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Abstract

This thesis discusses latent variable models with the aim of uncovering
hidden structure in multi-dimensional data. In rich data settings, di-
mension reduction has made latent variable methods, such as Dynamic
Factor Models, extremely popular. Nonetheless, the dynamics of the
factors have in most cases been modelled as independent and identi-
cally distributed (i.i.d.) white noise even though many financial and
economic variables exhibit conditional heteroskedasticity, i.e., their vari-
ances conditional on the past evolve with time. This feature, modelled
in the literature by GARCH models, has been applied to factor analysis
either in the finite n case or by use of two-step estimators, producing
inefficient results. In the first chapter, we show that when n → ∞,
estimators for the latent factors and their conditional variance are, in-
deed, consistent. First, we convert the model in state-space form ex-
plicitly taking into account heteroskedasticity. Subsequently, we apply
the Kalman filter to jointly estimate the parameter via the Expecta-
tion Conditional Maximization Either algorithm (ECME). This version
of the EM replaces some of the steps which conditionally maximize the
expected complete-data log-likelihood, with steps that maximize the real
prediction-error likelihood, thus dealing with the lack of closed-form so-
lution for the GARCH parameters. We then propose further modifica-
tions to the original model, introducing potential Dynamic Conditional
Correlation (DCC) dynamics in the factors and a time-varying volatility
for the observation equation disturbances. These extensions are subse-
quently assessed empirically, in the context of portfolio allocation and
the economically relevant Growth at Risk (GaR). Finally, when the data
dimension is limited, a Multi-Output Gaussian Process with Semipara-
metric Latent Factor structure can provide an extremely valuable op-
portunity to explore unobserved states in a multivariate setting. These
non-linear models offer a novel and efficient approach to estimate the
causal effect of interventions in time. As such, we analyse whether the
early and intense vaccination campaign introduced in the UK affected
the number of deaths and level of contagiousness of Covid-19 in the first
semester of 2021.
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Chapter 1

Conditionally Heteroskedastic Dynamic
Factor Models

1.1 Introduction

High-dimensional data are undeniably one of the most significant challenges in current
statistics, and they have grown in prevalence in almost all disciplines linked to data sci-
ences. The study of high-dimensional time series, huge cross-sections of univariate time
series or panels, has not avoided this trend, and it is now one of the most active subjects in
theoretical and applied econometrics. The so-called factor models are the foundation of one
of the most successful frameworks in the analysis and prediction of high-dimensional time
series thus far. This framework, in its various structures, is based on the sum of two mutu-
ally orthogonal components: the common component, driven by a small number of factors
or common shocks, and an idiosyncratic component, which is specific to each series. In
particular, the General or Generalized Dynamic Factor Model (GDFM) proposed by Forni
et al. (2000) encompasses most other models, such as the static factor approaches proposed
by Bai (2003), Stock and Watson (2002), and Fan et al. (2013), by taking into account
all leading and lagging linear dependencies among the data. Furthermore, as pointed out
by Forni and Lippi (2001) and Hallin and Lippi (2013), the GDFM decomposition into a
common and idiosyncratic component requires the usual second-order stationarity and the
existence of spectral densities with no further structural restriction on the data generating
process.
Prediction is an apparent and natural goal in traditional analysis of univariate and multi-
variate time series; it is no less important in high-dimensional data. Due to the numerous
and complex cross-dependencies among the many cross-sectional components, an efficient
forecast should exploit the amount of information available in the present and lagged values
of the entire cross-section; the larger the cross-section (i.e., the higher the dimension n),
the more crucial the role of that information, and the more delicate its recovery. Stock
and Watson (2002), Bai and Ng (2008), and Forni et al. (2018), to name just a few, have
all employed factor models in the design of point-predictors, and have done so effectively.
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However, those writers are largely working with macroeconomic data, while factor model
approaches in the study and prediction of financial returns have received less attention:
see, for example, Chamberlain and Rothschild (1983), Connor and Korajczyk (1993), or
Ait-Sahalia and Xiu (2017). Conditional volatility phenomena are particularly important
when dealing with returns, due to the presence of conditional distribution heterogeneity (of
which conditional heteroskedasticity is only one example) and should be considered when
constructing conditional prediction limits or conditional prediction intervals. Most multi-
variate approaches for the analysis of conditional heterogeneity in the literature are limited
to the study of conditional heteroskedasticity and rely on Generalized AutoRegressive Con-
ditional Heteroskedasticity (GARCH) or Stochastic Volatility type parameterizations: see,
for example, the reviews by Laurent et al. (2006) for the former and Asai et al. (2006)
or Aguilar (2009) for the latter. However, because of the curse of dimensionality, only
the most basic models may be evaluated in high-dimensional panels, potentially resulting
in a significant loss of efficiency. Engle (1987) was the first to propose the concept of a
conditional heteroskedastic factor model, in which the observed series’ conditional covari-
ance follows a one-factor process. The factor GARCH technique is the most often used of
these; see, for example, Diebold and Nerlove (1989), Ng et al. (1992), Harvey et al. (1992),
and Sentana et al. (2008). The former authors, for example, develop an heteroskedastic
one-factor model for exchange rate series. In these papers, the Kalman filter is used for
estimation rather than Engle et al. (1990)’s two-step technique, in which static elements
are extracted from the unconditional covariance matrix before being treated as univariate
GARCH processes. Static factor models based only on volatilities have also been examined
by Fan et al. (2015) and Connor et al. (2006), but this approach fails to take advantage
of the information contained in the idiosyncratic components of returns. For these rea-
sons, Barigozzi and Hallin (2017a) propose a two-step GDFM approach in which factor
models’ nonparametric and model-free properties are combined in a joint study of returns
and volatilities. That two-step GDFM is combined with a GARCH strategy to produce
point-forecasts for volatilities. Then, Barigozzi and Hallin (2017b) and Barigozzi et al.
(2019) study the dynamic interdependencies of the US and international financial markets
and Chicheportiche and Bouchaud (2015) present a comparable two-stage factor technique,
but in a static factor model context. Finally, Trucíos et al. (2021) use a similar approach
to construct the minimum variance portfolio for a high-dimensional panel of assets on the
basis of the one-step-ahead variance forecast. Most of the above literature, however, em-
ploys a two-step estimation approach, which presents a strong limitation as it is not clear
how the inefficiency generated by the two-step procedure is incorporated into the volatility
panel.
Separately, there is strand of literature that studies conditionally heteroschedastic (non-
dynamic) factor models, but in the context of indirect or simulation-based estimation.
In order to bypass the inconsistencies associated with the Kalman filter approximations
to the log-likelihood function provided by Diebold and Nerlove (1989) and Harvey et al.
(1992), Fiorentini et al. (2004) develop computationally efficient Markov chain Monte Carlo
(MCMC) simulation methods that provide more precise likelihood-based estimators of fac-
tor models with GARCH structures. Subsequently, Sentana et al. (2008) derive an indirect
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estimators to deal with the lack of a closed form solution to the log-likelihood function,
without resorting to simulation. Even so, the procedure requires some approximation to
accommodate large-scale multivariate processes thus the authors resort to sequential es-
timators. Although both works mention consistency proprieties of the latent factor as n
increases, this framework is never properly adopted and no formal proof is presented, es-
pecially in regard to the errors and, consequently, conditional variances.
In this chapter we propose a Conditionally Heteroskedastic Dynamic Factor Model (CHDFM)
to explain and forecast the conditional covariances of a large number of series with a mini-
mal number of parameters. Each series is assumed to have a common portion that carries a
dynamic structure and an idiosyncratic part, independent of time. The common component
volatilities evolve according to the GARCH rule so that we can describe the development
of the conditional covariances of observable series by simply modelling the evolution of
the conditional covariances of a few components. This work extends the results of Harvey
et al. (1992) for the ARCH(1) to the more general AR(1)-GARCH(1,1) in the context of
asymptotic n. In the paper, the authors developed a modified Kalman filter for models
with unobservable heteroskedastic components, a structural ARCH, and applied it to a
dynamic factor model. The derivation of the Kalman filter estimator is performed in the
finite n case, and the authors argue against the good capacity of the estimator to correctly
extract the unobserved state. In this first chapter we prove that, in the framework of
the Generalized Dynamic Factor Model, as n grows, the factors, including the conditional
variances, can be consistently extracted and parameters efficiently estimated by the use of
a variation of the Expectation Maximization (EM) algorithm of Dempster et al. (1977).
As no closed form solution exists for GARCH parameters, we employ the Expectation
Conditional Maximization Either (ECME) algorithm (Liu and Rubin, 1994), which is ob-
tained by replacing some (all or none) CM-steps of the ECM, with steps that maximize the
correspondingly constrained actual likelihood function, directly available from the Kalman
filter. Upon investigating the consistency features of our estimation procedure for the
cross-sectional (n) and sample (T ) dimensions going to infinity, we evaluate the goodness
of our estimation approach and the strengths of our model using Monte Carlo simulations
and two empirical applications.

The main contribution of this chapter is to set the theoretical background of the CHDFM.
We address the limitations of the unobserved component model with ARCH disturbances
of Harvey et al. (1992) and show that in the context of asymptotic n, both unobserved
factors and model parameters can be estimated consistently. Furthermore, we generalize
the approach to the more exhaustive and flexible AR-GARCH model. Finally, we propose
and derive an efficient estimation procedure based on the ECME algorithm.

The chapter is structured as follows. Section 1.2 describes the general structure of the
model and the main assumptions. Section 1.3 deals with estimation, introducing the
Kalman filter to extract the unobserved factors and the Expectation Conditional Max-
imization Either algorithm to determine the optimal parameters. Section 1.4 extends the
theoretical framework by discussing topics such as identification and prediction distribu-
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tion. Section 1.5 illustrates some specific cases and examines the numerical aspects in
more detail. Section 1.6 presents a simulation exercise in which estimation results are
discussed. The final section contains the Appendix, which encompasses the main proofs of
the statements discussed in this chapter.

1.2 The Model

1.2.1 A Conditionally Heteroskedastic DFM framework

For an n-dimensional panel of time series of size T : {xi,t : i = 1, ..., n, t = 1, ..., T} consider
the approximate dynamic factor model given by

xt = ΛGt + ξt, (1.1)
Gt = ΦGt−1 + ηt (1.2)

where xt = (x1,t · · ·xn,t)′, ξt = (ξ1,t · · · ξn,t)′ are n-dimensional vectors, Gt = (G1,t · · ·Gr,t)
′

is the r×1 zero-mean unobserved state vector, with r finite and r � n, and Λ = (λ1 · · ·λn)
′

is the matrix of factor loadings with dimension n×r . We have that E[Gt] = 0 and E[xt] = 0
and unconditional covariance for xt and Gt are denoted as Var[xt] = Σ and Var[Gt] = Ω.
The r × r matrix Φ describes the dynamic relationship between the factors and it is time
independent.1 The observation equation disturbance vector ξt is homoskedastic and nor-
mally distributed with mean zero, that is ξt ∼ NID(0,Γ), with Γ positive definite.2 Fur-
thermore, we assume that ξt is uncorrelated at all lags and leads with Gt. The conditional
heteroskedasticity is introduced through the elements of ηt, the factor disturbances ηi,t
with i = 1, ..., r, which evolves according to:

ηt = Q
1/2
t η̃t (1.3)

qi,t = ωi + αiη
2
i,t−1 + βiqi,t−1 (1.4)

with η̃t ∼ NID(0, Ir) being an r -dimensional vector and Qt being the r × r diagonal con-
ditional covariance matrix with diagonal entries qi,t.
Denote by It−1 the σ-field generated by xt and Gt up to, and including, time t − 1. It
is of crucial importance to distinguish between It−1 and the econometrician’s informa-
tion set Xt−1 = {xt−1,xt−2, ...}, defined such that It−1 = Xt−1 ∪ Ft−1, given Ft−1 =
{Gt−1,Gt−2, ...}. Although we work with both xt and Gt, let us remark that the only
process we observe is xt. As it will be explained later, working with a smaller subset
complicates the analysis as we define the variance process as a latent process itself.
From the above equations, it is straightforward to see that Gt has conditional moments
E[Gt|It−1] = ΦGt−1 and Var[Gt|It−1] = Qt, while for xt it holds that E[xt|It−1] = ΛGt

1Although a generalization of it depending on t or the information available at time t − 1 is possible
(Harvey et al., 1992).

2Generalization to ξt being heteroskedastic is also possible making Var(ξt|Xt−1) diagonal and time-
dependent. We will show how the model can be modified accordingly in the following chapter.
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and Var[xt|It−1] = Σt, where Σt = ΛQtΛ
′
+ Γ.

Let ‖A‖F be the Frobineus norm of a p × p matrix A such that ‖A‖F = tr(A′A)1/2

with tr(A) being the trace of A. Also, ‖A‖1 = maxi=1,...,p

∑p
j=1 |[A]ij| and ‖A‖ =

λmax(AA
′
)1/2 = λmax(A) if A is symmetric. They represent the maximum absolute column

sum and largest eigenvalue of A, respectively. Denote n and T as the dataset dimension
and sample size, respectively. We focus on asymptotic analysis where both n, T →∞.
The following assumptions about the model are made:

Assumption 1 (Dynamics) {Gt} is a stationary process with E[Gt] = 0 and Var[Gt] <
∞. More specifically: det(Ir − Φz) 6= 0 for all z ∈ C such that |z| ≤ 1. Furthermore
each element of ηt = Q

1/2
t η̃t follows a GARCH(1,1) dynamic with η̃t ∼ NID(0, Ir) and Qt

diagonal with entries qi,t. ωi, αi, βi > 0 and αi + βi < 1, for all i = 1, ..., r.

Assumption 2 (Errors independence) The processes {ηj,t, j = 1, · · · , r, t ∈ Z} and
{ξi,t, i ∈ N, t ∈ Z} are mutually independent.

Assumption 3 (Measurement errors covariance) For all n ∈ N and all t ∈ Z, E[ξt] =
0 and Γ = E[ξtξ

′
t] is positive definite and for all i ∈ N, C−1

ξ ≤ [Γ]ii ≤ Cξ for some finite
positive real Cξ independent of i. Furthermore, for all i, j ∈ N, all t ∈ Z, and all h ∈ Z,
|E[ξi,tξj,t−h]| ≤ ρ|h|Mi,j where ρ and Mi,j are finite positive reals, independents of t and
such that 0 ≤ ρ < 1,

∑n
j=1Mi,j ≤ Mξ, and

∑n
i=1Mi,j ≤ Mξ for some real Mξ < ∞ and

independent of n.

Assumption 4 (Factors covariance) E[GtG
′
t] = Ω, with Ω positive definite with dis-

tinct eigenvalues.

Assumption 5 (Loadings) There exists an integer n0 such that for all n > n0, ‖n−1Λ
′
Λ−

ΣΛ‖ = 0, where ΣΛ is positive definite with distinct eigenvalues. Furthermore, for all
n ∈ N, mλ < maxi=1,...,n‖λi‖ < Mλ, for some finite positive reals mλ and Mλ and indepen-
dent of n.

Assumption (A1) expresses the conditions such that the factor process is weakly stationary
and guarantees that the matrix Qt is positive definite for each t.
Assumption (A2) specifies no correlation between the factors and the idiosyncratic com-
ponent while Assumption (A3) states the conditions under which the zero-mean idiosyn-
cratic error ξi,t can be weakly cross-sectionally correlated. In this last case, factor struc-
ture is said to be approximate in comparison to the strict case where the idiosyncratic
terms are uncorrelated. Nevertheless, to address serial dependence issues, it is possible
to treat each serially correlated idiosyncratic component as a latent state. Given the set
C = {i ∈ N : Cov[ξi,t, ξi,t−k] 6= 0} we can add an additional state to (1.2) such that
ξi,t = ρiIi∈Cξi,t−1 + ei,t for i = 1, ..., n as long as eit ∼ NID(0, σ2

e).
Assumptions (A4) and (A5) are standard in factor analysis and they will be revised in the
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next sections to identify the model. Indeed, given this specification, there exists an obser-
vationally equivalent model such that ΛGt = ΛUU−1Gt for any r× r invertible matrix U.
This leaves an r2 restriction to be imposed to uniquely identify the individual columns of
Gt and Λ. Restrictions are imposed depending on the factor dependencies and they will
be modified in the next chapter to take into account potential correlation among factors.
Furthermore, (A5) specifies Chamberlain and Rothschild (1983)’s conditions for common
component pervasiveness, that is lim infn→∞n−1λmin(Λ

′
Λ) > 0, and that all the eigenvalues

of Λ
′
Λ diverge at the same rate, i.e. lim supn→∞n−1λmax(Λ

′
Λ) is finite.

Nonetheless, the conditionally heteroskedastic structure of (1.3) requires further restriction
to be addressed. In particular, the diagonality of Qt is of major relevance in the correct
parameter estimation and consistent specification of the covariance matrix. Thus, we will
explore identification conditions in more details in the next sections.

1.2.2 The Augmented Model

The estimation of the model relies on the augmented state space form of (1.1) - (1.2), in
which we introduce a misspecification error η∗. Following Diebold and Nerlove (1989), the
disturbance ηt is treated as both a state variable and error so that the measurement and
transition equations become:

xt =
[
Λ 0n×r

]︸ ︷︷ ︸
Λ†

F†t + ξt, (1.5)

F†t =

[
Ft

ηt

]
=

[
Φ 0r
0r 0r

]
︸ ︷︷ ︸

Φ†

[
Ft−1

ηt−1

]
︸ ︷︷ ︸

F†t−1

+

[
Ir Ir
0r Ir

]
︸ ︷︷ ︸

Ψ†

[
η∗t
ηt

]
︸ ︷︷ ︸
η†t−1

. (1.6)

Matrices Φ† and Ψ† are now both of dimension 2r × 2r and Λ† is n × 2r . F†t is the 2r × 1

augmented unobserved state vector and η†t is the 2r× 1 disturbance component consisting
of η∗t and ηt, whose first two conditional moments are given by

η†t |It−1 ∼ N
[(

0r×1

0r×1

)
,

(
Q∗ 0r
0r Qt

)]
,

where N indicates the Normal probability density function. In this way, the dynamic of
the conditional variance is given by the lower-right r × r block matrix Qt. On the other
hand, the iid disturbance vector η∗t is constrained to have a homoskedastic covariance
matrix Q∗ = εIr with ε → 0 on the diagonal and 0 elsewhere, and it is independent of
ηt and ξt. This means that Q∗ = O(ε). If η∗t = 0, then the model reverts back to the
original case of (1.1) - (1.2). More precisely, we have that Ft = Gt +

∑∞
i=1 Φiη∗t−i. When

calculating the variance we have Var[Ft] = Var[Gt] +
∑∞

i=1 ΦiQ∗Φi′ . Let us call the last
term Q?, then this is a Lyapunov equation with ‖Φ‖ ≤ 1 and whose solution is given by
vec(Q?) = (Ir2 −Φ⊗Φ)−1vec(Q∗). Thus, Q? is a rescaled version of Q∗ which is defined
by the user and O(ε) so the two are equivalent. For this purpose we will use the relation
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Var[Ft] = Var[Gt] + Q? = Var[Gt] +O(ε) throughout.
An important remark must be made about the modification we introduced with η∗t . In
practice, when the variance of the state equation, i.e. Q†t has a zero row (or column), the
algorithm, defined as in Shumway and Stoffer (2006) and presented in the Appendix, still
works out and provides the appropriate state output and maximized likelihood.3 The issue,
however, is purely theoretical as the likelihood form is not defined because it involves the
inversion of Q†t . Furthermore, if η∗t = 0 the unconditional variance of F†t is not invertible
as well, given the matrix extension of Cauchy-Schwarz inequality. To invert the block ma-
trix Var[F†t ], we need the Schur component Var[Ft] − Cov[Ft,ηt]Var[ηt]−1Cov[Ft,ηt]

′ to
be invertible as well. But when η∗t = 0, i.e. Ft = Gt by Cauchy-Schwarz inequality, we
have that Var[Ft] = Cov[Ft,ηt]Var[ηt]−1Cov[Ft,ηt]

′ . As a result, a constrained variable
η∗t 6= 0 is introduced in the model. It can be shown, however, that this misspecification
is negligible and mainly dependent on the selected value of Var[η∗i,t] = ε, which is set to a
very small value, such as ε = 10−8.
From here on we will employ the Augmented Model as the main reference. All the assump-
tions listed in Section 1.2 hold replacing Gt with Ft.

1.3 Estimation

1.3.1 The Kalman Filter and the Kalman Smoother

Let’s consider first the case of known parameters. Here, we apply the same framework
of Harvey et al. (1992) but in the context of n → ∞, where we exploit the blessing of
dimensionality. The Dynamic Factor Model as indicated in (1.5) - (1.6) is only condi-
tionally Gaussian. As a consequence, the Kalman filter and smoothing algorithm yield
the minimum mean square estimate (MMSE) of the unobserved states. Hence, given
the parameters the Kalman filter provides F†t|t = Eθ[F†t |Xt] and P†t|t = Varθ[F†t |Xt] =

Eθ[(F†t − F†t|t)(F
†
t − F†t|t)

′|Xt] for t ≤ T . The Kalman smoother, the recursion follow-
ing the Kalman filter and starting from t = T and going backwards to t = 0, pro-
vides the solution, delivering the smoothed process F†t|T = Eθ[F†t |XT ] and its covariance
P†t|T = Varθ[F†t |XT ] = Eθ[(F†t − F†t|T )(F†t − F†t|T )

′ |XT ].

Proposition 1 Given the true value of the parameters θ and initial condition F†0|0 and
P†0|0, under Assumptions (A1) through (A5) one can prove that, as n→∞,

‖Ft − Ft|t‖ = Op

(
1√
n

)
and ‖Ft − Ft|T‖ = Op

(
1√
n

)
(1.7)

3Computationally speaking, this doesn’t affect parameter estimation as (Q†t)
−1 does not appear in any

first-order condition (thus, after derivatives are computed) for Maximum Likelihood Estimators.
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for any given t. Furthermore, the errors

‖ηt − ηt|t‖ = Op

(
1√
n

)
and ‖ηt − ηt|T‖ = Op

(
1√
n

)
. (1.8)

for any given t.

Proof. See Appendix 1.7.4 and 1.7.3.

Thus, if the cross-sectional dimension tends to infinity both the Kalman filter and the
Kalman smoother yield consistent estimates of the underlying factors (Doz et al., 2011).
This result relies on the fact that as n increases the filter stochastic uncertainty decreases
since we are averaging the cross-sectional errors. These proprieties are essential for esti-
mation purposes as the model in (1.1) - (1.2) poses some non-trivial issues to deal with.
In this regard, in standard conditionally heteroskedastic models the distribution of ηt|It−1

is assumed to be Gaussian. Thus, if the state errors were directly observable, the model
would be conditionally normal. However, Ft is a latent process and the filter manages
the distribution of ηt conditional on past observations, ηt|Xt−1 not ηt|It−1. This leads the
Kalman filter estimates to be quasi-optimal and the model can be treated as if it were
conditionally Gaussian. Nevertheless, given the Kalman filter it is possible to evaluate
both the conditional mean and the variance of ηi,t. While the former is simply zero the
latter is given by:

Varθ[ηi,t|Xt−1] = Eθ[η2
i,t|Xt−1] = ωi + αiEθ[η2

i,t−1|Xt−1] + βiEθ[qi,t−1|Xt−1]. (1.9)

Furthermore, we can replace the expectation terms with their Kalman Filter estimates.
Denoting ηi,t|t = Eθ[ηi,t|Xt] and P η

i,t|t = Eθ[(ηi,t − ηi,t|t)2|Xt], we can use the the fact that
Eθ[η2

i,t|Xt] = η2
i,t|t + P η

i,t|t. We then have

qi,t|t−1 = ω + α(η2
i,t−1|t−1 + P η

i,t−1|t−1) + βqi,t−1|t−2 + δi,t, (1.10)

where δt is the correction term and it is equal to:

δi,t =
∞∑
j=1

αβj[(η2
i,t−j−1|t−1 − η2

i,t−j−1|t−2) + (P η
i,t−j−1|t−1 − P

η
i,t−j−1|t−2)]. (1.11)

This filter requires past disturbances conditional on future time points. One solution is
to use the fixed-point interval smoothing, adding to the state vector of (1.2) j lags of
ηi,t−j. Nevertheless, this procedure dramatically increases the dimension of the matrices
to be handled by the filter. It is important to note, however, that the correction terms are
moderately small. First of all, the αβj term is less then 1 and approach zero as j increases.
The term within the square brackets in (1.11) is, instead, the difference between the filter
and the smoother (j = 1) or, more generally (j > 1), between two smoothers calculated
backwardly with T = t− 1 and T = t− 2, plus their variance difference.
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Since we are working in an n → ∞ environment, we can show (see Appendix) that those
expressions go to 0 asymptotically, therefore having δt → 0. These results represent the key
of a consistent estimate of the disturbance term ηt, and the subsequent more convenient
specification of the variance qi,t, given that δi,t can be neglected.

Proposition 2 Given the true value of the parameters θ, under assumptions (A1) through
(A5) and Proposition 1 we have that, as n→∞

∣∣qi,t − qi,t|t−1

∣∣ = Op

(
1

n

)
(1.12)

for any t and any i.

Proof See Appendix 1.7.6.

The Kalman filter variance term becomes the main proxy for the variance prediction.
From the Kalman filter equations (see Appendix 1.7.1) we have that for a factor i

P η
i,t|t−1 = qi,t|t−1. (1.13)

Hence, the variance process is assumed to be equal to the estimate from the Kalman filter
prediction. Thus, estimating the factors and their prediction errors also makes possible
the correct estimation of the conditional variance qt|t−1 , which follows the GARCH(1,1)
dynamic

qi,t|t−1 = ω + αη2
i,t−1|t−1 + βqi,t−1|t−2. (1.14)

Vector θ, however, is not known. Let us consider now the case in which parameters are
not given.

1.3.2 Expectation Conditional Maximization Either

As pointed out in Calzolari et al. (2004), estimation issues arise from the fact that we
observe only xt so that our information set is actually Xt and not It. Consequently, we
cannot use the normality assumption to derive the log-likelihood. The diagonal elements
of Qt are not, indeed, measurable functions of Xt but are a function of lagged values of Ft,
which makes the exact form of the conditional density of xt given Xt altogether unknown.
As a result, the set of the parameters of interest θ

θ = [vec(Λ), vech(Γ), vec(Φ)︸ ︷︷ ︸
θ(Q)

,ω,α,β︸ ︷︷ ︸
θ(`)

], (1.15)

cannot be estimated simultaneously on the basis of the log-likelihood function obtained
from the observables xt. For this reason, we propose a methodology that efficiently exploits
the available information set Xt, which relies on the Kalman filter and, more generally, the
ECME algorithm(Liu and Rubin, 1994).
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Denote as XT = (x
′
1, · · · ,x

′
T )
′ the nT -dimensional vectors of observations and F †T =

(F†
′

1 , · · · ,F
†′
T )
′ the 2rT -dimensional vectors of factors. The Expectation Maximization al-

gorithm is based on the idea that if we could observe the factors along with the observation,
for generic values of the parameters θ ∈ Θ, the joint log-likelihood of the complete data
would be:

`(XT ,F
†
T ;θ) = `(XT |F †T ;θ) + `(F †T ;θ) (1.16)

=
T∑
t=1

`(xt|F†t ;θ) +
T∑
t=1

`(F†t |F
†
t−1;θ) + `(F†0;θ),

where the last equality is given by the proprieties of State Space Models, specifically: (i)
the state process F†t is assumed to be a Markov process; (ii) conditionally on F†t , the
xts are independent and xt depend on F†t only (Petris et al., 2009). Under the Gaussian
assumption and ignoring constants, this can be rewritten as

`(XT ,F
†
T ;θ) = − T

2
log |Γ| − 1

2

T∑
t=1

(xt −Λ†F†t)
′
Γ−1(xt −Λ†F†t) (1.17)

− 1

2

T∑
t=1

log |Q†t | −
1

2

T∑
t=1

(F†t −Φ†F†t−1)
′
Q†−1
t (F†t −Φ†F†t−1)

− 1

2
log |Ω†0| −

1

2
(F†0)

′
Ω†−1

0 (F†0).

Although we don’t have the complete data, the algorithm provides an iterative method
to find Maximum Likelihood (ML) estimates of the parameters, maximizing the likelihood
only based on the observed data. As a matter of fact, further decomposing (1.16) using
Bayes’ rule one obtains

`(XT ;θ) = `(XT |F †T ;θ) + `(F †T ;θ)− `(F †T |XT ;θ). (1.18)

Now, let us assume we have an estimate of the parameters for an iteration j ≥ 0, say,
θ̂(j−1). Taking expectation with respect to the distribution of F †t conditionally on Xt and
θ on both sides of (1.18) we obtain

`(XT ;θ) = Eθ̂(j−1)

[
`(XT |F †T ;θ) + `(F †T ;θ)|XT

]
− Eθ̂(j−1)

[
`(F †T |XT ;θ)|XT

]
(1.19)

= Q(θ; θ̂(j−1))−H(θ; θ̂(j−1)). (1.20)

Hence, maximizing Q(θ; θ̂(j−1)) with respect to θ in order to find θ̂(j−1) is the same as
maximizing the actual likelihood `(XT ;θ). This result relies on the fact that for each
j, Q(θ; θ̂(j−1)) ≥ Q(θ̂(j−1); θ̂(j−1)) by optimization and H(θ; θ̂(j−1)) ≤ H(θ̂(j−1); θ̂(j−1)) by
Jensen’s inequality, implying that `(XT ; θ̂(j)) > `(XT ; θ̂(j−1)) (Dempster et al., 1977). Cal-
culation of Q(θ; θ̂(j−1)), and thus expectation, is carried out through the Kalman smoother
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which gives estimates for the factors at iteration j: F
†(j)
t|T = Eθ̂(j) [F

†
t |XT ]. Intuitively, given

the ML estimator of the parameters (M-step), the Kalman smoother gives an estimate
of the factors (E-step), and vice versa, until convergence is reached. At this point, the
last estimate of θ, under standard regularity conditions and up to a numerical error, is
equivalent to the ML estimator of the parameters (Wu, 1983).
Nonetheless, not all parameters have closed-form solutions. This calls for the necessity to
perform numerical optimization, possibly on a subset Θ̃ ⊂ Θ, given all the other parame-
ters that have an analytical solution. For this purpose, Meng and Rubin (1993) introduced
the Expectation Conditional Maximization (ECM) which replaces the M-step of each it-
eration with a sequence of conditional or constrained maximization, or CM, steps. Each
step s ∈ S = {1, ..., S}, which may admit a closed-form solution or may require numerical
optimization routines such as Newton-Raphson, maximizes the expected complete-data
log-likelihood determined in the previous E-step. Since any individual step takes place
in a reduced dimensional space, the optimization routine is faster and more reliable than
maximizing the likelihood function on the whole parameter space.
In this framework, within the CM-step, instead of maximizing the expected complete-data
log-likelihood function, we can perform the optimization on the actual log-likelihood. This
approach leads to the adoption of the ECME algorithm, which replaces the constrained
expected complete-data likelihood with the constrained actual function, subject to the
same constraints on Θ. Using the same notation as Liu and Rubin (1994), the steps s
are divided into two subspaces depending on whether the actual (s ∈ S`) or the expected
likelihood (s ∈ SQ) is maximized and such that S` ∪ SQ = S. The authors demonstrated
that the procedure shares the same proprieties and simplicity as the original one, but the
convergence rate is considerably faster. Indeed, the likelihood to be maximized is the actual
one rather than an approximation of it. It is important to note that, being the likelihood
constructed from the filter, it has to be regarded as a Quasi Maximum Likelihood Esti-
mation (QMLE), given that the disturbance ηt|Xt−1 has non-normal, although symmetric,
distribution (Harvey et al., 1992).

