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Abstract

This thesis studies the problem of multiple testing from the change-point perspective,

and the problem of inference in the Gaussian sequence model.

In the first part of the thesis, we propose a method for estimating the proportion of

false null hypotheses among a large number of independently tested hypotheses. The

idea is to consider the sequence of sorted p-values as an approximately piecewise linear

function with one change-point in slope. We propose an estimator for this change point,

which can be further used in combination with Storey’s family of estimators to get the

estimator of the false null proportion. Our proposed estimator is conservative and we

provide consistency results using the tools from the theory of quantile processes. We

compare our estimator to various others proposed in the literature through simulations.

Secondly, building on the ideas from the first part, we consider possible applications

of some recent multiple change-point methods in multiple testing. We propose to use

algorithms for estimating multiple change-points in mean on the sequence of p-values

spacings, thus approximating the local FDR with a piecewise constant function. This

naturally divides p-values into groups based on their significance. Additionally, we

highlight some lesser-known existing change-point interpretations of the global testing

methods.

Lastly, we propose a thresholding method for inference in the Gaussian sequence

model. We analyse it from both multiple testing and signal estimation perspective,

and consider its asymptotic behaviour. Starting from the full sequence of values, the
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method sequentially excludes the largest values one by one, until the remaining values

resemble noise. The idea is to consider values in groups in order to retain more signals

in the case when signal is weak but dense, shared among many coordinates. We

consider a possible application in the change point literature.
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a smaller slope. In this example ĵBH = 8 and the estimated number of

false nulls is 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Sorted sequence of 100 p-values. Red bars correspond to p-values of

false null hypotheses and black bars to true null hypotheses. . . . . . . 77

3.2 The illustration of the DOS procedure on n = 1000 1-sided p-values

from the Gaussian model for the test statistics, where H0 : X ∼ N(0, 1),

H1 : X ∼ N(3, 1) and the number of false null hypotheses is fixed

n1 = 100. Left: The sequence of the first 500 smallest p-values. The blue

dash-dotted broken line reveals the detected change-point location and

the corresponding symmetric interval with the largest slopes difference.

Right: the DOS sequence d(i) with vertical line at the location of the

maximum k̂DOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



16 List of figures

3.3 Bivariate function H(t, a) for the distribution of the 1-sided p-values

from the Gaussian mean testing with π1 = 0.1, µ = 3. . . . . . . . . . . 85

3.4 The distance of the DOS true change-point and argmaxx∈(0,1) x(F−1)′′(x). 86

3.5 The degree of proportion underestimating shown as the scaled distance

between the DOS ideal proportion π̃1 and the true proportion π1 for the

Gaussian mixture model for different values of µ. . . . . . . . . . . . . 87

3.6 The relationship between the DOS true change-point location and the

true proportion for the Gaussian mixture model. For µ = 3 already, the

ideal change-point is close to the true proportion. This implies that if

the signal is strong enough, the change-point location can be used as

the proportion estimate and as a threshold for signal estimation. . . . . 88

3.7 The relationship between the DOS true change-point location and the

true proportion for the Gaussian mixture model with small µ. . . . . . 89

3.8 The dependence of the proportion estimator on cn shown for varying

µ, π1 and n = 10000. Solid line - Average estimated proportion over

N = 10000 repetitions, shown as a function of cn; Dashed lines - average

proportion ± average standard deviation as a function of cn; Dotted

line - the limit of π̂DOS
1 from Theorem 1. . . . . . . . . . . . . . . . . . 114

3.9 The dependence of the proportion estimator on cn shown for varying

µ, π1 and n = 1000. Solid line - Average estimated proportion over

N = 10000 repetitions, shown as a function of cn; Dashed lines - average

proportion ± average standard deviation as a function of cn; Dotted

line - the limit of π̂DOS
1 from Theorem 1. . . . . . . . . . . . . . . . . . 115



List of figures 17

3.10 The dependence of the proportion estimator on cn shown for varying

µ, π1 and n = 100. Solid line - Average estimated proportion over

N = 10000 repetitions, shown as a function of cn; Dashed lines - average

proportion ± average standard deviation as a function of cn; Dotted

line - the limit of π̂DOS
1 from Theorem 1. . . . . . . . . . . . . . . . . . 116

3.11 Boxplots of the false null proportion estimates for the general α-DOS and

the aggregated α-DOS procedure, for different powers α ∈ {1/2, 3/4, 1}.

The model is Gaussian mixture with π1 = 0.1 and µ = 2. FIX corre-

sponds to Storey’s estimator with λ = p(n/2).The number or repetitions

is N = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.12 Boxplots of the false null proportion estimates for the general α-DOS and

the aggregated α-DOS procedure, for different powers α ∈ {1/2, 3/4, 1}.

The model is Gaussian mixture with π1 = 0.1 and µ = 3. FIX corre-

sponds to Storey’s estimator with λ = p(n/2). The number or repetitions

is N = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.1 The sample of 200 1-sided p-values, 20 of them non-null, from the

Gaussian model with nonzero mean µ = 3. Left: the sequence of

spacings of the p-values and the piece-wise constant approximation. The

change-point location is the location of the maximum of the CUSUM

sequence. Right: The corresponding CUSUM sequence. . . . . . . . . . 126

4.2 The sample of 200 1-sided p-values, 20 of them non-null, from the

Gaussian model with nonzero mean µ = 3. Left: the sequence of sorted

p-values and the piece-wise linear approximation. The location of the

change in slope is the location of the maximum of the HC sequence.

Right: The HC sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . 127



18 List of figures

4.3 The Pontogram for a realisation of a Poisson process with doubled

intensity in the first tenth portion of the time-span. . . . . . . . . . . . 130

4.4 Left: the sequence of p-values spacings from the uniform mixture model

(4.14) with π1 = 0.2, b = 0.2 and n = 1000, and the approximate change-

point location at n(π1 + b(1 − π1)). Right: the sequence of p-values

spacings from the model in (4.17) with π1 = 0.2 and µ = 2. . . . . . . . 134

4.5 Transformed spacings from the Gaussian model with π1 = 0.05 and

µ = 3, n = 1000. Left: log-transformed spacings − log(si). Right:

power-transformed spacings s1/4
i . . . . . . . . . . . . . . . . . . . . . . 137

4.6 Transformed spacings from the Gaussian model with π1 = 0.2 and

µ = 2, n = 1000. Left: log-transformed spacings − log(si). Right:

power-transformed spacings s1/4
i . . . . . . . . . . . . . . . . . . . . . . 138

4.7 The IDetect with Berk-Jones statistic for p-values from the Gaussian

model. Left: The sequence s
1/4
i , and the fitted piecewise constant

function where the model parameters are µ = 3, π1 = 0.2 and the sample

size is n = 1000. Right: The sequence s1/4
i , and the fitted piecewise

constant function where µ = 2, π1 = 0.1. . . . . . . . . . . . . . . . . . 142

4.8 The Unbalanced Haar-Fisz procedure applied on the sequence of scaled

spacings si, of p-values from the Gaussian model. Left: The sequence s1/4
i ,

and the fitted piecewise constant function where the model parameters

are µ = 3, π1 = 0.2. Right: The sequence s1/4
i , and the fitted piecewise

constant function where µ = 2, π1 = 0.1. . . . . . . . . . . . . . . . . . 145



List of figures 19

4.9 The NOT procedure for the piecewise constant mean and variance applied

on the sequence of power transformed spacings s1/4
i of p-values from

the Gaussian model. Left: The sequence s1/4
i , and the fitted piecewise

constant function where the model parameters are µ = 3, π1 = 0.2.

Right: The sequence s1/4
i , and the fitted piecewise constant function

where µ = 2, π1 = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.10 Black piecewise constant function: The estimator of the local FDR

using ‘fdrtool’ package. Black curve: The true local FDR function.

Red piecewise constant function: The local FDR estimate using the

change-point locations obtained by the ID procedure with Berk-Jones

statistic. p-values come from the Gaussian model (4.17), where π1 = 0.3

and µ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.11 Black piecewise constant function: The estimator of the local FDR

using ‘fdrtool’ package. Black curve: The true local FDR function.

Red piecewise constant function: The local FDR estimate using the

change-point locations obtained by the ID procedure with Berk-Jones

statistic. p-values come from the Gaussian model (4.17), where π1 = 0.1

and µ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.1 The illustration of the TSS method, for the sample of size n = 1000

from model (2.20) where σ2 = 1, µi = 2, i = 1, . . . , n and |S| = 600.

Left: Y(i) sequence, black bars correspond to the zero mean, red bars to

the nonzero mean terms. Right: The TSS sequence Ti and the sequence

of thresholds λi. Vertical blue line is at i = 373, which is the estimated

number of signals. Horizontal and vertical blue line on the left plot mark

the threshold value of the method. . . . . . . . . . . . . . . . . . . . . 154



20 List of figures

5.2 The illustration of the regular and the oracle Tail-summed scores method,

for different values of µ and k. Dash-dotted line is the sequence of

thresholds λHi
i with Hi = 2. Black line - the regular TSS sequence. Red

dashed line - the oracle TSS sequence. The values of the parameters and

the estimated number of signal values by the TSS and by the oracle TSS

are given as follows. Top left: k = 100, µ = 2, TSS: 39, OTSS: 45, Top

right k = 200, µ = 2, TSS: 80, OTSS: 83, Bottom left: k = 200, µ = 3,

TSS: 143, OTSS: 156, Bottom right: k = 300, µ = 2 TSS: 158, OTSS: 173163

5.3 Scaled difference of the oracle and the regular TSS procedure stopping

times (k̂O− k̂)/n are given for different values of µ and π1 (the exact pro-

portion of the signal values), and sample sizes n ∈ {102, 103, 104, 105, 106}

on the x-axis. The thresholds used are the asymptotic thresholds λHi
i

with Hi = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 For different values of µ and π1 (the exact proportion of the signal

values), the average (over N = 100 repetitions) scaled position j/k of

the first non-signal variable in the decreasingly sorted sample is shown

for different values of the sample size n. . . . . . . . . . . . . . . . . . 173

5.5 Boxplots of the FDR values for the TSS method for different values of

µ and k, where Hi = 2, for all i, based on the sample of size n = 1000

and N = 1000 repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.6 Boxplots of the FDR values for the TSS method for different values of

µ and k, where Hi = 2, for all i, based on the sample of size n = 1000

and N = 1000 repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.7 Boxplots of the lfdr values for the TSS method for different values of µ

and k, where Hi = 2, for all i, based on the sample of size n = 1000 and

N = 1000 repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



List of figures 21

5.8 Boxplots of the lfdr values for the TSS method for different values of µ

and k, where Hi = 2, for all i, based on the sample of size n = 1000 and

N = 1000 repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176





List of tables

2.1 Random variables denoted in the cells of the table are obtained by

summing the indicators of each of the four possible outcomes over Hi. . 30

3.1 Bias, standard deviation and the MSE of the estimators, given the

number of false null hypotheses n1 and the non-zero mean µ, for a

sample of size n = 1000, based on 1000 repetitions. Bold and underlined

values correspond to the smallest values in each row. . . . . . . . . . . 106

3.2 Bias, standard deviation and the MSE of the estimators, given the total

number of hypotheses n, the number of false null hypotheses n1 and

the non-zero mean µ, based on 1000 repetitions. Bold and underlined

values correspond to the smallest values in each row. The DOS method

consistently achieves the smallest MSE. . . . . . . . . . . . . . . . . . . 117

3.3 Comparing the performance of α-DOS methods for different values of α,

and the model parameters. FIX corresponds to Storey’s estimator as

in (2.12) with λ = p(n/2). Bold and underlined values correspond to the

smallest values in each row. . . . . . . . . . . . . . . . . . . . . . . . . 118



24 List of tables

5.1 The estimated l2 risk of different thresholding estimators based on

N = 1000 repetitions for the sample of size n = 1000 from the Gaussian

sequence model, with varying number of signals and for signal strength

µ = 2 and µ = 3. The bold and underlined values correspond to the two

smallest values in each column. . . . . . . . . . . . . . . . . . . . . . . 178

5.2 The estimated risk (divided by 103) of different thresholding signal

estimation procedures for estimating ∥µ∥2 for given values of ∥µ∥2 and

k, where the sample size is n = 1000. The estimator in the last row is

the minimax estimator of ∥µ∥2, studied in Collier et al. (2017). . . . . 179

5.3 The average number of coordinates in the estimated signal set, an the

false discovery rate (in parentheses), of the TSS and the double CUSUM

(DC) procedure based on N = 200 repetitions. The parameter values

are: n = p = 500, τ = 200, and varying values of k - the number of true

signals, and ∥µ∥2 - the l2 norm of the mean vector. . . . . . . . . . . . 183



Chapter 1

Introduction

Multiple testing is the problem of testing many hypotheses simultaneously, and it is

a part of both classical and modern statistical literature. In applications, multiple

testing adjustments are critical in order to guard against drawing false conclusions,

the probability of which increases as the number of tests increases. In this thesis we

approach the problem of multiple testing from a change-point perspective, we propose

new methods that use ideas from the change-point literature and we note some existing

connections between the two topics. Through thresholding estimators, multiple testing

methods are related to the problem of signal estimation in the Gaussian sequence

model. We also propose a new thresholding method for inference in the Gaussian

sequence model.

In Chapter 2 we provide a literature review on the topics of multiple testing and

signal estimation. An overview of the multiple testing problem and the current state

of the literature are given in Section 2.1, and this section is relevant to Chapters 3, 4

and 5. Section 2.2, on estimating the proportion of false null hypotheses, is relevant to

Chapter 3, and Section 2.3 on the Gaussian sequence model to Chapter 5.

In Chapter 3, we propose the Difference of Slopes (DOS) method, a new method

for estimating the proportion of false null hypotheses in multiple testing problem.
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This two step procedure first fits a piecewise linear function with two segments to

the sorted sequence of p-values by estimating the “change-point” in slope using the

proposed DOS statistic. It is interpreted as a threshold separating small, mostly

false-null p-values from larger, mostly true null p-values. In the second step, this

threshold is used in combination with Storey’s estimator (Storey, 2002) to get the

estimate of the proportion. The theoretical results show that the proposed estimator is

asymptotically conservative estimator of the false null proportion, and characterise the

limiting behaviour of the estimated change-point location and the false null proportion.

Simulations show that our approach works particularly well in sparse settings, when

the proportion of false null hypotheses is small, and yields estimates with small mean

squared error.

In Chapter 4, building on the change-point interpretation suggested in Chapter 3,

we explore some lesser known connections between the problems of multiple testing and

change-point detection. The bridge between the two topics is the problem of testing

for a change in the rate function of a Poisson process. Furthermore, we investigate

possible applications of multiple change-point methods in analysing the sequence of

p-values. We propose to segment p-values into groups based on their significance using

some suitably modified existing multiple change-point algorithms. The results of such

analysis are illustrated and possible usefulness of this approach in the applied literature

is discussed. Statistical methods for grouping p-values based on their significance have

not been considered in the literature, and usually some fixed thresholds are used for

this purpose, which makes our proposal new. We comment on the possible applications

of this approach to solving different multiple testing problems, such as estimating the

local false discovery rate and the false null proportion.

In Chapter 5, we propose the Tail-Summed Scores (TSS) method for inference

on the signal in the Gaussian sequence model. Starting from the full set of values,
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the pseudo-sequential TSS procedure excludes the largest absolute values one by one,

which are then declared as signal, until the remaining set of values begins to resemble

noise as a group. This is achieved by comparing the norm of the remaining signal with

a certain threshold at each step, and stopping the procedure when this norm drops

below the threshold. The idea is to consider values in groups in order to detect as

many as possible signal components when the signal is weak. The conservativeness

of the procedure can be adjusted by choosing different sequences of thresholds. As

this is a thresholding procedure, we analyse it from both the signal estimation and the

multiple testing perspective. We discuss its applications to the problem of estimating

the proportion of coordinates with change in the panel data change-point model, and

its potential to improve the accuracy of a change-point estimation method.

Finally, Chapter 6 gives a brief summary of the contributions of this thesis and

proposes possible directions for the future research.





Chapter 2

Literature review

2.1 Multiple testing problem

In this section we introduce the topic of multiple testing which is relevant to all of the

remaining chapters. We introduce some elementary concepts of multiple testing with

basic approaches in Sections 2.1.1 and 2.1.2. State of the art multiple testing methods

are described in Section 2.1.3 and applications in Section 2.1.4.

Multiple testing problem arises when many statistical hypotheses are tested simul-

taneously. Let H1
0 , . . . , H

n
0 be the sequence of null hypotheses, T1, . . . , Tn the sequence

of test statistics, and p1, . . . , pn the corresponding sequence of p-values. If the null

hypothesis H i
0 does not hold, we refer to the corresponding p-value pi as false null

p-value. Otherwise, as true null p-value. Of interest are the problems of global testing,

that is of testing whether all null hypotheses are true, and of simultaneous inference,

deciding which null hypotheses should be rejected. Global testing problem is also called

multiple testing of a single hypothesis. It comes down to a single hypothesis testing

problem, where not rejecting the global null hypothesis means not rejecting any of the

null hypotheses H i
0, but by rejecting the global null we do not make decisions for the

individual tests. In simultaneous inference we make a decision for each hypothesis,
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and for each we have the unknown ground truth (true H i
0 or false H i

0) and the decision

made by the test (to not reject H i
0 or to reject H i

0). Therefore, testing can result in

two types of errors: type I error, that we make when the null hypothesis holds but

we reject it, or type II error, when the null hypothesis is false but we do not reject

it. Commonly, when testing a single hypothesis, tests are evaluated based on their

ability to not reject H0 when H0 holds, keeping the probability of type I error below

the predetermined significance level α:

PH0(rejected) ≤ α.

When testing multiple hypotheses, each test can result in type I error, type II error or

the correct decisions of rejecting the false null, or not-rejecting the true null hypothesis.

Let I be the indicator function, such that I(H i
0 is rejected) = 1 if H i

0 is rejected and 0

otherwise. We define the random variables V and R as

V =
∑

Hi=0
I(H i

0 is rejected),

R =
n∑

i=1
I(H i

0 is rejected). (2.1)

R is the total number of rejected hypotheses, while V is the number of falsely rejected

null hypotheses. Table 2.1 below, shows the common notation for the number of errors

and right decisions made when simultaneously testing n hypotheses. The random

variables U, T and S are defined analogously to V and R in (2.1).

non-rejected rejected total
true H0 U V n0
false H0 T S n− n0
total n−R R n

Table 2.1 Random variables denoted in the cells of the table are obtained by summing
the indicators of each of the four possible outcomes over Hi.



2.1 Multiple testing problem 31

Most of the methods discussed here are based on p-values derived from continuous

and known distributions of test statistics Ti under the null. Given a sample X =

(X1, . . . , Xm), p-value is defined as a statistic for which it holds that 0 < p(X) < 1

and that for any 0 ≤ α ≤ 1,

PH0(p(X) ≤ α) ≤ α.

A p-value can be constructed that has a uniform distribution on an interval [0, 1].

To illustrate this, let H0 be a simple hypothesis, containing only one probability

distribution for the sample, and let T be the test statistic with a continuous cumulative

distribution function FT , such that large values of T are critical and in favour of

rejecting H0. For p = 1− FT (T ) it holds that

PH0(p < x) = P (1− FT (T ) < x)

= P (FT (T ) > 1− x)

= P (T > F−1
T (1− x))

= 1− FT (F−1
T (1− x))

= x,

which proves that under H0, p ∼ U [0, 1].

2.1.1 Global testing

Global testing is the problem of testing whether all null hypotheses are true. This is

called the intersection, or the global null hypothesis, and it can be seen as a conjunction

of the individual hypotheses:

H0 :
n∧

i=1
H i

0,
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although ∩n
i=1H

i
0 is a more common notation. Consider the global null test where we

reject the global null hypothesis if there is at least one p-value smaller than α. This

test has the probability of type I error going to 1, that we now explain. Let H1, ..., Hn

be the sequence of numbers corresponding to the sequence of hypotheses, where Hi = 1

if H i
0 is true, otherwise Hi = 0. The rejection is made if V > 0, where V can be written

as

V =
∑

Hi=0
I(pi ≤ α)

= I{min
i
pi ≤ α}.

Using the fact that the true null p-values are independent and have U [0, 1] distribution

under the global null, the probability of making a type I error is

PH0(V > 0) = 1− (1− α)n.

This means that using a constant significance level leads to falsely rejecting the global

null hypothesis with probability going to 1 as the number of hypotheses increases.

To control the type I error we need a threshold for p-values that goes to zero as n

increases.

We introduce some of the most common global testing methods below. The

Bonferroni test rejects the global null hypothesis if and only if

min
i=1,...,n

pi ≤ α/n.
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This test controls the probability of type I error at level α, without any assumptions

on the dependence structure of the p-values:

PH0(min
i
pi ≤ α/n) ≤

n∑
i=1

PH0 (pi ≤ α/n)

≤ nα/n = α.

The name originates from the use of the union bound, which belongs to the group of

Bonferroni inequalities, in the proof of the type I error control. Let p(1), . . . , p(n) be an

increasingly sorted sequence of p-values. Graphically, if points (i/n, p(i)) are plotted on

a coordinate plane, the Bonferroni method rejects H0 if all p-values fall below the line

y = α/n.

The Simes test (Simes, 1986) rejects H0 if and only if there exists i ∈ {1, . . . , n}

such that

p(i) ≤ αi/n.

Graphically, this means that H0 is rejected if any of the sorted p-values (i/n, p(i)) fall

below the line with slope α/n. The smallest p-value is compared to the same threshold

as with the Bonferroni, but larger p-values are compared to larger thresholds. It follows

that:

{min
i
pi ≤ α/n} =

n⋂
i=1
{p(i) ≤ α/n}

⊆
n⋂

i=1
{p(i) ≤ αi/n},

showing that the rejection set for the Bonferroni is smaller than for the Simes procedure.

Hence, the Simes procedure is less conservative than the Bonferroni.

For the Fisher’s combined probability test (Fisher, 1946) the distribution of the

p-values is assumed to be U [0, 1] under the null and they are assumed to be independent.
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From the probability transformation it follows that the distribution of − log(pi) is

standard exponential Exp(1). Combining p-values we get a test statistic for the global

null test,

−
n∑

i=1
2 log(pi),

which has χ2
2n distribution under the null. As implied by the Fisher’s combined test, if

the correct distribution of the test statistics under the null is known, then testing the

global null hypothesis can be seen as a goodness-of-fit test for the uniform distribution.

This means that the statistics such as the Kolmogorov-Smirnov (Kolmogorov, 1933),

Cramér-von Mises (Cramér, 1928) or Anderson-Darling (Anderson and Darling, 1952)

can be used to this end. However, as the false null p-values tend to take smaller values,

we are only interested in testing one-sided hypothesis and with a focus on the left tail

of the p-value distribution, which should be taken into account.

Recently, global tests for some specific models were proposed that are not necessarily

based on a given sequence of p-values. In Sur et al. (2017) and Ma et al. (2021), global

testing methods for the parameters of the high-dimensional logistic regression model are

proposed and their asymptotic distribution under the null derived. Detection boundary

for the problem of detecting sparse regression models is studied in Ingster et al. (2010)

and Arias-Castro et al. (2011). Global test for the equality of the coefficients of

two high-dimensional multivariate regression models is proposed in Xia et al. (2018).

Detection boundary for sparse binary regression models was studied in Mukherjee and

Johnstone (2015). Global testing of covariance structure of a multivariate sample is

considered in Cai (2017). Global testing against sparse alternatives under Ising models

is considered in Mukherjee et al. (2018).
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2.1.2 Simultaneous inference

In this section we introduce some basic approaches to the problem of simultaneous

inference in multiple testing, when a decision is to be made for each individual hypothesis

H i
0. If all hypotheses are independent and true null, and each hypothesis is tested at a

constant level α, the number of type I errors made will be nα on average, which follows

from the uniform distribution of the p-values under the null. For large n, this number

can be unacceptably large, and therefore multiple testing procedures are defined to

control it or other related quantities (error rates). We introduce some of these error

rates and methods that control them in the sections below. Which error rate to use

depends on the research objective, and how harmful false rejections are considered to

be. The familywise error rate (FWER) is defined as

FWER = P (V > 0),

where V is defined in Table 2.1. Although this looks similar to the probability of type

I error in global null testing, for a multiple testing procedure it is of interest to control

this probability under any configuration of true and false null hypotheses, not simply

under the global null. If a multiple testing procedure controls the FWER under the

global null, then we say that it control the FWER weakly. If it controls the FWER

under any configuration of true and false null hypotheses, then we say that it controls

the FWER strongly.

The closure principle provides a way to adapt any global testing procedure to a

multiple testing procedure that controls the FWER in a strong sense. First, a collection

containing all possible intersection hypotheses is defined as

C = {HI : I ⊆ {1, . . . , n}} , (2.2)
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where HI = ∧
j∈I Hj. Given a global testing procedure, the corresponding closure

procedure rejects Hi if all intersection hypotheses HI are rejected at level α, for any

I ⊆ {1, . . . , n} such that i ∈ I. This implies a top-down order of testing of hypotheses

on a tree. The global null hypothesis is the root node and the children are obtained by

excluding the individual hypotheses from the intersection. For a node HI , for some

I ⊆ {1, . . . , n}, its children are {HJ : J = I \ {i}, i ∈ I}, so the tree is of depth n,

with individual hypotheses as leaves. If HI is not rejected, then we do not proceed

to test the children hypotheses, and the individual hypotheses Hi, for i ∈ I, are not

rejected. The resulting procedure controls the FWER in a strong sense at level α. Let

H0 = {i : H0
i holds}. To make a false rejection it is necessary to reject HH0 = ∧

i∈H0 H
0
i .

It follows that

P (V > 0) ≤ P (HH0 is rejected) ≤ α. (2.3)

A disadvantage of using the closure principle is the large number of tests that needs

to be performed, which can make the resulting procedure complicated and slow to

compute. However, for some global testing methods, the closure procedure is simple.

The multiple testing procedure obtained from the closure principle and the Bonferroni

procedure is the Holm procedure (Holm, 1979). Closure principle with the Simes

procedure leads to the Hommel procedure (Hommel, 1988).

The FWER may be seen as too restrictive a criterion. When testing a large number

of hypotheses, it can happen that some true null p-values take very small values, so the

false rejections happen early on. FWER controlling procedures would therefore restrict

the number of true rejections. Furthermore, falsely rejecting some smaller proportion

of the true null hypotheses may not be harmful if the goal is to identify interesting

hypotheses for further analysis. In the seminal paper by Benjamini and Hochberg

(1995) a new multiple testing error rate, called false discovery rate, is proposed together

with a method for controlling it. To define it, let V and R be defined as in Table 2.1.
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The false discovery proportion (FDP) is defined as

FDP =


V/R, R > 0

0, R = 0.

The false discovery rate (FDR) is defined as the expected value of the FDP:

FDR = E(FDP).

Let q ∈ (0, 1). The Benjamini-Hochberg (BH) FDR-controlling procedure rejects

p(1), ..., p(k̂BH), where

k̂BH = max
{
i : p(i) ≤

qk

n

}
. (2.4)

We can see this method as thresholding at level tBH = p(k̂BH). In Benjamini and

Hochberg (1995) it is proven that, if all true null p-values are independent, level-q BH

procedure controls the FDR conservatively at level q, under any configuration of true

and false null hypotheses. More precisely, for the BH procedure it holds that

E(FDP|p1 = p1, . . . , pn = pn) ≤ n0

n
q, (2.5)

where n0 is the number of true null hypotheses. Hence, the BH procedure controls the

FDR at level q, for any configuration of the true and the false null p-values, conditional

on their values. Using the property of the conditional expectation, it holds that

FDR ≤ n0

n
q. (2.6)

In Finner and Roters (2001) and Genovese and Wasserman (2002) it is proven that

equality holds in (2.6). In Section 2.2 we explain how the estimator of the false
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null (equivalently true null) proportion can be used to increase the power of the BH

procedure. The relationship between the FWER and the FDR is:

FDR = E(FDP) ≤ E(I{V > 0}) = P (V > 0) = FWER,

so any procedure controlling the FWER also controls the FDR.

In Storey (2002), the following mixture distribution model for the p-values was first

considered:

p ∼ π1F1 + π0U [0, 1],

where π0 = 1− π1, the distribution under the null is U [0, 1] and under the alternative

F1. This facilitated further development of the theory for the FDR. In Genovese

and Wasserman (2004), the FDR is considered as a function of a given threshold for

rejecting p-values. They defined the stochastic process FDP(t) and its expectation

FDR(t):

FDP(t) =
∑

Hi=0 I(pi < t)∑n
i=1 I(pi < t) ,

FDR(t) = E(FDP(t)).

As E(FDP(t)) involves the mean of the ratio of random variables, a more convenient

quantity is considered

Q(t) := π0t

π1F1(t) + π0t
. (2.7)

Q(t) is proved to be an asymptotic mean of the FDP(t) process when n → ∞,

assuming the mixture distribution above, in the sense that E(FDP(t)) = Q(t) + o(1).

This approach allowed them to develop the theory of the FDR control of the BH

method, including the consistent estimation of FDR(t) and the asymptotic validity of
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the proposed plug-in method for the FDR control under the mixture model assumption

for the p-values.

While the FDR is the most frequently used multiple testing error rate, we mention

a few others defined in the literature. In Genovese and Wasserman (2002), the false

non-discovery rate (FNR) is defined as

FNR =


E (T/A) , A > 0

0, A = 0,

where A = n−R is the total number of non-rejected hypotheses, and T is the number

of falsely non-rejected hypotheses defined in Table 2.1. The authors consider the risk

function that includes both the FDR and the FNR, and describe a procedure that can

be used to minimise this risk function.

The positive FDR (pFDR), and a method that controls it are proposed in Storey

(2003), where the pFDR is defined as

pFDR = E
(
V

R

∣∣∣∣R > 0
)
.

pFDR has a Bayesian interpretation, as the probability of falsely rejecting the null hy-

pothesis given the rejection region. In Efron (2007), assuming the mixture distribution

model for the test statistics (or p-values), the local FDR is defined for each observation

as the posterior probability of it being from the null distribution:

lfdr(t) = π0f0(t)
π0f0(t) + π1f1(t)

,

where f0 is the density under the null and f1 under the alternative. To highlight the

fact that the local FDR is a density based quantity, as opposed to the tail-area based
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FDR, lowercase letters are used for the notation. Efron (2007) proposes a method

for estimating the parameters of the mixture distribution, thus estimating the lfdr

function. The significance of each hypothesis is then measured with the lfdr value,

and thresholding the lfdr values defines a multiple testing procedure. If the density of

the false null p-values is decreasing, then FDR(t) is smaller than lfdr(t). The cutoff

threshold used for FDR is usually 0.05 or 0.1, while for lfdr a larger threshold is used,

for example 0.2 in Efron (2007). Another related quantity is the marginal FDR (mFDR)

defined as

mFDR = E(V )
E(R) ,

and related to Q(t) defined in (2.7). The relationships between the FDR, pFDR and

mFDR are as follows. The mFDR and the pFDR are equal if the hypotheses come

from a two component mixture distribution (see Corollary 1 in Storey (2003)). For the

FDR and the mFDR, Genovese and Wasserman (2002) proved that

mFDR = FDR +O(n−1/2).

