1, . . . , xn} X X X 1 1

f (x) = x(1) + · · ·+ x(h) * X X X 1 1
f (x) = (∑n

i=1 xr
i )

1/r, r ≥ 1 X X X 1 1
f (x) = g(∑n

i=1 xi), concave g X X X g min elasticity 1
f (x) = 1−∏n

i=1(1− xi) X X ≤ 1/2, for n ≥ 2 1
* x(i) denotes the i-th element of a sequence corresponding to values x1, . . . , xn sorted in decreasing order

Next, we show the approximation guarantee obtained for the class of weakly homoge-

neous functions. We will also provide key lemmas highlighting some of the main points
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of the proof, with the full proof provided in section 5.7.

The main theorem is provided as follows.

Theorem 5.3.1. Assume that f is a monotone subadditive or submodular function, and is weakly

homogeneous with degree d and tolerance η over [0, 1], and ε ∈ (∆, 1). Then, the discretization

algorithm guarantees that for every set S ⊆ Ω such that |S| ≤ k, we have

1
2
(1− ε)k−1(1− ∆/ε)v(S) ≤ u(S) ≤ 2η

1 + adk/(ε− ∆)
(1− ε)k(1− ∆/ε)

v(S).

The approximation factors in Theorem 5.3.1 depend on parameters d and η specifying a

subset of monotone functions that are either subadditive or submodular, to which the the-

orem applies. The approximation factors also depend on the parameters of the algorithm,

namely a and ε, as well as on the set cardinality k, and parameter ∆.

Theorem 5.3.1 implies a constant-factor approximation guarantee for any function f that

is weakly homogeneous with a constant tolerance η and ∆ = o(1/k) by choosing the

algorithm’s parameters a and ε appropriately.

Corollary 5.3.2. Assume that ∆k < 1. Under the same conditions as in Theorem 5.3.1 and taking

a = [ε(ε− ∆)]1/d and ε = c/k, for some constant c ∈ (∆k, 1), for every set S ⊆ Ω such that

|S| ≤ k,
1
2

ψ(c, ∆k/c)v(S) ≤ u(S) ≤ 2η
1

ψ(c, ∆k/c)
(1 + c)v(S)

where ψ(c, δ) := e−
c

1−c (1− δ).

Note that when ∆ = 0, the approximation factors α and β can be made arbitrarily close to

1/2 and 2η, respectively, by taking c small enough. If ∆ = o(1/k), each discretized distri-

bution has the support of size s = O ((1/d)k log(k)). For weakly homogeneous valuation

functions with the degree lower bounded by a positive constant, we have the support

sizes O(k log(k)). As discussed previously, classes of weakly homogeneous functions

with a constant degree include homogeneous and convex functions.
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We argue that in general, the dependence on the degree parameter d is unavoidable due

to assigning all values smaller than aτi to 0 for an item i ∈ Ω. Intuitively, this can cause

an excessive loss of approximation accuracy for functions with a small degree of weak

homogeneity, when distributions of item values have a sufficient mass near to zero. To

demonstrate this, we consider the simple example of the scalar function f (x) = xr on R+,

for a parameter r ∈ (0, 1]. Let X be a random variable with cumulative distribution P(x)

with support in R+, and let P(τ) = 1− ε. For any a ∈ [0, 1], we can write

E[(X1I{X≥aτ})
r] = ρ E[Xr]

where

ρ =
E[Xr1I{X≥aτ}]

E[Xr]
=

∫ ∞
aτ xrdP(x)∫ ∞
0 xrdP(x)

.

Consider an instance where P(x) = xd for x ∈ [0, 1], for a parameter d > 0. Note that

τd = 1− ε. By simple calculus, we have

ρ = 1− (a(1− ε)1/d)r+d.

Assuming a = εc for some fixed c > 0, and r = d = ε, we have

ρ = 1− ε2cε(1− ε)2 ↓ 0 as ε ↓ 0.

Next, we present a sketch proof highlighting key lemmas for the theorem. Recall that

the algorithm consists of three main steps: limiting the upper end, removing the lower

end and exponential binning of the middle part. The main idea of the proof is that for

each step, we compare the set value of the new random variables with the original one

and show that we are not too far from it. At different steps in our proof, we leverage

properties of the class of valuation functions that we consider to derive desired bounds.
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Upper end For each i ∈ Ω, by definition of X̂i, we have

E[ f (X̂i) | X̂i > τi] = E[ f (Xi) | Xi > τi].

Let w(S) = E
[

f
(
(Xi1I{Xi≤τi}, i ∈ S)

)]
. We have the following lemma.

Lemma 5.3.3. Assume that f is a monotone function that is either subadditive or submodular on

its domain. Then, for every S ⊆ Ω such that |S| ≤ k,

u(S) ≥ (1− ε)k−1(1− ∆/ε)max

{
ε ∑

i∈S
Hi, w(S)

}

and

u(S) ≤ 2 max

{
ε ∑

i∈S
Hi, w(S)

}
.

Note that the upper and lower bounds both apply to the truncated random variable X̂i.

We can compare the set function v1(S) = E[ f ((X̂i, i ∈ S))] to the set function u(S) =

E[ f ((Xi, i ∈ S))] and obtain the following lemma.

Lemma 5.3.4. Assume that f is a monotone function that is either subadditive or submodular on

its domain. Then, for every S ⊆ Ω such that |S| ≤ k,

1
2
(1− ε)k−1(1− ∆/ε)v1(S) ≤ u(S) ≤ 2

1
(1− ε)k−1 (1− ∆/ε)−1v1(S).

Lower end We next consider random variables defined as X̃i := X̂i1I{X̂i≥aτi}, for some

a ∈ [0, 1]. We compare the set function v2(S) = E[ f ((X̃i, i ∈ S))] and the set function

v1(S) = E[ f ((X̂i, i ∈ S))] in the following lemma.

Lemma 5.3.5. Assume that f is a monotone function that is either subadditive or submodular,

and is weakly homogeneous of degree d over [0, 1]. Then, for every set S ⊆ Ω such that |S| ≤ k,

we have

v2(S) ≥
1

1 + adk/(ε− ∆)
v1(S).
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A key point in the proof is that we use binning boundaries that can be different for differ-

ent item value distributions and distinguish each item based on whether or not its value

exceeds an item-specific value. Note that for the maximum value function, the tail value

dominates and it suffices to use a common tail binning boundary to achieve sufficiently

large set value.

Middle part We next consider the approximation error due to the last step of the algo-

rithm. Recall that the exponential binning partitions the range into l intervals and each

random variable X̃i is transformed in a way that each value in a bin is mapped to the

lower boundary of the bin, i.e., for each i ∈ Ω, Yi = q(X̃i; τi, ε).

We compare the set functions v2(S) = E[ f ((X̃i, i ∈ S))] and v(S) = E[ f ((Yi, i ∈ S))].

Lemma 5.3.6. Assume that f is monotone and weakly homogeneous with tolerance η. Then, we

have

v(S) ≤ 1− ε

η
v2(S).

Putting the pieces together Combining the steps above, we obtain a constant factor

approximation guarantee for the discretization strategy. Specifically, the lower bound

in the theorem follows from Lemma 5.3.4. The upper bound in the theorem follows by

combining Lemmas 5.3.5 and 5.3.6.

5.3.3 Extension to other function classes

As discussed in table 5.1, the class of weakly homogenous functions already covers a

number of common valuation functions. Next, we show that it is possible to extend

the approximation guarantee to other conditions and random variables under univari-

ate transformation. In this way, we are able to cover a even wider range of stochastic

valuation functions.
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Extendable concave functions The weak homogeneity condition restricts approxima-

tion guarantees to functions with a strictly positive degree of homogeneity. We here

show that approximation guarantees can be provided for some concave functions that

have zero degree of homogeneity.

A monotone subadditive and concave function f on Rn
+ is said to have an extension on

Rn if there exists a function f ∗ that is monotone subadditive and concave on Rn and

f ∗(x) = f (x) for all x ∈ Rn
+. In the next theorem we show an approximation guarantee

for functions f that have extensions on Rn.

Theorem 5.3.7. Assume that f is a monotone subadditive, concave function on Rn
+ that has an

extension on Rn, and ε ∈ (∆, 1). Then, the discretization algorithm guarantees that for every set

S ⊆ Ω such that |S| ≤ k, we have

1
2
(1− ε)k−1(1− ∆/ε)v(S) ≤ u(S) ≤ 2

1 + ak/(ε− ∆)
(1− ε)k(1− ∆/ε)

v(S).

The proof strategy is similar to the case of weakly homogeneous functions. The full proof

is shown in section 5.7. We also have the following corollary.

Corollary 5.3.8. Assume that ∆k < 1. Under same conditions as in Theorem 5.3.7 and taking

a = ε(ε−∆) and ε = c/k, for some constant c ∈ (∆k, 1), for every set S ⊆ Ω such that |S| ≤ k,

1
2

ψ(c, ∆k/c)v(S) ≤ u(S) ≤ 2
1

ψ(c, ∆k/c)
(1 + c)v(S).

Theorem 5.3.7 alleviates the need for the weak homogeneity condition for some concave

functions, and covers some concave functions which do not satisfy this condition with a

positive degree. For example, consider again f (x) = g(∑n
i=1 xi) on R+ with g(z) = 1−

e−λz for parameter λ > 0, and z ∈ R+. Recall that this function has the weak homogeneity

degree of value 0 and hence the results in previous sections cannot be applied. However,
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note that f has an extension on Rn, e.g. given as f ∗(x) = g∗(∑n
i=1 xi) where g∗(z) =

1− e−λz for z ≥ 0 and g∗(z) = λz, otherwise.

Not all concave functions have an extension on Rn. Consider the last example when g(z)

has a vertical tangent at z = 0. If g(z) is differentiable at z = 0, then this is equivalent to

limz↓0 dg(z)/dz = ∞. In this case, f does not have an extension on Rn. An example when

this is the case is when g is a power function g(z) = zr, with r ∈ (0, 1).

Coordinate-wise conditions In Section 5.3.2, we have shown an approximation guar-

antee for functions f that satisfy a weak homogeneous condition. In this section we show

that similar approximation guarantees can be established for functions that satisfy the

weakly homogeneous property only coordinate-wise.

A function f is said to be coordinate-wise weakly homogeneous of degree d and tolerance η over

a set Θ ∈ R if for every i ∈ [n],

(1/η) θ f (x) ≤ f

(
∑
j 6=i

xjej + θxiei

)
≤ θd f (x),

for every x in the domain of f and all θ ∈ Θ.

Theorem 5.3.9. Assume that f is a monotone subadditive or submodular function, and is coordinate-

wise weakly homogeneous with degree d and tolerance η over [0, 1] and ε ∈ (∆, 1). Then, the

discretization algorithm guarantees that for every set S ⊆ Ω such that |S| ≤ k, we have

u(S) ≥ 1
2
(1− ε)k−1(1− ∆/ε)v(S)

and

u(S) ≤ 2ηk 1 + adk/(ε− ∆)
(1− ε)2k v(S).

From this theorem, we have the following corollary.

Corollary 5.3.10. Assume that ∆k < 1. Under same conditions as in Theorem 5.3.9 and such

that η = 1, by taking a = [ε(ε− ∆)]1/d and ε = c/k, for some constant c ∈ (∆k, 1), for every
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set S ⊆ Ω such that |S| ≤ k,

1
2

ψ(c, ∆k/c)v(S) ≤ u(S) ≤ 2
1

ψ(c, ∆k/c)
(1 + c)v(S).

Note that any function f that is subadditive and coordinate-wise convex on a domain that

includes 0 and is such that f (0) = 0, is weakly homogeneous over [0, 1] with tolerance

η = 1. And any function f that is coordinate-wise concave on a domain that includes 0

and is such that f (0) ≥ 0 is weakly homogeneous over [0, 1] with tolerance η = 1.

