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Abstract
This thesis is composed of four essays on urban and spatial economics. The first two papers
are empirical studies evaluating the impact of public policies in England – one looking at
transport infrastructure and the other at flood management. The last two papers leverage
satellite imagery to investigate the effects of floods and flood risk on urbanisation in developing
countries.

The first paper focuses on the impact of cycling infrastructure on road traffic in London. It
demonstrates that providing segregated cycling lanes increases cycling flows without impacting
motorised traffic. Not only do the cycling flows increase immediately after the opening of the
dedicated lanes, but they also appear to be on a permanent steeper growth path. One primary
causal mechanism investigated is the reduction in accidents along the cycling routes.

The second paper analyses the role of natural disasters in local election results in England.
It finds that at the electoral ward level, electors punish the incumbent party after a flood
during local elections in England – but they are much more likely to do so if the incumbent
party aligns with the party in power, both at the local authority and national government
levels. There is no evidence that the political party alignment of the incumbent is a significant
driving force. However, there is a clear pattern of more votes going to the UK Independence
Party in the wake of a flood shock.

The third paper of the thesis investigates the causal role of land scarcity and path
dependence on the expansion of Chinese cities into high flood risk land. It finds that a naïve
OLS regression overestimates the role topographic constraints play in driving urbanisation in
high flood risk areas. Once instrumented for, land scarcity due to topographic constraints is
not a driver of urbanisation in high flood risk areas: cities expand into high flood risk land
despite having safe land to expand on.

The last paper explores the medium-term effect of flooding on population growth in Sub-
Saharan Africa. It finds that large floods in rural areas have long-term persistent effects on
population growth but that the effects are mitigated in large urban areas. Using Demographic
and Health Survey data, the paper finds that experiencing a severe flood is associated with
worse health outcomes and a higher probability of being classified in the poorest wealth
bracket, especially in rural areas. In the medium-term, the analysis shows sorting of the
poorest households in high-flood risk areas. This is consistent with a higher out-migration
rate from rural areas.
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1 Introduction

This thesis is composed of four essays on urban, development and spatial economics. The

first two papers are empirical studies evaluating the impact of public policies in England –

one looking at transport infrastructure and the other at flood management reform. The last

two papers leverage satellite imagery to investigate the effects of floods and flood risk on

urbanisation in developing countries.

This first paper investigates the impact of constructing segregated cycling lanes on cycling

and motorised traffic. I use an event study analysis on the progressive roll-out of the Cycle

Superhighways (CSH) programme in central London from 2014 to 2019. Analysing the impact

of lane segregation on traffic flows is challenging as cycling lanes location is an endogenous

choice from the policymakers and stakeholders. Lanes have been built in strategic locations

due to user demand, wide enough roads to accommodate the additional segregated lanes, safety

and potential for growth. However, even after considering the endogeneity of the locations

using an event study type of analysis, I find that the segregated lanes programme increased

cycling traffic flow by about 25% after opening and then by an additional 20% per year. It

accounts for nearly half of the increase in cycling traffic along those roads. There is little

evidence that this effect is driven by the displacement of cyclists from nearby roads, which

indicates that the new lanes increase the number of cyclists or their frequency. One of the

mechanisms investigated is an increase in cycling flow via safer trips and safety in numbers. I

find a substantial decrease in accidents involving cyclists after the lanes’ construction. I do

not find any impact on car traffic.

The second paper shows the relationship between natural disasters, decreased support

for government parties, and increased votes for protest parties. Failure to prevent floods

has considerable physical and economic costs. It also has long-term effects on the well-being

of impacted people. We analyse how voters respond to such disasters in the context of

“second-order” elections – elections with lower turnout and media coverage. Considering the

characteristics of local elections in the UK – half the turnout of General Elections, a higher

share of votes for non-dominant parties, and poor knowledge of constituents of local councils
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functioning, we show evidence that voters use floods to punish parties in power and give rise

to protest parties. We find that electors punish the incumbent party after a flood during local

elections in England – and they are much more likely to do so if the incumbent party aligns

with the party in power, both at the local council and the national government level. We also

find that recent floods bolster the rise of the UK Independence Party. While the baseline

decrease in the share of votes for the incumbent is relatively small – 0.7 percentage point, it

can be increased by up to 6 percentage points if the incumbent is from the same party as

the national government. These effects are more substantial for larger floods in terms of the

flooded area and duration. We also find the same bounded rationality as previous papers in

the literature: the effect of floods on local electoral outcomes is limited to floods within a year

of the election.

In the third paper, we overlay new high-resolution satellite data and flood hazard maps to

study how cities expanded in high flood risk areas in China from 1985 to 2015. We construct

a panel of cities to investigate the causal role of land scarcity and path dependence on the

expansion of cities into high flood risk land. Land scarcity around a city is partly an endogenous

product of urbanisation, as cities expand in the direction of unviable land (water bodies or

steep land) for their amenity or productivity value, and partly an exogenous process due to

the location and size of topographic constraints as cities expand. We develop an instrument

for land scarcity based on topographic obstacles encountered by mechanically growing cities,

building on Harari (2020). We find that a naïve OLS regression overestimates topographic

constraints’ role in driving urbanisation in high flood risk areas. Once we use long-difference

to remove time-invariant effects and instrument for endogenous growth, we find that land

scarcity due to topographic constraints is not a driver of urbanisation in high flood risk areas:

cities expand into high flood risk land despite having safe land to expand on. We document

how these drivers vary by flood risk types (pluvial, fluvial and coastal).

The last paper explores the medium-term effect of flooding on population growth in Sub-

Saharan Africa. To circumvent the lack of comprehensive reporting of floods in low-income

countries, I use a flood model and climate data to create a novel historical dataset on floods.

I then construct a panel dataset of population, degree of urbanisation and floods from 1990
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to 2015 in Sub-Saharan Africa. The satellite imagery allows for the analysis of the effect

at a high degree of disaggregation. I find that large floods in rural areas have long-term

persistent effects on population growth, but the effects are mitigated in large urban areas.

Using Demographic and Health Surveys, I explore the mechanisms behind these diverging

trends. In the short-term, rural households are much more likely to suffer negative health

and wealth impacts from floods. In the medium-term, sorting and out-migration of poorer

households in risky areas are much stronger in rural areas.
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2 The impact of segregated cycling lanes on road users

2.1 Introduction

The world’s major cities have built cycling infrastructures in the last decades. Active travel,

including walking and cycling, has been encouraged to reduce motorised traffic, bring health

benefits and reduce air pollution. In addition, these modes can provide relief to congestion of

public transport in central areas. However, these benefits are conditional on doing more than

merely displacing bike users from one lane to another, as well as generating a genuine shift in

modal share and not only capturing the population’s growth in these areas.

Although major cities have spent considerable amounts on increasing the number of

cyclists, segregated cycling lanes have not been studied by economists as extensively as other

infrastructures such as segregated bus lanes. London’s cycling policy reflects other large

metropolitan areas in implementing bike-sharing systems, segregated lanes and encouraging

users to avoid car traffic. However, bikes represent still only 2.5% of trips in London. London

Mayor’s strategy is to reach 5% by 2026 (Transport for London 2018). The current strategy

aims at convincing more people to cycle. Safety concerns are the first deterrent for cycling in

London. Segregated cycling lanes aim directly at improving safety by separating traffic from

cars and providing safe junctions. Their design in London - large straight roads from outer

neighbourhoods to the centre of the city - was chosen to be easily recognizable and offer a fast

and simple way to travel across central London.

This paper examines whether building cycling infrastructure increases cycling flows in large

cities. I use the Cycle Superhighways (CSHs) programme in London to conduct the analysis:

twelve planned segregated cycling lanes that commuters use to commute safely from the outer

neighbourhoods of London to the centre. The main difficulty in studying this programme is

that the lane placement was chosen to maximize existing cycling flows. It is thus difficult

to disentangle existing trends from the impact of the cycling infrastructure. The program’s

roll-out between 2008 and 2020 is used to address identification issues. In 2008, Mayor Ken

Livingstone announced London’s Cycle Superhighways scheme (CSH) as shown in Figure 2.A.1.
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By 2010, the first lanes were built1, but they were perceived as unsafe by users. In response

to the criticism, in 2012, the first segregated cycle lanes were built2. Most of the subsequent

lanes were completely separated from the car traffic3. The analysis focuses on the second

generation of segregated cycling lanes for practical reasons (I do not observe pre-trends in the

first generation of lanes) and to narrow the analysis to mainly segregated lanes.

The paper finds evidence of a net increase in cycling flows for three years following the

launch of the program. There is not enough data to estimate longer time effects. As soon as

the facility opens, cycling flows increase by about 25%, and then by 20% per year after that.

From the empirical design, I find that the increase is not driven by population growth in these

areas. I also pay particular attention to the possibility of cycling lanes displacing other traffic.

Indeed, the increase in cyclist flow on CSHs could be driven by cyclists choosing safer lanes

to do their usual trips. While not a bad outcome in itself, the main goal of the CSH was to

create incentives for people to cycle and do more trips cycling. I find no evidence of cycling

displacement around the new segregated cycling lanes. The lack of displacement indicates that

the increase in traffic in segregated lanes is likely to contribute significantly to the net increase

of cycling flow in London, rather than shifting existing flows from other routes. It makes sense

as cycling trips are generally short4, and any additional detour would significantly decrease

the advantage of using a bike.

I reproduce the analysis using the London cycle hires - London’s public bicycle hire scheme

opened under Boris Johnson’s mayorship - and show a similar pattern. Following the opening,

trips starting or ending at CSHs show an increase while stations further away do not.

Another form of displacement could be car traffic. The reduced effects on pollution would

be voided. To disentangle these effects, I analyse the impact of the segregated cycling lanes on

cycling at different distances of the lanes. I do not find evidence of decreased car flow or bus

flow in the lanes that have been reduced to accommodate the segregated cycling lanes nor in
1CS3, CS7 in 2010 and CS2, CS8 in 2011
2CS5, upgrade of CS2, the extension of CS3, CS6, CS1 + “Better junctions”
3I show the differences between the two generations of lanes in Figure 2.A.2 and 2.A.3. The lane number,

e.g. CSH8/CSH5, corresponds to the original plan number and not the order of construction; some lanes are
called “CS” and others “CSH”

422 min on average in London (LTDS, 2018)
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the adjacent lanes.

Finally, I look at the underlying mechanism for the increase in cycling, such as the increased

safety of cyclists in segregated lanes. I find that these infrastructures bring direct benefits by

decreasing the number of car-cycle accidents and reducing accidents per cyclist.

The main contribution of this paper is to capture that segregated cycling lanes do not offer

only a one-time increase in cycling at opening but also put cycling flow on a higher growth

path. I further demonstrate that the increase is not due to the displacement of cyclists. I also

show that the main argument against segregated cycling lanes - disruption of car traffic - did

not manifest in London. Finally, I find a significant decrease in accidents after the opening of

lanes - explaining the success of the programme.

This paper has clear policy implications. First, the findings imply that building cycling

infrastructure has an immediate impact on traffic flows and that this impact is growing over

time. The impact is more prominent for fully segregated lanes but still considerable for

partially non-segregated lanes. A cost-benefit analysis should take into a large time frame to

evaluate these programmes. Additionally, cycling lanes are also often criticised for increasing

congestion. However, in the analysis, I find little evidence of change in traffic flows around

the cycling lanes. Finally, in line with the previous literature, this paper provides evidence of

safety in numbers for cyclists. Not only does the number of accidents per cyclist on the road

decrease, but the number of total accidents also drops after the construction of the cycling

lanes.

The rest of the paper is structured as follows. First, I review the literature on transport

in London and cycling in Section 2.2. I then present the empirical analysis in Section 2.3

and the datasets I use in the analysis in Section 2.4. In Section 2.5, I decompose the results

between cycling flows on the new segregated lanes, the displacement analysis on neighbouring

roads and the traffic accidents analysis. Finally, I summarise the results and alleys for future

research in Section 2.6.
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2.2 Literature review

Transport economists are no strangers to London’s setting. London is famous for experimenting

with a central congestion charge in the early 2000s. The effects of the congestion charge

were wide-ranging: reduced motorised traffic, decreased air pollution and accidents, increased

housing prices and increased traffic outside the congestion zone. Leape (2006) summarises the

early implementation of the London congestion charge reduced all motorised traffic by 12%

and up to 34% for cars. Green, Heywood, and Navarro (2018) show evidence that London’s

Congestion Charge reduced traffic accidents and air pollution in the tolled zone. Keat Tang

et al. (2016) uses a partial equilibrium to find an elasticity of housing values with respect to

traffic of -0.3. More recently, Herzog (2020) uses a general equilibrium model to show that the

congestion charge reduces both the number of commuters and their propensity to drive inside

the congestion zone but increases driving among untolled drivers. This paper contributes to

the economic literature by evaluating the impact of new transport infrastructure on transport

mode and its general impact on motorised traffic.

On segregated cycling lanes, studies have shown they are safer for cyclists (Cohen 2013;

Li, Graham, and Liu 2017; Mulvaney et al. 2015; Reynolds et al. 2009; Aldred et al. 2018).

These studies highlight a few caveats that are worth noting. First, there is a learning period

when new lanes are introduced as users learn how to use them safely. Second, there is safety

in numbers, meaning that cycling infrastructure might be particularly useful to sustain a

higher cycling growth rate. Third, safer infrastructure is also more inclusive: women, young

people or the elderly are more likely to cycle when cycling routes are separated from car

traffic. Finally, these studies do not consider that there could be endogeneity in cycling lanes

placement and existing pre-trends. Therefore, it is essential to show that these results hold

even when pre-existing trends are considered.

In London specifically, Aldred et al. (2017) review the literature on cycling provisions

separated by motor traffic. They find that even though all users prefer separation, women

have stronger preferences. In a follow-up paper, Aldred and Dales (2017) show that the lack

of infrastructure in London and the high-level of perceived danger is a deterrent for most

casual users. A study by Li et al. (2018) relates an increase in cycle hire near the CSHs. I
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generalise the analysis to cyclists using their own bikes, as cycle hire users differ from the

general population - cycle hires are used more by tourists and casual users. Li, Graham,

and Liu (2017) find no impact of the programme on traffic accidents in the first phase of

the programme (2007-2014). They note that a significant drawback of the CSH programme

is the lack of separation between cars and cyclists. Bhuyan et al. (2021) uses propensity

score to evaluate the impact of CSHs on traffic congestion and find a positive impact of the

programme. This paper focuses on the programme’s second phase when most routes were

built with a physical separation from the motorised traffic in reaction to the early criticism. I

find a substantial impact on the reduction of traffic accidents per cyclist.

2.3 Estimation strategy

In this paper, I study the impact of the construction of the CSHs on cycle traffic in London

using an event study analysis. The treatment group is sites with an active CSH; the control

group is not yet treated sites and treated late (sites that opened in 2020).

The set-up behind this paper is that individuals in London have a large set of options

regarding modal choice. They can choose to walk, cycle, take public transport, hire taxis or

private cars. The determinants of modal choice depend on the individuals, trips and the modes’

characteristics. Intuitively, building segregated cycling lanes reduces the cost of travelling

by bike. It might also increase the cost of travelling by car by reducing road capacity. In

consequence, it should increase the demand for cycling and potentially create a substitution

with other modes.

One way to investigate this increase in demand would be to use travel diaries. They exist

for London (London Travel Demand Surveys from Transport for London), but unfortunately,

the level of geographic disclosure is too aggregated to perform this analysis. In this paper,

I thus present results on cycling demand increase, but I cannot comment on substitution or

general equilibrium effects.

To conduct the analysis, I use the cycle monitoring programme created by Transport for

London. It contains various yearly and quarterly surveys available from 2014 to 2019 to track
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cycling volume across Central London over time. To measure the impact on motorised traffic,

I use a similar geocoded survey produced by the Department for Transport road counts for

Greater London from 2000 to 2019. I also use the STATS19 dataset from the Department of

Transport that records all road accidents with police involvement in the past decades. These

datasets contain the exact geo-coordinates of the counting sites and accidents that I spatially

relate to the CSHs routes.

The programme’s specific design allows for overcoming some of the issues highlighted

by the recent literature on the difference in differences (DiD) in staggered adoption (Sun

and Abraham 2018; Borusyak and Jaravel 2018; De Chaisemartin and D’Haultfoeuille 2018;

Goodman-Bacon and Marcus 2020). The canonical difference in differences estimator has two

time periods: before and after implementation, and two groups: treatment and control. It

identifies the average treatment effect on the treated (ATT) under the (conditional) parallel

trend assumption. Many studies use variation across groups that receive the treatment at

different times similarly to the cycle superhighway programme. However, in the case of growing

effects, using a classic regression with a treatment dummy and panel fixed effects does not

recover a reasonable average of the treatment effects (Borusyak and Jaravel 2018). Concretely,

in the case of increasing traffic, comparing different routes underestimates long-term effects

as it evaluates lanes that just opened to lanes where traffic has been growing for a few years.

Obtaining an average would confound the effect on lanes that have been opened for a year,

three years, or more. Additionally, there is no meaningful “average treatment effect” as the

different lanes’ construction has happened at different times.

In more general terms, in the canonical DiD, the difference between the pre-treatment

outcome is extrapolated to the post-treatment as a counterfactual. In a staggered DiD, the

difference when the staggered groups have been treated also serves to identify the difference

in level between groups. However, when the effects are not homogenous in time, then the β̂

under-estimate long-term effects. Borusyak and Jaravel (2018) show that in the case where

openings are distributed uniformly across time, the sample size weighted average treatment

effect and the canonical regression estimand differs more and more as the effects become more

dynamic (affecting the growth rate, see Figure 2.3.1 from Borusyak and Jaravel (2018)).
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Figure 2.3.1: Difference in differences bias with dynamic effects

Another issue with the two-way DiD is that it overweights cohorts in the middle of the

treatment and gives smaller weights to cohorts that opened first or last. A recent paper by

Goodman-Bacon and Marcus (2020) shows that this estimator does not recover the ATT but a

weighted estimator that depends on group size and variance in treatment. Again, it is mainly

a problem if the effect changes over time (in the case of cycling lanes, increasing each year

after opening). Other papers such as Borusyak and Jaravel (2018) describe this problem as

“negative weighting” of the later cohorts.

Faced with this issue in the staggered difference in differences fixed-effect model, I use

the programme’s specificity to adopt an alternative identification strategy. I use an event

study analysis to capture the impact of the opening of the lanes on cycling flows, car flows

and accidents at various distances from the segregated lanes. The roll-out of the CSHs with

segregated lanes is concentrated between 2015 and 2019, which allows me to estimate the

effect up to 3 years after opening. I present the event study results with the constructed

lanes only, as well as the lanes opened in 2020 as a control group. Assuming that the CSHs

effect on traffic is stable across cohorts (they all receive the same impact at the opening and

each year afterwards), then the event study estimates should be non-biased. In the summary

statistics, I compute the socio-economic characteristics of the areas around the different cohorts

of segregated lanes to look for differences that could impact the treatment. I do not find major

differences in characteristics between cohorts.
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Different endogeneity issues could arise in this setting. The first one would be that the

timing of the opening is endogenous to the growth potential of the routes. Differences in

the timing of opening were due to security concerns over the original design - it should not

be related to the potential for cycle growth in the respective routes. The original plan was

announced in 2008. It consisted of radial 12 roads linking to Central London.

The first lanes were built in 2010 and focused on improving the readability of the infras-

tructure. The lanes were visible using “blue paint” on the surface. They were not separated

from the traffic and were perceived as unsafe. In response, TfL organised user consultations

and small experimentations using the International Cycling Infrastructure Best Practice Study.

The safety recommendations were integrated into the “Mayor’s cycling vision” and led to

higher safety standards. One major drawback of the higher standard of infrastructure was the

substantial delays in implementing the CSH programme (Transport for London 2014). The

second generation of lanes was physically separated from car traffic. It often involved reducing

the number of car lanes to fit the 4 meters wide cycling lanes (compared to the non-separated

2m wide original design). There is no indication that the cycling potential was a factor in the

timing of the roll-out.

The second endogeneity issue is that the routes could compete with each other for cy-

clists. The CSHs have been created to be radial roads spanning the London network. They

are connecting different parts of London to the centres. The different routes are thus not

substitutable. However, there might be a possibility that they are complementary - the more

connected the network of segregated lanes, the more valuable they are for Londoners that can

now travel safely for greater parts of their journey.

In all the regressions, I cluster the standard errors using two-way clustering at the CSHs

route and year level. The general approach for an event study is to cluster at the unit or

treatment level. If the error correlations are due to common shocks across observations,

then the year-fixed effects will absorb all within-year clustering, and inference needs only to

control for clustering on the unit. However, if these shocks have a large route-level component,
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contemporaneous error correlations across routes will remain. I thus choose two-way clustering

at the route and year level.

2.4 Data

I construct a dataset of cycling traffic flow, car traffic flow, and accidents for a representative

set of counting sites along the Cycle Superhighway routes and their surrounding areas. Most

of these points are located in Central London (inside the Congestion zone - where car traffic

is tolled). For the displacement analysis, I consider locations close to these lanes (up to 600

meters).

CSH data - I use the Cycle Superhighway dataset from the Transport for London cycling

monitoring programme. The counting sites are shown with the lines opening year in Figure

2.4.1. The CSH dataset has 320 count sites over 11 planned routes5 6. For each site, I have

their exact location and yearly count. These counts are based on daytime ridership and

conducted annually; they are adjusted for seasonal variations and represent annual averages.

It starts in 2014 and ends in 2019, but not all sites are surveyed every year: I have a balanced

panel, pre and post-treatment counts for C1, CS2, CS3, CS5 and C6, which corresponds to 84

counting sites in the treatment.

Cycle Hire - To complement the survey analysis, I gather all cycle hire journeys7 available

from 2012 to today. I filter journeys corresponding to the same period (2014-2019) and time

of the day (early morning to evening) as the survey data. I clean the data from all lost or

incomplete journeys.

London cycling- I use the Central/Inner/Outer London Cycle Monitoring programme

dataset for the cycle displacement analysis. It starts in 2014 and ends in 2019. Each counting

site is monitored quarterly and observed in all directions. They are shown in Figure 2.4.2.

For each site, I calculate the distance to the CSHs and group them by distance bands. This

dataset has been sampled to be representative of London’s cycling roads and traffic.
5I assign the route reference to counting sites based on the planned network map
6Each count site is observed in all directions
7They are also called Barclays bike or Boris Bike from the name of the first sponsor/ mayor of London
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Road traffic - I use the Department for Transport Road Traffic Counts dataset for the car

displacement analysis. It starts in 2002. It is observed yearly but with gaps. The road traffic

data is available for every major road and some minor roads. The counters are represented in

Figure 2.4.4. Similarly to the cycle analysis, I calculate the distance from each monitoring site

to the CSH lines. As the data is not available every year, I use the provided imputed values

for the missing years8.

Traffic accident - Finally, I use the Road Safety Data (STATS19) available from 2004 to

today from the Department for Transport to collect all incidents involving cars and bikes

near the CSHs before and after opening. The data is precisely geocoded, which allows me to

capture accidents on cycling lanes. The data only reports accidents with the police involved

- it is thus likely to be missing non-serious accidents. There is no reason to think that the

rate of reporting has changed over time. The data contains information on the severity of the

accident. However, it is difficult to analyse by severity as the severity reporting was changed

in 2016.

Table 2.4.1 shows the main census characteristics for a 150m buffer around the monitoring

sites in my treatment groups. Columns 1, 2 and 3 correspond to routes opened in 2015, 2016

and 2018 respectively. As the number of monitoring sites observed for six years is low for the

2015 routes, I reproduce the results dropping that cohort and find similar results. The opening

date does not correlate with demographic characteristics or total cycle traffic flow (in both

directions). However, the earlier routes are a bit more central, leading to a slightly shorter

travel time to work and a lower population. In Table 2.4.2, I present the same variables for the

treatment groups (2015-2018) and the control group (never treated). The two groups’ areas

are similar in demographics and distance to work, but the treatment groups have a higher

population overall and a slightly higher proportion of people biking to work.

8I do not allow imputation if the gap between two actual counts contains the year of construction
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Table 2.4.1: Summary statistics 2011 census (treatment group)

2015 2016 2018
Household size 1.9 2.22 1.95

(0.2) (0.58) (0.28)
Population 268.2 360.47 336.94

(34.62) (75.42) (89.59)
Age 39.71 33.02 35.57

(6.03) (3.5) (3.79)
Median age 37.98 29.49 32.11

(6.65) (4.98) (4.92)
Share highly educated 56.61 48.41 52.31

(2.31) (18.34) (14.17)
Bike to work (per 1000) 40.08 35.34 29.94

(30.47) (28.16) (10.5)
Distance to work 8.71 8.75 7.9

(2.21) (2.52) (1.68)
Total cycles 2047.36 1425.74 1603.28

(830.95) (1136.6) (1019.97)
Counting sites # N= 2 N= 20 N= 20

Table 2.4.2: Balance table 2011 census (treatment versus control)

Treated Control Treated=Control
Household size 2.08 2.21 p=0.24

(0.46) (0.21)
Population 344.87 302.32 p=0.02

(82.59) (27.21)
Age 34.56 32.88 p=0.24

(4.02) (2.87)
Median age 31.14 30.31 p=0.48

(5.28) (1.93)
Share highly educated 50.66 41.89 p=0.18

(15.95) (13.09)
Bike to work (per 1000) 32.99 25.01 p=0.08

(21.24) (7.05)
Distance to work 8.34 8.56 p=0.79

(2.13) (1.71)
Total cycles 1539.89 1571.89 p=0.91

(1057.59) (540.27)
Counting sites # N= 42 N= 6
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Figure 2.4.1: Map of the CSH counting sites

Figure 2.4.2: Map of the cycling monitoring programme counting sites
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Figure 2.4.3: Map of the cycle hire stations

Figure 2.4.4: Map of road traffic counting sites
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Figure 2.4.5: Map of accidents density 2009-2019

2.5 Empirical analysis and results

To introduce the analysis, Figure 2.5.1 plots the raw count of the average daily cycling flow

for the treated sample for each year pre and post-treatment. The average pre-treatment is

about 1,600 counted daily in the monitoring sites, against 2,100 post-treatment. The lower and

upper whiskers show that some counting stations average low numbers daily (the minimum is

20 pre-treatment and 46 post-treatment while the busiest monitoring stations register up to

5,830 and 6,136 cyclists counted daily pre-and post-treatment, respectively). These results do

not consider the overall growth trends and site heterogeneity but still show a significant jump

at opening.

2.5.1 Dynamic effects estimation

The results from Figure 2.5.1 indicate that it would be appropriate to conduct an event study

on the CSH openings. I use a fully dynamic specification to analyse the treatment heterogeneity
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Figure 2.5.1: Daily cycling flow

across time. Unlike the two-way fixed effect DiD, the event study coefficient should not be

affected by a negative bias as long as the increase is similar across cohorts (cohorts receive

the same increase at the opening and every year afterwards). I only include sites for which I

have six years of observation in the sample. The treatment group is CSH sites after opening

in 2015, 2016 and 2018. The control group is sites that have not opened yet (later treated)

and CSH sites that opened in 2020. The dependent variable is the log flow of cyclists.

ln(TotalCyclesit) =
J∑

j=−4
θjTreatjit + γi + δt + ηit

with ln(TotalCycles)it the average daily flow recorded in counter i and year t. As I use a

log-linear model and the coefficients for years of opening are quite large, I exponentiate them

in the text. Treatjit = 1{j = t− Openingi} is a categorical variable for years since opening

Openingi j = {−3,−2, ..., 4}: I use j = −1, the year before opening, as a base level, θj for

j ≥ 0 captures dynamic effects of j years relative the cycle superhighway opening, finally γi

and δt site and year fixed effects.

I show the result in Table 2.5.1. In column 1, I only include sites for which I have pre

and post-treatment years and six years of observation. In column 2, I add the CSH that
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opened in 2020 (I do not observe the flows after opening as my panel stops in 2019). The

coefficients are slightly larger than in column 1 but still within the confidence interval of each

other. I illustrate the results of column 1 in the upper left graphs of Figure 2.5.2. There is

a short decrease before opening, probably due to construction, a large jump of 24% at the

opening, and then a further average increase of 19% per additional year. From the author’s

calculation, the average construction time is 14 months, which can explain the slight decrease

up to two years before opening9. The estimates with the control group are a bit larger but

also less precisely estimated. I also estimate an average treatment effect on the treated using

a difference in differences estimator which I show in the Appendix in Table 2.A.1 and the

corresponding Goodman-Bacon decomposition in Figure 2.A.4. Both confirm that there is a

large increase after the opening of the CSHs. The effects are increasing over time.

2.5.2 Traffic displacement

In the next part of the analysis, I reproduce the event study on traffic flow for cycles and cars

close to the newly constructed CSH. The estimating equation is the same as above but uses

cycle traffic around the CSH as an outcome. To this aim, I use the Cycle monitoring dataset

from Transport for London for Central, Inner, and Outer London presented in Figure 2.4.2. I

keep all counting sites opened between 2015 and 2020 for the analysis and use the year before

opening as the baseline.

The results from the event study on cycle counters 20-200m, 200-400m, and 400-600m

away are presented in Table 2.5.2 and in the last 3 plots of Figure 2.5.2. I keep all counting

sites that I observe for all quarters. While the coefficients after opening are larger closer to

CSHs - meaning that the cycling traffic could be increased close to the CSHs, there are no

significant results. The effects could be linked to cyclists getting on and off the segregated

lanes. On average, cycle trips are short (20min) and fast, so there is not much gain for the

average cyclist to take a large detour to get on a cycle superhighway.

