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Abstract

Climate change has been referred to as the world’s largest externality, mo-
tivating research and policies that in recent years appear to have gained ad-
ditional momentum. This thesis compiles �ve empirical essays on the eco-
nomics of climate change. The �rst three chapters study the costs of climate
change. The last two chapters examine policies to reduce greenhouse gas
emissions. More speci�cally, the �rst two chapters identify causal e�ects of
temperature variability to examine its possible costs under scenarios of fu-
ture climate change. The third chapter studies the impacts of weather shocks
in Europe paying particular attention to their heterogeneity by industry and
average climate. The chapters apply novel strategies for causal identi�cation
and report evidence on new channels through which climate change a�ects
society. The fourth chapter empirically studies the sequencing of mitigation
policies by instrument type and the association between sequencing and the
adoption of carbon pricing policies. The �fth chapter examines the inter-
national di�usion of carbon pricing policies and quanti�es its contribution
to global greenhouse gas emission reductions. Both chapters report novel
evidence that speaks to current debates in research and policy about how to
limit global warming.
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Introduction

The “credibility revolution” in empirical economics, a term sometimes used
to refer to the development of new econometric techniques and a new em-
phasis on research design since the late 1980s, has had a lasting imprint on
the economics of climate change. Equipped with new methods and better
data, economists have quickly improved our understanding of how weather
and climate a�ect societies. Major advances include the detection of many
more channels through which climate in�uences economic activity, growing
evidence on non-linearities in the e�ects of temperature, and an increasing
awareness of the conceptual di�erences between the response of an econ-
omy to weather events and to gradual changes in climate.

This thesis contains empirical work in the spirit of this relatively new �eld
of climate econometrics. The thesis consists of two parts. The �rst three
chapters focus on the economic consequences of climate change. They ap-
ply novel strategies to identify the economic costs of climate variability and
report new evidence on how climate change might a�ect economies in the
future. The remaining two chapters use empirical methods to study the con-
straints and bene�ts of policies to mitigate climate change. They improve
our understanding of two speci�c dimensions of climate policy adoption,
the role of climate policy sequencing and the importance of international
policy di�usion in countries’ e�orts to reduce greenhouse gas emissions.

Temperature �uctuates a lot from year to year, season to season, and day to
day. This variability is potentially important because evidence suggests that
daily temperature levels have a non-linear e�ect on many socioeconomic
outcomes and because larger variability generally means larger uncertainty.
However, most estimates of the costs of future climate change are based only
on projections of annual mean temperature. Chapter 1 hence studies the
economic costs of temperature variability at interannual, seasonal, and day-
to-day time scales. For the �rst time, the chapter examines the e�ects of
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temperature variability at several time scales in one empirical framework. It
is also the �rst assessment of the costs of temperature variability at seasonal
and interannual time scales that examines the e�ect of the average climate
as opposed to the e�ect of weather events. For identi�cation, I use a novel
estimation strategy based on spatial �rst-di�erences that reduces concerns
about omitted variable biases. My results suggest that larger temperature
variability comes at a cost at most time scales in most regions. Importantly,
some of those costs are projected to be particularly large under future climate
change in relatively warm and relatively poor regions.

Seasonality is common in time-series of GDP, but despite conjectures that
annually recurring �uctuations of production are to some extent driven by
temperature, economists have so far not been able to attribute seasonal eco-
nomic cycles to seasonal temperature variability. The relationship between
the two has gained additional relevance from projections of future climate
change that suggest that in most countries some seasons are projected to
warm more than others. In Chapter 2, I re-examine this relationship using
data with better geographical coverage and longer time-series than previ-
ous work. Most importantly, I propose a new identi�cation strategy that
accounts for anticipation of seasonality. Contrary to previous �ndings, my
results suggest that temperature di�erences between summer and winter can
signi�cantly explain di�erences in GDP between the two seasons. Further-
more, I �nd that climate change has already a�ected seasonal economic cy-
cles since 1981. The e�ect of temperature on production seems to be due to
industries in which labour is relatively more exposed to ambient tempera-
tures and is smaller in richer countries. Projections of future climate change
suggest additional re-allocation of economic production between the sea-
sons, with larger seasonal economic cycles in the future in many countries.

Most prior studies of the e�ect of temperature shocks on economic growth
have been on the level of countries and without industry dis-aggregation.
This is potentially problematic, as both climate and economic production
exhibit large heterogeneity at the subnational level and industries might re-
spond di�erently to the same shock. Chapter 3, co-authored with Ben Groom
and Se� Roth, studies how unusually warm and cold years a�ect economic
production in Europe. To do so, we use geographically granular data on
Gross Value Added at the level of industries. We pay particular attention to
heterogeneity with respect to regions and industries to improve our under-
standing of how weather a�ects economic production in speci�c contexts.

18



Contrary to previous work based on global samples of countries or regions,
we �nd that warmer-than-average years are particularly costly in relatively
cold regions. We can attribute this e�ect to agriculture, manufacturing, and
mining and utilities. In relatively warm districts, a negative e�ect of higher
annual mean temperatures on GVA in trade and other services is o�set by
positive e�ects in other industries. Furthermore, we �nd evidence for adap-
tation to days with very cold and with very hot temperatures.

Since the development of new empirical methods, researchers in the �eld
of climate econometrics have increasingly combined annual observations of
economic production with annual observations of temperature to identify
the e�ect of weather on economic outcomes (Schlenker et al. (2006); De-
schênes and Greenstone (2011); Dell et al. (2012), among others). Identi�ca-
tion is obtained from the quasi-random year-to-year �uctuations of weather.
This identi�cation strategy is also pursued in Chapter 3. However, while the
the marginal e�ect of �uctuations of weather can be the same as the marginal
e�ect of gradual changes of climate under certain assumptions, the former
will generally not adequately account for adaptation and therefore under- or
over-estimate the true e�ect of climate change (Hsiang, 2016). The marginal
e�ect of temperature variability, especially at seasonal and interannual time
scales, is particularly di�cult to identify from variations of weather. This is
because of a mismatch of time scales in the case of interannual variability
and a possible con�ation of the e�ect of seasonal variability and the e�ect of
seasonal temperature levels. The �rst two chapters of this thesis therefore
also make important methodological contributions on how one can estimate
the e�ect of climate variability on economic outcomes.

The empirical evidence in the �rst three chapters is important for adapta-
tion. The results suggest that future changes to climate variability will in-
cur additional costs of climate change (and bene�ts in some places). This
has previously been reported only by Kotz et al. (2021b) for variability at the
daily time scale. Chapters 1 and 3 also contribute to the emerging �eld of the
economic geography of climate change (Alvarez and Rossi-Hansberg (2021);
Rudik et al. (2021), among others) emphasising the importance of account-
ing for heterogeneity of local climatic and socioeconomic contexts and for
higher order moments of the temperature distribution. Chapter 2 contributes
to a series of publications in macro that have attempted to understand the
drivers of seasonal economic cycles (Barsky and Miron (1989); Beaulieu et al.
(1992); Beaulieu and Miron (1992), among others). The results suggest that
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anticipation plays an important role in the e�ect of temperature on these cy-
cles and that temperature might be a fundamental driver of preference and
technology shocks identi�ed in the prior literature. My �ndings also sug-
gest that climate change will lead to a reallocation of economic production
between the seasons.

Economists commonly consider carbon pricing as the most economically ef-
�cient policy to reduce greenhouse gas emissions, but in practice many coun-
tries have adopted alternative policies such as technology subsidies which
are typically associated with higher costs. This discrepancy has been ex-
plained with the theory of climate policy sequencing, which suggests that
countries’ earlier policies, such as subsidies, can help to remove barriers to
later policies with higher stringency, such as carbon taxes or tradable emis-
sion permits. This theory has received a lot of attention, but it has so far been
without comprehensive international evidence except case studies. In Chap-
ter 4, Adil Mohommad, Gregor Schwerho�, and I examine the sequencing
of policies to reduce greenhouse gas emissions. To do so, we use an inter-
national database of climate policies including information on seven instru-
ment types and six sectors and focus on countries that have adopted carbon
pricing in the last 20 years. We �nd that carbon pricing has tended to be
adopted after the adoption of all other instrument types. Furthermore, coun-
tries that adopted carbon pricing in a given year had larger climate policy
portfolios than those that did not. We also �nd that the size of portfolio at
the time of adoption declined over time and that the larger the portfolio at
the time of adoption, the higher the initial stringency of the pricing policy.

Many countries might be reluctant to adopt carbon pricing because of
a perceived limited e�ectiveness of domestic policies in relatively small
economies and because of concerns about lower international competitive-
ness and leakage. In Chapter 5, co-authored with Adil Mohommad and Gre-
gor Schwerho�, we study the international di�usion of carbon pricing poli-
cies. This di�usion is important, because if a country can increase the prob-
ability that other countries adopt a similar policy, this counteracts concerns
about competitiveness and leakage. Furthermore, policy adoption and emis-
sion reductions in those other countries represent additional bene�ts of do-
mestic policy adoption. We �rst use the observed adoption of carbon pricing
policies between 1988 and 2020 to identify international policy di�usion in
the data. Our empirical estimates then inform Monte Carlo simulations to
quantify the indirect emission reductions from di�usion. We �nd that for
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most countries indirect emission reductions due to di�usion can be larger
than direct domestic emission reductions. This is especially important for
relatively small countries, for which indirect emission reductions can be sev-
eral times larger than their direct counterparts. Overall, our results however
support a nuanced view on policy di�usion. While for individual countries
the global bene�ts from policy di�usion appear substantial, di�usion alone
seems to make a limited contribution to the achievement of a high geograph-
ical coverage of carbon pricing policies over the coming decades.

The results of Chapter 4 suggest that in situations with multiple market fail-
ures and political constraints, climate policy sequencing likely played an im-
portant role in facilitating the adoption of carbon pricing in many countries.
This insight is generally consistent with prior quantitative work that focused
exclusively on the energy sector (Meckling et al., 2015, 2017) and qualitative
work on selected countries (Pahle et al., 2018). Our work extends the in-
ternal and external validity of these earlier �ndings with re�ned statistical
analyses and more comprehensive data. Furthermore, we report additional
insights, for example on trends in policy sequences over time and the asso-
ciation between policy sequences and the stringency of subsequent pricing
policies. Our �ndings on international policy di�usion in Chapter 5 also rec-
oncile somewhat contradictory results in previous studies on the di�usion of
carbon pricing policies (Steinebach et al., 2021; Dolphin and Pollitt, 2021) by
considering carbon taxes and emission trading systems as two types of the
same policy. Our evidence on climate policy di�usion is generally consis-
tent with prior qualitative (Thisted and Thisted, 2020) and quantitative work
(Fankhauser et al., 2016). For the �rst time, the chapter also quanti�es the
bene�ts from policy di�usion.

The last two Chapters contribute to debates about opportunities, bene�ts,
and constraints of carbon pricing policies. The insights from these two chap-
ters are of high relevance for policy makers. Chapter 4 improves our under-
standing of the objectives, bene�ts, and constraints of climate policy making.
This evidence allows countries to learn from the past, which is relevant es-
pecially for the many countries which are just at the start of pathways of
rapid GHG emission reductions. The evidence on sequencing can also in-
form expectations about future policy adoption. The results in Chapter 5
counter possible concerns of policy makers about the international compet-
itiveness of their economies and relatively small e�ectiveness of adopting
carbon pricing at home. The results also contribute to debates about policy

21



instruments that put in place additional incentives for countries to follow
those with relatively stringent climate policies, such as carbon border ad-
justments and international carbon price �oors.

22



Chapter 1

Temperature variability and
long-run economic development

This study estimates causal e�ects of temperature variability on economic ac-
tivity. For identi�cation I use a novel research design based on spatial �rst-
di�erences. Economic activity is proxied by nightlights. I distinguish between
day-to-day, seasonal, and interannual variability and �nd that the type of vari-
ability matters. The results suggest an economically large and statistically sig-
ni�cant negative e�ect of day-to-day variability on economic activity at most
temperature levels. Regarding seasonal variability, I �nd a smaller but also
negative e�ect. The estimated e�ect of interannual variability is positive at low
and negative at high temperatures. These e�ects are robust, they can be iden-
ti�ed in urban and rural areas, and they cannot be explained with the spatial
distribution of agriculture. The results draw attention to the e�ect of climate
variability, which is projected to change but has so far been mostly overlooked
in assessments of the impacts and costs of climate change.
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1.1 Introduction

The debate about how climate and climate change in�uence economic de-
velopment has a long history, but with few exceptions it has been all about
annual mean climate. Fluctuations of temperature around its annual mean
have thus been mostly neglected, although temperature variability is gener-
ally very common. For example, in many countries temperature frequently
changes by several degrees Celsius from one day to the next. Furthermore,
in many places temperature di�ers by more than 10 degrees Celsius between
summer and winter. Di�erences between years are generally smaller, but an-
nual mean temperature can still change by about 1-2 degrees Celsius from
one year to the next, comparable in magnitude to global warming over the
last 100 years. The current lack of evidence on the e�ects of this variability at
the time scale of days, months, and years means that possible costs of larger
variability are not included in most estimates of the costs of future climate
change.

Advancing our understanding of the consequences of temperature variabil-
ity has possibly been hindered by the challenge of identifying its causal ef-
fects. In recent years, the marginal e�ect of climate on economic activity has
primarily been estimated with panel regression models using annual obser-
vations and unit and year �xed e�ects (Dell et al., 2012; Burke et al., 2015a).
While this approach has generally been regarded as more credibly identi-
fying causal e�ects than cross-sectional regressions, it cannot be used for
variables that need to be measured over periods longer than a year and that
change relatively slowly, such as seasonal and interannual temperature vari-
ability.

In this paper I estimate the causal e�ect of temperature variability at di�er-
ent time scales on long-run economic development. For identi�cation I use a
novel econometric framework based on di�erences between geographically
proximate observations (Druckenmiller and Hsiang, 2018). This spatial �rst-
di�erences research design allows me to identify the e�ect of slow-changing
climatic variables under weaker assumptions than a regression on a cross-
section of levels. The identi�cation strategy can be interpreted as matching
based on geographical proximity with a continuous treatment variable. I
apply this method to a global dataset consisting of grid cells with a size of
approximately 25 km x 25 km that contain information on economic activ-
ity, measured by satellites as the intensity of light at night, and temperature
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and its variability from climate reanalysis, as well as several climatic and
geographic controls.

Temperature variability at di�erent time scales has di�erent underlying
physical mechanisms, predictability, and projected changes under future cli-
mate change. I therefore distinguish between temperature variability at the
time scales of days, months, and years: day-to-day, seasonal, and interannual
variability. To measure these variables, I calculate the intra-monthly stan-
dard deviation of daily temperature levels, the intra-annual range of monthly
mean temperatures, and the inter-annual standard deviation of annual mean
temperatures respectively. For seasonal variability, the range of monthly
means is chosen instead of the inter-monthly standard deviation in order to
avoid any overlap with the measure of day-to-day variability.

My empirical results suggest economically large and statistically signi�cant
negative e�ects of day-to-day and seasonal temperature variability on long-
run economic development. On average, one sample standard deviation of
day-to-day variability (1.44 degrees Celsius) and seasonal variability (14.71
degrees Celsius) reduces nightlights by 17 and 9 percent, respectively. If
these e�ects are benchmarked with the estimated e�ect of annual mean tem-
perature, they correspond to increases of annual mean temperature from 25
degree Celsius to approximately 30 and 28 degrees Celsius, respectively. Re-
garding interannual variability, I �nd a positive e�ect on economic activity
below and a negative e�ect above an annual mean temperature of 20 degrees
Celsius.

I discuss several theories about why and how temperature variability can af-
fect economic activity, including non-linear e�ects of daily temperature lev-
els (ex post e�ects) and greater uncertainty (ex ante e�ects). Because I use
cross-sectional variation of long-term averages for identi�cation, my esti-
mates capture both ex post and ex ante e�ects. This contrasts most previous
work that used time-series variation with annual frequency and thus cap-
tured primarily ex post e�ects (Pretis et al., 2018; Kotz et al., 2021b; Rudik
et al., 2021). In line with the empirical e�ects that I �nd, previous micro-
econometric evidence suggests overall negative e�ects of temperature vari-
ability on economic activity. The fact that day-to-day variability is less pre-
dictable than seasonal temperature variability and hence introduces larger
uncertainty could explain its more negative e�ect. Regarding interannual
variability, I note that the pattern of estimated coe�cients is consistent with
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an asymmetry whereby the bene�ts/costs of colder-than-average years are
smaller than the bene�ts/costs of warmer-than-average years, possibly due
to heating being less costly and generally more widespread than cooling
(Rode et al., 2021).

Previous research suggests that nightlights are a better proxy for GDP per
capita in urban areas than in rural areas and that the spatial distribution of
nightlights also re�ects the local sectoral composition of the economy (Chen
and Nordhaus, 2019; Gibson, 2020). I therefore also examine whether my re-
sults are primarily driven by urban areas and whether they can be explained
by the spatial distribution of agricultural activity. I �nd that the estimated
coe�cients are indeed largest in urban areas, but I also �nd signi�cant ef-
fects with the same sign for less densely populated regions, including the
least densely populated areas within countries. Furthermore, the main re-
sults are una�ected by controlling for the spatial distribution of agricultural
activity.

This is to my knowledge the �rst study to examine the long-run e�ect of
temperature variability accounting for both ex ante and ex post e�ects and
examining variability at multiple time scales. The results generally agree
with previous studies �nding negative e�ects of day-to-day variability on re-
gional GDP (Kotz et al., 2021b), negative e�ects of daily and seasonal temper-
ature variability on regional GDP in the US (Rudik et al., 2021), and negative
e�ects of seasonal temperature variability on speci�c economic outcomes
such as in agriculture (Mendelsohn et al., 2007a) and health (Hovdahl, 2020).
Furthermore, I �nd positive marginal e�ects of annual mean temperature
at relatively low temperature levels and negative e�ects at relatively high
temperatures, consistent with previous �ndings of a negative quadratic re-
lationship between annual mean temperature and economic growth (Burke
et al., 2015b; Kalkuhl and Wenz, 2020).

The results also contribute to the debate about the the future costs of an-
thropogenic climate change. With few exceptions (Calel et al., 2020; Kikstra
et al., 2021; Rudik et al., 2021), temperature variability is not accounted for
in estimated costs of climate change. My results suggest that the costs of
temperature variability should be included in assessments of future costs
and deserve a closer look at their geographical distribution. Climate models
project that seasonal variability will tend to decrease in cold and increase in
relatively warm countries (Dwyer et al., 2012). These projections, together
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with my results, suggest that accounting for seasonal variability decreases
the costs of climate change in relatively cold countries and increases its costs
in relatively warm (and currently poor) countries. The results on interannual
temperature variability are generally less robust, but suggest that the bene�ts
or costs of projected changes to interannual variability depend on current an-
nual mean temperature levels. Together with projections of climate models
(Bathiany et al., 2018), the results suggest that future changes to interannual
temperature variability also tend to increase the costs of climate change in
relatively warm (and currently poor) countries. Also observed trends of day-
to-day variability over the last decades suggest additional economic costs of
climate change in relatively warm countries (Kotz et al., 2021a).

The use of spatial �rst-di�erences reduces omitted variable biases (Druck-
enmiller and Hsiang, 2018). However, because identi�cation still relies on
cross-sectional variation, I conduct a formal sensitivity analysis and several
robustness tests. Speci�cally, I show that any omitted variable would need
to be more strongly associated with both temperature variability and night-
lights than any of the climatic control variables (annual mean temperature,
precipitation, precipitation variability, relative humidity, solar radiation) or
geographic control variables (elevation, terrain ruggedness, distance from
coast, distance from inland water body) such that controlling for this con-
founder could make the estimates insigni�cant. I also compare estimates
obtained from spatial di�erences in only either the North-South or the West-
East direction and with di�erent functional forms for my control variables.
Furthermore, I do not �nd evidence that spatial spillovers or spatial depen-
dence can explain my results.

Another concern regarding the identi�cation strategy is reverse causality:
climate can have an e�ect on local economic development, but local eco-
nomic development can also in�uence the local climate. To address this con-
cern I use an alternative source of nightlights data which allows me to exam-
ine changes of nightlights over time. This enables me to regress changes of
nightlights over time on temperature variability observed over an earlier pe-
riod. By doing so, any feedbacks from local economic development on local
climate are excluded by design, but the main results can still be recovered.

The paper is structured as follows. In the next Section, I brie�y explain why
temperature variability might matter for economic activity (Section 1.2.1),
introduce the three measures of climate variability and explain their geo-
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graphical distribution (Section 1.2.2). I then describe the data in Section 1.3.
In Section 1.4, I present the research design and identi�cation strategy. All
results are presented in Section 5.3: I �rst present the main results (Section
1.5.1) and then conduct several robustness tests (Section 1.5.2 and 1.5.3). In
Section 1.6 I discuss several mechanisms that could explain the results. Fi-
nally, I discuss results in light of previous �ndings and point out implications
for future research in Section 5.4.

1.2 Climate variability

1.2.1 How temperature variability can a�ect economic activity

Annual mean temperature a�ects economic production in both developing
and developed countries (Dell et al., 2012; Burke et al., 2015b; Kalkuhl and
Wenz, 2020). This e�ect appears to be non-linear, with possibly positive
marginal e�ects at low and increasingly negative marginal e�ects at high
temperature levels (Burke et al., 2015b; Kalkuhl and Wenz, 2020). These
empirical results have been explained with alternative mechanisms, includ-
ing e�ects of daily temperature levels on human cognitive processes (Almås
et al., 2019) and e�ects of daily temperature levels on production unrelated
to labour, such as crop failures in agriculture.

Temperature variability can add to the costs of annual mean temperature if
the relationship between daily temperature levels and economic production
is non-linear. In that case, the net costs of variability in any given location
depend on the relative frequencies of di�erent levels. This e�ect of temper-
ature variability is explored for example by Rudik et al. (2021) and by Calel
et al. (2020) and Kikstra et al. (2021) using integrated assessment models with
non-linear damage functions, which yield an overall negative e�ect of larger
variability. Such e�ects are also a possible explanation of the negative e�ect
of diurnal temperature ranges reported in prior work (Mitton, 2016). Alter-
natively, temperature variability introduces costs if there are heterogeneous
locally optimal temperature levels. Such locally optimal temperature levels
have been documented for example for the choice of crops in South Amer-
ica (Seo and Mendelsohn, 2008) and can be observed for human physiology
(Hanna and Tait, 2015). In both areas, detrimental e�ects of temperature
variability have been reported on respectively crop yields (Wheeler et al.,
2000) and temperature-related mortality (Hovdahl, 2020).
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These possible costs of temperature variability are associated with realised
temperature levels (ex post e�ects of variability). In addition, temperature
variability can a�ect economic activity through expectations (ex ante ef-
fects of variability). To the extent that larger variability implies greater un-
certainty about future temperature levels, and assuming there are e�ects
of realised temperature levels on production, larger temperature variability
means larger uncertainty of income and returns to investments. This un-
certainty can have a negative e�ect on economic activity by discouraging
investment. Such e�ects of variability have been documented e.g. for ex-
change rate �uctuations (Aghion et al., 2009) and volatility of government
spending (Ramey and Ramey, 1994). Regarding climate, the e�ect of rain-
fall variability on output volatility was examined e.g. by Malik and Tem-
ple (2009). Economic agents can be expected to respond to greater climate
uncertainty through risk diversi�cation (Bellemare et al., 2013; Bezabih and
Di Falco, 2012; Ashraf and Michalopoulos, 2015; Colmer, 2021; Buggle and
Durante, 2021), but such diversi�cation might not always be possible, be
limited in its e�ectiveness, and come at a cost.

Overall, it can therefore be expected that ceteris paribus temperature vari-
ability has a negative e�ect on economic activity, either due to more fre-
quently observed detrimental temperature levels, more frequent deviations
from locally optimal temperature levels, or larger uncertainty. Only in situ-
ations in which greater variability means more frequent bene�cial tempera-
ture levels and this positive ex post e�ect is larger than possible negative ex
ante e�ects, will variability have a net positive e�ect. Because of non-linear
e�ect of temperature levels, the e�ects of variability are expected to depend
on the average temperature level. Furthermore, the e�ect of variability is
expected to depend on the time scale of variability because more frequent
�uctuations can be learned about more easily while they allow for less time
for adjustments, as well as on its predictability.

1.2.2 Temperature variability: day-to-day, seasonal, and interan-
nual

Due to human activity, mainly the burning of fossil fuels and the associated
emission of greenhouse gases into the atmosphere, temperatures have been
increasing since at least the second half of the 20th century. This slow trend
has been overlaid by �uctuations on a range of time scales. In this paper I
examine variability at the time scale of days, months, and years, that is day-

29



to-day, seasonal, and interannual variability, respectively. In this Section, I
�rst describe how I isolate varibility at di�erent time scales and then explain
the global distribution of temperature variability at di�erent time scales with
the underlying physical processes of weather and climate.

The construction of the three measures of temperature variability is illus-
trated in Figure 1.1. All three measures are calculated from timeseries of
daily temperature levels in several steps, as explained in the following.

Day-to-day temperature variability is de�ned as �uctuations of temperature
within the same month. These �uctuations are generally observed on top of
gradual trends due to seasonality. To isolate the measure of day-to-day tem-
perature variability from such trends, which are considered separately in the
measure of seasonal temperature variability that is described further below, I
�rst subtract a smooth average annual cycle from the daily timeseries (Figure
1.1b,c). To estimate a smooth average annual cycle, I follow (Moberg et al.,
2000) and �t a smooth curve into the multi-year average daily mean temper-
atures (daily mean temperatures averaged over my reference period 1985-
2014). I use a Hodrick-Prescott �lter with a smoothing parameter � = 10, 000
which subtracts trends extending over multiple years but not �uctuations
from one year to the next. I subtract the average cycle because in countries
with large annual cycles (large di�erences of temperature between summer
and winter), this cycle means relatively steep trends in spring and fall, which
lead to variation of temperature within months. Its subtraction prior to the
calculation of intra-monthly standard deviations of daily temperature lev-
els thus ensures that day-to-day variability is isolated from any in�uence of
seasonal variability (Moberg et al., 2000).

Seasonal temperature variability is de�ned as the annually recurring di�er-
ences in temperature between the relatively warm and the relatively cold
seasons of a year. In this paper, I quantify seasonal temperature variability
using the intra-annual range of monthly mean temperatures (Figure 1.1d,e).
I choose monthly means instead of daily means to reduce the in�uence of
potentially rare and extreme days. An alternative measure is the standard
deviation of monthly mean temperatures. The range of monthly means is
chosen to further reduce any overlap with the measure of day-to-day vari-
ability and to allow for better comparison of this measure across the globe
and thus easier interpretation of the results, because some locations close
to the Equator exhibit complex patterns of seasonality with several peaks
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Figure 1.1: Calculation of my three measures of temperature variability: day-
to-day, seasonal, and interannual variability.
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Notes: The top �gure shows daily temperature levels for London from 1985 to 2014 using
ERA5 reanalysis (see Section 1.3). The �rst column (Figures b, c) show two steps to cal-
culate the day-to-day variability: after subtraction of a smooth average annual cycle, I
calculate the intra-monthly standard deviation of daily temperature anomalies (Figure b),
which I then average 1985-2014 (Figure c). The second column (Figures d,e) show two steps
to calculate seasonal variability: I �rst calculate the intra-annual range of monthly mean
temperatures (Figure d), which I then average 1985-2014 (Figure e). The third column (Fig-
ures f, g) show two steps to calculate inter-annual variability: I �rst subtract a smooth
trend from annual mean temperatures (Figure f) and then calculate the inter-annual stan-
dard deviation of annual temperature anomalies 1985-2014 (Figure g). Figures b, c, d, e do
not show the full time period 1985-2014 for readability.
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during the year which are all included in the standard deviation of monthly
means, but not in their range (see also Chapter 2). In a robustness test, I �nd
that the main results are however very similar if I measure seasonal variabil-
ity using the inter-monthly standard deviation of monthly mean tempera-
tures, with a slightly higher signi�cance of the e�ect of seasonal variability
(Appendix A.4). For both day-to-day and seasonal temperature variability,
I average the monthly values of intra-monthly standard deviations and the
annual values of intra-annual ranges respectively over the period 1985-2014,
which is the 30 years period preceding the year of the nightlights data.

Interannual variability is calculated as the between-year standard deviation
of annual mean temperatures over the same 30 year period (Figure 1.1c,f).
Before I calculate the standard deviation, I remove a slow trend in order to
isolate interannual variability from any warming (or cooling) trends due to
anthropogenic climate change. The omission of trends from anthropogenic
warming is motivated by the focus of this paper on variability (�uctuations)
and not on gradual changes (trends). In some contexts, these two concepts
are not always separated and the term climate variability is more loosely
used to refer also to gradual trends. In contrast, the terminology of this pa-
per distinguishes between variability and trends as typically done in the cli-
mate science community based on whether or not observed changes show a
repeatedly recurring pattern.

The global maps of temperature variability re�ect the in�uence of astron-
omy, geography, and climate dynamics (Figure 1.2). While the maps of day-
to-day, seasonal, and interannual variability resemble each other and suggest
positive correlations between the variables, I explain in the following how
the relative importance of several physical processes di�ers. I look into the
econometric implications of the high degree of spatial correlation in Section
1.4.

Day-to-day variability is generally larger at higher latitudes. This is primar-
ily due to the in�uence of high and low pressure systems travelling eastwards
at these latitudes, which cause frequent changes between local advection of
cold (polar) and warm (tropical) air. Furthermore, day-to-day variability is
larger further away from the coastline as land responds faster than water to
changes in air temperature between days.

Seasonal variability of temperature is generally larger at high latitudes than
at low latitudes due to the tilt of Earth’s axis (Figure 1.2b). Furthermore, be-
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Figure 1.2: Geographical distribution of temperature and its variability: day-
to-day, seasonal, and interannual variability (top to bottom).

Source: ERA-5 reanalysis (see Section 1.3.2).
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cause land responds faster to changes in solar radiation than oceans and the
land areas are larger in the Northern hemisphere than in the Southern hemi-
sphere, seasonal variability is generally larger in the Northern hemisphere
and smaller closer to the coast and large inland water bodies (Legates and
Willmott, 1990). Because at mid and high latitudes the wind tends to �ow
from West to East and the temperature of a parcel of air is in�uenced by the
temperature of the surface over which it has been transported (McKinnon
et al., 2013; Stine and Huybers, 2012), seasonal variability also tends to be
larger on the Eastern parts of large continents (America, Eurasia).

Interannual temperature variability is partly driven by external astronomi-
cal in�uences, such as solar cycles of about 11 years, but primarily due to
internal climate variability (Mann and Park, 1994). Internal climate vari-
ability results from oscillations in the climate system, which are often re-
lated to interactions between di�erent components of the climate system,
such as the atmosphere and the ocean. Examples are the El-Nino Southern
Oscillation (ENSO) and the North-Atlantic Oscillation (NAO) (IPCC, 2013).
Interannual variability is generally larger further away from the coasts be-
cause the oceans have a larger heat storage capacity and thus a larger year-
to-year inertia than land (Figure 1.2c). Interannual variability is largest in
high Northern latitudes and at high altitude due to its ampli�cation by the
snow/ice-albedo feedback.

1.3 Data and descriptive statistics

1.3.1 Economic variables

I proxy economic activity by the intensity of lights at night (Chen and Nord-
haus, 2011; Henderson et al., 2012; Nordhaus and Chen, 2015). Nightlights are
measured by satellites and come with a resolution that outcompetes census-
based measures of economic activity. This granularity of the data is particu-
larly important in my research design, as identi�cation rests on the compara-
bility of neighbouring observations. Another advantage of using nightlights
instead of population or GDP is that nightlights are consistently measured
with the same quality and the same resolution worldwide. I take data on the
intensity of lights at night from the satellites of the Visible Infrared Imaging
Radiometer Suite (VIIRS) (Elvidge et al., 2017). The VIIRS is a relatively new
satellite product which can be regarded as a successor of the popular DMSP
data. As compared to the DMSP data, the VIIRS data su�er less from blur-
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ring, a lack of sensor calibration, and a limited range of sensitivity (Chen and
Nordhaus, 2019; Gibson et al., 2021).

Figure 1.3: Geographical distribution of VIIRS nightlights: a) North-Eastern
coast of the USA and b) the British Isles.

Source: VIIRS nightlights.

I use annual average radiance values which have undergone some post-
processing to remove the e�ect of clouds and to �lter out �res and other
ephemeral lights. I use nightlights for the year 2015 with a resolution of 15
arc-seconds, which I aggregate to a resolution of 0.25 degrees. The year 2015
is the earliest year for which VIIRS nightlights were available at the time
of the analysis. Because interest is in the e�ect of climate, typically de�ned
over 30 years, on the level of economic development, climatic averages of
1985-2014 are combined with nightlights for 2015. Robustness tests with an
average of nightlights 2015-2019 and with a very recent version of the VIIRS
nightlights data yield the same results (Appendix A.7).

As most economic activity occurs on land rather than on water, the average
radiance tends to be larger in grid cells with a higher share of land area. This
could bias my results if the share of land area correlates with my climatic
variables. I address this concern by multiplying the average radiance of a
grid cell by the total area of the grid cell and dividing it by its total land
area. All grid cells without land area are dropped from the data. Because the
distribution of normalised nightlights is highly skewed, I log-transform the
data.

At a global scale, the spatial distribution of VIIRS nightlights primarily shows
the location of large metropolitan areas. At the regional scale, the spatial
distribution of nightlights also shows variation outside metropolitan areas
(Figure 1.3).
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Although I prefer the VIIRS data to the DMSP data due to technological im-
provements (Gibson et al., 2021), I also download DMSP data for an additional
robustness check for the years 1992 and 2012. The data are processed with
the same steps as the VIIRS data. Furthermore, I use population data from
the Gridded Population of the World (GPW) dataset version 4.0 (Center For
International Earth Science Information Network-CIESIN-Columbia Univer-
sity, 2018). I choose this dataset as it is based on o�cial censuses only and
thus independent of my nightlights data. I also use data on the global distri-
bution of cropland and pasture lands (Ramankutty et al., 2008) provided by
NASA (Ramankutty et al., 2010), which I aggregate from its native resolution
to a resolution of 0.25 degrees.

1.3.2 Climate variables

I use climate data from the global reanalysis ERA-5. Reanalysis data are pro-
duced by feeding an adjusted weather forecast model with the full global
record of observational data, including weather station records and satellite
data (Parker, 2016). ERA-5 belongs to the newest generation of reanalysis
datasets and is provided with a resolution of 0.25 degrees. I choose reanal-
ysis data instead of station-based weather data because of the physical con-
sistency of reanalysis data. Furthermore, meteorological measurements are
globally unevenly distributed and I expect that processing with a dynamic
model evens out some of the heterogeneity in data quality.

The reanalysis data also has the advantage that they include climate variables
in addition to temperature and precipitation. I include several additional
variables in my model to reduce potential biases due to omitted climate vari-
ables. These biases could lead to a misattribution of empirically observed
causal e�ects, but are not necessarily problematic as long as the physical re-
lationships between the variables can be expected to be constant over time
or if the estimated relationships are not used for future projections. To avoid
misattribution, I also include relative humidity and solar radiation in my re-
gressions. I use daily mean values of all climate variables for the period 1985
to 2014, which is the 30 years period prior to the VIIRS nightlights data, and
for the period 1982-1991 (the period before the DMSP nightlights data). In
another robustness check, I �nd that the results are qualitatively very similar
if I use an earlier period for the climate data (1955-1984) (Appendix A.6).
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1.3.3 Geographical covariates

The use of the spatial-�rst di�erences research design reduces omitted vari-
able biases from all variables whose spatial gradients do not systematically
correlate with the gradients of temperature variability at the spatial scale of
my observations (about 25 km). For example, I expect that any di�erences in
institutions between countries cannot bias my results. Furthermore, in or-
der to reduce biases from speci�c variables, I also include several geographic
controls.

Table 1.1: Descriptive statistics. Number of observations: 233,362.
Variable Unit Mean Std. Min. Max.
log Nightlight intensity VIIRS 0.11 0.35 0.00 7.19
log Nightlight intensity DMSP 0.46 0.87 0.00 13.72
Elevation km 0.62 0.80 -0.24 6.31
Terrain ruggedness - 102.42 146.06 0.00 1355.07
Distance from nearest coast 1000 km 0.55 0.52 0.00 2.50
Distance from nearest lake/river 1000 km 0.28 0.50 0.00 6.33
Annual mean temperature deg C 25.29 13.39 -5.94 48.82
Day-to-day var. of temperature deg C 2.96 1.44 0.31 6.07
Seasonal var. of temperature deg C 24.37 14.71 0.74 65.08
Interannual var. of temperature deg C 0.64 0.30 0.10 1.56
Annual total precipitation mm 69.50 67.73 0.05 2499.60
Seasonal var. of precipitation mm 49.79 42.37 0.16 1037.65
Interannual var. of precipitation mm 0.01 0.01 0.00 0.38
Annual mean rel. humidity % 89.34 7.03 64.94 98.62
Annual mean solar radiation W m-2 179.87 57.63 76.34 309.41
Share of cropland % 10.66 19.64 0.00 100.00
Share of pasture land % 18.47 27.06 0.00 100.00
Notes: Climate variables computed over period 1985-2014. VIIRS nightlights annual com-
posite for 2015. DMSP nightlights annual composite 2012.

