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Abstract

The aim of this thesis is to develop statistical methods for use with

factor models for high-dimensional time series. We consider three

broad areas: estimation, changepoint detection, and determination of

the number of factors.

In Chapter 1, we sketch the backdrop for our thesis and review key

aspects of the literature.

In Chapter 2, we develop a method to estimate the factors and pa-

rameters in an approximate dynamic factor model. Specifically, we

present a spectral expectation-maximisation (or “spectral EM”) algo-

rithm, whereby we derive the E and M step equations in the frequency

domain. Our E step relies on the Wiener-Kolmogorov smoother, the

frequency domain counterpart of the Kalman smoother, and our M

step is based on maximisation of the Whittle Likelihood with respect

to the parameters of the model. We initialise our procedure using

dynamic principal components analysis (or “dynamic PCA”), and by

leveraging results on lag-window estimators of spectral density by Wu

and Zaffaroni (2018), we establish consistency-with-rates of our spec-

tral EM estimator of the parameters and factors as both the dimension

(N) and the sample size (T ) go to infinity. We find rates commen-

surate with the literature. Finally, we conduct a simulation study to

numerically validate our theoretical results.

In Chapter 3, we develop a sequential procedure to detect change-

points in an approximate static factor model. Specifically, we define a

ratio of eigenvalues of the covariance matrix of N observed variables.

We compute this ratio each period using a rolling window of size m

over time, and declare a changepoint when its value breaches an alarm



threshold. We investigate the asymptotic behaviour (as N,m → ∞)

of our ratio, and prove that, for specific eigenvalues, the ratio will

spike upwards when a changepoint is encountered but not otherwise.

We use a block-bootstrap to obtain alarm thresholds. We present sim-

ulation results and an empirical application based on Financial Times

Stock Exchange 100 Index (or “FTSE 100”) data.

In Chapter 4, we conduct an exploratory analysis which aims to ex-

tend the randomised sequential procedure of Trapani (2018) into the

frequency domain. Specifically, we aim to estimate the number of

dynamically loaded factors by applying the test of Trapani (2018) to

eigenvalues of the estimated spectral density matrix (as opposed to

the covariance matrix) of the data.
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“Factor model methods [in a

high-dimensional context] are

the ideal tool – arguably, the

only successful ones.”

– Barigozzi and Hallin (2015)

Chapter 1

Introduction

This thesis is concerned with the development of statistical methods for use with factor

models designed for high-dimensional time series. Accordingly, in this opening chapter,

we introduce the rich field of factor models and associated methods. In Section 1.1,

we explore models. In particular, we (i) provide a historical overview of research in

the area, (ii) discuss examples of applications of factor models, and (iii) explain the

taxonomy of models considered in the literature. In this respect, our goal is not only to

set the broad scene for our own study, but also to share with the reader our sense that

undertaking research in this area is a fruitful endeavour. In Section 1.2, we narrow

in on three sub-fields of the literature that tackle key methods. In particular, we

summarise studies in the areas of estimation, changepoint detection and determination

of the number of factors. We relegate any additional details about the literature not

covered herein to the main bodies of respective upcoming chapters.
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1.1 Synopsis of the Literature on Models

Factor analysis is a highly effective way of modelling inter-relationships between

potentially large sets of observed variables in a parsimonious manner. In other

words, it is an ideal tool for ushering in a reduction in dimensionality while pre-

serving most of the covariation information in the data. The success of factor

analysis in tackling the high-dimensional time series that we typically find in con-

temporary macroeconomics and finance belies its pre-“big data” origins. Indeed,

most monographs on factor analysis begin by noting the old chestnut that research

into this area goes back more than a century, originating in the field of psychology

with Spearman (1904). We too begin this thesis with the same frequently-quoted

fact not because we want to maintain an unexciting conformance with academic

tradition but because we truly believe that this fact is testament to both the

wide-ranging applicability of factor model methods and their longevity.

Accordingly, with fresh enthusiasm, we touch upon some key historical develop-

ments and provide examples of applications of factor analysis. In tandem, we

use this introductory section to map out the salient features of the landscape

wherein this study resides. It is no surprise that model specifications in this area

may be simple, complex or anywhere in-between, as also the statistical methods

employed in conjunction with them. Therefore, in the paragraphs below, we do

not attempt to cover every possible variant of models encountered in the litera-

ture nor every possible methodological development. Nevertheless, we recount a

generally-accepted categorisation of factor models together with brief descriptions

of what each category entails, and we signpost readers looking for a richer variety

of surveys of the literature to inter alia the works of Breitung and Eickmeier

(2006), Bai and Ng (2008), Stock and Watson (2016), Bai and Wang (2016), Doz

and Fuleky (2020), Barigozzi (2020) and Hallin et al. (2020).

1.1.1 Factor Model Decomposition

We start right at the wellspring of the merits of factor models. To fix ideas, let

us consider models for (observed) realisations from a zero-mean double indexed
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stochastic process xit for cross-sectional index i = 1, ..., N and temporal index

t = 1, ..., T . Distinctions among individual specifications notwithstanding, all

factor models postulate the same (unobserved) decomposition of xit into a sum

of two mutually orthogonal1 components, one that is common to all units in the

cross-section χit (thus capturing co-movements), and one that is idiosyncratic ξit

(thus accounting for any remaining individual features). The importance of this

decomposition emanates from its two critical properties. The first is the reduced

rank nature of χit, which is to say that it is driven by a small number q � N (with

q independent of N) of exogenously given primitives or shocks; and the second is

that the cross-sectional correlations amongst the ξit terms are sufficiently weak

(failing which, idiosyncracies would be hard to distinguish from commonalities).

Therein lies our inherent reduction in dimensionality.

1.1.2 Applications

The next question is whether the factor structure postulated above is reason-

able in real-world scenarios. Are there convincing examples of its use beyond

just the discussion by Spearman (1904) of general intelligence as the underlying

unobserved driver of various measures of cognitive ability of an individual?

Indeed, several authors as far back as Burns and Mitchell (1946) have consid-

ered an unobserved business cycle as the driver of co-movements among macroe-

conomic aggregates. Engle and Watson (1981) considers an unobserved local

metropolitan-area wage rate as the driver of wages across sectors throughout

the United States (US). Diebold et al. (2006) considers inter alia unobserved

yield-curve factors (level, slope, curvature) as the drivers of bond yields. Mody

and Taylor (2007) considers an unobserved regional vulnerability as the driver

of country-specific measures of financial stress. Barigozzi and Hallin (2015) con-

siders an unobserved market volatility as the driver of individual asset liquidity

measures. The list could go on but we stop here. Our point is simply, as phrased

by Doz and Fuleky (2020, p.418), that “[...] empirical evidence supports their

main premise: [factor models] fit the data”. Nevertheless, even if one were per-

1That is, uncorrelated at all leads and lags
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suaded that applications abound, one could still ask what one can do with the

results of factor analysis. Once again, the literature is replete with examples and

we mention a handful below.

A first arena is that of forecasting and factor methods are routinely deployed by

central banks and research institutes for this purpose. References include Stock

and Watson (2002a,b) which predict real and nominal macroeconomic variables

in the US; and Forni et al. (2003) and Banerjee et al. (2005) in the euro area.

Relatedly, factor methods are used to nowcast series, that is to predict low fre-

quency macroeconomic releases (say end-of-quarter) for the current period (or

within-quarter). See, for example, Giannone et al. (2008) and more generally the

comprehensive survey on nowcasting in Bańbura et al. (2013).

A second is the construction of macroeconomic indicators which serve as a ref-

erence for policy-makers and economists. Examples include the Chicago Fed

National Activity Index for the US, a monthly index designed to gauge overall

economic activity and related inflationary pressure (Evans et al., 2002; Stock and

Watson, 1999), and Eurocoin for the euro area, a monthly indicator that assesses

economic activity free from short-run fluctuations (Altissimo et al., 2010).

A third is monetary policy and the identification of impulse response functions.

A famous example is Forni and Gambetti (2010) which considers various anoma-

lous empirical findings, labelled “puzzles”, in previously undertaken studies. For

instance, Sims (1992) finds, using structural vector autoregression (SVAR) analy-

sis, that, after a monetary contraction, prices increase. Further, Eichenbaum and

Evans (1995) and Grilli and Roubini (1996) find that exchange rates react with

too long a delay relative to predictions of mainstream economic theory. Forni

and Gambetti (2010) uses factor methods, which enable the researcher to handle

a large amount of information and therefore avoid an important limitation of

SVAR models known as non-fundamentalness. The puzzles are thereby resolved

in the sense that the empirical results of Forni and Gambetti (2010) concur with

mainstream theory.

A fourth is risk management and/or portfolio optimisation. A good example

is Fan et al. (2013) wherein the primary aim is estimation of the covariance
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matrix of an observed high-dimensional time series (e.g. of financial returns).

This is achieved by imposing a “low rank plus sparsity” assumption on the co-

variance matrix and then regularising only its sparse component. To this end,

the afore-mentioned factor model decomposition into common and idiosyncratic

components serves as an ideal tool since it embodies perfectly the conditional

sparsity structure that the authors seek. Indeed, Fan et al. (2013) makes the link

with factor models and deploys relevant methods to great effect in the first stage

of development of its so-called “Principal Orthogonal complEment Thresholding

(POET) estimator” (Fan et al., 2013, p.3).

We hope that the foregoing discussion delivers an adequate flavour not only of the

wide-ranging applicability of factor models but also their importance in various

empirical settings. The interested reader is once again referred to the afore-

mentioned surveys since they contain much additional background information.

Our focus, at this stage, turns to an additional source of our enthusiasm for factor

models. That is, the remarkable theoretical representation results that have been

established in the field. Before we discuss those, however, we clarify commonly-

used terminology and address the contemporary taxonomy of main types of factor

models.

1.1.3 Exact Static Models

The work of Spearman (1904) entails what may be classified in modern-day par-

lance as an exact (or strict) static factor model. Exact, since all co-movements

between observables are modelled via the factors alone, and static, since the model

is designed only to explain independent data. A typical formulation for say an r

factor model might be

xit =
r∑
j=1

λijfjt + ξit,

for, where f1t, ..., frt are referred to as the r common factors, ξ1t, ..., ξNt as the N

idiosyncratic components (with r � N), and where the factors and idiosyncratic

components are assumed mutually orthogonal. The structure is static since fac-

tors are loaded contemporaneously and there is no temporal correlation in either
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the factors or the idiosyncratic component. It is exact since the covariance of the

vector of idiosyncratic components (ξ1t, ..., ξNt)
′ at time t is a diagonal matrix.

Credit for development of estimation methods for such models by maximum like-

lihood (ML) is due to Jöreskog (1969) and Lawley and Maxwell (1962), and

by principal components analysis (PCA) to Tipping and Bishop (1999). These

contributions all represent very important milestones in the development of the

methodology for exact static factor models (and beyond). Nevertheless, the prac-

tical value of these models at least for present-day macroeconomics and finance is

limited due to the overly restrictive nature of the assumptions. A good reference

for examples of their use in social statistics is Bartholomew et al. (2011).

1.1.4 Exact Dynamic Models

With specific reference to stationary time series data, it is Geweke (1977) that is

attributed with outlining an exact dynamic factor model. Dynamics are typically

incorporated by allowing factors, and possibly also idiosyncratic components, to

follow autoregressive processes. Given their structure, these models may readily

be cast in state space form, and under Gaussianity, they lend themselves to

estimation via the Kalman filter and likelihood based methods – see, for instance,

Harvey (1990). Important contributions in time domain methods for estimation

of these models were made by Watson and Engle (1983) and Quah and Sargent

(1993), both of which make use of the expectation-maximisation (EM) algorithm.

Key frequency domain references for estimation of exact static factor models

include Geweke (1977) itself and Sargent and Sims (1977).

To illustrate the state space formulation, let us consider a model in which an

r-dimensional vector of factors ft follows a vector autoregression of order 1 – or

a VAR(1) – process as follows

xt = Λft + ξt

ft = Φft−1 + ut,

where Λ is an N × r matrix of loadings, ξt is an N -dimensional vector, Φ is an
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r × r matrix of autoregressive coefficients, and ut is a vector-valued white noise.

While this is clearly not the most general framework available, it constitutes a

reasonable way to introduce dynamics in the sense that (i) a VAR(p) model, for

p > 1, can always be re-expressed as a VAR(1) by stacking the lagged terms; and

(ii) the state equation can readily be augmented to incorporate dynamics in the

idiosyncratic component too. Indeed, Stock and Watson (1988) uses just such a

model to construct a coincident economic indicator for the US economy.

Nevertheless, we emphasise at this point that the covariance matrix of ξt remains

diagonal in this model and it therefore appears overly restrictive for modern

applications. The reason is that it forces all co-movements amongst the cross-

section to occur via the common factors alone.

1.1.5 Approximate Static Models

The next question is whether one could design models without the restriction that

features unique to a given cross-sectional unit are entirely uncorrelated with each

other. Of course, there is a clear problem of logic here, namely that we cannot al-

low “too much” correlation otherwise (as mentioned previously) any idiosyncracy

loses its meaning. Nevertheless, provided we place appropriate bounds on the

cross-sectional pervasiveness of idiosyncratic components, we can indeed develop

the theory for approximate static factor models (and subsequently also consider

extensions to the dynamic case).

If we were to provide an illustrative model specification here, it would be similar

to that presented under the previous category except (i) there would be no state

equation, and (ii) there would be no requirement for the covariance matrix of

ξt to be diagonal. An example of how identification may be carried out is as

follows. Let us define an N -dimensional vector χt = Λft to denote the common

component of xt. Suppose ψ
(N)
iχ denotes the i-th largest eigenvalue of the co-

variance matrix of χt and analogously ψ
(N)
iξ of ξt, where the superscripts simply

emphasise dependence of these quantities on N . Then, we could assume that (i)

limN→∞ ψ
(N)
rχ =∞; and (ii) there exists a finite positive constant M independent

of N such that ψ
(N)
1ξ < M . While this is a very intuitive method for disentan-

7



gling that which is common from that which is not, it is not the only way one

could define pervasiveness and lack thereof. See, for instance, Bai and Ng (2002)

and Fan et al. (2013), each of which frames constraints in ways that are subtly

different to the above.

As regards estimation, PCA is well-suited to the static approximate setting. This

is because PCA, an algebraic exercise, and factor analysis, a modelling exercise,

both decompose the covariance matrix of xt into the sum of a reduced rank matrix

and whatever else remains. Combining PCA and factor analysis just seems like

the natural thing to do. Key studies include Chamberlain and Rothschild (1983)

and Connor and Korajczyk (1986) which proposed use of PCA for approximate

static factor models, and Stock and Watson (2002a,b) and Bai and Ng (2002)

which find consistency and establish min(
√
N,
√
T ) rates for loadings and factor

estimators. Bai (2003) obtains asymptotic distributions.

1.1.6 Approximate Dynamic Models

The theory for a much less restrictive class of factor models is developed in Forni

et al. (2000), Forni and Lippi (2001), Forni et al. (2004), Forni and Lippi (2011)

and Hallin and Lippi (2013).2 These models (i) incorporate relaxations of or-

thogonality constraints on the idiosyncratic components, thereby allowing for the

unique features of observable time series to indeed be mildly correlated; and (ii)

incorporate dynamics, making them extremely well-suited for time series data.

The key supposition is that our factors ft are driven by a full-rank q-dimensional

innovation process say νt, where q ≤ r � N and . The vector νt is typically

interpreted as representing a set of mutually orthogonal standardised unobserved

primitive shocks whose effects are propagated dynamically through the economic

system and thereby responsible for the bulk of co-movements in macroeconomic

variables now and in the future. An illustrative model formulation in this setting

2An additional related reference is Forni et al. (2005) with uses a modified version of the
model in a forecasting context.
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yields a common component of the form

χit =

q∑
j=1

∞∑
s=1

Bij,sνj,t−s,

where the Bij,s terms, for 1 ≤ i ≤ N, 1 ≤ j ≤ q, quantify how the j-th shock

is loaded onto the i-th time series at the s-th lag. By admitting potentially an

infinite set of lags as above, we harbour an extremely flexible model structure.

The identification constraints alluded to in the previous section may be extended

into this setting, for example, by (i) ensuring divergence of the q-th largest eigen-

value of the N × N spectral density matrix of χt as N → ∞ for all frequencies;

and (ii) ensuring that the largest eigenvalue of the N×N spectral density matrix

of ξt is bounded from above uniformly with respect to the frequency.

It is worth emphasising that the approximate dynamic factor model is extremely

general. In stark contrast to the various formulations alluded to in the foregoing

paragraphs, the factor model decomposition discussed under this category is not

so much a statistical model as it is a canonical representation. Indeed, we refer

to Hallin and Lippi (2013, Theorem 1) which establishes that any second-order

stationary process has a representation identical to the approximate dynamic

factor model specification referred to above, a remarkable result.3 A clear im-

plication is that the approximate dynamic factor model encompasses all other

models discussed heretofore.

1.1.7 Approximate Dynamic Models - with Restrictions

Given the benefits of such a flexible model structure, one approach is for re-

searchers is to adopt a “holy grail” mindset and devote efforts purely into de-

veloping techniques suited to the approximate dynamic factor model discussed

above. For instance, since we can no longer use PCA (which is unable by itself

to handle dynamics) to estimate the model, Forni et al. (2000) proposes moving

3All that is needed is a ‘bounded complexity’ assumption that rules out the strange case of
an infinite number of common shocks. (Hallin et al., 2020, Footnote 9).
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to the frequency domain and using dynamic PCA (Brillinger, 1981, Chapter 9)

instead. The “holy grail” approach, however, is not without limitations.

First, any statistical techniques necessarily involve an increase in technical so-

phistication and so theoretical results in pursuit of an ideal may be hard to come

by (if not altogether impossible). For instance, frequency domain estimation is

itself a complex enough subject but were we to bring in additional objectives (e.g.

changepoint detection, missing data, hierarchical structures, etc.), the problem

could get very big, very fast.

Second, solutions found, however remarkable, may remain somewhat unsatisfac-

tory from an empirical perspective. For example, as phrased in Forni et al. (2015),

“[...] estimators [of Forni et al. (2000)] are two-sided filters whose performance at

the end of the observation period or for forecasting purposes is rather poor. No

such problem arises with estimators based on standard principal components”.

Third, it is unlikely that any technique (no matter how noble the author’s in-

tentions) will truly refrain from imposing any implicit or explicit additional con-

straints over and above what is needed for the barebones canonical representation

result. For example, dynamic PCA is based on a factorisation of spectral density

matrices. It follows that even the seminal work of Forni et al. (2000) needs to

add assumptions to ensure that all xt processes, for any possible size of cross-

section, admit spectral densities. In absence of this assumption, the estimators of

Forni et al. (2000) cannot be operationalised; but no such assumption is needed

for “Theorem 1” of Hallin and Lippi (2013). Nevertheless, as previously noted,

the Forni et al. (2000) approach is typically referred to as the “general...” or

“generalised dynamic factor model”.

Of course, we do not give up disheartened. Rather, we do the best we can. What

that means in practice is that we typically sacrifice some generality in pursuit of

advancing the state of the art. One approach is to assume that the space spanned

by the factors at any time t has a finite-dimension r as N tends to infinity. Under

this restriction, Forni et al. (2009) establishes that one can always re-express a

dynamic model, say where q shocks loaded with p lags, into static form akin to

that used by Stock and Watson (2005) and Bai and Ng (2007). The approach is
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very popular since it yields a a very tractable state space formulation in which the

measurement equation consists of a static approximate factor model characterised

by r = q(p+ 1) factors and the state equation comprises a vector autoregression.

We do not present illustrative equations at this stage since these will shortly

be laid out in Section 2.1 of the following chapter. For now, we note simply

the implication that several aforesaid techniques, e.g. PCA and Ordinary Least

Squares (OLS), become available once again. The Forni et al. (2009) approach is

sometimes referred to as the “restricted generalised dynamic factor model”.

Its popularity notwithstanding, the Forni et al. (2009) approach is by no means

a cure-all. The finite-dimension assumption can be restrictive since it rules out

certain (even quite elementary) factor loading patterns, examples of which can be

found in Forni and Lippi (2011, p.23) and Forni et al. (2015, p.360). Leveraging

the work of Anderson and Deistler (2008) on singular stationary processes with

a rational spectrum, the latter studies advocate a completely different approach.

That is, they show that under alternative assumptions, inter alia that the com-

mon component has a reduced-rank spectral density that exists and is rational,

one-sided estimators based on PCA in the frequency domain can be obtained even

when the space spanned by the common component is infinite-dimensional. See

also Forni et al. (2017) for a discussion of the asymptotics of estimators within

this setting. The Forni et al. (2015, 2017) approach is sometimes referred to as

the “unrestricted generalised dynamic factor model”.

This brings to a close our review of the salient features of the various models in

the literature on factor analysis for high-dimensional time series. We believe the

foregoing discussion will serve as adequate background for the terminology and

models to be encountered in the remainder of our work. We turn our attention

at this point to providing a description of associated statistical methods.

1.2 Synopsis of the Literature on Methods

In this section we provide an overview of key statistical methods for factor mod-

els for high-dimensional time series. As mentioned earlier, there exist studies
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in areas as wide-ranging as missing data, jagged-edge data, block structures,

non-stationarity, local stationarity, bootstrapping, high-frequency data, etc. We

confess that in a field so bountiful, there is truly too much to say and there

are too many to cite. For this reason, we limit our scope below purely to those

sub-areas most relevant to this thesis: estimation, changepoint-detection, and

determination of the number of factors.

1.2.1 Estimation

We touched upon key estimators at various places in Section 1.1 and aim to

avoid excessive repetition below. In general, though, estimation methods for

approximate dynamic factor models (with restrictions) could arguably, and at

least for the purpose of this thesis, be grouped into two broad categories. The first

of these categories is based on PCA and OLS estimation of vector autoregressions.

The second is based on quasi-maximum likelihood (QML) estimation. We survey

these two categories now.

1.2.1.1 PCA-based methods – Time Domain

Much of the literature in this area originated in the static approximate factor

model context. The initial focus on static models is understandable since PCA

(which targets the covariance matrix alone) overlooks serial correlation (which is

captured by the entire autocovariance sequence). Nevertheless, most asymptotic

results, such as the min(
√
N,
√
T ) consistency rate, carry through to extensions

which do allow for serial correlation in factors and/or idiosyncratic components.

As a result, the studies mentioned in Section 1.1.5 serve as extremely important

building blocks for the dynamic setting too.

The most popular way of incorporating dynamics (at least in the empirical liter-

ature) is through judicious use of the state space formulation espoused by Forni

et al. (2009).4 An extremely influential study is Doz et al. (2011) which proposes

4While other approaches based on eigen-analysis do exist, we do not dwell on them here.
See, for example, Lam et al. (2011) and Lam and Yao (2012), which exploit information in
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a two-step estimator, wherein the first step estimates the measurement equation

via PCA and the state equation via OLS.

For instance, say we have a model

xt = Λft + ξt

ft = Φft−1 + ut,

with suitable “mildness” assumptions on ξt. One can estimate the loadings and

the factors via the constrained optimisation problem

min
Λ, ft

1

NT

T∑
t=1

(xt − Λft)
′(xt − Λft),

s.t.
Λ′Λ

N
= Ir.

The need for a constraint occurs due to the rotational indeterminacy arising due

to the latency of the factors, and the constraint on the loadings presented above

is only one of several possible normalisations. Nevertheless, we do not dwell on

this point here. Rather, we note simply that the solution to the given problem is

simply f̂t = N−1Λ̂′xt where Λ̂ is the matrix of eigenvectors of the N ×N sample

covariance matrix T−1
∑T

1 xtx
′
t corresponding to its r largest eigenvalues. Given

f̂t, one can estimate the factor VAR using OLS.

1.2.1.2 PCA-based methods – Frequency Domain

Significant advances have also been made in the frequency domain. The advan-

tage of spectral methods is that our focus need not be limited to the static or

restricted settings and thus get us closer in spirit to the “holy grail” alluded

to earlier. Of course, the studies mentioned in Section 1.1.6 are forerunners of

research in this area, and the basic idea is as follows.

autocovariance matrices at non-zero lags (instead of just the covariance matrix as in PCA). In
these studies, common factors are specifically defined as being responsible for dynamic move-
ments in the observable time series, and to this extent, they also capture any serially correlated
features of the idiosyncratic components.
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Suppose we have a sequence of N × N autocovariance matrices denoted by

{Γx(h), h ∈ Z}. Even if the same-period correlation of two series is negligible,

the correlation could be still high at leads and lags. Ignoring this information,

with a blinkered focus on the covariance matrix Γx(0) alone, can lead to signifi-

cant losses in explanatory power. Dynamic PCA (Brillinger, 1981, Chapter 9) as

espoused inter alia by Forni et al. (2000) overcomes this shortcoming by relying

on the spectral density,

Gx(ω) =
1

2π

∞∑
h=−∞

Γx(h)e−iωh,

for ω ∈ [−π, π), which encapsulates information in the entire autocovariance

sequence. Analogous to conventional PCA, dynamic PCA is based on an eigen-

decomposition of a non-parametric estimator of Gx(ω). To estimate the common

component by this method, we retain the eigenvectors corresponding to the q

largest eigenvalues, carry out an inverse Fourier transform in order to obtain the

so-called first q dynamic principal components, and project the data on the first

q dynamic principal components to recover consistently the common component

of each series.

Before we move on, it is worth pausing briefly to note that non-parametric esti-

mation of the spectral density is not without its fair share of complexity. Indeed,

we recount here an interesting anecdote from Hallin et al. (2020). With reference

to the pioneering work of Forni et al. (2000), Hallin et al. (2020, p.11) concedes

“Actually, the consistency result there is based (Equation (5) on page 545) on a

wrong interpretation of a statement by Brockwell and Davis (Remark 1 of Section

10.4, page 353 of the 1991 edition). This was discovered several years later only

[with credit ascribed to Giovanni Motta]”.

As regards what the complexities are, we will in this thesis return to the issues

surrounding non-parametric spectral density estimation in Section 2.6 of the up-

coming chapter. For now, we note simply that a landmark study in the literature

on lag-window estimators is Wu and Zaffaroni (2018). In fact, the statement

quoted above from Hallin et al. (2020) goes on to add that the discovery of the

aforesaid error was direct motivation for the latter study.
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We wrap up our anecdote by considering what is the contribution of Wu and

Zaffaroni (2018). As summarised succinctly by Forni et al. (2017, p.75), “[Wu

and Zaffaroni (2018) establishes] that lag-window estimators of spectra and cross-

spectra, under quite general assumptions on the processes and the kernel, are

consistent, as T → ∞, uniformly with respect to the [frequency ω], with rate

T/(BT logBT ), where BT is the size of the lag window”. This result is referred

to by Hallin et al. (2020, p.11) as “[...] the mathematical cornerstone in the

asymptotic analysis of [Forni et al. (2017)]”. Indeed, just like Forni et al. (2017),

our Chapter 2 will also benefit from this seminal result.

Finally, we note the finding of an overall min
(√

N,
√
T/(BT logBT )

)
consistency

rate for dynamic PCA in this setting (Forni et al., 2017).

1.2.1.3 Likelihood-based methods - Time Domain

The second category of estimators we consider here are likelihood-based or QML

methods. Key studies in this context include Doz et al. (2012) and Barigozzi and

Luciani (2022).

As explained by Doz et al. (2012, p.1014), “[...] maximum likelihood estimation

is clearly more appealing than principal components not only because it may lead

to efficiency gains, but also, most importantly, because it provides a framework

for incorporating restrictions derived from economic theory in the model. [...]

For these reasons, establishing the properties of maximum likelihood estimators

for factor models in large panels of time series is a relevant task from both the

theory and applied point of view.”

Doz et al. (2012) relies on likelihood-based methods to estimate, in an exact

setting, a state space formulation of a dynamic factor model. In the spirit of

QML methods (White, 1982), the approach is to treat the exact factor model as

a mis-specified approximating model for the approximate (or generalised) case.

As regards computational methodology, Doz et al. (2012) leverages previous work

by Doz et al. (2011) wherein the second step (of the proposed two-step estimator)

estimates factors via the Kalman smoother. In particular, Doz et al. (2012) makes
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use of the EM algorithm of Dempster et al. (1977) whereby (i) initialisation takes

place via PCA and OLS as per the afore-mentioned first step in Doz et al. (2011);

(ii) the E step makes use of the Kalman smoother as per the second step in

Doz et al. (2011); and (iii) the M step estimates parameters via maximisation of

the expected log-likelihood (conditional on the output of the E step). The two

steps iterate until the algorithm terminates upon triggering a suitable convergence

criterion. Doz et al. (2012) establishes consistency-with-rates for the proposed

procedure.

Barigozzi and Luciani (2022) undertakes a meticulous scrutiny of the asymptotic

properties of the QML estimator implemented via the EM algorithm. It estab-

lishes a min
(√

N,
√
T
)

consistency rate (as well as other very interesting results

including asymptotic normality) for estimators of the common component.

1.2.1.4 Likelihood-based methods - Frequency Domain

We now turn to the frequency domain, and this is precisely where the literature

starts to thin. To the best of our knowledge, the only study that considers

the possibility of an EM algorithm in the frequency domain is Fiorentini et al.

(2018). Our impression of a lacuna in the literature is bolstered also by a reading

of Barigozzi and Luciani (2022, “Remark 4”) as well as the reasonably recent

survey by Doz and Fuleky (2020, p.62) wherein Fiorentini et al. (2018) is the

only study to be mentioned in this context.

Fiorentini et al. (2018) serves as a launch pad for our work in Chapter 2 in

the sense that we too consider a spectral EM algorithm, whereby the E step is

implemented via the Wiener-Kolmogorov (WK) smoother and the M step via

maximisation of the Whittle Likelihood. To avoid repetition, we postpone a

summary of the work of Fiorentini et al. (2018) and any associated references

to the main body of Chapter 2. For now, we note simply that Fiorentini et al.

(2018) does not consider the asymptotics of its proposed estimators, and that is

a task that we attempt to undertake.
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1.2.2 Changepoint Detection

This is another avenue of research within the factor models landscape where re-

search has mushroomed (particularly in the aftermath of the 2008 crisis). Once

again, it would be well beyond the scope of this review to comprehensively cover

this very interesting area. The reason is that structural instabilities may success-

fully be modelled in several different ways (e.g. Markov-switching, slowly-varying

loadings, etc.) which are not all relevant for this thesis.

In fact, it may surprise the reader that there have also been studies advocating

that standard estimators found in the literature are consistent even in the presence

of temporal instability. A case in point is the frequently-cited study by Stock and

Watson (2002a) in which it is argued (see “Section 3” therein) that the proposed

PCA estimators (which we already discussed above) are robust to stochastic drift

in the factor loadings provided this drift is not too large and not pervasive across

the cross-section – that is, if the instability is small enough and idiosyncratic

enough, it will simply be eliminated asymptotically, by averaging across series.

Let us turn to Bates et al. (2013) for an example of the argument. Consider

the temporally unstable static approximate single-factor model with one abrupt

changepoint κ,

xt = Λtft + et

Λt = Λ0 + ξt, where

ξt =

0, for t = 1, ..., κ

∆, for t = κ+ 1, ..., T.

Above, ∆ ∈ RN may be interpreted as a shift parameter. Let us also define ∆i as

the i-th element of vector ∆ for i = 1, ..., N . With such a model, we can clearly

treat the instability as just another additive error term which, under the right

conditions, can be appropriately dealt with. Indeed, under the assumption that

that |∆i| ≤M for some finite positive constant M that is independent of i for all

i = 1, ..., N , i.e. the instability is “small enough”, Bates et al. (2013) establishes
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that the standard PCA estimator is

Op

(
max

(
max

(
1√
N
,

1√
T

)
,
B/
√
N√

N

))
,

where B ∈ {1, ..., N} represents the number of series that undergo a break. It

follows that if we add the restriction that at most O(N1/2) series undergo a break,

i.e. the instability is “idiosyncratic enough”, we recover the standard consistency

rate from the literature. If the findings of Stock and Watson (2002a) and Bates

et al. (2013) are to be accepted, the implication is a serious one; that is, there is

no need to expend efforts undertaking research on temporal instabilities.

The obvious question is whether the type and magnitude of instability considered

by the above studies adequately captures what we observe in real-world scenarios.

The message from Bates et al. (2013, p.290) is “[...] that the principal components

estimator [is] robust to empirically relevant degrees of temporal instability in

the factor loadings, although the precise quantitative conclusions depend on the

assumed type of structural instability [...]”. This is where the debate arises.

Yamamoto (2016, p.81) disagrees:

...we find that a significant portion [around 80] of 132 U.S. macroe-

conomic time series have structural changes in their factor loadings.

Although traditional principal components provide eight or more fac-

tors, there are significantly fewer nonspurious factors.

As does Breitung and Eickmeier (2011, p.71):

...in empirical applications parameters may change dramatically due

to important economic events, such as the collapse of the Bretton

Woods system, or changes in the monetary policy regime, such as the

conduct of monetary policy in the 1980s in the US or the formation of

the European Monetary Union (EMU). There may also be more grad-

ual but nevertheless fundamental changes in economic structures that

may have led to significant changes in the comovements of variables,

such as those related to globalization and technological progress. The

common factors may become more (less) important for some of the
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variables and, therefore, the loading coefficients attached to the com-

mon factors are expected to become larger (smaller). If one is inter-

ested in estimating the common components or assessing the trans-

mission of common shocks to specific variables, ignoring structural

breaks may give misleading results.

Indeed, several authors choose to pursue research on structural breaks. Histori-

cally, key studies in the field include Breitung and Eickmeier (2011), Chen et al.

(2014), Cheng et al. (2016), Corradi and Swanson (2014), Han and Inoue (2014),

Yamamoto and Tanaka (2015), Baltagi et al. (2017), and Ma and Su (2018),

Barigozzi et al. (2018a) to name a few. However, all these studies consider the of-

fline setting. That is, their aim is an in-sample detection of breaks. Even though

these are not as relevant as the online case for our Chapter 3, we still glean a

simple but key insight from several of these studies. We describe this insight

next.

Specifically, we learn that a model with a single abrupt change in loadings at a

given date has a representation as a model with constant loadings but a larger set

of factors. To see this, we consider a one-factor model with a structural break.

xt =

λ1ft + et, t ≤ κ

λ2ft + et, t > κ

If we define

g1t =

ft, t ≤ κ

0, t > κ
and g2t =

0, t ≤ κ

ft, t > κ
,

we obtain xt = λ1g1t + λ2g2t + et, an equivalent stable model. This insight will

also underpin the procedure proposed in Chapter 3.

In contrast to the offline setting, the online case concerns the identification of

breaks immediately as new data become available to the researcher. There is

already a long tradition of literature (which originated outside time series) in the

univariate setting for both dependent and independent data. See, for instance,

Tartakovsky et al. (2014) for an overview. As regards time series, and specifi-
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cally in the context of high-dimensionality, it would appear that development of

detection methods for use with factor models would be a natural line of research.

To the best of our knowledge, however, the only study in this area so far is

Barigozzi and Trapani (2020). It proposes a test centred around the property

that a setup with an abrupt change in loadings (in a static approximate setting)

is indistinguishable from one where there is stability in loadings but an emergence

of a new factor (and simultaneous disappearance of an old). More formally, in an

r factor model, a sudden change in loadings would result in spiking behaviour by

the (r + 1)-th eigenvalue. This behaviour is exploited and a randomised testing

procedure (using rolling windows) is proposed in order to detect changepoints on

a real-time basis.

We provide a detailed review of the literature on sequential changepoint detection

in Section 3.2 below.

1.2.3 Determining Number of Factors

This is arguably the very first step in many applications involving factor analysis.

Key studies in this area are reviewed below.

The forerunner is Bai and Ng (2002), which considers the approximate static

setting. It considers the cross-sectional average of the estimated variance of the

idiosyncratic component which is clearly minimised when the number of factors

is chosen to be equal to the size of the panel N . In order to avoid this sort

of obvious overparametrisation, a penalty is introduced, and this gives rise to

a model selection criterion function that can be minimised in order to get a

consistent estimate of the number of factors. Alessi et al. (2010) proposes a

refinement to the Bai and Ng (2002) procedure by introducing into the penalty

function a new parameter in order to fine tune its penalising power. We also have

Hallin and Lĭska (2007) which proposes a criterion analogous to Alessi et al. (2010)

but in the frequency domain in order to the tackle the approximate dynamic

setting.

We note briefly that while Hallin and Lĭska (2007) mirrors the time domain work
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of Alessi et al. (2010) in the frequency domain, there was no other frequency

domain analogue to Bai and Ng (2002). Indeed, prior to Hallin and Lĭska (2007),

the main proposal that existed in the literature for the approximate dynamic

setting was simply a heuristic inspection-by-eye method put forward by Forni

et al. (2000).

Other approaches look at eigenvalues directly. For instance, Onatski (2009) de-

velops a test based on eigenvalues of the estimated spectral density matrix of

data. Its test statistic effectively measures the curvature of the frequency domain

scree slope Cattell (1966) at the “kink” under the alternative hypothesis. When

the alternative hypothesis is true, the curvature at the kink asymptotically goes

to infinity. In contrast, under the null, the curvature at the kink has a non-

degenerate limiting distribution that does not depend on the model parameters.

Ahn and Horenstein (2013) also attempts to mathematically formalise a search

for the aforesaid kink in the scree. It proposes an “Eigenvalue Ratio” (ER) es-

timator, which is obtained by maximising the ratio of two adjacent eigenvalues

arranged in descending order. Similarly, Onatski (2010) also proposed an estima-

tor, named the “Edge Distribution” (ED) estimator, which estimates the number

of factors using differenced eigenvalues. Both studies rely on interesting results

from random matrix theory. Ahn and Horenstein (2013) and Onatski (2010) are

based in the time domain and Onatski (2009) in the frequency domain.

The final study we mention to close our review of this area is Trapani (2018),

which proposes a randomised sequential procedure to estimate the number of

factors in a static approximate factor model. The work of Trapani (2018) is

based in the time domain. Of course, we return to this study in further detail

in Chapter 4 of this thesis. For now, we note simply that (to the best of our

knowledge) there is no study that mirrors the work of Trapani (2018) in the

frequency domain.
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“In 1666, when Newton

employed a prism to cast a

rainbow on the wall...”

– Brillinger (1993)

Chapter 2

Estimation via a Spectral EM

Algorithm

We develop a method to estimate an approximate dynamic factor model in which dy-

namics are exhibited in two ways: (i) factors follow an autoregression; and (ii) factors

are loaded with a lag in the measurement equation. Within this framework, we pro-

pose a spectral EM algorithm, whereby we derive the E and M step equations in the

frequency-domain. Following Fiorentini et al. (2018), our E step relies on the Wiener-

Kolmogorov smoother, the frequency-domain counterpart of the Kalman smoother, and

our M step is based on maximisation of the Whittle Likelihood with respect to the pa-

rameters of the model. Having outlined the E and M steps, we discuss initialisation of

our procedure using dynamic PCA as per Forni et al. (2000). By leveraging results on

lag-window estimators of spectral density by Wu and Zaffaroni (2018), we find consis-

tency of our estimator of the common component as N,T →∞. We find rates commen-

surate with the literature, e.g. Forni et al. (2017), of min{
√
N,
√
BT ,

√
T/(BT logBT )},

where BT is the size of the lag-window. Finally, we conduct simulations to find that our

procedure performs as expected. We believe that by establishing a frequency-domain

analogue to the EM algorithm of Doz et al. (2012) and Barigozzi and Luciani (2022), our

study helps advance the field on QML methods for estimation of approximate dynamic

factor models.
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2.1 Introduction

We have witnessed a widespread surge in availability of large datasets in recent

decades. Indeed, the catchphrase “big data” has firmly established its place

in our lexicon. In macroeconometrics, for instance, we often encounter datasets

involving high-dimensional time series; that is, with a large number of data points

(T ) on a large number of observable variables (N).

Dynamic factor models have garnered a lot of interest in this context. See, for

instance, the survey in Stock and Watson (2016), and more recently, Doz and

Fuleky (2020), as well as the references in each of these studies. A primary reason

for the popularity of dynamic factor models is that they allow us to account for

co-movements over time between large numbers of observable time series very

parsimoniously. That is, through a small number (r) of latent factors thought to

account for commonalities between the N time series. Any remaining movements

that are unique to an individual series are modelled by way of an idiosyncratic

component. The precise specifications of models deployed in practice vary in

sophistication but, by holding r � N , all specifications seek to exploit the same

central feature of dynamic factor models – a reduction in dimensionality. This

gives empiricists a very convenient low-dimensional characterisation of economy-

wide fluctuations, one that economic analysts and policy-makers can subsequently

focus on.

Our study concerns estimation of the latent factors, common components, and

parameters of dynamic factor models.1 Specifically, we consider a model in which

anN -dimensional vector of zero-mean weakly stationary time series xt is driven by

an r-dimensional vector of factors ft and N -dimensional idiosyncratic component

ξt as follows

xt = C(L)ft + ξt,

1We note that we are not concerned, however, with estimation of exactly how many latent
factors there are, which we assume throughout to be a priori known. Studies on estimation
of the number of factors by themselves constitute an important yet distinct branch of the
literature. See, for instance, Bai and Ng (2002), Hallin and Lĭska (2007), Onatski (2009), Alessi
et al. (2010), Lam and Yao (2012), Ahn and Horenstein (2013), and Trapani (2018).
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for t = 1, ..., T . In this so-called measurement equation, C(L) is a one-sided N×r
lag polynomial that allows lagged ft to impact xt. This is one source of dynamics.

Further, we postulate an autoregressive law of motion for the factors via A(L), a

one-sided r × r lag polynomial. Our second equation is

A(L)ft = ut

for t = 1, ..., T , and for some r-dimensional vector of innovations ut. This con-

stitutes a second source of dynamics. The idiosyncratic ξit’s are permitted to be

mildly cross-sectionally correlated and so the model has an approximate rather

than an exact factor structure.2

A model such as ours is what is referred to in Stock and Watson (2016) as a

dynamic factor model in dynamic form, that is, with reference to the fact that

factors are loaded with lags in the measurement equation. Under the assumption

that C(L) is of finite degree, it is also possible to re-express the model in static

form. That is, one could stack the lags of dynamically loaded factors ft to form a

broader set (with cardinality no smaller than r) of statically loaded factors, say

gt, appearing contemporaneously in the measurement equation.3

As an example, suppose we have a single factor ft loaded with a single lag along

with an autoregression for the factors. Then, we may re-express the dynamic

form of the model

xt = λ0ft + λ1ft−1 + ξt, and

ft = α1ft−1 + ut,

in static form by defining gt = (ft, ft−1)′, Λ = (λ0 λ1), A =

[
α1 0

1 0

]
, and

2See Assumption A6 for our specific characterisation of mildness.
3The finite degree condition on C(L) implies that there exists a gt with finite dimension.
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ηt =
(

1 0
)′
ut, whereby it follows that

xt = Λgt + ξt =
[
λ0 λ1

] [ ft

ft−1

]
+ ξt, and

gt = Agt−1 + ηt =

[
α1 0

1 0

][
ft−1

ft−2

]
+

[
1

0

]
ut,

for t = 1, ..., T . Their equivalence notwithstanding, these two distinct forms of

dynamic factor models are typically estimated using distinct estimation method-

ologies. Indeed, the static form is more suited to estimation in the time-domain,

and the dynamic form to estimation in the frequency-domain.

In the time-domain, the most popular estimation methodologies for approximate

dynamic factor models can potentially be grouped into two broad categories.

The first of these is based on PCA combined with OLS estimation of vector

autoregressions (see, for example, Bai and Ng, 2006, 2007; Forni et al., 2009). The

second is based on QML estimation typically implemented via the EM algorithm

jointly with the Kalman smoother (see, for example, Barigozzi and Luciani, 2022;

Doz et al., 2012). Both categories have been extensively studied. One of the key

results in the time-domain literature assuming the existence of a static form of

the model is the finding of min(
√
N,
√
T ) consistency for the estimator of the

common component. See Bai (2003, Theorem 3) for PCA and Barigozzi and

Luciani (2022, Theorem 1) for QML.

As regards the frequency-domain, the first of the above categories has certainly

been well-studied. Indeed, conventional or static PCA, which approximates the

sample covariance of xt with a matrix of reduced rank, was famously generalised

to the frequency domain by Brillinger (1981, Chapter 9). The procedure referred

to as dynamic PCA approximates the estimated spectrum of xt with a matrix of

reduced rank. The method was popularised for use with approximate dynamic

factor models with finite-dimensional factor spaces by Favero et al. (2005); Forni

et al. (2000, 2004, 2005) and for infinite-dimensional factor spaces by Forni et al.

(2017).

Clearly, the option to use dynamic PCA depends on first having a consistent
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estimator of the spectrum. For this reason, it is worth nothing also at this stage

the seminal result of Wu and Zaffaroni (2018) which establishes that lag-window

estimators of spectra, under quite general restrictions, are consistent as T →∞,

uniformly with respect to the frequency, with rate min(
√
T/(BT logBT )), where

BT is the size of the lag-window. The latter result is leveraged for use with

approximate dynamic factor models with infinite-dimensional factor spaces by

Forni et al. (2017) which finds an (N, T →∞)-consistency rate for its estimator of

the common component of min(
√
N,
√
T/(BT logBT )) (see Equation 1.7 therein).

We turn once again to the second category of estimators and the question of

whether one could develop a frequency-domain procedure for QML via the EM

algorithm analogous to the time-domain counterpart considered in Doz et al.

(2012) and Barigozzi and Luciani (2022). To the best of our knowledge, the only

paper to consider such a procedure thus far is Fiorentini et al. (2018), which out-

lines a spectral EM algorithm. Following the latter, we too consider a spectral

EM algorithm whereby (i) in the E step, factors are estimated by means of the

Weiner-Kolmogorov (WK) smoother, which is the frequency-domain counterpart

of the Kalman smoother (Hannan, 1970, Chapter III.7); and (ii) in the M step,

parameters are estimated by maximisation of the Whittle frequency-domain ap-

proximation of the likelihood (Geweke and Singleton, 1981; Sargent and Sims,

1977).

As such, Fiorentini et al. (2018) provides an excellent starting point for our study.

The key focus of that paper, however, is different to ours. Indeed, the main aim of

Fiorentini et al. (2018) is to address estimation of models in which factors follow

autoregressive moving-average (ARMA) processes as opposed to pure autoregres-

sive (AR) processes as used in much of the literature (see, for example, Doz et al.,

2012). To this end, the authors outline a spectral EM algorithm for an exact dy-

namic factor model with a single common factor following an ARMA process,

leaving approximate dynamic factor models with multiple factors for future re-

search. After the authors lay out the algorithm, their focus shifts to speeding up

computation by developing an iterated indirect inference procedure based on a

sequence of auxiliary OLS regressions. Finally, the authors conduct an empirical

study of co-movements in US sectoral employment indicators following Quah and
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Sargent (1993). Notably, the authors do not develop any asymptotic theory for

their proposed procedure.

Our study aims to extend the groundwork laid out by Fiorentini et al. (2018)

by developing our own spectral EM algorithm and establishing its asymptotic

properties as N, T → ∞. Unlike Fiorentini et al. (2018), however, we do not

consider factor processes with moving-average (MA) components for the moment.

Instead, we consider the dynamic form of the (restricted) approximate dynamic

r-factor model as alluded to earlier in this introduction. Given this setup, we

pursue the following avenues of research:

(i) Assuming parameters are known, we outline the E step. We then establish√
N -consistency for factors estimated via the WK smoother pointwise in t

for t = 1, ..., T (see Theorem 2.1 below);

(ii) Assuming factors are known, we outline the M step. We then establish√
T -consistency for loadings estimators estimated via maximisation of the

Whittle likelihood for any given N (see Proposition 2.4 below);

(iii) We propose the use of dynamic PCA for initialisation of our procedure and

discuss practical concerns behind non-parametric estimation of the spectral

density matrix using lag-window estimators. We leverage the result from

Wu and Zaffaroni (2018) to find a consistency rate of

min(
√
N,
√
B2κ
T ,
√
T/(BT logBT ))

as N, T →∞, where BT is the size of the lag window and κ is a parameter4

summarising the smoothness of the kernel used (see Proposition 2.5 below);

(iv) We combine all our findings to obtain an overall consistency rate of

min(
√
N,
√
BT ,

√
T/(BT logBT ))

as N, T → ∞ for our spectral EM algorithm estimator of the common

component (see Proposition 2.9 below).

4It is referred to as the Parzen exponent. To fix ideas, we note that κ is simply equal to 1
for the very commonly-used Bartlett kernel.
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(v) Finally, we conduct a Monte Carlo study to numerically validate our findings

and to also compare our common component estimator with other popu-

lar time- and frequency-domain alternatives. We find that our procedure

performs very much as expected (see Section 2.9 below).