Univariate transformations For any given function f , we may establish approximation

guarantees by validating conditions of the theorems in previous sections for a function

f ∗ such that f ∗(x1, . . . , xn) = f (φ1(x1), . . . , φn(xn)) for some continuous and strictly in-

creasing functions φ1, . . . , φn. The univariate transformations φ1, . . . , φn correspond to a

change of variables that only affects the input distributions. Using univariate transforma-

tions can be useful in some cases. We illustrate this by two examples.

First, let us consider the case when f (x) = (∑n
i=1 xi)

r with r ∈ (0, 1). This function is

weakly homogeneous over [0, 1] with degree r. We can apply Corollary 5.3.2 to obtain

a constant-factor approximation, with discretized distributions having supports of size

O((1/r)k log(k)). We can avoid having this dependence on r by using univariate transfor-

mations φi(z) = z1/r. We thus need to validate conditions for f ∗(x) = (∑n
i=1 x1/r

i )r, with

r ∈ (0, 1). Function f ∗ is subadditive, submodular, convex, and weakly homogeneous

over [0, 1] with degree 1 and tolerance 1. Thus, by Corollary 5.3.2, we have a constant-

factor approximation with discretized distributions having supports of size O(k log(k)).

Second, consider the case when f (x) = 1−∏n
i=1(1− xi) on [0, 1]n. This function is sub-

modular and is weakly homogeneous over [0, 1] with degree d ≤ 1/2 and tolerance 1. We

elaborate on these properties in Section 5.7. Again, we can apply Corollary 5.3.2 which

gives a constant-factor approximation with O((1/d)k log(k)) support size of discretized
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distributions. We can remove this dependence on d, by considering the transformations

φi(z) = 1 − e−z. Hence, we have f ∗(x) = 1 − e−∑n
i=1 xi . We can apply Corollary 5.3.8

to show that a constant-factor approximation holds with O(k log(k)) support size of dis-

cretized distributions.

5.4 Sketching for optimization problems

In this section we discuss application of our function approximation results to best set

selection and submodular welfare maximization problems, which are defined as follows.

The best set selection problem asks to find a set S∗ ⊆ Ω such that S∗ ∈ arg maxS⊆Ω:|S|=k u(S),

for given cardinality constraint parameter k. A set S is said to be a ρ-approximate solu-

tion for the best set selection problem if u(S) ≥ ρu(S∗). By Sekar et al. (2021), if v is a

(α, β)-approximation of u and S is a ρ-approximation solution for the best set selection

problem with objective function v, then S is a ρα/β-approximate solution for the best set

selection problem with objective function u. This guarantee holds, even more generally,

for the submodular welfare maximization problem, where given a positive integer m and car-

dinality constraint parameters k1, . . . , km, the goal is to find disjoint sets S1, . . . , Sm ⊆ Ω

of cardinalities k1, . . . , km that maximize ∑m
j=1 uj(Sj), where u1, . . . , um are monotone sub-

modular set functions.

It is well known that a greedy algorithm provides a (1− 1/e)-guarantee for the best set

selection problem for any monotone submodular objective function Nemhauser et al.

(1978b). This greedy algorithm starts with an empty set and adds one item per step to

this set, in each step choosing an item that maximizes the marginal value gain. A simi-

lar greedy algorithm provides a 1/2-guarantee for the submodular welfare maximization

problem Lehmann et al. (2006).

For a set function of the form (5.1), with probability distributions of item values having

a finite support, each of size at most s, evaluating u(S) for a set S of cardinality k has

sk computation complexity. The computation complexity of the greedy algorithm using
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value oracle calls for the set function of the form (5.1) with distributions of item values

having supports of size at most s is O(nsk). This is easily seen as follows. In each step

t ∈ {1, . . . , k}, the algorithm needs to compute values of n − (t − 1) set functions, each

for a set of cardinality t. Hence, the total computation complexity is O(nsk). Clearly, if

s = O(1) and k = O(1), then the greedy algorithm has O(n) complexity. The greedy

algorithm has a polynomial complexity O(n1+ε) for some positive constant ε, if, and only

if, sk = O(nε). For example, this holds if s = O(k log(k)) and k ≤ ε log(n)/ log(log(n)).

We have the following implication of Corollary 5.3.2.

Corollary 5.4.1. Assume that ∆k < 1. For the class of functions satisfying conditions of Theo-

rem 5.3.1, and by taking a = [ε(ε−∆)]1/d and ε = c/k, for some c ∈ (∆k, 1), greedy algorithms

for best set selection and submodular welfare maximization problems guarantee the approximation

ratio
ψ(c, ∆k/c)2

1 + c
ρ

4η

where ρ is a constant, which for best set selection problem is equal to 1− 1/e, and for submodular

welfare maximization problem is equal to 1/2.

If ∆ = 0, this approximation ratio can be made arbitrarily close to ρ/(4η) by taking c

small enough.

5.5 Numerical results

In this section, we present results of our numerical experiments. The goal is to assess

the performance of the sketch under various assumptions on item value distributions,

set utility functions, set size, and parameters of the discretization algorithm. We also

compare the performance against the baseline method based on test scores proposed in

Sekar et al. (2021) and demonstrate that our sketch outperforms this baseline in terms of

approximation accuracy.
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We have performed our experiments on both synthetic and real-world data sets. The

results for synthetic data is reported in section 5.5.1 and results for real-world data set is

reported in section 5.5.2. The code we use is available on GitHub: https://github.com/

Sketch-EXP/Sketch.

5.5.1 Synthetic data

We fix a ground set of n elements. For each element, we generate N = 500 training sam-

ples of its random performance values and estimate the value of the set utility function

u(S). Then we choose parameter ε of our discretization algorithm and compute the value

of the sketch v(S). To assess the performance of our algorithm, we randomly generate 50

sets of size k from the ground set of n elements and estimate the ratio v(S)/u(S).

Our experimental setups are given as follows.

Set utility functions We examine three types of set utility functions, the maximum value,

the CES function with degree 2, and the square root function of sum.

Item value distributions We consider two parametric families of distributions, the expo-

nential and Pareto distribution. For exponential distribution, we sample the mean value

of each item uniformly from the unit interval [0, 1]. For Pareto distribution, we sample

the shape parameter of each item uniformly from the interval [1.1, 3] and fix the scale

parameter to 1.5.

Set size For each setting of set utility function and item value distribution, we tested vari-

ous values from 1 to 20 for the set size k.

Threshold value The threshold value ε is an important parameter for the discretization

algorithm. The lower the threshold value, the better the approximation ratio. For each

value of set size k, we set ε = c/k where c is some constant between 0.1 and 10. From the

main theorem, we expect good approximation ratios for those c < 1.



120 Chapter 5. Sketching stochastic valuation functions

Results We first show a box plot (figure 5.1) aggregating the results from all settings of

set size k for different set utility functions and item value distributions fixing c = 0.1. We

can observe that the ratio values are concentrated around 1, thus our sketch approximates

the original set utility function well for most instances.

Figure 5.1: Performance ratio for various objective functions and item value distributions:
(left) exponential distributions and (right) Pareto distributions.

Dependence on threshold value ε Figure 5.2 shows the results under different values of ε

aggregated over all settings of set size k. Overall, we can see that the ratio starts to dete-

riorate from around 1, i.e. the value ε = 1/k, regardless of the set size k.

Figure 5.2: Results showing effect of different values of ε: (top) exponential distribution
and (bottom) Pareto distribution.

Comparison with the test-score sketch To compare the results with the benchmark, we pro-
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vide the bar plot (Figure 5.3) which shows the averaged ratio values for both methods.

We can conclude from the plot that our sketch outperforms the test score sketch in terms

of approximation accuracy.

Figure 5.3: Performance of discretization v.s. test score: (left) exponential distributions
and (right) Pareto distributions.

5.5.2 Real data

We tested our method on three real-world datasets: YouTube, StackExchange, and New

York Times data. For the YouTube data, we consider items to be content publishers and

their performance to be the number of views of their content pieces. For the StackEx-

change data, we consider items to be experts and performance to be the rate of up-votes

of their answers to questions. For the New York Times data, we consider items to be news

sections and performance to be the number of comments per news piece. All datasets that

we use are available in the public domain. Detailed information about the three datasets

are provided below.

YouTube data The YouTube dataset Kaggle.com (2021) contains information about 37422

unique videos, including publication date, view counts, number of likes and dislikes, for

the period from August 2020 to December 2021, for the USA, Canada and Great Britain.

For our experiments, we filtered out YouTubers with fewer than 50 uploads. In the main
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experiment, we took the view counts per day as the measure for video performance. We

also tested other metrics and the results can be found in section 5.8.1.

StackExchange data The StackExchange dataset contains information about 35218 ques-

tions and 88584 answers on the Academia.StackExchange platform. The dataset is re-

trieved on Jan 20, 2022 from the official StackExchange data dump. Each answer receives

up-votes and down-votes from users of the platform, indicating quality of the answer.

For our experiments, we took only the users who have submitted as least 100 answers. If

an answer a to question q receives u(a, q) up-votes and d(a, q) down-votes, then we define

s(a, q) =
u(a, q) + c1

u(a, q) + d(a, q) + c2

as the quality value of the answer, where c1 and c2 are positive-valued parameters. This

metric is motivated by Bayesian estimation, and was used in Sekar et al. (2021). The ratio

increases with the number of up-votes and decreases with the number of down-votes. It is

called balanced when c1/c2 = 1/2, conservative if c1/c2 < 1/2. We took the conservative

choice (c1, c2) = (2, 8) for the main experiment. Results for other value pairs can be found

in Section 5.8.2.

New York Times data The New York Times dataset Kaggle.com (2020) contains infor-

mation about 16570 articles and comments on New York Times from January 2020 to De-

cember 2020. Each article belongs to one section. We took all articles and their comment

numbers for our experiment.

We show the empirical CDFs for performance values aggregated over all data points in

a dataset, for all three datasets in Figure 5.4. We observe that these three datasets have

very different distributions, which implies that our method works well for different data

distributions.
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Figure 5.4: Empirical CDFs for performance values of three datasets.

Figure 5.5: The approximation ratio of our method for various objective functions on
three datasets: (left) k = 5 and (right) k = 10.

Results As for the synthetic data case, we test three types of set utility functions, the

max, the CES utility function of degree 2 and the square root function of sum on the three

datasets. For each item, we compute the empirical distribution of performance of this

item from the given data. We then generate N = 100 training samples of each item’s

performance to estimate the set utility functions. We set ε = 0.1 and set size k to 5 and 10.

The performance ratios for the three different objectives on three datasets are presented

in Figure 5.5. We observe that our sketch provides a good approximation in most cases.

5.6 Conclusion

In this chapter, we looked at the problem of finding good sketch (representation) of item

distributions for approximation of stochastic set utility function, defined as the expecta-
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tion of a valuation function of independent random item values. We proposed an efficient

discretization algorithm base on exponential binning strategy. The algorithm yields dis-

cretized distributions for each item with O(k log k) support size. We have shown that for

a wide class of monotone subadditive or submodular valuation functions, our algorithm

provides a constant-factor approximation for any value query for a set of items of size

less than or equal to k.

Our work provides first positive results on function approximation for a class functions

accommodating a wide-range of valuation functions studied in existing literature. The

results are also of interest for application to best set selection and welfare maximization

problems. It may be of interest to think of other systematic discretionary strategies and

explore the trade-off between approximation accuracy and complexity of the representa-

tion. We leave this for future work.
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5.7 Proofs

Properties of success probability function

We consider the function f (x) = 1 − ∏n
i=1(1 − xi) on [0, 1]n. This function is clearly

submodular as it it is twice-differentiable and ∂2 f (x)/∂xi∂xj is equal to −∏l∈[n]\{i,j}(1−

xl) ≤ 0 when i 6= j, and is equal to 0 when i = j.

