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Abstract

We use machine learning, applied mathematics and techniques from modern statistics

to refine Dynamic Term Structure Models. Specifically, we propose alternative, se-

quential Monte Carlo based solutions for the model selection problem, the extraction

of unobserved factors from the yield curve and the identification of nonlinear associa-

tions between bond yields and the economy. The computational algorithms improve

interest rate forecasts, significantly. In particular, they considerably facilitate the

process of turning predictive performance into economic benefits to bond investors,

verified within a dedicated portfolio optimization framework. Empirical results for

the US Treasuries are especially important for companies and institutions navigating

global fixed-income markets, including university endowments, pension funds and

insurance corporations.
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Introduction

Motivations

The term structure of interest rates, or simply the yield curve, is an object of

great importance for the financial markets. It is not an overstatement that, the ever

changing dynamics of bond yields determines financial flows around the globe. This is

particularly the case for the US Treasuries, where the underlying price developments

are cautiously monitored by the participants in the fixed-income markets worldwide.

However, equity investors, commodity traders and other major players in global

finance also pay close attention to what is currently happening to bond yields,

especially in the US. Yet, similar applies to international bond markets, such as

Europe and Japan. On one hand, these are university endowments, pension funds,

insurance corporations, investment banks, asset managers, sovereign wealth funds,

hedge funds, family offices and finally retail investors, that rely on bonds in their

portfolio strategies. For them, understanding interest rate developments is crucial

for successful asset allocation. On the other hand, we have central banks and

commercial banks where yield curve developments in relation to economy are of

central importance for the effective transmission of monetary policy. Even more

important is to identify the contribution of bond risk premia to longer term interest

rates, what largely depends on the ability to accurately infer expectations of the future

path for the short end of the yield curve. In what follows, we restrict our attention to

understanding bond risk premia, specifically from the US term structure of interest
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rates, and investigate how they react when changes in economic environment unfold.

We then apply this knowledge to forecasting.

To successfully estimate and forecast bond risk premia it is crucial to account

for no-arbitrage. It implies tight restrictions on the dynamics of risk compensation.

Failure to impose such restrictions leads to absence of no-arbitrage and generation of

artificially stable short rate expectations and highly volatile bond risk premia (Kim

and Singleton, 2012; Bauer, 2018). There are two leading classes of econometric

models which respect this limiting assumption. Namely, the arbitrage-free Dynamic

Nelson-Siegel models (Diebold and Rudebusch, 2013) and Gaussian Affine Term

Structure Models (ATSMs), or simply Dynamic Term Structure Models (DTSMs). In

what comes next, we focus on the latter class. The early work on arbitrage-free affine

yield-factor models of the term structure of interest rates in continuous time dates

back to seminal papers by Duffie and Kan (1996) and later by Dai and Singleton

(2000). Then, Duffee (2002) introduces the essentially affine class. Extensions and

refinements follow (Ang and Piazzesi, 2003; Duffee, 2006, 2011). It is only until

another seminal work, by Joslin et al. (2011), that DTSMs suffer from the ambiguity

about their potential identification problems (Collin-Dufresne et al., 2008). We thus

adopt their identification scheme throughout. Further extensions and refinements

that ensue later include macro-finance DTSMs by Joslin et al. (2014) and related

work by Bauer and Rudebusch (2016), as well as this by Creal and Wu (2015) on

stochastic volatility. Up till then, the majority of results obtained with yields-only

and macro-finance DTSMs are based on classical estimation methods, such as the

Maximum Likelihood or even the Ordinary Least Squares (Adrian et al., 2013).

After Chib and Ergashev (2009) and Chib and Kang (2013), it takes until Bauer

(2018) that DTSMs are again efficiently handled using Bayesian methods. Potential

reason being that Bayesian estimation of DTSMs is often problematic and most

MCMC samplers display very slow convergence rates and require a lot of tuning. The

reason is that parameters enter the likelihood in a highly nonlinear fashion, what
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requires various Metropolis-Hastings (MH) steps that are often inefficient (Bauer,

2018). In that latter work, Bauer specifically concentrates on risk parameters and

shows that they can be sampled using a Gibbs step, what coupled with tailored

MH steps, which require no tuning, for all the other parameters, leads to a fast

MCMC algorithm with excellent convergence properties for a yields-only DTSM.

In the following, we take this MCMC algorithm as a starting point and tailor it to

form important building blocks in different sequential Monte Carlo (SMC) schemes

we devise throughout. These draw from Chopin (2002, 2004) and Del Moral et al.

(2006). Among the benefits provided by SMC is that, the IBIS algorithm, specifically,

is an alternative choice when MCMC algorithms have poor mixing and convergence

properties and, in general, proves more robust when the target posterior is challenging,

for instance multimodal. The former issues are not necessarily material for yields-only

DTSMs, however they may emerge when we consider the extensions.

Contributions

We provide competitive, SMC based solutions for the model selection problem,

leveraging Stochastic Search Variable Selection (SSVS) of George and McCulloch

(1993) and including also sparse priors, the extraction of unobserved factors from

the yield curve, applying the well established Kalman filter, and the identification of

nonlinear associations between bond yields and the economy, with Gaussian Processes

(GP ), see Rasmussen and Williams (2006).

The first chapter explores the statistical and economic importance of restrictions

on the dynamics of risk compensation (Bauer, 2018), from the perspective of a real-

time Bayesian learner that predicts bond excess returns using a DTSM. We propose a

novel methodological framework, which successfully handles sequential model search

and parameter estimation over the restriction space landscape in real time, allowing

investors to revise their beliefs when new information arrives, thus informing their
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asset allocation and maximizing their expected utility. Our setup provides the entire

predictive density of returns, allowing us to revisit the evident puzzling behaviour

between statistical predictability and meaningful out-of-sample economic benefits to

bond investors. Empirical results reveal the importance of different sets of restrictions

across market conditions and monetary policy actions. Furthermore, our results

reinforce the argument of sparsity in the market price of risk specification, since

we find strong evidence of out-of-sample predictability only for those models that

allow for level risk to be priced. Most importantly, such statistical evidence is turned

into economically significant utility gains, across prediction horizons. The sequential

version of the SSVS scheme developed offers an effective diagnostic, as it monitors

potential changes in the importance of different risk prices over time and provides

further improvement during periods of macroeconomic uncertainty, where results are

more pronounced.

There has been some interest, in the recent literature, in unspanned latent factors

affecting bond yields (Duffee, 2011). Thus, in the second chapter, we present a

generalized modelling framework for Gaussian ATSMs with unspanned unobserved

components, that allows us to study their dynamics and use them for prediction

purposes. We develop a suitable sequential Monte Carlo inferential and prediction

scheme, that takes advantage of the linear state space structure of the model by

incorporating the associated Kalman filter. The sequential scheme can also be used

along with a dynamic portfolio optimization framework to assess the potential of

predictions to generate economic value. The extracted unspanned latent factors are

also contrasted with observed macroeconomic indices. Our regression results provide

evidence that relationships between them are statistically significant. It makes the

former an even more attractive alternative to the latter for ATSMs, given that data

revisions do not apply in this case. Moreover, we show that the models are actually

quite competitive in terms of predictive performance when compared to yields-only

ATSMs.
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The importance of unspanned macroeconomic information for DTSMs has also

been discussed in the recent literature (Joslin et al., 2014). To our best knowledge

earlier studies considered linear relationships between macroeconomic indices and

the real-world measure in DTSMs. Only recently, Bianchi et al. (2021) provide

evidence on the significance of nonlinearities for detecting information relevant to

forecasting bond risk premia. Hence, in the third chapter, we propose a generalized

modelling setup for DTSMs, which allows nonlinear associations between bond

yields and the economy, and we apply it to forecasting. Specifically, we construct

a custom SMC estimation and forecasting scheme, where we introduce GP priors

to model nonlinearities. Both individual and composite macroeconomic variables

are considered. These include the core inflation and the real economic activity.

Sequential scheme we propose is then coupled with dynamic portfolio optimization

framework, to assess the potential of excess return forecasts for generating economic

benefits to bond investors. We contrast predictions from nonlinear models with those

stemming from an application of a linear model which is conceptually closest to

Joslin et al. (2014). Eventually, we find that the former lead to significant increases

in economic value across maturities, when specific parts of unspanned nonlinear

macros, which are hidden from the yield curve, are nonlinear in nature as well.
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Chapter 1

Sequential Learning and Economic

Benefits from Dynamic Term

Structure Models

1.1 Introduction

1.1.1 Restrictions and Puzzling Behaviour

Accurately estimating and forecasting bond risk premia, in real time, is of central

economic importance for the transmission mechanism of monetary policy as well

as for investors’ portfolio strategies. Even more important is understanding and

identifying the contribution of risk premia to longer term interest rates, which

largely depends on our ability to accurately infer expectations of the future path for

the short end of the yield curve1. To successfully do so, it is essential to account

for no-arbitrage, which implies restrictions on the cross-sectional and time series

dynamics of the term structure (see, Joslin et al. (2011) and Bauer (2018)). The

latter are largely exploited in related literature by Dynamic Term Structure Models
1See, Kim and Wright (2005) and Cochrane and Piazzesi (2009), among others, for studies that

attempt to decompose forward rates into expectations of short rates and risk premia.
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(DTSMs), which impose tight restrictions on the dynamics of risk compensation, an

essential component of the models. Failure to impose such restrictions, as in the

unrestricted maximally flexible model widely used by almost all existing studies,

leads to absence of no-arbitrage and, as such, to the generation of artificially stable

short rate expectations and highly volatile risk premia (Kim and Orphanides, 2012;

Bauer, 2018).

From a statistical or machine learning viewpoint, the problem of restrictions may

be thought of as overfit. If more parameters than needed are used to capture the

signal of the market price of risk, it becomes more likely to capture noise rather than

systematic patterns, thus leading to poor predictive performance. With this in mind,

we introduce a general methodological framework that utilises Bayesian inference

and forecasting simultaneously, while allowing for model and parameter uncertainty

to be incorporated in a sequential manner. Setting up in the context of Bauer

(2018), we construct a sequential learning scheme following the principles of Chopin

(2002) and Del Moral et al. (2006). The modelling approach successfully handles

sequential model searches over the space of all possible restrictions in real time,

allowing investors to monitor changes in the importance of particular restrictions

over certain time periods and monetary actions. The developed setup is then used

to predict bond returns and explore the out-of-sample statistical and economic

importance of restrictions, across maturities and prediction horizons.

The importance of the market price of risk specification, and the associated

restrictions related to it, has been extensively studied in earlier research (see, Dai and

Singleton (2000), Duffee (2002), Ang and Piazzesi (2003), Kim and Wright (2005)),

which has mainly focused on imposing ad hoc2 zero restrictions on the parameters

governing the dynamics of the risk premia3. This practice, however, has been criticized
2Ad hoc restrictions, based on setting risk premia parameters to zero, are used in Dewachter and

Lyrio (2006), and Rudebusch and Wu (2008), among others. Furthermore, the route of imposing
prior restrictions is followed by Ang et al. (2007).

3A common practice used is to, first, estimate an unrestricted maximally flexible model, and at
a second step, to re-estimate it by setting to zero those parameters that have large standard errors.
According to Bauer (2018), such an approach often leads to the wrong model.
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(see, Kim and Singleton (2012) and Bauer (2018)), since it raised concerns about,

first, the joint significance of the constraints, second, the magnitude of the associated

standard errors4 and, third, the failure to provide meaningful economic justification

for the estimated parameters and the resulting state variables. Only recently, a few

studies have investigated more systematic approaches to imposing restrictions on

the dynamics of risk compensation5. In particular, Cochrane and Piazzesi (2009)

and Duffee (2011) introduce tight restrictions, driven by prior empirical analysis,

while Joslin et al. (2014) select zero restrictions6 based on different information

criteria7. An alternative approach is followed by Chib and Ergashev (2009), who

impose strong prior restrictions such that the yield curve is (on average) upward

sloping8, an assumption that is empirically and economically plausible. Bauer (2018)

proposes a Bayesian econometric model choice framework to estimate and identify

DTSMs with restrictions on risk prices, using draws from three alternative model

selection samplers9. The framework is then used to assess the economic implications

of restrictions, in particular, the persistence of interest rates, and its effect on short

rate expectations and term premia components. Although the literature has noted

the importance of restrictions, yet, no study has, so far, addressed and quantified their

statistical and economic importance, out-of-sample10. Most importantly, there is no

prior evidence as to how restrictions ’react’ to changes in the monetary environment,

considering that existing studies on monetary policy effects (see, Piazzesi et al. (2006),
4According to Kim and Singleton (2012), it is unclear how small the associated standard errors

have to be in order to set a parameter to zero.
5See, Cochrane and Piazzesi (2009) for a 4-factor affine model, Joslin et al. (2014) for an

unspanned macro-finance DTSM, and Duffee (2011) and Bauer (2018) for yields-only versions of
DTSMs, among others.

6Together with zero restrictions, Joslin et al. (2014) impose an additional one on the largest
eigenvalue of the feedback matrix, by assuming equality under the risk-neutral and historical
measures.

7The three criteria selected are Akaike (1998), Hannan and Quinn (1979), and Schwarz (1978).
8Chib and Kang (2013) also use similar prior restrictions to reflect the meaningful assumption

of a positive term premium.
9Samplers proposed are the Gibbs Variable Selection, the SSVS, and the Reversible-jump Markov

Chain Monte Carlo.
10Empirical tests in Duffee (2011) suggest that the choice of no-arbitrage restrictions does not

influence the out-of-sample performance of the models, given that they produce forecasts with
indistinguishable differences.
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Ang and Longstaff (2011), and Orphanides and Wei (2012)) suggest that restrictions

selected based on the in-sample process may not be economically plausible around

periods of monetary policy shifts, interventions, or under fragile economic conditions.

Our approach differs from previous studies, allowing us to overcome a number

of important challenges and offers several advantages. First, in a similar style

to Fulop et al. (2019) but tailored to the context of this chapter, it allows us to

update the estimates and predictive density as new data arrive, without the need

to rerun everything from scratch. Second, it allows for potentially more powerful

prediction techniques, such as ensemble learning and Bayesian model averaging, to be

implemented. In this chapter we develop a sequential version of the Stochastic Search

Variable Selection (SSVS) scheme (can also be used for Gibbs Variable Selection)

that allows incorporating model and parameter uncertainty in a sequential manner.

This is of particular importance taking into account that investors often face model

uncertainty, which highlights the need for a framework that is capable of monitoring,

identifying and adjusting models in real time. Third, it provides a more robust

alternative to the Markov Chain Monte Carlo (MCMC) sampler and model choice

algorithms of Bauer (2018) and Gargano et al. (2019), as its sequential setup naturally

provides inference in a parallel way that can potentially overcome issues such as

poor mixing, slow convergence properties, and multi-modalities. For example, while

we adopt the canonical setup of Joslin et al. (2011) where the vector of unobserved

risk factors is rotated such that state variables are linear combinations of observed

yields that allows for the construction of a very efficient MCMC sampler11 as in

Bauer (2018), there is room for more challenging setups, as in the case of Chib and

Ergashev (2009). Also, the more global nature of sequential Monte Carlo can be of

help in the model choice context, where the exploration of the model space may be

challenging.
11In our setup, the Bayesian learner is learning and revising her beliefs about the unknown

parameters from a directly observed state vector.
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1.1.2 Bond Predictability and Economic Benefits

The modelling and evaluation framework developed in this chapter is also put in

action to revisit two important and economically relevant empirical questions. First,

are there any yields-only DTSMs that are capable of consistently predicting bond

risk premia? Second, can the predictability of bond excess returns, if any, be turned

into economic benefits for bond investors?

Some recent literature (e.g. Duffee (2011), Barillas (2011), Thornton and Valente

(2012), Adrian et al. (2013), Joslin et al. (2014)), suggests that yields-only DTSMs

cannot capture the predictability of bond risk premia, since the required information

to predict premia is not spanned12 by the cross section of yields, implying that more

(mainly unspanned) factors are needed. Duffee (2011) implements a five-factor yields-

only model which is capable of capturing the hidden information in the bonds market,

while Wright (2011), Barillas (2011), Joslin et al. (2014) and Cieslak and Povala

(2015) use measures of macroeconomic activity to predict bond excess returns. In a

recent study however, Bauer and Hamilton (2018) cast doubt on prior conclusions,

suggesting that the evidence on variables other than the three yield factors predicting

excess returns is not convincing. Along the same direction are the results of Sarno

et al. (2016) and Feunou and Fontaine (2018), who implement extended versions of

yields-only DTSM and argue that their approaches help those models capture the

required predictability of excess returns in the bonds market. A similar conclusion

is reached by Bauer (2018), who estimates a DTSM under alternative risk price

restrictions, and Bianchi et al. (2021), who utilize information inferred from different

machine learning methodologies. However, those studies, with the exception of

Bianchi et al. (2021), either do not consider the out-of-sample economic performance

(as in Duffee (2011), Bauer (2018), and Feunou and Fontaine (2018), etc.) or do not
12The spanning hypothesis suggests that the yield curve contains (i.e. spans) all relevant

information required to forecast future yields and excess returns. Unspanned (or hidden) factors are
factors that are not explained by the yield curve, while at the same time, are useful for predicting
risk premia (see, Cochrane and Piazzesi (2005), Duffee (2011), Joslin et al. (2014) and Cieslak
(2018)).
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fully explore potential economic benefits for bond investors when compared to the

non-predictability (constant risk premia) Expectations Hypothesis (EH) benchmark,

which is one of the empirical questions we target in this chapter. In fact, existing

literature on economic value points towards a negative answer (see, Della Corte et al.

(2008), Thornton and Valente (2012), Sarno et al. (2016), and Gargano et al. (2019)13).

In particular, using a dynamic mean-variance allocation strategy, Della Corte et al.

(2008), Thornton and Valente (2012), and Sarno et al. (2016) find that statistical

predictability is not turned into superior portfolio performance when compared to

the EH benchmark14. Only recently, however, Bianchi et al. (2021) report positive

utility gains for models that utilize information in the yield curve only, when Neural

Networks (NN) are used. In that respect, our empirical analysis complements

several prior related studies and contributes to the debate on whether statistical and

economic significance move in the same direction.

Our evaluation framework consists of two stages, initially targeting monthly

excess bond returns across different prediction horizons, and evaluating the predictive

performance using metrics such as the out-of-sample R2 of Campbell and Thompson

(2008) and the log scores (LS) as in Geweke and Amisano (2010). To investigate the

economic value of the out-of-sample excess return forecasts generated by alternative

models, we construct a dynamically rebalanced portfolio as in Della Corte et al. (2008)

and Thornton and Valente (2012), for an investor with power utility preferences,

and compute standard metrics such as certainty equivalence returns (CER) (see,

Johannes et al. (2014) and Gargano et al. (2019), among others).

Our results help us infer a host of interesting conclusions in the context of the

US market. We confirm existing literature (e.g. Thornton and Valente (2012) and
13Gargano et al. (2019) find some significant economic gains for investors at specific (mainly

longer) maturities when macroeconomic factors are used. However, according to Ghysels et al.
(2018) and Fulop et al. (2019), such economic benefits vanish when fully revised macroeconomic
information is replaced by real-time data. Our approach is not reliant on macroeconomic data and,
as such, our analysis is independent of the debate between ‘fully-revised’ vs. ‘real-time’ macros.

14Contradicting conclusions are reached by Fulop et al. (2019) and Gargano et al. (2019) who
test models that utilize information from macroeconomic factors.
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Sarno et al. (2016)) in that yields-only DTSMs with some or no restrictions on

the risk premia are not capable of predicting well generally and naturally do not

produce economic value either. Nevertheless, the situation is reversed when heavy

restrictions are placed. More specifically, we find that only level risk is priced (in line

with Cochrane and Piazzesi (2009)) since only those models which allocate one or

two non-zero risk premia parameters solely on the level factor perform consistently

well. We identify two such models and also confirm that they are able to improve

out-of-sample portfolio performance and earn economically meaningful utility gains,

when compared to the EH benchmark, for investors who dynamically rebalance their

portfolio. These findings are in contrast to Thornton and Valente (2012) and Sarno

et al. (2016), who find that statistical evidence of out-of-sample predictability is

not turned into economic value, for bond investors who utilize information from the

yield curve only, and in line with Bianchi et al. (2021), who argue that statistical

significance is turned into economic gains when NN with two or three layers are used.

Comparing the performance of alternative model specifications over time reveals

the importance of different sets of restrictions across monetary policy actions and

market conditions. In particular, the importance of parameters that capture variation

in the slope factor increases during periods of curve steepening and decreases when

the curve flattens. This effect is reversed for risk price parameters capturing shocks

due to the level factor. Those effects are reflected in bond return predictability

which is also linked to the economic cycle, since investors demand compensation for

carrying more slope risk in recessions rather than in expansions. In particular, we

document that both statistical predictability and economic benefits are substantially

higher following the post-crisis recession period, when the US market experienced

high uncertainty and interest rates hit the zero-lower bound. This also reveals a

stronger relationship between the slope of the yield curve and bond excess returns

during periods of macroeconomic uncertainty. Finally, our results document a

substantial improvement in the CER values, across the maturity spectrum, with a
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clear tendency for larger gains at the short end of the curve, where short-maturity

bonds offer higher economic gains. This is in contrast to the pre-crisis expansion

period, where predictability is much lower and bond returns almost halve in value,

with CER appearing to be higher at longer maturities. A clear message coming out

of our analysis is that focusing on a single model could be quite problematic.

1.1.3 Outline

The remainder of this chapter is organized as follows. Section 1.2 describes the

modelling framework. Section 1.3 presents the sequential learning and forecasting

procedure along with the framework for assessing the predictive and economic

performance of models. Section 1.4 discusses the data and the sample period used

and presents the best models inferred through the sequential SSVS scheme. Section

1.5 discusses the results both in terms of predictive performance and economic value.

Finally, Section 1.6 concludes the chapter by providing some relevant discussion.

1.2 Dynamic Term Structure Model, Likelihood,

and Restrictions

In this section we briefly describe the adopted model and the associated likelihood

function in order to set up the notation and formulate our research question explicitly.

More details can be found in Joslin et al. (2011) where this framework was introduced.

1.2.1 Canonical Model

The model belongs to the no-arbitrage class of Affine Term Structure Models (ATSMs)

(see, Ang and Piazzesi (2003) and Cochrane and Piazzesi (2005)), under which the

one period risk-free interest rate rt
15 is assumed to be an affine function of a (N × 1)

15Working with monthly data implies that rt is the 1-month yield.
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vector of state variables Xt, namely

rt = δ0 + δ′
1Xt

where δ0 is a scalar and δ1 is a (N × 1) vector. In Gaussian ATSMs, the physical

(real-world) probability measure P is assumed to be a first-order Gaussian Vector

Autoregressive (VAR) process

Xt = µ + ΦXt−1 + Σεt (1.1)

where εt ∼ N(0, IN ), Σ is a (N × N) lower triangular matrix, µ is a (N × 1) vector

and Φ is a (N × N) matrix. Lack of arbitrage implies the existence of a pricing

kernel Mt+1 defined as

Mt+1 = exp(−rt − 1
2λ′

tλt − λ′
tεt+1) (1.2)

with λt being the time-varying market price of risk which is assumed to be affine in

the state Xt
16

λt = Σ−1 (λ0 + λ1Xt)

where λ0 is a (N × 1) vector and λ1 is a (N × N) matrix. If we assume that the

pricing kernel Mt+1 prices all bonds in the economy and we let P n
t denote the time-t

price of an n-period zero-coupon bond, then the price of the bond is computed

from P n
t = Et

(
Mt+1P

n−1
t+1

)
where Et(·) denotes expectation given the information

available up to time t. Hence, it follows that bond prices are exponentially affine
16This is the ‘essentially-affine’ specification introduced in Duffee (2002). Existing studies have

proposed alternative specifications for the market price of risk, such as the ‘completely-affine’ model
of Dai and Singleton (2000), the ‘semi-affine’ model of Duarte (2004), and the ‘extended-affine’
model of Cheridito et al. (2007). See Feldhütter (2016) for a useful comparison of the models.
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functions of the state vector (see, Duffie and Kan (1996))

P n
t = exp(An + B′

nXt), n = 1, . . . , J

with loadings, An being a scalar and Bn a (N × 1) vector, satisfying the following

recursions

An+1 = An + B′
n(µ − λ0) + 1

2B′
nΣΣ′Bn − δ0

Bn+1 = (Φ − λ1)′Bn − δ1

with A0 = 0 and B0 = 0N×1. Pricing kernel Mt+1 in (1.2) lets define the change of

probability measure (via Girsanov theorem) from real-world P in (1.1) to risk-neutral

Q. This implies that the pricing Q-dynamics of the state vector are given by

Xt = µQ + ΦQXt−1 + ΣεQt (1.3)

where µQ = µ − λ0, ΦQ = Φ − λ1 and εQt ∼ N(0, IN ). The continuously compounded

n-period yield yn
t is also an affine function of the state vector

yn
t = − log P n

t

n
= An,X + B′

n,XXt (1.4)

where the loading scalar An,X and the loading (N × 1) vector Bn,X are calculated

using the above recursions, as An,X = −An/n and Bn,X = −Bn/n. Similarly, for the

continuously compounded (J × 1) vector of yields yt, we have that

yt = AX + BXXt (1.5)

where (J × 1) vector AX and (J × N) matrix BX contain the model-implied loadings

of yields on risk factors, specifically An,X are elements of vector AX and Bn,X are

transposed rows of matrix BX .
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In theory, it is possible to specify the likelihood function based on equations

(1.1) and (1.4) but, in practice, estimation and identification of these formulations

has proved to be challenging (see, Ang and Piazzesi (2003), Ang et al. (2007), Chib

and Ergashev (2009), Duffee and Stanton (2012), Hamilton and Wu (2012), and

Bauer (2018)), especially when ATSMs are expressed in terms of an unobserved Xt.

Additional normalizing restrictions need to be imposed to ensure identifiability, such

as the canonical setup of Joslin et al. (2011) that we adopt here. More specifically,

Xt is rotated to be a linear combination of the observed yields, and as such, perfectly

priced by the no-arbitrage restrictions. In particular, we rotate Xt to match the first

N principal components (PCs) of observed yields

Pt = Wyt = WAX + WBXXt (1.6)

with W being the (N ×J) matrix that contains the PCs’ loadings. Following common

practice, we consider the case of N = 3, noting that the first three extracted PCs

are typically sufficient to capture most of the variation in the yield curve and often

correspond to its level, slope and curvature, respectively (Litterman and Scheinkman,

1991). We also adhere to the identification scheme in Proposition 1 by Joslin et al.

(2011), where the short rate is the sum of the state variables, namely rt = iXt with i

being a vector of ones, and the parameters µQ and ΦQ of the Q-dynamics are given

as µQ = [kQ
∞, 0, 0] and ΦQ = diag(gQ), where gQ denotes a (N × 1) vector containing

the real and distinct eigenvalues of ΦQ 17.

Statistical inference can proceed using the observations Y = {yt, Pt : t =

0, 1, . . . , T}. The likelihood factorizes into two parts stemming from the P and

Q respectively. In order to specify the latter, henceforth denoted as Q likelihood,

the affine transformation of (1.6) is applied to (1.3) to obtain the dynamics of Pt

17Alternative specifications for the eigenvalues are considered in Joslin et al. (2011); however,
real eigenvalues are found to be empirically adequate.
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under Q

Pt = µQ
P + ΦQ

PPt−1 + ΣPεQt (1.7)

where the risk-neutral measure parameters µQ
P , ΦQ

P and ΣP are following

µQ
P = WBXµQ + (IN − ΦQ

P)WAX

ΦQ
P = WBXΦQ(WBX)−1

ΣP = WBXΣ

In a similar manner, the yield equation (1.5) can be rewritten as a function of Pt
18

yt = AP + BPPt (1.8)

where the loadings AP and BP are derived accordingly as

AP = AX − BX(WBX)−1WAX (1.9)

BP = BX(WBX)−1 (1.10)

and AP is a (J × 1) vector with elements An,P , whereas BP is a (J × N) matrix

which transposed rows are (N × 1) vectors Bn,P .

Note that in (1.5) and (1.8), yields are assumed to be observed without any

measurement error. Nevertheless, an N -dimensional observable state vector cannot

perfectly price J > N yields, and as such, we further assume that the (J − N) bond

yields used in the estimation are observed with independent N(0, σ2
e) measurement

errors. An equivalent way to formulate this is to write

yt = AP + BPPt + et (1.11)
18According to Duffee (2011), outside of knife-edge cases, the matrix (WBX) is invertible, and as

such, Pt contains the same information as Xt.
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and to consider the dimension of et as effectively being (J − N) × 1. Letting W⊥

denote a basis of the null space of W , the measurement error assumption can also

be expressed as

W⊥et ∼ N(0, σ2
eIJ−N)

where (W⊥et) is a (J − N) × 1 vector (Bauer, 2018).

Under the new observable state vector Pt, the one period short rate rt is also an

affine function of Pt given as

rt = δ0P + δ′
1PPt (1.12)

with

δ0P = δ0 − δ′
1(WBX)−1WAX

δ′
1P = (WBX)−1δ1

and the market price of risk specification becomes accordingly

λt = Σ−1
P (λ0P + λ1PPt)

where

λ0P = WBXλ0 − WBXλ1(WBX)−1WAX (1.13)

λ1P = WBXλ1(WBX)−1 (1.14)

Finally, in order to specify the P likelihood we note that P-dynamics of Pt are of

equivalent form to (1.7) but with εt instead of εQt and

µP
P = µQ

P + λ0P (1.15)

ΦP
P = ΦQ

P + λ1P (1.16)
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where λ0P is a (N × 1) vector and λ1P is a (N × N) matrix specified in (1.13) and

(1.14), reflecting the market price of risk in Pt terms.

1.2.2 Likelihood and Risk Price Restrictions

The joint likelihood (conditional on the initial point P0) can now be written as

f(Y |θ) =
{∏T

t=0 fQ(yt|Pt, kQ
∞, gQ, ΣP , σ2

e)
}

×{∏T
t=1 fP(Pt|Pt−1, kQ

∞, gQ, λ0P , λ1P , ΣP)
} (1.17)

where the Q-likelihood components fQ(·) are given by (1.11) and capture the cross-

sectional dynamics of the risk factors and the yields, whereas P-likelihood components

fP(·) capture the time-series dynamics of the observed risk factors. The parameter

vector is set to θ = (σ2
e , kQ

∞, gQ, λ0P , λ1P , ΣP).

Note that in the case of all entries in λ0P , λ1P being non-zero, also known as the

maximally flexible model, the mapping between θ and θ̃ = (σ2
e , kQ

∞, gQ, µP
P , ΦP

P , ΣP)

is 1-1. This allows for the following equivalent likelihood specification

f(Y |θ̃) =
{

T∏
t=0

fQ(yt|Pt, kQ
∞, gQ, ΣP , σ2

e)
}

×
{

T∏
t=1

fP(Pt|Pt−1, µP
P , ΦP

P , ΣP)
}

(1.18)

The fact that both likelihoods (1.17) and (1.18) are equivalent suggests that, under

the maximally flexible model, the parameters kQ
∞ and gQ are effectively estimated

only from the Q likelihood, in other words based solely on cross-sectional information

and without reference to the real-world dynamics19. This is no longer the case if one

or more entries of the λ0P , λ1P matrices are set to zero, in other words if restrictions

are imposed. Since the mapping from θ to θ̃ is no longer 1-1, with θ̃ now being

of higher dimension, we can only use the likelihood specification of (1.17), which

allows utilizing time series information in the Q parameters estimation, and as such,

limiting the effect of the no-arbitrage cross-sectional constraints.
19According to Joslin et al. (2011), the ordinary least squares estimates of parameters µP

P and
ΦP

P are almost identical to those estimated using maximum likelihood.

33



Nevertheless, this raises the issue of how to choose between the 2N+N2 possible

sets of restrictions in the λ0P , λ1P matrices; e.g. in the case of N = 3 there are

4,096 distinct sets of restrictions. Bauer (2018) suggests using Bayesian model

choice, aiming to maximize the model evidence of each restriction specification. In

this chapter we propose choosing the restriction set with the optimal predictive

performance among all possible restriction sets. Models that are optimal in the

Bayesian sense, i.e. achieving the highest model evidence, are typically parsimonious

and therefore exhibit good predictive performance. In a related argument, Fong

and Holmes (2020) show that model evidence is formally equivalent with exhaustive

leave-p-out cross-validation combined with the log posterior predictive scoring rule.

Hence, it will not be surprising if the same set of restrictions was obtained from

both approaches; in fact this is the case in data from the US market as we illustrate

in Section 1.5. Nevertheless, this is not always guaranteed to be the case and, in

situations where different answers are obtained, the predictive performance criterion

may be more relevant in the context of DTSMs, e.g. it can be translated into

economic value and give an investor point of view.

The methodology introduced in this chapter allows us to identify the optimal set

of restrictions in the λ0P , λ1P matrices, while offering useful by-products. First, the

ability to monitor the restrictions in a sequential manner and detect changes over

certain time periods of interest, second, combining multiple sets of restrictions with

sequential Bayesian model averaging, and third, quantifying the associated predictive

performance and translating it in terms of economic value.

1.3 Sequential Estimation, Model Choice, and

Forecasting

In this section we develop a sequential Monte Carlo (SMC) framework for Gaussian

ATSMs. We draw from the work of Chopin (2002, 2004) (see also Del Moral et al.
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(2006)) and make the necessary adaptations to tailor the methodology to the data

and models considered in this chapter. Furthermore, we extend the framework to

allow for sequential Bayesian model choice by incorporating the SSVS algorithm that

allows searching over 2N+N2 models; see Schäfer and Chopin (2013) for some relevant

work in the linear regression context. Overall, the developed framework allows the

efficient performance of tasks such as sequential parameter estimation, model choice,

and forecasting. We begin by providing the main skeleton of the scheme and then

provide the details of its specific parts, such as the MCMC scheme for exploring the

model space, and the framework for obtaining and evaluating the economic benefits

of predictions.

1.3.1 Sequential Framework

Let Y0:t = (Y0, Y1 . . . , Yt) denote all the data available up to time t, such that Y0:T = Y .

Similarly, the likelihood based on data up to time t is f(Y0:t|θ) and is defined in

(1.17). Combined with a prior on the parameters π(θ), see Appendix 1.A for details,

it yields the corresponding posterior

π(θ|Y0:t) = 1
m(Y0:t)

f(Y0:t|θ)π(θ) (1.19)

where m(Y0:t) is the model evidence based on data up to time t. Moreover, the

posterior predictive distribution, which is the main tool for Bayesian forecasting, is

defined as

f(Yt+h|Y0:t) =
∫

f(Yt+h|Yt, θ)π(θ|Y0:t)dθ (1.20)

where h is the prediction horizon.

Note that the predictive distribution in (1.20) incorporates parameter uncertainty

by integrating θ out according to the posterior in (1.19). Usually, prediction is

carried out by expectations with respect to (1.20), e.g. E(Yt+h|Y0:t) but, since (1.20)

is typically not available in closed form, Monte Carlo can be used in the presence of
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samples from π(θ|Y0:t). This process may accommodate various forecasting tasks;

for example forecasting several points, functions thereof, and potentially further

ahead in the future. A typical forecasting evaluation exercise requires taking all the

consecutive times t from the nearest integer of, say, T/2 to T − 1. In each of these

times, Y0:t serves as the training sample, and points of Y after t are used to evaluate

the forecasts. Hence, carrying out such a task requires samples from (1.20), and

therefore from π(θ|Y0:t), for several times t. Note that this procedure can be quite

laborious and in some cases infeasible.