In detail, the ECME algorithm consists of:

Expectation step (E-step)
The Kalman smoother is used to estimate the factors and compute the expected like-
lihood given the parameters of the model. Let us consider (1.18) with Q(θ; θ̂(j−1)) =
Eθ̂(j−1)

[
`(XT ,F

†
T ;θ)|XT

]
; then, up to an initial condition, which is negligible for large T ,

we have:

Q(θ; θ̂(j−1)) = − T

2
log |Γ| − 1

2
tr
{

Γ−1

T∑
t=1

Eθ̂(j−1)

[
(xt −Λ†F†t)(xt −Λ†F†t)

′ |XT

]}
(1.21)

− 1

2

T∑
t=1

log |Q†t | −
1

2
tr
{ T∑

t=1

Q†−1
t Eθ̂(j−1)

[
(F†t −Φ†F†t−1)(F†t −Φ†F†t−1)

′ |XT

]}
.
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Expectations are then replaced in the CM steps by the sufficient statistics given by the
smoother:

Eθ̂(j) [xtF
†′
t |XT ] = xtF

†(j)′
t|T , (1.22)

Eθ̂(j) [F
†
tF
†′
t |XT ] = F

†(j)
t|T F

†(j)′
t|T + P

†(j)
t|T , (1.23)

Eθ̂(j) [F
†
tF
†′
t−1|XT ] = F

†(j)
t|T F

†(j)′
t−1|T + P

†(j)
t,t−1|T , (1.24)

where P
†(j)
t,t−1|T = Covθ̂(j) [F

†
t|T ,F

†
t−1|T |XT ]. and P

†(j)
t|T = Varθ̂(j) [F

†
t |XT ].

Conditional Maximization steps (CM-steps)
These involve finding the solution to the maximization problem:

θ̂(j) = argmax
θ

Q(θ; θ̂(j−1)) or θ̂(j) = argmax
θ

`(XT ;θ), (1.25)

depending on whether we want to maximize the complete-data or actual likelihood, re-
spectively. The unknown θ is partitioned into θ(Q) for s ∈ SQ and θ(`) for s ∈ S`, with
SQ = {1} and S` = {2, ...r + 1}.

(i) CM-Step 1. Analytical maximization of the expected likelihood given the factors
for the parameters that have a closed form, i.e. θ(Q) = [vec(Λ), vech(Γ), vec(Φ)].
Maximizing the expression above results in the estimators

Λ†(j) =

(
T∑
t=2

Eθ̂(j−1)

[
xtF

†′
t |XT

])( T∑
t=2

Eθ̂(j−1)

[
F†tF

†′
t |XT

])−1

, (1.26)

Φ†(j) =

(
T∑
t=2

Eθ̂(j−1)

[
F†tF

†′
t−1|XT

])( T∑
t=2

Eθ̂(j−1)

[
F†t−1F

†′
t−1|XT

])−1

, (1.27)

Γ(j) = diag

{
1

T

T∑
t=2

Eθ̂(j−1)

[
(xt −Λ†(j)F†t)(xt −Λ†(j)F†t)

′ |XT
]}

. (1.28)

All the equations above conveniently also apply to block-diagonal matrices. There-
fore, the derivation generalizes to a subset of the matrices of interest, allowing some
freedom when the model, such as (1.5) and (1.6), requires restriction. That is why,
in the next section, we will consider the sub-matrices Λ, Ft or Φ instead of Λ†, F†t
or Φ†. Thus, if we are interested in row a to b and column c to d of a matrix, all
matrices on the right-hand side of the equations should be taken with respect of those
indices.

(ii) CM-Step 2,...,r+1. Numerical maximization of the actual likelihood given the
factors for parameters θ(`) = [ω,α,β]. Following the usual prediction error decom-
position, with et = xt−Λ†F†t = xt−ΛFt, the likelihood of XT is the product of all
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the conditional distributions of xt. The log-likelihood becomes:

`(XT ;θ) = −1

2

T∑
t=1

log |Σt| −
1

2

T∑
t=1

e
′

tΣ
−1
t et (1.29)

and parameters θ(`) enter into the maximization through Σt = ΛPt|t−1Λ
′
+ Γ since

Pt|t−1 = ΦPt−1|t−2Φ
′
+ ΨQt(θ(`))Ψ

′ −KtΣt−1K
′
t. where Kt is the Kalman gain and

it is defined as ΦPt|t−1Λ
′
Σ−1
t .

For each factor i = 1, ..., r it is possible to carry a separate and subsequent numerical
optimization step s for the parameters ωi, αi and βi. To reduce the computational
complexity of the optimization and to satisfy Var[Fi,t] = 1, we employ variance
targeting estimation (Francq and Zakoïan, 2010; Francq et al., 2011). This relies on
reparameterization of the volatility equation in which the intercept ωi is replaced by
the unconditional variance, thus obtaining ωi = (1− φ2

i )(1− αi − βi).4

The algorithm terminates when the stopping criterion is achieved : |`(XT ; θ̂(j))−`(XT ; θ̂(j−1))|
/|`(XT ; θ̂(j))| < τ , where `(θ(j)) represent the actual log-likelihood at the jth iteration and
ϕ is the tolerance parameter.

1.3.3 Two-step PCA estimator

A straightforward way to estimate this model is in two steps, using Principal Components
Analysis (PCA) to estimate factors and loadings and then using Quasi Maximum Likeli-
hood to obtain GARCH parameters.
More specifically, define the sample covariance matrix of xt as

Σ̂ =
1

T

T∑
t=1

xtx
′

t. (1.30)

Using spectral decomposition we have that Σ̂ = ŴL̂Ŵ
′ , with Ŵ and L̂ being the matrix of

normalized eigenvectors and eigenvalues of the sample covariance matrix of xt, respectively.
Let us assume that the number of factors r is given. If both Assumptions (A4) and (A5)
hold, then, following Fan et al. (2013), Ft are the the principal components of ΛFt rescaled
by the diagonal entries of Σ

1/2
Λ . PCA estimates are given by:

Λ̂PCA = ŴrL̂
1/2
r , F̂PCA

t = L̂−1/2
r Ŵ

′

rxt, (1.31)

where the columns in Ŵr are the r eigenvectors corresponding to the largest eigenvalues
collected in the diagonal matrix L̂r of dimension r× r. If the non-zero eigenvalues diverge
linearly in n and that they are asymptotically distinct, then it implies that Λ̂PCA is con-
sistent.

4For an AR(1)-GARCH(1,1) process the unconditional variance is given by Var[Fi,t] = ωi

(1−φ2
i )(1−αi−βi)

.
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In the second step, GARCH parameters are estimated using Quasi Maximum Likelihood
on the obtained F̂t:

θ̂PCA = argmax
θ

`(F̂t; θ̂). (1.32)

This procedure is not entirely appropriate as the log-likelihood on F̂t is not defined since
F̂t 6= Ft. However, PCA still provides efficient estimates of the factors Ft, the loadings
Λ, and the idiosyncratic variances Γ (Doz et al., 2012), so we are going to use these pre-
estimators to initialize the ECME. These parameters are independent of α,β, andω since
the latter maximizes the actual likelihood, instead of the complete one (Barigozzi and Lu-
ciani, 2019).
Denote as θ(0) the pre-estimator of the parameters. Let L̂r be the diagonal matrix whose
entries are the r -largest eigenvalues of Σ̂ and Ŵr be the matrix of corresponding eigen-
vectors. Then,

Λ̂(0) = ŴrL̂
1/2
r , F̂

(0)
t = L̂−1/2

r Ŵ
′

rxt, (1.33)

[Γ̂(0)]ii =
1

T

T∑
t=1

(
xi,t − λ̂(0)′

i F̂
(0)
t

)2
, i = 1, ..., n. (1.34)

with λ̂(0)
i being the i -th row of Λ̂(0) and [Γ̂(0)]ii = 0 if i 6= j.

AR-GARCH parameters are subsequently estimated by Quasi Maximum Likelihood (QML)
on F̂

(0)
t . Denote by qPCAt|t−1 the conditional variance estimated using this approach.

1.4 Further Topics

1.4.1 On Identification

Let us rewrite the augmented model of section (1.5) - (1.6)

xt = ΛFt + ξt, (1.35)
Ft = ΦFt−1 + ηt + η∗t (1.36)

ηt = Q
1/2
t η̃t. (1.37)

As mentioned in Section 1.2.2, one can obtain all the observationally equivalent structures
through two r × r invertible matrices U and U? as follows (Burmeister et al., 1986):

xt = ΛUU−1Ft + ξt, (1.38)
U−1Ft = U−1ΦUU−1Ft−1 + U−1ηt + U−1η∗t (1.39)

U−1ηt = U−1Q
1/2
t U?U?−1η̃t. (1.40)

In order to fully identify the model we need some structure to preclude any other trans-
formation different than U = U? = Ir. This requires us to specify r2 restriction on the
model.
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Identification Condition 1 (IC1) E[FtF
′
t] = Ir and the stochastic processes qi,t’s for

each i = 1, · · · , r are linearly independent, i.e. @δ ∈ Rr, δ 6= 0 : δ
′
qt = 0 ∀t. This implies

Qt, Q and Φ are diagonal matrices.

This identification scheme builds on the work of Sentana (1992) and Sentana and Fioren-
tini (2001), where the authors show that conditional heteroskedasticy actually alleviate
identification problem. As a matter of fact, a uniquely identified unconditional covariance
coupled with linearly independent conditional variances of the factor disturbances, ensures
that the system (1.38) - (1.40) is statistically identified. Practically, this condition is satis-
fied if the conditional variances of at least r > 1 structural shocks are time-varying, given
that these variances are empirically parametrized by the GARCH(1,1) processes (King
et al., 1994). The framework of Sentana and Fiorentini (2001) is a specific case of (1.5) -
(1.6) with Φ = 0r and ε = 0, or Ft = ηt. They prove that if Qt = Var[ηt|It−1] is diagonal
(but not scalar) and E[Qt] = Ir, then these constrain ensure that Ft can be identified up
to a sign. Furthermore, this result does not rely on any particular parameterisation of
the dynamic conditional heteroskedasticity, only on the conditional orthogonality of the
factors, the time-variation of their variances and the constancy of Λ. This identification
scheme has been employed in many conditionally heteroskedastic factor model applications
such as King et al. (1994), Normandin and Phaneuf (2004) and Normandin (2004).
In our case, factors are autoregressive processes and their dynamic structure is specified by
Φ. (A1) guarantees that qi,t’s are linearly independent. This is implemented in the ECME
simply by updating the recursive equation for qi,t|t−1 and leaving 0 on the off-diagonal
elements. Thus, we only need make sure that the unconditional variance Ω = Var[Ft]
is identified. Given that that the data generating process of the factors is given by a
stationary vector autoregression (VAR), we can calculate the unconditional variance Ω as

vec(Ω) = (Ir2 −Φ⊗Φ)−1vec(Q + Q∗) (1.41)
= (Ir2 −Φ⊗Φ)−1vec(Q) +O(ε) (1.42)

given that ‖Φ‖ < 1 and Q∗ = O(ε). The first r(r − 1)/2 conditions come from the di-
agonality of Q. This is a natural consequence of the model, as each ηi,t follows its own
GARCH(1,1) evolution, with no interaction with the the errors ηj,t, for i 6= j. Then, we
make some restriction on Φ. At first let us assume that the matrix is diagonal. In particu-
lar, we assume that the coefficient matrix is diagonal, Φ = diag(φ1, · · · , φr). Such types of
constriction can be naturally handled by the ECME, as all the equations in the analytical
CM steps (1.26) - (1.28) apply to block-diagonal matrices (Holmes, 2013). This implies fur-
ther r(r− 1)/2 restriction, since Ω is now diagonal. Given the current specification, r2− r
restrictions, factors are identified up to a scale normalization. To achieve identification up
to a sign we need further r constraints. While Bai and Wang (2015) assume that Q is
an identity matrix, we will restrict Ω instead. The reason becomes naturally apparent by
employing the variance targeting estimator (VTE) in the conditional maximization step of
the ECME. Indeed, if we impose that Q = Ir −ΦΦ

′ , the right-hand side of (1.42) cancels
out and we obtain that Ω = Ir +O(ε). Then for ε→ 0, Ω = Ir. This resolve the remaining
r restrictions needed.
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This setup is useful when we are using mid-to-high frequency data and are mostly inter-
ested in the covariance matrix dynamics as opposed to factors relationships. It is also very
natural, as we impose restrictions directly on the population variance and not on sample
moments. Given that the ECME produces consistent estimators Φ̂, (Barigozzi and Lu-
ciani, 2019) then as n, T → ∞, the identifying constraints implied by Assumption 4 hold
asymptotically. We leave the factor sign indeterminacy untouched, as our main interest lies
in the covariance matrix. Indeed, qi,t, being the variance process, it is uniquely identified.

1.4.2 Prediction Distribution

Further to optimal prediction for the values of {Ft|T}, for each t, the models in 1.5 and
1.6 deliver a straightforward 1-step-ahead prediction of T + 1. The model assumes that
Λ†,Φ†,Ψ† are time-invariant.
Using Kalman filter formulas in 1.7.1, we have that the distribution of FT+1 given XT is
Gaussian with mean and variance

F†T+1|T = Φ†F†T |T−1 + K†T (xt −Λ†F†T |T+1) (1.43)

P†T+1|T = Φ†P†T |T−1Φ
†′ + Ψ†Q†T+1|TΨ†

′
+ K†TΣT |T−1K

†′
T (1.44)

qi,T+1|T = ωi + αi(η
2
i,T |T + P η

i,T |T ) + βiqi,T |T−1 i = 1, · · · r (1.45)

where qi,T+1|T is the 2ith element of the block matrix Q†T+1|T = diag(Q∗,QT+1|T ) and Q∗

is time-independent. 5

Then, the distribution of xT+1 given XT is also Gaussian with mean and variance

xT+1|T = Λ†F†T+1|T (1.46)

ΣT+1|T = Λ†P†T+1|TΛ†
′
+ Γ. (1.47)

Now consider the task of an h-step-ahead forecast for h > 1, i.e. making a prediction of
future observation at times T + 2, · · · , T + h. Repeatedly substituting in the transition
equation of 1.6 we obtain

F†T+h = (Φ†)hF†T +
h−1∑
j=0

(Φ†)jΨ†η†T+j+1. (1.48)

Taking conditional expectation and variance at time T in (1.48), respectively, we have

F†T+h|T = (Φ†)hF†T |T (1.49)

P†T+h|T = (Φ†)hP†T |T (Φ†
′
)h +

h−1∑
j=0

(Φ†)jΨ†Q†T+j+1|TΨ†
′
(Φ†

′
)j. (1.50)

5An equivalent formulation that involves the filter instead of the prediction is F†T+1|T = Φ†F†T |T and

P†T+1|T = Φ†P†T |TΦ†
′
+ Ψ†Q†T+1|TΨ†

′
.
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The only unknown in (1.50) is Q†T+h|T = E[η†T+h|XT ]. The only time-dependent elements
are the qi,T+h|T for i = 1, · · · , r. One can prove (1.7.7):

E[qi,T+h|XT ] = qi,T+h|T = 1− φ2
i + (αi + βi)

h−1(qi,T+1|T − (1− φ2
i )). (1.51)

This result shows that as h→∞, E[qt+h|Xt] converges to its unconditional variance 1−φ2.
A high persistence, (αi + βi) close to 1, implies that shocks that deviate the conditional
variance from its unconditional value will persist for a long time, but eventually the long-
horizon prediction will be the long-run variance, 1− φ2

i .
Finally, we can derive the distribution of xT+h taking the conditional expectation and
variance with respect to XT of the measurement equation (1.5)

xT+h|T = Λ†F†T+h|T (1.52)

ΣT+h|T = Λ†P†T+h|TΛ†
′
+ Γ. (1.53)

It’s also possible to evaluate multi-step prediction by iteratively applying the Kalman filter
prediction equation in (1.43) - (1.45).

1.4.3 Factor consistency with unknown parameters

Convergence rates hold when using the true value of the parameters θ, as n → ∞. The
conditions also remain valid when using the QML estimators of the parameters as long as
both T, n→∞. Following Barigozzi and Luciani (2019), given the QML estimator of the
parameters θ∗ obtained from the ECME algorithm, let F∗t|t and F∗t|T be the factor estimates
obtained by the Kalman filter and smoother, respectively, then we have that

min(
√
n,
√
T )‖F∗t|t − Ft‖ = Op(1), min(

√
n,
√
T )‖F∗t|T − Ft‖ = Op(1) (1.54)

with F∗t|t = Eθ∗ [Ft|Xt] and F∗t|T = Eθ∗ [Ft|XT ].

1.4.4 Standard Errors

The ECME algorithm does not directly generate standard errors. However, the Hessian
matrix at the time of convergence can be used as an estimate of

I(θ) = lim
T→∞

1

T
E
[
− ∂`(θ)

∂θ∂θ′

]
(1.55)

to subsequently obtain standard errors estimates. In this case, no analytical derivatives are
calculated, but following Shumway and Stoffer (2006) we can include a numerical evaluation
of the Hessian matrix at the time of convergence. The main peculiarity of the ECME is
that we can calculate the value of the actual likelihood, in contrast to the complete data
likelihood, at any moment. Thus, we replace the numerical Hessian of `(θ) with the one
calculated using `(θ∗), where θ∗ is the QML estimator of the parameters at convergence.
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1.5 Numerical Aspects

Let us examine separately some simple cases.

1.5.1 ARCH(1) with one factor

With one factor, the Model of (1.5) - (1.6) can be written as:

xt =
[
λ 0

]︸ ︷︷ ︸
Λ†

F†t + ξt

F†t =

[
Ft
ηt

]
=

[
φ 0
0 0

]
︸ ︷︷ ︸

Φ†

[
Ft−1

ηt−1

]
︸ ︷︷ ︸
F †t−1

+

[
1 1
0 1

]
︸ ︷︷ ︸

Ψ†

[
η∗t
ηt

]
︸︷︷︸
η†t

with xt and ξ being n× 1 vectors, Λ† an n× 2 matrix, and Φ† and Ψ† square matrices of
dimension 2× 2. As for the variance, using the results in (1.10) we have:

Var[ηt|Xt−1] = qt|t−1 = ω + α(η2
t−1|t−1 + P η

t−1|t−1).

The first term in the parentheses is the estimate from the Kalman filter and the last one
is its variance.

In order to initialize the algorithm, PCA decomposition is performed in order to extract
the factor. Given W, the n × n matrix of eigenvectors, with w1 the first eigenvector and
λ1 its largest eigenvalue, then

F̂
(0)
t =

w
′
1xt√
λ1

, λ̂(0) = w1

√
λ1. (1.56)

Then, we obtain the diagonal entries of the matrix Γ(0) = diag(σ2
ξ0,1
, . . . σ2

ξ0,n
), by calculat-

ing the sample variance of each observation residuals such that

σ2
ξ0,i

=
1

T − 1

∑
(xi,t − λ̂(0)

i F̂
(0)
t )2. (1.57)

ARCH parameters ω0, α0, and φ0 are estimated on F̂ (0)
t using usual AR-ARCH(1) Maxi-

mum Likelihood optimization. This procedure is called the two-step estimation.
Knowing that Var[ηt] = Cov[Ft, ηt] = (1 − φ2) we set q0 equal to the unconditional vari-
ance of ηt , q0 = (1−φ2). The initial state F0 is fixed at 0 and its variance σ2

F0
= Var[Ft] = 1.

Given the initial values, the ECME algorithm is used to estimate parameters.

28



CM-Step 1. In regards to the maximization procedure, given the formulas in (1.26) -
(1.28) the parameters θ(Q) are obtained by:

λ(j) =

(
T∑
t=1

xtFt|T

)(
T∑
t=1

F 2
t|T + P F

t|T

)−1

,

φ(j) =

(
T∑
t=1

Ft−1|TFt|T + P F
t,t−1|T

)(
T∑
t=1

F 2
t−1|T + P F

t−1|T

)−1

,

Γ(j) = diag

{
1

T

T∑
t=1

(
utu

′

t + P F
t|Tλ

(j)λ(j)′
)}

,

with ut = xt − λFt. The term P F
t|T represents the variance of the state Ft given by the

Kalman smoother. Also, the matrix containing φ is restricted to be 0 on all parameters
except the upper-left corner so the φ calculation is treated as univariate instead of using
the full Φ†(j) matrix. The same reasoning applies for the vector λ(j).
This procedure also provides the starting values of F0 and Γ0 given by the KS estimates
F0|T and P0|T .

CM-Step 2. As for the variance persistence parameters, θ(`) = (ω, α)′, they are estimated
via numerical constrained optimization of (1.16) through the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) procedure of Byrd et al. (1995). It is a quasi-Newton method in which
each variable is given a lower and upper bound. Furthermore, variance targeting is em-
ployed for the parameter ω given that the long-run (unconditional) variance of Ft is equal
to one. The constraints are the following:

1 < α < 0,

ω = (1− α)(1− φ2).

The optimization is now carried out only on the parameter α. As a matter of fact, once φ
and α are estimated they are substituted in the last equality to obtain ω. This procedure,
other than reducing the likelihood parameter space, assures the expected unitary uncon-
ditional variance of the factor. The Hessian matrix, used to estimate standard errors, is
calculated numerically and the tolerance ϕ for the ECME algorithm is set to 10−6.
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1.5.2 GARCH(1,1) with one factor

With one factor, the model for the GARCH assumes the same structure as the previous
case

xt =
[
λ 0

]︸ ︷︷ ︸
Λ†

F†t + ξt

F†t =

[
Ft
ηt

]
=

[
φ 0
0 0

]
︸ ︷︷ ︸

Φ†

[
Ft−1

ηt−1

]
︸ ︷︷ ︸

F†t−1

+

[
1 1
0 1

]
︸ ︷︷ ︸

Ψ†

[
η∗t
ηt

]
︸︷︷︸
η†t

but in this case, following Harvey et al. (1992) plus the results in 2, the variance of ηt is
given by

Var[ηt|Xt−1] = qt|t−1 = ω + α(η2
t−1|t−1 + P η

t−1|t−1) + βqt−1|t−2,

where ηt−1|t−1 is the estimates from the Kalman Filter and P η
t−1|t−1 its variance.

The model is estimated by means of the ECME algorithm, employing the same first con-
ditional step as in the ARCH(1) and incorporating the variance persistence parameter β
in the numerical optimization.

CM-Step 1. Same as ARCH(1).

CM-Step 2. Parameters θ(`) = (ω, α, β)′ are obtained via numerical optimization of
(1.16) employing the BFGS algorithm subject to the following restrictions:

α, β > 0,

α + β < 1,

ω = (1− α− β)(1− φ2).

To deal with the stricter inequality constraints the model is re-parametrized to take into
account both non-negativity and stationarity. The sine transformation is applied to α and
β so that α? = 0.99sin(α)2 and β? = (0.99− α)sin(β)2 maintain the domain within (0,1).

Again, the Hessian matrix is calculated numerically and the tolerance ϕ for the ECME
algorithm is set to 10−6.
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1.5.3 GARCH(1,1) with two uncorrelated factors

With two uncorrelated factors following univariate GARCH(1,1) the model becomes:

xt =
[
λ1 λ2 0 0

]︸ ︷︷ ︸
Λ†

F†t + ξt

F†t =


F1,t

F2,t

η1,t

η2,t

 =


φ1 0 0 0
0 φ2 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Φ†


F1,t−1

F2,t−1

η1,t−1

η2,t−1


︸ ︷︷ ︸

F†t−1

+


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Ψ†


η∗1,t
η∗2,t
η1,t

η2,t


︸ ︷︷ ︸
η†t

with xt and ξ being n× 1 vectors, Λ† an n× 4 matrix, and Φ† and Ψ† square matrices of
dimension 4× 4. The variance of the states is given by

η†t =


η∗1t
η∗2t
η1t

η2t

 =


q∗1 0 0 0
0 q∗2 0 0
0 0 q1,t 0
0 0 0 q2,t


1/2

η̃t,

with η̃t ∼ NID(0, I4) and q∗1, q
∗
2 equal to 10−6. Univariate variances in the lower-right

block matrix follow the usual GARCH(1,1) dynamic

q1,t|t−1 = Var[η1|Xt−1] = ω1 + α1(η2
1,t−1|t−1 + P η1

t−1|t−1) + β1q1,t−1|t−2, (1.58)

q2,t|t−1 = Var[η2|Xt−1] = ω2 + α2(η2
2,t−1|t−1 + P η2

t−1|t−1) + β2q2,t−1|t−2, (1.59)

where the first term in the parentheses is the estimate from the Kalman filter of the 3rd

and 4th states and the last one is their variances.
As before, to start the algorithm, PCA is performed to extract the factors. Given Ŵ, the
n×2 matrix of the first two eigenvectors, and L̂, the diagonal 2×2 matrix of corresponding
eigenvalues, we have

Λ̂(0) = L̂1/2Ŵ
′
, F̂

(0)
t = L̂−1/2Ŵ

′
xt.

The diagonal entries of the matrix Γ0 are obtained by the sample variance of the residual
of the observation equation using F̂

(0)
t , as in (1.57). Variance persistence parameters ω0,

α0,β0, and φ0 are estimated separately on the two factors F̂ (0)
1,t and F̂ (0)

2,t using usual AR-
GARCH(1,1) QMLE. Starting variances q1,0 and q2,0 are initiated at their unconditional
values.
The initial state F0 is fixed at 0, while its initial state variance is given by:

Ω0 =


1 0 1− φ2

1 0
0 1 0 1− φ2

2

1− φ2
1 0 1− φ2

1 0
0 1− φ2

2 0 1− φ2
2

 . (1.60)
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In this case, the ECME Algorithm is made up of 3 steps, such that SQ = {1} and
S` = {2, 3}.

CM-Step 1. With two factors the analytical solutions to the expected likelihood op-
timization problem become:

Λ(j) =

(
T∑
t=1

xtF
′

t|T

)(
T∑
t=1

Ft|TF
′

t|T + PF
t|T

)−1

,

φ
(j)
i =

(
T∑
t=1

Fi,t−1|TFi,t|T + P Fi
t,t−1|T

)(
T∑
t=1

F 2
i,t−1|T + P Fi

t−1|T

)−1

, i = 1, 2

Γ(j) = diag

{
1

T

T∑
t=1

(
utu

′

t + Λ(j)PF
t|TΛ(j)′

)}
.

Having the off-diagonal elements restricted to be zero, the matrix Φ is treated as contain-
ing two diagonal block matrices φ1 and φ2, to be estimated separately. The terms involved
in the calculation are only the ones referring to the first or second elements of the matrices
of interest.

CM-Step 2. The first numerical step involves the optimization of (1.16) with reference
to the GARCH parameter of the first factor. Using the same sine transformation as in the
univariate case, to take into account the usual restrictions:

α1, β1 > 0,

α1 + β1 < 1,

ω1 = (1− α1 − β1)(1− φ2
1)

the optimization is performed to obtain α1, β1 and ω1.

CM-Step 3. Same as the previous step, but the focus is on the second factor. The
parameters of interest are α2, β2, and ω2.

Tolerance ϕ is set to a slightly higher level equal to 10−5. This is due to the fact that
near the optimum the likelihood with two factors becomes very flat and for any new iter-
ations the parameter value difference becomes negligible.

1.6 Simulations

1.6.1 Monte Carlo Simulation

We now describe a simulation study to explore the properties of our proposed approach for
a correctly specified model and a misspecified one. Throughout the Monte Carlo study we
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let n ∈ {75, 150, 300}, T ∈ {750, 1, 250}, r = 2 and we simulate according to (1.5), (1.6)
and (1.3), (1.4), such that

xt = Λ†F†t + κ1/2ξt, (1.61)
F†t = Φ†F†t−1 + ηt + η∗t , (1.62)

with Λ† = [Λ
′
,0
′
]
′ and F†t = [F

′
t,η

′
t]
′ . κ is a scalar which describes the inverse of the

signal-to-noise ratio (SNR) of each factor since we have that Var[fi,t] = 1 and 1/κ =
Var[fi,t]/Var[ξi,t]. The conditional heteroskedasticity is given by the scalar factor distur-
bance ηi,t with i = 1, 2

ηt = Q
1/2
t η̃t (1.63)

qi,t = ωi + αiη
2
i,t−1 + βiqi,t−1. (1.64)

The factor loadings are iid and such that [Λ]1,j ∼ N (0, 1) and [Λ]2,j ∼ N (0, 0.5). The
common factors evolve according to a VAR(1) with diag(Φ) = [0.7, 0.2] and 0 elsewhere, so
that the first factor has a stronger autoregressive component. The idiosyncratic innovations
are such that ξ ∼ N (0, IN). As for the common innovations, they evolve according to
a GARCH(1,1) with parameters α = [0.3, 0.1]

′ and β = [0.6, 0.8]
′ ; we apply variance

targeting to guarantee that the unconditional variance of the factor i is Var[fi,t] = 1,
restricting ωi = (1− φ2

i )(1− αi − βi). η∗t is the misspecification term and it is distributed
as η∗t ∼ N (0, 10−8I2). Given this scheme, we set κ = 0.5.
We consider B = 5,000 replications, and at each replication b, we simulate data and we
estimate φ,α, andβ with both the two-stage approach as in (1.32) and through the Kalman
filter and ECME algorithm (1.25).
In order to assess the robustness of the model we also test:

1) Different values of SNR. In particular, we simulate with different values of κ ∈
{1, 2, 4} which translates into SNR ∈ {1, 0.5, 0.25}. We fix n, T = (100, 1, 000).

2) The response to a misspecified model with regards to the idiosyncratic components.
Following Ahn and Horenstein (2013) we define ξi,t as

ξi,t =

√
1− ρ2

1 + 2Jτ 2
ei,t (1.65)

ei,t = ρei,t−1 + νi,t +

j−1∑
h=j+

τνh,t +

h=j−∑
j+1

τνh,t (1.66)

with j+ = max(j − J, 1) and j− = min(j + J, n). In practice, ρ specifies the serial
correlation of the time series, while the cross-sectional correlation is defined by the
two parameters τ and J . The former controls the magnitude of the correlation and
the latter controls the number of cross-section units that are correlated. Figure 1.1
indicates the cross correlation structure among 100 components, varying the value of
τ . We set up ρ = 0.5, τ = 0.3, J = max(10, n/20).
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Figure 1.1: Values of cross correlation for the element ξ50,t simulated according to (1.66) for
different values of τ and ρ = 0. Given n = 100, we find J = 10, which shows that closer units
exhibit higher degrees of correlation compared to distant counterparts.

3) Small sample proprieties with n, T = (50, 250), with SNR ∈ {2, 1} and modest serial
and cross correlation of the idiosyncratic component, i.e τ ∈ {0, 0.2} and ρ ∈ {0, 0.4}.

For each simulation exercise we also report the distribution of the Mean Squared Error
(MSE) of the volatility process calculated as

MSE =
1

BT

T∑
t=1

(qt − q̂t)2 (1.67)

where q̂t = qt|t−1 for the CHDFM model and q̂t = qPCAt|t−1 for the two-stage approach.