Elevation increases transport costs and is hence a major geographic factor
for economic development. Furthermore, elevation is one of them main de-
terminants of local climate. I take data on elevation from the Global Land
One-kilometer Base Elevation (GLOBE) dataset in version 1 provided by the
National Oceanic and Atmospheric Administration (NOAA) (Hastings et al.,
1999). The dataset has global coverage with a horizontal resolution of 0.0083◦.
I download the data as tiles, merge them, and then aggregate it to 0.25◦ by
averaging.

Previous research has revealed a statistically signi�cant association between
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terrain ruggedness and economic development in Africa (Nunn and Puga,
2012). Furthermore, terrain ruggedness in�uences the horizontal and verti-
cal exchange of air, which in turn a�ect the local climate at the surface. I
therefore also include terrain ruggedness as a control variable. Data on ter-
rain ruggedness are taken from a global dataset with a resolution of 1 km
(Shaver et al., 2018), which I aggregate to 0.25 degrees.

Economic activity tends to be clustered at the coasts in many countries (Hen-
derson et al., 2018). Furthermore, seasonal variability of temperature tends
to be smaller closer to the coast (Section 1.3.2). I therefore also include dis-
tances from the nearest coast and distance from inland water bodies as con-
trol variables. Distances from the nearest coast are taken from a dataset
provided by the NASA. The dataset covers the whole globe with a uniform
horizontal resolution of 0.04◦. I also use data on distance from inland water
bodies (GloboLakes dataset provided by the CEDA archive) (Carrea et al.,
2015). The data were created from ENVISAT satellite images. The data are
provided with a 300 m resolution. I aggregate both datasets to a resolution
of 0.25 degrees using mean values.

1.3.4 Descriptive statistics

The �nal dataset consists of 233,362 complete observations (Table 1.1). Each
observation corresponds to a grid cell of 0.25 degrees width in both latitu-
dinal and longitudinal direction, which corresponds to about 28 km at the
equator, about 23 km at 45 degrees latitude, and about 20 km at 60 degrees
latitude. The �nal dataset excludes grid cells that are not located on land
and grid cells on land that are covered by water or ice. Furthermore, due to
the spatial coverage of the nightlights data, the dataset is bounded by the
latitudes 75 N and 60 S. For the main analysis, nightlights in the year 2015
are combined with time-invariant geographical covariates and climate vari-
ables averaged over the period 1985-2014. The exclusion of the year 2015 in
the climate data and the averaging over multiple years reduces the in�uence
of (contemporaneous) extreme events, and a 30-years period corresponds to
the conventional de�nition of climate.

1.4 Econometric strategy

I estimate the model using a spatial �rst-di�erences research design. The
spatial �rst-di�erences (SFD) estimator has recently been proposed as an
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econometric estimation method that can reduce omitted variable bias for
cross-sectional data (Druckenmiller and Hsiang, 2018). This is especially use-
ful for the analysis of climate variability, which is a characteristic of climate
and not weather and for which identi�cation therefore arguably requires the
“Ricardian” approach of comparing locations with di�erent climate (Hsiang,
2016; Au�hammer, 2018). The SFD estimator uses only variation between
spatially adjacent units of observations. Identi�cation hence relies on the
local conditional independence assumption

E [Yi |(Di−1, Xi−1)] = E [Yi−1|(Di−1, Xi−1)] ∀i (1.1)

whereby observations are indexed with i along a spatial dimension, Y is the
outcome variable (log nightlights in the main model of this paper), D is the
treatment variable (temperature variability), and X are control variables (cli-
matic and geographic covariates). Equation 1.1 means that the SFD estimator
requires that, conditional on all covariates, spatially adjacent units of obser-
vation with the same treatment have the same expected outcome. This is
a weaker assumption than the assumption underlying a conventional cross-
sectional regression of levels, for which conditional on all covariates all units
of observation with the same treatment need to have the same expected out-
come.

The OLS estimator of the SFD design can then be written as

�̂SFD = (ΔX ′ΔX )−1(ΔX ′ΔY ) (1.2)

where Δ refers to the �rst di�erence between adjacent units of observations.
If the local conditional independence assumption (Equation 1.1) is satis�ed,
it implies that

E [ΔX ′ΔC] = 0. (1.3)

for any potentially omitted variable C . The SFD estimator thus eliminates
biases due to omitted variables if the spatial di�erences of the treatment vari-
able and the spatial di�erences of a potential confounder are not systemati-
cally correlated (Druckenmiller and Hsiang, 2018). Another strength of the
SFD research design is a unique robustness test. This robustness test exploits
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the fact that the estimator can be used with spatial di�erences in any direc-
tion, including North to South (NS) and West to East (WE). If the identify-
ing assumption of SFD is satis�ed, the regression coe�cients obtained from
di�erences in di�erent directions should be statistically the same (Drucken-
miller and Hsiang, 2018). I conduct this robustness test in Section 5.3.

The SFD framework can also be compared with a spatial regression-
discontinuity (RD) research design. In contrast to an estimation with RD,
the SFD estimator does not require a discontinuity of the treatment vari-
able. Instead, the marginal e�ect is recovered from all changes in the out-
come (nightlights) and treatment variable (temperature variability) along the
North-South or East-West direction. This reduces the risk that estimates pri-
marily re�ect correlations of gradients in temperature variability and night-
lights in places with sharp gradients of temperature variability because of
extraordinary geographical features, where the identifying assumption for a
model with polynomial terms of all control variables might be violated. This
concern is addressed with a robustness check in which the top 5% and bot-
tom 5% of observations in terms of temperature variability are excluded and
which yields very similar results as the main estimation (Appendix A.5).

Grid cells at a distance of about 20-30 km can generally be expected to have
relatively similar climates. This might raise the question whether di�erences
in temperature variability as observed over 30 years are due to systematic
di�erences in climate or instead due to singular events in this time period
that a�ected one location more than the other. If the latter concern was cor-
rect, the SFD estimator would identify a short-term e�ect of weather rather
than a long-term e�ect of climate (Hsiang, 2016). To address this concern,
I vary the time periods over which temperature variability (1955-1984 and
1985-2014) and nightlights (2015 and 2015-2019) are observed and �nd simi-
lar results (Appendices A.6 and A.7). This suggests that my estimates can be
interpreted as the marginal e�ects of climate rather than weather.

In the presence of spatial spillovers, the estimates obtained from spatial
�rst-di�erences will be biased due to a violation of the SUTVA assumption
(Druckenmiller and Hsiang, 2018). Such spatial spillovers can result from
�ows of people, capital, or goods between adjacent locations. For exam-
ple, economic activity in a speci�c location might be negatively a�ected by
outward-migration to neighbouring locations. If this migration was partly
in�uenced by local temperature variability, the empirical estimates would be
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biased because the treatment (i.e. temperature variability) of one unit of ob-
servation (i.e. location) would a�ect the outcome (i.e. economic activity) of
another unit of observation (i.e. location). The presence of spatial spillovers
can be examined with a model that includes spatial lags of the treatment vari-
able (Druckenmiller and Hsiang, 2018). In a robustness test, I therefore also
include spatial lags of annual mean temperature and the di�erent measures
of temperature variability before taking spatial �rst di�erences. The results
suggest that spatial spillovers are not important in this setting (Appendix
Table A.6). Furthermore, estimation with spatial �rst-di�erences does gen-
erally not account for possible spatial dependence of the outcome variable.
To examine whether there is evidence that spatial dependence in�uences
the results, I estimate my main model but pair grid cells before taking spatial
di�erences not with their immediate neighbour, but with their neighbour’s
neighbour. In other words, I always skip one observation in space when tak-
ing spatial di�erences. The results are similar to my main results, suggesting
that also spatial dependence is no major issue in this setting (Appendix Table
A.7).

To illustrate the strengths of the SFD framework, I estimate a simple model
in which I explain variation of nightlights by day-to-day temperature vari-
ability (and annual mean temperature). The exercise focuses on day-to-day
variability as I can use recent estimates of its e�ect on regional GDP per
capita using variation across time for identi�cation as a benchmark (Kotz
et al., 2021b). Using the sign of this previously reported e�ect as a reference,
the results suggest that the SFD estimator reduces omitted variable biases
as compared to a regression with levels. While this �rst evidence is reas-
suring, possible omitted variable biases are in more depth discussed in the
next Section. Furthermore, what has not been reported before but is impor-
tant for this paper, the SFD estimator also reduces multicollinearity in the
model (Appendix A.2). The reason for the latter insight is that annual mean
temperature and temperature variability at di�erent time scales are in�u-
enced by latitude and thus strongly correlated with each other (and with
other climate variables such as solar radiation). These correlations are sub-
stantially reduced when one uses spatial �rst di�erences instead of levels as
the in�uence of latitude is smaller (relative to other variables) if one com-
pares only neighbouring observations (Appendix A.2). Taken together, the
SFD estimator thus seems to be a promising tool for navigating concerns of
omitted variable biases on the one hand and multicollinearity on the other
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hand, which have been identi�ed as key challenges of empirical work on
the e�ect of weather and climate on socioeconomic outcomes (Au�hammer
et al., 2013).

1.5 Results

1.5.1 Main results

Previous authors have found non-linear relationships between annual mean
temperature and GDP per capita (Burke et al., 2015a). Similarly, non-linear
associations have been reported between daily temperature levels and many
di�erent socio-economic outcomes including labour productivity and health
(Carleton and Hsiang, 2016). This suggests that the e�ect of temperature
variability on long-run economic outcomes might be moderated by the e�ect
of annual mean temperature (Section 1.2.1). I explore this hypothesis by
estimating a �exible model in which I interact temperature variability with
dummy variables for bins of annual mean temperature that are 4 degrees
Celsius wide:

Δ log(1 +
nightlighti
landareai )

= ∑
k
�ki (1 + �

k
1Δ�

d
i + �

k
2Δ�

m
i + �k3Δ�

y
i + �k4ΔT i)

+ �ΔC̃i + ΔGi + �i (1.4)

where observations are indexed by i and Δ is the spatial �rst di�erence oper-
ator. Units of observations are grid cells with 0.25 degrees width, correspond-
ing to about 25 km at the Equator. The dependent variable is the annual mean
luminosity of nightlights divided by the landarea of a grid cell. Day-to-day,
seasonal variability and interannual variability of temperature are denoted
by � d , �m, and �y , respectively. �ki is an indicator variable for temperature
bin k that takes on values 0 and 1, T is annual mean temperature, and C̃ is
a matrix of climate controls including terms for annual total precipitation,
relative humidity, solar radiation, and the same three measures of variability
of precipitation. The matrix of geographic controls G includes grid cell av-
erages of the distance to the nearest coast, the distance to the nearest water
body, elevation, and terrain ruggedness. I estimate models with quadratic
polynomials for all control variables. Standard errors are clustered at the
country level to account for heteroskedasticity and spatial autocorrelation.
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I also estimate models with standard errors clustered at the level of subna-
tional administrative units, which yields smaller standard errors. This sug-
gests that unexplained factors that determine the intensity of lights at night
tend to be correlated within countries (e.g. electri�cation).

The results suggest that day-to-day variability and seasonal variability tend
to reduce economic activity at most levels of annual mean temperature (Ap-
pendix A.3). Regarding annual mean temperature, I �nd a positive marginal
e�ect at annual mean temperatures between 4-16 degrees Celsius and a
negative e�ect at all other temperature levels. This pattern of marginal
e�ects is consistent with results of previous �ndings indicating a nega-
tive quadratic relationship between annual mean temperature and economic
growth (Burke et al., 2015b), except the negative marginal e�ect at very low
temperature levels.

Furthermore, the analysis with the binned-model yields negative coe�cients
of day-to-day and seasonal variability across most levels of annual mean tem-
perature, but an coe�cients of interannual variability whose sign is positive
at low and negative at high levels of annual mean temperature. For parsi-
mony I thus also estimate a model that is as simple as possible but still able to
produce these main �ndings. The model includes linear terms for day-to-day
seasonal variability and an interaction between a linear term for interannual
variability and a dummy variable for annual mean temperature:

Δ log(1 +
nightlighti
landareai )

= �1Δ� di + �2Δ�
m
i

+ �(Ti < 20) (1 + �A3 Δ�
y
i )

+ �(Ti ≥ 20) (1 + �B3 Δ�
y
i )

+ �ΔCi + ΔGi + �i (1.5)

where �(Ti ≥ 20) and �(Ti < 20) are indicator variables that take on the
value 1 if annual mean temperature T i is larger or equal/smaller than 20
degrees Celsius and 0 otherwise. As expected from the patterns in Figure
A.2, the estimation yields negative coe�cients of day-to-day and seasonal
temperature variability (Column 1 in Table 5.2). For interannual variability, I
�nd a positive coe�cient below 20 degree Celsius and a negative coe�cient
above this temperature level.
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Table 1.2: Results of a linear model estimated with SFD.
Dependent variable: log Nightlight density

Spatial �rst di�erences: Pooled WE NS
Column: 1 2 3
Day-to-day variab. of T -0.50448∗∗∗ -0.69073∗∗∗ -0.41483∗∗∗

(0.12930) (0.15170) (0.11675)
Seasonal variab. of T -0.28016 -0.14383 -0.32325∗

(0.17127) (0.17498) (0.17247)
Interann. variab. of T ∗ �(T < 20) 0.17369∗∗∗ 0.17134∗∗∗ 0.16404∗∗∗

(0.04441) (0.05661) (0.04454)
Interann. variab. of T ∗ �(T ≥ 20) -0.25220∗∗ -0.23005∗∗ -0.25865∗∗

(0.10077) (0.09922) (0.11796)
E�ect of increase by 1 deg. C on log nightlights
Day-to-day variab. of T -0.11631 -0.15926 -0.09564
Seasonal variab. of T -0.00632 -0.00325 -0.00729
Interann. variab. of T ∗ �(T < 20) 0.19185 0.18926 0.18119
Interann. variab. of T ∗ �(T ≥ 20) -0.27857 -0.25410 -0.28569
Climate controls (linear) x x x
Climate controls (quadratic) x x x
Geographic controls (linear) x x x
Geographic controls (quadratic) x x x
R2 0.0249 0.0250 0.0254
df 448877 224426 224425
Notes: The table shows the results of a linear model (Equation 1.5) estimated with spa-
tial �rst-di�erences. Standard errors in parentheses. WE = West-East, NS = North-South.
Pooled = pooling di�erences in WE and NS.

The magnitude of the estimated coe�cients is substantial. An increase of
day-to-day and seasonal variability by one standard deviation (1.44 and 14.71
degrees Celsius, respectively) is associated with a reduction of nightlights
by about 17 percent and 9 percent respectively (Column 1 in Table 5.2). For
interannual variability, the magnitude is about 6 percent below and 8 percent
above 20 degree Celsius of annual mean temperature.

As a �rst robustness test, I compare the results obtained by estimating the
model with spatial �rst-di�erences in the West-East (WE) direction (Column
2) with the results obtained from North-South (NS) di�erences (Column 3),
as well as with di�erences in these two directions pooled (Column 1). If my
estimated coe�cients of temperature variability could be explained with an
omitted variable whose association with temperature variability or night-
lights were not similar in both directions, I would expect to obtain di�erent
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estimates. However, for both directions I �nd that all coe�cients have the
same sign, similar magnitude, and similar signi�cance.

As another robustness test I change the model speci�cation for all control
variables. I test models with linear terms, linear and quadratic terms, and
linear terms interacted with bins of annual mean temperature. The results
are presented in Table A.11 in Appendix A.9. Overall, the estimated coe�-
cients of temperature variability are similar across speci�cations (Columns
4, 5, 6). I also do not �nd evidence for a violation of the SUTVA assump-
tion due to spatial spillovers (Appendix Table A.6) and no evidence that the
results are signi�cantly a�ected by spatial dependence (Appendix Table A.7).

In the next paragraphs I conduct two additional robustness tests using this
model, before turning to a discussion of mechanisms in Section 1.6.

1.5.2 Sensitivity analysis

In order to quantify the robustness of my key results to omitted variable bias I
also conduct a formal sensitivity analysis. Speci�cally, I calculate how much
of the residual variation of temperature variability and the residual variation
of nightlights of the model in Equation 1.5 an omitted variable would need to
explain such that including this additional variable could make the estimated
coe�cients of temperature variability insigni�cant or even reduce them to
zero. Following Cinelli and Hazlett (2020), I quantify the robustness using
partial R2, which means that my results on robustness are not speci�c to any
assumed functional form of the omitted variable in the model, but instead
provide an upper bound on the sensitivity to any set of omitted variables
including non-linear terms and interactions. The full results are presented
in Table A.10 in Appendix A.8.

To make the estimated coe�cients insigni�cant at � = 0.05, I �nd that an
omitted variable would need to explain at least 2.71, 0.74, 0.92, and 0.45 per-
cent of the residual variation of nightlights and of the residual variation of
day-to-day, seasonal, and interannual variability below and above an annual
mean temperature of 20 degrees Celsius, respectively. To reduce the esti-
mates to zero, these robustness values are respectively 2.99, 1.03, 1.28, and
0.94 percent. These values can be put into perspective by comparing them
with the partial R2 of variables included in the model. This benchmarking
shows that none of the included climatic and geographic control variables
are comparably strongly associated with both nightlights and temperature
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variability. While a few variables are su�ciently strongly associated with
temperature variability, none of these explains enough of the residual vari-
ation of nightlights. This means that no potentially omitted variable that is
similarly strongly associated with temperature variability and nightlights as
any of the included control variables could make my results insigni�cant if
it were additionally included in the model.

1.5.3 Reverse causality

It is well established that air temperature tends to be higher in the center of
a city than in its surroundings due to what is referred to as the urban heat
island. If the spatial distribution of economic activity a�ected also the vari-
ability of temperature, for example through human land use that changes
the heat capacity of the surface, the statistically signi�cant association be-
tween temperature variability and nightlights could generally also be ex-
plained with reverse causality. I address this concern by regressing changes
of nightlights over time (between 1992 and 2012) on temperature variability
measured over an earlier period (1982 to 1991). This means that any e�ects
of nightlights on temperature variability are intentionally excluded by the
design of the regression. For this analysis I use the older DMSP nightlights
data, as the VIIRS data are only available since 2015.

I �rst regress DMSP nightlights in 2012 on climate over the period 1982-
2011 (Table 1.3, Column 1), similar to my main regression with VIIRS data.
I �nd the same key results as for the VIIRS data: a (signi�cantly) negative
coe�cient of day-to-day and seasonal variability and a negative and posi-
tive coe�cient of interannual variability of temperature respectively below
and above an annual mean temperature of 20 degrees Celsius. The size of
the coe�cients is more di�cult to compare as the two datasets measure the
intensity of nightlights with di�erent technological devices and on di�erent
scales.

To address the concern of reverse causality, I regress the growth of night-
lights between 1992 and 2012 on the mean climate of the period 1982 to 1991
(Column 2). Reassuringly, I �nd the same sign and signi�cance of the coef-
�cients as in Column 1. I take this as evidence that my results are robust to
possible confounding e�ects due to reverse causality. This result holds true
also if I include nightlight density in 1992, which is likely associated with
temperature variability from 1982-1991 and, as the results con�rm (Column
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3), also with subsequent changes in nightlights.

Table 1.3: Results of regressions addressing concerns of reverse causality
using the DMSP nightlights data.
Dependent variable: log NL (2012) Δ log NL (1992 vs. 2012)

Time period for climate variables: 1982 - 2011 1982 - 1991 1982 - 1991
Column: 1 2 3
Day-to-day variab. of T -0.31131∗∗∗ -0.04719∗ -0.07712∗∗∗

(0.08156) (0.02665) (0.02819)
Seasonal variab. of T -0.19933 -0.06371∗∗ -0.07539∗∗

(0.12123) (0.02934) (0.03635)
Interann. variab. of T ∗ �(T < 20) 0.12011∗∗∗ 0.02603∗ 0.02898∗

(0.02794) (0.01419) (0.01541)
Interann. variab. of T ∗ �(T ≥ 20) -0.11410 -0.01148 -0.01724

(0.07603) (0.02808) (0.02979)
Nightlights in 1992 -0.12585∗∗∗

(0.01775)
Climate controls (linear) x x x
Climate controls (quadratic) x x x
Geographic controls (linear) x x x
Geographic controls (quadratic) x x x
R2 0.0473 0.0102 0.0374
df 448877 448877 448876
Notes: The table shows the results of a model with linear terms for day-to-day and seasonal
variability and an interaction term for interannual variability (Equation 1.5) estimated
with spatial �rst-di�erences. Standard errors in parentheses. NL = nightlight density based
on DMSP data.

1.6 Mechanisms

1.6.1 Urban areas

It is well known that nightlights are a better proxy for GDP per capita in ur-
ban areas than in rural areas (Chen and Nordhaus, 2019; Gibson et al., 2021).
I therefore examine whether my results are primarily driven by urban areas.
To do so, I �rst categorise all grid cells based on their population density rel-
ative to all other grid cells of the same country and then estimate my model
on subsets of the data. I �nd that the magnitude of my estimated e�ects is
largest in urban areas de�ned as the 5 percent most densely populated grid
cells of every country (Appendix A.10). At the same time I �nd signi�cant
e�ects of the same sign also in less densely populated areas, including the 50
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percent least densely populated areas. The e�ect of temperature variability
thus seems to be geographically widespread and not limited to urban areas.

1.6.2 Agriculture

A possible explanation for my empirical e�ects is that temperature variabil-
ity a�ects the local sectoral composition of economic activity. For instance,
regions with higher seasonal variability could be relatively more or less suit-
able for agriculture than regions with lower variability. Because agricultural
activity tends to be associated with lower levels of nightlights than other eco-
nomic activity for a similar total economic output (Chen and Nordhaus, 2019;
Gibson et al., 2021), these climatically induced relative advantages could be
re�ected in the spatial distribution of nightlights and thus explain the esti-
mated coe�cients.

I thus use satellite data on agricultural land use to examine heterogeneity of
the estimated e�ects across regions with di�erent types of economic activity.
I include both cropland and land used for pasture in my model. I �nd that
land used for pasture has indeed a signi�cant e�ect on nightlights, but my
estimates of temperature variability remain una�ected by including either
one or both of these variables (Table A.13 in Appendix A.11). These results
suggest that the estimated e�ect of temperature variability on nightlights
cannot be explained with the spatial distribution of agricultural activity.

1.7 Conclusion

In this paper I combine a global high-resolution satellite-derived dataset on
nightlights with climate reanalysis data and additional geographical datasets
to examine how day-to-day, seasonal, and interannual temperature variabil-
ity a�ect economic activity. I use a spatial �rst-di�erences research design
(Druckenmiller and Hsiang, 2018), which reduces potential omitted variable
biases and multicollinearity of climate and geographical variables. This al-
lows me to study how temperature variability at di�erent time scales in�u-
ences aggregate economic activity. Furthermore, compared to previous work
on the short-run e�ect of annual weather �uctuations (Burke et al., 2015a;
Dell et al., 2012), I focus on the long-run e�ects of climate including the po-
tential e�ect of adaptation (Waldinger, 2022). Compared to previous work
on the long-run e�ect of climate (Nordhaus, 2006; Mendelsohn and Massetti,
2017), I use a recently developed econometric framework which allows for a
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more plausible identi�cation of causal e�ects.

This approach allows me to identify the total e�ect of temperature vari-
ability including possibly non-linear e�ects of daily temperature levels (ex
post e�ects) and larger uncertainty (ex ante e�ects). Evidence from micro-
econometric studies suggest this total e�ect to be predominantly negative.
Furthermore, I expect these e�ects to be more negative for variability at
larger time scale due to more di�cult learning about variability and to be
more negative for variability that is less predictable. Because of the underly-
ing physical processes of climate day-to-day and interannual variability are
less predictable than seasonal variability.

I �nd a statistically signi�cantly negative e�ect of day-to-day variability
on economic activity across the range of observed annual mean temper-
atures. On average, one additional degree Celsius of the average within-
month standard deviation of daily temperature levels reduces economic ac-
tivity by about 11 log points (approximately 11 percent). Regarding seasonal
variability, I also �nd a negative but smaller and less signi�cant e�ect on
economic activity. On average, one degree Celsius of the average within-
year range of monthly mean temperatures reduces nightlights by about 0.6
percent. My results on interannual variability suggest that it has a positive
e�ect at low temperature levels (about 19 percent per degree Celsius of the
between-year standard deviation of annual mean temperatures) and a nega-
tive e�ect at high temperature levels (about 28 percent per degree Celsius).

While I am to my knowledge the �rst to empirically analyse the e�ect of sea-
sonal and interannual variability on aggregate economic activity, the results
align with previous work �nding a negative short-term e�ect of day-to-day
variability on regional GDP (Kotz et al., 2021b) and existing literature report-
ing negative e�ects of temperature variability on agriculture (Wheeler et al.,
2000; Mendelsohn et al., 2007b) and health (Hovdahl, 2020). Furthermore,
consistent with previous �ndings (Burke et al., 2015b; Kalkuhl and Wenz,
2020), I �nd a positive marginal e�ect of annual mean temperature at rela-
tively low temperatures and a negative marginal e�ect at high temperatures,
with a globally optimum annual mean temperature of about 20 degrees Cel-
sius.

My methodology allows me to compare the estimated coe�cients of annual
mean temperature with the estimated e�ects of temperature variability. On
average, one sample standard deviation of seasonal and day-to-day variabil-
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ity reduces nightlights by 9 and 17 percent, respectively. If these e�ects are
benchmarked with the estimated e�ect of annual mean temperature, they
correspond to increases of annual mean temperature from 25 degree Celsius
to approximately 28 and 30 degrees Celsius, respectively.

I explore several explanations for my �ndings. Regarding my estimated ef-
fect of interannual variability I �nd one possible explanation consistent with
my results: Below the optimal temperature, the positive e�ect of unexpect-
edly warmer-than-average temperatures could be larger than the negative
e�ect of colder-than-average temperatures, whereas above the optimal tem-
perature, the negative e�ect of unexpectedly warmer-than-average temper-
atures could be relatively larger. This could be the case, for example, if re-
sponding to a colder-than-average year wa generally easier or less costly
than responding to a warmer-than-average year.

It is well known that nightlights are a better proxy for GDP per capita in
urban areas than in rural areas and to some extent also re�ect the local sec-
toral composition of the economy (Chen and Nordhaus, 2019; Gibson et al.,
2021). I therefore examine whether my results are primarily driven by urban
areas and whether my results can be explained by the spatial distribution
of agricultural activity. I �nd that the estimated e�ects of temperature vari-
ability are indeed strongest in urban areas, but can also be recovered from
less densely populated regions, including the least densely populated areas
within countries. Furthermore, my results are una�ected by controlling for
the spatial distribution of agricultural activity.

My results are robust to a variety of robustness tests. I also recover my
main results also for models that include no control variables and for models
for which all control variables are included with �exible functional forms.
Furthermore, my results pass a robustness test unique to the spatial �rst-
di�erences research design, namely comparing estimates obtained by us-
ing spatial di�erences in orthogonal geographical directions. Furthermore, I
conduct a sensitivity analysis which indicates that an omitted variable would
need to be more strongly associated with nightlights and temperature vari-
ability as any of my geographic and climate control variables to render the
estimated coe�cients of temperature variability insigni�cant. In an addi-
tional robustness test, I show that my results cannot be explained by reverse
causality.

My results suggest that more research should be devoted to temperature
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variability. Several avenues could be pursued. For example, temperature
variability might have in�uenced the initial spatial allocation of economic
activity but could also have shaped subsequent local economic development
including sectoral specialisation (Emerick, 2018; Henderson et al., 2017) and
migration (Cattaneo and Peri, 2016). My methodology does not allow me to
separate these two e�ects as nightlights are available only for recent decades.
Furthermore, research is needed to investigate how the in�uence of tem-
perature variability changes as economies develop, and to examine speci�c
mechanisms in more detail.

Further research seems especially important given that climate models
project changes to the seasonal cycle (Dwyer et al., 2012) and interannual
temperature variability (Bathiany et al., 2018). Also day-to-day temperature
variability seems to be in�uenced by anthropogenic climate change (Kotz
et al., 2021a; Wan et al., 2021). Given the geographical patterns of these trends
and projections, my results suggest that future increases of day-to-day, sea-
sonal, and interannual temperature variability might add to the economic
costs of climate change especially in currently relatively warm regions. I
thus conclude that temperature variability at di�erent time scales deserves
more attention in economics research to improve our understanding of its in-
�uence on human societies and to get better estimates of the expected costs
of future climate change and their geographical distribution.
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Chapter 2

Seasonal temperature variability
and economic cycles

In this paper, I examine to what extent seasonal temperature variability can
explain seasonal economic cycles. To this aim, I �rst construct a novel dataset
of seasonal temperature and seasonal GDP for a sample of 81 countries. This
dataset reveals a much larger diversity of seasonal economic cycles around the
world than previously reported. I then attribute these economic cycles to varia-
tion in temperature. For identi�cation, I propose and apply a novel econometric
approach that accounts for expectations and is based on seasonal di�erences.
The results suggest that seasonal temperature has a statistically signi�cant pos-
itive e�ect on seasonal GDP. The e�ect appears large, as seasonal temperature
can explain a substantial share of the variation in seasonal GDP. Using data on
GVA for di�erent industry groups I can attribute this e�ect to industries that
are relatively more exposed to ambient temperature. Furthermore, the results
suggest that economic development makes countries more resilient to temper-
ature �uctuations. Regarding future anthropogenic climate change, the results
suggest that changes to seasonal temperatures will lead to a reallocation of eco-
nomic activity from one season to another of up to several percentage points of
annual GDP, pointing to a channel through which climate change will a�ect
economic production that has so far been overlooked.
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2.1 Introduction

A large part of the variation of time-series of macroeconomic variables is
due to seasonality (Hylleberg et al., 1993). Understanding the causes of this
seasonality has been an active area of macroeconomic research. While it
has long been conjectured that some of the seasonality can be attributed to
weather, research has come to the conclusion that observed quarterly vari-
ation of Gross Domestic Product (GDP) can mostly be explained by recur-
ring shifts in preferences and technologies due to high consumption around
Christmas and mid-year vacations (Beaulieu et al., 1992; Barsky and Miron,
1989; Cubadda et al., 2002; Beaulieu and Miron, 1992; Braun, 1995; Chatter-
jee and Ravikumar, 1992; Miron and Beaulieu, 1996; Franses, 1996). Further-
more, it has been pointed out that an important role of temperature seems
to be in contradiction with similar economic cycles observed in countries in
di�erent hemispheres experiencing opposite seasons (Beaulieu et al., 1992).
However, these conclusions were based on small samples of mostly OECD
countries and little attention was paid to causal identi�cation and to attribu-
tion of observed �uctuations to fundamental rather than proximate drivers.
Given that anthropogenic climate change is projected to change seasonal
cycles of temperature (Dwyer et al., 2012), the role of temperature for �uc-
tuations of GDP appears to be an important question.

In this study, I empirically examine the in�uence of temperature on seasonal
economic cycles. To do so, I construct a new dataset covering the period
1981-2020 using a global dataset of quarterly GDP covering 81 countries, a
dataset on quarterly Gross Value Added (GVA) for 35 European economies,
and climate reanalysis. Using information on quarterly temperature, I de�ne
seasons in a consistent way across countries in di�erent hemispheres. For
causal identi�cation, I propose and apply a novel estimation strategy that
is based on variation across countries in the di�erences in temperature and
GDP between summer and winter.

I �rst use this novel dataset to identify stylised facts about quarterly �uc-
tuations of GDP around the world. Previous studies were based on fewer
economies mostly located in the Northern hemisphere and reported rela-
tively similar cycles across countries with a primary peak of production in
the fourth quarter and a trough in the �rst quarter. In contrast to these re-
sults, I �nd a large diversity of quarterly economic cycles. Of the 24 possible
quarterly patterns, 15 are observed by at least one country in the sample.
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Economic cycles also seem to systematically di�er between countries in the
Northern and in the Southern hemisphere. Next I aggregate quarterly pro-
duction to production in two seasons (Q1+Q4 and Q2+Q3), to which I refer
as summer and winter depending on which season tends to be warmer. I �nd
that production is larger in summer in 44 countries and larger in winter in
37 countries.

I next examine the contribution of temperature to these cycles and �nd that
seasonal di�erences in temperature between summer and winter have a sta-
tistically signi�cant positive association with seasonal di�erences in GDP.
The estimated coe�cient is robust to the inclusion of a variety of control
variables, including annual mean temperature and the level of GDP per
capita. The estimates are also robust to the choice between nominal and real
GDP and to changing the time period from 1991-2020 to 2011-2020. Further-
more, I �nd similar e�ects if I consider the warmest and coldest quarter as
summer and winter, respectively. Overall, the e�ect of temperature appears
large, similar in size to the average observed seasonal economic cycle.

These results could be explained by several mechanisms through which tem-
perature a�ects economic activity. I �rst use the global sample of countries
and explore the role of agriculture, tourism, and international trade. I do not
�nd evidence suggesting that any of these possible channels is important. I
next use data on GVA for di�erent industry groups for European economies
and �nd a statistically signi�cant e�ect of seasonal temperature on GVA only
for industries in which production is relatively exposed to ambient temper-
ature. At the level of industries, I can attribute this e�ect primarily to Con-
struction, Industry, and Manufacturing. The results hence appear consistent
with an e�ect of temperature on the supply side of the economy.

In the last part of the paper, I examine possible consequences of climate
change. To do so, I also estimate a long di�erences version of the seasonal dif-
ferences model. Despite the di�erent identifying assumptions, the results are
qualitatively and quantitatively similar to the results of the cross-sectional
seasonal di�erences estimation. Speci�cally, I �nd that between 1981-2000
and 2001-2020, seasonal GDP increased relatively more if one season warmed
more than the other season. This seems to be primarily due to a reallocation
of economic activity between the two seasons, as I do not �nd evidence that
seasonal warming had an e�ect on annual GDP.

I then combine my estimates with projections of seasonal temperature from
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climate models for alternative scenarios of future climate change. The results
suggest that changes to the seasonal temperature cycle will cause a realloca-
tion of economic activity across seasons of up to several percentage points
of annual GDP. The results indicate a lot of variation between countries in
terms of the projected reallocation. For a scenario of strong climate change
(RCP8.5), we �nd that on average seasonal economic cycles are projected
to increase. The magnitude of these e�ects is relatively uncertain, but cen-
tral estimates suggest that in some countries seasonal economic cycles are
projected to even double in size.

This paper contributes to prior work on seasonal economic cycles which
has so far explained them primarily with recurrent shifts of preferences
and technologies (Beaulieu et al., 1992; Barsky and Miron, 1989; Cubadda
et al., 2002; Beaulieu and Miron, 1992; Braun, 1995; Chatterjee and Raviku-
mar, 1992; Miron and Beaulieu, 1996; Franses, 1996; Lumsdaine and Prasad,
2003). In contrast to this prior work, I �nd that some of the previously iden-
ti�ed stylised facts can be observed only in about half of all countries be-
cause of large heterogeneity of seasonal economic cycles across countries.
Furthermore, I �nd that the average e�ect of seasonal temperature is of a
similar magnitude as the average seasonal economic cycle. This result does
not rule out that preference and technology shocks are important channels,
but points to the possibility that temperature is one fundamental driver of
those shifts.

This paper also contributes to previous work on the e�ect of temperature
on economic production. Previous work suggests a positive e�ect of annual
mean temperature on economic production in relatively cold (and rich) and
a negative e�ect in relatively warm (and poor) countries (Dell et al., 2012;
Burke et al., 2015a; Kalkuhl and Wenz, 2020). In this paper, I �nd evidence
for an overall positive e�ect of seasonal temperature on seasonal production
in countries with larger production in summer than in winter, but I also
explain how this estimated e�ect is conceptually di�erent from the e�ect of
annual temperature on annual GDP estimated in previous studies.

The paper is structured as follows. In the next Section, I present the theoreti-
cal framework, explain the identi�cation strategy, and describe the data used
in this study. In Section 3, I �rst present stylised facts of seasonal economic
cycles for my global sample of countries. I then discuss results obtained from
my econometric estimation, before showing stylised facts and econometric
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results for the data on industry groups for countries in Europe. Further-
more, I combine my empirical estimates with results from climate models to
quantify the order of magnitude of future possible seasonal reallocation of
economic production. Conclusions are drawn in Section 5.