Among the mentioned error rates, the most widely used are the FDR and the local FDR.

The Benjamini-Hochberg method is used for its simplicity and theoretical guarantees,

while the local FDR is used for its convenient Bayesian probability interpretation.

2.1.3 Modern multiple testing literature

Since the early days of multiple testing research, state of the art data sets arising from

applications motivated the development of multiple testing procedures for increasingly

complex models. Below we describe such settings in more detail, and review the relevant

literature. Some of these settings include assumptions on the structure of p-values,

group or hierarchical, or additional data such as weights or covariates containing
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information on how likely a test is to be a true null, or how “important” it is, in the

sense of the loss incurred by making a wrong decision.

If p-values are initially divided into groups, then the goal can be to control the group

FDR, within-group FDR or overall FDR. Grouped p-values were considered in Cai and

Sun (2009), Hu et al. (2010) and Liu et al. (2016b). Hierarchical structure of the groups

of p-values is considered in Yekutieli (2008), Benjamini and Bogomolov (2014), Barber

and Ramdas (2017), Ramdas et al. (2019) and Katsevich et al. (2021). In Bogomolov

et al. (2021) a hierarchical structure for the p-values is considered, where an error rate

is defined at each level of the hierarchical structure and in a bottom-up way, from

children to parent. The proposed procedure is shown to control this error under certain

dependency assumptions on the tree structure of p-values. In Basu et al. (2018), a

weighted FDR-controlling procedure is proposed, where weights describe the severity

of a false positive decision and the power gain of a true positive decision. Multiple

testing procedure where prior information is given as p-value weights is first considered

in Genovese et al. (2006) and Roquain and Van de Wiel (2009). In Ignatiadis et al.

(2016) and Ignatiadis and Huber (2021), an FDR-controlling procedure is proposed

where weights are calculated from the additional covariate containing information on

the power of each test and the probability of it being true null. The covariate given for

each p-value is independent of it if the hypothesis is true null. This setting was also

considered in Zhang et al. (2019), where multidimensional covariates are allowed. In

Lei and Fithian (2018), an iterative procedure for multiple testing with side information

is proposed that controls the FDR in finite samples. In Lei et al. (2021) a multiple

testing procedure is proposed with the possibility of generic structural constraint on

the rejected set of hypotheses. Multiple testing for spatial data is considered in Cai

et al. (2022). In Cao et al. (2022), an FDR controlling multiple testing procedure was

proposed where auxiliary information given for each test induces an ordered sequence
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of hypotheses. This order is not strictly followed, as the procedure does not necessarily

reject the initial block of p-values. This flexibility can be useful when the auxiliary

information is not very strong. p-values with heterogeneous distributions are considered

in Habiger et al. (2017) and Chen et al. (2020).

Multiple testing concepts are also used for solving the problem of variable selection

in linear models, where the FDR control is also of interest. Computing p-values for

the coefficients of a linear model is not always possible and even if it is, the conditions

on their distribution and the dependence structure needed for many multiple testing

procedures are not met. The concept of knockoffs was introduced in Barber and Candés

(2015) for variable selection in linear regression models, and a procedure that controls

the FDR of the selected variables is proposed, that does not rely on computing the

p-values.

A possible application of the method proposed in Chapter 3 to some of these modern

settings is discussed in Section 3.6. A possible application of the method proposed in

Chapter 4 for choosing the weights in Basu et al. (2018) is discussed in Section 4.3.

2.1.4 Applications

Multiple testing problem is popularised as it appears in many applications, such as

medical research, genomics, social sciences and so forth. It is necessary to be addressed

in order to adequately interpret results. Below we review some of the datasets used in

applications of the modern multiple testing algorithms. The most common application

of the large scale multiple testing methods is in DNA microarray experiments, and

most often for the purpose of analysing gene expression data. First we introduce some

terms from genetics that will be used to describe the datasets.

Gene expression is a process where the information from the genes is used in a

synthesis of a final gene product, which for protein-coding genes is a protein. The
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process is divided into two stages: transcription and translation. For protein-coding

genes, in the transcription stage, mRNA is produced, while in the translation stage

the information from the mRNA is decoded and protein molecules are synthesised.

Proteins play an important role in a cell, as they are involved in most of the cell

functions. Thus, alterations at the transcriptional level can lead to abnormal functions

of proteins, causing the development of cancer. DNA microarray (chip) is a technology

that can be used, among other things, to get the quantitative measurements for the

expression of genes by measuring the amount of mRNA in a cell. To explore the genetic

component of a disease, the gene expression levels between healthy tissues or cell lines

and those of patients affected by a disease are compared. Identifying differentially

expressed genes is of interest because they are related to the disease. Studying them is

useful for understanding the pathological process, and for development of personalised

treatments. There are usually thousands of genes, and for each a measure of difference

in expressions is given, which might be significant or not. This forms a sequence of

hypotheses tests and test statistics. For gene i H i
0 is the null hypothesis that gene i

is not differentially expressed. Analysing gene expression data can then help in early

diagnosis, or it can be used for individualised treatment of the disease.

Single-nucleotide polymorphism (SNP) is a variation at a single position in a DNA

sequence among individuals. DNA is a polymer, made up of long chains of nucleotides,

and a nucleotide contains a nucleobase. In the DNA there are four nucleobases: guanine

(G), adenine (A), cytosine (C) and thymine (T). SNPs occur when at a specific base

position in the genome there is a variation, for example, such that most people have

G-nucleotide, while some minority has an A-nucleotide at that position. Often, for

such a variation to be considered an SNP, it should be present in at least one percent of

the population. A more general term is single-nucleotide variants SNVs that includes

SNPs and also rare mutations (present in less than 1% of the population), however
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this distinction is sometimes disregarded and any variation is considered an SNP. The

process of determining the DNA sequence, that is the order of nucleotides in DNA is

called DNA sequencing, and SNPs can be detected through this analysis. SNP array, a

type of a DNA microarray, is another tool that can be used to detect SNPs within a

population. An important use of SNPs is in genome-wide association studies (GWASs).

GWASs aim to discover SNPs that are associated with a phenotype (an observable

characteristic) or with a disease, such as heart disease, diabetes and cancer. Large-scale

multiple testing problems arise naturally in GWASs. For example, all human beings

have 99.9% identical DNA, so the frequency of nucleotide variations is once in every

1000 nucleotides. Considering different populations (geographical or ethnic groups)

more than 600 million SNVs in total have been identified. In GWASs this large number

of SNPs is tested for association with a disease or a phenotype and multiple testing

corrections are necessary to be addressed.

Using the notions of SNPs and gene expression introduced above, we describe the

datasets used in some of the papers described in Section 2.1.3.

In Basu et al. (2018) a weighted multiple testing procedure was applied to a data

set from the Framingham Heart Study. This long-term cohort study started observing

healthy individuals from the town of Framingham, Massachusetts with no symptoms

of cardiovascular diseases (CVD). The primary goal of the study was to identify the

risk factors for the CVD by monitoring the participants over the years. The study

began in 1948 and is still ongoing, now studying third generation offsprings of the

original cohort, and including additional cohorts reflecting the more diverse population.

The study also expanded the research questions and the type of data collected. This

includes a GWAS of two generations, with the aim to study how genetic variants

contribute to phenotypes that are risk factors for the CVD (Cupples et al., 2007). In

Basu et al. (2018) the data from the older generation was used to define weights to
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be used for the multiple testing procedure on the younger generation, with the aim

of identifying SNPs with significant association to BMI. The p-values of SNPs from

the older generation data, measuring the significance of the relationship to BMI, are

divided into three groups, describing the strength of the relationship. These groups

are: G1 - less than 0.001, G2 - between 0.001 and 0.01, and G3 - greater than 0.01. The

weights given to the younger generation participants are based on the group which the

parent belongs to. The values associated to the three groups are arbitrary, but should

be decreasing respectively, for example (4, 2, 1) and (5, 2, 1) were used in the paper.

Larger values correspond to the gain when a hypothesis is rejected correctly.

In Cao et al. (2022), data from two GWASs on coronary artery disease (CAD)

was used for the illustration of their proposed multiple testing method with auxiliary

data. Each data set contains p-values for over 500000 common SNPs, measuring their

association with CAD. The proposed procedure uses p-values from one study as an

auxiliary information that induces ordering of the p-values from the other study, which

is necessary for the method.

In Ignatiadis et al. (2016) and Ignatiadis and Huber (2021) the proposed hypoth-

esis weighting methods are applied to the study from Grubert et al. (2015) where

the associations between SNPs and chromatin activity is studied. In particular the

associations between SNPs and the levels of H3K27ac are of interest. H3K27ac is a

code for a specific modification to the basic proteins histones, around which DNA is

wrapped around. This modification is associated with enhanced transcription of the

genes. Under the null hypothesis, SNP values are independent of the H3K27ac levels

at all locations, while under the alternative the values are associated. The hypotheses

are formed by comparing SNP levels at each genomic location with H3K27ac at each

location. The procedure identifies pairs of SNPs and genomic regions (H3K27ac peaks)

where those are correlated.
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In Lei and Fithian (2018) several real datasets of gene expression levels were used

for illustration of their proposed multiple testing method with side information. The

data is obtained through RNA sequencing (RNA-Seq), which is a sequencing technology

that has some advantages to microarray-based methods, see Kukurba and Montgomery

(2015). RNA-Seq data is used by some of the multiple testing methods with auxiliary

information, since in addition to the gene expression levels (RPKS), the information

about the preciseness of the measurements (raw count data) can be used as a measure

of reliability.

In Liu et al. (2016a), GWAS data on breast cancer with more than 500000 SNPs is

used to identify SNPs associated with breast cancer. As SNPs that are nearby tend to

be highly correlated, methods for dealing with multiple testing under dependence are

proposed. The dependency is modeled by Markov random field, making the proposed

FDR controlling procedure a multiple testing procedure for graphical models.

An example of hierarchical structure of hypotheses can be found in Bogomolov

et al. (2021), where the goal is to identify SNPs that influence the expression of genes

in a multi-tissue analysis. Highest level hypotheses are tissues, as gene expression

levels vary across tissues. In each tissue, hypotheses are tested to find which SNPs

inside the gene affect its expression. The goal is to find shared and tissue specific

SNPs affecting the genes. The proposed procedure controls error rates at multiple

levels of resolution. Another dataset studied in this paper is on the association of gut

microorganisms and colorectal cancer. The hierarchical data structure comes from the

taxonomic classification of these microorganisms.

Gene expression level data from a GWAS on HIV, with the goal to find the genes

that are differentially expressed in HIV positive was considered in Efron (2008) and

Lynch et al. (2017). Data on HIV amino acid sequences comparing the mutation rates

at different locations between the subtypes B and C of the HIV virus is studied in
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order to help develop a vaccine that would be efficient against both subtypes. This

data was used in Chen et al. (2018).

Gene/drug response data is used in Li and Barber (2017) and Li and Barber (2019).

The data given is a gene expression data of the breast cancer cells in response to no

dose, low dose and high dose setting of oestrogen treatment. The aim is to find which

genes are affected by the low dosage, by using the information on the effect of the high

dosage.

In Hu et al. (2010) a method for multiple testing of grouped hypotheses is applied

on a breast cancer microarray gene expression dataset. The grouping of hypotheses is

done according to the Gene Ontology (GO) categories, or using clustering techniques.

In Benjamini and Bogomolov (2014), data from a GWAS on Alzheimer’s disease

is considered to find which SNPs are associated to some regions in the brain given

voxel data of the brain volume in patients with Alzheimer’s disease. Hypotheses are

formed for each voxel and each SNP, and groups (families) are formed by fixing the

SNP in consideration. Their proposed method selects significant groups and tests the

hypotheses within them.

In Ma et al. (2021), the proposed multiple testing method for the parameters in

high-dimensional logistic regressions is used to test the association between different

faecal metabolites and pediatric Crohn’s disease.

Adequate yearly progress (AYP) data of California elementary schools is used for

illustration of group hypothesis testing procedures proposed in Cai and Sun (2009),

Liu et al. (2016b) and Sarkar and Zhao (2017). The data was collected with the aim

to compare the academic performances of socioeconomically advantaged (SEA) to

socioeconomically disadvantaged (SED) students. The hypotheses are initially divided

in three groups, and correspond to small, medium and large schools. Multiple testing
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procedure is applied to identify the schools where the difference in the performance is

unusually large or unusually small.

Multiple testing method for detecting spatial signals in imaging data is proposed

in Zhang et al. (2011). The method is applied to the fMRI dataset obtained in an

emotional control study, where the goal is to detect regions of activation in brain when

subjects are shown series of images. To this end, their proposed method takes into

account both spatial and temporal correlation in the data.

Cai et al. (2022) propose a multiple testing method for hypotheses located on

a lattice with spatial patterns, with applications in the analysis of two- and three-

dimensional images. First, the sparse spatial structure is estimated and this information

is used to construct the weights, inducing the ordering of p-values. The ordered p-

values are then used in a BH-like procedure controlling the FDR asymptotically. For

three-dimensional multiple testing, MRI data was used from the study of attention

deficit hyperactivity disorder (ADHD). Through reduction in the resolution of the MRI

images, the information on brain activity is aggregated and p-values from testing for the

difference in brain activity between subjects with and without ADHD are calculated.

The proposed spatial multiple testing procedure is used to reveal the regions where the

activity is different between the two groups.

In Barber and Ramdas (2017), fMRI data was considered for the problem of multiple

testing of whether the activity in a voxel v in the brain is related to the semantic

features of the text presented to the subjects s seconds earlier. The method proposed

in this paper simultaneously controls the FDR across multiple partitions of p-values.

The p-values are grouped in three ways, fixing the value of s, fixing the value of v, and

considering a groups of voxels belonging to each ROI for all s.
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2.2 Estimating the proportion of false null hypothe-

ses

Estimating the proportion of false null hypotheses can be of interest in its own right,

as an overall measure of the extent of the observed changes. However, more often,

proportion estimators are used in further analysis, to improve on the methods for

identifying the subset of false null hypotheses while controlling a certain multiple

testing error rate. In particular, proportion estimators can be used for improving the

FDR-controlling Benjamini-Hochberg (BH) procedure, introduced in Section 2.1.2 .

The idea of making the BH procedure adapt to the unknown proportion was first

proposed in Benjamini and Hochberg (2000). Let n̂0 be a conservative estimator of n0,

the number of true null hypotheses, such that P (n̂0 ≥ n0) = 1. Note that estimating

the proportion or the number of true or false null hypotheses is considered to be the

same problem. Consider the procedure that thresholds the p-values at tadapt = p(k̂adapt),

where

k̂adapt = max
{
i : p(i) ≤

qk

n̂0

}
. (2.8)

A procedure incorporating a proportion estimator as above is called an adaptive BH

procedure, it controls the FDR at the same level q as the classical BH procedure but

has larger power as the threshold is larger. This follows by replacing q in (2.5) by

q′ = qn/n̂0:

FDR(tadapt) = qn0

n̂0
≤ q a.s..

If n̂0 is only asymptotically conservative, in the sense that

n0

n̂0
→ c, a.s. as n→∞,
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where c ≤ 1, then the adaptive estimator will control the FDR asymptotically. As

the threshold of the adaptive BH procedure is larger than that of the classical BH

procedure, the adaptive BH has an increased power, in the sense that the probability of

true rejections is larger. A comparison of different adaptive FDR-controlling procedures

is investigated in Blanchard and Roquain (2009).

Aside from improving the power of the BH procedure, an interest in studying the

proportion estimators also comes from the connection to the problem of estimation in a

two-component mixture model. In the literature on proportion estimators, p-values are

most often modeled as having a mixture distribution with two components, a uniform

distribution and an unknown false null distribution:

F (t) = π0t+ π1F1(t), t ∈ (0, 1), (2.9)

where π1 = 1− π0. This model is considered in the majority of papers reviewed below

(Cai et al., 2007; Genovese and Wasserman, 2004; Langaas et al., 2005; Meinshausen

and Rice, 2006). Estimating the false null proportion then means estimating the

parameter π1. A mixture model with one known component arises in some applications.

A potential application of a proportion estimator to astronomy data was proposed

in Meinshausen and Rice (2006), for estimating the number of objects in the Kuiper

belt. Swanepoel (1999) considers application in astrophysics, where the proportion

parameter models the strength of the pulsed signal.

We review some of the methods proposed in the literature for estimating the

proportion of the false null hypotheses. We focus on the case of independent p-values.

Estimating the proportion under dependence is less studied in the literature, see for

example Friguet and Causeur (2011), Ostrovnaya and Nicolae (2012) and Neumann

et al. (2021).
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2.2.1 p-value plot and the CDF-based methods

The earliest papers on this topic consider a fixed number of the true null hypotheses

n0 with no assumptions on the distribution of the alternative p-values. The only

assumption is that the true null p-values have U [0, 1] distribution while the false null

p-values tend to be smaller. This model is considered first in Schweder and Spjøtvoll

(1982) and Benjamini and Hochberg (2000). Many of the later papers are based on

their idea of analysing the p-value plot which we introduce now. If there is a fixed

number n0 of true null hypotheses and λ ∈ (0, 1) is large such that there are not many

(or not any) alternative p-values larger than λ, then

E
(

n∑
i=1

I {pi > λ}
)
≈ E

 ∑
i:Hi=0

I{pi > λ}

 ≈ n0(1− λ). (2.10)

Let W (λ) = ∑n
i=1 I{pi > λ}. This means that empirically, we expect

W (λ) ≈ n0(1− λ).

The values of function W (λ) only change at points λ = p(i), so we consider points

(1−p(i),W (p(i))) = (1−p(i), n−i). For large i, these should indicate a line with slope n0

- this is referred to as the p-value plot in Schweder and Spjøtvoll (1982). Alternatively,

the empirical CDF plot or the plot of (i, p(i)) can be used as they contain the same

information, but the former is more convenient in a sense that the slope is “equal” to

what we are trying to estimate, and there is no need for further transformations. An

illustration of the p-value plot and the quantile plot (i, p(i)) is given in Figure 2.1. It

shows that, to estimate the non-null proportion, we should estimate the slope of the

linear part. By decreasing the nonzero mean, the p-value plot approaches the linear

function, and the curvature becomes smaller, while increasing the nonzero mean makes

the line approximately piecewise linear. Similar holds for the quantile plot of p-values.
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(a) Points (1−p(i), n− i) and the line with
slope n0

(b) Points (i, p(i)) and the line with slope
1/n0

Fig. 2.1 p-value plot and the quantile plot for the fixed-proportion model with n =
1000, n1 = 200. 2-sided p-values where the null distribution of the test statistics is
N(0, 1) and the alternative is N(3, 1).

Schweder and Spjøtvoll (1982) propose using the p-value plot just as an “overview

of the situation” when “no quantified estimate of n0 is needed”. They suggest that

the method can be formalized using the least squares estimate of the slope, but that

it would be difficult to assess the properties of the estimator since p-values are not

independent, so they do not proceed in that direction. Instead, a family of plug-in

estimators based on (2.10) is proposed. For λ ∈ (0, 1), the proposed estimator of the

number of true null hypotheses is

n̂0,SS(λ) = W (λ)
1− λ . (2.11)

Now, assume that p-values come from a mixture distribution (2.9). Denote as F̂n the

empirical CDF of p-values. As W (λ) = n(1− F̂n(λ)), this leads to the following family

of plug-in estimators for the true null and the false null proportion:

π̂0(λ) = 1− F̂n(λ)
1− λ ,
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π̂1(λ) = F̂n(λ)− λ
1− λ . (2.12)

Note that π̂0(λ) is the slope of the line connecting two points on the ECDF plot,

(λ, Fn(λ)) and (1, 1), and the reciprocal of the slope connecting the corresponding

points on the quantile plot. The family of estimators (2.12) is usually referred to as

Storey’s estimator in the literature as it was also considered in Storey (2002) for the

purpose of adaptive pFDR control, however the idea first suggested by Schweder and

Spjøtvoll (1982). Schweder and Spjøtvoll (1982) do not propose a method for choosing

λ, but they note that if λ is too small, we will include some false null p-values leading

to a biased estimator underestimating π1. However, if λ is close to 1, the variance of

the estimator will be too large because of the factor (1− λ) in the denominator. This

is clear from the following formulas for bias and variance:

Bias(π̂1(λ)) = −1− F1(λ)
1− λ ,

Var(π̂1(λ)) = π0

n

( 1
1− λ − π0

)
.

Below we describe different approaches proposed in the literature for choosing λ to be

used in (2.12).

We start with Benjamini and Hochberg (2000), where the proportion estimator is

constructed and first used for the purpose of improving the power of the BH procedure.

Taking λ = p(j) for some j in (2.11) we have

n̂0,SS(p(j)) = n− j
1− p(j)

≈
(

1− p(j)

n+ 1− j

)−1

. (2.13)

We would have the equality in (2.13) if we defined W (λ) := ∑n
i=1 I{pi ≥ λ} or if we

had added (n+ 1)th p-value p(n+1) = 1, however the difference is negligible. The value
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for λ proposed by Benjamini and Hochberg (2000) is λ = p(ĵBH) where

ĵBH = min
{
i : 1− p(i)

n+ 1− i >
1− p(i+1)

n+ 1− (i+ 1)

}
,

so according to (2.13) the proposed estimator of the number of the true null hypotheses

is

n̂0,BH = ⌈n̂0,SS(p(ĵBH))⌉.

ĵBH is the first index for which the slopes stop increasing, which is a sign we are

probably past all the smaller alternative p-values. The illustration can be seen in

Figure 2.2. No theoretical guarantees are provided for this estimator, however it is

Fig. 2.2 Benjamini and Hochberg (2000) method illustration: 5 out of 20 p-values are
false null. Slopes of lines connecting smallest p-values with the last one are increasing
at first. The red line is connecting (ĵBH , p(ĵBH)) and (20, p(20)) and the black line that
passes through (ĵBH + 1, p(ĵBH+1)) has a smaller slope. In this example ĵBH = 8 and
the estimated number of false nulls is 5.

strongly negatively biased, and limiting the gain in power of the adapted BH procedure.

For this reason it is usually not used in practice.

In Storey (2002), the problem of estimating the proportion is considered indirectly,

as a means for getting a better estimate of the positive FDR (pFDR). λ is chosen

using bootstrap method with the goal of minimising the MSE of the resulting pFDR
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estimator. In Storey and Tibshirani (2003) a cubic spline is fitted to the function

n̂0,SS(λ) in (2.11) and their proposed estimator for the number of true nulls n̂0,ST is

the value of the fitted spline at λ = 1. In Storey et al. (2004), similarly as in Storey

(2002), the authors choose λ using bootstrap, now with the objective of finding the

value of λ that minimises the MSE of the resulting estimator.

Without any additional assumptions on the distribution of false null hypotheses,

theoretical guarantees of proportion estimators cannot be studied. Let p -values come

from a mixture distribution with CDF as in (2.9). If the density exists it is given by

f(t) = (1− π1) + π1f1(t), t ∈ (0, 1). (2.14)

Under this model, the number of alternative hypotheses is a random variable with

distribution Bin(n, π1) and the goal is to estimate π1 (or π0). The assumptions on the

alternative distribution F1 are usually mild. The purity assumption, introduced in

Genovese and Wasserman (2004) is defined as:

essinf
t

f1(t) = 0.

This holds for example, if f1 drops to zero, such that f1(t) = 0 for t ≥ b where

b < 1. The purity assumption makes the theoretical analysis easier, as it eliminates

the identifiability problem. The identifiability problem arises when the unknown

components (π1, F ) of the mixture model (2.9) are not uniquely identified, such that

for all t,

F (t) = π0t+ π1F1(t)

= π∗
0t+ π∗

1F
∗
1 (t),



56 Literature review

for some π∗
0 ̸= π0 and F ∗

1 ̸= F1. In general, if a model is not identifiable then its

parameters cannot be uniquely estimated. However, under the purity assumption, π1

is uniquely determined as

π1 = 1− essinf
t

f(t),

and

F1(t) = F (t)− π0t

π1
.

Under the purity assumption, the consistency and the asymptotic normality of the

estimators from Storey’s family (2.12) as estimators for F (λ)−λ
1−λ

follows easily (see

Proposition 3.2 in Genovese and Wasserman (2004)). If λ is such that F1(λ) = 1, then

π̂1(λ) is a consistent estimator of the false null proportion π1.

We finish this section by describing the two methods that can be seen as variants

of Storey’s estimator, involving some additional steps and calculations. In Jiang and

Doerge (2008), the authors propose the average estimate approach. The idea is to

improve Storey’s estimator by aggregating information for different values of λ. For

a given B, we define λk = (k − 1)/B, k = 1, . . . , B. To reduce the underestimation

caused by small λ values, few of the smallest λ’s will be taken out of consideration,

so only λi−1, . . . , λB are considered. The choice of i and B is explained below. The

resulting true null proportion estimator is the average of Storey’s estimators:

π̂JD
0 = 1

B − i+ 2

B∑
j=i−1

1− F̂n(λj)
1− λj

, (2.15)

To explain how i is chosen, notice that for small λi, we expect F̂n(λi+1) − F̂n(λi) ≥
1

B−i+1(1 − F̂n(λi)), because of the effect of the false null distribution. Having the

opposite hold is a sign of weakening alternative, thus i is defined as

i = min
{
i : F̂n(λi+1)− F̂n(λi) ≤

1
B − i+ 1(1− F̂n(λi))

}
.
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Regardless, the sum in (2.15) starts from i − 1. The authors explain that λi−1 is

included in order to decrease the variance. B is chosen from set I = {5, 10, 20, 50, 100}

using bootstrap. The optimal B is the one leading to the estimator whose MSE is the

smallest.

In Cheng et al. (2015), a version of Storey’s method based on estimating the tail of

the alternative distribution is proposed. Considering the mixture model (2.9), we have

π0 = F1(x)− F (x)
F1(x)− x , x ∈ [0, 1]

= nF̄ (x)− nF̄1(x)
n(1− x)− nF̄1(x)

,

where F̄ = 1− F and F̄1 = 1− F1. Let Q(x) := F̄1(x) be the tail of the alternative

distribution of p-values and let Q̂(x) be an estimator of Q(x). The proposed family of

estimators is

π̂CGT
0 (λ) = n(1− F̂n(λ))− nQ̂(λ)

n(1− λ)− nQ̂(λ)
.

The final estimator is obtained by averaging

π̂CGT
0 = 1

J

∑
λj∈Λ

min{1,max{0, π̂CGT
0 (λ)}}.

where Λ = {0.20, 0.25, . . . , 0.50} and consequently J = 7. This method is realised only

for Gaussian mean testing. The nonzero means are allowed to be different for each test,

such that the distribution of the test statistics under the ith false null hypothesis is

N(µi, σi). The distribution of the p-values (one or two-sided) under the false null is a

function of the effect size δ = µ/σ. It is assumed that for each test a sample of size m

is available, making the nonzero effect estimation, and thus the tail estimation, more

precise. However, the tail estimator requires an initial estimator of the proportion, in
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order to select the small p-values used to estimate the tail of the alternative. As the

initial estimator they use the one form Storey et al. (2004).

2.2.2 Density based methods

Density mixture model (2.14) with purity assumption is considered in Swanepoel (1999).

Precisely, they assume that there exists θ ∈ (0, 1) such that f1(θ) = 0. Their method

for estimating the proportion is based on estimating the minimum value of the density

denoted as f̂(θ), since it yields a plug-in estimator for the alternative proportion:

π̂S
1 = 1− f̂(θ). (2.16)

f̂(θ) can be estimated using kernel density estimator, but their proposed estimator for

f̂(θ) is based on spacings between p-values. Given the increasingly sorted sample of

random variables p(1), . . . , p(n), spacings are defined as differences p(i+1) − p(i). This

definition can be generalised to k-spacings, defined as p(i+k) − p(i). Their statistic is

based on the maximal 2sn spacing defined as

Mn = max
1≤i≤n

(
p(i+sn) − p(i−sn)

)
,

where sn → ∞ as n → ∞ is a nonrandom sequence of integers. From the earlier

literature on spacings (Barbe, 1992; Deheuvels, 1984), it is known that Mn is related

to the minimum of the density function. Intuitively, maximal spacing is likely to

correspond to the interval where f has dropped to its minimum, such that it is constant

on an interval ( i+sn

n
, i−sn

n
). On this interval, the quantile function is linear with slope

1/f(θ). It holds that

Mn = 2sn/n

f(θ) ,
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which motivates the following estimator:

f̂(θ) = 2sn/n

Mn

.

They prove the consistency and the asymptotic normality of their estimator (2.16) by

proving that those properties hold for f̂(θ) as an estimator of f(θ).

In Langaas et al. (2005) they propose three estimators based on the idea of estimating

the minimum value of the density, similarly as in Swanepoel (1999). However, they

do not give any theoretical results for these estimators. The initial assumption is

that f is decreasing and f(1) = 0. The first estimator is based on the minimum of

the Grenander nonparametric maximum likelihood density estimator for decreasing

densities. The second estimator uses the value of the Grenander density estimate

on the longest constant interval - which is assumed to be the the interval where f

drops to zero. For the third estimator they add another assumption, requiring that

f is convex. In this case, the estimator of the minimum value is the nonparametric

maximum likelihood estimator for convex densities evaluated at 1.

In Celisse and Robin (2010), similarly to the second method in Langaas et al.

(2005), they estimate the proportion by estimating the value of the density on the

longest interval where it is constant. For the density estimation they use histograms

and cross-validation method to choose the best histogram. This means that they

approximate the density with a piecewise constant functions. The proportion estimate

is given by the height of the histogram on an interval where it is minimum. They prove

the consistency of their estimator under the assumption that f1(t) = 0 for t ≥ b and

some b ∈ [0, 1].

Related to the density estimation approach is the approach by Efron (2007). The

focus of this paper is in estimating the local false discovery rate, and the proportion

estimator is obtained as a by-product. The main difference from the other density
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approaches is that instead of considering a mixture model for p-values, they transform

p-values to z-values (for example, z = Φ−1(1 − p) for one-sided testing). The true

null z-values are then expected to have N(0, 1) distribution, and be concentrated

around zero. Consequently, the problem of estimating the proportion by estimating the

minimum value of the p-values density translates to the problem of fitting a standard

normal density curve around 0 to the density of the z-values. Additionally, Efron

(2007) considers the true null density estimation of the z-values, that sometimes might

not be standard normal but N(µ0, σ
2
0). No theoretical guarantees for the proportion

estimator are provided.

2.2.3 Empirical process-based methods

Another category of methods are those based on the empirical CDF of p-values, that

use the results from the empirical process theory for the proof of theoretical guarantees.

