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Abstract

The aim of this thesis is to develop statistical methods for use with
factor models for high-dimensional time series. We consider three
broad areas: estimation, changepoint detection, and determination of

the number of factors.

In Chapter 1, we sketch the backdrop for our thesis and review key

aspects of the literature.

In Chapter 2, we develop a method to estimate the factors and pa-
rameters in an approximate dynamic factor model. Specifically, we
present a spectral expectation-maximisation (or “spectral EM”) algo-
rithm, whereby we derive the E and M step equations in the frequency
domain. Our E step relies on the Wiener-Kolmogorov smoother, the
frequency domain counterpart of the Kalman smoother, and our M
step is based on maximisation of the Whittle Likelihood with respect
to the parameters of the model. We initialise our procedure using
dynamic principal components analysis (or “dynamic PCA”), and by
leveraging results on lag-window estimators of spectral density by Wu
and Zaffaroni (2018), we establish consistency-with-rates of our spec-
tral EM estimator of the parameters and factors as both the dimension
(N) and the sample size (7') go to infinity. We find rates commen-
surate with the literature. Finally, we conduct a simulation study to

numerically validate our theoretical results.

In Chapter 3, we develop a sequential procedure to detect change-
points in an approximate static factor model. Specifically, we define a
ratio of eigenvalues of the covariance matrix of N observed variables.
We compute this ratio each period using a rolling window of size m

over time, and declare a changepoint when its value breaches an alarm



threshold. We investigate the asymptotic behaviour (as N,m — o)
of our ratio, and prove that, for specific eigenvalues, the ratio will
spike upwards when a changepoint is encountered but not otherwise.
We use a block-bootstrap to obtain alarm thresholds. We present sim-
ulation results and an empirical application based on Financial Times
Stock Exchange 100 Index (or “FTSE 100”) data.

In Chapter 4, we conduct an exploratory analysis which aims to ex-
tend the randomised sequential procedure of Trapani (2018) into the
frequency domain. Specifically, we aim to estimate the number of
dynamically loaded factors by applying the test of Trapani (2018) to
eigenvalues of the estimated spectral density matrix (as opposed to

the covariance matrix) of the data.
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“Factor model methods [in a
high-dimensional context] are
the ideal tool — arguably, the

only successful ones.”
— Barigozzi and Hallin (2015)

Chapter 1

Introduction

This thesis is concerned with the development of statistical methods for use with factor
models designed for high-dimensional time series. Accordingly, in this opening chapter,
we introduce the rich field of factor models and associated methods. In Section 1.1,
we explore models. In particular, we (i) provide a historical overview of research in
the area, (ii) discuss examples of applications of factor models, and (iii) explain the
taxonomy of models considered in the literature. In this respect, our goal is not only to
set the broad scene for our own study, but also to share with the reader our sense that
undertaking research in this area is a fruitful endeavour. In Section 1.2, we narrow
in on three sub-fields of the literature that tackle key methods. In particular, we
summarise studies in the areas of estimation, changepoint detection and determination
of the number of factors. We relegate any additional details about the literature not

covered herein to the main bodies of respective upcoming chapters.



1.1 Synopsis of the Literature on Models

Factor analysis is a highly effective way of modelling inter-relationships between
potentially large sets of observed variables in a parsimonious manner. In other
words, it is an ideal tool for ushering in a reduction in dimensionality while pre-
serving most of the covariation information in the data. The success of factor
analysis in tackling the high-dimensional time series that we typically find in con-
temporary macroeconomics and finance belies its pre-“big data” origins. Indeed,
most monographs on factor analysis begin by noting the old chestnut that research
into this area goes back more than a century, originating in the field of psychology
with Spearman (1904). We too begin this thesis with the same frequently-quoted
fact not because we want to maintain an unexciting conformance with academic
tradition but because we truly believe that this fact is testament to both the

wide-ranging applicability of factor model methods and their longevity.

Accordingly, with fresh enthusiasm, we touch upon some key historical develop-
ments and provide examples of applications of factor analysis. In tandem, we
use this introductory section to map out the salient features of the landscape
wherein this study resides. It is no surprise that model specifications in this area
may be simple, complex or anywhere in-between, as also the statistical methods
employed in conjunction with them. Therefore, in the paragraphs below, we do
not attempt to cover every possible variant of models encountered in the litera-
ture nor every possible methodological development. Nevertheless, we recount a
generally-accepted categorisation of factor models together with brief descriptions
of what each category entails, and we signpost readers looking for a richer variety
of surveys of the literature to inter alia the works of Breitung and Eickmeier
(2006), Bai and Ng (2008), Stock and Watson (2016), Bai and Wang (2016), Doz
and Fuleky (2020), Barigozzi (2020) and Hallin et al. (2020).

1.1.1 Factor Model Decomposition

We start right at the wellspring of the merits of factor models. To fix ideas, let

us consider models for (observed) realisations from a zero-mean double indexed



stochastic process x;; for cross-sectional index ¢ = 1,..., N and temporal index
t = 1,...,T. Distinctions among individual specifications notwithstanding, all
factor models postulate the same (unobserved) decomposition of z; into a sum
of two mutually orthogonal® components, one that is common to all units in the
cross-section x;; (thus capturing co-movements), and one that is idiosyncratic &;
(thus accounting for any remaining individual features). The importance of this
decomposition emanates from its two critical properties. The first is the reduced
rank nature of x;;, which is to say that it is driven by a small number ¢ < N (with
q independent of N) of exogenously given primitives or shocks; and the second is
that the cross-sectional correlations amongst the &; terms are sufficiently weak
(failing which, idiosyncracies would be hard to distinguish from commonalities).

Therein lies our inherent reduction in dimensionality.

1.1.2 Applications

The next question is whether the factor structure postulated above is reason-
able in real-world scenarios. Are there convincing examples of its use beyond
just the discussion by Spearman (1904) of general intelligence as the underlying

unobserved driver of various measures of cognitive ability of an individual?

Indeed, several authors as far back as Burns and Mitchell (1946) have consid-
ered an unobserved business cycle as the driver of co-movements among macroe-
conomic aggregates. Engle and Watson (1981) considers an unobserved local
metropolitan-area wage rate as the driver of wages across sectors throughout
the United States (US). Diebold et al. (2006) considers inter alia unobserved
yield-curve factors (level, slope, curvature) as the drivers of bond yields. Mody
and Taylor (2007) considers an unobserved regional vulnerability as the driver
of country-specific measures of financial stress. Barigozzi and Hallin (2015) con-
siders an unobserved market volatility as the driver of individual asset liquidity
measures. The list could go on but we stop here. Our point is simply, as phrased
by Doz and Fuleky (2020, p.418), that “[...] empirical evidence supports their

main premise: [factor models] fit the data”. Nevertheless, even if one were per-

IThat is, uncorrelated at all leads and lags



suaded that applications abound, one could still ask what one can do with the
results of factor analysis. Once again, the literature is replete with examples and

we mention a handful below.

