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A thesis submitted to the Department of Economics of the London

School of Economics & Political Science for the degree of Doctor of

Philosophy, London, June 11, 2012



A whale-ship was my Yale College and my Harvard.

Herman Melville, Moby Dick

2



Acknowledgements

There are too many people to thank. First and foremost, I would like to

thank Ronny Razin for his advice, encouragement and all the time and

attention he has devoted over the years as my supervisor. His help has been

invaluable. My gratitude extends to many others at LSE: Gilat Levy, Balazs

Szentes, all the members of the theory group and fellow PhD students.

During my Caltech visit, I have greatly benefited from interaction with

Leeat Yariv, Jean-Laurent Rosenthal and Salvatore Nunnari.

On a more personal level, this thesis would have never seen the light of

day without the continuous support of my family, friends, Katka Špániková,
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Abstract

A common theme running throughout the three chapters of this thesis is

dynamic recurring group decision making. The first chapter sets up a model

with endogenous status-quo (dynamic bargaining model) in which decision

makers are uncertain about their own future preferences. The main focus

of the chapter is on how different bargaining protocols influence equilibrium

decisions. The two protocols considered are i) implicit status-quo bargaining

protocol in which present period policy serves as the status-quo for the next

period and ii) explicit status-quo bargaining protocol in which the current

decision involves both current policy and a possibly different status-quo

for the future. The main observation of the chapter is that the former

bargaining protocol leads to decisions diverging from the preferences of the

actors involved even in the periods in which their preferences coincide, this

divergence being driven by the concerns to maintain a bargaining position

for the future. The latter bargaining protocol, on the other hand, delivers

decisions fully reflecting preferences of the actors involved in the periods

when these coincide, but may lead to decisions reflecting only the proposer’s

preferences.

The second chapter shows how to construct equilibria in a class of dy-

namic bargaining models in which players have fixed preferences over all

the dimensions of a policy space. The construction applies both to one-

dimensional and multi-dimensional policy spaces and delivers equilibria with

simple and intuitive structure. The chapter works out several examples to

show i) the multiplicity of equilibria and ii) the non-monotonicity of the

existence of the simple equilibria in the underlying model parameters.

The third paper is a collaborative work with Roman Horváth and Kateřina

Šmı́dková from the Czech National Bank (currently published as a CNB

working paper). The chapter analyses decision making in monetary policy

committees, the decision making bodies of central banks. On the empirical
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side, the chapter shows that voting records of monetary policy committees

are informative about their own future decisions. On the theoretical side,

the chapter shows that the voting records’ predictive power can be generated

through theoretical models used in the group decision making literature.
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Introduction

The common denominator of my thesis is recurrent group decision making.

A group of decision makers is repeatedly making the same type of decision.

Once a decision is made in a given bargaining round it determines the status-

quo for the subsequent round. The resulting endogeneity of the status-

quo makes the situation one of dynamic bargaining. The rationale for the

explicit modelling of such situations comes from an attempt to understand

the determination of policies that need to be continuously specified over

time, such as central bank interest rates, tax rates or regulatory limits.

The dynamic bargaining literature, to which this thesis contributes, grew

from the original bargaining model of Rubinstein (1982) and its political

economy application by Baron and Ferejohn (1989). Where the dynamic

bargaining literature diverges from these papers is in assuming that reaching

a decision does not end the bargaining process, proceeding into a next period

of typically infinite horizon interaction instead. What makes the interaction

dynamic, as opposed to repeated, is the endogeneity of status-quo. A current

decision is made against the status-quo determined by previous decisions and

will in turn determine the status-quo in the future. Baron (1996) is among

the first to analyse a model with these features.1

In this context, the first chapter focuses on the role of the bargaining

protocol in the dynamic bargaining model with uncertainty regarding future

preferences of the actors involved. The chapter compares two bargaining

protocols: i) the implicit status-quo protocol under which present period

policy serves as the status-quo for the next period and ii) the explicit status-

quo protocol under which the decision in the current period involves both

current policy and a (possibly different) status-quo for the ensuing period.

While the former bargaining protocol is standard in the dynamic bargaining

1 See chapter 2 for survey of the dynamic bargaining literature.
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INTRODUCTION 15

literature, the latter one and their comparison is the key novel feature.

The chapter shows that the two bargaining protocols lead to notably

different policy outcomes, with the difference most marked in the periods

of common interest. These are still characterized by disagreement under

implicit status-quo bargaining, while under explicit status-quo bargaining

lead to the policy decisions that fully reflect the congruent preferences of

the committee members. This result arises due to the dual role of policy

under the implicit status-quo protocol. Policy serves not only as policy

but also determines the future status-quo and hence the bargaining position

of committee members. The disagreement then arises even in periods of

common interest due to the possibility of future conflict. The explicit status-

quo protocol retains only the former role of policy with the policy decisions

fully reflecting the common interests, when these arise.

A second difference arising from the two bargaining protocols is in the

evolution of bargaining power as captured by the status-quo. The explicit

status-quo protocol allows the proposer, by giving her more flexibility in

crafting her proposals, to gain and retain the dominant position in the com-

mittee. Relative to implicit status-quo bargaining, this results in the policy

outcomes that reflect, to a larger extent, the proposer’s preferences, policy

outcomes that are too extreme from the point of view of the committee as

a whole.

The differences in the policy outcomes also determine the answer to

a question on which of the two bargaining protocols would be chosen by a

committee of decision makers who know it would be used in their subsequent

interaction, or by a utilitarian central planner. The chapter shows that the

explicit status-quo protocol is superior only if the initial status-quo gives

little bargaining power to the proposer, such that the benefits of the common

interests being reflected in the decisions outweigh the costs of the proposer’s

dominance.

The second chapter shows how to construct equilibria in the dynamic

bargaining model, with fixed preferences of the players involved and, in the

terminology of the previous chapter, with implicit status-quo bargaining

protocol. For a similar model of bargaining over the share of a fixed-size

budget, this has been done by Kalandrakis (2004), but for a model based on

Baron (1996) where the bargaining proceeds over a one-dimensional space

of policies, explicit characterization of the equilibria has so far been missing
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in the dynamic bargaining literature.

The bargaining proceeds over a space of policies with each player having

quadratic preferences defined around a bliss point, where the policy space

can be either one-dimensional as in Baron (1996) or multi-dimensional. In

the absence of dynamic considerations the player recognized to be a pro-

poser would propose her bliss point and, given sufficiently adverse status-

quo, would have it approved by at least a minimum winning coalition of

the remaining committee members. The chapter shows that in the same

situation, the player recognized to be a proposer proposes her strategic bliss

point, a policy between her and the median player’s original bliss points.

The exact position of the strategic bliss point for a given player depends

on the model parameters, such as the discount factor and the probability

of being recognized as a proposer, but is shown to be the result of two

opposing forces. One force pushes the player into proposing policies close

to her original bliss point. The second and strategic force pushes the player

in the opposite median player’s direction, in an attempt to propose policies

that constrain the future proposals of all the remaining players.

The chapter constructs an algorithm that calculates the strategic bliss

points for a given model parametrization and shows how to use these to build

conjectured equilibrium strategies. It further derives two conditions, one suf-

ficient and one necessary, that the conjectured strategies need to satisfy in

order to constitute an equilibrium. Both of these conditions are easy to check

as they consider only a finite set of points in otherwise continuous policy

space. Finally, the chapter works out several examples showing a number of

interesting features that equilibria in the model may exhibit. These include

a subset of players behaving in a way indistinguishable from the behaviour

of the median player despite having different preferences, asymmetric equi-

librium behaviour in otherwise symmetric environments and multiplicity

of equilibria possibly complicating their computational approximation that

typically relies on the uniqueness of the equilibrium being approximated.

The third chapter is an application of the dynamic bargaining framework

to central bank decision making. In most modern central banks decisions

to change or retain a given interest rate level is done by a group of decision

makers, the monetary policy committee. The committee meets in a recurring

manner with the interest rate from the previous meeting constituting the

status-quo policy and the policy agreed upon in a given meeting becoming
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status-quo for the next one.

The chapter builds on the observation made by Gerlach-Kristen (2004)

for the Bank of England that a voting pattern from a given monetary pol-

icy committee meeting is informative regarding interest rate changes in the

subsequent meetings. The chapter finds similar result in voting and deci-

sion making data from several other central banks and, from the theoretical

perspective, asks if it is possible to generate predictive power of the voting

pattern in a formal group decision making model.

The model used posits a committee of decision makers making recurring

decisions about policy, trying to match an unobserved time-varying optimal

policy that follows AR(1) process. Non-unanimous voting arises from the

committee members having private signals about the optimal policy and

hence voting either for the status-quo or for the policy proposed by the

committee chairman. The alternative attracting (super-)majority of votes

then becomes status-quo for the subsequent committee meeting.

The chapter investigates three variants of the model that differ in the

degree of informational influence among the committee members. In the

democratic version the influence is limited with committee members extract-

ing no information from the chairman’s proposal and the chairman having

no information regarding signals of the remaining committee members. In

the consensual version it is the chairman who has the informational influ-

ence, with the other committee members extracting information from her

proposal, while in the opportunistic version the influence works in the oppo-

site direction, with the chairman having information about private signals

of the other committee members.

Using computer simulations, the chapter generates decision making and

voting data from the three model versions and uses these in an econometric

estimation akin to the one used with the real world data. The results suggest

that in order to generate predictive power of the voting pattern for the future

policy changes large degree of informational independence is needed, as in

the democratic version of the model. The chapter further investigates the

effect of the noise in private signals, of the variability in the optimal policy

and of the size of the committee, showing that the size can be used as a

substitute for quality of information in generating predictive power of the

voting pattern.
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CHAPTER 1. EXPLICIT AND IMPLICIT STATUS-QUO 20

Several other members indicated that they would have preferred

to tighten at that meeting. . . . The asymmetric directive, which

held prospect of near-term tightening, once again allowed FOMC

to reach a consensus.

Meyer (2004), page 83

And we know from firsthand accounts that Greenspan was holding

back an FOMC that was eager to raise rates.

Blinder and Reis (2005), page 58

1.1 Introduction

We study recurring group decision making problems with the preferences

of the actors involved varying over time. As a leading example, consider

periodic meetings of a monetary policy committee. In every period, the

preferences of each committee member will be affected by host of factors,

such as the state of the economy, his view of future economic development,

his opinion about the strength of monetary policy transmission channels,

or judgment about the suitable inflation monetary policy should aim for.

Inevitably, most of those factors will change stochastically over time, opening

the possibility for renegotiation of decisions reached at an earlier stage. Of

course, there are many other examples of recurring decision making with

varying preference, both in the economic and the political spheres.

With changing preferences of the involved parties, bargaining over a

decision at any given point in time will proceed under varying degrees of

disagreement. In the monetary policy committee case, ambiguity of infor-

mation the committee holds can provoke disagreement over the most appro-

priate policy in some periods, but can lead to agreement in other periods

when the information becomes more definite. Uncertainty over the future

then implies uncertainty about the extent of future disagreement as well.

Recurring decisions naturally create dynamic linkages that need to be

considered. First, strategic linkages arise due to the repeated nature of the

interaction. The current action of any given decision maker will take into

account its possible impact on the future behaviour of the remaining deci-

sion makers, with the repeated interaction allowing for cooperative outcomes
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unattainable in static settings. This is analysed in the folk theorems liter-

ature in general and in the political arena context in particular by Dixit,

Grossman, and Gul (2000) and Maggi and Morelli (2006). We abstract away

from these strategic linkages in recurring decisions by focusing on Stationary

Markov Perfect equilibria.

Instead, we concentrate on the second type of linkages, procedural ones.

These involve the role past decisions play during the determination of sub-

sequent ones. These linkages stem from the need to ensure continuity in

policy making. Protocols in place ensure that some policy is chosen even in

the case of a decision not being reached.

The simplest of such protocols is the one under which a policy, once

established, becomes the status-quo for the ensuing round of bargaining.

Inaction, no change in a given policy or contract, leaves the previous decision

in place. For example, in most countries personal income tax rates apply

until changed. Labour unions negotiate agreements with firms regarding

wage and employment levels which are effective until renegotiated. In effect,

current policy implicitly determines status-quo.

However, there are several prominent examples of decision processes that

enlarge the space of current decisions to include provisions for the future.

These yield not only current policy but also explicitly determine a (poten-

tially different) status-quo for the next round of negotiations. Legislative

sunset provisions specify a time horizon for the statute or regulation in ques-

tion, after which it automatically terminates. These are often found in tax

laws or in laws impinging civil liberties, most prominently in the US Eco-

nomic Growth and Tax Relief Reconciliation Act of 2001 and US Patriot

Act of 2001. Regulatory escape clauses are another example of the present

policy and the status-quo being distinct.1

In this paper, we investigate decisions reached in recurring negotiations

with stochastically changing preferences of the actors involved. The status-

1 Regulatory escape clauses can be viewed as temporary modifications of the regulatory
rules in light of changed conditions with no change implied for the future. For example,
the European Commission in the context of the Stability and Growth Pact initiates an
excessive deficit procedure with a given country if its annual budget deficit exceeds 3%
of its GDP, but can refrain from doing so if the breach of the limit is associated with,
for example, a prolonged period of slow economic growth. This can be interpreted as the
European Commission temporarily increasing the 3% limit during recessions but keeping
it intact for the future, or in other words having different current and status-quo deficit
limits.
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quo for a given round of bargaining is determined endogenously during the

previous negotiations. We call the distinction between the new status-quo

being implicitly or explicitly decided upon bargaining protocol and ask how

the bargaining protocol influences decisions reached.

We are motivated by normative, positive and theoretical questions. On

the normative side we analyse how the different bargaining protocols influ-

ence the ability of the committee to respond to the changing preferences of

the involved parties. The procedural linkages mentioned above imply that

the behaviour of each decision maker will reflect both current and future

incentives. This might imply that even in ‘agreement’ periods, character-

ized by similar current preferences of the decision makers, their behaviour

might be driven by efforts to affect future decisions. We will show below

that enlarging the space of current decisions to include provisions for the

future via the explicit status-quo bargaining protocol delivers policies bet-

ter tailored to changing circumstances. A potential downside of allowing for

such provisions comes from the resulting increase in proposal power. Con-

sequently, from the utilitarian perspective none of the bargaining protocols

clearly dominates the other and we lay out conditions under which one or

the other of them should be endorsed.

Our positive motivation builds on one of our motivating examples, mon-

etary policy committees. Monetary policy in most central banks is decided

upon by a committee composed of several members convening with regular

frequency. The policy usually consists of the bank’s operating target, its

interest rate. In most central banks the interest rate decided in a given

committee meeting serves also as a status-quo for the next meeting. Inac-

tion leads to no change in monetary policy stance, hence the status-quo is

implicitly determined by a given decision.

In contrast, the Federal Open Market Committee (FOMC), the decision

body of the US Federal Reserve System, issues at the close of each meeting

operating instructions for the Federal Reserve Bank of New York known as

the domestic policy directive. The directive contains not only the decision

about current policy but also a statement concerning the FOMC’s expecta-

tion of future policy stance. Viewing the ‘asymmetry’, ‘bias’ or ‘tilt’ in the

policy directive as explicitly specifying a status-quo policy possibly different

from the current one allows us to gain deeper understanding of the FOMC
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decision making process.2 Our model then suggests a novel rationale for the

existence of the asymmetry.

The theoretical motivation is to advance growing dynamic bargaining

literature. While acknowledging endogeneity of the status-quo in recurring

decision making situations, this literature has invariably assumed that the

status-quo is equal to the policy decision of the previous bargaining round.

While this is a natural assumption in many environments, some environ-

ments might be more appropriately modelled as having an explicit status-

quo bargaining protocol. Our analysis of explicit status-quo bargaining is

not only, to our knowledge, novel in the literature, but also highlights differ-

ences the two bargaining protocols bring by analysing them in an otherwise

identical model setup.

In the model, a committee composed of two members, one of whom

possesses fixed proposal power, takes repeated decisions on a policy from

a one-dimensional policy space over which each of the committee members

has single peaked preferences represented by a bliss point. Every period is

randomly selected to be either an agreement or disagreement one, with only

the present period type being common knowledge. In agreement periods,

the two members share a common bliss point whereas in the disagreement

periods the bliss points of the two members differ. While certainly a crude

simplification of the continuum on which conflict of preferences can take

place, the agreement/disagreement dichotomy allows us to clearly illustrate

the effect of the bargaining protocol on policy outcomes.

Besides the period type, every committee meeting is characterized by a

one-dimensional status-quo. Under the implicit status-quo bargaining pro-

tocol, the status-quo is pitched against a proposed policy with the win-

ning alternative being both the current policy outcome and the next period

status-quo. Under the explicit status-quo bargaining protocol, the status-

quo is pitched against a joint proposal for a policy and a new status-quo. If

the committee selects the proposed pair, this proposal determines the cur-

rent policy outcome and a possibly different future status-quo, otherwise,

the status-quo becomes both the policy implemented today and the future

status-quo.

We first show existence and uniqueness in a certain well defined sense

2 See the opening part of section 1.5 for a discussion of why the asymmetry might
constitute a status-quo.
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of Stationary Markov Perfect equilibrium (S-MPE) under both bargaining

protocols (propositions 1.1 and 1.4). The lack of general S-MPE existence

results and typically ill behaved induced preferences over the ‘state’ vari-

able in dynamic bargaining models (Baron, 1996; Baron and Herron, 2003;

Kalandrakis, 2004; Duggan and Kalandrakis, 2012) make this a nontrivial

exercise and we are forced to work with induced preferences that typically

lack monotonicity, concavity and continuity. Adding further stochastic el-

ements would allow us to use existing results on existence of S-MPE in

dynamic bargaining context.3 We refrain from doing so, limiting general-

ity of our results to cases of sufficiently but not excessively strong conflict

between the two players. On the other hand, this allows us to characterize

equilibria of the model to a greater extent.

For the implicit status-quo bargaining protocol, we show that in equilib-

rium negotiations display inefficiency in agreement periods; the committee

members are unable to agree on a policy corresponding to their common

bliss point (proposition 1.2). The intuition for this result is the dual role

of policy under the implicit status-quo bargaining protocol. Policy serves

not only as policy but also determines the future status-quo. Moreover,

we show that bargaining quickly reaches a point of gridlock, with the pol-

icy outcomes unresponsive to changing preferences (proposition 1.2). Once

in gridlock, the two players have antithetic preference over policy even in

agreement periods, as it determines the future status-quo and affects their

future bargaining positions. Explicit status-quo bargaining reverses both of

these results. In equilibrium, it leads to the policy outcomes corresponding

to the common committee members’ bliss point in the agreement periods

(proposition 1.3) and does not lead to the gridlock as the policy outcomes

remain responsive to the changing preferences of the committee members

(proposition 1.5).

One possible side effect of explicit status-quo bargaining comes from

the increase of proposal power relative to implicit status-quo bargaining.

Allowing for proposals with different policy and status-quo creates room

for the proposer to push through policies fully reflecting her preferences.

Those are too extreme for the rest of the committee and the committee as a

3 Duggan and Kalandrakis (2012) overcome the ill behaved induced preferences problem
by adding noise elements to players’ preferences and to the policy status-quo transition
mechanism. This ‘smooths out’ the induced preferences and allows them to prove existence
of S-MPE in a very general dynamic bargaining model.
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whole might prefer different bargaining protocols in different environments

(proposition 1.6).

Finally, we show that these results carry over to a committee composed

of an odd number of members with preferences similar to those in the bench-

mark model (proposition 1.7). This allows us to shift attention to the FOMC

decision making process and examine the role of the asymmetry in its direc-

tive. We focus mainly on its role as a predictor of future policy changes and

as an instrument to achieve more consensual FOMC decisions. Our model

delivers these two predictions and also suggests a novel explanation for the

existence of the asymmetry as a tool which allows the FOMC chairman to

maintain his dominant position in the committee.

The model we build belongs to the dynamic bargaining literature that

assumes that the status-quo during a given round of bargaining is endoge-

nously determined during previous bargaining rounds. Differently from most

of the existing literature (Baron, 1996; Baron and Herron, 2003; Kalandrakis,

2004; Bernheim, Rangel, and Rayo, 2006; Battaglini and Coate, 2007; Baron,

Diermeier, and Fong, 2012; Battaglini and Palfrey, 2012) we focus on an en-

vironment with stochastic preferences and abstract from distributional issues

analysed in many of the mentioned papers.

Despite its obvious appeal, the dynamic bargaining literature with time-

varying preferences is rather scarce. Battaglini and Coate (2008) build a

dynamic model of legislative bargaining with general and targeted public

spending. In their model, the status-quo is fixed but the intertemporal link

is created by accumulated public debt while the time-varying preferences

stem from a stochastic value of general public spending. Diermeier and

Fong (2009) build a similar model. Riboni and Ruge-Murcia (2008) analyse

a model similar to ours with the implicit status-quo bargaining protocol.

They analytically solve the two period version of their model and resort

to numerical simulation of the infinite period version. Dziuda and Loeper

(2010) also analyse a model closely related to ours with the implicit status-

quo bargaining protocol. In their model, a two member committee takes

repeated decisions over a binary agenda with the preference parameter of

each of the committee members being a continuous random variable dis-

tributed on the real line. In our model, it is the preference parameter that

takes on two values with the policy being a continuous variable. However,

none of the papers mentioned above analyses how expanding the space of
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current decisions to include provisions for the future changes policy out-

comes and ability of the committee members to renegotiate in the changing

environment, something our explicit status-quo bargaining protocol does. It

is the comparison between the two bargaining protocols or institutions we

are interested in.

Another strand of literature related to this paper is the literature in-

vestigating the effect of linking decisions. In Jackson and Sonnenschein

(2007) agents are constrained to represent their preferences across decision

problems such that the representation corresponds to the underlying distri-

bution of their preferences. The main result of their paper is that linking

large numbers of decisions leads to approximate ex ante Pareto efficiency. In

Casella (2005) agents can store their votes and use them in future meetings

when their preferences are more intense. This typically leads to ex ante

welfare improvement over non-storable votes. Hortala-Vallve (2010) proves

similar result in a setting where agents can distribute a given number of

votes freely across a predetermined number of issues. The first mentioned

paper improves efficiency by putting constraints on the misrepresentation

of preferences allowed for, while the two latter papers improve efficiency

by relaxing the one-person-one-vote constraint. In the context of this lit-

erature, our explicit status-quo bargaining protocol, by relaxing the ‘policy

equal to status-quo’ constraint, can be viewed as relaxing constraint on the

committee decision making but also as removing constraint on the proposal

power.

We proceed as follows. The next section lays out the theoretical model.

Section 1.3 solves for the equilibrium in a two period version. It is meant

to build intuition for the infinite horizon version and to show that the key

results are not sensitive to changes in the foresight horizon. Section 1.4

contains all the theoretical results. These describe equilibria for both of the

bargaining protocols, discuss conditions under which one of them should be

preferred and show that the model applies equally well to larger committees.

Section 1.5 applies these results to the FOMC decision making, demonstrates

that the model can replicate stylized facts about its decision patterns and

suggests a novel interpretation of the asymmetric FOMC directive.
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1.2 Model

We analyse the effect of bargaining protocol on dynamic policy making in

a simple model. Policies in the model are set by a committee composed of

two members. The first member is the chairman, who has policy proposal

power and whom we denote by C (she). The second committee member is

denoted by P (he) and has policy approval power. The voting rule used by

the committee is simple majority with ties decided against C’s proposal so

that in order for C’s proposal to pass, consent of both committee members

is required.4

The committee sets policy pt in each period t of an infinite horizon. The

utility player i ∈ {C,P} receives from the path of policies p = {p0, p1, p2, . . .}
is given by

Ui(p) =
∞∑
t=0

δtui,t(pt)

where δ ∈ [0, 1) is common discount factor. Instantaneous utility ui,t(pt) of

each player is

ui,t(pt) = −(pt − π∗ − εi,t)2

where π∗ is a common component in the committee members’ preferences

and εi,t is a stochastic time-varying i−specific preference shock.

The timing of actions in period t is as follows. First, nature determines

εi,t according to the process specified below and the committee convenes

with xt being the default option. Both εi,t and xt are common knowledge.

Second, the chairman C proposes a pair γt = {pt, qt} against default option

γ̄t = {xt, xt}. Third, voting takes place between γt and γ̄t. If P prefers γt

it is implemented (C always votes for her proposal), players receive their

payoffs from the offered policy pt and the offered status-quo qt becomes

default option for the next period, i.e. xt+1 = qt. If P prefers γ̄t, players

receive their payoffs from the default policy xt and the default status-quo

xt becomes default option for the next period, i.e. xt+1 = xt. Finally, the

committee adjourns and the game moves into period t+ 1.

In the text we refer to the pair γt = {pt, qt} C proposes as to (C’s)

proposal or offer, call its first element pt proposed (offered) policy and its

4 An alternative assumption that would not change any of the results is C making a
take it or leave it offer to P . We opt for the voting rules specification as it naturally
adapts once we expand the committee below.
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second element qt proposed (offered) status-quo. The pair γ̄t = {xt, xt}
is then default option or simply default and we abuse notation slightly in

calling xt by the same term.

Without loss of generality we assume that C whose utility maximizing

offer γt coincides with the default option γ̄t proposes γ̄t instead of proposing

a policy she knows would be rejected. It is also easy to see that in any

equilibrium of the game it has to be the case that if P is indifferent between

default γ̄t and C’s proposal γt he votes for γt. As a result C’s offer γt is

always accepted and we do not need to distinguish between proposed and

accepted policies.

Up to this point the model generates dynamic policy making in that

the proposed (and hence accepted) status-quo qt from period t becomes

the default option xt+1 for the t + 1 period. To study how this feature

interacts with the bargaining protocol used by the committee, we contrast

two versions of the model. The first model version and bargaining protocol

is with implicit status-quo. Under this bargaining protocol C’s proposals

are constrained to those that satisfy pt = qt so that the t period status-quo

qt, and hence t+ 1 period default option xt+1, is implicitly defined by the t

period policy pt. The second model version and bargaining protocol is with

explicit status-quo. Under this bargaining protocol t period status-quo qt,

and hence t + 1 period default option xt+1, is explicitly determined during

the committee bargaining.

To close the model we need to specify the distribution of the preference

shocks εi,t. We assume those are generated according to

εi,t =

{
−φ for i = C and φ for i = P with probability rd

0 for i ∈ {C,P} with probability 1− rd

where φ > 0 and rd ∈ [0, 1]. In words, there are two types of periods. With

probability rd bliss points in the instantaneous utility functions of C and

P are π∗ − φ and π∗ + φ respectively. We call those disagreement periods

or D periods for short. The second type of period occurs with probability

1 − rd and are called agreement periods or A periods for short. In these,

bliss points in the instantaneous utility functions of both players are π∗.

Several comments regarding our modelling choices are in order. First,

completely breaking the link between policy and status-quo and giving all
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the proposal power to C is motivated by our interest in the trade-off the

explicit status-quo bargaining protocol creates. On the one hand, it should

lead to more efficient policy outcomes, but it also opens the door to an abuse

of proposal power. We want to see the full effect on both sides and thus opt

for arguably strong assumptions.

Second, having A and D periods in the model reflects our belief that

in recurrent decision making this is a natural assumption. We could have

chosen either purely ideological or purely common preferences, which our

model indeed includes as special cases with rd = 1 or rd = 0. However, it

is easy to show that under both specifications the bargaining protocol plays

no role. It is the interaction with the time varying preferences that creates

an interesting problem to study.

1.3 Two period model

To build intuition for the results below, we first solve a two period version

of the model. All the results are easily derived using backward induction

and we state them without formal proofs.

Lemma 1.1 (Last period). For the last period default option x1 and both

bargaining protocols, equilibrium policy proposals pA,1(x1) and pD,1(x1), in

A and D periods respectively, satisfy

pA,1(x1) = π∗

pD,1(x1) = f(x1, φ)

where f(x, φ) = max{min{2(π∗ + φ)− x, x}, π∗ − φ}.

In the last period there is no procedural link with the future via the

status-quo and hence the bargaining protocol plays no role. It is thus easy

to see why the two policy makers decide on π∗ in A periods as it is a bliss

point in their common utility function.

D period policy then reflects conflict in the committee. P ’s acceptance

set consists of a symmetric interval around his bliss point π∗ + φ with one

boundary given by default option x1, [2(π∗ + φ)− x1, x1]. C maximizes her

utility with bliss point at π∗ − φ by proposing minimum of P ’s acceptance

(the min term) but only if she cannot propose her bliss point (the max

term). The parameter φ captures the interval of disagreement, for x1 ∈
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[π∗−φ, π∗+φ], there is no other policy except for x1 the two policy makers

are willing to agree on. P would reject any policy below x1 and C does not

want to offer any policy above x1 and thus f(x1, φ) = x1.5

C’s and P ’s expected utilities before nature determines the type of last

period, as a function of x1 (and hence as a function of the first period

status-quo),

E [UC,0(x1)] = −rd(pD,1(x1)− π∗ + φ)2 + (1− rd) · 0

E [UP,0(x1)] = −rd(pD,1(x1)− π∗ − φ)2 + (1− rd) · 0,

reflect intertemporal preferences of the two policy makers and are inter-

esting for several reasons. First, both are non-concave and non-monotone.

E[UC,0(x1)] and E[UP,0(x1)] are non-increasing and non-decreasing respec-

tively for x1 ≤ π∗ + φ and vice-versa for x1 ≥ π∗ + φ. This is the reason

why we cannot work with equilibria associated with well-behaved (concave,

monotone) value functions as in, for example, Battaglini and Coate (2007,

2008), as the ill-behaved intertemporal preferences are an inherent feature

of the model.

Second, potential future conflict spills over to the current period through

the conflict in the intertemporal preferences. P prefers default option x1 as

close to π∗ + φ as possible while C prefers it as far away from π∗ + φ as

possible. Thus the committee members have an incentive to manipulate x1

in the first period as it determines their bargaining positions. Under implicit

status-quo bargaining this is done via the enacted policy and under explicit

status-quo bargaining this is done via the enacted status-quo.

Third, E[UC,0(x1)] and E[UP,0(x1)] are constant for x1 /∈ (π∗−φ, π∗+3φ).

For the first period under explicit status-quo bargaining this means that

whenever z /∈ (π∗ − φ, π∗ + 3φ) is an equilibrium status-quo proposal for

some default option, so is z′ /∈ (π∗ − φ, π∗ + 3φ). However, this multiplicity

has no effect on the last period policy. No matter whether z or z′ is pro-

posed, last period P ’s acceptance set includes, on a policy dimension unique,

unconstrained maximizer of C’s overall utility.

5 Notice also that the interval where f(·, ·) is not constant, the interval of default options
for which C’s proposal makes P indifferent between accepting and rejecting and interval
of default options for which C cannot implement her bliss point, all coincide. This is a
more general feature of the model, and it will hold for the first period irrespective of the
type of period or bargaining protocol, and motivates our choice of equilibrium refinement
(definition 1.3) for the infinite horizon model.
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Lemma 1.2 (First period, D). For the first period default option x0, implicit

status-quo protocol policy proposal pID,0(x0) and explicit status-quo protocol

policy and status-quo proposals pED,0(x0) and qED,0(x0) in D periods satisfy

pID,0(x0) = pED,0(x0) = qED,0(x0) = f(x0, φ).

For the implicit status-quo protocol this reflects conflict in terms of

both current and intertemporal preferences. The same holds for the ex-

plicit status-quo, but C can, in principle, offer a policy different from the

status-quo. To see the nature of her trade-off, C can either concede on the

policy dimension in order to gain a better bargaining position on the status-

quo dimension, or vice versa. The strength of those two forces, to satisfy

instantaneous or intertemporal utility, then determines her equilibrium pro-

posal. As we will see below, the two forces exactly cancelling each other,

which leads to pED,0(x0) = qED,0(x0), is a result specific to the two period

model.

Lemma 1.3 (First period, A). For the first period default option x0, equi-

librium policy proposal under the implicit and explicit status-quo protocol,

pIA,0(x0) and pEA,0(x0) respectively, in A periods satisfy

pIA,0(x0) = f(x0, φκ
′)

pEA,0(x0) = π∗

where κ′ = δrd
1+δrd

≤ 1
2 .

First A periods reveal the key difference between the two bargaining

protocols. Under the implicit status-quo bargaining, policy serves two roles.

It is a policy in the standard sense but also determines future bargaining

positions. Agreeing on π∗ in A period would entail, at least for one of the

players, giving up bargaining position relative to x0. Combining current

preferences favouring π∗ and intertemporal preferences favouring π∗ − φ

(π∗ + φ) for C (P ) makes A periods ‘lesser disagreement’ periods with the

degree of conflict given by φκ′. The more probable the true D periods are

and the more players care about future, the more of the conflict spills over

to A periods.

Explicit status-quo bargaining on the other hand implies π∗ is imple-

mented in A periods. With the policy makers’ preferences aligned on the
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policy dimension and, crucially, with the policy and status-quo possibly

different, C does not compromise her bargaining position by proposing π∗

policy. To the contrary, this allows C to propose status-quo that improves

her bargaining position. She has a room to do so since proposing π∗ on the

policy dimension has made P better off compared to the default option x0.

A key advantage of the two period model just discussed is that it delivers

key predictions about the difference in policy outcomes under the two bar-

gaining protocols in a relatively simple framework. On the other hand, with

a fixed time horizon we are unable to discuss the evolution of policies in the

long-run, and the fixed horizon also raises concerns about robustness of the

results presented. For this reason we turn to the infinite horizon version of

the model next.

1.4 Infinite horizon model

This section solves the infinite horizon dynamic bargaining model for the two

bargaining protocols. For technical reasons we restrict the proposal space

along any dimension to lie in a convex compact subset X of R. Hence for

both C’s proposals and default options, we have γt, γ̄t ∈ X2 ⊆ R2. However,

it will become apparent from the model equilibria below that with X taken

to be ‘sufficiently large’, this assumption is without loss of generality.

We focus on Stationary Markov Perfect Equilibria (S-MPE) where strate-

gies in a given period depend only on the type of that period and on the

default option for that period, i.e. only on payoff relevant variables. Focus-

ing on the S-MPE we can drop all time subscripts. We denote by x ∈ X the

default option for a given period with the understanding that it is composed

of a default policy status-quo pair γ̄(x) = {x, x} ∈ X2. Any policy is always

denoted by (appropriately subscripted) p ∈ X and any status-quo is always

denoted by q ∈ X.

For this model, S-MPE will be a combination of several components. For

C, we are looking for four functions, two of them mapping the space of de-

fault options X into proposed policies for each type of period, pD(x), pA(x) :

X2 → X, and the remaining two mapping X into the proposed status-quo,

qD(x), qA(x) : X2 → X. Formally, ρC = {pD(x), pA(x), qD(x), qA(x)} :

X4 → X4 denotes C’s strategy and her proposal in period i ∈ {A,D} given

default option x is γi(x) = {pi(x), qi(x)}. For P , his strategy given period
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i ∈ {A,D} and default option x maps the combination of γ̄(x) and γi(x)

into his vote, hence it is a mapping ρP : X8 → {yes,no}2.

It has to be acknowledged that our definition of ρC and ρP does not allow

for mixed strategies. For P this is driven by the already mentioned fact that

in any equilibrium P ’s voting strategy has to be to vote for C’s proposal

γi(x) whenever indifferent between γi(x) and γ̄(x) for i ∈ {A,D}. For C the

reason behind focusing on pure strategies is twofold. First, we have assumed

above that C whose utility maximizing proposal coincides with the default

option γ̄(x) indeed proposes γ̄(x) instead of coming up with a proposal

she knows would be rejected. Second, below we focus on a certain class of

equilibria (see definition 1.3) for which it will be true that C’s indifference

among K proposals {γ1
i (x), . . . , γKi (x)} for some default option x ∈ X and

i ∈ {A,D} will imply indifference by P among the same proposals. As a

result, in case of C’s indifference between two or more proposals we can pick

one γki (x) out of {γ1
i (x), . . . , γKi (x)} without changing the equilibrium (via

changing the equilibrium value functions defined below) and hence we can

think of ρC as a function instead of thinking of ρC as a distribution on X4.

With this qualification in mind, our definition of S-MPE is as follows.

Definition 1.1 (Stationary Markov Perfect Equilibrium). A pair of strate-

gies ρ∗ = {ρ∗C , ρ∗P } constitutes S-MPE if it constitutes subgame perfect equi-

librium.

Notice that any given pair of strategies ρ = {ρC , ρP } for given x and

given path of A and D periods generates a unique path of implemented

policies {p0, p1, . . .}. Taking expectations over all possible paths gives a

continuation value function for each policy maker who knows x but does

not know whether the next period will be an A or D one,

V ρ
C(x) = E

[ ∞∑
t=0

−δt(pt − π∗ + φID(t))2

]

V ρ
P (x) = E

[ ∞∑
t=0

−δt(pt − π∗ − φID(t))2

]

where ID(t) is D-period indicator function and the superscript ρ captures

dependence on given ρ. Having the continuation value functions, we observe
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these can be equivalently derived as

V ρ
C(x) = rd

[
−(pD(x)− π∗ + φ)2 + δV ρ

C(qD(x))
]

+ (1− rd)
[
−(pA(x)− π∗)2 + δV ρ

C(qA(x))
]

V ρ
P (x) = rd

[
−(pD(x)− π∗ − φ)2 + δV ρ

P (qD(x))
]

+ (1− rd)
[
−(pA(x)− π∗)2 + δV ρ

P (qA(x))
]
.

Finally, we denote by Aρi (x) P ’s acceptance set in period i ∈ {A,D}
given default option x and strategies ρ. The acceptance sets are given by

AρD(x) = {{p, q} ∈ X2| − (p− π∗ − φ)2 + δV ρ
P (q) ≥ −(x− π∗ − φ)2 + δV ρ

P (x)}

AρA(x) = {{p, q} ∈ X2| − (p− π∗)2 + δV ρ
P (q) ≥ −(x− π∗)2 + δV ρ

P (x)}

and both are nonempty as γ̄(x) ∈ Ai(x) for i ∈ {A,D}.
With this notation, C’s problem can be restated in terms of a pair of

the usual Bellman functional equations

UρD(x) = max
{p,q}∈AρD(x)

{−(p− π∗ + φ)2 + δrdU
ρ
D(q) + δ(1− rd)UρA(q)}

UρA(x) = max
{p,q}∈AρA(x)

{−(p− π∗)2 + δrdU
ρ
D(q) + δ(1− rd)UρA(q)}

(1.1)

where C’s continuation value function V ρ
C will be the probability-weighted

sum of the value functions of the two optimization problems, i.e. V ρ
C =

rdU
ρ
D + (1 − rd)UρA. An alternative definition of S-MPE that exploits the

recursive structure of the model and that we use is the following.

Definition 1.2 (Stationary Markov Perfect Equilibrium). A pair of strate-

gies ρ∗ = {ρ∗C , ρ∗P } constitutes a S-MPE if for all x ∈ X and any period

i ∈ {A,D}

1. C’s proposal strategy ρ∗C solves (1.1)

2. P votes for C’s proposal γi(x) if and only if γi(x) ∈ Aρ
∗

i (x).

An equivalent way to express the requirement of the S-MPE is to say we

are looking for ρ giving rise to V ρ
C and V ρ

P such that when C and P max-

imize their utility in the current period, their optimal behaviour is indeed

expressed as ρ. If we can find such a ρ then by the one deviation principle

we have an equilibrium.

Below, when we discuss S-MPE for the two bargaining protocols, it will

become apparent that many of them satisfy an additional restriction in P

being, for a given default option, indifferent between accepting and rejecting
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C’s offer, provided C’s proposal differs from the unconstrained maximizer

of her overall utility. Another way to view this is that as long as the default

option x provides P with any real bargaining power, C’s proposal will pro-

vide him with the minimum utility sufficient for her proposal to pass. We

call S-MPE satisfying this feature Conflict S-MPE (CS-MPE). Denoting by

γρCD and γρCA solutions to the two optimization problems in (1.1) when the

restrictions on {p, q} to lie in P ’s acceptance sets are removed, CS-MPE is

defined as follows.

Definition 1.3 (Conflict Stationary Markov Perfect Equilibrium). A pair

of strategies ρ∗ = {ρ∗C , ρ∗P } constitutes a CS-MPE if for all x ∈ X and any

period i ∈ {A,D}

1. ρ∗ constitute a S-MPE

2. P is indifferent between γi(x) and γ̄(x) provided γCi /∈ Aρi (x).

Our focus on CS-MPE has another rationale as it can be viewed as a fo-

cus on equilibria with the minimum winning coalition property. Whenever

C is constrained by the other committee member her proposal will make

P indifferent between accepting and rejecting. Assuming P is a median

member of some larger committee with C’s proposal accepted if and only

if P accepts, something we show in the context of larger committee in the

proposition 1.7 below, CS-MPE will imply C establishes minimum winning

coalitions supporting her proposals. This is reminiscent of the result by Dug-

gan and Kalandrakis (2012) (see part 4 of their theorem 1) who show that

minimum winning proposals are a natural feature of equilibria in dynamic

bargaining models.6

From here on we focus on the equilibrium strategies and we drop the

superscript ρ whenever the chance of confusion is minimal. Finally, for

the bargaining protocol with implicit status-quo all results of this section

additionally require any policy status-quo pair to have both of its elements

equal.

6 Formally the game just described can be viewed as a mapping from a pair of value
functions, one for each player, into a new pair of value functions. The CS-MPE assumption
makes sure this mapping is ‘well behaved’. Without it, the way in which C reconciles
indifference between two proposals has real consequences for P , inducing jumps in his
value function.
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Equilibrium with implicit status-quo

In this section we prove equilibrium existence and uniqueness result for the

bargaining protocol with implicit status-quo. We then discuss predictions

of the equilibrium about the evolution of policies under implicit status-quo

bargaining.

Proposition 1.1 (S-MPE with implicit status-quo). Assume δ2rd(3−2rd) ≤
1− δ(1− rd). Then there exists unique CS-MPE. Equilibrium proposals sat-

isfy

pD(x) = qD(x) = max {min{z ∈ X|z ∈ AD(x)}, γCD}

pA(x) = qA(x) = max {min{z ∈ X|z ∈ AA(x)}, γCA}

for ∀x ∈ X, where γCD = π∗ − φ and γCA = π∗ − φδrd.

Proof. See appendix 1.A1.

In words, for a given type of period i ∈ {A,D} and default option x,

C proposes the lowest policy out of P ’s acceptance set Ai(x), provided the

policy that is an unconstrained maximizer of her overall utility would be

rejected, that is provided γCi /∈ Ai(x).

The strategy of the proof follows. Existence follows by construction. We

conjecture that the construction will give us a CS-MPE which allows us to

derive P ’s continuation value function VP and hence his acceptance sets AA

and AD. Given the acceptance sets we conjecture that C’s proposal strategy

will be the one given in the proposition allowing us to derive her continuation

value function VC . Having the proposal strategy we note it indeed generates

VP and we confirm strategies generated by VP and VC satisfy definition 1.3

showing that the construction is CS-MPE.

To prove uniqueness of the CS-MPE, we note that it has to generate a

unique VP . What we then need to show is uniqueness of the solution to C’s

dynamic optimization program (1.1) given acceptance sets generated by VP .

We show this using an extended version, which we prove, of the theorem

guaranteeing existence and uniqueness of solutions to Bellman functional

equations from Stokey and Lucas (1989).

The assumption on {δ, rd} in proposition 1.1 ensures existence of the

CS-MPE equilibrium. The assumption can be alternatively expressed as

δ ≤ ϕ(rd) where ϕ(0) = ϕ(1) = 1 and minrd∈(0,1) ϕ(rd) = 7/9 so that in



CHAPTER 1. EXPLICIT AND IMPLICIT STATUS-QUO 37

Figure 1.1: Equilibrium policy with implicit status-quo
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5
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effect we are ruling out cases where the ‘future looms large’ as δ approaches

unity. When this happens the requirement on C’s proposals under CS-MPE,

to bring P to indifference between accepting and rejecting when unable to

propose the unconstrained maximum of her overall utility, might fail in D

periods. Intuitively, with δ large C focuses primarily on her bargaining

position captured by the VC function when determining which policy to

propose. With the VC function non-monotone, C might propose a policy

strictly inside AD, in effect disregarding her instantaneous utility. When

this happen the equilibria become cumbersome to characterize due to non-

continuity of VP so that we rule those cases out by assumption.

To see how the equilibrium from proposition 1.1 looks in graphical form,

figure 1.1 shows a particular parametrization for π∗ = 2, φ = 1, δ = 0.5, rd =

0.5. While proving proposition 1.1 we show that depending on the values of

δ and rd, the equilibrium falls into one of four (mutually exclusive) cases.

For all four of those cases the A period proposed policy pA(x) has exactly

the same shape as the one given in the figure, with the constant part given

by γCA evaluated at particular values of {δ, rd}.
However, there are case dependent differences regarding the shape of the

D period proposed policy pD(x). What is common to all of them is the
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constant and then linear increasing part for low values of x. Nevertheless,

the default option x for which pD(x) reaches a maximum in general differs

depending on the values of δ and rd and the ‘right’ part of pD(x) (decreasing

part in figure 1.1) is not necessarily monotone or even continuous. One

common feature is that it eventually decreases to γCD where it becomes a

constant function again.