9CS3 from Tower Gateway to Parliament Square took 13 months to be built and opened in March 2016.
CS3 from Parliament Square to Lancaster gate started in April 2016 and ended in September 2018 (18 months).
CS5 Kennington Lane to Victoria took eight months. CS1 took eight months between was built between July
2015 and April 2016. CS6 started in March 2015 and finished in September 2018. CS2 extension started in
February 2015 and ended in December 2016 (21 months)
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Table 2.5.1: Cycling flow after CSH opening

Treated Treated + Control
j<=-4 -0.309 -0.299

(0.174) (0.212)

j=-3 -0.118 -0.126
(0.0767) (0.149)

j=-2 -0.166∗∗∗ -0.135∗∗

(0.0322) (0.0447)

j=0 0.215∗∗∗ 0.260∗∗∗

(0.0397) (0.0315)

j=1 0.345∗∗∗ 0.400∗∗∗

(0.0208) (0.0283)

j=2 0.494∗∗∗ 0.562∗∗∗

(0.0416) (0.104)

j>=3 0.595∗∗∗ 0.696∗∗∗

(0.0185) (0.105)
N 504 528
Rsquared 0.949 0.949
Year FE Yes Yes
Site FE Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 2.5.2: Cycle displacement

20-200m 200-400m 400-600m
j<=-4 -0.181 0.111 0.00487

(0.178) (0.157) (0.115)

j=-3 -0.163 0.00582 0.00909
(0.118) (0.0818) (0.0649)

j=-2 -0.191 -0.0350 0.0180
(0.141) (0.0888) (0.0514)

j=0 0.0308 -0.0408 -0.0105
(0.0752) (0.0443) (0.0360)

j=1 0.135 -0.00498 0.0316
(0.119) (0.0813) (0.0703)

j=2 0.187 -0.0230 0.0323
(0.139) (0.111) (0.0984)

j>=3 0.316 0.0608 0.125
(0.194) (0.184) (0.128)

N 1426 2415 3151
Rsquared 0.898 0.909 0.932
Quarter FE Yes Yes Yes
Site FE Yes Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Figure 2.5.2: Cycling flows near CSHs using TfL cycling surveys

A drawback of the Transport for London cycling surveys is that there are only conducted

annually. That is why I also do a robustness check on the impact of the segregated lanes

on cycling using the cycle hires data provided by Transport for London. The dataset has

all journeys done by hire bikes in London from 2012 to March 2020 (more recent data is

available, but I wanted to exclude any changes due to lockdowns). I restrict the analysis to the

stations near lanes opened after 2014. The dependent variable is the logged number of journeys

starting or ending near segregated lanes. I subset the sample to stations on the segregated

lanes (0-20m) and then 20-200m, 200-400m and 400-600m away. I present the results in the

appendix in Table 2.A.4 and 2.A.5 , and graphically in Figure 2.5.3 and 2.5.4. I find the same

increase in hire starting or ending near segregated lanes, but the effect disappears for stations

more than 200m away.

To rule out that I am capturing the impact of contemporaneous policies, I look at possible

links with other transport and cycling policies. The two other major cycling policies happening

during the same period are the Biking Boroughs project and the roll-out of the London Cycle

22



Figure 2.5.3: Cycle hire journeys starting near CSHs

Figure 2.5.4: Cycle hire journeys ending near CSHs
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Hire Scheme. The Biking Borough project was aimed at Outer London Boroughs - it is thus

a different geographical zone to the CSHs which are concentrated in Central London. I can

exclude that they have a direct impact on the CSHs.

The London Cycle Hire Scheme opened in 2010 with a second major extension in 2012.

Most of their implementation is thus prior to the development of the segregated lanes. 97% of

my CSH survey points have a cycle hire station within 200m. I plot an histogram of the date

of opening of the cycle hire stations within 200m of the CSHs compared to the opening of the

cycling lanes in Appendix 2.A.5. I find that 75% of the cycle hire stations opened before the

CSHs’ openings. There is a clear stop of two years during the CSHs’ constructions and then

after opening, the implementation continues on the same decreasing trend. To further rule out

that cycle hire stations’ openings contribute significantly to the increase of cycling flows after

the segregated lanes opening, I analyse the impact of getting a new cycle hire station within

200m of the segregated lanes. I find no significant impact of getting a new station in appendix

Table 2.A.6. I cannot do an event study for the opening of the stations as I do not observe

enough openings.

The CSHs and the cycling hire are two very effective policies for increasing cycling flows.

Clearly, neither the placement of the cycle hire stations nor the placement of the segregated

lanes was random. They have both been selected to bolster cycling usage on roads with high

potential. However, I argue that the increase that I observe in the CSHs event analysis is

solely due to the segregation of the lanes as I do not observe any pre-trends in the CSHs and

the cycling hire analysis. Getting additional stations does not increase massively the traffic on

the segregated lanes - probably because most of the stations were already built by the time

the lanes got constructed. The pre-opening levels, however, probably reflect the already high

flows of these lanes and the impact of the cycle hire scheme.

I then reproduce the same event study for cars’ and buses’ displacement. The outcome is

the logged number of total cars (or buses) counted at each survey point. To this aim, I use

the yearly counts provided by the Department for Transport. The dataset is available for all

of England, but I concentrate on counters on a CSH route (road segment where the lanes were
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built by reducing car lane capacity, 0-20m) or close to it (20-200m, 200-400m and 400-600m

distance buffers). The car traffic dataset provided by TfL relies on imputed data (all counters

are not observed each year and the data is interpolated from past years). I present the results

using an unbalanced panel in Table 2.5.3 and Figure 2.5.5. I also show the results for the

interpolated balanced panel in the appendix Table 2.A.7 for cars and in appendix Table 2.A.8

for buses.

Both tables are fairly similar. The coefficients are slightly higher and positive on the roads

with the CSH but not statistically significant.

Table 2.5.3: Car displacement near CSH

CSH 20-200m 200-400m 400-600m
j<=-4 -0.141 0.0770∗∗ 0.105 0.103

(0.0905) (0.0288) (0.0593) (0.0964)

j=-3 -0.0437 -0.0251 0.0543 0.0535
(0.0879) (0.0629) (0.0653) (0.0566)

j=-2 0.0787 0.0593 0.0501 0.0781
(0.0638) (0.0873) (0.0569) (0.0813)

j=0 -0.0456 -0.0139 -0.0637 -0.0266
(0.0832) (0.0634) (0.0600) (0.0592)

j=1 -0.119 -0.0319 -0.0800 -0.0422
(0.119) (0.137) (0.107) (0.0887)

j=2 0.205 -0.0224 -0.140 -0.0271
(0.149) (0.132) (0.110) (0.0854)

j>=3 0.250 0.0783 -0.0498 -0.0175
(0.138) (0.200) (0.196) (0.195)

N 212 510 782 988
Rsquared 0.974 0.967 0.968 0.983
Year FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Figure 2.5.5: Cars flows near CSHs

2.5.3 Accidents reduction

In the last part of the analysis, I look at accident reduction on CSHs. First, I use the STATS

19 datasets that record the location of traffic accidents involving the police in England. Next,

I add traffic flow for the average DfT counting sites on the CSHs. The set of monitoring points

with traffic data is small, but the results are consistent across specifications.

I include all accidents located on CSH lanes constructed after 2014. In Table 2.5.4 and

Figure 2.5.6, I look at the difference between painted lanes and lanes fully segregated by a

kerb (the car traffic is physically separated from the cycling lanes). The reduction in accidents

seems to be driven by the latter, even though a small sample size might also be at play here.

In Table 2.5.5, I present the results for total accidents involving cyclists, total accidents

involving cyclists divided by cycling flow, total accidents involving cyclists divided by cars’

flow and total accidents involving cars divided by cars’ flow.
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In column 1, there is a significant decrease in total accidents after a CSH opening. The

results even hold when looking at the number of cycling accidents per cyclist in column 2. In

line with the literature, these results indicate that separating cyclists from motorised traffic

reduces the number of accidents. Both the number of accidents per cyclist and the absolute

number of accidents decrease, indicating that there is safety in numbers - cars are more likely

to expect cyclists if they see cycling infrastructures.

In column 3, I look at cycle accidents by car flow. The coefficients become negative after

the lanes’ opening - but they are not significant at the standard significance level. In columns

4 and 5, I look at car accidents after the opening of the segregated lane. There is no significant

pattern emerging. The lanes do not seem to have made traffic safer for cars.

Figure 2.5.6: Bike accident after CSH opening
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Table 2.5.4: Bike accidents over bike flow by lane segregation

Painted Fully segregated
Bike acc./bike flow Bike acc./bike flow

j<=-8 2.625 0.0152
(1.718) (0.154)

j=-7 2.046 -0.0536
(1.554) (0.304)

j=-6 1.539 0.0701
(1.068) (0.262)

j=-5 0.406 0.102
(1.094) (0.185)

j=-4 1.137 -0.135
(0.647) (0.151)

j=-3 -0.205 0.288
(0.720) (0.145)

j=-2 -0.436 0.271
(0.742) (0.173)

j=0 -1.673 0.0439
(0.905) (0.197)

j=1 -0.891 -0.125
(0.826) (0.245)

j=2 -2.460 -0.478∗

(1.161) (0.180)

j=3 -1.455 -0.725∗∗

(0.696) (0.225)

j>=4 -1.286∗∗∗

(0.202)
N 55 154
Rsquared 0.692 0.811
Year FE Yes Yes
Site FE Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 2.5.5: Traffic accidents

Bike acc. Bike acc. Bike acc. Car acc. Car acc.
vs bike flow vs car flow vs car flow

j<=-8 1.350 0.808 0.505 -0.613 -0.916
(0.975) (1.066) (0.852) (0.706) (0.580)

j=-7 1.071 0.651 0.415 -0.653 -0.889∗

(0.710) (0.838) (0.699) (0.480) (0.390)

j=-6 0.834 0.460 0.260 -0.419 -0.619
(0.542) (0.483) (0.307) (0.422) (0.336)

j=-5 0.611 0.286 0.125 -0.678∗ -0.838∗∗

(0.418) (0.540) (0.452) (0.253) (0.190)

j=-4 0.504 0.209 0.0653 -0.364 -0.507
(0.356) (0.348) (0.268) (0.442) (0.405)

j=-3 0.324 0.0360 -0.0611 -1.033∗ -1.130∗∗

(0.177) (0.257) (0.244) (0.401) (0.366)

j=-2 0.264 0.128 0.124 -0.0817 -0.0863
(0.160) (0.188) (0.202) (0.161) (0.166)

j=0 -0.268∗∗ -0.280∗∗ -0.146 -0.263 -0.129
(0.0871) (0.0965) (0.0943) (0.343) (0.315)

j=1 -0.545 -0.380 -0.148 -0.108 0.123
(0.356) (0.444) (0.508) (0.365) (0.326)

j=2 -0.995∗∗ -0.789∗∗ -0.497 -0.310 -0.0175
(0.224) (0.242) (0.343) (0.539) (0.398)

j=3 -1.283∗∗ -0.875∗ -0.551 0.153 0.477
(0.348) (0.407) (0.590) (0.596) (0.471)

j>=4 -1.978∗∗∗ -1.401∗∗ -1.227∗ 0.250 0.423
(0.354) (0.431) (0.525) (0.598) (0.467)

N 209 209 209 209 209
Rsquared 0.751 0.715 0.723 0.609 0.617
Year FE Yes Yes Yes Yes Yes
Site FE Yes Yes Yes Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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2.6 Conclusion

The cycle superhighway programme is associated with a large increase in cycle traffic. The

treatment effect at opening represents an increase of about 25% in ridership. The effect

increases over time by about 20% a year. Most of this increase is due to new cyclists and

increased cycling frequency as there is no evidence of cyclist displacement or car traffic

displacement. One of the factors investigated in this analysis to explain the rise in ridership is

an increase in safety due to a larger number of cyclists and safer lanes. These findings are

essential for policymakers as they show that infrastructures like cycling lanes should not be

evaluated by the immediate impact but also by the continuous growth after opening. The

agglomeration effects of the lanes are an essential factor to consider - the more lanes, the more

cyclists, the safer they are, and the more likely people will take up cycling.

These results are essential to justify the construction of segregated lanes on major roads

to encourage cycling. Moreover, in cities like London, where one of the main obstacles to

cycling is safety perception, cycling lanes are essential to convince people to take up cycling.

TfL surveys show indeed that new cyclists - for example, new e-bikes users - are particularly

sensitive to these infrastructures as they provide safety and clear directions to connect to

central parts of the city. The lanes provide a good infrastructure start to sustain cycling

growth.

An interesting alley for research would be to investigate how the connectivity and the

spread of these lanes participate in increasing cycling usage. The ability to reach most of

Copenhagen or Berlin via safe cycling paths is essential to their success. The current growth of

the network offers an opportunity to study this phenomenon as it develops. The new “cycleways”

programme launched in late 2019 aims to unify London’s cycling projects (CSHs network,

quiet ways and mini-hollands) to provide the best cycling routes between key destinations as

part of a connected and unified network. It is an exciting venue for future research on cycling

networks.
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Appendix

2.A.1 Illustration of the first and second phases of the cycle superhighways

Figure 2.A.1: Original cycle superhighways network map in 2009

Figure 2.A.2: Cycle Superhighway 8 - Opened in 2011 - Painted lane
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Figure 2.A.3: Cycle Superhighway 5 - Opened in 2015 - Segregated lane

2.A.2 Difference in differences

In this appendix, I present the difference in differences approach and the Goodman-Bacon

decomposition on cycling flows.

I report the results for the OLS and the difference in differences using two ways fixed effect

in Table 2.A.1. I only include sites for which I have six years of observation in my sample.

The treatment group is CSH sites that opened in 2015, 2016 and 2018. The control group is

CSH sites that were planned but not opened yet and sites that opened in 2020.

The dependent variable is the flow of cyclists logged, I interpret the coefficient on the

opening of the segregated lane CSHi,t as the variation in the percentage of the conditional

mean of the regressand. As the coefficients are quite large, I exponentiate them in the text. In

columns 1, and 2, I only use only treated sites (the ones opened between 2015 and 2018). In

columns 3 and 4, I add the routes or part of routes that have been planned but not built and
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the ones that have been built later in 2020 10. In the OLS estimation, I control for the local

borough.

In column 1, the naive OLS effect is quite large, a 48% increase, but could be suffering

from bias from differences between sites. The impact of getting a CSH is reduced to 17% once

site fixed effects are included; however, this specification is likely to suffer from significant

bias in a staggered setting; it is a weighted average of the different lengths of exposure with a

downward bias as it compares late to early treated.

In column 3, I add a control group using the route opened in 2020 and never constructed.

Introducing a control group allows the bias introduced by the late treated to the early treated

to be slightly reduced. While the OLS results between columns 1 and 3 are similar, the

coefficient for the two ways FE in column 4 is closer now to 30% compared to 17% without

the control group. It is consistent with the two-way FE DiD estimator being biased in case of

increasing heterogeneous effect in time.

Table 2.A.1: OLS and FE estimations

Treated Treated + Control
OLS FE OLS FE

Post 0.394∗∗∗ 0.159 0.357∗∗ 0.264∗

(0.0833) (0.0892) (0.102) (0.105)
N 504 504 576 576
Rsquared 0.650 0.948 0.637 0.945
Year FE No Yes No Yes
Site FE No Yes No Yes
Controls Yes No Yes No
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

I then present the results of the decomposition of the difference in differences fixed effects

in a staggered setting.

The first comparison group is easily understandable: for each cohort, it compares the
10CS9, CS10 and CS11 were planned but were not constructed as of 2019 and CS9 opened in 2020, part of

CS4 and CS5 did not get constructed; I never include routes that were constructed before 2014
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treated cohorts (e.g. opening in 2015, 2016, 2018) with the control group (routes that opened

in 2020 or were never opened). As long as the control group is a good counterfactual for the

treated groups, these differences capture the impact of the segregated lanes. The estimates

are represented by grey triangles in the graph.

The next comparison - early treated versus late as control is also fairly straightforward as

long as there is no anticipation of the treatment. For example, it compares the sites opened in

2015 with sites opened later but before they were opened. We thus get three comparisons:

2015 with 2016, 2015 with 2018 and 2016 with 2018. The estimates are represented by grey

crosses on the graph.

The last set of comparisons is the problematic one. They compare early treatment versus

late as control (after late gets treated). It assumes that the pre-treatment difference should be

equal to the post-treatment. But if there is maturation in treatment (as in the case of the

cycling lanes), the after gap is likely to be larger as the early treated have more time to grow,

and it will overall under-estimate the treatment effect. In general, treatment effects change

(monotonically) over time, the DiD estimate is biased away from the sign of the true effects.

The coefficients are represented by the black crosses.

I present the result for cycling flows on CSHs in Figure 2.A.4. The red line corresponds to

the DiD estimator of Table 2.A.1 column 5. The overall estimator for earlier group versus later

group control is 0.22 (cohorts opened in 2015 vs 2016 and 2018, and 2016 against 2018). The

black crosses correspond to the latter group as treatment versus the earlier group as control

after opening. The Later treatment vs Earlier control overall estimator is only 0.11. It is

the estimator likely to be biased in case of increasing treatment effect over time. Finally, the

treatment versus never treated is represented by the triangles. The corresponding coefficient

is 0.46 (cohorts opened in 2015, 2016 and 2018 vs 2020 and never opened).

The x-axis in Figure 2.A.4 shows the weight allocated to each comparison based on group

size and time in treatment.
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Figure 2.A.4: Goodman-Bacon Decomposition

These figures indicate that the CSHs have been successful in attracting users after opening.

I do a robustness check by checking the degree of segregation around the counting sites using

the first difference approach. One of the main criticisms of the CSH scheme is that parts of the

lanes are not fully segregated by a kerb, but only painted in blue, sometimes with bollards to

delineate their locations. Using the London’s Cycling Infrastructure Database (CID) created in

2018, I look at the impact of the degree of segregation of the lanes. In Table 2.A.2, I reproduce

the DiD two-ways fixed effects estimate of Table 2.A.1 column 4 using not yet treated or never

treated as a control. I find in column 1 that painted only lanes still see a large increase in

cycling traffic, but the effect is only significant for fully segregated lanes.

I also repeat the event study analysis using the fully segregated lanes only (I can not do it

on the painted lanes only, there are not enough observations for each year after treatment). I

find similar coefficients than on the full sample - slightly lower for the last two years. These

results seem to indicate that the increase in traffic flow is not only driven by the full segregation

but also by other factors brought by the programme such as better visibility of cyclists and

network effects.
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Table 2.A.2: Lane segregation

Painted Fully segregated
Post 0.256 0.278∗

(0.151) (0.127)
N 276 300
Rsquared 0.971 0.903
Year FE Yes Yes
Site FE Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 2.A.3: Cycling flow after CSH opening by segregation

All Fully segregated only
j<=-4 -0.309 -0.333

(0.174) (0.171)

j=-3 -0.118 -0.0512
(0.0767) (0.0661)

j=-2 -0.166∗∗∗ -0.137∗

(0.0322) (0.0519)

j=0 0.215∗∗∗ 0.262∗∗∗

(0.0397) (0.0532)

j=1 0.345∗∗∗ 0.290∗∗∗

(0.0208) (0.0530)

j=2 0.494∗∗∗ 0.370∗∗∗

(0.0416) (0.0716)

j>=3 0.595∗∗∗ 0.441∗∗∗

(0.0185) (0.0189)
N 504 264
Rsquared 0.949 0.905
Year FE Yes Yes
Site FE Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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2.A.3 Cycle hire analysis

I also do a robustness check of the impact of the segregated lanes on cycling using the cycle

hires data provided by Transport for London. I use the same event study approach. The

dataset has all journeys done by hire bikes in London from 2012 to March 2020 (more recent

data is available but I wanted to exclude any changes due to lockdowns). I restrict the analysis

to the lanes opened after 2014. The dependent variable is the logged number of journeys

starting or ending near segregated lanes. I subset my sample to stations on the segregated

lanes and then 200m, and 400m away. Contrary to the counting sites analysis, I do not know

if the cyclists have used the segregated lanes, only that the journeys have started or ended

near a segregated lane.

I find a similar (but less significant) increase on the segregated lanes (within 20 meters)

but no effect further away. The standard errors for the groups further away are quite small,

which gives confidence that the absence of displacement is real and not due to a lack of data.

2.A.4 Car displacement

I show below the event study for car and bus displacement after the opening of the lanes. The

dataset of car counts in London provided by Transport for London uses a large number of

imputed values. I remove all values where the imputation happens at the opening of the cycle

lanes, and I only keep the values where I have a count before and after treatment. I present in

Table 2.A.7 the results. The outcome is the logged number of cars or buses observed at each

counting site on a typical day. The counting sites are observed every quarter. The dependent

variable is the number of years before and after opening. The base level is the year before

opening. As for the unbalanced panel, there is no evidence that cars’ or buses flows have

changed after the opening of the segregated lanes.
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Table 2.A.4: Cycle hire journeys starting near CSH

CSH 20-200m 200-400m 200-600m
j<=-4 0.0303 -0.0557 0.0486 -0.0121

(0.139) (0.0841) (0.0835) (0.0578)

j=-3 0.0525 -0.0813 0.00538 -0.0335
(0.112) (0.0556) (0.0604) (0.0351)

j=-2 0.0197 -0.0494 0.0138 -0.00541
(0.0731) (0.0386) (0.0398) (0.0197)

j=0 0.241∗ -0.00690 0.00545 -0.0127
(0.137) (0.0485) (0.0284) (0.0192)

j=1 0.364 -0.00550 -0.0287 -0.0451
(0.209) (0.0937) (0.0476) (0.0373)

j=2 0.534∗ 0.0515 -0.0468 -0.0434
(0.296) (0.125) (0.0694) (0.0522)

j>=3 0.729 0.165 0.00747 -0.0374
(0.462) (0.181) (0.109) (0.0806)

N 595 1820 2205 2730
Rsquared 0.870 0.808 0.893 0.866
Quarter FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 2.A.5: Cycle hire journeys ending near CSH

CSH 20-200m 200-400m 200-600m
j<=-4 0.00315 -0.0741 0.0325 -0.0306

(0.129) (0.0880) (0.0798) (0.0622)

j=-3 0.0447 -0.125∗∗ -0.0252 -0.0499
(0.0922) (0.0555) (0.0581) (0.0394)

j=-2 0.0439 -0.0645 0.00682 -0.0119
(0.0682) (0.0414) (0.0410) (0.0216)

j=0 0.201 0.0174 -0.00258 -0.000451
(0.120) (0.0503) (0.0294) (0.0212)

j=1 0.307 0.0453 -0.0226 -0.00850
(0.184) (0.101) (0.0513) (0.0369)

j=2 0.465∗ 0.126 -0.0256 -0.0197
(0.254) (0.130) (0.0763) (0.0563)

j>=3 0.557 0.257 0.0174 -0.0164
(0.376) (0.190) (0.106) (0.0824)

N 595 1820 2205 2730
Rsquared 0.900 0.835 0.911 0.883
Quarter FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 2.A.6: Cycling flow after a new cycle hire station opening

Ln Total Cycle
New cycle hire station -0.0142

(-0.33)
N 340
Rsquared 0.925
Year FE Yes
Site FE Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Figure 2.A.5: Opening of cycle hire stations before and after the construction of CSH
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Table 2.A.7: Car displacement near CSH

CSH 20-200m 200-400m 400-600m
j<=-4 -0.242∗∗ -0.136∗∗ -0.0535 0.000599

(0.0621) (0.0422) (0.0544) (0.0847)

j=-3 -0.0788 -0.0631∗∗∗ -0.0247 -0.00462
(0.0430) (0.0149) (0.0138) (0.0413)

j=-2 -0.0900 -0.0439∗∗ -0.0236 0.00201
(0.0544) (0.0119) (0.0177) (0.0451)

j=0 -0.0183 -0.0118 -0.0204 -0.0242
(0.0606) (0.0276) (0.0247) (0.0351)

j=1 0.0146 0.0265 -0.00286 -0.0323
(0.0864) (0.0531) (0.0509) (0.0758)

j=2 0.0554 -0.00281 -0.0508 -0.0667
(0.166) (0.117) (0.0972) (0.110)

j>=3 0.156 0.0557 -0.0235 -0.0878
(0.182) (0.119) (0.102) (0.141)

N 612 1496 2312 2890
Rsquared 0.896 0.915 0.915 0.919
Year FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 2.A.8: Bus displacement near CSH

CSH <200m <400m <600m
j<=-4 -0.182 -0.216 -0.238 -0.255

(0.197) (0.193) (0.279) (0.225)

j=-3 -0.0867 -0.0712 -0.0894 -0.120
(0.0730) (0.0764) (0.116) (0.0906)

j=-2 -0.0615 -0.0695 -0.0784 -0.0888
(0.0539) (0.0564) (0.0910) (0.0722)

j=0 -0.0448 0.0596 0.105 0.0679
(0.0456) (0.0630) (0.0779) (0.0378)

j=1 -0.0326 0.128 0.173 0.140
(0.102) (0.118) (0.156) (0.129)

j=2 -0.0248 0.175 0.215 0.171
(0.146) (0.159) (0.189) (0.128)

j>=3 -0.0504 0.238 0.286 0.273
(0.161) (0.206) (0.273) (0.224)

N 604 1488 2301 2876
Rsquared 0.882 0.909 0.885 0.896
Year FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes
SD clustered at year and cycle superhighway route level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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2.A.5 Accidents reduction

I further use the Goodman-Bacon decomposition to analyse the different components of the

DiD estimator for bike accidents divided by cycling flow after a CSH opening. I find an

overall ATT of -0.08, which is decomposed on an Earlier Treatment vs Later Control of -0.079,

Later Treatment vs Earlier Control of 0.015 and Treatment vs Never treated of -0.573. The

respective weights are 0.332, 0.559 and 0.109. All estimates (except from the problematic

Later Treatment vs Earlier Control) are negative, which indicates that the cycling lanes are

quite effective in reducing accidents and the effect is increasing over time.

Figure 2.A.6: Decomposition of DiD estimate for bike accidents
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3 The impact of floods on local elections in England

3.1 Introduction

Flood risk is a serious global issue and particularly important for the United Kingdom (UK).

It is estimated that around 5.4 million houses in England are at risk of flooding from rivers

and the sea, surface water, or both, which represent around 20% of the total housing stock

in the country. Annual flood damages in England are estimated to be around £1.1 billion

(Priestley et al. 2017; Beltrán, Maddison, and Elliott 2019), and are expected to increase due

to the greater intensity and frequency of floods induced by climate change. Evidence suggests

that natural disasters, such as floods, can be framed and politicised in the media creating or

exacerbating pre-existing tensions between political actors (Albrecht 2021). This means that

natural disasters can become political events, affecting public opinions, policies, and political

preferences.

Following the disastrous floods of 2007, described as a “national emergency”, with rescue

efforts as “the biggest in peacetime Britain”, a key change in flood risk management has

occurred in the UK formalized in the Flood and Water Management Act of 2010 (The Act

hereafter). The Act, by creating the role of Lead Local Flood Authorities (LLFAs), gave

new responsibilities to local authorities for managing flood risk and post-flood recoveries in

local government areas. Becoming a highly politicized issue, the summer 2007 floods not only

pressured politicians and policymakers but more likely have enabled voters to understand

and differentiate between the responsibilities of different levels of government in the flood

management arena. We thus use this context to study the impact of floods on retrospective

accountability in a multi-level flood management system.

We construct a panel data of local election results from 2002 to 2018 at the electoral ward

level. Wards are the smallest electoral unit in England. As of 2021, there are about 8,700

wards in total, representing on average 5,500 people (ONS, 2021). The ward election data

comes from the LEAP - Local Elections Archive Project (Teale 2020). Voters in each ward

elect one to three councillors to represent them in the local council - the governing body of

a local authority. There are about 23 wards per local authority. Before the creation of the
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LEAP dataset, local election results were only available at the local authority level. Measuring

results at the ward level means that we can efficiently capture votes for non-dominant parties

as smaller parties typically do not present a candidate in each ward. For our analysis, we

merged these local electoral results with historic flood records from the Environment Agency

(EA). Observing results at the ward level allows us to measure flood risk exposure much

more precisely than using a district or regional level granularity. Finally, we also use the

local authorities’ budget from the Department for Levelling Up, Housing and Communities

(DLUHC) to study whether and how public spending changes following floods. We capture

policy change in flood risk management in our empirical analysis, by distinguishing two time

periods before and after the introduction of the 2010 Management Act.

The 2010 change in flood management responsibilities, however, occurred contemporane-

ously with significant shifts in UK politics: the Labour party, after almost ten years in power,

lost the 2010 General Election, which led to a Conservative-Liberal Democrats coalition and

then a Conservative government in 2015. The Coalition government initiated an austerity

program with a combination of public spending reductions and tax increases. Budget cuts

on flood defences and their implications have received wide media coverage, especially in the

aftermath of the 2015 floods (Albrecht 2021). The austerity programme has also been linked

with a sharp cut in public spending in the poorest part of England and a rise of support for

populist party such as the UK Independence party (UKIP) (Fetzer 2019).

We begin our analysis with a fixed effects panel model with a ward as unit of analysis,

investigating whether floods affect local electoral outcomes. We control for time-invariant

ward characteristics and national trends by adding ward fixed effects and year fixed effects.

Our main outcome of interest is the share of votes for the incumbent party – the party that

received the most votes in a previous local election. We find that the incumbent’s vote share

declines by about 0.7 percentage points if a flood occurs within the election year. The effects

are more substantial for larger and longer floods in terms of area and duration, with 2.5-2.9

percentage points reduction. We also find that the incumbent’s party affiliation with either

the national government or local authority matters, as voters punish incumbents by up to 6

percent points if the incumbent shares the same party as national government. Voters punish
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incumbents aligned with local authority only in the post-2010 period.

So, to disentangle the effects of the 2010 flood management reform from the effects of

changes in the government and to shed light on the mechanisms, we utilize multiple empirical

strategies. First, we extend our baseline analysis by analyzing candidates’ shares of the votes

by party: Conservatives, Labour, Liberal Democrats, UKIP, Green and others. We find that

while candidates from major parties, especially when their party is in control of the local or

national government, lose shares of votes after a flood. On the other hand, candidates from

smaller parties, especially UKIP, gain shares of votes when the incumbent is aligned with the

local and national government. This, in conjecture with the results for the Green party which

loses shares of votes if the incumbent is aligned with the local council, would suggest that

increased support for the UKIP has nothing to do with the environmental policy agenda.

Second, we exploit the set-up structures of local authorities, which could be either single-tier

or two-tier councils - meaning that local authorities are either a single entity or divided into

two entities with different flood responsibilities after 2010. Single-tier authorities or the upper

level of two-tier councils become Lead Local Flood Authorities (LLFAs) responsible for the

implementation of local flood risk management and leading role in emergency planning and

recovery after floods, while district councils (lower level) become responsible for planning

activities. We conjecture that if voters understand a shift in flood management responsibilities

to local councils, then we should see differential effects of floods on LLFAs compared with

district councils. We find no difference in these effects, suggesting that (i) either voters do not

understand the nuances of the changes in the flood management policy; or (ii) they punish

incumbents for other reasons, or both.