An alternative approach that can handle both model choice and forecasting

assessment tasks is to use sequential Monte Carlo (see, Chopin (2002) and Del Moral

et al. (2006)) to sample from the sequence of distributions π(θ|Y0:t) for t = 0, 1, . . . , T .

A general description of the Iterated Batch Importance Sampling (IBIS) scheme of

Chopin (2002), see also Del Moral et al. (2006) for a more general framework, is

provided in Algorithm 1.1. The degeneracy criterion is usually defined through the

Algorithm 1.1 IBIS algorithm for Gaussian Affine Term Structure Models
Initialize Nθ particles by drawing independently θi ∼ π(θ) with importance weights ωi = 1,
i = 1, . . . , Nθ. For t, . . . , T and each time for all i:

(a) Calculate the incremental weights from

ut(θi) = f(Yt|Y0:t−1, θi) = f
(
Yt|Yt−1, θi)

(b) Update the importance weights ωi to ωiut(θi).

(c) If some degeneracy criterion (e.g. ESS(ω)) is triggered, perform the following two
sub-steps:

(i) Resampling: Sample with replacement Nθ times from the set of θis according
to their weights ωi. The weights are then reset to one.

(ii) Jittering: Replace θis with θ̃is by running MCMC chains with each θi as input
and θ̃i as output. Set θi = θ̃i.

Effective Sample Size (ESS) which is equal to

ESS(ω) = (∑Nθ
i=1 ωi)2∑Nθ
i=1 ω2

i

(1.21)
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and is of the form ESS(ω) < αNθ for some α ∈ (0, 1), where ω is the vector

containing the weights.

The IBIS algorithm provides a set of weighted θ samples, or else particles, that

can be used to compute expectations with respect to the posterior, E[g(θ)|Y0:t], for

all t using the estimator ∑i[ωig(θi)]/
∑

i ωi. Chopin (2004) shows consistency and

asymptotic normality of this estimator as Nθ → ∞ for all appropriately integrable

g(·). The same holds for expectations with respect to the posterior predictive

distribution, f(Yt+h|Yt); the weighted θ samples can be transformed into weighted

samples from f(Yt+h|Yt) by simply applying f(Yt+h|Yt, θ). A very useful by-product

of the IBIS algorithm is the ability to compute m(Y0:t) = f(Y0:t), which is the

criterion for conducting formal Bayesian model choice. Computing the following

quantity in step (a) in Algorithm 1.1 yields a consistent and asymptotically normal

estimator of f(Yt|Y0:t−1), namely

mt = 1∑Nθ
i=1 ωi

Nθ∑
i=1

ωiut(θi)

An additional benefit provided by sequential Monte Carlo is that it provides an

alternative choice when MCMC algorithms have poor mixing and convergence

properties and, in general, is more robust when the target posterior is challenging,

e.g. multimodal. Finally, as we demonstrate in Section 1.5, the sequential nature

of the algorithm allows it to produce informative descriptive output to monitor the

evolution of key parameters in time.

In order to apply the IBIS output to models and data in this chapter, the following

adaptations and extensions are needed. First, the choice of defining the incremental

weights in step (a) in Algorithm 1.1, also known as data tempering, is suitable for

getting access to sequences of predictive distributions, needed to assess forecasting

performance, but at the same time it is quite prone to numerical stability issues and

very low effective sample sizes, in particular early on, that is at the initial time points.
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This is because the learning rate is typically higher at the beginning, especially

when transitioning from a vague prior. An alternative approach that guarantees a

pre-specified minimum effective sample size level, and therefore some control over

the Monte Carlo error, is to use adaptive tempering; see, for example, Jasra et al.

(2011). In order to combine the benefits of both approaches we use a hybrid adaptive

tempering scheme which we present in Appendix 1.C. The idea of this scheme is to

use adaptive tempering within each transition between the posteriors based on Y0:t

and Y0:t+1 for each t. Similar ideas have been applied in Schäfer and Chopin (2013)

and Kantas et al. (2014).

Second, and quite crucially in this chapter, we extend the framework presented in

Section 1.3.2 to handle sequential model searches over the space of all possible risk

price restrictions. Third, we note that the MCMC sampler, used in sub-step (ii) of

step (c) in Algorithm 1.1, needs to be automated as it will have to be rerun for each

time point and particle without the luxury of having initial trial runs, as it is often

the case when running a simple MCMC on all the data. The problem is intensified

by the fact that the MCMC algorithm used here, developed in Bauer (2018), consists

of independence samplers that are known to be unstable. To address this, we utilize

the IBIS output and estimate posterior moments to obtain independence sampler

proposals; see Appendix 1.B for details. Finally, we connect the IBIS output with

the construction of a model-driven dynamically rebalanced portfolio of bond excess

returns and calculate its economic value.

In empirical application, we work with Nθ = 2000 particles and 5 MCMC steps

when jittering, whereas in relation to minimum ESS we set α = 0.7. We decide on

5 steps at the jittering stage because the mixing behaviour of the underlying MCMC

is quite satisfactory. We observed the correlation between particles before and after

that stage to find that performance was already reasonable with this number of

iterations.
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1.3.2 Sequential Model Choice Across Risk Price Restric-

tions

As mentioned in Section 1.2, the specification of the market price of risk is conducted

via λ0P and λ1P . For brevity of further exposition, we let λP = [λ0P , λ1P ] and

λ = λ1P . If all the entries in λP are free parameters we get the maximally flexible

model. Alternative models have also been proposed in the existing studies, e.g.

Cochrane and Piazzesi (2009) and Bauer (2018), where some of these entries are

set to zero. More specifically, in most models the set of unrestricted parameters is

usually a subset of λP . A standard approach to facilitating Bayesian model choice

is via assigning spike-and-slab priors (Mitchell and Beauchamp, 1988; George and

McCulloch, 1993; Madigan and Raftery, 1994) on each of the λP
ijs, i = 1, . . . , N ,

j = 1, . . . , N + 1, by means of the following mixture

λP
ij ∼ (1 − γij)N(0, τ

(0)
ij ) + γijN(0, τ

(1)
ij )

where γijs are Bernoulli random variables taking value of zero if the corresponding λP
ij

is small (almost equal to zero), or one if it is large (significantly different from zero).

Hence τ
(0)
ij is typically given a very small value, thus forcing the underlying parameter

towards zero, while τ
(1)
ij is set to a larger value so that the data determine the value of

the parameter in question; see Appendix 1.A for details. The γijs are also estimated

from the data using MCMC; see Appendix 1.B for details. The proportion of the

MCMC draws in which each γij is equal to one provides the posterior probability of

the corresponding λP
ij being non-zero, also known as posterior inclusion probability.

We consider two approaches to Bayesian model choice in order to explore its links

with predictive performance. The first approach is to implement the spike-and-slab

approach on some data used for training purposes in order to select the top models.

The sequential scheme in Algorithm 1.1 is then applied to each of them, without

using spike-and-slab priors and thus omitting step (b) in Algorithm 1.3, and with
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some λP
ij being exactly equal to zero, extracting their predictive distributions and

contrasting them with the observed data. Under the second approach, sequential

inference on both the models and the parameters is drawn. This is implemented

by running a single instance of the sequential scheme in Algorithm 1.1, modified to

incorporate the SSVS based on the spike-and-slab priors, exactly as it is outlined in

Algorithm 1.3. In this case, the parameter vector includes the γijs allowing us to

calculate the inclusion probabilities, using the particle weights, at each time t based

on all the data up to and including t.

This approach offers several advantages in exploring the landscape of the risk price

restriction space as we can monitor potential changes in the importance of different

λP
ijs over time. Moreover, the global search nature of sequential Monte Carlo may be

helpful in exploring this landscape across different models. Each θ particle contains

a set of γijs and corresponds to a particular model. The set of θ particles therefore

contains instances of the leading models among the 2N+N2 possible ones. Every time

resampling and jittering take place, the list of models can be potentially updated

giving more focus to the cases with higher weights, or else posterior probability, and

potentially depleting the ones with lower weights. Hence it is now less likely to get

trapped in local modes when exploring the model space. Finally, this scheme allows

combining different models and incorporating model uncertainty into forecasting via

model averaging in a sequential manner.

1.3.3 Assessing Predictive Performance and Economic Value

Failure of the EH implies that bond returns are strongly predictable (see, Fama

and Bliss (1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005), and

Ludvigson and Ng (2009), among others). Based on the evaluation framework

presented in this section, we then attempt to revisit evidently conflicting results

reported in the existing studies (e.g. Duffee (2011), Barillas (2011), Thornton

and Valente (2012), Joslin et al. (2014), Sarno et al. (2016), Feunou and Fontaine
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(2018), and Bianchi et al. (2021)) on the ability of yields-only ATSMs to capture the

predictability of risk premia in the US Treasury market. In particular, we seek to

understand whether information on the current yield curve is sufficient to predict

excess returns, in light of the alternative restrictions imposed on the dynamics of risk

compensation. Furthermore, we attempt to explore whether statistical predictability,

if any, can be turned into economic benefits for bond investors.

1.3.3.1 Bond Excess Returns

Define the observed h-holding period return from buying an n-year bond at time t

and selling it at time (t + h) as

rn
t,t+h = pn−h

t+h − pn
t

where pn−h
t+h is the log price of the (n − h)-period bond at time (t + h) and pn

t is the

log price of the n-period bond at time t. The latter translates to the corresponding

yield in the following manner

yn
t = − 1

n
pn

t

Furthermore, define the observed continuously compounded excess return of an

n-year bond as the difference between the holding period return of the n-year bond,

expressed above in terms of log prices, and the h-period yield as

rxn
t,t+h = −(n − h)yn−h

t+h + nyn
t − hyh

t

If instead of taking the observed one, we take the model-implied continuously

compounded yield yn
t , calculated according to (1.8), we arrive at the predicted excess

return r̃xn
t,t+h which becomes

r̃xn
t,t+h = An−h,P − An,P + Ah,P + B′

n−h,PP̃t+h − (Bn,P − Bh,P)′Pt (1.22)
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where Pt is observed and P̃t+h is a prediction from the model. Our developed

framework, see Algorithm 1.1, allows drawing from the predictive distribution of

(P̃t+h, r̃xn
t,t+h) based on all information available up to time t. More specifically, for

each θi particle the P-dynamics of Pt can be used to obtain a particle of P̃t+h, which

then can be transformed into a particle of r̃xn
t,t+h via equation (1.22). Detailed steps

for the case of h = 1 are outlined in Algorithm 1.2.

Algorithm 1.2 Predictive distribution of excess returns for Gaussian Affine Term
Structure Models
First, at time t, for some n and h = 1, using (ωi, θi), i = 1, ..., Nθ, from IBIS algorithm,
iterate over i:

(a) Given θi, compute Ai1,P and Bi1,P , for i1 ∈ {1, n − 1, n}, from (1.9) and (1.10).

(b) Given θi, obtain prediction of Pt+1 by drawing from

P̃(i)
t+1|Pt ∼ N

(
µP

P + ΦP
PPt, ΣPΣ′

P

)
(c) Compute particle prediction of rxn

t,t+1 as

r̃x
n(i)
t,t+1 = An−1,P − An,P + A1,P + B′

n−1,P P̃(i)
t+1 − (Bn,P − B1,P)′Pt

Second, since (ωi, P̃(i)
t+1, r̃x

n(i)
t,t+1), i = 1, ..., Nθ, is a particle approximation to predictive

distribution of (Pt+1, rxn
t,t+1), compute point prediction of rxn

t,t+1 using particle weights ωi

as

r̃xn
t,t+1 = 1∑Nθ

i=1 ωi

Nθ∑
i=1

ωir̃x
n(i)
t,t+1

Third, repeat above two steps for different n and h. For h > 1, use P̃ i
t+h−1 in place of Pt,

and ih ∈ {h, n − h, n} in place of i1.

The predictive accuracy of bond excess return forecasts is measured in relation

to an empirical benchmark. We follow related literature and adopt the EH as this

benchmark, which essentially uses historical averages as the optimal forecasts of

bond excess returns. This empirical average is

rxn
t+h = 1

t − h

t−h∑
j=1

rxn
j,j+h
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We consider two metrics to assess the predictive ability of models considered. First,

following Campbell and Thompson (2008), we compute the out-of-sample R2 (R2
os)

as

R2
os = 1 −

∑t
s=t0(rxn

s,s+h − r̃xn
s,s+h)2∑t

s=t0(rxn
s,s+h − rxn

s+h)2

for r̃xn
s,s+h being the mean of the predictive distribution. Positive values of this

statistic mean that model-implied forecasts outperform the empirical averages and

suggest evidence of time-varying return predictability. Second, in order to assess the

entire predictive distribution offered by our scheme, rather than just point predictions,

we use the log score; a standard choice among scoring rules with several desirable

properties, such as being strictly proper, see for example Dawid and Musio (2014).

The log score of the predictive distribution can be approximated numerically using

kernel methods. For the EH case, this evaluation can be done analytically. These

metrics are aggregated over all prediction times (t0 to t) for each maturity. In order

to get a feeling for how large the differences from the EH benchmark are, we report

the p-values from one-sided Diebold-Mariano test (see, Gargano et al. (2019)), with

Clark and West (2007) adjustment as in Fulop et al. (2019), this in case of R2
os only,

noting that these are viewed as indices rather than formal hypothesis tests. They

are based on t-statistics computed taking into account potential serial correlations

in the standard errors (see, Newey and West (1987)).

1.3.3.2 Economic Performance of Excess Return Forecasts

From a bond investor’s point of view it is of paramount importance to establish

whether the predictive ability of a model can generate economically significant

portfolio benefits, out-of-sample. The portfolio performance may also serve as a

metric to compare models that impose different sets of restrictions on the price of risk

specification. In that respect, our approach is different from Thornton and Valente

(2012) and Sarno et al. (2016), who test the economic significance for an investor
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with mean-variance preferences20 and conclude that statistical significance is not

turned into better economic performance, when compared to the EH benchmark.

It is more in line with Gargano et al. (2019) and Bianchi et al. (2021), who arrive

at similar conclusions for models which utilize information coming solely from the

yield curve (e.g. yields, forwards, etc.). Computationally, it is quite similar to the

approach of Fulop et al. (2019), tailored to the context of this chapter.

We consider a Bayesian investor with power utility preferences

U(Wt+h) = U(wn
t , rxn

t+h) = W 1−γ
t+h

1 − γ

where Wt+h is an h-period portfolio value and γ is the coefficient of relative risk

aversion. If we let wn
t be a portfolio weight on the risky n-period bond and (1 − wn

t )

be a portfolio weight of the riskless h-period bond, then the portfolio value h periods

ahead is given as

Wt+h = (1 − wn
t ) exp(rf

t ) + wn
t exp(rf

t + rxn
t,t+h)

where rf
t is the risk-free rate, here synonymous with the h-period yield. Such

an investor maximizes her expected utility over h-periods in the future, based on

x1:t = {rxn
1:t, P0:t}

Et[U(Wt+h)|x1:t] =
∫

U(Wt+h)f(Wt+h|x1:t)dWt+h

=
∫

U(wn
t , rxn

t+h)f(rxn
t+h|x1:t)drxn

t+h

where f(rxn
t+h|x1:t) is the predictive density described earlier. At every time t, our

Bayesian learner solves an asset allocation problem getting optimal portfolio weights
20In fact, Sarno et al. (2016), also use an approximation of the power utility solution. Furthermore,

they allow for the variance to be constant (or rolling window) and in-sample, in line with Thornton
and Valente (2012).
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as result of numerically solving

w̃n
t = arg max 1∑Nθ

i=1 ωi

Nθ∑
j=1

ωj

 [(1 − wn
t ) exp(rf

t ) + wn
t exp(rf

t + r̃xn,j
t,t+h)]1−γ

1 − γ


for example by means of Nelder-Mead simplex algorithm (Lagarias et al., 1998),

where Nθ is the number of particles from the predictive density of excess returns,

weighted using importance weights ωi, i = 1, ..., Nθ, which come from the IBIS

algorithm.

To obtain the economic value generated by each model, we use the resulting

optimum weights to compute the CER as in Johannes et al. (2014) and Gargano

et al. (2019). In particular, for each model, we define the CER as the value that

equates the average utility of each model against the average utility of the EH

benchmark specification. Denoting realized utility from the predictive model as

Ũt = U
(
w̃n

t , {r̃xn,j
t,t+h}Nθ

j=1

)
and realized utility from the EH benchmark as U t, we get

CER =
(∑t

s=t0 Ũs∑t
s=t0 U s

) 1
1−γ

− 1

Similar to R2
os and log-score introduced in Section 1.3.3.1, statistical significance of

CER results is based on one-sided Diebold-Mariano test where p-values are based

on t-statistics calculated using Newey-West adjusted standard errors.

1.4 Data and Models

In this section we discuss data we use throughout in detail. Specifically, we elaborate

on the US Treasury yields data we employ in this chapter, how we choose subsamples

thereof, and why exactly we split these into training and testing periods in the manner

described below. We then also explain what models we consider, as distinguished by

different risk price restrictions, and how we arrive at such choice, in particular using

our developed sequential SSVS scheme and rationale provided in the literature.
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1.4.1 Yields Only

The data set contains monthly observations of zero-coupon US Treasury yields with

maturities of 1-year, 2-year, 3-year, 4-year, 5-year, 7-year, and 10-year, spanning the

period from January 1985 to the end of 2016. We consider two sub-samples, one

ending at the end of 2007 and that, as such, precludes the recent financial crisis, and

a second one which includes the period after the end of 2007, a period determined by,

first, different monetary actions and establishment of unconventional policies and,

second, interest rates hitting the zero-lower bound. The first sub-sample has been

used by most of the existing studies (see, Joslin et al. (2011), Joslin et al. (2014),

Bauer (2018), and Bauer and Hamilton (2018)). Following related literature, we

choose the starting date avoiding the early 1980s, a period with evidence of the Fed

changing its monetary policy. The post-2007 global financial crisis period is excluded

from our first sub-sample due to concerns about the capability of Gaussian ATSMs

to deal with the zero-lower bound (see, Kim and Singleton (2012) and Bauer and

Rudebusch (2016)). These concerns are explored in the second sub-sample, spanning

the period from January 1990 to end of 2016, as in Bauer and Hamilton (2018).

Overall, the data contain different market conditions and monetary policy actions.

In the analyses of the two sub-samples the data are split into a training period,

where the data are used only for estimation purposes, and a testing period, starting

immediately afterwards, where we start evaluating the model predictions while

incorporating additional information as the data become available. Specifically, the

training periods are 1985-1996 and 1990-2005 respectively. The data processing

involves extracting the first three principal components from the yield curve. This

can be done either by calculating the principal component (PC) loadings from the

training or the entire period; the difference in the resulting principal component time

series are depicted in Figure 1.1. The correlations between these series reach levels

above 0.99, suggesting negligible differences. Nevertheless, in order to prevent any
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data leaking issues when assessing the predictive performance, the loadings from the

training period only are used.

1.4.2 Models and Rationale Behind

In terms of models, as mentioned in Section 1.2, there are 4,096 possible distinct

sets of risk price restrictions in the case of three factors driving the state variables.

The first model considered, (M0), in line with previous empirical studies (e.g. Duffee

(2011), Sarno et al. (2016), and Bauer (2018), among others), allows the risk prices

to be completely unrestricted and is therefore known as the maximally flexible model

being only subject to normalizing restrictions, as in Joslin et al. (2011).

The next three models are the ones suggested by our developed sequential SSVS

scheme as the models with the highest posterior probability (model evidence). Our

results reinforce the argument of sparsity in the market price of risk specification, as

in Bauer (2018), since in these models only one or two risk price parameters are free.

Specifically, the model with the highest posterior probability is the one that allows

a single free parameter, λ1,2, which we denote as M1. This is the parameter which

drives variation in the price of level risk due to changes in the slope of the yield

curve. The next model, denoted by M2, has two free risk price parameters, λ1,2 as

M1 and also λ1,1. Interestingly enough, in the next best model in terms of posterior

probability, denoted by M3, only λ1,1 is free. This suggests that the variation in the

price of level risk is driven by changes in the level factor.

Finally, we consider Bayesian model averaging with model weights obtained from

our developed sequential SSVS scheme. We explore three formulations: the first

one (M4) assumes uniform prior distribution over models, where each element of

λP is independently Bernoulli distributed with success probability 0.5, as in Bauer

(2018). The second one (M5) uses a hierarchical prior, namely Beta(1, 1)-Binomial;

see for example Wilson et al. (2010) and Consonni et al. (2018). The list of models
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is completed with M6, a filtered version of M4 with only λ1,1 and λ1,2 allowed to be

non-zero.

1.5 Empirical Results

This section presents the main results on the statistical and economic performance

of excess return forecasts resulting from the models we develop in this chapter. In

particular, we assess the models based on different sets of restrictions and explore

the evident puzzling behaviour between statistical predictability and meaningful

out-of-sample economic benefits for bond investors. Furthermore, we monitor how

the optimum set of restrictions behaves around periods of monetary policy shifts,

interventions, and fragile economic conditions.

1.5.1 Yield Curve and Risk Price Dynamics

The data contain several important events and it is interesting to examine the

trajectories of the principal components during these periods, provided by Figure 1.1.

More specifically, during the period between 2004 and 2006, referred to by former

Fed Chairman Greenspan as the ‘conundrum period’, the Federal Reserve applied a

tight monetary policy by substantially increasing its target federal funds rate by 4%,

reaching a value of 5.25% by mid-2006. At the same time, long-term yields actually

declined, directly affecting the shape of the yield curve, which flattened profoundly.

This episode is captured by the first two implied PCs, as shown in Figure 1.1. In

particular, the first PC increased substantially during the aforementioned period,

reflecting the increase in the level of the term structure, while the second decreased

to very low levels, reflecting the flattening of the curve. The data also covers the

two recession periods of 2001-2002 and 2008-2009, where the yield curve shared

qualitatively similar characteristics. Both episodes started from a flat yield curve

during the pre-recession periods, following an inversion of the curve that reflects an
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increase in short rates due to expectations about the Fed tightening its policy, and

then a steepening as a reaction to policy adjustments by the Fed reflecting strong

growth and inflation expectations. This is reflected in the two principal components,

with the first PC decreasing and the second increasing during the recession periods.

The above are captured from the sequential setup developed in this chapter,

which is capable of monitoring variations across time in the estimates of parameters,

restrictions, and the importance thereof, in contrast to previous studies (e.g. Sarno

et al. (2016), Bauer (2018), and Gargano et al. (2019)). Figures 1.2 and 1.3 contain

the results obtained from fitting the model M6 on the two previously mentioned

sub-samples, focusing on the testing periods. The plots depict information for the

parameters λ1,1, λ1,2 and their posterior inclusion probabilities, as well as the highest

eigenvalue of ΦP
P and the parameter kQ

∞ which is linked to the long-run mean of the

short rate rt under Q. From the restricted parameters, we chose to report only λ1,1

and λ1,2 as these were the only parameters with posterior inclusion probabilities not

close to zero. In fact, based on the median probability principle that recommends

keeping only variables with inclusion probabilities above 0.5, perhaps only the λ1,2

parameter should be allowed to be free, thus pointing to model M1. Nevertheless, as

we discuss in the remainder of the chapter, it may be helpful to consider freeing λ1,1.

The posterior inclusion probabilities of the risk premia parameters seem to closely

follow the changes in policy actions. During the conundrum period, the inclusion

probability for λ1,1 increases while at the same time that for λ1,2 deteriorates. This

suggests that the parameter, which links compensation for level risk to the slope

factor, becomes more important during periods of yield curve steepening than periods

when the curve flattens. Similarly, the parameter λ1,1 is more likely to be important

during periods where the level of the term structure increases. The situation is

reversed during the recession periods in a similar manner, with changes in the

principal components. Note that the developed sequential scheme uses an expanding

window approach, under which the detection of changes towards the end of the
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time period is becoming increasingly difficult; such changes would have been more

pronounced had a rolling window been adopted. On the other hand, there seems to be

enough information in the training samples to estimate these particular parameters

well and additional information from the testing samples contributes little to their

final estimates.

It is also interesting to look at kQ
∞ over time, the posterior trajectory of which

follows interest rate expectations and yield curve fluctuations. In the first sub-sample,

it starts at a high level and progressively moves down to zero until 2005. This is

followed by an increase during and after the conundrum period of 2004-2006, due to

the substantial increase of the federal funds rate. Qualitatively similar conclusions

are made when looking at the second sub-sample, where kQ
∞ remains close to zero

until the period after 2008, when it starts slightly increasing reflecting the steepening

of the curve, due to the Fed’s policies. The increase is more pronounced during and

after the 2013 ’taper tantrum’ events, reflecting and capturing the sharp increase in

medium-to-long maturity yields. Finally, we monitor the posterior trajectories of

the largest eigenvalue of the feedback matrix ΦP
P . Its posterior mean remains nearly

constant and very close to unity over the entire sample period, indicating a generally

high P-persistence, implied by the restrictions imposed on the risk-price parameters.

This also reflects an enhanced time variation of short rate expectations and more

stable risk premiums, implying a larger role of the expectation component over the

risk premium component, in line with policy making and interventions.

1.5.2 Bond Return Predictability

This section presents results on the predictive performance exercise described in

Section 1.3.3.1. Table 1.1 reports out-of-sample R2 values for all models across bond

maturities and prediction horizons. The in-sample period is January 1985 to the

end of 1996 and the out-of-sample period is January 1997 to the end of 2007, which

thus precludes the post-2007 financial crisis. Results suggest that models with some
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or no restrictions on the dynamics of risk compensation, such as the maximally

flexible model M0, widely used in the vast majority of prior studies (e.g. Sarno et al.

(2016)), fail to predict well and perform poorly out-of-sample compared to the EH

benchmark, as showcased by predictive R2
os that are mostly negative, especially at

the longer maturities (beyond 5-year).

Results, however, are qualitatively opposite when heavy restrictions are imposed

on the risk price dynamics. We find that restrictions add considerable improvement

to the out-of-sample predictive performance compared to models with some or no

restrictions at all. The former also generate more accurate forecasts, compared to risk

premia implied by the EH, as showcased by positive R2
os, suggesting strong evidence

of out-of-sample bond return predictability. This is of particular importance if we

take into account the low-dimensional setting, where only information in the yield

curve is utilized. These observations are in contrast to the prior literature (see, Duffee

(2011), Barillas (2011), Thornton and Valente (2012), Adrian et al. (2013), and Joslin

et al. (2014)), which suggests that yields-only DTSMs are not capable of capturing

the predictability of bond risk premia, and are more in line with the results of Sarno

et al. (2016), Feunou and Fontaine (2018) and Bianchi et al. (2021). Additionally, we

identify two such models, M1 and M3, where only shocks that affect the market price

of level risk are priced, thus suggesting that investors seek compensation for level

risk only, which is in line with Cochrane and Piazzesi (2009). Finally, SSVS schemes

(e.g. models M4 and M6) attain good performance with significantly positive R2
os,

when compared to the EH benchmark. Such improvement occurs across the maturity

spectrum and investment horizons.

Furthermore, our results suggest that, during the sample period, R2
os decrease

with maturity and increase with the prediction horizon, reaching their peak values

at horizons of 6-months and 9-months. In particular, for model M1, for the 2-year

(5-year) maturity bond, R2
os increase from 0.05 (0.03) at the 1-month horizon to 0.10

(0.09) at the 6-month horizon. Qualitatively similar increases are observed for other
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models. For example, when we take model M3 and sequential SSVS model M6, we

observe R2
os for a 2-year maturity bond increasing from 0.03 to 0.13 and from 0.04

to 0.10, respectively, when moving from the 1-month to the 9-month horizons.

Similar conclusions, yet more pronounced, are drawn from Table 1.2 that reports

R2
os results for the post-crisis period of January 2007 to end of 2016, suggesting

that predictability is linked to the economic cycle. In particular, we confirm that

predictability is substantially higher following the post-crisis recession period, when

the US market experienced high uncertainty and low interest rates, compared to the

pre-crisis low volatility and high yield period, where R2
os are substantially lower. This

finding is robust across models tested and methodologies applied. A very interesting

observation comes from looking at models M1 and M3. In particular, M3 seems

to perform really well during the pre-crisis period, generating accurate forecasts,

and substantially high R2
os. Such performance, however, completely vanishes during

the post-2007 period, where R2
os turn negative across maturities and investment

horizons. This reveals that shocks to the level of the yield curve, captured through

λ1,1, are important components of time-varying risk premia only during high yield

and low uncertainty periods. Simultaneously, R2
os for model M1 almost triples in

magnitude following the post-crisis low yield and high uncertainty sub-period. This

outperformance is more pronounced at longer maturities and horizons. In particular,

at the 12-month investment horizon, R2
os increases from 0.08 up to 0.34 for the

10-year maturity bond. Comparably substantial improvements are also experienced

in the case of sequential SSVS models which provide quantitatively similar R2
os across

the maturity spectrum.

The out-of-sample R2 measure, used to assess the predictive ability of the models,

only focused on a point summary of the predictive distribution and may ignore impor-

tant information. To account for full information associated with the distribution of

excess returns, we evaluate the accuracy of their density forecasts using the log score.

At each time step t, we obtain the LS by taking the log of the predictive densities of
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excess returns for each one of the tested models against the EH benchmark. Tables

1.3 and 1.4 report out-of-sample LS across models, maturities, and prediction hori-

zons. The main conclusions remain unchanged since results are qualitatively similar

to those reported for the R2
os, showing evidence in favour of statistical predictability

only for those models that allow for heavy restrictions. In particular, in most cases,

corresponding LS are positive and non-negligible, indicating statistical evidence of

out-of-sample predictability. The only model that performs poorly out-of-sample

compared to the EH benchmark is the maximally flexible model, M0, where LS are

mostly negative, especially at longer maturities. M1 is performing very well in the

second sub-sample but its superiority is challenged by M3 in the first sub-sample.

The sequential SSVS model that combines these two, M6, does very well on both

occasions although the differences between these models are quite small.

Overall, the results highlight the importance of different sets of restrictions across

market conditions and monetary policy actions. A message coming out of the analysis,

despite the very good performance of M1, is that sequential model averaging can

provide improvements in predictive performance, and capture model uncertainty as

well as model instability.

1.5.3 Economic Performance

In this section we concentrate on performance in terms of economic value, as described

in Section 1.3.3.2. Table 1.5 reports results for the annualized CERs, generated

using out-of-sample forecasts of bond excess returns across maturities and prediction

horizons. The coefficient of relative risk aversion is γ = 3 and no portfolio constraints

are imposed21. Results show clear evidence of positive out-of-sample economic benefits

for bond investors. We find that, in most cases, corresponding CERs are positive

and non-negligible, indicating that yields-only models, with heavy restrictions on the
21These non-conservative choices are motivated by early exploratory character of the analysis

conducted herein. The goal is to find economic value first and in future research examine if it can
be exploited when stricter conditions apply.
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dynamics of risk compensation, not only provide statistical evidence of out-of-sample

predictability, but also generate valuable economic gains for bond investors relative

to the EH benchmark. Concurrently, models with some or no restrictions on the

risk price dynamics, such as the maximally flexible model M0, fail to offer any

positive out-of-sample economic benefits compared to the EH benchmark, generating

CER values which are consistently negative across the maturity spectrum and

investment horizons. Furthermore, consistent with the conclusions coming from the

predictability analysis in Section 1.5.2, such models are identified to be the exact

same ones, suggesting that only models which allocate one or two non-zero risk price

parameters solely to the level factor are able to generate meaningful economic gains

for investors who dynamically rebalance their portfolio when new information arrives.

Finally, the developed sequential SSVS scheme, which only searches among the best

models available, attains very good performance, generating CER values which are

quantitatively similar, though marginally better, compared to model M1. Those

findings are in contrast to the conclusions of Thornton and Valente (2012) and Sarno

et al. (2016), who argue that bond investors utilizing information from the yield

curve only are not able to systematically earn any economic premium out-of-sample.

Furthermore, our results suggest larger gains from predictability at longer matu-

rities, reflecting substantially higher CER values and consequently more profitable

investments. For example, for model M1 at the 9-month prediction horizon, CER

increases from 0.84% for a 2-year maturity bond, up to 3.38% for the 10-year maturity.

Qualitatively similar increases are generated for most of the models. In particular, for

M3 at the 9-month horizon CER increases from 0.72% for the 2-year maturity bond

to 1.22% for a long-term bond with 10-year maturity. In turn, for the sequential SSVS

model M6, which searches only among the best models available, CER increases

from 1.07% for the 2-year maturity up to 2.96%, and highly significant, for a 10-year

maturity bond. In fact, during this sample period, the latter model appears to

outperform all other models tested.
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Comparing the performance of alternative model specifications over time sheds

light on the importance of particular restrictions across monetary policy actions and

market conditions. Table 1.6 displays CER values for the period 2007-2016, which

covers the aftermath of the recession of 2007-2009 as well as the most interesting

phases of the unfolding of the Fed’s policy responses to it. Results reveal that

economic benefits are even more pronounced compared to the pre-crisis period. Such

an upturn in CER values occurs across the maturity spectrum with a tendency for

substantially larger gains at the short end of the curve, where investments on the

2-year maturity bond are now the most profitable. This is in contrast to the results

from the first sub-period, where the most profitable investments are those in long

maturity bonds. In particular, looking at all models, other than M0 and M3, CER

values for a 2-year maturity bond almost triple when compared to the pre-crisis

period. In fact, CER values increase with bond maturity during the expansion

period and decrease with maturity during the recession phase of the economic cycle.

More specifically, for model M1 at the 6-month investment horizon, CER value

declines from highly significant 5.18% for a 2-year maturity bond down to 2.34% for

bonds with 10-year maturity. Qualitatively similar results are observed for other

models tested, as displayed in Table 1.6.

An interesting conclusion is inferred when comparing CER values for model M3

over time. M3 appears to perform really well during the pre-crisis period, generating

high gains to bond investors, as showcased by the consistently positive CER values,

especially at longer maturities. However, the situation is reversed in the aftermath

of the global financial crisis where CER values turn negative across the maturity

spectrum. Model M3, as well as the maximally flexible model M0, fail to produce

any benefits to investors out-of-sample, when compared to the EH benchmark. This

result, which is in line with the statistical analysis in the previous section, suggests

that the effect on time-varying risk premia, through parameter λ1,1, completely

vanishes in the second sub-sample. Sequential SSVS models provide very good
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performance, consistently generating large gains to bond investors, across maturities

and investment horizons.

1.6 Conclusions

We propose a novel methodological framework, which utilizes Bayesian inference

and allows us to identify the optimal set of restrictions on the dynamics of risk

compensation, in real time. The sequential version of the SSVS scheme developed

successfully handles sequential model searches over the restriction space landscape,

thus offering an important diagnostic tool capable of monitoring and identifying the

optimum set of restrictions across market conditions and monetary policy actions.

The modelling setup takes into account model and parameter uncertainty and

provides the entire predictive distribution of bond returns, allowing investors to

revise their beliefs when new information becomes available and thus informing

their asset allocation in real time. The framework is then put into action to revisit

the evident puzzling behaviour between statistical predictability and out-of-sample

economic benefits in light of different model specifications.

Empirical results reveal the need for heavy restrictions on the dynamics of risk

compensation. In particular, we find strong evidence of predictability only for those

models that allow for level risk to be priced. Most importantly, such statistical

evidence is turned into economically meaningful utility gains, out-of-sample. The

sequential SSVS scheme provides further improvements during turbulent periods.