A first arena is that of forecasting and factor methods are routinely deployed by
central banks and research institutes for this purpose. References include Stock
and Watson (2002a,b) which predict real and nominal macroeconomic variables
in the US; and Forni et al. (2003) and Banerjee et al. (2005) in the euro area.
Relatedly, factor methods are used to nowcast series, that is to predict low fre-
quency macroeconomic releases (say end-of-quarter) for the current period (or
within-quarter). See, for example, Giannone et al. (2008) and more generally the

comprehensive survey on nowcasting in Banbura et al. (2013).

A second is the construction of macroeconomic indicators which serve as a ref-
erence for policy-makers and economists. Examples include the Chicago Fed
National Activity Index for the US, a monthly index designed to gauge overall
economic activity and related inflationary pressure (Evans et al., 2002; Stock and
Watson, 1999), and Eurocoin for the euro area, a monthly indicator that assesses

economic activity free from short-run fluctuations (Altissimo et al., 2010).

A third is monetary policy and the identification of impulse response functions.
A famous example is Forni and Gambetti (2010) which considers various anoma-
lous empirical findings, labelled “puzzles”, in previously undertaken studies. For
instance, Sims (1992) finds, using structural vector autoregression (SVAR) analy-
sis, that, after a monetary contraction, prices increase. Further, Eichenbaum and
Evans (1995) and Grilli and Roubini (1996) find that exchange rates react with
too long a delay relative to predictions of mainstream economic theory. Forni
and Gambetti (2010) uses factor methods, which enable the researcher to handle
a large amount of information and therefore avoid an important limitation of
SVAR models known as non-fundamentalness. The puzzles are thereby resolved
in the sense that the empirical results of Forni and Gambetti (2010) concur with

mainstream theory.

A fourth is risk management and/or portfolio optimisation. A good example

is Fan et al. (2013) wherein the primary aim is estimation of the covariance



matrix of an observed high-dimensional time series (e.g. of financial returns).
This is achieved by imposing a “low rank plus sparsity” assumption on the co-
variance matrix and then regularising only its sparse component. To this end,
the afore-mentioned factor model decomposition into common and idiosyncratic
components serves as an ideal tool since it embodies perfectly the conditional
sparsity structure that the authors seek. Indeed, Fan et al. (2013) makes the link
with factor models and deploys relevant methods to great effect in the first stage
of development of its so-called “Principal Orthogonal complEment Thresholding
(POET) estimator” (Fan et al., 2013, p.3).

We hope that the foregoing discussion delivers an adequate flavour not only of the
wide-ranging applicability of factor models but also their importance in various
empirical settings. The interested reader is once again referred to the afore-
mentioned surveys since they contain much additional background information.
Our focus, at this stage, turns to an additional source of our enthusiasm for factor
models. That is, the remarkable theoretical representation results that have been
established in the field. Before we discuss those, however, we clarify commonly-
used terminology and address the contemporary taxonomy of main types of factor

models.

1.1.3 Exact Static Models

The work of Spearman (1904) entails what may be classified in modern-day par-
lance as an exact (or strict) static factor model. Exact, since all co-movements
between observables are modelled via the factors alone, and static, since the model
is designed only to explain independent data. A typical formulation for say an r

factor model might be
Ty = Z Nijfie + ity
j=1

for, where fy, ..., f;+ are referred to as the r common factors, £y, ..., Eny as the N
idiosyncratic components (with r < N), and where the factors and idiosyncratic
components are assumed mutually orthogonal. The structure is static since fac-

tors are loaded contemporaneously and there is no temporal correlation in either



the factors or the idiosyncratic component. It is exact since the covariance of the

vector of idiosyncratic components (&4, ..., Ent) at time ¢ is a diagonal matrix.

Credit for development of estimation methods for such models by maximum like-
lihood (ML) is due to Joreskog (1969) and Lawley and Maxwell (1962), and
by principal components analysis (PCA) to Tipping and Bishop (1999). These
contributions all represent very important milestones in the development of the
methodology for exact static factor models (and beyond). Nevertheless, the prac-
tical value of these models at least for present-day macroeconomics and finance is
limited due to the overly restrictive nature of the assumptions. A good reference

for examples of their use in social statistics is Bartholomew et al. (2011).

1.1.4 Exact Dynamic Models

With specific reference to stationary time series data, it is Geweke (1977) that is
attributed with outlining an exact dynamic factor model. Dynamics are typically
incorporated by allowing factors, and possibly also idiosyncratic components, to
follow autoregressive processes. Given their structure, these models may readily
be cast in state space form, and under Gaussianity, they lend themselves to
estimation via the Kalman filter and likelihood based methods — see, for instance,
Harvey (1990). Important contributions in time domain methods for estimation
of these models were made by Watson and Engle (1983) and Quah and Sargent
(1993), both of which make use of the expectation-maximisation (EM) algorithm.
Key frequency domain references for estimation of exact static factor models
include Geweke (1977) itself and Sargent and Sims (1977).

To illustrate the state space formulation, let us consider a model in which an
r-dimensional vector of factors f; follows a vector autoregression of order 1 — or

a VAR(1) — process as follows

x; = Afy + Et
f, = ®f,_, +u,

where A is an N X r matrix of loadings, &; is an N-dimensional vector, ® is an



r X r matrix of autoregressive coefficients, and uy is a vector-valued white noise.
While this is clearly not the most general framework available, it constitutes a
reasonable way to introduce dynamics in the sense that (i) a VAR(p) model, for
p > 1, can always be re-expressed as a VAR(1) by stacking the lagged terms; and
(ii) the state equation can readily be augmented to incorporate dynamics in the
idiosyncratic component too. Indeed, Stock and Watson (1988) uses just such a

model to construct a coincident economic indicator for the US economy.

Nevertheless, we emphasise at this point that the covariance matrix of & remains
diagonal in this model and it therefore appears overly restrictive for modern
applications. The reason is that it forces all co-movements amongst the cross-

section to occur via the common factors alone.

1.1.5 Approximate Static Models

The next question is whether one could design models without the restriction that
features unique to a given cross-sectional unit are entirely uncorrelated with each
other. Of course, there is a clear problem of logic here, namely that we cannot al-
low “too much” correlation otherwise (as mentioned previously) any idiosyncracy
loses its meaning. Nevertheless, provided we place appropriate bounds on the
cross-sectional pervasiveness of idiosyncratic components, we can indeed develop
the theory for approximate static factor models (and subsequently also consider

extensions to the dynamic case).

If we were to provide an illustrative model specification here, it would be similar
to that presented under the previous category except (i) there would be no state
equation, and (ii) there would be no requirement for the covariance matrix of
& to be diagonal. An example of how identification may be carried out is as

follows. Let us define an N-dimensional vector x; = Af; to denote the common
(V)
ix

variance matrix of x; and analogously wfév ) of &, where the superscripts simply

component of x;. Suppose ¢, ~ denotes the i-th largest eigenvalue of the co-
emphasise dependence of these quantities on N. Then, we could assume that (i)
im0 wﬁg) = 00; and (ii) there exists a finite positive constant M independent
of N such that @/J&V) < M. While this is a very intuitive method for disentan-



gling that which is common from that which is not, it is not the only way one
could define pervasiveness and lack thereof. See, for instance, Bai and Ng (2002)
and Fan et al. (2013), each of which frames constraints in ways that are subtly
different to the above.