We will show some properties of f by induction over the sequence of functions f1, . . . , fn,

where f j(x) = 1−∏
j
i=1(1− xj), for 1 ≤ j ≤ n. Note that, for 1 ≤ j < n,

f j+1(x) = xj+1 + f j(x)− xj+1 f j(x).

We show that f is subadditive by induction as follows. Let x, y ∈ [0, 1]n be such that

x + y ∈ [0, 1]n. For the base case j = 1, function f1(x) = x1 is clearly subadditive. For the

induction step, assume that f j is subadditive, for an arbitrary 1 ≤ j < n. Then, we have

f j+1(x + y) = xj+1 + yj+1 + f j(x + y)− (xj+1 + yj+1) f j(x + y)

= xj+1 + yj+1 + (1− xj+1 − yj+1) f j(x + y)

≤ xj+1 + yj+1 + (1− xj+1 − yj+1)( f j(x) + f j(y))

= f j+1(x) + f j+1(y)− xj+1 f j(y)− yj+1 f j(x)

≤ f j+1(x) + f j+1(y)

which shows that f j+1 is subadditive.

We next show that f is weakly homogeneous over [0, 1] with tolerance η = 1 by induction

as follows. For the base case j = 1, f1(x) = x1, so clearly it holds f1(θx) ≥ θ f1(x). For the
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induction step, assume that f j(θx) ≥ θ f j(x), for an arbitrary 1 ≤ j < n. Then, we have

f j+1(θx) = θxj+1 + f j(θx)− θxj+1 f j(θx)

= θxj+1 + (1− θxj+1) f j(θx)

≥ θxj+1 + (1− θxj+1)θ f j(x)

= θxj+1 + θ f j(x)− θ2xj+1 f j(x)

≥ θxj+1 + θ f j(x)− θxj+1 f j(x)

= θ f j+1(x)

which shows that f j+1 is weakly homogeneous over [0, 1] with tolerance η = 1.

We next show that f is weakly homogeneous over [0, 1] with degree d ≤ 1/2. To show

this, let us consider the case when n = 2. We then have f (x) = x1 + x2 − x1x2. The

condition f (θx) ≤ θd f (x) can be written as follows

(1− θ2−d)x1x2 ≤ (1− θ1−d)(x1 + x2)

for all x1, x2 ∈ [0, 1]. Clearly the last inequality holds when either x1 = 0 or x2 = 0.

Hence, the condition is equivalent to

1− θ2−d ≤ (1− θ1−d)

(
1
x1

+
1
x2

)

for all x1, x2 ∈ (0, 1]. This is clearly equivalent to 1− θ2−d ≤ 2(1− θ1−d) which can be

written as

θ1−d(2− θ) ≤ 1. (5.4)

The left-hand side is increasing in d and achieves the maximum value at θ∗ = 1/(2(1−

d)). Hence, equality in (5.4) is achieved at θ∗ when d = 1/2.
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Proof of Lemma 5.3.3

Upper end We compare the set function w(S) = E
[

f
(
(Xi1I{Xi≤τi}, i ∈ S)

)]
and the set

function u(S) = E[ f ((Xi, i ∈ S))].

We first prove the upper bound. Let T be the subset of S containing those Xi exceeding

the threshold τi, i.e. T = {i ∈ S | Xi > τi}.

By Lemma 2.2.3, under condition that f is monotone and either subadditive or submod-

ular, u is a monotone subadditive function. Hence, we have

E[ f ((Xi, i ∈ S))] ≤ E[ f ((Xi, i ∈ T))] + E[ f ((Xi, i ∈ S \ T))].

Now, note

E[ f ((Xi, i ∈ S))] ≤ 2 max {E[ f ((Xi, i ∈ T))], E[ f ((Xi, i ∈ S \ T))]}

≤ 2 max {E[ f ((Xi, i ∈ T))], w(S)} .

Again, by subadditivity of the set function u, we have

E[ f ((Xi, i ∈ T))] ≤ E

[
∑
i∈T

f (Xi)

]
≤ ε ∑

i∈S
Hi (5.5)

where recall Hi = E[ f (Xi) | Xi > τi].

Thus, it follows

E[ f ((Xi, i ∈ S))] ≤ 2 max

{
ε ∑

i∈S
Hi, w(S)

}
which proves the upper bound in the lemma.

We next prove the lower bound. Since f is a monotone function,

E[ f ((Xi, i ∈ S))] ≥ max {E[ f ((Xi, i ∈ T))], E[ f ((Xi, i ∈ S \ T))]} .
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Thus, we have

u(S) ≥ max {E [ f ((Xi, i ∈ T))] , w(S)} . (5.6)

Now, note

E[ f ((Xi, i ∈ T))] = ∑
U⊆S

Pr(T = U)E[ f ((Xi, i ∈ T)) | T = U]

≥ ∑
U⊆S:|U|=1

Pr(T = U)E[ f ((Xi, i ∈ T)) | T = U]

= ∑
i∈S

Pr(Xi > τi)Pr(Xj ≤ τj, ∀j 6= i)E[ f (Xi) | Xi > τi]

≥ (ε− ∆)(1− ε)k−1 ∑
i∈S

Hi

where we used the facts P(Xj > τj) ≥ ε− ∆ and P(Xj ≤ τj) ≥ 1− ε for all j ∈ Ω that

follow from (5.3), and assumption that set S is such that |S| ≤ k.

Combining with (5.6), we have

u(S) ≥ max

{
(ε− ∆)(1− ε)k−1 ∑

i∈S
Hi, w(S)

}

from which the lower bound in the lemma follows.

Proof of Lemma 5.3.4

Note that

u(S) ≤ 2 max

{
ε ∑

i∈S
Hi, w(S)

}

=
2

(1− ε)k−1 (1− ε)k−1 max

{
ε ∑

i∈S
Hi, w(S)

}

≤ 2
(1− ε)k−1(1− ∆/ε)

v1(S)

where the first inequality is by the upper bound in Lemma 5.3.3 and the last inequality is

by the lower bound in Lemma 5.3.3.
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This shows the upper bound in the statement of the lemma. The lower bound in the

statement of the lemma follows by similar arguments as below,

u(S) ≥ (1− ε)k−1(1− ∆/ε)max

{
ε ∑

i∈S
Hi, w(S)

}

=
1
2
(1− ε)k−1(1− ∆/ε) · 2 max

{
ε ∑

i∈S
Hi, w(S)

}

≥ 1
2
(1− ε)k−1(1− ∆/ε)v1(S)

where the first inequality is by the lower bound and the last inequality is by the upper

bound in Lemma 5.3.3.

Proof of Lemma 5.3.5

Lower end We compare the set function v2(S) = E[ f ((X̃i, i ∈ S))] and the set function

v1(S) = E[ f ((X̂i, i ∈ S))].

Let X̃i = X̂i1I{X̂i>aτi}, for some a ∈ [0, 1]. For any monotone submodular function f and

any monotone subadditive function f , it holds, for any a ∈ [0, 1],

v1(S) = E[ f ((X̂i, i ∈ S))]

= E[ f ((X̂i1I{X̂i≤aτi} + X̂i1I{X̂i>aτi}, i ∈ S))]

≤ E[ f ((X̃i1I{X̂i≤aτi}, i ∈ S))] + E[ f ((X̃i1I{X̂i>aτi}, i ∈ S))]

≤ f ((aτi, i ∈ S)) + E[ f ((X̃i, i ∈ S))]

= f ((aτi, i ∈ S)) + v2(S).

Combining with the condition that f is weakly homogeneous of degree d over [0, 1], we

have

v1(S) ≤ ad f ((τi, i ∈ S)) + v2(S).
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Now, note that for any monotone, subadditive or submodular function f ,

E[ f ((X̃i, i ∈ S))] ≥ ε− ∆
k

E[ f ((τi, i ∈ S))].

This can be shown as follows. Let j ∈ arg maxi∈S τi. Then, we have

E[ f ((X̃i, i ∈ S))] ≥ P(X̃j > τj) f (τjej)

≥ (ε− ∆) f (τjej)

≥ ε− ∆
k

f

(
∑
i∈S

τjei

)

≥ ε− ∆
k

f

(
∑
i∈S

τiei

)

=
ε− ∆

k
f ((τi, i ∈ S))

where we used the fact P(X̃j > τj) = P(Xj > τj) ≥ ε − ∆, with the last inequality

following from (5.3).

Putting the pieces together, we have

v2(S) ≥
1

1 + adk/(ε− ∆)
v1(S).

Proof of Lemma 5.3.6

Millde part Recall that for each i ∈ Ω, Yi = q(X̃i; τi, ε). We compare the set functions

v2(S) = E[ f ((X̃i, i ∈ S))] and v(S) = E[ f ((Yi, i ∈ S))].

Note that q is such that, for every τ > 0,

q(x; τ, ε, a) ≥ (1− ε)x, for all x ∈ [aτ, τ].
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This combined with monotonicity of f immediately yields

v(S) ≥ E[ f (((1− ε)X̃i, i ∈ S))].

Combining with the condition that f is weakly homogeneous with tolerance η yields

v(S) ≥ ((1− ε)/η)v2(S).

Proof of Corollary 5.3.2

Note that 1− x ≥ e−θx, for all x ≤ 1− 1/θ and θ ≥ 1. Hence, for ε = c/k, where c is

some positive constant in (0, 1), we have (1− ε)k ≥ e−θc, for c/k ≤ 1− 1/θ and θ ≥ 1.

By taking θ = 1/(1− c), we have (1− ε)k ≥ e−c/(1−c). Using this, we can establish the

statement of the corollary.

Proof of Theorem 5.3.7

The proof for the upper end remains the same as in the proof of Theorem 5.3.1. We thus

only need to address the lower end and middle part of the proof.

Lower end Let f ∗ be a concave extension of f . Since f ∗(x) = f (x) for all Rn
+ and

we consider item value distributions with positive supports, we can consider v1(S) =

E[ f ∗((X̂i, i ∈ S))] and v2(S) = E[ f ∗((X̃i, i ∈ S))].

Recall that it holds

E[ f ∗((X̃i, i ∈ S))] ≥ ε− ∆
k

E[ f ∗((τi, i ∈ S))]. (5.7)

Let Zi = X̂i − aτi and note that X̃i = X̂i1I{X̂i>aτi} ≥ Zi. Note that we can write,

Zi = (1− a) X̂i + a
(
X̂i − τi

)
.
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Since f ∗ is monotone, concave and subadditive, we have the following inequalities.

v2(S) ≥ E[ f ∗((Zi, i ∈ S))]

≥ (1− a)E[ f ∗((X̂i, i ∈ S))] + a E[ f ∗((X̂i − τi, i ∈ S))]

≥ (1− a)E[ f ∗((X̂i, i ∈ S))] + a E[ f ∗((X̂i, i ∈ S))]− a · f ∗((τi, i ∈ S))

≥ v1(S)− (ak/(ε− ∆))v2(S)

where the first inequality is by monotonicity, the second inequality is by concavity, the

third inequality is by subadditivity, and the last inequality is by the definition of v1(S)

and the inequality in (5.7).

Middle part This follows by the same arguments as in the proof of Theorem 5.3.1 and

making use of the fact that any concave function is weakly homogeneous with tolerance

1.

Proof of Theorem 5.3.9

The proof of the upper end remains the same as in the proof of Theorem 5.3.1. In what

follows, we show the proof for the lower end part and the middle part of the proof.

Lower end This part is shown by the following lemma.

Lemma 5.7.1. Assume that f is a monotone function that is either subadditive or submodular

and is coordinate-wise weakly homogeneous of degree d over [0, 1]. Then, we have

v2(S) ≥
1

1 + adk/(ε− ∆)
v1(S).