1.6.2 Results

As we can see from Figure 1.2 and Figure 1.11, the results in the graphs numerically
validate the results outlined in Proposition 1 and Proposition 2. The CHDFM estimates
are consistent even when n is not too large. For the two-stage approach (2SPCA) the
higher the φ the higher the inconsistency in the estimates. This is shown particularly in
Figure 1.2, since the first factor has a φ1 = 0.7 which produces inconsistent parameter
estimates. As mentioned in Francq and Zakoïan (2010), when the innovation distribution
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η̃ is symmetric then the asymptotic variance of the ARMA coefficient and GARCH coeffi-
cient is block diagonal, implying that those estimators are independent. Conversely, when
η̃ is not symmetric the asymptotic distribution of the ARMA parameters depends on the
GARCH coefficients. This makes the two-step approach inappropriate as the parameters
are treated as independent. When φ approaches zero, estimates display a less pronounced
bias, as shown by the parameter estimates of the second factor, whose φ1 = 0.2. It is
also important to remark that when one or more components of θ are null, asymptotic
normality of QMLE is not satisfied. In this specific case, the asymptotic distribution of
θ cannot be Gaussian because the estimator is constrained. For instance, if αi = 0, the
distribution of αi is concentrated in [0, ∞), for all n, and thus cannot be asymptotically
normal. This ‘boundary’ problem is treated in Francq and Zakoïan (2010) and is the object
of a specific study in Chapter 8 of the book. As indicated in Table 1.1, increasing the value
of n from n = 75 to n = 300 reduces the MSE of the CHDFM model by about 20% for the
first factor and 13% for the second one. 2SPCA achieves higher decrease in the MSE, 23%
and 20% for the first and second factors respectively, but the absolute values are still two
to three times higher compared to the CHDFM method. Parameter distributions are ap-
proximately normal for the CHDFM method. 2SPCA presents heavier tailed distributions
whose means are biased when φ is significantly different from 0. In particular, one can see
how the average φ and α are regularly underestimated, while β estimation is above the
true values. Similar patterns are observed for T = 1,250. In this case, for both CHDFM
and 2SPCA, the marginal reduction in MSE is more pronounced as n increases.
The successive simulation experiments are set to assess the robustness of the model. In
particular, the model is first stressed introducing some degree of serial correlation whose
magnitude depends on ρ. This specification has little impact on the CHDFM model while
affecting 2SPCA parameter distributions to a greater extent. Conversely, cross correlation
induced by τ and J seems to have a bigger influence on CHFDM parameters estimates
compared to 2SPCA: MSE increases by 15% and 11% for the former model and 1% and
2% for the latter, for the first and second factor, respectively. The simulation that includes
both serial and cross correlation displays similar estimates and MSE values to the one with
τ = 0.3 and ρ = 0. The second set of simulations tests the responsiveness of the model
to different value of the signal-to-noise ratio. Higher values indicate that the variance of
the common component (the signal) is lower in proportion to the idiosyncratic variance κ
(the noise). Results indicate that parameter distribution of CHDFM changes moderately,
with a slight increase of the standard deviations of the parameters’ distributions. As a
consequence, MSE increases by 21%, 47%, and 89% for κ = 1, 2, 4 for the first factor and
by 13%, 34% and 56% for the second one. Higher SNR translates into higher MSE for the
2SPCA model as well, but, contrarily to its counterpart, a larger level of SNR deteriorates
parameters’ distributions significantly. Once again, the effect is greater for the first factor.
For example, for α1 = 0.3 the two-step estimation process produces average estimates of
0.24, 0.22, and 0.2 for SNR equal to 1, 0.5, and 0.25, respectively. This is in contrast to the
CHDFM estimates, which average around 0.3, 0.31, and 0.32 for the same values of SNR.
Finally, we focus on smaller sample proprieties of the estimators. Surprisingly, the CHDFM
estimation procedure guarantees parameter distributions to be approximately normal, al-
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though with bigger standard errors with respect to previous estimation procedures. These
are also mostly unaltered from error misspecification and higher SNRs. Two-step estima-
tors are, on the contrary, not normally distributed and have average MSEs around 140%
higher for the first factor and 40% higher for the second one.
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q1,t q2,t

n T κ ρ τ CHDFM 2SPCA CHDFM 2SPCA

75 750 0.5 2.9581 7.6852 2.6592 3.9931

150 750 0.5 2.5537 6.3707 2.4245 3.4683

300 750 0.5 2.3663 5.9385 2.3157 3.1979

75 1,250 0.5 3.4963 9.0125 2.8722 4.3064

150 1,250 0.5 2.8673 7.1958 2.5499 3.5268

300 1,250 0.5 2.6688 6.5079 2.3811 3.2004

100 1,000 0.5 2.9893 7.4371 2.7246 3.8052

100 1,000 1.0 3.6202 8.3306 2.9715 4.0739

100 1,000 2.0 4.3853 8.8643 3.5257 4.5584

100 1,000 4.0 5.6594 10.4406 4.4218 5.3338

100 1,000 0.5 0.0 0.0 2.9893 7.4371 2.7246 3.8052

100 1,000 0.5 0.5 0.0 2.9930 7.4108 2.5592 3.7562

100 1,000 0.5 0.0 0.3 3.4381 7.5054 3.0138 3.8949

100 1,000 0.5 0.4 0.2 3.3205 7.5007 3.0453 3.8930

50 250 0.5 0.0 0.0 2.3351 5.9086 2.4060 3.6628

50 250 1.0 0.0 0.0 2.7344 6.4347 2.6695 3.7599

50 250 1.0 0.4 0.2 2.6883 5.9911 2.8243 3.8298

Table 1.1: MSE values calculated as in (1.67) for different values of n,
T, κ, ρ, τ.
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Figure 1.2: Distributions of AR(1)-GARCH(1,1) parameters of the first factor (large φ), ac-
cording to the two different models for T = 750. Last row indicates MSE. CHDFM parameters
distributions are the grey histograms, while 2SPCA parameters densities are indicated by the pur-
ple lines. Orange (Purple) vertical bars indicate average parameter estimates for the CHDFM
(2SPCA). Ground truth in dotted black.
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Figure 1.3: Distributions of AR(1)-GARCH(1,1) parameters of the second factor (small φ),
according to the two different models for T = 750. Last row indicates MSE. CHDFM parameters
distributions are the grey histogram, while 2SPCA kernel density is indicated by the purple line.
Orange (Purple) vertical bars indicate average parameter estimates for the CHDFM (2SPCA).
Ground truth in dotted black.
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Figure 1.4: Distributions of AR(1)-GARCH(1,1) parameters of the first factor (large φ), ac-
cording to the two different models for T = 1, 250. Last row indicates MSE. CHDFM parameters
distributions are the grey histograms, while 2SPCA parameters densities are indicated by the pur-
ple lines. Orange (Purple) vertical bars indicate average parameter estimates for the CHDFM
(2SPCA). Ground truth in dotted black.
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Figure 1.5: Distributions of AR(1)-GARCH(1,1) parameters of the second factor (small φ),
according to the two different models for T = 1, 250. Last row indicates MSE. CHDFM parameters
distributions are the grey histogram, while 2SPCA kernel density is indicated by the purple line.
Orange (Purple) vertical bars indicate average parameter estimates for the CHDFM (2SPCA).
Ground truth in dotted black.
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Figure 1.6: Distributions of AR(1)-GARCH(1,1) parameters of the first factor (large φ), ac-
cording to the two different models for T = 1000 and n = 100. Last row indicates MSE. CHDFM
parameters distributions are the grey histograms, while 2SPCA parameters densities are indicated
by the purple lines. Orange (Purple) vertical bars indicate average parameter estimates for the
CHDFM (2SPCA). Ground truth in dotted black.
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Figure 1.7: Distribution of AR(1)-GARCH(1,1) parameters of the second factor (small φ),
according to the two different models for T = 1000 and n = 100. Last row indicates MSE.
CHDFM parameters distributions are the grey histogram, while 2SPCA kernel density is indicated
by the purple line. Orange (Purple) vertical bars indicate average parameter estimates for the
CHDFM (2SPCA). Ground truth in dotted black.
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Figure 1.8: Distributions of AR(1)-GARCH(1,1) parameters of the first factor (large φ), ac-
cording to the two different models for T = 1000 and n = 100. Last row indicates MSE. CHDFM
parameters distributions are the grey histograms, while 2SPCA parameters densities are indicated
by the purple lines. Orange (Purple) vertical bars indicate average parameter estimates for the
CHDFM (2SPCA). Ground truth in dotted black.

44



Figure 1.9: Distributions of AR(1)-GARCH(1,1) parameters of the second factor (small φ),
according to the two different models for T = 1000 and n = 100. Last row indicates MSE.
CHDFM parameters distributions are the grey histogram, while 2SPCA kernel density is indicated
by the purple line. Orange (Purple) vertical bars indicate average parameter estimates for the
CHDFM (2SPCA). Ground truth in dotted black.
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Figure 1.10: Distributions of AR(1)-GARCH(1,1) parameters of the first factor (large φ),
according to the two different models for T = 250 and n = 50. Last row indicates MSE. CHDFM
parameters distributions are the grey histograms, while 2SPCA parameters densities are indicated
by the purple lines. Orange (Purple) vertical bars indicate average parameter estimates for the
CHDFM (2SPCA). Ground truth in dotted black.
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Figure 1.11: Distributions of AR(1)-GARCH(1,1) parameters of the second factor (small φ),
according to the two different models for T = 250 and n = 50. Last row indicates MSE. CHDFM
parameters distributions are the grey histogram, while 2SPCA kernel density is indicated by the
purple line. Orange (Purple) vertical bars indicate average parameter estimates for the CHDFM
(2SPCA). Ground truth in dotted black.
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1.7 Appendix

1.7.1 Kalman Filter and Kalman Smoother

Let us assume that the true value of the parameter θ is known and initial conditions F0|0
and P0|0 are given. For s < T we have

Ft|s = Eθ[Ft|Xs] (1.68)

Pt|s = Eθ[(Ft − Ft|s)(Ft − Ft|s)
′ |Xs] (1.69)

where Xs is the set of information that consists of xs up to time s.

Kalman Filter - Forward Iterations

The Kalman filter is based on two sets of forward iterations. For t = 1, . . . , T , the predic-
tions equations are:

Ft|t−1 = ΦFt−1|t−1 (1.70)

Pt|t−1 = ΦPt−1|t−1Φ
′
+ ΨQt|t−1Ψ

′
. (1.71)

When a new observation xt become available the estimators for Ft are updated. The
updating equations are:

Ft|t = Ft|t−1 + Pt|t−1Λ
′
(ΛPt|t−1Λ

′
+ Γ)−1(xt −ΛFt|t−1) (1.72)

Pt|t = Pt|t−1 −Pt|t−1Λ
′
(ΛPt|t−1Λ

′
+ Γ)−1ΛPt|t−1. (1.73)

Moreover, by combining the two we obtain the recursion for the error covariance matrix

Pt+1|t = ΦPt|t−1Φ
′ −ΦPt|t−1Λ

′
(ΛPt|t−1Λ

′
+ Γ)−1ΛPt|t−1Φ

′
+ ΨQt+1|tΨ

′
(1.74)

also known as Riccati difference equation.

Kalman Smoother - Backward Iterations

The Kalman smoother is based on the backward iterations for t = T, . . . , 1:

Ft|T = Ft|t + Pt|tΦ
′
P−1
t+1|t(Ft+1|T − Ft+1|t) (1.75)

Pt|T = Pt|t + Pt|tΦ
′
P−1
t+1|t(Pt+1|T −Pt+1|t)P

−1
t+1|tΦPt|t (1.76)

with starting point FT |T = FT |t=T and PT |T = PT |t=T .
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1.7.2 Proprieties of the Factor Covariance Matrix

Lemma 1 . Given the model as defined in (1.5) - (1.6), then:

(i) Var[Ft] = Ir +O(ε)

(ii) Var[ηt] = (Ir −ΦΦ
′
)

(iii) Cov[Ft,Ft+k] = Φ|k|, for any k ∈ Z

(iv) Cov[Ft,ηt+k] = Φ|k|(Ir −ΦΦ
′
), for any k ∈ Z+

(v) Cov[Ft,ηt+k] = 0, for any k ∈ Z−.

Proof. Straightforwardly from Section 1.5 and VAR(1) proprieties.

Lemma 2 . Define FT = (F
′
1 · · ·F

′
T )
′ the rT-dimensional vector of unobserved factors

with variance ΣF = E[FTF
′
T ]. Under assumptions (A1) - (A5), the following proprieties

hold:

(i) ‖ΣF‖ = Op(1)

(ii) ‖Σ−1
F ‖ = Op(1).

Proof. The proof is based on Doz et al. (2012). Define by SF (ω) the spectral density
matrix of Ft, having autocovariance matrix Ω(t− τ) = E[FtF

′
τ ]. Then,

SF (ω) =
1

2π

∑
1≤t,τ≤T

Γ(t− τ)e−iω(t−τ), (1.77)

Ω(t− τ) =

∫ +π

−π
SF (ω)e−iω(t−τ)dω. (1.78)

Let us denote w = (w
′
1,w

′
2, ...,w

′
T ) ∈ RrT any eigenvector of ΣF such that ‖w‖2 =

T∑
t=1

‖wt‖ = 1 and λ∗ a generic eigenvalues of ΣF . Thus, we can write

λ∗ = w
′
ΣFw =

T∑
t=1

T∑
τ=1

w
′

tΓ(t− τ)wτ . (1.79)

Using the inverse transform of the spectral density we have that

w
′
ΣFw =

∑
1≤t,τ≤T

w
′

t

(∫ +π

−π
SF (ω)e−iω(t−τ)dω

)
wτ (1.80)

=

∫ +π

−π

( ∑
1≤t,τ≤T

w
′

tSF (ω)wτe
−iω(t−τ)

)
dω (1.81)

=

∫ +π

−π

( ∑
1≤t≤T

w
′

te
−iωt

)
SF (ω)

( ∑
1≤τ≤T

wτe
iωτ

)
dω. (1.82)
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Now, indicate m and M as the minimum and maximum eigenvalue of SF (ω), that is

m = min
ω∈[−π,+π]

λmin(SF (ω)), (1.83)

M = max
ω∈[−π,+π]

λmax(SF (ω)). (1.84)

Hence,

w
′
ΣFw ∈

m∫ +π

−π

∣∣∣∣∣
∣∣∣∣∣ ∑
1≤t≤T

w
′

te
−iωt

∣∣∣∣∣
∣∣∣∣∣
2

dω ,M

∫ +π

−π

∣∣∣∣∣
∣∣∣∣∣ ∑
1≤t≤T

w
′

te
−iωt

∣∣∣∣∣
∣∣∣∣∣
2

dω

 . (1.85)

But noticing that∫ +π

−π

∣∣∣∣∣
∣∣∣∣∣ ∑
1≤t≤T

w
′

te
−iωt

∣∣∣∣∣
∣∣∣∣∣
2

dω =

∫ +π

−π

( ∑
1≤t,τ≤T

w
′

te
−iωtwτe

iωτ

)
dω (1.86)

=
∑

1≤t,τ≤T

∫ +π

−π
w
′

twτe
−iω(t−τ)dω (1.87)

= 2π
∑

1≤t≤T

w
′

twt = 2π, (1.88)

we have shown that any eigenvalue of ΣF , λ∗ ∈ [2πm, 2πM ]. Finally, we have to prove
that m and M are bounded. Starting from M, under assumption (A1) - (A1’) we have
that the process {Ft} is second-order stationary. Then Ft admits a Wold representation of
the form: Ft = B(L)εt =

∑∞
j=1 B(j)εt−j, with

∑∞
j=1‖B(j)‖ <∞ and εt stationary at order

four. Thus, for any ω ∈ [−π,+π] we have that

‖SF (ω)‖ =
1

2π

∣∣∣∣∣
∣∣∣∣∣
∞∑

h=−∞

Γ(h)eihω

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
h=−∞

‖Γ(h)‖ <∞. (1.89)

Since λmax(SF (ω)) = ‖SF (ω)‖2 ≤ ‖SF (ω)‖ <∞ we have proven that M <∞ and, hence,
‖ΣF‖ = Op(1).
For the (ii) part of the Lemma we need to show that m > 0. We start rewriting the process
in (1.2) in the general VAR form A(L)Ft = ηt+η

∗
t where A(0) = Ir and with A(z) 6= 0 for

|z| ≤ 1. As indicated in (1.3) and (1.4), the process {η∗t } is iid while {ηt} is a GARCH(1,1)
and, under assumptions (A1) and (A1’), ηt is a weak white noise.6 Specifically, one has
that

Cov[ηt,ηt+h] = E[ηtη
′

t+h] = 0, ∀h ∈ Z, h 6= 0. (1.90)

Furthermore, {ηt + η∗t } is a white noise itself, meaning that Sη+η∗(ω) = Υ/2π. Now,
taking a look at the spectral density of Ft, using VAR representation,

SF (ω) =
(
A(eiω)

)−1
Sη+η∗(ω)

(
A′(e−iω)

)−1
. (1.91)

6A process {wt} is called white noise if, for some positive constant σ2: (i) E[wt] = 0 ∀t ∈ Z; (ii)
E[wt] = σ2 <∞ ∀t ∈ Z ; (iii) Cov(wt, wt+h) = 0 ∀t, h ∈ Z, h 6= 0.
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Then, for any eigenvector w ∈ Cn, such that ‖w‖ = 1 and indicating with w∗ the complex
conjugate of w, we can show that

w
′
SF (ω)w∗ =

1

2π
w
′(A(eiω)

)−1
Υ
(
A′(e−iω)

)−1
w∗. (1.92)

≥ 1

2π
λmin(Υ)w

′‖
(
A(eiω)

)−1(A′(e−iω)
)−1‖w∗ (1.93)

≥ 1

2π
λmin(Υ) λmin

(
[A′(e−iω)A(eiω)]−1

)
(1.94)

=
1

2π

λmin(Υ)

λmax(A′(e−iω)A(eiω)
) (1.95)

=
1

2π

λmin(Υ)

‖A(eiω)‖2
2

. (1.96)

Denote a = minω∈[−π,+π]‖A(eiω)‖2
2. Knowing that a is finite, and Υ is positive definite, we

finally get

λmin(SF (ω)) ≥ 1

2π

λmin(Υ)

a
, (1.97)

proving that m > 0 and, consequently, ‖Σ−1
F ‖ = Op(1).

Lemma 3 . Define F †T = (F
′
1, · · · ,F

′
T ,η

′
1, · · · ,η

′
T )
′ the 2rT-dimensional vector of un-

observed factors with variance ΣF † = E[F †TF
†′
T ].7 Under Assumptions (A1) - (A5) and

Lemma 2 the following proprieties hold:

(i) ‖ΣF †‖ = Op(1)

(ii) ‖Σ−1
F †
‖ = Op(1).

Proof. Let us start partitioning the 2rT × 2rT matrix ΣF † such that

ΣF † =

[
ΣF ΣF,η

Σ
′
F,η Ση

]
(1.98)

where ΣF = E[FTF
′
T ] is the matrix containing all autocovariances of Ft and such that

ΣF = ΣG+IT⊗Q?, where Q? = vec−1[(Ir2−Φ⊗Φ)−1vec(Q?)] = O(ε). Then, Ση = IT⊗Q,
with Q being the unconditional variance of ηt, given by Q = (Ir−ΦΦ

′
). Finally, the matrix

ΣF,η is an upper triangular matrix containing all covariances of Ft+k and ηt for all positive

7For the proofs we are going to use this notation instead of F †
T = (F†

′

1 · · ·F
†′
T )

′
because with the former

specification it is possible to exploit block matrix proprieties.
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values of the lag k = 1, . . . , T .8 By contruction, Ση,F = Σ
′
F,η is lower triangular.

Taking a closer look to the submatrices we have

ΣF =


Ir Φ . . . ΦT−1

Φ Ir
... . . .

ΦT−1 Ir

+


Q? 0 . . . 0
0 Q?

... . . .
0 Q?

 (1.99)

(1.100)

Ση =


(Ir −ΦΦ

′
) 0 . . . 0

0 (Ir −ΦΦ
′
)

... . . .
0 (Ir −ΦΦ

′
)

 , (1.101)

(1.102)

ΣF,η =


(Ir −ΦΦ

′
) Φ(Ir −ΦΦ

′
) . . . ΦT−1(Ir −ΦΦ

′
)

0 (Ir −ΦΦ
′
)

... . . .
0 (Ir −ΦΦ

′
)

 . (1.103)

(1.104)

To prove (i) we can use proprieties of psd block matrices (Mhanna, 2015) so that we have

‖ΣF †‖ ≤ ‖ΣF‖+ ‖Ση‖. (1.105)

The first part is O(1) as shown in Lemma 1 (i) while for the second it suffices to show that
‖Ση‖ = ‖IT ⊗ (Ir −ΦΦ

′
)‖ = ‖Ir −ΦΦ

′‖ = O(1) by Assumption (A1).
For the second part we can use block matrix inversion.9 Ση is invertible as it is a diagonal
matrix. Let us check, then, that the Schur complement S = ΣF−ΣF,ηΣ

−1
η Σ

′
F,η is invertible.

One way of proving this relation is by means of the matrix extension of the Cauchy Schwarz
inequality (Tripathi, 1999). As in Radhakrishna Rao (2000), let FT ∈ RrT and ηT ∈ RrT

be random vectors such that ‖ΣF‖ = O(1) and ‖Ση‖ = O(1), then,

ΣF −ΣF,ηΣ
−1
η Σ

′

F,η ≥ 0 (1.107)

i.e. the difference is positive semi-definite. The inequality is sharp if all the mass of the
distribution of (FT ,ηT ) lies on a proper linear subspace of RrT , as in the case when FT ,ηT

8It is upper triangular since Cov(Ft,ηt+k) = 0 for any value of k = 1, . . . , T .
9Consider a matrix M ∈ R2n×2n partitioned in four blocks A,B,C,D ∈ Rn×n. If D and the Schur

complement E = (A−BD−1C) are invertible, then M can be inverted block-wise as[
A B
C D

]−1
=

[
E−1 −E−1BD−1

−D−1CE−1 D−1 +D−1CE−1BD−1

]
(1.106)

.
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are perfectly correlated. If one considers the model Gt = ΦGt−1 + ηt as in (1.2), then the
relation of (1.107) becomes strict and the invertibility conditions of S are not met. On the
other hand, Ft = ΦFt−1 + ηt + η∗t ensures that the matrix is invertible and furthermore
we have:

ΣG −ΣG,ηΣ
−1
η Σ

′

G,η = 0 (1.108)

ΣG + IT ⊗Q? −ΣG,ηΣ
−1
η Σ

′

G,η = IT ⊗Q? (1.109)

ΣF −ΣF,ηΣ
−1
η Σ

′

F,η = IT ⊗Q?, (1.110)

where we used the fact that ΣG,η = ΣF,η by construction, since η∗t is uncorrelated across
time and with ηt for each value of t. The relation also holds when interchanging Ft and
ηt. In this case we have:

Ση −Σ
′

F,ηΣ
−1
F ΣF,η ≥ 0. (1.111)

This will play a central role in Kalman smoother consistency. Moreover, using the relation
(A+B)−1 = A−1 − (A+B)−1BA−1 this can be seen to be

Ση −Σ
′

F,η(ΣG + IT ⊗Q?)−1ΣF,η (1.112)

= Ση −Σ
′

F,ηΣ
−1
G ΣF,η + Σ

′

F,η(ΣG + IT ⊗Q?)−1IT ⊗Q?Σ−1
G ΣF,η (1.113)

= Σ
′

F,ηΣ
−1
F IT ⊗Q?Σ−1

G ΣF,η. (1.114)

If we were to solve it analytically, without loss of generality, let us assume that Φ is
symmetric so that (Ir−ΦΦ

′
) = (Ir−Φ2) and indicate by A[i,j] the r×r dimensional block

of a matrix A.10 Then,

(ΣF,ηΣ
−1
η Σ

′

F,η)[1,1] = (Ir −Φ2) + Φ(Ir −Φ2)Φ + · · ·+ ΦT−1(Ir −Φ2)ΦT−1(1.115)

= (Ir −Φ2) + (Ir −Φ2)Φ2 + · · ·+ (Ir −Φ2)Φ2(T−1) (1.116)
= (Ir −Φ2)(Ir + Φ2 + · · ·+ Φ2(T−1)) (1.117)
= (Ir −Φ2T ) (1.118)

(ΣF,ηΣ
−1
η Σ

′

F,η)[1,2] = Φ(Ir −Φ2) + Φ3(Ir −Φ2) · · ·+ Φ2T−1(Ir −Φ2) (1.119)

= Φ(Ir −Φ2)(Ir + Φ2 + · · ·+ Φ2(T−2)) (1.120)
= Φ(Ir −Φ2(T−1)) (1.121)
. . . (1.122)

(ΣF,ηΣ
−1
η Σ

′

F,η)[1,T ] = ΦT−1(Ir −Φ2) (1.123)
. . . (1.124)

(ΣF,ηΣ
−1
η Σ

′

F,η)[T,T ] = (Ir −Φ2). (1.125)

where we used the partial sum of the Neumann series (I − A)(I + A + A2 + · · ·An) =
(I − An+1). This can be generalized to:

(ΣF,ηΣ
−1
η Σ

′

F,η)[i,j] = Φ|i−j|(Ir −Φ2(T+1−max(i,j)), (1.126)

10Identifying restrictions (IC1) imposes that Φ is diagonal.
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and then we obtain that the blocks of S = ΣF − (ΣF,ηΣ
−1
η Σ

′
F,η) are given by

S[i,j] = Φ|i−j| −Φ|i−j|(Ir −Φ2(T+1−max(i,j))) + Ii=jQ∗ (1.127)
= Φ|i−j|Φ2(T+1−max(i,j)) + Ii=jQ∗ (1.128)

where Ii=j is an indicator matrix which is equal to Ir when i = j and 0r×r otherwise. When
T →∞, we have that S→ IT ⊗Q?, this guarantees the matrix is invertible even for large
T .
Finally, we can rewrite the block-wise inverse as:[

ΣF ΣF,η

Σ
′
F,η Ση

]−1

=

[
S−1 −S−1ΣF,ηIT ⊗Q−1

IT ⊗Q−1Σ
′
F,ηS

−1 IT ⊗Q−1 + IT ⊗Q−1Σ
′
F,ηS

−1ΣF,ηIT ⊗Q−1

]
(1.129)

Then we can use norm inequalities to find an upper bound.11 In particular, we have

‖Σ−1
F †
‖ ≤ ‖S−1‖+ ‖IT ⊗Q−1 + IT ⊗Q−1Σ

′

F,ηS
−1ΣF,ηIT ⊗Q−1‖ (1.130)

≤ ‖IT ⊗Q?−1‖+ ‖IT ⊗Q−1‖+ ‖IT ⊗Q?−1‖‖IT ⊗Q−1‖2‖ΣF,η‖2 (1.131)
= ‖Q?−1‖+ ‖Q−1‖+ ‖Q?−1‖‖Q−1‖2‖ΣF,η‖2 (1.132)
= O(1) (1.133)

since ‖Q?−1‖ = λmin(Q?)−1, which is finite by construction, and the other matrices depend
on Φ and we know that ‖Φ‖ ≤ 1 by Assumption (A1).

1.7.3 Kalman Smoother Consistency

Denote XT = (x
′
1 · · ·x

′
T )
′ and ZT = (ξ

′
1 · · · ξ

′
T )
′ as the nT -dimensional vectors of ob-

served values and disturbances with corresponding variances ΣX = E[XTX
′
T ] and ΣZ =

E[ZTZ
′
T ] = IT ⊗Γ. Let L†T = (IT ⊗Λ, IT ⊗0n×r), the nT × 2rT matrix of factor loadings,

and F †T = (F
′
1, · · · ,F

′
T ,η

′
1, · · · ,η

′
T )
′ , the 2rT -dimensional vector of unobserved factors

with variance ΣF † = E[F †t F
†′
T ]. Let us rewrite the model in (1.1) as:

XT = L†TF
†
T +ZT , ΣX = L†TΣF †L

†′
T + ΣZ . (1.134)

Given the true values of the parameters, the optimal predictor of the factors as a linear
combination of the observables (x

′
1 · · ·x

′
T )
′ is its projection F†t|T = Proj[F†t |XT ]. Under

Gaussianity, the best linear projection is given by the expected value. Nonetheless, we
will allow some degrees of flexibility in the covariance matrix of ξt, showing that we can
achieve consistency of the factors even though the true matrix Γ is non-diagonal and the

11Using the result from (Hayashi, 2018), consider a matrix M ∈ R2n×2n partitioned in four blocks
A,B,C,D ∈ Rn×n. By triangle inequality, ‖M‖ ≤ 2‖A+D‖. If M is positive semi-definite then ‖M‖ ≤
‖A‖ + ‖D‖. If M is upper triangular then ‖M‖2 ≤ ‖A‖2 + ‖B‖2 + ‖D‖2. If M is lower triangular then
‖M‖2 ≤ ‖A‖2 + ‖C‖2 + ‖D‖2.

54



the idiosyncratic components are autocorrelated. Denote Γ0 = diag(σξ,11 · · ·σξ,nn) and
Σ0Z = IT ⊗ Γ0, thus we have Proj[F†t |XT ] = Eθ[F†t |XT ] and this is given by:

F†t|T = Eθ[F†tX
′

T ]Eθ[XTX
′

T ]−1XT (1.135)

= Eθ[F†t(F
†′
T L

†′
T +Z

′

T )]Σ−1
X XT (1.136)

= Eθ[F†tF
†′
T ]L†

′

TΣ−1
X XT (1.137)

= (ι
′

2t ⊗ Ir)ΣF †L
†′
TΣ−1

X XT , (1.138)

where (ι
′
2t⊗ Ir) is the 2r× 2rTmatrix with identity Ir at time t. It selects the appropriate

time block t of a matrix of dimension 2rT . Specifically, ι′2t is given by

ι
′

2t =

[
ι
′
t 0

0 ι
′
t

]
(1.139)

with ιt being the t-th column of the identity matrix IT . Using Woodbury identity12 we
can rewrite the inverse of the variance of XT as

Σ−1
X = Σ−1

0Z −Σ−1
0ZL

†
T (Σ−1

F †
+L†

′

TΣ−1
0ZL

†
T )−1L†

′

TΣ−1
0Z , (1.141)

and pre-multiplying by L†
′

T we obtain

L†
′

TΣ−1
X = L†

′

TΣ−1
0Z −L

†′
TΣ−1

0ZL
†
T (Σ−1

F †
+L†

′

TΣ−1
0ZL

†
T )−1L†

′

TΣ−1
0Z (1.142)

= Σ−1
F †

(Σ−1
F †

+L†
′

TΣ−1
0ZL

†
T )−1L†

′

TΣ−1
0Z , (1.143)

where we used the relation A − B(C + B)−1A = C(C + B)−1A. Let us call the matrix
M† = L†

′

TΣ−1
0ZL

†
T and replace what we obtained in Expression (1.135)

F†t|T = (ι
′

2t ⊗ Ir)(Σ
−1
F †

+ M†)−1L†
′

TΣ−1
0ZXT . (1.144)

Now, we can use the relation in (1.134) to decompose the above equation

F†t|T = (ι
′

2t ⊗ Ir)(Σ
−1
F †

+ M†)−1M†F †T +

+ (ι
′

2t ⊗ Ir)(Σ
−1
F †

+ M†)−1L†
′

TΣ−1
0ZZT . (1.145)

Denote by F†1,t|T the first term of the previous expression. We have

F†1,t|T = (ι
′

2t ⊗ Ir)(Σ
−1
F †

+ M†)−1M†F †T (1.146)

= (ι
′

2t ⊗ Ir)(Σ
−1
F †

+ M†)−1(M† + Σ−1
F †
−Σ−1

F †
)F †T (1.147)

= (ι
′

2t ⊗ Ir)F
†
T − (ι

′

2t ⊗ Ir)(Σ
−1
F †

+ M†)−1Σ−1
F †
F †T (1.148)

= F†t − (ι
′

2t ⊗ Ir)(Σ
−1
F †

+ M†)−1Σ−1
F †
F †T . (1.149)

12For any invertible square A, C ∈ Rn×n and rectangular matrices B and D
′ ∈ Rm×n , we have

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (1.140)

.
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To prove consistency, the second term in the addition should converge to 0. Let us recall
that for the two norms ‖A‖F = tr(A′A)1/2 = tr(AA′)1/2 and ‖A‖ = λmax(A′A)1/2 the
following relation holds: ‖A‖ ≤ ‖A‖F ≤

√
r‖A‖, with r = rank(A). Equality holds

trivially for vectors or,if and only if, the matrix A is a rank-one matrix or a zero matrix since
the trace of a matrix is equal to the sum of its eigenvalues.13 Denote K = (Σ−1

F †
+ M†)−1,

then, we have

Eθ
[
‖F†t − F†1,t|T‖

2
]

= Eθ
[
tr
{

(ι
′

2t ⊗ Ir)KΣ−1
F †
F †TF

†′
T Σ−1

F †
K
′
(ι2t ⊗ Ir)

}]
(1.150)

= tr
{

(ι
′

2t ⊗ Ir)KΣ−1
F †

ΣF †Σ
−1
F †

K
′
(ι2t ⊗ Ir)

}
(1.151)

= ‖(ι′2t ⊗ Ir)KΣ
−1/2

F †
‖2. (1.152)

≤ ‖(ι′2t ⊗ Ir)‖2‖K‖2‖ΣF †‖ (1.153)
= ‖K‖2‖ΣF †‖ (1.154)

since ‖(ι′2t⊗ Ir)‖2 = 1. Furthermore we know from Lemma 2 that ‖Σ−1
F †
‖ = O(1), so let us

temporarily focus on the first term. Specifically, K can be decomposed into block matrices
such that

K =

([
ΣF ΣF,η

Σ
′
F,η Ση

]−1

+

[
M 0
0 0

])−1

(1.155)

where M = IT ⊗ Λ
′
Γ−1

0 Λ. Then, we can use the relation (A + B)−1 = (I + A−1B)−1A−1

which holds for any invertible A to get

K =

([
IrT 0rT
0rT IrT

]
+

[
ΣF ΣF,η

Σ
′
F,η Ση

] [
M 0rT
0rT 0rT

])−1 [
ΣF ΣF,η

Σ
′
F,η Ση

]
(1.156)

=

([
IrT 0rT
0rT IrT

]
+

[
ΣFM 0rT
Σ
′
F,ηM 0rT

])−1 [
ΣF ΣF,η

Σ
′
F,η Ση

]
(1.157)

=

[
IrT + ΣFM 0rT

Σ
′
F,ηM IrT

]−1 [
ΣF ΣF,η

Σ
′
F,η Ση

]
(1.158)

=

[
(IrT + ΣFM)−1 0rT

−Σ
′
F,ηM(IrT + ΣFM)−1 IrT

] [
ΣF ΣF,η

Σ
′
F,η Ση

]
(1.159)

=

[
(Σ−1

F + M)−1Σ−1
F 0rT

−Σ
′
F,ηM(Σ−1

F + M)−1Σ−1
F IrT

] [
ΣF ΣF,η

Σ
′
F,η Ση

]
(1.160)

=

[
(Σ−1

F + M)−1 (Σ−1
F + M)−1Σ−1

F Σ
′
F,η

Σ
′
F,η −Σ

′
F,ηM(Σ−1

F + M)−1 Ση −Σ
′
F,ηM(Σ−1

F + M)−1Σ−1
F ΣF,η

]
.(1.161)

We can use block matrix norm inequalities to find that

‖K‖2 ≤ ‖(Σ−1
F + M)−1‖2 + (1.162)

‖(Ση −Σ
′

F,ηM(Σ−1
F + M)−1Σ−1

F ΣF,η)‖2. (1.163)
13A matrix in Rm×n has rank one if, and only if, it can be written as the outer product of two nonzero

vectors in Rm×n. Given a vector u ∈ Rn, then uu′
is a rank-one matrix such that its 2-norm and F-norm

are equivalent.
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Now, given that Σ−1
F is positive definite, we have Σ−1

F +M ≥M and (Σ−1
F +M)−1 ≤M−1.