As regards estimation, PCA is well-suited to the static approximate setting. This
is because PCA, an algebraic exercise, and factor analysis, a modelling exercise,
both decompose the covariance matrix of x; into the sum of a reduced rank matrix
and whatever else remains. Combining PCA and factor analysis just seems like
the natural thing to do. Key studies include Chamberlain and Rothschild (1983)
and Connor and Korajezyk (1986) which proposed use of PCA for approximate
static factor models, and Stock and Watson (2002a,b) and Bai and Ng (2002)
which find consistency and establish min(v/N,+/T) rates for loadings and factor

estimators. Bai (2003) obtains asymptotic distributions.

1.1.6 Approximate Dynamic Models

The theory for a much less restrictive class of factor models is developed in Forni
et al. (2000), Forni and Lippi (2001), Forni et al. (2004), Forni and Lippi (2011)
and Hallin and Lippi (2013).? These models (i) incorporate relaxations of or-
thogonality constraints on the idiosyncratic components, thereby allowing for the
unique features of observable time series to indeed be mildly correlated; and (ii)
incorporate dynamics, making them extremely well-suited for time series data.
The key supposition is that our factors f; are driven by a full-rank g-dimensional
innovation process say 14, where ¢ < r < N and . The vector v, is typically
interpreted as representing a set of mutually orthogonal standardised unobserved
primitive shocks whose effects are propagated dynamically through the economic
system and thereby responsible for the bulk of co-movements in macroeconomic

variables now and in the future. An illustrative model formulation in this setting

2An additional related reference is Forni et al. (2005) with uses a modified version of the
model in a forecasting context.



yields a common component of the form

q o0
Xit = Z Z Bij,st,t—57
j=1 s=1
where the B;; ¢ terms, for 1 <7 < N,1 < j < ¢, quantify how the j-th shock
is loaded onto the i-th time series at the s-th lag. By admitting potentially an

infinite set of lags as above, we harbour an extremely flexible model structure.

The identification constraints alluded to in the previous section may be extended
into this setting, for example, by (i) ensuring divergence of the ¢-th largest eigen-
value of the N x N spectral density matrix of x; as N — oo for all frequencies;
and (ii) ensuring that the largest eigenvalue of the N x N spectral density matrix

of & is bounded from above uniformly with respect to the frequency.

It is worth emphasising that the approximate dynamic factor model is extremely
general. In stark contrast to the various formulations alluded to in the foregoing
paragraphs, the factor model decomposition discussed under this category is not
so much a statistical model as it is a canonical representation. Indeed, we refer
to Hallin and Lippi (2013, Theorem 1) which establishes that any second-order
stationary process has a representation identical to the approximate dynamic
factor model specification referred to above, a remarkable result.®> A clear im-
plication is that the approximate dynamic factor model encompasses all other

models discussed heretofore.

1.1.7 Approximate Dynamic Models - with Restrictions

Given the benefits of such a flexible model structure, one approach is for re-
searchers is to adopt a “holy grail” mindset and devote efforts purely into de-
veloping techniques suited to the approximate dynamic factor model discussed
above. For instance, since we can no longer use PCA (which is unable by itself

to handle dynamics) to estimate the model, Forni et al. (2000) proposes moving

3All that is needed is a ‘bounded complexity’ assumption that rules out the strange case of
an infinite number of common shocks. (Hallin et al., 2020, Footnote 9).



to the frequency domain and using dynamic PCA (Brillinger, 1981, Chapter 9)

instead. The “holy grail” approach, however, is not without limitations.

First, any statistical techniques necessarily involve an increase in technical so-
phistication and so theoretical results in pursuit of an ideal may be hard to come
by (if not altogether impossible). For instance, frequency domain estimation is
itself a complex enough subject but were we to bring in additional objectives (e.g.
changepoint detection, missing data, hierarchical structures, etc.), the problem

could get very big, very fast.

Second, solutions found, however remarkable, may remain somewhat unsatisfac-
tory from an empirical perspective. For example, as phrased in Forni et al. (2015),
“[...] estimators [of Forni et al. (2000)] are two-sided filters whose performance at
the end of the observation period or for forecasting purposes is rather poor. No

such problem arises with estimators based on standard principal components”.

Third, it is unlikely that any technique (no matter how noble the author’s in-
tentions) will truly refrain from imposing any implicit or explicit additional con-
straints over and above what is needed for the barebones canonical representation
result. For example, dynamic PCA is based on a factorisation of spectral density
matrices. It follows that even the seminal work of Forni et al. (2000) needs to
add assumptions to ensure that all x; processes, for any possible size of cross-
section, admit spectral densities. In absence of this assumption, the estimators of
Forni et al. (2000) cannot be operationalised; but no such assumption is needed
for “Theorem 1”7 of Hallin and Lippi (2013). Nevertheless, as previously noted,
the Forni et al. (2000) approach is typically referred to as the “general...” or

“generalised dynamic factor model”.

Of course, we do not give up disheartened. Rather, we do the best we can. What
that means in practice is that we typically sacrifice some generality in pursuit of
advancing the state of the art. One approach is to assume that the space spanned
by the factors at any time ¢ has a finite-dimension r as NV tends to infinity. Under
this restriction, Forni et al. (2009) establishes that one can always re-express a
dynamic model, say where ¢ shocks loaded with p lags, into static form akin to
that used by Stock and Watson (2005) and Bai and Ng (2007). The approach is

10



very popular since it yields a a very tractable state space formulation in which the
measurement equation consists of a static approximate factor model characterised
by 7 = q(p+ 1) factors and the state equation comprises a vector autoregression.
We do not present illustrative equations at this stage since these will shortly
be laid out in Section 2.1 of the following chapter. For now, we note simply
the implication that several aforesaid techniques, e.g. PCA and Ordinary Least
Squares (OLS), become available once again. The Forni et al. (2009) approach is

sometimes referred to as the “restricted generalised dynamic factor model”.

Its popularity notwithstanding, the Forni et al. (2009) approach is by no means
a cure-all. The finite-dimension assumption can be restrictive since it rules out
certain (even quite elementary) factor loading patterns, examples of which can be
found in Forni and Lippi (2011, p.23) and Forni et al. (2015, p.360). Leveraging
the work of Anderson and Deistler (2008) on singular stationary processes with
a rational spectrum, the latter studies advocate a completely different approach.
That is, they show that under alternative assumptions, inter alia that the com-
mon component has a reduced-rank spectral density that exists and is rational,
one-sided estimators based on PCA in the frequency domain can be obtained even
when the space spanned by the common component is infinite-dimensional. See
also Forni et al. (2017) for a discussion of the asymptotics of estimators within
this setting. The Forni et al. (2015, 2017) approach is sometimes referred to as

the “unrestricted generalised dynamic factor model”.

This brings to a close our review of the salient features of the various models in
the literature on factor analysis for high-dimensional time series. We believe the
foregoing discussion will serve as adequate background for the terminology and
models to be encountered in the remainder of our work. We turn our attention

at this point to providing a description of associated statistical methods.