Let En(t) be the empirical CDF of a uniform U [0, 1] sample of size n. The uniform

empirical process is defined by

{√
n(En(t)− t), 0 ≤ t ≤ 1

}
.

In the empirical process literature, inequalities bounding the supremum of the uniform

empirical process are of the form

P

(
sup

t∈(0,1)

En(t)− t
δ(t) ≥ βn,α

)
≤ α, (2.17)

for different bounding functions δ(t) and bounding sequences βn,α. For proportion

estimators based on the empirical CDF of p-values, these inequalities can be used to
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prove the results of the form

P (π̂1 ≤ π1) ≥ 1− α.

This implies underestimation of π1 with high probability, and the interval (π1, 1) can

be seen as a level 1− α confidence interval.

One of the inequalities of this type is the Dvoretzky-Kiefer-Wolfowitz (DKW)

inequality, where δ(t) = 1. DKW inequality upper bounds the maximum distance

between the empirical and the true CDF. The bound does not depend on the true

distribution, and can be used to determine βn,α in (2.17). For the uniform distribution,

the DKW inequality is given by:

P

(
sup

t∈(0,1)
|En(t)− t| > ε

)
≤ Ce−2nε2

, for every ε > 0. (2.18)

In Genovese and Wasserman (2004) it is used to prove the confidence statements for

their estimator (see Theorem 3.1 therein):

π̂GW
1 = sup

t∈(0,1)

Fn(t)− t− β′
n,α

1− t ,

where the bounding sequence β′
n,α =

√
log(2/α)/2n is obtained from the DKW inequal-

ity. Their idea was further developed in Meinshausen and Rice (2006) where they

found the bounding function yielding the “best” estimator is δ(t) =
√
t(1− t) (see

Theorem 3 therein). Their proposed estimator is

π̂MR
1 = sup

t∈(0,1)

Fn(t)− t− β′′
n,αδ(t)

1− t . (2.19)

The bounding sequence β′′
n,α is obtained using the result on the limiting Gumbel

distribution of the supremum of weighted empirical process. Aside from the confidence
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interval result which follows immediately, they also prove the consistency of their

estimator, in the sense that
π̂MR

1
π1

P→ 1,

under some conditions on the strength of the alternative distribution and π1 . We

also note that, as in most of the other papers, the estimator in Meinshausen and Rice

(2006) is also a slope-based estimator, similar to Storey’s plug-in family of estimators

given in (2.12).

With Storey’s family, the slopes containing the information about the proportion

are calculated from point (λ, Fn(λ)) for a given λ, to (1, 1), leading to the family

of estimators (2.12). For the estimators in Genovese and Wasserman (2004) and

Meinshausen and Rice (2006), the slopes are calculated from point (t, Fn(t)− βn,αδ(t))

to (1, 1) and then a supremum is taken over t. For a fixed t, this would result in a larger

slope than Storey’s, as Fn(t) − βn,αδ(t) < Fn(t), leading to smaller estimates for π1.

However, taking the supremum as in (2.19) gives an estimator for which π̂1 < π1 holds

with large probability, with minimal amount of underestimation. Fn(t)− βn,αδ(t) acts

as a uniform lower bound for the true CDF, F (t), and the proof of underestimation

relies on inequality (2.17). Following this idea, a confidence interval for π1 is also

proposed by Li and Siegmund (2015).

The most restrictive model, which also allows for detailed theoretical analysis, is

Gaussian mixture model as a model for the distribution of test statistics rather than

p-values:

T ∼ π0N(0, 1) + π1N(µ, 1).

For this model, the proportion estimator that is also a lower boundary of the confidence

interval of the form (π̂1, 1) is proposed in Cai et al. (2007). The consistency of their

estimator is proved to hold over the whole detectable region of the rare-weak model

(2.26) introduced in Section 2.1.1. It follows that the problem of estimating π1 is not
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harder than the problem of testing if π1 = 0. They also provide the minimax theory

for the problem and prove that their estimator has the MSE within the logarithmic

factor of the minimax risk.

2.3 Signal estimation and the Gaussian sequence

model

In this section we review the literature on the Gaussian sequence model that is

considered in Chapter 5, where we propose a new thresholding estimator for this model.

High level overview of the rich literature on this model is given in Section 2.3.1. The

essential notions of sparsity and thresholding are described in Section 2.3.2. The

Gaussian sequence model can also be studied from the multiple testing perspective,

which is discussed in Section 2.3.3, along with the relevant literature.

2.3.1 The Gaussian sequence model

The Gaussian sequence model is defined as

Xi = µi + εi, i = 1, . . . , n, (2.20)

where εi
iid∼ N(0, σ2), µ = (µ1, . . . , µn) is the unknown mean vector, and σ2 is the

noise variance. This model is commonly studied with the goal to make inference

on the mean vector, under some assumptions on its structure, based on the sample

X1, . . . , Xn. As the number of unknown parameters is growing with sample size, this

is a problem of nonparametric statistics. This simple model is encountered in a wide

range of research areas and is a part of both classical and modern statistical literature.

It gained popularity in the ’90s where it was notably applied to nonparametric function
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estimation and statistical signal processing (Donoho and Johnstone, 1994, 1995, 1998).

One way to see the model given in (2.20) in this light is directly as a model for sampled

values of the underlying function in the time domain. The other way is to consider

(2.20) in the frequency domain, as a model for the Fourier coefficients of a signal

at different frequencies, or as a model for the wavelet coefficients of a signal in the

wavelet domain. Consequently, the methods for estimating the mean vector µ extend

to methods for estimating signals, functions or images when those are transformed to

a frequency domain.

An unpublished monograph by Johnstone (2017) covers the rich theory of minimax

estimation of µ under various constraints on its structure. It also contains many of the

author’s work on the topic of nonparametric function estimation using wavelets, which

started with the seminal paper on nonparametric function estimation using wavelets

(Donoho and Johnstone, 1994).

Mean vector is usually assumed to belong to a subset Θn ⊂ Rn. Some examples

of Θn include n-dimensional balls and ellipsoids in lp norms. The performance of an

estimator is measured by comparing the rate of its worst case risk to the rate of the

minimax risk Rn(Θn), where

Rn(Θn) = min
µ̂

max
µ∈Θn

EµL(µ̂, µ),

over a given set Θn and loss function L(µ̂, µ). For a given Θn and loss function, the

estimator is minimax if its worst case risk is equal to the minimax risk Rn(Θn). The

estimator is asymptotically minimax if its worst case risk is asymptotically equal to

the minimax risk. The estimator is adaptively asymptotically minimax if its worst case

risk is of the same order as the minimax risk across different parameter spaces or loss

functions.
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The most common loss function is the squared error loss L(µ̂, µ) = ∥µ̂− µ∥2
2, but

loss functions based on other norms lr, for 1 ≤ r < 2, or quasi norms for r < 1, are

also considered L(µ̂, µ) = ∥µ̂− µ∥r
r.

Broadly, estimators of µ can be categorised as linear or non-linear. Linear estimators

are linear in the data, and have the form µ̂ = CX where C is an n × n matrix and

X = (X1, . . . , Xn). C cannot depend on the sample in a way that would make the

estimator non-linear in the data. The most popular class of non-linear estimators are

thresholding estimators. Particularly, given a threshold level λ, we can consider hard

or soft thresholding function

tHλ (x) = xI{|x| > λ},

tSλ(x) = (|x| − λ) sgn(x)I{|x| − λ ≥ 0}.

Applying these functions coordinate-wise on the sample vector X, we get hard and

soft thresholding estimators of µ:

µ̂H = tHλ (X),

µ̂S = tSλ(X).

These estimators are appropriate when some form of sparsity of the mean vector µ is

assumed, limiting the proportion of large coordinates. We review different definitions

of sparsity and thresholding estimators in Section 2.3.2.

In the recent literature, there is an interest in considering convex constraints on Θn

in the Gaussian sequence model. The reason for this is that some important methods

such as LASSO, isotonic regression and other shape constrained problems, can naturally

be translated to the problem of signal estimation in the Gaussian sequence model

under convex constraints. Much work has been done on developing minimax theory for
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these problems. We provide a brief review of some of the relevant papers. Han et al.

(2022) study the asymptotic normality and the optimality of the likelihood ratio test

in model (2.20), testing H0 : µ = µ0 ∈ Θn versus H0 : µ ̸= µ0 under convex constraints

on Θn ∋ µ. Properties of the least squares estimator under convex constraints on Θn,

such as the magnitude of the estimation error and the optimality in the minimax sense,

are considered in Chatterjee (2014). Extensions to his work and some results on the

penalised least squares estimators under convex constraints on Θn are considered in

Chen et al. (2017).

In Cai and Wei (2022), distributed estimation for the Gaussian sequence model

under the communication constraints is considered. A new signal recovery method

when µ is a sum of a sparse and a dense signal is proposed in Chernozhukov et al. (2017).

Minimax estimation of linear and quadratic functionals of the Gaussian sequence model

is studied in Collier et al. (2017) and Collier et al. (2018). Adaptive minimax estimators

of l0-sparse signal its unknown variance parameter σ2 and l2 norm are proposed in

Comminges et al. (2021). The model considered therein generalises the Gaussian

sequence model by considering iid noise with an unknown distribution, not necessarily

Gaussian.

Most of the mentioned papers do not consider the problem of estimating the

nuisance parameter σ. When the number of nonzero coordinates is small, Johnstone

(2017) and Comminges et al. (2021) propose to use the median M-estimator of scale

for estimating σ as

σ̂ = MAD
0.6745 .

Another possible method for estimating the standard deviation in the Gaussian sequence

model is proposed in Lenth (1989), and it is based on removing the large absolute

values (that possibly have a nonzero mean), and assuming that the trimmed sample

is a sample from N(0, 1). The standard deviation estimator is obtained from the



2.3 Signal estimation and the Gaussian sequence model 67

median of the absolute values of the trimmed sample, as the median of the half-normal

distribution with parameter σ2 is

σ
√

2erf−1(1/2),

where erf−1 is the inverse of the Gaussian error function. The estimator proposed is

σ̂ = 1.5×med(|Xi|, |Xi| ≤ 2.5s0), (2.21)

where s0 = 1.5×med(|X1|, . . . , |Xn|). The constant 1.5 is used as 1.5 ≈ 1/(
√

2erf−1(1/2)).

In the remainder of this section we assume σ = 1.

2.3.2 Sparsity and thresholding

We now focus on sparse µ vectors. There are different ways of defining sparsity, the

most intuitive one limits the proportion of nonzero coordinates in µ to be at most η:

1
n

n∑
i=1

I{µi ̸= 0} ≤ η.

More generally, vectors with only a small proportion of significantly large coordinates

are considered sparse. It can be achieved by imposing the power-law decay of the

decreasingly sorted absolute values in the sequence, |µ|(n), . . . , |µ|(1) as:

|µ|(n−k+1) ≤ ηn1/pk−1/p.

For given η and p, the sequences satisfying the inequality above define a weak lp ball of

radius η. Another way of imposing sparsity is by considering strong lp balls. Strong lp
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ball of average radius η contains sequences (µ1, . . . , µn) such that

1
n

n∑
i=1
|µi|p ≤ ηp.

Specifically, to impose sparsity for strong lp balls, p < 2 is considered. As an illustrative

example for this, consider sequences (1/
√
n, . . . , 1/

√
n) and (1, 0, . . . , 0) which have

equal l2 norm. However, the lp norm of the first one is increasing as p decreases. Thus,

out of the signals with equal l2 norm, sparse are those that have small lp norm for

p < 2.

We introduce a few thresholding methods commonly found in the literature. The

methods introduced below assume σ = 1 and do not discuss the case when σ is unknown

and to be estimated.

A threshold value that proved optimal in the minimax sense for the Gaussian

sequence model, and usually referred to as the universal threshold is tU =
√

2 log n.

For minimaxity results of the soft and hard thresholding estimators we refer the reader

to Johnstone (2017). The factor
√

2 log n was chosen as it is with large probability

greater than the maximum in a sequence of standard Gaussian variables. Precisely, it

holds that:

P ( max
i=1,...,n

|Zi| ≥
√

2 log n) ≤ 1√
π log n

,

which goes to zero for n→∞. Another thresholding method is based on Stein (1981),

where an unbiased estimate of the l2 risk is proposed for an arbitrary estimate of the

multivariate Gaussian mean is considered. In the special case of soft-thresholding

estimators, the risk is estimated as the following function of the threshold:

Û(t) = n+
n∑

k=1
X2

k ∧ t2 − 2
n∑

k=1
I
{
X2

k ≤ t2
}
.
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Based on this estimate, a thresholding method is proposed by Donoho and Johnstone

(1995) which uses threshold that minimises the above risk estimate.

Bayesian approaches can be categorised as empirical Bayesian or fully Bayesian.

Sparsity of µ is usually imposed through selecting the appropriate prior distribution, a

mixture of Dirac delta and some other distribution. Such prior is also called spike and

slab prior in the literature. This was notably used in Johnstone and Silverman (2004),

where an empirical Bayes method is proposed for signal estimation in the Gaussian

sequence model. The estimator is based on an observation that if a non-zero component

of the prior distribution for µ is symmetric about zero and unimodal, then the median

of the posterior distribution has a thresholding property. This posterior median vector

defines the estimator of the mean vector in Johnstone and Silverman (2004). The

threshold depends on the sparsity parameter, so the method adapts to the unknown

sparsity.

More Empirical Bayes methods are proposed in Jiang and Zhang (2009), Martin

and Walker (2014), Banerjee et al. (2020), Belitser and Nurushev (2020). Construction

of credible sets for the estimated parameters following spike and slab prior distributions

is considered in Castillo and Szabó (2020). Some fully Bayesian approaches can be

found in Carvalho et al. (2010), Castillo and van der Vaart (2012) and Bhattacharya

et al. (2015). Algorithms improving the numerical accuracy and computational speed

of some Bayesian methods is proposed van Erven and Szabó (2020).

2.3.3 Multiple testing in the Gaussian sequence model

First we will describe a popular global testing method that considers the Gaussian

sequence model. The Higher Criticism statistic (HC), is proposed by Donoho and

Jin (2004) for the problem of detecting sparse mixtures, which can also be seen as

a problem of testing the global null hypothesis. We describe the problem under the
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Gaussian model which is the primary model considered in Donoho and Jin (2004).

Consider the following multiple testing problem given by the sequence of hypotheses:

H i
0 : Xi ∼ N(0, 1)

H i
1 : Xi ∼ N(µ, 1), µ > 0. (2.22)

If the global null holds, then Xi ∼ N(0, 1), for all i = 1, . . . , n, otherwise some Xi have

N(µ, 1) distribution. The global null hypothesis test can also be stated as:

H0 : Xi ∼ N(0, 1), 1 ≤ i ≤ n (2.23)

H1 : Xi ∼ (1− ε)N(0, 1) + εN(µ, 1), 1 ≤ i ≤ n, (2.24)

where it is of interest to consider small values of the parameters µ and ε, and have a test

be able to reject the null hypothesis and detect a sparse mixture of the sample, even

in these weak alternative cases. The HC statistic is proposed for this testing problem,

and it can be used for mixtures other than Gaussians, which are also considered in

Donoho and Jin (2004). The sample is first transformed to the sequence of p-values.

For the one sided alternative as in (2.22), for example, the p-values are calculated as

pi = 1− Φ(Xi),

where Φ is the CDF of the N(0, 1) distribution. Under the global null, the p-values

have U [0, 1] distribution. Let p(1) ≤ · · · ≤ p(n) be the order statistics of the p-values

sequence. The HC statistic is defined as

max
i=1,...,n

HC(i),
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where

HC(i) =
√
n

i/n− p(i)√
p(i)(1− p(i))

, i = 1, . . . , n. (2.25)

The use of HC statistic beyond the global testing problem is discussed in Chapter

4. Its optimality for the problem of global testing is discussed in terms of its power

to detect a rare-weak Gaussian mixture. The distribution under the alternative is

called rare-weak Gaussian mixture if the following conditions hold, keeping both the

proportion of nonzero means and their value small:

ε = εn = n−β, β ∈
(1

2 , 1
)

µ = µn =
√

2r log(n), r ∈ (0, 1). (2.26)

The conditions on (r, β) under which the optimal Neyman-Pearson likelihood ratio test

has the sum of type I and type II errors go to 0 are called distinguishability conditions.

In other words, the alternative hypothesis is distinguishable if it is strong enough so

that there exists a test that has asymptotically full power. These results can be found

for example in Chapter 8 of Ingster and Suslina (2003). Using the notation as in

Donoho and Jin (2004), the detection boundary is

ρ∗(β) =


β − 1/2, 1/2 < β ≤ 3/4

(1−
√

1− β)2, 3/4 < β < 1,

meaning that for r > ρ∗(β) the sum of type I and type II errors goes to 1 for the

likelihood ratio test, while for r < ρ∗(β) it goes to 0. The two dimensional domain

(r, β) was later termed as phase space, as ρ∗(β) divides it into two regions or phases.

Below the curve r = ρ∗(β) is the undetectable region, and above is the detectable

region. In Donoho and Jin (2004) it is proved that the HC test has full power in the
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detectable region. Cai et al. (2007) show that εn can be consistently estimated, in the

sense that ε̂n/εn
P→ 1 whenever (r, β) belongs to the detectable region. In Xie et al.

(2011) an “almost exact recovery” boundary was identified,

ρrecovery(β) = (1 +
√

1− β)1/2,

such that for the parameters above it, the oracle procedure by Sun and Cai (2007)

identifies all the signals correctly with probability going to 1. Let Fn be the empirical

CDF of p-values and F0 the U [0, 1] CDF. HC objective sequence can be written as:

HC(i; p(i)) =
√
n

Fn(p(i))− F0(p(i))√
Fn(p(i))(1− Fn(p(i)))

.

Finally, we note that, since it is comparing empirical to the theoretical distribution of p-

values, the HC statistic is related to the Kolmogorov-Smirnov and the Anderson-Darling

statistics.

In general, thresholding estimators of the mean in the Gaussian sequence model

(2.20) allow for multiple testing interpretation. Related multiple testing problem can

be described with the sequence of hypotheses

H ′
0,i : Xi ∼ N(0, 1)

H ′
1,i : Xi ∼ N(µ, 1), µ ̸= 0, (2.27)

and multiple testing methods that choose which hypotheses are false null can be seen as

hard thresholding methods of signal estimation. Let S = {i : µi ̸= 0} be the subset of

nonzero mean, signal variables. Both multiple testing methods and hard thresholding
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estimators give an estimate for S

Ŝ = {i : µ̂i ̸= 0}.

We now list some relevant papers, that consider multiple testing in the Gaussian

sequence model. In Rabinovich et al. (2020), as an error rate they consider the sum

FNR + FDR. They prove that both the classical BH procedure and the one in Barber

and Candés (2015) are rate optimal in this sense in case of (generalised) GSM. This

error rate was also investigated in Abraham et al. (2021).

Multiple testing and signal estimation procedures have different objectives. While

in multiple testing the goal is to control a certain error rate, in signal estimation the

goal is to minimize the distance between the true and the estimated signal. However,

multiple testing procedures have been used for signal estimation in model (2.20), see

for example Abramovich et al. (2006) and Abramovich et al. (2010) where the BH

procedure is proven to be asymptotically minimax for signal estimation. Gaussian

mixture model with unknown mean and variance of both components was considered in

Cai and Jin (2010) from a multiple testing point of view. FDR control of the empirical

Bayesian procedure using spike and slab prior, which was previously used for signal

estimation (see Castillo and Szabó (2020)) is considered in Castillo and Roquain (2020)

and Abraham et al. (2022). Jeng (2016) proposed a method for dividing set of p-values

into three sets: signal, noise and indistinguishable set. In Du et al. (2021), a multiple

testing method for the multivariate Gaussian model is considered.





Chapter 3

Difference of Slopes method for

estimating the false null proportion

In this chapter we propose a new method for the problem of estimating the proportion

of false null hypotheses in multiple testing. We propose the Difference of Slopes

statistic, which yields a threshold separating the small p-values from the large ones

using change-point ideas. This threshold is then used in combination with Storey’s

estimator (Storey, 2002) to get the proportion estimator.

This chapter is organised as follows. In Section 3.1 we motivate our methodology

by describing the relevant literature. In Section 3.2 we describe our proposed method.

Theoretical results are provided in Section 3.3, and simulation results in Section 3.4.

We look at possible extensions in Section 3.5 and a brief discussion is given in Section

3.6.

3.1 Motivation

The novelty of our approach to the problem of estimating the false null proportion

is that we adopt a particular change-point perspective of the problem that has not
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been explored before. The idea behind the proposed method is to approximate the

quantile function of the p-values with a piecewise linear function with one change-point

in slope. For this, it is enough to estimate the change-point in slope from the sample of

p-values, as the quantile function takes value 0 at 0 and 1 at 1. This is achieved by our

proposed Difference of Slopes (DOS) statistic. To illustrate our perspective, consider

the sequence of sorted p-values (i/n, p(i)) (the quantile plot), shown in Figure 3.1. This

sequence approximates the quantile function of the p-values. If the alternative is very

strong, then we might have all the false null p-values smaller than all the true null

p-values, as seen in Figure 3.1 on the right hand plot. In that case a change-point exists,

separating the false null from the true null p-values. This is an unrealistic assumption,

and it is more common to observe a smooth change problem of transition between the

false null and the true null p-values, with purely false null p-values at the beginning,

the mixing interval in the middle, and purely true null p-values at the end . However,

if the alternative is “rare and weak” we can expect the smallest true null p-value to be

smaller than the smallest false null p-value (see Meinshausen and Rice (2006) for a

discussion on this), in which case there is no interval at the beginning containing only

the false null p-values . Similarly, for weak alternatives, false null p-values can take

values close to 1. An illustration for the weak alternative case is given in the left-hand

plot in Figure 3.1. In this case there is no change-point in the usual sense, however

the estimated change-point would act as a classification threshold, separating smaller,

mostly false null p-values, from the larger, mostly true null p-values.

After estimating the change-point, to get the false proportion estimate, we consider

p-values smaller than the DOS threshold. The estimate is obtained by subtracting

the expected number of true null hypotheses from the number of p-values smaller

than the threshold. This comes down to applying Storey’s estimator (Schweder and

Spjøtvoll, 1982; Storey, 2002) with the DOS threshold as the tuning parameter value.
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(a) Weak alternative (b) Strong alternative

Fig. 3.1 Sorted sequence of 100 p-values. Red bars correspond to p-values of false null
hypotheses and black bars to true null hypotheses.

It implies ignoring the false null p-values larger than the threshold, and thus possibly

underestimating the false null proportion. Denote the false null proportion by π1. In

Theorem 1 we prove that our estimator π̂DOS
1 is asymptotically conservative, in the

sense that

π̂DOS
1

a.s.→ π̃1, (3.1)

where π̃1 is a constant such that π̃1 ≤ π1. Thus, our estimator asymptotically has

non-positive bias and it will not overestimate the true proportion. Conservative (or

asymptotically conservative) estimators of the false null proportion are preferable as

they guarantee the (asymptotic) FDR control of the adaptive Benjamini-Hochberg

procedure (Benjamini and Hochberg, 2000). This approach is discussed in Section 2.2.

With the exception of a few existing proportion estimators, such as the empirical process-

based ones proposed in Meinshausen and Rice (2006) and Genovese and Wasserman

(2004), theoretical properties were not investigated for most of the proposed proportion

estimators in the literature. A simulation study in Section 3.4 shows that, for moderate

sample sizes (n = 1000), the underestimation of the DOS estimator is less severe than

of the consistent estimator proposed in Meinshausen and Rice (2006). Furthermore,

simulations show that the variance of our method is among the lowest in sparse cases,
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when the proportion of false null hypotheses is small. In this setting our estimator

also has the lowest mean squared error. The performance of the DOS method is also

investigated for small samples (n = 50, 100) and the results show that it outperforms

the competitors for various values of π1 and the strength of the effect under the

alternative.

Using change-point ideas for solving multiple testing problems has been suggested

in several papers. In Benjamini and Hochberg (2000), the authors remark that a

possible approach to estimating the false null proportion would be to use some change-

point detection method to find the end of the linear part in the quantile plot of the

p-values. To the best of our knowledge, this idea was only explored in Turkheimer et al.

(2001), where they propose a pseudo-sequential procedure that tests for uniformity by

iteratively excluding the smallest p-values. However, this method is very conservative

and we do not include it in the simulation study. Another link to the change-point

literature is the Higher Criticism (HC) statistic by Donoho and Jin (2004), proposed

for testing the global null hypothesis, of whether there are any false null p-values. The

HC statistic is introduced it in Section 2.3.3. It is very closely related to Pontogram

statistic by Kendall and Kendall (1980) used for testing for a change-point in the

intensity of a Poisson process. The relationship between the two statistics is explored

in Chapter 4.

3.2 Difference Of Slopes method

Let p-values come from a mixture distribution with CDF given by

F (t) = π1F1(t) + π0t, t ∈ [0, 1], (3.2)
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where F1(t) is a (weakly) concave function and the distribution F1 is stochastically

smaller than U [0, 1] distribution, in the sense that F1(t) ≥ t for all 0 ≤ t ≤ 1. The

mixture model is common in the multiple testing literature, and the concavity assump-

tion of the false null distribution is reflecting the assumption that the concentration

of the false null p-values is decreasing on [0, 1]. Let p(1), . . . , p(n) be the sequence of

increasingly sorted p-values from the model (3.2). We define the Difference of Slopes

statistic k̂DOS by

k̂DOS = argmax
ncn≤i≤n/2

d(i), (3.3)

where

d(i) = p(2i) − p(i)

i/n
−
p(i)

i/n
(3.4)

= p(2i) − 2p(i)

i/n
, (3.5)

and cn is such that cn → 0 and ncn →∞. The choice of cn is discussed in Sections 3.3

and 3.4.

The sequence d(i), 1 ≤ i ≤ n/2 is called the DOS sequence. The first term on the

RHS of (3.4) is the slope of the line connecting points (i/n, p(i)) and (2i/n, p(2i)), and

the second term is the slope of the line connecting (0, 0) and (i/n, p(i)). Therefore, the

sequence d(i) can be seen as the sequence of slopes differences in the quantile plot,

and k̂DOS as the location where the difference in slopes is maximal. The procedure is

illustrated in Figure 3.2, showing the quantile plot and the matching DOS sequence.

We note that the DOS statistic can be seen as a method for finding an elbow or a knee

in the quantile plot. Our proposed separation threshold tDOS is the k̂DOS-th smallest

p-value, p(k̂), and it is data-dependent:

tDOS = p(k̂DOS).
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Fig. 3.2 The illustration of the DOS procedure on n = 1000 1-sided p-values from the
Gaussian model for the test statistics, where H0 : X ∼ N(0, 1), H1 : X ∼ N(3, 1) and
the number of false null hypotheses is fixed n1 = 100. Left: The sequence of the first 500
smallest p-values. The blue dash-dotted broken line reveals the detected change-point
location and the corresponding symmetric interval with the largest slopes difference.
Right: the DOS sequence d(i) with vertical line at the location of the maximum k̂DOS.

To obtain the proportion estimate using the DOS statistic, we plug tDOS into Storey’s

family of estimators given in (3.6):

π̂1(λ) = F̂n(λ)− λ
1− λ , (3.6)

where F̂n is the empirical CDF of the p-values, and get

π̂DOS
1 = k̂DOS/n− tDOS

1− tDOS

. (3.7)

In contrast to other Storey-based estimators in the literature that focus on values

λ ≈ 1 to reduce the bias, we aim to find the smallest possible λ leading to meaningful

estimates. As described in Section 2.1.2, large values of λ increase the variance of the

estimator, but taking λ too small causes underestimation. We remark that although

the estimated change-point in Figure 3.2 is after the location n1 = 100, this does not

mean that our proportion estimate overestimates the proportion, as this change-point

location is used with Storey’s estimator to get the proportion estimate, and it is not
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a proportion estimator itself. Our change-point approach provides a threshold tDOS

acting as an estimate of the upper bound of the support of the alternative distribution,

and in that way reducing the bias and keeping the variance small in the estimator

(3.7). This effect is best seen when the proportion of false null hypotheses is small, as

shown in the simulation study in Section 3.4.

Excluding the first ncn values from the search for maximum in (3.3) is a sufficient

condition to guarantee the consistency results of Theorem 1, where we assume cn = n−θ

for θ ∈ (0, 1). In Remark 2 we note that this is not the only possible option for cn,

and we discuss in detail the effects of different rates for cn on the asymptotic results.

Furthermore, the simulations in Section 3.4 show that excluding the values from the

beginning of the sequence d(i) does not affect the estimates considerably, so in practice

it is not necessary to exclude any values.

We use symmetric intervals for slopes calculation, that is [0, i/n] and [i/n, 2i/n]. In

this way, for each candidate change-point, there is an (almost) equal number of p-values

left and right from it. In this way, we focus more on the local patterns in the quantile

plot, which is particularly useful for sparse cases, when π1 is small. Furthermore,

calculating slopes differences using the full set of p-values, that is [0, i/n] and [i/n, 1],

results in severe underestimation of the proportion, as the values of the second slope

are large and less variable in the beginning, than those of the first slope. In Section

3.2.1 we further motivate the use of symmetric intervals.

As ordered p-values are sample quantiles, we note that the DOS sequence is a

proxy for the “ideal function” involving quantile function of the mixture distribution

F , denoted by F−1:

p(2i) − 2p(i)

i/n
≈ F−1(2i/n)− 2F−1(i/n)

i/n
. (3.8)
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Denote the ideal function by hF (t),

hF (t) = F−1(2t)− 2F−1(t)
t

. (3.9)

It follows that the point of the maximum slopes difference is close to the maximum of

the ideal function, and this is the change-point that the DOS is estimating:

k̂DOS

n
≈

≈
t := argmax

t∈(0,1]
hF (t). (3.10)

Our main theoretical results are stated in Theorem 1 below. We discuss the assumptions

and provide the proof in Section 3.3. They include the consistency results regarding

(3.8) and (3.10), and the asymptotic conservativeness of the DOS proportion estimator,

as mentioned in (3.1).

Theorem 1. Let

F (x) = π1F1(x) + π0x, x ∈ [0, 1], (3.11)

be the p-value distribution, where F1 is a (weakly) concave function. Let hF (t) be

defined as in (3.9), and assume that condition (A1) holds. Let p(1), . . . , p(n) be the order

statistics of the p-values sequence. Let k̂DOS and π̂DOS
1 be as defined in (3.3) and (3.7),

respectively, with cn = n−θ, for some θ ∈ (0, 1). It holds that

k̂DOS/n
a.s.→

≈
t := argmax

0≤t≤1/2

F−1(2t)− 2F−1(t)
t

, (3.12)

p(k̂DOS)
a.s.→ F−1(

≈
t), (3.13)

π̂DOS
1

a.s.→
≈
t− F−1(

≈
t)

1− F−1(
≈
t)
≤ π1. (3.14)



3.2 Difference Of Slopes method 83

3.2.1 Ideal behaviour and curvature interpretation

In this section we discuss the interpretation of the ideal quantities approximated by the

DOS method. Firstly, we consider possible interpretations of the ideal change-point

location argmaxt hF (t), where hF (t) is the ideal function defined in (3.9). We also

consider the relationship between the DOS statistic and the second derivative and

curvature of the quantile function. Finally, we examine the amount of underestimation

the DOS is asymptotically making in the Gaussian mixture case.