Figure 1.1 (and proposition 1.1) shows that the equilibrium shares several

features with the equilibrium in the two period version of the model. It is a

CS-MPE, P is indifferent between accepting and rejecting unless C proposes

the unconstrained maximizer of her utility. Furthermore, A periods are in

effect lesser disagreement periods with degree of conflict captured by φδrd

and the committee members are failing to agree on π∗, common bliss point in

their instantaneous utility functions. Basic intuition for this result is again

the dual role of policy under the implicit status-quo bargaining, it enters

policy makers’ instantaneous utility while at the same time determining their

bargaining position. On the other hand it is the A periods during which C

forgoes her bargaining position. By proposing pA(x) closer to π∗ relative

to the default option x, she compromises her intertemporal preferences in

exchange for the current ones. D periods are then truly disagreement periods

and C is fully using her proposal power to steer policy towards her most

preferred one.

In order to discuss the long-term policy outcomes generated in equilib-

rium, we find it helpful to define a set of default options x which, when

reached, implies a constant path of default options irrespective of the type

of period. Constant default options then imply policies alternating between

two (not necessarily) different values, one for A periods and the other for D

periods. We call such a set a set of stable default options and define it along

with two notions of efficiency in the following definition.

Definition 1.4 (Stable default options and efficiency). Set S ⊆ X defined

by

S = {x ∈ X|qA(x) = qD(x) = x}

is called set of stable default options (stable set).

We say bargaining displays A-efficiency whenever

pA(x) = π∗.
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We say bargaining displays D-efficiency if

pD(x) = p∗

for some p∗ ∈ [π∗ − φ, π∗ + φ] across D periods.

The rationale behind the definition of stable set is that once the bar-

gaining reaches x ∈ S, resulting status-quo outcomes are constant forever

for any path of A and D periods. If additionally we have pA(x) = pD(x) for

all x ∈ S we can say that the bargaining outcomes are unresponsive to the

changing preferences of the committee members.

Our notion of efficiency then comes from a static Pareto efficient mech-

anism implementing an infinite sequence of policies in the current environ-

ment. As we show in appendix 1.A2, such a mechanism implements π∗ in A

periods and p∗ ∈ [π∗ − φ, π∗ + φ] in D periods. The notion of A-inefficiency

whenever pA(x) 6= π∗ comes from the fact that the policy makers fail to

agree on their current-period most preferred policy π∗ due to their concerns

about their bargaining position in the future. Given A period and default x

such that pA(x) 6= π∗, if they could sign a binding contract specifying that

the next period default option will be x irrespective of today’s policy (which

they would set to π∗), both of them would be made better off. The notion

of D-inefficiency on the other hand stresses the fact that both policy makers

have a preference for policy smoothing. Finally, note that our notion of

A-efficiency looks at each A period individually while D-efficiency compares

policy decisions reached in different D periods.

Discussing equilibrium policy outcomes is further complicated by the fact

that those will in general depend on the default x with which bargaining

starts and on the path of A and D periods which is stochastic. Nevertheless,

denoting by xt(x) ∈ X the default option after t periods of equilibrium play

starting with default option x and some path of A and D periods, the

following proposition captures the key features.

Proposition 1.2 (Policy outcomes with implicit status-quo). CS-MPE

from proposition 1.1 generates policy and status-quo decisions satisfying fol-

lowing.

1. If x ∈ S then the policy outcomes display D-efficiency in all subsequent

periods



CHAPTER 1. EXPLICIT AND IMPLICIT STATUS-QUO 40

2. If x ∈ S then pA(x) = pD(x) ∈ [π∗ − φδrd, π∗ + φδrd]

For initial default option x0 being continuous random variable with pdf

f(x0) defined on X, for any t = 1, 2, . . .

3.
∫
x0∈X P(xt(x0) /∈ S)f(x0)dx0 ≤ rtd

4.
∫
x0∈X P(pA(xt(x0)) = π∗)f(x0)dx0 = 0 unless rd = 0.

Proof. See appendix 1.A1.

Recalling the equilibrium in figure 1.1 the intuition behind the result is

straightforward. For any default option x ∈ S we have policies constant

not only in D periods (part one) but also in A periods (part two). For the

third part, for any default option x in A period, policy and hence status-quo

reaches S immediately and can stay out of S only for the path of D periods

with the probability of t consecutive D periods being rtd. The last part then

comes from the fact that the set of default options in X that can bring π∗

as a policy outcome in the future for some combination of A and D periods

has zero measure.

What proposition 1.2 says is that in CS-MPE from proposition 1.1 un-

der the bargaining protocol with implicit status-quo, bargaining outcomes

eventually become stable for any distribution of initial default option (part

three). When this happens the policy outcomes display D-efficiency (part

one) on the one hand but become unresponsive to the changing preferences

of the two policy makers on the other (part two) with the policy constant

henceforth. At the same time, unless rd = 0 for any distribution of initial de-

fault option the chance that the bargaining satisfies A-efficiency is zero both

on the path to S and once it is reached (part four). In other words, in the

CS-MPE under the implicit status-quo bargaining there is no equilibrium

force that would bring the bargaining outcome eventually to A-efficiency.

Equilibrium with explicit status-quo

We now show how policy outcomes change when C’s proposals are not re-

stricted to those with policy and status-quo equal. The first result we prove

is that policy in A periods is equal to π∗ for any default option. The logic

behind the result is that since in the A periods the preferences of the two

policy makers are aligned along the policy dimension, there is no reason
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they should not be able to reach an agreement on π∗, as doing so needs not

compromise their bargaining position embodied in status-quo. The intuition

is confirmed by the proposition.

Proposition 1.3 (pA(x) with explicit status-quo). In any S-MPE for any

default option x ∈ X
pA(x) = π∗.

Proof. See appendix 1.A1.

A key strength of proposition 1.3 is that it applies to any S-MPE under

the explicit status-quo bargaining protocol and shows that this bargaining

protocol allows the committee members to reach consensus in A periods.

What the proposition does not ensure is existence of such S-MPE, which is

what the next proposition does.

Proposition 1.4 (S-MPE with explicit status-quo). Assume δ ≥ 1
5rd

, δ ≥
1− r2

d and δ ≤ 1− (1−rd)2

2 . Then there exists a unique CS-MPE in terms of

associated value functions VC and VP . Equilibrium proposals satisfy

1. pA(x) = π∗ for ∀x ∈ X

2. VC(x) ≤ VC(qA(x)) for ∀x ∈ X

3. VC(qD(x)) ≤ VC(qD(x′)) for x, x′ ∈ X satisfying AD(x) ⊆ AD(x′)

4. C proposes γCD (γCA) for ∀x ∈ X such that γCD ∈ AD(x) (γCA ∈
AA(x))

where γCD = {π∗ − φ, z} and γCA = {π∗, z′} for some z, z′ ∈ X \ (π∗ −
φ, π∗ + 3φ).

Proof. See appendix 1.A1.

In words, equilibrium under explicit status-quo bargaining involves pol-

icy equal to π∗ in A periods (part one) with C using A periods to improve

her bargaining position (part two). Because C can improve her bargaining

position in A periods, she is willing to surrender more of it in D periods in

which P has more bargaining power (part three). Finally, C’s unconstrained

proposals are γCA and γCD in A and D periods respectively, implementing

C’s instantaneous utility bliss point and status-quo that maintains her bar-

gaining position (part four).
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The idea of the proof is similar to the proof of proposition 1.1. For

the existence part we partially characterize the equilibrium, conjecturing

first that we are characterizing CS-MPE. This gives us the VP function and

associated acceptance sets AA and AD. We prove these are well behaved,

which allows us to prove existence of C’s continuation value function VC

as a solution to C’s dynamic optimization program (1.1). We then confirm

that the proposal strategies generated by VC indeed satisfy definition 1.3

of CS-MPE. Uniqueness in terms of associated value functions then follows

from the uniqueness of VP in any CS-MPE and resulting uniqueness of VC .

The key difficulty in the proof of proposition 1.4 and the source of the

assumptions on {δ, rd} is confirming that proposal strategies associated with

VC indeed satisfy the definition of CS-MPE. What we need to ensure is that

intertemporal incentives are strong enough (first two conditions) so that C

is willing to use the status-quo dimension of her proposal space in A periods

to bring P to indifference between accepting and rejecting as the definition

of CS-MPE demands. On the other hand we need to make sure that the

intertemporal incentives are not too strong (third condition). When this

happens, in D periods P is willing to accept a wide range of policies when

offered an even slightly more favourable status-quo compared to the default

option. One of those policies is C’s D period most preferred policy π∗ − φ.

With proposals involving π∗ − φ policy possibly violating requirements of

CS-MPE, we need to make sure that C foregoes only little of her bargaining

position exactly for those values of {δ, rd}, somewhat paradoxically, when

the bargaining position is most valuable.

Figures 1.2 and 1.3 show equilibrium proposals from proposition 1.4

on the policy and status-quo dimension respectively for the same values

of parameters used in figure 1.1. Even though we do not have an explicit

expression for VC we use computer simulation to estimate VC and associated

equilibrium proposal policies (see appendix 1.A3 for details of the numerical

simulation). From proposition 1.4 we know that proposals on the status-

quo dimension need not be unique and involve z, z′ ∈ X \ (π∗ − φ, π∗ +

3φ) for defaults such that γCD ∈ AD(x) and γCA ∈ AA(x). When this

happens figures 1.2 and 1.3 always use z = z′ = π∗ − φ. Notice also that

δ = 0.5 and rd = 0.5 used in the figures do not satisfy the assumption

on {δ, rd} from proposition 1.4. Nevertheless, given the simulated VC and

associated proposal strategies it is easy to confirm those satisfy the definition
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Figure 1.2: Equilibrium policy with explicit status-quo
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5
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of CS-MPE and hence that the assumptions on {δ, rd} in proposition 1.4 are

sufficient but not necessary for existence of CS-MPE.

Figures 1.2 and 1.3 along with the proposition 1.4 show that under ex-

plicit status-quo bargaining, equilibrium in the infinite horizon again resem-

bles equilibrium in the two period version of the model. It is a CS-MPE

equilibrium, A period policy proposals are equal to π∗ and C uses A periods

to gain a better bargaining position. For any default option x, by offering

π∗ on the policy dimension P is made better off compared to γ̄(x) = {x, x},
which allows C to gain a better bargaining position on the status-quo di-

mension in terms of proposing qA(x) providing her with higher intertemporal

utility compared to x.

This in turn makes C willing to forego some of her bargaining position in

D periods, a feature not present in the two period model. Intuitively, with

C knowing she can gain bargaining position in future A periods without

sacrificing on the policy dimension, she is willing to forego some of that

bargaining position in D periods in exchange for a more favourable policy

outcome. In the two period model any future A period is necessarily the

last one with no bargaining position to be gained and hence with C not

willing to trade-off policy for status-quo or vice versa in the first period,
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Figure 1.3: Equilibrium status-quo with explicit status-quo
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5
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even though it might be a disagreement one.

The absence of an explicit expression for VC and subsequently for C’s

proposal strategies further complicates characterization of the policy out-

comes under explicit status-quo bargaining. Nevertheless, we are able to

prove following.

Proposition 1.5 (Policy outcomes with explicit status-quo). CS-MPE

from proposition 1.4 generates policy and status-quo decisions satisfying the

following.

1. If x ∈ S then the policy outcomes display D-efficiency in all subsequent

periods

2. If x ∈ S then pA(x) = π∗ and pD(x) = π∗ − φ for almost all x ∈ S

For an initial default option x0 being a continuous random variable with

pdf f(x0) defined on X, for any t = 1, 2, . . .

3.
∫
x0∈X P(xt(x0) /∈ S)f(x0)dx0 ≤ 1− rd

∫
x0∈X\(π∗−φ,π∗+3φ) f(x0)dx0

−(1− rd)
∫
x0∈X\(π∗+φδrd−κ,π∗+φδrd+κ) f(x0)dx0

4.
∫
x0∈X P(pA(xt(x0)) = π∗)f(x0)dx0 = 1
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where κ = φ
√
δrd(3 + δrd).

Proof. See appendix 1.A1.

What the proposition 1.5 says is that in CS-MPE from proposition 1.4

under the bargaining protocol with explicit status-quo, when the bargaining

outcomes become stable they display D-efficiency (part one). When this

happens policy outcomes will be π∗ in A periods and π∗ − φ in D periods

except for a finite set of discrete values of default options in S (part two).

Indeed, in the proof of proposition 1.5 we show that the only other candidate

default option for inclusion in the S set is x = π∗. With π∗ ∈ S we would

have pA(π∗) = pD(π∗) = π∗. As a result under the explicit bargaining

protocol, even when the bargaining outcomes become stable they almost

always still reflect the changing preferences of the two policy makers unlike

in proposition 1.2 for implicit status-quo bargaining and are both A-efficient

and D-efficient, where the former holds no matter whether the bargaining

has reached the stable set or not (part four).

Another difference explicit status-quo bargaining brings is that we can-

not put an upper bound on the probability of the bargaining staying outside

the stable set that would converge to zero over time (part three). We know

from the proof of proposition 1.4 that for an initial period being an A (D) one

and initial default option x0 satisfying x0 ∈ X \(π∗+φδrd−κ, π∗+φδrd+κ)

(X \(π∗−φ, π∗+3φ)), we can set C’s equilibrium proposal on the status-quo

dimension equal to qA(x0) = qD(x0) = π∗−φ and qA(π∗−φ) = qD(π∗−φ) =

π∗− φ such that the bargaining becomes stable in the initial period and re-

mains so. When those conditions fail, convergence of the default option to

the stable set S remains an open question.

To shed light on the convergence question we generated 10.000 one hun-

dred period long random paths of A and D periods for the parameter values

used in figures 1.2 and 1.3. For each path, we derived status-quo proposed

in the last period x100(x0) as a function of the initial default option x0. Av-

eraging over all the 10.000 paths gives figure 1.4, also depicting (thin lines)

equilibrium status-quo offers qD(x) and qA(x).

Looking at figure 1.4, for default options x with qD(x) < π∗ and qA(x) <

π∗, C proposes qA(x) < x in A periods improving her bargaining position by

more than by how much it loses it in D periods by proposing qD(x) ≥ x. As

a result status-quo in the long term converges to π∗−φ, or more precisely to
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Figure 1.4: Long-run status-quo with explicit status-quo
average over 10.000 random 100 period long paths
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5
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the X \ (π∗−φ, π∗+ 3φ) set out of which figure 1.4 selects π∗−φ. In terms

of policy outcomes this implies convergence to π∗ − φ in D periods and to

π∗ in A periods with C becoming effectively a dictator in the committee.

We call such a committee authoritarian or the game being in authoritarian

regime. However, C has to build up her dominant position gradually over

time using A periods to improve her bargaining position and until the status-

quo reaches π∗−φ, she still has to take into account preferences of the other

committee member when crafting her proposal.

For default options x with qD(x) > π∗ and qA(x) > π∗, status-quo in the

long term converges to π∗ with C never proposing status-quo that would

start the convergent process to π∗ − φ discussed above. Such a status-quo

is not in P ’s acceptance set in A periods and would involve considerable

loss on the policy dimension in D periods. With the status-quo converging

to π∗ policy outcomes converge to the same value in both types of periods

with the committee becoming consensual and the D period policy outcomes

midway in between the preferences of the committee members. We call such

a committee collegial or the game being in collegial regime.

Finally, for default options x with qD(x) > π∗ and qA(x) < π∗, the long
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term outcome of the bargaining depends crucially on the nature of the first

period. If the bargaining starts with an A period, C is able to start the

convergent process towards π∗ − φ and the committee eventually becomes

authoritarian. Should the bargaining start with D period, C’s proposal

starts the convergence to π∗ and the committee eventually becomes collegial.

The line in figure 1.4 between π∗ and π∗ − φ then reflects the fact that a

proportion rd of the paths converges to π∗−φ whereas the remaining paths

converge to π∗.

Notice the strong path dependency displayed by the model. For some

default options the committee eventually becomes authoritarian, for some

default options it eventually becomes collegial and for some default options

the first period plays a crucial role in determining whether the committee

becomes of the former or latter type.

Comparison of the bargaining protocols

First, we want to provide an answer to the question of comparison between

the bargaining protocols from the perspective of the two policy makers.

Assume C and P before starting the game just analysed and before the first

default option is known, have an option to choose between the bargaining

protocols. Would they prefer either of the protocols and does it depend on

their beliefs about the initial default option?

Figure 1.5 illustrates the answer to this question. It depicts the value

functions of both policy makers for the two bargaining protocols. All the

functions are based on the analytical results except for the VC function in the

model with explicit status-quo, which comes from the simulation exercise.

Note first that the intuition about C preferring the bargaining proto-

col with explicit status-quo as it relaxes the constraint on her optimization

problem is misleading as it does not take into account changes in P ’s strate-

gic behaviour. Nevertheless, figure 1.5 suggests C indeed prefers explicit

status-quo bargaining protocol for any beliefs about the initial default op-

tion.

For P figure 1.5 suggests he is indifferent between the two bargaining

protocols for intermediate values of initial default and strictly prefers bar-

gaining under implicit status-quo otherwise. The intuition behind this result

is that for the default options x for which P is indifferent between C’s pro-

posal γi(x) and γ̄(x) for i ∈ {A,D} under both bargaining protocols, his
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Figure 1.5: Equilibrium value functions
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5
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continuation value is equal under the two protocols. On the other hand for

the default options for which C is able to extract all the bargaining power

in the long term under the bargaining with explicit status-quo, P prefers

the other bargaining protocol as he retains some influence over the enacted

policies, which then reflect, at least to some extent, his preferences.

Denoting by V j
i (x) the value function of player i ∈ {C,P} under bar-

gaining protocol j ∈ {E, I} for default option x, the next proposition then

shows that the situation depicted in figure 1.5 is a general feature of the

model.

Proposition 1.6 (Policy makers’ choice over bargaining protocol).

1. V E
C (x)− V I

C(x) ≥ 0 for x ∈ X

2. V E
P (x)− V I

P (x) ≤ 0 for x ∈ X where the inequality is strict for

x ∈ X \ [π∗ − φδrd, π∗ + 3φδrd]
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3. V E
C (x)− V I

C(x) + V E
P (x)− V I

P (x) = k, where

k ≥ 0 for x ∈ [π∗ − φδrd, π∗ + 3φδrd]

k = −2φ2δrd(1− rd)
1− δ

for x ∈ X \ (π∗ − φ, π∗ + 3φ)

Proof. See appendix 1.A1.

The third part of the proposition shows choice over the bargaining pro-

tocol by players who are also uncertain over the role they will play in the

game. Another interpretation is that it shows which bargaining protocol is

preferred from the utilitarian perspective. For non-extreme values of the

default option it is the explicit status-quo bargaining protocol. It allows

for the A-efficient policy outcomes and the initial bargaining position of the

P player prevents C from using her proposal power to determine D period

policy fully according to her preferences.

On the other hand, for extreme values of the default option the implicit

status-quo protocol dominates from the utilitarian perspective. Although

it does not deliver A-efficiency it prevents C from fully using her proposal

power. The explicit status-quo would allow C to hold on to her bargaining

power, becoming a dictator in the committee.

The proposition also shows by how much the implicit status-quo protocol

dominates for x ∈ X\(π∗−φ, π∗+3φ), i.e. for default options generating the

authoritarian regime under explicit status-quo bargaining. The difference

increases with δ, is maximized for rd = 1
2 and equal to zero for rd ∈ {0, 1}.

The intuition for the effect of rd comes from the benefits and costs of the

explicit status-quo protocol. It delivers A-efficiency but creates too much

proposal power, implying extreme policies viewed from the perspective of

the committee as a whole. With rd = 1 we need not be concerned either with

A-efficiency, as there are no A periods, or with the excessive proposal power,

as there are no A periods during which C gives up her bargaining position

under the implicit status-quo protocol. At the other extreme, with rd = 0

the model is a common preference one with no concerns over efficiency or

excessive proposal power present as well.
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Multi-member committee

Finally, to prepare for the next section, we want to show that the results

presented above apply to any N member committee with fixed chairman,

common preferences in A periods and D period preference shocks −φ and

φ of the chairman and (not necessarily fixed) median committee member

respectively. We call such a committee essentially two-member one and

define it as follows.

Definition 1.5 (Essentially two-member committee). We say a committee

composed of N (odd) members is an essentially two-member one if it pos-

sesses a fixed chairman with proposal power, has common preference for π∗

in A periods, i.e. εi,t = 0 for i ∈ {1, . . . , N}, and its D period preference

parameters satisfy either

1. εi,t = φi for i ∈ {1, . . . , N} and φC = −φ, φm = φ are chairman’s and

median member’s preference parameters respectively,

or

2. εi,t = −φ for i = C and (N − 1) × 1 vector of remaining preference

parameters εt = {εi,t}′i∈{1,...,N}\{C} satisfies εt = φ+νt where νt is (pos-

sibly each D period specific) vector of random variables with number

of negative, zero, positive elements equal to N−3
2 , 2, N−3

2 respectively

and E[νi,t] = 0 for i ∈ {1, . . . , N − 1} where νi,t is i-th element of νt.

In words, any committee is essentially a two-member one if there is a

fixed chairman with proposal power and D period preference shock equal to

−φ, the whole committee has common preferences in A periods and the D

period preference parameters of the remaining committee members satisfy

one of the conditions from the definition. The first condition requires the D

period preference parameters to be fixed across periods for a given commit-

tee member and existence of a median member (among N members) with a

preference shock equal to φ. The second condition allows for time varying

D period preferences but requires those to be equal to φ on average and re-

quires existence of two (each D period possibly different) median committee

members (among N − 1 members) with preference shock equal to φ. The

reason for requiring two median members is that for the second condition

we are now choosing among the N − 1 non-chairman members, which is an
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even number, and need an equal number of those members with higher and

lower preference shock φ+ νi,t.

Next we need to rule out equilibria that possibly arise due to the com-

mittee members voting against their preferences as they realize they are not

pivotal. Following Baron and Kalai (1993) we restrict attention to stage-

undominated voting strategies that for all members n ∈ {1, . . . , N}, all

periods i ∈ {A,D}, all default options x ∈ X and all proposals γ(x) ∈ X2

satisfy

n votes for γ(x) (against γ̄(x))⇔ γ(x) ∈ Ai,n(x).

where Ai,n(x) is acceptance set of player n in period i and default option x.

With the preliminaries established, we are able to prove the following

proposition asserting that the results presented above can be equally applied

to any larger committee.

Proposition 1.7 (Committee with more than two members). Bargaining

(policy, status-quo) outcomes under both bargaining protocols for any es-

sentially two-member committee with its members using state-undominated

strategies correspond to the bargaining outcomes of a game played between

the committee chairman and player with median preference shock and thus

to the results presented above.

Proof. See appendix 1.A1.

1.5 Re-interpretation of asymmetric FOMC directive

In this section we interpret the asymmetry in FOMC directive in light of

our model. We first discuss several reasons that make us believe that the

FOMC decision making process is better viewed as proceeding under the

explicit status-quo bargaining protocol. Adopting this perspective, we show

that the model can replicate existing stylized facts about FOMC decision

making. Finally, we discuss a novel interpretation of the asymmetry our

model provides.

The structure of the model above is largely inspired by the decision

making process in most modern central banks (see Mahadeva and Sterne,

2000, for further details). Typically a committee of several members with

a well defined chairman is responsible for repeated decisions on a single
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monetary policy instrument with a goal to anchor inflation to some prede-

termined level. While having a single objective, the committee members

do not always agree on the most appropriate stance of monetary policy,

with differences driven both by personal preferences as well as by the ex-

ternal economic environment. Indeed, Chappell, McGregor, and Vermilyea

(2005) show significant statistical differences in both intercepts and effects

of economic variables in the ‘individual reaction functions’ of the FOMC

members (see Blinder, 2007, for a discussion of possible causes of the pref-

erence heterogeneity in monetary policy committees). This opens up the

possibility of time-varying disagreement which our model captures in the

agreement/disagreement dichotomy. Finally, in most central banks the mon-

etary policy instrument serves also as the status-quo for the next committee

meeting.

FOMC, the decision body of the US Federal Reserve System, makes

monetary policy decisions but also decides on the ‘asymmetry’, ‘bias’ or

‘tilt’ in its directive. What is formally known as the domestic policy direc-

tive is a set of operating instructions sent to the Open Market Trading Desk

at the Federal Reserve Bank of New York. Every directive, in addition to

current policy, specifies FOMC’s expectations regarding future policy, speci-

fying either asymmetry towards policy tightening or easing (asymmetric) or

no change (symmetric). In its original form, the asymmetry has been used

between 1983 and 1999 (see Thornton and Wheelock, 2000, for historal ac-

count), evolved endogenously, and FOMC has never clarified the meaning it

has in its decision making. Additionally, the meaning seems to have evolved

over time.7

We interpret asymmetry in the FOMC directive as a possible difference

between the current policy and a status-quo for several reasons. First, its

original intent has been to specify a contingency under which the Open Mar-

ket Trading Desk would change the FOMC operating target before the next

FOMC meeting. The transcript of the discussion during the first FOMC

meeting to specify asymmetry in the directive reveals this intention. Chair-

man Volcker summarized that the whole proposed directive ‘says we don’t

7 FOMC transcripts reveal a certain ambiguity regarding the meaning of the asymmet-
ric directive. Chairman Greenspan, when asked this question by one of the new FOMC
members, answers that FOMC does not have a ‘specific formulation. Asymmetry merely
means a general sense of the Committees’s disposition or the direction’ of its bias (Federal
Reserve System, 2011, July 5-6, 1994 transcript, p. 69).
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want to tighten right now but we do contemplate easing if the aggregates are

noticeably, or quite visibly, soft’ (Federal Reserve System, 2011, February

8-9, 1983 transcript, p. 83).

Second, it authorized the FOMC’s ‘chairman to notch up the Fed funds

rate if necessary before the next regular meeting’ (Greenspan, 2007, p. 102).

Intermeeting change in the FOMC operating target, whether upon contin-

gency or at the chairman’s discretion, then implies change in the status-quo

in between the committee meetings. At any given meeting the committee

might find itself facing a default option different from the policy agreed upon

at the previous meeting.

Third, the FOMC used the asymmetry to signal its future intentions

over the intermediate horizon.8 A difference between the policy and the

status-quo then comes from credibility concerns.9 Should the FOMC signal

its intention to, say, tighten monetary policy without eventually doing so,

its credibility would be compromised. Chairman Greenspan saying ‘And

I’m concerned about the credibility of the [FOMC] sitting with an asym-

metric directive time and time again when the purpose of that is essentially

to signal an intermediate trend’ (Federal Reserve System, 2011, August 17,

1993 transcript, p. 36) lends itself to this explanation. On another occa-

sion, after six consecutive meetings with no change in policy but asymmetry

towards tightening, chairman Greenspan in his opening statement of the

‘policy go-around’ part of the FOMC meeting says that ‘It is quite evident

that we have come to a point, as we suggested we might at the last meeting,

[. . . ] We have to ‘deliver” (Federal Reserve System, 2011, March 25, 1997

transcript, p. 44). The three reasons taken together make us believe it is

more appropriate to think of the FOMC as having the explicit status-quo

bargaining protocol.

Notwithstanding the ambiguity regarding the meaning of the asymmetric

directive, it generated several papers investigating its role in FOMC decision

making. Three hypotheses have been put forward. First, the authorizing

intermeeting policy adjustments hypothesis holds that the asymmetry gave

8 Until early 1999 the directive has been published only as a part of FOMC minutes
few days after its next meeting. Hence its immediate signalling role was rather limited. As
Blinder (2007) notes, the long lag between the meeting and the publication of the minutes
means that the ‘minutes draw little press or market attention when they are published’.

9 Recently, several central banks started publishing expected future policy paths along
with their current monetary policy decision (see Kahn, 2007, for details). Present argu-
ment would apply to those central banks as well.
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the FOMC chairman discretion to adjust policy stance in between regularly

scheduled FOMC meetings. Chappell, McGregor, and Vermilyea (2007)

confirm this hypothesis using data from the 1987 to 1992 period during which

the intermeeting policy adjustments were common and refute it for the 1993

to 1999 period during which the intermeeting policy adjustments were rare.

Thornton and Wheelock (2000) refute the hypothesis using data from the

1983 to 1999 period. However, with the intermeeting policy adjustments

rare in the second half of their sample, they are effectively refuting it for the

first half contradicting results of Chappell et al. (2007).

Second, the predicting future policy changes hypothesis holds that the

asymmetry predicts the direction of future policy changes and increases

their likelihood. Regarding the direction part of the hypothesis Thornton

and Wheelock (2000), Lapp and Pearce (2000) and Pakko (2005) all confirm

it using data from the 1983 to 1999, 1984 to 1998 and 1984 to 2003 periods

respectively. Evidence on the likelihood part of the hypothesis is mixed with

Thornton and Wheelock (2000) refuting it while Lapp and Pearce (2000) and

Pakko (2005) reach an opposite conclusion.

Third, the consensus building hypothesis holds that the asymmetry al-

lowed FOMC chairman to craft consensus among the FOMC members.

Thornton and Wheelock (2000), Meade (2005) and Chappell et al. (2007)

all confirm this hypothesis using data from the 1983 to 1999, 1989 to 1997

and 1987 to 1992 periods respectively, while the last paper refutes it for the

1993 to 1999 sample.

With our model silent on the intermeeting policy adjustment hypothe-

sis, we focus on the latter two hypotheses and ask if our model is consistent

with either of them.10 In order to see how the two hypotheses are reflected

in FOMC decision making, we use data about its decisions. For each of 48

meetings between February 4, 1994 and December 12, 1999 (inclusive) we

record the change in the federal funds rate target and the adopted asym-

metry in FOMC directive.11 The reason for focusing on the period starting

10 Intermeeting policy adjustments by FOMC chairman have become increasingly rare
during the 1990’s. For example, in the 1994 through 1999 period there have been only
two intermeeting changes (see Thornton and Wheelock, 2000, for further details).

11 While the federal funds rate target has not become FOMC’s operating target until
August 1997 with extent of restraint on commercial bank reserve positions being its oper-
ating target prior, there is considerable consensus that FOMC has been shifting its focus
from the restraint on reserve positions to the federal funds rate as its operating target well
before 1997 (see Thornton and Wheelock, 2000, for detailed discussion).
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with the February 4, 1994 meeting is that it marks beginning of FOMC’s

practice of announcing target changes immediately upon making them and

the beginning of the practice of making target changes almost exclusively at

the regular FOMC meetings. The December 12, 1999 meeting is then the

last meeting before the asymmetry in FOMC directive was replaced by a

‘balance of risk assessment’.12

Existing hypotheses vs. simulated data

One way to generate theoretical predictions of our model is to simulate

random path of equilibrium policy and status-quo proposals. To do so we

took C’s equilibrium proposal strategies depicted in figures 1.2 and 1.3 and

generated 100.000 random 100 period long paths of policy and status-quo

decisions, {p1, . . . , p100} and {q1, . . . , q100}, with initial default option x0

uniformly distributed on the [π∗ − φ, π∗ + φ] interval.13 We classify each

meeting in period t ∈ {2, . . . , 100} of a given path as resulting in policy

increase, no change or decrease depending on whether pt − pt−1 ≥ χ, |pt −
pt−1| < χ or pt − pt−1 ≤ −χ respectively. Each meeting also generates

asymmetry towards increase, no change or decrease depending on whether

qt − pt ≥ χ, |qt − pt| < χ or qt − pt ≤ −χ respectively. We set χ = 0.075 in

order to match approximately the empirical ratio of the number of meetings

resulting in no policy change to the number of meetings resulting in policy

change (2.20). Finally, we rescale all data in the simulated sample to mach

the number of meetings in the FOMC sample (48).

Table 1.1 shows data for the predicting future policy changes hypothesis,

recording policy change during the given meeting and asymmetry adopted

during the previous meeting. FOMC data clearly show support for the di-

rection part of the hypothesis with FOMC never decreasing (increasing) the

federal funds rate target with tightening (easing) asymmetry in its directive

adopted previously. Similar holds for the simulated data with asymmetry to-

wards policy increase (decrease) never followed by policy decrease (increase)

12 Alternatively we could have focused on the period up to March 30, 1999 meeting
after which FOMC began its practice of publishing statement immediately after each
meeting that also included asymmetry contained in its directive (Farka, 2010), but none
of the results would be substantially altered. Nor would the results change had we taken
our data to start with the February 8-9, 1983 meeting, the very first one to specify the
asymmetry in FOMC directive.

13 We also experimented with either 2 period long paths or x0 distributed uniformly on
[π∗ − φ, π∗ + 3φ] with little change in the results.
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Table 1.1: Predicting future policy changes hypothesis
t+ 1 period policy change and t period asymmetry

t+ 1 period policy change

t period
asymmetry

FOMC sample Simulated sample

+ 0 − + 0 −

+ 7 14 0 1 1 0*

0 3 18 4 7 25 0

− 0 1 1 0* 7 7

Note: Number of meetings in each cell. FOMC sample from Febru-
ary 4, 1994 to December 12, 1999. Simulated data rescaled and
rounded to 48 meetings. * zero before rounding.

during the subsequent meeting.

For the likelihood part of the hypothesis, which holds that the asymmet-

ric directive is associated with higher likelihood of policy change, results are

mixed. FOMC meetings data in table 1.1 show that FOMC changed the

federal funds rate target at 15 of its 48 meetings (31.3%) while conditional

on asymmetric directive adopted at a previous meeting, FOMC changed the

federal funds rate target at 8 of 23 meetings (34.8%). A simple proportions

test of the hypothesis that 34.8% equals 31.3% (as opposed to the alterna-

tive of the former percentage being higher) yields insignificant test statistics

(p-value 0.36).14 Simulated data then show policy change at 15 out of 48

meetings (31.3%) and conditional on asymmetric directive at 8 out of 16

meetings (50.0%) with test statistics for the test of 50.0% being equal to

31.3% (with the same alternative as above) marginally significant (p-value

0.05).

In order to test the consensus building hypothesis we replicate the argu-

ment from Thornton and Wheelock (2000). They argue that the asymmetry

in FOMC directive serves a consensus building role, with the asymmetric

directives adopted more often during the meetings with no policy change

as opposed to meetings with a policy change. Table 1.2 shows data for the

consensus building hypothesis, recording policy change during given meeting

and asymmetry adopted during the same meeting.

FOMC data in table 1.2 show that the asymmetric directive has been

14 This test is based on normal approximation of binomial with the test statistic equal
to (r′ − r)/

√
r(1 − r)/n standard normal distributed. In this case r′ = 0.348, r = 0.313

and n = 23. We use similar test as Thornton and Wheelock (2000) for comparability.



CHAPTER 1. EXPLICIT AND IMPLICIT STATUS-QUO 57

Table 1.2: Consensus building hypothesis
t period policy change and t period asymmetry

t period policy change

t period
asymmetry

FOMC sample Simulated sample

+/− 0 +/− 0

+/− 3 20 8 8
0 12 13 7 25

Note: Number of meetings in each cell. FOMC sample from
February 4, 1994 to December 12, 1999. Simulated data
rescaled to 48 meetings.

adopted at 23 out of 48 meetings (47.9%) while conditional on no policy

change at the same meeting the asymmetric directive has been adopted at

20 out of 33 meetings (60.6%). Using the same test as above to test the

hypothesis that 60.6% equals 47.9% (as opposed to the alternative of the

former percentage being higher) produces marginally significant test statis-

tics (p-value 0.07). For the simulated data we obtain asymmetric directive

adopted at 16 out of 48 meetings (33.3%) and conditional on no policy

change asymmetric directive adopted at 8 out of 33 meetings (24.2%) with

test statistic for the test of 24.2% being equal to 33.3% (with the same

alternative as above) insignificant (p-value 0.87).

Existing hypotheses vs. authoritarian regime

Comparison of the simulated and FOMC decision data faces two possible

objections. First, it is dependent on the choice of values for the model

parameters. Second, empirical literature on FOMC decision making often

notes dominance of chairman Greenspan (see for example Chappell et al.,

2005). Hence comparison to the simulated data, which capture convergence

to the authoritarian or the collegial regimes explained in the context of

discussion of figure 1.4, might not be appropriate.

Table 1.3 shows the comparison the model generates assuming the bar-

gaining has already converged to the authoritarian regime. For the pol-

icy, AA and DD paths generate no change while AD and DA paths gen-

erate policy decrease and increase respectively, as pD(x) = π∗ − φ and

pA(x) = π∗ in the authoritarian regime. For the asymmetry we have

qD(x) = qA(x) = π∗ − φ in the authoritarian regime and hence A peri-
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Table 1.3: Authoritarian regime
predicting future policy/consensus building hypothesis

path probability asymmetry policy change

t− 1 t t

AA (1− rd)2 − − 0
AD rd(1−rd) − 0 −
DD r2

d 0 0 0
DA rd(1−rd) 0 − +

ods produce asymmetry towards policy decrease while D periods produce

asymmetry towards no policy change.

It is apparent from table 1.3 that even in the authoritarian regime the

asymmetry has an ability to predict the direction of future policy changes.

Asymmetry at the t−1 period meeting towards lower policy predicts decrease

or no change in the policy during the t period meeting while asymmetry

towards no policy change predicts subsequent increase or no change in the

policy.

For the increased likelihood of the policy change under the asymmetric

directive hypothesis, the probability of the policy change is 2rd(1− rd) and

conditional on asymmetric t − 1 period asymmetry it is rd, with the latter

larger for rd ≥ 1
2 . For the consensus building hypothesis, the authoritarian

regime predicts asymmetric directive adopted with probability 1 − rd and

conditional on no policy change with probability (1−rd)2

(1−rd)2+r2d
, with the latter

larger for rd ≤ 1
2 . Finally, in the authoritarian regime the ratio of the

number of meetings resulting in no policy change to the number of meetings

resulting in a policy change is equal to
(1−rd)2+r2d
2rd(1−rd) . This ratio is larger than

2, the approximate ratio in the FOMC data, either for rd ≤ 3−
√

3
6

.
= 0.21 or

for rd ≥ 3+
√

3
6

.
= 0.79.

As a result, for the high degree of conflict in the committee (rd ≥ 1
2) the

authoritarian regime predicts increased likelihood of policy changes given

asymmetric directive adopted during the previous meeting but no consensus

building role of the asymmetry. On the other hand for the low degree of

conflict in the committee (rd ≤ 1
2) the authoritarian regime predicts a con-

sensus building role of the asymmetry but not increased likelihood of policy

changes under the asymmetric directive.

Adopting the view that the FOMC can be approximated by the au-
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thoritarian regime with low degree of conflict, our model then predicts a

consensus building role of the asymmetry, its ability to predict direction of

future policy changes and the majority of meetings resulting in no change

in policy, but not that policy is changed more often under the asymmetric

directive.

Novel role of asymmetric directive

Besides capturing major stylized facts about the FOMC decision outcomes,

the model suggest a novel role of the asymmetry in its directive. One of

the predictions for the explicit status-quo protocol, relative to the implicit

status-quo one, is that it allows the chairman to gain or retain a dominant

position in the committee. When this happens, the chairman is able to press

for policy outcomes fully reflecting her preferences. We call this view of the

asymmetric directive the preservation of supremacy hypothesis.

Dominance of chairman Greenspan in FOMC is not new. Chappell et al.

(2005), Blinder (2007) and Meade (2005) all acknowledge it. Blinder (2007)

even goes as far as claiming that it is ‘quite possible for the Fed to adopt

one policy even though the (unweighted) majority favoured another’ and

ranks the Federal Reserve System very low in terms of democracy in mak-

ing monetary policy decisions.15 Interestingly, the original inclusion of the

asymmetry in the directive was made upon the suggestion of then chairman

Volcker.

While we cannot rigorously test the preservation of supremacy hypoth-

esis because we lack appropriate counterfactuals, the following anecdotal

evidence is at least suggestive of its validity. For six consecutive meetings

since the July 2-3, 1996 meeting, FOMC has kept the federal funds rate

unchanged, adopting asymmetric directive towards tightening in all those

meetings. The series was interrupted by the 25 basis point increase at the

March 25, 1997 meeting (with symmetric directive) and followed by another

5 meetings with no change in the federal funds rate and asymmetric directive

towards tightening, until the November 12, 1997 meeting.

During the whole period FOMC was receiving signals which would, un-

15 The ranking includes central banks of (from the least to the most democratic) New
Zealand, Canada, Australia, USA, Japan, Switzerland, Euro zone, Sweden and UK. In
the first three central banks it is the governor responsible for the policy (see Maier, 2010,
for details).
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der normal circumstances, call for tighter monetary policy. But, as chairman

Greenspan argued, the US economy was not operating under normal circum-

stances. His explanation for declining unemployment and non-increasing in-

flation was higher productivity growth, at that time not yet apparent from

the economic data. But ‘his insight played to an unresponsive audience’

(Meyer, 2004, p. 80) with ‘many committee members [. . . ] leaning [. . . ]

toward an increase’ (Greenspan, 2007, p. 171).

During the whole period chairman Greenspan tried to persuade the

FOMC members out of tightening monetary policy move. The pattern

started with the July 2-3, 1996 meeting with chairman Greenspan argu-

ing that his ‘judgment is that in all likelihood, if the Committee does not

move at [that] meeting or during the intermeeting period, [it] will do so at

the August meeting or later’ (Federal Reserve System, 2011, July 2-3, 1996

transcript, p. 89). He made similar argument professing to believe that

‘the probability of our having to move [. . . ] is still above 50 percent’, and

that FOMC confronts ‘far greater likelihood that the next move will be up

rather than down’ (Federal Reserve System, 2011, September 24, 1996 and

December 17, 1996 transcripts, p. 29 and 36 respectively).

Chairman Greenspan did not use only the probability of near future pol-

icy tightening as his argument. When proposing yet another no change in

the federal funds rate, he used asymmetry in the FOMC directive propos-

ing an ‘asymmetry that is unlike that at the previous couple of meetings.

[. . . ] a real asymmetry’ (Federal Reserve System, 2011, February 4-5, 1997

meeting stranscript, p. 104).16 Meyer (2004, p. 83) summarizes chair-

man Greenspan’s behaviour during the periods as ‘speaking like a hawk and

walking like a dove’.

Combining chairman Greenspan’s dominance in FOMC and his disagree-

ment with many of the FOMC members, we can interpret the episode in light

of our model as a series of D periods in the authoritative regime. The model

then predicts series of π∗ − φ policy choices with the status-quo set at the

same level, i.e. with symmetric directive. Discrepancy with the asymmet-

ric directives in FOMC decisions is nevertheless only apparent. Future no

change or increase in the policy is in the model associated with symmetric di-

16 FOMC transcripts reveal some of the committee members becoming increasingly un-
easy with the continuing discrepancy between the unchanging policy and the asymmetric
directive, such as when Ms. Rivlin remarks that she finds ‘meaning of these asymmetries
a little mysterious’ (Federal Reserve System, 2011, December 17, 1996 transcript, p. 36).
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rectives but with asymmetric (tightening) directives in the FOMC decisions.

Crucially, it is the explicit status-quo protocol that allows the chairman to

preserve his dominance in the committee.

Concluding remarks

We have shown that our model, with the explicit status-quo bargaining

protocol, can well represent data generated by the FOMC decision making

process. It can replicate existing stylized facts and, additionally, gives us

an alternative perspective from which the FOMC decision making can be

approached and discussed.

While hardly conclusive, we believe the asymmetry in FOMC directive

allowed its chairman to influence US monetary policy, at least to some ex-

tent. The two opening quotes of the paper then capture the basic trade-off

our model creates under the explicit status-quo, increased efficiency at the

potential cost of disproportionate proposal power. The former quote, taken

at face value, pertains to the efficiency part of the trade-off. But its mean-

ing pertains to the disproportionate proposal power part. The quote can be

taken to mean that the asymmetry allowed the FOMC chairman to carry

out policy more to his liking than he would be allowed otherwise. The latter

quote then shows that this is a real, not only hypothetical, possibility.17

Interestingly, the two quotes refer to the same episode, the 1996-1997

event described above. With hindsight, chairman Greenspan turned out to

be correct and among the first to identifying a change in the productivity

trend. Indeed, the second opening quote immediately goes on to say ‘We

give him enormous credit for doing so.’ The ‘we’ does not include everybody

(see The Economist, 2006, for an alternative view), but that is another story.

1.A1 Proofs

1.A1.1 Proof of proposition 1.1

Preliminaries

To prove the existence part of proposition 1.1 we construct CS-MPE in

a model with implicit status-quo. We are forced to split the equilibria of

17 The former quote is interesting from another perspective. It comes from Laurence H.
Meyer who is often viewed as Greenspan’s fiercest opponent in the productivity debate.
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the model into four distinct cases depending on the parameters δ and rd.

