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Abstract

This thesis is composed of four essays on urban and spatial economics. The first two papers
are empirical studies evaluating the impact of public policies in England — one looking at
transport infrastructure and the other at flood management. The last two papers leverage
satellite imagery to investigate the effects of floods and flood risk on urbanisation in developing
countries.

The first paper focuses on the impact of cycling infrastructure on road traffic in London. It
demonstrates that providing segregated cycling lanes increases cycling flows without impacting
motorised traffic. Not only do the cycling flows increase immediately after the opening of the
dedicated lanes, but they also appear to be on a permanent steeper growth path. One primary
causal mechanism investigated is the reduction in accidents along the cycling routes.

The second paper analyses the role of natural disasters in local election results in England.
It finds that at the electoral ward level, electors punish the incumbent party after a flood
during local elections in England — but they are much more likely to do so if the incumbent
party aligns with the party in power, both at the local authority and national government
levels. There is no evidence that the political party alignment of the incumbent is a significant
driving force. However, there is a clear pattern of more votes going to the UK Independence
Party in the wake of a flood shock.

The third paper of the thesis investigates the causal role of land scarcity and path
dependence on the expansion of Chinese cities into high flood risk land. It finds that a naive
OLS regression overestimates the role topographic constraints play in driving urbanisation in
high flood risk areas. Once instrumented for, land scarcity due to topographic constraints is
not a driver of urbanisation in high flood risk areas: cities expand into high flood risk land
despite having safe land to expand on.

The last paper explores the medium-term effect of flooding on population growth in Sub-
Saharan Africa. It finds that large floods in rural areas have long-term persistent effects on
population growth but that the effects are mitigated in large urban areas. Using Demographic
and Health Survey data, the paper finds that experiencing a severe flood is associated with
worse health outcomes and a higher probability of being classified in the poorest wealth
bracket, especially in rural areas. In the medium-term, the analysis shows sorting of the
poorest households in high-flood risk areas. This is consistent with a higher out-migration
rate from rural areas.
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1 Introduction

This thesis is composed of four essays on urban, development and spatial economics. The
first two papers are empirical studies evaluating the impact of public policies in England —
one looking at transport infrastructure and the other at flood management reform. The last
two papers leverage satellite imagery to investigate the effects of floods and flood risk on

urbanisation in developing countries.

This first paper investigates the impact of constructing segregated cycling lanes on cycling
and motorised traffic. I use an event study analysis on the progressive roll-out of the Cycle
Superhighways (CSH) programme in central London from 2014 to 2019. Analysing the impact
of lane segregation on traffic flows is challenging as cycling lanes location is an endogenous
choice from the policymakers and stakeholders. Lanes have been built in strategic locations
due to user demand, wide enough roads to accommodate the additional segregated lanes, safety
and potential for growth. However, even after considering the endogeneity of the locations
using an event study type of analysis, I find that the segregated lanes programme increased
cycling traffic flow by about 25% after opening and then by an additional 20% per year. It
accounts for nearly half of the increase in cycling traffic along those roads. There is little
evidence that this effect is driven by the displacement of cyclists from nearby roads, which
indicates that the new lanes increase the number of cyclists or their frequency. One of the
mechanisms investigated is an increase in cycling flow via safer trips and safety in numbers. 1
find a substantial decrease in accidents involving cyclists after the lanes’ construction. I do

not find any impact on car traffic.

The second paper shows the relationship between natural disasters, decreased support
for government parties, and increased votes for protest parties. Failure to prevent floods
has considerable physical and economic costs. It also has long-term effects on the well-being
of impacted people. We analyse how voters respond to such disasters in the context of
“second-order” elections — elections with lower turnout and media coverage. Considering the
characteristics of local elections in the UK — half the turnout of General Elections, a higher

share of votes for non-dominant parties, and poor knowledge of constituents of local councils



functioning, we show evidence that voters use floods to punish parties in power and give rise
to protest parties. We find that electors punish the incumbent party after a flood during local
elections in England — and they are much more likely to do so if the incumbent party aligns
with the party in power, both at the local council and the national government level. We also
find that recent floods bolster the rise of the UK Independence Party. While the baseline
decrease in the share of votes for the incumbent is relatively small — 0.7 percentage point, it
can be increased by up to 6 percentage points if the incumbent is from the same party as
the national government. These effects are more substantial for larger floods in terms of the
flooded area and duration. We also find the same bounded rationality as previous papers in
the literature: the effect of floods on local electoral outcomes is limited to floods within a year

of the election.

In the third paper, we overlay new high-resolution satellite data and flood hazard maps to
study how cities expanded in high flood risk areas in China from 1985 to 2015. We construct
a panel of cities to investigate the causal role of land scarcity and path dependence on the
expansion of cities into high flood risk land. Land scarcity around a city is partly an endogenous
product of urbanisation, as cities expand in the direction of unviable land (water bodies or
steep land) for their amenity or productivity value, and partly an exogenous process due to
the location and size of topographic constraints as cities expand. We develop an instrument
for land scarcity based on topographic obstacles encountered by mechanically growing cities,
building on Harari (2020). We find that a naive OLS regression overestimates topographic
constraints’ role in driving urbanisation in high flood risk areas. Once we use long-difference
to remove time-invariant effects and instrument for endogenous growth, we find that land
scarcity due to topographic constraints is not a driver of urbanisation in high flood risk areas:
cities expand into high flood risk land despite having safe land to expand on. We document

how these drivers vary by flood risk types (pluvial, fluvial and coastal).

The last paper explores the medium-term effect of flooding on population growth in Sub-
Saharan Africa. To circumvent the lack of comprehensive reporting of floods in low-income
countries, I use a flood model and climate data to create a novel historical dataset on floods.

I then construct a panel dataset of population, degree of urbanisation and floods from 1990



to 2015 in Sub-Saharan Africa. The satellite imagery allows for the analysis of the effect
at a high degree of disaggregation. I find that large floods in rural areas have long-term
persistent effects on population growth, but the effects are mitigated in large urban areas.
Using Demographic and Health Surveys, I explore the mechanisms behind these diverging
trends. In the short-term, rural households are much more likely to suffer negative health
and wealth impacts from floods. In the medium-term, sorting and out-migration of poorer

households in risky areas are much stronger in rural areas.



2 The impact of segregated cycling lanes on road users

2.1 Introduction

The world’s major cities have built cycling infrastructures in the last decades. Active travel,
including walking and cycling, has been encouraged to reduce motorised traffic, bring health
benefits and reduce air pollution. In addition, these modes can provide relief to congestion of
public transport in central areas. However, these benefits are conditional on doing more than
merely displacing bike users from one lane to another, as well as generating a genuine shift in

modal share and not only capturing the population’s growth in these areas.

Although major cities have spent considerable amounts on increasing the number of
cyclists, segregated cycling lanes have not been studied by economists as extensively as other
infrastructures such as segregated bus lanes. London’s cycling policy reflects other large
metropolitan areas in implementing bike-sharing systems, segregated lanes and encouraging
users to avoid car traffic. However, bikes represent still only 2.5% of trips in London. London
Mayor’s strategy is to reach 5% by 2026 (Transport for London 2018). The current strategy
aims at convincing more people to cycle. Safety concerns are the first deterrent for cycling in
London. Segregated cycling lanes aim directly at improving safety by separating traffic from
cars and providing safe junctions. Their design in London - large straight roads from outer
neighbourhoods to the centre of the city - was chosen to be easily recognizable and offer a fast

and simple way to travel across central London.

This paper examines whether building cycling infrastructure increases cycling flows in large
cities. I use the Cycle Superhighways (CSHs) programme in London to conduct the analysis:
twelve planned segregated cycling lanes that commuters use to commute safely from the outer
neighbourhoods of London to the centre. The main difficulty in studying this programme is
that the lane placement was chosen to maximize existing cycling flows. It is thus difficult
to disentangle existing trends from the impact of the cycling infrastructure. The program’s
roll-out between 2008 and 2020 is used to address identification issues. In 2008, Mayor Ken

Livingstone announced London’s Cycle Superhighways scheme (CSH) as shown in Figure 2.A.1.



By 2010, the first lanes were built!, but they were perceived as unsafe by users. In response
to the criticism, in 2012, the first segregated cycle lanes were built?. Most of the subsequent
lanes were completely separated from the car traffic>. The analysis focuses on the second
generation of segregated cycling lanes for practical reasons (I do not observe pre-trends in the

first generation of lanes) and to narrow the analysis to mainly segregated lanes.

The paper finds evidence of a net increase in cycling flows for three years following the
launch of the program. There is not enough data to estimate longer time effects. As soon as
the facility opens, cycling flows increase by about 25%, and then by 20% per year after that.
From the empirical design, I find that the increase is not driven by population growth in these
areas. I also pay particular attention to the possibility of cycling lanes displacing other traffic.
Indeed, the increase in cyclist flow on CSHs could be driven by cyclists choosing safer lanes
to do their usual trips. While not a bad outcome in itself, the main goal of the CSH was to
create incentives for people to cycle and do more trips cycling. I find no evidence of cycling
displacement around the new segregated cycling lanes. The lack of displacement indicates that
the increase in traffic in segregated lanes is likely to contribute significantly to the net increase
of cycling flow in London, rather than shifting existing flows from other routes. It makes sense
as cycling trips are generally short?, and any additional detour would significantly decrease

the advantage of using a bike.

I reproduce the analysis using the London cycle hires - London’s public bicycle hire scheme
opened under Boris Johnson’s mayorship - and show a similar pattern. Following the opening,

trips starting or ending at CSHs show an increase while stations further away do not.

Another form of displacement could be car traffic. The reduced effects on pollution would
be voided. To disentangle these effects, I analyse the impact of the segregated cycling lanes on
cycling at different distances of the lanes. I do not find evidence of decreased car flow or bus

flow in the lanes that have been reduced to accommodate the segregated cycling lanes nor in

1083, CS7 in 2010 and CS2, CSS in 2011

2085, upgrade of CS2, the extension of CS3, CS6, CS1 + “Better junctions”

31 show the differences between the two generations of lanes in Figure 2.A.2 and 2.A.3. The lane number,
e.g. CSH8/CSHS5, corresponds to the original plan number and not the order of construction; some lanes are
called “CS” and others “CSH”

422 min on average in London (LTDS, 2018)



the adjacent lanes.

Finally, I look at the underlying mechanism for the increase in cycling, such as the increased
safety of cyclists in segregated lanes. I find that these infrastructures bring direct benefits by

decreasing the number of car-cycle accidents and reducing accidents per cyclist.

The main contribution of this paper is to capture that segregated cycling lanes do not offer
only a one-time increase in cycling at opening but also put cycling flow on a higher growth
path. I further demonstrate that the increase is not due to the displacement of cyclists. I also
show that the main argument against segregated cycling lanes - disruption of car traffic - did
not manifest in London. Finally, I find a significant decrease in accidents after the opening of

lanes - explaining the success of the programme.

This paper has clear policy implications. First, the findings imply that building cycling
infrastructure has an immediate impact on traffic flows and that this impact is growing over
time. The impact is more prominent for fully segregated lanes but still considerable for
partially non-segregated lanes. A cost-benefit analysis should take into a large time frame to
evaluate these programmes. Additionally, cycling lanes are also often criticised for increasing
congestion. However, in the analysis, I find little evidence of change in traffic flows around
the cycling lanes. Finally, in line with the previous literature, this paper provides evidence of
safety in numbers for cyclists. Not only does the number of accidents per cyclist on the road
decrease, but the number of total accidents also drops after the construction of the cycling

lanes.

The rest of the paper is structured as follows. First, I review the literature on transport
in London and cycling in Section 2.2. I then present the empirical analysis in Section 2.3
and the datasets I use in the analysis in Section 2.4. In Section 2.5, I decompose the results
between cycling flows on the new segregated lanes, the displacement analysis on neighbouring
roads and the traffic accidents analysis. Finally, I summarise the results and alleys for future

research in Section 2.6.



2.2 Literature review

Transport economists are no strangers to London’s setting. London is famous for experimenting
with a central congestion charge in the early 2000s. The effects of the congestion charge
were wide-ranging: reduced motorised traffic, decreased air pollution and accidents, increased
housing prices and increased traffic outside the congestion zone. Leape (2006) summarises the
early implementation of the London congestion charge reduced all motorised traffic by 12%
and up to 34% for cars. Green, Heywood, and Navarro (2018) show evidence that London’s
Congestion Charge reduced traffic accidents and air pollution in the tolled zone. Keat Tang
et al. (2016) uses a partial equilibrium to find an elasticity of housing values with respect to
traffic of -0.3. More recently, Herzog (2020) uses a general equilibrium model to show that the
congestion charge reduces both the number of commuters and their propensity to drive inside
the congestion zone but increases driving among untolled drivers. This paper contributes to
the economic literature by evaluating the impact of new transport infrastructure on transport

mode and its general impact on motorised traffic.

On segregated cycling lanes, studies have shown they are safer for cyclists (Cohen 2013;
Li, Graham, and Liu 2017; Mulvaney et al. 2015; Reynolds et al. 2009; Aldred et al. 2018).
These studies highlight a few caveats that are worth noting. First, there is a learning period
when new lanes are introduced as users learn how to use them safely. Second, there is safety
in numbers, meaning that cycling infrastructure might be particularly useful to sustain a
higher cycling growth rate. Third, safer infrastructure is also more inclusive: women, young
people or the elderly are more likely to cycle when cycling routes are separated from car
traffic. Finally, these studies do not consider that there could be endogeneity in cycling lanes
placement and existing pre-trends. Therefore, it is essential to show that these results hold

even when pre-existing trends are considered.

In London specifically, Aldred et al. (2017) review the literature on cycling provisions
separated by motor traffic. They find that even though all users prefer separation, women
have stronger preferences. In a follow-up paper, Aldred and Dales (2017) show that the lack
of infrastructure in London and the high-level of perceived danger is a deterrent for most

casual users. A study by Li et al. (2018) relates an increase in cycle hire near the CSHs. I



generalise the analysis to cyclists using their own bikes, as cycle hire users differ from the
general population - cycle hires are used more by tourists and casual users. Li, Graham,
and Liu (2017) find no impact of the programme on traffic accidents in the first phase of
the programme (2007-2014). They note that a significant drawback of the CSH programme
is the lack of separation between cars and cyclists. Bhuyan et al. (2021) uses propensity
score to evaluate the impact of CSHs on traffic congestion and find a positive impact of the
programme. This paper focuses on the programme’s second phase when most routes were
built with a physical separation from the motorised traffic in reaction to the early criticism. I

find a substantial impact on the reduction of traffic accidents per cyclist.

2.3 Estimation strategy

In this paper, I study the impact of the construction of the CSHs on cycle traffic in London
using an event study analysis. The treatment group is sites with an active CSH; the control

group is not yet treated sites and treated late (sites that opened in 2020).

The set-up behind this paper is that individuals in London have a large set of options
regarding modal choice. They can choose to walk, cycle, take public transport, hire taxis or
private cars. The determinants of modal choice depend on the individuals, trips and the modes’
characteristics. Intuitively, building segregated cycling lanes reduces the cost of travelling
by bike. It might also increase the cost of travelling by car by reducing road capacity. In
consequence, it should increase the demand for cycling and potentially create a substitution

with other modes.

One way to investigate this increase in demand would be to use travel diaries. They exist
for London (London Travel Demand Surveys from Transport for London), but unfortunately,
the level of geographic disclosure is too aggregated to perform this analysis. In this paper,
I thus present results on cycling demand increase, but I cannot comment on substitution or

general equilibrium effects.

To conduct the analysis, I use the cycle monitoring programme created by Transport for

London. It contains various yearly and quarterly surveys available from 2014 to 2019 to track



cycling volume across Central London over time. To measure the impact on motorised traffic,
I use a similar geocoded survey produced by the Department for Transport road counts for
Greater London from 2000 to 2019. I also use the STATS19 dataset from the Department of
Transport that records all road accidents with police involvement in the past decades. These
datasets contain the exact geo-coordinates of the counting sites and accidents that I spatially

relate to the CSHs routes.

The programme’s specific design allows for overcoming some of the issues highlighted
by the recent literature on the difference in differences (DiD) in staggered adoption (Sun
and Abraham 2018; Borusyak and Jaravel 2018; De Chaisemartin and D’Haultfoeuille 2018;
Goodman-Bacon and Marcus 2020). The canonical difference in differences estimator has two
time periods: before and after implementation, and two groups: treatment and control. It
identifies the average treatment effect on the treated (ATT) under the (conditional) parallel
trend assumption. Many studies use variation across groups that receive the treatment at
different times similarly to the cycle superhighway programme. However, in the case of growing
effects, using a classic regression with a treatment dummy and panel fixed effects does not
recover a reasonable average of the treatment effects (Borusyak and Jaravel 2018). Concretely,
in the case of increasing traffic, comparing different routes underestimates long-term effects
as it evaluates lanes that just opened to lanes where traffic has been growing for a few years.
Obtaining an average would confound the effect on lanes that have been opened for a year,
three years, or more. Additionally, there is no meaningful “average treatment effect” as the

different lanes’ construction has happened at different times.