Furthermore, our results highlight the importance of different sets of restrictions

over time. In particular, the importance of parameters that capture variation in

the slope factor increases during periods of curve steepening and decreases when

the curve flattens. Finally, we document that both statistical predictability and

economic benefits are substantially higher following the post-crisis high uncertainty
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and low yield period, suggesting a strong relationship between the slope of the yield

curve and bond excess returns in the US market.

Going forward, we note the data typically contain yield curve fluctuations that

could be attributed to changes in market conditions and policy actions. One message

coming out of our analysis is that this has an impact on the estimates of some of

the parameters of the adopted ATSM formulation, for example the mean under the

pricing measure and the volatility that appear to be time varying. It may therefore

be sensible to consider such extensions. Our approach can capture that to some

extent, but it is a bit limited since, due to its expanding data window nature, it is

hard to capture changes as the data accumulate. Another promising future direction

is to incorporate spanned or unspanned macroeconomic variables in the models;

however, unlike Joslin et al. (2014), in a nonlinear rather than linear manner.

Appendix 1.A Specification of Priors

In the following, we provide the prior distributions that were not mentioned in the

main body of the chapter. Low informative priors on each θ component can be

assigned although some relevant information is available in this context (Chib and

Ergashev, 2009).

We first transform all restricted range parameters so that they have unrestricted

range. We also scale parameters which typically take very small values. Specifi-

cally, we consider a Cholesky factorization of ΣP where the diagonal elements are

transformed to the real line and off-diagonal elements are scaled by 106. In order to

preserve the ordering of the eigenvalues gQ we apply a reparametrization and work

with their increments that are again transformed to the real line. Finally, we scale

kQ
∞ by 106 as well.

Next, independent normal distributions with zero means and large variances are

assigned to each component of θ, except λP , as explained below, and σ2
e , where we
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assign a conjugate Inverse-Gamma prior as in Bauer (2018) with parameters α/2

and β/2. We take α = β = 0 for an entirely diffuse case.

In general, prior for λP cannot be uninformative because it would cause Bayes

factors indeterminate (Kass and Raftery, 1995). Although immaterial in large

samples, its choice plays a significant role for inference in small samples that one is

dealing with in DTSM setting. Following Bauer (2018) and independent of whether

in a model with or without SSVS, prior specification for the elements of λP included

in the model, we employ here, consists of independent normal distributions centered

around zero, that is λP
ij|γij = 1 ∼ N(0, τ

(1)
ij ). Similarly, we assume conditional

prior independence between elements of λP . To that end, we use orthogonalized

g-prior, where g is equal to the number of observations. Specifically, the covariance

matrix of such a g-prior distribution, which is a normal, is proportional to that of the

least-squares estimator but with off-diagonal elements equal to zeros. To obtain it, all

model parameters other than λP are set to their maximum likelihood estimates and

all γijs are set to ones. Hence, we are specifying a maximally flexible DTSM. Then

least-squares estimates of λP are calculated. Eventually, we have that τ
(0)
ij = 1

g
σ̂2

λP
ij

and τ
(1)
ij = gσ̂2

λP
ij

, where σ̂2
λP

ij
are diagonal elements of the covariance matrix for the

resulting least-squares estimates of λP . In the model without SSVS only τ
(1)
ij is used.

Appendix 1.B Markov Chain Monte Carlo Scheme

Following from (1.17) and (1.19), and given a prior π(θ) as described in Appendix

1.A, the posterior can be written in a more detailed manner as

π(θ|Y ) =
{∏T

t=0 fQ(yt|Pt, kQ
∞, gQ, ΣP , σ2

e)
}

×{∏T
t=1 fP(Pt|Pt−1, kQ

∞, gQ, λ0P , λ1P , ΣP)
}

× π(θ)

Since the above posterior is not available in closed form, methods such as MCMC

can be used to draw samples from it to calculate expectations of interest, E[g(θ)|Y ],
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provided that they exist, using Monte Carlo. However, note that the MCMC output is

not guaranteed to lead to accurate Monte Carlo calculations since the corresponding

Markov chain may have poor mixing and convergence properties, thus leading to

highly autocorrelated samples.

It is therefore essential to construct a suitable MCMC algorithm that does not

exhibit such unfavourable characteristics. Various studies (see, for example, Chib

and Ergashev (2009) and Bauer (2018)), note a substantial improvement to the

quality of the MCMC output if a Gibbs scheme is adopted, where the parameters are

updated in blocks, some of them being full Gibbs steps. For the remaining blocks,

independence samplers may be constructed, using the maximum likelihood estimate

as the mean in respective proposal density and negative inverse of the corresponding

Hessian as its covariance. Such an MCMC scheme is described in Algorithm 1.3.

Algorithm 1.3 MCMC scheme for Gaussian Affine Term Structure Models
Initialize all values of θ. Then at each iteration of the algorithm:

(a) Update σ2
e from its full conditional distribution that can be shown to be an Inverse

Gamma distribution with parameters α̃/2 and β̃/2, such that α̃ is α + T (J − N) and
β̃ is β +

∑T
t=0 ∥êt∥2, where α = β = 0, since prior is assumed diffuse, êt is a time-t

residual from (1.11), and ∥ · ∥2 is Euclidean norm squared.

(b) Update γi,j, i = 1, ..., N , j = 1, ..., N + 1, successively, in random order, from their
full conditional distributions, which are Bernoulli and depend only on respective λP

i,js
and own hyper-parameters, see for example Bauer (2018) for details on equal prior
model probabilities and Consonni et al. (2018) for details on sparse model priors.

(c) Update λP from its full conditional distribution that can be shown to be the normal
distribution with mean and variance obtained from the restricted VAR framework,
see for example Bauer (2018) for details.

(d) Update ΣP using an independence sampler based on the MLE and the Hessian
obtained before running the MCMC, using multivariate t-distribution with 5 degrees
of freedom as proposal distribution.

(e) Update (kQ
∞, gQ) in a similar manner to (d).
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Appendix 1.C Adaptive Tempering

Adaptive tempering serves the purpose of smoothing peaked likelihoods. It is achieved

by bridging two successive targets via an intermediate target sequence. The idea is

to modify the sequence of target distributions so that is evolves from the prior to the

posterior more smoothly. See Jasra et al. (2011) and Kantas et al. (2014) for details.

Implementation of the IBIS scheme with hybrid adaptive tempering steps is

outlined in Algorithm 1.4. It is important to note that, unlike it is shown in

Algorithm 1.1 for the general IBIS case, in the specific case we are dealing here with,

we initialize the particles by drawing from the posterior π(θ|Y0:t−1) instead of the

prior π(θ). This is done in-sample based on training data, as it is described in detail

in Section 1.4. While it is straightforward to implement step 4(b)iv in Algorithm

1.4 for an independence sampler, adjustments are necessary for a full Gibbs step. In

particular, this is the case for σ2
e in step (a) and λP in step (c) in Algorithm 1.3, see

Appendix 1.B.

We begin with the former by observing that, assuming tempering parameter ϕ,

the following holds

[
f(êT |σ2

e)
]ϕ

=
exp

(
− ϕ

2σ2
e
∥êT ∥2

)
[
(2π)J−Nσ

2(J−N)
e (J − N)

]ϕ
2

for êT which is a time-T residual from (1.11), f(êT |σ2
e) is the associated likelihood

and ∥ · ∥2 denotes Euclidean norm squared. Then for ê0:T we let

f(ê0:T |σ2
e , ϕ) = f(ê0:T −1|σ2

e) ×
[
f(êT |σ2

e)
]ϕ

be the corresponding tempered likelihood. Combined with an IG (α/2, β/2) prior

that is proportional to

p(σ2
e |α, β) ∝

(
σ2

e

)− α
2 −1

× exp
(

− β

2σ2
e

)
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Algorithm 1.4 IBIS algorithm with hybrid adaptive tempering for Gaussian Affine
Term Structure Models
Initialize Nθ particles by drawing independently θi ∼ π(θ|Y0:t−1) with importance weights
ωi = 1, i = 1, . . . , Nθ. For t, . . . , T and each time for all i:

1 Set ω′
i = ωi.

2 Calculate the incremental weights from

ut(θi) = f
(
Yt|Yt−1, θi)

3 Update the importance weights ωi to ωiut(θi).

4 If degeneracy criterion ESS(ω) is triggered, perform the following sub-steps:

(a) Set ϕ = 0 and ϕ′ = 0.
(b) While ϕ < 1

i. If degeneracy criterion ESS(ω′′) is not triggered, where
ω′′

i = ω′
i[ut(θi)]1−ϕ′, set ϕ = 1, otherwise find ϕ ∈ [ϕ′, 1] such that

ESS(ω′′′) is greater than or equal to the trigger, where ω′′′
i = ω′

i[ut(θi)]ϕ−ϕ′ ,
for example using bisection method, see Kantas et al. (2014).

ii. Update the importance weights ωi to ω′
i[ut(θi)]ϕ−ϕ′.

iii. Resample: Sample with replacement Nθ times from the set of θis
according to their weights ωi. The weights are then reset to one.

iv. Jitter: Replace θis with θ̃is by running MCMC chains with each θi as
input and θ̃i as output, using likelihood given by f(Y0:t−1|θi)[f

(
Yt|θi)]ϕ.

Set θi = θ̃i.
v. Calculate the incremental weights from

ut(θi) = f
(
Yt|Yt−1, θi)

vi. Set ω′
i = ωi and ϕ′ = ϕ.

we get tempered posterior as

π(σ2
e |ê0:T , α, β, ϕ) ∝ f(ê0:T |σ2

e , ϕ) × p(σ2
e |α, β)

and eventually we arrive at

π(σ2
e |ê0:T , α, β, ϕ) ∝

(
σ2

e

)− 1
2 [α+(T −1+ϕ)(J−N)]−1

× exp
(

−β + ϕ∥êT ∥2 +∑T −1
t=0 ∥êt∥2

2σ2
e

)
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what assuming

α̃ = α + (T − 1 + ϕ)(J − N)

β̃ = β + ϕ∥êT ∥2 +
T −1∑
t=0

∥êt∥2

leads us to an IG(α̃/2, β̃/2) posterior for σ2
e .

Following sections C.1 and C.2 in Online Appendix to Bauer (2018), and details

from Lütkepohl (2005), to obtain tempered posterior distribution for λP , it suffices

to replace the Z and the x, according to notation in Online Appendix to Bauer

(2018), with Zϕ and xϕ, which are defined as

Zϕ =
[
Z0:T −2,

√
ϕZT −1

]

and

xϕ =

 x1:T −1
√

ϕxT


where ϕ is the tempering parameter. In our notation, Z = [Z0, . . . , ZT −1] where

Zt = [1, P ′
t]

′, t = 0, . . . , T − 1, and x = vec(X) where X = [P1, . . . , PT ]. Rest is

straightforward to conclude from Bauer (2018).
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Figure 1.1: Principal components extracted from the yield curve for the two periods
where the predictions were evaluated (January 1997 - end of 2007 and January 2006 -
end of 2016). The dashed lines correspond to principal components based on loadings
calculated from the entire sub-samples (January 1985 - end of 2007 and January
1990 - end of 2016). The solid lines, which are the ones used for the data analysis,
were based on loadings calculated from the training periods only (January 1985 -
end of 1996 and January 1990 - end of 2005).
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Figure 1.2: Output from model M6 fitted on the first sub-sample (January 1985 to
end of 2007). Here focus is given on the period between January 1997 and the end
of 2006 for which predictions of the model were also evaluated, but the estimates are
based on all the data from January 1985. The top row contains posterior probabilities
of corresponding λi,j being non-zero (i.e. inclusion probabilities). The medium row
presents posterior means (solid line) and 95% credible intervals (dashed line) for the
market price of risk parameters λ1,1 and λ1,2. The lower row plots real-time estimates
of kQ

∞, which is linked to the long-run mean of the short rate rt under Q, and of the
largest eigenvalue of the feedback matrix ΦP

P , which is a measure of persistence.
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Figure 1.3: Output from model M6 fitted on the second sub-sample (January 1990
to end of 2016). Here focus is given on the period between January 2006 and the end
of 2015 for which predictions of the model were also evaluated, but the estimates are
based on all the data from January 1990. The top row contains posterior probabilities
of corresponding λi,j being non-zero (i.e. inclusion probabilities). The medium row
presents posterior means (solid line) and 95% credible intervals (dashed line) for the
market price of risk parameters λ1,1 and λ1,2. The lower row plots real-time estimates
of kQ

∞, which is linked to the long-run mean of the short rate rt under Q, and of the
largest eigenvalue of the feedback matrix ΦP

P , which is a measure of persistence.
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Table 1.1: Out-of-sample statistical performance of bond excess return forecasts
measured via R2

os over multiple prediction horizons - period: January 1985 - end of
2007.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m 0.03*** 0.01** 0.00** -0.02* -0.03 -0.08
3m 0.06** 0.02** 0.01** -0.04** -0.06** -0.22
6m 0.09** 0.04** 0.01** -0.04** -0.14* -0.35
9m 0.07* 0.02* -0.02* -0.07* -0.20 -0.43
12m 0.08* 0.02 -0.03 -0.06 -0.22 -0.43

M1

1m 0.05*** 0.04*** 0.03*** 0.03** 0.02** 0.03**
3m 0.07** 0.06** 0.06** 0.04* 0.06** 0.05**
6m 0.10** 0.09* 0.10** 0.09* 0.09* 0.08**
9m 0.08 0.08 0.10* 0.10* 0.11* 0.09*
12m 0.07 0.06 0.08 0.08 0.09* 0.08**

M2

1m 0.04*** 0.03** 0.03** 0.02* 0.02* 0.03**
3m 0.07** 0.06** 0.06** 0.04* 0.05* 0.05**
6m 0.09** 0.08* 0.09* 0.08* 0.08* 0.07*
9m 0.07 0.07 0.09 0.08 0.08* 0.06*
12m 0.05 0.04 0.05 0.05 0.06* 0.03*

M3

1m 0.03** 0.02* 0.02* 0.02* 0.02* 0.02*
3m 0.05** 0.05** 0.05** 0.03** 0.05** 0.04**
6m 0.09** 0.07** 0.07** 0.06** 0.06*** 0.05***
9m 0.13** 0.12** 0.11** 0.10*** 0.10*** 0.07***
12m 0.16** 0.13** 0.13** 0.11*** 0.11*** 0.08***

M4

1m 0.05** 0.03*** 0.03** 0.02** 0.02** 0.02**
3m 0.08** 0.07** 0.07** 0.05** 0.07** 0.06**
6m 0.10** 0.09** 0.10** 0.09** 0.09** 0.08*
9m 0.09 0.09* 0.10* 0.10* 0.11* 0.11*
12m 0.08 0.06 0.08 0.08* 0.10* 0.10**

M5

1m 0.05*** 0.04*** 0.03*** 0.03** 0.03** 0.02**
3m 0.07** 0.06** 0.06** 0.04* 0.06** 0.05*
6m 0.08* 0.07* 0.08* 0.07* 0.08* 0.07*
9m 0.08 0.08 0.09 0.09 0.09 0.10
12m 0.08 0.05 0.06 0.07 0.08 0.09

M6

1m 0.04*** 0.04*** 0.03*** 0.03** 0.02** 0.03***
3m 0.08** 0.07** 0.07** 0.05* 0.06** 0.06**
6m 0.10** 0.10** 0.10** 0.09* 0.09** 0.09**
9m 0.10* 0.10* 0.11* 0.11* 0.11* 0.10*
12m 0.09 0.08 0.09 0.09* 0.10* 0.08**

This table reports out-of-sample R2 across alternative models and at different prediction horizons of h = 1-month, 3-month, 6-month,
9-month and 12-month. The seven forecasting models used are ATSM with alternative risk price restrictions. R2 values are generated
using the out-of-sample R2 measure of Campbell and Thompson (2008). In particular, out-of-sample R2 measures the predictive
accuracy of bond excess return forecasts relative to the EH benchmark. The EH implies the historical mean being the optimal forecast
of excess returns. Positive values of this statistic imply that the forecast outperforms the historical mean forecast and suggests evidence
of time-varying return predictability. Statistical significance is measured using a one-sided Diebold-Mariano statistic with Clark-West
adjustment, based on Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1%
level. The in-sample period is January 1985 to end of 1996, and the out-of-sample period starts in January 1997 and ends in end of
2007.
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Table 1.2: Out-of-sample statistical performance of bond excess return forecasts
measured via R2

os over multiple prediction horizons - period: January 1990 - end of
2016.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -0.08 -0.10 -0.09 -0.06 -0.05 -0.05
3m -0.16 -0.18 -0.17 -0.12 -0.12 -0.13
6m -0.26 -0.31 -0.28 -0.21 -0.19 -0.17
9m -0.46 -0.62 -0.60 -0.44 -0.36 -0.27
12m -0.57 -0.81 -0.81 -0.59 -0.45 -0.27

M1

1m 0.04*** 0.04*** 0.04*** 0.04** 0.03** 0.03***
3m 0.06** 0.06*** 0.06*** 0.07*** 0.07*** 0.07***
6m 0.07** 0.09** 0.10** 0.11*** 0.12*** 0.15***
9m 0.07* 0.11** 0.14** 0.18*** 0.18*** 0.25***
12m 0.01 0.12** 0.17** 0.25*** 0.26*** 0.34***

M2

1m 0.03** 0.03*** 0.03*** 0.03*** 0.02** 0.02**
3m 0.06** 0.06*** 0.05** 0.06** 0.06** 0.06**
6m 0.07** 0.09** 0.08** 0.10** 0.10** 0.13***
9m 0.09* 0.12** 0.13** 0.18** 0.16** 0.23***
12m 0.02 0.13** 0.17** 0.25*** 0.25*** 0.32***

M3

1m 0.01** -0.01 -0.01 -0.01 -0.01 -0.03
3m 0.01** -0.04 -0.04 -0.04 -0.04 -0.10
6m -0.01** -0.09 -0.10 -0.09 -0.08 -0.13
9m -0.01** -0.19 -0.25 -0.23 -0.20 -0.25
12m 0.07** -0.19 -0.32 -0.29 -0.27 -0.29

M4

1m 0.03** 0.03** 0.03** 0.03** 0.02** 0.02**
3m 0.03 0.03* 0.03* 0.05** 0.05** 0.05**
6m 0.00 0.01 0.03 0.06* 0.07* 0.10**
9m -0.03 -0.02 0.01 0.09* 0.10* 0.19***
12m -0.11 -0.05 0.01 0.13* 0.16** 0.28***

M5

1m 0.02** 0.02** 0.02** 0.02** 0.02** 0.02**
3m 0.05** 0.05** 0.05** 0.06* 0.05** 0.06**
6m 0.05* 0.06* 0.07** 0.09** 0.09** 0.12***
9m 0.04 0.08* 0.10* 0.15** 0.14** 0.22***
12m -0.01 0.08* 0.13** 0.22** 0.23*** 0.32***

M6

1m 0.04** 0.03** 0.03** 0.03** 0.03** 0.02**
3m 0.06*** 0.06*** 0.06*** 0.07*** 0.07*** 0.07***
6m 0.08** 0.09** 0.10** 0.12*** 0.11*** 0.14***
9m 0.08* 0.12** 0.14** 0.18*** 0.17*** 0.24***
12m 0.03 0.13** 0.17** 0.25*** 0.26*** 0.33***

This table reports out-of-sample R2 across alternative models and at different prediction horizons of h = 1-month, 3-month, 6-month,
9-month and 12-month. The seven forecasting models used are ATSM with alternative risk price restrictions. R2 values are generated
using the out-of-sample R2 measure of Campbell and Thompson (2008). In particular, out-of-sample R2 measures the predictive
accuracy of bond excess return forecasts relative to the EH benchmark. The EH implies the historical mean being the optimal forecast
of excess returns. Positive values of this statistic imply that the forecast outperforms the historical mean forecast and suggests evidence
of time-varying return predictability. Statistical significance is measured using a one-sided Diebold-Mariano statistic with Clark-West
adjustment, based on Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1%
level. The in-sample period is January 1990 to end of 2005, and the out-of-sample period starts in January 2006 and ends in end of
2016.
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Table 1.3: Out-of-sample statistical performance of bond excess return forecasts
measured via log predictive score over multiple prediction horizons - period: January
1985 - end of 2007.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -0.01 0.00 0.00 -0.01 -0.02 -0.03
3m 0.05 0.04 0.04 0.01 -0.01 -0.07
6m 0.06 0.03 0.04 0.02 -0.04 -0.09
9m 0.01 0.00 0.01 0.00 -0.04 -0.07
12m -0.05 -0.05 -0.03 -0.02 -0.06 -0.08

M1

1m 0.01 0.00 0.02** 0.00 0.00 0.01
3m 0.04** 0.04** 0.04*** 0.03* 0.02* 0.01
6m 0.05 0.05* 0.06** 0.05* 0.04* 0.03*
9m 0.03 0.05 0.06* 0.05 0.04 0.05*
12m 0.01 0.03 0.05 0.05 0.05 0.05*

M2

1m -0.01 0.01 0.02* 0.00 -0.01 -0.01
3m 0.04** 0.04** 0.05** 0.02 0.02 0.01
6m 0.06** 0.06** 0.06** 0.03* 0.03 0.03
9m 0.04 0.06 0.06* 0.03 0.03 0.03
12m -0.01 0.03 0.04 0.05 0.03 0.03

M3

1m -0.01 0.00 0.01 0.00 -0.01 0.00
3m 0.05** 0.04* 0.04** 0.03** 0.01 0.01
6m 0.05 0.05 0.05** 0.05*** 0.03** 0.03***
9m 0.06 0.07* 0.08** 0.06** 0.05** 0.04***
12m 0.05 0.06 0.08* 0.07** 0.06*** 0.06***

M4

1m 0.00 0.01 0.00 0.00 -0.01 0.00
3m 0.05** 0.03* 0.05*** 0.04*** 0.03** 0.00
6m 0.06* 0.07** 0.06*** 0.04* 0.05** 0.04**
9m 0.05 0.06 0.07** 0.06** 0.05* 0.04**
12m 0.03 0.03 0.05 0.05 0.05 0.05*

M5

1m 0.00 0.00 0.01 -0.01 -0.01 0.00
3m 0.04* 0.03* 0.04** 0.03*** 0.02* 0.01
6m 0.05 0.04 0.04 0.02 0.03 0.03
9m 0.03 0.04 0.05 0.05 0.04 0.03
12m 0.00 0.02 0.03 0.05 0.03 0.04*

M6

1m 0.01 0.02** 0.01 0.00 0.00 0.00
3m 0.04** 0.04** 0.04*** 0.02* 0.03* 0.01
6m 0.04 0.05** 0.06*** 0.05** 0.04** 0.04**
9m 0.05 0.06* 0.07** 0.06** 0.06** 0.05**
12m 0.02 0.04 0.06* 0.06* 0.05* 0.05*

This table reports out-of-sample log predictive score (LS) across alternative models and at different prediction horizons of h = 1-month,
3-month, 6-month, 9-month and 12-month. The seven forecasting models used are ATSM with alternative risk price restrictions.
The EH implies the historical mean being the optimal forecast of excess returns. Positive values of this statistic imply that the
forecast outperforms the historical mean forecast and suggests evidence of time-varying return predictability. Statistical significance is
measured using a one-sided Diebold-Mariano statistic computed with Newey-West standard errors. * denotes significance at 10%, **
significance at 5% and *** significance at 1% level. The in-sample period is January 1985 to end of 1996, and the out-of-sample period
starts in January 1997 and ends in end of 2007.
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Table 1.4: Out-of-sample statistical performance of bond excess return forecasts
measured via log predictive score over multiple prediction horizons - period: January
1990 - end of 2016.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -0.01 -0.03 -0.04 -0.04 -0.03 -0.07
3m 0.01 -0.04 -0.06 -0.05 -0.10 -0.05
6m -0.23 -0.22 -0.14 -0.12 -0.10 -0.09
9m -0.27 -0.26 -0.23 -0.17 -0.16 -0.13
12m -0.16 -0.19 -0.21 -0.19 -0.18 -0.13

M1

1m -0.01 -0.01 0.01* 0.00 0.00 -0.04
3m 0.07** 0.05** 0.04*** 0.04*** -0.01 0.02
6m 0.10** 0.07* 0.05** 0.05** 0.05** 0.06**
9m 0.15*** 0.10** 0.07*** 0.05** 0.06** 0.06*
12m 0.18*** 0.13*** 0.08** 0.07*** 0.06** 0.09**

M2

1m 0.01 0.00 0.00 0.00 0.00 -0.05
3m 0.08*** 0.07*** 0.05*** 0.03** 0.03** 0.03*
6m 0.08 0.07* 0.05* 0.05** 0.06*** 0.06*
9m 0.13* 0.09** 0.05* 0.05* 0.03 0.06*
12m 0.17*** 0.12*** 0.08** 0.07*** 0.05* 0.08*

M3

1m -0.01 -0.02 -0.02 -0.02 -0.01 -0.01
3m 0.06* 0.03 0.02 -0.01 -0.04 -0.08
6m 0.08 0.03 -0.01 -0.02 -0.02 -0.06
9m 0.14** 0.04 -0.03 -0.06 -0.07 -0.09
12m 0.25*** 0.11** 0.00 -0.05 -0.08 -0.10

M4

1m 0.00 0.00 0.01 0.00 0.00 -0.03
3m 0.07** 0.05** 0.03* 0.02 0.02* 0.01
6m 0.07 0.05 0.02 0.03 0.02 0.03
9m 0.12* 0.06 0.03 0.02 0.02 0.05
12m 0.13* 0.08 0.04 0.04 0.03 0.06

M5

1m 0.02** 0.00 0.00 0.00 0.00 -0.05
3m 0.07** 0.05** 0.03** 0.03*** 0.04*** 0.02
6m 0.10** 0.07** 0.04* 0.05** 0.04* 0.05*
9m 0.14** 0.09** 0.05* 0.04 0.03 0.06*
12m 0.17*** 0.12*** 0.08** 0.07** 0.06* 0.08**

M6

1m 0.00 0.00 0.00 -0.01 -0.01 -0.04
3m 0.06 0.05** 0.03** 0.04*** 0.02 0.03*
6m 0.10* 0.08** 0.04 0.05** 0.05** 0.05*
9m 0.14** 0.09** 0.06** 0.05** 0.05** 0.07*
12m 0.18*** 0.12*** 0.07*** 0.06** 0.05** 0.08**

This table reports out-of-sample log predictive score (LS) across alternative models and at different prediction horizons of h = 1-month,
3-month, 6-month, 9-month and 12-month. The seven forecasting models used are ATSM with alternative risk price restrictions.
The EH implies the historical mean being the optimal forecast of excess returns. Positive values of this statistic imply that the
forecast outperforms the historical mean forecast and suggests evidence of time-varying return predictability. Statistical significance is
measured using a one-sided Diebold-Mariano statistic computed with Newey-West standard errors. * denotes significance at 10%, **
significance at 5% and *** significance at 1% level. The in-sample period is January 1990 to end of 2005, and the out-of-sample period
starts in January 2006 and ends in end of 2016.
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Table 1.5: Out-of-sample economic performance of bond excess return forecasts
measured via certainty equivalent returns (%) over multiple prediction horizons -
period: January 1985 - end of 2007.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -1.07 -2.95 -2.52 -3.76 -4.66 -12.10
3m -1.77 -2.79 -2.44 -3.05 -4.97 -10.63
6m -2.01 -2.64 -2.57 -2.98 -4.93 -7.72
9m -3.92 -3.87 -3.35 -3.38 -4.77 -6.25
12m -4.69 -3.97 -3.18 -2.77 -4.19 -5.34

M1

1m 1.64 0.27 0.58 1.30 1.63 1.54
3m 1.70 1.23 1.43 1.81 1.53 1.48
6m 2.00 2.28* 2.58** 2.70** 2.90** 3.07**
9m 0.84 1.83 2.54** 2.71** 3.21*** 3.38***
12m -0.22 1.05 1.75 2.17** 2.76*** 2.97***

M2

1m 1.26 -0.34 -0.14 0.70 0.80 0.88
3m 2.00 1.61 1.70 2.02 1.45 1.36
6m 1.52 1.96* 2.29** 2.38** 2.53** 2.78**
9m 0.57 1.54 2.21** 2.29** 2.74*** 2.97***
12m -0.36 0.92 1.52 1.84* 2.38** 2.59**

M3

1m 1.21 1.82 2.34 3.11 3.00* 1.52
3m 1.40 1.74* 2.08** 2.42** 1.52* 0.55
6m 0.88 1.33 1.42** 1.34** 1.20** 1.22**
9m 0.72 1.26 1.43 1.12 1.15* 1.22*
12m 0.20 1.22 1.41 1.21 1.24 1.16

M4

1m 1.04 -0.18 -0.14 0.28 0.21 -1.17
3m 1.84 1.46 1.69 2.09 1.51 0.47
6m 1.28 1.42 1.68* 1.79* 1.80* 1.70*
9m 0.69 1.25 1.69** 1.73** 1.97** 2.01***
12m 0.01 0.76 1.11 1.36* 1.61** 1.68***

M5

1m 0.79 0.17 0.58 1.19 1.73 0.08
3m 0.82 0.47 0.65 1.03 0.68 -0.25
6m 0.48 0.64 0.78 0.92 0.94 0.97
9m 0.23 0.61 0.82 0.80 0.98 1.18
12m 0.10 0.60 0.62 0.76 0.87 1.02*

M6

1m 1.85 0.92 1.24 1.97 2.01 1.85
3m 2.27 1.77 1.86 2.18 1.66 1.41
6m 1.99* 2.17* 2.37** 2.43** 2.54** 2.75**
9m 1.07 1.86* 2.42** 2.46** 2.83*** 2.96***
12m -0.04 1.09 1.68* 1.91** 2.37*** 2.50**

This table reports annualized certainty equivalent returns (CERs) across alternative models and at different prediction horizons of h
= 1-month, 3-month, 6-month, 9-month and 12-month. The coefficient of risk aversion is γ = 3. No portfolio constraints are imposed.
CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time step t, an investor with
power utility preferences evaluates the entire predictive density of bond excess returns and solves the asset allocation problem, thus
optimally allocating her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is then defined
as the value that equates the average utility of each alternative model against the average utility of the EH benchmark. The seven
forecasting models used are ATSM with alternative risk price restrictions. Positive values indicate that the models perform better
than the EH benchmark. Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with Newey-West
standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The in-sample period is January
1985 to end of 1996, and the out-of-sample period starts in January 1997 and ends in end of 2007.
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Table 1.6: Out-of-sample economic performance of bond excess return forecasts
measured via certainty equivalent returns (%) over multiple prediction horizons -
period: January 1990 - end of 2016.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -13.38 -15.71 -14.85 -11.84 -11.51 -16.85
3m -10.55 -11.77 -10.64 -7.34 -7.73 -9.61
6m -12.93 -12.74 -11.25 -8.58 -7.78 -7.37
9m -11.10 -11.45 -10.81 -9.18 -8.32 -6.93
12m -9.13 -9.62 -9.48 -8.09 -7.34 -5.63

M1

1m 4.66** 3.41** 3.77** 3.80** 5.37** 3.59
3m 4.72*** 3.65** 3.04** 3.40** 3.04** 2.39
6m 5.18*** 3.94*** 2.64*** 2.67*** 2.35** 2.34**
9m 5.82*** 4.16*** 2.75*** 2.36*** 1.92** 2.36**
12m 6.37*** 5.32*** 3.76*** 3.22*** 2.61*** 2.87***

M2

1m 2.23 1.48 1.41 1.89 3.46 0.64
3m 3.72** 2.90* 2.30 2.80* 2.20 1.70
6m 4.67*** 3.43*** 2.03** 2.05** 1.58 1.80
9m 5.23*** 3.58*** 2.24** 1.93** 1.51 2.01
12m 5.82*** 4.64*** 3.05*** 2.65*** 2.04** 2.43**

M3

1m -4.17 -6.04 -4.34 -3.18 0.29 -6.08
3m -3.29 -4.27 -3.76 -3.02 -3.01 -7.59
6m -2.86 -4.06 -4.39 -3.76 -3.25 -5.35
9m -1.73 -3.63 -4.66 -4.77 -4.56 -5.42
12m 0.41 -1.37 -3.05 -3.43 -3.78 -4.37

M4

1m 3.33 1.97 2.28 2.67 3.96* 0.39
3m 3.20* 2.15 1.50 2.18 1.60 0.79
6m 3.16** 1.91 0.69 0.95 0.46 0.73
9m 3.65** 2.08 0.85 0.65 0.23 0.80
12m 4.21*** 3.15* 1.72 1.41 0.91 1.39

M5

1m 2.07 0.73 0.82 1.08 2.35 0.27
3m 4.38*** 3.50** 2.77** 3.05* 2.36* 1.62
6m 4.67*** 3.42*** 2.15** 2.18** 1.72* 1.64
9m 5.26*** 3.57*** 2.19** 1.88** 1.47 1.88
12m 5.67*** 4.64*** 3.16*** 2.72*** 2.21** 2.51**

M6

1m 3.70** 2.01 2.05 1.90 3.48* 2.21
3m 4.81*** 3.76** 3.14** 3.49** 2.99** 2.21
6m 5.16*** 3.94*** 2.65*** 2.67*** 2.27** 2.19*
9m 5.88*** 4.19*** 2.90*** 2.51*** 2.08** 2.41**
12m 6.35*** 5.36*** 3.83*** 3.32*** 2.77*** 2.89**

This table reports annualized certainty equivalent returns (CERs) across alternative models and at different prediction horizons of h
= 1-month, 3-month, 6-month, 9-month and 12-month. The coefficient of risk aversion is γ = 3. No portfolio constraints are imposed.
CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time step t, an investor with
power utility preferences evaluates the entire predictive density of bond excess returns and solves the asset allocation problem, thus
optimally allocating her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is then defined
as the value that equates the average utility of each alternative model against the average utility of the EH benchmark. The seven
forecasting models used are ATSM with alternative risk price restrictions. Positive values indicate that the models perform better
than the EH benchmark. Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with Newey-West
standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The in-sample period is January
1990 to end of 2005, and the out-of-sample period starts in January 2006 and ends in end of 2016.
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Chapter 2

On Unspanned Latent Factors in

Dynamic Term Structure Models

2.1 Introduction

2.1.1 Unobserved Factors or Macroeconomic Variables?

The presence of information hidden from the yield curve, yet highly relevant for

predicting bond excess returns has attracted particular attention in recent literature.

The reason being that several empirical studies (see, Ludvigson and Ng (2009),

Cooper and Priestley (2009), Duffee (2011), Wright (2011), Joslin et al. (2014),

Cieslak and Povala (2015), Gargano et al. (2019), Bianchi et al. (2021) and Li

et al. (2021)) cast doubt on the fundamental and powerful stylized fact of the term

structure of interest rates, which suggests that current yields contain all relevant

information for forecasting future yields, returns and bond risk premia. In particular,

the aforementioned studies have documented evidence of various variables, containing

significant predictive power above and beyond the yield curve. While the literature
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has mainly focused on factors extracted from macroeconomic time-series1, yet the list

of unspanned risk factors can be long and diverse as argued by Joslin et al. (2014).