Let F−1, the quantile function of the distribution F defined in (3.2), be continuous

on t ∈ [0, 1], and its first two derivatives continuous on (0, 1). Define

H(t, a) := F−1(t+ a)− F−1(t)
a

− F−1(t)− F−1(t− a)
a

= F−1(t+ a)− 2F−1(t) + F−1(t− a)
a

,

where a ∈ (0, t] and t ∈ [0, 1]. For a = t, H(t, t) = F −1(2t)−2F −1(t)
t

= hF (t), which is

the ideal function the DOS sequence is approximating. Since (F−1)′ is an increasing

function, by taking partial derivative in a, it follows that H(t, a) is increasing in a for

any fixed t. It follows that

argmax
(t,a)

H(t, a) = argmax
(t,t)

H(t, t) = (
≈
t,

≈
t), (3.15)

meaning that the DOS “true change-point location”
≈
t is actually the point of the largest

slopes difference on symmetric intervals of arbitrary length in the quantile function.

Because of the concavity assumption, it is enough to consider increasing symmetric

intervals to estimate it. Because of the sample variability, scanning through all possible
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window sizes by considering the statistic

argmax
i,j

p(i+j) − 2p(i) + p(i−j)

j
(3.16)

would introduce noise in the estimator, as under the null pi ∼ U [0, 1], and it holds that

Var
(
p(i+j) − 2p(i) + p(i−j)

j

)
≈ 2
n2j

, (3.17)

so the variance is larger for smaller window sizes j, and the statistic in (3.16) is

inadequate. Note that if in (3.16) instead of j we divide by
√
j, the variance does not

depend on j. Different scalings in the DOS sequence are considered in Section 3.5.

We now move on to discuss the interpretation of the point of maximum in (3.15),

with the goal of understanding how the estimated DOS change-point is related to the

underlying quantile function. For small a, function H(t, a) has a second derivative

interpretation. Second order Taylor expansion provides the following approximation:

H(t, a) = a(F−1)′′(t) + o(a).

Thus, for small a0 and any t ∈ (0, 1), H(t, a0) ≈ a0(F−1)′′(t) so it holds that

argmax
t

H(t, a0) ≈ argmax
t

(F−1)′′(t).

However, for larger a this approximation does not hold anymore. We use Mathematica

for further analysis of the function H(t, a) in the Gaussian case, that is when F is

the CDF of the 1-sided p-values coming from the Gaussian mean testing problem

π1N(µ, 1) + π0N(0, 1). An illustration of function H(t, a) is given in Figure 3.3. As

discussed above, the maximum of this function is achieved on the line t = a, and the

point of maximum is the change-point that the DOS method approximately estimates.
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Fig. 3.3 Bivariate function H(t, a) for the distribution of the 1-sided p-values from the
Gaussian mean testing with π1 = 0.1, µ = 3.

To investigate how this point of maximum is related to the behaviour of F−1

directly, we recall that the DOS statistic can be seen as a method for finding the

elbow in a (quantile) function. An elbow can be defined as a point of the maximum

curvature of a function, argmaxt κ(t). We claim that the DOS change-point location is

after the maximum curvature point of function F−1. For the Gaussian mixture model,

we investigate this relationship by comparing maxt hF (t) to argmaxt∈(0,1) t(F−1)′′(t)

instead of the maximum curvature point, as it holds that argmaxt∈(0,1) t(F−1)′′(t) >

argmaxt∈(0,1) κhF
(t). To prove this, consider

argmax
t

t(F−1)′′(t) = argmax
t∈[0,1]

t
−f ′(F−1(t))
f(F−1(t))3

= F

(
argmax

y∈[0,1]
F (y) |f

′(y)|
f 3(y)

)
.

Since ( f2(y)
1+f2(y))

3/2 1
F (y) is a decreasing function of y we have

argmax
y∈[0,1]

F (y) |f
′(y)|

f 3(y) ≥ argmax
y∈[0,1]

|f ′(y)|
(1 + f 2(y))3/2 ,
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which implies

argmax
t

t(F−1)′′(t) ≥ F

(
argmax

y∈[0,1]

|f ′(y)|
(1 + f 2(y))3/2

)
. (3.18)

The expression on the RHS of (3.18) is the point of the maximum curvature of function

F−1, proving that argmaxt∈(0,1) t(F−1)′′(t) > argmaxt∈(0,1) κhF
(t). In Figure 3.4, the

distance between
≈
t, the change-point the DOS is estimating, and argmaxt∈(0,1) t(F−1)′′(t)

is shown for the Gaussian mixture model for different values of µ (colour coded) and π1

(on the x-axis). Numerical experiments show that, for the Gaussian mixture model,
≈
t

is always larger than argmaxt∈(0,1) t(F−1)′′(t). This implies that the DOS change-point

happens after the maximum curvature point of the quantile function.

Fig. 3.4 The distance of the DOS true change-point and argmaxx∈(0,1) x(F−1)′′(x).

We now turn to the issue of underestimation of the DOS estimator. As guaranteed

by Theorem 1, the DOS estimator will underestimate the proportion, in the sense that

π̂DOS
1 converges almost surely to π̃1 ≤ π1. To investigate what part of the proportion

our estimator is asymptotically able to estimate, in Figure 3.5 we plot the standardised

difference (π̃1 − π1)/π1 for different values of µ and π1.
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Fig. 3.5 The degree of proportion underestimating shown as the scaled distance between
the DOS ideal proportion π̃1 and the true proportion π1 for the Gaussian mixture
model for different values of µ.

Finally, we observe that the ideal change-point location
≈
t gets close to the true

false null proportion π1 already for µ = 3 in the Gaussian mixture case. This suggests

that the change-point location itself can possibly be used for signal estimation and

thresholding in the same way as the HC threshold of the HC statistic. This point of

view is further discussed in Chapter 4. In Figures 3.6 and 3.7 we show the distance

between
≈
t and π1.

3.3 Theoretical results

The consistency results presented in this section rely on the theory of quantile processes.

Most of the existing theoretical results on this topic only cover the case of the uniform

quantile process. Before presenting the main theorems we state two lemmas that

connect the quantile process of the p-value distribution to the uniform quantile process.

This will allow us to later use some existing results on the almost sure behaviour of

the weighted uniform quantile process in the proof of Theorem 1.
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Fig. 3.6 The relationship between the DOS true change-point location and the true
proportion for the Gaussian mixture model. For µ = 3 already, the ideal change-point
is close to the true proportion. This implies that if the signal is strong enough, the
change-point location can be used as the proportion estimate and as a threshold for
signal estimation.

3.3.1 Some useful lemmas

Lemma 1. Let X1, . . . , Xn be the sample from distribution

F (x) = π1F1(x) + π0x,

where F1 is a weakly concave function. Let F̂n be the empirical CDF of a sample

X1, . . . , Xn, and Ên the empirical CDF of a sample of size n from U [0, 1] distribution.

Let {qn(y), y ∈ (0, 1)} be the quantile process of X1, . . . , Xn and {un(y), y ∈ (0, 1)} the

uniform quantile process defined as

qn(y) =
√
n(F̂−1

n (y)− F−1(y)),

un(y) =
√
n(Ê−1

n (y)− y),
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Fig. 3.7 The relationship between the DOS true change-point location and the true
proportion for the Gaussian mixture model with small µ.

where F̂−1
n and Ê−1

n are left continuous inverses of F̂n and Ên. It holds that

qn(y) ≤ Cun(y), y ∈ (0, 1), (3.19)

where

C := sup
x,y

F−1(y)− F−1(x)
y − x

= 1
π0
. (3.20)

Proof. As F1 is a concave function on [0, 1], and F is a linear combination of F1 and

a linear function, F is also a concave function on [0, 1]. It holds that the inverse of

a continuous, concave and increasing function on an interval is convex on the same

interval, so it follows that F−1 is a convex function. Using the upper bound for F

F (x) ≤ π1 + π0x, x ∈ [0, 1],
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it holds that for any 0 ≤ x < y ≤ 1

F−1(y)− F−1(x)
y − x

≤ 1− F−1(x)
1− x

≤ 1
π0
,

which proves (3.20). Let Xk;n be the kth order statistic of the sample and let (k−1)/n <

y ≤ k/n. The following sequence of inequalities concludes the proof by proving (3.19).

qn(y) =
√
n(F̂−1

n (y)− F−1(y))

=
√
n(Xk;n − F−1(y))

=
√
n(F−1(F (Xk;n))− F−1(y))

=
√
n(F−1(Uk;n)− F−1(y))

=
√
n
F−1(Uk;n)− F−1(y)

Uk;n − y
(Uk;n − y)

≤ 1
π0

√
n(Ê−1

n (y)− y)

= un(y)
π0

.

Lemma 2. Under the assumptions of Lemma 1, it holds that

P

(
sup

0<y<1
|qn(y)| ≥ x

)
≤ 2e−2x2/C2

.

Proof. To prove this we use the result from Lemma 1 and the relationship between

the uniform empirical and the uniform quantile process. Let α(n) =
√
n(Ên(u)− u)

be the uniform empirical process. By the change of variable argument we have

sup0<y<1 |un(y)| = sup0<y<1 |αn(y)| (see Remark 1.4.1 in Csörgő (1983)). The result

now follows from the Dvoretzky-Kiefer-Wolfowitz inequality, using the tight bound
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from Massart (1990):

P

(
sup

0<y<1
|qn(y)| ≥ x

)
≤ P

(
sup

0<y<1
|un(y)|C ≥ x

)

= P

(
sup

0<y<1
|αn(y)| ≥ x/C

)

≤ 2e−2x2/C2
.

3.3.2 Consistency results

In this section, we consider the asymptotic behaviour of the statistics proposed in (3.3)

and (3.7), with the proof of Theorem 1 provided below. Aside from the concavity

assumption on the false null distribution F1, we also need the following assumption

regarding the function hF (t) defined in (3.9):

(A1) hF (t), for t ∈ (0, 1), has a unique point of local maximum, which we denote as
≈
t,

where
≈
t ≤ 1/2, signifying that

≈
t = argmaxt∈(0,1) hF (t).

With the assumption above we exclude the situations when hF (t) is flat around
≈
t which

is a very special case, that cannot be characterised easily in terms of conditions on F .

For example, this assumption does not hold in some cases where F1 is a mixture of

uniform distributions with multiple components – that is, when the quantile function

is piecewise linear. For instance, for a uniform mixture distribution whose quantile

function is piecewise linear with change-points in slope at 0.1, 0.2, 0.3, 0.4 and with

increasing slopes on the first four segments equal to 0.1, 0.2, 0.4, 0.9, the corresponding

function hF (t) is constant on the interval [0.3, 0.4] where its value is maximal.

The convergence rates of the statistics in Theorem 1 are also considered, and they

depend on the differentiability of hF at
≈
t, and also on how flat hF is at

≈
t, which is
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measured using higher order derivatives. This is discussed in the proof of the theorem

and also in Remark 1.

Theorem 1. Let

F (x) = π1F1(x) + π0x, x ∈ [0, 1], (3.11)

be the p-value distribution, where F1 is a (weakly) concave function. Let hF (t) be

defined as in (3.9), and assume that condition (A1) holds. Let p(1), . . . , p(n) be the order

statistics of the p-values sequence. Let k̂DOS and π̂DOS
1 be as defined in (3.3) and (3.7),

respectively, with cn = n−θ, for some θ ∈ (0, 1). It holds that

k̂DOS/n
a.s.→

≈
t := argmax

0≤t≤1/2

F−1(2t)− 2F−1(t)
t

, (3.12)

p(k̂DOS)
a.s.→ F−1(

≈
t), (3.13)

π̂DOS
1

a.s.→
≈
t− F−1(

≈
t)

1− F−1(
≈
t)
≤ π1. (3.14)

Proof. Let

hn(t) := F̂−1
n (2t)− 2F̂−1

n (t)
t

.

The empirical function hn(t) is approximating the ideal function

hF (t) := F−1(2t)− 2F−1(t)
t

.

Function hF is positive on (0, 1). This holds as F−1 is a convex function, which follows

from the concavity assumption on F1. The convexity of F−1 is demonstrated in the

proof of Lemma 1. The idea of the proof is to show that the two functions are uniformly

close

hn(t) ≈ hF (t), ∀t ∈ (0, 1). (3.21)
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From this, the consistency of the change-point estimator follows:

k̂DOS/n = arg max
t
hn(t) ≈ arg max

t
hF (t), (3.22)

which also implies the consistency of the estimators (3.3) and (3.7). We start with

the following sequence of inequalities, aiming to upper bound the rate of difference

|hn(t)− hF (t)|, uniformly for t ∈ (cn, 1), using strong limit theorems for weighted

uniform quantile processes.

|hn(t)− hF (t)| =
∣∣∣∣∣ F̂−1

n (2t)− 2F̂−1
n (t)

t
− F−1(2t)− 2F−1(t)

t

∣∣∣∣∣
≤ 2

∣∣∣∣∣ F̂−1
n (2t)− F−1(2t)

2t

∣∣∣∣∣+ 2
∣∣∣∣∣ F̂−1

n (t)− F−1(t)
t

∣∣∣∣∣
≤ 2√

n

|qn(2t)|
2t + 2√

n

|qn(t)|
t

≤ 4√
n

sup
t∈(cn,1)

|qn(t)|
t

≤ C√
n

sup
t∈(cn,1)

|un(t)|
t

. (3.23)

In the last inequality we used the result from Lemma 1. To bound the weighted uniform

quantile process un(t)/t, we use Theorem 2 case (III) from Einmahl and Mason (1988),

setting ν = 0, an = log(n)/n using the notation therein, to get

lim sup
n→∞

sup
cn≤t≤1/2

c1/2
n |un(t)|
t
√

log log n
a.s.= 2. (3.24)

Note that this result only considers t ≤ 1/2, but since for t > 1/2, the weight function

1/t is bounded we have

sup
1/2≤t≤1

|un(t)|
t
≤ sup

1/2≤t≤1
2|un(t)|.
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Now we apply the Chung-Smirnov law of iterated logarithm for the uniform empirical

process (Chung (1949)) in (3.25) to get

lim sup
n→∞

sup
1/2≤t≤1

|un(t)|
t
√

log log n
≤ 2 lim sup

n→∞
sup

0≤t≤1

|un(t)|√
log log n

,

a.s.=
√

2, (3.25)

which implies

lim sup
n→∞

sup
1/2≤t≤1

c1/2
n |un(t)|
t
√

log log n
a.s.= 0.

Thus, we have

lim sup
n→∞

sup
cn≤t≤1

c1/2
n |un(t)|
t
√

log log n
a.s.= 2.

It means that, for any ε > 0 and large enough n, on a set of probability 1, it holds that

1√
n

sup
cn≤t≤1

|un(t)|
t
≤
√

log log n
n

1−θ
2

(2 + ε). (3.26)

Finally, (3.26) and (3.23) give a uniform upper bound for |hn(t)− hF (t)| on t ∈ (cn, 1]

sup
t∈(cn,1]

|hn(t)− hF (t)| ≤ C

√
log log n
n

1−θ
2

, (3.27)

where C is a constant that for large n approaches 2. Denote

t̂n := arg max hn(t).

From (3.27) and the reverse triangle inequality, it follows that for n large enough

||hn(t)| − |hF (t)|| < C

√
log log n
n

1−θ
2

,
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uniformly, for all t ∈ (cn, 1) with probability 1. Since for n large enough,
≈
t > cn, the

following sequence of inequalities holds with probability 1:

hF (
≈
t) ≤

∣∣∣hn(
≈
t)
∣∣∣+ C

√
log log n
n

1−θ
2

≤
∣∣∣hn(t̂n)

∣∣∣+ C

√
log log n
n

1−θ
2

≤ hF (t̂n) + 2C
√

log log n
n

1−θ
2

.

It implies ∣∣∣hF (t̂n)− hF (
≈
t)
∣∣∣ ≤ 2C

√
log log n
n

1−θ
2

. (3.28)

We prove the consistency of t̂n by contradiction. However, the rate of convergence

depends on the differentiability of h, and we separate three different cases. For some

additional discussion on this see Remark 1.

Case 1: h has a second derivative at
≈
t, and h′′(

≈
t) ̸= 0.

Case 2: h has a second derivative at
≈
t, and h′′(

≈
t) = 0.

Case 3: h is not differentiable at
≈
t.

We start with Case 1, and note that a sufficient condition for h to be twice differentiable

is that F is twice differentiable on (0, 1). Let |t̂n −
≈
t| >

√
log log n

n
1−θ

2
. It holds that

∣∣∣hF (
≈
t)− hF (t̂n)

∣∣∣ = (t̂n −
≈
t)2|h′′(

≈
t)|+ o((t̂n −

≈
t)2)

≥ C1
log log n
n

1−θ
2

.

For large n, the last inequality is in contradiction with (3.28), so it must hold that

∣∣∣t̂n − ≈
t
∣∣∣ ≤ C

√
log log n
n

1−θ
2

, (3.29)

which proves the consistency in (3.12). For Case 2, if h′′(
≈
t) = 0, the consistency

still holds, since not all derivatives can be zero, but the rate of convergence is slower
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accordingly. In Case 3, when h is not differentiable at
≈
t, such that left and right

derivatives at
≈
t are not equal, but lower bounded by a constant larger than zero in an

interval around
≈
t, we can get a better convergence rate:

∣∣∣t̂n − t̃∣∣∣ ≤ C
log log n
n

1−θ
2

.

This is the case for example when F is a mixture of uniform distributions (see Corollary

1). If a one-sided derivative approaches zero at
≈
t, then we similarly have (3.29) to hold.

We proceed under Case 1, assuming that h′′(
≈
t) ̸= 0 holds, while the results for other

cases can be obtained similarly. The following sequence of inequalities holds almost

surely and proves the consistency in (3.13):

∣∣∣p(k̂DOS) − F
−1(

≈
t)
∣∣∣ =

∣∣∣F̂−1
n (t̂n)− F−1(

≈
t)
∣∣∣

≤
∣∣∣F̂−1

n (t̂n)− F−1(t̂n)
∣∣∣+ ∣∣∣F−1(t̂n)− F−1(

≈
t)
∣∣∣ (3.30)

≤ C1

√
log log n

n
+ C2

√
log log n
n

1−θ
2

≤ C3

√
log log n
n

1−θ
2

.

For the first term in (3.30) we use Lemma 1 and then the Chung-Smirnov law of

iterated logarithm, to get the inequality which holds almost surely. For the second term

we use the fact that F−1 is Lipschitz continuous, and the obtained rate of convergence

in (3.29). The consistency of (3.14) follows similarly:

∣∣∣∣∣∣π̂DOS
1 −

≈
t− F−1(

≈
t)

1− F−1(
≈
t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ t̂n − F
−1(t̂n)

1− F−1(t̂n)
−

≈
t− F−1(

≈
t)

1− F−1(
≈
t)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣(1− F
−1(t̂n))(t̂n −

≈
t) + t̂n(F−1(t̂n)− F−1(

≈
t))

(1− F−1(
≈
t))(1− F−1(t̂n))

∣∣∣∣∣∣
≤ C

√
log log n
n

1−θ
2

.
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Furthermore, using the inequality F (t) ≤ π1 + (1− π1)t, that holds for any t, we get

that
≈
t− F−1(

≈
t)

1− F−1(
≈
t)
≤ π1.

Remark 1. Condition h′′(
≈
t) ̸= 0, where

≈
t = argmax hF (t), is implicitly a condition

on the strength of the alternative, as it requires h not to be flat around its point of

maximum. Precisely, h′′(
≈
t) = 0 is equivalent to

(F−1)′′(
≈
t)− 1

2(F−1)′′(2
≈
t) = 0,

and

(F−1)′′(2
≈
t)− (F−1)′′(

≈
t) = (F−1)′′(

≈
t).

It is enough to have that argmax(F−1)′′(t) <
≈
t for h′′(

≈
t) ̸= 0 to hold, but it is not

possible to further simplify this condition. In general, for H(t, a) function, the condition

∂2

∂t2
H(

≈
t, a) = 0,

where ∂
∂t
H(

≈
t, a) = 0 is equivalent to

(F−1)′′(
≈
t+ a)− (F−1)′′(

≈
t) = (F−1)′′(

≈
t)− (F−1)′′(

≈
t− a).

The following Corollary 1 considers a special case when the p-values come from a

mixture of two uniform distributions. In that case, F and F−1 are piecewise linear

functions with one change-point where the slope changes. From Theorem 1 it follows

that k̂DOS/n consistently estimates this change-point and that π̂DOS
1 is an unbiased

estimator of π1.
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Corollary 1. Let p(1), . . . , p(n) be the order statistics of the sequence of p-values coming

from a distribution with CDF G, where G is a mixture of two uniform distributions

π1U [0, b] + π0U [0, 1]. (3.31)

Let k̂DOS and π̂DOS
1 , be the corresponding statistics proposed in (3.3) and (3.7), computed

using the sequence of p-values with distribution (3.31) and with cn = n−θ. It holds that

k̂DOS/n
a.s.→ π1 + bπ0,

p(k̂DOS)
a.s.→ b,

π̂DOS
1

a.s.→ π1.

Thus, p(k̂DOS) and π̂DOS
1 are strongly consistent estimators of the uniform mixture

parameters b and π1, respectively.

Proof. In the case of uniform mixture, hG(t) = (G−1(2t) − 2G−1(t))/t is easy to

calculate.

hG(t) =



0, t ≤ π1+bπ0
2

1
t

(
2t−π1

π0
− 2tb

π1+bπ0

)
, π1+bπ0

2 < t ≤ π1 + bπ0

π1
π0t
, π1 + bπ0 < t ≤ 1/2

1
t

(
1− 2 t−π1

π0

)
, 1/2 < t ≤ 1

0, t > 1

Let t̃ = argmax hG(t) = π1 + bπ0 and t̂n = argmaxt hn(t). The proof follows the same

steps as the proof of Theorem 1. We note that since h′
G(t̃) does not exist, we can get a

better rate of convergence for the statistics k̂DOS/n, p(k̂DOS) and π̂DOS
1 . Assume that
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|t̂n − t̃| > log log n

n
1−θ

2
. For t̂n > t̃ we have

∣∣∣hG(t̃)− hG(t̂n)
∣∣∣ =

∣∣∣∣∣ π1

π0t̃
− π1

π0t̂n

∣∣∣∣∣
= π1

π0

∣∣∣∣∣1t̃ − 1
t̂n

∣∣∣∣∣
= π1

π0

|t̃− t̂n|
t̂nt̃

≥ C ′|t̃− t̂n|

≥ C ′′ log log n
n

1−θ
2

.

For t̂n < t̃ we get the same lower bound in a similar way. The last inequality is, for

large n, in contradiction with the uniform bound in (3.28), so it must hold that

∣∣∣t̂n − t̃∣∣∣ ≤ C
log log n
n

1−θ
2

.

Thus t̂n is an a.s. consistent estimator for the change-point in the quantile function

G−1. The consistency of the derived estimators for b and π1 follows as in the proof of

Theorem 1, and it holds that

∣∣∣p(k̂DOS) − b
∣∣∣ =

∣∣∣F̂−1
n (t̂n)− F−1(t̃)

∣∣∣
≤
∣∣∣F̂−1

n (t̂n)− F−1(t̂n)
∣∣∣+ ∣∣∣F−1(t̂n)− F−1(t̃)

∣∣∣ (3.32)

≤ C1

√
log n
n

+ C2
log log n
n

1−θ
2

≤ C3
log log n
n

1−θ
2

.
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∣∣∣π̂DOS
1 − π1

∣∣∣ =

∣∣∣∣∣∣
t̂n − p(k̂DOS)

1− p(k̂DOS)
− π1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t̂n − t̃+ π0(b− p(k̂DOS))

1− p(k̂DOS)

∣∣∣∣∣∣
≤ C1

∣∣∣t̂n − t̃∣∣∣+ C2|p(̂i) − b|

≤ C3
log log n
n

1−θ
2

.

Corollary 2 shows that in the case when the alternative is a non-uniform distribution

with support [0, b], statistics p(k̂DOS) and π̂DOS
1 will a.s. not overestimate both the

support of the distribution and the alternative proportion.

Corollary 2. Let [0, b], b ≤ 1 be the support of the alternative distribution F1, where

F1 is stochastically smaller than U [0, b] distribution, in the sense that F1(t) ≥ t/b for

all 0 ≤ t ≤ b. Statistics p(k̂DOS) and π̂DOS
1 almost surely underestimate the parameters

b and π1 respectively.

Proof. Let G be the CDF of a uniform mixture π1U [0, b] + π0U [0, 1]. Since F1 is

stochastically smaller than U [0, b] it holds that

F1(x) ≥ x

b
, 0 ≤ x ≤ b.

This implies

F (t) ≥ G(t), t ∈ [0, b],

F (t) = G(t), t ∈ [b, 1],
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and also

F−1(t) ≤ G−1(t), t ∈ [0, π1 + bπ0],

F−1(t) = G−1(t), t ∈ [π1 + bπ0, 1].

Let t̃ = π1 + bπ0. The following sequence of inequalities shows that the maximum of

the ideal sequence will not be achieved after t̃:

sup
t∈(0,t̃]

F−1(2t)− 2F−1(t)
t

≥ F−1(2t̃)− 2F−1(t̃)
t̃

= G−1(2t̃)− 2G−1(t̃)
t̃

= sup
t∈(0,t̃]

G−1(2t)− 2G−1(t)
t

≥ sup
t∈[t̃,1/2]

G−1(2t)− 2G−1(t)
t

= sup
t∈(t̃,1/2]

F−1(2t)− 2F−1(t)
t

.

We got that
≈
t := sup

t∈(0,1/2]

F−1(2t)− 2F−1(t)
t

≤ t̃.

From the consistency in Theorem 1 it follows that

k̂DOS

n
a.s.→

≈
t ≤ t̃,

which implies

p(k̂DOS)
a.s.→ F−1(

≈
t) ≤ F−1(t̃) = b,

π̂1
a.s.→

≈
t− F−1(

≈
t)

1− F−1(
≈
t)
≤

≈
t− F−1(

≈
t)

F1(F−1(
≈
t))− F−1(

≈
t)

= π1.
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Remark 2. It is possible to use different rates for cn in Theorem 1. cn plays a role

when applying the strong limit theorem for the weighted uniform quantile process

|un(t)|/t from Einmahl and Mason (1988). This is needed for bounding |hn(t)− hF (t)|

in (3.23). The theorem from Einmahl and Mason (1988) states that the sufficient

conditions on cn, where cn → 0, in order for (3.24) to hold are:

ncn

log log n →∞,

log log(1/cn)
log log n → C <∞.

We note that this also holds for example for cn = log n/n, or (log log n)2/n. Additionally,

we can trivially take cn = ε ∈ (0, 1), in which case the denominator in (3.23) is not a

problem as the interval for the supremum is bounded away from zero, and we can just

use the Chung-Smirnov law, stated in the proof of Theorem 1. The choice of cn affects

the rate of convergence for the statistics from the statements of Theorem 1. For cn in

general it holds that

sup
t∈(cn,1]

|hn(t)− hF (t)| ≤ C√
n

√
log log n
√
cn

,

and the term on the RHS reveals the rate of convergence of the considered statistics.

Obviously, the slower cn goes to zero, the better rate of convergence our estimators will

have. From the work of Einmahl and Mason (1988) we see that the choice of cn is very

important in the theory of uniform quantile processes. As the false-null distribution

F1 is unknown, using the result from Lemma 2 we bound the quantile process of

distribution F by a uniform quantile process. This approximation is convenient as

most of the results in the theory of quantile processes are given only for the uniform

quantile process. However, the behaviour of the weighted uniform quantile process
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around 0 will be more variable than that of weighted quantile process of a distribution

F . F is more concentrated around zero and the sample quantiles will be closer to the

true quantiles than in the case of uniform distribution, reducing the boundary problem.

3.4 Simulations

We compare the performance of our method to different proportion estimators in the

literature:

1. STS – Storey-Taylor-Siegmund by Storey et al. (2004), implemented in R package

‘qvalue’ by Storey et al. (2020)

2. MGF – Moment Generating Function method by Broberg (2005), implemented

in R package ‘SAGx’ by Broberg (2020)

3. LLF – Langaas-Lindqvist-Ferkingstad by Langaas et al. (2005)

4. MR – Meinshausen-Rice by Meinshausen and Rice (2006)

5. JD – Jiang-Doerge by Jiang and Doerge (2008)

6. FIX – Storey’s estimator (2.12) with λ = p(n/2)

The STS is a bootstrap method by Storey et al. (2004) that finds the optimal λ to use

in (2.12) by minimising the resulting estimator’s MSE. The LLF estimator by Langaas

et al. (2005) estimates the true null proportion as the longest constant interval of the

density estimator by Grenander (1956). The MR estimator by Meinshausen and Rice

(2006) gives a lower bound for the confidence interval for π1, of form (π̂MR
1 , 1]. This

lower bound π̂MR
1 is guaranteed to consistently estimate the false null proportion, given

that the signal is not too weak. The JD estimator by Jiang and Doerge (2008) is a

bootstrap Storey-based estimator using the average estimator approach. It estimates
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the false null proportion as the average of values in (2.12), for different λ’s, where the

number of summands and the corresponding λ values are calculated using bootstrap.

All of the methods above are introduced in detail in Section 2.2. We now introduce

the moment generating function-based method by Broberg (2005) (MGF). We found

that this estimator performs well, although it is rarely included in the simulation

studies in the literature. The MGF estimates the proportion by estimating the moment

generating function (mgf) of the mixture distribution of p-values, which is a weighted

sum of the U [0, 1] and the false-null distribution mgf:

MF (t) = π1MF1(t) + π0MU [0,1](t).

The proportion can be written as a ratio

π1 = MF (t)−MU [0,1](t)
MF1(t)−MU [0,1](t)

. (3.33)

In contrast to the other methods from the introduction that only exploit the behaviour

of the p-values under the null, the MGF also estimates the behaviour under the

alternative, by estimating MF1(t). Additionally, they use the average of the essentially

constant ratios involving the estimated mgf plugged in the equation (3.33) above.

This makes the MGF estimator very precise in some cases, which is reflected in the

simulation results.

Additionally, for control, we include FIX estimator, a simple Storey’s estimator

with λ = p(n/2). We choose λ = p(n/2) as from the definition of the DOS statistic, 1/2

is the largest possible location for the change-point, which leads to using λ = p(n/2) in

Storey’s estimator. In this way we estimate the proportion using the larger half of the

p-values.
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Simulation results for the Gaussian mean testing model for sample size n = 1000

are given in Table 3.1, and for small sample sizes n = 50 and n = 100 in Table 3.2.