Third, we focus on contested elections. Local elections in England tend to be less contested

in general, with an average turnout of 35% against 67% in national elections, with voters

prone to vote for non-dominant parties (14% votes against 10% during national elections).

More than half of the wards in our analysis do not change winning party during the time

of our analysis. The seats in local governments are thus often coined as “safe seats”, while

local elections as “second-order” elections (Reif and Schmitt 1980). This suggests that only in
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closely contested elections voters could exert accountability on local politicians if they wish

of doing so. By focusing on contested elections, we find no difference between the effects of

floods and party alignment on the incumbent’s vote share in regular versus close elections.

This points out to protest vote: voters express their dissatisfaction with the status quo, by

casting vote for a party which has essentially no control over the local council.

So, we conclude that the incumbent’s punishment is associated with votes for “protest

parties” such as UKIP, crediting the hypothesis that natural disasters can bolster populist

movements. Our findings are consistent with a rise in protest voting following the fiscal

austerity reforms of 2010 (Fetzer 2019). Our results differ from recent findings by Cavalcanti

(2018) for the case of Brazil which suggests that, after a period of drought, voters demand

clientelism, i.e. they increase the vote share for local incumbent parties politically aligned with

the central government to facilitate the flow of resources for relief and recovery. Instead and

similarly to Lockwood, Porcelli, and Rockey (2022), our results suggest that constraints on

local government fiscal policy in England mean that political control of local councils does not

affect total expenditure – hence giving little incentives for rewarding incumbents politically

aligned with local or national governments.

The rest of the paper is organized as follows. Section 3.2 discusses the related literature.

Section 3.3 provides context, by discussing the structure of local government and flood risk

management responsibilities across various government layers. Section 3.4 discusses the main

data and identification strategy. Section 3.6 discusses the results, and Section 3.7 discusses

the results on public expenditure and floods. Section 3.8 concludes.

3.2 Literature review

This paper is related to the extensive empirical literature which examines how voters evaluate

political performance and respond to different types of information when deciding to re-elect a

politician or a party. Voters’ recall of politician performances is crucial to welfare-improving

policies (Fiorina 1978). Voters use past policy outcomes to form expectations about their

future welfare. The key question of interest is thus whether voters punish incumbent politicians

for random events outside of their control (“blind retrospection”), punish based on the quality
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of their responses (“attentive electorate”), or even “rally-around-the-flag” by increasing support

to the party in control in times of crisis.

Achen and Bartels (2004) argue that voters also engage in blind retrospection - holding

politicians responsible for events out of their control - including floods. However, flood events

are not totally out of the control of policymakers. Studies show that voters tend to react to

relief aid and other forms of more targeted and easily observable public spending, which also

attract more media attention. For instance, Healy and Malhotra (2009) study how electors

incentivize incumbents to invest in disaster preparedness and relief policies in the United

States and find that voters only reward disaster relief spending. Masiero and Santarossa

(2020) analyse the outcomes of municipal elections in Italy after earthquakes and find a

massive advantage for the incumbents driven mainly by the ability to deliver relief and attract

media coverage. In the same spirit, Besley and Burgess (2002) find that politicians are more

responsive to disasters in areas with more newspaper circulation in India.

Although large relief spending tends to reward politicians, the important question is how

long such gains in electoral support persist. Most studies have highlighted the myopia of

voters. For instance, Cole, Healy, and Werker (2012), using rainfall, public relief, and election

data from India, show that voters only respond to rainfall and government relief efforts during

the year immediately preceding the election. In contrast, Bechtel and Hainmueller (2011), by

exploiting the 2002 Elbe flooding in Germany, find that voters’ rewards could last longer: the

25% increase in the vote share of the incumbent party in the 2002 election in affected areas

persisted until the 2005 election, but completely vanished by the 2009 election.

The design of retrospective accountability, however, hinges upon the important assumption

that voters can assign responsibilities to different levels of government and internalize those

distinctions into their voting decisions. Previous research has shown that highly-politicised

issues create information-rich environments that enable voters to differentiate between the

responsibilities of different levels of government and influence their voting behaviour Wilson

and Hobolt (n.d.).
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Other papers have looked at the concordance between local incumbents and national

government parties. Cavalcanti (2018) shows that following a natural disaster in Brazil,

electors tend to reward incumbents politically aligned with the national government to ensure

better disaster relief. In this context, the occurrence of a natural disaster creates a demand for

clientelism where governments are also incentivised to prefer their own constituencies when

providing disaster relief funds. We do not find such results in England, developed economy

set-up. On the contrary, electors tend to punish the party in power. Our results are in line

with a recent study by Lockwood, Porcelli, and Rockey (2022) which find little impact of the

party control on local fiscal policy in England and Wales over the period 1998 to 2016. In

general, as the party in control of the local councils has less discretionary power to increase

spending than in other decentralised countries, there is little scope for clientelism.

Finally, this study also relates to the impact of natural disasters on political systems.

Kaufmann et al. (2016) show that floods can lead to long-term institutional changes. Natural

disasters can also weaken political systems and lead to more autocratic regimes (Rahman et

al. 2017). In the context of the UK, large floods put pressure on the national government

(Albrecht 2021).

3.3 Background

3.3.1 Elections and governance

We are interested in understanding if voters hold politicians accountable for floods in England.

However, there are many actors are involved in flood management.

In England, local governments are represented by local authorities. The most common are

local councils. They are composed of councillors elected every four years. Each councillor is

representing a ward. Electors in each ward elect one or more councillors to represent them.

Local elections use plurality voting – meaning that the candidates with the most votes win the

seat. Electors cast votes for as many seats as there are being contested. Several wards form a

council. The leader of the council is chosen from the political party with the most councillors.

In 2022, there are 333 local authorities in England.
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3.3.2 Structure and functions

There are two different forms of council set-ups as shown in Figure 3.3.1: single-tier councils

and two-tier councils. Single-tier councils are comprised of one council, which carries out

all local government functions and could be one of the following three types: metropolitan

boroughs (there are 36 of them as of 2022), unitary councils (56) and London boroughs (32).

Two-tier councils are comprised of an upper level, the county, and a lower level, the

district, with responsibilities being divided between two levels. County councils are responsible

for strategic services such as schools, social services, public transportation, highways, fire

and public safety, libraries, waste management and trading standards. District councils are

responsible for more place-based services such as rubbish collection, recycling, council tax

collection, housing, and planning applications. There are currently 33 country councils and

201 district councils. Within any area covered by one county, there will be approximately 5-7

district councils.

The unitary authorities provide all services mentioned above. In large metropolitan areas,

some services, like fire, police and public transport, are provided through ‘joint authorities’.

Figure 3.3.1: Local government structure and responsabilities

50



3.3.3 Managing flood risk: roles and responsibilities

The flood management responsibilities are shared at different levels of governance as shown in

Figure 3.3.2. The Flood and Water Management Act 2010, the primary legislation in England

relating to flood risk management (FRM) was introduced on 8 April 2010. It was intended

to implement Sir Michael Pitt’s recommendations following the widespread flooding of 2007

when more than 55,000 homes and businesses were flooded with insurance costs expected to

be more than £3 billion (Pitt, 2008). The Act requires better management of flood risk and,

most importantly, represents a key shift towards a localised flood risk management (FRM)

agenda. National policies are delivered at the local level by Risk Assessment Management

Authorities (RMAs).

Among these RMAs, counties (the upper level of two-tier authorities) and single-tier

authorities are Lead Local Flood Authorities (LLFAs). LLFAs are responsible for developing

and implementing local strategies for FRM, with responsibility for watercourses other than

main rivers, surface water and groundwater. They also play a lead role in emergency planning

and recovery after a flood event. LLFAs must act consistently with the national flood, coastal

and environmental management strategy developed by the Environment Agency (EA) – a

non-departmental public body.

District councils – the lower level of two-tier authorities are also Risk Assessment Manage-

ment Authorities (RMAs). They are responsible for carrying out flood risk management works

on minor watercourses and coordinating with LLFAs and other Risk Management Authorities.

Other non-elected RMAs are the Environment Agency, flood authorities, water and sewerage

companies, internal drainage boards and highway authorities. Among those, the Environment

Agency (EA) is the dominant actor and implements a strategic overview of FRM in England

for all types of flooding and plays a key role in the distribution of national funding for

defence and mitigation works. Both the EA and LLFAs are engaged in activities to raise

community awareness and encourage the uptake of property-level resistance and resilience

measures (Alexander et al., 2016).
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At the national government level, The Department for Environment, Food and Rural

Affairs (DEFRA) is responsible for creating policies for floods and coastal erosion, the Cabinet

Office is in charge of emergency response planning, and the Department for Communities and

Local Government deals with land-use and policy planning. Finally, the treasury is involved

in the budget decision.

The key flood risk management strategies employed in FRM in England include prevention,

defence and mitigation, preparation and response and recovery. The first two strategies aim to

minimise the likelihood of flooding and people’s exposure to flooding, while the latter strategies

aim to minimise the consequences of flooding. It is worth stressing that local authorities play

an essential support role in the community post-recovery period.

While the 2010 flood management established an ambitious plan to level flood defences,

its application coincided with the austerity period. As a result, the national government’s

spending on floods and coastal erosion stayed at about £800 million per year between 2010

and 2018 (See Appendix Figure 3.A.3, Tily (2020)). In general, DEFRA’s day-to-day budget

was decreased and investment spending remained stable (Appendix Figure 3.A.4, Department

for Environment (2022)).

At the local authority level, the Ministry of Housing, Communities & Local Government

(MHCLG) data show an increase in spending of 59% for coastal erosion and 176% for flood

defences for the 2010-2018 period (from about £50 to £140 million in flood defences and

£55 to £85 million in cost protection, see Figure 3.A.5 and 3.A.6) (Clugston 2021). While

flood spending has increased at the local level, revenues stayed stable or decreased, putting

a strain on local authorities’ finance. This is because the central government grants only

cover a fraction of that spending, and grants have been decreased over the period. At the

same time as the flood management act, the 2011 Localism Act lead to a decrease in local

authority revenues by 16%. It was primarily driven by a decline in government grants by

37% (Figure 3.A.7, Atkins and Hoddinott (2022)). Councils can also apply for funds from the

Environmental Agency, which awards the money on behalf of DEFRA. However, the bidding

system has been criticised as more favourable to larger and more urban councils.
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The responsibility of local authorities does not stop at the maintenance and construction

of flood defences. They are the primary provider of social support at the local level. Floods

can make households unable to live in their homes for months and have disastrous impacts on

local businesses. The austerity-induced welfare reform of 2010 decreased the spending power

of local authorities in deprived areas the most and led to an increase in votes for UKIP and

the Brexit referendum (Fetzer 2019).

Figure 3.3.2: Flood management role and responsibilities

3.4 Data

To conduct this analysis, we use the results of the local elections compiled by the Local

Elections ArchiveProject (LEAP) for 2002-2018. The database contains information about
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all votes being cast, the total for each candidate, the name of the candidates and whether

or not they were elected for each local election in England and Wales. Each election result

is reported at the ward level. We merge the results to the corresponding ward shapefile for

the period. There are 58,277 observations describing the number of votes and candidates for

each ward and election. We discard observations without votes/candidates elected (1734) and

exclude Wales as we do not observe all the elections.

We aggregate the number of votes at each election for four main categories: Conservatives

(C), Labour (Labour), Liberal Democrats (LD), and Others, which enables us to compute the

share of votes cast for each party. Where appropriate for our analysis, we will also decompose

the Others category into its sub-categories, namely Green party, UKIP and Others (excluding

Green and UKIP). The UK is often called a two (and a half) party system. It is based on the

dominance of the two main parties: Conservative and Labour, and the consistent results of

the Liberal Democrats party. These three parties control most councils in the UK. We then

merge each ward election with a ward shapefile for the same year provided by the ONS.

We then create the intersection of the 2002 wards (base unit) and wards with elections for

each subsequent year using the electoral wards shapefiles from the ONS geography. Then, for

each year, we use how much of the ward area falls into the 2002 wards to allocate the correct

share of votes to the 2002 wards. For example, if a ward boundary has not changed, then

100% of its area will fall into 2002 wards and all of its votes would be counted in the 2002

original wards. However, if a new ward was created in 2003 with 20% of its area in a 2002

ward and 80% in another 2002 ward, we allocate the 2003 votes to the 2002 wards using the

share of 20% and 80%, respectively. We can thus re-aggregate all the results at the 2002 ward

level even if wards have been divided, merged or even completely redesigned. Our final dataset

includes about 8,000 wards over 17 years of local elections. We show an example of wards that

have changed in most urban areas in Appendix Figure 3.A.1.

In the final panel, we use total votes to create shares of votes for each party. Alignment

with the local government is defined as wards whose incumbent party (the party that received

the most votes at the last election) is from the same majority as the local council majority. For

54



example, if the council is led by the Conservative – meaning that the majority of councillors

across the wards that compose the local council are Conservative, then a ward is aligned with

the council if their incumbent party is Conservative. Alignment with the national government

is defined as wards whose incumbent party is Labour before 2010, Conservative and Liberal

Democrats up to 2015 and Conservative after 2015.

Next, we overlay the ward shapefiles with GIS data showing Recorded Outlines of Individual

Flood Events (ROIFE) in England from the Environment Agency (2022b) (recording started

in 1946). We show in Appendix Figure 3.A.2 that 60% of the wards are flooded at least once

during the 1992-2018 period. We look at floods up to 10 years before the start of our dataset

to construct a full history and investigate how long the electorate’s recall is. We show later

in the analysis that only wards within a year of a local election matter. In our sample, 3%

of the wards holding elections have been flooded within a year of a local election. We also

calculated intensity measures such as the duration of the floods in days, the share of the wards

flooded and the total area of the floods. We find that large floods drive our results in terms of

duration and size.

In addition to flood data, we also overlaid the electoral wards with the Spatial Defences

from the Environment Agency (2022a), which contains all the structures managed by the

environmental agency, their condition and their building date. Unfortunately, most records

have been added after implementing the Flood management reform in 2010/2012 and flattened

afterwards, which makes them difficult to use in a panel analysis. We also calculated the

maximum risk of Flooding from Rivers and Sea from the Environment Agency (2022c). We

classified each ward at risk as very low, low, medium, or high based on flood return rates.

Very low, low, medium and high risk means that each year, there is a chance of flooding of

less than 0.1%, 1%, 3.3% and above 3.3% respectively. Each ward receives the rating of the

maximum risk level is exposed. For example, if a ward has two flooding zones, one in low and

the other one in medium, it is given a medium risk rating.

Finally, to complement the analysis at the electoral ward level, we constructed a panel

data of spending from the Department for Levelling Up and Communities (2022) at the local
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authority level that we linked with elections and flood history.

3.5 Identification strategy

Our empirical investigation focuses on local election results at the ward level. During elections,

councillors are elected for 4-year terms using the first past the post system. Councillors

represent divisions/ wards. Elections to councils are held on the first Thursday in May. A

specificity of England is that wards have different voting frequencies. The local government

can be elected in one of the three following ways: elect all the local councillors every 4 years,

elect half the local councillors every 2 years or elect one-third of the local councillors every

year for 3 years and hold no elections in the 4th year. We thus obtain an unbalanced panel of

local election results at the ward level from 2002 to 2018.

Our main outcome is the share of votes for the incumbent party – meaning the party that

got the most votes in a ward during the last election. We control for time-invariant ward

characteristics and national trends by adding ward fixed effects and year fixed effects. Our

main dependent variable is a dummy for floods within one year of the election. We also use

the count of floods in the ward, but as most wards get only flooded once on average, the

results are fairly similar. We then add flood characteristics such as the duration and size of

the flooded area.

One of the main concerns would be if wards in flooded areas had significantly different

voting behaviours. We show in Table 3.5.3 that there are also no significant differences in

terms of political composition.

We also restrict our sample to wards that get flooded within a year of a local election

between 2002-2018, so that we compare similar wards in our regressions.

In addition, in Table 3.5.1, we compare our regression sample with all other wards in

England using 2001 census variables. We find that our flooded wards have slightly more

households living in terraced houses (27 versus 24%), and they have a larger share of the

population that identified themselves as white. However, there are no significant differences
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in education achievement, occupation and the share of urban population. They are not

particularly UKIP strongholds. We also look at the long difference between 2001 and 2011 in

Table 3.5.2. Again, there are no major differential trends from the rest of the population.

Wards with high flood risk are more likely to end up in our sample: over 20% of treated

wards are marked as being in a flood zone against 14% for the rest of the country. Only 2% of

the wards with a very low flood risk get flooded within a year of the elections, while 5% of

wards with a high flood risk get flooded before an election. The number of flood defences (each

flood defence is defined as a single asset by the environmental agency) and the length of the

flood defences also increase with flood risks as shown in Table 3.5.4. Overall, in Table 3.5.4,

we can observe that riskier areas are getting flooded more often, but they are also allocated

more resources. Therefore, without accounting for flood defences, we are capturing a lower

bound coefficient of the impact of floods on local election results.

57



Table 3.5.1: Balance table using 2001 census

Flooded before an election All others
(N=1161) (N=7028)

Mean SD Mean SD Diff
Age 39.56 3.14 39.64 3.64 -0.074
Wholehouse 28.85 18.87 31.57 20.77 -2.723
Semidetached 33.68 11.97 32.82 13.01 0.864
Terraced 27.14 15.08 23.77 14.88 3.362***
Flat 10.36 9.13 10.89 11.59 -0.532
Converted 2.93 4.03 3.54 6.72 -0.617*
Commercial 1.12 0.93 1.11 1.04 0.014
Caravan 0.78 1.85 0.61 1.58 0.172*
No qualification 27.97 9.15 28.26 8.39 -0.292
Level1 16.55 3.18 16.94 3.36 -0.386*
Level2 20.09 2.89 20.08 2.89 0.007
Level3 8.17 4.38 7.91 3.22 0.263
Level4 20.21 9.08 19.65 9.07 0.560
Other qualification 7.01 1.38 7.16 1.43 -0.148
White 95.69 7.15 94.21 10.93 1.482**
Mixed 0.84 0.66 1.00 0.96 -0.159**
Asian 2.37 5.77 2.74 7.20 -0.370
Black 0.53 1.25 1.40 4.12 -0.863***
Other ethnicity 0.57 0.76 0.66 0.97 -0.091
Agriculture 2.25 2.97 2.54 3.27 -0.288
Mining 0.36 0.64 0.29 0.47 0.073
Manufacturing 15.29 5.69 15.03 5.65 0.259
Electricity 0.77 0.54 0.70 0.51 0.075**
Construction 6.89 1.68 7.09 1.85 -0.199
Trade 16.95 3.05 16.73 2.98 0.214
Hotels 5.22 2.97 4.92 2.32 0.292
Transport 6.70 2.72 6.71 2.40 -0.010
Finance 3.75 2.04 4.27 2.76 -0.513**
Realestate 12.71 5.16 12.54 4.66 0.176
Public 5.59 2.87 5.70 3.82 -0.113
Education 8.09 3.25 7.74 2.48 0.353
Health 10.50 2.43 10.69 2.44 -0.194
Other industry 4.95 1.14 5.07 1.68 -0.125
Urban 63.43 40.93 64.83 42.18 -1.400

Standard errors clustered at the local authority level
The following variables have been used: average age, type of dwelling, educational qualification,

industry, and urban share.
All variables are expressed as shares.
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Table 3.5.2: Balance table using log change between census 2001 and 2011

Flooded before an election All others
(N=1161) (N=7028)

Mean SD Mean SD Diff
∆ Age 0.03 0.04 0.03 0.04 -0.002
∆ Wholehouse -0.05 0.18 -0.03 0.18 -0.010
∆ Semidetached -0.05 0.12 -0.05 0.11 -0.007
∆ Terraced -0.06 0.16 -0.04 0.17 -0.016**
∆ Flat 0.17 0.36 0.17 0.41 0.004
∆ Converted -0.07 0.42 -0.06 0.53 -0.010
∆ Commercial -0.12 0.44 -0.11 0.54 -0.011
∆ Caravan -0.46 1.98 -0.41 2.01 -0.053
∆ No qualification -0.24 0.09 -0.24 0.10 -0.003
∆ Level1 -0.23 0.10 -0.23 0.10 -0.002
∆ Level2 -0.25 0.13 -0.24 0.12 -0.009
∆ Level3 0.46 0.25 0.46 0.25 0.007
∆ Level4 0.37 0.15 0.37 0.14 -0.000
∆ Other qualification 0.22 0.23 0.22 0.28 0.000
∆ White -0.04 0.07 -0.05 0.08 0.005
∆ Mixed 0.61 0.40 0.62 0.53 -0.004
∆ Asian 1.14 0.99 1.15 1.04 -0.018
∆ Black 0.86 1.45 0.77 1.38 0.092
∆ Other ethnicity -0.46 1.35 -0.56 1.52 0.108
∆ Agriculture -1.01 0.84 -1.04 1.04 0.028
∆ Mining -0.42 1.64 -0.53 1.94 0.117*
∆ Manufacturing -0.49 0.16 -0.51 0.21 0.022
∆ Electricity 0.64 0.55 0.71 0.58 -0.071**
∆ Construction 0.13 0.14 0.14 0.15 -0.004
∆ Trade -0.06 0.09 -0.05 0.09 -0.013***
∆ Hotels 0.11 0.16 0.12 0.18 -0.010
∆ Transport 0.26 0.25 0.23 0.23 0.029
∆ Finance -0.11 0.23 -0.12 0.24 0.012
∆ Realestate -0.48 0.20 -0.49 0.21 0.001
∆ Public 0.70 0.25 0.70 0.26 -0.002
∆ Education 0.25 0.13 0.26 0.14 -0.011*
∆ Health 0.15 0.11 0.14 0.12 0.003
∆ Other industry -0.01 0.15 0.00 0.17 -0.014*
∆ Urban 0.00 0.00 0.00 0.00 0.000

Standard errors clustered at the local authority level
The following variables have been used: average age, type of dwelling, educational qualification, industry,

and urban share.
All variables are expressed as the difference in log share.
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Table 3.5.3: Share votes by political party

Flooded before an election All others
Share votes Conservative 35.09 38.01

(19.48) (20.66)

Share votes Labour 29.76 28.00
(21.18) (21.38)

Share votes Liberal Democrats 18.98 18.57
(17.84) (18.50)

Share votes UKIP 4.882 4.241
(8.658) (8.463)

Share votes Green 3.376 3.212
(6.351) (6.402)

Share votes Other 7.917 7.971
(14.97) (15.39)

Observations 8856 45758

Table 3.5.4: Risk of flooding vs share of wards flooded and flood defences

Very Low Low Medium High
Flooded 0.0233 0.0329 0.0382 0.0494

(0.151) (0.178) (0.192) (0.217)

Total assets 34.71 31.85 38.72 45.90
(30.71) (30.48) (40.22) (45.22)

Total length 14.34 17.92 25.70 30.31
(11.65) (19.68) (23.03) (26.63)

Observations 344 1460 2512 3850
Very low, low, medium and high risk means respectively a 0.1%,
1%, 3.3% and greater than 3.3% chance of flooding each year.
This takes into account the effect of any flood defences in the
area. These defences reduce but do not completely stop the
chance of flooding as they can be overtopped, or fail. Total
assets is the number of flood defences currently owned, managed
or inspected by the EA. They can be both man-made or natural
defences. Length is measured in km.
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3.6 Local elections results

3.6.1 Voters’ recall

The first step of our analysis is identifying which floods impact local election results - if any.

We explore two dimensions: the length of voters’ recall and the severity of the flood. The

reasoning behind this first step is that many single event studies have found a limited voters’

recall after a flood - putting into question the rationality of voters’ behaviours - and have also

focused on single large events.

For the first part of the investigation, we do not limit the sample to wards flooded within

a year of a local election, but to any ward flooded between 1992 and 2018 to study the length

of voters’ recall. Our basic specification is the following:

ShareIncumbentw,t =
T∑
j

αjFloodedw,t+j + γw + δt + ϵwt

Share incumbent is the share of votes for the incumbent party in ward w and election t –

the incumbent is defined as the leading party from the previous election. Floodedw,t+j is a

dummy equal to one if the ward was flooded within t+ j years of the election. We consider

floods happening up to 2 years before an election and one year after. Our main coefficient of

interest is Floodedt, flooded within the year of a local election. γw and δt are ward and year

fixed effects.

We extend the model by restricting the sample using flood characteristics such as duration

in days or the size of the flooded area. Table 3.6.1 shows the results for wards flooded within

a year of the election (column 1), and then floods happening a year after and up to two years

before an election (column 2). Next, we restrict the analysis to large floods: over the 75th

percentile in terms of duration (column 3) and over the 75th percentile in terms of flooded

area (column 4). Finally, we look at any other floods: under the 75th percentile in terms of

duration (column 5) and under the 75th percentile in terms of flooded areas (column 6).
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In concordance with the literature, we find evidence that voters only consider floods

happening within a year of the elections. The effect of floods on the share of votes overall is

relatively small (Columns 1 and 2 - 0.7 percentage points decrease in support). The effect

is quadrupled when we restrict to large floods (columns 2 and 3), but disappears when we

restrict to smaller events. There is no impact of floods happening after the elections (except

column 3 – but it does not hold for other measures) or more than a year before the elections.

From now on, we focus on wards flooded within a year of an election to make sure that our

treated group (flooded) is as similar as possible to our control group (not flooded but has been

or will be flooded within a year of a local election). When looking closer at the characteristics

of the floods in Appendix Table 3.A.4, we find that duration (column 1) and size (column 2)

matter. The size of the area flooded seems to matter more than the duration of the floods

(columns 3 and 4). In Appendix Table 3.A.4, we find a similar pattern using a dummy variable

for floods in the 75th percentile of their distributions in days and areas.

These results indicate that voters’ recall is limited to a year before the election. Larger

and longer floods elicit a stronger response. The limited recall of electors cast some doubt on

the perfect rationality of electors. As we cannot measure to which extent local and national

governments could have prevented the floods, it is not possible to judge if punishing the

incumbent party is a rational decision. However, the lack of recall shows they are not taking

into account the full information about flood history but only the most recent events.

3.6.2 Flood management responsabilities

In the next step, we look at flood management responsibilities. As mentioned earlier, flood

management responsibilities are divided between the local and the national government in

England. We thus examine the interaction between the ward’s incumbent party and the local

council’s majority before and after 2010. We also decompose the results for each party recorded

in the dataset to show how other parties (non-incumbent parties) capture some of the votes

after an election.

We start by looking at alignment with the local government before and after 2010. We run
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Table 3.6.1: Large and long-lasting events on the share of vote for the incumbent

(1) (2) (3) (4) (5) (6)
No lags All Long events Large events Short events Small events

Flooded t+1 -0.195 -1.606∗∗ -1.067 -0.0314 -0.213
(0.306) (0.731) (0.741) (0.436) (0.437)

Flooded t -0.703∗ -0.692∗ -2.919∗∗∗ -2.491∗∗∗ 0.0414 -0.173
(0.382) (0.397) (0.795) (0.902) (0.432) (0.424)

Flooded t-1 0.149 0.0394 0.225 0.0982 0.110
(0.388) (0.681) (0.840) (0.457) (0.420)

Flooded t-2 0.0642 0.261 -0.217 -0.0249 0.116
(0.343) (0.690) (0.935) (0.374) (0.352)

N 18512 18512 18512 18512 18512 18512
Rsquared 0.0583 0.0583 0.0593 0.0588 0.0581 0.0581
Year FE Yes Yes Yes Yes Yes Yes
Ward FE Yes Yes Yes Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
Sample is any wards flooded between 1992-2018
Year t is the year before a local election. Column 1 only includes floods hapenning a year before a local election.
Column 2 includes any floods. Column 3 and 4 restrict to floods above the 75th percentile in terms of duration and area

flooded respectively.
Column 5 and 6 restrict to floods above the 75th percentile in terms of duration and area flooded.

the following regression for all years, and then pre and post-2010 separately:

ShareIncumbentw,t =β1Floodedw,t + β2Govenmentw,t+ (1)

β3Floodedw,t ×Governmentw,t + γw + δt + ϵwt

Shareincumbentw,t is the share of votes for the incumbent party in ward w and election t –

the incumbent party is defined as the leading party from the previous election. Floodedw,t is a

dummy for flooded within a year of a local election. Govenmentw,t is a dummy for alignment

of the incumbent party with either the majority of the local council or the party in power at

the national government level.

Table 3.6.2 reports the results of the estimation equation (1). Compared with the baseline

results presented above, these results show that voters punish incumbents even more so if

they are affiliated with the national government, with incumbents losing between 1.8 and 6.3

percentage points in votes after a flood. Moreover, voters punish incumbents in both pre- and
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post-2010 that is irrespective of which party were leading the government in the UK. The

national government has always been responsible for creating policies for flood and coastal

erosion risk management in England and remains to be a major funder of emergency and

flood prevention policies. Therefore, the occurrence of floods is perceived as a failure of the

national government by voters. We, however, note that the magnitude and significance of

the punishment effect on incumbents aligned with the national government decreases for the

post-2010 period.

Table 3.6.3 is a counterpart of Table 3.6.2 and reports the results for the case when the

incumbent has the same party affiliation as the local authority. Incumbents who share the

party affiliation with the local council lose up to 1.9 percentage points (column 1), and up

to 4 percentage points in post-2010 (column 3). Incumbents in wards aligned with the local

government however do not lose any votes compared with non-aligned incumbents due to the

occurrence of floods in the pre-2010 period (column 2). Both the decentralisation of flood

management and the effect of the austerity policy post-2010 might be at play here. Voters

could be holding the local government responsible for the failure of preventing the flood or for

poor post-flood recovery initiatives. It is also possible that the series of public spending on

local services, including flood mitigation and relief efforts, initiated by the coalition government

in the post-2010 period made voters willing to punish the incumbent. In the next section, we

shed light on the mechanisms which drive these results.

