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Abstract

Economists and policy makers are increasingly concerned with the heterogeneous impact of
economic policies, on top of their overall effectiveness. However, understanding precisely
how they impact different population groups often requires specific approaches and data
sets. This thesis contributes to this issue by leveraging novel data sets and methods to
improve the economic analysis of carbon emissions, the measurement of inflation and the
measurement wage inequality.

The first chapter analyzes to what extent countries can reduce their CO2 emissions by
changing the composition of consumption rather than the underlying technology, with a
focus on food products. I document that carbon intensity is heterogeneous even within
detailed product categories. I then show that well-targeted taco deliver large efficiency gains,
and that the impact of carbon taxes across households varies strongly with their exposure
to high-carbon products, but not with their expenditure level. In addition, the welfare cost
of reducing carbon emissions varies strongly across product categories, providing a new
justification for granular taxes or, equivalently, carbon markets.

The second chapter concerns the inflation dynamics during the Covid-19 lockdown in France.
Using scanner data on fast-moving consumer goods from a large retailer, I find that the
lockdown lead to an important, generalized but temporary increase in price levels across
product categories. Further, I find that this inflation shock was asymmetric across products,
households and cities, and that this asymmetry did not vanish on the medium-term.

The third chapter focuses on the contribution of firm heterogeneity to wage inequality
and its measurement in two-way fixed effect models. I provide evidence that firm-side
drivers of wage inequality are overestimated by at least 25% because of model overfitting.
I then provide a simple procedure to recover the correct measures of interest, show that
the correction matters quantitatively and derive more precise estimates of firm effects using
shrinkage methods.
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Chapter 1

Demand-side substitution and the welfare cost of re-
ducing carbon emissions

Abstract

Can countries reduce their carbon emissions by changing the composition of consumption
instead of, or in addition to, changing the underlying production technology? If so, what type
of policy would be most effective? I contribute to answering these questions by introducing a
novel dataset linking barcode level food consumption choices to carbon emissions, describing
new stylized facts and analyzing their policy implications. I first document that about
a third of the variation of carbon intensity across products and households comes from
differences within, rather than between, detailed product categories. Building on this fact
and on an estimation of the demand system, I derive three sets of results. First, well-targeted
taxes deliver large efficiency gains: a product-level tax achieves the same carbon emissions
reduction as a tax across product departments, at a 64% lower utility cost. Second, the
impact of carbon taxes across households varies strongly with their consumption’s average
carbon intensity, but not with their expenditure level. Third, the welfare cost of reducing
carbon emissions varies strongly across product categories: an exogenous 5% price increase
on two detailed categories would reduce food carbon emissions by about 1% at a utility cost
of 1.5€ per household, or 0.1% of the average annual food expenditure in this data. Overall,
this paper highlights the need for environmental policies to leverage the substitution patterns
within detailed product categories, and thus provides a new justification for granular taxes
or, equivalently, carbon markets.

10



CHAPTER 1. REDUCING CARBON EMISSIONS THROUGH SUBSTITUTION 11

1.1 Introduction

Can countries reduce their carbon emissions1 by changing the composition of consumption
instead of, or in addition to, changing the underlying production technology? If so, what
type of policy would be most effective? In this paper, I contribute to answering these
questions by introducing a novel dataset linking barcode level food consumption choices to
carbon emissions, describing new stylized facts and analyzing their policy implications.

This newly assembled data set results from the combination of scanner data from a large
French retailer with publicly available data from the French agency for environmental
transition (ADEME) on direct and indirect carbon emissions. Detailed information on price,
quantity and carbon emissions are available for 27, 000 products and 160, 000 households
over 2017 to 2019, which allows me to document the relationship between consumption and
carbon emissions at an unprecedented level of granularity. This data addresses a meaningful
share of the overall problem of reducing carbon emissions, as about 26% of all anthropogenic
carbon emissions comes from the food supply chain (Poore and Nemecek, 2018).

This data is first used to document new stylized facts focusing primarily on carbon intensity
across products and households, defined as the amount of CO2-equivalent (CO2eq) carbon
emission per real euro spent. I emphasize carbon intensity for three reasons. First, because
from an economic policy perspective, changes in carbon intensity summarizes the degree of
decoupling in an economy, that is the degree at which output and carbon emissions grow
at different rates and ultimately in different directions. Put otherwise, as long as policy
makers have as dual objective to decrease carbon emissions and promote economic growth,
carbon intensity is a major parameter of interest. Second, because carbon intensity is a
well-defined measure both at the macro and at the micro level, and therefore enables me
to draw meaningful macro conclusions from micro data. In particular, carbon intensity
scales well. Economy-wide carbon intensity is simply the market-share weighted average of
carbon intensity of all the products : Ē

Y ≡ ē =
∑

i si · ei, where Ē denotes the overall carbon
emissions, Y denotes the aggregate real output, ē is by definition the average carbon intensity
at the aggregate level, i sums over products of the economy (or sectors, or households), si is
the market share of sector i and ei = Ei

Yi
is the carbon intensity of product i. Last, focussing

on carbon intensity is also justified from an optimal taxation perspective. I show below that
optimal carbon taxes on products, expressed as a percentage of their price, are in general a
weighted average of carbon intensity.

I document two empirical patterns on the distribution of carbon intensity across products.
In this paper, barcode-level products (N ≈ 27, 000) are nested into products modules
(N ≈ 1, 000), which are themselves nested into product sub-groups (N = 115), themselves

1Throughout this paper, I use interchangeably the terms carbon, carbon dioxide (CO2) and green-house
gas (GHG). All are expressed in units of CO2 equivalent (CO2eq) emissions.
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nested in product groups (N = 62), which are finally nested in product departments
(N = 11). Taken together, this set of results shows that carbon intensity is very heterogenous
across products, and that this heterogeneity comes from differences within narrow product
categories, rather than differences between product categories. Specifically, food consumption
is skewed towards high-carbon intensity products, even within detailed product categories.
In addition, within-group variation in carbon intensity explains a significant share of the
overall variation, even within these detailed product categories. More precisely, 57% of the
variance of carbon intensity across products comes from within product sub-groups. In the
appendix, I complement these finding by documenting the fact that carbon intensity of
supplied product is very heterogenous, and this patterns holds even within narrow product
categories. Furthermore, targeting a small number of detailed product categories has
the potential to achieve significant reduction in carbon emissions. Leveraging data from
an environmental label, back-of-the-envelope calculations suggest that a policy focusing
on only two detailed product categories, which would incentivize consumers to shift low
environmental quality products to high environmental quality products within the same
category would reduce carbon emissions from food by close to 6%.

Looking at the distribution of carbon intensity across households suggests that consumption
choices within product categories, rather than between product categories explains a signifi-
cant share of the difference in carbon intensity. Variation in carbon intensity within detailed
product category accounts for between 21% and 46% of the difference between households in
the top and bottom decile, depending on whether they are ranked by expenditure or carbon
intensity. In the appendix, I complement this finding by relating it to the previous literature.
There is a modest but statistically significant negative relationship between carbon intensity
and expenditure across households: a 10% increase in monthly expenditure is associated
with a decrease of 0.003 points of carbon intensity, or 0.5% of the average carbon intensity.
While these estimates of CO2-expenditure elasticity are in line with previous literature, this
hides important heterogeneity across products: almost half of the product categories have
elasticities significantly greater than 1, which is the upper bound of elasticity estimates in
Chancel et al. (2015). Overall, the heterogeneity in carbon intensity documented by these
stylized facts suggests that there is room for policies incentivizing households to shift their
consumption patterns towards less carbon intensive alternatives. However, these stylized
facts alone do not consider the utility cost to the households of making those changes. This
is why this paper then turn to a model of food demand to address this questions.

I first build a simple framework in which a social planner chooses a set of optimal commodity
taxes subject to a given carbon budget and highlight under which conditions she should
care about the preference structure and the distribution of carbon intensity across products.
Motivated by the stylized facts, I focus on a specific type of constrained optimal taxes, in
which the social planner can set an optimal tax rate at a given product category level only,
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rather than at the product level. Optimal taxes depend not only on a properly weighted
average carbon intensity of a product category, but also on a weighted average of the
uninternalized externality from substitute products. An optimal tax will put emphasis on
indirect carbon emission targeting over direct emission targeting when the appropriately
weighted cross-elasticity is high, or when the product category’s own price elasticity is
low. The main features of this framework, namely that only final goods are taxed, and
that not all of them can be taxed, can be justified by the necessity to think about second
best policies. In a first best setting, there would be a uniform tax on carbon emissions
and all sources of carbon would be taxed. However, this is not the case in practice. For
instance, current supply-side carbon pricing, such as the European Emission Trading Scheme
(EU-ETS) is restricted to the energy and the manufacturing industry, so that several sectors,
such as transportation and agriculture, are not included. In addition, there is currently
no policy mechanism dealing with emissions from imported goods, even though a border
carbon-adjustments mechanism is being currently discussed in the European Union. As a
matter of fact, this mechanism would likely take the form of a product- or industry-specific
tax, not on the source of carbon. Further, one of the rationale of a uniform carbon pricing is
to provide a price-signal to incentivize agents to shift their behaviors. While taxing sources
of carbon can be effective in incentivizing producers to shift their production processes
towards less polluting inputs, market imperfections make it unlikely that downstream
consumers would face the same price-signal, and thus would be less incentivized to shift
their consumption. Therefore, in a real world setting, taxes on goods are likely to be a
useful policy tools to complement taxes on sources of carbon. Last, another important way
to interpret this optimal taxation framework is to consider it as a way to specify the impact
on household’s utility and consumption of uniform carbon pricing on the supply side, if all
sources of carbon were taxed, if incidence were fully borne by consumers and if there were
no other supply response.

I then add additional structure to the model to discuss the impact of tax changes on private
utility and carbon emissions, and use this setting to derive formulas quantifying the relative
efficiency of policy targeting. Specifically, I borrow insights from the inflation measurement
literature (Broda and Weinstein, 2010; Sato, 1976; Vartia, 1976) to show that under nested
constant elasticity of substitution (CES) utility, I can express the welfare impact of a
change in tax schedule as a function of substitution elasticities and market share only. This
setting can then be used to derive formulas quantifying the relative efficiency of finer policy
targeting. These formulas can be expressed as a form of market-share weighted covariance
between the within product category elasticity of substitution and a measure of quality of
policy targeting within this product category.

Elasticities of substitution are crucial ingredients of the model. They are estimated by
exploiting the time and geographic variation of product market shares and prices. Specifically,
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I implement an instrumental variable approach close to the one of DellaVigna and Gentzkow
(2019), in which local changes in log prices is instrumented with changes in national level
prices. The very detailed set of fixed effects, as well as controlling for promotions reduces
the risk of instrument endogeneity. The median estimated elasticity of substitution at the
product module level is 3.04, which is consistent with the previous literature.

Three main results are derived from the empirical implementation.

First, well-targeted taxes are crucial in delivering a significant reduction in carbon emissions
at a small utility cost. At a social cost of carbon of 50€ per ton, product-level optimal tax
would reduce carbon emissions by 10.2%. To put this numbers into perspective, France’s
official objective, as set out in its National Low Carbon strategy2, is to reduce carbon
emissions by 1−0.4

1−0.185 ≈ 26% between 2018 and 2030, in order to meet its 40% reduction
target in 2030 relative to 1990. Indeed, emissions were already 18.5% lower in 2018 relative
to 1990. In this context, depending on the product category at which the policy is set,
optimal taxes would close between 20% and 40% of gap between current carbon emissions
and the 2030 objective. In addition, setting taxes at a granular level is much more efficient
than the same policy implemented at a coarser level, because the former leverages the
high elasticities of substitution between more substitutable products. Specifically, given a
specific carbon reduction target, a product-level optimal tax achieves the same objective as
a uniform tax a utility loss at a 67% lower utility cost. This also holds for modest changes
in the flexibility of the policy instrument: a product-group level carbon tax achieves the
same carbon reduction target as a department-level tax at 25% lower utility cost.

Second, heterogeneity across households matters, but only across the carbon intensity
distribution, not across the expenditure distribution. When households are ranked according
to their average monthly expenditure level, the impact of optimal and constrained optimal
taxes on carbon emission reduction and private utility is essentially the same across quartiles
of the distribution. However, this impact is quite heterogenous across quartiles of the carbon
intensity distribution: when optimal taxes are set at the product level, the bottom quartile
reduces carbon emissions by 6.7%, against 13.5% for the top quartile. 60% of this difference
is explained by different preferences, as parametrized by the estimated CES, while the
rest comes from differences in spending patterns impacting the exposure of households to
optimal taxes. Combined with the fact that much of the variation in carbon intensity comes
from within bins of the expenditure distribution of households, this result suggests that the
distributional impact of carbon taxes is important but takes place mostly across households
of similar expenditure level. Third, the welfare cost of reducing carbon emissions is very
heterogenous across product categories. To see this, I define an efficiency measure of total
carbon emissions reduction following a price increase in a particular product category as

2Available at: https://www.ecologie.gouv.fr/strategie-nationale-bas-carbone-snbc; accessed 1st October
2021

https://www.ecologie.gouv.fr/strategie-nationale-bas-carbone-snbc
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the change in utility (or social welfare) expressed in euros per kilogram of carbon emissions
avoided. This measure can be interpreted as a general equilibrium efficiency measure, as
it accounts for all substitution patterns with other products, within and between product
categories (under the maintained assumption of no supply-side response). A 5% price
increase from two product categories only, namely raw beef and meat-based raviolis, would
reduce carbon emissions by 7.5 kgCO2eq per household, or slightly less that 1% of their
overall annual carbon emissions. Further, this would be achieved at a utility cost of less
than 1.5€, or 0.1% of their annual expenditure on food in my data. Accounting for the
value of carbon emissions avoided as well as for the value of revenue transfers, I find that
taxing meat-based ravioli, pre-made chili con carne, pre-made meat-based tomato sauce
and tripes would be welfare improving at a social cost of carbon of 50€ per ton.

These findings have a number of implications. First, the fact that carbon emissions can
be reduced from shifting consumption patterns within detailed product categories also
implies that we can do so without fundamentally changing our dietary mix, at least for
a small decrease in carbon emissions. Second, these results also shed a new light on the
long-established optimality of carbon markets. Under the assumptions discussed above,
carbon markets are equivalent to product-level optimal taxes, and might also be easier to
implement across the whole product space in practice. This paper thus also quantifies the
gap between first- and (a number of) second-best policies. It suggests that carefully designed
environmental policies leveraging the documented heterogeneity in carbon intensity across
and within product categories, and accounting for substitution patterns across products
could lead to meaningful carbon emission reduction while improving overall welfare.

This paper contributes to three strands of the literature. First, it can be linked to a growing
literature studying policies aimed at correcting environmental externalities and mitigating
climate change. While the literature on correcting environmental externalities dates back to
Pigou (1920) and is too large to be reviewed here, many recent studies on climate change
focus on supply-side responses, including supply-side carbon taxation (for a literature review,
see for instance Bovenberg and Goulder (2002)). Other studies consider demand-side policies
aimed at mitigating environmental externalities, but most of them focus on energy (Allcott,
2011; Allcott and Greenstone, 2012; Allcott et al., 2014; Ganapati et al., 2020), or focus
on only one good (Allcott and Taubinsky, 2015; Holland et al., 2016). This paper instead
focuses on a setting in which all goods have a negative externality. More generally, it takes
the supply side of the economy as given and instead focuses on demand-side substitution
between product categories as a source of aggregate reduction in carbon emissions. In
particular, this paper takes technology as given and assumes perfect competition. Three
reasons drive this choice of neglecting the supply side. First, it is a logical first step when
analyzing the role of consumption choices in reducing carbon emissions. Second, price-
and tax-driven shifts in consumption are likely to deliver more immediate gains in terms
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of carbon emissions reduction than supply-side policy instruments. Indeed, the implicit
time frame when considering market-size driven innovations (Acemoglu et al., 2012, 2019;
Acemoglu, 2002) or preference-driven innovation (Aghion et al., 2021; Besley and Persson,
2020) is set in years, if not decades. Third, even though panel data on sector-wide emissions
exist (Stadler et al., 2018), such data is currently not available at product level.

This paper also contributes to a growing literature aimed a measuring and documenting
the distribution of carbon emissions and carbon intensity. (Shapiro, 2021; Chancel et al.,
2015; Stadler et al., 2018). Most of the literature to date focuses on aggregate statistics
and discusses the distribution of carbon emissions at best across broadly defined sectors.
Instead, this paper leverages much more granular data and unpacks heterogeneity in carbon
emissions at the product module level, at the cost of restricting itself to mass retail food
products. To do so, I use Life Cycle Analysis (LCA)-based measures of carbon emissions,
rather than environmentally extended input-output (EE-IO) frameworks (Shapiro, 2021;
Stadler et al., 2018). One significant advantage of LCA-based measures is that they allow
for a much finer characterization of carbon intensity by product. This comes at the cost
of two disadvantages: first, unlike EE-IO models, these measures are not designed to be
consistent at the macro-economic level, such that there exists a risk of double counting
carbon emissions (Chancel et al., 2015). However, appendix figure 1.C.1 shows at the
average carbon intensity of food products in Exiobase, one of the leading EE-IO data base
is 0.68 kilogram of carbon per real euro, which is exactly the average carbon intensity in
my data. While not a definitive proof, this is suggestive evidence that the risk of double
counting is mitigated in my data. The second disadvantage is the reduced scope of the
analysis. This paper considers only food consumption in France, whereas EE-IO frameworks
include most of the consumption basket. However, recent empirical work shows that it is
possible to obtain barcode level data on a large fraction of the consumer basket in many
countries (Beck and Jaravel, 2021), so that advances on this front could be made in the
coming years. Thanks to this level of granularity, I am the first to provide evidence that
while income does explain most of the difference in overall carbon emissions, it is not the
most important dimension to explain carbon intensity and hence to predict exposure to
optimal carbon taxes. This also highlights the importance of using micro data to understand
the potential reactions to carbon taxes or more generally to climate change policies.

Finally, this paper relates to the theory of the welfare impact of second-best environmental
taxation (Ganapati et al., 2020; Jacobsen et al., 2020; Holland et al., 2016). This paper
explores coarse taxation as a specific form of second best-taxation, and consider the impact
of many tax changes, instead of a marginal change in one tax rate, at the cost of imposing
more structure to the problem. While the model is simple, it makes two contributions.
First, it underlines that an optimal Pigouvian tax depends on substitution elasticities
with untaxed products. Importantly, it shows how in a second-best world where not all
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products can be taxed, the optimal tax rates depend heavily on substitution patterns and
the distribution of market shares. It suggests that appropriate, second-best climate tax
design must account for industry structure and consumer preferences. While this is not a
new result per se, it is often left implicit in the literature, mostly because other frameworks
assume only one polluting good. Second, the micro-founded definition of the social cost of
carbon stresses that this cost crucially depends on the type of policy instruments available to
the social planner. It formalizes the idea that the cost to society of carbon emissions actually
depends on how difficult it is to adapt. This is a fundamental insight often overlooked in the
literature and implies that if individual preferences change, or equivalently if the demand
structure of the economy change, so does the social cost of carbon. While I focus on taxes
as policy instruments, this framework and its insights could be easily extended to other
policy instruments.

The reminder of the paper is organized as follows. Section 2.2 describes the data set and
the data construction process. Section 1.3 documents the salient stylized facts from this
data set. Section 1.4 sets up a theoretical framework, whose key components, the elasticities
of substitution, are estimated in section 1.5. Last, section 1.6 discusses the results and its
policy implications.

1.2 Data

This section presents the different data sources used for this paper and describes the data
sets resulting from the matching process.

1.2.1 Raw data

Agribalyse. I use Agribalyse3, an open source and public database created and maintained
by ADEME, the French agency for environmental transition and INRAE, the National
Research Institute for Agriculture, Food and Environment. Agribalyse documents the
environmental impact of about 2, 500 food categories, using 14 quantitative indicators on
climate change (in particular CO2 equivalent emissions), fine particles, water use, fossil
resource use, land use, mineral and metal use, ozone depletion, acidification, ionizing
radiation, photochemical ozone formation, terrestrial eutrophication, marine eutrophication
and fresh water eutrophication (ADEME, 2020a). For each food category and indicator,
data is available for all stages of the product lifecycle: farming, transportation, packaging,
transport, distribution and consumption. These quantitative indicators have been estimated
by experts from ADEME and INRAE using a Life Cycle Assessment (LCA) method framed
by the ISO 14044 standard ADEME (2020a). The LCA-based nature of the data imply that
these indicators are consumption-based and include both direct and indirect pollution. In

3AGRIBALYSE data v3.0 - 2020, ADEME
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particular, they account for both domestic and imported pollution.

One significant advantage of LCA-based measures of pollution is that they allow for a much
finer characterization of carbon intensity by product, down to the barcode in my case. This
comes at the cost of two disadvantages: firstly, unlike EE-IO models, these measures are not
designed to be consistent at the macro-economic level, such that there exists a risk of double
counting (Chancel et al., 2015). However, I document in appendix figure 1.C.1 that this risk
seems limited. This figure plots the average carbon intensity of different good categories
coming using the Exiobase 3, a state of the art EE-IO data base. In Exiobase, the average
carbon intensity for food products in France, accounting for direct and indirect emissions,
is 0.68, which exactly the average carbon intensity in my data. Secondly, the scope of the
analysis, which is in this paper food products in France, is smaller than with EE-IO models,
even though recent empirical work show that it is possible to obtain barcode level data
on a large fraction of the consumer basket in many countries (Beck and Jaravel, 2021).
Agribalyse data was designed to be calibrated to the French food market. Therefore, it
cannot be directly extrapolated to other countries, and within each food category, the data
is representative of the average consumption. For instance, the CO2 equivalent emissions
of one kilogram of prepackaged pizza regina (one of the food categories) is based on the
typical pizza dough (mode of the pizza dough distribution) and the average tomato found
on the French market (mean carbon emissions of imported and domestic tomatoes), see
ADEME (2020b)) These 2, 500 food categories are the most disaggregated elements of the
Ciqual classification, originally developed by the French Agency for Food, Environmental
and Occupational Health & Safety (ANSES) to structure nutritional information on food
consumed in France. Hence, at each different level, this classification groups together
products that are dietary similar and it is therefore sensible to use this classification to
estimate a nested CES preference structure. In the final data sets, there are 11 product
departments, 62 product groups, 114 product subgroups and 961 product modules (see
section 1.2.2)

In this paper, I only use the CO2 emissions data from Agribalyse, aggregating over all life
stages of the product. However, I hope that this paper will contribute to research exploiting
more fully the opportunities offered by Agribalyse. Interestingly, note that farming and
transportation account for 72% and 10% of the overall carbon emission from an average
consumer basket(ADEME, 2020b).

Private retailer scanner data. I have access to scanner data from a large private retailer
in France. The data covers all transactions from about 800, 000 loyalty cards between 2017
and 2019, which is a 10% random sample all existing loyalty cards issued by the retailer. For
this retailer, sales from registered loyalty cards account for 70 % of overall sales. Product
level information include overall description, brand, an indicator for being organic and its
nutriscore, a widely available label ranking food products into 5 categories according to their
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nutritional quality4. Consumer level information is coarse. The only information available
is whether the household is a family, a young household (18-35 with no kids), a middle aged
household (36-60 with no kids) or a senior household (61+ with no kids). I also have access
the full transaction data of this retailer between January and August 2019, that is including
non-loyalty card transactions.

This data is similar in nature to the Nielsen Homescan data, which has been used extensively
in the literature (for a description of the Nielsen data, see among others Broda and Weinstein
(2010); Allcott et al. (2019a); Jaravel (2019)). Like the Nielsen data, price and quantity
are separately available for each transaction and food consumption is recorded at the
bar code level, which ensures that I can keep track of quality improvement over time as
retailers change bar codes only when meaningful characteristics of the product are changed
(Broda and Weinstein, 2010). It also suffers the same drawbacks, as it does not record food
purchased in restaurants or similar establishments.

Contrary to the Nielsen Homescan data however, households in the raw data are not weighted
to be nationally representative. In the final data sets however, they are reweighted so as
to fit the expenditure pattern of the Household Budget Survey from the French statistical
agency (Insee), see section 1.2.2. In addition, this data only comes from a unique retailer
so food purchases from other retailers are not recorded. Since the final data set consists
of regular shoppers from this private retailer, it is likely that this bias is less concerning
than in the raw data. In addition, my data is likely to contain fewer scanning errors than in
the Nielsen household panel, as product scanning is recorded at the point of sale and is not
conducted by the household themselves.

The fact that this paper is mostly about carbon intensity also reduces concerns about non-
representativeness of the data. I am certainly not capturing all take-home food expenditures
from any household, including the loyal customers. Similarly, sales of one product of the raw
data is not necessarily representative of the national average, so making statements about
absolute the absolute level of carbon emissions can be more hazardous. However, I can
still document carbon intensity patterns for these products and households. For the results
of this paper to be externaly valid, I only require that loyal consumers at this particular
retailer are representative of the overall set of loyal customers of the French population,
and that product assortment at this retail chain is representative of product availability
nationally, which seems a much more reasonable assumption.

OpenFoodFact data. I use the OpenFoodFact5 database to merge the data from Agribal-
yse with the one from the private retailer. OpenFoodFact is an non-for-profit organization
and collaborative project gathering data on food products in France and the rest of the world.

4For more information, see https://www.beuc.eu/publications/beuc-x-2019-051_nutri-
score_factsheet.pdf; accessed 1st October 2021

5https://fr.openfoodfacts.org/

https://www.beuc.eu/publications/beuc-x-2019-051_nutri-score_factsheet.pdf
https://www.beuc.eu/publications/beuc-x-2019-051_nutri-score_factsheet.pdf
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Data is supplied both by producers and by a network of over 25, 000 active contributors who
send photos of the product labels and barcodes. Artificial intelligence and optical character
recognition are then used to extract and clean the data by standardizing data fields and
removing inconsistencies. Overall, information is available for over 1.9 million products
worldwide, including approximately 800, 000 products in France. The data contains detailed
information on nutritional ingredients, food labels including Ecoscore, an environmental
label developed by ADEME, product weight, and Ciqual classification for every barcode,
and hand checks suggest that the data is very accurate. The main disadvantage in using
this data is that it is a selected sample of all available products based on popularity and
on contributor and producer interest. For instance, the average OpenFoodFact contributor
is likely to be more conscious about the nutritional quality of her food consumption than
the average French consumer, so the Open Food Fact database is likely to be skewed
towards products that have either high or low nutritional quality. However, OpenFoodFact
management team reports that in 2020 in France, 91, 2% of all user-scanned products are
already in their database and according to their internal calculations, OpenFoodFact covers
95% of the top 10 000 products sold in France. Furthermore, the match performance with
the universe of products from the private retailed data is good, suggesting that most sales
patterns are captured, see section 1.2.2.

1.2.2 Data construction

I construct three data sets for analysis. The first data set is a product-level data set using
the universe of transaction of this retailer between January and August 2019 (henceforth
’Product data’). The second data set is a household-level data set, consisting of regular
shoppers only (henceforth ’Household data’). It is arguable that for these households, who
are loyal to this retailer, I capture most of the take-home food expenditures. Descriptive
analysis is based on these first two data sets. The third data set is comes from the Household
data data but is aggregated at the product by quarter by geography level and imposes more
stringent availability restrictions. The empirical estimation of elasticities of substitution
in section 1.5 is conducted on this data set (henceforth ’Analysis data’).Only observations
from metropolitan France are used, and all prices are deflated to January 2017 euros using
the Insee mass retail price index.

I first clean the OpenFoodFact data by deleting and consolidating duplicate observations
(products having been scanned more than once with different inputted data in the Open-
FoodFact database. Less than 0.03%% of the 999, 245 products have conflicting Ciqual codes
or quantity numbers. When there are conflicting observations for a given barcode, I keep
the most frequent Ciqual code and quantity number, with ties being randomly broken. The
resulting data set is then matched to the Agribalyse data and to the products characteristics
dataset from the retailer. Only food products are kept, and animal food is discarded. I then
compute carbon emissions per barcode, and trim the top and bottom 0.1% of the carbon
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emission distribution to discard outliers. Appendix table 1.B.1 shows the number of product
groups, sub-groups, modules and products by product department from the Product data
set.

This data is then matched to the private retailer data, for which I initially dropped all
products that are sold less than 10 times a month on average. As can be seen from appendix
table 1.B.2, matched products represents over 60% of sales in all three data sets. Overall the
Product data set captures annual emissions equivalent to 5.5 Mt of CO2, which represents
1.3% of French green-house gas emissions in 20186. This is roughly coherent with the share
of food and agriculture in total GHG emissions, the market share of the retailer and the
share of retail take-home expenditures in the total food expenditure.

For the Product data set, expenditure and quantity purchased are weighted so as to match
the national spending patterns retrieved from the Household Budget Survey constructed by
Insee. Specifically, it matches the nationally representative budget shares for food products,
aggregated at the third level of the Classification of Individual Consumption by Purpose
(Coicop), which represents 11 categories. Appendix table 1.B.3 displays summary statistics
on carbon intensity and carbon emissions per products for all product modules in the ’Fats’
department.

To create the Household data set, I select households for which I observe at least 50 euros of
expenditures on matched products for at least 50% of the months available in my sample, and
drop the top 0.1% of households with the largest average monthly expenditure. This ensures
that I only keep the most regular and loyal shoppers. Overall, 166,662 households are
selected, spending on average 125 € every month, and who are present on average in 93 % of
the months. Appendix table 1.B.4 reports statistics on the average monthly expenditure of
these households, as well as the number of months they are observed. Non-family households
spend marginally less that the average. Further, households with high carbon intensity
tend to spend slightly less than households with lower carbon intensity, even though the
difference is small. For the Household data set, expenditure and quantity purchased are
weighted so as to match the national budget shares for food products by type of household
(family or not family).

To construct the Analysis data set, I start from the Household data and aggregate observa-
tions at the product by quarter by geographic department level. Further, I impose additional
restrictions on product availability following DellaVigna and Gentzkow (2019). I request
products to be sold in at least 50% of the quarter by geographic department observations.
Further, all product modules with less than four products are dropped. Overall, the Analysis
data set contains 8,652 products from 435 product modules.

6Total French GHG emissions in 2018 are estimated to be 419 MtCO2eq; see Key Climate Figures -
France, Europe andWorld, 2021 edition available on https://www.statistiques.developpement-durable.gouv.fr;
accessed 1st October 2021.

https://www.statistiques.developpement-durable.gouv.fr
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1.3 Stylized facts

This section presents stylized facts on the distribution of carbon emissions and carbon
intensity across products and across consumers.

1.3.1 Product-level stylized facts

Table 1.1 correlates carbon intensity with product characteristics across all three data sets.
The first point to note is that broad product departments are not clearly predictive of carbon
intensity: out of the 11 product departments, only 4 have significantly different carbon
intensity than the baseline (Cereal products). As could be expected, a higher Ecoscore
grade is correlated with lower carbon intensity, which is sensible as it is based on same data.
Products with organic label also tend to have lower carbon intensity. Interestingly, products
with higher nutritional score tend to have higher carbon intensity, suggesting more broadly
that there might be a conflict between healthy and eco-friendly eating behaviors. Last,
results are very similar across datasets, suggesting that the selection procedure highlighted
above the does not harm the representativeness of the data on the product dimension.

Stylized fact 1: Food consumption is skewed towards high-carbon intensity
products. Indeed, high-carbon intensity products tend to have higher market share than
low carbon intensity products. This holds both at the aggregate level, as well as within
narrow product category. Overall, this suggests that there is room for consumption-shifting
to reduce carbon emissions even within narrow product categories.

Figure 1.1 shows that products with 10% higher expenditure have on average a 0.004 higher
carbon intensity, or 1% of the average carbon intensity. This relationship is not driven
by cheaper products being both more consumed and less carbon intensive, as panel (a)
demonstrates. Panels (b) and (c) show that the positive relationship also holds when
considering carbon emissions per product (the numerator of carbon intensity) and when
considering quantities instead of expenditure, respectively. Last, panel (d) shows that the
positive relationship between carbon intensity and expenditure is not driven by capacity
effects. For example, the difference in carbon emissions between larger and smaller capacity
products, say 1.5L and 0.5L mineral water of the same brand are likely to be close to
proportional, whereas their price difference are arguably less than proportional. If, in
addition, larger capacity products are more popular than their small capacity counterpart,
it could create a spurious correlation between carbon intensity and expenditure. In non-
reported results, I show that these results also hold for the Household dataset.

As can be seen from appendix table 1.B.5, this patterns also holds within narrow product
category. The relationship between carbon intensity and market share is strong and
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Table 1.1: Predictors of carbon intensity - Product level

Product data Household data

Product departments:
Prepared dishes 0.145 (0.139) 0.154 (0.153)
Vegetables and fruits -0.229∗∗∗ (0.059) -0.254∗∗∗ (0.065)
Cereals 0.000 (.) 0.000 (.)
Meat, fish and eggs -0.084 (0.084) -0.105 (0.091)
Dairy 0.219∗∗∗ (0.074) 0.260∗∗∗ (0.076)
Beverages -0.183∗∗ (0.075) -0.182∗∗ (0.071)
Sweets -0.041 (0.073) 0.056 (0.083)
Iced creams -0.087 (0.101) -0.025 (0.074)
Fats 0.391 (0.243) 0.547∗ (0.295)
Other products -0.071 (0.079) 0.000 (0.101)
Infant food 0.051 (0.070) 0.009 (0.071)

1(Organic) -0.094∗∗∗ (0.016) -0.086∗∗∗ (0.021)
Nutriscore:
A 0.224∗∗∗ (0.047) 0.248∗∗∗ (0.052)
B 0.170∗∗∗ (0.056) 0.168∗∗∗ (0.064)
C 0.000 (.) 0.000 (.)
D -0.033 (0.034) -0.063∗ (0.037)
E 0.100∗ (0.057) 0.105∗ (0.062)
N/A -0.055 (0.033) -0.049 (0.036)
Ecoscore:
A -0.205∗∗∗ (0.035) -0.242∗∗∗ (0.049)
B -0.123∗∗∗ (0.024) -0.126∗∗∗ (0.031)
C 0.000 (.) 0.000 (.)
D 0.108∗∗∗ (0.031) 0.137∗∗∗ (0.040)
E 0.419∗∗∗ (0.092) 0.457∗∗∗ (0.112)
N/A 0.279∗∗ (0.112) 0.265∗∗∗ (0.093)

Constant 0.440∗∗∗ (0.063) 0.464∗∗∗ (0.068)

R2 0.203 0.210
N 27,553 19,068

Notes: This table presents predictors of carbon intensity for the Product and Household data set. Predictors
are indicators for product departments, for being organic, for Nutriscore category, a dietary label, and for
Ecoscore, a environmental label. For both label, A indicates the highest nutritional and environmental
quality, and N/A indicates that the label is unknown. This represents 23% and 3% of products for Nutriscore
and Ecoscore in the Product dataset respectively. The regressions are not weighted by quantity in order to
be representative of the choice set rather than the actual consummer choices. Standard errors in parentheses
are clustered at the product module level. Base level for product departments is Cereals, and is score C for
Ecoscore and Nutriscore.
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Figure 1.1: Carbon emissions and expenditure

(a) Controlling for price

(b) Carbon per product and expenditure

(c) Carbon intensity and quantity

(d) Carbon per kg and expenditure

Notes: This figure presents four binned scatter plots documenting the relationship between carbon
emissions and expenditure from the Product data set. Panel (a) relates carbon intensity and log
expenditure, controlling for product price. Panel (b) relates the carbon emissions per product (in
eqCO2kg) and log expenditure. Panel (c) relates carbon intensity and percentile of quantity product
purchased. Panel (d) relation carbon emission per kg of products and log expenditure. In panel
(b), dashed line indicates the unweighted average of the variable on the y-axis. Where a slope is
indicated, standard errors are clustered at the product module level.
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statistically significant within department, product groups, product sub-groups and product
modules. The size of the coefficient is only 20% lower at the the product module level
(1000 categories) than at the product department level (11 categories). This suggests that
positive relationship between carbon intensity and product expenditure established at the
aggregate level is not, or not simply, driven by comparing types of products with low degree
of substitutability, and that the relationship is just as strong within more substitutable
product categories: within product module, a 10% increase in market share is associated
with a 0.0025 increase in carbon intensity, that is a 1.2 % of the average standard deviation
within module. This results also does not follow from the fact that more carbon intensive
products might also be cheaper products: in appendix table 1.B.6 while the coefficient on
market share drop by 35% from 0.047 to 0.031, the positive relation between carbon emission
per product and product market share remains very strong. Within product module, a 10%
increase in market share is associated with a 0.0031 increase in carbon intensity, that is
a 1.6 % of the average standard deviation within module. Appendix table 1.B.7 shows as
a robustness check that controlling for price has little quantitative implications. Various
reasons could explain why carbon-intensive products are more popular. They could be
of actual or perceived higher quality, taste better, the packaging could be nicer, average
position in the stores could be different, therefore making it more visible to consumers, or
consumer could be entrenched in habits consuming higher carbon intensity products.

Stylized fact 2: Even within detailed product category, within-group variation
in carbon intensity explains a significant share of the overall variation. This
suggests that focussing on detailed product categories to incentivize consumption shifting
can be impactful.

To show this, I decompose the variance of carbon intensity across products as the sum of
a between-product category and a within-product category component. For any variable
yj indexed over products j = 1, ..., J , and for any partition of products into G product
category where each category g = 1, ..., G contains Jg products, we have that V (yj) =∑G

g=1
Jg
J (ȳg − ȳ)2 +

∑G
g=1

Jg
J

1
Jg

∑Jg
j=1(yj − ȳg)2, so that variance of y is the sum of the

(weighted) variance across groups of the group averages ȳg and the weighted average
of within-product group variance. A similar formula can be derived when products are
weighted. Figure 1.2 plots this decomposition for carbon intensity across the different
product categories. It is striking to see that, even within detailed product categories, within
group variation explains a significant share of overall variation. Specifically, 57% of the
overall variance in carbon intensity comes from within product sub-group variance, and 32%
comes from within-product modules variance. Panel (a) of appendix figure 1.C.2 highlights
that the share of the within-category component is even higher when products are not
weighted by quantity purchased, although within the same order of magnitude. Panel (b)
shows that this effect is not simply driven by price variation within and across product
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Figure 1.2: Between-within decomposition of carbon intensity by product category

Notes: This figure presents decomposition of the variance of carbon intensity into between group
variation and within group variation, for different product category. Data comes from the Product
data.

categories as the same pattern holds for the variance of carbon emitted per product. Last,
panel (c) shows that almost all of the variation in overall carbon emissions is driven by
within product module variation.