Proof. The proof can be established by similar steps as in the proof of Lemma 5.3.5 and

making use of the following simple fact: under coordinate-wise weakly homogeneous

condition, f ((aτi, i ∈ S)) ≤ adk f ((τi, i ∈ S)) ≤ ad f ((τi, i ∈ S)).
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Middle part This follows by the same arguments as in the proof of Theorem 5.3.1 com-

bined with repeated application of the weak homogeneity property that holds coordinate-

wise which yields

E[ f (((1− ε)X̃i, i ∈ S))] ≥ (1/η)k(1− ε)k E[ f ((X̃i, i ∈ S))].

5.8 Supplementary numerical results

5.8.1 YouTube dataset: other performance metrics

In this section, we illustrate and compare the results using different measures for the

performance value of YouTube video uploads. Specifically, if a video j uploaded τ days

ago received n(j) views, l(j) likes and d(j) dislikes, we calculate six measures for its

performance as follows.

• View counts per day (view ratio): n(j)/τ

• Log of the view counts: log(n(j) + 1)

• Standard like ratio: l(j)/(l(j) + d(j))

• Video Power Index (VPI): view ratio × standard like ratio

• Bayesian like ratio: (l(j) + c1)/(l(j) + d(j) + c2)

– Conservative case where c1 = 0.01n(j) and c2 = 0.1n(j)

– Balanced case where c1 = 0.05n(j) and c2 = 0.1n(j)

The Bayesian like ratio has a similar interpretation as for the StackExchange dataset. The

difference is that in this setting the ratio factors in the effect of view counts. Note that c1

can be seen as a threshold value needed for the number of likes to have an effect on the

performance value.
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We computed the performance values for all videos submitted by qualified YouTubers

with more than 50 uploads.

Figure 5.6: Empirical CDFs of performance values for the Youtube dataset, for six differ-
ent performance metrics.

Figure 5.7: The approximation ratio for different valuation functions for the Youtube
dataset, for six different performance metrics.

Figure 5.6 shows how the values are distributed for all six measures. Note that the dis-

tributions under the measures view counts per day, VPI and conservative Bayesian like

ratio are more heavy-tailed compared to others.

Figure 5.7 shows the results for three objective functions (max, CES of degree 2 and square

root function of sum) under the six measures. We can observe that all the approximation

ratios for the measures log of the view counts, standard like ratio, and balanced Bayesian

like ratio are more concentrated around 1 compared to the results using view counts per
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day and VPI. This result is not surprising, as we noted that the value distributions under

these two measures are centered and light-tailed.

5.8.2 StackExchange dataset: other (c1, c2) parameter settings

We tested the following values of (c1, c2): (2, 8), (8, 32) and (10, 10). As explained previ-

ously, the first and second cases correspond to a conservative choice, and the last one is a

balanced ratio.

Figure 5.8 shows the empirical CDF for performance values, for the three settings of

(c1, c2) parameters. We can see that as the values of c1 and c2 increase, the values are

more concentrated around c1/c2.

Figure 5.9 shows the corresponding results under the different value pairs for c1 and

c2. From the plots, we observe that all the approximation ratios are highly concentrated

around 1. Thus we can conclude that the choices of c1 and c2 have no particular effects on

the approximation ratio.

Figure 5.8: Empirical CDFs of performance values for the StackExchange dataset, for three
different parameter settings.

Figure 5.9: The approximation ratio for different valuation functions for the StackEx-
change dataset, for different parameter settings.



Chapter 6

The k-max problem with value-index

feedback

6.1 Overview

In many real-world examples, users interact with an online system and data comes in

streams, which motivates the need for sequential experimentation and online learning.

In this chapter, we consider a class of online combinatorial optimization problem where

an agent chooses samples sequentially. We assume a ground set of n items that are binary-

valued. In each round, the agent chooses a set of items of size k from the ground set and

receives the maximum value of the set and the index of the item taking the maximum

value as feedback. We call the problem as k-max problem with value-index feedback.

The problem is new as it assumes a special feedback structure. As discussed in the intro-

duction chapter, this type of feedback arises naturally in real-world applications such as

online advertising, where the agent observes the most popular item which receives the

click and its value. The binary-valued assumption is justified in this example as the item

either receives a click and reveals its value or does not receive a click. We will take this

simplified assumption for analysis, while we note that by allowing general distributions

we can model more complicated real-world applications.

136
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Our goal is to maximize the expected cumulative reward for a learning agent over the

time horizon. The problem is challenging mainly for two reasons. Firstly, the reward

function is the max function, which is nonlinear and depends not only on the expected

value of the constituent base arms. The uncertainty of binary-valued items makes the

problem more challenging under the max reward. As we will show in the numerical

section, high-risk high-reward items may outperform stable-value items in this case. The

second challenge is due to the limited feedback. The agent only observes the maximum

value and the winner index. These all make it hard to estimate the distributions of the

individual base arms.

6.1.1 Related work

Stochastic multi-armed bandit (MAB), first studied by Robbins (1952), is a classical on-

line learning framework motivated by such applications. It is typically formulated as a

learning problem between an agent and a system of n arms with unknown distributions

P1, . . . , Pn. The agent chooses some arm and receives a random reward from the envi-

ronment following its distribution. The goal is to collect cumulative rewards as much as

possible over the time horizon. The performance of a MAB algorithm is measured by its

cumulative regret, which is defined as the difference in cumulative reward compared to

always playing the best arm.

Our problem can be put into the general framework of combinatorial multi-armed ban-

dits (CMAB)(Cesa-Bianchi and Lugosi (2012); Chen et al. (2013, 2016)), an extension to the

MAB problem. A decision set of actions is given where each action is a subset of arms,

not just one arm. In each round, the agent chooses an action from the decision set and

receives feedback for the chosen subset of arms. The k-max problem is a special case of

CMAB where the decision set includes all subsets of cardinality k.

There are two typical settings for the CMAB problem. In the semi-bandit setting, the

outcomes of the selected arms are observed as feedback. In the full bandit setting, only
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aggregate reward of selected arms is observed as the feedback, which is modeled using

reward functions.

Most of the existing works of CMAB focused on semi-bandit setting (Chen et al. (2013);

Kveton et al. (2015b)). The full-bandit CMAB is harder than the semi-bandit problem, due

to lack of information on individual arms. However, in real life applications, it is often

expensive or even infeasible to obtain per-item information and we may only have obser-

vations at the set-level. Consider the online advertising example given at the introduction

section. Th use platform presents a list of items to a user, who selects and gives rating to

selected item of interest. In most cases, it is impossible to collect information on those

items not selected by the user. Therefore, it is important to consider the full-bandit set-

ting. In most works on full-bandit CMAB, restrictions are placed on the reward function.

Auer et al. (2002) first studied the problem under linear reward and provides a linear UCB

algorithm. Dani et al. (2008) fully analyzed the linear UCB algorithm and gave a nearly

optimal regret bound. However, the method is computationally intractable for combina-

torial decision set. Rejwan and Mansour (2020) considered a special full-bandit setting

where the reward is defined as the sum of individual arms. They proposed an algorithm

based on the successive accepts and rejects (SAR) algorithm that iteratively estimates ex-

pected rewards of arms within increasing level of accuracy. The estimates for individual

arms is obtained through solving a linear system of equations. Thus this method cannot

be generalized to full bandit setting with non-linear reward functions.

Only a few algorithms are proposed for full bandit CMAB problem with non-linear re-

ward. Katariya et al. (2017) considered a minimum function for {0, 1}-valued base arms

and proposed an elimination algorithm to find the best set without explicit estimation of

individual arm’s expected reward. However, their analysis largely depend on the binary

nature of base arms. Gopalan et al. (2014) studied the full-bandit CMAB with general

reward using Thompson sampling method. However, it is computationally hard to com-

pute the posteriors in the algorithm and the regret bound involves a large exponential

constant. A recent work by Agarwal et al. (2021) proposes a merge and sort algorithm

for the CMAB problem with non-linear reward without any extra feedback. Instead of
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estimating individual arms, the authors use the theory of stochastic dominance to obtain

ordering of individual arms. However, this requires a strong assumption that first-order

stochastic dominance exists between any two arms. Clearly, for binary-valued random

variables, this assumption does not always hold.

We realized the difficulty in solving the full-bandit CMAB problem with non-linear re-

ward. Our work can seen as taking a middle ground between the semi-bandit and full-

bandit settings. Given a selection of set S ⊆ [n], our feedback is (I, XI) where I is the

index of the item with maximum value in set S. As discussed above, our work is related

with semi- and full-bandit CMAB problems. A closely related work is combinatorial cas-

cading bandits (Kveton et al. (2015a,c)). In this problem, base arms are Bernoulli random

variables. An agent will choose an ordered subsequence from the set of base arms and

reveal the outcome of the base arms one by one until a stopping criteria is met. In the

disjunctive form, the agent stops when the first one is observed. In the conjunctive case,

the agent stops when the first zero is observed. Chen et al. (2016) generalizes the prob-

lem to the framework of combinatorial semi-bandits with probabilistically triggered arms

(CMAB-T). We note that the main difference is that this line of work assumes more infor-

mation than our problem and is inherently semi-bandit. By revealing the outcome of base

arms one by one, the agent is able to observe individual rewards for all arms selected be-

fore the one meeting the criteria. Another difference in our work is that we assume that

the base arms are binary valued. This would cause the reward function not only depend

on the expected value, but the whole distributions of the constituent base arms, making

the learning problem more challenging.

Another line of works related to our study is the dueling bandit problem (Ailon et al.

(2014)) where the agent plays two arms at each time and observes the outcome of the

duel. The goal is to find the best item in the sense of Condorcet winner under relative

feedback of the dueling outcomes. Sui et al. (2017) extends the setting to multiple dueling

bandits problem by simultaneously playing k arms instead of two arms. Compared to this

line of work, we assume additional absolute value feedback XI . We note that our goal is

different, as we would like to select a set of items with maximum performance measured
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by some non-linear utility function. A key assumption made in the dueling bandit prob-

lem is that approximate linearity holds for the stochastic preference relationship, but this

assumption does not hold in our setting.

6.1.2 Summary of contributions

Our results can be summarized in the following points.

• We consider the k-max problem with expected max reward and winner index feed-

back. This is a new problem setting that stands at the middle ground of semi-bandit

and full-bandit. Compared to the full-bandit setting, we assume additional infor-

mation of winner index, which is a natural assumption to be made in real-world

applications. On the other hand, we do not assume per-item value feedback, which

differentiates with the semi-bandit problem. Our work is one step towards solving

the full-bandit CMAB problem with non-linear reward under mild assumptions.

• We rephrase the problem in an interpretable way by introducing two sets of base

arms. In the simpler case when the ordering of values is known within each action,

the problem boils down into two separate standard CMAB-T problems. In the gen-

eral case, the problem differs from CMAB-T as the triggered subset of the base arm

set given an action depends on whether the item values are observed or not. We

tackle with this difficulty by introducing the concept of item equivalence, such that

we can restore the CMAB-T framework by using the replacement items.

• We present a CUCB algorithm to solve the simpler case of the k-max problem. The

CUCB algorithm achieves comparable regret bound as standard CMAB problems.

However, for the general case, it yields a sub-optimal regret bound that contains

an undesirable factor of 1/p∗ where p∗ is the minimum value that an arm takes its

positive value. To remove the extra factor, we propose a modified algorithm based

on the CUCB algorithm. By using the concept of item equivalence, we show that

the modified algorithm achieves comparable regret as the simpler case.
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6.2 Problem formulation

6.2.1 Model specification

We consider an online learning problem between an agent and a system of n items or

arms, denoted as E = [n] = {1, 2, . . . , n}. The arms produce stochastic outcomes X =

(X1, . . . , Xn). We assume that the random variables are binary-valued, i.e., X1, . . . , Xn

taking strictly positive values v1, . . . , vn with probability p1, . . . , pn respectively. The val-

ues v1, . . . , vn and the probabilities p1, . . . , pn are unknown.

We define F = {S|S ∈ 2E, |S| = k} as the set of super arms of cardinality k. At each

time step t, the agent takes an action to play a super arm St ∈ F . The agent observes the

maximum value of the selected arms and the index of the item taking the maximum value.