However, the logic of the proof is always the same. For each case we first

state C’s equilibrium proposal strategies. These are generated conjecturing

a CS-MPE equilibrium giving the VP function with acceptance sets AA and

AD of which proposal strategies, we conjecture, are minima (unless C’s

unconstrained optima lie in the appropriate acceptance sets). Next, we

specify VC and VP generated by the proposal strategies and derive the shape

of associated acceptance sets AA and AD. In the next step we characterize

the shape of C’s overall utility in A andD periods deriving her unconstrained

maxima in the two periods to be γCA = π∗ − φδrd and γCD = π∗ − φ

respectively. With P ’s acceptance sets and C’s overall utility, we confirm

the proposal strategy originally given is indeed optimal for C and can be

written in the form given in the proposition.

Having established existence of CS-MPE by constructing it we next turn

to the uniqueness part of proposition 1.1 by showing that the CS-MPE

constructed is the unique one. Here we note that in any CS-MPE, VP has

to be the one derived in the existence part and we establish uniqueness of

the solution to C’s dynamic optimization problem (1.1).

Throughout the whole proof we maintain the assumption on {δ, rd} ex-

pressed in the proposition, that is we maintain

Assumption 1.1. For any pair {δ, rd} with δ ∈ [0, 1) and rd ∈ [0, 1] assume

δ2rd(3− 2rd) ≤ 1− δ(1− rd).

Despite the logic of the proof being rather straightforward, the proof

itself is rather lengthy and algebra intensive. Striving to keep its length to a

minimum, we sometimes omit proofs of purely algebraic results but always

indicate how those can be shown.

Throughout the proof, we often refer to C in D periods as to CD and

similarly for P (PD) and by analogy in A periods to CA and PA respec-

tively. To save on notation we denote instantaneous utility of the policy

makers by

fCD(x) = −(x− π∗ + φ)2

fCA(x) = −(x− π∗)2

fPD(x) = −(x− π∗ − φ)2

fPA(x) = −(x− π∗)2
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and the overall utility by

UCD(x) = fCD(x) + δVC(x)

UCA(x) = fCA(x) + δVC(x)

UPD(x) = fPD(x) + δVP (x)

UPA(x) = fPA(x) + δVP (x).

Throughout the proof we are forced to work with a series of intervals in

the default option space X. Those are always denoted by Ii and are always

closed (except where explicitly indicated) and convex subsets of X. The

upper boundary of Ii is denoted by IUi and lower boundary by ILi .

Many of the functions in the proof are defined piecewise. If this is the

case then we use the notation f Ii(x) for function f(x) constrained to the

appropriate interval. Derivatives are often denoted by primes when no con-

fusion as to with respect to which variable the derivative is being taken is

imminent.

It will become apparent that many of the functions we work with are

differentiable only in the interior of the intervals but not at the point where

the two intervals meet. Taking general f(x), f ′(IUi ) will often fail to exist as

f(x) has a kink at IUi . If this is the case then f ′Ii(IUi ) will always denote left

derivative, i.e. derivative as x → IUi from below, and f ′Ii(ILi ) will denote

right derivative, i.e. derivative as x→ ILi from above.

It is helpful first to establish following lemmas.

Lemma 1.4.

U ′CD(x) ≥ 0⇒ U ′CA(x) ≥ 0

U ′CD(x) ≤ 0⇐ U ′CA(x) ≤ 0

U ′PD(x) ≥ 0⇐ U ′PA(x) ≥ 0

U ′PD(x) ≤ 0⇒ U ′PA(x) ≤ 0

Proof. The lemma follows from the readily verifiable facts that f ′CA(x) >

f ′CD(x) and f ′PA(x) < f ′PD(x) that naturally assumes differentiability of the

VC and VP functions. A similar result for VC and VP non-differentiable

at some specific x but possessing left and right derivatives at x follows by

analogy. �

Lemma 1.5. Let h(x) and k(x) be two real valued continuously differentiable

functions defined on [t − r, t] and [t, t + r] respectively, for some t, r ∈ R
and r > 0. Assume k(t) = h(t) and that the first derivative of the functions

satisfies k′(t+x) ≤ −h′(t−x) for all positive x ≤ r. Then k(t+r) ≤ h(t−r).
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Proof. Integrating the derivative inequality in the lemma with respect to x

from 0 to r gives ∫ r

0
k′(t+ z)dz ≤ −

∫ r

0
h′(t− z)dz

k(t+ r)− k(t) ≤ h(t− r)− h(t)

k(t+ r) ≤ h(t− r)

�

Lemma 1.6. Define

z(x) = π∗+φ(1−δ(1−rd))−

√
1− δ

1− δrd
(x− π∗ − φ)2 + φ2δ(1− rd)

(
4δ2r2

d

1− δrd
− (1− δ)

)
.

Then

sgn[z(x)′] = sgn[π∗ + φ− x]

sgn[z(x)′′] = sgn[−(4δ2r2
d − (1− δ)(1− δrd))].

Proof. Denote the term in the square root of z(x) by T (x). Then

z(x)′ = − 1√
T (x)

1− δ
1− δrd

(x− π∗ − φ)

z(x)′′ = − 1

T (x)3/2

1− δ
(1− δrd)2

φ2δ(1− rd)(4δ2r2
d − (1− δ)(1− δrd)).

�

Next we give explicit formulas for the continuation value functions of

the two policy makers used throughout the proof. As already mentioned,

both of the functions are defined piecewise on the different Ii intervals, but

we leave the specific definition of the intervals for later when we will show

that in the equilibrium the induced continuation value function of C can be

pasted together from the following.
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V I1
C (x) =V I12

C (x) = −1− rd
1− δ

φ2δrd

V I2
C (x) =V I5

C (x) = − rd
1− δrd

[
(x− π∗ + φ)2 + φ2 δ(1− rd)(1− δrd)

1− δ

]
V I3
C (x) =− 1

1− δ
[
(x− π∗ + φrd)

2 + φ2rd(1− rd)
]

V I4
C (x) =V I3

C (x) +
8(1− rd)δrd

(1− δ)(1− δrd)
[φ(x− π∗)− φ2δrd]

V I6
C (x) =V I11

C (x) = − rd
1− δrd

[
(π∗ + 3φ− x)2 + φ2 δ(1− rd)(1− δrd)

1− δ

]
V I7
C (x) =rd

[
(2(π∗ + φ(1− δ(1− rd)))− x− π∗ + φ)2 + δV I4

C (2(π∗ + φ(1− δ(1− rd)))− x)
]

(1− rd)
[
(2(π∗ + φδrd)− x− π∗)2 + δV I3

C (2(π∗ + φδrd)− x)
]

V I8
C (x) =rd

[
(2(π∗ + φ(1− δ(1− rd)))− x− π∗ + φ)2 + δV I3

C (2(π∗ + φ(1− δ(1− rd)))− x)
]

(1− rd)
[
(2(π∗ + φδrd)− x− π∗)2 + δV I3

C (2(π∗ + φδrd)− x)
]

V I9
C (x) =rd

[
−(z(x)− π∗ + φ)2 + δV I4

C (z(x))
]

+ (1− rd)
[
−(−φδrd)2 + δV I3

C (π∗ − φδrd)
]

V I10
C (x) =rd

[
−(z(x)− π∗ + φ)2 + δV I3

C (z(x))
]

+ (1− rd)
[
−(−φδrd)2 + δV I3

C (π∗ − φδrd)
]

Likewise, P ’s continuation value function in the equilibrium will be

pasted together from the following functions.

V I3
P (x) =− 1

1− δ
[
(x− π∗ − φrd)2 + φ2rd(1− rd)

]
= V I4

P (x) = V I7
P (x) = V I8

P (x)

V I2
P (x) =− rd

1− δrd

[
(x− π∗ − φ)2 + φ2 δ(1− rd)(1 + 3δrd)

1− δ

]
= V I5

P (x) = V I6
P (x) = V I9

P (x) = V I10
P (x) = V I11

P (x)

V I1
P (x) =V I12

P (x) = − φ
2rd

1− δ
(4− 3δ(1− rd))

At the time being, use of 12 different Ii’s might seem redundant, but

as will become apparent the fact that the value functions are identical on

some intervals is a coincidence. Indeed, they will be induced by parts of the

equilibrium that are different in nature.

Having the VP function we can explain the rationale behind the z(x)
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function from lemma 1.6. Looking at VP it consists of two quadratic terms

that apply on different Ii intervals, a property the UPD function will in-

herit. The z(x) function then allows us to compare UPD across inter-

vals where it is given by different quadratic terms, or formally, z(x) solves

UPD(x) = UPD(z(x)) for x ∈ I3 ∪ I4 and z(x) ∈ I9 ∪ I10. More specifically,

as the proposition claims that C implements the policy corresponding to

the minimal accepted one, z(x) gives us a lower boundary of AD for default

options in the I9 ∪ I10 interval. We do not need similar functions for other

intervals as those lower boundaries will be linear functions of the default

option x.

We sometimes need to use an inverse of z(x) as well. Formally speaking,

as z(x) is not monotone, z−1(x) is not well defined. However, it is apparent

there are exactly two solutions x to the equation k = z(x) for a given

constant k. Taking the larger of the two, we can define the inverse of the

function z(x) as z−1(x) = {max{y : x = z(y)}}.

Existence

Case 1: Equilibrium for δ ≤ 1
1+2rd

For δ ≤ 1
1+2rd

the equilibrium offers are

pA(x) =


π∗ − φδrd for x ∈ I1 ∪ I2 ∪ I5 ∪ I6 ∪ I9 ∪ I10 ∪ I11 ∪ I12

x for x ∈ I3

2(π∗ + φδrd)− x for x ∈ I4

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4 ∪ I5

2(π∗ + φ)− x for x ∈ I6 ∪ I11

z(x) for x ∈ I9 ∪ I10
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where

I1 = [x−, π∗ − φ]

I2 = [π∗ − φ, π∗ − φδrd]

I3 = [π∗ − φδrd, π∗ + φδrd]

I4 = [π∗ + φδrd, π
∗ + 3φδrd]

I5 = [π∗ + 3φδrd, π
∗ + φ]

I6 = [π∗ + φ, π∗ + φ(2− 3δrd)]

I9 = [π∗ + φ(2− 3δrd), τ
+]

I10 = [τ+, π∗ + φ(2 + δrd)]

I11 = [π∗ + φ(2 + δrd), π
∗ + 3φ]

I12 = [π∗ + 3φ, x+]

where τ+ = π∗ + φ + φ

√
(1− δrd)2 − 4δ3r2d(1−rd)

1−δ (τ− to be used later is

defined analogously with the term in the square root subtracted) and x−

and x+ are respectively lower and upper boundaries of the policy space X.

To see the term in the square root of τ+ is always positive, substitute in

δ = 1/(1 + 2rd) which gives a positive expression. Then, differentiating the

term in the square root with respect to δ gives an expression that can be

regarded as a cubic equation in δ. It has one real root and the derivative is

negative below the root. As the root is always higher than unity, it follows

that the original expression has to be positive.

It is straightforward to show that the equilibrium offers induce the con-

tinuation value functions given above on the appropriate Ii intervals and

that both VC and VP are continuous everywhere and differentiable every-

where except at the boundaries of the Ii intervals. Next we need to describe

the shape of the UPA and UPD functions.

claim 1.1 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3

and decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 and

decreasing otherwise. UPA has a global maximum at π∗ + φδrd, UPD has a

global maximum at π∗ + φ and both functions are quasi-concave.

Proof. It is straightforward to show that UPA is increasing (and hence UPD

as well by lemma 1.4) on I1∪I2∪I3. Similarly UPD is decreasing (and hence

UPA by the same lemma) on I6 ∪ I9 ∪ I10 ∪ I11 ∪ I12. The remaining two

intervals, I4 and I5, are easy to show as well. It follows UPA has to have a

global maximum at π∗+φδrd, which is the boundary of I3 with I4 and UPD

has to have a global maximum at π∗ + φ, which is the boundary of I5 with

I6. Quasi-concavity then follows. �

The next two claims outline the shape of P ’s acceptance sets.
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claim 1.2 (Shape of AA(x)). Let x be the default option. Then

1. if x ∈ I3 then AA(x) = {p : x ≤ p∧p ≤ x′} with x′ = 2(π∗+φδrd)−x ∈
I4

2. if x ∈ I4 then AA(x) = {p : x′ ≤ p∧p ≤ x} with x′ = 2(π∗+φδrd)−x ∈
I3

3. if x /∈ I3 ∪ I4 then π∗ − φδrd ∈ AA(x).

Proof. Notice UPA is symmetric around π∗ + φδrd, which is its global max-

imum on I3 ∪ I4. Moreover, for any x ∈ I3, UPA is increasing up to x and

for any x ∈ I4, UPA is decreasing from x on. Hence the first part follows. A

similar argument proves the second part.

To see the third part, notice UPA(IL3 ) = UPA(IU4 ) and IL3 = π∗ − φδrd.
The third part then follows by the same argument as in the preceding para-

graph about the increasing and decreasing parts of UPA. �

claim 1.3 (Shape of AD(x)). Let x be the default option. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I11

3. if x ∈ I3 ∪ I4 then AD(x) = {p : x ≤ p ∧ p ≤ x′} where x′ = z−1(x) ∈
I9 ∪ I10

4. if x ∈ I5 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I6

5. if x ∈ I6 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈
I5

6. if x ∈ I9 ∪ I10 then AD(x) = {p : x′ ≤ p ∧ p ≤ x} where x′ = z(x) ∈
I3 ∪ I4

7. if x ∈ I11 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈
I2.

Proof. All the parts below use the fact that for x ≤ π∗+φ, UPD is increasing

up to x and for x ≥ π∗ + φ, UPD is decreasing from x on. Also convexity of

AD(x) for given x follows from quasi-concavity of UPD.
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For part one, notice UPD(IU1 ) = UPD(IL12) and IU1 = π∗ − φ which along

with the argument in the preceding paragraph gives the result.

For part two, notice UPD is symmetric around π∗ + φ for x ∈ I2 ∪ I11.

This also proves part seven.

For part three, by quasi-concavity of UPD and the fact that UPD has

a global maximum at π∗ + φ there must exist an upper boundary of the

acceptance set that satisfies x′ ≥ π∗ + φ. It is easy to confirm x′ ∈ I9 ∪ I10

and that x′ has to solve x = z(x′), i.e. x′ = z−1(x).

For part four, notice UPD is symmetric around π∗ + φ for x ∈ I5 ∪ I6.

Hence the fourth part follows. This also proves part five.

For part six, we are looking for x′ that solves UPD(x) = UPD(x′) with

x ∈ I9 ∪ I10. It is easy to confirm x′ = z(x) ∈ I3 ∪ I4 is the solution to this

equation. �

The following claim gives the shape of the UCD and UCA functions.

claim 1.4 (Shape of UCA and UCD).

1. UCA is increasing on I1∪I2 and decreasing on I3∪I5∪I6∪I10∪I11∪I12

2. UCD is increasing on I1 and decreasing on I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I10 ∪
I11 ∪ I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗ + φδrd)− x ∈ I4

4. UCA(π∗ − φδrd) ≥ maxx∈I9 UCA(x)

5. UCD(z(x)) ≥ UCD(x′) ∀x′ ∈ [IL9 , x] given x ∈ I9

6. UCA has a global maximum at π∗ − φδrd and UCD at π∗ − φ.

Proof. The first part is straightforward given the continuation value func-

tions above, except for I10. To establish U I10CA is decreasing, first note

V ′′I10C (x) = rdz(x)′′
[
U ′I3CD(z(x))

]
− rd

2

1− δ
[z(x)′]2.

The sign of z(x)′′ by lemma 1.6 depends on the sign of 4δ2r2
d−(1−δ)(1−δrd),

which is negative for δ ≤ 1/(1+2rd), and hence z(x)′′ is positive. The sign of

U ′I3CD(z(x)) is negative by part two of this claim and the last term is negative

so V ′′I10C (x) is negative. It follows U ′′I10CA is concave so if we can establish that

U ′I10CA (IL10) is negative the claim follows.
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Evaluating U ′I10CA (x) at IL10 = τ+ gives

U ′I10CA (τ+) = −2φ

[
1 +

(
τ+ − π∗ − φ

φ

)(
1− δ − 2δrd(1− δ(1− rd))

(1− δ)(1− δrd)

)]
where the term in the brackets is positive. To see this, note that the last term

in the equation 1−δ−2δrd(1−δ(1−rd)) > 0. This can be seen regarding the

expression as a quadratic equation in δ. It is negative between the roots.

One of the roots is higher than unity and the second one is higher than

1/(1 + 2rd). This establishes the first part.

For the second part, it is again straightforward to establish most of the

results. For I10 the claim follows from part one of this claim and lemma 1.4

and for I4 the claim follows by assumption 1.1.

The third part follows readily from the derivatives of UCA on I3 and I4

using lemma 1.5 that can be used as I3 and I4 have the same width.

To establish the fourth part where we cannot use the derivative argument

as UCA may have local maximum on I9. First note

V ′I9C (x) = rdz(x)′
[
U ′I4CD(z(x))

]
,

which by lemma 1.6 and part two of this claim is positive. Furthermore

fCA is decreasing on I9. Using the inequality maxx f(x) + maxx g(x) ≥
maxx f(x) + g(x) we can derive the upper bound on U I9CA as we know the

maxima of the f I9CA and V I9
C functions.

The upper bound is given by

fCA(IL9 ) + δV I9
C (IU9 ) ≥ max

x∈I9
U I9CA(x)

and we need to show it is lower than UCA(π∗ − φδrd). Some algebra gives

1− 3δrd + 3δ2r2
d +

δ3r3
d

1− δ
≥ 0,

which holds. To see this, we can disregard the last term in the expression

that is positive. Regarding the remaining as a quadratic equation in δ gives

a pair of roots both of which are complex and it is easy to confirm the

expression has to be positive.

The fifth part is complicated by the fact that UCD may have local max-

ima on I9. First note that if we prove UCD(z(x)) ≥ UCD(x) ∀x ∈ I9 then
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we are done by the fact that UCD is decreasing on I4 and z(x) ∈ I4 ∀x ∈ I9.

To start, we note the relevant parts of the VC function can be alterna-

tively expressed as

V I9
C (x) =rd[fCD(z(x)) + δV I4

C (z(x))]

+ (1− rd)[fCA(π∗ − φδrd) + δV I3
C (π∗ − φδrd)]

V I4
C (x) =rd[fCD(x) + δV I4

C (x)]

+ (1− rd)[fCA(2(π∗ + φδrd)− x) + δV I3
C (2(π∗ + φδrd)− x)],

which upon substitution into UCD(z(x))− UCD(x) simplifies the algebra as

the first square brackets disappear. Nevertheless, some lengthy and unin-

structive algebra remains and gives

UCD(z(x))− UCD(x) =

4φ

[
(x− π∗)−

1− δ − δ2rd + δ2r2
d

1− δ
(z(x)− π∗)−

3φδ3r2
d(1− rd)

1− δ

]
.

with the derivation using

(z(x)− π∗)2 = φ2(1− δ(1− rd))2 + T (x) + 2φ(1− δ(1− rd))(z(x)− π∗).

It is easy to confirm this expression is positive for x = IL9 . Taking the

derivative with respect to x then gives

[UCD(z(x))− UCD(x)]′ = 4φ

[
1−

1− δ − δ2rd + δ2r2
d

1− δ
z(x)′

]
,

which is positive. To see this notice 1−δ−δ2rd+δ2r2
d > 0 for δ ≤ 1/(1+2rd)

and z(x)′ is negative by lemma 1.6. This proves the fifth part. The sixth

part is then a direct consequence of the above. �

It is now easy to confirm the specified offers are indeed an equilibrium

and can be written in the way used in proposition 1.1. By claim 1.4, CA

either implements her unconstrained maximum π∗ − φδrd or minimum of

AA(x). This follows from the shape of AA given in claim 1.2, which implies

that if π∗ − φδrd /∈ AA(x) for some x then AA(x) ∈ I3 ∪ I4.

For CD, the best option is when the unconstrained maximum π∗ −
φ is available. If she cannot implement π∗ − φ, then the lowest possible

policy is implemented. This follows directly from claim 1.4 where the only
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problematic interval is I9. But in claim 1.3 we have shown that for x ∈ I4 the

acceptance set takes the form [x, z−1(x)] and for x ∈ I9 the acceptance set

takes the form [z(x), x]. But then by part five of claim 1.4, CD implements

as low a policy as possible. This concludes proof of case 1.

Case 2: Equilibrium for δ ≥ 1
1+2rd

and 4δ2r2
d − (1− δ)(1− δrd) ≤ 0

For δ ≥ 1
1+2rd

and 4δ2r2
d − (1− δ)(1− δrd) ≤ 0 the equilibrium offers are

pA(x) =


π∗ − φδrd for x ∈ I1 ∪ I2 ∪ I5 ∪ I6 ∪ I9− ∪ I9+ ∪ I10 ∪ I11 ∪ I12

x for x ∈ I3

2(π∗ + φδrd)− x for x ∈ I4 ∪ I7

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4 ∪ I5

2(π∗ + φ(1− δ(1− rd)))− x for x ∈ I7

2(π∗ + φ)− x for x ∈ I6 ∪ I11

z(x) for x ∈ I9− ∪ I9+ ∪ I10

where

I1 = [x−, π∗ − φ]

I2 = [π∗ − φ, π∗ − φδrd]

I3 = [π∗ − φδrd, π∗ + φδrd]

I4 = [π∗ + φδrd, π
∗ + φ(1− δ(1− rd))]

I7 = [π∗ + φ(1− δ(1− rd)), π∗ + 3φδrd]

I9− = [π∗ + 3φδrd, τ
−
1 ]

I5 = (τ−1 , π
∗ + φ]

I6 = [π∗ + φ, τ+
1 )

I9+ = [τ+
1 , τ

+]

I10 = [τ+, π∗ + φ(2 + δrd)]

I11 = [π∗ + φ(2 + δrd), π
∗ + 3φ]

I12 = [π∗ + 3φ, x+]

where as before τ+ = π∗+φ+φ

√
(1− δrd)2 − 4δ3r2d(1−rd)

1−δ and τ±1 are defined

as τ−1 = π∗ + φ − φ
√

δ(1−rd)
1−δ ((1− δ)(1− δrd)− 4δ2r2

d) and τ+
1 analogously

with the term involving the square root being added.

By the condition on this case, the term under the square root in τ±1 is

positive. To see the term in the square root of τ+ is positive, follow the

same procedure as for case 1 but instead of substituting δ = 1/(1 + 2rd)

substitute condition δ = 1/(1 + rd) that is indeed a weaker condition than
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the condition defining case 2, 4δ2r2
d − (1− δ)(1− δrd) ≤ 0.

It is a matter of simple algebra to confirm that the equilibrium offers

induce the continuation value functions specified above where I9+ and I9−

correspond to I9. For VP it is easy to show that the function is continuous

everywhere and differentiable everywhere except at the boundaries of the Ii

intervals. For VC it can be shown that it is differentiable everywhere except

at the boundaries of the Ii intervals. Regarding continuity, VC is continuous

everywhere except at IL5 and IU6 where it jumps in a discrete manner. This

is a direct consequence of the equilibrium offers not being continuous at the

same points with respect to the default x. We first describe the shape of

UPA and UPD.

claim 1.5 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and

decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I9− and

decreasing otherwise. UPA has a global maximum at π∗+φδrd and is quasi-

concave. UPD has two local maxima at π∗+ φ(1− δ(1− rd)) and π∗+ φ the

latter of which is also a global maximum. UPD has one local minimum at

π∗ + 3φδrd.

Proof. It is easy to show UPA is increasing (and hence UPD as well by lemma

1.4) on I1∪I2∪I3. Similarly UPD is decreasing (and hence UPA by the same

lemma) on I7∪I6∪I9+∪I10∪I11∪I12. The remaining three intervals, I4, I9−

and I5, are equally easy. It follows UPA has a global maximum at π∗+φδrd,

which is a boundary of I3 with I4 and its quasi-concavity follows. Similarly,

UPD has two local maxima. One at the boundary of I4 and I7 and the

second at the boundary of I5 and I6. Also, it follows that a local minimum

has to be at the boundary of I7 and I9−. It is easy to show π∗ + φ is the

global maximum. �

Next we wish to characterize the acceptance sets. As the shape of the

AA is exactly the same as in claim 1.2 we do not repeat it here. For the AD

we have the following.

claim 1.6 (Shape of AD(x)). Let x be the default option. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I11
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3. if x ∈ I3∪[IL4 , π
∗+2φ(1−δ(1+rd/2))] then AD(x) = {p : x ≤ p∧p ≤ x′}

where x′ = z−1(x) ∈ I9 ∪ I10

4. if x ∈ [π∗ + 2φ(1 − δ(1 + rd/2)), IU4 ] then AD(x) = A1
D(x) ∪ A2

D(x)

where A1
D = {p : x ≤ p ∧ p ≤ x′}, A2

D = {p : x′′ ≤ p ∧ p ≤ x′′′},
x+x′ = 2(π∗+φ(1−δ(1−rd)), x′′+x′′′ = 2(π∗+φ), x = z(x′′) = z(x′′′),

x′ ∈ I7, x′′ ∈ I9− and x′′′ ∈ I9+

5. if x ∈ I7 then AD(x) = A1
D(x) ∪ A2

D(x) where A1
D = {p : x′ ≤ p ∧ p ≤

x}, A2
D = {p : x′′ ≤ p ∧ p ≤ x′′′}, x + x′ = 2(π∗ + φ(1 − δ(1 − rd)),

x′′ + x′′′ = 2(π∗ + φ), x′ = z(x′′) = z(x′′′), x′ ∈ I4, x′′ ∈ I9− and

x′′′ ∈ I9+

6. if x ∈ I9− then AD(x) = A1
D(x)∪A2

D(x) where A1
D = {p : x′′ ≤ p∧p ≤

x′′′}, A2
D = {p : x ≤ p ∧ p ≤ x′}, x′′ + x′′′ = 2(π∗ + φ(1 − δ(1 − rd)),

x+ x′ = 2(π∗ + φ), x′′ = z(x) = z(x′), x′′ ∈ I4, x′′′ ∈ I7 and x′ ∈ I9+

7. if x ∈ [IL9+, π
∗ + φ(2 − 3δrd)] then AD(x) = A1

D(x) ∪ A2
D(x) where

A1
D = {p : x′′ ≤ p ∧ p ≤ x′′′}, A2

D = {p : x′ ≤ p ∧ p ≤ x}, x′′ + x′′′ =

2(π∗+φ(1− δ(1− rd)), x+x′ = 2(π∗+φ), x′′ = z(x) = z(x′), x′′ ∈ I4,

x′′′ ∈ I7 and x′ ∈ I9−

8. if x ∈ I5 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I6

9. if x ∈ I6 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈
I5

10. if x ∈ [π∗ + φ(2− 3δrd), I
U
9+] ∪ I10 then AD(x) = {p : x′ ≤ p ∧ p ≤ x}

where x′ = z(x) ∈ I3 ∪ I4

11. if x ∈ I11 then AD(x) = {x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈ I2.

Proof. Parts one through three and eight through eleven are very similar to

the relevant parts in claim 1.3. What we cannot use is the quasi-concavity

of UPD. However, it is easy to confirm that the acceptance sets are convex.

Parts four through seven present the key difference compared to claim

1.3. To see these, first notice for the default options specified, UPD has

two peaks. One peak is symmetric around π∗ + φ(1 − δ(1 − rd)) and the

second one around π∗ + φ. It then follows UPD(x) = UPD(x′) gives four
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solutions. One pair symmetric around π∗ + φ(1− δ(1− rd)) and the second

pair symmetric around π∗+φ. It is then a matter of straightforward algebra

to work out the appropriate intervals. �

Following claim gives the shape of UCA and UCD functions.

claim 1.7 (Shape of UCA and UCD).

1. UCA is increasing on I1∪ I2 and decreasing on I3∪ I9−∪ I5∪ I6∪ I10∪
I11 ∪ I12

2. UCD is increasing on I1 and decreasing on I2 ∪ I3 ∪ I4 ∪ I7 ∪ I9− ∪ I5 ∪
I6 ∪ I10 ∪ I11 ∪ I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗ + φδrd)− x ∈ I4 ∪ I7

4. UCA(x′′) ≥ UCA(x′) and UCD(x′′) ≥ UCD(x′) for every x′ ∈ [IL9+, x]

given x ∈ [IL9+, π
∗ + φ(2− 3δrd)] with x′′ = 2(π∗ + φ)− x ∈ I9−.

5. UCA(π∗ − φδrd) ≥ maxx∈[π∗+φ(2−3δrd),IU9+] UCA(x)

6. UCD(z(x)) ≥ UCD(x′) ∀x′ ∈ [π∗+φ(2−3δrd), x] given x ∈ [π∗ + φ(2− 3δrd), I
U
9+]

7. UCA has a global maximum at π∗ − φδrd and UCD at π∗ − φ.

Proof. The first part is straightforward given the continuation value func-

tions except for I10. As in claim 1.4 we have VC concave on this interval so

if we can establish that U ′I10CA (IL10) is negative the claim follows. In claim 1.4

this gave us equation

U ′I10CA (τ+) = −2φ

[
1 +

(
τ+ − π∗ − φ

φ

)(
1− δ − 2δrd(1− δ(1− rd))

(1− δ)(1− δrd)

)]
where we could establish negativity by the fact that 1− δ − 2δrd(1− δ(1−
rd)) > 0. For the current case we need to do more work as this inequality

might not be satisfied.

Note that τ+−π∗−φ
φ < 1+δrd, which can be seen consulting the definition

of the Ii intervals. Hence if we can prove the derivative is negative when
τ+−π∗−φ

φ is replaced by 1 + δrd the claim follows. Doing that gives

U ′I10CA (τ+) = −4φ

[
1− δ − δrd(1− δ(1− rd))(1 + δrd)

(1− δ)(1− δrd)

]
,
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which is negative as the term in the square brackets is positive. To see that,

take the nominator and substitute δ = (1 + rd−
√

1− 2rd + 17r2
d)/(2rd(1−

4rd)), which is the solution to the condition defining case 2, and confirm

the expression is positive. Next, taking the derivative of the nominator

with respect to δ gives a quadratic equation in δ with the derivative being

negative between the roots. One of the roots is negative and the second one

is higher than unity. This shows the U ′I10CA (τ+) is negative and hence proves

the first part of the claim.

The second part of the claim is straightforward using the similar argu-

ment as part two of claim 1.4. Likewise, the third part can be established

using the same argument as part three of claim 1.4 noting that the width of

I3 is the same as the width of I4 ∪ I7.

To see the fourth part, notice that if we show UCA(x′) ≥ UCA(x) and

UCD(x′) ≥ UCD(x) where x′ = 2(π∗ + φ)− x ∈ I9− for every default option

x ∈ [IL9+, π
∗ + φ(2− 3δrd)] then we are done. However, it is easy to confirm

VC(x′) = VC(x) for x, x′ just defined. Hence the claim follows.

The fifth part can be established using a similar argument as in part 4

of claim 1.4 where the derivation of the upper bound on U9+
CA is done using

exactly the same values.

To prove the sixth part, again the same argument as in part five of claim

1.4 can be used. However, the conditions on δ defining case 2 alone are not

sufficient to ensure 1−δ−δ2rd+δ2r2
d > 0. However, the inequality still holds

by virtue of assumption 1.1. Finally, the last part is a direct consequence of

the above. �

Again, putting claims 1.2, 1.6 and 1.7 together proves the specified offers

are indeed an equilibrium. CA can either implement her unconstrained

optimum π∗ − φδrd and when this policy is not available, she offers as low

a policy as possible.

The same logic applies for CD. Using claim 1.7, CD either offers her

unconstrained maximizer π∗−φ and if this is not available she offers as low

a policy as possible. This can be seen from the fact that UCD is decreasing

over the majority of Ii intervals for policies above π∗ − φ. When we cannot

establish decreasing UCD, claims 1.7 and 1.6 imply that whenever any policy

from such an interval is available, there is also available another policy that

gives CD higher utility, with this policy in turn rejected in favour of the
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lowest policy available. This concludes the proof of case 2.

Case 3: Equilibrium for 4δ2r2
d − (1− δ)(1− δrd) ≥ 0 and δ ≤ 1

3rd

For 4δ2r2
d − (1− δ)(1− δrd) ≥ 0 and δ ≤ 1

3rd
the equilibrium offers are

pA(x) =


π∗ − φδrd for x ∈ I1 ∪ I2 ∪ I10− ∪ I9− ∪ I9+ ∪ I10+ ∪ I11 ∪ I12

x for x ∈ I3

2(π∗ + φδrd)− x for x ∈ I4 ∪ I7 ∪ I8

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4

2(π∗ + φ(1− δ(1− rd)))− x for x ∈ I7 ∪ I8

z(x) for x ∈ I10− ∪ I9− ∪ I9+ ∪ I10

2(π∗ + φ)− x for x ∈ I11

where

I1 = [x−, π∗ − φ]

I2 = [π∗ − φ, π∗ − φδrd]

I3 = [π∗ − φδrd, π∗ + φδrd]

I4 = [π∗ + φδrd, π
∗ + φ(1− δ(1− rd))]

I7 = [π∗ + φ(1− δ(1− rd)), π∗ + 2φ(1− δ(1− rd/2))]

I8 = [π∗ + 2φ(1− δ(1− rd/2)), π∗ + 3φδrd]

I10− = [π∗ + 3φδrd, τ
−]

I9− = [τ−, π∗ + φ]

I9+ = [π∗ + φ, τ+]

I10+ = [τ+, π∗ + φ(2 + δrd)]

I11 = [π∗ + φ(2 + δrd), π
∗ + 3φ]

I12 = [π∗ + 3φ, x+].

Case 3 indeed subsumes two important subcases depending on whether

δ ≤ 1/(1 + rd) holds and one of the subcases can even be split further.

However, to economize on space and avoid extensive repetition of similar

arguments we have decided to treat all the subcases at once.

We stress that some of the Ii intervals above might not be properly

defined. For δ ≥ 1/(1 + rd) the intervals are exactly as those just given

with the qualification that I9− and I9+ might not exist if τ− and τ+ become

complex. If this happens, then I10− and I10+ naturally extend all the way to

π∗+φ. If below we need to distinguish those two cases, we refer to case 3.1 if

δ ≥ 1/(1+rd) with τ± real and to case 3.2 if δ ≥ 1/(1+rd) with τ± complex.
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The remaining possibility, referred to as case 3.3, is when δ ≤ 1/(1 + rd) in

which case I8 ceases to exist and I7 extends all the way to π∗+3φδrd. If this

happens, I10− also ceases to exist and I9− starts immediately at π∗+ 3φδrd.

As before, the equilibrium offers induce the continuation value functions

given above where I9− and I9+ map into I9 and analogously for I10±. Both

VC and VP are continuous everywhere and differentiable everywhere except

at the boundaries of the Ii intervals. Proceeding similarly, we first describe

the shape of UPA and UPD.

claim 1.8 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and

decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 ∪ I10− ∪ I9−

and decreasing otherwise. UPA has a global maximum at π∗ + φδrd and is

quasi-concave. UPD has two local maxima at π∗+φ(1−δ(1−rd)) and π∗+φ

the former of which is also a global maximum. UPD has one local minimum

at π∗ + 3φδrd.

Proof. The argument is essentially as in claim 1.5 adjusting for different

intervals. The key difference is that the global maximum is at π∗ + φ(1 −
δ(1− rd)) and not at π∗ + φ, something that can be readily verified. �

To characterize the shape of the acceptance sets, AA described in claim

1.2 applies for the current case as well and we do not repeat it here. Before

we describe AD let us define another pair of constants τ±2 given by the expres-

sion τ−2 = π∗ + φ(1− δ(1− rd))− φ
√

δ(1−rd)
1−δrd (4δ2r2

d − (1− δ)(1− δrd)) and

analogously for τ+
2 . Notice that by one of the conditions defining case 3,

the term in the square root is positive. With this definition we have the

following.

claim 1.9 (Shape of AD(x)). Let x be the default option. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I11

3. if x ∈ [IL3 , π
∗+ 2φ(1− δ(1 + rd/2))] then AD(x) = {p : x ≤ p∧ p ≤ x′}

where x′ = z−1(x) ∈ I9+ ∪ I10+

4. if x ∈ [π∗ + 2φ(1 − δ(1 + rd/2)), τ−2 ] then AD(x) = A1
D(x) ∪ A2

D(x)

where A1
D = {p : x ≤ p ∧ p ≤ x′}, A2

D = {p : x′′ ≤ p ∧ p ≤ x′′′},
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x+x′ = 2(π∗+φ(1−δ(1−rd)), x′′+x′′′ = 2(π∗+φ), x = z(x′′) = z(x′′′),

x′ ∈ I7 ∪ I8, x′′ ∈ I10− ∪ I9− and x′′′ ∈ I9+ ∪ I10+

5. if x ∈ [τ−2 , π
∗ + φ(1 − δ(1 − rd))] then AD(x) = {p : x ≤ p ∧ p ≤ x′}

where x′ = 2(π∗ + φ(1− δ(1− rd)))− x ∈ I7 ∪ I8

6. if x ∈ [π∗ + φ(1 − δ(1 − rd)), τ+
2 ] then AD(x) = {p : x′ ≤ p ∧ p ≤ x}

where x′ = 2(π∗ + φ(1− δ(1− rd)))− x ∈ I3 ∪ I4

7. if x ∈ [τ+
2 , π

∗ + 3φδrd] then AD(x) = A1
D(x) ∪ A2

D(x) where A1
D =

{p : x′ ≤ p ∧ p ≤ x}, A2
D = {p : x′′ ≤ p ∧ p ≤ x′′′}, x + x′ =

2(π∗ + φ(1 − δ(1 − rd)), x′′ + x′′′ = 2(π∗ + φ), x′ = z(x′′) = z(x′′′),

x′ ∈ I3 ∪ I4, x′′ ∈ I10− ∪ I9− and x′′′ ∈ I9+ ∪ I10+

8. if x ∈ I10− ∪ I9− then AD(x) = A1
D(x)∪A2

D(x) where A1
D = {p : x′′ ≤

p∧p ≤ x′′′}, A2
D = {p : x ≤ p∧p ≤ x′}, x′′+x′′′ = 2(π∗+φ(1−δ(1−rd)),

x+ x′ = 2(π∗ + φ), x′′ = z(x) = z(x′), x′′ ∈ I3 ∪ I4, x′′′ ∈ I7 ∪ I8 and

x′ ∈ I9+ ∪ I10+

9. if x ∈ [IL9+, π
∗ + φ(2 − 3δrd)] then AD(x) = A1

D(x) ∪ A2
D(x) where

A1
D = {p : x′′ ≤ p ∧ p ≤ x′′′}, A2

D = {p : x′ ≤ p ∧ p ≤ x}, x′′ + x′′′ =

2(π∗ + φ(1 − δ(1 − rd)), x + x′ = 2(π∗ + φ), x′′ = z(x) = z(x′),

x′′ ∈ I3 ∪ I4, x′′′ ∈ I7 ∪ I8 and x′ ∈ I10− ∪ I9−

10. if x ∈ [π∗+φ(2− 3δrd), I
U
10+] then AD(x) = {p : x′ ≤ p∧ p ≤ x} where

x′ = z(x) ∈ I3 ∪ I4

11. if x ∈ I11 then AD(x) = {x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈ I2.

Proof. The proof is very similar to the proof of claim 1.6 where the key

difference arises due to the fact that the higher of the peaks is the one

symmetric around π∗ + φ(1− δ(1− rd)). �

To finish the proof of case 3, we need to show C indeed wants to imple-

ment as low a policy as possible. The next claim proves that.

claim 1.10 (Shape of UCA and UCD).

1. UCA is increasing on I1∪I2 and decreasing on I3∪I10−∪I9−∪I11∪I12

2. UCD is increasing on I1 and decreasing on I2 ∪ I3 ∪ I4 ∪ I10− ∪ I9− ∪
I11 ∪ I12
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3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗+φδrd)−x ∈ I4∪I7∪I8

4. UCD(x) ≥ UCD(x′) where x ∈ I3 ∪ I4 and x′ = 2(π∗ + φ(1 − δ(1 −
rd)))− x ∈ I7 ∪ I8

5. UCA(x′′) ≥ UCA(x′) and UCD(x′′) ≥ UCD(x′) for every x′ ∈ [IL9+, x]

given x ∈ [IL9+, π
∗+φ(2− 3δrd)] with x′′ = 2(π∗+φ)− x ∈ I10− ∪ I9−.

6. UCA and UCD are decreasing on [π∗ + φ(2− 3δrd), I
U
10+]

7. UCA has a global maximum at π∗ − φδrd and UCD at π∗ − φ.

Proof. The first and second parts of the claim can be readily verified using

expressions for the continuation value function VC .

Part three can be established using lemma 1.6 where we note that we

are allowed to use it given that the width of I3 is the same as width of

I4 ∪ I7 ∪ I8. The same argument gives part four as the width of I3 ∪ I4 is

larger than the width of I7 ∪ I8.

To see the fifth part, notice that if we show that UCA(x′) ≥ UCA(x) and

UCD(x′) ≥ UCD(x) with x′ = 2(π∗ + φ) − x ∈ I10− ∪ I9− for every default

policy x ∈ [IL9+, π
∗ + φ(2 − 3δrd) then we are done. However, it is easy to

confirm VC(x′) = VC(x) for x, x′ just defined and the claim follows.

Part six is the key difficulty. Note that by lemma 1.4 it suffices to

show UCA decreasing. However, we cannot rely on concavity of VC as in

claims 1.4 and 1.7. Instead we will use the following strategy. Writing

U ′CA(x) = f ′CA(x) + δV ′C(x) we replace V ′C(x) by the upper bound on its

maximum on the appropriate interval and show the resulting expression is

negative, which also proves that UCA is decreasing.

Here we are forced to split the proof according to different cases. For

cases 3.1 and 3.2 the interval [π∗ + φ(2− 3δrd), I
U
10+] falls into I10+ and we

can write

V
′I10+
C (x) = rdz(x)′

[
U ′I3CD(z(x))

]
where we want to find an upper bound on the maximum of V

′I10+
C on the

interval [π∗+φ(2−3δrd), I
U
10+]. To do so notice both of the terms are negative

and hence if we can find minima of the two terms treated separately this

will give us something that has to be higher than the maximum of V
′I10+
C .

It is easy to establish z(x)′ is decreasing on I10+ while the term in the

square brackets is increasing on I10+. It follows that if we evaluate z(x)′ at
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IU10+ and U ′I3CD(z(x)) at π∗ + φ(2 − 3δrd) the resulting expression will give

us an upper bound on the maximum of V ′C(x) on [π∗ + φ(2 − 3δrd), I
U
10+].

Doing so gives

min
x∈[π∗+φ(2−3δrd),IU10+]

z(x)′ ≥ −1

min
x∈[π∗+φ(2−3δrd),IU10+]

U ′CD(z(x)) = −6φ,

which gives us a maximum for V ′C . It is then a matter of straightforward

algebra to substitute the maximum into U ′CA(x) = f ′CA(x) + δV ′C(x) and

confirm the resulting expression is negative on [π∗ + φ(2− 3δrd), I
U
10+].

For case 3.3, π∗ + φ(2 − 3δrd) ∈ I9+ so that we need to use a similar

argument but separately on [π∗ + φ(2 − 3δrd), I
U
9+] and I10+. We can still

use

V
′I9+
C (x) = rdz(x)′

[
U ′I4CD(z(x))

]
V
′I10+
C (x) = rdz(x)′

[
U ′I3CD(z(x))

]
and the fact that z(x)′ is decreasing on I9+ ∪ I10+ and U ′I4CD(z(x)) with

U ′I3CD(z(x)) are increasing on I9+ and I10+ respectively. It follows we need to

evaluate z(x)′ at IU9+ and IU10+, U ′I4CD(z(x)) at π∗+φ(2−3δrd) and U ′I3CD(z(x))

at IL10+.

The evaluation gives

min
x∈[π∗+φ(2−3δrd),IU9+]∪I10+

z(x)′ ≥ −1

min
x∈[π∗+φ(2−3δrd),IU9+]

U ′CD(z(x)) = − 2φ

(1− δ)(1− δrd)
(3(1− δ − δrd + δ2r2

d)− δ2rd(1− rd))

min
x∈I10+

U ′CD(z(x)) = − 2φ

1− δ
(1− δ + 2δrd).

Upon substitution of the maximum of V ′C into U ′CA(x) = f ′CA(x)+δV ′C(x)

the condition for UCA decreasing on I10+ becomes

δrd
1− δ

(1− δ + 2δrd)− 1−

√
(1− δrd)2 −

4δ3r2
d(1− rd)
1− δ

≤ 0,

which holds. To see this notice that for rd ≤ 1/2 we are done. Otherwise,

substituting δ = 1/(1 + rd) confirms the condition holds for maximum δ

allowed for case 3.3. The derivative of the condition with respect to δ is
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positive and hence the condition must hold. Therefore UCA (and hence

UCD by lemma 1.4) is decreasing on I10+.