1.3.2 Consumer-level stylized fact

Stylized fact 3: Difference in spending patterns within detailed product cat-
egories explains an important share in overall difference in carbon intensity
across households. Differences in carbon intensity across households can be explained
by three different factors. First, households can spend their food expenditure on different
product categories with different average carbon intensity. For instance, some households
can be vegetarian and spend a disproportionate amount of their expenditure on vegetables
and cereals, or tend to consume a lot of dairy products and spend more than average on
milk and cheese. Second, within product categories, say cheese, households can have varying
tastes for slightly different products, for instance between hard and soft cheese, both with
different carbon intensities. Third, households can have exactly the same expenditure shares
on all products, but some households are facing higher average prices, reducing their average
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carbon intensity.

More precisely, denote er the carbon intensity of consumer group rand ē the economy-wide
carbon intensity. Then, the difference in carbon intensity can be written as

er − ē = covg (ωgr − ω̄g, ēg)︸ ︷︷ ︸
between product categories

+

G∑
g=1

ωgr · covi∈Ig (ωgir − ω̄
g
i , ēi − ē

g)︸ ︷︷ ︸
within product categories

−
I∑
i=1

ωir · δir︸ ︷︷ ︸
price correction

(1.1)

where g indexes product categories, i indexes products, ωgr , ω̄g are the expenditure shares
on product group g of, respectively, consumer group rand the average consumer, ωgir and ω̄

g
i

are the spending shares of product i within product group g of, respectively, consumer group
rand the average consumer. The first term in (1.1), the “between product categories” term
will be high if consumer group r spends a disproportionally high share of its expenditure on
carbon intensive product categories, evaluating the carbon intensity of product category
g, ēg, at national prices. The second term, the “within product categories” term will be
high if, within product group g, consumer group r is spending relatively more on more
carbon intensive products than what the average consumer does. Here, carbon intensity is
evaluated relative to the average carbon intensity of the product group, at national prices.
The last terms, the “price correction” term, corrects for differential price faced by consumer
group rrelative to national prices. Here, −δir ≡ eir − ēi, the difference in carbon intensity
of a given product bought by consumer group r and of the same product bought by the
average consumer. δir will be positive if the price face by consumer group r for product i,
pir, is higher than p̄i, the national price for this product. Overall, this term will be high if
ωir and δir are positively correlated, that is if for instance consumer group r buys products
that are priced more highly in their area. The precise derivation of (1.1) can be found in
appendix 1.D.

Figure 1.3 shows this decomposition when households are grouped into decile of carbon
intensity. Four points are worth highlighting. First, the difference in carbon intensity
between the first and last decile is high, at about 0.45 relative to an average carbon intensity
of 0.65. Second, the correction term is negligible, for all decile and all product categories,
suggesting that price variations is not driving differences in carbon intensity. Third, at the
product department, group and sub-group level, the within term drives the difference in
carbon intensity between deciles. Fourth, even at the product module category level, the
within term explains a sizable share of the overall difference. More precisely, the within
term accounts for 46 % of the overall difference in carbon intensity between the first and
last decile at the product module level (85 % at the product department level). Appendix
figure 1.C.3 confirms that the pattern is similar when grouping households by expenditure
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Figure 1.3: Decomposition of difference in carbon intensity

Notes: This figure presents decomposition of the difference in carbon intensity relative the grand
average following (1.1). Carbon intensity is defined at the household level and data comes from the
Household data.

decile. However, the difference in average carbon intensity between the first and last decile
is now about 0.06, an order of magnitude lower than in figure 1.3. While now the between
term is driving the difference in carbon intensity, the within term still accounts for 21 % of
the difference in carbon intensity between the first and last decile at the product module
level, and 28 % at the product department level.

One way to get a sense of the economic importance of the within term is to ask by how
much would carbon emissions decrease if households were to adopt the spending patterns of
the best performing decile. Suppose that all households allocate their spending between
product departments in the same way (same amount spent on fats, on cereals, on vegetables,
etc.), but that within each product department, all households allocate their spending in the
same way households in the bottom decile of the carbon intensity distribution would. More
precisely, I compute a simulated carbon intensity for decile r, esimr =

∑G
g=1 ω

g
r ·
∑Ig

i=1 ω
g
i1 · ēi
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where ωgi1 is the spending share of decile 1 on product i relative to its spending in product
category g. Note that actual carbon intensity is eactualr =

∑G
g=1 ω

g
r ·
∑Ig

i=1 ω
g
ir · eir. I then

multiply esimr by the household total expenditure to arrive to a counterfactual carbon
emissions. Doing so would reduce carbon emissions by 25 %. One can argue however that
changing spending patterns within product department, a broad product category, involves
major changes. For instance, it could involve switching from meat to eggs or fish, within the
meat, fish and eggs product department. Repeating the same exercise at the product module
level, so that households change their spending patterns only within about a thousand
product categories, and not across them, would still reduce carbon emissions by 11 %. This
would still be a significant reduction in carbon emissions considering that it implies much
smaller consumption changes. Repeating the same exercise when ordering consumers by
expenditure decile would imply a decrease in carbon emissions of only 0.65 % when at the
product department level, and of 0.43 % when at the product module level.

Appendix 1.A provides additional stylized facts on products and households. In particular,
it documents that (i) carbon intensity and carbon emissions of food choices are very
heterogenous, even within narrow product categories; (ii) that targeting a small number
of detailed product categories has the potential to achieve significant reduction in carbon
emissions; (iii) that there is a very modest negative relationship between carbon intensity
and expenditure across households; and (iv) that while CO2-expenditure elasticity estimate
is in line with previous literature, this hides important heterogeneity across products.

1.4 Theoretical model

Taken together, the stylized facts discussed in the above section as well as the various back
of the enveloppe calculations show that there is significant heterogeneity in the carbon
intensity of products even within narrow product categories so that policies targeting carbon
emissions at a detailed product level could have a meaningful impact. However, these
calculations do not consider the cost to the household of making those changes: while
chocolate based products are very carbon-intensive, it might not be optimal to focus on
this product category if consumers have no acceptable substitutes to it, so that the utility
cost of switching is high, or if substitute products, say coffee based products, are even more
carbon-intensive.

In this section, I develop a theoretical framework to address this issue and to think about
the private utility cost and the social welfare impact of a change in consumption pattern.
First, an optimal taxation framework is built in order to highlight under what conditions a
social planner willing to set up a tax on a particular good should care about the carbon
content of its substitutes. Additional structure is then added to the model to discuss the
impact of tax changes on private utility and carbon emissions. This setting can also be used
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to derive formulas quantifying the relative efficiency of policy targeting. Last, I discuss how
we can calibrate these formulas to compute overall welfare gains of tax reforms.

1.4.1 Model set-up

A representative household maximizes private utility U(x0, ..., xN ) over N +1 goods, subject
to the budget constraint

∑
i qixi = Z + T , where Z is non wage income and T is a transfer.

qi are tax inclusive prices, that is qi = (1 + ti)pi. I choose to focus on ad-valorem taxes
so that they can be then meaningfully compared across different product category levels.
This differs from usual optimal taxation frameworks, in which taxes are often expressed per
units. However, the choice between the per-unit or ad-valorem taxes is purely cosmetic as
it depends only on whether quantities are normalized or not. The social planner rebates
all revenues to consumers as a lump tax subsidy: T =

∑
i tipixi. To rule-out lump-sum

taxes, I assume that good 0 is not taxed: t0 = 0. In addition, good 0 is the numeraire so
that q0 = p0 = 1. The first order condition for the household’s optimization problem is then
Ui = αqi, where α is the Lagrangian on the household’s budget constraint, as well as the
marginal value of income M = Z + T to the household. Optimization yields Marshallian
demand xi(q;M) and indirect utility function V (q;M), where q denotes the vector of
prices.

The social planner’s objective is to set a schedule of prices so as to maximize household’s
utility, taking as given the household’s behaviour and its budget constraint. In addition,
the social planner is subject to a total carbon budget:

∑
iEi · xi ≤ Ē, where Ei is the

amount of carbon emitted by good i. This way to set-up the externality problem as a
fixed constraint seems more relevant from a policy and natural science perspective than
the “welfare damage approach” taken by most recent papers on optimal taxation in this
context which express the externality as a cost to social welfare (see for instance Allcott
et al. (2019b); Jacobsen et al. (2020); O’connell and Smith (2020)). Again, this is purely
cosmetic: as shown below, both approaches are equivalent. I abstract away from supply-side
considerations by assuming perfect competition, marginal cost pricing and no profits, so that
the supply side does not enter the social planner’s problem. The social planner’s Lagrangian
is the L = V (q;Z + T ) + λ

[
Ē −

∑
j Ej · xj

]
and the first order condition with respect to

tj is:
∂V

∂tj
+
∂V

∂M

[
pjxj +

∑
k

tkpk
∂xk
∂tj

]
− λ

[∑
k

Ek ·
∂xk
∂tj

]
= 0 (1.2)

This first order condition has a very conventional interpretation: the first two terms represent
the impact of the tax change on the household’s private utility: it impacts both the relative
prices faced by the household, but also its income following the change in transfers. The
third term represents the value to the government of the change in carbon emissions, as it is
the product of the marginal value to the government of an additional unit of carbon emitted
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times the total change in carbon emissions following the tax change. At the optimal tax
level, these three terms sum up to zero. The first order condition can then be reformulated
(see appendix 1.D) as:

∀j ≥ 1,

J∑
k=1

[
tk −

λ

α

Ek
pk

]
· sk · εk,j = 0 (1.3)

where sk = pkxk/
∑

i pixi is the market share of product k and εk,j is the elasticity of
product k with respect to the price of product j.

t∗k = λ
α
Ek
pk

for all products k is a solution to these first order conditions and is exactly the
optimal Pigouvian tax. Note that Ek/pk = ek, so that the optimal tax level is proportional
to the carbon intensity of product k, as announced in the previous sections. More precisely,
the multiplicative factor λ/α is the social cost of carbon: it expresses the value of an
additional unit of carbon to the society expressed in monetary units and not in utility
units. This approach is equivalent to the “welfare damage approach” as λ

α is the cost of
an additional unit of carbon to the social planner. Henceforth, I define φk ≡ λ

α
Ek
pk

as the
externality cost of good k as a percentage of its private (marginal) cost.

1.4.2 Characterizing optimal taxes

In order to provide intuitive optimal tax formulas for the case when Pigouvian taxation is
not feasible, I impose an additional assumption.

Assumption 1. ∀j, covk 6=j(φk − tk, εk,j) = 0. That is, there is no (market share-weighted)
correlation between the (uncorrected) externality of a good k and its cross-price elasticity
relative to good j.

Note that if U has a CES or nested CES form, this assumption is satisfied as the cross price
elasticities depend on product j but not on product k. This assumption can be relaxed, as
is done in the mathematical appendix, even though it brings little additional insight.

Product-level optimal taxes. Under assumption 1, we can express the optimal tax as:

tj = φj︸︷︷︸
direct emission targeting

− ε−j,j
−εj,j

· 1− sj
sj

· φ−j︸ ︷︷ ︸
indirect emission targeting

(1.4)

In this formula, ε−j,j = 1
1−sj

∑
k 6=j sk · εk,j is the market share-weighted average cross-

elasticity for good j. Intuitively, when pj goes up by 1%, quantity demanded for good
j′ 6= j goes up by ε−j,j % on average. Further, φ−j =

∑
k 6=j

sk
1−sj · (φk − tk) is the market
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share-weighted average uncorrected externality and εj,j < 0. Since I assume that at least
one good is not taxed, this term is never zero.

The first term in equation (1.4) is the classical Pigouvian term: polluting goods should
be taxed to the extent of their marginal externalities. Note that the first-best setting of a
uniform price of carbon, in which all prices adjust accordingly, would be the same as the
optimal product-specific tax in this framework. The novelty of this formula comes from the
indirect emission targeting term, which makes it clear that an optimal tax system should
also consider the carbon emissions arising from substitution patterns away from good j.
Specifically, the balance between the direct and indirect emission targeting in an optimal
commodity tax system is driven by four terms.

First, it depends on the amount of externality under- (or over-) correction of the other
goods in the economy (as long as εk,j 6= 0 and sk > 0). Indeed, if the average uncorrected
carbon externality of other goods, φ−j , is sufficiently large, then subsidizing good j becomes
optimal, even though it might be (very) polluting. On the contrary, if other goods are
overtaxed, in the sense that φk < tk, then tj should be higher than in the classical Pigouvian
situation. Second, the relative importance of indirect emission targeting depends on the
average cross elasticity of good j, ε−j,j . If it is very easy to substitute away from good j,
then targeting indirect emissions will be key and in the limit, it is optimal to subsidize good
j and to favour indirect over direct carbon reduction efforts. On the other hand, if it is hard
to substitute away from good j, then it is more efficient to ignore substitution patterns and
to focus on direct emission targeting. If good j is a complement to the other (uncorrected)
goods in the economy, ε−j,j < 0, then the direct and indirect emission targeting terms go in
the same direction: taxing good j reduces both carbon emission from good j and from all
the complementary products. In practice, this could mean for instance that policy makers
should take into account the amount of untaxed pollution from car manufacturing when
setting gasoline taxes. Third, the indirect term depends on the own-price elasticity of good
j. If | −εj,j | is very large, then demand for good j is very sensitive to price and it makes
sense to favour direct carbon reduction over indirect carbon emissions. This result is the
exact opposite of the inverse elasticity rule in a Ramsay framework of commodity taxation:
the objective is different but the mechanism is the same. In a typical Ramsay framework,
higher price elasticity increases the deadweight loss of taxation so the optimal tax on this
good should be lower for efficiency reasons. Here, higher price-elasticity means that the
demand response of this good will be high, so the optimal tax on this good should be higher
for efficiency reasons because it will lead to a large decrease in carbon emissions. Last,
the extend of indirect emission targeting depends on the relative importance of good j.
The higher the market share of good j, the lower the term 1−sj

sj
, so the optimal tax will

favor direct carbon reduction because good j will be responsible for most of the social cost
of carbon. It is important to note that like most optimal tax formula, equation (1.4) is
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endogenous, as for instance the optimal tax depends heavily on the market share of good j,
which itself depends on the overall tax schedule.

Carbon Border tax. As an illustration of equation (1.4), suppose that goods 2, ...J0 are
imported goods, therefore cannot be taxed. Suppose further that all other goods J0 + 1, ..., I

are already taxed at their optimal Pigouvian level φj . Then, the optimal tax on good j = 1

is:

tj = φj −
ε̄imp,j
−εj,j

· simp
sj

J0∑
k=2

simpk · φk

where simp =
∑J0

k=2 sk is the import share, simpk is the market-share of good k among
imported goods and ε̄imp,j = 1

1−sM
∑J0

k=2 s
imp
k · εk,j is the average cross-elasticity between

good j and imported goods. Note that a variant of assumption (1) is needed, namely that
covk∈M (φk, εk,j) = 0, that is, across all imported goods, there should be no (expenditure-
weighted) correlation between the externality of imported good k and its cross-price elasticity
relative to good j. Intuitively, the tax on a home good j should consider carbon-leakage to
other imported, (partially) untaxable goods to the extend that import share is high, and
that good j is tradable (high elasticity of substitution with imported goods).

Product category level optimal tax. Suppose that goods are partitioned into g ≤ G
categories, with Ig products per category. Suppose further that the social planner can only
set one tax rate per product category, denoted tg. For instance, product level information
on carbon emissions could be unavailable or too costly to collect. In this case, equation (1.4)
carries over to product categories, with appropriately defined elasticities and externalities.
All derivations can be found in appendix 1.D.

tg = φ̃g,g −
ε̄−g,g
−ε̄g,g

· 1− sg
sg

· φ̃−g (1.5)

To understand equation (1.5), let us define a number of objects. First, ε̄k′,g =
∑

l∈g εk′,l is
the sum of all cross elasticity between good k′ and goods in product category g. Intuitively,
ε̄k′,g is the percentage change in demand of product k′ following a uniform, marginal increase
in price of all products in group g. Note that when k′ ∈ g,ε̄k′,g incorporates both the
effect of the own-price elasticity and the within-product category cross-price elasticity.
Second, ε̄g′,g =

∑
k′∈g′ ε̄k′,g · s

g′

k′ is the expenditure-weighted average cross-elasticity between
product category g and g′, where sg

′

k′ is the expenditure share of product k′ in category
g′, sk′ = sg′ · sg

′

k′ and sg′ =
∑

k′∈g′ sk′ is the expenditure share of product category g′.
Intuitively, ε̄g′,g is the average percentage change in demand from a product in category g′

following a uniform, marginal increase in price of all products of category g. Again, note
that ε̄g,g =

∑
k∈g s

g
k · ε̄k,g is category g’s expenditure-share weighted average price elasticity,
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accounting for all own-price elasticities and within-product category cross-elasticities. Third,
let us also define the contribution of good k′ ∈ g′ to the average cross-elasticity of category
g′ with category g as wg

′,g
k′

wg
′,g
k′ =

ε̄k′,g · sg
′

k′∑
m∈g′ ε̄m,g · s

g′
m

=
ε̄k′,g · sg

′

k′

ε̄g′,g

Fourth, the elasticity-weighted average carbon externality of category g′ can be defined as
φ̃g′,g, where

φ̃g′,g =
∑
k′∈g′

φk′ · wg
′,g
k′

Intuitively, φ̃g′,g is the percentage change in the social value of carbon emissions from
product category g′ following a marginal, uniform increase in prices of good in product
category g. Following Bernheim and Taubinsky (2018); Allcott et al. (2019b), it can also
be interpreted as the average marginal externality of product category g′ with respect
to product category g. Hence, tg = φ̃g,g is the constrained optimal Pigouvian tax when
only g tax rates are available. Fifth, let φ̃−g =

∑
g′ 6=g

sg′
1−sg ·

(
φ̃g′,g − tg′

)
be the market

share-weighted average marginal uncorrected externality at the product category level. Last,
ε̄−g,g = 1

1−sg
∑

g′ 6=g sg′ ε̄g′,g is the market share-weighted average cross-elasticity between
product category g and all other categories. The only difference with the intuition from
the product-level optimal tax is that now the relevant externality concepts over product
categories, and that category level elasticities include all within-category cross-elasticities.
Formula (1.5) also necessitate an assumption on the covariance between category-level
average marginal externality and average cross-elasticity, as discussed in appendix 1.D.

The constrained-optimal Pigouvian tax is now tg = φ̃g,g. If U is a nested CES function, the
optimal tax is proportional to the category-level average carbon intensity:

tg =
∑
k∈g

φk · sgk =
λ

α

∑
k∈g

sgk ·
Ek
pk

=
λ

α

∑
k∈g Ek · xk∑
k∈g pk · xk

(1.6)

1.4.3 Deriving change in utility and carbon emissions following a change
in tax schedule

Counterfactual utility change. I now derive a formula for the impact of a change in
the tax schedule on the overall welfare. Reduced form or sufficient statistics approaches
resulting from applying Harberger’s (1964) insight would not work in this setting for two
reasons. First, the most general formulation cannot be brought to the data, as I would
need to compute unrestricted cross-elasticities across all goods in the economy. Second, I
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want to consider potentially large changes in tax schedule, affecting multiple taxes, so that
the assumptions needed to derive empirically implementable reduced form formula are not
justified in this context. Instead, I assume a specific functional form for the household’s
utility U , which enables me to express the change in utility as a function of an appropriately
defined household-specific price index. In particular, I specify utility function U as a nested
CES following Broda and Weinstein (2006, 2010) because it is theoretically tractable, it
has desirable aggregation properties which enables me to exploit the structure of this
data in a theoretically grounded manner, and because this functional form is empirically
implementable. In this case, contrary to the optimal tax framework above, I assume that the
tax revenue is not rebated to the household so that total household income stays constant.

I assume that goods x1, ..., xN are food products, and that good x0 represents all other
goods. Food and non-food products are related by a Cobb-Douglas function U(x0, ..., xN ) =

x1−β
0 · UF (x1, ..., xN )β , so that households spend a constant fraction β of their expenditure

on food products. In turn, UF is a four-level nested CES function: food product j is nested
in product module m, which is nested in product group g, itself nested in food department
d. At the lowest level, we have:

Cmt =

 ∑
j∈Ωmt

(dj · xjt)
σm−1
σm


σm
σm−1

where Cmgdt is the composite consumption index of product module m at time t, Ωmt is the
set of product in module m at time t, dj is a time-invariant unobservable quality component
(which can also be interpreted as an unobservable taste), xjt is quantity purchased of good
j at time t, and σm > 1 is the elasticity of substitution between products, within module m.
Composite consumption indices at higher levels are defined in the same manner:

Cgt =

(∑
m∈Ωg

C

σg−1

σg

mt

) σg
σg−1

Cdt =

(∑
g∈Ωd

C
σd−1

σd
mt

) σd
σd−1

UF =

(∑
d∈Ω

C
σ−1
σ

dt

) σ
σ−1

where σg, σd and σ are the elasticities of substitution within product groups, within
department and across departments respectively. Ωg, Ωd and Ω are the set of product
modules in product group g, the set of product groups in department d and the set of
product departments.

In this setting, the impact of a change in the price schedule dq following a tax change on
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household utility can be expressed as:

d lnU

dq
= −β · d lnPF (1.7)

where PF is the CES ideal price index for food, and d lnPF = lnPF1− lnPF0 is the inflation
rate between the counterfactual and the initial situations. More generally, let us denote
y0 and y1 the values of variable y before and after the tax change respectively. Using the
insights from Sato (1976) and Vartia (1976), we can express d lnPF as a function of the
counterfactual change in prices and market shares only, see appendix 1.D. Furthermore,
under assumption 2, appendix 1.D shows that all that is needed to compute d lnU/dq are
the counterfactual changes in prices, the elasticities of substitution and the initial market
shares.

Assumption 2. Within product-modules, changes in market shares following a change in
tax schedule are small, so that

smj1−smj0
smj0

≈ d ln smj0.

This assumption is less restrictive than the usual assumption of small tax changes. Indeed,
this assumption places no restriction on the size of tax changes, nor on the overall change in
market share of good j, as sj = smj · sm. Under assumption 2, counterfactual market shares
can be expressed as:

d ln smj ≈ (1− σm) · (d ln pj −
∑
j∈Ωm

smj0 · d ln pj)

Note that if assumption 2 is violated, equation (1.7) can be interpreted as a first order
approximation of private utility change.

Counterfactual carbon emissions. I now show how to recover counterfactual carbon
emissions in this framework. We are interested in

∆E =
I∑
j=1

Ej ·∆xj

So that only counterfactual quantities demanded after the change are needed. Using the
nested CES structure, one can show that

d lnxj =− σmd ln pj + (σm − σg)d lnPm + (σg − σd)d lnPg

+ (σd − σ)d lnPd + (σ − 1)d lnPF (1.8)

=− σm(d ln pj − d lnPm)− σg(d lnPm − d lnPg)

− σd(d lnPg − d lnPd)− σ(d lnPd − d lnPF )− d lnPF
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So that we have: ∆xj = exp (d lnxj + lnxj0)− xj0. Equation (1.8) highlights the role of
taxation at different category level on quantity demanded. Intuitively, a proportional tax
on every products of module m implies that d lnPm = d ln pj ∀j, so that the elasticity of
substitution between products within modulem, σm, does not impact the quantity demanded.
Further, in such a case, the change in quantity demanded is the same across products of the
same module, so a product module level tax does not leverage the within-product category
heterogeneity in carbon intensity to reduce emissions.

1.4.4 Effectiveness of policy targeting.

Carbon reduction and policy targeting This framework can also be used to under-
stand what determines the effectiveness of a given tax schedule. Let MF be the total
expenditure on food and ei0 the pre-tax carbon intensity of good i, so that following a
change in tax schedule, ∆E =

∑
iEi ·∆xi ≈

∑
iEi · xi · d lnxi = MF ·

∑
i ei · si · d lnxi, and

E = MF · ē .

Then, I can express the change in carbon emissions as

∆E

E
= −d lnPF −

σ

ē
T − 1

ē

∑
d

sd · σdTd −
1

ē

∑
g

sg · σgTg −
1

ē

∑
m

sm · σmTm (1.9)

where Tm ≡ covi∈m (ei − ēm, d ln pi − d lnPm) =
∑

i∈m s
m
i · (ei − ēm)(d ln pi − d lnPm) is

the expenditure-share weighted covariance between excess carbon intensity relative to the
module average and differential price change relative to the module average.

Similarly, Tg ≡ covm∈g (ēm − ēg, d lnPm − d lnPg), Td ≡ covg∈d (ēg − ēd, d lnPg − d lnPd)

and T ≡ covd (ēd − ē, d lnPd − d lnPF ).

Tm can be interpreted as a measure of quality of policy targeting within module m: the
higher the covariance, the more targeted towards high carbon intensity products the tax
schedule is. Tg, Td and T can similarly be interpreted as the quality of policy targeting
within product group g, product department d and across product departments respectively.

Equation (1.9) delivers four insights. First, at each product category level, the effectiveness
of a change in tax schedule dq is the product of the quality of policy targeting and the
substitution capacity. For instance, the effectiveness of dq on reducing carbon emissions
from module m depends whether the policy targets relatively more carbon intensive products
within this module (weighted by their market-share), but also whether substitution within
this module is easy, as quantified by σm. Effective policies need to combine both aspects.
Second, optimal Pigouvian taxes maximize policy-targeting in the following sense. For any
optimal tax schedule of a given variance var(tj), we have that Tm = pCO2 · vari∈m (ei − ēm)

with pCO2 ≡ λ/α being the social cost of carbon. This follows from ti = φi = pCO2 · ei,
d ln pi = pCO2ei and d lnPm = pCO2 ēg. Causchy-Schwartz inequality implies that it is
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greater than any other tax schedule with the same variance. The result also holds at other
product category level in case we are considering constrained optimal Pigouvian taxes.
Third, equation (1.9) quantifies the additional effectiveness from using tax instruments at a
finer level. At indeed, suppose that a proportional tax on all goods j is introduced. Then,
d ln pj = d lnPm = d lnPg = d lnPd = d lnPF ∀j,m, g, d, so that Tm = Tg = Td = T = 0, as
the uniform tax does not target more carbon intensive goods. Following a uniform carbon
tax, ∆E = −d lnPF · ē ·MF = −d lnPF · E so that carbon reduction simply comes from
decreased overall consumption due to higher prices. MF · σT is then the additional carbon
saved from the availability of tax rate at the product department level, andMF ·

∑
d sd ·σdTd

is the additional carbon saved from the availability of tax rate at the product group level,
etc. Fourth, combining equations (1.7) and (1.9) imply that when we allow for subsidies in
addition to taxes, there exists tax schedules that do not change overall price level hence
private utility (so that d lnPF = 0), while reducing carbon emissions as long as dq is a mean-
preserving spread around zero that is positively correlated with ēi, so that corr(ēi, dqi) > 0.
It is unclear however whether these changes can be budget-balanced or not.

Utility cost of reaching a specific carbon emission target. I now reverse the problem
and show that for a given target in emission reduction ∆E, taxation at a finer level is always
more efficient, that is achieves smaller private utility loss and social welfare. The extent
of this increased efficiency is driven by the product of the variance of the within category
carbon intensity and the associated elasticity of substitution. For a given target emission
∆E, we have the following results:

d lnUunif =β
∆E

MF · ē
= β

∆E

E
pCO2,unif =

1

ē
· −∆E

E
(1.10)

d lnUdep

d lnUunif
=

pCO2,dep

pCO2,unif
=

ē

ē+ σ · var (ēd − ē)
≡ ē

ē+ Edep
≤ 1 (1.11)

d lnUgroup

d lnUunif
=
pCO2,group

pCO2,unif
=

ē

ē+ Edep +
∑

d sd · σd · varg∈d (ēg − ēd)
≡ ē

ē+ Edep + Egroup
≤ 1

d lnUmod

d lnUunif
=
pCO2,mod

pCO2,unif
=

ē

ē+ Edep + Egroup +
∑

g sg · σg · varm∈g (ēm − ēg)
≤ 1

d lnUprod

dd lnUunif
=
pCO2,prod

pCO2,unif
=

ē

ē+ Edep + Egroup + Emod +
∑

m sm · σm · varj∈m (ej − ēm)
≤ 1

Where d lnUunif is the log change in household’s utility following a optimal uniform tax
necessary to achieve ∆E, d lnUdep is the log change in household’s utility following a optimal
department-level Pigouvian tax necessary to achieve ∆E, etc. pCO2,unif is the implicit social
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cost of carbon given the constraint and the available tax instruments. Equation (1.10) is
intuitive. Given the unit price-elasticity of food from the Cobb-Douglas form of the higher
nest of U , reducing carbon emissions by x = ∆E

E % using a uniform tax on food implies
reducing uniformly quantity of food products by x% from a x% increase in prices, implying
a utility loss of βx%.

When targeting finer product categories is feasible, the welfare cost of achieving a x%

reduction in carbon emissions is strictly smaller as with the uniform tax as long as carbon
intensity varies across categories. Intuitively, this allows to focus carbon emission reduction
efforts by setting higher taxes on more carbon intensive categories, so that fewer goods see
a price increase. The efficiency gains relative to the uniform tax situation will be higher the
higher the elasticity of substitution, that is the lower the utility cost of substituting across
products. In particular, the social cost of carbon implicitly set by the reduction constraint
is actually lower the more flexible policy instruments are.

1.4.5 Calibrating the impact on social welfare of a change in tax schedule

I am now interested in expressing the impact of a change in tax schedule dq on overall social
welfare expressed in monetary units per household: 1

αW = 1
αU −

λ
αE + T , where T is the

tax revenue and λ
α∆E is the monetary value of the change in carbon emissions to the social

planner . The marginal cost of public funds is assumed to be one here, as W is devided by
the household’s marginal utility of income. Further, I do not consider potential uses of the
tax revenue, nor the associated carbon emissions (these could be positive, if for instance the
revenue is rebated lump sum to the household who uses it to increase its carbon emissions,
or negative, if it is used to fund carbon negative investments). In particular, I am interested
in ∆W/α = ∆U

U · U/α−
λ
α∆E + ∆T .

To estimate ∆W/α, we can recover ∆E and ∆T from the data, ∆U
U can be recovered from

the data and by calibrating β = 11.3% using the 2018 share of household’s final consumption
on take-home food and drinks7. Further, I calibrate U/α to 55,780

6,303/1,510 ≈ 13, 363 €, which is
the average household’s final consumption in 20188, scaled to account for the fact that only
a share of all food expenditure is observed. Specifically, national accounts suggest that the
average French household spend 6, 303€ on food and non-alcoholic beverages, whereas in
this data, the average household spends only 1, 510€ a year on the selected products for
the analysis. Last, the social cost of carbon pCO2 = λ

α can be set by the researcher or the
policy maker.

7Expenditure on food and non-alcoholic beverages represents 10% of final consumption and expenditure
on alcoholic beverage is 1.3%, see Figure 1 of https://www.insee.fr/fr/statistiques/4277709; accessed 1st
October 2021.

8Equal to 1628.8 bn€, see https://www.insee.fr/en/statistiques/4132094, divided by 29.2
millions, the number of households in France in 2016, the latest available year, see
https://www.insee.fr/fr/statistiques/4277630; accessed 1st October 2021.

https://www.insee.fr/fr/statistiques/4277709
https://www.insee.fr/en/statistiques/4132094
https://www.insee.fr/fr/statistiques/4277630
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Two other statistics are useful to compare different policies. First, ∆U/U
∆E ≈ −βd lnPF

∆E is the
percentage reduction in private utility per unit of carbon reduced, not taking into account
tax rebate. Second, adding another layer of calibration, ∆W/α

−∆E = pCO2 +
∆U
U
·U
α

+∆T

−∆E is the
change in welfare expressed in euros per unit of carbon saved by a change dq.

1.5 Empirical model and estimation

The previous section established that elasticities of substitution are a key ingredient to design
optimal policies and to measure their effectiveness. In this section, I estimate elasticities of
substitution from the data. Due to the nature of the data in which we observe purchases
from one retail chain only, the estimated elasticities are likely to be lower bounds on true
elasticity of substitution. However, as I focus on loyal customers only, the magnitude of the
bias is likely to be attenuated.

1.5.1 Empirical model and instrument

Empirical model.
Four sets of elasticities are estimated: within product module, within product group,

within department and across departments. To estimate product module level elasticities, I
exploit the relationship between market shares and prices and their geographic variation
across French geographic departments (not to be confused with product departments).
There are 96 geographic departments in metropolitan France, so this is a geographic unit
between the US states and counties. The CES structure of the utility function implies that:

ln smjct = (1− σm) ln pjct + (σm − 1) ln djc + (σg − 1) lnPmct

where ln smjct is the log market-share of product j within module m in geographic department
c in quarter t, σm is the constant elasticity of substitution within product module m, pjct is
the log price, djc is the time-invariant unobservable quality and Pmct is the price index of
module m in geographic department c in quarter t. I difference out the unobserved quality
by estimating

∆ ln smjct = (1− σm)∆ ln pjct + δmct +Xjct + εjct

where δmct is a product module by time by geography fixed effect, Xjct is a vector of controls
and εjct is a mean-zero disturbance. This specification is preferred to a one with ln qjct are
dependent variable and ln pjct as independant variable as one cannot aggregate product
quantities across categories. These elasticities are estimated for the overall population of
households, but also by quartile of the expenditure distribution and quartile of the carbon
intensity distribution. In all the regressions for this section, standard errors are clustered at
the geographic department levels. Observations are weighted by number of transactions
and these regressions are run separately for each product departments.
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The vector of controls Xjct includes a constant and the share of sales of product j in quarter
tand geographic department c coming from promotions. In the data, a transaction is flagged
as a promotion if one or more of the following is true: the product has a reduced price, is
part of a ’bulk’ promotion such as two-for-one promotions, or has been put in a particular
display, such at the end of an aisle. Controlling for Xjct eliminates variation in prices and
market shares due to short-term promotions which is important since we want to capture
long-term elasticities of substitution.

Instrumental variable approach.
Consistent OLS estimation requires that E [∆ ln pjct · εjct] = 0 conditional on the controls.

This is likely not to be the case. Indeed, within a quarter, product module and geographic
department, the change in local prices could be correlated to a variety of local time-varying
demand shifters captured by εjct, for instance if stores are increasing prices in times of higher
localdemand. To address this endogeneity bias, I instrument the change in log prices with
the average change in log prices for the same product in other geographic departments. This
instrument is a version of the one introduced by Nevo (2001) and Hausman and Bresnahan
(2008), and studies using scanner data regularly build on this strategy (DellaVigna and
Gentzkow, 2019; Allcott et al., 2019b,a). The IV instrument is:

∆ ln pjt,−c =
1

C − 1

∑
c′ 6=c

∆ ln pjct

where C is the total number of geographic departments. For the instrument to be valid
and the estimation to be consistent, two conditions must be satisfied. First, the in-
strument must be relevant, that is it must be correlated with the endogenous variable:
E
[
∆ ln pjt,−c ·∆ ln pjct

]
6= 0 conditional on the controls. Second, the instrument must

satisfy the exclusion restriction that E
[
∆ ln pjt,−c · εjct

]
= 0. Relevance can be directly

checked from the data from the first-stage. Panel (a) of figure 1.4 shows that the first stage
is extremely strong with a coefficient close to 1, which is very similar to what DellaVigna
and Gentzkow (2019) obtain using scanner data in the United States. Results from the
reduced form regression is plotted in panel (b) of figure 1.4.

The identifying assumption behind the exclusion restriction is that within a quarter, product
module and geographic department, the local, time-varying demand shocks εjct that are not
driven by promotions are not related with national level changes in baseline prices. While
this assumption cannot be checked in practice, the detailed set of time by geography by
product module fixed effects, as well as controlling for promotions, makes it more likely to
hold. For instance, a nationwide advertising campaign for a specific product, which would
impact its national-level prices and correlate with an unobserved demand shock, would be
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absorbed by the controls Xjct. Further, any demand shock which would violate the exclusion
restriction would need to impact differentially the products within the same product module,
within the same time period and within the same geographic department. In my view, the
granular nature of product modules makes such demand shock implausible.

Following standard practice in the literature (Broda and Weinstein, 2010; DellaVigna and
Gentzkow, 2019; Jaravel, 2019, etc.), I impose restrictions on the estimated elasticities. In
particular, I require elasticities to be greater than 1.05 and to have standard errors in the
range of [0.01, 1.25]. When this is not the case, I impute product module elasticity using
the median value of correctly estimated elasticities within same the product group.

Estimating higher level elasticities. In order to estimate elasticities at the product
group and product department model, as well as overall elasticity across product department
I follow Broda and Weinstein (2010) and reproduce my estimation procedure at a higher
level. Specifically, the market shares are recovered from the data and prices are aggregated
using the exact CES price index deriving in appendix section 1.D.

1.5.2 Estimation results

Figure 1.5 plots the distribution of estimated elasticities of substitution at the product
module level. Most of the distribution mass within 1 and 5, which falls within the generally
accepted ballpark estimates for this type of elasticities. By comparison, DellaVigna and
Gentzkow (2019) find median product price elasticities of 2.5-3 but focus on 40 product
modules only. This can roughly compared with my estimates since under CES utility,
own-price elasticity is also equal to the elasticity of substitution. Allcott et al. (2019a) find
a price elasticity of sugar sweetened beverages of 1.489, and out of the 6 product modules
associated with sugar sweetened beverages, the median estimated elasticity of substitution
within module is 1.34 in this data. By contrast, Broda and Weinstein (2010) estimate
elasticities of substitution for 122 product groups with a median elasticity of 11.5 but using
a more structural estimation approach.