Under the true null hypothesis, the test statistics have N(0, 1) distribution and

under the alternative N(µ, 1), µ > 0. In Table 3.1, for the DOS method, the number

of excluded values from the beginning of the sequence d(i) is set to ncn = 5, and the

estimates are not sensitive to this value. The (lack of) effect of different values of ncn

on the resulting estimates is investigated later in this section. In fact, the problem

only appears when ncn is close to the true number of false null p-values.

As guaranteed by Theorem 1, the DOS method underestimates the false null

proportion. However, for moderate sample sizes it underestimates less so than the MR

method. The DOS works particularly well in sparse cases, when its MSE is among

the lowest ones as shown in Table 3.1. In the denser cases, when π1 is larger, and

the signal strength is weaker, the DOS method exhibits larger variance, which can be

seen in the bottom two settings in 3.1, when µ = 2 and π1 = 0.2 or π1 = 0.3. This

variability comes from the smoother shape of the quantile function. When the signal is

weak, the corresponding ideal function hF is flatter around its maximum, which causes

greater variability of the maximum point of the sequence d(i).

Simulations show that for larger sample sizes n > 5000 the consistency for the MR

method sets in, and the MR yields less biased estimates than the DOS.
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STS MGF LLF MR JD DOS FIX

n1 = 10, µ = 3.5

BIAS 27.1 4.5 34.0 -4.2 8.6 0.4 8.5

SD 37.6 14.7 52.9 7.1 21.6 4.7 21.6

MSE 2148 236 3954 68 540 22 538

n1 = 30, µ = 3.5

BIAS 24.6 0.9 13.7 -9.1 2.6 -2.8 3.1

SD 33.9 17.8 33.2 4.0 27.2 5.4 25.6

MSE 1754 317 1289 98 746 37 665

n1 = 50, µ = 3

BIAS 22.6 -3.1 1.4 -17.3 -3.3 -8.5 -0.8

SD 35.3 18.8 28.3 7.5 30.4 8.8 28.2

MSE 1757 363 803 355 935 150 796

n1 = 100, µ = 2

BIAS 19.1 -13.8 -9.8 -44.8 -7.2 -38.3 -4.7

SD 39.5 17.6 37.6 13.8 30.2 19.9 26.0

MSE 1925 500 1510 2197 964 1863 698

n1 = 100, µ = 3

BIAS 24.5 -3.3 -4.5 -24.3 -4.0 -14.2 -0.9

SD 41.2 17.8 29.4 8.4 31.4 10.9 27.6

MSE 2298 328 885 661 1002 320 763

n1 = 200, µ = 2

BIAS 16.4 -27.0 -19.3 -60.6 -9.3 -45.5 -13.6

SD 41.5 15.9 45.2 16.5 29.8 25.3 22.0

MSE 1991 982 2416 3945 975 2710 669

n1 = 300, µ = 2

BIAS 11.1 -43.1 -23.8 -74.3 -14.5 -50.9 -27.2

SD 41.7 16.6 50 19.3 33.2 25.1 17.2

MSE 1862 2133 3066 5893 1312 3221 1036
Table 3.1 Bias, standard deviation and the MSE of the estimators, given the number of
false null hypotheses n1 and the non-zero mean µ, for a sample of size n = 1000, based
on 1000 repetitions. Bold and underlined values correspond to the smallest values in
each row.
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We also consider the performance of the DOS procedure for small sample sizes. In

this setting, we were unable to use the estimators STS and MGF as they require larger

number of p-values around 1 in order to compute the estimates. For small sample sizes

this is often not satisfied and the implemented functions return errors. In Table 3.2

we give simulation results for n = 50 and n = 100, for different numbers of false null

hypotheses n1 and nonzero mean parameter µ. The results show that our estimator

has the smallest mean squared error among the considered estimators.

Finally, we consider the impact of cn on the DOS estimates. Again, we consider

the Gaussian setting, for different values of sample size n ∈ {10000, 1000, 100}, the

nonzero mean µ and the false null proportion π1. The results are shown in Figures

3.8, 3.9 and 3.10. We notice that the estimates are stable in many of the considered

settings. The estimates become sensitive in two cases: 1) when we exclude “too many”

values which in general happens as cn approaches π1, and 2) when the signal is very

weak, in which case we also cannot count on the DOS estimator to perform well, see

the lower right plots (d) in Figures 3.8, 3.9 and 3.10. The problem described in the

first case can be seen in all three figures. The problem of the second case also shows

the weakness of our estimator which is that even if the sample is very large such as

n = 10000 in Figure 3.8, the estimator will be variable and dependent on cn if the

signal is not strong enough. However, for moderately large values of signal, we see that

in practice it is not necessary to truncate the sequence d(i).

3.5 Extensions

This section discusses some possible extensions of the DOS method, and ideas for

correcting some of the weaknesses of our method.
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3.5.1 A family of estimators

A possible generalisation of our method comes from introducing a parameter in the

DOS sequence. For α ∈ [1/2, 1] we consider a family of statistics

k̂DOS
α = argmax

ncn≤i≤n/2
, dα(i),

where

dα(i) = p(2i) − p(i)

(i/n)α
−

p(i)

(i/n)α

= p(2i) − 2p(i)

(i/n)α
.

For k̂DOS
α and the induced proportion estimator πDOS

1,α , statements analogous to those

in Theorem 1 hold.

Corollary 3. Under the same conditions as in Theorem 1 it holds that

k̂DOS
α

n
a.s.→

≈
tα := argmax

0≤t≤1/2

F−1(2t)− 2F−1(t)
tα

,

p(k̂DOS
α )

a.s.→ F−1(
≈
tα),

πDOS
1,α :=

k̂DOS/n− p(k̂DOS
α )

1− p(k̂DOS
α )

a.s.→
≈
tα − F−1(

≈
tα)

1− F−1(
≈
tα)
≤ π1.

Denote

hα
F (t) := F−1(2t)− 2F−1(t)

tα
.

Note that for α1 < α2, since 1/tα2−α1 is a decreasing function, it holds that

argmax
t

hα1
F (t) > argmax

t
hα2

F (t).
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This implies that for larger α’s the “change-point” happens later. However, in the case

of bounded support of the alternative [0, b] the ideal change-point location will never

be after π1 + bπ0 for any α, that is

≈
tα ≤ π1 + bπ0.

Additionally, for the family of ideal functions hα
F (t) we can draw some similar conclusions

as for hF (t) = h1
F (t) in Section 3.2.1, assuming that (F−1)′(t) exists for t ∈ (0, 1). Let

Hα(x, a) := F−1(x+ a)− F−1(x)
aα

− F−1(x)− F−1(x− a)
aα

(3.34)

for a ∈ (0, x] and x ∈ [0, 1]. For a = x, Hα(x, x) = hα
F (x). Since (F−1)′ is an increasing

function, by taking the partial derivative in a, it follows that Hα(x, a) is increasing in

a for any fixed x. This implies

argmax
(x,a)

Hα(x, a) = argmax
(x,x)

Hα(x, x),

suggesting that the generalised α-DOS statistic also estimates the point of the largest

scaled difference on symmetric intervals of arbitrary length in the quantile function.

Consider α = 1/2 and the sequence d1/2(i), that approximates the function h1/2
F (t).

For each i, d1/2(i) can be written as a scaled difference of means in the sequence of

p-value spacings p(i+1) − p(i)

d1/2(i) = 1√
i/n

1
2

2i∑
j=1

(p(j) − p(j−1))−
i∑

j=1
(p(j) − p(j−1))

 . (3.35)

Let si = p(i+1) − p(i). The sequence in (3.35) in particular is familiar from the change-

point literature. At each i we are taking the scaled difference in means, the mean of

the first i and the mean of the first 2i values in the sequence si. Arguing as in Section
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3.2.1, it is enough to consider the expanding intervals with as function H1/2(t, a) is

increasing in a. This means that we can view argmaxi d1/2(i) as a scan statistic with

variable window size. The maximum in the sequence d1/2 marks the location of the

largest difference in means in the sequence of spacings si on symmetric intervals.

In Table 3.3, simulation results for different values of α show that as the signal

decreases and the number of false null hypotheses increases, it is better to use smaller

α’s, to reduce the amount of underestimation. However, in dense cases, for example

n1 = 200, this generalisation does not help, as the signal is too weak for our method,

and we cannot beat FIX estimator. A possible approach, requiring further analysis,

would be to choose the optimal value of α before using the generalised DOS estimator.

This could be done by using bootstrap for example, to find α such that the resulting

estimator has the smallest MSE.

3.5.2 Reducing the underestimation

While our method performs the best in the sparse cases, the MGF method performs

remarkably well in the dense cases. There are two competitive advantages of the

MGF method over ours. The first one is that the final estimator is averaged across

multiple values, increasing its precision, while DOS only uses a single value (estimated

change-point location) to then calculate the proportion. The second one is that they

estimate the behaviour under the alternative, while we just try to “skip” the alternative.

Both of these differences result in the underestimation for our method. Consequently

there are two approaches to reducing the underestimation - averaging or estimating

the behaviour under the alternative. Here we consider the aggregated approach to

amend the first problem. The idea of the aggregated DOS estimator is to use multiple

values after the detected change-point to estimate the proportion. Similarly to the

JD method, the estimator would be an average of Storey’s estimators for different
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λ’s. Instead of only using the detected change-point λDOS = k̂DOS/n in (2.12), we

can use multiple values λDOS ≤ λ1 < · · · < λN < 1 and Storey’s estimator to get the

aggregated estimator

π̂aggr
1 = 1

N

N∑
i=1

π̂1(λi).

We consider [λ1, λN ] = [λDOS, 2λDOS] and [λ1, λN ] = [λDOS, 1] with N = 100. Simula-

tions showed that by considering [λDOS, 1] interval, the resulting proportion estimator

gives very variable estimates as the effect of the starting point gets lost in the larger

variance brought by larger values in the interval. This is also the case for [λDOS, 2λDOS]

when the signal is dense, suggesting that possibly a smaller set of values around the

change-point should be used. In sparse cases however, the averaging approach can

introduce an additional variance compared to using just λDOS. Boxplots showing

simulation results for the aggregated estimator on [λDOS, 2λDOS] can be seen in Figures

3.11 and 3.12. The results show that, although there is some decrease in bias for the

aggregated estimators, particularly for α = 1, it is not too significant. This suggests

that a more careful approach to choosing the interval for the aggregation might be

needed.

3.6 Discussion

Another possible extension of the DOS method is to make it an iterative procedure.

In this way we can estimate multiple “change-points” in the quantile function of the

p-values which would give us a piecewise linear approximation to the quantile function.

After estimating the first change-point in the quantile plot, we look for the next one in

the group of p-values left of it, in order to filter out the remaining false-null p-values.

This procedure would continue until the uniformity hypothesis of the remaining p-values

can no longer be rejected. In general, there are no change-points in the usual sense,
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and the estimated values would depend on the properties of the quantile function

similarly as in Theorem 1. Estimating multiple change-points means approximating

the distribution of the p-values with a mixture of multiple uniform distributions, and

additionally, approximating the local FDR function, as defined in Efron (2007), with

a piecewise constant function. This can be used for grouping p-values based on the

estimated change-points in the following way: for the p-values between the two change-

points we estimate a constant probability of them being from the true null hypothesis.

This could be used in further analysis for deciding which hypotheses to reject.

We now comment on the possible use of the DOS proportion estimator in multiple

testing procedures. The role of the proportion estimators in the multiple testing

literature is mainly in making the Benjamini-Hochberg procedure “adapt to the

unknown proportion”, as a way to increase its power. In Blanchard and Roquain

(2009), the performance of the adaptive Benjamini-Hochberg procedure using different

proportion estimators is compared. The authors report that, based on the simulations,

the best overall procedure for the FDR control at level q is the one that uses Storey’s

proportion estimator with λ = q. This is pointed out to be a “surprising result”, as

it is usually larger values λ that are used for estimating the proportion. Adaptive

Benjamini-Hochberg with Storey’s λ = q estimator is also reported to be a “much more

robust procedure in the case of dependent p-values, at the price of being slightly more

conservative”. Similarly to Storey’s λ = q, our estimator also uses smaller values for

λ, however the value is not constant but data-dependent, λ = p(k̂DOS). The results of

Blanchard and Roquain (2009) are encouraging the use of slightly conservative but

low-variance proportion estimators such as DOS.

Many of the modern multiple testing procedures, that we introduced in Chapter 2,

include prior knowledge on the p-values or additional assumptions on their structure.

At the core of these procedures usually lies the Benjamini-Hochberg procedure, and
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therefore there is a possibility in making these procedures more powerful by making

them adaptive. Estimating the false null proportion in these modern settings has not

been considered much in the literature, however it was suggested for example by Hu

et al. (2010), Barber and Ramdas (2017), Basu et al. (2018) and Katsevich et al. (2021),

as a way of increasing the power of the procedures proposed therein.
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(a) µ = 3, π1 = 0.001 (b) µ = 2, π1 = 0.2

(c) µ = 2, π1 = 0.1 (d) µ = 1, π1 = 0.1

Fig. 3.8 The dependence of the proportion estimator on cn shown for varying µ, π1
and n = 10000. Solid line - Average estimated proportion over N = 10000 repetitions,
shown as a function of cn; Dashed lines - average proportion ± average standard
deviation as a function of cn; Dotted line - the limit of π̂DOS

1 from Theorem 1.
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(a) µ = 3, π1 = 0.05 (b) µ = 2, π1 = 0.2

(c) µ = 2, π1 = 0.1 (d) µ = 1, π1 = 0.1

Fig. 3.9 The dependence of the proportion estimator on cn shown for varying µ, π1 and
n = 1000. Solid line - Average estimated proportion over N = 10000 repetitions, shown
as a function of cn; Dashed lines - average proportion ± average standard deviation as
a function of cn; Dotted line - the limit of π̂DOS

1 from Theorem 1.
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(a) µ = 3, π1 = 0.05 (b) µ = 2, π1 = 0.2

(c) µ = 2, π1 = 0.1 (d) µ = 1, π1 = 0.1

Fig. 3.10 The dependence of the proportion estimator on cn shown for varying µ, π1 and
n = 100. Solid line - Average estimated proportion over N = 10000 repetitions, shown
as a function of cn; Dashed lines - average proportion ± average standard deviation as
a function of cn; Dotted line - the limit of π̂DOS

1 from Theorem 1.
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LLF MR JD DOS
n = 50, n1 = 5, µ = 3

BIAS 3.6 -3.3 0.7 0.2
SD 7 1.4 5 2.6
MSE 62 13 25 7

n = 50, n1 = 10, µ = 2
BIAS 1.1 -6.5 -0.6 -1.7
SD 6.9 2.2 5.9 3.6
MSE 49 47 35 15

n = 50, n1 = 20, µ = 2
BIAS -2 -9.7 -1.5 -4.2
SD 7 2.7 5.6 2.9
MSE 53 101 34 25

n = 100, n1 = 5, µ = 3
BIAS 6.8 -3.4 1.5 0.2
SD 11 1.8 7 3.5
MSE 167 15 52 12

n = 100, n1 = 10, µ = 2.5
BIAS 3.4 -5.8 0.7 -0.8
SD 9.7 2.3 7.8 4.4
MSE 106 39 61 20

n = 100, n1 = 20, µ = 2
BIAS -0.6 -11.1 -1.3 -3.6
SD 9.6 3.2 8.7 5.8
MSE 93 133 77 47

n = 100, n1 = 40, µ = 2
BIAS -4 -16.1 -2.7 -7
SD 10.8 4.1 8.3 4.2
MSE 132 278 75 66

Table 3.2 Bias, standard deviation and the MSE of the estimators, given the total
number of hypotheses n, the number of false null hypotheses n1 and the non-zero mean
µ, based on 1000 repetitions. Bold and underlined values correspond to the smallest
values in each row. The DOS method consistently achieves the smallest MSE.
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α = 1/2 α = 3/4 α = 1 FIX
n1 = 10, µ = 3.5

BIAS 10.6 3.2 1.0 8.5
SD 16.0 7.3 4.3 21.1
MSE 368 63 20 518

n1 = 30, µ = 3.5
BIAS 6.4 -0.1 -2.9 2.8
SD 14.1 7.2 5.5 25.5
MSE 240 53 38 661

n1 = 50, µ = 3
BIAS 4.5 -4.0 -8.8 0.3
SD 16.2 10.3 8.2 27.9
MSE 283 123 144 777

n1 = 100, µ = 2
BIAS -4.9 -20.9 -36.8 -5.6
SD 23.9 23.1 19.4 26.9
MSE 596 970 1729 754

n1 = 100, µ = 3
BIAS 0.9 -7.9 -13.8 -0.9
SD 16.4 12.2 10.4 27.0
MSE 271 211 298 728

n1 = 200, µ = 2
BIAS -16.5 -29.5 -47.6 -14.3
SD 22.8 26.1 25.8 22.2
MSE 793 1553 2930 700

Table 3.3 Comparing the performance of α-DOS methods for different values of α,
and the model parameters. FIX corresponds to Storey’s estimator as in (2.12) with
λ = p(n/2). Bold and underlined values correspond to the smallest values in each row.



3.6 Discussion 119

Fig. 3.11 Boxplots of the false null proportion estimates for the general α-DOS and
the aggregated α-DOS procedure, for different powers α ∈ {1/2, 3/4, 1}. The model
is Gaussian mixture with π1 = 0.1 and µ = 2. FIX corresponds to Storey’s estimator
with λ = p(n/2).The number or repetitions is N = 1000.
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Fig. 3.12 Boxplots of the false null proportion estimates for the general α-DOS and
the aggregated α-DOS procedure, for different powers α ∈ {1/2, 3/4, 1}. The model
is Gaussian mixture with π1 = 0.1 and µ = 3. FIX corresponds to Storey’s estimator
with λ = p(n/2). The number or repetitions is N = 1000.



Chapter 4

Interpretations and applications of

change-point methods in multiple

testing

In this chapter we highlight some existing methods that are used for both the change-

point detection and the global testing problem, and explore the ways in which change-

point inference (detection and estimation) can be used for solving multiple testing

problems. We propose to use multiple change-point methods to divide the p-values

into groups based on their significance. A potential usefulness of the p-value grouping

is supported by a few examples in the applied literature, where p-values are divided

into groups based on their significance but using seemingly arbitrary values.

This chapter is organised as follows. In Section 4.1 we describe a connection between

the Higher Criticism and the CUSUM statistic used for change-point detection, and

between the Berk-Jones statistic and the LR test for a change in the Poisson process. In

Section 4.2 we discuss the properties of the spacings between p-values. In Section 4.3 we

propose grouping p-values based on their significance by applying multiple change-point

methods on the sequence of, possibly transformed, p-value spacings. We use some
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existing, but suitably modified where necessary, algorithms for multiple change-point

estimation. In Section 4.4 we briefly discuss possible applications for estimating the

local false discovery rate, or estimating the proportion of false null hypotheses.

4.1 Change-point detection statistics for testing the

global null

4.1.1 The Higher Criticism and the CUSUM statistic

In this subsection we describe the connection between the Higher Criticism (HC) and

the Cumulative Sum (CUSUM) statistics which, to the best of our knowledge, has not

been addressed in the literature. The CUSUM statistic comes from the change-point

literature and is defined below, and the HC statistic is introduced in Section 2.3.3 as a

global testing method. Indirectly, the relationship between the two statistics has been

noted to hold as both are closely related to the Pontogram statistic by Kendall and

Kendall (1980), which we also introduce below.

The HC statistic given by (2.25) is initially proposed as a statistic for global testing,

however it has applications beyond this problem. In Donoho and Jin (2008) and

Donoho and Jin (2009) the HC threshold is used for selecting useful features when

training linear classifiers. In Klaus and Strimmer (2013), the properties of the HC as a

thresholding method for signal identification are analysed. In this setting, when the

global null is known to be false, and the goal is to identify all the false null p-values,

the following modified version of the HC statistic is used:

HC′ = max
1≤i≤n

HC′(i),
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where

HC′(i) =
√
n

i/n− p(i)√
i/n(1− i/n)

, 1 ≤ i ≤ n.

The k̂HC smallest p-values are then declared as signal, where

k̂HC = argmax
1≤i≤n

HC′(i). (4.1)

In Klaus and Strimmer (2013), the HC threshold is found to approximate a natural

class boundary of a two-class linear discriminant analysis problem. The class boundary

is a point where the Bayesian probabilities of a value coming from the null and the

alternative component are equal – which is by definition the point where the local false

discovery rate, defined in Section 2.1.2, is equal to 1/2.

To introduce the CUSUM statistic, we consider the problem of testing for a change

in mean in a Gaussian sequence X1, . . . Xn, where Xi ∼ N(µi, 1) and the hypotheses

are given by:

H0 : µ1 = · · · = µn (4.2)

H1 : µ1 = · · · = µk ̸= µk+1 = · · · = µn. (4.3)

The CUSUM statistic, which is the generalised likelihood ratio statistic for the testing

problem above, is the maximum of the absolute CUSUM sequence:

max
i=1,...,n

|CUSUM(i)|, (4.4)

where

CUSUM(i) =
√
i(n− i)

n

1
i

i∑
k=1

Xk −
1

n− i

n∑
k=i+1

Xk

 , 1 ≤ i ≤ n. (4.5)
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The interpretation is that, at each candidate change-point i, the scaled difference of

the means left and right from it is calculated, and if there is a change in mean, it will

likely be where this difference is the largest. The CUSUM statistic is widely used in

the change-point literature, also as a nonparametric method of testing for a change.

Large values of maxi=1,...,n |CUSUM(i)| indicate a presence of a change-point and the

position of the maximum in the CUSUM sequence, argmaxi=1,...,n |CUSUM(i)| is the

estimated location of the change-point.

We now describe the relationship between the HC and the CUSUM statistic.

Calculating the CUSUM statistic for the sequence of scaled p-values spacings si :=

n(p(i) − p(i−1)), i = 1, . . . , n, where p0 = 0, gives the following approximation:

CUSUM(i) =
√

n

i(n− i)

 i∑
j=1

sj −
i

n

n∑
j=1

sj


=
√

n

i(n− i)

 i∑
j=1

n(p(j) − p(j−1))− i
n∑

j=1
(p(j) − p(j−1))


=
√

n

i(n− i)
[
np(i) − ip(n)

]
≈
√
n
np(i) − i√
i(n− i)

=
√
n

p(i) − i/n√
(i/n)(1− i/n)

= −HC′(i).

It follows that

|CUSUM(i)| ≈ |HC′(i)|, i = 1, . . . , n

In the above sequence of equalities, we used p(n) ≈ 1 approximation, as for large n

their difference is negligible. Thus, we get that the Higher Criticism statistic comes

very close to applying the CUSUM statistic for change in mean on a sequence of
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scaled spacings of p-values si. However, the CUSUM statistic here is to be considered

as a nonparametric method of change-point detection, because the model under the

alternative is not specified in general and it is not Gaussian. The position of the

maximum in the CUSUM (HC) sequence is then the location of the estimated change-

point in mean in the spacings sequence. The means before and after the change-point

are estimated by sample means of the values left and right from the estimated change-

point. Note that the problem of estimating the change in mean in the sequence of

p-values spacings is equivalent to the problem of estimating the change-point in slope

in the sequence of sorted p-values. The illustration of the relationship between the HC

and the CUSUM statistic is given in Figures 4.2 and 4.1. In Figure 4.1 a sequence

of spacings is shown with the estimated change-point location that determines the

piecewise constant approximation for the sequence of scaled spacings. In Figure 4.2

the HC sequence is shown, and the sequence of sorted p-values alongside the piecewise

linear approximation induced by the HC threshold.

The relationship between the HC and the CUSUM statistic poses a question about

a possible application of other change-point methods in the multiple testing literature,

using statistics and procedures related to the CUSUM statistic. This reveals more

existing relationships. Scan statistic, that has been used in Arias-Castro and Ying

(2019) for global testing, can be seen as a scan statistic on the sequence of p-values

spacings used in Olshen et al. (2004) for multiple change-point inference. For each

subinterval of {1, . . . , n} the scan statistic compares the mean of scaled spacings in that

subinterval with the total mean of the spacings, which is equal to 1. Another related

method from the change-point literature is the Moving Sum (MOSUM) statistic by

Eichinger and Kirch (2018). The MOSUM considers differences on symmetric intervals

and is used for testing for the existence of multiple change-points and their estimation.
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Fig. 4.1 The sample of 200 1-sided p-values, 20 of them non-null, from the Gaussian
model with nonzero mean µ = 3. Left: the sequence of spacings of the p-values and
the piece-wise constant approximation. The change-point location is the location of
the maximum of the CUSUM sequence. Right: The corresponding CUSUM sequence.

Given the window size G, the differences are first calculated on symmetric intervals

Tk,n(G) =
∑k+G

i=k+1 si −
∑k

i=k−G+1 si√
2G

= n
pk+G − 2pk−G√

2G
, G ≤ k ≤ n−G. (4.6)

The MOSUM statistic is defined by taking the maximum of Tk,n(G) over k:

MOSUM(G) = max
G≤k≤n−G

√
n
p(k+G) − 2p(k−G)√

2G/n
. (4.7)

This procedure resembles the Difference of Slopes procedure introduced in Chapter 3.

Particularly, its generalised form for α = 1/2 described in Section 3.5. The difference

is that the MOSUM considers sliding intervals of fixed width, while the DOS considers

expanding symmetric intervals. However, the observations made in Section 3.2.1

demonstrate that under the usual assumptions on the p-value distribution, it is enough
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Fig. 4.2 The sample of 200 1-sided p-values, 20 of them non-null, from the Gaussian
model with nonzero mean µ = 3. Left: the sequence of sorted p-values and the
piece-wise linear approximation. The location of the change in slope is the location of
the maximum of the HC sequence. Right: The HC sequence.

to consider the expanding intervals, as false null p-values will be concentrated in the

beginning.

Note that the CUSUM, MOSUM and the scan statistic from Olshen et al. (2004) all

operate by comparing the scaled means between intervals, and all of them choose the

objective intervals in a different way. Denote the discrete interval {s, s+ 1, . . . , e} as

[s, e]. The CUSUM considers intervals [1, i], [i, n], for all i = 1, . . . , n− 1, the MOSUM

[i − G + 1, i] and [i + 1, i + G], for G ≤ i ≤ n − G, and the scan statistic in Olshen

et al. (2004) compares means between intervals [i, j] and [1, n] for all 1 ≤ i < j ≤ n.

Furthermore, as Figure 4.2 suggests, we could consider some existing methods from

the change-point literature for detecting changes in slope in a piecewise linear model,

for example Baranowski et al. (2016). The piecewise linear model can be fitted to the

sorted sequence of p-values, instead of the piecewise constant model for the spacings.

However, the advantage of considering spacings instead of order statistics for p-values
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is that, under the null, the p-values are uniformly distributed, and uniform spacings are

asymptotically independent. Distributional properties of p-values spacings are further

discussed in Section 4.2.

Below we describe how the relationship between the HC and the CUSUM statistic

originates from the literature on testing for a change in the rate function of a Poisson

process.

4.1.2 The Berk-Jones statistic and the Poisson process

In this subsection, we first define the Berk-Jones statistic and its applications. The

relationship between the Berk-Jones and the Higher Criticism statistic is established

in the literature through the Pontogram statistic by Kendall and Kendall (1980). The

Berk-Jones statistic will be used in Section 4.2, as an alternative to the HC/CUSUM

statistic.

The Berk-Jones statistic

Berk and Jones (1979) suggested the following goodness-of-fit statistic for testing if

the given sample of X1, . . . , Xn comes from the uniform U [0, 1] distribution:

BJ∗ = max
x∈(0,1)

BJ(x), (4.8)

where

BJ(x) = Fn(x) log Fn(x)
x

+ [1− Fn(x)] log 1− Fn(x)
1− x . (4.9)

and Fn(x) is the empirical CDF of the sample. However, to the best of our knowledge,

Chernoff and Rubin (1956) were the first to propose this statistic for a related but

different problem. This statistic is derived as maximum likelihood estimator for the

location of the discontinuity in a piecewise constant density on [0, 1]. Equivalently,
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we can see it as the MLE for the location of the change in slope in the corresponding

CDF (or quantile function). The close relationship between the inference on piecewise

constant density and Poisson process with piecewise constant rate function has been

noted in Rubin (1961). To clarify, let λ(t) be the intensity function of a Poisson process

{N(t), t ∈ [0, 1]}, and consider testing for a jump in the rate function λ(t):

H0 : λ(t) = λ

H1 : λ(t) =


λ1, t ≤ t0

λ2, t > t0.

(4.10)

Given the sequence of arrival times, and conditional on the number of events in a given

interval, the GLR statistic for the above testing problem is equal to the GLR statistic

for the analogous problem of testing for a discontinuity in a piecewise constant density.

In the Poisson process context Fn(x) = 1
n
N(x), where N(1) = n and we condition on

this event. The Berk-Jones statistic becomes

BJ∗ = sup
t∈(0,1)

{
N(t)/n log N(t)/n

t
+ (1−N(t)/n) log 1−N(t)/n

1− t

}
.

Furthermore, the MLE for the location t0 of the change in λ(t) is equal to the MLE of

the discontinuity point of a piecewise constant density with one jump. The consistency

of the Berk-Jones statistic as an estimator of discontinuity point of a density is proven

in Chernoff and Rubin (1956).

Pontogram

Pontogram is a method introduced by Kendall and Kendall (1980) for testing if

there exist planned alignments in a set of points on a plane. Planned alignments are

characterised by a large number of near-collinear triads of points. The authors identify
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this problem with the problem of change-point detection in the rate of a Poisson

process. The testing considered is as in (4.10). Under the null, the generating process

is homogeneous and under the alternative the rate function is piecewise constant with

one change-point such that the rate is larger before the change-point. The test statistic

they propose is defined as:

max
t
Z(t), (4.11)

where

Z(t) =
(
N(t)
t
− n−N(t)

1− t

)√
t(1− t)

n
, t ∈ (0, 1), (4.12)

and N(t) is the number of events in the interval [0, t] and n = N(1). Pontogram is

then defined as a plot of Z(t) against t ∈ (0, 1). An illustration of Pontogram for a

Poisson process with change in intensity can be seen in Figure 4.3.

Fig. 4.3 The Pontogram for a realisation of a Poisson process with doubled intensity in
the first tenth portion of the time-span.
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In Donoho and Jin (2004), the authors briefly mention a close relationship between

the Higher Criticism statistic and Pontogram. Specifically, it holds that the values in

the Higher Criticism sequence are equal to the values of Pontogram function at arrival

times p(i). We get this by replacing N(t) with nFn(t), where Fn(t) is the empirical

CDF of the p-values (arrival times). Letting t = p(i), we have

Z(t) =
(
N(t)
t
− n−N(t)

1− t

)√
t(1− t)

n(
nFn(t)
t
− n− nFn(t)

1− t

)√
t(1− t)

n(
i

p(i)
− n− i

1− p(i)

)√
p(i)(1− p(i))

n

=
√
n

i/n− p(i)√
p(i)(1− p(i))

= HC(t). (4.13)

We note that as a possible change-point location estimator we could use maxt Z(t). This

statistic has been considered in Akman and Raftery (1986). They provide asymptotic

theory and rates of convergence for maxt Z(t) as an estimator of the change-point

location. Kendall and Kendall (1980) mention that, under the null hypothesis, maxt Z(t)

is asymptotically close to the Berk-Jones statistic. For the proof of closeness between

the HC and the Berk-Jones statistic see for example Lemma A.4. in Donoho and Jin

(2004).