These findings are consistent with a recent study by Albrecht (2021): he explores the

relationship between media framing of two floods in 2005 and 2015 in the UK. He finds

that during the first period, the local and national governments were blamed partially for

the disaster, but mostly for not doing enough. The opposition was harsher on the national

government. After 2015, the overall tone was much more negative, with austerity and claims

about EU spending being used to explain the poor state of flood defences. Media and opposition

politicised the floods to fit the greater narrative of austerity and Brexit.
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Table 3.6.2: Concordance with the national government - Labour vs. Conservative government

(1) (2) (3)
All years Pre-2010 Post-2010

Flooded 0.0337 1.847∗∗∗ -0.814
(0.535) (0.714) (0.760)

NatGov -5.652∗∗∗ -0.207 0.453
(0.311) (0.906) (0.846)

Flooded × NatGov -3.117∗∗∗ -6.924∗∗∗ -1.864∗

(0.728) (0.957) (1.000)
N 8856 4159 4697
Rsquared 0.136 0.0691 0.128
Year FE Yes Yes Yes
Ward FE Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election. LocalGov

is a dummy for concordance of the ward’s incumbent with the local council
majority’s party.

Table 3.6.3: Concordance with the local government - Labour vs. Conservative government

(1) (2) (3)
All years Pre-2010 Post-2010

Flooded -0.297 0.172 0.324
(0.565) (0.755) (0.784)

LocGov 3.976∗∗∗ 2.064∗∗∗ 3.432∗∗∗

(0.408) (0.553) (0.564)

Flooded × LocGov -1.883∗∗ -1.097 -3.962∗∗∗

(0.741) (1.046) (0.931)
N 8856 4159 4697
Rsquared 0.0883 0.0600 0.142
Year FE Yes Yes Yes
Ward FE Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election. LocalGov

is a dummy for concordance of the ward’s incumbent with the local council
majority’s party.
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3.6.3 Protest voting

In this section, we explore three different empirical approaches, which all point out to one

mechanism - protest voting, - behind our results on changes in incumbent vote shares in local

elections following an occurrence of floods.

First, we examine the effect of flood occurrence on vote shares of incumbents affiliated with

a specific party: Conservative, Labour, Liberal Democrat and Other in the pre- and post-2010

periods, by estimating the following model:

ShareIncumbentw,t =β1Floodedw,t + β2LocalGovw,t + β3NatGovw,t + β4Post+ (2)

β5Floodedw,t × LocalGovw,t + β6Floodedw,t × LocalGovw,t+

β7Flooded× Post+ β8LocalGov × Post+ β9NatGov × Post+

β10Flooded× LocalGov × Post+ β11Flooded×NatGov × Post+

γw + δt + ϵwt

where ShareIncumbentw,t is the vote share of the incumbent’s party, Flooded is a dummy

which equals one, if a ward is flooded within a year of an election, LocalGov is a dummy

variable for incumbent’s party alignment with local council’s, NatGov is a dummy variable

for incumbent’s party alignment with national government’s, Post is a dummy variable that

equals one if elections occur in the post-2010 period. The variables of interest are: β5, β6,

β10 and β11, where the former two measure the average effect of the occurrence of floods on

the incumbent’s share of votes under the case of party alignment with the local council and

national government in pre-2010, respectively; the last two measure the additional differential

effect compared to the pre-2010.

Table 3.6.4 reports the results of estimates of the interaction between flooded and alignment

with the local and national government before 2010 β5 and β6; the same interactions after

2010 β10 and β11.
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The results of the first column confirm our earlier findings that incumbents aligned

with national government lose votes in both periods. This is because interaction term

Flooded×NatGov is statistically significant, while interaction term Flooded×NatGov×Post

is not statistically significant, meaning that there is no significant differential effect in the

share of votes of incumbents being aligned with the national government and flooded in

the post-2010 period. The results on the effect of alignment with the local council is also

confirmed: Flooded× LocGov is not statistically significant, while Flooded× LocGov × Post

is negative and statistically significant, implying that following a flood aligned with local

councils incumbents are punished in the post-2010 period.

Moving to the results on the incumbent’s vote share for individual parties (columns 2-5),

we note that Conservatives incumbents lose votes after a flood, in both periods, and even more

so when they held the national office (as a Coalition until 2015, and solely after 2015). Labour

incumbents also lose votes in the pre-2010 when Labour held the national office, but in the

post-2010, when they were no longer majority, they benefited from floods compared with the

first period. In stark contrast to the major parties, other parties’ incumbents in column 5

benefit from floods and gain votes in the post-2010.

By looking at the breakdown of votes within the Other category reported in Table 3.6.5,

we see that UKIP has captured the decrease in votes from non-UKIP incumbents aligned with

the local and national governments. The results from the Green party incumbents confirm

that such an increase in votes for the UKIP party has nothing to do with anything in relation

to climate change or environmental policy agenda. During that period, UKIP came from

4 councillors to 147 councillors in 2014 and won another 163 and 176 in 2014 and 2015,

respectively. Other non-major parties lost their seats during the period. UKIP was successful

in rallying places that have been most affected by austerity and promoting Brexit as a solution

to budgetary cuts (Fetzer 2019). It is not surprising that UKIP managed to use floods to

promote its platform successfully given the political framing: they blame the local and national

governments for not doing enough and cutting flood management budgets. For example, after

the 2014 floods, UKIP promised to increase spending in flood defences by cutting the overseas
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aid budget11.

While most of these results point out to an effect driven by protest voting, it is still

possible that results after 2010 are driven by the flood management reform. If this is the

case, electors should punish authorities that have more flood management responsibilities

– counties and one-tier authorities (LLFAs). We, therefore, investigate if the effects of an

occurrence of floods on the vote share are driven by the newly created LLFAs with results

reported in Appendix Table 3.A.5. The coefficient estimates of Flooded×NatGov × LLFAs

in column 1 and Flooded× LocalGov × LLFAs in column 2 are not statistically significant.

Therefore, we haven’t found differences between the authorities primarily responsible for local

flood management - the LLFAs (one-tier authorities and county councils) and the authorities

that cooperate with them (district councils). However, these results could be also driven by

the fact that voters do not have a very clear understanding of the responsibilities division.

Overall, the lack of significance renders the test inconclusive.

Another concern would be if more wards with a more secure affiliation with the local or

the national government (safe seats) received more money for flood management and flood

defences. It is linked to the concerns about the exogeneity of floods – while meteorological

conditions are arguably exogenous to political settings, it is possible that wards affiliated

with the party in power at the local and national government receive more funds to build

flood defences. Wards with a less secure affiliation would be more likely to vote against the

government in the aftermath of a flood and also less likely to have received flood defences

in the past. It is also part of the protest story: if voters punish the incumbent in hopes of

changing the local council’s majority, they might be more likely to do so where the margins of

victory are smaller.

In Appendix Table 3.A.8, we thus look at the difference between close elections (the margin

of victory between the leading party and runner-up party is less than 10 percentage points)

and find no difference between “safe seats” and close elections. It indicates that voters in safe

seats are as likely to punish the incumbent as in close elections. Again, it points to protest
11https://www.theguardian.com/politics/2014/feb/09/nigel-farage-uk-aid-budget-somerset-flood-victims

68

https://www.theguardian.com/politics/2014/feb/09/nigel-farage-uk-aid-budget-somerset-flood-victims


voting: voters punish the incumbent and vote for a party that controls virtually no councils

over the period.

In England, these results seem to point to a protest voting story. During local elections,

incumbents aligned with the local or the national government lose votes after a natural disaster,

and candidates from protest parties capture part of this discontentment. It would be interesting

to look at the impact of floods on turnout. Unfortunately, there is no publicly available dataset

of local election turnout at the ward level.

3.6.4 Floods history

In the next section, we look at heterogeneity in flood response by flood frequency. Electors in

wards that get flooded more often might react less strongly to floods as they adapt to the risk

in their area. In Appendix Table 3.A.7, we look at the interaction with flood frequency and

find no significant difference between wards that get flooded more often and those that only

get flooded less often.

3.7 Local authorities’ expenditures results

We instead turn to flood defences and local authority expenditures to explain these results.

A concern is that wards affiliated with the government might receive more funds to protect

themselves against floods. A recent paper by Lockwood, Porcelli, and Rockey (2022) indicates

that given the centralisation of the local government system and the limited ability of the

local authorities to raise money, clientelism is less of a concern in the UK.

Unfortunately, the flood defences register maintained by the Environmental agency only

shows a large increase in registered assets in 2012/2013 when it became mandatory to list

assets in the database but has no new assets registered since (see Appendix Figure 3.A.8.

We then look at spending after a flood at the local authority level depending on the

affiliation with the national government. We collect a dataset of expenditures at the local

authority level for 343 councils i for the year j 2007 to 2017.
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Table 3.6.4: Concordance with the local and national government pre and post 2010

(1) (2) (3) (4) (5)
Incumbent Conservative Labour LD Other

Flooded 2.073∗∗∗ 2.245∗∗∗ -1.649∗∗∗ -0.141 -0.456
(0.766) (0.544) (0.446) (0.646) (0.754)

LocGov 3.286∗∗∗ 1.026∗∗∗ 1.681∗∗∗ -0.998∗∗ -1.708∗∗∗

(0.513) (0.390) (0.360) (0.437) (0.539)

NatGov -6.242∗∗∗ -1.198∗∗∗ 1.199∗∗ 0.311 -0.312
(0.642) (0.445) (0.487) (0.557) (0.641)

Flooded × LocGov 0.978 -0.139 0.702 -0.688 0.124
(0.970) (0.894) (0.710) (0.902) (1.035)

Flooded × NatGov -5.108∗∗∗ -0.382 -1.387∗ 0.132 1.637
(0.934) (0.837) (0.835) (0.878) (1.029)

Post 0.0328 -3.189∗∗∗ 9.551∗∗∗ -10.27∗∗∗ 3.904∗∗∗

(0.730) (0.434) (0.449) (0.613) (0.626)

Flooded × Post -0.820 -2.202∗∗ 1.302∗ -0.0413 0.941
(1.466) (0.950) (0.743) (0.947) (1.233)

LocGov × Post 0.892 -1.652∗∗∗ -0.588 -0.940∗ 3.180∗∗∗

(0.576) (0.461) (0.456) (0.519) (0.647)

NatGov × Post 2.039∗ 1.935∗∗∗ -3.397∗∗∗ 0.640 0.823
(1.174) (0.725) (0.728) (0.954) (1.041)

Flooded × LocGov × Post -6.004∗∗∗ -2.304∗ -1.764∗ -0.436 4.503∗∗∗

(1.470) (1.201) (0.944) (1.165) (1.549)

Flooded × NatGov × Post 1.496 -5.270∗∗∗ 2.056∗∗ -0.0368 3.251∗∗

(1.465) (1.186) (1.037) (1.142) (1.507)
N 8856 8856 8856 8856 8856
Rsquared 0.0852 0.0887 0.279 0.303 0.100
Year FE No No No No No
Ward FE Yes Yes Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election.
LocGov is a dummy for concordance of the ward’s incumbent with the local council majority’s party.
NationalGov is a dummy for concordance of the ward’s incumbent with the national government’s party.
Post is a dummy for elections happening after 2010.
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Table 3.6.5: Concordance with the local and national government pre and post 2010

(1) (2) (3)
UKIP Green Other (ex. UKIP and Green)

Flooded -0.586∗∗ 0.201 -0.0712
(0.240) (0.226) (0.729)

LocGov -0.299 0.0830 -1.492∗∗∗

(0.252) (0.179) (0.474)

NatGov -1.658∗∗∗ -0.102 1.447∗∗

(0.346) (0.235) (0.568)

Flooded × LocGov 1.285∗∗∗ -1.085∗∗∗ -0.0751
(0.415) (0.335) (0.936)

Flooded × NatGov 1.002∗∗ 0.668∗∗ -0.0330
(0.459) (0.311) (0.953)

Post 5.644∗∗∗ 1.662∗∗∗ -3.402∗∗∗

(0.324) (0.238) (0.585)

Flooded × Post 2.356∗∗∗ 0.196 -1.611
(0.820) (0.443) (1.086)

LocGov × Post 1.736∗∗∗ 0.221 1.223∗∗

(0.365) (0.223) (0.576)

NatGov × Post 0.187 0.192 0.444
(0.568) (0.385) (0.925)

Flooded × LocGov × Post 2.665∗∗∗ 0.700 1.137
(0.986) (0.523) (1.286)

Flooded × NatGov × Post 3.485∗∗∗ -1.449∗∗∗ 1.215
(0.998) (0.486) (1.312)

N 8856 8856 8856
Rsquared 0.247 0.0655 0.0295
Year FE No No No
Ward FE Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election.
Council is a dummy for concordance of the ward’s incumbent with the local council majority’s party.
Government is a dummy for concordance of the ward’s incumbent with the national government’s party.
Post is a dummy for elections happening after 2010.
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We first run an event-study type of analysis on spending at the local authority level before

and after a flood. We use year flooded as the excluded category and add local authority and

year fixed effects. We present in Figure 3.7.1 and 3.7.2 results for the services most likely to

be impacted by a flood: all expenses and housing expenses. The coefficients for one to three

years after a flood are positive and significant to the ten percent significance level. These

results show an extended effect of floods on expenditures up to 3 years after a flood, but do

not provide information on the effect of party affiliation.

Figure 3.7.1: All services spending after a flood

We turn to the impact of the alignment of the council with the national government and

run the following specification:

ln(Expenditureij) = ω1Floodedij +ω2Alignmentij +ω3Flooded×Alignmentij +ψi +ρj +υij

Flooded is defined as flooded in any of the last 3 years (we show the results on spending
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Figure 3.7.2: Housing spending after a flood

on housing by years before and after a flood in Figure 3.7.2 to motivate the long decay in

flood impact on local expenditure). Alignment corresponds to alignment with the national

government. ψi and ρj are local authority and year-fixed effects.

In Table 3.7.1, we find a slight increase in the overall expenditure by 4 percent, and a more

considerable increase of 13 percent by looking at the subcategory of local housing (council

housing is provided to households unable to afford private market housing or people that have

been temporarily displaced).

Masiero and Santarossa (2020) found that in the context of earthquakes in Italy, the

incumbent aligning with the national government successfully gains support after a disaster.

They have linked those results to a greater ability of aligned local governments to provide

relief. We thus look at this causal mechanism by interacting our flooded dummy with the

alignment of the local authority with the national government in Table 3.7.2. While we found

evidence that aligned local authorities increased their overall expenditures more, the sum of

all coefficients is close to 0 – as aligned local authorities spent less in general. We do not find

evidence of an increase linked to alignment for any interaction terms. Thus, we argue that
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clientelism in expenditure after a flood is not a strong mechanism in England. Voters have

thus little incentive to punish non-aligned incumbents and reward aligned ones. It is also

concordant with the negative impact of being aligned with the local and national governments.

Table 3.7.1: Local expenditure after a flood

(1) (2) (3) (4) (5)
All services Housing Social care Planning Environmental

Flooded 0.0419∗∗∗ 0.126∗∗∗ -0.0595 0.0324 0.0147
(0.0140) (0.0417) (0.0827) (0.0272) (0.0131)

N 3443 3443 1899 3443 3443
Rsquared 0.946 0.508 0.556 0.785 0.932
Year FE Yes Yes Yes Yes Yes
LA FE Yes Yes Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the local authority level
Councils are responsible for council housing, education, transport, planning, fire and safety, social

care and waste among others. We present here results for areas most likely to be impacted by a flood.

Table 3.7.2: Local expenditure after a flood at the local council level

(1) (2) (3) (4) (5)
All services Housing Social care Planning Environmental

Flooded 0.0225 0.142∗∗∗ -0.0686 0.0398 0.00253
(0.0139) (0.0481) (0.0776) (0.0267) (0.0150)

Government -0.0310∗∗∗ 0.0726∗ -0.00473 0.173∗∗∗ 0.0161
(0.0116) (0.0412) (0.0723) (0.0269) (0.0162)

Flooded × Government 0.0494∗∗∗ -0.0410 0.0295 -0.0158 0.0316∗

(0.0144) (0.0627) (0.0752) (0.0303) (0.0189)
N 3443 3443 1899 3443 3443
Rsquared 0.946 0.509 0.556 0.799 0.933
Year FE Yes Yes Yes Yes Yes
LA FE Yes Yes Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the local authority level
Councils are responsible for council housing, education, transport, planning, fire and safety, social care and waste among

others. We present here results for areas most likely to be impacted by a flood.
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3.8 Conclusion

In conclusion, we investigate the impact of floods on local elections. We find a negative impact

on the incumbent party’s share of votes. However, this effect is limited to floods within a year

of the elections. Electors, however, strongly punish the incumbent if it is from the same party

as the local or national government. These results differ from settings where the incumbents

have benefited from natural disasters, primarily through their ability to mediate it with relief

spending. On the contrary, in the UK, most of the decrease in the incumbent votes seemed to

be captured by the protest party UKIP. There is also no strong evidence that local councils

aligned with the government are likely to spend more after a flood.

This paper provides evidence that voters punish incumbents and turn to protest parties

after natural disasters. Natural disasters can lead to a narrative of government failure. Re-

enforced by other socio-economic contexts such as austerity and Brexit, it can bolster protest

parties and political changes. Local elections do not have the same ranging impacts as general

elections or referendums – but they largely contributed to the rise of UKIP in the 2000s.
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Appendix

3.A.1 Data construction

Figure 3.A.1 shows the intersection of 2002 wards with wards from later periods. Figure 3.A.2

shows the intersection of wards and floods shapefile.

Figure 3.A.1: Wards intersection
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Figure 3.A.2: Flooded wards

3.A.2 Budget data

The following graphs show changes in spending and revenues at the local and national

government levels.
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Figure 3.A.3: Spending on floods and coastal erosion

3.A.3 Floods defences

The flood defences register maintained by the Environmental agency only shows a large increase

in registered assets in 2012/2013 when it became mandatory to list assets in the database but

has no new assets registered since (Figure 3.A.8).
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Figure 3.A.4: Long-term trends in DEFRA spending
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Figure 3.A.5: Local authority spending on flood defences in England
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Figure 3.A.6: Local authority spending on coast protection in England
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Figure 3.A.7: Local authority revenues by source

3.A.4 Additional tables

This section presents additional tables.
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Figure 3.A.8: Floods defences registration
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Table 3.A.1: Floods size and duration on the share of vote for the incumbent

(1) (2) (3) (4)
Flooded -0.949∗∗ -0.133 -0.0202 0.110

(0.428) (0.488) (0.490) (0.489)

Flooded × Duration in days -0.0276∗∗ -0.0181 -0.0167
(0.0116) (0.0124) (0.0128)

Flooded × Size of the flood (norm) -1.417∗∗∗ -1.322∗∗∗ -1.776∗∗∗

(0.361) (0.372) (0.431)

Flooded × Duration × Size 0.0384∗∗

(0.0161)
N 8856 8856 8856 8856
Rsquared 0.0720 0.0734 0.0736 0.0743
Year FE Yes Yes Yes Yes
Ward FE Yes Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election. Duration in days of the flood. Size of the

flood is normalised using average flood size and standard deviation.

Table 3.A.2: Large and long-lasting events on the share of vote for the incumbent

(1) (2) (3) (4)
Flooded -0.492 -0.737∗ -0.387 -0.190

(0.448) (0.443) (0.453) (0.458)

Duration 75th -3.473∗∗∗ -2.996∗∗∗ -4.666∗∗∗

(0.902) (1.070) (1.327)

Size 75th pct -2.402∗∗ -1.001 -2.767∗

(0.946) (1.119) (1.476)

Flooded × Duration × Size 75th pct 4.370∗

(2.278)
N 8856 8856 8856 8856
Rsquared 0.0734 0.0724 0.0735 0.0741
Year FE Yes Yes Yes Yes
Ward FE Yes Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election. The dummy variables duration and size

75th pct correspond to floods above the 75th percentile in terms of duration and area flooded.
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Table 3.A.3: Concordance with the local government

(1) (2) (3) (4)
Flooded -1.234∗∗∗ -1.163∗∗∗ -0.297

(0.413) (0.412) (0.565)

LocalGov 3.753∗∗∗ 3.738∗∗∗ 3.976∗∗∗

(0.398) (0.398) (0.408)

Flooded × LocalGov -1.883∗∗

(0.741)
N 8856 8856 8856 8856
Rsquared 0.0715 0.0865 0.0875 0.0883
Year FE Yes Yes Yes Yes
Ward FE Yes Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election. LocalGov is a dummy

for concordance of the ward’s incumbent with the local council majority’s party.

Table 3.A.4: Concordance with the national government

(1) (2) (3) (4)
Flooded -1.234∗∗∗ -1.213∗∗∗ 0.0337

(0.413) (0.390) (0.535)

NatGov -6.026∗∗∗ -6.025∗∗∗ -5.652∗∗∗

(0.297) (0.298) (0.311)

Flooded × NatGov -3.117∗∗∗

(0.728)
N 8856 8856 8856 8856
Rsquared 0.0715 0.133 0.134 0.136
Year FE Yes Yes Yes Yes
Ward FE Yes Yes Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election. NationalGov is a

dummy for concordance of the ward’s incumbent with the national government’s party.
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Table 3.A.5: LLFAs vs RMAs

(1) (2)
Flooded -0.840 -0.861

(0.839) (0.808)

NatGov -5.540∗∗∗

(0.519)

Flooded × NatGov -2.004∗

(1.128)

LLFAs 0 0
(.) (.)

Flooded × LLFAs 1.597 0.999
(1.021) (1.069)

NatGov × LLFAs -0.218
(0.667)

Flooded × NatGov × LLFAs -2.022
(1.455)

LocGov 3.206∗∗∗

(0.598)

Flooded × LocGov -0.957
(1.110)

LocGov × LLFAs 1.558∗

(0.826)

Flooded × LocGov × LLFAs -1.681
(1.495)

N 8856 8856
Rsquared 0.136 0.0890
Year FE Yes Yes
Ward FE Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election.
LLFAs is a dummy for Lead Local Flood Authorities established in

2010.
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Table 3.A.6: One-tier vs Two-tier authorities

(1) (2)
Flooded -0.834 -0.982

(0.818) (0.778)

NatGov -5.138∗∗∗

(0.483)

Flooded × NatGov -2.818∗∗

(1.096)

Unitary 0 0
(.) (.)

Flooded × Unitary 1.686∗ 1.333
(1.006) (1.061)

NatGov × Unitary -1.072∗

(0.636)

Flooded × NatGov × Unitary -0.362
(1.440)

Flooded × LocGov -1.656
(1.076)

LocGov × Unitary 0.341
(0.820)

Flooded × LocGov × Unitary -0.348
(1.488)

N 8856 8856
Rsquared 0.137 0.0886
Year FE Yes Yes
Ward FE Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election.
Unitary is a dummy for One-Tier local authorities.
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Table 3.A.7: Number of times flooded

(1) (2)
Flooded 1.592 0.511

(1.080) (1.130)

NatGov -6.863∗∗∗

(0.604)

Flooded × NatGov -3.450∗∗

(1.533)

Number of times flooded 0 0
(.) (.)

Flooded × Number of times flooded -0.687 -0.347
(0.449) (0.462)

NatGov × Number of times flooded 0.634∗∗

(0.293)

Flooded × NatGov × Number of times flooded 0.0819
(0.665)

LocGov 3.033∗∗∗

(0.859)

Flooded × LocGov 0.0814
(1.564)

LocGov × Number of times flooded 0.483
(0.398)

Flooded × LocGov × Number of times flooded -0.968
(0.657)

N 8856 8856
Rsquared 0.137 0.0893
Year FE Yes Yes
Ward FE Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election.
Number of times flooded is the number of times a ward got flooded in the last 30 years.
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Table 3.A.8: Close elections

(1) (2)
Flooded -0.0178 -0.0574

(0.627) (0.720)

Flooded × NatGov -2.689∗∗∗

(0.938)

Close elections -8.409∗∗∗ -7.001∗∗∗

(0.367) (0.393)

Flooded × Close elections -0.521 -0.673
(0.888) (0.916)

NatGov × Close elections 2.499∗∗∗

(0.486)

Flooded × NatGov × Close elections 1.068
(1.304)

LocGov 4.569∗∗∗

(0.504)

Flooded × LocGov -1.494
(0.919)

LocGov × Close elections -2.723∗∗∗

(0.547)

Flooded × LocGov × Close elections 0.161
(1.302)

N 8856 8856
Rsquared 0.207 0.177
Year FE Yes Yes
Ward FE Yes Yes

∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Standard errors clustered at the ward level
The sample is all wards flooded within a year of an election.
Flooded is a dummy for flooded the year before a local election.
Close election is a dummy for average difference between first and second party

of less than 10 points.
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4 Nowhere else to go? Urbanisation and Flood Risks: The

role of land scarcity

4.1 Introduction

The world urban population share went from 40% of the world population in 1985 to 54% in

2016 and a projected 68% by 2050 (Ritchie and Roser 2020). A large share of the population is

moving into cities, expanding existing settlements and creating new ones. This urban growth

is occurring in areas that have been neglected before, including land exposed to flood risks

such as riverbeds, flood plains, or wetlands. This study explores the trends in urban expansion

and flood exposure in China over a 30-year window from 1985-2015.

In the last thirty years, settlement growth in high flood risk zones has consistently outpaced

growth in no- and low-risk zones (Rentschler et al. 2022). In addition to building in flood

prone areas, cities are also re-building on hazard-prone land after a climate disaster (Lin,

McDermott, and Michaels 2021). The magnitude of this problem is vast. The amount of newly

settled land in high flood risk areas over our period of analysis totals 36,500 km2, or three

times the size of the New York City Metropolitan area (Rentschler et al. 2022). People living

in high flood risk zones around the world totalled 1.47 billion in 2020 (Stéphane Hallegatte

et al. 2020a). This exposure resulted in 650,000 fatalities and another 650 million displaced

over the 1982 to 2014 period (G. Brakenridge 2016). Under recent projections, this trend will

only accentuate, with an at least five-fold increase in the population that experience coastal

flooding annually over the next century (Adger, Arnell, and Tompkins 2005).

The causes of urban expansion in high flood risk areas are varied: settlements are physically

constrained, face tight urban planning restrictions or a fast-growing population that overwhelms

urban planning. In this paper, we focus on the impact of land scarcity due to geographic

obstacles: the share of unviable land (e.g. land that is very costly to develop on) surrounding

a city due to geographic obstacles (steep land, rivers, and oceans) or high flood risk. We do

not include land-use policy induced land scarcity (e.g. zoning policies).

Our paper studies settlement expansion in high flood-risk land in China. Home to over half
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of the high-risk settlement growth over the 1985 to 2015 period (Rentschler et al. 2022), China

is a particularly important context for studying settlement growth in high flood risk. China’s

rapidly expanding population is associated with urban sprawl, booming urban development

and strict land use regulations, which makes risky urban growth an important policy debate

in China.

Are settlements increasingly expanding into high flood risk land due to the lack of viable

and low flood risk land surrounding existing settlements? Using satellite data and a spatial

instrumental variable, we empirically estimate whether land scarcity is a driver of city expansion

into high flood risk land.

At face value, geographic obstacles appear to be exogenous constraints. However, the main

contribution of this paper is to consider the empirical challenge to do with the endogeneity

of land scarcity: geographic obstacles are not random and result from the selection of urban

planners to settle and expand in their proximity to benefit from the consumption and amenity

value of that land. Indeed, settlers founded cities near water bodies because they valued their

inherent consumption, amenity and economic value: such as the proximity to trade routes

and fertile land12. Settlements continue to expand along water bodies and mountains for the

inherent amenity value of the land and due to path dependency of settlement growth. An

important corollary to this is that settlements near water bodies might grow faster than safer

settlements situated in more remote land.

Using US data, Lin, McDermott, and Michaels (2021) show that cities first developed on

safe land near the coast and then increasingly expanded towards riskier land. This was also

demonstrated in Vietnam, where the safest and most productive locations were occupied first,

and left new developments forced to use sub-optimal land (Rentschler and Salhab 2020). The

relationship between urban expansion in high flood risk areas and land scarcity is thus an

equilibrium outcome of diverging forces: preferences for safe areas, path dependence of city

expansion, productivity and amenity value of risky land (floodable land (e.g. water bodies)

and steep land (e.g. mountains)).
12and beneficial terrain (ruggedness or bedrock depth)
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To test whether land scarcity is a driver of urban growth in high flood risk land, we need

to isolate the role of land scarcity from the endogenous forces described above. We propose

a novel instrument for changes in land scarcity that combines geography with a mechanical

model for city expansion and removes the endogeneity of voluntary city expansion towards

water bodies or mountains.

The underlying idea is that, as cities expand in space and over time, they face geographic

constraints— steep terrain or bodies of water — that limit the amount of viable land they

can expand into. The initial city location in space is not random - for example, being close to

mountains affects a city’s past economic specialization, resilience and growth. However, the

relative position in space of such geographic constraints as a city expands allows for available

land in cities’ vicinity to vary randomly. We build an instrument to capture this variation.

The identification relies on changes in available land in the vicinity of cities as a result of a

city randomly hitting geographic obstacles.

While land scarcity induced by geographic obstacles appears to play a large role when

looking at cities statically, we provide causal evidence that, once we remove the impact of

original settlement choice, the increasing ‘bite’ geographic barriers such as mountains or water

bodies are not a strong driver of urbanisation in high flood risk areas.

In other words, cities do not expand into high flood risk land because they have nowhere

else to go. We show that expansion of cities in high flood risk areas is largely due to path

dependency – it is mostly happening in cities that already face high flood risk. As global

warming is predicted to exacerbate the frequency and magnitude of flooding, more evidence

is needed on the dynamics of urban expansion into high flood risk land. Our results are

important as they point to the path dependence of cities towards hazard-prone land, even

when safer land is available.

We first review the literature in Section 4.2 and present the data in Section 4.3. Next, we

present our estimation strategy and instrument for changes in land scarcity in Section 4.4 and
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Section 4.5. We then discuss the results when we separate out the role of land scarcity per se

from the amenity value of geographic barriers in Section 4.6 and conclude in Section 4.7.

4.2 Literature review

This paper contributes to three strands of literature: i) where and why are populations settling

in risky areas, specifically in flood-prone land, ii) drivers of city size and urban sprawl, iii)

urban structures in response to shocks.