The remainder of this study is organised as follows. In Sections 2.2 and 2.3,

we lay out much of our modelling structure and notation. In Section 2.4, we

work towards building an E step via the WK smoother, and in Section 2.5, an

M step via the Whittle likelihood. In Section 2.6, we consider initialisation via

dynamic PCA. In Section 2.7, we outline the detailed steps for implementation

of a spectral EM procedure. In Section 2.8, we summarise asymptotic properties.

In Section 2.9, we present a numerical illustration of the procedure and conclude

with a Monte Carlo study.

Our assumptions are laid out throughout the study as and when they are needed,

and new notation is clarified as and when it appears. Proofs are contained in the

end-of-chapter appendix.

2.2 Data-Generating Process

We begin with a detailed description of our assumptions on the data-generating

process. We model X, an N × T rectangular array of observations, as follows.

Specification

Assumption A1. There exists a real-valued double-indexed stochastic process of

the form Ξ = {xit ∈ L2(Ω,A,P)|i ∈ N, t ∈ Z} where i denotes the cross-sectional

index and t the temporal index and (Ω,A,P) is a given probability space. For any

{xt = (x1t, x2t, ..., xNt)
′|t ∈ Z}, N ∈ N, an N-dimensional sub-process of Ξ, we

assume xt is zero mean with finite (and non-degenerate) second-order moments

Γx(h) = E[xtx
′
t−h], h ∈ Z. We assume X is a finite realisation of Ξ.
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We impose a decomposition of the form

xt = χt + ζt, t ∈ Z

where our observables are expressed as the sum of two unobserved unique and

mutually orthogonal components, a common component χt and an idiosyncratic

component ζt. In particular, we have the following assumption.

Assumption A2. For any N ∈ N, there exist

(a) a nested5 N-dimensional zero mean process φt = (φ1t, φ2t, ..., φNt)
′, t ∈ Z;

(b) an r-dimensional zero mean process ψt = (ψ1t, ψ2t, ..., ψrt)
′, t ∈ Z, for some

finite positive integer r;

(c) an r-dimensional process ft = (f1t, ..., frt)
′, t ∈ Z ;

(d) filters ci,·k(L) = ci,0k+ci,1kL with finite coefficients, and a nested N×r matrix

polynomial, C(L), whose (i, k)th entry is ci,·k(L), i = 1, ...N, k = 1, ..., r;

(e) filters βis(L) with coefficients βis,h, where
∑∞

s=1

∑∞
h=0 β

2
is,h <∞ for all i ∈ N,

and a nested N × N matrix polynomial B(L) whose (i, s)th entry is βis(L),

i, s = 1, ...N, h = 0, 1, ...,∞;

(f) finite coefficients akl, and an r × r matrix polynomial A(L) whose (k, l)th

entry is given by the (k, l)th entry of Ir minus aklL, k, l = 1, .., r;

(g) an r × r matrix U ;

such that

(i) the vector (ψ′t,φ
′
t)
′, t ∈ Z is independent and identically distributed (iid) and

orthonormal; in particular, var(ψkt) = var(φit) = 1, and cov(ψkt, φi(t−h)) =

0, for k = 1, .., r, i = 1, ...N, h ∈ Z;

(ii) all solutions of det(A(z)) = 0, z ∈ C, lie outside the unit ball;

(iii) UE[ψtψ
′
t]U
′ is some finite positive definite r × r matrix; and

5We use the word “nested” with reference to an increase in N .

29



(iv) for t ∈ Z,

χt = C(L)ft;

A(L)ft = Uψt;

ζt = B(L)φt.

We thus have xt = C(L)ft+ζt, an approximate dynamic r-factor model, where the

dynamic factors ft are loaded contemporaneously as well as with a single lag, and

ζt is allowed to be cross-sectionally and serially correlated. Under Assumptions

A1 and A2, xt is stationary. Denoting υt = Uψt, we also have that the dynamic

factors are zero mean and stationary with finite (and non-degenerate) second-

order moments and follow a VAR(1) structure A(L)ft = υt.

Identification Restrictions

To disentangle the common and idiosyncratic components (as N → ∞), we im-

pose conditions characterising their pervasiveness and non-pervasiveness respec-

tively.

Let Gχ(ω) and Gζ(ω), for almost all ω ∈ [0, 1), be the N × N spectral density

matrices of χt and ζt.
6 Let λi{Gχ(ω)} and λi{Gζ(ω)} denote their ith largest

eigenvalues, i = 1, ..., N . We refer to these as dynamic eigenvalues and note that

they are real (and positive) since spectral density matrices are Hermitian.

One approach would be, in the spirit of Forni et al. (2000), to assume that

λr{Gχ(ω)}/N is bounded from above and below uniformly with respect to the

frequency as N →∞ . Further, that λ1{Gζ(ω)} is bounded from above uniformly

with respect to the frequency for any N . This approach permits us indeed to

disentangle χt from ζt (as N →∞). However, it remains unspecified whether the

6We use complex exponentials of the form ei2πω = cos(2πω) + i sin(2πω) where i (in this
context) denotes the imaginary unit. Since our complex exponentials are normalised to have
period 1, we only consider ω ∈ [0, 1). Further, spectral densities are defined up to a set of fre-
quency values contained in a Borel set with Lebesgue measure zero. Strictly speaking, “almost
all” and/or “almost everywhere” terminology should accompany statements involving spectral
densities. The terminology has no practical implications, however, and following Barigozzi et al.
(2018b, Footnote 4), we omit it in this study.
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divergence of dynamic eigenvalues of χt arises due to the asymptotic properties

of the loadings or of the factors (as N → ∞). If the goal were to identify the

factors and loadings separately, one would require additional assumptions.

Thus, we impose conditions right at the outset on the transfer function associated

with the filter C(L). Let a star superscript denote a complex conjugate transpose.

By restricting convergence of C∗(e−i2πω)C(e−i2πω)/N as N → ∞ to an r × r

identity matrix for any ω ∈ [0, 1), we can guarantee divergence of the r largest

dynamic eigenvalues of χt. We state the assumption and then show this property

below.

Let the ordered first r complex orthogonal unit-modulus eigenvectors of Gf (ω) be

denoted by the N × r matrix Pf (ω). We denote the corresponding r× r diagonal

matrix of eigenvalues as Λf (ω).

Assumption A3. For ω ∈ [0, 1),

(i) Gf (ω) has distinct eigenvalues; and

(ii) it holds that

lim
N→∞

sup
ω

∥∥C∗(e−i2πω)C(e−i2πω)/N − Ir
∥∥ = 0,

where Ir is the r × r identity matrix.

Below, we state a result that follows from the preceding assumptions. It will be

useful for various proofs. The result confirms asymptotic divergence linearly with

N , and separation of the r largest dynamic eigenvalues of the common component

as N →∞.

31



Proposition 2.1. Given Assumptions A1-A3, there exist, for i = 1, ..., r, finite

constants Mχ
i and M

χ

i independent of ω such that

0 < Mχ
r ≤

λr{Gχ(ω)}
N

≤M
χ

r

< Mχ
r−1 ≤

λr−1{Gχ(ω)}
N

≤M
χ

r−1 <

...

< Mχ
1 ≤

λ1{Gχ(ω)}
N

≤M
χ

1 ,

for each i = 1, ..., r.

Proof. See Appendix 2.10.1.

The advantage of our approach is that, in conjunction with Assumption A4 below,

Assumption A3 permits identification of the dynamic factors and the loadings up

to some matrix lag polynomial with an associated transfer function that is an

r × r complex diagonal matrix with unit-modulus diagonal entries, say Q(ω).

The time domain analogue is identification up to some diagonal matrix Q where

the diagonal entries are ±1. Further, by also enforcing in Assumption A5 that

the first row of C(e−i2πω) is positive and real, we can achieve full identification.

The time domain analogue is to assume that the first row of loadings is positive.

These identification assumptions are quite reasonable since the dynamic factors

do not necessarily have any particular economic meaning by themselves.

Let us define the ordered first r complex orthogonal unit-modulus eigenvectors of

Gχ(ω) as Pχ(ω), an N × r matrix. We denote the corresponding r× r eigenvalue

matrix as Λχ(ω). Let us also define zχ(ω) as the discrete-time Fourier transform

(DTFT) of χt. That is,

zχ(ω) =
∞∑

t=−∞

χte
−i2πωt, ω ∈ [0, 1).

Similarly, let zf (ω) be the DTFT of ft.
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Assumption A4. For any ω ∈ [0, 1), it holds that

zf (ω) = N−1/2P ∗χ(ω)zχ(ω).

Given Assumption A4, we have a fixed structure for Gf (ω):

Gf (ω) = N−1P ∗χ(ω)Gχ(ω)Pχ(ω)

= N−1P ∗χ(ω)Pχ(ω)Λχ(ω)P ∗χ(ω)Pχ(ω)

= N−1Λχ(ω).

So Gf (ω) is a diagonal matrix with positive and real entries on the diagonal and

the entries are distinct by part (i) of Assumption A3.7 Moreover, since

Gχ(ω) = C(e−i2πω)Gf (ω)C∗(e−i2πω)

= C(e−i2πω)N−1/2Λχ(ω)N−1/2C∗(e−i2πω)

= Pχ(ω)Λχ(ω)P ∗χ(ω),

we have that C(e−i2πω) = N1/2Pχ(ω). This also means that for ω ∈ [0, 1) and for

any N ,

sup
w
‖C∗(e−i2πω)C(e−i2πω)/N − Ir‖ = 0,

which satisfies but also strengthens part (ii) of Assumption A3. That is, the

above property arises now for any N , which is achievable since we defined the

factors and the loadings in a manner such that they change with N .

To summarise, we still have the properties of divergence (as N → ∞) and sep-

aration of the r non-zero dynamic eigenvalues of χt. In addition, we are able

to identify the DTFT of the dynamic factors up to a complex diagonal matrix

with unit-modulus entries. The next assumption permits full identification of the

DTFT of the dynamic factors.8

The final remaining source of indeterminacy is that dynamic eigenvectors are

7In fact, with Assumption A4 in place, we could have merely asked for the diagonal entries
of Gf (ω) to be distinct in part (i) of Assumption A3.

8See, for instance, Hörmann et al. (2015), which considers Dynamic Functional PCA.
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only defined up to post-multiplication by a complex diagonal matrix with unit-

modulus diagonal elements, Q(ω). Let [C(e−i2πω)]1k for k = 1, ..., r denote the

entries in the first row of C(e−i2πω). We choose to fix Q(ω) as follows.

Assumption A5. For any ω ∈ [0, 1), and for any N × r matrix of ordered

dynamic eigenvectors of χt, say Πχ(ω), there exist r×r complex diagonal matrices

with unit-modulus diagonal entries Q(ω), which depend on N and Pχ(ω), such

that

(i) C(e−i2πω) = N1/2Πχ(ω) = N1/2Pχ(ω)Q(ω); and

(ii) [C(e−i2πω)]1k ∈ R≥0 for k = 1, ..., r.

Given Assumption A5, we can find Πχ(ω) from Pχ(ω) by choosing a diagonal

matrix Q(ω), such that for any ω ∈ [0, 1),

diag (Q(ω)) =

(
[Pχ(ω)]11

|[Pχ(ω)]11|
, ...,

[Pχ(ω)]1r
|[Pχ(ω)]1r|

)
,

where the numerators are the complex conjugates and the denominators are the

moduli of the entries of the first row of any general N × r dynamic eigenvector

matrix Pχ(ω).9 The numerators ensure that the first row of N1/2Pχ(ω)Q(ω) will

be positive and real, while the denominators ensure that the diagonal entries of

Q(ω) are all unit-modulus. Specifically, the transformation is such that post-

multiplication by Q(ω) replaces each entry in the first row of Pχ(ω) with its own

modulus.

This completes our discussion of the common component. It remains now to en-

sure non-pervasiveness of the idiosyncratic component.

Assumption A6. There exists a finite positive integer Mζ such that for ω ∈
[0, 1), it holds that 0 < supω λ1{Gζ(ω)} ≤Mζ for all N ∈ N.

Let us define gζ,is(ω) as the (i, s)th element of Gζ(ω). The bound on the largest

dynamic eigenvalue of the idiosyncratic component in A6 means that the average

9In addition to the definition stated above, we also set to zero any element of Q(ω) for which
the divisor is zero.
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column sum of the spectral density of ζt is bounded. Indeed,

N−1

N∑
s=1

N∑
i=1

gζ,is(ω) = N−1ι′Gζ(ω)ι ≤ λ1{Gζ(ω)} ≤Mζ <∞

where ι is an N -dimensional vector of ones. It is in this sense that we limit

cross-sectional and serial correlation in ζt to be “mild” and thereby characterise

the idiosyncratic component to be non-pervasive.

Remark 1. Approximating Model. Assumptions A1-A6 are sufficiently

general to model cases of interest (say, just by allowing for a higher number of lags

in the filter C(L)). See for example Stock and Watson (2005) and Bai and Wang

(2015). However, we proceed with what we refer to as an “approximating” model,

which is much simpler in respect of the stochastic behaviour of the idiosyncratic

component. Our approach is similar, for instance, to that in Doz et al. (2011).

The motivation is that an exact factor structure, ruling out any cross-sectional or

serial correlation in the idiosyncratic component, greatly facilitates derivations of

equations relating to our proposed estimators. Further, Gaussianity permits us

to use likelihood-based methods. We make similar assumptions on the stochastic

disturbance term in the factor equation. We will find consistency of our quasi-

maximum likelihood estimators despite these forms of possible mis-specification.

We outline our approximating model in detail below. 4

2.3 The Approximating Model

We specify our exact dynamic r-factor model by a system of stochastic difference

equations,

xt = c01f1,t + c11f1,t−1 + ...+ c0rfr,t + c1rfr,t−1 + ξt

f1,t = a11f1,t−1 + ...+ a1rfr,t−1 + u1,t

...

fr,t = ar1f1,t−1 + ...+ arrfr,t−1 + ur,t
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where

xt is an N × 1 vector of observables;

fk,t for every k ∈ {1, ..., r} is a scalar unobserved common factor, and a

vector of all r factors is denoted by ft = (f1,t, ..., fr,t)
′;

c0k and c1k are N × 1 vectors of loadings corresponding to the kth factor

and the lagged kth factor respectively; and

akl for every k, l ∈ {1, ..., r} is a scalar coefficient on the lth lagged factor in

the autoregressive equation for the kth factor.

Thus, our approximating model is identical to the one outlined in Assumption A2

with the notable exception of the two stochastic disturbance terms in the mod-

elling equations. We assume a much simpler covariance structure for these terms

as outlined in our assumption below. Further, we assume that the statement of

Assumption A6 applies also to ξt.

Assumption A7. In the “approximating model” defined above,

(i) ξt is N × 1 and ξt ∼ iid N(0,Γξ) where Γξ is a diagonal matrix; moreover,

ξt is such that diag(Γξ) = diag(Γζ);

(ii) uk,t ∼ N(0, γk), and uk,t is independent of ul,s for any k 6= l or t 6= s.

Alternatively, we have that ut = (u1,t, ..., ur,t)
′ ∼ iid N(0,Γu) for all t where

Γu = diag({γ1, ..., γk}); moreover, ut is such that diag(Γu) = diag(Γυ); and

(iii) there exists a finite positive integer Mξ, such that for ω ∈ [0, 1), it holds

that 0 < supω λ1{Gξ(ω)} ≤Mξ for all N ∈ N.

Concise Specification

We can also express the approximating model using lag polynomial notation. For

k = 1, ...r, we have the filter

ck(L) = c0k + c1kL.
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This is a lag polynomial of order 1 with dimension N × 1.

Moreover, for k, l = 1, ..., r, we have the filter

akl(L) = aklL

which is a one-dimensional lag polynomial of order 1.

We can then construct the N × r matrix

C(L) = [c1(L) ... cr(L)]

and the r × r matrix

A(L) = Ir −


a11(L) ... a1r(L)

...
. . .

...

ar1(L) ... arr(L)



=


1− a11(L) ... −a1r(L)

...
. . .

...

−ar1(L) ... 1− arr(L)


so that our approximating model may be more concisely expressed as follows:

xt = C(L)ft + ξt (2.1)

A(L)ft = ut. (2.2)

We gather all unknown parameters in the vector

θ = (c′01, ..., c
′
0r, c

′
11, ..., c

′
1r, a11, ..., arr, diag(Γξ)

′, diag(Γu)′)′.

Spectral Densities

For a given h, we define Γξ(h) and Γu(h), h = −∞, ..., 0, ...,∞, as the lag h

autocovariance matrices of the stochastic disturbance terms in our approximating
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model (where Γξ(0) = Γξ and Γu(0) = Γu). The corresponding spectral density

matrices are obtained as the DTFTs of the respective autocovariance matrices.

Specifically, for any ω ∈ [0, 1),

Gξ(ω) =
∞∑

h=−∞

Γξ(h)e−i2πωh; and

Gu(ω) =
∞∑

h=−∞

Γu(h)e−i2πωh.

Given the simplified structure of the stochastic disturbance terms in our approx-

imating model, we have that for any ω ∈ [0, 1),

Gξ(ω) = Γξ; and

Gu(ω) = Γu.

Discrete Fourier Transforms (DFTs)

Given X, our N × T rectangular array of observations, we define

zx
j =

1√
T

T∑
t=1

xte
−i2πωjt; and

zf
j =

1√
T

T∑
t=1

fte
−i2πωjt,

where the discretised frequency ωj is defined as a grid of equally spaced values of

ω ∈ [0, 1) specifically of the form ωj = j/T for j = 0, ..., T −1. These are referred

to as “Fourier” (or “fundamental”) frequencies.

Then, by the linearity property of the DFT and the convolution theorem, we have

that

zξj = zx
j − C(e−i2πωj)zf

j ; and

zu
j = A(e−i2πωj)zf

j
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where the matrices containing the transfer functions associated with the linear

filters are given by

C(e−i2πωj) =
[
c1(e−i2πωj) ... cr(e

−i2πωj)
]

and

A(e−i2πωj) =


1− a11(e−i2πωj) ... −a1r(e

−i2πωj)
...

. . .
...

−ar1(e−i2πωj) ... 1− arr(e−i2πωj)


for any ωj = j/T for j = 0, ..., T − 1.

Filtrations

We define the information sets

Dt = (x1, ...,xt), and

Ft = (x1, ...,xt, f1, ..., ft)

for any t ∈ {1, ..., T}.

2.4 Towards the E Step:

WK Smoother (known parameters, fixed T )

In this section, we focus on developing the theoretical foundations for extraction

of the factors (in preparation for our discussion of the E step). In particular, we

present an expression for the conditional expectation of the DFT of the factors

given (i) assumed values for the parameters θ, and (ii) the observed series. This

is nothing but the WK smoother.10 Once we extract the DFT of the factors in

this way, we can easily return to the time domain using the inverse DFT. The

10Further, we present expressions for two additional conditional expectation terms involving
the second-order structure of the factors.
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key results of this section are Theorem 2.1 and its corollary which pertain to
√
N

consistency of the extracted signal assuming known parameters.

2.4.1 Computation of Eθ[z
f
j|DT ]

2.4.1.1 Wiener-Kolmogorov Smoother

Wiener-Kolmogorov theory of signal extraction indicates that optimal estimates

of the latent factors are provided by conditional expectations that are formed

given the observed data and characteristics of the models that are presumed to

have generated them. A foundational reference is, of course, Wiener (1950). The

WK smoother is nothing but the frequency-domain counterpart of the Kalman

smoother (Hannan, 1970, Chapter III.7). A detailed summary of WK smoothing

for multivariate time series with time-invariant state-space structure is Gómez

(2007) which establishes equivalence between Wiener-Kolmogorov and Kalman

methods within this setting. Finally, a specific application of the WK smoother to

dynamic factor models similar to the one considered in our own study is Fiorentini

et al. (2018).

For a given j, we obtain the conditional expectation of zf
j by the WK smoother

as follows:

zfW

j = Eθ
[
zf
j |DT

]
= Gf (ωj)C

∗(e−i2πωj)G−1
x (ωj)z

x
j

where the Gx(ωj) is the spectral density of the observed series, and

Gf (ωj)C
∗(e−i2πωj)G−1

x (ωj)

is the transfer function of the WK smoother.

We note that the spectral density of the factors in our model is given by

Gf (ωj) = [A−1(e−i2πωj)]Γu[A−1(e−i2πωj)]∗

since we assume the factors follow a VAR(1) process A(L)ft = ut. This is in fact

a diagonal matrix under Assumptions A1-A4.
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2.4.1.2 Woodbury Formula

Given our approximating model, by the Woodbury formula, we have that

G−1
x (ωj) = G−1

ξ (ωj)−G−1
ξ (ωj)C(e−i2πωj)W (ωj)C

∗(e−i2πωj)G−1
ξ (ωj),

where W (ωj) = [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1.

Thus,

C∗(e−i2πωj)G−1
x (ωj) = C∗(e−i2πωj)G−1

ξ (ωj)− C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)

× [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1C∗(e−i2πωj)G−1
ξ (ωj)

=

(
[G−1

f (ωj) + C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]− C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)

)
× [G−1

f (ωj) + C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1C∗(e−i2πωj)G−1

ξ (ωj)

= G−1
f (ωj)W (ωj)C

∗(e−i2πωj)G−1
ξ (ωj)

so that the transfer function of the WK smoother may be written in terms of

W (ωj). That is,

Gf (ωj)C
∗(e−i2πωj)G−1

x (ωj) = W (ωj)C
∗(e−i2πωj)G−1

ξ (ωj)

Correspondingly, for a given j, the WK smoother becomes

zfW

j = W (ωj)C
∗(e−i2πωj)G−1

ξ (ωj)z
x
j

where W (ωj) = [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1.

2.4.2 Computation of Eθ[z
f
jz

f∗

j |DT ]

We note that, for a given j,

Eθ
[
zf
jz

f∗

j |DT

]
= zfW

j zfW
∗

j + Eθ
[(

zf
j − zfW

j

)(
zf
j − zfW

j

)∗
|DT

]
.
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We consider the first term in the above expression. Based on the definition of

the WK smoother, and noting the Hermitian nature of the relevant matrices, we

compute the first term as follows:

zfW

j zfW
∗

j = W (ωj)C
∗(e−i2πωj)G−1

ξ (ωj)z
x
j z

x∗

j G
−1
ξ (ωj)C(e−i2πωj)W (ωj).

As regards the second term, we use a textbook result on the conditional dis-

tribution of partitioned multivariate Gaussian random vectors. Simply stated,

assuming standard regularity conditions, if random vector y ∼ N(µ,Σy), where

y ∈ RN , its mean µ and covariance Σ can be partitioned according to

y =

(
ya

yb

)
, µ =

(
µa

µb

)
, Σ =

(
Σaa Σab

Σ′ab Σbb

)
,

then (ya|yb) ∼ N(µa|b,Σa|b) where

µa|b = µa + ΣabΣ
−1
bb (yb − µb); and

Σa|b = Σaa − ΣabΣ
−1
bb Σ′ab.

Σa|b is known as the Schur complement of matrix Σ with respect to block Σbb. If

ya ⊥ yb, then Σa|b = Σaa.

We carry this result to the frequency domain, let ya = (zf
j − zfW

j ) and yb = zx
j ,

and note that the cross spectral density of the factor estimation error and the

observables is zero by design. Then, our second term is just the spectral density

of the factor estimation error (ft − fWt ), which we denote by Ω(ωj). That is,

Ω(ωj) = Eθ[(z
f
j − zfW

j )(zf
j − zfW

j )∗].

Next, since the spectral density of the factors equals the sum of the spectral
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densities of the smoothed factors and of the factor estimation error, we have

Ω(ωj) = Eθ
[(

zf
j − zfW

j )(zf
j − zfW

j

)∗]
= Gf (ωj)−GfW (ωj)

= Gf (ωj)−Gf (ωj)C
∗(e−i2πωj)G−1

x (ωj)C(e−i2πωj)Gf (ωj).

Using the fact that Gf (ωj)C
∗(e−i2πωj)G−1

x (ωj) = W (ωj)C
∗(e−i2πωj)G−1

ξ (ωj), we

see that

Ω(ωj) = Gf (ωj)−W (ωj)C
∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)Gf (ωj)

= W (ωj)[W
−1(ωj)Gf (ωj)− C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)Gf (ωj)]

= W (ωj)[[G
−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]Gf (ωj)

− C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)Gf (ωj)]

= W (ωj).

Hence, our second term is W (ωj). We treat it as just another parameter.

To summarise, for a given j, we use the formula

Eθ[z
f
jz

f∗

j |DT ] = W (ωj)C
∗(e−i2πωj)G−1

ξ (ωj)z
x
j z

x∗

j G
−1
ξ (ωj)C(e−i2πωj)W (ωj) +W (ωj).

2.4.3 Computation of Eθ[z
f
jz

x∗

j |DT ]

We have, for a given j, that

Eθ[z
f
jz

x∗

j |DT ] = Eθ[z
f
j |DT ]zx∗

j = W (ωj)C
∗(e−i2πωj)G−1

ξ (ωj)z
x
j z

x∗

j .

2.4.4 Population Results for WK Smoother

We begin this section with a remark that clarifies our meaning of uniform con-

vergence with respect to frequencies.
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Remark 2. Uniformity. Say we have a sequence of r-dimensional vector-

valued random variables depending on N , denoted z
(N)
j , for j = 0, ..., T − 1. This

sequence is said to be Op(1) uniformly in j as N → ∞, if for any ε > 0, there

exists a finite positive constant Mε, independent of j, such that

lim
N→∞

Pr
(∥∥∥z(N)

j

∥∥∥ > ε
)
< Mε

for any j = 0, ..., T − 1. Indeed, since the constant Mε is independent of j, we

have specifically also that

lim
N→∞

max
0≤j≤T−1

Pr
(∥∥∥z(N)

j

∥∥∥ > ε
)
< Mε.

This version of uniformity (which places a bound on the maximum of the prob-

abilities) is weaker than the classical definition (in which the bound is on the

probability of the maximum). We use this approach following Hallin and Lĭska

(2007).

Analogously, we refer to a sequence z
(N)
j as being uniformly bounded in mean-

square with respect to j if, as N →∞, there exists a finite positive constant M ,

independent of j, such that

lim
N→∞

max
0≤j≤T−1

E

(∥∥∥z(N)
j

∥∥∥2
)
< M,

or equivalently,

max
0≤j≤T−1

E

(∥∥∥z(N)
j

∥∥∥2
)

= O(1).

4

Proposition 2.2. Under Assumptions A1-A7, and assuming parameters θ are

known, for any T ∈ N, it holds that as N →∞,

max
0≤j≤T−1

Eθ

(
N
∥∥∥zfW

j − zf
j

∥∥∥2
)

= O (1) .
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Proof. See Appendix 2.10.2.

For completeness, we also report below the implied result on convergence in prob-

ability. That is, the WK smoother is weakly consistent with rate
√
N uniformly

with respect to the frequencies.

Corollary. Under Assumptions A1-A7, and assuming parameters θ are known,

for any T ∈ N, it holds that as N →∞,

√
N
∥∥∥zfW

j − zf
j

∥∥∥ = Op(1)

uniformly (as defined in Remark 2) with respect to j, where j = 0, ..., T − 1.

Proof. The proof follows from an application of Chebyshev’s inequality.

It remains now to revert to the time domain. Given our frequency domain esti-

mator zfW

j , we define our time domain estimator of the factors as

fWt =
1√
T

T−1∑
j=0

zfW

j ei2πωjt

for t = 1, ..., T, where ωj = j/T for j = 0, ..., T − 1.

Theorem 2.1. Under Assumptions A1-A7, and assuming parameters θ are known,

for any T ∈ N and a given time period t, it holds that as N →∞,

Eθ
(
N
∥∥fWt − ft

∥∥2
)

= O(1)

pointwise with respect to t, where t = 1, ..., T .

Proof. See Appendix 2.10.3.

Corollary. Under Assumptions A1-A7, and assuming parameters θ are known,
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with some fixed T ∈ N, it holds that as N →∞,

√
N
∥∥fWt − ft

∥∥ = Op(1)

pointwise with respect to t, where t = 1, ..., T .

Proof. The proof follows from an application of Chebyshev’s inequality.

In other words, using the WK smoother, we can recover the factors consistently

with rate
√
N pointwise in t, for t = 1, ..., T . This rate is identical to that obtained

for equivalent time domain methods. For instance, Doz et al. (2011, Proposition

1) finds the same rate for the Kalman smoother.

Finally, we present for completeness some associated results on the second-order

terms too.

Proposition 2.3. Under Assumptions A1-A7, and assuming parameters θ are

known, for any T ∈ N, it holds that as N →∞,

(i) max
0≤j≤T−1

Eθ
(
N
∥∥Eθ[zf

jz
f∗
j |DT ]− zf

jz
f∗
j

∥∥2
)

= O (1); and

(ii) max
0≤j≤T−1

Eθ
(
N
∥∥Eθ[zf

jz
x∗
j |DT ]− zf

jz
x∗
j

∥∥2
)

= O (1).

Proof. See Appendix 2.10.4.

2.5 Towards the M Step:

Likelihood (known factors, fixed N)

In this section, we focus on developing the theoretical foundations for estimation

of the parameters (in preparation for our discussion of the M step). We begin by

making a small aside in order to review the objective function for the standard

EM algorithm following Dempster et al. (1977) and Wu (1983).

46



2.5.1 Objective Function for the EM Algorithm

Let us consider the (quasi-) maximum likelihood estimator of θ given by

arg max
θ

L (X;θ)

where L (X;θ) may be interpreted as the marginal likelihood of θ given observa-

tions X that may be obtained from the complete likelihood L (FT ;θ) of θ given

observations X and latent factors, say denoted by F . Of course, the marginal

likelihood is unknown but, given the structure of the approximating model, the

complete likelihood can indeed be analysed. Taking some liberties with notation

(throughout this brief expository section), the following relation holds

L (X;θ) =

∫
L (X,F ;θ) dF.

The interpretation of the integral is, of course, that we are interested in the

likelihood of θ given X across all possible values of F .

For any arbitrary density function of F , say q(F ), the right hand side of the above

expression may be manipulated as follows,∫
L (X,F ;θ) dF =

∫
L (X,F ;θ)

q(F )

q(F )
dF

= E

[
L (X,F ;θ)

q(F )

]
,

where the expectation is under the parameters governing q(F ).

Moreover, one typically does not maximise the likelihood; rather, one tends to

focus on the log likelihood. So let us consider instead

`(X;θ) = logL(X;θ)

= log E

[
L (X,F ;θ)

q(F )

]
≥ E

[
log

L (X,F ;θ)

q(F )

]
,

47



where the lower bound to `(X;θ) is found due to Jensen’s inequality.

Since it is not possible to maximise `(X;θ) directly, the goal will be to maximise

the log likelihood by repeatedly constructing a lower bound for it and then max-

imising that instead. It seems natural then that the choice of q(F ) should be

guided by ensuring that the lower bound obtained above is tight and holds with

equality. Of course, this will be the case if L(X,F ;θ)
q(F )

is independent of F (and thus

constant with respect to the expectation).

Indeed, we can set q(F ) to be the conditional distribution of F givenX, L(F |X;θ).

Then, with an initial guess for parameters, say θ(0),

`(X;θ) = Eθ(0) [` (X,F ;θ) |X]− Eθ(0) [` (F |X;θ) |X]

= Eθ(0) [(` (X|F ;θ) + ` (F ;θ)) |X]− Eθ(0) [` (F |X;θ) |X]

= Q(θ;θ(0))−H(θ;θ(0)), say,

where the “Q-function” above is referred to as an auxiliary function. It is typi-

cally interpreted as a two-parameter family of curves enveloped by the likelihood

function.

To help find arg maxθ ` (X;θ), we refer to Dempster et al. (1977), wherein the

EM algorithm is outlined. The key requirement is that the likelihood is uniformly

bounded from above for any θ in the parameter space. Briefly, this is an iterative

procedure with two steps to be repeated at each iteration of the algorithm. It is

based on the idea that increasing the Q-function increases the likelihood function.

Say we have θ(k), an estimated value of the parameters at a given iteration k ≥ 0,

we alternate between

E step: compute Q(θ;θ(k)) = Eθ(k) [(` (X|F ;θ) |X] + Eθ(k) [` (F ;θ)) |X]; and

M step: compute θ(k+1) = arg maxθ Q(θ;θ(k)),

until a suitable convergence criterion has been satisfied.

Let us denote the final estimate of the parameters by θ(EM).
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Of particular note for our purpose is that for any k ≥ 0,

`
(
X;θ(k+1)

)
− `
(
X;θ(k)

)
= Q(θ(k+1);θ(k))− Q(θ(k);θ(k))

−
[
H(θ(k+1);θ(k))−H(θ(k);θ(k))

]
,

where the first term is non-negative since θ(k+1) maximises Q(θ;θ(k)) by construc-

tion. Further, the second term is no greater than zero as shown in Dempster et al.

(1977, Lemma 1). The key advantage of the EM algorithm follows, namely that

the log-likelihood is monotonically increasing in k. Indeed, given continuity of the

Q-function and if the Q-function is not trapped at any point that is a stationary

point but not a local maximum of the likelihood, the algorithm is guaranteed to

converge to a local maximum as k → ∞ for any N and T (Wu, 1983, Theorem

3).11

Thus, in this study, we focus only on the Q-function with respect to parameter θ

and not also any additional terms in `(X;θ). Indeed, in the sections below, we

focus on spelling out the ingredients for our own Q-function. That is, we begin

by considering a frequency domain approximation of `(X,F ;θ) = ` (X|F ;θ) +

` (F ;θ).

Of course, the concern that we attain a local rather than the global maximum

remains outstanding. Indeed, as phrased in Wu (1983, p. 97), “[a]lthough a global

maximization of Q is involved in the M step, the other term H in L = Q − H
may not cooperate”. In practice, however, this will not be a concern for us, and

we discuss the reason in Remark 3 below.

A general discussion pertaining to conditions for convergence guarantees for the

EM algorithm, based chiefly on Dempster et al. (1977), Wu (1983) and Balakr-

ishnan et al. (2017), is presented in Appendix 2.11. The latter expands upon

several results that are alluded to above.

11For a unimodal concave and continuous likelihood which is bounded from above and has a
single stationary point, the global maximum is attained.
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2.5.2 Whittle Likelihood

We consider the Whittle likelihood which is formed from the distribution of the

DFT of the data. Specifically, with Fourier frequencies ωj for j = 0, ..., T −1, the

Whittle spectral approximation to the complete log-likelihood function is

`(X,F ;θ) ' −1

2

T−1∑
j=0

log |Gξ(ωj)| −
1

2

T−1∑
j=0

zξ
∗

j G
−1
ξ (ωj)z

ξ
j

−1

2

T−1∑
j=0

log |Gu(ωj)| −
1

2

T−1∑
j=0

zu∗

j G
−1
u (ωj)z

u
j ,

where the we exclude the constant terms for brevity.12

Since we have assumed zero cross-sectional correlation in the idiosyncratic com-

ponent, the autocovariance sequence of ξt is given by diagonal matrices.13 Thus,

Gξ(ωj) is also diagonal. Hence, we can decompose the first line in `(X,F ;θ) as

the sum of N univariate components. Analagously, since there is zero correlation

between common shocks, the autocovariance sequence of ut is given by diagonal

matrices. Thus, Gu(ωj) is diagonal. Hence, we can decompose the second line in

`(X,F ;θ) as the sum of r univariate components. We obtain

`(X,F ;θ) '
N∑
i=1

[
−1

2

T−1∑
j=0

log |Gξi(ωj)| −
1

2

T−1∑
j=0

z
ξ∗i
j G

−1
ξi

(ωj)z
ξi
j

]

+
r∑

k=1

[
−1

2

T−1∑
j=0

log |Guk(ωj)| −
1

2

T−1∑
j=0

z
u∗k
j G

−1
uk

(ωj)z
uk
j

]
.

Above, we use Gξi(ωj) to denote the ith element on the diagonal of Gξ(ωj), and

Guk(ωj) to denote the kth element on the diagonal of Gu(ωj).

12See, for example, Krafty and Collinge (2013) and Fiorentini et al. (2018).
13This would be true even if we were to allow for serial correlation in the idiosyncratic

component.
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Plugging in the DFTs,

`(X,F ;θ) '
N∑
i=1

[
−1

2

T−1∑
j=0

log |Gξi(ωj)|

− 1

2

T−1∑
j=0

[zxij − Ci(e−i2πωj)zf
j ]
∗G−1

ξi
(ωj)[z

xi
j − Ci(e−i2πωj)zf

j ]

]

+
r∑

k=1

[
−1

2

T−1∑
j=0

log |Guk(ωj)|

− 1

2

T−1∑
j=0

[Ak(e
−i2πωj)zf

j ]
∗G−1

uk
(ωj)[Ak(e

−i2πωj)zf
j ]

]
.

Above, we use Ci(e
−i2πωj) to denote the ith row of matrix C(e−i2πωj), andAk(e

−i2πωj)

to denote the kth row of matrix A(e−i2πωj).

Expressing all terms using scalars (rather than vectors), we have

`(X,F ;θ) '
N∑
i=1

[
−1

2

T−1∑
j=0

log |Gξi(ωj)|

− 1

2

T−1∑
j=0

[zxij − (ci,01 + ci,11e
−i2πωj)zf1j − ...− (ci,0r + ci,1re

−i2πωj)zfrj ]∗G−1
ξi

(ωj)

× [zxij − (ci,01 + ci,11e
−i2πωj)zf1j − ...− (ci,0r + ci,1re

−i2πωj)zfrj ]

]
+

r∑
k=1

[
−1

2

T−1∑
j=0

log |Guk(ωj)|

− 1

2

T−1∑
j=0

[zfkj − (ak1e
−i2πωjzf1j + ...+ akre

−i2πωjzfrj )]∗G−1
uk

(ωj)

× [zfkj − (ak1e
−i2πωjzf1j + ...+ akre

−i2πωjzfrj )]

]
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Rearranging terms and plugging in the exact forms of the spectral densities,

`(X,F ;θ) '
N∑
i=1

[
−T

2
log Γξi

− 1

2
Γ−1
ξi

T−1∑
j=0

[zxij − (ci,01 + ci,11e
−i2πωj)zf1j − ...− (ci,0r + ci,1re

−i2πωj)zfrj ]

× [zxij − (ci,01 + ci,11e
−i2πωj)zf1j − ...− (ci,0r + ci,1re

−i2πωj)zfrj ]∗
]

+
r∑

k=1

[
−T

2
log γk

− 1

2
γ−1
k

T−1∑
j=0

[zfkj − (ak1e
−i2πωjzf1j + ...+ akre

−i2πωjzfrj )]

× [zfkj − (ak1e
−i2πωjzf1j + ...+ akre

−i2πωjzfrj )]∗
]
,

which is the final expression we will use for further calculations below.

We now take derivatives with respect to each of the unknown parameters. These

yield estimators for the elements of θ given (i) the latent factors and (ii) the

observed series.

2.5.3 Loadings

For a given frequency ωj, we have that for observations i = 1, ..., N , lags h = 0, 1,

and factors k = 1, ..., r,

∂`(X,F ;θ)

∂ci,hk
=

1

2
Γ−1
ξi

T−1∑
j=0

[
zfkj e

−i2πωjh[zxij − (ci,01 + ci,11e
−i2πωj)zf1j − ...− (ci,0r + ci,1re

−i2πωj)zfrj ]∗

+ z
f∗k
j e

i2πωjh[zxij − (ci,01 + ci,11e
−i2πωj)zf1j − ...− (ci,0r + ci,1re

−i2πωj)zfrj ]

]
.

Setting the above to zero defines a system of 2r equations for obtaining ML

estimators of the dynamic factor loadings for the ith observed variable.
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This system of equations (or first-order conditions) is given by

T−1∑
j=0

[
zfkj z

x∗i
j e
−i2πωjh + z

f∗k
j z

xi
j e

i2πωjh

]
=

T−1∑
j=0

[
ĉi,01(zfkj z

f∗1
j e
−i2πωjh + z

f∗k
j z

f1
j e

i2πωjh)

+ ĉi,11(zfkj z
f∗1
j e
−i2πωj(h−1) + z

f∗k
j z

f1
j e

i2πωj(h−1))

...

+ ĉi,0r(z
fk
j z

f∗r
j e
−i2πωjh + z

f∗k
j z

fr
j e

i2πωjh)

+ ĉi,1r(z
fk
j z

f∗r
j e
−i2πωj(h−1) + z

f∗k
j z

fr
j e

i2πωj(h−1))

]
.

For i = 1, ..., N , the left hand side of the above system of equations can be

expressed in matrix form as

LHSCi =
T−1∑
j=0



zf1j z
x∗i
j + z

f∗1
j z

xi
j

zf1j z
x∗i
j e
−i2πωj + z

f∗1
j z

xi
j e

i2πωj

...

zfrj z
x∗i
j + z

f∗r
j z

xi
j

zfrj z
x∗i
j e
−i2πωj + z

f∗r
j z

xi
j e

i2πωj


and the right hand side consists of the matrix
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RHSC =
T−1∑
j=0



zf1j z
f∗1
j + z

f∗1
j z

f1
j zf1j z

f∗1
j e

i2πωj + z
f∗1
j z

f1
j e
−i2πωj ...

zf1j z
f∗1
j e
−i2πωj + z

f∗1
j z

f1
j e

i2πωj zf1j z
f∗1
j + z

f∗1
j z

f1
j ...

...
...

. . .

zfrj z
f∗1
j + z

f∗r
j z

f1
j zfrj z

f∗1
j e

i2πωj + z
f∗r
j z

f1
j e
−i2πωj ...

zfrj z
f∗1
j e
−i2πωj + z

f∗r
j z

f1
j e

i2πωj zfrj z
f∗1
j + z

f∗r
j z

f1
j ...

zf1j z
f∗r
j + z

f∗1
j z

fr
j zf1j z

f∗r
j e

i2πωj + z
f∗1
j z

fr
j e
−i2πωj

zf1j z
f∗r
j e
−i2πωj + z

f∗1
j z

fr
j e

i2πωj zf1j z
f∗r
j + z

f∗1
j z

fr
j

...
...

zfrj z
f∗r
j + z

f∗r
j z

fr
j zfrj z

f∗r
j e

i2πωj + z
f∗r
j z

fr
j e
−i2πωj

zfrj z
f∗r
j e
−i2πωj + z

f∗r
j z

fr
j e

i2πωj zfrj z
f∗r
j + z

f∗r
j z

fr
j


post-multiplied by the vector 

ĉi,01

ĉi,11

...

ĉi,0r

ĉi,1r


.

Thus, 

ĉi,01

ĉi,11

...

ĉi,0r

ĉi,1r


= [RHSC ]−1LHSCi

are our spectral ML estimators of loadings for the ith observed variable.
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More compactly, reverting to vector notation, we have

ĉ1,01 . . . ĉN,01

ĉ1,11 . . . ĉN,11

...
. . .

...

ĉ1,0r . . . ĉN,0r

ĉ1,1r . . . ĉN,1r


=


T−1∑
j=0

(zf
jz

f∗

j ⊗

(
1 ei2πωj

e−i2πωj 1

))
+

(
zf
jz

f∗
j ⊗

(
1 ei2πωj

e−i2πωj 1

))
−1

×
T−1∑
j=0

(zf
jz

x∗

j ⊗

(
1

e−i2πωj

))
+

(
zf
jz

x∗
j ⊗

(
1

e−i2πωj

)) .
It will also be useful to re-write the above using a more familiar expression for

such an estimator. We define the 2r × 2 matrix

Żf
j =

zf
j ⊗

(
1

e−i2πωj

)
, zf

j ⊗

(
1

e−i2πωj

) ,
and the N × 2 matrix

Z̆x
j =

[
zx
j , z

x
j

]
.

Then, our estimators have the form

ĉ1,01 . . . ĉN,01

ĉ1,11 . . . ĉN,11

...
. . .

...

ĉ1,0r . . . ĉN,0r

ĉ1,1r . . . ĉN,1r


=

(
T−1∑
j=0

Żf
jŻ

f∗

j

)−1 T−1∑
j=0

Żf
jZ̆

x∗

j ,

which is of course reminiscent of a standard least-squares style formula.
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2.5.4 Autoregressive Coefficients

For a given frequency ωj, we have that for factors k, l = 1, ..., r,

∂`(X,F ;θ)

∂akl
=

1

2
γ−1
k

T−1∑
j=0

[
zflj e

−i2πωj [zfkj − (ak1e
−i2πωjzf1j + ...+ akre

−i2πωjzfrj )]∗

+ z
f∗l
j e

i2πωj [zfkj − (ak1e
−i2πωjzf1j + ...+ akre

−i2πωjzfrj )]

]
.

Setting the above to zero defines a system of r equations for obtaining the ML

estimators of the coefficients in autoregressive equation for the kth factor.

This system of equations (or first-order conditions) is given by

T−1∑
j=0

[
zflj z

f∗k
j e
−i2πωj + z

f∗l
j z

fk
j e

i2πωj

]
=

T−1∑
j=0

[
âk1(zflj z

f∗1
j + z

f∗l
j z

f1
j ) + ...+ âkr(z

fl
j z

f∗r
j + z

f∗l
j z

fr
j )

]
.

For k = 1, ..., r, the left hand side of the above system of equations can be

expressed in matrix form as

LHSAk =
T−1∑
j=0


zf1j z

f∗k
j e
−i2πωj + z

f∗1
j z

fk
j e

i2πωj

...

zfrj z
f∗k
j e
−i2πωj + z

f∗r
j z

fk
j e

i2πωj


and the right hand side consists of the matrix

RHSA =
T−1∑
j=0


zf1j z

f∗1
j + z

f∗1
j z

f1
j ... zf1j z

f∗r
j + z

f∗1
j z

fr
j

...
. . .

...

zfrj z
f∗1
j + z

f∗r
j z

f1
j ... zfrj z

f∗r
j + z

f∗r
j z

fr
j


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post-multiplied by the vector 
âk1

...

âkr

 .

Thus, 
âk1

...

âkr

 = [RHSA]−1LHSAk

are our spectral ML estimators of autoregressive coefficients for the kth factor.

More compactly, reverting to vector notation, we have
â11 . . . âr1
...

. . .
...

â1r . . . ârr

 =

{
T−1∑
j=0

[
zf
jz

f∗

j + zf
jz

f∗
j

]}−1 T−1∑
j=0

[
zf
jz

f∗

j e
−i2πωj + zf

jz
f∗
j e
−i2πωj

]
.

It will also be useful to re-write the above using a more familiar expression for

such an estimator. We define the r × 2 matrix

Z̈f
j =

[
zf
j , z

f
j

]
,

and the r × 2 matrix

Z̆f
j =

[
zf
je
i2πωj , zf

je
i2πωj

]
.

Then, our estimators have the form
â11 . . . âr1
...

. . .
...

â1r . . . ârr

 =

(
T−1∑
j=0

Z̈f
jZ̈

f∗

j

)−1 T−1∑
j=0

Z̈f
jZ̆

f∗

j ,

which is again reminiscent of a standard least-squares style formula.
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2.5.5 Variances

For a given frequency ωj, we have that for observations i = 1, ..., N ,

∂`(X,F ;θ)

∂Γξi
= −T

2
Γ−1
ξi

+
1

2
Γ−2
ξi

T−1∑
j=0

[
[zxij − (ci,01 + ci,11e

−i2πωj)zf1j − ...− (ci,0r + ci,1re
−i2πωj)zfrj ]

× [zxij − (ci,01 + ci,11e
−i2πωj)zf1j − ...− (ci,0r + ci,1re

−i2πωj)zfrj ]∗
]
.

We set the above to zero, plug in our ML estimators for the loadings, and obtain

Γ̂ξi =
1

T

T−1∑
j=0

[
[zxij − (ĉi,01 + ĉi,11e

−i2πωj)zf1j − ...− (ĉi,0r + ĉi,1re
−i2πωj)zfrj ]

× [zxij − (ĉi,01 + ĉi,11e
−i2πωj)zf1j − ...− (ĉi,0r + ĉi,1re

−i2πωj)zfrj ]∗
]

as our spectral ML estimator for the variance of the ith idiosyncratic component.

In an analagous way, we obtain

γ̂k =
1

T

T−1∑
j=0

[
[zfkj − (âk1e

−i2πωjzf1j + ...+ âkre
−i2πωjzfrj )]

× [zfkj − (âk1e
−i2πωjzf1j + ...+ âkre

−i2πωjzfrj )]∗
]

as our spectral ML estimator for the variance of the stochastic disturbance term

in the kth factor equation.