In more general terms, in the canonical DiD, the difference between the pre-treatment
outcome is extrapolated to the post-treatment as a counterfactual. In a staggered DiD, the
difference when the staggered groups have been treated also serves to identify the difference
in level between groups. However, when the effects are not homogenous in time, then the ﬂA
under-estimate long-term effects. Borusyak and Jaravel (2018) show that in the case where
openings are distributed uniformly across time, the sample size weighted average treatment
effect and the canonical regression estimand differs more and more as the effects become more

dynamic (affecting the growth rate, see Figure 2.3.1 from Borusyak and Jaravel (2018)).



Figure 2.3.1: Difference in differences bias with dynamic effects

A: Treatment Affects the Slope B: Temporary Effects

20
»
8

15
6

reatment effect
10

|

I

|

|

|

I

|

|

|

|

|

|

|

|

Treatment effect

4

\i
\

-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

O o EEr R RS EE R R R R R TR R AT TR R TE R AR o
T T T T T T T
1] 5 0 15 20 o 5 0 15 20
Relative time Relative time
‘ ——®—— Trueeffect =eresenes Canonical == === Average —&— Trugeffect  wreerenes Canonical == === Average

Another issue with the two-way DiD is that it overweights cohorts in the middle of the
treatment and gives smaller weights to cohorts that opened first or last. A recent paper by
Goodman-Bacon and Marcus (2020) shows that this estimator does not recover the ATT but a
weighted estimator that depends on group size and variance in treatment. Again, it is mainly
a problem if the effect changes over time (in the case of cycling lanes, increasing each year
after opening). Other papers such as Borusyak and Jaravel (2018) describe this problem as

“negative weighting” of the later cohorts.

Faced with this issue in the staggered difference in differences fixed-effect model, I use
the programme’s specificity to adopt an alternative identification strategy. I use an event
study analysis to capture the impact of the opening of the lanes on cycling flows, car flows
and accidents at various distances from the segregated lanes. The roll-out of the CSHs with
segregated lanes is concentrated between 2015 and 2019, which allows me to estimate the
effect up to 3 years after opening. I present the event study results with the constructed
lanes only, as well as the lanes opened in 2020 as a control group. Assuming that the CSHs
effect on traffic is stable across cohorts (they all receive the same impact at the opening and
each year afterwards), then the event study estimates should be non-biased. In the summary
statistics, I compute the socio-economic characteristics of the areas around the different cohorts
of segregated lanes to look for differences that could impact the treatment. I do not find major

differences in characteristics between cohorts.
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Different endogeneity issues could arise in this setting. The first one would be that the
timing of the opening is endogenous to the growth potential of the routes. Differences in
the timing of opening were due to security concerns over the original design - it should not
be related to the potential for cycle growth in the respective routes. The original plan was

announced in 2008. It consisted of radial 12 roads linking to Central London.

The first lanes were built in 2010 and focused on improving the readability of the infras-
tructure. The lanes were visible using “blue paint” on the surface. They were not separated
from the traffic and were perceived as unsafe. In response, TfL organised user consultations
and small experimentations using the International Cycling Infrastructure Best Practice Study.
The safety recommendations were integrated into the “Mayor’s cycling vision” and led to
higher safety standards. One major drawback of the higher standard of infrastructure was the
substantial delays in implementing the CSH programme (Transport for London 2014). The
second generation of lanes was physically separated from car traffic. It often involved reducing
the number of car lanes to fit the 4 meters wide cycling lanes (compared to the non-separated
2m wide original design). There is no indication that the cycling potential was a factor in the

timing of the roll-out.

The second endogeneity issue is that the routes could compete with each other for cy-
clists. The CSHs have been created to be radial roads spanning the London network. They
are connecting different parts of London to the centres. The different routes are thus not
substitutable. However, there might be a possibility that they are complementary - the more
connected the network of segregated lanes, the more valuable they are for Londoners that can

now travel safely for greater parts of their journey.

In all the regressions, I cluster the standard errors using two-way clustering at the CSHs
route and year level. The general approach for an event study is to cluster at the unit or
treatment level. If the error correlations are due to common shocks across observations,
then the year-fixed effects will absorb all within-year clustering, and inference needs only to

control for clustering on the unit. However, if these shocks have a large route-level component,
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contemporaneous error correlations across routes will remain. I thus choose two-way clustering

at the route and year level.

2.4 Data

I construct a dataset of cycling traffic flow, car traffic flow, and accidents for a representative
set of counting sites along the Cycle Superhighway routes and their surrounding areas. Most
of these points are located in Central London (inside the Congestion zone - where car traffic
is tolled). For the displacement analysis, I consider locations close to these lanes (up to 600

meters).

CSH data - 1 use the Cycle Superhighway dataset from the Transport for London cycling
monitoring programme. The counting sites are shown with the lines opening year in Figure
2.4.1. The CSH dataset has 320 count sites over 11 planned routes® 6. For each site, I have
their exact location and yearly count. These counts are based on daytime ridership and
conducted annually; they are adjusted for seasonal variations and represent annual averages.
It starts in 2014 and ends in 2019, but not all sites are surveyed every year: I have a balanced
panel, pre and post-treatment counts for C1, CS2, CS3, CS5 and C6, which corresponds to 84

counting sites in the treatment.

Cycle Hire - To complement the survey analysis, I gather all cycle hire journeys” available
from 2012 to today. I filter journeys corresponding to the same period (2014-2019) and time
of the day (early morning to evening) as the survey data. I clean the data from all lost or

incomplete journeys.

London cycling- 1 use the Central/Inner/Outer London Cycle Monitoring programme
dataset for the cycle displacement analysis. It starts in 2014 and ends in 2019. Each counting
site is monitored quarterly and observed in all directions. They are shown in Figure 2.4.2.
For each site, I calculate the distance to the CSHs and group them by distance bands. This

dataset has been sampled to be representative of London’s cycling roads and traffic.

5T assign the route reference to counting sites based on the planned network map
SEach count site is observed in all directions
"They are also called Barclays bike or Boris Bike from the name of the first sponsor/ mayor of London
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Road traffic - 1 use the Department for Transport Road Traffic Counts dataset for the car
displacement analysis. It starts in 2002. It is observed yearly but with gaps. The road traffic
data is available for every major road and some minor roads. The counters are represented in
Figure 2.4.4. Similarly to the cycle analysis, I calculate the distance from each monitoring site
to the CSH lines. As the data is not available every year, I use the provided imputed values

for the missing years®.

Traffic accident - Finally, I use the Road Safety Data (STATS19) available from 2004 to
today from the Department for Transport to collect all incidents involving cars and bikes
near the CSHs before and after opening. The data is precisely geocoded, which allows me to
capture accidents on cycling lanes. The data only reports accidents with the police involved
- it is thus likely to be missing non-serious accidents. There is no reason to think that the
rate of reporting has changed over time. The data contains information on the severity of the
accident. However, it is difficult to analyse by severity as the severity reporting was changed

in 2016.

Table 2.4.1 shows the main census characteristics for a 150m buffer around the monitoring
sites in my treatment groups. Columns 1, 2 and 3 correspond to routes opened in 2015, 2016
and 2018 respectively. As the number of monitoring sites observed for six years is low for the
2015 routes, I reproduce the results dropping that cohort and find similar results. The opening
date does not correlate with demographic characteristics or total cycle traffic flow (in both
directions). However, the earlier routes are a bit more central, leading to a slightly shorter
travel time to work and a lower population. In Table 2.4.2, I present the same variables for the
treatment groups (2015-2018) and the control group (never treated). The two groups’ areas
are similar in demographics and distance to work, but the treatment groups have a higher

population overall and a slightly higher proportion of people biking to work.

81 do not allow imputation if the gap between two actual counts contains the year of construction
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Table 2.4.1: Summary statistics 2011 census (treatment group)

2015 2016 2018
Household size 1.9 2.22 1.95
(0.2) (0.58) (0.28)
Population 268.2 360.47  336.94
(34.62)  (75.42)  (89.59)
Age 39.71 33.02 35.57
(6.03) (3.5) (3.79)
Median age 37.98 29.49 32.11
(6.65) (4.98) (4.92)
Share highly educated 56.61 48.41 52.31
(2.31) (18.34)  (14.17)
Bike to work (per 1000) 40.08 35.34 29.94
(30.47)  (28.16)  (10.5)
Distance to work 8.71 8.75 7.9
(2.21)  (252)  (1.68)
Total cycles 2047.36  1425.74  1603.28
(830.95) (1136.6) (1019.97)
Counting sites # N=2 N=20 N=20

Table 2.4.2: Balance table 2011 census (treatment versus control)

Treated Control  Treated=Control

Household size 2.08 2.21 p=0.24
(0.46) (0.21)

Population 344.87 302.32 p=0.02
(82.59) (27.21)

Age 34.56 32.88 p=0.24
(4.02) (2.87)

Median age 31.14 30.31 p=0.48
(5.28) (1.93)

Share highly educated 50.66 41.89 p=0.18
(15.95) (13.09)

Bike to work (per 1000) 32.99 25.01 p=0.08
(21.24) (7.05)

Distance to work 8.34 8.56 p=0.79
(2.13) (1.71)

Total cycles 1539.89 1571.89 p=0.91
(1057.59)  (540.27)

Counting sites #

N= 42 N=6
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Figure 2.4.1: Map of the CSH counting sites
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Figure 2.4.2: Map of the cycling monitoring programme counting sites
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Figure 2.4.3: Map of the cycle hire stations
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Figure 2.4.4: Map of road traffic counting sites
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Figure 2.4.5: Map of accidents density 2009-2019
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2.5 Empirical analysis and results

To introduce the analysis, Figure 2.5.1 plots the raw count of the average daily cycling flow
for the treated sample for each year pre and post-treatment. The average pre-treatment is
about 1,600 counted daily in the monitoring sites, against 2,100 post-treatment. The lower and
upper whiskers show that some counting stations average low numbers daily (the minimum is
20 pre-treatment and 46 post-treatment while the busiest monitoring stations register up to
5,830 and 6,136 cyclists counted daily pre-and post-treatment, respectively). These results do
not consider the overall growth trends and site heterogeneity but still show a significant jump

at opening.

2.5.1 Dynamic effects estimation

The results from Figure 2.5.1 indicate that it would be appropriate to conduct an event study

on the CSH openings. I use a fully dynamic specification to analyse the treatment heterogeneity
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Figure 2.5.1: Daily cycling flow
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across time. Unlike the two-way fixed effect DiD, the event study coefficient should not be
affected by a negative bias as long as the increase is similar across cohorts (cohorts receive
the same increase at the opening and every year afterwards). I only include sites for which I
have six years of observation in the sample. The treatment group is CSH sites after opening
in 2015, 2016 and 2018. The control group is sites that have not opened yet (later treated)
and CSH sites that opened in 2020. The dependent variable is the log flow of cyclists.
J .
In(TotalCycles;t) = Z 0 Treat], + ;i + 0t + nit
j=—4

with In(TotalCycles);; the average daily flow recorded in counter i and year t. As I use a
log-linear model and the coeflicients for years of opening are quite large, I exponentiate them
in the text. Treatgt = 1{j =t — Opening;} is a categorical variable for years since opening
Opening; j = {—3,—2,...,4}: T use j = —1, the year before opening, as a base level, §; for
j > 0 captures dynamic effects of j years relative the cycle superhighway opening, finally ~;

and §; site and year fixed effects.

I show the result in Table 2.5.1. In column 1, I only include sites for which I have pre

and post-treatment years and six years of observation. In column 2, I add the CSH that
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opened in 2020 (I do not observe the flows after opening as my panel stops in 2019). The
coefficients are slightly larger than in column 1 but still within the confidence interval of each
other. I illustrate the results of column 1 in the upper left graphs of Figure 2.5.2. There is
a short decrease before opening, probably due to construction, a large jump of 24% at the
opening, and then a further average increase of 19% per additional year. From the author’s
calculation, the average construction time is 14 months, which can explain the slight decrease
up to two years before opening®. The estimates with the control group are a bit larger but
also less precisely estimated. I also estimate an average treatment effect on the treated using
a difference in differences estimator which I show in the Appendix in Table 2.A.1 and the
corresponding Goodman-Bacon decomposition in Figure 2.A.4. Both confirm that there is a

large increase after the opening of the CSHs. The effects are increasing over time.

2.5.2 Traffic displacement

In the next part of the analysis, I reproduce the event study on traffic flow for cycles and cars
close to the newly constructed CSH. The estimating equation is the same as above but uses
cycle traffic around the CSH as an outcome. To this aim, I use the Cycle monitoring dataset
from Transport for London for Central, Inner, and Outer London presented in Figure 2.4.2. 1
keep all counting sites opened between 2015 and 2020 for the analysis and use the year before

opening as the baseline.

The results from the event study on cycle counters 20-200m, 200-400m, and 400-600m
away are presented in Table 2.5.2 and in the last 3 plots of Figure 2.5.2. I keep all counting
sites that I observe for all quarters. While the coefficients after opening are larger closer to
CSHs - meaning that the cycling traffic could be increased close to the CSHs, there are no
significant results. The effects could be linked to cyclists getting on and off the segregated
lanes. On average, cycle trips are short (20min) and fast, so there is not much gain for the

average cyclist to take a large detour to get on a cycle superhighway.

9CS3 from Tower Gateway to Parliament Square took 13 months to be built and opened in March 2016.
CS3 from Parliament Square to Lancaster gate started in April 2016 and ended in September 2018 (18 months).
CS5 Kennington Lane to Victoria took eight months. CS1 took eight months between was built between July
2015 and April 2016. CS6 started in March 2015 and finished in September 2018. CS2 extension started in
February 2015 and ended in December 2016 (21 months)
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Table 2.5.1: Cycling flow after CSH opening

Treated Treated + Control
j<=-4 -0.309 -0.299
(0.174) (0.212)
=3 -0.118 -0.126
(0.0767) (0.149)
j=-2 -0.166*** -0.135*
(0.0322) (0.0447)
j=0 0.215%** 0.260***
(0.0397) (0.0315)
j=1 0.345"* 0.400***
(0.0208) (0.0283)
j=2 0.494*** 0.562%**
(0.0416) (0.104)
ji>=3 0.595*** 0.696***
(0.0185) (0.105)
N 504 528
Rsquared 0.949 0.949
Year FE Yes Yes
Site FE Yes Yes

SD clustered at year and cycle superhighway route level
*p<.1,” p<.05 " p< .01
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Table 2.5.2: Cycle displacement

20-200m  200-400m  400-600m
j<=-4 -0.181 0.111 0.00487
(0.178) (0.157) (0.115)
j=-3 -0.163 0.00582 0.00909
(0.118) (0.0818) (0.0649)
j=-2 -0.191 -0.0350 0.0180
(0.141) (0.0888) (0.0514)
j=0 0.0308 -0.0408 -0.0105
(0.0752)  (0.0443) (0.0360)
j=1 0.135 -0.00498 0.0316
(0.119) (0.0813) (0.0703)
j=2 0.187 -0.0230 0.0323
(0.139)  (0.111)  (0.0984)
j>=3 0.316 0.0608 0.125
(0.194)  (0.184)  (0.128)
N 1426 2415 3151
Rsquared 0.898 0.909 0.932
Quarter FE Yes Yes Yes
Site FE Yes Yes Yes

SD clustered at year and cycle superhighway route level

ok ok

*p<.1,™ p<.05,

p<.01



Figure 2.5.2: Cycling flows near CSHs using TfL cycling surveys
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A drawback of the Transport for London cycling surveys is that there are only conducted
annually. That is why I also do a robustness check on the impact of the segregated lanes
on cycling using the cycle hires data provided by Transport for London. The dataset has
all journeys done by hire bikes in London from 2012 to March 2020 (more recent data is
available, but I wanted to exclude any changes due to lockdowns). I restrict the analysis to the
stations near lanes opened after 2014. The dependent variable is the logged number of journeys
starting or ending near segregated lanes. I subset the sample to stations on the segregated
lanes (0-20m) and then 20-200m, 200-400m and 400-600m away. I present the results in the
appendix in Table 2.A.4 and 2.A.5 | and graphically in Figure 2.5.3 and 2.5.4. I find the same
increase in hire starting or ending near segregated lanes, but the effect disappears for stations

more than 200m away.
To rule out that I am capturing the impact of contemporaneous policies, I look at possible

links with other transport and cycling policies. The two other major cycling policies happening

during the same period are the Biking Boroughs project and the roll-out of the London Cycle
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Figure 2.5.3:

Cycle hire journeys starting near CSHs
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Hire Scheme. The Biking Borough project was aimed at Outer London Boroughs - it is thus
a different geographical zone to the CSHs which are concentrated in Central London. I can

exclude that they have a direct impact on the CSHs.