The goal is to select a set of random variables with maximum performance according to

the expected maximum objective.

We will start from a simpler case where we assume that ordering of the values vi is known

within each action. Then we move to the general case where both values and ordering of

vi are unknown.

We can rephrase our problem in a more intuitive way by adopting the notation of trig-

gered arms (Wang and Chen (2017)). We introduce two set of base arms decomposed

from the random variables X1, . . . , Xn. The first set of base arms Z consists of n inde-

pendent Bernoulli random variables Z1, . . . , Zn with mean values p1, . . . , pn. The second

set of base arms V = {V1, . . . , Vn} are deterministic with mean values v1, . . . , vn. We also

define an extended set of base arms B containing both sets of base arms. Note that we

have Xi = Vi · Zi. Each time an action St is played, we obtained information on some of

the base arms Zi and Vi in B. We call these arms as being triggered, and we observe their

values as feedbacks.

Recall that in the simpler case we know the ordering of arms in decreasing value of vi.

Therefore, when action St is played and the maximum value of the set is vi, we immedi-
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ately conclude that the base arm Vi takes value vi, Zi takes non-zero value and Zj such

that its corresponding arm j is ordered before i takes value zero. For the set Z , we say the

base arms Z1, . . . , Zi are triggered arms, and we observe their values as feedbacks. For

the set V , only one base arm Vi is triggered and we observe its deterministic value. We

note that for the simpler case, our problem can be interpreted as a conjunctive cascading

bandit with binary-valued arms. The ordering of arms within each action enables us to

observe values of all arms ordered before the winner, which makes the problem easier to

solve.

The general case is conceptually harder for the set of base arms Z . Since we don’t know

the ordering of values within an action, we have no information about Zi if vi has not yet

been observed. We can only conclude that Zj takes value zero if vj has been observed and

vj > vi. The triggered arm is the same for the set of base arms V1, . . . , Vn.

Note that pi and vi are expectations of the base arms Zi and Vi respectively. Let p =

(p1, . . . , pn) and v = (v1, . . . , vn) be the expectation vectors of the base arms. When

an action is played, the agent obtains a non-negative reward of the maximum value,

which is fully determined by the triggered arms. We denote the expected reward as

rS(p, v) = E[max(Xi, i ∈ S)], which is a function of action S and expectation vectors

p and v. Importantly, we note that if S = [k] and arms are ordered in decreasing order of

their values, then we can write the expected reward explicitly as

rS(p, v) = p1v1 + (1− p1)p2v2 + . . . + (1− p1) . . . (1− pk−1)pkvk (6.1)

The performance of a learning algorithm is measured by its cumulative regret, which is

defined as the difference in expected cumulative reward by playing the best action and

playing actions suggested by the algorithm. Denote optp,v = supS rS(p, v). The expected

regret can be written as

R(T) = T · optp,v −E

[
T

∑
t=1

rSt(p, v)

]
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We may assume an (α, β) approximation oracle, which takes (p, v) as input and outputs

an action S such that

Pr(rp,v(S) ≥ α · optp,v) ≥ β

where α is the approximation ratio and β is the success probability. Under the approxi-

mation oracle, the (α, β) regret can be written as

R(T) = T · α · β · optp,v −E

[
T

∑
t=1

rSt(p, v)

]

Note the major difference with the classical combinatorial bandits is that we need to esti-

mate the expectation vectors of two sets of base arms.

6.2.2 Properties of the reward functions

There are two key properties of the regret function that will be needed to guarantee the

theoretical regret upper bound.

Monotonicity The first property is monotonicity.

Lemma 6.2.1. rS(p, v) is monotonic increasing in every pi and vi.

Recall that for a given set of random variables, we can explicitly write rS(p, v) as in equa-

tion (6.1). It is clear from the expression that rS(p, v) is monotonic increasing in vi. We

can prove that it is monotonic increasing in pi by taking first derivative with respect to pi

and showing that the differential is greater than zero.

Smoothness The second condition is called relative triggering probability modulated

(TPM) smoothness. This notion was originally defined in an appendix of the work by

Wang and Chen (2017) for a different purpose. Here we redefine the notion in a general

framework.
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Definition 6.2.2. Denote the triggering probability of a base arm i in a set of base arms B with

expectation µ for action S as pS
i . We say the problem satisfies 1-norm relative bounded smoothness

with respect to the base arm set B if, for any two distributions with different expectation vectors µ

and µ′, and any action S we have

|rS(µ)− rS(µ
′)| ≤ ∑

i∈S
pS

i bi|µi − µ′i|

where bi is some per-arm weight coefficient.

Note that when rS(µ) is monotonic increasing in µ and µ > µ′, we can remove the absolute sign.

Note that we add the triggering probability pS
i and a weight coefficient bi to modulate the

standard 1-norm condition. The intuition is that we underweight the importance of items

with small triggering probability or weight in expected reward. Even if for some item i we

cannot estimate its expected value accurately, we lose very little in the expected reward.

This will be a very important concept in the regret analysis that follows.

Let the triggering probability of Zi by action S be qS
i and the triggering probability of Vi

by action S be q̃S
i . Note that if S = [k] and arms are ordered in decreasing order of their

values, then the triggering probability for Zi by action S is

qS
i = (1− p1)(1− p2) . . . (1− pi−1). (6.2)

And the triggering probability for Vi by action S is

q̃S
i = (1− p1)(1− p2) . . . (1− pi−1)pi. (6.3)

Note that q̃S
i = qS

i · pi.

Now we claim that the following property holds for our problem.

Lemma 6.2.3. If v > v′ and rS(p, v) is monotonic increasing in p and v, the k-max problem

with value-index feedback satisfies the 1-norm relative bounded smoothness condition with respect
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to the extended base arm set B,

|rS(p, v)− rS(p′, v′)| ≤ 2 ∑
i

qS
i v′i|pi − p′i|+ ∑

i
q̃S

i |vi − v′i|

We note that when we further have p > p′, then we can remove the factor of 2, i.e.,

rS(p, v)− rS(p′, v′) ≤∑
i

qS
i v′i(pi − p′i) + ∑

i
q̃S

i (vi − v′i) (6.4)

The proof of lemma 6.2.3 uses a technique called bottom-up modification. We consider a

sequence of vectors changing from (p, v) to (p′, v′) and add up the changes in expected

rewards. The full proof is provided at the end of the chapter.

6.3 Algorithms and regret bounds

We first review the classical CMAB problem with triggered arms considered by Wang and

Chen (2017). In this problem, the expected reward is a function of action S and expectation

vector µ of base arms. It is assumed that in each round the value of triggered arms are

observed by the agent. Standard CUCB algorithm is used to estimate the expectation

vector µ directly from samples.

Regret bound for standard CMAB-T The following is a known result for standard

CMAB problem with triggered arms.

Theorem 6.3.1. For the CUCB algorithm that satisfies monotonicity and 1-norm TPM bounded

smoothness with smoothness constant bi = B for all i, we have the following distribution-dependent

bound,

R(T) ≤ ∑
i∈E

576v2
i k ln T

∆i
min

+ ∑
i∈E

(
dlog2

2Bk
∆i

min
e+ 2

)
· π2

6
· ∆max + 4Bn

where ∆min > 0 is a per-arm gap that will be defined later.
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For our problem, we will start from the simpler case with an extra assumption that the

ordering of vi values are known. For this case, we will see that the k-max problem can be

thought of as two separate CMAB-T problems. Then we move to the general case. With-

out the ordering assumption, standard CUCB algorithm will not provide us a satisfactory

bound. We will propose a modified algorithm and take extra care to show that the regret

bound is comparable to that of the standard CMAB problem.

Notations We define Ti,t as the number of triggering times for Zi and T̃i,t as the number

of triggering times for Vi. We also define Ni,j,t as the counter of times i in TP group Si,j is

selected in the actions. We reset the counter to zero once Vi is triggered and vi is observed.

For each action S, we define the gap ∆S = max(0, α · optp,v − rS(p, v)). We call an action

bad if its gap is positive. For arms that are contained in at least one bad action, we define,

∆i
min = inf

S:qS
i ,q̃S

i >0
∆S, ∆i

max = sup
S:qS

i ,q̃S
i >0

∆S.

where qS
i , q̃S

i > 0 require that Zi, Vi are triggered by action S with non-zero probabilities.

For other arms, we define ∆i
min = ∞ and ∆i

max = 0. Then we define ∆min = mini∈E ∆i
min

and ∆max = maxi∈E ∆i
max.

We define the event-filtered regret as

R(T, {Et}) = T · α · optp,v −E[
T

∑
t=1

1(Et)rSt(p, v)]

which means we count the regret in round t only if event Et happens in round t.

We also define a series of good events (E1)-(E4) for the regret analysis. For space reason,

they are listed in Section 6.6.
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6.3.1 CUCB algorithm for the simpler case

We use a similar CUCB algorithm as standard CMAB problem to estimate pi and vi. Es-

timates of both sets of parameters are initialized to one at the beginning. Each time we

observe vj as the maximum value of the set, we update the corresponding estimates for

vj and the estimates for pi, for items ordered before j. The algorithm maintains an upper

confidence bound (UCB) for both parameters and feeds the UCB to the approximation or-

acle to obtain the next action. We will use the well-known greedy algorithm (Nemhauser

et al. (1978a)) as the offline oracle. The Greedy k-max algorithm attains (1− 1/e) approx-

imation guarantee in our case, as the expected maximum function is submodular.

Algorithm 6.3.1 CUCB algorithm for the simpler case with computation oracle
1: For each arm i ∈ E, Ti ← 0 . Total number of triggering time for Zi

2: For each arm i ∈ E, p̂i ← 1, v̂i ← 1 . Empirical estimates of parameters

3: for t = 1, 2, . . . do

4: For each arm i ∈ E, ρi ←
√

3 log t
2Ti

. Confidence radius of parameter pi

5: For each arm i ∈ E, p̄i = min{ p̂i + ρi, 1}, v̄i ← v̂i . UCB of parameters

6: S← Oracle(p̄, v̄) . Offline oracle decides the next action

7: Play S and observe winner index j and value vj as feedback.

8: Update v̂j for winner item j: v̂j ← vj

9: For each i ∈ E such that i ≤ j: Ti ← Ti + 1

10: For each i ∈ E such that i < j: p̂i ← (1− 1/Ti) p̂i

11: p̂j ← (1− 1/Tj) p̂j + 1/Tj

12: end for

The regret bound for the CUCB algorithm is provided as follows.

Theorem 6.3.2. If ∆min > 0, the CUCB algorithm defined above has the following distribution-

dependent bound

R(T) ≤ ∑
i∈E

(
2304v2

i k
∆i

min
+ 6 log2

4k
∆i

min

)
ln T + ∑

i∈E

(
dlog2

4vik
∆i

min
e+ 2

)
· π2

6
· ∆max + 4vin
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This regret bound achieves O(nk
∆ log T) and is comparable to the standard CMAB prob-

lem. It is tight with respect to T up to logarithmic factor. To see how the algorithm can be

boiled down into two CMAB-Ts, we consider the contribution of each action to regret, i.e,

∆St = max(0, α · optp,v − rS(p, v)). By the smoothness condition, we have

∆St ≤ rSt(p̄t, v̄t)− rSt(p, v) ≤ ∑
i∈St

qS
i vi( p̄i,t − pi) + ∑

i∈St

q̃S
i (v̄i,t − vi) (6.5)

Clearly, the first term corresponds to regrets from the set of base arms {Z1, . . . , Zn}, and

the second term corresponds to regrets from the set of base arms {V1, . . . , Vn}. We bound

∆St by bounding the two summation terms individually.

For the first term, we can directly apply Theorem 6.3.1 to obtain the regret bound. Note

that the second term is non-standard as our estimates for vi will not be more and more

accurate as the number of selected times increase. The UCB of vi remains at the upper

bound value 1, but becomes exact once we trigger Vi once and know the exact value of vi.