Faced with planning restrictions and lack of space, low-income households have moved to

neighbourhoods plagued with environmental risks. Case-study evidence has illustrated these

mechanisms. In Mumbai, India, low-income households have moved into the city from rural

peripheral regions in search of economic opportunities. The high density of existing settlements

and land price differentials have forced new migrants into areas that have been avoided in

the past, such as high-risk land in the proximity of riverbeds that lack planning and public

infrastructure such as drainage or flood defence systems. Similarly, informal neighbourhoods

have lacked access to public services such as sanitation, drainage or flood defence systems,

such as the steep hills of Rio de Janeiro or the São Paulo favelas. They are costly to formalise

or upgrade, leading to lower population density and land values (Harari 2020). As a result,

settlement growth in high flood risk zones has consistently outpaced growth in no- and low-risk

zones over the last 30 years (Rentschler et al. 2022). An extensive literature review can be

found in (Stéphane Hallegatte et al. 2020b) and they conclude that land and housing markets

often push poorer people to develop settlements in riskier areas, especially where land is scarce.

Evidence for this can be found around the world: Daniel, Florax, and Rietveld (2009)

conduct a meta-analysis of the literature and find that a 1 percentage point increase in the

annual probability of flooding is associated with a 0.6 percent decrease in house prices. In

Accra, Ghana, Erman et al. (2018) find that flood-affected dwellings are valued at 30 percent

less on average than unaffected ones. In Dar es Salaam, Tanzania, households affected by floods

lost on average 23 percent of annual income and self-evaluated their dwellings to be worth

about 36 percent less than non-flood-prone dwellings (Erman et al. 2019). Reduced housing

prices, in combination with informal housing markets, make it possible for poor people to
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access housing opportunities that could be out of reach in the absence of risk Durand-Lasserve,

Durand-Lasserve, and Selod (2015). Additionally, in such places, it may not only be the prices

that push poor people into risky places but simply the availability of land with appropriate

access to jobs and services. From Pune, Dhaka, Caracas, Rio de Janeiro to Mumbai, informal

settlements are often located in hazard-prone locations such as on hillsides, close to riverbanks,

or near open drains and sewers Lall, Lundberg, and Shalizi (2008). In Chapter 5, I show that

in Sub-Saharan Africa, households living in areas that are repeatedly flooded are systematically

poorer and less healthy than households in safer areas – however, the difference in wealth and

health between rural and urban areas is such that households living in dangerous urban areas

still have better outcomes than in safe rural areas. Our paper contributes to a large literature

on urban sprawl (Glaeser, Gyourko, and Saks 2006). Our work follows Burchfield et al. (2006)

in using remotely sensed data to track the urban sprawl of cities. Our instrumental variable

approach is built on identifying assumptions developed in a paper by Harari (2020), who

studied how geographic barriers around Indian cities impact city shape and, in turn, economic

outcomes, using night-time data imagery.

Our paper also contributes to a separate strand of papers in urban economics, focused on

path dependence in the spatial distribution of economic activity and urban settlement and

the relationship between geography and growth (Desmet and Henderson 2015). As urban

areas are predominately in floodable areas, the increase in urbanisation would increase the

share of population at risk, even without cities expanding into higher risk land. Combining

satellite-based nightlight imagery and flood hazard maps, Desmet et al. (2021) and later

Rentschler and Salhab (2020) systematically assessed risks in high-growth areas. Their analysis

confirms that areas with high urban and economic growth face significantly higher flood risk

than low-growth areas. About 27 percent of areas with low urban and economic growth are

estimated to be exposed to flooding with a 100-year return period, compared to some 50

percent of high-growth areas. Also combining satellite-based nightlight imagery and large

flood events which affected 1,868 cities in 40 countries around the globe, Kocornik-Mina et al.

(2018) document a lack of adaptation or movement of economic activity away from the most

flood-prone locations within cities. We add to this literature by testing the amount of path

dependence at the city level by initial exposure to floodable land. Recent papers have studied
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the costly path dependence of cities in relation to sea level rise. Balboni (2021) studies the

exposure of Vietnam roads to sea level rise and finds that infrastructure investments that ignore

future sea-level rise risks might lead to inefficient persistence in coastal cities. Desmet et al.

(2021) use a spatially disaggregated, dynamic model of the world economy to quantify the role

of migration and local agglomeration in the projection of sea-level rise cost. Lin, McDermott,

and Michaels (2021) explore the internal structure of coastal cities and their adjustment to

climate change. They characterise “soft” barriers, such as flood-prone areas, as locations that

are not used for housing development in most circumstances but are nevertheless built on as

cities expand. They document how new construction in the U.S. in recent decades avoided

flood-prone areas in sparse locations but did take place on (the ‘least-bad’) flood-prone areas in

dense locations. They develop a monocentric coastal city model where flood-prone settlement

results from the trade-off between the amenity of coastal proximity and the disamenity of

flood risk.

Our paper is the first to test the causal role of increased land scarcity and path dependence

on urban growth in high flood risk land.

4.3 Data

4.3.1 Settlement growth

We use the World Settlement Footprint-Evolution developed by the German Aerospace Center

- DLR (Marconcini et al. 2021) to study settlement expansion. This new dataset combines the

best of Landsat-8 multispectral satellite images and Corpernicus Sentinel-1 satellite data to

offer a 30-metre resolution binary mask outlining the 2015 global settlement extent. From the

2015 snapshot, the DLR created a yearly panel of settlement extent from 1985 to 2015 using

backward iterative techniques. From this satellite imagery, we create a panel dataset of cities

around China from 1985 to 2015.

One limitation of previous datasets such as Landsat is the poor quality and patchy coverage

of satellite images for the 1980s and 1990s in specific regions such as Sub-Saharan Africa13.
13In these cases, the frequency of satellite images was lower, thus reducing the likelihood of high-quality

cloud-free images being available in a certain year.

95



The dataset has been extensively ground-truth tested with 900.000 validation samples to

correct this limitation.14

The high resolution enables tracking not only of large cities, but also of small settlements15.

We define cities as any continuous patch of settlement extent in 1985 that is larger than 1 km

square. We do not differentiate between urban and rural settings as in some other datasets

(eg. GHSL)16.

We then overlap the continuous patch of settlement extent of more than 1 km square

in 2000 and 2015. In our analysis, we only keep settlement footprints that intersect 1985

settlements to capture the impact of scarcity using a long-difference between two 15-year

periods (1985-2000 and 2000-2015). A limitation of our estimation strategy is that we cannot

study new cities that appear between 1985 and 2015.

In the context of China, it is common for cities to merge into one continuous urban area

over our period17. In order to keep a stable unit of analysis, we consider the non-contiguous

patches that will merge into one by 2015 as one unit of analysis from 1985 onwards. To

calculate the area growth of that unit of analysis, we sum up the areas of the separate patches.

We proceed similarly for all the measures we construct. We include an illustration in Figure

4.A.1 in the Appendix.

City growth can occur in three ways: edge expansion, infilling, or leapfrogging. In this

paper, we focus on the edge expansion of the city. We define edge expansion as any new pixels

of settlement contiguous to the city shape in 1985. We focus on the extensive margin as our

data does not allow us to measure the intensive margin: once a grid square is built, we do
14As part of overcoming any limitations of settlement over-or under-estimation (due to limited satellite

scene collection in specific countries before 2000), a cutting-edge regression model has been applied to model
the settlement extent using data availability specific to the region. The DLR also provides a novel index to
measure the quality of the output at the 30m resolution, which allows us to conduct robustness checks removing
low-quality data.

15Note that the settlement labelling protocol is defined on a taxonomy of buildings, building lots and
roads/paved-surfaces.

16The Global Human Settlement Layer (GHSL) dataset, for example, applies a cut-off of 300 inhabitants per
km square and a minimum of 5,000 inhabitants to distinguish between urban and rural areas.

17In our data, this corresponds to a continuous patch of settlement in 2015 which overlaps several non-
contiguous patches in 1985 and 2000.
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not observe the increase in density. As we observe cities in our sample from 1985 to 2015

and discretise the period into two 15-year periods, we can calculate expansion and infilling

for 2000 and 201518, and leapfrogging for 1985 and 200019. In 2000, we find that 65% of new

settlements correspond to edge expansion, against 30% for leapfrogging and 5% for infilling.

Focusing on new settlements in high flood risk areas, we find similar proportions: 67%, 30%

and 3% for each type respectively. To study the impact of land scarcity, we need to define

what is unviable land. Following Harari (2020) and Saiz (2010), we define unviable land as

any water body, ocean or steep terrain (above 15%). The steepness is calculated from DEM

MERIT elevation model. Water bodies are extracted from the OSM water layer from IIS

U-Tokyo.

4.3.2 Floods

We look at three types of floods: fluvial, pluvial and coastal. Fluvial flooding occurs when

water bodies overflow onto adjacent land due to precipitation or snow melt. Pluvial flooding

occurs when the absorptive capacity of the soil is exceeded. It is common on impervious

surfaces in urban areas or after droughts. The fluvial and pluvial flood maps are from the

2019 Fathom-Global 2.0 dataset (Sampson et al. 2015). Fathom is a global flood model

that uses terrain and hydrological data to predict flood risk probability and flood risk depth

at 90-meter resolution for the entire world. The Fathom-Global 2.0 uses the newest DEM

MERIT elevation model that corrects for multiple errors, including tree and building height

adjustments. The Fathom flood models have been shown to have good predictive performance.

The most comprehensive performance metric used in the analysis of flood models is the critical

success index (CSI), which measures model fit by measuring the share of total forecasts which

are correct. Bernhofen et al. (2018) find that the Fathom-Global 2.0 scores highly on this

measure, with a score over 0.7 CSI in case studies. The flood hazard maps also perform better

than the climate-forced models for average flood return rate (Bernhofen et al. 2018). In our

sample, 67% and 70% of settled pixels in high flood risk areas correspond to fluvial risks in

2000 and 2015 against 25% and 33% for pluvial flood risks and only 4% and 3% for coastal
18We observe the stock of pixels in 1985, so we cannot distinguish pixels that were added as the city expanded

or plots that were surrounded by built-up before being infilled.
19The difference between leapfrogging and edge-expansion depends on the number of years included in each

period. We use 1985-2000 and 2001-2015 as it allows for a period long enough to distinguish large changes in
settlement while still allowing for the long-difference analysis. We cannot know which surrounding pixels will
belong to the continuous city “core” in 2030, so we cannot calculate leapfrogging for this period.
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flood risks20. The model simulates flood events with return periods of 5, 20, 50, 100, 250, and

500 years.

Coastal flooding is caused by storm surges and high tides in coastal areas. We use 3-degree

resolution (~90 m at the equator) Joint Research Centre (JRC, 2014) coastal flood risk maps

developed by the European Commission, which was previously used in a global-scale analysis

(Koks et al. 2019). These coastal inundation maps are simulated using the LISFLOOD-FP

hydrological model Vousdoukas et al. (2016). Coastal flood simulations are forced by extreme

sea-level rise derived from reanalysis of waves and storm surges (Muis et al. 2016), and further

combined with tidal information (Vousdoukas et al. 2018). A high-accuracy spaceborne digital

elevation model, in which absolute bias, stripe noise, speckle noise, and tree height bias are

corrected, is used as an input to the model (Yamazaki et al. 2017).

These flood hazard maps provide both a measure of flood severity – measured by the

potential inundation depth of a given flood - and of flood probability, also named return rate or

periods. A return period describes how much time will pass before the next flood of the same

intensity occurs again. Our main analysis uses the 1 in 100-year return rate, where the flood

is expected to occur once every 100 years (i.e., it has a probability of 1% of occurring in any

given year). On average, this return rate also means there is a 10% chance of a flood occurring

in a decade, or 50% in a lifetime (68 years). These are significant probabilities that lie within

reasonable planning horizons of governments, and that are widely used among development

banks and flood insurance companies.

In terms of flood severity, the flood hazard maps include potential inundation depth on

a continuous scale. We aggregate the values into five categories to reflect the risk to human

life. The ‘no risk’ category refers to areas unaffected during a 1-in-100-year flood. Up to 0.15

meters inundation depth, no significant risk to life is expected (‘low risk’). Up to 0.5 meters,

some risk to life must be expected, especially for vulnerable groups such as children and the

disabled (‘moderate risk’). Up to 1.5 meters, a significant share of the affected population

could face risk to life, especially if flood waters have a current (‘high risk’). Above 1.5 meters,
20Total sum adds to more than 100% as a pixel can be subject to several flood risks.
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most affected people could face substantial risk to life without rescue measures (‘very high

risk’). We consider flood risks to be significant when inundation depth is higher than 0.5

meters (high risk to ‘very high’ categories). For our main results, we select the very high

flood risk category (henceforth HFR), where inundation depth is higher than 1.5 meters. We

conduct heterogeneity analysis for lower inundation depths.

As with all existing global flood maps, the effects of artificial flood protection structures like

dikes are not incorporated. This data limitation is pervasive in this literature as no complete

global inventory of flood defences exists. Ongoing initiatives, such as the FLOPROS database,

could eventually fulfil this need but are currently still falling short of comprehensive coverage

(Scussolini et al. 2016). While ‘defended’ hazard maps are available, they rely on models that

proxy the likelihood of flood protections given observable characteristics such as economic

prosperity or population density, thereby introducing biases for our analysis of flood risk and

urbanisation. Looking at un-defended flood models will lead us to overestimate the share

of land in floodable areas where flood defence infrastructures were developed. This might

suggest that we will see different effects for richer and poorer countries. For our empirical

investigation, we overlay the settlement extent data, flood maps and elevation data to label

each settled pixel as high flood risk or unviable. We also discretise our analysis to two 15-year

time periods 1985-2000, and 2000-2015. The resulting data output is Figure 4.3.1.

4.4 Empirical investigation: the role of land scarcity

To frame the empirical investigation of the impact of land scarcity on settlement growth in

high flood risk land, we extend the classic monocentric city model (Appendix Section 4.A.2).

We show that the city will move further away from the monocentric model as a function of

the size and location of unviable land. We also show that population will settle in high flood

risk land if they value the amenity value of the land over the dis-amenity value of the flood,

given the commuting benefits associated with the land.

A major driver of urbanisation in high flood risk areas is the scarcity of viable and safe

land around a city (Stephane Hallegatte et al. 2017). Are cities expanding into high flood risk
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Figure 4.3.1: Map of the 30m spatial resolution WSF evolution layer, overlayed with the flood
hazard maps, for a city in China
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because they have nowhere else to go? In this section, we formally test this hypothesis.

Empirically, we want to estimate whether increasing land scarcity is indeed driving cities

to develop more on high flood risk land compared to unconstrained cities. Our dependent

variable is urban growth in high flood risk areas. We measure this as the share of new built-up

settlement extent (SE) of a city i built in high flood risk (HFR) areas between periods t− 1

and t (Yt,i). High flood risk (HFR) areas are defined as zones with an inundation depth

above 1.5 meters using 1 in 100 years flood risk return rate (such depth is a danger to human

life). At face value, this investigation is straightforward – we want to measure “naively” how

constrained a city is by looking at the amount of unviable land around the city. Relating to

Figure 4.3.1, our outcome is the change in the share of HFR pixels between the dark green

settlements of 2000 and the red settlements of 2015.

Before we seek to instrument the impact of land scarcity, we need to create a realistic

measure of land scarcity around a city. To do this, we first need to delineate an area around

a city that is a realistic measure of where the city could expand, and how constrained that

land is. We name this area “Potential Developable Land” (PDL). We define a city’s PDL by

the land in the minimum bounding circle (MBC) around the city in the next period (in our

setting in long differences, the next period is 15 years later). In Figure 4.4.1 and Figure 4.4.2,

We show how we construct the PDL for 1985 using the MBC in 2000:

We put everything together in Figure 4.4.3: The PDL for settlements in 1985 (orange

pixels) is the light green 2000 MBC (removing the built up orange settlements of 1985)21. In

the same manner, the PDL for 2000 is the light red 2015 MBC removing the orange and dark

green settlements of 1985 and 2000.

The MBC of the settlements at t + 1 represents the option set open to urban planners

to develop the city in the next period. This measure, if done correctly, should capture the

endogenous development of the city towards water bodies or mountains.

21The PDL for 2000 is the MBC in 2015.
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Figure 4.4.1: Minimum Bounding circles for settlement extents in 2000

We remove the city footprint at time t within that minimum bounding circle as we consider

developed land irreversible. We then calculate the share of land within that MBC that is

unviable or in high-flood risk22. In our example, it is the share of pixels falling into the purple

(high flood risk), grey (unviable steep) and blue (unviable water bodies) areas. In other words,

we use future information of a city’s actual expansion and backward induction to delineate

what land was realistically considered during the 15 years of development. The PDL is a

proxy for the complete set of choices considered by urban planners and policymakers for city

expansion given its current location.

The change in land scarcity (our independent variable) is measured by computing the

difference in how constrained city development was between the first 15-year period (1985-2000)

and the second (2001-2015). We calculate the difference between the share of unviable land

(steep terrain, oceans and rivers) and HFR land in the light red circles in 4.4.3 and the share

of unviable and HFR land in the green circles, excluding the city footprint in 1985 and 2000
22As mentioned before, some cities merged over the period. In that case, we use the MBC encompassing all

the continuous patches that will be merged by 2015
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Figure 4.4.2: Resulting PDL in 1985: 2000 MBC (light green) with 1985 settlement extents
cropped out
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Figure 4.4.3: Settlement extents and minimum bounding circles

respectively. In Figure 4.4.3, we show 4 cities developing around a lake encircled by high flood

risk areas. They are all distinct units of observation as they do not merge by 2015. The major

city on the northeast side is developing toward the South between 1985 and 2000 (City 2000 in

dark green). In the second period, the city is crawling on the East bank side of the lake (city

2015 in dark red). Notice that the share of unviable land and HFR areas increases between

the green and light red circles as the city expands along the river. It is a realistic measure of

endogenous growth towards unviable and HFR areas.

Now that we defined how we construct our independent variables, a naïve approach would

run the cross-sectional regression of the share of new settlement extent (SE) in settlement i

located in high flood risk (HFR), on the share of unviable land (steep land or water bodies)

and the share of high flood risk land in the PDL for 1985 and 2000.

Yi,t = α0 + α1Share High Flood Risk in PDLi,t−1 + α2Share unviable in PDLi,t−1 + ϵi,t (3)
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with:

Yi,t = ( New SE HFR
Total New SE)i,t (4)

Share High Flood Risk in PDLi,t−1 = ( HFR area in PDL
Total Viable area in PDL)i,t−1 (5)

Share unviable in PDLi,t−1 = (Unviable land in PDL
Total PDL area )i,t−1 (6)

Now that we built a measure of change in actual land scarcity and HFR, we build on our

main naive regression: we test whether a change in the ‘bite’ or share of unviable land and

high flood risk land around a city leads to an increase in the share of settled land in high flood

risk areas over the following 15-year period. We consider the timeframes of urban development

to be large and split our panel dataset into two long time periods (1985-2000 and 2000-2015)

to account for the length of time needed for cities to expand.

∆Yt,i = β0 +β1∆Share High Flood Risk in PDLi,t−1 +β2∆Share unviable in PDLi,t−1 + ∆ϵi,t

(7)

Given that:

∆Yt,i = ( New SE HFR
Total New SE)i,2000−2015 − ( New SE HFR

Total New SE)1985−2000,i (8)

∆Share High Flood Risk in PDLi,t−1 =

( HFR area in PDL
Total Viable area in PDL)i,2000−2015 − ( HFR area in PDL

Total Viable area in PDL)1985−2000,i

(9)

∆Share unviable in PDLi,t−1 =

(Unviable land in PDL
Total PDL area )i,2000−2015 − (Unviable land in PDL

Total PDL area )1985−2000,i

(10)

We show the results of this OLS estimation in Section 4.6. However, the main contribution
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of the paper explores the bias of this regression. We worry that this regression will overestimate

the impact of a change in land scarcity on settlement growth in high flood risk areas for two

reasons.

We are faced with at least two sources of endogeneity due to the ‘unobserved’ quality of

HFR land: (1) the original location of cities might be endogenous to unobserved amenity

and productivity shifters linked with the land (e.g., close to a lake for easy to access to clean

water) and (2) cities expand along the coast to derive more amenity and productivity value

(in econometric terms, endogenous shifters). Our OLS estimate that we derive from the

cross-sectional analysis above is a measure of the trade-off between risks and amenity value

of developing around unviable or risky land, and it reflects the equilibrium outcome of an

economic process.

The first source of endogeneity is well-documented. Cities locate originally near the coast,

rivers or mountains for their productivity and amenity value. To deal with time-invariant

sources of endogeneity, we take the long-difference of our outcome variable (the share of new

settlements in HFR land) between our two time periods (1985-2000 and 2000-2015) to remove

time-invariant factors such as the original location next to the coast or mountain. We thus

investigate the effect of an increase in land scarcity (rather than the impact of scarcity in

levels).

The second source of endogeneity is more subtle. Geographic barriers are seemingly

exogenous. However, some economic forces (population growth, urban planning, amenity

value of land) are driving cities to expand in high flood risk land and around mountains,

constraining the amount of viable land around the city, therefore driving both our dependent

and independent variables and introducing some omitted variable bias. Urban planners might

indeed decide to expand along riverbanks, mountains or the coastline for the productivity and

consumption value of that land. As a result, an increase in land scarcity and high flood risk

land around a city is often the result of an endogenous decision to develop in the direction

of, or near, unviable land. These effects could bias the role of land scarcity on settlement

expansion in high flood risk areas. For example, if the coefficients β1 and β2 picked up the
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voluntary development of a city towards scarce and risky land, it would overestimate the

impact of increased land scarcity on settlement expansion in high flood risk areas. To solve

this problem, we use an instrumental strategy to predict city growth that is not related to the

directional city growth towards areas with unobserved productivity and amenity factors linked

to flood risks.

In summary, the naïve regression set out above loads the effect of the endogenous growth of

the city together with the amenity value of geographic barriers (rivers, oceans), solely on land

scarcity. The main contribution of this paper is to construct an instrument for land scarcity

that removes the endogeneity of voluntary city expansion towards high flood risk land due to

unobserved amenity or productivity values of that land.

4.5 Instrumental Variable Construction

We base our instrument on Harari (2020). In her paper, Harari builds an instrument for city

shape using the minimum bounding circle (MBC) of the historic maps for the city. She employs

a mechanical model for city expansion to predict the area and shape that a city would take in

a given year, based on its projected historical population growth. As explained in the previous

section, we already use the MBC of the settlement extent in the next period as the definition

for the current period PDL. However, this definition of the PDL reflects endogenous choices by

city developers, who might choose to grow in high flood risk land for reasons other than land

scarcity. We thus construct our instrumented PDL not as the MBC of the settlement extent in

the next period (observed MBC for 2000 and 2015), but as the MBC of the settlement extent

in the first period (1985) had it grown concentrically (predicted MBC for 2000 and 2015).

To do this, we construct the instrumented ‘land scarcity’ measure by first growing the city

MBC in 1985 in all directions twice to obtain a predicted MBC for 2000 and 2015. We use an

auto-regressive model with region and year fixed effects to avoid using potentially endogenous

city growth rates. Using settlement extent growth rate to grow our instrument could lead

to bias as more constrained cities could grow slower or faster (e.g. our theoretical model in

Appendix Section 4.A.2)23. We run two robustness checks to test the implications of different
23Such that minimum bounding circles used in our IVs would be then larger and over-estimate the change in
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city growth models.24

We then subtract MBC in the previous period (MBC 1985 and predicted MBC in 2000

respectively) to obtain a doughnut shape instrumented PDL.

Once we obtain that instrumented PDL for both periods, we calculate land scarcity and

HFR land as we did for the PDL. We look at changes in land scarcity over time by calculating

the difference in the share of unviable land and HFR land over the two time periods (the

two doughnut shaped instrumented PDLs). The long differences allow us to remove the

endogeneity of the initial city location, so we recover exogenous variation in land scarcity.

The main assumption behind our instrument is that the relative distance between geographic

obstacles as the city expands is exogenous. In this regard, this instrument can be thought of

as a differentiated spatial Bartik instrument.

To summarise, we recover random changes in land scarcity around the city by exploiting

the changes in unviable and HFR land captured by the random location of geographic barriers

around a city as a city expands following a predictive city growth model. We document the

construction of the instrument visually below.

The original settlement extent MBC in 1985 shown in Figure 4.5.1.

We predict settlement extent expansion using an autoregressive model with region and

period fixed effects. The instrumented 2000 MBC is shown in Figure 4.5.2 (circle in light green).

We replicate this step for 2015: we grow the 1985 MBC again using the predicted radius for

2015 and remove the area of the instrumented 2000 MBC. The resulting instrumented 2015

scarcity and HFR.
24We also build a second version of the instrument, where we impose that the area of the instrumented

PDL is of equal size to the actual PDL for each time period (Appendix 4.A.3). Our results are not sensitive
to this specification, lending credence to our instrument. We conduct a second robustness check where we
compare the actual city growth rate obtained using the auto-regressive regional growth model with growth
rates systematically smaller or larger. To create the systematically smaller and larger growth rates, we pick for
each city a shifter between 5% and 20% randomly generated from a uniform distribution. We find that smaller
growth rates have smaller changes in unviable land but slightly larger changes in HFR land. The difference are,
however, very small (Tables 4.A.4 amd 4.A.5). As a result of this, in order to minimise measurement error and
bias introduced across cities, we prefer using the regional growth model instead of fixing the area of the actual
and instrumented PDL.
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Figure 4.5.1: Original 1985 Minimum Bounding Circle

Step1: Create the original Minimum Bounding Circle for the 1985 City
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MBC is shown in Figure 4.5.3 (circle in light red). We thus obtain predicted settlement extents

in 2000 and 2015. From these predicted areas, we can calculate their predicted radius. When

we grow the 1985 MBC using the predicted radius for 2000, we remove the original 1985 MBC

shape.

As mentioned previously, the predicted MBC for 2000 and 2015 in light green and light

red in Figures 4.5.2 and 4.5.3 are centred on the original 1985 MBC centre25. In the last step,

we estimate the difference in the share of unviable land and the share of HFR areas between

the red and green instrumented MBCs.

Figure 4.5.2: Instrumented 2000 MBC

Step 2: Grow the 1985 MBC using predicted radius from an autoregressive model with region
and period fixed effect; remove the original 1985 MBC shape

25Ideally, we would use historic city centres, but we do not have this information globally. The strong
underlying assumption is that the original MBC centres in 1985 coincide with the historic city centres.
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Figure 4.5.3: Instrumented 2015 MBC

Step 3: Grow again the 1985 MBC using predicted radius from the same autoregressive model
with region and period fixed effect; remove the instrumented 2000 MBC

Figure 4.5.4: PDL versus instrument: a visual explanation

The PDL is capturing the directional growth towards the lake. The instrument is capturing the
land around the city in all directions
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The main difference between the naive way to capture land scarcity (using the PDL, defined

as the MBC of the city in the next period minus the city shape) and the instrument (using

the original MBC that we grow concentrically using the regional auto-regressive model) is the

directional growth of the city. To explain the difference visually, we use our example city in

Figure 4.5.4. Between 1985 and 2000, the PDL centroids shift towards the lake as the city

grows. In the instrument, the MBC buffers stay centred around the original centre of the city.

As a result, the PDL area captures more and more of the unviable and less and less of the

available land in the north.

If our cities were perfectly monocentric and growing in all directions, our two measures

would be similar. As with Harari (2020), variation in land scarcity here does not stem from

the sole presence of water bodies or steep slopes, nor from their size, but from the relative

position in space of these constraints. While the relative position of these constraints might

be correlated to the source of endogeneity that we worry about, the changes in the relative

position of these constraints over time does not. In other words, our difference in difference

estimation is crucial in our estimation strategy.

The instrumental variable, on top of the long difference specification, removes the bias

because the variation in the share of unviable land and HFR land around a city relies on the

changes in unviable land captured by geography interacted with a mechanically predicted

model of city growth. This interaction excludes, by construction, the variation resulting from

endogenous policy choices or from unobserved characteristics (amenity, productivity, policy

choices). In other words, the instrument estimates the ‘mechanical’ role of land scarcity net of

the amenity value, compared to the amenity-based role of land scarcity captured by the OLS.

Our instrument also captures the fact that safe land was available around the city despite

the city not developing there – hence the risky growth was not the result of unviable land but

rather due to the choice of cities to develop in that direction. In this case, the city could have

developed on the Northeast side instead of the lake banks.
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Formally, we want to instrument the ∆Share High Flood Risk in PDLi,t−1 and

∆Share unviable in PDLi,t−1 in our PDL with the same measure in the predicted IV

MBCs, both in 2000 and 2015.

∆Share High Flood Risk in IVi,t−1 =

( HFR area in IV
Total Viable area in IV)i,2000−2015 − ( HFR area in IV

Total Viable area in IV)1985−2000,i

(11)

∆Share unviable in IVi,t−1 =

(Unviable land in IV
Total IV area )i,2000−2015 − (Unviable land in IV

Total IV area )1985−2000,i

(12)

Our instrument removes endogeneity in a long-difference specification. Recall that we

consider the timeframes of urban development to be large and look at long differences between

two time periods (1985-2000 and 2000-2015) to account for the length of time needed for cities

to expand. We test whether a change in how binding unviable land and high flood risk land

are around a city, leads to an increasing share of new city expansion in high flood risk areas

over the following 15-year period. Our main dependent variable (Yt,i) is the difference in the

share of new settlement extent (SE) in a city i that is at high flood risk (HFR) between two

15-year periods (2000-2015 and 1985-2000).

Our main estimation strategy thus boils down to:

∆Yt,i = β′
0 +β′

1∆ ̂Share High Flood Risk in PDLi,t−1 +β′
2∆ ̂Share unviable in PDLi,t−1 + ∆ϵ′i,t

(13)

Where the independent variables are the predicted values that result from instrumenting

the change in the “naive” measure of the share of unviable land and high flood risk land

(through the potential developable land metric - PDL) with the change in the share of unviable

land and high flood risk land using our instrument (the predictive model of city shape with

re-centred MBCs).

113



4.6 Results

4.6.1 Impacts on Settlement Growth in High Flood Risk Areas

As set out in Section 4.4, our paper is not about one estimate of the role of high flood risk

land and unviable land on risky urbanisation. Rather, the contribution of our paper is the

comparison of three estimates to parse out the different ways land scarcity and unsafe land

drive cities to expand into high flood risk areas.