2.5.6 Some Convergence Results

In this section, we present an unsurprising result; that is, on
√
T consistency of the

maximum likelihood estimator. Indeed, since this is just a textbook property, we

state the result only for the loadings estimators. Analogous results hold for max-

imum likelihood estimators of all the parameters in our model. See, for instance,
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Hannan (1973), Dunsmuir and Hannan (1976), and Deistler et al. (1978).14

Let ĉi denote the 2r×1 vector of estimated loadings for the ith observed variable;

that is, ĉi = (ĉi,01, ĉi,11, ..., ĉi,0r, ĉi,1r)
′ for i = 1, ..., N .

Proposition 2.4. Under Assumptions A1-A7, and assuming factors {f1, ..., fT}
are known, for any N ∈ N, and a given observation i, it holds that as T →∞,

√
T ‖ĉi − ci‖ = Op(1),

uniformly (as defined in Remark 2) with respect to i for i = 1, ..., N .

Proof. See Appendix 2.10.5.

Remark 3.
√
T -consistency. In reality, one should consider not just ` (X|F ;θ)+

` (F ;θ) but the entire likelihood function `(X;θ) for estimation of the parame-

ters. Maximising the former gives rise to a typical least-squares style sampling

error which vanishes at rate
√
T as per Proposition 2.4 whereas maximising the

latter results in an additional term that is Op (N−1) along with terms that are

vanishing with rate faster than
√
T . For results in the time domain, see Barigozzi

and Luciani (2022, Lemma 13(i)) and Bai and Li (2016, Theorem 1).

We expect analogous results to hold for our frequency domain estimators. That

14Additionally, a textbook treatment is available in Dzhaparidze (1986).
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is, for any i = 1, ..., N ,

ĉi − ci =

 1

T

T−1∑
j=0

(zf
jz

f∗

j ⊗

(
1 ei2πωj

e−i2πωj 1

))
+

(
zf
jz

f∗
j ⊗

(
1 ei2πωj

e−i2πωj 1

))
−1

× 1

T

T−1∑
j=0

(zf
jz
ζ∗i
j ⊗

(
1

e−i2πωj

))
+

(
zf
jz
ζ∗i
j ⊗

(
1

e−i2πωj

))
+Op

(
1

N

)
+ op

(
1√
T

)
= Op

(
1√
T

)
+Op

(
1

N

)
+ op

(
1√
T

)
= Op

(
max

(
1

N
,

1√
T

))
,

where, say
√
T/N → 0, we would have that spectral ML estimators are

√
T -

consistent.

We do not prove this result or pursue this thread in our study since the extra

Op (N−1) term that we omit will ultimately be dominated by the Op(N
−1/2) error

in relation to the WK smoother already established in Section 2.4 above.15 In

other words, the first order conditions based on the likelihood function `(X;θ)

versus the first order conditions based on ` (X|F ;θ) + ` (F ;θ) differ only by an

amount that will vanish at a rate faster than that of our overall estimation error.

4

We now make a remark about the formulae for our loadings estimators. The

context for this remark will be clear in the next section pertaining to the need for

smoothing techniques in non-parametric estimation of spectral density matrices.

Remark 4. Loadings Estimators. As is evident from the expressions in

Section 2.5.3, the estimators ĉi, for i = 1, ..., N are composed primarily of matrices

15In fact, as we shall see below, it will also be dominated by an Op(N
−1/2) term in the error

of our non-parametric estimator of the spectral density matrix. See Proposition 2.5 below. The
same spectral density estimator is featured in Forni et al. (2017).
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of cross periodograms at each frequency that are summed across frequencies.

Clearly, these are “unsmoothed” (see Section 2.6 and, in particular, Section 2.6.2

below) and this is all that is needed to consistently estimate the parameters. As

noted in Engle (1974, p.3), the fact that these are unsmoothed periodograms

is not a problem; the paper states, “The estimator is consistent, not because

each periodogram element approaches its spectral value, but because the sum of

the elements approaches the sum of the spectral values which is just the total

variance of the variable”. Moreover, the variance of the factors is well-behaved

due to the ergodicity inherent in the modelling structure in Assumption A2, and

consistency follows from the asymptotic independence of the idiosyncratic error

and the factors.

2.6 Towards Initialisation:

Spectral Density Estimation

With the building blocks for the E step and the M step now in place, we proceed

to discuss issues surrounding initialisation of the algorithm. For the exposition

in Section 2.6, we consider what happens as T →∞ with fixed N .

2.6.1 Lag Window Estimator for Spectral Density

We will shortly propose initialisation of our spectral EM procedure using Dynamic

PCA, which involves the eigen-decomposition of some non-parametric estimator

of the spectral density matrix of xt. In principle, we could use the periodogram

to estimate Gx(ωj). Indeed, for a given N , we could compute

Per(ωj) = zx
j z

x∗

j =
T−1∑

h=−(T−1)

Sx(h)e−i2πωjh
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where

Sx(h) =
1

T

T∑
t=|h|+1

xtx
′
t−|h| h = 0, ..., T − 1, Sx(−h) = S ′x(h),

for the Fourier frequencies ωj = j/T for j = 0, ..., T − 1.

The periodogram is asymptotically unbiased. Nevertheless, it exhibits high vari-

ability even for very large T , and is in fact an inconsistent estimator of the true

spectral density. This may be a surprising result prima facie since Per(ωj) is es-

sentially the same function (a linear combination) of the sample autocovariances

as Gx(ωj) is of the theoretical autocovariances. That is, one might be tempted

to argue that since Sx(h) is, under general conditions, a consistent estimator of

Γx(h) for any h, a linear combination of {Sx(h)}T−1
h=−(T−1) would also be a consis-

tent estimator of a linear combination of {Γx(h)}∞h=−∞; but this is incorrect.

To see why (heuristically), we first note that, under standard conditions on con-

tinuity of Γx(h), the rate at which the squared bias of Sx(h) vanishes will be

dominated by the rate at which its variance vanishes in the overall mean-square

error computations. So it is the variance of Sx(h), which is O(1/T ), that deter-

mines the overall rate of convergence. The problem is that while each term in

the linear combination is O(1/T ), the number of such terms within the overall

linear combination is also growing linearly with T . Therein lies the source of the

inconsistency. The specific consequence is that the variance of the periodogram

does not shrink as T increases. Further details can be found in Priestley (1982).

A common solution to reduce the variance of our estimator as T → ∞ is to use

a lag-window (or Blackman-Tukey) estimator which weights the autocovariance

sequence so that the number of terms in our linear combination grows at a rate

slower than T . Effectively, some of the sample autocovariances are excluded. Of

course, this can and does give rise to bias in our estimates. In order to minimise

bias, we typically choose to exclude sample autocovariances corresponding to

lags that are relatively large (in magnitude). The justification is that continuity

of Gx(ωj) implies that theoretical autocovariances decay as |h| grows and so

excluding large-lag terms is relatively less problematic.
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More formally, for some integer BT < (T − 1) such that BT →∞ and BT/T → 0

as T →∞, we can consider a truncated two-sided sequence Sx(−BT ), ..., Sx(0), ..., Sx(BT )

of (2BT + 1) sample autocovariance matrices. More precisely,

Sx(h) =
1

T

T∑
t=|h|+1

xtx
′
t−|h|, h = 0, ..., BT , Sx(−h) = S ′x(h),

so that BT is our truncation point.

Such an estimator is referred to as a rectangular (or boxcar) lag-window estimator.

The weights are of the form 1 for |h| ≤ BT and 0 for |h| > BT . However, there

is no reason why we cannot consider other estimators in which the weighting

functions are continuous in h, say, in order to obtain weights that decrease more

gradually. As we will observe below, the exact choice of window can indeed affect

the asymptotic properties of our estimator, and the rectangular lag window is

far from ideal. Indeed, the sharp discontinuities associated with the rectangular

lag-window are not a desirable feature for variance reduction. Moreover, we have

no guarantee that it generates estimates that are positive definite.

We thus consider a reasonably broad class of windows referred to as “scale param-

eter” windows. Let us denote our lag-window estimator for Gx(wj′), the spectral

density matrix of xt, by G̃BT
x (wj′) where BT is placed in the superscript to em-

phasise the dependence of the estimator on the size of the window. Specifically,

we define

G̃BT
x (wj′) =

T−1∑
h=−(T−1)

Sx(h) K

(
h

BT

)
e−i2πwj′h

where wj′ = j′/(2BT +1) for j′ = 0, ..., 2BT , and K(·) is a fixed weighting function

or “kernel” such that

K

(
h

BT

)
=

K
(

h
BT

)
, 0 ≤ |h| ≤ BT

0, BT < |h| ≤ T − 1,

with K(·) an even, bounded, and continuous function satisfying K(0) = 1.

An increase (or decrease) in the truncation point BT can be thought of as stretch-
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ing (or contracting) the window. Thus, BT behaves like a scaling parameter. The

definitive theory of asymptotic bias, variance and mean-square error for estima-

tors based on scale parameter windows was developed in Parzen (1957). Below,

we will generally rely on the more recent treatments presented in Wu and Zaffa-

roni (2018) and Forni et al. (2017).

Remark 5. Bias-Variance Tradeoff. The effect of truncating and/or re-

weighting the sample autocovariance sequence is indeed to reduce the variance

of our estimator. These manipulations will affect the expected value of the new

expression. In general, we can expect the bias to increase. We discuss details in

Section 2.6.2 below. 4

Remark 6. Revised Grid. We draw attention to the fact that the discretised

frequency wj′ has necessarily been modified (with respect to ωj). We discuss

details in Section 2.6.3 below. 4

Prior to discussing the items alluded to in the foregoing remarks, we borrow (to

some extent) from “Assumption 9(i)” in Forni et al. (2017). We present below

our assumed regularity conditions for the weighting function.

Assumption A8. A kernel K(·) is a function with support [−1, 1] such that

(i) K(·) is even, bounded, and has the property K(0) = 1;

(ii)
∫∞
−∞K

2(u)du <∞;

(iii) there exists some κ > 0, the Parzen characteristic exponent of kernel K(·),

which represents the largest integer for which

lim
u→0

1−K(u)

|u|κ

is finite and positive;

(iv) K(·) is Lipschitz continuous; that is, there exists a finite positive constant
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M
K

such that

|K(u1)−K(u2)| ≤M
K |u1 − u2|

for u1, u2 ∈ [−1, 1].

Remark 7. Assumption A8(iii). The Parzen characteristic exponent cap-

tures the smoothness of the kernel at zero. Indeed, the smoother is the kernel at

zero, the larger is the value of κ. For instance, as explained in Andrews (1991), κ

equals 1 for the Bartlett kernel (which is triangular in shape with a kink at zero),

but 2 for the Parzen, Daniell, General Tukey, Tukey-Hanning, Tukey-Hamming

and Bartlett-Priestley kernels. The periodogram, denoted previously by Per(ωj),

incorporates the rectangular kernel which has a Parzen characteristic exponent

of ∞. See Priestley (1982, p. 463). 4

Remark 8. Assumption A8(iv). Part (iv) of our Assumption A8 is stronger

than Assumption 9(i)(3) of Forni et al. (2017). In particular, Lipschitz continuity

implies bounded variation, and as explained in Liu and Wu (2010)16, this in turn

implies Assumption 9(i)(3) of Forni et al. (2017). While Lipschitz continuity is

relatively stronger than the latter, this assumption is not binding in practice. As

explained in the context of Assumption 1(b) of Newey and West (1994), several

commonly used kernels satisfy this condition. 4

2.6.2 Bias-Variance Tradeoff

Lag-window estimators necessitate an inherent trade-off between variance reduc-

tion and frequency resolution.17 The lower is BT relative to T , the less erratic

is our estimator. Indeed, given N , for each frequency wj′ = j′/(2BT + 1) for

j′ = 0, ..., 2BT , the variance of G̃BT
x (wj′) will be O(BT/T ). The cost, however, is

16See paragraph immediately following “Condition 3”.
17The trade-off is somewhat similar, for instance, to that arising when estimating a probability

density function via a histogram.
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a loss in the ability of our estimator to reveal variation in the spectrum between

closely spaced frequencies. In fact, the periodogram may be interpreted as an

estimator capable of identifying peaks in the spectrum at the finest possible fre-

quencies, the Fourier frequencies. Lag window methods, which weight the sample

autocovariances so as to reduce the contribution from the tail, have the same

effect as smoothing the periodogram over adjacent frequencies. While this may

mitigate against spurious spikes and troughs, there is an inevitable decrease in

resolution. As a result, details in the spectrum that are separated by less than

1/(2BT + 1) > 1/T cycles per sampling interval cannot be resolved.

In fact, variance and resolution are affected not just by the size but also the

type of lag window. For example, multiplication of the estimated autocovari-

ance sequence in the time domain by a rectangular lag window (say of size BT )

corresponds to convolution in the frequency domain with the Dirichlet spectral

smoothing window. The latter features sidelobes that are relatively tall, which is

a reflection of the jump discontinuities in the rectangular lag window. This causes

spectral leakage, which manifests itself through spurious spikes and troughs. In

contrast, the triangular lag window, which attenuates end-points of the trun-

cated signal more smoothly, is associated with the Fejér spectral window which

features much shorter sidelobes. This reduces spectral leakage. The downside,

however, is that the Fejér spectral smoothing window features a relatively broad

mainlobe. This causes spectral smearing, or loss in resolution. Again, we have a

bias-variance tradeoff since one has to strike a balance between mainlobe width

and sidelobe height when choosing a suitable window function. There are several

possible choices. Nevertheless, we do not consider alternatives. Following the

literature, we rely on the triangular lag window. See Forni et al. (2000) and Forni

et al. (2017).

To summarise, we need to lower BT/T to lower the variance of our estimator.

In contrast, we need to raise BT to lower the bias of our estimator. It follows

then that choosing BT such that BT/T → 0 and BT →∞ as T →∞ (as stated

previously) is the key to achieving mean-square convergence.
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2.6.3 Coarse Time and Frequency Grids

As mentioned above, in order to consistently estimate the spectral density, we

rely on smoothing techniques, which inevitably entail a loss in resolution. In

particular, the lag window estimator proposed above is computed not at all T

Fourier frequencies but at only 2BT + 1 < T frequencies. Consequently, reverting

to the time domain (i.e. via the Inverse DFT), we will be able to estimate the

factors ft not on the original grid of T time points but on a relatively coarse grid

of 2BT + 1 points. That is, we will compute some f̂Wt′ , where t′ denotes a revised

temporal index such that t′ ∈ T′ where T′ is a set with cardinality 2BT + 1.

Typically, the revised temporal grid is constructed so as to divide the period

under consideration into 2BT + 1 equally-spaced intervals. That is, while the

space between two adjacent points of the original grid is ∆t = 1, for the revised

grid, it is ∆t′ = T/(2BT + 1). Of particular note is that the revised (coarse)

grid is in general not synchronous with the original (fine) grid. This is a natural

artefact of the interpolative effect of smoothing the periodogram.

Our particular aim, however, will be to discuss pointwise convergence of our

estimators. Thus, we need to ensure that there is an overlap between the grids

(i.e. for a subset of 2BT + 1 < T points on the original grid). This facilitates a

comparison between our estimator and the true value, pointwise in t′ for t′ ∈ T′.

To this end, we use the following methodology to construct our revised grid. We

set t′ = tq such that

tq ∈
{
T − (2BT + 1− q)

⌊
T

2BT + 1

⌋
: q = 1, ..., 2BT + 1

}
denotes our revised temporal index, where the function b·c returns the largest

integer that is less than or equal to any (real-valued) argument. In other words,

we start with the most recent observation, aligning the (2BT + 1)th point on our

revised grid with the T th point on the original grid. We then work backwards

aligning each preceding point on our revised grid, with points that are exactly

b T
2BT+1

c apart on the original grid.
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For the frequency domain, we set j′ = jq such that for j ∈ {0, ..., T − 1},

jq ∈

{
min

{
j :

j

T
≥ q − 1

2BT + 1

}
: q = 1, ..., 2BT + 1

}

denotes our revised frequency index. In other words, we start with frequency zero,

aligning the first point on our revised grid with the first point on the original grid.

We then work forwards by aligning each consecutive frequency on our revised grid

with the smallest available Fourier frequency that is greater than or equal to the

latter.

To summarise our notation, we will use{∥∥∥ẑfW

jq − zf
jq

∥∥∥ : q = 1, ..., 2BT + 1
}
, and

{∥∥∥f̂Wtq − ftq

∥∥∥ : q = 1, ..., 2BT + 1
}

to denote the sets of our factor estimation errors in the frequency and time

domains respectively. Typically, our convergence results will be stated either

uniformly in jq (following our weaker definition of uniformity in Remark 2), or

pointwise in tq for q = 1, ..., 2BT + 1. This will be sufficient for our purposes.

Finally, we note that the density of the revised grid, corresponding to our effective

sample size, is increasing (with BT ) but its relative density with respect to the

original grid, or the original sample size, is decreasing to zero (with BT/T ).

2.6.4 Consistency of Lag Window Estimator

We do not explicitly prove consistency of the lag window estimator proposed

for the initialisation of our algorithm because such a proof would not contribute

much towards the specific aims of this study. Instead, parallel to the approach

in Forni et al. (2009, Assumption 8), we make an additional assumption on the

estimate of the cross spectral density between xit and xst for i, s = 1, ..., N .

To this end, we leverage results presented in Wu and Zaffaroni (2018). In partic-
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ular, the latter finds a
√
T/(BT logBT ) convergence rate. The logBT term arises

because Wu and Zaffaroni (2018) considers convergence of the extremum over

frequencies of the estimation error.18 Strengthening the usual pointwise consis-

tency result in order to cover convergence of the extremum over frequencies slows

the rate from the typical
√
T/BT term, for instance in Hallin and Lĭska (2007),

to
√
T/(BT logBT ) in Wu and Zaffaroni (2018). The result is seminal because

it applies to a general class of multivariate stationary processes represented by

arbitrary measurable functions of iid innovations. In particular, no Gaussianity,

linearity or strong-mixing assumptions are relied upon. Only primitive assump-

tions are made; one on finiteness of the pth order moments (for p > 4) of the

observables, and another on the extent of time dependence of the observables,

which involves placing upper bounds on a defined measure referred to as “physi-

cal dependence”.

Remark 9. Examples. The concept of physical dependence, first introduced in

Wu (2005), has been used in a variety of time series settings in recent years. See,

for example, McMurry and Politis (2010), Jirak (2015), Forni et al. (2017), Dette

and Gösmann (2018), Wu and Zaffaroni (2018), and Barigozzi et al. (2022). Also

see the relatively recent contribution of Zhang and Wu (2021), which extends the

dependence measure introduced in Wu (2005) for the high-dimensional setting

and considers so-called “nonasymptotic bounds” (Zhang and Wu, 2021, Theorem

4.1 and Corollary 4.4). For succinctness, we prefer to relegate our full exposition

of the definition of physical dependence and the restrictions to be imposed on

the dependence structure to Appendix 2.10.11. At present, we note simply that

there exist many data-generating processes that can be accommodated within the

framework of Wu (2005). Indeed, a key reason behind the popularity of the latter

is the generality that it admits. Some examples of linear and non-linear processes

are mentioned in Liu and Wu (2010, p.1220), and theorems establishing the va-

lidity of such examples may be found in Shao and Wu (2007, Section 5). For the

purpose of this remark, however, we refer the reader to the excellent overview in

18This is what is typically referred to as uniform convergence in the literature but we refrain
from using this word in this context since we have defined uniformity slightly differently for the
purpose of our study in Remark 2.
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Wu (2011), which provides not only a detailed list of examples but also a flavour

of the theoretical arguments to be made in each case. In general, as Wu (2011) ex-

plains, the theory applies to stationary processes of the form zt = F (εt, εt−1, ...),

where F : [R × R × ...] → R is a measurable function, and εt is an iid stochas-

tic vector process. A sequence of this form is called a physical system (Dette

et al., 2020, p.1248), and examples covered thereby include: (i) linear processes,

(ii) ARMA processes, (iii) Volterra series, (iv) amplitude-dependent exponen-

tial autoregressive processes, (v) non-linear AR processes based on the Clayton

copula, (vi) bilinear time series, (vii) threshold AR processes, (viii) ARCH pro-

cesses, (ix) GARCH processes, (x) random coefficient autoregressive processes,

and (xi) non-linear heteroskedastic AR processes. (Wu, 2011, Sections 3–4) 4

Below, our assumption borrows from Forni et al. (2017, Proposition 6), which

itself builds on results in Wu and Zaffaroni (2018). We believe the assumption

is reasonable since its result holds under conditions that are compatible with our

modelling framework. Readers who may be interested in the detailed derivations

behind the statement of the assumption are referred to Appendix 2.10.11.

For i, s = 1, ..., N , we define g̃BTx,is(wjq) and gx,is(wjq) as the (i, s)th elements of

G̃BT
x (wjq) and Gx(wjq) respectively.

Assumption A9. There exist finite positive constants Mvar and Mbias such that

max
1≤i,s≤N

E

[
max

1≤q≤2BT+1

∣∣g̃BTx,is(wjq)− gx,is(wjq)
∣∣2] ≤Mvar

(
BT logBT

T

)
+Mbias

(
1

B2κ
T

)
,

for any N,T ∈ N.

The first and second terms on the right hand side of Assumption A9 inform us of

the rates at which respectively the variance and squared bias of our lag window

estimator vanish as T grows without bound (for any N). To fix ideas, say we

set the positive integer BT such that BT = bTαc for some constant α, where

0 < α < 1. Then, clearly BT →∞ and BT/T → 0 as T →∞.

Our Assumption A9 is slightly more general than “Proposition 6” in Forni et al.

(2017) on two counts. First, we present our statement in terms of a general
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choice of kernel K(·), while Forni et al. (2017) specifically employs the Bartlett

lag window. See equation “3.3” therein. This means that in our statements

above, the Parzen characteristic exponent κ is not suppressed; whereas in Forni

et al. (2017) the value of κ is implicitly fixed to 1. Second, we explicitly display

the squared bias term in our “Assumption 9”, whereas this term does not appear

in “Proposition 6” of Forni et al. (2017). The reason is that “Assumption 10”

in Forni et al. (2017) effectively limits the choice of α so as to ensure that the

variance term will dominate the squared bias term in determining the consistency

result. It is only for this reason that the squared bias term can be suppressed in

Forni et al. (2017). We discuss this second point in more detail below.

Given κ, for 0 < α < (2κ+ 1)−1, the squared bias term will lead the convergence

result in Assumption A9. To see this, let’s assume (for ease of exposition) that

Tα is an integer so that bTαc = Tα. Then, the variance term is

BT logBT

T
=
Tα log Tα

T
= αTα−1 log T,

the squared bias term is
1

B2κ
T

= T−2κα,

and the ratio of these terms evaluates to

αT (2κ+1)α−1 log T.

With a given value of κ, for 0 < α < (2κ+ 1)−1, the ratio above will tend to 0 as

T →∞. In other words, the squared bias term will lead the convergence result.

On the other hand, for (2κ + 1)−1 ≤ α < 1, the ratio above will tend to ∞ as

T →∞, which means that the variance term will lead instead.

We can now see that our exposition is entirely compatible with Forni et al. (2017)

wherein the lower bound for α is simply assumed to be larger than or equal to

1/3. This makes sense since (i) the authors employ the Bartlett lag window, for

which the value for κ is equal to 1, and (ii) the authors presumably wished to

focus simply on rate of variance reduction in their “Proposition 6”. As noted

previously, our exposition is just slightly more general. For instance, with our
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approach, it is easy to observe that if one were to employ, say, the Parzen or

Daniell lag windows, for which κ is equal to 2, the appropriate threshold for α

would be 1/5.

Restricting our attention to the case that (2κ+ 1)−1 ≤ α < 1, one may compare

our assumed rate O(BT logBT/T ) with the rate O(1/T ) which is standard in

the time domain literature concerning estimation of the covariance matrix of the

observables. For instance, Forni et al. (2009) has “Assumption 8”, wherein it is

assumed that E [(γ̂x,is − γx,is)
2] < T−1Mγ; the terms γx,is and γ̂x,is denote the

covariance and estimated covariance between xit and xst, the inequality holds for

all i, s = 1, ..., N , and Mγ is some finite positive constant. By comparison, the

extra term BT in the numerator of our assumed rate, which slows the speed of

convergence, is the additional price we pay for requiring initialisation via consis-

tent non-parametric estimation of the spectral density matrix of the observables

for a given frequency (and a given N). Moreover, the extra term logBT in the nu-

merator, which further slows the speed of convergence, is the additional price for

requiring a consistency result that holds uniformly with respect to the frequencies

(and for any N).

2.7 Spectral EM Algorithm:

Implementation

We now possess all building blocks needed in order to summarise the key steps in

implementing the Spectral EM algorithm. Say assumptions A1-A9 hold, and our

objective is to estimate the factors and parameters of the model. Then, the first

step of our proposed procedure would be to construct a lag window estimator for

the spectral density matrix of xt, denoted by G̃BT
x (wjq), for q = 1, ..., 2BT + 1,

with an appropriate choice of kernel. Subsequent steps are as follows.
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2.7.1 Initialisation: Factors

We initialise the algorithm using dynamic PCA following Forni et al. (2000),

whereby we aim to carry out the eigen-decomposition of our G̃BT
x (wjq). The

eigenvectors thus obtained are hereafter referred to as the dynamic eigenvectors

of xt.

Specifically, we compute the N (complex orthogonal unit-modulus) eigenvectors

of G̃BT
x (wjq) as our estimators of the dynamic eigenvectors of xt. We retain

and gather the first r of these N eigenvectors in an N × r matrix denoted by

P̃x(wjq). This forms our estimate of the first r (complex orthogonal unit-modulus)

eigenvectors of the spectral density matrix of the common component, which are

themselves contained in the N × r matrix denoted by Pχ(wjq). We denote the

corresponding eigenvalue matrices as Λ̃x(wjq) and Λχ(wjq).

We define the estimator z̃fP

jq as

z̃fP

jq = P̃ ∗x(wjq)z
x
jq/
√
N

as our Dynamic PCA estimator of the DFT of the unobserved factors noting

(as mentioned in Section 2.6.3) that we compute the latter for the frequencies

indexed as jq for q = 1, ..., 2BT + 1.

We refer to z̃fP

jq as our pre-estimator of the DFT of the unobserved factors at

frequency jq for q = 1, ..., 2BT+1, the theoretical properties of which are presented

in Section 2.8.1 below.

2.7.2 Initialisation: Parameters

Next, we carry out a round of maximum likelihood estimation conditional on z̃fP

jq ,

for q = 1, ..., 2BT +1, to obtain our pre-estimator of the parameters of the model.
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The loadings pre-estimator ĉ
(0)
i is obtained by

ĉ
(0)
i,01

ĉ
(0)
i,11
...

ĉ
(0)
i,0r

ĉ
(0)
i,1r


=


2BT+1∑
q=1

(z̃fP

jq z̃fP
∗

jq ⊗

(
1 ei2πwjq

e−i2πwjq 1

))
+

(
z̃fP
jq

z̃fP
∗

jq
⊗

(
1 ei2πwjq

e−i2πwjq 1

))
−1

×
2BT+1∑
q=1

(z̃fP

jq z
x∗i
jq
⊗

(
1

e−i2πwjq

))
+

(
z̃fP
jq
z
x∗i
jq
⊗

(
1

e−i2πwjq

))
for each observed variable i = 1, ..., N .

The pre-estimator for the autoregressive coefficients â
(0)
k is obtained by

â
(0)
k1
...

â
(0)
kr

 =

{
2BT+1∑
q=1

[
z̃fP

jq z̃fP
∗

jq + z̃fP
jq

z̃fP∗

jq

]}−1 2BT+1∑
q=1

[
z̃fP

jq z̃fP
∗

jq e−i2πwjq + z̃fP
jq

z̃fP∗

jq
e−i2πwjq

]

for each factor k = 1, ..., r.

Given the pre-estimators ĉ
(0)
i and â

(0)
k , we estimate the variances by

Γ̂
(0)
ξi

=
1

2BT + 1

2BT+1∑
q=1

[[
zxijq −

(
ĉ

(0)
i,01 + ĉ

(0)
i,11e

−i2πwjq
)
z̃
fP1
jq
− ...−

(
ĉ

(0)
i,0r + ĉ

(0)
i,1re

−i2πwjq
)
z̃
fPr
jq

]
×
[
zxijq −

(
ĉ

(0)
i,01 + ĉ

(0)
i,11e

−i2πwjq
)
z̃
fP1
jq
− ...−

(
ĉ

(0)
i,0r + ĉ

(0)
i,1re

−i2πwjq
)
z̃
fPr
jq

]∗]
for i = 1, ..., N ; and

γ̂
(0)
k =

1

2BT + 1

2BT+1∑
q=1

[[
z̃
fPk
jq
−
(
â

(0)
k1 e
−i2πwjq z̃

fP1
jq

+ ...+ â
(0)
kr e
−i2πwjq z̃

fPr
jq

)]
×
[
z̃
fPk
jq
−
(
â

(0)
k1 e
−i2πwjq z̃

fP1
jq

+ ...+ â
(0)
kr e
−i2πwjq z̃

fPr
jq

)]∗]
for k = 1, ..., r.

74



To summarise, we are now able to construct the following key terms; that is, for

q = 1, ..., 2BT + 1, we obtain

(i) estimates of the transfer functions of the linear filters in our model

Ĉ(0)(e−i2πwjq ) and Â(0)(e−i2πwjq ),

by plugging in the computed pre-estimators into the relevant matrices of

interest;

(ii) estimates of the spectral density matrices of the idiosyncratic component

and of the innovation process in the factor equation,

Ĝ
(0)
ξ (wjq) and Ĝ(0)

u (wjq),

noting that at all frequencies these are given simply by Γ̂
(0)
ξ and Γ̂

(0)
u respec-

tively;

(iii) an estimate of the spectral density matrix of the factors

Ĝ
(0)
f (wjq),

given by
[
Â(0)−1

(e−i2πwjq )
]

Γ̂
(0)
u

[
Â(0)−1

(e−i2πwjq )
]∗

; and

(iv) an estimate of the spectral density of the factor estimation error

Ŵ (0)(wjq),

given by
[
Ĝ

(0)−1

f (wjq) + Ĉ(0)∗(e−i2πwjq )Ĝ
(0)−1

ξ (wjq)Ĉ
(0)(e−i2πwjq )

]−1

.
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2.7.3 Spectral EM Algorithm

We summarise the steps of our procedure by means of the pseudocode presented

in the table below. As regards notation used therein, let l (X,F ;θ) represent

the complete Whittle log-likelihood computed with respect to the coarse grid of

2BT + 1 frequencies. That is,

l (X,F ;θ) ' −1

2

2BT+1∑
q=1

log |Gξ(wjq)| −
1

2

2BT+1∑
q=1

zξ
∗

j G
−1
ξ (wjq)z

ξ
j

−1

2

2BT+1∑
q=1

log |Gu(wjq)| −
1

2

2BT+1∑
q=1

zu∗

j G
−1
u (wjq)z

u
j .

Accordingly, at iteration k ≥ 0, and given estimates θ̂(k), our “Q-function” is

given by

Q(θ; θ̂(k)) = Eθ̂(k) [l (X,F ;θ) |X] .

The procedure is as follows. Given, θ̂(k), we run the WK smoother to com-

pute an estimator of the DFT of the factors. This is then used to compute

the our Q-function, which constitutes the E step. Then, the Q-function is max-

imised with respect to θ to find θ̂(k+1), and this constitutes the M step. Once

we have convergence (according to a given criterion), we denote the final esti-

mate of the parameters as θ̂SpEM . We end with a final run of the WK smoother

to obtain an estimator of the DFT of the factors and convert this via the in-

verse DFT to get a time domain estimator of the factors denoted by f̂SpEMtq .
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Algorithm: Spectral EM Algorithm

Input : an N × T matrix of observations X; a threshold ε; pre-estimators of

parameters, collectively denoted by vector θ̂(0)

Output: an estimator of the parameters θ̂SpEM ; an estimator of the factors

f̂SpEMtq ; number of iterations until convergence kSpEM .

1 set k = 0;

2 while k ≥ 0 do

3 WK Smoother: compute Eθ̂(k)
[
zf
jq |X

]
denoted by ẑf (k)

jq

ẑf (k)

jq = Ŵ (k)(wjq)Ĉ
(k)∗(e−i2πwjq )Ĝ

(k)−1

ξ (wjq)z
x
jq ,

for q = 1, ..., 2BT + 1;

4 compute additional sufficient statistics

Eθ̂(k)
[
zf
jqz

f∗

jq |X
]

= ẑf (k)

jq ẑf (k)
∗

jq + Ŵ (k)(wjq), and

Eθ̂(k)
[
zf
jqz

x∗

jq |X
]

= ẑf (k)

jq zx∗

jq ,

for q = 1, ..., 2BT + 1;

5 E step: compute Q(θ; θ̂(k));

6 M step: compute θ̂(k+1) = arg maxθQ(θ; θ̂(k));

7 if
|l(X,F ;θ̂(k+1))−l(X,F ;θ̂(k))|

1
2(|l(X,F ;θ̂(k+1))|+|l(X,F ;θ̂(k))|) ≥ ε then

8 reset k = k + 1;

9 else

10 define θ̂SpEM = θ̂(k+1);

11 define kSpEM = k + 1;

12 WK Smoother: compute ẑf (k+1)

jq for q = 1, ..., 2BT + 1;

13 Inverse DFT: compute

f̂SpEMtq =
1√

2BT + 1

2BT+1∑
q=1

ẑf (k+1)

jq ei2πwjq tq ,

for q = 1, ..., 2BT + 1;

14 break;

15 end

16 end
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2.8 Spectral EM Algorithm:

Asymptotic Properties

In this section, we present convergence results (as N, T →∞) for our estimators

based on the various building blocks outlined in previous sections.

2.8.1 Initialisation: Factors

We have the following result on the DFT of the factors obtained using Dynamic

PCA.

Proposition 2.5. Under Assumptions A1-A9, it holds that as N and T →∞,

max
1≤q≤2BT+1

∥∥∥z̃fP

jq − zf
jq

∥∥∥ = Op

(
max

(
1√
N
,

1√
B2κ
T

,

√
BT logBT

T

))
.

Proof. See Appendix 2.10.6.

Proposition 2.5 is equivalent to the key result in Forni et al. (2017, Equation 1.7).

The rates are effectively the same.

2.8.2 Initialisation: Parameters

We have the following result on the loadings pre-estimators obtained subsequent

to an initial round of maximum likelihood estimation given our pre-estimator of

the DFT of the factors (as referred to in Section 2.8.1 above).

Proposition 2.6. Under Assumptions A1-A9, as N and T → ∞, it holds for

any κ > 1/2 that

∥∥∥ĉ(0)
i − ci

∥∥∥ = Op

(
max

(
1√
N
,

1√
BT

,

√
BT logBT

T

))
,
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uniformly (as defined in Remark 2) with respect to i where i = 1, ..., N .

Proof. See Appendix 2.10.7.

The intuition for Proposition 2.6 is as follows. Our maximum likelihood estimator

(given the pre-estimator of the DFT of the factors) is computed over 2BT + 1

points. It follows from Proposition 2.4 that the associated error is Op(1/
√
BT ).

Upon combining this with Proposition 2.5, we see that the latter term dominates

Op(1/
√
B2κ
T ) term therein whenever κ > 1/2, so the result in Proposition 6

follows. Indeed, for all commonly used lag windows, κ is typically 1 or 2 (see, for

instance, Priestley (1982, p. 463)). For brevity, we do not make further mention

of κ hereafter.

We return briefly to the discussion in Remark 3 above. It is clear now from

Proposition 2.6 that the extra Op(1/N) term in the estimation error arising as

a result of focussing on the Q-function rather than the likelihood function is of

no practical importance for this study. It will inevitably be dominated by the

Op(1/
√
N) terms emanating not only from the Dynamic PCA estimation error

in Proposition 2.5 but also the WK smoother to be considered in Proposition 2.7

below.

2.8.3 Final Results

We denote our final loadings estimators, obtained when the Spectral EM algo-

rithm is terminated, as

ĉSpEMi = ĉ
(kSpEM)
i

for i = 1, ..., N .

Proposition 2.7. Under Assumptions A1-A9, as N and T →∞, it holds that

∥∥∥ĉSpEMi − ci
∥∥∥ = Op

(
max

(
1√
N
,

1√
BT

,

√
BT logBT

T

))
,

uniformly (as defined in Remark 2) with respect to i for i = 1, ..., N .
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Proof. See Appendix 2.10.8.

Next, we define, for i = 1, ..., N ,

ĉSpEMi,· (L)

as the the r×1 column vector containing the ith row of the matrix lag polynomial

C(L) estimated using the Spectral EM procedure. Analogously, we have for

q = 1, ..., 2BT + 1,

ĉSpEMi,· (e−i2πwjq )

as the associated transfer functions.

Then, we can express as the scalar quantity

zχijq = c′i,·(e
−i2πwjq )zf

jq

for q = 1, ..., 2BT + 1. Analogously, we define

ẑ
χSpEMi
jq

= ĉSpEM
′

i,· (e−i2πwjq )ẑfSpEM

jq

as our corresponding estimator of the DFT of the ith common component.

Proposition 2.8. Under Assumptions A1-A9, as N and T →∞, it holds that

∣∣∣ẑχSpEMi
jq

− zχijq
∣∣∣ = Op

(
max

(
1√
N
,

1√
BT

,

√
BT logBT

T

))
,

uniformly (as defined in Remark 2) with respect to i for i = 1, ..., N and q =

1, ..., 2BT + 1.

Proof. See Appendix 2.10.9.
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Finally, we let the scalar quantities obtained via the Inverse DFTs,

χits =
1√

2BT + 1

2BT+1∑
q=1

zχijq e
i2πwjq , and

χ̂SpEMits
=

1√
2BT + 1

2BT+1∑
q=1

ẑ
χSpEMi
jq

ei2πwjq

for i = 1, ..., N and s = 1, ..., 2BT + 1 represent the theoretical and estimated

values of the common component respectively.19

Proposition 2.9. Under Assumptions A1-A9, as N and T →∞, it holds that

∣∣∣χ̂SpEMits
− χ̂its

∣∣∣ = Op

(
max

(
1√
N
,

1√
BT

,

√
BT logBT

T

))
,

pointwise with respect to i for i = 1, ..., N and s = 1, ..., 2BT + 1.

Proof. See Appendix 2.10.10.

2.8.4 Discussion of Results

In this section, we comment on our finding above that Propositions 2.6 and 2.7

offer the same convergence rate. In other words, we certainly do not claim to

have demonstrated an improvement in speed of convergence for our EM algo-

rithm based procedure over and above a principal components based approach.

Nevertheless, we believe that our finding is interesting in its own right for the

following reasons.

First, specific rates notwithstanding, our work accords an extensive degree of

theoretical support to our main precursor, Fiorentini et al. (2018), which albeit

ground-breaking in the frequency domain literature for dynamic approximate

19We remind the reader that, as discussed in Section 2.6.3, the indexation ts for s =
1, ..., 2BT + 1 refers to the relatively coarse temporal grid that arises due to the necessary
loss in resolution as a result of smoothing techniques required for non-parametric estimation
of the spectral density matrix. The notation has been switched from tq to ts simply to avoid
conflicting with the indexation over the corresponding coarse frequency grid that appears on
the right-hand side of the given expressions.
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factor models, is completely silent on the question of asymptotic properties. The

paper chooses to focus instead on considerations of computational efficiency. In

this regard, our study addresses an important lacuna in the literature. Indeed,

Fiorentini et al. (2018) remarks:

[...] an extension of the Doz et al. (2012) analysis that looks at

the properties of our algorithm and the resulting ML estimators in

approximate factor models in which the cross-sectional dimension is

non-negligible relative to the time series dimension would constitute

a very valuable addition. In fact, a very large number of series might

constitute a computational blessing in this framework, the rationale

being that for large N the unobservable factors will be consistently

estimated by the Kalman-Wiener-Kolmogorov filter [...]. (Fiorentini

et al., 2018, p.269, emphasis added)

Second, our study establishes formally that convergence rates obtained at initial-

isation are at least preserved through our spectral EM procedure. Indeed, the

same finding is celebrated in the time domain analogue of our study, Barigozzi

and Luciani (2022). The paper states:

[...] although potentially subject to mis-specification errors, we show

that under assumptions similar to those made for PC analysis [...], the

EM estimators of the loadings and the factors have the same rate of

consistency as those of the PC estimators.20 (Barigozzi and Luciani,

2022, p.6, emphasis added)

In fact, arguably the most influential work in this area for the entire decade

prior to Barigozzi and Luciani (2022) was Doz et al. (2012), which was only

able to establish a relatively slow rate of consistency of the factors estimated

via the EM algorithm with respect to PCA. Contrast, for example, Doz et al.

(2012, Proposition 1) with Barigozzi and Luciani (2022, Proposition 3). Indeed,

Barigozzi and Luciani (2022, p.38) states, “[...] our result confirms the conjecture

by Doz et al. (2012), based on numerical studies, that, in terms of consistency

rates, the EM estimator behaves asymptotically as the PC estimator.”

20PC is the acronym used in Barigozzi and Luciani (2022) for “principal components”.
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From this perspective, we believe that by establishing rates in line with the bench-

mark, we have developed a frequency domain counterpart (for at least some of the

results) of Barigozzi and Luciani (2022). We believe this is a non-trivial exercise.

Third, the availability (since 200621) of a formally outlined procedure backed by

consistency rates in Doz et al. (2012) (albeit not the sharpest possible) led to a

resurgence of interest in the use of likelihood-based methods for factor models for

high-dimensional time series. We will very shortly outline some reasons for the

popularity of such methods, but let us first consider examples from the literature.

With respect to theory, studies that build upon the contributions of Doz et al.

(2012) include (but are not limited to) Bai and Li (2012), Ng et al. (2015),

Jungbacker and Koopman (2015), Sundberg and Feldmann (2016), Bai and Li

(2016), Bai and Liao (2016), and of course, Barigozzi and Luciani (2022). These

papers develop the theory for various likelihood-based procedures for factor model

structures in high-dimensional settings.

With respect to applications, studies that leverage and, in some cases, extend the

approach of Doz et al. (2012) include (but are not limited to):

(i) Reis and Watson (2010), Luciani (2020), and Barigozzi and Luciani (2021)

for constructing indices of economic activity;

(ii) Marcellino and Schumacher (2010), Jungbacker et al. (2011), Bańbura and

Modugno (2014), and Marcellino and Sivec (2016) for addressing challenges

associated with missing or ragged-edge data22;

(iii) Giannone et al. (2008), Bańbura et al. (2013), Modugno (2013), and Barnett

et al. (2016) for nowcasting;

(iv) Bańbura et al. (2015) for computation of conditional forecasts23;

21The results of Doz et al. (2012) were first made publicly available at least as far back as
2006 prior to official publication in The Review of Economics and Statistics in 2012. See, for
example, the working paper Doz et al. (2006) freely available from the European Central Bank
(ECB) website since September 2006.

22Datasets with a ragged-edge refer to unbalanced panels that emerge from publication lags
of high- and low-frequency indicators.

23These are defined as projections of a set of variables of interest on future paths of some
other variables in dynamic systems.
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(v) Coroneo et al. (2016), Altavilla et al. (2017), Delle Chiaie et al. (2022), and

Barigozzi et al. (2021a) for estimating models with block structures;

(vi) Juvenal and Petrella (2015), and Luciani (2015) for impulse response anal-

ysis; and

(vii) Linton et al. (2022) for financial risk management.

Our simple point is that there is clearly a vast amount of interest in using the

EM algorithm as an estimation strategy with respect to factor models in high-

dimensional settings, and it stands to reason that a serious investigation of the-

oretical properties is of paramount importance.

We naturally segue to our next question of interest. That is, what indeed is

the appeal of the EM algorithm (or likelihood-based procedures in general) to

researchers and practitioners alike? The answers offered by Barigozzi and Luciani

(2022) are insightful:

The EM algorithm has two main advantages with respect to PC es-

timation. First, the EM algorithm allows the user to impose restric-

tions on the model, thus reflecting any prior knowledge about the

data. Indeed, as mentioned above, on the one hand, the state-space

formulation and the related Kalman smoother in the E-step allow to

impose a variety of different dynamics on the states and to deal with

data irregularly spaced in time. On the other hand, in the M-step,

we can impose restrictions on the parameters. Although these tasks

are in principle possible also by means of PC analysis [...24], dealing

with missing data and implementing parameter constraints via the

EM is simpler and more common in the literature [...]. (Barigozzi and

Luciani, 2022, p.6–7)

The paper continues:

Second, the EM algorithm allows us to model the dynamic evolution

of the data explicitly. Indeed, we show that when we estimate a DFM

on a dataset of US macroeconomic times series, the EM algorithm

24References have been omitted.
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produces estimates of the common component that track the dynamics

of the observed series better than the PC estimator. This is especially

true for those series displaying periods of high persistence and regime

changes, like inflation and interest rates, thus suggesting that the EM

might be more robust to local deviations from stationarity. (Barigozzi

and Luciani, 2022, p.7)

Further, while we relegate the question of efficiency to future study, there is much

evidence to suggest that the EM procedure harbours efficiency gains. Certainly

in the time domain, for instance, Barigozzi and Luciani (2022) finds that the

loadings estimator of the EM algorithm is asymptotically as efficient as the prin-

cipal components estimator, while the asymptotic covariance of the estimated

factors depends on the degree of cross-sectional correlation in the idiosyncratic

component. The paper states:

In particular, if we strengthen the classical assumption of weak cross-

correlation to impose sparsity of the idiosyncratic covariance matrix,

the EM estimator of the factors becomes more efficient than the PC

estimator. (Barigozzi and Luciani, 2022, p.6)

Finally, there is one specific additional benefit accruing to us in the frequency

domain, albeit not in the time domain setting of Barigozzi and Luciani (2022).

Specifically, when it comes to forecasting, our spectral EM procedure accords us

with a useful advantage over-and-above dynamic PCA. Indeed, it is well-known

that dynamic PCA produces an estimator of the common component χit that is

consistent but is based on filters that are two-sided, involving not only present

and past values but also future values of xt (see, for instance, Forni et al., 2000,

Equation 9). This creates no problem in the central part of the sample, but

the performance of the estimator of χit deteriorates as t approaches 1 or T . For

this reason, dynamic PCA cannot be used for forecasting. Various studies have

attempted to address this (Forni et al., 2005, 2015, 2017; Forni and Lippi, 2011).

In similar fashion, we too are able to furnish estimators that do not necessitate

the use of two-sided filters and thereby may indeed be used for forecasting.

For all the reasons above, we believe that our findings represent a significant

85



contribution to the literature. Indeed, it is our hope that availability of bench-

mark rates for the spectral EM procedure will also galvanise analogous studies in

the frequency domain where many sophisticated dynamic specifications (see, for

example, Fiorentini et al. (2018)) may be accommodated but research remains

scarce.

2.9 Simulations

2.9.1 Model Specification

For t = 1, ..., T , we simulate data from a single-lag r-factor model:

xt = C(L)ft +
√
η � εt,

A(L)ft = ut with ut ∼ iid N(0, Ir),

B(L)εt = νt with νt ∼ iid N(0,T),

where25 in particular,

xt is the N -dimensional vector of observables;

ft is the r-dimensional vector of unobserved factors;

C(L) =
[
c01 + c11L ... c0r + c1rL

]
;

Akl(L) =

1− aL if k = l

0 if k 6= l
for k, l = 1, ..., r;

Bij(L) =

1− bL if i = j

0 if i 6= j
for i, j = 1, ..., N ;

Tij = φ|i−j| for i, j = 1, ..., N.

We note that c0k and c1k are N × 1 vectors of loadings corresponding to the kth

factor and its lag. Specifically, for each i = 1, ..., N and k = 1, .., r, we choose

25We use � to represent the Hadamard (or element-wise) product between two vectors.
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loadings ci,0k and ci,1k as draws from the N(0, 1) distribution with the restriction

that
∣∣∣ ci,0kci,1k

∣∣∣ > 1 in order to guarantee invertibility of the MA polynomial in the

equation for the observables.

We set the scalar autoregressive coefficient a = 0.7, and draw initial values for

the factor processes, fk,0 for all k, from the N(0, 1/(1− a2)) distribution.

The constant η is an N × 1 vector that allows us to control the proportion of

the variance of xt accounted for by the idiosyncratic component. Suppose we

want this noise-to-signal ratio to be ρ. We can impose the latter by setting

ηi = ρ
1−ρ(1 − b2)Γχi where Γχi is the variance of the ith common component.

Specifically, we set ρ = 0.5.