The London Cycle Hire Scheme opened in 2010 with a second major extension in 2012.
Most of their implementation is thus prior to the development of the segregated lanes. 97% of
my CSH survey points have a cycle hire station within 200m. I plot an histogram of the date
of opening of the cycle hire stations within 200m of the CSHs compared to the opening of the
cycling lanes in Appendix 2.A.5. I find that 75% of the cycle hire stations opened before the
CSHs’ openings. There is a clear stop of two years during the CSHs’ constructions and then
after opening, the implementation continues on the same decreasing trend. To further rule out
that cycle hire stations’ openings contribute significantly to the increase of cycling flows after
the segregated lanes opening, I analyse the impact of getting a new cycle hire station within
200m of the segregated lanes. I find no significant impact of getting a new station in appendix
Table 2.A.6. I cannot do an event study for the opening of the stations as I do not observe

enough openings.

The CSHs and the cycling hire are two very effective policies for increasing cycling flows.
Clearly, neither the placement of the cycle hire stations nor the placement of the segregated
lanes was random. They have both been selected to bolster cycling usage on roads with high
potential. However, I argue that the increase that I observe in the CSHs event analysis is
solely due to the segregation of the lanes as I do not observe any pre-trends in the CSHs and
the cycling hire analysis. Getting additional stations does not increase massively the traffic on
the segregated lanes - probably because most of the stations were already built by the time
the lanes got constructed. The pre-opening levels, however, probably reflect the already high

flows of these lanes and the impact of the cycle hire scheme.

I then reproduce the same event study for cars’ and buses’ displacement. The outcome is
the logged number of total cars (or buses) counted at each survey point. To this aim, I use
the yearly counts provided by the Department for Transport. The dataset is available for all

of England, but I concentrate on counters on a CSH route (road segment where the lanes were
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built by reducing car lane capacity, 0-20m) or close to it (20-200m, 200-400m and 400-600m
distance buffers). The car traffic dataset provided by TfL relies on imputed data (all counters
are not observed each year and the data is interpolated from past years). I present the results
using an unbalanced panel in Table 2.5.3 and Figure 2.5.5. I also show the results for the
interpolated balanced panel in the appendix Table 2.A.7 for cars and in appendix Table 2.A.8

for buses.

Both tables are fairly similar. The coefficients are slightly higher and positive on the roads

with the CSH but not statistically significant.

Table 2.5.3: Car displacement near CSH

CSH  20-200m 200-400m  400-600m
j<=1 0.141  0.0770%  0.105 0.103
(0.0905)  (0.0288)  (0.0593)  (0.0964)

j=-3 -0.0437  -0.0251 0.0543 0.0535
(0.0879) (0.0629)  (0.0653) (0.0566)
j=-2 0.0787 0.0593 0.0501 0.0781
(0.0638) (0.0873)  (0.0569) (0.0813)
j=0 -0.0456  -0.0139 -0.0637 -0.0266
(0.0832) (0.0634)  (0.0600) (0.0592)
j=1 -0.119 -0.0319 -0.0800 -0.0422
(0.119) (0.137) (0.107) (0.0887)
j=2 0.205 -0.0224 -0.140 -0.0271
(0.149) (0.132) (0.110) (0.0854)
j>=3 0.250 0.0783 -0.0498 -0.0175
(0.138) (0.200) (0.196) (0.195)
N 212 510 782 988
Rsquared 0.974 0.967 0.968 0.983
Year FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes

SD clustered at year and cycle superhighway route level
*p<.1," p<.05 " p<.01
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Figure 2.5.5: Cars flows near CSHs
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2.5.3 Accidents reduction

In the last part of the analysis, I look at accident reduction on CSHs. First, I use the STATS
19 datasets that record the location of traffic accidents involving the police in England. Next,
I add traffic flow for the average DfT counting sites on the CSHs. The set of monitoring points

with traffic data is small, but the results are consistent across specifications.

I include all accidents located on CSH lanes constructed after 2014. In Table 2.5.4 and
Figure 2.5.6, I look at the difference between painted lanes and lanes fully segregated by a
kerb (the car traffic is physically separated from the cycling lanes). The reduction in accidents

seems to be driven by the latter, even though a small sample size might also be at play here.
In Table 2.5.5, I present the results for total accidents involving cyclists, total accidents

involving cyclists divided by cycling flow, total accidents involving cyclists divided by cars’

flow and total accidents involving cars divided by cars’ flow.
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In column 1, there is a significant decrease in total accidents after a CSH opening. The
results even hold when looking at the number of cycling accidents per cyclist in column 2. In
line with the literature, these results indicate that separating cyclists from motorised traffic
reduces the number of accidents. Both the number of accidents per cyclist and the absolute
number of accidents decrease, indicating that there is safety in numbers - cars are more likely

to expect cyclists if they see cycling infrastructures.

In column 3, I look at cycle accidents by car flow. The coefficients become negative after
the lanes’ opening - but they are not significant at the standard significance level. In columns
4 and 5, I look at car accidents after the opening of the segregated lane. There is no significant

pattern emerging. The lanes do not seem to have made traffic safer for cars.

Figure 2.5.6: Bike accident after CSH opening
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Table 2.5.4: Bike accidents over bike flow by lane segregation

Painted Fully segregated
Bike acc./bike flow Bike acc./bike flow
j<=-8 2.625 0.0152
(1.718) (0.154)
j=-7 2.046 -0.0536
(1.554) (0.304)
j=-6 1.539 0.0701
(1.068) (0.262)
j=-5 0.406 0.102
(1.094) (0.185)
j=-4 1.137 -0.135
(0.647) (0.151)
j=-3 -0.205 0.288
(0.720) (0.145)
j=-2 -0.436 0.271
(0.742) (0.173)
j=0 -1.673 0.0439
(0.905) (0.197)
j=1 -0.891 -0.125
(0.826) (0.245)
j=2 -2.460 -0.478*
(1.161) (0.180)
j=3 -1.455 -0.725**
(0.696) (0.225)
j>=4 -1.286***
(0.202)
N 55 154
Rsquared 0.692 0.811
Year FE Yes Yes
Site FE Yes Yes

SD clustered at year and cycle superhighway route level
*p<.l, ™ p<.05 " p<.01
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Table 2.5.5: Traffic accidents

Bike acc. Bike acc. Bike acc.  Car acc. Car acc.
vs bike flow vs car flow vs car flow
j<=-8 1.350 0.808 0.505 -0.613 -0.916
(0.975) (1.066) (0.852) (0.706) (0.580)
j=-7 1.071 0.651 0.415 -0.653 -0.889*
(0.710) (0.838) (0.699) (0.480) (0.390)
j=-6 0.834 0.460 0.260 -0.419 -0.619
(0.542) (0.483) (0.307) (0.422) (0.336)
j=-5 0.611 0.286 0.125 -0.678* -0.838**
(0.418) (0.540) (0.452) (0.253) (0.190)
j=-4 0.504 0.209 0.0653 -0.364 -0.507
(0.356) (0.348) (0.268) (0.442) (0.405)
j=-3 0.324 0.0360 -0.0611 -1.033* -1.130**
(0.177) (0.257) (0.244) (0.401) (0.366)
j=-2 0.264 0.128 0.124 -0.0817 -0.0863
(0.160) (0.188) (0.202) (0.161) (0.166)
j=0 -0.268** -0.280** -0.146 -0.263 -0.129
(0.0871) (0.0965) (0.0943) (0.343) (0.315)
j=1 -0.545 -0.380 -0.148 -0.108 0.123
(0.356) (0.444) (0.508) (0.365) (0.326)
j=2 -0.995** -0.789** -0.497 -0.310 -0.0175
(0.224) (0.242) (0.343) (0.539) (0.398)
j=3 -1.283** -0.875* -0.551 0.153 0.477
(0.348) (0.407) (0.590) (0.596) (0.471)
ji>=4 -1.978*** -1.401** -1.227* 0.250 0.423
(0.354) (0.431) (0.525) (0.598) (0.467)
N 209 209 209 209 209
Rsquared 0.751 0.715 0.723 0.609 0.617
Year FE Yes Yes Yes Yes Yes
Site FE Yes Yes Yes Yes Yes

SD clustered at year and cycle superhighway route level
p<.1, " p<.05 " p<.01
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2.6 Conclusion

The cycle superhighway programme is associated with a large increase in cycle traffic. The
treatment effect at opening represents an increase of about 25% in ridership. The effect
increases over time by about 20% a year. Most of this increase is due to new cyclists and
increased cycling frequency as there is no evidence of cyclist displacement or car traffic
displacement. One of the factors investigated in this analysis to explain the rise in ridership is
an increase in safety due to a larger number of cyclists and safer lanes. These findings are
essential for policymakers as they show that infrastructures like cycling lanes should not be
evaluated by the immediate impact but also by the continuous growth after opening. The
agglomeration effects of the lanes are an essential factor to consider - the more lanes, the more

cyclists, the safer they are, and the more likely people will take up cycling.

These results are essential to justify the construction of segregated lanes on major roads
to encourage cycling. Moreover, in cities like London, where one of the main obstacles to
cycling is safety perception, cycling lanes are essential to convince people to take up cycling.
TfL surveys show indeed that new cyclists - for example, new e-bikes users - are particularly
sensitive to these infrastructures as they provide safety and clear directions to connect to
central parts of the city. The lanes provide a good infrastructure start to sustain cycling

growth.

An interesting alley for research would be to investigate how the connectivity and the
spread of these lanes participate in increasing cycling usage. The ability to reach most of
Copenhagen or Berlin via safe cycling paths is essential to their success. The current growth of
the network offers an opportunity to study this phenomenon as it develops. The new “cycleways”
programme launched in late 2019 aims to unify London’s cycling projects (CSHs network,
quiet ways and mini-hollands) to provide the best cycling routes between key destinations as
part of a connected and unified network. It is an exciting venue for future research on cycling

networks.
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Appendix

2.A.1 TIllustration of the first and second phases of the cycle superhighways

Figure 2.A.1: Original cycle superhighways network map in 2009
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Figure 2.A.2: Cycle Superhighway 8 - Opened in 2011 - Painted lane
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Figure 2.A.3: Cycle Superhighway 5 - Opened in 2015 - Segregated lane
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2.A.2 Difference in differences

In this appendix, I present the difference in differences approach and the Goodman-Bacon

decomposition on cycling flows.

I report the results for the OLS and the difference in differences using two ways fixed effect
in Table 2.A.1. I only include sites for which I have six years of observation in my sample.
The treatment group is CSH sites that opened in 2015, 2016 and 2018. The control group is

CSH sites that were planned but not opened yet and sites that opened in 2020.

The dependent variable is the flow of cyclists logged, I interpret the coefficient on the
opening of the segregated lane C'SH;; as the variation in the percentage of the conditional
mean of the regressand. As the coefficients are quite large, I exponentiate them in the text. In
columns 1, and 2, I only use only treated sites (the ones opened between 2015 and 2018). In

columns 3 and 4, I add the routes or part of routes that have been planned but not built and
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the ones that have been built later in 2020 '°. In the OLS estimation, I control for the local

borough.

In column 1, the naive OLS effect is quite large, a 48% increase, but could be suffering
from bias from differences between sites. The impact of getting a CSH is reduced to 17% once
site fixed effects are included; however, this specification is likely to suffer from significant
bias in a staggered setting; it is a weighted average of the different lengths of exposure with a

downward bias as it compares late to early treated.

In column 3, I add a control group using the route opened in 2020 and never constructed.
Introducing a control group allows the bias introduced by the late treated to the early treated
to be slightly reduced. While the OLS results between columns 1 and 3 are similar, the
coefficient for the two ways FE in column 4 is closer now to 30% compared to 17% without
the control group. It is consistent with the two-way FE DiD estimator being biased in case of

increasing heterogeneous effect in time.

Table 2.A.1: OLS and FE estimations

Treated Treated + Control
OLS FE OLS FE
Post 0.394*** 0.159 0.357** 0.264*
(0.0833) (0.0892) (0.102) (0.105)
N 504 504 576 576
Rsquared  0.650 0.948 0.637 0.945
Year FE No Yes No Yes
Site FE No Yes No Yes
Controls Yes No Yes No

SD clustered at year and cycle superhighway route level
*p<.1," p<.05 " p< .01

I then present the results of the decomposition of the difference in differences fixed effects

in a staggered setting.

The first comparison group is easily understandable: for each cohort, it compares the

10CS9, CS10 and CS11 were planned but were not constructed as of 2019 and CS9 opened in 2020, part of
CS4 and CS5 did not get constructed; I never include routes that were constructed before 2014
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treated cohorts (e.g. opening in 2015, 2016, 2018) with the control group (routes that opened
in 2020 or were never opened). As long as the control group is a good counterfactual for the
treated groups, these differences capture the impact of the segregated lanes. The estimates

are represented by grey triangles in the graph.

The next comparison - early treated versus late as control is also fairly straightforward as
long as there is no anticipation of the treatment. For example, it compares the sites opened in
2015 with sites opened later but before they were opened. We thus get three comparisons:
2015 with 2016, 2015 with 2018 and 2016 with 2018. The estimates are represented by grey

crosses on the graph.

The last set of comparisons is the problematic one. They compare early treatment versus
late as control (after late gets treated). It assumes that the pre-treatment difference should be
equal to the post-treatment. But if there is maturation in treatment (as in the case of the
cycling lanes), the after gap is likely to be larger as the early treated have more time to grow,
and it will overall under-estimate the treatment effect. In general, treatment effects change
(monotonically) over time, the DiD estimate is biased away from the sign of the true effects.

The coefficients are represented by the black crosses.

I present the result for cycling flows on CSHs in Figure 2.A.4. The red line corresponds to
the DiD estimator of Table 2.A.1 column 5. The overall estimator for earlier group versus later
group control is 0.22 (cohorts opened in 2015 vs 2016 and 2018, and 2016 against 2018). The
black crosses correspond to the latter group as treatment versus the earlier group as control
after opening. The Later treatment vs Earlier control overall estimator is only 0.11. It is
the estimator likely to be biased in case of increasing treatment effect over time. Finally, the
treatment versus never treated is represented by the triangles. The corresponding coefficient

is 0.46 (cohorts opened in 2015, 2016 and 2018 vs 2020 and never opened).

The x-axis in Figure 2.A.4 shows the weight allocated to each comparison based on group

size and time in treatment.
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Figure 2.A.4: Goodman-Bacon Decomposition
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These figures indicate that the CSHs have been successful in attracting users after opening.
I do a robustness check by checking the degree of segregation around the counting sites using
the first difference approach. One of the main criticisms of the CSH scheme is that parts of the
lanes are not fully segregated by a kerb, but only painted in blue, sometimes with bollards to
delineate their locations. Using the London’s Cycling Infrastructure Database (CID) created in
2018, I look at the impact of the degree of segregation of the lanes. In Table 2.A.2, I reproduce
the DiD two-ways fixed effects estimate of Table 2.A.1 column 4 using not yet treated or never
treated as a control. I find in column 1 that painted only lanes still see a large increase in

cycling traffic, but the effect is only significant for fully segregated lanes.

I also repeat the event study analysis using the fully segregated lanes only (I can not do it
on the painted lanes only, there are not enough observations for each year after treatment). I
find similar coefficients than on the full sample - slightly lower for the last two years. These
results seem to indicate that the increase in traffic flow is not only driven by the full segregation
but also by other factors brought by the programme such as better visibility of cyclists and

network effects.
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Table 2.A.2: Lane segregation

Painted Fully segregated
Post 0.256 0.278*
(0.151) (0.127)
N 276 300
Rsquared 0.971 0.903
Year FE Yes Yes
Site FE Yes Yes

SD clustered at year and cycle superhighway route level
*p<.l, ™ p<.05 " p<.01

Table 2.A.3: Cycling flow after CSH opening by segregation

All Fully segregated only
j<=-4 -0.309 -0.333
(0.174) (0.171)
=3 -0.118 -0.0512
(0.0767) (0.0661)
j=-2 -0.166*** -0.137*
(0.0322) (0.0519)
j=0 0.215*** 0.262***
(0.0397) (0.0532)
j=1 0.345*** 0.290***
(0.0208) (0.0530)
j=2 0.494*** 0.370***
(0.0416) (0.0716)
ji>=3 0.595*** 0.441***
(0.0185) (0.0189)
N 504 264
Rsquared 0.949 0.905
Year FE Yes Yes
Site FE Yes Yes

SD clustered at year and cycle superhighway route level
*p<.1," p<.05 " p< .01
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2.A.3 Cycle hire analysis

I also do a robustness check of the impact of the segregated lanes on cycling using the cycle
hires data provided by Transport for London. I use the same event study approach. The
dataset has all journeys done by hire bikes in London from 2012 to March 2020 (more recent
data is available but I wanted to exclude any changes due to lockdowns). I restrict the analysis
to the lanes opened after 2014. The dependent variable is the logged number of journeys
starting or ending near segregated lanes. 1 subset my sample to stations on the segregated
lanes and then 200m, and 400m away. Contrary to the counting sites analysis, I do not know
if the cyclists have used the segregated lanes, only that the journeys have started or ended

near a segregated lane.

I find a similar (but less significant) increase on the segregated lanes (within 20 meters)
but no effect further away. The standard errors for the groups further away are quite small,

which gives confidence that the absence of displacement is real and not due to a lack of data.