The contribution to regret by arm Vi is zero afterwards. We take extra steps to bound the

second summation term, as shown in the full proof at the end of the chapter.

6.3.2 CUCB algorithm for the general case

In the general case, the agent does not know the ordering of vi within each action. This

greatly decreases the information we have.

To see this, we consider each arm i in two stages, before and after its value vi is observed.

For the first stage when vi is unknown, the corresponding base arm Zi is never triggered.

Note the in the simpler case, Zi is triggered whenever arm i is ordered before the winner.

However, since the ordering is unknown in the general case, we do not have information

about the value Zi takes before vi is observed. Consider in one round we observe the

winner value vj of some other arm j. Arm i could have smaller value vi and takes a

non-zero value thus not being observed, or arm i could have larger value vi and takes

zero value at the game. Importantly, we note that the problem differs from the standard
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CMAB-T framework, as the triggered subset of base arm set Z1, . . . , Zn depends on the

base arm set V1, . . . , Vn. The triggering distribution is not fixed, but depends on whether

vi is observed or not.

On the other hand, when Vi is triggered once and vi becomes known, then the corre-

sponding random variable Zi is triggered whenever the winner value is smaller than vi.

We can immediately conclude that Zi takes value zero. Thus the analysis for second stage

is the same as the simpler case.

Algorithm 6.3.2 CUCB algorithm for the general case with computation oracle
1: For each i ∈ E, Ti ← 0, T̃i ← 0 . Total number of triggering time for Zi and Vi

2: For each i ∈ E, p̂i ← 1, v̂i ← 1 . Initialization of empirical estimates of parameters

3: for t = 1, 2, . . . do

4: For each i ∈ E, ρi ←
√

3 log t
2Ti

, ρ̃i ← 1{T̃i = 0} . Confidence radius of parameters

5: Note that ρi = ∞ if Ti = 0. If T̃i = 0 then Ti = 0.

6: For each i ∈ E, p̄i = min{ p̂i + ρi, 1}, v̄i ← min{v̂i + ρ̃i, 1} . UCB of parameters

7: S← Oracle(p̄, v̄) . Offline oracle decides the next action

8: Play S and observe winner index j and value vj as feedback.

9: if T̃j = 0 then

10: T̃j ← T̃j + 1, v̂j ← vj

11: end if

12: For each i such that v̂i ≥ vj and T̃i 6= 0, update: Ti ← Ti + 1

13: For each i such that v̂i > vj and T̃i 6= 0: p̂i ← (1− 1/Ti) p̂i

14: For each i such that v̂i = vj and T̃i 6= 0: p̂i ← (1− 1/Ti) p̂i + 1/Ti

15: end for

A naive approach is to adopt the CUCB algorithm for the simpler case and introduce T̃i

as the triggering time for Vi. We update parameters of item i only when T̃i 6= 0.

The regret bound for the CUCB algorithm is provided as follows.

Theorem 6.3.3. If ∆min > 0, the CUCB algorithm defined above has the following distribution-
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dependent bound

R(T) ≤ ∑
i∈E

(
2304v2

i k
∆i

min
+ 6

1
p∗

log2
4k

∆i
min

)
ln T + ∑

i∈E

(
dlog2

4vik
∆i

min
e+ 2

)
· π2

6
· ∆max + 4vin

where p∗ = mini∈E pi.

We can see that this bound is not satisfactory as it contains an undesirable factor of 1/p∗.

This is due to the analysis of the first stage of the first summation term. Consider an

item i with large vi but small pi. Recall that estimates of pi will not be updated until

vi is observed. For a given action S, since Vi is triggered with probability q̃S
i defined in

equation 6.3, action S needs to be played Θ(log T/pi) times. The upper bound of 1 for

pi is clearly an overestimate for this type of items, which means this type of items would

cause large regrets during the period when its value is not observed. This is reflected in

the bound as the term containing the factor 1/p∗ can be arbitrarily large if some pi value

is arbitrarily small. For completeness, we will show the proof at the end of the chapter.

6.3.3 Modified algorithm for the general case

To remove the extra factor, we propose a variant of the CUCB algorithm (Algorithm 6.3.3).

The main difference to the previous algorithm is with respect to the estimates for pi. Pre-

viously, we initiate the estimates p̂i = 1, which acts as an upper bound for the parameter.

We start to update the estimate for pi once we observe vi. As discussed above, this may

not be the best algorithm for items with large vi and small pi.

In the modified algorithm, we do not wait to update pi until we observe vi. On the other

hand, we use the estimates v̂i and pretend that Zi is triggered and takes value zero when

vi is not observed. This intuitively makes sense as even if vi takes value 1, the above-

mentioned type of items will not be important to our regret analysis as their probability

parameters remains at zero until vi is observed.
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Algorithm 6.3.3 Modified algorithm for the general case with computation oracle
1: For each i ∈ E, Ti ← 0, T̃i ← 0 . Total number of triggering time for Zi and Vi

2: For each i ∈ E, p̂i ← 1, v̂i ← 1 . Initialization of empirical estimates of parameters

3: for t = 1, 2, . . . do

4: For each i ∈ E, ρi ←
√

3 log t
2Ti

, ρ̃i ← 1{T̃i = 0} . Confidence radius of parameters

5: For each i ∈ E, p̄i = min{ p̂i + ρi, 1}, v̄i ← min{v̂i + ρ̃i, 1} . UCB of parameters

6: S← Oracle(p̄, v̄) . Offline oracle decides the next action

7: Play S and observe winner index j and value vj as feedback.

8: if T̃j = 0 then

9: Reset Tj ← 0, T̃j ← T̃j + 1, v̂j ← vj

10: end if

11: For each i such that v̂i ≥ vj update: Ti ← Ti + 1

12: For each i such that v̂i > vj: p̂i ← (1− 1/Ti) p̂i

13: For each i such that v̂i = vj: p̂i ← (1− 1/Ti) p̂i + 1/Ti

14: end for

The regret bound for the modified algorithm is provided as follows.

Theorem 6.3.4. If ∆min > 0, the modified algorithm defined above has the following distribution-

dependent bound

R(T) ≤ ∑
i∈E

(
4608k
∆i

min
+ 18 log2

8k
∆i

min

)
ln T + ∑

i∈E

(
dlog2

4vik
∆i

min
e+ 2

)
· π2

6
· ∆max + 4n

This regret bound achieves O(nk
∆ log T) and is comparable to the standard CMAB prob-

lem. Compared to the simpler case, it has the same scaling up to constant factors.

We note that our problem still does not fit into the standard CMAB-T framework. As

discussed above, we are pretending that Zi is triggered and takes value zero. This may not

be the ground truth in the case when vi is actually less than the winner value. Therefore,

using the observatation Z(t)
i = 0 will make the estimate biased, not following the stan-

dard CMAB-T framework. In particular, for items with small vi and large pi, we clearly
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underestimated its pi values, since this type of items could take non-zero value but not

observed due to small vi. On the other hand, intuitively these items are not important

due to small value of vi.

To tackle with this difficulty in our analysis, we introduce the concept of item equivalence.

In each round t, for those item i with parameters (pi, vi) and T̃i,t = 0, we replace them

with equivalent items i′ of parameters (p′i, v′i) where p′i = pivi and v′i = 1. Note that

items with small vi and large pi are mapped to equivalent items with large vi and small

vi, for which our improved algorithm can estimate accurately. We will formally justify

this equivalence in the following regret analysis.

Proof sketch Next, we give a sketch for the proof of Theorem 6.3.4. The full proof can

be found at the end of the chapter.

We use a similar framework for regret analysis as the CUCB method. However, we note

that one of the key assumption for CUCB algorithm fails to hold in the improved method,

i.e., we don’t always have upper confidence bounds for parameters pi. Thus we need to

make extensive modifications to the proof.

Firstly, we notice the following fact when replacing item i with (pi, vi) by its equivalent

item i′ with (p′i, v′i).

Lemma 6.3.5. For any set S, rS(p, v) ≤ rS(p′, v′).

Then we consider the contribution of each action to regret ∆t. Under the good event (E1)

that the approximation oracle works well,

rSt(p̄, v̄) ≥ α · opt(p̄, v̄)

By Lemma 6.3.5, for each t such that 1 ≤ t ≤ T we have,

α · opt(p′t, v′t) ≥ α · opt(p, v) (6.6)
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Thus

∆St ≤ α · opt(p′t, v′t)− rSt(p, v)

≤ α · opt(p′t, v′t)− rSt(p, v) + rSt(p̄, v̄)− α · opt(p̄, v̄)

≤ rSt(p̄, v̄)− rSt(p, v)

= (rSt(p̄, v̄)− rSt(p′t, v′t)) + (rSt(p′t, v′t)− rSt(p, v))

where the first inequality is due to condition 6.6, the second inequality is due to the ap-

proximation oracle, and the third inequality is due to monotonicity of rS in p and v. We

call the term inside first bracket as regrets caused by estimation error ∆e
St

, and the term

inside the second bracket as regrets caused by replacement error ∆r
St

. To obtain a tight

regret upper bound, we require that the regret caused by replacement error over the time

horizon T is not greater than the that by estimation error.

By the general smoothness condition 6.2.3, we have

∆e
St
≤ ∑

i∈St

qS
i v′i,t( p̄i,t − p′i,t) (6.7)

Note that we don’t need to include the vi term as v′i,t = v̄i = 1 for all i when vi is not

observed, and v′i,t = v̄i = vi after vi is observed. In both cases, there is no estimation error

for vi.

We also apply the general smoothness condition 6.2.3 to the second summation term and

we have,

∆r
St
≤ 2 ∑

i∈St

qS
i vi(pi − p′i,t) + ∑

i∈St

q̃S
i (v
′
i,t − vi) (6.8)

To sum up, we have

∆St ≤ ∑
i∈St

qS
i v′i,t( p̄i,t − p′i,t) + 2 ∑

i∈St

qS
i vi(pi − p′i,t) + ∑

i∈St

q̃S
i (v
′
i,t − vi)

We are going to bound ∆St by bounding these error terms in different cases.
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We can bound the first term by following the proof of Theorem 6.3.1. To see this, recall that

we have reset the counts Ti and Ni,j,t at the time vi is observed. This is because p′i,t = pivi

when vi is unknown and p′i,t = pi afterwards, we need to reset our estimates for pi and

the confidence intervals. However, for both stages our estimates are accurate in the sense

that p′i always lies within the confidence interval which decreases as the counter number

increases.

For the second term, we note that p′i,t = pivi in the first stage, and p′i = pi after vi is

observed. Therefore, the contribution to regret by the second term is zero in the second

stage. For the first stage, this term can be analyzed in the similar way as the last term.

The key observation is that pi − p′i,t = pi(1− vi) ≤ pi. This will be the key for removing

the factor of 1/p∗ in Theorem 6.3.3.

Finally, we note that the analysis for the last summation term is the same as the simpler

case, since there is no change to the triggering process of Vis.

Summing up the bounds over time horizon T, we can prove the main theorem. We can

also derive the following results.

Lemma 6.3.6. Take Mi = ∆i
min. Assume that all the good events (E1)-(E4) hold, and ∆St ≥ MSt

where MS = maxi∈S Mi, we have
T

∑
t

∆r
St
≤

T

∑
t

∆e
St

This justifies the intuition of using replacement items. Note that by using replacement

items, our estimates for pi are always accurate and lies within the confidence bound.

Thus the total expected regret is comparable to the simpler case.

6.4 Numerical results

We perform experiments to test the results presented in the previous section. Our goal is

to check how the cumulative regret depend on T, under different item value distributions.
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We set n = 9 and k = 3, i.e., the ground set consists of 9 arms and each time we choose 3

arms from the ground set. We consider the following distributions for arms i = 1, 2, . . . , 9.

For all of these cases, the optimal super arm is S∗ = {7, 8, 9}.