Then we can use the fact that ‖A⊗B‖ = ‖A‖‖B‖ and ‖IT‖ = 1 to obtain

‖(Σ−1
F + M)−1‖2 ≤ ‖M−1‖2 (1.164)

≤ ‖(IT ⊗Λ
′
Γ−1

0 Λ)−1‖2 (1.165)
≤ ‖(Λ′Γ−1

0 Λ)−1‖2, (1.166)

which converge to 0 with rate n−2 as n → ∞ by Assumptions (A3) and (A5). For the
second part, instead, we first use the relation (A+B)−1 = A−1− (A+B)−1BA−1 to obtain

‖(Ση −Σ
′

F,ηM(Σ−1
F + M)−1Σ−1

F ΣF,η)‖2

≤ ‖Ση −Σ
′

F,ηΣ
−1
F ΣF,η‖2 + ‖Σ′F,ηM(Σ−1

F + M)−1Σ−1
F M−1Σ−1

F ΣF,η‖2 (1.167)

≤ ‖Σ′F,ηΣ−1
F IT ⊗Q?Σ−1

G ΣF,η‖2 + ‖Σ′F,ηΣ−1
F M−1Σ−1

F ΣF,η‖2 (1.168)

≤ ‖IT ⊗Q?‖2‖Σ′F,η‖4‖Σ−1
F ‖

2‖Σ−1
G ‖

2 + ‖Σ′F,ηΣ−1
F M−1Σ−1

F ΣF,η‖2 (1.169)

≤ ‖Q?‖2‖Σ′F,η‖4‖Σ−1
F ‖

2‖Σ−1
G ‖

2 + ‖Σ′F,ηΣ−1
F ‖

4‖IT ⊗ (Λ
′
Γ−1

0 Λ)−1‖2 (1.170)

≤ ‖Q?‖2‖Σ′F,η‖4‖Σ−1
F ‖

2‖Σ−1
G ‖

2 + ‖(Λ′Γ−1
0 Λ)−1‖2‖Σ′F,η‖4‖Σ−1

F ‖
4, (1.171)

where we used (1.114) in the third passage. The first term ‖Q?‖2 = O(ε) with ε → 0.
‖Σ−1

F ‖, ‖Σ
−1
G ‖, and ‖Σ

′
F,η‖ are finite and ‖(Λ′Γ−1

0 Λ)−1‖2 = O(n−2). So we have proven
that:

F†1,t|T → F†t and F†1,t|T = F†t +O

(
1

n

)
. (1.172)

Finally, let us focus on the second term of Equation (1.145), which we will denote as F†2,t|T

F†2,t|T = (ι
′

2t ⊗ Ir)(Σ
−1
F †

+ M†)−1L†
′

TΣ−1
0ZZT . (1.173)

As above, denote K = (Σ−1
F †

+ M†)−1 with M† = L†
′

TΣ−1
0ZL

†
T and take the expected value

of the norm

Eθ
[
‖F†2,t|T‖

2
]

= Eθ
[
‖(ι′2t ⊗ Ir)KL

†′
TΣ−1

0ZZT‖2
]

(1.174)

= Eθ
[
tr
{

(ι
′

2t ⊗ Ir)KL
†′
TΣ−1

0ZZTZ
′

TΣ−1
0ZL

†
TK

′
(ι2t ⊗ Ir)

}]
(1.175)

= tr
{

(ι
′

2t ⊗ Ir)KL
†′
TΣ−1

0ZΣZΣ−1
0ZL

†
TK

′
(ι2t ⊗ Ir)

}
(1.176)

= ‖(ι′2t ⊗ Ir)KL
†′
TΣ
−1/2
0Z Σ

−1/2
0Z Σ

1/2
Z ‖

2 (1.177)

≤ ‖(ι′2t ⊗ Ir)KL
†′
TΣ
−1/2
0Z ‖

2‖Σ−1
0ZΣZ‖ (1.178)

≤ ‖K‖2‖L†
′

TΣ
−1/2
0Z ‖

2‖Σ−1
0ZΣZ‖. (1.179)

We already proved that ‖K‖2 = O(n−2). The second term is

‖L†
′

TΣ
−1/2
0Z ‖

2 = ‖IT ⊗ΛΓ
−1/2
0Z ‖

2 (1.180)

= ‖ΛΓ
−1/2
0Z ‖

2 (1.181)
= ‖Λ′Γ−1

0 Λ‖, (1.182)
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which is O(n). Finally, we know from Assumption (A3) that the last norm is finite. Indeed,

‖Σ−1
0ZΣZ‖ ≤

λmax(ΣZ)

λmin(Σ0Z)
(1.183)

≤ λmax(Γ)

λmin(Γ0)
. (1.184)

It follows that:
F†2,t|T → 0 and F†2,t|T = O

(
1√
n

)
. (1.185)

We can finally put this result together with the one obtained for F†1,t|T . This implies the
mean square convergence of the Kalman smoother for all values of t and when parameters
are known, i.e.

Eθ
[
‖F†t − F†t|T‖

2
]

= O

(
1

n

)
. (1.186)

1.7.4 Kalman Filter Consistency

Let us assume that the true value of the parameter θ is known and initial conditions F †0|0
and P †0|0 are given. For t < T we have

F†t|t = Eθ[F†t |Xt] (1.187)

P†t|t = Eθ[(F†t − F†t|t)(F
†
t − F†t|t)

′ |Xt] (1.188)

which are of dimension 2r × 1 and 2r × 2r, respectively. As F†t = [F
′
t η

′
t]
′ we can denote

PF
t|t = Eθ[(Ft − Ft|t)(Ft − Ft|t)

′|Xt] and Pη
t|t = Eθ[(ηt − ηt|t)(ηt − ηt|t)

′|Xt]. First of all,
let’s examine the Riccati difference equation as in (1.74):

P†t+1|t = Φ†P†t|t−1Φ
†′ −Φ†P†t|t−1Λ

†′(Λ†P†t|t−1Λ
†′ + Γ)−1Λ†P†t|t−1Φ

†′ + Ψ†Q†t+1|tΨ
†′ .(1.189)

Given that

Ψ†Q†t+1|tΨ
†′ =

[
Ir Ir
0 Ir

] [
Q∗ 0
0 Qt+1|t

] [
Ir 0
Ir Ir

]
=

[
Q∗ + Qt+1|t Qt+1|t

Qt+1|t Qt+1|t

]
, (1.190)

we can write the upper-left r × r block matrix that refers to Ft as:

PF
t+1|t = ΦPF

t|t−1Φ
′ −ΦPF

t|t−1Λ
′
(ΛPF

t|t−1Λ
′
+ Γ)−1ΛPF

t|t−1Φ
′
+ Qt+1|t + Q∗. (1.191)

Using a modified version of the Woodbury identity, such that for any matrix A,B,C ∈
Rn×n with A and C invertible, AC(B + C ′AC)C ′A = A− (A−1 + CB−1C ′)−1 we obtain

PF
t+1|t = ΦPF

t|t−1Φ
′ −ΦPF

t|t−1Φ
′
+ Φ(PF−1

t|t−1 + Λ
′
Γ−1Λ)−1Φ

′
+ Qt+1|t + Q∗(1.192)

= Φ(PF−1
t|t−1 + Λ

′
Γ−1Λ)−1Φ

′
+ Qt+1|t + Q∗ (1.193)

58



as n→∞ and for a negligible ε, PF
t+1|t → Qt+1|t. As a matter of fact,

‖PF
t+1|t −Qt+1|t‖ = ‖Φ(PF−1

t|t−1 + Λ
′
Γ−1Λ)−1Φ

′
+ Q∗‖ (1.194)

≤ ‖Φ(PF−1
t|t−1 + Λ

′
Γ−1Λ)−1Φ

′‖+ ‖Q∗‖ (1.195)

≤ ‖Φ‖2‖(Λ′Γ−1Λ)−1‖+ ‖Q∗‖ (1.196)
= O(n−1) +O(ε) (1.197)

since ‖Φ‖ is finite and ‖(Λ′Γ−1Λ)−1‖ = O(n−1). As for the other blocks, we can notice
that

Pη
t+1|t = PF,η

t+1|t = Pη,F
t+1|t = Qt+1|t (1.198)

because all blocks but the upper-left in the first and second addends of (1.189) are 0.
Given these premises, Kalman filter consistency can be proved based on recursion formula
(1.73). Using Woodbury identity we can rewrite it as

P†t|t = P†t|t−1 −P†t|t−1Λ
†′(Λ†P†t|t−1Λ

†′ + Γ)−1Λ†P†t|t−1 (1.199)

= (P†−1
t|t−1 + Λ†

′
Γ−1Λ†)−1 (1.200)

=

[PF
t|t−1 PF,η

t|t−1

Pη,F
t|t−1 Pη

t|t−1

]−1

+

[
V 0r
0r 0r

]−1

(1.201)

with V = Λ
′
Γ−1Λ. We can now use a similar step to that used in the Kalman smoother

consistency to obtain

P†t|t =

([
Ir 0r
0r Ir

]
+

[
PF
t|t−1 PF,η

t|t−1

Pη,F
t|t−1 Pη

t|t−1

] [
V 0r
0r 0r

])−1 [
PF
t|t−1 PF,η

t|t−1

Pη,F
t|t−1 Pη

t|t−1

]
(1.202)

=

([
Ir 0r
0r Ir

]
+

[
PF
t|t−1V 0r

Pη,F
t|t−1V 0r

])−1 [
PF
t|t−1 PF,η

t|t−1

Pη,F
t|t−1 Pη

t|t−1

]
(1.203)

=

[
Ir + PF

t|t−1V 0r
Pη,F
t|t−1V Ir

]−1 [
PF
t|t−1 PF,η

t|t−1

Pη,F
t|t−1 Pη

t|t−1

]
(1.204)

=

[
(Ir + PF

t|t−1V)−1 0r
−Pη,F

t|t−1V(Ir + PF
t|t−1V)−1 Ir

][
PF
t|t−1 PF,η

t|t−1

Pη,F
t|t−1 Pη

t|t−1

]
(1.205)

=

[
(PF−1

t|t−1 + V)−1PF−1
t|t−1 0r

−Pη,F
t|t−1V(PF−1

t|t−1 + V)−1PF−1
t|t−1 Ir

][
PF
t|t−1 PF,η

t|t−1

Pη,F
t|t−1 Pη

t|t−1

]
(1.206)

=

[
(PF−1

t|t−1 + V)−1 (PF−1
t|t−1 + V)−1PF−1

t|t−1P
η,F
t|t−1

Pη,F
t|t−1 −Pη,F

t|t−1V(PF−1
t|t−1 + V)−1 Pη

t|t−1 −Pη,F
t|t−1V(PF−1

t|t−1 + V)−1PF−1
t|t−1P

F,η
t|t−1

]
.
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Now, passing to the norm, since P†t|t is positive definite, then we can use block matrix norm
inequalities to find that

‖P†t|t‖ ≤ ‖(PF−1
t|t−1 + V)−1‖+ (1.207)

‖Pη
t|t−1 −Pη,F

t|t−1V(PF−1
t|t−1 + V)−1PF−1

t|t−1P
F,η
t|t−1‖

≤ ‖(PF−1
t|t−1 + V)−1‖+ (1.208)

‖Pη
t|t−1 −Pη,F

t|t−1P
F−1
t|t−1P

F,η
t|t−1‖+

‖Pη,F
t|t−1V(PF−1

t|t−1 + V)−1PF−1
t|t−1V

−1PF−1
t|t−1P

F,η
t|t−1‖,

where we used the relation (A+B)−1 = A−1− (A+B)−1BA−1 in the second step. As for
the first term, we know that

‖(PF−1
t|t−1 + V)−1‖ = ‖(PF−1

t|t−1 + Λ
′
Γ−1Λ)−1‖ ≤ ‖(Λ′Γ−1Λ)−1‖ (1.209)

= O(n−1) (1.210)

for each value of PF−1
t|t−1, since the matrix is positive definite by construction and the term

on the right-hand side converges to O(n−1) For the second part, we can instead use relation
(1.198) such that

‖Pη
t|t−1 −Pη,F

t|t−1P
F−1
t|t−1P

F,η
t|t−1‖ = ‖Qt|t−1 −Qt|t−1(PF

t|t−1)−1Qt|t−1‖ (1.211)

= O(n−1) +O(ε) (1.212)

as we proved that PF
t+1|t → Qt+1|t as n→∞ and ε→ 0. Finally, the last term

‖Pη,F
t|t−1V(PF−1

t|t−1 + V)−1PF−1
t|t−1V

−1PF−1
t|t−1P

F,η
t|t−1‖ (1.213)

≤ ‖Pη,F
t|t−1P

F−1
t|t−1V

−1PF−1
t|t−1P

F,η
t|t−1‖

≤ ‖Qt|t−1‖2‖PF−1
t|t−1‖

2‖(Λ′Γ−1Λ)−1‖ (1.214)

= O(n−1), (1.215)

given that the fist term is bounded by the unconditional variance, being a stationary
GARCH(1,1), and the second one is finite since the matrix PF

t|t−1 is positive definite by
construction. So that for each t = 1, . . . , T we have

P†t|t = Eθ[(F†t − F†t|t)(F
†
t − F†t|t)

′ |Xt] = O

(
1

n

)
. (1.216)

Then, by using the law of iterated expectation we have

Eθ
[
‖F†t − F†t|t‖

2
]

= Eθ[Eθ[tr
{

(F†t − F†t|t)(F
†
t − F†t|t)

′|Xt]
}

] (1.217)

= Eθ[tr
{
P†t|t
}

]] =
2r∑
i=1

Eθ[P†t|t]ii (1.218)

≤ 2r maxEθ|P†t|t|ij = r Eθ‖P†t|t‖max (1.219)

≤ 2r Eθ‖P†t|t‖. (1.220)
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Given that ‖P†t|t‖ is smaller than the term in (1.207), by the Dominated Covngergence
Theorem we can interchange expectation and limit so the proof completes and we finally
have that

Eθ
[
‖F†t − F†t|t‖

2
]

= Op

(
1

n

)
. (1.221)

1.7.5 Further results on the Kalman Filter and Smoother

Lemma 4 Denote with t ∈ N the generic time index and with S, T ∈ N the initial values
for the Kalman smoother backward iterations, so that t < S < T . Given the Kalman filter
and smoother consistency proprieties obtained in (A4.3) and (A4.4) the following hold:

(i) ‖F†t|T − F†t|t‖ = O(n−1) ;

(ii) ‖F†t|T − F†t|S‖ = O(n−1);

(iii) ‖P†t|T −P†t|t‖ = O(n−2);

(iv) ‖P†t|T −P†t|S‖ = O(n−2).

Proof. We know already from (1.186) and (1.221) that P†t|T = O(n−1) and P†t|t = O(n−1).
Now, if we use Kalman smoother backward iteration as in (1.75), we have that

F†t|T = F†t|t + P†t|tΦ
†′P†−1

t+1|t(F
†
t+1|T − F†t+1|t) (1.222)

F†t|T − F†t|t = P†t|tΦ
†′P†−1

t+1|t(F
†
t+1|T − F†t+1|t) (1.223)

‖F†t|T − F†t|t‖ = O(n−1), (1.224)

because P†t|t = O(n−1), and all the other terms can be shown to be finite, proving (i).
Another important asymptotic result concerns the starting point from which the algorithm
begins to iterate backwards. Generally, one sets up the most forward estimate of the
Kalman filter as the initial condition for the smoother, F†t|T = F†t|t when t = T . To prove
(ii), let us consider a different starting point S < T . In this case

F†t|S = F†t|t + P†t|tΦ
†′P†−1

t+1|t(F
†
t+1|S − F†t+1|t). (1.225)

Subtracting (1.225) from (1.222) we obtain

F†t|T − F†t|S = P†t|tΦ
†′P†−1

t+1|t(F
†
t+1|T − F†t+1|S) (1.226)

‖Ft|T − Ft|S‖ = O(n−1), (1.227)

as n→∞, since again, P†t|t = O(n−1), and all the other terms are finite. Thus, as long as
we increase the dimension of the cross-section, the starting point for the recursion is not
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relevant.
For (iii) we can start using the Kalman smoother backward iteration for P†t|T :

P†t|T = P†t|t + P†t|tΦ
†′P†−1

t+1|t(P
†
t+1|T −P†t+1|t)P

†−1
t+1|tΦ

†P†t|t (1.228)

P†t|T −P†t|t = P†t|tΦ
†′P†−1

t+1|t(P
†
t+1|T −P†t+1|t)P

†−1
t+1|tΦ

†P†t|t (1.229)

‖Pt|T −Pt|t‖ = O(n−2), (1.230)

as P†t|t = O(n−1), the term in parentheses is positive semi-definite and the others are finite.
Finally, let us consider a different starting point S < T ,

P†t|S = P†t|t + P†t|tΦ
†′P†−1

t+1|t(P
†
t+1|S −P†t+1|t)P

†−1
t+1|tΦ

†P†t|t. (1.231)

Then, subtracting (1.231) from (1.228) we have

P†t|T −P†t|S = P†t|tΦ
†′P†−1

t+1|t(P
†
t+1|T −P†t+1|S)P†−1

t+1|tΦ
†P†t|t (1.232)

‖P†t|T −P†t|S‖ = O(n−2) (1.233)

since, again P†t|t = O(n−1), and the other terms are finite.

1.7.6 Conditional Variance Consistency

Define by Xt−1, the σ-field generated by xt up to and including time t − 1. To avoid
unnecessary notational burden, let us consider a single factor F†t = [Ft ηt]

′ with from the
Augmented Model as in (1.5) and (1.6)14. We want to calculate:

qt|t−1 = Varθ[ηt|Xt−1] = Eθ[η2
t |Xt−1] = ω + αEθ[η2

t−1|Xt−1] + βEθ[qt−1|Xt−1]. (1.234)

Now, for the first term, denote by ηt−1|t−1 the estimate from the Kalman filter, i.e. ηt−1|t−1 =
Eθ[ηt−1|Xt−1], then we can write

ηt−1 = ηt−1|t−1 + (ηt−1 − ηt−1|t−1). (1.235)

Squaring both sides and taking expectation conditionally on Xt−1 we obtain

Eθ[η2
t−1|Xt−1] = η2

t−1|t−1 + P η
t−1|t−1, (1.236)

with P η
t−1|t−1 = Eθ[(ηt−1 − ηt−1|t−1)2|Xt−1] being the conditional variance of ηt−1 given the

information at time t− 1. Here, we used the fact that the estimate from the KF is known
at time t − 1 so that we don’t need expectation for the first term. Likewise, the cross
product is zero.
The second term is more difficult to deal with since we don’t know how to calculate

14Generalization to multiple factors is straightforward as Qt|t−1 is diagonal and each qi,t|t depends on
the factor i only.
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Eθ[qt−1|Xt−1]. However, we could handle the expression qt−1|t−2 = Eθ[qt−1|Xt−2] more
easily by recursion. As in Harvey et al. (1992), we repeatedly substitute qt−1 from (1.4).
For J ≥ 1 we get

Varθ[ηt|Xt−1] = ω(1 + β + · · ·+ βJ−1) (1.237)

+ α
J∑
j=1

βj−1Eθ[η2
t−j|Xt−1] + βJEθ[qt−J |Xt−1]. (1.238)

We can simplify this expression by setting J = ∞. Subsequently, we multiply both sides
of the equation for t− 1 by β and subtract from the same expression for t. We then obtain

Varθ[ηt|Xt−1] = ω + αEθ[η2
t−1|Xt−1] (1.239)

+ α

∞∑
j=1

βj(Eθ[η2
t−j−1|Xt−1]− Eθ[η2

t−j−1|Xt−2]) (1.240)

+ βEθ[η2
t−1|Xt−2]. (1.241)

Finally, we substitute the expectation with the values we got in (1.236)

qt|t−1 = Varθ[ηt|Xt−1] = ω + α(η2
t−1|t−1 + P η

t−1|t−1) + βqt−1|t−2 + δt, (1.242)

where

δt =
∞∑
j=1

αβj(Eθ[η2
t−j−1|Xt−1]− Eθ[η2

t−j−1|Xt−2]). (1.243)

Now, looking at the first term in parentheses, with ηt−j−1|t−1 = Eθ[ηt−j−1|Xt−1],

Eθ[η2
t−j−1|Xt−1] = Eθ[(ηt−j−1 − ηt−j−1|t−1 + ηt−j−1|t−1)2|Xt−1] (1.244)

= Eθ[(ηt−j−1 − ηt−j−1|t−1)2|Xt−1] + η2
t−j−1|t−1 (1.245)

= P η
t−j−1|t−1 + η2

t−j−1|t−1, (1.246)

where we used the fact that the estimates from the smoother ηt−j−1|t−1 is fixed and known
at time t− 1 so that the cross product is also 0. In the same way,

Eθ[η2
t−j−1|Xt−2] = Eθ[(ηt−j−1 − ηt−j−1|t−2 + ηt−j−1|t−2)2|Xt−2] (1.247)

= Eθ[(ηt−j−1 − ηt−j−1|t−2)2|Xt−2] + η2
t−j−1|t−2 (1.248)

= P η
t−j−1|t−2 + η2

t−j−1|t−2. (1.249)

Then, we can rewrite (1.243) as

δt =
∞∑
j=1

αβj[(P η
t−j−1|t−1 − P

η
t−j−1|t−2) + (η2

t−j−1|t−1 − η2
t−j−1|t−2)] (1.250)

= αβ[(P η
t−2|t−1 − P

η
t−2|t−2) + (η2

t−2|t−1 − η2
t−2|t−2)] + (1.251)

+
∞∑
j>1

αβj[(P η
t−j−1|t−1 − P

η
t−j−1|t−2) + (η2

t−j−1|t−1 − η2
t−j−1|t−2)]. (1.252)
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We have previously proved that

‖F†t|T − F†t|t‖ = O(n−1) and ‖F†t|T − F†t|S‖ = O(n−1), (1.253)

which means that consistency also holds for ηt, as this is part of F†t . Additionally, all the
proprieties in Lemma 4 are valid.
In particular, by Lemma 4 (iii),

P η
t−2|t−1 − P

η
t−2|t−2 = O(n−2), (1.254)

while

η2
t−2|t−1 − η2

t−2|t−2 = (ηt−2|t−1 − ηt−2|t−2)(ηt−2|t−1 + ηt−2|t−2) = O(n−1), (1.255)

since the first term is O(n−1) by Lemma 4 (i) and the second is finite. We can then use
Lemma 4 (iv) to prove that

P η
t−j−1|t−1 − P

η
t−j−1|t−2 = O(n−2), (1.256)

and by Lemma 4 (ii),

η2
t−j−1|t−1− η2

t−j−1|t−2 = (ηt−j−1|t−1− ηt−j−1|t−2)(ηt−j−1|t−1 + ηt−j−1|t−2) = O(n−1). (1.257)

Finally, we have that

δt =
∞∑
j=1

αβj[(P η
t−j−1|t−1 − P

η
t−j−1|t−2) + (η2

t−j−1|t−1 − η2
t−j−1|t−2)] = O(n−1), (1.258)

since the O-terms do not depend on the summation index. This implies that as n→∞ the
correction term vanishes to 0, i.e. δt → 0, at rate n−1. Now, to prove conditional variance
consistency, let us first transform the GARCH(1,1) into an ARCH(∞). In the same way
as Bollerslev (1986), we have that

qt =
ω

1− β
+ α

∞∑
j=1

βj−1η2
t−j, (1.259)

and for the Kalman filter estimator, repeatedly substituting in (1.242) we obtain

qt|t =
ω

1− β
+ α

∞∑
j=1

βj−1(η2
t−j|t−j + P η

t−j|t−j) +
∞∑
j=1

βj−1δt+1−j. (1.260)

Then,

|qt − qt|t| =

∣∣∣∣∣α
∞∑
j=1

βj−1(η2
t−j − η2

t−j|t−j)− α
∞∑
j=1

βj−1P η
t−j|t−j −

∞∑
j=1

βj−1δt+1−j

∣∣∣∣∣ . (1.261)
We know that α, β,> 0 and α+β < 1 from Assumption (A1) and each of the terms in the
summation is O(n−1) and these O-terms are independent of j. Thus,

|qt − qt|t| = O(n−1), (1.262)

suggesting that as n→∞, the estimate from the Kalman filter converges to the GARCH(1,1)
conditional variance, i.e. qt|t → qt, with rate n−1.
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1.7.7 Multistep Forecast for qt+h|t
Consider the problem of predicting Var[ηt+h|Xt], the conditional variance of ηt+h with
information up to time t. Using r = 1 for simplicity, from (1.3) and (1.4)

ηt =
√
qt η̃t (1.263)

qt = ω + αη2
t−1 + βqt−1 (1.264)

with η̃t ∼ NID(0, 1). Define q = 1 − φ2 = Var[ηt], the unconditional variance of ηt. We
also know, from variance targeting, that ω = (1− α− β)(1− φ2) = (1− α− β)q. Then,

qt+h = (1− α− β)q + αη2
t+h−1 + βqt+h−1 (1.265)

qt+h − q = α(η2
t+h−1 − q) + β(qt+h−1 − q). (1.266)

Taking expectation with respect to Xt we obtain

E[qt+h|Xt]− q = α(E[η2
t+h−1|Xt]− q) + β(E[qt+h−1|Xt]− q). (1.267)

But we know that E[η2
t+h−1|Xt] = E[qt+h−1|Xt], since

E[η2
t+h−1|Xt] = E[qt+h−1η̃

2
t+h−1|Xt] (1.268)

= E
[
E[qt+h−1η̃

2
t+h−1|Xt+h−2]|Xt

]
(1.269)

= E[qt+h−1|Xt] (1.270)

by the law of iterated expectation and using the fact that E[η̃2
t ] = 1 and E[qt+1|Xt] = qt+1.

Substituting this result in (1.266)

E[qt+h|Xt]− q = (α + β)(E[qt+h−1|Xt]− q) (1.271)
= (α + β)h−1(E[qt+1|Xt]− q) (1.272)
= (α + β)h−1(qt+1|t − q) (1.273)

E[qt+h|Xt] = 1− φ2 + (α + β)h−1(qt+1|t + φ2 − 1) (1.274)

As h→∞, E[qt+h|Xt] converges to its unconditional variance 1− φ2.

1.7.8 Identification Condition on Factor Loadings

Denote by Λ̂ the n× r matrix estimated using the ECME, that is:

Λ̂ =

(
T∑
t=1

xtF̂
′

t|T

)(
T∑
t=1

F̂t|T F̂
′

t|T + PF
t|T

)−1

. (1.275)

As F̂t|T is a consistent estimator of Ft, from (1.186) and (1.221) we know that

D−1
1 =

(
T∑
t=1

F̂t|T F̂
′

t|T + PF
t|T

)
(1.276)

= nIr +O(n−1) (1.277)
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is asymptotically diagonal, and so it will be its inverse. Now, we want to calculate

Λ̂
′
Λ̂ = D1

(
T∑
t=1

F̂t|Tx
′

t

)(
T∑
t=1

xtF̂
′

t|T

)
D1. (1.278)

Now, replacing the sum xtF̂
′

t|T with their matrix multiplication F̂
′
X, where F̂ = (F̂1T , · · · , F̂T |T )

is the r × T matrix containing the unobserved factors and X = (x1, · · · ,xT ), then,

Λ̂
′
Λ̂ = D1F̂X

′
XF̂

′
D1. (1.279)

Using the fact that X = ΛF + Ξ, with Ξ = (ξ1, · · · , ξT ) we have that

X
′
X = (ΛF + Ξ)

′
(ΛF + Ξ) (1.280)

= (F
′
Λ
′
+ Ξ

′
)(ΛF + Ξ) (1.281)

= F
′
Λ
′
ΛF + F

′
Λ
′
Ξ + ΛFΞ

′
+ Ξ

′
Ξ, (1.282)

and then,

F̂X
′
XF̂

′
= F̂F

′
Λ
′
ΛFF̂

′
+ F̂F

′
Λ
′
ΞF̂

′
+ F̂ΛFΞ

′
F̂
′
+ F̂Ξ

′
ΞF̂

′
. (1.283)

The last three terms on the right-hand side of the equation go to 0 asymptotically because
of the product ΞF̂

′ . Furthermore, in a similar fashion to (1.277), the product D2 = F̂F
′

is diagonal when n→∞. Finally, substituting back in (1.279) and multiplying by n−1 we
obtain

Λ̂
′
Λ̂

n
= D1D2

Λ
′
Λ

n
D2D1. (1.284)

Thus, n−1Λ̂
′
Λ̂ being diagonal depends on the main assumption of n−1Λ

′
Λ and how the

ECME is initialized. PCA identifying restrictions (Bai and Li, 2012), for example, require
the product to be diagonal.
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Chapter 2

Applications and Model Extensions

2.1 Growth at Risk

2.1.1 Introduction

Policymakers’ attention to downside risk has shifted dramatically in recent years (Sánchez
and Röhn, 2016; Prasad et al., 2019), prompting the creation of techniques to quantify
the possibility and magnitude of severe occurrences in important economic variables (Ghy-
sels et al., 2018). The International Monetary Fund (IMF) has lately popularized a risk
metric known as Growth-at-Risk (GaR), which is the worst-case scenario for GDP growth
at a certain coverage level and is the risk management equivalent of Value-at-Risk (VaR).
Several institutions now report GaR for major international economies on a regular basis.
This measure has been introduced by Adrian et al. (2019) to study the downside risks in
periods of tight financial conditions. The authors used a quantile regression to model the
5% tail distribution of the GDP using a collection of quarterly financial variables provided
by the IMF. Despite GaR’s rapid success, less research has been done on its out-of-sample
prediction performance. Interestingly, Plagborg-Møller et al. (2020) showed that financial
variables contribute very little to GDP forecast distributions and none of the predictors
they consider provide a robust signal of future tail risks. Along the same lines, Brownlees
and Souza (2021) demonstrated that, when compared to the quantile regression method,
fitting a simple AR(1)-GARCH(1,1) model using 24 OECD nations yields better in-sample
and out-of-sample results. Thus, confirming that business cycle and real indicators are the
main driver to forecast potential tail risks. Finally, Carriero et al. (2020) model the GDP
conditional predictive distribution using a Bayesian VAR which features a generalized fac-
tor structure in the stochastic volatility to capture macroeconomic uncertainty.
By using a GARCH(1,1)-CHDFMwe retain the strengths of the AR(1)-GARCH(1,1) model
proposed by Brownlees and Souza (2021), but we expand the framework, enabling a factor
structure in the variance. In particular, we acknowledge the existence of one unobserved
common factor among the OECD countries that drives the mean process and we comple-
ment it with additional idiosyncratic errors that may better explain the variance. This is
done by extending the model in Chapter 1 to account for a factor structure enclosed in the
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observation errors. Then, we forecast the the GDP distribution at time t + 1. A similar
approach, the use of a common time-varying variance component in the observation dis-
turbances using a GARCH(1,1) specification, has been pursued by Koopman et al. (2010)
in an attempt to model the term structure of interest rates. However, the work does not
rely on the infinite n framework proper of DFM and uses approximation to evaluate the
variance process. Lastly, we backtest the the GaR predictions, using a variety of methods
employed in the risk management literature. To determine if the GaR predictions are ef-
fective with regard to various information sets, we use the dynamic quantile test developed
by Engle and Manganelli (2004) and other statistical tests elaborated by Christoffersen
(1998). Additionally, the tick loss, a loss function frequently used to gauge the accuracy
of VaR predictions, is employed to examine the marginal GaR projections (Giacomini and
Komunjer, 2005). We also compare CHDFM with the historical unconditional distribution
of GDP growth rates.