1.2 Synopsis of the Literature on Methods

In this section we provide an overview of key statistical methods for factor mod-

els for high-dimensional time series. As mentioned earlier, there exist studies

11



in areas as wide-ranging as missing data, jagged-edge data, block structures,
non-stationarity, local stationarity, bootstrapping, high-frequency data, etc. We
confess that in a field so bountiful, there is truly too much to say and there
are too many to cite. For this reason, we limit our scope below purely to those
sub-areas most relevant to this thesis: estimation, changepoint-detection, and

determination of the number of factors.

1.2.1 Estimation

We touched upon key estimators at various places in Section 1.1 and aim to
avoid excessive repetition below. In general, though, estimation methods for
approximate dynamic factor models (with restrictions) could arguably, and at
least for the purpose of this thesis, be grouped into two broad categories. The first
of these categories is based on PCA and OLS estimation of vector autoregressions.
The second is based on quasi-maximum likelihood (QML) estimation. We survey

these two categories now.

1.2.1.1 PCA-based methods — Time Domain

Much of the literature in this area originated in the static approximate factor
model context. The initial focus on static models is understandable since PCA
(which targets the covariance matrix alone) overlooks serial correlation (which is
captured by the entire autocovariance sequence). Nevertheless, most asymptotic
results, such as the min(\/ﬁ T ) consistency rate, carry through to extensions
which do allow for serial correlation in factors and/or idiosyncratic components.
As a result, the studies mentioned in Section 1.1.5 serve as extremely important

building blocks for the dynamic setting too.

The most popular way of incorporating dynamics (at least in the empirical liter-
ature) is through judicious use of the state space formulation espoused by Forni

et al. (2009).* An extremely influential study is Doz et al. (2011) which proposes

4While other approaches based on eigen-analysis do exist, we do not dwell on them here.
See, for example, Lam et al. (2011) and Lam and Yao (2012), which exploit information in

12



a two-step estimator, wherein the first step estimates the measurement equation
via PCA and the state equation via OLS.

For instance, say we have a model

x; = AL+ &
f, = ®f,_; +uy,

with suitable “mildness” assumptions on &;. One can estimate the loadings and

the factors via the constrained optimisation problem

T
o
e ONT ;(Xt — Af) (x, — Afy),
ANA
PO
SN

The need for a constraint occurs due to the rotational indeterminacy arising due
to the latency of the factors, and the constraint on the loadings presented above
is only one of several possible normalisations. Nevertheless, we do not dwell on
this point here. Rather, we note simply that the solution to the given problem is
simply E = NN x; where A is the matrix of eigenvectors of the N x N sample
covariance matrix 7'~ EIT x;X; corresponding to its r largest eigenvalues. Given

/f\t, one can estimate the factor VAR using OLS.

1.2.1.2 PCA-based methods — Frequency Domain

Significant advances have also been made in the frequency domain. The advan-
tage of spectral methods is that our focus need not be limited to the static or
restricted settings and thus get us closer in spirit to the “holy grail” alluded
to earlier. Of course, the studies mentioned in Section 1.1.6 are forerunners of

research in this area, and the basic idea is as follows.

autocovariance matrices at non-zero lags (instead of just the covariance matrix as in PCA). In
these studies, common factors are specifically defined as being responsible for dynamic move-
ments in the observable time series, and to this extent, they also capture any serially correlated
features of the idiosyncratic components.
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Suppose we have a sequence of N x N autocovariance matrices denoted by
{I'x(h),h € Z}. Even if the same-period correlation of two series is negligible,
the correlation could be still high at leads and lags. Ignoring this information,
with a blinkered focus on the covariance matrix I'y(0) alone, can lead to signifi-
cant losses in explanatory power. Dynamic PCA (Brillinger, 1981, Chapter 9) as
espoused inter alia by Forni et al. (2000) overcomes this shortcoming by relying

on the spectral density,

oo

1 —iw
Gulw) = 5 > Ty(h)e ™,
h=—00

for w € [—m, ), which encapsulates information in the entire autocovariance
sequence. Analogous to conventional PCA, dynamic PCA is based on an eigen-
decomposition of a non-parametric estimator of Gx(w). To estimate the common
component by this method, we retain the eigenvectors corresponding to the ¢
largest eigenvalues, carry out an inverse Fourier transform in order to obtain the
so-called first ¢ dynamic principal components, and project the data on the first
q dynamic principal components to recover consistently the common component

of each series.

Before we move on, it is worth pausing briefly to note that non-parametric esti-
mation of the spectral density is not without its fair share of complexity. Indeed,
we recount here an interesting anecdote from Hallin et al. (2020). With reference
to the pioneering work of Forni et al. (2000), Hallin et al. (2020, p.11) concedes
“Actually, the consistency result there is based (Equation (5) on page 545) on a
wrong interpretation of a statement by Brockwell and Davis (Remark 1 of Section
10.4, page 353 of the 1991 edition). This was discovered several years later only

[with credit ascribed to Giovanni Motta]”.

As regards what the complexities are, we will in this thesis return to the issues
surrounding non-parametric spectral density estimation in Section 2.6 of the up-
coming chapter. For now, we note simply that a landmark study in the literature
on lag-window estimators is Wu and Zaffaroni (2018). In fact, the statement
quoted above from Hallin et al. (2020) goes on to add that the discovery of the

aforesaid error was direct motivation for the latter study.
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We wrap up our anecdote by considering what is the contribution of Wu and
Zaffaroni (2018). As summarised succinctly by Forni et al. (2017, p.75), “[Wu
and Zaffaroni (2018) establishes] that lag-window estimators of spectra and cross-
spectra, under quite general assumptions on the processes and the kernel, are
consistent, as 7" — oo, uniformly with respect to the [frequency w], with rate
T/(Brlog Br), where By is the size of the lag window”. This result is referred
to by Hallin et al. (2020, p.11) as “[...] the mathematical cornerstone in the
asymptotic analysis of [Forni et al. (2017)]”. Indeed, just like Forni et al. (2017),

our Chapter 2 will also benefit from this seminal result.

Finally, we note the finding of an overall min <\/N , \/ T/(Brlog BT)) consistency
rate for dynamic PCA in this setting (Forni et al., 2017).

1.2.1.3 Likelihood-based methods - Time Domain

The second category of estimators we consider here are likelihood-based or QML
methods. Key studies in this context include Doz et al. (2012) and Barigozzi and
Luciani (2022).

As explained by Doz et al. (2012, p.1014), “[...] maximum likelihood estimation
is clearly more appealing than principal components not only because it may lead
to efficiency gains, but also, most importantly, because it provides a framework
for incorporating restrictions derived from economic theory in the model. |...]
For these reasons, establishing the properties of maximum likelihood estimators
for factor models in large panels of time series is a relevant task from both the

theory and applied point of view.”

Doz et al. (2012) relies on likelihood-based methods to estimate, in an exact
setting, a state space formulation of a dynamic factor model. In the spirit of
QML methods (White, 1982), the approach is to treat the exact factor model as

a mis-specified approximating model for the approximate (or generalised) case.