2.2 Methods

2.2.1 Theoretical framework

Identifying the causal e�ect of temperature on economic production requires
an empirical framework that takes into account expectations. This is espe-
cially important for seasonal changes of temperature which are recurring
every year and thus likely to be anticipated. In essence, seasonal cycles of
temperature can be considered as a characteristic of the climate of a location,
rather than its weather. To illustrate the challenge of causal identi�cation in
the presence of expectations and to explain the solution proposed in this pa-
per, I start by formulating a simple conceptual model of economic production
Y as a function of climate C and other factors X. I follow Hsiang (2016) and
assume that climate in�uences production through two channels: through
the actually realised weather c and through beliefs about climate b:

Y (C,X) = Y [c(C), b(C),X] (2.1)

In this framework, both climate C and weather c are charaterised by meteo-
rological variables that describe the state of the atmosphere, such as temper-
ature, precipitation, and humidity. The di�erence between the two concepts
is that climate C refers to the (theoretical) probability distribution of these
variables, while weather c refers to the (empirical) frequency distribution of
their actually realised values. In other words, climate refers to the popula-
tion of possible events, whereas weather refers to a sample drawn from that
population. Weather can a�ect economic production directly for example
through e�ects of precipitation on agricultural output or e�ects of temper-
ature on the productivity of labour. Beliefs b are based on climate and a�ect
economic production through actions of economic agents that are in�uenced
by the expected future weather, such as the choice of production technology.

Climate and weather are speci�c to a location and a speci�c time period. Cli-
mate is typically de�ned for a period of 30 years, whereas weather is de�ned
for shorter periods (hours, days, maybe a year). The term climate is com-
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monly also used to refer to the statistics of weather of only certain parts of
a year. For the purpose of this paper I use the term seasonal climate to refer
to the climate of speci�c months. For example, seasonal climate can refer to
the average weather of the months January, February, and March in London
over the time period 1981-2010.

Given Equation 2.1 the marginal e�ect of (seasonal) climate on production
can be written as

)Y (C)
)C

=
K

∑
k=1

)Y (C)
)ck

dck
dC
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)Y (C)
)bn

dbn
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(2.2)

The (marginal) e�ect of climate on production can hence be considered as
the sum of direct e�ects (�rst term of Equation 2.2) and belief e�ects (the
second term of Equation 2.2). For simplicity, it is assumed here that agents
form their beliefs based on only climate and not weather.

2.2.2 Identi�cation strategy

The decomposition of the marginal e�ect of climate on economic production
into two channels has implications for its identi�cation in empirical research.
This identi�cation can generally be based on variation across time or across
units of observation. Depending on this choice, the two channels in Equa-
tion 2.2 will be captured to a greater or lesser extent by empirical estimates.
Generally, variation of output across units of observations includes both di-
rect and belief e�ects of climate, but cross-sectional estimates are prone to
omitted variable biases. Exploiting variation of temperature and output over
time at a frequency of days, months, or years removes possible biases of un-
observed time-invariant e�ects, but is unlikely to recover belief e�ects of
climate.

This trade-o� between a plausible identi�cation of causal e�ects of climate
and the credible identi�cation of both direct and beliefs e�ects of climate is
a thread throughout the climate econometrics literature (Hsiang, 2016). For
the purpose of this paper, I propose a new empirical strategy for navigating
this trade-o�. The strategy relies on temperature di�erences between two
seasons of the same year. It can be considered a hybrid approach, exploiting
variation across time and across units of observations for identi�cation. In
this respect, it resembles the long di�erences approach of panel data analysis
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(Hsiang, 2016). In mathematical terms, I propose to estimate an Equation:

Yi�1 − Yi�2 = �SD + (ci�1 − ci�2)�SD + (xi�1 − xi�2)SD + x̃i� + �i (2.3)

where seasonal weather over a time period of several years is indxed by �1
and �2, with a vector of time-varying controls x, and with a vector of season-
invariant controls x̃. The two seasons can be considered as any two time
periods within a year for which both temperature and production are ob-
served. In the empirical part of the paper, I distinguish two seasons summer
and winter and use two alternative ways of assigning the four quarters of a
year to these two seasons (Section 2.2.3).

Identi�cation of a causal e�ect of seasonal climate using Equation 2.3 relies
on a special form of the unit homogeneity assumption:

E[Yi�1 − Yi�2 |c�1 − c�2 , xi�1 − xi�2 , x̃i] = E[Yj�1 − Yj�2 |c�1 − c�2 , xj�1 − xj�2 , x̃j] (2.4)

or, using the greek letter Δ to denote seasonal di�erences,

E[ΔYi |Δc,Δxi , x̃i] = E[ΔYj |Δc,Δxj , x̃j] (2.5)

This assumption di�ers from the unit homogeneity assumption of a conven-
tional cross-sectional regression in that it does not require that the expected
levels of production are the same for two units of observation conditional
on the level of climate and on observables, but that expected seasonal dif-
ferences of production are the same for two units of observation conditional
on the same seasonal di�erences in climate and conditional on observables.
This means that the e�ect of any time-invariant variables that a�ect produc-
tion in both seasons in the same way, such as the level of education of the
workforce, cannot confound the estimated relationship.

Furthermore, the identi�cation of both direct and belief e�ects of di�erences
in the seasonal climate on di�erences in economic production relies on a
treatment comparability assumption

E[Yi |c�1] − E[Yi |c�2] = E[Yi |C�1] − E[Yi |C�2] (2.6)
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This assumption is more credibly satis�ed the longer the time period used
to characterise seasonal weather c.

While seasonal di�erences can be used to estimate the e�ect of any climate
variable, the focus of this paper is on temperature. Temperature di�erences
between summer and winter are primarily determined by the amplitude of
the annual cycle of the intensity of the Sun’s radiation at the surface and
are thus larger at higher latitudes. Seasonality is also larger on land than
over the oceans due to the smaller heat capacity of land surface materials
than water. For the same reason, seasonal temperature di�erences tend to
be larger in the East than in the West on large continents at mid-latitudes
(North-America, Eurasia) because the wind blowing from West to East leads
to more continental climate in the East.

Empirical work on the factors underlying seasonal economic cycles point
to a preference shift around Christmas and a technology shifts around July
and August due to vacations. To address omitted variable biases, I include
seasonal di�erences in rainfall and annual mean temperature as control vari-
ables in all regressions. This is important because geography a�ects climate
in several ways and previous work suggests that also annual mean temper-
ature and rainfall a�ect economic production.

To explore possible channels through which seasonal temperature cycles
might a�ect seasonal economic cycles, I examine the in�uence of GDP per
capita, the share of agriculture of GDP, import shares, export shares, and
international tourism expenses and receipts as a share of GDP. For each of
these variables, I �rst regress that variable on seasonal temperature di�er-
ences and then include it as a control variable in the main regression. Fur-
thermore, I examine the e�ect of temperature on GVA for 11 industry groups
for 35 European economies, which sheds further lights on the sensitivity of
speci�c sectors and possible underlying mechanisms.

In additional robustness tests whose results are shown in the Appendix, I
include additional control variables. Speci�cally, I use the share of the Chris-
tian population and the share of Muslim population as proxies of the con-
sumption boom around Christmas and to control for cultural di�erences (in-
cluding public holidays) across countries more broadly. Other controls are
the latitude of a country and the average real interest rate. Furthermore, I
check robustness to using either real or nominal quarterly GDP and to chang-
ing the time period from 1991-2020 to 2011-2020.

59



The seasonal di�erences approach proposed here resembles the long di�er-
ences approach because both can be considered hybrid approaches that use
variation over time and over space for identi�cation (Hsiang, 2016). The in-
terpretation of the obtained estimates is however di�erent. An important dif-
ference between the two is that the seasonal di�erence estimator allows one
to identify the e�ects of beliefs about di�erences between summer and win-
ter, whereas the long di�erences estimator accounts for beliefs about long-
term trends. In terms of the requirement of data, the seasonal di�erences
approach requires observations at sub-annual frequency (e.g. quarters or
months) of at least the treatment and the outcome variable, but it does not re-
quire observations going as far back in time as the long di�erences approach.
Furthermore, the seasonal di�erences approach bene�ts from a larger tem-
perature treatment at least in countries at higher latitudes for which temper-
ature di�erences between summer and winter exceed gradual temperature
trends by about one order of magnitude.

Estimates obtained from seasonal di�erences are potentially more prone to
omitted variable biases than results based on long di�erences and are less
indicative of the e�ects of future changes to the climate of one season or
to the annual climate. However, they cannot be biased due to confounding
long-term trends of unobservables that might a�ect long di�erence estima-
tion.

The two approaches are not necessarily exclusive. In the last part of the paper
I therefore combine the two approaches. This addresses some remaining
concerns about omitted variable biases. Furthermore, it is more likely that
the obtained estimates are indicative of the consequences of future climate
change. In mathematical terms, I estimate an Equation:

(Yi�B1 − Yi�B2 ) − (Yi�A1 − Yi�A2 ) = �LD + ((ci�B1 − ci�B2 ) − (ci�A1 − ci�A2 )) �LD
+ ((xi�B1 − xi�B2 ) − (xi�A1 − xi�A2 )) LD
+ ((x̃i,B − x̃i,A) �LD + �i (2.7)

where A and B index two time periods, an earlier and a later time period. For
example, in the main speci�cation in the results section, Yi�A1 is the average
of log GDP of country i in winter over the time period 1981-2000, while Yi�B1
is the same average over the period 2001-2020.
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In the remainder of this paper, I will denote seasonal di�erences by Δ and
long di�erences by ΔLD . With this notation, Equation 2.7 can be written as:

ΔLDΔYi = �LD + ΔLDΔci�LD
+ ΔLDΔxiLD
+ ΔLDx̃i�LD + �i (2.8)

This combined approach has the advantage that the estimate �LD cannot be
biased by any country characteristics that are either stationary or have par-
allel trends over time. This includes, for example, any geographical charac-
teristics of countries which a�ect both seasonal di�erences in temperature
and seasonal di�erences in GDP. Another advantage is that the estimates ob-
tained from long di�erences are based on changes of temperature and eco-
nomic production over time scales similar to those of anthropogenic climate
change.

2.2.3 Data

I use data on quarterly Gross Domestic Product (GDP) in USD provided by
the International Monetary Fund (IMF). The data cover 81 countries with dif-
ferent temporal coverage across countries. The data are provided in nominal
and real terms and the temporal coverage di�ers between the two products
for some countries. I restrict the data to the time period 1980-2020. The data
include at least 7 years of observations for every country (the �rst year in
which data are available for Honduras is 2014 and for the Maldives 2012;
for all other countries I have at least 10 years of data). In order to improve
the balance of the panel data and informed by the de�nition of climate as
an average over 30 years, I reduce the sample to the years 1991-2020 for the
main estimation. As reported in the Appendix, the results are robust to us-
ing data only for the years 2011-2020. I combine this economic data with
the climate reanalysis ERA5 provided by the European Center for Medium
Range Weather Forecast (ECMWF). I use monthly mean temperature levels
and monthly mean daily precipitation which I aggregate to quarterly fre-
quency. The data have a spatial resolution of 0.25 degrees (approximately
25 km at the Equator) which I aggregate to the level of countries using grid-
cell population from the Gridded Population of the World (GPW) dataset as
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weights.

I also use data on quarterly Gross Value Added (GVA) for 11 industry groups
provided by EUROSTAT. The data cover 35 countries in Europe. The data
cover again di�erent time periods across countries, with all countries re-
porting for at least 10 years (since 2009).

To identify seasonal patterns in the time-series, I �rst detrend the data. This
also means that di�erences between nominal and real GDP are restricted
to changes of prices between the seasons. In robustness tests shown in the
Appendix, I �nd that the results are robust to using either of the two. For de-
trending I use a Hodrick-Prescott Filter with � = 50. This �lter has received
criticism regarding its use in timeseries econometrics (Hamilton, 2018), but
these issues are of minor concern here because the �lter is only used to sub-
tract a gradual trend. The detrended data are then averaged over time and
identi�cation is obtained from cross-sectional variation. After applying the
�lter and removing deterministic trends, I add the mean value of the last
year in the time-series. The process is illustrated for time-series of the USA
in Figure 2.1.

Figure 2.1: Time-series of quarterly real production for the USA before (left)
and after detrending (right).
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The identi�cation strategy requires to de�ne two seasons consistently across
locations. The seasonal cycle of temperature is due to the tilt of the Earth’s
rotation axis and driven by the movement of the Earth around the Sun. From
an Earth-centric perspective, the seasonal cycle of temperature arises from
a perpetual oscillation between the time period with the maximum and the
time period with the minimum of the amount of Solar radiation received at
the top of the atmosphere. Except for locations close to the Equator, where
variation in the distance between Earth and Sun dominates the oscillation
of received Solar radiation, the time periods of minimum and maximum ir-
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radiation are around mid of December and mid of June respectively in the
Northern hemisphere. In the Southern hemisphere, the pattern is the oppo-
site.

For data with quarterly frequency a natural choice is thus to aggregate quar-
terly data to two time periods summer and winter. For a country in the
Northern hemisphere the quarters 2 and 3 (months 4-9) can generally be con-
sidered as summer (�j , j ∈ {1, 2}) and the quarters 1 and 4 (months 1-3 and
10-12, respectively) as winter (�3−j). For countries not too close to the Equa-
tor, winter and summer de�ned this way will result in warmer and colder
six months periods, respectively. Countries close to the Equator can experi-
ence more complex seasonal cycles with several peaks and troughs over the
course of a year. For the empirical part of the paper I thus aggregate the four
quarters to two seasons and then categorise the two six months periods as
summer (S) and winter (W) for every country based on their average temper-
ature. This ensures that the period referred to as summer is everywhere the
warmer of the two six months periods of the year. I then use this assignment
of the four quarters of a year to summer and winter to sum the detrended
quarterly GDP for every country to seasonal GDP, that is GDP in summer
and GDP in winter (illustrated for the USA and Brazil in Figure B.11 in the
Appendix).

This de�nition of seasons has the advantage that economic production in
all four quarters of the year is taken into account. An alternative choice
is considering the warmest quarter as summer and the coldest quarter as
winter. Results obtained with this de�nition of seasons are very similar and
shown as a robustness check in the Appendix.

The magnitude of the seasonal cycle, de�ned as the di�erence between GDP
in summer and winter divided by the annual GDP, is shown in Figure 2.2.
The map reveals some geographical heterogeneity but no apparent pattern
associated with latitude.

For control variables I use several sources. Data on GDP per capita, land area,
and the share of agriculture and manufacturing are taken from the World De-
velopment Indicator database of the World Bank. For data on trade, tourism,
and interest rate I use the TC360 database of the World Bank. Information
on religion is obtained from the Pew Research Center.

Projections of future climate change are taken from the CMIP6 ensemble as
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Figure 2.2: Size of the seasonal economic cycle (di�erence between produc-
tion in the summer half-year and in the winter half-year) as percentage of
annual GDP.

provided by the ECMWF. The model MPI-ESM1.2 is chosen as previous stud-
ies have shown relatively small biases for historical seasonal temperatures
(Xu et al., 2021). Reassuringly, results for Europe also suggest that future
warming of seasonal mean temperatures is robust across the model ensem-
ble (Carvalho et al., 2021). I download monthly mean values for the historical
period 1990-2014 and for the future periods 2041-2070 and 2071-2100. The
monthly means are then used to calculate seasonal means. The seasons are
de�ned as for the empirical analysis described above.

The analysis of future projections is based on future changes instead of future
absolute values. This has the advantage that no bias correction is required,
as future changes are calculated from simulations of past and future climate
with the same climate model. This approach is also referred to as the delta
method and very common in climate impact research. To calculate future
changes I �rst compute mean values for both periods, 2041-2070 and 2071-
2100, and then subtract the mean value of the historical period 1990-2014.
All variables are aggregated from grid cells to the country level using the
same population weights as for the ERA5 reanalysis data.

Descriptive statistics are shown in Table 2.1.
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Table 2.1: Descriptive statistics.
Variable Unit Mean Std. Min. Max. No. obs.
Δ log GDP USD 2010 -0.005 0.03 -0.17 0.04 81
Δ T deg. C -8.832 4.94 -18.75 -0.04 81
Δ P mm day-1 -0.020 0.05 -0.18 0.10 81
ΔLD Δ log GDP, 2001-2020 minus 1981-2000 deg. C -0.004 0.02 -0.05 0.03 60
ΔLD Δ T, 2001-2020 minus 1981-2000 deg. C -0.074 0.39 -1.30 1.05 60
Annual mean temperature deg. C 15.394 6.74 4.11 27.87 81
Change in Δ T for RCP4.5, 2041-2070 minus 1990-2014 deg. C 0.058 0.33 -0.98 0.69 81
Change in Δ T for RCP4.5, 2071-2100 minus 1990-2014 deg. C 0.080 0.36 -0.78 0.91 81
Change in Δ T for RCP8.5, 2041-2070 minus 1990-2014 deg. C -0.082 0.37 -1.00 0.50 81
Change in Δ T for RCP8.5, 2071-2100 minus 1990-2014 deg. C -0.319 0.88 -2.25 1.30 81
Share of agriculture in GDP percent 6.131 5.88 0.07 33.54 81
Share of exports of GDP percent 44.203 32.43 11.13 187.44 81
Share of imports of GDP percent 46.342 28.79 12.44 165.54 81
Share of tourism receipts of GDP percent 12.269 12.07 0.40 62.81 81
Share of tourism expenditures of GDP percent 6.571 3.68 1.07 25.50 81
Real interest rate percent 5.914 6.61 -21.13 41.14 77
Share of Christian population percent 62.823 33.08 0.17 100.00 81
Share of Muslim population percent 14.330 27.63 0.01 98.05 81
log GDP per capita USD 2010 9.805 0.83 7.34 11.65 81
Land area 1E6 km2 11.735 2.28 5.77 16.61 81
Latitude degrees 28.449 27.72 -41.00 65.00 81

Notes: Δ denotes seasonal di�erences, calculated as winter (W) minus summer (S). ΔLD
denotes long di�erences. Unless otherwise stated, statistics are based on averages over the
period 1991-2020 for years in which there is quarterly GDP data for a given country.
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2.3 Results

2.3.1 Stylised facts on seasonal economic cycles

Research over the last 35 years has mostly come to the conclusion that re-
curring shifts in preferences and technologies can explain most of the sea-
sonal variation of economic activity (Beaulieu et al., 1992; Barsky and Miron,
1989; Cubadda et al., 2002; Beaulieu and Miron, 1992; Braun, 1995; Chatterjee
and Ravikumar, 1992; Miron and Beaulieu, 1996; Franses, 1996). These shifts
have been explained especially with high consumption during Christmas and
vacations in June, July and August, leading to potentially very similar sea-
sonal economic cycles across countries and industries. These conclusions
were however based on small samples of countries, exclusively developed
economies, and mostly located in the Northern hemisphere.

I hence �rst identify stylised facts about seasonal cycles in my sample of 81
economies. For every country I �rst regress trend-adjusted quarterly pro-
duction on quarterly dummy variables. I then use the estimated coe�cients
of the four dummy variables to identify the pattern of the seasonal cycle.
I distinguish 24 possible patterns. For example, the �rst of the 24 patterns
corresponds to production tending to be largest in the �rst quarter, followed
by the second, third, and fourth quarter.

Furthermore, to account for opposite seasonal cycles of temperature, I split
the sample into countries located in the Northern hemisphere (NH) and
countries in the Southern hemisphere (SH). To do so, I compare the aver-
age temperature of the months 10-12 and 1-3 with the average temperature
of the months 4-9. A country is then assigned to the Northern Hemisphere
if the months 4-9 are warmer than the months 10-12 and 1-3.

Overall, seasonal economic cycles around the world appear quite diverse,
with 15 of the 24 possible patterns being exhibited by at least one country.
The most common pattern in the sample (22 of 81 countries) is a peak of pro-
duction in the fourth quarter, followed by the third, second, and �rst quarter
(Figure 2.3). The second most frequent pattern (11 countries) is a peak in the
third quarter, followed by the fourth, second, and �rst quarter.

This new evidence on quarterly cycles also reveals that some stylised facts
identi�ed by previous work are not as widespread as that work might sug-
gest. One of these facts is a peak of production in the fourth quarter, possibly
due to consumption boom around Christmas (Beaulieu and Miron, 1992). I
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Figure 2.3: Frequency of patterns of quarterly economic production.
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Notes: The �gure shows the frequency of the 24 possible patterns of quarterly economic pro-
duction among the countries in the sample. Every row corresponds to one pattern, which
is shown with the blue bars on the left. The number in each cell is the number of coun-
tries that exhibit the corresponding pattern. Columns correspond to di�erent samples of
countries: full sample, countries in the Northern hemisphere, countries in the Southern
hemisphere, and countries in Europe. Colors indicate relative frequency based on the size
of the corresponding sample.
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�nd that this is primarily a phenomenon of countries in the Northern hemi-
sphere (Figure 2.4). In the full sample, about 64 % of countries (52 out of 81
countries) have the maximum production in the fourth quarter. These rep-
resent 67% of countries (45 of 67 countries) in the Northern hemisphere and
50% of countries (7 of 14 countries) in the Southern hemisphere.

Figure 2.4: Stylised facts identi�ed in previous studies. Relative frequencies
shown in percentages for di�erent groups of countries.
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a) Global peak in Q4
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b) Local trough in Q1
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c) Local trough in Q2 or Q3

Another stylised fact reported previously is a trough of production in the
�rst quarter of the year, possibly due to reorganisation of production and
generally economic activities at the beginning of the calendar year that result
in less measurable economic output. Again I �nd that this can be found in
countries in the Northern hemisphere (72% of countries) more frequently
than among countries in the Southern hemisphere (43% of countries), but
also that this fact is even in the Northern hemisphere only exhibited by about
two thirds of all countries.

A third stylised fact reported previously is a slowdown of economic activ-
ity around June, July, and August, possibly due to school holidays in many
countries and mid-year vacations. Such a local minimum of production in
either the second or the third quarter can be found in 49% of countries in the
Northern hemisphere and in 57% in the Southern hemisphere.
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In sum, all three stylised facts about seasonal economic cycles seem to be
found in only slightly more than half of all countries. Furthermore, two of
these facts seem to be more frequently observed in the Northern hemisphere.
One of these two, the peak of economic production in the fourth quarter, has
been used to question the in�uence of temperature on seasonal economic
cycles as countries in both hemispheres appeared to exhibit this feature in
small earlier samples (Beaulieu and Miron, 1992). In contrast, the evidence of
my larger sample suggests substantial di�erences between countries in the
two hemispheres.

To reduce the dimensionality of the analysis and prepare the data for a model
estimation based on seasonal di�erences, I next sum trend-adjusted produc-
tion of the quarters 1 and 4 and 2 and 3 to semi-annual production. Based on
the assignment of countries to the SH or NH, I refer to the quarters 1 and 4
as winter (summer) and to the quarters 2 and 3 as summer (winter) respec-
tively. I refer to countries with larger production in summer as summer-peak
countries and to all other countries as winter-peak countries.

In the full sample, summer-peak countries are slightly more frequent than
winter-peak countries (54%, or 44 of 81 countries) (Figure 2.5). In the North-
ern hemisphere, the share of winter-peak countries is slightly larger (58%,
or 39 of 67 countries). In the Southern hemisphere, countries tend to have
larger production in winter than in summer (64%, or 9 of 14 countries).

Relating these �ndings to the cycles at quarterly frequency, in the North-
ern hemisphere the smaller production in winter than in summer can partly
be explained with the small production in the �rst quarter, which seems to
dominate the large production in the fourth quarter and the small produc-
tion in the third or second quarter. In the Southern hemisphere, the relatively
small production in summer is in line with only few countries exhibiting a
peak in the fourth quarter and most countries exhibiting a local minimum of
production in the second or third quarter.

Overall, countries in the Northern hemisphere thus tend to have larger pro-
duction in winter than in summer. The fact that production in winter tends
to be the sum of the quarter with the maximum production and the quarter
with the minimum production suggests to examine the e�ect of temperature
not only at semi-annual but also at quarterly frequency.

The geographical distribution of summer-peak and winter-peak countries
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Figure 2.5: Frequency of patterns of economic production in summer and
winter.
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Notes: The �gure shows the frequency of the 2 possible patterns of semi-annual economic
production among the countries in the sample. Every row corresponds to one pattern, which
is shown with the blue bars on the left. The number in each cell is the number of coun-
tries that exhibit the corresponding pattern. Columns correspond to di�erent samples: full
sample, countries in the Northern hemisphere, countries in the Southern hemisphere, and
countries in Europe. Colors indicate relative frequency based on the size of the correspond-
ing sample.
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suggests some geographical clustering (Figure 2.6). For example, most coun-
tries in Northern and Western Europe are winter-peak countries, while most
countries in Eastern Europe and the Middle East are summer-peak countries.
In the Southern hemisphere, winter-peak countries are more common than
summer-peak countries. There is however no clear e�ect of absolute lati-
tude, with winter-peak countries being relatively frequent at relatively high
and at low latitudes.

Figure 2.6: Geographical distribution of winter-peak (W) and summer-peak
(S) countries.

I examine the balance of the two subsamples also more formally using sta-
tistical tests (Table B.21 in the Appendix). I �nd that winter-peak countries
tend to have a smaller (less positive) temperature di�erence between sum-
mer and winter (p < 0.05). They also tend to be richer (p < 0.05) and have
a smaller share of tourism receipts of GDP (p < 0.05). I further quantify the
contribution of di�erent factors to the observed economic cycle, including
the role of temperature, in the next Section.

2.3.2 The contribution of seasonal temperature variability

In order to examine the contribution of temperature to seasonal economic
cycles, I regress seasonal di�erences in GDP on seasonal di�erences in tem-
perature (Equation 2.3) using the data on 81 countries illustrated in the previ-
ous section. I �nd a signi�cant positive association between temperature and
GDP (Column 1 in Table 2.2). This estimate is robust to including a variety
of control variables including seasonal di�erences in rainfall, annual mean
temperature, and GDP per capita (Column 2). The results are also robust to
including a large number of additional control variables, to using only data
from the years 2011-2020, and to using data on nominal or real quarterly GDP
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(Figure B.51 in the Appendix). The results are also qualitatively the same for
di�erences between the quarters with maximum and minimum temperature
(Table B.81). As expected, using di�erences between six-months periods in-
stead of quarters attenuates the estimated e�ect of temperature because in
many countries the quarter with the maximum and the quarter with the min-
imum GDP fall within the same six-months period.

I next study heterogeneity in the e�ect of seasonal temperature. Including
interaction terms in the model, I �nd that the e�ect of temperature is smaller
in countries with higher level of GDP capita and turns negative for countries
with a GDP per capita higher than about 36.000 USD (Column 3). I do not
�nd evidence that other control variables in the model moderate the e�ect
of seasonal temperature (Column 5).

Table 2.2: Results of regressions using a global sample of GDP of 81 countries.
Dependent variable: Δ log GDP

Column: 1 2 3 4
ΔT 0.0018∗∗∗ 0.0014∗∗ 0.0105∗∗ 0.0135∗∗

(0.0004) (0.0007) (0.0050) (0.0062)
ΔT ⋅ log GDP pc -0.0010∗ -0.0009∗

(0.0005) (0.0005)
ΔT ⋅ Annual mean temperature -0.0000

(0.0001)
ΔT ⋅ log Landarea -0.0003

(0.0002)
Δ Precipitation -0.1817∗∗ -0.1787∗∗ -0.1802∗

(0.0849) (0.0835) (0.0906)
Annual mean temperature 0.0004 0.0005 0.0004

(0.0005) (0.0004) (0.0010)
log GDP pc 0.0107∗∗∗ 0.0031 0.0029

(0.0036) (0.0058) (0.0053)
log Landarea 0.0024∗∗ 0.0020∗ -0.0000

(0.0010) (0.0011) (0.0018)
R2 0.10 0.34 0.36 0.37
R2 adj. 0.09 0.29 0.30 0.30
N 81 81 81 81
Notes: Sample period is 1991-2020. Seasonal di�erences Δ calculated as winter minus sum-
mer. Signi�cance as follows: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The magnitude of the estimated e�ect of temperature is large. The sample
mean of the seasonal di�erence in temperatures of about 8.8 degree Celsius
(Table 2.1) is associated with a seasonal di�erence in GDP of about 1.2 per-
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cent. This e�ect is of the same order of magnitude as the sample mean of the
seasonal di�erence in GDP, which is about 0.5 percent (Table 2.1). The e�ect
seems not to be driven by outliers and there is no apparent di�erence in the
magnitude of the e�ect between countries in the Northern and in the South-
ern hemisphere (Figure B.31 in the Appendix). Temperature thus appears to
be an important factor contributing to the larger production in summer than
in winter that is observed in many countries (Figure 2.6).

To study possible mechanisms, I examine the role of agriculture, interna-
tional trade, GDP per capita, and tourism. I �rst regress variables such as the
share of agriculture of GDP, import shares, GDP per capita, and the share of
international tourism expenses of GDP on the seasonal di�erence on temper-
ature. I do not �nd and signi�cant associations (Table B.41 in the Appendix).
This suggests that these sectors are not the primary channels through wich
seasonal temperature cycles a�ect economies. As an additional test, I also
include those variables as additional explanatory variables in my main spec-
i�cation (as possibly “bad controls”) and �nd that my main estimates barely
change (Figure B.51 in the Appendix). In sum, the results suggest that other
channels are primarily responsible for the estimated e�ect.

2.3.3 E�ects by industry groups for European economies

The results in the previous section suggest that temperature has a positive
e�ect on production in some countries and no e�ect or a negative e�ect in
others. In this section, I explore to what extent this �nding can be explained
by di�erences in sectoral composition. To this aim, I use data on gross value
added (GVA) by industry group for 35 countries in Europe. Focusing on Eu-
rope has the advantage that reporting quality is probably more homogeneous
across countries than for the global sample and that also the climate and
especially seasonal temperature cycles are more similar. Furthermore, EU-
ROSTAT provides to my knowledge the most comprehensive homogeneous
database of quarterly production by industry group.

Reassuringly, I �nd a similar signi�cantly positive e�ect of seasonal tem-
perature on seasonal GDP as for the global sample, with about twice the
magnitude. I next estimate the seasonal di�erences model in Equation 2.3
for each of the industry groups. I follow previous literature and group in-
dustries according to whether labour is relatively more or less exposed to
outdoor temperature (Behrer and Park, 2019; Acevedo et al., 2020). I accord-
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ingly classify agriculture, construction, manufacturing, and other industries
as relatively exposed. I �nd a signi�cantly positive e�ect of seasonal dif-
ferences in temperature on seasonal di�erences in GVA for total GVA and
for GVA in exposed industries. For all other, non-exposed industries I �nd
an insigni�cantly positive e�ect (Table 2.3). I conduct the same exercise at
the level of individual industries and �nd that the positive coe�cients for all
exposed industries can be explained primarily with positive coe�cients for
Construction and other Industry, and possibly also Manufacturing, but not
Agriculture (Table B.61 in the Appendix).

Table 2.3: Results of regressions using a sample of GVA by industry groups
of 35 European economies.

Dependent variable: Δ log GDP

Industries: All Exposed Non-Exposed
Column: 1 2 3
ΔT 0.0037∗∗ 0.0071∗∗ 0.0014

(0.0018) (0.0033) (0.0016)
Δ Precipitation -0.0807 -0.3897 0.1322

(0.1565) (0.3410) (0.1485)
Annual mean temperature -0.0022∗ 0.0001 -0.0027∗∗

(0.0012) (0.0024) (0.0011)
log GDP pc 0.0179∗ 0.0339∗ 0.0082

(0.0088) (0.0175) (0.0075)
log Landarea 0.0052∗∗∗ 0.0078∗∗ 0.0040∗∗∗

(0.0016) (0.0029) (0.0014)
R2 0.54 0.49 0.32
R2 adj. 0.46 0.40 0.21
N 35 35 35

Notes: Seasonal di�erences Δ calculated as winter minus summer. Exposed industries:
Agriculture, Construction, Manufacturing, other Industry. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p <
0.01.

In sum, the results suggest that exposure to ambient temperature in eco-
nomic production is an important moderator, pointing to e�ects of temper-
ature on the supply side of economies as a possible mechanisms.

2.3.4 Results from long di�erences

These results obtained from seasonal di�erences estimation are based on
cross-sectional variation in seasonal di�erences and therefore have two
caveats. The �rst is that there is still a risk of omitted variable biases from
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omitted but important country characteristics. These could include geo-
graphical characteristics that in�uence both seasonal temperature variability
and seasonal economic cycles. The second caveat is that the results are not
necessarily indicative of the e�ects of changes over time to seasonal temper-
ature variability in a speci�c country, as discussed in Section 5.2.

To overcome these limitations, I also estimate a model based on long dif-
ferences of seasonal di�erences. Because of limited data availability at the
quarterly frequency, I use the two time periods 1981-2000 and 2001-2020.
This reduces the sample to 60 countries for which GDP data from the ear-
lier period are available. For all these countries, both winters and summers
became warmer between the two time periods. In about half of all countries
winters warmed more strongly than summers (Figure B.91 in the Appendix).

The results are qualitatively similar to the results obtained from cross-
sectional variation in seasonal di�erences (Table 2.4). Speci�cally, I �nd that
seasonal temperature has a positive e�ect on seasonal GDP which becomes
smaller and even negative for richer countries. The magnitude of the e�ect
is larger. Furthermore, as for the cross-sectional estimates, seasonal rainfall
has a negative e�ect on seasonal GDP. These results are robust to including
trends in annual mean temperature and annual total precipitation (Column
5) and similar for countries for which winters warmed more than summers
and countries with opposite trends (Column 6).

The magnitude of the e�ect estimated from long di�erences is larger than
the magnitude of the e�ect estimated from the cross-section 1991-2020. This
di�erence can primarily be explained with the di�erent samples that are used
in the two estimations due to a lack of data for the earlier period for some
countries (Table B.71 in the Appendix). Once the di�erences between the
two samples are taken into account, the coe�cients have a similar magni-
tude. For example, for a country with a GDP per capita of about 22,000 USD,
which corresponds to the mean value of the larger sample, the estimated co-
e�cients are 0.011 and 0.015 log points of GDP per degree Celsius based on
the cross-sectional and the long di�erences estimation respectively.
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Table 2.4: Results of regressions with long di�erences using a global sample of GDP of 60 countries.
Dependent variable: ΔLD Δ log GDP

Column: 1 2 3 4 5 6

ΔLDΔT 0.0059 0.0058 0.1053∗∗ 0.0821∗ 0.1075∗∗ 0.1177∗∗∗
(0.0065) (0.0063) (0.0405) (0.0469) (0.0440) (0.0421)

ΔLDΔT ⋅ log GDP pc -0.0105∗∗ -0.0091∗∗ -0.0106∗∗ -0.0121∗∗∗
(0.0040) (0.0043) (0.0043) (0.0042)

ΔLDΔT ⋅ Annual mean temperature 0.0009
(0.0008)

ΔLDΔT ⋅ (ΔLDΔT > 0) 0.0099
(0.0124)

ΔLDΔ Precipitation -0.1122∗∗∗ -0.1595∗∗∗ -0.1259∗∗∗ -0.1826∗∗∗ -0.1918∗∗∗
(0.0337) (0.0338) (0.0358) (0.0378) (0.0434)

Annual mean temperature 0.0006∗∗
(0.0003)

log GDP pc 0.0088∗∗∗ 0.0100∗∗∗ 0.0105∗∗∗ 0.0109∗∗∗
(0.0024) (0.0021) (0.0026) (0.0026)

ΔLD Annual mean temperature -0.0094 -0.0087
(0.0065) (0.0066)

ΔLD Precipitation 0.1148 0.0822
(0.1645) (0.1675)

(ΔLDΔT > 0) 0.0009
(0.0048)

R2 0.02 0.13 0.36 0.41 0.39 0.40
R2 adj. 0.00 0.10 0.32 0.35 0.32 0.30
N 60 60 60 60 60 60

Notes: Long di�erences ΔLD calculated by subtracting mean over 1981-2000 from mean
over 2001-2020. Seasonal di�erencesΔ calculated as winter minus summer. For the purpose
of the analysis, annual mean temperature and log GDP per capita (the 5th and 6th variable
in this table, respectively) are considered as time-invariant variables. Their average values
over 1991-2020 are included as a moderator variable in the same way as in the cross-
sectional regression (Table 2.2). Signi�cance as follows: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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These results suggest that if one season warmed more than another between
1981-2000 and 2001-2020, it also witnessed a relatively stronger growth in
GDP. In additional analysis, I do not �nd evidence for signi�cant e�ects of
changes in seasonal temperatures on changes in annual GDP (Table 2.4 in
the Appendix), suggesting that the results in Table 2.4 are primarily driven
by a reallocation of economic activity between summer and winter and not
due to temperature increasing or decreasing economic production in only
one of the two seasons.

2.3.5 Scenarios of future climate change

These results suggest that economic production will be reallocated between
winter and summer if under future climate change one season warms more
strongly than the other. Such changes are indeed projected by global climate
models. In a few countries, winters are projected to warm more quickly
than summers because of reductions in snow cover in winter and acceler-
ated warming due to the snow-albedo feedback (Carvalho et al., 2021). In
most other countries outside the tropics, summers are projected to warm
more quickly than winters because of increased dryness in summer and thus
less surface humidity that can reduce the projected warming through latent
heat transfer (Byrne, 2021). The following analysis aims to quantify the ap-
proximate order of magnitude of possible reallocations of economic acitivity
across the seasons due to these changes.

To this aim, I combine climate model projections with the empirically es-
timated e�ect of seasonal di�erences in temperature on seasonal economic
production from the long di�erence estimation with interaction term (Col-
umn 5 in Table 2.4). I �rst focus on the RCP8.5 scenario and the time period
2071-2100. I �nd that for some countries, production will shift more towards
summer and for other countries towards winter (Figure 2.7). The magnitude
of the projected changes varies greatly among countries, depending on their
GDP per capita levels and projected changes to seasonal temperatures, and
can be up to several percentage points of annual GDP large.