4.2 Spacings of p-values

In this section we discuss the properties of the p-values spacings and how best to

fit them into the change-point methodology. Under the global null, p-values have

U [0, 1] distribution, and the distributions of the ordered p-values are p(i) ∼ Beta(i, n).

The distribution of the spacings p(i+1) − p(i) is Beta(1, n) for any i. Additionally, the
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scaled spacings si = n(p(i+1) − p(i)) are asymptotically independent and exponentially

distributed with Exp(1) distribution.

In the previous section we have not made any assumptions on the p-value distribution

under the alternative, however this assumption is implicitly made by considering the

testing problem (4.10). To describe the behaviour of spacings in the presence of false

null p-values, we first consider the uniform mixture model for p-values

p ∼ π1U [0, b] + π0U [0, 1]. (4.14)

Its density is piecewise constant with one change-point. This distribution is convenient

as the generalised likelihood ratio test for the following global null testing problem

against the mixture alternative:

H0 : p ∼ U [0, 1]

H1 : p ∼ π1U [0, b] + π0U [0, 1], (4.15)

is the Berk-Jones statistic. Furthermore, argmaxt∈(0,1) BJ(t) is the MLE for b, the

point where the uniform mixture density in (4.15) jumps, which is explained in the

previous section. The parameter b also acts as a change-point in the distribution of

the p-value spacings. The spacings between the p-values smaller than b all have the

same distribution, different to the distribution of the spacings where p-values larger

than b figure. The conditional distribution is given by:

p(i) − p(i−1) ∼


bBeta(1, n(π1 + (1− π1)b)), if p(i) ≤ b

(1− b)Beta(1, n(1− π1)(1− b))), if p(i−1) > b.

(4.16)
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It follows that asymptotically, the distribution of si before the change converges

to Exp(λ1), and after the change to Exp(λ2), where the rate parameters are given

by λ1 = π1+b(1−π1)
b

and λ2 = 1 − π1. The location of the change is random, τ ∼

Bin(n, π1 + b(1− π1)).

The uniform mixture model for p-values is unrealistic, and in general there will be

no change-point in the distribution in the sequence of p-values spacings. It is common

to consider p-values that come from the Gaussian mean testing. The distribution of the

p-values coming from the one-sided Gaussian mean testing, where under the alternative

the distribution is N(µ, 1), µ > 0, and under the null it is N(0, 1), is a mixture with

CDF

Fp(x) = π1(1− Φ(Φ−1(x)− µ)) + π0x, x ∈ [0, 1]. (4.17)

In this case, the distribution of the spacings under the alternative is intractable. p-

values spacings, where the p-values come from the uniform mixture and from the

mixture in (4.17) are shown in Figure 4.4. In the Gaussian testing setting, as the

support of the null and the alternative component are both [0, 1], we might not have

an interval towards the end of the sequence that contains exclusively uniform spacings.

Assuming that the distribution of the p-values under the alternative has a support

[0, b], where b < 1 is of intermediate difficulty. In that case there is still a change-point

separating the uniform spacings from the spacings in the beginning, where false null

p-values figure, and it is justified to use the change-point method to estimate b .

However, the false null spacings will be dependent and their distribution unknown in

general. If the alternative distribution drops to zero at some b ∈ (0, 1), then this can

be considered a smooth change problem in the sequence of spacings. Looking at the

sequence of scaled spacings si from right to left (i = n to i = 1), the appearance of

the first false null p-values changes the distribution of spacings and marks the onset of

change. However, we do not consider the smooth change problem here.
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Fig. 4.4 Left: the sequence of p-values spacings from the uniform mixture model (4.14)
with π1 = 0.2, b = 0.2 and n = 1000, and the approximate change-point location at
n(π1 + b(1− π1)). Right: the sequence of p-values spacings from the model in (4.17)
with π1 = 0.2 and µ = 2.

The most general statement on spacings is given in Pyke (1965), where the asymp-

totic exponentiality and independence of spacings is proved to hold for any CDF F of

spacings with density f . Let i/n→ t, as n→∞. It holds that

si = n(p(i) − p(i−1)) D→ Exp(f(F−1(t)). (4.18)

One of the common assumptions is that p-values come from a distribution with a

decreasing density. This is considered by many methods for estimating the proportion

of false null hypotheses introduced in Section 2.2. If f is decreasing, then the rate

parameter f(F−1)(t) is decreasing in t. This implies that the spacings of p-values

have an increasing mean and variance and essentially approximate the density quantile

function f(F−1(t). This is the case for example for the Gaussian p-values as seen in

Figure 4.4.
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To summarise, in the uniform mixture case, applying a change-point estimation

method for a single change-point would effectively estimate the p-value distribution.

Similarly, if the p-value distribution is a mixture of multiple uniform components,

multiple change-point methods can be used for estimating the distribution. For p-

value distributions with continuous densities there are no change-points. However,

approximating the spacings with a piecewise constant function can be seen as a

nonparametric function estimate giving some insights into the distribution of the

p-values.

In the next section we explore possible applications of the change-point methods for

modelling the sequence of p-values. Before applying a change-point algorithm to the

sequence of spacings, we might want to deal with the unequal variance of the p-value

spacings. We now consider some transformations of the spacings aiming to equalise

the variance.

4.2.1 Transformed spacings

As the variance of spacings is increasing with the mean, we propose to use log or power

transformation for the spacings before applying a change-point algorithm. First we

consider the effects of such transformations on the spacings when p-values come from

a uniform mixture (4.14). Let X ∼ Exp(1) and Y ∼ Gumbel(0, 1). It holds that

− logX D= Y.

This implies that logged scaled spacings, precisely − log(si), asymptotically have

shifted Gumbel distribution. Before the change, that is for p-values smaller than b, the

distribution of spacings is asymptotically log λ1 + Gumbel(0, 1) and for p-values larger

than b it is asymptotically log λ2 + Gumbel(0, 1). Since λ1 > λ2, the jump is to a lower
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level:

− log
(
n(p(i) − p(i−1))

)
∼


log λ1 + Gumbel(0, 1), p(i) ≤ b

log λ2 + Gumbel(0, 1), p(i−1) > b.

(4.19)

With log transformation we have transformed the problem of estimating the parameters

of (4.14) into the change in mean problem, but instead of the usual standard Gaussian

noise we have standard Gumbel noise, which has mean γ and variance π2/6 where

γ ≈ 0.5772 is the Euler-Mascheroni constant. Thus, the log transformation solves the

problem of increasing variance. The result on the asymptotic distribution of spacings

from Pyke (1965) suggests that this holds in the general case as well.

Another possible transformation is the power transformation of the spacings

(n(p(i) − p(i−1)))1/4. (4.20)

The fourth-root transformation of the exponential random variable is considered for

example in Kittlitz (1999). This power is chosen as it leads to a distribution with

skewness that is very close to zero. As the distribution of the spacings is right skewed,

this can be used to make it symmetric. Other exponents, close to 1/4 have also been

used for this purpose. If Y ∼ Exp(λ) then the density of the transformed variable Y 1/4

is

fY 1/4(y) = 4y3λe−λy4
, y ≥ 0. (4.21)

Note that this transformation maintains the quadratic relationship between the mean

and the variance. Thus, this transformation only makes the noise symmetric.

The effect of log and power transformation on the p-values from the Gaussian model

are shown in Figures 4.5 and 4.6.
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Fig. 4.5 Transformed spacings from the Gaussian model with π1 = 0.05 and µ = 3,
n = 1000. Left: log-transformed spacings − log(si). Right: power-transformed spacings
s

1/4
i .

4.3 Multiple change-point algorithms for p-values

The observations made in Section 4.1 motivated the following question: Can some

recent advances in the change-point literature be used for solving more complex multiple

testing problems, other than the global testing? In this section we propose to divide the

p-values into multiple groups based on their significance. This approach to analysing

the p-values of multiple testing has not been considered before, but it might be of

interest in applications as described below. To this end we use the methods for

multiple change-point estimation. Although, strictly speaking, there might not be

change-points in the sequence of spacings, these algorithms are used as they result in

nonparametric estimates for the underlying function of the (transformed) spacings.

The change-points in the piecewise constant approximation for si induce the piecewise

linear approximation of the CDF of p-values.



138 Interpretations and applications of change-point methods in multiple testing

Fig. 4.6 Transformed spacings from the Gaussian model with π1 = 0.2 and µ = 2,
n = 1000. Left: log-transformed spacings − log(si). Right: power-transformed spacings
s

1/4
i .

4.3.1 Segmenting p-values into groups

Grouping p-values based on their significance is seen in some applied papers dealing

with multiple testing problem. For that purpose some seemingly arbitrary constants

are chosen, such as 0.1−k or 5× 0.1−k which are commonly seen in the literature. A

data-driven approach to grouping p-values might be of interest in applications, as

in this way the groups of p-values are formed based on the behaviour of the whole

sequence, rather than on some arbitrarily chosen constants. We list a few examples. In

Raffaello et al. (2006) where gene expression data is considered, genes are divided into

three classes, extremely, moderately and low significant genes. The classes are formed

using their FDR values, such that highly significant p-values have FDR less than 0.01,

moderately significant either 0.05 or 0.1, and low significant either 0.15 or 0.2. In

Davidson and Shanks (2017) significant genes are divided into two groups, of highly

and moderately significant genes. In Duwadi et al. (2018) significantly expressed genes
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are divided into groups based on their value as: extremely significant (p < 0.1−55),

highly significant (p < 0.1−15) and significant (p < 0.001). Aside from the applied

literature, grouping p-values can be used for assigning the weights to p-values, when

analysing p-values with additional information, precisely as in Basu et al. (2018), a

method we described in Section 2.1.4. Similarly, the thresholds for the p-value groups

formed in Basu et al. (2018) are constants of the form 0.1−k or 5× 0.1−k.

4.3.2 Tools from the change-point literature

Here we review three different change-point algorithms that we use for the purpose of

segmenting the sequence of p-values spacings. They are largely based on the existing

methods, with some modifications introduced to make it more appropriate for the

structure of the spacings sequence.

IDetect with Berk-Jones statistic

In Anastasiou and Fryzlewicz (2022), a method called Isolate-Detect (ID) is proposed

for estimating multiple change-points in the piecewise constant mean. The CUSUM

statistic is used for comparing the means on different intervals, and intervals are chosen

as follows. Given a sample Xi, i = 1, . . . , n , the ID procedure starts from the endpoints

of the interval, and considers left- and right-expanding intervals until the interval on

which the CUSUM statistic is greater than a pre-specified threshold is found. Given

the step parameter h for the increasing length of the intervals the procedure alternately

considers right and left intervals in the following order until the first change-point is

detected:

[1, h], [n, n− h+ 1], [1, 2h], [n, n− 2h+ 1], . . . .
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The first change-point is detected when the first interval on which the CUSUM statistic

is greater than a given threshold is found. If the change is detected at location b∗ in

one of the left expanding intervals [n, n− ih+ 1] for example, the intervals considered

in the next step are

[1, h], [b∗ − h+ 1, b∗], [1, 2h], [b∗ − 2h+ 1, b∗], . . . .

That is, the procedure is restarted considering the smaller interval [1, b∗]. Similarly, if

the first change-point is detected in one of the right-expanding intervals, we consider

[b∗, n] in the next step. Note that the smallest possible value for h is h = 3.

With a few modifications we use this procedure for the problem of multiple change-

point estimation in the spacings sequence. First, instead of the CUSUM statistic, we

use the scaled Berk-Jones statistic for each subinterval [s, e], defined by

max
s≤i≤e

{
(i− s) log

(
i− s

p(i) − p(s)

p(e) − p(s)

e− s

)
+ (e− i) log

(
e− i

p(e) − p(i)

p(e) − p(s)

e− s

)}
. (4.22)

The difference from the regular Berk-Jones statistic introduced above is the scaling

factor (p(e) − p(s))/(e− s). We use this scaling to make the values of the statistic

between the intervals of different sizes comparable. With it, we scale both the domain

and the codomain of the subinterval of p-values p(s), . . . , p(e). The factor 1/(e − s)

scales the domain to [0, 1] while the factor 1/(p(e) − p(s)) ensures that the spacings

in the interval sum to 1. The second difference to the original ID procedure is that

in search for the change-points we consider only left expanding intervals. As the

spacings between the large p-values are likely uniform spacings, the idea is to proceed

including the smaller p-values until there is enough evidence to reject the null. This

first change-point defines the group of true null p-values. In the next steps the subset

of p-values containing some false null p-values is segmented leading to increasingly
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significant groups. For implementing the ID procedure with Berk-Jones statistic, the

threshold is chosen empirically, such that the probability of the type I error 0.05. The

empirical threshold guarantees that with large probability the procedure will not detect

a change-point if there is not any. The illustration of the application of this procedure

is shown in Figure 4.7. Instead of si, the sequence of power transformed spacings s1/4
i

is shown in order to make the change-points in the beginning more visible, and also to

make the results comparable to those of another method introduced below. We remark

that, as the Berk-Jones statistic takes large values for both positive and negative jumps,

the increasing signal is not guaranteed, so some post-processing might be needed.

The jumps here are to be interpreted as defining the linear approximation of the

distribution while keeping the number of change-points small. In Figure 4.7, the

p-values considered are the 1-sided p-values of the Gaussian mean testing, and their

distribution is given in (4.17). Although there are only two regimes here, the estimated

number of change-points will be larger than two in general, with more change points

estimated for stronger alternatives. Only if the distribution of the p-values is a mixture

of uniform distributions we can expect the number of groups estimated to be equal to

the number of components in the uniform mixture.

Unbalanced Haar-Fisz technique

In Fryzlewicz (2007), a wavelet-based method for nonparametric function estimation is

proposed for the model

Xi = f(i/n) + εi, i = 1, . . . , n, (4.23)

where εi
iid∼ N(0, σ2). We use a slightly modified version of this procedure for approx-

imating the sequence of p-values spacings with a piecewise constant function. The

modification will account for the non-constant variance of the spacings, which is seen



142 Interpretations and applications of change-point methods in multiple testing

Fig. 4.7 The IDetect with Berk-Jones statistic for p-values from the Gaussian model.
Left: The sequence s1/4

i , and the fitted piecewise constant function where the model
parameters are µ = 3, π1 = 0.2 and the sample size is n = 1000. Right: The sequence
s

1/4
i , and the fitted piecewise constant function where µ = 2, π1 = 0.1.

.

in Figure 4.4 and also in the sequence of power transformed spacings s1/4
i in Figures

4.5 and 4.6. We explain the procedure in detail below.

A general approach to the nonparametric function estimation and denoising using

wavelet thresholding consists of the following steps:

1. Choose the wavelet basis and transform the data to wavelet coefficients.

2. Threshold the wavelet coefficients.

3. Take the inverse wavelet transform of the thresholded coefficients to get the

denoised function estimate.

Haar wavelet basis is the simplest wavelet basis consisting of rescaled step functions.

Therefore, the procedure stated above using Haar basis would result in a piecewise

constant estimate of the function. The unbalanced Haar (UH) procedure of Fryzlewicz

(2007) follows these steps, and the basis used is Haar-like, but chosen adaptively from



4.3 Multiple change-point algorithms for p-values 143

the data. The basis vectors are of the form

ψs,b,e(l) =
{ 1
e− s+ 1

}1/2
I(s ≤ l ≤ b)−

{ 1
e− b

− 1
e− s+ 1

}1/2
I(b+ 1 ≤ l ≤ e),

(4.24)

where I is the indicator function. The number of vectors in the basis and their starting,

jumping and ending points will depend on the data. Note that the classic Haar basis

vectors can be seen as (4.24), where s and e are such that all dyadic subintervals of

[1, n] are considered, and the jump in the vector is set to the middle of the interval,

b = (e− s+ 1)/2. Unlike the classic Haar basis vectors, here the jump b in the basis

vector is not always in the middle of the interval, and s, b and e are chosen from

the data, as explained below. First, the interval [s, e] = [1, n] is considered and its

jump point b0,1 is chosen as b0,1 = argmaxs≤b≤e |⟨X, ψs,b,e⟩|. The corresponding wavelet

coefficient is d0,1 = ⟨X, ψs,b1,1,e⟩. The jump point b0,1 in the basis vector at the coarsest

scale then becomes the endpoint of the basis vectors at a next, finer scale, and the

procedure is repeated on vectors [1, b0,1] and [b0,1, n] to find the jump points b1,1 and

b1,2 (and the coefficients) of the finer scale vector basis. This procedure is continued in

a recursive way until the length of the basis vectors becomes too small, e− s ≥ 2. The

obtained sequence of wavelet coefficients is then thresholded at level σ̂
√

2 log n, where

σ̂ is the estimated standard deviation of the sample, and then transformed back to

the original domain, yielding a nonparametric function estimate. In Fryzlewicz (2007),

the relationship between this method and the binary segmentation procedure is noted.

Binary segmentation (BS) by Vostrikova (1981) is a widely use method for detecting

multiple change-points in mean by recursively applying the CUSUM transform on the

subintervals. In the first step, the CUSUM statistic for the interval [1, n] is calculated,

and if it is large enough, the first change-point b0,1 is detected at the location where

the CUSUM sequence is maximised. Analogously to the UH procedure described

above, the detected change-point is used to divide the interval into two, [1, b0,1] and



144 Interpretations and applications of change-point methods in multiple testing

[b0,1 + 1, n], and then the CUSUM procedure is applied on both subintervals. If the

CUSUM statistic is below the chosen threshold on a given interval, the segmenting

stops on that interval. We want to apply the UH/BS procedure to the sequence of

spacings, however straightforward application of this procedure is not appropriate as

the method assumes Gaussian noise with constant variance. In our case, for scaled

spacings si or power-transformed spacings (si)1/4, the variance increases with the mean

as shown in Figures 4.5 and 4.6. The relationship between the mean and the variance

is quadratic, which follows from the exponentiality in Section 4.2. This corresponds to

the multiplicative model for the data Xi = si (or some transformation of si):

Xi = σ2(i/n)ε2
i , i = 1, . . . , n, (4.25)

where εt
iid∼ N(0, 1). Applying the UH (BS) procedure, we can eliminate the effect of

the changing variance from the CUSUM statistic by scaling it with the mean of the

data on a given subinterval. That is

CUSUM(X[s : e])
1

e−s+1
∑e

i=s Xi

, (4.26)

where CUSUM(X[s : e]) is the CUSUM statistic on the subsequence Xs, . . . , Xe. This

type of transformation for variance stabilisation has been considered in Fryzlewicz et al.

(2007), where a wavelet-based data transformation method is proposed for stabilising

the variance assumed to depend on the mean. It is based on the Haar-Fisz transform,

proposed in Fryzlewicz and Nason (2004) and incorporated in a wavelet-based method

for estimating the intensity of a Poisson process. The idea is to scale the Haar

coefficients such that they have asymptotically Gaussian distribution and a constant

variance. As the CUSUM statistic can be seen as a coefficient in the unbalanced Haar

basis, (4.26) is a scaled unbalanced Haar coefficient. The threshold used is calculated
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Fig. 4.8 The Unbalanced Haar-Fisz procedure applied on the sequence of scaled spacings
si, of p-values from the Gaussian model. Left: The sequence s

1/4
i , and the fitted

piecewise constant function where the model parameters are µ = 3, π1 = 0.2. Right:
The sequence s1/4

i , and the fitted piecewise constant function where µ = 2, π1 = 0.1.

empirically, such that the probability of detecting a change in the sequence of uniform

spacings is 0.05. The illustration of the procedure applied on the sequence Xi = si is

shown in Figure 4.8, on the same data as in Figure 4.7. Again, instead of si we show the

power transformed spacings in order to make the change-points in the beginning more

visible, and to make the results comparable to those of the method introduced below.

We note that in general the UH and the ID procedures estimate the change-points at

similar locations.

NOT with piecewise constant mean and variance

In Baranowski et al. (2019), the Narrowest-Over-Threshold (NOT) method for es-

timating multiple change-points in the piecewise linear or piecewise constant mean

function is proposed. The method also allows for the piecewise constant model for the

variance. We use this algorithm for piecewise constant approximation of the sequence of

transformed spacings assuming the piecewise constant model for the mean and variance.

In contrast to the unbalanced Haar-Fisz method, here the variance is not assumed to

be changing with mean and the statistic used is the GLR statistic for this problem. As
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Fig. 4.9 The NOT procedure for the piecewise constant mean and variance applied on
the sequence of power transformed spacings s1/4

i of p-values from the Gaussian model.
Left: The sequence s1/4

i , and the fitted piecewise constant function where the model
parameters are µ = 3, π1 = 0.2. Right: The sequence s1/4

i , and the fitted piecewise
constant function where µ = 2, π1 = 0.1.

in the other multiple change-point procedures, this statistic is used on the subintervals

of the data. The NOT procedure aims to isolate the change-points using short intervals

that are randomly sampled from the data. At each step, a change-point is detected

from the shortest interval on which the GLR statistic exceeds a pre-specified threshold.

The method then proceeds recursively by looking for change-points on the two induced

subintervals. We apply this procedure on the transformed spacings (si)1/4 instead of

si, which yields better results as their distribution is approximately symmetric. The

illustration of the procedure is shown in Figure 4.9. In weak cases, as seen on the

right-hand plot, this procedure results in fewer intervals in the segmentation of the

spacings sequence.

4.3.3 Applications

Aside from grouping p-values, piecewise constant approximation of the p-value density

can be applied, for example, for estimating the proportion of false null hypotheses or

for constructing procedures controlling some multiple testing error rates. Piecewise
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constant approximation of the p-value density induces piecewise constant approximation

of the local FDR function, which is introduced in Section 2.1.2 and defined by

lfdr(t) = π0

π1f1(t) + π0
.

The local FDR is a Bayesian quantity, equal to the probability of a p-value being null

given that it takes value t, where π0 is the proportion of true nulls and f1 is the density

under the alternative.

In Figures 4.10 and 4.11, the NOT approximation of the lfdr function is shown

alongside true lfdr function and the lfdr estimate from Strimmer (2008) implemented in

R package ‘fdrtool’ by Klaus and Strimmer (2021). The method proposed in Strimmer

(2008) first estimates the null proportion and the parameters of the null distribution

(that is allowed to be non-uniform) using the truncated maximum likelihood approach.

Using this information, a modified Grenander density estimator is used to compute

the overall density, from which the lfdr estimate follows. When using this method

we specify the uniform model for the true null p-values. We observe that the two

lfdr estimates are close, however our change-point lfdr estimator is less precise, as the

number of groups obtained from the change-point algorithm is always kept relatively

small.
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Fig. 4.10 Black piecewise constant function: The estimator of the local FDR using
‘fdrtool’ package. Black curve: The true local FDR function. Red piecewise constant
function: The local FDR estimate using the change-point locations obtained by the ID
procedure with Berk-Jones statistic. p-values come from the Gaussian model (4.17),
where π1 = 0.3 and µ = 2.

Fig. 4.11 Black piecewise constant function: The estimator of the local FDR using
‘fdrtool’ package. Black curve: The true local FDR function. Red piecewise constant
function: The local FDR estimate using the change-point locations obtained by the ID
procedure with Berk-Jones statistic. p-values come from the Gaussian model (4.17),
where π1 = 0.1 and µ = 2.
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4.4 Discussion

In this section we discuss some closely related ideas for future research. First, there

are many options for the multiple change-point techniques that can be used. The

Berk-Jones statistic was used with the ID algorithm, but we can incorporate the

Berk-Jones statistic into any of the usual CUSUM-based algorithms. We can also

consider logged spacings with CUSUM-based algorithms. It is of interest to study the

induced grouping of p-values as a way of incorporating additional information obtained

from the previous studies as in Basu et al. (2018) and in that way improving the power

of the multiple testing procedure.

The resulting change-point lfdr estimate can be used for estimating the proportion

of false null hypotheses, by finding the point where the lfdr estimate jumps to 1 and

combining it with the Storey’s estimator (Storey (2002)). Another possible application

of the change-point lfdr estimate is in constructing a multiple testing procedure, similar

to the one in Sun and Cai (2007). In Sun and Cai (2007), a multiple testing procedure

based on the estimated local FDR values (l-values), is proved to be optimal in the

sense that it minimises the FNR while controlling the FDR at a prescribed level. Let

l̂fdr(p(i)) be the estimated local FDR of the ith smallest p-value. The procedure rejects

the hypotheses corresponding to the smallest k l-values, where

k = max{i : 1
i

i∑
j=1

l̂fdr(p(i)) < α}. (4.27)

In Sun and Cai (2007) the lfdr is estimated by estimating the distribution of the

z-values (test statistics, assumed to come from a mixture of Gaussians). They use a

method from Jin and Cai (2007) for consistently estimating the null proportion and

the distribution under the null assuming Gaussianity. A future direction would be to
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use the change-point lfdr estimate in combination with this method to construct a new

FDR-controlling method.



Chapter 5

Tail-summed Scores method for

multiple testing and signal

estimation

In this chapter we consider the problem of selecting the nonzero mean components in

the Gaussian sequence model defined by

Xi = µi + εi, i = 1, . . . , n, (5.1)

where εi
iid∼ N(0, σ2) and µ = (µ1, . . . , µn) is the unknown mean vector. The mean

vector µ is assumed to be sparse in a sense that there is a large proportion of terms

that are equal to zero – the non-signal values. We denote by k the number of nonzero

mean values, also referred to as the signal values. The exact assumptions regarding k

will be introduced as we go along. We now assume that σ2 = 1, and we work under

this model. Possible methods for estimating σ2 are introduced in Section 2.3.2.

This model and its importance are discussed in detail in Section 2.3.1. We propose

a new thresholding method that we call the Tail-Summed Scores (TSS). There are two
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approaches to analysing the thresholding estimators for the Gaussian sequence model,

the signal estimation and the multiple testing approach. The optimality criterion

depends on the approach taken. In the first case, the goal is to control the multiple

testing error rate, while in the second one the goal is to minimise the mean squared

error of the estimator. We discuss the performance of the TSS method in both cases.

This chapter is organised as follows. In Section 5.1 we introduce the TSS method. Its

properties and first theoretical results under some special cases are given in Section

5.2. Some theoretical results in the general case are stated in Section 5.3. Simulations

and possible applications to change-point analysis are outlined in Section 5.4. A brief

discussion is given in Section 5.5 and the proofs of the theoretical results can be found

in Section 5.6.

5.1 TSS method

Let X1, . . . , Xn be the sample from (5.1) with σ2 = 1, and define Yi = X2
i , i =

1, . . . , n. The non-signal values Yi have χ2
1 distribution, while the signal values have the

noncentral χ2
1 distribution with noncentrality parameter µ2, denoted by χ2

1(µ2). Let

S = {i : µi ≠ 0} be the subset of signal values and k = |S| the number of signals. Let

Y(i) be the i-th order statistic of the sequence Y1, . . . , Yn, the order being increasing, i.e.

Y(1) = mini Yi, Y(n) = maxi Yi. Let ρY (j) = i if Y(j) = Yi. We wish to base our testing

and recovery on the tail-sums of Y(i). Define the sequence of variables

Ti =
n−i+1∑

j=1
Y(j), i = 1, . . . , n. (5.2)

The idea is to sequentially test each Ti, i = 1, . . . , n, for the exceedance of a certain

threshold λi > 0. Namely, we stop the sequential testing procedure as soon as we come
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across an index i0 for which Ti0 < λi0 . We then estimate the set S as

Ŝ = {i : ρY (j) = i, for j = n− i0 + 2, . . . n},

with Ŝ = ∅ if i0 = 1. We denote the estimated number of signal values as k̂ = |Ŝ|. At

each step, the TSS procedure excludes the largest of the remaining Y -values one by

one, until the presence of the signal in the remaining set becomes insignificant, and

the remaining set starts resembling the sample of χ2
1 values. This requirement on the

remaining set should be reflected in the sequence of thresholds, the choice of which we

discuss below. The illustration of the procedure can be seen in Figure 5.1. Using the

TSS procedure we aim to include more signal terms in the set Ŝ when there are many

weak signals in the sequence. The weak signals would be aggregated so that the TSS

procedure would proceed even if the remaining signals are indistinguishable on their

own, as long as the total remaining signal is strong enough. The pseudo-code for the

TSS procedure is given in Algorithm 1.

5.1.1 Choosing the thresholding sequence

The perfect separation case

We motivate the choice of the thresholding sequence by considering the perfect separation

case, when the smallest signal variable is larger than the largest non-signal variable

with large probability. Let |S| = k and let

Y S
(k) ≥ Y S

(k−1) ≥ · · · ≥ Y S
(1),

be the decreasingly sorted signal values of the sequence Y1, . . . , Yn. Let

Y NS
(n−k) ≥ Y NS

(n−k−1) ≥ · · · ≥ Y NS
(1) ,
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Fig. 5.1 The illustration of the TSS method, for the sample of size n = 1000 from
model (2.20) where σ2 = 1, µi = 2, i = 1, . . . , n and |S| = 600. Left: Y(i) sequence,
black bars correspond to the zero mean, red bars to the nonzero mean terms. Right:
The TSS sequence Ti and the sequence of thresholds λi. Vertical blue line is at i = 373,
which is the estimated number of signals. Horizontal and vertical blue line on the left
plot mark the threshold value of the method.

be the decreasingly sorted non-signal values. Let Ωn be the perfect separation event:

Ωn = {Y S
(1) ≥ Y NS

(n−k)}. (5.3)

If P (Ωn)→ 1, n→∞ then we say that the perfect separation assumption holds. To

have this, a strong enough signal µ = µ(n) is required, and we discuss a sufficient

condition for this in Section 5.2. On the event Ωn, Y(1) ≤ · · · ≤ Y(n−k) are the non-signal

values, and Y(n−k+1) ≤ · · · ≤ Y(n) are the signal values. In general, conditional on Ωn,

the distribution of the sample changes, but the assumption P (Ωn)→ 1 allows us to

use the unconditional chi-squared distribution for obtaining asymptotic statements.