More recently, however, the capability of unspanned macroeconomic risks, offering

evidence of statistical and economic benefits to bond investors, has come under

scrutiny. First, Bauer and Hamilton (2018) question earlier results, concluding that,

in many cases, prior evidence of excess return predictability is weaker than initially

documented and far from statistically significant. Most importantly, in contrast to the

in-sample analysis, they conclude that the addition of extra macroeconomic factors

leads to less stable and accurate predictions and, ultimately, to the deterioration of

the out-of-sample performance2. A similar observation is made by Barillas (2011)

who argue that an unspanned factor adds little predictability to the term structure

and Giacoletti et al. (2021) who use Bayesian learning to evaluate the real-time

out-of-sample performance of Joslin et al. (2014) macro-finance dynamic model and

conclude that it actually underperforms the simple, nested, yields-only model.

Second, related literature has recently noted the importance of a real-time investor

having access to real-time macroeconomic information as opposed to a fully revised

information set. Recent evidence highlights the discrepancy on the out-of-sample

predictive performance of bond excess returns when real-time macro variables are

used as predictors vis-à-vis fully revised factors. In particular, Ghysels et al. (2018),

argue that the evident predictive power of macroeconomic variables is largely due

to data revisions and as such, it diminishes when real-time macro data is used, a

conclusion that is also reached by Fulop et al. (2019). Most importantly, statistical

predictability due to macroeconomic factors is not turned into utility gains for bond

investors, in contrast to what was initially argued by Gargano et al. (2019) and

Bianchi et al. (2021).
1e.g. the output gap of Cooper and Priestley (2009), the ’real’ and ’inflation’ factors of Ludvigson

and Ng (2009), the measures of economic activity and inflation of Joslin et al. (2014), the long-run
inflation expectation of Cieslak and Povala (2015), etc.

2A notable exception is the case of Ludvigson and Ng (2009) factors which slightly improve the
predictive performance of the models both in-sample and out-of-sample.
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Third, a notable exception to the analysis of unspanned macroeconomic risks

is the study of Duffee (2011) (and Barillas (2011)) which introduces an unspanned

latent factor framework, that is not reliant on macroeconomic data. According

to Duffee (2011), estimation of term structure models using directly observable

macroeconomic data might be a rather powerful approach, yet it comes with a great

risk of misspecification.

2.1.2 Unspanned Latent Approach

The above-mentioned issues raise important questions on the validity of prior empirical

and theoretical results. With this in mind, we propose a novel class of arbitrage-free

unspanned DTSM, that embeds a stochastic market price of risk specification. Our

approach resembles the macro-finance framework of Joslin et al. (2014) and the

unspanned latent factor framework of Duffee (2011), in that the model is factorised

into a ’spanned’ component, where risk factors can be retrieved from the information

provided by current yield curve, as well as an ’unspanned’ component, that could

include factors extracted from macroeconomic variables. It is assumed that the latter

is not determined by the yield curve data, yet remains highly relevant for inference

and, more importantly, prediction purposes. The developed setup is then used to

explore how valuable is the unspanned information to a real-time Bayesian investor

seeking to forecast future excess bond returns and generate systematic economic

gains. Our approach differs from previous studies and offers several advantages.

First, we depart from Joslin et al. (2014) in that the unspanned component is

regarded as a latent stochastic process, rather than consisting of directly observable

variables and as such, our analysis is independent from the debate between ’fully-

revised’ vis-à-vis ’real-time’ macros. In line with Duffee (2011)3, we estimate this

latent factor using Kalman filter, which allows us to infer any hidden information
3Duffee (2011) does not explore the econometric identification of such a model, nor does he

empirically implement a dynamic term structure model with unspanned risks. We further depart
from Duffee (2011) by allowing a time-varying price of risk not only on the level factor but on the
slope and curvature as well, whereas Duffee (2011) assumes compensation for slope risk to be fixed.
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from the term structure dynamics. In particular, we develop a suitable sequential

Monte Carlo inferential and prediction scheme that draws from Chopin (2002, 2004)

and takes advantage of the linear state space structure of the model by incorporating

the associated Kalman filter. Doing so, the unobserved component may absorb

model misspecification or be regarded as this element in the model which is capturing

the dynamics of wider market environment. There are three main aims to our

formulation. One, dimension reduction is pursued, when it comes to risk prices, in

order to consider parsimonious models that contain almost all the information in the

yield curve data. Two, we aim to incorporate in the model additional latent factors,

avoiding their direct involvement in the bond pricing procedure, so that they cannot

be fully recovered by the cross section of yields. Hence, such latent factors are meant

to capture information which is hidden from the yield curve and may be impossible

to summarise using information coming solely from observable macroeconomic time-

series (see, Ludvigson and Ng (2009)). Three, we seek to investigate whether there

is a direct link between information incorporated into the hidden component and

macroeconomic activity.

Second, we take the perspective of a real-time Bayesian learner, who takes into

account all relevant uncertainties and updates her beliefs using a DTSM with un-

spanned latent factors. Our setup directly produces the entire forecasting distribution,

through predictive densities, as new information arrives. Thus, it can naturally assess

the predictive performance of any model, across maturities and prediction horizons.

Third, while prior studies have investigated the predictability of excess returns

in-sample, there is less empirical evidence on the out-of-sample performance of

the unspanned (macro) DTSM. We revisit the out-of-sample performance of our

model under different restrictions for the market price of risk specification. Most

importantly, we attempt to assess whether a bond investor can actually exploit the

evident statistical predictability when making investment decisions. Is investors’

economic utility improved by making full use of unspanned latent factors?
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2.1.3 Outline

The remainder of this chapter is organized as follows. Section 2.2 describes the

modelling framework. Section 2.3 presents the sequential learning with latent

processes and forecasting procedure along with the framework for assessing the

predictive and economic performance of models. Section 2.4 discusses the data

and the sample period used and presents the family of models considered in this

chapter. Section 2.5 discusses the results both in terms of predictive performance

and economic value, including the associated explanatory power, as well as reveals

the links between the latent factors and the economy. Finally, Section 2.6 concludes

the chapter by providing some relevant discussion.

2.2 Dynamic Term Structure Model, Likelihood,

and Latent Factors

2.2.1 Incorporating Unspanned Latent Components

In what follows, we consider an extension of the model presented in Section 1.2.1.

Our approach resembles the framework of Joslin et al. (2014) in that the model

is factorised into a ‘spanned’ component, i.e. risk factors that can be retrieved by

the information provided in historical yield curve data, as well as an ‘unspanned’

component that could include background factors such as macroeconomic variables.

It is assumed that the latter is not determined by the yield curve data but it remains

highly relevant for the inference and, more importantly, prediction purposes.

The point where our approach differs from Joslin et al. (2014) is that the un-

spanned component is regarded as a latent stochastic process, rather than consisting

of directly observable macroeconomic variables. In this way the unobserved com-

ponent may absorb model misspecification or be regarded as market environment

specific factor. There are two main aims to this alternative formulation. First, di-
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mension reduction is pursued in order to consider parsimonious models that contain

almost all the information in the yield curve data. This is achieved by the PCA

approach as in (1.8) but the projection is now made to R observable factors, where

R < N . Second, we would like to incorporate additional latent components in the

model avoiding their direct involvement in the bond pricing procedure, so that they

cannot be fully recovered by the yield data.

The extended model can be regarded as the following transformation of Xt that

decomposes into the spanned component Pt and the unspanned latent Zt:

 Pt

Zt

 =

 WRAX

γ0

+

 WRBX

γ1

Xt (2.1)

where Pt are the first R principal components extracted from the yield data, WR

consists of the first R rows of the matrix W containing the PCA weights, AX and

BX are the loadings matrices appearing in (1.5) (and are of dimension (J × 1) and

(J × N) respectively). The vector γ0 and matrix γ1 (of dimension (N − R) × 1 and

(N −R)×N) may contain arbitrary constants subject to the restrictions in Appendix

B of Joslin et al. (2014), mainly ensuring that the matrix [WRBX ; γ1] is invertible.

Given the linear nature of (2.1) the P-dynamics of [Pt; Zt] are of the following

form  Pt

Zt

 =

 µP
P

µP
Z

+

 ΦP
P ΦP

PZ

ΦP
ZP ΦP

Z


 Pt−1

Zt−1

+ ΣPZεt (2.2)

where µP
P and ΦP

P are defined in (1.15) and (1.16), respectively. The covariance matrix

ΣPZΣ′
PZ is assumed to be block diagonal with components ΣPΣ′

P and ΣZΣ′
Z , where

ΣZ is a (N − R) × (N − R) diagonal matrix with positive entries. For identification

purposes, as well as practical considerations, we proceed by setting µP
Z and ΦP

ZP to a

vector and a matrix of zeros, whereas ΦP
PZ is a (N − R)-dimensional identity matrix.

Finally, ΦP
Z is a (N − R) × (N − R) diagonal matrix with non-zero entries taking
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values in (−1, 1), to guarantee stability. This lets write the model as

Pt = µP
P + ΦP

PPt−1 + Zt−1 + ΣPεP
t (2.3)

Zt = ΦP
ZZt−1 + ΣZεZ

t (2.4)

where
εP

t ∼ N(0, IR)

εZ
t ∼ N(0, IN−R)

Compared to the standard case in Section 1.2.1, the model of (2.3) and (2.4) above

has µP
P + Zt−1, instead of just µP

P , in the drift. We can therefore view the Zts as

random effects operating at each time interval [t, t + 1) and being correlated. To

ensure that Zt is not spanned by Pt we set rt as in (1.12) and define the pricing

kernel as

Mt+1 = exp(−rt − 1
2λ′

tλt − λ′
tε

P
t+1)

where εP
t+1 consists of the first R components of εt in (2.2) and the market price of

risk λt is defined conditional on Zt as

λt = Σ−1
P

[
µP

P − µQ
P + (ΦP

P − ΦQ
P)Pt + ΦP

PZZt

]
= Σ−1

P (λ0P + λ1PPt + Zt)

Appropriate choice of restrictions on λ0P and λ1P in λt is assumed, see Section 2.2.3

for related discussion.

The model is completed by setting the Q-dynamics for Pt as in (1.7). Note

that since Zt is not part of the pricing procedure its risk-neutral dynamics are not

required.
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2.2.2 Kalman Filtering the Unobserved

The model of (2.3) and (2.4), introduced in the previous section, can be slightly

modified to match the general linear Gaussian state-space model notation, see for

example Durbin and Koopman (2012), by working with αt = Zt−1, instead of Zt−1,

for convenience, and setting the initial conditions as

α0 ∼ N(a0|0, P0|0)

with a0|0 = 0 and P0|0 = ΣZΣ′
Z . This allows for the Kalman filter to be applied to

marginalise out Zt and evaluate the densities fP(Pt|Pt−1, θ), as in (2.10) below, with

θ denoting the relevant parameters specified in the next section. More specifically,

we let

Pt − µP
P − ΦP

PPt−1 = st (2.5)

and rewrite (2.3) and (2.4) as

st = αt + ΣPεP
t (2.6)

αt+1 = ΦP
Zαt + Σ̂ZεZ

t (2.7)

Then, as in Durbin and Koopman (2012), starting with a0|0 and P0|0 defined above

for t = 0, the Kalman filter prediction step is

at+1 = ΦP
Zat|t

Pt+1 = ΦP
ZPt|tΦP

Z
′ + Σ̂ZΣ̂′

Z
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for each t = 1, ..., T − 1, whereas the Kalman filter update step is

vt = st − at

Ft = Pt + ΣPΣ′
P

Kt = PtF
−1
t

at|t = at + Ktvt (2.8)

Pt|t = Pt − KtPt (2.9)

In the above, at+1 is state prediction, Pt+1 is its covariance, vt is prediction error,

Ft is its covariance, Kt is the Kalman gain, at|t is state update and Pt|t is its

covariance. Consequently, latent αt (or Zt−1) is distributed as N(at|t, Pt|t), where the

moments are obtained from (2.8) and (2.9). We eventually arrive at the log-likelihood

representation of fP(Pt|Pt−1, θ), first due to Schweppe (1965), which is following

log fP(Pt|Pt−1, θ) = −R

2 log 2π − 1
2
(
log |Ft| + v′

tF
−1
t vt

)
(2.10)

where | · | is matrix determinant. The predictive distribution of PT +1, based on

observations up to time T , is also straightforward to obtain from (2.5), (2.6) and

(2.7) as

PT +1|PT , αT ∼ N
(
µP

P + ΦP
PPT + ΦP

ZαT , ΣZΣ′
Z + ΣPΣ′

P

)
where αT is distributed as N(aT |T , PT |T ), with aT |T and PT |T obtained from the

Kalman filter.

2.2.3 Likelihood and Risk Price Restrictions

Statistical inference can proceed using the observations Y = {yt, Pt : t = 0, 1, . . . , T}.

The likelihood factorizes into two parts stemming from the P and Q respectively.

For R observable factors, and not N as in the standard case in Section 1.2.1, the
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joint likelihood (conditional on the initial point P0) can be written as

f(Y |θ, Σ̂Z) =
{∏T

t=0 fQ(yt|Pt, kQ
∞, gQ, ΣP , σ2

e)
}

×{∏T
t=1 fP(Pt|Pt−1, kQ

∞, gQ, λ0P , λ1P , ΣP , ΦP
Z , Σ̂Z)

} (2.11)

where the Q-likelihood components fQ(·) are given by (1.11) and capture the cross-

sectional dynamics of the risk factors and the yields, whereas P-likelihood components

fP(·), where the Zts have been marginalised out by the Kalman filter, are obtained

from (2.10) and capture the time-series dynamics of the observed risk factors. The

parameter vector is set to θ = (σ2
e , kQ

∞, gQ, λ0P , λ1P , ΣP , ΦP
Z). To assure identification,

we tune ΣZ in-sample and fix it out-of-sample at Σ̂Z . Details of the tuning procedure

are in Appendix 2.D.

For brevity of further exposition, we let λP = [λ0P , λ1P ] and λ = λ1P . If all the

entries in λP are free parameters we get the maximally flexible model (model M0

in this chapter). Alternative models, where some of these entries are set to zero,

have also been proposed in the existing literature. Early studies focused mainly on

imposing zero ad-hoc restrictions on the parameters governing the dynamics of the

risk premia. However, the process of imposing such restrictions in an ad-hoc way

has been recently criticised and a few studies have investigated more systematic

approaches on how to impose restrictions on the market price of risk parameters.

For details, see the associated discussion with related references in Section 1.1.1.

Generally, in most models the set of unrestricted parameters is usually a subset of

λP .

In this chapter we adopt restriction set with optimal predictive performance,

understood predominantly as economic value and less as statistical predictability,

among all possible restriction sets, as evidenced in Section 1.5.3, based on out-of-

sample period of data closely overlapping this here, see Section 2.4. Therein we

develop a sequential version of stochastic search variable selection scheme and arrive

at a conclusion that restriction set offering such an optimal predictive performance

81



based on out-of-sample period from 2007 to 2016 is to only leave λ1,2 unrestricted

(model M1 there and in this chapter). The same model has been recommended

earlier by Bauer (2018), however, in a MCMC framework. This choice is also to some

extent in accordance with the early work on risk dynamics, such as Duffee (2002),

which finds that variation in the price of level risk is necessary to capture the failure

of the Expectations Hypothesis (EH). This variation was usually captured by linking

the price of level risk to the slope of the term structure (Duffee, 2011).

Consequently, we can conveniently restate the likelihood specification of (2.11) as

f(Y |θ, Σ̂Z) =
{∏T

t=0 fQ(yt|Pt, kQ
∞, gQ, ΣP , σ2

e)
}

×{∏T
t=1 fP(Pt|Pt−1, kQ

∞, gQ, ΣP , ΦP
Z , λ1,2, Σ̂Z)

} (2.12)

where θ = (σ2
e , kQ

∞, gQ, ΣP , ΦP
Z , λ1,2) is revised accordingly.

2.3 Sequential Estimation, Filtering, and Forecast-

ing

In this section we develop a sequential Monte Carlo (SMC) framework for Gaussian

DTSMs with unspanned latent factors. We draw from the work of Chopin (2002,

2004) (see also Del Moral et al. (2006)) and make the necessary adaptations to tailor

the methodology to the data and models considered in this chapter. Furthermore,

we extend the framework to allow for sequential Bayesian treatment of filtering

unspanned latent information from the yield curve. We achieve this via the associated

Kalman filter. Overall, the developed framework allows the efficient performance of

tasks such as sequential parameter estimation and forecasting. We begin by providing

the main skeleton of the scheme and then elaborate the details of its specific parts,

such as the MCMC algorithm including the Kalman filter, and the framework for

obtaining and evaluating the economic benefits of predictions.
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2.3.1 Sequential Framework with Latent Processes

Let Y0:t = (Y0, Y1 . . . , Yt) denote all the data available up to time t, such that Y0:T = Y .

Similarly, the likelihood based on data up to time t is f(Y0:t|θ, Σ̂Z) and is defined in

(2.11). Combined with a prior on the parameters π(θ), see Appendix 2.A for details,

it yields the corresponding posterior

π(θ|Y0:t, Σ̂Z) = 1
m(Y0:t|Σ̂Z)

f(Y0:t|θ, Σ̂Z)π(θ) (2.13)

where m(Y0:t|Σ̂Z) is the model evidence based on data up to time t. Moreover, the

posterior predictive distribution, which is the main tool for Bayesian forecasting, is

defined as

f(Yt+h|Y0:t, Σ̂Z) =
∫

f(Yt+h|Yt, αt, θ, Σ̂Z)π(θ|Y0:t, Σ̂Z)dθ (2.14)

where h is the prediction horizon and αt ∼ N(at|t, Pt|t) is obtained from the Kalman

filter.

Note that the predictive distribution in (2.14) incorporates parameter uncertainty

by integrating θ out according to the posterior in (2.13). Usually, prediction is carried

out by expectations with respect to (2.14), e.g. E(Yt+h|Y0:t, Σ̂Z) but, since (2.14)

is typically not available in closed form, Monte Carlo can be used in the presence

of samples from π(θ|Y0:t, Σ̂Z). This process may accommodate various forecasting

tasks but the procedures can be quite laborious and in some cases impracticable, see

Section 1.3.1 for further details.

An alternative approach that can also handle forecasting assessment tasks is to

use sequential Monte Carlo (see, Chopin (2002) and Del Moral et al. (2006)) to

sample from the sequence of distributions π(θ|Y0:t, Σ̂Z) for t = 0, 1, . . . , T . A general

description of the Iterated Batch Importance Sampling (IBIS) scheme of Chopin

(2002), see also Del Moral et al. (2006) for a more general framework, is provided in
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Algorithm 2.1. The degeneracy criterion is usually taken to be the Effective Sample

Algorithm 2.1 IBIS algorithm for Gaussian Affine Term Structure Models with
unspanned latent factors

Initialize Nθ particles by drawing independently [θi, α
(i)
0 ] ∼ [π(θ), N(a0|0, P0|0)] with

importance weights ωi = 1, i = 1, . . . , Nθ. For t, . . . , T and each time for all i:

(a) Calculate the incremental weights from

ut([θi, α
(i)
0 ]) = f(Yt|Y0:t−1, [θi, α

(i)
0 ], Σ̂Z)

and practically from

ut([θi, α
(i)
t−1]) = f

(
Yt|Yt−1, [θi, α

(i)
t−1], Σ̂Z)

where instead of conditioning on α
(i)
0 we condition on α

(i)
t−1, which is distributed as

N
(
a

(i)
t−1|t−1, P

(i)
t−1|t−1

)
, an thus we reduce computational cost of the Kalman filter

that is then iterated only once for each particle and we additionally update α
(i)
t−1 to

α
(i)
t ∼ N

(
a

(i)
t|t , P

(i)
t|t

)
from the Kalman filter.

(b) Update the importance weights ωi to ωiut([θi, α
(i)
t−1]).

(c) If some degeneracy criterion (e.g. ESS(ω)) is triggered, perform the following two
sub-steps:

(i) Resampling: Sample with replacement Nθ times from the set of θis according
to their weights ωi. The weights are then reset to one.

(ii) Jittering: Replace θis with θ̃is by running MCMC chains, and thus all
iterations of the Kalman filter, with each θi as input and θ̃i as output. Set
[θi, α

(i)
t ] = [θ̃i, α̃

(i)
t ].

Size (ESS) which is defined in (1.21).

The IBIS algorithm provides a set of weighted θ samples, or else particles, that

can be used to compute expectations with respect to the posterior, E[g(θ)|Y0:t, Σ̂Z ],

for all t using the estimator ∑i[ωig(θi)]/
∑

i ωi. The same holds for expectations with

respect to the posterior predictive distribution, f(Yt+h|Yt, αt, Σ̂Z); the weighted θ

samples can be transformed into weighted samples from f(Yt+h|Yt, αt, Σ̂Z) by simply

applying f(Yt+h|Yt, αt, θ, Σ̂Z). A very useful by-product of the IBIS algorithm is the

ability to compute

m(Y0:t|Σ̂Z) = f(Y0:t|Σ̂Z)
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which is the criterion for conducting formal Bayesian model choice. Computing the

following quantity in step (a) in Algorithm 2.1 yields a consistent and asymptotically

normal estimator of f(Yt|Y0:t−1, Σ̂Z), namely

mt = 1∑Nθ
i=1 ωi

Nθ∑
i=1

ωiut([θi, α
(i)
t−1])

where α
(i)
t−1 ∼ N

(
a

(i)
t−1|t−1, P

(i)
t−1|t−1

)
is obtained from the Kalman filter for each

i = 1, . . . , Nθ. Further qualities behind IBIS can be found in Section 1.3.1.

To apply IBIS output to models and data in this chapter, the following adaptations

and extensions are made. In a manner similar to Section 1.3.1, and for reasons

mentioned therein, we combine the benefits of data tempering and adaptive tempering

(Jasra et al., 2011; Schäfer and Chopin, 2013; Kantas et al., 2014) in a hybrid adaptive

tempering scheme which we present in Appendix 2.C. Since the MCMC algorithm

used here is an extension of Bauer (2018) and thus it consists of independence

samplers that are known to be unstable, we utilize the IBIS output and estimate

posterior moments to obtain independence sampler proposals; see Appendix 2.B for

details, and Section 1.3.1 for further motivation. Within such adapted framework,

we extend the methodology presented in Sections 2.2.1 and 2.2.3 to handle Kalman

filtering sequentially. Eventually, we use IBIS output in the construction of a model-

driven dynamically rebalanced portfolio of bond excess returns and measure its

economic performance, like in Section 1.3.3.2.

In applied work, we resort to Nθ = 2000 particles and 5 MCMC steps when

jittering, while for minimum ESS we set α = 0.7. We choose 5 steps at the jittering

stage because the mixing behaviour of the underlying MCMC is satisfactory enough.

We tracked the correlation between particles before and after that stage to find that

performance was already acceptable with this number of iterations.
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2.3.2 Assessing Predictive Performance and Economic Value

Based on the evaluation framework outlined in this section, we then seek to understand

whether unspanned latent information extracted from yields-only Gaussian ATSMs,

using Kalman filter, lets better predict excess returns, compared to corresponding

yields-only models. Furthermore, we attempt to explore whether such statistical

predictability, if any, can be turned into consistent economic benefits for bond

investors. Finally, we explore whether making full use (all factors) of such unspanned

latent factors benefits them most, or to the contrary (selected factors).

2.3.2.1 Bond Excess Returns

Following from Section 1.3.3.1, we define the observed continuously compounded

excess return of an n-year bond as the difference between the holding period return

of the n-year bond and the h-period yield as

rxn
t,t+h = −(n − h)yn−h

t+h + nyn
t − hyh

t

If, instead of taking the observed one, we take the model-implied continuously

compounded yield yn
t , calculated according to (1.8), we arrive at the predicted excess

return r̃xn
t,t+h which becomes

r̃xn
t,t+h = An−h,P − An,P + Ah,P + B′

n−h,PP̃t+h − (Bn,P − Bh,P)′Pt (2.15)

where Pt is observed and P̃t+h is a prediction from the model. Our developed

framework, see Algorithm 2.1, allows drawing from the predictive distribution of

(P̃t+h, r̃xn
t,t+h) based on all information available up to time t. More specifically, for

each θi particle the P-dynamics of Pt can be used to obtain a particle of P̃t+h, which

then can be transformed into a particle of r̃xn
t,t+h via equation (2.15). Detailed steps

for the case of h = 1 are outlined in Algorithm 2.2.
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Algorithm 2.2 Predictive distribution of excess returns for Gaussian Affine Term
Structure Models with unspanned latent factors
First, at time t, for some n and h = 1, using (ωi, θi), i = 1, ..., Nθ, from IBIS algorithm,
iterate over i:

(a) Given θi, compute Ai1,P and Bi1,P , for i1 ∈ {1, n − 1, n}, from (1.9) and (1.10).

(b) Given θi, obtain prediction of Pt+1 by drawing, first from

α̃
(i)
t+1|α(i)

t ∼ N
(
ΦP

Zα
(i)
t , Σ̂ZΣ̂′

Z

)
and then from

P̃(i)
t+1|Pt, α̃

(i)
t+1 ∼ N

(
µP

P + ΦP
PPt + α̃

(i)
t+1, ΣPΣ′

P

)
where distribution of α

(i)
t is obtained from the Kalman filter as N

(
a

(i)
t|t , P

(i)
t|t

)
.

(c) Compute particle prediction of rxn
t,t+1 as

r̃x
n(i)
t,t+1 = An−1,P − An,P + A1,P + B′

n−1,P P̃(i)
t+1 − (Bn,P − B1,P)′Pt

Second, since (ωi, P̃(i)
t+1, r̃x

n(i)
t,t+1), i = 1, ..., Nθ, is a particle approximation to predictive

distribution of (Pt+1, rxn
t,t+1), compute point prediction of rxn

t,t+1 using particle weights ωi

as

r̃xn
t,t+1 = 1∑Nθ

i=1 ωi

Nθ∑
i=1

ωir̃x
n(i)
t,t+1

Third, repeat above two steps for different n and h. For h > 1, use P̃ i
t+h−1 and α̃

(i)
t+h−1 in

place of Pt and α
(i)
t , and ih ∈ {h, n − h, n} in place of i1.

The predictive accuracy of bond excess return forecasts is measured in relation

to an empirical benchmark. We follow related literature and first adopt the EH as

this benchmark, which essentially uses historical averages as the optimal forecasts of

bond excess returns. This empirical average is

rxn
t+h = 1

t − h

t−h∑
j=1

rxn
j,j+h

Then we also measure the predictive accuracy of bond excess return forecasts in

relation to model M1 (see, Chapter 1).
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To assess the predictive ability of the models considered, we follow in part the

methodology outlined in Section 1.3.3.1 and compute the associated out-of-sample

R2 (R2
os), due to Campbell and Thompson (2008).

2.3.2.2 Economic Performance of Excess Return Forecasts

From a bond investor’s point of view it is of paramount importance to establish

whether the predictive ability of a model can generate economically significant

portfolio benefits, out-of-sample. The portfolio performance may also serve as a

metric to compare models that make more or less use of unspanned latent information,

that is include more or fewer unspanned latent factors.

To that end, we consider a Bayesian investor with power utility preferences

U(Wt+h) = U(wn
t , rxn

t+h) = W 1−γ
t+h

1 − γ

where Wt+h is an h-period portfolio value, γ is the coefficient of relative risk aversion

and wn
t is a portfolio weight on the risky n-period bond. If we let (1 − wn

t ) be a

portfolio weight of the riskless h-period bond, then the portfolio value h periods

ahead is given as

Wt+h = (1 − wn
t ) exp(rf

t ) + wn
t exp(rf

t + rxn
t,t+h)

where rf
t is the risk-free rate. At every time t, our Bayesian learner solves an asset

allocation problem getting optimal portfolio weights. For more details, see Section

1.3.3.2.

To obtain the economic value generated by each model, we use the resulting

optimum weights to compute the CER as in Johannes et al. (2014) and Gargano

et al. (2019). In this respect, we closely follow the exposition in Section 1.3.3.2 and

we compare portfolio performance of each model we develop in this chapter against

the EH benchmark and model M1 (see, Chapter 1).
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2.4 Data and Models

In this section we discuss data we use throughout in detail. Specifically, we elaborate

on the US Treasury yields data we employ in this chapter, and how we split them into

a training and a testing subsample. Furthermore, we describe the macroeconomic

variables we use to identify the nature of the hidden components extracted from

the latent factors we obtain. We then also explain what models we consider, as

distinguished by different positions unspanned latent factors take in the given model.

2.4.1 Yields and Macros

The bond data set we use is an updated version of this described in Section 1.4.1 and

contains monthly observations of zero-coupon US Treasury yields with maturities

of 1-year, 2-year, 3-year, 4-year, 5-year, 7-year, and 10-year, spanning the period

from January 1985 to the end of 2018. We consider two sub-samples, a training one

ending at the end of 2007 which, as such, precludes the recent financial crisis, and a

testing one which includes the period after the end of 2007, a period determined by,

first, different monetary actions and establishment of unconventional policies and,

second, interest rates hitting the zero-lower bound. The post-2007 global financial

crisis period is excluded from our training sub-sample. Doing so we let the models

learn about it merely online and we expect the use of unspanned latent information

to facilitate that. As such, we also verify the concerns about the capability of

Gaussian ATSMs to deal with the zero-lower bound (see, Kim and Singleton (2012)

and Bauer and Rudebusch (2016)). These concerns are explicitly explored in the

testing sub-sample, spanning the period from January 2008 to the end of 2018. Data

processing, which involves extracting the first three principal components from the

yield curve, follows from Section 1.4.1.

In terms of macroeconomic variables for the US economy which we use here

specifically to identify the nature of the hidden part in the risk premium factor, as
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described in the next section, we consider several indices, some of which are well

covered in the literature. These include, core4 inflation (CPI) as in Cieslak and Povala

(2015), three-month moving average of the Chicago Fed National Activity Index

(GRO) from Joslin et al. (2014), which is a measure of current economic conditions,

as well as three variables from Ludvigson and Ng (2009). Namely, real activity (F1),

its cube (F13), and stock market (F8) factors. Moreover, we complement these

with unemployment rate (UNR) and manufacturing capacity utilization (MNF ) we

take from St. Louis FRED (https://fred.stlouisfed.org). All these macroeconomic

variables are at a monthly frequency, they are seasonally adjusted, revised, and

except for GRO and the factors from Ludvigson and Ng (2009), they are in percent

changes from year ago. Underlying data period is such that it corresponds to this

for yields, as discussed above.

2.4.2 Models and Rationale Behind

In terms of models, we differentiate them by positions the unspanned latent factors

take in the given model. It proceeds according to a general scheme which is following

LFijk i, j, k ∈ {0, 1} (2.16)

where, for example for i = 0 and j = k = 1, LF011 means that we allow for unspanned

latent information in the second and third equation in (2.3), under the assumption

that R = 3. We only investigate a subset of the available alternative models in

greater detail.

As result of risk price restrictions (on λP) we adopt in this chapter from Section

1.4.2, without loss of generality for i = j = k = 1 in (2.16), we define the stochastic
4In contrast to Cieslak and Povala (2015), who devise trend inflation by appropriately smoothing

core inflation, we use the latter as is. Such choice is better suited for comparisons with unspanned
latent factors, which are a-priori independent, first order autoregressive processes, not necessarily
smooth.
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risk premium factor as

RP Z
t = λPt + Zt =


λ1,2P2,t + Z1,t

Z2,t

Z3,t

 (2.17)

where the first element is similar to Duffee (2011), yet in our case its time-varying

component, RPt = λ1,2P2,t, is a restricted version (only λ1,2 is free) of the risk

premium factor defined in Duffee’s paper. Its stochastic component Z1,t is in that

particular case the first element of the unspanned latent variable Zt. If instead i = 0

and j = k = 1, then

RP Z
t =


λ1,2P2,t

Z2,t

Z3,t


where the first element, which is related to level risk and is not stochastic but

time-varying only, equals RPt and is also equivalent to the corresponding factor in

model M1 (see, Chapter 1) we adopt risk price restrictions from.

According to Duffee (2011), time-varying risk premium factor RPt, which in

Duffee’s case is a linear combination of the state vector obtained from model shocks

to yields, determines the compensation investors require to face fixed-income risk from

t to t + 1, and it contains all information relevant to predicting one-step-ahead, yet

not h-step-ahead for h > 1, excess returns. We instead assume that investors require

compensation for level risk stemming from changes to slope only. However, stochastic

term in (2.17), which is a priori unspanned and latent, affects this compensation. It

is important to understand whether this impact is not distorting information relevant

to predicting excess returns, already available from RPt alone. One way forward

towards achieving this goal, is to conduct predictability and economic value exercises

for the models considered and make appropriate comparisons, as done in Section 2.5.
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Different from Duffee (2011), we obtain the state vector from observed yields

directly. Nevertheless, for i, j, k ∈ {0, 1} in (2.16), we are able to similarly define the

hidden part of the stochastic risk premium factor, as the part unspanned by Pt, in

the following way

R̃P
Z

t = RP Z
t − E

[
RP Z

t |Pt

]
= Zt − E[Zt|Pt] (2.18)

where E[Zt|Pt] is the projection of unspanned latent factors on principal components

obtained from observed yields which is thus spanned and consequently not hidden

part of this factor. After Duffee (2011), R̃P
Z

t can be estimated as residual from a

regression of the former on the latter

R̃P
Z

t ≡ Zt − a − b′Pt

where we take Zt as the mean from its posterior distribution and a and b are the

underlying Ordinary Least Squares parameter estimates.

We can then examine a posteriori to what extent Zt assumed unspanned and

latent a priori is actually hidden from the yield curve, and whether there is any link

between such hidden information and the predictability and economic value results

we obtain for the models we consider. Furthermore, by means of regression analyses

we can inspect whether these unspanned latent factors we obtain and their hidden,

as well as not hidden, parts are spanned by information contained in macroeconomic

variables we investigate in this chapter.

2.5 Empirical Results

The focus of this section is to present the main results on the statistical and economic

performance of excess return forecasts resulting from the models we develop in this
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chapter. These, despite unspanned latent factors, are in fact still yields-only when

it comes to data involved in estimation. Specifically, we assess the models based

on different number of unspanned latent factors, which we filter out from the yield

curve, and more importantly their position in the underlying P-dynamics.

Initially, we inspect the unobserved factors we estimate, in particular how their

dynamics unfolds under different economic conditions. Next, we briefly explore the

explanatory power behind these latent factors. Only then, we investigate whether

puzzling behavior between statistical predictability and out-of-sample economic gains

for bond investors, as it is often evidenced in case of yields-only models, can still be

observed when unspanned latent information is incorporated in the model.

Eventually, we decompose risk premium factor into a part which is hidden from

the yield curve and a part which is spanned by the underlying principal components

extracted from yields. Then, by regressing these on macroeconomic variables broadly

considered in the related literature, we uncover a link between such macro spanning

and performance results we obtain for the models with unspanned latent factors.

2.5.1 Observing the Unobserved

The data contain an important economic event and therefore it is interesting to

examine the trajectories of unobserved factors, especially during the testing period.

In particular, data cover the financial crisis of 2008-2009. This episode started from

a flat yield curve during the pre-recession period, following an inversion of the curve

that reflects an increase in short rates due to expectations about the Fed tightening

its policy, and then a steepening as a reaction to policy adjustments by the Fed

reflecting strong growth and inflation expectations. For related details, yet focused

on principal components rather than unobserved factors, see Section 1.5.1.