We indeed compare three estimates, as we move from (1) a cross-sectional regression that

captures all three aspects of land scarcity: the geographic barriers themselves, the initial city

location and the amenity value of the constraints; to (2) a long-difference regression using

the potential developable land (PDL) metric, which captures both the role of increased land

scarcity due to geographic barriers and of the directional amenity-based city growth towards

those barriers; to (3) an instrumental variable approach in long differences which captures the

role of the change in land scarcity only, net of the amenity value of geographic constraints and

net of the amenity-based directional growth of the city.

Our results cover all of China, which consists of 2555 settlements in our dataset. China is

responsible for almost 50% of high-risk settlement growth over our study period. For each

flood risk, we only keep cities that are exposed to flood risks in their PDL during the period

(1985-2015). It leaves us with 2036 settlements facing any flood risk.

Table 4.6.1 presents the results of the first naïve OLS cross-sectional regressions. Given

their separate amenity value, we control for the three different types of unviable land separately:

steep land (a slope superior to 15%26), rivers and oceans. The share of high-flood risk pixels

and unviable pixels explains a large part of the variation in new settlements in high-flood risks

in the two periods. The relationship is almost one-to-one for high flood risk. The main source

of unviable land is the presence of steep land. An increase in one percentage point share of

surrounding steep land is associated with a 0.25 percentage point increase in new settlements

in HFR areas. The presence of rivers seems to increase new SE in HFR in the second period
26Our results are not sensitive to the degree of the slope
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but the association is much weaker than it is for steep land. Oceans do not seem to be a

factor – however as we will expand on later, this might reflect the fact that coastal cities tend

not to be monocentric and thus our PDL does not capture the presence of unviable land and

HFR areas equally well for these cities. These correlations reflect not only the impact of the

geographic barriers themselves but also the original placement of cities and the amenity-based

growth of cities towards high flood risk areas.

Table 4.6.1: New share SE in HFR in cross-sectional OLS (Any flood risk)

(1) (2)
1985 2000

Share HFR 0.933∗∗ 0.990∗∗

(0.0470) (0.0332)

Share unviable (steep) 0.270∗∗ 0.245∗∗

(0.0467) (0.0361)

Share unviable (rivers) 0.0170 0.130∗

(0.0514) (0.0557)

Share unviable (ocean) -0.0409 0.0192
(0.0795) (0.0674)

N 2036 2036
Rsquared 0.765 0.787

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level

Table 4.6.2 presents our first stage results of the four instruments: share of high flood risk

land around a city, share unviable steep land around a city, share of rivers around a city, and

share of oceans around a city.

Our instruments are all significant predictors at the 1% for their related outcomes. The

F-statistics of Columns (1),(2) and (3) are significantly higher than 10. The F-statistic for the

share of unviable land coming from oceans is lower than 10. This can be explained by two

data limitations: we only have a limited number of coastal cities (about 200), and they tend

to merge together more often than other cities, creating long urban patches along the coast.

Our PDL measure and instrument might not be the most appropriate for these cities, and

the predictive power of the instrument will be lower. We urge caution when interpreting the
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Table 4.6.2: First stage (Any flood risk)

(1) (2) (3) (4)
∆ Share ∆ Share ∆ Share ∆ Share

HFR (any risks) unviable (steep) unviable (rivers) unviable (ocean)
∆ Share HFR 0.297∗∗ -0.00788 0.0219∗ -0.00705
IV (any risk) (0.0354) (0.0116) (0.00820) (0.00900)

∆ Share unviable 0.00270 0.292∗∗ 0.00541 -0.0147
IV (steep) (0.0148) (0.0320) (0.00855) (0.00849)

∆ Share unviable -0.00358 -0.0389∗∗ 0.174∗∗ 0.0128
IV (rivers) (0.0177) (0.0132) (0.0195) (0.00865)

∆ Share unviable 0.134∗∗ -0.0194 0.0316∗∗ 0.335∗∗

IV (ocean) (0.0439) (0.0308) (0.00952) (0.109)
N 2036 2036 2036 2036
F 21.30 29.22 26.91 7.657

∗p < .05, ∗∗p < .01
Standard errors clustered at the region level

results for coastal cities. In order to avoid cross-predictions in our instruments, when looking

at flood risk separately, we only include steep land for pluvial risk and steep land and rivers

for fluvial risks.

Table 4.6.3 reports estimates from the long difference ordinary least squares (OLS) estima-

tion and the long difference instrumental variable (IV) for our main outcome: the share of

new settlement of a city i in high flood risk areas.

Column 1 in Table 4.6.3 presents results from an OLS specification in long-difference. The

OLS results provide estimates of the intention to treat, and the IV results provide estimates of

the average treatment effect on the treated. The OLS estimate tells us that an increase in

the share of high flood risk land around a city between 1985 and 2000 leads cities to expand

more in high flood risk land between 2000 and 2015. Compared to the cross-sectional results,

the coefficient is smaller than in a one-to-one relationship. About a third of the variation is

captured by city-invariant characteristics. Cities are actually managing to build away from

high flood risk land even when they are increasingly encircled by it.

Once we instrument for the share of high flood risk land using the growing monocentric
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Table 4.6.3: New Share SE in HFR - Long-difference and IV (Any flood risk)

(1) (2) (3) (4)
OLS IV OLS IV

∆ Share HFR (any risks) 0.605∗∗ 0.540∗∗ 0.615∗∗ 0.632∗∗

(0.0727) (0.191) (0.0651) (0.204)

∆ Share unviable (steep) 0.0397 0.0390
(0.0666) (0.194)

∆ Share unviable (rivers) -0.105 -0.577
(0.116) (0.361)

∆ Share unviable (ocean) 0.467∗ 0.870
(0.177) (0.450)

N 2036 2036 2036 2036
Rsquared 0.118 0.117 0.129 0.105

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level

circles (Column 2), we see a small but not significant decrease in the role of neighbouring HFR

land on new SE in HFR. There is path dependence of cities expanding into high flood risk

land when they are near areas with high flood risk to start with, even when we instrument for

the endogeneity of nearby high flood risk land. The coefficients for high flood risk land remain

significant throughout our four specifications, even when we control for the share of unviable

land. This is new evidence for the path dependence story: cities are locked in to a path of city

expansion into high flood risk land.

Turning to Columns 3 and 4 where we control for different forms of land scarcity due to

geographic barriers, we find that an increase in the share of unviable land is no longer significant

aside from the unviable land from the ocean. Cities growing in HFR areas are originally located

near rivers and steep land, but once we remove the time-invariant characteristics, there is no

evidence that an increase in unviable land is a factor in HFR growth. The coefficients from the

IV are also not significant. As mentioned above, our PDL and IV are weak for coastal cities.

Introducing a weak instrument might be biasing our estimation. We thus do the analysis by

flood risk type separately.
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4.6.2 Heterogeneity by flood risk type

We proceed to study heterogeneity by flood risk type. The most common flood risks in our

sample are fluvial floods, caused by overflowing rivers. The second most common is pluvial

floods, where intensive rain causes excess water, which cannot be absorbed fast enough by the

drainage systems or by ground infiltration. Pluvial risks are particularly problematic in urban

areas as they are less predictable. While pluvial floods occur often, the amount of land subject

to pluvial floods is small. The least common type of flooding is coastal. Due to high tides and

storms, it is particularly dangerous as water levels can reach higher levels of inundation depth

than other types of floods.

We first present our estimation results for fluvial risks only in Table 4.6.4. We include the

first stages of the results in the Appendix (1.7.3.3). Most cities in our sample (1771 out of

2555) are exposed to fluvial risks – the results are thus fairly similar to the general flood risk

analysis presented above. In Column 1, we find that once we take into account the original

location of the city, the impact of an increase in flood risks in the PDL is halved. Similarly, in

Column 3, the positive relationship between scarcity and HFR settlement growth disappears.

Table 4.6.4: New Share SE in HFR - Long-difference and IV (Fluvial flood risk)

(1) (2) (3) (4)
OLS IV OLS IV

∆ Share HFR (fluvial) 0.509∗∗ 0.393∗ 0.524∗∗ 0.513∗∗

(0.0639) (0.154) (0.0617) (0.170)

∆ Share unviable (steep) 0.0487 0.0573
(0.0579) (0.159)

∆ Share unviable (rivers) -0.0760 -0.706
(0.0900) (0.352)

N 1771 1771 1771 1771
Rsquared 0.0909 0.0862 0.0921 0.0518

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level

In Columns 1 and 2, we see that the coefficients drop from 0.5 to 0.39, yet the difference is

not statistically significant. The coefficients on scarcity are still null, with some indications
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that they might even become negative in HFR areas. This might be explained if higher shares

of unviable land decrease city growth overall. We do not observe density in our results – we

instead focus on the extensive growth - but it might be an indication that constrained cities

become denser.

Turning to pluvial risks in Table 4.6.5, we find in Columns 1 and 3 that the role of HFR

areas is again almost halved compared to the cross-sectional specification. In other words, cities

manage to develop away from HFR. In Columns 2 and 4, we also see that once instrumented

for, the role of HFR land also becomes non-significant and negative, which could once again

be due to cities expanding less when faced with high surrounding flood risk. We also see that

once instrumented for, the role of HFR land also becomes non-significant (between columns 3

and 4). One hypothesis for this result is that pluvial land covers, on average, a far smaller

share of the potential developable land of a city, so pluvial flood risk is less ‘binding’: cities

are more likely to successfully develop away from that land.

Table 4.6.5: New Share SE in HFR - Long-difference and IV (Pluvial flood risk)

(1) (2) (3) (4)
OLS IV OLS IV

∆ Share HFR (pluvial) 0.592∗ -0.837 0.613∗ -0.681
(0.284) (0.590) (0.280) (0.547)

∆ Share unviable (steep) 0.0384 0.115
(0.0230) (0.0842)

∆ Share unviable (rivers) -0.0595∗ -0.0722
(0.0226) (0.0772)

N 1732 1732 1732 1732
Rsquared 0.0336 . 0.0383 .

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level

Finally, we include the results of coastal flood risk in Table 4.6.6. We do not find any

statistically significant results after taking the long difference. While it could mean that most

of the city growth among coastal cities is endogenous to amenities and to the productivity

value of the coast – if coastal cities could develop monocentrically inland instead of growing
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along the coast – it could also mean that our framework is likely not suited to coastal growth.

Coastal cities tend to have merged with other coastal cities over our time period, creating units

of analysis that are not well captured by our framework (both by the potential developable

land metric and the instrumented land scarcity metric).

Table 4.6.6: New Share SE in HFR - Long-difference and IV (Coastal flood risk)

(1) (2) (3) (4)
OLS IV OLS IV

∆ Share HFR (coastal) 0.159 -0.588 0.165 -0.920
(0.129) (0.539) (0.125) (1.092)

∆ Share unviable (steep) 0.0174 3.993
(0.131) (6.437)

∆ Share unviable (ocean) -0.0878 0.570
(0.110) (0.864)

N 190 190 190 190
Rsquared 0.0121 . 0.0142 .

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level

Our results show that the narrative that scarcity of land is forcing cities to expand into

high flood risk land does not hold. Naïve regressions would overestimate the role of unviable

land in driving urbanisation in high flood risk land, when it seems as if all types of geographic

barriers (steep land, rivers and oceans) are not binding the city to grow towards risky land.

Urban growth in risky flood zones is likely driven by initial location and some consumption

or amenity value of that land leading cities to continue expanding towards it (e.g., coastal

amenities).

4.7 Conclusion

In this paper, we study the expansion of cities in high flood risk areas in China. We show that

the increasing expansion of cities in high flood risk areas is largely due to a lock-in effect of

cities surrounded by high flood risk. No matter which direction they expand in, they will face

some flood risk and cannot escape building in this area.
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We provide causal evidence that, once instrumented for, “hard constraints” such as

mountains or water bodies are not a driver of urbanisation in high flood risk areas. Instead,

risky growth seems driven by the deliberate consumption of flood-risk land due to the amenity

value associated with the geographic barriers (e.g. rivers).

Our results bring new evidence that cities are locked in to a path of risky growth and

that the expansion of cities in high flood-risk areas will persist. The future damages of floods,

accounting for heightened flood risks due to climate change and sea-level rise, will continue to

grow, warranting large investments in adaptation technologies such as drainage systems or

dikes.

It is not in the scope of this paper to comment on the role of stricter urban planning as

it would require accounting for other factors such as commuting costs, rents and wages. A

promising extension of this work would introduce land scarcity from urban planning into a

computational general equilibrium model. Future research should also seek to study whether

land scarcity plays a role for the entire distribution of flood hazards (e.g. inundation depth

and return rates), as well as combine data on density to capture not only the expansion of

cities but also the vertical growth of cities in high flood risk zones.
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Appendix

4.A.1 Additional Maps

Figure 4.A.1: Example of settlements that have merged into one continuous urban patch by
2015

Note: The first settlement on the left is composed of several distinct settlement patches in
1985 (orange polygons). As they merged into one continuous patch in 2000 (green polygon)

and then expanded further out in 2015. On the other hand, the two patches on the right side
haven’t merged yet and thus are counted as separate units. For each unit of analysis, the PDL
is defined as the Minimum Bounding Circle in the next period. As the settlements on the left

have merged, they have one PDL. On the contrary, the settlements on the right have two
distinct PDLs.

4.A.2 Simplified Monocentric City Model Framework with Floodable and Unvi-

able Land

We want to study whether settlements bound by unviable land have a greater share of

development in risky areas. Recall that our definition of land scarcity includes both unviable
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land (geographic barriers: steep land, rivers and oceans) and unsafe land (high flood risk land).

We develop a simple monocentric city model with land scarcity and flood risk to examine the

impact of land scarcity.

In a classic monocentric city model, employment is centralized in the central business

district. The model considers a city that is small (one of many in a nation) and open, where

people move costlessly between cities. For simplicity, we assume equal utility in the city ū,

rent R(x) is a function of commuting costs tx as a linear function of distance to the CBD,

wages w are equal everywhere, and lot size is equal to 1 such that population density is the

same. To connect the model to our empirical investigation, note that the key parameters of

interest are the total city population size N , and the edges of the city (xmax). It gives us the

basic bid rent function:

R(x) + 2tx = 0 + 2txmax

R(x) = 2t(xmax − x)

then add two dimensions to the model: floodable land F on one side of the city, and unviable

land d on the other side, which can be thought of as a mountain or a water body (so segment

d is unoccupied).

Floodable land adds two variables to the utility function: dis-amenity A of flood risk and

amenity value B of proximity of the coast or river. People located in a floodable area F suffer

from the dis-amenity cost A, where A < 0.

As our model compares the impact of flood risk between cities, we simplify the amenity

value B of the coast or the river to be equally distributed throughout the city, rather than as a

function of the distance to the coast. Wages w are unchanged. The line gradient is unchanged

as the amenity and dis-amenity parameters do not change as a function of distance.

The size and total population of the city are affected by the two new variables A and B.
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First, we focus on segment F :

R(x ∈ F ) + 2tx+A+B = 0 + 2txmax +B

0 ≤ R(x ∈ d) = 2t(xmax − x) −A

Whether the segment F is inhabited depends on the value of A, t and the edge of the city

xmax. We are left with three cases; high flood risk land is occupied up to xb ∈ [xW , x′
W ] as a

function of A:

1. A is big: d is unoccupied:

2t(x′max − x) −A ≤ 0

2. A is small: d is occupied

2t(x′max − x) −A > 0

3. A is intermediate: the area xW to xb is occupied and the area xb to x′
W unoccupied,

2t(x′max − xb) −A = 0

The total size of the city is thus lower by a factor of A/2t as A > 0. An intuition for A/2t

is the dis-amenity of the floodable land standardised by the commuting distance of that land

from the CBD.

Then we look at the total population in the city given by population on both sides of the

city:

N ′ = N ′
W +N ′

E = x′
W + x′

E − d

Utility at the CBD is given by:

w −R(0) − 2tx′max −B = ū
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Figure 4.A.2: Monocentric City Model Framework with Floodable and Unviable Land

Putting everything together, the population on the east side and west side is now:

N ′
E = x′

E − d = (w − ū+B)/2t− d

N ′
W = (w − ū+B)/2t+A/2t

Here x′
E and x′

W are the edges of the new city, after the dis-amenity and amenity shock

A and B. N ′
E and N ′

W correspond to the population after the shock on the East and the

West sides of the city, which are expanded by a factor B/2t, the amenity value standardized

by commuting cost. The amenity B (B > 0, it is a positive amenity) has an impact on the

equilibrium population.

As mentioned previously, the population in NF is lower by the factor A/2t as A > 0. The

total city population is:

N ′
E = x′

E − d = w − u+B

2t − d
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N ′
W = w − u+B

2t + A

2t

N ′ = N ′
E +N ′

W = w − u+B

t
+ A

2t − d

The city will also move further away from the monocentric model as a function of the size

and location of unviable land. We show that the population will settle in high flood risk land

if they value the amenity value of the land over the dis-amenity value of the flood, given the

commuting benefits associated with the land.

4.A.3 Additional Results

4.A.3.1 Robustness Checks We first build a second version of the instrument, where

we impose that the area of the instrumented PDL to be the size of the actual PDL for each

time period. Our results are not sensitive to this specification, which lends credence to our

instrument.

Table 4.A.1: New Share SE in HFR - Long-difference OLS and IV (Any flood risk) - IV area
equals PDL area

(1) (2) (3) (4)
OLS IV OLS IV

∆ Share HFR (any risks) 0.631∗∗ 0.490∗ 0.641∗∗ 0.488∗

(0.0728) (0.184) (0.0661) (0.197)

∆ Share unviable (steep) 0.0405 -0.0152
(0.0662) (0.165)

∆ Share unviable (rivers) -0.129 -0.172
(0.122) (0.210)

∆ Share unviable (ocean) 0.455∗∗ 0.729
(0.164) (0.401)

N 2047 2047 2047 2047
Rsquared 0.129 0.123 0.141 0.129

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level
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Table 4.A.2: New Share SE in HFR - Long-difference OLS and IV (Fluvial flood risk) - IV
area equals PDL area

(1) (2) (3) (4)
OLS IV OLS IV

∆ Share HFR (fluvial) 0.509∗∗ 0.389∗ 0.523∗∗ 0.438∗

(0.0637) (0.177) (0.0615) (0.170)

∆ Share unviable (steep) 0.0499 0.107
(0.0573) (0.130)

∆ Share unviable (rivers) -0.0721 -0.267
(0.0891) (0.195)

N 1781 1781 1781 1781
Rsquared 0.0909 0.0859 0.0921 0.0826

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level

Table 4.A.3: New Share SE in HFR - Long-difference OLS and IV (Pluvial flood risk) - IV
area equals PDL area

(1) (2) (3) (4)
OLS IV OLS IV

∆ Share HFR (pluvial) 0.592∗ -0.942 0.613∗ -0.895
(0.283) (0.773) (0.280) (0.776)

∆ Share unviable (steep) 0.0385 0.0603
(0.0230) (0.0656)

∆ Share unviable (rivers) -0.0598∗ -0.159∗

(0.0226) (0.0637)
N 1742 1742 1742 1742
Rsquared 0.0336 . 0.0383 .

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level
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We conduct a second robustness check where we compare the actual city growth rate

obtained using the auto-regressive regional growth model with growth rates systematically

smaller or larger. To create the systematically smaller and larger growth rates, we pick for

each city a shifter between 5% and 20% randomly generated from a uniform distribution. We

find that smaller growth rates have smaller changes in unviable land but slightly larger changes

in HFR land. The differences are, however, very small (Tables 4.A.4 and 4.A.5).

Table 4.A.4: ∆ Share non-viable by IV buffer size

(1) (2) (3) (4)
Any non-viable Ocean Rivers Steep

Larger MBC 0.00162∗∗ 0.000303∗∗ 0.000110 0.00125∗∗

(0.000283) (0.0000972) (0.000168) (0.000222)

Smaller MBC -0.00162∗∗ -0.000295∗∗ -0.0000588 -0.00133∗∗

(0.000295) (0.0000877) (0.000186) (0.000229)
N 7662 7662 7662 7662
Rsquared 0.000492 0.000135 0.00000338 0.000493

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the city level
The base category is actual buffer size calculted using regional growth

Table 4.A.5: ∆ Share HFR by IV buffer size

(1) (2) (3) (4)
Any HFR Fluvial Pluvial Coastal

Larger MBC -0.000777∗∗ -0.000578∗∗ 0.000124 -0.0000114
(0.000286) (0.000219) (0.0000816) (0.000405)

Smaller MBC 0.000724∗ 0.000670∗∗ -0.000142 0.00000866
(0.000298) (0.000246) (0.0000921) (0.000320)

N 7673 7673 7673 6557
Rsquared 0.000103 0.0000878 0.0000893 4.12e-08

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the city level
The base category is actual buffer size calculted using regional growth

4.A.3.2 Cross-Sectional Results Cross-sectional results for fluvial, pluvial and coastal

flood risks (these tables refer to the IV presented in the main analysis using the auto-regressive

regional growth rate).
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Table 4.A.6: New share SE in HFR in cross-sectional OLS (Fluvial flood risk)

(1) (2)
1985 2000

Share HFR 0.988∗∗ 1.053∗∗

(0.0586) (0.0538)

Share unviable (steep) 0.183∗∗ 0.177∗∗

(0.0334) (0.0255)

Share unviable (rivers) -0.0225 0.0807
(0.0390) (0.0628)

N 1771 1771
Rsquared 0.710 0.696

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level

Table 4.A.7: New share SE in HFR in cross-sectional OLS (Pluvial flood risk)

(1) (2)
1985 2000

Share HFR 1.120∗∗ 1.345∗∗

(0.176) (0.223)

Share unviable (steep) 0.0987∗∗ 0.0838∗∗

(0.0184) (0.0223)

Share unviable (rivers) -0.0186 -0.0138
(0.0101) (0.00905)

N 1732 1732
Rsquared 0.517 0.487

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level

Table 4.A.8: New share SE in HFR in cross-sectional OLS (Coastal flood risk)

(1) (2)
1985 2000

Share HFR 0.307 0.471∗

(0.151) (0.180)

Share unviable (steep) 0.384∗ 0.221∗

(0.136) (0.0939)

Share unviable (ocean) 0.186 0.193
(0.0897) (0.0904)

N 190 190
Rsquared 0.252 0.422

∗ p < .05, ∗∗ p < .01
Standard errors clustered at the region level
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4.A.3.3 First Stage Results First-stage results for fluvial, pluvial and coastal flood risks

(these tables refer to the IV presented in the main analysis using the auto-regressive regional

growth rate).

Table 4.A.9: First stage (Fluvial flood risk)

(1) (2) (3)
∆ Share ∆ Share ∆ Share

Share HFR (fluvial) unviable (steep) unviable (rivers)
∆ Share HFR 0.311∗∗ -0.00846 0.0258∗∗

IV (fluvial risk) (0.0383) (0.0151) (0.00926)

∆ Share unviable 0.00341 0.293∗∗ 0.00865
IV (steep) (0.0157) (0.0338) (0.00908)

∆ Share unviable -0.0147 -0.0414∗ 0.167∗∗

IV (rivers) (0.0182) (0.0154) (0.0240)
N 1771 1771 1771
F 27.88 25.97 24.78

∗p < .05, ∗∗p < .01
Standard errors clustered at the region level

Table 4.A.10: First stage (Pluvial flood risk)

(1) (2) (3)
∆ Share ∆ Share ∆ Share

Share HFR (pluvial) unviable (steep) unviable (rivers)
∆ Share HFR 0.235∗∗ -0.227∗ 0.0505
IV (pluvial risk) (0.0410) (0.0906) (0.0379)

∆ Share unviable 0.000566 0.284∗∗ 0.00526
IV (steep) (0.00392) (0.0334) (0.00848)

∆ Share unviable -0.000907 -0.0417∗ 0.177∗∗

IV (rivers) (0.00419) (0.0157) (0.0196)
N 1732 1732 1732
F 12.45 25.52 30.92

∗p < .05, ∗∗p < .01
Standard errors clustered at the region level

130



Table 4.A.11: First stage (Coastal flood risk)

(1) (2) (3)
∆ Share ∆ Share ∆ Share

Share HFR (coastal) unviable (steep) unviable (ocean)
∆ Share HFR in 0.133 0.00739 0.0244
IV (coastal risk) (0.0681) (0.0218) (0.0339)

∆ Share unviable 0.00736 0.0716 -0.124
IV (steep) (0.0844) (0.0575) (0.103)

∆ Share unviable 0.0510 -0.0139 0.256
IV (ocean) (0.0584) (0.0228) (0.125)
N 190 190 190
F 3.859 4.284 3.850

∗p < .05, ∗∗p < .01
Standard errors clustered at the region level
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5 Floods and Urbanization in Sub-Saharan Africa

5.1 Introduction

The consequences of floods on the loss of human life and destruction of infrastructure are

well-documented, but the long-term impacts are less known. According to the Centre for

Research on the Epidemiology of Disasters (CRED), most reported natural catastrophes are

hydrological disasters (floods, landslides, and tsunamis) followed by meteorological disasters

(storm, extreme temperature) as shown in Figure 5.1.1. Floods are responsible for a quarter of

economic loss inflicted by natural hazards (Figure 5.1.2). Sub-Saharan African countries are

particularly impacted by their geographic locations and their lack of protective infrastructure

(Stéphane Hallegatte et al. 2020b; IPCC 2012; Samson et al. 2011). Reconstruction funds

are limited in space and time. That is why floods’ human cost and share costs per GDP

are disproportionately falling on low-income countries (Figure 5.1.3). From 1985 to 2019,

floods worldwide killed more than 650,000 people and displaced over 650,000,000 people (R.

Brakenridge 2019).

These figures do not take into account the aftermath of floods. In the short-term, they

are often followed by disease outbreaks such as malaria, diminishing resilience ability of the

poorer households and displacement of populations (McMichael, Barnett, and McMichael 2012;

Elsanousi et al. 2018; Boyce et al. 2016; Jones, Ballon, and Engelhart 2018; Ghimire, Ferreira,

and Dorfman 2015).

In the long term, it has been found that households hit by floods have poorer health

outcomes, lower achievement at school for children and a lack of ability to invest (Lomnitz

2015). Floods have a large impact on agricultural production and livelihood (Dell, Jones,

and Olken 2014; Hochrainer 2009). Nonetheless, there is a growing number of people living

in high flood-risk areas (Stéphane Hallegatte et al. 2020a). Large floods do not result in a

long-term population adjustment in urban areas (Kocornik-Mina et al. 2018): people come

back to flooded areas in spite of the apparent dangers.

There is also some evidence that people locate in riskier areas (Rappaport and Sachs 2003;
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G. a. Kahn and Benolkin 2007; Pielke et al. 2008). It has been hypothesized that it might

be either because these areas are more productive or because the local population does not

bear the full costs of floods’ destruction. Reconstruction and protection efforts in impacted

areas in the US have been pointed out to explain these surprising results (Boustan et al. 2012,

2020). The context of Sub-Saharan Africa could be different as local governments have a more

limited ability to reconstruct and support impacted populations and businesses.

In this paper, I investigate if there is any persistent effect of large floods on population

growth in Sub-Saharan Africa. The main contribution of this paper is to show that the

long-term impact of floods on population growth is different between urban and rural areas. To

this end, I observe floods and population growth for three periods (1975-1990, 1991-2000, and

2000-2015), which allow quantifying persistence for a 10-15 years window. Population growth

matters as it has been linked to the aggregate economic growth rate. In particular, in the case

of Sub-Saharan Africa, the high ratio of workers relative to dependents create opportunities

for economic growth. The impact of floods on population growth rates in Sub-Saharan Africa

opens the discussion on managing flood risks. As in richer countries, floods could lead to an

increase in population growth due to disaster relief in flood-prone areas. Another possibility is

that once destroyed infrastructures have been rebuilt, cities would go back to their “natural”

growth rate, ignoring the signal to stay away from dangerous areas. Finally, because of the

repetitive destruction of means of production or population updating their risk perception,

population growth rates could suffer from a long-lasting decrease with the richest and more

resilient households moving away.

To understand the link between floods and long-term population growth, I use a simple

model where the incidence of floods affects households’ decisions to migrate. An increase

in the number of flooded days that repetitively destroy means of production in the medium

term gives people an incentive to move away or avoid an area. It might lower agglomeration

economies enough to impact affected areas persistently.

One of the main problems of studying floods in Sub-Saharan Africa is the lack of national

flood risk maps and detailed histories of past floods. Until recently, the studies of the impacts
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of floods have been concentrated on case studies using detailed maps of flooding, generally

only available for high-income countries or major cities. The second approach consists in

using global datasets such as the Emergency Events Database (EM-DAT) or Dartmouth

Flood Observatory (DFO). These datasets are constructed using news articles, official reports,

and self-reporting. Both of these datasets’ coverage and measurement quality depend on the

economic and political conditions of where the events happen (Hsiang and Jina 2014). For

these datasets, there is a clear improvement in reporting through the period studied, meaning

that floods happening in earlier years or more remote areas are likely to be under-reported. To

solve this problem, I use river discharge analysis for large river basins created using historical

climate simulation and a flood model for the world from 1979 to today (GloFAS) (Alfieri et

al. 2013). This data is used to fill gaps in the historical recording. It has the advantage of

being a comprehensive coverage of floods for the period, not biased by economic and political

conditions. Even though the floods obtained are historical predictions from the model, I refer

to them as floods in the rest of the paper for simplicity.

My main variable of interest is long-term population growth in Sub-Saharan Africa. I use

the Global Human Settlement Layer (GHSL) dataset to construct a panel data for each 0.1

by 0.1-degree grid cell (about 11km at the equator) for three periods: 1975 to 1990, 1991 to

2000, 2001 to 2015. The GHSL dataset is the most disaggregated population panel available in

the world. It also offers a built-up dataset and classifies cells by degree of urbanization. The

built-up provides a measure of human activity at the grid cell level. The degree of urbanization

is crucial to the analysis as it divides the space into uninhabited, rural, small cities and large

agglomerations. It is provided using built-up data from LANDSAT for the four epochs (1975,

1990, 2000, and 2015) and allocating population from census data to each cell. The cut-off

used to distinguish between urban and rural areas is 300 inhabitants per km square and a

minimum of 5,000 inhabitants. These two criteria allow comparison through time.