Table 1.2 plots summary statistics of the distribution of estimated elasticities at within
product modules, group, department and across departments (column overall). The table is
consistent with the theory as elasticities of substitution are smaller at a higher level since
we are comparing less similar products.

9Column 3 of table III.
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Figure 1.4: Carbon - expenditure elasticity by product category

(a) First stage

(b) Reduced form

Notes: This figure plots the first-stage (panel (a)) and reduced form estimates (panel (b)) of the
instrumental variable regression discussed in section 1.5. Variables are residualized on a product
module by quarter by geographic department fixed effects. Standard errors are clustered at the
geographic department level.
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Figure 1.5: Histogram of estimated product module elasticities

Notes: This figure plots the histogram of the 309 product module elasticities of substitution
estimated as described in section 1.5. Vertical line indicates the median elasticity. Figure is
winsorized at the 99-th percentile.

Table 1.2: Estimated elasticities of substitution

Module Group Department Overall

5-th percentile 1.34 1.47 0.79 1.28
25-th percentile 2.21 1.68 1.15 1.28

Median 3.04 2.81 1.79 1.28

75-th percentile 4.50 3.43 2.81 1.28
95-th percentile 7.76 6.57 4.45 1.28

N 435 51 10 1

Notes: Overall elasticity of substitution denotes elasticity across product departments, other elasticities are
within the given product category.
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Appendix table 1.B.8 compares the estimated product module elasticities across a range of
different samples. Focusing the distribution of households ranked by monthly expenditure,
we can see that the median product module elasticity is slightly higher for the bottom
25% than for the top 25%, consistent with poorer households being more price-sensitive.
Interestingly, the 25% of households with highest carbon intensity have a much larger
estimated median elasticity than the 25% of households with the smallest carbon intensity.
Overall, the fraction of imputed elasticities is of the same order of magnitude as the fraction
of elasticities estimated by grid search in Jaravel (2019) and Broda and Weinstein (2010).

As robustness checks, panel (a) of appendix figure 1.C.4 plots the histogram of the baseline
IV and OLS estimates. Consistent with the assumption that unobservable demand shocks
are positively correlated with prices and the fact that σm = 1− β̂, with β̂ being the estimate,
elasticities obtained from OLS are smaller than from IV. Panel (b) plots the histogram
of the baseline IV estimate as well as estimates obtained from IV without controlling for
promotions. Controlling for promotion does indeed shrinks the value of estimated elasticities,
as could be expected from long-run elasticities being smaller than short-run elasticities.

1.6 Results

This section analyses various policies aimed at reducing carbon emissions and quantifies
the different drivers of their effectiveness. Unless indicated otherwise, optimal taxes are
based on a social price of carbon of pCO2 = 50 € per ton. This choice can be justified by
the fact that it is close to the prevailing estimates used for policy decisions for instance
in the US (2021), although many academic and policy publications suggest this value is
seriously underestimated (Stiglitz et al., 2017; Weitzman, 2014; Stern and Stiglitz, 2021).
As of September 2021, futures for a ton of carbon have been trading at between 50€ to
60€ over the last five months on the European ETS market.

1.6.1 Optimal and constrained optimal taxes

Figure 1.6 plots the histogram of product-level optimal Pigouvian taxes t∗j = pCO2 · ej ,
expressed as a percentage of pre-tax prices. The median and mean tax rates are modest, at
2.4 % and 3.4 % respectively. At a carbon price of 150€ per ton, they would amount to 7.3
% and 10.3 % respectively. While the average tax rate is modest, 5% of the products face
an optimal tax rate of 9% or higher. Table 1.3 shows how, under CES utility, constrained
optimal Pigouvian taxes would look like when they are set a the product module, group or
department level. As established in section 1.4, the market-share weighted average tax rate
is constant, at pCO2 · ē = 3.4%.
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Figure 1.6: Product level optimal taxes

Notes: This figure plots the histogram of the product level optimal Pigouvian tax based on a carbon
price of 50€ per ton. Full and dashed lines indicate the (pre-tax) market-share weighted median
and mean of the distribution, respectively. Top 5% of the distribution is winsorized.

Table 1.3: Optimal tax rates

Product Module Group Department Uniform

Mean 3.4 3.4 3.4 3.4 3.4
Std. dev. 3.9 3.3 2.1 1.2 0.0

p1 0.1 0.1 0.1 1.7 3.4
p10 0.5 0.6 1.3 1.7 3.4
p25 1.2 1.5 2.1 2.3 3.4

Median 2.4 2.7 3.1 3.3 3.4

p75 4.2 4.3 4.2 3.8 3.4
p90 7.3 6.4 6.6 4.9 3.4
p99 17.1 14.6 8.4 7.3 3.4

# tax rates 8,650 435 51 10 1
# products 8,652 8,652 8,652 8,652 8,652

Notes: Optimal taxes are expressed as a percentage of pre-tax price, and are based of a price of carbon of
50€ per ton. Observations are weighted by the (pre-tax) market-share.
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Panels (a) and (b) of figure 1.7 plots results from implementing equations (1.7) and (1.8)
at different levels of the product taxonomy. For reference, this figure includes the impact
of a uniform tax on all food products. Comparing this tax policy to policies set at finer
level illustrates what part of reduction in carbon emissions is due to substitution between
more or less carbon intensive products, and what part is due to a pure negative income
effect following the reduction of the consumer’s budget set (see equation (1.9)). Panel (a)
summarizes one of the key messages of the paper: implementing a carbon tax, or another
policy aimed at reducing carbon emissions, at a granular level is much more efficient than the
same policy implemented at a coarser level because the former leverages the high elasticities
of substitution between closely substitutable products. Specifically, in my data and given
the estimated elasticities, setting a product-level optimal carbon tax would reduce carbon
emissions by 10.2% and be nearly three times as efficient in this regards than setting an
optimal carbon tax at the product department level. Even smaller scale, and perhaps more
implementable, changes in the level at which policy is set would be meaningful: as going
from a department level carbon tax to a product group level carbon tax means a 40% higher
reduction in carbon emissions, from 3.8% to 5.3%. To put these numbers into perspective, a
reduction of 5.3% in carbon emissions from food represents 5% of the effort needed to achieve
France’s objective to reduce carbon emissions by 26% by 2030, assuming food represents
26% of all emissions. Overall, this is a small but non-negligible number. Further, panel
(b) of figure 1.7 shows that the difference in carbon emission reduction between coarse and
fine-grained taxes does not translate into differential change in private utility loss. Indeed,
under CES preferences, optimal and constrained optimal all lead to the same average price
increase, driving the overall loss in utility from equation (1.7).

Panels (a) and (c) of appendix figure 1.C.5 reproduce these results for a carbon price of 150€
a ton. At this price, an optimal tax set at the department level reduces carbon emissions by
16.2% whereas a tax set at the product module level reduces emissions by 27.6%, roughly
at the same private utility cost. Panel (b) and (d) plot the change in carbon emissions and
private utility for a range of carbon prices. Panel (b) shows that the relation between in
carbon emissions and carbon prices is close to linear for uniform carbon taxes and has a
concave shape for taxes at finer levels. Panel (b) suggests that a price of carbon between
75€ and 250€ a ton maximizes the relative efficiency of finer taxes. Intuitively this comes
from the fact that carbon emission reduction is bounded by 100%. Panel (d) shows that
the estimated private utility loss varies depending on the product category at which taxes
are set, in apparent contradiction with the results established in section 1.4 that private
utility loss is the same across all taxation level. This is because for large values of pCO2 ,
assumption 2 that the change is market share within each product category is small is
violated. At high carbon prices, utility loss from coarser taxation is much higher than from
finer taxation because substitution effects are very strong in the latter, which impacts the
effective tax rates and price increase faced by households. It is noteworthy that this results
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Figure 1.7: Impact of optimal and constrained optimal taxes on carbon emissions and
private utility

(a) Percentage reduction in carbon emission (b) Percentage reduction in private utility

(c) Relative utility cost of achieving a specific CO2 reduc-
tion target

Notes: This figure plots the estimated percentage reduction in carbon emissions (panel (a)) and
private utility (panel (b)) following optimally set taxes at different levels of the product category
classification as discussed in section 1.4. Panel (c) plots the private utility loss from achieving a
specific carbon reduction objective with a given policy instrument relative to uniform taxation.
Numbers are based on a price of carbon of 50€ per ton.
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holds remarkably well for small values of pCO2 , while the violation of the assumption can
already be seen in panel (c).

While the magnitude of change in private utility seems much smaller than the change
in carbon emissions (−0.4% relative to −11% in the baseline estimate of product level
taxes), comparing the two requires particular assumption on the respective baseline level.
Appendix figure 1.C.6 plots the components of social welfare across the different tax policies,
expressed in euro per household using the calibration assumption discussed in section 1.4.5.
The key takeaway of this graph is that under current assumptions on the baseline level
of household utility and value of carbon emissions, the difference in efficiency of carbon
emissions reduction across tax policies translates into much smaller changes in social welfare.
The overall social welfare loss implementing a product module level optimal tax amounts to
11€ per household, whereas it is 18% higher for department level optimal taxes, at 13€.
The loss in private utility is nearly constant across tax policies, the difference being driven
from deviations from assumption 2 as discussed above. Similarly, the value to the social
planner of tax revenue varies between 34€ and 36€ per household, the difference being
driven by the strength of substitution effects at different levels of the product taxonomy,
reducing the effective tax burden faced by consumers. While the difference in social value
of carbon emissions reduction is stark across tax policies, being four times more important
for a product module level tax than for a product department level tax, in absolute value
these differences are small, so that the difference between the private utility change and
the social welfare change is mostly driven by tax revenue rather than the value of carbon
emissions avoided. Appendix figure 1.C.7 plots another complementary but useful way to
highlight the relative inefficiency for coarser tax policy by asking how much social welfare
or private utility is lost for any ton of avoided carbon emission.

Naturally, these results depends on the social cost of carbon. Given a high enough social
cost of carbon, any reduction in carbon emissions will lead to a positive welfare change.
Figure 1.8 shows that a social cost of carbon of about 350€ per ton is necessary for a
product-level optimal tax to be welfare improving. This minimum social cost of carbon
necessary to justify such optimal tax from a welfare perspective is well-above the current
ballpark estimates of what a social cost of carbon is. However, it highlights the discrepancy
between these estimates of social cost of carbon and the social cost of carbon implicitly set
by policy objectives such as the Paris agreement, as is developed below.

1.6.2 Heterogeneity across expenditure and carbon intensity levels

I now turn to the distributional impact of optimal and constrained optimal carbon taxes.
In theory, heterogenous impact of such taxes could arise either because of different demand
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Figure 1.8: Components of social welfare by price of carbon

Notes: This figure plots the components of social welfare for a product level optimal tax.

structure (different σm, σg, σd and σ) or because of different price levels faced by the
households.

Heterogeneity across expenditure distribution. Figure 1.9 plots the estimated im-
pact of different tax policies on quartiles of the expenditure distribution for a cost of carbon
of 50€ per ton. Panel (a) shows that there indeed exists a difference in the percentage
reduction in carbon emissions between high and low-expenditure households when taxes are
set at a fine level. Product level optimal taxes would lead to a reduction of 11.3% in CO2
from households in the bottom quartile and of 10.1% from households in the top quartile.
This is driven by the fact that at fine category levels such as within product groups or
product modules, low-expenditure households tend to have higher elasticities of substitution
than high-expenditure households. As could be expected, the percentage reduction in CO2
is the same across quartiles when faced with a uniform tax, as this policy leave no room for
differentiated substitution patterns. To a lesser extent, this insight carries over to product
department level taxes: since elasticities of substitution between broad product categories
such as between fats, cereals and dairy, are likely to be similar across the expenditure
distribution, as is confirmed by the data, setting department-specific carbon taxes will
have a very similar impact on all households. Panel (b) shows however that any of the
tax policies considered here have a similar impact on private utility across the expenditure
distribution. In practice, this shows that all quartiles of the distribution are facing the same
expenditure-weighted aggregate price changes, whatever the tax policy considered.
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Figure 1.9: Heterogeneity by quartile of different distributions

(a) Carbon emissions - Expenditure distribution

(b) Private utility - Expenditure distribution

(c) Carbon emissions - Carbon intensity distribu-
tion

(d) Private utility - Carbon intensity distribution

Notes: This figure plots the estimated percentage reduction in carbon emissions (panels (a) and
(c)) and private utility (panels (b) and (d)) following optimally set taxes at different levels of the
product category classification, for different quartiles of the expenditure distribution or the carbon
intensity distribution. Numbers are based on a price of carbon of 50€ per ton.

Relatedly, panels (a) and (b) of appendix figure 1.C.8 confirms that these results are mostly
driven by different demand structure across the distribution and not different prices leading
to initial different initial expenditure patterns: the same exercise as in figure 1.9 has been
reproduced assuming equal elasticities of substitution across quartiles, and under this
assumption, most of the difference in CO2 reduction between high- and low-expenditure
households vanishes. Panel (c) of figure 1.C.8 shows that higher expenditure households
contribute disproportionally to the overall tax revenue raise and to the overall carbon
reduction, purely due to their higher expenditure level. This is even sufficient to make the
social welfare benefit of taxing the top quartile positive.

Heterogeneity across carbon intensity distribution. The above section shows, in
consistency with the stylized facts section, that there is little quantitative difference in the
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impact of different tax policies across the expenditure distribution as regards changes in
utility and carbon emissions. However, meaningful dimensions of heterogeneity might not
be captured by expenditure only. Accordingly, I reproduce the same exercise by estimating
different elasticities of substitution for quartiles of the carbon intensity distribution. Panels
(c) and (d) of figure 1.9 shows that the distributional impact of different tax policies across
the carbon intensity distribution varies widely. When optimal taxes are set at the product
level, the bottom quartile reduces carbon emissions by 6.7%, against 13.5% for the top
quartile, a 101% difference. Even when optimal taxes are constrained to be set at the
product group level, the percentage reduction in carbon emission of high carbon intensity
households is 21% higher than low carbon intensity households. This effect is mediated
through both different elasticities of substitution and through different spending patterns.
Panel (a) of figure 1.C.9 shows that when I restrict households to have the same substitution
elasticities, initial differences in expenditure also matter to explain the difference in carbon
emission reduction across quartile of carbon intensity. Comparing the panel (c) of figure 1.9
and panel (a) of 1.C.9, we can see that the difference in elasticities accounts for roughly 60%
of the difference in carbon reduction across the top and bottom quartile, when focussing
on product level or product module level taxes. Panel (d) of figure 1.9 confirms that low
and high carbon intensity households are exposed to significantly different average tax rates
leading to differentiated impact on private utility. Product level optimal taxes would reduce
private utility of low carbon intensity households by 0.29%, against 0.45% for high carbon
intensity households, a meaningful 50% larger cost.

It is important to combine these results with the stylized fact that much of the variation
in carbon intensity comes from within bins of the expenditure distribution, rather than
from difference across bins. Taken together, they confirm that the more targeted the tax
policy, the more important the variability of its impact (CO2 reduction or utility loss) on
households. However, these results also show that the impact variability happens mostly
across households of similar expenditure level.

1.6.3 The utility cost of reaching a specific carbon reduction target

To shed light on the efficiency of policy targeting, I look at the same problem from a
different perspective by asking what is the utility cost of different tax policies required to
achieve a specific target in emission reduction. It is important to note that this does not
fundamentally alter the nature of the problem at hand, since the social planner’s Lagrangian
L = V (q;Z + T ) + λ

[
Ē −

∑
j Ej · xj

]
makes it clear that the relationship between the

overall carbon constraint Ē and the social cost of carbon pCO2 = λ/α is mediated through
∂L/∂Ē = λ. However, this perspective enables me to specify the relative efficiency of
fine-tuned policy targeting, explore its drivers, and to highlight how the social cost of carbon
implicitly set by hard constraints depends crucially on the available policy instruments and
the preference structure of the economy.
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In this section, I consider a specific reduction target of ∆E/E = −0.26, which corresponds
to the overall reduction in CO2 necessary to meet France’s 2030 objectives and assumes
that the same level of efforts should be demanded for the food sector than the rest of the
economy. Further, in order to be able to compare similar tax policies with varying degree of
targeting, I compare optimal and constrained optimal tax set at each product category level.

Panel (c) of figure 1.7 plots the private utility loss, or equivalently, the implicit relative
social cost of carbon from achieving a specific carbon reduction objective with a given policy
tool relative to uniform taxation. The efficiency gains from having access to finer policy
instrument is striking. A product specific optimal carbon carbon tax would be 67% less
costly in terms of private utility than a uniform tax on food products. Given the target
of 26% reduction, this suggests that a private utility loss from a uniform tax would be
0.113 · 0.26 ≈ 2.9%, whereas it would only be 1.0% for product-level taxation. Even small
changes are meaningful: for a given reduction target, a product group level carbon tax is
1− 0.69

0.91 ≈ 25% more effective than a department level tax. As discussed in section 1.4, this
increased efficiency is driven by the small social cost of carbon when policy instruments are
more flexible.

As highlighted by equations (1.11) and below, the relative efficiency of more flexible policy
instruments depends on the expenditure-weighted covariance between substitution elasticities
and variance of carbon intensity. In an ideal world, within a product category, we would
like to have both high variance of carbon intensity as well as high substitutability across
products, so that a product-specific tax within this category would be very efficient. Figure
1.10 shows that, at least in the case of food products, we have such positive relationship only
at the product department level. At the product group and product module level, higher
substitution elasticities are generally associated with slightly smaller variance in carbon
intensity.

Under the set of assumptions laid out in this paper, and in particular perfect competition
(that the products’ prices reflect their marginal private cost), variance of carbon intensity
across product category and elasticity of substitutions are structural parameters of the
economy and are not something that a social planner can act on. Nonetheless, the quantities
Edep,Egroup,Emod derived in equation (1.11) are useful to inform the policy makers of the
potential efficiency gains to have access to more flexible policy instruments and can be
compared with the associated administrative cost of more flexible instruments. Further,
equation (1.11) and figure 1.10 provide guidance as to the potential benefits of interaction
between taxes and other other types of policy instruments. For instance, information-
based policies aimed at reducing consumer’s biases and hence increasing their elasticity of
substitution should be best targeted towards markets with high variance in carbon intensity
across products. Similarly, investments in carbon reducing technologies, leading to new,
less carbon intensive products, should be targeted towards markets with high substitution
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Figure 1.10: Relationship CES and carbon intensity

(a) Product department level (b) Product group level

(c) Product module level

Notes: Panel (a), (b) and (c) plot the relationship between estimated CES at the product department, group
and module level, respectively, and the associated within category variance in product intensity. The size of
circle is proportional to the category’s market share. The dashed line is the market-share weighted linear fit.
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elasticity.

Overall, panel (c) of figure 1.7 and figure 1.10 show that the adaptation cost to a specific
carbon emission constraint depends crucially on the availability of flexible policy instruments,
and on the structural parameters of the economy.

1.6.4 The welfare cost of reducing carbon emissions

This section moves away from optimal taxation, and asks whether focusing on some specific
product categories are more efficient in reducing carbon emissions than others. Efficiency is
defined here as the change in social welfare (or private utility) per kilogram of carbon avoided,
expressed in euros. More precisely, I consider the impact of a 5% price increase in a single
product module, product group or product department, on carbon emissions, private utility
and social welfare. This number has been chosen to be approximately the 75-th percentile
of the distribution of the product-level Pigouvian taxes. However, since most results are
expressed in units of welfare per kilogram of carbon avoided, the precise size of this price
increase does not really matter. Unreported results show that the results are qualitatively
the same with a 2.5% and a 10% price hike. This price increase could conceptually come
from a variety of reasons: an environmental value-added tax, the inclusion of a specific
product category in a carbon trading system, but also the money-metric equivalent of
a non-price intervention (e.g. a public information campaign, increase in search costs).
The results of this section can be interpreted as the general equilibrium impact of a price
increase in a unique product category, as the exercise incorporates all the substitution
patterns with other products, within and between product categories (under the maintained
assumption of perfect competition, so that there is no supply-side response). Figure 1.12,
which summarizes the results of this section, can be considered as a demand-side version of
McKinsey’s (2009) technology marginal abatement cost curve, where the cost comes from
imperfect substitution opportunities.

First, panel (a) of figure 1.11 displays the amount of carbon emissions avoided from a 5%
price increase in a single product department. The result is quite intuitive. A uniform price
increase on all ’meat, fish and egg’ products would reduce household carbon emissions by 9

kgCO2eq (for reference, the average annual carbon emission of a household in this data is
753 kgCO2eq), which is much more than an equivalent price increase on products from the
’vegetable and fruits’ or the ’fats’ product department (≈ −1.8 kgCO2eq per household).
This difference is driven both by the carbon intensity of the different departments as well
as their different market shares. Panel (b) reproduces the same exercise at the product
group level. It shows that setting a 5% tax on some categories is counter-productive and
raises carbon emissions, because close substitutes have higher carbon intensity. Naturally,
such results would not be possible under optimal or constrained optimal taxation, as the
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Figure 1.11: The impact of a 5% tax rate on specific product categories

(a) Product department level

(b) Product group level

Notes: This figure plots the impact of a 5% price increase on carbon emissions on a unique product
department (panel (a)) and product group (panel (b)).
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optimality condition from equation (1.3) requires that high carbon intensity goods are
always taxed at a higher rate than low carbon intensity goods.

Figure 1.12 plots the relative efficiency of a 5% price increase at the product module level.
Product modules are ranked by how efficiently they respond to a price increase, measured
as change of utility (panel (a)) or social welfare (panel (b)) in euros per kilogram of carbon
emissions avoided, using the calibration discussed in section 1.4.5. The width of the bars is
proportional to their carbon reduction potential, measured in total carbon emissions, and
thus accounts for their relative importance. In addition, only the top 20 product modules
according to this measure are shown. Panel (a) of figure 1.12 shows that all taxes considered
incur some private utility loss, but some taxes more than others. Some product modules,
such as ’cervella’ or ’dry dates’ respond relatively inefficiently: they represent a small fraction
of overall carbon reduction potential, and are relatively more costly in terms of utility per
kilogram of carbon avoided. In contrast, assuming no interaction between price hikes, a 5%

price incrase for raw beef and meat-based raviolis would reduce carbon emissions by 7.5

kgCO2eq per household, or slightly less that 1% of their overall carbon emissions. Further,
it would be achieved at a utility cost of 0.1 to 0.2€ per kilogram of carbon avoided, whereas
a set of optimal tax rates set at the same product category level has a utility cost of 0.77

euro per kgCO2eq (see figure 1.C.7). Focusing on welfare cost of targeted price increase,
panel (b) reveals that the qualitative results remain similar. Since the welfare measure also
accounts for the social value of carbon emissions avoided and for the value of the price
increase (implicitly assuming it is transfered to the government or to firms), the efficiency
cost is even smaller than when measuring it private utility. Note that the ranking of product
efficiency differs slightly between the two measures of efficiency (for instance ’cheeseburgers’
are within the top 20 of product modules with highest efficiency when measured with social
welfare, but drop out the top 20 when measured with private utility). This is due to the
fact that the value of carbon emissions avoided and the value of price transfers depend on
the elasticity of substitution between specific product modules, and on the relative carbon
intensity of substitutes products, similar to the intuition developped in equation (1.9). All
else equal, higher substitution elasticity reduces direct tax revenues and increases carbon
emissions avoided (the net balance between the two depending on the social cost of carbon).
At a social cost of carbon of 50€ per ton, a price increase of meat-based ravioli, pre-made
chili con carne, pre-made meat-based tomato sauce and tripes becomes welfare improving.

Appendix figure 1.C.10 looks at broader product categories and plots the relative efficiency
of a price increase at the product department level. Panel (a) shows that some vegetables
and fruits are respond inefficiently. In contrast, prepared dishes, dairy, and meat, fish and
eggs are relatively more efficient according to this measure, and account for a large part
of the overall carbon reduction potential. Note however that as established above, a price
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Figure 1.12: Cost of reducing carbon emissions by product module

(a) Private utility cost

(b) Social welfare cost

Notes: This figure ranks product modules by the efficiency measure developped in section 1.D.3, expressed
as the change in utility in euro per kilogram of carbon emissions avoided (panel (a)) and the change in social
welfare in euro per kilogram of carbon emissions avoided (panel (b)). Computations use the calibration of
utility and social welfare discussed in section 1.4.5 and a social cost of carbon of 50€ per ton. Only the first
20 product modules according to this ranking are shown in this graph. Bar width is proportional to their
carbon reduction potential, measured as the total carbon emissions, and thus accounts for their relative
importance.
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increase of 5% coming from e.g. a tax increase is not optimal at this broad level, since it does
not leverage substitution potential across products within product departments. Looking at
panel (b) and product groups, a 5% price hike on prepared dishes, chocolate-based products,
butter, raw meats and milk would lead to a decrease of 14 kilograms of CO2eq, or 2% of a
household’s annual average carbon emissions in the data. This would be achieved at a utility
cost of about 0.66 euros per kilogram of carbon, or 9€ per household, which is equivalent
to 0.6% of their annual expenditure on food. Appendix figure 1.C.11 reproduce the same
exercise for welfare.

Overall, these results suggest that the welfare impact of price increases is also very het-
erogenous across product categories, and that targeting a handful of product categories
is a relevant way to minimize utility loss. A careful design of taxes leveraging this newly
documented heterogeneity in carbon intensity across and within product categories, and
accounting for substitution patterns across products paves the way for meaningful carbon
emission reduction while improving overall welfare.

1.7 Conclusion

This paper documents large heterogeneity in carbon intensity across households and prod-
ucts, even within detailed product categories. Combining this stylized fact with the fact that
substitution elasticities are higher between close subsitutes of a detailed product category
than between different product modules, it provides a new justification for well-targeted envi-
ronmental policies. In particular, it quantifies the welfare gains from granular environmental
taxes or, equivalently, carbon markets over coarser tax systems.

These findings are based on a data set covering food products only, and one can wonder
whether some results might change if the whole consumption basket is considered. While
the main stylized facts that products’ carbon intensity is heterogeneous even within detailed
product categories is likely to hold for most parts of the consumption baskets (think for
instance about the variation in lifetime carbon emissions across electric versus diesel sport
utility vehicules), I expect the finding of a modest carbon intensity - expenditure gradient
across households to be more specific to food and beverages (think for instance of different
leisure choices across households).

This paper also illustrates that at least in some settings, exposure to carbon taxes can
vary widely across households with similar expenditure levels, suggesting that income might
not be the ideal tagging device and that schemes aimed to compensate households for the
income loss from environmental policies should be more sophisticated. In particular, one
can see the 2018 French Yellow Vest protest movement as a reaction to poorly targeted and
insufficiently compensated carbon taxes



Appendices

1.A Additional stylized facts

Additional stylized fact 1: Carbon intensity and carbon emissions of food
choices are very heterogenous, even within narrow product categories. I show
this using various metrics of dispersion. Overall, this suggests that it is possible for con-
sumers, given the current supply-side constraints (technology, market structure, etc.), to
choose products with lower carbon intensity.

As a general overview, figure 1.C.12 plots the histogram of (demeaned) carbon intensity in
the raw data and controlling for the different product categories. While the distribution of
carbon intensity tends to shrink as we control for finer categories, sizable variation remains.
In particular, standard deviation decreases from 0.58 in the raw data to 0.47 (18% decrease)
and 0.36 (36% decrease) when controlling for product sub-groups and product modules
respectively, which is not much considering the number of different product categories at
these finer levels. Furthermore, figure 1.C.13 plots the coefficient of variation at the product
module level for carbon intensity and carbon emission per product. As can be seen from
these graphs, nearly 90% of product modules have a coefficient of variation of 100% or
higher, which indicates particularly high variation in carbon intensity relative to the mean
carbon intensity in each category. This cannot be solely explained by price differences since
the pattern is similar for carbon emissions per product. This figure also highlights the
relatively high variation in within-module heterogeneity across product categories. Figures
1.C.14 and 1.C.15 show that the pattern is similar at all category level, both for carbon
intensity and carbon emission per product. Interestingly, the median coefficient of variation
of carbon intensity across product category increases as product categories become finer,
from a median of 95 % for product department to a median of 169 % and 342 % for product
sub-groups and modules respectively. This is likely driven by the fact that standard deviation
only decreases moderately while average carbon intensity changes more. All these results
weight every product equally in order to be representative of the choice set rather than
the actual consumer choices but the results are qualitatively unchanged when weighting by
quantity sold.

60
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Additional stylized fact 2: Targeting a small number of detailed product cate-
gories has the potential to achieve significant reduction in carbon emissions I
go beyond panel (c) of figure 1.C.2 and ask whether it would make sense for policy makers to
focus on a few product category to achieve significant reduction in carbon emissions using, as
an illustration, the Ecoscore label. As discussed in section 2.2, Ecoscore is an environmental
label developed by ADEME and was released publicly in late 2020, so that consumers in my
data set did not observe this label while making their purchases. Nonetheless, I use it as a
useful broad categorization of a product’s environmental quality: figure 1.C.16 and table
1.1 show that products with better Ecoscore grade also have lower carbon intensity. I ask
two questions. First, by how much would carbon emissions be reduced if, within product
sub-groups, demand shifted to products with Ecoscore grade A and B only? Second, how
much of the change can be accounted for by the largest 10 product categories? Exploiting
this environmental label shows that if consumers shifted their demand from products with
Ecoscore C and above to products within the same product sub-group, but with Ecoscore A
and B, overall carbon emissions would be reduced by 28.6 %, (1019 of tCO2eq in my data).
Further more, the top 10 product sub-groups with highest impact account for 64.1 % of
the overall change. Figure 1.C.17 highlights these results and suggests, for instance, that a
policy focusing solely on ’pasta based prepared dishes’ and ’sausage and related products’,
and which would incentivize consumers to shift to products with Ecoscore A or B within the
same category, would reduce carbon emissions from food by close to 6% (20% of 28.6 %).

Repeating the same exercise at the broader product department level, I find that overall
carbon emissions would instead be reduced by 39.4 %, and that the largest product depart-
ment, meat, fish and eggs, accounts for 46 % of the overall change (cf. figure 1.C.18). The
higher numbers do make sense as it would involve shift between less similar products.

Additional stylized fact 3: There is a very modest negative relationship between
carbon intensity and expenditure across households. Panel (a) of figure 1.C.19
shows that households with higher average expenditure have a lower average carbon intensity.
We would ideally also like to analyze the relationship between carbon intensity and household
income, but this data is not available. Instead, I focus for this stylized fact on non-family
households (results are qualitatively unchanged when considering families as well) and rely
on the assumption that household size is homogenous and the fact that food is a normal
good to conclude that the relationship between carbon intensity and household income is
likely to be negative as well. As an imperfect robustness check, I proxy household income
with median available income of the employment zone the household shops in (as in, among
others, Chetty et al. (2020)). Figure 1.C.20 confirms that the pattern remains similar.

The overall gradient in panel (a) of figure 1.C.19 is small: a 10% increase in monthly
expenditure is associated with a decrease of 0.003 points of carbon intensity. However, the
slope is still statistically significant and economically meaningful. To see this, I ask by
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how much would carbon emissions decrease if households in the bottom half of the income
distribution had an average carbon intensity equal to the grand average of carbon intensity,
keeping all other behaviour constant. Overall, starting from a grand average carbon intensity
of 0.63 for non-family households, such change in carbon intensity would lead to a decrease
in carbon emissions of 38.1 %. The high heterogeneity in carbon intensity within percentile
of the expenditure distribution is likely to explain this results.

Additional stylized fact 4: While CO2-expenditure elasticity estimate is in line
with previous literature, this hides important heterogeneity across products.
It is important to note that additional stylized fact 3 does not at all imply that households
with higher food expenditures (hence, likely wealthier households) emit less carbon. On the
contrary, panel (b) of figure 1.C.19 shows that the CO2 - expenditure elasticity is 0.95. This
number is in line with previous literature on the topic; for instance Chancel et al. (2015)
discuss past work and a carbon - expenditure elasticity of 1 is their preferred estimate. In
addition, this data can go one step deeper and look at the CO2 - expenditure elasticity
within finer product categories. As figure 1.C.21 highlights, carbon-expenditure elasticity is
indeed centered around 1, but almost half of the product categories (43%; 49 out of 115

product sub-groups and 27 out of 62 product groups) have elasticities significantly greater
than 1. Among these products, meat products and alcohols seem overrepresented, although
the pattern is not very clear.

1.B Additional tables

Table 1.B.1: Products, modules, subgroups and groups by product departments

# groups # sub groups # modules # products

Prepared dishes 6 13 137 1,709
Vegetables and fruits 5 12 172 2,613
Cereals 4 7 86 2,272
Meat, fish and eggs 11 25 176 3,396
Dairy 4 14 118 3,321
Beverages 3 12 74 4,775
Sweets 9 9 143 6,056
Iced creams 3 3 9 587
Fats 4 4 17 585
Other products 9 12 117 2,129
Infant food 4 4 7 110
Total 62 115 1,056 27,553

Notes: Table built from the Product data set.
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Table 1.B.2: Summary statistic on matching

Product data Household data

Unit of observation Product Product × client

# products 120,574 43,873
# products matched 27,553 19,068
Share product matched (%) 22.9 43.5

Sales (mE) 9,004 1,090
Sales matched (mE) 5,534 679
Share sales matched (%) 61.5 62.3

Carbon emissions (mtCO2eq) 5.528 0.158

N 27,553 92,099,172

Table 1.B.4: Summary statistics on selected households

Monthly expenditure # months in data set

Mean 25th Med. 75th Mean 25th Med. 75th

Overall 125 81 109 153 33 33 36 36

By expenditure:
Q1 68 62 68 75 34 33 35 36
Q2 94 87 94 101 33 31 35 36
Q3 129 118 127 139 33 32 36 36
Q4 210 170 194 233 33 33 36 36

By carbon intensity
Q1 130 83 113 159 33 32 36 36
Q2 126 82 110 154 33 32 36 36
Q3 125 81 109 153 34 33 36 36
Q4 119 77 103 145 34 33 36 36

Non-family households 116 77 102 139 34 33 36 36

Notes: This table displays statistics on the average monthly expenditure and the number months present in
the dataset for households from the Household data set. The different rows of the table show different split
of the households. For instance, the median monthly expenditure of households in the first quartile of the
distribution of households ranked by carbon intensity is 113€. Household can be observed for a maximum
of 36 months.
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Table 1.B.5: Carbon intensity and market share at different product category level

(1) (2) (3) (4)
CO2 intensity CO2 intensity CO2 intensity CO2 intensity

ln (dep market share) 0.032∗∗∗

(0.005)
ln(group market share) 0.030∗∗∗

(0.005)
ln(sub-group market share) 0.029∗∗∗

(0.004)
ln(module market share) 0.025∗∗∗

(0.004)
Constant 0.734∗∗∗ 0.655∗∗∗ 0.633∗∗∗ 0.551∗∗∗

(0.059) (0.050) (0.039) (0.024)

Product department FE Yes
Product group FE Yes
Product sub-group FE Yes
Product module FE Yes
R2 0.123 0.238 0.367 0.648
N 27,553 27,553 27,553 27,553

Notes: This table presents regression results linking carbon intensity and product market share at different
level of the product classification from the Product dataset. Carbon intensity is the ratio of CO2 to price,
defined at the product (barcode) level. Independent variables are the market share of a given product
computed at the product department, group, subgroup and module level respectively. Standard errors in
parentheses are clustered at the product module level.