For [π∗+φ(2−3δrd), I
U
9+], upon substitution the corresponding condition

is (1− δ)(4δrd− 1)− 3δ2r2
d(1− δrd) + δ3r2

d(1− rd) ≤ 0, which holds for case

3.3. To see this regard it as a cubic equation in δ. Solving for the roots,

noticing that the condition holds for δ below the lowest root and showing

that the lowest root is higher than 1/3rd proves the claim. Finally the last

part of the claim follows from all the above. �

Combining the information provided by claims 1.2, 1.9 and 1.10 proves

the equilibrium for case 3. CA either offers her unconstrained maximizer

π∗−φδrd and when this policy is not available, then she offers as low a policy

as possible. This follows from the information about the intervals over which

UCA is decreasing provided by claim 1.10 and where we cannot use this

argument the same claim implies that the minimum policy available gives

CA the highest utility among the policies available. The same argument

applies for CD and concludes the proof for case 3.

Case 4: Equilibrium for δ ≥ 1
3rd

For δ ≥ 1
3rd

the equilibrium offers are

pA(x) =


π∗ − φδrd for x ∈ I1 ∪ I2 ∪ I9 ∪ I10 ∪ I11 ∪ I12

x for x ∈ I3

2(π∗ + φδrd)− x for x ∈ I4 ∪ I7 ∪ I8

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4

2(π∗ + φ(1− δ(1− rd)))− x for x ∈ I7 ∪ I8

z(x) for x ∈ I9 ∪ I10

2(π∗ + φ)− x for x ∈ I11
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where

I1 = [x−, π∗ − φ]

I2 = [π∗ − φ, π∗ − φδrd]

I3 = [π∗ − φδrd, π∗ + φδrd]

I4 = [π∗ + φδrd, π
∗ + φ(1− δ(1− rd))]

I7 = [π∗ + φ(1− δ(1− rd)), π∗ + 2φ(1− δ(1− rd/2))]

I8 = [π∗ + 2φ(1− δ(1− rd/2)), π∗ + 3φδrd]

I9 = [π∗ + 3φδrd, τ
+]

I10 = [τ+, π∗ + φ(2 + δrd)]

I11 = [π∗ + φ(2 + δrd), π
∗ + 3φ]

I12 = [π∗ + 3φ, x+].

As in the previous case we have subsumed two subcases and prove the

equilibrium for those jointly. The first subcase, referred to as case 4.1, is

for δ ≥ 1/(1 + rd). If this condition holds all the intervals are as those

given except for I9 that does not exist and I10 starts at π∗ + 3φδrd. For

δ ≤ 1/(1 + rd), referred to as case 4.2, the interval I8 does not exist and I7

extends all the way to π∗ + 3φδrd.

Once again it is easy to confirm that the strategies given induce contin-

uation value functions on the corresponding intervals. For the current case

both VC and VP are continuous everywhere and differentiable everywhere

except for points where the different Ii intervals meet. Proceeding similarly,

we first give the properties of UPA and UPD.

claim 1.11 (Shape of UPA and UPD). UPA is increasing on I1∪ I2∪ I3 and

decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 and decreas-

ing otherwise. UPA has a global maximum at π∗ + φδrd, UPD has global

maximum at π∗ + φ(1− δ(1− rd)) and both functions are quasi-concave.

Proof. The argument is very similar to the one used to prove claim 1.1

with minor adjustments for the fact that UPD has a global maximum at

π∗ + φ(1 − δ(1 − rd)), which is immediately apparent upon realizing that

π∗ + φ(1− δ(1− rd)) is a boundary of I4 and I7. �

Proceeding to outline the shape of the acceptance sets, for AA the claim

1.2 applies for the current case as well and we do not repeat it here. For AD

we have following.

claim 1.12 (Shape of AD(x)). Let x be the default option. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)
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2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I11

3. if x ∈ [IL3 , π
∗+ 2φ(1− δ(1 + rd/2))] then AD(x) = {p : x ≤ p∧ p ≤ x′}

where x′ = z−1(x) ∈ I9 ∪ I10

4. if x ∈ [π∗ + 2φ(1− δ(1 + rd/2)), π∗ + φ(1− δ(1− rd))] then AD(x) =

{p : x ≤ p ∧ p ≤ x′} where x′ = 2(π∗ + φ(1− δ(1− rd)))− x ∈ I7 ∪ I8

5. if x ∈ I7 ∪ I8 then AD(x) = {p : x′ ≤ p ∧ p ≤ x} where x′ = 2(π∗ +

φ(1− δ(1− rd)))− x ∈ I3 ∪ I4

6. if x ∈ I9 ∪ I10 then AD(x) = {p : x′ ≤ p ∧ p ≤ x} where x′ = z(x) ∈
I3 ∪ I4

7. if x ∈ I11 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈
I2.

Proof. The proof is very similar to the proof of claim 1.3 where only minor

adjustments have to be made for the current case due to the fact that UPD

is symmetric around its global maximum at π∗+φ(1− δ(1− rd)) and hence

some of the acceptance sets have to be made symmetric around π∗ + φ(1−
δ(1− rd)). �

Having the acceptance sets the last thing we need to do is to describe

the shape of UCA and UCD. The next claim does that.

claim 1.13 (Shape of UCA and UCD).

1. UCA is increasing on I1 ∪ I2 and decreasing on I3 ∪ I9 ∪ I10 ∪ I11 ∪ I12

2. UCD is increasing on I1 and decreasing on I2∪I3∪I4∪I9∪I10∪I11∪I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗+φδrd)−x ∈ I4∪I7∪I8

4. UCD(x) ≥ UCD(x′) where x ∈ I3 ∪ I4 and x′ = 2(π∗ + φ(1 − δ(1 −
rd)))− x ∈ I7 ∪ I8

5. UCA has a global maximum at π∗ − φδrd and UCD at π∗ − φ.

Proof. The first and second parts of the claim follow readily using the con-

tinuation value function, except for intervals I9 and I10.
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For case 4.1 we do not have to worry about I9 as it is empty. To show

UCA is decreasing on I10 we use the same argument as in claim 1.10. The

only difference arises from the fact that in case 3.1 the relevant part of the

claim 1.10 U ′I3CD(z(x)) has been evaluated at π∗ + φ(2 − 3δrd) whereas for

case 4.1 we need to evaluate U ′I3CD(z(x)) at π∗ + 3φδrd. However, it is easy

to confirm that U ′I3CD(z(π∗ + 3φδrd)) = U ′I3CD(z(π∗ + φ(2 − 3δrd))) and the

argument is essentially the same.

For case 4.2 we need to show the claim for both I9 as well as I10. Never-

theless, the resulting expressions for the maximum of V ′C on the appropriate

intervals are the same as in case 3.3 of the relevant part of claim 1.10. This

is due to the fact that the only change is that I9 starts at π∗+ 3φδrd not at

π∗+φ(2−3δrd) but z(x) evaluated at those values is the same. Therefore for

the I10 interval the claim follows by a similar argument as in claim 1.10. For

I9 the condition for UCA to be decreasing becomes (note this change is due

to the fact that the IL9 now is different than in claim 1.10) − 4δ3r2d(1−rd)

(1−δ)(1−δrd) ≤ 0,

which holds.

Finally, parts three and four follow by the use of lemma 1.6 where we

note that we can use it as the width of I3 is the same as I4 ∪ I7 ∪ I8 (part

three) and the width of I3∪ I4 is larger than the width of I7∪ I8 (part four).

Part five then follows from the previous parts. �

By a now familiar argument we do not repeat here we have an equilibrium

for case 4.

Uniqueness

First notice any distinct CS-MPE has to give rise to P ’s continuation value

function VP constructed in the previous part of the proof. It then suffices to

show that given VP , C’s dynamic optimization program (1.1) has a unique

solution. In order to do so we first need to establish properties of P ’s

acceptance sets.

claim 1.14. For any x ∈ X the acceptance correspondences AD(x) and

AA(x) are nonempty, compact valued and upper hemicontinuous.

Proof. The nonempty part follows from the definition and the compact val-

ued part follows from continuity of VP along with compactness of X. To
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prove upper hemicontinuity of the acceptance correspondence

AD(x) = {p ∈ X|UPD(p) ≥ UPD(x)}

pick two sequences {xα} → x and {pα} → p such that pα ∈ AD(xα) ∀α.

Note that by non-emptiness of AD this can be done. We need to show

p ∈ AD(x).

Suppose p /∈ AD(x). Then

UPD(xα) ≤ UPD(pα) ∀α

UPD(x) > UPD(p).

Summing the two inequalities gives

UPD(xα)− UPD(x) < UPD(pα)− UPD(p) ∀α.

Taking the limit for α→∞ on both sides gives a contradiction to continuity

of UPD(·). For AA the proof is analogous and hence omitted. �

We note that although we have proven upper hemicontinuity of the ac-

ceptance correspondences, for some of the cases above a stronger result,

continuity, holds as well. More specifically, for all cases AA can be proven

continuous and for cases 1 and 4, AD is continuous as well. Failure of lower

hemicontinuity of AD in cases 2 and 3 is then a consequence of the double

peakedness of UPD shown in claims 1.5 and 1.8. We can always find a se-

quence of policies approaching the higher peak as AD is nonempty. On the

other hand it is impossible to find a sequence of policies approaching the

lower peak ‘from above’. Given that we do not need this stronger result, we

state it without proving.

Returning to our main argument, to prove the uniqueness of the CS-

MPE we need to show uniqueness of the solution to C’s optimization prob-

lem (1.1). The optimization problem can be rewritten as a Bellman type

functional equation

VC(x) = rd max
p∈AD(x)

{fCD(p) + δVC(p)}+ (1− rd) max
p∈AA(x)

{fCA(p) + δVC(p)}

and we already know the acceptance correspondences are upper hemicontin-

uous. If we could prove their continuity we would be able to use theorem 4.6
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in Stokey and Lucas (1989) to prove uniqueness of VC solving the functional

equation above. It turns out a similar result holds for upper hemicontinuous

correspondences as well (with associated value functions upper semicontin-

uous, not continuous as in Stokey and Lucas, 1989). The following theorem

states the result formally.

Theorem 1.1. Let X be a convex subset of Rn, Γ : X � X nonempty,

compact valued and upper hemicontinuous correspondence, F : A → R on

A = {(x, y) ∈ X×X| y ∈ Γ(x)} bounded and upper semicontinuous function,

SC(X) space of bounded upper semicontinuous functions f : X → R with

the sup norm ‖f‖ = supx∈X |f(x)| and β < 1. Then, the T operator, defined

by

(Tf)(x) = max
y∈Γ(x)

[F (x, y) + βf(y)] (1.2)

maps SC(X) into itself and has a unique fixed point v = Tv.

Proof. The strategy of the proof is in the following. First, we make sure that

a maximum in (1.2) exists, next we show that Tf is upper semicontinuous

(u.s.c.) and, hence, T maps SC(X) into itself. Next, we observe that T is

a contraction and, hence, has a unique fixed point, provided that SC(X) is

complete. As is customary, we view the normed vector space (X, ‖ · ‖) as a

metric space on X with the uniform metric d(f, g) = ‖f − g‖.
Since the notion of upper semicontinuity is not well known in the eco-

nomic literature, we provide its definition.

Definition 1.6 (upper semicontinuous function). A function f : X → R̄ on

a topological space X is upper semicontinuous at x ∈ X if, for each ε > 0,

there exists a neighbourhood U of x such that f(y) ≤ f(x) + ε for all y in

U . It is upper semicontinuous if it is upper semicontinuous ∀x ∈ X.

An alternative definition, sometimes used, takes a sequence {xn} and

defines u.s.c. as a function that satisfies xn → x ⇒ lim supn f(xn) ≤ f(x)

which is, indeed, the same requirement (Bourbaki, 2007, Chapter IV.6,

Proposition 4). Yet, another definition requires the set {x ∈ X|f(x) < c} to

be open for any c ∈ R, which is equal to the previous definition (Aliprantis

and Border, 2006, Lemma 2.42).

Intuitively, u.s.c. functions are allowed to jump but, when they do so, the

value of the function at the jump is ‘the higher of the two’. The advantage

of the u.s.c. functions is that they possess maxima on compact intervals.
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Coming back to the proof, first observe that, for any x ∈ X, the function

F (x, ·)+βf(·) is u.s.c. and is maximized on a compact, non-empty set Γ(x),

hence, the maximum exists (Aliprantis and Border, 2006, Theorem 2.43).

Furthermore, as Γ is upper hemicontinuous, T is u.s.c. (Aliprantis and

Border, 2006, Lemma 17.30) and it is clearly bounded. Hence, T : SC(X)→
SC(X).

Next, we need to make sure that T satisfies conditions under which

Blackwell’s Theorem (Aliprantis and Border, 2006, Theorem 3.53) holds.

Denoting by B(X) the space of bounded functions defined on X, we need

T to map a closed linear subspace of B(X) that includes constant functions

into itself. Furthermore, we need T to satisfy monotonicity and discounting.

That SC(X) is a linear subspace of B(X) that includes constant func-

tions follows trivially. To establish that SC(X) is closed, we observe that

B(X) is complete and that any complete subset of a complete metric space

is closed (Berberian, 1999, Chapter III.4, Theorem 1). Hence, if we can

establish that SC(X) is complete, then closedness follows.

To establish that SC(X), with the uniform metric, is a complete met-

ric space, we adopt the approach of the proof of theorem 3.1 in Stokey

and Lucas (1989), with appropriate modifications. We find a function f to

which a Cauchy sequence of functions {fn} converges, we show the sequence

converges in the uniform metric and, finally, that f ∈ SC(X).

First, fix x ∈ X and take a sequence {fn(x)}, which satisfies

|fn(x)− fm(x)| ≤ sup
y∈X
|fn(y)− fm(y)| = ‖fn − fm‖

and which satisfies the Cauchy criterion and, hence, converges to a limit

f(x).

Second, we need to show that {fn} converges in the uniform metric. Pick

ε > 0 and N := N(ε), such that n,m ≥ M ⇒ ‖fn − fm‖ ≤ ε/2 (which can

be done). For any x ∈ X and all n,m ≥ N

|fn(x)− f(x)| ≤ |fn(x)− fm(m)|+ |fm(x)− f(x)|

≤ ‖fn − fm‖+ |fm(x)− f(x)|

≤ ε/2 + |fm(x)− f(x)|.

As fm(x) → f(x), choose m(x) for each x ∈ X such that |fm(x) − f(x)| ≤
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ε/2. As x was arbitrary, it follows that ‖fn − f‖ ≤ ε for ∀n ≥ N and, as ε

was arbitrary, we have convergence in the uniform metric.

Third, we need to show that f is bounded and u.s.c., the first of which

follows readily. To show the u.s.c. part, pick ε > 0 and k such that ‖fk−f‖ ≤
ε/3. As fn → f , this can be done. Then, choose δ such that ‖x − y‖E <

δ ⇒ fk(y) < fk(x) + ε/3 where ‖ · ‖E is a usual Euclidean distance and it

can be done by u.s.c. of fk. Finally,

f(y)− f(x) = f(y)− fk(y) + fk(y)− fk(x) + fk(x)− f(x)

≤ |f(y)− fk(y)|+ fk(y)− fk(x) + |fk(x)− f(x)|

≤ 2‖f − fk‖+ fk(y)− fk(x)

≤ ε.

Furthermore, it is easy to confirm that g ≤ f implies Tg ≤ Tf (mono-

tonicity) and that there exists β ∈ (0, 1), such that T (f + c) ≤ Tf + βc for

any constant function c (discounting). Hence, by Blackwell’s Theorem, T is

a contraction and it has a unique fixed point, which concludes the proof. �

With C’s optimization problem we can define operator T similarly as in

theorem 1.1 by

Tv(x) = rd max
p∈AD(x)

{fCD(p) + δv(p)}+ (1− rd) max
p∈AA(x)

{fCA(p) + δv(p)}.

It is easy to see T satisfies monotonicity and discounting, and existence of

a fixed point Tv = v can be proven in a similar way as in theorem 1.1.

The fixed point of T is then C’s continuation value function VC derived in

the existence part of the proof, which defines a unique equilibrium proposal

strategy for C, proving uniqueness of the CS-MPE.

Notice that instead of using T , we could have used the original formu-

lation of C’s optimization problem given in (1.1) and worked with a pair of

mappings defined by

TDuD(x) = max
p∈AD(x)

{fCD(p) + δrduD(p) + δ(1− rd)uA(p)}

TAuA(x) = max
p∈AA(x)

{fCA(p ) + δrduD(p) + δ(1− rd)uA(p)}

using theorem 1.1 to prove existence of a unique fixed point of TD for each
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ua and existence of a unique fixed point of TA for each ud. To complete the

proof we would then need to show existence of coincidence solution u∗D, u
∗
A

such that u∗D is a fixed point of TD for u∗A and u∗A is a fixed point of TA

for u∗D. Using an approach similar to Liu, Agarwal, and Kang (2004) this

is possible, but would not give us the uniqueness result that is the focus of

this part of the proof.

1.A1.2 Proof of proposition 1.2

Using definition 1.4 of S and the results from the proof of proposition 1.1 it

is easy to see S = [π∗ − φδrd, π∗ + φδrd] and hence parts one and two. For

part three notice pA(x) ∈ S for any x ∈ X and hence xt(x) /∈ S for some

x ∈ X implies that all the t periods generating xt(x) need to be D periods.

As a result we have P(xt(x) /∈ S) ≤ rtd for any x ∈ X. Part four follows

from the fact that P(pA(xt(x)) = π∗) = 0 for almost all x ∈ X except for a

finite set of discrete values of zero measure.

1.A1.3 Proof of proposition 1.3

Assume there exists S-MPE with pA(x) = π∗ + ε for some x ∈ X and

(not necessarily positive) ε 6= 0. Let γ = {pA(x) = π∗ + ε, qD(x)} be C’s

equilibrium proposal and γ′ = {π∗+ε/2, qD(x)}. By the definition of S-MPE

it must be that γ solves C’s optimization problem, that is it is a solution to

max
{p,q}∈X2

{
−(p− π∗)2 + δVC(q)

}
s.t. − (p− π∗)2 + δVP (q) ≥ −(x− π∗)2 + δVP (x).

By continuity of the constraint in p proposal γ′ ∈ AA(x). C’s utility from

γ′ is −ε2/4+δVC(qD(x)) and from γ it is −ε2 +δVC(qD(x)). By assumption

γ is an equilibrium hence

−ε2 + δVC(qD(x)) ≥ −ε2/4 + δVC(qD(x)),

which implies ε2 ≤ ε2/4, a contradiction.
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1.A1.4 Proof of proposition 1.4

To prove existence of CS-MPE in the model with explicit status-quo bar-

gaining protocol, we proceed as follows. First we give formal meaning to

the term C’s unconstrained proposals by deriving a global maximum of the

VC function. Then we conjecture that any equilibrium offer γ(x) that C

makes to P for default option γ̄(x) has to make P indifferent between the

two options unless C can propose the unconstrained maximizer of her over-

all utility. This allows us to derive explicit expressions for the continuation

value function VP of the P player and hence the shape of his acceptance sets.

Given the acceptance sets we show that those are well behaved and hence

that the C’s dynamic optimization program has a solution. We then go

back and make sure that the equilibrium policies indeed satisfy the original

conjecture of making P indifferent between γ(x) and γ̄(x).

As before we refer to C in D period as to CD and analogously for P and

A periods. We keep the notation

fCD(x) = −(x− π∗ + φ)2

fCA(x) = −(x− π∗)2

fPD(x) = −(x− π∗ − φ)2

fPA(x) = −(x− π∗)2

and denote the overall utility by

UCD(p, q) = fCD(p) + δVC(q)

UCA(p, q) = fCA(p) + δVC(q)

UPD(p, q) = fPD(p) + δVP (q)

UPA(p, q) = fPA(p) + δVP (q).

To prove existence of CS-MPE we need to constrain values of δ and rd.

The following assumption lists all the constraints we need.

Assumption 1.2. For any pair {δ, rd} with δ ∈ [0, 1) and rd ∈ [0, 1] assume

1. δ ≥ 1
5rd

2. δ ≥ 1− r2
d

3. δ ≤ 1− (1−rd)2

2 .

Notice that the three requirements are mutually compatible and in gen-

eral allow for values of δ and rd with ‘enough discounting and conflict’. De-

noting the space of possible values for {δ, rd} by P = [0, 1)× [0, 1] (with the

convention that its graphical representation has rd on the horizontal axis)
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assumption 1.2 isolates the north-eastern part of P . Notice also that we are

not selecting a measure-zero set out of the P and hence our existence result

will be generic in the sense that S-MPE will exist on some neighbourhood

of {δ, rd} strictly satisfying assumption 1.2.

claim 1.15. Let X− = X \ (π∗ − φ, π∗ + 3φ) and z, z′ ∈ X−. For any

x ∈ X− the equilibrium is given by

qA(x) = z

qD(x) = z′

pA(x) = π∗

pD(x) = π∗ − φ.

where the policy strategies are unique. Moreover, for any x ∈ X−, VC(x) = 0

and VP (x) = −4φ2rd
1−δ .

Proof. We first show ρ = {qD(x) = qA(x) = x, pD(x) = π∗ − φ, pA(x) = π∗}
is an equilibrium for any x ∈ X−. Fix x ∈ X−. Note that {pD(x) =

π∗ − φ, x} ∈ AD(x) and {pA(x) = π∗, x} ∈ AA(x) and both increase C’s

utility compared to {x, x}. It also follows ρ induces VC(x) = 0 hence C

clearly cannot do better. Therefore ρ is an equilibrium.

Having the equilibrium for given x, notice it induces the same path of

policy decisions for a fixed path of A and D periods as any x′ ∈ X−. It

follows VC(x) and VP (x) must be constant on X−. Therefore the first part

of the claim follows.

To show uniqueness of the policy offers notice C’s utility strictly de-

creases by offering anything other than policy specified in the claim.

The fact that VC(x) = 0 ∀x ∈ X− follows from the two previous remarks.

To show VP (x) = −4φ2rd
1−δ using the constancy of VP (x) we can write

VP (x) = rd[−4φ2 + δVP (x)] + (1− rd)[δVP (x)],

which after rearranging gives VP (x) in the claim. �

claim 1.16. Let X+ = (π∗ − φ, π∗ + 3φ). Then for all x ∈ X+, VC(x) < 0.

Proof. Assume there exists an equilibrium such that VC(x) = 0 for some

x ∈ X+. It follows VP (x) = −4φ2rd
1−δ . Take D period, if P rejects today and

follows the equilibrium strategy from then on his utility is fPD(x)− 4φ2δrd
1−δ

whereas if he accepts (as equilibrium demands) his utility is fPD(π∗ − φ)−
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4φ2δrd
1−δ . For this to be an equilibrium it must be that

fPD(x)− 4φ2δrd
1− δ

≤ fPD(π∗ − φ)− 4φ2δrd
1− δ

,

which rewrites as (x− π − φ)2 ≥ 4φ2 and holds for x /∈ (π∗ − φ, π∗ + 3φ), a

contradiction to x ∈ X+. �

Claims 1.15 and 1.16 give precise meaning to the term C’s unconstrained

maximizer as they imply that {π∗ − φ, z} maximizes UCD(p, q) and {π∗, z}
maximizes UCA(p, q) for any z ∈ X−. Denote those by γCD = {π∗ − φ, z}
and γCA = {π∗, z}. Notice that if γCD ∈ AD(x) for some default x then γCD

has to be part of C’s equilibrium strategy. Similar holds for γCA ∈ AA(x).

Next we wish to characterize P ’s continuation value function VP conjec-

turing that if for some default option x we have γCD /∈ AD(x), C’s offer γ(x)

will make P indifferent between γ(x) and default option γ̄(x) = {x, x} and

similarly for A periods. The next claim helps in translating the conjecture

into VP .

claim 1.17. For any x ∈ X+ if P is brought to indifference in A periods

for default option x, then he is brought to indifference in D periods for the

same default option.

Proof. We prove the converse, i.e. if P is not brought to indifference in D

periods, then he is not brought to indifference in A periods.

Note that if P is not made indifferent in D periods, then C’s proposal

has to be {π∗ − φ, z} for some z ∈ X. This implies

fPD(x) + δVP (x) ≤ fPD(π∗ − φ) + δVP (z),

which after rearranging gives

fPA(x) + δVP (x) ≤ δVP (z)− [3φ2 + 2φ(x− π∗)],

where the term in the square brackets is positive for any x ∈ X+. It then

follows that {π∗, z} ∈ AA(x). �

With the help of claim 1.17 we conjecture that for default options x close

to P ’s D period bliss point π∗ + φ he will be made indifferent for both A
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and D periods and for x further away he will be made indifferent only in D

periods. This gives rise to VP of the following form.

VP (x) =



− 1

1− δ
[
(x− π∗ − φrd)2 + φ2rd(1− rd)

]
for x ∈ [π∗ + φδrd − κ, π∗ + φδrd + κ]

− rd
1− δrd

[
(x− π∗ − φ)2 + φ2 4δ(1− rd)

1− δ

]
for x ∈ [π∗ − φ, π∗ + φδrd − κ] ∪ [π∗ + φδrd + κ, π∗ + 3φ]

−4φ2rd
1− δ

otherwise

with κ = φ
√
δrd(3 + δrd) where the last constant part applies to x for

which γCD ∈ AD(x) and γCA ∈ AA(x). For future reference denote κ− =

π∗+φδrd−κ and κ+ = π∗+φδrd+κ. It is easy to confirm VP is continuous

and (strictly) piece-wise concave for x ∈ X (x ∈ X+). In the next claim we

establish upper hemicontinuity of the acceptance correspondences generated

by VP .

claim 1.18. For any x ∈ X the acceptance correspondences AD(x) and

AA(x) are nonempty, compact valued and upper hemicontinuous.

Proof. The nonempty part follows by definition and the compact valued

part follows from continuity and the fact that X is compact. To prove

upper hemicontinuity of the acceptance correspondence

AD(x) = {(p, q) ∈ X2|fPD(p) + δVP (q) ≥ fPD(x) + δVP (x)}

denote x = (x, x), p = (p, q) and f(p) = fPD(p) + δVP (q).

Pick two sequences {xα} → x and {pα} → p such that pα ∈ AD(xα) ∀α.

Note that by non-emptiness of AD this can be done. We need to show

p ∈ AD(x).

Suppose p /∈ AD(x). Then

f(xα) ≤ f(pα) ∀α

f(x) > f(p).
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Summing the two inequalities gives

f(xα)− f(x) < f(pα)− f(p) ∀α.

Taking the limit for α→∞ on both sides gives a contradiction to continuity

of f(·). For AA the proof is analogous and hence omitted. �

Next we want to show C’s dynamic optimization problem has a solution.

Precise statement of the dynamic program is

UD(x) = max
{p,q}∈AD(x)

{fCD(p) + δ(rdUD(q) + (1− rd)UA(q))}

UA(x) = max
{p,q}∈AA(x)

{fCA(p) + δ(rdUD(q) + (1− rd)UA(q))},

which can alternatively be written as

VP (x) = rd max
{p,q}∈AD(x)

{fCD(p)+δVC(q)}+(1−rd) max
{p,q}∈AA(x)

{fCA(p)+δVC(q)}.

With the acceptance correspondences possessing properties given in claim

1.18, existence and uniqueness of the solution to the dynamic program above

follow using a similar argument as in proposition 1.2 for the no directive

model. C’s equilibrium proposal strategy for default x is then given by

{pD(x), qD(x)} in D periods and by {pA(x), qA(x)} in A periods, where

{pD(x), qD(x)} ∈ arg max
{p,q}∈AD(x)

{fCD(p) + δVC(q)}

{pA(x), qA(x)} ∈ arg max
{p,q}∈AA(x)

{fCA(p) + δVC(q)}.

Notice that even though pD(x), qD(x), pA(x) and qA(x) are correspondences

we can always take a unique selection out of each of them. For this reason

below we treat those as functions. In the next claim we establish properties

of the value functions that solve the dynamic optimization program above.

claim 1.19. Under assumption 1.2 (namely its part one)

1. UA(x), UD(x) and VC(x) are all u.s.c.

2. UA(x) = 0 for ∀x ∈ [x−, κ−] ∪ [κ+, x+], UA(x) is non-increasing for

∀x ∈ [κ−, π∗ + φδrd] and non-decreasing for ∀x ∈ [π∗ + φδrd, κ
+]

3. UA(x) = UA(x′) with x+x′

2 = π∗ + φδrd for ∀x ∈ [κ−, κ+]
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4. UA(x) ≥ UA(x′) for ∀x′ ∈ [x, 2(π∗+φδrd)−x] with x ∈ [κ−, π∗+φδrd]

5. UD(x) = 0 for ∀x ∈ [x−, π∗−φ]∪[π∗+3φ, x+], UD(x) is non-increasing

for ∀x ∈ [π∗ − φ, π∗ + φ(1 − δ(1 − rd))] and non-decreasing for ∀x ∈
[π∗ + φ(1− δ(1− rd)), π∗ + 3φ]

6. UD(x) = UD(x′) with x+x′

2 = π∗ + φ for ∀x ∈ [x−, κ−] ∪ [2(π∗ + φ) −
κ−, x+], with x = z(x′) where z(x′) is a uniquely defined decreasing

function mapping the range [κ+, 2(π∗+φ)−κ−] into [κ−, 2(π∗+φ(1−
δ(1 − rd))) − κ+] and with x+x′

2 = π∗ + φ(1 − δ(1 − rd)) for ∀x ∈
[2(π∗ + φ(1− δ(1− rd)))− κ+, κ+]

7. UD(x) ≥ UD(x′) for ∀x′ ∈ [2(π∗+φ(1−δ(1−rd)))−x, x] with x ∈ [π∗+

φ(1−δ(1−rd)), κ+] and for ∀x′ ∈ [z(x), x] with x ∈ [κ+, 2(π∗+φ)−κ−]

8. VC(x) is non-increasing ∀x ∈ [x−, π∗+φδrd] and non-decreasing ∀x ∈
[π∗ + φ(1− δ(1− rd)), x+].

Proof. The first part follows immediately from the fact that the value func-

tions are solutions to C’s dynamic optimization program and theorem 1.1.

The second part follows from the fact that γCA ∈ AA(x) whenever

x ∈ [x−, κ−]∪ [κ+, x+]. The non-increasing and non-decreasing parts follow

from the fact that UPA(x, x), which defines AA(x), is under part one of as-

sumption 1.2 increasing on [κ−, π∗+φδrd] and decreasing on [π∗+φδrd, κ
+].

With the default option x entering C’s optimization only as a constraint

in the form of AA(x), it follows UA(x) has to be non-increasing and non-

decreasing on the two intervals respectively.

The third part follows from the fact that UPA(x, x) = UPA(x′, x′) for x

and x′ satisfying the condition given in the claim, which implies AA(x) =

AA(x′). Part four then follows from parts two and three.

Part five can be shown in a similar manner as part two, investigat-

ing properties of the UPD(x, x) function defining acceptance set AD(x),

using again part one of assumption 1.2. The sixth part is analogous to

part three using the fact that UPD(x, x) = UPD(x′, x′) for the x and x′

defined. Part seven is an implication of parts five and six. Part eight is

a direct consequence of parts two and five upon observing that VC(x) =

rdUD(x) + (1− rd)UA(x). �

The next claim establishes a certain monotonicity property of the equi-

librium status-quo offers qD(x) (as evaluated under the VC function) that
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will become useful later. We denote by A∂D(x) the boundary of AD(x) and

similarly by A∂A(x) the boundary of AA(x).

claim 1.20. Let x be the default option with its associated equilibrium status-

quo offer qD(x). Then for any x′ ∈ {q : AD(q) ⊆ AD(x)} with its associated

equilibrium status-quo offer qD(x′), VC(qD(x)) ≥ VC(qD(x′)).

Proof. Fix x and x′ with x′ ∈ {q : AD(q) ⊆ AD(x)} where the interpretation

of x′ is that it is a default option with strictly smaller associated P ’s D

period acceptance set. It is immediate that the claim holds for qD(x) and

its associated policy offer pD(x) with {pD(x), qD(x)} ∈ AD(x) \ A∂D(x) and

any x′ such that {pD(x), qD(x)} ∈ AD(x′) for then qD(x) = qD(x′). So

assume that {pD(x), qD(x)} ∈ A∂D(x).

Easy argument shows that for p to be C’s equilibrium policy offer for

some default option it has to be that p ∈ [π∗−φ, π∗+φ]. We need to construct

a set of offers C can be expected to choose from in equilibrium, i.e. those

where the policy offer falls into the [π∗−φ, π∗+φ] interval. This will be given

as a set A′D(x) = {{max{p, π∗−φ}, q}|{p, q} ∈ A∂D(x)∧p ≤ π∗+φ} ⊆ AD(x)

or in words as a subset of A∂D(x) for which the policy is smaller than π∗+φ

and for which, if the policy falls below π∗ − φ, it is replaced by π∗ − φ. It

is easy to see that for any default option x′′ ∈ X, C’s D period equilibrium

offer satisfies {pD(x′′), qD(x′′)} ∈ A′D(x′′).

Now with {pD(x), qD(x)} ∈ A∂D(x) and any {p, q} ∈ A′D(x) for which

p ≤ pD(x) it has to be the case that VC(qD(x)) ≥ VC(q). To see this note

that

fCD(pD(x)) + δVC(qD(x)) ≥ fCD(p) + δVC(q)

fCD(pD(x))− fCD(p) ≤ 0

where the first line follows from the fact that {pD(x), qD(x)} is C’s equilib-

rium offer and {p, q} ∈ AD(x) and the second line follows from the fact that

π∗ − φ ≤ p ≤ pD(x).

Next we want to show that for any {p, q} ∈ A′D(x) for which p > pD(x),

the associated q cannot be part of C’s equilibrium offer for x′. To see this

note that {p, q} ∈ A′D(x) with p > pD(x) and {pD(x), qD(x)} ∈ A∂D(x) has
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to satisfy

fPD(x) + δVP (x) = fPD(p) + δVP (q)

= fPD(pD(x)) + δVP (qD(x)).

Keeping q and qD(x) the same, changing x to x′ such that AD(x′) ⊆
AD(x), p and pD(x) will change to p′ and p′D(x) with {p′, q} ∈ A′D(x′)

and {p′D(x), qD(x)} ∈ A′D(x′) that satisfy

fPD(x′) + δVP (x′) = fPD(p′) + δVP (q)

= fPD(p′D(x)) + δVP (qD(x))

(if such a p′ does not exist we are done as q cannot be part of equilibrium

for x′, if such p′ does exist, p′D(x) has to exist as well). Taking the difference

of the two systems of equations gives fPD(p) − fPD(p′) = fPD(pD(x)) −
fPD(p′D(x)) which rewrites as

(p′ − p) = (p′D(x)− pD(x))

[
pD(x) + p′D(x)− 2(π∗ + φ)

p+ p′ − 2(π∗ + φ)

]
where the term in the square brackets is positive and strictly larger than

unity (all p, p′, pD(x) and p′D(x) are in the [π∗ − φ, π∗ + φ] interval and

pD(x) < p and pD(x)′ < p′). This in turn implies that p′−p > p′D(x)−pD(x)

and along with the fact that

fCD(p) + δVC(q) ≤ fCD(pD(x)) + δVC(qD(x))

gives

fCD(p′) + δVC(q) < fCD(p′D(x)) + δVC(qD(x))

so that q cannot be part of C’s equilibrium offer for default option x′.

Combining the two results, if {p, q} ∈ A′D(x) with p > pD(x) then q

cannot be part of C’s equilibrium proposal for x′. If {p, q} ∈ A′D(x) with

p ≤ pD(x) then VC(qD(x)) ≥ VC(q) so that if q = qD(x′) it has to be the

case that VC(qD(x)) ≥ VC(qD(x′)). �

Next we want to confirm our original conjecture that in equilibrium for

a given default option in a given type of period P is indifferent between

accepting and rejecting C’s offer given that the unconstrained maximizer of
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C’s overall utility is not in P ’s acceptance set. Formally, we want to show

that for default option x if γCD /∈ AD(x) then {pD(x), qD(x)} ∈ A∂D(x) and

similarly if γCA /∈ AA(x) then {pA(x), qA(x)} ∈ A∂A(x). A key complication

is the fact that the VC function can possess local maxima in the [π∗ +

φδrd, π
∗ + φ(1 − δ(1 − rd))] interval and hence C’s utility maximizing offer

can lie in the interior of P ’s acceptance set, even though her unconstrained

optimizer is outside of it. Denoting the problematic interval by Z = [π∗ +

φδrd, π
∗ + φ(1 − δ(1 − rd))] we deal with A and D periods in the following

two claims respectively. The two claims then deliver the conditions on δ

specified in parts two and three of assumption 1.2.

claim 1.21. Let x be the default policy and assumption 1.2 (namely its part

one and two) holds. Then C’s equilibrium proposal in A periods, provided

γCA /∈ AA(x), satisfies {pA(x), qA(A)} ∈ A∂A(x).

Proof. We know by proposition 1.3 that for any x ∈ X, pA(x) = π∗. Denot-

ing by AA(x, y = z) a ‘slice’ through AA(x) when variable y (either p or q) is

equal to z, C’s optimization problem in A period for default option x can be

rewritten as maxq∈AA(x,p=π∗){δVC(q)} and we want to show that whenever

γCA /∈ AA(x) then qA(x) ∈ {min{AA(x, p = π∗)},max{AA(x, p = π∗)}}.
It is easy to confirm that under part one of assumption 1.2 for any x,

AA(x, p = π∗) is a non-empty, compact and convex subset of X.

Next note that by part eight of claim 1.19 if max{VC(x), VC(y)} ≥
maxz∈(x,y) VC(z) for some x ≤ π∗+φδrd and some y ≥ π∗+φ(1− δ(1− rd))
then max{VC(x′), VC(y′)} ≥ maxz∈(x′,y′) VC(z) for any x′ ≤ x and any

y′ ≥ y. Hence if we can show that the claim is true for x = π∗ + φδrd,

which maximizes UPA(x, x) and hence delivers the smallest AA(x), we are

done as Z ∈ AA(π∗ + φδrd, p = π∗).

Now minima and maxima of AA(π∗+φδrd, p = π∗) are given respectively

by q−A = π∗+φrd−φrd
√

1− δ and q+
A = π∗+φrd+φrd

√
1− δ for {δ, rd} ∈ P

for which q+
A ≤ κ+ (it is easy to confirm κ− ≤ q−A). Then we can use part four

(along with part five) of claim 1.19 to conclude that VC(q−A) ≥ VC(x) for any

x ∈ [q−A , 2(π∗+φδrd)−q−A ] and part seven (along with part two) of the same

claim to conclude that VC(q+
A) ≥ VC(x) for any x ∈ [2(π∗+φ(1−δ(1−rd)))−

q+
A , q

+
A ]. The condition for 2(π∗+φδrd)− q−A ≥ 2(π∗+φ(1− δ(1− rd)))− q+

A

that rewrites as δ ≥ 1− r2
d then delivers the claim. For values of {δ, rd} for

which q+
A ≥ κ+ the argument is similar if somewhat complicated by use of
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the function z(x) mentioned in part six of claim 1.19. We do not repeat the

purely algebraic argument here as it delivers a condition on {δ, rd} that is

strictly weaker than the condition δ ≥ 1− r2
d just derived. �

claim 1.22. Let x be the default policy and assumption 1.2 (namely its part

one and three) holds. Then C’s equilibrium proposal in D periods, provided

γCD /∈ AD(x), satisfies {pD(x), qD(x)} ∈ A∂D(x).

Proof. First note that for default option x if γCD /∈ AD(x) then if {pD(x), qD(x)}
is strictly inside AD(x) then it has to be the case that pD(x) = π∗ − φ. If

not and pD(x) = p 6= π∗ − φ then there exists (not necessarily positive) ε

such that C can offer {p − ε, qD(x)} ∈ AD(x) with UCD(p − ε, qD(x)) >

UCD(p, qD(x)). Also it has to be the case that qD(x) = z for some z ∈ Z.

If not, then by part eight of claim 1.19, there has to exist q such that

{pD(x), q} ∈ A∂D(x) and satisfies UCD(pD(x), q) ≥ UCD(pD(x), qD(x)) and

we can specify {pD(x), q} to be C’s equilibrium offer satisfying the claim.

Next γCD /∈ AD(x) implies that x ∈ X+ = (π∗ − φ, π∗ + 3φ) and, under

assumption 1.2, for any x ∈ (π∗−φ, π∗+φ(1−δ(1−rd))] there exists a unique

x′ ∈ [π∗+φ(1−δ(1−rd)), π∗+3φ) such that UPD(x, x) = UPD(x′, x′), which

implies AD(x) = AD(x′). Denoting by Xc = (π∗ − φ, π∗ + φ(1− δ(1− rd))]
we focus on x ∈ Xc since if the claim holds for any such x it has to hold for

any x′ ∈ [π∗ + φ(1− δ(1− rd)), π∗ + 3φ) = X+ \Xc.

Next assume that pD(x) = π∗−φ and qD(x) = z for some z ∈ Z are part

of the equilibrium for some x ∈ Xc such that {π∗ − φ, z} ∈ AD(x) \A∂D(x).

We show that this leads to contradiction.

Observe that if pD(x) = π∗ − φ and qD(x) = z for some z ∈ Z is C’s

equilibrium offer for x ∈ Xc with {π∗ − φ, z} ∈ AD(x) \A∂D(x), it has to be

the case that pD(xc) = π∗ − φ and qD(xc) = z is C’s equilibrium offer for

xc ∈ Xc such that {π∗ − φ, z} ∈ A∂D(xc). Such xc is implicitly defined by

UPD(xc, xc) = UPD(π∗ − φ, z). We denote xc as a function of z by xc(z) for

z ∈ Z. It is easy to show that xc(z) is increasing on Z− and decreasing on

Z+ where Z− = [π∗+φδrd, π
∗+φrd] and Z+ = [π∗+φrd, π

∗+φ(1−δ(1−rd))]
respectively with Z = Z− ∪ Z+ and that xc(z) ≤ z.

Now from the fact that pD(xc(z)) = π∗ − φ and qD(xc(z)) = z is C’s

equilibrium offer it follows

fCD(xc(z)) + δVC(xc(z)) ≤ fCD(π∗ − φ) + δVC(z),
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which rewrites as

− (xc(z)− π∗ + φ)2 + δ2rdVC(qD(xc(z))) + δ2(1− rd)VC(qA(xc(z)))

≤− δrd(pD(z)− π∗ + φ)2 + δ2rdVC(qD(z)) + δ2(1− rd)VC(qA(z)).

We show that this inequality fails under assumption 1.2.

First we show that VC(qA(xc(z))) ≥ VC(qA(z)) using part four of claim

1.19. Evaluating xc(z) at its maximum, that is for z = π∗ + φrd, gives

xc(π∗+φrd) = π∗+φ(1− δ(1− rd))−φ
√

(1− δ)(4− δ + 2δrd − δr2
d) and in

order to use claim 1.19 we need this to be smaller than π∗+φδrd−φ(1− δ)
(as φ(1− δ) is size of the Z interval). This condition rewrites as 0 ≤ δ(1−
δ)(3− rd)(1 + rd), which clearly holds for any {δ, rd} ∈ P.

Next we show that VC(qD(xc(z))) ≥ VC(qD(z)) that follows from claim

1.20 along with the fact that xc(z) ≤ z, xc(z) ∈ Xc and z ∈ Xc, which

implies AD(z) ⊆ AD(xc(z)).

Finally we show that −(xc(z)−π∗+φ)2 ≥ −δrd(pD(z)−π∗+φ)2. As we

do not know the exact value of pD(z) we replace it by the minimum value

of policy in the AD(z) set. We denote this policy, as a function of z, by

pm(z) and note it solves fPD(z) + δVP (z) = fPD(pm(z)) + δVP (π∗ + φrd)

as π∗ + φrd maximizes the VP function under assumption 1.2. Similarly,

xc(z) defined above by {π∗ − φ, z} ∈ A∂D(xc(z)) for some z ∈ Z solves

fPD(xc(z)) + δVP (xc(z)) = fPD(π∗ − φ) + δVP (z).

In what follows we need to focus only on z = π∗ + φδrd. To see this

note that using the implicit function theorem (non-differentiability of VP

poses no problem here as even at the point where VP is not differentiable,

it possesses left and right derivatives)

∂pm(z)

∂z
=

2(π∗ + φ− z) + δ ∂VP (z)
∂z

2(π∗ + φ− pm(z))

∂xc(z)

∂z
=

δ ∂VP (z)
∂z

2(π∗ + φ− xc(z)) + δ ∂VP (xc(z))
∂xc(z)

.

If we can prove that ∂xc(z)
∂z ≤

√
δrd

∂pm(z)
∂z for any z ∈ Z then if the inequality

−(xc(z)− π∗ + φ)2 ≥ −δrd(pm(z)− π∗ + φ)2 holds for z = π∗ + φδrd it has

to hold for any z ∈ Z.

For z ∈ Z+ we have ∂xc(z)
∂z ≤ 0 ≤

√
δrd

∂pm(z)
∂z (denominators in ∂xc(z)

∂z

and ∂pm(z)
∂z are positive as xc(z) ∈ Xc and pm(z) ∈ Xc while nominators
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are positive and negative respectively). For z ∈ Z−, ∂xc(z)
∂z ≤

√
δrd

∂pm(z)
∂z

rewrites as (using only nominators as denominator in ∂xc(z)
∂z is larger than

denominator in ∂pm(z)
∂z and using the fact that under assumption 1.2, κ− ≤

z ≤ κ+ for any z ∈ Z)

δ −
√
δrd

1− δ
(π∗ + φ− z)− φδ(1− rd)(1−

√
δrd)

1− δ
≤ 0

which, as straightforward algebra shows, holds for z ∈ Z−.