2.A.4 Car displacement

I show below the event study for car and bus displacement after the opening of the lanes. The
dataset of car counts in London provided by Transport for London uses a large number of
imputed values. I remove all values where the imputation happens at the opening of the cycle
lanes, and I only keep the values where I have a count before and after treatment. I present in
Table 2.A.7 the results. The outcome is the logged number of cars or buses observed at each
counting site on a typical day. The counting sites are observed every quarter. The dependent
variable is the number of years before and after opening. The base level is the year before
opening. As for the unbalanced panel, there is no evidence that cars’ or buses flows have

changed after the opening of the segregated lanes.
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Table 2.A.4: Cycle hire journeys starting near CSH

CSH 20-200m  200-400m  200-600m

j<=-4 0.0303  -0.0557  0.0486  -0.0121
(0.139)  (0.0841)  (0.0835)  (0.0578)

=3 0.0525 -0.0813 0.00538 -0.0335
(0.112)  (0.0556)  (0.0604) (0.0351)
j=-2 0.0197  -0.0494 0.0138 -0.00541
(0.0731) (0.0386)  (0.0398) (0.0197)
=0 0.241*  -0.00690  0.00545 -0.0127
(0.137)  (0.0485)  (0.0284) (0.0192)
j=1 0.364  -0.00550  -0.0287 -0.0451
(0.209)  (0.0937)  (0.0476) (0.0373)
j=2 0.534* 0.0515 -0.0468 -0.0434
(0.296) (0.125) (0.0694) (0.0522)
ji>=3 0.729 0.165 0.00747 -0.0374
(0.462) (0.181) (0.109) (0.0806)
N 595 1820 2205 2730
Rsquared 0.870 0.808 0.893 0.866
Quarter FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes

SD clustered at year and cycle superhighway route level
*p<.l,” p<.05 " p<.01
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Table 2.A.5: Cycle hire journeys ending near CSH

CSH  20-200m  200-400m  200-600m
j<=+4 0.00315 -0.0741  0.0325  -0.0306
(0.129)  (0.0880)  (0.0798)  (0.0622)

j=-3 0.0447  -0.125"  -0.0252 -0.0499
(0.0922) (0.0555)  (0.0581) (0.0394)
j=-2 0.0439  -0.0645 0.00682 -0.0119
(0.0682) (0.0414)  (0.0410)  (0.0216)
j=0 0.201 0.0174  -0.00258 -0.000451
(0.120)  (0.0503)  (0.0294) (0.0212)
j=1 0.307 0.0453 -0.0226 -0.00850
(0.184)  (0.101) (0.0513) (0.0369)
j=2 0.465* 0.126 -0.0256 -0.0197
(0.254)  (0.130) (0.0763) (0.0563)
j>=3 0.557 0.257 0.0174 -0.0164
(0.376)  (0.190) (0.106) (0.0824)
N 595 1820 2205 2730
Rsquared 0.900 0.835 0.911 0.883
Quarter FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes

SD clustered at year and cycle superhighway route level
*p<.1,"p<.05 " p< .01

Table 2.A.6: Cycling flow after a new cycle hire station opening

Ln Total Cycle

New cycle hire station -0.0142
(-0.33)
N 340
Rsquared 0.925
Year FE Yes
Site FE Yes

SD clustered at year and cycle superhighway route level
*p<.1," p<.05 " p< .01
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Figure 2.A.5: Opening of cycle hire stations before and after the construction of CSH
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Table 2.A.7: Car displacement near CSH

CSH 20-200m  200-400m  400-600m

j<=-4 -0.242%  -0.136™  -0.0535  0.000599
(0.0621)  (0.0422)  (0.0544)  (0.0847)

j=-3 -0.0788  -0.0631*** -0.0247 -0.00462
(0.0430)  (0.0149) (0.0138) (0.0413)
j=-2 -0.0900 -0.0439** -0.0236 0.00201
(0.0544)  (0.0119) (0.0177) (0.0451)
=0 -0.0183 -0.0118 -0.0204 -0.0242
(0.0606)  (0.0276) (0.0247) (0.0351)
=1 0.0146 0.0265 -0.00286 -0.0323
(0.0864)  (0.0531) (0.0509) (0.0758)
j=2 0.0554 -0.00281 -0.0508 -0.0667
(0.166) (0.117) (0.0972) (0.110)
ji>=3 0.156 0.0557 -0.0235 -0.0878
(0.182) (0.119) (0.102) (0.141)
N 612 1496 2312 2890
Rsquared 0.896 0.915 0.915 0.919
Year FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes

SD clustered at year and cycle superhighway route level
*p<.l,™ p<.05 " p<.01
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Table 2.A.8: Bus displacement near CSH

CSH <200m <400m  <600m
j<=-4 -0.182 -0.216 -0.238 -0.255
(0.197) (0.193) (0.279) (0.225)
=3 -0.0867 -0.0712 -0.0894 -0.120
(0.0730) (0.0764) (0.116)  (0.0906)
j=-2 -0.0615 -0.0695 -0.0784  -0.0888
(0.0539) (0.0564) (0.0910) (0.0722)
j=0 -0.0448 0.0596 0.105 0.0679
(0.0456) (0.0630) (0.0779) (0.0378)
j=1 -0.0326 0.128 0.173 0.140
(0.102) (0.118) (0.156) (0.129)
j=2 -0.0248 0.175 0.215 0.171
(0.146) (0.159) (0.189) (0.128)
ji>=3 -0.0504 0.238 0.286 0.273
(0.161) (0.206) (0.273) (0.224)
N 604 1488 2301 2876
Rsquared 0.882 0.909 0.885 0.896
Year FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes

SD clustered at year and cycle superhighway route level
*p<.l,™ p<.05 " p<.01
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2.A.5 Accidents reduction

I further use the Goodman-Bacon decomposition to analyse the different components of the
DiD estimator for bike accidents divided by cycling flow after a CSH opening. I find an
overall ATT of -0.08, which is decomposed on an Earlier Treatment vs Later Control of -0.079,
Later Treatment vs Earlier Control of 0.015 and Treatment vs Never treated of -0.573. The
respective weights are 0.332, 0.559 and 0.109. All estimates (except from the problematic
Later Treatment vs Earlier Control) are negative, which indicates that the cycling lanes are

quite effective in reducing accidents and the effect is increasing over time.

Figure 2.A.6: Decomposition of DiD estimate for bike accidents

—
X
o ®
kL x
[1x]
E
4:7'1. ;.' ¥ ; x »
W = x X
- X ®
] ? =
S . X
X X
o m_ x A x A
v *
A x *
x A
— r Y
I T T T T
0.00 0.05 0.10 0.15

Weight

» Earlier Group Treatment vs. Later Group Control
x Later Group Treatment vs. Earlier Group Control
A Treatment vs. Never Treated

43



3 The impact of floods on local elections in England

3.1 Introduction

Flood risk is a serious global issue and particularly important for the United Kingdom (UK).
It is estimated that around 5.4 million houses in England are at risk of flooding from rivers
and the sea, surface water, or both, which represent around 20% of the total housing stock
in the country. Annual flood damages in England are estimated to be around £1.1 billion
(Priestley et al. 2017; Beltran, Maddison, and Elliott 2019), and are expected to increase due
to the greater intensity and frequency of floods induced by climate change. Evidence suggests
that natural disasters, such as floods, can be framed and politicised in the media creating or
exacerbating pre-existing tensions between political actors (Albrecht 2021). This means that
natural disasters can become political events, affecting public opinions, policies, and political

preferences.

Following the disastrous floods of 2007, described as a “national emergency”, with rescue
efforts as “the biggest in peacetime Britain”, a key change in flood risk management has
occurred in the UK formalized in the Flood and Water Management Act of 2010 (The Act
hereafter). The Act, by creating the role of Lead Local Flood Authorities (LLFAs), gave
new responsibilities to local authorities for managing flood risk and post-flood recoveries in
local government areas. Becoming a highly politicized issue, the summer 2007 floods not only
pressured politicians and policymakers but more likely have enabled voters to understand
and differentiate between the responsibilities of different levels of government in the flood
management arena. We thus use this context to study the impact of floods on retrospective

accountability in a multi-level flood management system.

We construct a panel data of local election results from 2002 to 2018 at the electoral ward
level. Wards are the smallest electoral unit in England. As of 2021, there are about 8,700
wards in total, representing on average 5,500 people (ONS, 2021). The ward election data
comes from the LEAP - Local Elections Archive Project (Teale 2020). Voters in each ward
elect one to three councillors to represent them in the local council - the governing body of

a local authority. There are about 23 wards per local authority. Before the creation of the
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LEAP dataset, local election results were only available at the local authority level. Measuring
results at the ward level means that we can efficiently capture votes for non-dominant parties
as smaller parties typically do not present a candidate in each ward. For our analysis, we
merged these local electoral results with historic flood records from the Environment Agency
(EA). Observing results at the ward level allows us to measure flood risk exposure much
more precisely than using a district or regional level granularity. Finally, we also use the
local authorities’ budget from the Department for Levelling Up, Housing and Communities
(DLUHC) to study whether and how public spending changes following floods. We capture
policy change in flood risk management in our empirical analysis, by distinguishing two time

periods before and after the introduction of the 2010 Management Act.

The 2010 change in flood management responsibilities, however, occurred contemporane-
ously with significant shifts in UK politics: the Labour party, after almost ten years in power,
lost the 2010 General Election, which led to a Conservative-Liberal Democrats coalition and
then a Conservative government in 2015. The Coalition government initiated an austerity
program with a combination of public spending reductions and tax increases. Budget cuts
on flood defences and their implications have received wide media coverage, especially in the
aftermath of the 2015 floods (Albrecht 2021). The austerity programme has also been linked
with a sharp cut in public spending in the poorest part of England and a rise of support for

populist party such as the UK Independence party (UKIP) (Fetzer 2019).

We begin our analysis with a fixed effects panel model with a ward as unit of analysis,
investigating whether floods affect local electoral outcomes. We control for time-invariant
ward characteristics and national trends by adding ward fixed effects and year fixed effects.
Our main outcome of interest is the share of votes for the incumbent party — the party that
received the most votes in a previous local election. We find that the incumbent’s vote share
declines by about 0.7 percentage points if a flood occurs within the election year. The effects
are more substantial for larger and longer floods in terms of area and duration, with 2.5-2.9
percentage points reduction. We also find that the incumbent’s party affiliation with either
the national government or local authority matters, as voters punish incumbents by up to 6

percent points if the incumbent shares the same party as national government. Voters punish
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incumbents aligned with local authority only in the post-2010 period.

So, to disentangle the effects of the 2010 flood management reform from the effects of
changes in the government and to shed light on the mechanisms, we utilize multiple empirical
strategies. First, we extend our baseline analysis by analyzing candidates’ shares of the votes
by party: Conservatives, Labour, Liberal Democrats, UKIP, Green and others. We find that
while candidates from major parties, especially when their party is in control of the local or
national government, lose shares of votes after a flood. On the other hand, candidates from
smaller parties, especially UKIP, gain shares of votes when the incumbent is aligned with the
local and national government. This, in conjecture with the results for the Green party which
loses shares of votes if the incumbent is aligned with the local council, would suggest that

increased support for the UKIP has nothing to do with the environmental policy agenda.

Second, we exploit the set-up structures of local authorities, which could be either single-tier
or two-tier councils - meaning that local authorities are either a single entity or divided into
two entities with different flood responsibilities after 2010. Single-tier authorities or the upper
level of two-tier councils become Lead Local Flood Authorities (LLFAs) responsible for the
implementation of local flood risk management and leading role in emergency planning and
recovery after floods, while district councils (lower level) become responsible for planning
activities. We conjecture that if voters understand a shift in flood management responsibilities
to local councils, then we should see differential effects of floods on LLFAs compared with
district councils. We find no difference in these effects, suggesting that (i) either voters do not
understand the nuances of the changes in the flood management policy; or (ii) they punish

incumbents for other reasons, or both.

Third, we focus on contested elections. Local elections in England tend to be less contested
in general, with an average turnout of 35% against 67% in national elections, with voters
prone to vote for non-dominant parties (14% votes against 10% during national elections).
More than half of the wards in our analysis do not change winning party during the time
of our analysis. The seats in local governments are thus often coined as “safe seats”, while

local elections as “second-order” elections (Reif and Schmitt 1980). This suggests that only in
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closely contested elections voters could exert accountability on local politicians if they wish
of doing so. By focusing on contested elections, we find no difference between the effects of
floods and party alignment on the incumbent’s vote share in regular versus close elections.
This points out to protest vote: voters express their dissatisfaction with the status quo, by

casting vote for a party which has essentially no control over the local council.

So, we conclude that the incumbent’s punishment is associated with votes for “protest
parties” such as UKIP, crediting the hypothesis that natural disasters can bolster populist
movements. Our findings are consistent with a rise in protest voting following the fiscal
austerity reforms of 2010 (Fetzer 2019). Our results differ from recent findings by Cavalcanti
(2018) for the case of Brazil which suggests that, after a period of drought, voters demand
clientelism, i.e. they increase the vote share for local incumbent parties politically aligned with
the central government to facilitate the flow of resources for relief and recovery. Instead and
similarly to Lockwood, Porcelli, and Rockey (2022), our results suggest that constraints on
local government fiscal policy in England mean that political control of local councils does not
affect total expenditure — hence giving little incentives for rewarding incumbents politically

aligned with local or national governments.

The rest of the paper is organized as follows. Section 3.2 discusses the related literature.
Section 3.3 provides context, by discussing the structure of local government and flood risk
management responsibilities across various government layers. Section 3.4 discusses the main
data and identification strategy. Section 3.6 discusses the results, and Section 3.7 discusses

the results on public expenditure and floods. Section 3.8 concludes.

3.2 Literature review

This paper is related to the extensive empirical literature which examines how voters evaluate
political performance and respond to different types of information when deciding to re-elect a
politician or a party. Voters’ recall of politician performances is crucial to welfare-improving
policies (Fiorina 1978). Voters use past policy outcomes to form expectations about their
future welfare. The key question of interest is thus whether voters punish incumbent politicians

for random events outside of their control (“blind retrospection”), punish based on the quality
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of their responses (“attentive electorate”), or even “rally-around-the-flag” by increasing support

to the party in control in times of crisis.

Achen and Bartels (2004) argue that voters also engage in blind retrospection - holding
politicians responsible for events out of their control - including floods. However, flood events
are not totally out of the control of policymakers. Studies show that voters tend to react to
relief aid and other forms of more targeted and easily observable public spending, which also
attract more media attention. For instance, Healy and Malhotra (2009) study how electors
incentivize incumbents to invest in disaster preparedness and relief policies in the United
States and find that voters only reward disaster relief spending. Masiero and Santarossa
(2020) analyse the outcomes of municipal elections in Italy after earthquakes and find a
massive advantage for the incumbents driven mainly by the ability to deliver relief and attract
media coverage. In the same spirit, Besley and Burgess (2002) find that politicians are more

responsive to disasters in areas with more newspaper circulation in India.

Although large relief spending tends to reward politicians, the important question is how
long such gains in electoral support persist. Most studies have highlighted the myopia of
voters. For instance, Cole, Healy, and Werker (2012), using rainfall, public relief, and election
data from India, show that voters only respond to rainfall and government relief efforts during
the year immediately preceding the election. In contrast, Bechtel and Hainmueller (2011), by
exploiting the 2002 Elbe flooding in Germany, find that voters’ rewards could last longer: the
25% increase in the vote share of the incumbent party in the 2002 election in affected areas

persisted until the 2005 election, but completely vanished by the 2009 election.

The design of retrospective accountability, however, hinges upon the important assumption
that voters can assign responsibilities to different levels of government and internalize those
distinctions into their voting decisions. Previous research has shown that highly-politicised
issues create information-rich environments that enable voters to differentiate between the
responsibilities of different levels of government and influence their voting behaviour Wilson

and Hobolt (n.d.).
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Other papers have looked at the concordance between local incumbents and national
government parties. Cavalcanti (2018) shows that following a natural disaster in Brazil,
electors tend to reward incumbents politically aligned with the national government to ensure
better disaster relief. In this context, the occurrence of a natural disaster creates a demand for
clientelism where governments are also incentivised to prefer their own constituencies when
providing disaster relief funds. We do not find such results in England, developed economy
set-up. On the contrary, electors tend to punish the party in power. Our results are in line
with a recent study by Lockwood, Porcelli, and Rockey (2022) which find little impact of the
party control on local fiscal policy in England and Wales over the period 1998 to 2016. In
general, as the party in control of the local councils has less discretionary power to increase

spending than in other decentralised countries, there is little scope for clientelism.

Finally, this study also relates to the impact of natural disasters on political systems.
Kaufmann et al. (2016) show that floods can lead to long-term institutional changes. Natural
disasters can also weaken political systems and lead to more autocratic regimes (Rahman et
al. 2017). In the context of the UK, large floods put pressure on the national government

(Albrecht 2021).

3.3 Background
3.3.1 Elections and governance

We are interested in understanding if voters hold politicians accountable for floods in England.

However, there are many actors are involved in flood management.