The contribution of this section is to extend the theoretical framework from the previous
chapter to better align the model to the empirical task at hand, i.e. correctly backtesting
the GDP growth worst-case scenario. Specifically, we allow for unobserved heteroskedastic-
ity in the measurement error, too. The key learning from the exercise is that the CHDFM
better fits the data and demonstrates superior performance when compared to the bench-
mark methodology.

The first part of this chapter is organized as follows. Subsection 2.1.2 introduces the
main modification to the CHDFM to account for heteroskedasticity in the observation
equation. Subsections 2.1.3 and 2.1.4 present a mathematical formulation of the GaR and
related backtesting methodologies. Subsection 2.1.5 describes the data for the empirical
application, which consists of GDP growth rates for 20 OECD countries. Finally, Subsec-
tions 2.1.6 and 2.1.7 evaluate the in-sample efficacy and out-of-sample performance of the
model.

2.1.2 CHDFM with idiosyncratic GARCH(1,1)

Let us extend the Conditionally Heteroskedastic model of 1.5 and 1.6 to take into account
potential volatility dynamics of the observational error:

xt =
[
ΛF 0 Λξ

]︸ ︷︷ ︸
Λ†

F†t + ξ∗t , (2.1)

F†t =

Ft

ηt
ξt

 =

Φ 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

Φ†

Ft−1

ηt−1

ξt−1


︸ ︷︷ ︸

F†t−1

+

I I 0
0 I 0
0 0 I


︸ ︷︷ ︸

Ψ†

η∗tηt
ξt


︸ ︷︷ ︸
η†t−1

. (2.2)

with ξ∗t ∼ N (0,H∗). Matrices Φ† and Ψ† are now both of dimension (2r + m) × (2r + m)

where m is the dimension of the vector ξt. F†t is the (2r + m) × 1 augmented unobserved

68



state vector and η†t is the (2r +m)× 1 disturbance component consisting of η?t , ηt and ξt.
The first two moments are given by

η†t |It−1 ∼ N

 0
0
0

 ,

 Q? 0 0
0 Qt 0
0 0 Ht

 .
In this way we can model the dynamic of the conditional variance of both ηt and ξt. For
i = 1, ..., r and for j = r + 1, ...,m we have:

ηt = Q
1/2
t η̃t qi,t = ωi + αiη

2
i,t−1 + βiqi,t−1 (2.3)

ξt = H
1/2
t ξ̃t hj,t = ωj + αjη

2
i,t−1 + βjhi,t−1 (2.4)

where hjt = H
[j,j]
t , qi,t = Q

[i,i]
t , and with η̃t, ξ̃t,∼ N (0, I) and independent. Noting that

this specification relies on the same general model defined in 1.5 - 1.6, then 1 still holds
and the Kalman filter delivers consistent factors (and errors). In particular, denoting
ηt−1|t−1 = E[ηt−1|Xt−1] and P η

t−1|t−1 = E[(ηt−1 − ηt−1|t−1)2|Xt−1] and ξt−1|t−1 = E[ξt−1|Xt−1]

and P ξ
t−1|t−1 = E[(ξt−1 − ξt−1|t−1)2|Xt−1] we have that

qt|t−1 = ωi + αi(η
2
t−1|t−1 + P η

t−1|t−1) + βiqt−1|t−2 (2.5)

ht|t−1 = ωj + αj(ξ
2
t−1|t−1 + P ξ

t−1|t−1) + βjht−1|t−2. (2.6)

The estimation is performed in the same way as described in Section 1.25, with the CM-step
having r +m optimization routines.

2.1.3 Evaluating the GaR

Recently, economists and policymakers have concentrated their efforts on modelling and
predicting the marginal and joint distributions of GDP growth rates in order to quantify
the negative risk associated with extreme events in the 5% conditional quantile, named
Growth-at-Risk. Define as xi,t the ith country’s GDP growth rate, then the h-step ahead
GaR is defined as the maximum loss that can occurr with a given degree of certainty p and
such that:

Pt(xi,t+h ≤ GaRp
i,t+h|t) = p (2.7)

with p = 0.05 and Pt the probability measure conditional on the information available up
to time t. This can be rewritten as the p-quantile of the GDP conditional distribution:

GaRp
i,t+h|t = F−1

xi,t+h
(p) (2.8)

F−1
xi,t+h

(p) being the cumulative density function of xi,t+h. The (1−p)% marginal GaR is the
prediction distribution area that should contain the GDP growth of each country with that
probability. As Brownlees and Souza (2021) demonstrated, modelling the variance of an
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autoregressive process could generate superior results both in and out of sample compared
to a model which included external financial regressors.
As we will deal with dynamic factors that model all the variables jointly we will use the
“joint marginal” approach, which employs the prediction region obtained by setting the
joint GaR equal to the marginal GaR.
This section will introduce the historical approach plus two models that incorporate similar
(but not exactly equal) assumptions about the data generation process and the determi-
nants of GDP conditional distributions but different estimation procedures.

1) The Historical Benchmark is a non-parametric estimation method for quantiles, and
GaR is calculated as the sample quantile estimate based on historical GDP growth
rates. Given n ordered data points for the country i, x(1)

i , x
(2)
i , · · · , x(n)

i , ordered from
the smallest to the largest, the Empirical Cumulative Density Function (ECDF) is
defined as:

F̂n(xi) =
1

n

n∑
i=1

1{
x
(j)
i <xi

} (2.9)

where 1 is the indicator function of the event {x(j)
i < xi}. Assuming each observation

in time is i.i.d we can remove any dependency of t from xi,t. Then the GaR can be
calculated by the inverse function of F̂n(xi), for a given confidence level p:

GaRp
i,t|t+h = GaRp

i = F̂−1
n,xi

(p). (2.10)

2) The second model employs the CHDFM with idiosyncratic error as defined in Section
2.1.2. Using that specification it is possible to construct the GaR forecast at time
t+ 1 using the p% conditional quantile

GaRp
i,t+1|t = yi,t+1|t +

√
σ2
i,t+1|t F̂

−1
zi

(p). (2.11)

Let us focus on the first two elements. Forecast distribution formulas are defined in
1.4.2. In particular, for the model defined in (2.1) and (2.2) and h = 1 we have

yi,t+1|t = λFi ΦFt|t (2.12)

σi,t+1|t = λFi (ΦPt|tΦ
′
+ Qt+1|t + Q∗)λF

′
i + λξiHt+1|tλ

ξ′i + H∗, (2.13)

where the diagonal elements of Qt+h|t and Ht+h|t are given by (2.5) and (2.6).1 In
this way one can decompose the country conditional variance into two elements: a

1Although the analysis focuses on one-step-ahead prediction, multi-step forecasting is also possible
either by recursively updating the prediction equations or using the formulas in 1.4.2. An h-step forecast
of the conditional variances would be

qi,t+h|t = 1− φ2i + (αi + βi)
h−1(qi,t+1|t − (1− φ2i )) (2.14)

hj,t+h|t = 1 + (αj + βj)
h−1(hi,t+1|t − 1) (2.15)

for i = 1, ..., r and for j = r + 1, ...,m.
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driving factor common component plus an observational error component.
Lastly, F̂−1

Zi
(p) is the inverse cumulative distribution function of zi, that is the stan-

dardized innovations zi,t = ei,t/σi,t distributed according to zi,t ∼ NID(0, 1).2
For the probability density function (p.d.f.) of zi we will compare both the quan-
tiles from the Normal N (0, 1) and the p%-quantiles obtained from the ECDF of zi,
F̂−1
n,zi

(p).

3) The third approach is a general two-stage principal component in which one estimates
the factor first (1.31) and then estimates the GARCH parameters afterwards (1.32).
Subsequently, one can iterate variance prediction using standard GARCH(1,1) theory
to obtain forecasts.
There is a small difference in the data generating process between 2) and 3), as the
latter does not distinguish between r, the number of driving factors, and m, the
number of shared idiosyncratic errors.

The models are subsequently compared using backtesting.

2.1.4 Backtesting the GaR

This section will discuss the tests that we are using to rate the accuracy of the GaR models
presented previously. In terms of the in-sample backtesting exercise, we will rank all of the
Growth-at-Risk models for each country using four separate criteria.
The first is based on the individual absolute number of violations. Define the function Ii,t
as the ’hit’ indicator

Ii,t =

{
1 if xi,t < GaRp

i,t|t−1

0 otherwise.
(2.16)

Then, the empirical coverage metric (Kupiec, 1995) is the average proportion of Growth-
at-Risk violations that occurred across the entire sample:

π̂i =
1

T

T∑
t=1

Ii,t. (2.17)

The cross-sectional average can be easily derived and equals π̂ = n−1
∑
π̂i. If the distri-

bution of the GDP growth rate is correctly specified, then the number of violations π̂i of
a country i should be equal to the confidence level p. Since each ’hit’ can be considered
an i.i.d. Bernoulli(π) sequence, it is possible to perform the unconditional coverage tests,
whose null hypothesis states that the empirical coverage is not statistically different from
p. In a sample T , indicate with T1 the number of violations and T0 = T − T1. Then, the
test statistics

LRuc = −2 log

(
pT1(1− p)T0

π̂T1i (1− π̂i)T0

)
∼ χ2

1 (2.18)

2ei,t are the innovations from the Kalman filter, ei,t = xi,t − λFt|t−1.
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are distributed as χ2
1 with one degree of freedom. The higher the values of LR, the more

unlikely is the null hypothesis.
The independence of exceedances should also be a feature of a successful VaR model.
The Christoffersen (1998) test also verifies the independence of those exceedances. When
the model appropriately predicts the VaR, an exception today should not be affected by
whether or not one happened the day before. Dropping the subscript i to avoid notational
burden, the sequence of exceedances is represented using a first-order Markov chain with
a matrix of transition probabilities

Π̂1 =

[
π̂00 π̂01

π̂10 π̂11

]
(2.19)

with π̂jk = Tjk/(Tj0 + Tj1), j, k = 0, 1, where Tjk is the number of days when condition
j occurred assuming that k occurred the previous day. If the hits are independent across
time, the probability of a violation tomorrow is independent of whether or not there was
a violation today, thus π̂01 = π̂11 = π̂. The transition matrix becomes

Π̂ =

[
1− π̂ π̂
1− π̂ π̂

]
. (2.20)

Assuming a sample T , one can test the independence hypothesis using the likelihood ratio
test

LRind = −2 log

(
π̂T0101 (1− π̂01)T00 π̂T1111 (1− π̂11)T10

π̂T1(1− π̂)T0

)
∼ χ1

2. (2.21)

Finally, one can combine the two tests, i.e., the unconditional coverage test and the inde-
pendence test, into the conditional coverage test to assess altogether π̂01 = π̂11 = p. The
test statistics has the form

LRcc = LRuc + LRind ∼ χ2
2 (2.22)

and has the asymptotic chi-square distribution with two degrees of freedom.
One of the limits of Christoffersen’s test is that it only controls for the independence of
the first exceedance. For this reason, we employ the the dynamic quantile test of Engle
and Manganelli (2004) as a supplementary test to assess the absence of a serial correlation
in the hit sequence. Given the sequence of violation It, the authors define a new variable
Ĩt = It − p and test the linear coefficients of

Ĩt = γ0 +
C∑
c=1

γiIt−i + εt. (2.23)

The GaR is correctly estimated if the coefficients of the regression in 2.23 are zero. Thus,
the dynamic quantile test is based on testing the null H0 : γ0 = ... = γC = 0 versus the
alternative H1 : γc 6= 0 for some c = 0, ..., C. We will use a number of lags equal to C = 4.
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Using matrix notation, define γ̂ = [γ̂0, · · · , γ̂C ]
′ , the (C + 1)× 1 vector of linear regression

coefficients, and W = [1, It, · · · It−C ], the (C + 1)× (T −C) matrix of lagged hits, then the
test statistics is given by

DQi =
γ̂
′
W
′
iWiγ̂

p(1− p)
∼ χ2

C+1 (2.24)

and has an asymptotic chi-square distribution with C + 1 degrees of freedom.
Finally, GaR forecasts are evaluated using the tick loss function (González-Rivera et al.,
2004; Giacomini and Komunjer, 2005) defined as

TLi =
1

T

T∑
t=1

(p− Ii,t)(xi,t −GaRp
i,t|t−1), (2.25)

which penalises with weight −(1−p) the violations of GaR while weighting the other cases
with magnitude p. Lower absolute values of the metric identify correctly specified models.

2.1.5 Data Exploration

We define our analysis on the dataset used by Brownlees and Souza (2021), focusing on a
total of 20, out of the 24, OECD countries. Most of those countries are located in Europe
plus the United States and Canada.3 The data consist of GDP growth rates for each
country and spans from 1961Q2 to 2019Q3. The indicator is defined as the percentage
changes from the previous quarter of seasonally adjusted real GPD, also known as GDP
at constant prices or GDP in volume.4 A main difference from the work of Brownlees is
that we won’t incorporate any exogenous predictor of downside risk.5
The dataset is pre-processed by winsorising extreme outliers, i.e. values that are less
(greater) than the value at the 0.5th (99.5th) percentile of the whole dataset are replaced
by the value at 0.5th (99.5th) percentile. The operation caps 48 observations out of 4,700.
Then, the GDP vectors are individually demeaned.

2.1.6 In-sample Analysis

We begin the analysis by taking a look at the spectral decomposition of the covariance
matrix. At first, we try to determine the number of factors in approximate factor models
using a data-driven approach. In particular, we minimize the second information criteria

3Austria (AUT), Belgium (BEL), Canada (CAN), Denmark (DNK), Finland (FIN), France (FRA), Ger-
many (DEU), Greece (GRC), Iceland (ISL), Ireland (IRL), Italy (ITA), Luxembourg (LUX), the Nether-
lands (NLD), Norway (NOR), Portugal (PRT), Spain (ESP), Sweden (SWE), Switzerland (CHE), the
U.K. (GBR) and the U.S.A. (USA).

4Data is downloaded from the OECD website https://data.oecd.org/gdp/quarterly-gdp. By convention
the base year is set to 2005.

5The model is still able to incorporate exogenous regressors, but here we rely on the endogenous factors’
power to explain the data.
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Figure 2.1: Standardized time series of GDP growth rates for all the twenty countries.

Figure 2.2: Top left: Eigenvalues. Top right: Cumulative percentage sum of eigenvalues;
horizontal line indicate 50%. Bottom left: Eigenvalue Ratio. Bottom right: Information criteria
for determining the number of factors in a factors model.
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2SPCA CHDFM

q1 q2 q3 q4 q1 h2 h3 h4

φ 0.4440 -0.0716 -0.0022 0.0925 0.5308 - - -

(0.0714) (0.0801) (0.0764) (0.0813) (0.0782) ( ) ( ) ( )

ω 0.0619 0.0687 0.1044 0.0381 0.0243 0.0572 0.0584 0.0241

(0.0405) (0.0703) (0.0540) (0.0260 (0.0216) (0.0489) (0.0349) (0.0143)

α 0.1772 0.1553 0.2190 0.1268 0.2509 0.2126 0.3055 0.3167

(0.0657) (0.0894) (0.0893) (0.0557) (0.0767) (0.1064) (0.0959) (0.0961)

β 0.7533 0.7791 0.6933 0.8394 0.7153 0.7302 0.6361 0.6592

(0.0794) (0.1431) (0.0944) (0.0751) (0.0717) (0.1395) (0.0870) (0.0944)

Table 2.1: QML estimates for the CHDFM and 2SPCA models. Whole sam-
ple period. Standard errors are indicated in parenthesis.

(IC2) in Bai and Ng (2002) since we work with n� T . Although these criteria consistently
estimate r, one should not rely only on these indicators for small values of n as they gener-
ally tend to underestimate the number of factors in small samples. Results of the test are
showcased in the bottom-right plot of Figure 2.2: IC2 indicates the presence of one leading
factor. This result is supported by a visual inspection of the eigendecomposition. The left
graphs of 2.2, which display the absolute values of the eigenvalues (top) and the ratios of
two consecutive eigenvalues (bottom), indicate a clear spike on the first component, while
the others are capped. For this reason we will select r = 1 for the rest of the exercise. As
for the choice of m, we will adopt a more pragmatic approach: we define m such that the
relative sum of explained variability, i.e. r + m, is around, but not over, 50%. The top
right graph of Figure 2.2 indicates that four factors explain around half of the variability,
without surpassing the threshold. This brings us to the choice of r = 1 and m = 3.
We then fit the model for both the 2SPCA and CHDFM. The first model is estimated
without restricting φi = 0, as we don’t want to limit the parametrization form of the latent
factors, and without variance targeting.6 For the latter one we initialize with estimates
from the 2SPCA and run the ECME algorithm with tolerance ϕ = 10−3. Table 2.1 in-
dicates parameter estimates for the two models. Numbers are comparable, but CHDFM
estimates the mean persistence φ around 20% higher compared to the 2SPCA counter-
part. As for the conditional variance of the driving factor, both models identify the main
source of dynamic volatility to be past shocks as seen by the α = 0.25, β = 0.72 and
α = 0.18, β = 0.75 for the CHDFM and 2SPCA, respectively. In general the two-stage
approach puts more emphasis on the persistence of volatility clusters, as seen from over-

6Numeric issues arise when optimizing with variance targeting. The BFGS algorithm does not converge
using this specification.
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Figure 2.3: Conditional volatilities for the four time-varying errors. Upper plots indicate volatil-
ities evolution over time. Lower plot indicates averaged conditional volatility over T captured by
each factor (coloured bars) divided by the total volatility, for each country. The dashed black line
represents 0.5 of explained variability. Left is the CHDFM (orange) and right is 2SPCA (purple).

all higher values of β and less on exogenous shocks, given the smaller α estimates. This
behaviour is very similar to the one observed in the simulation framework of 1.6.1, with
T = 250, n = 50. In particular, Figure 1.10 shows that 2SPCA tend to underestimate φ
and α, while slightly overestimating β.
Standard errors for the parameters are shown in parenthesis and calculated using Shumway
and Stoffer (2006) numerical procedure as described in 1.4.4 for the CHDFM, and through
the common QMLE Hessian inversion for 2SPCA. (Francq and Zakoïan, 2010). The latter
estimates, however, do not consider any uncertainty arising from the two-step approach.
Factors are not treated as random variables but rather as fixed, thus potentially underes-
timating standard errors.
Since the factors are orthogonal it is possible to decompose every country’s volatility as the
sum of each factor’s conditional volatility plus the idiosyncratic variability for each point
in time. The bottom figures of 2.3 display how much of the country-conditional volatility
can be explained by the model, with orange bars for the CHDFM and purple ones for
the 2SPCA. Starting with the former, one can note that the main driving factor q1,t, the
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Figure 2.4: One-step-ahead GDP growth forecast for every country in the sample. Shaded area
indicates recession periods given by the OECD-based Recession Indicators.

one with an autoregressive component, strongly represents countries such as Belgium and
Greece (34% and 33%, respectively) but does so very little for countries such as Ireland and
Iceland (6% and 15%, respectively). The factor-conditional variance is consistent across
the whole time span and it is strongly affected by two major financial shocks: the early
1980s recession and the financial crisis of 2008 (top of Figure 2.3. The second factor volatil-
ity, h2,t, mainly represents Iceland (51%) with minimal relation to the other countries. h3,t

is spread uniformly over most of the OECD constituents, with Greece being the biggest
weighting country. The conditional volatility plot also suggest that the bigger shocks oc-
cur during the late 1970, but the effect dissipates over time after until the surge of 2009.
Finally, the fourth factor h4,t closely follows Ireland activity (51% of total variation) and
puts emphasis on the volatility cluster that took place in the second half of the analysed
data. Similar interpretations can be obtained for the 2SPCA model. Barplots in 2.6 and
2.5 showcase this decomposition in more details, with country average weightings for each
decades instead of the whole period.
Figures 2.7 to 2.8 depict the GDP growth rates evolution over time for each country.
Orange (purple) lines represent one-step-ahead mean prediction from CHDFM (2SPCA).
Bottom grey lines indicate GaR0.05

i,t|t+h using EDF quantiles (light grey) and Normal quan-
tiles (darker grey). Each country has around a 5% violation of GaR0.05

i,t|t+h as indicated by
the black points. Backtesting results are outlined in Table 2.2. Results are very similar for
both models. In terms of unconditional coverage, both models perform impressively, with
none of the 20 countries in our sample exhibiting empirical coverage significantly lower
than the 95 percent level, but with some increased clustered violations that indicate po-
tential sequence dependence. Only one country (Italy) in the CHDFM approach reject the
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independence hypothesis implied in the conditional test. Two countries, Italy and Canada,
fail this test for the 2SPCA. The dynamic quantile test, which assesses the more general
serial dependence structure of violations, performs better on the 2SPCA than the CHDFM
with 50% and 45% cases not rejecting H0, respectively. As for the absolute value of the
tick loss, results are analogous. However, CHDFM demonstrate around a 9% improvement
(reduction) in the loss function compared to the historical approach, while the 2SPCA
approach showcase only a 6% reduction. Ireland, Belgium and Canada are the ones that
benefit the most when heteroskedasticiy is taken into account.

2.1.7 Out-of-sample analysis

From 1961Q2 through 2019Q4, we iteratively estimate the two models and GARCH pa-
rameters using a rolling window of T= 150, and generate out-of-sample projections for the
following quarter starting in 1998Q4. Our out-of-sample validation is based on about 65%
of the available data since the forecasting exercise began in 1998Q4.
Figure 2.4 displays the one-step-ahead forecast of the GDP growth rates for each coun-
try. Given that the prediction step in the model is dictated only by the first factor whose
φ1 6= 0, each forecast GDP is proportional to F1 by virtue of λ1,i. The grey area in the
graph represents periods of recession as given by the OECD-based Recession Indicators for
OECD Economies.7 As indicated by the graph, the model does a good job in recogniz-
ing world economy turning points. Table 2.3 showcases results of the backtesting analysis
outlined in Section 2.1.4. Here, CHDFM demonstrates superior forecast ability. All coun-
tries pass conditional and unconditional tests. Additionally, the dynamic quantile test
indicates no evidence of residual tail dynamics for each series after time-varying volatility
has been accounted for. Tick loss is reduced by around 19% with respect to the historical
benchmark.

7The time series is an interpretation of the OECD Composite Leading Indicators: Reference Turning
Points and Component Series data, given by https://fred.stlouisfed.org/series/OECDNMERECDM. The
dummy variable has a value of 1 in a recessionary period, while a value of 0 is an expansionary period.
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CHDFM 2SPCA

LRuc LRcc DQ TL ∆TL LRuc LRcc DQ TL ∆TL
AUT 0.9406 0.8894 0.0427 0.1070 0.0202 0.9406 0.8894 0.0752 0.1077 0.0134
BEL 0.9406 0.0538 0.0032 0.0706 0.1801 0.9406 0.0538 0.0000 0.0757 0.1209
CAN 0.9406 0.0538 0.0001 0.0792 0.1653 0.9406 0.0000 0.0000 0.0836 0.1186
DNK 0.9406 0.8894 0.0976 0.1122 0.0416 0.9406 0.8894 0.0961 0.1123 0.0410
FIN 0.9406 0.3148 0.0794 0.1498 0.0606 0.9406 0.3148 0.1054 0.1513 0.0514
FRA 0.9406 0.8543 0.5787 0.0809 0.0966 0.9406 0.2723 0.1339 0.0820 0.0849
DEU 0.9406 0.8894 0.6171 0.1231 0.0295 0.9406 0.8894 0.6234 0.1231 0.0293
GRC 0.9406 0.0538 0.0070 0.2122 0.1216 0.9406 0.3148 0.2173 0.2191 0.0931
ISL 0.9406 0.5211 0.3818 0.2103 0.1251 0.9406 0.5211 0.2824 0.2180 0.0933
IRL 0.9406 0.8894 0.2163 0.1385 0.2888 0.9406 0.8894 0.0000 0.1751 0.1009
ITA 0.9406 0.0052 0.0002 0.0907 0.1325 0.9406 0.0052 0.0001 0.0926 0.1144
LUX 0.9406 0.3148 0.0000 0.1436 0.0714 0.9406 0.3148 0.0000 0.1458 0.0574
NLD 0.9406 0.5508 0.8463 0.1526 0.0293 0.9406 0.5508 0.8383 0.1544 0.0178
NOR 0.9406 0.8894 0.0171 0.1251 0.0045 0.9406 0.8894 0.0157 0.1257 -0.0004
PRT 0.9406 0.3148 0.0249 0.1087 0.1326 0.9406 0.3148 0.0006 0.1118 0.1083
ESP 0.9406 0.8894 0.1012 0.0875 0.1111 0.9406 0.8894 0.0525 0.0893 0.0925
SWE 0.9406 0.5211 0.2602 0.1406 0.0048 0.9406 0.5211 0.2562 0.1410 0.0017
CHE 0.9406 0.0538 0.0000 0.1147 0.0351 0.9406 0.0538 0.0000 0.1144 0.0378
GBR 0.9406 0.0538 0.0000 0.1041 0.0616 0.9406 0.0538 0.0000 0.1054 0.0494
USA 0.9406 0.3148 0.0006 0.0932 0.0530 0.9406 0.3148 0.0009 0.0945 0.0403
avg. 100% 95% 45% 0.1222 0.0883 100% 90% 50% 0.1261 0.0633

Table 2.2: Backtesting of in-sample GaR for CHDFM and 2SPCA. The first
three columns indicate p-vaues of the respective statistics as described in
Section 2.1.4. Fourth column describes the value of the tick loss, while
the last one represents the improvement (in percentage reduction) with
respect to historical benchmark GaR. Last row indicates how many coun-
tries have p-values over 5 %. Tick loss and percentage change in tick loss
are displayed as averages across countries. Bold numbers indicate better
metrics.

79



CHDFM 2SPCA

LRuc LRcc DQ TL ∆TL LRuc LRcc DQ TL ∆TL
AUT 0.0533 0.1526 0.4132 0.0820 0.1729 0.9000 0.8122 0.9479 0.0741 0.2523
BEL 0.2136 0.4394 0.9538 0.0801 0.2543 0.2087 0.2399 0.4918 0.0798 0.2565
CAN 0.5123 0.7219 0.4730 0.0800 0.2623 0.7162 0.5018 0.0001 0.0837 0.2280
DNK 0.0533 0.1526 0.3817 0.0927 0.1395 0.4109 0.4493 0.3884 0.0881 0.1819
FIN 0.5123 0.7219 0.4607 0.0861 0.1449 0.0944 0.0976 0.0003 0.1067 -0.0595
FRA 0.4109 0.5081 0.4141 0.0852 0.2629 0.0000 0.0000 0.0000 0.1313 -0.1363
DEU 0.2136 0.4394 0.0987 0.0829 0.1910 0.4109 0.5081 0.2321 0.0894 0.1276
GRC 0.0533 0.1526 0.4671 0.0935 0.1712 0.5123 0.1541 0.0011 0.0971 0.1396
ISL 0.2136 0.4394 0.8015 0.0988 0.1119 0.7162 0.0550 0.0002 0.1033 0.0712
IRL 0.9000 0.8122 0.0823 0.0938 0.2690 0.0383 0.0661 0.0000 0.1177 0.0833
ITA 0.9000 0.8122 0.7291 0.0831 0.2161 0.4109 0.5081 0.2677 0.0859 0.1896
LUX 0.0533 0.1526 0.3514 0.0927 0.1188 0.2087 0.3900 0.0048 0.0947 0.0999
NLD 0.0533 0.1526 0.4731 0.0805 0.1945 0.2087 0.1118 0.0153 0.0794 0.2051
NOR 0.0533 0.1526 0.4031 0.0987 0.0951 0.4109 0.0947 0.0114 0.0873 0.1997
PRT 0.0533 0.1526 0.3499 0.0794 0.2477 0.9000 0.8122 0.7755 0.0804 0.2383
ESP 0.4109 0.5081 0.3010 0.0832 0.2327 0.0944 0.0976 0.0000 0.0995 0.0828
SWE 0.2136 0.4394 0.1009 0.0884 0.1441 0.4109 0.0947 0.0000 0.0920 0.1089
CHE 0.9000 0.8122 0.7133 0.0834 0.1715 0.0944 0.0976 0.0087 0.0903 0.1026
GBR 0.0533 0.1526 0.3971 0.0807 0.1718 0.9000 0.3511 0.0175 0.0729 0.2518
USA 0.7162 0.6820 0.8400 0.0819 0.2193 0.0383 0.0661 0.0053 0.0965 0.0801
avg. 100% 100% 100% 0.0863 0.1896 95% 95% 30% 0.0925 0.1352

Table 2.3: Backtesting of out-of-sample GaR for CHDFM and 2SPCA. The
first three columns indicate p-vaues of the respective statistics as de-
scribed in Section 2.1.4. Fourth column describes the value of the tick
loss, while the last one represents the improvement (in percentage re-
duction) with respect to historical benchmark GaR. Last row indicates
how many countries have p-values over 5 %. Tick loss and percentage re-
duction in tick loss are displayed as averages across countries. Bold
numbers indicate better metrics.
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Figure 2.5: Average percentage of explained variability in CHDFM by country. Orange bars
indicates variability captured by each GARCH1(1,1) factor divided by the total volatility. Light
purple bar shows constant idiosyncratic volatility. Quarterly data is aggregated in decades using
sample means.
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Figure 2.6: Average percentage of explained variability in 2SPCA by country. Purple bars
indicates variability captured by each GARCH1(1,1) factor divided by the total volatility. Light
purple bar shows constant idiosyncratic volatility. Quarterly data is aggregated in decades using
sample means.
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Figure 2.7: GDP growth rate evolution over time for each country. Black lines are true values
and orange (purple) lines represent one-step-ahead mean prediction from CHDFM (2SPCA). Bot-
tom grey lines indicate GaR0.05

i,t|t+h using EDF quantiles (light grey) and Normal quantiles (darker
grey). Black points indicate violation of GaR0.05

i,t|t+h using EDF quantiles. Numbers of total viola-
tions over the sample are indicated in the title in percentage form.
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Figure 2.8: GDP growth rate evolution over time for each country. Black lines are true values
and orange (purple) lines represent one-step-ahead mean prediction from CHDFM (2SPCA). Bot-
tom grey lines indicate GaR0.05

i,t|t+h using EDF quantiles (light grey) and Normal quantiles (darker
grey). Black points indicate violations of GaR0.05

i,t|t+h using EDF quantiles. Numbers of total viola-
tions over the sample are indicated in the title in percentage form.
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Figure 2.9: GDP growth rate evolution over time for each country. Black lines are true values
and orange (purple) lines represent one-step-ahead mean prediction from CHDFM (2SPCA). Bot-
tom grey lines indicate GaR0.05

i,t|t+h using EDF quantiles (light grey) and Normal quantiles (darker
grey). Black points indicate violations of GaR0.05

i,t|t+h using EDF quantiles. Numbers of total viola-
tions over the sample are indicated in the title in percentage form.
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Figure 2.10: GDP growth rate evolution over time for each country. Black lines are true values
and orange (purple) lines represent one-step-ahead mean prediction from CHDFM (2SPCA). Bot-
tom grey lines indicate GaR0.05

i,t|t+h using EDF quantiles (light grey) and Normal quantiles (darker
grey). Black points indicate violations of GaR0.05

i,t|t+h using EDF quantiles. Numbers of total viola-
tions over the sample are indicated in the title in percentage form.
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Figure 2.11: GDP growth rate evolution over time for each country. Black lines are true values
and orange (purple) lines represent one-step-ahead mean prediction from CHDFM (2SPCA). Bot-
tom grey lines indicate GaR0.05

i,t|t+h using EDF quantiles (light grey) and Normal quantiles (darker
grey). Black points indicate violations of GaR0.05

i,t|t+h using EDF quantiles. Numbers of total viola-
tions over the sample are indicated in the title in percentage form.
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2.2 Minimum Variance Portfolio

2.2.1 Introduction

Most of the literature cited in Section 1.1 deals with theoretical specifications and different
possible estimations of conditionally heteroskedastic factor models with a special focus on
financial applications. Following the trend, in this second study, we employ the CHDFM
to estimate the minimum variance portfolio (MVP). This issue has drawn considerable
attention in recent years, especially within the factor analysis framework; see Fan et al.
(2012), Trucíos et al. (2021), and Ding et al. (2021). Studying MVP is very important from
an econometrics perspective because it provides a way to evaluate covariance matrix esti-
mators and their forecasts. Furthermore, traditional mean–variance optimization requires
knowledge of the mean, which is found to be more difficult to estimate than the covariance
matrix.
Recent studies that deal with asset allocation, and specifically the MVP, rely on the ac-
claimed Dynamic Conditional Correlation (DCC) model of Engle and Sheppard (2001) to
construct a time-varying covariance matrix. The approach consists of modelling separately
the conditional variances and the conditional correlation matrix. The former are modelled
using GARCH while the latter is modelled using the DCC model. A major component
of the DCC is that the conditional correlation matrix is modelled as a function of the so-
called pseudo-correlation matrix. This is a symmetric positive definite matrix that acts as
a proxy of the true correlation matrix, but is not guaranteed to be unit-diagonal. The most
efficient approach used in the literature is to rescale the pseudo-correlation matrix once it
has been properly normalized in order to produce correlations. This drawback make it very
difficult to define proper statistical proprieties and the asymptotic behaviour of the model
(McAleer, 2019). Yet, the model is still used by practitioners for its wide applicability
(De Nard et al., 2019; Engle et al., 2019; Brownlees and Engle, 2016), even though many
modifications and corrections to the original specification have been developed over time
(Tse and Tsui, 2002; Aielli, 2013; Brownlees and Llorens-Terrazas, 2022).
In some ways, DCC is less prone to the curse of dimensionality compared to multivariate
GARCH but, in general, calculating the weight of a portfolio consisting of more than 30
assets is still a very demanding optimization problem. Together with shrinkage methods
(Engle et al., 2019), factor models introduce a very natural way of tackling this issue.
De Nard et al. (2019) study the usefulness of a factor structure in predicting large co-
variance matrices. The set of factors comprises both observed (Fama and French, 2015)
and unobserved processes. The latter are, however, estimated through a two-step proce-
dure which involves the extraction of latent factors from historical return data via PCA,
a comparable approach to that of 2SPCA discussed in Chapter 1. A similar framework
is adopted by Trucíos et al. (2021), in which the idiosyncratic conditional covariance is
driven by a DCC and the common component is modelled as Mean GARCH (MGARCH).
Estimation consists of multiple steps that take place in the frequency domain.
In this application we consider a modification of the GARCH-CHDFM, in which we allow
the conditional covariance matrix of the state error to follow a DCC dynamic, i.e. to be
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the product of two diagonal GARCH(1,1) standard deviation matrices and the DCC corre-
lation matrix. Working with a pseudo-correlation matrix makes it infeasible to derive the
Kalman filter prediction step of the correlation, as we did for the GARCH case. The issue
and potential solution will be explored in the next section. Finally, the model is employed
to forecast a covariance matrix and then construct optimal MVP weights.