As regards computational methodology, Doz et al. (2012) leverages previous work
by Doz et al. (2011) wherein the second step (of the proposed two-step estimator)

estimates factors via the Kalman smoother. In particular, Doz et al. (2012) makes
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use of the EM algorithm of Dempster et al. (1977) whereby (i) initialisation takes
place via PCA and OLS as per the afore-mentioned first step in Doz et al. (2011);
(ii) the E step makes use of the Kalman smoother as per the second step in
Doz et al. (2011); and (iii) the M step estimates parameters via maximisation of
the expected log-likelihood (conditional on the output of the E step). The two
steps iterate until the algorithm terminates upon triggering a suitable convergence
criterion. Doz et al. (2012) establishes consistency-with-rates for the proposed

procedure.

Barigozzi and Luciani (2022) undertakes a meticulous scrutiny of the asymptotic
properties of the QML estimator implemented via the EM algorithm. It estab-
lishes a min (\/ N, \/T) consistency rate (as well as other very interesting results

including asymptotic normality) for estimators of the common component.

1.2.1.4 Likelihood-based methods - Frequency Domain

We now turn to the frequency domain, and this is precisely where the literature
starts to thin. To the best of our knowledge, the only study that considers
the possibility of an EM algorithm in the frequency domain is Fiorentini et al.
(2018). Our impression of a lacuna in the literature is bolstered also by a reading
of Barigozzi and Luciani (2022, “Remark 4”) as well as the reasonably recent
survey by Doz and Fuleky (2020, p.62) wherein Fiorentini et al. (2018) is the

only study to be mentioned in this context.

Fiorentini et al. (2018) serves as a launch pad for our work in Chapter 2 in
the sense that we too consider a spectral EM algorithm, whereby the E step is
implemented via the Wiener-Kolmogorov (WK) smoother and the M step via
maximisation of the Whittle Likelihood. To avoid repetition, we postpone a
summary of the work of Fiorentini et al. (2018) and any associated references
to the main body of Chapter 2. For now, we note simply that Fiorentini et al.
(2018) does not consider the asymptotics of its proposed estimators, and that is

a task that we attempt to undertake.
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1.2.2 Changepoint Detection

This is another avenue of research within the factor models landscape where re-
search has mushroomed (particularly in the aftermath of the 2008 crisis). Once
again, it would be well beyond the scope of this review to comprehensively cover
this very interesting area. The reason is that structural instabilities may success-
fully be modelled in several different ways (e.g. Markov-switching, slowly-varying

loadings, etc.) which are not all relevant for this thesis.

In fact, it may surprise the reader that there have also been studies advocating
that standard estimators found in the literature are consistent even in the presence
of temporal instability. A case in point is the frequently-cited study by Stock and
Watson (2002a) in which it is argued (see “Section 3” therein) that the proposed
PCA estimators (which we already discussed above) are robust to stochastic drift
in the factor loadings provided this drift is not too large and not pervasive across
the cross-section — that is, if the instability is small enough and idiosyncratic

enough, it will simply be eliminated asymptotically, by averaging across series.

Let us turn to Bates et al. (2013) for an example of the argument. Consider
the temporally unstable static approximate single-factor model with one abrupt

changepoint k,

x¢ = N fy + e
A= Ao+ &, where
0, fort=1,....k
A fort=x+1,....T.

=

Above, A € RY may be interpreted as a shift parameter. Let us also define A; as
the i-th element of vector A for ¢ = 1,..., N. With such a model, we can clearly
treat the instability as just another additive error term which, under the right
conditions, can be appropriately dealt with. Indeed, under the assumption that
that |A;| < M for some finite positive constant M that is independent of i for all
i=1,...,N, ie. the instability is “small enough”, Bates et al. (2013) establishes
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that the standard PCA estimator is

O )}

where B € {1,..., N} represents the number of series that undergo a break. It

follows that if we add the restriction that at most O(N'/?) series undergo a break,
i.e. the instability is “idiosyncratic enough”, we recover the standard consistency
rate from the literature. If the findings of Stock and Watson (2002a) and Bates
et al. (2013) are to be accepted, the implication is a serious one; that is, there is

no need to expend efforts undertaking research on temporal instabilities.

The obvious question is whether the type and magnitude of instability considered
by the above studies adequately captures what we observe in real-world scenarios.
The message from Bates et al. (2013, p.290) is “[...] that the principal components
estimator [is] robust to empirically relevant degrees of temporal instability in
the factor loadings, although the precise quantitative conclusions depend on the

assumed type of structural instability [...]”. This is where the debate arises.
Yamamoto (2016, p.81) disagrees:

...we find that a significant portion [around 80] of 132 U.S. macroe-
conomic time series have structural changes in their factor loadings.
Although traditional principal components provide eight or more fac-

tors, there are significantly fewer nonspurious factors.
As does Breitung and Eickmeier (2011, p.71):

...in empirical applications parameters may change dramatically due
to important economic events, such as the collapse of the Bretton
Woods system, or changes in the monetary policy regime, such as the
conduct of monetary policy in the 1980s in the US or the formation of
the European Monetary Union (EMU). There may also be more grad-
ual but nevertheless fundamental changes in economic structures that
may have led to significant changes in the comovements of variables,
such as those related to globalization and technological progress. The

common factors may become more (less) important for some of the
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variables and, therefore, the loading coefficients attached to the com-
mon factors are expected to become larger (smaller). If one is inter-
ested in estimating the common components or assessing the trans-
mission of common shocks to specific variables, ignoring structural

breaks may give misleading results.

Indeed, several authors choose to pursue research on structural breaks. Histori-
cally, key studies in the field include Breitung and Eickmeier (2011), Chen et al.
(2014), Cheng et al. (2016), Corradi and Swanson (2014), Han and Inoue (2014),
Yamamoto and Tanaka (2015), Baltagi et al. (2017), and Ma and Su (2018),
Barigozzi et al. (2018a) to name a few. However, all these studies consider the of-
fline setting. That is, their aim is an in-sample detection of breaks. Even though
these are not as relevant as the online case for our Chapter 3, we still glean a
simple but key insight from several of these studies. We describe this insight

next.

Specifically, we learn that a model with a single abrupt change in loadings at a
given date has a representation as a model with constant loadings but a larger set

of factors. To see this, we consider a one-factor model with a structural break.

Mfite, t<k

Xt =
/\2ft+et7 t>kK
If we define
Jo, 1<K 0, t<k
git = and gy = :
0, t>k fi, t>k

we obtain x; = A1 g1; + A29o: + €¢, an equivalent stable model. This insight will

also underpin the procedure proposed in Chapter 3.

In contrast to the offline setting, the online case concerns the identification of
breaks immediately as new data become available to the researcher. There is
already a long tradition of literature (which originated outside time series) in the
univariate setting for both dependent and independent data. See, for instance,

Tartakovsky et al. (2014) for an overview. As regards time series, and specifi-
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cally in the context of high-dimensionality, it would appear that development of

detection methods for use with factor models would be a natural line of research.

To the best of our knowledge, however, the only study in this area so far is
Barigozzi and Trapani (2020). It proposes a test centred around the property
that a setup with an abrupt change in loadings (in a static approximate setting)
is indistinguishable from one where there is stability in loadings but an emergence
of a new factor (and simultaneous disappearance of an old). More formally, in an
r factor model, a sudden change in loadings would result in spiking behaviour by
the (r + 1)-th eigenvalue. This behaviour is exploited and a randomised testing
procedure (using rolling windows) is proposed in order to detect changepoints on

a real-time basis.