In England, local governments are represented by local authorities. The most common are
local councils. They are composed of councillors elected every four years. Each councillor is
representing a ward. Electors in each ward elect one or more councillors to represent them.
Local elections use plurality voting — meaning that the candidates with the most votes win the
seat. Electors cast votes for as many seats as there are being contested. Several wards form a
council. The leader of the council is chosen from the political party with the most councillors.

In 2022, there are 333 local authorities in England.
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3.3.2 Structure and functions

There are two different forms of council set-ups as shown in Figure 3.3.1: single-tier councils
and two-tier councils. Single-tier councils are comprised of one council, which carries out
all local government functions and could be one of the following three types: metropolitan

boroughs (there are 36 of them as of 2022), unitary councils (56) and London boroughs (32).

Two-tier councils are comprised of an upper level, the county, and a lower level, the
district, with responsibilities being divided between two levels. County councils are responsible
for strategic services such as schools, social services, public transportation, highways, fire
and public safety, libraries, waste management and trading standards. District councils are
responsible for more place-based services such as rubbish collection, recycling, council tax
collection, housing, and planning applications. There are currently 33 country councils and
201 district councils. Within any area covered by one county, there will be approximately 5-7

district councils.

The unitary authorities provide all services mentioned above. In large metropolitan areas,

some services, like fire, police and public transport, are provided through ‘joint authorities’.

Figure 3.3.1: Local government structure and responsabilities

Two-tier councils Single-tier councils

Upper level: County councils ]

Metropolitan
Strategic services such as transport, boroughs
education and social care

Unitary councils London boroughs

Lower level: Districts councils

All services provided by two-tier councils, expect services provided by “joint
authorities” such as Fire department or TfL

Housing, planning, licensing
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3.3.3 Managing flood risk: roles and responsibilities

The flood management responsibilities are shared at different levels of governance as shown in
Figure 3.3.2. The Flood and Water Management Act 2010, the primary legislation in England
relating to flood risk management (FRM) was introduced on 8 April 2010. It was intended
to implement Sir Michael Pitt’s recommendations following the widespread flooding of 2007
when more than 55,000 homes and businesses were flooded with insurance costs expected to
be more than £3 billion (Pitt, 2008). The Act requires better management of flood risk and,
most importantly, represents a key shift towards a localised flood risk management (FRM)
agenda. National policies are delivered at the local level by Risk Assessment Management

Authorities (RMAsS).

Among these RMAs, counties (the upper level of two-tier authorities) and single-tier
authorities are Lead Local Flood Authorities (LLFAs). LLFAs are responsible for developing
and implementing local strategies for FRM, with responsibility for watercourses other than
main rivers, surface water and groundwater. They also play a lead role in emergency planning
and recovery after a flood event. LLFAs must act consistently with the national flood, coastal
and environmental management strategy developed by the Environment Agency (EA) —a

non-departmental public body.

District councils — the lower level of two-tier authorities are also Risk Assessment Manage-
ment Authorities (RMAs). They are responsible for carrying out flood risk management works

on minor watercourses and coordinating with LLFAs and other Risk Management Authorities.

Other non-elected RMAs are the Environment Agency, flood authorities, water and sewerage
companies, internal drainage boards and highway authorities. Among those, the Environment
Agency (EA) is the dominant actor and implements a strategic overview of FRM in England
for all types of flooding and plays a key role in the distribution of national funding for
defence and mitigation works. Both the EA and LLFAs are engaged in activities to raise
community awareness and encourage the uptake of property-level resistance and resilience

measures (Alexander et al., 2016).
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At the national government level, The Department for Environment, Food and Rural
Affairs (DEFRA) is responsible for creating policies for floods and coastal erosion, the Cabinet
Office is in charge of emergency response planning, and the Department for Communities and
Local Government deals with land-use and policy planning. Finally, the treasury is involved

in the budget decision.

The key flood risk management strategies employed in FRM in England include prevention,
defence and mitigation, preparation and response and recovery. The first two strategies aim to
minimise the likelihood of flooding and people’s exposure to flooding, while the latter strategies
aim to minimise the consequences of flooding. It is worth stressing that local authorities play

an essential support role in the community post-recovery period.

While the 2010 flood management established an ambitious plan to level flood defences,
its application coincided with the austerity period. As a result, the national government’s
spending on floods and coastal erosion stayed at about £800 million per year between 2010
and 2018 (See Appendix Figure 3.A.3, Tily (2020)). In general, DEFRA’s day-to-day budget
was decreased and investment spending remained stable (Appendix Figure 3.A.4, Department

for Environment (2022)).

At the local authority level, the Ministry of Housing, Communities & Local Government
(MHCLG) data show an increase in spending of 59% for coastal erosion and 176% for flood
defences for the 2010-2018 period (from about £50 to £140 million in flood defences and
£55 to £85 million in cost protection, see Figure 3.A.5 and 3.A.6) (Clugston 2021). While
flood spending has increased at the local level, revenues stayed stable or decreased, putting
a strain on local authorities’ finance. This is because the central government grants only
cover a fraction of that spending, and grants have been decreased over the period. At the
same time as the flood management act, the 2011 Localism Act lead to a decrease in local
authority revenues by 16%. It was primarily driven by a decline in government grants by
37% (Figure 3.A.7, Atkins and Hoddinott (2022)). Councils can also apply for funds from the
Environmental Agency, which awards the money on behalf of DEFRA. However, the bidding

system has been criticised as more favourable to larger and more urban councils.
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The responsibility of local authorities does not stop at the maintenance and construction
of flood defences. They are the primary provider of social support at the local level. Floods
can make households unable to live in their homes for months and have disastrous impacts on
local businesses. The austerity-induced welfare reform of 2010 decreased the spending power
of local authorities in deprived areas the most and led to an increase in votes for UKIP and

the Brexit referendum (Fetzer 2019).

Figure 3.3.2: Flood management role and responsibilities
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3.4 Data

To conduct this analysis, we use the results of the local elections compiled by the Local

Elections ArchiveProject (LEAP) for 2002-2018. The database contains information about
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all votes being cast, the total for each candidate, the name of the candidates and whether
or not they were elected for each local election in England and Wales. Each election result
is reported at the ward level. We merge the results to the corresponding ward shapefile for
the period. There are 58,277 observations describing the number of votes and candidates for
each ward and election. We discard observations without votes/candidates elected (1734) and

exclude Wales as we do not observe all the elections.

We aggregate the number of votes at each election for four main categories: Conservatives
(C), Labour (Labour), Liberal Democrats (LD), and Others, which enables us to compute the
share of votes cast for each party. Where appropriate for our analysis, we will also decompose
the Others category into its sub-categories, namely Green party, UKIP and Others (excluding
Green and UKIP). The UK is often called a two (and a half) party system. It is based on the
dominance of the two main parties: Conservative and Labour, and the consistent results of
the Liberal Democrats party. These three parties control most councils in the UK. We then

merge each ward election with a ward shapefile for the same year provided by the ONS.

We then create the intersection of the 2002 wards (base unit) and wards with elections for
each subsequent year using the electoral wards shapefiles from the ONS geography. Then, for
each year, we use how much of the ward area falls into the 2002 wards to allocate the correct
share of votes to the 2002 wards. For example, if a ward boundary has not changed, then
100% of its area will fall into 2002 wards and all of its votes would be counted in the 2002
original wards. However, if a new ward was created in 2003 with 20% of its area in a 2002
ward and 80% in another 2002 ward, we allocate the 2003 votes to the 2002 wards using the
share of 20% and 80%, respectively. We can thus re-aggregate all the results at the 2002 ward
level even if wards have been divided, merged or even completely redesigned. Our final dataset
includes about 8,000 wards over 17 years of local elections. We show an example of wards that

have changed in most urban areas in Appendix Figure 3.A.1.

In the final panel, we use total votes to create shares of votes for each party. Alignment
with the local government is defined as wards whose incumbent party (the party that received

the most votes at the last election) is from the same majority as the local council majority. For
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example, if the council is led by the Conservative — meaning that the majority of councillors
across the wards that compose the local council are Conservative, then a ward is aligned with
the council if their incumbent party is Conservative. Alignment with the national government
is defined as wards whose incumbent party is Labour before 2010, Conservative and Liberal

Democrats up to 2015 and Conservative after 2015.

Next, we overlay the ward shapefiles with GIS data showing Recorded Outlines of Individual
Flood Events (ROIFE) in England from the Environment Agency (2022b) (recording started
in 1946). We show in Appendix Figure 3.A.2 that 60% of the wards are flooded at least once
during the 1992-2018 period. We look at floods up to 10 years before the start of our dataset
to construct a full history and investigate how long the electorate’s recall is. We show later
in the analysis that only wards within a year of a local election matter. In our sample, 3%
of the wards holding elections have been flooded within a year of a local election. We also
calculated intensity measures such as the duration of the floods in days, the share of the wards
flooded and the total area of the floods. We find that large floods drive our results in terms of

duration and size.

In addition to flood data, we also overlaid the electoral wards with the Spatial Defences
from the Environment Agency (2022a), which contains all the structures managed by the
environmental agency, their condition and their building date. Unfortunately, most records
have been added after implementing the Flood management reform in 2010/2012 and flattened
afterwards, which makes them difficult to use in a panel analysis. We also calculated the
maximum risk of Flooding from Rivers and Sea from the Environment Agency (2022c¢). We
classified each ward at risk as very low, low, medium, or high based on flood return rates.
Very low, low, medium and high risk means that each year, there is a chance of flooding of
less than 0.1%, 1%, 3.3% and above 3.3% respectively. Each ward receives the rating of the
maximum risk level is exposed. For example, if a ward has two flooding zones, one in low and

the other one in medium, it is given a medium risk rating.

Finally, to complement the analysis at the electoral ward level, we constructed a panel

data of spending from the Department for Levelling Up and Communities (2022) at the local
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authority level that we linked with elections and flood history.

3.5 Identification strategy

Our empirical investigation focuses on local election results at the ward level. During elections,
councillors are elected for 4-year terms using the first past the post system. Councillors
represent divisions/ wards. Elections to councils are held on the first Thursday in May. A
specificity of England is that wards have different voting frequencies. The local government
can be elected in one of the three following ways: elect all the local councillors every 4 years,
elect half the local councillors every 2 years or elect one-third of the local councillors every
year for 3 years and hold no elections in the 4th year. We thus obtain an unbalanced panel of

local election results at the ward level from 2002 to 2018.

Our main outcome is the share of votes for the incumbent party — meaning the party that
got the most votes in a ward during the last election. We control for time-invariant ward
characteristics and national trends by adding ward fixed effects and year fixed effects. Our
main dependent variable is a dummy for floods within one year of the election. We also use
the count of floods in the ward, but as most wards get only flooded once on average, the
results are fairly similar. We then add flood characteristics such as the duration and size of

the flooded area.

One of the main concerns would be if wards in flooded areas had significantly different
voting behaviours. We show in Table 3.5.3 that there are also no significant differences in

terms of political composition.

We also restrict our sample to wards that get flooded within a year of a local election

between 2002-2018, so that we compare similar wards in our regressions.

In addition, in Table 3.5.1, we compare our regression sample with all other wards in
England using 2001 census variables. We find that our flooded wards have slightly more
households living in terraced houses (27 versus 24%), and they have a larger share of the

population that identified themselves as white. However, there are no significant differences
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in education achievement, occupation and the share of urban population. They are not
particularly UKIP strongholds. We also look at the long difference between 2001 and 2011 in

Table 3.5.2. Again, there are no major differential trends from the rest of the population.

Wards with high flood risk are more likely to end up in our sample: over 20% of treated
wards are marked as being in a flood zone against 14% for the rest of the country. Only 2% of
the wards with a very low flood risk get flooded within a year of the elections, while 5% of
wards with a high flood risk get flooded before an election. The number of flood defences (each
flood defence is defined as a single asset by the environmental agency) and the length of the
flood defences also increase with flood risks as shown in Table 3.5.4. Overall, in Table 3.5.4,
we can observe that riskier areas are getting flooded more often, but they are also allocated
more resources. Therefore, without accounting for flood defences, we are capturing a lower

bound coefficient of the impact of floods on local election results.
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Table 3.5.1: Balance table using 2001 census

Flooded before an election All others

(N=1161) (N=7028)

Mean SD Mean SD Diff
Age 39.56 3.14 39.64 3.64 -0.074
Wholehouse 28.85 18.87 31.57 20.77 -2.723
Semidetached 33.68 11.97 32.82 13.01 0.864
Terraced 27.14 15.08 23.77 14.88  3.362%**
Flat 10.36 9.13 10.89 11.59 -0.532
Converted 2.93 4.03 3.54 6.72 -0.617*
Commercial 1.12 0.93 1.11 1.04 0.014
Caravan 0.78 1.85 0.61 1.58 0.172*
No qualification 27.97 9.15 28.26  8.39 -0.292
Levell 16.55 3.18 16.94 3.36 -0.386*
Level2 20.09 2.89 20.08 2.89 0.007
Level3 8.17 4.38 7.91 3.22 0.263
Level4 20.21 9.08 19.65 9.07 0.560
Other qualification  7.01 1.38 7.16  1.43 -0.148
White 95.69 7.15 94.21 10.93  1.482**
Mixed 0.84 0.66 1.00 0.96 -0.159**
Asian 2.37 5.77 2.74  7.20 -0.370
Black 0.53 1.25 1.40 4.12  -0.863***
Other ethnicity 0.57 0.76 0.66 0.97 -0.091
Agriculture 2.25 2.97 2.54  3.27 -0.288
Mining 0.36 0.64 0.29 047 0.073
Manufacturing 15.29 5.69 15.03 5.65 0.259
Electricity 0.77 0.54 0.70  0.51 0.075%*
Construction 6.89 1.68 7.09 1.85 -0.199
Trade 16.95 3.05 16.73  2.98 0.214
Hotels 5.22 2.97 4.92 232 0.292
Transport 6.70 2.72 6.71  2.40 -0.010
Finance 3.75 2.04 4.27  2.76  -0.513**
Realestate 12.71 5.16 12.54 4.66 0.176
Public 5.59 2.87 570  3.82 -0.113
Education 8.09 3.25 7.74 248 0.353
Health 10.50 2.43 10.69 2.44 -0.194
Other industry 4.95 1.14 5.07  1.68 -0.125
Urban 63.43 40.93 64.83 42.18 -1.400

Standard errors clustered at the local authority level

The following variables have been used: average age, type of dwelling, educational qualification,
industry, and urban share.

All variables are expressed as shares.

o8



Table 3.5.2: Balance table using log change between census 2001 and 2011

Flooded before an election All others

(N=1161) (N=7028)
Mean SD Mean SD Diff
A Age 0.03 0.04 0.03 0.04 -0.002
A Wholehouse -0.05 0.18 -0.03 0.18 -0.010
A Semidetached -0.05 0.12 -0.05 0.11 -0.007
A Terraced -0.06 0.16 -0.04 0.17 -0.016**
A Flat 0.17 0.36 0.17 0.41 0.004
A Converted -0.07 0.42 -0.06 0.53 -0.010
A Commercial -0.12 0.44 -0.11  0.54 -0.011
A Caravan -0.46 1.98 -0.41 2.01 -0.053
A No qualification -0.24 0.09 -0.24 0.10 -0.003
A Levell -0.23 0.10 -0.23  0.10 -0.002
A Level2 -0.25 0.13 -0.24 0.12 -0.009
A Level3 0.46 0.25 0.46 0.25 0.007
A Leveld 0.37 0.15 0.37 0.14 -0.000
A Other qualification  0.22 0.23 0.22 0.28 0.000
A White -0.04 0.07 -0.05 0.08 0.005
A Mixed 0.61 0.40 0.62 0.53 -0.004
A Asian 1.14 0.99 1.15 1.04 -0.018
A Black 0.86 1.45 0.77 1.38 0.092
A Other ethnicity -0.46 1.35 -0.56 1.52 0.108
A Agriculture -1.01 0.84 -1.04 1.04 0.028
A Mining -0.42 1.64 -0.53 1.94 0.117*
A Manufacturing -0.49 0.16 -0.51 0.21 0.022
A Electricity 0.64 0.55 0.71  0.58 -0.071**
A Construction 0.13 0.14 0.14 0.15 -0.004
A Trade -0.06 0.09 -0.05 0.09 -0.013***
A Hotels 0.11 0.16 0.12 0.18 -0.010
A Transport 0.26 0.25 0.23 0.23 0.029
A Finance -0.11 0.23 -0.12 0.24 0.012
A Realestate -0.48 0.20 -0.49 0.21 0.001
A Public 0.70 0.25 0.70 0.26 -0.002
A Education 0.25 0.13 0.26 0.14 -0.011*
A Health 0.15 0.11 0.14 0.12 0.003
A Other industry -0.01 0.15 0.00 0.17 -0.014%*
A Urban 0.00 0.00 0.00 0.00 0.000

Standard errors clustered at the local authority level

The following variables have been used: average age, type of dwelling, educational qualification, industry,
and urban share.