This section further expands the theoretical framework from the previous chapter to better
suit the CHDFM to a portfolio allocation problem. In particular, we relax the assumption
of independent factors, allowing for a DCC-like structure. As a result, the unobserved
components can be correlated and we can indeed analyse their time-varying conditional
covariances and correlations. This exercise shows the high degree of flexibility of the model,
and the higher potential performances with respect to the benchmark methodology.

This second part of the chapter will be structured as follow. Subsection 2.2.2 introduces
the general model with Dynamic Conditional Correlation. Subsection 2.2.3 discusses the
theoretical framework and examines some limitations of the approach together with po-
tential solutions. Subsection 2.3.4 describes in more detail the structure of the model with
two factors, outlining relevant numerical aspects. Subsection 2.3.5 illustrates portfolio al-
location rule in the context of MVP and delineates optimal weights calculation. Subsection
2.3.5 explore the data set, which consists of more than 20 years of closing prices of the
S&P500 constituents, and outlines the performance measure used to evaluate the different
portfolios. Finally, Subsection 2.3.6 presents the main results and concludes.

2.2.2 CHDFM with Dynamic Conditional Correlation

Consider the approximate dynamic factor model as indicated in (1.5) - (1.6):

xt = ΛFt + ξt,

Ft = ΦFt−1 + ηt + η∗t .

Conditional correlation models rely on the conditional covariance matrix decomposition so
that standard deviations and correlation dynamics can be modelled separately. Following
Engle (2002), the DCC structure can be introduced with the disturbance ηt,

ηt = S
1/2
t η̃t, (2.26)

St = Q
1/2
t CtQ

1/2
t , (2.27)

where Ct is the time-varying correlation matrix and Q
1/2
t is the diagonal matrix of standard

deviations as defined in (1.4). Positive definiteness and restriction on the {−1,+1} domain
of Ct is achieved by modelling a proxy process, Rt, as:

Rt = (1− a− b)C + azt−1z
′

t−1 + bRt−1 (2.28)
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where zt = [z1,t, · · · , zr,t]
′ is the standardized disturbance vector calculated as zi,t = ηi,t/qi,t

and C is a unit-diagonal positive definite matrix. Dividing each ηt by its conditional vari-
ance, we obtain unit standard deviation variables zt. In this way, modelling the correlations
of ηt becomes equivalent to modelling the covariance of the standardized variables zt. The
correlation matrix Ct is obtained by rescaling (2.28) such that,

Ct = diag(Rt)
−1/2 Rt diag(Rt)

−1/2. (2.29)

Within this framework, the correlation persistence parameters a and b are shared between
factors. On the other hand, this does not imply that the level of correlation among factors
(and eventually among observed variables) are the same at any time. Furthermore, persis-
tence in volatility is unique for each Gt.

2.2.3 A DFM setting for conditional correlation

Although DCC models are very much employed by practitioners when estimating dynamic
conditional covariance (De Nard et al., 2019; Engle et al., 2019), some still question the sta-
tistical proprieties of the model; first, that the DCC does not have an underlying stochastic
specification that could justify its derivation (see McAleer (2019) for both a discussion on
the topics and references).
The first issue relates to the fact that Rt does not satisfy the definition of a correlation
matrix and the authors refer to it as a conditional pseudo-correlation matrix, which is
interpretable as the rescaled conditional covariance matrix of standardized residuals. For
this reason, it is not possible to apply the Kalman Filter to calculate its moments in the
same way as in the GARCH(1,1) case. Thus, we will refer to this model as an Approximate
DCC-CHDFM and we will focus on its applicability, still achievable when n→∞, rather
than its statistical proprieties.
Although there exists a comparable model for dynamic correlation by Tse and Tsui (2002)
that directly computes Ct, the recursion formula

Ct = (1− a− b)C + aCm,t−1 + bCt−1, (2.30)

introduces Cm,t−1, the sample correlation matrix of zt, zt−1, · · · , zt−m, m ≥ r, which is still
extremely difficult to study, specifically when we deal with unobserved components. Fur-
thermore, the fact that m is fixed and arbitrary and Ct is not the conditional expectation
of Cm,t, would make the analysis even more challenging.
Taking a look at (2.28), the first element that needs to be discussed is how to estimate
zt = ηt/qt. Here, we can adopt consistency results in Proposition 1 and Proposition 2 to
calculate an approximate value of E[zi,t|Xt] given by

żi,t|t = ηi,t|t/qi,t|t−1, (2.31)

where ηi,t|t and qi,t|t−1 are the estimates obtained from the filter, as indicated in Section
1.3.1. It is important to note that the error is standardized by the conditional volatility
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defined by qi,t|t−1 and not qi,t|t, as the latter quantity goes to 0 as n → ∞, and is not
representative of the true qi,t. Furthermore, using the smoother, i.e. conditioning on XT ,
is not practically feasible as we need zi,t|t for the recursions.
Finally, the last matter relates to C. Aielli (2013) shows that the expression for C does not
match the unconditional variance of zt, thus it would be misleading to estimate the matrix
using the sample second moment of the standardized return.8 For this reason, we treat
this as a unit-diagonal matrix, whose off-diagonal elements ρ̄i,j are parameters to estimate
together with a, b in the numerical optimization step in the ECME, i.e. ρ̄i,j ∈ θ(`) are the
ones that maximize (1.29).

Some assumptions and identifying conditions set up in Section 1.2.2 and Section 1.4.1
need to be modified to take into account the correlation dynamic.

Assumption 1’ (Dynamics) {Ft} is a stationary process with E[Ft] = 0 and Var[Ft] <
∞. More specifically: det(Ir −Φz) 6= 0 for all z ∈ C such that |z| ≤ 1. Each element of
ηt = S

1/2
t η̃t follows a DCC dynamic with η̃t ∼ NID(0, Ir) and St = Q

1/2
t CtQ

1/2
t positive

definite. Furthermore, Qt is diagonal and Ct is unit-diagonal. R̄ is also assumed to be
unit-diagonal. Finally, ωi, αi, βi > 0 and αi + βi < 1, for all i = 1, ..., r, and a, b > 0 and
a+ b < 1.

Engle (2002) asserts that parameters a and b need to be constrained to ensure the system
is stationary, thus we add it to the existing set of conditions.
Assumption (A1’) also serves as an identifying restriction for the variance process. Assum-
ing R̄ to be unit-diagonal is an over-identifying condition for the DCC, but comes naturally
in this framework (Aielli, 2013).
Nonetheless, identifying condition (IC1) is not applicable in this setting since factors can
now be cross-correlated and this requires a more stringent identification scheme to be im-
posed on Λ in order to relax restrictions on Ω. Specifically, we will leave factor variance
unrestricted and operate on the loadings only.

Identifying condition 2 (IC2) Λ =
[
Ir Λ0

]′
with Ir being the r × r identity matrix.

Furthermore, the stochastic processes qi,t’s for each i = 1, · · · , r are linearly independent,
i.e. @δ ∈ Rr, δ 6= 0 : δ

′
qt = 0 ∀t.

This identification setup restricts the first r × r block of Λ to be an identity matrix.
All r2 restrictions are imposed on the loadings, leaving the factor process unrestricted. To
guarantee factor existence, the only requirement is that Ω is invertible. This structure,

8The author shows that, if a+ b < 1 and that E[Rt] and E[ztz
′

t] are independent of t, then

C =
1− b

1− a− b
E[diag(Rt)

−1/2ztz
′

tdiag(Rt)
−1/2]− a

1− a− b
E[ztz

′

t]. (2.32)
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however, affects the choice of the first r observed variables since they are going to be
modelled as in the ’errors-in-variables’ model of Pantula and Fuller (1986), xit = Git + ξit
for i = 1, ..., r. The reason for this choice is that this identifying scheme can easily be
implemented in the PCA framework. In this way, we can have comparable estimates from
a corresponding model based on PCA and, more importantly, we can initialize the ECME
algorithm using estimators obtained from their PCA counterpart. Following Bai and Ng
(2013), estimators for Λ and Ft can be obtained by

Λ̂ = Λ̂PCA(Λ̂PCA

r )−1, F̂t = F̂PCA

t (Λ̂PCA

r )
′
, (2.33)

where Λ̂PCA and F̂PCA
t are defined in (1.31) and Λ̂PCA

r is the first r× r block of the loading
matrix estimated through PCA.
In the second step, DCC parameters are estimated using Quasi Maximum Likelihood on
the obtained F̂t

θ̂PCA = argmax
θ

`(F̂t; θ̂). (2.34)

We remark, however, that the log-likelihood on F̂t is not defined since F̂t 6= Ft.

A final point to discuss is the multi-step-ahead forecasting for the DCC model. Differ-
ently from GARCH models, the DCC dynamic is a non-linear process since we have that
Ct = diag(Rt)

−1/2 Rt diag(Rt)
−1/2. For this reason, an h-step-ahead correlation forecast

cannot be solved analytically to provide a proper forecast method. Engle and Sheppard
(2001) make some simplifying assumptions to build a direct forecast of Ct. In particular,
assuming that C ' C, where C is the unconditional correlation matrix of the factors and
E[Rt+1|Xt] ' E[Ct+1|Xt], then one can use the recursion

E[CT+h|Xt] = CT+h|T = C + (a− b)(CT+h−1|T −C) (2.35)
= C + (a− b)h−1(CT+1|T −C). (2.36)

Further simulation results for this approximation are presented in Engle (2009). Even
though expression (2.36) presents an upward bias, this manifests over longer forecast hori-
zon, generally h > 100. In our exercise we will focus on shorter horizon, with a multi-step
forecast of a month, or 21 trading days, implying h = 21. For this reason, we expect the
errors due to approximation to be small.
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2.2.4 DCC-GARCH(1,1) with two correlated factors

The first equations follow the same structure as the previous application:

xt =
[
λ1 λ2 0 0

]︸ ︷︷ ︸
Λ†

F†t + ξt

F†t =


F1,t

F2,t

η1,t

η2,t

 =


φ1 0 0 0
0 φ2 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Φ†


F1,t−1

F2,t−1

η1,t−1

η2,t−1


︸ ︷︷ ︸

F†t−1

+


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Ψ†


η∗1,t
η∗2,t
η1,t

η2,t


︸ ︷︷ ︸
η†t

with xt and ξ being n× 1 vectors, Λ† an n× 4 matrix, and Φ† and Ψ† square matrices of
dimension 4× 4.
The estimated conditional variance of the states is given by

Var[η†t+1|Xt] =


q∗1 0 0 0
0 q∗2 0 0
0 0 q1,t+1|t 0
0 0 0 q2,t+1|t


1/2 

1 0 0 0
0 1 0 0
0 0

Ct+1|t0 0



q∗1 0 0 0
0 q∗2 0 0
0 0 q1,t+1|t 0
0 0 0 q2,t+1|t


1/2

with q∗1, q∗2 equal to 10−8. Univariate variances in the lower-right block matrices follow the
GARCH(1,1) dynamic

q1,t+1|t = ω1 + α1(η2
1,t|t + P η1

t|t ) + β1q1,t|t−1,

q2,t+1|t = ω2 + α2(η2
2,t|t + P η2

t|t ) + β2q2,t|t−1,

while the 2× 2 unit-diagonal conditional correlation matrix Ct+1|t is given by

Ct+1|t =

[
ρ1,t+1|t 0

0 ρ2,t+1|t

]−1/2 [
ρ1,t+1|t ρ1,2,t+1|t
ρ2,1,t+1|t ρ2,t+1|t

] [
ρ1,t+1|t 0

0 ρ2,t+1|t

]−1/2

Rt+1|t = (1− a− b)
[

1 ρ̄1,2

ρ̄2,1 1

]
+ a

[
ż2

1,t|t ż1,t|tż2,t|t

ż2,t|tż1,t|t ż2
2,t|t

]
+ b

[
ρ1,t|t−1 ρ1,2,t|t−1

ρ2,1,t|t−1 ρ2,t|t−1

]
where żi,t|t = ηi,t|t/qi,t|t−1 is the normalized state error. The initial state F0 is fixed at 0,
while its initial state variance is given by:

Ω0 =


1 0 1− φ2

1 0
0 1 0 1− φ2

2

1− φ2
1 0 1− φ2

1 0
0 1− φ2

2 0 1− φ2
2

 ,
while other parameters are initialized using two-step PCA, first extracting factors and
loadings through (2.33) and then estimating AR(1)-GARCH(1,1) parameters via QMLE.
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ρ̄1,2 is initialized by calculating the sample correlation of the two factors.
In the DCC case, the ECME Algorithm contains an additional step for the correlation
parameters. In this case, this is made up of 4 steps such that SQ = {1} and S` = {2, 3, 4},
thus the first maximizes the expected log-likelihood and the subsequent 3 steps maximize
the actual one.

CM-Step 1. Same as GARCH(1,1). θ(Q) = [vec(Λ), vech(Γ), vec(Φ)] are the analytical
solutions to the maximized expected likelihood, as in (1.26) - (1.28). The only difference
is with the loadings because of the identifying condition (IC2).

Λ(j) =
[
Ir Λ

(j)
0

]′
Λ

(j)
0 =

(
T∑
t=1

[xt]3:nF
′

t|T

)(
T∑
t=1

Ft|TF
′

t|T + PF
t|T

)−1

,

where [xt]3:n indicates all elements of the xt vector except the first and the second.

CM-Step 2. Parameters (ω1, α1, β1)′ are obtained via numerical optimization of (1.16)
employing the BFGS algorithm subject to the following restrictions:

α, β > 0,

α + β < 1,

ω = (1− α− β)(1− φ2).

As with GARCH(1,1) the sine transformation is applied to α1 and β1 so that α?1 =
0.99sin(α1)2 and β?1 = (0.99− α)sin(β1)2 maintain the domain within (0,1).

CM-Step 3. Same as CM-Step 1, but with the focus on the second factor, i.e the param-
eters (ω2, α2, β2)′.

CM-Step 4. This is the additional step required by the DCC, in which we optimize
the actual likelihood (1.16) to obtain (a, b, ρ̄1,2)′. The following restrictions are employed
to preserve system stationarity and correlation proprieties:

a, b > 0,

a+ b < 1,

−1 < ρ̄1,2 < 1.

We apply the same sine transformation on a, b such that a?1 = 0.99sin(a1)2 and b?1 =
(0.99− a)sin(b1)2 as in the GARCH(1,1) case, plus the inverse tangent transformation on
ρ̄1,2, i.e. ρ̄?1,2 = 2arctan(ρ̄1,2)/π to preserve the (−1, 1) domain.

The algorithm stops when the actual likelihood relative increase is smaller than the toler-
ance parameter ϕ = 10−4.
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Figure 2.12: Conditional Correlation of two factors (r = 2) for a simulated DCC-CHDFM,
with correlation parameter ρ̄1,2 = 0.5. The DCC parameters are a = 0.1 and b = 0.75. T = 1000
and n = 100.

2.2.5 Portfolio Allocation Rules

The MVP is one of the most used investment strategies implemented by both academics
and professionals. It has the lowest variance of all the optimal portfolios derived from
Markowitz’s mean-variance optimization problem (Markowitz, 1952) as it solves the fol-
lowing problem

min
w

w
′
Σtw subject to w

′
1n = 1, (2.37)

where w represents the n × 1 vector of portfolio weights which determine the allocation
of the portfolio, 1n is the n−dimensional vector of ones, and Σt is the n × n conditional
covariance matrix of the returns xt = (x1,t, · · · , xn,t)

′ .
In the absence of short-sale constraints, the optimization problem (2.37) has an analytical
solution given by

w? =
Σ−11n

1′nΣ
−11n

. (2.38)

MVP has some nice proprieties which make it different from other mean-variance optimal
portfolios. First, the MVP portfolio’s weights are independent of the mean vector of asset
returns. Secondly, it occupies a unique spot on the set of optimal portfolios, which is a
parabola in the mean-variance space and known as the efficient frontier. The mean and
the variance of the MVP determine the vertex of this parabola. Implementation of (2.38)
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requires knowledge of Σt, which is not available in practice. The straightforward strategy is
to replace the unknown Σt by an estimator Σ̂t that yields a feasible portfolio with weights
ŵ. Inaccurate estimators can have a significant influence on the built portfolio, sometimes
even greater than the model uncertainty caused by the optimization issue. In particular,
when the portfolio dimension n→∞, the effect becomes considerably stronger.
CHDFM is employed in this setting to benefit from the large cross-section dimension since
the variance dynamic is confined to a few factors which drive the conditional heteroskedas-
ticty. Finally, loadings project volatilities onto the observable space of returns. This can
be implemented in two ways, either by assuming that factors are uncorrelated, so we will
be using GARCH(1,1)-CHDFM, or by relaxing this assumption and employing the DCC-
CHDFM.
In practice we will use an h-step-ahead forecast for the covariance estimator to calculate

ŵt+h|t =
Σ̂−1
t+h|t1n

1′nΣ̂
−1
t+h|t1n

. (2.39)

For each t, ŵt+h|t represents the allocation weight of each stock at the portfolio construc-
tion date t, given the estimated h-step-ahead forecast of the covariance matrix Σ̂−1

t+h|t. The
analysis relies on a rolling window estimation in which at each t + h the portfolio is re-
balanced and new weights are estimated. Thus, the empirical analysis revolves around the
high-dimensional covariance matrices forecast.
We now compare the various estimation strategies included in the study:

1) GARCH(1,1)-CHDFM: Conditionally Heteroskedastic Dynamic Factor Model with
uncorrelated factors and GARCH(1,1) dynamic. This is the work of Section 1.5.3.

2) DCC(1,1)-CHDFM: Conditionally Heteroskedastic Dynamic Factor Model with
correlated factors via the DCC, as in Section 2.2.4.

3) GARCH(1,1)-2SPCA: Two-step PCA estimator, in which one extracts first the
factor and loadings and subsequently estimates the GARCH(1,1) dynamic on the
extracted latent processes. See Section (1.3.3).

4) DCC(1,1)-2SPCA: Two-step PCA estimator in which one calculates first the factor
and loadings and subsequently estimates the DCC parameter. See Section (2.2.2).

5) EWP Equal Weighted Portfolio. No covariance is required in this case as each weight
is constant and equal to ŵt+h|t = w = n−11n.

The strategies include 4 dynamic conditional strategies and one constant strategy. We
decided to include the equal-weighted portfolio suggested by DeMiguel et al. (2007) as a
simple benchmark in addition to Markowitz portfolios based on MVP, because it has been
claimed to be difficult to outperform. For the sake of the exercise we will treat the number
of factors as known and equal to r = 2.

96



2.2.6 Data and Performance Measures

The empirical application revolves around portfolio construction in the context of the stock
market. We focus our attention on the S&P500 and we download all the constituents daily
closing prices from 01/01/1999 to 17/02/2021, for a total of 5,565 daily observations. We
adopt the common convention that a ’month’ is constituted by 21 consecutive trading days.
The study consists in using T = 1, 260 daily log-returns, about five years of past data, to
estimate the parameters for the conditional variance matrix and then calculate the value
of the forecast for the consecutive months, i.e Σ̂t+21|t, in order to compute ŵt+21|t. The
weights are then rebalanced on a monthly basis, using the past 1,260 days to calculate
portfolio optimal values.
The out-of-sample period spans from 01/12/2003, the month after the first 1,260 business
days, through 17/02/2021, for a total of 4,305 days, or 205 months. In simple terms, we
utilize a rolling window of T = 1, 260 days with a sliding window of 21 days. Not all
companies in the S&P500 span the whole period, so we eliminate the stocks that present
missing values, bringing the total count of stocks to 358. Further filters are applied to
data. First, we detect all stocks in the sample that have a correlation coefficient higher
than 0.9 and we delete the one with the smaller average market capitalization. This brings
the total number of stocks to 357. Secondly we replace extreme values, i.e values that are
above 10 times the interquartile range in absolute value, with 0. Those outliers generally
do not represent the intrinsic evolution of prices, but rather extraordinary events, such as
stock splits.
We consider the portfolio size n = 100, and the investment universe is obtained by ran-
domly sampling the 357 stocks to form a portfolio of 100 constituents.

As a performance measure we report the following quantities for each scenario:

� AV: the average return of the 4,305 out-of-sample return, annualized by multiplying
the value for 252.

� SD: the standard deviation of the 4,305 out-of-sample return, multiplying by
√

252
to annualize.

� IR: the information ratio, calculated as IR = AV/SD.

� TC: turnover costs, calculated as TC = T−1
∑T

t=1‖ŵt − ŵt−1‖.

� MW: maximum weight, calculated as AMW = T−1
∑T

t=1 (maxi ŵi,t). It indicates,
on average, the biggest exposure of the portfolio.

� SSC: short selling costs, i.e the average exposure to negative positions in the port-
folio, calculated as SSC = (nT )−1

∑T
t=1

∑n
i=1 ŵi,t1(ŵi,t < 0).

The most relevant performance metric is the out-of-sample standard deviation, since the
aim of the MVP is to minimize the volatility rather than maximize the portfolio expected
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AV SD SR TC MW SSC
GARCH(1,1)-CHDFM 12.65 13.83 0.92 4.25 15.23 -1.88
GARCH(1,1)-2SPCA 11.62 14.68 0.79 3.49 12.07 -1.67
DCC(1,1)-CHDFM 11.85 13.87 0.85 6.18 13.51 -1.79
DCC(1,1)-2SPCA 11.75 14.56 0.81 3.64 12.24 -1.71
EWP 9.74 19.18 0.51 0.00 1.00 0.00

Table 2.4: Out-of-sample performance measure for each strategy. All
values are multiplied by 100.

return or information ratio. Thus, SD measures the effectiveness of the portfolio to accom-
plish this objective. High out-of-sample average returns (AV) and out-of-sample informa-
tion ratios (IR) are of course beneficial, but they should be viewed as being of secondary
relevance when assessing the effectiveness of a covariance matrix estimator. The final three
measures involving the weights give an idea of potential transaction costs, coming from
high turnover and short selling arrangements.

2.2.7 Results and Further Research

The results for the different portfolio strategies are summarized in Table 2.4. We see that
almost all dynamic strategies consistently outperform the EWP by a wide margin. Both
DCC and GARCH-CHDFM produce better estimation performance than their 2SPCA
counterparts, but the orthogonal factors provide the best results overall. With a 28%
reduction in the portfolio volatility compared to the equally weighted one, it confirms a
superior ability to predict the returns covariance matrix. It also features the highest av-
erage return and information ratio. DCC-CHDFM performs relatively well, but it may be
reasonable to assume that a wider universe of asset class, such as fixed income or com-
modities, would produce a greater potential for conditional correlations.
Looking at the weights-related performance measure, we note that turnover costs are higher
for the CHDFMs, especially for the DCC, since the weights reflect a more dynamic covari-
ance matrix evolution (Figure 2.13). These models also tend to be more exposed to single
stocks as confirmed by the average maximum weights.
Figure 2.14 shows the total wealth, ex transaction costs, that could be accumulated
by investing $1 on 01/12/2003 and rebalancing the portfolio on a monthly basis until
17/02/2022. GARCH and DCC-CHDFM would achieve a final wealth of $7.28 and $6.34,
respectively, compared to the $3.69 that would be obtained by the equally weighted strat-
egy. MVPs are especially good in times of financial crisis, such as the one in 2008 or the
one due to Covid-19 in 2021, as the weights are promptly adjusted to cut down exposure
to highly volatile stocks. In particular, GARCH models are designed to take into consid-
eration potential volatility clusters and adjust the weights correspondingly.
Although, this simple exercise showcases good forecasting performances for CHDFM, fur-
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ther improvement and research could be carried out. First, we treated the number of
factors as given, but an explanatory factor analysis could lead to the exact number of fac-
tors needed. For the stock market generally, the number of latent factors is just one, but
this would have discredited the conditional correlation analysis. Secondly, the number of
stocks and the selection of them is also fixed. A simulation exercise employing a different
stock sample of the portfolios, with a different dimension, would produce more robust and
quantifiable results. As mentioned above, including other asset classes would definitely
be more meaningful for factor correlation. Finally, other estimation procedures, such as
the one mentioned in De Nard et al. (2019), would provide a more exhaustive view and
comparison of the dynamic covariance estimator.
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Figure 2.13: Time series of optimal weights ŵt+h|t of an n = 100 portfolio for the four dynamic
strategies.
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Figure 2.14: Top: evolution of $1 investment over time using optimal weights ŵt+h|t for the
five strategies. Bottom: cumulative sum of returns given the optimal set of weights of the different
strategies.
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Chapter 3

Estimating Causal Effects of
Interventions in Time Using
Semiparametric Latent Factor Models

3.1 Introduction

Recently, many applications have been devoted to understanding and revealing causal
rather than associative relations among variables. One approach in the context of time
series is that of synthetic controls (Abadie and Gardeazabal, 2003) and various extensions.
This is based on the idea of recovering the counterfactual outcome that would have been
observed had an intervention not taken place.
This chapter expands and generalise this class of models, allowing for non-linearity through
Semiparametric Latent Factor models (SLFM) (Teh et al., 2005; Alvarez and Lawrence,
2009). These models, which belong to the class of Multi-Output Gaussian Processes, have
a high degree of flexibility in building the counterfactual outcome, since they employ all
types of information without any limitations on the functional form. They also make it
possible to assess the robustness of the synthetic controls, as we can use the posterior dis-
tributions of the Gaussian Processes to quantify uncertainty stemming from the functional
form estimation. Lastly, as the models learn the relationships which prevail amongst all
associated variables, there is no need to match the time series on a calendar basis, making
the most of the available data.
To our best knowledge, the only paper that uses Gaussian processes in the context of poten-
tial outcomes is Alaa and van der Schaar (2017). The purpose of their article was to infer
individualized treatment effects across a series of cross-sectional experiments. However,
the bivariate setting arises from the use of the treated and control groups as dependent
variables and no time component is exploited. There exists very recent literature that
explores multitask causal learning using a Gaussian process exploiting Judea Pearl’s Do-
Calculus (Pearl, 1995). These papers (Aglietti et al., 2020), however, are mainly focused on
understanding the main correlation structure of multiple continuous intervention functions

102



- defined with a directed acyclic graph (DAG) - as opposed to a single discrete intervention.
Furthermore, the main data domain consists of cross-sectional experiments, not time series
data.

The main contribution of this chapter is to offer a novel approach to causal inference
by using Gaussian Processes. At first, this method removes any linearity assumption or,
more generally, any need to specify a functional form. Then, as a fully Bayesian approach,
it easily quantify uncertainty around the estimates. This promotes direct estimation of the
causal effect estimands such as means and quantiles. Additionally, we develop a framework,
based on a linear combination of different kernels, suited for time series and longitudinal
data. Specifically, we decompose the whole data space using unobserved components, or
factors, that enclose the dynamic structure and relationships of the panel data. This in-
terpretation allows factor models to be generalized in a non linear way by replacing the
resulting linear covariance with a non linear one. To test this methodology empirically,
we estimate the effect of the UK’s vaccination policy compared to that of other European
countries. Thus, we learn how a faster vaccination schedule could have reduced the conta-
giousness and cumulative number of deaths occurred in the first half of 2021.

This chapter is structured as follows. In Section 3.2 we briefly introduce the causal frame-
work and the synthetic control approach, presenting our main assumptions and the causal
effect estimands. In Section 3.3 we define the proposed models based on Gaussian Pro-
cesses. In Section 3.4, we present the estimation procedure. In Section 3.5 we present an
illustrative empirical analysis of our approach to obtaining estimates of the causal effect of
the UK’s effective vaccination programme, introduced in January 2021, on deaths and the
infection rate. Section 3.6 describes the main results of the analysis. Finally, we conclude
in Section 3.7.

3.2 Causal Framework

The application we refer to throughout the paper serves as an illustrative example and is
analysed in Section 3.5. It attempts to understand whether the early and intense vaccina-
tion campaign introduced in the UK affected the number of deaths and level of contagious-
ness of Covid-19 in the first semester of 2021. Formally, the treated unit is the UK and the
treatment is the substantially accelerated vaccination schedule. Other EU countries, with
other slower vaccination campaigns, will be used to construct the synthetic control for the
UK. We would like to note here that we are comparing the UK with a non-treated coun-
terfactual version of itself, using other European countries to create this counterfactual.
Each observation is denoted with yi,t ∈ Y , where i = 1, · · · ,m is reserved for countries,
and t = 1, · · · , Ti for observation times, and is associated with a set of d potentially time-
varying predictors xi,t ∈ X d such that

yi,t = f(xi,t) + εi,t, εi,t ∼ N (0, ω2
i ), (3.1)
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where f(·) is a generic function which expresses the input-output relationship and εi,t is
the error term, having mean 0 and variance ω2

i . The d-dimensional feature vector xi,t is a
set of time series specific to each unit i. In our application this includes mobility data and
the number of tests for each country. The data span Ti periods and the first t0 periods
correspond to the data before the intervention, i.e. when the vaccination campaign began
in the UK.