Note that if there is no signal, k = 0, we can also say that the perfect separation holds.
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Algorithm 1: The TSS procedure
Data: the sample X1, . . . , Xn and the thresholds λ1, . . . λn

Result: the estimated subset of signals Ŝ, and the number of signals k̂
1 (Y1, . . . , Yn)← (X2

1 , . . . , X
2
n);

2 T ← sum(Y1, . . . , Yn);
3 (ρ1, . . . , ρn)← arg_sort(Y1, . . . , Yn) ; // the sorting permutation of

indices

4 (Y(1), . . . , Y(n))← sort(Y1, . . . , Yn);
5 i← 1;
6 if T < λ1 then
7 return (∅, 0)
8 end
9 while T ≥ λi and i ≤ n do

10 T ← T − Y(n−i+1);
11 i← i+ 1;
12 end
13 Ŝ := {ρn, . . . , ρn−i+2};
14 k̂ := i− 1;
15 return (Ŝ, k̂)

In the perfect separation case, the problem of multiple testing in the Gaussian

sequence model is equivalent to testing the following sequence of nested hypotheses:

H0,i : there are fewer than i signal variables,

H1,i : there are at least i signal variables. (5.4)

In this case we can view the TSS procedure as a method for testing (5.4) which comes

naturally as the statistics Ti are aggregating the sample values. Ti is a test statistic for

the null hypothesis H0,i, and λi is a critical value. If H0,i holds, on Ωn, Ti has χ2
n−i+1
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distribution. We first consider the following sequence of thresholds:

λi = qχ2
n−i+1

(1− α), i = 1, . . . , n, (5.5)

where qχ2
n−i+1

(·) is the quantile function of the χ2
n−i+1 distribution. The thresholds in

(5.5) guarantee asymptotic control of the FWER at level α under the perfect separation

assumption, in the sense that

P (V > 0)→ α, n→∞, (5.6)

where V is the number of false rejections made by the TSS procedure. Let k be the

true number of signal values. It holds that:

P (V > 0) = P (V > 0,Ωn) + P (Ω∁
n) (5.7)

≤ P (χ2
n−k+1 > λk) + P (Ω∁

n)

= P (χ2
n−k+1 > qχ2

n−k+1
(1− α)) + P (Ω∁

n)

→ α.

We note here that by aggregating the individual hypotheses of the multiple testing

problem and considering instead the sequence of tests in (5.4) we avoid the multiplicity

problem. The TSS procedure controls the FWER at level α without the need for

adjusting for multiplicity. As it holds that FDR ≤ FWER under any configuration of

true and false null hypotheses, shown in Section 2.1.2, with this choice of thresholds

the TSS also controls the FDR asymptotically at level α in the perfect separation case.

The thresholds in (5.5) are motivated and justified under the assumption that

P (Ωn)→ 1, which is restrictive as it requires large signal values µ. Below, we suggest

some approximations for the proposed quantile sequence of thresholds, that make the
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theory more convenient in the case when the perfect separation assumption does not

hold.

Related threshold sequences

The concentration inequality for the upper tail of the chi-square distribution (Boucheron

et al., 2013) gives rise to the following sequence of thresholds

λHi
i = n− i+ 1 +Hi

√
2(n− i+ 1), (5.8)

where

Hi =
√

2 log 1
α

+
√

2
n− i+ 1 log 1

α
. (5.9)

Similarly, these thresholds control the FWER at the same level α as the exact quantile

thresholds. In general, thresholds of the form (5.8) can be used for different sequences

of values Hi ≥ 0, i = 1, . . . , n. Hi values can all be the same, or different for each

i, and they can also depend on n as in (5.9), which we omit from the notation. For

instance, Gaussian approximation of the chi-square quantiles

qχ2
k
(1− α) ≈ k + qN(0,1)(1− α)

√
2k. (5.10)

also yields the thresholds of the form (5.8), where Hi = qN(0,1)(1− α). For α ≈ 0.05,

we get the following simplified sequence of thresholds

λi = n− i+ 1 + 2
√

2(n− i+ 1).

By tuning Hi, we can manipulate the conservativeness of our procedure. Asymptotic

behaviour of the thresholds (5.8) is more obvious than of those in (5.5), hence the

thresholds given by (5.8) will be used in most of the theoretical results below. Note
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that for any Hi = Hi(n) → ∞ we will have that the FWER of the TSS procedure

converges to zero as n→∞ under the perfect separation assumption.

Thresholds λHi
i satisfy the following property:

Ti ≤ λHi
i =⇒ Ti+1 ≤ λ

Hi+1
i+1 ,

where Hi is any non-decreasing sequence of values. This is stated and proved in

Proposition 1 and it shows that λHi
i thresholds enable us to reject only the contiguous

block of hypotheses at the beginning, under no additional assumptions on the values

in the sample. A related statement is given in Proposition 2, where we bound the

probability of overestimating the number of signals.

5.2 Asymptotic results in some special cases

In this section, we analyse the TSS method from three different angles. We start by

considering its behaviour under the perfect separation assumption. In this case, the

theoretical results we derive for the TSS procedure rely on the results obtained in

Duval et al. (2007). In Duval et al. (2007), a method similar to the TSS is proposed

for the problem of multiple testing and the theoretical results are obtained under the

perfect separation assumption. In general, the perfect separation will not hold, and

furthermore, the initial motivation for the TSS procedure was to use it when the signal

is weak, in order to estimate a larger group of values as signal and increase the number

of correctly identified signals. For this reason, we do not make assumptions on the

signal strength in the remainder of the section. First, we introduce the oracle TSS

procedure, the unattainable procedure with similar “stopping time” as the regular TSS,

that provides the lower bound on the norm of the remaining, undetected signal. Finally,

we analyse the expected behaviour of the TSS procedure by adopting the Gaussian



5.2 Asymptotic results in some special cases 159

mixture model. This enables us to describe the stopping time of the TSS procedure

asymptotically, under no assumptions on the signal strength.

5.2.1 The existing literature and the perfect separation case

In an unpublished manuscript by Duval et al. (2007) a method similar to the TSS is

proposed for the problem of multiple testing in a more general model than the squared

Gaussian sequence model that we are considering. Their model includes the degrees of

freedom parameter so that the distribution under the null is χ2
η, while the distribution

under the alternative is the sum of η scaled noncentral χ2
1 distributions with possibly

different noncentrality parameters. Similarly to the TSS, their procedure, which we

refer to as the DDLR procedure, thresholds the cumulative sums of the smallest order

statistics. Using our notation, their proposed stopping criterion is

k̂DDLR = max
i

{ 1
n− i+ 1Ti > 1

}
.

This corresponds to our procedure with thresholds (5.8) with Hi = 0 for all i, that is

λDDLR
i = λ0

i = n− i+ 1.

We note that for large n it holds that λDDLR
i ∼ λHi

i for any non-decreasing sequence

Hi used. The theoretical results in Duval et al. (2007) only cover the case when the

perfect separation assumption holds. A sufficient condition for the perfect separation

assumption to hold is given therein (see Lemma 1 in Duval et al. (2007)), and under

that condition it holds that the FDR and FNR of the DDLR procedure converge

to zero. In Lemma 3 below, we provide an alternative statement guaranteeing the

perfect separation between the signals and the non-signals. Instead of the extreme

value distribution method used in Duval et al. (2007), we use the tail bounds for the
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maximum of Gaussian variables. Therefore, we provide an alternative technique for

proving, but attain a minimum sufficient rate for the signal strength that is larger than

that in Duval et al. (2007), making our technique sub-optimal.

Lemma 3. Let U1, . . . , Un−k
iid∼ χ2

1 and V1, . . . , Vk
iid∼ χ2

1(µ2) where µ ≥
√

2 log(n− k) +
√

2 log k. If k(n)→∞ and n− k →∞, the probability of perfect separation between

the signal and the non-signal values converges to 1:

P
(

min
j=1,...k

Vj ≥ max
j=1,...,n−k

Uj

)
n→∞−−−→ 1. (5.11)

In Theorem 2 below, we generalise the results from Duval et al. (2007), and prove

the FDR control for the TSS method allowing different thresholding sequences λHi
i .

The proof is outlined below, however as it closely follows the one in Duval et al. (2007)

some of the steps where the existing results are directly used are skipped. One of the

assumptions of the theorem is the perfect separation, for which either our result given

in Lemma 3 or Lemma 1 from Duval et al. (2007) can be used. The proof of the FDR

and FNR control follows from proving that the proportion is asymptotically correctly

estimated under the perfect separation assumption.

Theorem 2. If the perfect separation assumption holds, k = π1n for some π1 ∈ (0, 1),

un is such that un → 0 and
√
nun →∞, and λHi

i is defined by (5.8), where Hi = Hi(n)

are such that Hi(n)/√nun → 0, it holds that

P

∣∣∣∣∣∣ k̂n − π1

∣∣∣∣∣∣ ≥ un

→ 0, n→∞, (5.12)

where k̂ is the number of signals estimated by the TSS procedure. Furthermore, the

FDR and the FNR of the TSS procedure go to zero.
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5.2.2 Oracle TSS

To get more insight into where the TSS procedure stops when the signal is weak we

consider an alternative tail-summed sequence. Define the signal-first permutation of

Y ’s, where the sorted signal values come before the sorted non-signal values:

Y S
(k), Y

S
(k−1), . . . , Y

S
(1), Y

NS
(n−k), Y

NS
(n−k−1), . . . , Y

NS
(1) . (5.13)

If the perfect separation does not hold, the sequence in (5.13) is not decreasing, and

this permutation is unknown to us. By tail-summing the terms of this sequence and

finding the first point when it drops below the threshold we get a new thresholding rule

– the oracle TSS. We introduce the notation below. Define the oracle TSS sequence:

TO
i =


∑n−i+1

j=1 Y NS
(j) , i ≤ n− k

∑n−k
j=1 Y

NS
(j) +∑k−i+1

j=1 Y S
(j), i > n− k,

The oracle TSS procedure selects the top k̂O values, where

k̂O = min{i : TO
i < λi} − 1.

Let k̂ be the number of rejections made with the regular TSS procedure and k̂O the

number of rejections made by using the oracle TSS. It holds that

k̂ ≤ k̂O,

since at each step of the TSS procedure we exclude the largest of the remaining values.

This means that TO
i ≥ Ti, for all i, and that max{i : TO

i − Ti} = k + 1. In Figure

5.2 we see the regular TSS sequence, the oracle TSS sequence, and a sequence of
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thresholds given by (5.8) with H = 2. Empirically, we observe that the threshold

sequence “intersects” the regular and the oracle tail-summed sequences at points that

are close by, thus yielding very similar thresholding rules. That is, in addition to giving

the upper bound for the number of rejections made by the regular TSS procedure, the

oracle TSS seems to approximate this number of rejections. This is shown in Figure

5.2 as the stopping location is approximately the same whether we use the regular or

the oracle TSS. Additionally, in Figure 5.3, we provide simulations showing the average

(over N = 100 repetitions) scaled distance between the oracle and the regular TSS

stopping times as a function of sample size n, and for different values of parameters ε

and µ.
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Fig. 5.2 The illustration of the regular and the oracle Tail-summed scores method, for
different values of µ and k. Dash-dotted line is the sequence of thresholds λHi

i with
Hi = 2. Black line - the regular TSS sequence. Red dashed line - the oracle TSS
sequence. The values of the parameters and the estimated number of signal values by
the TSS and by the oracle TSS are given as follows. Top left: k = 100, µ = 2, TSS: 39,
OTSS: 45, Top right k = 200, µ = 2, TSS: 80, OTSS: 83, Bottom left: k = 200, µ = 3,
TSS: 143, OTSS: 156, Bottom right: k = 300, µ = 2 TSS: 158, OTSS: 173
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(a) µ = 1, π1 = 0.1 (b) µ = 2, π1 = 0.1 (c) µ = 3, π1 = 0.1

(d) µ = 1, π1 = 0.4 (e) µ = 2, π1 = 0.4 (f) µ = 3, π1 = 0.4

(g) µ = 1, π1 = 0.7 (h) µ = 2, π1 = 0.7 (i) µ = 3, π1 = 0.7

Fig. 5.3 Scaled difference of the oracle and the regular TSS procedure stopping times
(k̂O − k̂)/n are given for different values of µ and π1 (the exact proportion of the signal
values), and sample sizes n ∈ {102, 103, 104, 105, 106} on the x-axis. The thresholds
used are the asymptotic thresholds λHi

i with Hi = 0.
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The signal-first sorting is infeasible in practice but we introduce it here to gain

more insights on the behaviour of the regular TSS procedure, as the stopping times of

the regular TSS and the oracle TSS are close, regardless of the number of signals k and

the signal strength µ. The theoretical analysis is easier for the oracle TSS as at each

step we know the distribution of the terms in the remaining sequence. The following

theorem exploits this and proves that the oracle TSS procedure asymptotically stops

no earlier than at the location for which it holds that the mean of the remaining signal

is arbitrarily close to 1. As the TSS procedure stops earlier than the oracle procedure,

and misses more signal values, it follows that the mean of the remaining signal, missed

by the TSS procedure is larger than 1.

In the following theorem we consider the “asymptotic thresholds”, that is (5.8)

with Hi = 0, but the results can be generalised to other sequences Hi similarly as in

Theorem 2.

Theorem 3. For any ε > 0 define

ỹO(ε) = min
{
y :

∫ y

0
Qχ2

1(µ2)(x)dx = 1
π1
y(1 + ε)

}
,

The quantity ỹO(ε) is asymptotically the proportion of the smallest signal values nec-

essary to include so that their mean is at least 1 + ε. The oracle TSS procedure with

thresholds given by (5.8) with Hi = 0 stops at the location k̂O for which it holds that

P

 k̂O

n
− k

n
< −ỹO(ε)

→ 0, n→∞.

meaning that asymptotically the mean of the undetected signal is no significantly larger

than 1.
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5.2.3 In-mean behaviour of the TSS

In this section, we adopt an alternative point of view to the problem, and instead of

the Gaussian sequence model in (5.1), we consider the 2-point Gaussian mixture model

for the sample:

Xi ∼ π1N(µ, 1) + π0N(0, 1), i = 1, . . . , n. (5.14)

The difference between the two models is that in the Gaussian sequence model the

number of signals is fixed and the nonzero means can be different, while in the Gaussian

mixture model the number of signal variables is random, with binomial distribution,

and the nonzero means are all equal. The Gaussian mixture model arises from the

Gaussian sequence model when a sparse prior is assumed for the mean value of the

vector µ = (µ, . . . , µ) with all equal components:

µ ∼ π1δµ0 + π0δ0,

where δµ0 is a Dirac measure centred at µ0. The marginal distribution of Xi is then

the mixture in (5.14) with µ = µ0.

In the Gaussian mixture model all values in the sample come from the same mixture

distribution, so by analysing the TSS procedure in this model, we avoid the problem of

the unknown distributions in the TSS sequence. As earlier, let Yi = X2
i , i = 1, . . . , n,

where Xi is given in (5.14). The distribution of Yi is

Yi ∼ π0χ
2
1 + π1χ

2
1(µ2), i = 1, . . . , n, (5.15)

and for a given i, Ti is the sum of the smallest n − i + 1 order statistics from the

mixture distribution (5.15). The in-mean point of view discussed below, analyses the

asymptotic behaviour of the TSS procedure when n → ∞. We start by motivating
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the asymptotic behaviour, then describe the Lorenz curve interpretation of the TSS

sequence, and finally using the convergence theorem for empirical Lorenz curves by

Goldie (1977), we find the limiting value for the proportion of rejections made by the

TSS procedure.

Let F,Q, Fn, Qn be, in this order, the CDF, quantile function, empirical CDF, and

empirical quantile function of the distribution in (5.15). We recall the definition of

the empirical quantile function, defined as the left continuous inverse of the empirical

distribution function, that is Qn(0) = 0 and Qn(q) = Y(i), for q ∈ ( i−1
n
, i

n
], i = 1, . . . , n.

For each i, Ti can be written as

Ti =
n∑

k=1
YkI{Yk ≤ Y(n−i+1)}

=
n∑

k=1
YkI{Yk ≤ Qn(1− y)}, (5.16)

for any y for which 1− y ∈ (n−i
n
, n−i+1

n
], or equivalently y ∈ [ i−1

n
, i

n
). This motivates

the definition of a stochastic process version of the TSS sequence where y ∈ [0, 1] is the

continuous argument. To clarify, we first adjust the notation by scaling the arguments

i = 1, . . . , n of the sequence T to interval [0, 1] and define

Tn(i/n) := Ti, i = 1, . . . , n. (5.17)

We extend the definition of Tn to all points y ∈ [0, 1] and define the stochastic process

version of the TSS sequence as:

Tn(y) =
n∑

k=1
YkI{Yk ≤ Qn(1− y)}, y ∈ [0, 1].

Thus, using the empirical quantile function instead of the order statistics in (5.16)

allows us to consider the sequence of statistics Ti as a stochastic process approximating
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the ideal function which we get by substituting the sample mean with the expectation

and Qn with Q as follows:

Tn(y) =
n∑

k=1
YkI{Yk ≤ Qn(1− y)}

≈
n∑

k=1
YkI{Yk ≤ Q(1− y)}

≈ nE(Y I{Y ≤ Q(1− y)}). (5.18)

This approximation can be formalised using the consistency results for empirical Lorenz

curves found in Goldie (1977).The expectation on the RHS is related to the Lorenz curve

of a distribution with quantile function Q. By substitution z = F (x), dx = dz
f(F −1(z)) in

(5.18) we get

E(Y I{Y ≤ Q(1− y)}) =
∫ Q(1−y)

0
xf(x)dx

=
∫ 1−y

0
Q(z)dz.

Lorenz curve of a distribution with density f , quantile function Q and mean m is

defined as

L(x) =
∫Q(x)

−∞ tf(t)dt
m

= 1
m

∫ x

0
Q(t)dt, x ∈ (0, 1).

It follows that

E(Y I{Y ≤ Q(1− y)}) = mL(1− y). (5.19)

Similarly, the TSS process Tn(y) is related to the empirical Lorenz curve L̂n, that can

be expressed in terms of the TSS process as

Tn(y) = Tn(0)L̂n(1− y). (5.20)
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Using the consistency result for the convergence of empirical Lorenz curves from Goldie

(1977) (see Theorem 1 therein), and the law of large numbers gives

sup
y∈[0,1]

∣∣∣∣ 1nTn(y)− (1 + π1µ
2)L(1− y)

∣∣∣∣ a.s.→ 0 (5.21)

The proof of this statement is included in the proof of Theorem 4 stated below. To

describe the stopping time of the TSS procedure, we also consider the continuous

argument for the thresholds. Starting from the thresholding sequence λHi
i we define

the thresholding curve λn(y):

λHi
i = n− i+ 1 +Hi

√
2(n− i+ 1), i = 1, . . . , n

= n(1− i/n) + 1/n+Hi

√
2(n(1− i/n) + 1)

≈ n(1− y) + 1 +Hi

√
2(n(1− y) + 1), y ∈ [0, 1]

=: λn(y). (5.22)

Remark 3. Note that as n→∞, λn(y)/n→ 1− y, so the choice of constants Hi used

for thresholds λHi
i in (5.8) do not affect the behaviour of the procedure asymptotically.

The same holds if Hi’s depend on n but are of order smaller than
√
n.

Thresholding the TSS process Tn(y) using the thresholding curve λn(y), yields a

stopping time ŷn:

ŷn =


0, if Tn(y) < λn(y) for y ∈ (0, 1)

max{y > 0 : Tn(y) ≥ λn(y)}, otherwise.
(5.23)
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Note that ∣∣∣∣∣∣ k̂n − ŷn

∣∣∣∣∣∣ ≤ 1/n. (5.24)

(5.24) holds as Tn(i/n) = Ti, λn(i/n) = λi, Tn(y) is a piecewise decreasing function and

λn(y) is a continuous decreasing functions. The approximations in (5.18) and (5.22)

suggest that the corresponding stopping times should also be close, that is

ŷn ≈ ỹ,

where

ỹ := max {y : E(Y I{Y ≤ Q(1− y)}) ≥ 1− y}

= max
{
y ∈ [0, 1] : L(1− y) ≥ 1− y

1 + π1µ2

}
. (5.25)

As L(1) = 1 > 1/(1 + π1µ
2), the set above is non-empty and moreover it contains an

interval around 0, so ỹ is well defined. In fact there is a unique point of “intersection”,

as L is a convex function, L(0) = 0, and it holds that:

L(1− ỹ) = 1− ỹ
1 + π1µ2 .

(5.25) implies that asymptotically the TSS procedure rejects the null hypothesis of no

signal for the top ỹ100% percent of the sample, and does not reject the null for the

rest. It makes Q(1− ỹ) our in-mean threshold.

The closeness between the sample and the asymptotic stopping time is formalised

in the following Theorem 4.

Theorem 4. Let ŷn and ỹ be defined as in (5.23) and (5.25). It holds that

ŷn
a.s.→ ỹ, n→∞.
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5.3 Theoretical results in the general case

In this section we state some additional theoretical results in the general case, that is

when no assumption is made on the signal strength. Note that Theorem 4 from the

previous section is one such result.

The following lemma proves the contiguity of the TSS procedure, in the sense that

there is only one intersection between the sequence of tail-summed statistics and the

sequence of thresholds λHi
i .

Proposition 1. Let λHi
i be defined as in (5.8) where Hi is a non-decreasing sequence

of real numbers. For all i = 1, . . . , n− 1 it holds that

Ti < λi =⇒ Ti+1 < λi+1.

The following proposition proves that the probability of the TSS procedure over-

estimating the number of signals is small. This statement is related to the FDR and

FWER control only when the perfect separation assumption holds, which was discussed

in Section 5.1.

Proposition 2. The probability of the TSS method overestimating the number of

signals k is upper bounded by 1− Fχ2
n−k

(λk+1), where λi, i = 1, . . . , n is the sequence

of thresholds.

The following theorem proves that the probability of the TSS procedure stopping

before the mixing starts, and making zero false discoveries goes to zero as n→∞. In

the proof we use some existing results for the asymptotic behaviour of trimmed sums.

The review of the topic of trimmed sums can be found in Hahn et al. (1991). We again

consider only the “asymptotic thresholds”, that is (5.8) with Hi = 0, as the results can

be generalised to other sequences Hi similarly as in Theorem 2.
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Theorem 5. Let k̂n be the estimated number of signals using the TSS procedure with

thresholds given by (5.8) with Hi = 0. Let k = π1n be the true number of signals, j

the position of the largest non-signal variable in the decreasingly sorted sample, and

assume that j/k → 0, as n→∞. It holds that

P
(
k̂n ≤ j

)
→ 0, n→∞.

Remark 4. One of the assumptions of Theorem 5 is that j/k → 0. This assumption

does not hold if there is a perfect separation and k = π1n. However, empirically, we

find that if the signal is weaker and does not increase with sample, this assumption is

justified for a range of parameter values. This is illustrated in Figure 5.4 where it can

be seen that the values j/k seem to approach zero when n→∞ for various values of

k = π1n and µ.
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(a) µ = 1, π1 = 0.1 (b) µ = 2, π1 = 0.1 (c) µ = 3, π1 = 0.1

(d) µ = 1, π1 = 0.4 (e) µ = 2, π1 = 0.4 (f) µ = 3, π1 = 0.4

(g) µ = 1, π1 = 0.7 (h) µ = 2, π1 = 0.7 (i) µ = 3, π1 = 0.7

Fig. 5.4 For different values of µ and π1 (the exact proportion of the signal values), the
average (over N = 100 repetitions) scaled position j/k of the first non-signal variable
in the decreasingly sorted sample is shown for different values of the sample size n.



174 Tail-summed Scores method for multiple testing and signal estimation

5.4 Simulations and applications

5.4.1 Simulations

The behaviour of the TSS procedure can be controlled by adjusting Hi in the sequence

of thresholds λHi
i . Smaller Hi values will lead to more rejections. By setting Hi = 2

we achieve that when there is no signal, under the global null, we keep the probability

of making a false discovery at approximately 0.05. In the following, unless specified,

we use Hi = 2.

We first investigate the behaviour of the TSS procedure from the multiple testing

point of view. For all the simulation results below a sample from the Gaussian

sequence model with a given (nonrandom) k and a single nonzero mean parameter µ

is considered. In Figures 5.5 and 5.6, the estimated FDR for the TSS procedure for

different configurations of µ and k and for thresholds λHi
i with Hi = 2 are shown.

Fig. 5.5 Boxplots of the FDR values for the TSS method for different values of µ and k,
where Hi = 2, for all i, based on the sample of size n = 1000 and N = 1000 repetitions.
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Fig. 5.6 Boxplots of the FDR values for the TSS method for different values of µ and k,
where Hi = 2, for all i, based on the sample of size n = 1000 and N = 1000 repetitions.

For large µ, when the separation between the true-null and false-null values is

better, the FDR of the TSS method is almost zero, which is in line with the statement

of Theorem 2. On the other hand, for smaller µ values, the TSS does not control the

FDR. When the signal is weak, mixing is greater but the TSS proceeds with detecting

signals until the set of remaining values resemble the χ2
1 sample. Note that a multiple

testing procedure such as the FDR-controlling Benjamini-Hochberg, might stop later

than the TSS in the strong signal case, but earlier than the TSS in the weak signal case.

This holds because in the strong signal case, the TSS procedure with large enough Hi

will still underestimate the number of signals, while the Benjamini-Hochberg procedure

will make some controlled number of false rejections. However, if the signal is dense

but weak, the TSS procedure will include more false rejections as the stopping time

depends only on the strength of the remaining signal.

We can also investigate whether the TSS controls some other multiple testing

error rates. The local FDR (lfdr) by Efron (2007), is defined in Section 2.1.2 as a

posterior probability of a given value from the mixture distribution being from the



176 Tail-summed Scores method for multiple testing and signal estimation

null distribution. In Figures 5.7 and 5.8, we see the estimated local FDR for the TSS

threshold for different configurations of µ and k.

Fig. 5.7 Boxplots of the lfdr values for the TSS method for different values of µ and k,
where Hi = 2, for all i, based on the sample of size n = 1000 and N = 1000 repetitions.

Fig. 5.8 Boxplots of the lfdr values for the TSS method for different values of µ and k,
where Hi = 2, for all i, based on the sample of size n = 1000 and N = 1000 repetitions.

As k increases, the lfdr decreases, and as µ increases the lfdr also decreases on

average. For large µ, the separation between null and alternative distribution is better,

so although there are some large lfdr values, the FDR will still be small in those cases.
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The simulations above confirm that the TSS method does not control the FDR or

the lfdr when the signal is weak and the perfect separation condition does not hold. For

that reason it cannot be compared to other multiple testing methods in that respect.

We can also choose to view the TSS method as a signal estimation procedure and

compare it to other thresholding signal estimation methods in the literature such as

Donoho and Johnstone (1995), Johnstone and Silverman (2004) and Abramovich et al.

(2006). The following methods used for comparison are introduced in Section 2.3:

1. UNI – universal threshold t =
√

2 log n by Donoho and Johnstone (1995)

2. FDR – the Benjamini-Hochberg FDR-controlling method at level q by Benjamini

and Hochberg (1995) and Abramovich et al. (2006)

3. EBT – Empirical Bayes thresholding method by Johnstone and Silverman (2004)

4. SURE – thresholding estimator based on Stein’s unbiased risk estimate, as

considered in Donoho and Johnstone (1995)

The simulation results are shown in Table 5.1. The MSE of the TSS thresholding

estimator is among the smallest when the signal is weak. Particularly, looser thresholds

where Hi = 0 give better results for this purpose. In the case of strong signal,

the performance of the TSS is not competitive, however, an alternative sequence of

thresholds could lower down the MSE further.
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µ = 2 µ = 3

Number nonzero 50 100 200 300 500 50 100 200 300 500

TSS H = 2 206 377 662 904 1300 275 434 689 888 1190

TSS H = 0 209 367 634 859 1226 227 374 609 798 1078

UNI 203 404 805 1206 2000 366 725 1433 2122 3391

FDR q = 0.05 314 383 785 1150 1795 313 519 836 1085 1460

FDR q = 0.2 227 421 673 900 1230 226 350 527 659 850

EBT 203 386 681 874 944 242 361 494 585 749

SURE 203 400 803 1206 2012 312 700 1443 2180 3640
Table 5.1 The estimated l2 risk of different thresholding estimators based on N = 1000
repetitions for the sample of size n = 1000 from the Gaussian sequence model, with
varying number of signals and for signal strength µ = 2 and µ = 3. The bold and
underlined values correspond to the two smallest values in each column.

The simulations also show that, compared to the other thresholding procedures,

the TSS behaves well if the goal is to estimate the quadratic functional of the Gaussian

sequence, that is the l2 norm of the signal

∥µ∥ =
√√√√ n∑

i=1
µ2

i .

The results are shown in Table 5.2, where among the other thresholding signal estimation

procedures, the TSS has the smallest estimated risk, the risk being defined as

E(∥µ̂∥2 − ∥µ∥2)2.

The minimax estimator for this problem in the dense case, when k >
√
n, studied

in Collier et al. (2017) for example, and defined as

µ̂minimax =
n∑

i=1
X2

i − n,
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outperforms the TSS. We note that the minimax estimator is a special case of the TSS

sequence where a constant threshold is used:

k̂minimax = max{i : Ti ≥ n}.

This thresholding procedure is always more conservative than the TSS, as the threshold

is larger than the sequence of thresholds that we propose. However, when the signal

is weak, and the stopping time happens early on, it will hold that λHi
i ≈ n, and the

behaviour of the minimax procedure and of the TSS is similar. This explains the good

behaviour of the TSS for estimating the l2 norm of the signal, which is true especially

when the norm is smaller, as can be seen in Table 5.2.

Signal l2 norm 30 50
Number nonzero 50 100 200 300 500 50 100 200 300 500
TSS H = 2 9.34 7.33 7.41 8.10 10.3 15.3 12.4 19.7 36.0 75.3
UNI 15.4 198 474 570 620 11.9 14.0 524 1590 2900
FDR q = 0.05 6.56 31.2 243 460 674 13.8 28.2 23.6 32.3 2780
EBT 18.3 19.4 14.7 23.2 49.5 27.1 85.6 258 456 792
SURE 12.8 180 464 578 660 12.0 13.8 497 1640 3320
minimax 5.33 5.88 5.84 5.68 5.92 12.3 11.8 11.9 11.7 12.3

Table 5.2 The estimated risk (divided by 103) of different thresholding signal estimation
procedures for estimating ∥µ∥2 for given values of ∥µ∥2 and k, where the sample size is
n = 1000. The estimator in the last row is the minimax estimator of ∥µ∥2, studied in
Collier et al. (2017).

5.4.2 Applications in change-point inference

The initial motivation behind the TSS procedure was to use it for estimating the subset

of coordinates with change in mean-plus-error panel data model. We now discuss this

as a possible application. First we introduce the change-point model. Let

Xij = µij + εij, i = 1, . . . , p j = 1, . . . , n, (5.26)
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where (µij)n
j=1 is a piecewise constant signal for each coordinate i = 1, ..., p, and (εij)n

j=1

is a mean-zero noise series. We say that a change-point is at location τ if µi,τ+1 ̸= µi,τ

for at least one coordinate i. Although it is enough for only one coordinate to change,

we assume that a larger number of coordinates are affected by a change at the change-

point location τ . Suppose that there is only one change point in the dataset Xij at

location τ and define the subset of coordinates with change as:

S = {j : µi,τ+1 ̸= µi,τ} ⊂ {1, ..., p}.