All variables are expressed as the difference in log share.
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Table 3.5.3: Share votes by political party

Flooded before an election All others

Share votes Conservative 35.09 38.01
(19.48) (20.66)
Share votes Labour 29.76 28.00
(21.18) (21.38)
Share votes Liberal Democrats 18.98 18.57
(17.84) (18.50)
Share votes UKIP 4.882 4.241
(8.658) (8.463)
Share votes Green 3.376 3.212
(6.351) (6.402)
Share votes Other 7.917 7.971
(14.97) (15.39)
Observations 8856 45758

Table 3.5.4: Risk of flooding vs share of wards flooded and flood defences

Very Low  Low  Medium  High
Flooded 0.0233 0.0329  0.0382  0.0494
(0.151)  (0.178)  (0.192) (0.217)

Total assets 34.71 31.85 38.72 45.90
(30.71) (30.48)  (40.22) (45.22)

Total length 14.34 17.92 25.70 30.31
(11.65) (19.68) (23.03) (26.63)
Observations 344 1460 2512 3850

Very low, low, medium and high risk means respectively a 0.1%,
1%, 3.3% and greater than 3.3% chance of flooding each year.
This takes into account the effect of any flood defences in the
area. These defences reduce but do not completely stop the
chance of flooding as they can be overtopped, or fail. Total
assets is the number of flood defences currently owned, managed
or inspected by the EA. They can be both man-made or natural
defences. Length is measured in km.
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3.6 Local elections results
3.6.1 Voters’ recall

The first step of our analysis is identifying which floods impact local election results - if any.
We explore two dimensions: the length of voters’ recall and the severity of the flood. The
reasoning behind this first step is that many single event studies have found a limited voters’
recall after a flood - putting into question the rationality of voters’ behaviours - and have also

focused on single large events.

For the first part of the investigation, we do not limit the sample to wards flooded within
a year of a local election, but to any ward flooded between 1992 and 2018 to study the length

of voters’ recall. Our basic specification is the following:

T
Sharelncumbent,, ; = Z a;Floodedy 145 + Yw + 0t + €wt
J

Share incumbent is the share of votes for the incumbent party in ward w and election t —
the incumbent is defined as the leading party from the previous election. Flooded,, 4 ; is a
dummy equal to one if the ward was flooded within ¢ 4+ j years of the election. We consider
floods happening up to 2 years before an election and one year after. Our main coefficient of
interest is F'looded;, flooded within the year of a local election. v, and d; are ward and year

fixed effects.

We extend the model by restricting the sample using flood characteristics such as duration
in days or the size of the flooded area. Table 3.6.1 shows the results for wards flooded within
a year of the election (column 1), and then floods happening a year after and up to two years
before an election (column 2). Next, we restrict the analysis to large floods: over the 75th
percentile in terms of duration (column 3) and over the 75th percentile in terms of flooded
area (column 4). Finally, we look at any other floods: under the 75th percentile in terms of

duration (column 5) and under the 75th percentile in terms of flooded areas (column 6).
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In concordance with the literature, we find evidence that voters only consider floods
happening within a year of the elections. The effect of floods on the share of votes overall is
relatively small (Columns 1 and 2 - 0.7 percentage points decrease in support). The effect
is quadrupled when we restrict to large floods (columns 2 and 3), but disappears when we
restrict to smaller events. There is no impact of floods happening after the elections (except

column 3 — but it does not hold for other measures) or more than a year before the elections.

From now on, we focus on wards flooded within a year of an election to make sure that our
treated group (flooded) is as similar as possible to our control group (not flooded but has been
or will be flooded within a year of a local election). When looking closer at the characteristics
of the floods in Appendix Table 3.A.4, we find that duration (column 1) and size (column 2)
matter. The size of the area flooded seems to matter more than the duration of the floods
(columns 3 and 4). In Appendix Table 3.A.4, we find a similar pattern using a dummy variable

for floods in the 75th percentile of their distributions in days and areas.

These results indicate that voters’ recall is limited to a year before the election. Larger
and longer floods elicit a stronger response. The limited recall of electors cast some doubt on
the perfect rationality of electors. As we cannot measure to which extent local and national
governments could have prevented the floods, it is not possible to judge if punishing the
incumbent party is a rational decision. However, the lack of recall shows they are not taking

into account the full information about flood history but only the most recent events.

3.6.2 Flood management responsabilities

In the next step, we look at flood management responsibilities. As mentioned earlier, flood
management responsibilities are divided between the local and the national government in
England. We thus examine the interaction between the ward’s incumbent party and the local
council’s majority before and after 2010. We also decompose the results for each party recorded
in the dataset to show how other parties (non-incumbent parties) capture some of the votes

after an election.

We start by looking at alignment with the local government before and after 2010. We run
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Table 3.6.1: Large and long-lasting events on the share of vote for the incumbent

(1) (2) 3) (4) () (6)

No lags All Long events Large events Short events Small events
Flooded t+1 -0.195 -1.606** -1.067 -0.0314 -0.213
(0.306) (0.731) (0.741) (0.436) (0.437)
Flooded t -0.703*  -0.692* -2.919*** -2.491%** 0.0414 -0.173
(0.382)  (0.397) (0.795) (0.902) (0.432) (0.424)
Flooded t-1 0.149 0.0394 0.225 0.0982 0.110
(0.388) (0.681) (0.840) (0.457) (0.420)
Flooded t-2 0.0642 0.261 -0.217 -0.0249 0.116
(0.343) (0.690) (0.935) (0.374) (0.352)
N 18512 18512 18512 18512 18512 18512
Rsquared 0.0583  0.0583 0.0593 0.0588 0.0581 0.0581
Year FE Yes Yes Yes Yes Yes Yes
Ward FE Yes Yes Yes Yes Yes Yes

*p<.1,** p<.05 *** p<.01

Standard errors clustered at the ward level

Sample is any wards flooded between 1992-2018

Year t is the year before a local election. Column 1 only includes floods hapenning a year before a local election.
Column 2 includes any floods. Column 3 and 4 restrict to floods above the 75th percentile in terms of duration and area
flooded respectively.

Column 5 and 6 restrict to floods above the 75th percentile in terms of duration and area flooded.

the following regression for all years, and then pre and post-2010 separately:

Sharelncumbent,, ; =p1 Flooded,, ; + B2Govenment,, 1+ (1)

Bz Flooded,, s x Governmenty, ; + Yuw + 0 + €wt

Shareincumbent,, ; is the share of votes for the incumbent party in ward w and election ¢ —
the incumbent party is defined as the leading party from the previous election. Flooded,,; is a
dummy for flooded within a year of a local election. Govenment,, ; is a dummy for alignment
of the incumbent party with either the majority of the local council or the party in power at

the national government level.

Table 3.6.2 reports the results of the estimation equation (1). Compared with the baseline
results presented above, these results show that voters punish incumbents even more so if
they are affiliated with the national government, with incumbents losing between 1.8 and 6.3

percentage points in votes after a flood. Moreover, voters punish incumbents in both pre- and
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post-2010 that is irrespective of which party were leading the government in the UK. The
national government has always been responsible for creating policies for flood and coastal
erosion risk management in England and remains to be a major funder of emergency and
flood prevention policies. Therefore, the occurrence of floods is perceived as a failure of the
national government by voters. We, however, note that the magnitude and significance of
the punishment effect on incumbents aligned with the national government decreases for the

post-2010 period.

Table 3.6.3 is a counterpart of Table 3.6.2 and reports the results for the case when the
incumbent has the same party affiliation as the local authority. Incumbents who share the
party affiliation with the local council lose up to 1.9 percentage points (column 1), and up
to 4 percentage points in post-2010 (column 3). Incumbents in wards aligned with the local
government however do not lose any votes compared with non-aligned incumbents due to the
occurrence of floods in the pre-2010 period (column 2). Both the decentralisation of flood
management and the effect of the austerity policy post-2010 might be at play here. Voters
could be holding the local government responsible for the failure of preventing the flood or for
poor post-flood recovery initiatives. It is also possible that the series of public spending on
local services, including flood mitigation and relief efforts, initiated by the coalition government
in the post-2010 period made voters willing to punish the incumbent. In the next section, we

shed light on the mechanisms which drive these results.

These findings are consistent with a recent study by Albrecht (2021): he explores the
relationship between media framing of two floods in 2005 and 2015 in the UK. He finds
that during the first period, the local and national governments were blamed partially for
the disaster, but mostly for not doing enough. The opposition was harsher on the national
government. After 2015, the overall tone was much more negative, with austerity and claims
about EU spending being used to explain the poor state of flood defences. Media and opposition

politicised the floods to fit the greater narrative of austerity and Brexit.
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Table 3.6.2: Concordance with the national government - Labour vs. Conservative government

(1) (2) (3)
All years Pre-2010 Post-2010
Flooded 0.0337 1.847%%* -0.814
(0.535) (0.714) (0.760)

NatGov -5.652***  -0.207 0.453
(0.311)  (0.906)  (0.846)

Flooded x NatGov -3.117*** -6.924*** -1.864*
(0.728) (0.957) (1.000)

N 8856 4159 4697
Rsquared 0.136 0.0691 0.128
Year FE Yes Yes Yes
Ward FE Yes Yes Yes

*p<.1,** p<.05 *** p<.01

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.

Flooded is a dummy for flooded the year before a local election. LocalGov
is a dummy for concordance of the ward’s incumbent with the local council
majority’s party.

Table 3.6.3: Concordance with the local government - Labour vs. Conservative government

(1) (2) (3)
All years Pre-2010 Post-2010
Flooded -0.297 0.172 0.324
(0.565) (0.755) (0.784)

LocGov 3.976***  2.064***  3.432
(0.408)  (0.553)  (0.564)

Flooded x LocGov  -1.883** -1.097 -3.962***
(0.741) (1.046) (0.931)

N 8856 4159 4697
Rsquared 0.0883 0.0600 0.142
Year FE Yes Yes Yes
Ward FE Yes Yes Yes

*p<.1,** p<.05, T p< .01

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.

Flooded is a dummy for flooded the year before a local election. LocalGov
is a dummy for concordance of the ward’s incumbent with the local council
majority’s party.
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3.6.3 Protest voting

In this section, we explore three different empirical approaches, which all point out to one
mechanism - protest voting, - behind our results on changes in incumbent vote shares in local

elections following an occurrence of floods.

First, we examine the effect of flood occurrence on vote shares of incumbents affiliated with
a specific party: Conservative, Labour, Liberal Democrat and Other in the pre- and post-2010

periods, by estimating the following model:

Sharelncumbent,, ; =p1 Flooded,, ; + B2 LocalGovy, 1 + B3N atGovy, + + BaPost+ (2)
BsFloodedy, s x LocalGovy 4 BeF'looded,,; x LocalGovy, i+
BrFlooded x Post + fgLocalGov x Post + fgNatGov x Post+
BioFlooded x LocalGov x Post + 11 Flooded x NatGov x Post+

Yw + Ot + €wt

where Sharelncumbent, ; is the vote share of the incumbent’s party, Flooded is a dummy
which equals one, if a ward is flooded within a year of an election, LocalGov is a dummy
variable for incumbent’s party alignment with local council’s, NatGov is a dummy variable
for incumbent’s party alignment with national government’s, Post is a dummy variable that
equals one if elections occur in the post-2010 period. The variables of interest are: (s, S,
B10 and B11, where the former two measure the average effect of the occurrence of floods on
the incumbent’s share of votes under the case of party alignment with the local council and
national government in pre-2010, respectively; the last two measure the additional differential

effect compared to the pre-2010.

Table 3.6.4 reports the results of estimates of the interaction between flooded and alignment
with the local and national government before 2010 55 and Sg; the same interactions after

2010 610 and ,811.
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The results of the first column confirm our earlier findings that incumbents aligned
with national government lose votes in both periods. This is because interaction term
Flooded x NatGou is statistically significant, while interaction term Flooded x NatGov x Post
is not statistically significant, meaning that there is no significant differential effect in the
share of votes of incumbents being aligned with the national government and flooded in
the post-2010 period. The results on the effect of alignment with the local council is also
confirmed: Flooded x LocGov is not statistically significant, while Flooded x LocGov x Post
is negative and statistically significant, implying that following a flood aligned with local

councils incumbents are punished in the post-2010 period.

Moving to the results on the incumbent’s vote share for individual parties (columns 2-5),
we note that Conservatives incumbents lose votes after a flood, in both periods, and even more
so when they held the national office (as a Coalition until 2015, and solely after 2015). Labour
incumbents also lose votes in the pre-2010 when Labour held the national office, but in the
post-2010, when they were no longer majority, they benefited from floods compared with the
first period. In stark contrast to the major parties, other parties’ incumbents in column 5

benefit from floods and gain votes in the post-2010.

By looking at the breakdown of votes within the Other category reported in Table 3.6.5,
we see that UKIP has captured the decrease in votes from non-UKIP incumbents aligned with
the local and national governments. The results from the Green party incumbents confirm
that such an increase in votes for the UKIP party has nothing to do with anything in relation
to climate change or environmental policy agenda. During that period, UKIP came from
4 councillors to 147 councillors in 2014 and won another 163 and 176 in 2014 and 2015,
respectively. Other non-major parties lost their seats during the period. UKIP was successful
in rallying places that have been most affected by austerity and promoting Brexit as a solution
to budgetary cuts (Fetzer 2019). It is not surprising that UKIP managed to use floods to
promote its platform successfully given the political framing: they blame the local and national
governments for not doing enough and cutting flood management budgets. For example, after

the 2014 floods, UKIP promised to increase spending in flood defences by cutting the overseas
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aid budget!!.

While most of these results point out to an effect driven by protest voting, it is still
possible that results after 2010 are driven by the flood management reform. If this is the
case, electors should punish authorities that have more flood management responsibilities
— counties and one-tier authorities (LLFAs). We, therefore, investigate if the effects of an
occurrence of floods on the vote share are driven by the newly created LLFAs with results
reported in Appendix Table 3.A.5. The coefficient estimates of Flooded x NatGov x LLF As
in column 1 and Flooded x LocalGov x LLF As in column 2 are not statistically significant.
Therefore, we haven’t found differences between the authorities primarily responsible for local
flood management - the LLFAs (one-tier authorities and county councils) and the authorities
that cooperate with them (district councils). However, these results could be also driven by
the fact that voters do not have a very clear understanding of the responsibilities division.

Overall, the lack of significance renders the test inconclusive.

Another concern would be if more wards with a more secure affiliation with the local or
the national government (safe seats) received more money for flood management and flood
defences. It is linked to the concerns about the exogeneity of floods — while meteorological
conditions are arguably exogenous to political settings, it is possible that wards affiliated
with the party in power at the local and national government receive more funds to build
flood defences. Wards with a less secure affiliation would be more likely to vote against the
government in the aftermath of a flood and also less likely to have received flood defences
in the past. It is also part of the protest story: if voters punish the incumbent in hopes of
changing the local council’s majority, they might be more likely to do so where the margins of

victory are smaller.

In Appendix Table 3.A.8, we thus look at the difference between close elections (the margin
of victory between the leading party and runner-up party is less than 10 percentage points)
and find no difference between “safe seats” and close elections. It indicates that voters in safe

seats are as likely to punish the incumbent as in close elections. Again, it points to protest

"https://www.theguardian.com/politics/2014/feb /09 /nigel- farage-uk-aid-budget-somerset- flood-victims
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voting: voters punish the incumbent and vote for a party that controls virtually no councils

over the period.

In England, these results seem to point to a protest voting story. During local elections,
incumbents aligned with the local or the national government lose votes after a natural disaster,
and candidates from protest parties capture part of this discontentment. It would be interesting
to look at the impact of floods on turnout. Unfortunately, there is no publicly available dataset

of local election turnout at the ward level.

3.6.4 Floods history

In the next section, we look at heterogeneity in flood response by flood frequency. Electors in
wards that get flooded more often might react less strongly to floods as they adapt to the risk
in their area. In Appendix Table 3.A.7, we look at the interaction with flood frequency and
find no significant difference between wards that get flooded more often and those that only

get flooded less often.

3.7 Local authorities’ expenditures results

We instead turn to flood defences and local authority expenditures to explain these results.
A concern is that wards affiliated with the government might receive more funds to protect
themselves against floods. A recent paper by Lockwood, Porcelli, and Rockey (2022) indicates
that given the centralisation of the local government system and the limited ability of the

local authorities to raise money, clientelism is less of a concern in the UK.