Table 1.B.6: Carbon emissions per product and market share at different product category
level

(1) (2) (3) (4)
CO2 / product CO2 / product CO2 / product CO2 / product

ln (dep market share) 0.047∗∗∗

(0.013)
ln(group market share) 0.041∗∗∗

(0.011)
ln(sub-group market share) 0.037∗∗∗

(0.007)
ln(module market share) 0.031∗∗∗

(0.006)
Constant 1.616∗∗∗ 1.478∗∗∗ 1.424∗∗∗ 1.320∗∗∗

(0.161) (0.118) (0.066) (0.035)

Product department FE Yes
Product group FE Yes
Product sub-group FE Yes
Product module FE Yes
R2 0.132 0.227 0.405 0.635
N 27,553 27,553 27,553 27,553

Notes: This table presents regression results linking carbon emissions per product and product market
share at different level of the product classification from the Product dataset. Carbon emission per product
is in eqCO2kg. Independent variables are the market share of a given product computed at the product
department, group, subgroup and module level respectively. Standard errors in parentheses are clustered at
the product module level.
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Table 1.B.7: Carbon intensity and market share - Robustness

(1) (2) (3) (4)
CO2 intensity CO2 intensity CO2 intensity CO2 intensity

ln(sub-group market share) 0.029∗∗∗ 0.024∗∗∗

(0.004) (0.004)
price -0.034∗∗∗ -0.028∗∗∗

(0.006) (0.007)
ln(module market share) 0.025∗∗∗ 0.023∗∗∗

(0.004) (0.004)
Constant 0.633∗∗∗ 0.719∗∗∗ 0.551∗∗∗ 0.638∗∗∗

(0.039) (0.044) (0.024) (0.039)

Product sub-group FE Yes Yes
Product module FE Yes Yes
R2 0.367 0.387 0.648 0.657
N 27,553 27,553 27,553 27,553

(a) Carbon intensity

(1) (2) (3) (4)
CO2 / product CO2 / product CO2 / product CO2 / product

ln(sub-group market share) 0.037∗∗∗ 0.053∗∗∗

(0.007) (0.008)
price 0.117∗∗∗ 0.164∗∗∗

(0.029) (0.045)
ln(module market share) 0.031∗∗∗ 0.045∗∗∗

(0.006) (0.007)
Constant 1.424∗∗∗ 1.126∗∗∗ 1.320∗∗∗ 0.806∗∗∗

(0.066) (0.098) (0.035) (0.143)

Product sub-group FE Yes Yes
Product module FE Yes Yes
R2 0.405 0.431 0.635 0.667
N 27,553 27,553 27,553 27,553

(b) Carbon emissions per product
Notes: This table presents regression results linking carbon emissions per product and product market share
at the product sub-group and product module level from the Product dataset. In both panels, columns (1)
and (3) are the same as in figure 1.B.5 and 1.B.6. Independent variables are the market share of a given
product computed at the product subgroup and module level respectively. Standard errors in parentheses
are clustered at the product module level.
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1.C Additional figures

Figure 1.C.1: Carbon intensity for various sectors, Exiobase

Notes: This figure displays the carbon intensity of various sectors from the Exiobase data set.
Carbon intensity is expressed in kgCO2eq per real euro spent. Euro is deflated to 2017 level and
carbon emissions includes direct and indirect emissions following the inversion of the input-output
matrix.
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Figure 1.C.2: Coefficient of variation of carbon intensity

(a) Carbon intensity, unweighted (b) Carbon emission per product

(c) Total carbon emission

Notes: This figure presents decomposition of the variance of carbon intensity into between group variation
and within group variation, for different product category. Data comes from the Product data.
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Figure 1.C.3: Decomposition of difference in carbon intensity

Notes: This figure presents decomposition of the difference in carbon intensity relative the grand
average following (1.1). Expenditure is defined as the average monthly expenditure of a given
household.
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Figure 1.C.4: Histogram of various elasticities estimates

(a) Baseline IV and OLS estimates

(b) Baseline IV and IV without promotions
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Figure 1.C.5: Carbon emission and utility change by carbon price

(a) Change in emissions, 150€ per tCO2eq

(b) Change in emissions

(c) Change in private utility, 150€ per tCO2eq

(d) Change in private utility

Notes: This figure plots the estimated percentage reduction in carbon emissions (panel (a)) and
private utility (panel (c)) following optimally set taxes at different levels of the product category
classification as discussed in section 1.4 and a price of carbon of 150€ per ton. Panels (b) and
(d) plot the change in carbon emissions and private utility across a range of values of the price of
carbon.
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Figure 1.C.6: Components of social welfare

Notes: This figure uses the calibration assumptions discussed in section1.4.5. Numbers are based on
a product level taxes carbon price of 50€ per ton.
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Figure 1.C.7: Efficiency measures of tax policies

Notes: Numbers are based on a product level taxes carbon price of 50€ per ton.
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Figure 1.C.8: Heterogeneity by expenditure - Additional results

(a) Reduction in carbon emissions, common CES (b) Reduction in private utility, common CES

(c) Components of social welfare

Notes: Panel (a) and (b) displays estimates of carbon emission reduction and private utility loss under the
assumption that all households share the same preference structure and the same elasticities of substitution.
Panel (c) plots the components of social welfare under the assumption of different preference across households
and under an optimal product-level tax with a social cost of carbon of 50 euros per ton. Numbers are based
on a carbon price of 50€ per ton.
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Figure 1.C.9: Heterogeneity by carbon intensity - Additional results

(a) Reduction in carbon emissions, common CES (b) Reduction in private utility, common CES

(c) Components of social welfare

Notes: Panel (a) and (b) displays estimates of carbon emission reduction and private utility loss under the
assumption that all households share the same preference structure and the same elasticities of substitution.
Panel (c) plots the components of social welfare under the assumption of different preference across households
and under an optimal product-level tax with a social cost of carbon of 50 euros per ton. Numbers are based
on a carbon price of 50€ per ton.
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Figure 1.C.10: Utility cost of reducing carbon emissions at different product category levels

(a) Product department

(b) Product group

Notes: This figure plots the relative efficiency of a 5% price increase at the product department (panel (a))
and product group (panel (b)) level. Product categories are ranked by the efficiency of this tax, expressed
as the change in utility in euro per kilogram of carbon emissions avoided. Computations use the calibration
of utility and social welfare discussed in section 1.4.5 and a social cost of carbon of 50€ per ton. For panel
(b), only the first 19 product groups, according to this ranking, are shown individually. The other product
groups are grouped into a single category, for which the efficiency measure is defined as the unweighted
mean change in social welfare per kg of CO2 avoided as the efficiency measure. The width of the bars is
proportional to their carbon reduction potential, measured as the total carbon emissions, and thus accounts
for their relative importance.
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Figure 1.C.11: Welfare cost of reducing carbon emissions at different product category levels

(a) Product department

(b) Product group

Notes: This figure plots the relative efficiency of a 5% price increase at the product department (panel (a))
and product group (panel (b)) level. Product categories are ranked by this efficiency measure, expressed
as the change in social welfare in euro per kilogram of carbon emissions avoided. Computations use the
calibration of utility and social welfare discussed in section 1.4.5 and a social cost of carbon of 50€ per
ton. For panel (b), only the first 19 product groups, according to this ranking, are shown individually. The
other product groups are grouped into a single category, for which the efficiency measure is defined as the
unweighted mean change in social welfare per kg of CO2 avoided as the efficiency measure. The width of
the bars is proportional to their carbon reduction potential, measured as the total carbon emissions, and
thus accounts for their relative importance.
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Figure 1.C.12: Histogram of carbon intensity

Notes: This figure presents the histogram of carbon intensity in the raw data and controlling for
product departments, groups, sub groups and module respectively. Data is winsorized at the 1th
and 99th percentile.
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Figure 1.C.13: Coefficient of variation by product modules

(a) Carbon intensity

(b) Carbon emission per product

Notes: This figure presents the coefficient of variation of carbon intensity (panel (a)) and carbon
emission by product (panel (b)), by product modules. Data comes from the Product data. The
coefficient of variation for a variable is the ratio of its standard error to its the mean and is expressed
in this figure in percent. To ease exposition, coefficient of variation is winsorized at 1000%.
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Figure 1.C.14: Coefficient of variation of carbon intensity

(a) Product department

(b) Product group

(c) Product sub-group

(d) Product module

Notes: This figure presents the coefficient of variation of carbon intensity for different product levels. Data
comes from the Product data. The coefficient of variation for a variable is the ratio of its standard error
to its the mean and is expressed in this figure in percent. To ease exposition, coefficient of variation is
winsorized at 1000%. Note that for product department and product groups, the axis are reversed.
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Figure 1.C.15: Coefficient of variation of carbon intensity

(a) Product department

(b) Product group

(c) Product sub-group

(d) Product module

Notes: This figure presents the coefficient of variation of carbon intensity for different product levels. Data
comes from the Product data. The coefficient of variation for a variable is the ratio of its standard error
to its the mean and is expressed in this figure in percent. To ease exposition, coefficient of variation is
winsorized at 1000%. Note that for product department and product groups, the axis are reversed.
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Figure 1.C.16: Carbon intensity by Ecoscore

Notes: Dashed line represent the carbon intensity grand average. Data comes from the Product
data set.
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Figure 1.C.17: Largest contributors following switch to Ecoscore A and B, by product
sub-groups

Notes: This figure plots contribution of the top 20 product sub-groups to the overall decrease in
carbon emission assuming a shift in consumer demand from product with Ecoscore C and above to
products within the same category with Ecoscore A or B. Data comes from the Product data set.
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Figure 1.C.18: Largest contributors following switch to Ecoscore A and B, by product
departments

Notes: This figure plots contribution of each product department to the overall decrease in carbon
emission assuming a shift in consumer demand from product with Ecoscore C and above to products
within the same category with Ecoscore A or B. Data comes from the Product data set.
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Figure 1.C.19: Carbon intensity, carbon emissions and expenditures

(a) Carbon intensity

(b) Carbon emissions

Notes: This figure displays the relationship between carbon intensity and log expenditure (panel (a))
and the carbon-expenditure elasticity (panel (b)) across 116, 816 non-family households from the
Household data. Expenditure is defined as the average monthly expenditure of a given household.
Dashed line represent the grand average of the y-axis variable. Heteroskedasticity consistent standard
errors are reported.
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Figure 1.C.20: Carbon intensity and median available income

Notes: This figure displays the relationship between carbon intensity and log median available
income of the employment zone households shop in, across 116, 816 non-family households from the
Household data. Dashed line represent the grand average of the y-axis variable. Heteroskedasticity
consistent standard errors are reported.
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Figure 1.C.21: Carbon - expenditure elasticity by product category

(a) Product group

(b) Product sub-group

Notes: This figure plots the histogram of estimates of carbon-expenditure elasticity obtained from
running a regression of log carbon emissions on log household expenditure for each product group
(panel (a)) and for each product subgroup (panel (b)). Data comes from the Household data set.
Dashed lines give the Chancel et al. (2015) bounds on carbon-expenditure estimates.
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1.D Mathematical appendix

1.D.1 Decomposing carbon intensity

This section derives equation (1.1) decomposing carbon intensity across consumer groups as
the sum of three terms. There are I products i in G product categories, with Ig products in
every category g. There are R consumer groups indexed by r. Every product i emits Ei units
of CO2, irrespective of where it is sold. Sales of product i to consumer group r are denoted
sir = pir · qir where pir and qir are the price and quantity of good i faced by consumer
group r respectively. Carbon intensity is eir = Ei

pir
= Ei·qir

sir
. Note that aggregate carbon

intensity is always a market share weighted average of carbon intensity at a lower level. For
instance, average carbon intensity for consumer group ris er =

∑
i Ei·qir∑
i sir

=
∑

i ωir · eir where
ωir = pir·qir

sir
is the market share of product i in consumer group r. In what follows, x̄ is the

grand average value of variable x, across consumer groups.

er − ē =

G∑
g=1

ωgr · egr −
G∑
g=1

ω̄g · ēg ±
G∑
g=1

ωgr · ēg

=
G∑
g=1

(ωgr − ω̄g) · ēg +
G∑
g=1

ωgr · (egr − ēg)

Note that

egr − ēg =

Ig∑
i=1

eir · ωgir −
Ig∑
i=1

ēi · ω̄gi ±
Ig∑
i=1

ēi · ωgir

=

Ig∑
i=1

(ωgir − ω̄
g
i ) · ēi +

Ig∑
i=1

ωgir · (eir − ēi)

And that
G∑
g=1

ωgr ·
Ig∑
i=1

ωgir · (eir − ēi) =
I∑
i=1

ωir · (eir − ēi) ≡ −
I∑
i=1

ωir · δir

So that, using
∑Ig

i=1 (ωgir − ω̄
g
i ) = 0,

er − ē =
G∑
g=1

(ωgr − ω̄g) · ēg +
G∑
g=1

ωgr ·
Ig∑
i=1

(ωgir − ω̄
g
i ) · (ēi − ēg)−

I∑
i=1

ωir · δir

= covg (ωgr − ω̄g, ēg) +
G∑
g=1

ωgr · covi∈Ig (ωgir − ω̄
g
i , ēi − ē

g)−
I∑
i=1

ωir · δir
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1.D.2 First order conditions and optimal taxes

Starting from (1.2), using Roy’s identity ∂V
∂(1+tj)pj

= −αxj , and the fact ∂V/∂M = α leads
to

0 =
∑
k

[
tkpk −

λ

α
Ek

]
∂xk
∂tj

=

J∑
k=1

[
tk −

λ

α

Ek
pk

]
· pk ·

∂xk
∂(1 + tj)pj

· (1 + tj)pj
xk

· xk
(1 + tj)pj

· ∂(1 + tj)pj
∂tj

=
J∑
k=1

[
tk −

λ

α

Ek
pk

]
· pk · xk ·

εk,j
1 + tj

where the third line assumes that ∂pj/∂tj = 0. Multiplying both sides of the equation by
(1 + tj)/

∑
k pk · xk gives (1.3).

To derive (1.4), note that

tj − φj =
1− sj
−εj,j · sj

∑
k 6=j

sk
1− sj

· (tk − φk) · εk,j

=
1− sj
−εj,j · sj

Ek 6=j [(tk − φk) · εk,j ]

=
1

−εj,j
· 1− sj

sj
(Ek 6=j [tk − φk]Ek 6=j [εk,j ] + covk 6=j [tk − φk, εk,j ])

=
1

−εj,j
· 1− sj

sj

∑
k 6=j

sk
1− sj

· (tk − φk)

 ·
∑
k 6=j

sk
1− sj

· εk,j

− covk 6=j [φk − tk, εk,j ]


=− ε−j,j

−εj,j
· 1− sj

sj
· (φ−j + covk 6=j [φk − tk, εk,j ])

Applying assumption1 delivers the required results. Note that in a case where covk 6=j [φk − tk, εk,j ] >
0, that there is an even higher incentive to subsidize good j.

To derive (1.5), note that we can express Marshallian demand for good k as

xk = xk ((1 + t1)p1, ..., (1 + t1)pI1 , (1 + t2)pI1+1, ...;Z + T ). Then, using the quantities
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defined in section 1.4, we have:

∀g, 0 =
∂V

∂tg
+
∂V

∂M

∑
j∈g

pjxj +

G∑
g′=1

∑
k′∈g′

tg′pk′
dxk′

dtg

− λ
 G∑
g′=1

∑
k′∈g′

Ek′ ·
dxk′

dtg


=

G∑
g′=1

∑
k′∈g′

[
tg′pk′ −

λ

α
Ek

]
dxk′

dtg

=
G∑

g′=1

∑
k′∈g′

[
tg′ − φk′

]
· pk′ ·

∑
k∈g

∂xk′

∂(1 + tg)pk
· ∂(1 + tg)pk

∂tg

=
G∑

g′=1

∑
k′∈g′

[
tg′ − φk′

]
· pk′ ·

∑
k∈g

εk′,k ·
xk′

(1 + tg)pk
· pk

=

G∑
g′=1

∑
k′∈g′

[
tg′ − φk′

]
· pk

′ · xk′
(1 + tg)

·
∑
k∈g

εk′,k

0 =
G∑

g′=1

∑
k′∈g′

[
tg′ − φk′

]
· sk′ · ε̄k′,g

=
∑
g′∈G

tg′ ∑
k′∈g′

sk′ · ε̄k′,g −
∑
k′∈g′

sk′ · ε̄k′,g · φk′


=
∑
g′∈G

tg′sg′ ∑
k′∈g′

sg
′

k′ · ε̄k′,g − sg′
∑
k′∈g′

sg
′

k′ · ε̄k′,g · φk′


=
∑
g′∈G

sg′

tg′ ε̄g′,g −∑
k′∈g′

sg
′

k′ · ε̄k′,g · φk′


⇒ 0 =

∑
g′∈G

sg′ ε̄g′,g

[
tg′ − φ̃g′,g

]

Where the second line uses a modified Roy’s identity. Denoting φ̃−g =
∑

g′ 6=g
sg′

1−sg ·(
φ̃g′,g − tg′

)
and ε̄−g,g = 1

1−sg
∑

g′ 6=g sg′ ε̄g′,g, we have

tg = φ̃g,g −
ε̄−g,g
−ε̄g,g

· 1− sg
sg

·
(
φ̃−g,g + covg′ 6=g

[
φ̃g′,g − tg′ , ε̄g′,g

])
Under the assumption that ∀g, covg′ 6=g

[
φ̃g′,g − tg′ , ε̄g′,g

]
, that is, there is no (market share-

weighted) correlation between the average marginal (uncorrected) externality of a product
category g′ and its average cross-price elasticity relative to category g, we find (1.5).

To prove (1.6), all we need to show is that under nested CES, we have φ̃g,g =
∑

k∈g φk · s
g
k as
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the rest follows from the definition of carbon intensity. Let us denote σg and σ the constant
elasticity of substitution at the lower and higher nest respectively. Under nested CES, when
k and k′ belong to the same category g, then εk,k′ = σH · sgk′ − (1− sg) · σL · sgk′ − s

g
k′ · sg for

k 6= k′ and εk′,k′ = −(1− sgk′) · σ
H − (1− sg) · σL · sgk′ − s

g
k′ · sg. Hence, we have that

ε̄k,g =
∑

k′ 6=k σH · sgk′ −(1− sg) · σL · sgk′ −s
g
k′ · sg

+ −(1− sgk) · σ
H −(1− sg) · σL · sgk −sgk · sg

= 0 −(1− sg) · σL −sg

Then,

ε̄g,g =
∑
k∈g

ε̄k,g · sgk

=
∑
k∈g

[
−(1− sg) · σL − sg

]
· sgk

=− (1− sg) · σL
∑
k∈g

sgk − sg
∑
k∈g

sgk

=− (1− sg) · σL − sg
=ε̄k,g

so that wg,gk =
ε̄k,g ·sgk
ε̄g,g

= sgk and φ̃g,g =
∑

k∈g φk · s
g
k

1.D.3 Welfare change

Counterfactual utility change CES-ideal aggregate price indices are defined as:

Pmt =
(∑

j∈Ωmt
(pjt/dj)

1−σm
) 1

1−σm Pgt =
(∑

m∈Ωg
P

1−σg
mt

) 1
1−σg

Pdt =
(∑

g∈Ωd
P 1−σd
gt

) 1
1−σd PFt =

(∑
d∈Ω P

1−σ
dt

) 1
1−σ

We first show how we can recover d lnPmt = lnPmt− lnPmt−1 from knowing the substitution
elasticities and market shares only. This derivation follows closely Broda and Weinstein
(2010). First, household optimization implies that we can express the market share of product

j in module m at time t as: smjt =
(
pjt/dj
Pmt

)1−σm
, or equivalently that Pmt = smjt · (pjt/dj)

∀k ∈ Ωmt. Let the set of goods j available both in time t and t− 1 in module m be Ω*
mt.

Then, using the fact that pjt · xjt = (pjt/dj)
1−σm · P−σgmt the share of common varieties in

period t is:



CHAPTER 1. REDUCING CARBON EMISSIONS THROUGH SUBSTITUTION 93

λt =

∑
j∈Ω*

mt
pjtxjt∑

j∈Ωmt
pjtxjt

=

∑
j∈Ω*

mt
(pjt/dj)

1−σm∑
j∈Ωmt

(pjt/dj)1−σm

Hence, we have that :

smjt =
(pjt/dj)

1−σm

P 1−σm
mt

=
(pjt/dj)

1−σm∑
j∈Ω∗jt

(pj/dj)1−σm · λt

= sm∗jt · λt ∀j ∈ Ω∗mt

where sm∗jt is the market share of product j among all products of module m in period t
that are also available in period t− 1. We can then express the change in aggregate price
index as:

Pmt
Pmt−1

=
pjt
pjt−1

· (λt/λt−1)
1

σm−1 ·
(
sm∗jt /s

m∗
jt−1

) 1
σm−1

ln
Pmt
Pmt−1

=
1

σm − 1
ln

(
λt
λt−1

)
+ ln (pjt/pjt−1) +

1

σm − 1
ln
(
sm∗jt /s

m∗
jt−1

)
︸ ︷︷ ︸

≡d lnP ∗

Note that we can reorder d lnP ∗ as

1

σm − 1
=
d lnP ∗ − ln (pjt/pjt−1)

ln
(
sm∗jt /s

m∗
jt−1

)
Multiplying both sides by (sm∗jt − sm∗jt−1) and summing over j, gives:

0 =
∑
j∈Ω∗mt

(sm∗jt − sm∗jt−1)
d lnP ∗ − ln (pjt/pjt−1)

ln
(
sm∗jt /s

m∗
jt−1

)
∑
k∈Km

sm∗jt − sm∗jt−1

ln sm∗jt − ln sm∗jt−1

d lnP ∗ =
∑
j∈Ω∗mt

sm∗jt − sm∗jt−1

ln sm∗jt − ln sm∗jt−1

ln (pjt/pjt−1)

⇒ d lnP ∗ =
∑
j∈Ω∗mt

ωSVkt ln (pjt/pjt−1)

where ωSVjt =

sm∗jt −sm∗jt−1

ln sm∗jt −ln sm∗jt−1∑
l∈Ω∗mt

sm∗lt −s
m∗
lt−1

ln sm∗lt −ln sm∗lt−1
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are the Sato-Varia weights. Bringing everything together, we have that

d lnPmt =
1

σm − 1
ln

(
λt
λt−1

)
+
∑
j∈Ω∗mt

ωSVkt ln (pjt/pjt−1)

This shows that in a counterfactual analysis, where the set of available goods does not
change, so that λt = λt−1, where t and t− 1 denote the counterfactual and initial situation
respectively, we can recover the change in aggregate price index using only counterfactual
changes in prices and market shares.

Using assumption 2, we have smjt − smjt−1 =
smjt−smjt−1

smjt−1
· smjt−1 ≈ d ln smjt · smjt−1 so that we can

reformulate the Sato-Varia weights as:

ωSVjt =

sm∗jt −sm∗jt−1

ln sm∗jt −ln sm∗jt−1∑
l∈Ω∗mt

sm∗lt −s
m∗
lt−1

ln sm∗lt −ln sm∗lt−1

≈

d ln smjt ·smjt−1

d ln smjt∑
l∈Ω∗mt

d ln smlt ·s
m
lt−1

d ln smlt

=
smjt−1∑

l∈Ω∗mt
smlt−1

= smjt−1

Hence, we can use the fact that smjt = dσm−1
j ·

(
pjt
Pmt

)1−σm
, to show that:

d ln smjt = (1− σm) · (d ln pjt − d lnPmt)

= (1− σm) · (d ln pjt −
∑
j∈Ω∗mt

ωSVjt · d ln pjt)

≈ (1− σm) · (d ln pjt −
∑
j∈Ω∗mt

smjt−1 · d ln pjt)

It is then easy to recover d lnPg, d lnPd and d lnPF using the same process. To arrive to
equation (1.7), note that the nested CES structure imply that UF = βM

PF
, where βM is the

(constant) amount of expenditure on food from the household so that d lnUF = −d lnPF .
From then, we simply use the fact that the indirect utility function is U = (1− β)1−β · ββ ·
p
−(1−β)
0 · P−βF ·M .

Counterfactual quantity changes. The nested structure of the CES model implies:
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xj = dσm−1
j · (pj/Pm)−σm · Cm Cm = (Pm/Pg)

−σg · Cg
Cg = (Pg/Pd)

−σd · Cd Cd = (Pd/PF )−σ · UF

Taking the log difference between the counterfactual and the initial situation and substituting
in implies

d lnxj =− σmd ln pj + (σm − σg)d lnPm + (σg − σd)d lnPg

+ (σd − σ)d lnPd + σd lnPF + d lnUF

=σm(d lnPm − d ln pj) + σg(d lnPg − d lnPm) + σd(d lnPd − d lnPm)

+ σ(d lnPF − d lnPd) + d lnUF

From there, using d lnUF = −d lnPF gives equation (1.8).
To derive, equation (1.9), we first ease the exposition by assuming that the household’s
utility for food UF is nested CES with only two levels, and let σg be the constant elasticity
of substitution of products within category g and σ be the constant elasticity of substitution
across categories. The proof for more nests follows the same idea. We have that d lnxi =

−d lnPF − σ(d lnPg − d lnPF )− σg(d ln pj − d lnPF ). We have then:∑
i

ei · si · σ(d lnPg − d lnPF )

=
∑
g

sg · σ(d lnPg − d lnPF )
∑
i∈g

ei · sgi

=σ
∑
g

sg · ēg(d lnPg − d lnPF )

=σ
∑
g

sg · (ēg − ē) · (d lnPg − d lnPF )

=σ · covg (ēg − ē, d lnPg − d lnPF )
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where the third line comes from the fact that
∑

g sg(d lnPg − d lnPF ) = 0. Similarly∑
i

ei · si · σg(d ln pi − d lnPg)

=
∑
g

sg · σg
∑
i∈g

sgi · ei · (d lnPg − d lnPF )

=
∑
g

sg · σgcovi∈g (ei, d lnPg − d lnPF )

=
∑
g

sg · σgcovi∈g (ei − ēg, d lnPg − d lnPF )

=
∑
g

sg · σgTg

so that equation (1.9) follows.

Carbon emission target. To prove equation (1.10), we start from the fact that at
a uniform Pigouvian tax has the form tunif = pCO2 · ē, where ē is the average carbon
intensity and pCO2 = λ/α is the social cost of carbon. The key of the argument is to realize
that from the social planner Lagrangian, we know that pCO2 is a function of the total
constraint, hence of ∆E. Therefore, using (1.9), we can solve for pCO2 . First, we have that
d lnPF ≈

∑
i sid ln pi =

∑
i sit

unif = pCO2 · ē , so that ∆E/E = −ē ·pCO2 . Solving for pCO2

and plugging into the formula for the log utility change (1.7) gives equation (1.10).

Proof for equation (1.11) follows the same idea. First, a product department level has the
form td = pCO2 ·ēd, where ēd is the average carbon intensity of product department d. Further,
d lnPd ≈

∑
i∈d s

d
i d ln pi = pCO2 · ēd and d lnPF ≈

∑
d sdd lnPd = pCO2 ·

∑
d sdēd = pCO2 · ē.

Last, note that T = cov(ēd − ē, d lnPd − d lnPF ) = pCO2 · var(ēd − ē). Thus,

pCO2 =
−∆E/E

ē+ σ · var(ēd − ē)

Plugging into d lnUdep = −βd lnPF = −βē · pCO2 and dividing by d lnUunif gives (1.11).
Proof for the other equations follow the same idea.



Chapter 2

Inflation dynamics of fast-moving consumer goods
during lockdown in France

Abstract

This paper uses scanner data to document the inflation dynamics of fast-moving consumer
goods during and after the first lockdown in France (March - May 2020). I find that the
lockdown lead to an important, generalized but transitory inflation spike of 2.3% at the
highest in April 2020. Most of the inflation is accounted for by a price increase from national
brands, rather than from retailer’s owned brands. Contrary to what has been found in
other countries, the role of promotions and net entry of products did not significantly
change during this period. Further, this inflation shock was very asymmetric: 9.4 % of
households experienced an inflation rate of 5% or higher, nineteen times higher than in 2019.
Importantly, this asymmetry persisted beyond the lockdown. Overall, this paper illustrates
how scanner-level data can be useful in conducting quasi-real time analysis of inflation in
time of crisis, especially in understanding the heterogenous impacts of exogenous shocks.

97
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2.1 Introduction

Inflation matters as a measure of well-being and cost of living, but also as a tool for economic
diagnosis. In this regard, the recent Covid-19 pandemic has been particularly problematic
for two reasons. Firstly, it disrupted the construction of important economic indicators used
for economic policy, including inflation. For instance, in France, the price data collection
process from the national statistical agency Insee was stopped during the first lockdown,
leading to lower quality inflation data during these months1. Secondly, it unfolded at
an extreme pace, making traditional economic indicators, which are published by official
agencies with a lag of at least several weeks, much less relevant for policy making and for
designing adequate policy responses.

This paper uses real-time scanner data from a large French retailer to document the inflation
dynamics of fast-moving consumer goods during the first lockdown in France, which lasted
55 days between the 17th of March 2020 and the 10th of May 2020. In addition to providing
stylized facts and aggregate measures of inflation, it explores the underlying mechanisms as
well as inflation heterogeneity across products, cities and households. By doing so, it also
illustrates how statistical agencies could use real-time scanner data to gain new insights on
the dynamics and heterogeneity of inflation beyond aggregate statistics, which has important
implications for economic diagnosis and efficient policy targeting.

This paper contains four sets of results. First, it documents an important inflation spike
during lockdown compared to the same period in 2019, at 2.3% in April 2020 whereas
inflation was only 0.9% in April 2019. This inflation spike was transitory, as it returns
to 2019 levels at the end of the lockdown. Second, the usual inflation indices were no
more subject to the well-known product entry and subsitution biases in the exceptionnal
circumstances of the lockdown than in the previous year. Contrary to what has been found
in the United-Kingdom (Jaravel and O’Connell, 2020b), product entry and exit did not
significantly impact the measurement of inflation during lockdown. Further, while changes in
consumption patterns were significantly more important in 2020 than in 2019, they did not
translate to higher substitution bias. Third, the vast majority of the inflation spike is driven
by a price increase in products from national brands, rather than by a price increase from
private label brands or a composition effects between brand types with different inflation
trajectories. Inflation from national brands, which accounted for 77 % of sales in 2019, was
2.9% in April 2020, whereas private label brand inflation was 1.2% only. Discussions with
the private retailer’s management and pricing team suggest that this has been driving by
competition for goods across retailers during lockdown in a context of high tensions on
the supply side. Similarly, I document significantly higher inflation from store types from
predominently urban areas, which is not explained by composition effects. Promotions or

1see for instance: https://www.insee.fr/fr/statistiques/serie/001759971; accessed 15 November 2021.

https://www.insee.fr/fr/statistiques/serie/001759971
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differential inflation between in-store and online sales were not a major driver of inflation
during lockdown. Fourth, the inflation shock during lockdown was very asymmetric, with a
small number of products modules, households and to a lesser extent, cities, facing significant
inflation and the bulk of the distribution facing only moderate inflation. For example, the
share of households experiencing an inflation rate of 5% or higher in April 2020 was 9.4
, nineteen times higher than in 2019, where the same proportion was 0.5 . Importantly,
the right-tail of the inflation distribution across products, cities and households generated
by the lockdown shock reduces post-lockdown, but does not disappear nor returns to 2019
levels even though the average inflation does. This suggests that longer term impacts for
the most exposed product modules, cities or households are likely, and that going beyond
the first moment of the distribution matters.

This paper relates first and foremost to the literature on the impact of Covid-19 on economic
activity. Several papers have used credit and debit card transaction data to study the
evolution of consumption during the pandemic, both in the United-States (Baker et al.,
2020b) as well as in other countries (e.g., Andersen et al. (2020) in Danemark, Chen et al.
(2021) in China). Others have looked at firm activity (Bartik et al., 2020), employment
(Forsythe et al., 2020), uncertainty (Baker et al., 2020a), or a combination of these (Chetty
et al., 2020). To the best of my knowledge, the only studies on inflation dynamics during the
Covid lockdowns using real-time data where conducted in the United-Kingdom(Jaravel and
O’Connell, 2020b,a), in the United-States (Cavallo, 2020) and Switzerland (Seiler, 2020).
This paper contributes to this literature by providing, to the best of my knowledge, the first
evidence on inflation dynamics and distribution across cities, products and households during
the first lockdown in France. This paper also relates to an older literature on measuring
inflation using scanner data (Broda and Weinstein, 2006, 2010; Jaravel, 2019). It illustrates
how this type of data be used to inform policy making in quasi-real time in times of crisis,
but also how higher moments of the inflation distribution which are invisible in aggregate
statistics can deliver new and important insights.

The rest of the paper is organized as follows. Section 2.2 presents the data, section 2.3
analyzes the inflation dynamics as well as potential sources of bias, section 2.4 discusses
different mechanisms that might explain the aggregate findings, and section 2.5 explores
inflation heterogeneity across products, cities and households. Section 3.7 concludes.

2.2 Data

In this section, I present the data and key stylized facts on spending, prices, promotions
and product variety.
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2.2.1 Data

I use scanner data from a large private retailer chain in France. The data covers the
universe of fast-moving consumer goods transactions from this retailer between January and
August 2020, as well as between January and August 2019. These fast-moving consumer
goods include food, beverages, cleaning products, pet food and cosmetics. Product level
information includes overall description, brand, whether it has been sold online and whether
it has been sold in promotion. The data set contains 1.4 million universal product codes
(UPCs), nested in 843 different product modules, which are in turn nested in 299 product
groups, themselves nested in 27 product departments. This retailer operates as of 2021
approximatly 2, 000 stores in metropolitan France. I also use publicly available data from
the French statistical agency to enrich the private retailer data with city-level information
on average income and socio-demographic composition2. Furthermore, each transaction
contains a loyalty card identifier, which is used to construct a panel of household-level
transactions across the period and is further discussed in section 2.5.3. Sales from loyalty
card represent 70 % of overall sales. Throughout the paper, I assume that a loyalty card
is equivalent to a household. While this is certainly not always true, discussions with the
private retailer’s management suggest this is largely true in practice. Other than a unique
identifier, household-level information is very scarce. The only other information available
is whether the household is a family, a young household (18-35 with no kids), a middle aged
household (36-60 with no kids) or a senior household (61+ with no kids).

This data is similar in nature to the Nielsen Homescan data, which has been used extensively
in the literature (for a description of the Nielsen data, see among others Broda and Weinstein
(2010); Allcott et al. (2019a); Jaravel (2019)). Like the Nielsen data, price and quantity
are separately available for each transaction and consumption is recorded at the UPC level,
which ensures that we can keep track of quality improvement over time, as retailers change
barcodes when meaningful characteristics of the product are changed (Broda and Weinstein,
2010). Contrary to the Nielsen Homescan data however, households in the raw data are
not weighted to be nationally representative. I follow most of the literature using private
data to inform economic activity (e.g., Chetty et al. 2020; Baker et al. 2020b; Andersen
et al. 2020) and do not attempt to reweight the data to make it representative. Rather, I
instead compare in section 2.2.2 the inflation dynamics in this data with the closest publicly
available inflation series.

2.2.2 Comparison with Insee

The French statistical agency Insee publishes inflation data from the mass retail sector,
which is the closest publicly available data to compare the private retailer’s data with. To

2In particular, I use the Filosophie data base available at
https://www.insee.fr/fr/metadonnees/source/serie/s1172; accessed 15 November 2021.

https://www.insee.fr/fr/metadonnees/source/serie/s1172
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make both data sets comparable, I construct a mass retail price index following as closely
as possible their technical reports (Caillaud, 1998; Insee, 2016a,b). First, follow the Insee
and I ignore fresh products (seafood, fish, flowers, etc.). Second, Insee builds its aggregate
index by constructing a weighted average of elementary price indices for every geography by
product variety cell. To define these cells, Insee uses 13 geographic zones and 1, 100 product
varieties; but the data used in this paper allows me only to use 8 geographic zones and 650

product variety. Third, Insee uses the cell’s previous year expenditure share as weights,
which are updated every year in January. To follow this set-up and construct the 2018
expenditure weights for every cell, I use another data set from the same retailer covering
all transactions from about 800, 000 loyalty cards between 2017 and 2019, which is a 10%
random sample all existing loyalty cards issued by the retailer. Fourth, the monthly price
index within a cell depends on the product variety. For heterogenous product varieties,
Insee computes a Jevon index, an unweighted geometric average of the price ratios between

periods t and t − 1, defined as Jc,t = ΠN
i=1

p
1/N
i,t

p
1/N
i,t−1

, where pi,t is the price of product i from

product variety c in period t. For homogenous product varieties, Insee computes a Dutot
index, a ratio of the unweighted arithmetic average of prices between periods t and t− 1,
defined as Dc,t =

N−1·
∑N
i=1 pi,t

N−1·
∑N
i=1 pi,t−1

. Note that both Jc,t and Dc,t are defined for continuing
products only. Because Insee does not specify which variety is considered as homogenous
and heterogenous, I report two series, one constructed with Jevons indices only and the
other one with Dutot indices only.

The result of this comparison is presented in appendix figure 2.B.1 for the year 2019. Overall,
both inflation series constructed following the process described above closely track Insee’s
mass retail inflation index. The difference between Jevons-based and Dutot-based price
indices using the private retailer’s data is relatively small compared to overall inflation and
seems constant across months. Overall, I conclude that the private retailer’s data is roughly
representative of the mass retail sector in France, even though it might be less representative
of the overall French population.

2.2.3 Stylized facts

Table 2.1 presents the share of 2019 and 2020 sales made on different types of stores, online
versus in-store sales, and sales on items in promotion. The split by store types is relatively
constant between 2019 and 2020 in aggregate, that is accounting for lockdown as well as
non-lockdown periods in 2020. About three quarters of overall sales are made on ’Super’
stores, a mid-sized type of stores. Larges ’Hyper’ stores represent approximately 12% of
sales, smaller ’Contact’ and ’Express’ stores account for about 6% and 3% respectively.
While online sales represented only 2.6% of overall sales in 2019, it surged to 4.2% in 2020.
Promotions represent about 6.9% of sales in 2019 and this proportion does not change in
2020.
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Table 2.1: Sales by store type, drive status and promotions in 2019, in % of total

2019 2020

Store type
Contact stores 5.7 5.9
Express stores 2.8 3.0
Super stores 78.9 78.7
Hyper stores 12.6 12.4

Online 2.6 4.2

Promotions 6.9 6.9

Notes: Contact stores are between 500 and 1,200 square meters, primarily in rural areas; Express stores are
between 300 and 1,200 square meters, primarily in urban areas; Super stores are between 1,200 and 3,500
square meters and Hyper stores are between 3,500 and 6,000 square meters.

Figure 2.1 reports descriptive evidence on the dynamics of overall sales, number of UPCs
sold, average unit price and share of sales in promotion in 2019 and 2020. For all panels,
values are expressed relative to the average of the first four weeks in every year. Panel
(a) shows that the 2020 aggregate sales followed closely the 2019 until the beginning of
the lockdown, during the 11th week of the year. Aggregate sales during the first week
of lockdown increased by 60% relative to the month of January, suggesting an important
initial shock of lockdown. From week 12 onwards, sales remained roughly constant and
approximately 20% higher than in January, even after the end of lockdown on week 19.
The 2020 aggregate sales trend starts again to track the 2019 trend from week 25 onwards,
approximately a month after the end of lockdown. This return to normal coïncides with the
partial reopening of restaurants on 2nd of June 2020. Panel (b) documents the evolution
of the number of UPCs sold, which is an important metric as a change in product variety
impacts consumer welfare even if prices do not change. Before lockdown, the number of
UPCs sold is relatively constant across weeks for both years, both for 2019 and 2020. While
in 2019 the number of UPCs sold increased slightly and relatively constantly from week 12
onwards, there is an important fall of close to 10% in the number of UPCs purchased right
after the beginning of lockdown. In contrast to what was reported for the United-Kingdom
however (Jaravel and O’Connell, 2020b), this drop is only transitory and lasts a few weeks
only: by week 15 onwards, the trend becomes similar to 2019 again. While the data cannot
distinguish whether this fall is due to UPCs not being offered or not being chosen, this
particular pandemic setting, as well as the fact that the drop is temporary and resumes
before the end of lockdown points towards a temporary shortage rather than, for instance,
a temporary change in shoping behaviours. Panel (c) presents the evolution of the average
unit price at this retailer in 2019 and 2020. The average unit price is constructed for
every week by taking the sales-weighted average of unit price of available UPCs. The
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Figure 2.1: Stylized facts

(a) Aggregate sales

(b) Number of UPC sold

(c) Average unit price

(d) Share of promotion

Notes: This figure plots total sales (panel (a)), number of UPC solds (panel (b)), the average unit price
(panel (c)) and the share of transactions in promotion (panel (d)). Panel (c) uses sales-weighted average
unit price. Values are normalized to the average of the first four weeks in every year. Dashed lines denotes
the start and end of the French first lockdown.

evolution of the average unit price in both years closely tracks each other during the first
two months. Starting from the lockdown week, the 2020 average unit price jumps by more
than 1 percentage point, whereas the 2019 average unit price is relatively flat. This 2020
average unit price remains higher than 2019 during lockdown and beyond: only from week 30
onwards do the 2019 and 2020 trends track each other closely again. Overall, this provides
simple evidence that prices did increase during lockdown in France. Panel (d) plots the
weekly evolution of the share of sales in promotion during both years. Overall, the 2020
and 2019 trends are very similar, and contrary to what was found for the United-Kingdom
(Jaravel and O’Connell, 2020b), the drop in promotions does not seem to be related with
the increase in unit prices.