Reallocation of economic production between the seasons can increase or
decrease seasonal economic cycles. For the RCP8.5 scenario, more countries
experience a reallocation towards summer than towards winter, and the ef-
fect is particularly large, with a long tail, for countries that have their peak
of production in summer (Figure 2.7 and Figure B.121 in the Appendix). On
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Figure 2.7: Projections of Δ GDP by country for the global sample.
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Notes: The plot shows the projected changes ofΔ log GDP for individual countries for the RCP8.5
scenario based on the results from the long di�erence estimation. Seasonal di�erences Δ calcu-
lated as winter minus summer. Positive values mean that for the given scenario GDP will be
reallocated from summer to winter.

average, sasonal economic cycles are projected to increase, This average ef-
fect masks however substantial heterogeneity across countries (Figure 2.7
and Figure B.131 in the Appendix). These results are for the far future and a
scenario of strong climate change (RCP8.5). The projected changes are qual-
itatively similar for an earlier period (2041-2070) and an alternative scenario
(RCP4.5) (Figure B.121 in the Appendix).

2.4 Conclusion

In this paper I study the e�ect of seasonal temperature on seasonal economic
production. For causal identi�cation I propose a novel econometric approach
using variation of di�erences between seasons across countries. This sea-
sonal di�erences estimator is applied to a global sample of 81 countries us-
ing quarterly data on GDP and climate reanalysis. The results suggest that
di�erences in temperature between summer and winter can explain a major
part of the observed di�erences in GDP between summer and winter. This
�nding is in contrast to previous work which concluded that temperature
plays at most a minor role for seasonal cycles of GDP. This discrepancy can
partly be explained with limited evidence available at the time of earlier stud-
ies, inappropriate methods to infer causality that neglected expectations, and
possibly a focus on proximate (technology shocks, preference shocks) rather
than fundamental drivers of economic �uctuations.
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The analysis also reveals a large diversity of seasonal economic cycles and
systematic di�erences between countries in the Northern and in the South-
ern hemisphere. Given that previous work focused on small subsets of coun-
tries, this global heterogeneity can potentially explain some of the di�er-
ences from earlier studies. Furthermore, I �nd that in the majority of coun-
tries economic activity is larger in summer than in winter. Somewhat con-
sistent with this �nding, my results suggest an overall positive association
between seasonal temperature and seasonal economic production.

This e�ect of seasonal temperature is both signi�cant and large. On aver-
age it is of the same magnitude as observed di�erences in seasonal GDP.
To address concerns about causal inference from cross-sectional variation, I
conduct extensive robustness tests with a wide range of control variables, in-
cluding seasonal di�erences in rainfall, annual mean temperature, GDP per
capita levels, religious composition, geographical size of a country, latitude,
and variables related to the sectoral composition of an economy, interna-
tional trade, and international tourism. The results are also robust to con-
sidering the quarter with maximum and minimum temperature as summer
and winter respectively and to shortening the time period to 2011-2020. Re-
garding possible mechanisms, results on the industry level for a subsample
of European countries points to an important role of industries that are rel-
atively exposed to ambient temperature, including Construction, Industry,
and Manufacturing.

Regarding future climate change, the results suggest that economic activity
will be reallocated between the seasons. However, the results do not allow
conclusions about the extent to which annual GDP will be a�ected by future
changes to annual mean temperature. That question has been the focus of
a large body of prior literature which tends to agree that an increase in an-
nual mean temperature has a negative e�ect on GDP in very warm countries
and a possibly positive e�ect in relatively cold countries (Dell et al. (2012);
Burke et al. (2015a); Acevedo Mejia et al. (2018); Colacito et al. (2019), among
others).

To quantify the possible seasonal reallocation of economic production under
future climate change, I combine empirical estimates obtained from a long
di�erences speci�cation of the model with the projections of climate models.
The results point to substantial future changes to seasonal economic cycles,
which are projected to more than double in some countries by 2071-2100
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for the scenario RCP8.5. For the time period 2041-2070 and for the scenario
RCP4.5, the results suggest a reallocation of economic production of up to
one percentage point of seasonal GDP.

The results overall suggest that temperature should be taken into account in
seasonal forecasts of economic production. While this is already the case in
some countries (see e.g. Bundesbank (2012, 2014)), the results point to an in-
�uence of weather on seasonal economic cycles across a wide range of socio-
economic and climatic contexts. Given that climate change will increase sea-
sonal economic cycles in some countries, the results also suggest a future
increase in demand for �scal, monetary, and structural policies that help to
smoothen quarterly �uctuations of production and employment. Further-
more, my results suggest that economic development can make economies
generally more resilient to the in�uence of seasonal temperature variability,
pointing to possible adaptation.

The quarterly GDP data used in this paper cover 81 countries around the
world representing all continents and a large range of socioeconomic con-
texts and climates. The analysis of heterogeneity suggests that the e�ect of
seasonal temperature on seasonal GDP decreases with the level of GDP per
capita of a country, but this pattern is based on relatively few economies
in Africa, demanding caution when extrapolating from the global sample to
other countries.

The results also point to a new avenue of macroeconomic research on the
fundamental drivers of �uctuations of GDP, employment, and prices ac-
counting for the deterministic and the stochastic part of temperature vari-
ability. The evidence presented here suggests that temperature a�ects pro-
duction through productivity shocks, but does not exclude that part of the
estimated e�ects is also due to seasonal shifts in preferences. Disentangling
the two with a structural model appears to be one promising research per-
spective. Furthermore, the analysis revealed that some countries have largest
production in winter and others in summer. Future research could examine
to what extent these opposite patterns can be explained with economic spe-
cialisation and trade.

Previous research has found negative e�ects of seasonal temperature vari-
ability on economic activity (Chapter 1). The results in this paper corrob-
orate an in�uence of seasonal temperature variability on economic produc-
tion. Furthermore, the results suggest that larger seasonal variability is asso-
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ciated with larger seasonal di�erences in GDP. While previous research has
found that �uctuations of GDP between years have a negative e�ect on GDP
(Ramey and Ramey, 1994), this possible mechanism has not been studied in
the context of quarterly or seasonal �uctuations and seems to deserve the
attention of future research. Given that future climate change is projected to
change seasonal temperature di�erences, this points to yet another channel
through which climate change will a�ect economic production in the future.
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Chapter 3

Some like it cold: The persistent
cost of higher temperatures in
the economic sectors of Europe

Prior econometric analyses of the global impact of temperature �uctuations on
aggregate economic performance (GDP) suggest that higher temperatures are
costly to warm countries but potentially bene�cial to cooler ones. However, ag-
gregate temperature-GDP relationships re�ect the net e�ect of temperature on
productivity in the constituent sectors of the economy and across di�erent spa-
tial scales, potentially masking the heterogeneous sectoral and local e�ects that
could inform e�cient adaptation policies. Focusing on Europe, we use admin-
istrative district level data on the growth rate of Gross-Value Added (GVA) to
estimate the impact of temperature �uctuations on GVA growth at the district
level and for individual industry groups. Unlike previous studies with a global
focus, for Europe we �nd persistently negative e�ects of warmer-than-average
years on total GVA in relatively cold districts (annual mean temperatures <
13 degrees C). At an annual mean temperature of 11 degrees Celsius, one addi-
tional degree lowers the growth rate of GVA in the same year by -0.37 percentage
points (SE = 0.2). Dis-aggregating by economic sector we �nd that the negative
aggregate impact in cold districts stems from costs to agriculture, manufactur-
ing, and mining and utilities. In relatively warm districts, the negative e�ect of
higher annual mean temperatures on GVA in trade and other services but it is
o�set by positive e�ects in other sectors. Finally, we �nd that productivity im-
pacts are also subject to spatial spillovers from neighbouring districts, re�ecting
how temperature e�ects dissipate through the regional economy.
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3.1 Introduction

Economic analysis on the e�ect of annual mean temperature �uctuations
on the economy suggests that high temperatures are negatively linked with
GDP growth (Burke et al., 2015b; Dell et al., 2012; Kalkuhl and Wenz, 2020).
These empirical studies point to a non-linear relationship between tempera-
ture and economic performance, whereby aggregate impacts on growth be-
come more severe in regions with higher average temperatures. These ag-
gregate e�ects are relatively similar across countries, and also re�ect stud-
ies of certain individual economic behaviours and activities, such as crime
or arable agriculture (Burke et al., 2015b; Hsiang, 2010). However, aggre-
gate temperature-GDP relationships re�ect the net e�ect of temperature on
productivity in the constituent sectors of the economy and across di�erent
sub-national regions (Dingel et al., 2020), potentially masking the impor-
tant heterogeneous sectoral and local level e�ects that could inform e�cient
adaptation policies. Just as economic stabilisation policies are tailored to
the vulnerabilities of the di�erent sectors of the economy (Guellec, 2009),
policies geared towards adapting to, and decoupling economic activity from
climate change should also be informed by the vulnerabilities of speci�c sec-
tors in di�erent regions (Bowen and Hepburn, 2014; Hepburn et al., 2020).
Disentangling the pattern of economic costs, both spatially and across the
economy, can also inform e�orts to mitigate climate change by providing
more accurate measures of economic damages. A more detailed understand-
ing of the link between temperature and economic activity across di�erent
sectors and sub-national geographies: the economic geography of climate
change, is therefore required (Cruz and Rossi-Hansberg, 2021).

We provide the �rst comprehensive analysis of the pattern of temperature-
economy relationships for Europe using exhaustive national accounting data
on economic productivity at the sectoral and sub-national level, coupled
with granular weather data. More speci�cally, this study examines the ef-
fects of temperature �uctuations on economic growth across di�erent con-
stituent sectors of the economy at the European district level. Economic
performance is measured using Gross Value Added (GVA): Gross Domes-
tic Product (GDP at basic prices) minus intermediate consumption (inputs at
producer prices) and is strongly correlated with GDP. Unlike GDP, GVA data
are reported at the district and sectoral level in Europe, providing us with a
unique spatial coverage of economic activity dis-aggregated by sector. Our
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study overcomes several shortcomings of previous studies which have ei-
ther focused on individual sectors or activities, with no unifying national
accounting framework (Hsiang, 2010), or have been severely constrained in
the temperature - economy relationships that could be estimated due to lim-
itations to the climatic data (Colacito et al., 2019).

Our data on gross-value added comes from EUROSTAT and the OECD and
is provided at the level of nuts-3 administrative districts in Europe (nuts-2
for Turkey) and the tl-2 level of the OECD. Importantly, this data are avail-
able in aggregate and by industry. For information on temperature and pre-
cipitation, we use high-resolution reanalysis data, which are based on the
European Centre for Medium-Range Weather Forecasts (ECMWF) reanaly-
sis and spatially re�ned, using the model COSMO. The data have a resolu-
tion of about 6 km (Bollmeyer et al., 2015) and we aggregate it to admin-
istrative districts using gridded population data from the Gridded Popula-
tion of the World data set (Center For International Earth Science Informa-
tion Network-CIESIN-Columbia University, 2018). Overall, our �nal dataset
combines year-to-year �uctuations of annual mean and seasonal tempera-
tures with district-level annual total GVA, and GVA in six exhaustive in-
dustry groups and covers over 1000 individual districts across 31 European
countries between the years 1997 and 2020.

To identify the link between temperature and economic output, we use a
Fixed E�ects (FE) estimator which controls for unobservable characteristics
at the district-level and for each year. The temperature-economy relation-
ship for growth aggregate and industry-level GVA is estimated using a poly-
nomial functional form on mean average temperature. We prefer growth as
our outcome variable rather than GVA levels �rstly since it is a more useful
outcome variable for measuring changes in productivity, and secondly be-
cause di�erencing of the logarithm of GVA addresses concerns about non-
stationarity of the data series, which would otherwise invalidate our esti-
mates (Kalkuhl and Wenz, 2020; Burke and Emerick, 2016). To test for the
persistence of temperature shocks on aggregate and industry-level GVA we
also use lags of temperature and to test for seasonality of the temperature-
economy e�ect we interact the temperature variables with indicator vari-
ables for the seasons. Furthermore, we test for adaptation, using a degree
days model with polynomials within bins following Deryugina and Hsiang
(2017). Finally, we use lagged dependent variables to check for dynamic
growth e�ects, and spatial lags for temperature to evaluate whether regional
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temperature changes are transmitted to a particular district.

3.2 Methods

3.2.1 Econometric framework

We estimate �xed-e�ects models with the growth rate of gross-value added
(either total or for a speci�c industry; in this paper also referred to as eco-
nomic output) as dependent variable. As independent variables we use poly-
nomials of annual mean temperature, seasonal mean temperature, or degree-
days. The temporal frequency of our variables is years. This means that
we exploit exogenous �uctuations of temperature from year-to-year for the
identi�cation of causal e�ects of temperature on economic activity.

Our main model can be written as

log(yi,t) − log(yi,t−1) =
k

∑
j=1

�j (T i,t)
j + 1P i,t + 2 (P i,t)

2 + �i + �t + �i,t (3.1)

where observations are indexed by adminstrative districts i and years t , with
gross value added y (aggregate or for a speci�c industry group), annual mean
temperature T , annual total precipitation P , and district and time �xed e�ects
�i and �t respectively. We conduct robustness tests for which we also include
district-speci�c linear time trends and country-year �xed e�ects.

If the e�ect of temperature lowered economic output persistently, we would
expect to �nd signi�cant e�ects of temperature on economic growth with the
same sign also for lagged temperature. If temperature had only an instanta-
neous e�ect on output, we would expect to �nd e�ects of lagged temperature
with opposite sign. To examine the persistence of temperature e�ects, we es-
timate distributed lags models (Dell et al., 2012):

log(yi,t) − log(yi,t−1) =
s

∑
l=0

k

∑
j=1

�j (T i,t−l)
j + 1P i,t + 2 (P i,t)

2 +�i + �t + �i,t (3.2)

with lags up to the order s. We then compute cumulative e�ects by summing
over the coe�cients of the coe�cients of the individual lags. If temperature
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lowered output in the same year but had no persistent e�ect on economic
growth, we would expect a cumulative e�ect of zero.

To explore di�erences between seasons, we replace polynomials of annual
mean temperature by an interaction between the climatic annual mean tem-
perature and seasonal mean temperatures:

log(yi,t) − log(yi,t−1) =
k

∑
j=1

[�
DJF
j T i (T

DJF
i,t )

j
+ �MAMj T i (T

MAM
i,t )

j

] +

+
k

∑
j=1

[�
JJA
j T i (T

JJA
i,t )

j
+ �SONj T i (T

SON
i,t )

j

]

+ �T i +  DJFTDJF
i,t +  MAMTMAM

i,t +  JJAT JJA
i,t +  

SONT SON
i,t +

+ 1P i,t + 2 (P i,t)
2 + �i + �t + �i,t (3.3)

where e.g. TMAM
i,t is the seasonal mean temperature for the meteorological

spring (March, April, May) in district i and year t and T i is the mean tem-
perature (mean over all years) of district i.

To examine the e�ect of adaptation we follow Deryugina and Hsiang (2017)
and estimate degree day models with polynomial terms for every bin:

log(yi,t) − log(yi,t−1) = ∑
b

k

∑
j=1

�j,b (nb,i,t)j + 1P i,t + 2 (P i,t)
2 +�i + �t + �i,t (3.4)

where b indexes di�erent bins of daily temperatures and nb,i,t is the number
of days within bin b for district i in year t .

Spatial spillovers are examined with a model that includes a district i’s own
temperature and in addition the average temperature of other districts that
belong to the same region r(i) or the same country c(i), T r(i),t or T c(i),t , which
we also refer to as spatial lags. In mathematical terms, we estimate a model

log(yi,t)−log(yi,t−1) =
k

∑
j=1

�j (T i,t)
j+

k

∑
j=1

� rj (T r(i),t)
j+1P i,t+2 (P i,t)

2+�i+�t+�i,t

(3.5)
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To account for heteroskedasticity, serial autocorrelation, and spatial autocor-
relation of the error term, we cluster standard errors at the level of countries.
We also try clustering at the second adminstrative level and using Conley
HAC standard errors, but since these tend to yield smaller standard errors
we decide to choose the most conservative clustering method.

3.2.2 Data

We use data on gross-value added by industry from EUROSTAT and the
OECD. The data are provided at the level of nuts-3 administrative districts in
Europe (nuts-2 for Turkey) and the tl-2 level of the OECD. We complement
these data with data on population from the same sources. The data use the
NACE v2 industry classi�cation with a breakdown of total GVA into up to
11 industry groups (Table C.11 in the Appendix). Not all countries report
GVA for all of these groups. We further aggregate some of these industry
groups. Our choice of aggregation is informed by the individual considera-
tion of speci�c industries with a large share of economic activities occurring
outdoors and well known in�uences of weather (agriculture, construction)
and those with relatively large share of total GVA (manufacturing, industry,
trade). The use of GVA means that our data di�er conceptually from GDP
data used in related previous studies (Burke et al., 2015b; Kalkuhl and Wenz,
2020) in that GVA excludes intermediate consumption.

For data on temperature and precipitation we use high-resolution reanalysis
data. The data are based on reanalysis of the ECMWF, which was spatially
re�ned using the model COSMO. The data have a resolution of about 6 km
(Bollmeyer et al., 2015). We aggregate it to administrative districts using
gridded population data from the Gridded Population of the World dataset
in version 4 (Center For International Earth Science Information Network-
CIESIN-Columbia University, 2018). To improve the balance of our �nal
panel dataset, we drop spatial units with less than 5 observations in time.
Descriptive statistics are provided in Table C.12 in the Appendix.

3.3 Results

3.3.1 Main �ndings

Our baseline estimates show that aggregate GVA growth has an approxi-
mately quadratic relationship with temperature, with positive e�ects on eco-
nomic growth of very cold and very warm annual mean temperatures as evi-
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dent in Figure 3.1a, top. This overall convex relationship is constructed from
marginal e�ects estimated at di�erent levels of annual mean temperature,
whereby di�erent countries provide the support at di�erent ranges of an-
nual mean temperature. For example, support of average temperatures for
districts in Finland ranges from about -1 to about 9 degrees Celsius, while in
Greece the range is approximately from 10 to 20 degrees Celsius. Figure 3.1a,
bottom, shows how this temperature variation underpins the estimation of
the quadratic curve.

We also estimate a more �exible, binned model and present the results in
Figure 3.1a top, in black. In this model, the two tails of the temperature
distribution are examined independently of each other which is in contrast
to the polynomial model which pools all regions and hence cannot assess
whether it is the warm regions or the cold regions that are primarily respon-
sible for the positive quadratic shape of the curve. The results of the binned
model are reassuring in the sense that they support a positive parabola in
both the warm and cold tail of regions in Europe.

For ease of interpretation and to illustrate statistical signi�cance, the
marginal e�ects of temperature change are depicted in Figure A.2, which
plots the slope of the quadratic curve in Figure 3.1a. Overall, we �nd nega-
tive e�ects of warmer-than-average years on total economic output in cold
districts (annual mean temperatures < 13 degrees C). In particular, Figure
A.2a shows the instantaneous marginal e�ect as a dashed line, with the 95%
con�dence interval in blue. These marginal e�ects are signi�cant and nega-
tive until the regional average temperature is about 13C. Figure A.2b depicts
with a dashed line and green con�dence interval the marginal e�ects of a
model with lagged temperature variables for 6 periods. As evident from the
�gure, the cumulative negative e�ects are even more pronounced for cooler
areas (< 13C), and GVA is reduced in several consecutive years after an initial
temperature shock. More speci�cally, we �nd increasingly negative and sig-
ni�cant cumulative e�ects up to six-time periods into the future. Beyond six
time periods, the uncertainty of the point estimates substantially increases
and we are unable to reject the null hypothesis of zero e�ect.

In terms of magnitudes, these estimates are substantial. For example, at an
annual mean temperature of about 11 degrees Celsius, one additional degree
lowers the growth rate of GVA in the same year by -0.37 percentage points
(SE = 0.2) and by -1.8 percentage (SE = 0.5) points over six years. However,

88



Figure 3.1: Main estimate (quadratic model) and the underlying variation in
the data.

Notes: a. E�ect of annual mean temperature on subnational GVA per capita
for a sample of European countries (1997-2019). In brackets: number of obser-
vations. Dots indicate estimated coe�cients of a model with dummies for bins,
with bins based on deciles of the temperature distribution of the sample. Deciles
are denoted by dashed vertical lines. b. E�ect of annual mean temperature on
national GDP per capita for a global sample of countries (1950-2019) and a sam-
ple of European countries (1997-2019). Results are qualitatively similar if the
same time period is selected (Table C.31 in the Appendix).
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there is little evidence for any e�ect of higher annual mean temperature on
total economic output in warm districts (annual mean temperatures above
13 degrees Celsius). Importantly, these �ndings, that productivity is higher
if regions remain cold, is in contrast to previous work using global sam-
ples of countries (Burke et al., 2015b) and sub-national regions (Kalkuhl and
Wenz, 2020; Conte et al., 2020) which suggested that colder regions are likely
to economically bene�t from a warmer climate. Furthermore, we �nd little
evidence for the previously reported negative e�ect of higher annual mean
temperature on total economic output at annual mean temperatures above
13 degrees Celsius. As such, our analysis suggests that the appropriate geo-
graphical focus of policies designed to ameliorate the costs of climate change
in Europe, which are partly based on such prior studies and this general no-
tion, should focus more on colder regions.

Figure 3.2: Marginal e�ects of an increase in annual mean temperature ob-
tained with alternative model speci�cations, obtained from the sample of
European regions.

Notes: : a. Higher-order polynomials. b. Cumulative e�ect from a distributed
lags model with six lags.

3.3.2 The impact of temperature change on GVA across regions and
sectors

The above temperature-GDP relationship re�ect the net e�ect of tempera-
ture on aggregate productivity but is silent regarding the important hetero-
geneous e�ects that could inform e�cient climate policies. In this section,
we unpack these aggregate level impacts on GDP spatially and by the com-
ponent sectors of the economy. We start with the former, by combining
the estimated relationship between annual mean temperature and the an-
nual growth rate of GVA per capita with the distribution of annual mean
temperatures in Europe. This heterogeneity is shown on a map of the pre-
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dicted marginal e�ect by administrative districts in Figure 3.3. Overall posi-
tive marginal e�ects of higher-than-average temperatures are found in most
of Southern Europe up to a latitude of about 45 degrees North. Further North,
we �nd mostly negative marginal e�ects, especially further away from the
Atlantic coast and at higher altitudes where annual mean temperatures tend
to be lower (see Appendix for further information on temperatures by region
in Figure C.11).

To further analyse the spatial heterogeneity in the temperature-economy re-
lationship, we also estimate our main model using only observations that fall
within certain bands of latitude and longitude. Reassuringly, we �nd similar
responses to higher-than-average temperatures in all three bands of longi-
tude, mirroring east to west the overall relationship in Figure A.2. Greater
heterogeneity in the response to warmer-than-average years is found across
di�erent bands of latitude. For regions north of 55 degrees latitude, which
includes Scotland, all Nordic countries, Latvia, and Estonia, we �nd large
and signi�cant negative marginal e�ects at low temperatures (around and
below 5 degrees Celsius) and positive e�ects at higher temperatures. We
�nd no signi�cant marginal e�ects in moderate latitudes. Further to the
South, speci�cally South of 45 degrees latitude, which includes Portugal,
Spain, Italy, Bulgaria, Romania, Greece, and Turkey, regions exhibit small
but signi�cant positive marginal e�ects around and below 10 degree Celsius
and negative e�ects at higher temperatures. Hence, the marginal e�ects that
we �nd for regions in Southern Europe are more closely mirror the e�ects
found for a global sample of countries.

We also analyse spatial spillover e�ects and �nd that temperature shocks to
neighbouring regions lower economic output similarly to shocks to a region
itself (Figure C.21 in the Appendix). We cannot disentangle whether the ini-
tial shock is transmitted along supply chains (Pankratz and Schiller, 2021),
via demand shocks, or the capital and labour market, but it suggests that in
sum negative spillover e�ects are larger than potentially positive spillover
e�ects associated with inter-regional competition, and other changes in de-
mand and supply. We note that these general and spatial equilibrium e�ects
are relevant also from a methodological point of view, as in their presence
country-by-year �xed e�ects will absorb some of the local e�ects of a tem-
perature shock.

We continue our heterogeneity analysis by examining the temperature-GDP
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Figure 3.3: Geographical distribution of estimated marginal e�ects of annual
mean temperature across Europe.

Notes: The map shows the marginal e�ect of a quadratic model �tted to the
whole sample of European regions. The panels 1-4 and a-c show marginal ef-
fects of quadratic models �tted to subsamples, with histograms showing the fre-
quency of temperature levels in these samples: 1-4. Estimated marginal e�ects
for bands of latitudes. a-c. Estimated marginal e�ects for bands of longitudes.
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relationships by sector. In particular, we study how yearly temperature �uc-
tuation a�ects GVA growth in six broad industrial sectors that together make
up total GVA: Agriculture, Construction, Manufacturing, Mining and Utili-
ties, Trade and Other Services. Figure 3.4 shows the resulting decomposi-
tion of marginal e�ects. We �nd that for �ve industry groups: Agriculture,
Construction, Manufacturing, Mining and Utilities, and Trade, warmer years
have a negative instantaneous e�ect on GVA at low temperature levels (i.e. 0
degrees Celsius) (Figure 3.4a1). These negative marginal e�ects are smaller
at moderate temperatures (10 degree Celsius) (Figure 3.4a2) and become in-
signi�cant at high temperatures (20 degree Celsius) (Figure 3.4a3). The cu-
mulative e�ects over six years are qualitatively very similar, and tend to be
larger in magnitude (Figure 3.4b). There are two exceptions where the in-
stantaneous and the cumulative e�ects are qualitatively di�erent: Agricul-
ture, for which we �nd an insigni�cant cumulative e�ect at low temperatures
(Figure 3.4b1) and a positive e�ect at high temperatures (Figure 3.4b3), and
Trade, for which we �nd a positive cumulative e�ect at low temperatures
(Figure 3.4b1) and a negative cumulative e�ect at high temperatures (Figure
3.4b3).

Figure 3.4: Estimated marginal e�ects by industry at three di�erent levels
of temperature, based on quadratic model �tted to the sample of European
regions.

Notes: a. Instantaneous e�ect. b. Cumulative e�ect over six years. Estimates
weighted by industry shares are shown in Figure C.22 in the Appendix.

While the nature of our data prevents us from causally identifying the under-
lying mechanisms for our heterogeneous �ndings, we posit a few possible
explanations which can be broadly classi�ed into two categories: physical
and behavioural responses to warming. On the physical side, in cold regions
of Europe, warmer temperatures in winter have been found to be detrimen-
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tal to growth (e.g. crops) in agriculture (Van Passel et al., 2017). Furthermore,
warmer-than-average temperatures have generally been found to negatively
a�ect �sheries (Clark et al., 2020; Kelly et al., 2020). In construction and
mining, we hypothesise that warmer-than-average temperatures around the
freezing point detrimentally a�ect economic activity through increased costs
of, e.g. pumping melt-water or subsidence (Hjort et al., 2018, 2022). Further-
more, we note that warmer-than-average temperatures can also cause dam-
ages to transport infrastructure in Northern regions (Gädeke et al., 2021). On
the behavioural side, warmer-than-average temperatures in cold regions are
likely to reduce the energy demand of the economy, thereby reducing rev-
enues in Utilities. Furthermore, in industries with most work taking place
indoors, such as Trade and Other Services, warmer-than-average tempera-
tures in cold regions could a�ect working hours similarly to rainfall and very
hot days by changing the opportunity costs of work versus leisure (Connolly,
2008; Gra� Zivin and Neidell, 2014).

To gain some additional insights into mechanisms, we examine heterogene-
ity across seasons (Figure C.23 in the Appendix). We �rst focus on summer
(JJA) and autumn (SON), the two warmest of the four seasons. For these
seasons, cold regions appear to experience especially large drops in GVA
from warmer-than-average temperatures for agriculture, mining and utili-
ties, manufacturing, and construction (construction only in summer). These
industries have previously been identi�ed as those in which labour is rel-
atively exposed to ambient temperature (Behrer and Park, 2019). In warm
regions, the responses of the same industries are mostly insigni�cant, with
possibly positive e�ects on GVA in agriculture (autumn) and construction
(summer). These industry-level e�ects result in overall negative responses
of GDP in cold and insigni�cant (but positive) responses in warm regions,
generally consistent with evidence for some adaptation to days with high
temperature, which we examine further below.

For winter (DJF) and spring (MAM), we �nd that GVA drops in response to
warmer-than-average seasons in cold regions in mining and utilities, consis-
tent with lower demand for heating and possibly higher maintenance costs
of mining infrastructure as discussed above. Furthermore, we �nd negative
responses for manufacturing. In warm regions, we �nd negative responses
of GVA in Construction and Trade to higher-than-average temperatures in
winter and positive responses to temperature in spring.
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Some of these e�ects are likely to be more transitory than others. Persis-
tent e�ects can be expected, for example, if consumption is actually reduced
rather than delayed in response to a weather shock, if a recovery in response
to a shock is hindered by rigid capacity constraints, if there are damages to
the capital stock, or if investment is negatively a�ected. In construction,
for example, the relatively large and persistent negative e�ect of warmer-
than-average temperatures in cold regions could be explained with physical
damages to capital and capacity constraints. In contrast, in Trade the nega-
tive instantaneous but positive cumulative e�ect could be due to a delay of
consumption or an inter-temporal re-allocation of work and leisure (Con-
nolly, 2008; Gra� Zivin and Neidell, 2014), both of which reduce economic
production in a transitory manner. These dynamic e�ects on Trade could
also re�ect Trade as a medium-term response to temperature induced supply
constraints. Since such mechanisms change the pattern of economic growth,
we think that it is worthy of further investigation using micro-data.

Finally, we look at adaptation. Speci�cally, we interpret adaptation as non-
linear e�ects of the number of days in speci�c bins of daily mean temperature
(degree-days). For example, in the presence of adaptation we expect that
very hot days (≥ 30 degrees C) have a more negative e�ect on GVA the more
rarely they tend to be observed in a speci�c region. Our results suggest some
adaptation to days with very low temperatures (< -5 degrees C) and to very
hot days (≥ 30 degrees C) (Figure C.24a in the Appendix). For these days, the
estimated e�ect exhibits a positive curvature, suggesting that the marginal
e�ect of degree-days becomes more and more positive the more of these
days are observed. For intermediate temperatures (0-25 degrees C) we �nd
no clear evidence for adaptation.

3.3.3 Robustness

The choice of a second-order polynomial in our main analysis is informed by
the relationship found by Burke et al. (2015b) and Kalkuhl and Wenz (2020).
This quadratic speci�cation is also supported by results obtained with a �ex-
ible model using bins of annual mean temperature (black dots in Figure 3.1).
Furthermore, as robustness check, additional models with higher-order poly-
nomials are estimated, which yield very similar results (Figure A.2a). We also
validate our results by estimating our empirical model on datasets from pre-
vious studies and reproducing their results using the period used in this study
(Figure 3.1b, bottom) and using GDP data only for Europe (Figure 3.1b, top).
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The results clearly illustrate that di�erences between our results and previ-
ous results obtained with a global sample of countries (Burke et al., 2015b)
arise from our geographical focus on Europe, rather than the period under
scrutiny or the use of GVA data instead of GDP data (see also Table C.31 in
the Appendix).

The results are also robust to clustered standard errors at the country rather
than district level, Conley HAC standard errors (Table C.32 in the Appendix)
and the inclusion of time trends. Somewhat consistent with our results above
that suggest relatively large spatial spill-over e�ects, we �nd that includ-
ing country-by-year �xed e�ects makes (which absorb the spatial e�ects)
our estimates insigni�cant (Table C.32 in the Appendix, Columns 3 and 4).
Moreover, regarding our analysis of adaptation based on degree-day models
we �nd qualitatively very similar results for models with cubic polynomials
suggesting that the results are robust to alternative choices of model speci-
�cation (Figure C.24b in the Appendix). Finally, the results are very similar
for alternative weather data (Figure C.31 in the Appendix).

3.4 Conclusion

The empirical evidence on the global relationship between economic activ-
ity and temperature variation typically suggests that positive temperature
shocks in warmer than average locations are costly, but the same shocks on
colder than average areas (mean temperature below 13 Celsius) temperature
can be economically advantageous (Burke et al., 2015b). Such �ndings un-
derpin a common narrative on the expected costs of climate change and their
spatial distribution, and inform national and regional adaptation strategies.
The EU strategy on the adaptation to climate change (Commission, 2021)
largely re�ects this narrative, using examples from climate change ‘hotspot’
areas in Southern Europe and the Mediterranean as exemplars of the geo-
graphical incidence of climate damages and the need for strategic interven-
tions on climate change adaptation. The results of this paper turn this narra-
tive on its head in the European context, and show that positive temperature
shocks are more costly to cold regions of Europe, such as the Nordic coun-
tries, Alpine regions and Scotland, than to the Southern and Mediterranean
regions.

These �ndings are of general interest, and show the importance of detailed
spatial and sectoral analysis, and a regional focus, for estimating hetero-
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geneous temperature-economy relationships. The �ndings can inform the
broader e�orts to assess the Social Cost of Carbon and the desirability of
meeting the 1.5C Paris target using Integrated Assessment Models, via up-
dated estimates of damage functions (Hänsel et al., 2020). In this regard, our
results on regional and sectoral heterogeneity also make the unequal geo-
graphical distribution of the costs of climate change explicit. More specif-
ically, the results can inform the EU strategy to forge a climate resilient
Europe by 2050 (Commission, 2021). We provide an up to date picture of
the potential socio-economic impacts of climate change, ful�lling the EU
strategy’s desire to ’anchor smarter adaptation in the latest science’. Our
illustration of the spatial pattern of the temperature-economy nexus could
also inform EU wide adaptation policies, such as the coordination of genetic
diversity sharing in agriculture, or the coordination of regional programs
of investment in, e.g., adaptation innovation. The �nding that the costs of
temperature shocks are higher in colder regions can also help to prioritise
scarce regional development, infrastructure and adaptation funds to more
vulnerable locations and sectors where the bene�ts will be higher. More
broadly, our spatially explicit results help to identify synergies and trade-o�s
between adaptation to climate change and the objectives of regional devel-
opment in Europe. Our evidence on decentralised adaptation to temperature
extremes can also inform the extent to which intervention is required at all.
Ultimately, the higher costs of temperature shocks in cold regions, where
warming associated with climate change is expected to be greatest, re�ects a
socio-economic specialisation, both behavioural and structural, around their
colder climates. Contrary to previous �ndings, from the perspective of in-
come, in colder regions some like it cold.

Future research can further illuminate the costs of climate change in cold
regions of the world outside Europe. This will add more evidence on the
mechanisms through which warmer-than-average years can reduce eco-
nomic production in certain industries. Other research questions arising
from our results concern the possibilities to adapt to gradual changes of tem-
perature in the long-run, which might be underestimated or overestimated
in our results. We hope that as more and more granular data have become
available, new insights into the challenges of climate change can be gained
from geographically explicit analysis as in this paper, ultimately leading to
a better scienti�c understanding and supporting better policies for more ef-
fective adaptation.
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Chapter 4

Policy sequencing towards
carbon pricing: Empirical
evidence from G20 economies
and other major emitters

Carbon pricing is considered the most e�cient policy to reduce greenhouse
gas emissions but it has also been conjectured that other policies need to be
implemented �rst to remove certain economic and political barriers to strin-
gent climate policy. Here, we examine empirical evidence on the the sequence
of policy adoption and climate policy portfolios of G20 economies and other
major emitters that eventually implemented a national carbon price. We �nd
that all countries adopted carbon pricing late in their instrument sequence af-
ter the adoption of (almost) all other instrument types. Furthermore, we �nd
that countries that adopted carbon pricing in a given year had signi�cantly
larger climate policy portfolios than those that did not. In the last part of the
paper, we examine heterogeneity among countries that eventually adopted a
carbon price. We �nd large variation in the size of policy portfolios of adopters
of carbon pricing, with more recent adopters appearing to have introduced car-
bon pricing with smaller portfolios. Furthermore, countries that adopted carbon
pricing with larger policy portfolios tended to implement a higher carbon price.
Overall, our results thus suggest that policy sequencing played an important
role in climate policy, speci�cally the adoption of carbon pricing, over the last
20 years.
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4.1 Introduction

Carbon pricing has been suggested as an economically e�cient instrument
to reduce greenhouse gas emissions and a growing body of literature con-
�rms its e�ectiveness1 but many countries including some of the world’s
largest emitters appear reluctant to implement it. By the end of 2020, only
about 40 countries had implemented either a carbon tax or a national emis-
sion trading scheme, leaving about 150 countries and about 85 percent of
global greenhouse gas emissions without an explicit price on carbon ([World
Bank], 2022). This slow progress in the adoption of carbon pricing has been
associated with several barriers including concerns about high energy prices
hurting households and reducing the industrial competitiveness of the econ-
omy (Klenert et al., 2018; Dolphin et al., 2019; Levi et al., 2020). Does the
presence of these barriers suggest that countries need to give up on the idea
of cabon pricing and instead resort to more feasible, yet second-best climate
policies? A more optimistic view, based on a careful reading of the experi-
ences of Germany and California, suggests that other climate policies can be
used to lower or remove some or all of the barriers, thus paving the way for
a subsequent adoption of carbon pricing (Meckling et al., 2015, 2017; Pahle
et al., 2018).