We now focus on the inequality−(xc(z)−π∗+φ)2 ≥ −δrd(pm(z)−π∗+φ)2

evaluated at z = π∗ + φδrd. This gives us xcm = xc(π∗ + φδrd) and pcm =

pm(π∗ + φδrd) that read as

xcm = π∗ + φ(1− δ(1− rd))− φ
√

(1− δ)(4− δ + 2δrd − δ2r2
d)

pcm = π∗ + φ− φ
√

1− 2δrd + δr2
d

where the expression for xcm applies only as long as κ− ≤ xcm. We do not

need to focus on the case when κ− > xcm as then κ− > xcm > xc(π∗ + φδrd)

(which is a direct consequence of the VP function being the upper envelope

of two quadratic functions).

At this point it is helpful to replace δrd in expressions for xcm and pcm by

k which gives

xkm = π∗ + φ

(
1− k

rd
+ k

)
− φ

√(
1− k

rd

)(
4− k

rd
+ 2k − k2

)
pkm = π∗ + φ− φ

√
1− 2k + krd

where k ∈ [1
5 , 1] and rd ∈ [k, 1] under part one of assumption 1.2.

As a next step we prove that ∂xkm
∂rd
≤ k ∂p

k
m

∂rd
for any k ∈ [1

5 , 1] and any

rd ∈ [k, 1], which implies that if −(xkm− π∗+ φ)2 ≥ −k(pkm− π∗+ φ)2 holds

for some k ∈ [1
5 , 1] and rd ∈ [k, 1], then it has to hold for the same k and any

r′d ≥ rd. To confirm ∂xkm
∂rd
≤ k ∂p

k
m

∂rd
for any k ∈ [1

5 , 1] and any rd ∈ [k, 1] we

rewrite the inequality ∂xkm
∂rd
≤ k ∂p

k
m

∂rd
into the form Pk(rd) ≤ 0 where Pk(rd)

is a complicated expression of k and rd that we view as a polynomial in rd

with coefficients given by k. We need to confirm Pk(rd) does not have a

root in [k, 1] for any k ∈ [1
5 , 1]. To do so we use the Descartes rule with a

substitution rd = α+βy
1+y with α = k and β = 1 (see Prasolov, 2004, corollary
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to theorem 1.4.1). This gives us polynomial Pk(y) in y with coefficients given

by k. We use Sturm’s theorem (Prasolov, 2004, theorem 1.4.3) to check that

all the coefficients in Pk(y) are negative for k ∈ [1
5 , 1] which, by Descartes

rule, implies that Pk(y) does not have a positive root for any k ∈ [1
5 , 1], which

in turn implies that Pk(rd) does not have a root in [k, 1] for any k ∈ [1
5 , 1].

The last thing we need it to find is a line through the {δ, rd} space P,

expressed as δ = f(rd), for which −(xcm − π∗ + φ)2 ≥ −δrd(pcm − π∗ + φ)2

holds. This will imply that the inequality holds for any {δ′, r′d} such that

k = δrd = δ′r′d and r′d ≥ rd. Combined with part one of assumption 1.2

δ ≥ 1
5rd

, if we can show that the inequality holds for any {δ = f(rd), rd}
where δ ≥ 1

5rd
, it has to hold for any {δ′, rd} such that f(rd) ≥ δ′ ≥ 1

5rd
.

One such f(rd) is given by f(rd) = 1 − (1−rd)2

2 . To see this we substitute

the expressions for xcm and pcm into −(xcm − π∗ + φ)2 ≥ −δrd(pcm − π∗ + φ)2

along with δ = 1 − (1−rd)2

2 , getting polynomial P(rd) in rd and we confirm

that it has no root in the [1
5 , 1] interval using Sturm’s theorem again. This

delivers part three of assumption 1.2 and proves the claim. �

Claims 1.21 and 1.22 confirm our original conjecture that C’s offers bring

P to indifference between accepting and rejecting given the unconstrained

maximizer of C’s overall utility is not available. Hence C’s strategy as a

solution to her dynamic optimization program indeed generates P ’s accep-

tance sets conjectured in that optimization program. Therefore C’s proposal

strategies ρC = {pD(x), pA(x), qD(x), qA(x)} generated by C’s dynamic op-

timization problem under acceptance sets generated by VP and P ’s voting

strategies ρP generated by VP constitute CS-MPE.

The rest of the proposition follows easily. Uniqueness of the CS-MPE

in terms of associated value functions follows from the uniqueness of VP in

any CS-MPE and uniqueness of the solution to C’s optimization program.

Part one of the proposition follows from proposition 1.3, part two is trivial

to establish, part three follows from claim 1.20 and part four follows from

claims 1.15 and 1.16.

1.A1.5 Proof of proposition 1.5

Using definition 1.4 of S, x ∈ S implies qA(x) = qD(x) = x and hence stable

D period policy decisions pD(x) = p∗. D-efficiency and hence part one then

follows from the fact that p∗ ∈ [π∗−φ, π∗+φ], which is easy to see. For part
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two denote as in the proof of proposition 1.4 by X− = X \ (π∗−φ, π∗+ 3φ)

and by X+ = (π∗ − φ, π∗ + 3φ). We know by claim 1.15 from the proof of

proposition 1.4 that pD(x) = π∗ − φ and pA(x) = π∗ for any x ∈ X−. For

x ∈ X+ we know qA(x) ∈ {min{AA(x, p = π∗)},max{AA(x, p = π∗)}} by

claim 1.21 from the proof of proposition 1.4 and it is easy to show qA(x) = x

possibly only for x = π∗ as min{AA(π∗, p = π∗)} = π∗. This opens the

possibility that qA(π∗) = qD(π∗) = π∗ and hence possibly π∗ ∈ S. This in

turn would imply pA(π∗) = pD(π∗) = π∗, which is easy to show as well. In

any case, π∗ has zero measure.

For part three, from part four of proposition 1.4, C proposes uncon-

strained maximizers of her overall utility γCD = {π∗ − φ, z} and γCA =

{π∗, z′} whenever γCD ∈ AD(x) and γCA ∈ AA(x) for some z, z′ ∈ X \ (π∗−
φ, π∗ + 3φ). As a result whenever x is such that C can propose γCA (γCD)

in A (D) period, we can specify proposal strategies such that the bargaining

reaches S immediately. Integration intervals in the proposition are then a

translation of the conditions γCA ∈ AA(x) and γCD ∈ AD(x) that can be

derived easily using VP from proof of proposition 1.4. The fourth part is

then a direct consequence of proposition 1.3.

1.A1.6 Proof of proposition 1.6

To prove the proposition we prove that the policy C proposes for a given de-

fault option x under the implicit status-quo bargaining is in P ’s acceptance

set for the same default option under the explicit status-quo bargaining.

This, along with the fact that the explicit status-quo bargaining relaxes the

constraint on C’s optimization problem, will imply the first part. We su-

perscript all variables from the implicit status-quo bargaining by I and all

variables from the explicit status-quo bargaining by E and use the notation

from the proofs of propositions 1.1 and 1.4.

For D periods notice that by feasibility of equilibrium proposals under

implicit status-quo bargaining

fPD(pID(x)) + δV I
P (pID(x)) ≥ fPD(x) + δV I

P (x)

for any x ∈ X. Adding ±δV E
P (pID(x)) and ±δV E

P (x) to the left and right
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hand sides, the inequality after rearrangement becomes

fPD(pID(x)) + δV E
P (pID(x)) ≥fPD(x) + δV E

P (x)

+δ[(V I
P (x)− V E

P (x))− (V I
P (pID(x))− V E

P (pID(x)))]

so that if we can prove that the term in the square brackets is positive for

any x ∈ X, {pID(x), pID(x)} ∈ AED(x) will follow.

The difference of P ’s value functions under the two bargaining protocols

from the proofs of propositions 1.1 and 1.4 is

V I
P (x)−V E

P (x) =



φ2 3δrd(1− rd)
1− δ

for x ∈ X \ (π∗ + φδrd − κ, π∗ + φδrd + κ)

1− rd
(1− δ)(1− δrd)

(x− π∗ + φδrd)(x− π∗ − 3φδrd)

for x ∈ [π∗ + φδrd − κ, π∗ − φδrd] ∪ [π∗ + 3φδrd, π
∗ + φδrd + κ]

0

for x ∈ [π∗ − φδrd, π∗ + 3φδrd]

where κ = φ
√
δrd(3 + δrd) as before. Also note that V I

P (x) − V E
P (x) is

non-negative for ∀x ∈ X, which proves the second part of the proposition.

To prove

V I
P (x)− V E

P (x)− (V I
P (pID(x))− V E

P (pID(x))) ≥ 0

for ∀x ∈ X, first take x ∈ X−. Then pID(x) = π∗ − φ and V I
P (x)− V E

P (x) =

V I
P (π∗ − φ) − V E

P (π∗ − φ) so that the inequality holds. For default options

x ∈ {z|pID(z) ≥ π∗−φδrd} it is easy to show x ∈ [π∗−φδrd, π∗+φ(2 + δrd)]

and pID(x) ≤ x so that π∗−φδrd ≤ pID(x) ≤ x and the inequality follows from

the fact that V I
P (x)−V E

P (x) is non-decreasing for x ≥ π∗−φδrd. For default

options x ∈ [π∗−φ, π∗−φδrd] the inequality holds as pID(x) = x. Finally, for

x ∈ [π∗+φ(2+δrd), π
∗+3φ], pID(x) = 2(π∗+φ)−x ∈ [π∗−φ, π∗−φδrd] and

as π∗ + φδrd + κ ≤ π∗ + φ(2 + δrd), we have V I
P (x)− V E

P (x) = φ2 3δrd(1−rd)
1−δ ,

whereas V I
P (pID(x))−V E

P (pID(x)) ≤ φ2 3δrd(1−rd)
1−δ , so that the inequality holds.

For A periods a similar argument shows that it suffices to show

V I
P (x)− V E

P (x)− (V I
P (pIA(x))− V E

P (pIA(x))) ≥ 0



CHAPTER 1. EXPLICIT AND IMPLICIT STATUS-QUO 106

for ∀x ∈ X in order to show {pIA(x), pIA(x)} ∈ AEA(x). The inequality then

follows from the fact that pIA(x) ∈ [π∗ − φδrd, π∗ + φδrd] so that the second

term in the inequality is always equal to zero, whereas the first term is always

positive. The third part of the proposition then follows using straightforward

algebra and results from the proofs of propositions 1.1 and 1.4.

1.A1.7 Proof of proposition 1.7

We prove two claims that together prove the proposition. The strategy of

the proof borrows heavily from Riboni and Ruge-Murcia (2008).

claim 1.23. The difference in utilities associated with two sequences of pol-

icy decisions is linear in φ (for the first condition in definition 1.5) and in

νi,0 (for the second condition in definition 1.5).

Proof. For the first condition in definition 1.5 of an essentially two-member

committee, take two general sequences of policy decisions p = {p0, p1, . . .}
and p′ = {p′0, p′1, . . .}. The utility associated with these policy sequences for

a committee member with preference parameter φ is

U(p, φ) = −
∞∑
t=0

δt(pt − π∗ − φID(t))2

where ID(t) is D period indicator function. Taking the derivative of the

difference U(p, φ)− U(p′, φ) with respect to φ gives

∂[U(p, φ)− U(p′, φ)]

∂φ
=
∞∑
t=0

2δtID(t)(pt − p′t),

which does not depend on φ. It follows that the difference in utility between

p and p′ is linear in φ.

For the second condition in definition 1.5, the utility associated with the

sequence of policy decisions for a member with preference shock νi,0 in the

current period that is already realized and hence common knowledge is

U(p, νi,0) = −(p0 − π∗ − φ− νi,0)2 −
∞∑
t=1

δt
[
(pt − π∗ − φID(t))2 + rdE[ν2

i,t]
]

with derivative of the difference U(p, νi,0) − U(p′, νi,0) with respect to νi,0
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equal to
∂[U(p, νi,0)− U(p′, νi,0)]

∂νi,0
= 2(p0 − p′0),

which again does not depend on νi,0. �

The next claim shows that the proposal is passed if and only if it is ac-

cepted by the median member. Formally, for the first condition in definition

1.5 for the committee of N (odd) members denote their preference parame-

ters {φ1, . . . , φN} such that φi < φj for every pair 1 ≤ i < j ≤ N . Then the

median member has the preference shock φm that satisfies |{i|φi > φm}| =
|{i|φi < φm}|. For the second condition in definition 1.5 for the N−1 (even)

members denote their preference parameters {φ+ ν1,0, . . . , φ+ νN−1,0} such

that φ + νi,0 < φ + νj,0 for every pair 1 ≤ i < j ≤ N − 1. Then the

two median members have preference shocks φ + νm,0 where νm,0 = 0 and

|{i|νi,0 > νm,0}| = |{i|νi,0 < νm,0}|.

claim 1.24. Assuming stage-undominated voting strategies, for a committee

with N members with N odd, C’s proposal γ is passed if and only if it is

accepted by the median committee member.

Proof. For sufficiency, assume the median member accepts, then by the pre-

ceding claim either all committee members with φi > φm (νi,0 > νm,0) accept

or all committee members with φi < φm (νi,0 < νm,0) accept. In either case,

γ passes.

For necessity, assume the median member does not vote for γ. Then

either all members with φi > φm (νi,0 > νm,0) do not vote for γ or all

members with φi < φm (νi,0 < νm,0) do not vote for γ. In either case γ is

not approved. �

Using claim 1.24 C’s proposal strategy when faced with an essentially

two-member committee will take into account only median member(s) of the

committee. In the A periods for the first condition in definition 1.5 this is a

player with D period preference shock φ and for the second condition of the

same definition those are all the remaining committee members who in D

periods have preference shocks equal to φ on average. In the D periods we

have either one or two players with preference shock equal to φ being median

ones, depending on the exact condition used in definition 1.5. As a result,

C’s proposal strategy in the dynamic bargaining game played by any essen-

tially two-member committee will be equal to the proposal strategy in the
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dynamic bargaining game played by C with only one other player with the

two players having D period preference shocks −φ and φ respectively. The

proposition then follows from the fact that C’s proposal is always approved

in equilibrium by the median player and hence by the whole essentially

two-member committee if its members use stage-undominated strategies.

1.A2 Static mechanism implementation

We restrict attention to static transfer-free direct mechanisms in which the

policy in period t is independent of history. In mechanism M : {mC ,mP } →
∆(X) player i ∈ {C,P} submits message mi ∈ {A,D} and M implements a

policy from X chosen according to some distribution, so that ∆(X) denotes

the set of all distributions on X.

Because player types are perfectly correlated we can restrict attention

to mechanisms that learn the type of period with certainty. Each such

mechanism will be characterized by a pair of distributions, one for A periods

with cdf FA and one for D periods with cdf FD.

It is immediate that FA implements π∗ with certainty in any Pareto

efficient mechanism. For D periods, C’s expected utility is equal to∫
X
−(x− π∗ + φ)2dFD(x) = − var(x)− (E(x)− π∗ + φ)2

and P ’s expected utility is equal to∫
X
−(x− π∗ − φ)2dFD(x) = − var(x)− (E(x)− π∗ − φ)2

so that var(x) = 0 in any Pareto efficient mechanism.

As a result, any Pareto efficient static transfer-free direct mechanism has

to involve M(A,A) = π∗ and M(D,D) = p∗ where p∗ ∈ [π∗ − φ, π∗ + φ].

Moreover, p∗ = π∗ for utilitarian (maximizing sum of expected utilities)

mechanism.
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1.A3 Numerical simulation of equilibrium under

explicit status-quo bargaining

This section describes the procedure to obtain numerical estimates of the

equilibrium C’s value function VC and her proposals in the model with the

explicit status-quo bargaining protocol. We use the standard value function

iteration method along with several results proven earlier. First of all recall

that by proposition 1.3 we know pA(x) = π∗. Furthermore, from the proof

of proposition 1.4 we know the shape of P ’s acceptance sets AA and AD

and equilibrium proposals for x ∈ X−. Finally by the same proposition we

know C’s value function VC is unique.

To estimate the remaining part of the equilibrium, we restrict the pro-

posal space along each dimension to X ′ = [π∗ − 1.1φ, π∗ + 3.1φ] and specify

a grid of discrete nodes {d1, . . . , dN} ∈ X ′. Call this grid G. We use π∗ = 2,

φ = 1 which, with the distance of the neighbouring nodes equal to 0.001,

gives N = 4201. With the proposal space specified, we implement the fol-

lowing iterative procedure. At the iteration step t we solve C’s optimization

problem for A and D periods for each default option in G. Denote by V t
C(G)

the N × 1 vector of C’s continuation values, each of them associated with a

distinct node (default option) di ∈ G at the t-th step of the iteration.

For D periods we solve for each di ∈ G

max
{p,q}∈AD(di)⊆G2

−(p− π∗ + φ)2 + δV t
C(q)

by searching the discretized feasible proposal space AD(di) ⊆ G2. This gives

us two N × 1 vectors of proposals for the D period, one along the policy

dimension, ptD, and the second along the status-quo dimension, qtD, with

the i-th element of each being C’s proposed policy and status-quo for default

option di.

For A periods we already know pA(x) = π∗ hence for each di ∈ G we

solve

max
{π∗,q}∈AA(di)⊆G2

V t
C(q)

again by searching the feasible proposal grid AA(di) ⊆ G2. This gives us

one N × 1 vector of status-quo proposals for the A period, qtA, with the i-th

element being the proposed status-quo for default option di.
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Finally we compute N × 1 vector of C’s continuation values as

V t+1
C (G) = rd

[
−(ptD − π∗ + φ)2 + δV t

C(qtD)
]

+ (1− rd)
[
δV t

C(qtA)
]

and proceed to the iteration step t + 1. We stop the iteration procedure

when maxi∈{1,...,N} |V t+1
C (di)− V t

C(di)| ≤ 1.0× 10−6. As usual, for the first

step of the iteration we use V 1
C(G) = 0. We experience no problems with

convergence and for the simulations shown the procedure converges in about

70 iterations.

The reason why we use this rather rudimentary numerical procedure in-

stead of some more involved one (e.g. a better optimization algorithm and

functional approximation for VC) is twofold. First, we suspect the VC to be

ill-behaved with a number of local maxima and we do not want the optimiza-

tion algorithm to pick a wrong one especially as the acceptance sets are in

general not convex. Second, we suspect the resulting equilibrium to involve

several discontinuities and we do not want the functional approximation to

‘smooth out’ the problem.
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2.1 Introduction

In recent years, the political science and the political economy literature

has, among other things, been studying dynamic bargaining models. On

the most general level, these models fully acknowledge the fact that real

world policies remain in place until changed and hence the last period’s

policy serves as a status-quo during today’s round of policy determination.

Similarly, policy determined today will serve as a status-quo during the next

round of policy making.

Despite considerable progress having been made, the more widespread

use of dynamic bargaining models is complicated by a lack of general results

that ensure the existence and uniqueness of (Markov perfect) equilibria,

and by the complexity of equilibria in models where these have been derived

analytically.

Faced with this complexity, a part of the literature has turned to com-

puter simulations. What the simulations reveal is indeed the ill-behaved

nature of key components of equilibria in dynamic bargaining models. The

equilibrium strategies and induced preferences often lack convenient math-

ematical properties such as differentiability or continuity.

We hope to contribute to the growing literature on dynamic bargaining

by constructing equilibria in games in which players care about all the di-

mensions of a policy space. All the equilibria that we derive here have very

simple and arguably intuitive shape, and as such might be more useful in

applied work.

We then use these equilibria to illustrate several potentially interesting

features. Besides a standard comparative static exercise, we show the mul-

tiplicity of equilibria in certain environments. This multiplicity can prove

challenging, especially in work where researchers use computer simulations,

as the typically used value function iteration method relies on an assumption

of uniqueness of the equilibrium being approximated.

Our construction can also prove beneficial in more complicated environ-

ments that are ‘close’ to the simple setup we use, as it readily produces value

functions that can be used in the first step of the value function iteration

method, in a hope to speed up convergence in the more complicated model.

The paper proceeds in the following way. We start with a brief survey

of the dynamic bargaining literature in section 2.2 followed by a description
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of the model in section 2.3. Section 2.4 and 2.5 derives the correspond-

ing equilibria when the policy space is assumed to be one-dimensional and

multi-dimensional, respectively. Section 2.6 discusses our results and some

possible extensions of the model in which our approach to the construction

of the equilibria might still apply. Section 2.7 concludes. Proofs of all the

propositions from the main text are included in the appendix.

2.2 Literature survey

We start with a description of a typical dynamic bargaining model. A set

of N players interacts in an infinite horizon with discounting. In every

period t, one of the players is randomly chosen to propose a policy xt ∈ Rn.

This policy is then pitched against a status-quo policy qt with a winning

alternative becoming the new status-quo qt+1. Players collect their utilities,

given by an utility function ui(·), and the bargaining moves to period t+ 1.

We distinguish the dynamic bargaining model just described from the

closely related, but nevertheless different model with evolving default, in

which the endogenous nature of the default policy, i.e. the alternative to

the proposal, is preserved, but in which utilities are collected only once the

game ends.

Both of the mentioned versions can be found in papers investigating

divide-the-dollar problems, where policy space is usually N − 1 dimensional

simplex and the players only care about their share of the dollar, i.e. only

about one dimension in the policy space. Kalandrakis (2004) derives the

equilibrium analytically in a three player version of the dynamic bargaining

model with linear utilities. Epple and Riordan (1987) on the other hand

investigate a model with general utilities, but where players take fixed turns

in proposing.

Diermeier and Fong (2008a,b) investigate a divide-the-dollar game with

evolving default where the former model is complicated by the players having

to decide about both, the size of the budget to share (with quadratic costs

motivated by distortionary taxation) and about how to share it. Diermeier

and Fong (2007) and Diermeier and Fong (2009) combine dynamic bargain-

ing across periods with evolving default over individual rounds of bargaining

within each period. The latter paper further adds a decision about the size

of the budget with quadratic and stochastic costs. Nevertheless, all four
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papers just mentioned assume players derive linear utility from their share

of a budget.

It is the role of concavity over players’ share in a utility functions that

motivates Battaglini and Palfrey (2012). They simulate equilibria in a stan-

dard divide-the-dollar three-player game with concave utilities and contrast

these to the equilibria in a model with linear utilities, both theoretically and

experimentally.

As opposed to divide-the-dollar games in which players only care about

a single dimension of a policy space, several papers have considered models

where players are interested in all the dimensions of a policy space X. We

call these dynamic bargaining models over policies.

Among the first to investigate such a model is Baron (1996). In his

paper, N players bargain over policies with X = R in a framework that

is very similar to the one considered in (the one-dimensional part of) this

paper. Fong (2005) and Baron and Herron (2003) try to expand the model

by assuming X = R2. Both papers assume only three players with the most

preferred policies on an equilateral triangle. Nevertheless, in order to derive

some results they have to either put strong restrictions on X (Fong, 2005)

or resort to a computer simulation of the equilibrium (Baron and Herron,

2003).

Several extensions of these models have been made. Duggan, Kalan-

drakis, and Manjunath (2008) make the institutional structure of their model

richer by including legislature and a president with a policy veto. Alterna-

tively, Cho (2004) includes elections in a model with three parties where

voters’ preferences are defined over X ∈ R and parties are interested also in

the spoils of holding the office. Baron, Diermeier, and Fong (2012) have a

similar model, except that X ∈ R2. In both models that include elections,

it is the policy x ∈ X that evolves endogenously, whereas spoils of the office

are set to zero in case the parties do not reach an agreement.

Two papers take the dynamic bargaining to a monetary policy setting,

modelling interest rate making decisions as a game with an endogenous

status-quo. Riboni (2010) investigates model with N decision making play-

ers plus a public forming expectations about future monetary policy. His

equilibrium then requires mutual consistency of both the decision makers’

and the citizens’ strategies. Riboni and Ruge-Murcia (2008) consider a

model without public expectations but with the players’ preferences chang-
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ing stochastically from period to period. What is common to both models

is that the proposal-making authority is assumed to be with a single fixed

player, emulating the chairman-led nature of a typical monetary policy com-

mittee.

Faced with rather complicated equilibria that often defy attempts for an-

alytical derivation, a series of papers have turned to computer simulations.

Baron and Herron (2003) illustrate equilibrium in their model derived from

simulations, along with the discontinuous property of corresponding value

functions. Duggan et al. (2008) perform a similar exercise but use their sim-

ulations to investigate the welfare effects of several constitutional changes.

Finally, Duggan and Kalandrakis (2011) propose a new method for the com-

puter simulation of equilibria in dynamic bargaining games and compare its

speed and robustness to several other methods. As an illustrative example

they simulate equilibrium in a model with N = 9 and X ∈ R2.

Several other papers investigate related models that do not fit into any of

the categories just mentioned. Bernheim, Rangel, and Rayo (2006) focus on

a model with evolving default, where the policy space consists of a finite set

of alternatives and a fixed horizon set for bargaining. They prove that if the

policy space includes a Condorcet winner it will, under some conditions, be

the final outcome of the bargaining independent of the original default. On

the other hand, the independence of the final outcome and starting position

arises without a Condorcet winner.

Battaglini and Coate (2007, 2008) analyse two related models with a

tax-financed public spending used to finance public good and pork-barrel

programs. The intertemporal link in their models arises due to the invest-

ment nature of the public good in the former model and possibility of debt

finance in the latter.

Finally, Duggan and Kalandrakis (2012) prove the existence of a Markov

perfect equilibrium in a general dynamic bargaining game. In order to

smooth out the above mentioned discontinuities in the equilibrium value

functions, the framework uses (possibly negligible) shocks in the utilities of

the players and also a stochastic relationship between the agreed-on policy

and the future status-quo. Besides the existence result, the paper proves

the upper hemicontinuity of the equilibrium correspondence, suggesting a

relative robustness of the equilibria to small changes in the model’s parame-

ters. As an illustrative example working paper version of the paper (Duggan
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and Kalandrakis, 2007) also numerically simulates equilibrium in a dynamic

bargaining game with N = 5 and X ∈ R.

2.3 Model

In this section we lay out our model and in the next one, we explain in detail

the construction which leads to a conjectured equilibrium and derive the

conditions under which the conjecture is indeed an equilibrium. Throughout,

we include several examples for specific parameter values of the model.

The model of this section is simple. There is a set of N (odd) players

choosing policies from X = R in an infinite sequence of periods t = 0, 1, . . .

with discounting δ ∈ [0, 1). In each period t one of the players is randomly

chosen to make a proposal rt which is then pitched against the status-quo

qt policy and an alternative obtaining majority of votes is implemented and

becomes a new status-quo qt+1. Then players collect their utilities and

bargaining moves into next period t + 1. Probabilities of recognition p ∈
{p1, . . . , pN} are fixed. The single period utility of each player i is taken to be

ui(x) = −(x−xi)2. We call the most preferred policies of players xi original

bliss points and order the players such that x1 < . . . < xi < xi+1 < . . . < xN

denoting the whole vector by x = {x1, . . . , xN}. We denote by i = m the

median player with i satisfying |{j|xj < xi}| = |{j|xj > xi}| with the

corresponding bliss point of xi = xm.

We focus solely on Stationary Markov Perfect equilibria (SMPE) of

Maskin and Tirole (2001), in which pure strategies are measurable only

with respect to the payoff relevant histories. In our model, this will imply

the dependence of proposal and voting strategies on a state given by the

status-quo qt policy, not on a specific period t. For this reason we omit the

time subscript from thereon.

SMPE will consist of two strategies for each player. The first one is

a proposal strategy of player i when recognized in a period with a status-

quo q, which we denote by ri(q). For convenience, and without the loss of

generality, we assume that a proposer whose most preferred policy, out of

the set of policies that would be accepted, is the current status-quo q, will

indeed offer this policy, instead of offering a different policy knowing that it

would be rejected.

The second strategy of each player is a voting strategy determining a
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player’s vote when faced with status-quo q and offer r. Following Baron and

Kalai (1993) we focus on stage undominated voting strategies, which assume

that each player votes as if being pivotal and in effect for an alternative offer-

ing higher expected utility. This wipes out equilibria in which players vote

against their most preferred alternative knowing their vote cannot change

the resulting policy. Notice also that in any equilibrium it has to be true

that the player who is indifferent between q and r votes for r.

With this structure, it is easy to see that any policy offered will always

be accepted. As a result we do not have to distinguish between proposed

and accepted policies and can focus solely on ri(q).

Two sets of equilibrium strategies just described give rise to a contin-

uation value function of each player Vi(q). These functions measure the

expected utility from continuing the game at the beginning of each period

with a status-quo q before a proposer for that given period is recognized.

More formally, these can be written as

Vi(q) =

N∑
j=1

pj [−(rj(q)− xi)2 + δVi(rj(q))].

With the value functions defined, the proposal strategy of player i for a

status-quo q solves

max
r accepted|q

ui(r) + δVi(r)

and denoting overall expected utility by Ui(r) = ui(r)+δVi(r), voting strat-

egy of player i faced with status-quo q and alternative r dictates voting for

r if and only if

Ui(r) ≥ Ui(q).

2.4 Equilibria with X ∈ R

The first result we prove greatly simplifies the derivation of decisive coali-

tions needed to approve any given proposal r. More specifically, we prove

that, for a general set of (possibly non-Markov) equilibrium proposal and

voting strategies, r is accepted, as opposed to q, if and only if the voter with

a median bliss point prefers r to q. More formally we have

Proposition 2.1 (Dynamic median voter theorem for X = R). For any

set of proposal and voting strategies and any status-quo policy, a proposal is
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accepted if and only if it is accepted by a player with a median bliss point

xm.

Proof. See appendix 2.A1.

An implication of this result is that the acceptance sets for each player,

when recognized to make a proposal, will be given by the shape of a median

player expected utility function and will be the same for all players. A

second implication is that the median player will for any status-quo offer his

original bliss point. Finally, when constructing the equilibrium, we do not

need to specify voting strategies of all the players relying on proposition 2.1

and hence focus only on the voting strategy of the median player.

Conjectured proposal strategies will have the following shape

ri(q) =


max{min{2xm − q, q}, x̂i} for i < m

min{max{2xm − q, q}, x̂i} for i > m

xm for i = m

(2.1)

where the x̂is are what we call induced or strategic bliss points as those will

be offered by a player i, given a large enough acceptance set, even though

the original bliss point policy would be accepted as well. The vector of these

can be denoted by x̂ = {x̂1, . . . , x̂N}.

Example 2.1. To illustrate the construction in (2.1) consider a simple

model with N = 3, xi = i, pi = 1
N and δ = 0.9. As will be explained below, a

set of induced bliss points that qualify as an equilibrium are x̂ = {1.6, 2, 3}.
Figure 2.1 illustrates the construction of (2.1) graphically.

An intuition behind the shape of construction (2.1) and figure 2.1 follows.

Given the proposal strategies, the typical acceptance set with status-quo

q will be an interval between q and the policy on the other side of the

median bliss point with the same distance from xm, i.e. 2xm − q. One such

acceptance set is indicated in the figure for status-quo q0. This general shape

arises as the overall utility of the median player decreases with a distance

of a policy from xm and hence the median player rejects any policy further

from xm compared to the status-quo.

Faced with this constraint, the decision of player i regarding her proposed

policy is driven by two forces. The first force drives the proposal as close as
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Figure 2.1: Conjectured equilibrium in Example 2.1

ri(q)

q
0 4

0

4

x1 = 1

x̂1 = 1.6

x2 = x̂2 = 2

x3 = x̂3 = 3

r1(q)
r2(q)

r3(q)

q0

possible to the player’s original bliss point xi increasing her current utility.

The second force arises due to strategic considerations. Notice that by

offering a policy that is closer to xm player i sacrifices current utility, but

potentially gains by constraining future policies to stay closer to the xm.

For a given player, this will be especially important if the probability of

recognition of a player with the original bliss point on the other side of xm

is high.

The interplay of these two forces determines the shape of the construction

in (2.1). For status-quo policies close to xm the acceptance set is a narrow

interval around xm, the first force dominates, and both player 1 and 3 offer

policies as close as possible to their bliss points. With increasing status-quo,

the acceptance set widens, the second force gains force and player 1 switches

to offering policy x̂1, for which the two forces even out, in an attempt to

prevent player 3 from offering extreme policies in the future. The same logic

holds for player 3 but for this player the second force is absent as player 1

does not offer extreme policies close to x1 and hence player 3 will offer as

high policies as possible given that her original bliss point x3 is not in the

acceptance set.

Finally, we need to specify a way to derive the strategic bliss points in

the construction. These will be derived using an algorithm explained below,

but first, we need additional piece of notation. Let us denote the general set

of players in t-th step of the algorithm by Pt, and define p+
t =

∑
i∈Pt|xi>xm pi

and p−t =
∑

i∈Pt|xi<xm pi. In words, p+
t is a sum of probabilities of recog-

nition of players in set Pt with original bliss points above the median and
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analogously for p−t . With this notation the algorithm proceeds as follows.

Algorithm 2.1 (Strategic bliss points with X = R).

step 0 Set x̂m = xm and P1 = {1, . . . , N} \ {m}

step t For i ∈ Pt compute

x̂i,t =

xi + 2δp+
t (xm − xi) i < m

xi + 2δp−t (xm − xi) i > m

and define Rt = {i|(xi − xm)(x̂i,t − xm) < 0}.

If Rt = ∅ pick a player with x̂i,t closest to xm out of Pt. If more than

one player is chosen, pick one of them in an arbitrary way. Denote the

chosen player by j. Then x̂j = x̂j,t and Pt+1 = Pt \ {j}. If Pt+1 6= ∅,
proceed to the next step. If Rt 6= ∅, proceed similarly except for picking

player j out of Rt and setting x̂j = xm.

In words, the algorithm starts from a set of all players apart from the

median, and assumes that all these players follow proposal strategies resem-

bling the proposal strategies from figure 2.1 when status-quo q is close to

xm, i.e. assuming that players with i > m (i < m) offer as high (low) policy

as they can given the acceptance set of the form [q, 2xm − q].
Given these strategies, the algorithm computes the policy offering the

maximum overall utility, x̂i,t, for each player and drops the player with x̂i,t

closest to xm as this is the player first to switch into offering her strategic

bliss point, i.e. the first to switch to the constant part of the equilibrium.

The algorithm then proceeds similarly with a smaller set of players.

There are two possible complications. The first arises when the set Rt,
capturing the players with x̂i,t on the other side of xm compared to their xi,

is not empty. It is easy to confirm that this happens if and only if 2δp+
1 > 1

or 2δp−1 > 1. If this is the case, then the strategic bliss point of the chosen

player is set to xm and this player behaves in the same way as the median.

Intuitively, this happens when the second force mentioned above is strong

enough, which happens either when the future is important as captured by

high δ, or the probability of recognition of players on the other side of xm

is high.

The second complication arises when the algorithm computes two x̂i,ts

with the same distance from xm. If this is the case the choice of which
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player to drop is arbitrary. This also implies that there will be two (or

more) candidates for equilibria. If the algorithm at some step arrives at two

players with an equal distance of x̂i,t from xm, eliminating one of them and

proceeding, will give the first candidate equilibrium while eliminating the

other will give the second candidate equilibrium.

Example 2.1 (continued). In the 0 step the algorithm drops the median

player and sets x̂2 = x2 = 2. In the first step, the algorithm computes

x̂1,1 = 1.6 and x̂3,1 = 2.4, and by dropping the first player, finally gives

x̂3 = x̂3,2 = 3 as already anticipated and indeed drawn in figure 2.1. Notice

that dropping player 3 in the first step of the algorithm would produce a

symmetric around xm but distinct set of strategic bliss points x̂ = {1, 2, 2.4}.

The next example illustrates the first complication mentioned above,

when either a high δ or a high probability of players on one side of the

median (or both) induces a player on the other side of the median to behave

as median.

Example 2.2 (Players behaving as median). Consider model with N = 5,

xi = i, δ = 0.9 and p = {0.4, 0.4, 0.1, 0.05, 0.05}. It is easy to confirm that

R1 = {4, 5} with the algorithm dropping player 4 and R2 = {5} with the

algorithm dropping player 5. After two more steps, the algorithm produces

x̂ = {1, 2, 3, 3, 3}. It is also easy to see that if the algorithm in the first step

produces a nonempty R, eliminating player, say, above the median, then all

the remaining players on the same side of the median will be eliminated in

the subsequent steps, and all the players on the opposite side of the median

will have the strategic bliss points set to the original ones.

Finally, we use the algorithm from above for parametrization of the

model from Duggan and Kalandrakis (2007), who simulate equilibrium in a

similar model. Our setup naturally lacks the utility and status-quo transition

shocks their model has, but the values should be interesting for comparative

purposes.

Example 2.3 (Duggan and Kalandrakis (2007) parametrization). Con-

sider model with N = 5, x = {1, 1.5, 2, 2.8, 3}, δ = 0.9 and pi = 1
N .

The algorithm proceeds by eliminating players 2, 1, 4, and 5 in steps 1

through 4 respectively and produces a unique vector of strategic bliss points

x̂ = {1.72, 1.86, 2, 2.8, 3}.
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We now proceed to specify the conditions under which the conjectured

equilibrium constructed above is indeed an equilibrium. In order to do so

we first need to construct several objects that will allow us to write the

conditions in a concise way.

First, notice that the set of induced bliss points given by algorithm 2.1

induces a finite set of kinks in the proposal strategies. Combine all the

(unique) values of q for which such kinks occur into vector B = {b1, . . . , bk}
where k is the number of the kink-inducing values of q. Assume that B is

ordered in such a way that bj−1 < bj for j = 2, . . . , k.

Next, for a given status-quo q, it is helpful to split the set of players

N into two subsets. Those who are on the constant part of the proposal

strategies C(q) and those who are not N \ C(q). While well-defined for

X \B, C(q) is not well-defined for any of the break points in B as it is not

clear whether the player i for whom the ri(q) kinks at a specific q should be

included in C(q) or not. For this reason, let us define C(bj) for j = 1, . . . , k

as a set of two sets, one including the player i (along with the rest of the

non-problematic players) and one that does not (again including the non-

problematic players). We regard C(q) as a correspondence mapping X into

sets, which is single valued for q ∈ X \B and double valued for q ∈ B.

Next, we define p+(q) =
∑

i∈N\C(q)|xi>xm pi and p−(q) =
∑

i∈N\C(q)|xi<xm pi.

In words, for a specific value of q, p+(q) gives the sum of probabilities of

recognition of players above the median who are not on the constant part

of the equilibrium. This is analogous for p−(q). Given that we view C(q)

as a correspondence, both p+(q) and p−(q) will be correspondences as well,

mapping X into a single value for q ∈ X \B and into two values for q ∈ B.

Notice also that both p+(q) and p−(q) are constant on every interval into

which policy space X is divided by B, if we disregard the correspondence

nature at the breaks in B. Finally, for any b ∈ B, denote by p+(↑ b) one

of the values of p+(b), namely the one which is equal to p+(b− ε) for small

positive values of ε. Similarly, denote by p+(↓ b) the value of p+(b) which is

equal to p+(b+ ε) for small positive values of ε. For p−(q) things are defined

analogously.

With the notation in place, we are ready to state the following condition,

under which the construction from (2.1) along with the strategic bliss points

given by algorithm 2.1 gives an equilibrium.

Proposition 2.2 (Sufficient condition for equilibrium with X = R). For



CHAPTER 2. SIMPLE EQUILIBRIA IN DYNAMIC BARGAINING 127

i ∈ N denote

Xc
i =

B ∩ (xi, x̂i) for i < m

B ∩ (x̂i, xi) for i > m

with a typical element xci,j. The construction from (2.1), with the strategic

bliss points given by algorithm 2.1, is an equilibrium if for each i for which

Xc
i 6= ∅

xci,j − xi + 2δp+(↑ xci,j)(xi − xm) ≤ 0 ∀j if i < m

xci,j − xi + 2δp−(↓ xci,j)(xi − xm) ≥ 0 ∀j if i > m

Proof. See appendix 2.A1.

The intuition behind the proposition is as follows. Take player i with

i < m. It is easy to see she will never offer a policy on the other side of the

median. Furthermore, in the proof of the proposition we show that her ex-

pected utility function is non-decreasing on (−∞, xi] and non-increasing on

[x̂i, xm]. But for the construction to be an equilibrium, we need a stronger

result, namely that it is non-decreasing on (−∞, x̂i]. Establishing that the

expected overall utility is continuous, piecewise concave and piecewise dif-

ferentiable allows us to focus only on the set of points in Xc
i . This is a set

of points from B between the original and the induced bliss points of player

i. A condition in the proposition then makes sure that the left derivative

of the expected utility is non-negative. When the condition holds, we know

that on (−∞, xm] the expected utility of player i attains a maximum at x̂i

and decreases on [x̂i, xm]. As a result, when x̂i is not in median player’s

acceptance set for a given q, player i will offer as low a policy as possible,

and if it is in the acceptance set, she will offer x̂i.

Notice also that the condition in proposition 2.2 is stronger than needed,

as it would suffice for, say, player i < m, for the expected utility to attain a

maximum at x̂i irrespective of its shape on [xi, x̂i]. This indeed motivates a

condition in the next proposition, which is both necessary and sufficient, but

we have decided to include the condition in proposition 2.2 as it is extremely

simple to check, as shown by the next example.

Example 2.1 (continued). With x̂ = {1.6, 2, 3} and a set of breaks B =
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{1.6, 2.4},

C(q) =


{1, 2, 3} for q ∈ (−∞, 1] ∪ [3,∞)

{1, 2} for q ∈ [1, 1.6] ∪ [2.4, 3]

{2} for q ∈ [1.6, 2.4]

and the probability correspondences are

p−(q) =

1
3 for q ∈ [1.6, 2.4]

0 for q ∈ (−∞, 1.6] ∪ [2.4,∞)

p+(q) =

1
3 for q ∈ [1, 3]

0 for q ∈ (−∞, 1] ∪ [3,∞)

.

The condition of proposition 2.2 holds as Xc
i = ∅ for i = 1, 2, 3. Indeed

it is easy to show that the condition will hold for any model with N = 3,

xm−x1 = x3−xm and p1 = p3 where players 1 and 3 denote the non-median

ones.

We next state a condition that is both sufficient and necessary for the

construction above to be an equilibrium. The proposition uses set Zi which

is a set of points in X \B for which the overall utility of player i has a zero

derivative, indicating a local maximum.

Proposition 2.3 (Sufficient and necessary condition for equilibrium with

X = R). For i ∈ N denote

Xc
i =

((B ∪ Zi) ∩ (xi, x̂i)) ∪ {xi, x̂i} for i < m

((B ∪ Zi) ∩ (x̂i, xi)) ∪ {xi, x̂i} for i > m

with a typical element xci,j. Arrange the elements of Xc
i,j in a decreasing

(increasing) order for i < m (i > m) and denote the first element by xci,0.

Finally, denote by J ′i the number of elements in Xc
i .

The construction from (2.1) with the strategic bliss points given by algo-

rithm 2.1 is then an equilibrium if and only if for each i

∑J
j=1

[
x2

2 c1(x) + c2(x)x
]↑xci,j−1

↓xci,j
≥ 0 J = 1, . . . , J ′i if i < m∑J

j=1

[
x2

2 c1(x) + c2(x)x
]↓xci,j−1

↑xci,j
≥ 0 J = 1, . . . , J ′i if i > m
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where

c1(x) = − 2
1−δ(p+(x)+p−(x))

c2(x) =

c1(x)[−xi + 2δp+(x)(xi − xm)] for i < m

c1(x)[−xi + 2δp−(x)(xi − xm)] for i > m

Proof. See appendix 2.A1.

Proposition 2.3 checks that Ui(x̂i) is higher than Ui(x) for any x in the

[xi, x̂i] interval. It turns out to be enough to check a finite set of points

collected in Xc
i . The proposition does not require us to construct Ui(q)

explicitly, as it turns out to be easier to integrate its derivative and use the

fact that Ui(x) − Ui(y) =
[
∂Ui(x)
∂x

]x
y
, proceeding interval by interval due to

the piecewise differentiability of Ui.

We close this section by an example in which the conditions explained

above might fail depending on the value of δ. It is also easy to see that both

of the conditions above hold in all the preceding examples 2.1 through 2.3.

Example 2.4 (Possible failure of conditions for equilibrium). Consider a

model with N = 7, xi = i, pi = 1
N and δ = 0.5. Then it is relatively straight-

forward to check that the algorithm 2.1 gives eight possible arrangements of

strategic bliss points, i.e. eight conjectured equilibria, and that for all those,

the condition of proposition 2.2 and condition of proposition 2.3, hold.

For the same model with δ = 0.9 the set of conjectures reduces to two

but both fail both conditions from above.

Finally, for δ = 0.95 there are again two conjectured equilibria and for

both of them the condition of proposition 2.2 fails while the condition of

proposition 2.3 holds.