2.3 Inflation dynamics during French lockdown

This section first presents the aggregate price indices used in the main analysis, justifies their
usage. It then presents results on aggregate inflation, and considers whether well-known
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biases, namely the product entry bias and the substitution bias, had an impact on the
measurement of inflation during lockdown.

2.3.1 Aggregate price indices

Following Jaravel and O’Connell (2020b), this paper uses the following prices indices:

Laspeyres: 1 + πLt =
∑
i

si,t−1 ·
pi,t
pi,t−1

(2.1)

Paasche:1 + πPt =
∑
i

si,t ·
pi,t
pi,t−1

(2.2)

Fisher: 1 + πFt =
(
1 + πLt

)1/2 · (1 + πPt
)1/2 (2.3)

Tornqvist:1 + πTt = Πi

(
pi,t
pi,t−1

) si,t+si,t+1
2

(2.4)

CES: 1 + πCESt = Πi

(
pi,t
pi,t−1

)ωi,t
(2.5)

with ωi,t =
(si,t − si,t−1)/(ln si,t − ln si,t−1)∑
j(sj,t − sj,t−1)/(ln sj,t − ln sj,t−1)

Fixed weight Laspeyres:1 + πL,fixedt =
∑
i

si,1 ·
pi,t
pi,t−1

(2.6)

Fixed weight Paasche:1 + πP,fixedt =
∑
i

si,T ·
pi,t
pi,t−1

(2.7)

Fixed weight Fisher1 + πF,fixedt =
(

1 + πL,fixedt

)1/2
·
(

1 + πP,fixedt

)1/2
(2.8)

where pi,t is the price of good i in period t, si,t is the expenditure share on good i in period
t, and T is the last time period considered in a sample. The most intuitive price index is
arguably the Laspeyres index, which is a weighted average of the price ratios of all goods
between two consecutive time periods, with the weights being the expenditure shares of the
goods in the previous period. While intuitive, this price index tends to overstate the true
change in cost of living. This is because all else equal, as long as goods display downward
sloping demand curves, increase in prices in period t will lead to lower expenditure share on
this good in period t, so that the weight set in t−1, si,t−1 should actually be lower. Therefore,
πLt overstates the true cost of living and is subject to substitution bias. The Paasche price
index is similar to the Laspeyres index but uses contemporeanous expenditure shares as
weights. Relatedly, it suffers from the opposite problem as it tends to understate the true
change in cost of living, since its weights already incorporate the substitution of consumers
towards less expensive goods. The Fisher index is the geometric average of the Laspeyres
and the Paasche price indices. This index is termed an ideal price index as it satisfies all
of tests for desirable proporties (homogeneity, invariance, symmetry, monotonicity, etc.)
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laid out in the literature on axiomatic price theory (see for instance ILO et al. (2004)).
In addition, the Fisher index, just as the Tornqvist index are superlative indices, in the
sense that they are a second-order approximation to any true cost of living e(ū,p1)

e(ū,p0) index for
specific families of utility functions, where e(ū, p1) is the minimum expenditure necessary
for a consumer to achieve utility level ū under price vector p1 (Diewert, 1976). Similarly, the
constant elasticity of substitution (CES) price index exactly coïncides with a consumer’s true
cost of living when her preference is of the CES form. All the price indices exposed so far
are chained price indices, in the sense that it compares price changes within two consecutive
periods and that the weights si,t are updated every period. While this is desirable because
it accounts for the substitution patterns between two time periods, chained indices are also
subject to “chain drift”, the fact that when prices fluctuate between several time periods,
but come back to their original level, chained price indices will indicate a positive inflation,
which is an undesirable property. Chain drift is particularly important with high frequency
observations. This is why this paper also uses fixed weight indices, with weights set at a
baseline period - the first period for the fixed Laspeyres index, the last available period
for the fixed Paasche index. Fixed base indices do not suffer from chain drift (ILO et al.,
2004), at the cost of using less representative expenditure weights, the more so when the
base period is far away from the current period.

In what follows, most of the results will be presented using chained and fixed base Fisher
price indices, but all results remain qualitatively similar using the other price indices exposed
above. Last, it is important to note that these price indices only focus on continuing goods -
goods that are present in two consecutive periods for chained indices, or in all the studied
time period for fixed base indices. Accounting for entry and exit of goods is the focus of
section 2.3.3.

2.3.2 Inflation for continuing products

Panel (a) of figure 2.2 displays the evolution of inflation for the first eight months of 2019
and 2020 for a chained Fisher index. In February, inflation is similar between both years.
Inflation spikes from March 2020 onwards, culminating at about 2.5% in April 2020 relative
to January 2020, against 0.6% in 2019. However, this inflation spike is transitory: 2020
inflation returns to 2019 levels by the month of July, at about 1.3%. Overall, inflation was
higher than the previous year between March and May, mirroring the results on average unit
price. Panel (b) shows that the results are quantitatively and qualitatively similar using a
fixed base rather than chained Fisher index. 2020 cumulative inflation spikes at 2.3% and is
back to 2019 levels from July 2020 onwards, at 1.4%. Panel (c) reproduces panel (a) but
overlays a price index computed excluding all transactions with promotions. It appears that
changes in promotions patterns is not a driver of the inflation hike in 2020, as both series
closely tracks each other. This is one significant difference between the French and British
situation, as promotions were a key driver of the inflation dynamics in the United-Kingdom
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(Jaravel and O’Connell, 2020b). Interestingly, the difference between the main inflation
series and the one without promotions is higher in 2019. Further, the 2019 inflation is lower
when promotions are excluded, suggesting that promotions are targeted at products with
smaller inflation dynamics. A higher frequency inflation series is depicted in panel (d). At a
weekly frequency, one can see that inflation is very similar in 2019 and 2020 for the first 10
weeks, and then abruptly jumps to 2.5% within four weeks.

Figure 2.2: Aggregate Fisher inflation index

(a) Monthly, chained

(b) Monthly, fixed weight

(c) Monthly, chained with and without pro-
motions

(d) Weekly, fixed weight

Notes: This figure plots different aggregate Fisher inflation indices for 2019 and 2020. Panel (a) plots a
monthly chained index; panel (b) plots a monthly index with fixed weights; panel (c) plots monthly chained
indices, with the “no promotion” series being constructed excluding all transactions with promotions, panel
(d) plots a weekly index with fixed weights, conditioning on products present in all 34 weeks. These products
represent 89 % of all sales. Dashed lines denotes the start and end of the French first lockdown.

Appendix figure 2.B.2 reproduces these results with other price indices. Panel (a) compares
the CES, Tornqvist and chained Fisher indices, which all closely track each other. Panels
(b) and (c) plot the fixed weight Laspeyres, Paache and Fisher indices. Consistent with
theory, the Fisher index is always bounded above by the Laspeyres index and below by the
Paasche index. While all three indices follow the same pattern exposed above, their levels
are quite different. By the end of the sample, the Laspeyres index is 1.5 percentage point
higher than the Fisher index, which is itself about 1.5 percentage point higher than the
Paasche index. This difference suggests that substitution patterns are quite substantial, as
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equations (2.1) to (2.3) imply that all three indices are equal when the expenditure shares
do not change across periods. This is further developped in section 2.3.4.

2.3.3 Accounting for product entry and exit

The patterns described above do not account for product entry and exit, as they are defined
for continuing products only. Intuitively, new product entry reduces the cost of living as
consumers have a love for variety, have access to a greater number of products, and can
substitute towards them even if the price of continuing goods does not change. The reverse
is true when products exit the market. Inflation indices not accounting for entry and exit
are therefore biased. It can be shown (see for instance Broda and Weinstein (2010); Jaravel
(2019)) that under CES preferences, the true price index π̃CESt , accounting for product entry
and exit, is related to πCESt from equation (2.5) as follows:

1 + π̃CESt =
(
1 + πCESt

)
·
(

1− net
1− nxt−1

) 1
σ−1

︸ ︷︷ ︸
Inflation correction term

(2.9)

where net is the share of expenditure in period t spent on entering goods, that are present
in period t but not in period t− 1, nxt−1 is the share of expenditure in period t− 1 spent on
exiting goods, that were present in period t− 1 but are not present in period t anymore, and
σ > 1 is the elasticity of substitution between goods. Intuitively, when the entry share is
larger than the exit share, the inflation correction term is smaller than one, so that the true
cost of living is smaller than the inflation accounting for continuing products only. Similarly,
then σ is high, the inflation correction term tends towards one and π̃CESt ≈ πCESt : this is
because goods are very good substitutes to one another, so consummers can already easily
substitute expensive goods with cheaper goods and entry or exit of goods is not useful in
this regard.

Panel (a) of figure 2.3 reveals that the patterns of entry and exit of products in 2019 and
2020 are very similar. The share of sales from entering products varies from 1% to 2%

of monthly sales both in 2019 and 2020, while the share of sales from exiting products is
stable at around 0.5% of sales across months. Interestingly, the exit share of products in
February 2020 is quite a bit larger than in February 2019, at 1% against 0.5%. According to
discussion with managers at the private retailer, this is arguably unrelated to the pandemic
as February is the month where the annual negociations with the suppliers take place and
where a unusual entry or exit figures can be seen depending on the years. Panel (b) plots
the inflation correction term from equation (2.9), expressed as percentage point of inflation
equivalent for different values of the substitution elasticity σ, within the generally accepted
range of [3; 7] (see DellaVigna and Gentzkow (2019); Broda and Weinstein (2010)). The
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Figure 2.3: Net entry inflation correction

(a) Entry and exit

(b) Inflation correction term

Notes: This figure provides information on net entry of products and its impact on inflation. Panel (a) plots
the entry and exit of products in 2019 and 2020, expressed as a share of sales in a given month. Panel (b)
plots the inflation correction term for different values of the elasticity of substitution, as exposed in section
2.3.3.

inflation correction term implies a lower inflation than using πCESt because net entry of
goods is positive both in 2020 and 2019. Also, the correction term is smaller in absolute value
the higher the elasticity of substitution, as could be expected from equation (2.9). The 2020
inflation correction is between 0.2 and 0.1 percentage point smaller than the 2019 inflation
correction term, depending on the elasticity value. While this suggests that net entry was
smaller in 2020 than in 2019, the difference is twice as small as in the United-Kingdom
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(Jaravel and O’Connell, 2020b). Overall, this figure implies that product entry and exit
did not significantly impact the inflation measurement from continuing products during
lockdown.

2.3.4 Change in expenditure patterns and substitution bias

Entry and exit of goods is not the only source of bias in inflation figures reported by
statistical agencies. In rapidly evolving situations such as the Covid-19 pandemic and
lockdown, spending patterns are likely to change drastically. Because statistical agencies
usually update their weights once every year only, the reported figure can be subject to
substitution bias as exposed in section 2.3.1, where inflation figures over- or under-state
inflation because the expenditure weights are out of date. Figure 2.4 explores this hypothesis.
Panel (a) and (b) explore how consumption patterns changed over 2019 and 2020 by plotting
a UPC-level dissimilarity index:

Dt,t−1 =
1

2

∑
i=1

|si,t − si,t−1| (2.10)

where si,t is the expenditure (or quantity) share of UPC i in period t. Dt,t−1 has an intutitive
interpretation: it is the percentage of expenditure one should reallocate across UPCs in
period t in order to match the expenditure distribution of UPCs in period t − 1. Panel
(a) plots month-over-month Dt for 2019 and 2020. In February of both years, between
12.5% and 13% of sales had to be reallocated across UPCs so as to match the expenditure
distribution across UPCs from the previous month. This number jumps by 25%, to 15%, in
March 2020 and remains at this level in April 2020, whereas it was between 11% and 13%

in 2019. This suggests higher-than-usual changes in expenditures due to the exceptionnal
aspect of the lockdown. From the month of May onwards, the gap between the 2019 and
2020 dissimilarity indices narrows progressively. Panel (b) plots the same dissimilarity index,
but computed for quantities rather than expenditures in order to control for the fact that a
high dissimilarity index could be in part caused by differential inflation across goods, even
if quantities sold do not change. The quantity dissimilarity index is similar in February of
both years, at approximately 9.5%. However, it jumps at 13.5% and 14% in March and
April 2020 respectively, whereas it stayed at around 8.5% in 2019. Both the jump between
February and April 2020, as well as the percentage point difference between March - May
2020 and March - May 2019 are more significant for the quantity dissimilarity index rather
than the expenditure dissimilarity index. One possible explanation, which is not necessarily
the only one, is that the goods experiencing important decrease in quantity demanded
are also the ones experiencing higher inflation so that the overall change in market share
expenditure on these goods is smaller than the quantity market share.

Panels (c) and (d) test whether this higher-than-usual changes in consumption patterns
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Figure 2.4: Dissimilarity indices and inflation bias

(a) Dissimilarity index, month-on-month

(b) Dissimilarity index, month-on-month,
quantities

(c) Fixed weight inflation index

(d) Substitution bias

Notes: Dissimilarity index is computed over products present in all months, following the formula in equation
2.10. Dashed lines denotes the start and end of the French first lockdown.

translates into increased substitution bias. Following Jaravel and O’Connell (2020b),
substitution bias is expressed as the percentage point difference between a fixed-weight
Laspeyres index and a fixed-weight Fisher index. Equations (2.1) to (2.3) imply that this
bias is zero when si,1 = si,T ∀i. Panel (c) plots the fixed base inflation indices for 2020
and 2019, whereas panel (d) plots the substitution bias for both years. It is clear that the
substitution bias increases over time, as the si,1 weights used in the fixed base Laspeyres
index become further away from the true expenditure-weights si,t as t grows, while at the
same time si,T become closer to si,t. By the month of August, the substitution bias amounts
to about 1.3 percentage points in both years. However, there is no obvious difference in
the dynamics of substitution bias between 2020 and 2019, as both series closely track each
other. Overall, I conclude that while changes in consumption patterns are significantly
more important in the midst of the lockdown than in the equivalent period in 2019, they
do not translate to increased substitution bias, a result that has also been found in the
United-Kingdom (Jaravel and O’Connell, 2020b).
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2.4 Mechanisms behind the inflation spike

This section explores three potential sources for inflation: differential inflation dynamics by
type of brand, by store types, or by in-store versus online sale status.

2.4.1 Brand types

This data set can distinguish between two types of brands under which UPCs are sold.
National brands, which account for 77 % of overall sales in 2019, are independent brands
which can be distributed both in the retailer’s stores for which I have data, but also in
stores of other retailers. These are often brands well known the the average consumer and
are owned by large consumer packaged good companies (e.g. Procter & Gamble, Nestlé,
Unilever, etc.). In contrast, private label brands are brands owned or managed by the
private retailer. Therefore, the key difference with national brand is that the retailer has
a greater control over the supply chain and pricing decisions for these products, as they
do not depend on contractual agreement with other companies for distribution. In 2019,
private label brands accounted for 23 % of overall sales in the data set.

Panel (a) of figure 2.5 plots the fixed-base Fisher inflation index for both national and
private label brands in 2019 and 2020. In both years, cumulative inflation from January
was relatively constant for private label brands, oscillating between −0.3% and 0.7%. In
particular, there is no distinguishable spike in inflation during the lockdown, and one can
even note a small deflation from June 2020 onwards relative to January 2020, whereas
inflation during those months was positive in 2019. By contrast, an inflation spike is clearly
visible for national brands during lockdown. While national and private label brand inflation
track each other in February 2020, national brand inflation jumps to 2% in March 2002, and
2.9% in April and May 2020. For comparison, national brand inflation was approximately
flat at 1% during those months in 2019, and private label brand inflation was approximately
flat at 0.5% during those months in 2020. National brand inflation goes down to 2% in
June 2020, and goes back to 2019 levels starting July 2020. Panel (b) plots the change in
national brand’s market share between 2020 and 2019. National brands’ market share in
the first two months of 2020 is very similar to the 2019 figure. In March and April 2020
however, it drops by 1.8 and 1.6 percentage points relative to 2019 indicating a substitution
away from national brands. This also suggests that brand inflation as depicted in panel (a)
is slightly overstated because of substitution bias. Nonetheless, the bias is likely small given
the high baseline market share in 2019. Between May and August 2020, national brands’
market share is about 1 percentage point higher than in 2019, possibly indicating a return
to pre-lockdown consumption habits.

Why did national brands’ prices increase more than private label brands during lockdown?
One possibility is a composition effect: national brands product might come from different
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Figure 2.5: Inflation dynamics by brand type

(a) Inflation

(b) Change in retailer brands’ market share

(c) Inflation; common modules

(d) Difference-in-difference

Notes: National and private label, retailer brands accounted for 77 % and 23 % of overall sales in 2019
respectively. Panels (a) and (c) display inflation from a fixed-base Fisher index. Panel (c) plots inflation by
brand type including observations only from product modules with both national and private label brands.
Panel (d) plots the coefficient βm from equation (2.11). Vertical bars indicate the 95% confidence interval.
Standard errors are clustered at the UPC level. Only UPCs observed all months in 2020 are included.
Observations are weighted by expenditures. Dashed lines denotes the start and end of the French first
lockdown.

product groups than private label brands, which might be on different inflation trajectories
before and during lockdown. Panel (c) of figure 2.5 suggests that this is not the case.
Inflation dynamics across brand types are virtually unchanged when we exclude product
modules with only national or only private label brands.

∆ ln pit = α+ δsubm(i) + µt +
8∑

m=1

βm ·NatBrandi · I [t = m] + εit (2.11)

Panel (d) exploits a difference-in-difference setting to compare more closely the price
dynamics of national and private label brands. It plots the coefficient βm from equation
(2.11), where ∆ ln pit is the difference in log price of product i between time t and January
2020, δsubm(i) is a sub-module fixed effect, µt is a month fixed effect, NatBrandi is an
indicator function equals to one if product i is part of a national brand and εit is an
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unobserved disturbance. βm is as the log difference in price change for month m between
national and private label brands products. For this to be the causal impact of lockdown
on the price difference between both types of brands, the identification assumption that
E
(
NatBrandi · I [t = m] · εit | δsubm(i), µt

)
= 0 needs to hold for m ∈ [3; 5]. Intuitively,

the timing of lockdown needs to be uncorrelated with unobserved determinants of price,
conditional on the fixed effects, and national and private label brand should have been on
parallel trends regarding price changes had the lockdown not happened. Timing of lockdown
can arguably be considered as an unexpected, exogenous shock: the development of the
Covid-19 pandemic in early 2020 was extremely quick, and nation-wide lockdown is an
extremely exceptional measure unheard of in recent decades. The coefficient βm for February
2020 is statistically insignificant, suggesting that the parallel trends assumption holds for
the month prior the lockdown. To gain additional insight, appendix figure 2.B.3 plots the
regression result of equation (2.11) for 2019. Importantly, between February and August
2019, the coefficients βm are statistically indistinguishable from each other. This suggests
that from February 2019 onwards, the parallel trend assumption holds relatively well. It is
also important to note that the statistically significant coefficient for February 2019 is due
to a very specific event: as of 1st of February 2019, retailers had to apply a minimum gross
margin of 10% to all their food products. This measure has been voted in late 2018 as part
of French bill ’Egalim’ in an attempt to regulate the price on loss-leader products and to
increase farmers’ income3. Overall, panel (d) shows that in March 2020, prices of products
from national brands grew on average 1.5% faster than private label brands within the same
product submodule. This number was 2.4% in April 2020 and oscillated between 1.6% and
2% between May and August 2020.

To sum up, figure 2.5 suggests that most of the excess inflation during lockdown was driven
higher inflation from national brands products, and not from composition effects between
different brand types. Discussions with managers from the private retailer suggest two
driving forces behind this result. First, an exceptional surge in demand for products over first
few weeks of lockdown, leading to heightened competition for supplies between distributors
in order to reduce the prevalence of shortages. This, in turn, lead to higher demand and
prices in the wholesale market. Second, there was a clear willingness from the private
retailer, out of reputation concerns, not to increase the price of private label brands, at a
time of high public scrutiny where retailers were at the forefront of the economic response
to the lockdown.

2.4.2 Store types

Panel (a) of figure 2.6 plots the inflation dynamics in 2020 by store type. While cumulative
inflation for all store types follow the same pattern - a sharp increase in March and April,

3see https://agriculture.gouv.fr/egalim-comprendre-le-seuil-de-revente-perte-et-lencadrement-des-
promotions, accessed 10th June 2022

https://agriculture.gouv.fr/egalim-comprendre-le-seuil-de-revente-perte-et-lencadrement-des-promotions
https://agriculture.gouv.fr/egalim-comprendre-le-seuil-de-revente-perte-et-lencadrement-des-promotions
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then a decrease in May and June, followed by a stabilisation in July and August, the
difference in level is quite sizeable. In April 2020, inflation was 2.5% for small Contact stores,
versus 1.4% only for large, Hyper stores. In addition, inflation stabilized post-lockdown
to between 1% and 1.5% for all store types, except for Express stores, which falls back to
close to 0% in July-August. Panel (b) reproduces this analysis by focusing only on common
UPCs, observed at least once in every store type in 2020. This confirms that heterogeneity
of inflation across store types is driven by differences in prices for similar products, rather
than by different products being sold. Panel (c) plots the change in market share between
2019 and 2020 for each store types. For all store types, the change is quite flat both before
and after lockdown, indicating that any change in shopping behaviour across store types
reverted back after lockdown. Small (Contact and Express) gain about 0.6 percentage point
market share, from a baseline of 5.7% and 2.8% respectively. This comes primarily at the
expense of large, Hyper stores which loose 0.9 percentage point market share in March-April
2020 relative to 2019. Interestingly, the correlation between inflation and market shares
does not follow the standard theoretical intuition. Market share in Contact stores increased
even though it is the store type with highest inflation, and the reverse is true for Hyper
stores. This suggests that changes in shopping patterns across stores during lockdown
where dictated by non-price factors, such as movement restrictions. Overall, this suggests
that the inflation shock, while positive, varies substantially across geographies as different
types of stores are mostly specialized by geographies, with Contact and Super stores being
found in primarily urban areas, while Express and Hyper store are rather found in primarily
suburban and rural areas (see section 2.2). Heterogeneity by location is further explored in
section 2.5.2.

2.4.3 In-store versus online status

Panel (a) of figure 2.7 plots the inflation dynamics in 2020 by online status. In-store and
online inflation numbers are similar in February, but in-store inflation spikes to 2.3% in
April, much more than online inflation which increase to about 1%. However, this difference
is entirely driven by a composition effect. Panel (b) shows that when considering only on
UPCs being sold both online and in-store, online inflation is actually higher than in-store
inflation during lockdown. In addition, the overall inflation is much lower, culminating at
0.6% for online inflation and 0.4% for in-store inflation. Finally, panel (c) plots the change
in market share between 2019 and 2020 for online inflation. It documents the stark increase
in online market share during lockdown relative to the same period in 2019 (+3.5 percentage
points, from a baseline of 2.6%), at a time where overall spending increased dramatically as
well. Overall, figure 2.7 as well as the small market size of online sales, as evidenced from
table 2.1, suggest that online sale status did not play a major role in the inflation spike
during lockdown.
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Figure 2.6: Inflation dynamics by store type

(a) Inflation in 2020 (b) Inflation in 2020, common UPCs

(c) Market share dynamics

Notes: This figure provides information on inflation dynamics by store type in 2020. Panel (a) plot inflation
from a fixed base Fisher price index. Panel (b) plots the same index but restricting the data to common
UPCs across store types. Panel (c) plots for each month the difference of a given store type’s market share
in 2020 and 2019.

2.5 Inflation rates heterogeneity

Products, cities or households can experience drastically different inflation levels, which has
important implications for economic diagnosis and for designing optimal policy to preserve
purchasing power. This section therefore explores inflation heterogeneity during lockdown
across these three dimensions.

2.5.1 Heterogeneity across products

Figure 2.8 provides evidence on inflation heterogeneity across product groups. Panel (a)
plots the histogram of product group level inflation in April 2020 and 2019, in the midst
of lockdown. The market-share weighted average inflation across product categories is 2.3
% in April 2020 and 0.7 % in April 2019, a three-fold increase. It makes clear that the
magnitude of the shock is very important. However, this hides important disparities across
product groups. The median inflation across product groups is much more similar in 2020
and 2019, at 0.4 % and 0.6 % respectively.
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Figure 2.7: Inflation dynamics in-store and online

(a) Inflation in 2020 (b) Inflation in 2020, common UPCs

(c) Market share

Note: This figure provides information on inflation dynamics by online status in 2020. Panel (a)
plot inflation from a fixed base Fisher price index. Panel (b) plots the same index but restricting
the data to common UPCs across online status. Panel (c) plots the difference of online sales’ market
share in 2020 and 2019.

Panel (a) also shows that the modal inflation in 2020 is even slightly smaller than a year
before. Most of the inflation is concentrated in a few categories, as can be seen from the long
right tail of the inflation distribution. Strikingly, there is a mass of product groups facing
inflation of 12.5% or above, and very few product categories with inflation between 2.5%

and 7.5%, as opposed to 2019. More precisely, 11.8 % of product modules experience an
inflation higher than 7.5% in April 2020, against 8.1 % in April 2019. In addition, looking
at the third moment of the distribution enables us to quantify in a more aggregate manner
the extent of asymmetry. Skewness was 1.8 in April 2020, against -3.7 in 2019, suggesting
it has a significant right-tail in 2020 and a left-tail in 2019. Panel (b) plots the histogram
of product group level inflation in August 2020 and 2019. Mean inflation in 2020 was 1.4
%, and has returned of 2019 level (1.3 %). However, the right-tail of the 2020 distribution,
even though it has reduced, is still very much visible, and skewness in August 2020 was 1.8 ,
unchanged from April. Furthermore, there are fewer product categories with inflation of
12.5% and above, but more categories in the [2.5%; 7.5%] range for 2020. Panel (c) plots the
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Figure 2.8: Inflation heterogeneity by product groups

(a) Cumulative inflation in April, % (b) Cumulative inflation in August, %

(c) Inflation and real sale growth, April 2020

Notes: For panels (a) and (b), each of the 322 product groups is weighted by its market share year in the
given year. Inflation is computed using a fixed base Fisher price index. Top and bottom 1% of observations
are winsorised. Dashed red and gray lines denote the market-share weighted average inflation in 2020 and
2019 respectively. Panel (c) is a scatter plot of inflation and real sale growth across product categories in
April 2020. Inflation and real sale growth are computed using a fixed base Fisher price index. Top and
bottom 1% of observations are excluded. Dashed vertical and horizontal lines denote the market-share
weighted average inflation and real spending growth. The size of the circles is proportional to the product
category’s market share in 2019. The red line plots the linear fit between the two variables, and the
relationship is insignificant.

correlation between inflation and real sales growth in April 2020. The figure does not display
any significant relationship between these two variables. The bulk of product categories
display moderate sales growth and inflation. While the majority of product categories
displaying significant inflation also experienced negative real sales growth, their overall
market share is quite small and hence does not drive a negative relationship between the two
variables. Finally, appendix tables 2.A.1 and 2.A.2 list the 30 product groups with highest
and lowest inflation respectively. Most of the top 30 product categories prices increased by
10% or more, for instance fresh vegetables (+16.5%), beef (+15.3%), fresh fruits (+13.8%),
but also women clothes (+12.14%). Similarly, all products with lowest inflation experienced
negative inflation, for instance garden plants (−12.9%), make-up (−3.85%) or champagne
(−2.22%).
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Overall, figure 2.8 suggests that the long right-tail of the distribution has been driving the
bulk of the inflation during lockdown, but that the post-lockdown situation, even though
similar on average to the year before, still exhibits strong asymmetry in inflation rates. This
paints a different picture from what was reported in the United-Kingdom during lockdown
(Jaravel and O’Connell, 2020b), where the distribution of product-level inflation shifted
entirely, with almost no product categories displaying negative inflation.

2.5.2 Heterogeneity across cities

I now turn to the analysis of heterogeneous inflation across cities. Panel (a) of figure 2.9
ranks cities according to their median average taxable income and plots the dynamics of
inflation in 2020 and 2019 by city terciles. The overall pattern remains consistent with what
was established in section 2.3: inflation dynamics between 2019 and 2020 was similar in
February, and all city terciles experienced an inflation spike in March-April 2020 where
inflation was between 1.9% and 2.5%, 1 percentage point higher than the 2019 average for
these months. Further, inflation returns to the 2019 levels by the end of the lockdown in
June. Focusing on the differences across cities, we see that the top 30% of richest cities
experienced higher inflation during lockdown than the bottom 30% or the middle 40%,
which experienced similar patterns throughout 2020. The difference is sizeable: in April
2020, inflation in richer cities was 0.6 percentage points higher than in other cities, at 2.5%

against 1.9%, respectively. The gap between the top and bottom 30% of cities halved after
the end of the lockdown, to 0.3 percentage points. This is interesting, since in 2019, poorer
cities experienced a systematically higher inflation than richer cities. The gap between the
bottom and top 30% of cities was constant at 0.3 percentage points throughout 2019. Panel
(b) reproduce this figure by selecting common UPCs suggesting that these results do not
come from richer and poorer cities consuming different types of products with different
inflation trajectories. Overall, panels (a) and (b) suggest that richer cities were on average
more exposed to the inflation shock during lockdown. This finding relates to e.g. Chetty
et al. (2020), which documented that richer neighborhood had a relatively higher drop in
overall expenditures than poorer ones.

Panel (c), just like the histograms in figure 2.8, shows that the distribution of inflation
across cities in April 2020 displayed a much longer right tail than in April 2019. More
specifically, 4.9 % of cities experienced an inflation of 3% or higher in April 2020, against
only 1.4 % at the same time in 2019. Skewness of the distribution in April 2020 was 1.1 ,
against 0.6 in April 2019. Interestingly, the center of the distribution in 2020 is shifted
to the left compared to 2019, suggesting that inflation is concentrated in a small numbers
of geographic areas only. This is reflected in the sales-weighted average inflation in 2020
of 0.9 %, lower than the one of 2019, at 1.1 %. How can these average inflation numbers
be reconciled with the high inflation spike documented at the aggregate level? This is
because a weighted average of several Fisher price indices across a given dimension e.g.
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Figure 2.9: Inflation heterogeneity by city

(a) Inflation by city income

(b) Inflation by city income, common UPCs

(c) Inflation in April, %

(d) Inflation in August, %

Notes: Inflation in all figures is computed using a fixed based Fisher price index. For panels (a) and (b),
city income is computed as the median average taxable income in each city. There are 1,678 different cities
in the data set. Dashed lines denotes the start and end of the French first lockdown. For panels (c) and
(d), each city is weighted by its share of sales in the given year. Weighting by population instead gives
qualitatively similar results. Top and bottom 1% of observations are winsorised. Dashed red and gray lines
denote the market-share weighted average inflation in 2020 and 2019 respectively.

a city does not aggregate to the aggregate Fisher price index. In particular, it has been
shown that superlative index numbers, including the Fisher index, are not consistent in
aggregation, especially so when one uses a fixed base rather than a chained price index
(Diewert, 1978; ILO et al., 2004). Moreover, the property of “approximate consistency in
aggregation” established in Diewert (1978) only applies around a point where the vector of
prices and quantities are equal across time period (ILO et al., 2004), an assumption that is
arguably largely not satisfied when comparing time periods before and during lockdown.
Panel (d) plots the same histogram as panel (c), but for the months of August. We can
note that the 2020 distribution shifted left compared to April 2020. However, the skewness
of the August 2020 distribution remains the same as the April 2020 distribution, at 1.1 ,
suggesting that despite the average decrease in inflation, inflation heterogeneity across cities
remained high after lockdown and higher than 2019. This is similar to what is observed for
the distribution of inflation across product categories.
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Finally, appendix tables 2.A.3 and 2.A.4 list the 30 cities with highest and lowest inflation
in April 2020, respectively. There does not seem to be a particular geographic pattern: the
city with highest inflation is Villebon-sur-Yvette (+6.17%), south of Paris, the second is
Bouzonville (+5.81%) in east of France, and the third highest is Jullian (+5.63%), in south
of France. More systematic analysis is conducted in the next section.

2.5.3 Heterogeneity across households

Data selection and price index construction. The particular structure of the data
enables the construction of a panel of household-level transactions across the time period
studied. In order to select household which are hopefully loyal customers so that I can
capture a significant share of their groceries expenditures, only households spending at least
100€ per month for every 16 months available in the data are kept. In addition, the top
and bottom 0.5% of households satisfying this restriction are excluded, in order to filter out
outliers. The final panel consists 1,088,628 of households.

Panel (a) of figure 2.10 plots the average expenditure for the selected panel across 2020 and
2019. Contrary to panel (a) of figure 2.1, there is no evident spike in expenditure during
lockdown, and expenditure patterns for both years closely track each other, suggesting
that the selected household did not significantly change their expenditure level during the
lockdown, nor did they significantly switched away from this retailer. Similarly, panel (b)
reproduces the inflation patterns established in figure 2.2 for the main data set: an inflation
spike at 2.4% during lockdown, much higher than the previous year, and a convergence of
inflation rates between both years starting June. Further, appendix table 2.A.5 provides
summary statistics on the average monthly expenditure of the households selected in the
panel, by household type. Households spend on average 457€ every month, with families
spending up to 514€ and 18-35 with no kids spending on average 402€ per month. Overall,
this suggests that the household panel can be thought of as representative of the overall
data set.

I compute household-level inflation rates using a fixed base Fisher price index with household-
specific expenditure weights, but common prices, as in Jaravel and O’Connell (2020b).
Common prices are defined as the average unit price at the aggregate level for a particular
product in a given time period. Using common prices, as opposed to the price actually
paid by the household avoids the need to condition on goods purchased by the household
in every period, which is usually a small share of the overall basket. The drawback of this
method is that heterogeneous inflation rates only come from differences in consumption
basket and does not consider differences in actual prices paid. Nonetheless, consumption
basket is arguably the most important driver of heterogeneous inflation rates: for instance,
DellaVigna and Gentzkow (2019) document in the US context the close to uniform pricing
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Figure 2.10: Stylised facts of the household panel

(a) Expenditures over time

(b) Inflation
Notes: Panel (a) documents expenditures of households selected in the panel, spending more than 100€ per
month every month, as described in section 2.5.3. Values are normalized to the first two months of every
year. Panel (b) plots the aggregate inflation rate based on the underlying data from the selected panel.
Inflation is computed using a fixed based Fisher price index. Dashed lines denotes the start and end of the
French first lockdown.

of goods across stores of a given retailer.

Results. Panel (a) of figure 2.11 plots the distribution of these inflation rates for April
2020 and 2019 and clearly shows the shift to the right of the distribution in 2020, arguably
caused by the lockdown. Mean inflation rate in 2020, at 2.5 %, is more than twice as high
as its 2019 counterpart ( 0.9 %). Going beyond the first moment of the distribution, one
can note the important right-tail in 2020 (skewness of 1.0 ), which in not present in 2019
(skewness of -1.8 ). Furthermore, a significant number of households experienced very high
inflation rates: in April 2020, the share of households experiencing an inflation rate of 5%
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Figure 2.11: Inflation heterogeneity by household

(a) Inflation in April, %

(b) Inflation in August, %

(c) Inflation change across percentile, April

(d) Inflation change across percentile, August

Notes: Inflation in all figures is computed using a fixed based Fisher price index. For panels (a) and (b), top
and bottom 1% of observations are winsorised. There are 1,088,628 selected households. Dashed red and
gray lines denote the average inflation in 2020 and 2019 respectively. Panels (c) and (c) plot the inflation
change in percentage points across percentile between 2020 and 2019, for the months of April and August
respectively.

or higher was 9.4 %, whereas this number was only 0.5 % in 2019. Similarly, the share of
households experiencing negative inflation rate dropped to 4.0 % in 2020, down from 18.3 %
in 2019. Appendix figure 2.B.4 reproduces panel (a) for different household types and shows
that the overall qualitative results remain unchanged, even though inflation distributions for
61+ and 36-60 with no kids households display the longest right tails. Differential inflation
by household type is further explored in table 2.2.

Panel (b) plots the same histogram for the month of August. The 2020 inflation distribution
shifted back to the left, close to its 2019 level. Mean inflation across households is now the
same in 2020 and 2019, at 1.6 %. In the same vein, 18.3 % of households faced negative
inflation in August 2020, a fourfold increase compared to April 2020, and an even larger
share than in 2019 (13.6 %). Importantly, the right-tail of the distribution reduced but did
not disappear. Skewness is at almost the same level as in April, at 0.9 . In addition, the
share of individuals experiencing inflation rates of at least 5% in August is still almost twice
as high as in 2019, at 4.9 % against 2.6 %.
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Panels (c) and (d) document the change in the inflation distribution from another angle.
For each percentile, they plot for percentage point difference in mean inflation rates between
years for the months of April and August respectively. Unreported results suggest that the
results are unchanged when ploting the change in median inflation rates within percentiles.
Panel (c) confirms the important overall shift in the inflation distribution in April 2020
relative to April 2019. Across all percentiles, inflation is at least one percentage point higher
in April 2020 than in April 2019. Furthermore, it sheds light the compressed left tail of
the distribution, as the first four percentiles experienced a higher change in inflation that
the mean change of 2.5− 0.9 = 1.6 percentage points. Similarly, if confirms the significant
increase in the left tail of the distribution: the top 30 percentiles experienced a higher
change in inflation that the mean change. Interestingly, panel (d) shows that the bulk of the
distribution (situated in the middle of the distribution, between percentiles 7 and 76) faced
lower inflation than in August 2020 than in August 2019. By contrast, the left tail of the
distribution remains compressed compared to 2019, as the first seven percentiles experienced
higher inflation change than the mean inflation change in August of 1.6− 1.6 = 0. Last, it
also confirms that the inflation distribution across households in August 2020 distribution
is still much more skewed to the right than in 2019, as the top 24 percentiles experienced
positive change a higher inflation than in 2019 and higher inflation change than the mean
change.