The Toeplitz matrix T allows us to model cross-sectional correlation in the id-

iosyncratic component through parameter. Serial correlation in the idiosyncratic

component is governed by the autoregressive coefficient. We recall that our

spectral EM estimation procedure does not explicitly account for cross-sectional

and/or serial correlation in the idiosyncratic component. Thus, the parameters

φ and b allow us to assess the robustness of our estimators with respect to this

form of mis-specification.

The procedure is terminated by looking at the convergence statistic

CStatm =

∣∣∣l(X,F ; θ̂(m))− l(X,F ; θ̂(m−1))
∣∣∣

1
2

(∣∣∣l(X,F ; θ̂(m))
∣∣∣+
∣∣∣l(X,F ; θ̂(m−1))

∣∣∣)
where θ(m) refers to the parameter estimates obtained from the mth iteration. We

stop after M iterations if CStatM < 10−4.

2.9.2 Illustrative Example

In this section, we present an illustration of a single run of our procedure. As

regards control parameters, we set N = 100, T = 200, r = 2, φ = 0.5, b = 0.3 and

estimate common components in the manner outlined in the previous paragraph.

The size of our lag window is set to 2× b
√
T c.
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For comparison, we also estimate common components using three other ap-

proaches, namely, Static Principal Components Analysis or “SPCA” (see, for

example, Stock and Watson, 2002a); the time-domain EM algorithm or “DGR”

(see Doz et al., 2011), and Dynamic Principal Components Analysis or “DPCA”

(see Forni et al., 2000).

We note that in order to facilitate a convenient comparison across all methods,

i.e. with reference to the original temporal grid, we compute the common com-

ponent in a manner analogous to Forni et al. (2000). That is, we obtain the filter

K̂SpEM
i (L) such that K̂SpEM

i (e−i2πwjq ) is the product of the transfer function of

the loadings and the transfer function of the WK smoother. Indeed,

K̂SpEM
i (e−i2πwjq ) = ĉSpEM

′

i,· (e−i2πwjq )Ŵ SpEM(wjq)Ĉ
SpEM∗(e−i2πwjq )ĜSpEM−1

ξ (wjq)

for q = 1, ..., 2BT + 1. Then, we simply convolve K̂SpEM
i (L) with the data for

the i-th series for i = 1, ..., N and this allows for interpolation on the original

temporal grid.

We are then able to measure the performance of each of the four estimators with

the following mean-square error criterion:

MSE =

∑T
t=1

∑N
i=1(χ̂it − χit)2∑T

t=1

∑N
i=1 χ

2
it

where χ̂it and χit represent respectively the estimated and true common compo-

nent for series i at time t. Of course, the lower is MSE, the better.

The graphs below depict the common component estimates for the first 2 series

(chosen simply for illustrative purposes).
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Figure 2.1: Common Component for Series 1 (SPCA)

Figure 2.2: Common Component for Series 1 (DGR)
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Figure 2.3: Common Component for Series 1 (DPCA)

Figure 2.4: Common Component for Series 1 (SpEM)
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Figure 2.5: Common Component for Series 2 (SPCA)

Figure 2.6: Common Component for Series 2 (DGR)
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Figure 2.7: Common Component for Series 2 (DPCA)

Figure 2.8: Common Component for Series 2 (SpEM)
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Results appear to be in accordance with what one might expect. First, it appears

that the two time-domain methods outperform the two frequency-domain meth-

ods. We believe this is a manifestation of the relative loss in resolution inherent

in frequency-domain methods arising due to the need for non-parametric spec-

tral density estimation. That is, for a given T , the effective sample size in the

frequency-domain reduces to 2BT +1 < T points. Second, DGR broadly seems to

improve upon SPCA; and correspondingly, SpEM seems to improve upon DPCA.

In other words, the two iterative methodologies DGR and SpEM represent gains

over and above their one-shot pre-estimators SPCA and DPCA respectively. Of

course, our visual analysis is based on only the first two series. By examining the

MSE figures we obtained for this illustration, we can also summarise the findings

for all N series. Indeed, the MSE for SPCA and DGR obtained were 0.48 and

0.17 respectively and for DPCA and SpEM were 0.65 and 0.48 respectively.

We note as a final point of interest that convergence for SpEM was achieved in

16 iterations in this illustration. The evolution of our convergence statistic is

depicted below.

Figure 2.9: Convergence of the SpEM procedure

We conduct a more extensive simulation analysis in the next section.
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2.9.3 Monte Carlo Study

Throughout, we let N ∈ {50, 70, 100, 150}, T ∈ {70, 100, 150, 200, 300}, r = 2,

φ ∈ {0, 0.5}, and b ∈ {0, 0.3}. We consider 100 replications for each individual

configuration of these control parameters. Subsequently, we evaluate our estima-

tors by looking at averages of the MSE performance statistic over all repetitions.

Tables 2.1-2.4 report results for cases where innovations are modelled as Gaussian.

Specifically, Table 2.1 corresponds to the case in which the estimating model is

well-specified; that is, the idiosyncratic component is neither cross-sectionally nor

serially correlated (φ = 0, b = 0). On the other hand, Table 2.2 reports results for

the case in which the estimating model is mis-specified; that is, the idiosyncratic

component is cross-sectionally correlated (φ = 0.5). Table 2.3 considers serial

correlation in the idiosyncratic component (b = 0.3). Table 2.4 considers both

cross-sectional and serial correlation in the idiosyncratic component (φ = 0.5, b =

0.3).

Again, results conform to what we expect. We summarise our findings below.

(i) Given the size of the cross-section N , the quality of SpEM estimates im-

proves as the sample size T increases. SpEM estimates also improve with

joint increases in N and T .

(ii) Given N and T , the performance of SpEM deteriorates when we move from

considering a well-specified estimating model to a mis-specified one (for

example, if we move from Table 2.1 to Table 2.4).

(iii) For any given N and T , the two time-domain procedures SPCA and DGR

outperform their frequency-domain counterparts DPCA and SpEM respec-

tively.

(iv) As regards the time-domain procedures, DGR outperforms SPCA for any

given N and T . As regards the frequency-domain procedures, SpEM out-

performs DPCA for any given N and T . This demonstrates that there are

additional gains associated with the iterative procedures over and above

their respective one-shot pre-estimators.
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Tables 2.5-2.8 report analogous results for the case in which innovations are drawn

from the Student’s t-distribution with 4 degrees of freedom. We consider this case

in order to further assess the performance of SpEM under mis-specification in the

context of the true data-generating process following a relatively heavy-tailed dis-

tribution. In general, the procedure works as expected. Indeed, the performance

of SpEM (along with the other three procedures) deteriorates somewhat relative

to the Gaussian case but the overall patterns described above remain broadly

unchanged.
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Table 2.1: Simulation Results - MSEs
φ = 0, b = 0, Gaussian innovations

SPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.4839 0.4551 0.4368 0.4191 0.4094
N=70 0.4202 0.3798 0.3498 0.3318 0.3236
N=100 0.3283 0.2998 0.2757 0.2562 0.2299
N=150 0.2514 0.2263 0.1900 0.1753 0.1564

DGR
T=70 T=100 T=150 T=200 T=300

N=50 0.2006 0.1635 0.1441 0.1309 0.1162
N=70 0.1707 0.1367 0.1147 0.1000 0.0915
N=100 0.1468 0.1153 0.0918 0.0815 0.0693
N=150 0.1290 0.1009 0.0758 0.0667 0.0543

DPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.6826 0.6778 0.6511 0.6415 0.6347
N=70 0.6899 0.6624 0.6438 0.6394 0.6276
N=100 0.6745 0.6586 0.6403 0.6286 0.6193
N=150 0.6763 0.6533 0.6331 0.6236 0.6114

SpEM
T=70 T=100 T=150 T=200 T=300

N=50 0.7258 0.6918 0.5503 0.5043 0.5724
N=70 0.5807 0.5007 0.4930 0.4567 0.4519
N=100 0.5295 0.4647 0.4424 0.4403 0.4178
N=150 0.4691 0.4418 0.4239 0.4070 0.3973

96



Table 2.2: Simulation Results - MSEs
φ = 0.5, b = 0, Gaussian innovations

SPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.5654 0.5195 0.5035 0.4956 0.4854
N=70 0.4811 0.4367 0.4166 0.4091 0.3990
N=100 0.3736 0.3542 0.3253 0.3195 0.3040
N=150 0.3007 0.2653 0.2404 0.2196 0.2075

DGR
T=70 T=100 T=150 T=200 T=300

N=50 0.2638 0.2366 0.1992 0.1959 0.1746
N=70 0.2234 0.1812 0.1505 0.1424 0.1293
N=100 0.1764 0.1429 0.1178 0.1045 0.0965
N=150 0.1495 0.1163 0.0942 0.0821 0.0706

DPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.6926 0.6810 0.6564 0.6493 0.6359
N=70 0.6846 0.6680 0.6546 0.6396 0.6312
N=100 0.6796 0.6587 0.6454 0.6340 0.6232
N=150 0.6751 0.6623 0.6385 0.6250 0.6155

SpEM
T=70 T=100 T=150 T=200 T=300

N=50 0.6489 0.6466 0.7556 0.5583 0.5247
N=70 0.5962 0.5623 0.5197 0.5286 0.4884
N=100 0.5307 0.4951 0.4830 0.4632 0.4419
N=150 0.4974 0.4672 0.4486 0.4251 0.4063
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Table 2.3: Simulation Results - MSEs
φ = 0, b = 0.3, Gaussian innovations

SPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.5303 0.4770 0.4582 0.4271 0.4167
N=70 0.4287 0.3956 0.3590 0.3422 0.3271
N=100 0.3626 0.3276 0.2904 0.2688 0.2465
N=150 0.3128 0.2570 0.2077 0.1885 0.1718

DGR
T=70 T=100 T=150 T=200 T=300

N=50 0.2492 0.1967 0.1657 0.1438 0.1278
N=70 0.2112 0.1638 0.1338 0.1145 0.1024
N=100 0.1855 0.1437 0.1117 0.0943 0.0791
N=150 0.1734 0.1286 0.0935 0.0779 0.0633

DPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.6842 0.6663 0.6439 0.6306 0.6254
N=70 0.6735 0.6520 0.6387 0.6283 0.6166
N=100 0.6742 0.6546 0.6279 0.6188 0.6094
N=150 0.6634 0.6481 0.6238 0.6176 0.6050

SpEM
T=70 T=100 T=150 T=200 T=300

N=50 0.7057 0.6906 0.5936 0.5656 0.5256
N=70 0.6108 0.5685 0.5170 0.4972 0.4646
N=100 0.5455 0.5269 0.4775 0.4677 0.4390
N=150 0.5095 0.4831 0.4513 0.4352 0.4095
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Table 2.4: Simulation Results - MSEs
φ = 0.5, b = 0.3, Gaussian innovations

SPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.5907 0.5493 0.5203 0.5009 0.4962
N=70 0.4829 0.4592 0.4222 0.4247 0.3937
N=100 0.4205 0.3701 0.3476 0.3341 0.3130
N=150 0.3496 0.2926 0.2639 0.2390 0.2197

DGR
T=70 T=100 T=150 T=200 T=300

N=50 0.3145 0.2538 0.2242 0.1967 0.1827
N=70 0.2544 0.2004 0.1689 0.1542 0.1372
N=100 0.2159 0.1675 0.1341 0.1190 0.1023
N=150 0.1891 0.1445 0.1124 0.0946 0.0804

DPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.6850 0.6679 0.6534 0.6387 0.6256
N=70 0.6837 0.6570 0.6372 0.6295 0.6226
N=100 0.6684 0.6524 0.6328 0.6246 0.6136
N=150 0.6695 0.6410 0.6272 0.6163 0.6073

SpEM
T=70 T=100 T=150 T=200 T=300

N=50 0.9155 0.6861 0.9196 0.6165 0.5575
N=70 0.6309 0.5841 0.5441 0.5528 0.5251
N=100 0.5661 0.5328 0.5097 0.4882 0.4587
N=150 0.5461 0.5004 0.4787 0.4547 0.4380
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Table 2.5: Simulation Results - MSEs
φ = 0, b = 0, Student’s t innovations

SPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.4077 0.3743 0.3593 0.3360 0.3239
N=70 0.3173 0.2871 0.2811 0.2603 0.2586
N=100 0.2512 0.2275 0.2080 0.1862 0.1754
N=150 0.1991 0.1678 0.1460 0.1269 0.1149

DGR
T=70 T=100 T=150 T=200 T=300

N=50 0.1792 0.1501 0.1291 0.1192 0.1083
N=70 0.1463 0.1216 0.1071 0.0956 0.0878
N=100 0.1294 0.1031 0.0880 0.0791 0.0709
N=150 0.1164 0.0958 0.0757 0.0674 0.0587

DPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.7280 0.7260 0.7150 0.7052 0.7089
N=70 0.7283 0.7199 0.7087 0.7120 0.6997
N=100 0.7295 0.7191 0.7061 0.6968 0.6970
N=150 0.7230 0.7118 0.7056 0.6991 0.7004

SpEM
T=70 T=100 T=150 T=200 T=300

N=50 0.6831 0.6335 0.6112 0.5954 0.5805
N=70 0.6095 0.5866 0.5554 0.5653 0.5501
N=100 0.5790 0.5667 0.5484 0.5204 0.5192
N=150 0.5646 0.5332 0.5350 0.5135 0.5170
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Table 2.6: Simulation Results - MSEs
φ = 0.5, b = 0, Student’s t innovations

SPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.4422 0.4247 0.4147 0.4127 0.3902
N=70 0.3753 0.3507 0.3289 0.3186 0.3086
N=100 0.3069 0.2717 0.2586 0.2414 0.2292
N=150 0.2362 0.2019 0.1747 0.1572 0.1468

DGR
T=70 T=100 T=150 T=200 T=300

N=50 0.2288 0.1879 0.1787 0.1689 0.1511
N=70 0.1864 0.1533 0.1357 0.1255 0.1147
N=100 0.1558 0.1257 0.1076 0.0999 0.0885
N=150 0.1339 0.1070 0.0896 0.0789 0.0718

DPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.7293 0.7203 0.7241 0.7128 0.7059
N=70 0.7305 0.7187 0.7145 0.7106 0.7037
N=100 0.7302 0.7190 0.7099 0.7039 0.7033
N=150 0.7215 0.7130 0.7064 0.7017 0.7018

SpEM
T=70 T=100 T=150 T=200 T=300

N=50 0.6874 0.6410 0.6292 0.6229 0.5991
N=70 0.6515 0.6097 0.5963 0.5932 0.5764
N=100 0.6069 0.5898 0.5675 0.5549 0.5578
N=150 0.5778 0.5585 0.5517 0.5417 0.5409
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Table 2.7: Simulation Results - MSEs
φ = 0, b = 0.3, Student’s t innovations

SPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.4418 0.4125 0.3849 0.3676 0.3618
N=70 0.3843 0.3404 0.3109 0.2765 0.2796
N=100 0.3309 0.2724 0.2512 0.2187 0.2030
N=150 0.2826 0.2094 0.1675 0.1513 0.1258

DGR
T=70 T=100 T=150 T=200 T=300

N=50 0.2163 0.1797 0.1485 0.1319 0.1211
N=70 0.1931 0.1515 0.1232 0.1085 0.0966
N=100 0.1786 0.1308 0.1056 0.0921 0.0779
N=150 0.1625 0.1158 0.0906 0.0772 0.0654

DPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.7323 0.7210 0.7111 0.7051 0.7093
N=70 0.7278 0.7261 0.7110 0.6991 0.7016
N=100 0.7241 0.7123 0.7093 0.7016 0.6997
N=150 0.7238 0.7104 0.7007 0.6918 0.6910

SpEM
T=70 T=100 T=150 T=200 T=300

N=50 0.7016 0.6589 0.6302 0.6111 0.6127
N=70 0.6555 0.6476 0.6043 0.5882 0.5803
N=100 0.6255 0.6034 0.5796 0.5672 0.5664
N=150 0.6061 0.5767 0.5555 0.5468 0.5358
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Table 2.8: Simulation Results - MSEs
φ = 0.5, b = 0.3, Student’s t innovations

SPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.4989 0.4666 0.4558 0.4298 0.4259
N=70 0.4240 0.3985 0.3667 0.3489 0.3431
N=100 0.3686 0.3220 0.2903 0.2649 0.2536
N=150 0.2961 0.2522 0.2070 0.1822 0.1628

DGR
T=70 T=100 T=150 T=200 T=300

N=50 0.2766 0.2289 0.2038 0.1790 0.1679
N=70 0.2240 0.1838 0.1599 0.1392 0.1272
N=100 0.1991 0.1556 0.1245 0.1111 0.0995
N=150 0.1724 0.1317 0.1027 0.0885 0.0777

DPCA
T=70 T=100 T=150 T=200 T=300

N=50 0.7354 0.7207 0.7121 0.7041 0.7085
N=70 0.7324 0.7184 0.7153 0.7074 0.7008
N=100 0.7323 0.7207 0.7074 0.7038 0.6950
N=150 0.7172 0.7109 0.7059 0.7034 0.6890

SpEM
T=70 T=100 T=150 T=200 T=300

N=50 0.8301 0.6879 0.6560 0.6450 0.6378
N=70 0.6894 0.6494 0.6235 0.6202 0.6006
N=100 0.6524 0.6198 0.5984 0.5921 0.5697
N=150 0.6102 0.5898 0.5915 0.5735 0.5480
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2.10 Appendix – Proofs for Chapter 2

2.10.1 Proof of Proposition 2.1

First, we note that under Assumptions A1-A3, the matrix Gf (ω) is positive defi-

nite with real, finite and distinct eigenvalues. Next, we observe that

N−1Gχ(ω) = N−1C(e−i2πω)Gf (ω)C∗(e−i2πω)

= N−1C(e−i2πω)Pf (ω)Λf (ω)P ∗f (ω)C∗(e−i2πω)

= N−1Gχ(ω)G∗χ(ω)

where Gχ(ω) is defined Gχ(ω) = C(e−i2πω)Pf (ω)Λ
1/2
f (ω). Then, for ω ∈ [0, 1),

G∗χ(ω)Gχ(ω)/N − Λf (ω)

= Λ
1/2
f (ω)P ∗f (ω)C∗(e−i2πω)C(e−i2πω)Pf (ω)Λ

1/2
f (ω)/N − Λ

1/2
f (ω)P ∗f (ω)Pf (ω)Λ

1/2
f (ω)

= Λ
1/2
f (ω)P ∗f (ω)

[
C∗(e−i2πω)C(e−i2πω)/N − Ir

]
Pf (ω)Λ

1/2
f (ω),

so that, by properties of Gf (ω), there exists a finite positive constant Mf such

that

sup
ω
‖G∗χ(ω)Gχ(ω)/N − Λf (ω)‖

≤ sup
ω

(
‖Λ1/2

f (ω)P ∗f (ω)‖
)2

sup
ω
‖C∗(e−i2πω)C(e−i2πω)/N − Ir‖

≤Mf sup
ω
‖C∗(e−i2πω)C(e−i2πω)/N − Ir‖.

Then by part (ii) of Assumption A3, clearly

lim
N→∞

sup
ω
‖G∗χ(ω)Gχ(ω)/N − Λf (ω)‖ = 0.

We note that Λf (ω) is in fact diagonal and has r non-zero, finite and distinct

entries due to Assumptions A1, A2, and part (i) of Assumption A3. Since the r

largest eigenvalues of N−1Gχ(ω) = N−1Gχ(ω)G∗χ(ω) are of course equal to the r

eigenvalues of N−1G∗χ(ω)Gχ(ω), we have that as N → ∞, the r largest dynamic
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eigenvalues of χt are the same as N times the r finite, non-zero and distinct

dynamic eigenvalues of ft. We thus have our needed conditions on asymptotic

divergence (linearly with N) as well as on separation of the dynamic eigenvalues

of the common component.

2.10.2 Proof of Proposition 2.2

In this section, we assume the true parameters are known. We prove that the

factors can be consistently estimated, as N becomes larger, by the WK smoother.

We begin with the definition of the WK smoother,

zfW

j = Gf (ωj)C
∗(e−i2πωj)G−1

x (ωj)z
x
j ,

for a given frequency ωj.

Step 1: Application of the Woodbury Formula

We recall from Section 2.4.1.2 that due to the Woodbury formula we can express

the WK smoother as

zfW

j = W (ωj)C
∗(e−i2πωj)G−1

ξ (ωj)z
x
j

where W (ωj) = [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1.

Step 2: Decomposition of zfW

j

Plugging back in for W (ωj), we have

zfW

j = [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1C∗(e−i2πωj)G−1
ξ (ωj)z

x
j .

The next step is to express the inverse, that is the W (ωj) term, as the sum of

two terms. In order to proceed, we first present the following matrix identities
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for square invertible matrices A, B, C and D:

(i) A−1 −B−1 = A−1(B − A)B−1

Proof.

A−1 −B−1 = A−1BB−1 − A−1AB−1

= A−1(BB−1 − AB−1)

= A−1(B − A)B−1

(ii) (C +D)−1 = D−1 − (C +D)−1CD−1

Proof.

(C +D)−1 = (C +D)−1 −D−1 +D−1

= (C +D)−1[D − (C +D)]D−1 +D−1

(using matrix identity (i))

= D−1 − (C +D)−1CD−1

We apply matrix identity (ii) to the previously obtained expression for zfW

j , treat-

ing G−1
f (ωj) as C and C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj) as D:

zfW

j =

(
[C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1

−[G−1
f (ωj)+C

∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1G−1

f (ωj)[C
∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1

)
× C∗(e−i2πωj)G−1

ξ (ωj)z
x
j .

Expanding by bringing the final multiplicative term inside the large parentheses,
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we have

zfW

j = [C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1C∗(e−i2πωj)G−1

ξ (ωj)z
x
j

−[G−1
f (ωj)+C

∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1G−1

f (ωj)[C
∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1

× C∗(e−i2πωj)G−1
ξ (ωj)z

x
j .

Let us temporarily denote the first term of the previous summation by z
fW (ITemp)
j

and the second term by z
fW (IITemp)
j . That is,

zfW

j = z
fW (ITemp)
j − z

fW (IITemp)
j ,

where

z
fW (ITemp)
j = [C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1C∗(e−i2πωj)G−1
ξ (ωj)z

x
j , and

z
fW (IITemp)
j = [G−1

f (ωj) + C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1

×G−1
f (ωj)

× [C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1

× C∗(e−i2πωj)G−1
ξ (ωj)z

x
j .

We note that z
fW (ITemp)
j and z

fW (IITemp)
j may each be further split into two separate

terms by substituting in for zx
j = C(e−i2πωj)zf

j + zζj as follows:

First, we see that

z
fW (ITemp)
j = zf

j + z
fW (I)
j

where

z
fW (I)
j = [C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j .
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Second, we see that

z
fW (IITemp)
j = z

fW (II)
j + z

fW (III)
j

where

z
fW (II)
j = [G−1

f (ωj) + C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1G−1

f (ωj)z
f
j , and

z
fW (III)
j = [G−1

f (ωj) + C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1

×G−1
f (ωj)

× [C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1

× C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j .

Thus, we have an expression for zfW

j involving four terms:

zfW

j = zf
j + z

fW (I)
j − z

fW (II)
j − z

fW (III)
j .

In the subsequent steps below, our goal will be to examine the asymptotic be-

haviour of each of the terms z
fW (I)
j , z

fW (II)
j , and z

fW (III)
j as N →∞.

Step 3: Intermediate Results

In this section, we state three useful lemmas which we will rely upon in the steps

that follow.

Lemma 2.10.1. For ωj = j/T where j = 0, ..., T − 1,

max
0≤j≤T−1

Eθ
[
‖N−1/2C∗(e−i2πωj)G−1

ξ (ωj)z
ζ
j ‖2
]

= O(1).

Proof. We recall that G−1
ξ (ωj) is an N × N diagonal matrix and (as above) the

ith term of the leading diagonal of this matrix is denoted by G−1
ξi

(ωj).
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Noting that C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j is an r × 1 vector, we can express its squared

spectral norm as

‖C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j ‖2 =

r∑
k=1

(( N∑
i=1

C
j

ikz
ζi
j

Gξi(ωj)

)( N∑
i=1

Cj
ikz

ζi
j

Gξi(ωj)

))

where a bar on top signifies a complex conjugate (for example, C
j

ik refers to the

complex conjugate of the complex scalar Cj
ik).

Thus, for ωj = j/T where j = 0, ..., T − 1, there exist finite positive constants

M2.10.1
a ,M2.10.1

b , and M
2.10.1

, independent of ωj, such that

Eθ[‖N−1/2C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j ‖2]

= N−1Eθ

[
r∑

k=1

( N∑
i=1

C
j

ikz
ζi
j

Gξi(ωj)

)( N∑
i=1

Cj
ikz

ζi
j

Gξi(ωj)

)]

≤ N−1Eθ

[
r∑

k=1

( N∑
i=1

C
j

ikz
ζi
j

Gξi(ωj)

)( N∑
i=1

Cj
ikz

ζi
j

Gξi(ωj)

)]

= N−1

r∑
k=1

Eθ

[( N∑
i=1

N∑
s=1

C
j

ikC
j
skz

ζi
j z

ζs
j

Gξi(ωj)Gξs(ωj)

)]

≤ N−1rM2.10.1
a

N∑
i=1

N∑
s=1

Eθ
[
zζij z

ζs
j

]
(by Assumptions A2 and A7)

= M2.10.1
b N−1

N∑
i=1

N∑
s=1

gζ,is(ωj)

≤M2.10.1
b Mζ

≤M
2.10.1

<∞ (by Assumption A6).

Since M
2.10.1

is independent of ωj, the final result follows.

For the next two lemmas, we note that the spectral norm of a square Hermitian

matrix is equal to the modulus of its largest eigenvalue. For a non-negative defi-

nite matrix this is simply equal to the largest eigenvalue.
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Lemma 2.10.2. For ωj = j/T where j = 0, ..., T − 1,

max
0≤j≤T−1

‖N [C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1‖2 = O(1).

Proof. We note first that C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj) is an r×r Hermitian non-

negative definite matrix. Next, we note that there exist finite positive constants

M2.10.2
a and M

2.10.2
, independent of ωj, such that

‖N [C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1‖2

= N2

(
λ1{[C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1}
)2

≤ N2

(
λ1{Gξ(ωj)}

λr{C∗(e−i2πωj)C(e−i2πωj)}

)2

=

(
λ1{Gξ(ωj)}

λr{C∗(e−i2πωj)C(e−i2πωj)}/N

)2

≤MξM2.10.2
a

≤M
2.10.2

<∞

where the penultimate weak inequality follows because (i) the eigenvalue in the

numerator is bounded from above due to Assumption A7, and (ii) the denomina-

tor is finite and positive due to Assumption A3.

Since M
2.10.2

is independent of ωj, the final result follows.

Lemma 2.10.3. For ωj = j/T where j = 0, ..., T − 1,

max
0≤j≤T−1

‖N [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1‖2 = O(1).

Proof. For the r × r Hermitian non-negative definite matrices G−1
f (ωj) and

C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj),
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we have

‖G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)‖

≥ ‖C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)‖

so that

‖[G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1‖

≤ ‖[C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1‖

It follows by Lemma 2.10.2 that there exists a finite positive constant M
2.10.3

,

independent of ωj, such that

‖N [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1‖2 ≤M
2.10.3

<∞.

Since M
2.10.3

is independent of ωj, the final result follows.

Step 4: Asymptotic Analysis of z
fW (I)
j as N →∞

We recall the definition of z
fW (I)
j from Step 2:

z
fW (I)
j = [C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j .

Then,

Eθ[‖N1/2z
fW (I)
j ‖2] = Eθ[‖N [C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1N−1/2C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j ‖2]

≤ ‖N [C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1‖2Eθ[‖N−1/2C∗(e−i2πωj)G−1

ξ (ωj)z
ζ
j ‖2]

(by submultiplicativity of the norm)

≤M
2.10.2

M
2.10.1

(by Lemmas 2.10.2 and 2.10.1 respectively)

<∞.
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Since M
2.10.2

and M
2.10.1

are independent of ωj, we have that

max
0≤j≤T−1

Eθ

[∥∥∥N1/2z
fW (I)
j

∥∥∥2
]

= O(1).

Step 5: Asymptotic Analysis of z
fW (II)
j as N →∞

We recall the definition of z
fW (II)
j from Step 2:

z
fW (II)
j = [G−1

f (ωj) + C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1G−1

f (ωj)z
f
j .

Then, there exists a finite positive constant MStep5, independent of ωj, such that

Eθ[‖Nz
fW (II)
j ‖2] = Eθ[‖N [G−1

f (ωj) + C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1G−1

f (ωj)z
f
j‖2]

≤ ‖N [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1‖2Eθ[‖G−1
f (ωj)z

f
j‖2]

(by submultiplicativity of the norm)

≤ ‖N [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1‖2MStep5

(by Assumptions A2-A4)

≤M
2.10.3

MStep5 (by Lemma 2.10.3)

<∞.

Since M
2.10.3

and MStep5 are independent of ωj, we have that

max
0≤j≤T−1

Eθ

[∥∥∥Nz
fW (II)
j

∥∥∥2
]

= O(1).
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Step 6: Asymptotic Analysis of z
fW (III)
j as N →∞

We recall the definition of z
fW (III)
j from Step 2 below:

z
fW (III)
j = [G−1

f (ωj) + C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1

×G−1
f (ωj)

× [C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1

× C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j .

Then, there exists a finite positive constant MStep6, independent of ωj, such that

Eθ[‖N3/2z
fW (III)
j ‖2] ≤ ‖N [G−1

f (ωj) + C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1‖2

× ‖G−1
f (ωj)‖2

× ‖N [C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1‖2

× Eθ[‖N−1/2C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j ‖2]

(by submultiplicativity of the norm)

≤ ‖N [G−1
f (ωj) + C∗(e−i2πωj)G−1

ξ (ωj)C(e−i2πωj)]−1‖2

×MStep6

× ‖N [C∗(e−i2πωj)G−1
ξ (ωj)C(e−i2πωj)]−1‖2

× Eθ[‖N−1/2C∗(e−i2πωj)G−1
ξ (ωj)z

ζ
j ‖2]

(by Assumption A2)

≤M
2.10.3 ×MStep6 ×M2.10.2 ×M2.10.1

(by Lemmas 2.10.3, 2.10.2, and 2.10.1)

<∞.

Since M
2.10.3

, MStep6, M
2.10.2

, and M
2.10.1

are independent of ωj, we have that

max
0≤j≤T−1

Eθ

[∥∥∥N3/2z
fW (III)
j

∥∥∥2
]

= O(1).
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Step 7: Asymptotic Analysis of zfW

j as N →∞

We recall from Step 2 that

zfW

j − zf
j = z

fW (I)
j − z

fW (II)
j − z

fW (III)
j .

Given Steps 4, 5, and 6 above, we notice that, as far as convergence as N → ∞
is concerned, the leading term on the right-hand side is z

fW (I)
j . It follows that

max
0≤j≤T−1

Eθ

[
N
∥∥∥zfW

j − zf
j

∥∥∥2
]

= O(1).
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2.10.3 Proof of Theorem 2.1

Given the DFT of a sequence of time series observations, one may exactly recover

the original sequence using the inverse DFT. The inverse relationship between

the DFT and the inverse DFT for our time series is given by:

fWt =
1√
T

T−1∑
j=0

zfW

j ei2πωjt

for t = 1, ..., T . We recall the proof of this well-known result below.26

To prove this relationship, we substitute for zfW

j into the right hand side. We

have that for any t, τ = 1, ..., T ,

1√
T

T−1∑
j=0

zfW

j ei2πωjt =
1√
T

T−1∑
j=0

(
1√
T

T∑
τ=1

fWτ e
−i2πωjτ

)
ei2πωjt

=
1

T

T∑
τ=1

fWτ

T−1∑
j=0

e−i2πωj(τ−t)

=
1

T

T∑
τ=1

fWτ ×

T, τ = t

0, τ 6= t

= fWt

where the penultimate line follows due to the orthogonality property of complex

exponentials.

By the same reasoning, it also holds that

ft =
1√
T

T−1∑
j=0

zf
je
i2πωjt

for t = 1, ..., T.

26See for example Bracewell (2000).
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Then, there exists a finite positive constant M
fW

, independent of ωj, such that

Eθ
[
N
∥∥fWt − ft

∥∥2
]

= NEθ

 1

T

∥∥∥∥∥
T−1∑
j=0

(zfW

j − zf
j)e

i2πωjt

∥∥∥∥∥
2


= N
1

T
Eθ

[
r∑

k=1

(
T−1∑
j=0

(z
fWk
j − zfkj )ei2πωjt

)(
T−1∑
j′=0

(z
fWk
j − zfkj )ei2πωj′ t

)]

= N
1

T

r∑
k=1

T−1∑
j=0

T−1∑
j′=0

Eθ

[
(z
fWk
j − zfkj )(z

fWk
j′ − z

fk
j′ )e

i2π(ωj−ωj′ )t
]

= N
1

T

r∑
k=1

T−1∑
j=0

Eθ

[∣∣∣(zfWkj − zfkj )
∣∣∣2]

(by orthogonality of the complex exponential at different frequencies)

= N
1

T

T−1∑
j=0

Eθ

[∥∥∥zfW

j − zf
j

∥∥∥2
]

≤ max
0≤j≤T−1

Eθ

[
N
∥∥∥zfW

j − zf
j

∥∥∥2
]

≤M
fW

<∞,

by Proposition 2.2. This completes the proof of Theorem 2.1.

2.10.4 Proof of Proposition 2.3

Part (i)

We recall that by definition,

Eθ[z
f
jz

f∗

j |DT ] = zfW

j zfW
∗

j +W (ωj).

for a given j.

We recall some results. As N →∞,

(i) ‖W (ωj)‖ = O(N−1) (by Lemma 2.10.3);
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(ii) ‖zf
j‖ = Op(1) (by Assumption A2);

for each of the Fourier frequencies ωj. Thus,

Eθ[z
f
jz

f∗

j |DT ] =
(
zf
j +Op(N

−1/2)
) (

zf
j +Op(N

−1/2)
)∗

+W (ωj)

(by Proposition 2.2

= zf
jz

f∗

j +Op(N
−1/2).

This completes the proof of part (i) of Proposition 2.3.

Part (ii)

For a given j,

Eθ[z
f
jz

x∗

j |DT ] = Eθ[z
f
j |DT ]zx∗

j

= zfW

j zx∗

j

= (zf
j +Op(N

−1/2))zx∗

j

(by Proposition 2.2)

= zf
jz

x∗

j +Op(N
−1/2)

since ‖zx
j ‖ = Op(1) due to Assumptions A1-A2.

This completes the proof of part (ii) of Proposition 2.3.
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2.10.5 Proof of Proposition 2.4

We recall that the ith row, for i = 1, ..., N , in the DFT of our model is

zxij = Ci(e
−i2πωj)zf

j + zζij

=
(
ci,01 ci,11 ci,02 ci,12 . . . ci,0r ci,1r

)


1 0 . . . 0

e−i2πωj 0 . . . 0

0 1 . . . 0

0 e−i2πωj . . . 0
...

...
. . .

...

0 0 . . . 1

0 0 . . . e−i2πωj




zf1j
zf2j
...

zfrj

+ zζij

=
(
ci,01 ci,11 ci,02 ci,12 . . . ci,0r ci,1r

)[
zf
j ⊗

(
1

e−i2πωj

)]
+ zζij

for a given j, where ωj = j/T and j = 0, ..., T − 1.

Then, the complex conjugate transpose is

z
x∗i
j =

[
zf
j ⊗

(
1

e−i2πwj

)]∗


ci,01

ci,11

ci,02

ci,12

...

ci,0r

ci,1r


+ z

ζ∗i
j

since the loadings coefficients are all real.
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Let us define the 2r ×N matrix of all loadings coefficients C as

C =



c1,01 . . . cN,01

c1,11 . . . cN,11

c1,02 . . . cN,02

c1,12 . . . cN,12

...
. . .

...

c1,0r . . . cN,0r

c1,1r . . . cN,1r


.

The definition of Z̆x
j =

[
zx
j , z

x
j

]
means that

Z̆x∗

j =

[
zx∗
j

zx′
j

]

=


[
zf
j ⊗

(
1

e−i2πωj

)]∗
C + zζ

∗

j[
zf
j ⊗

(
1

e−i2πωj

)]′
C + zζ

′

j


so that the product Żf

jZ̆
x∗
j is

Żf
jZ̆

x∗

j =

zf
j ⊗

(
1

e−i2πωj

)
, zf

j ⊗

(
1

e−i2πωj

)

[
zf
j ⊗

(
1

e−i2πωj

)]∗
C + zζ

∗

j[
zf
j ⊗

(
1

e−i2πωj

)]′
C + zζ

′

j


=

(zf
jz

f∗

j ⊗

(
1 ei2πωj

e−i2πωj 1

))
+

(
zf
jz

f∗
j ⊗

(
1 ei2πωj

e−i2πωj 1

))C

+

(zf
jz
ζ∗

j ⊗

(
1

e−i2πωj

))
+

(
zf
jz
ζ∗

j ⊗

(
1

e−i2πωj

)) .
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This means that our estimators may be expressed as

Ĉ =

(
T−1∑
j=0

Żf
jŻ

f∗

j

)−1 T−1∑
j=0

Żf
jZ̆

x∗

j

= C +

 1

T

T−1∑
j=0

(zf
jz

f∗

j ⊗

(
1 ei2πωj

e−i2πωj 1

))
+

(
zf
jz

f∗
j ⊗

(
1 ei2πωj

e−i2πωj 1

))
−1

× 1

T

T−1∑
j=0

(zf
jz
ζ∗

j ⊗

(
1

e−i2πωj

))
+

(
zf
jz
ζ∗

j ⊗

(
1

e−i2πωj

)) .
Next, we consider the expectation of r × 1 vector zf

jz
ζ∗i
j for a given i and j.

Eθ
[
zf
jz
ζ∗i
j

]
= Eθ

[
zf
jEθ[z

ζi
j |zf

j ]
]

(by the Law of Iterated Expectations)

= 0r×1 (by Assumption A2).

It follows that Eθ[Ĉ] = C and we have unbiasedness.

As regards consistency, we notice first the matrices involved in the inverse term

are Hermitian and non-negative definite so that∥∥∥∥∥∥ 1

T

T−1∑
j=0

(zf
jz

f∗

j ⊗

(
1 ei2πωj

e−i2πωj 1

))
+

(
zf
jz

f∗
j ⊗

(
1 ei2πωj

e−i2πωj 1

))∥∥∥∥∥∥
≥

∥∥∥∥∥ 1

T

T−1∑
j=0

[
zf
jz

f∗

j ⊗

(
1 ei2πωj

e−i2πωj 1

)]∥∥∥∥∥
=

∥∥∥∥∥ 1

T

T−1∑
j=0

zf
jz

f∗

j

∥∥∥∥∥ .
We note that

1

T

T−1∑
j=0

zf
jz

f∗

j =
1

T 2

T−1∑
j=0

T∑
t=1

T∑
s=1

ftf
′
se
i2πωj(t−s) =

1

T 2

T∑
t=1

T∑
s=1

ftf
′
s

T−1∑
j=0

ei2πωj(t−s) =
1

T

T∑
t=1

ftf
′
t

= Γf +Op(1/
√
T ),
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due to ergodicity of ft, in turn a consequence of Assumption A1. In other words,

the norm of the inverse term is bounded away from zero by a positive term.

Moreover, this result is independent of i for i = 1, ..., N .

Next, we consider the error term,∥∥∥∥∥∥ 1

T

T−1∑
j=0

(zf
jz
ζ∗i
j ⊗

(
1

e−i2πωj

))
+

(
zf
jz
ζ∗i
j ⊗

(
1

e−i2πωj

))∥∥∥∥∥∥
≤ 2

∥∥∥∥∥ 1

T

T−1∑
j=0

(
zf
jz
ζ∗i
j ⊗

(
1

e−i2πωj

))∥∥∥∥∥ .
Looking at the squared expectation of the necessary expression, we observe that

there exists a finite positive constant MProp4, independent of observations i for

i = 1, ..., N , such that

Eθ

T ∥∥∥∥∥ 1

T

T−1∑
j=0

zf
jz
ζi
j

∥∥∥∥∥
2
 =

1

T
Eθ

[
T−1∑
j=0

(
zf
jz
ζi
j

)∗ T−1∑
j′=0

(
zf
j′z

ζi
j′

)]

=
1

T

r∑
k=1

T−1∑
j=0

T−1∑
j′=0

Eθ
[
zfkj z

fk
j′

]
Eθ
[
zζij z

ζi
j′

]
=

1

T

r∑
k=1

T−1∑
j=0

Eθ
[
zfkj z

fk
j

]
Eθ
[
zζij z

ζi
j

]
≤MProp4,

due to Assumptions A2 and A6. The result on
√
T -consistency of the estimator

follows from Chebyshev’s inequality and an application of the continuous map-

ping theorem. Moreover, since MProp4 is independent of i for i = 1, ..., N , the

consistency result is uniform with respect to the observations. This completes

the proof of Proposition 2.4.
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2.10.6 Proof of Proposition 2.5

In this section, we prove N, T consistency of our initialisation method for the

factors.27 Let us begin by recalling the definition of our estimator for the DFT

of the factors:

zfP

j = P̃ ∗x(wj)z
x
j /
√
N.

Step 1: Decomposition of zfP

j

Given the DFT of the observables equation of our true model,

zx
j = C(e−i2πωj)zf

j + zζj ,

we have that

zfP

j − zf
j = N−1/2P̃ ∗x(wj)z

x
j − zf

j

= N−1/2P̃ ∗x(wj)[C(e−i2πωj)zf
j + zζj ]− zf

j

= [N−1/2P̃ ∗x(wj)C(e−i2πωj)− Ir]zf
j +N−1/2P̃ ∗x(wj)z

ζ
j

= [N−1/2P̃ ∗x(wj)N
1/2Pχ(wj)− Ir]zf

j +N−1/2P̃ ∗x(wj)z
ζ
j

= [P̃ ∗x(wj)Pχ(wj)− Ir]zf
j +N−1/2P̃ ∗x(wj)z

ζ
j .

Our goal will be to examine the asymptotics of the two terms in the above sum-

mation as N and T go to ∞.

Step 2: Intermediate Results

For convenience (in particular, to avoid over-burdening the notation needed be-

low), let us assume just for the moment that κ = 1 which is true for the Bartlett

lag-window. In this case, there is no need to explicitly carry around the additional

rate associated with the bias in A9. For the purpose of the body of this proof,

let us define ρT = T/BT logBT as in Forni et al. (2017, Appendix B. Proof of

27We combine techniques from various proofs in Forni et al. (2009), Doz et al. (2011) and
Forni et al. (2017).
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Proposition 7). We re-introduce the suppressed term in the last line of this proof.

Lemma 2.10.4. For frequencies wj = j/(2BT + 1) where j = 0, ..., 2BT , as

N →∞ and T →∞,

(i) maxj N
−1‖G̃BT

x (wj)−Gx(wj)‖ = Op(ρ
−1/2
T );

(ii) maxj N
−1‖G̃BT

x (wj)−Gχ(wj)‖ = Op(max(N−1, ρ
−1/2
T ));

Proof. For statement (i), we note that

‖G̃BT
x (wj)−Gx(wj)‖2

= λ1{[G̃BT
x (wj)−Gx(wj)][G̃

BT
x (wj)−Gx(wj)]

∗}

≤ Tr
(

[G̃BT
x (wj)−Gx(wj)][G̃

BT
x (wj)−Gx(wj)]

∗
)

=
N∑
i=1

N∑
s=1

|g̃BTx,is(wj)− gx,is(wj)|2.

So

E[max
j
N−2‖G̃BT

x (wj)−Gx(wj)‖2]

≤ E

[
max
j
N−2

N∑
i=1

N∑
s=1

|g̃BTx,is(wj)− gx,is(wj)|2
]

= N−2

N∑
i=1

N∑
s=1

E

[
max
j
|g̃BTx,is(wj)− gx,is(wj)|2

]
≤M11 × ρ−1

T (by Assumption A9).

The statement follows from an application of Chebyshev’s inequality.

For statement (ii), the identity Gx(wj) = Gχ(wj)+Gζ(wj) implies that G̃BT
x (wj)−

Gχ(wj) = G̃BT
x (wj)−Gx(wj) + Gζ(wj). Then, by the triangle inequality for the

matrix norm,

‖G̃BT
x (wj)−Gχ(wj)‖ ≤ ‖G̃BT

x (wj)−Gx(wj)‖+ ‖Gζ(wj)‖.
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Statement (ii) then follows from statement (i) and the fact that ‖Gζ(wj)‖ =

|λ1{Gζ(wj)}| = O(1) by Assumption A6.

Lemma 2.10.5. For frequencies wj = j/(2BT + 1) where j = 0, ..., 2BT , as

N →∞ and T →∞,

(i) maxj N
−1|λk{G̃BT

x (wj)} − λk{Gχ(wj)}| = Op(max(N−1, ρ
−1/2
T )) for k =

1, ..., r;

(ii) maxj ‖Λχ(wj)/N‖ and maxj ‖(Λχ(wj)/N)−1‖, which depend on N , are O(1);

(iii) maxj ‖Λ̃x(wj)/N‖ and maxj ‖(Λ̃x(wj)/N)−1‖, which depend on N and T ,

are Op(1).

Proof. We use the consequence of Weyl’s inequality that for any two r × r Her-

mitian matrices A and B,

|λk{A+B} − λk{A}| ≤ ‖B‖, for k = 1, ..., r.

Setting A = Gχ(wj) and B = G̃BT
x (wj)−Gχ(wj) we have that for k = 1, ..., r,

|λk{G̃BT
x (wj)} − λk{Gχ(wj)}| ≤ ‖G̃BT

x (wj)−Gχ(wj)‖

Statement (i) follows from Lemma 2.10.4(ii).

Statement (ii) is proved by noting that ‖Λχ(wj)/N‖ = |λ1{Gχ(wj)}|/N is bounded

in probability uniformly with respect to the frequency due to Assumption A3.

The same applies to ‖(Λχ(wj)/N)−1‖ = N/|λr{Gχ(wj)}|.

Statement (iii) follows from statement (i).
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Lemma 2.10.6. For frequencies wj = j/(2BT + 1) where j = 0, ..., 2BT , as

N →∞ and T →∞,

(i) maxj N
−1‖P ∗χ(wj)P̃x(wj)Λ̃x(wj)− Λχ(wj)P

∗
χ(wj)P̃x(wj)‖

= Op(max(N−1, ρ
−1/2
T ));

(ii) maxj ‖P̃ ∗x(wj)Pχ(wj)P
∗
χ(wj)P̃x(wj)− Ir‖ = Op(max(N−1, ρ

−1/2
T ));

(iii) there exist complex diagonal orthogonal matrices, depending on N and T,

denoted by Q̃r(wj) = diag(q̃1,j, q̃2,j, ..., q̃r,j) with |q̃k,j|2 = 1 for k = 1, ..., r

such that

max
j
‖P̃ ∗x(wj)Pχ(wj)− Q̃r(wj)‖ = Op(max(N−1, ρ

−1/2
T )).

Proof. Since P̃x(wj)Λ̃x(wj) = G̃BT
x (wj)P̃x(wj) and Λχ(wj)P

∗
χ(wj) = P ∗χ(wj)Gχ(wj),

we have

‖P ∗χ(wj)P̃x(wj)(Λ̃x(wj)/N)− (Λχ(wj)/N)P ∗χ(wj)P̃x(wj)‖

= N−1‖P ∗χ(wj)G̃
BT
x (wj)P̃x(wj)− P ∗χ(wj)Gχ(wj)P̃x(wj)‖

= N−1‖P ∗χ(wj)[G̃
BT
x (wj)−Gχ(wj)]P̃x(wj)‖

≤ N−1‖P ∗χ(wj)‖‖G̃BT
x (wj)−Gχ(wj)‖‖P̃x(wj)‖

(by submultiplicativity of the norm)

= N−1‖G̃BT
x (wj)−Gχ(wj)‖.