The data show that flood risk varies considerably over time. The population growth rate

decreases by five percentage points for each additional day of flooding per year. The effects

linger even after 10 to 15 years with a growth rate decrease of 10 percentage points. However,

in urban areas, the effects are partially dissipated. In large cities, floods have almost no
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long-term effect on population growth.

To obtain a more detailed estimate of the temporal effect of floods in urban areas, I

analyze the lag effects of past floods on night lights. I find that the impacts of large floods are

perceivable up to 5 years after a flood.

Finally, I perform supplemental analysis on Demographic and Health survey data to

document the channel between rural and urban differences in floods’ impact. Rural households

are more likely to be in the lowest wealth quantile after large floods. They also have worst

health outcomes. However, most of the differences are driven by the sorting of the poorest

people in risky areas.

This paper contributes to the literature on the long-term impact of natural catastrophes in

Sub-Saharan Africa, as well as the persistence of cities after large shocks. There is evidence

that floods contribute to lower population growth and increased poverty rates in rural areas,

primarily due to sorting. However, in urban areas, there is little persistence of floods.

The rest of the paper is structured as follows. First, I review the literature (Section 5.2),

then I summarise the context and data (Section 5.3), and the conceptual framework (Section

5.4). I present next the empirical strategy and results (Section 5.5), and in the last part, I

conclude (Section 5.6).

5.2 Literature review

The two key strands of literature relevant to this paper are (1) the economic consequences of

natural disasters and climatic shocks and (2) urban growth dynamics in developing countries.

First, this paper contributes to the literature on the impact of natural disasters as reviewed

by Cavallo and Noy (2012). While short-term impacts are well-known, the literature on

long-term impacts is relatively recent. There is growing evidence that natural disasters can

have a long-term effect on macroeconomic growth. Hsiang and Jina (2014) finds evidence that

cyclones lower national incomes relative to their pre-disaster trend and do not recover within
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Figure 5.1.1: Natural catastrophes 1980-2019
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Figure 5.1.2: Natural catastrophies total damages 1980-2019
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Figure 5.1.3: Natural catastrophies total death 1980-2019
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twenty years.

The level of development of countries influences the time-persistence: McDermott (2012)

finds that in countries with low levels of financial sector development, natural disaster events

negatively impact economic growth. McDermott, Barryy, and Tol (2014) uses the reported

floods from the international disasters database (EM-DAT) to show that in low-income countries

characterized by an absence of financial sectors, natural disasters have persistent adverse

effects on economic growth over the medium term. Castells-Quintana, del Pilar Lopez-Uribe,

and McDermott (2015) also find that poorer countries and households are more vulnerable to

climate change-related events.

In addition, linking natural disasters to urbanization, floods contribute to migration to

cities, which could fuel ethnic violence and conflicts (Castells-Quintana and Mcdermott 2019).

It also suggests that people living in informal settlements are more vulnerable to adverse effects

than the rest of the population. Narloch and Bangalore (2018) find that in Vietnam, poverty
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levels are higher in regions more exposed to natural disasters, and the poorest households are

the most impacted. In addition, they find differences between urban and rural areas in terms

of consumption rate. I find a similar pattern in Sub-Saharan Africa.

Institutions have been cited as a major factor entering the consequences of natural disasters.

In a country with poorer institutions, citizens are likely to mistrust government efforts;

governments are also less likely to seek to improve the welfare of their citizens (M. E. Kahn

2005; Toya and Skidmore 2007; Raschky 2008). On floods, in particular, Besley and Burgess

(2002) finds that in India more accountable politicians (via newspapers) are more likely to

prevent and mitigate the impacts of a shock.

In the US, government subsidies and private insurance are likely to make people more prone

to move to more productive but riskier areas. Deryugina (2011) finds that public and private

transfers absorb most of the costs of hurricanes in the US. However, she finds no change in the

population, earnings, or employment. She concludes that there are large inefficiencies due to

taxation deadweight loss and moral hazard. Boustan et al. (2012) find that young men move

away from areas hit by tornadoes but are attracted to areas experiencing floods in the US in

the 20s and 30s, potentially due to efforts by the Army Corps of Engineers to protect against

future flooding. Governmental investments in protective infrastructure and insurance might

lead people to not invest in self-protection (Peltzman 1975; Kousky et al. 2006). To explain

these reversed results, Kellenberg and Mobarak (2008) shows a non-linear relationship between

development and environmental risks: a higher level of economic development is associated

with riskier behaviour (locations near coasts and floodplains). Looking at more long-term

outcomes, Boustan et al. (2020) find that severe natural disasters increase out-migration

and falling house prices in the US in the twentieth century. They also observe an increase

in poverty rates in affected counties; they hypothesize it might be due to the out-migration

of richer households, the in-migration of poorer households due to falling out-prices or the

pauperization of existing households. Deryugina (2017) also find an increase in unemployment

and medical insurance after a disaster.

In general, evidence of the impacts of floods on developing countries is more scarce. In
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their studies of large floods, Kocornik-Mina et al. (2018) do not find any persistence of floods

on night light activity, except in newly lit areas. Scussolini et al. (2016) finds that people in

newly urbanized areas are particularly vulnerable to flood risk.

On migration specifically, Bohra-Mishra, Oppenheimer, and Hsiang (2014) shows that

climate migration is more likely triggered by long-term change such as an increase in tempera-

ture or precipitations than a one-off catastrophic event. One main reason is that disasters can

reduce households’ ability to send migrants or relocate by destroying assets.

Finally, these papers relate to the importance of agglomeration economies in urban

persistence. Bleakley and Lin (2012) find that cities develop near-natural features that give

them a productivity advantage. Cities persist even after these advantages disappear, showing

strong path dependency due to agglomeration economies. Unfortunately, it also means that

unaccounted future changes in risk can lead to sub-optimal allocation of firms and people

across space. Balboni (2021) shows that road investments in Indonesia do not consider climate

change and lead to such misallocation. Different forces drive human settlements in high flood

risk areas. First, original settlements are often close to flood risks as flood plains, rivers

and coasts gave a natural advantage to these locations. Then, agglomeration economics can

lead to a higher growth rate in these areas, even if the original advantage has disappeared.

Finally, cities can continue to grow along flood-risk areas, for example, along coastlines, as

the benefits outweigh the risks. One issue in looking at population growth and flood risk is

thus disentangling the unobserved amenities and productivity factors from the floods’ direct

impact.

Aside from natural disasters, large events such as bombing and war destruction have been

studied intensively in the US, Germany, and Japan without finding any long-term impact on

the systems of cities (Davis and Weinstein 2002). Mass destruction of parts of a city has even

been found to foster growth and reconstruction incentives (Richard Hornbeck et al. 2017).

However, the context of Sub-Saharan Africa is hugely different: the original system of cities

was constructed under colonialism with the main goal of extracting resources to bring them to

Europe (Jedwab et al. 2014). It is thus less likely that the original forces that created the
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system of cities are still in place. A major disaster could lead cities to a different growth path.

Moreover, agglomeration economies in the context of rural production or informal activities in

cities are not well-understood. It is thus unsure that major disruptive shocks would have the

same impact as in previous studies of the same kind.

5.3 Data and context

5.3.1 Flood data sources

This paper aims to analyze the long-term impacts of large floods on population growth rates.

To this aim, I used predicted historical floods from the Global Flood Awareness System

(GloFAS), a global hydrological forecast and monitoring system. To capture long-term trends

in population growth, I use the Global Human Settlement Layer (GHSL), a gridded population

dataset based on satellite imagery and census data. I also use Night Light satellite imagery

to explore the temporal dimension of flood persistence at a yearly frequency. Finally, I add

to the analysis by measuring large floods’ impact on households’ wealth and health using

Demographic and Health surveys for Sub-Saharan Africa.

Floods can be caused by different events as shown in Figure 5.3.1. This paper focuses on

infrequent fluvial flooding in large river basins. I use predicted historical data - so my measure

of floods come from historical meteorological conditions and geographic setting. They do not

capture changes in land use or political and economic conditions. Compared to reported floods,

I am unlikely to bias my results by capturing dominant city effects or anthropogenic changes.

However, it also means that I am excluding other flood risks such as surface flooding which are

quite common in urban areas and mostly due to land-use changes (Milly et al. 2002; Scussolini

et al. 2016; Kundzewicz et al. 2014; IPCC 2012). I also won’t consider flood defences and

improvement in flood risk management. It could lead to under-estimate the impact in most

protected areas. Therefore, the results of the population change’s regressions presented below

could be an under-estimation of the real impact of flooding.

In the analysis, I use a global hydrological model to predict floods in large basins (GloFAS)

jointly developed by the European Commission and the European Centre for Medium-Range
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Figure 5.3.1: Main causes of flooding
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Weather Forecasts (ECMWF).27 The main goal of Glofas is to issue warnings to support

preparatory measures for flood events worldwide. But the model is also used to develop river

discharge predictions for the past 40 years using reanalysis climate data. 28

As the model uses reanalysis data, I can compare these daily river discharge reanalysis

time series to actual discharge measures from gauge data29. The model has been calibrated to

fit the data and reflects the real gauge measures. In Figure 5.3.2, I plot the predicted daily

discharges from the GloFAS model to the reported daily discharges in m3/s from the Global

Runoff Data Centre (GRDB), a global hydrological data set that comprises discharge data of

more than 9,900 gauging stations from all over the world.

I have 241 stations in Sub-Saharan Africa over 13,439 days (the panel is unbalanced).

The correlation coefficient between the reported discharges from GRDB and the predicted

discharges from GloFAS is 0.7835, and the p-value is 2.2e−16. The model seems to be able to

predict between 30 and 55% of the variation in predicted versus reported discharges between

the different periods. On average, a 10% increase in reported river discharge is associated

with an 8.8% increase in predicted river discharge. The model underpredicts discharge slightly

compared to reported gauge data, but there is still a strong correlation between the two

datasets.

To get floods from river discharges, I compare the daily discharge to discharge thresholds

for each cell also provided by GloFAS30. Discharge thresholds are a set of maps corresponding

to different floods’ return periods (2, 5, and 20 -years, respectively called Medium, High and

Severe Awareness Levels). The return period is a measure of the probability that a flood

will occur. For example, the return period of a flood could be 20 years, meaning that the

probability is 1/20, or 5% in any one year. The thresholds have been created using the long
27GloFAS uses daily meteorological forecasts and hydro-meteorological initial conditions to feed the hydrolog-

ical modelling based on a land surface model (HTESSEL) and a flood model routine (Lisflood).
28The GloFAS v2.0 river discharge reanalysis was produced using the ERA5 ECMWF reanalysis (ERA5pr).

Reanalysis data is used to predict most accurately past weather and climate conditions. It is created using past
weather observations with modern forecasting models. One of the strengths is to provide consistent and global
coverage.

29A stream or river gauge station is a permanent point where the water level or flow of water is measured.
30“GloFAS 30-day discharge thresholds are a set of maps of discharge magnitudes corresponding to the 2-, 5-

and 20-year return period floods (respectively called Medium, High and Severe Awareness Levels). They are
generated by fitting a Gumbel extreme value distribution to the annual maxima series extracted from GloFAS
30-day discharge time-series of the hydrological reanalysis using the method of L-moments.”
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Figure 5.3.2: Reported versus predicted river dicharge
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reanalysis time series. The GloFAS dataset uses climate data from 1979 to today, so it itself

spans 40 years. The system is presented in the Appendix Figure 5.A.1.

One of the main advantages of GloFAS over other flood sources is that it is independent of

administrative and political boundaries and is consistent through time. The dataset covers

large basins around the world from 1979 to today. While it does not rely on reported events,

any bias introduced by the model is unlikely to be linked with the short-term economic

conditions of where the floods happen. On the other hand, one of the main limitations of

GloFAS is that the model is only operating on large river basins (upstream areas > 10,000

km square) and only reports on rain-fed fluvial floods. Floods caused by other factors such

as coastal erosions are not taken into account. The model also performs worst in arid and

semi-arid regions, particularly in Australia, Mexico and in the Sahel, but large floods are less

impacted (Alfieri et al. 2013).

In Figure 5.3.3, I aggregate for all cells in Sub-Saharan Africa the number of times their

discharge exceeds the 20-year return period threshold. Contrary to other datasets collected

through newspapers and official reports, there is no clear time trend. There is, however,

quite a bit of variation - with about 150,000 cells by day flooded in 1999 and only 1,400

three years later in 2002. In addition, the last period has fewer predicted flooded days than

previous periods, which is consistent with a decrease in moisture in Africa. The variability

and overall decrease seem to indicate that the results are not driven by a medium-term change

in risk perceptions. In the appendix, I present a comparison of GloFAS floods measure to the

Dartmouth Flood Observatory.

5.3.2 Population data sources

The population data comes from the Global Human Settlement Layer dataset. It uses satellite

imagery, census data, and GIS data to create a dataset on population (GHS POP), urbanization

(GHS-SMOD) and built-up land (GHS BUILT-UP) for the whole world. It is available for four

periods (1975, 1990, 2000 and 2015) at a 1x1 km uniform global grid resolution. Compared to

national datasets on population and urban growth, the GHSL methodology has a consistent

measure for different countries. Variation is only introduced by different years of capture in
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Figure 5.3.3: Floods in Sub-Saharan Africa

the satellite imagery31 or censuses32. It is also more disaggregated than other population

datasets. The system is schematized in the Appendix Figure 5.A.6. However, data quality has

increased over time as satellite imagery has gotten more precise and censuses more frequent.

To mitigate this issue, I dropped the first period in the robustness check and used different

thresholds to define recently populated areas.

One of the advantages of the GHSL dataset is that urban thresholds are consistent over

countries and time. The urbanization grid has four different categories: uninhabited, rural,

towns and suburbs or small urban areas, and cities or large urban areas. To be classified as

towns and suburbs or small urban areas, the cell needs at least 300 inhabitants per km2 and a

cluster of a minimum of 5,000 inhabitants. Cities or large urban areas are a set of contiguous

cells with a density of at least 1,500 inhabitants per km2 or a density of built-up greater than

50% and a minimum of 50,000 inhabitants.

31The built-up data comes from the Landsat multitemporal collection
32The population dataset comes from CIESIN GPWv4
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One of the main challenges of analyzing the impact of floods on population growth is

to compare floods - temporarily and spatially concentrated in a small space and time, to

population data which is usually available every ten years.33

I use the daily discharge grids and the 20-year return threshold grid to construct my main

measure of floods. I consider a cell flooded when the daily discharge exceeds the 20-year

threshold (which is the largest return threshold consistently available). To obtain a measure

that I can link with population growth, I sum up each day flooded in a year for each cell to

get a yearly sum. I then average each year in a period to get the average yearly number of

flooded days per period (the three periods are 1979 to 1990, 1991 to 2000, 2001 to 2015). The

results can be shown in maps 5.3.4, 5.3.5, and 5.3.6. Sub-Saharan Africa is shown in white

background. While being a simple measure of the frequency of floods in the area, it smooths

out some interesting variations about how large or how long each flood is.

Figure 5.3.4: Average number of flooded days per year, SSA, 1979-1990

33To compare the floods and the population datasets, I aggregate the population data recorded to the 1
by 1 km grid cell to 0.1 by 0.1 degrees. It requires summing up the data by a factor of about ten and then
transforming the spatial references. For the urban settlement, I first recode the urban settlement variables to
null if the cell is uninhabited or rural, and one if it is a town/suburb or a city/urban large urban area. I then
create an average share of urban cells when I aggregate up. The process introduces some measurement errors in
the population and urban data.
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Figure 5.3.5: Average number of flooded days per year, SSA, 1991-2000

5.3.3 Data description

In the sample I use for the analysis, I obtain about 125,000 cells for each of the 44 countries in

Sub-Saharan Africa. I only include cells that are inhabited for the three periods. I present the

summary statistics for all cells in SSA in Table 5.3.2, for cells with any urban population in

1975 in Table 5.3.3 and for cells without any urban population in 1975 in Table 5.3.4. I find

that rural cells are more exposed to floods than urban cells. It does not change over time. It

might be linked to the type of floods used (fluvial risk and not coastal or pluvial), but also it

might reflect the patterns of urbanization in SSA.

The average population in each cell is about 5,110 inhabitants. The average annualized

population growth rate is 4% from 1975 to 2015. The urban share corresponds to the share of

the surface of the cell that is either classified as a town/suburb or a city/large urban area.

The average urban area in each cell is about 1% over the three periods and only 0.5% in 1975.

However, the urban population share is much larger - 23% over the three periods and 16.4%

in 1975.
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Figure 5.3.6: Average number of flooded days per year, SSA, 2001-2015

Figure 5.3.7 shows the distribution of the urban population share (for cells with at least

some urban population) in 1975. More than three-quarters of the cells do not have any urban

population.

The average number of days flooded per year is 0.5. Contrary to the other source of data,

the number of floods per year in each cell is stable or decreasing. As the model is based on

climate data (most sub-Saharan countries are becoming arider during that time) and other

static inputs, it explains the current results. The flood measure only counts cells as flooded on

the river line. I construct a 30 km buffer around each cell to capture cells that are flooded

around the river and apply a gaussian decay to give a smaller weight to faraway cells. Cells

have an average of 1 flooded day per ten years.

5.3.4 Demographic and Health Surveys (DHS)

Demographic and Health surveys collect data on women’s health, family planning, and child

mortality from over 90 countries and 300 surveys. I use a subsample for Sub-Saharan countries

with GPS data on clusters’ locations. In total, I obtain 138 surveys in 34 countries as shown
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Figure 5.3.7: Histogram of share urban population in 1975 > 0

Table 5.3.1: Summary statistics for SSA (time invariant variables)

Statistic N Mean St. Dev. Min Max
Population 1975 98,184 2,978 11,535 0 1,011,443
Urban population share in 1975 98,184 17 34 0 100
Dist. to the nearest city in 1975 91,793 201 193 0 1,274
Dist. to the capital city 98,026 486 357 1 1,933
Dist. to the coast 98,184 546 410 0 1,800
Dist. to the nearest borders 98,184 118 101 0 621
Elevation 98,184 719 536 −535 4,485
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Table 5.3.2: Summary statistics for SSA (panel)

Statistic N Mean St. Dev. Min Max
Population 377,602 5,114.4 21,274.5 0.000 2,205,667.0
Urban population 377,602 3,910.1 20,889.0 0 2,205,463
Rural population 377,602 1,204.3 2,007.7 0.0 26,509.1
Urban population share 377,602 23.0 36.6 0 100
Population growth (%) 339,264 3.8 8.5 −166.9 158.6
Urban population growth (%) 94,812 3.2 6.9 −106.0 103.2
Rural population growth (%) 325,144 3.2 9.7 −186.4 156.3
Built up share 377,602 0.4 2.5 0.0 103.2
Built-up growth (%) 257,514 7.4 8.4 −58.4 136.2
Discharge 91,696 4,969.4 29,707.8 0.000 657,944.2
Flooded days 91,696 0.5 1.3 0.0 21.4
Flooded days buffer 377,602 0.1 0.4 0.0 9.4

Table 5.3.3: Summary statistics for SSA (any urban population in 1975)

Statistic N Mean St. Dev. Min Max
Population 70,232 19,161.3 44,747.1 0.001 2,205,667.0
Population growth (%) 70,229 2.1 4.2 −112.4 77.2
Urban population 70,232 16,566.2 44,544.7 0.0 2,205,463.0
Rural population 70,232 2,595.1 2,625.8 0.0 26,509.1
Urban population share 70,232 66.4 32.3 0.0 100.0
Built up share 70,232 1.5 5.4 0.0 103.2
Built-up growth (%) 69,803 6.5 6.8 −6.1 82.6
Discharge 17,175 8,339.1 41,105.3 0.000 657,944.2
Flooded days 17,175 0.3 0.9 0.0 12.2
Flooded days buffer 70,232 0.1 0.3 0.0 5.9

Table 5.3.4: Summary statistics for SSA (no urban population in 1975)

Statistic N Mean St. Dev. Min Max
Population 235,333 2,229.0 7,263.7 0.000 1,635,575.0
Population growth (%) 229,568 3.8 9.0 −166.9 158.6
Urban population 235,333 1,178.9 6,815.2 0.0 1,635,512.0
Rural population 235,333 1,050.1 1,849.1 0.0 25,800.4
Urban population share 235,333 14.4 30.5 0.0 100.0
Built up share 235,333 0.1 0.7 0.0 74.7
Built-up growth (%) 147,558 7.6 8.6 −58.4 136.2
Discharge 57,284 4,175.4 26,268.8 0.000 657,888.9
Flooded days 57,284 0.5 1.4 0.0 21.4
Flooded days buffer 235,333 0.1 0.4 0.0 9.4
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in Figure 5.3.8. The GPS coordinates correspond to the location of sampled clusters in each

country. The clusters are selected to be representative of the households of the main regions

in each country as well as the urban-rural divide. In each cluster, households are selected to

answer population, health, and nutrition questions. I use the module on malaria and wealth.

I use clusters’ GPS location to merge it with the flood data over time as shown in 5.3.9. A

confidential error buffer has been added to preserve the anonymity of the households. It is thus

not possible to differentiate between households that were in the flood zone and households

that were not or that have moved in since. However, it means that I am capturing both the

direct impact of floods as well as the neighbourhood effects in my estimate.

I construct a measure of malaria prevalence and flood occurrence using the person files as

shown in Table 5.3.5 and Table 5.3.6. The table shows the raw unweighted counts. About

30% of the sample is urban. Malaria prevalence is much higher in rural areas compared to

urban areas (30% against 20%).

In Table 5.3.7 and Table 5.3.8, I use the DHS households files to compare the probability

of being in the lowest quantile of wealth index and exposure to floods. I also calculate different

measures of flooding: a count of floods for the past ten years and the time since the last

flood. Rural households are much more likely to be in the lowest poverty quantile than urban

households (30% against 4%).

Table 5.3.5: Summary statistics for malaria prevalence in rural areas (DHS)

Statistic N Mean St. Dev. Min Max
Malaria rate 200,716 0.3 0.5 0.0 1.0
Flooded in the last month 2,322,924 0.03 0.2 0.0 1.0
Months since last flood 2,322,924 74.0 79.1 0.0 447.0
# Flooded 2,332,048 1.3 3.0 0 12

5.4 Conceptual framework

In this section, I use a simple model by Moretti (2011) based on Rosen-Roback spatial

equilibrium to shed light on empirical results. This model is generally used to model shocks

151



Figure 5.3.8: Number of surveys per country

Figure 5.3.9: Number of floods for each cluster
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Table 5.3.6: Summary statistics for malaria prevalence in urban areas (DHS)

Statistic N Mean St. Dev. Min Max
Malaria rate 71,943 0.2 0.4 0.0 1.0
Flooded in the last month 1,092,822 0.03 0.2 0.0 1.0
Months since last flood 1,092,822 79.6 84.7 0.0 446.0
# Flooded 1,108,498 1.1 2.8 0 12

Table 5.3.7: Summary statistics for the wealth index in rural areas (DHS)

Statistic N Mean St. Dev. Min Max
Poorest 715,834 0.3 0.5 0 1
Flooded in the last month 710,221 0.03 0.2 0.0 1.0
Months since last flood 710,221 76.7 76.5 0.0 447.0
# Flooded 715,834 1.8 1.7 0 20

Table 5.3.8: Summary statistics for the wealth index in urban areas (DHS)

Statistic N Mean St. Dev. Min Max
Poorest 346,323 0.04 0.2 0 1
Flooded in the last month 339,828 0.03 0.2 0.0 1.0
Months since last flood 339,828 83.0 83.2 0.0 446.0
# Flooded 346,323 1.6 1.7 0 20
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to local economic markets. It is helpful to understand spatial linkage. In the case of floods,

the general intuition is that in partial equilibrium, a flood reduces the total population of the

affected area. The reduced population put downward pressure on the local housing market,

reducing house prices (assuming an inelastic supply). However, the population decrease is

partially compensated by people moving in through lower house prices. Richer households are

more likely to move out; poorer households might be attracted by lower housing prices.

Using the model developed by Moretti (2011), I assume that all households are similar

and provide one unit of labour. They produce a single output which has a unitary price

traded everywhere. Workers’ locations determine local labour supply. The indirect utility of

household i in location j is

Uij = wj + rj +Aj + eij

Local nominal wage and rent are wj and rj . Locations j differs by amenities value Aj . eij is

an idiosyncratic preference for location j.

Now, take two locations a and b. The relative preferences for a over b is

eia − eib ∼ U [−s, s]

s represents the degree of mobility of the population. It encompasses factors such as

attachment to a specific area to mobility costs between different areas. If s is low, labour is

mobile.

An household would choose a over b if the locational preferences balance out real wages

and amenities differences:

eia − eib = (wa − wb) + (ra − rb) + (Aa −Ab)

It gives the following labour supply for city b which is controlled by the real wage and amenities

as well as the mobility factor s. In the case of Sub-Saharan Africa, I expect younger people,

and on average a younger population, to have a fairly high labour supply elasticity, thus a
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fairly mobile population:

wb = wa + (ra − rb) + (Aa −Ab) + s
Nb −Na

N

The production function takes the following Cobb-Douglas form:

ln(yj) = Xj + hNj + (1 − h)Kj

where Xj is a productivity shifter and Kc is the log of capital. The labour demand is the

following:

wj = Xj − (1 − h)Nj + (1 − h)Kj + ln(h)

The housing demand comes from re-arranging the labour supply:

rb = (wa − wb) + ra + (Aa −Ab) + s
Nb −Na

N

The supply of housing is a simple function where the housing units equals the number of

workers:

rj = z + kjNj

with kj the elasticity supply of housing. In this framework, the landowners are assumed to be

absentee landlords. I expect the housing supply to be more elastic in rural areas than in urban

areas (less regulatory and geographic constraints), and high in general as part of the housing

stock is informal. I abstract from ownership and renting discussion at this stage. Ownership is

usually higher in rural areas and could also be used to explain why rural areas show a stronger

wealth response to floods (destruction of housing would be a major asset loss).

The problem with identifying the impact of floods on the equilibrium is that even with

this simple framework, they could potentially enter in three different ways: first, through

the amenities of the areas, for example, by destroying public infrastructure; second, through

the local productivity shifter by destroying the means of production and finally, through a

decrease in the stock of housing.
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In the simplest case, there is no flood. At equilibrium, people should sort themselves

between locations. I do not expect people to locate in the same place, even if local amenities

or productivity are higher, as people have idiosyncratic preferences. Urban areas have higher

amenities on average than rural areas. For example, even in slums, access to water, electricity

and sanitation is better than in rural areas (Bird, Montebruno, and Regan 2017). Education

and health progress have also been faster than in rural areas (Bird, Montebruno, and Regan

2017).

From the simplest case, it is possible to add to the effects of a flood. A flood lowers the

population in affected areas through a decrease in amenities and productivity. I choose the

simplest entry as a productivity shock in city b: Xb2 = Xb1 + ∆. I expect the housing elasticity

to be fairly elastic as well as labour mobile. Most of the shocks should then be translated by

out-migration:

Nb2 −Nb1 = N

N(ka + kb) + 2s∆ ≤ 0

The real wages in b are also decreased:

(wb2 − wb1) − (rb2 − rb1) = kaN + 2s
N(ka + kb) + 2s∆ ≤ 0

However, this fall in real wage will be partially compensated by a decrease in housing costs:

rb2 − rb1 = kbN

N(ka + kb) + 2s∆ ≤ 0

Real wage in a, the non-affected region, might also be decreased, but by less than in the

impacted area b :

(wa2 − wa1) = (ra2 − ra1) kaN

N(ka + kb) + 2s∆ ≤ 0

The two key parameters are the housing elasticity kj and labour mobility s. Holding

housing elasticity constant, the more mobile the population is, the more they can relocate to

reduce the impact of the shock. If s is small, the elasticity of labour supply is high; people are
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more likely to relocate after a shock.

Housing supply is directly linked to geographic constraints and the regulatory environment

(Saiz (2010)). I expect a more elastic supply in rural areas, so a more considerable population

drop and a smaller decline in price/rent. Recent papers by Baum-Snow and Han (2022) and

Hilber, Lyytikäinen, and Vermeulen (2011) show indeed that housing supply elasticity depends

on distance to city centre and geographic constraints. One caveat of this model is that housing

supply is generally represented as kinked downwards. One argument to use this model is

that the housing stock is less durable in developing countries, especially in rural areas, so

destruction might be more feasible.

Floods could also be modelled as a partial destruction of housing stock instead of being an

amenity or productivity shock. It would lead to an increase of increase house prices and rents

in both urban and rural areas. However, the destruction could be larger in rural areas (less

flood protection, and less sturdy buildings).

I relate this simplest model with my empirical strategy by looking at population changes

after a flood. Similarly to Kocornik-Mina et al. (2018), I do not find significant long-term

changes in urban areas. It is consistent with urban areas having a more inelastic housing

supply.

5.5 Empirical analysis and results

In this section, I investigate if there is a lower population growth following a large flood in the

medium-term, which would be consistent with out-migration in the affected areas. Next, I

look at heterogeneous effects between rural and urban areas as I expect labour and housing

elasticities to be different. I then use night lights to measure the response to a severe flood

using a yearly measure. Finally, I use demographic and health surveys to understand better

how the impacts could differ between rural and urban settings.
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5.5.1 Population growth

In this section, I present the results from the empirical analysis using the GHSL population

data and GloFAS predicted floods.

I am interested in the impact of large floods on population growth in rural and urban

areas. To this end, I observe the population in each period (1990, 2000, 2015) and the number

of flooded days in the current and previous periods (1975-1990, 1991-2000, 2001-2015). The

observation unit is the 0.1 by 0.1-degree grid cell c observed for three periods t for all inhabited

cells in Sub-Saharan Africa: 1990, 2000, and 2015. The main identification concern is that

cities grow near rivers and takes to benefit from access to clean water sources, agricultural

productivity and weather amenities of these places. There could be a reverse causality bias

when looking at the impact of floods on urbanization. To alleviate it, I use a fixed-effect model

to analyze population changes over time and thus interpret the coefficients on my table as the

impact of floods on population change. Precisely, I control for cell fixed effects, country-time

trends and period fixed effects in all the population change regressions. However, if flood-prone

areas are becoming more and more attractive over time - and there are some indications in

the literature that it might be the case in South-East Asia, I might still capture some of the

endogenous growth in the regressions. The context in Sub-Saharan Africa is very different to

South-East Asia- I do not observe any significant increase in settlements in high-flood risk

areas.