We provide a detailed review of the literature on sequential changepoint detection

in Section 3.2 below.

1.2.3 Determining Number of Factors

This is arguably the very first step in many applications involving factor analysis.

Key studies in this area are reviewed below.

The forerunner is Bai and Ng (2002), which considers the approximate static
setting. It considers the cross-sectional average of the estimated variance of the
idiosyncratic component which is clearly minimised when the number of factors
is chosen to be equal to the size of the panel N. In order to avoid this sort
of obvious overparametrisation, a penalty is introduced, and this gives rise to
a model selection criterion function that can be minimised in order to get a
consistent estimate of the number of factors. Alessi et al. (2010) proposes a
refinement to the Bai and Ng (2002) procedure by introducing into the penalty
function a new parameter in order to fine tune its penalising power. We also have
Hallin and Liska (2007) which proposes a criterion analogous to Alessi et al. (2010)
but in the frequency domain in order to the tackle the approximate dynamic

setting.

We note briefly that while Hallin and Liska (2007) mirrors the time domain work
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of Alessi et al. (2010) in the frequency domain, there was no other frequency
domain analogue to Bai and Ng (2002). Indeed, prior to Hallin and Liska (2007),
the main proposal that existed in the literature for the approximate dynamic
setting was simply a heuristic inspection-by-eye method put forward by Forni
et al. (2000).

Other approaches look at eigenvalues directly. For instance, Onatski (2009) de-
velops a test based on eigenvalues of the estimated spectral density matrix of
data. Its test statistic effectively measures the curvature of the frequency domain
scree slope Cattell (1966) at the “kink” under the alternative hypothesis. When
the alternative hypothesis is true, the curvature at the kink asymptotically goes
to infinity. In contrast, under the null, the curvature at the kink has a non-
degenerate limiting distribution that does not depend on the model parameters.
Ahn and Horenstein (2013) also attempts to mathematically formalise a search
for the aforesaid kink in the scree. It proposes an “Eigenvalue Ratio” (ER) es-
timator, which is obtained by maximising the ratio of two adjacent eigenvalues
arranged in descending order. Similarly, Onatski (2010) also proposed an estima-
tor, named the “Edge Distribution” (ED) estimator, which estimates the number
of factors using differenced eigenvalues. Both studies rely on interesting results
from random matrix theory. Ahn and Horenstein (2013) and Onatski (2010) are
based in the time domain and Onatski (2009) in the frequency domain.

The final study we mention to close our review of this area is Trapani (2018),
which proposes a randomised sequential procedure to estimate the number of
factors in a static approximate factor model. The work of Trapani (2018) is
based in the time domain. Of course, we return to this study in further detail
in Chapter 4 of this thesis. For now, we note simply that (to the best of our
knowledge) there is no study that mirrors the work of Trapani (2018) in the

frequency domain.
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“In 1666, when Newton
employed a prism to cast a

rainbow on the wall...”
— Brillinger (1993)

Chapter 2

Estimation via a Spectral EM
Algorithm

We develop a method to estimate an approximate dynamic factor model in which dy-
namics are exhibited in two ways: (i) factors follow an autoregression; and (ii) factors
are loaded with a lag in the measurement equation. Within this framework, we pro-
pose a spectral EM algorithm, whereby we derive the E and M step equations in the
frequency-domain. Following Fiorentini et al. (2018), our E step relies on the Wiener-
Kolmogorov smoother, the frequency-domain counterpart of the Kalman smoother, and
our M step is based on maximisation of the Whittle Likelihood with respect to the pa-
rameters of the model. Having outlined the E and M steps, we discuss initialisation of
our procedure using dynamic PCA as per Forni et al. (2000). By leveraging results on
lag-window estimators of spectral density by Wu and Zaffaroni (2018), we find consis-
tency of our estimator of the common component as N, T — oco. We find rates commen-
surate with the literature, e.g. Forni et al. (2017), of min{v/N, /Br, \/m},
where Brp is the size of the lag-window. Finally, we conduct simulations to find that our
procedure performs as expected. We believe that by establishing a frequency-domain
analogue to the EM algorithm of Doz et al. (2012) and Barigozzi and Luciani (2022), our
study helps advance the field on QML methods for estimation of approximate dynamic

factor models.
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2.1 Introduction

We have witnessed a widespread surge in availability of large datasets in recent
decades. Indeed, the catchphrase “big data” has firmly established its place
in our lexicon. In macroeconometrics, for instance, we often encounter datasets
involving high-dimensional time series; that is, with a large number of data points

(T") on a large number of observable variables (N).

Dynamic factor models have garnered a lot of interest in this context. See, for
instance, the survey in Stock and Watson (2016), and more recently, Doz and
Fuleky (2020), as well as the references in each of these studies. A primary reason
for the popularity of dynamic factor models is that they allow us to account for
co-movements over time between large numbers of observable time series very
parsimoniously. That is, through a small number (7) of latent factors thought to
account for commonalities between the N time series. Any remaining movements
that are unique to an individual series are modelled by way of an idiosyncratic
component. The precise specifications of models deployed in practice vary in
sophistication but, by holding r < N, all specifications seek to exploit the same
central feature of dynamic factor models — a reduction in dimensionality. This
gives empiricists a very convenient low-dimensional characterisation of economy-
wide fluctuations, one that economic analysts and policy-makers can subsequently

focus on.

Our study concerns estimation of the latent factors, common components, and
parameters of dynamic factor models.! Specifically, we consider a model in which
an N-dimensional vector of zero-mean weakly stationary time series x; is driven by
an r-dimensional vector of factors f; and N-dimensional idiosyncratic component

&; as follows

x; = C(L)f; + &,

"'We note that we are not concerned, however, with estimation of exactly how many latent
factors there are, which we assume throughout to be a priori known. Studies on estimation
of the number of factors by themselves constitute an important yet distinct branch of the
literature. See, for instance, Bai and Ng (2002), Hallin and Liska (2007), Onatski (2009), Alessi
et al. (2010), Lam and Yao (2012), Ahn and Horenstein (2013), and Trapani (2018).
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fort =1,...,T. In this so-called measurement equation, C'(L) is a one-sided N x r
lag polynomial that allows lagged f; to impact x;. This is one source of dynamics.
Further, we postulate an autoregressive law of motion for the factors via A(L), a

one-sided r x r lag polynomial. Our second equation is
A(L)ft = Uy

for t = 1,...,T, and for some r-dimensional vector of innovations u;. This con-
stitutes a second source of dynamics. The idiosyncratic &;’s are permitted to be
mildly cross-sectionally correlated and so the model has an approximate rather

than an exact factor structure.?

A model such as ours is what is referred to in Stock and Watson (2016) as a
dynamic factor model in dynamic form, that is, with reference to the fact that
factors are loaded with lags in the measurement equation. Under the assumption
that C'(L) is of finite degree, it is also possible to re-express the model in static
form. That is, one could stack the lags of dynamically loaded factors f; to form a
broader set (with cardinality no smaller than r) of statically loaded factors, say

g,, appearing contemporaneously in the measurement equation.?