Statement (i) follows from Lemma 2.10.4(ii).
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For statement (ii), we define

A = P̃ ∗x(wj)Pχ(wj)P
∗
χ(wj)P̃x(wj)

= P̃ ∗x(wj)Pχ(wj)P
∗
χ(wj)P̃x(wj)

(
Λ̃x(wj)

N

)(
Λ̃x(wj)

N

)−1

,

B = P̃ ∗x(wj)Pχ(wj)

(
Λχ(wj)

N

)
P ∗χ(wj)P̃x(wj)

(
Λ̃x(wj)

N

)−1

=
1

N
P̃ ∗x(wj)Gχ(wj)P̃x(wj)

(
Λ̃x(wj)

N

)−1

,

C =
1

N
P̃ ∗x(wj)G̃

BT
x (wj)P̃x(wj)

(
Λ̃x(wj)

N

)−1

=

(
Λ̃x(wj)

N

)(
Λ̃x(wj)

N

)−1

= Ir

and note that ‖A − C‖ ≤ ‖A − B‖ + ‖B − C‖. Both terms on the right

are bounded in probability uniformly with respect to the frequency with rate

Op(max(N−1, ρ
−1/2
T )), the first due to statement (i) along with Lemma 2.10.5(iii)

and the second due to Lemma 2.10.4(ii) along with Lemma 2.10.5(iii).

For statement (iii), we consider a single element of the matrix on the left side of

statement (i). Denoting by Pχ,k(wj) and P̃x,k(wj) the kth columns of Pχ(wj) and

P̃x(wj) respectively, we have from statement (i) that

max
j
N−1|(λl{G̃BT

x (wj)} − λk{Gχ(wj)})P ∗χ,k(wj)P̃x,l(wj)| = Op(max(N−1, ρ
−1/2
T ))

for k, l = 1, ..., r.

We recall the convergence result for estimated dynamic eigenvalues of χt in

Lemma 2.10.5(i). Then, due to Assumption A3, which ensures asymptotic sep-

aration of the dynamic eigenvalues, we have that for k 6= l, the expression

N−1|(λl{G̃BT
x (wj)} − λk{Gχ(wj)}) is bounded away from 0 in probability uni-

formly with respect to the frequency. Therefore, it must hold that the modulus
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of any off-diagonal term of P̃ ∗x(wj)Pχ(wj) is Op(max(N−1, ρ
−1/2
T )) uniformly with

respect to the frequency.

As regards the diagonal terms, we consider a single element of the matrix on the

left side of statement (ii). For k = 1, ..., r, we have

max
j
|P̃ ∗x,k(wj)Pχ(wj)P

∗
χ(wj)P̃x,k(wj)− 1|

= max
j

∣∣∣∣∣
r∑
l=1

|P̃ ∗x,k(wj)Pχ,l(wj)|2 − 1

∣∣∣∣∣
= Op(max(N−1, ρ

−1/2
T )).

Consequently,

max
j
||P̃ ∗x,k(wj)Pχ,k(wj)|2 − 1|

= max
j
|(|P̃ ∗x,k(wj)Pχ,k(wj)|+ 1)(|P̃ ∗x,k(wj)Pχ,k(wj)| − 1)|

= Op(max(N−1, ρ
−1/2
T )).

Thus, the modulus of any diagonal term converges in probability to 1 uniformly

with respect to the frequency at rate Op(max(N−1, ρ
−1/2
T )).

Statement (iii) follows.

Lemma 2.10.7. For frequencies wj = j/(2BT + 1) where j = 0, ..., 2BT , as

N →∞ and T →∞,

max
j
‖Pχ(wj)Q̃r(wj)− P̃x(wj)‖ = Op(max(N−1, ρ

−1/2
T )),

uniformly in i.

Proof. Since P ∗χ(wj)Pχ(wj) = Ir, we first note that ‖Pχ(wj)‖ = O(1). Next, we
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define

D = Pχ(wj)Q̃r(wj),

E = Pχ(wj)[P
∗
χ(wj)P̃x(wj)]

= Pχ(wj)[P
∗
χ(wj)P̃x(wj)(Λ̃x(wj)/N)](Λ̃x(wj)/N)−1,

F = Pχ(wj)[(Λχ(wj)/N)P ∗χ(wj)P̃x(wj)](Λ̃x(wj)/N)−1

= [N−1Gχ(wj)]P̃x(wj)(Λ̃x(wj)/N)−1,

G = [N−1G̃BT
x (wj)]P̃x(wj)(Λ̃x(wj)/N)−1

= P̃x(wj)

and note that ‖D − G‖ ≤ ‖D − E‖ + ‖E − F‖ + ‖F − G‖. All terms on the

right are Op(max(N−1, ρ
−1/2
T )), the first because of Lemma 2.10.6(iii), the second

because of Lemma 2.10.6(i) and Lemma 2.10.5(iii), and finally the third because

of Lemma 2.10.4(ii) and Lemma 2.10.5(iii).

The result follows.

Step 3: Asymptotic Analysis of zfP

j as N and T go to ∞

We recall from Step 1 that we have

zfP

j − zf
j = [P̃ ∗x(wj)Pχ(wj)− Ir]zf

j +N−1/2P̃ ∗x(wj)z
ζ
j .

Dynamic eigenvectors are defined up to post-multiplication by a complex diagonal

orthogonal matrix with unit-modulus diagonal elements. In particular, using the

dynamic eigenvectors Πχ(wj) = Pχ(wj)Q̃r(wj), the result of Lemma 2.10.6(iii)

could be expressed as

max
j
‖P̃ ∗x(wj)Πχ(wj)− Ir‖ = Op(max(N−1, ρ

−1/2
T )).
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We thus conduct our subsequent analysis using the expression [zfP

j − Q̃r(wj)z
f
j ]

rather than [zfP

j − zf
j ]. We have

zfP

j − Q̃r(wj)z
f
j = [P̃ ∗x(wj)Pχ(wj)− Q̃r(wj)]Q̃r(wj)z

f
j +N−1/2P̃ ∗x(wj)z

ζ
j

= [P̃ ∗x(wj)Πχ(wj)− Ir]zf
j +N−1/2P̃ ∗x(wj)z

ζ
j .

Therefore,

‖zfP

j − Q̃r(wj)z
f
j‖ = ‖[P̃ ∗x(wj)Πχ(wj)− Ir]zf

j +N−1/2P̃ ∗x(wj)z
ζ
j‖

≤ ‖[P̃ ∗x(wj)Πχ(wj)− Ir]zf
j‖+ ‖N−1/2P̃ ∗x(wj)z

ζ
j‖

(by the triangle inequality for the matrix norm)

≤ ‖[P̃ ∗x(wj)Πχ(wj)− Ir]‖‖zf
j‖+ ‖N−1/2P̃ ∗x(wj)z

ζ
j‖

(by submultiplicativity of the norm).

Since maxj ‖zf
j‖ = Op(1) by Assumption A2, the first term above converges in

probability to 0 uniformly with respect to the frequency at rateOp(max(N−1, ρ
−1/2
T ))

due to Lemma 2.10.6(iii). It remains to analyse the second term.

Now,

‖N−1/2P̃ ∗x(wj)z
ζ
j‖ = N−1/2‖[P̃ ∗x(wj)− Q̃∗r(wj)P ∗χ(wj) + Q̃∗r(wj)P

∗
χ(wj)]z

ζ
j‖

= N−1/2‖[P̃ ∗x(wj)− Π∗χ(wj)]z
ζ
j + Π∗χ(wj)z

ζ
j‖

≤ ‖N−1/2[P̃ ∗x(wj)− Π∗χ(wj)]z
ζ
j‖+N−1/2‖Π∗χ(wj)z

ζ
j‖

≤ ‖N−1/2[P̃ ∗x(wj)− Π∗χ(wj)]‖‖zζj‖+N−1/2‖Π∗χ(wj)z
ζ
j‖.

The first term on the right is Op(N
−1/2 max(N−1, ρ

−1/2
T )) due to Lemma 2.10.7.

As noted above, ‖zf
j‖ = Op(1). Further, the final term on the right is Op(N

−1/2)
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since

E[‖Π∗χ(wj)z
ζ
j‖2] = E[λ1{zζ

∗

j Πχ(wj)Π
∗
χ(wj)z

ζ
j}]

= E[zζ
∗

j Πχ(wj)Π
∗
χ(wj)z

ζ
j ]

= E[Tr(zζ
∗

j Πχ(wj)Π
∗
χ(wj)z

ζ
j)]

= Tr(Π∗χ(wj)Gζ(wj)Πχ(wj))

≤ rλ1{Gζ(wj)} = O(1)

(by Assumption A4).

The result follows that maxj ‖zfP

j − Q̃r(wj)z
f
j‖ = Op(max(N−1/2, ρ

−1/2
T )). Finally,

by relaxing the assumption that κ = 1 and redoing the entire proof while carrying

through the additional bias term everywhere would yield the required result of

Proposition 2.5.
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2.10.7 Proof of Proposition 2.6

Proof. We first note that if we were to replace all the summations over T points in

the proof of Proposition 2.4 by summations over 2BT +1 points, we would obtain

a rate of
√
BT instead of

√
T . Combining this result with that of Proposition 2.5,

we recognise that our error is

Op

(
max

(
1√
N
,

1√
BT

,
1√
B2κ
T

,

√
BT logBT

T

))
.

Finally, noticing that the term 1/
√
BT dominates 1/

√
B2κ
T whenever κ > 1/2,

the required result follows. We explicitly note here that for all commonly used

lag windows, indeed, κ is typically 1 or 2; see (Priestley, 1982, p. 463).
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2.10.8 Proof of Proposition 2.7

Proof. We organise our proof into two parts. The first part, which we refer to as a

technical remark, explains why we can claim that there exists a point, say θ̂††, to

which the spectral EM iterates {θ̂(k)} converge (as k →∞); and further, that this

point is a local maximum. This property can easily be seen for the general case in

Wu (1983) (which we have summarised in considerable detail in Appendix 2.11)

and for the time domain analogue of our specific setting in Barigozzi and Luciani

(2022, Lemma 21). The logic in the frequency domain is identical.

Part 1. Technical remark:

(i) Is the problem well-defined?

Consider our d-dimensional vector of parameters θ ∈ Θ (see Section 2.3), for

which parameter space Θ is such that Θ ⊂ Rd where d = 2rN + N + r2 + r.

For finite dimensional parameter spaces, the Heine-Borel theorem28 provides a

simple characterisation of which sets are compact, but for potentially infinite

dimensional parameter spaces, the situation is more complicated. Nevertheless,

in our setting, due to the form of the (quasi-) log likelihood (see Section 2.5.2),

the M step is greatly simplified. Indeed, for any iteration k ≥ 0, the M step

requires solving the N individual maximisations(
ĉ

(k+1)′

i , Γ̂
(k+1)
ξi

)′
= arg max

(c′i,Γξi )
′∈O1

Eθ̂(k) [li (xi1, ..., xiT |F ; ci,Γξi) |X]

for i = 1, ..., N , where (i) the function li refers to the marginal contribution of

the i-th observation to the overall Whittle log-likelihood computed with respect

to the coarse grid of 2BT + 1 frequencies (see Sections 2.5.2 and 2.7.3 for details);

and (ii) O1 = [−mc,mc]
2r× [mξ

−1,mξ] ⊂ R2r+1, with “×” denoting the Cartesian

28 If a set S of real numbers is closed and bounded, then the set S is compact. That is, if
a set S of real numbers is closed and bounded, then every open cover of the set S has a finite
subcover.
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product; and the finite dimensional maximisation(
vech(Â(k+1)), γ̂

(k+1)
1 , ..., γ̂(k+1)

r

)′
= arg max

(vech(A),γ1,...,γr)
′∈O2

Eθ̂(k) [l (F |A, γ1, ..., γr) |X] ,

where (i) A is the matrix of autoregressive coefficients such that A(L) = Ir−AL;

and (ii) O2 = [−ma,ma]
r2 × [mγ

−1,mγ]
r ⊂ Rr2+r. In this setup, it holds that

Θ = ON
1 × O2. Recall further that we have Gaussianity due to Assumption A7.

Then for any iteration k ≥ 0, the M step estimator given by

θ̂(k+1) = arg max
θ∈Θ

Q(θ; θ̂(k))

is well-defined since O1 and O2 – each the product of finitely many compact sets

– are compact sets, and l (X,F ;θ) is continuous and differentiable in the interior

of each of those sets (Gourieroux and Monfort, 1995, Property 7.11, p.181–182).

Further, it holds that θ̂(k+1) is unique because the log likelihoods alluded to above

are concave in their arguments.

(ii) Do we have convergence to a stationary point?

Next, by recalling that (i) O1 and O2 are compact sets, (ii) l(X;θ) is continuous

in Θ and differentiable in the interior of Θ, and (iii) the point of initialisation

is chosen such that θ̂(0) is assumed to satisfy l(X; θ̂(0)) > −∞, it follows that

the sequence {l(X; θ̂(k))} for k ≥ 0 is bounded from above for any θ(0) ∈ Θ

(see Barigozzi and Luciani (2022, p.95) and Wu (1983, p.96–97)). Further, we

recall the monotonicity property of the EM algorithm (which we prove in detail in

Appendix 2.11.1), and we note that Q(θ;φ) is continuous in both its arguments

for arbitrary values θ and φ. It follows by Wu (1983, Theorem 2) that we are

guaranteed monotonic convergence of the likelihood:

lim
k→∞

l(X; θ̂(k)) = l(X; θ̂††),

where θ̂†† is a stationary point.
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(iii) Is the stationary point a local maximum?

Given that Q(θ; θ̂(k)) has a unique maximum, and since Q(θ;φ) is continuous

in both its arguments for arbitrary values θ and φ and its gradient ∇θQ(θ;φ)

is continuous in θ, it follows from Wu (1983, Theorem 3) that θ̂†† is a local

maximum. (See also Barigozzi and Luciani (2022, Proof of Lemma 21).)

(iv) Do EM iterates also converge?

Further, we know by Wu (1983, Condition 1) that, under Gaussianity, there exists

a real positive constant, say MQ, such that

Q(θ(k+1);θ(k))− Q(θ(k);θ(k)) ≥MQ‖θ(k+1) − θ(k)‖2

for all k. Together with monotonicity of the likelihood and the result under point

(iii) above, the latter constitutes a sufficient condition for:

lim
k→∞
‖θ(k+1) − θ(k)‖ = 0,

Further details can be seen in Wu (1983, p.100). Finally, it follows from Wu

(1983, Theorem 6) that

lim
k→∞

θ(k) = θ̂††.

Below, we will focus just on ĉ††i , a subset of the vector θ̂††.

Part 2. Main proof:

We have ∥∥∥ĉSpEMi − ci
∥∥∥ ≤ ∥∥∥ĉSpEMi − ĉ††i

∥∥∥+
∥∥∥ĉ††i − ĉ†i∥∥∥+

∥∥∥ĉ†i − ci∥∥∥,
where ĉ††i denotes the point to which the Spectral EM algorithm converges as the

number of iterations go to infinity,

ĉ††i = lim
k→∞

ĉ
(k)
i ,
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and ĉ†i denotes the global maximiser of l(X;θ) for i = 1, ..., N .

The third term on the right-hand side is simply the error of the quasi-maximum

likelihood estimator where the Whittle likelihood is computed via summations

over 2BT + 1 points. By Proposition 2.4 and Remark 3, as N, T →∞,∥∥∥ĉ†i − ci∥∥∥ = Op

(
max

(
1

N
,

1√
BT

))
,

uniformly in i for i = 1, ..., N . See Barigozzi and Luciani (2022, Lemma 14(i))

and Bai and Li (2016, Theorem 1).

Similarly, the second term on the right-hand side is∥∥∥ĉ††i − ĉ†i∥∥∥ = Op

(
max

(
1

N
,

1√
BT

))
,

uniformly in i for i = 1, ..., N , as implied by Barigozzi and Luciani (2022, Lemma

22(i)).

Now we consider the first term on the right-hand side. This represents the dis-

crepancy between the Spectral EM estimator and the point to which the spectral

EM algorithm converges as k →∞, a local maximiser of l(X;θ). Using key parts

of Barigozzi and Luciani (2022, Proof of Lemma 23), we know there exists a finite

positive real constant MP7 such that∥∥∥ĉSpEMi − ĉ††i
∥∥∥ ≤ ∥∥∥ĉ(0)

i − ĉ
††
i

∥∥∥∥∥∥R(ĉ††i )∥∥∥kSpEM +MP7k
SpEM

∥∥∥ĉ(0)
i − ĉ

††
i

∥∥∥2

,

where R
(
ĉ††i

)
represents the relevant sub-matrix of a ratio (in the matrix sense)

of conditional Hessians associated with the Whittle log-likelihood computed at

the value of the local maximiser. It is sufficient for the purpose of this study to

consider ‖R
(
ĉ††i

)
‖ as an Op(1) term.29

29In reality, it is vanishing at a rate dominated by the other rates in our procedure. See
Barigozzi and Luciani (2022, Proof of Lemma 23) for further details.
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Finally, by Proposition 2.6 and the results above, we have∥∥∥ĉ(0)
i − ĉ

††
i

∥∥∥ ≤ ∥∥∥ĉ(0)
i − ci

∥∥∥+
∥∥∥ci − ĉ†i∥∥∥+

∥∥∥ĉ†i − ĉ††i ∥∥∥
= Op

(
max

(
1√
N
,

1√
BT

,

√
BT logBT

T

))

+Op

(
max

(
1

N
,

1√
BT

))
+Op

(
max

(
1

N
,

1√
BT

))
= Op

(
max

(
1√
N
,

1√
BT

,

√
BT logBT

T

))
,

and the required result follows.

136



2.10.9 Proof of Proposition 2.8

Proof. The following algebraic identity will be useful. For arbitrary scalars a0, b0, a1,

and b1,

a1b1 − a0b0 = a1b1 − a0b0 + (a1b0 − a1b0) + (a0b1 − a0b1) + (a0b0 − a0b0)

= a1b0 − a0b0 + a0b1 − a0b0 + a1b1 − a1b0 − a0b1 + a0b0

= (a1 − a0)b0 + (b1 − b0)a0 + (a1 − a0)(b1 − b0).

Using similar reasoning,

ẑ
χSpEMi
jq

− zχijq =
[
ĉSpEMi,· (e−i2πwjq )− ci,·(e−i2πwjq )

]′
zf
jq + c′i,·(e

−i2πwjq )
[
ẑfSpEM

jq − zf
jq

]
+
[
ĉSpEMi,· (e−i2πwjq )− ci,·(e−i2πwjq )

]′ [
ẑfSpEM

jq − zf
jq

]
,

so that∣∣∣∣∣ẑχSpEMi
jq

− zχijq

∣∣∣∣∣ ≤
∣∣∣∣∣ [ĉSpEMi,· (e−i2πwjq )− ci,·(e−i2πwjq )

]′
zf
jq

∣∣∣∣∣+

∣∣∣∣∣c′i,·(e−i2πwjq ) [ẑfSpEM

jq − zf
jq

] ∣∣∣∣∣
+

∣∣∣∣∣ [ĉSpEMi,· (e−i2πwjq )− ci,·(e−i2πwjq )
]′ [

ẑfSpEM

jq − zf
jq

] ∣∣∣∣∣,
for q = 1, ..., 2BT + 1.

The first term on the right-hand side is

Op

(
max

(
1√
N
,

1√
BT

,

√
BT logBT

T

))

uniformly in 1 ≤ i ≤ N and 1 ≤ q ≤ 2BT + 1 by Proposition 2.7 and the fact

that ‖zf
jq‖ = Op(1) uniformly in q as a consequence of weak stationarity of ft

emanating from Assumption A2.

The second term on the right-hand side is also

Op

(
max

(
1√
N
,

1√
BT

,

√
BT logBT

T

))
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uniformly in 1 ≤ i ≤ N and 1 ≤ q ≤ 2BT + 1 due to Theorem 2.1, Proposition

2.7 and the fact that ‖ci,·(e−i2πwjq )‖ = O(1) uniformly in 1 ≤ i ≤ N due to

Assumption A2.

The third term on the right-hand side will converge in probability to zero as a

product of the above two rates and thus be dominated by the first and second

terms. The required result follows.

2.10.10 Proof of Proposition 2.9

Proof. The proof is analogous to the proof of Theorem 2.1, except where the

factors therein are replaced with common components.

2.10.11 Showing Assumption A9

The overall focus of our work is not strictly on consistent estimation of the spec-

tral density per se; nevertheless, Assumption A9 is important for our study and

its statement cannot be regarded as trivial. For this reason, we aim in this section

to outline for the interested reader the steps that would be needed in order to

derive the statement of Assumption A9 based on more primitive conditions.

Step 1. Defining Physical Dependence

The physical dependence measure espoused by Wu and Zaffaroni (2018) is char-

acterised in terms of the Lp-norm of the difference between the observations

and their constructed (or so-called “coupled”) version using an independent and

identically distributed copy of the innovation at time zero. A formal definition,

following Forni et al. (2017), is given below.

Let εt be an iid stochastic vector process, possibly infinite-dimensional, and let

zt = F (εt, εt−1, ...), where F : [R×R× ...]→ R is a measurable function. Assume

that zt has finite pth moment for p > 0. Let έ denote a stochastic vector with the
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same dimension and distribution as εt such that έ and εt are independent for all

t. Then, for k ≥ 0, the physical dependence δ
[zt]
kp is defined as

δ
[zt]
kp = (E (|F (εk, ..., ε0, ε−1...)− F (εk, ..., έ, ε−1...)|p))1/p .

Step 2. Alternative Assumptions

In lieu of Assumption A9, one could impose more basic conditions on existence

of finite pth moments (for p > 4) for the innovations ψqt and φit (the primitive

building blocks of our model) defined in Assumption A2. The requirements are

as follows.

Assumption A10. There exist constants p and A, with p > 4 and 0 < A <∞,

such that

E (|ψqt|p) ≤ A, E (|φit|p) ≤ A

for all q = 1, ..., r and i = 1, ..., N .

We concurrently need a slight strengthening of Assumption A6 (on the charac-

terisation of non-pervasiveness of the idiosyncratic component) to accommodate

our upcoming proof. We mirror the relevant phrasing from Forni et al. (2017,

Assumption 4) whereby restrictions are imposed on coefficients of the filter ap-

plied to the innovations driving the idiosyncratic component (rather than on the

eigenvalues of the spectral density matrix of the idiosyncratic component).

Assumption A11. There exist finite positive constants B,Bis for i, s ∈ N, and

ρ ∈ [0, 1), such that

∞∑
s=1

Bis ≤ B for all i ∈ N,

∞∑
i=1

Bis ≤ B for all s ∈ N,

|βis,k| ≤ Bisρ
k for all i, s ∈ N and k = 0, 1, ...
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We make two remarks at this stage. First, we highlight that the time dependence

of the idiosyncratic component is assumed to decline geometrically at common

rate ρ. Second, we refer readers who may be interested in seeing how Assumption

A11 automatically implies Assumption A6 to Forni et al. (2017, Proposition 1(i)).

To summarise, for the purpose of this appendix, we will replace Assumptions A9

and A6 from the main body of our text with newly-created Assumptions A10 and

A11 respectively.

Step 3. Rate of Decline

We present the following result on the rate of decline of physical dependence un-

der our model structure.

Proposition 2.10. Under Assumptions A1–A5, A7–A8, and A10–A11, there

exist constants ρ1 ∈ (0, 1) and A1 ∈ (0,∞) such that

E (|xit|p) ≤ A1, δ
[xit]
kp ≤ A1ρ

k
1

for all i = 1, ..., N .

Proof. Let us consider the first part of Proposition 2.10.

By the Minkowski inequality, we have

(E (|xit|p))1/p = (E (|χit + ζit|p))1/p ≤ (E (|χit|p))1/p + (E (|ζit|p))1/p .
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Using the Minkowski inequality again (and absolute homogeneity of the norm),

(E (|ζit|p))1/p =

(
E

(∣∣∣∣∣
∞∑
s=1

∞∑
k=0

βis,kφs,t−k

∣∣∣∣∣
p))1/p

≤
∞∑
s=1

∞∑
k=0

(E (|βis,kφs,t−k|p))1/p

≤
∞∑
s=1

∞∑
k=0

|βis,k| (E (|φs,t−k|p))1/p

≤ A1/p

∞∑
s=1

∞∑
k=0

Bisρ
k

≤ A1/pB
1

1− ρ
,

where the penultimate and final lines follow from Assumptions A10-A11. An

analagous inequality can be obtained for the common component χit using A2

and A10. Thus, the first part of Proposition 2.10 is established.

With respect to the second part of Proposition 2.10, we consider, for k ≥ 0,

the difference ζik − ζ́ik, where the constructed quantity ζ́ik is defined as ζik with

φs0 replaced with φ́s. Due to cancellations of all terms except at the point of

discrepancy (at time 0), the difference simplifies to ζik− ζ́ik =
∑∞

s=1 βis,k(φs0−φ́s).

It follows from the Minkowski inequality and Assumptions A10 and A11 that

δ
[ζit]
kp =

(
E

(∣∣∣∣∣
∞∑
s=1

βis,k(φs0 − φ́s)

∣∣∣∣∣
p))1/p

≤
∞∑
s=1

(
E
(∣∣∣βis,k(φs0 − φ́s)∣∣∣p))1/p

≤
∞∑
s=1

|βis,k|
(
E
(∣∣∣(φs0 − φ́s)∣∣∣p))1/p

≤ ρk
∞∑
s=1

Bis

(
E
(∣∣∣(φs0 − φ́s)∣∣∣p))1/p

≤ ρk2BA1/p.
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An analagous inequality can be obtained for the common component χit using

A2 and A10. We then have, again by the Minkowski inequality,

δ
[xit]
kp = (E (|xit − x́it|p))1/p

=
(
E
(∣∣∣(χit − χ́it) + (ζit − ζ́it)

∣∣∣p))1/p

≤ (E (|χit − χ́it|p))1/p
+ E(|ζit − ζ́it|p))1/p

= δ
[χit]
kp + δ

[ζit]
kp ,

from which the second part of the proposition follows.

This completes the proof of Proposition 2.10.

Step 4. Establishing Assumption A9

We can use the Cr inequality for r = 2 to obtain

E

[
max

1≤q≤2BT+1

∣∣g̃BTx,is(wjq)− gx,is(wjq)
∣∣2]

= E

[
max

1≤q≤2BT+1

∣∣g̃BTx,is(wjq)− E
(
g̃BTx,is(wjq)

)
+ E

(
g̃BTx,is(wjq)

)
− gx,is(wjq)

∣∣2]
≤ 2

[
E

[
max

1≤q≤2BT+1

∣∣g̃BTx,is(wjq)− E
(
g̃BTx,is(wjq)

)∣∣2]+ E

[
max

1≤q≤2BT+1

∣∣E (g̃BTx,is(wjq)
)
− gx,is(wjq)

∣∣2]] ,
which is an expression in terms of the variance and the squared bias.

We can decompose the bias as

E
(
g̃BTx,is(ω)

)
− gx,is(ω) =

(T−1)∑
h=−(T−1)

(
1− |h|

T

)
K

(
h

BT

)
sx,is(h)e−i2πωh −

∞∑
h=−∞

sx,is(h)e−i2πωh

≤

∣∣∣∣∣∣
T−1∑

h=−(T−1)

(
K

(
h

BT

)
− 1

)
sx,is(h)e−i2πωh

∣∣∣∣∣∣
+

∣∣∣∣∣∣
T−1∑

h=−(T−1)

K

(
h

BT

)
|h|
T
sx,is(h)e−i2πωh

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
|h|≥T

sx,is(h)e−i2πωh

∣∣∣∣∣∣
We can analyse the limit as T →∞ of each of the three terms and, as explained

in Priestley (1982, p.459)) and Forni et al. (2017, Appendix A.), it can be shown
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that the first term is O(B−κT ), the second is O(T−1) and the third is O(T−κ) so

that the overall bias is dominated by the first term. Thereby, for the squared

bias, a final rate of O(B−2κ
T ) is obtained.

The key part however, is the variance. We leverage Wu and Zaffaroni (2018,

Theorem 4)30 wherein it is proved that (under our given assumptions) there exists

a constant, say m, such that

E

[
max

1≤q≤2BT+1

∣∣g̃BTx,is(wjq)− E
(
g̃BTx,is(wjq)

)∣∣2] ≤ m

(
BT logBT

T

)
.

This completes the description of how Assumption A9 may be derived.

30The required result is obtained by setting v = 2.
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2.11 Appendix – Conditions for Convergence

The following discussion constitutes an addendum to Section 2.5.1 above.

By way of introduction, the EM algorithm is an ascent algorithm in the sense

that the log-likelihood function is monotonically increasing. Ascent algorithms

(Luenberger, 1984, Chapter 6; Lange, 2010, Chapter 15) can be analysed in a

unified manner following a theory developed by Zangwill (1969). Wu (1983)

showed that this general theory applies to the EM algorithm as defined in Section

2.5.1, as well as to some of its variants that Wu (1983) calls generalised EM.

In this appendix, we consider conditions for convergence of the EM algorithm

based primarily on the seminal papers of Dempster et al. (1977) and Wu (1983).

We also investigate the refinement of Balakrishnan et al. (2017), which harnesses

so-called local strong concavity around the global maximum for its results.

2.11.1 Monotonicity of the EM algorithm

We begin with the celebrated monotonicity result of Dempster et al. (1977) which

is that the likelihood function is non-decreasing in the number of EM iterations.

Following the notation and derivations of Section 2.5.1, we have the expression

whereby for k = 0, 1, 2, ...,

`
(
X;θ(k+1)

)
− `
(
X;θ(k)

)
= Q(θ(k+1);θ(k))− Q(θ(k);θ(k))

−
[
H(θ(k+1);θ(k))−H(θ(k);θ(k))

]
,
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As noted previously, the first term is non-negative since θ(k+1) maximises Q(θ;θ(k))

by construction. Further, the second term is non-negative since for any θ,

H(θ;θ(k))−H(θ(k);θ(k)) = Eθ(k)

[
log

L (F |X;θ)

L (F |X;θ(k))

∣∣∣∣X]
≤ log Eθ(k)

[
L (F |X;θ)

L (F |X;θ(k))

∣∣∣∣X]
= log

∫
L (F |X;θ)

L (F |X;θ(k))
L
(
F |X;θ(k)

)
dF

= log

∫
L (F |X;θ) dF

= log 1 = 0,

which follows from Jensen’s inequality and concavity of the logarithmic function.

This was the subject of “Lemma 1” in Dempster et al. (1977). It follows that

`
(
X;θ(k+1)

)
≥ `

(
X;θ(k)

)
,

for k ≥ 0. The implication is that for a sequence of likelihood values {L
(
X;θ(k)

)
}

that is bounded from above31, L
(
X;θ(k)

)
converges monotonically to some L∗

(Wu, 1983, p.96).

The monotonicity property of the EM algorithm guarantees that the procedure

never worsens the likelihood of the data during its successive updates. This

assures us that the algorithm does not diverge, although it does not answer the

question of whether L∗ is a global or local maximum, or even a stationary point.

2.11.2 Regularity Conditions

Given a d-dimensional vector of unknown parameters θ ∈ Θ, where Θ denotes

the parameter space, and observations X, Wu (1983) assumes the following:

(i) Θ is a subset in d-dimensional Euclidean space Rd;

31A sequence {xn} is said to be bounded from above if there exists a positive constant M
such that |xn| ≤M for all n ∈ N+.
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(ii) {θ ∈ Θ : L(X;θ) ≥ L(X;θo)} is compact for any L(X;θo) > −∞;

(iii) L(X;θ) is continuous in Θ and differentiable in the interior of Θ.

Above, the notation θo represents an arbitrary value of θ.

As a consequence of conditions (i)–(iii), the sequence {L
(
X;θ(k)

)
} for k ≥ 0 is

bounded from above for any θ(0) ∈ Θ, where in order to “avoid trivialities”, the

starting point θ(0) is assumed to satisfy L(X;θ(0)) > −∞ (Wu, 1983, p.96–97).

Further, Wu (1983) assumes that θ(k+1) is a solution to the equation

∂Q(θ;θ(k))

∂θ
= 0

for all k ≥ 0. The interpretation is that each θ(k) is in the interior of Θ.

2.11.3 Theoretical Guarantees

Under the above regularity conditions, we have the following result.

Result Wu1. Suppose Q(θ;φ) is continuous in both θ and φ. Then, all the

limit points of any instance {θ(k)} of the EM algorithm are stationary points of

L(X;θ), and L(X;θ(k)) converges monotonically to some value L∗ = L(X;θ∗)

for some stationary point θ∗. (Wu, 1983, “Theorem 2”)

According to Wu (1983, p.98), the extra “continuity condition [that is required by

Result Wu1] is very weak and should be satisfied in most practical situations. For

convergence to stationary values it turns out to be the only required regularity

condition (in addition to those given before). [Result Wu1] is most useful in that

it covers a broad range of statistical applications.”

While Result Wu1 is important, it does not rule out, for instance, convergence to

a saddle point. To strengthen the guarantee, an additional restriction is needed.

Indeed, under the same regularity conditions, along with the extra continuity

condition mentioned in Result Wu1, we have the following result.
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Result Wu2. Suppose

sup
θ∈Θ

Q(θ;θ∗) > Q(θ∗;θ∗)

for any stationary point θ∗ that is not a local maximiser of L(X;θ). Then all

limit points of any instance {θ(k)} of the EM algorithm are local maximisers of

L(X;θ) and L(X;θ(k)) converges monotonically to some value L∗ = L(X;θ∗)

for some local maximiser θ∗. (Wu, 1983, “Theorem 3”)

The interpretation of Result Wu2 is that if the Q-function is not trapped at

any point θo that is a stationary point but not a local maximum of L(X;θ) –

which is the additional restriction required by Result Wu2 – then L∗ is not only

a stationary point but also a local maximum of L(X;θ).

For the next available result, we take a slightly more informal approach. The

reason is that the original theorems of Wu (1983) are phrased in respect of the

generalised EM algorithm (GEM)32, which we do not consider in our study. In-

deed, a formal discussion of the GEM algorithm compels an introduction of termi-

nology associated with so-called point-to-set maps (see, for instance, Douc et al.

(2014, p.498) for a concise summary), and we believe that the added complexity

is unnecessary for our current purpose. We simply note that the EM algorithm

(the focus of our interest) is a special case of the GEM algorithm, and proceed

with a heuristic exposition below.

The convergence of a sequence of likelihood values L(X;θ(k)) to some value L∗

does not automatically imply the convergence of the corresponding sequence of

iterates {θ(k)} to a point θ∗. The next result pertains to such iterates. Suppose

all the conditions required by Result Wu2 hold.

Result Wu3. If ‖θ(k+1) − θ(k)‖ → 0 as k → ∞ and the set of local maxima

32Depending on the application, a closed-form solution to the M step may not exist. If so,
it may not be feasible to seek out the value of θ that globally maximises Q(θ;θ(k)). Dempster
et al. (1977) defined a procedure in which the M step only requires θ(k+1) to be selected such
that

Q(θ(k+1);θ(k)) ≥ Q(θ(k);θ(k)).

In other words, θ(k+1) is chosen to increase the Q-function above its value at θ = θ(k) rather
than to maximise it over all θ ∈ Θ. This procedure is the GEM algorithm.
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with a given likelihood value is discrete, then θ(k) converges to a local maximum.

(Wu, 1983, p.102)

A sufficient condition for ‖θ(k+1) − θ(k)‖ → 0 is that there exists a real positive

constant, say MQ, such that

Q(θ(k+1);θ(k))− Q(θ(k);θ(k)) ≥MQ‖θ(k+1) − θ(k)‖2

for all k (Wu, 1983, “Condition 1”). Importantly, this condition is satisfied by

the regular exponential family (Wu, 1983, p.101).

As regards the discreteness requirement, it is violated, for instance, if the likeli-

hood has a ridge of stationary points in which it takes the value L∗.

Our final result of interest from Wu (1983) pertains to an important special case

of a unimodal likelihood with a single stationary point. Assume the standard

regularity conditions hold.

Result Wu4. Suppose that L(X;θ) is unimodal in θ with θ∗ being the only

stationary point in the interior of Θ, and that ∂Q(θ;φ)
∂φ

is continuous in both θ

and φ. Then, any EM sequence {θ(k)} converges to the unique maximiser θ∗ of

L(X;θ). (Wu, 1983, “Corollary 1”)

In other words, in this case, the EM procedure delivers the global maximum.

The selection of results from Wu (1983) presented above is enough for the purpose

of our current work. Nevertheless, we discuss a few interesting extensions below.

2.11.4 An Interesting Extension

We refer the reader to McLachlan and Krishnan (2008) and Gupta and Chen

(2011) for detailed historical overviews of the EM algorithm and its many exten-

sions since the ground-breaking work of Dempster et al. (1977) and Wu (1983).

The references therein are too numerous to cite here. We choose to focus instead

on the relatively recent contribution of Balakrishnan et al. (2017), which we find

interesting since it develops a rather general framework for characterising the
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convergence of the EM algorithm.

To summarise our foregoing discussion, when the likelihood function is multi-

modal, the best guarantee provided by Wu (1983) is convergence to an arbitrary

local maximum. A guarantee of this type does not preempt the EM algorithm

from converging to a “poor” local maximum Balakrishnan et al. (2017, p.78),

meaning one that is far away from any global maximum of the likelihood. Bal-

akrishnan et al. (2017) addresses the concern above by outlining sufficient con-

ditions for the EM algorithm to converge to a small neighbourhood of the global

maximum. The paper explains:

[...] our contribution is to provide a quantitative characterization of

a basin of attraction around the population global optimum with the

following property: if the algorithm is initialized within this basin,

then it is guaranteed to converge to an EM fixed point that is within

statistical precision of a global optimum. The statistical precision

is a measure of the error in the maximum likelihood estimate other

minimax optimal method; we define it more precisely in the sequel.

Thus, in sharp contrast with the classical theory [...33] – which guar-

antees asymptotic convergence to an arbitrary EM fixed point – our

theory guarantees geometric convergence to a “good” EM fixed point.

(Balakrishnan et al., 2017, p.78, emphasis in original)

The result is valid for several canonical latent variable models and the conditions

required pertain chiefly to strong concavity and first-order stability of the Q-

function. We discuss these next.

In respect of additional notation, suppose θ∗ is the true (unknown) parameter, let

∇ denote the gradient operator, and let 〈·, ·〉 denote the inner product. Finally,

define the Euclidean ball of radius r > 0 centred at θ∗ as

B2(r;θ∗) = {θ ∈ Θ : ‖θ − θ∗‖2 ≤ r},

where ‖ · ‖2 is the usual L2-norm.

33References omitted.
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The paper defines the following conditions to ensure that any sequence of iterates,

when initialised in this ball, converges to a small neighbourhood of θ∗.

Condition Bala1. Θ is some non-empty convex set of parameters.

Condition Bala1 ensures convexity of the domain.

Condition Bala2. There exists some λ > 0 such that

Q(θ1;θ∗)− Q(θ2;θ∗)− 〈∇Q(θ2;θ∗),θ1 − θ2〉 ≤ −
λ

2
‖θ1 − θ2‖2

2

for all pairs θ1,θ2 ∈ B2(r;θ∗)

Condition Bala2 ensures λ-strong concavity local to θ∗ (i.e. over an r-neighbourhood

of θ∗) . If one were to require, for instance, that Condition Bala2 held for all

pairs θ1,θ2 ∈ Θ, the condition would be referred to as global λ-strong concavity.

In order to present the main result of Balakrishnan et al. (2017) in a concise way,

we introduce a new mapping operator at this stage to represent the EM update.

We define M : Θ 7→ Θ, such that

M(θ) = arg max
θ′∈Θ

Q(θ′;θ)

Using this notation, the EM algorithm given some initialisation θ(0), produces a

sequence of iterates {θ(k)} for k ≥ 0, where θ(k+1) = M(θ(k)).

A final condition, relating to first-order stability, is needed.

Condition Bala3. There exists a sufficiently small γ ≥ 0 such that

‖∇Q(M(θ);θ∗)−∇Q(M(θ);θ)‖2 ≤ γ‖θ − θ∗‖2

for all θ ∈ B2(r;θ∗).

Condition Bala3 is a first-order γ-stability condition which enforces the gradient

maps ∇Q(θ;θ) and ∇Q(θ;θ∗) to be close whenever θ lies in an r-neighbourhood

of θ∗. This will ensure that the mapped output M(θ) stays relatively close to θ∗.

We are now ready to present the key result of Balakrishnan et al. (2017).
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Result Bala1. Under Conditions Bala1–Bala3, for some radius r > 0 and

0 ≤ γ < λ, the map M is contractive over B2(r;θ∗), in particular with

‖M(θ)− θ∗‖2 ≤
γ

λ
‖θ − θ∗‖2

for all θ ∈ B2(r;θ∗); consequently, the EM iterates {θ(k)} converge to θ∗, namely

‖θ(k) − θ∗‖2 ≤
(γ
λ

)k
‖θ(0) − θ∗‖2

when initialisation θ(0) ∈ B2(r;θ∗). (Balakrishnan et al., 2017, “Theorem 4”)

This completes our review (albeit limited in scope to results most relevant to us)

of theoretical guarantees available for the EM algorithm.
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“Is yesterday’s model capable of

explaining today’s data?”

– Chu et al. (1996)

Chapter 3

Sequential Changepoint

Detection via an Eigenvalue

Ratio

We develop a procedure to detect changepoints in a static approximate factor model on

a sequential basis. Specifically, we define a ratio of eigenvalues of the covariance matrix

of N response variables. We compute this ratio each period using observations within a

rolling window of size m over time and monitor the results. We declare a changepoint as

soon as the value of this ratio breaches a pre-specified alarm threshold. To substantiate

our procedure, we investigate the asymptotic behaviour (as N,m→∞) of our proposed

ratio, and prove that, for specific eigenvalues, the ratio will spike upwards when a

changepoint is encountered but not otherwise. Further, we propose a block-bootstrap

procedure to obtain the alarm thresholds. Finally, we present simulation results and

an empirical application based on FTSE 100 stock price data.
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3.1 Introduction

3.1.1 Background

We characterise a changepoint as an instance in time in which a model undergoes

a structural break. In other words, there arise abrupt differences in the values

of model parameters before and after the changepoint. Our interest lies in the

detection of changepoints in factor models for high-dimensional time series data.

Several authors have already recognised the importance of identifying change-

points of this nature. By way of example, we refer the reader to Breitung and

Eickmeier (2011), Chen et al. (2014), Cheng et al. (2016), Corradi and Swan-

son (2014), Han and Inoue (2014), Yamamoto and Tanaka (2015), and Baltagi

et al. (2017). These papers undoubtedly represent significant contributions in a

growing field. However, they all focus on the setting where the focus is on the

detection of structural breaks given a historical dataset. As such, the analyses

are retrospective or offline.

In contrast, we aim to detect changepoints on a real-time basis. Thus, our ap-

proach is online in the sense that we examine the problem of sequential monitoring

for a structural break when new data arrive steadily with each additional time

period. As far as we are aware, with one important exception, namely Barigozzi

and Trapani (2020), not many studies have considered the online case. It is in

this area that our study hopes to make a positive contribution.

We believe that this is an important area of research since factor models are often

used to exploit information in real-time. For instance, Doz et al. (2011) explains

how factor models are used to forecast gross domestic product (GDP) for the

recent past, present and near future using real-time data, a practice commonly

referred to as “nowcasting”. For such models to remain relevant over time, it is

imperative that structural breaks brought about by fundamental policy, techno-

logical, economic, or news-related changes are detected accurately and in a timely

fashion. This ensures that we can update model parameters when necessary to

accurately reflect conditions in the prevailing market environment.
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3.1.2 Summary

In this study, we explore the problem of timely detection of a change in the

loadings of a static approximate factor model.

We explain (see Section 3.3) the well-known result that a model with a structural

break in loadings for one of the factors is observationally equivalent to a model

with stable loadings but in which one factor (or “pseudo-factor”) emerges and

another disappears. Effectively, we reduce the problem of detecting changes in

loadings to one of analysing changes in the number of factors (or pseudo-factors)

over time.1

We recall that the literature on estimation of the number of factors focusses on

eigenvalues of the covariance matrix of the data (e.g. Bai and Ng (2002), Alessi

et al. (2010), Ahn and Horenstein (2013), and Onatski (2010)). Even simple

methods such as the celebrated scree-plot of Cattell (1966) are based on a visual

analysis of eigenvalues. Given the discussion in the previous paragraph, it is

perhaps not a surprise then that an eigenvalue-based strategy can also be used

for changepoint detection (at least within our proposed framework). This is the

motivation behind our approach. An advantage of our eigenvalue-based approach

is that we can detect changepoints simply by estimating covariance matrices. We

do not need to first estimate the full model (i.e. loadings, factors, etc.).

Our study is organised as follows. In Section 3.2, we provide a detailed survey of

the vast time series literature on changepoint detection. In Section 3.3, we specify

our model (with parameter instability) and outline a changepoint detection strat-

egy based on an eigenvalue ratio. The strategy is summarised as follows: for a

model containing r factors, where 1 ≤ q ≤ r factors undergo an abrupt change in

loadings, we construct a ratio based on the (r+ 1)th eigenvalue of the population

covariance matrix of N response variables. The ratio is defined such that the

eigenvalue in the denominator is computed over a fixed window consisting of the

first m initial observations. The eigenvalue in the numerator is initialised from

1It stands to reason that our techniques will also be immediately applicable to the problem
of detecting changes whereby loadings remain stable but there is a sudden emergence of one
(or more) new factor(s). We do not explicitly dwell on the latter case here.
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data within a window covering the next m initial observations. In this regard,

the first 2m observations are treated as a training sample. We propose a moni-

toring procedure whereby the numerator is then re-computed each period over a

rolling window of m observations, whereas the denominator remains fixed at the

beginning of the training sample. We propose the use of this eigenvalue ratio as

a time-varying detection statistic, such that a changepoint is declared the first

time this statistic breaches a pre-specified alarm threshold. In Section 3.4, we

find (in Theorem 3.1) that, asymptotically, this eigenvalue ratio exhibits distinc-

tive spiking behaviour upon encountering a changepoint but not otherwise. In

Section 3.5, we propose an estimator for our eigenvalue ratio (and in Theorem

3.2, we establish the sample level counterpart to Theorem 3.1). In Section 3.6,

we spell out the steps for implementing a sequential changepoint detection pro-

cedure in practice. In Section 3.7, we describe a bootstrap procedure in order

to obtain critical values of our detection statistic for use as alarm thresholds. In

Section 3.8, we present simulation results. In Section 3.9, we present an empirical

application based on FTSE 100 data (Oct. 2013 to Oct. 2016). We are able to

successfully detect a changepoint associated with the Brexit vote in the United

Kingdom (UK) in June 2016. In Section 3.10, we reflect on window size. We

outline possible directions for future study with respect to selection of m in an

adaptive manner. We conclude in Section 3.11, and gather proofs in Section 3.12.

3.2 Survey of Changepoint Literature

Sequential changepoint detection refers to a class of methods for detecting changes

in the state of a phenomenon with as low a delay as possible subject to a tolerable

risk of a false alarm. The need for sequential monitoring for structural change in

econometric analysis (and beyond) was pithily underscored in Chu et al. (1996,

p.1045):

In the real world, new data arrive steadily. Given a previously esti-

mated model, the arrival of new data invites the question: is yester-

day’s model capable of explaining today’s data?
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Indeed, given the central importance of structural stability in the statistical anal-

ysis of time series, much effort has been devoted historically to research on se-

quential changepoint detection. The literature traces its roots right back to the

manufacturing quality control techniques pioneered in the 1920s and 1930s (see

Shewhart (1931)). These were followed by formal methods for sequential analysis

such as the sequential probability ratio test (SPRT) of Wald (1948) and Wald

and Wolfowitz (1948), and the cumulative sum (CUSUM) scheme of Page (1954),

Lorden (1971), Moustakides (1986) and Ritov (1990). Detailed and technical text-

book treatments containing many classical references for sequential changepoint

detection are in Poor and Hadjiliadis (2008) and Tartakovsky et al. (2014), and

key extensions to classical methods are reviewed in Polunchenko and Tartakovsky

(2012) and Horváth and Rice (2014).

We already began our sketch of the academic landscape of this area in Sec-

tion 1.2.2 above but our focus therein was on studies most closely related to our

own (i.e. specifically in the context of factor models). In this section, we conduct

both a broader and deeper review of the body of existing literature on sequen-

tial changepoint detection for time series. In particular, we briefly touch upon

the classical origins of the field before proceeding to explore sequential detection

in both the univariate or low-dimensional setting (Section 3.2.1) and the high-

dimensional setting (Section 3.2.2). For the high-dimensional case, we also hone

in on studies (mainly in the offline literature) that exploit the behaviour of the

covariance matrix as does our own (Section 3.2.3). We end our review with a

summary of the novel randomised sequential testing procedure of Barigozzi and

Trapani (2020) and compare its approach with our own (Section 3.2.4).