2.5 Equilibria with X ∈ Rn

In this section we extend results from the previous one to the models with a

multi-dimensional policy space. The setup of the model is exactly the same,

except for the policy space X = Rn. The utility of a player i is taken to

be quadratic over each dimension, i.e. ui(x) =
∑n

j=1−(xj − xji )2 where xj

is taken to be a policy in dimension j. Original bliss points will be vectors

xi with the preferred policy along dimension j denoted by xji . Notice that

ui(x) = ||x− xi||2 where || · || denotes the norm.
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In order to proceed we make an assumption about the arrangement of

xis in the policy space. We assume that the original bliss points are arranged

in a way that ensures the existence of a core, more specifically we assume

that the Plott (1967) condition is satisfied. For N odd this condition is

both necessary and sufficient for the existence of a core (Austen-Smith and

Banks, 2000).

This allows us to denote the player with a bliss point at the core as the

median with bliss point xm. The Plott (1967) condition then states that for

each player i different from the median, there is another player j with a bliss

point on the line connecting xi with xm but on the other side of xm relative

to xi. For simplicity, we assume that exactly three players lie on each such

line, and without loss of generality, set the bliss point of the median to be

an origin of X.

Next, we prove a result similar to the dynamic median voter theorem

proven in proposition 2.1 for a multi-dimensional policy space.

Proposition 2.4 (Dynamic median voter theorem for X = Rn). For any

set of proposal and voting strategies and any status-quo policy, a proposal is

accepted if and only if it is accepted by a player with a median bliss point

xm.

Proof. See appendix 2.A1.

The proposition again allows us to focus on the median player who de-

termines whether a given proposal will be accepted or not. With this result

we can conjecture proposal strategies ri(q) : Rn → Rn to be of the form

ri(q) =


||q||
||xi||xi for ||q||||xi|| ≤ k̂i

k̂ixi for ||q||||xi|| ≥ k̂i
. (2.2)

The proposal strategy of player i specifies, for a status-quo close to the

origin, offering a policy on the line connecting origin and xi with the same

distance from the origin as the status-quo q. For a status-quo far away from

origin, player i will be offering a fixed policy k̂ixi, which we again term the

strategic bliss point, for some k̂i ∈ [0, 1].

The logic behind the proposal strategies is similar to the one-dimensional

case. For a given status-quo q, the typical acceptance set will be a circle with

the center at the origin and a radius ||q||. There are again two forces at play.
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The first force pushes players into offering policies as close as possible to their

original bliss points. The second strategic force pushes them into offering

policies closer to the origin in an attempt to constraint future policies of the

other players. For values of q close to the origin, the first force dominates

and players offer a policy on a line connecting origin and xi with the same

distance from the origin as q. For values of q further away from the origin,

the second force dominates and players offer fixed policies given by k̂ixi.

Determining k̂is is again done via a similar algorithm as in the previous

section. The algorithm uses a(i, j) to denote an angle between xi and xj .

Subsequently it is easy to see that cos(a(i, j)) =
x′ixj

||xi||·||xj || .

Algorithm 2.2 (Strategic bliss points with X = Rn).

step 0 Set k̂m = 0 and P1 = {1, . . . , N} \ {m}

step t For i ∈ Pt compute

k̂i,t = 1− δ
∑
j∈Pt

pj [1− cos(a(i, j))]

and define Rt = {i|k̂i,t < 0}.

If Rt = ∅ pick a player with the smallest k̂i,t||xi|| out of Pt. If more than

one player is chosen, pick one of them in an arbitrary way. Denote the

chosen player by j. Then k̂j = k̂j,t and Pt+1 = Pt \ {j}. If Pt+1 6= ∅,
proceed to next step. If Rt 6= ∅, proceed similarly except for picking

player j out of Rt and setting k̂j = 0.

To proceed, we need to define similar objects as in the previous section,

collecting all the points at which the value function induced by the construc-

tion in (2.2) and algorithm 2.2 kinks, and splitting the players into those

on the constant and variable part of an equilibrium. However, we need to

be concerned only about the distances from origin, not about the specific

location in X.

For this purpose define B to be the collection of distances of the induced

bliss points from the origin and order elements in B in an increasing order.

Naturally, the first element of B is equal to 0. Next, for a given distance

from origin d, let us define C(d) to be a set of players on a constant part of

the equilibrium proposal strategies, i.e. those players with d > k̂i||xi||. For

notational convenience, when we say C(q) with q ∈ Rn we mean C(||q||).
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Again C(d) is well defined for d /∈ B. For d ∈ B we regard C(d) as a

correspondence giving two sets of players, one with the player for whom

d = k̂i||xi|| and all the players with d > k̂i||xi||, and one with only the latter

group of players.

Finally it will be convenient to redefine both constructions in terms of

relative-to-xi distance for player i. Hence let us define Bi = B
||xi|| and also

Ci(k) = C(k||xi||) for all i 6= m and k ∈ [0,∞). With this notation we

can state a sufficient condition for the construction just explained to be an

equilibrium.

Proposition 2.5 (Sufficient condition for equilibrium with X = Rn). For

i ∈ N \ {m} denote

Kc
i = Bi ∩ (k̂i, 1)

with a typical element kci,j. Then the construction from (2.2) with the strate-

gic bliss points given by algorithm 2.2 is an equilibrium if for each i for which

Kc
i 6= ∅

1− kci,j − δ
∑

j∈N\Ci(↓kci,j)

pj [1− cos(a(i, j))] ≤ 0 ∀j

Proof. See appendix 2.A1.

The intuition behind this result is simple. As we argue in the proof, it is

enough to focus on player i offering policies on a ray starting at the origin

and passing through xi. For the construction to be an equilibrium, we want

the expected utility function to first increase along this ray, until it reaches

distance k̂i||xi||, and then decrease. It turns out to be sufficient to focus

on the interval (k̂i||xi||, ||xi||) or in terms of the relative distance on (k̂i, 1).

Given the piecewise concavity of the expected utility function, the condition

in the proposition ensures that at any break in Bi the expected utility is

non-increasing.

Proposition 2.5 gives a sufficient condition which is stronger than needed

but is easy to check. The next proposition states a condition that is both

sufficient and necessary for equilibrium. We will again use set Zi, which is

a set of relative-to-xi distances in [0,∞) \Bi for which the expected utility

function has a zero directional derivative along a ray starting at the origin

and passing through xi.
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Proposition 2.6 (Sufficient and necessary condition for equilibrium with

X = Rn). For i ∈ N \ {m} denote

Kc
i = ((Bi ∪ Zi) ∩ (k̂i, 1)) ∪ {k̂i, 1}

with a typical element kci,j. Arrange the elements of Kc
i,j in an increasing

order and denote the first element by kci,0. Finally denote by J ′i the number

of elements in Kc
i .

Then the construction from (2.2) with the strategic bliss points given by

algorithm 2.2 is an equilibrium if and only if for each i ∈ N \ {m}

J∑
j=1

[
k2

2
c1(k) + c2(k)k

]↓kci,j−1

↑kci,j
≥ 0 J = 1, . . . , J ′i

where

c1(k) = − 2||xi||2
1−δ

∑
j∈N\Ci(k)

c2(k) = c1(k)[−1 + δ
∑

j∈N\Ci(k) pj [1− cos(a(i, j))]]

Proof. See appendix 2.A1.

We finish this section with two examples both of which assume X = R2.

Example 2.5 (Simplest example in R2). Consider a model with N = 5,

pi = 1
N , δ = 0.9 and the following bliss points

player 1 2 3 4 5

x1
i 2 -2 0 0 0

x2
i 0 0 2 -2 0

Algorithm 2.2 offers four possible players to be eliminated in step 1, then

2 in steps 2 and 3. As a consequence there will be 16 possible equilibria.

Eliminating players 1, 3, 2 and 4 respectively produces

player 1 2 3 4 5

k̂i 0.28 0.82 0.46 1 0

The set of distances at which players switch between constant and non-

constant proposal strategies will be B = {0, 0.56, 0.92, 1.64, 2} and can be
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translated into relative-to-xi distance Bi = {0, 0.28, 0.46, 0.82, 1}. With these

we have

C(d) =



{1, 2, 3, 4} for d ∈ [0, 0.56]

{2, 3, 4} for d ∈ [0.56, 0.92]

{2, 4} for d ∈ [0.92, 1.64]

{4} for d ∈ [1.64, 2]

∅ for d ∈ [2,∞]

and Kc
i from proposition 2.5 will be Kc

1 = {0.46, 0.82}, Kc
3 = {0.82} and an

empty set for the remaining players. It is easy to check that both conditions

from propositions 2.5 and 2.6 hold.

Example 2.6 (Duggan and Kalandrakis (2011) parametrization). Consider

a model with N = 9, pi = 1
N , δ = 0.7 and bliss points

player 1 2 3 4 5 6 7 8 9

x1
i -0.8 0.3 -0.2 0.9 0.1 -0.15 0.3 -0.9 0

x2
i 0 0 0.2 -0.9 0.6 -0.9 0.2 -0.6 0

Algorithm 2.2 produces a unique set of bliss points (numbers rounded)

player 1 2 3 4 5 6 7 8 9

k̂i 0.79 0.51 0.38 1 0.50 0.94 0.48 0.91 0

for which conditions from propositions 2.5 and 2.6 hold.

2.6 Discussion

In this section we discuss several topics related to the results presented so

far. First, we look at the comparative static properties of the construction

above. Although we do not conduct an explicit comparative static exercise,

it is obvious that two variables have a strong influence on the shape of an

equilibrium. Firstly, there is the discount factor δ. With the future becoming

more important, all the equilibria above will be more concentrated around

the bliss point of the median player. Secondly, there is a vector of recognition

probabilities p. These vectors influence the equilibria in a complex way, but

in general the higher the probability of recognition of a given player, the

closer her opposition will be to the median.
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Another observation regards the position of the most extreme player

judged by the original bliss point. Notice that making player more extreme,

i.e. further away from median, if this player is the last to be eliminated

by the algorithms above, does not change the equilibrium behaviour of the

other players. To a certain extent the same observation applies for other

players. If the shape of the equilibrium remains the same, changing the

bliss point of player i does not change the behaviour of other players.

Related to the shape of the equilibria explained above is the behaviour

of policies over time. It is easy to see that starting from any status-quo,

policies will always converge to the most preferred policy of the median

player. Nevertheless, the pattern of policies during the convergence can be

rather complex.

At the same time, the convergence to the median prediction is easy to

avoid. Consider a similar model as above but with some probability the

policy approved today will not become the next status-quo. Instead, the

next status-quo would be drawn from some distribution with the cumulative

distribution F (q). Assuming that the distribution F (q) is independent of the

policy approved today, the equilibria constructed above will be the equilibria

in this extended model (given some adjustment to δ). But policies in the

model will not converge to the median over time.

Our construction has also uncovered the possible multiplicity of equilib-

ria in certain environments. While not explicitly proven, it should be obvious

that environments giving rise to the multiplicity are those with symmetric

bliss points and equal recognition probabilities. We want to highlight this

observation as the multiplicity can prove problematic for computer simula-

tions in which a researcher chooses to simulate an often tempting symmetric

environment.

At the same time it is obvious that the environments giving rise to the

multiple equilibria are ‘zero measure’. In example 2.1 we have two possible

equilibria with x = {1, 2, 3} and p = {1/3, 1/3, 1/3}. However, perturbing the

environment to, say, x = {1, 2, 3 + ε} or p = {1/3, 1/3 + ε, 1/3 − ε} for some

small ε would make the equilibrium unique.

We have also made a series of simplifying assumptions. But we think

the approach to the construction of simple equilibria in dynamic bargaining

models taken here extends to more general environments. More specifically,

we have assumed an equal δ for all players, but the construction would also
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be applicable to a model with player-specific δi. Specifying a model with a

different non-quadratic utility function would also admit a similar approach,

as well as an assumption in the multi-dimensional model that players attach

different weights to different dimensions of a policy space, i.e. assuming

utility of the form ui(x) =
∑n

j=1−kj(xj − x
j
i )

2 with some set of positive

constants kj . On the other hand, we do not think that the construction

explained in this paper for a multi-dimensional policy space would extend

to environments in which the Plott (1967) condition for core existence fails.

Finally, we admit that, for a specific parametrization of the model above,

deriving strategic bliss points via algorithms 2.1 or 2.2 can be time-consuming

and error prone. The same qualification applies when checking conditions

for the constructions to be an equilibrium or, when deriving explicit formu-

las for the value functions Vi(·). For this reason, we have written Matlab

routines for both one- and multi-dimensional models that derive the strate-

gic bliss points, check for conditions ensuring equilibrium and derive the

resulting value and expected utility functions all in a matter of seconds.

Both routines are available upon request.

2.7 Conclusion

We provide an approach to constructing conjectured equilibria in dynamic

bargaining models that produces simple and intuitive equilibrium strategies.

Our results apply to models with both single and multi-dimensional policy

spaces. We have also shown under which conditions the conjecture is in-

deed an equilibrium, some of which are straightforward to check for a given

parametrization of the model.

The shape of the equilibria are in general driven by the interplay of two

forces. One force pushes players into proposing policies that maximize their

current utility. Another opposing and strategic force pushes players into

proposing policies that constraint all the players in the future.

Our analysis shows that in dynamic bargaining models where a median

is present, policies will always converge to the policy most preferred by the

median. This, however, does not preclude the possibly complex behaviour of

policies along the convergence path. We have also uncovered the possibility

of multiple equilibria in certain symmetric environments. However none

of the resulting equilibria found involves symmetric behaviour of otherwise



CHAPTER 2. SIMPLE EQUILIBRIA IN DYNAMIC BARGAINING 137

symmetric players.

Despite the fact that our approach is not generally applicable and does

not always produce equilibrium strategies, we nevertheless think it provides

interesting insights into an environment with rather scarce analytical results.

2.A1 Proofs

2.A1.1 Proof of proposition 2.1

The proof of proposition 2.1 builds on similar proof found in Riboni and

Ruge-Murcia (2008), namely on their appendix A proof.

Proof. Note that any set of strategies for an accepted policy r0 generates a

stochastic sequence of policies {r0, r1, . . .} with implied utility for player i

given as

Ui(r0) = E

[ ∞∑
t=0

−δt(rt − xi)2

]
.

Similarly accepting r′0 generates {r′0, r′1, . . .} and gives player i

Ui(r
′
0) = E

[ ∞∑
t=0

−δt(r′t − xi)2

]
.

Differentiating the difference in utility that the two policies bring, with

respect to bliss point of player i, gives

∂[Ui(r0)− Ui(r′0)]

∂xi
= E

[
2

∞∑
t=0

−δt(r′t − rt)

]

which is independent of xi and hence Ui(r0) − Ui(r′0) is linear in xi. If, on

the one hand, the median player prefers r0 to r′0, either all the players with

a xi ≥ xm or all the players with xi ≤ xm also prefer r0 to r′0. As a result r0

is accepted. If, on the other hand, the median player rejects r0 to r′0, either

all the players with xi ≥ xm or all the players with xi ≤ xm also reject r0

to r′0. As a results r0 is rejected. �

2.A1.2 Proof of proposition 2.2

We proceed is several steps, first establishing some properties of the value

function induced by the construction in (2.1), next proving properties of the
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expected value function and then showing the rationale behind the condition

in the proposition.

Proof. First observe that the continuation value function induced by con-

struction (2.1) is continuous, piecewise concave, piecewise quadratic and

symmetric around xm. Some algebra shows that it can be written as

Vi(q) =
hi(q) +

∑
j∈N\C(q) pjui(rj(q))

1− δ
∑

j∈N\C(q) pj

where hi(q) is a correspondence ensuring that Vi(q) is continuous and that

Vi(xm) = ui(xm)
1−δ . Its shape is similar to the shape of p+(q) in that it attains

a unique value at q ∈ X \ B and two values at q ∈ B. Moreover, for every

b ∈ B we require one value of hi(b) to correspond to one of the sets in

N \ C(b) and the second value of hi(b) to correspond to the other set in

N \ C(b). While this is a somewhat unusual construction, it allows us to

economize on the notation later on.

With this notation it is easy to see that the derivative of the expected

utility function with respect to status-quo is

∂Ui(q)

∂q
=

− 2
1−δ(p+(q)+p−(q))

[q − xi + 2δp+(q)(xi − xm)] for q ≤ xm
− 2

1−δ(p+(q)+p−(q))
[q − xi + 2δp−(q)(xi − xm)] for q ≥ xm

where again the possibility of two values at q = xm and at all the q ∈ B
reflects the fact that the overall utility is not differentiable at those points.

But it is easy to see that it possesses left and right derivatives, so we regard

one value of ∂Ui(q)
∂q at, say, q = xm as the left derivative and the other value

as the right derivative.

Now notice that the expected utility of the median player is strictly

increasing on (−∞, xm), strictly decreasing on (xm,∞), has unique global

maximum at xm and is symmetric around xm. As a result, the acceptance

set for the general value of q will be [q, 2xm − q] or [2xm − q, q] depending

on which of the two values is larger.

Faced with the symmetry of the acceptance sets, player i never offers

a policy that is on the other side of xm compared to her xi, due to the

symmetry of the Vi(q) function. As a result, we can focus only on an interval

(−∞, xm] for players i < m and on an interval [xm,∞) for players i > m.

We will only do the former as the latter relies on a similar argument.
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Take player with i < m. For the construction in (2.1) to be an equi-

librium, we need the expected utility to be non-decreasing on (−∞, x̂i] and

non-increasing on [x̂i, xm]. The latter part is easy and follows directly from

the construction of algorithm 2.1. Non-decreasing on (−∞, xi] is also im-

mediate inspecting the expression for derivative above.

This leaves [xi, x̂i] to be inspected. However, there is no need to inspect

the whole interval but, given the piecewise concavity, it is enough to check

the upper boundary of each interval on which the expected utility function

is differentiable. We can also omit x̂i as the derivative of Ui(q) is zero at

that point.

Proposition 2.2 is then the mathematical restatement of what we have

just explained. Set Xc
i is a set of all points in (xi, x̂i) at which Ui(q) kinks

and the condition of the proposition ensures that the left derivative is non-

negative at all those points. �

2.A1.3 Proof of proposition 2.3

Proof of proposition 2.3 uses the fact that for a differentiable continuous

function f(x) we have f(x) − f(z) = [f ′(a)]xz . Extending this result to a

continuous but only piecewise differentiable function is straightforward. If,

for example, x < y < z and f(x) is not differentiable at y but has a left and

a right derivative, we have f(x)− f(z) = [f ′(a)]xy + [f ′(a)]yz .

Proof. We show the result for i < m as the argument is similar for i > m.

We also omit repeating arguments from proof of proposition 2.2 and hence

focus solely on the [xi, x̂i] interval.

First notice that the construction in (2.1) along with the bliss points

derived by algorithm 2.1 is an equilibrium if and only if Ui(x̂i) ≥ Ui(x) ∀ x ∈
[xi, x̂i]. One possible approach would be to construct the function Ui(q)

explicitly. Nevertheless, we propose a simpler approach as we already know

the derivative of Ui(q) from the proof of the previous proposition and are

only interested in relative, not absolute, values.

Next, it is easy to show that the condition Ui(x̂i) ≥ Ui(x) fails if and

only if it fails at some point of the Xc
i set, which includes all the kinks and

all local maxima of the expected utility function on the [xi, x̂i] interval (the

if part is obvious, the only if part follows from piecewise concavity). Hence

we need to check the condition only at the points in Xc
i .
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Using the derivative of Ui(q) from the proof of the previous propositions,

it can be written as c1(q)q + c2(q), where c1(q) and c2(q) are given in the

statement of this proposition. Integrating the derivative yields the expres-

sion x2

2 c1(x) + c2(x)x and the sum then proceeds from xci,0 = x̂i checking all

points from Xc
i for the Ui(x̂i) ≥ Ui(x) condition. �

2.A1.4 Proof of proposition 2.4

Proof. The approach to the proof of proposition 2.4 is analogous to the

proof of proposition 2.1. Accepting policy r0 generates stochastic sequence

of policies {r0, r1, . . .} with the implied utility

Ui(r0) = E

[ ∞∑
t=0

−δt(rt − xi)′(rt − xi)

]
.

Differentiating the difference in utility that r0 and r′0 provide, gives

∂[Ui(r0)− Ui(r′0)]

∂xi
= E

[
2
∞∑
t=0

−δt(r′t − rt)

]

which is again independent of xi and hence Ui(r0)−Ui(r′0) is linear in xi. As

a consequence, the derivative defines a hyperplane in Rn which gives all the

bliss points such that any player j with a bliss point on this hyperplane will

choose between r0 and r′0 in exactly the same way as player i. The result

should now be obvious, realizing that any hyperplane going through xm will

split the remaining players into two equal size groups, at least one of which

votes in the same way as the median. �

2.A1.5 Proof of proposition 2.5

The proof of this proposition is very similar to the proof of proposition 2.2

so we keep it brief.

Proof. First notice that the acceptance sets are circles with a center at the

origin and that the continuation value function of all the players has level

sets of a similar shape. It follows that player i will never offer any other

policy than the policy on the line starting at the origin and going through

her bliss point xi, we call this line the i-ray.
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As a consequence, we can work with the continuation value function Vi

and the expected utility function Ui, mapping the i-ray into R, instead of

both functions having to map the whole policy space X into Rn. It is then

convenient to define the argument of both functions to be the distance of

a policy on the i-ray from the origin, relative to ||xi||. With this notation,

some algebra gives

Vi(k) =
hi(k) +

∑
z∈N\Ci(k) pz

∑n
j=1−

(
xjzk||xi||
||xz || − x

j
i

)2

1− δ
∑

z∈N\Ci(k) pz

for k ∈ [0,∞), with hi(k) defined similarly as in proposition 2.2, ensuring

Vi(k) is continuous and Vi(0) = ui(0)
1−δ . It is also immediate that Vi(k) is

differentiable except at points in Bi.

With this it is easy to see that the derivative of the overall utility function

with respect to k is

∂Ui(k)

∂k
=

2||xi||2

1− δ
∑

j∈N\Ci(k) pj

1− k − δ
∑

j∈N\Ci(k)

pj [1− cos(a(i, j))]


and that Ui(k) is piecewise concave.

For the construction in (2.2), along with the bliss points derived via

algorithm 2.2, to be an equilibrium, we need Ui(k) to be non-decreasing on

[0, k̂i] and non-increasing on [k̂i,∞). Non-decreasing on [0, k̂i] comes again

from the construction of algorithm 2.2. Non-increasing on [1,∞) is also easy

by inspecting the derivative of Ui(k) above. This leaves [k̂i, 1] to be inspected

and, given piecewise concavity, it is enough to check the right derivative of

Ui(k) at each break Bi that falls into (k̂i, 1). �

2.A1.6 Proof of proposition 2.6

The proof of proposition is very similar to the proof of proposition 2.3 so we

only include a brief outline.

Proof. As in proposition 2.3 we want to make sure that Ui(k̂i) ≥ Ui(k) for

all k ∈ [k̂i, 1]. Again, we can focus only on the points at which either Ui(k)

kinks or has a local maximum. This is what the set Kc
i collects. Integrating

the derivative of Ui(k) from the previous proposition gives k2

2 c1(k) + c2(k)k
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and the condition of this proposition checks that Ui(k̂i) is higher than Ui(k)

for any k ∈ Kc
i . �
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Chapter 3

Central Banks’ Voting Records and

Future Policy1

1 This chapter is a joint work with Roman Horváth and Kateřina Šmı́dková. Currently
published as Czech National Bank working paper 11/2010.
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3.1 Introduction

Monetary policy transparency has increased dramatically over the last two

decades (Geraats, 2009; Posen, 2003). Nowadays, central banks typically

communicate effectively with the public and explain their policies in great

detail. Every monetary policy decision is accompanied by minutes or press

releases that outline the arguments that central bankers expressed during the

monetary policy meeting. The most transparent central banks where bank

boards2 decide by majority vote also release attributed voting records, typ-

ically together with the minutes.3 In this paper we aim to examine whether

voting records are informative about future policy. From the voting records,

we are able to calculate an indicator called skew, defined as the difference

between the average policy rate voted for by the individual board members

and the policy rate that is the outcome of the majority vote. Our theoretical

model examines under which conditions it is more likely that there will be a

rate hike (reduction) in the future when there is a minority vote for higher

(lower) rates than the decided-on rate. In addition, an extended empirical

model tests whether the skew conveys new information in addition to all the

other information already incorporated into financial market expectations

prior to the monetary policy meeting.

While some previous research has examined the information content of

voting records in the case of the UK (Gerlach-Kristen, 2004), many other

central banks’ voting records have not been examined empirically yet. Sim-

ilarly, there is also a lack of theoretical studies examining whether voting

results are useful for understanding future monetary policy.

On the theoretical side, we fully specify a model of the central bank com-

mittee decision-making process, simulate the decisions taken by the model

committee and assess the informative power of the voting pattern for future

monetary policy. The basic version of our model is similar to the model of

Riboni and Ruge-Murcia (2008a) in acknowledging the endogenous nature of

the status-quo decision in the central bank decision-making process. Besides

the endogenous status quo, our model also incorporates uncertainty and time

dependence in optimal monetary policy as well as the private information of

2 The decision-making bodies in central banks are typically called either monetary
policy committees or bank boards. We use the two terms interchangeably in our paper.

3 Fry, Julius, Mahadeva, Roger, and Sterne (2000) report that approximately 90% of
central banks around the world make decisions in committees.
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individual committee members, in a way similar to Gerlach-Kristen (2008).

Our approach, specifying the model and then proceeding using computer

simulations, is also similar to the article just mentioned. We use several

alternative models of monetary policy committee decision-making that dif-

fer (among other things) in the degree of informational influence among its

members and that are related to the models already found in the relevant

literature (Gerlach-Kristen, 2008; Riboni and Ruge-Murcia, 2010; Weber,

2010).

What distinguishes our model from the already existing ones is combina-

tion of endogeneity of the status-quo policy with time varying heterogeneity

of preferences of the monetary policy committee members. The first feature

allows us to talk about the skew variable in the first place as the committee

decisions are made by vote between two alternatives. Second feature then

ensures that typical outcome of such vote will not be unanimous or in other

words that the skew variable will attain non-zero values.

Our theoretical model shows that the voting record contains important

information about future monetary policy provided that the signals about

the optimal policy rate are noisy and a sufficient degree of information in-

dependence exists among the committee members. Even if both of those

conditions hold, the informative power of the voting record can be overrid-

den by high volatility of the economic environment or by enough noise in

the committee members’ information, with a larger committee size counter-

acting both of those effects.

In the empirical part, this paper examines the informative power of vot-

ing results in five inflation-targeting countries - the Czech Republic, Hun-

gary, Poland, Sweden and the UK - and in the U.S., where monetary policy

is decided by a majority vote of at least formally independent committee or

board members. In consequence, our research gives a greater international

perspective than previously published case studies and is able to draw con-

clusions that are not country-specific.

Our empirical results confirm the theoretical conclusions. The voting

record is informative of future monetary policy changes in all the sample

countries. It adds news to the information set used in financial market ex-

pectations prior to the voting record announcement. This result is robust

to the measure of disagreement in the committee as well as to different sam-

ple periods. The result is also robust to the timing and style of the voting
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record announcement. Our dataset provides two ‘natural experiment’ se-

tups, where we can quantify the effect of publicly unavailable voting results

(for the cases of Poland and the U.S.) and the effect of publicly unavailable

names of voting members (for the Czech case). The voting record is infor-

mative about future policy in these two setups as well. This implies that

that releasing the names themselves is less important for transparency than

releasing the voting outcome itself.

The paper is organized as follows. Section 3.2 contains the related lit-

erature. Section 3.3 introduces a theoretical model of central bank board

decision-making. Section 3.4 presents the institutional background of mone-

tary policy decision-making in our sample countries. The empirical method-

ology is discussed in section 3.5. Section 3.6 gives the results. Section 3.7

offers concluding remarks. Appendices containing details of the theoretical

model (Appendix 3.A1), details of the institutional background of monetary

policy decision-making (Appendix 3.A2) and a data description (Appendix

3.A3) follow.

3.2 Related Literature

On the most general level the question of whether the voting records of

central bank boards and monetary policy committees (MPCs) reveal infor-

mation about future changes in monetary policy is related to the literature

on central bank communication and central bank transparency, surveyed by

Blinder, Ehrmann, Fratzscher, De Haan, and Jansen (2008) and Geraats

(2002, 2009) respectively. The general conclusion of both strands of liter-

ature is that the way central banks communicate to the public and their

degree of transparency matters for monetary policy. Most of the theoreti-

cal and empirical studies also indicate the benefits of more open and more

transparent central bank behaviour. However, not all the studies reach un-

equivocal conclusions. For example, the model in Morris and Shin (2002)

leaves open the possibility that more information provided by a central bank

is welfare reducing, while Meade and Stasavage (2008) show that the Fed-

eral Reserve’s decision to release full transcripts of Federal Open Market

Committee (FOMC) meetings decreased the incentives of its participants to

voice dissenting opinions. Swank, Swank, and Visser (2008) analyse the rep-

utational issues in expert committees and disincentive to dissent. Winkler
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(2000) draws similar conclusions and puts forward a conceptual framework

to distinguish different aspects of transparency.

From the theoretical side, the question of whether the voting records of

bank board members are informative about future monetary policy is virtu-

ally untouched. One of the reasons is the difficulty of modelling committee

decision-making with members who hold possibly different beliefs and ob-

jectives in the uncertain monetary environment. Another difficulty is the

dynamic nature of central bank decision-making, as a policy rate adopted

today becomes the status-quo policy for the next meeting.

Furthermore, it is not entirely clear what is the appropriate assumption

to be made about the way bank boards reach decisions. While in reality

the chairman usually holds most of the proposal power, empirical evidence

in Riboni and Ruge-Murcia (2010) suggests that the real-world features are

better captured by what they call a consensus model in which the adopted

policy is equal to the most preferred policy of the next-to-median member.

Riboni and Ruge-Murcia (2008a) try to model central bank decision-

making taking into account its dynamic nature. They show that even in

periods in which policy-makers’ preferences do not differ, policy-makers may

fail to reach a consensus and change the policy from the status quo, due to

the possibility of future disagreement. However, it is not clear whether their

model can support the information content of voting behaviour, despite the

fact that it produces persistence and strong autocorrelation of policy rates.

Disregarding the dynamic nature of central bank policy-making, Gerlach-

Kristen (2008) investigates the role of the MPC chairman in committee

decision-making in a model that generates real-world-like dissenting fre-

quencies. The possibility of dissent arising is due to the fact that individual

policy-makers receive private information about the unobserved optimal in-

terest rate. Differences in private information sets among the MPC members

then give rise to different votes by the time the policy decision is made. In

a similar vein, Farvaque, Matsueda, and Mon (2009) examines how different

decision rules in monetary policy committees affect the volatility of interest

rates.

The model in Weber (2010) then supports the basic intuition that the

publication of voting records reveals the bank board’s opinion heterogene-

ity and thus provides more information to the financial markets than the

publication of the final decision only. Better informed financial markets are
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then able to better predict the central bank’s future behaviour, providing a

rationale for the publication of voting records.

Similarly, the empirical literature investigating the informative power

of voting records is rather scant. This is mainly due to the fact that the

practice of publishing the voting records of board members has been adopted

relatively recently and several central banks make their voting records public

only in the transcripts of their monetary policy meetings, published with a

several-year lag.

For the MPC of the Bank of England, Gerlach-Kristen (2004) shows

that for the period 1997-2002 the difference between the average voted-for

and actually implemented policy rate is informative about changes in the

policy rate in the future, a conclusion robust to the inclusion of different

measures of market expectations. In a similar spirit and using the same

measure of dissent in the MPC, Fujiki (2005) reaches a similar conclusion

for the Bank of Japan, and Andersson, Dillen, and Sellin (2006) do likewise

for the Riksbank.

The empirical literature trying to estimate the reaction functions of indi-

vidual bank board members using information about their voting behaviour

is closely related. In this case, information about the individual members’

votes is used to predict their preferred policy rate given the state of the

economy and hence to better forecast future monetary policy decisions. For

the Federal Reserve, Chappell et al. (2005) estimate the individual reaction

functions of FOMC members. For the Bank of England MPC, Bhattacharjee

and Holly (2005, 2006), Brooks, Harris, and Spencer (2008), Besley, Meads,

and Surico (2008) and Riboni and Ruge-Murcia (2008b) conduct a similar

exercise.

The general conclusion emerging from these studies is that there is often

significant evidence of heterogeneity among bank board members. In combi-

nation with the assumption that monetary policy is better conducted in an

environment with no information asymmetry between the central bank and

the markets, the publication of voting records revealing the heterogeneity of

the bank board members is desirable.
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3.3 A Model of Central Bank Board Decision-Making

In this section we introduce a theoretical model of the central bank board

decision-making process and investigate under which conditions the voting

pattern can be informative about future policy. The general objective is

to fully specify the model, simulate the path of the decisions, recording

the preferences of the individual committee members, and use those in a

regression similar to our benchmark study Gerlach-Kristen (2004), which

is also the starting point of our empirical analysis. In this regression, we

test whether the skew indicator is informative about future interest rate

changes.

Model setup

The model is set in an infinite horizon with discrete periods denoted by

t = 0, 1, . . ., in each of which the monetary policy committee or board takes

a decision about the policy instrument with a policy adopted at t denoted

by pt. Although we call pt the interest rate, it can stand for any standard

monetary policy instrument.

There are N (N being an even number) ‘normal’ board members P

(each referred to as ‘he’) and one proposer or chairman C (referred to as

‘she’). Therefore, the committee size is odd. In each period t, decision-

making is done by a standard majority rule with two alternatives pitched

against each other. The first alternative is the current status-quo policy xt,

which is equal to the policy adopted at t − 1, i.e. xt = pt−1. The second

alternative is the policy proposed by the chairman, which we denote by yt.

The alternative that gains a majority of the votes then becomes the new

policy pt. For mathematical convenience we assume that a C who cannot

propose anything better than xt indeed proposes xt (instead of proposing a

policy that would be rejected for certain).

The committee tries to set policy pt so as to match the uncertain ‘state

of the world’ denoted by i∗t , where for inflation-targeting central banks i∗t

can be interpreted as the interest rate that is compatible with achieving the

inflation target over time. We assume that the per-period utility function of

all committee members is quadratic around i∗t and is given by −(pt − i∗t )2.

Note that even though the board members share an equal goal embedded in

a common utility function, their behaviour can (and will) depend on their
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private information, which is not necessarily homogeneous.

We assume that the unobserved state of the world follows an AR(1)

process given by i∗t = ρi∗t−1 + ut, where ρ ∈ (0, 1), with ut being an i.i.d.

shock with distribution N(0, σ2
u). That is, the optimal monetary policy

changes over time, with the current optimal interest rate being influenced

by the previous-period optimal interest rate and eventually converging to

some long-run value compatible with a stable state of the economy. With

our interpretation of i∗t as the optimal interest rate it might seem unrealistic

to assume that it can attain negative values, but the whole model and all

the results are invariant to adding a constant to the optimal interest rate.

In Appendix 3.A1, we provide a robustness check to show that the AR(1)

assumption can be changed into AR(2) without altering the conclusions.

To generate non-homogeneous votes among the committee members we

assume that each member j has an imperfect signal ijt about i∗t given by

ijt = i∗t + vjt , where the noise vjt is i.i.d. with distribution N(0, σ2
j ). The

assumption of non-homogeneous views of the individual committee members

about the state of the economy is perfectly in line with the observed practice.

Individual committee members often rely both on a staff forecast and on

their privately formed views about which risks should be attached to the

staff forecast and additional privately collected information about the state

of the economy (Budd, 1998). It is assumed that for all P s σj = σP and

that C has σj = σC . We assume that the chairman has the same or a higher

capacity to collect private information compared to the other committee

members and hence the same or a higher capacity to reduce noise. It follows

that σC ≤ σP .4

The proposal power of chairman along with heterogeneous preferences

among the committee members generated by different signals implies that

interpretation of our model fits best final stage of a typical monetary pol-

icy meeting. Common practice in many central banks is to start with a

free format discussion of economic developments after which, typically the

chairman, proposes policy which is then approved or rejected in a formal

4 We could have generated heterogeneous preferences among the committee member
by assuming fixed innate differences in their preferences. But with fixed pattern of het-
erogeneity, there is no reason why voting record should predict future decisions. On the
other hand our assumption of private signals generating heterogeneous preferences can be
alternatively viewed as an assumption of different innate preferences among the committee
members, but one following stochastic pattern.
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vote.

Next we make a strong assumption in order to make the model tractable.

We assume that the whole committee learns the previous state of the world

at the beginning of each period before making its next decision, i.e. i∗t−1 is

known by the time the t-period decision is being made. The alternative to

this assumption would be not to reveal i∗t−1 and have the board members

use Kalman filtering to update their beliefs about the optimal interest rate.

While this extension is possible, we think it would add no substantive insight

while greatly complicating the analysis.

The timing of events in period t is as follows: i) the last-period state of

the world i∗t−1 is revealed, ii) nature determines all the random variables in

the model, hence setting i∗t and all the signals of the board members, iii)

the signals about the current state of the world ijt s are revealed to all the

members and remain their private information, iv) C makes proposal yt, v)

voting takes place between yt and the status quo (i.e. the last-period policy)

xt = pt−1 and the winning alternative becomes the new policy pt, and finally,

vi) the players collect their utilities and the decision-making process moves

to t+ 1.

We will focus on a Stationary Markov Perfect equilibrium in which strate-

gies are measurable only with respect to payoff-relevant variables (histories)

and do not depend on time (Maskin and Tirole, 2001). This allows us to

drop the time subscripts and the notation becomes x for the status quo, y

for the proposal, i∗ for the previous-period optimal interest rate, and ij for

signals about the current optimal interest rate. The current optimal interest

rate will be denoted by ī∗, with the bar denoting variables that will become

known in the next period (the same applies to the other variables, i.e. īj is

the signal about the next-period optimal interest rate player j receives at

the beginning of the next period). With this notation the AR(1) process

for the optimal interest rate becomes ī∗ = ρi∗ + ū and the signals are de-

termined according to ij = ī∗ + v̄j . The information set of each player j is

thus Ij = {i∗, ij}.
C’s strategy in this game is to offer the proposal, depending on infor-

mation set variables and denoted by y(x, IC), that maximizes her expected

utility. It will be a solution to

UC(x, IC) = max
y∈Y

EM
[
−(p(x, y)− ī∗)2 + δUC(p(x, y), ī∗, īC)|IC

]
(3.1)
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where δ is a discount factor common to all board members and p(x, y) de-

notes the policy adopted, depending on the status quo x and proposal y.

Set Y is assumed to be a set of discrete values in which the interest rate

can be set, i.e. Y is a set of integer multiples of some value s̄. The notation

for the expectation operator EM [·] captures the idea that C will calculate

her expectations differently based on a model of the committee members’

behaviour, which we specify below. Finally, UC(x, IC) = UC(x, i∗, iC) is C’s

continuation value utility from a game starting with the status quo x, the

last-period optimal interest rate i∗ and a signal about the current optimal

interest rate iC .

The strategy of each P member j is a simple binary decision to vote for or

reject C’s proposal given the status quo x and all the remaining variables in

information set Ij . We restrict our attention to stage-undominated strategies

(Baron and Kalai, 1993) in which player j simply votes for an alternative

providing higher expected utility. This avoids equilibria in which players

vote for an alternative they do not prefer simply because their vote cannot

change the final decision. Along with the assumption above, this implies

that j, given the status quo x, C’s proposal y and j’s signal ij , votes for y

if and only if

EM
[
−(y − ī∗)2 + δUj(y, ī

∗, īj)|Ij
]
≥

EM
[
−(x− ī∗)2 + δUj(x, ī

∗, īj)|Ij
] (3.2)

where again Uj(y, i
∗, ij) is the continuation value utility of player j from

a game starting with the status quo y, with the previous-period optimal

interest rate i∗ and signal ij . Notice that the voting rule specifies that an

indifferent j votes for C’s proposal. Hence, when C’s offer y equals the

current status quo x, pro-forma voting takes place within the committee

and C’s proposal is unanimously approved.

Committee members’ behaviour

One way to proceed would be to assume full rationality on the part of all the

committee members in the standard sense, solve for the model equilibrium

(which would involve complicated expectation updating and signal extrac-

tion problems) and then simulate the path of the decisions for a random draw

of model stochastic variables. However, the presence of information asym-
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metry among the board members, along with the infinite horizon framework,

makes derivation of a full solution unfeasible.

Besides technical complexity, such a model does not capture the different

modes or codes of conduct found among real-world central bank committees

(see Blinder, 2004; Chappell et al., 2005, for a discussion) and the possible

degrees of informational influence among their members. A purely rational

model also implicitly assumes a lack of other motives on the part of central

bank committee members, such as acknowledgement of the chairman’s au-

thority and better expertise or career concerns manifested by a willingness

to adopt the chairman’s opinion. In effect we view the fully rational model

as an unrealistic description of reality.

For this reason we specify four different models of committee behaviour,

for which we solve for equilibrium and then proceed with the simulations.

The first three models, which we label as democratic, consensual and oppor-

tunistic based on C’s behaviour, assume that the committee members do

not take into account the impact of their actions on their future decisions.

Formally, this is achieved by assuming δ = 0.5 By making this assumption

we break the first intertemporal link in the committee decision-making men-

tioned above. Current policy still determines the future status quo, but the

committee members do not take this fact into account. This assumption,

for environments with σC = σP , implies that the policy proposal could in

fact come from a different board member at each meeting, so that the role

of the chairman is not institutional. When σC < σP , that is, when chair-

man C is better informed, her proposal power reflects her position as the

best-informed board member. The fourth and last model, which we label

intertemporal democratic, maintains the first intertemporal link but breaks

the second one, i.e. it assumes that the optimal monetary policy is inde-

pendent across periods. Formally, this is achieved by assuming ρ = 0 in the

AR(1) process determining the optimal monetary policy rate i∗. Below we

describe the models, relegating the formal details to Appendix 3.A1.

Notice that the first three models, described below, embed different de-

5 Assumption that policy-makers ignore effect of their current actions on their future
decisions is common (Gerlach-Kristen, 2008; Riboni and Ruge-Murcia, 2008b, 2010; We-
ber, 2010) although it manifests through the δ = 0 assumption only in the first paper.
In Riboni and Ruge-Murcia (2008b) and in Weber (2010) there is no decision making be-
tween status-quo and proposed alternative. And in Riboni and Ruge-Murcia (2010) even
though policy-makers are forward looking when determining their most preferred interest
rate, their do not take into account effect of their vote on future status-quo.
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grees of informational influence among chairman C and the remaining P

members. In the democratic model there is little or no influence, as C is not

influenced by the information that the P members have, and they are not

influenced by C’s proposal. In the consensual model, C is informationally

independent, while the P members are influenced by her proposal. Finally,

in the opportunistic model it is C who is influenced by the other P mem-

bers by basing her proposal on their preferences and disregarding her own

preference to a certain extent.

Democratic model

In this model of committee behaviour, chairman C plays the role of a demo-

cratic leader whose only special power is a proposal-making one. The pro-

posal is based solely on C’s own information set. The other committee

members are free to express their own will by voting on her proposal, and

C’s behaviour has no effect on their own. In the language of our model,

each P member j is assumed to vote based on the voting rule (3.2) using

information set Ij = {i∗, ij} and extracting no information content from C’s

proposal. Given this behaviour, C solves her optimization problem (3.1)

using information IC = {i∗, iC} and forming her expectation in a standard

rational manner, i.e. EM [·] = E[·], where E[·] is a standard expectation

operator. Notice that this does not mean C offers her expected optimal

policy rate E[ ī∗|i∗, iC ] given her information set; she offers her proposal y

taking into account the fact that its eventual acceptance (as opposed to the

acceptance of the status quo x) reveals information about the unobserved

ī∗.

Consensual model

In this model, chairman C is assumed to have a dominant position beyond

her proposal-making power. Her dominant position makes the other P mem-

bers too keen to adopt her point of view, since they assume that the infor-

mation available to the chairman is superior. In the language of our model,

C’s proposal is a solution to (3.1) given information IC = {i∗, iC}, but with

the expectation operator EM [·] not taking into account the fact that possi-

ble rejection or acceptance of y contains information about unknown ī∗. In

other words, C’s proposal is the policy in Y closest to C’s expectation of ī∗,
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i.e. closest to E[ ī∗|i∗, iC ]. While not fully rational, this specification of the

way in which C forms her expectations captures the notion that because she

knows that the other committee members’ voting behaviour is strongly in-

fluenced by her own proposal she disregards the possible information content

of that behaviour and proposes her optimal policy.

To capture the notion that the P members adopt C’s point of view, we as-

sume that each P member j votes based on voting rule (3.2), but when calcu-

lating the expected value of ī∗, j extracts information from C’s proposal. It

is easy to see that the expectation can be written as E[ ī∗|i∗, ij , iC ∈ 〈iCl , iCu 〉],
where iCl and iCu are, respectively, the lower and upper bounds on C’s signal,

as revealed by her proposal. We have decided to label this model consensual,

since the extraction of information from C’s proposal considerably reduces

the level of heterogeneity of opinions within the committee.