• Distribution 1: For the first set of distributions, we assume the support of arm i is

{0, 0.i}, i.e., vi = 0.i. For i = 1, 2, . . . , 6, pi = 0.2 and for i = 7, 8, 9, pi = 0.5. It is a

relatively simple case as distributions of optimal arms 7, 8, 9 are far away from the

suboptimal arms.

• Distribution 2: Compared to the first case, we change the distribution of the first

arm such that it takes non-zero value 0.1 with probability 0.9, i.e, v1 = 0.1 and

p1 = 0.9. In this way, we introduce an arm i with small vi but large pi. As discussed

in the main text, this type of items causes key challenges for our algorithm. Due to

small vi, they can hardly win, thus it is very hard to observe their values. To tackle

with this difficulty, in our algorithm we pretend that the arm was triggered before

its value vi is observed.

• Distribution 3: Compared to the first case, we change the distribution of the last arm

such that it takes non-zero value 0.9 with probability 0.1, i.e, v9 = 0.9 and p9 = 0.1.

Contrary to the previous case, we introduce an arm i with large vi but small pi. This

type of high-risk high-reward items are unique to our problem and their existence

make the setting hard. As discussed in the introduction, this type of items may

outperform stable-value items under the expected max objective.

These distributions represent different scenarios. Distribution 1 corresponds to the case

where optimal arms are easy to distinguish from suboptimal arms. In Distribution 2,

there exists an item whose value is hard to observe. In Distribution 3, we have high-risk

high-reward item which greatly affects the group performances. As a good algorithm for

the k-max problem with value-index feedback, we expect the algorithm to select the best

set under all three settings.
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Figure 6.4 shows the regrets of the modified algorithm for three cases. We plot the 1-

approximation regrets instead of (1 − 1/e)-approximation regret as the offline greedy

oracle usually performs much better than (1− 1/e)-approximation. From the plot, we see

that T-step regret flattens as time T increases. We also plot the number of selection times

for all items in figure 6.4. From the plot, we can see that the algorithm stops selecting sub-

optimal arms. We conclude that our modified algorithm achieves good performances in

all three cases.

Figure 6.1: Regrets of the modified algorithm on the k-max problem with value-index
feedback for Distributions 1,2,3 listed from left to right correspondingly.

Figure 6.2: Number of selection times for all items for Distributions 1,2,3 listed from left
to right correspondingly.

6.5 Conclusion

In this chapter, we studied a new class of online combinatorial optimization problem with

value-index feedback, which is motivated by real-world examples in online advertising

and recommender systems. This problem is inherently full-bandit, with extra feedbacks

on the winner index. We proposed a CUCB algorithm to solve a special case of the prob-

lem when ordering of items are known. For the general case, we proposed a new algo-
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rithm based on the concept of item equivalence. We proved its regret upper bound and

showed that the algorithm performs well by simulation examples.

We note that our algorithm has a matching regret lower bound up to a O(
√

log T) factor

in T. It is also of interest to explore whether the bound is tight in the factor v, the item-

specific values. Moreover, as mentioned at the beginning of the chapter, we restricted our

studies to binary-valued items for analysis purpose. We can possibly model more compli-

cated real-life examples by relaxing this assumptions to items with general distributions.

We leave this for a future work.
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6.6 Proofs

Proof of lemma 6.2.1

Recall that we can write

rS(p, v) = p1v1 + (1− p1)p2v2 + . . . + (1− p1) . . . (1− pk−1)pkvk

assuming WLOG that v1 ≥ v2 ≥ . . . ≥ vk. It is clear from the expression that rS(p, v) is

monotonic increasing in vi.

Take differential with respect to pi we have

drS(p)/dpi = (1− p1) . . . (1− pi−1)

[
vi − pi+1vi+1 −

(
∑
j>i

(1− pi+1) . . . (1− pj)pj+1vj+1

)]

We claim that the terms inside the bracket is greater than zero. Specifically, it can be lower

bounded as follows,

vi − pi+1vi+1 −
(

∑
j>i

(1− pi+1) . . . (1− pj)pj+1vj+1

)

≥vi(1− pi+1)− (1− pi+1)pi+2vi+2 − (1− pi+1)(1− pi+2)pi+3vi+3 − . . .

≥(1− pi+1)(1− pi+2) . . . (1− pk−1)(vi − pkvk)

≥(1− pi+1)(1− pi+2) . . . (1− pk)vi (6.9)

Thus the reward function is monotonic increasing in pi.
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Proof of lemma 6.2.3

Let p = (p1, . . . , pk) and p′ = (p′1, . . . , p′k). Assume that the items are ordered in descend-

ing values. For every j = 0, 1, . . . , k, let

p(j) = (p1, . . . , pj, p′j+1, . . . , p′k)

Similarly for v and v′.

Since v > v′, the item ordering is preserved and we have,

rS(p(j), v(j)) = p1v1 + . . . + (1− p1) . . . (1− pj−1)pjvj + (1− p1) . . . (1− pj)p′j+1v′j+1 + . . .

rS(p(j−1), v(j−1)) = p1v1 + . . .+(1− p1) . . . (1− pj−1)p′jv
′
j +(1− p1) . . . (1− p′j)p′j+1v′j+1 + . . .

Note that the only difference is caused by position j. By definition of triggering probabil-

ities qS
i and q̃S

i we can write,

|rS(p(j), v(j))− rS(p(j−1), v(j−1))| =|qS
j (pjvj − p′jv

′
j −∑

i>j
(1− p′j+1) . . . (1− p′i−1)p′iv

′
i(pj − p′j)|

≤qS
j pj|vj − v′j|+ qS

j v′j|pj − p′j|

+ qS
j (p′j+1v′j+1 + (1− p′j+1)v

′
j+2 + . . .)|pj − p′j|

≤2qS
j v′j|pj − p′j|+ q̃S

j |vj − v′j|

where the first inequality is due to triangle inequality and the second inequality is due to

equation (6.9).

Summing up over j we can obtain the desired result.
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Good events for regret analysis

We define the concept of triggering probability group s.t. if the triggering probability of

arm i in a set of base arms is pS
i and j is a positive natural number, then the triggering

probability group (i, j) is

Si,j = {S|2−j < pS
i ≤ 2−j+1}

Note we have two sets of TP groups corresponding to two sets of base arms with different

triggering probabilities. We call it Si,j for qS
i and S̃i,j for q̃S

i .

Next, we define a series of good event as follows.

E1 Event that approximation oracle works well.

Ft = {rSt( p̄) ≥ α · opt( p̄))}

Note the event-filtered regret for ¬Ft is bounded as

R(T,¬Ft) ≤ (1− β)T · ∆max

E2 Event that we estimate p well.

N s
t = {| p̂i,t−1 − pi| < ρi,t}

With ρi defined in the algorithm as ρi,t =
√

3 ln t
2Ti

, we have

Pr(¬N s
t ) ≤ 2nt−2

Thus the event-filtered regret is bounded as

R(T,¬N s
t ) ≤

T

∑
t=1

2nt−2∆max ≤ π2n∆max/3
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E3 Event that triggering is nice for Zi.

Assume arm i is in TP group Si,j and T̃i 6= 0, i.e., its value vi is observed. Under the

condition
√

6 ln t
1/3Ni,j,t−1·2−j ≤ 1,

N t
t = {Ti,t−1 ≥

1
3

Ni,j,t−1 · 2−j}

It is known that for a series of integers {jimax} we have

Pr(¬N t
t ) ≤∑

i
jimaxt−2

Thus the event-filtered regret is bounded as

R(T,¬N t
t ) ≤ π2 ∑

i
jimax · ∆max/6

E4 Event that triggering is nice for Vi when Ni,j,t is large.

Assume arm i is in TP group Si,j. Under the condition Ni,j,t ≥ 3p−1
i ln t · 2j,

Ñ t
t = {T̃i,t 6= 0}

Equivalently, we can define this event in terms of TP group S̃i,j. We remove the

factor of p−1
i if arm i is in TP group S̃i,j.

Using the same proof technique as for the event that triggering is nice for Zi, we can show

the following bound for the last event.

Lemma 6.6.1. For a series of {jimax} and for every TP group identified by arm i and 1 ≤ j ≤ jimax,

we have

Pr(¬Ñ t
t ) ≤∑

i
jimaxt−2
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Proof of Theorem 6.3.2

We consider the contribution of each action to regret ∆t. We introduce a positive real

number Mi = ∆i
min. Assume that ∆St ≥ MSt where MS = maxi∈S Mi.

By the smoothness condition, we have

∆St ≤ rSt(p̄t, v̄t)− rSt(p, v) ≤ ∑
i∈St

qS
i vi( p̄i,t − pi) + ∑

i∈St

q̃S
i (v̄i,t − vi)

We use the reverse amortization trick and do the transformation such that

∆St ≤ −MSt + 2

(
∑
i∈St

qS
i vi( p̄i,t − pi) + ∑

i∈St

q̃S
i (v̄i,t − vi)

)

≤ 2

(
∑
i∈St

qS
i vi( p̄i,t − pi)−

Mi

4k

)
+ 2

(
∑
i∈St

q̃S
i (v̄i,t − vi)−

Mi

4k

)

We may call the first term ∆p
St

and the second term ∆v
St

. We bound ∆St by bounding the

two summation terms individually.

Note that for ∆p
St

we can bound following the same procedure as the proof for 6.3.1. How-

ever, we cannot use the same procedure for ∆v
St

. The key difference is that our estimate

for vi will not be more and more accurate as the number of selected times increase. We

know the exact value of vi as soon as we trigger it once. We assume that the arm i is in TP

group S̃ij. Let ji be the index of the TP group with St ∈ S̃i,ji . We take jimax = log2
4k
Mi

.

• Case 1: 1 ≤ ji ≤ jimax. Then q̃S
i ≤ 2 · 2ji ,

q̃S
i (v̄i,t − vi) ≤ 2 · 2−ji · 1{T̃i,t = 0}

Under the good event Ñ t
t , we know that when Ni,ji,t−1 ≥ 3 ln t · 2j, the contribution

to regret is zero. Otherwise, it is bounded by

q̃S
i (v̄i,t − vi) ≤ 2 · 2−ji
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• Case 2: ji > jimax = log2
4k
Mi

. In this case,

q̃S
i (v̄i,t − vi) ≤ 2 · 2−ji ≤ Mi

4k

Thus the contribution to regret is non-positive in this case.

Then we calculate the filtered regret under the above mentioned good events and the

event that ∆St ≥ MSt . Note that

R(T, {∆St ≥ MSt},Ft,N s
t ,N t

t , Ñ t
t ) ≤

T

∑
t=1

∆p
St
+

T

∑
t=1

∆v
St

By Theorem 6.3.1, we know the first term is bounded by

T

∑
t=1

∆p
St
≤∑

i

2304kv2
i ln T

Mi
+ 4vin

We focus on bounding the second term. Note that

T

∑
t=1

∆v
St
= ∑

i
∑

j

Ni,j,T−1

∑
s=0

κji,T(Mi, s)

where

κj,T(M, s) =

 2 · 2−j if s < 3 ln t · 2j

0 if s ≥ 3 ln t · 2j

For every i and j, we have

Ni,j,T−1

∑
s=0

κji,T(Mi, s) ≤
3 ln T·2ji

∑
s=0

κji,T(Mi, s) = 6 ln T

Hence the second term is bounded by

T

∑
t=1

∑
i∈S̃t

κ̃ji,T(Mi, Ni,ji,t−1) ≤∑
i

6 ln T · log2
4k
Mi
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To calculate the total regret, we recall the filtered regrets for the case when good events

fail to hold.

R(T,¬Ft) ≤ (1− β)T · ∆max

R(T,¬N s
t ) ≤ π2n∆max/3

R(T,¬N t
t ) ≤ π2 ∑

i
jimax · ∆max/6 (6.10)

R(T,¬Ñ t
t ) ≤ π2 ∑

i
jimax · ∆max/6

Adding up the filtered regrets shown above, we can prove the theorem.