Before embarking upon our survey, we remark that there is also a vast literature

on Bayesian methods for sequential changepoint detection whose signature fea-

ture is that the changepoint is treated as a random variable possessing a prior

distribution. This is in contrast to the non-Bayesian approach which posits that

the changepoint is an unknown but not necessarily random quantity and even if

it is random, its distribution is unknown. We briefly mention some key historical

references in this paragraph but thereafter refrain from a discussion of Bayesian

methods for changepoint detection. For despite their importance and historical
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significance, they fall entirely outside the scope of our study. The Bayesian for-

mulation was originally framed in Girshick and Rubin (1952) to solve a typical

quality control problem for continuous technological processes. The first opti-

mality results concerning Bayesian change detection algorithms were obtained in

Shiryaev (1961, 1963, 1965). Further investigations can be found in Pollak and

Siegmund (1985), Pollak (1985, 1987). We refer readers interested in additional

details on developments in the Bayesian tradition to, for example, Basseville and

Nikiforov (1993) and Fearnhead and Liu (2007).

3.2.1 Sequential Detection – Univariate & Small N Case

Classical Origins

Page (1954) proposed the following class of CUSUM schemes. Let Zi be a function

of the ith sample statistic Xi and let Sn =
∑n

i=1 Zi, S0 = 0. A simple CUSUM

scheme triggers a changepoint declaration at period

inf

{
n : Sn − min

1≤j≤n
(Sj) ≥ c

}
,

where c is some critical threshold. In particular, when the chosen function is the

log-likelihood ratio with two given densities, the CUSUM scheme is closely related

to the repeated SPRT of Wald (1948) which harbours optimality properties (see

Wald and Wolfowitz (1948)). For instance, say X1, ..., Xκ are iid with common

density f0 and Xκ+1, Xκ+2, ... are iid with common density f1 and if we let Zi =

log (f1(Xi)/f0(Xi)), then the Page (1954) scheme yields the stopping rule

inf

{
n : max

1≤k≤n

[
n∑
i=k

log

(
f1(Xi)

f0(Xi)

)]
≥ c

}
.

Stopping rules when parameters of the the post-change density, say θ ∈ Θ, are

unknown and maximum likelihood estimates are used are typically referred to as
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generalised likelihood ratio (GLR) schemes and bear the form

inf

{
n : max

1≤k≤n
sup
θ∈Θ

[
n∑
i=k

log

(
fθ(Xi)

f0(Xi)

)]
≥ c

}
.

Most initial studies in statistical process control (such as those mentioned above)

naturally focussed on independent data. Nevertheless, a large literature on moni-

toring procedures for univariate time series also developed. Some important works

include Barnard (1959) which adapted the aforementioned CUSUM procedure for

dependent data, and Basseville (1986) which studies sequential changepoint de-

tection in autoregressive models and suggests alternative detectors based on Kull-

back divergence and Chernoff’s distance between conditional laws. Lai (1995) not

only contains an excellent summary of the state of the art of its time2 but also

goes on to develop a so-called “window-limited GLR” scheme. Specifically, Lai

(1995) emphasises that there is a great computational complexity associated with

the GLR scheme for non-independent observations and uses an idea put forth by

Willsky and Jones (1976) carrying out only a limited number (< n) maximi-

sations of the conditional log-likelihood given past observations to ameliorate

computational burden. The Lai (1995) stopping rule (with size w window) is

inf

{
n > w : max

n−w+1≤k≤n
sup
θ∈Θ

[
n∑
i=k

log

(
fθ(Xi|X1, ..., Xi−1)

f0(Xi|X1, ..., Xi−1)

)]
≥ c

}
.

2Also see Lai (2001).
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Linear Models

We round up our summary above of the classical frontrunners in the field by

introducing next the work of Chu et al. (1996). The latter is an influential

study for several reasons, not least because it ushered research on sequential

changepoint detection into the econometrics literature where the changepoint

problem is often referred to as monitoring for structural breaks. Specifically, Chu

et al. (1996) develops CUSUM schemes for so-called “recursive residuals” from

a linear regression model3 and exploits a functional central limit theorem with

a Wiener process as a limit from which boundary crossing probabilities may be

drawn.

Chu et al. (1996) is noteworthy in various additional respects. First, it heralded a

paradigm shift; that is, classical procedures typically minimise the detection delay

under some restrictions on the false alarm rate (e.g. average run length to false

alarm). Such tests typically yield a false alarm with probability one. Instead,

Chu et al. (1996) focusses on controlling asymptotic probability of Type I error if

no change occurs and has asymptotic power one (i.e. guaranteed identification of

a changepoint) under the alternative. In this sense, the studies in the tradition

of Chu et al. (1996) discussed hereafter deviate from the classical approaches

discussed in previous paragraphs.4 Second, Chu et al. (1996) espoused the use

of an initial training period of m observations in which it is assumed that no

changepoint arises before monitoring purposefully begins (referred to in the paper

as the “non-contamination” assumption). Our own procedure is grounded on

the same idea – i.e. that we are effectively aiming to monitor stability of the

historically adequate model. Third, Chu et al. (1996) focussed on the open-

ended (infinite horizon) setting in which monitoring can proceed indefinitely if

no changepoint is discovered. This is more suited to economics where marginal

cost of sampling is negligible relative to, say, engineering. We too adopt the

open-ended framework.5

3Chu et al. (1996) also proposes an alternative detector based on parameter fluctuations.
Other studies along similar lines include Krämer et al. (1988) and Ploberger et al. (1989).

4Gösmann et al. (2022) contains a detailed explanation for the interested reader.
5Studies of monitoring procedures with a fixed endpoint include Leisch et al. (2000), Zeileis

et al. (2005), Wied and Galeano (2005), and Dette and Gösmann (2020).

159



The literature on sequential detection for parameter changes in linear regres-

sion models was subsequently advanced by Horváth et al. (2004, 2007) which

developed two classes of monitoring schemes to sequentially detect a structural

change in a linear model after a training period of size m. The first class of

procedures is based on weighted CUSUMs of residuals, in which the unknown

in-control parameter has been replaced by its least-squares estimate from the

training sample, whereas the second class of schemes makes use of the CUSUMs

of recursive residuals. Kirch and Tadjuidje Kamgaing (2015) is an interesting

study that explains how most of the detection statistics discussed heretofore can

be expressed by means of estimating functions. This provides a unifying frame-

work for the derivation of asymptotic results. Specifically, Kirch and Tadjuidje

Kamgaing (2015) derives regularity conditions under which limit results for the

standard CUSUM monitoring scheme as originally proposed by Chu et al. (1996)

are obtained. The results unify several studies on linear models such as Horváth

et al. (2004), Aue and Horváth (2004), and Hušková and Koubková (2005).

Further, Kirch (2008) investigates bootstrap methods to obtain critical values for

sequential changepoint tests for changes in the mean of a univariate process with

iid errors. Hlávka et al. (2012) develops a procedure for monitoring changes in

the error distribution of autoregressive time series. Hlávka et al. (2016) combines

the previous works by investigating bootstrap methods for sequential detection of

changepoints in autoregressive models. Zhou et al. (2015) investigates sequential

detection in the case of linear quantile regression models.

Non-Linear Models

Most initial studies following Chu et al. (1996) (such as alluded to above) re-

mained focussed on linear regression models or linear dynamic models with weakly

dependent data. Instead, Altissimo and Corradi (2003) considers the case of

shifts in the mean of a possibly non-linear process, allowing for dependent and

non-identically distributed data. Gut and Steinebach (2002, 2009) consider se-

quential detection in the case of renewal counting processes. Berkes et al. (2004)

designs a detector for changes in the parameters of a generalised autoregressive

conditional heteroscedasticity (GARCH) process. Berkes et al. (2004) relies on

quasi-likelihood scores and does not use model residuals. Andreou and Ghysels
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(2006) aims to monitor the stability of non-linear GARCH-type processes that

exhibit volatility clustering by adapting the CUSUM scheme. Kulperger and Yu

(2005) pursues an alternative approach based on partial sums of squared residuals

of GARCH processes. Aue et al. (2006) considers a linear regression model with

errors modelled by martingale difference sequences, which include heteroscedastic

augmented GARCH processes. One method introduced is based on the CUSUM

of the residuals and the other is based on squares of prediction errors.

Recent Developments

We mention a few select interesting avenues of recent research below.

Brodsky (2012) investigates the problem of sequential detection of changes in

equations for unobserved state variables and observations of linear and nonlinear

multivariate state-space models. Aue et al. (2012) develops techniques for use

with high-frequency data. The authors take the view of a portfolio manager who

has to decide in real-time whether to hold or sell the assets in her portfolio. Based

on a training sample of size m, they define their procedures as first crossing times

of a suitably constructed threshold function by a quadratic form detector built

from least squares estimates of the portfolio betas. Fremdt (2015) argues that

the performance of ordinary CUSUM procedures depends on the time of change

and is best under early change scenarios. It thus proposes modified CUSUM

procedures for the detection of abrupt changes in the regression parameters of

multiple time series regression models that show a higher stability with respect

to the time of change than ordinary CUSUM procedures. Gösmann et al. (2021)

proposes a new sequential monitoring scheme for changes in the parameters of

a multivariate time series. In contrast to procedures proposed in the literature

which compare an estimator from the training sample with an estimator calcu-

lated from the remaining data, Gösmann et al. (2021) takes the novel approach

of dividing the sample at each time point after the training sample. Estima-

tors from the sample before and after all separation points are then continuously

compared calculating a maximum of norms of their differences. Kirch and Stoehr

(2022) derives the asymptotic distribution of detection delay times for sequential

detection procedures based on U-statistics. It covers both a difference-of-means

sequential test and a Wilcoxon sequential change point test which is found to
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exhibit low detection delay in heavy-tailed settings.

Concluding Remarks

In view of natural limits to the scope of our present work relative to the sheer

number of studies in this field, we concede that we cannot realistically aim to cover

all aspects of the literature in this review.6 Nevertheless, we have covered (to the

best of our knowledge) the most salient features of the landscape and hope that

we have sufficiently demonstrated the richness of the field as motivation for our

upcoming work. We leave this section by remarking that sequential changepoint

analysis has clearly seen an explosion of interest over the last decade and we

expect that this will only increase in the near future due to the need, as noted in

Horváth et al. (2021, p.2272), “to create changepoint detection tools suitable for

complex, non-Euclidean data structures [such as networks] and high-dimensional

and functional data”. In the next section, we focus specifically on the high-

dimensional case.

3.2.2 Sequential Detection – Large N Case

Early Studies

In contrast to the univariate and low-dimensional settings, the body of existing

research thins when considering the high-dimensional case to the extent that one

leading study, Chen et al. (2022, p.237), bemoans “a paucity of prior literature”

in the area. Some of the first studies to tackle monitoring for a large number of

data streams were Tartakovsky et al. (2006) and Mei (2010).

Tartakovsky et al. (2006) considers monitoring in the context of cyber-terrorism

in the form of intrusion detection in multichannel sensor systems. A multichannel

sensor system monitors N sequences of observations whose distributions follow a

certain law up to some unknown instant; after this instant, one of the sequences

changes its statistical properties. It is assumed that there exist data from N

channels that are mutually independent but data within a channel are permitted

6A case in point is that the literature on the distinct but arguably related area of offline
changepoint detection (which we have not mentioned) is even bigger than for the online case.
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to be correlated or non-identically distributed. Tartakovsky et al. (2006, p.255)

explains the motivation for a so-called “multi-chart” detection procedure as fol-

lows:

[...] applying a multi-chart test, rather than a single-chart test, is

vitally important. Otherwise, if a change occurs in one particular

[channel] and all the data are mixed into one single statistic, this

change will be obscured by the normal traffic in all other [channels].

This will result in a very large detection delay, and the attack may

proceed undetected. On the other hand, if the attack is visible in

several channels, [...] then the multi-chart tests proposed [...] are not

optimal but they will still work.

In the case that pre- and post-change models are known, Tartakovsky et al.

(2006, Equation 2) exploits the independence property across channels to easily

construct a likelihood ratio based CUSUM statistic, say Ui(t), where t denotes

time and i denotes the channel. Then, the proposed detection statistic is

inf

{
t ≥ 1 : max

1≤i≤N
Ui(t) ≥ c

}
for some critical threshold c. In the (more realistic) case that the models are

unknown, the parameters are estimated and the likelihood ratio statistic, Ui(t),

is replaced with one that is based on a score function using the logic that the

latter should drift continually away from zero when encountering a change (see

Tartakovsky et al. (2006, Equation 22)).

Mei (2010, p.419) expands upon the motivation for a so-called “global” detection

procedure:

Unfortunately, the local monitoring approach does not take advantage

of global information, and may lead to large detection delays if several

data streams provide information about the occurring event. More

importantly, even if the local false alarm rate is well controlled at

each data stream, the global false alarm rate can be severe when the

number of data streams is large, leading to obvious costs and the
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classic boy who cried wolf phenomenon.

Mei (2010) argues that the scheme of Tartakovsky et al. (2006) is best suited to

the case where a single data stream is affected by a change, and is computationally

infeasible when the number of affected data streams is even moderately large. Mei

(2010) achieves a reduction in dimensionality by computing, say K, local CUSUM

statistics based on all possible subsets of affected data streams that could arise.

The proposed stopping rule is

inf

{
t ≥ 1 :

K∑
k=1

Vk(t) ≥ c

}
,

where Vk(t) is a likelihood or score-based statistic like in Tartakovsky et al. (2006)

but calculated at the local level. This rule is better-suited to detecting dense

rather than sparse changes, but the assumptions (e.g. lack of cross-sectional de-

pendence, and prior knowledge about possible subsets of affected streams) remain

restrictive.

Xie and Siegmund (2013) assumes that data streams are independent and nor-

mally distributed with unit variance, and that the changes occur in their mean

values. At each time period, a GLR statistic for each individual stream is com-

puted under the assumption that a changepoint has occurred. The local GLR

statistics are combined via a mixture model that has the effect of soft thresh-

olding the local statistics according to a hypothesised fraction of affected data

streams. The resulting local statistics are summed and compared with a detec-

tion threshold. A window-limited version of the procedure as in Lai (1995) is

also developed. Chan (2017) is similar to Xie and Siegmund (2013) but with an

improved choice of tuning parameters.

Recent Developments

A recent contribution to the state of the art is Chen et al. (2022)7 which introduces

a method for high-dimensional multiscale sequential changepoint detection in

settings where an N -variate Gaussian data stream may undergo a change in mean

(where each possible value of the mean in the post-change regime is referred to

7Also see the companion paper Chen et al. (2021, pre-print) which focusses on inference.
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as a specific “scale”). The procedure works by performing likelihood ratio tests

against simple alternatives of different scales for each individual data stream

(which the paper refers to as a “coordinate”), and then aggregating test statistics

across scales and coordinates. The method, titled “online changepoint detection

(ocd)”, is explained in Chen et al. (2022) roughly as follows:

Say there exists anN -dimensional independent Gaussian sequence xt =
(
x1
t , ..., x

N
t

)′
with each element distributed N(0, 1) under the pre-change regime. Chen et al.

(2022) tests against a simple post-change alternative of N(b, 1) for some b 6= 0

in the j-th data stream. For t ∈ N, b ∈ R\{0} and j ∈ {1, ..., N}, the optimal

procedure (following Page (1954)) is to declare a changepoint when the statistic

Rj
t,b = max

0≤h≤t

t∑
i=t−h+1

b(xji − b/2)

exceeds a certain threshold. The logic is that
∑t

i=t−h+1 b(x
j
i−b/2) may be viewed

as a likelihood ratio test statistic between the null and the simple alternative using

the tail sequence xjt−h+1, ..., x
j
t , and Rj

t,b is the most extreme of these likelihood

ratio statistics, over all possible starting points for the tail sequence. The pa-

per refers to the Rj
t,b for j = 1, ..., N as “diagonal statistics” and recommends

their individual use for detecting sparse changes (which have much of their signal

concentrated in one coordinate).

As regards dense changes, the paper defines an ancillary statistic, say,

qjt,b = arg max
0≤h≤t

t∑
i=t−h+1

b(xji − b/2)

to denote the length of the tail sequence in which the associated likelihood ratio

statistic (in the j-th coordinate) is maximised. Then, tail partial sums of length

qjt,b are computed in all other coordinates j′ 6= j given by

Aj
′j
t,b =

t∑
i=t−qjt,b+1

xj
′

i ,
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and these are aggregated to form what the paper refers to as an “off-diagonal”

statistic anchored at coordinate j. These off-diagonal statistics are used to detect

changes whose signal is not concentrated at a single coordinate. The diagonal

and off-diagonal statistics are then aggregated by a proposed algorithm that is

adaptive (to signal strength in a given coordinate) in nature.

The contributions of Chen et al. (2022) are sophisticated, efficient and perform

well in numerical studies relative to Mei (2010), Xie and Siegmund (2013) and

Chan (2017). Nevertheless, the theoretical framework, which stipulates mutually

uncorrelated Gaussian observations that are independent over time, appears re-

strictive for high-dimensional time series applications often observed in macro-

and financial econometrics. These limitations are acknowledged in the paper and

conjecture is offered on how to extend the results (Chen et al., 2022, p.246) but

no formalisation of the conjecture has been advanced as yet.

We now discuss some studies that allow for temporal and cross-sectional de-

pendence. Groen et al. (2013) considers multiple series that co-break and argues

that simultaneous examination of a set of series helps identify changes with higher

probability or more rapidly than when series are examined on a case-by-case basis.

It proposes a multivariate detector that takes the residuals from a set of equations

recursively estimated over a monitoring period. The residuals are purged of cross-

equation correlation and maximum and average CUSUM detection statistics are

constructed. Groen et al. (2013) is significant because (unlike Tartakovsky et al.

(2006) and Mei (2010), etc.), the focus is specifically on macroeconomic appli-

cations such as changes in the monetary policy regime or shifts in total factor

productivity growth and so on, and cross-sectional dependence is permitted.

More recently, Manner et al. (2021) addresses challenges of high-dimensionality

by using factor copula models which are able to capture dependence structure

for a large number of data streams with a relatively low number of parameters.

It compares rolling window parameter estimates to the parameter estimates of

the factor copula over an initial training sample (over which no-instability is

assumed). Estimation occurs via the method of simulated moments and the

proposed detector is a moving sum (MOSUM) type statistic (see, for example,
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Chu et al. (1995)) based on the quadratic form:

m2
(
θ̂t−m+1:t − θ̂1:m

)′ (
θ̂t−m+1:t − θ̂1:m

)
where m is a window size, θ̂1:m denotes parameter estimates from a training sam-

ple of size m and θ̂t−m+1:t represents parameter estimates from a rolling window

of size m computed at time t. Manner et al. (2021) also provides a real-world

financial risk management application of its procedure.

Gösmann et al. (2022) develops a sequential procedure capable of detecting

changes in the mean vector of a successively observed high-dimensional time se-

ries with spatial and temporal dependence. The approach is based on a weighted

CUSUM statistic for one-dimensional data (weighted roughly by the estimated

long-run variance of an individual series), and the component-wise statistics are

aggregated via checking for the maximum. Unlike Chen et al. (2022), in this

paper, it is not the statistic itself that is greatly innovative since it follows in the

footsteps of works such as Tartakovsky et al. (2006) and Mei (2010). However,

this study is very interesting since under weak conditions on cross-sectional and

temporal dependence, a suitably transformed version of the detection statistic is

proved to converge in distribution to the range of a Brownian motion and this

is, in turn, shown to be in the maximum domain of attraction of the Gumbel

distribution. The latter is actually a result of independent interest in extreme

value theory. The drawback, however, is that convergence rates in such limiting

results are rather slow. As a consequence, Gösmann et al. (2022) also proposes a

bootstrap procedure to approximate quantiles in practical applications.

Finally, we mention He et al. (2021), which investigates the problem of sequential

changepoint detection in matrix-valued time series. The study uses the same

intuition that we do (see Sections 3.2.4 and 3.3.2 below) – i.e. a factor model

with instability can be expressed as a stable model with an expanded set of

factors. Consequently, in the presence of a changepoint, the number of spiked

eigenvalues in the second moment matrix of the data increases. He et al. (2021)

proposes two families of procedures8 - one based on the fluctuations of partial

8The randomisation scheme proposed differs to that of Barigozzi and Trapani (2020).
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sums, and one based on extreme value theory - to monitor whether the first

non-spiked eigenvalue diverges after a point in time in the monitoring horizon.

3.2.3 Changepoint Detection – Covariance Analysis

This particular section considers papers that analyse the covariance structure

for changepoint detection in high-dimensions. There is a lack of studies (to our

knowledge) that focus on sequential detection in high-dimensions by relying on

the covariance matrix specifically. With the notable exception of Barigozzi and

Trapani (2020), which we discuss separately in Section 3.2.4 below, and perhaps

He et al. (2021) for matrix-valued series, studies in this area tend to target the

offline case. For this reason, we include in our ongoing literature review select

influential and/or recent works in this area for the offline case since the insights

gained thereby are useful. We emphasise that this section does not intend to be

fully comprehensive. Rather, the aim of this section is to provide a high-level

overview of key available methodologies. For readers interested in further details,

we can recommend the references contained within the papers cited in Section

1.2.2 and in those cited below.

One offline study (also previously mentioned in Section 1.2.2) that shares char-

acteristics with our own is Baltagi et al. (2017). It exploits the exact same idea

that we do (see Section 3.3.2 below for mathematical details); that is, a model

with a break in loadings has an equivalent representation as an alternative model

with stable loadings but an expanded set of factors (or pseudo-factors). Say there

exist (historical) data on an N dimensional vector of time series observed over

T periods. The data-generating process of Baltagi et al. (2017) is a static ap-

proximate factor model which undergoes a change in loadings immediately after

period κ for 1 ≤ κ < T .

The suggested procedure of Baltagi et al. (2017) is as follows: (i) obtain a prelim-

inary estimate, r̂, of the total number of factors ignoring any structural change;

(ii) given r̂, use PCA (along with a suitable identification restriction) to esti-

mate the pseudo-factors, say ĝt; (iii) split the data into a pre- and post-break
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subsample for each candidate location of κ ∈ {1, ..., T − 1} as

Σ̂g,pre =
1

κ

κ∑
t=1

ĝtĝ
′
t

Σ̂g,post =
1

T − κ

T∑
t=κ+1

ĝtĝ
′
t;

and finally, (iv) estimate the changepoint by least squares as

κ̂ = arg min

{
κ∑
t=1

(
vec
(
ĝtĝ

′
t − Σ̂g,pre

))′ (
vec
(
ĝtĝ

′
t − Σ̂g,pre

))
+

T∑
t=κ+1

(
vec
(
ĝtĝ

′
t − Σ̂g,post

))′ (
vec
(
ĝtĝ

′
t − Σ̂g,post

))}
,

where vec(·) of an m × n matrix is the mn × 1 vector obtained by stacking

its columns. To summarise, as demonstrated at the beginning of Section 3.4

below, the instability leaves its signature in the covariance structure of the high-

dimensional series and it is precisely this signature that both Baltagi et al. (2017)

and we ourselves exploit.

Another offline study, Han and Inoue (2014, p.1117), is motivated by similar logic:

Based on the fact that the presence of a structural change in factor

loadings yields a structural change in second moments of factors ob-

tained from the full sample principal component estimation, [...] our

statistic compares the pre- and post-break subsample second moments

of estimated factors.

Also see, for example, Corradi and Swanson (2014), which has similar foundations.

In the studies cited above, it is the insightful use of the factor model structure

(and the associated implications on the behaviour of leading eigenvalues of the

covariance matrix) that facilitates a reduction in dimensionality.

Wang et al. (2021) is an interesting offline study insofar as it seeks to identify

multiple changepoints in the covariance structure in a high-dimensional setting.

It takes a different approach to papers we have previously referred to since it
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does not rely on a factor model setup. The paper instead makes a generic as-

sumption that we observe a sequence of independent and centred N -dimensional

sub-Gaussian random vectors whose covariance matrices are piecewise constant.

The dimensionality N is assumed to be larger than the sample size, say T , such

that N = O(T/ log T ). A reduction in dimensionality is achieved by generating

carefully chosen (see quotation below for details) univariate projections of the

data using PCA. The paper then establishes optimality properties of applying

the wild binary segmentation (WBS) algorithm (see Fryzlewicz (2014)) to the

resultant one-dimensional series. The procedure is titled Wild Binary Segmenta-

tion through Independent Projections (WBSIP) and is explained in the authors’

own words9 as follows (Wang et al., 2017, p.13):

The WBSIP algorithm is a generalization of the WBS procedure of

[Fryzlewicz (2014)] for mean change point detection and further ex-

ploits the properties of shadow vectors. The WBSIP procedure begins

by splitting the data into halves and by selecting at random a collec-

tion of M pairs of integers (s, e) [such that 1 ≤ s < e ≤ T and

e− s > N log(T ) + 1]. In its second step, WBSIP computes, for each

of the M random integer intervals previously generated, a shadow vec-

tor using one half of the data and its corresponding one-dimensional

time series using the other half. The final step of the procedure is to

apply the WBS algorithm over the resulting univariate time series.

Other offline studies that rely on binary segmentation (see Vostrikova (1981)

and Venkataraman (1992)) are Aue et al. (2009) for a single changepoint and

Cho and Fryzlewicz (2015) for multiple changepoints. In Aue et al. (2009), a

CUSUM statistic is proposed for detecting and locating a single changepoint in the

covariance structure of multivariate time series, and the extension to the detection

of multiple changepoints via binary segmentation is only discussed heuristically.10

Cho and Fryzlewicz (2015) goes further and develops a method for the multiple

9The quote is actually borrowed from a pre-print version of the paper since we were unable
to obtain full access to the original article.

10The asymptotics in Aue et al. (2009) are for a fixed N and T →∞, so it does not specifically
address the high-dimensional setting but we mention it in its capacity as a precursor to Cho
and Fryzlewicz (2015).
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changepoint case titled the “sparsified binary segmentation” procedure. The

latter aggregates CUSUM statistics by adding only those that pass a certain

threshold. It is precisely the thresholding step here that mitigates problems

associated with high-dimensionality (Cho and Fryzlewicz (2015, p.476)):

[...] only those temporal fragments of the CUSUMs that survive after

the thresholding are aggregated to have any contribution in detect-

ing and locating the change points. In this manner, we reduce the

influence of those sequences that do not contain any change points so

that the procedure is less affected by them, which can be particularly

beneficial in a high dimensional context. Therefore, we can expect

improved performance in comparison with methods without a similar

dimension reduction step [...]

An innovative method is developed by Barigozzi et al. (2018a) which is also con-

cerned with offline detection of multiple changepoints in the covariance structure

of a high-dimensional time series. The paper combines a factor model structure

(permitting both cross-sectional and temporal dependence) with earlier results

from Cho and Fryzlewicz (2015) that establish that expectations of wavelet pe-

riodogram and cross-periodogram sequences of the common components have a

one-to-one correspondence with the covariance structure of the input time series.

In this way, any changepoint in the covariance structure of the common com-

ponents is detectable as a changepoint in the means of the wavelet-transformed

series. The procedure goes on to use a version of binary segmentation developed

by Cho (2016) on the transformed series to identify changepoints.

Kao et al. (2018) develops a test for instability in the eigensystem of the covariance

structure for a multivariate time series. The study leverages a strong invariance

principle and a strong law of large numbers for the partial sample estimators of

the covariance matrix, and uses these results to normalise a CUSUM-type test

statistic, using Darling-Erdős limit theory (i.e. for the maximum of normalised

sums of independent random variables).

Following Wang et al. (2021), Dette et al. (2022) also addresses the problem of

offline estimation of a changepoint in the covariance matrix for a sequence of high-

171



dimensional vectors where the dimension is substantially larger than the sample

size, but it focusses only a single changepoint. A two-stage approach is proposed

to estimate its location. The first step consists of a reduction of the dimension to

identify elements of the covariance matrices corresponding to significant changes,

and the second step uses the components after dimension reduction to determine

the position of the changepoint (via a CUSUM type statistic). In this study,

dimension reduction is achieved neither via a factor model setup nor via PCA or

thresholding, but through a non-standard procedure defined within the paper as

part of its changepoint detection procedure.

We bring this overview to a close by mentioning the helpful review of Yu (2020)

which summarises key technical results in offline changepoint detection. “Section

4.1” therein (Yu, 2020, p.19) addresses covariance analysis in the high-dimensional

case with a particular focus on the methodology of Wang et al. (2021).

3.2.4 Sequential Detection – Barigozzi and Trapani (2020)

In the final part of our literature review, we focus on a single study closest to our

own, Barigozzi and Trapani (2020). We highlight similarities relative to our work

as well as salient points of divergence. For ease of reference, and for this section

alone, we refer to Barigozzi and Trapani (2020) simply as “BT”.

Shared Foundations

The model specification in BT is very similar to ours. That is, both studies pos-

tulate a static approximate factor model for an N -dimensional vector of (weakly

stationary) time series, say xt ∈ RN , observed for up to T periods. The setting is

one in which data points are continually gathered period-by-period and the data

collection process may continue indefinitely (so T →∞). Both studies follow in

the Chu et al. (1996) tradition, being concerned with sequential monitoring for

an abrupt change in factor loadings that occurs at some point in time after an

initial training period of size m < T . This is indeed the “non-contamination”

restriction of Chu et al. (1996). Further, both studies define and make use of

rolling covariance matrices with window size m.
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We remark briefly that BT additionally considers a second type of changepoint

which is the abrupt emergence of a new set of factors (see “HA,2” therein). Such a

change would certainly be detectable using our methodology too since one could

argue, for instance, that the so-called emergent factors were always present but

with loadings that changed from zero to non-zero at the changepoint. Thus, for

the remainder of this section, we speak with reference to a break in the form of

changes in loadings alone (or “HA,1” in BT).

Moving forward, it is clear that both studies seek to exploit the same central

premise that, say, an r-factor model with a break in loadings has an equivalent

representation as an alternative model with stable loadings but an expanded set

of factors. See, for instance, Sections 1.2.2 and 3.2.3 above, and Section 3.3.2

below. On this basis, both studies proceed as follows:

Letting r be the number of common factors, we base our statistics on

the fact that the (r+1)-th eigenvalue of the sample covariance matrix

is bounded under the null of no change, whereas it becomes spiked

under changes. (BT, p.5149)

The main modelling assumptions leading to the spiking behaviour alluded to

above are only slightly different across the studies. BT, in its “Assumption 2”,

directly assumes that leading eigenvalues of the covariance of the common com-

ponent diverge linearly with N and that all eigenvalues of the covariance of the

idiosyncratic component remain bounded from above. Our study imposes more

primitive assumptions in the style of Bai and Ng (2002) and Stock and Watson

(2002a) but these lead to exactly the same result. In our study, this can be seen

in the proofs of Lemma 3.4.1 and 3.4.2, while in BT, the approach we adopted

is sketched out informally in the paragraphs immediately after “Assumption 2”.

These minor differences notwithstanding, both studies arrive at the same junc-

ture; that is, our Lemma 3.4.3 corresponds with “Lemma 1” in BT.11

As regards estimation, both studies follow the approach of imposing a high-level

11For avoidance of doubt, we remark that there is a small difference in the convention used to
represent the changepoint. In our study, the changepoint κ is defined as the final period in the
pre-change regime. In BT, the changepoint τ is defined as the first period in the post-change
regime. In other words, our κ equals τ − 1 in the notation of BT.
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condition that allows consistent recovery of the covariance structure of xt using

sample covariances. For the benefit of readers for whom more primitive conditions

are of interest, both studies point to the fact that theorems linking the second

moments of estimated covariances to second and fourth cumulants of the data

are readily available in Hannan (1970, p.209–211). This approach is also shared

by others in the literature (see, for example, Forni et al. (2009, p.1334)).

Given the framework and theoretical arguments described above, both studies

propose online changepoint detection statistics based on the, say (r+1)-th, eigen-

value of the sample covariance matrix of the data. However, at this point, both

studies are faced with the same challenge, which can be explained as follows:

The main issue is that, under the null of no break, the (r + 1)-th

sample eigenvalue does not have a known distribution, and indeed it

cannot even be estimated consistently: [...] there is too much noise

(due to N being large) to be able to identify the small signal coming

from a bounded eigenvalue. (BT, p.5152)

Indeed, we agree that the distribution is unknown, and we find (see Lemma 3.5.1)

that the estimation error for any eigenvalue is Op(N/
√
m). BT finds a comparable

rate (albeit not identical to ours since BT, following Trapani (2018), tackles the

stronger problem of almost sure convergence).

This brings us to the point where the two studies take different approaches.

Key Differences

The chief distinction between our two studies may be summarised as follows. BT

develops a formal online testing procedure for changepoint detection, whereas we

develop what might be characterised a simple but useful diagnostic tool for online

monitoring. We explain with some further details below.

BT sets up a statistic which has at its core the (r+ 1)-th estimated eigenvalue of

the sample covariance matrix of the data. Clearly, such a statistic is of interest

since (for reasons discussed above) it will be informative with respect to eval-

uating the null. Nevertheless, due to lack of results on consistency and on the

limiting distribution under the null (also as discussed above), the statistic cannot
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directly be used for hypothesis testing. Thus, BT recommends that the statistic

of interest undergo a twice-randomisation procedure that is explained in detail in

the paper (BT, p.5156–5160). The end result of the proposed procedure is that

another statistic is generated, denoted in BT as Γt, which follows an asymptotic

χ2 distribution (with 1 degree of freedom) under the null of no change. Moreover,

the statistic is independent across t conditional on the sample. Further, the in-

formation value of the original statistic with respect to the null is also preserved

through the twice-randomisation procedure insofar as the abrupt change in the

factor loadings translates into a shift in the mean of Γt. Thus, as BT explains

(BT, p.5160), an online changepoint detector can be constructed based on the

CUSUM of (a centred and standardised version of) of the sequence {Γt}Tt=m.

The procedure of BT is innovative and sophisticated and represents a real break-

through in the field. Nevertheless, the twice-randomisation procedure is relatively

complicated and involves the choice of numerous tuning parameters (He et al.,

2021, p.5). Our procedure is less sophisticated, by comparison, but we believe

that it too is a useful contribution to the literature since it deftly exploits a simple

intuition, which incidentally is also explained in BT as quoted immediately below.

Note that the notation λ̂(r+1)(t) in the quotation below refers to the (r + 1)-th

eigenvalue of the rolling sample covariance matrix of the data at time t, while

λ(r+1)(t) refers to the population counterpart. BT states:

[...] it can be expected that λ̂(r+1)(t) may diverge to positive infinity

even when λ(r+1)(t) is bounded; in this case, the divergence rate is

O(Nm−1/2), [...]12. On the other hand, λ̂(r+1)(t) diverges at the faster

rate O(N) under the alternative. (BT, p.5156)

On the basis of the intuition above, we propose a suitably constructed eigenvalue

ratio (see Section 3.5 below). We do not require consistency for all sample eigen-

values (i.e. at least not for eigenvalues that are not diverging linearly with N). In

particular, we merely exploit the fact that the two orders of magnitude mentioned

in the quotation from BT above are distinct. Indeed, all we need for a successful

changepoint detection procedure is that our proposed ratio exhibits distinctive

12We excise here from the quotation any additional terms in the convergence rates found by
BT that do not apply to our study.
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(spiking) behaviour upon encountering a changepoint but not otherwise, and this

is precisely what we establish in our study (see Theorem 3.2 below). Our argu-

ment is similar, for instance, to that made by Ahn and Horenstein (2013), which

investigated ratios of adjacent eigenvalues of a sample covariance matrix under a

factor model specification. Moreover, the argument is analogous to the one made

by Lam and Yao (2012) albeit in a slightly different setting.13 Further, since we

do not have a limiting distribution available to us, we cannot directly find critical

values under the null (e.g. by looking at theoretical quantiles of the distribution).

Our answer to this problem is to propose a block-bootstrap procedure (suitable

for time series data) to devise alarm thresholds.

We outline our proposed methodology in detail below.

3.3 Changepoint Model and Eigenvalue Ratio

3.3.1 Parameter Instability

We assume that all random variables belong to the Hilbert space L2(Ω,F, P )

where (Ω,F, P ) is some given probability space. We begin with a real-valued

double-indexed stochastic process of the form Ξ = {xit| i ∈ N, t ∈ Z}, where i

denotes the cross-sectional index and t denotes the temporal index. Further, we

let {xt = (x1t, x2t, ..., xNt)
′| t ∈ Z} be an N -dimensional subprocess of Ξ.

We impose a factor structure by assuming that xt can be decomposed into a sum

of unobserved common and idiosyncratic components.

xt = ct + et

= Λft + et
(3.1)

13In the setting of Lam and Yao (2012), the factors are not only pervasive along the cross-
sectional dimension but they also capture all serial correlation in the data. As such, identifi-
cation is not based on the behaviour of the eigenvalues of the covariance matrix, but on the
eigenvalues of the sum of autocovariance matrices. Nevertheless, the principles employed (i.e.
in terms of exploiting a gap in the spectrum) are the same.
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where

(i) ct refers to the N -dimensional common component at time t;

(ii) ft is an r×1 vector containing a single time series realisation for each of the

r � N common factors;

(iii) Λ is an N × r matrix of factor loadings; and

(iv) et refers to the N -dimensional idiosyncratic component at time t.

We extend this basic model by introducing parameter instability. Let us assume

that there is a single abrupt break in the loadings matrix for 1 ≤ q ≤ r factors

immediately after some common time period κ ∈ Z, but right before the next

time period κ+ 1. We define the changepoint κ as the last time period under the

pre-change regime. We impose this structural break as follows:

(i) let (r − q)-dimensional vector f0
t represent the factors for which loadings,

denoted by N × (r − q) matrix Λ0, remain stable; and

(ii) let q-dimensional vector f1
t represent the factors for which loadings change

after κ; the pre-change N×q loadings matrix for these factors is denoted by

Λ1
a and the corresponding post-change loadings matrix of identical dimen-

sions by Λ1
b ;

(iii) let there exist two real-valued double-indexed stochastic processes of the

form Ξ(a) = {x(a)
it | i ∈ N, t ∈ Z} and Ξ(b) = {x(b)

it | i ∈ N, t ∈ Z}, and let N -

dimensional subprocesses be denoted by {x(a)
t = (x

(a)
1t , x

(a)
2t , ..., x

(a)
Nt)
′| t ∈ Z}

and {x(b)
t = (x

(b)
1t , x

(b)
2t , ..., x

(b)
Nt)
′| t ∈ Z} respectively.

With this additional notation, we can specify a model with a structural break:

xt =

x
(a)
t , t ≤ κ

x
(b)
t , t > κ

(3.2)
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where

x
(a)
t = Λ0f0

t + Λ1
af

1
t + et,

and

x
(b)
t = Λ0f0

t + Λ1
bf

1
t + et.

For convenience, we also denote

Λa =
[
Λ0 Λ1

a

]
; Λb =

[
Λ0 Λ1

b

]
; and ft =

[
f0
t
′

f1
t
′
]′
.

Then, the common component ct may be concisely expressed as

ct =

Λaft, t ≤ κ

Λbft, t > κ
.

We remark that model (3.1) is nested within model (3.2). It corresponds to the

special case of no instability, in which the coefficients Λa and Λb are equal.

3.3.2 Alternative Representation

It is well-established (e.g. in Corradi and Swanson (2014), Han and Inoue (2014)

or Baltagi et al. (2017)), that a model with a break in loadings has an equivalent

representation as an alternative model with stable loadings but an expanded set

of factors (or pseudo-factors).

In other words, model (3.2) has an alternative representation as follows:

For all t ∈ Z,

xt = Γgt + et (3.3)

where

Γ =
[
Λ0 Λ1

a Λ1
b

]
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with dimension N × (r + q);

gt =

Aft, t ≤ κ

Bft, t > κ

with dimension (r + q)× 1; and

A =

 I(r−q) 0(r−q)×q

0q×(r−q) Iq

0q×(r−q) 0q×q

 with dimension (r + q)× r, and

B =

 I(r−q) 0(r−q)×q

0q×(r−q) 0q×q

0q×(r−q) Iq

 with dimension (r + q)× r.

Idim and 0row×col are identity and zero matrices respectively where the subscripts

indicate the relevant dimensions.

To summarise, instead of a model with r factors (ft) where q of the factors expe-

rience changes in loadings, we have an equivalent model with r + q factors (gt)

in which all factor loadings are in fact stable.

To see the equivalence between models (3.2) and (3.3), we simply observe that

the common component is identical in both cases. That is, from model (3.2),

ct =

Λaft, t ≤ κ

Λbft, t > κ

=

ΓAft, t ≤ κ

ΓBft, t > κ

so that ct = Γgt for all t, and model (3.3) follows.

The intuition is that in the alternative representation, our loadings instability

is re-expressed in terms of two simultaneous offsetting changes in the number of

factors. Specifically, q of the factors from the pre-change regime disappear and
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are replaced in the post-change regime by a new set of q factors. Thus, in total,

we see r + q factors. Each of these is loaded uniquely and with coefficients that

remain constant over time.

We note that a researcher may choose to refer to these emerging and disappearing

factors (gt) as pseudo-factors since providing them with a reasonable interpreta-

tion may prove difficult. However, we believe that this is a decision best made

depending on the context of any particular study. For brevity, in the remainder

of this study, we no longer distinguish between the terms “factor” and “pseudo-

factor” and refer to both ft and gt simply as factors.

3.3.3 Modelling Assumptions

Our model consists of two regimes, a pre-change regime when t ≤ κ and a post-

change regime when t > κ. We make standard assumptions relating to static

approximate factor models such as those considered in Bai and Ng (2002), Stock

and Watson (2002a), and Forni et al. (2009) within each regime. Effectively, we

assume that our model is piece-wise stationary.

In particular, we assume the following, for any N ∈ N and t ∈ Z:

A Common Component

(i) E(ft) = 0N×1;

(ii) E(ftft
′) = Ir; and

(iii) ft is second-order time-stationary.

(iv) As N →∞, the following conditions hold:

a. (Λa
′Λa/N)→ La where La is a positive definite r × r matrix;

b. (Λb
′Λb/N)→ Lb where Lb is a positive definite r × r matrix.

c. (Γ′Γ/N)→ Lg where Lg is a positive definite (r+ q)× (r+ q) matrix.

B Idiosyncratic Component

(i) E(et) = 0N×1;
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(ii) E(etet
′) = Σe, where Σe is a positive definite matrix;

(iii) et is second-order time-stationary;

(iv) maxi=1...N

∑N
j=1 |E(eitejt)| ≤ M < ∞ for some positive constant M ,

where eit and ejt are individual elements of vector et.

C Orthogonality

E(ftet
′) = 0r×N .

Collectively, assumptions A and B imply that the processes X(a) and X(b) are

centred, non-degenerate and second-order time-stationary.

Moreover, Assumption A implies that non-zero eigenvalues of the covariance ma-

trix of the common component diverge to infinity as N → ∞ at a rate O(N).

This characteristic, sometimes referred to as the “pervasiveness” of factors, en-

sures that every factor has a non-negligible contribution to the variance of the

response variables (see, for example, Bai and Ng (2002)).

Assumption B states that the maximum absolute column sum (hereafter referred

to as the “column norm”) of Σe is bounded from above for any N . This implies

that all eigenvalues of Σe are bounded from above for any N . For our purposes,

the latter is all that is needed and part (iv) of Assumption B may be relaxed.

However, we use the proposed version of the assumption in accordance with the

suggestion in (Bai and Ng, 2002, p.197). It is also the version relied upon by Fan

et al. (2013). We maintain consistency with the literature.

3.3.4 Rolling Window

For convenience, and without loss of generality, we henceforth consider the point

at which all our time series data begins as period t = 1. We now introduce

the notation we will use to refer to a rolling window of observations on our N -

dimensional vector xt. For some finite positive constant m such that 1 < m ≤ t,
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we consider the matrix 
x1t−m+1, . . . , x1t

x2t−m+1, . . . , x2t

...
...

xNt−m+1, . . . , xNt


as constituting an m-sized window of realised data under consideration at time

t. When we fix window size m (predetermined by the researcher) and allow t to

vary (from m to m+ 1 to m+ 2 and so on), we think of the above N ×m panel

as a window of observations that is rolling over time.

We always impose m > 1 because we require that there exist a minimum of two

time series data points. Without data from a second time period, there would be

no way to decide whether a changepoint exists in the first time period or not since

there would be no basis for comparison. Further, we impose that monitoring may

be expected to go on until period T for some T > 2m. We adopt a framework in

which monitoring may continue indefinitely so that T →∞.

We define the N ×N population rolling covariance matrix of the data as

Σx
[m](t) =

1

m

t∑
h=t−m+1

E(xhx
′
h)

for t = m, ..., T , and we denote the sth largest eigenvalue of this matrix by µx
s[m]

(t)

for s = 1, ..., N .

Similarly, we define a sample counterpart as

Σ̂x
[m](t) =

1

m

t∑
h=t−m+1

xhx
′
h

for t = m, ..., T , and we denote the sth largest eigenvalue of this matrix by µ̂x
s[m]

(t)

for s = 1, ..., N .

We use analogous definitions for common components and idiosyncratic compo-

nents. For instance, we define the N × N population rolling covariance matrix

of the common and idiosyncratic components by Σc
[m](t) and Σe

[m](t) respectively.
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Further, we denote the sth largest eigenvalue of Σc
[m](t) by µc

s[m]
(t) and that of

Σe
[m](t) by µe

s[m]
(t) for s = 1, ..., N .

We add another assumption as follows.

D Changepoint Location

Changepoint κ, the final time period under the pre-change regime, is

such that κ ≥ 2m.

Assumption D ensures the availability of a reasonable sized set of pre-change data

before sequential monitoring for changepoint detection purposefully begins.

Assumptions A-D are sufficient for a theoretical analysis of the asymptotic be-

haviour of a particular ratio of eigenvalues (to be defined shortly) when we let N

tend to infinity. This will be the subject of Theorem 3.1.

3.3.5 Eigenvalue Ratio

We now arrive at the focal point of our study. That is, we propose the use of an

eigenvalue ratio

δr+1[m]
(t) =

µx
r+1[m]

(t)

µx
r+1[m]

(m)
,

calculated each period t for t = 2m, ..., T . The denominator focusses on a fixed

window consisting of the first m initial observations. Indeed, it is computed using

the underlying matrix 
x1,1, . . . , x1,m

x2,1, . . . , x2,m

...
...

xN,1, . . . , xN,m

.
On the other hand, the numerator is re-computed each period on a rolling basis
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by sequentially progressing through the matrices
x1,m+1, . . . , x1,2m

x2,m+1, . . . , x2,2m

...
...

xN,m+1, . . . , xN,2m

 ,

x1,m+2, . . . , x1,2m+1

x2,m+2, . . . , x2,2m+1

...
...

xN,m+2, . . . , xN,2m+1

 , ...,

x1,T−m+1, . . . , x1,T

x2,T−m+1, . . . , x2,T

...
...

xN,T−m+1, . . . , xN,T


as the monitoring process unfolds. There is no overlap between observations

considered in the numerator and denominator at any time period.

We can see now that Assumption D precludes the existence of a changepoint prior

to period 2m to ensure two conditions: first, that the denominator is constructed

from a valid comparator set of observations under the pre-change regime; and

second, that we obtain a stable value for the numerator prior to monitoring in

earnest for changepoints (in other words, allowing an opportunity for burn-in).

We show in Theorem 3.1 that as N →∞, the ratio δr+j[m]
(t) for j = 1, ..., q tends

to infinity at rate min
{
t−κ
m
, κ+m−t

m

}
N so long as the rolling window covers at

least one time period in both the pre- and post-change regimes; that is, so long

as t −m + 1 ≤ κ and t > κ. If the rolling window contains only pre-change or

post-change observations (but not both), the ratio remains bounded from above

by a finite positive constant.

Theorem 3.1 serves as motivation for our changepoint detection methodology in

the finite N case. We propose to monitor the behaviour of the (r+1)th eigenvalue

using our eigenvalue ratio as a time-varying detection statistic. As soon as the

value of this statistic breaches a pre-specified alarm threshold, we declare the

preceding period a changepoint.

Thus, for a rolling window of fixed length m and with monitoring commencing

at t = 2m, we have a changepoint estimator of the type

inf
{
t ≥ 2m, such that δr+1[m]

(t) ≥ H
}
− 1

where H is the alarm threshold.

Asymptotic behaviour of the eigenvalue ratio is discussed in Section 3.4 below.
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In practice, we need to make a few additional considerations in order to opera-

tionalise a sequential monitoring procedure. First, we require an estimator for

our eigenvalue ratio. In Section 3.5, we propose an estimator based on eigen-

values of sample covariance matrices and provide a formal characterisation of its

behaviour (in Theorem 3.2 therein). Second, we consider the question of what

the appropriate length for the rolling window might be. Of course, there is also

the question of how to estimate r. We provide brief informal guidance on these

matters in Section 3.6 below.14 Finally, we need to find alarm thresholds H.