Opportunistic model

In this model, we assume that C is opportunistic in consulting the other

P members before the actual committee meeting. Once at the meeting, C

then knows the most preferred policies of the other members and offers the

policy she knows will be adopted by a supermajority of N
2 + 2 of them.

In the appendix, we provide a robustness check for a mere majority case

to illustrate that this assumption is not binding for our results. In terms

of our model, we assume that C knows the most preferred policy of each

member j, which is the policy in Y closest to E[ ī∗|i∗, ij ]. Ordering those

policies such that y1 ≤ . . . ≤ ym ≤ . . . ≤ yN+1, where ym is the policy

preferred by the median committee member, offering the policy adopted by

a supermajority of N
2 + 2 amounts to, for the x ≤ ym case, offering ym−1

if x ≤ ym−1 and offering x if x ≥ ym−1. The x ≥ ym case is analogous.

An implicit assumption about the behaviour of each P member j is that

his voting is given by voting rule (3.2) with the expectation computed using

information set Ij = {i∗, ij} and ignoring the information content of C’s

proposal.

This model is inspired by Riboni and Ruge-Murcia (2010), who in their

empirical investigation of several descriptive monetary policy committee

decision-making models show that their ‘consensual’ model fits the real world

data best. In their model, the adopted policy is equal to the most preferred

policy of the next-to-median member (the side depending on the position of
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the status quo) when this policy is sufficiently far away from the status quo.

When this policy is close to the status quo, the adopted policy is indeed

the status quo. This is what our opportunistic model does, except that we

label it differently, as in our model it captures the idea that the chairman’s

objective is to offer a policy which would never be rejected and she achieves

this by using her authority to consult individual committee members or, in

an alternative interpretation, to speak last during the committee discussion,

after the remaining members have expressed their preferred policies.

The results from the experiments with the opportunistic model in which

C offers the policy accepted by a mere majority N
2 + 1 of the members are

reported only for completeness in Appendix 3.A1 (Tables 3.15 and 3.16).

They are largely similar to the results of the opportunistic model presented

above. Notice that a mere majority model is often used in the literature,

as the accepted policy is equal to the policy most preferred by the median

committee member.

The three models just explained are also related to some of the models

found in the existing literature. As already noted, our opportunistic model

is similar to the ‘consensual’ model of Riboni and Ruge-Murcia (2010). Our

simple majority version of the opportunistic model mentioned above is sim-

ilar to the ‘frictionless’ model in Riboni and Ruge-Murcia (2010), to the

‘individualistic’ model in Gerlach-Kristen (2008) and to the model in We-

ber (2010). In all those models, the adopted policy is equal to the policy

preferred by the median committee member. Furthermore, our democratic

model is similar to the ‘agenda-setting’ model of Riboni and Ruge-Murcia

(2010) in that the chairman proposes the policy that maximizes her expected

utility among the policies she knows would be accepted. The key difference

in our democratic model is that the acceptance is only probabilistic, as

C does not know the signals of the other committee members. Finally, our

consensual model is similar to the ‘autocratically collegial’ model in Gerlach-

Kristen (2008) in that chairman proposes her most preferred policy and her

authority makes the other committee members vote for her proposal. In

the autocratically collegial model this is modelled as the other committee

members having a ‘tolerance interval’ around their preferred policy, but in

our model it is modelled as the other members considering the chairman’s

point of view by extracting information from her signal.



CHAPTER 3. VOTING RECORDS AND FUTURE POLICY 160

Intertemporal democratic model

The fourth model is similar to the democratic model specified above in that

each P committee member votes based on his private information only and

does not extract any information from C’s proposal, with C solving her

optimization problem in a fully rational manner. As opposed to the demo-

cratic model, this model maintains the intertemporal link in the committee

decision by assuming that all the committee members take into account the

effect of their current behaviour on their future decisions. This effect works

through current policy determining the future status quo. Formally, this is

achieved by setting δ > 0.

A key problematic aspect in simulating the equilibrium of this model is

the fact that C’s proposal strategy maps R2×Y into Y , and we would have to

estimate the value functions UC(·) at each point of this space. With standard

value function iteration on the discrete version of R2×Y the computational

costs are prohibitive. To overcome this complication we set ρ = 0, breaking

the intertemporal link in the optimal monetary policy. As a result, C’s

proposal strategies will be a function of the current status quo x along with

her signal iC mapping R×Y into Y , which is considerably easier to simulate.

We still have to derive the equilibrium value function Uj(·) for all the board

members, but we only need to know Uj(·) at a discrete and rather coarse set

of points sufficient for numerical integration over R, as the Y set is already

discrete.

Model simulations

For each version of the model of committee behaviour we generate 101 dif-

ferent random 100-period-long paths. These are chosen so as to gain insights

into the results and avoid inference based either on a low number or on short

paths while still keeping the simulations manageable. With the simulation

of one path in the (intertemporal) democratic model taking approximately

one hour for N = 4 on a standard desktop computer (twice as much for

N = 6) we see the choice of the number and length of paths as an appropri-

ate trade-off between validity and manageability (simulations of the other

models take considerably less time, while simulations of the intertemporal

democratic model require an additional several days for estimation of the
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continuation value function).6

Along each path for every period we record the status quo xt, the pro-

posal yt and the final policy pt and calculate the skewt variable as defined

in the introductory part. It is given by

skewt =
#(voting for yt) · yt + #(voting for xt) · xt

N + 1
− pt (3.3)

and allows us to run an ordered probit regression analogous to the one from

the benchmark study Gerlach-Kristen (2004), which we use later in our

empirical part, in which the estimate of a1 shows the informative power of

the skew variable for future policy changes

∆pt+1 = a0 + a1skewt + a2∆pt + ut+1. (3.4)

In order to make the results more comparable among the different models,

we keep the values of the random variables fixed across the simulations of

those models. That is, when simulating, say, the first path in the democratic

model, the random values in the model are the same as when simulating

the first path in the consensual, opportunistic or democratic intertemporal

model.

Following the discussion above, the simulation values of the parameters

in the models are ρ = 0.95 and δ = 0 for the democratic, consensual and

opportunistic models (however, see the simulation robustness checks in Ap-

pendix 3.A1 for the results with different values of ρ) and ρ = 0 with δ = 0.95

for the intertemporal democratic model. In all the models, we assume that

the interest rate is set in steps of a quarter of a percentage point, that is, in

all the models s̄ = 0.25.

Next, we need to specify values for the distributions of random shocks.

The choice of σu is driven by our attempt to match the standard deviation

of the changes in the monetary policy rate in our empirical data. As pt in

our model eventually follows a similar process as i∗t , ∆pt will follow a similar

process as ∆i∗t . With the standard deviation of ∆i∗t equal to
√

2/(1 + ρ)σu

and the empirically observed standard deviation of changes in the monetary

6 We also tested stability of our results across sub-samples of the 101 paths with
satisfactory results. For example, if we split the 101 paths into two halves, out of 292
p-values reported for the simulation exercise, only 13 cross the 10 percent significance
level in either of the two halves, relative to the results reported. Full results are available
upon request.
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policy rate between 0.25 and 0.5, we set σu to those two values.

For the standard deviation of the board members’ signals σP and σC , we

assume those to be either 0.25 or 0.5, implying that approximately 70% of

the board members’ signals are within 25 or 50 basis points of the optimal

interest rate.

From the values above we construct several scenarios. Our baseline sce-

nario assumes σu = 0.25, σC = 0.25 and σP = 0.25. Interested in the

comparative static properties, we further take σu = 0.5, σC = 0.25 and

σP = 0.25 in a ‘high volatility’ scenario, σu = 0.25, σC = 0.5 and σP = 0.5 in

a ‘bad information’ scenario, and finally σu = 0.25, σC = 0.25 and σP = 0.5

in a ‘P bad information’ scenario. Note that we could call this ‘P bad in-

formation’ scenario also ‘C superior information’ scenario, since we consider

the relative noise in the C and P information sets. For the four scenarios

just explained, we simulate the models for both N = 4 and N = 6 in order

to see the effect of increasing committee size on the results. We have chosen

committee sizes of 5 and 7, as those are the most common central bank

monetary policy committee sizes (Mahadeva and Sterne, 2000).

Simulation results

Tables 3.1-3.3 show the results of our simulation exercise. Besides estimates

of coefficients a1 and a2 from (3.4) averaged over the 101 paths, we include

average standard errors and average p-values. The row labelled MSE is

the average mean squared error between the enacted and optimal monetary

policy, Votes proposal is the average number of votes for C’s proposal, and

No change is the average fraction of meetings resulting in no change in

policy. Tables 3.1 and 3.2 show the results for the democratic, consensual,

opportunistic and mechanical (see below) models for N = 4 and N = 6

respectively. Table 3.3 shows the results for the intertemporal democratic

model.

Before proceeding to the discussion of our results, we were interested to

see whether we could generate the informative power of skew with a purely

mechanical model. In this model, policy p in each period is equal to the

policy in Y closest to the optimal policy ī∗ and we calculate skew assuming

that there are d ∈ {1, . . . , N/2} dissenting members voting for the status

quo x. We take d to be a random variable drawn anew for each committee

meeting, with each value from {1, . . . , N/2} being equally likely.
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What is apparent from this mechanical model is that it cannot generate

data in which skew holds information about future monetary policy changes.

This is because there is no uncertainty about the optimal policy in this

model, and there is nearly no difficulty in deciding where to set interest

rates (the only difficulty being the fixed size of the minimum policy rate

change). What the row MSE also shows is the benchmark or minimum

error in monetary policy stemming from the fact that the monetary policy

rate is set in discrete steps.

Looking at the democratic model results for the baseline scenario and

N = 4 in Table 3.1, the average estimate of a1 shows the informative power

of the skew variable for future policy changes. The intuition for this result

is the following. Assume that the optimal policy rate i∗ has been constant

for several periods at some value i∗1 and that the committee has been setting

its policy p1 at the same level. Assume now that the optimal policy rate

increases to some value i∗2. The committee members receive imperfect infor-

mation about this shock and several courses of action follow. If C’s signal

does not prompt her to offer a policy different from the current status quo

p1, the new policy p2 will be equal to the current status quo and hence the

skew variable will be equal to zero.

If, on the other hand, C offers proposal y2 close to the new optimal

policy rate i∗2, her proposal will be higher than the current status quo p1.

Depending on the votes of the other committee members, two possibilities

arise. The first one is that C’s proposal is approved. The new policy p2 will

then be approximately equal to the optimal rate i∗2 and the skew variable

will be negative. But due to the fact that the optimal policy rate is an

AR(1) process with relatively large ρ, it is approximately equally likely that

the optimal rate will increase or decrease in the future. With monetary

policy eventually following the optimal rate, it is then equally likely that

the policy will increase or decrease in the future. The second possibility

is that C’s proposal is rejected. The new policy p2 will then be equal to

the status quo p1 and the skew variable will be positive. It is also more

likely than not that the interest rate will increase in the future if it follows

the optimal rate. The combination of an equal probability of increase and

decrease in policy when skew < 0 and a higher probability of increase when

skew > 0 is what gives the positive estimate of a1 (see also Figure 3.1 below

and the surrounding text).
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The intuition just explained also reveals two conditions under which

skew holds information about future policy changes. The first condition is

that monetary policy cannot follow the optimal rate precisely. This is ap-

parent from the estimates for the mechanical model. The second condition

is that there has to be a certain minimum degree of dissent in the commit-

tee. If all the committee members vote in the same way, the skew variable

will always be zero and hence cannot be informative about future policy

changes. This is revealed by the estimates for the consensual and oppor-

tunistic models. In both of those models, information is shared among the

committee members and hence their decision-making shows a low degree of

dissent. This is also apparent from the high average votes for the proposal,

which for both models is around 4.5 in a five-member committee.

Nevertheless, the two conditions just explained are not enough for skew

to be informative about future policy changes. Inspecting the first column

of Table 3.1 for the democratic model across the different scenarios, the

informative power of skew can disappear either in a volatile economic envi-

ronment (the high volatility scenario) or in an environment in which central

bankers possess imprecise information (the bad information scenario). Com-

paring the results for the bad information and P bad information scenarios

then suggests that it is the precision in C’s signal that is important for the

informative power of skew.

As already noted, the results for the other two models in Table 3.1 - the

consensual and opportunistic ones - do not show any informational content

in the skew variable, despite the fact that some of the estimates for the

consensual model come close to statistical significance on average. This

holds despite the fact that the policy in these models is on average further

away from its optimum than in the democratic model, or, in other words,

the first condition for skew to be informative explained above holds. What

both of these models lack is the second condition - independence in the

behaviour of the committee members.

We have already mentioned that high volatility of the economic environ-

ment or a lot of noise in the information of committee members can render

skew uninformative about future monetary policy changes even in the demo-

cratic model. However, turning our attention to Table 3.2, it is apparent

that both effects can be overcome by increasing the committee size. The

estimates of a1 for the democratic model now become significant on average
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even in the high volatility and bad information scenarios. At the same time,

an increase in the committee size does not change the insignificance of the

estimates of a1 in the consensual and opportunistic models despite the fact

that the average p-values increase for both models and all scenarios.

Finally, with one exception the average estimates of a2 are not significant

in Tables 3.1 and 3.2, suggesting that past changes in the interest rate do

not predict future change in the interest rate in our model, despite the fact

that some of the estimates for the opportunistic models, and for two scenar-

ios also for the democratic model, come close to statistical significance. As

further discussed in the empirical part, a significant estimate of a2 suggests

an interest rate smoothing motive on the part of the monetary policy com-

mittee. It is then not surprising that the estimates are not significant, as the

interest rate smoothing motive is not built into any of the theoretical mod-

els. An alternative explanation of the lagged policy change insignificance is

that it is driven by the AR(1) assumption for the optimal policy rate. This

is what the results of our simulation robustness checks suggest, as the lagged

policy change becomes significant when the AR(1) assumption is changed

to AR(2). Whether, both in theory and in reality, the significance of the

lagged policy change is driven by the smoothing motive or by the structure

of the underlying economic environment is beyond the scope of this study.
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Table 3.1: Does the Voting Record Predict Policy Rate Changes?
Estimates Using Simulated Data with N = 4 and ρ = 0.95
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

Model Democratic Consensual Opportunistic Mechanical

Baseline scenario (σu = 0.25, σC = 0.25,σP = 0.25)

Skew (a1) 4.10 * 5.93 5.25 0.60
[1.63] (0.089) [3.29] (0.175) [6.40] (0.418) [3.99] (0.435)

Lagged policy 0.75 0.07 1.63 -0.14
change (a2) [0.53] (0.259) [0.45] (0.520) [0.74] (0.108) [1.26] (0.451)

MSE 0.027 0.033 0.033 0.005
Votes proposal 2.92 4.64 4.83 —
No change 0.43 0.41 0.59 0.36

High volatility scenario (σu = 0.5, σC = 0.25, σP = 0.25)

Skew (a1) 2.19 2.59 0.69 0.21
[1.04] (0.124) [2.43] (0.364) [3.65] (0.585) [2.05] (0.444)

Lagged policy 0.24 0.01 0.60 0.00
change (a2) [0.24] (0.362) [0.21] (0.515) [0.29] (0.112) [0.64] (0.462)

MSE 0.043 0.049 0.044 0.005
Votes proposal 3.46 4.62 4.78 —
No change 0.28 0.24 0.37 0.19

Bad information scenario (σu = 0.25, σC = 0.5, σP = 0.5)

Skew (a1) 3.43 6.84 6.05 —
[1.50] (0.106) [3.59] (0.148) [6.47] (0.385) —

Lagged policy 0.29 0.08 1.04 —
change (a2) [0.48] (0.435) [0.46] (0.507) [0.64] (0.203) —

MSE 0.048 0.052 0.053 —
Votes proposal 3.00 4.69 4.85 —
No change 0.43 0.41 0.56 —

P bad information scenario (σu = 0.25, σC = 0.25, σP = 0.5)

Skew (a1) 4.97 * 9.98 6.53 —
[1.79] (0.055) [6.24] (0.228) [6.43] (0.356) —

Lagged policy 0.82 -0.19 1.25 —
change (a2) [0.54] (0.228) [0.42] (0.490) [0.67] (0.128) —

MSE 0.041 0.036 0.049 —
Votes proposal 2.74 4.88 4.84 —
No change 0.50 0.38 0.57 —

Note: Average ordered probit estimates over 101 random 100-period-long paths. [Average stan-

dard errors] and (average p-value). * statistically significant at 10% level, ** statistically significant

at 5% level, *** statistically significant at 1% level based on average p-value. MSE is average

mean squared difference between adopted and optimal policy. Votes proposal is average number

of votes for chairman’s proposal. No change is proportion of committee meetings with no policy

change.



CHAPTER 3. VOTING RECORDS AND FUTURE POLICY 167

Table 3.2: Does the Voting Record Predict Policy Rate Changes?
Estimates Using Simulated Data with N = 6 and ρ = 0.95
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

Model Democratic Consensual Opportunistic Mechanical

Baseline scenario (σu = 0.25, σC = 0.25,σP = 0.25)

Skew (a1) 5.15 ** 6.57 7.41 0.01
[1.66] (0.025) [3.30] (0.156) [5.30] (0.256) [3.45] (0.510)

Lagged policy 1.08 0.14 2.05 * -0.30
change (a2) [0.56] (0.125) [0.46] (0.490) [0.81] (0.065) [1.06] (0.541)

MSE 0.026 0.032 0.030 0.005
Votes proposal 3.90 6.46 6.62 —
No change 0.45 0.42 0.57 0.36

High volatility scenario (σu = 0.5, σC = 0.25, σP = 0.25)

Skew (a1) 2.37 * 3.01 1.69 -0.03
[1.02] (0.085) [2.43] (0.328) [2.99] (0.449) [1.76] (0.521)

Lagged policy 0.28 0.02 0.63 -0.07
change (a2) [0.24] (0.311) [0.21] (0.499) [0.30] (0.115) [0.54] (0.551)

MSE 0.040 0.049 0.036 0.005
Votes proposal 4.66 6.42 6.52 —
No change 0.31 0.24 0.33 0.19

Bad information scenario (σu = 0.25, σC = 0.5, σP = 0.5)

Skew (a1) 3.57 * 7.60 7.44 —
[1.47] (0.079) [3.67] (0.140) [5.09] (0.261) —

Lagged policy 0.40 0.15 1.16 —
change (a2) [0.49] (0.421) [0.47] (0.460) [0.65] (0.184) —

MSE 0.047 0.052 0.051 —
Votes proposal 4.04 6.54 6.67 —
No change 0.44 0.41 0.52 —

P bad information scenario (σu = 0.25, σC = 0.25, σP = 0.5)

Skew (a1) 5.31 ** 12.42 7.86 —
[1.71] (0.032) [6.61] (0.174) [5.08] (0.231) —

Lagged policy 1.00 -0.13 1.36 —
change (a2) [0.55] (0.147) [0.42] (0.517) [0.68] (0.128) —

MSE 0.041 0.036 0.048 —
Votes proposal 3.66 6.82 6.66 —
No change 0.51 0.37 0.54 —

Note: See Table 3.1.
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To provide further intuition behind our results, Figure 3.1 shows a frac-

tion of a typical simulated policy path for the three models from Tables 3.1

and 3.2. The solid line in both figures is the optimal monetary policy rate

unknown to the central bank committee. The left figure then shows enacted

policy in the democratic model along with C’s proposals, and the right fig-

ure shows enacted policy in the consensual and opportunistic models. We

do not show the proposals for the two latter models, as they are always ac-

cepted in the opportunistic model and very often accepted in the consensual

model (always accepted for the particular policies shown). We choose this

particular path as it produces the estimates closest to the average estimates

shown for the democratic model in Table 3.1 for the baseline scenario.

Figure 3.1: Simulated Policy Paths
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Focusing first on the left figure shows why the skew variable is informa-

tive about future changes of monetary policy in the democratic model. For

periods 53-55 the enacted policy closely follows the optimal one, but then in

period 56 the committee fails to increase the policy further to C’s proposal

of 1.25 because the proposed step seems too large to the other committee

members. This generates a positive value for skew in this period and sug-

gests an increase of policy to 1.00 in period 57. The right figure then shows

why the skew variable is not informative about future policy changes in the

consensual and opportunistic models. In the consensual model chairman C

gets her proposal of 1.25 in period 56 approved, as her proposal reveals her

high signal to the other committee members, who are influenced by it, so

that the policy does not need to ‘catch up’ in the period 57. In the oppor-

tunistic model a similar thing happens, but with a policy of 1.00 adopted

instead.
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Intuitively, it might seem that the democratic model generates an infor-

mative value of skew due to the failure of the committee to adopt higher

policy in the period 56. While this is certainly true, notice that the other

two models err in different situations. The consensual model errs in that C’s

proposals are too often accepted and hence the enacted policy reflects too

much noise in C’s signals. This is evident from C’s failure to propose higher

policy in period 59 or the eventually accepted proposal for higher policy in

period 61. The democratic model, on the other hand, guards against strong

influence of the chairman, as evident by the rejection of the proposals in

periods 58 and 61-63, all of which would have taken the policy further away

from the optimal one.

The opportunistic model errs in that it takes too long to form the super-

majority of the committee needed to change the policy. This is evident from

the no policy change in period 59 and then the maintenance of policy at

the 1.00 level until period 61 before changing it to 0.50 in period 62, with a

smoother transition being more appropriate.

What the figure also shows is that both the democratic and the con-

sensual models generate policy paths that are somewhat more volatile than

the policy path generated by the opportunistic model. From Tables 3.1 and

3.2, the democratic and consensual models on average, excluding the high

volatility scenario, generate somewhere between 40 and 50 per cent of no

policy change meetings, while the opportunistic model generates somewhere

between 50 and 60 per cent of no policy change meetings. However, with the

fraction of no policy change meetings in our data being 52% for the USA,

61% for Poland, 62% for Sweden, 65% for Hungary, 66% for the Czech Re-

public and 69% for the United Kingdom, this does not seem to be significant

weakness of either of the two models.

What the figure does not show, however, is the source of the no policy

change meetings. As already noted in both consensual and opportunis-

tic models, C’s proposal is often accepted, implying that the source of no

changes in policy is C’s proposal being equal to the status quo. This, along

with the voting behaviour, implies a high percentage (equal to the fraction

of no change meetings for the opportunistic model and very close to the

fraction of no change meetings for the consensual model in Tables 3.1 and

3.2) of meetings with no change in the policy rate with the decision being

reached unanimously. On the other hand, in the democratic model C’s pro-
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posal is almost never equal to the status quo policy and hence almost all the

no change meetings are a result of C’s proposal being rejected. As at least

she votes for her proposal, none of the no change meetings reach this de-

cision unanimously, which more closely resembles the empirically observed

stylized facts.

Source of meetings with no policy change in the three models also reveals

another intuition for the explanatory power of the skew variable. Any meet-

ing with unanimous decision generates zero skew and as a result consensual

and democratic models are associated with skew variable with less variance

relative to the democratic model.

To check how robust our simulation results are, we repeated the simula-

tions for the democratic, consensual, opportunistic and mechanical models

either for different values of ρ compared to the benchmark results or chang-

ing the AR(1) process to an AR(2) process. The results are given in Tables

3.9-3.14 in Appendix 3.A1. To summarize, the results change very little

when we change ρ = 0.95 from the benchmark results to either ρ = 0.90

(Tables 3.9 and 3.10) or ρ = 0.99 (Tables 3.11 and 3.12). When we change

the benchmark AR(1) process to an AR(2) process (Tables 3.13 and 3.14),

the most notable change is that the average estimate of the lagged policy

change becomes significant in most cases. Nevertheless, skew still is infor-

mative about future policy changes only in the democratic model.

Table 3.3: Does the Voting Record Predict Policy Rate Changes?
Estimates Using Simulated Data
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

Model Intertemporal Democratic

N = 4 N = 6

Baseline scenario (σu = 0.25, σC = 0.25,σP = 0.25)

Skew (a1) 1.98 2.36
[1.64] (0.338) [1.66] (0.271)

Lagged policy -2.31 *** -2.23 ***
change (a2) [0.56] (0.002) [0.58] (0.008)

MSE 0.028 0.027
Votes proposal 2.89 3.89

Note: See Table 3.1.

Before we conclude the theoretical section, we turn our attention to

the results for the intertemporal democratic model. Table 3.3 shows the

simulation results for this model and the baseline scenario for both N = 4
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and N = 6. We decided not to include more results, as those come with

considerable time costs and even the estimates for the baseline scenario

show the main weakness of this model, which is a negative estimate of a2.

Intuitively, this result is driven by the fact that ρ = 0. When the optimal

rate increases to some value and monetary policy follows it, giving a positive

policy change, it is highly likely that in the next period monetary policy

will have to be reversed, as the optimal rate is normally distributed around

zero for ρ = 0. Additionally, the average estimate of a1 in Table 3.3 is

not significant, showing that breaking the intertemporal link in the optimal

interest rate renders the skew variable uninformative about future monetary

policy.

Overall, the model delivers several interesting policy implications. First,

publishing the voting pattern of the monetary policy committee members

is important if monetary policy is not always at its optimal level. This

allows other economic agents to gain information about the future course of

monetary policy in the form of the skew variable.

Second, the informative power of the skew variable is not guaranteed

automatically. What is needed is informational independence of the com-

mittee members. If all the committee members behave based on the same

information or one of the committee members has enough authority for the

other committee members to adopt his or her point of view, a high degree

of consensus ensues and the skew variable is rarely different from zero.

Third, even with independently behaving central bankers, the skew vari-

able might not be informative. In a volatile economic environment, or when

the monetary policy committee members possess imprecise information, it

is important for the committee to have a sufficient number of members, as

every additional committee member brings new information.

3.4 Institutional Background

This section gives information on the background of central bank commit-

tees’ decision-making about monetary policy. The bank boards typically

meet on a monthly frequency and decide on the level of the repo rate. The

frequency of monetary policy meetings varies. For example, the Bank of

England and the Hungarian and Polish central banks meet monthly. The

Czech National Bank used to meet monthly up to 2007 but has met eight
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times a year since 2008, the same as the U.S. Fed and Riksbank for the large

part of our sample period. Occasionally, the central banks hold extraordi-

nary policy meetings.

The boards take decisions based on a majority vote. In the event of a tie,

the chairperson (the governor, if present at the meeting) has the casting vote.

The policy decision is announced on the same day. Minutes explaining the

monetary policy decision, i.e. the voting of central bankers, are published

approximately one or two weeks later. Except for Poland, the voting record

is an integral part of the minutes and summarizes the qualitative information

contained in the minutes. In the case of Poland, the voting record appears no

sooner than 6 weeks (and no later than 12 weeks) after the policy meeting.7

In the U.S. case, we use the data for 1970-1996 (Burns and Greenspan

chairmanships) collected and coded by Chappell et al. (2005). The voting

records for the U.S. are primarily based on transcripts that are published

several years later. Appendix 3.A2 contains further details on the U.S. data.

Both U.S. and Polish case studies document that the informative power of

the voting records does not depend on the ex ante known publishing time

lag. An in-depth study on voting records in Poland is provided by Sirchenko

(2010).

The voting results are typically attributed, but not always. For example,

the voting ratio was released without an explicit statement on how the indi-

vidual board members voted for the monetary policy decisions in the Czech

Republic in 2000-2007. From mid-2000 to January 2006 the (unattributed)

voting record was published in the minutes only, while since February 2006

the voting record has been released at the press conference held about 3

hours after the announcement of the interest rate decision. In addition, the

Czech National Bank has recently published the transcripts of its mone-

tary policy meetings in 1998-2001, which include the voting record as well.

Hence, the Czech case offers us a second natural experiment set-up in which

we can test whether the voting ratio has a similar informative power to the

full voting record. The results show that this is the case. The lesson learnt

from the Czech case is therefore to publish at least the voting ratio if there

are serious concerns about naming names.

7 More specifically, if the repo rate was changed, the voting record is first published
in the Court and Economic Gazette of the Ministry of Justice and only after that in the
inflation report. Voting records have to be published in the Court and Economic Gazette
no sooner than 6 weeks and no later than 12 weeks after the voting took place.
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Disagreement among central bankers is common. The voting was not

unanimous in 46% of cases for the Czech central bank, 70% for the Hungarian

central bank, 46% for the Polish central bank, 19% for the Swedish central

bank and 59% for the Bank of England during our sample period. The

frequency of unanimous voting depends to a certain extent on the size of

the bank board, with Hungary having more than 10 members in the board

during our sample. The typical magnitude of monetary policy rate change

is 25 basis points. Other magnitudes are less common, although central

banks decreased policy rates quite aggressively during the recent financial

crisis, often by 50 or even 100 basis points at the meeting. Substantial policy

rate changes of similar magnitude were also observed in the Czech Republic,

Hungary and Poland during the period of transition to a market economy,

which was characterized by more volatile macroeconomic development. The

data are further described in Appendices 3.A2 and 3.A3.
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Figure 3.2: Actual Voting Record Skew and Future Policy Rate Change
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Note: skew, plotted on the x-axis, is calculated as the difference between the average repo rate

voted for by the individual board members and the actual repo rate at the next meeting. The

future monetary policy rate change is plotted on the y-axis. Jitter is used for overlapping obser-

vations for expositional purposes.
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Figure 3.2 presents the link between the actual voting record skew and

the future policy rate change. In all countries, the link seems to be positive,

although there are cases where skew can give a noisy signal about future

policy, for example when the rates are not changed and one board member

dissents. When we look at the various signal-to-noise ratios, we see that

there is a certain level of noise in an individual member’s voting record,

but when more than one member dissents at the same policy meeting, the

level of noise declines and is typically well above 50%.8 We perform a

regression analysis in the following section to shed light on the extent to

which the voting record gives systematic information for future policy. For

the regression analysis, the future policy rate change is stacked in fewer

categories, as large-magnitude policy changes happen rarely (more on this

below).

3.5 Empirical Methodology

Our theoretical model shows when the voting record is likely to be infor-

mative for future policy changes. As regards the empirical methodology

we follow the approach developed by Gerlach-Kristen (2004) to assess the

predictions of our model. Gerlach-Kristen (2004) analyses the voting record

of the MPC of the Bank of England over the period 1997-2002, while we

provide a more comprehensive international comparison. More specifically,

we focus on the following five countries that conduct their policies within an

inflation-targeting regime: the Czech Republic, the United Kingdom, Hun-

gary, Poland and Sweden. For comparison, we estimate similar models for

the U.S.

Following our benchmark study Gerlach-Kristen (2004), we define a mea-

sure of disagreement in the bank board, the variable skew, as

skewt = average(ij,t)− it (3.5)

8 More specifically, we calculate the signal-to-noise ratio as follows. When at least
25% of board members dissent - for example at least two members out of seven vote
for higher rates - at a particular meeting and the rates are not changed, we classify the
skew variable as giving the correct signal when the rates are increased at the next policy
meeting. Calculating the signal-to-noise ratio in this way, the ratio is 71% for the Czech
Republic, 67% for Hungary, 64% for Poland, 80% for Sweden and 54% for both the UK
and the USA. The ratio is above 50%, indicating that the voting record gives more often
a correct, rather than noisy, signal.
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where ij,t is the interest rate voted for by bank board member j at a mone-

tary policy meeting at time t, and it denotes the monetary policy rate. This

is an identical definition to equation (3.3) used in our theoretical models.

However, for the sake of comparability with the benchmark study, we use

here the benchmark notation for the policy interest rate it, while in the

theoretical models we kept the notation typical for that stream of litera-

ture, where the policy tool is denoted pt. We follow the benchmark study

and assess whether the voting record reveals information on future mone-

tary policy by estimating the following baseline regression model for each

country separately.

∆it+1 = a0 + a1skewτ(t) + a2∆it + ut+1 (3.6)

This equation is identical to equation (3.4) used in the theoretical part.

Again, for the sake of comparability, we altered the notation for the policy

interest rate. It is assumed in (3.6) that the interest rate decision is taken

at time t. The votes are released at time τ(t), i.e. in the period between

the interest rate decisions at t and t + 1 (often together with the minutes,

typically about two weeks after the interest rate decision at t; it is worth

emphasizing that we focus on the voting record, as this is the only quanti-

tative information in the minutes; alternatively, one would have to classify

the qualitative information contained in the minutes). Analogously to the

theoretical models, we estimate (3.6) by an ordered probit technique to re-

flect the discrete nature of monetary policy rate changes. It is important

to emphasize that the discrete dependent variable has been stacked in fewer

categories, as some policy change magnitudes, such as 75 basis points, hap-

pened rarely. Therefore, the dependent variable was coded in four to five

categories depending on the country and defined as follows: large decrease,

decrease, no change, hike and large hike (-50, -25, 0, +25 and +50 basis

point changes respectively).9

According to our theoretical model, the coefficients a1 and a2 are ex-

pected to take positive values. As regards the sign of a1, if some bank board

9 The number of categories is set according to the log-likelihood of competing models.
An alternative way would be to test whether the thresholds estimated within the ordered
probit model differ significantly from each other. Note that the coding of the dependent
variable substantially lowers the potential impact of vertical outliers. As concerns the
potential impact of horizontal outliers, we estimate the regressions based on various sub-
samples, with the results being affected minimally.
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members favour higher rates, skew is positive and a future interest rate hike

is more likely, conditional upon the voting record being informative for fu-

ture policy. As regards the coefficient a2, it reflects interest rate smoothing

and the attempt of central bankers to avoid sudden policy reversals. If a1

is significant, we can infer that the voting record improves the explanatory

power of a ‘naive’ model which assumes only smoothing and reactions to

shocks. We can also infer that the conditions identified by our theoretical

model have been fulfilled and that the voting mechanism has been demo-

cratic.

Our second baseline model extends this naive model by considering the

information set available to the financial markets. We approximate their

information set from the yield curve. While the naive model is directly

comparable to the outcomes from our theoretical models, the second base-

line model should be viewed as its extension. In this extension, we can test

whether the information set available to the financial markets contains all

the information sets available to the individual committee members. If the

financial markets have an identical information set and evaluate the infor-

mation at least as effectively as the central bank, the information content

of the skew indicator should be built into the slope of the term structure

of interest rates. In that case, parameter b1 would be insignificant in our

second baseline model (as would b2 if interest rate smoothing is fully priced

into the term structure). In the opposite case, the voting record reveals

additional information to the financial markets. Our theoretical models also

suggest other situations when skew could be insignificant. Specifically, in

periods of high volatility or under certain voting mechanisms the skew may

be insignificant despite the fact that individual board members have valu-

able information sets. To assess these considerations formally, we estimate

a regression of the following form:

∆it+1 = b0 + b1skewτ(t) + b2∆it + b3(iχ(t),L − iχ(t),S) + ut+1. (3.7)

As compared to (3.6), equation (3.7) now includes an additional term to

control for financial market expectations. iχ(t),L−iχ(t),S represents the slope

of the term structure, where L and S denote the respective money market

maturities10 and it is assumed that L > S (following Gerlach-Kristen, 2004,

10 An alternative would be to include interest rate futures or forwards, but these were
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we will consider various maturities). χ(t) denotes the time period between

the interest rate decisions, and the data on iχ(t),L and iχ(t),S will be from

the day before the release of the voting record (thus, χ(t) < τ(t)).

Regarding our two natural experiment set-ups, we can test whether skew

is informative in the period when voting records are disclosed with a consid-

erable time lag, as in the aforementioned cases of Poland and the U.S. We

can also test whether the voting ratio is informative when only unattributed

voting records are available, as in the aforementioned case of the Czech

Republic.

We add two robustness checks to our baseline models. First, we extend

the empirical specification by Gerlach-Kristen (2004) to include a measure

of dispersion in the voting records, which can serve as an indicator of the

degree of uncertainty the board members face. We measure the dispersion

of the voting results by the standard deviation of the individual votes.11

∆it+1 = b0 + b1skewτ(t) + b2∆it + b3(iχ(t),L − iχ(t),S)+

b4dispersiont + ut+1

(3.8)

The sign of b4 is not clear-cut, although more uncertainty may trigger looser

monetary policy (Soderstrom, 2002; Bekaert, Hoerova, and Lo Duca, 2010).

Second, we also estimate equation (3.7) based on the data before the 2008-

2009 financial crisis in order to test the sensitivity of the results.

Finally, we estimate the empirical model for the U.S. Fed - equation

(3.9), where we additionally include the skew for alternate members - i.e.

those who do not have voting power but are present at the meeting - as well

as the committee bias. The committee bias is the official statement of the

Fed on how the Fed is leaning in terms of its next interest rate move. The

variable is coded so that a higher value indicates an upward move of interest

rates. Financial market expectations data are not included in the empirical

model for the U.S. due to significant lags in publishing the minutes, which

were available only after the subsequent meeting in our 1970-1996 sample.

More information on the U.S. data is available in Appendix 3.A2.

∆it+1 = b0 + b1skewτ(t) + b2∆it + b3dispersiont+

b4committee biast + b5skew alternatest + ut+1

(3.9)

not available for all the sample countries.
11 The share of the largest minority could serve as an alternative measure.



CHAPTER 3. VOTING RECORDS AND FUTURE POLICY 179

3.6 Empirical Results

This section gives the empirical results on whether the voting record is infor-

mative about future monetary policy. We first present our baseline estimates

(equations (3.6) and (3.7)) for all countries. Alternative specifications follow.
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The results reported in Table 3.4 suggest that the voting record is indeed

informative about future policy rate changes. The lagged repo rate change

is typically significant, suggesting that the central banks smooth interest

rates to a certain extent and try to avoid sudden reversals in their policies.

The variable skew is statistically significant at conventional levels in all

countries in the first baseline ‘naive’ model as well as in the second baseline

model with financial market expectations. The pseudo R2 - the measure

of regression fit - varies from 0.13 to 0.49. Our results for the UK confirm

the previous empirical findings by Gerlach-Kristen (2004). The significance

of skew indicates that the conditions identified by our theoretical model

have been fulfilled. First, the chairmen in these central banks probably act

as democratic leaders whose only special power is the proposal-making one

and other committee members are free to express their own will by voting

on the proposals of the chairmen, and the chairmen consider the voting of

the other committee members informative. In other words, although we

do not want to overemphasize our results it suggests that the democratic

version of our theoretical model describes the real world data most closely.

Second, it is likely that in our sample period there was enough noise in the

signals, and at the same time the committee members’ information sets were

not distorted by excessively high economic volatility, given the size of the

committee.

In the case of Poland, where the voting record is published with a sig-

nificant lag separately from the minutes and is not available before the next

policy meeting, skew carries additional information available only to board

members, not to the financial markets. The adjusted pseudo R2 increases

from 0.23 in the specification with lagged policy rate changes and term struc-

ture to 0.33 in the specification with lagged policy rate changes, term struc-

ture and skew. We therefore conclude that despite the time lag the skew

indicator contains additional information that can be used by board mem-

bers. Releasing voting records faster would be beneficial for transparency of

monetary policy.

The results for the Czech Republic use the data until 2006:7 in the spec-

ification with financial market expectations (column 2 in Table 3.4). The

reason is that from this period onwards the voting record was released only

about 3 hours after the monetary policy decision was announced. The mon-

etary policy decision was typically announced at around 1 p.m. and the
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voting ratio was released at around 3.30 p.m. at a press conference. In

principle, we could collect the interbank rates at say 2 p.m. and therefore

use more recent data as well, but it has to be emphasized that the interbank

market was not very liquid during the financial crisis. Therefore, we pre-

ferred to restrict the sample to 2006:7. The results for the Czech Republic

also suggest that publishing the voting ratio (without an attributed vot-

ing record) may be sufficient to foster a better understanding of the future

course of monetary policy.
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We also carried out a number of robustness checks. In the baseline

specifications, the term structure was defined as the difference between the

12-month and 3-month interbank rate. Alternatively, the term structure

is based on different maturities, defined in the regressions presented in Ta-

ble 3.5 as the difference between the 3-month and 1-month interbank rate.

The results remain largely unchanged. skew remains statistically significant

and its estimated size is largely similar. Similarly, introducing dispersion - a

measure of disagreement in the board - as an additional explanatory variable

does not change the interpretation of the baseline estimates. The dispersion

is statistically significant at 10% level in Hungary and the UK. This suggests

that a more dispersed opinion about policy rates is associated with a loos-

ening of policy in these two countries. The dispersion in the other countries

is insignificant. Table 3.6 reports the results based on the sample excluding

the financial crisis period (up to 2007:7). Again, the results remain largely

stable. Finally, we included the level of interest rates as additional regressor

to tackle the issue that the increase in the policy rate by 0.25 if the rate is

at, for example, 1% or when it is at 5% can give different message to the

public. Even after the inclusion of the level of interest rate, skew remains

statistically significant (these results are available upon request).
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The results for the U.S. Fed support our findings for the inflation-targeting

countries. skew is statistically significant in all cases at the 1% level even

with the measure of committee bias, which in principle carries the same

piece of information. The results suggest that the FOMC still has informa-

tionally independent members, despite the common perception of chairman

dominance (see Chappell et al., 2005),12 which would have been closer to

our consensual model, in which, however, the significance in the skew in-

dicator is not indicated. Indeed, this is supported by the non-significance

of skew alternates, who arguably do not put great weight on their private

information in their voting decision. The finding that skew alternates is not

significant in any specifications is broadly consistent with Tillmann (2011),

who shows that alternate members systematically exaggerate their views to

influence policy deliberation.13

12 skew remains significant even if we exclude the first years of Greenspan chairmanship,
i.e. the period for which it could eventually be argued that Greenspan did not build his
reputation yet.

13 As regards the insignificance of skew alternates, it is noteworthy that the voting of
alternate members is much more in line with the chairman under the Greenspan chair-
manship than the voting of the FOMC members with voting power. The sample average
difference between Greenspan’s preferred policy rate and the alternates’ preferred rate is
only 0.01, while this difference is 0.17 for the FOMC members with voting power. This
may explain the insignificance of skew alternates and, in line with our democratic model,
it suggests that independence among voters is needed in order to generate signalling power
for skew. On the other hand, these results (the magnitude of the difference between the
voting records of the chairman and the remaining FOMC members with and without vot-
ing power) do not hold for the Burns chairmanship period. One hypothesis that might
be put forward is that there was more data imputation (for the preferred policy rate) for
the Burns era than for the Greenspan era; see Appendix 3.A2 on how the raw data were
coded by Chappell et al. (2005).
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All in all, the results suggest that the voting record bears relevant in-

formation about future monetary policy for all the countries in our sample

and, in consequence, serves as a useful tool for improving the transparency

of monetary policy.

3.7 Concluding Remarks

In this paper, we examine whether the voting records of central bank boards

or monetary policy committees are informative about future monetary pol-

icy. We approach this issue from two angles. First, we develop a theoretical

model of central bank decision-making where board members have non-

homogeneous information sets and try to set policies so as to match the

uncertain ‘state of the world’. The model contains an intertemporal link

between decisions taken at different board meetings to reflect the nature

of monetary policy-making in which the interest rate adopted at one board

meeting becomes the status quo for the next board meeting. The model also

assumes an intertemporal link in optimal policies that change only slowly

over time. We investigate whether the voting pattern is informative about

changes in the interest rate based on data simulated from this model. Three

different versions of model are estimated with the simulated data: 1) demo-

cratic, 2) consensual and 3) opportunistic. In essence, these versions differ

in the extent to which the chairman influences the voting of the other board

members. In version 1, the chairman allows the other board members to

express their opinions democratically, and there is sufficient independence

in the voting across the board members. In version 2, the chairman has a

dominant enough position to bring about a consensus. And in version 3,

the chairman votes opportunistically according to the majority of the other

board members. The results show that only the democratic version of our

model is able to generate significant correlations between the voting pattern

and future policy changes. The results also show that the voting pattern re-

sulting from democratic voting is informative only if there is sufficient noise

in the signals.

Second, the model predictions are tested on real data. For this reason,

data on six countries (the Czech Republic, Hungary, Poland, Sweden, the

United Kingdom and the United States) that release voting records are col-

lected. It is found that in all these countries the voting records are indeed
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informative about future monetary policy and thus in principle improve

monetary policy transparency. More specifically, it is found that if a minor-

ity votes for higher rates than the majority, it is more likely that there will

be a rate hike at the following meeting. This result is robust to controlling

for financial market expectations as well as different sample periods. The

results for Poland and for the U.S. under the Burns and Greenspan chair-

manships suggest that committee members tend to put the same effort into

forming their views no matter whether their voting is published soon after

the meeting or after a longer period of time. Hence, releasing voting records

faster would be beneficial for both the public and the central bank, which

could gain credibility.

Similarly to Gerlach-Kristen (2004) the results in this paper hold regard-

less of whether the voting record is attributed or not. In consequence, where

there are concerns that attributed voting records might expose individual

board members to some external pressure (such as in the case of a mone-

tary union with board members not voting for national interests), the voting

results can be published as non-attributed and still contribute to a better

understanding of monetary policy. All in all, monetary policy transparency

can be improved by releasing the voting record in a timely fashion.

3.A1 Derivation of Central Bank Board Decision-

Making Model and Simulation Robustness

Checks

In this appendix we explain the models from the third part of the paper in

more detail so that it becomes apparent how to generate C’s proposals and

P s’ voting behaviour. We further explain several aspects of our simulation

exercise and the methods we used.