This idea of policy sequencing is one theory that can explain the observed
diversity and combinations of policy instruments, in addition to the simul-
taneous presence of several market failures (Bertram et al., 2015; Bataille
et al., 2018; Stiglitz, 2019) and theories of second-best substitutes of �rst-
best policies (Bennear and Stavins, 2007; Fischer et al., 2021). The idea of
policy sequencing suggests that climate policies can be used iteratively to
address speci�c barriers to higher stringency. To this aim, government poli-
cies can address speci�c market failures, such as public good properties and
asymmetric information. For example, positive externalities of green tech-
nological innovation can be addressed with public funding for research and
development. This innovation can result in a�ordable alternatives to high-
carbon goods and services lowering the impact of carbon pricing on house-
hold expenses, thereby making it both more e�ective and more acceptable.
Likewise, asymmetric information is commonly addressed through support
for education and labelling, which can in turn increase the market for less

1For example, Andersson (2019) examines the e�ectiveness of carbon pricing in Sweden;
for a recent review, see Green (2021).
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emission-intensive products and lead to positive returns to scale. Political
opposition to stringent climate policies due to lobbying of powerful industry
groups can be addressed, for example, through grants and subsidies that sup-
port the growth of a green sector, broadening the support base for additional
policies. Furthermore, standards on environmental performance can provide
long-term orientation and help coordinating private investments into the de-
velopment of new innovative green technologies.

In this study, we present empirical evidence on sequencing of climate poli-
cies focusing on G20 economies and other large emitters that had adopted
either a carbon tax or a national emission trading system (ETS) by the end
of 2020. To our knowledge, we are the �rst to provide quantitative and in-
ternational empirical evidence on how countries have built up their climate
policy portfolios over time before eventually adopting a carbon tax or permit
system. To this aim we combine a comprehensive dataset on carbon pricing
(World Bank Carbon Pricing Dashboard) with a large international dataset
on climate policies (den Elzen et al., 2019; Roelfsema et al., 2020; Fekete et al.,
2021). For the purpose of our analysis, we aggregate 72 instrument categories
to eight di�erent instrument types and distinguish between six sectors. We
then derive policy sequences based on pairwise conditional empirical fre-
quencies. Furthermore, we use matching and linear regression to identify
signi�cant statistical associations between climate policy portfolios and the
adoption and stringency of carbon pricing policies.

We �nd similar sequences of policy instruments across sectors and countries
among countries that have adopted carbon pricing. Carbon pricing tends to
be implemented last, after the adoption of all (or almost all) other instru-
ment types. Examining the temporal evolution of countries’ climate policy
portfolios, we �nd that countries that adopted carbon pricing in a speci�c
year tended to have larger policy portfolios than other countries. Further-
more, examining individual countries’ policy portfolios in greater detail, we
�nd large variation in the overall size of countries’ policy portfolios at the
time of adoption of carbon pricing, with possibly smaller portfolios among
more recent adopters. We discuss several explanations for this �nding in-
cluding variation in institutional capacity but also increasing public support
for climate policy, decreasing abatement costs, and policy di�usion between
countries. Furthermore, our results suggest that countries with larger policy
portfolios tended to implement carbon pricing policies with higher average
carbon prices, consistent with the idea that earlier policies remove barriers
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to higher stringency.

Our analysis contributes to the debate about an optimal climate policy mix,
including more normative work on the bene�ts of alternative instrument
types (Peñasco et al., 2021), policy mixes (Bertram et al., 2015; Fankhauser
et al., 2010; van den Bergh et al., 2021), and second-best policies (Fischer
et al., 2021). Our paper adds to this debate another layer of complexity, the
temporal sequence of policy adoption. In principle, policies that might be
considered second-best for a speci�c market failure, such as the negative ex-
ternalities from GHG emissions, can also be considered as temporary reme-
dies that facilitate a later adoption of the �rst-best policy (Pahle et al., 2018).
This idea is generally consistent with the empirical evidence on the temporal
sequence of policy adoption that we report in this paper. Indeed, our results
suggest that earlier policies do not only facilitate the adoption of carbon pric-
ing, but that they are also positively associated with its stringency, pointing
to additional bene�ts of policy sequencing.

We also contribute to a growing debate about the determinants of political
support for carbon pricing (for relatively recent empirical work see e.g. An-
derson et al. (2021); Douenne and Fabre (2022); Mildenberger et al. (2022)).
Our paper takes a macroscopic perspective and focuses on relatively long
time scales over which early policies such as technology subsidies might in
the past have slowly increased support for more stringent climate policies as
they helped to transform the energy system, to reduce the emission-intensity
of the economy, and to build pro-environmental interest groups. Indeed, our
results suggest that it took countries on average between 5 and 18 years to
move from other policies to carbon pricing. At the same, by reporting evi-
dence consistent with the existence of substantial barriers to carbon pricing,
we provide additional support for attempts to examine how the design of
pricing policies can be used to increase political support and facilitate im-
plementation (see, for example, Baranzini and Carattini (2017); Bechtel et al.
(2020); Carattini et al. (2018); Klenert et al. (2018); Kotchen et al. (2017)).

The paper is structured as follows. In Section 5.2, we explain our empirical
framework, describe the dataset, and explain the statistical methods of the
analysis. Results are presented in several steps in Section 5.3. Finally we
discuss our main �ndings and conclude in Section 4.4.
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4.2 Methods

4.2.1 Empirical framework

Building on prior work on climate policy sequencing we expect there to be
barriers to the adoption of carbon pricing. Possible barriers include con-
cerns about high mitigation costs for �rms in energy-intensive industries
who compete internationally, high costs for consumers and possibly a re-
gressive distribution of these costs, political opposition to climate change
policies, opposition to pricing policies, and concerns about the e�ect of a
carbon price on employment in industries that rely on fossil fuels. Some of
these barriers can generally be addressed with climate policies other than
carbon pricing, such as technology subsidies, which can lower mitigation
costs through technological innovation or more generally remove opposi-
tion to a pricing policy through a gradual transformation of the economy
away from carbon-intensive activities.

We therefore expect there to be a positive statistical association between the
number of climate policies other than carbon pricing, in the following re-
ferred to as the size of the climate policy portfolio, and the adoption and
intensity of a pricing policy. This positive association can generally result
from an ex-post e�ect, whereby earlier climate policies increase the prob-
ability of the subsequent adoption of a pricing policy, or from an ex-ante
e�ect, whereby an anticipated later adoption of a pricing policy motivates
the prior adoption of other policies (Figure 4.1). The latter direction of cau-
sation is especially plausible if high mitigation costs are a major concern, as
those can reliably be reduced with other climate policies implemented prior
to the planned adoption of carbon pricing, albeit at possibly higher costs in
terms of welfare. The larger those barriers to adoption, the stronger we ex-
pect the statistical association between the size of the policy portfolio and
the adoption of the pricing policy to be.

In the �rst part of the analysis, we examine the sequence of policies to iden-
tify the temporal order in which climate policies with di�erent instruments
types tend to be adopted. We then brie�y describe the temporal evolution
of climate policy portfolios. After this more descriptive analysis, we use
a matching methodology to establish whether countries that adopted car-
bon pricing in a given year had larger policy portfolios than those that did
not. We �nd that adopters indeed had larger portfolios. To address concerns
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Figure 4.1: Causal diagram. The arrows represent possible causal relation-
ships between the adoption of a carbon pricing policies, (unobserved) barri-
ers to carbon pricing, and the climate policy portfolio. The ex-post channel
illustrate how early climate policies can incrementally reduce barriers to car-
bon pricing, eventually allowing for its adoption without this last step being
the strategic objective at the time of adoption of the earlier policies. The ex-
ante channel illustrates how early climate policies can alternatively result
from a strategic objective of implementing carbon pricing after the removal
of certain barriers.

about possibly confounding country characteristics (Figure D.11 in the Ap-
pendix) we use a linear regression in which we include a few such charac-
teristics. Furthermore, we use the regression analysis to examine the asso-
ciation between the size of the policy portfolio and the level of the pricing
policy at the time of implementation.

4.2.2 Data

We use data on climate policies from the website
climatepolicydatabase.org, which provides to our knowl-
edge the most comprehensive international dataset on climate policies. The
dataset has been gradually composed over the recent years (Nascimento
et al., 2021) and been analysed in a number of academic publications (den
Elzen et al., 2019; Roelfsema et al., 2020; Fekete et al., 2021; Yao and Zhao,
2022). The dataset is based on other international datasets, reports, and
country speci�c documents, and incorporates a variety of other popular
datasets on climate (or in some cases more broadly environmental) policies
such as the Climate Change Laws of the World (Eskander et al., 2020) and
OCED policy instruments database2.

Despite the variety of sources used for the construction of the dataset it can
2https://www.oecd.org/env/indicators-modelling-outlooks/

policy-instrument-database/
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generally not be expected to include all climate policies of every country. In-
formation on data comprehensiveness for individual countries was obtained
from the NewClimate Institute. The dataset can generally be considered
comprehensive for G20 economies (including EU member countries that are
individual members of the G20, but not other EU members) and 18 addi-
tional countries to which we loosely refer as other major emitters. These
additional countries are mostly advanced and emerging economies in Eu-
rope, Asia and Latin-America but also encompass some less developed coun-
tries and two countries in Africa (Figure 4.2). For all these countries, climate
policies have been collected with the aim of completeness and the dataset
has gone through a validation with national stakeholders and experts. For
all other countries, the data can generally not be considered comprehen-
sive. We hence drop all those countries from our sample. This includes some
of the early pioneers of carbon pricing (Norway, Sweden, Finland, Poland,
Denmark) (see Tables D.51 and D.52 in the Appendix for a detailed list of
countries).

Figure 4.2: Sample of countries included in the analysis. Map shows
whether the data on climate policies can be considered comprehensive. See
also Table D.51 in the Appendix.

Every policy in the dataset carries information on policy objectives, admin-
istrative level, instrument types, targeted sectors, and more. To prepare the
data for our analysis, we focus only on policies that have climate change
mitigation as one of their objectives. Furthermore, we neglect any policies
at the subnational level and apply all EU policies to the member countries’
portfolio. If a country became member after the policy was decided in the
EU, we use the year of joining the EU as the date of policy adoption.

The dataset distinguishes 72 instrument categories, which we aggregate to
seven di�erent instrument types based on the instrument typology of the
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IEA. Furthermore, we distinguish between �ve sectors based on the sector
de�nition of the IPCC AR5 WGIII (Electricity and heat production; Trans-
port; Buildings; Industry; Agriculture, forestry, and other land use) and one
additional sector General for policies that do not target speci�c sectors. We
combine the �nal climate policy dataset with data from the Carbon Pric-
ing Dashboard of the World Bank to consistently distinguish an additional
instrument type carbon pricing, which can otherwise also be considered a
subtype of �nancial incentives. The �nal eight instrument types are: Regula-
tory instruments; Grants, subsidies, and other �nancial incentives; Informa-
tion and education; Policy support; Research, development, and deployment;
Voluntary agreements; Procurement and investment; and Carbon pricing. A
list of the corresponding instrument categories together with their frequency
in the dataset is shown in Table D.71 in the Appendix.

We �nd that every instrument type has been used in every sector in at least
one country (Figure D.61 in the Appendix). The number of times we observe
a speci�c instrument-sector combination in our database ranges from 18 (Re-
search, development and deployment in Agriculture, forestry, and other land
use) to 1902 (Policy support introduced without targeting a speci�c sector).3

The latter pattern includes national climate change strategies and emission
reduction targets including the NDC. Other frequent combinations are also
well known from the climate change mitigation policy research and practice.
This includes a frequent use of �nancial incentives in the energy sector (e.g.
feed-in-tari�s, emission permits), and frequent use of regulatory instruments
in the buildings and transport sector (e.g. e�ciency standards for household
appliances, energy e�ciency standards for buildings, and emission standards
for road transport vehicles).

We complement the climate policy data with country characteristics that we
obtain from several sources. This includes GDP per capita data in purchasing
power parity from the World Bank, an index of education from the Human
Development Indicators provided by the United Nations Development Pro-
gram, an index of the control of corruption from the World Governance In-
dicators of the World Bank, and information on fossil fuel reserves from the
US Energy Information Administration. Descriptive statistics are provided
in Table D.21 in the Appendix.

3In total, we observe 14,540 instrument-sector combinations.
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4.2.3 Statistical methods

In the �rst part of the analysis, we identify policy sequences in terms of
their instrument type. The eight instrument types result in 40320 possible
sequences. To identify these sequences, we �rst consider all possible pairs of
instrument types. For each of these 28 pairs, we examine which of the two
instrument types tends to be adopted �rst across sectors and countries. We
then use the relative timing of these pairs to construct the overall sequence.

Formally, we consider the adoption of two instrument types as events X
and Y respectively. Using this terminology, we examine the conditional
frequency that event X is preceded by event Y across countries and sec-
tors. In mathematical terms, we examine the conditional frequency f (Yt−1|Xt)
whereby Xt and Yt−1 are binary variables indicating whether the two policies
have been decided up to the year t and t − 1 respectively:

f (Yt−1|Xt) =
n(Yt−1 ∧ Xt)

n(Xt)
(4.1)

with the number of times an event is observed in the data denoted as n(.).
We then derive the relative order of all possible pairs of instrument types
by comparing f (Yt−1|Xt) and f (Xt−1|Yt). Because we are interested in existing
policies at the time of decision of a new policy, we exclude all observations
after an event is observed for the �rst time (i.e. after the �rst time a speci�c
instrument is adoped in a speci�c sector in a speci�c country).

The data used for the identi�cation of policy sequences is illustrated in Figure
4.3. For example, we �nd that in the USA regulatory instruments X precede
voluntary approaches Y in three out of six sectors. In the remaining three
sectors, both instrument types are implemented for the �rst time in the same
year. This yields f (Xt−1|Yt) = 0.5 > 0 = f (Yt−1|Xt). For the USA, we hence
consider regulatory instruments as preceding voluntary approaches.

In the second part of the paper, we examine di�erences in the adoption of
carbon pricing and in policy sequencing across countries. To this aim, we
quantify the size of countries’ climate policy portfolios. We do so by counting
how many of the eight instrument types have already been implemented
in the six sectors mentioned above. This yields a score between 0 and 48
for every country and every year. We complement this information with a
range of control variables: GDP per capita, education, control of corruption,
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Figure 4.3: Adoption of policies with di�erent instrument types and
sectors over time in di�erent countries. Shown are only policies that are
the �rst of their kind in terms of their country, instrument type, and sector
combination. The �gure illustrates all information used for the derivation of
policy sequences. See text for explanation and an example.

political globalisation, and the prevalence of fossil fuels in a country. The
choice of explanatory variables is informed by the results of comprehensive
international analysis of the factors that determine the adoption of pricing
policies (Dolphin et al., 2019; Best and Zhang, 2020; Levi et al., 2020).

We �rst examine the statistical association between the size of countries’
climate policy portfolios and whether countries adopted carbon pricing in a
given year. To this aim, we compare the climate policy portfolios of coun-
tries that adopted a national carbon price in a given year with the portfolios
of countries that did not adopt a carbon price neither earlier nor in the same
year. We refer to the �rst group of countries as treated countries and to the
second group as control countries. For the statistical analysis, we match ev-
ery treated country with one control country. To this aim, we assign every
treated country a randomly chosen control country. We iterate this random
assignment 1000 times and then compare the average size of the policy port-
folios of treated countries with the average size of portfolios of the control
countries. For inference, we calculate bootstrapped con�dence intervals. In
addition, we estimate a logit model with the adoption of carbon pricing as
binary dependent variable, which allows us to include certain country char-
acteristics as control variables.

We next focus on heterogeneity among countries that eventually adopted a
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national carbon price (treated countries). We �rst examine the size of policy
portfolios at the time of adoption of carbon pricing. To this aim, we estimate
a linear regression model with the size of the policy portfolio at the time
of adoption as dependent variable and the same control variables as above.
To examine trends over time we also include the year of adoption as an ex-
planatory variable. Because the number of observations is small relatively to
the number of explanatory variables, we also estimate a more parsimonious
model with only selected explanatory variables. For this model we choose
GDP per capita and the reserves of fossil fuels. Because reserves of oil and
gas are higly correlated, we include only reserves of coal and reserves of oil
in this model. Furthermore, we use Lasso model selection to identify the
most important explanatory variables. Lasso estimation optimises a model
that strikes a balance between the explained variation and model complexity
as measured by the number of explanatory variables. As a popular method
for model shrinkage, it is particularly suitable for the detection of in�uential
variables among several correlated variables. In addition, we also examine
the association between the size of policy portfolios at the time of imple-
mentation of a pricing policy and the economy-wide average carbon price.
To this aim, we estimate a similar linear regression model with the average
carbon price as dependent variable.

4.3 Results

4.3.1 The temporal sequence of climate policies

We focus on policy sequences of countries that eventually adopted a car-
bon pricing policy. Overall we �nd similar sequences of policy instruments
across sectors and countries (Figure 4.4). This is especially true for the rel-
ative position of carbon pricing. Pooling policy adoption in all countries
and sectors, carbon pricing tends to be the last instrument type. If we pool
policies only across countries but keep sectors separate, we �nd that carbon
pricing is the last instrument type in every sector. Furthermore, in 12 out
of the 15 countries, carbon pricing tended to be used for the �rst time in a
speci�c sector after the use of all other instrument types. Overall, we hence
�nd that carbon pricing tends to be implemented last, after the adoption of
all or almost all the other seven instrument types.

The results also reveal some recurrent patterns of sequencing for the other
seven instrument types. Focusing on the results by sector, we �nd two
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Figure 4.4: Policy sequences of countries with a carbon price. Sampling
criteria is adoption of carbon price by the end of 2020 and availability of
comprehensive data on climate policy adoption. See Figure 4.2 and Tables
D.51 and D.52 in the Appendix for further information on sampling.

groups of instrument types. The �rst group consists of four early instrument
types: Regulatory instruments, Grants, subsidies, and other �nancial incen-
tives, Information and education, and Policy support. The second group of
four late instrument types includes Research, development, and deployment,
Voluntary agreements, Procurement and investment, and Carbon pricing.
With the exception of voluntary agreements and �nancial incentives in Agri-
culture, policies of the �rst group tend to be implemented before policies of
the second group in all sectors (Figure 4.4).

We �nd more variation of sequencing at the level of individual countries
(Figure 4.4). The most frequent patterns are a relatively early adoption of
Regulatory instruments and Policy support instruments and a relatively late
adoption of Procurement and investment and Carbon pricing. The relative
positions of the remaining four instrument types (Grants, subsidies, and
other �nancial incentives; Research, development, and deployment; Volun-
tary agreements; Information and education) show greater variation across
countries.
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4.3.2 The build-up of climate policy portfolios over time

The results presented in the previous Section suggest that carbon pricing
tends to be adopted after the adoption of climate policies with all or almost
all other instrument types. We use this insight as motivation to examine
whether the climate policy portfolios of countries that adopted carbon pric-
ing in a speci�c year systematically di�er from the portfolios of countries
that did not adopt it.

To do so, we quantify the size of countries’ policy portfolios as the num-
ber of instrument type-sector combinations that a country has already used
prior to a given year. The temporal evolution of the portfolios of countries
that eventually adopted carbon pricing is shown in Figure 4.5a. The visual-
isation reveals some interesting patterns. There appear to be at least three
di�erent kinds of trajectory of how countries built up their policy portfolios
over time. Countries of the �rst group (blue colors in Figure 4.5a), includ-
ing Canada, Japan, and South Africa, exhibit a relatively rapid expansion of
their portfolio followed by a slow further expansion over several years that
eventually includes the adoption of carbon pricing. Countries of the second
group, including Argentina and Switzerland (green colors in Figure 4.5a),
show a steady gradual expansion of their portfolios up until the introduc-
tion of carbon pricing. Countries of the third group (red colors in Figure
4.5a), including the current EU members in the sample, show a rapid expan-
sion of policies almost immediately followed by the introduction of carbon
pricing.
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Figure 4.5: Development of countries’ climate policy portfolios over
time. Shown is the number of instrument type-sector combinations used
in countries’ policy portfolios. Colors on the left correspond to groups of
countries with similar trajectories; see text for explanation.

This diversity of trajectories also means that the average time between the
adoption of new instrument type-sector combinations and the adoption of
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carbon pricing systematically di�ers in the sample. For Canada, Japan, and
South Africa, this average time is about 18, 13, and 14 years respectively. For
Argentina and Switzerland, the corresponding values are 11 and 10 years
respectively. For the current EU countries, the average time is about 5 years.

4.3.3 Policy portfolios of adopters versus non-adopters of carbon
pricing

We next examine to what extent the size of countries’ policy portfolios can
be considered a good predictor of the adoption of carbon pricing. To do
so, we �rst compare the policy portfolios of countries that had adopted a
carbon price by the end of 2020 with those that had not. At the time countries
of the �rst group adopted carbon pricing, they had used on average 29.5
instrument type-sector combinations (Figure 4.5a). We then contrast this
number with the size of portfolios of countries without a national carbon
price. By the end of 2020 those countries had used policies with on average
about 23.9 instrument type-sector combinations (Figure 4.5b). In 2015, which
is the average year of adoption of carbon pricing, they had used on average
about 19.7 combinations.

To compare countries that adopted carbon pricing in a given year with those
that did not more systematically, we match countries based on a random as-
signment. This has the advantage that we also consider countries as possible
control countries that had not adopted carbon pricing in year t but adopted
it in year t ′ with t < t ′ < 2020. For inference, we calculate bootstrapped con-
�dence intervals (Section 5.2). We �nd that countries that adopted a carbon
price in a given year had policy portfolios that were on average about 11.12
instrument type-sector combinations larger than the portfolios of those that
did not. This di�erence is signi�cant at a con�dence level of � = 0.05. Over-
all, countries that adopted carbon pricing in a given year hence tended to
have signi�cantly larger climate policy portfolios than those that did not.

As a robustness test, we also estimate a logit model with the adoption of car-
bon pricing as binary dependent variable and di�erent sets of explanatory
variables. As for the matching, we �nd a statistically signi�cant positive as-
sociation between the size of the policy portfolio and the adoption of carbon
pricing (Table D.31 in the Appendix). Results of a Lasso estimation suggest
that the size of portfolio and the prevalence of gas reserves are the strongest
determinants of the adoption of carbon pricing. As we include additional
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control variables, the estimated coe�cient of the size of the portfolio be-
comes smaller and less signi�cant. This suggests that at least part of the
positive association is due to country characteristics that in�uence both the
size of the policy portfolio and the adoption of carbon pricing.

4.3.4 Heterogeneity among adopters of carbon pricing

The results above suggest that the size of climate policy portfolios is posi-
tively associated with the probability of adopting carbon pricing in a given
country in a given year. One possible explanation is that policies other than
carbon pricing allow countries to remove barriers to a subsequent adoption
of carbon pricing. To further illuminate this explanation we attempt to ex-
plain di�erences in the size of policy portfolios at the time of adoption of
carbon pricing with a linear regression model with variables possibly in-
�uencing some of these barriers or acting as confounders in the analysis.
That is, we estimate a model with the size of policy portfolio at the time
of adoption as dependent variable and GDP per capita, education, control
of corruption, and the prevalence of fossil fuels in a country as explanatory
variables. To examine trends over time, we also include the year of adoption
in the model. Because or the high number of variables relative to the number
of observations, we also estimate a reduced model and use a Lasso model for
variable selection.
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Figure 4.6: Scatterplots of statistical associations between the year of
the adoption of carbon pricing, the size of climate policy portfolios in
that year, and the average carbon price in the �rst year of implemen-
tation; to control for several variables including GDP per capita and reserves
of fossil fuels, the �gure shows partial residuals of the model in Column 2
(left) and Column 6 (right) in Table D.32 in the Appendix.

We use this model to examine certain patterns in the data. Speci�cally, we
�nd that after controlling for country characteristics the size of policy portfo-
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lios at the time of adopting a carbon price has decreased over the last 20 years
(Figure 4.6 left). For example, when Canada adopted a national carbon price
in 2019, its policy portfolio was substantially smaller than France’s portfolio
in 2003, after controlling for several country characteristics. This pattern is
robust to di�erent model speci�cations (Table D.32 in the Appendix). Visual
inspection also suggests that this pattern is relatively robust to dropping pos-
sible outliers. For example, it can also be identi�ed if the group of EU ETS
countries is considered as one observation or dropped from the sample (Fig-
ure 4.6 left).

We next regress the average carbon price of the �rst year of implementation
on the size of countries’ policy portfolios, controlling for the same country
characteristics as in the previous regression. The carbon price is calculated
as an economy-wide average price using information on the price level and
the coverage from the World Bank. We �nd a positive association, meaning
that countries with a larger policy portfolio at the time of adoption tended
to implement carbon prices with higher price levels (Figure 4.6 right). A
notable outlier is Japan which implemented a relative low price given its
relatively large policy portfolio. The pattern is again robust to the di�erent
model speci�cations (Table D.32 in the Appendix) but appears overall less
signi�cant and less robust to dropping individual countries from the sample
(Figure 4.6 right).

4.4 Discussion and Conclusions

While carbon pricing is only one of many policy instruments to achieve
internationally agreed climate targets, economic theory and empirical evi-
dence on its e�ectiveness (Andersson, 2019; Mideksa, 2021; Green, 2021) sug-
gest an important role for it in future national climate policy portfolios. The
relationship between carbon pricing and other climate policies is generally
multifaceted. Speci�cally, alternative instrument types can be considered as
second-best substitutes of �rst-best policies (Bennear and Stavins, 2007; Fis-
cher et al., 2021), complementary instruments that target di�erent market
failures (Bertram et al., 2015; Bataille et al., 2018; Stiglitz, 2019), and as in-
struments that remove barriers to a �rst-best policy (Meckling et al., 2017;
Pahle et al., 2018).

Here we contribute empirical evidence on this latter idea of climate policy
sequences preceding carbon pricing by examining policy adoption of G20
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economies and other large emitters focusing on countries that eventually
adopted a carbon price. Our analysis also builds on previous more norma-
tive work on the bene�ts of alternative instrument types (Peñasco et al., 2021)
and policy mixes (van den Bergh et al., 2021) including complementarities be-
tween carbon pricing and other instruments (Bertram et al., 2015) and pos-
sible negative e�ects from their combination (Fankhauser et al., 2010), and
more generally improves our understanding of climate policy adoption by
examining its temporal dimension. Furthermore, we contribute to debates
around the political economy of carbon pricing, and the feasibility of cli-
mate policy more broadly (for example, Carattini et al. (2018); Klenert et al.
(2018); Dolphin et al. (2019); Levi et al. (2020); Ostry et al. (2021)).

Our results for the �rst time provide quantitative and international empiri-
cal evidence on how countries have built up their portfolios over time before
eventually adopting a national carbon tax or permit system. The results sug-
gest that carbon pricing was indeed adopted relatively late in countries indi-
vidual policy sequence. Furthermore, we �nd qualitatively di�erent trajecto-
ries of how countries built up their climate policy portfolios over time. While
some countries did so gradually, other countries implemented national car-
bon pricing at the end of a quick expansion of their portfolios. A third group
of countries expanded their portfolios quickly but then waited several years
before eventually adopting a national price on carbon. We suspect that these
more gradual or sudden expansions of portfolios re�ect a country’s exposure
to and relative timing of domestic and international events, domestic barri-
ers to a a carbon price, and whether carbon pricing was part of a long-term
climate strategy before its adoption.

Furthermore, we �nd that countries that adopted a carbon price in a speci�c
year tended to have signi�cantly larger climate policy portfolios than those
that did not adopt carbon pricing. Because this methodology is not able to
control for all possible confounders, we do not consider the relationship be-
tween policy portfolios and the adoption of carbon pricing as necessarily
causal. Nevertheless, we illustrate in Figure 4.1 how the results are gener-
ally consistent with the idea that certain barriers to carbon pricing can be
removed with other climate policies.

Examining heterogeneity among adopters of carbon pricing, we �nd large
variation in the size of countries’ policy portfolios at the time of adop-
tion. Furthermore, over the last 20 years the size of these portfolios ap-
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pears to have declined. We note that this pattern is consistent with gen-
erally declining abatement costs and international in�uences including the
international di�usion of technological innovation (Dechezleprêtre et al.,
2011; Barrett, 2021) and growing economic opportunities for green technolo-
gies (Yamazaki, 2017). Furthermore, previous research suggests that policies
themselves di�use internationally as countries learn and mirror each other
(Fankhauser et al., 2016; Thisted and Thisted, 2020).

Furthermore, we �nd that countries that had larger climate policy portfo-
lios at the time they adopted a carbon pricing policy tended to implement
an overall higher initial economy-wide average carbon price. Our results
are therefore also consistent with the idea that climate policies prior to the
adoption of a pricing policy can pave the way for higher stringency. This is
especially important because prior evidence suggests that carbon prices tend
to be relatively sticky (Dolphin et al., 2019).

Motivated by these insights, we �nd that several countries including some of
the worlds’ largest emitters of GHG have reached the stage at which other
countries went on to adopt a price on carbon, in terms of the instrument
types of implemented policies (Figure D.41 in the Appendix). This could
mean that those countries have exhausted the extensive margin of their cli-
mate policy portfolios in terms of sectors and instrument types other than
carbon pricing, leaving essentially three avenues for future climate policy:
higher stringency of existing policies, additional policies of existing sector
and instrument type combinations, and carbon pricing as the last step in the
sequence.

Our results suggest important avenues for future empirical research. Be-
cause of data limitations, we are not able to examine the experience of some
of the earliest adopters of carbon pricing. As data collection e�orts are on-
going, future research might focus on these countries. Furthermore, we ex-
pect that early climate policies not only lower barriers for the adoption of a
pricing policy but also likely in�uence its e�ectiveness (Kriegler et al., 2018;
Roelfsema et al., 2018). This in�uence on e�ectiveness might be in addition
to the e�ect of prior policies on the initial price level that we report here. For
example, broad sectoral coverage of mitigation policies can address emission
leakage of pricing policies (Rajagopal, 2017). Future research might explore
how the size of climate policy portfolios in�uences the reductions in GHG
emissions obtained with a certain carbon price.
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Chapter 5

The international di�usion of
policies for climate change
mitigation

In this paper, we study the international di�usion of carbon pricing policies.
In the �rst part, we empirically examine to what extent the adoption of carbon
pricing in a given country can explain the subsequent adoption of the same pol-
icy in other countries. In the second part, we quantify the global bene�ts of pol-
icy di�usion in terms of greenhouse gas emission reductions elsewhere. To do so,
we combine a large international dataset on carbon pricing with several other
datasets. For causal identi�cation, we estimate semi-parametric Cox propor-
tional hazard models. We �nd robust and statistically signi�cant evidence for
policy di�usion. The magnitude of the estimated e�ects is substantial. For two
neighbouring countries, policy adoption in one country increases the probability
of subsequent adoption in the other country on average by several percentage
points. Motivated by this result, we use Monte Carlo simulations based on our
empirical estimates to quantify both direct domestic and indirect foreign emis-
sion reductions of policy adoption and subsequent di�usion. The results based
on our central empirical estimates suggest that for most countries indirect emis-
sion reductions of carbon pricing can exceed direct emission reductions. Overall,
our results provide additional support for the adoption of stringent climate poli-
cies, especially in countries where climate change mitigation policies might so
far have been considered as being of relatively little importance because of a
relatively small domestic economy.
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5.1 Introduction

Despite the need for more stringent climate policies to achieve the Paris
climate target (IPCC 2021), many countries appear reluctant to ratchet up
their mitigation e�orts. Possible reasons include concerns about political
backlashes, about international competitiveness, and about the limited ef-
fectiveness of domestic policies in reducing global greenhouse gas (GHG)
emissions. Indeed, in 2021 the top 10% largest emitters contributed about
80% percent of global greenhouse gas emissions, suggesting that policies in
relatively small countries will have small e�ects on future climate change.
However, this perspective neglects that countries’ domestic climate policies
can also in�uence GHG emissions elsewhere. For example, domestic policy
adoption can demonstrate political feasibility and lower concerns about in-
ternational competitiveness, thereby increasing the likelihood that the same
or a similar policy is adopted in other countries. Existing empirical evidence
on climate policy di�usion is however mixed (Baldwin et al., 2019; Dolphin
and Pollitt, 2021; Fankhauser et al., 2016; Sauquet, 2014; Thisted and Thisted,
2020) and its e�ectivenesss in terms of GHG emission reductions has not yet
been quanti�ed.

In this paper we empirically examine the international di�usion of climate
policies from 1988 to 2020 and quantify indirect emission reductions that can
plausibly be attributed to policy di�usion. We focus on carbon pricing poli-
cies, which can be considered the most salient and possibly most stringent
policies for climate change mitigation. We �rst construct a global dataset on
carbon pricing, countries’ characteristics, and geographic and trade linkages
between countries. We then estimate Cox proportional hazard models that
include spatial lags of policy adoption. The spatial lags are contructed us-
ing alternative metrics of the proximity of countries. Possible concerns about
causality are addressed with a series of robustness tests and a placebo test. In
the last part, we use our empirical estimates to calculate the expected emis-
sion reductions due to policy di�usion using a back-of-the-envelope method-
ology and Monte Carlo simulations. We consider these indirect emission re-
ductions as a proxy for the international leverage of a country’s domestic
climate policy and examine its variation across countries.

We �nd robust statistical evidence for an international di�usion of carbon
pricing policies. Countries are more likely to adopt carbon pricing if other
countries that are relatively close to them in terms of geography or trade
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links adopted the policy previously. We �nd the best model �t for a proximity
metric in the spirit of a gravity model that combines the GDP of countries
with the geographic distances between them. The magnitude of the di�usion
e�ect is substantial. For example, according to our main estimates adoption
of carbon pricing in Canada increases the probability of subsequent adoption
in the USA by about 16 percent.

We use several robustness checks to corroborate our main �ndings. Pos-
sible violations of the proportional hazard assumption are addressed with
covariates and strati�cation of the Cox proportional hazard model and sys-
tematically assessed with statistical tests. In the main speci�cation, we use
carbon pricing policies at the national and subnational level, but the results
are robust to using only national pricing schemes. Furthermore, in the main
speci�cation we use both carbon taxes and ETS. If we restrict the sample to
only either of the two types of carbon pricing, we �nd coe�cients with sim-
ilar magnitude but no signi�cance. We also conduct placebo tests and do not
�nd any evidence that would suggest spurious di�usion (Braun and Gilardi,
2006).

Our main contribution to the literature is the quanti�cation of indirect emis-
sion reductions that can be attributed to policy di�usion, which we derive
with a back-of-the-envelope calculation and Monte Carlo simulations. The
indirect emission reductions quantify the emission reductions elsewhere that
can be attributed to the adoption of carbon pricing in a given country. To
isolate the e�ect of di�usion, we simulate and compare scenarios with and
without policy adoption in the given country. Overall, our results suggest
that the global bene�ts of policy di�usion are substantial. In a �rst set of sim-
ulations, we assume for every country that it was the �rst to adopt carbon
pricing in 1988. We �nd that the indirect emission reductions due to di�u-
sion are larger than domestic emission reductions in about 85 % of countries
(1988-2019). We next examine scenarios in which a country is the next to
adopt carbon pricing in 2020, given the actual distribution of pricing policies
by the end of 2020, and �nd that indirect emission reductions exceed direct
emission reductions in 76 % of the remaining countries (2020-2050).

In the last part of the analysis, we use Monte Carlo simulations to quantify
to what extent policy di�usion as observed in the past can help to increase
the geographical coverage of carbon pricing policies in the future. Based
on the distribution of policies by the end of 2020 and the dynamic of policy
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adoption and di�usion over the period 1988-2020, we simulate policy adop-
tion for future scenarios with and without di�usion (2020-2050). We �nd
that by 2050, about 11 percentage points more countries will adopt carbon
pricing in the scenario with di�usion than in the scenario without di�u-
sion. While for individual countries the global bene�ts from policy di�usion
are therefore substantial, the possible contribution of policy di�usion to the
achievement of a high geographical coverage of carbon pricing policies over
the next decades appears limited.

We also contribute new empirical evidence on international policy di�usion,
speci�cally di�usion of climate policies (Sauquet, 2014; Fankhauser et al.,
2016; Kammerer and Namhata, 2018; Skovgaard et al., 2019; Baldwin et al.,
2019; Abel, 2021; Steinebach et al., 2021; Torney, 2015; Thisted and Thisted,
2020). In agreement with the quantitative analysis of Steinebach et al. (2021)
and the qualitative analysis of Thisted and Thisted (2020) we �nd evidence
for an international di�usion of carbon pricing policies. In this respect, our
results di�er from the results obtained by Dolphin and Pollitt (2021) who re-
port no evidence for di�usion of either carbon taxes or ETS, which they con-
sider as two distinct policies. Our results therefore reconcile this seemingly
contradictory prior evidence by accommodating for di�erent implementa-
tions of the same policy. This choice is supported by the fact that in the EU
(Harrison, 2010) and possibly in other cases, the decision to adopt carbon
pricing was made before the instrument design was chosen. Furthermore,
Skovgaard et al. (2019) �nd no systematic di�erences between countries that
adopted either a tax or an ETS and observe that both designs were used in
all waves of carbon pricing adoption.