We propose the use of a bootstrap procedure based on the overlapping blocks

resampling scheme of Kunsch (1989). We describe this in Section 3.7.

3.4 Behaviour of Eigenvalue Ratio

In this section, we establish the theoretical basis for the changepoint detection

methodology we proposed in the previous section. As background, we note the

well-known result (see, for instance, Trapani (2018) and Barigozzi and Trapani

(2020)) that in a standard model with r factors and N response variables, the r

largest eigenvalues of the covariance matrix of the response variables diverge to

infinity as N goes to infinity (while the remaining eigenvalues remain bounded).

We analyse how this result is affected in the presence of a changepoint.

We begin by considering the structure of Σx
[m](t). Let us recall model (3.3):

xt = Γgt + et

where

gt =

Aft, t ≤ κ

Bft, t > κ
.

Under Assumptions B and C, E(xtxt
′) = ΓE(gtgt

′)Γ′ + Σe. Further, due to

Assumption A, E(gtgt
′) equals AA′ if t ≤ κ, and BB′ if t > κ.

14Also, see Section 3.10 for preliminary thoughts on developing an adaptive (data-driven)
choice of window size.
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Then,

Σx
[m](t) =

1

m

t∑
h=t−m+1

E(xhx
′
h) = ΓΣg

[m](t)Γ
′ + Σe

[m](t) (3.4)

where

Σg
[m](t) =

1

m

t∑
h=t−m+1

E(ghg
′
h) =


AA′, m ≤ t ≤ κ

m−(t−κ)
m

AA′ + t−κ
m
BB′, κ < t ≤ κ+m− 1

BB′, κ+m− 1 < t

.

In what follows, we denote two sets of generic finite positive constants by {M0,M1, ...}
and {M0,M1, ...} where M0 ≤ M0,M1 ≤ M1, and so on. Specific values of the

constants may change from line to line.

3.4.1 Eigenvalues of Σc
[m](t)

Lemma 3.4.1 characterises the behaviour of the (r+j)th eigenvalue, for j = 1, ..., q,

of Σc
[m](t) = ΓΣg

[m](t)Γ
′ in the following three cases: (i) the rolling window only

contains time periods from the pre-change regime; (ii) the rolling window contains

at least one time period from each of the pre- and post-change regimes; and (iii)

the rolling window only contains time periods from the post-change regime.

Lemma 3.4.1. Given model (3.3), under Assumptions A–D, there exists a finite

positive constant M j such that

µc
r+j[m]

(t)


= 0, m ≤ t ≤ κ

≥M j min
{
t−κ
m
, κ+m−t

m

}
N, κ < t ≤ κ+m− 1

= 0, κ+m− 1 < t ≤ T

for j = 1, ..., q.

Proof. (See Section 3.12.)
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3.4.2 Eigenvalues of Σe
[m](t)

Lemma 3.4.2 characterises the behaviour of the eigenvalues of Σe
[m](t). We note

that Σe
[m](t) = Σe for any m ≤ t ≤ T so the behaviour of the eigenvalues remains

the same across all three aforementioned cases of interest.

Lemma 3.4.2. Given model (3.3), under Assumptions A–D, there exist finite

positive constants M0 and M0 such that

0 < M0 ≤ µe
N[m]

(t) ≤ ... ≤ µe
1[m]

(t) ≤M0 <∞.

Proof. (See Section 3.12.)

Given Lemma 3.4.1 and Lemma 3.4.2, we can investigate the asymptotic be-

haviour of the (r+ j)th eigenvalue, for j = 1, ..., q, of the covariance matrix of the

response variables.

3.4.3 Eigenvalues of Σx
[m](t)

In Lemma 3.4.3 below, we find that (r + j)th eigenvalue, for j = 1, ..., q, diverges

to infinity with N in the case in which the rolling window contains at least one

time period from each of the pre- and post-change regimes. Instead, when the

rolling window consists solely of time periods from either the pre- or the post-

change regime (but not both), the (r + j)th eigenvalue, for j = 1, ..., q, remains

bounded from above by a finite positive constant.

Lemma 3.4.3. Given model (3.3), under Assumptions A–D, there exist finite

positive constants M j and M j such that

µx
r+j[m]

(t)


≤M j, m ≤ t ≤ κ

≥M j min
{
t−κ
m
, κ+m−t

m

}
N, κ < t ≤ κ+m− 1

≤M j, κ+m− 1 < t ≤ T
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for j = 1, ..., q.

Proof. (See Section 3.12.)

3.4.4 Asymptotic Analysis of δr+j[m]
(t)

We now evaluate the asymptotic behaviour of the eigenvalue ratio

δr+j[m]
(t) =

µx
r+j[m]

(t)

µx
r+j[m]

(m)
,

for any j = 1, ..., q. In Theorem 3.1, we establish that this ratio diverges to infin-

ity with N when the rolling window contains at least one time period from each

of the pre- and post-change regimes. Instead, when the rolling window consists

solely of time periods from either the pre- or the post-change regime (but not

both), the ratio remains bounded from above by a finite positive constant.

Theorem 3.1. Given model (3.3), under Assumptions A–D, there exist finite

positive constants M j and M j such that

δr+j[m]
(t)


≤M j, m ≤ t ≤ κ

≥M j min
{
t−κ
m
, κ+m−t

m

}
N, κ < t ≤ κ+m− 1

≤M j, κ+m− 1 < t ≤ T

for j = 1, ..., q.

Proof. (See Section 3.12.)

3.5 Estimation of Eigenvalue Ratio

The discussion in the previous section assumed that eigenvalues were known and

the focus was on characterising the behaviour of the eigenvalue ratio as N →∞.

In this section, we further consider estimation of the eigenvalue ratio and the
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properties of our proposed estimator as both the dimensionality N and the sample

size m go to infinity.

As regards estimation, we can compute the detection statistic

δ̂r+1[m]
(t) =

µ̂x
r+1[m]

(t)

µ̂x
r+1[m]

(m)
,

where the numerator and denominator refer to eigenvalues obtained from sample

rather than population covariance matrices.

Below, we use the notation σx
ij[m]

(t) and σ̂x
ij[m]

(t) to denote the generic (i, j)th

(scalar) element of the population and sample covariance matrices respectively

of N response variables constructed at time t from a time series of length m.

Thereafter, we make the following additional assumption.

E Covariance Matrix Estimates

There exist positive finite constants νa and νb such that

(i) mE

[(
σ̂x(a)

ij[m]
(t)− σx(a)

ij[m]
(t)
)2
]
< νa; and

(ii) mE

[(
σ̂x(b)

ij[m]
(t)− σx(b)

ij[m]
(t)
)2
]
< νb.

Assumption E is not strictly necessary if we assume mild conditions on the auto-

covariances and fourth cumulants of the response variables. We refer the reader

to (Hannan, 1970, p.209-2011) for details. However, we follow the treatment in

(Forni et al., 2009, p.1334), which imposes a requirement similar to Assumption

E, since a derivation of the required conditions from first principles would not

contribute much towards the specific aims of this study.

Under assumptions A–E, we establish in Lemma 3.5.1 below that if one scales

an estimated eigenvalue µ̂x
s[m]

(t) by N then it is possible to obtain a bound for

the estimation error that is vanishing at rate m1/2. The result is valid for any

combination of N and m and indeed for any s = 1, ..., N .
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Lemma 3.5.1. Given model (3.3), under Assumptions A–E, it holds that∣∣∣∣∣ µ̂
x
s[m]

(t)

N
−
µx
s[m]

(t)

N

∣∣∣∣∣ = Op

(
1√
m

)
, m ≤ t ≤ T,

for any s = 1, ..., N .

Proof. (See Section 3.12.)

Lemma 3.5.1 effectively constitutes a consistency result as the sample size m goes

to infinity for (scaled) eigenvalues that diverge linearly with N ; and Lemma 3.4.3

indicates that the (r+ 1)th eigenvalue will diverge linearly with N provided m is

increased in a specific way: (i) the rolling window (of size m) includes a sufficient

number of time periods from the post-change regime for any spiking behaviour to

manifest itself; and (ii) the rolling window (of size m) does not include so many

time periods from the post-change regime that any pre-change signal is smothered

out. In view of the above, and following Barigozzi and Trapani (2020, see Eq.14),

we henceforth define t∗N,m as the point in time such that t∗N,m > κ and

lim
N,m→∞

N

m

(
t∗N,m − κ

)
=∞.

Similarly, we define t∗∗N,m as the period such that t∗N,m < t∗∗N,m ≤ κ+m− 1 and

lim
N,m→∞

N

m

(
m− (t∗∗N,m − κ)

)
=∞.

The next result characterises how our detection statistic δ̂r+1[m]
(t) exhibits dis-

tinct behaviour prior to a changepoint relative to once sufficient time has elapsed

after it is encountered.

Theorem 3.2. Given model (3.3), under Assumptions A–E, it holds that

(i) δ̂r+j[m]
(t) = Op(1) if m ≤ t ≤ κ,

(ii) limN,m→∞ Pr
(
δ̂r+j[m]

(t) > ε
)

= 1 for any ε > 0 if κ < t∗N,m ≤ t ≤ t∗∗N,m,
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for j = 1, ..., q.

Proof. (See Section 3.12.)

To gain intuition for the above result, it is useful to recall (once again15) the logic

as summarised from Barigozzi and Trapani (2020, p.5156) that µ̂x
(r+1)[m]

(t) may

diverge to positive infinity even when µx
(r+1)[m]

(t) is bounded from above; in this

case, the divergence rate is O(N/
√
m). On the other hand, µ̂x

(r+1)[m]
(t) diverges

at the faster rate O(N) when a changepoint is encountered. The same logic is

also proffered by Lam and Yao (2012), albeit in a slightly different setting in

which sums of autocovariance matrices (as opposed to covariance matrices) are

the focus. Indeed, in the words of Lam and Yao (2012, p.704), “the estimation

errors for the zero-eigenvalues is [sic] asymptotically of an order of magnitude

smaller than those for the nonzero-eigenvalues.” It is exactly this distinction in

stochastic orders of magnitude that delivers us our result. (See also the theoretical

justification for the eigenvalue ratio based method of Ahn and Horenstein (2013).)

3.6 Sequential Monitoring Procedure

In this section, we propose how to implement a method to detect changepoint κ

based on the rolling window procedure analysed heretofore.

(i) First, we fix a value for the window length m. In practice, we find (based

on simulations reported in Section 3.8 below) that, if adequate data are

available, then choosing m such that 1 ≤ m/N ≤ 1.5 works well.16

(ii) Given m, we define an initial training period given by the first 2m observa-

tions. Of course, we must be ready to make the assumption that there is

no changepoint within the training period.

(iii) Given the training data, we obtain an estimate r̂ of the number of factors

using any standard method such as proposed in either Bai and Ng (2002),

15A direct quote from Barigozzi and Trapani (2020) was presented in Section 3.2.4 above.
16Proposed avenues of research on adaptive procedures which potentially allow data-driven

choices of window size, m, are discussed in Section 3.10 below.
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Alessi et al. (2010), Onatski (2010), or Ahn and Horenstein (2013).

(iv) We then sample data in a sequential manner until a changepoint is detected.

For a rolling window of fixed length m and with monitoring commencing at

t = 2m, we have a changepoint estimator of the type

inf
{
t ≥ 2m, such that δ̂r̂+1[m]

(t) ≥ H
}
− 1

where H is a threshold whose computation we discuss in Section 3.7.

The rolling window methodology has the advantage that it is not computationally

demanding. This is because we compute eigenvalues each period using only a fixed

number of observations (no matter how long our sequential sampling continues).

We acknowledge that the methodology described above may be compromised by

a poor initial estimate of r, in which case we would effectively run the risk of

monitoring an irrelevant eigenvalue. However, we believe that this is a question

for a separate branch of research (addressed by the papers on determination of the

number of factors mentioned above). For our purposes, as a reasonable safeguard,

we propose monitoring detection statistics corresponding to a set of eigenvalues

around the (r̂+ 1)th eigenvalue. (See, for instance, our approach in the empirical

study in Section 3.9 below.)

3.7 Alarm Thresholds

In this section, we propose the use of a block bootstrap procedure in order to

obtain critical values to use as alarm thresholds for our rolling window procedure.

3.7.1 Bootstrap Background

Subsequent to the phenomenal success of the bootstrap of Efron (1979) in provid-

ing answers to complex statistical questions involving independent data, it was

soon established by Singh (1981) (see also Babu and Singh (1983)) that if one

were to apply Efron’s bootstrap to dependent data, inconsistency would ensue.
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Indeed, the data-shuffling effect of resampling via Efron’s bootstrap would mean

that any information about the natural ordering of a sequence of observations

and its underlying dependence structure would be entirely scrambled.

In general, block bootstrap methods are quite popular within time series contexts

since by resampling blocks of consecutive observations, we are able to retain

the dependence structure of the original data at least within any given block.

Consistency can usually be restored through a judicious choice of block length

– one that carefully balances the bias-variance tradeoff typically associated with

estimators. While the idea of block-based sub-sampling methods can be traced

back to Bartlett (1946), early breakthroughs in the specific area of bootstrapping

were achieved by Hall (1985), Carlstein (1986), Kunsch (1989), and Liu and Singh

(1992). See, for instance, Lahiri (2003) and Politis (2003), for excellent surveys

of bootstrap techniques available for time series.

In our study, we choose to specifically deploy the overlapping blocks resampling

scheme proposed in Kunsch (1989). Our choice is motivated by its simplicity, gen-

erality and successful use elsewhere in the literature on structural breaks within

factor models. For instance, it is employed in Corradi and Swanson (2014) to

obtain critical values for a test statistic proposed therein.

Finally, we remark that bootstrapping for factor models in time series is an open

area of research (Gonçalves and Perron, 2014, 2020). While we pick a particular

scheme in order to fix ideas, in principle, any procedure that works well would be

suitable. In this regard, we briefly mention two other influential studies concerned

with stationary time series which could potentially serve as alternatives to our

choice. The first is the circular bootstrap of Politis and Romano (1992), which

ensures that every observation from the original sample receives equal weight in

being chosen for resampling.17 The second is the stationary bootstrap of Politis

and Romano (1994), which joins together blocks of random length – having a

geometric distribution – and is able to generate bootstrap sample paths that

are stationary series themselves. We do not consider the circular or stationary

17The goal is to mitigate the so-called “edge effects” faced by block-based schemes whereby
observations at the start and the end of the sample are less likely to be resampled than those
in the centre.
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bootstraps in our study.

3.7.2 Threshold H

We describe the bootstrap of Kunsch (1989) for the case of our rolling window

methodology. Our description follows the exposition in Lahiri (2003).

Let us consider the N × 2m panel of data that constitutes our training sample.

Then, let Bτ = (xτ , ...,xτ+l−1) denote the block of length l starting with xτ ,

for 1 ≤ τ ≤ (2m − l + 1). The collection of all possible blocks of length l is

{B1, ...,B2m−l+1}. We sample b of these blocks with replacement and refer to the

resulting (N × bl) data matrix (B∗1, ...,B
∗
b) as a bootstrap sample.

In practice, the bootstrap sample is typically chosen to be of the same size as the

original sample. Thus, if b0 denotes the smallest integer such that b0l ≥ 2m, then

we select b = b0 blocks and use only the first 2m values to define the bootstrap

sample. We thus obtain a trimmed bootstrap sample of dimension N × 2m. As

regards block length, we require that l→∞ and l/m→ 0 as m→∞. The former

condition ensures that the bias of any bootstrap estimator is vanishing in the limit

and the latter ensures that its variance is also vanishing as m→∞. Together, the

two conditions imply convergence in mean-square, and by Chebyshev’s inequality,

we also have convergence in probability.18 For our purposes, a simple function

such as the square-root would satisfy the requisite conditions, but we can refer

the interested reader to the study of Hall et al. (1995) for further guidance on

optimal choice of block length in the block-based schemes of Carlstein (1986) and

Kunsch (1989).19

We thereby present a methodology to obtain alarm threshold H. For a rolling

window of fixed length m, block length of l =
√

2m, and monitoring now com-

mencing at t = 2m, 2m+ 1, 2m+ 2, ... and so on,

18This is the same bias-variance tradeoff that re-appears in many guises throughout the field
of statistical inference. For example, we have already discussed it once at length in the context
of lag-window estimation of the spectral density matrix in Chapter 2. The discussion therein
related to choice of window size – see specifically Section 2.6.

19The guidance varies depending on what is the specific quantity we are trying to bootstrap.
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(i) We generate B bootstrap samples for some large value of B using the over-

lapping blocks resampling scheme of Kunsch (1989) described above.

(ii) On each bootstrap sample, we calculate a bootstrapped version of our eigen-

value ratio denoted by δ̂∗r̂+1[m]
(2m). Of course, since critical values must be

obtained under the null hypothesis of no instability, we must acknowledge

the assumption that κ the changepoint – the final period under the pre-

change regime – is such that κ ≥ 2m.

(iii) Then, we choose H to be the 100(1−α)th percentile of the empirical distri-

bution function of δ̂∗r̂+1[m]
(2m), where α ∈ (0, 1) is some significance level.

Thus, we obtain a single threshold H from an initial period of training observa-

tions, and we use it for all time periods over which we monitor for a changepoint.

3.8 Simulations

We simulate data from the following model:

xt =

x
(a)
t , t ≤ κ

x
(b)
t , t > κ

where

x
(a)
t = Λ0f0

t + Λ1
af

1
t +
√
θεt,

and

x
(b)
t = Λ0f0

t + Λ1
bf

1
t +
√
θεt.

Λ0 is an N × (r − q) matrix and Λ1
a and Λ1

b are both N × q matrices. f0
t and f1

t

are (r − q) × 1 and q × 1 vectors respectively. All these items are constructed

from draws of values from the N(0, 1) distribution. εt is an N × 1 vector drawn

from the multivariate normal distribution N(0N×1,Σ
ε), where Σε = (β|i−j|)ij for

i, j ∈ [1, ..., N ] is a Toeplitz matrix with control parameter β. The constant

θ allows us to control the proportion of the variance of xt accounted for by

the idiosyncratic component. Say we want this proportion to be π. Then we
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set θ = [π/(1 − π)][N−1
∑N

i=1 σ
c
ii,t] where [N−1

∑N
i=1 σ

c
ii,t] is the average of the

diagonal elements of the covariance matrix of the common component at time t.

We assume all time series data begin at period t = 1.

3.8.1 Illustrative Example

We demonstrate a single run of our rolling window procedure using the example

in Figure 3.1. For this particular example, we set model parameters:

N = 100, κ = 400, r = 1, q = 1, π = 0.5, β = 0.25;

and control parameters for the detection procedure:

m = N, l = b
√

2mc, B = 500;

and then examine the path of the estimated eigenvalue ratio for the 2nd eigenvalue.

Figure 3.1: κ = 400 and κ̂ = 404 (1% level)

We can consider a commonly-used measure to investigate performance of sequen-

tial changepoint detection procedures, the Average Run Length to False Alarm

(ARL) (see, for example, Tartakovsky et al. (2014)). Given α = 0.05, we ex-

pect the ARL to be 1/0.05 = 20 periods. For α = 0.01, we expect ARL to be

1/0.01 = 100 periods.
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We note that our changepoint is positioned at around 200 periods after monitoring

commences. We thus expect to see around 200/20 = 10 false alarms prior to the

changepoint at the α = 0.05 level and around 200/100 = 2 false alarms at the

α = 0.01 level. In our example, we observe 12 and 2 false alarms respectively.

As regards the true changepoint, we detect it successfully with a delay of 4 periods

(using the 1% alarm threshold). We find that the behaviour of our detection

statistic is entirely in accordance with predictions from, say, Theorem 3.1 above.

Indeed, we observe distinctive upward spiking behaviour immediately upon en-

countering the changepoint. We also see that the spike becomes more pronounced

as the rolling window slides forward and covers an increasing number observa-

tions from the post-change regime. The spike appears to reach its peak around

the point where the rolling window straddles roughly an equal number of obser-

vations from both pre- and post-change regimes. Finally, as the rolling window

continues to slide past the changepoint, thereby comprising an increasingly domi-

nant share of post-change observations, the detection statistic reverts downwards.

The ratio gradually returns towards its stable level (of around 1), to which it ul-

timately adheres once the pre-change signal is lost from the rolling window. All

these findings appear to corroborate the presence of the min
{
t−κ
m
, κ+m−t

m

}
factor

in the overall divergence rate (as N) proffered by Theorem 3.1. In other words,

the theory seems to be borne out numerically (at least for the given example).

To quantify detection delay, we compute a standardised measure by dividing

through by the size of the rolling window. In this case, m = 100, so our stan-

dardised measure is 4/100 = 0.04. The standardisation facilitates comparability

across different window sizes. We move on now from our illustrative example in

order to carry out a more extensive simulation analysis below.

3.8.2 Numerical Evidence on Detection Delay

In this section, we examine detection delays over simulations repeated 100 times.

With respect to control parameters, we let N = 100, m ∈ {50, 75, 100, 125, 150},
r ∈ {1, 2}, q = 1, π ∈ {0.25, 0.5, 0.75}, and β ∈ {0, 0.25}. Further, l = b

√
2mc
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and B = 500. The changepoint is always set at κ = 500 and we monitor sequen-

tially from period t = 300 until the changepoint is discovered or we hit period

T = 1000.20 Subsequently, we evaluate our estimators by looking at averages of

the standardised detection delay performance statistic over all repetitions.

As in the individual illustration above, we have 200 periods prior to the change-

point, which means that with α = 0.01, we expect on average 2 false alarms in

each simulation. We apply a modification to the threshold (by dividing by 2 and

then again by 100) in order to ensure that we can expect on average 1 false alarm

over all 100 simulations. In other words, we impose a Bonferroni-style correction

to oversee the family-wise risk of a false alarm.

Tables 3.1–3.3 provide breakdowns of frequencies (out of 100 simulations) of de-

tection delays observed in low, medium and high noise settings under various

scenarios. Specifically, Table 3.1 corresponds to the scenario in which a one fac-

tor model undergoes a structural break and there is no cross-sectional dependence

in the idiosyncratic component. Table 3.2 corresponds to a one factor model that

experiences a structural break in the presence of cross-sectional dependence in

the idiosyncratic component. Table 3.3 corresponds to a two factor model that

experiences a structural break for one of its factors in the presence of cross-

sectional dependence in the idiosyncratic component. As previously noted, the

cross-sectional dimension is fixed in all experiments to be N = 100 and results

are reported for different window sizes, m, ranging from 50 to 150 in 25 period

increments. In general, results appear to conform to expectations.

We summarise our findings below:

(i) Given the size of the cross-section, N = 100, the procedure exhibits some-

what erratic performance for relatively small window sizes, m = 50 and

m = 75. This may be a manifestation of a poorly estimated covariance

structure and/or insufficient data for the block bootstrap to be effective.

(ii) Performance of the procedure appears to be relatively stable for m ≥ 100.

20Considering our maximum window size, m, is 150, we stipulate that our monitoring com-
mences at t = 2m = 300. The choice of terminating at T = 1000 is arbitrary; we selected this
specific value following Barigozzi and Trapani (2020, p.5166).
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Indeed, not only do we observe a fall in the frequencies of premature termi-

nation of the procedure (i.e. due to false alarm) but we also observe broad

improvements in the detection delay. We hence limit our focus in what

follows to the cases which m ≥ 100.

(iii) The procedure performs better under low and medium noise settings as

compared with high noise settings. For example, in Table 3.1 for m = 125,

the changepoint is detected within 10% of the size of the rolling window

in 91–95% of experiments under the low and medium noise settings. The

figure deteriorates to 75% in the high noise setting.

(iv) The procedure appears able to accommodate mild cross-sectional depen-

dence (see Table 3.2) with only a minor deterioration in performance. In-

deed, the figures in the previous bullet fall marginally to 87–94% under low

and medium noise settings and 67% under the high noise setting.

(v) A final observation is that of a further deterioration in performance as we

increase the number of factors in the data-generating process from 1 to 2.

In other words, in Table 3.3, we now monitor the 3rd (as opposed to the

2nd) eigenvalue. The deterioration is particularly pronounced in the high

noise setting. Interestingly, this finding is also discussed in Barigozzi and

Trapani (2020, p.5168–5169), which explains that the power declines as r,

the original number of factors, increases. Indeed, since the (r + 1)th eigen-

value declines with r, one can expect signal to be increasingly dominated

by noise as r rises.
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Table 3.1: Detection Delay Frequency Tables
β = 0, r = 1

(π = 0.25)

Standardised Delay m=50 m=75 m=100 m=125 m=150
0.00–0.05 67 71 81 85 79
0.05–0.10 13 12 8 10 16
0.10–0.15 7 7 7 3 4
0.15–0.20 7 6 2 2 1
0.20–0.25 1 3 1 0 0
More than 0.25 1 0 0 0 0
Total 96 99 99 100 100

(π = 0.5)

Standardised Delay m=50 m=75 m=100 m=125 m=150
0.00–0.05 39 50 63 77 80
0.05–0.10 24 23 12 14 9
0.10–0.15 11 9 11 6 9
0.15–0.20 13 9 9 3 2
0.20–0.25 1 3 2 0 0
More than 0.25 7 1 1 0 0
Total 95 95 98 100 100

(π = 0.75)

Standardised Delay m=50 m=75 m=100 m=125 m=150
0.00–0.05 31 44 43 53 50
0.05–0.10 25 22 32 22 36
0.10–0.15 16 11 7 15 9
0.15–0.20 10 9 8 9 4
0.20–0.25 7 9 6 0 1
More than 0.25 8 4 3 0 0
Total 97 99 99 99 100
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Table 3.2: Detection Delay Frequency Tables
β = 0.25, r = 1

(π = 0.25)

Standardised Delay m=50 m=75 m=100 m=125 m=150
0.00–0.05 51 57 67 76 71
0.05–0.10 18 14 26 18 19
0.10–0.15 12 11 2 4 6
0.15–0.20 8 7 1 1 3
0.20–0.25 8 5 1 0 0
More than 0.25 3 4 1 0 0
Total 97 98 98 99 99

(π = 0.5)

Standardised Delay m=50 m=75 m=100 m=125 m=150
0.00–0.05 32 47 56 70 68
0.05–0.10 30 29 25 17 21
0.10–0.15 13 11 12 9 5
0.15–0.20 11 10 2 1 3
0.20–0.25 9 1 2 1 2
More than 0.25 1 0 2 1 1
Total 96 98 99 99 100

(π = 0.75)

Standardised Delay m=50 m=75 m=100 m=125 m=150
0.00–0.05 29 35 37 42 45
0.05–0.10 19 32 36 25 19
0.10–0.15 19 12 25 19 13
0.15–0.20 15 8 1 11 11
0.20–0.25 8 6 0 1 9
More than 0.25 8 5 0 0 2
Total 98 98 99 98 99
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Table 3.3: Detection Delay Frequency Tables
β = 0.25, r = 2

(π = 0.25)

Standardised Delay m=50 m=75 m=100 m=125 m=150
0.00–0.05 48 53 60 65 66
0.05–0.10 16 17 24 27 20
0.10–0.15 9 10 12 7 12
0.15–0.20 9 10 2 0 2
0.20–0.25 8 6 1 0 0
More than 0.25 8 3 1 0 0
Total 98 99 100 99 100

(π = 0.5)

Standardised Delay m=50 m=75 m=100 m=125 m=150
0.00–0.05 29 43 51 49 45
0.05–0.10 34 29 35 39 33
0.10–0.15 19 15 8 9 21
0.15–0.20 12 4 3 1 0
0.20–0.25 3 3 0 0 0
More than 0.25 1 4 1 0 0
Total 98 98 98 98 99

(π = 0.75)

Standardised Delay m=50 m=75 m=100 m=125 m=150
0.00–0.05 22 29 33 38 41
0.05–0.10 15 22 35 24 22
0.10–0.15 14 17 22 20 21
0.15–0.20 17 14 8 14 11
0.20–0.25 16 12 1 4 3
More than 0.25 13 4 0 0 0
Total 97 98 99 100 98
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3.9 Empirical Application

We consider three years of daily stock price data21 between 16 October 2013 and

15 October 2016 for FTSE 100 stocks. Of the 100 original series, we drop 9 series

since they contained missing values for part of the period and thus cannot be used

to estimate eigenvalues. We drop an additional 3 series because they contained

erratic price movements very likely associated with data irregularities. We thus

conduct our analysis based on the “adjusted closing price” for N = 88 stocks,

from which we compute centred continuously-compounded returns.

We designate the first z = 200 time points as a training period and use the

eigenvalue ratio method proposed by Ahn and Horenstein (2013) in order to

estimate the number of factors.22 We obtain an estimate of r equal to 1, and

monitor eigenvalue ratios corresponding to the 2nd eigenvalue onwards.

We deploy the bootstrap procedure for our rolling window methodology exactly as

described in Section 3.7 above and obtain the results reported in Figures 3.2–3.4.

The alarm thresholds are all associated with an α = 0.01 significance level.

Figure 3.2: 2nd eigenvalue: κ̂ = 28/06/2016

21The data were freely downloaded from “Yahoo! Finance” on 16 October 2016.
22We believe the method of Ahn and Horenstein (2013) is intuitive, simple-to-implement and

closest in spirit to our own proposed procedure. In principle, any method may be used.
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Figure 3.3: 3rd eigenvalue: κ̂ = 08/07/2016

Figure 3.4: 4th eigenvalue: κ̂ = ∅

We see from the graphs for the 2nd and 3rd eigenvalues that our detection statistic

spikes and breaches the alarm threshold in the middle of 2016. In Figure 3.2, the

estimated changepoint is 28/06/2016, and in Figure 3.3, it is 08/07/2016. We

note that the signal for the instability contained in the 3rd eigenvalue appears

relatively weak in comparison to the 2nd eigenvalue.

The period of turbulence identified above immediately follows the memorable

date of 23/06/2016, on which the UK government, under Prime Minister David

Cameron, held a referendum to determine whether or not to exit the European
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Union. The following day, on 24/06/2016, markets reacted sharply to the news

that the outcome of the referendum was one in favour of Brexit, an event that

was widely regarded as a surprise. Indeed, Mr Cameron, who had staked his rep-

utation on the “remain” campaign, resigned in the aftermath of the referendum.

Our detection procedure appears to have successfully pin-pointed this period of

stock market turbulence.

The eigenvalue ratio corresponding to the 4th eigenvalue remains broadly stable

over the entire period under consideration. While we do observe a breach of the

alarm threshold in Figure 3.3, the dates of the breach, 22/03/2016–30/03/2016,

as well as its small size, lack of persistence and isolated nature would suggest that

this was a false alarm.23

Our results suggest it is possible that factor loadings may have changed on that

day. It is also possible that one (or perhaps two) additional factor(s) had emerged.

At any rate, if we were making use of factor models at the time, our detection

procedure suggests that it would have been prudent to re-evaluate existing model

parameters following Brexit. Notably, our detection delay appears to have been

5 days (or 5% of the size of the rolling window).

3.10 Reflecting on Choice of Window Size

Our rolling window approach can effectively be thought of as evaluating a dis-

crepancy measure between two windows, one of which slides over the time series,

say the “downstream” window, and another which remains fixed over an initial

“non-contamination” period (Chu et al., 1996, p.1048), say the “upstream” win-

dow. At each time point, the discrepancy between the downstream and upstream

windows with fixed width m is measured with the idea that peaks in the discrep-

ancy measure may alert us about the existence of changepoints. See, for example,

Gustafsson (2000), Kifer et al. (2004), Aminikhanghahi and Cook (2017), Bifet

23Interestingly, on 22/03/2016, Belgium was the target of three coordinated terrorist attacks
by the Islamic State, claiming 32 lives and injuring more than 300 people. However, this is
likely to be a coincidence as far as our analysis is concerned since there is no clear evidence of
this event in the graphs for the other eigenvalues.
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et al. (2017), and Truong et al. (2020) for discussion and surveys of methods

based on sliding windows.

One concern with the standard sliding window approach as commonly employed

– see, for instance, Xie and Siegmund (2013), Soh and Chandrasekaran (2017),

Chan (2017), and Barigozzi and Trapani (2020) – is that it treats window size m

as a parameter exogenously set by the investigator. Wide windows mostly take

the global behaviour of observations into account, whereas narrow windows focus

more on the local information. It is thus reasonable to expect that finite-sample

performance of the procedure might depend on the precise choice of m. Rules-

of-thumb for selecting m based on heuristics or numerical evaluations may be

arbitrary and not always practical.

In this section, we put forward some proposals for making a data-driven choice

of m in an adaptive manner. Implementation of these proposals and a thorough

investigation of their theoretical properties is left as a matter for future research.24

Key Considerations

Let us consider the problem of choosing m in light of the insights from our

foregoing theoretical analyses in Sections 3.4 and 3.5. On the one hand, we

would like to choose a window size – our effective sample size – to be as large as

possible. The benefit is that the larger is m, the more data are available for us

to estimate the covariance structure. Further, the larger is m, the lower is the

risk of false alarms (i.e. of detecting changepoints that do not exist). Conversely,

the smaller is m, the less untenable is the non-contamination assumption for the

upstream window. Moreover, the smaller is m, the greater is the sensitivity of

our detection statistic to the presence of potential changepoints, and the lower

is the expected delay in detection. A secondary benefit of a smaller m is that it

accords an increase in computational speed with respect to calculating an N ×N
sample covariance matrix and its associated eigenvalues. A final consideration

is that there may be an interest in maintaining recency, whereby older data are

discarded either if they are deemed to be beyond a certain age threshold.

24The content of this specific section is best regarded as a work-in-progress. We nevertheless
include it in this thesis merely to summarise the current state of our thinking.
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Given the foregoing discussion, it is not a priori clear what is the appropriate

choice of m. The only guidance to be gleaned from our asymptotic analysis on

this matter is that
√
m should grow no faster than N . So how can we proceed in

practice? One way of introducing flexibility in choice of m is described below.

Adaptive Windowing

We first consider the adaptive window (ADWIN) of Bifet and Gavaldà (2007).

Instead of choosing m, we choose m and m, which denote minimum and maximum

limits for the width of our window. We begin our monitoring procedure at time

t = 2m with the statistic,

δ̂r+1[m]
(t) =

µ̂x
r+1[m]

(t)

µ̂x
r+1[m]

(m)
,

which is based on a small window. Then, for each additional pair of data points

received, we increase our window size by one unit. For instance, at time t =

2m + 1, the upstream window would remain fixed over the m points {1, ...,m}
and the downstream window would slide one period to cover the m points {m+

2, ..., 2m+ 1}. At time t = 2m+ 2, both windows would simultaneously expand.

Indeed, the upstream window would now contain the m+ 1 points {1, ...,m+ 1}
and the downstream window would contain the m+1 points {m+2, ..., 2m+2}.25

In other words, we commence sequential monitoring with windows of minimum

size but progressively extend their width until either the maximum size limit, m,

is reached or a change is detected. If the maximum size is reached, we discard the

historically old data and recommence monitoring based only on the most recent

set of 2m observations available.

By way of justification, we quote from Bifet and Gavaldà (2007):

The window will grow automatically when the data is stationary, for

greater accuracy, and will shrink automatically when change is taking

place, to discard stale data. This delivers the user or programmer

from having to guess a time-scale for change.

25By comparison, at time t = 2m + 2 in the original scheme, the upstream window would
cover the set {1, ...,m} and the downstream window the set {m+ 3, ..., 2m+ 2}.
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Contrary to many related works, we provide rigorous guarantees of

performance, as bounds on the rates of false positives and false nega-

tives. In fact, for some change structures, we can formally show that

the algorithm automatically adjusts the window to a statistically op-

timal length. (Bifet and Gavaldà, 2007, p.443)

While the ADWIN procedure is adaptive, it still involves the choice of minimum

and maximum tuning parameters, and thus retains some of the arbitrariness of

the fixed width approach. We discuss an alternative strategy below.

Information Criterion for Window Size Selection

Another possibility is to consider the choice of m in light of insights from papers

that have employed model selection techniques in factor model settings. See, for

example, Bai and Ng (2002), Hallin and Lĭska (2007), and Alessi et al. (2010),

which propose various information criteria – i.e. in a bid to balance the tradeoff

between goodness-of-fit and parsimony – for determining the number of common

factors. We draw inspiration from this literature to ask whether we too can

construct an information criterion which takes into account, for our purposes,

the potential tradeoff between quality of estimation of the covariance structure

and speed of detection of the changepoint.

For instance, we could exploit the notion that for any given eigenvalue, our ratio

should (at least in the population) be close to unity when there is no instability.

To fix ideas, suppose we are prepared to assume that the first S observations

satisfy the non-contamination assumption of Chu et al. (1996), and we wish to

choose from a set of candidate window sizes, {m, ...,m}, where 1 ≤ m < m ≤ 1
2
S.

It may then be possible to use such a training sample to inform our choice of m

by assessing which of the candidate values is able to minimise a penalised mean-

square error criterion, say, ICN(m). Consider, for instance, the formulation

m∗ = arg min
m≤m≤m

ICN(m)

= arg min
m≤m≤m

{V(m) +mP(N)} ,
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where we can expect the mean-square error,

V(m) =
1

S − 2m

S∑
t=(2m+1)

(
δ̂(r+1)[m]

(t)− 1
)2

,

to be minimised for m = m (the maximum size allowed), and hence, we introduce

the penalty function, P(N), so as to avoid over-sizing the window. In respect of

penalisation, we could perhaps consider use of the Akaike Information Criterion

(AIC) and/or the Bayesian Information Criterion (BIC), with penalties taking the

form of multiples of 2/N and (logN)/N respectively (Bai and Ng, 2002, p.202).

Of course, a thorough investigation of the feasibility of this approach and how it

may affect the asymptotic properties of our detection statistic is warranted.

Other Possibilities

A further possibility may be to simultaneously deploy an ensemble of windows

of different sizes. The advantage would be that we could combine information

from multiple detectors, each with a different sensitivity to local behaviour, so

that they all serve to mutually corroborate each other with the goal of balancing

speed of detection against risk of false alarms. Such a strategy is inspired by the

multi-scale procedure found in Chen et al. (2022) which concurrently monitors

for so-called sparse versus dense changepoints and combines results from multiple

detectors to generate an adaptive procedure.

Another option is to look into cross-validation techniques, although their suitabil-

ity for time-ordered dependent data is an open area of research (Bergmeir and

Beńıtez, 2012). Recent advances have been made, for instance, by Bergmeir et al.

(2018), which shows that for purely autoregressive models, the use of standard K-

fold cross validation is possible provided the models considered have uncorrelated

errors.26

Finally, we mention the historically influential study of Hall et al. (1995), which

minimises a mean-square error criterion to determine optimal block length in

26We are also aware of the work-in-progress of Pellegrino (2022), which investigates a gener-
alisation of the delete-d-jackknife whereby any data points removed are suitably interpolated
so that the overall time series structure is preserved.
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the case of the Carlstein (1986) and Kunsch (1989) bootstrap schemes. The

study finds that the optimal asymptotic formula for block length, say l, is l =

O(m1/k), where m is the number of available time series observations, and k =

3, 4, or 5 depending on context (one of which pertains to estimation of quantiles

of a distribution). The paper validates its theoretical results numerically for

autoregressive and moving average data-generating processes. It would be worth

exploring if any of the insights therein could be extended for use in our case.

We re-emphasise that the nascent ideas in this section remain largely unexplored

at this stage. We mention them here simply in the spirit of identifying potentially

interesting directions for future study.

3.11 Conclusion

It is well-established that in a standard model with r factors, the (r+ 1)th eigen-

value remains bounded for all N . As time goes on, say we encounter a changepoint

in which one (or more) of the r factors experiences a change in loadings. In this

case, we see that the (r+ 1)th eigenvalue diverges to infinity with N . This switch

in asymptotic behaviour of the (r + 1)th eigenvalue precisely at the location of

the changepoint implies that a ratio which compares successive values of this

eigenvalue over time should spike at the changepoint and remain broadly sta-

ble otherwise. In this study, we provide proof of this behaviour and propose that

monitoring this ratio over time serves as a reliable basis for sequential changepoint

detection. We also prove that this ratio may be estimated from a sample of data

consistently as the sample size tends to infinity. We outline a sequential detection

strategy which deploys our estimated ratio as a time-varying detection statistic

alongside alarm thresholds which we bootstrap using an overlapping blocks re-

sampling scheme. We provide numerical and empirical results to show that our

strategy works successfully in practice. We believe our contributions should be

useful for any application in which factor models are used to exploit real-time

information.
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3.12 Appendix – Proofs for Chapter 3

Proof of Lemma 3.4.1

Proof. Let ψj(·) denote the jth largest eigenvalue of a matrix.

We recall the result from elementary linear algebra that for a real n×m matrix

M with m ≤ n, it holds that the m eigenvalues of m × m matrix M ′M are

identical to the m non-zero eigenvalues of n × n matrix MM ′. Indeed, it holds

that ψj(MM ′) = 0 for m < j ≤ n. See, for instance, Seber (2008, Result 6.54).

In our first case, when m ≤ t ≤ κ, under Assumption A, Σc
[m](t) = ΓAA′Γ′ =

ΓA(ΓA)′ = ΛaΛ
′
a, where Λa is an N×r matrix. In our third case, when κ+m−1 <

t, under Assumption A, Σc
[m](t) = ΓBB′Γ′ = ΓB(ΓB)′ = ΛbΛ

′
b, where Λb is an

N × r matrix. For both these cases, it is immediate from the result quoted above

along with Assumption A that there exist constants M j such that

µc
j[m]

(t)

≥M jN, j = 1, ..., r

= 0, j = r + 1, ..., N.

As regards the second case, when κ < t ≤ κ+m− 1, under Assumption A,

Σc
[m](t) = Γ

(
m− (t− κ)

m
AA′ +

t− κ
m

BB′
)

Γ′.

Given the definition of matrices A and B, it is clear that

AA′ =

 I(r−q) 0(r−q)×q 0(r−q)×q

0q×(r−q) Iq 0q×q

0q×(r−q) 0q×q 0q×q

 , an (r + q)× (r + q) matrix; and

BB′ =

 I(r−q) 0(r−q)×q 0(r−q)×q

0q×(r−q) 0q×q 0q×q

0q×(r−q) 0q×q Iq

 , an (r + q)× (r + q) matrix.
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We observe that both AA′ and BB′ are positive semidefinite matrices with rank

r. On the other hand, the linear combination

m− (t− κ)

m
AA′ +

t− κ
m

BB′ =

 I(r−q) 0(r−q)×q 0(r−q)×q

0q×(r−q)
m−(t−κ)

m
Iq 0q×q

0q×(r−q) 0q×q
t−κ
m
Iq

 ,
an (r + q)× (r + q) matrix with only positive entries on the leading diagonal, is

positive definite with rank r + q.

Let us denote KK ′ = m−(t−κ)
m

AA′ + t−κ
m
BB′, so that by Merikoski and Kumar

(2004, Theorem 7), we may conclude that

Nψr+q (KK ′)ψj

(
Γ′Γ

N

)
≤ ψj (ΓKK ′Γ′) ≤ Nψ1 (KK ′)ψj

(
Γ′Γ

N

)

for j = 1, ..., r+q. Then, since ψr+q (KK ′) = min
{
m−(t−κ)

m
, t−κ
m

}
, it follows under

Assumption A that there exist constants M j such that

µc
j[m]

(t)

≥M j min
{
m−(t−κ)

m
, t−κ
m

}
N, j = 1, ..., r + q

= 0, j = r + q + 1, ..., N.

This completes the proof.

Proof of Lemma 3.4.2

Proof. Our proof adapts certain techniques from Barigozzi et al. (2021b).

Let ‖Σe‖1, ‖Σe‖2, and ‖Σe‖∞ denote the column norm, spectral norm, and row

norm of Σe respectively. Then, for any N ,

µe
1[m]

(t) = ‖Σe‖2 ≤ ‖Σe‖1 ≤M ≤M0 <∞

where the first inequality arises due to Hölder’s inequality, ‖Σe‖2 ≤
√
‖Σe‖1‖Σe‖∞

along with the recognition that ‖Σe‖1 equals ‖Σe‖∞, for symmetric matrices, and
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the second inequality arises due to Assumption B. The result on the upper bound

follows.

The result on the lower bound is a consequence of Assumption B which requires

that Σe is positive definite. Thus, all eigenvalues of Σe must be positive.

Proof of Lemma 3.4.3

Proof. Our proof adapts certain techniques from Barigozzi et al. (2021b).

We recall that Σx
[m](t) = Σc

[m](t) + Σe under Assumptions A-C. We apply Weyl’s

inequality which states that

µc
r+j[m]

(t) + µe
N[m]

(t) ≤ µx
r+j[m]

(t) ≤ µc
r+j[m]

(t) + µe
1[m]

(t)

for j = 1, ..., q.

Consider the cases in which the rolling window consists solely of time periods from

the pre- or the post-change regime but not both; that is, cases corresponding

either to m ≤ t ≤ κ or to κ + m − 1 < t ≤ T . Then, by combining Weyl’s

inequality above with Lemmas 3.4.1 and 3.4.2, we know that there exist finite

positive constants M0 and M0 such that

M0 ≤ µx
r+j[m]

(t) ≤M0.

for j = 1, ..., q.

With similar reasoning, for the case in which κ < t ≤ κ + m − 1, combining

Weyl’s inequality with Lemmas 3.4.1 and 3.4.2, we obtain that there exists a

finite positive constant M j such that

µx
r+j[m]

(t) ≥M j min

{
t− κ
m

,
κ+m− t

m

}
N.

for j = 1, ..., q.
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Proof of Theorem 3.1

Proof. Using Weyl’s inequality, we know that

µc
r+j[m]

(t) + µe
N[m]

(t) ≤ µx
r+j[m]

(t) ≤ µc
r+j[m]

(t) + µe
1[m]

(t)

for j = 1, ..., q. By combining Weyl’s inequality above with Lemmas 3.4.1 and

3.4.2, we know that there exist finite positive constants M0 and M0 such that

the denominator of our ratio satisfies

M0 ≤ µx
r+j[m]

(m) ≤M0.

for j = 1, ..., q since it considers purely the time periods in the pre-change regime

(due to Assumption D). On the other hand, the numerator of our ratio, µx
r+j[m]

(t),

behaves exactly as per Lemma 3.4.3. As regards the overall ratio, it follows that

δr+j[m]
(t) =

µx
r+j[m]

(t)

µx
r+j[m]

(m)
≤ M j

M0

<∞

if it is the case that m ≤ t ≤ κ or it is the case that κ+m− 1 < t ≤ T , but

δr+j[m]
(t) =

µx
r+j[m]

(t)

µx
r+j[m]

(m)
≥ min

{
t− κ
m

,
κ+m− t

m

}
M j

M0

N

in the case that κ < t ≤ κ+m− 1.

Proof of Lemma 3.5.1

Proof. Our proof adapts certain techniques from Forni et al. (2009).

We consider three cases in which: (i) m ≤ t ≤ κ, (ii) κ+m− 1 < t ≤ T , and

(iii) κ < t ≤ κ+m− 1.
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(i) When m ≤ t ≤ κ,

σ̂x
ij[m]

(t) =
1

m

t∑
h=t−m+1

xihxjh =
1

m

t∑
h=t−m+1

x
(a)
ih x

(a)
jh = σ̂x(a)

ij[m]
(t).

We also have that

σx
ij[m]

(t) =
1

m

t∑
h=t−m+1

E [xihxjh] =
1

m

t∑
h=t−m+1

E
[
x

(a)
ih x

(a)
jh

]
= σx(a)

ij[m]
(t).

Thus, by Assumption E, mE

[(
σ̂x
ij[m]

(t)− σx
ij[m]

(t)
)2
]
< νa.

As previously declared, let the notation ψs(·) denote the sth largest eigen-

value of a matrix. We observe that∥∥∥Σ̂x
[m](t)− Σx

[m](t)
∥∥∥2

2
= ψ1

((
Σ̂x

[m](t)− Σx
[m](t)

)(
Σ̂x

[m](t)− Σx
[m](t)

)′)
≤ Tr

((
Σ̂x

[m](t)− Σx
[m](t)

)(
Σ̂x

[m](t)− Σx
[m](t)

)′)
=

N∑
i=1

N∑
j=1

(
σ̂x
ij[m]

(t)− σx
ij[m]

(t)
)2

.

Taking expectations and using the aforesaid implication of Assumption E,

E

[∥∥∥Σ̂x
[m](t)− Σx

[m](t)
∥∥∥2

2

]
≤

N∑
i=1

N∑
j=1

E

[(
σ̂x
ij[m]

(t)− σx
ij[m]

(t)
)2
]

≤
N∑
i=1

N∑
j=1

νa/m = N2νa/m.