Unfortunately, the flood defences register maintained by the Environmental agency only
shows a large increase in registered assets in 2012/2013 when it became mandatory to list

assets in the database but has no new assets registered since (see Appendix Figure 3.A.8.
We then look at spending after a flood at the local authority level depending on the

affiliation with the national government. We collect a dataset of expenditures at the local

authority level for 343 councils ¢ for the year j 2007 to 2017.
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Table 3.6.4: Concordance with the local and national government pre and post 2010

(1) (2) (3) (4) (5)
Incumbent Conservative Labour LD Other
Flooded 2.073*** 2.245%** -1.649%** -0.141 -0.456
(0.766) (0.544) (0.446) (0.646) (0.754)
LocGov 3.286*** 1.026*** 1.681***  -0.998**  -1.708***
(0.513) (0.390) (0.360) (0.437) (0.539)
NatGov -6.242*** -1.198*** 1.199** 0.311 -0.312
(0.642) (0.445) (0.487) (0.557) (0.641)
Flooded x LocGov 0.978 -0.139 0.702 -0.688 0.124
(0.970) (0.894) (0.710) (0.902) (1.035)
Flooded x NatGov -5.108*** -0.382 -1.387* 0.132 1.637
(0.934) (0.837) (0.835) (0.878) (1.029)
Post 0.0328 -3.189*** 9.551***  -10.27**  3.904***
(0.730) (0.434) (0.449) (0.613) (0.626)
Flooded x Post -0.820 -2.202** 1.302* -0.0413 0.941
(1.466) (0.950) (0.743) (0.947) (1.233)
LocGov x Post 0.892 -1.652%** -0.588 -0.940* 3.180***
(0.576) (0.461) (0.456) (0.519) (0.647)
NatGov x Post 2.039* 1.935*** -3.397F** 0.640 0.823
(1.174) (0.725) (0.728) (0.954) (1.041)
Flooded x LocGov x Post  -6.004*** -2.304* -1.764* -0.436 4.503***
(1.470) (1.201) (0.944)  (1.165)  (1.549)
Flooded x NatGov x Post 1.496 -5.270*** 2.056** -0.0368 3.251**
(1.465) (1.186) (1.037)  (1.142)  (1.507)
N 8856 8856 8856 8856 8856
Rsquared 0.0852 0.0887 0.279 0.303 0.100
Year FE No No No No No
Ward FE Yes Yes Yes Yes Yes

*p<.1,** p<.05 ** p< .0l

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.

Flooded is a dummy for flooded the year before a local election.

LocGov is a dummy for concordance of the ward’s incumbent with the local council majority’s party.
NationalGov is a dummy for concordance of the ward’s incumbent with the national government’s party.
Post is a dummy for elections happening after 2010.
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Table 3.6.5: Concordance with the local and national government pre and post 2010

M @) ®
UKIP Green  Other (ex. UKIP and Green)
Flooded -0.586** 0.201 -0.0712
(0.240) (0.226) (0.729)
LocGov -0.299 0.0830 -1.492%**
(0.252)  (0.179) (0.474)
NatGov -1.658*** -0.102 1.447**
(0.346) (0.235) (0.568)
Flooded x LocGov 1.285%**  _1.085*** -0.0751
(0.415) (0.335) (0.936)
Flooded x NatGov 1.002** 0.668** -0.0330
(0.459) (0.311) (0.953)
Post 5.644*** 1.662*** -3.402***
(0.324) (0.238) (0.585)
Flooded x Post 2.356*** 0.196 -1.611
(0.820) (0.443) (1.086)
LocGov x Post 1.736%** 0.221 1.223**
(0.365) (0.223) (0.576)
NatGov x Post 0.187 0.192 0.444
(0.568) (0.385) (0.925)
Flooded x LocGov x Post  2.665*** 0.700 1.137
(0.986) (0.523) (1.286)
Flooded x NatGov x Post 3.485%* -1.449*** 1.215
(0.998) (0.486) (1.312)
N 8856 8856 8856
Rsquared 0.247 0.0655 0.0295
Year FE No No No
Ward FE Yes Yes Yes

*p<.1,** p< .05, *** p<.01

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.

Flooded is a dummy for flooded the year before a local election.

Council is a dummy for concordance of the ward’s incumbent with the local council majority’s party.
Government is a dummy for concordance of the ward’s incumbent with the national government’s party.
Post is a dummy for elections happening after 2010.
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We first run an event-study type of analysis on spending at the local authority level before
and after a flood. We use year flooded as the excluded category and add local authority and
year fixed effects. We present in Figure 3.7.1 and 3.7.2 results for the services most likely to
be impacted by a flood: all expenses and housing expenses. The coefficients for one to three
years after a flood are positive and significant to the ten percent significance level. These
results show an extended effect of floods on expenditures up to 3 years after a flood, but do

not provide information on the effect of party affiliation.

Figure 3.7.1: All services spending after a flood

All expenses
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We turn to the impact of the alignment of the council with the national government and

run the following specification:

In(Expenditure;j) = wi Flooded;; +wo Alignment;j +wsFlooded x Alignment;; +1; + pj +vsj

Flooded is defined as flooded in any of the last 3 years (we show the results on spending
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Figure 3.7.2: Housing spending after a flood

Housing expenditures
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on housing by years before and after a flood in Figure 3.7.2 to motivate the long decay in
flood impact on local expenditure). Alignment corresponds to alignment with the national

government. 1; and p; are local authority and year-fixed effects.

In Table 3.7.1, we find a slight increase in the overall expenditure by 4 percent, and a more
considerable increase of 13 percent by looking at the subcategory of local housing (council
housing is provided to households unable to afford private market housing or people that have

been temporarily displaced).

Masiero and Santarossa (2020) found that in the context of earthquakes in Italy, the
incumbent aligning with the national government successfully gains support after a disaster.
They have linked those results to a greater ability of aligned local governments to provide
relief. We thus look at this causal mechanism by interacting our flooded dummy with the
alignment of the local authority with the national government in Table 3.7.2. While we found
evidence that aligned local authorities increased their overall expenditures more, the sum of
all coefficients is close to 0 — as aligned local authorities spent less in general. We do not find

evidence of an increase linked to alignment for any interaction terms. Thus, we argue that
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clientelism in expenditure after a flood is not a strong mechanism in England. Voters have
thus little incentive to punish non-aligned incumbents and reward aligned ones. It is also

concordant with the negative impact of being aligned with the local and national governments.

Table 3.7.1: Local expenditure after a flood

(1) (2) 3) (4) (®)

All services Housing Social care Planning Environmental

Flooded 0.0419*** 0.126*** -0.0595 0.0324 0.0147
(0.0140) (0.0417) (0.0827) (0.0272) (0.0131)
N 3443 3443 1899 3443 3443
Rsquared 0.946 0.508 0.556 0.785 0.932
Year FE Yes Yes Yes Yes Yes
LA FE Yes Yes Yes Yes Yes

*p<.1,** p<.05, ** p< .01

Standard errors clustered at the local authority level

Councils are responsible for council housing, education, transport, planning, fire and safety, social
care and waste among others. We present here results for areas most likely to be impacted by a flood.

Table 3.7.2: Local expenditure after a flood at the local council level

(1) (2) (3) (4) (5)

All services Housing Social care Planning Environmental

Flooded 0.0225 0.142%** -0.0686 0.0398 0.00253
(0.0139) (0.0481) (0.0776) (0.0267) (0.0150)
Government -0.0310***  0.0726* -0.00473 0.173*** 0.0161
(0.0116) (0.0412) (0.0723) (0.0269) (0.0162)
Flooded x Government  0.0494*** -0.0410 0.0295 -0.0158 0.0316*
(0.0144) (0.0627) (0.0752) (0.0303) (0.0189)
N 3443 3443 1899 3443 3443
Rsquared 0.946 0.509 0.556 0.799 0.933
Year FE Yes Yes Yes Yes Yes
LA FE Yes Yes Yes Yes Yes

*p <., ** p<.05, *** p < .01

Standard errors clustered at the local authority level

Councils are responsible for council housing, education, transport, planning, fire and safety, social care and waste among
others. We present here results for areas most likely to be impacted by a flood.

74



3.8 Conclusion

In conclusion, we investigate the impact of floods on local elections. We find a negative impact
on the incumbent party’s share of votes. However, this effect is limited to floods within a year
of the elections. Electors, however, strongly punish the incumbent if it is from the same party
as the local or national government. These results differ from settings where the incumbents
have benefited from natural disasters, primarily through their ability to mediate it with relief
spending. On the contrary, in the UK, most of the decrease in the incumbent votes seemed to
be captured by the protest party UKIP. There is also no strong evidence that local councils

aligned with the government are likely to spend more after a flood.

This paper provides evidence that voters punish incumbents and turn to protest parties
after natural disasters. Natural disasters can lead to a narrative of government failure. Re-
enforced by other socio-economic contexts such as austerity and Brexit, it can bolster protest
parties and political changes. Local elections do not have the same ranging impacts as general

elections or referendums — but they largely contributed to the rise of UKIP in the 2000s.
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Appendix
3.A.1 Data construction

Figure 3.A.1 shows the intersection of 2002 wards with wards from later periods. Figure 3.A.2

shows the intersection of wards and floods shapefile.

Figure 3.A.1: Wards intersection
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Figure 3.A.2: Flooded wards

Flooded 3t least once 2 N Flooded within a year of holding elections
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3.A.2 Budget data

The following graphs show changes in spending and revenues at the local and national

government levels.
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Figure 3.A.3: Spending on floods and coastal erosion

Spending on floods and coastal erosion
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3.A.3 Floods defences

The flood defences register maintained by the Environmental agency only shows a large increase
in registered assets in 2012/2013 when it became mandatory to list assets in the database but

has no new assets registered since (Figure 3.A.8).
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Figure 3.A.4: Long-term trends in DEFRA spending

Long-term trends in DEFRA’s spending (in real terms)
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Figure 3.A.5: Local authority spending on flood defences in England

Local authority spending on flood defences in England,
2010-11 to 2019-20
2019-20 prices

Click items in the legend to filter the graph

B Revenue B Capital @ Total

Source: Ministry of Housing , Communities and Local Government « Prices adjusted using GDP
deflator, HM Treasury October 2020
Capital spending includes land drainage costs, revenue spending does not

80



Figure 3.A.6: Local authority spending on coast protection in England

Local authority spending on coast protection in England,
2010-11 to 2019-20
Figures in 2019-20 prices

Click items in the legend to filter the graph
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Figure 3.A.7: Local authority revenues by source

Local authority revenues by source (2019/20 prices) IfG
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£60bn
£50bn
£40bn
£30bn
£20bn

£10bn

£0bn
2009/10 2010/11 201112 2012/13 2013/14 2014/15  2015/16  2016/17  2017/18  2018/19 2019/20

® Council tax m Central grants (including retained business rates)

Source: Institute for Government analysis of MHCLG, Local Authority Revenue expenditure and financing in England: individual local @ BY-NC
authority data - revenue outturn. Excludes grants for education services, police and public health. 2019/20 includes one month of
emergency Covid-related funding (March 2020) which increased the proportion of funding from government grants.

3.A.4 Additional tables

This section presents additional tables.
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Table 3.A.1: Floods size and duration on the share of vote for the incumbent

(1) (2) (3) (4)

Flooded -0.949** -0.133 -0.0202 0.110
(0.428) (0.488) (0.490) (0.489)
Flooded x Duration in days -0.0276** -0.0181 -0.0167
(0.0116) (0.0124)  (0.0128)
Flooded x Size of the flood (norm) -1.417 -1.322%% -1.776%**
(0.361) (0.372) (0.431)
Flooded x Duration x Size 0.0384**
(0.0161)

N 8856 8856 8856 8856
Rsquared 0.0720 0.0734 0.0736 0.0743

Year FE Yes Yes Yes Yes

Ward FE Yes Yes Yes Yes

*p <., p<.05, *** p< .01

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election. Duration in days of the flood. Size of the
flood is normalised using average flood size and standard deviation.

Table 3.A.2: Large and long-lasting events on the share of vote for the incumbent

(1) (2)

3)

(4)

Flooded -0.492 -0.737* -0.387 -0.190
(0.448) (0.443) (0.453) (0.458)
Duration 75th -3.473*** -2.996***  -4.666™**
(0.902) (1.070) (1.327)
Size 75th pct -2.402** -1.001 -2.767*
(0.946)  (1.119)  (1.476)
Flooded x Duration x Size 75th pct 4.370*
(2.278)
N 8856 8856 8856 8856
Rsquared 0.0734 0.0724 0.0735 0.0741
Year FE Yes Yes Yes Yes
Ward FE Yes Yes Yes Yes

*p<.1,** p<.05 **F p<.01

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election. The dummy variables duration and size

75th pct correspond to floods above the 75th percentile in terms of duration and area flooded.
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Table 3.A.3: Concordance with the local government

(1) (2) 3) (4)

Flooded -1.234*** -1.163***  -0.297
(0.413) (0.412) (0.565)
LocalGov 3.753"*  3.738"**  3.976™**
(0.398) (0.398) (0.408)
Flooded x LocalGov -1.883**
(0.741)
N 8856 8856 8856 8856
Rsquared 0.0715 0.0865 0.0875 0.0883
Year FE Yes Yes Yes Yes
Ward FE Yes Yes Yes Yes

*p<.1,** p<.05 *** p<.01

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.

Flooded is a dummy for flooded the year before a local election. LocalGov is a dummy
for concordance of the ward’s incumbent with the local council majority’s party.

Table 3.A.4: Concordance with the national government

(1) (2) (3) (4)

Flooded -1.234*** -1.213*** 0.0337
(0.413) (0.390) (0.535)
NatGov -6.026™**  -6.025*** -5.652***
(0.297) (0.298) (0.311)
Flooded x NatGov -3.117
(0.728)
N 8856 8856 8856 8856
Rsquared 0.0715 0.133 0.134 0.136
Year FE Yes Yes Yes Yes
Ward FE Yes Yes Yes Yes

*p<.1,** p<.05, *** p<.01

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.

Flooded is a dummy for flooded the year before a local election. NationalGov is a
dummy for concordance of the ward’s incumbent with the national government’s party.
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Table 3.A.5: LLFAs vs RMAs

(1) (2)
Flooded -0.840 -0.861
(0.839) (0.808)
NatGov -5.540%**
(0.519)
Flooded x NatGov -2.004*
(1.128)
LLFAs 0 0
() ()
Flooded x LLFAs 1.597 0.999

(1.021)  (1.069)

NatGov x LLFAs -0.218
(0.667)
Flooded x NatGov x LLFAs -2.022
(1.455)
LocGov 3.206%**
(0.598)
Flooded x LocGov -0.957
(1.110)
LocGov x LLFAs 1.558*
(0.826)
Flooded x LocGov x LLFAs -1.681
(1.495)
N 8856 8856
Rsquared 0.136 0.0890
Year FE Yes Yes
Ward FE Yes Yes

*p <., p<.05 ¥ p< .01

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election.
LLFAs is a dummy for Lead Local Flood Authorities established in
2010.
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Table 3.A.6: One-tier vs Two-tier authorities

0O
Flooded -0.834 -0.982
(0.818)  (0.778)
NatGov -5.138***
(0.483)
Flooded x NatGov -2.818**
(1.096)
Unitary 0 0
() ()
Flooded x Unitary 1.686* 1.333
(1.006)  (1.061)
NatGov x Unitary -1.072*
(0.636)
Flooded x NatGov x Unitary  -0.362
(1.440)
Flooded x LocGov -1.656
(1.076)
LocGov x Unitary 0.341
(0.820)
Flooded x LocGov x Unitary -0.348
(1.488)
N 8856 8856
Rsquared 0.137 0.0886
Year FE Yes Yes
Ward FE Yes Yes

*p<.1,** p<.05 ** p< .0l
Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election.

Unitary is a dummy for One-Tier local authorities.
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Table 3.A.7: Number of times flooded

0@
Flooded 1.592 0.511
(1.080) (1.130)
NatGov -6.863***
(0.604)
Flooded x NatGov -3.450**
(1.533)
Number of times flooded 0 0
() ()
Flooded x Number of times flooded -0.687 -0.347
(0.449)  (0.462)
NatGov x Number of times flooded 0.634**
(0.293)
Flooded x NatGov x Number of times flooded 0.0819
(0.665)
LocGov 3.033***
(0.859)
Flooded x LocGov 0.0814
(1.564)
LocGov x Number of times flooded 0.483
(0.398)
Flooded x LocGov x Number of times flooded -0.968
(0.657)
N 8856 8856
Rsquared 0.137 0.0893
Year FE Yes Yes
Ward FE Yes Yes

*p<.1,** p<.05 *** p< .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.

Flooded is a dummy for flooded the year before a local election.

Number of times flooded is the number of times a ward got flooded in the last 30 years.
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Table 3.A.8: Close elections

(1) (2)
Flooded -0.0178  -0.0574
(0.627)  (0.720)

Flooded x NatGov -2.689***
(0.938)
Close elections -8.409***  -7.001***
(0.367) (0.393)
Flooded x Close elections -0.521 -0.673
(0.888) (0.916)
NatGov x Close elections 2.499***
(0.486)
Flooded x NatGov x Close elections 1.068
(1.304)
LocGov 4.569***
(0.504)
Flooded x LocGov -1.494
(0.919)
LocGov x Close elections -2.723**
(0.547)
Flooded x LocGov x Close elections 0.161
(1.302)
N 8856 8856
Rsquared 0.207 0.177
Year FE Yes Yes
Ward FE Yes Yes

*p<.1,** p<.05 T p< .01

Standard errors clustered at the ward level

The sample is all wards flooded within a year of an election.

Flooded is a dummy for flooded the year before a local election.