Our �ndings also contribute new evidence using quantitative methods to
prior more qualitative work that has often focused on few selected countries.
This literature suggests that international coordination has been part of cli-
mate policy from its beginning, most prominently represented by the Kyoto
protocol and the Paris climate agreement. This coordination in turn provides
a supportive context for policy di�usion. For example, Harrison (2010) points
out strong mutual in�uences among the world’s �rst adopters of carbon pric-
ing policies in Scandinavia after climate change attracted global attention for
the �rst time in the 1980s. According to Thisted and Thisted (2020), the sub-
sequent adoption of carbon pricing by other countries can at least partially
be explained with emulation of existing policies and learning from prior ex-
periences. International di�usion has also been actively promoted by early
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adopters themselves and through multilateral initiatives such as the World
Bank’s Partnership for Market Readiness (PMR) (Biedenkopf et al., 2017).
Strong evidence for international di�usion has been reported for example
for California (Bang et al., 2017), Kazakhstan (Gulbrandsen et al., 2017), and
China (Heggelund et al., 2019), and the in�uence of multilateral initiatives
has been acknowledged for carbon pricing policies in Latin America (Ryan
and Micozzi, 2021). We consider these mechanisms and channels of interna-
tional climate policy di�usion reported in prior literature as possible expla-
nations of our results.

The remainder of the paper is structured as follows. In Section 5.2, we in-
troduce the econometric model and estimation techniques before describing
and illustrating our data. In Section 5.3, we present �rst our empirical results
on past international di�usion of carbon pricing including several robust-
ness tests and then the results from our back-of-the-envelope calculations
and Monte Carlo simulations. We discuss and conclude in Section 5.4.

5.2 Methods

5.2.1 Empirical analysis of policy di�usion

Theories of policy di�usion propose several mechanisms through which the
adoption of a policy in one jurisdiction can in�uence the adoption of the
same or a similar policy elsewhere. These mechanisms are often grouped and
referred to as learning, competition, emulation, and coercion (Braun and Gi-
lardi, 2006; Simmons et al., 2006; Shipan and Volden, 2008; Volden et al., 2008;
Shipan and Volden, 2012; Jordan and Huitema, 2014). Prior literature on cli-
mate policies has especially focused on emulation and learning (Biedenkopf
et al., 2017; Thisted and Thisted, 2020), which has also been identi�ed as
important mechanisms for similar di�usion processes, for example for the
di�usion of cash transfer programs in Latin America (Sugiyama, 2011). De-
pending on the mechanism, adoption in one jurisdiction is more relevant for
some jurisdictions than for others. For example, di�usion through compe-
tition suggests that policy adoption has a larger in�uence on jurisdictions
with similar specialisation, while di�usion through coercion suggests that
this in�uence is restricted to those jurisdiction over which a jurisdiction has
a power advantage.

To identify di�usion we estimate an econometric model that relates adop-
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tion of a policy in a country i at time t to the adoption of the same policy in
other countries j = 1, ..., Nc , j ≠ i prior to time t (with Nc being the number of
countries in the sample). This is a common empirical strategy to identify pol-
icy di�usion and has been used in the literature on climate policy (Sauquet,
2014; Kammerer and Namhata, 2018; Abel, 2021; Dolphin and Pollitt, 2021).
Technically, the model accounts for the mutual in�uences between countries
with spatial lags, which are calculated as a weighted average of prior policy
adoption in all other countries. We use alternative weighting schemes based
on geographic proximity and trade which we consider as potentially repre-
senting some of the alternative di�usion mechanisms mentioned above.

The choice of our model is informed by some characteristics of our data. The
�rst characteristic is that policy adoption is only observed up until 2021, the
most recent year in our sample. This means that our dependent variable is
generally right-censored. The second characteristic is that our dependent
variable is binary taking on only values 0 or 1. Both these characteristics
are common in survival analysis, which is also referred to as event history
analysis, and can be addressed with proportional hazard models.

We thus follow previous work on policy di�usion and model policy di�u-
sion with semi-parametric Cox proportional hazard models (Sugiyama, 2011;
Sauquet, 2014; Abel, 2021; Dolphin and Pollitt, 2021). As compared to para-
metric proportional hazard models, the Cox model does not require an as-
sumption about a speci�c functional form of the survival function and the
results can therefore be considered more robust to model missspeci�cation
(Lee and Wang, 2003). Formally, we estimate models of the general form

ℎ(t, Xi,t ,Wi,t) = ℎ0(t) exp (Xi,t−1�X ) exp (Wi,t−1�W ) (5.1)

The hazard function ℎ(.) of a unit i in year t represents the probability that
the policy is adopted by that unit in that year conditional on it not yet being
implemented at time t −1. This hazard rate is composed of a baseline hazard
rate ℎ0(t) and a second partial hazard term that includes the time-dependent
matrixes Xi,t−1 and Wi,t−1.

In the Cox model, the functional form of the baseline hazard is not prescribed
a-priori and not necessarily smooth, but estimated based on the patterns of
policy adoption in the data. The matrix Xi,t−1 accounts for possible domestic
in�uences in country i in year t −1. Informed by prior literature on domestic
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in�uence on the adoption of carbon pricing (Dolphin et al., 2019; Best et al.,
2020), we include GDP per capita, the growth rate of GDP per capita, emis-
sions of CO2 per GDP, the service share of GDP and the export share of GDP.
All explanatory variables are lagged by one year to address concerns about
reverse causality. As a robustness test, we obtain similar results with models
with longer lag times (Appendix Table E.21).

The matrixWi,t−1 is a weighted average of policies adopted in other countries
j = 1, ..., Nc , i ≠ j at time t − 1, sometimes also referred to as a spatial lag. We
explain the construction of this matrix further below.

For both the left-hand side and the right-hand side of Equation 5.1 we model
adoption as a binary variable that takes on the value 1 for all years t, t +
1, ..., T if a policy has been adopted prior to or in year t . In this panel setting
with time-varying covariates, observations of the same unit in subsequent
years are implemented as independent of each other. To account for their
dependency, we cluster the standard errors of our estimates at the level of
individual units.

The model is estimated from panel data on countries’ adoption of climate
policies by maximising a likelihood function. Unbiasedness of the estimated
coe�cients relies on the proportional hazard assumption. This assumption
is satis�ed if conditional on all explanatory variables the hazard ratio of two
units is constant over time. We address possible violations of this assumption
with our set of control variables and with strati�cation. The control variables
include GDP per capita, the growth rate of GDP per capita, emissions of CO2
per GDP, the service share of GDP and the export share of GDP. The strati�ed
version of our model

ℎ(t, Xi,t−1,Wi,t−1) = ℎ0,k(t) exp (Xi,t−1�X ) exp (Wi,t−1�W ) (5.2)

allows for di�erent baseline hazards ℎ0,k(t) for di�erent strata with index k in
our sample. For the strati�ed version of the model, the hazards are assumed
to be proportional within strata but not necessarily across them. We use
a division of the world into six continents North-America, Latin-America,
Europe, Africa, Asia, and Oceania for strati�cation. We consider countries
on the same continent as likely exposed to the same shocks that are unrelated
to climate policy making. For every model, we use a statistical test based
on Schoenfeld residuals to identify possible violations of the proportional
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hazard assumption (Grambsch and Therneau, 1994).

The matrix W is constructed from several data sources, depending on which
channel is investigated. For trade, we use data on annual bilateral trade �ows
from the IMF and calculate the export share xi,j,t and import share mi,j,t (per-
centage of exports from country i into destination j in year t out of all exports
from country i in year t , analogously for imports) for every pair of countries
in the data (i, j) and every year t . We then calculate a weighted average:

Wi,t =
∑Nc

j=1,j≠i wi,j,tYj,t
∑Nc

j=1,j≠i wi,j,t
(5.3)

with wi,j,t = xi,j,t and wi,j,t = mi,j,t for exports and imports respectively. Note
that unlike the weights described below, the weights based on trade are gen-
erally not symmetric for a pair of countries, i.e. wi,j,t ≠ wj,i,t .

For geographical proximity we construct similar measures using two alter-
native de�nitions of proximity. For the �rst measure we use a binary variable
indicating whether two countries (i, j) share a land border. The second mea-
sure is calculated from the distance between centroids of countries di,j as:

wi,j =
1
di,j

. (5.4)

Furthermore, we construct an additional metric that is based on geographic
proximity but also take the size of countries into account. This is motivated
by the hypothesis that policies in larger economies have a stronger e�ect on
policy adoption elsewhere. The size of countries is expressed by the GDP of
a country. In mathematical terms, we de�ne another set of weights

wi,j,t =
GDPj,t
di,j

(5.5)

where di,j is again the distance between countries. A country is therefore
considered more in�uential for domestic policy adoption the closer it is in
space and the larger its economy is. This metric is generally related to grav-
ity models of international trade that make similar assumptions (Baier and
Standaert, 2020).

The number of carbon pricing policies has continuously increased over the
last thirty years. To address concerns about spurious di�usion (Braun and
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Gilardi, 2006), we conduct a placebo test. For this purpose we construct an
additional matrix Wi,t for which we assign a random value for proximity to
every country pair wi,j by drawing from a Weibull distribution that we �t to
the empirical distribution of the distances between countries.

5.2.2 Modelling the e�ect of policy di�usion on GHG emissions

Back-of-the-envelope calculations

In the second step of the analysis, we use our empirical estimates to calcu-
late the expected CO2 emission reductions that can be causally attributed to
policy di�usion. We do so in two ways, �rst with a back-of-the-envelope cal-
culation and then with Monte Carlo simulations. Both methods are brie�y
described here and in more detail in Appendix E.1.1.

For the back-of-the-envelope calculation, we compare a scenario in which
country i adopts carbon pricing in year t with a scenario in which country i
does not do so. For each of the two scenarios, we calculate the hazard rate of
policy adoption at time t + 1 for all other countries j ≠ i based on Equation
5.1. The di�erence between the hazard rates of the two scenarios can then
be considered the additional hazard of policy adoption in country j that can
be attributed to policy di�usion from country i.

To map the hazard rates onto greenhouse gas emissions, we we assume that
carbon pricing reduces emissions in all countries by the same percentage
r = 1%. This assumption has been made in the literature prior to our study
(Eskander and Fankhauser, 2020; Best et al., 2020). Its major limitation is
that it does not take into account that countries that adopt more stringent
carbon pricing policies in terms of the price and sectoral coverage of the
policy are likely to achieve proportionally larger emission reductions. In our
idealised simulations we cannot directly use information on the stringency of
policies, as for many countries no carbon pricing policy has been adopted yet.
Nevertheless, we can use past carbon pricing policies to examine whether in
the past earlier adopters tended to implement more or less stringent pricing
policies than later adopters. If this was the case and if it was more generally
representative for the international di�usion of this policy, our simulated
indirect emission reductions would be biased.

We hence examine trends in the economy-wide average price in the year of
the �rst implementation of carbon pricing policies, which we consider the
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best proxy for the stringency of the policy. The results are shown in the
Appendix in Figure E.22. Reassuringly for our assumption, we do not �nd
any clear trend in the data. While some of the �rst adopters implemented
relatively stringent policies, the trend in more recent years appears slightly
positive, especially if members of the EU ETS are considered as only one
observation.

Monte-Carlo simulations

The back-of-the-envelope calculations neglect di�erences between countries
in terms of their socioeconomic characteristics and associated baseline haz-
ard and also neglects that policies can di�use iteratively from one country to
the next. To address these limitations, we do a more comprehensive quan-
ti�cation of indirect emission reductions. For this purpose, we use the esti-
mated coe�cients of all control variables and the spatial lag and feed them
into Monte Carlo simulations of policy adoption and policy di�usion using
the model in Equation 5.1. As for the back-of-the-envelope calculations we
construct counterfactual scenarios that allow us to quantify the emission re-
ductions that can be attributed to di�usion. More details can be found in
Appendix E.1.2.

For every scenario, we simulate policy adoption and di�usion over the time
period 1988 and 2021, which is the time period for which we obtain our em-
pirical estimates of di�usion. We again assume that adoption of the policy
reduces greenhouse gas emissions by one percent per year and compute the
cumulative emission reductions up to the year 2021.

5.2.3 Data

We use data on carbon pricing including carbon taxes and ETS from the Car-
bon Pricing Dashboard of the World Bank. The dataset includes pricing poli-
cies at the national and subnational level. We use the year in which a policy
was adopted, i.e. in which the corresponding law was passed, because we
consider this to be the point in time at which a policy can start to di�use to
other countries. We assign subnational pricing schemes to the corresponding
countries and then drop for every country all but the �rst national or subna-
tional pricing policy from the sample. For EU member countries, we set the
year of adoption to 2003 regardless their year of ascension to avoid that the
staggered EU ascension might be interpreted as di�usion in our data. The
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adoption of carbon pricing over time in our sample is illustrated in Figure
5.1.

Figure 5.1: Time of adoption of the �rst carbon pricing policy by coun-
try. Hashes indicate countries in which the �rst policy was adopted at the
subnational level.

For a robustness test, we ignore subnational pricing policies. Furthermore,
for another two robustness tests we keep only either carbon tax or ETS poli-
cies in the sample.

For the explanatory variables we use additional data from the World Devel-
opment Indicators of the World Bank, which we complement with replica-
tion data from a comprehensive study on carbon pricing e�ectiveness across
countries (Best et al., 2020). Descriptive statistics of all covariates are shown
in Table D.21.

Table 5.1: Descriptive statistics. The sample contains 179 countries and cov-
ers the years 1988 to 2021. A map of countries is shown in Appendix Figure
E.25.

Variable Unit Mean Std. Min. Max. No. obs.

log GDP per capita PPP 2010 USD 8.42 1.50 5.23 11.63 6086
GDP per capita PPP growth rate - 0.02 0.05 -1.05 0.88 6086
Exports share of GDP percent 39.82 27.92 0.01 228.99 6086
Imports share of GDP percent 46.85 28.96 0.00 424.82 6086
Services share of GDP percent 21.31 13.63 0.15 55.47 6086
Emissions CO2eq per GDP t per k 2010 USD 0.62 0.95 0.00 18.39 6086

5.3 Results

5.3.1 Descriptive evidence

The di�usion of policies can be thought of as a web of leader-follower re-
lationships, whereby policy adoption in the leading country increases the
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likelihood of adoption in the following country. To better understand pat-
terns of policy di�usion in our data, we illustrate some of those bilateral
leader-follower relationships. In the empirical model that we estimate be-
low, adoption by a follower is in�uenced by all leaders, but for ease of visu-
alisation here we only plot di�usion from the leader that is closest to each
follower. Proximity is based on the gravity model, which emerges as our
preferred metric from the econometric analysis in the next Section.

Figure 5.2: Descriptive evidence on possible leader-follower relation-
ships among adopters of carbon pricing. Arrows point from earlier
adopters to later adopters, but arrows are only shown from the leader that is
closest to each of the followers according to the gravity metric. To make the
�gure readable, policy di�usion to members of the EU-ETS is not shown.

We focus on Europe, the American continent, and Asia and Oceania, which
encompasses all carbon pricing schemes in our data except the one in South
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Africa (Figure 5.2). We ignore di�usion to member countries of the EU-ETS
to make the �gure more readable. In Europe, policies appear to have di�used
initially from Finland to other Scandinavian countries and in the Baltics. This
is supported by Harrison (2010), who highlights the importance of the pio-
neering adoption in Finland, which was soon "emulated by its Nordic neig-
bors" (p. 515). In addition, carbon pricing in Poland appears to have had
a relatively large in�uence on carbon pricing in Slovenia. Furthermore, the
EU-ETS appears to have in�uenced the adoption of carbon pricing in the UK,
Switzerland, and Ukraine, most strongly through the respective neighbour-
ing countries Ireland, Luxemburg, and Romania.

On the American continent, pricing policies appear to have di�used from
North to South, starting with subnational policies in Canada and the USA.
Furthermore, Mexico appears to have played a central role in the subsequent
adoption of pricing policies in South-America, speci�cally Colombia, Chile,
and Argentina. In Asia, countries appear to have initially emulated pricing
policies in Europe and North-America. Moreover, carbon pricing in Japan
appears to have had a relatively large in�uence on its subsequent adoption
in Korea, China, and Singapore.

This analysis of policy di�usion based on Figure 5.2 is of course simplistic. In
the next Section, we better account for the possible complexity of the drivers
of policy adoption by estimating Cox proportional hazard models, which si-
multaneously model the in�uence of a year-speci�c baseline hazard, several
country characteristics, and prior policy adoption in all other countries.

5.3.2 Model estimates

We �rst examine whether there is evidence for international policy di�usion
and if so, which metric of the connectedness of countries describes the dif-
fusion of carbon pricing best. To do so, we estimate the Cox proportional
hazard model as in Equation 5.1 with our six explanatory variables and the
spatial lag of carbon pricing constructed from six alternative metrics of the
proximity between countries: the inverse geographic distance, the presence
of a shared land border, import shares, export shares, the average proximity
based on these four metrics, and as gravity metric the product of the inverse
distance and the GDP of a country. Similar to a gravity model, this latter
metric re�ects the idea that a country is more in�uential for domestic policy
adoption the closer it is in space and the larger its economy is. The results
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are presented in Columns 1-6 in Table 5.2.
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Table 5.2: Results of estimation of Cox proportional hazard models with di�erent metrics used for the construction of the spatial lag.
Policy: Carbon price

Proximity metric: Proximity Border Exports Imports Average Gravity

Column: 1 2 3 4 5 6

Spatial lag of carbon pricing 6.8155∗∗∗ 1.9726∗∗∗ 2.4389∗∗ 2.8316∗∗ 4.8575∗∗∗ 6.7053∗∗∗
(1.3603) (0.4822) (1.0013) (1.2728) (1.1399) (1.3469)

GDP per capita PPP 11.5349∗∗∗ 10.4090∗∗∗ 9.9847∗∗∗ 10.1008∗∗∗ 10.6275∗∗∗ 11.5662∗∗∗
(3.6650) (3.5146) (3.6180) (3.6419) (3.6460) (3.6787)

GDP per capita PPP sq. -0.5512∗∗∗ -0.4926∗∗∗ -0.4666∗∗ -0.4751∗∗ -0.5032∗∗∗ -0.5529∗∗∗
(0.1887) (0.1820) (0.1871) (0.1891) (0.1880) (0.1895)

GDP per capita PPP growth 2.0603 2.2431 2.0444 2.1894 2.0292 2.0597
(3.1070) (3.1997) (3.1228) (3.0227) (3.1429) (3.1010)

Export share -0.0056 -0.0085∗ -0.0078∗ -0.0068 -0.0071 -0.0054
(0.0045) (0.0049) (0.0047) (0.0047) (0.0047) (0.0045)

Services share of GDP 0.0273∗∗ 0.0309∗∗ 0.0276∗∗ 0.0288∗∗ 0.0297∗∗ 0.0271∗∗
(0.0136) (0.0135) (0.0127) (0.0128) (0.0139) (0.0136)

Emissions CO2 per GDP -0.0127 -0.0064 -0.0443 -0.0076 0.0021 -0.0121
(0.1140) (0.1078) (0.1005) (0.1063) (0.1070) (0.1140)

Time at risk 5277 5277 5277 5277 5277 5277
log-likelihood -177.6 -181.3 -183.5 -183.7 -179.5 -177.5
AIC 369.2 376.5 381.0 381.5 372.9 369.1
N 5239 5207 5075 5078 5082 5252

Notes: Standard errors clustered by country in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗
p < 0.01.
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For all metrics we �nd a statistically signi�cant and positive coe�cient of
the spatial lag of policy adoption. We interpret this as evidence in favour
of an international di�usion of carbon pricing policies. To identify which
metric describes this di�usion best, we examine the model �ts using the AIC
statistic. We �nd the best model �t for the gravity metric, followed by the
inverse geographical distance between countries and the average metric. In
the remainder of the paper, we therefore use the gravity metric as our pre-
ferred metric and consider the corresponding estimates in Column 6 in Table
5.2 as our baseline estimates.

We next quantify the magnitude of the estimated coe�cients of the spatial
lag of carbon pricing. To this aim, we select a few pairs of countries and cal-
culate how much the adoption of carbon pricing in one country changes the
hazard of policy adoption in the other country, given that no other country
has previously adopted the policy. To do so, we multiply the estimated co-
e�cient of the spatial lag of carbon pricing in Column 6 in Table 5.2 by the
corresponding weight of the other country and exponentiate the result. We
�nd that in the USA prior adoption of carbon pricing by Canada increases
the hazard by about 16%, or by a factor of 1.16 (95% CI of 1.10 to 1.22). In
Germany, prior adoption by France increases the hazard by 17% (10% to 24%),
while in China prior adoption by Japan increases it by 10% (6% to 14%). For
comparison, in the USA prior adoption by China increases the hazard by 3%
and in Germany prior adoption by Japan by slightly more than 1%.

Furthermore, the estimated coe�cients suggest that GDP per capita has a
negative quadratic association with the hazard of carbon pricing adoption
(Column 6 in Table 5.2). To illustrate the magnitude of the estimated coe�-
cients and the declining marginal e�ect of higher income, the results suggest
that an increase of average income from 20,000 USD to 30,000 USD is asso-
ciated with an increase of the hazard by about 17 % and an increase from
30,000 USD to 40,000 USD by about 0.2 %. Furthermore, we �nd statistically
signi�cant coe�cients for the service share of GDP, which tends to increase
the hazard of carbon pricing adoption.

Variation in the hazard over time that cannot be explained by these covari-
ates is in the model represented by the baseline hazard. We �nd that the
baseline hazard is relatively �at except a peak in the year 2003 (Figure E.21
in the Appendix). This year coincides with the adoption of the EU ETS, which
cannot su�ciently well be explained by the covariates in the model.
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To test for violation of the proportional hazard assumption, we conduct a sta-
tistical test based on Schoenfeld residuals (Grambsch and Therneau, 1994).
We �rst estimate a model that only includes the spatial lag of carbon pricing,
for which we can reject proportional hazards with high con�dence (p = 0.01).
This results therefore supports our decision to include covariates in our
model. For the models with six covariates whose results are shown in Table
5.2, we cannot reject the null hypothesis of proportional hazards for any of
the metrics.

As a �rst robustness test of our main estimates, we exclude all subnational
carbon pricing schemes (Column 1 in Table A.11). We �nd that the estimated
coe�cients are very similar to the model including subnational pricing poli-
cies (Column 2 in Table 5.2). Carbon pricing has �rst been implemented
as a tax in 22 countries and as an ETS in 38 countries in our sample. We
next estimate one model based on the adoption of carbon taxes alone (Col-
umn 2 in Table A.11) and one based on the adoption of ETS (Column 3). We
�nd positive but insigni�cant coe�cients of the spatial lag for both models,
suggesting that it is important to allow for alternative implementations of
carbon pricing when examining its international di�usion.
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Table 5.3: Results of estimation of Cox proportional hazard models with di�erent policies, with strati�cation and an additional control
variable, and with a placebo spatial lag.

Policy: Carbon price Tax ETS Carbon price

Proximity metric: Gravity Gravity Placebo

Administrative level: National All All

Strati�cation: None Continents None

Column: 1 2 3 4 5 6

Spatial lag of carbon pricing 5.3678∗∗∗ 3.9343 1.6888 6.4526∗∗∗ 5.5863∗∗ 4.4097
(1.3377) (3.9888) (2.1695) (2.4602) (2.1772) (7.9662)

GDP per capita PPP 13.5128∗∗∗ 6.1164∗ 13.0358∗∗∗ 10.7602∗∗∗ 10.2111∗∗∗ 10.6679∗∗∗
(4.0646) (3.5528) (3.9409) (2.4706) (2.4188) (3.3850)

GDP per capita PPP sq. -0.6514∗∗∗ -0.2705 -0.6155∗∗∗ -0.5171∗∗∗ -0.5065∗∗∗ -0.4994∗∗∗
(0.2087) (0.1886) (0.2013) (0.1246) (0.1194) (0.1755)

GDP per capita PPP growth 1.4117 -3.3774 7.6394∗∗ 2.0850 0.8861 2.1416
(2.4841) (2.1766) (3.4996) (4.4817) (4.6117) (2.3829)

Export share 0.0009 -0.0090 -0.0042 0.0003 0.0061 -0.0044
(0.0032) (0.0084) (0.0048) (0.0044) (0.0042) (0.0032)

Services share of GDP 0.0545∗∗∗ 0.0509 0.0511∗∗∗ 0.0419∗ 0.0446∗∗ 0.0453∗∗∗
(0.0173) (0.0313) (0.0179) (0.0221) (0.0216) (0.0166)

Emissions CO2 per GDP 0.3475 0.3735 0.4084 0.6553∗∗∗ 0.5766∗∗ 0.6332∗
(0.5183) (0.5549) (0.4692) (0.1935) (0.2679) (0.3245)

Kyoto Annex I 40.5713∗
(20.6120)

Time at risk 5277 5600 5395 5277 5277 5277
log-likelihood -177.5 -98.2 -157.6 -129.3 -78.9 -186.1
AIC 369.1 210.4 329.3 272.6 173.9 386.3
N 5252 5575 5332 5252 5252 5074

Notes: Standard errors clustered by country in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗
p < 0.01.
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As additional robustness tests, we next estimate a strati�ed model as in Equa-
tion 5.2. We stratify the sample with a division of the world into the six
continents North-America, Latin-America, Europe, Africa, Asia, and Ocea-
nia. We choose continents because we assume that countries on the same
continent are likely to be a�ected similarly by possibly confounding annual
shocks that are not absorbed well by the �exible baseline hazard of an un-
strati�ed model. This strati�ed model allows for possibly di�erent baseline
hazards on di�erent continents after adjusting for the covariates included in
the model. We �nd that strati�cation barely changes the results (Column 4
in Table A.11). Next, we allow for even more heterogeneity in the hazard rate
by including an additional dummy variable that indicates whether a country
is listed on Annex I of the Kyoto protocol and therefore has speci�c obli-
gations under this framework. Our hypothesis is that countries with such
obligations had a systematically higher baseline hazard of adopting carbon
pricing than countries without such obligations. We �nd that the results are
also robust to this additional variable (Column 5). Furthermore, we increase
the lag time of the spatial lag and �nd similar results for periods between 1
and 5 years, with possibly the best model �t according to the AIC statistics
for a lag time of 3 years (Table E.21 in the Appendix).

As a last robustness check, we conduct a placebo test. For this test, we con-
struct the spatial lag of policy adoption by assigning random numbers to the
proximities between countries. If our previous results are due to spurious
di�usion, for example because of certain trends in the data, we would expect
that we also �nd a statistically signi�cant coe�cient of prior policy adop-
tion in this excercise. Reassuringly, we �nd no signi�cance for this placebo
spatial lag (Column 6 in Table A.11).

5.3.3 Emission reductions

The results from the empirical analysis above suggest that between 1988
and 2020, carbon pricing policies di�used internationally, possibly due to
the learning and emulation mechanisms that we discuss. We next examine
how this di�usion can contribute to reductions of greenhouse gase emis-
sions globally. To this aim, we quantify the emission reductions that can be
attributed to the adoption of carbon pricing in a given country distinguishing
between direct (domestic) emissions reduction and indirect (foreign) emis-
sion reductions (due to di�usion). All results are based on the empirical esti-
mates from the econometric analysis. We �rst do some back-of-the-envelope
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calculations and then use Monte-Carlo simulations.

For the back-of-the-envelope calculations, we use the estimated coe�cient
of the di�usion of carbon pricing from the model with proximity calculated
from an average metric i.e. �W = 6.7053 (Column 6 in Table 5.2). Moreover
we assume a baseline hazard of ℎ⋆0 = 0.01. In an additional robustness check,
we set the baseline hazard to 0.05. Furthermore, we assume that adopting
carbon pricing reduces total annual emissions of GHG by r = 1 percent per
year, irrespective the total emissions of a country. This assumption is in
more detail discussed in Section 5.2.2. We emphasise that this value does not
in�uence the comparison of direct and indirect emission reductions, as both
values scale with this number. We assume that the policy was implemented
at the end of the year t = 2018 and base our calculations on actual domestic
emissions E in the year t + 1 = 2019.

With these assumptions, we calculate direct and indirect emission reductions
(Equations E.6 and E.5, respectively, in Appendix E.1.1). Because we calcu-
late indirect emissions from di�usion for every country separately, indirect
emission reductions for di�erent countries are not additive. We �nd that
indirect emission reductions can be substantial and similar in size to direct
emission reductions. For a baseline hazard of ℎ⋆0 = 0.01, indirect emission
reductions exceed direct emission reductions for about 38 percent of coun-
tries (Figure 5.3 left). For a baseline hazard of 0.05, the share of countries
increases to 73 percent (Figure 5.3 right).
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Figure 5.3: Direct and indirect emission reductions from a back-of-
the-envelope calculation. Emission reductions calculated over one year
for a policy with e�ectiveness of r = 0.01 and a baseline hazard of ℎ⋆0 = 0.01
(left) and 0.05 (right). For countries to the left of the straight lines indirect
emission reductions exceed direct emission reductions.

For this quanti�cation we assumed an equal and constant baseline hazard.
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Furthermore, we examined only the emission reductions over the year imme-
diately following the introduction of the policy. For this reason, the results
do not account for di�erent probabilities of adoption due to di�erent so-
cioeconomic contexts of countries (covariates in the empirical analysis) and
ignore the possibly cascading e�ects of policy di�usion over several years.
To address these limitations, we next conduct Monte Carlo simulations of
policy di�usion.

We �rst assume that carbon pricing is for the �rst time introduced in a given
country in 1988 and then di�uses from there. For the coe�cient of the spa-
tial lag and the baseline hazard, we estimate the model shown in Column
6 in Table 5.2. For simplicity, we assume a constant baseline hazard (expo-
nential survival function), which means that in these forward simulations
di�erences in the hazard of policy adoption stem from the spatial lag and
the covariates only. The indirect emission reductions for di�erent countries
are again not additive.

The Monte Carlo simulations result in probabilities of policy adoption which
we translate into expected direct and indirect emission reductions (Equations
E.7 and E.8, respectively, in Appendix E.1.2). The results are shown in Fig-
ure 5.4. We �nd that indirect emission reductions are as large as or even
larger than direct emission reductions in the majority of countries. Overall,
89 % of countries have larger indirect than direct emission reductions (Fig-
ure 5.4 left). For most of these countries, indirect emission reductions exceed
direct emission reductions by a factor of 1-100, but we also �nd few small
economies with even larger factors (Figure 5.5 left).

Countries with large indirect emission reductions tend to be be relatively
centrally located and close to countries with relatively large emissions. For
example, the two countries with the largest indirect emission reductions are
Belgium and Czech Republic. Most of the world’s largest emitters are mem-
bers of the G20. Those countries show a wide range of indirect emission
reductions (Figure 5.4 left). Owing to their large economies, most of these
countries have larger direct than indirect emission reductions, but for many
of them the two tend to be of a similar order of magnitude.

This �rst exercise simulates policy di�usion for �ctitious scenarios in which
a given country is the �rst and only country to adopt carbon pricing in 1988.
We next conduct a similar exercise which starts in 2020 from the actually ob-
served adoption of carbon pricing by the end of 2020. We again examine two
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Figure 5.4: Direct and indirect emission reductions from Monte Carlo
simulations. Left: Emission reductions calculated over period 1988-2019
assuming no policies prior to 1988. Right: Emission reductions calculated
over period 2020-2050 starting from implemented policies by the end of 2020.
Parameter r = 0.01. G20 economies are shown in blue.

counterfactual scenarios for every country without a carbon price in 2020. In
the �rst scenario, the country adopts carbon pricing in 2020, whereas in the
second scenario it does not. The main di�erences to the previous simulations
are therefore that policies di�use from countries that already adopted carbon
pricing by 2020 but policies cannot di�use to them, which reduces the indi-
rect emission reductions from di�usion for all countries but more so for some
than for others. We again assume a constant baseline hazard and keep the
values of all covariates at their value in 2019 (see also Appendix Figure E.26).
The results are qualitatively similar to the previous results (Figure 5.4 right).
Indirect emission reductions are larger than direct emission reductions in 76
% of countries in the sample (Figure 5.5 left).
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Figure 5.5: Frequency distribution of emission reductions fromMonte
Carlo simulations. Left: Histogram of ratio of indirect to direct emission
reductions. Right: Histogram of direct and indirect emission reductions for
the sample of 179 countries. Based on emission reductions shown in Figure
5.4.
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Furthermore, we �nd that indirect emission reductions are far more equally
distributed across countries than direct emission reductions (Figure 5.5
right). This is the case for the exercise starting in 1988 and the exercise
starting in 2020. This distribution of emission reductions suggests that to-
tal emission reductions from policy adoption are more equally distributed
across countries if one takes into account the emission reductions from in-
ternational di�usion.

In the last part of the analysis, we examine how di�usion a�ects the future
geographical coverage of carbon pricing policies. To this aim, we again con-
duct Monte Carlo simulations starting in 2020 and compare two counterfac-
tual scenarios, one in which we use our empirical estimate of the di�usion
parameter (�W = 6.7053) and one in which we set this parameter to zero
(�W = 0). Both simulations start from carbon pricing policies that were im-
plemented by the end of 2020. In contrast to the previous exercise, we do
not need to run these simulations separately for every country because we
are not interested in the e�ect of di�usion if a speci�c country adopts car-
bon pricing next, but instead in the e�ect of simultaneous di�usion from all
countries with existing carbon pricing policies. All other parameter values
are chosen as in the previous exercise, including the baseline hazard of policy
adoption.

It appears plausible that the probability of carbon pricing adoption is gen-
erally larger in 2020-2050 than it was in 1988-2020. In a sensitivity analysis,
we therefore double the baseline hazard. Importantly, in the sensitivity anal-
ysis we double the baseline hazard in the scenario with di�usion and in the
scenario without di�usion to be able to again isolate the e�ect of di�usion.

We �nd that policy di�usion substantially increases the geographical cover-
age of carbon pricing over the time period 2020-2050 (Figure 5.6). By 2030,
carbon pricing policies cover about 3.5 percentage points more countries and
a 3 percentage points larger share of global greenhouse gas emissions in
the scenario with di�usion than in the scenario without di�usion. By 2050,
the e�ect of di�usion increases to 11 and 9 percentage points, respectively.
Furthermore, with di�usion a similar share of countries has adopted carbon
pricing by 2030 as without di�usion by 2050.

These estimates are obtained with the baseline hazard over the period 1988-
2020 and the values of covariates in 2019. In the sensitivity analysis with
twice the baseline hazard, the bene�ts of di�usion become several times
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Figure 5.6: Geographical coverage of carbon pricing policies from
Monte Carlo simulations for 2020-2050 with and without di�usion.
The diagram shows the share of countries (left) and the share of global emis-
sions (right) covered by carbon pricing policies for scenarios with di�usion
and without di�usion. All scenarios start from carbon pricing policies im-
plemented by the end of 2020. Based on sample of 179 countries and baseline
hazard as estimated for period 1988-2020. Sensitivity analysis uses twice that
baseline hazard.

larger, especially in 2030. For example, the share of countries with carbon
pricing in 2030 is about 23 percentage points larger in the scenario with dif-
fusion than in the scenario without di�usion.

These results add another nuance to the importance of international policy
di�usion. While our results suggest that policy di�usion can substantially
increase the geographical coverage of carbon pricing policies, this coverage
increases only by about 11 percentage points of countries by 2050 relative to
a scenario without di�usion (29 percentage points in the sensitivity analysis).

5.4 Discussion and Conclusions

A possible reason for the slow progress in mitigating global climate change
are concerns about limited e�ectiveness of emission abatements in relatively
small economies. Countering that concern, researchers have identi�ed addi-
tional global bene�ts of a country’s leadership in climate change mitigation
beyond domestic emission reductions (Schwerho�, 2016; Höhne et al., 2018).
For example, stringent climate policies can support international di�usion
of technological innovations that reduce mitigation costs in other countries
(Dechezleprêtre et al., 2011; Barrett, 2021), demonstrate political feasibility,
and create incentives related to trade (Steinebach et al., 2021) and diplomacy
(Kammerer and Namhata, 2018) that nudge other countries to adopt the same
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or similar policies. Overall, adoption of a climate policy at home is likely to
also reduce some emissions abroad, possibly also because of the international
di�usion of that policy.

In this paper, we empirically examine the di�usion of carbon pricing policies
over the last 30 years and quantify the indirect emission reductions that can
be attributed to policy di�usion. As compared to previous work on domestic
in�uences on climate policy adoption (Dolphin et al., 2019; Best and Zhang,
2020; Eskander and Fankhauser, 2020), we focus on international in�uences.
Our results are however in line with this earlier work and provide support
for the importance of domestic factors, suggesting for example a positive
in�uence of the level of GDP per capita on the adoption of carbon pricing
with a declining marginal e�ect at higher values.