Recession of 2008-2009 is differently picked up by each of the unspanned latent

factors, see Figure 2.1. Economic uncertainty arising immediately in 2008 and lasting

until about 2012, a year approximately marking the end of the crisis, is well reflected
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by a decrease, from positive to negative, in the posterior mean of the latent factor Z2,t

(models LF111 and LF011), affecting the slope of the yield curve, following a rebound

to zero thereafter. This picture is quite different when we look at the posterior mean

of the unobserved factor Z1,t (model LF111), which has an impact on the level of the

yield curve. In this case, we only observe a steep decrease from zero in the beginning

of 2008, followed by a W-shaped recovery lasting until early 2009. A look at the

unobserved dynamics behind the curvature of the yield curve, namely the posterior

mean of Z3,t (models LF111, LF011 and LF001), reveals increased oscillations around

zero starting in 2008 and lasting approximately until 2012, which are definite shocks,

though nontrivial to interpret.

2.5.2 Explanatory Power of Unspanned Latent Factors

Large explanatory power of the unspanned latent factor Z2,t can be revealed from

results in Table 2.1. The table presents adjusted R2 for the projection of the three

unspanned latent factors on the three principal components. Quite interestingly,

regardless the modelling specification, a very large fraction (ranging between 0.45

and 0.54) of the variation of Z2,t is explained by the information spanned by the

yield curve. Nevertheless, an important question that arises is whether there is also

information hidden from the yield curve and, as such, cannot be captured by the

three PCs, while it is useful for prediction purposes. Furthermore, of particular

importance is whether this information, if any, is linked to macroeconomic forces.

We seek to answer the aforementioned questions in what follows below.

Table 2.2 reports adjusted R2 for model LF001, which features a latent factor

Z3,t in addition to the three yield factors. When adding an unspanned latent factor

on the third PC, the explanatory power across the maturity spectrum remains, in

general, intact. There are a few small, albeit statistically significant, increases mainly

at longer maturities and short prediction horizons.
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The situation is reversed when adding Z2,t to the information set. More specifi-

cally, the latent factor substantially improves explanatory power on excess returns,

especially at shorter maturities and longer horizons, as shown in Table 2.3. In

particular, at 2-year maturity, adjusted R2 increases from 13.54%, in the yields-only

case, at the 6-month horizon, up to 16.15%. At 12-month horizon, the associated R2

jumps from 17.3% up to 23.58%, a statistically significant increase of 7.59 percentage

points. Those increases do not hold at longer maturities, implying that the predictive

power of Z2,t is stronger at short maturities only, what reveals that unspanned Z2,t

captures information associated with the short end of the yield curve. This stands in

line with prior evidence that different maturities do not move on a single factor.

Beside the fact that adding a latent factor on the first PC, on top of the other

latent factors in model LF111, has no impact on the explanatory power, as measured

by R̄2, results for this model and also for LF011 are quantitatively and qualitatively

similar, thus not shown. Moving forward, it is of paramount importance to access

whether the evident explanatory power of the unspanned factors on excess returns is

enough to offer any statistical and economic evidence of return predictability.

2.5.3 Bond Return Predictability and Economic Performance

In this section we seek to investigate whether (statistical) predictability of excess

bond returns, as well as economic benefits to bond investors, can be enhanced by

integrating information hidden from the yield curve.

Only recently, Fulop et al. (2019) suggest that no matter the maturity, the model

or the methodology considered, statistical predictability of excess returns is hardly

translated into economic gains for bond investors, when real-time macroeconomic

factors replace a fully-revised dataset. This is in direct contrast to the earlier results

of Gargano et al. (2019) and, more recently, to those in Bianchi et al. (2021), where

fully revised information set is used. Our modelling approach attempts to stay away

from the aforementioned debate, as our unspanned component is regarded as a latent

95



stochastic process, rather than consisting of directly observable (macroeconomic)

variables. Nevertheless, risk premia are conditioned on information available to

bond investors in real time. As such, our results are directly comparable to those

studies that seek to predict excess returns based on real-time data rather than revised

datasets.

2.5.3.1 Bond Return Predictability

Table 2.4 reports the out-of-sample R2 values for all models with unspanned latent

factors, across maturities and investment horizons. The in-sample period is 1985-2007

and the out-of-sample analysis spans the period 2008-2018. All models attain good

predictive performance compared to the EH benchmark, with positive R2
os across

maturities. Results reveal evidence of out-of-sample bond return predictability across

model specifications. This is important, taking into account that all models utilise

information coming solely from the cross section of yields (either ’yield-only’ or

’yield-plus’ in Duffee (2011) terminology).

Quite interestingly, for maximally flexible model M0, R2
os decrease with maturity

and increase with prediction horizon. Results, however, are qualitatively opposite

for restricted model M1 and for models with unspanned latent factors, which gen-

erate more accurate forecasts and substantially higher R2
os at longer maturities. In

particular, at 12-month investment horizon, for model LF010 (LF011), which embeds

a single unspanned latent factor on the second PC, R2
os increases from 0.15 (0.16) up

to 0.33 (0.32) for the 10-year maturity bond.

Of particular importance, however, is whether the unspanned latent factors share

information to predict returns that goes beyond the cross section of yields. Table 2.5

displays the out-of-sample R2 values for all models with unspanned latent factors.

Comparisons are in relation to model M1, which imposes heavy restrictions on the

dynamics of risk compensation and has been proved to offer the best predictive

performance among all restricted models, as evidenced in Section 1.5.3. Results
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provide clear evidence of significant improvement to the out-of-sample predictive

performance, suggesting that the unspanned latent factors share information to

predict returns that goes beyond the yield curve. Such improvements are particularly

pronounced at shorter maturities and longer investment horizons.

Comparing across models, it seems apparent that model LF111, which embeds

three latent factors, offers the best performance in terms of statistical predictability.

In particular, for model LF111, for the 2-year maturity bond, R2
os is 0.04 at 1-month

horizon, moving up to 0.30 at the 12-month horizon. Qualitatively similar (albeit

weaker) predictive performance is observed for models with one or two unspanned

latent factors (e.g. LF010 and LF011). Common to the three model specifications is

latent factor Z2,t, which seems to add considerable predictive power to the models.

The only model that fails to predict well and performs poorly compared to M1

is model LF001, which generates R2
os mostly close to zero. Such model features a

single latent factor on the third PC, suggesting that Z3,t is not capable of capturing

information relevant to predict returns. Finally, comparing across bond maturities,

predictability decreases with increasing maturity, suggesting that unspanned latent

factors carry information, associated with the short end of the maturity spectrum,

which is not contained in the yield curve.

2.5.3.2 Economic Performance

Turning to economic performance, we ask whether models with unspanned latent

factors offer any economic evidence of return predictability in the US bond market.

The coefficient of relative risk aversion is chosen to be γ = 3 and we do not impose

any portfolio constraints5. Table 2.6 reports results for the out-of-sample economic

value exercise described in Section 2.3.2.2. In particular, it displays annualised

CER values, relative to the EH benchmark, for different models, generated using
5These non-conservative choices are motivated by early exploratory character of the analysis

conducted herein. The goal is to find economic value first and in future research examine if it can
be exploited when stricter conditions apply.
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forecasts of bond excess returns. As expected, the only model that fails to translate

predictability into economic value is the maximally flexible model, M0, which is not

capable of producing any positive out-of-sample economic benefits, mostly generating

CERs with negative sign across maturities and investment horizons. The situation

is reversed, however, when heavy restrictions are placed on the risk price dynamics,

as evidenced by CER values generated by model M1, in line with Section 1.5.3.

Moving to models with unspanned latent factors, our results tell a consistent

story. No matter the model specification considered, corresponding CER values are

positive and statistically significant, revealing strong economic performance across

maturities and investment horizons. Importantly, models are capable of translating

the evident statistical predictability into economic gains for bond investors seeking

to maximise their utility. This further suggests that latent factors share information

relevant not only to predict returns but also to offer value and generate significant

portfolio benefits, out-of-sample. This is quite an important finding, taking into

account that investors only have access to yield curve data, and no other (spanned

or unspanned) information is utilised, in contrast to studies which seek to detect

further information from macroeconomic sources (see, Gargano et al. (2019), Bianchi

et al. (2021), among others).

Comparing the economic performance of models across maturities, sheds light on

an interesting observation. CERs increase with maturity for the heavily constrained

model M1, suggesting more profitable investments for long maturity bonds. The

situation is reversed, however, for models with unspanned factors, which generate

CERs that tend to decrease or remain flat as maturity increases, revealing higher gains

for short maturity bonds. This further suggests evidence of economic improvement

offered by latent factors at shorter maturities.

Next, we move to investigate deeper, whether models with unspanned latent

factors offer any economic benefits to bond investors, when compared to model M1,

which has been shown to generate the largest portfolio benefits among all ’yields-only’
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models (see, Chapter 1). We therefore seek to understand whether the improved

statistical performance, evidenced in the previous section, is indeed translated into

better economic performance. As such, we repeat the economic value exercise, by

computing the corresponding CERs, for all models with unspanned latent factors,

relative to model M1. Table 2.7 summarizes the results which offer interesting

insights.

In line with the existing literature (see, Gargano et al. (2019), Fulop et al. (2019),

etc.), and in order to overcome the inference issues evidenced by Bauer and Hamilton

(2018), our analysis is mainly concentrated on the 1-month investment horizon. Those

are the only CER values that are generated using forecasts from non-overlapping

bond returns and as such, are directly comparable to studies that examine economic

evidence of predictability generated through those forecasts (see, Gargano et al.

(2019), Bianchi et al. (2021), Fulop et al. (2019)). We find that at 1-month horizon,

CER values are positive and statistically significant for all models other than model

LF111, which has an inferior performance and generates CERs with negative sign. In

particular, for model LF001, CER values range between 1.65% and 2.74%, with the

most profitable investment being the 7-year bond, while for model LF010, statistically

significant CERs range between 1.60% and 2.23%, with the 5-year maturity bond

being the most profitable. Results provide evidence that non-overlapping excess

bond returns, not only are predictable, but also offer significant economic benefits

to investors, when compared to the M1 benchmark. This is not entirely surprising,

however, given that the latent factors evolve according to an autoregressive process of

order one, thus improvements, if any, are expected at such a short investment horizon.

It further supports the evident ability of the models to exploit information hidden

from the yield curve. The gains are not substantial at longer horizons, however,

with CER values that mostly have negative signs or are either close to zero or

marginally positive but still statistically insignificant, indicating that the relevant

information is short lived, nevertheless still of value to investors. Those findings are
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in direct contrast to the conclusions of Fulop et al. (2019) who argue that statistical

predictability is not turned into economic benefits and in line with the studies of

Gargano et al. (2019) and Bianchi et al. (2021), which find support of economically

significant predictability in bond returns. The latter, however, exploit information

from a fully revised macroeconomic dataset, which has proved to enhance predictive

power (see, Ghysels et al. (2018)). Our results are not reliant on macroeconomic

data.

2.5.4 Linking Unspanned Latent Factors with Macroecon-

omy

An intuitively interesting and economically important question that arises is, whether

information incorporated in the unspanned latent factors link with macroeconomic

forces. In particular, we are interested in investigating further the relationship, if

any, between the hidden component of the latent factors, as defined in (2.18) and

macroeconomic (rather than pure financial) variables proven to forecast variation

in bond excess returns. Table 2.8 presents adjusted R2 from regressing the hidden

component of risk premia on different macroeconomic variables. Looking at model

LF010 (i.e. second panel), our results reveal that particular macros are capable of

explaining substantial amounts of variation in the hidden component of the latent

factor Z2,t, which is related to slope risk. In particular, GRO explains 0.11 while

MNF (UNR) captures up to 0.19 (0.15) of the variation in R̃P
Z

2,t. Even more

importantly, the hidden component of bond risk premia associated with the second

latent factor, seems to be countercyclical, as revealed by the negative sign on the

(statistically significant) coefficients of the real activity indicators, GRO and F16,

displayed in Table 2.9. This further implies that shocks to GRO (and F1) induce

counter-cyclical movements in the risk premium associated with slope risk. On
6We follow Duffee (2011) and normalise the real activity factor of Ludvigson and Ng (2009), F 1

(and consequently its cube F13), to positively co-vary with GRO.
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the other side, the loading on unemployment (UNR) is positive and statistically

significant.

Explanatory power is even more pronounced for models LF011 and LF111. In

the former case, 0.13 and 0.11 of the variation in R̃P
Z

2,t is captured by measures of

economic activity (i.e. GRO and F1), whereas MNF leads to a large R2 of 0.21.

In the latter model, the fraction of the hidden component of Z2,t that is explained

by macros (MNF and UNR) is even higher (with adjusted R2 being 0.23 and 0.27

respectively). Corresponding results on the cyclicality of the hidden component for

this latent factor in these two models are qualitatively similar as evidenced by the

negative (statistically significant) coefficients, see Table 2.9.

Overall, we document that the hidden component of bond risk premia associated

with the slope factor is counter-cyclical and mostly related to variables that proxy

real activity. As such, our results uncover a direct link between macroeconomic

activity and excess return predictability in the US bond market. Although, from

the theoretical viewpoint, the unspanned latent factors might only correct for model

misspecification, what can be attributed to autocorrelated residuals in the yields-

only model M1, and perhaps a second order vector autoregressive model is more

appropriate for the P-dynamics, the fact that they are statistically related to several

key macroeconomic variables supports the argument that we may interpret them as

market environment factors.

2.6 Conclusions

This chapter explores the importance of information hidden from the yield curve and

assesses the capability of unspanned risks to offer evidence of statistical and economic

benefits to bond investors. We propose a novel class of arbitrage-free unspanned

DTSM, that embeds a stochastic price of risk specification. The model is factorised

into a ’spanned’ component, which exploits information provided by the yield curve,
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and an ’unspanned’ component, which integrates information hidden from the cross

section of yields, yet relevant for prediction purposes. The developed setup is then

used to explore how valuable the unspanned information is to a real-time Bayesian

investor seeking to forecast future excess bond returns and generate systematic

economic gains.

Empirical results provide clear evidence of out-of-sample bond return predictabil-

ity compared to the EH benchmark. Comparisons relative to the restricted yields-only

model M1, reveal improvement to the out-of-sample predictive performance of mod-

els that allow for unspanned latent factors, suggesting that those factors contain

significant predictive power above and beyond the yield curve. Such improvements

are particularly pronounced at shorter maturities revealing that latent factors carry

information associated with the short end of the maturity spectrum.

Most importantly, these models generate CER values which are positive and

statistically significant, and as such, they are capable of translating the evident

statistical predictability into economic gains for bond investors seeking to maximise

their utility. Comparisons relative to yields-only model M1, help us infer further

important conclusions for the 1-month non-overlapping bond excess returns. We

find that CER values are positive and statistically significant revealing that non-

overlapping returns, not only are predictable, but also offer significant economic

gains to investors, out-of-sample. These results further support the ability of the

models to exploit information hidden from the yield curve, in particular, information

which is short lived. This finding is in contrast to the existing literature (see, Fulop

et al. (2019), etc.).

Finally, we examine whether movements in excess returns bear any relationship

with the economy. As such, we explore the linkages between the hidden component of

the unspanned latent factors and macroeconomic variables. We find that particular

macros explain substantial variation of the hidden component, revealing a direct

line between macroeconomic activity and excess return predictability in the US
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bond market. In particular, the hidden component associated with slope risk is

countercyclical and relates to real activity.

Appendix 2.A Specification of Priors

In what follows, we concisely explain the prior distributions that were not mentioned

in the main body of the chapter. For parameters in gQ, kQ
∞, σ2

e and λP , or effectively

λ1,2, priors are constructed in the same manner as in the related Appendix 1.A. The

only exceptions are parameters in ΦZ and ΣP .

In both remaining cases, we first transform their restricted range components

so that they have unrestricted range. We also scale these of their elements which

typically take very small values. Specifically, we work with logit transformation to

constrain diagonal elements of ΦZ in (−1, 1) and consider a Cholesky factorization

of ΣP where the diagonal elements are transformed to the real line and off-diagonal

elements are scaled by 104. Next, independent normal distributions with zero means

are assigned to each of their components. Then large variances are assigned to each

element of ΣP and for the diagonal elements of ΦZ respective variances are set to 2.

Appendix 2.B Markov Chain Monte Carlo Scheme

Following from (2.12) and (2.13), and given a prior π(θ) as described in Appendix

2.A, the posterior can be written in a more detailed manner as

π(θ|Y, Σ̂Z) =
{∏T

t=0 fQ(yt|Pt, kQ
∞, gQ, ΣP , σ2

e)
}

×{∏T
t=1 fP(Pt|Pt−1, kQ

∞, gQ, ΣP , ΦP
Z , λ1,2, Σ̂Z)

}
× π(θ)

The above posterior is not available in closed form. Thus, methods such as MCMC

can be used to draw samples from it using Monte Carlo. Nevertheless, the MCMC

output is not guaranteed to lead to accurate Monte Carlo calculations due to poor
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mixing and convergence properties the corresponding Markov chain may have, what

consequently leads to highly autocorrelated samples.

It is therefore recommended to construct a suitable MCMC algorithm that does

not exhibit such unfavourable characteristics. For further details regarding its design,

see the related Appendix 1.B. Such an MCMC scheme is outlined in Algorithm 2.3.

Algorithm 2.3 MCMC scheme for Gaussian Affine Term Structure Models with
unspanned latent factors
Initialize all values of θ. Then at each iteration of the algorithm:

(a) Update σ2
e from its full conditional distribution that can be shown to be an Inverse

Gamma distribution with parameters α̃/2 and β̃/2, such that α̃ is α + T (J − R) and
β̃ is β +

∑T
t=0 ∥êt∥2, where α = β = 0, since prior is assumed diffuse, êt is a time-t

residual from (1.11), and ∥ · ∥2 is Euclidean norm squared.

(b) Update ΣP using an independence sampler based on the MLE and the Hessian
obtained before running the MCMC, using multivariate t-distribution with 5 degrees
of freedom as proposal distribution.

(c) Update (kQ
∞, gQ) in a similar manner to (b).

(d) Update (ΦP
Z , λ1,2) in a similar manner to (b).

Appendix 2.C Adaptive Tempering

Adaptive tempering serves the goal of smoothing peaked likelihoods. For background

information, see the related Appendix 1.C. Implementation of the IBIS scheme with

hybrid adaptive tempering steps is presented in Algorithm 2.4. It is important to

note that, unlike it is shown in Algorithm 2.1 for the general IBIS case, in the specific

case we are dealing here with we initialize the particles by drawing from the posterior

π(θ|Y0:t−1, Σ̂Z) instead of the prior π(θ), and N(a0|0, P0|0) for the latent part. This

is done in-sample based on training data, as detailed in Section 2.4.1.

It is straightforward to implement step 4(b)iv in Algorithm 2.4 for an independence

sampler, however adjustments are necessary for a full Gibbs step. This is the case
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for σ2
e in step (a) in Algorithm 2.3, see Appendix 2.B. Technical details are the same

as in the corresponding appendix to Chapter 1 we refer to above.

Algorithm 2.4 IBIS algorithm with hybrid adaptive tempering for Gaussian Affine
Term Structure Models with unspanned latent factors

Initialize Nθ particles by drawing independently [θi, α
(i)
t−1] ∼ π(θ|Y0:t−1, Σ̂Z) with

importance weights ωi = 1, i = 1, . . . , Nθ. For t, . . . , T and each time for all i:

1 Set ω′
i = ωi.

2 Calculate the incremental weights from

ut([θi, α
(i)
t−1]) = f

(
Yt|Yt−1, α

(i)
t−1, θi, Σ̂Z)

where α
(i)
t−1 ∼ N

(
a

(i)
t−1|t−1, P

(i)
t−1|t−1

)
, and update α

(i)
t−1 to α

(i)
t ∼ N

(
a

(i)
t|t , P

(i)
t|t

)
from

the Kalman filter.

3 Update the importance weights ωi to ωiut([θi, α
(i)
t−1]).

4 If degeneracy criterion ESS(ω) is triggered, perform the following sub-steps:

(a) Set ϕ = 0 and ϕ′ = 0.
(b) While ϕ < 1

i. If degeneracy criterion ESS(ω′′) is not triggered, where
ω′′

i = ω′
i[ut([θi, α

(i)
t−1])]1−ϕ′, set ϕ = 1, otherwise find ϕ ∈ [ϕ′, 1] such that

ESS(ω′′′) is greater than or equal to the trigger, where
ω′′′

i = ω′
i[ut([θi, α

(i)
t−1])]ϕ−ϕ′, for example using bisection method, see

Kantas et al. (2014).
ii. Update the importance weights ωi to ω′

i[ut([θi, α
(i)
t−1])]ϕ−ϕ′.

iii. Resample: Sample with replacement Nθ times from the set of θis
according to their weights ωi. The weights are then reset to one.

iv. Jitter: Replace θis with θ̃is by running MCMC chains with each θi as
input and θ̃i as output, using likelihood given by
f(Y0:t−1|θi, Σ̂Z)[f

(
Yt|α(i)

t , θi, Σ̂Z)]ϕ. Set [θi, α
(i)
t−1, α

(i)
t ] = [θ̃i, α̃

(i)
t−1, α̃

(i)
t ].

v. Calculate the incremental weights from

ut([θi, α
(i)
t−1]) = f

(
Yt|Yt−1, α

(i)
t−1, θi, Σ̂Z)

where α
(i)
t−1 ∼ N

(
a

(i)
t−1|t−1, P

(i)
t−1|t−1

)
.

vi. Set ω′
i = ωi and ϕ′ = ϕ.
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Appendix 2.D Tuning the Latent Process

For identification purposes, we tune ΣZ in-sample and fix it out-of-sample at Σ̂Z .

Details about the underlying data are in Section 2.4.1. To that end, we follow a

multi-step process which is entirely based on in-sample data. First, as in the standard

case in Section 1.2.1, we estimate by maximum likelihood a yields-only DTSM where

N = 3 and, out of λP , only λ1,2 is unrestricted, to match risk price restrictions we

adopt in this chapter. Resulting MLEs let us then obtain ŝt, t = 1, ..., T̃ , where T̃

refers to in-sample period, from (2.5).

Second, we formulate an amended version of the likelihood in (2.12), using only

its P-likelihood components fP(·) modified in the following way

f̃(Ỹ |θ, k̂Q
∞, ĝQ, Σ̂P , λ̂1,2) =


T̃∏

t=1
f̃P(Pt|Pt−1, k̂Q

∞, ĝQ, Σ̂P , ΦP
Z , λ̂1,2, c)

 (2.19)

where Ỹ refers to in-sample data, k̂Q
∞, ĝQ, Σ̂P and λ̂1,2 are the MLEs from the first

step, and θ = (ΦP
Z , c), with scalar c > 0, consists of parameters we estimate by

maximum likelihood next. However, before that we parametrize ΣZ in (2.19) as

vec(ΣZ) = c

√(
I(N−R)2 − ΦP

Z ⊗ ΦP
Z

)
vec {diagm [V ar(ŝ)]} (2.20)

where here diagm [V ar(ŝ)] is a (N − R) × (N − R) matrix including diagonal

elements of the covariance matrix V ar(ŝ) on its diagonal and zeros elsewhere. This

for ŝ =
[
ŝ1, . . . , ŝ

T̃

]
, where ŝt, t = 1, . . . , T̃ , are practically as in the first step.

Third, we proceed with the Kalman filter, as in Section 2.2.3, to arrive at

the log-likelihood representation of (2.19), similar to (2.10), which we maximize.

Consequently, it lets us fix ΣZ out-of-sample at Σ̂Z , which we calculate as in (2.20)

with (Φ̂P
Z , ĉ) being the MLEs θ̂ of θ from this last step and V ar(ŝ) remains unchanged.
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Figure 2.1: Unspanned latent factors filtered from the yield curve. Focus is given on
the period between January 2008 and the end of 2017 for which predictions of the
model were also evaluated, but the factors are based on all the data from January
1985. Left column presents the factors from model LF111. Right column shows the
factors from models LF011, first and second row, and LF001, third row. Throughout,
solid lines represent posterior means and dashed lines are 95% credible intervals.
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Table 2.1: Explanatory power of principal components when fitting latent factors,
measured via R̄2 - period: January 1985 - end of 2017.

R̄2 : Zt = a + b′Pt + et

Z1,t Z2,t Z3,t

LF001 0.09
LF010 0.45
LF011 0.54 0.08
LF111 0.05 0.52 0.06

This table reports in-sample R̄2 across alternative regression specifications. The explained variables are individual latent factors Zj,t,
j ∈ {1, 2, 3}, in Zt, from models LF001, LF010, LF011 and LF111. The explanatory variables are the principal components Pt. The
sample period is January 1985 to end of 2017.

Table 2.2: Explanatory power gains from latent factor estimated using model LF001,
when fitting excess bond returns, measured via R̄2 over multiple prediction horizons
- period: January 1985 - end of 2017.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

− R̄2(%) : rxn
t,t+h = a + b′Pt + et

1 4.26 3.29 3.08 2.74 2.77 3.55
3 9.50 7.93 8.69 7.45 8.60 8.53
6 13.54 12.70 14.10 13.75 14.42 13.70
9 14.97 14.16 15.76 16.59 18.35 19.03
12 17.30 14.77 16.37 17.83 20.47 22.90

LF001 ∆(3)R̄2(%) : rxn
t,t+h = a + b′Pt + cZ3,t + et

1 0.30 0.72∗ 0.81∗ 0.99∗∗ 1.62∗∗ 1.98∗∗

3 0.13∗ 0.29∗ 0.42∗ 0.86∗∗ 1.02∗∗ 0.77∗∗

6 -0.05 -0.13 -0.21 -0.25 -0.11 -0.04
9 -0.12 -0.19 -0.22 -0.24 -0.24 -0.23
12 -0.17 -0.24 -0.25 -0.25 -0.21 -0.19

LF001 R̄2(%) : rxn
t,t+h = a + b′Pt + cZ3,t + et

1 4.55 3.99 3.86 3.71 4.34 5.45
3 9.62 8.19 9.07 8.24 9.53 9.23
6 13.49 12.58 13.91 13.53 14.33 13.67
9 14.87 13.99 15.56 16.39 18.15 18.84
12 17.16 14.57 16.16 17.62 20.30 22.74

This table reports in-sample R̄2 in % across alternative regression specifications and at different prediction horizons of h = 1-month,
3-month, 6-month, 9-month and 12-month. The explained variables are different (by maturities) excess bond returns. The explanatory
variables are the principal components Pt and the estimated (via posterior mean) latent factor Z3,t from model LF001. In-sample R̄2

values are obtained in a similar manner to the out-of-sample R2 measure of Campbell and Thompson (2008) but using in-sample fit
instead of out-of-sample forecasts, and incorporating penalty adjustment. In particular, R̄2 in the top panel (all highly statistically
significant hence not denoted) measures explanatory power gains from using principal components on top of the in-sample average to
fit excess bond returns, whereas R̄2 in the bottom panel (all highly statistically significant hence not denoted) measures explanatory
power gains from using principal components and Z3,t on top of the in-sample average to fit excess bond returns. Further, ∆(3) next
to R̄2 in the mid panel means that the latter measures explanatory power gains from using latent factor Z3,t estimated using model
LF001 on top of the in-sample average and the principal components to do the same. Positive values of this statistic imply that there
is explanatory power gain from adding extra variables. Statistical significance is measured using a one-sided Diebold-Mariano statistic
with Clark-West adjustment, based on Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and ***
significance at 1% level. The sample period is January 1985 to end of 2017.
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Table 2.3: Explanatory power gains from latent factor estimated using model LF010,
when fitting excess bond returns, measured via R̄2 over multiple prediction horizons
- period: January 1985 - end of 2017.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

− R̄2(%) : rxn
t,t+h = a + b′Pt + et

1 4.26 3.29 3.08 2.74 2.77 3.55
3 9.50 7.93 8.69 7.45 8.60 8.53
6 13.54 12.70 14.10 13.75 14.42 13.70
9 14.97 14.16 15.76 16.59 18.35 19.03
12 17.30 14.77 16.37 17.83 20.47 22.90

LF010 ∆(2)R̄2(%) : rxn
t,t+h = a + b′Pt + cZ2,t + et

1 0.12 0.00 -0.18 -0.21 -0.2 -0.25
3 0.65 0.12 -0.21 -0.25 -0.22 0.04
6 3.02∗∗ 1.59∗ 0.41 -0.02 -0.24 -0.07
9 5.66∗∗ 3.45∗ 1.51 0.54 -0.18 -0.14
12 7.59∗∗ 5.90∗∗ 3.54∗ 2.00 0.62 -0.21

LF010 R̄2(%) : rxn
t,t+h = a + b′Pt + cZ2,t + et

1 4.38 3.29 2.90 2.54 2.57 3.30
3 10.08 8.04 8.50 7.22 8.40 8.56
6 16.15 14.09 14.45 13.74 14.22 13.64
9 19.78 17.12 17.03 17.03 18.20 18.91
12 23.58 19.80 19.33 19.47 20.96 22.73

This table reports in-sample R̄2 in % across alternative regression specifications and at different prediction horizons of h = 1-month,
3-month, 6-month, 9-month and 12-month. The explained variables are different (by maturities) excess bond returns. The explanatory
variables are the principal components Pt and the estimated (via posterior mean) latent factor Z2,t from model LF010. In-sample R̄2

values are obtained in a similar manner to the out-of-sample R2 measure of Campbell and Thompson (2008) but using in-sample fit
instead of out-of-sample forecasts, and incorporating penalty adjustment. In particular, R̄2 in the top panel (all highly statistically
significant hence not denoted) measures statistical performance gains from using principal components on top of the in-sample average
to fit excess bond returns, whereas R̄2 in the bottom panel (all highly statistically significant hence not denoted) measures statistical
performance gains from using principal components and Z2,t on top of the in-sample average to fit excess bond returns. Further, ∆(2)
next to R̄2 in the mid panel means that the latter measures explanatory power gains from using latent factor Z2,t estimated using
model LF010 on top of the in-sample average and the principal components to do the same. Positive values of this statistic imply that
there is explanatory power gain from adding extra variables. Statistical significance is measured using a one-sided Diebold-Mariano
statistic with Clark-West adjustment, based on Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and
*** significance at 1% level. The sample period is January 1985 to end of 2017.
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Table 2.4: Out-of-sample statistical performance of bond excess return forecasts
against the EH, measured via R2

os over multiple prediction horizons - period: January
1985 - end of 2018.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -0.04 -0.06 -0.05 -0.04 -0.02 -0.01**
3m 0.08** 0.02** 0.01* 0.00* -0.01* -0.03**
6m 0.25*** 0.16*** 0.11** 0.08** 0.06** 0.01**
9m 0.34*** 0.21** 0.15** 0.12** 0.12** 0.07**
12m 0.44*** 0.32** 0.22** 0.19** 0.19** 0.13**

M1

1m 0.01 0.03** 0.03* 0.02 0.02* 0.04**
3m 0.05** 0.08*** 0.07** 0.07** 0.08** 0.13***
6m 0.10*** 0.17*** 0.16*** 0.15** 0.14** 0.20***
9m 0.12** 0.23*** 0.25*** 0.25*** 0.23*** 0.31***
12m 0.00* 0.18*** 0.26*** 0.28*** 0.29*** 0.37***

LF001

1m 0.03** 0.04** 0.04** 0.03* 0.03* 0.05***
3m 0.05** 0.09*** 0.07** 0.07** 0.08** 0.13***
6m 0.09** 0.16*** 0.15*** 0.15** 0.14** 0.21***
9m 0.12** 0.23*** 0.25*** 0.25*** 0.23*** 0.31***
12m 0.00* 0.18*** 0.26*** 0.28*** 0.29*** 0.37***

LF010

1m 0.06*** 0.06*** 0.05*** 0.04** 0.03** 0.03***
3m 0.09*** 0.10*** 0.08*** 0.07** 0.06** 0.09***
6m 0.17*** 0.21*** 0.17*** 0.15*** 0.13** 0.16***
9m 0.25*** 0.31*** 0.29*** 0.27*** 0.22*** 0.27***
12m 0.15** 0.28*** 0.32*** 0.32*** 0.29*** 0.33***

LF011

1m 0.06*** 0.05*** 0.04*** 0.03** 0.02* 0.03**
3m 0.10*** 0.11*** 0.08*** 0.08** 0.06** 0.10***
6m 0.18*** 0.21*** 0.17*** 0.15** 0.12** 0.16***
9m 0.25*** 0.31*** 0.28*** 0.25*** 0.20*** 0.25***
12m 0.16** 0.29*** 0.32*** 0.31*** 0.28*** 0.32***

LF111

1m 0.05*** 0.05*** 0.03** 0.02* 0.02* 0.02**
3m 0.09** 0.09** 0.06** 0.06** 0.05** 0.08***
6m 0.22*** 0.22*** 0.17*** 0.14** 0.10** 0.13***
9m 0.36*** 0.39*** 0.33*** 0.29*** 0.21*** 0.24***
12m 0.30*** 0.40*** 0.39*** 0.36*** 0.30*** 0.31***

This table reports out-of-sample R2 across alternative models and at different prediction horizons of h = 1-month, 3-month, 6-month,
9-month and 12-month. The six forecasting models used are ATSM with alternative risk price restrictions or different number of latent
factors. R2 values are generated using the out-of-sample R2 measure of Campbell and Thompson (2008). In particular, out-of-sample
R2 measures the predictive accuracy of bond excess return forecasts relative to the EH benchmark. The EH implies the historical
mean being the optimal forecast of excess returns. Positive values of this statistic imply that the forecast outperforms the historical
mean forecast and suggests evidence of time-varying return predictability. Statistical significance is measured using a one-sided
Diebold-Mariano statistic with Clark-West adjustment, based on Newey-West standard errors. * denotes significance at 10%, **
significance at 5% and *** significance at 1% level. The in-sample period is January 1985 to end of 2007, and the out-of-sample period
starts in January 2008 and ends in end of 2018.
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Table 2.5: Out-of-sample statistical performance of bond excess return forecasts
against model M1, measured via R2

os over multiple prediction horizons - period:
January 1985 - end of 2018.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

LF001

1m 0.02** 0.01*** 0.01** 0.01** 0.01** 0.01*
3m 0.01 0.00 0.00 0.00 0.00 0.00
6m -0.01 -0.01 -0.01 0.00 0.00 0.01*
9m 0.00 0.00 0.00 0.00 0.00 0.00
12m 0.00 0.00 0.00 0.00 0.00 0.00

LF010

1m 0.05*** 0.03*** 0.02*** 0.02*** 0.01 0.00
3m 0.05*** 0.02*** 0.01 0.00 -0.02 -0.05
6m 0.08*** 0.05*** 0.02** 0.00 -0.02 -0.05
9m 0.14*** 0.10*** 0.05*** 0.02 -0.01 -0.07
12m 0.14*** 0.13*** 0.09*** 0.05*** 0.01 -0.06

LF011

1m 0.04*** 0.02*** 0.01** 0.01 0.00 -0.01
3m 0.06*** 0.03*** 0.01* 0.00 -0.02 -0.04
6m 0.09*** 0.05*** 0.02* 0.00 -0.02 -0.05
9m 0.15*** 0.10*** 0.04*** 0.00 -0.03 -0.09
12m 0.16*** 0.14*** 0.08*** 0.04*** -0.01 -0.08

LF111

1m 0.04** 0.02 0.00 0.00 -0.01 -0.02
3m 0.04* 0.01 -0.01 -0.02 -0.03 -0.06
6m 0.13*** 0.06* 0.01 -0.02 -0.05 -0.09
9m 0.28*** 0.20*** 0.11** 0.04 -0.03 -0.10
12m 0.30*** 0.27*** 0.18*** 0.11*** 0.01 -0.09