3.2.1 Synthetic Control Methods

Synthetic control methods have gained traction as a technique to estimate causal effects
from variables that were subject to a single intervention or treatment in time. A traditional
approach is the one based on the difference-in-difference (DD) method, a static linear re-
gression model where the causal effect is estimated as the difference between the regression
coefficient in the treated and the control groups. This is often implemented in a linear re-
gression setting, with the quantity of interest being the interaction term of the dependent
variable and the treatment group dummy variable. In this case, f(xi,t) = α+x

′
i,tβ+γD(t0),

where D(t0) is a dummy variable which takes values 1 for t > t0 and α,β, γ are the or-
dinary least square coefficients. However, DD methods suffer from two main drawbacks
(Brodersen et al., 2014): the first one is that they assume that the data are indepen-
dent and identically distributed, thus disregarding the temporal component; secondly, the
pre- and post-intervention periods are captured solely by two time points Abadie et al.
(2010); Abadie and Gardeazabal (2003) proposed models generalizing the DD as they al-
lowed the effect of unit-specific unobserved variables to vary with time. In particular,
they recover the counterfactual outcome by developing a control group that has a similar
pattern in the pre-intervention period as the treated unit. To do so, they find a vector
of weights {W1, · · · ,Wm−1}

′
,Wj > 0,

∑
Wj = 1 which minimize the squared distance be-

tween the pre-intervention features (not time series) of the exposed region xi and the the
features for the unaffected regions {xj}j 6=i. Then, the counterfactual outcome becomes
yi,t =

∑
i 6=jWjyj,t. However, this method has its own limitations. Indeed, it focuses only

on possible convex combinations of control time series to match the treated variable. Fur-
thermore, there is a non-negligible data loss in regards to the temporal component. First
of all, only data in the pre-treatment period is used to fit the model and find the opti-
mal weights of the counterfactual unit. Second, time series evolution and interaction over
time is neglected, as data is aggregated over time or treated individually for each time
period. An alternative class of models is identified by Brodersen et al. (2014), whose ap-
proach addresses many of the previous methods’ limitations. The authors’ approach relies
on Bayesian state-space models which encompass the outcome’s temporal evolution with
exogenous regression components to efficiently build a counterfactual model. State-space
models allow for flexibility when modelling a variable that is affected by external noise,
distinguishing between a state equation which describes the transition of the latent variable
from one point in time to the next one, and a measurement equation, which describes the
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accuracy of the signal.1 Being fully Bayesian makes it possible to (i) incorporate prior in-
formation about the model structures and parameters and (ii) have a posterior distribution,
and thus a probabilistic uncertainty quantification of the causal impact of the intervention.
Although the models focus on one outcome variable and multiple controls, an extension
to a multivariate setting has been implemented using Multivariate Bayesian Structural
Time Series (Menchetti and Bojinov, 2020), which is limited to linear relationships be-
tween outcomes and controls and subject to the Markovian assumption of the variables.

3.2.2 Assumptions

In this subsection, we set up the framework to estimate the causal effect of an intervention
on the treated subject. Each subject yi,t, i.e. each country in our application, is associated
with a binary potential outcome yi,t(wi,t) ∈ R where wi,t ∈ {0, 1} is a treatment assignment
indicator with ‘1’ referring to the variable being treated (the UK) and ‘0’ to the controls
(other European countries). Furthermore, define w1:m,1:T = {w1,1:T , · · · ,wm,1:T} as the
assignment path up to time T of all units i = 1, ...,m and denote w1:m,1:T a realization of
this path. As in Menchetti et al. (2021), throughout the paper we make a set of assumptions
to guarantee that the differences in the potential outcome trajectories are a direct statistical
consequence of the intervention. Since some of them can not be directly tested, we rely on
the concept of plausibility in our empirical settings. In particular, we assume the following:

Assumption 1 (Single intervention) Unit i received a single intervention if there exist
a t0 ∈ {1, ..., T} such that wi,t = 0 for all t < t0 and wi,t = wi,s = wi for all t, s > t0.

This says that the treatment is single, i.e. it occurs at one point in time, and is persistent,
i.e. has no disruptions. Then, we can ease the notation and drop the t subscript for t > t0

Assumption 2 (Temporal no-interference) For all i ∈ {1, ...,m} and all t > t0, the
outcome of unit i at time t depends only on its own treatment path

yi,t(w1:m,t0+1:T ) = yi,t(wi,t0+1:T ).

If it holds, one can also drop the subscript i from wi as this assumption asserts that,
whether or not other units receive the treatment at time t0, this has no impact on other
units’ potential outcome. Units do not interfere with each other at any point in time. This
is the time series equivalent of the cross-sectional Stable Unit Treatment Value Assumption
(SUTVA) of Rubin (1974), also known as Temporal SUVTVA from the work of Bojinov
and Shephard (2019). In our empirical study, each country’s vaccination plan is confined
by the country’s border and does not affect other countries’ rate of contagion or number
of deaths. The main underlying observation around this assumption is that, during the
period analysed, each country was isolated due to government restrictions. Thus, people’s

1Formally, dropping the subscript i, yt = Z
′
αt + γxt + εt represents the observation equation and

αt+1 = Φαt + Rηt is the state equation, where εt ∼ N (0, σ2
ε ) and ηt ∼ N (0, σ2

ε ). See Brodersen et al.
(2014) for more details.
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mobility was prohibited or at least significantly limited. Even after the intervention, we
likely expect other European countries’ mobility not to affect the UK’s number of deaths
or contagion rate.
Assumptions 1 and 2 allow as to simplify the notation so that we can use yi,t(w) to indicate
the potential outcome of a generic unit i at time t. Thus, the observed outcome for t > t0
is yi,t(1), while yi,t(0) is the unobserved or counterfactual potential outcome which has to
be estimated to measure the causal impact of the intervention.

Assumption 3 (Covariates-treatment independence) Denote with xi,t the vector of
exogenous variables that are predictive of yi,t. For t > t0 those covariates are not affected
by the intervention

xi,t(1) = xi,t(0).

These covariates help improve the outcome prediction, but they produce an estimation
bias if they are influenced by the treatment. For the analysis, we expect that an earlier
vaccination, during the period considered, neither alters the the number of tests taken
nor people’s mobility, during the same period. We must remark that our treatment is
indeed the quicker vaccination programme and not the programme just by itself. As a
consequence, people could anticipate a mass vaccination taking place in the future months
and adjust their mobility patterns, but we can assume that they would not travel more
because of just being in a country with a higher vaccination rate.

Assumption 4 (Non-anticipating potential outcomes) for all i ∈ {1, ...,m}, the out-
come of the unit i at time t < t0 is independent of the treatment that occurs in t0

yi,t(w1:m,1:T ) = yi,t(w1:m,1:t0).

This assumption is usually made in the literature (Bojinov and Shephard, 2019; Call-
away and Sant’Anna, 2021) to affirm that the future intervention has no influence on
pre-intervention statistical units, implying that there is no anticipation of the treatment
effect before t0. In the empirical application, although the government advertised the forth-
coming vaccination campaign, the outcomes, such as the number of deaths, did not shift
before the programme took place. Furthermore, people had no way to anticipate that the
UK programme would have been significantly faster compared to other countries.

Assumption 5 (Non-anticipating Treatment) The assignment mechanism at time t0
for the unit i depends only on past covariates and past outcomes

p(wi,t0 = wi,t0|w1:t0−1,yi,1:T , Xi,1:T ) = p(wi,t0 = wi,t0 |yi,1:t0−1, Xi,1:t0−1). (3.2)

This assumption is analogous of the unconfounded assignment mechanism (Imbens and Ru-
bin, 2015) in a time series framework and ensures that, conditionally on past yi,1:t0−1, Xi,1:t0−1,
any variations in the outcomes are to be attributed to the intervention. In our setting, the
UK set up a faster vaccination campaign as just looking at the previous number of deaths
and rate of reproduction shows.
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3.2.3 Causal Estimands

Let δi,t = yi,t(1) − yi,t(0) be the individual level (UK) causal effect at time t, then the
additive causal effect on the subject i at time t is the population average treatment effect
and it is given by

τi,t = E (δi,t|xi,t) . (3.3)

We are also interested in the uncertainty surrounding the treatment effect. This can either
be measured through the variance

%2
i,t = V (δi,t|xi,t) , (3.4)

or by directly applying quantile functions to calculate credible regions

qδi,t(α) = F−1
α (δi,t|xi,t) , (3.5)

with levels of confidence generally set to α = 95%. We aim to estimate these values from
a dataset D = {X,y,w}, which involves T =

∑m
i=1 Ti samples of different time series. The

main challenge is that we only observe one of the potential outcomes for every subject i,
which implies that the treatment effect is unobserved, so we cannot directly estimate τi,t.
In addition to its point-wise impact, we are interested in the cumulative effect of the
intervention over time

Ti =

Ti∑
t=t0+1

τi,t (3.6)

where t0 represents the time in which the intervention takes place. The cumulative sum
is a suitable measure when yi,t is a flow variable which is measured over an interval of
time (e.g number of deaths in a country). This quantity, however, loses its interpretability
when yi,t is a stock variable, i.e. a quantity measured at a specific time, representing a
quantity existing at that point in time (e.g rate of infectiousness). In this case, it is more
meaningful to use the average treatment effect of the intervention

τ i =
1

Ti − t0

Ti∑
t=t0+1

τi,t =
Ti

Ti − t0
. (3.7)

This measure extends Sävje et al. (2019) to the time series framework of the average dis-
tributional shift effect since here it is averaged across time as opposed to units.

Within a Gaussian Processes (GP) framework, expected values and variances are straight-
forward to derive and we have that δi,t ∼ N (τi,t, %

2
i,t). Sometimes, however, Gaussian like-

lihoods may not be appropriate and some mathematical transformations may be needed.
For example, a random variable which takes only non-negative values (e.g. counts, lengths)
would be better represented using a log-normal distribution. Thus, if a random variable
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δi,t = log(δ∗i,t) has a Gaussian distribution, then δ∗i,t ∼ logN (τ ∗i,t, %
∗2
i,t) is log-normally dis-

tributed. By directly modelling the transformed variable one obtains the causal effect given
by

δ∗i,t = exp (log yi,t(1)− log yi,t(0)) =
yi,t(1)

yi,t(0)
. (3.8)

Then, taking the expectation E[δ∗i,t|xi,t] = τ ∗i,t and using the fact that δ∗i,t is log-normal

τ ∗i,t = E
(
yi,t(1)

yi,t(0)

∣∣xi,t) = exp

(
τi,t +

%2
i,t

2

)
, (3.9)

with related percentiles equations as in 3.5. This can be interpreted as a multiplicative
causal effect with base 1. A ratio above (resp. below) 1 indicates a positive (resp. negative)
effect of the treatment.
Generally, for the cumulative effect (3.6) and average effect (3.7), there is no closed form
solution unless each δi,t is normally distributed and independent over time. In this case
one can use samples from the posterior predictive distribution over the counterfactual
variable to obtain samples from the posterior causal effect distribution, the quantity we
are interested in. This method also works when using variable transformations, as one can
convert it back to the original scale and then calculate the empirical cumulative (average)
distribution, with given mean and quantiles.

3.3 Gaussian Processes

Most of the existing methods in the literature rely on a linear function f(·) in 3.1. In this
paper, we aim to relax this linearity assumption and estimate f(·) in a non-parametric
fashion, making few assumptions regarding its form. This is achieved using GPs that
generally provide a powerful Bayesian method for regression and classification problems
(Rasmussen and Williams, 2006). The function f(·) is treated as an unknown parameter
and is assigned a suitable prior distribution defined by a user-specified kernel. Inference
and prediction tasks are than carried out based on the corresponding posterior and pre-
dictive distribution, which also reflect the uncertainty of the estimation procedure.

3.3.1 Single-Output Gaussian Process

Let y = {y1, · · · , yT} ∈ RT be the time series of the treated country (the UK) and X =
{x′1, · · ·x

′
T}
′ ∈ RT×d the matrix of the d associated covariates. Define as Z = {z′1, · · · z

′
T}
′ ∈

RT×m−1 the matrix containing the time series of the relevant units for the synthetic control
(the other European countries). Then X∗ = {X ′ , Z ′}′ is the matrix of d + m − 1 the
time-varying covariates, all with sample size T. A single-output GP (SOGP) takes the
form

yt = f(x∗t ) + εt, εt ∼ N (0, ω2) (3.10)
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where εt is the independent and identically distributed (i.i.d.) noise which accounts for
the model error. This process is completely defined by its mean, µ(x∗t ) = E [f(x∗t )], and
covariance k(x∗t ,x

∗
s) = E [(f(x∗t )− µ(x∗t ))(f(x∗s)− µ(x∗s))] function for each t, s = 1, · · · , T .

Without loss of generality, we take the mean function to be 0 and consider a standard option
for the kernel that defines the covariance.
As we will discuss in more detail in Section 3.6.1, this approach offers a robust and flexible
alternative to Brodersen et al. (2014), but it is also similar in the sense that the x∗t s are
not modelled and are assumed to be deterministic inputs. Potential further gains may be
achieved if the joint distribution of (yt,x

∗
t ), ∀t, is modelled. Such a model is presented in

the next section using Multi-output Gaussian processes (MOGP), which generalize GPs in
a multivariate framework.

3.3.2 Multi-Output Gaussian Process

MOPGs exploit correlations between multiple outputs and across the input space, thus
providing the potential for better predictions, particularly in scenarios with noisy data or
missing values (Bonilla et al., 2008). In this paper, we are going to focus on a class of
models referred to as Semiparametric Latent Factor Models (SLFM), in which each output
corresponds to a linear combination of one or more latent random functions. These shared
processes help transfer the common information across units, without the need to specify
a different kernel structure for each output. This is potentially useful in our context, as
we want to incorporate knowledge from the other countries without making the model
dependent on numerous state-specific parameters. Compared to the SOGP, the MOPG
jointly models all the countries, each one with the appropriate set of covariates.

Define y = {y′1, · · · ,y
′
m}
′ , where y

′
i = {yi,1, · · · , yi,Ti} ∈ RTi is the time series vector

of observed variables and X = {X ′1, · · · , X
′
m}
′with Xi ∈ RTi×d the matrix of the d covari-

ates associated with output i, and where i is the country. For the independent variables
we assume a heterotopic data configuration (Liu et al., 2018), i.e. each output potentially
has different time-varying covariates associated with it, X1 6=, · · · , 6= Xm, each one with
Ti samples such that T =

∑m
i=1 Ti. In this way, we can model the relationship occurring

in each input-output set. The MOGP model is shown below,

yi,t = fi,t(xi,t) + εi,t, εi,t ∼ N (0, ω2
i ), (3.11)

for each i = 1, · · · ,m and t = 1, · · · , Ti and where the i.i.d. noise εi,t accounts for the
observation errors. The likelihood function for the m outputs is defined as

y|f(X), X,Ω ∼ N (f(X),Ω), (3.12)

where Ω = diag(ω2
1IT1 , · · · , ω2

mITm) ∈ RT×T and the outputs f(X) = {f1(X1), · · · fm(Xm)}′

are probability distributions in function space and represent the MOPG

f(X) ∼ GP(µ(X),K(X,X)). (3.13)
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Without loss of generality, one can assume that µ(X) = 0 while K(X,X) ∈ RmT×mT is the
multi-output positive semi-definite covariance matrix, defined as

K(X,X) =


K1,1(X1, X1) K1,2(X1, X2) . . . K1,m(X1, Xm)
K2,1(X2, X1) K2,2(X2, X2) . . . K2,m(X2, Xm)

...
... . . . ...

Km,1(Xm, X1) Km,2(Xm, X2) . . . Km,m(Xm, Xm)

 (3.14)

with Ki,j(Xi, Xj) = Kj,i(Xj, Xi)
′ ∀i, j by symmetry. Taking a look at block matrices

Ki,j(Xi, Xj) ∈ RTi×Tj , they are defined such that

Ki,j(Xi, Xj) =

 k(xi,1,xj,1) . . . k(xi,1,xj,Tj)
... . . . ...

k(xi,Ti ,xj,1) . . . k(xi,Ti ,xj,Tj)

 , i, j = 1, . . . ,m.

The next step is to define the kernel for the covariance of each of the GPs f(xj). Each kernel
depends on a set of hyper-parameters φ which determine its structure. For simplicity, let
us focus first on the case of i = j, so we can drop the unit subscript.
The squared exponential kernel is a popular choice:

kφ(xs,xt) = σ2 exp

(
−

d∑
r=1

(xs,r − xt,r)2

2`2
r

)
,

where r is the r-th input and φ = {`1, · · · , `d, σ2}′ . From this equation, we can see that
the inverse of `2

r regulates the how sensitive the kernel covariance is to changes in the r-th
dimension of the input. For large values of `2

r, the inverse approaches zero, which will cause
the value of the covariance to be invariant to the change in (xs,r − xt,r)2. This effect will
then rule the relevance of the t − r − th input to the kernel, hence, the name automatic
relevance determination (ARD).

Another useful kernel is the Matérn kernel given by:

kφ(xs,xt) = σ2 21−ν

Γ(ν)

(√
2ν

`
‖xs − xt‖2

)ν

Jν

(√
2ν

`
‖xs − xt‖2

)
(3.15)

with φ = {`, σ2}′ and where Jν(·) is the modified Bessel function and Γ(·) is the gamma
function. When the dimension d = 1 we have that this kernel generates a continuous-
time version of an AR(p) Gaussian process where p = ν − 1/2. A particular case is
achieved with ν = 1/2, since the Matérn kernel reduces to the exponential kernel given by
kφ(xs,xt) = exp(‖xs − xt‖ /`), which is the covariance process of an Ornstein-Uhlenbeck
(OU) process, the continuous-time analogue of an AR(1) process. Let us focus on the
one-dimensional case with xt = t, i.e. the only covariate is time and let us call the lag
between two time points ∆. It is shown that taking the Fourier transform of the power
spectrum of an OU process on R with drift φ and diffusion σ gives

k(∆) =
σ2

2φ
e−φ|∆|. (3.16)
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fif1 · · · fm· · ·

u1 · · · uq · · · uQ

λ1,1 λm,Q

Figure 3.1: Structure of an LCM. uq and fi represent the latent and observed function, respec-
tively. λi,q is the weight associated with each function.

Thus, the exponential decay rate of the autocorrelation is captured using t instead of a
lagged version of yt. Both the above kernels are stationary, i.e. the covariance function
depends on the relative positions of two inputs and not their absolute location.2 If k(x1, x1)
and k(x2, x2) are covariance functions over different spaces X1 and X2, then the direct sum
k(x, x) = k1(x1, x1) + k2(x2, x2) and the tensor product k(x, x) = k1(x1, x1) · k2(x2, x2) are
also covariance functions (defined on the product space X1×X2), by virtue of the sum and
product constructions. We can then flexibly sum or multiply all the kernels to have the
type of interaction we need in the covariance matrix. As an example, a linear kernel plus
a periodic one will generate a periodic kernel with a trend.

3.3.3 Multi-Output Kernels

Finally, in order to fully specify the distribution of f(X), which is a GP with multiple
outputs, we need to make an assumption about the dependence between fi(xi)s. The sim-
plest case is to assume independence which will imply the following covariance structure
K = diag(K1,1(X1, X1), ..., Km,m(Xm, Xm)). Alvarez et al. (2012) give a survey of several
more flexible methods, including the intrinsic coregionalization model (ICM), the semi-
parametric latent factor model (SLFM), and the linear model of coregionalization (LMC).
These models may be viewed as performing exploratory factor analysis on K with unob-
served factors uq(X). In particular, let us consider the LMC. This specification, widely
used in geostatistics, expresses the outputs as a linear combination of Q latent functions
as

fi(Xi) =

Q∑
q=1

λi,quq(Xi) (3.17)

where uq(Xi) is itself a latent Gaussian process with mean 0 and Cov[uq(Xi), uq(Xi)] =
Kq(Xi, Xi), while λi,qs are the coefficients which measure output correlations. Furthermore,
the model assumes that the latent processes, uq(Xi) and up(Xi) for p 6= q, are independent
and such that cov[uq(Xi), up(Xi)] = 0. Then, cross-covariances between the output can be

2To allow some flexibility in the model, especially when data exhibit visible trends, one can introduce
non-stationary kernels. The most simple example is the linear kernel. This is defined as kφ(xs,xt) =

σ2
i x

′

sxt where φ = σ2.

111



calculated by

Ki,j(Xi, Xj) =

Q∑
q=1

λj,qλi,qKq(Xi, Xj). (3.18)

Linear combinations of different kernels still result in a valid positive definite covariance
matrix. This approach is defined as separable (Alvarez et al., 2012) due to the decoupled
input-output structure of the covariance.
This model is defined as semiparametric, since it combines a nonparametric component
(the Gaussian processes) with a parametric part (the linear mixing via λi,q).
For notational simplicity, let us assume an isotopic data configuration, i.e X◦ = X1 =
, · · · ,= Xm. Then, define Bq as the positive semi-definite matrix such that Bq = λqλ

′
q+kIq

where k = {k1,q, · · · , km,q} and kj,q positive and λq = {λ1,q, · · · , λm,q}
′ . SLFM assumes

that λqλ
′
q has rank 1, but generalization with higher rank is possible using LMC. Then,

one can write the multi-output covariance as

K(X,X) =

Q∑
q=1

Bq ⊗Kq(X◦, X◦). (3.19)

The coregionalization matrix B defines the amount of inter and intra task transfers of
learning among all the outputs. Thus, the latent kernel is shared across all the outputs
but is scaled by a factor B[i,j]

q . For example, it is possible that in France, the rate of
contagiousness is predicted better by the mobility data than it is in the remaining countries.
In this case the B entry associated with France will be higher compared to other countries.3
Denote by X/t

◦ ∈ RT×(d−1) the matrix of d inputs minus time, which is denoted by t. Let
us consider specifically the time series defined in (3.11). Using the structure of 3.19, we
will focus on a particular specification given by

K = B1 ⊗Krbf (X/t
◦ , X

/t
◦ ) + B2 ⊗KMat(t◦, t◦), (3.20)

where Krbf (·), KMat(·) are the squared exponential and Matérn kernels respectively. This
combination captures both stationary trends between the output and the input and the
autocorrelation structure for each output. Using the time trend as a separate covariate
creates a distinctive kernel structure in which it’s possible to see how yi,t is related to the
other yj,s, ∀i, j, t, s, something SOGPs cannot do, as shown in the second graph of Figures
3.4 and 3.6. If some country i has little to no relation to another country j the terms of
B[i,j]

2 will be close to 0.

3.3.4 SOGP vs MOPG comparison

Although simpler in nature, SOGPs present some limitations when compared to MOPGs.
First, there is a considerable data loss when applying a univariate approach as opposed

3The special case of Q = 1, generate the ICM. The computational complexity is largely reduced in
exchange of a more restrictive architecture, as one latent process, with a specified kernel, becomes the only
the source of variability among outputs.
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to the multivariate heterotopic data configuration. We lose all information contained in
the covariates of the control countries. Even including them, it won’t benefit the model
performance because we don’t expect, for example, that the number of deaths in the UK is
affected by mobility data of any other European country. And we would still face a high-
dimensional input with potentially more parameters to estimate. Another crucial aspect
of the univariate setting is that data is lost because the sample length of the training data
is reduced. When we estimate the model we can only use as much data as the minimum
sample length of each variable. Both the treated and control groups are restricted before
the intervention.4 In the multivariate case, we narrow the UK dataset up to t0 but for the
other countries we take advantage of the whole dataset. The goal of the multivariate case
is to learn the common relationships between input-output, and the more data is fed into
the system, the smaller the uncertainty surrounding prediction.
A second important aspect is variable time matching. Most of the studies involving causal
estimates related to Covid-19 do not compare countries on a calendar-day basis since the
virus hit each country at different dates (see Ghayda et al. (2020) for a meta-study on the
comparison between the use of calendar date and days since the outbreak). For example,
Born et al. (2020) use a common reference point to initialize observations for each country:
t = 1 is the day when the number of total positive cases surpasses a threshold of one
infection per one million people. This will ensure the effect of the pandemic is comparable
across countries. In the MOGP setting, each country is temporally dependent on the others
thanks to a separate kernel structure on time. This takes into consideration relative time
distance, such as how many days it takes on average to pass from the peak number of
deaths to half this number. This information is encoded into the kernel hyperparameters
which define a rate of decay, such as φ in (3.16). The kernel then links each time point
in the treated series to all points in the control time series. This type of architecture is
displayed in the third picture of Figure 3.4 and Figure 3.6.
Finally, a feature that is related to SOGP when applied to causal analysis is that of input
dimensionality. While, in the MOPG framework, each dependent variable has its own
associated covariates, in SOGP the auxiliary outcomes are added to the pool of independent
variables X. If the dimensionality of the input space is low, then learning the link function
is a much easier problem than learning a high-dimensional function. Though GPs are
capable of dealing with large-dimensional covariates in theory, there are several practical
and computational issues to consider in their implementation (Tripathy et al., 2016). The
inclusion of more input variables (not necessarily related to the response variable) can
increase model fit quality, but may lead to poor future predictions due to variance-bias
trade off (Cawley and Talbot, 2007). Furthermore, from a computational point of view,
optimization becomes more challenging as too many covariates can result in a singular
Hessian matrix (Djolonga et al., 2013).

4It is still possible to add lagged or forward versions of other countries, although this would inevitably
impact input dimensionality.
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3.4 Estimation

There are different approaches to GP’s parameter and hyperparameters estimation. The
Bayesian framework provides effective and consistent inference tools for the former issue.
GPs can, indeed, be treated as hierarchical models, where the parameters are represented
by the latent function f(X) = f , which in turn can be considered samples from a popu-
lation characterized by hyper-parameters θs. In this case, θ = {φ′ ,λ′ ,ω2′}′ contain the
parameters of the kernel covariance functions φ, the components of the corregionalization
matrix B, and likelihood variances ω2 = diag(Ω). Given Bayes’ rule, the posterior over the
parameters is

p(f |y, X,θ) =
p(y|f , X)p(f |θ)∫
p(y|f , X)p(f |θ) df

(3.21)

where p(y|f , X) is the likelihood, p(f |θ) is the prior, and the expression in the denominator
is a normalizing constant, called marginal likelihood. We can then express the hyperparam-
eters’ posterior, making the marginal likelihood from above play the role of the likelihood
so that

p(θ|y, X) =
p(y|X,θ)p(θ)∫
p(y|X,θ)p(θ) dθ

. (3.22)

The main toolkit for the analysis and optimization is GPy, a Gaussian Process framework
written in Python.5

3.4.1 Type II Maximum Likelihood

In practice, instead of maximizing the posterior in (3.22), one can instead maximize the
marginal likelihood, with respect to the hyperparameters θ (Type II Maximum Likelihood)

p(y|X,θ) =

∫
p(y|f , X, θ)p(f |X,θ) df . (3.23)

The strength of GPs is the tractability of the integral over the parameters f , since we
know that p(f |X, θ) = N (f |0,K). Furthermore, we have that p(y|f ,θ) = N (y|f ,Ω). Then,
following Rasmussen and Williams (2006), one can perform the integration of the product
of two normals which yields the log-marginal likelihood

log p(y|X,θ) = −1

2
y′Σy − 1

2
log |Σ| − T

2
log(2π), (3.24)

where Σ = K + Ω is the covariance matrix of the noisy outcome y and contains all hyper-
parameters. The first term is a data-fit term, as it is the only one involving y, the second
one represents the complexity term, since it depends only on the covariance function, and
the last one is a constant. Marginalizing out the Gaussian vector f moves up the Bayesian

5https://sheffieldml.github.io/GPy/. Following the authors’ proposal, we will treat the nugget param-
eters k as a parameter to optimize in order to increase numerical stability. These parameters are in the
parametrization of Bq = λqλ

′

q + kIq to guarantee the positive definiteness of the kernel.
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hierarchy by one level, thus reducing the odds of overfitting (Murphy, 2013). To maximize
the marginal likelihood, we first find the derivative of the marginal likelihood with respect
to the kernel hyperparameters

∂

∂θi
log p(y|X,θ) =

1

2
y
′
Σ−1 ∂Σ

∂θi
Σ−1y

′ − 1

2
tr

(
Σ−1 ∂Σ

∂θi

)
, (3.25)

where ∂Σ
∂θi

depends on the structure of the kernel and the parameters we are taking deriva-
tives of. The inversion of the K matrix requires O(n3) by standard methods, and then
O(n2) time per hyperparameter to calculate the gradient. Given the minor relative com-
putational cost of calculating derivatives, a gradient-based optimizer would be beneficial.6
A very popular method is BFGS, named after its inventors Broyden, Fletcher, Goldfarb,
and Shanno (Fletcher, 2000). As a Quasi-Newton procedure it approximates the Hessian
using the differences of gradients over several iterations, thanks to a secant (Quasi-Newton)
condition.

Algorithm 1 BFGS method
1: choose initial guess θ0

2: choose B0, the initial Hessian guess, e.g. B0 = I
3: for k = 0, 1, 2, · · · do
4: solve Bksk = −∇f(θk)
5: θk+1 = θk + sk
6: yk = ∇f(θk+1)−∇f(θk)

7: B−1
k+1 = Bk +

yky
′
k

y
′
ksk
− Bksks

′
kBk

s
′
kBksk

8: end for

The standard BFGS method employs the full history of gradients to calculate the Hessian
approximation. The limited memory BFGS, abbreviated as L-BFGS, uses only the most
recent (usually 20) gradients to compute the product B−1

k ∇f(θk). The main advantage of
L-BFGS is that it requires less storage than the n(n+ 1)/2 elements required to store the
Hessian estimate, requiring only O(sn) instead of O(n2) (Nocedal and Wright, 2006).
The L-BFGS-B algorithm further extends L-BFGS to handle linear constraints on vari-
ables such that li ≤ θi ≤ ui, where li and ui are constant lower and upper bounds for each
θi. The algorithm separates fixed and unconstrained variables at each step by using the
gradient method. Subsequently, it employs the L-BFGS method on the free variables to
achieve higher accuracy.

6Generally, the objective function is non-convex and local minima exist and can make the the opti-
mization procedure challenging. However, empirical studies with non-complex covariance functions seem
to indicate that the issue is not extremely serious, as every local maxima correspond to a different inter-
pretation of the data (Rasmussen and Williams, 2006).
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3.4.2 Hamiltonian Monte Carlo

The most popular Bayesian methods rely on MCMC, which can be quite slow for a high-
dimensional parameter space. It is possible to approximate the posterior over the latent
functions and over the hyperparameters after setting the priors, using Hamiltonian Monte
Carlo (HMC). Here, an additional momentum variable φ ∼ N (0,M) is introduced for
each parameter θ, which is regarded as position. The covariance matrix M, called the mass
matrix, rotates and scales the target distribution and it is generally set to the identity
matrix, M = I, when no information is available on the target distribution. The joint
density p(φ,θ) defines the Hamiltonian

H(φ,θ) = − log p(φ,θ) (3.26)
= − log p(φ|θ)− log p(θ) (3.27)
= T (φ|θ) + V (θ). (3.28)

The first term, T (φ|θ) = − log p(φ|θ), is called kinetic energy and it is equal to the
square of the momentum since − log p(φ|θ) = log p(φ) = 0.5φ

′
φ, being the momentum

density independent of the target density. The second term, V (θ) = − log p(θ), is the
potential energy and is related to the target distribution p(θ). This extended model then
follows Hamiltonian dynamics through fictitious time, whose evolution depends on a set of
differential equations:

dθ

dt
= +

∂H

∂φ
=
∂T

∂φ
(3.29)

dφ

dt
= −∂H

∂θ
= −∂T

∂θ
− ∂V

∂θ
= −∂V

∂θ
, (3.30)

since ∂T
∂θ

= 0 by independence. The solution to these differential equation is not available
in closed form and must be computed numerically. The most popular numerical integrator,
which preserves volume and reversibility of the system, is the Leapfrog integrator (Girolami
and Calderhead, 2011). The leapfrog integrator takes L steps, each one of size ε, and iterates
between a half step for the momentum and a full-step update for the position.

φt+ ε
2

= φt −
ε

2

∂V

∂θt
(3.31)

θt+ε = θt − εM−1φt+ ε
2

(3.32)

φt+ε = φt+ ε
2
− ε

2

∂V

∂θt+ε
. (3.33)

The leapfrog discretization introduces small numerical errors in the total energy calculation.
The correction takes the form of a Metropolis-Hastings step, in which the probability of
accepting a proposal (φ∗,θ∗) generated from (φ,θ) is min(1, exp(H(φ,θ)−H(φ∗,θ∗))). In
case of rejection, the previous values are used to initialize the new iterations. In practice,
when using HMC two main parameters need to be tuned. Firstly, one needs to choose
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the appropriate step size. Taking a look to the acceptance rate, it is possible to reduce or
increase the value of ε. Smaller steps are more computationally expensive, but precision
may improve. However, a very small ε makes it difficult to efficiently explore the target
distribution. The best way to determine the appropriate length L of the simulation is to
look at the parameters’ auto-covariance function, increasing L to achieve more independent
samples. Excessively long trajectories can erode computational effort, as the simulation
exercise may generate loops, making the destination point the same as the initial one.
Once reasonable values for ε and L have been determined, desired samples from the target
distribution can be obtained.
Generally, for MOPG, the parameters of interest are the λ composing the corregional
matrix B which defines the relationships among the outcomes.7 The conditional posterior
of λ can be computed as

p(λ|φ,ω2,y, X) =
p(y|X,λ,φ,ω2)p(λ|φ,ω2)

p(y|X,φ,ω2)
. (3.34)

By maximizing the denominator in (3.34) it is possible to obtain the maximum likelihood
type II estimates,

{φ∗,ω2∗} = arg max
φ,ω2

p(y|X,φ,ω2). (3.35)

Then, the marginal posterior of λ can be approximated by conditioning on the estimates
obtained by ML-II optimization as in 3.24

p(λ|X,y) =

∫
p(λ,φ,ω2|X,y)dφdω2 ≈ p(λ|X,y,φ∗,ω2∗). (3.36)

In this way, one can focus the attention and computational burden only on the parameter
of interest. As a robustness check, we will try to free up ω2 as well, in order to account
for the estimation uncertainty coming from the observational errors. The algorithm is
performed using GPy and employing 5,000 samples, an identity mass matrix M = I, and a
starting value of ε = 0.01

3.4.3 Prior Specification

In order to adopt a Bayesian approach to inference we need to specify a prior distribution
p(θ). We select a weakly informative prior distribution (Gelman et al., 2004), which incor-
porates enough information to regularize the posterior distribution. In this way, we keep
the posterior within reasonable values without contributing actively to the knowledge of
the underlying parameters. For the loadings, we employ a normal distribution,

λi ∼ N (µλ, σ
2
λ), (3.37)

where N is the normal distribution with mean µλ and variance σ2
λ. This former parameter

expresses our expectation about the value of each element composing the corregional ma-
trix. In practice, we set µλ = 0 and σλ = 10. Furthermore, we want to specify the set of

7In the Bayesian estimation approach we will keep the parameters k fixed.
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variance parameters that govern the observational errors. A typical prior distribution for
such a variance is

ω2
i ∼ G(a, b), (3.38)

with G being the Gamma distribution with parameters a, b. Those parameters generally
depend on our prior belief about the precision surrounding the collection of data. As
a default, we set up a = 0.1 and b = 1. Overall, these specifications provide a useful,
although wide, default while preserving flexibility in case a more specific prior information
is available.