Most of the papers studying model (5.26) consider the problem of testing for and

estimating the unknown change-point location τ . A popular approach is via the

CUSUM transformation. The CUSUM transformation of the data matrix X ∈ Rp×n 7→

Z ∈ Rp×(n−1) is

Zij =
√
j(n− j)

n

 1
n− j

n∑
l=j+1

Xil −
1
j

j∑
l=1

Xil

 , i = 1, . . . , p, j = 1, . . . , n− 1.

For each row i, and each candidate change-point location j, this transformation

compares the difference in sample means before and after it. The distribution of a

term in the CUSUM matrix is

Zij ∼ N(θij, 1),

where

θij =
√
j(n− j)

n

 1
n− j

n∑
l=j+1

µil −
1
j

j∑
l=1

µil

 , i = 1, . . . , p, j = 1, . . . , n− 1.

Assume that the change-point location τ is known. The vector that is a column of

the CUSUM matrix at location τ will have the largest absolute mean vector. Its
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distribution is

Z·,τ ∼ N(θ·,τ , Id), where θ·,τ =
√
τ(n− τ)

n
(µ·,τ+1 − µ·,τ ).

This separates the coordinates into two groups based on the distribution of Zi,τ :

Zi,τ ∼


N(0, 1), i /∈ S

N(θi,τ , 1), i ∈ S.
(5.27)

Thus, to estimate the subset of coordinates with change S, based on vector Z·,τ , we

need a method for estimating the subset of non-zero coordinates in the Gaussian

sequence model. This problem is largely unexplored in the change-point literature, but

the concept of selecting an “influential” subset of coordinates has been investigated for

example in Cho and Fryzlewicz (2015) and Cho (2016) as a way to reduce the effect

of noisy coordinates on the change-point estimation. Assuming that the change-point

location is shared between the coordinates, by selecting those coordinates believed to be

affected by a change-point, we may improve the accuracy of the estimated change-point

location. We mention two papers that address the problem of estimating S. In Jirak

(2015) a method for estimating the subset of coordinates with change is proposed, but

the model considered does not assume shared change-point location, so the problem

is considered coordinate-wise. The double CUSUM method by Cho (2016) estimates

the shared change-point location by applying the CUSUM transformation twice, and

as a byproduct also yields an estimate of S. First, the CUSUM transformation is

applied row-wise to reveal the likely jump locations in each row. Then, the values in

each column of the absolute CUSUM matrix are sorted decreasingly before applying

the CUSUM transformation for the second time, on the columns of that matrix. The

idea behind applying the CUSUM transformation on the sorted columns is to find a
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“jump” between the nonzero mean values of the coordinates with change and the zero

mean values of the noisy coordinates. This second step provides an estimate of the

set of coordinates that “contribute” to change, which is not claimed to be a consistent

estimator of S. Thus, the output of the double CUSUM method is both the estimated

change-point location and the subset of influential coordinates. We now compare the

estimated subsets of coordinates with change obtained by the double CUSUM and

by the TSS method by calculating the estimated number of affected coordinates and

the false discovery rate of the estimation. The TSS algorithm is applied using the

change-point location estimated by the double CUSUM algorithm. That is, the TSS

method is applied on the column of the CUSUM-transformed matrix where the double

CUSUM algorithm had estimated the change-point location.

The results in Table 5.3 show that the TSS method selects a smaller number of

coordinates compared to the double CUSUM method. The FDR of the estimated

subset is significantly smaller than when using the double CUSUM method, so the

TSS selects a smaller number of noisy coordinates. This motivates the question: Can

we improve the accuracy of the change-point estimation by implementing the TSS

procedure into a change-point estimation algorithm? This idea also extends to using

other multiple testing methods to minimise the number of noisy coordinates selected

and increase the precision of the estimated change-point location.



5.4 Simulations and applications 183

∥µ∥2 = 1.5 ∥µ∥2 = 2 ∥µ∥2 = 3 ∥µ∥2 = 4

k = 30

TSS 18 (0.083) 25 (0.030) 28 (0.005) 29 (0.005)

DC 194 (0.845) 136 (0.763) 31 (0.030) 30 (0.001)

k = 50

TSS 25 (0.133) 36 (0.067) 45 (0.008) 48 (0.002)

DC 205 (0.762) 160 (0.684) 58 (0.134) 50 (0.010)

k = 100

TSS 31 (0.164) 53 (0.096) 82 (0.033) 93 (0.009)

DC 224 (0.605) 202 (0.533) 135 (0.274) 106 (0.074)

k = 150

TSS 34 (0.148) 62 (0.101) 110 (0.050) 133 (0.020)

DC 234 (0.485) 225 (0.417) 191 (0.255) 161 (0.107)

k = 200

TSS 36 (0.132) 68 (0.095) 131 (0.028) 170 (0.086)

DC 242 (0.389) 240 (0.321) 229 (0.207) 214 (0.110)

k = 300

TSS 37 (0.086) 76 (0.063) 162 (0.040) 230 (0.026)

DC 247 (0.230) 255 (0.180) 276 (0.115) 288 (0.079)
Table 5.3 The average number of coordinates in the estimated signal set, an the false
discovery rate (in parentheses), of the TSS and the double CUSUM (DC) procedure
based on N = 200 repetitions. The parameter values are: n = p = 500, τ = 200, and
varying values of k - the number of true signals, and ∥µ∥2 - the l2 norm of the mean
vector.
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5.5 Discussion

The main idea of the TSS procedure is considering values in groups in order to detect

more signals when the signal is weak. Naturally, the theory can be extended by

assuming different distributions under the alternative – heavy tailed distributions under

the alternative, for example, would make the problem easier. Another possibility is to

consider different transformations of the sample before aggregating the values. We have

used the squared values of the sample to exploit the additive property of the chi-square

distribution, however simiar results can be obtained using other transformations and

the central limit theorem. The sequence of thresholds used can also be manipulated

to suit the goal of the analysis. The effect of more conservative thresholds than the

one proposed here can be investigated if the aim is to control the FDR. In contrast,

weaker thresholds might be of interest for signal estimation purposes. Additionally, the

performance of the TSS can be examined for different problems, such as the problem

of estimating the l2 norm of the signal, which is implied in Section 5.4.

5.6 Proofs

5.6.1 Notation

LetM(n, k) be the collection of all subsets of {1, . . . , n} of cardinality k andM is the

collection of all possible subsets of {1, . . . , n}. ∏m v is the projection of a vector v ∈ R

onto a subspace indexed by m ∈ M. ∥·∥ is the l2 norm. Let Zi, i = 1, ..., n be the

sequence of independent random variables where k ≤ n of them have N(µ, 1) and n−k

have N(0, 1) distribution. Let S = {i : Zi ∼ N(µ, 1)} and S∁ = {i : Zi ∼ N(0, 1)} and

U = (U1, ..., Un−k) be Z2
i , i ∈ S∁ and V = (V1, ..., Vk) are Z2

i , where i ∈ S (order not

important).
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5.6.2 Main results

Proposition 1. Let λHi
i be defined as in (5.8) where Hi is a non-decreasing sequence

of real numbers. For all i = 1, . . . , n− 1 it holds that

Ti < λi =⇒ Ti+1 < λi+1.

Proof. It holds that

Tk+1 ≥ λk+1 =⇒ X(1) ≥
λk+1

n− k
∨ · · · ∨X(n−k) ≥

λk+1

n− k

=⇒ X(n−k) ≥
λk+1

n− k

=⇒ X(n−k+1) ≥
λk+1

n− k
.

Since Tk = Tk+1 +X(n−k+1) we have

Tk+1 ≥ λk+1 ⇐⇒ Tk+1 ≥ λk+1 ∧X(n−k+1) ≥
λk+1

n− k

=⇒ Tk ≥ λk+1

(
1 + 1

n− k

)
.

Now, it is enough to show that

λk+1

(
1 + 1

n− k

)
≥ λk,

which is equivalent to

Hk

√
2(n− k) +Hk+1

√
2

n− k
≥ Hk

√
2(n− k + 1)

⇐⇒ Hk+1

(√
n− k + 1√

n− k

)
≥ Hk

√
n− k + 1. (5.28)
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The inequality (5.28) holds since
√

n−k+1√
n−k+ 1√

n−k

=
√

n−k
n−k+1 < 1 and Hk+1 ≥ Hk since Hk

is non-decreasing.

Remark 5. Note that (5.28) is a necessary and a sufficient condition for the contiguity

to hold, and Hk being non-decreasing is a sufficient condition. As the contiguity

depends on the ratios between consecutive Hk’s, and they should be non-decreasing,

there is no largest or smallest sequence of thresholds for which it holds. However, if we

fix H1 ≥ 0, using the minimum condition from (5.28), we get the minimum allowed

sequence of Hk’s

Hk = H1

k−1∏
i=1

√
n− k

n− k + 1

= H1

√
n

n− k + 1 ,

giving the minimum sequence of thresholds to be

λk = n− k + 1 +H1
√

2n.

We could also fix H1 < 0 and get the maximum allowed thresholds. Note that simply

having the contiguity property, does not mean reasonable thresholds, as we also want

to be able to reject the hypothesis at an appropriate step, rather than just proceed

accepting.

Lemma 3. Let U1, . . . , Un−k
iid∼ χ2

1 and V1, . . . , Vk
iid∼ χ2

1(µ2) where µ ≥
√

2 log(n− k) +
√

2 log k. If k(n)→∞ and n− k →∞, the probability of perfect separation between

the signal and the non-signal values converges to 1:

P
(

min
j=1,...k

Vj ≥ max
j=1,...,n−k

Uj

)
n→∞−−−→ 1. (5.11)
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Proof. The proof follows from the proof of Theorem 4 in Jeng (2016), where a sufficient

condition for the separation is given for Gaussian variables N(0, 1) and N(µ, 1), µ > 0.

As expected, the sufficient rates for the signal strength stay the same as therein. We

prove (5.11) by finding a(n) such that the following holds

P
(

min
j=1,...k

Vj < max
j=1,...,n−k

Uj

)
≤ P

(
min

j=1,...k
Vj ≤ a(n)

)
+ P

(
max

j=1,...,n−k
Uj > a(n)

)
(5.29)

n→∞−−−→ 0.

For the second term in (5.29), for a(n) = 2 log(n− k) it holds that

P ( max
j=1,...,n−k

Uj > a(n))→ 0, n→∞. (5.30)

This holds since

P ( max
j=1,...,n−k

Uj > a(n)) = P ( max
j=1,...,n−k

|Zj| >
√
a(n))

= 2P ( max
j=1,...,n−k

Zj >
√
a(n))

≤ 2(n− k) 1√
a(n)
√

2π
exp{−a(n)/2} = C√

2 log(n− k)
.

The last inequality follows from the union bound and the upper bound for the tail of

Gaussian distribution 1− Φ(t) ≤ e−t2/2

t
√

2π
. For the first term in (5.29) we have

P
(

min
j=1,...,k

Vj ≤ a(n)
)

= P
(

min
j=1,...,k

|Zj + µ| ≤
√
a(n)

)
≤ P

(
min

j=1,...,k
Zj + µ ≤

√
a(n), min

j=1,...,k
Zj ≥ −µ

)
+ P ( min

j=1,...,k
Zj < −µ)

≤ P
(

min
j=1,...,k

Zj + µ <
√
a(n)

)
+ P ( min

j=1,...,k
Zj < −µ). (5.31)
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For the second term in (5.31), using symmetry property, the arguments for the right

tail of the maximum of Gaussians, and µ >
√

2 log(k) it holds that

P ( min
j=1,...,k

Zj < −µ)→ 0, n→∞.

The first term in (5.31) goes to zero as µ ≥
√

2 log(n− k) +
√

2 log k. As both terms

go to zero we have

P
(

min
j=1,...,k

Vj ≤ a(n)
)
→ 0 (5.32)

Combining (5.32) and (5.30) completes the proof.

Proposition 2. The probability of the TSS method overestimating the number of

signals k is upper bounded by 1− Fχ2
n−k

(λk+1), where λi, i = 1, . . . , n is the sequence

of thresholds.

Proof.

P
(
k̂ > k

)
= P (Tk+1 > λk+1)

= P

n−k∑
j=1

Y(j) > λk+1


= P

 min
m∈M(n,n−k)

∥∥∥∥∥∏
m

X

∥∥∥∥∥
2

> λk+1


≤ P

∑
i∈S∁

Xi > λk+1


= 1− Fχ2

n−k
(λk+1)

Theorem 2. If the perfect separation assumption holds, k = π1n for some π1 ∈ (0, 1),

un is such that un → 0 and
√
nun →∞, and λHi

i is defined by (5.8), where Hi = Hi(n)
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are such that Hi(n)/√nun → 0, it holds that

P

∣∣∣∣∣∣ k̂n − π1

∣∣∣∣∣∣ ≥ un

→ 0, n→∞, (5.12)

where k̂ is the number of signals estimated by the TSS procedure. Furthermore, the

FDR and the FNR of the TSS procedure go to zero.

Proof. We separate (5.12) into two terms:

P

∣∣∣∣∣∣ k̂n − π1

∣∣∣∣∣∣ ≥ un

 ≤ P

 k̂
n
− π1 ≤ −un

+ P

 k̂
n
− π1 ≥ un

 .
For the second term, the convergence to zero follows directly from Duval et al. (2007),

as our thresholds are larger than the ones considered therein, making the probability

considered even smaller. To get the convergence of the first term to zero it is enough

to prove that

P1 = P

 k̂n − π1 ≤ −un

 ∩ Ωn

→ 0, n→∞.

Note that it is more precise to write ⌈nun⌉ From the contiguity property it follows that

P1 ≤ P ({Tk−nun+1 < λk−nun+1} ∩ Ωn)

≤ P

n−k∑
i=1

Y(i) +
n−k+nun∑
i=n−k+1

Y(i) ≤ n− k + nun +Hk−nun

√
2(n− kn + nun)


= P

(
1

n− k + nun

n−k∑
i=1

Y NS
(i) + 1

n− k + nun

nun∑
i=1

Y S
(i) ≤ 1 + Hk−nun

√
2√

n− k + nun

)
.



190 Tail-summed Scores method for multiple testing and signal estimation

Now we separate the chi-square sum from the non-central chi-square sum:

P1 ≤ P

(
1

n− k + nun

n−k∑
i=1

Y NS
(i) ≤ 1− (1 + ε)nun

n− k + nun

+ Hk−nun

√
2√

n− k + nun

)

+ P

(
1

n− k + nun

nun∑
i=1

Y S
(i) ≤

(1 + ε)nun

n− k + nun

)
.

Denote the first term on the RHS as P1′ and the second one as P1′′. P1′′ goes to zero,

which follows from the perfect separation condition, as in Duval et al. (2007). For P1′,

the central limit theorem can be used to prove that it converges to zero.

P1′ = P

∑n−k
i=1 Y

NS
(i) − (n− k)√
2(n− k)

≤ − εnun√
2(n− k)

+Hk−nun

√
1 + nun

n− k


= P

∑n−k
i=1 Y

NS
(i) − (n− k)√

2(1− π1)n
≤ − ε

√
nun√

2(1− π1)
+Hk−nun

√
1 + un

(1− π1)

 .
In order for P1′ → 0, from the central limit theorem, it is sufficient to have the

expression on the RHS of the inequality go to −∞. As un → 0 and
√
nun → ∞, it

holds that √
1 + un

(1− π1)
→ 1,

and

− ε
√
nun√

2(1− π1)
→ −∞.

For Hn such that
√

nun

Hn
→∞, the first term dominates the second and we have P1′ → 0.

Finally, having the consistency of the proportion estimator, the proof of vanishing

FDR and FNR follows as in Duval et al. (2007).

Theorem 3. For any ε > 0 define

ỹO(ε) = min
{
y :

∫ y

0
Qχ2

1(µ2)(x)dx = 1
π1
y(1 + ε)

}
,



5.6 Proofs 191

The quantity ỹO(ε) is asymptotically the proportion of the smallest signal values nec-

essary to include so that their mean is at least 1 + ε. The oracle TSS procedure with

thresholds given by (5.8) with Hi = 0 stops at the location k̂O for which it holds that

P

 k̂O

n
− k

n
< −ỹO(ε)

→ 0, n→∞.

meaning that asymptotically the mean of the undetected signal is no significantly larger

than 1.

Proof. Note that

P

 k̂O

n
− k

n
≤ −ỹO(ε)

 = P (k̂O ≤ k − nỹO(ε))

= P (Tk−nỹO(ε)+1 < n− k + nỹO(ε))

= P (χ2
n−k + S̃

k−nỹO(ε)
k < n− k + nỹO(ε)), (5.33)

where S̃i
k is the sum of n− i smallest order statistics from the sample of size k, from

the noncentral chi-square distribution χ2
1(µ2). Denote the signal values as Y S

(1), . . . , Y
S

(k)

Let QS
k be the empirical quantile function of the signal variables. First, note that

1
k
S̃

k−nỹO(ε)
k := 1

k

nỹO(ε)∑
i=1

Y S
(i)

= 1
k

k∑
i=1

Y S
(i)I{Y S

(i) ≤ QS
k (ỹO(ε))}

a.s.→
∫ Q

χ2
1(µ2)(ỹO(ε))

0
xdF (x), n→∞

=
∫ ỹO(ε)

0
Q(y)dy = 1

π1
ỹO(ε)(1 + ε). (5.34)
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The almost sure convergence obtained above follows for example from the convergence

of the empirical Lorenz curve studied in Goldie (1977) (see Theorem 1). Note that this

result is also used in the proof of Theorem 4 below.

Let 0 < ε0 < ε. We split the probability in (5.33) into two terms, as in the proof of

Theorem 2 and get

P

 k̂O

n
− k

n
≤ −ỹO(ε)

 ≤ P (χ2
n−k < n− k − ε0nỹO) + P

(
S̃k−nỹO

k ≤ nỹO(1 + ε0)
)

(5.35)

The first term goes to zero, which follows from the central limit theorem. For the

second term, it is enough to prove that

P

(
1
nỹO

S̃k−nỹO
k ≤ 1 + ε0

)
→ 0, n→∞.

This holds since

P

(
k

nỹO

1
k
S̃k−nỹO

k ≤ 1 + ε0

)
= P

(
π1

ỹO

1
k
S̃k−nỹO

k − (1 + ε) ≤ ε0 − ε
)
→ 0, n→∞

where the last equality follows from the convergence result in (5.34)

Theorem 4. Let ŷn and ỹ be defined as in (5.23) and (5.25). It holds that

ŷn
a.s.→ ỹ, n→∞.

Proof. First, we note that Tn(y) is closely related to the Lorenz curve estimator denoted

as L̂n(y) in Goldie (1977). Precisely, it holds that

L̂n(y) = Tn(1− y)
Tn(0) .
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In Theorem 1 in Goldie (1977) it is proved that

sup
y∈[0,1]

|L̂n(y)− L(y)| a.s.→ 0, n→∞.

From the law of large numbers, we have that

1
n
Tn(0) = 1

n

n∑
i=1

Yi
a.s.→ 1 + π1µ

2, n→∞.

The uniform convergence of the scaled TSS process to the corresponding (scaled and

reversed) Lorenz curve now follows directly from these last two asymptotic results and

the following inequalities:

sup
y∈[0,1]

∣∣∣∣ 1nTn(y)− (1 + π1µ
2)L(1− y)

∣∣∣∣
= sup

y∈[0,1]

∣∣∣∣ 1nTn(1− y)− (1 + π1µ
2)L(y)

∣∣∣∣
= 1
n
Tn(0) sup

y∈[0,1]

∣∣∣∣∣L̂n −
1 + π1µ

2

1
n
Tn(0) L(y)

∣∣∣∣∣
≤ 1
n
Tn(0)

(
sup

y∈[0,1]
|L̂n(y)− L(y)|+

∣∣∣∣∣1 + π1µ
2

1
n
Tn(0) − 1

∣∣∣∣∣ sup
y∈[0,1]

|L(y)|
)

a.s→ 0, n→∞.

As the sequence of thresholds is non-random it holds that λn(y)/n a.s.→ 1− y. It follows

that the intersection point between Tn(y) and λn(y) (ŷn by definition) has to converge

almost surely to the unique intersection point between (1 + π1µ
2)L(1− y) and 1− y (ỹ

by definition), that is:

ŷn = max{y : Tn(y) ≥ λn(y)} a.s.→ max
{
y : (1 + π1µ

2)L(1− y) ≥ 1− y
}

= ỹ,

which concludes the proof.
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Theorem 5. Let k̂n be the estimated number of signals using the TSS procedure with

thresholds given by (5.8) with Hi = 0. Let k = π1n be the true number of signals, j

the position of the largest non-signal variable in the decreasingly sorted sample, and

assume that j/k → 0, as n→∞. It holds that

P
(
k̂n ≤ j

)
→ 0, n→∞.

Proof. The probability that the TSS procedure stops in j or fewer steps, is the

probability that the statistic at (j + 1)st step is below the threshold.

P
(
k̂n ≤ j

)
= P

 1
n− j

n−j∑
i=1

Yi ≤ 1
 .

As j is the location of the largest non-signal value, the terms in the sum above are the

whole χ2
1 sample of size n− k and k − j signal values. By separating the sum above

into the sum of signal and non-signal terms, we can separate the probability in two

terms for some ε > 0:

P

 1
n− j

n−j∑
i=1

Yi ≤ 1
 ≤ P

(
1

n− j

n−k∑
i=1

Y NS
(i) ≤ 1− (1 + ε)(k − j)

n− j

)

+ P

(
1

n− j
S̃j

kn
≤ (1 + ε)(k − j)

n− j

)
, (5.36)

where S̃j
kn

= ∑k−j
i=1 Y

S
(i) is the sum of k − j smallest order statistics from the noncentral

chi-square distribution. For the first term on the RHS we use the central limit theorem

to get the convergence to zero. This probability comes down to

P

∑n−k
i=1 Y

NS
(i) − (n− k)√
2(n− k)

≤ − ε(k − j)√
2(n− k)

 .
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As k = π1n and j/n→ 0, as n→∞, it holds that

− ε(k − j)√
2(n− k)

→ −∞, n→∞.

From the central limit theorem it follows that the above probability goes to zero. It is

left to prove that the second term on the RHS in (5.36) goes to zero:

P

(
1

k − j
S̃j

k ≤ 1 + ε

)
→ 0, n→∞. (5.37)

If j behaves like a constant, that is j/k ∼ 1/k, then S̃j
k is a lightly trimmed sum,

and the central limit theorem holds as in the full-sample case (see for example Maller

(1982), or Kesten (1993) for a more general discussion). The central limit theorem for

the lightly trimmed sum from the noncentral chi-square distribution χ2
1(µ2), implies

P

 S̃j
k − k(1 + µ2)√
k(1 + 2µ2)

≤ (1 + ε)(k − j)− k(1 + µ2)√
k(1 + 2µ2)

→ 0, n→∞.

This holds since ε > 0 can be arbitrarily small, so we can chose it such that the value

on the RHS goes to −∞, and the probability above goes to zero. If j is such that

j/k → 0, but j →∞ then we can apply the weak convergence result for the moderately

trimmed sums from Csörgő et al. (1986) (see Theorem 1). The theorem states that

Sj
k − k

∫ 1−j/k
j/k Q(u)du√
kσ2(j/k)

D→ N(0, 1), n→∞. (5.38)

where Sj
k is the symmetrically trimmed sum, excluding the smallest and the largest signal

values Sj
k = ∑k−j

i=j Y
S

(i), and σ2(j/n) is a bounded function, such that σ2(j/n) ≤ (1+µ2)2.
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Since Sj
k < S̃j

k, to have the vanishing probability in (5.37), it is enough to show that

P

Sj
k − k

∫ 1−j/k
j/k Q(u)du√

k(1 + 2µ2)
≤

(1 + ε)(k − j)− k
∫ 1−j/k

j/k Q(u)du√
k(1 + 2µ2)

→ 0,

as n → ∞. The quantity on the RHS goes to −∞ since ε > 0 is arbitrarily small

and
∫ 1−j/k

j/k Q(u)du→
∫ 1

0 Q(u)du = 1 + µ2. This observation and (5.38) conclude the

proof.



Chapter 6

Conclusions

In this thesis we approach the problem of multiple testing using ideas from the change-

point literature, and we consider the problem of inference on the signal in the Gaussian

sequence model. In this chapter, we provide a brief summary of our main contributions

in Chapters 3, 4 and 5 and discuss possible directions for future research.

In Chapter 3, we propose the Difference of Slopes (DOS) method, a two-step

method for estimating the proportion of false null hypotheses. In the first step, we

approximate the sequence of sorted p-values with a piecewise linear function with one

change-point in slope. In the second step, to get the proportion estimate, we apply

the Storey’s estimator by Storey (2002) using that change-point as the parameter.

This essentially means approximating the quantile function of the p-value distribution

with a piecewise linear function. The theoretical results use the theory of quantile

processes and show that our estimator is asymptotically conservative in the sense

that asymptotically, the false null proportion estimator has a non-positive bias. The

simulation results show that for small (n = 50) and moderate (n = 1000) sample sizes,

the DOS procedure works well when compared to the other proportion estimators in the

literature. It works particularly well in sparse cases, when the proportion of false null

hypotheses is small. If the proportion is large, but the signal is very weak, the single
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change-point approximation might be inadequate causing the variance of the estimates

to be larger. Also, for very large samples (n = 10000), and when the alternative is

not strong enough, the DOS estimator can significantly underestimate the proportion.

The reason for this is that the quantile function is smooth and the piecewise linear

approximation is inadequate. Therefore, a possibility for future research is to make

the DOS a sequential procedure, and estimate multiple change-points. This could

improve the estimation in weak cases by using a more appropriate piecewise linear

function for the approximation of the quantile function. Additionally, as mentioned

in Section 3.5, a generalized version of the DOS estimator, α-DOS, should be further

investigated, along with the methods for choosing α. As discussed in Section 3.6, a

possible application of proportion estimators is in making the Benjamini-Hochberg

procedure adaptive. For this purpose the almost sure conservativeness of a proportion

estimator is a desirable property as it guarantees the asymptotic FDR control of

the resulting adaptive procedure. Furthermore, as the classic Benjamini-Hochberg

procedure lies at the core of many modern multiple testing procedures, the main

direction for further research is to make these procedures adaptive by using the DOS

proportion estimator.

In Chapter 4, we discuss some existing connections between the global testing

problem and the change-point problem that have not been exploited in the literature.

We discuss the relationship between the Higher Criticism (HC) statistic by Donoho

and Jin (2004) and the Cumulative-Sum (CUSUM) statistic that is widely used in

the change-point literature. Many change-point detection procedures use the CUSUM

statistic on the subintervals of the data in order to improve testing and estimation

when there are multiple change-points. We discuss some of these methods in Section

4.1 and 4.3. It might be of interest for future research to consider these alternative

choices of intervals, and to adapt for example, the MOSUM by Eichinger and Kirch
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(2018), the DOS or some other multiple change-point procedure for the global testing

problem, by applying them on the sequence of spacings.

Extending our proposal in Section 4.3, we now mention some additional tools from

the change-point literature that can be used on the sequence of spacings. These include

smooth/gradual change detection or S-shaped function estimation for the sequence

of spacings that would identify the smooth transition between the false null and the

true null p-value spacings. Furthermore, shape constraints can be incorporated in the

suggested methods as the direction of the change is known.

Gradual change - If we consider the sequence of p-values spacings, finding the point

of the end of the linear part is naturally a gradual change problem. If the false null

distribution is such that its support is [0, b], then the spacings corresponding to the p-

values larger than [0, b] are uniform spacings, identically distributed and approximately

independent. For spacings smaller than b, the distribution changes. The literature on

abrupt change inference is substantially larger than on the gradual change. In Vogt and

Dette (2015) a nonparametric method for testing and estimating the point of the onset

of change is proposed. This method requires that the features that are changing in

the locally stationary process are known . This includes mean, variance or covariance

structure of the process. In Nie and Nicolae (2021), they propose a nonparametric

kernel-based method for gradual change detection and localisation.

S-shaped functions - As the sequence of p-values approximates the quantile function of

the p-value distribution, we can consider that the sequence of spacings approximates

the derivative of the quantile function which is Q′(t) = 1/f(Q(t)), a reciprocal of the

density quantile function. In the case of decreasing density, function Q′(t) is S-shaped,

as the values around t = 0 are close to zero, and for t large enough, Q′(t) ≈ 1/π0 is

constant. In Feng et al. (2021) a least squares estimator as a nonparametric method

for estimating S-shaped function is analysed and an efficient algorithm for computing
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the estimator is proposed. The fitted function is piecewise linear, and in this sense also

appropriate for the problem of grouping p-values.

In Chapter 5 we propose the Tail-Summed Scores (TSS), a method for inference in

the Gaussian sequence model. TSS is a pseudo-sequential procedure for signal recovery

that considers values in groups with the aim to increase the number of true signal

discoveries when the signal is weak. Starting from the full sample, the procedure

removes the largest absolute values one by one, which are then declared as signal, until

the remaining set of values begins to resemble noise as a group. At each step, the

norm of the remaining values is compared to a (possibly different) threshold, and the

procedure is stopped as soon as the remaining norm is below the threshold. As the

Gaussian values are squared and summed when calculating the norm, the proposed

thresholds are quantiles of chi-square distributions with decreasing degrees of freedom.

The theoretical analysis of the TSS method is given first in the case of a strong signal,

that is when signal and non-signal values are well separated. These results rely on

the results from Duval et al. (2007), where a similar procedure is proposed for the

purpose of multiple testing. In this case the FDR of the TSS procedure is proved

to go to zero. The theoretical analysis when no assumption on the signal strength

is made is considerably more difficult. In this case we first consider the oracle TSS

procedure. The oracle TSS uses the oracle sorting, separating the signal from the

non-signal values, even when the signal is weak and signal values are smaller than

the non-signal values. We explore the oracle TSS, as we find that empirically, the

oracle TSS stops at a similar location as the regular TSS. We note the connection

between the TSS sequence and the Lorenz curve of the squared sample, which yields

the results on the asymptotic behaviour of the procedure. In the weak signal case,

we prove that the TSS procedure will stop after the mixing between the signal and

non-signal values start, so in general it will include some false positives. As mentioned
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above, the conservativeness of the procedure can be adjusted by choosing different

sequence of thresholds. In Section 5.4, a connection between the minimax estimator

for the l2 norm of the signal and the TSS method is noted. This suggests that different

thresholds can be used for different purposes, and the topic of future research can be

to find the best thresholds for each problem, while keeping the idea of considering

values in groups. We can consider the problems of FWER or FDR control, estimating

the signal or estimating the l2 norm of the signal. Another possible extension of the

TSS method comes from considering different distributions – not just the Gaussian

sequence model. Finally, different transformation of the data can be considered, as an

alternative to the squared values used by the proposed method.
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