This table reports out-of-sample R2 across alternative models and at different prediction horizons of h = 1-month, 3-month, 6-month,
9-month and 12-month. The four forecasting models used are ATSM with different number of latent factors. R2 values are generated
using the out-of-sample R2 measure of Campbell and Thompson (2008). In particular, out-of-sample R2 measures the predictive
accuracy of bond excess return forecasts relative to model M1 from Chapter 1. Positive values of this statistic imply that the forecast
outperforms forecast from the benchmark model M1. Statistical significance is measured using a one-sided Diebold-Mariano statistic
with Clark-West adjustment, based on Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and ***
significance at 1% level. The in-sample period is January 1985 to end of 2007, and the out-of-sample period starts in January 2008
and ends in end of 2018.
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Table 2.6: Out-of-sample economic performance of bond excess return forecasts
against the EH, measured via certainty equivalent returns (%) over multiple prediction
horizons - period: January 1985 - end of 2018.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m -10.77 -11.81 -10.27 -8.05 -3.62 -7.49
3m -3.20 -3.84 -3.08 -1.85 -1.63 -3.61
6m -0.25 -0.68 -0.83 -0.64 -0.45 -1.10
9m -0.07 -0.78 -1.08 -1.04 -0.50 -0.16
12m 0.84 0.17 -0.58 -0.51 -0.30 0.28

M1

1m 2.31 1.88 1.38 0.80 2.30 2.55
3m 3.76** 3.84* 3.77** 4.01* 4.19** 5.95***
6m 4.65*** 4.83*** 4.34*** 4.11*** 3.87*** 5.21***
9m 4.52*** 4.76*** 4.67*** 4.51*** 4.35*** 5.76***
12m 3.83*** 4.30*** 4.15*** 4.18*** 4.02*** 5.31***

LF001

1m 3.96** 3.78** 3.50* 3.25 5.04* 4.84**
3m 4.38*** 4.20** 3.96** 3.99* 4.06** 5.97***
6m 4.96*** 5.05*** 4.51*** 4.27*** 3.98*** 5.51***
9m 4.76*** 4.90*** 4.69*** 4.55*** 4.40*** 5.88***
12m 4.08*** 4.48*** 4.36*** 4.26*** 4.15*** 5.48***

LF010

1m 3.91** 3.79** 3.56* 3.03 4.20 3.10*
3m 3.25* 3.56** 3.61** 3.66** 3.03* 3.81**
6m 4.35*** 4.55*** 4.00*** 3.71*** 3.16** 4.08***
9m 4.62*** 4.71*** 4.47*** 4.16*** 3.71*** 4.61***
12m 3.95*** 4.48*** 4.23*** 4.12*** 3.73*** 4.39***

LF011

1m 3.70** 3.30* 3.15* 2.40 3.51 2.09
3m 3.65** 3.73** 3.60** 3.45* 2.69 3.75**
6m 4.40*** 4.50*** 3.78*** 3.42*** 2.73** 3.89***
9m 4.42*** 4.50*** 4.23*** 3.95*** 3.51*** 4.45***
12m 3.92*** 4.21*** 3.98*** 3.95*** 3.57*** 4.35***

LF111

1m -0.05 0.41 0.40 0.17 1.82 0.23
3m 0.44 0.89 1.71 2.43 2.50* 3.00*
6m 3.45*** 3.46*** 2.87*** 2.69** 2.25* 3.07***
9m 3.74*** 3.62*** 3.31*** 3.11*** 2.76*** 3.49***
12m 3.18*** 3.45*** 2.91*** 2.96*** 2.64*** 3.23***

This table reports annualized certainty equivalent returns (CERs) across alternative models and at different prediction horizons
of h = 1-month, 3-month, 6-month, 9-month and 12-month. The coefficient of risk aversion is γ = 3. No portfolio constraints are
imposed. CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time step t, an
investor with power utility preferences evaluates the entire predictive density of bond excess returns and solves the asset allocation
problem, thus optimally allocating her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years.
CER is then defined as the value that equates the average utility of each alternative model against the average utility of the EH
benchmark. The six forecasting models used are ATSM with alternative risk price restrictions or different number of latent factors.
Positive values indicate that the models perform better than the EH benchmark. Statistical significance is measured using a one-sided
Diebold-Mariano statistic computed with Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and ***
significance at 1% level. The in-sample period is January 1985 to end of 2007, and the out-of-sample period starts in January 2008
and ends in end of 2018.
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Table 2.7: Out-of-sample economic performance of bond excess return forecasts
against model M1, measured via certainty equivalent returns (%) over multiple
prediction horizons - period: January 1985 - end of 2018.

h\n 2Y 3Y 4Y 5Y 7Y 10Y

LF001

1m 1.65*** 1.90*** 2.12** 2.45*** 2.74*** 2.29**
3m 0.61 0.36 0.18 -0.01 -0.13 0.02
6m 0.30* 0.21 0.17 0.16 0.11 0.28*
9m 0.23* 0.13 0.02 0.04 0.04 0.11
12m 0.24** 0.17* 0.20** 0.08 0.12* 0.17**

LF010

1m 1.60* 1.90** 2.17*** 2.23** 1.90** 0.55
3m -0.51 -0.27 -0.16 -0.35 -1.14 -2.11
6m -0.30 -0.28 -0.33 -0.39 -0.69 -1.10
9m 0.10 -0.05 -0.19 -0.34 -0.62 -1.11
12m 0.11 0.17 0.08 -0.05 -0.28 -0.87

LF011

1m 1.39* 1.41* 1.77** 1.60* 1.21 -0.46
3m -0.11 -0.10 -0.18 -0.55 -1.48 -2.16
6m -0.24 -0.33 -0.54 -0.68 -1.11 -1.29
9m -0.09 -0.26 -0.42 -0.54 -0.82 -1.26
12m 0.08 -0.09 -0.16 -0.22 -0.43 -0.90

LF111

1m -2.35 -1.47 -0.98 -0.63 -0.48 -2.31
3m -3.29 -2.92 -2.04 -1.56 -1.67 -2.90
6m -1.17 -1.34 -1.44 -1.38 -1.58 -2.09
9m -0.75 -1.10 -1.31 -1.36 -1.55 -2.18
12m -0.63 -0.82 -1.19 -1.17 -1.33 -1.97

This table reports annualized certainty equivalent returns (CERs) across alternative models and at different prediction horizons of h
= 1-month, 3-month, 6-month, 9-month and 12-month. The coefficient of risk aversion is γ = 3. No portfolio constraints are imposed.
CERs are generated by out-of-sample forecasts of bond excess returns and are reported in %. At every time step t, an investor with
power utility preferences evaluates the entire predictive density of bond excess returns and solves the asset allocation problem, thus
optimally allocating her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is then
defined as the value that equates the average utility of each alternative model against the average utility of model M1 from Chapter 1.
The four forecasting models used are ATSM with different number of latent factors. Positive values indicate that the models perform
better than the benchmark model M1. Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with
Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The in-sample
period is January 1985 to end of 2007, and the out-of-sample period starts in January 2008 and ends in end of 2018.
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Table 2.8: Explanatory power of macroeconomic variables when fitting latent factors
and their components, measured via R̄2 - period: January 1985 - end of 2017.

R̄2 : Zj,t/E[Zj,t|Pt]/R̃P
Z

j,t = aj + b′
jMt + ej,t, j ∈ {1, 2, 3}

LF001 CP I GRO F 1 F 13 F 8 UNR MNF MI MII MIII

Z3,t 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E[Z3,t|Pt] 0.00 0.17 0.17 0.14 0.00 0.04 0.00 0.17 0.18 0.06
R̃P

Z

3,t 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00

LF010 CP I GRO F 1 F 13 F 8 UNR MNF MI MII MIII

Z2,t 0.05 0.03 0.03 0.00 0.02 0.20 0.08 0.08 0.05 0.21

E[Z2,t|Pt] 0.09 0.01 0.00 0.00 0.01 0.06 0.00 0.11 0.01 0.17
R̃P

Z

2,t 0.00 0.11 0.09 0.02 0.01 0.15 0.19 0.11 0.10 0.20

LF011 CP I GRO F 1 F 13 F 8 UNR MNF MI MII MIII

Z2,t 0.06 0.01 0.02 0.00 0.02 0.19 0.07 0.07 0.04 0.20

E[Z2,t|Pt] 0.09 0.02 0.01 0.01 0.01 0.04 0.00 0.12 0.02 0.13
R̃P

Z

2,t 0.00 0.13 0.11 0.03 0.01 0.18 0.21 0.13 0.12 0.23

Z3,t 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00

E[Z3,t|Pt] 0.00 0.17 0.16 0.14 0.00 0.03 0.00 0.17 0.18 0.03
R̃P

Z

3,t 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01

LF111 CP I GRO F 1 F 13 F 8 UNR MNF MI MII MIII

Z1,t 0.05 0.12 0.17 0.01 0.00 0.16 0.15 0.18 0.21 0.18

E[Z1,t|Pt] 0.10 0.00 0.00 0.00 0.02 0.09 0.00 0.10 0.01 0.24
R̃P

Z

1,t 0.02 0.14 0.17 0.01 0.00 0.11 0.17 0.16 0.22 0.18

Z2,t 0.07 0.04 0.05 0.01 0.01 0.26 0.09 0.11 0.07 0.26

E[Z2,t|Pt] 0.09 0.01 0.00 0.00 0.01 0.06 0.00 0.10 0.01 0.17
R̃P

Z

2,t 0.00 0.18 0.17 0.04 0.00 0.23 0.27 0.18 0.18 0.29

Z3,t 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01

E[Z3,t|Pt] 0.00 0.18 0.17 0.14 0.00 0.04 0.00 0.18 0.19 0.05
R̃P

Z

3,t 0.00 0.02 0.03 0.02 0.00 0.01 0.01 0.02 0.03 0.01

This table reports in-sample R̄2 across alternative regression specifications. The explained variables are individual latent factors

Zj,t and their components E[Zj,t|Pt] and R̃P
Z

j,t, j ∈ {1, 2, 3}, see (2.18), from models LF001, LF010, LF011 and LF111. The
explanatory variables are individual macroeconomic variables or groups thereof, namely MI = [CP I, GRO]′, MII = [F 1, F 13, F 8]′,
MIII = [UNR, MNF ]′. The sample period is January 1985 to end of 2017.
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Table 2.9: Signs and significance of coefficients from explanatory power regressions
of latent factors and their components on macroeconomic variables - period: January
1985 - end of 2017.

sign(bj) : Zj,t/E[Zj,t|Pt]/R̃P
Z

j,t = aj + bjMt + ej,t, j ∈ {1, 2, 3}

LF001 CP I GRO F 1 F 13 F 8 UNR MNF

Z3,t − − − − + + +
E[Z3,t|Pt] − −∗∗∗ −∗∗∗ −∗∗∗ + +∗ −

R̃P
Z

3,t − + + +∗ + − +

LF010 CP I GRO F 1 F 13 F 8 UNR MNF

Z2,t +∗∗ −∗∗ −∗∗ −∗ +∗∗∗ +∗∗∗ −∗∗∗

E[Z2,t|Pt] +∗∗∗ +∗∗ + +∗∗∗ +∗∗ +∗∗ +
R̃P

Z

2,t + −∗∗∗ −∗∗∗ −∗∗∗ +∗ +∗∗∗ −∗∗∗

LF011 CP I GRO F 1 F 13 F 8 UNR MNF

Z2,t +∗∗∗ −∗ −∗∗ − +∗∗ +∗∗∗ −∗∗∗

E[Z2,t|Pt] +∗∗∗ +∗∗∗ +∗∗ +∗∗∗ +∗∗ +∗∗ +
R̃P

Z

2,t + −∗∗∗ −∗∗∗ −∗∗∗ +∗ +∗∗∗ −∗∗∗

Z3,t − − − − + − +∗

E[Z3,t|Pt] − −∗∗∗ −∗∗∗ −∗∗∗ − + −
R̃P

Z

3,t − +∗∗ +∗ +∗∗ + −∗ +∗∗

LF111 CP I GRO F 1 F 13 F 8 UNR MNF

Z1,t −∗∗∗ +∗∗∗ +∗∗∗ +∗∗∗ + −∗∗∗ +∗∗∗

E[Z1,t|Pt] −∗∗∗ − − − −∗∗ −∗∗∗ −
R̃P

Z

1,t −∗∗ +∗∗∗ +∗∗∗ +∗∗∗ +∗∗ −∗∗∗ +∗∗∗

Z2,t +∗∗∗ −∗∗∗ −∗∗∗ −∗∗ +∗∗ +∗∗∗ −∗∗∗

E[Z2,t|Pt] +∗∗∗ +∗∗ + +∗∗∗ +∗∗ +∗∗ +
R̃P

Z

2,t + −∗∗∗ −∗∗∗ −∗∗∗ + +∗∗∗ −∗∗∗

Z3,t −∗∗ + + + + − +∗∗

E[Z3,t|Pt] − −∗∗∗ −∗∗∗ −∗∗∗ + + −
R̃P

Z

3,t − +∗∗∗ +∗∗∗ +∗∗ + −∗∗ +∗∗

This table reports signs and statistical significance of coefficients bj , j ∈ {1, 2, 3}, across alternative regression specifications. The

explained variables are individual latent factors Zj,t and their components E[Zj,t|Pt] and R̃P
Z

j,t, j ∈ {1, 2, 3}, see (2.18), from
models LF001, LF010, LF011 and LF111. The explanatory variables are macroeconomic variables. Statistical significance is measured
using t-statistic computed with Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance
at 1% level. The sample period is January 1985 to end of 2017.
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Chapter 3

Dynamic Term Structure Models

with Nonlinear Information

3.1 Introduction

3.1.1 Term Structure and Macroeconomic Information

A fundamental and economically important argument in macro-finance literature

suggests that the current yield curve spans all relevant information for forecasting

future yields, returns and bond risk premia. Although the argument is implied

by most macro-finance models, recent evidence raises important questions on its

validity. In particular, several empirical studies (see, Cooper and Priestley (2009),

Ludvigson and Ng (2009), Duffee (2011), Joslin et al. (2014), Cieslak and Povala

(2015), Gargano et al. (2019), Bianchi et al. (2021)) provide support for unspanned

macroeconomic risks1 possessing considerable predictive power above and beyond the

yield curve. The vast majority of the extant literature, however, assumes that the

relationship between those unspanned macroeconomic factors and the cross section

of yields is mostly, if not purely, linear in nature.
1e.g.: the output gap of Cooper and Priestley (2009), the ‘real’ and ‘inflation’ factors of Ludvigson

and Ng (2009), the measures of economic activity and inflation of Joslin et al. (2014) and the
long-run inflation expectation of Cieslak and Povala (2015), among others.

116



Duffee (2011) is the first to comment on the possibility of a nonlinear (albeit,

economically weak) relationship between bond risk premia and macroeconomic

activity. Only recently, Bianchi et al. (2021) provide evidence on the importance

of accounting for nonlinearities in order to detect further information important

for forecasting bond risk premia. Due to the rapid increase in the use of machine

learning methods, the presence of nonlinearities, relevant for predicting excess returns,

has recently attracted attention in the literature. However, we are unaware of any

prior research that explores the possibility of an asymmetric/nonlinear relationship

between unspanned macroeconomic risks and return predictability in the US bond

market within an arbitrage-free pricing model. In this chapter we seek to investigate

this relationship, if any, further. With this in mind, we propose a novel class

of arbitrage-free Dynamic Term Structure Models (DTSM) that embed nonlinear

unspanned macroeconomic risks using Gaussian Processes (Bishop, 2006; Rasmussen

and Williams, 2006). The latter have been applied in the context of nonlinear

nonparametric state-space models, where a Gaussian process prior was placed over

the state transition dynamics (Frigola et al., 2013). However, our setting is different,

as described below.

This chapter contributes to the literature that studies the linkages between

bond risk premia and the macroeconomy. Our first contribution is methodological.

Following Joslin et al. (2014), we embed unspanned information coming from (directly

observable) macroeconomic risks within a DTSM. The point where our approach

deviates from prior studies is that this information is assumed exogenous and is

entering the model in a nonlinear fashion, without making specific assumption on

the manner it affects the yield curve. To do so, we introduce a novel methodological

framework that utilises Bayesian nonparametrics within a DTSM, thus staying

agnostic about the functional form between macroeconomic activity and bond risk

premia. Our setup, also allows us to handle Gaussian Processes sequentially and

effectively perform tasks such as sequential parameter estimation and forecasting.

117



Drawing from the work of Chopin (2002) and Del Moral et al. (2006), we allow

for a sequential Bayesian treatment of exogeneous macroeconomic information in a

nonlinear manner.

Our second contribution is empirical. From a fundamental and economic per-

spective, the proposed framework seeks to enhance our understanding behind the

determinants of bond risk premia, in particular, whether movements in excess bond

returns bear any relation to the macroeconomy. Are there important driving forces

of bond return predictability that are nonlinear and hard, if not impossible, to

summarize utilising information coming solely from linear transformations of the

data? Furthermore, we seek to investigate deeper whether such nonlinearities, if

any, allow investors to exploit the evident statistical predictability of the resulting

models and generate economically significant portfolio benefits to bond investors,

out-of-sample.

3.1.2 Economic Benefits from Nonlinearities

Our results reveal a direct line linking the nonlinear component of the unspanned

measures of macroeconomic activity to model performance, especially when it comes

to generating additional economic value. In order to scrutinize nonlinear models in

a meaningful way, as benchmark we apply a version of the macro-finance DTSM

proposed by Joslin et al. (2014) which incorporates unspanned macroeconomic

variables in a linear manner. However, we proceed without modeling their underlying

dynamics in order to remain closest possible to the nonlinear setup we propose.

First, we find that nonlinear models provide a competitive edge over linear models

in cases where ex-ante nonlinear functions of macroeconomic variables preserve their

nonlinear nature ex-post in the part which is hidden from the yield curve. In this

chapter these are specifically the prices and not the economic activity which we also

consider. We demonstrate that by resorting to risk premium factor decomposition

from Duffee (2011).
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Second, results in this chapter also indicate that for some models where macroe-

conomic risk directly affects the level of the yield curve, a nonlinear formulation like

ours, which relies on Gaussian Processes, does not necessarily mean outstanding

model performance in terms of predictability and economic value gains, however it

lets avoid substantial deterioration on that front. In particular, this is the case for

macroeconomic variables which in abnormal times, such as the 2008-2009 financial

crisis or the more recent COVID-19 recession, are subject to outliers, like in this

chapter the economic activity.

3.1.3 Outline

The remainder of this chapter is organized as follows. Section 3.2 is a brief introduction

to Gaussian Processes. Section 3.3 describes the proposed modelling framework.

Section 3.4 presents the procedure for sequential learning with Gaussian Processes

and forecasting, along with the framework for assessing the predictive and economic

performance of the resulting models. Section 3.5 discusses the data and the sample

period used and presents the family of models considered in this chapter. Section

3.6 discusses the results both in terms of predictive performance and economic value,

including the associated explanatory power where applicable, and reveals the links

between these results and the hidden nonlinearities. Finally, Section 3.7 concludes

the chapter by providing some relevant discussion.

3.2 Gaussian Processes

In Bayesian nonparametrics a Gaussian Process prior is used to estimate unknown

function in supervised learning setting. One does not assume a specific function

between some y and x and instead performs Bayesian inference on the function.

Univariate exposition below follows from Bishop (2006), Rasmussen and Williams

(2006) and Murphy (2012).
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3.2.1 Gaussian Process Theory

Let X be a set and V be a set of functions over X , for example smooth functions.

We observe (x1, y1) ... (xt, yt) ... (xT , yT ), where xt ∈ X , yt ∈ R, t = 1, ..., T ,

satisfying

yt = v(xt) + ϵt

where v ∈ V and ϵ = (ϵ1, ..., ϵT ) are independent of x = (x1, ..., xT ). Errors ϵ have

density π(ϵ) and usually it is N(0T , σ2
ϵ IT ), 0T being (T × 1) vector of zeros, what

further implies that

y = (y1, ..., yT )|v, x, σ2
ϵ ∼ N(v, σ2

ϵ IT )

where v = [v(x1), ..., v(xT )]′. In a Bayes regression we assign prior π(v) to v and

compute the posterior

π(v|y) = π(v)f(ϵ|v)∫
V π(v)f(ϵ|v)dv

where f(ϵ|v) is the likelihood. Then v can be estimated by its posterior mean.

Definition. Let X be a set. A random function v : X → R is called a Gaussian

Process (GP ) if for any x1, ..., xT ∈ X , v = [v(x1), ..., v(xT ]′ has a multivariate

normal distribution.

Gaussian Process is characterized by the mean v0(·) and the covariance kernel

K(·, ·). The latter is a positive definite function K : X × X → R. If v is a GP

with mean v0 and covariance kernel K then

v = [v(x1), ..., v(xT ]′ ∼ N(v0, K)

where v0 = [v0(x1), ..., v0(xT ] and K is (T × T ) matrix with elements K(s, t) such

that s, t = 1, ..., T . There are numerous possibilities when it comes to covariance
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kernels and their choice depends on the application. For instance, they can be linear

kernels

K(x, x′) = ⟨x, x′⟩

or Gaussian kernels

K(x, x′) = e− ∥x−x′∥2

2σ2

among others. For details about these and other kernels, and how they can be

combined, see Rasmussen and Williams (2006).

3.2.2 Gaussian Process Regression

For t = 1, ..., T assume that

yt = v(xt) + ϵt

with

π(v) = GP (v0, K)

ϵt ∼ N(0, σ2
ϵ )

where v and (ϵ1, ..., ϵT ) are independent and for simplicity one can assume that

v0 = 0, what is also a common assumption made in applications.

Marginal distribution of y is thus multivariate normal with means E(yt) = 0

and covariances Cov(ys, yt) = K(xs, xt) + σ2
ϵ I(s = t), with s, t = 1, ..., T . In matrix

notation, where KT denotes the (T × T ) matrix containing all the (xs, xt) pairs, we

get

y ∼ N(0T ×1, KT + σ2
ϵ IT )
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Since for each xt ∈ X and yt we have that Cov(v(xs), yt) = K(xs, xt), the joint

distribution of v and y is

 v

y

 ∼ N


 0T ×1

0T ×1

 ,

KT KT

KT KT + σ2
ϵ IT




where v = [v(x1), ..., v(xT )]′ and 0T ×1 is a (T × 1) vector of zeros.

Under such assumptions, by the multivariate normal regression lemma (Durbin

and Koopman, 2012), the distribution of v|y is a Gaussian with mean µv and

covariance kernel Σv, which are following

µv = KT [KT + σ2
ϵ IT ]−1y

Σv = KT − KT [KT + σ2
ϵ IT ]−1KT

To project yT +1 based on xT +1 we need to find the joint distribution of y and

yT +1, given x and xT +1. To that end, we note that Cov(yt, yT +1) = K(xt, xT +1) for

t = 1, ..., T and we let

kT +1 = [K(x1, xT +1), ..., K(xT , xT +1)]′

to arrive at

 yT +1

y

 ∼ N


 0

0T ×1

 ,

K(xT +1, xT +1) + σ2
ϵ k′

T +1

kT +1 KT + σ2
ϵ IT




Then, by the multivariate normal regression lemma, yT +1|y is a Gaussian with mean

µT +1 and variance ΣT +1 such that

µT +1 = k′
T +1[KT + σ2

ϵ IT ]−1y

ΣT +1 = K(xT +1, xT +1) + σ2
ϵ − k′

T +1[KT + σ2
ϵ IT ]−1kT +1

Posterior distribution of v still depends on unknown vector of parameters θ

consisting of σϵ and any hyper-parameters of K, for example σ for squared exponential
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kernel. In principle, two methods can be used to estimate θ. We can maximize

the marginal likelihood π(y|θ) which is a multivariate normal density with mean

µy = 0T ×1 and covariance matrix Σy = KT + σ2
ϵ IT . Doing so is denoted empirical

Bayes. We can also put a prior on the hyper-parameters and estimate them by their

posterior means. Doing this is known as hierarchical Bayes (Bishop, 2006; Murphy,

2012). In what follows, we pursue a pragmatic combination of the two approaches.

3.3 Dynamic Term Structure Model, Likelihood,

and Nonlinear Macros

3.3.1 Incorporating Unspanned Nonlinear Macros

In this chapter we consider an extension of the model presented in Section 1.2.1.

Our approach resembles the framework of Joslin et al. (2014) in that the model is

factorised into a ‘spanned’ component, i.e. risk factors which can be retrieved by

the information provided in historical yield curve data, as well as an ‘unspanned’

component that could include background factors such as macroeconomic variables.

It is assumed that the latter is not determined by the yield curve, yet it remains

highly relevant for the inference and, more importantly, prediction purposes. The

points where our approach differs from Joslin et al. (2014) are as follows. First,

the unspanned components are regarded as unknown, possibly nonlinear functions,

which are to be estimated, of observable macroeconomic variables, rather than just

macros entering the model in a linear manner. Having said that, the latter case is

considered too, as benchmark in model comparisons, and is henceforth referred to as

the linear model. Second, the unspanned components are not assumed endogenous

but exogenous.
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We thus introduce the following nonlinear model for the P-dynamics of the state

vector

Pt = µP
P + ΦP

PPt−1 + v(Mt−1) + ΣPεt (3.1)

where µP
P and ΦP

P are defined in (1.15) and (1.16), respectively. The matrix ΣP

represents the Cholesky decomposition (i.e. lower triangular with positive diagonal

elements) of the covariance matrix ΣPΣ′
P , whereas εt is a vector of N error terms

that are assumed to be normally distributed with zero mean and IN , the identity

matrix of dimension N , as the covariance matrix. The term v(Mt−1) is of dimension

(N × 1) and reflects the impact of R (lagged) macros in Mt−1, a (R × 1) vector, on

Pt, with the function v(·) being such that v : RR → RN . More details are provided

in the next section.

The model is completed by setting the Q-dynamics for Pt as in (1.7). To ensure

that macros are not spanned by Pt we set rt as in (1.12) and the pricing kernel as in

(1.2), however the time-varying market prices of risk λt are now given by

λt = Σ−1
P

[
µP

P − µQ
P + (ΦP

P − ΦQ
P)Pt + v(Mt−1)

]
= Σ−1

P [λ0P + λ1PPt + v(Mt−1)]

Final model specification assumes appropriate choice of restrictions on λ0P and λ1P

in λt, as discussed in Section 3.3.3, and Gaussian Process outputs in v(Mt−1), as

explained in the next section, where the latter depend on observed macroeconomic

variables described in Section 3.5.

3.3.2 Gaussian Process Mean Ornstein-Uhlenbeck Model

In what follows, we define in more detail the function v(·) in (3.1), and the underlying

hyper-parameters. To that end, we follow a Bayesian nonparametric approach using

a Gaussian Process with multiple outputs. We focus on a special case of (3.1) with

N = 3 and R = 1, noting that the first three extracted PCs are typically sufficient

124



to capture most of the variation in the yield curve and often correspond to its

level, slope and curvature, respectively (Litterman and Scheinkman, 1991). For

interpretation reasons, we work with models containing R = 1 macro and explore

their submodels. We believe it is a natural step to gain the understanding as to how

these models behave before moving to more complex specifications. Nevertheless,

the computational scheme we develop in this chapter is capable of handling R > 1

macros in a single model.

Our starting point is the P-dynamics for Pt as in (3.1) which, for convenience,

we simplify to

st = v(Mt−1) + ΣPεt (3.2)

by setting

Pt − µP
P − ΦP

PPt−1 = st (3.3)

Then we assign a Gaussian Process prior on v(·) in (3.3) and denote it as

π(v) = GP (v0, K) (3.4)

In the above we assume v0 = 0, what is commonly done in applications (Rasmussen

and Williams, 2006). Such a prior assumption about v0 is also reasonable in our

context where we are effectively filtering out GP s from residuals of a VAR model.

Specific choice of kernel K is discussed later.

At this point it is worth noting that under these assumptions the term µP
P +

v(Mt−1), as backed out from (3.2) and (3.3), essentially determines (up to rescaling)

the long term mean of the corresponding Ornstein-Uhlenbeck (OU) process that

governs Pt. Given that v(Mt−1) is now a Gaussian Process, the model can be

viewed as N -dimensional GP mean OU process. Although according to our notation

dimension of v(Mt−1) in (3.2) is (N × 1), we are able to include G = 1, . . . , N

Gaussian Process outputs in a single model. For example, if G = 2 and we introduce

two GP outputs, one in the second and one in the third equation of (3.2), then it
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means that the first element of v(Mt−1) is effectively zero. It is implemented by

setting K1, the first diagonal block of matrix K defined in (3.7) below, to zeros. In

the linear model, this would be equivalent to restricting the first row of matrix ΦP
PM

in (3.24) to zeros, what is explained in detail in Appendix 3.E.

Without loss of generality for G = 3, we adopt the following vector notation

st =


s

(1)
t

s
(2)
t

s
(3)
t

 , sjt = s
(j)
t , Sj = [sj1, . . . , sjT ]′, j = 1, 2, 3

v(Mt) =


v(1)(Mt)

v(2)(Mt)

v(3)(Mt)

 , vjt = v(j)(Mt), Vj = [vj0, . . . , vjT −1]′, j = 1, 2, 3

Eventually we consider the concatenated vectors

S =


S1

S2

S3

 , V =


V1

V2

V3

 (3.5)

The distribution of S conditional on V is then

S|V ∼ N (V, ΣPΣ′
P ⊗ IT ) (3.6)

The next step is to choose a specific kernel for each GP v(j)(Mt), j = 1, 2, 3.

We use the same type of kernel for all the GP s in the model. Namely, the squared

exponential kernel, which is stationary and considered the choice most-widely made

to start with in applications (Bishop, 2006; Rasmussen and Williams, 2006; Murphy,

2012). It can be specified as

kℓ,σ2(xa, xb) = σ2 exp
(

−∥xa − xb∥2

2ℓ2

)
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for some scalars (or vectors) xa and xb, where ℓ is called the characteristic length-scale

and σ is denoted as signal standard deviation. Squared exponential kernel is infinitely

differentiable and thus very smooth, what we welcome here since it is the smooth

signal within the rough noise that we are after.

To each Vj we thus assign separate yet the same type of kernel kℓj ,σ2
j
(·, ·), j = 1, 2, 3,

what can be expressed as

Kj =


kℓj ,σ2

j
(M0, M0) . . . kℓj ,σ2

j
(M0, MT −1)

... . . . ...

kℓj ,σ2
j
(MT −1, M0) . . . kℓj ,σ2

j
(MT −1, MT −1)

 , j = 1, 2, 3

in covariance terms. Following the assumption made about v0 in (3.4), it lets us then

determine the distribution for each of the Vjs as

Vj ∼ N(0T ×1, Kj), j = 1, 2, 3

where 0T ×1 is a (T × 1) vector of zeros and Kj is the (T × T ) matrix shown above.

Finally, in order to specify the distribution of V , which in our case is a single input

GP with multiple outputs, we need to make an assumption about the dependence

between Vjs. The simplest way, and the one chosen here, is to assume independence

between Vjs, what implies the following distribution

V ∼ N (03T ×1, K)

with

K =


K1 0T 0T

0T K2 0T

0T 0T K3

 (3.7)
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which is a (3T ×3T ) matrix, and 03T ×1 and 0T are a (3T ×1) and (T ×T ) vector and

matrix of zeros, respectively. We collect the hyper-parameters governing covariance

matrix K, which are σj and ℓj, j = 1, 2, 3, in σK = [σ1, σ2, σ3]′ and ℓK = [ℓ1, ℓ2, ℓ3]′.

There are also more flexible alternatives for tying up together the Vjs and specify-

ing the covariance of V , that is K, see for example Alvarez et al. (2012) for a survey

of several methods. These include the intrinsic coregionalisation model, the semipara-

metric latent factor model and the linear model of coregionalisation, among others.

Choosing between such models involves considering trade-offs between flexibility,

computational cost and interpretability. Here we adopt (3.7) as a convenient starting

point for DTSMs. Consequently, such a single input GP with multiple inputs is then

equivalent to multiple independent single input GP s with a single output.

Next, using standard properties of Gaussian Processes we can proceed to obtain

the conditional distribution of V given S, the marginal distribution of S, by inte-

grating out V from (3.6), and the predictive distribution of sT +1, and consequently

that of PT +1, given all the data up to time T including MT . For reasons mentioned

in Section 3.4.2, in this chapter we focus on one-step-ahead predictions. To start

with, the marginal distribution of S, which nota bene stands behind the P-dynamics

of Pt, is following

S ∼ N (03T ×1, K + ΣPΣ′
P ⊗ IT ) (3.8)

To obtain conditional distribution of V given S we observe that joint distribution of

V and S is  V

S

 ∼ N


 03T ×1

03T ×1

 ,

 K K

K KP




where for clarity of further exposition we defined

KP = K + ΣPΣ′
P ⊗ IT (3.9)
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Then, by the multivariate normal regression lemma, we get

V |S ∼ N
(
KK−1

P S, K − KK−1
P K

)

To arrive at the predictive distribution of sT +1, we first derive the joint distribution

of sT +1 and S, using all available macro data, that is M0:T . Given the assumption

about dependence between Vjs, as it is made in (3.7), we first note that for t = 1, . . . , T

Cov(st, sT +1) =


kℓ1,σ2

1
(Mt−1, MT ) 0 0

0 kℓ2,σ2
2
(Mt−1, MT ) 0

0 0 kℓ3,σ2
3
(Mt−1, MT )



Further, for j = 1, 2, 3, we let

kj
T +1 = [kℓj ,σ2

j
(M0, MT ), ..., kℓj ,σ2

j
(MT −1, MT )]′

to eventually observe that joint distribution of sT +1 and S is as follows

 sT +1

S

 ∼ N


 03×1

03T ×1

 ,

 k0
T +1 + ΣPΣ′

P k′
T +1

kT +1 KP




where k0
T +1 and kT +1 which are (3 × 3) and (3T × 3) matrices, respectively, are

specified as

k0
T +1 =


kℓ1,σ2

1
(MT , MT ) 0 0

0 kℓ2,σ2
2
(MT , MT ) 0

0 0 kℓ3,σ2
3
(MT , MT )

 (3.10)
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and

kT +1 =


k1

T +1 0T ×1 0T ×1

0T ×1 k2
T +1 0T ×1

0T ×1 0T ×1 k3
T +1

 (3.11)

Then, again by the multivariate normal regression lemma, we get the predictive

distribution of sT +1 given all the data up to time T including MT

sT +1|S, M0:T ∼ N
(
k′

T +1K
−1
P S, k0

T +1 + ΣPΣ′
P − k′

T +1K
−1
P kT +1

)

what translates into the corresponding predictive distribution of PT +1 as follows

PT +1|PT , S, M0:T ∼ N
(
µP

P + ΦP
PPT + k′

T +1K
−1
P S, k0

T +1 + ΣPΣ′
P − k′

T +1K
−1
P kT +1

)

3.3.3 Likelihood and Risk Price Restrictions

Statistical inference can be performed using the observations Y = {yt, Pt : t =

0, 1, . . . , T} and M = {Mt : t = 0, 1, . . . , T − 1}. The likelihood factorizes into two

parts stemming from the P and Q respectively. For N observable factors, the joint

likelihood (conditional on the initial point P0) can now be written as

f(Y |M, θ, σ̂K) =
{∏T

t=0 fQ(yt|Pt, kQ
∞, gQ, ΣP , σ2

e)
}

×{∏T
t=1 fP(Pt|Pt−1, Mt−1, kQ

∞, gQ, λ0P , λ1P , ΣP , ℓK , σ̂K)
} (3.12)

where the Q-likelihood components fQ(·) are given by (1.11) and capture the cross-

sectional dynamics of the risk factors and the yields, whereas P-likelihood components

fP(·) are obtained from (3.14) below and capture the time-series dynamics of the

observed risk factors. The parameter vector is set to θ = (σ2
e , kQ

∞, gQ, λ0P , λ1P , ΣP , ℓK)

and we tune σK in-sample to fix it out-of-sample at σ̂K . Details of the tuning

procedure are in Appendix 3.D.
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For brevity of further exposition, we let λP = [λ0P , λ1P ] and λ = λ1P . If all the

entries in λP are free parameters we get the maximally flexible model (model M0 in

this chapter). Alternative specifications, with some of these entries set to zero, have

been proposed in the literature. For details, see the associated discussion with related

references in Section 1.1.1. Overall, in most models the set of unrestricted parameters

is usually a subset of λP . In this chapter we use restriction set with optimal model

performance, in particular with respect to economic value, as evidenced in Section

1.5.3. It is also the same restriction set as in Section 2.2.3, for reasons mentioned

therein. Namely, we only leave λ1,2 unrestricted, as it is in model M1, here and in

the other chapters.