All in all, what factors predict being exposed to high inflation rates in 2020? To answer
this question, table 2.2 presents the results of an OLS regression of household-level inflation
rate in April 2020 on a number of explanatory variables. 2019 exposure to future high
inflation products, computed as the share of expenditure of the 2019 expenditures spent on
the top 20% of product modules with highest inflation in April 2020, is a strong predictor
of future inflation. A one standard deviation increase in this exposure measure (≈ 10 p.p.)
is associated with an increase in 2020 inflation rate of 0.9 percentage points, or 36% of
the mean inflation rate in April 2020. Interestingly, a measure of the geographic wealth,
the log of average taxable income of the household’s city of residence, is not significantly
related with higher inflation rates, contrary to what has been established at the city level.
Unreported results show that this is uniquely due to the household-level exposure measure
being included in the regression. Rank in the 2019 expenditure distribution and inflation
in 2020 are significantly negatively related, even controlling for household status. Even
though expenditure is a poor proxy for household income, this relates to Chetty et al. (2020)
finding that high-income consumers were most hit by the lockdown shock. However, the
size of relationship relatively modest with the top quartile of households having on average
a 0.11 percentage point lower inflation rate than the bottom quartile. Households having
experienced higher inflation in 2019 are also the ones experiencing higher inflation in 2020;
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Table 2.2: Predictors of inflation in April 2020

Infl. April 2020

Exposure in 2019 to high inflation products 0.093∗∗∗ (0.001)
ln average taxable income 0.057 (0.066)
Quartile of expenditure 2019:
- Q1 0.000 (.)
- Q2 -0.033∗∗∗ (0.005)
- Q3 -0.052∗∗∗ (0.006)
- Q4 -0.101∗∗∗ (0.007)
Quartile of inflation 2019:
- Q1 0.000 (.)
- Q2 0.070∗∗∗ (0.007)
- Q3 0.198∗∗∗ (0.010)
- Q4 0.434∗∗∗ (0.016)
Household type:
- Families -0.057∗∗∗ (0.005)
- 18-35 no kids -0.177∗∗∗ (0.011)
- 36-60 no kids 0.000 (.)
- 61+ 0.144∗∗∗ (0.007)
Store type:
- Contact 0.166∗∗∗ (0.045)
- Express -0.223∗∗∗ (0.066)
- Super 0.000 (.)
- Hyper -0.351∗∗∗ (0.045)
Region:
- Ile De France 0.000 (.)
- Centre Val De Loire -0.347∗∗∗ (0.092)
- Bourgogne Franche Comte -0.165∗ (0.087)
- Normandie -0.159∗ (0.083)
- Hauts De France -0.177∗∗ (0.081)
- Grand Est -0.085 (0.087)
- Pays De La Loire -0.467∗∗∗ (0.093)
- Bretagne -0.357∗∗∗ (0.074)
- Nouvelle Aquitaine -0.410∗∗∗ (0.073)
- Occitanie -0.146∗∗ (0.074)
- Auvergne Rhone Alpes -0.171∗∗ (0.070)
- Provence Alpes Cote D Azur -0.093 (0.078)

Constant -0.732 (0.686)

R2 0.308
N 1,088,319

Notes: This table presents the regression result of inflation in April 2020 on a number of explanatory
variables at the household level. Exposure in 2019 to high inflation product is constructed for each household
as the 2019 share of expenditure on the top 20% of product modules with highest inflation in April 2020.
Household’s city is determined as the city from which households spend most in 2019, which is assumed to
be the city of residence. Average taxable income refers to the average taxable income of the city in which a
given household lives. Quartiles of inflation in 2019 is computed using the April 2019 inflation number. All
inflation figures are computed using a fixed base Fisher price index using the process exposed in section 2.5.3.
Variables with no standard errors are reference categories. Standard errors are clustered at the city level.
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the top 25% of households having experienced most inflation in 2019 also faced a 0.43

percentage point higher inflation in 2020 than the bottom quartile, or 17% of the mean
inflation. In addition, younger households, as well as families, tend to face lower inflation in
2020 than older households. In accordance to what was established in section 2.4, inflation
differs by store type. Households shopping in stores located in primarily rural or suburban
areas (’Express’ and ’Hyper’ stores) faced significantly higher inflation than individuals
shopping in stores located primarily in urban areas (’Contact’ and ’Super’ stores). The
inflation differential between an average shoper in a Contact store and an average shoper in
a Hyper store is a meaningful 0.52 percentage points, or 20% of the mean inflation rate.
Last, there is no specific difference between regions, other than the Greater Paris area (“Ile
De France” region) facing a significantly higher inflation than most other regions.

2.6 Conclusion

This paper uses quasi-real time data on fast-moving consumer goods to document and
analyze inflation during the first French lockdown. I find that there is an important yet
transitory inflation spike during the months of March and April 2020, driven mostly by
national brand products. This inflation shock is asymmetric, with a small number of
products, cities and households experiencing significant inflation rates. Importantly, while
average inflation returns rapidly to the 2019 levels, the long tail in inflation distribution
created by the lockdown shock persists at least until August 2020.

Even though this paper focuses on a very specific period, I believe that two broader lessons
can be learned, especially in a context where inflation becomes a renewed concern both in the
United-States and in Europe. First, it is important to delve deeper than aggregate inflation
numbers and to carefully analyse inflation heterogeneity along a number of dimensions. As
it has been shown, inflation shocks can be very heterogeneous, and this heterogeneity does
not transpire in the usually reported statistics. Accounting for this heterogeneity is key
to understand how inflation is perceived and experienced by different population groups,
how inflation expectations can change in response, and what are the most cost-effective
mitigation policies. Second, there is a lot to be gained from a more systematic use of
quasi-real time data from private organisations. In periods where usual survey methods
are unavailable, or when policy making requires updated information with a time lag of
a couple of days, such data sources can be extremely useful. During more normal times,
this type of data can effectively complement administrative data and economic surveys, to
uncover new facts relevant for policy making.



Appendices

2.A Additional tables

Table 2.A.1: Top 30 product categories with highest inflation in April 2020 (in French)

Share sales 2019 (%) Infl. 2019 (%) Infl. 2020 (%)

Confection Femme Grande Taille 0.00 14.04 18.51
Viande Ovine Trad 0.06 19.65 18.08
Viande Chevaline Trad 0.33 6.62 17.17
Confection Homme 0.09 14.01 16.89
Animation Textile 0.00 -1.61 16.57
Legumes Frais 3.79 -3.77 16.53
Vrac Epicerie Sucree 0.02 -0.80 15.80
Alimentation Pour Animaux 0.00 23.31 15.73
Boucherie Tr/Fe Pdv 0.24 8.57 15.66
Viande Bovine Trad 2.10 7.32 15.32
Confec Layette Fille / Mixte 0.03 8.68 14.93
Destockage Bazar 0.00 4.50 14.90
F/L Frais Emballe 0.17 3.96 14.54
Non Affecte 0.00 -19.06 14.50
Confection Enfant Fille/Mixte 0.02 22.82 14.41
Confection Layette Garcon 0.01 15.20 14.38
Gibier Boucherie Tr 0.01 10.99 14.35
Vrac Fruits Et Legumes 0.03 -1.37 14.27
Fruits Frais 3.60 -0.85 13.82
Vrac Epicerie Salee 0.01 0.16 13.80
Confection Junior Garcon 0.00 12.63 13.67
Ameublement Et Mobilier 0.04 1.18 13.12
Produits Elabores Fe Pdv 0.16 11.79 12.90
Confection Femme 0.45 6.77 12.14
Triperie / Abats Trad 0.02 9.06 10.88
Confection Junior Fille/Mixte 0.01 6.92 10.87
Lavage 0.01 11.88 10.74
Animation Sec Ls 0.00 3.26 10.33
Produits Elabores Tr 0.13 9.85 10.07
Image 0.02 4.62 9.46

Notes: Inflation is computed using a fixed base Fisher price index. Inflation in both years is measured
in April and is relative to the month of January
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Table 2.A.2: Bottom 30 product categories with lowest inflation in April 2020 (in French)

Share sales 2019 (%) Infl. 2019 (%) Infl. 2020 (%)

Fleurs Coupees 0.16 -2.33 -15.92
Plantes D Exterieur 0.02 -2.53 -12.87
Patisserie Fraiche Trad 0.26 -2.64 -5.63
Bio Parfumerie 0.00 0.00 -5.12
Plantes D Interieur 0.07 -1.71 -4.39
Pains Ls Pdv 0.22 -2.59 -4.10
Patisserie Gel Trad 0.14 -8.51 -4.01
Maquillage 0.18 -1.81 -3.85
Viennoiserie Trad 0.28 -5.01 -3.82
Patisserie Fraiche Emb Ls Pdv 0.05 0.00 -3.54
Pains Blancs / Boulangerie Tr 0.89 -1.22 -3.15
Viennoiserie Ls Pdv 0.08 -3.04 -2.45
Parapharmacie 0.21 -0.64 -2.26
Champagnes 0.34 1.78 -2.22
Rasage Feminin Et Depilatoire 0.11 -2.08 -2.04
Piles 0.22 1.00 -1.39
Saucissons Saucisses Seches 0.54 0.51 -1.23
Cd 0.03 -0.44 -1.22
Surgeles Sucre 1.04 -0.63 -0.88
Traiteur Frais Emballe Pdv 0.03 1.35 -0.87
Dentaire 0.54 -1.11 -0.79
Sauce Salade/Jus De Citron 0.10 -1.00 -0.77
Jus Et Boissons Frais 0.32 -0.01 -0.76
Volaille Fe Ind 0.00 -2.77 -0.74
Aperitifs Sans Alcool 0.04 0.77 -0.73
Appareils Et Accessoires Photo 0.00 7.48 -0.66
Traiteur Chaud 0.02 3.75 -0.55
Chips 0.34 -0.58 -0.52
Patisserie Gel Ls Pdv 0.02 -1.55 -0.37
Confiserie De Sucre 0.44 0.39 -0.27

Notes: Inflation is computed using a fixed base Fisher price index. Inflation in both years is measured
in April and is relative to the month of January
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Table 2.A.3: Top 30 cities with highest inflation in April 2020

Share sales 2019 (%) Infl. 2019 (%) Infl. 2020 (%)

Villebon Sur Yvette 0.06 0.55 6.17
Bouzonville 0.03 1.60 5.81
Juillan 0.09 1.56 5.63
Drulingen 0.02 1.99 5.39
Wimereux 0.02 3.19 5.38
Vieux Thann 0.04 2.17 5.37
Ensisheim 0.03 2.23 5.25
Sains En Gohelle 0.01 0.67 5.20
Fontvieille 0.02 1.90 5.13
Chambon Sur Voueize 0.02 2.10 5.06
Mery Sur Oise 0.07 2.48 4.95
La Ferte Gaucher 0.06 1.03 4.92
Lorquin 0.02 1.76 4.91
Beaulieu Sur Dordogne 0.05 2.18 4.79
Salignac Eyvigues 0.02 0.85 4.73
Lamure Sur Azergues 0.05 2.73 4.72
La Bazoche Gouet 0.02 2.57 4.70
Samer 0.01 4.33 4.55
Cherisy 0.04 1.87 4.54
Bartenheim 0.03 2.19 4.52
Massy 0.00 0.00 4.39
Ancizan 0.04 1.45 4.35
Chateauvillain 0.03 1.76 4.28
Ste Croix Aux Mines 0.02 0.55 4.27
Le Malesherbois 0.06 1.82 4.18
Nangis 0.09 1.95 4.11
Coulommiers 0.03 1.58 4.09
Tullins 0.06 2.23 4.09
Lemberg 0.02 1.48 4.07
Meximieux 0.07 1.32 3.96

Notes: Inflation is computed using a fixed base Fisher price index. Inflation in both years is measured
in April and is relative to the month of January
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Table 2.A.4: Bottom 30 cities with lowest inflation in April 2020

Share sales 2019 (%) Infl. 2019 (%) Infl. 2020 (%)

Chazelles Sur Lyon 0.04 0.52 -6.31
La Chapelle D Abondance 0.07 0.10 -2.94
Piegut Pluviers 0.02 2.04 -1.38
Longueau 0.02 0.09 -1.29
Beon 0.04 1.34 -1.17
Colombey Les Belles 0.02 0.82 -1.15
Fontaine La Guyon 0.02 1.93 -1.05
Mirecourt 0.06 2.13 -1.05
St Lyphard 0.04 2.31 -1.03
Jouy Le Moutier 0.00 0.00 -0.98
Grigny 0.10 0.64 -0.98
St Ouen L Aumone 0.00 0.00 -0.95
Privas 0.06 0.30 -0.93
Montbrison 0.10 0.63 -0.91
St Pierre Du Perray 0.07 1.53 -0.82
Lugrin 0.10 1.37 -0.81
Boulogne Sur Gesse 0.04 0.60 -0.76
Girancourt 0.01 4.41 -0.74
Pont St Esprit 0.05 0.59 -0.69
Saujon 0.06 -1.69 -0.68
Bourg En Bresse 0.10 0.48 -0.66
St Varent 0.03 1.66 -0.62
Brou 0.06 1.63 -0.60
Canet En Roussillon 0.03 0.73 -0.60
Poitiers 0.10 1.97 -0.60
Bayonne 0.04 0.68 -0.59
Auxon 0.01 0.21 -0.58
Noyal Pontivy 0.01 0.33 -0.56
Aigurande 0.05 1.63 -0.56
Villard Sur Doron 0.03 -0.49 -0.54

Notes: Inflation is computed using a fixed base Fisher price index. Inflation in both years is measured
in April and is relative to the month of January
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Table 2.A.5: Descriptive statistics for selected households

Overall Families 18-35 no kids 36-60 no kids 61+

Mean 457 514 402 460 413
Std. dev. 173 179 144 170 156

p1 198 221 194 202 191
p10 264 307 250 270 244
p25 328 380 301 334 297

Median 425 487 374 429 381

p75 552 620 471 554 493
p90 695 761 589 694 623
p99 985 1,031 898 982 915

N 1,088,628 344,887 20,920 283,156 439,621

Notes: This table presents descriptive statistics on the average monthly expenditure for the 1,088,628
households present all 16 months, and spending at least 100€ every month. All units are in euros.
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2.B Additional figures

Figure 2.B.1: Comparison between Insee’s mass retail price index and private retailer data

Notes: This figure compares the publicly available mass retail price index from Insee with two similar price
indices constructed from the private retailer’s data and whose construction is described in section 2.2.2.
The “Private retailer - Dutot” series only uses Dutot indices as elementary price indices, while the “Private
retailer - Jevons” series only uses Jevons indices as elementary price indices
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Figure 2.B.2: Additional inflation indices for 2020

(a) Monthly chained indices (b) Monthly fixed weight indices

(c) Weekly fixed weight indices

Notes: This figure plots different aggregate inflation indices 2020. Panel (a) plots monthly CES, Tornqvist
and Fisher indices; panel (b) plots monthly fixed weights Laspeyres, Paasche and Fisher indices; panel
(c) plots weekly fixed weights Laspeyres, Paasche and Fisher indices. Fixed weight indices condition on
products present in all 34 weeks. These products represent 89 % of all sales. Dashed lines denotes the start
and end of the French first lockdown.
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Figure 2.B.3: βm coefficients for 2019

Notes: This figure plots the coefficient βm from equation (2.11) using observations from 2019 only. Vertical
bars indicate the 95% confidence interval. Standard errors are clustered at the UPC level. Only UPCs
observed all months in 2019 are included. Observations are weighted by expenditure shares. Dashed lines
highlight the period between March and May, during which the lockdown took place in 2020.
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Figure 2.B.4: Histogram of inflation in April 2020, by household type

Notes: Inflation in all figures is computed using a fixed based Fisher price index. Top and bottom 1% of
observations are winsorised.



Chapter 3

Distinguishing between signal and noise in the mea-
surement of the firm wage premium

Abstract

There is a growing interest about firm-side drivers of wage differentials, as different studies
show that this component is driving the increase in inequality in many developed countries. In
this paper, I contribute to this literature in three respects. First, I reconsider the widely used
model from Abowd, Kramarz and Margolis used to decompose the respective contributions
of firm and individual heterogeneity. I suggest an easily applicable split-sample procedure
to uncover the extent of overfitting in this model. Using French administrative data, I find
evidence of sizeable overfitting: conservative estimates suggest that the contribution of firm
heterogeneity to wage inequality is overestimated by at least 25%. Second, I provide a
simple procedure to recover the correct signal variance of firm effects and the covariance
between individual and firm effects. Third, I show how to recover better prediction of the
firm effects using shrinkage estimators. This matters quantitatively: due to shrinkage, half
of the firm effects are shrunk by 38% or more, and 40% of firms end up in different deciles
when ranked according to their firm effects.
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3.1 Introduction

The increase in within-group inequalities (Juhn et al., 1993; Lemieux, 2006) over the past
decade, mirrored by the increasing disparities between and within firms, first documented
by Davis et al. (1991), triggered a growing interest in firm-side determinants of wages. In
line with this body of work, recent evidence suggest that the employer is an increasingly
important determinant of an individual’s wage (Barth et al., 2016; Gruetter and Lalive,
2009; Song et al., 2019; Card et al., 2013). For instance, Song et al. (2019) estimate that
about 40% of earning inequality in the United-States is accounted for by between-firms
variations, and that this component explains two-thirds of the rise in earnings inequality
over the past three decades.

In this context, researchers are often interested in disentangling sorting into firms from true
wage premium, as these mechanisms correspond to substantially different explanations of
between-firm earning inequality. Most of the empirical research focusing on these issues uses
the two-way fixed effects regression model first introduced by Abowd et al. (1999). A simple
variant of this model decomposes the natural logarithm of wage yit of worker i at time t
into time-varying observables, x′itβ, unobservable individual heterogeneity θi, unobservable
firm heterogeneity ψj and a residual rit :

yit = x′itβ + θi + ψj(i,t) + rit (3.1)

Where j(i, t) refers to the firm j = j(i, t) in which individual i works at time t. Under
suitable assumptions discussed below, this model can be estimated by OLS and delivers
unbiased estimates for θi and ψj . These can be then used to provide more detailed insight
into the variance of wages. For instance the ratio V ar(ψj)/V ar(yit) would give the share of
the variance in wages explained by the firm wage premiums only.

However, the main parameters of interests, θ̂i and ψ̂j , are fixed effects, which are unbiased
but can be poorly estimated if the sample size does not grow asymptotically in the required
dimensions. In finite sample, the effective number of observations used to estimate the
average firm or individual effect is quite low, which leads to "overfitting". This term
originates from the statistical learning literature and describes the extent to which a low-bias
but high-variance estimator tends to mistakenly interpret random noise for meaningful
signal, and hence has poor out-of-sample predictive power. This overfitting raises two issues,
first mentioned and analyzed by Abowd et al. (2004) and Andrews et al. (2008). First, by
modeling the raw estimate ψ̂j as the sum of the true signal ψj and an independent noise
νj , it can be seen that the variance of the wage premium σ2

ψ
1, is overestimated when the

1Unless otherwise indicated, the terms "variance of wage premium", σ2
ψ and "variance of firm effects",

V̂ ar(ψ̂j) in this paper refer to the observation-weighted sample dispersion of the true or estimated firm
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noise is not negligible and when the wage premium is measured by s2
ψ ≡ V̂ ar(ψ̂j) = σ2

ψ +σ2
ν .

Additionally, this creates a downward bias in the estimate of sorting of workers in firms, as
measured by Cov(θ̂i, ψ̂j). Indeed, θ̂i is estimated as the mean difference between yit and the
fitted value x′itβ̂ + ψ̂j , inducing a mechanical negative correlation between θ̂i andψ̂j . Abowd
et al. (2004) and Andrews et al. (2008) label these problems "limited mobility bias". The
bias in the variance and covariance terms come from the non-vanishing squared estimation
error of the fixed effects, which is itself due to the limited mobility of individuals. This
paper will rather use the term overfitting, because it primarily refers to the fixed effects
and thus encompasses both the bias in the variance terms and the poor precision of the
fixed-effect estimators.

This paper suggests an easy way to recover an unbiased estimate of the variance of the
firm’s wage premium, and proposes a simple method to derive better prediction of firm
effects using shrinkage estimators. It finds that the variance of French wage premiums is at
least 25% lower than what would be estimated using simple plug-in estimators, and that
half of the firms in the sample have a predicted estimate that is at least 38% lower than the
raw estimate. This difference in predicted estimates matters quantitatively. Ranking firms
according to their estimated wage premium, a researcher focusing only on raw estimate
would conclude that randomly moving a worker from a firm in the first quartile to a firm
in the fourth quartile would increase her yearly wage by about 9, 000 euros on average,
assuming the estimates are causal. Another researcher using shrunk effects to measure
predicted wage premium would give a 35% lower number.

More specifically, this paper makes three main contributions. In the first part of the
analysis, it suggests an easily applicable split-sample procedure, uncovering robust evidence
of overfitting using French administrative data. Within each firm-year cell, every worker is
randomly allocated to one of two samples, making sure that every worker appears in only
one sub-sample. This ensures that every firm is present in both samples, while leaving intact
information relative to the workers’ employment history. This step is crucial as firm effects
are identified from moves between jobs, and random splitting at the dataset level would
break the pattern of moves for each workers. With these two samples, one can get two
different estimates ψ̂1j and ψ̂2j for every firm j. If the effect is precisely estimated, these two
sets of estimates should be similar. This paper also documents that overfitting is stable over
time and seems to primarily come from top and bottom of the within-firm wage distribution.
Secondly, this paper provides a simple procedure to recover the correct signal variance of
firm effects and the covariance between individual and firm effects: corrected estimates
suggest that the variance of firm effects is 25% lower than previously estimated, and the
covariance is 25% higher. While the sample variance of ψ̂j is biased due to the squared error

effects respectively, that is: 1
N−1

∑
i,t

(
ψj(i,t) − ψ̄j(i,t)

)2 and 1
N−1

∑
i,t

(
ψ̂j(i,t) −

¯̂
ψj(i,t)

)2

, where N is the
sample size.
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term, ν2
j , having non-zero expectation, the sample covariance between ψ̂1j and ψ̂2j recovers

the correct magnitude of the variance of the firm estimates, because each estimate has been
computed using different data and thus the interaction of the two estimation noises, ν1j · ν2j ,
has expectation of zero. Similarly, the sample covariance between individual effects from
sample 1, θ̂1i and firm effects from sample 2, ψ̂2j is an unbiased estimator of the sorting
estimate Cov(θi, ψj) because the data used to estimate θ̂1i was not used to estimate ψ̂2j(i,t).
Using split-sample to recover unbiased estimates comes at some efficiency cost, because one
relies on half as many observations only to estimate every firm effect. Based on a simplified
statistical model, this paper argues that this trade-off - as measured by the mean squared
error of the estimators - is most likely to be favorable to a split-sample solution. Thirdly,
this paper shows how to recover better prediction of the firm effects by shrinking each raw
estimate by its signal to noise ratio in order to minimize the prediction error. Shrinkage
estimators have been introduced by James and Stein (1961) and Efron and Morris (1973),
and have been used for instance in the teacher value-added literature (Chetty et al., 2014a,b).
This paper documents substantial shrinkage for a significant fraction of the data set. For
instance, half of the firm effects are shrunk by at least 38%, and 40% of firms end up in
different decile of the observation-weighted distribution of firm effects after the shrinkage
procedure has been carried out. To achieve this, this paper optimally trades off bias and
variance so that shrunk firm estimates are now slightly biased but have much lower variance,
resulting in lower mean squared error. In particular, this paper approximates the variance
of the noise νj as the ratio of a common component on the number of moves from and
to firm j, as motivated by Jochmans and Weidner (2019), in order to recover a different
signal-noise ratio for every firm.

This paper relates to several strands of the literature. First and foremost, it relates to
several studies quantifying the separate contribution of sorting and the firm’s wage premium
to wage inequalities. This literature was initiated by Card et al. (2013), who first applied
two-way fixed effect regressions to this problem, followed by, among others, Song et al.
(2019) and Gruetter and Lalive (2009). Bloom et al. (2018) and Colonnelli et al. (2018)
apply the same framework but focus on the large-firm wage premium. Card et al. (2013)
find that the share of the variance of wage that can be attributed to firm-specific premium
has been increasing over time. As their primary focus is thus not on the absolute share
of the variance explained by firm-effects, but rather on its evolution across time periods,
this paper does not contradicts their results because it does not find any evidence that the
extent of the overfitting problem has been evolving over time. Rather, this paper fits in a
growing body of evidence suggesting that wage premiums are less important than previously
thought in explaining the overall variance of wage. For instance, Kline et al. (2020) also
focus on the bias in variance components and reach the same conclusion when looking at a
set of Italian province. Relatedly, Song et al. (2019) establish that the "non-parametric"
between-firm component of wage variance in the US is mostly and increasingly explained
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by sorting rather than wage premium. Similarly, Bloom et al. (2018) and Colonnelli et al.
(2018) apply this same framework to study the large-firm wage premium.

This paper also builds on a number of econometric studies analyzing the limitations of the
two-way regression model pioneered by Abowd et al. (1999), and tries to bridge it with
the literature on wage inequalities by providing an easily implementable solution to the
known overfitting problem. The negative bias in the estimate of the covariance between
individual and firm effect was first discussed by Abowd et al. (2004), who labeled the
problem "limited mobility bias", as it arises from the low number of workers’ moves in
the data. This perspective was enriched by Andrews et al. (2008) and Andrews et al.
(2012), who formally discuss the bias in the variance and covariance terms, and suggests
a correction assuming independent and homoskedastic errors. Bonhomme et al. (2019)
take a radically different approach to the same problem, by first allocating ex-ante workers
and firms to a small number of groups and estimating and estimating a model using these
groups. While this approach is promising, it is also further away from the standard toolbox
of the applied researcher. In addition, they also show in a related paper (Bonhomme et al.,
2022) that the classification error in their first step can create a bias of the same order than
the one from traditional two-way fixed-effect regressions. Jochmans and Weidner (2019)
build on Andrews et al. (2008) but take a network approach, and provide bounds on the
variance of the fixed-effects depending on the characteristics of the graph generated by the
data. Closest to this paper is the one from Kline et al. (2020). They introduce “leave-one
out” unbiased estimators of quadratic forms of OLS estimates, of which our parameters
of interest are a particular case. The intuition behind Kline et al. (2020) and this paper
is essentially the same: the bias in estimates of variance of fixed-effects comes from the
squared, non-negligible error term νj . Split-sample estimates (or leave-one-out estimates,
which are a particular form of sample-splitting), provide an intuitive solution to eliminate of
this squared error term, by instead multiplying independent errors. Relative to Kline et al.
(2020), this paper has two advantages and two drawbacks. First, it shows how to recover
more precise estimates of firm fixed effects. This is important as it can potentially enable
researchers to use two-way fixed effect regression estimates with more confidence. Second,
this paper’s split-sample procedure is relatively simpler and quicker to use: in addition to
the OLS regression on the whole initial sample, only need two more regressions are needed,
one for each sample. This is useful as given the usual size of the data set – a whole country’s
population-, a single OLS regression can take up to several days on standard computers. On
the other hand, Kline et al. (2020) estimates are more general as they can also be applied to
the unbiased estimation of the variance of individual fixed effects, which is not possible to
do in the context of this paper. This would be an important area for further improvement.
Last, Kline et al.’s estimation procedure is less sensible to smaller samples. To see this,
note that firm fixed-effects are jointly identified only in sets where firms are connected by
worker’s moves between them. Their leave-one out procedure requires that the connected
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set of firms does not change when any worker is removed, while this paper requires that the
connected set does not to change when each firm’s labour force is randomly split in two
groups and hence that there is “enough” workers in each firm. In this sense, this paper’s
procedure is more data-intensive.

Finally, this paper can be seen as bridging a methodological gap by introducing in the study
of wage inequalities new tools to draw economic conclusions from fixed effects estimates.
The value-added literature, whether it is of teachers (Chetty et al., 2014a,b; Angrist et al.,
2017), of neighbourhood effects (Chetty and Hendren, 2018) or of patent examiners (Feng
and Jaravel, 2020) regularly use fixed effects as the main parameters of interest. They
highlight the necessity to take into account the fixed effects’ estimation error in order to
work with plausible estimates; and introduce shrinkage procedures to this end. To my
knowledge, these tools have not been used to study wage inequality so far.

The reminder of paper is organized as follows. Section 3.2 develops a simplified statistical
model to help build intuition about the sample-splitting approach. Section 3.3 describes
the data and discusses the challenges arising when implementing empirically the two-way
fixed effect regressions. Section 3.4 presents the sample-splitting procedure and evidence of
overfitting. Sections 3.5 and 3.6 discuss how to recover the right (co)variance and better
firm effects respectively. Section 3.7 concludes.

3.2 Statistical model

This section develops a simplified statistical model to help build intuition about the two-way
regression model, overfitting, and the split-sample approach.

3.2.1 Set-up

Consider a simplified version of equation (3.1) where we abstract from time-varying observ-
ables xit (or alternatively, where xit have already been partialed out).

yit = θi + ψj + rit (3.2)

Where ψj refers implicitly to ψj(i,t), the firm j at which individual i works at time t. In the
remainder of the paper, this notation is used when no confusion is possible.

In matrix form, we have y = Dθ + Fψ + r, and we assume that E(r) = 0, E(D′r) = 0,
E(F ′r) = 0, E(ritri′t′) = 0 for all i 6= i′ and for all t, t′, so that the error term is assumed
to be uncorrelated across individuals but can be arbitrarily correlated within individuals.
Further, errors rit are homoskedastic: E(r2

it) = σ2
r , but all results below can be extended to

the heteroskedastic case. There are I individuals, each of them being observed Ti times, J
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firms, T time periods, and thus N ≡
∑I

i=1 Ti observations.

We are primarily interested in the variance of the firm fixed effects and the covariance
between individual and firm fixed effects.

σ2
ψ ≡

1

N − 1

∑
i,t

(ψj(i,t) − ψ)2

σψθ ≡
1

N − 1

∑
i,t

(ψj(i,t) − ψ)(θi − θ)

Where x̄ denotes the sample mean of variable x. In this simplified model, T = Ti = 2 for all
i. Further, I assume a star economy in which there is one large firm and J small firms. In
period 1, all individuals work in the large firm, and in period 2, all of them move to the
small firms. Specifically, there are Mj individuals moving to firm j in the second period.

Last, the effect of the large firm is normalized to zero, so that ψ0 = 0 and we assume
that E(ψj) = 0 for all small firms j. The aim of these assumptions is three fold. First, it
abstracts away from the need to keep track of the origin of every worker, so that the wage
difference yi2 − yi1 will always be relative to the large firm. In addition, connectedness, that
is the fact that firms are connected to each other through workers move is not a problem,
as all small firms are connected to the big firm. Second, assuming that workers work in the
big firm in period 1 and then move to a small firm in period 2 is innocuous and simplifies
exposition. Appendix 3.C.1 shows that if there are no period effects (or if they are partialed
out), the direction of the move does not matter. Third, as discussed below, firm effects are
only identified relative to their average, which can be set to zero. Assuming that the effect
of the large firm is 0 is therefore without loss of generality.

3.2.2 Two-way regression and overfitting

Appendix 3.C.1 shows that in this simple example, the OLS solution of the two-way fixed
effect regression model is:

ψ̂j =
1

Mj

Mj∑
i=1

(yi2 − yi1) = ψj +
1

Mj

Mj∑
i=1

ui ≡ ψj + νj (3.3)

θ̂i =
1

Ti

Ti∑
t=1

(yit − ψ̂j) = θi +
ri1 + ri2

2
− 1

2
νj (3.4)

Where ui = ri2 − ri1 has mean zero and finite variance σ2
u. νj is independent of ψj , has

also mean zero and variance σ2
j = σ2

u/Mj . V ar
[
ψ2
j

]
and V ar

[
u2
i

]
are assumed to be finite

and constant for all j, and i. This amounts to assuming finite fourth moments and ensures
convergence of estimators. These assumptions are standard and ease the notation, but can
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also be relaxed.

Consider the plug-in estimator for σ2
ψ:

σ̃2
ψ =

1

I

∑
i

ψ̂2
j(i) =

1

I

∑
j

Mj · ψ̂2
j(i) (3.5)

Where j(i) refers to the firm j in which i works in period 2. This is the correct plug-in
estimate of σ2

ψ for this simplified model. The sum consists of I terms and not N = 2I. By
doing so, we focus only on the variance of firm effects in period 2. This makes sense as
period 1 variance of firm effects is zero (every one works in the large firm). Further, one
can easily take period 1 variance into account by dividing all the results by 2. In addition,
the deviation of the fixed effects from their mean is not accounted for because the mean
of the firm effects is normalized to zero. Overall, σ̃2

ψ of this simplified model recovers all
important features from the general setting while easing the exposition.

Appendix 3.C.1 shows that the bias and variance of this estimator are:

E
[
σ̃2
ψ

]
− σ2

ψ =
1

I

∑
j

σ2
j = σ2

u ·
1

I/J
> 0 (3.6)

V ar
[
σ̃2
ψ

]
= V ar

[
ψ2
j

]
· 1

I2

∑
j

M2
j +

4

I
· σ2

ψ · σ2
u + V ar

[
u2
i

]
· 1

I2
·
∑
j

1

Mj
(3.7)

Where I/J is the average number of observations by firm or the number of movers per firm
if ∀j, Mj = M so that I = M · J . These formulas are easy to interpret. Equation (3.6)
makes it clear that the plug-in estimate σ̃2

ψ can be strongly biased if the average number of
observations per firm (or in this case, of moves) is small. Further, the variance of σ̃2

ψ is the
sum of three components. The first term is irreducible and is due to the heterogeneity of
the firm effects themselves. When the Mj ’s are constant across j, this term boils down to
V ar

[
ψ2
j

]
/J , which tends to zero as the number of firms increases. The second term comes

from the fact that ψ̂j is the sum of two random variables, and the third component relates
to the squared estimation error term.

Similarly, one can define the following plug-in covariance estimator for σψθ:

σ̃ψθ =
1

I

∑
i

ψ̂j(i) · θ̂i (3.8)

Appendix 3.C.1 shows that the bias of this estimate equals − J
2I

(
E(r2

i1)− Cov(ri1, ri2)
)
and

is indeed negative in this example when we assume homoskedasticity for ri1 and ri2 or
when we assume that Cov(ri1, ri2) is not too high. The bias is driven by the fact that the
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estimation error νj enters positively in ψ̂j(i) and negatively in θ̂i, as discussed in Abowd
et al. (2004).

3.2.3 Split-sample approach

This subsection shows that one can recover an unbiased estimate of σ2
ψ and σψθ through

sample splitting, and that the mean squared error of these estimators is lower than the one
of the plug-in estimate σ̃2

ψ so that the trade-off between lower bias, but higher variance
arising through the split-sample approach is advantageous.

Suppose that for each firm j, Mj is equally split into sample 1 and 2, so that we have
M1j = M2j = Mj/2. For simplicity, assume that Mj is even. Appendix 3.C.1 shows that
splitting samples equally minimizes the variance. Similarly to the section above, we have :

ψ̂kj = ψj +
1

Mkj

Mkj∑
i=1

ui ≡ ψj + νkj (3.9)

θ̂ki =
1

Ti

Ti∑
t=1

(yit − ψ̂kj) = θi +
ri1 + ri2

2
− 1

2
νkj (3.10)

With k ∈ {1, 2} denoting the k-th (sub)sample. The error term νkj is specific to the
subsample and thus is independent across both k and j. The only difference between θ̂ki and
its counterpart in (3.3) is the error term νkj , because every individual is either in sample 1

or sample 2. For the same reason, we only observe θ̂1i or θ̂2i for every i, but never both.

3.2.3.1 Unbiased estimate of σ2
ψ

The split-sample estimator for σ2
ψ is:

σ̂2 =
1

I

∑
i

ψ̂1j · ψ̂2j =
1

I

∑
j

Mj · ψ̂1j · ψ̂2j (3.11)

Appendix 3.C.1 shows that this term is unbiased, because the error terms are independent
of each other. The same appendix also shows that:

V ar
[
σ̂2
]

= V ar
[
ψ2
j

]
· 1

I2

∑
j

M2
j +

4

I
· σ2

ψ · σ2
u + 4 ·

(
σ2
u

)2 J
I2

(3.12)

It is interesting to note that only the third term in V ar
[
σ̂2
]
differs from V ar

[
σ̃2
]
, so that

we have:
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V ar
[
σ̂2
]
− V ar

[
σ̃2
]

= 4 ·
(
σ2
u

)2 J
I2
− V ar

[
u2
i

]
· 1

I2
·
∑
j

1

Mj
(3.13)

So that we can have V ar
[
σ̂2
]
> V ar

[
σ̃2
]
when Mj are large without changing the ratio of

J/I2 , that is when the number of movers per firm is high. Intuitively, this is the cost paid
for unbiasedness through sample-splitting. Because each firm effect is estimated with half
the number of observations, the precision of every estimate is lower.