3.4.4 Posterior Predictive and Causal Estimates

Let us say we want to use observed data x to make predictions about data x̃. For example,
as we will see in our application, x can be training data and x̃ test data. GPs are stochastic
processes in which any finite subset of random variables follows a joint normal distribution.
Thus, it is possible to determine the joint prior distribution of the observations y and the
output ỹ = f(X̃) at test points X̃ as[

y
ỹ

]
∼ N

[(
0
0

)
,

(
K(X,X) + Ω K(X, X̃)

K(X̃,X) K(X̃, X̃)

)]
(3.39)

where K(X, X̃) ∈ RT×T̃ is the matrix of the covariances calculated at all pairs of training
and test points, X and X̃, respectively. Then, it is possible to analytically derive the
posterior distribution of ỹ, conditioned on y, by using multivariate Gaussian proprieties.

ỹ|y, X, X̃ ∼ N (µ̃, Σ̃) (3.40)

where µ̃ and Σ̃ are the predictive mean and predictive variance, given by

µ̃ = K(X̃,X)[K(X,X) + Ω]−1y (3.41)
Σ̃ = K(X̃, X̃)−K(X̃,X)[K(X,X) + Ω]−1K(X, X̃). (3.42)

Thus, the predictive uncertainty, Σ̃, does not depend on y, but only on the output depen-
dencies given by the kernel structure of X and X̃. However, when parameter uncertainty
is accounted for, the distribution is no longer Gaussian as indicated in (3.40). Given the
posterior distributions of the hyperparameters of the model θ and the function f , we can
calculate the in-sample posterior predictive as

p(ỹ|x̃, X,y) =

∫
p(ỹ|x̃, f ,θ)p(f |X,y,θ)p(θ|X,y)dfdθ. (3.43)

For inference, we first simulate draws from the posterior of the hyperparameters, then we
simulate GPs for the given set of hyperparameters to obtain prediction samples.
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In causal impact analysis we are mainly concerned with the posterior predictive of the
counterfactual time series i in the absence of an intervention. To do so, we need the
out-of-sample forecasts from the distribution

p(ỹi,t0+h|x̃i,t0+h, Xi,1:t0 ,yi,1:t0 , {Xj 6=i,1:Tj}, {yj 6=i,1:Tj}) (3.44)

for h > 0 and j = 1, . . . ,m. This is a special case of (3.43), only with yi and Xi

restricted for t < t0. Then, we can obtain the counterfactual time series ỹ
[k]
i (0) =

{ỹ[k]
i,t0+1(0), · · · , ỹ[k]

i,Ti
(0)}′ , for k = 1, . . . , N samples. If Assumption 1 through Assump-

tion 5 hold, these values are the realization of yi,t(0) defined in Section 3.2.3, i.e. the
response that would have been observed after the intervention, had the intervention not
taken place. It is worth noting that the posterior predictive density is conditional on the
observed data of the treated country before the intervention as well as the data in all
control countries both before and during the intervention. This is because we assumed
temporal no-interference in Assumption 2, stating that the outcome of unit i at a time
t0 + h depends solely on its own treatment path. Furthermore, through Bayesian model
averaging, we integrate out all parameters (functions) and hyperparameters, so that the
distribution does not depend on a particular choice of parameter estimates.
Finally, using the samples ỹ[k]

i,t (0), for k = 1, . . . , N , it is possible to compute the posterior
distribution of the pointwise impact

δ̃
[k]
i,t = yi,t(1)− ỹ[k]

i,t (0) t = t0 + 1, . . . , Ti, (3.45)

where yi,t(1) is the observed outcome. As in Brodersen et al. (2014), the density in (3.43)
is a joint distribution over all counterfactual data points, rather than a set of univariate
predictive distributions. This ensures that we can correctly estimate the trajectory of the
counterfactuals through the dynamic structure defined by the model. The samples are also
employed to compute the cumulative and average impact (3.6) and (3.7).

3.5 Empirical Analysis

3.5.1 Covid-19 Vaccination programme

Evidence suggests that vaccination against Covid-19 reduces the risk of severe complica-
tions, including death, and slows down the transmission of infections (see Zheng et al.
(2022) for a meta-analysis of numerous Covid-19 studies). We are still to determine how
much of the observed slow down in the spread, and how many lives saved, are attributable
to fast and effective inoculation policies such as those introduced by the UK, as opposed
to more conservative programmes, such as the ones implemented, for instance, in France,
Portugal, and Greece. The United Kingdom has delivered one of the world’s fastest vac-
cination campaigns, giving the first shot to about 67% of the adult population and a
second to 50% by the end of June 2021, potentially helping to reduce deaths and infection
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Figure 3.2: Covid-19 vaccine doses administered per 100 people. Total number of doses admin-
istered, divided by the total population of the country. All doses, including boosters, are counted
individually. Source: Our World in Data

rates.8 In this application, we seek to answer the question above (about the impact of
the quick programme) by comparing the observed deaths and reproduction rate in the UK
to a "counterfactual UK", a synthetic control constructed using EU countries with less
ambitious inoculation programmes.

3.5.2 Data

Our data consist of weekly data points for different countries from 1st March 2020 to 30th

June 2021. The date of the intervention t0 is set to be the 31th January 2021, since that is
the first week in which the number of people that had the second dose surpassed 500,000.
As mentioned above, the treated country for this study is the United Kingdom, as its policy
differed from that of the other European countries.
We are going to focus our analysis on two different outcome (dependent) variables. The
first one is the confirmed Covid-19 deaths per million people. The variable is divided by
the population for each country to obtain a continuous variable and then it is converted
on a log scale to better handle the asymmetry of the data arising from the absence of neg-
ative values. The second variable of interest is the estimate of the reproduction rate (R)
of Covid-19. R measures the level of contagiousness of the virus and equals the expected
number of cases directly generated by one case in a population where all individuals are
susceptible to infection.

8https://coronavirus.data.gov.uk/details/vaccinations
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To respect the Covariates-treatment independence (Assumption 4), all covariates are con-
sidered unrelated to the intervention. They are: i) time trend, ii) Google Mobility Data
and, iii) weekly number of Covid-19 tests. The first one is a variable that represents time,
with t = 1 being the first time we have an observation. Since we are working with hetero-
topic data, each of the outcome variables is associated with different covariates, all with
potentially different start times. For example, in the number of deaths study we have that
Italy (the country whose reports are the earliest) first reported on ‘2020-03-15’, thus this
time value will be assigned as t = 1. The UK first reported on ‘2020-04-19’ and this will
be assigned a value t = 5, as this date is 5 weeks after t = 1. Although the time trend
is linearly increasing, the relationship with the dependent variable is not necessarily linear
thanks to the flexible structure of the kernel function on the input space. Google Mobility
Report is a publicly available dataset that records how visits to different places changed
overtime, compared to a baseline. The venues covered by the dataset are: grocery and
pharmacy, parks, transit stations, retail, recreation, residential, and workplaces. Similarly
to Her et al. (2022); Chatzilena et al. (2022) we reduce the dimension of the input space
performing Principal Component Analysis (PCA) on each country and we use the first
principal component as a single variable which represents country mobility. On average,
more that 80% of the variability of the dataset is explained by this factor, meaning we can
ignore other components. The last variable is the weekly average Covid-19 tests per 1,000
people.

3.5.3 Methodology

We now explain the methodology we employ to estimate the causal effects set out in Section
3.2.3. Our main concern is to ensure that the definitive model works well on the observed
data before we apply it to creating the counterfactual. To assess the ability of each models
to explain the data, we adopt a typical machine learning approach, splitting the data into
train and test samples. In particular, we only use data from the period before the inter-
vention as we want to avoid having data after the intervention as test samples. Evaluating
the models based on data y that are contaminated by the intervention can be viewed as
trying to minimize the distance between yi,t(1) and yi,t(0), thus introducing a downward
bias on the causal impact estimate. The new dataset is split at time t∗ < t0 into two parts,
the training and the test sets, which account for 2/3 and 1/3 of data, respectively. There
are two main issues to address: which countries to choose as control series, and which type
of kernel structure the model should have.
The first problem involves finding the combination of countries that achieve better predic-
tive performance. Employing a too high number of countries in one model would increase
exponentially the number of parameters to estimate. This leads to a greater model com-
plexity, which would make the model prone to over-fitting. As a first step, we perform
an early screening on the set by using dynamic time warping, or DTW (Giorgino, 2009).
The algorithm produces a distance metric between two input time series. The similarity
or dissimilarity of two time series is then calculated by converting the data into vectors
and calculating the Euclidean distance between those points in vector space. Then, the
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8 components which minimize the distance are chosen to be the set of potential control
series of the experiment. This algorithm is particularly useful for dealing with sequences in
which single components have characteristics that vary over time, not necessarily in sync.
The second issue is related to the appropriate choice of the SLFM architecture and relevant
kernel function. We compare different methods.

1) 2FGP: Two-Factor GP. This is the model outlined in the Section 3.3.2 equation
(3.20), in which the radial basis function (rbf) kernel is adopted on the input space
given by the spatial covariates and the Matèrn Kernel on the time trend. This is to
say that there are two unobserved and independent latent factors, one given by time,
whose covariance structure resembles the continuous-time AR(p) process as outlined
in Section 3.3.2, and one given by the non-linear relationship that occurs between
the outcome and the covariates. Number of parameters: 31.

2) INGP: Independent GPs. While the coregionalized model shares information across
outputs, the independent models cannot do that. In particular, we assume that in
(3.19), λq = 0 and kj,q = 1 ∀ j, q, i.e. Bq = Im. In the regions where there is no
training data specific to an output the independent models tend to revert to the prior
assumptions. We want to test if there is a transfer of learning among all the outputs.
Number of parameters: 11.

3) 1FGP: One Factor GP. Instead of assuming two separate input spaces and kernels
for time and the other covariates, as in (3.19), we combine the two kernels such that
K = B1⊗(Krbf (X◦, X◦)+KMat(X◦, X◦)). In this way, we combine features of the rbf
and Matérn kernels on a shared input space. This structure implies an unobserved
factor common to all tasks, which does not differentiate between time and the other
components. However, the model is simpler as it requires less parameters to estimate.
Number of parameters: 21.

4) 2RBF: Two-RBF Factor GP. The input space is divided into time trend and spatial
covariates but the kernel function has the same structure (Radial Basis Function) for
both t and X. K = B1 ⊗ Krbf (X,X) + B2 ⊗ Krbf (t, t). This model tests if the rbf
kernel structure can better describe time trends as opposed to the Matèrn kernel.
Number of parameters 31.

5) SOGP: Single-Output Gaussian Process. The model is referenced in (3.10), in which
the outcome variable is y = yi and the covariates are X∗ = ({yj}j 6=i, Xi), i.e. all the
other control variables and the relevant covariates for the treated subject i. We adopt
a single rbf kernel on the whole input space without ARD to define the covariance
structure. Number of parameters: 3.

6) BCI: Bayesian Causal Impact. The local linear trend outlined by Brodersen et al.
(2014), with the same data structure employed by SOGP. The optimization is per-
formed by using Kalman Filters and MCMC. In both the univariate cases we adopt
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an isotopic data framework.9 Number of parameters: 9.

Models 1 to 4 fall into the MOPGs framework defined in Section 3.3.2, Model 5 is the
SOGP of Section 3.3, while Model 6 is a replica of the work of Brodersen et al. (2014).
Once the models have been fitted on the training dataset we can evaluate the forecast
performance calculating the distance from the observed values. We use different measures
of dispersion:

� MSE:Mean Squared Error . It computes the average of the squared errors, calculated
as the differences between the estimated values and the actual values

MSEi =
1

t0 − t∗
t0∑
t=t∗

(yi,t − µ̃i,t)2 (3.46)

where µ̃i,t is defined in (3.42). While simple, the MSE disregards the uncertainty of
the predictions.

� LogS: Log Score. Forecasts are usually surrounded by uncertainty, and being able
to quantify it is pivotal to good decision making. Consider the GP framework of
Section 3.4.4, with the hyperparameters given by Type II MLE. The logarithmic
score (Good, 1952) is defined as

LogSi = − 1

t0 − t∗
t0∑
t=t∗

logN (µ̃i,t, σ̃i,t) (3.47)

where σ̃i,t is the ith diagonal element of Σ̃ as in (3.42). Thus, the score is equal
to the log of the predictive density of yi given by (3.40). The measure also takes
into consideration the variability of the point forecast. Since we are working with
GP, the distribution is normal and available in closed form, making the calculation
straightforward.10

� ES: Energy Score. This scoring rule is the multivariate extension of the contin-
uous ranked probability score, CRSP (Matheson and Winkler, 1976). Let y =
{yt∗ , · · · , yt0}

′ ∈ Rh be the values of the outcome i on the h-horizon test set where
h = t0 − t∗. Denote by ỹ the forecast distribution (3.40) on Rh with N samples
{ỹ[1], · · · , ỹ[N ]} with ỹ[k] = {ỹ[k]

t∗ , · · · , ỹ
[k]
t0 } with k = 1, . . . , N . Then, the energy score

can be calculated as

ESi =
1

N

N∑
k=1

||y[k] − y|| − 1

2N2

N∑
k=1

N∑
c=1

||y[k] − y[c]|| (3.48)

9For the SOGP and Bayesian Model of Brodersen et al. (2014) one can use only the number of points
such that Ti = min(T1, ...Tm), while for the Gaussian Process we have heterotopic data in which Ti may
be different from Tj .

10The Gaussian distribution assumption does not hold in general, especially when parameter uncertainty
is accounted for. In case of Bayesian estimation, such as in Section 3.4.2, the predictive distribution is no
longer normal. Nonetheless, it is still possible to use the samples obtained from the HMC distribution to
calculate the score (Jordan et al., 2019).
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where || · || is the Euclidean norm on Rh and c = 1, . . . , N . This function evaluates
samples from a multivariate forecast and returns a single estimate.11

For a given model, the lower the score, the higher the accuracy of the forecast. All three
measures are compared to see which model performs better. At this stage, given the high
number of models to fit, we perform type II ML to optimize hyperparameters. Bayesian
estimation is employed subsequently on the whole dataset to have a more exhaustive esti-
mate of the causal estimands.
Before proceeding with the results, we sum up the procedure involved to get to the causal
estimands.

1) We remove any European country which has no input or output data reported for
the period under consideration, i.e from ‘01-01-2020’ to ‘01-06-2021’.

2) We restrict the data before the intervention t ≤ t0 and split into train t = 1, · · · , t∗−1
and test t = t∗, · · · , t0 set.

3) We apply DTW on that period to restrict the number of available countries to 8.

4) For any given combination of 4 countries (plus the UK), we train the 6 models outlined
in Section 3.5.3 and calculate the dispersion metrics. We have 70 combinations of
countries, for a total of 420 models.

5) The combination which results in a lower Energy Score overall is selected as the best
model.

6) We fit the selected model on the whole dataset, restricting only the UK before inter-
vention date and calculate optimal θ, through type II ML.

7) We perform HMC with 5,000 samples on the parameters λ that define the correlation
matrix B, leaving the others fixed to their MLE values.

8) Given the obtained samples of hyperparameters, we calculate the prediction distri-
butions and related causal estimands.

The steps 1) to 5) take place before the intervention t0 while steps 6) to 8) deal with the
post-intervention analysis. The latter study is applied first to the weekly deaths per million
people data and subsequently for the weekly infection rate R.

3.6 Results

3.6.1 Before Intervention: Model Comparison

We start by applying the DTW algorithm to select the countries that are most similar to
the UK. This process restricts the pool of European candidates for each outcome. Given

11Sampling from the forecast distribution can be regarded as an approximation of the values of the
proper scoring rules, for a sufficiently large N (Jordan et al., 2019).
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Weekly deaths per million people

2FGP 1FGP 2RBF INGP SOGP BCI

MSE 0.8189 0.8274 1.2754 4.2811 0.7263 3.1693
logS 0.2389 0.4624 0.3451 1.1465 0.4008 4.7445
ES 0.6776 0.7791 0.8820 2.7745 0.7025 2.6261

Weekly infection rate R

2FGP 1FGP 2RBF INGP SOGP BCI

MSE 0.3597 0.4679 0.4028 2.1470 0.4905 0.5386
logS -0.6960 -0.6815 -0.8182 0.7835 -0.6173 -0.5928
ES 0.2883 0.3354 0.2915 1.4496 0.3505 0.3794

Table 3.1: Comparison of the different measures of prediction error outlined in Section 3.5.3
according to different models. Lowest values, which indicate good predictive performances, are
indicated in bold.

these countries, we focus on forecasting performance before the intervention t0 to assess
the performance of the various models. We fit the ones in Section 3.5.3 for each country
combination and select those that achieve the lowest possible Energy Score. Taking a look
at Table 3.1, we see that the 2FGP achieves the lowest Energy Score for both of the analyses.
The other two GP-based models (1FGP and 2RBF) perform well overall, but slightly worse
compared to the base model (2FGP). The INGP is the worst GP model since it cannot rely
on the part of data after the training threshold t > t∗, thus converging to the dependent
variable average values. The SOGP performance is solid on the Weekly Deaths application
and on the infection rate. Although the dataset used is the same as BCI, the latter model
employs a state-space framework in which the time layout is given by a random walk.
Thus, in the case of the SOGP outperforming the BCI, it means that the non-linearity of
variables provides a better ground for model prediction than modelling the time dynamics
through a linear equation. Nonetheless, the two univariate models produce comparable
trajectories, but in general BCI tends to underestimate the uncertainty, resulting in a
lower Energy Score.12 As mentioned above, MOPGs still possess a time structure without
sacrificing non-linearity. Another comparison of the models’ performance is displayed in
Figure 3.3, where each model is represented by a different coloured line, and the crosses
serve as the observations.
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3.6.2 After Intervention: Causal Effect

Weekly deaths per million people

Once the model and the countries are established, it is possible to fit the model to the
whole dataset, restricting only the UK in the period before intervention. For the analysis
where the outcome is weekly deaths per million, the best results are achieved using five
countries including the UK, namely ‘Italy’, ‘Netherlands’, ‘reland’, and ‘Portugal’. Using
type II Maximum likelihood as in (3.24) one can obtain the optimal hyperparameters for
the kernels. The estimated kernel matrices are of dimension mT×mT , where T =

∑m
i=1 Ti,

and represent the variances and covariances of each data point. Understanding the kernel
function of a GP is essential to interpreting the association not only between variables
but also among different data points belonging to different variables. The kernel on the
left of Figure 3.4 is K, which is the sum of the outer products of each kernel times the
coregionalization matrix B. Each of the m blocks represents the variance-covariance matrix
of each process fj(xj). The upper left block is the one corresponding to the UK and it is
smaller compared to the others, as only pre-intervention data is included. A first visual
inspection of K shows that the time component accounts for the majority of the variability
as values range from 0 to 2. Furthermore, we see that mobility data and number of tests
were very important variables to explain Ireland (fourth country) but of almost no influence
in the Netherlands (third country). However, we see how the independent variables of other
countries explain very little for the UK (top row/column of the matrix). The time-domain
coregionalization matrix is more homogeneous and we can see that UK weekly deaths
followed a pattern more similar to Ireland, as we observe slightly higher values of B2,[2,4]

compared to other countries. As mentioned in Section 3.6.1, all that matters is the relative
distance in time between countries. Lockdown measures, vaccination programmes, etc. do
not have to match, and the relationship between the main variable and lagged/forward
version of the control units are still captured by the model, even if they are not linear.
Now, let us focus on the causal estimates. As shown in Figure 3.5, the GP model provides
a close fit for the pre-intervention period. Following the beginning of the vaccination
campaign, observations start to diverge from the counterfactual predictions: the actual
number of weekly deaths, represented by the blue crosses, was consistently lower than what
is predicted with slower vaccination rates. Subtracting observed from predicted data, as is
shown on the right-hand part of Figure 3.5, produces the posterior estimate of the effect
achieved by the campaign. The top-right graph gives an idea of the cumulative log number
of deaths for the UK compared to control countries. Before the intervention, the cumulative
difference was statistically non-significant, .i.e the differential number of deaths was the
same among the countries. After t0, however, the cumulative effect starts going down,
reaching a value significantly lower than 0. In the UK, the counterfactual (log) number of
deaths was higher than the actual values, demonstrating that the vaccination campaign was
effective in saving lives. The bottom-right graph shows, instead, the point-wise estimate of

12Overall scores are far worse when including a linear trend as a covariate in the SOGP, so we decided
to drop it.
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τ ∗i,t, the multiplicative causal effect with 95% credible regions. To understand the average
effect right after the campaign, one can calculate the average effect as in (3.7). Over the
whole period, on average, for every two Covid-19 deaths in the other 4 countries used,
there was one Covid-19 death in the UK (that is, the ratio τ̄ ∗i is 51.41% [30.05%, 82.86%]).
In a Bayesian fashion, we also take into account parameter uncertainty, especially the one
deriving from the coregionalization matrix B. In Figure 3.5, the darker grey areas represent
the supplemental uncertainty coming from parameter estimates, in particular due to the
coregionalisation matrix.

Weekly infection rate R

The same analysis is run for the weekly infection rate, to measure if a different vaccination
campaign is actually producing slower rates of infectiousness.13 Half of the countries se-
lected (‘Portugal’ and ‘Ireland’) are in common with the previous analysis, while ‘France’
and ‘Denmark’ are new control units. We can now employ type II Maximum likelihood
on the whole dataset to find the optimal hyper-parameters of the kernel. Given that the
reproduction rate is an estimate itself, it can be affected by many sources of variability
induced by the data or the model used. To take into account this effect, we bound the like-
lihood variance (observation error) to a minimum value of around 0.01, which corresponds
to 5% of countries’ reproduction rate variance over the observed period. In the Bayesian
setting, we set up a slightly more informative prior, ω2

i ∼ G(0.1, 1), to support the same
decision. Without these restrictions the model converges to a data representation with an
almost zero observational error. This reflects in a tight in-sample fit but poor out-of-sample
performances.
In contrast to the weekly number of deaths, the time component does not seem to play
a prevailing role in defining R dynamics. Looking at Figure 3.6, one can note that there
is mainly a contemporaneous effect, as the lengthscale ` of the Matèrn kernel (3.15) is
lower compared to the one estimated in Section 3.6.2. Decreasing the length parameter
reduces the banding, as points further away from each other become less correlated. This
means that data points have zero covariance with the lagged version of both the treated
variable and control units. This effect is further minimized for ‘France’ (fifth country) as
the estimate of B[5,5]

2 is more than half that of other countries. In contrast, Google mobility
data, i.e. which places people were visiting during the period, was effective in predicting
how the contagiousness would change. However, as the variable is a principal component
transformation, little interpretation can be given to individual venues. The causal effect
is then estimated on the available dataset. As shown in Figure 3.7, before the vaccination
campaign the model provides a good fit of the data. Afterwards, counterfactual predic-
tions (orange lines) initially follow the main trend of observed data but then they start
to deviate marginally. However, the variability surrounding the estimate is too broad to
confirm any causal effect in the data. It is interesting to note that in the very final pe-
riod of the analysis, starting May 2021 (the red line in Figure 3.7), the model predicts a

13We removed the number of test variables as it did not affect results, making the optimization more
challenging.
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stable reproduction rate. However, the data seems to diverge positively to higher values.
We suspect that the reason for this discrepancy is the spread of the delta variant. This
more contagious version of Covid-19 represented 73% of UK cases by the end of May 2021.
Nevertheless, in the period following the vaccination campaign the average additive causal
effect τ i equals 0.0063 with 95% credible interval [0.1653, -0.1582], thus no reduction is
detected.14

3.7 Conclusion

A growing literature on applied causal inference indicates an increasing interest in evalu-
ating the incremental impact of interventions and policies, especially during the Covid-19
pandemic (Li et al., 2021; Ma et al., 2022; Tang et al., 2022). With this paper, we propose
a novel approach to obtain the counterfactual prediction of the unobserved outcome. We
employ a Bayesian Machine Learning technique, based on Gaussian Processes, whose main
features are discussed below.
The prevailing literature on dynamical Bayesian causal models revolves around Brodersen
et al. (2014), whose approach is based on state-space models, which easily lend themselves
to posterior inference. However, since closed-form solutions for the posterior are challeng-
ing to obtain, the authors resort to stochastic approximation, using MCMC.
In the general form of Gaussian Processes, causal effect posterior evaluation can be instead
derived analytically. When this is not possible - for example, when using transformation
of variables or cumulative measures - one can employ a GP sampling procedure. As a GP
is fully characterized by its mean (generally 0) and its variance (the kernel), the process is
straightforward.
Furthermore, state-space models impose some restrictions on the dynamic evolution of the
states, notably, linearity. With GPs, the input x is transformed into a feature vector f(x)
through some non-linear mappings dictated by the structure of the kernel. In a time se-
ries, the degree of correlation between a variable and its lag is given by the relative time
distance. When using a Matèrn kernel, it can be shown that the covariance matrix of the
kernel gives rise to a particular form of a continuous-time AR(p) Gaussian process (Ras-
mussen and Williams, 2006). At the same time, nothing prevents us from using a more
complex structure - such as periodic, linear, etc., or a combination thereof - to better fit the
time curve. Furthermore, the linearity assumption with exogenous regressors embodied in
state space can be relaxed by adopting an appropriate kernel architecture. Machine learn-
ing tools, such as cross-validation, can help decide which one better describes the data.
Another important improvement that GPs put forward is a heterotopic configuration of
data, i.e. each output has a different training set with a potentially different number of
samples. This approach plays a crucial role in causal analysis, since generally one has to
discard all information after the intervention period to train the data, generating a non-
negligible loss of data. In addition, no time matching is needed as the model understands

14On the contrary, it is slightly positive, although not statistically significant.

128



the relationship among the potential outcome and the explanatory variables for each unit,
independently if these variables match in absolute time.
Lastly, using GPs one can easily quantify uncertainty around a measurement or prediction,
since every data point possesses a defined distribution. This promotes direct estimation of
the causal effect distribution, means, and quantiles.
To test this model in practice, we estimated the effect of the UK vaccination policy com-
pared to other European countries. In particular, we analysed how the UK’s faster inocu-
lation campaign affected the cumulative number of deaths and the rate of contagiousness,
as measured by the reproduction rate. The results suggested that vaccinations prevented
deaths, since, on average, in the first semester of 2021, every death in the UK related to
Covid-19 corresponded to two deaths in the rest of Europe. No statistically significant
evidence was found to justify the proposition that vaccines reduce the number of cases
directly caused by an infected individual. However, this has to be considered in light of
the new and more infectious variants that started spreading over the continent at the end
of our sample period.
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Figure 3.3: Top: Predicted log weekly deaths per 1,000 people for the different models. Bottom:
Predicted rate of infectiousness for the different models. The blue crosses represent observed data,
and each line corresponds to a specific model. The first vertical grey dotted line is t∗ which separates
the training and test datasets. The second vertical dashed line identifies t0. The grey shaded area
represents the 95% prediction interval of the 2FGP, the base model.
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Figure 3.4: The figure on the left is the total variance K as in (3.20), while the other two repre-
sent the component kernel on the covariate space Krbf (X

/t
◦ , X

/t
◦ ) and time space B2⊗KMat(t◦, t◦),,

respectively.

Figure 3.5: The graphs on the left indicate the log weekly deaths on top and the level on the
bottom. Data provided to train the model is at the left of t0, the grey vertical line. Orange line
represents model’s predicted average of (log) weekly deaths. True values are in blue. On the right-
hand part, the top graphs show the cumulative effect of log weekly deaths Ti,t while the bottom
displays point-wise multiplicative causal effect τ∗i,t. Shaded area represents 95% credible intervals
in grey. Light grey does not take into account parameter uncertainty, grey accounts only for λ and
dark grey for λ and ω uncertainty.
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Figure 3.6: The figure on the left is the total variance K as in (3.20), while the other two repre-
sent the component kernel on the covariate space Krbf (X

/t
◦ , X

/t
◦ ) and time space B2⊗KMat(t◦, t◦),,

respectively.

Figure 3.7: The graph on the left indicates the evolution of the reproduction rate in the UK. Data
provided to train the model is at the left of t0, the grey vertical line. The orange line represents
the predicted average of R with 95% credible intervals in grey. True values are in blue. On the
right-hand part, the graph displays point-wise additive causal effect τt, with relative 95% bands in
grey. The red vertical line at time ‘01-05-2020’ indicates the start of the delta variant transmission
in the UK.
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List of Acronyms

2SPCA: Two-step Principal Component Analysis.

ARMA: AutoRegressive Moving Average.

ARCH: AutoRegressive Conditional Heteroskedasticity.

ARD: Automatic Relevance Determination.

AV: AVerage.

BCI: Bayesian Causal Impact.

BFGS: Broyden–Fletcher–Goldfarb– Shanno.

CHDFM: Conditionally Heteroskedastic Dynamic Factor Model.

CM: Conditional Maximization.

DCC: Dynamic Conditional Correlation.

DD: Difference-in-Difference.

DFM: Dynamic Factor Model.

DQ: Dynamic Quantile.

DTW: Dynamic Time Warping.

EDF: Empirical Density Function.

ECDF: Empirical Cumulative Density Function.

ECME: Expectation Conditional Maximization Either.

EM: Expectation Maximization.

ES: Energy Score.

EWP: Equally Weighted Portfolio.

GaR: Growth at Risk.

GARCH: Generalized AutoRegressive Conditional Heteroskedasticity.

GDFM: Generalized Dynamic Factor Models.

GDP: Gross Domestic Product.

GP: Gaussian Process.

HMC: Hamiltonian Monte Carlo.
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ICM: Intrinsic Coregionalization Model.

i.i.d.: Independent and Identically Distributed.

IR: Information Ratio.

L-BFGS: Limited memory Broyden–Fletcher–Goldfarb– Shanno.

LMC: Linear Model of Coregionalization.

LogS: Log-Score.

MCMC: Markov Chain Monte Carlo.

MGARCH: Mean Generalized AutoRegressive Conditional Heteroskedasticity.

MLE: Maximum Likelihood Estimation.

ML-II: Type II Maximum Likelihood .

MMSE: Miimum Mean Squared Error.

MOGP: Multi-Output Gaussian Process.

MSE: Mean Squared Error.

MVP: Minimum Variance Portfolio.

MW: Maximum Weight.

NID: Normal and Identically Distributed.

OECD: Organisation for Economic Co-operation and Development.

OU: Ornstein–Uhlenbeck.

PCA: Principal Component Analysis.

p.d.f.: Probability Density Function.

QMLE: Quasi Maximum Likelihood Estimation.

rbf : Radial Basis Function.

SLFM: Semiparametric Latent Factor Model.

SNR: Signal-to-Noise Ratio.

SOGP: Single-Output Gaussian Process.

SR: Sharpe Ratio.

SSC: Short Selling Costs.

SUVTVA: Stable Unit Treatment Value Assumption.

TC:Turnover Costs.

TL: Tick Loss.

VAR: Vector AutoRegression.

VTE: Variance Targeting Estimator.
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