Consequently, the likelihood specification of (3.12) can now be restated as

f(Y |M, θ, σ̂K) =
{∏T

t=0 fQ(yt|Pt, kQ
∞, gQ, ΣP , σ2

e)
}

×{∏T
t=1 fP(Pt|Pt−1, Mt−1, kQ

∞, gQ, ΣP , ℓK , λ1,2, σ̂K)
} (3.13)

where θ = (σ2
e , kQ

∞, gQ, ΣP , ℓK , λ1,2) is revised accordingly. To obtain P-likelihood

components fP(·) above, we resort to Gaussian Process formulation established so

far, and exploit the associated marginal distribution of S in (3.8), together with (3.9),

to eventually arrive at the standard log-likelihood representation of
{∏T

t=1 fP(·)
}

in

(3.13), namely

log
{

T∏
t=1

fP(·)
}

= −TN

2 log 2π − 1
2 log |KP | − 1

2∥K
− 1

2
P S∥2 (3.14)

where | · | is matrix determinant and ∥ · ∥2 denotes Euclidean norm squared.
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3.4 Sequential Estimation, Learning, and Forecast-

ing

In this section we develop a sequential Monte Carlo (SMC) framework for Gaussian

DTSMs with unspanned nonlinear macros. We draw from the work of Chopin (2002,

2004) (see also Del Moral et al. (2006)) and make the necessary adaptations to tailor

the methodology to the data and models considered in this chapter. Furthermore,

we extend the framework to allow for sequential Bayesian treatment of exogenous

macroeconomic information both in a nonlinear and in a linear manner. The former

using Gaussian Processes. Overall, the developed framework allows the efficient

performance of tasks such as sequential parameter estimation and forecasting. We

begin by providing the main skeleton of the scheme and then explain the details of

its specific parts, such as the MCMC scheme including Gaussian Processes, and the

framework for obtaining and evaluating the economic value of forecasts.

3.4.1 Sequential Framework with Gaussian Processes

Let Y0:t = (Y0, Y1 . . . , Yt) denote all bond related data available up to time t, such

that Y0:T = Y , and M0:t−1 = (M0, M1 . . . , Mt−1) denote all macro data available up

to time t − 1, such that M0:T −1 = M . Similarly, the likelihood based on data up

to time t is f(Y0:t|M0:t−1, θ, σ̂K) and is defined in (3.12). Combined with a prior on

the parameters π(θ), see the Appendix 3.A for details, it yields the corresponding

posterior

π(θ|Y0:t, M0:t−1, σ̂K) = 1
m(Y0:t|M0:t−1, σ̂K)f(Y0:t|M0:t−1, θ, σ̂K)π(θ) (3.15)

where m(Y0:t|M0:t−1, σ̂K) is the model evidence based on data up to time t. Moreover,

the posterior predictive distribution, which is the main tool for Bayesian forecasting,
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is defined as

f(Yt+h|Y0:t, M0:t, σ̂K) =
∫

f(Yt+h|Y0:t, M0:t, θ, σ̂K)π(θ|Y0:t, M0:t−1, σ̂K)dθ (3.16)

where h is the prediction horizon. As explained further, in Section 3.4.2, in this

chapter we focus on h = 1. Due to the Gaussian Process formulation, predictions

depend computationally on all available data, what is reflected by conditioning on

Y0:t and M0:t in the first term under the integral in (3.16). In theory, it is a potential

issue as computational cost of deriving the predictive distribution grows fast. In

particular, as new data arrives it becomes more costly to invert covariance matrix in

(3.9). However, given that time series we consider are relatively short, computational

time is far from prohibitive. Therefore, it is not a practical concern.

Note also that the predictive distribution in (3.16) incorporates parameter uncer-

tainty by integrating θ out according to the posterior in (3.15). Usually, prediction

is carried out by expectations with respect to (3.16), e.g. E(Yt+h|Y0:t, M0:t, σ̂K) but,

since (3.16) is usually not available in closed form, Monte Carlo can be applied in the

presence of samples from π(θ|Y0:t, M0:t−1, σ̂K). This process may facilitate various

forecasting tasks, however the procedures can be quite intensive and in some cases

not doable, see Section 1.3.1 for details.

Another approach that can also handle forecasting assessment tasks is to use

sequential Monte Carlo (see, Chopin (2002) and Del Moral et al. (2006)) to sample

from the sequence of distributions π(θ|Y0:t, M0:t−1, σ̂K) for t = 0, 1, . . . , T . A general

overview of the Iterated Batch Importance Sampling (IBIS) scheme of Chopin (2002),

see also Del Moral et al. (2006) for a more general framework, is provided in Algorithm

3.1. The degeneracy criterion is typically defined through the Effective Sample Size

(ESS) which is specified in (1.21).

The IBIS algorithm provides a set of weighted θ samples, called also particles,

that can be used to compute expectations with respect to the posterior distribu-
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Algorithm 3.1 IBIS algorithm for Gaussian Affine Term Structure Models with
unspanned nonlinear macros
Initialize Nθ particles by drawing independently θi ∼ π(θ) with importance weights ωi = 1,
i = 1, . . . , Nθ. For t, . . . , T and each time for all i:

(a) Calculate the incremental weights from

ut(θi, Y0:t−1, M0:t−1) = f(Yt|Y0:t−1, M0:t−1, θi, σ̂K)

where the Gaussian Process formulation makes them computationally dependant on
all available data, what is reflected by conditioning on Y0:t−1 and M0:t−1.

(b) Update the importance weights ωi to ωiut(θi, Y0:t−1, M0:t−1).

(c) If some degeneracy criterion (e.g. ESS(ω)) is triggered, perform the following two
sub-steps:

(i) Resampling: Sample with replacement Nθ times from the set of θis according
to their weights ωi. The weights are then reset to one.

(ii) Jittering: Replace θis with θ̃is by running MCMC chains with each θi as input
and θ̃i as output. Set θi = θ̃i.

tion, E[g(θ)|Y0:t, M0:t−1, σ̂K ], for all t using the estimator ∑i[ωig(θi)]/
∑

i ωi. The

same holds for expectations with respect to the posterior predictive distribution,

f(Yt+h|Y0:t, M0:t, σ̂K); the weighted θ samples can be conveniently transformed into

weighted samples from f(Yt+h|Y0:t, M0:t, σ̂K) by just applying f(Yt+h|Y0:t, M0:t, θ, σ̂K).

A very useful by-product of the IBIS algorithm is the ability to compute

m(Y0:t|M0:t−1, σ̂K) = f(Y0:t|M0:t−1, σ̂K)

which is the criterion for conducting formal Bayesian model choice. Computing the

following quantity in step (a) in Algorithm 3.1 yields a consistent and asymptotically

normal estimator of f(Yt|Y0:t−1, M0:t−1, σ̂K), namely

mt = 1∑Nθ
i=1 ωi

Nθ∑
i=1

ωiut(θi, Y0:t−1, M0:t−1)

Additional characteristics of IBIS are mentioned in Section 1.3.1.
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So as to apply the IBIS output to models and data in this chapter, the following

adaptations and extensions are carried out. Similar to Section 1.3.1, and pursuing

motivation therein, we pool together the advantages of data tempering and adaptive

tempering (Jasra et al., 2011; Schäfer and Chopin, 2013; Kantas et al., 2014) in a

hybrid adaptive tempering scheme which we outline in Appendix 3.C. Because the

MCMC algorithm used here is an extended version of Bauer (2018) and so it consists

of independence samplers that are known to be unstable, we exploit the IBIS output

and estimate posterior moments to arrive at independence sampler proposals; see

Appendix 3.B for details, and Section 1.3.1 for additional rationale. Under such

amended framework, and quite crucially in this chapter, we extend the framework

presented in Sections 3.3.2 and 3.3.3 to handle Gaussian Processes sequentially. In

the end, we apply IBIS output in the optimization of a model-driven dynamically

rebalanced portfolio of bond excess returns and inspect its economic value, following

Section 1.3.3.2.

In empirical work, we use Nθ = 2000 particles, 5 MCMC steps when jittering,

and with regards to minimum ESS we set α = 0.7. The choice of 5 steps at the

jittering stage is led by quite well mixing behaviour of the underlying MCMC. We

monitored the correlation between particles before and after that stage to realize

that performance was already reasonable with this number of iterations.

3.4.2 Assessing Predictive Performance and Economic Value

Leveraging the evaluation framework summarized in this section, we seek to un-

derstand whether macroeconomic information introduced into Gaussian ATSMs in

a nonlinear manner using Gaussian Processes lets us predict excess returns better

than when macros enter these models linearly. Furthermore, we attempt to explore

whether such statistical predictability, if any, can be turned into consistent economic

benefits for bond investors.

135



As explained further in Section 3.5.1, we use lagged macro data at monthly

frequency. Given the limitations to availability of macroeconomic information going

forward and its exogenous and not endogenous nature we assume in this chapter,

which prevents us from associated forecasting further than a month ahead, we

concentrate on 1-month prediction horizon. Thus, we refrain from making any

assumptions about forward paths of the underlying macros. Consequently, returns

we consider in our analysis are non-overlapping.

Along the lines of Section 1.3.3.1, yet with h = 1 in mind, we define the observed

continuously compounded excess return of an n-year bond as the difference between

the holding period return of the n-year bond and the h-period yield as

rxn
t,t+h = −(n − h)yn−h

t+h + nyn
t − hyh

t

If, instead of taking the observed one, we take the model-implied continuously

compounded yield yn
t , calculated according to (1.8), we arrive at the predicted excess

return r̃xn
t,t+h which becomes

r̃xn
t,t+h = An−h,P − An,P + Ah,P + B′

n−h,PP̃t+h − (Bn,P − Bh,P)′Pt (3.17)

where Pt is observed and P̃t+h is a prediction from the model. Our developed

framework, see Algorithm 3.1, allows drawing from the predictive distribution of

(P̃t+h, r̃xn
t,t+h) based on all information available up to time t. More specifically, for

each θi particle the P-dynamics of Pt can be used to obtain a particle of P̃t+h, which

then can be transformed into a particle of r̃xn
t,t+h via equation (3.17). Detailed steps

are outlined in Algorithm 3.2.

To assess the predictive ability of the models considered, we compute the associ-

ated out-of-sample R2 (R2
os), due to Campbell and Thompson (2008). To measure

the resulting economic value generated by each model, we consider a Bayesian in-

vestor with power utility preferences. Our Bayesian learner solves an asset allocation
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Algorithm 3.2 Predictive distribution of excess returns for Gaussian Affine Term
Structure Models with unspanned nonlinear macros
First, at time t, for some n and h = 1, using (ωi, θi), i = 1, ..., Nθ, from IBIS algorithm,
iterate over i:

(a) Given θi, compute Ai1,P and Bi1,P , for i1 ∈ {1, n − 1, n}, from (1.9) and (1.10).

(b) Given θi, obtain prediction of Pt+1 by drawing from

P̃(i)
t+1|Pt, S, M0:t ∼ N

(
µP

P + ΦP
PPt + k′

t+1K−1
P S, k0

t+1 + ΣPΣ′
P − k′

t+1K−1
P kt+1

)
where S, KP , k0

t+1 and kt+1 are defined in (3.5), (3.9), (3.10) and (3.11),
respectively, and except for S they all depend on σ̂K .

(c) Compute particle prediction of rxn
t,t+1 as

r̃x
n(i)
t,t+1 = An−1,P − An,P + A1,P + B′

n−1,P P̃(i)
t+1 − (Bn,P − B1,P)′Pt

Second, since (ωi, P̃(i)
t+1, r̃x

n(i)
t,t+1), i = 1, ..., Nθ, is a particle approximation to predictive

distribution of (Pt+1, rxn
t,t+1), compute point prediction of rxn

t,t+1 using particle weights ωi

as

r̃xn
t,t+1 = 1∑Nθ

i=1 ωi

Nθ∑
i=1

ωir̃x
n(i)
t,t+1

Third, repeat above two steps for different n.

problem getting optimal portfolio weights which we use to compute the CER as

in Johannes et al. (2014) and Gargano et al. (2019). To that end, we follow the

exposition in Section 2.3.2, where we refer the reader for further details. Similar to

the latter chapter, we adopt the Expectations Hypothesis (EH) as initial empirical

benchmark, however instead of then looking at the performance relative to model

M1 (see, Chapter 1), we compare the nonlinear with the corresponding linear models.

Again, we only focus on a 1-month prediction horizon (h = 1).

3.5 Data and Models

In this section we discuss the data used in the chapter. We also explain what models

we consider, as distinguished by different positions unspanned, nonlinear or linear,

macros take in the given model. Eventually, we describe how we use risk premium
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factor, rationale behind which is provided in Duffee (2011), to inspect whether

information coming from macroeconomic variables we consider, in particular their

components which are hidden from the yield curve, is de facto nonlinear in nature.

3.5.1 Yields and Macros

In terms of bond yields, we analyze the same data as these described in Section 2.4.1,

splitting them in the same training (in-sample) and testing (out-of-sample) periods,

thus for further details we refer the reader therein.

In terms of macroeconomic information about the US, we consider two variables

which are well covered in the literature. These include, core2 inflation (CPI) as in

Cieslak and Povala (2015), as well as the three-month moving average of the Chicago

Fed National Activity Index (GRO) from Joslin et al. (2014), which is a measure of

current economic conditions. Together they offer parsimonious yet comprehensive

enough, for our purposes, description of the US economy. Both macro variables are

at a monthly frequency. They are also seasonally adjusted and revised. Unlike GRO,

which is a smoothed index in levels, CPI is in percent changes from year ago. The

underlying data period is such that it corresponds to this for yields, as discussed

above, and also reflects the lagged character assumed for the macros in all models

we consider in this chapter. Importantly, we standardize the macros only in the

nonlinear case and, to that end, we use individual means and standard deviations

calculated in-sample for the out-of-sample operations, to avoid look-ahead bias.

3.5.2 Models and Rationale Behind

In terms of models, we consider several alternatives when it comes to positions the

unspanned, nonlinear or linear, macros take in the given model. More specifically, in
2In contrast to Cieslak and Povala (2015), who devise trend inflation by appropriately smoothing

core inflation, we use the latter as is to arrive at our own, nonlinear function thereof.
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the nonlinear case these are

GPijk(M) i, j, k ∈ {0, 1} (3.18)

and for the linear model we replace GP with LM in this notation. In the above,

M refers to a specific macroeconomic variable, CPI or GRO, introduced in the

particular model. For example, for i = 0 and j = k = 1, that is GP011(M), index

011 means that macroeconomic impact is allowed in the second and third equation

in (3.1), under the assumption that N = 3, G = 2 and R = 1. We only investigate

a subset of the available alternative models in greater detail. Investigating and

determining which macros, beyond the two included in our analysis, represent best

match for specific PCs of the US yield curve, when interacting with the latter in a

nonlinear or linear manner, is left for future research.

As result of risk price restrictions (on λP) we adopt in this chapter from Section

1.4.2, without loss of generality for i = j = k = 1 in (3.18), we define the risk

premium factor as

RP V
t (Mt−1) = λPt + v(Mt−1) =


λ1,2P2,t + v(1)(Mt−1)

v(2)(Mt−1)

v(3)(Mt−1)

 (3.19)

where the first element is similar to Duffee (2011), however in our case its time-

varying component, RPt = λ1,2P2,t, is a restricted version (only λ1,2 is free) of the

risk premium factor defined in Duffee’s paper. The component v(1)(Mt−1) is in

that particular case the first element of the unspanned nonlinear macro v(Mt−1). If
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instead i = 0 and j = k = 1 in (3.18), then

RP V
t (Mt−1) =


λ1,2P2,t

v(2)(Mt−1)

v(3)(Mt−1)



where the first element, which is related to level risk, equals RPt and is also equivalent

to the corresponding factor in model M1 (see, Chapter 1) we adopt risk price

restrictions from.

Following from Duffee (2011), the time-varying risk premium factor RPt, which in

the case therein is a linear combination of the state vector obtained from model shocks

to yields, determines the compensation investors require to face fixed-income risk

from t to t + 1 and it contains all information relevant to predicting one-step-ahead,

yet not h-step-ahead for h > 1, excess returns. We instead assume that investors

require compensation for level risk stemming from changes to slope only. However,

the term v(Mt−1) in (3.19), which is a priori unspanned and potentially nonlinear

function (v) of the underlying macroeconomic variable (M), affects this compensation.

It is important to understand if this impact is not distorting information relevant

to predicting excess returns, already available from RPt alone. One way to achieve

this goal is to perform predictability and economic value exercises for the models

considered and make appropriate comparisons. Thus, we do so in Section 3.6.

Different from Duffee (2011), we obtain the state vector from observed yields

directly. Nevertheless, for i, j, k ∈ {0, 1} in (3.18), we are able to similarly define

the hidden part of the risk premium factor, as the part unspanned by Pt, in the

following way

R̃P
V

t (Mt−1) = RP V
t (Mt−1) − E

[
RP V

t (Mt−1)|Pt

]
= v(Mt−1) − E[v(Mt−1)|Pt]
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where E[v(Mt−1)|Pt] is the projection of unspanned nonlinear macros on principal

components obtained from observed yields, which is thus spanned by these PCs and

as such not hidden from the yield curve. After Duffee (2011), the hidden R̃P
V

t (Mt−1)

can be estimated as residual from a regression of the former on the latter and

expressed as

R̃P
V

t (Mt−1) ≡ v(Mt−1) − a − b′Pt (3.20)

where we take v(Mt−1) as the mean from its posterior distribution and a and b are

the underlying Ordinary Least Squares parameter estimates. We also note that

E[v(Mt−1)|Pt] = a + b′Pt

and, by rearranging terms in (3.20), arrive at the following decomposition

v(Mt−1) ≡ E[v(Mt−1)|Pt] + R̃P
V

t (Mt−1) (3.21)

of unspanned nonlinear macros v(Mt−1) into two orthogonal components. While the

first, E[v(Mt−1)|Pt], which is an affine transformation of the PCs, is by definition

not hidden from the yield curve, the second, R̃P
V

t (Mt−1), duly is.

Then we can examine to what extent v(Mt−1) assumed nonlinear a priori is

actually such a posteriori. More importantly, however, we investigate whether the

same can be stated about its hidden component R̃P
V

t (Mt−1). To that end, we

separately regress these, as well as E[v(Mt−1)|Pt], on the underlying macroeconomic

variable Mt−1 and inspect the resulting explanatory powers behind such linear

associations, see Section 3.6.3 for related discussion. By doing so, we can determine

whether there is any connection especially between the hidden component of the

risk premium factor being nonlinear and the predictability of and economic benefits

from nonlinear models we consider in this chapter. In what follows, we eventually
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demonstrate that, when the latter outperform the linear ones on these two important

fronts, this is indeed the case.

3.6 Empirical Results

The focus of this section is to present the main results on the statistical and economic

performance of excess return forecasts resulting from the models we develop in

this chapter. In particular, we assess the models based on different number of

GP outputs involving various macros and, more importantly, their position in this

part of the model which is governing the real-world dynamics of yields’ PCs. We

also investigate whether puzzling behavior between statistical predictability and

out-of-sample economic gains for bond investors, as it is usually observed in case

of yields-only models, still emerges when unspanned macroeconomic information

is incorporated, especially in a nonlinear manner. To that end, we inspect the

associated explanatory power, where applicable.

In order to better understand the role nonlinearities play when it comes to model

performance, we also compare these nonlinear models with their linear counterparts,

and as such provide statistical evidence that they matter. In what follows, we

refrain from evaluating the relevance of particular macroeconomic variables, let alone

the importance of their position in the P-dynamics, for these performance results.

We consider that as an interesting path for future research, especially when wider

spectrum of information about the economy is taken into account.

Finally, we decompose the risk premium factor into a part which is hidden from

the yield curve and a part which is spanned by the underlying principal components.

Then, leveraging decomposition in (3.21), we individually regress elements thereof on

the corresponding macroeconomic variable to show that, when especially the hidden

component of the risk premium factor is nonlinear, using DTSMs with Gaussian
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Processes, as in this chapter, is more beneficial in terms of predictability and economic

value than relying on the linear benchmarks.

3.6.1 Uncovering Nonlinearities

The data contain an important economic event and thus it is interesting to have a

look at the plots of individual elements in v(Mt−1) against Mt−1, for CPI and GRO,

to see how it affects our analysis. These plots are generated from the IBIS output,

as described in Section 3.4.1 and further in Appendix 3.C. In particular, data cover

the financial crisis of 2008-2009. For related discussion, yet focused on principal

components as opposed to nonlinear macros, see Section 1.5.1. In what follows, we

only concentrate on models GP110(CPI) and GP011(GRO), which we also focus on

in Section 3.6.3, for specific reasons mentioned therein.

By inspecting the plots for model GP110(CPI), which are shown in Figure 3.1,

we observe that CPI interacts with the yield curve in a nonlinear rather than linear

manner. This is particularly the case when we look at panels on the right hand

side of this figure. In there, distributions of v(1)(CPIt−1) and v(2)(CPIt−1) plotted

against CPIt−1 are estimated using the entire sample of data, including the recession

period. Comparing these two panels with their counterparts on the left hand side

in the same figure, which are based on data from the training period only and thus

preclude the recession, we notice that the nonlinear relationship between CPI and

the yield curve strengthens in time.

Next, we have a careful look at GRO, where things are quite different. In Figure

3.2, with associated plots for model GP011(GRO), we observe that GRO interacts

with the yield curve more in a linear than in a nonlinear manner. It is particularly

evident when inspecting the top panel in this figure, which shows the distribution

of v(2)(GROt−1) plotted against GROt−1. The vast majority of data points in the

training period, that is on the left hand side, are located in the part of the graph

where the association is linear. The remaining data points constitute the outliers. On
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the right hand side, that is when the entire data sample is used, the part of the graph

which is linear is accompanied by even more outliers. With hindsight, economic

activity is heavily affected by outliers due to recession, what can also be noticed by

comparing the horizontal axes in these plots between the left and the right hand

side panels. Although the functional association of lagged GRO with the yield curve

shown in the top panel deteriorates only slightly in time, this presented in the bottom

panel for v(3)(GROt−1) dilutes completely when the entire data sample is involved.

Likely, the latter changes in the post-recession period, while the model assumes it is

the same, what makes the forecasting exercise we conduct quite challenging but at

the same time more realistic.

3.6.2 Bond Return Predictability and Economic Performance

In this section we present and discuss the results on bond return predictability and

the associated economic performance of our nonlinear, and also linear, models, as

it is showcased in Section 3.4.2. Where insightful, we also link these outcomes to

the explanatory power behind the observed (linear) and the estimated (nonlinear)

macros, where selected results are shown in Tables 3.1 and 3.2.

3.6.2.1 Predictive Performance

In what follows, we focus on statistical performance. Table 3.3 reports out-of sample

R2 values for all linear (including M0, the maximally flexible model, and M1, see

Chapter 1) and nonlinear models across different bond maturities and at 1-month

prediction horizon. The latter means that we only consider non-overlapping excess

bond returns. The in-sample (training) period is from January 1985 to the end

of 2007 and the out-of-sample (testing) period is from January 2008 to the end

of 2018. The latter practically begins with the 2008-2009 financial crisis. Overall,

results indicate, as expected and in line with the existing literature (Duffee, 2011;

Joslin et al., 2014; Fulop et al., 2019), that models which incorporate macroeconomic
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information, irrespective of whether in a linear or nonlinear manner, predict well and

perform better out-of-sample compared to the EH benchmark, as well as when set

against yields-only models. This is confirmed by predictive R2
os that are exclusively

positive and statistically significant for CPI, across all maturities, and mostly

positive and statistically significant for GRO, especially for the short and medium

term maturities. Across maturities, they range from 0.02 to 0.06 for CPI, whereas

for GRO the positive and statistically significant R2
os are between 0.02 to 0.05.

Generally, models with macroeconomic variables perform better, in terms of out-

of-sample statistical performance, than the yields-only models we consider, namely

M0 and M1. However, there are four notable exceptions in case of GRO, where R2
os

are practically close to zero. These are linear and nonlinear models with indices

111 and 110, which either perform as unsatisfactorily as M1 (GP111) or worse, and

as such similar to M0 (LM111, LM110 and GP110). What they interestingly have

in common is that, in these models macroeconomic information interacts with the

yield curve through the observed level, meaning that it is included in the equation

governing the real-world dynamics of the first PC. This deterioration in statistical

performance translates further into correspondingly poor economic value results,

especially for linear models, what we discuss in the next section.

Selected results on explanatory power for the nonlinear models with GRO specifi-

cally listed above, which are presented in Table 3.2 (see fourth panel) for model GP111,

reveal that, contrary to the out-of-sample statistical performance results, there are

statistically significant benefits from including v(1)(GROt−1) when explaining the

variability of excess bond returns. It is particularly evident when compared to what

we observe for the corresponding nonlinear function of lagged CPI. For GRO, such

gains decrease at longer maturities and range from 2.91% at 2-year, through 2.17% at

5-year, to 0.34% at 10-year maturity. For CPI, these gains are considerably smaller

and amount to about 0.60% throughout 2- to 5-year maturities. Related results in

Table 3.1 confirm that similar is true in the linear case. Namely, explanatory power
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gains for GRO, albeit smaller than in the nonlinear case, range from 1.95% at 2-year

to 0.56% at 4-year maturity, yet occur only at the short end of the yield curve. Those

for CPI are in this case practically negligible. Corresponding results on explanatory

power for model GP110 are quantitatively and qualitatively alike, thus not shown.

The latter also applies to such results for all models with indices 011, 010 and 001.

One possible rationale behind the above argument is that GRO, the economic

activity, varies more profoundly than CPI, the prices, in the aftermath of the 2008-

2009 financial crisis, that is throughout the testing sample. Let us compare the

horizontal axes on the left with those on the right hand side in the plots shown

in Figures 3.1 and 3.2. In Figure 3.1, CPIt−1 is approximately between −2 and

2.5 over 1985-2007 and from −2.5 to 2.5 over 1985-2017. In Figure 3.2, GROt−1 is

approximately between −4 and 2 over 1985-2007 and from −10 to 2 over 1985-2017.

Importantly, both variables are standardized over 1985-2017 based on their respective

means and standard deviations computed over 1985-2007. Thus, throughout 1985-

2017 the variation of CPI hardly moves relative to what happens for GRO, which

becomes evidently negatively skewed as result of such adverse economic conditions.

On the other hand, these abnormal changes in GRO serve explaining the variability

of excess bond returns in these turbulent times well, what is also a sign of possible

overfitting.

Nevertheless, if the underlying index does begin with 1 not 0 then these nonlinear

models with GRO we specifically mention above, with indices 111 and 110, tend to

significantly improve out-of-sample statistical performance results when compared

to linear benchmarks, see Table 3.4. As such, they reduce the risk associated with

out-of-sample predictions based on macroeconomic variables which become negatively

skewed in times of economic/financial crises. Interestingly, similar improvements

occur for CPI in the specific case of nonlinear model with index 110.
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3.6.2.2 Economic Value

In what comes next, we concentrate on model performance in terms of economic

value. Table 3.5 reports results for the annualized CERs, calculated using out-of-

sample forecasts of bond excess returns across maturities and at 1-month prediction

horizon. The in-sample and out-of-sample periods are the same as in the case of

predictive performance. The coefficient of relative risk aversion is chosen to be

γ = 3 and we do not impose any portfolio constraints3. We find that, in most

cases, corresponding CERs are positive and non-negligible, indicating that DTSMs

with unspanned macroeconomic information, introduced in the model in a linear or

nonlinear way, not only perform well and in a statistically significant manner when

it comes to out-of-sample predictability but also generate economic gains for bond

investors relative to the EH benchmark.

For the linear case, this is in line with the existing literature, as numerous

studies show (Duffee, 2011; Joslin et al., 2014; Fulop et al., 2019), whereas in case

of nonlinear models only recently Bianchi et al. (2021), albeit in a regression and

not in a no-arbitrage setting, show that forecasts based on neural networks fed with

macroeconomic and yield information jointly, translate into economic gains that

are larger than those obtained using yields alone. In line with all that, yields-only

DTSMs we are concerned with in this chapter, that is M0 and M1, perform evidently

worse in terms of economic value than models with macroeconomic information

(see, Table 3.5). This is also consistent with their relatively inferior out-of-sample

statistical performance, which we discuss in the previous section.

In case of CPI results show clear evidence of positive out-of-sample economic

benefits for bond investors from introducing information about prices in the model.

This is the case across most maturities (especially at 2-, 3- and 7-year) and in

particular when CPI is introduced in a nonlinear manner. CERs for linear models
3These non-conservative choices are motivated by early exploratory character of the analysis

conducted herein. The goal is to find economic value first and in future research examine if it can
be exploited when stricter conditions apply.
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with CPI are not even comparably as statistically significant as the former. For

example, in case of GP010 they are statistically significant at all maturities and range

from 3.67% (at 5-year) to 4.94% (at 7-year). In relation to GRO such evidence is

less pronounced and results are only statistically significant for selected maturities

and for linear and nonlinear models with indices 011 and 010 (at 3-, 4- and 7-year, in

both cases), as well as 001 (all maturities but 5-year). The outcome is most positive

in this last case and, when statistically significant, CERs for linear and nonlinear

models with index 001 range from 3.37% (at 3-year, for the linear setup) to 4.55%

(at 7-year, for the nonlinear setup).

When comparing nonlinear models with their linear counterparts, only in case

of CPI the former perform significantly better than the latter (see, Table 3.6).

For GP110, GP010 and GP001 we observe positive and non-negligible CER values

across most maturities, in particular at 2- to 5-year. If statistically significant, they

span between 1.88% and 3.78% relative to the linear benchmarks. For GRO, where

results are overall worse compared to those for CPI, we are not able to identify

meaningful, statistically significant cases where nonlinear models outperform their

linear benchmarks in terms for economic value. In the next section we provide some

rationale why and when it might be so.

Overall, out-of-sample economic value results are consistent with those for predic-

tive performance which we discuss in the previous section. As such, based on results

presented in this chapter the puzzling behavior between statistical predictability and

out-of-sample economic gains for bond investors cannot be unequivocally confirmed

for DTSMs utilizing macroeconomic information, especially in a nonlinear manner.

It is also important to note that considerable and statistically significant explanatory

power gains (see, Tables 3.1 and 3.2), especially from macroeconomic variables which

are prone to outliers like GRO, not necessarily translate into corresponding economic

performance out-of-sample. Even to the contrary, they may lead to significant losses,

especially when economic conditions are changing. It is particularly the case for
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linear models with indices 111 and 110 (see, Table 3.5). However, nonlinear models

may help cut such losses, e.g. by handling outliers better. In some cases, like for

CPI (GP110, GP010 and GP001), they perform consistently better out-of-sample than

their linear counterparts in terms of economic value (see, Table 3.6).

3.6.3 Benefiting from Hidden Nonlinearities

In this section we shed some light on why and when certain nonlinear models we

consider in this chapter (with macroeconomic variables like CPI) outperform their

linear counterparts in terms of economic value, whereas other (with macros such as

GRO) do not. To that end, we resort to the results obtained from risk premium

factor decomposition, as described in Section 3.5.2, which are presented in Tables

3.7 and 3.8. For pragmatic reasons, related to the tuning procedure (see, Appendix

3.D) which is not always optimal and as such affects the way certain aspects of this

decomposition can be effectively demonstrated graphically, in what follows we focus

on two particular models. Namely, GP110(CPI) and GP011(GRO).

We choose these two models for several reasons. First, both linear and nonlinear

models with CPI and index 110 perform well in terms of out-of-sample predictability,

however the nonlinear model performs significantly better across maturities than

its linear counterpart - with R2
os ranging from 0.04 to 0.06 against 0.02 and 0.03 for

the linear model (see, Table 3.3). Second, both linear and nonlinear models with

GRO and index 011 perform fairly well across most maturities when it comes to

out-of-sample predictability - with statistically significant R2
os ranging from 0.02

and 0.05 for both cases. Third, while nonlinear model with CPI does significantly

better in terms of out-of-sample economic performance than its linear counterpart -

with relative CER ranging from 2.55% to 3.35% across maturities when statistically

significant - it is almost entirely the opposite case for the GRO. There, relative CER

are not statistically significant and vary between −3.05% and 1.59% (see, Table 3.6).

This is precisely what we are after to facilitate the argumentation which follows.
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Knowing what we summarised above, we now resort to decomposition in (3.20) of

nonlinear macro v(Mt−1) into a part about which complete information is contained

in the yield curve, that is E[v(Mt−1)|Pt], and a part which is entirely hidden, that is

R̃P
V

t (Mt−1). We regress individually each of these components on the underlying

macro Mt−1 in order to determine the degree to which the resulting relationship is

linear, as measured by the associated adjusted R2. Tables 3.7 and 3.8 contain such

results for GP110(CPI) and GP011(GRO), respectively. They include related results

for all the other models as well, however our focus on these two remains unchanged.

Beginning with CPI, in the third panel of Table 3.7 we notice that for model

GP110(CPI) both v(1)(CPIt−1) and its part which is not hidden from the yield curve

are to large extent linear functions of CPIt−1, as measured by R̄2 that are equal to

0.73 and 0.70, respectively. At the same time the hidden part, that is R̃P
V

1,t(CPIt−1),

is hardly in a linear relationship with CPIt−1, as indicated by a very low value of R̄2

equal to 0.09 only. It is similar in case of v(2)(CPIt−1) where these metrics amount

to 0.32, 0.67 and practically 0.00, in that order. Hidden parts of v(CPIt−1) in model

GP110(CPI) are thus nonlinear functions of the underlying macroeconomic variable,

namely CPIt−1. To realize that it is indeed so, it is sufficient to have a brief look

at Figure 3.3. Therein, we see clearly that functional associations between these

hidden parts and lagged CPI are highly nonlinear, stable or become even more

pronounced (left versus right hand side). At this point it is safe to state that in

this particular case there is a fair reason behind superiority of the nonlinear model,

which is implemented using GP s in this chapter, over its linear counterpart. Namely,

unspanned information coming from CPI, which is hidden from the yield curve yet

it affects its P-dynamics, is evidently nonlinear in nature.