Close election is a dummy for average difference between first and second party
of less than 10 points.
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4 Nowhere else to go? Urbanisation and Flood Risks: The

role of land scarcity

4.1 Introduction

The world urban population share went from 40% of the world population in 1985 to 54% in
2016 and a projected 68% by 2050 (Ritchie and Roser 2020). A large share of the population is
moving into cities, expanding existing settlements and creating new ones. This urban growth
is occurring in areas that have been neglected before, including land exposed to flood risks
such as riverbeds, flood plains, or wetlands. This study explores the trends in urban expansion

and flood exposure in China over a 30-year window from 1985-2015.

In the last thirty years, settlement growth in high flood risk zones has consistently outpaced
growth in no- and low-risk zones (Rentschler et al. 2022). In addition to building in flood
prone areas, cities are also re-building on hazard-prone land after a climate disaster (Lin,
McDermott, and Michaels 2021). The magnitude of this problem is vast. The amount of newly
settled land in high flood risk areas over our period of analysis totals 36,500 km2, or three
times the size of the New York City Metropolitan area (Rentschler et al. 2022). People living
in high flood risk zones around the world totalled 1.47 billion in 2020 (Stéphane Hallegatte
et al. 2020a). This exposure resulted in 650,000 fatalities and another 650 million displaced
over the 1982 to 2014 period (G. Brakenridge 2016). Under recent projections, this trend will
only accentuate, with an at least five-fold increase in the population that experience coastal

flooding annually over the next century (Adger, Arnell, and Tompkins 2005).

The causes of urban expansion in high flood risk areas are varied: settlements are physically
constrained, face tight urban planning restrictions or a fast-growing population that overwhelms
urban planning. In this paper, we focus on the impact of land scarcity due to geographic
obstacles: the share of unviable land (e.g. land that is very costly to develop on) surrounding
a city due to geographic obstacles (steep land, rivers, and oceans) or high flood risk. We do

not include land-use policy induced land scarcity (e.g. zoning policies).

Our paper studies settlement expansion in high flood-risk land in China. Home to over half
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of the high-risk settlement growth over the 1985 to 2015 period (Rentschler et al. 2022), China
is a particularly important context for studying settlement growth in high flood risk. China’s
rapidly expanding population is associated with urban sprawl, booming urban development
and strict land use regulations, which makes risky urban growth an important policy debate

in China.

Are settlements increasingly expanding into high flood risk land due to the lack of viable
and low flood risk land surrounding existing settlements? Using satellite data and a spatial
instrumental variable, we empirically estimate whether land scarcity is a driver of city expansion

into high flood risk land.

At face value, geographic obstacles appear to be exogenous constraints. However, the main
contribution of this paper is to consider the empirical challenge to do with the endogeneity
of land scarcity: geographic obstacles are not random and result from the selection of urban
planners to settle and expand in their proximity to benefit from the consumption and amenity
value of that land. Indeed, settlers founded cities near water bodies because they valued their
inherent consumption, amenity and economic value: such as the proximity to trade routes
and fertile land'2. Settlements continue to expand along water bodies and mountains for the
inherent amenity value of the land and due to path dependency of settlement growth. An
important corollary to this is that settlements near water bodies might grow faster than safer

settlements situated in more remote land.

Using US data, Lin, McDermott, and Michaels (2021) show that cities first developed on
safe land near the coast and then increasingly expanded towards riskier land. This was also
demonstrated in Vietnam, where the safest and most productive locations were occupied first,
and left new developments forced to use sub-optimal land (Rentschler and Salhab 2020). The
relationship between urban expansion in high flood risk areas and land scarcity is thus an
equilibrium outcome of diverging forces: preferences for safe areas, path dependence of city
expansion, productivity and amenity value of risky land (floodable land (e.g. water bodies)

and steep land (e.g. mountains)).

12and beneficial terrain (ruggedness or bedrock depth)
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To test whether land scarcity is a driver of urban growth in high flood risk land, we need
to isolate the role of land scarcity from the endogenous forces described above. We propose
a novel instrument for changes in land scarcity that combines geography with a mechanical
model for city expansion and removes the endogeneity of voluntary city expansion towards

water bodies or mountains.

The underlying idea is that, as cities expand in space and over time, they face geographic
constraints— steep terrain or bodies of water — that limit the amount of viable land they
can expand into. The initial city location in space is not random - for example, being close to
mountains affects a city’s past economic specialization, resilience and growth. However, the
relative position in space of such geographic constraints as a city expands allows for available
land in cities’ vicinity to vary randomly. We build an instrument to capture this variation.
The identification relies on changes in available land in the vicinity of cities as a result of a

city randomly hitting geographic obstacles.

While land scarcity induced by geographic obstacles appears to play a large role when
looking at cities statically, we provide causal evidence that, once we remove the impact of
original settlement choice, the increasing ‘bite’ geographic barriers such as mountains or water

bodies are not a strong driver of urbanisation in high flood risk areas.

In other words, cities do not expand into high flood risk land because they have nowhere
else to go. We show that expansion of cities in high flood risk areas is largely due to path
dependency — it is mostly happening in cities that already face high flood risk. As global
warming is predicted to exacerbate the frequency and magnitude of flooding, more evidence
is needed on the dynamics of urban expansion into high flood risk land. Our results are
important as they point to the path dependence of cities towards hazard-prone land, even

when safer land is available.

We first review the literature in Section 4.2 and present the data in Section 4.3. Next, we

present our estimation strategy and instrument for changes in land scarcity in Section 4.4 and
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Section 4.5. We then discuss the results when we separate out the role of land scarcity per se

from the amenity value of geographic barriers in Section 4.6 and conclude in Section 4.7.

4.2 Literature review

This paper contributes to three strands of literature: i) where and why are populations settling
in risky areas, specifically in flood-prone land, ii) drivers of city size and urban sprawl, iii)

urban structures in response to shocks.

Faced with planning restrictions and lack of space, low-income households have moved to
neighbourhoods plagued with environmental risks. Case-study evidence has illustrated these
mechanisms. In Mumbai, India, low-income households have moved into the city from rural
peripheral regions in search of economic opportunities. The high density of existing settlements
and land price differentials have forced new migrants into areas that have been avoided in
the past, such as high-risk land in the proximity of riverbeds that lack planning and public
infrastructure such as drainage or flood defence systems. Similarly, informal neighbourhoods
have lacked access to public services such as sanitation, drainage or flood defence systems,
such as the steep hills of Rio de Janeiro or the Sdo Paulo favelas. They are costly to formalise
or upgrade, leading to lower population density and land values (Harari 2020). As a result,
settlement growth in high flood risk zones has consistently outpaced growth in no- and low-risk
zones over the last 30 years (Rentschler et al. 2022). An extensive literature review can be
found in (Stéphane Hallegatte et al. 2020b) and they conclude that land and housing markets

often push poorer people to develop settlements in riskier areas, especially where land is scarce.

Evidence for this can be found around the world: Daniel, Florax, and Rietveld (2009)
conduct a meta-analysis of the literature and find that a 1 percentage point increase in the
annual probability of flooding is associated with a 0.6 percent decrease in house prices. In
Accra, Ghana, Erman et al. (2018) find that flood-affected dwellings are valued at 30 percent
less on average than unaffected ones. In Dar es Salaam, Tanzania, households affected by floods
lost on average 23 percent of annual income and self-evaluated their dwellings to be worth
about 36 percent less than non-flood-prone dwellings (Erman et al. 2019). Reduced housing

prices, in combination with informal housing markets, make it possible for poor people to
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access housing opportunities that could be out of reach in the absence of risk Durand-Lasserve,
Durand-Lasserve, and Selod (2015). Additionally, in such places, it may not only be the prices
that push poor people into risky places but simply the availability of land with appropriate
access to jobs and services. From Pune, Dhaka, Caracas, Rio de Janeiro to Mumbali, informal
settlements are often located in hazard-prone locations such as on hillsides, close to riverbanks,
or near open drains and sewers Lall, Lundberg, and Shalizi (2008). In Chapter 5, I show that
in Sub-Saharan Africa, households living in areas that are repeatedly flooded are systematically
poorer and less healthy than households in safer areas — however, the difference in wealth and
health between rural and urban areas is such that households living in dangerous urban areas
still have better outcomes than in safe rural areas. Our paper contributes to a large literature
on urban sprawl (Glaeser, Gyourko, and Saks 2006). Our work follows Burchfield et al. (2006)
in using remotely sensed data to track the urban sprawl of cities. Our instrumental variable
approach is built on identifying assumptions developed in a paper by Harari (2020), who
studied how geographic barriers around Indian cities impact city shape and, in turn, economic

outcomes, using night-time data imagery.

Our paper also contributes to a separate strand of papers in urban economics, focused on
path dependence in the spatial distribution of economic activity and urban settlement and
the relationship between geography and growth (Desmet and Henderson 2015). As urban
areas are predominately in floodable areas, the increase in urbanisation would increase the
share of population at risk, even without cities expanding into higher risk land. Combining
satellite-based nightlight imagery and flood hazard maps, Desmet et al. (2021) and later
Rentschler and Salhab (2020) systematically assessed risks in high-growth areas. Their analysis
confirms that areas with high urban and economic growth face significantly higher flood risk
than low-growth areas. About 27 percent of areas with low urban and economic growth are
estimated to be exposed to flooding with a 100-year return period, compared to some 50
percent of high-growth areas. Also combining satellite-based nightlight imagery and large
flood events which affected 1,868 cities in 40 countries around the globe, Kocornik-Mina et al.
(2018) document a lack of adaptation or movement of economic activity away from the most
flood-prone locations within cities. We add to this literature by testing the amount of path

dependence at the city level by initial exposure to floodable land. Recent papers have studied
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the costly path dependence of cities in relation to sea level rise. Balboni (2021) studies the
exposure of Vietnam roads to sea level rise and finds that infrastructure investments that ignore
future sea-level rise risks might lead to inefficient persistence in coastal cities. Desmet et al.
(2021) use a spatially disaggregated, dynamic model of the world economy to quantify the role
of migration and local agglomeration in the projection of sea-level rise cost. Lin, McDermott,
and Michaels (2021) explore the internal structure of coastal cities and their adjustment to
climate change. They characterise “soft” barriers, such as flood-prone areas, as locations that
are not used for housing development in most circumstances but are nevertheless built on as
cities expand. They document how new construction in the U.S. in recent decades avoided
flood-prone areas in sparse locations but did take place on (the ‘least-bad’) flood-prone areas in
dense locations. They develop a monocentric coastal city model where flood-prone settlement
results from the trade-off between the amenity of coastal proximity and the disamenity of

flood risk.

Our paper is the first to test the causal role of increased land scarcity and path dependence

on urban growth in high flood risk land.

4.3 Data
4.3.1 Settlement growth

We use the World Settlement Footprint-Evolution developed by the German Aerospace Center
- DLR (Marconcini et al. 2021) to study settlement expansion. This new dataset combines the
best of Landsat-8 multispectral satellite images and Corpernicus Sentinel-1 satellite data to
offer a 30-metre resolution binary mask outlining the 2015 global settlement extent. From the
2015 snapshot, the DLR created a yearly panel of settlement extent from 1985 to 2015 using
backward iterative techniques. From this satellite imagery, we create a panel dataset of cities

around China from 1985 to 2015.

One limitation of previous datasets such as Landsat is the poor quality and patchy coverage

of satellite images for the 1980s and 1990s in specific regions such as Sub-Saharan Africa'3.

13In these cases, the frequency of satellite images was lower, thus reducing the likelihood of high-quality
cloud-free images being available in a certain year.
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The dataset has been extensively ground-truth tested with 900.000 validation samples to

correct this limitation.'4

The high resolution enables tracking not only of large cities, but also of small settlements!®.
We define cities as any continuous patch of settlement extent in 1985 that is larger than 1 km

square. We do not differentiate between urban and rural settings as in some other datasets

(eg. GHSL)'S.

We then overlap the continuous patch of settlement extent of more than 1 km square
in 2000 and 2015. In our analysis, we only keep settlement footprints that intersect 1985
settlements to capture the impact of scarcity using a long-difference between two 15-year
periods (1985-2000 and 2000-2015). A limitation of our estimation strategy is that we cannot

study new cities that appear between 1985 and 2015.

In the context of China, it is common for cities to merge into one continuous urban area
over our period!”. In order to keep a stable unit of analysis, we consider the non-contiguous
patches that will merge into one by 2015 as one unit of analysis from 1985 onwards. To
calculate the area growth of that unit of analysis, we sum up the areas of the separate patches.
We proceed similarly for all the measures we construct. We include an illustration in Figure

4.A.1 in the Appendix.

City growth can occur in three ways: edge expansion, infilling, or leapfrogging. In this
paper, we focus on the edge expansion of the city. We define edge expansion as any new pixels
of settlement contiguous to the city shape in 1985. We focus on the extensive margin as our

data does not allow us to measure the intensive margin: once a grid square is built, we do

' As part of overcoming any limitations of settlement over-or under-estimation (due to limited satellite
scene collection in specific countries before 2000), a cutting-edge regression model has been applied to model
the settlement extent using data availability specific to the region. The DLR also provides a novel index to
measure the quality of the output at the 30m resolution, which allows us to conduct robustness checks removing
low-quality data.

5Note that the settlement labelling protocol is defined on a taxonomy of buildings, building lots and
roads/paved-surfaces.

1The Global Human Settlement Layer (GHSL) dataset, for example, applies a cut-off of 300 inhabitants per
km square and a minimum of 5,000 inhabitants to distinguish between urban and rural areas.

Tn our data, this corresponds to a continuous patch of settlement in 2015 which overlaps several non-
contiguous patches in 1985 and 2000.
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not observe the increase in density. As we observe cities in our sample from 1985 to 2015
and discretise the period into two 15-year periods, we can calculate expansion and infilling
for 2000 and 2015'8, and leapfrogging for 1985 and 2000'°. In 2000, we find that 65% of new
settlements correspond to edge expansion, against 30% for leapfrogging and 5% for infilling.
Focusing on new settlements in high flood risk areas, we find similar proportions: 67%, 30%
and 3% for each type respectively. To study the impact of land scarcity, we need to define
what is unviable land. Following Harari (2020) and Saiz (2010), we define unviable land as
any water body, ocean or steep terrain (above 15%). The steepness is calculated from DEM
MERIT elevation model. Water bodies are extracted from the OSM water layer from IIS

U-Tokyo.

4.3.2 Floods

We look at three types of floods: fluvial, pluvial and coastal. Fluvial flooding occurs when
water bodies overflow onto adjacent land due to precipitation or snow melt. Pluvial flooding
occurs when the absorptive capacity of the soil is exceeded. It is common on impervious
surfaces in urban areas or after droughts. The fluvial and pluvial flood maps are from the
2019 Fathom-Global 2.0 dataset (Sampson et al. 2015). Fathom is a global flood model
that uses terrain and hydrological data to predict flood risk probability and flood risk depth
at 90-meter resolution for the entire world. The Fathom-Global 2.0 uses the newest DEM
MERIT elevation model that corrects for multiple errors, including tree and building height
adjustments. The Fathom flood models have been shown to have good predictive performance.
The most comprehensive performance metric used in the analysis of flood models is the critical
success index (CSI), which measures model fit by measuring the share of total forecasts which
are correct. Bernhofen et al. (2018) find that the Fathom-Global 2.0 scores highly on this
measure, with a score over 0.7 CSI in case studies. The flood hazard maps also perform better
than the climate-forced models for average flood return rate (Bernhofen et al. 2018). In our
sample, 67% and 70% of settled pixels in high flood risk areas correspond to fluvial risks in

2000 and 2015 against 25% and 33% for pluvial flood risks and only 4% and 3% for coastal

8We observe the stock of pixels in 1985, so we cannot distinguish pixels that were added as the city expanded
or plots that were surrounded by built-up before being infilled.

19The difference between leapfrogging and edge-expansion depends on the number of years included in each
period. We use 1985-2000 and 2001-2015 as it allows for a period long enough to distinguish large changes in
settlement while still allowing for the long-difference analysis. We cannot know which surrounding pixels will
belong to the continuous city “core” in 2030, so we cannot calculate leapfrogging for this period.
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flood risks?’. The model simulates flood events with return periods of 5, 20, 50, 100, 250, and

500 years.

Coastal flooding is caused by storm surges and high tides in coastal areas. We use 3-degree
resolution (~90 m at the equator) Joint Research Centre (JRC, 2014) coastal flood risk maps
developed by the European Commission, which was previously used in a global-scale analysis
(Koks et al. 2019). These coastal inundation maps are simulated using the LISFLOOD-FP
hydrological model Vousdoukas et al. (2016). Coastal flood simulations are forced by extreme
sea-level rise derived from reanalysis of waves and storm surges (Muis et al. 2016), and further
combined with tidal information (Vousdoukas et al. 2018). A high-accuracy spaceborne digital
elevation model, in which absolute bias, stripe noise, speckle noise, and tree height bias are

corrected, is used as an input to the model (Yamazaki et al. 2017).

These flood hazard maps provide both a measure of flood severity — measured by the
potential inundation depth of a given flood - and of flood probability, also named return rate or
periods. A return period describes how much time will pass before the next flood of the same
intensity occu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>