Another concern is measurement bias in the dependent variable. The variation I would

ideally like to capture is the impact of floods on population growth. However, I observe the

predicted number of days flooded for each cell rather than the actual number of days flooded,

which themselves are only a proxy for the costs of floods. I assume that the cost of floods

is increasing in the number of days flooded in Sub-Saharan Africa. The main independent

variable is the average number of days predicted flooded per year divided by 100: Floodsc,t

in cell c located in the country cnty for the period t. To only lead to attenuation bias, the

measurement error introduced by the model needs to follow a “classical errors-in-variables

model”: it needs to have a mean of 0, and not be correlated with the outcome (logged

population), the predictors (flood costs, urban share, recently populated and population in
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1975) or the error term. As mentioned previously, as the flood model focuses on large flooding

driven by climate variables, predicted floods should not be correlated with land-use changes.

Contrary to reported floods, it is unlikely to be more precise in areas that have more media

attention or where governments are more accountable (e.g. larger cities and political centres).

First, I look at how floods impact rural and urban areas differently. I include the share of

the cell classified as urban in the GHSL dataset in 1975 Share urban populationc,1975. Finally,

I control for cell fixed effects, time trends and period fixed effects. All standard errors are

clustered at the country level.

The current formulation looks at the relationship between population levels and the average

number of flooded days per period. The estimating equation is:

Ln(Popc,t) = α1Flooded Daysc,t + α2Flooded Daysc,t−1+

α3Share urban populationc,1975 × Flooded Daysc,t+

α4Share urban populationc,1975 × Flooded Daysc,t−1+

+ρc + δt + γcnty × δt + ϵc,t

where Ln(Popc,t) is the natural log population in cell i at period t. Flooded Days/100c,t

is the average number of flooded days per year within 30 km of a cell i at period t. Floods in

distant cells are weighted less than close cells using a Gaussian decay. The measure of floods

is thus similar to an inverse distance weighted average. Share urban populationc,1975 is the

share of the population of the cell i urban in 1975. ρc represents cell fixed effects, δt period

fixed effects and γcnty × δt country period fixed effects34

In Table 5.5.1, I present the results of the first specification. In column 1, I find a non-

significant negative impact of the increase in the average number of flooded days on population

growth in Sub-Saharan Africa. In column 2, once I add the number of flooded days in the last

period, I find that an additional day of floods in the current periods and the past periods are

associated with a decrease in population growth by 3.6% and 5.9%. The population growth
34The population is measured in 3 periods of different time lengths: 15, 10 and 15 years. I also run a regression

using the difference in the average number of flooded days per period on population growth annualized to deal
with the different time length and obtain similar results.
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rate over the period is 3.8%, so these areas either do not gain any population or might even

lose some. The coefficient is more significant and slightly larger in the lagged term, which is

surprising. It might indicate that the coefficients capture some omitted non-desirable aspects

of the most exposed areas.

I include the interaction with the share of the urban population in 1975 in column 3. I find

that the impact of an increase in flooded days is still negative for rural areas but compensated

in urban areas. It seems to indicate that the urban areas do not experience the same loss in

population in the medium term.

Once I include the interaction with the share of the urban population in 1975 and lags

in column 4, I find a stronger impact on rural areas (a decrease of 5.7 and 7.7 percentage

points) but positive interactions with the share urban. It does not mean that urban cells gain

population after an increase in floods but that they lose less. Table 5.A.1 in the appendix

show exactly that by analyzing the rural sample and urban sample (any cells with an urban

population) separately.

Additionally, the more urban a cell is, the more the negative impact of floods on population

growth is mitigated. Table 5.A.2, Table 5.A.3, and Table 5.A.4 in the Appendix show that

this result is robust to a different definition of urban (taking a dummy for any urban in 1975,

a dummy for share urban in 1975 superior to the 90th percentile of the distribution, or a

categorical variable taking a value of 0 for rural, 1 for any urban and 2 for share urban in

1975 superior to the 90th percentile). While I do not observe migration directly, it seems to

indicate that impacted rural areas lose population and impacted urban areas grow slower than

non-impacted cities.

Finally, I perform the same analysis but using the income levels as defined by the UN

World Urban Prospect 2018 to create my sample in Table 5.A.5, 5.A.6, 5.A.7, and 5.A.8. I

find stronger negative relationships between severe floods and population growth for rural

areas in low-income countries (LIC), as well as still a positive interaction with the urban

population. This is expected as most of the low-income countries are in Sub-Saharan Africa. I
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find almost no statistically significant coefficients for lower-middle-income countries (LMIC)

and high-income countries (HIC). I find similar patterns for upper-middle-income countries but

smaller coefficients. These findings seem to indicate that the level of economic development

and institutional settings are crucial to understanding why floods would have a medium-term

impact on population growth and urbanization. In the absence of flood protection and disaster

relief, people in rural areas are more likely to leave in the medium-term.

In the next section, I investigate which factors could drive the difference in the impacts of

a severe flood between rural and urban areas.

Table 5.5.1: Floods on log population - SSA

(1) (2) (3) (4)
Flooded days/100 -2.7 -3.6 -3.8 -5.7∗

(2.5) (2.6) (3.3) (3.3)
Lagged flooded days/100 -5.9∗∗∗ -7.7∗∗∗

(2.1) (2.4)
Flooded days/100 × Share urban population 1975 16.2∗ 32.9∗∗∗

(8.3) (8.3)
Lagged flooded days/100 × Share urban population 1975 18.8∗∗

(7.6)
N 361432 236426 361432 236426
Within Rsquared 0.0001 0.0005 0.0004 0.001
Period FE Yes Yes Yes Yes
Country-Period Trend Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

5.5.2 Nighttime light analysis

One of the main reasons the urban areas do not seem to experience the same out-migration as

rural areas could be that they are better protected. While I can only observe the population

every ten years, I can observe the change in nighttime lights yearly. I construct a yearly panel

of night lights for every cell in my sample of Sub-Saharan countries and compare it with a

measure of the number of flooded days. I still find an impact of floods on nightlights, but less

persistent than the effect on population growth. The estimating equation for the next graph is

the following: Ln(NightLightsc,t) night lights in cell i at year j, Flooded Cellc,j a dummy if
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cell i has been flooded during year j, ρi cell fixed effects and δj time fixed effects.

Ln(NightLights)c,j = α0Flooded Cellc,j + α1Flooded Cellc,j−1+

α2Flooded Cellc,j−2 + α3Flooded Cellc,j−3+

α4Flooded Cellc,j−4 + α5Flooded Cellc,j−5+

+ρi + δj + ϵc,j

I find that an increase in flooded days is associated with a decrease in night lights up to 5

years in the past in Figure 5.5.1. It indicates that urban areas were also impacted but might

be recovering faster than rural areas. Unfortunately, I can not use night lights for the full

sample as many areas are still not lit in Sub-Saharan Africa. The night light sample is thus

more urban than the sample. The standard errors are larger at time 0 as the nighttime light

uses a yearly average - meaning that time captures both before and just after the flood (there

should be no impact of future floods on nighttime lights but a large impact just after).

I reproduce the results from Table 5.5.1 in Table 5.A.9 but use Nighttime Lights instead

of population. I find no negative impact in the most lit-up areas (columns 1 and 2). Once I

introduce the interaction, I find a negative but not persistent impact in the rural areas and a

positive but not persistent impact in the urban cells (columns 2 and 4).

These results are consistent with the finding of Kocornik-Mina et al. (2018), but the time

effects are slightly more long-lasting in time. The sample includes much smaller cities, which

might take longer to recover.

5.5.3 Demographic and health surveys analysis

I use Demographic and Health Surveys to shed light on the mechanisms that produce these

differences between rural and urban areas. I find that severe floods are associated with worst

outcomes: impacted households are on average poorer and suffer from a higher rate of malaria

infection. However, these health and wealth effects are dissipated after a year. It suggests

that the long-term differences in population growth rate emerging after large floods are more

likely due to a tempering of out-migration in urban areas - either due to in-migration caused

by lower housing prices or lower out-migration response.
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Figure 5.5.1: Flooded days (yearly lags) on night lights growth

5.5.3.1 Malaria infection In this section, I analyze the impact of floods on health

outcomes linked with flooding in the short and medium term. Malaria infection intensity

has been linked to precipitations (Pascual et al. 2008; Krefis et al. 2011). Malaria has been

shown to decrease economic growth (Gallup and Sachs 2001). I compare the probability of

testing positive for malaria after a large flood in urban and rural areas using an event study

type analysis for each individual i in the DHS surveys. I run the following OLS and logit

estimations:

Malariai = α+
∑

βT
t Floodedi,t +XiΦ + ϵi

The outcome Malariak is a dummy variable taking a value of 1 if the individual has tested

positive for the malaria test. As a measure of floods, I use the number of months since the

last flood. The base category is individuals that live in areas that have not been recorded as

flooded in the last 18 months. The controls Xi include age, gender, time of the interview and

region dummy. The sample is all individuals in household DHS surveys in Sub-Saharan Africa

with GPS coordinates. The regressions use the sampling weights provided in each survey and

are resized using the sampling fraction of the country’s population. All regressions are done

separately in urban and rural clusters. Standard errors are clustered at the village level.
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I run both OLS and logit regressions of time since the last flood on the probability of

testing positive for malaria. I present the logit regression results in Table 5.A.10. In rural

areas, I find an increased probability of testing positive up to a year after a flood on top of a

much higher prevalence rate (the average rate of malaria is 35% in rural areas against 16% in

urban areas). There is also a small peak in urban areas, but it is less spread in time.

I plot below in Figure 5.5.2 the coefficients of the OLS regressions. There is a clear increase

in rural areas while the coefficients are close to zero in urban areas. It is consistent with a

higher incidence rate in rural areas. However, it might also be due to better flood defences in

urban areas.

5.5.3.2 Wealth effects In the next section, I look at the short and medium-term effects

of fluvial floods on households’ wealth. The literature suggests that floods and extreme

weather events are associated with diminishing resilience in the short-term (Jones, Ballon, and

Engelhart 2018). I find that the more an area has suffered from severe floods, the more likely

its inhabitants to fall in the lowest quantile of the wealth index in the DHS surveys. The DHS

wealth index is a composite measure of households’ living standards. The index is based on

the following variables: the source of drinking water, type of toilet, sharing of toilet facilities,

the material of the principal floor, walls, roof, cooking fuel, household services and possessions,

such as electricity, TV, radio, watch, types of vehicles, agricultural land size owned, type and

number of animals owned, bank account, types of windows. Floods could affect this measure by

reducing the number of assets, using cheaper materials for housing construction, or destroying

water access and sanitation facilities. Unfortunately, I do not observe households before and

after a flood event. Still, I can capture the change in probability of being classified in the

poorest quantile relative to the occurrence of floods.

I run the following event study estimation using an OLS and logit model using the same

time since flood measure as in the previous malaria rate analysis:

Pooresth = α+
∑

βT
t Floodedh,t +XhΦ + ϵh

I use as a sample all households DHS surveys in Sub-Saharan Africa with GPS coordinates.
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Figure 5.5.2: Probably of testing positive for malaria after a flood
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The regressions use the sampling weights provided normalized by the sampling fraction of each

survey.

The outcome Pooresth is a dummy variable taking a value of 1 if the household h is

classified as belonging to the poorest quantile according to a wealth index built on DHS data.

All regressions are done separately in urban and rural clusters. I do an event study analysis by

regressing being in the lowest wealth quantile on time in months since the last recorded flood.

The base category is households that live in an area that has not been recorded as flooded in

the past 18 months but has been in the last 10 years. I control for the number of household

members, the number of children under 5, gender of the household head, age of the household

head, month, year and country fixed effects.

In Figure 5.5.3, I plot the OLS coefficients of the event study. Figure 5.5.3 shows an

increase of about 7% in the probability of being categorized in the poorest quantile in the

first 9 months after a flood in rural areas. The coefficient return to baseline after a year.

The increase is much smaller in magnitude and shorter in time in urban areas. I include the

corresponding logit regression in Table 5.A.11 in the Appendix.

Both health and wealth event studies show that floods have a short-term impact in rural

areas. However, these effects are mostly dissipated after a year. To explain the differential

growth rate in the medium-term, I look at the relationship between poverty and living in an

area that has been repetitively flooded in the past 10 years. I run a similar regression to the

previous event study but replace the main flood regressor with the count of floods in the last

ten years. I show in Figure 5.5.4 how the probability of being in the lowest wealth category

relates to the count of floods in the last ten years. The base category is households that live

in an area with no recorded floods.

Pooresth = α+ βCountF loodsh +XhΦ + ϵh

I find a positive relationship between being in the lowest wealth quantile and the count of

floods, especially in rural areas. The probability of being classified is increased by 15% in the
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Figure 5.5.3: Probably of being in the lowest wealth quantile after a flood
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most exposed rural areas. The coefficients in urban areas are all smaller than a 5% increase

and barely significant. There is no strong relationship between poverty and the number of

recorded floods in urban areas.

There are some caveats to the interpretation of these coefficients. The relationship is not

necessarily causal as I can not observe migration patterns. Additionally, different channels

could be at play in urban areas: households are wealthier and thus more resilient to shocks, and

cities have better flood protection. In rural areas, I can not distinguish between an increase in

poverty rate due to a decrease in agricultural output, destruction of assets, out-migration of

richer households, or in-migration of poorer households. I do not find any persistent results in

the wealth index, which points to sorting households in the medium term. As the population

growth rate analysis shows a decrease in population growth in rural areas, it also seems to

indicate that some households or working-age individuals leave the most impacted areas.

I do a placebo test by replacing the count of floods in the last ten years with the count

of floods in the next ten years. I include the graphs in Appendix Figure 5.A.7. The small

and positive relationship between the count of floods and poverty in urban areas disappears.

However, the relationship between poverty and the count of floods in rural areas is still high.

It indicates that the positive relationship in rural areas is probably driven by the sorting of

poorer households in the most exposed areas and not only by impoverishment after a flood. I

also include the logit results in Table 5.A.12.

5.6 Conclusion

In this paper, I explore the impacts of large floods on population growth in Sub-Saharan

Africa. I pay particular attention to the difference between rural and urban areas.

I find that an increase in the number of severe floods is associated with a decrease in

the population growth rate in rural areas in Sub-Saharan Africa over the 1990-2015 period.

This finding is consistent with out-migration from flooded regions. However, this decrease is

partially offset in more urban areas. Further analysis of the differences between rural and

urban areas at the household level shows that they are both affected by increased poverty
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Figure 5.5.4: Probably of being in the lowest wealth quantile after repetitive flooding
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rates and disease incidence. However, nighttime light analysis seems to suggest that urban

areas recover faster. Their base level of poverty and malaria incidence is also much lower.

Finally, this work looks at the long-term costs of major natural catastrophes on local economic

development. The poorest people are the most exposed to risks and the less able to cope.

Repetitively flooded areas have the highest poverty rate. Improving flood management could

lead to a long-term reduction in poverty and an increase in household resilience.

These findings are linked to the evidence that poor people are more exposed to floods and

less able to cope with natural disasters. Nevertheless, a large number of people still choose to

live in high flood-risk areas for economic and amenity-related reasons. I do not observe other

economic variables such as wages or housing prices and thus can’t derive welfare predictions

from the results and comment on the optimality of people’s locational choice. Similarly, I don’t

have a survey on people’s flood risk perceptions, land prices, or short-term displacements. I

only observe populations every ten years to fifteen years. The phenomenon that I observe

is thus a medium-term decrease in the population growth rate in rural and less dense areas.

It is different from a short-term negative shock: people being displaced or infrastructure

being destroyed, followed by a short-term recovery - which would indicate that people do

not update their flood risk perception and locate in dangerous places. I observe a medium

to long-term effect of floods - meaning it is probably linked with the impacts of the floods

listed in the literature: the attractivity of the places might decline because of the destruction

of infrastructures, higher disease rate, decrease in households investments, decreased access

to education for children, higher poverty rate (McMichael, Barnett, and McMichael 2012;

Elsanousi et al. 2018; Lomnitz 2015).

170



Appendix

5.A.1 GloFAS system

Figure 5.A.1: GloFAS system

I present here the comparison of the GloFAS to the Dartmouth Flood Observatory (DFO)

dataset by mapping individually each flood from the DFO dataset to the GloFAS grid data.

The Dartmouth Flood Observatory (DFO) dataset consists of about 4,900 floods collected

from a “variety of news, governmental, instrumental, and remote sensing sources” worldwide.

It covers 1985 to real-time, but the reporting improves dramatically over time. Shapefiles

corresponding to the extent of the affected area are provided (the shape is usually larger than

the actual flooded areas). The starting date, ending date, severity (on a scale from 1 to 2),

death, displaced people, and costs are also recorded when available.

In Figure 5.A.2 and 5.A.3, I show how the two datasets relate using a flood in Somalia

in 1997 as an example. First, I obtain the count of predicted flooded days for each cell by

comparing the daily discharges to the 20-year threshold shown in Figure 5.A.4. I obtain a

map of the count of flooded days for each cell during the duration of the flood in Figure 5.A.5.

The grid cells in blue represent how many days are predicted as flooded by GloFAS during the

period when the flood is considered “active” in the DFO dataset.
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As shown in figure 5.A.5, the DFO reported flood (line in blue) encompasses a large area

of “impacted” cells, including both areas reported flooded and areas affected by the floods

(where the economic activity is disrupted by the flood). Only cells modelled in the GloFAS

dataset can become flooded, so the extent is necessarily smaller than the DFO. To capture the

impact of neighbouring floods, I also create for each cell a weighted average of the number of

floods in neighbouring cells using a 30km radius35.

Figure 5.A.2: River discharge day 1 of the flood, Somalia, 1997

5.A.2 GHSL

The Global Human Settlement Layer is a panel data on built-up land, population and degree

of urbanization available for 1975, 1990, 2000, and 2014. It has been created by merging

satellite imagery and census data.
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Figure 5.A.3: River discharge day 41 of the flood, Somalia, 1997

Figure 5.A.4: 1 in 20 return period threshold
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Figure 5.A.5: Number of flooded days (discharge > threshold), Somalia, 1997

Figure 5.A.6: Conceptual schema of the GHSL input data, processing and products (Florczyk
et al,. 2019)
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Table 5.A.1: Floods on log population by urban and rural sample separately

(1) (2)
Rural in 1975 Urban >0 in 1975

Flooded days / 100 -4.6 0.4
(3.2) (3.7)

Lagged flooded days / 100 -7.1∗∗∗ 0.2
(2.5) (2.3)

N 189608 46818
Within Rsquared 0.0006 0.000004
Period Dummies Yes Yes
Country-Period Trend Yes Yes
FE Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: The first column corresponds to all cells in SSA without any urban population in 1975.
The second column corresponds to any cells with some urban population in 1975.

5.A.3 Additional tables - population growth

Table 5.A.2: Floods on log population (urban population dummy)

(1) (2) (3) (4)
Flooded days / 100 -2.7 -3.6 -4.0 -5.9∗

(2.5) (2.6) (3.4) (3.5)
Lagged flooded days / 100 -5.9∗∗∗ -7.9∗∗∗

(2.1) (2.5)
Any urban in 1975 >0 × Flooded days / 100 13.7∗∗ 25.4∗∗∗

(6.7) (6.5)
Any urban in 1975 >0 × Lagged flooded days / 100 14.8∗∗

(5.9)
N 361432 236426 361432 236426
Within Rsquared 0.0001 0.0005 0.0004 0.001
Period Dummies Yes Yes Yes Yes
Country-Period Trend Yes Yes Yes Yes
FE Yes Yes Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: Any urban in 1975 is a dummy variable equal to 1 if the cell had any urban population in 1975
and 0 otherwise.
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Table 5.A.3: Floods on log population (90th urban population percentile)

(1) (2) (3) (4)
Flooded days / 100 -2.7 -3.6 -3.5 -5.2∗

(2.5) (2.6) (3.1) (3.0)
Lagged flooded days / 100 -5.9∗∗∗ -7.3∗∗∗

(2.1) (2.2)
90th pct. urban=1 × Flooded days / 100 13.8∗∗ 28.7∗∗∗

(6.5) (6.6)
90th pct. urban=1 × Lagged flooded days / 100 16.2∗∗

(6.2)
N 361432 236426 361432 236426
Period FE Yes Yes Yes Yes
Country-Period Trend Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: 90th pct. urban is a dummy for cells with an urban population above the 90th percentile
of the urban population distribution

Table 5.A.4: Floods on log population (urban population categorical)

(1) (2) (3) (4)
Flooded days / 100 -2.7 -3.6 -4.0 -5.9∗

(2.5) (2.6) (3.4) (3.5)
Lagged flooded days / 100 -5.9∗∗∗ -7.9∗∗∗

(2.1) (2.5)
Urban < 90th pct × Flooded days / 100 12.6∗ 18.4∗∗

(6.6) (7.4)
Urban < 90th pct× Lagged flooded days / 100 11.4∗

(6.2)
Urban > 90th pct × Flooded days / 100 14.3∗∗ 29.5∗∗∗

(6.9) (6.9)
Urban > 90th pct × Lagged flooded days / 100 16.8∗∗

(6.5)
N 361432 236426 361432 236426
Within Rsquared 0.0001 0.0005 0.0004 0.001
Period FE Yes Yes Yes Yes
Country-Period Trend Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: Urban < 90th pct is a categorical variable for urban population under the 90th percentile.
Urban > 90th pct is a categorical variable for urban population over the 90th percentile.
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Table 5.A.5: Floods on log population (LIC)

(1) (2) (3) (4)
Flooded days / 100 -6.3∗ -7.1∗ -8.6∗ -11.6∗∗

(3.2) (3.7) (4.7) (4.4)
Lagged flooded days / 100 -8.0∗∗∗ -12.1∗∗∗

(1.2) (1.0)
Flooded days / 100 × Share urban in 1975 25.1∗∗ 39.4∗∗∗

(9.6) (8.9)
Lagged flooded days / 100 × Share urban in 1975 30.6∗∗∗

(6.5)
N 218758 143970 218758 143970
Within Rsquared 0.0006 0.0009 0.001 0.003
Period FE Yes Yes Yes Yes
Country-Period Trend Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: The sample is any cell in a Low Income Country according to UN World Urban Prospect 2018

Table 5.A.6: Floods on log population (LMIC)

(1) (2) (3) (4)
Flooded days / 100 1.5 3.2∗∗ 1.5 2.1

(0.9) (1.5) (1.1) (1.9)
Lagged flooded days / 100 -0.5 -0.8

(1.3) (1.6)
Flooded days / 100 × Share urban in 1975 0.2 8.3

(1.4) (7.0)
Lagged flooded days / 100 × Share urban in 1975 0.6

(1.4)
N 392313 257716 392313 257716
Within Rsquared 0.00005 0.0001 0.00005 0.0002
Period FE Yes Yes Yes Yes
Country-Period Trend Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: The sample is any cell in a Lower Middle Income Country according to UN World Urban Prospect 2018
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Table 5.A.7: Floods on log population (UMIC)

(1) (2) (3) (4)
Flooded days / 100 0.06 -1.7 -2.5∗∗∗ -4.3∗∗

(0.5) (1.8) (0.8) (2.1)
Lagged flooded days / 100 1.3∗∗∗ -0.5

(0.3) (0.4)
Flooded days / 100 × Share urban in 1975 11.7∗∗∗ 17.4∗∗∗

(1.5) (3.8)
Lagged flooded days / 100 × Share urban in 1975 7.7∗∗∗

(1.1)
N 1027090 655480 1027090 655480
Within Rsquared 0.00000009 0.0001 0.0005 0.0007
Period FE Yes Yes Yes Yes
Country-Period Trend Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: The sample is any cell in a Upper Middle Income Country according to UN World Urban Prospect 2018

Table 5.A.8: Floods on log population (HIC)

(1) (2) (3) (4)
Flooded days / 100 0.5 -0.06 0.3 -0.3

(0.9) (1.4) (1.0) (1.7)
Lagged flooded days / 100 1.2 0.9

(1.7) (2.1)
Flooded days / 100 × Share urban in 1975 2.2 2.4

(1.8) (2.3)
Lagged flooded days / 100 × Share urban in 1975 1.6

(2.9)
N 748931 488328 748931 488328
Within Rsquared 0.00002 0.0001 0.00005 0.0002
Period FE Yes Yes Yes No
Country-Period Trend Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: The sample is any cell in a High Income Country according to UN World Urban Prospect 2018
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5.A.4 Additional tables - nighttime lights

Table 5.A.9: Floods on log population - SSA (Nightlight sample)

(1) (2) (3) (4)
Flooded days/100 -2.2 -3.7 -4.4∗∗ -6.4∗∗

(1.7) (2.3) (1.9) (2.8)
Lagged flooded days/100 0.4 -0.8

(2.1) (2.7)
Flooded days/100 × Share urban 1975 12.6∗ 24.6∗∗∗

(6.4) (8.2)
Lagged flooded days/100 × Share urban 1975 10.1

(7.0)
N 137839 92116 137839 92116
Within Rsquared 0.00006 0.0002 0.0003 0.001
Period FE Yes Yes Yes Yes
Country-Period Trend Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Standard errors clustered at country level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: The sample is any cell in SSA that has any light recorded at nighttime between 1992-2013
using NOAA’s NGDC Earth Observation Group (EOG) yearly nighttime luminosity data
Average Visible, Stable Lights, & Cloud Free Coverages.

35
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5.A.5 Additional tables - DHS

Table 5.A.10: Probability of testing positive for malaria

(1) (2)
Urban Rural

Time since last flood
< 3 months -0.155 0.283∗∗∗

(0.157) (0.0791)
< 6 months 0.427∗∗∗ 0.253∗∗∗

(0.157) (0.0722)
< 9 months -0.276 0.228∗∗

(0.199) (0.116)
< 12 months -0.286 0.205

(0.207) (0.147)
< 15 months -0.455∗∗∗ 0.155∗

(0.141) (0.0938)
< 18 months -0.228 -0.0698

(0.144) (0.0924)
Under 5 yrs old 0.159 0.658∗∗∗

(0.199) (0.139)
Female -0.0914∗∗ -0.0284

(0.0384) (0.0190)
N 54871 151728
Chi2 0.0882 0.133
Pseudo-R2 1033.7 4169.0
Year Yes Yes
Month Yes Yes
Country Yes Yes
Standard errors clustered at the village level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: Logit regression of time since last flood on testing positive for malaria at the individual level.
Time since last flood is a categorical variable divided into 3 months bins:
From less than 3 months since the last flood to less than 18 months ago.
The omitted base category is flooded more than 18 months ago.
Only households living in an area that has been flooded in the past 10 years are included.
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Table 5.A.11: Probability of being in the lowest wealth quantile

(1) (2)
Urban Rural

Poorest quintile
< 3 months -0.255 0.172∗∗∗

(0.261) (0.0656)
< 6 months 0.621∗∗∗ 0.306∗∗∗

(0.216) (0.0680)
< 9 months 0.361 0.277∗∗∗

(0.274) (0.0821)
< 12 months -0.174 -0.0760

(0.280) (0.0856)
< 15 months -0.481∗∗ 0.161∗∗

(0.243) (0.0717)
< 18 months -0.180 -0.0519

(0.283) (0.0749)
HHs members -0.0329∗∗∗ -0.0420∗∗∗

(0.00988) (0.00309)
Children under 5 0.288∗∗∗ 0.196∗∗∗

(0.0231) (0.00789)
Female head of HH 0.0899∗ 0.0191

(0.0538) (0.0162)
Age of head of HH 0.0179∗∗∗ 0.00570∗∗∗

(0.00172) (0.000459)
Month Yes Yes
Year Yes Yes
Country Yes Yes
N 240789 540781
Chi2 0.0871 0.0181
Pseudo-R2 1750.2 1716.0
Standard errors clustered at village level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Figure 5.A.7: Probably of being in the lowest wealth quantile after repetitive flooding (placebo
test)
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Table 5.A.12: Probability of being classified as poorest following repetitive flooding

Urban Rural
(1) (2) (3) (4)

Past 10 years Next 10 years Past 10 years Next 10 years
Poorest quintile
1 0.0460 -0.0596 0.0904∗∗ 0.0691∗

(0.147) (0.158) (0.0403) (0.0370)
2 0.349∗∗ 0.103 0.246∗∗∗ 0.214∗∗∗

(0.160) (0.173) (0.0436) (0.0484)
3 0.511∗∗∗ -0.00445 0.364∗∗∗ 0.0818

(0.193) (0.203) (0.0496) (0.0603)
4 0.717∗∗∗ 0.688∗∗∗ 0.421∗∗∗ 0.303∗∗∗

(0.224) (0.261) (0.0705) (0.0875)
5 0.732∗∗∗ 0.168 0.328∗∗∗ 0.276∗∗

(0.264) (0.365) (0.0845) (0.133)
6 0.0699 -1.433∗∗∗ 0.573∗∗∗ 0.574∗∗∗

(0.281) (0.452) (0.134) (0.172)
7 1.071∗∗∗ 0.263 0.834∗∗∗ 0.221

(0.359) (0.771) (0.169) (0.227)
8+ 1.144∗∗∗ -0.816 0.860∗∗∗ 0.693∗∗∗

(0.422) (0.956) (0.132) (0.266)
HHs members -0.0514∗∗∗ -0.0481∗∗∗ -0.0464∗∗∗ -0.0457∗∗∗

(0.0101) (0.0102) (0.00272) (0.00272)
children under 5 0.299∗∗∗ 0.298∗∗∗ 0.198∗∗∗ 0.196∗∗∗

(0.0220) (0.0220) (0.00692) (0.00692)
Female head of HH 0.0768 0.0795∗ 0.0781∗∗∗ 0.0798∗∗∗

(0.0479) (0.0479) (0.0142) (0.0141)
Age of head of HH 0.0150∗∗∗ 0.0149∗∗∗ 0.00617∗∗∗ 0.00606∗∗∗

(0.00167) (0.00167) (0.000397) (0.000395)
Month Yes Yes Yes Yes
Year Yes Yes Yes Yes
Country Yes Yes Yes Yes
N 331721 330974 715585 714142
Chi2 0.0844 0.0804 0.0188 0.0158
Pseudo-R2 1550.1 1563.5 2014.6 1869.3
Standard errors clustered at the village level
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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