Proof of lemma 6.3.3

As discussed in the main text, we only need to show the bound for the first summation

term ∆p
St

. We assume that the arm i is in TP group Sij. Let ji be the index of the TP group

with St ∈ Si,ji . We take jimax = log2
4k
Mi

.

We consider each item in two stages, before and after its value vi is observed. When vi

has not been observed, pi is upper bounded by 1 as vi. We can derive similar bounds

as for vi in this stage. Under the good event Ñ t
t , we know that vi is observed with high

probability in 3p−1
i ln t · 2j time steps.

• Case 1: 1 ≤ ji ≤ jimax. Then qS
i ≤ 2 · 2−ji ,

qS
i ( p̄i,t − pi) ≤ 2 · 2−ji

• Case 2: ji > jimax. In this case, the contribution to regret is non-positive.

Once vi is observed, we can bound the regret in similar way as standard CMAB-T prob-

lems. Recall that we reset the counter Ni,j,t as soon as vi is observed.
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• Case 1: 1 ≤ ji ≤ jimax. Then qS
i ≤ 2 · 2−ji ,

qS
i ( p̄i,t − pi) ≤ 2 · 2−ji · 2ρi

The contribution to regret will be non-positive if Ni,j,t ≥ lji,T(Mi) where

lj,T(M) = b
1152 · 2−jv2

i K2 ln T
M2 c

• Case 2: ji > jimax. Similarly, the contribution to regret is non-positive.

Next, we sum up the bounds over the time horizon T. Recall that we split the counter

into two stages. For notation convenience, we use Ni,j,1 to denote the counts for the first

stage, and Ni,j,2 to denote the counts for the second stage. Note that Ni,j,T = Ni,j,1 + Ni,j,2.

T

∑
t=1

∆p
St
= ∑

i
∑

j

Ni,j,1

∑
s=0

κji,T(Mi, s) +
Ni,j,2

∑
s=0

κ̃ji,T(Mi, s)


where

κj,T(M, s) =

 2 · 2−j if s < 3p−1
i ln t · 2j

0 if s ≥ 3p−1
i ln t · 2j

and

κ̃j,T(M, s) =


2 · 2−j if s = 0

4 · 2−jρi if s ≤ lj,T(M)

0 if s ≥ lj,T(M)

.

The first stage can be analyzed similarly as for vi. For every i and j, we have

Ni,j,1

∑
s=0

κji,T(Mi, s) ≤ 3p−1
i ln T · 2ji · 2 · 2−ji = 6p−1

i ln T

Hence in first stage we have,

T1

∑
t=1

∑
i∈St

κ̃ji,T(Mi, Ni,ji,t−1) ≤∑
i

6p−1
i ln T · log2

4k
Mi

(6.11)
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Note that this is where the extra pi factor comes from.

The second stage can be analyzed following the same procedure as the proof for Theorem

6.3.1. We omit the proof and gives the results as follows.

T2

∑
t=1

∑
i∈St

κji,T(Mi, Ni,ji,t−1) ≤∑
i

2304v2
i k ln T

Mi
+ 4vin

Since the bound for the second summation term ∆v
St

is the same as the simpler case, we

conclude the theorem. Note that the extra term in the regret bound is due to equation

(6.11).

Proof of lemma 6.3.5

Assume WLOG that S = [k] and v1 ≥ v2 ≥ . . . ≥ vk. Recall that we can write

rS(p, v) = p1v1 + (1− p1)p2v2 + . . . + (1− p1) . . . (1− pk−1)pkvk

Now p = (p1, . . . , pk) and p′ = (p′1, . . . , p′k); similarly for v and v′. Let

p(j) = (p′1, . . . , p′j, pj+1, . . . , pk)

After changing p1 to p′1 = p1v1 and v1 to v′1 = 1,

rS(p(1), v(1)) = p1v1 + (1− p1v1)p2v2 + . . . + (1− p1v1) . . . (1− pk−1)pkvk

Clearly we have rS(p(1), v(1)) ≥ rS(p, v). Following the same argument, we can see

that rS(p(2), v(2)) ≥ rS(p(1), v(1)). Continue this way to rS(p(k), v(k)) we can prove the

lemma.
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Proof of Theorem 6.3.4

By the general smoothness condition, we have

∆St ≤ ∑
i∈St

qS
i v′i,t( p̄i,t − p′i,t) + 2 ∑

i∈St

qS
i vi(pi − p′i) + ∑

i∈St

q̃S
i (v
′
i,t − vi)

Key step: Bound contribution of each action to regret Firstly, we use the reverse amor-

tization trick to perform a transformation. Take Mi = ∆i
min. Assume that all the good

events mentioned above hold, and ∆St ≥ MSt where MS = maxi∈S Mi.

∆St ≤ −MSt + 2

(
∑
i∈St

qS
i v′i,t( p̄i,t − p′i,t) + 2 ∑

i∈St

qS
i vi(pi − p′i) + ∑

i∈St

q̃S
i (v
′
i,t − vi)

)

≤ 2

[(
∑
i∈St

qS
i v′i,t( p̄i,t − p′i,t)−

Mi

8k

)
+ 2

(
∑
i∈St

qS
i vi(pi − p′i)−

Mi

8k

)
+

(
∑
i∈St

q̃S
i (v
′
i,t − vi)−

Mi

4k

)]
(6.12)

Let ji be the index of the TP group with St ∈ Si,ji . Take jimax = log2
8k
Mi

. In the case ji > jimax,

we note that the contribution to regret is non-positive for all three terms. This is because

q̃S
i (v̄i,t − vi) ≤ qS

i (v̄i,t − vi) ≤ 2 · 2−ji ≤ Mi

8k

Then, for the case 1 ≤ ji ≤ jimax, we consider each term individually.

• The first term qS
i v′i,t( p̄i,t − p′i,t).

Recall that we have reset the counts Ti and Ni,j,t at the time vi is observed. This

is because p′i,t = pivi when vi is unknown and p′i,t = pi afterwards, we need to

reset our estimates for pi and the confidence intervals. A key observation is that

within both stages our estimates are accurate in the sense that the approximation

error decreases as the counter number increases in the following way.

p̄i,t − p′i,t ≤ 2ρi
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Thus in both stages the contribution to regrets will be non-positive if Ni,j,t ≥ lji,T(Mi)

where

lj,T(M) = b288 · 16 · 2−jk2 ln T
M2 c

Otherwise

qS
i v′i,t( p̄i,t − p′i,t) ≤ 2 · 2−ji · 2ρi

• The second term qS
i vi(pi − p′i,t)−

Mi
8k .

As p′i,t = pivi and 1 ≤ ji ≤ jimax, we have qS
i ≤ 2 · 2−ji ,

qS
i vi(pi − p′i,t) ≤ 2 · 2−ji pivi(1− vi)

Under the good event Ñ t
t , we know that vi is observed with high probability in

3p−1
i ln t · 2j time steps and p′i,t = pi. Thus the term is upper bounded by zero when

Ni,ji,t−1 ≥ 3p−1
i ln t · 2j, and by 2 · 2−ji pi otherwise.

• The third term q̃S
i (v
′
i,t − vi)− Mi

4k .

Since 1 ≤ ji ≤ jimax, we have q̃S
i ≤ 2 · 2−ji pi,

q̃S
i (v̄i,t − vi) ≤ 2 · 2−ji piρ̃i ≤ 2 · 2−ji pi · 1{T̃i,t = 0}

Under the good event Ñ t
t , we know that when Ni,ji,t−1 ≥ 3p−1

i ln t · 2j, the contribu-

tion to regret is zero. Otherwise, it is bounded by

q̃S
i (v̄i,t − vi) ≤ 2 · 2−ji pi

We note that this upper bound is the same as the second term.

Summing over the time horizon Next, we sum up ∆St over time T and calculate the

filtered regret under the above mentioned good events and the event that ∆St ≥ MSt , i.e,

R({∆St ≥ MSt},Ft,N s
t ,N t

t , Ñ t
t ).
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By equation (6.12), we know that the filtered regret can be upper bounded by sum of three

terms over the time horizon T.

By Theorem 6.3.1, we know that

T

∑
t=1

(
∑
i∈St

qS
i v′i,t( p̄i,t − p′i,t)−

Mi

8k

)
≤ 2 ∑

i

4 · 576k ln T
Mi

+ 4n

Note that the extra factor of two considers both stages.

By the analysis for the previous CUCB algorithm, we know that

T

∑
t=1

(
∑
i∈St

q̃S
i (v
′
i,t − vi)−

Mi

4k

)
≤∑

i
6 log2

8k
Mi
· ln T

Similarly we can bound

2
T

∑
t=1

(
∑
i∈St

qS
i vi(pi − p′i,t)−

Mi

8k

)
≤ 2 ∑

i
6 log2

8k
Mi
· ln T

Add up the filtered regrets in equation (6.10) for the case when good events (E1)-(E4) fail

to hold, we prove the theorem.
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P. Erdös and A. Rényi. On random graphs. i. Publicationes Mathematicae, 6:290–297, 1959.

C. G. Esseen. On the concentration function of a sum of independent random variables.

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 9(4):290–308, 1968.

S. Fallat and Y.-Z. Fan. Bipartiteness and the least eigenvalue of signless laplacian of

graphs. Linear Algebra and its Applications, 436(9):3254 – 3267, 2012.

T. Feder and M. Mihail. Balanced matroids. In Proceedings of the twenty-fourth annual ACM

symposium on Theory of computing, pages 26–38, 1992.

S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via

convex optimization. Inverse problems, 27(2):025010, 2011.

C. Godsil and G. Royle. Algebraic Connectivity of Graphs. Springer, 2001.

M. X. Goemans, N. J. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular

functions everywhere. In Proceedings of the twentieth annual ACM-SIAM symposium on

Discrete algorithms, pages 535–544. SIAM, 2009.

A. Goldenberg, A. X. Zheng, S. E. Fienberg, E. M. Airoldi, et al. A survey of statistical

network models. Foundations and Trends® in Machine Learning, 2(2):129–233, 2010.

A. Gopalan, S. Mannor, and Y. Mansour. Thompson sampling for complex online prob-

lems. In International conference on machine learning, pages 100–108. PMLR, 2014.

B. Hajek, S. Oh, and J. Xu. Minimax-optimal inference from partial rankings. In Advances

in Neural Information Processing Systems 27, pages 1475–1483. Curran Associates, Inc.,

2014.

T. P. Hayes. A large-deviation inequality for vector-valued martingales, 2005.



174 BIBLIOGRAPHY

C. Hillar and A. Wibisono. Maximum entropy distributions on graphs, 2013.

W. Hoeffding. Probability inequalities for sums of bounded random variables. In The

collected works of Wassily Hoeffding, pages 409–426. Springer, 1994.

P. W. Holland and S. Leinhardt. An exponential family of probability distributions for

directed graphs. Journal of the American Statistical Association, 76(373):33–50, 1981.

T.-K. Huang, C.-J. Lin, and R. C. Weng. Ranking individuals by group comparisons. In

Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pages 425–

432, New York, NY, USA, 2006a. ACM.

T.-K. Huang, R. C. Weng, and C.-J. Lin. Generalized bradley-terry models and multi-class

probability estimates. J. Mach. Learn. Res., 7:85–115, Dec. 2006b.

K. Joag-Dev and F. Proschan. Negative association of random variables with applications.

The Annals of Statistics, 11(1):286–295, 1983. ISSN 00905364. URL http://www.jstor.

org/stable/2240482.

Kaggle.com. New york times articles & comments (2020), 2020. URL https://www.

kaggle.com/benjaminawd/new-york-times-articles-comments-2020.

Kaggle.com. Youtube dislikes dataset, 2021. URL https://www.kaggle.com/

dmitrynikolaev/youtube-dislikes-dataset.
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