Alternatively, we can write

E

[(
1

N

∥∥∥Σ̂x
[m](t)− Σx

[m](t)
∥∥∥

2

)2
]
≤ νa/m.
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Then, by Chebyshev’s inequality, for any positive finite constant c,

Pr

(∣∣∣∣m1/2

N

∥∥∥Σ̂x
[m](t)− Σx

[m](t)
∥∥∥

2

∣∣∣∣ > c

)
≤ νa/c

2.

Thus,
1

N

∥∥∥Σ̂x
[m](t)− Σx

[m](t)
∥∥∥

2
= Op

(
1√
m

)
.

Then, for the sth eigenvalues µ̂x
s[m]

(t) and µx
s[m]

(t) of Σ̂x
[m](t) and Σx

[m](t)

respectively, we can use Weyl’s inequality to show that for s = 1, ..., N ,

µ̂x
s[m]

(t)

N
≤ 1

N
ψ1

(
Σ̂x

[m](t)− Σx
[m](t)

)
+

1

N
ψs
(
Σx

[m](t)
)
.

Further to this, we obtain∣∣∣∣∣ µ̂
x
s[m]

(t)

N
−
µx
s[m]

(t)

N

∣∣∣∣∣ ≤ 1

N

∥∥∥Σ̂x
[m](t)− Σx

[m](t)
∥∥∥

2
= Op

(
1√
m

)
.

This completes the proof for the first case.

(ii) When m ≤ t ≤ κ,

σ̂x
ij[m]

(t) =
1

m

t∑
h=t−m+1

xihxjh =
1

m

t∑
h=t−m+1

x
(b)
ih x

(b)
jh = σ̂x(b)

ij[m]
(t).

We also have that

σx
ij[m]

(t) =
1

m

t∑
h=t−m+1

E [xihxjh] =
1

m

t∑
h=t−m+1

E
[
x

(b)
ih x

(b)
jh

]
= σx(b)

ij[m]
(t).

Thus, by Assumption E, mE

[(
σ̂x
ij[m]

(t)− σx
ij[m]

(t)
)2
]
< νb. Now, if we

follow the proof of the first case above but simply replace νa by νb therein,

we obtain the required result also for the second case.
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(iii) When κ < t ≤ κ+m− 1,

σ̂x
ij[m]

(t) =
1

m

t∑
h=t−m+1

xihxjh

=
κ+m− t

m

t∑
h=t−m+1

x
(a)
ih x

(a)
jh +

t− κ
m

t∑
h=t−m+1

x
(b)
ih x

(b)
jh

=

(
κ+m− t

m

)
σ̂x(a)

ij[m]
(t) +

(
t− κ
m

)
σ̂x(b)

ij[m]
(t).

We also have that

σx
ij[m]

(t) =
1

m

t∑
h=t−m+1

E [xihxjh]

=

(
κ+m− t

m

)
σx(a)

ij[m]
(t) +

(
t− κ
m

)
σx(b)

ij[m]
(t).

For convenience, we refer to the weights respectively as wa and wb. Hence,

σx
ij[m]

(t) = waσ
x(a)

ij[m]
(t) + wbσ

x(b)

ij[m]
(t),

where wa, wb ∈ (0, 1). Then,

E

[(
σ̂x
ij[m]

(t)− σx
ij[m]

(t)
)2
]

= E

[((
waσ̂

x(a)

ij[m]
(t) + wbσ̂

x(b)

ij[m]
(t)
)
−
(
waσ

x(a)

ij[m]
(t) + wbσ

x(b)

ij[m]
(t)
))2

]
= E

[(
wa

(
σ̂x(a)

ij[m]
(t)− σx(a)

ij[m]
(t)
)

+ wb

(
σ̂x(b)

ij[m]
(t)− σx(b)

ij[m]
(t)
))2

]
= w2

aE

[(
σ̂x(a)

ij[m]
(t)− σx(a)

ij[m]
(t)
)2
]

+ w2
bE

[(
σ̂x(b)

ij[m]
(t)− σx(b)

ij[m]
(t)
)2
]

+ 2wawbE
[(
σ̂x(a)

ij[m]
(t)− σx(a)

ij[m]
(t)
)(

σ̂x(b)

ij[m]
(t)− σx(b)

ij[m]
(t)
)]
.

The weights in the above expression, w2
a, w

2
b , and wawb are bounded from

above by 1 for any m. Moreover, if we were to multiply the entire expression

by m, then under Assumption E, the first term would be bounded from
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above by νa, and the second term by νb. Additionally, since the first two

terms would be bounded from above, we know from the Cauchy-Schwarz

inequality that the third term would also be bounded from above. Hence,

there exists some positive real ν such that

mE

[(
σ̂x
ij[m]

(t)− σx
ij[m]

(t)
)2
]
< ν.

Now, if we follow the proof of the first case above but simply replace νa by

ν therein, we obtain the required result also for the third case.

This completes the proof.
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Proof of Theorem 3.2

Proof. From Lemma 3.5.1, we have that for any t ∈ {m, ..., T} and s ∈ {1, ..., N},

µ̂x
s[m]

(t) = µx
s[m]

(t) +Op

(
N/
√
m
)
.

Therefore,

δ̂r+j[m]
(t) =

µx
s[m]

(t) +Op (N/
√
m)

µx
s[m]

(m) +Op (N/
√
m)

=


O(1)+Op(N/

√
m)

O(1)+Op(N/
√
m)

= Op(1), m ≤ t ≤ κ

O(N)+Op(N/
√
m)

O(1)+Op(N/
√
m)

= Op(
√
m), κ < t∗N,m ≤ t ≤ t∗∗N,m

and the required result follows.
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“One can FT anything – often

meaningfully.”

– John W. Tukey

Chapter 4

Determining Number of Factors

via Spectral Eigenvalues

We conduct an exploratory analysis which aims to extend the randomised sequential

procedure of Trapani (2018) into the frequency domain. Specifically, we aim to estimate

the number of dynamically loaded factors by applying the test of Trapani (2018) to

eigenvalues of the estimated spectral density matrix (as opposed to the covariance

matrix) of the data.
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4.1 Introduction

The aim of our final chapter is relatively modest. That is, to propose an extension

of the randomised sequential procedure for determining the number of factors of

Trapani (2018). The motivation is as follows.

Trapani (2018) considers a static approximate model of the type considered, for

example, by Bai and Ng (2002) and Stock and Watson (2002a,b). In this setup,

the common component for ith observation at the tth time period, say χit for

i = 1, ..., N and t = 1, ..., T , is formed as a linear combination

χit =
k∑
j=1

φijfjt

of k � N latent factors f1t, ..., fkt that are all loaded contemporaneously.

In order to allow for dynamics, one approach might be to attempt to extend the

Trapani (2018) procedure to the restricted approximate dynamic model case as

espoused inter alia by Forni et al. (2009).

Alternatively, as outlined in Chapter 1, we can consider the work say by Hallin and

Lippi (2013), which establishes that the approximate dynamic factor model is the

only one supported by a representation theorem. Thus, another promising avenue

of research would be to mirror the approach of Trapani (2018) in the frequency

domain, with the goal of developing a method for direct use in a slightly more

general framework, one in which factors are loaded with lags.

Such an exercise would fit well into the literature. Indeed, our aim is to com-

plement the work of Trapani (2018) in exactly the manner that Hallin and Lĭska

(2007) complements Bai and Ng (2002) and Alessi et al. (2010), or that Onatski

(2009) complements Ahn and Horenstein (2013).

In this chapter, we recapitulate the steps of the procedure of Trapani (2018)

before embarking upon a short numerical foray to explore the feasibility of such

an extension into the frequency domain. We draw upon insights obtained from

our Chapter 2 where possible. We also outline possible avenues of future research.
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4.2 Individual Test

The individual1 test of Trapani (2018) (hereafter, just “the test”) is designed for

a hypothesis concerning the p-th largest eigenvalue of the population covariance

matrix of a vector-valued second-order stationary time series xt that is governed

by a static approximate factor model. It is based on the insight that in a k-

factor model, the k leading eigenvalues will diverge (linearly with N under typical

assumptions) as N → ∞, while the remainder stay bounded. Letting the p-th

largest eigenvalue of E[xtx
′
t], for p = 1, ..., N , be denoted by λ(p), we have

H0 : λ(p) = mpN

H1 : λ(p) = mp <∞,

for some finite positive constant mp.

It is worth stating at this point that we find no benefit to modifying the notation

of Trapani (2018) when describing the procedure. Our goal is simply to the

recapitulate key steps here for ease of reference and thus we prefer to retain the

clarity of the original exposition. Thus, with full credit to the author, we simply

borrow the parts needed for our purposes from the original source.

As noted in Trapani (2018, Section 3.1, p.1344):

Let β ≡ lnN
lnT

, and define δ ∈ [0, 1) such that

δ

{
> 0

> 1− 1
2β

according as
β ≤ 1

2

β > 1
2

.

Finally, consider the following estimator of λ̄N

̂̄λN ≡ 1

N

N∑
p=1

λ̂(p)

1“Individual” in the sense that it concerns a test for a specific eigenvalue. Of course, this is
but a building block of the fuller analysis in which Trapani (2018) goes on to define a sequential
procedure to determine the answer to the ultimate question of how many factors are present.
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We are now ready to introduce the test. Define

ϕ(p) ≡ exp

{
N−δ

λ̂(p)̂̄λN
}

Above, the symbol “≡” denotes a definitional equality, and a hat denotes an

estimator. λ̄N refers to the mean of λ(p) for p = 1, ..., N .

Trapani (2018, Section 3.1, p.1344) continues as follows:

Step 1. Generate an artificial sample
{
ξ

(p)
j

}R
j=1

as iid N(0, 1), and

define the sequence
√
ϕ(p) × ξ(p)

j , 1 ≤ j ≤ R;

Step 2. Define the sample
{
ζ

(p)
j (u)

}R
j=1

as

ζ
(p)
j (u) ≡ I

[√
ϕ(p) × ξ(p)

j ≤ u
]
,

with u extracted from a distribution F (u) with support U ⊂ R\{0};

Step 3. Compute

ϑ(p)(u) ≡ 2√
R

R∑
j=1

[
ζ

(p)
j (u)− 1

2

]
;

Step 4. Define the test statistic

Θ(p) ≡
∫
U

[
ϑ(p)(u)

]2
dF (u).

While we were unable to verify its definition, we believe the notation I[·] above

refers to an indicator function.

We close this section by noting the key result that Θ(p) has a chi-squared distri-

bution with one degree of freedom and this forms the basis for the test. (Trapani,

2018, Theorem 3.1)
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4.3 Preliminary Findings

We consider a model that introduces dynamics yet remains simple enough so as

not to suffer a loss in tractability. In particular, we consider the exact same setup

used in the numerical study in Section 2.9 of Chapter 2 (and thus the specification

outline is not repeated here). In particular, given a model where the factors are

loaded with a single-lag, we begin by setting N = 100 and T = 400.

We first estimate the N ×N spectral density matrix of xt using the lag-window

method (with a Bartlett lag-window characterised by truncation point BT ) as

per Section 2.6.1 in our Chapter 2. We denote our estimator by G̃BT
xt (wj′) and

compute it on a grid of 2BT +1 points. We set BT to 2b
√
T c, and so with T = 400,

we obtain BT = 40.2

We subsequently obtain dynamic eigenvalues denoted by Λ̃xt(wj′) again on a grid

of 2BT+1 = 81 points via an eigendecomposition of the estimated spectral density

matrix. We note that dynamic eigenvalues are real (due to the Hermitian nature

of the spectral density).

We present the following charts to illustrate that the behaviour of estimated dy-

namic eigenvalues in our simulations is as expected. We see evidence of divergence

of the first 1 and 2 dynamic eigenvalues in specifications with 1 and 2 dynamic

factors respectively. This is compatible with results on uniform divergence across

frequencies (linearly with N), for instance, in Hallin and Lĭska (2007).

We observe that the divergence behaviour appears more pronounced at lower

frequencies (but not necessarily in a strictly ordered way). It is worth explor-

ing whether this is a systematic finding we could make use of or simply a result

of the model specification being one which is not dominated by high-frequency

movements. For now, we simply compute an average of the dynamic eigenval-

ues (as does Hallin and Lĭska (2007)) over the frequencies and proceed towards

implementation of the test.

2From a theoretical perspective, we recall that we require BT → ∞ and BT /T → 0 as
T → ∞. In numerical studies (where T is given), the choice of BT is, of course, arbitrary.
During our in-depth numerical studies of Chapter 2, we found that setting BT to 2b

√
T c worked

well in practice at least in the context of the (N,T ) combinations considered therein.
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Figure 4.1: Dynamic Eigenvalues by Frequency (1-factor model)

Figure 4.2: Dynamic Eigenvalues by Frequency (2-factor model)

By way of an initial jaunt, we consider the two-factor case under the same settings

as above and implement 100 individual tests at the 5% level for the first three

eigenvalues.3 The idea (albeit imprecise) is that the tests for the two leading

3For avoidance of doubt, we note that each of the aforesaid tests is based on a sample that is
independently drawn. It is not the same sample on which we keep testing multiple eigenvalues.
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eigenvalues (wherein the null of divergence is true) should give us a sense of

size and the tests for the third eigenvalue (wherein the null is false) should give

us a sense of power. Indeed, we find that in the case with no cross-sectional

dependence and no serial correlation in the idiosyncratic component, the tests

for the first and second eigenvalues are each rejected 6 times out 100; whereas

the test for the third eigenvalue is rejected 100 times out of 100. This appears

promising and motivates the brief numerical exercise presented below.

In order to investigate size, we compute empirical rejection rates for the null that

the 2nd dynamic eigenvalue (averaged over the frequencies) in a two-factor model

diverges to infinity. In other words, the null is true and we check how often it is

rejected. In order to investigate power, we compute empirical rejection rates for

the same null but with a one-factor model. In other words, the null is false and

we check how often it is rejected.

Tests are conducted for an illustrative variety of (N, T ) combinations. The nota-

tion T̃ refers to the effective sample size of 2BT + 1. Each rejection rate reported

in the tables below is based on 300 separately (and independently) drawn samples

from a synthetic data-generating process as described in detail in Section 2.9 of

Chapter 2. All tests are carried out at the 5% level.

Its simplicity notwithstanding, our exercise demonstrates that the procedure ap-

pears to work. In other words, estimates of size and power are in line with what

we would expect and patterns are not dissimilar to those presented in Trapani

(2015, p.28–29), an earlier version of the paper under consideration. Further re-

search in this area definitely appears warranted. We conduct a more in-depth

numerical investigation in the subsequent section.
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Table 4.1: Empirical Rejection Rates
(no cross-sectional or serial dependence)

k=2

T T̃ N
50 75 100

100 41 0.053 0.060 0.050
500 89 0.077 0.057 0.047
1000 125 0.090 0.057 0.063
2000 177 0.080 0.057 0.057

k=1

T T̃ N
50 75 100

100 41 0.973 1.000 1.000
500 89 0.980 1.000 1.000
1000 125 0.980 1.000 1.000
2000 177 0.967 1.000 1.000

Table 4.2: Empirical Rejection Rates
(cross-sectional but not serial dependence)

k=2

T T̃ N
50 75 100

100 41 0.070 0.070 0.057
500 89 0.080 0.067 0.043
1000 125 0.080 0.067 0.053
2000 177 0.047 0.077 0.070

k=1

T T̃ N
50 75 100

100 41 0.973 1.000 1.000
500 89 0.970 1.000 1.000
1000 125 0.980 1.000 1.000
2000 177 0.917 0.993 1.000
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Table 4.3: Empirical Rejection Rates
(cross-sectional and serial dependence)

k=2

T T̃ N
50 75 100

100 41 0.067 0.047 0.050
500 89 0.050 0.087 0.073
1000 125 0.050 0.037 0.063
2000 177 0.050 0.093 0.043

k=1

T T̃ N
50 75 100

100 41 0.573 0.753 0.877
500 89 0.400 0.653 0.860
1000 125 0.277 0.640 0.870
2000 177 0.177 0.537 0.877

4.4 Determining the Number of Factors

The individual tests considered thus far can be cast in a procedure to determine

the number of common factors in a dynamic approximate factor model. In this

section, we first explain this procedure and then conduct a simulation study to

evaluate its performance under a variety of different data-generating processes.

Hereafter, we refer to the procedure as the spectral version of the randomised

sequential procedure of Trapani (2018).

4.4.1 Spectral Randomised Sequential Procedure

The individual tests can be employed in a sequential manner to determine the

number of dynamic factors by the following two-step approach described in Tra-

pani (2018, p.1345):
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Step 1. We run a test for divergence of the largest dynamic eigenvalue based on

test statistic Θ(1) as previously described. If the null is rejected, we set

our estimator of the number of dynamic factors to be k̂ = 0 and terminate

the procedure; otherwise, we go to the next step.

Step 2. Commencing with p = 1, we test for divergence of the (p+ 1)th dynamic

eigenvalue based on test statistic Θ(p+1), constructed using an artificial

sample
{
ξ

(p+1)
j

}R
j=1

, generated independently of
{
ξ

(1)
j

}R
j=1

, ...,
{
ξ

(p)
j

}R
j=1

.

If the null is rejected, we set k̂ = p and terminate the procedure; other-

wise, we repeat this step until the null is rejected (or until a pre-specified

maximum, say kmax, is reached).

4.4.2 Monte Carlo Study

We now report the results of experiments that directly address the question of

what is the number of factors. Experiments are carried out for a variety of (N, T )

combinations and data-generating processes. In particular, we examine estimates

of the number of factors over simulations repeated 100 times. Again, the synthetic

data-generating process is exactly as described in Section 2.9 of Chapter 2. All

tests are carried out at the 5% level.4

With respect to control parameters, we let cross-sectionN ∈ {25, 50, 75, 100, 125},
time periods T ∈ {100, 200, 500, 1000}, number of factors k ∈ {1, 2}, noise-signal

ratio ρ ∈
{

1
4
, 1

3
, 1

2

}
, cross-sectional dependence φ ∈

{
0, 1

3
, 2

3

}
, and serial depen-

dence b ∈
{

0, 1
3
, 2

3

}
. We also examine the effect of dependence arising due to

the law of motion for the factors, a ∈
{

0, 1
3
, 2

3

}
. Spectral density estimates and

calculation of dynamic eigenvalues via dynamic PCA (Brillinger, 1981, Chapter

9) are exactly as described in Chapter 2, and kmax is set to 4.

We make available the full set of tables from our Monte Carlo study in Ap-

pendix 4.6 below. The tables contain for each (N, T ) configuration: (i) the aver-

age estimated number of factors, k̂, and (ii) the percentage of incorrect predictions

4Following the recommendation in Trapani (2018), we also employ a Bonferroni-style cor-
rection. See Trapani (2018, p.1346); also see Trapani (2015, p.19) for further details.
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– i.e. where k̂ 6= k. We refer to (i) as “Av.k̂”, and to (ii) as the “Rate of Error

(RoE)”. We present each of these two summary statistics under low, moderate

and reasonably-high noise settings (see values for parameter ρ above).

Our main findings, along with cross-references to relevant tables, are as follows:

(i) We observe excellent performance in both the 1 and 2 factor cases, even

under moderate and high noise settings, provided that N and T are of

sufficient size. In particular, results vastly improve for N ≥ 75 and T̃ ≥ 89.

Consider, for instance, Tables 4.4 and 4.10. (This is typical under the usual

double-asymptotic framework considered in the literature.)

(ii) There is a very slight deterioration in performance for the 2 factor case

(Table 4.10) in comparison with the 1 factor case (Table 4.4) in the sense

that we need slightly higher sample sizes (e.g. T̃ ≥ 125) for estimates to

stabilise at the true value of k. (This is to be expected given that the

magnitude of the second largest eigenvalue is, trivially speaking, smaller

than that of the largest eigenvalue; therefore, the signal gets weaker.)

(iii) The procedure appears remarkably capable of handling cross-sectional de-

pendence in the idiosyncratic component – see Tables 4.5–4.6 (and Tables

4.11–4.12). Results do deteriorate relative to the baseline Table 4.4 (and

Table 4.10) discussed under point (i) above but good performance is main-

tained so long as sample sizes remain reasonably high as previously de-

scribed. (As regards direction, the tendency – in almost all configurations –

is for us to over-estimate the number of factors when cross-sectional depen-

dence is introduced. We believe this is in accordance with expectations.)

(iv) In contrast with point (iii) above, serial dependence in the idiosyncratic

component appears more concerning. Indeed, moderate serial dependence

brings about a notable deterioration in performance – see Table 4.7 (and

Table 4.13) – particularly for low values of N and T . Further, high serial

dependence – see Table 4.8 (and Table 4.14) – systematically forces over-

estimation of the number of dynamic factors. We remark that this finding

appears in accordance with the motivation put forward by Lam and Yao

(2012) for their procedure. Indeed, as explained therein,
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An idiosyncratic series may exhibit serial correlations and, there-

fore, may be a time series itself. This poses technical difficulties

in both model identification and inference. In fact the rigorous

definition of the common factors and the idiosyncratic compo-

nents can only be established asymptotically when the dimension

of time series tends to infinity. (Lam and Yao, 2012, p.696)

(Interestingly, Trapani (2018, p.1346, p.1348) hints that it is cross-sectional

dependence that affects simulation results therein relatively more than serial

dependence. Our conjecture is that the reversal in pattern is likely to be

an artefact of the fact that we are working in the frequency domain, but

further investigation would be needed to confirm the mechanism by which

this is borne out.)

(v) Given the above finding, we chose to consider the impact of an alternative

source of dynamics in observables. That is, we model a law of motion for

the dynamically loaded factors themselves – see Tables 4.16–4.17. Again,

there is a slight deterioration in the performance of the estimator but results

are much improved in comparison with point (iv) above.

4.4.3 Empirical Illustration

We now apply the spectral randomised sequential procedure to a widely-studied

real-world dataset. Specifically, we consider a dataset on 112 monthly US macroe-

conomic series between March 1973 and November 2007 (for a total of T = 416

data points) that was carefully scrutinised by Forni and Gambetti (2010). We

refer the reader to Forni and Gambetti (2010, Appendix A. Supplementary Ma-

terial) for a precise list of the series covered (and any transformations applied

thereto).

As mentioned in Chapter 1, the paper is well-known for solving many so-called

“puzzles” previously unaccounted for by methodologies based on structural vector

autoregressive (SVAR) models in empirical macroeconometrics. Indeed, Forni

and Gambetti (2010) analyses the effects of monetary policy shocks under a
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factor model (Forni et al., 2009) identified using a standard recursive scheme

in which the impact effects on both industrial production and prices are zero.

The findings are that: (i) the maximal effect on bilateral real exchange rates is

observed on impact, so that the “delayed overshooting” or “forward discount”

puzzle disappears; (ii) after a contractionary shock prices fall at all horizons, so

that the price puzzle is not there; and (iii) monetary policy has a sizeable effect

on both real and nominal variables.

The dataset – or more precisely, an older version thereof – has also been studied

by Bernanke et al. (2005), and prior to that by Stock and Watson (1999). The

dataset we use – that is, the version of Forni and Gambetti (2010) – may be found

on the Journal of Monetary Economics website, whereas the prior version may

be found on the Princeton University website5 maintained by Professor Watson.

Following the imposition of a factor model structure, one of the first aims in Forni

and Gambetti (2010) is to ascertain the number of dynamic factors (or structural

shocks). The paper states:

To determine the number of dynamic factors, we used the criteria

proposed by Bai and Ng (2007), Amengual and Watson (2007) and

Hallin and Liska (2007). (Forni and Gambetti, 2010, Section 3.2)

The paper concludes:

[...] that the number of dynamic factors is in the interval 4–7. In our

preferred model we use 4 dynamic factors [...]. (Forni and Gambetti,

2010, Section 3.2, emphasis added)

In this empirical example, we try to match the findings above using two proce-

dures: the first is that of Hallin and Lĭska (2007), and the second is our spectral

randomised sequential procedure. Our overall aim is simply to verify that the

various methodologies considered are able to corroborate each other.

Figure 4.3 presents estimated dynamic eigenvalues by frequency. There is no clear

eigen-gap immediately discernible. Nevertheless, it could be argued that a visual

inspection might suggest up to around 6 dynamic factors.

5https://www.princeton.edu/~mwatson/publi.html
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Figure 4.4 is the plot obtained by applying the method6 of Hallin and Lĭska

(2007). We note that c is a tuning parameter that determines the intensity

with which the penalty associated with over-fitting takes effect. To interpret

Figure 4.4, we appeal to the theoretical arguments given by Hallin and Lĭska

(2007). The theory suggests that the relevant interval to consider is the second

stability interval, corresponding to the smallest values of c for which the estimator

for k is constant. (The reason the first stability interval is excluded is because

it always corresponds to the boundary solution kmax and is thereby deemed non-

admissible.) Based on Figure 4.4, one could argue that there are around 3 to 6

dynamic factors present.

Finally, we apply the spectral randomised sequential procedure using the same

configuration as per the previous section, with the exception that kmax is increased

to 10 in this case. Interestingly, we obtained a result of exactly 4 dynamic fac-

tors, which was precisely the conjecture of Forni and Gambetti (2010) mentioned

above. We do not read too much into this result other than to remark that it

does seem to be pointing in the right direction.

Figure 4.3: Dynamic Eigenvalues by Frequency (US macro data)

6We use the so-called “ICT2;N (k)” criterion.
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Figure 4.4: Criterion of Hallin and Lĭska (2007) – Summary Plot

4.5 Future Directions

This chapter is, of course, the subject of ongoing work and there is a lot that could

be done. To reiterate, we believe that (i) the proposed premise (for conducting

research in this area) is sensible; and (ii) our rudimentary numerical investigation

above supports the premise.

As regards immediate next steps, our plan is to carry out a much more compre-

hensive numerical study. For instance, we could expand the N, T combinations

considered, and also vary the modelling structure in different ways. Interesting

directions could include investigating the impact of: (i) different dynamical struc-

tures (i.e. increasing the number of lags with which factors are loaded, varying

the magnitude of serial correlation in the factors and idiosyncratic components,

attempting more complex ARMA specifications); (ii) different sizes of BT and/or

potentially different estimators of the spectral density; (iii) adjusting the exoge-

nous parameters7 such as R, δ, and the support for u; and (iv) changing the

distributional assumptions for the data-generating process (e.g. heavy-tails). As-

7In the numerical exercises presented above, we had simply set these parameters in accor-
dance with suggestions in Trapani (2015, 2018)
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suming we obtain a series of sensible results in the simulation studies, a priority

would be to test the procedure on a real macroeconomic dataset and compare

it with the performance of competing estimators mentioned previously. Subject

to the results of the proposed investigative empirical analysis, we plan to then

initiate a comprehensive examination of the theory via leveraging results from

Trapani (2018) where possible.

Moreover, let us suppose, with a dose of healthy optimism, that we are successfully

able to develop the theory for a spectral version of the test. It would then

be interesting to consider an extension in respect of the case, say, in which a

(restricted approximate dynamic) model consists of an r-dimensional vector of

I(1) factors that are driven by a smaller number q of common shocks. In this

setting, Barigozzi et al. (2021b) explains that the factors are cointegrated and

discusses why this is a macroeconomically relevant situation. In particular, the

framework therein is that we have r factors and q common shocks, of which τ

are permanent (e.g. technological) and d (e.g. monetary policy) are transitory.

Interestingly for us, Barigozzi et al. (2021b, Section 4, p.465) states:

It can be shown that [...] the q largest eigenvalues of [the spectral

density of xt at frequency θ ∈ [−π, π)] diverge linearly in [N ], while

the remaining [N − q] stay bounded. This is true at all frequencies

but at frequency θ = 0, where only the τ largest eigenvalues of [the

spectral density at frequency 0] diverge linearly in N .

In other words, it is theoretically possible to determine the values of q and τ

by analysing the behaviour of the eigenvalues of the spectral density matrix at

the appropriate frequencies. Barigozzi et al. (2021b, Section 4) considers a very

useful extension in this respect to the Hallin and Lĭska (2007) and Onatski (2009)

approaches. Correspondingly, our plan is to leverage any theoretical results that

emanate from our own work proposed in this chapter to also consider specifically

the zero-frequency case.

235



4.6 Appendix – Full Set of Simulation Results

We gather, in this Appendix, the full set of simulation results from our Monte

Carlo study on determining the number of factors. Given the large number of

tables provided, we present here a summary of the contents of this section.

Tables 4.4–4.9 consider the 1 factor setting whereby:

- Table 4.4 considers absence of any cross-sectional or serial dependence;

- Tables 4.5–4.6 consider presence of cross-sectional dependence only;

- Tables 4.7–4.8 consider presence of serial dependence only;

- Table 4.9 considers presence of both cross-sectional and serial dependence.

Tables 4.10–4.15 consider analogous results for the 2 factor setting:

- Table 4.10 considers absence of any cross-sectional or serial dependence;

- Tables 4.11–4.12 consider presence of cross-sectional dependence only;

- Tables 4.13–4.14 consider presence of serial dependence only;

- Table 4.15 considers presence of both cross-sectional and serial dependence.

Tables 4.16–4.17 consider different laws of motion for the factor.
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Table 4.4: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 1, φ = 0, b = 0

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 2.08 78% 2.59 92% 2.71 95%
100 41 50 1.24 23% 1.50 46% 1.71 56%
100 41 75 1.00 2% 1.09 15% 1.17 24%
100 41 100 0.97 3% 0.99 3% 1.03 7%
100 41 125 0.94 6% 0.96 6% 0.93 7%

500 89 25 2.56 88% 2.90 96% 3.37 98%
500 89 50 1.28 27% 1.67 55% 2.01 71%
500 89 75 1.03 3% 1.08 8% 1.18 18%
500 89 100 1.00 0% 1.02 0% 1.01 1%
500 89 125 1.00 0% 1.00 2% 1.00 0%

1000 125 25 2.91 93% 3.43 99% 3.62 99%
1000 125 50 1.37 34% 1.65 51% 2.01 69%
1000 125 75 1.01 1% 1.09 9% 1.24 24%
1000 125 100 1.00 0% 1.01 1% 1.02 2%
1000 125 125 1.00 0% 1.00 0% 1.00 0%

2000 177 25 3.22 94% 3.63 99% 3.75 100%
2000 177 50 1.39 36% 1.74 60% 2.38 87%
2000 177 75 1.04 4% 1.18 18% 1.31 28%
2000 177 100 1.00 0% 1.03 3% 1.02 2%
2000 177 125 1.00 0% 1.00 0% 1.01 1%
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Table 4.5: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 1, φ = 1

3
, b = 0

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 2.12 79% 2.36 88% 2.83 95%
100 41 50 1.23 25% 1.40 39% 1.66 61%
100 41 75 1.02 2% 1.12 14% 1.17 23%
100 41 100 1.00 2% 0.97 3% 1.04 8%
100 41 125 0.95 5% 0.98 2% 0.99 5%

500 89 25 2.70 93% 3.23 98% 3.54 99%
500 89 50 1.25 24% 1.58 54% 1.91 71%
500 89 75 1.04 4% 1.05 5% 1.20 18%
500 89 100 1.00 0% 1.01 1% 1.00 2%
500 89 125 1.00 0% 0.99 1% 1.00 0%

1000 125 25 2.81 91% 3.30 95% 3.62 99%
1000 125 50 1.34 33% 1.69 58% 2.09 78%
1000 125 75 1.01 1% 1.07 6% 1.24 24%
1000 125 100 1.00 0% 1.00 0% 1.03 3%
1000 125 125 1.00 0% 1.00 0% 1.01 1%

2000 177 25 3.36 99% 3.65 100% 3.74 100%
2000 177 50 1.54 44% 1.84 62% 2.42 89%
2000 177 75 1.04 4% 1.13 15% 1.35 34%
2000 177 100 1.00 0% 1.01 1% 1.03 3%
2000 177 125 1.00 0% 1.00 0% 1.00 0%
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Table 4.6: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 1, φ = 2

3
, b = 0

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 2.10 82% 2.32 87% 2.87 97%
100 41 50 1.32 34% 1.40 38% 1.74 60%
100 41 75 1.01 3% 1.13 15% 1.22 24%
100 41 100 1.00 0% 1.00 2% 1.08 14%
100 41 125 0.97 3% 0.96 4% 0.97 9%

500 89 25 2.86 97% 3.16 99% 3.36 99%
500 89 50 1.38 37% 1.63 52% 1.98 76%
500 89 75 1.04 4% 1.09 9% 1.31 29%
500 89 100 1.01 1% 1.00 0% 1.01 1%
500 89 125 1.00 0% 1.01 1% 1.00 0%

1000 125 25 2.93 95% 3.42 100% 3.69 100%
1000 125 50 1.42 38% 1.93 67% 2.35 88%
1000 125 75 1.07 7% 1.17 16% 1.50 42%
1000 125 100 1.00 0% 1.02 2% 1.07 7%
1000 125 125 1.00 0% 1.00 0% 1.01 1%

2000 177 25 3.28 98% 3.69 99% 3.83 100%
2000 177 50 1.60 55% 2.13 74% 2.57 89%
2000 177 75 1.07 7% 1.28 26% 1.54 50%
2000 177 100 1.00 0% 1.00 0% 1.07 7%
2000 177 125 1.00 0% 1.01 1% 1.02 2%
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Table 4.7: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 1, φ = 0, b = 1

3

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 2.71 91% 3.18 97% 3.28 100%
100 41 50 1.84 67% 2.38 92% 2.72 96%
100 41 75 1.23 23% 1.69 61% 2.07 83%
100 41 100 1.10 12% 1.43 40% 1.75 69%
100 41 125 1.06 8% 1.24 27% 1.45 44%

500 89 25 3.58 100% 3.79 100% 3.85 100%
500 89 50 2.08 82% 2.91 96% 3.47 98%
500 89 75 1.39 36% 2.02 79% 2.40 87%
500 89 100 1.05 5% 1.43 39% 1.89 64%
500 89 125 1.02 2% 1.15 17% 1.41 39%

1000 125 25 3.72 100% 3.86 100% 3.95 100%
1000 125 50 2.30 82% 3.11 96% 3.64 99%
1000 125 75 1.52 48% 1.99 79% 2.81 94%
1000 125 100 1.11 11% 1.42 40% 1.97 74%
1000 125 125 1.01 1% 1.07 7% 1.38 37%

2000 177 25 3.91 100% 3.98 100% 4.00 100%
2000 177 50 2.76 94% 3.42 98% 3.84 99%
2000 177 75 1.52 48% 2.26 83% 2.92 93%
2000 177 100 1.12 12% 1.38 35% 1.96 72%
2000 177 125 1.02 2% 1.12 12% 1.41 40%
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Table 4.8: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 1, φ = 0, b = 2

3

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 3.56 100% 3.81 100% 3.89 100%
100 41 50 3.08 98% 3.52 100% 3.78 100%
100 41 75 2.35 91% 3.15 100% 3.52 100%
100 41 100 2.11 89% 2.84 99% 3.21 100%
100 41 125 1.83 69% 2.49 95% 2.96 99%

500 89 25 3.97 100% 3.98 100% 3.97 99%
500 89 50 3.76 100% 3.93 100% 3.97 99%
500 89 75 2.98 96% 3.75 99% 3.98 100%
500 89 100 2.42 86% 3.28 99% 3.82 100%
500 89 125 1.79 71% 2.77 94% 3.67 100%

1000 125 25 3.97 100% 4.00 100% 4.00 100%
1000 125 50 3.78 100% 3.98 100% 4.00 100%
1000 125 75 3.09 99% 3.89 100% 4.00 100%
1000 125 100 2.49 89% 3.62 99% 3.97 100%
1000 125 125 1.98 77% 3.02 98% 3.67 100%

2000 177 25 4.00 100% 4.00 100% 3.97 99%
2000 177 50 3.89 100% 3.99 100% 4.00 100%
2000 177 75 3.60 100% 3.99 100% 3.98 100%
2000 177 100 2.61 92% 3.82 99% 3.93 100%
2000 177 125 2.10 79% 3.25 99% 3.84 99%
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Table 4.9: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 1, φ = 1

3
, b = 1

3

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 2.88 98% 3.27 100% 3.48 100%
100 41 50 1.85 71% 2.38 91% 2.63 94%
100 41 75 1.28 28% 1.82 67% 2.18 84%
100 41 100 1.10 14% 1.45 46% 1.80 66%
100 41 125 0.99 7% 1.17 19% 1.42 40%

500 89 25 3.60 100% 3.79 99% 3.87 100%
500 89 50 2.19 84% 2.84 94% 3.40 100%
500 89 75 1.37 36% 2.05 77% 2.54 92%
500 89 100 1.07 7% 1.33 32% 1.95 75%
500 89 125 1.01 1% 1.12 12% 1.42 40%

1000 125 25 3.67 100% 3.94 100% 3.97 100%
1000 125 50 2.45 88% 3.11 95% 3.62 99%
1000 125 75 1.55 51% 2.18 78% 2.89 96%
1000 125 100 1.02 2% 1.50 46% 1.87 69%
1000 125 125 1.01 1% 1.18 18% 1.36 34%

2000 177 25 3.92 100% 3.98 100% 4.00 100%
2000 177 50 2.69 94% 3.55 99% 3.81 100%
2000 177 75 1.54 51% 2.38 85% 2.94 94%
2000 177 100 1.12 12% 1.53 50% 2.11 76%
2000 177 125 1.01 1% 1.22 21% 1.58 49%
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Table 4.10: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 2, φ = 0, b = 0

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 3.11 76% 3.41 88% 3.49 92%
100 41 50 1.99 21% 2.13 32% 2.32 41%
100 41 75 1.64 35% 1.74 30% 1.76 37%
100 41 100 1.51 49% 1.55 43% 1.65 36%
100 41 125 1.36 62% 1.47 53% 1.45 52%

500 89 25 3.54 90% 3.75 97% 3.85 96%
500 89 50 2.09 9% 2.37 32% 2.59 52%
500 89 75 2.00 0% 2.00 4% 2.01 7%
500 89 100 1.99 1% 1.99 1% 1.94 6%
500 89 125 1.98 2% 1.91 9% 1.87 13%

1000 125 25 3.64 90% 3.84 98% 3.88 98%
1000 125 50 2.12 10% 2.33 32% 2.75 59%
1000 125 75 2.00 0% 2.01 1% 2.06 6%
1000 125 100 2.00 0% 2.00 0% 2.00 0%
1000 125 125 2.00 0% 2.00 0% 1.98 2%

2000 177 25 3.78 99% 3.86 98% 3.98 100%
2000 177 50 2.22 21% 2.47 40% 2.70 56%
2000 177 75 2.00 0% 2.02 2% 2.07 7%
2000 177 100 2.00 0% 2.00 0% 2.00 0%
2000 177 125 2.00 0% 2.00 0% 2.00 0%
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Table 4.11: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 2, φ = 1

3
, b = 0

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 3.05 75% 3.25 84% 3.43 89%
100 41 50 1.96 16% 2.16 32% 2.41 50%
100 41 75 1.68 31% 1.75 27% 1.86 24%
100 41 100 1.65 34% 1.58 41% 1.59 42%
100 41 125 1.59 39% 1.51 47% 1.48 49%

500 89 25 3.59 96% 3.72 94% 3.86 100%
500 89 50 2.10 10% 2.35 31% 2.55 46%
500 89 75 1.99 1% 1.99 3% 2.07 7%
500 89 100 1.98 2% 1.98 2% 1.99 1%
500 89 125 1.99 1% 1.90 10% 1.89 11%

1000 125 25 3.63 93% 3.86 100% 3.90 99%
1000 125 50 2.13 12% 2.39 35% 2.82 61%
1000 125 75 2.00 0% 2.02 2% 2.09 9%
1000 125 100 2.00 0% 2.00 0% 2.01 1%
1000 125 125 2.00 0% 2.00 0% 2.00 0%

2000 177 25 3.76 98% 3.93 99% 3.93 99%
2000 177 50 2.15 15% 2.56 47% 2.94 63%
2000 177 75 2.00 0% 2.02 2% 2.07 7%
2000 177 100 2.00 0% 2.00 0% 2.00 0%
2000 177 125 2.00 0% 2.00 0% 2.00 0%
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Table 4.12: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 2, φ = 2

3
, b = 0

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 3.07 77% 3.40 86% 3.51 92%
100 41 50 2.01 25% 2.15 35% 2.30 40%
100 41 75 1.72 27% 1.73 37% 1.90 32%
100 41 100 1.58 42% 1.58 40% 1.62 37%
100 41 125 1.51 47% 1.52 48% 1.44 56%

500 89 25 3.54 93% 3.68 95% 3.92 99%
500 89 50 2.20 20% 2.39 34% 2.80 68%
500 89 75 2.00 0% 2.02 2% 2.11 15%
500 89 100 2.00 0% 1.98 2% 1.97 3%
500 89 125 1.96 4% 1.96 4% 1.93 7%

1000 125 25 3.72 96% 3.83 98% 3.93 100%
1000 125 50 2.20 20% 2.54 45% 2.89 68%
1000 125 75 2.00 0% 2.02 2% 2.09 9%
1000 125 100 2.00 0% 2.00 0% 2.00 0%
1000 125 125 2.00 0% 2.00 0% 1.98 2%

2000 177 25 3.82 98% 3.91 99% 4.00 100%
2000 177 50 2.30 28% 2.66 50% 3.10 76%
2000 177 75 2.00 0% 2.05 5% 2.16 16%
2000 177 100 2.00 0% 2.00 0% 2.01 1%
2000 177 125 2.00 0% 2.00 0% 2.00 0%
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Table 4.13: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 2, φ = 0, b = 1

3

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 3.57 98% 3.83 99% 3.89 100%
100 41 50 2.50 48% 3.03 79% 3.17 89%
100 41 75 1.99 25% 2.45 48% 2.64 65%
100 41 100 1.75 25% 1.90 24% 2.33 48%
100 41 125 1.71 29% 1.80 30% 1.97 31%

500 89 25 3.86 98% 3.96 99% 3.98 100%
500 89 50 2.82 62% 3.41 87% 3.80 97%
500 89 75 2.14 14% 2.57 48% 3.02 74%
500 89 100 2.01 3% 2.11 11% 2.39 41%
500 89 125 2.00 0% 2.00 4% 2.12 12%

1000 125 25 3.98 100% 3.99 100% 4.00 100%
1000 125 50 2.81 63% 3.51 94% 3.85 98%
1000 125 75 2.15 15% 2.62 52% 3.18 79%
1000 125 100 2.00 0% 2.07 9% 2.45 39%
1000 125 125 2.00 0% 2.02 2% 2.07 6%

2000 177 25 3.99 100% 4.00 100% 4.00 100%
2000 177 50 2.98 69% 3.67 96% 3.92 99%
2000 177 75 2.13 12% 2.77 60% 3.24 82%
2000 177 100 2.03 3% 2.11 11% 2.37 31%
2000 177 125 2.00 0% 2.02 2% 2.05 5%
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Table 4.14: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 2, φ = 0, b = 2

3

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 3.89 99% 3.96 100% 3.99 100%
100 41 50 3.43 94% 3.81 99% 3.98 100%
100 41 75 3.02 81% 3.51 95% 3.81 98%
100 41 100 2.61 61% 3.36 90% 3.63 98%
100 41 125 2.32 41% 2.94 82% 3.52 95%

500 89 25 4.00 100% 3.99 100% 4.00 100%
500 89 50 3.91 99% 3.99 100% 4.00 100%
500 89 75 3.48 96% 3.93 99% 3.98 99%
500 89 100 2.84 68% 3.74 96% 3.98 100%
500 89 125 2.40 36% 3.42 92% 3.86 97%

1000 125 25 4.00 100% 4.00 100% 4.00 100%
1000 125 50 3.95 100% 4.00 100% 4.00 100%
1000 125 75 3.69 97% 3.99 100% 4.00 100%
1000 125 100 2.89 68% 3.81 99% 3.97 100%
1000 125 125 2.30 30% 3.32 82% 3.93 100%

2000 177 25 4.00 100% 4.00 100% 4.00 100%
2000 177 50 4.00 100% 4.00 100% 4.00 100%
2000 177 75 3.82 98% 3.99 100% 4.00 100%
2000 177 100 2.91 71% 3.84 98% 4.00 100%
2000 177 125 2.35 35% 3.36 89% 3.87 98%
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Table 4.15: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 2, φ = 1

3
, b = 1

3

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 3.61 94% 3.76 95% 3.89 99%
100 41 50 2.52 52% 2.95 75% 3.24 87%
100 41 75 1.99 21% 2.24 44% 2.68 56%
100 41 100 1.76 26% 2.04 22% 2.32 35%
100 41 125 1.77 25% 1.76 33% 2.00 34%

500 89 25 3.90 98% 3.94 98% 3.99 100%
500 89 50 2.77 69% 3.40 87% 3.81 100%
500 89 75 2.12 12% 2.65 59% 3.10 79%
500 89 100 2.00 2% 2.10 12% 2.53 48%
500 89 125 1.98 2% 2.03 5% 2.13 12%

1000 125 25 3.95 99% 3.97 99% 4.00 100%
1000 125 50 2.95 72% 3.53 92% 3.92 99%
1000 125 75 2.14 14% 2.55 45% 3.24 83%
1000 125 100 2.03 3% 2.12 14% 2.37 35%
1000 125 125 2.00 0% 2.00 0% 2.15 15%

2000 177 25 3.98 100% 4.00 100% 4.00 100%
2000 177 50 2.91 63% 3.74 96% 3.92 97%
2000 177 75 2.21 19% 2.70 58% 3.46 92%
2000 177 100 2.00 0% 2.14 14% 2.58 47%
2000 177 125 2.00 0% 2.03 3% 2.17 17%
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Table 4.16: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 1;φ, b = 0; a = 1

3

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 2.92 98% 3.12 99% 3.41 99%
100 41 50 1.44 42% 1.84 71% 2.11 83%
100 41 75 1.15 15% 1.28 26% 1.47 42%
100 41 100 1.01 1% 1.05 5% 1.14 14%
100 41 125 0.98 2% 1.01 1% 1.05 7%

500 89 25 3.35 98% 3.73 100% 3.83 100%
500 89 50 1.68 55% 2.07 81% 2.45 88%
500 89 75 1.09 9% 1.20 20% 1.57 51%
500 89 100 1.01 1% 1.06 6% 1.11 10%
500 89 125 1.00 0% 1.00 0% 1.01 1%

1000 125 25 3.53 99% 3.79 100% 3.96 100%
1000 125 50 1.70 59% 2.20 81% 2.73 93%
1000 125 75 1.08 8% 1.24 23% 1.57 47%
1000 125 100 1.00 0% 1.03 3% 1.09 11%
1000 125 125 1.00 0% 1.00 0% 1.02 2%

2000 177 25 3.82 100% 3.98 100% 4.00 100%
2000 177 50 1.86 66% 2.53 89% 2.96 93%
2000 177 75 1.13 13% 1.41 36% 1.63 49%
2000 177 100 1.01 1% 1.01 1% 1.17 16%
2000 177 125 1.00 0% 1.01 1% 1.00 0%
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Table 4.17: Average k̂ (Av.k̂); and Rate of Error (RoE)
k = 1;φ, b = 0; a = 2

3

T T̃ N Low-Noise Mod.-Noise High-Noise

Av.k̂ RoE Av.k̂ RoE Av.k̂ RoE

100 41 25 3.04 95% 3.08 96% 3.39 100%
100 41 50 1.53 48% 1.91 72% 2.11 85%
100 41 75 1.12 12% 1.25 25% 1.57 54%
100 41 100 1.02 2% 1.11 11% 1.21 20%
100 41 125 1.00 0% 1.00 0% 1.07 7%

500 89 25 3.53 98% 3.67 99% 3.86 100%
500 89 50 1.63 54% 2.09 81% 2.53 87%
500 89 75 1.08 8% 1.25 23% 1.46 45%
500 89 100 1.00 0% 1.03 3% 1.17 17%
500 89 125 1.00 0% 1.00 0% 1.03 3%

1000 125 25 3.59 99% 3.85 100% 3.94 100%
1000 125 50 1.71 58% 2.23 78% 2.68 90%
1000 125 75 1.15 15% 1.32 27% 1.67 58%
1000 125 100 1.00 0% 1.09 9% 1.18 18%
1000 125 125 1.00 0% 1.01 1% 1.06 6%

2000 177 25 3.77 100% 3.97 100% 3.98 100%
2000 177 50 2.00 75% 2.57 84% 3.16 97%
2000 177 75 1.13 13% 1.35 32% 1.86 67%
2000 177 100 1.02 2% 1.13 13% 1.23 20%
2000 177 125 1.00 0% 1.02 2% 1.00 0%
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