Ending with GRO, in the first panel of Table 3.8 we observe that, for model

GP011(GRO), both v(2)(GROt−1) and its part which is not hidden from the yield

curve are to considerable and to moderate extent, respectively, linear functions of

GROt−1, as measured by R̄2 that are equal to 0.50 and 0.17. What is however
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different from the case of CPI is that the hidden part, namely R̃P
V

2,t(GROt−1), is

to larger extent linear in GROt−1 than the part which is not hidden from the yield

curve, that is E[v(2)(GROt−1)|Pt], as indicated by R̄2 equal to 0.37 for the former.

In case of v(3)(GROt−1), these metrics amount to 0.00, 0.15 and 0.03, in that order.

However, for reasons mentioned in the last paragraph of Section 3.6.1 and in relation

to the tuning procedure (see, Appendix 3.D) which is not always optimal, we also

look at the corresponding numbers for model GP001(GROt−1) in the first panel of

Table 3.7. They amount to 0.39, 0.11 and 0.33, respectively. In this case, the focus

of the tuning procedure lies solely on the curvature, not slope and curvature together

as in the former model. These latter results correspond more closely to what we

observe for v(2)(GROt−1) in model GP011(GROt−1).

To consolidate the discussion, a careful look at Figure 3.4 is required. In the top

panel, we notice immediately that what adjusted R2 are telling us about v(2)(GROt−1)

in the model of interest is indeed so. Namely, the association between its hidden part

and the lagged GRO is visibly more linear than nonlinear. The picture is similar,

albeit less pronounced, to this in the corresponding panel in Figure 3.2, which we

discuss in the last paragraph of Section 3.6.1. On both sides the majority of data

points are located in the part of the graph where the association is linear, whereas

the remaining data points are the outliers. What happens to R̃P
V

3,t(GROt−1) in the

bottom panel can also be linked to related arguments in the same section. It is thus

not surprising that in this case the nonlinear model leads to inferior economic value

results, let alone adds such a value, in comparison to the linear benchmark (see,

Table 3.6). In this case and on such front it is evidently hard to beat the linear,

more parsimonious model based merely on outliers.

151



3.7 Conclusions

We propose a novel methodological framework which combines Bayesian sequen-

tial inference with machine learning techniques, in particular Gaussian Processes.

It allows us to incorporate unspanned macroeconomic information into Dynamic

Term Structure Models in a potentially nonlinear manner. Sequential setup we

develop successfully handles real-time adjustments to parameters governing such

asymmetric/nonlinear associations. The methodology takes into account parameter

uncertainty and provides entire predictive distribution of bond returns, allowing

investors to review their beliefs when new information arrives and thus informing

their asset allocation in an online manner. The framework is then tested against the

Expectations Hypothesis, as well as against the linear benchmark, in a comprehensive

out-of-sample exercise involving statistical predictability and economic value, where

we assume availability of information about prices and economic activity. To that

end, we scrutinize nonlinear models by developing a version of the macro-finance

DTSM proposed by Joslin et al. (2014) that incorporates unspanned macroeconomic

variables in a linear manner. However, to align with our nonlinear setup we consider

them exogenous.

Empirical results confirm that in such an exercise the models with unspanned

macroeconomic information, irrespective if it is introduced in a linear or nonlinear

manner, perform overall better than the models which are yields-only by construction.

Specifically, they also reveal that nonlinear models provide a competitive edge over

linear models in cases when a-priori possibly nonlinear functions of macroeconomic

variables admit nonlinear character a-posteriori in the parts which are hidden from

the yield curve. In this chapter it is the case for the prices and not for the economic

activity. To demonstrate that, we apply the risk premium factor decomposition from

Duffee (2011).

However, results in this chapter also indicate that for certain models where

macroeconomic information directly affects the yield curve level, using nonlinear
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formulation might not necessarily lead to superb predictability and economic value

gains but it might still mitigate substantial mistakes on those fronts. In particular, it

is the case for models with macroeconomic variables which in abnormal times, such

as the 2008-2009 financial crisis or the more recent COVID-19 recession, are subject

to outliers like the economic activity. According to our results, Gaussian Processes

handle such cases quite well.

Thinking ahead, we acknowledge the limitations of our study where we only

consider a set of macroeconomic variables limited to two and Gaussian Processes we

apply are of a single-input type and based on one commonly applied nonlinear kernel

that we select to use. Verifying what we infer in this chapter on a broader set of

macroeconomic information, while also using other nonlinear kernels such as Matern

kernel or combined kernels, is a possible way going forward. Letting macroeconomic

variables interact within a multi-input Gaussian Process framework, for example

using ARD (Automatic Relevance Determination) kernels (Rasmussen and Williams,

2006), is also a potentially interesting and straightforward research avenue to pursue.

Another intriguing, future direction is to incorporate spanned instead of unspanned

nonlinear macros and embark on policy oriented applications, what such an extension

facilitates.

Appendix 3.A Specification of Priors

In what comes next, we succinctly explain the prior distributions that were not

specified in the main body of the chapter. For parameters in ΣP , gQ, kQ
∞, σ2

e and

λP , or effectively λ1,2, priors are constructed in the same manner as in the related

Appendix 2.A.

The only exception are parameters in ℓK , which have range restricted to positive

values. We thus transform them first, so that they have unrestricted range. Specifi-
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cally, we work in log-scale of ℓK . Next, independent normal distributions with zero

means and large variances are assigned to each of its components.

Appendix 3.B Markov Chain Monte Carlo Scheme

Following from (3.13) and (3.15), and given a prior π(θ) as described in Appendix

3.A, the posterior can be written in a more detailed manner as

π(θ|Y, M, σ̂K) =
{∏T

t=0 fQ(yt|Pt, kQ
∞, gQ, ΣP , σ2

e)
}

×{∏T
t=1 fP(Pt|Pt−1, Mt−1, kQ

∞, gQ, ΣP , ℓK , λ1,2, σ̂K)
}

× π(θ)

As the above posterior is not available in closed form, methods such as MCMC

can be used to draw samples from it using Monte Carlo. Yet, the MCMC output

is not assured to lead to precise Monte Carlo calculations since the corresponding

Markov chain may have poor mixing and convergence properties, what leads to

highly autocorrelated samples.

It is thus necessary to devise a suitable MCMC algorithm that does not exhibit

such unfavourable traits. For further details regarding its construction, see the

related Appendix 1.B. Such an MCMC scheme is shown in Algorithm 3.3.

Algorithm 3.3 MCMC scheme for Gaussian Affine Term Structure Models with
unspanned nonlinear macros
Initialize all values of θ. Then at each iteration of the algorithm:

(a) Update σ2
e from its full conditional distribution that can be shown to be an Inverse

Gamma distribution with parameters α̃/2 and β̃/2, such that α̃ is α + T (J − R) and
β̃ is β +

∑T
t=0 ∥êt∥2, where α = β = 0, since prior is assumed diffuse, êt is a time-t

residual from (1.11), and ∥ · ∥2 is Euclidean norm squared.

(b) Update ΣP using an independence sampler based on the MLE and the Hessian
obtained before running the MCMC, using multivariate t-distribution with 5 degrees
of freedom as proposal distribution.

(c) Update (kQ
∞, gQ) in a similar manner to (b).

(d) Update (ℓK , λ1,2) in a similar manner to (b).
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Appendix 3.C Adaptive Tempering

The aim of adaptive tempering is to smooth peaked likelihoods. For additional

information, see the corresponding Appendix 1.C. Implementation of the IBIS scheme

with hybrid adaptive tempering steps is outlined in Algorithm 3.4. It is important

to note that, unlike it is presented in Algorithm 3.1 for the general IBIS case, in

the specific case we are dealing here with we initialize the particles by drawing from

the posterior π(θ|Y0:t−1, M0:t−2, σ̂K) instead of the prior π(θ). This is done in-sample

based on training data, as detailed in Section 3.5.1.

Although it is straightforward to implement step 4(b)iv in Algorithm 3.4 for an

independence sampler, adjustments are necessary for a full Gibbs step. It is especially

the case for σ2
e in step (a) in Algorithm 3.3, see Appendix 3.B. Implementation details

are the same as in the corresponding appendix to Chapter 1 we mention above.

Appendix 3.D Tuning the Gaussian Process

Since we view σK as tuning parameter we tune it in-sample and fix out-of-sample

at σ̂K . Details about the underlying data are in Section 3.5.1. To that end, in a

manner similar to this in the corresponding Appendix 2.D, we follow a multi-step

process which is entirely based on in-sample data. First, as in the standard case in

Section 1.2.1, we estimate by maximum likelihood a yields-only DTSM where N = 3

and, out of λP , only λ1,2 is left unrestricted to match the risk price restrictions we

adopt in this chapter. Resulting MLEs let us then obtain ŝt, t = 1, ..., T̃ , where T̃

refers to in-sample period, from (3.3).

Second, we formulate an amended version of the likelihood in (3.13), using only

its P-likelihood components fP(·) modified in the following way

f̃(Ỹ |M̃, θ, k̂Q
∞, ĝQ, Σ̂P , λ̂1,2) =


T̃∏

t=1
f̃P(Pt|Pt−1, Mt−1, k̂Q

∞, ĝQ, Σ̂P , ℓK , λ̂1,2, c)


(3.22)
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Algorithm 3.4 IBIS algorithm with hybrid adaptive tempering for Gaussian Affine
Term Structure Models with unspanned nonlinear macros
Initialize Nθ particles by drawing independently θi ∼ π(θ|Y0:t−1, M0:t−2, σ̂K) with
importance weights ωi = 1, i = 1, . . . , Nθ. For t, . . . , T and each time for all i:

1 Set ω′
i = ωi.

2 Calculate the incremental weights from

ut(θi, Y0:t−1, M0:t−1) = f
(
Yt|Y0:t−1, M0:t−1, θi, σ̂K)

3 Update the importance weights ωi to ωiut(θi, Y0:t−1, M0:t−1).

4 If degeneracy criterion ESS(ω) is triggered, perform the following sub-steps:

(a) Set ϕ = 0 and ϕ′ = 0.
(b) While ϕ < 1

i. If degeneracy criterion ESS(ω′′) is not triggered, where
ω′′

i = ω′
i[ut(θi, Y0:t−1, M0:t−1)]1−ϕ′, set ϕ = 1, otherwise find ϕ ∈ [ϕ′, 1]

such that ESS(ω′′′) is greater than or equal to the trigger, where
ω′′′

i = ω′
i[ut(θi, Y0:t−1, M0:t−1)]ϕ−ϕ′, for example using bisection method,

see Kantas et al. (2014).
ii. Update the importance weights ωi to ω′

i[ut(θi, Y0:t−1, M0:t−1)]ϕ−ϕ′.
iii. Resample: Sample with replacement Nθ times from the set of θis

according to their weights ωi. The weights are then reset to one.
iv. Jitter: Replace θis with θ̃is by running MCMC chains with each θi as

input and θ̃i as output, using likelihood given by
f(Y0:t−1|M0:t−2, θi, σ̂K)[f

(
Yt|Mt−1, θi, σ̂K)]ϕ. Set θi = θ̃i.

v. Calculate the incremental weights from

ut(θi) = f
(
Yt|Y0:t−1, M0:t−1, θi, σ̂K)

vi. Set ω′
i = ωi and ϕ′ = ϕ.

where Ỹ and M̃ refer to in-sample data, k̂Q
∞, ĝQ, Σ̂P and λ̂1,2 are the MLEs from the

first step, and θ = (ℓK , c), with scalar c > 0, consists of parameters we estimate by

maximum likelihood next. However, before that we parametrize σK in (3.22) as

σK = c
√

diagv [V ar(ŝ)] (3.23)
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where diagv [V ar(ŝ)] is a 3 × 1 (in accordance with exposition in this chapter where

we choose G = 3) vector including diagonal elements of the covariance matrix V ar(ŝ)

for ŝ =
[
ŝ1, . . . , ŝ

T̃

]
, and ŝt, t = 1, . . . , T̃ , are practically as in the first step.

Third, as in Section 3.3.3 we proceed with the the log-likelihood representation

of (3.22), similar to (3.14), which we maximize. Consequently, it lets us fix σK

out-of-sample at σ̂K , which we calculate from (3.23) with ĉ being the MLE of c from

this last step and V ar(ŝ) remains unchanged.

Appendix 3.E Linear Model with Macros

It is straightforward to extend the estimation framework of Bauer (2018), and

consequently this in Chapter 1, to incorporate in a linear manner unspanned macros

which are assumed exogenous. It is only the way we handle the P-dynamics of Pt in

(3.1) what needs to be adjusted to

Pt = µP
P + ΦP

PPt−1 + ΦP
PMMt−1 + ΣPεP

t (3.24)

where ΦP
PM is (N × R) matrix, which represents the feedback from Mt−1 to Pt.

Following sections C.1 and C.2 in Online Appendix to Bauer (2018) and details

from Lütkepohl (2005), to consider ΦP
PM coefficients next to Mt−1 in (3.24) in

estimation, it suffices to tackle them jointly with λP , or in our case with λ1,2 only,

to match the risk price restrictions chosen for the nonlinear case in Section 3.3.3.

Adopting notation from Online Appendix to Bauer (2018) to ours where necessary,

we can rewrite (3.24) in vector form as

X = BZ + U
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where X = [P1, . . . , PT ], U = [u1, . . . , uT ], with adapted ut = ΣPεP
t , t = 1, . . . , T ,

Z =
[
Z0, . . . , Z(T −1)

]
, with modified Zt = [1, P ′

t, M ′
t ]

′, t = 0, . . . , T − 1, and amended

B =
(
µP

P , ΦP
P , ΦP

PM

)
.

Then linear constraints after Bauer (2018) are following

β = vec(B) = λ + r = Sλγ + r

where in our case S is a [N(N + R + 1)] × [NR + 1] selection matrix of zeros and

ones, λγ is a [NR + 1] × 1 vector with λ1,2 and those elements of ΦP
PM we decide

to leave unrestricted. For example, if our goal it to compare a linear model with a

corresponding nonlinear case where G = 2 and there is no GP included in the first

equation of (3.2), to allow for a meaningful comparison of results we would restrict

the first row in ΦP
PM to zeros, in a similar fashion to restricting risk prices in λP .

Finally, r = vec
[
µQ

P , ΦQ
P , 0NR×1

]
. For clarity, λ contains all elements of λγ, as well

as N(N + R + 1) − [NR + 1] zeros, and in our case N = 3 and R = 1.

After the above modifications the rest is straightforward to conclude and one

can easily follow in the footsteps of Bauer (2018) for a Bayesian framework, as well

as Chapter 1 for a corresponding sequential implementation thereof, to eventually

arrive at a an almost complete estimation framework for a linear model with macros

which is comparable to the setup we develop in this chapter for the nonlinear case.

What is still missing though is the prior specification for ΦP
PM . This we choose to be

non-informative and thus assign independent normal distribution with zero mean

and large variance to each element thereof.
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Figure 3.1: Plots of lagged CPI against its nonlinear function v, obtained from
model GP110. Plots in the left column are based on model parameters estimated
using data from the training period only (January 1985 - end of 2007). Plots in the
right column result from model parameters estimated using the entire sample of data
(January 1985 - end of 2017). Throughout, points in black correspond to posterior
mean of v and those in grey to its 95% credible intervals, all calculated from the
IBIS output.
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Figure 3.2: Plots of lagged GRO against its nonlinear function v, obtained from
model GP011. Plots in the left column are based on model parameters estimated
using data from the training period only (January 1985 - end of 2007). Plots in the
right column result from model parameters estimated using the entire sample of data
(January 1985 - end of 2017). Throughout, points in black correspond to posterior
mean of v and those in grey to its 95% credible intervals, all calculated from the
IBIS output.
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Figure 3.3: Plots of lagged CPI against the hidden part R̃P
V of its nonlinear

function v, obtained from model GP110. Plots in the left column are based on model
parameters estimated using data from the training period only (January 1985 - end
of 2007). Plots in the right column result from model parameters estimated using
the entire sample of data (January 1985 - end of 2017). Throughout, points in black
correspond to posterior mean of R̃P

V and those in grey to its 95% credible intervals,
all calculated from the IBIS output.

161



-4 -3 -2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5
10-4

-4 -3 -2 -1 0 1 2
-4

-3

-2

-1

0

1

2
10-5

-10 -8 -6 -4 -2 0 2
-1.5

-1

-0.5

0

0.5

1

1.5
10-4

-10 -8 -6 -4 -2 0 2

-5

0

5

10
10-5

Figure 3.4: Plots of lagged GRO against the hidden part R̃P
V of its nonlinear

function v, obtained from model GP011. Plots in the left column are based on model
parameters estimated using data from the training period only (January 1985 - end
of 2007). Plots in the right column result from model parameters estimated using
the entire sample of data (January 1985 - end of 2017). Throughout, points in black
correspond to posterior mean of R̃P

V and those in grey to its 95% credible intervals,
all calculated from the IBIS output.
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Table 3.1: Explanatory power gains from macroeconomic variables, CPI and GRO,
when fitting excess bond returns, measured via R̄2 at 1-month prediction horizon -
period: January 1985 - end of 2017.

n 2Y 3Y 4Y 5Y 7Y 10Y

R̄2(%) : rxn
t,t+1 = a + b′Pt + et

4.26 3.29 3.08 2.74 2.77 3.55

∆(0)R̄2(%) : rxn
t,t+1 = a + b′Pt + cMt−1 + et

CP I -0.24 -0.24 -0.22 -0.16 0.05 0.10∗

GRO 1.95∗∗∗ 1.47∗∗∗ 0.56∗ 0.08 -0.21 -0.17

R̄2(%) : rxn
t,t+1 = a + b′Pt + cMt−1 + et

CP I 4.03 3.06 2.86 2.58 2.81 3.65
GRO 6.13 4.71 3.61 2.82 2.56 3.38

This table reports in-sample R̄2 in % across alternative regression specifications at h = 1-month prediction horizon. The explained
variables are different (by maturities) excess bond returns. The explanatory variables are the principal components Pt and observed
(lagged) macros Mt−1, in particular CP I and GRO. In-sample R̄2 values are obtained in a similar manner to the out-of-sample R2

measure of Campbell and Thompson (2008) but using in-sample fit instead of out-of-sample forecasts, and incorporating penalty
adjustment. In particular, R̄2 in the top panel (all highly statistically significant hence not denoted) measures explanatory power gains
from using principal components on top of the in-sample average to fit excess bond returns, whereas R̄2 in the bottom panel (all highly
statistically significant hence not denoted) measures explanatory power gains from using principal components and Mt−1 on top of the
in-sample average to fit excess bond returns. Further, ∆(0) next to R̄2 in the mid panel means that the latter measures explanatory
power gains from using macro Mt−1 on top of the in-sample average and the principal components to do the same. Positive values
of this statistic imply that there is explanatory power gain from adding extra variables. Statistical significance is measured using a
one-sided Diebold-Mariano statistic with Clark-West adjustment, based on Newey-West standard errors. * denotes significance at 10%,
** significance at 5% and *** significance at 1% level. The sample period is January 1985 to end of 2017.
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Table 3.2: Explanatory power gains from nonlinear macros estimated using model
GP111, when fitting excess bond returns, measured via R̄2 at 1-month prediction
horizon - period: January 1985 - end of 2017.

n 2Y 3Y 4Y 5Y 7Y 10Y

R̄2(%) : rxn
t,t+1 = a + b′Pt + et

4.26 3.29 3.08 2.74 2.77 3.55

GP111 ∆(3)R̄2(%) : rxn
t,t+1 = a + b′Pt + c v(3)(Mt−1) + et

CP I -0.14 0.17 0.44∗ 0.71∗∗ 1.48∗∗ 2.29∗∗∗

GRO -0.24 -0.11 0.04 0.26 1.19∗ 2.19∗∗

GP111 ∆(2)3R̄2(%) : rxn
t,t+1 = a + b′Pt + c′[v(2)(Mt−1), v(3)(Mt−1)]′ + et

CP I 1.01∗∗ 0.42∗ 0.17 -0.12 -0.20 -0.25
GRO 1.20∗∗ 0.52∗ 0.11 -0.15 -0.25 -0.25

GP111 ∆(1)23R̄2(%) : rxn
t,t+1 = a + b′Pt + c′[v(1)(Mt−1), v(2)(Mt−1), v(3)(Mt−1)]′ + et

CP I 0.66∗∗ 0.58∗∗ 0.59∗∗ 0.64∗∗ 0.07 -0.13
GRO 2.91∗∗∗ 2.86∗∗∗ 2.74∗∗∗ 2.17∗∗∗ 1.27∗∗∗ 0.34∗

GP111 ∆(123)R̄2(%) : rxn
t,t+1 = a + b′Pt + c′[v(1)(Mt−1), v(2)(Mt−1), v(3)(Mt−1)]′ + et

CP I 1.51∗∗∗ 1.16∗∗∗ 1.20∗∗ 1.23∗∗∗ 1.34∗∗ 1.91∗∗∗

GRO 3.85∗∗∗ 3.25∗∗∗ 2.88∗∗∗ 2.28∗∗∗ 2.20∗∗∗ 2.27∗∗∗

GP111 R̄2(%) : rxn
t,t+1 = a + b′Pt + c′[v(1)(Mt−1), v(2)(Mt−1), v(3)(Mt−1)]′ + et

CP I 5.71 4.40 4.23 3.93 4.07 5.39
GRO 7.94 6.43 5.86 4.95 4.90 5.73

This table reports in-sample R̄2 in % across alternative regression specifications at h = 1-month prediction horizon. The explained
variables are different (by maturities) excess bond returns. The explanatory variables are the principal components Pt and the
estimated (via posterior mean) nonlinear macros v(Mt−1) from model GP111, for CP I and GRO. In-sample R̄2 values are obtained in
a similar manner to the out-of-sample R2 measure of Campbell and Thompson (2008) but using in-sample fit instead of out-of-sample
forecasts, and incorporating penalty adjustment. In particular, R̄2 in the top panel (all highly statistically significant hence not
denoted) measures explanatory power gains from using principal components on top of the in-sample average to fit excess bond
returns, whereas R̄2 in the bottom panel (all highly statistically significant hence not denoted) measures explanatory power gains from
using principal components and v(1)(Mt−1), v(2)(Mt−1) and v(3)(Mt−1) on top of the in-sample average to fit excess bond returns.
Further, ∆(3) next to R̄2 in the second panel means that the latter measures explanatory power gains from using nonlinear macro
v(3)(Mt−1) estimated using model GP111(M) on top of the in-sample average and the principal components to do the same. Next,
∆(2)3 in the third panel means that the associated R̄2 measures explanatory power gains from using to that end the nonlinear macro
v(2)(Mt−1) on top of the in-sample average, the principal components and nonlinear macro v(3)(Mt−1). Then, ∆(1)23 in the fourth
panel means that the associated R̄2 measures explanatory power gains from using to that end the nonlinear macro v(1)(Mt−1) on top
of the in-sample average, the principal components and nonlinear macros v(2)(Mt−1) and v(3)(Mt−1). Finally, ∆(123) next to R̄2 in
the fifth panel means that is measures the joint effect of including all latent factors on top of the remaining explanatory variables
to fit excess bond returns. Positive values of this statistic imply that there is explanatory power gain from adding extra variables.
Statistical significance is measured using a one-sided Diebold-Mariano statistic with Clark-West adjustment, based on Newey-West
standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The sample period is January
1985 to end of 2017.
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Table 3.3: Out-of-sample statistical performance of bond excess return forecasts
against the EH, measured via R2

os at 1-month prediction horizon - period: January
1985 - end of 2018.

n 2Y 3Y 4Y 5Y 7Y 10Y

M0 -0.04 -0.06 -0.05 -0.04 -0.02 -0.01**
M1 0.01 0.03** 0.03* 0.02 0.02* 0.04**

CP I

LM111 0.03** 0.04*** 0.03** 0.03** 0.03** 0.03***
GP111 0.02* 0.04** 0.03** 0.03* 0.03* 0.05***

LM011 0.03** 0.05*** 0.04** 0.03** 0.03** 0.04***
GP011 0.03** 0.04*** 0.03** 0.03** 0.03* 0.04***

LM110 0.03** 0.03*** 0.03** 0.02** 0.02** 0.03***
GP110 0.06*** 0.06*** 0.05*** 0.04** 0.04** 0.04***

LM010 0.03* 0.04*** 0.04** 0.03** 0.03** 0.04***
GP010 0.05*** 0.05*** 0.04*** 0.04** 0.03** 0.04***

LM001 0.03* 0.04** 0.03** 0.03* 0.03* 0.04***
GP001 0.03** 0.04*** 0.04** 0.03** 0.03* 0.04***

GRO

LM111 -0.19 -0.03 -0.03 -0.04 -0.01 0.01
GP111 -0.03 0.01* 0.01* 0.01 0.01 0.01*

LM011 0.02 0.05** 0.04*** 0.03** 0.02* -0.02
GP011 0.03* 0.05** 0.03** 0.02** 0.01 0.00

LM110 -0.22 -0.05 -0.05 -0.07 -0.04 0.00
GP110 -0.04 0.00 0.00 0.00 0.00 0.00

LM010 0.01 0.05** 0.03** 0.02** 0.02* -0.01
GP010 0.03* 0.05** 0.03** 0.02** 0.01* 0.00

LM001 0.03* 0.04** 0.04** 0.04** 0.03* 0.03**
GP001 0.03** 0.04*** 0.04** 0.03** 0.03** 0.04***

This table reports out-of-sample R2 across alternative models at h = 1-month prediction horizon. The forecasting models used are
DTSM with either alternative risk price restrictions or different number of GP outputs with various macros or just other macros. R2

values are generated using the out-of-sample R2 measure of Campbell and Thompson (2008). In particular, out-of-sample R2 measures
the predictive accuracy of bond excess return forecasts relative to the EH benchmark. The EH implies the historical mean being the
optimal forecast of excess returns. Positive values of this statistic imply that the forecast outperforms the historical mean forecast and
suggests evidence of time-varying return predictability. Statistical significance is measured using a one-sided Diebold-Mariano statistic
with Clark-West adjustment, based on Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and ***
significance at 1% level. The in-sample period is January 1985 to end of 2007, and the out-of-sample period starts in January 2008
and ends in end of 2018.
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Table 3.4: Out-of-sample statistical performance of bond excess return forecasts
against the corresponding linear model, measured via R2

os at 1-month prediction
horizon - period: January 1985 - end of 2018.

n 2Y 3Y 4Y 5Y 7Y 10Y

CP I

GP111 -0.01 0.00 0.00 0.00 0.01 0.02*
GP011 0.00 0.00 0.00 0.00 -0.01 0.00
GP110 0.03** 0.03** 0.02* 0.01 0.01 0.02*
GP010 0.02** 0.01 0.01 0.00 0.00 0.01
GP001 0.01 0.01* 0.01 0.01 0.00 -0.01

GRO

GP111 0.13* 0.04 0.04 0.05* 0.02 0.01
GP011 0.01 -0.01 -0.01 -0.01 -0.01 0.02
GP110 0.15** 0.05* 0.05 0.06* 0.03 0.00
GP010 0.02 0.00 0.00 0.00 -0.01 0.01
GP001 0.00 0.00 0.00 -0.01 0.00 0.01

This table reports out-of-sample R2 across alternative models at h = 1-month prediction horizon. The forecasting models used are
DTSM with different number of GP outputs and various macros or just other macros. R2 values are generated using the out-of-sample
R2 measure of Campbell and Thompson (2008). In particular, out-of-sample R2 measures the predictive accuracy of bond excess return
forecasts relative to the corresponding linear model. Positive values of this statistic imply that the forecast outperforms forecast from
the benchmark model. Statistical significance is measured using a one-sided Diebold-Mariano statistic with Clark-West adjustment,
based on Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The
in-sample period is January 1985 to end of 2007, and the out-of-sample period starts in January 2008 and ends in end of 2018.
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Table 3.5: Out-of-sample economic performance of bond excess return forecasts
against the EH, measured via certainty equivalent returns (%) at 1-month prediction
horizon - period: January 1985 - end of 2018.

n 2Y 3Y 4Y 5Y 7Y 10Y

M0 -10.77 -11.81 -10.27 -8.05 -3.62 -7.49
M1 2.31 1.88 1.38 0.80 2.30 2.55

CP I

LM111 1.68 1.22 1.57 1.36 3.61** 1.45
GP111 3.00* 2.79* 2.73 2.56 4.30* 3.97*

LM011 2.79* 2.54* 2.31 1.70 3.59 2.39
GP011 3.69** 3.30** 2.91* 2.50 4.01* 3.69*

LM110 0.74 0.02 0.07 0.12 2.56* 0.06
GP110 4.10** 3.79** 3.27 2.68 3.98 2.68

LM010 2.22* 2.07 2.13 2.09 4.33** 2.28
GP010 4.39*** 4.29** 4.09** 3.67* 4.94* 3.69**

LM001 2.40* 2.29 2.01 1.71 3.25 2.67
GP001 4.14** 4.43*** 3.99** 3.60* 4.10 3.33*

GRO

LM111 -7.42 -1.44 -5.44 -5.89 -10.11 -10.29
GP111 2.28 3.34 2.85 1.96 1.88 -0.52

LM011 3.33 3.93** 3.48* 3.16 5.65* -3.89
GP011 3.51 3.20* 2.80 1.80 2.59 -2.30

LM110 -12.12 -4.54 -9.08 -8.39 -13.46 -12.49
GP110 0.33 1.44 1.23 0.60 0.84 -1.46

LM010 2.59 3.41 2.62 2.12 5.28* -2.63
GP010 3.45 3.11* 2.50* 1.96 2.73 -2.86

LM001 3.61** 3.37** 3.75** 3.50 4.29 1.60
GP001 3.86** 3.91** 3.84* 3.17 4.55* 4.24**

This table reports annualized certainty equivalent returns (CERs) across alternative models at h = 1-month prediction horizon. The
coefficient of risk aversion is γ = 3. No portfolio constraints are imposed. CERs are generated by out-of-sample forecasts of bond
excess returns and are reported in %. At every time step t, an investor with power utility preferences evaluates the entire predictive
density of bond excess returns and solves the asset allocation problem, thus optimally allocating her wealth between a riskless bond
and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is then defined as the value that equates the average utility of each
alternative model against the average utility of the EH benchmark. The forecasting models used are DTSM with either alternative risk
price restrictions or different number of GP outputs with various macros or just other macros. Positive values indicate that the models
perform better than the EH benchmark. Statistical significance is measured using a one-sided Diebold-Mariano statistic computed
with Newey-West standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The in-sample
period is January 1985 to end of 2007, and the out-of-sample period starts in January 2008 and ends in end of 2018.
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Table 3.6: Out-of-sample economic performance of bond excess return forecasts
against the corresponding linear model, measured via certainty equivalent returns
(%) at 1-month prediction horizon - period: January 1985 - end of 2018.

n 2Y 3Y 4Y 5Y 7Y 10Y

CP I

GP111 1.32 1.56 1.16 1.20 0.69 2.52
GP011 0.89* 0.76 0.60 0.79 0.42 1.30
GP110 3.35*** 3.78*** 3.19** 2.55* 1.41 2.62*
GP010 2.16** 2.21*** 1.95** 1.58 0.61 1.41
GP001 1.88** 2.54** 2.34** 2.17** 0.61 -0.36

GRO

GP111 9.76 4.78 8.32 7.89 12.09* 9.85
GP011 0.17 -0.73 -0.68 -1.35 -3.05 1.59
GP110 12.58 6.00 10.39 9.06 14.46* 11.15
GP010 0.86 -0.30 -0.12 -0.17 -2.54 -0.23
GP001 0.24 0.54 0.09 -0.33 0.25 2.63

This table reports annualized certainty equivalent returns (CERs) across alternative models at h = 1-month prediction horizon. The
coefficient of risk aversion is γ = 3. No portfolio constraints are imposed. CERs are generated by out-of-sample forecasts of bond
excess returns and are reported in %. At every time step t, an investor with power utility preferences evaluates the entire predictive
density of bond excess returns and solves the asset allocation problem, thus optimally allocating her wealth between a riskless bond
and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is then defined as the value that equates the average utility of
each alternative model against the average utility of the corresponding linear model. The forecasting models used are DTSM with
different number of GP outputs and various macros or just other macros. Positive values indicate that the models perform better than
the benchmark model. Statistical significance is measured using a one-sided Diebold-Mariano statistic computed with Newey-West
standard errors. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level. The in-sample period is January
1985 to end of 2007, and the out-of-sample period starts in January 2008 and ends in end of 2018.
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Table 3.7: Explanatory power of macroeconomic variables when fitting the corre-
sponding nonlinear macros and their components from models GP001, GP010 and
GP110, measured via R̄2 - period: January 1985 - end of 2017.

R̄2 : Cj,t = aj + bjMt−1 + ej,t, j ∈ {1, 2, 3}

GP001 CP I GRO

v(3)(Mt−1) 0.06 0.39

E[v(3)(Mt−1)|Pt] 0.70 0.11
R̃P

V

3,t(Mt−1) 0.00 0.33

GP010 CP I GRO

v(2)(Mt−1) 0.23 0.53

E[v(2)(Mt−1)|Pt] 0.66 0.18
R̃P

V

2,t(Mt−1) 0.00 0.39

GP110 CP I GRO

v(1)(Mt−1) 0.73 0.25

E[v(1)(Mt−1)|Pt] 0.70 0.17
R̃P

V

1,t(Mt−1) 0.09 0.17

v(2)(Mt−1) 0.32 0.45

E[v(2)(Mt−1)|Pt] 0.67 0.17
R̃P

V

2,t(Mt−1) 0.00 0.34

This table reports in-sample R̄2 across alternative regression specifications. The explained variables Cj,t are individual nonlinear

macros v(j)(Mt−1) and their components E[v(j)(Mt−1)|Pt] and R̃P
V

j,t(Mt−1), j ∈ {1, 2, 3}, see (3.21), from models GP001, GP010
and GP110. The explanatory variables are the corresponding lagged macroeconomic variables. The sample period is January 1985 to
end of 2017.

169



Table 3.8: Explanatory power of macroeconomic variables when fitting the corre-
sponding nonlinear macros and their components from models GP011 and GP111,
measured via R̄2 - period: January 1985 - end of 2017.

R̄2 : Cj,t = aj + bjMt−1 + ej,t, j ∈ {1, 2, 3}

GP011 CP I GRO

v(2)(Mt−1) 0.44 0.50

E[v(2)(Mt−1)|Pt] 0.68 0.17
R̃P

V

2,t(Mt−1) 0.01 0.37

v(3)(Mt−1) 0.60 0.00

E[v(3)(Mt−1)|Pt] 0.66 0.15
R̃P

V

3,t(Mt−1) 0.07 0.03

GP111 CP I GRO

v(1)(Mt−1) 0.75 0.25

E[v(1)(Mt−1)|Pt] 0.70 0.16
R̃P

V

1,t(Mt−1) 0.09 0.17

v(2)(Mt−1) 0.50 0.44

E[v(2)(Mt−1)|Pt] 0.69 0.17
R̃P

V

2,t(Mt−1) 0.02 0.32

v(3)(Mt−1) 0.63 0.00

E[v(3)(Mt−1)|Pt] 0.65 0.14
R̃P

V

3,t(Mt−1) 0.08 0.04

This table reports in-sample R̄2 across alternative regression specifications. The explained variables Cj,t are individual nonlinear

macros v(j)(Mt−1) and their components E[v(j)(Mt−1)|Pt] and R̃P
V

j,t(Mt−1), j ∈ {1, 2, 3}, see (3.21), from models GP011 and
GP111. The explanatory variables are the corresponding lagged macroeconomic variables. The sample period is January 1985 to end
of 2017.
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