The split-sample estimator σ̂2 of the variance of the firm effects is thus unbiased but has
higher variance than the plug-in estimator. Is the trade-off worth it? To answer this question,
one can compare the mean squared error of both estimators, as it is the most common way
to measure the trade-off between bias and variance. As the mean squared error is the sum
of the squared bias and the variance, we have:

MSE
[
σ̃2
]

= E
[(
σ̃ − σ2

ψ

)2]
= V ar

[
ψ2
j

]
· 1

I2

∑
j

M2
j +

4

I
· σ2

ψ · σ2
u (3.14)

+ V ar
[
u2
i

]
· 1

I2
·
∑
j

1

Mj
+
(
σ2
u

)2 J2

I2

MSE
[
σ̂2
]

= V ar
[
σ̂2
]

= V ar
[
ψ2
j

]
· 1

I2

∑
j

M2
j +

4

I
· σ2

ψ · σ2
u

+ 4 ·
(
σ2
u

)2 J
I2

In equations (3.14), the last term is the squared bias, and the terms on the first row are
the terms in common between σ̂2 and σ̃2. Hence, a sufficient condition for MSE

[
σ̂2
]
<

MSE
[
σ̃2
]
is that J > 4, which is always satisfied in this type of data. The last term in

MSE
[
σ̂2
]
comes from variance of σ̂2 and is the only term not in common with the variance

of σ̃2. This sufficient condition thus really compares the increased bias in σ̃2 from the
increase variance in σ̂2.

Can we further improve on V ar
[
σ̂2
]
? Motivated by Chernozhukov et al. (2018), appendix

3.C.1 explores the possibility to equally split the original samples in K ≥ 2 subsamples,
where by construction, K must be so that K ≤ minjMj . In this case, we would have K
different estimates for each firm effect, as well as

(
K
2

)
possible estimates of σ2

ψ, σ̂
2
kk′ . By

taking the simple average of these estimates, ˆ̂σ2 =
(
K
2

)−1∑
k,k′ σ̂

2
kk′ is an unbiased estimate

of σ2
ψ with variance

V ar
[
ˆ̂σ2
]

= V ar
[
ψ2
j

]
· 1

I2

∑
j

M2
j +

4

I
· σ2

ψ · σ2
u +

(
σ2
u

)2 · 2J

I2

K

K − 1
(3.15)
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Which boils down to equation (3.12) when K = 2. The empirical application in this paper
focuses on the case where K = 2, but in unreported result, I find that this procedure with
K = 3 does not significantly change the estimates of σ2

ψ.

Overall, this simple example shows that even though unbiasedness comes at a cost, the
increased variance in the estimator one has to accept in return is comparatively low, so that
the mean squared error of the split-sample estimator is lower than the mean squared error
of the plug-in estimator.

3.2.3.2 Unbiased estimate of σψθ

Following the same intuition as for σ2
ψ, an unbiased estimator of σψθ is one where the

estimated firm effect of firm j from sample 1 covaries with the estimated individual effects
for individuals who belong to the same firm but are in sample 2:

σ̂ψθ =
1

I

∑
i

ψ̂1j(i) · θ̂2i (3.16)

Appendix 3.C.1, shows that this estimator is indeed unbiased. In the empirical application,
based on the intuition developed in the multi-split case for σ2

ψ and further analyzed in
Chernozhukov et al. (2018), I get a second estimate of the covariance by inverting the role
of sample 1 and 2, and then take the simple average of these two estimators to reduce the
variance.

3.3 Data and empirical implementation of two-way
fixed effect regressions

This section describes the data, discusses the two-way fixed effect regression and the
challenges arising from its empirical implementation.

3.3.1 Data

3.3.1.1 Data source and sample

This paper uses the Décaration Annuelle de Données Sociale (DADS), a French matched
employer-employee administrative data. Every year, employers send to the Social Security
administration information about the pay of each of their employees, along with information
on job duration, occupation, industry, hours worked and place of work. The French
statistical agency (INSEE) then constructs a panel of individuals who can be followed
over time, covering one twelth of the population. More specifically, all individuals born in
October enter this data set called Panel DADS. Before 2002, the panel was half as big, as



CHAPTER 3. DISTINGUISHING BETWEEN SIGNAL AND NOISE 146

Table 3.1: Summary statistics of different samples

Baseline Baseline Analysis Analysis sample 1 Analysis sample 2
largest largest largest largest

(1) (2) (3) (4) (5)

Panel A: Individuals
No. Individuals 2,427,892 2,231,920 1,687,078 839,610 839,335
Mean Wage 10.264 10.269 10.309 10.309 10.310
Q1 Wage 9.962 9.967 9.999 9.999 9.999
Median Wage 10.183 10.189 10.237 10.237 10.238
Q4 Wage 10.487 10.494 10.549 10.549 10.550
% Men 0.629 0.632 0.628 0.628 0.628
% living in IDF 0.255 0.258 0.276 0.276 0.277
Mean Age 38.6 38.4 38.9 38.9 38.9

Panel B: Firms
No. Firms 988,428 784,112 41,975 41,018 41,010
Mean Obs/Year / Firm 2.1 2.3 23.3 11.8 11.8
Mean Obs / Firm 16.6 19.7 219.7 112.2 112.1
Mean Moves / Firm 6.0 7.4 61.8 31.6 31.6
Q1 Moves / Firm 1.0 1.0 8.0 4.0 4.0
Median Moves / Firm 2.0 2.0 17.0 9.0 9.0
Q3 Moves / Firm 3.0 4.0 40.0 21.0 20.0

Observations 16,426,490 15,479,838 9,220,625 4,600,336 4,599,142

Notes: Wage data is in log gross real annual format. The Analysis data set is restricted to firm-year cells
with at least 8 observations. Data in columns (2) to (5) come from the largest connected set of the respective
samples. Moves refers to the number of moves to or from a given firm.

only individuals born in October in an even year were included. Observed firms are those
at which individuals from the panel work.

This paper focuses on full-time employees aged 20-60 in the private sector between 2002 and
2015. For every spell of employment, real gross wage data is observed. Following Card et al.
(2013), if individuals have more than one spell of employment per year, I select a unique
individual-year observation as follows. INSEE constructs a variable indicating whether a
spell can be considered as a "side" job. If the individual has only one non-side job, I select
this spell as the main job for that year. If the individual has more than one non-side job, I
select as the main job the job at which the individual earned most. If the individual has
only side jobs, I discriminate in a similar manner. Once a unique observation for every
individual-year cell is constructed, I compute a yearly "full-time equivalent" log real gross
wage. The baseline sample thus consists of about 2.5 million individuals and 1 million firms.

Column (1) and Panel A of table 3.1 provide some summary statistics for individuals in
this sample. Slightly less than two thirds of them are men, and about 25% live in the
Ile-de-France region around Paris.
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3.3.1.2 Wage Inequality in France

Figure 3.1 provides some basic insight into the level and change of wage inequality in over the
past fifteen years. Panel (a) shows that along a number of inequality measures summarizing
the central part of the distribution, wage inequalities in France have been roughly constant
between 2002 and 2015. This is very different from the dynamics of inequality in the
US (Song et al., 2019), the UK (Van Reenen, 2011) or Germany (Card et al., 2013). In
addition, the economic crisis of 2008-2009 does not seem to have significantly impacted these
inequality measures. Panel (b) shows the evolution of the variance of wage between 2002
and 2015 and its non-parametric decomposition between a between-firm and a within-firm
component. For every year, we have:

∑
i(yi − y)2 =

∑
i(yi − yj(i))2 +

∑
i(yj(i) − y)2, where

y is the average wage. The first component on the right-hand side is the within-firm wage
variation whereas the second is the between-firm variation. The share of total wage variance
coming from the within-firm component varies between 55% at the end of the sample and
about two-thirds at the beginning. This is of a similar order of magnitude as in Song et al.
(2019).

Overall, these two figures are consistent with previous findings on the distribution of French
gross wage. For instance, Verdugo (2014) find that the French wage distribution compressed
between 1969 and 2008.

3.3.2 Fitting two-way fixed effects regressions to the data

This subsection exposes the identifying assumptions made in most of the literature since
Card et al. (2013), discusses the specificities of the empirical implementation of the two-way
regression model, and examines its application to French data.

3.3.2.1 Identifying assumptions

Equation (3.1) allows for unbiased estimation of parameters β, θi and ψj under the identifying
assumptions that E(X ′r) = 0, E(D′r) = 0 and E(F ′r) = 0 where r is the stacked vector
of error terms rit, X is the matrix of time-varying observable covariates, and D and F are
the design matrices of worker and firm indicators respectively. As Card et al. (2013) note,
the only non-standard assumption is the last one. A sufficient assumption for it to hold is
conditional exogenous mobility: the probability that individual i works at firm j in period t
can depend in an unrestricted way on the individual heterogeneity θi, the different wage
premiums prevailing in the economy {ψ1, . . . , ψJ}, but cannot depend on the error term
r. While recent evidence suggest this might be a too strong assumption, at least in the
US framework (Abowd et al., 2018), this paper follows the literature by instead providing
graphical evidence that this assumption approximately holds in the data.



CHAPTER 3. DISTINGUISHING BETWEEN SIGNAL AND NOISE 148

Figure 3.1: Evolution of wage inequality and its determinants, 2002-2015

(a) Measures of wage inequality in France

(b) Non-parametric wage decomposition

Notes: Data comes from the baseline sample
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Figure 3.2: Mean Wage of Job Changers

Notes: This graph plots the mean wage of job switchers before and after the switch, depending on the
quartile of firm effects to which they belong following Card et al. (2013). Selected individuals are observed
at least six times in a row and only change job once.

Card et al. (2013) model the error term as the sum of a match effect, a unit-root term, and an
idiosyncratic shock. Following their notation: rit = ηij(i,t) + ζit + εit. Conditional exogenous
mobility implies then that individuals moving from high-paying firms to low-paying firms
experience a wage decrease of similar amplitude than the wage increase of individuals
moving from low-paying to high-paying firms (E(F ′η) = 0) and that there are no pre-trends
before a move from a high-paying firm to a low-paying firm or vice-versa (E(F ′ζ) = 0).
Figure 3.2 follows Card et al. (2013) and plots the average wage of job-switchers in high-
and low-paying firms around the time of their move. Firms are classified as high or low
paying firms depending on the quartile of firm effects to which they belong. The different
curves draw the mean wage of job movers depending on the quartile of their origin and
destination firm. Even though this paper does not intend to discuss in detail the identifying
assumptions of two-way regression models, one of the main results suggests that one should
treat these type of graphical evidence with caution. Indeed, I show in section 3.6 that
15% of firms switch quartiles when estimates are corrected. Figure 3.2 suggests that the
identifying assumption seems relatively well satisfied for most groups of movers. Except for
the group of movers from firms from the bottom quartile to the top quartile, no pre-trends
in wages during the move is distinguishable.

Another assumption relates to the additive structure of equation (3.1), which assumes that
the wage premium in firm j is the same for every individual working at that firm. While
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this is certainly not true in reality, the estimates ψ̂j can be seen are unbiased approximation
of the mean wage premium in the firm. In addition, both Card et al. (2013) and Bonhomme
et al. (2019) conclude from different approaches that the additive structure of equation (3.1)
approximates well true wage process, in the sense that allowing for match-specific fixed
effects does not sensibly improves the estimation fit. In unreported results, I also allow for
match-specific effects and find that the R2 increases only slightly.

3.3.2.2 Empirical Implementation

The implementation of two-way fixed effect regression models in this matched employer-
employee framework differs in two main respects from the usual OLS regressions used by
applied researchers. First, workers and firm fixed-effects are separately identified only within
a connected set. To see this, consider a oversimplified data set of two periods and no
time-varying observables, in which there is only one worker staying in the unique firm for
both periods. In this case, it is impossible to distinguish whether the wage level is due
to the firm’s wage premium or the individual’s unobservable characteristics. If instead
the individual changes firms between these two periods, one can identify the difference
in wage premiums between firms as the wage difference between period 1 and period 2.
More generally, Abowd et al. (2002) show that workers and firm fixed-effects are separately
identified only within a connected set, and provide an algorithm to compute these sets.
Intuitively, two firms are in the same connected set if they can be linked by worker moves.
In practice, researchers constrain their analysis to the largest connected set, which usually
encompasses above 90% of the observations. This paper follows the literature in this respect.
Table 3.1 displays summary statistics of the baseline sample (column (1)) and of the largest
connected set in this sample (column (2)). Panel A confirms that individual in the largest
connected set are very comparable to the ones in the baseline sample, and that summary
statistics of the baseline sample and its largest connect set are extremely similar. Panel
B suggests that most of the observations outside the connected set come from small firms.
Overall, the largest connected set in my data recovers 94% of the baseline sample. In
addition, it is important to note that within each connected set, each firm effect is identify
only relative to a normalized value. In the previous oversimplified example, one could only
identify the difference of the firm effects. Setting the average of fixed effects to zero enables
separate identification of the two effects. In practice, either one particular firm effect or the
mean of the firm effects are normalised to zero. This paper sets the sample mean of the firm
effects to be zero, so that ψ̂j can thus be conceptually interpreted as the wage premium
given by firm j to its employees above their market wage. If all firms increase their wage
premiums by δ, this becomes part of the market wage. Naturally, this normalization does
not change the variance of the firm effects. Further, one can note that the fixed effects of
non-movers in the largest connected set are also identified, because the fixed effect of their
firm is already identify by other moving employees.
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A second empirical challenge is the size of the data set. It is now common for researchers to
have access to administrative data comprising of millions of individuals and several hundreds
of thousands of firms. As a result, the matrix Z ′Z is a square matrix of size K +N + J ,
where Z = [X,D,F ]. Practically, such a matrix is very hard to store on a standard computer
(Andrews et al., 2006), and is impossible to invert with standard computer configuration.
This has two consequences. First, as the Z ′Z matrix cannot be inverted, one cannot solve
the normal equations to compute the OLS estimates. Instead, researchers rely on iterative
algorithms. This paper uses the -reghdfe- Stata command from Correia (2016). Second,
and more importantly, it also implies that one cannot recover the standard errors on the
different fixed-effect coefficients.

3.3.2.3 Variance decomposition

Following Song et al. (2019), this paper decomposes of variance of wages as:

V ar (y) =V ar
(
θ − θ̄j

)
+ V ar

(
Xβ − X̄jβ

)
+ 2 · Cov

(
θ − θ̄j , Xiβ − X̄jβ

)
+ V ar (r)

(3.17)

+ V ar (ψj) + V ar
(
θ̄j
)

+ V ar
(
X̄jβ

)
+ 2 · Cov

(
θ̄j , ψj

)
+ 2 · Cov

(
θ̄j , X̄jβ

)
+ 2 · Cov

(
ψj , X̄

jβ
)

where variable θ̄j = 1∑
i,t δijt

∑
i,t δijt · θi, δi,j,t is an indicator variable equals to one if worker

i works in firm j at time t, where the other variables ·̄j are defined accordingly. Thus, θ̄j

denotes the average worker effect for workers in firm j throughout the period. Further, the
variance and covariance terms from the between-firm component are taken over all firms,
and weighted by the number of observations. Equation (3.17) decomposes the variance of
wage into several components. The terms on the first row together form the within-firm
component, whereas the terms on the second and third row are the between-firm component
of the variance of wages. Crucially, we are interested in this paper on the variance of
the firm wage premiums, V ar(ψj), as well as the measure of worker sorting into firms,
Cov

(
θ̄j , ψj

)
. Table 3.2 reports the decomposition of the variance of wage into between- and

within- firm components in the baseline sample. As has been reported by others(Card et al.,
2013; Song et al., 2019), most of the variance in wages comes from individual heterogeneity,
either through variation within firms (41.1%), or through variation between firms (27.5%).
Further, in the baseline dataset, the variance of firm effects accounts for about 15% of the
total variation in wage, which is on the lower end of usual values from other studies. As a
comparison, Card et al. (2013) finds that variance of establishment effects explains between
18.5% and 21% of wage variance. The estimated covariance between individual and firm
fixed effect is slightly negative, as in Abowd et al. (2004). Appendix table 3.A.1 shows the
same regression results from the Analysis sample (see section 3.4.1, when only firm-year
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Table 3.2: Decomposition of the variance of wages between and within firms

Decomposition a la
Song et al. (2019)

Var. Component Share of total

Total variance 0.215 1.000

Between firms 0.095 0.44
Var. of θ̄j 0.059 0.275
Var. of Firm Effect ψj 0.032 0.147
Var. of X̄jβ 0.009 0.041
2Cov(θ̄j , ψj) -0.006 -0.027
2Cov(θ̄j , X̄jβ) -0.001 -0.005
2Cov(ψj , X̄

jβ) 0.002 0.011

Within firms 0.120 0.56
Var. of θ − θ̄j 0.088 0.411
Var. of Xβ − X̄jβ 0.024 0.111
Var. of Residual 0.029 0.134
2Cov(θ − θ̄j , Xβ − X̄jβ) -0.021 -0.099

Number of Person effects 2,231,920
Number of Firm Effects 784,112
Number of Different Spells 5,149,360
Sample size 15,479,838

Notes: Ȳ j refers to the mean of variable Y taken over individuals working at firm j. The variance and
covariance terms are weighted by the number of observations. Data comes from the baseline sample.

cells with more than 8 observations are considered). In this case, the covariance term is
positive, at 0.008. This suggests that part of the negative covariance is indeed driven by
negative bias, which is partly attenuated when one considers bigger firms. For the same
reason, the variance of firm effects is also much lower, at 5%. Overall, the between-firm
share of wage variation is about 45% in total, in line with evidence from panel (b) of figure
3.1.

3.4 Evidence of overfitting

This section describes the sample-splitting procedure and presents evidence that overfitting
is important in the French data. In this data, overfitting seems constant over time and is
primarily driven by the top and bottom of the within-firm wage distribution.

3.4.1 Sample-Splitting Procedure

This subsection shows that the proposed sample-splitting procedure delivers balanced sub-
samples and allows to recover two independent estimates for every firm for most of the
baseline sample.
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Algorithm. Usual split-sample procedures randomly allocating observations into two
different sub-samples at the data set level would not work. Due to the panel and network
structure of the data, it would lead to three impractical problems. First, while most firms
would be present in both samples, the number of observations available for every firm might
differ greatly, inducing an imbalance. More importantly, a given individual i would be
observed in both samples. It is common to assume that even controlling for the unobserved
heterogeneity θi, the error term rit is correlated within i across t. Observations from the
same individual will thus be used in both samples to compute the firms effects and ψ̂1j

would not be independent of ψ̂2j (conditional on ψj). Cov(ψ̂1j , ψ̂2j) would then not be an
unbiased estimate of σ2

ψ. In addition, the discussion above on the empirical challenges of
two-way regressions made clear that the driver of the connectedness of a given data set is
the pattern of mobility of workers across various firms. Randomly sampling at the data
level could break this pattern, which could then result in very different largest connected
sets in both sub-samples.

To circumvent these problems, I build on the dense sampling algorithm of Woodcock (2008)
and adapt it to the purpose of this paper. Workers are randomly allocated to a sub-sample
within each firm-year cell, so that every worker appears in only one sub-sample. This ensures
that every firm is present in both samples, while leaving intact the pattern of mobility. The
precise algorithm works as follows.

We start with the first year t = 1. Within each firm observed in t = 1, we divide randomly
into two sub-samples ( sample 1 and sample 2) all observations which have not been
previously allocated to a sub-sample. At t = 1, these are all observations. At the end of
this step, for a firm having Nj employees at time t = 1, Nj/2 of them will be allocated to
sample 1 and Nj/2 will be allocated to sample 2. In case of an odd number of employees
Nj , we make sure the additional employee is not systematically allocated to a particular
sample. Because this step is reproduced every year, each of these observations represent
one unique individual. In a second step, we then allocate for every individual all their
employment history to the same sub-sample they have been allocated to. Specifically, in
t = 1, if individual i has been allocated to sample 1 and is observed in t′ > t, the observation
corresponding to individual i in t′ will be allocated in sample 1 as well. In a third step,
we then move to t = 2. Some individual will enter the panel in this period and thus will
not have been previously allocated. Thus, within each firm observed in t = 2, we divide
randomly into the two samples all observations which have not been previously allocated.
This randomly allocates all individuals appearing for the first time in the panel in t = 2.
We then assign all their employment history (that is, for all years t′ ∈ {3, . . . , T}) to their
sub-sample. Last, we repeat this step 3 until all years have been exhausted.

Sample restriction. The sample needs to be restricted in order to have a sufficient
number of observations per firm. In the baseline sample, about 750, 000 different firms can
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be identified, for about 15.5 millions observations in total. The mean number of observations
per firm is low, at about 20 and the number of moves per firm, which is the main number of
interest when it comes to effective sample size, is even lower at about 7.5 (see table 3.1).
This is due both to the skewed nature of the firm size distribution, and to the characteristic
of the data: only firms at which individuals from the panel work are observed. However,
this sample-splitting procedure is data intensive in the sense that if we are to split every
firm into two different samples and estimate a firm effect out of these, we would like to have
firms with many employees, to be able to recover two precisely estimated estimates. In this
paper, all firm-year cells with less than eight observations are droped. This naturally shifts
the focus of the analysis to bigger firms. While this is a very rough requirement, it seems
to work well in practice. The resulting data set is henceforth called the Analysis dataset.
Columns (2) and (3) of table 3.1 display summary statistics of the baseline and analysis
data set resulting from the ≥ 8 observations per firm-year cell restriction. First of all, the
new sample recovers about 60% of the original observations, and 75% of the individuals.
On the other hand, the number of firms dramatically shrinks from about 750, 000 to about
42, 000. As expected, the mean number of observations and moves per firm dramatically
increases. In addition, this sample restriction barely modifies the summary statistics of the
individuals. Both Kline et al. (2020) and Woodcock (2008) impose a similar restriction. In
the application of his dense sample algorithm, Woodcock (2008) looks at firms with more
than five employees per year. Kline et al. (2020) impose the slightly more complex but
finer requirement that the largest connected set remains connected if one drops out any one
worker. In doing so, they only drop about 15% of their sample.

Empirical Implementation. This sample-splitting procedure works remarkably well in
practice. At the end of the procedure, the only possibility for a firm not be be in both
sub-samples is for it to appear in year t′ > 1 and to have all its employees, already assigned
to the same sample. In my data, this happens a negligible number of times (about 150
observations out of several millions). In addition, it ensures as expected high connectedness
in both samples. The largest connected sets of both samples recovers more than 99.8%

of the observations. As a consequence, virtually all firms present in the original sample
end up in both largest connected sets, and one can thus have two estimates of their firm
effect. The last three columns of table 3.1 show that the sample splitting manages to recover
balanced samples. Panel A demonstrates that the characteristics of individuals in both
sub-samples are the same. Similarly, panel B shows in the last two columns that firms’
summary statistics are also extremely similar. In particular, the main moments of the
distribution of the number of moves per firms is close to identical.
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3.4.2 Evidence of overfitting

This subsection shows that estimating two-way fixed effect regressions with my data leads
to very imprecise estimates of fixed-effects, and that this stylised fact is likely to be present
in other data sets as well.

Strategy. To test for overfitting, I follow the insight from Feng and Jaravel (2020) that the
estimated firm effects ψ̂j should not pick-up random noise. In other words, the estimation
error should be negligible. To implement this intuition, I regress ψ̂2j on ψ̂1j . Appendix
3.C.2 shows that the coefficient on ψ̂1j tend towards the signal-noise ratio.

γ̂ ≡
∑

i,t ψ̂1j(i,t) · ψ̂2j(i,t)∑
i,t ψ̂

2
1j(i,t)

p−−−→
J→∞

σ2
ψ

σ2
ψ + σ̄2

1

(3.18)

Where σ̄2
1 =

∑
j ωjσ

2
j , ωj = Mj/

∑
j′Mj′ , and where the demeaning of firm effects has been

omitted for clarity. Equation (3.18) uses the term ψ̂1j(i,t), implicitly assuming that for every
individual i at time t, one has two firm effects estimated even though individual i is only in
one out of two subsamples. The correct interpretation of ψ̂1j(i,t) is the firm effect estimate
from subsample 1 for the firm j = j(i, t), irrespective whether individual i is in sample 1 or
2.

The coefficient on ψ̂1j is thus indicative of the amount of estimation noise. Regressing ψ̂2j

on ψ̂1j gives a regression coefficient of one if the noise σ̄2
1 is negligible, and a coefficient

between zero and one otherwise. If there is no noise, , and γ̂ will be close to one. The larger
the overfitting, the further away from one will γ̂ be. In this sense, the slope coefficient γ̂
provides a simple and easily interpretable metric of the extent of overfitting.

Results. Figure 3.3 provides the main result of this section. Panel (a) of figure 3.3 is a
binscatter plot of firm effects from sample 1 on firm effects from sample 2. The blue line is
the 45 degree line and the red line is the fit from a regression of ψ1j on ψ2j . Panel (a) shows
that in this data set, there is clear evidence of overfitting of the firm fixed effects, as the slope
coefficient is well below one at 0.68. Interestingly, the rank correlation between ψ1j and ψ2j

is even lower, at 0.47. This suggest that the two samples not only recover firm effects of
different magnitude, but also their rank in their respective sample’s distribution is also very
different. Most of the firm effect distribution is located between −0.10 and 0.10, with both
extremity of the firm effect distribution far away from zero, suggesting that a few firms have
important wage-premium - or are poorly estimated. The binned scatters are all relatively
close to their fit, indicating that the overfitting does not come from a few, poorly estimated
firm effects. This is supported by panel (b) of figure 3.3. Panel (b) depicts exactly the same
relationship, with the exception that the top and bottom 20% of the observation-weighted
distribution of firm effects are excluded. While the slope coefficient does increase, suggesting
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that firm effects at the extremity of the distribution are more poorly estimated than those
in the middle, the slope remains well below 1, at 0.80, suggesting that overfitting is not
simply an issue of extreme values of firm effects.

Appendix figure 3.B.1 provides additional insight into the extent of overfitting. Panel
(a) plots firm effects from both samples when only looking at firms with more than 70

observations per year only. Just as in panel (b) of figure 3.3, the slope coefficient increases,
but does not become close to one. This result is very stable across a wide range of observation
restrictions, and does not depend on the precise number 70. For instance, the slope coefficient
when only firms with more than 200 observations per year are considered is 0.82. Panel (b)
repeats the same procedure with unweighted effects. The slope coefficient is lower than in
figure 3.3, indicating that some firm effects with a small number of observations are very
poorly estimated.

To investigate whether overfitting evolves over time, I divide the original sample ranging
from 2002 to 2015 into two equally long time periods, 2002-2008 and 2009-2015, baring
in mind that the 2008 economic crisis mostly impacts the second interval. The same
sample-splitting procedure is then reproduced in both intervals, resulting in figure 3.4. The
level of overfitting is constant over those two time intervals, depicted in panels (a) and
(b). This is important, as it suggests that even though overfitting is sizable and leads to
overestimating the contribution of firms’ wage premium to the overall variance of wages, the
main conclusions of Card et al. (2013) and Song et al. (2019) are likely to remain valid, as
they both focus on the evolution over time of the different components of wage inequality.
Strikingly, the slope coefficient decreases from 0.68 in panel (a) of figure 3.3 to 0.46 in figure
3.4. This is probably due to the number of observations being about twice as low in each
sample.

Figure 3.5 provide suggestive evidence that the origin of overfitting lies in within-firm
outliers. To construct this figure, the Analysis sample is first restricted to firm-year cells
with more than 10 observations. Then, within every cell, the top and the bottom 20% of
the wage observations is removed, such that every cell has at least 6 observations. The same
sample-splitting procedure as indicated in the subsection above is then applied. Last, a
two-way regression model is estimated in each subsample. Appendix table 3.A.2 provides
summary statistics of this sample split and ensures that the balance of characteristics is
respected. The strinking feature of this figure is that the slope coefficient is much closer to 1

than previously, at 0.90. This indicates that most of the overfitting is driven by the top and
bottom of the within-firm wage distribution. This provides an interesting explanation of the
source of overfitting. When high- or low-wage individuals change firms, the OLS estimators
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Figure 3.3: Overfitting in the Analysis data set

(a) Overall sample

(b) Top and Bottom 20% of firm effects excluded

Notes: Panel (a) plots a binned scatter plot of a regression of firm effects from sample 1 on firm effects
from sample 2. The blue line indicates the 45 degree line and the red line is the fit from a regression of ψ̂1j

on ψ̂2j , with the regression coefficient indicated in the box. Panel (b) reproduces panel (a) but excludes
the top and bottom 20% of firm fixed effects. Regressions are weighted by the number of observations.
Heteroskedasticity-robust standard errors are reported. Data comes from the Analysis data set.
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Figure 3.4: Overfitting over time

(a) 2002-2008 sample

(b) 2009-2015 sample

Notes: This figure plots a binned scatter plot of a regression of firm effects from sample 1 on firm effects
from sample 2 for the years 2002-2008 (panel (a)) and 2009-2015 (panel (b)). The blue line indicates the 45
degree line and the red line is the fit from a regression of ψ̂1j on ψ̂2j , with the regression coefficient indicated
in the box. Regressions are weighted by the number of observations. Heteroskedasticity-robust standard
errors are reported. Data comes from the Analysis sample, but is restricted to firm-year cells with more
than 10 observations.



CHAPTER 3. DISTINGUISHING BETWEEN SIGNAL AND NOISE 159

Figure 3.5: Overfit in the Analysis sample - Without within-firms outliers

Notes: This figure plots a binned scatter plot of a regression of firm effects from sample 1 on firm effects
from sample 2 excluding within-firms outliers. The blue line indicates the 45 degree line and the red line is
the fit from a regression of ψ̂1j on ψ̂2j , with the regression coefficient indicated in the box. Regression is
weighted by the number of observations. Heteroskedasticity-robust standard errors are reported.

Table 3.3: Summary of overfitting by sample

2002-2015 2002-2008 2009-2015 No Within No Within Firm
Firm Outliers Top Outliers

Analysis sample 0.675 0.456 0.473 0.905 0.822

Top & Bottom 20%
of firm effects excluded

0.802 0.726 0.728 0.936 0.878

Firms with ≥70 obs. per
year

0.734 0.530 0.528 0.923 0.855

Unweighted 0.439 0.297 0.309 0.767 0.618

Notes: Regressions are weighted by the number of observations unless otherwise indicated.

incorrectly interprets the wage difference as a difference in firm effects, whereas in reality
it might be only an idiosyncratic shock. Note that this interpretation does not mean that
the conditional exogenous mobility assumption would be violated, as this assumption is a
population, economy-wide level which does not need to hold exactly in finite sample. Table
3.3 summarizes the results. The first column shows the robustness of the overfitting in the
main sample, across a range of sample restrictions. The first row shows that overfitting is
constant over time and comes from the top and bottom of the within-firm salary distribution
(column labeled "No Within-Firm Outliers"). The last column reruns the same analysis,
but only when the top of the within-firm distribution is excluded. Interestingly, the results
are almost exactly in between the first and the fourth column, suggesting that overfitting
comes equally from both sides of the distribution.
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External Validity. One possible concern could be that by splitting the data set into
two samples, the number of observations is dramatically reduced, so that the result on
overfitting here might not apply to other studies, simply because of the different size of the
data sets. This seems not to be the case. In each of the subsamples, there are about 4.6

million observations and about 40, 000 firms, so a ratio of approximately 112 observations
per firm fixed-effect to estimate. This ratio is only about 10 in Abowd et al. (1999), while
Card et al. (2013) and Song et al. (2019) use on average 70 and 78 observations per firm
fixed effect to estimate. I compare the average number of observations per firm effect to
estimate instead of the more relevant ratio of number of moves on the number of firm effects
simply because the above mentioned studies do not report the total number of moves.

Another threat to external validity is that workers’ mobility in France is lower that in other
countries, so that even if the ratio of observations per firm is higher than for other studies
on different countries, the number of moves per firm might be lower. Appendix figure 3.B.2
plots the average tenure length for a number of OECD countries for the latestest available
year. The average tenure length in France in 2020 was 11.1 years, higher than in some other
developed countries such as Denmark, the United-Kingdom, Sweden, or the OECD average
(10.1 years), but of the same order of magnitude than Germany, Spain and the European
Union average. Overall, this suggests that even though worker’s average mobility displays
important variation between countries, France is not an outlier.

A further threat to external validity is that this paper estimates firm fixed effects (the
most granular data available for a panel in France), while other studies such as Card et al.
(2013) estimate establishment fixed effects. One possibility, which cannot be tested with the
current available data, is that there is much less wage dispersion at the establishment level,
such that for a given number of observation, an establishment-level estimate is more precise
than a firm-level estimate.

3.5 Recovering signal variance and covariance

This section turns to the next part of the analysis and shows how to recover the signal
variance and covariance from the sample-split.

3.5.1 Variance and covariance estimates

The strategy to recover the correct variance estimate has been exposed in section 3.2 and
is discussed in more details in appendix 3.C.1. Intuitively, the variance of the firm effect
is biased upward because the squared estimation error term ν2

j has non-zero expectation.
Computing the variance of the firm effects as in (3.11) means that the ν2

j term is replaced
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Table 3.4: Estimates of signal variance

Weighted Unweighted
Variance Share of
component total

(1) (2) (3)

Analysis sample
≥ 8 obs. /year
Raw variance σ̃2 0.012 5.4% 0.028
Signal variance σ̂2 0.009 4% 0.017
Ratio 75% 75% 61%

Extrapolation Baseline
sample
Raw variance σ̃2 0.032 15% 0.104
Signal variance σ̂2 0.024 11,2% 0.063
Ratio 75% 75% 61%

Notes: Weighted and unweighted refer to weights on firm effect estimates. In the first two columns, firm
effects are weighted by the number of observations.

by ν1j · ν2j , which has expectation zero. σ̂2 hence recovers the signal variance σ2
ψ whereas

σ̃2 estimate a raw, upward-biased term.

The first panel of table 3.4 shows that in the Analysis data set, the signal variance is
25% lower that the original estimate. Just as in the previous section, this demonstrate
that the extent of the bias is substantial. As a comparison, column (3) gives the raw and
signal variance when firms are not weighted by the number of observations. In this case, as
expected, the ratio is even lower.

Given this results on the Analysis sample, which restricts firm-year cells to have more
than 8 observations, it would be interesting to see how this results extends to the baseline
sample. I take the simple approach to assume that the ratio of σ̂2 to σ̃2, which is really the
signal-noise ratio, is the same in the overfit and in the baseline sample. By doing so, the
signal-noise ratio in the baseline sample is likely to be underestimated. Indeed, the baseline
sample include many firms with less than eight observations per year, whose effects are likely
to be more poorly estimated than firms in the Analysis sample. For this reason, the raw
variance estimated by σ̃2 is likely to be higher in the baseline than in the Analysis sample.
The second panel of table 3.4 provides results of this extrapolation. By assumption, the
ratio is 75%, and the signal variance of firm effects now explains about 11% of the variance
of wages.

Similarly, an unbiased estimate of the covariance between firm and individual effects can
also be recovered using the split-sample estimates. The intuition is that ψ̂1j(i) · θ̂i is an
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Table 3.5: Estimates of signal covariance

Cov
(
ψ̂j(i), θ̂i

)
0.008

Cov
(
ψ̂1j(i), θ̂2i

)
0.010

Cov
(
ψ̂2j(i), θ̂1i

)
0.010

1
2
Cov

(
ψ̂1j(i), θ̂2i

)
+ 1

2
Cov

(
ψ̂2j(i), θ̂1i

)
0.010

Notes: Weighted and unweighted refer to weights on firm effect estimates. In the first column, firm effects
are weighted by the number of observations. Data comes from the Analysis data set.

unbiased estimate of σψθ, where ψ̂1j(i) is the estimate of firm j from subsample 1 and θ̂i is
the estimate of individual effect, who is in subsample 2. On the other hand, ψ̂j(i) · θ̂i is biased,
as the same information is used to compute both ψ̂j(i) and θ̂i. To increase efficiency, I follow
Chernozhukov et al. (2018) and use cross-fitting and get two estimates of the covariance
term by inverting the role of the two samples and then by averaging the estimates. Table 3.5
shows the different estimates. As mentioned in section 3.3, the covariance in the Analysis
sample is positive, at 0.008. The next two rows show the split-sample unbiased estimate
σ̂ψθ. Rows 2 and 3 demonstrate not difference in estimate depending on the choice of the
subsample for ψ̂ or θ̂. The result suggest a 25% higher covariance between individuals
and firms than previously estimated. The last row demonstrates that averaging the two
covariance estimates does not change the results

These results on the variance and covariance suggest that the contribution of the firm’s
wage premium to variation in wage is at least 25% less important than previously estimated.
On the other hand, assortative matching between high-wage workers and high-paying firms
is proportionally more important. Overall, it indicates that the between-firm component is
more driven assortative matching than by true wage premium. Extrapolating both results
to the baseline sample, this implies that variance of wage premium explains 11% of wage
variation, instead of 15%; and 25% of the between-firm component, rather than 33%. This
relates to the findings in Song et al. (2019), who show that most of the increase in earning
inequality in the US is due to assortative matching rather than wage premiums.

3.5.2 Firm-year shocks

Firm-year shocks could contaminate the estimate σ̂2 and prevent it to perfectly recover σ2
ψ.

Intuitively, if all individuals in firm j at time t face a firm-year specific wage shock, ψ̂1j and
ψ̂2j would be correlated beyond σ2

ψ. Using notation of the toy model from section 3.2, we
have now uki = εi2−εi1 +sj2−sj1, where sjt is the firm-year shock, and ε is the idiosyncratic
shock, so that E

[
ψ̂1j · ψ̂2j

]
6= σ2

ψ because of the squared term (sj2 − sj1)2 that will appear.
If firm-year shocks are indeed important, then σ̂2 will overestimate the true variance of
wage premium, and hence be an upper bound. However, all other bias corrections I am
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aware of suffer from the same problem. Specifically, variance estimates proposed by both
Kline et al. (2020) and Andrews et al. (2008) require independence between observations or
between clusters of observations, and hence between individuals. Assuming firm-year shocks
violates this requirement and would leads wages of different individuals within a same firm
to be systematically correlated. Hence, while imperfect, the split-sample variance estimator
is not less robust to firm-year shocks than other solutions suggested in the literature.