As an example, suppose we have a single factor f; loaded with a single lag along
with an autoregression for the factors. Then, we may re-express the dynamic

form of the model

Xt = Xofi + Arfio1 + &, and
fi = a1 fio1 +uy,

in static form by defining g, = (fi, fi1)’, A = (Ao A1), A =

1 0

2See Assumption A6 for our specific characterisation of mildness.
3The finite degree condition on C(L) implies that there exists a g; with finite dimension.
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/
N = <1 O) ug, whereby it follows that

x¢ = Agy + & = [)\0 )\1] [fft + &, and
t—1
a; 0 ft—1 1
= Ag, 1+ 1 = + ,
gt g1 1T Mt [1 0] [ft—Q [0] Ut

for t = 1,...,T. Their equivalence notwithstanding, these two distinct forms of
dynamic factor models are typically estimated using distinct estimation method-
ologies. Indeed, the static form is more suited to estimation in the time-domain,

and the dynamic form to estimation in the frequency-domain.

In the time-domain, the most popular estimation methodologies for approximate
dynamic factor models can potentially be grouped into two broad categories.
The first of these is based on PCA combined with OLS estimation of vector
autoregressions (see, for example, Bai and Ng, 2006, 2007; Forni et al., 2009). The
second is based on QML estimation typically implemented via the EM algorithm
jointly with the Kalman smoother (see, for example, Barigozzi and Luciani, 2022;
Doz et al., 2012). Both categories have been extensively studied. One of the key
results in the time-domain literature assuming the existence of a static form of
the model is the finding of min(v/N,+/T) consistency for the estimator of the
common component. See Bai (2003, Theorem 3) for PCA and Barigozzi and
Luciani (2022, Theorem 1) for QML.

As regards the frequency-domain, the first of the above categories has certainly
been well-studied. Indeed, conventional or static PCA, which approximates the
sample covariance of x; with a matrix of reduced rank, was famously generalised
to the frequency domain by Brillinger (1981, Chapter 9). The procedure referred
to as dynamic PCA approximates the estimated spectrum of x; with a matrix of
reduced rank. The method was popularised for use with approximate dynamic
factor models with finite-dimensional factor spaces by Favero et al. (2005); Forni
et al. (2000, 2004, 2005) and for infinite-dimensional factor spaces by Forni et al.
(2017).

Clearly, the option to use dynamic PCA depends on first having a consistent
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estimator of the spectrum. For this reason, it is worth nothing also at this stage
the seminal result of Wu and Zaffaroni (2018) which establishes that lag-window

estimators of spectra, under quite general restrictions, are consistent as 7" — oo,

uniformly with respect to the frequency, with rate min(y/7/(Bzr log Br)), where
Br is the size of the lag-window. The latter result is leveraged for use with
approximate dynamic factor models with infinite-dimensional factor spaces by
Forni et al. (2017) which finds an (IV, 7" — oo)-consistency rate for its estimator of
the common component of min(v'N, \/T/(Brlog Br)) (see Equation 1.7 therein).

We turn once again to the second category of estimators and the question of
whether one could develop a frequency-domain procedure for QML via the EM
algorithm analogous to the time-domain counterpart considered in Doz et al.
(2012) and Barigozzi and Luciani (2022). To the best of our knowledge, the only
paper to consider such a procedure thus far is Fiorentini et al. (2018), which out-
lines a spectral EM algorithm. Following the latter, we too consider a spectral
EM algorithm whereby (i) in the E step, factors are estimated by means of the
Weiner-Kolmogorov (WK) smoother, which is the frequency-domain counterpart
of the Kalman smoother (Hannan, 1970, Chapter I11.7); and (ii) in the M step,
parameters are estimated by maximisation of the Whittle frequency-domain ap-
proximation of the likelihood (Geweke and Singleton, 1981; Sargent and Sims,
1977).

As such, Fiorentini et al. (2018) provides an excellent starting point for our study.
The key focus of that paper, however, is different to ours. Indeed, the main aim of
Fiorentini et al. (2018) is to address estimation of models in which factors follow
autoregressive moving-average (ARMA) processes as opposed to pure autoregres-
sive (AR) processes as used in much of the literature (see, for example, Doz et al.,
2012). To this end, the authors outline a spectral EM algorithm for an exact dy-
namic factor model with a single common factor following an ARMA process,
leaving approximate dynamic factor models with multiple factors for future re-
search. After the authors lay out the algorithm, their focus shifts to speeding up
computation by developing an iterated indirect inference procedure based on a
sequence of auxiliary OLS regressions. Finally, the authors conduct an empirical

study of co-movements in US sectoral employment indicators following Quah and
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Sargent (1993). Notably, the authors do not develop any asymptotic theory for

their proposed procedure.

Our study aims to extend the groundwork laid out by Fiorentini et al. (2018)
by developing our own spectral EM algorithm and establishing its asymptotic
properties as N, T — oo. Unlike Fiorentini et al. (2018), however, we do not
consider factor processes with moving-average (MA) components for the moment.
Instead, we consider the dynamic form of the (restricted) approximate dynamic
r-factor model as alluded to earlier in this introduction. Given this setup, we

pursue the following avenues of research:

(i) Assuming parameters are known, we outline the E step. We then establish
v/ N-consistency for factors estimated via the WK smoother pointwise in ¢
fort =1,...,T (see Theorem 2.1 below);

(ii) Assuming factors are known, we outline the M step. We then establish
V/T-consistency for loadings estimators estimated via maximisation of the
y g

Whittle likelihood for any given N (see Proposition 2.4 below);

(iii) We propose the use of dynamic PCA for initialisation of our procedure and
discuss practical concerns behind non-parametric estimation of the spectral
density matrix using lag-window estimators. We leverage the result from

Wu and Zaffaroni (2018) to find a consistency rate of

min(\/ﬁ, \/ B3", V/T/(Brlog Br))

as N, T — oo, where By is the size of the lag window and & is a parameter?

summarising the smoothness of the kernel used (see Proposition 2.5 below);

(iv) We combine all our findings to obtain an overall consistency rate of

min(v'N, /Br, /T/(Brlog Br))

as N,T — oo for our spectral EM algorithm estimator of the common

component (see Proposition 2.9 below).

41t is referred to as the Parzen exponent. To fix ideas, we note that  is simply equal to 1
for the very commonly-used Bartlett kernel.
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(v) Finally, we conduct a Monte Carlo study to numerically validate our findings
and to also compare our common component estimator with other popu-
lar time- and frequency-domain alternatives. We find that our procedure

performs very much as expected (see Section 2.9 below).

The remainder of this study is organised as follows. In Sections 2.2 and 2.3,
we lay out much of our modelling structure and notation. In Section 2.4, we
work towards building an E step via the WK smoother, and in Section 2.5, an
M step via the Whittle likelihood. In Section 2.6, we consider initialisation via
dynamic PCA. In Section 2.7, we outline the detailed steps for implementation
of a spectral EM procedure. In Section 2.8, we summarise asymptotic properties.
In Section 2.9, we present a numerical illustration of the procedure and conclude
with a Monte Carlo study.

Our assumptions are laid out throughout the study as and when they are needed,
and new notation is clarified as and when it appears. Proofs are contained in the

end-of-chapter appendix.