First note that for all the models, equilibrium exists. This can be estab-

lished for the three models with δ = 0 using the simple backward induction

argument. As there is no intertemporal link in the decisions, we can focus

on a single period. Within this period, the P members move last and their

behaviour is given by the specified voting condition. Knowing this, C de-

rives her proposal y as a solution to her optimization problem. Finally, for

the intertemporal democratic model, note that the policy space is finite and
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the existence of a Stationary Markov Perfect equilibrium follows from the

arguments in Maskin and Tirole (2001).

Throughout the explanation we will often work with a vector of ran-

dom variables in our model. All those variables form a random vector

r = {̄i∗, iP1, . . . , iPN , iC}′ that has a multivariate normal distribution with

- conditional on the information embedded in i∗ - a mean equal to ρi∗ and

a variance-covariance matrix equal to a matrix with the vector {σ2
u, σ

2
u +

σ2
P , . . . , σ

2
u + σ2

P , σ
2
u + σ2

C} on the main diagonal and all the off-diagonal

elements equal to σ2
u. Often we will need to compute the conditional expec-

tation of r given the specific value of one or more of its elements. For this we

use the well known result for the multivariate normal distribution that states

that for a vector of (possibly more than two) random variables {x1, x2}′ dis-

tributed according to N(µ,Σ) with µ = {µ1, µ2}′ and Σ =

(
σ11 σ12

σ21 σ22

)
,

where the partitioning of µ and Σ conforms to the partition of {x1, x2}′,
the conditional distribution of x1 given a specific value of x2 is N(µ′1, σ

′
11),

where µ′1 = µ1 + σ12σ
−1
22 (x2 − µ2) and σ′11 = σ11 − σ12σ

−1
22 σ21.

To simulate each of the models, we start in the first period, with the

previous optimal interest rate and monetary policy rate being zero. In the

simulations of the democratic, consensual and opportunistic models we re-

strict the policy space to be in the interval 〈−10, 10〉 so that with our choice

of s̄ the policy space is equal to Y = {−10,−9.75, . . . , 9.75, 10}′. For the in-

tertemporal democratic mode we restrict the policy space to be in 〈−3.5, 3.5〉
for the baseline scenario. We do not need to look at a larger policy space, as

the optimal interest rate and players’ signals stay well away from its border.

As explained in the text, it is also inconsequential that we allow the optimal

interest rate and the monetary policy rate to attain negative values, as all

the results and estimates are invariant to adding a constant to the optimal

interest rate.

The values of the random variables used in the simulations are kept

constant across the different models. That is, when we simulate, say, the

first path for the baseline scenario of the democratic model, the random

variables used are the same as when simulating the first path of any other

scenario for the same model or of any other model for the same scenario.

This holds even across the N = 4 and N = 6 simulations, where we naturally

have to add two more random variables for the two extra players, but the



CHAPTER 3. VOTING RECORDS AND FUTURE POLICY 192

remaining random variables are kept the same.

In the democratic model with ρ = 0.95, δ = 0 and s̄ = 0.25, at the

beginning of each period with status quo x, last-period optimal interest rate

i∗ and fresh draw of r = {̄i∗, iP1, . . . , iPN , iC}′, we first need to derive C’s

proposal y. This will be given as a solution to the optimization problem

max
y∈Y

E
[
−(p(x, y)− ī∗)2|i∗, iC

]
(3.10)

where p(x, y) is the policy adopted given proposal y and status quo x. The

optimization problem can be rewritten as

max
y∈Y

paE[−(y − ī∗)2|i∗, iC , a] + (1− pa)E[−(x− ī∗)2|i∗, iC , â] (3.11)

where a is the event of y being accepted, â is the event of y being rejected

and pa is the probability of event a.

Next, we will need to calculate the probability of offer y being accepted

against status quo x, pa. In order to do so, chairman C knows, and we

show below, that the remaining players will vote for y if and only if their

signal is above (or below, but this case is symmetric) a certain cut-off that

we denote here by k. The other relevant information that C has is her

own signal iC and the previous optimal interest rate i∗, hence we need to

calculate the probability of at least N
2 P members voting for y given iC and

i∗. The probability of, say, the first N ′ members voting for y is equal to

P(#|iP ≥ k| = N ′,#|iP < k| = N − N ′|i∗, iC) and is straightforward to

calculate, as we know the distribution of the random vector {iP1, . . . , iPN}′

and can always transform it into a problem of calculating P(#|iP ≤ k| =

N |i∗, iC) by multiplying the whole problem (that is the mean and variance-

covariance matrix) by {−1, . . . ,−1, 1, . . . , 1}′, where there are N ′ negative

ones and N−N ′ positive ones. The probability can then be calculated using

the standard cumulative distribution function of the multivariate normal

distribution. Denoting the probability of the first N ′ members accepting by

PN ′ , the probability of accepting becomes
∑N

i=N/2 Pi

(
N

i

)
.

The key computational problem in simulating the democratic model is

computing the expected value of ī∗ given C’s signal iC , i∗ and the event of

y being accepted, as the event of accepting y means that the signals iP of
N
2 or more P members must have been above (or below) a certain threshold
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k. There are two results we use to make the computation simpler that are

straightforward to prove. First, for random variable X and two mutually

exclusive and exhaustive events A and B we have

E[X] = E[X|A]P(A) + E[X|B]P(B)

and the similar result for variance states that

var(X) = var(X|A)P(A) + var(X|B)P(B)

+(E[X|A]− E[X])2P(A) + (E[X|B]− E[X])2P(B)

which greatly simplifies the calculation of some of the expressions below.

Nevertheless, the key problem remains, as we need to calculate an ex-

pectation of the form E[ ī∗|i∗, iC ,#|iP ≥ k| = N ′,#|iP < k| = N −
N ′]. The first step is simple and amounts to calculating the distribu-

tion of {̄i∗, iP1, . . . , iPN}′ given i∗ and iC , which is N(µ,Σ), with each

element of µ being equal to
ρi∗σ2

C+iCσ2
u

σ2
u+σ2

C
and Σ being a matrix with the

vector
{
σ′, σ′ + σ2

P , . . . , σ
′ + σ2

P

}′
on the main diagonal and σ′ =

σ2
uσ

2
C

σ2
u+σ2

C

off the main diagonal. We then convert the problem into one of finding

E[ ī∗|#|iP ≥ k| = N ] using the technique just explained for the calculation

of pa. This leaves us with a multivariate truncated normal random vector

with known mean and variance. To calculate the expectation we used the

results in Tallis (1961) and Lee (1979) and wrote our own MATLAB func-

tion which calculates the expectation. We checked its correctness using the

’tmvtnorm’ R-software package (see Wilhelm, 2010).

With those results, we can expand the maximand in (3.11) and use the

rules for conditional expectations and variance given above, then we deter-

mine the value of the objective function for each y ∈ Y using the function

for the expectation of the truncated multivariate normal, finally determining

the solution to C’s optimization problem and hence her proposal.

With C’s proposal y determined, we can determine the voting behaviour

of the remaining P committee members. For each member j we use the

voting rule (3.2) from the text adapted to the democratic model

E
[
−(y − ī∗)2|i∗, ij

]
≥ E

[
−(x− ī∗)2|i∗, ij

]
(3.12)
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which rewrites as

x2 − y2 ≥ 2(y − x)E[ ī∗|i∗, ij ] (3.13)

with E[ ī∗|i∗, ij ] =
ρi∗σ2

j+ijσ2
u

σ2
u+σ2

j
. This result also proves that each P mem-

ber votes for y if and only if his signal is above (or below, depending on

the position of the status quo) a certain cut-off. With the voting pattern

determined, we can calculate the skew variable and proceed to the next

period.

In the consensual model with ρ = 0.95, δ = 0 and s̄ = 0.25, at the

beginning of each period with status quo x, last-period optimal interest rate

i∗ and fresh draw of r = {̄i∗, iP1, . . . , iPN , iC}′, proposal y will be the policy

most preferred by C. This is equal to the policy in Y that is closest to C’s

expectation of ī∗ given her signal iC and the previous optimal policy rate

i∗. This expectation is equal to E[ ī∗|i∗, iC ] =
ρi∗σ2

C+iCσ2
u

σ2
u+σ2

C
.

Next, we need to determine the behaviour of the P committee members.

In the consensual model, each P member j will vote based on the voting

rule (3.2) using his information about the previous optimal interest rate i∗,

his private signal ij and the information embedded in C’s proposal y, hence

the voting rule rewrites as

x2 − y2 ≥ 2(y − x)E[ ī∗|i∗, ij , y]. (3.14)

It is easy to confirm that the information embedded in C’s proposal is

equal to an event of iC ∈ 〈iCl , iCu 〉, where the lower bound of the interval is

iCl = 1
σ2
u

[
(y − s̄

2)(σ2
u + σ2

C)− σ2
Cρi
∗] and the upper bound of the interval is

iCu = 1
σ2
u

[
(y + s̄

2)(σ2
u + σ2

C)− σ2
Cρi
∗]. Calculation of E[̄i∗|i∗, ij , iC ∈ 〈iCl , iCu 〉]

is then easy using the law of iterated expectations, which allows us to

rewrite the expression to E[E[̄i∗|i∗, ij , iC ]|i∗, ij , iC ∈ 〈iCl , iCu 〉]. The inner

expectations are equal to
ρi∗σ2

jσ
2
C+ijσ2

uσ
2
C+iCσ2

uσ
2
j

σ2
uσ

2
j+σ2

uσ
2
C+σ2

Cσ
2
j

. Moreover, we know that

the distribution of iC given i∗ and ij is normal, with mean
ρi∗σ2

j+ijσ2
u

σ2
u+σ2

j
and

variance
σ2
uσ

2
j

σ2
u+σ2

j
+ σ2

C . The last result we use to calculate the expecta-

tions is that for random variable x1 distributed according to N(µ, σ2).

The conditional expectation of x1 given that x1 ∈ 〈al, au〉 is given by

E[x1|x1 ∈ 〈al, au〉] = µ + σ
φ(
al−µ
σ

)−φ(au−µ
σ

)

Φ(au−µ
σ

)−Φ(
al−µ
σ

)
, where φ(·) and Φ(·) are, re-

spectively, the probability density and cumulative distribution functions of
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the univariate standard normal distribution. With the voting pattern deter-

mined, we can calculate the skew variable and proceed to the next period.

In the opportunistic model with ρ = 0.95, δ = 0 and s̄ = 0.25, the

chairman C knows the most preferred policies of all the committee members.

For each player j, this policy will be the policy in Y closest to j’s expectation

of ī∗ given i∗ and ij , i.e. closest to E[̄i∗|i∗, ij ] =
ρi∗σ2

j+ijσ2
u

σ2
u+σ2

j
. At the beginning

of each period with status quo x and last-period optimal interest rate i∗,

given a fresh drawn of r = {̄i∗, iP1, . . . , iPN , iC}′, we will then have the

vector of most preferred policies {p∗1, . . . , p∗N+1}, which we order so that

p∗j ≤ p∗j+1 for j ∈ {1, . . . , N}, where we denote the policy most preferred by

the median member by p∗m = p∗N/2+1.

In the opportunistic model, C’s proposal will be the policy which receives

a super-majority of at least N
2 + 2 members. It is easy to see that this will

be the policy in the interval (x, p∗m) (where the order is reversed if the status

quo x is larger than p∗m) that is closest to p∗m if such policy exists. Otherwise,

the proposal will be equal to the status quo x.

Next, we need to calculate the skew variable. For this, we again use the

voting rule (3.2) along with the assumption that player j does not extract

any information content from proposal y and votes for y as opposed to voting

for the status quo x if and only if

x2 − y2 ≥ 2(x− y)E[ ī∗|i∗, ij ] (3.15)

with E[ ī∗|i∗, ij ] =
ρi∗σ2

j+ijσ2
u

σ2
u+σ2

j
. By construction, C’s proposal is always ac-

cepted, with the number of votes for y being at least N
2 +2. With the voting

pattern and hence skew determined, we move to the next period.

Finally, in the intertemporal democratic model with s̄ = 0.25, ρ = 0

and δ = 0.95, the previous-period optimal interest rate i∗ plays no role

and hence the only relevant information is the current status quo x. We

again start each period of the simulation by drawing fresh values for r =

{̄i∗, iP1, . . . , iPN , iC}′. Next, we need to determine C’s proposal. This will

again be the solution to the optimization problem

max
y∈Y

E
[
−(p(x, y)− ī∗)2 + δUC(p(x, y), īC)|iC

]
(3.16)

where UC(·) is the continuation value function of a game starting with the
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status quo p(x, y) and C’s signal īC . The expression can again be rewritten

as

max
y∈Y

[
paE[−(y − ī∗)2|iC , a] + (1− pa)E[−(x− ī∗)2|iC , â]

+δpaVC(y) + δ(1− pa)VC(x)

]
(3.17)

where VC(x) =
∫
UC(x, z)f(z)dz, with f(z) being a probability distribu-

tion function of univariate normal distribution with mean zero and variance

equal to σ2
u + σ2

C . With VC(·) known (we explain its estimation below) we

proceed similarly as in the democratic model, calculating the probability of

y being accepted and the expected values in the maximand. The distribu-

tion of the random variables {̄i∗, iP1, . . . , iPN} given iC is again N(µ,Σ),

with each element of µ being equal to iCσ2
u

σ2
u+σ2

C
and Σ being a matrix with

vector
{
σ′, σ′ + σ2

P , . . . , σ
′ + σ2

P

}′
on the main diagonal and σ′ =

σ2
uσ

2
C

σ2
u+σ2

C
off

the main diagonal.

The voting behaviour of P member j given status quo x, proposal y and

signal ij is again given by the voting rule (3.2), which for the intertemporal

democratic model becomes

E
[
−(y − ī∗)2 + δUP (y, īj)|ij

]
≥ E

[
−(x− ī∗)2 + δUP (x, īj)|ij

]
(3.18)

where UP (·) is the continuation value function of the P member from a

game starting with the given status quo and signal. Note that this function

is equal for all P players. This condition can be rewritten as

x2 − y2 + δ(VP (y)− VP (x)) ≥ 2(y − x)E[ ī∗|ij ] (3.19)

with E[ ī∗|ij ] = ijσ2
u

σ2
u+σ2

j
and VP (x) =

∫
UP (x, z)f(z)dz, with f(z) being

a probability distribution function of univariate normal distribution with

mean zero and variance equal to σ2
u + σ2

P . With the voting pattern deter-

mined, we can calculate the skew variable and proceed to the next period.

It remains to explain how we determine the continuation value functions.

Prior to running the simulations, we estimate the VC(·) and VP (·) functions

by standard value function iteration. We start with VC,0(·) = 0 and VP,0(·) =

0 and determine both functions VC,s(·) and VP,s(·) in a general step s as

follows.

For VC,s(·) we use numerical integration via the standard Gaussian quadra-
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ture method using the ‘compecon’ toolbox described in Miranda and Fackler

(2002). To determine VC,s(x) for a specific value of x, we determine the set

of nodes for C’s signals {i1, . . . , iH} (using H = 9 in practice) and for each

signal ih ∈ {i1, . . . , iH} calculate

UC,s(x, i
h) =

max
y∈Y

[
paE[−(y − ī∗)2|ih, a] + (1− pa)E[−(x− ī∗)2|ih, â]

+δpaVC,s−1(y) + δ(1− pa)VC,s−1(x)

]
(3.20)

using the approach described above. The cut-off values for the calculation

of the probability of acceptance are derived from the voting rule, which uses

the VP,s−1(·) function.

For VP,s(·) we use the same numerical integration approach, generating

the set of P ’s signals and numerically integrating VP,s(x) =
∫
UP,s(x, z)f(z)dz.

The only complication is that we need to determine the UP,s(·) function.

For the specific status quo x and signal ij of P player j, UP,s(x, i
j) gives the

continuation value from the game starting with x and ij and hence can be

written as

UP,s(x, i
j) = E

[
−(p− ī∗)2 + δUP,s−1(p, īj)|ij

]
(3.21)

but the expectation operator hides considerable complexity. First, j does not

know C’s signal and hence her proposal. Second, j does not know whether

the proposal will be accepted or not, and third, j does not know the next-

period signal. Reconciling the third source of uncertainty is straightforward

and the whole expression can be rewritten as

UP,s(x, i
j) = E

[
−(p− ī∗)2 + δVP,s−1(p)|ij

]
(3.22)

with only the first two sources of uncertainty remaining.

To resolve those we need to take expectations over C’s signal, which will

determine her proposal as well. Expanding the expectations operator thus

gives

UP,s(x, i
j) =∫  pa(z)[E[−(y(z)− ī∗)2|ij , z, a] + δVP,s−1(y(z))]

+(1− pa(z))[E[−(x− ī∗)2|ij , z, â] + δVP,s−1(x)]

 f(z)dz
(3.23)
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where the variable of integration is C’s signal, y(z) is C’s proposal given her

signal, pa(z) is the probability of this proposal being accepted, and f(z) is

the probability distribution function of C’s signal.

Hence, in order to get VP,s(·) we need to integrate twice, once over the

distribution of j’s signal (which will be normal, with mean zero and variance

σ2
u + σ2

P ) and once over the distribution of C’s signal (which for a given

value of ij will be normal, with mean equal to ijσ2
u

σ2
u+σ2

P
and variance equal to

σ2
uσ

2
P

σ2
u+σ2

P
+ σ2

C). Integrating numerically then amounts to generating a grid of

discrete nodes in R2 with one dimension for j’s signals and nodes {i1, . . . , iM}
and the second dimension for C’s signal and nodes {i1, . . . , iH} (again we

use H = M = 9 in practice).

For each node in R2 consisting of {im, ih} we calculate

pa(i
h)[E[−(y(ih)− ī∗)2|im, ih, a] + δVP,s−1(y(ih))]

+(1− pa(ih))[E[−(x− ī∗)2|im, ih, â] + δVP,s−1(x)]
(3.24)

which then allows us to calculate VP,s(·). To calculate the expression, we first

calculate C’s proposal y(ih). Given the proposal, we can calculate the prob-

ability of the proposal being accepted (with j taking into account his own

voting behaviour) and, finally, the remaining expectations given acceptance

or rejection. In the whole expression, j will condition on the information em-

bedded in {im, ih} and hence the appropriate conditional distribution of the

remaining random variables in the model {̄i∗, iP1, . . . , iPN−1} is multivari-

ate normal N(µ,Σ), with each element of µ being equal to
σ2
u(σ2

C i
m+σ2

P i
h)

σ2
u(σ2

C+σ2
P )+σ2

Cσ
2
P

and Σ being a matrix with vector
{
σ′, σ′ + σ2

P , . . . , σ
′ + σ2

P

}′
on the main

diagonal and σ′ =
σ2
uσ

2
Cσ

2
P

σ2
u(σ2

C+σ2
P )+σ2

Cσ
2
P

off the main diagonal.

We iterate on s until max{||VP,s − VP,s−1||, ||VC,s − VC,s−1||} ≥ 0.001,

where || · || is the usual sup norm. We experienced no problems with con-

vergence, and the typical s needed was around 70 iterations.

Next, we re-run the simulations of the democratic, consensual, oppor-

tunistic and mechanical models for different parameter values compared to

those in the main part of the paper. First, we changed the benchmark

ρ = 0.95 to ρ = 0.90, second we changed the benchmark ρ = 0.95 to ρ = 0.99,

and third we changed the underlying AR(1) process for optimal policy to

AR(2). In this specification, it evolves according to i∗t = ρ1i
∗
t−1 +ρ2i

∗
t−2 +ut

and we picked ρ1 = 1.95 and ρ2 = −0.98 following Gerlach-Kristen (2008).
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Note that the model changes only in that ρi∗t−1 in the expressions for expec-

tations changes to ρ1i
∗
t−1 + ρ2i

∗
t−2. With the AR(2) process governing the

optimal policy we also had to change the standard deviation of the under-

lying shocks, but followed the same rationale as in the benchmark model.

That is, ∆i∗t has a standard deviation of
√

2
(1+ρ2)(1+ρ1−ρ2)σu, hence in order

to match the observed standard deviation of the policy changes between

0.25 and 0.50 we set σu = 0.05 in the baseline scenario and correspondingly

decreased the noise in the committee signals to σC = 0.05 and σP = 0.05,

doubling those values when appropriate for the other scenarios. The results

of the simulations are given in Tables 3.9-3.14, with the following Tables

3.15 and 3.16 showing the results of the simulations for the opportunistic

model with a simple majority as opposed to the super-majority used in the

benchmark simulations.
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Table 3.9: Does the Voting Record Predict Policy Rate Changes?
Estimates Using Simulated Data with N = 4 and ρ = 0.90
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

Model Democratic Consensual Opportunistic Mechanical

Baseline scenario (σu = 0.25, σC = 0.25,σP = 0.25)

Skew (a1) 4.16 * 5.90 6.22 0.05
[1.64] (0.074) [3.24] (0.159) [6.56] (0.391) [3.94] (0.438)

Lagged policy 0.65 -0.02 1.62 -0.38
change (a2) [0.54] (0.305) [0.46] (0.548) [0.77] (0.107) [1.24] (0.459)

MSE 0.027 0.033 0.034 0.005
Votes proposal 2.91 4.63 4.83 —
No change 0.43 0.41 0.59 0.36

High volatility scenario (σu = 0.5, σC = 0.25, σP = 0.25)

Skew (a1) 2.20 3.05 0.91 0.21
[1.06] (0.118) [2.50] (0.303) [3.65] (0.506) [2.03] (0.424)

Lagged policy 0.17 -0.04 0.54 -0.04
change (a2) [0.24] (0.454) [0.21] (0.534) [0.29] (0.155) [0.64] (0.455)

MSE 0.041 0.050 0.045 0.005
Votes proposal 3.48 4.62 4.78 —
No change 0.28 0.24 0.37 0.19

Bad information scenario (σu = 0.25, σC = 0.5, σP = 0.5)

Skew (a1) 3.43 * 6.79 6.50 —
[1.52] (0.100) [3.58] (0.164) [6.53] (0.349) —

Lagged policy 0.19 -0.03 1.00 —
change (a2) [0.49] (0.514) [0.47] (0.505) [0.67] (0.248) —

MSE 0.048 0.052 0.052 —
Votes proposal 2.97 4.69 4.85 —
No change 0.43 0.42 0.57 —

P bad information scenario (σu = 0.25, σC = 0.25, σP = 0.5)

Skew (a1) 4.93 ** 8.86 7.36 —
[1.78] (0.036) [6.25] (0.250) [6.57] (0.335) —

Lagged policy 0.76 -0.28 1.22 —
change (a2) [0.56] (0.284) [0.42] (0.473) [0.70] (0.181) —

MSE 0.041 0.036 0.050 —
Votes proposal 2.70 4.88 4.84 —
No change 0.51 0.37 0.58 —

Note: Average ordered probit estimates over 101 random 100-period-long paths. [Average stan-

dard errors] and (average p-value). * statistically significant at 10% level, ** statistically significant

at 5% level, *** statistically significant at 1% level based on average p-value. MSE is average

mean squared difference between adopted and optimal policy. Votes proposal is average number

of votes for chairman’s proposal. No change is proportion of committee meetings with no policy

change.
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Table 3.10: Does the Voting Record Predict Policy Rate Changes?
Estimates Using Simulated Data with N = 6 and ρ = 0.90
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

Model Democratic Consensual Opportunistic Mechanical

Baseline scenario (σu = 0.25, σC = 0.25,σP = 0.25)

Skew (a1) 5.07 ** 6.57 7.65 -0.02
[1.65] (0.025) [3.25] (0.130) [5.40] (0.257) [3.39] (0.513)

Lagged policy 1.00 0.06 1.98 -0.39
change (a2) [0.56] (0.172) [0.46] (0.516) [0.85] (0.102) [1.04] (0.530)

MSE 0.026 0.033 0.030 0.005
Votes proposal 3.85 6.45 6.62 —
No change 0.47 0.41 0.57 0.36

High volatility scenario (σu = 0.5, σC = 0.25, σP = 0.25)

Skew (a1) 2.38 * 3.25 1.86 -0.05
[1.03] (0.096) [2.45] (0.302) [3.04] (0.421) [1.75] (0.514)

Lagged policy 0.21 -0.03 0.54 -0.12
change (a2) [0.24] (0.451) [0.21] (0.529) [0.30] (0.164) [0.54] (0.555)

MSE 0.039 0.049 0.036 0.005
Votes proposal 4.69 6.42 6.53 —
No change 0.30 0.24 0.34 0.19

Bad information scenario (σu = 0.25, σC = 0.5, σP = 0.5)

Skew (a1) 3.62 * 7.53 6.70 —
[1.49] (0.079) [3.63] (0.133) [5.23] (0.305) —

Lagged policy 0.33 0.05 1.11 —
change (a2) [0.51] (0.450) [0.48] (0.500) [0.69] (0.218) —

MSE 0.047 0.052 0.050 —
Votes proposal 3.94 6.53 6.67 —
No change 0.46 0.42 0.54 —

P bad information scenario (σu = 0.25, σC = 0.25, σP = 0.5)

Skew (a1) 5.56 ** 11.17 7.73 —
[1.72] (0.017) [6.57] (0.206) [5.26] (0.274) —

Lagged policy 0.94 -0.22 1.28 —
change (a2) [0.57] (0.194) [0.43] (0.518) [0.72] (0.182) —

MSE 0.041 0.036 0.048 —
Votes proposal 3.60 6.82 6.66 —
No change 0.52 0.37 0.55 —

Note: See Table 3.9.
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Table 3.11: Does the Voting Record Predict Policy Rate Changes?
Estimates Using Simulated Data with N = 4 and ρ = 0.99
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

Model Democratic Consensual Opportunistic Mechanical

Baseline scenario (σu = 0.25, σC = 0.25,σP = 0.25)

Skew (a1) 4.30 * 6.33 7.06 0.52
[1.65] (0.065) [3.25] (0.152) [6.31] (0.351) [4.05] (0.435)

Lagged policy 0.78 0.15 1.86 * -0.11
change (a2) [0.53] (0.237) [0.45] (0.511) [0.73] (0.068) [1.28] (0.485)

MSE 0.027 0.033 0.033 0.005
Votes proposal 2.94 4.64 4.83 —
No change 0.42 0.41 0.58 0.37

High volatility scenario (σu = 0.5, σC = 0.25, σP = 0.25)

Skew (a1) 2.16 2.68 0.77 0.05
[1.05] (0.140) [2.48] (0.373) [3.60] (0.523) [2.07] (0.438)

Lagged policy 0.29 0.04 0.66 * -0.01
change (a2) [0.24] (0.344) [0.21] (0.494) [0.29] (0.090) [0.65] (0.472)

MSE 0.041 0.050 0.045 0.005
Votes proposal 3.45 4.61 4.78 —
No change 0.28 0.24 0.37 0.19

Bad information scenario (σu = 0.25, σC = 0.5, σP = 0.5)

Skew (a1) 3.58 7.01 5.67 —
[1.53] (0.103) [3.67] (0.160) [6.19] (0.410) —

Lagged policy 0.38 0.11 1.06 —
change (a2) [0.47] (0.390) [0.45] (0.457) [0.61] (0.207) —

MSE 0.049 0.052 0.052 —
Votes proposal 3.05 4.70 4.84 —
No change 0.41 0.39 0.53 —

P bad information scenario (σu = 0.25, σC = 0.25, σP = 0.5)

Skew (a1) 4.83 * 8.77 6.46 —
[1.76] (0.056) [6.08] (0.279) [6.16] (0.334) —

Lagged policy 0.87 -0.14 1.33 —
change (a2) [0.53] (0.228) [0.41] (0.492) [0.64] (0.134) —

MSE 0.041 0.036 0.049 —
Votes proposal 2.78 4.88 4.83 —
No change 0.49 0.37 0.55 —

Note: See Table 3.9.
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Table 3.12: Does the Voting Record Predict Policy Rate Changes?
Estimates Using Simulated Data with N = 6 and ρ = 0.99
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

Model Democratic Consensual Opportunistic Mechanical

Baseline scenario (σu = 0.25, σC = 0.25,σP = 0.25)

Skew (a1) 4.94 ** 6.70 8.16 0.12
[1.66] (0.029) [3.24] (0.128) [5.21] (0.255) [3.49] (0.502)

Lagged policy 1.12 0.22 2.20 ** -0.23
change (a2) [0.55] (0.128) [0.45] (0.470) [0.80] (0.047) [1.08] (0.504)

MSE 0.026 0.033 0.029 0.005
Votes proposal 3.92 6.46 6.61 —
No change 0.45 0.41 0.56 0.37

High volatility scenario (σu = 0.5, σC = 0.25, σP = 0.25)

Skew (a1) 2.35 2.91 1.39 0.06
[1.02] (0.108) [2.48] (0.318) [2.92] (0.466) [1.78] (0.507)

Lagged policy 0.33 0.05 0.65 -0.01
change (a2) [0.25] (0.284) [0.21] (0.500) [0.31] (0.111) [0.54] (0.535)

MSE 0.040 0.049 0.036 0.005
Votes proposal 4.64 6.41 6.50 —
No change 0.31 0.24 0.33 0.19

Bad information scenario (σu = 0.25, σC = 0.5, σP = 0.5)

Skew (a1) 3.59 * 8.24 6.22 —
[1.48] (0.069) [3.66] (0.114) [5.05] (0.292) —

Lagged policy 0.46 0.21 1.15 —
change (a2) [0.48] (0.388) [0.45] (0.422) [0.63] (0.166) —

MSE 0.048 0.039 0.050 —
Votes proposal 4.07 6.55 6.67 —
No change 0.44 0.39 0.51 —

P bad information scenario (σu = 0.25, σC = 0.25, σP = 0.5)

Skew (a1) 5.23 ** 11.56 6.69 —
[1.70] (0.024) [6.45] (0.174) [5.04] (0.271) —

Lagged policy 1.04 -0.07 1.38 —
change (a2) [0.54] (0.148) [0.42] (0.516) [0.66] (0.108) —

MSE 0.041 0.036 0.047 —
Votes proposal 3.71 6.82 6.65 —
No change 0.51 0.36 0.52 —

Note: See Table 3.9.
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Table 3.13: Does the Voting Record Predict Policy Rate Changes?
Estimates Using Simulated Data with N = 4 and ρ1 = 1.95,
ρ2 = −0.98
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

Model Democratic Consensual Opportunistic Mechanical

Baseline scenario (σu = 0.25, σC = 0.25,σP = 0.25)

Skew (a1) 12.88 *** 14.95 19.38 -0.31
[3.03] (0.002) [8.37] (0.138) [11.81] (0.177) [5.89] (0.550)

Lagged policy 4.40 *** 3.62 ** 4.02 ** 3.57
change (a2) [0.72] (0.008) [0.85] (0.034) [0.90] (0.032) [1.90] (0.186)

MSE 0.006 0.006 0.006 0.005
Votes proposal 3.23 4.92 4.95 —
No change 0.47 0.47 0.48 0.48

High volatility scenario (σu = 0.5, σC = 0.25, σP = 0.25)

Skew (a1) 5.96 15.21 19.04 0.14
[2.50] (0.107) [8.28] (0.145) [10.77] (0.173) [3.23] (0.489)

Lagged policy 4.10 *** 3.77 ** 4.18 ** 4.09 **
change (a2) [0.44] (0.000) [0.72] (0.030) [0.65] (0.020) [1.07] (0.018)

MSE 0.007 0.007 0.007 0.005
Votes proposal 4.18 4.92 4.95 —
No change 0.27 0.28 0.29 0.27

Bad information scenario (σu = 0.25, σC = 0.5, σP = 0.5)

Skew (a1) 13.69 *** 16.25 17.35 —
[3.05] (0.006) [11.07] (0.155) [12.60] (0.259) —

Lagged policy 4.18 *** 3.40 ** 3.52 * —
change (a2) [0.70] (0.006) [0.83] (0.039) [1.04] (0.053) —

MSE 0.007 0.007 0.007 —
Votes proposal 3.15 4.94 4.96 —
No change 0.46 0.46 0.48 —

P bad information scenario (σu = 0.25, σC = 0.25, σP = 0.5)

Skew (a1) 16.12 *** 14.59 19.76 —
[3.68] (0.007) [138.32] (0.470) [12.08] (0.174) —

Lagged policy 4.25 *** 2.63 3.75 ** —
change (a2) [0.70] (0.003) [2.67] (0.239) [0.77] (0.022) —

MSE 0.007 0.007 0.007 —
Votes proposal 3.82 4.98 4.95 —
No change 0.48 0.46 0.48 —

Note: See Table 3.9.
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Table 3.14: Does the Voting Record Predict Policy Rate Changes?
Estimates Using Simulated Data with N = 6 and ρ1 = 1.95,
ρ2 = −0.98
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

Model Democratic Consensual Opportunistic Mechanical

Baseline scenario (σu = 0.25, σC = 0.25,σP = 0.25)

Skew (a1) 17.56 *** 16.49 18.38 0.26
[3.55] (0.000) [8.67] (0.106) [9.53] (0.106) [5.09] (0.525)

Lagged policy 5.02 *** 3.75 ** 4.19 *** 3.71
change (a2) [0.79] (0.003) [0.67] (0.014) [0.72] (0.009) [1.61] (0.125)

MSE 0.006 0.006 0.006 0.005
Votes proposal 4.13 6.88 6.90 —
No change 0.47 0.47 0.48 0.48

High volatility scenario (σu = 0.5, σC = 0.25, σP = 0.25)

Skew (a1) 10.09 ** 15.50 16.70 -0.21
[3.10] (0.025) [8.52] (0.142) [8.74] (0.114) [2.78] (0.543)

Lagged policy 4.30 *** 3.83 ** 4.37 *** 3.98 **
change (a2) [0.45] (0.000) [0.62] (0.020) [0.46] (0.000) [0.90] (0.017)

MSE 0.007 0.007 0.006 0.005
Votes proposal 5.33 6.88 6.89 —
No change 0.27 0.28 0.29 0.27

Bad information scenario (σu = 0.25, σC = 0.5, σP = 0.5)

Skew (a1) 16.22 *** 17.79 17.53 —
[3.56] (0.000) [9.88] (0.129) [10.26] (0.163) —

Lagged policy 4.27 *** 3.54 ** 3.70 ** —
change (a2) [0.70] (0.005) [0.65] (0.018) [0.76] (0.023) —

MSE 0.007 0.007 0.007 —
Votes proposal 4.31 6.90 6.92 —
No change 0.46 0.46 0.47 —

P bad information scenario (σu = 0.25, σC = 0.25, σP = 0.5)

Skew (a1) 17.63 *** 21.99 18.10 —
[3.95] (0.001) [192.17] (0.369) [9.84] (0.153) —

Lagged policy 4.33 *** 3.05 3.81 ** —
change (a2) [0.71] (0.002) [1.75] (0.139) [0.78] (0.022) —

MSE 0.007 0.007 0.007 —
Votes proposal 4.93 6.97 6.91 —
No change 0.48 0.46 0.47 —

Note: See Table 3.9.
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Table 3.15: Does the Voting Record Predict Policy Rate Changes?
Opportunistic Model with Simple Majority, Estimates
Using Simulated Data with N = 4
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

ρ = 0.95 ρ = 0.90 ρ = 0.99
ρ1 = 1.95,
ρ2 = −0.98

Baseline scenario

Skew (a1) 6.58 6.53 6.58 13.65 *
[3.19] (0.142) [3.22] (0.135) [3.14] (0.123) [6.03] (0.060)

Lagged policy 1.51 1.45 1.65 * 4.19 **
change (a2) [0.72] (0.120) [0.75] (0.133) [0.72] (0.083) [0.72] (0.011)

MSE 0.024 0.025 0.025 0.006
Votes proposal 4.46 4.46 4.45 4.87
No change 0.45 0.46 0.44 0.47

High volatility scenario

Skew (a1) 1.82 1.77 1.76 12.12 *
[1.78] (0.365) [1.78] (0.363) [1.79] (0.392) [5.35] (0.075)

Lagged policy 0.37 0.28 0.40 4.33 ***
change (a2) [0.27] (0.267) [0.27] (0.340) [0.28] (0.236) [0.46] (0.000)

MSE 0.026 0.026 0.026 0.006
Votes proposal 4.38 4.38 4.37 4.87
No change 0.22 0.23 0.22 0.27

Bad information scenario

Skew (a1) 5.11 5.71 5.23 13.22
[3.11] (0.193) [3.22] (0.187) [3.09] (0.197) [6.65] (0.123)

Lagged policy 0.70 0.72 0.76 3.69 **
change (a2) [0.59] (0.317) [0.62] (0.317) [0.57] (0.280) [0.67] (0.015)

MSE 0.048 0.048 0.047 0.007
Votes proposal 4.56 4.56 4.56 4.90
No change 0.43 0.45 0.42 0.46

P bad information scenario

Skew (a1) 5.90 5.89 5.65 13.24 *
[3.13] (0.162) [3.24] (0.181) [3.07] (0.148) [6.36] (0.098)

Lagged policy 0.95 0.95 1.00 3.82 **
change (a2) [0.63] (0.237) [0.66] (0.244) [0.60] (0.186) [0.68] (0.014)

MSE 0.044 0.043 0.043 0.007
Votes proposal 4.53 4.53 4.53 4.89
No change 0.44 0.46 0.43 0.46

Note: See Table 3.9. Values of σu, σC and σP depend on ρ, but correspond to those in previous

tables.
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Table 3.16: Does the Voting Record Predict Policy Rate Changes?
Opportunistic Model with Simple Majority, Estimates
Using Simulated Data with N = 6
∆pt+1 = a0 + a1skewt + a2∆pt + ut+1

ρ = 0.95 ρ = 0.90 ρ = 0.99
ρ1 = 1.95,
ρ2 = −0.98

Baseline scenario

Skew (a1) 7.66 7.35 * 7.73 13.51 *
[3.36] (0.109) [3.37] (0.090) [3.34] (0.115) [5.90] (0.065)

Lagged policy 1.99 * 1.88 * 2.13 ** 4.24 **
change (a2) [0.79] (0.052) [0.81] (0.063) [0.79] (0.047) [0.73] (0.014)

MSE 0.024 0.024 0.024 0.006
Votes proposal 6.21 6.21 6.21 6.81
No change 0.46 0.47 0.46 0.47

High volatility scenario

Skew (a1) 2.11 2.03 2.10 12.43 *
[1.86] (0.330) [1.88] (0.333) [1.88] (0.332) [5.21] (0.060)

Lagged policy 0.44 0.38 0.50 4.39 ***
change (a2) [0.29] (0.237) [0.29] (0.288) [0.29] (0.202) [0.46] (0.000)

MSE 0.023 0.023 0.023 0.006
Votes proposal 6.06 6.08 6.06 6.80
No change 0.22 0.23 0.22 0.27

Bad information scenario

Skew (a1) 5.65 6.08 5.58 13.23
[3.16] (0.170) [3.28] (0.166) [3.13] (0.183) [6.27] (0.104)

Lagged policy 0.85 0.86 0.92 3.76 **
change (a2) [0.62] (0.260) [0.65] (0.305) [0.59] (0.243) [0.68] (0.015)

MSE 0.047 0.047 0.047 0.007
Votes proposal 6.34 6.35 6.35 6.85
No change 0.43 0.45 0.42 0.46

P bad information scenario

Skew (a1) 6.14 6.51 6.01 13.53 *
[3.18] (0.156) [3.30] (0.156) [3.14] (0.147) [6.11] (0.083)

Lagged policy 1.04 1.10 1.14 3.86 **
change (a2) [0.64] (0.216) [0.69] (0.218) [0.63] (0.170) [0.69] (0.013)

MSE 0.044 0.044 0.044 0.007
Votes proposal 6.31 6.32 6.31 6.83
No change 0.43 0.46 0.43 0.46

Note: See Table 3.9. Values of σu, σC and σP depend on ρ, but correspond to those in previous

tables.
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3.A2 Data

Voting records

Voting records were collected from the following central banks (start and

end dates of the sample in brackets): the Czech Republic (1998:1-2008:12),

the United Kingdom (1997:6-2009:2), Hungary (2005:10-2009:2), Poland

(2000:2-2008:12), Sweden (1999:1-2009:2) and the U.S. (1970:2-1996:12).

Typically, voting data are available at a monthly frequency. Except for

the U.S., the data are publicly available on the central banks’ websites. The

U.S. data come from Chappell et al. (2005) and are only partially available

on the Fed website.

As regards the Czech Republic, the 1998:1-2000:4 voting results were

available only in transcripts that are published with a 6-year delay. There-

fore, the baseline estimates for this country are based on the data from

2000:7 onwards. In addition, the baseline estimates for the Czech Republic

are restricted until 2006:7 in the specification with financial market expec-

tations. The reason is that from this period onwards the voting record

was released only about 3 hours after the monetary policy decision was an-

nounced. The monetary policy decision was typically announced at around

1 p.m. and the voting ratio was released at around 3.30 p.m. at a press

conference. In principle, the interbank rates could have been collected at,

say, 2 p.m. and therefore more recent data could have been used as well,

but it has to be emphasized that the interbank market was not very liquid

during the financial crisis. In light of this fact, we restrict the data for the

Czech Republic to the period until 2006:7.

All the U.S. data are from Chappell et al. (2005), who code the policy

preferences of individual FOMC members based on the transcripts of the

FOMC monetary policy meetings. The desired federal funds rate is available

directly from the records in 80.1% of cases under the Burns chairmanship

and in 92.4% of cases under the Greenspan chairmanship. By available di-

rectly, Chappell et al. (2005) mean that the individual member explicitly

stated the desired range for the policy rate or explicitly expressed a pref-

erence for the staff policy scenario or another committee member with an

explicit target range for the federal funds rate. Each individual’s desired

funds rate is calculated as the mid-point of the reported range. In the re-
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maining 19.9% and 7.6% of cases respectively, where the preferred policy

rates are not observed, the textual record of committee deliberations (lean

for ease, lean for tightness or assent with staff proposal) is used to code the

member’s policy positions. The coding is complemented with the estima-

tion of individual reaction functions, where the reaction functions are used

to calculate expected values for the desired funds rates, conditional on the

information provided by leaning positions. For the U.S., we are able to cal-

culate the skew both for voting members and for alternate members, who

are present at the policy meeting but do not have voting power. Neither of

these two skew measures is available to the public in a timely fashion. Nev-

ertheless, the committee bias was announced from 1983 to 1999 in official

Fed statements on how the Fed was leaning in terms of its next interest rate

move, and the variable is coded so that a higher value indicates an upward

move of interest rates.

Interbank rates

Interbank rates are collected to capture financial market expectations. The

source of the data is Datastream. Specifically, we use PRIBOR rates for

the Czech Republic, BUBOR rates for Hungary, WIBOR rates for Poland,

STIBOR rates for Sweden and LIBOR rates for the UK for the following

maturities: 1 month, 3 months and 12 months. U.S. interbank rates are not

used due to significant lags in publishing the minutes and the transcripts

(both were published after the subsequent meeting in our sample).

3.A3 Central Banks’ Voting Record Release Sched-

ules

Czech National Bank

The Bank Board meets on Thursdays.14 A press conference with a presen-

tation containing the voting ratio (without the names) takes place the same

14 There are some exceptions to the described organization of monetary policy decision-
making processes for all the central banks, typically because of national holidays. For
example, in the case of the Czech National Bank, the board usually meets on a Thursday.
In exceptional cases, however, it may meet on a Wednesday instead of a Thursday because
of holidays. Since 4/2005, the minutes have been published 8 days after the meeting. In
the case of holidays, the minutes can be published more than 8 days after the meeting.
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day in the early afternoon.

Until 8/2006, the voting ratio was not disclosed at the press conference.

The minutes are released the next Friday (+8 days). They contain the

voting ratio, and since 1/2008 have also included the names explicitly.

Until 4/2005, the minutes were released on Tuesdays, two weeks after

the meetings (+12 days).

Bank of England

The Monetary Policy Committee decides during a two-day meeting that

takes place on Wednesdays and Thursdays. A press release of the decision

follows at midday on Thursday.

The minutes are released two weeks later, on Wednesdays (+13 days).

They contain the voting record with names.

Magyar Nemzeti Bank

The Monetary Council meets on Mondays. A press release of the decision

follows on Monday at 3 p.m.

The minutes are released 2-4 weeks after the decision, usually on Wednes-

days. They contain the detailed voting record with names.

National Bank of Poland

The Monetary Policy Council decides during a two-day meeting that takes

place on Tuesdays and Wednesdays. A press release of the decision follows

on Wednesday.

The minutes are released on Thursdays in the week before the next MPC

meeting, which means 3-4 weeks after the decision.

The MPC meeting minutes do not contain the voting records. The voting

records are published only later, in the quarterly inflation reports. If the

repo rate was changed, the voting record is first published in the Court

and Economic Gazette of the Ministry of Justice and only after that in

the inflation report. Voting records have to be published in the Court and

Economic Gazette no sooner than 6 weeks and no later than 12 weeks after

the voting took place.
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Sveriges Riksbank

The Executive Board meets on Mondays or Wednesdays. A press release of

the decision follows the same day.

The minutes are released approximately two weeks later (+14, or occa-

sionally +15, days). They contain a detailed voting record with names.

U.S. Fed

All the U.S. data are from Chappell et al. (2005); see Appendix 3.A2 for

details.
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