3.6 Recovering better firm effect estimates

This section shows how to recover more precise firm effect estimate from the baseline AKM
regression, presents results for this data and runs robustness and validation tests.

3.6.1 Getting more precise estimate through shrinkage

The main application of two-way fixed effect regressions so far has been to decompose the
variance of the dependent variable - the log gross wage - into different components which
can be interpreted as reduced form parameters for wage premium, assortative matching, etc.
More generally though, researchers might want to use fixed-effect estimates in another way,
for instance by conducting counterfactual analysis, assuming the identification assumption
holds and the estimates are causal: by how much would the wage of individual i change if a
policy maker would force firm j to hire her rather than firm j′, controlling for assortative
matching and individual heterogeneity? In this case, researchers or policy makers would
be interested in knowing with high degree of confidence the firm effects of firms j and
j′. However, as shown in the previous sections, estimates like ψ̂j , though unbiased, are
poorly estimated in the sense that they have a very high variance. Such estimate have poor
predictive power and would not be of great help to the researcher. In such cases, we might
be willing to accept biased estimates if the reduction in variance is sufficiently important.
To achieve this, the OLS estimate ψ̂j are shrunk toward zero:

ψ̃j =
σ2
ψ

σ2
ψ + σ2

j

· ψ̂j (3.19)

Equation (3.19) can be interpreted in several different ways. First, as shown in appendix
3.C.3, ψ̃j is the best linear predictor of ψj given ψ̂j , as it minimizes the mean squared error
function. As discussed in Chetty et al. (2014a), albeit in a different context, σ2

ψ/(σ
2
ψ + σ2

j )

is the coefficient on ψ̂j from an hypothetical regression of ψj on ψ̂j . Furthermore, (3.19)
has an empirical Bayes interpretation. ψ̂j can be seen as a noisy estimate of ψj . More
specifically, assuming normality, we have ψ̂j | ψj ∼ N(ψj , σ

2
j ), ψj ∼ N(0, σ2

ψ), and hence
ψ̂j ∼ N(0, σ2

j + σ2
ψ). Using the properties of jointly distributed normal distribution, it can

be shown that ψ̃j is the posterior mean of ψj given prior information ψ̂j . The empirical
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Bayes perspective follows from the fact that no prior distribution is assumed to derive
the shrinkage factor, but rather it is estimated from the data. In the spirit of Efron and
Morris (1973), ψ̃j can be seen as the optimal linear combination of a low-bias, high-variance
estimator, ψ̂j , and a high-bias, low-variance estimator, the grand mean of the firm effects,
normalized to zero: ψ̃j = (1− c) · 0 + c · ψ̂j is

In order to empirically implement equation (3.19) , σ2
ψ and σ2

j need to be estimated separately.
In the previous sections, it is shown that σ2

ψ can be recovered as the empirical counterpart

of Cov
(
ψ̂1j · ψ̂2j

)
, and that the plug-in variance estimate recovers σ2

ψ + σ̄2, where σ̄2 is
a weighted average of the firm-specific variance terms.While shrinking each OLS estimate
by a constant equal to σ2

ψ/(σ
2
ψ + σ̄2) would still improve the mean-squared errors of the

estimates, we would not be able to differentially shrink every estimate ψ̂j and would thus
not be able to discriminate between an already precisely estimated firm effect that does
not require to be shrunk, and an poorly estimated effect, for which a high shrinkage factor
drastically improves the mean-squared error.

In order to separately estimate σ2
j from σ2

ψ, I assume that σ2
j can be decomposed as the

product of a common variance term and a idiosyncratic, observable component. Specifically,
motivated by Jochmans and Weidner (2019), I assume that:

σ2
j =

1

Mj
σ2
ν (3.20)

Where σ2
ν is the common component and Mj is the number of moves from or to firm j.

In the particular case of the simplified model of section 3.2, appendix 3.C.3 shows that
equation (3.20) holds perfectly, but this does not need to be true in general. Section 3.6.3
provides evidence that assumption(3.20) holds very well in practice and is a very close
approximation of the true firm-specific variance.

Under this assumption we have that s2 ≡ σ2
ψ + σ̄2 = σ2

ψ + M̄ · σ2
ν , where M̄ = 1

N

∑
i,t

1
MJ(i,t)

.
As M̄ is observed, one can then estimate σ̂2

ν as:

σ̂2
ν = M̄−1 ·

(
ŝ2 − σ̂2

ψ

)
(3.21)

One can then recover an estimate of σ2
j as σ̂2

j = 1
Mj
σ̂2
ν .

3.6.2 Shrinkage results

Figure 3.6 shows graphically the extend of shrinkage from a random subset of firms from
the Analysis data set. Raw firm estimates are ordered on the top of the figure, while shrunk
estimates are displayed at the bottom. The slope of the lines connecting raw and shrunk
estimates varies across firms, graphically showing the differential amount of shrinkage. Figure
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Figure 3.6: Random sample of firm effects before and after shrinkage

Notes: This figures plots a random sample of firm effects before (top of figure) and after shrinkage (bottom
of figure). X-axis is the size of the firm effects. Red lines highlights firms classified in different deciles of the
firm effect distribution when their firm effect estimate is shrunk. Data comes from the Analysis sample.

3.6 reveals the the overall significant amount of shrinkage. The mean (observation-weighted)
shrinkage factor is 0.87. The figure also suggests that the larger the raw estimate in absolute
value, the more important the shrinkage is likely to be. This indicates that very important
firm estimates are much more likely to come from poor estimation rather than true wage
premium. Appendix table 3.A.3 provides more detailed statistics about the extend of
heterogeneity in the shrinkage factor. Half of the firm effects are shrunk by 38% or more.
Further, the observation-weighted standard deviation is very high, at 0.16, whereas the
interquartile range is of similar importance.

Shrinking estimates are not only useful to get better firm-level information, but also because
it enables researchers to retrieve a better ranking of wage premiums. In figure 3.6, firms in
red are those with a fixed effects from a different decile before and after shrinkage. Because
some firm estimates are more shrunk than others, this changes the ranking. To get a sense of
the quantitative importance of this change, table 3.6 provides information of the firm effects
before and after shrinkage for firms in the Analysis dataset. Out of 40, 164 firms, 16, 506 of
them, or 41% change deciles of the observation-weighted distribution of firm effects due to
shrinkage. About 5, 927 of them, or 15% end up in different quartiles.

In addition, the change in mean firm effect by quartile before and after shrinkage displayed
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Table 3.6: Summary Statistics of Firm Effects Before and After Shrinkage

Raw Firm Effect Shrunk Firm Effect

Mean FE in Q1 -0.158 -0.101
Mean FE in Q2 -0.031 -0.025
Mean FE in Q3 0.025 0.020
Mean FE in Q4 0.171 0.113

No of firms changing
quartiles

5,927

in % of firms 0.148
in % of obs 0.056

No of firms changing
deciles

16,506

in % of firms 0.411
in % of obs 0.183

Notes: All statistics are from observation-weighted distributions. Numbers reported are for firms in the
Analysis sample.

in this table is substantial. As a simple example, consider an individual with an annual, real
log gross wage of 10.237 before accounting for a firm’s wage premium, which is the median
wage in the data. This individual is randomly picked from a firm in the first quartile of the
distribution, and transferred in a random firm in the fourth quartile. Assuming firm effects
are unbaised, a researcher focusing on raw estimates would predict a wage increase coming
from different wage premiums of about exp(10.237 + 0.171)− exp(10.237− 0.158) = 9, 286

euros. Using shrunk estimates predict a 35% lower wage differential of 6, 021 euros. Overall,
it shows that the amount of shrinkage is important and matters quantitatively.

3.6.3 Validity of the assumption on the firm-specific error term

I test the validity of assumption (3.20) using out-of sample analysis. First, the original data
is split using the procedure exposed in section 3.3 in three subsamples, to get three different
estimates ψ̂1j , ψ̂2j and ψ̂3j for every firm. I then use ψ̂1j and ψ̂2j in order to estimate σ̂2

ψ

and σ̂2
ν and hence to recover shrunk estimates ψ̃1j and ψ̃2j . To check the validity of the

assumption, the third subsample is used as an out-of-sample dataset where the raw estimate
ψ̂3j is regressed on the shrunk estimate from the first or second subsample, say ψ̃2j . This is
because, as no data from subsample 3 have been used to estimate σ̂2

ψ and σ̂2
ν , these estimates

are independent of ψ̂3j . Moreover, if equation (3.20) holds exactly, then the coefficient of a
regression of ψ̂3j on ψ̃2j is exactly one. On the other hand, if the assumption does not hold,
the coefficient will recover (σ2

ψ + σ2
j )/V ar(ψ̂2j), which need not be one. The closer to one

the regression coefficient is, the better assumption (3.20) is.

Table 3.7 shows that equation (3.20) almost holds. The first row of both panels shows that
overfitting is of the same order of magnitude as for the Analysis sample, at about 0.64.
Regressing the raw firm estimate from the left-out sample on shrunk estimates from the
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Table 3.7: Validity check for σ2
j

Sample 3 Raw estimate ψ̂3j

Coefficient Standard error

Panel A: Sample 1
Raw estimate ψ̂1j 0.637 0.000
Shrunk estimate ψ̃1j 1.032 0.000

Panel B: Sample 2
Raw estimate ψ̂2j 0.662 0.000
Shrunk estimate ψ̃2j 1.038 0.000

Notes: This table summarizes the regression results of sample 3 raw estimate ψ̂3j on raw and shrunk estimates
from sample 1 (panel A) and 2 (panel B). All regressions are weighted by the number of observations. The
last column displays heteroskedasticity-robust standard errors. Data comes from the Analysis sample, but is
restricted to firm-year cells with at least 12 observations.

first two subsamples gives a coefficient very sligthly bigger than one and thus suggests that
while the maintained assumption on σ2

j is not entirely true, as is to be expected, it remains
accurate and a good approximation. Appendix figure 3.B.3 displays this result graphically.

3.7 Conclusion

In this paper shows that, as in other datasets (Andrews et al., 2008; Kline et al., 2020), French
employer-employee data is subject to important overfitting and that the firm wage premiums
are on average sizeably lower than what has been previouslt estimated. These results are
established by introducing a simple split-sample procedure which allows a researcher to
measure the precision of the estimation and to recover the true variance of wage premium.
This procedure estimates that the contribution of firm heterogeneity to wage inequality is
overestimated by at least 25%, and that the contribution of worker’s sorting into firm to
wage inequalities is underestimated by the same amount. This procedure also allows for a
better prediction of firm effects by shrinking the original OLS estimates by a factor equal
their signal to noise ratio, thus lowering the mean squared error. This paper finds that
shrinkage is substantial for a significant fraction of firms, suggesting that the raw firm effect
estimates are not only improper to estimate the variance of wage premium, but also to draw
conclusions about firm-specific wage premiums.

Overall, these results are in line with recent evidence (Song et al., 2019; Kline et al., 2020)
suggesting that, at least for some countries, the contribution of firm-specific wage premiums
to inequality is lower than previously thought (Card et al., 2013), and that sorting of workers
in firms plays a relatively more important role explaining this wage inequality. This paper
also introduce shrinkage methods in the litterature on firm wage premium, which can be
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useful for future work aiming to draw economic conclusions from estimated firm fixed-effects.



Appendices

3.A Additional tables

Table 3.A.1: Decomposition of the variance of wages - Analysis sample

Decomposition a la
Song et al. (2019)

Var. Component Share of total

Total variance 0.225 1.000

Between firms 0.085 0.38
Var. of θ̄j 0.044 0.195
Var. of Firm Effect ψj 0.012 0.054
Var. of X̄jβ 0.005 0.022
2Cov(θ̄j , ψj) 0.016 0.071
2Cov(θ̄j , X̄jβ) 0.005 0.021
2Cov(ψj , X̄

jβ) 0.003 0.011

Within firms 0.140 0.62
Var. of θ − θ̄j 0.111 0.495
Var. of Xβ − X̄jβ 0.028 0.125
Var. of Residual 0.028 0.124
2Cov(θ − θ̄j , Xβ − X̄jβ) -0.027 -0.118

Number of Person effects 1,687,078
Number of Firm Effects 41,975
Number of Different Spells 2,983,709
Sample size 9,220,625

Notes: Ȳ j refers to the mean of variable Y taken over individuals working at firm j. The variance and
covariance terms are weighted by the number of observations. Data comes from the Analysis sample.

169
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Table 3.A.2: Summary statistics of different samples - Excluding Within-Firms Outliers

≥10 obs./year
Sample 1 Sample 2

(1) (2)

Panel A: Individuals
No. Individuals 644,431 644,417
Mean Wage 10.275 10.276
Q1 Wage 10.039 10.039
Median Wage 10.229 10.229
Q4 Wage 10.471 10.471
% Men 0.626 0.627
% living in IDF 0.270 0.270
Mean Age 39.0 39.0

Panel B: Firms
No. Firms 29,688 29,693
Mean Obs/Year / Firm 9.4 9.4
Mean Obs / Firm 90.0 90.0
Mean Moves / Firm 21.7 21.7
Q1 Moves / Firm 3.0 3.0
Median Moves / Firm 7.0 7.0
Q3 Moves / Firm 15.0 15.0

Observations 2,671,489 2,673,834

Notes: Wage data is expressed in log gross real annual format. Data come from the largest connected set of
the respective samples. Moves refers to the number of moves to or from a given firm. Data comes from the
Analysis sample with the additional restriction that all firm-year cells have at least 10 observations.

Table 3.A.3: Summary statistics of shrinkage factor

Shrinkage Factor

Weighted Unweighted

Mean 0.87 0.62
Std. Dev. 0.16 0.21

Q1 0.80 0.45
Q2 0.93 0.62
Q3 0.98 0.79

Minimum 0.15 0.15
Maximum 0.99 0.99

Notes: Weights are observations weights. Numbers reported are for the shrinkage factors of firms in the
Analysis sample.
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3.B Additional figures

Figure 3.B.1: Overfit in Analysis sample

(a) Firms with more than 70 observations

(b) Unweighted firm effects

Notes: These figures plot a binned scatter plot of a regression of firm effects from sample 1 on firm effects
from sample 2, as exposed in section 3.4.2. The blue line indicates the 45 degree line and the red line
is the regression fit, with the regression coefficient indicated in the box. Data comes from the Analysis
sample. Panel (a) is constructed using firms with at least 70 observations and regression is weighted by
the number of observations, while panel (b) does not weight the firm effects by the number of observations.
Heteroskedasticity-robust standard errors are reported.
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Figure 3.B.2: Average tenure length for a selected OECD countries, 2020

Notes: Data comes from OECD’s website - Series “Employment by job tenure intervals - average tenure”,
see here. Accessed 28 June 2022.

Figure 3.B.3: Regression of ψ̂3j on ψ̃2j

Notes: This figure plots a binned scatter plot of a regression of firm effects from sample 3 on firm effects
from sample 1, as exposed in section 3.6.3. The blue line indicates the 45 degree line and the red line is
regression fit, with the regression coefficient indicated in the box. Firm effects are weighted by the number
of observations. Data comes from the Analysis sample, but is restricted to firm-year cells with at least 12
observations. Heteroskedasticity-robust standard errors are reported.

https://stats.oecd.org/Index.aspx?DataSetCode=TENURE_AVE
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3.C Technical appendix

3.C.1 Statistical model

This section provides the proofs of the simplified model presented in section 3.2.

3.C.1.1 OLS estimates

Set-up and interpretation. Consider the simplified two-way fixed effects model from
equation (3.2) where the time-varying individual covariates are omitted for simplicity.

Y = Dθ + Fψ + r

For instance, Y can be seen as being the log wage net of age, year, gender and experience
effects. θ is the vector of individual fixed effects, ψ is the vector of firm fixed effects, D
and F are the design matrices for the corresponding individual and firm effects, and r is an
error term, respecting assumptions made in section 3.2.

There are I individuals indexed by i. Each individual is observed Ti times, indexed by t, so
there are N ≡

∑I
i=1 Ti observations in total, indexed by k. Hence, for every observation

k, there is a unique couple (i, t). In what follows, k and its corresponding individual-year
equivalent are used interchangeably. There as J firms indexed by j. Using the Frisch-Waugh-
Lowell theorem, we have:

ψ̂ = (F̃ ′F̃ )−1F̃ ′Ỹ (3.22)

where F̃ = MDF , Ỹ = MDY , and MD = I −D(D′D)−1D′. Ỹ is a vector of size N where
the k-th observation is equal to the demeaned log wage with respect to the individual :
yi,t − ȳi,· F̃ is a N × J matrix whose [k, j]-th element is equal to

[
F̃
]
k,j
≡ f̃kj = fkj −

1

Ti

N∑
n=1

dnifnj

= fkj − f̄i,j,·

where fkj is an indicator variable equals to 1 if individual corresponding to observation k is
working in firm j at the time of the observation, 0 else; dnj is an indicator variable equals
to 1 if observation n corresponds to individual i, 0 else. Because Ti =

∑N
n=1 dni, one can

interpret f̄i,j,· as the fraction of the time individual i spent working at firm j. f̃kj takes
values strictly between 1 and -1. It takes positive values when individual corresponding
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to observation k is working in firm j at that time, negative values else. When individual
i spends most of its time in firm j, f̄i,j,· is close to one, so f̃kj will be close to 0 when
individual works in j, and close to -1 when individual works in j′ 6= j. Note that f̃kj is
equal to 0 only if individual i corresponding to observation k never works for firm j, or is
always observed working for firm j. Hence, f̃kj = 0 indicates non-movers.

Case where J = 2. First, we focus on the case when there are only two firms. In period
1, all individuals are in the large firm, and then Mj of them move in period 2 to the firm j.
The normal equations solved by the OLS estimator from (3.22) give:

( ∑
k f̃

2
k1

∑
k f̃k1 · f̃k2∑

k f̃k1 · f̃k2
∑

k f̃
2
k2

)
·

(
ψ̂1

ψ̂2

)
=

( ∑
k f̃k1 · yk∑
k f̃k2 · yk

)

Where we can arbitrarily label ψ1 as the firm effect of the small firm and ψ2 as the effect of
the large firm.

∑
k

f̃2
k1 · ψ̂1 =

∑
k

f̃k1yk − ψ̂2

∑
k

f̃k1 · f̃k2 (3.23)

Because we know that the firm effects are identified only relative to one particular firm in
the connected set, we can normalize, one of the effect to 0 so that ψ̂2 = 0, as indicated in
section 3.2. We thus have:

ψ̂1 =

∑
k f̃k1 · yk∑
k f̃

2
k1

(3.24)

For individuals who do not move to j, fkj = 0 for both periods, hence and f̃kj = f̄i,j,· = 0.
For individuals who move to j, we have: f(i,1)j = 0 and f(i,2)j = 1, so thatf̃(i,1)j = −1/2

and f̃(i,2)j = 1/2. Plugging in (3.24), this gives :

ψ̂1 =

∑Mj

i=1(−1/2) yi1 +
∑Mj

i=1(1/2) yi2∑Mj

i=1(−1/2)2 +
∑Mj

i=1(1/2)2
=

1

Mj

Mj∑
i=1

(yi2 − yi1) (3.25)

Extending to star network. The OLS estimate of ψj are the same in the star network
as in the case J = 2 above as the big firm effect is normalized to zero and as every individual
i moves to only one firm j. The star network example in section 3.2 is equivalent to J
separate estimations of ψ̂j .
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OLS estimate of θ̂i. It follows from the OLS normal equations, noting that: θ̂ =

(D′D)−1D′(Y − Fψ̂). Direction of moves does not matter when there are no year effects, or
that it is controlled for. When individuals move from the small firm j in period 1 to the big
firm in period 2, ψ̂j = M−1

j

∑Mj

i=1(yi1 − yi2). This can be seen by plugging formulas for f̃kj .
Without loss of generality, one can thus assume that moves go in only one direction.

3.C.1.2 Sample-splitting and recovering variance estimates

Equal-size subsample minimizes variance. Consider a within-firm sample-split where
M1j = c·Mj andM2j = (1−c)·Mj . I want to choose c so as to minimize 0.5

(
V ar(ψ̂1j) + V ar(ψ̂2j)

)
=

σ2
ψ + 1

2
σ2
u

Mj

(
1
c + 1

1−c

)
. Setting the first order condition to 0 gives c = 1/2.

Bias of σ̃2 and σ̂2. First, note that we have:

E
[
ψ̂2
j

]
= E

[
ψ2
j + ν2

j + 2 · ψj · νj
]

= σ2
ψ + σ2

j

E
[
ψ̂1,j · ψ̂2,j

]
= E

[
ψ2
j + ν1,j · ν2,j + ψj · ν1,j + ψj · ν2,j

]
= σ2

ψ

So that:

E
[
σ̃2
]
− σ2

ψ =
1

I

∑
j

Mj(σ
2
ψ + σ2

j )− σ2
ψ =

1

I

∑
j

σ2
u =

J

I
σ2
u

E
[
σ̂2
]
− σ2

ψ = 0

Where on the first line I use the fact that
∑

jMj = I and σ2
u = Mj · σ2

j .

Variance of σ̃2 and σ̂2. First, note we have:

E
[
ν4
j

]
= E

M−4
j

Mj∑
i=1

ui

4
= M−4

j

Mj∑
i=1

E
[
u4
i

]
+ 6M−4

j

Mj∑
i=1

∑
i′ 6=i

E
[
u2
i u

2
i′
]

= M−3
j E

[
u4
i

]
+ 6M−3

j (Mj − 1)
(
σ2
u

)2
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where the second line comes from the multinomial theorem and keeping only terms whose
expectation is not zero, and the third line comes from (i) the fact that ui is independent of
ui′ when i 6= i′; and (ii) the assumption that the fourth moment of ui is finite and constant
across i.

Second, note that when M1,j = M2,j =
Mj

2 ,

σ2
1j σ

2
2j =

1

M1jM2j
·
(
σ2
u

)2
= 4M−1

j ·
(
σ2
u

)2
σ2

1j + σ2
2j =

M1j +M2j

M1jM2j
· σ2

u

= 4M−1
j · σ

2
u

So that we can express the variance of ψ̂2
j and ψ̂1j · ψ̂1j as:

V ar
[
ψ̂2
j

]
= E

[
ψ̂4
j

]
− E

[
ψ̂2
j

]2

= E
[
ψ4
j + 4ψ3

j νj + 6ψ2
j ν

2
j + 4ψj ν

3
j + ν4

j

]
−
(
σ2
ψ + σ2

j

)2
= E

[
ψ4
j + 6ψ2

j ν
2
j + ν4

j

]
−
(
σ2
ψ + σ2

j

)2
= E

[
ψ4
j

]
+ E

[
ν4
j

]
+ 6σ2

ψ σ
2
j −

(
σ2
ψ + σ2

j

)2
= E

[
ψ4
j

]
−
(
σ2
ψ

)2
+ E

[
ν4
j

]
−
(
σ2
j

)2
+ 4σ2

ψ σ
2
j

= E
[
ψ4
j

]
−
(
σ2
ψ

)2
+M−3

j E
[
u4
i

]
+M−3

j (Mj − 1)
(
σ2
u

)2 −M−2
j

(
σ2
u

)2
+ 4M−1

j σ2
ψ σ

2
u

= V ar
[
ψ2
j

]
+ 4M−1

j σ2
ψ σ

2
u +M−3

j V ar
[
u2
i

]
where the third line comes from the fact that terms with odd exponents have expectation
zero as ψj and νj are independent and both with mean zero, the sixth line comes from the
decompositions above and the fact that σ2

j = M−1
j · σ2

u.

Similarly, we have:

V ar
[
ψ̂1j · ψ̂2j

]
= E

[
ψ̂2

1j · ψ̂2
2j

]
− E

[
ψ̂1j · ψ̂2j
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ψ2
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)
·
(
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ψ
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[
ψ4
j

]
+ E
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2j

]
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[
ψ2
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2
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]
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[
ψ2
j ν

2
2j

]
−
(
σ2
ψ

)2
= E

[
ψ4
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]
−
(
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ψ

)2
+ σ2

1j · σ2
2j + σ2

ψ

(
σ2

1j + σ2
2j

)
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[
ψ2
j

]
+ 4M−1

j σ2
ψ σ

2
u + 4M−1

j

(
σ2
u

)2
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where the third line comes from the fact that ψj , ν1j and ν2j are all independant with mean
zero,

We can then compute the variance of the estimators:

V ar
[
σ̃2
]

=
1

I2

∑
j

M2
j V ar

[
ψ̂2
j

]
=

1

I2

∑
j

M2
j V ar

[
ψ2
j

]
+

4

I2

∑
j

Mj σ
2
ψ σ

2
u +

1

I2

∑
j

M−1
j V ar

[
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i

]
= V ar

[
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] 1

I2

∑
j

M2
j +
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I
σ2
ψ σ

2
u + V ar

[
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i
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∑
j

M−1
j

And:

V ar [σ̂] =
1

I2

∑
j

M2
j V ar

[
ψ̂1j · ψ̂2j

]
=

1

I2

∑
j

M2
j V ar

[
ψ2
j

]
+

4

I2

∑
j

Mj σ
2
ψ σ

2
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1

I2
4
(
σ2
u

)2 ∑
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1
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[
ψ2
j

] 1

I2

∑
j

M2
j +

4

I
σ2
ψ σ

2
u + 4

(
σ2
u

)2 J
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Note that V ar
[
σ̂2
]
> V ar

[
σ̃2
]
when Mj is large as the latter term of V ar

[
σ̃2
]
tends

towards zero, whereas the last term of V ar
[
σ̂2
]
does not. Intuitively, this increased variance

is the cost paid for unbiasedness through sample-splitting.

Mean Squared Error of σ̃2 and σ̂2. First, note that the squared bias of σ̃ is:

(
E
[
σ̃2
]
− σ2

ψ

)2
=
(
σ2
u

)2 J2

I2

Using the fact that the mean squared error is the sum of the variance and the squared bias,
we have:
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MSE
(
σ̃2
)

= V ar
[
ψ2
j

] 1

I2

∑
j

M2
j +

4

I
σ2
ψ σ

2
u

+ V ar
[
u2
i

] 1

I2

∑
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j +

(
σ2
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)2 J2
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MSE
(
σ̂2
)
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[
ψ2
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] 1

I2

∑
j

M2
j +

4

I
σ2
ψ σ

2
u

+ 4
(
σ2
u

)2 J
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Where the first line of both formula show the common component. It can be easily seen
that a sufficient condition for MSE

(
σ̃2
)
> MSE

(
σ̂2
)
is J > 4, which is always satisfied in

the type of data set used.

3.C.1.3 Extension to multisplits

This part generalizes the results from the previous subsection by introducing K splits where
K ≥ 2.

Set-up. Note that as we allocate randomly every mover within each firm to a sample
k ∈ {1, ...,K}, hence we have that K ≤ minjMj .

ψ̂j = ψj +
1

Mj

Mj∑
i=1

ui ≡ ψj + νj

ψ̂k,j = ψj +
1

Mkj

Mkj∑
i=1

ui ≡ ψj + νkj

With : Mj =
∑

kMkj and Mkj = Mk′j , νk,j ∼ (0, σ2
kj), ψj ∼ (0, σ2

ψ), ui ∼ (0, σ2
u), ψj and

νkj are independent for all k, as well as observations across k and across j. Following
estimators are considered :
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σ̃2 =
1

I

∑
i

ψ̂2
j =

1

I

∑
j

Mj ψ̂
2
j

σ̂kk′ =
1

I

∑
i=1

ψ̂kj · ψ̂k′j

ˆ̂σ2 =
2

K(K − 1)

∑
k′ 6=k

σ̂kk′

Where
(
K
2

)
= K(K−1)

2 is the number of different variance estimates we have and ψ̂j are
defined as in equation (3.3). Hence, ˆ̂σ2 is simple the average of all possible σ̂2

kk′ . Because
σ̂2
kk′ is unbiased from the previous subsection, ˆ̂σ2 is also unbiased. However, the variance of

ˆ̂σ2 is more complex.
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[
ˆ̂σ2
]

=
4
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)

+
∑
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k 6= k′
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Cov
(
σ̂2
kk′ , σ̂

2
k′′k′′′

)


Computing V ar [σ̂kk′ ]. First, we have that:

σ2
kj · σ2

k′j =
(
σ2
u

)2 1

MkjMk′j
=
(
σ2
u

)2 K2
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j
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u

(
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)
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For k 6= k′, so that
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]
= E

[
ψ̂2
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]
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[
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ψ

(
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)
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j

]
+
(
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u

)2 K2
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j

+ σ2
ψ σ

2
u

2K
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Hence:
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V ar [σ̂kk′ ] = V ar
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j
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∑
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ψ σ

2
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Computing Cov

(
σ̂2
kk′ , σ̂

2
k′′′k′′

)
. Suppose k,k′, k′′, k′′′ are all different integers between 1

and K. For simplicity, they are denoted 1 to 4. Then we have that:
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)
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2
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)
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]
Because of the joint independence of ψj and νkj .

So that,
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Computing Cov
(
σ̂2
kk′ , σ̂

2
kk′′
)
. Suppose k, k′, k′′, are all different integers between 1 and

K. For simplicity, they are denoted 1 to 3. Then we have that:
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Because of the joint independence of ψj and νkj , so that,
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Computing number of occurrences. Out ofK samples, there are
(
K
2

)
possible variance

estimates σ̂2
kk′ . For every possible estimates, it can covary with

(
K
2

)
− 1 other estimates,

so there is overall
(
K
2

) ((
K
2

)
− 1
)

= K(K−1)
2 · K(K−1)−2

2 covariance terms, each of them

appearing twice. Note that from all
(
K
2

)
possible estimators, sample k̃ appears K − 1 times.

Taking any one variance estimate σ̂2

k̃
˜̃
k
, let us focus on the

(
K
2

)
− 1 other possible terms it
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can covary with. Every other variance estimates have either 0 or 1 sample k ∈ {1, ...,K} in
common. Out of the

(
K
2

)
− 1 other possible terms, k̃ appears (K − 1)− 1 times, and ˜̃

k also
appears (K−1)−1 times, so that there is a total of 2(K−2) other variance estimators which
share either k̃ or ˜̃

k. This being true for all σ̂
k̃

˜̃
k
, out of the

(
K
2

) ((
K
2

)
− 1
)
covariance terms,(

K
2

)
2(K − 2) share one sample together (every one appearing twice) and the remaining

covariance terms share no samples.

Bringing everything together. We have:
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Where the first line in the last equation pulls together the common term in V ar
[
ψ2
j

]
, the

second line comes from the variance term and the third line comes from the covariance
terms with one sample k in common and the variance term.

3.C.1.4 Bias of σ̃ψθ and correct covariance estimate

This section computes the bias of σ̃ψθ as indicated in section (3.2), and shows that σ̂ψθ is
unbiased.
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Bias of σ̃ψθ. First, note that:

E [(ri1 + ri2) · νj ] = E
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(ri1 + ri2) · 1
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]
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Mj
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r2
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]
≡ 1

Mj
σ2
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Where the second line comes from the independence across i, and σ2
r̃ 6= 0 as long as we do

not assume homoskedasticity. We have then:
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]
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2
σ2
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1

2Mj
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Where the result comes from the independence between the signals ψj and θi and the errors
ri and νj . As a result,

E [σ̃ψθ − σψθ] = − 1

2I

∑
j

[
Mj

σ2
u

Mj
+Mj

σ2
r̃

Mj

]
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2I

(
σ2
r̃ − σ2
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)
= −J

I

(
E(r2

i1)− Cov(ri1, ri2)
)

Where the last line come from expanding the formula for σ2
r̃ and σ2

u. Under homoskedasticity,
σ2
r̃ is 0 and the bias is obviously negative.

σ̂ψθ recovers the correct covariance. Following the same steps as before, note that:
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E
[
θ̂k′i · ψ̂kj(i)

]
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2
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Where k, k′ ∈ {1, 2} denote the sub-sample from which ψ and θ are estimated. Hence:

E [σ̂ψθ − σψθ] = 0

3.C.2 Asymptotics

This section shows that the coefficient on ψ̂1j from a regression of ψ̂2j on ψ̂1j tends towards
the signal - average noise ratio. I first reexpress the denominator of equation (3.18) as a
weighted mean.

1

N

∑
i,t

ψ̂2
1j(i,t) =

∑
j

ωjψ̂
2
1j

where ωj = Mj/N = Mj/
∑

jMj . To prove that it converges towards the signal-average
noise ratio, I use results from the Law of Large Numbers for weighted average from Eremin
(1999). Specifically, it assumes that ψ̂2

1j are independent with finite variance, and that, for
some q > 1,

max
j
{|ωj |} −min

j
{|ωj |} ≤

(
J (J − 1)1−2q

)1/2q
Independence and finite variance are relatively standard assumptions. While the first one
holds in section 3.2 because every individual participates in the estimation of only one firm,
it might not be exactly the case in reality, as an individual moving twice over a give time
period participates to the estimation of the effect of two firms. However, this assumption
will approximately hold given the large number of firms in an economy, as an individual
would move between a very small amount of firms relative to the total number of firms in
the economy. The second assumption amounts to assuming finite fourth moment for ψj and
νj , and is standard for convergence proofs with unequal variance. The last assumption poses
a condition on how big any given firm can be. Intuitively, the weighted sum of variances
cannot be driven by only a few firms. Under those conditions, Eremin (1999) shows that
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∑
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ωjψ̂
2
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2
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where σ̄2
1 =

∑
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2
j . The same argument demonstrates that

1
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J→∞
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ψ

Applying Slutsky’s theorem to these two results finished the proof.

3.C.3 Shrinkage

This appendix section derives claims made in section 3.6.

3.C.3.1 Interpretation of ψ̃j

Minimum mean squared error. ψ̂j , j ∈ 1, . . . , J estimates with error the firm effect ψj .
More specifically, we have that ψ̂j | ψj ∼ (ψj , σ

2
j ), ψj ∼ (0, σ2

ψ), and ψ̂j ∼ (0, σ2
j + σ2

ψ). We
can thus express ψ̂j and ψj in an additive way. ψ̂j = ψj +νj , νj ∼ (0, σ2

j ) and is independent
from all other variables. Let ψ̂ = (ψ̂1, ψ̂2, . . . , ψ̂J) and ψ = (ψ1, ψ2, . . . , ψJ). We want to
find an estimator mj(ψ̂) of ψ, which minimizes the expected prediction error

MSE = E

∑
j

(
mj(ψ̂)− ψj

)2



We consider the best estimator of the form mj(ψ̂) = α+ βjψ̂j . We have:

E
[(
mj(ψ̂)− ψj

)2
]

= E
[
α2 + (βjψ̂j)

2 + 2αβj ψ̂j + ψ2
j − 2αψj − 2βj ψ̂jψj

]
= α2 + β2

j σ
2
j + (βj − 1)2 σ2

ψ

The first order condition for α gives α∗ = 0 (because E[ψj ] = E[ψ̂j ] = 0) and the first order
condition for βj gives

β∗j =
σ2
ψ

σ2
ψ + σ2

j

Which is simply the signal / (signal + average noise) ratio. Hence, ψ̃j = mj(ψ̂) =
σ2
ψ

σ2
ψ+σ2

j
ψ̂j

is the best-linear predictor of ψj given ψ̂j . Further, if we constrain βj to be equal across j,
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we have that β∗ and α∗ solve minα,β
∑

j

(
α+ β ψ̂j − ψj

)2
, so they are really the solution

of a hypothetical regression of ψj on ψ̂j .

Empirical Bayes. We have ψ̂j | ψj ∼ N(ψj , σ
2
j ), ψj ∼ N(0, σ2

ψ), and hence ψ̂j ∼
N(0, σ2

j + σ2
ψ). Properties of the normal distribution imply that if x1 and x2 are jointly

normal with mean µ1 and µ2, with variance σ2
1 and σ2

2 and covariance σ12, we have
E(x2 | x1) = µ2 + σ12

σ2
1

(x1 − µ1). Plugging-in gives the required result. In a fully Baysian
framework, one would assume a distribution for the parameters µ and σ, and estimate them
through maximum-likelihood. The empirical strategy in this paper can be seen as following
an empirical Bayes framework, as the parameters are estimated from the data.

3.C.3.2 Rationale for the validity checks

Assumption on σ2
j . Consider three estimates of the same firms from different samples,

ψ̂kj = ψj + νkj for k ∈ {1, 2, 3}, νkj ∼ (0, σ2
kj) and is independent of other variables. For

k′ ∈ {1, 2}, consider the shrunk estimate ψ̃k′j =
σ2
ψ

σ2
ψ+s̃2

k′j
ψ̂k′j , where s̃2

k′j is constructed as

mentioned in section 3.6. Because the shrinkage factor is constructed from sample 1 and 2
only, it is independent of the error term in sample 3. Under assumption stated in equation
(3.20),s̃2

k′j = σ2
k′j recovers the correct variance of νk′j . We thus have that

Cov
(
ψ̂3j , ψ̃2j

)
=

σ2
ψ

σ2
ψ + σ2

2j

Cov (ψj + ν3j , ψj + ν2j)

=

(
σ2
ψ

)2

σ2
ψ + σ2

2j

=

(
σ2
ψ

)2

(
σ2
ψ + σ2

2j

)2 V ar
[
ψ̂2j

]
= V ar

[
ψ̃2j

]

So that the coefficient on ψ̃2j from a regression of ψ̂3j on ψ̃2j is one. On the other hand,
should we have s̃2

k′j 6= σ2
k′j , the coefficient of the same regression would be
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Cov
(
ψ̂3j , ψ̃2j

)
V ar

[
ψ̃2j

] =
σ2
ψ

σ2
ψ + s̃2

2j

Cov (ψj + ν3j , ψj + ν2j)

V ar
[
ψ̃2j

]
=

(
σ2
ψ

)2

σ2
ψ + s̃2

2j

(
σ2
ψ + s̃2

2j

)2

(
σ2
ψ

)2

1

V ar
[
ψ̂2j

]
=
σ2
ψ + s̃2

2j

σ2
ψ + σ2

2j

6= 1

Thus, the closest to one this coefficient is, the more likely to hold is assumption stated in
equation (3.20).
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