The empirical part of our paper builds on prior work on the di�usion of cli-
mate policies. Some of this prior work has also used proportional hazard
models (Sauquet, 2014; Dolphin and Pollitt, 2021). Three studies have exam-
ined the di�usion of carbon pricing using qualitative (Thisted and Thisted,
2020) and similar quantitative methods (Dolphin and Pollitt, 2021; Steinebach
et al., 2021). With the exception of Dolphin and Pollitt (2021), who �nd mixed
evidence, all prior work reports evidence in support of an international dif-
fusion of climate policies. We �nd robust statistical evidence for an interna-
tional di�usion of carbon pricing policies. The magnitude of this di�usion
is substantial: according to our estimates prior adoption of the policy by a
neighbouring country increases the probability of adoption in a given year
by on average about 10 %.

In contrast to the most similar prior work on the international di�usion of
carbon pricing (Dolphin and Pollitt, 2021), we consider carbon taxes and ETS
as two alternative designs of the same policy. This is informed by earlier �nd-
ings that there are no systematic di�erences between countries that chose
either of the two designs (Skovgaard et al., 2019). Furthermore, we consider
it likely that in many cases the decision to adopt carbon pricing is likely
made before the choice of instrument design, as in the case of the EU ETS
(Harrison, 2010).

To some extent, the plausibility of this assumption also depends on the mech-
anism of di�usion. Our work does not propose a speci�c mechanism, but
previous work suggests that learning and emulation are important for the
di�usion of carbon pricing (Biedenkopf et al., 2017; Thisted and Thisted,
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2020). On the one hand, if the observed di�usion is mostly due to learning
from earlier experiences, as it might have been the case for the ETS in Kaza-
khstan that was modelled after the EU ETS (Gulbrandsen et al., 2017) and
the ETS in California that intentionally di�ered from the EU ETS in some
design parameters (Bang et al., 2017), instrument design might play a rela-
tively more important role in di�usion. On the other hand, to the extent that
di�usion is explained by emulation, for example due to an emerging inter-
national norm of carbon pricing (Thisted and Thisted, 2020), speci�c design
parameters might be relatively less important for di�usion. Given the rela-
tively short time periods between the adoption of carbon pricing policies in
neighbouring countries in our sample, which leave little time for learning,
we consider emulation as the more important process.

International coordination of climate policy is likely to be an important fac-
tor underlying this observed di�usion. Especially the Kyoto protocol and
Paris climate agreement created incentives for countries to ratchet up their
mitigation e�orts. Ratcheting up alone can however not explain our main re-
sults, because trends over time are absorbed by the (strati�ed) Cox baseline
term in our empirical model and our results also pass a related Placebo test.
Instead, we consider it likely that the di�usion of carbon pricing can par-
tially be explained by the e�orts of early adopters to promote carbon pricing
in other countries (Biedenkopf et al., 2017) and by multilateral initiatives that
supported exchange of knowledge such as the International Carbon Action
Partnership.

In additional analysis, we use our emprically estimated coe�cients to quan-
tify emission reductions that can plausibly be attributed to di�usion, which
we refer to as indirect emission reductions. By comparing the results of a
treatment and a counterfactual scenario we are able to isolate the e�ect of
international di�usion. However, the resulting values should not be con-
sidered at face value as estimates of actual emission reductions. Above all,
our results for the time period 1988-2019 are based on hypothetical scenar-
ios in which a country adopted carbon pricing as the �rst and only country
in 1988. To address this limitation, we also conduct simlations for the time
period 2020-2050 that start from the actual adoption of carbon pricing poli-
cies in 2020. This analysis is limited in turn by the use of empirical estimates
obtained from the earlier period which are extrapolated into the future. For
simplicity, we also assume that carbon pricing in all countries reduces GHG
emissions proportionally with a uniform annual rate. We address this limita-

141



tion by comparing direct and indirect emission reductions which both scale
with this parameter. Lastly, due to the construction of the scenarios indirect
emission reductions attributed to policy di�usion for a speci�c pioneering
country are not additive with those indirect emission reductions attributed
to other pioneering countries.

Given these limitations, our main objective here is to derive an order of mag-
nitude of indirect emission reductions that is based on our empirical esti-
mates and on assumptions that we consider plausible, and that takes the het-
erogeneous socioeconomic environments, linkages between countries, and
the cascading nature of policy di�usion into account. Our results suggest
that these indirect emission reductions can be substantial: using Monte Carlo
simulations we �nd that for the majority of countries (89 % for 1988-2019 and
76 % for 2020-2050) indirect emission reductions are larger than the direct
domestic reductions.

Moreover, our results suggest that indirect emission reductions due to pol-
icy di�usion are much more equally distributed across countries than do-
mestic GHG emissions. This means that policy di�usion tends to matter
relatively more in relatively small economies. Furthermore, it means that if
one accounts for policy di�usion, the overall e�ectiveness of domestic policy
adoption becomes more equal across countries. These results take into ac-
count our empirical �ndings that suggest that larger economies tend to have
a larger e�ect on international di�usion. The bene�ts of a larger economy
appear however small in our empirical results, somewhat consistent with
the observation of Skovgaard et al. (2019) and the insights obtained from our
descriptive analysis that many of the early adopters of carbon pricing were
relatively small countries.

This insight that the emission reductions from international di�usion are
relatively more important for small countries does not suggest that emission
reductions in large economies are not important. Indeed, these results for
small countries embody an intentional adoption of carbon pricing by large
economies that is in�uenced by prior adoption in smaller countries. Further-
more, this insight does not con�ict with possible barriers to the adoption of
stringent climate policies in small countries which might be particularly ex-
posed to competition on international markets, but highlights the possible
bene�ts of overcoming those barriers.

In the last part of the analysis, we examine to what extent international pol-
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icy di�usion as observed in the past can increase the geographical coverage
of carbon pricing policies in the future. To isolate the e�ect of di�usion,
we simulate scenarios with di�usion and without di�usion over the period
2020-2050. Our results suggest that di�usion can incrase the share of coun-
tries with carbon pricing by about 11 percentage points by 2050 relative to
the scenario without di�usion. As a sensitivity test, we repeat the same ex-
ercise for scenarios in which the future baseline hazard is twice as large as
the historical baseline hazard, in which case the e�ect of di�usion increases
to 29 percentage points. The results similary show that with di�usion a sim-
ilar number of countries adopts carbon pricing by 2030 as without di�usion
by 2050. We emphasise again that these estimates should not be considered
at face value, but indicate an order of magnitude of the e�ects. Overall, our
results suggest that while for individual countries the global bene�ts from
policy di�usion are therefore substantial, the possible contribution of pol-
icy di�usion to the achievement of a high geographical coverage of carbon
pricing policies over the next decades appears limited.

Our study is subject to certain limitations and our results point to some av-
enues for future research. The empirical analysis necessarily focuses on the
time period 1988 to 2020, over which the di�usion of carbon pricing might
have bene�tted from a generally cooperative international political environ-
ment. To what extent a possibly more fragmented international political
environment will a�ect similar di�usion processes in the future remains an
open question. More generally, any extrapolation from past policy di�usion
to future di�usion should of course be made and interpreted with caution.

We focus on the adoption decision of carbon pricing policies and do not ac-
count for di�erences in the stringency of carbon pricing policies. For exam-
ple, for the calculation of direct and indirect emission reductions, we assume
the same e�ectiveness of carbon pricing policies for domestic emission re-
ductions as for emission reductions in other countries. This assumption is
motivated by the fact that there is no information about stringency for many
countries for which we simulate policy adoption as those countries, by the
end of 2021, have not yet adopted such policy. Reassuringly, we examine
data on all carbon pricing policies implemented by the end of 2020 and do
not �nd any clear trend in the initial carbon price over time, which justi�es
our assumption that followers implement policies with similar stringency as
their leaders. Future research might examine how the stringency of pricing
policies a�ects their di�usion and possibly the stringency of later policies.
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Our analysis focuses on carbon pricing policies and subsequent work might
extend this work to other climate policies. Earlier work has focused, for
example, on the rati�cation decisions of the Kyoto protocol (Sauquet, 2014),
feed-in-tari�s and renewable energy quotas (Baldwin et al., 2019; Dolphin
and Pollitt, 2021), and local funding schemes for solar photovoltaic (Abel,
2021). We consider it plausible that the international political environment
of climate policy will be similarly supportive to the di�usion of other types
of policies and that emulation and learning will play an important role in
the adoption of those policies too. More generally, we consider it plausible
that those processes also matter for ratcheting up the stringency of existing
climate policy, for example increases in carbon prices.

Similarly, future research might study the di�usion of carbon pricing policies
at the sectoral level. International competition and the possibility of linking
national ETS suggests some coordination on the inclusion of speci�c sectors.
For example, Bullock (2012) point out how New Zealand synchronised the
inclusion of agriculture in their ETS with its inclusion in the ETS considered
by Australia at that time. At the same time, sectoral coverage is an important
part of the stringency of a pricing scheme and might therefore in�uence the
perceived ambitiousness of a pricing policy relative to prior policies adopted
elsewhere. For example, according to Crowley (2013), the sectoral coverage
relative to the EU ETS was an important consideration of the proposed ETS in
Australia. Future research might therefore want to study sectoral coverage in
the context of international di�usion also as a determinant of the stringency
of policies.

This study focuses on international in�uences on climate policy adoption.
Several previous studies have examined domestic in�uences (Fankhauser
et al. (2015); Klenert et al. (2018); Dolphin et al. (2019); Levi et al. (2020),
among others). Furthermore, over the last 20 years countries tended to adopt
carbon pricing at the end of climate policy sequences, in most cases after the
adoption of a variety of other instrument types including regulatory instru-
ments, subsidies, research and development, and procurement and invest-
ment (Linsenmeier et al., 2022). Future research might attempt to study those
international and domestic in�uences in one empirical framework. Further-
more, we focus on geographic proximity and trade relationships and future
work might consider additional channels through which countries learn and
imitate each other. For example, Kammerer and Namhata (2018) examine to
what extent international climate diplomacy plays a role in di�usion.
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Our results provide evidence for large positive spillovers of domestic climate
policy adoption. They can be interpreted as additional support for the adop-
tion of stringent climate policies, especially in countries where climate poli-
cies might so far have been considered as being of relatively little importance
because of a relatively small domestic economy.
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Concluding remarks

The development of new methods to infer causality has been of great bene�t
to economists studying climate change empirically. This research has been
and continues to be of high importance for society. Despite recent progress
on addressing climate change, such as the Paris agreement, much more ev-
idence is needed to improve our understanding of climate change through
the lenses of economics and to inform policies on mitigation and adaptation.

The �ve papers collected in this thesis make important contributions to the
�eld of climate econometrics. The �rst two chapters push the frontier by
proposing and applying novel strategies to identify the causal e�ect of cli-
mate variability on economies at di�erent time scales. Their results improve
our understanding of how climate in�uences economic activity and repre-
sent important evidence for policy makers. They also motivate paying more
attention to the variability of temperature in empirical and theoretical re-
search. A particular remaining challenge is the quanti�cation of the costs of
uncertainty and its projected changes under future global warming.

The results of the third chapter point to important heterogeneities in the re-
sponse of economies to unusually cold or warm weather. Speci�cally, the
results suggest that cold regions in Europe do not necessarily bene�t from
warmer-than-average years and might therefore bear relatively large costs
from global warming. Furthermore, the results point to some adaptation to
very cold and very hot days. These insights suggest several avenues for fu-
ture research, including replication in similar contexts, more detailed studies
of mechanisms, and a closer examination of adaptation.

Without additional policies, the world will likely fail to limit global warming
to less than 2 degrees Celsius above pre-industrial temperature levels. The
fourth and �fth chapter address speci�c barriers to stringent climate poli-
cies, including several simultaneous market failures, concerns about limited
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e�ectiveness, and concerns about international competitiveness. They fo-
cus on both domestic and international factors that in�uence climate policy
adoption. The results suggest that both perspectives can help to explain past
policies to a certain extent. Future work might combine the two perspec-
tives on mitigation policies, for example in more detailed case studies of in-
dividual countries or groups of countries, to contribute additional qualitative
evidence on the importance of sequencing and di�usion of climate policies.
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Appendix A

Appendix of Chapter 1

A.1 Map of annual mean temperature

Figure A.1: Global map of annual mean temperature.

Notes: The �gures shows the global distribution of annual mean temperature using the
same bins as in Section 1.5.2. Source is ERA-5 reanalysis for 1985-2014 (see Section 1.3.2).
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A.2 Omitted variable biases and multicollinearity

To illustrate the strengths of the SFD framework, I estimate a simple model
in which I explain variation of nightlights by day-to-day temperature vari-
ability. The exercise focuses on day-to-day variability as I can use recent
estimates of its e�ect on regional GDP per capita using variation across time
for identi�cation as benchmark (Kotz et al., 2021b). I use two models, one
without any other explanatory variables and one that also includes annual
mean temperature. I �rst estimate the two models using levels of all variables
and then with the SFD estimator.

I �rst focus on the model with only day-to-day variability (Columns 1 and
2 in Table A.1). I �nd that using levels yields a signi�cantly positive coe�-
cient, contrary to the result by Kotz et al. (2021b). Visual inspection of Figure
1.2 shows that levels of day-to-day variability are relatively low in the trop-
ics and tend to increase with latitude. Estimates using levels could thus be
confounded by any other variable correlated with latitude, such as institu-
tions/colonial legacies. By contrast, the SFD estimator yields a signi�cantly
negative coe�cient, consistent with the previously reported result.

Table A.1: Results of a simple model estimated with levels and SFD.
Dependent variable: log Nightlight density

Estimator: levels SFD
Column 1 2 3 4
Day-to-day variab. of T 0.11857∗∗∗ 0.04641∗∗ -0.76479∗∗∗ -0.68200∗∗∗

(0.03601) (0.02297) (0.19528) (0.18304)
Annual mean temperature 0.12265∗∗∗ 0.89835∗∗∗

(0.02853) (0.11474)
R2 0.0673 0.1055 0.0041 0.0082
df 224454 224453 448909 448908
Notes: The table shows the results of a linear model similar to Equation 1.4 but without
interaction terms estimated with spatial �rst-di�erences. Di�erences in West-East and
North-South are pooled. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Because I use di�erent data and focus on long-term rather than short-term
e�ects of day-to-day variability, the comparability of these estimates with
previous results is limited. Given that the assumptions that need to be satis-
�ed for an unbiased estimate from levels are stronger than those of the SFD
estimator, I expect that the estimates obtained from levels are more prone to
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omitted variable biases. The results presented in Table A.1 include some ev-
idence for it: including annual mean temperature in the model changes the
estimated coe�cient of day-to-day variability obtained from levels by about
60 percent, while its inclusion changes the SFD estimate by much smaller 10
percent.

This latter result points to another advantage of the SFD estimator as com-
pared to the levels-estimator. Because temperature variability at all frequen-
cies (day-to-day, seasonal, interannual) and annual mean temperature are
all in�uenced by latitude (Section 1.2.2), levels of these variables tend to be
highly correlated. This raises concerns about multicollinearity, which has
been recognised as a major challenge of empirically disentangling the e�ect
of multiple climate variables (Au�hammer et al., 2013).

Table A.2: Variance in�ation factors for a model including all geographic
and climatic controls in addition to day-to-day, seasonal, and interannual
temperature variability.

Levels Spatial �rst-di�erences
Variable Pooled NS WE
Day-to-day var. of temperature 59.11 1.87 1.94 1.81
Seasonal var. of temperature 58.94 1.91 2.00 1.81
Interannual var. of temperature 35.02 1.47 1.50 1.42
Annual mean temperature 141.12 3.83 4.13 3.48

Notes: The table shows the VIF of linear models including annual mean temperature, its
day-to-day, seasonal, and interannual variability, as well as all climatic and geographic
control variables shown in Table 1.1. Estimates obtained from spatial �rst-di�erences are
shown for di�erences inWest-East (WE) and North-South (NS) direction and for di�erences
in the two directions pooled.

A common indicator of multicollinearity in a model is the Variance In�ation
Factor (VIF) which is a measure of how much variation of one explanatory
variable in a model is explained by all the other explanatory variables. I
calculate the VIF for a model in which I include the annual mean of temper-
ature and its day-to-day, seasonal, and interannual variability as well as lin-
ear terms of all climatic and geographic control variables (Table 1.1). Typical
critical thresholds for multicollinearity are 5 and 10, corresponding to 80 and
90 percent of all variation being explained by other explanatory variables. I
�nd that multicollinearity is indeed a major concern for the levels-estimator,
but is mitigated by using spatial �rst-di�erences (Table A.2). This analysis of
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the VIF simultaneously accounts for the correlation of temperature variabil-
ity at di�erent time scales and its correlation with any of the climatic and
geographic control variables. Focusing only on the correlation of temper-
ature variability across time scales, I �nd that spatial �rst-di�erencing also
substantially reduces their cross-correlations (Table A.3).

Table A.3: Pearson correlation coe�cients between di�erent temperature
variables.

Variable ( 0) ( 1) ( 2) ( 3)
Pearson correlation of levels
( 0) Annual mean temperature -0.83 -0.86 -0.81
( 1) Day-to-day var. of temperature -0.83 0.90 0.89
( 2) Seasonal var. of temperature -0.86 0.90 0.83
( 3) Interannual var. of temperature -0.81 0.89 0.83
Pearson correlation of spatial �rst-di�erences (WE)
( 0) Annual mean temperature -0.07 0.08 0.05
( 1) Day-to-day var. of temperature -0.07 0.60 0.44
( 2) Seasonal var. of temperature 0.08 0.60 0.49
( 3) Interannual var. of temperature 0.05 0.44 0.49
Pearson correlation of spatial �rst-di�erences (NS)
( 0) Annual mean temperature -0.13 0.11 0.01
( 1) Day-to-day var. of temperature -0.13 0.60 0.50
( 2) Seasonal var. of temperature 0.11 0.60 0.51
( 3) Interannual var. of temperature 0.01 0.50 0.51

Notes: n/a.
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A.3 Estimated coe�cients across bins of annual mean temperature

Figure A.2: Estimated marginal e�ects of annual mean temperature and day-
to-day, seasonal, and interannual temperature variability at di�erent levels
of annual mean temperature.
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Notes: The �gure shows the estimated coe�cients of a model with linear terms for annual
mean temperature, day-to-day, seasonal, and interannual temperature variability in bins
of annual mean temperature (Equation 1.4). The coe�cients can be interpreted asmarginal
e�ects. Error bars show 95 percent con�dence intervals. The bottom two rows show his-
tograms of grid cells and population within the same temperature bins. The geographic
distribution of these bins is shown in Figure A.1 in Appendix A.1.
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A.4 Alternative measures for seasonal variability

Table A.4: Results of a model estimated with SFD with two alternative mea-
sures for seasonal variability of temperature.

Dependent variable: log Nightlight density

Seasonal variability: range std
Column 1 2
Day-to-day variab. of T -0.50448∗∗∗ -0.50031∗∗∗

(0.12930) (0.13259)
Seasonal variab. of T (std) -0.30724∗

(0.16225)
Seasonal variab. of T (range) -0.28016

(0.17127)
Interann. variab. of T ∗ �(T < 20) 0.17369∗∗∗ 0.16939∗∗∗

(0.04441) (0.04337)
Interann. variab. of T ∗ �(T ≥ 20) -0.25220∗∗ -0.25686∗∗

(0.10077) (0.10038)
Day-to-day variab. of T -0.11631 -0.11535
Seasonal variab. of T (std) -0.01906
Seasonal variab. of T (range) -0.00632
Interann. variab. of T ∗ �(T < 20) 0.19185 0.18710
Interann. variab. of T ∗ �(T ≥ 20) -0.27857 -0.28372
Climate controls (linear) x x
Climate controls (quadratic) x x
Geographic controls (linear) x x
Geographic controls (quadratic) x x
R2 0.0249 0.0250
df 448877 448877

Notes: The table shows the results of a model as shown in Equation 1.5 estimated with
spatial �rst-di�erences, pooling di�erences inWE andNS. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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A.5 Discontinuities of treatment

Figure A.3: Histograms of �rst-di�erences in temperature variability.
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Notes: The �gure shows histograms of observations in terms of spatial �rst-di�erences in
temperature variability pooling di�erences in WE and NS. Red lines indicate 5% and 95%
percentile.
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Table A.5: Results of a model estimated with SFD with subsamples, excluding
the bottom 5% and top 5% of observations in terms of the �rst-di�erence in
temperature variability.

Dependent variable: log Nightlight density

Spatial �rst di�erences: Pooled Pooled Pooled
Sampling based on: Day-to-day Season. Inter-ann.
Day-to-day variab. of T -0.79884∗∗∗ -0.76855∗∗∗ -0.61238∗∗∗

(0.14882) (0.15450) (0.16967)
Seasonal variab. of T -0.41895∗∗∗ -0.08313 -0.31921∗∗

(0.13591) (0.16946) (0.14780)
Interann. variab. of T ∗ �(T < 20) 0.16195∗∗∗ 0.11883∗∗∗ 0.16700∗

(0.03496) (0.04223) (0.08586)
Interann. variab. of T ∗ �(T ≥ 20) -0.13970 -0.20035∗∗ -0.07319

(0.08815) (0.09252) (0.09005)
Climate controls (linear) x x x
Climate controls (quadratic) x x x
Geographic controls (linear) x x x
Geographic controls (quadratic) x x x
R2 0.0183 0.0217 0.0212
df 403988 403988 403985
Notes: The table shows the results of a model as shown in Equation 1.5 estimated with
spatial �rst-di�erences, pooling di�erences in WE and NS. Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.6: Results of a model estimated with SFD with and without the in-
clusion of spatial lags.

Dependent variable: log Nightlight density

Spatial �rst di�erences: Pooled Pooled
Columns: 1 2
Day-to-day variab. of T -0.50448∗∗∗ -0.50290∗∗∗

(0.12930) (0.11963)
Seasonal variab. of T -0.28016 -0.37287∗∗

(0.17127) (0.18787)
Interann. variab. of T ∗ �(T < 20) 0.17369∗∗∗ 0.18756∗∗∗

(0.04441) (0.04990)
Interann. variab. of T ∗ �(T ≥ 20) -0.25220∗∗ -0.25231∗∗

(0.10077) (0.09813)
Climate controls (linear) x x
Climate controls (quadratic) x x
Geographic controls (linear) x x
Geographic controls (quadratic) x x
Spatial lags x
R2 0.0249 0.0251
df 448877 447216

Notes: The table shows the results of a model as shown in Equation 1.5 estimated with
spatial �rst-di�erences, pooling di�erences in WE and NS. The model with lags includes
the �rst spatial lag of annual mean temperature, its squared term, and all variables that
measure temperature variability. Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A.7: Results of a model estimated with SFD where spatial di�erences
are calculated by skipping Δi observations.

Dependent variable: log Nightlight density

Spatial �rst di�erences: Pooled Pooled
Δi: 0 1
Column: 1 2
Day-to-day variab. of T -0.50448∗∗∗ -0.55108∗∗∗

(0.12930) (0.14430)
Seasonal variab. of T -0.28016 -0.29782∗

(0.17127) (0.16841)
Interann. variab. of T ∗ �(T < 20) 0.17369∗∗∗ 0.12445∗∗∗

(0.04441) (0.03979)
Interann. variab. of T ∗ �(T ≥ 20) -0.25220∗∗ -0.19516∗

(0.10077) (0.10010)
Climate controls (linear) x x
Climate controls (quadratic) x x
Geographic controls (linear) x x
Geographic controls (quadratic) x x
R2 0.0249 0.0302
df 448877 433257

Notes: The table shows the results of a model as shown in Equation 1.5 estimated with
spatial �rst-di�erences, pooling di�erences in WE and NS. Δi = 0 corresponds to the main
speci�cation in this paper. Δi = 1 means that for taking spatial di�erences, grid cells
are not matched with their immediate neighbour, but with their neighbour’s neighbour.
Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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A.6 Climate data for 1955-1984

Table A.8: Results of a model estimated with SFD for di�erent climate peri-
ods.

Dependent variable: log Nightlight density

Time period (climate): 1985-2014 1955-1984
Column 1 2
Day-to-day variab. of T -0.50448∗∗∗ -0.47408∗∗∗

(0.12930) (0.13475)
Seasonal variab. of T -0.28016 -0.27510

(0.17127) (0.19847)
Interann. variab. of T ∗ �(T < 20) 0.17369∗∗∗ 0.08998

(0.04441) (0.07277)
Interann. variab. of T ∗ �(T ≥ 20) -0.25220∗∗ -0.19300∗∗∗

(0.10077) (0.07264)
E�ect of increase by 1 deg. C on log nightlights
Day-to-day variab. of T -0.11209 -0.10534
Seasonal variab. of T -0.00623 -0.00612
Interann. variab. of T ∗ �(T < 20) 0.19115 0.09902
Interann. variab. of T ∗ �(T ≥ 20) -0.27755 -0.21240
Climate controls (linear) x x
Climate controls (quadratic) x x
Geographic controls (linear) x x
Geographic controls (quadratic) x x
R2 0.0249 0.0247
df 448877 448877

Notes: The table shows the results of a model as shown in Equation 1.5 estimated with
spatial �rst-di�erences, pooling di�erences in WE and NS. Standard errors in parentheses.
Nightlights are for the year 2015. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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A.7 Nightlights for 2015-2019

Table A.9: Results of a model estimated with SFD using di�erent versions
and time periods of the nightlights data.
Dependent variable: Nightlight density

Spatial �rst di�erences: Pooled Pooled Pooled Pooled
Transformation of dep. variable: log arcsinh log log
VIIRS version v1 v1 v2 v2
Nightlights time period 2015 2015 2015 2015-2019
Day-to-day variab. of T -0.50448∗∗∗ -0.48670∗∗∗ -0.49211∗∗∗ -0.48630∗∗∗

(0.12930) (0.13155) (0.13332) (0.13045)
Seasonal variab. of T -0.28016 -0.26858 -0.26720 -0.26709

(0.17127) (0.16780) (0.16633) (0.16823)
Interann. variab. of T ∗ �(T < 20) 0.17369∗∗∗ 0.15849∗∗∗ 0.16691∗∗∗ 0.16386∗∗∗

(0.04441) (0.04734) (0.04755) (0.04906)
Interann. variab. of T ∗ �(T ≥ 20) -0.25220∗∗ -0.25988∗∗ -0.25554∗∗ -0.27256∗∗∗

(0.10077) (0.10321) (0.10221) (0.10035)
Climate controls (linear) x x x x
Climate controls (quadratic) x x x x
Geographic controls (linear) x x x x
Geographic controls (quadratic) x x x x
R2 0.0249 0.0252 0.0255 0.0274
df 448877 448877 448877 448877
Notes: The table shows the results of a model as shown in Equation 1.5 estimated with
spatial �rst-di�erences, pooling di�erences in WE and NS. Standard errors in parentheses.
Main estimates are obtained with nightlights in version 1 for the year 2015. ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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A.8 Sensitivity analysis

The sensitivity of my estimated coe�cients of temperature variability to the
inclusion of omitted variables in the model is quanti�ed using the robustness
value (Cinelli and Hazlett, 2020). The robustness value is the partial R2 that
an omitted variable would need to have with both temperature variability
and nightlights to reduce the estimated coe�cient of temperature variability
to zero. I also quantify the robustness value that would make the estimated
coe�cients insigni�cant (at � = 0.05). The robustness values of day-to-day,
seasonal, and interannual variability are shown in Table A.10. Furthermore,
the table shows the partial R2 of the control variables of my model as bench-
marks and the critical values for those variables for which the robustness
value is exceeded by one of the two partial R2.

For example, to make my estimated coe�cient of day-to-day variability in-
signi�cant, a variable that was added to the model would need to have a par-
tial R2 of at least 2.71 (robustness value) with both out dependent variable
(nightlights) and my treatment variable (day-to-day temperature variability).
To reduce the estimated coe�cient to zero, the robustness value is 2.99. To
interpet these values, I can use my climatic and geographic variables that are
already included in the model as benchmarks. The �rst section of the table
shows that there are only three variables (annual mean temperature, annual
mean relative humidity, and annual mean solar radiation) that have a par-
tial R2 ≥ 2.71 (robustness value for signi�cance) for day-to-day variability
(Column 2). For these three variables the partial R2 with day-to-day variabil-
ity exceeds the robustness value, which means that even a partial R2 with
nightlights smaller than the robustness value could make my estimated co-
e�cients zero/insigni�cant (if these variables were an omitted confounder).
I therefore quantify the critical value for the partial R2 of these variables with
nightlights, which are shown in the bottom section of the table. The critical
values are 0.77, 0.80, and 1.76 respectively. I can see in the top part of the table
(Column 1) that these critical values are not exceeded by the corresponding
partial R2.

Also the results for seasonal and interannual variability are reassuring. I �nd
that four and one of my control variables respectively explain enough of the
variation of temperature variability to be able to render the estimated coef-
�cient insigni�cant (Columns 4, 6, and 8) but for none of these variables my
model has a strong enough association with both nightlights and my temper-
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ature variability variables to make my estimated coe�cients of temperature
variability insigni�cant (Columns 3, 5, and 7).

The benchmarking of this sensitivity analysis can also be interpreted as a
balancing test. Speci�cally, Columns 2 and 4 in Table A.10 show the par-
tial R2 of all covariates for regressions on my treatment variables, day-to-
day (Column 2), seasonal variability (Column 4) and interannual variability
(Columns 6 and 8). The results suggest that no single covariate can explain
more than 10 percent of the residual variation of day-to-day variability, 4
percent for seasonal variability, or 6 percent of the residual variation of in-
terannual variability.
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Table A.10: Results of a sensitivity analysis as proposed by Cinelli and Hazlett (2020).
Day-to-day variability Seasonal variability Interann. var. (T < 20) Interann. var. (T ≥ 20)

Variable R2
Y∼Xj |�d ,X−j

R2
�d ∼Xj |X−j

R2Y∼Xj |�m,X−j
R2�m∼Xj |X−j R2

Y∼Xj |�
y
A,X−j

R2
�yA∼Xj |X−j

R2
Y∼Xj |�

y
B ,X−j

R2
�yB ∼Xj |X−j

Annual mean temperature 0.04115 9.52375 0.04115 1.19277 0.04915 0.97199 0.03630 0.11316
Annual total precipitation 0.00305 0.23419 0.00305 0.09516 0.00411 0.37066 0.00175 0.14781
Annual mean rel. hum. 0.00614 9.25113 0.00614 3.33312 0.01823 1.73334 0.01449 5.28454
Solar rad. annual mean 0.06589 4.59948 0.06589 0.67956 0.06872 0.21369 0.10980 0.68666
Elevation 0.41257 2.64177 0.41257 3.18982 0.55558 0.06992 0.21424 0.17217
Ruggedness 0.27404 0.09342 0.27404 0.19660 0.27126 0.16736 0.29237 0.03908
Distance from nearest coast 0.02488 0.06632 0.02488 2.02610 0.02687 0.43462 0.03704 0.35219
Distance from nearest lake/river 0.24401 0.29917 0.24401 0.20186 0.43069 0.02648 0.17840 0.01711

Robustness values 2.99583 1.03060 1.27824 0.94189

Critical values
Annual mean temperature 0.87896 0.88902
Annual mean rel. hum. 0.90759 0.31125 0.93829 0.16052
Solar rad. annual mean 1.91905
Elevation 0.32571
Distance from nearest coast 0.51895

Robustness values (signi�cance) 2.71166 0.74064 0.91828 0.45353

Critical values (signi�cance)
Annual mean temperature 0.76793 0.77734
Annual mean rel. hum. 0.79475 0.24619 0.82353 0.11478
Solar rad. annual mean 1.75567
Elevation 0.25908
Distance from nearest coast 0.43408

Notes: The table shows the results of a sensitivity analysis using a model with spatial �rst di�erences pooled in North-South and West-East

directions. Standard errors in parentheses. See text for explanation and an example of how to read the table. All values are shown in percent.
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A.9 Control variables

Table A.11: Results of models estimated with di�erent control variables.
Dependent variable: log Nightlight density

Spatial �rst di�erences: Pooled WE NS Pooled Pooled Pooled
Column 1 2 3 4 5 6

Day-to-day variab. of T -0.50448∗∗∗ -0.69073∗∗∗ -0.41483∗∗∗ -0.60062∗∗∗ -0.55172∗∗∗ -1.03221∗∗∗
(0.12930) (0.15170) (0.11675) (0.15917) (0.13816) (0.20010)

Seasonal variab. of T -0.28016 -0.14383 -0.32325∗ -0.22194 -0.23241∗ 0.44984∗∗∗
(0.17127) (0.17498) (0.17247) (0.15297) (0.13572) (0.08412)

Interann. variab. of T ∗ �(T < 20) 0.17369∗∗∗ 0.17134∗∗∗ 0.16404∗∗∗ 0.19419∗∗∗ 0.24093∗∗∗ 0.24093∗∗∗
(0.04441) (0.05661) (0.04454) (0.04814) (0.03951) (0.05338)

Interann. variab. of T ∗ �(T ≥ 20) -0.25220∗∗ -0.23005∗∗ -0.25865∗∗ -0.19005∗∗ -0.18553∗∗ -0.10075
(0.10077) (0.09922) (0.11796) (0.08443) (0.09012) (0.09327)

Climate controls (linear) x x x x
Climate controls (quadratic) x x x
Climate controls (linear in bins) x
Geographic controls (linear) x x x x
Geographic controls (quadratic) x x x
Geographic controls (linear in bins) x

R2 0.0249 0.0250 0.0254 0.0208 0.0312 0.0051
df 448877 224426 224425 448887 448800 448904
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Notes: The table shows the results of a model with linear terms for day-to-day and seasonal variability and an interaction term for interannual

variability (Equation 1.5) estimated with spatial �rst-di�erences. Standard errors in parentheses. WE = West-East, NS = North-South. Pooled

= pooling di�erences in WE and NS.
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A.10 Urban versus rural areas

Table A.12: Results of regressions with subsampling observations based on
population density.

Dependent variable: log Nightlight density

Population density (percentiles): > 95 80-95 < 50
Spatial �rst di�erences: Pooled Pooled Pooled
Column: 1 2 3
Day-to-day variab. of T -0.91061 -0.20431 -0.24728∗∗∗

(0.76166) (0.21245) (0.08610)
Seasonal variab. of T -2.77649∗ -0.95826∗∗∗ -0.16781∗

(1.46725) (0.33788) (0.10051)
Interann. variab. of T ∗ �(T < 20) 1.25644 0.23916∗ 0.05253∗∗

(0.91921) (0.13205) (0.02431)
Interann. variab. of T ∗ �(T ≥ 20) -0.24114 -0.02971 -0.17792∗∗

(0.86465) (0.18254) (0.08717)
Climate controls (linear) x x x
Climate controls (quadratic) x x x
Geographic controls (linear) x x x
Geographic controls (quadratic) x x x
R2 0.0926 0.0181 0.0228
df 6220 23428 293981
Notes: The table shows the results of a model with linear terms for day-to-day and seasonal
variability and an interaction term for interannual variability (Equation 1.5) estimated
with spatial �rst-di�erences. Grid cells are sampled based on their ranking (percentile) in
terms of population density of the within-country distribution of grid cells. For example,
Column 1 shows results for a model which includes only grid cells that are among the
5 percent most densely populated grid cells of the corresponding country. Because I use
spatial �rst-di�erences, I require that grid cells and their neighbours to the West and North
must ful�ll this requirements.
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A.11 Agricultural land use

Table A.13: Results of regressions to examine the role of agriculture.
Dependent variable: log Nightlight density

Spatial �rst di�erences: Pooled Pooled Pooled
Column: 1 2 3
Day-to-day variab. of T -0.50895∗∗∗ -0.51023∗∗∗ -0.50749∗∗∗

(0.12933) (0.12783) (0.12773)
Seasonal variab. of T -0.30296∗ -0.31293∗ -0.31289∗

(0.18080) (0.18653) (0.18356)
Interann. variab. of T ∗ �(T < 20) 0.17643∗∗∗ 0.19750∗∗∗ 0.19352∗∗∗

(0.04819) (0.05019) (0.05023)
Interann. variab. of T ∗ �(T ≥ 20) -0.24130∗∗ -0.23328∗∗ -0.23376∗∗

(0.10101) (0.10163) (0.10149)
Share of cropland 0.06278∗ 0.05787

(0.03758) (0.03868)
Share of pasture -0.07376∗∗∗ -0.06962∗∗∗

(0.02069) (0.02169)
Climate controls (linear) x x x
Climate controls (quadratic) x x x
Geographic controls (linear) x x x
Geographic controls (quadratic) x x x
R2 0.0260 0.0263 0.0268
df 445969 445969 445968
Notes: The table shows the results of a model with linear terms for day-to-day and seasonal
variability and an interaction term for interannual variability (Equation 1.5) estimated
with spatial �rst-di�erences. Standard errors in parentheses.
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Appendix B

Appendix of Chapter 2

B.1 Detrending of time-series

Figure B.11: Time-series of seasonal production: winter (W) and summer (S)
for the USA (left) and Brazil (right).
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Notes: Note that there is no clear ordering of summer and winter within a calendar year.
The order chosen here for visualisation (winter, summer) is arbitrary and does not a�ect
any of the results.
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B.2 Summer peak vs winter peak countries

Table B.21: Results of balancing tests for summer-peak and winter-peak
countries.
Peak of temperature in: W S
Variable Unit Mean Std. Mean Std. p-value
Δ log GDP USD 2010 0.01 0.01 -0.01 0.03 0.000
Δ T deg. C -7.03 4.59 -9.84 4.88 0.011
Δ P mm day-1 -0.03 0.05 -0.02 0.06 0.315
Annual mean temperature deg. C 16.38 7.08 14.63 6.23 0.260
Share of agriculture in GDP percent 4.81 5.33 7.04 6.05 0.090
Share of manufacturing of GDP percent 14.75 4.90 14.36 6.12 0.762
Share of exports of GDP percent 44.58 37.11 44.71 29.94 0.987
Share of imports of GDP percent 42.31 31.25 50.41 27.72 0.239
Share of tourism receipts of GDP percent 9.18 11.07 14.95 12.62 0.036
Share of tourism expenditures of GDP percent 6.52 2.41 6.32 3.95 0.778
Real interest rate percent 7.33 8.02 4.56 5.15 0.096
Share of Christian population percent 64.04 32.18 63.48 32.95 0.940
Share of Muslim population percent 11.82 24.36 13.74 27.22 0.745
log GDP per capita USD 2010 10.02 0.85 9.61 0.73 0.030
Land area 1E6 km2 11.96 2.19 11.48 2.28 0.358
Latitude degrees 22.15 31.34 32.51 24.82 0.120
Latitude, absolute value degrees 32.36 20.22 38.01 14.79 0.177
Notes: There are 43 summer-peak countries (S) and 34 winter-peak countries in the sample.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B.3 Descriptive evidence on statistical associations

Figure B.31: Scatter plot of seasonal di�erences of temperature and log GDP.
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Notes: Colors indicate split of sample into countries in the Northern hemisphere (NH) and
Southern hemisphere (SH).
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B.4 Estimation results to explore alternative channels

Table B.41: Results of regressions to explore possible channels through with temperature variability might a�ect seasonal economic cycles.
Dependent variable: log GDP pc % agriculture % imports % exports % tourism exp. % tourism rec.
Column: 1 2 3 4 5 6
ΔT -0.0152 0.0945 -0.7797 -0.5687 -0.1271 0.0798

(0.0383) (0.1254) (0.6696) (0.7321) (0.1459) (0.2524)
Δ Precipitation 2.0623 21.0396∗∗ -102.0344∗ -133.4057∗∗ 16.5967∗ 59.0979∗∗

(2.2562) (9.8009) (57.8043) (60.5778) (9.7562) (28.9485)
Annual mean temperature -0.0187 0.0189 -0.1567 0.0130 0.1399 0.2440

(0.0275) (0.0821) (0.6110) (0.6476) (0.1297) (0.1736)
log GDP pc -5.9706∗∗∗ 5.1230 16.1331∗∗∗ 0.5443 -5.4378∗∗∗

(0.6544) (3.5792) (4.1690) (0.6466) (1.4660)
log Landarea -0.0362 0.2422 -9.6960∗∗∗ -8.7134∗∗∗ 0.0582 -1.8469∗∗∗

(0.0436) (0.1663) (1.3761) (1.5763) (0.1698) (0.6243)
R2 0.10 0.73 0.59 0.56 0.09 0.33
R2 adj. 0.05 0.71 0.57 0.53 0.03 0.29
N 81 81 81 81 81 81

Notes: Percentages of total GDP. Exp. = expenditures, rec. = receipts. Seasonal di�erences
Δ calculated as winter minus summer. Signi�cance as follows: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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B.5 Speci�cation chart

Figure B.51: Speci�cation chart.
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estimated e�ect of ΔT on Δ log GDP for models with di�erent explanatory variables (top
panel), di�erent underlying data (central panel), and di�erent time periods (bottom panel).
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B.6 Results by industry group

Table B.61: Results of regressions using a sample of GVA by industry groups of 35 European economies.
Variable TOTAL A B-E C F G-I J K L M-N O-Q R-U

ΔT 0.0037∗∗ -0.0010 0.0063 0.0034 0.0072 0.0062 -0.0038 0.0008 0.0009 -0.0062∗∗ -0.0002 0.0008
(0.0018) (0.0204) (0.0039) (0.0032) (0.0046) (0.0043) (0.0023) (0.0033) (0.0015) (0.0027) (0.0028) (0.0035)

Δ Precipitation -0.0807 0.4764 0.0677 -0.0718 -0.1152 -0.0157 0.5887∗∗∗ -0.6512 0.3325 0.6309∗∗ 0.0927 0.3128
(0.1565) (1.4129) (0.2710) (0.2555) (0.7347) (0.4187) (0.1942) (0.3949) (0.2040) (0.2302) (0.3072) (0.4650)

Annual mean temperature -0.0022∗ 0.0068 -0.0051∗∗ 0.0004 0.0050 -0.0061∗∗ -0.0028 0.0033 -0.0023 0.0010 -0.0028 -0.0019
(0.0012) (0.0127) (0.0022) (0.0022) (0.0050) (0.0028) (0.0017) (0.0034) (0.0016) (0.0016) (0.0029) (0.0030)

log GDP pc 0.0179∗ 0.1668∗∗ 0.0052 0.0294∗ 0.0190 0.0193 0.0220∗∗∗ -0.0141 -0.0033 0.0399∗∗∗ -0.0169 -0.0153
(0.0088) (0.0794) (0.0137) (0.0152) (0.0247) (0.0182) (0.0070) (0.0128) (0.0064) (0.0105) (0.0166) (0.0173)

log Landarea 0.0052∗∗∗ 0.0070 0.0076∗∗∗ 0.0094∗∗∗ 0.0052 0.0076∗ 0.0037∗∗ 0.0040 -0.0037 0.0067∗∗∗ 0.0025 0.0012
(0.0016) (0.0180) (0.0026) (0.0026) (0.0051) (0.0038) (0.0015) (0.0035) (0.0023) (0.0019) (0.0034) (0.0044)

R2 0.54 0.19 0.41 0.42 0.22 0.31 0.40 0.12 0.15 0.46 0.12 0.06
R2 adj. 0.46 0.05 0.31 0.32 0.08 0.19 0.30 -0.03 -0.00 0.37 -0.04 -0.11
N 35 35 35 35 35 35 35 35 35 35 35 35

Notes: Seasonal di�erences Δ calculated as winter minus summer. A: Agriculture, forestry
and �shing, B-E: Industry (except construction), C: Manufacturing, F: Construction, G-I:
Wholesale and retail trade, transport, accommo., J: Information and communication, K:
Financial and insurance activities, L: Real estate activities, M-N: Professional, scienti�c
and technical activit., O-Q: Public administration, defence, education, hum., R-U: Arts,
entertainment and recreation; other serv. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B.7 Estimation results for di�erent samples

Table B.71: Results of regressions using the global samples of GDP of coun-
tries that are used for the cross-sectional and the long di�erences estimation.

Dependent variable: Δ log GDP

Sample used for: Cross-section Long di�erences
Column: 1 2
ΔT 0.0105∗∗ 0.0061

(0.0050) (0.0057)
ΔT ⋅ log GDP pc -0.0010∗ -0.0005

(0.0005) (0.0006)
Δ Precipitation -0.1787∗∗ -0.1365∗∗∗

(0.0835) (0.0401)
Annual mean temperature 0.0005 -0.0000

(0.0004) (0.0005)
log GDP pc 0.0031 0.0077

(0.0058) (0.0069)
log Landarea 0.0020∗ 0.0018∗

(0.0011) (0.0009)
R2 0.36 0.40
R2 adj. 0.30 0.34
N 81 60

Notes: Sample of cross-sectional regression is the same as in Table 2.2. Sample of long
di�erences estimation is the same as in Table 2.4. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B.8 Robustness check with seasons based on quarters

Table B.81: Results of regressions using a global sample of GDP of countries
using di�erences between quarter with maximum and mimnimum temper-
ature for identi�cation.

Dependent variable: Δ log GDP

Column: 1 2 3
ΔT 0.0042∗∗∗ 0.0045∗∗∗ 0.0237∗∗∗

(0.0008) (0.0009) (0.0077)
ΔT ⋅ log GDP pc -0.0021∗∗∗

(0.0008)
Δ Precipitation -0.2406∗ -0.2256∗

(0.1364) (0.1351)
Annual mean temperature -0.0003 -0.0005

(0.0007) (0.0007)
log GDP pc -0.0218∗∗∗ 0.0003

(0.0076) (0.0074)
log Landarea -0.0056∗∗ -0.0048∗∗

(0.0022) (0.0021)
R2 0.23 0.43 0.47
R2 adj. 0.23 0.40 0.43
N 81 81 81

Notes: Time period is 1991-2020. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B.9 Past climate trends

Figure B.91: Change in seasonal temperatures between 1981-2000 and 2001-
2020 for winter and summer months.
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B.10 Estimation results by season

Table B.101: Results of regressions using a global sample of GDP of 60 coun-
tries, by season.

Dependent variable: ΔLD log GDP

Column: 1 2
ΔLD Temperature in summer -0.0005 0.0161

(0.0007) (0.0110)
ΔLD Temperature in winter 0.0003 -0.0082

(0.0004) (0.0053)
ΔLDTemperature in summer ⋅ log GDP pc -0.0016

(0.0011)
ΔLDTemperature in winter ⋅ log GDP pc 0.0008

(0.0005)
ΔLDPrecipitation in summer -0.0213 -0.0017

(0.0228) (0.0140)
ΔLD Precipitation in winter -0.0312 -0.0384

(0.0332) (0.0259)
log GDP pc 0.2352

(0.1724)
R2 0.05 0.14
R2 adj. -0.02 0.03
N 60 60

Notes: Long di�erences ΔLD calculated by subtracting mean over 1981-2000 from mean
over 2001-2020. Seasonal di�erences Δ calculated as winter minus summer. Signi�cance
as follows: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B.11 Climate projections

Figure B.111: Future projections of ΔT for RCP4.5 for 2041-2070 and 2071-
2100.

Notes: Seasonal di�erences calculated as winter minus summer. Positive values mean that
temperature in winter is projected to increase more than temperature in summer.
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Figure B.112: Future projections of ΔT for RCP8.5 for 2041-2070 and 2071-
2100.

Notes: Seasonal di�erences calculated as winter minus summer. Positive values mean that
temperature in winter is projected to increase more than temperature in summer.
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B.12 Projected changes to seasonal economic cycles for RCP4.5 and
RCP8.5

Figure B.121: Projections of Δ GDP for two alternative scenarios of future
climate change for the global sample.
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Notes: The plot shows the distribution of the projected changes of Δ log GDP for individual
countries in the vertical direction (violinplots) based on the results from the long-di�erence es-
timation. . Horizontal bars indicate the maximum, median, and minimum values. Seasonal
di�erences Δ calculated as winter minus summer. Positive values mean that for the given sce-
nario GDP will be reallocated from summer to winter.
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B.13 Map of projected changes to seasonal economic cycles

Figure B.131: Map of projections of Δ GDP for the RCP8.5 scenario of future
climate change for the global sample.

Notes: The map shows the distribution of the projected changes of Δ log GDP for the RCP
8.5 scenarios based on the results from the long-di�erence estimation. Seasonal di�erences Δ
calculated as winter minus summer. Positive values mean that for the given scenario GDP will
be reallocated from summer to winter.

197



Appendix C

Appendix of Chapter 3

C.1 Data

Figure C.11: Spatial distribution of annual mean temperature.
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Figure C.12: Spatial distribution of Gross Value Added in Europe in 2015
(2010 USD PPP).
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EUROSTAT industry groups and NACE2 sections

Industry group Median share Group Sections

Agriculture 0.02 A A: Agrictulture, Forestry, and Fishing
Construction 0.06 F F: Construction
Manufacturing 0.18 C C: Manufacturing
Mining and Utilities 0.22 B-E B: Mining and Quarrying

D: Electricity, Gas, Steam, and Air Conditioning Supply
E: Water Supply; Sewerage, Waste Management and Remediation Activities

Trade 0.19 G-I G: Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles
H: Transportation and Storage
I: Accommodation and Food Service Activities

Other Services 0.51 J J: Information and Communication
K K: Financial and Insurance Activities
L L: Real Estate Activities
M-N M: Professional, Scienti�c and Technical Activities

N: Administrative and Support Service Activities
O-Q O: Public Administration and Defence; Compulsory Social Security

P: Education
Q: Human Health and Social Work Activities

R-U R: Arts, Entertainment and Recreation
S: Other Service Activities
T: Activities of Households as Employers; Production activities of Households for own use
U: Activities of Extraterritorial Organisations and Bodies

Table C.11: Industry groups used in the analysis.
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Variable Unit Mean Std. Min. Max. No. obs.

Population density km-2 561.11 1384.38 1.94 21844.42 25911
Gross value added per capita 2010 USD PPP 27.72 17.08 3.35 440.92 22354
Annual mean temperature deg C 10.99 2.76 -0.18 20.43 28413
Seasonal mean temperature DJF deg C 2.83 3.81 -12.59 16.03 28413
Seasonal mean temperature MAM deg C 10.18 2.70 -2.94 19.10 28413
Seasonal mean temperature JJA deg C 19.15 3.07 10.62 29.29 28413
Seasonal mean temperature SON deg C 11.63 3.05 -1.20 23.16 28413
Annual total precipitation m 2.03 0.73 0.23 9.48 28413

Table C.12: Descriptive statistics.

C.2 Additional results

C.2.1 Spatial spill-overs

Figure C.21: Estimated marginal e�ects of model with spatial lag.
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C.2.2 Weighted industry results

Figure C.22: Estimated marginal e�ects by industry at three di�erent levels
of temperature. Estimated coe�cients are multiplied with median share of
industry GVA of total GVA of whole sample. a. Instantaneous e�ect. b.
Cumulative e�ect over six years.

C.2.3 Seasonal e�ects

Figure C.23: Estimated marginal e�ect of seasonal temperature at annual
mean temperature of 0 degree C (left) and 20 degree C (right).
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Figure C.24: Curvature of predicted e�ects estimated with polynomial
degree-day models. a. Quadratic models. b. Cubic models.

C.2.5 Degree-day model

Figure C.25: Estimated e�ects from degree-day model.
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C.3 Additional robustness checks

C.3.1 Sample of countries and years

Dependent variable: di� log GDP per capita

Sample: 1950 - 1997 - 1950 - 1997 -
Time period: World World Europe Europe

Column: 1 2 3 4

T.mean 0.24757∗∗∗ 0.12241∗∗∗ -0.13799∗ -0.30506∗∗
(0.06328) (0.04400) (0.06921) (0.13067)

T.mean.sq -0.00043∗∗∗ -0.00022∗∗∗ 0.00024∗ 0.00053∗∗
(0.00011) (0.00008) (0.00012) (0.00023)

P.mean -0.05238 -0.04239 0.03089 0.06062
(0.04250) (0.05072) (0.09619) (0.07630)

R2 0.2162 0.3655 0.4337 0.5510
df 6338 3503 1110 662

Table C.31: Results of regressions with di�erent samples of countries and
years using the growth rate of national GDP per capita as dependent variable.
See main text for explanation.

C.3.2 Alternative standard errors

204



Dependent variable: di� log GVA per capita

SE: Clustered by country Conley, cuto� at ...
100 km 200 km 400 km 1000 km

FE: r, y r, y r, y x c r, y x c r, y r, y r, y
Time trends: no linear no linear no no no no

Column 1 2 3 4 5 6 7 8

T.mean -0.41167∗∗ -0.52141∗∗ -0.03990 -0.06183 -0.41167∗∗∗ -0.41167∗∗∗ -0.41167∗∗∗ -0.41167∗∗
(0.15234) (0.20691) (0.12926) (0.13850) (0.07239) (0.09307) (0.12875) (0.17218)

T.mean.2 0.00072∗∗ 0.00091∗∗ 0.00007 0.00011 0.00072∗∗∗ 0.00072∗∗∗ 0.00072∗∗∗ 0.00072∗∗
(0.00027) (0.00036) (0.00023) (0.00024) (0.00013) (0.00016) (0.00023) (0.00030)

P.mean 0.00024 0.00064 -0.00090 -0.00087 0.00024 0.00024 0.00024 0.00024
(0.00205) (0.00204) (0.00132) (0.00129) (0.00089) (0.00117) (0.00153) (0.00189)

R2 0.2659 0.3130 0.4628 0.4866 0.2659 0.2659 0.2659 0.2659
df 19701 18337 19258 17925 19701 19701 19701 19701

Table C.32: Results of regressions with di�erent �xed e�ects and time trends (Columns 1-4) and with Conley HAC standard errors with
di�erent cuto� values (Columns 5-8). See main text for explanation.
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C.3.3 Alternative weather data

Figure C.31: Estimated marginal e�ect of increasing annual mean temper-
ature by one unit for subnational GVA using two alternative weather data
sets: ERA reanalysis (left) and Delaware temperature data (right).
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Appendix D

Appendix of Chapter 4

D.1 Causality and the empirical framework

Adoption of carbon pricing

Barriers to carbon pricing

Climate policy portfolio

Country characteristics

-

-

+
+

Figure D.11: Causal diagramwith possibly confounding country char-
acteristics. The red arrows indicate how country characteristics can con-
found the statistical association between the climate policy portfolio and the
adoption of a carbon pricing policy due to an in�uential variable that is omit-
ted in a linear regression.
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D.2 Descriptive statistics

Table D.21: Descriptive statistics of country characteristics included in the
regression analyses for all countries in the sample of G20 economies and
other major emitters (see Table D.51) covering the years 1988-2020. Sources
are listed in Section 5.2.

Variable Unit Mean Std. Min. Max. No. obs.

log GDP pc PPP 2010 USD 9.19 1.29 5.99 11.28 1188
Control of corruption index 0.17 1.05 -1.60 2.15 1188
Education index 0.65 0.16 0.20 0.94 1188
Reserves of coal tons pc 307.01 822.58 0.00 6702.82 1188
Reserves of gas 1000 cubic metres pc 112.65 323.93 0.00 3541.63 1188
Reserves of oil cubic metres pc 419.63 1371.79 0.00 9586.25 1188
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D.3 Results from regression analysis

Table D.31: Results of a logistic regression on the adoption of carbon pricing
(binary variable). Standard errors in parentheses (clustered at country level).
All models are estimated with Maximum Likelihood. The variable selection
of the reduced models in Column 4 is obtained with a Lasso model with
shrinkage parameter � = 0.1. Size of portfolio is measured as described in
Section 5.2. Signi�cance as follows: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Dependent variable: Adoption of carbon pricing

Explanatory variables: Portfolio All Selected Lasso

Column: 1 2 3 4

log GDP per capita PPP 0.4495 0.5640∗
(0.8221) (0.3402)

Coal reserves -1.2343 -0.5379
(1.4830) (0.5035)

Oil reserves -1.5461
(1.1937)

Gas reserves -0.0085∗ -0.0073 -0.0108
(0.0044) (0.0084) (0.0157)

Control of corruption -1.1384
(0.8139)

Education 19.0651∗∗∗
(6.0125)

Policy sequence score 0.1072∗∗∗ 0.0485 0.0808∗∗∗ 0.0994∗∗∗
(0.0245) (0.0338) (0.0221) (0.0242)

Intercept -4.4354∗∗∗ -20.3759∗∗ -8.8369∗∗∗ -3.9841∗∗∗
(0.7497) (8.1861) (3.3383) (0.7238)

Ps. R2 0.33 0.51 0.39 0.35
AIC 641.66 479.73 595.02 625.47
No. countries 36 36 36 36
N 1188 1188 1188 1188
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Table D.32: Results of linear regression on the size of climate policy portfolio at the time of adoption of a national carbon pricing policy.
Robust standard errors in parentheses. All models are estimated with OLS. The variable selection of the reduced models in Columns 4
and 8 is obtained with a Lasso model with shrinkage parameter � = 0.1. Size of portfolio is measured as described in Section 5.2. Carbon
price at implementation is calculated as an economy-wide average price. The positive coe�cient of oil reserves in Columns 2-4 becomes
insigni�cant if Canada is dropped from the sample, consistent with the results by Best and Zhang (2020). Signi�cance as follows: ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

Dependent variable: Policy sequence score Carbon price at implementation

Explanatory variables: Time All Selected Lasso Portfolio All Selected Lasso

Column: 1 2 3 4 5 6 7 8

log GDP per capita PPP -0.3065 -0.3598 -0.0551 0.3032
(0.6389) (0.3817) (0.4820) (0.2632)

Coal reserves -0.2631 -0.4717∗∗∗ -0.3787∗∗∗ 0.1396 0.0563
(0.3648) (0.1061) (0.0904) (0.2898) (0.1056)

Oil reserves 0.6041∗∗ 0.4866∗∗ 0.3336∗∗∗ -0.1718 -0.1624∗∗ -0.1193
(0.2159) (0.1808) (0.0669) (0.1832) (0.0571) (0.0722)

Gas reserves -0.9966 0.3461
(1.0017) (0.9932)

Control of corruption -0.1574 0.5966 0.3323∗∗
(0.3191) (0.3191) (0.1357)

Education 0.1547 -0.2415
(0.1926) (0.1894)

Policy sequence score 0.5960∗∗∗ 0.4805∗ 0.4957∗∗ 0.3960∗∗
(0.1507) (0.2066) (0.1577) (0.1320)

Year of adoption -0.5067∗∗ -0.9301∗ -0.9112∗∗ -0.6283∗∗∗
(0.2043) (0.4650) (0.3138) (0.1679)

Intercept -0.0336 0.0176 0.1769 0.0722 -0.1687 -0.0713 -0.1265 -0.1332
(0.1883) (0.1798) (0.1281) (0.1873) (0.1959) (0.3606) (0.2123) (0.2012)

R2 0.27 0.76 0.71 0.66 0.42 0.66 0.53 0.58
N 15 15 15 15 15 15 15 15
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D.4 Policy portfolios by the end of 2020

Carbon pricing and policy portfolios by end of 2020

6/8 instrument types

7/8 instrument types

Carbon price (national) Carbon price (subnational)

Not enough data

Fewer instrument types

Figure D.41: Carbon pricing policies and the number of instrument
types in countries’ policy portfolios. Map shows the policy portfolios
as of end of 2020. Number of instrument types only shown for countries
without a carbon price at the national level.
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D.5 Sample of countries

Table D.51: List of countries included in the main analysis and their carbon
pricing policies by the end of 2020. Sectors: E = Electricity and Heat Produc-
tion, I = Industry, B = Buildings, T = Transport, A = AFOLU.

Carbon pricing policies

Sample Year of �rst adoption Sectoral coverage

ISO code G20 Other National Subnational E I B T A

ARG X 2018 X X X X X
AUS X
BRA X
CAN X 2019 2007 X X X X X
CHN X 2013
DEU X 2005 X X X
FRA X 2005 X X X
GBR X 2005 X X X
IDN X
IND X
ITA X 2005 X X X
JPN X 2012 2010 X X X X X
KOR X
MEX X 2014 X X X X X
RUS X
SAU X
TUR X
USA X 2009
ZAF X 2019 X X X X
ARE X
CHE X 2008 X X X X
CHL X 2017 X X
COL X 2017 X X X X X
EGY X
ESP X 2005 X X X
IRN X
IRQ X
KAZ X 2013 X X X
KWT X
MYS X
NIG X
PAK X
THA X
UKR X 2011 X X X
UZB X
VEN X
VNM X
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Table D.52: List of countries not included in the main analysis because of
insu�cient data on policy adoption, but which had a national carbon price
implemented by the end of 2020.

Carbon pricing policies

Year of �rst adoption Sectoral coverage

ISO code EU ETS National Subnational E I B T A

SGP 2019 X X
HRV Yes 2013 X X X
ISL Yes 2013 X X X X X
LIE Yes 2008 X X X X
NZL 2008 X X X X
BGR Yes 2007 X X X
ROU Yes 2007 X X X
AUT Yes 2005 X X X
BEL Yes 2005 X X X
CYP Yes 2005 X X X
CZE Yes 2005 X X X
EST Yes 2005 X X X
GRC Yes 2005 X X X
HUN Yes 2005 X X X
IRL Yes 2005 X X X
LTU Yes 2005 X X X
LUX Yes 2005 X X X
MLT Yes 2005 X X X
NLD Yes 2005 X X X
PRT Yes 2005 X X X
SVK Yes 2005 X X X
LVA Yes 2004 X X
SVN Yes 1996 X X
DNK Yes 1992 X X
NOR Yes 1991 X X X X X
SWE Yes 1991 X X
FIN Yes 1990 X X X
POL Yes 1990 X X X X X
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D.6 Instrument types and sectors

Figure D.61: Frequency of instrument types in di�erent sectors.
Heatmap is based on all policies adopted by countries in the sample. Notes:
AFOLU = Agriculture, Forestry, and other Land Use.
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D.7 Instrument types and instrument categories

215



Table D.71: List of instrument categories, their instrument type, and their frequency in the sample of 37 countries.
Instrument type Instrument category Number

Grants, subsidies, other �n. incentives Grants and subsidies 342
Grants, subsidies, other �n. incentives Tax relief 191
Grants, subsidies, other �n. incentives Feed-in tari�s or premiums 128
Grants, subsidies, other �n. incentives Loans 96
Grants, subsidies, other �n. incentives Fiscal or �nancial incentives (other) 91
Grants, subsidies, other �n. incentives Energy and other taxes 74
Grants, subsidies, other �n. incentives GHG emission reduction crediting and o�setting mechanism 43
Grants, subsidies, other �n. incentives GHG emissions allowances 42
Grants, subsidies, other �n. incentives Market-based instruments (other) 34
Grants, subsidies, other �n. incentives Tendering schemes 28
Grants, subsidies, other �n. incentives Net metering 19
Grants, subsidies, other �n. incentives other CO2 taxes 19
Grants, subsidies, other �n. incentives Economic instruments (other) 16
Grants, subsidies, other �n. incentives Retirement premium 11
Grants, subsidies, other �n. incentives User charges 8
Grants, subsidies, other �n. incentives Removal of fossil fuel subsidies 1
Information and Education Information provision 315
Information and Education Advice or aid in implementation 172
Information and Education Endorsement label 78
Information and Education Comparison label 69
Information and Education Professional training and quali�cation 39
Information and Education Information and education (other) 29
Information and Education Green certi�cates 27
Information and Education Performance label (other) 14
Information and Education White certi�cates 13
Information and Education Barrier removal (other) 1
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Table D.72: List of instrument categories, their instrument type, and their frequency in the sample of 37 countries (cont.).
Instrument type Instrument category Number

Policy Support Strategic planning 692
Policy Support Institutional creation 177
Policy Support Policy support (other) 153
Policy Support Political & non-binding climate strategy 72
Policy Support Political & non-binding GHG reduction target 67
Policy Support Political & non-binding renewable energy target 62
Policy Support Formal & legally binding renewable energy target 43
Policy Support Formal & legally binding climate strategy 40
Policy Support Formal & legally binding GHG reduction target 39
Policy Support Political & non-binding energy e�ciency target 29
Policy Support GHG reduction target (other) 21
Policy Support Formal & legally binding energy e�ciency target 20
Policy Support Renewable energy target (other) 20
Policy Support Coordinating body for climate strategy 18
Policy Support Target (other) 12
Policy Support Energy e�ciency target (other) 7
Policy Support Climate strategy (other) 3
Procurement and investment Infrastructure investments 123
Procurement and investment Procurement rules 62
Procurement and investment Funds to sub-national governments 44
Procurement and investment Direct investment (other) 18
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Table D.73: List of instrument categories, their instrument type, and their frequency in the sample of 37 countries (cont.).
Instrument type Instrument category Number

Regulatory Instruments Other mandatory requirements 192
Regulatory Instruments Monitoring 178
Regulatory Instruments Product standards 129
Regulatory Instruments Sectoral standards 115
Regulatory Instruments Regulatory Instruments (other) 100
Regulatory Instruments Building codes and standards 99
Regulatory Instruments Vehicle fuel-economy and emissions standards 93
Regulatory Instruments Obligation schemes 88
Regulatory Instruments Auditing 75
Regulatory Instruments Codes and standards (other) 58
Regulatory Instruments Grid access and priority for renewables 29
Regulatory Instruments Industrial air pollution standards 3
Regulatory Instruments Vehicle air pollution standards 2
Research, Development and Deployment Technology deployment and di�usion 131
Research, Development and Deployment Technology development 112
Research, Development and Deployment Demonstration project 108
Research, Development and Deployment RD&D funding 93
Research, Development and Deployment Research & Development and Deployment (RD&D) (other) 72
Research, Development and Deployment Research programme (other) 11
Voluntary Approaches Negotiated agreements (public-private sector) 153
Voluntary Approaches Public voluntary schemes 25
Voluntary Approaches Voluntary approaches (other) 23
Voluntary Approaches Unilateral commitments (private sector) 9
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Appendix E

Appendix of Chapter 5

E.1 Quanti�cation of the global bene�ts of di�usion

E.1.1 Back-of-the-envelope calculations

In the second step of the analysis, we use our empirical estimates to calcu-
late the expected CO2 emission reductions that can be causally attributed
to policy di�usion. We do so in two ways, �rst with a back-of-the-envelope
calculation and then with Monte Carlo simulations.

For the back-of-the-envelope calculation, we compare two counterfactual
scenarios: scenario A in which country i adopts carbon pricing in year t and
scenario B in which it does not do so. For both scenarios, we calculate the
hazard of policy adoption at time t + 1 for all countries j ≠ i. The additional
hazard that is due to policy di�usion from country i to country j can then be
calculated as the di�erence between the hazards of the two scenarios.

Formally, for all countries j ≠ i we compare the two hazards (Equation 5.1)

ℎA(t + 1, Xj,t ,W A
j,t) = ℎ0(t + 1) exp (Xj,t�X) exp (W

A
j,t�W ) (E.1)

and

ℎB(t + 1, Xj,t ,W B
j,t) = ℎ0(t + 1) exp (Xj,t�X) exp (W

B
j,t�W ) (E.2)

For simplicity, we assume that in scenario B, no country has adopted the
policy at time t , i.e. Yj,t = 0 ∀j, which implies that the spatial lag is zero for
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all countries, i.e. W A
j,t = 0 ∀j (Equation 5.3). Furthermore, we assume that

after adjusting for covariates all countries j have the same baseline hazard,
i.e. ℎ0(t + 1) exp (Xj,t�X) = ℎ∗0(t + 1) ∀j.

With these assumption, we can calculate the additional hazard in country j
from policy adoption in country i as

Δℎj,t+1 = ℎB(t + 1, Xj,t ,W B
j,t) − ℎ

A(t + 1, Xj,t ,W A
j,t)

= ℎ∗0(t + 1) [exp (W
B
j,t�W ) − 1] (E.3)

Because in scenario B only country i adopts the policy, i.e. Yj,t = 0 ∀j ≠ i, we
can calculate the spatial lag as (Equation 5.3)

W B
j,t =

wi,j,t

∑Nc
i=1,i≠j wi,j,t

∀j (E.4)

The total indirect emission reductions due to di�usion can then be calculated
as

Rindirecti,t+1 = r∑
j≠i
Δℎj,t+1Ej,t+1 (E.5)

where Ej,t are the total CO2 emissions of country j in year t and r is the rate
at which emissions are reduced per year. We compare these indirect emis-
sion reductions with the direct emission reductions obtained with similar
assumptions

Rdirecti,t+1 = rEi,t+1 (E.6)

For these calculations, we use actual CO2 emissions in the year 2019, which
is the last year prior to the pandemic with Sars-CoV-2.

For the back-of-the-envelope calculations we only quantify emission reduc-
tions in year t + 1. Subsequent emissions reductions, including those from
further di�usion of the policy, are quanti�ed with Monte Carlo simulation
as described in the following.
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E.1.2 Monte-Carlo simulations

The Monte Carlo simulations are based on Equations E.1 and E.2. We start
the simulations in the year t = 1988 and assume that no country has adopted
the policy prior to that. For every country i, we then conduct simulations for
the same two scenarios A and B as above: in scenario A, no country adopts
the policy in the year t = 1988. In scenario B, only country i adopts the
policy at t = 1988.

For both scenarios, we then simulate adoption and di�usion of climate poli-
cies from the year 1989 onwards. To do so, at every timestep 1989 ≤ t ≤ 2021
we update the spatial lag Wj,t of every country, calculate its hazard of pol-
icy adoption, and use this hazard to draw from a probability distribution to
determine whether the country adopts or does not adopt the policy at this
timestep.

We conduct 5,000 simulations for every country for scenario B and 10,000
simulations for scenario A, which is the counterfactual of scenario B for all
countries. The simulations of scenario B result for every country i in one
matrix of probabilities of policy adoption of country j in year t , PBi,j,t with
∑2021

t=1988 PBi,j,t = 1 ∀i, j. The simulations of scenario A result in another matrix
PAj,t that again satis�es ∑2021

t=1988 PAj,t = 1 ∀j. Because there is no di�erence in the
counterfactuals, this matrix PAj,t is the same for all countries i.

Based on these probabilities, for every country i we subsequently calculate
the expected direct emission reductions and the expected indirect emission
reductions due to policy di�usion. The indirect emission reductions again re-
fer to emisson reductions that can be attributed to the di�usion of the policy
from country i to other countries and onwards. For both direct and indirect
emission reductions, we use actual emission growth rates and subtract the
e�ect of the carbon pricing policy from them. Formally, for every country i
we calculate the direct emission reductions from 1988 - 2019 of implementing
the policy in year 1988 as

R̂directi,2019 =
2019

∑
t=1988 [

Ei,t − Ei,1988
t

∏
l=1988

(1 + gi,l − r)]
(E.7)

where gj,t is the actually observed growth rate of CO2 emissions of country j
in year t and r is the e�ectiveness of carbon pricing as in the Section above.
For the indirect emission reductions that can be attributed to policy di�usion
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from country i to other countries, we use the probabilities of policy adoption
PAj,t and PBi,j,t of the scenarios A and B respectively. In mathematical terms, we
take the di�erence between the expected emission reductions between the
two scenarios:

R̂indirecti,2019 = ∑
j≠i [

2019

∑
�=1988 [

(PBi,j,� − P
A
j,�) [

�

∑
t=1988

Ej,t + Ej,�
2019

∏
l=�
(1 + gj,l − r)]]]

(E.8)

E.2 Additional results
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Figure E.21: Cumulative baseline hazard of the Cox proportional hazard
model in Equation 5.1 with six covariates. Estimated coe�cients of this
model are shown in Column 2 in Table 5.2.
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Figure E.22: Scatter plot of economy-wide emission-weighted average car-
bon prices over time.
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Figure E.23: Time of adoption of the �rst carbon tax policy by country.
Hashes indicate countries in which the �rst policy was adopted at the sub-
national level.

Figure E.24: Time of adoption of the �rst ETS policy by country. Hashes
indicate countries in which the �rst policy was adopted at the subnational
level.

Figure E.25: Map of the sample of 179 countries used in this study.
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Table E.21: Results of estimation with di�erent lag times.
Policy: Carbon price

Proximity metric: Gravity

Lag time: 1 2 3 4 5

Column: 1 2 3 4 5

Spatial lag of carbon pricing 6.7053∗∗∗ 6.3749∗∗∗ 6.5309∗∗∗ 6.5649∗∗∗ 6.9365∗∗∗
(1.3469) (1.3561) (1.4128) (1.4821) (1.5248)

GDP per capita PPP 11.5662∗∗∗ 11.0535∗∗∗ 11.2919∗∗∗ 10.1004∗∗∗ 9.7194∗∗∗
(3.6787) (3.5089) (3.3388) (3.0844) (2.9444)

GDP per capita PPP sq. -0.5529∗∗∗ -0.5279∗∗∗ -0.5368∗∗∗ -0.4788∗∗∗ -0.4623∗∗∗
(0.1895) (0.1806) (0.1730) (0.1610) (0.1535)

GDP per capita PPP growth 2.0597 2.0058 8.1873∗∗∗ 5.6635∗∗∗ 3.9481
(3.1010) (4.2026) (1.6269) (2.1262) (3.8003)

Export share -0.0054 -0.0054 -0.0069 -0.0057 -0.0042
(0.0045) (0.0043) (0.0044) (0.0045) (0.0041)

Services share of GDP 0.0271∗∗ 0.0251∗ 0.0230∗ 0.0219∗ 0.0206∗
(0.0136) (0.0135) (0.0124) (0.0123) (0.0115)

Emissions CO2 per GDP -0.0121 -0.0083 -0.0049 -0.0197 -0.0008
(0.1140) (0.1107) (0.1203) (0.1013) (0.0976)

Time at risk 5277 5277 5277 5277 5277
log-likelihood -177.5 -179.5 -177.3 -180.3 -182.1
AIC 369.1 373.0 368.6 374.6 378.1
N 5252 5230 5203 5174 5142

Notes: Standard errors clustered by country in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗
p < 0.01.
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Figure E.26: Histogram of estimated baseline hazard adjusted for covariates
in 2020 for the sample of 179 countries. Median and mean values are 0.14
and 0.32 percent, respectively. Probabilities of 0.32, 1, and 5 percent imply a
cumulative probability of policy adoption by the end of a period of 30 years
of 9, 26, and 79 percent, respectively.
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