2.2 Data-Generating Process

We begin with a detailed description of our assumptions on the data-generating

process. We model X, an N x T rectangular array of observations, as follows.

Specification

Assumption A1l. There exists a real-valued double-indexed stochastic process of
the form E = {z; € L2(, A, P)|i € N, t € Z} where i denotes the cross-sectional
index and t the temporal index and (Q, A, P) is a given probability space. For any
{x¢ = (z14, 224, .., znt) |t € Z}, N € N, an N-dimensional sub-process of =, we
assume X; is zero mean with finite (and non-degenerate) second-order moments
I'x(h) = Elxix,_,],h € Z. We assume X is a finite realisation of =.
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We impose a decomposition of the form
Xt =Xt+6C tEZL

where our observables are expressed as the sum of two unobserved unique and
mutually orthogonal components, a common component x; and an idiosyncratic

component ;. In particular, we have the following assumption.

Assumption A2. For any N € N, there exist
(a) a nested® N-dimensional zero mean process ¢y = (d1s, dat .., Ont)' st € Z;

(b) an r-dimensional zero mean process ¥y = (14, Yoy, ., ) t € Z, for some

finite positive integer r;
(c) an r-dimensional process £, = (fiz, ..., frt) ,t € Z ;

(d) filters c;.,(L) = ¢;or+ ikl with finite coefficients, and a nested N X r matriz
polynomial, C(L), whose (i, k)™ entry is ¢; 1(L), 1 =1,..N, k=1, ...,r;

(e) filters Bis(L) with coefficients Bisp, where Y021 3" B3, ), < 0o for alli € N,
and a nested N x N matriz polynomial B(L) whose (i, s)™ entry is Bis(L),
t,s=1,.N,h=0,1, ..., 00;

(f) finite coefficients ay, and an v x r matriz polynomial A(L) whose (k,1)™"
entry is given by the (k,1)"" entry of I, minus anL, k,1=1,..,r;

(9) an r X r matriz U;

such that

(i) the vector (v;, @), t € Z is independent and identically distributed (iid) and
orthonormal; in particular, var(Yy,) = var(¢y) = 1, and cov(Ve, Git—n)) =
0, fork=1,..,r,i=1,..N,h € Z;

(i) all solutions of det(A(z)) =0,z € C, lie outside the unit ball;

(111) UE[Yup)U" is some finite positive definite r x r matriz; and

5We use the word “nested” with reference to an increase in V.
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() fort e Z,

Xt = C<L)ft7
A(L)ft = Uy,
G = B(L)¢r.

We thus have x, = C'(L)f;+¢;, an approximate dynamic r-factor model, where the
dynamic factors f; are loaded contemporaneously as well as with a single lag, and
¢; is allowed to be cross-sectionally and serially correlated. Under Assumptions
Al and A2, x; is stationary. Denoting v; = U1, we also have that the dynamic
factors are zero mean and stationary with finite (and non-degenerate) second-
order moments and follow a VAR(1) structure A(L)f; = vy.

Identification Restrictions

To disentangle the common and idiosyncratic components (as N — 00), we im-
pose conditions characterising their pervasiveness and non-pervasiveness respec-

tively.

Let Gy (w) and G¢(w), for almost all w € [0,1), be the N x N spectral density
matrices of x; and (.5 Let \i{Gy(w)} and \{G¢(w)} denote their i largest
eigenvalues, © = 1, ..., N. We refer to these as dynamic eigenvalues and note that

they are real (and positive) since spectral density matrices are Hermitian.

One approach would be, in the spirit of Forni et al. (2000), to assume that
M {Gx(w)}/N is bounded from above and below uniformly with respect to the
frequency as N — oo . Further, that \;{G¢(w)} is bounded from above uniformly
with respect to the frequency for any N. This approach permits us indeed to

disentangle x; from ¢; (as N — 00). However, it remains unspecified whether the

5We use complex exponentials of the form e®™ = cos(2mw) + isin(27w) where i (in this
context) denotes the imaginary unit. Since our complex exponentials are normalised to have
period 1, we only consider w € [0,1). Further, spectral densities are defined up to a set of fre-
quency values contained in a Borel set with Lebesgue measure zero. Strictly speaking, “almost
all” and/or “almost everywhere” terminology should accompany statements involving spectral
densities. The terminology has no practical implications, however, and following Barigozzi et al.
(2018b, Footnote 4), we omit it in this study.
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divergence of dynamic eigenvalues of x; arises due to the asymptotic properties
of the loadings or of the factors (as N — o0). If the goal were to identify the

factors and loadings separately, one would require additional assumptions.

Thus, we impose conditions right at the outset on the transfer function associated
with the filter C'(L). Let a star superscript denote a complex conjugate transpose.
By restricting convergence of C*(e™*™)C'(e™"*™)/N as N — oo to an 7 X r
identity matrix for any w € [0,1), we can guarantee divergence of the r largest
dynamic eigenvalues of x;. We state the assumption and then show this property

below.

Let the ordered first r complex orthogonal unit-modulus eigenvectors of Gg(w) be
denoted by the N x r matrix Pr(w). We denote the corresponding r x r diagonal

matrix of eigenvalues as Ag(w).

Assumption A3. Forw € [0,1),
(i) Ge(w) has distinct eigenvalues; and

(i) it holds that

lim sup HC*(e—i27rw>0<e—i27rw)/N _ ]TH — O’

N—oo |,

where I,. is the r X r identity matrix.

Below, we state a result that follows from the preceding assumptions. It will be
useful for various proofs. The result confirms asymptotic divergence linearly with
N, and separation of the r largest dynamic eigenvalues of the common component

as N — oo.
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Proposition 2.1. Given Assumptions A1-AS3, there exist, for 1 = 1,...,r, finite

constants M* and M;‘ independent of w such that

MG) _

Ar-{Gx (W)}
N

0< MX <

<MX, < < Mi«c—l <

<arx < MO gy

foreachi=1,.. r.
Proof. See Appendix 2.10.1. O

The advantage of our approach is that, in conjunction with Assumption A4 below,
Assumption A3 permits identification of the dynamic factors and the loadings up
to some matrix lag polynomial with an associated transfer function that is an
r X r complex diagonal matrix with unit-modulus diagonal entries, say Q(w).
The time domain analogue is identification up to some diagonal matrix () where
the diagonal entries are +1. Further, by also enforcing in Assumption A5 that
the first row of C'(e~®™) is positive and real, we can achieve full identification.
The time domain analogue is to assume that the first row of loadings is positive.
These identification assumptions are quite reasonable since the dynamic factors

do not necessarily have any particular economic meaning by themselves.

Let us define the ordered first » complex orthogonal unit-modulus eigenvectors of
Gy (w) as Py (w), an N x r matrix. We denote the corresponding r x r eigenvalue

matrix as Ay (w). Let us also define zX(w) as the discrete-time Fourier transform
(DTFT) of x;. That is,

zX(w) = Z xie P w e [0,1).
t=—00

Similarly, let zf(w) be the DTFT of f;.
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Assumption A4. For any w € [0,1), it holds that

zf (W) = N_l/QP;(w)zX(w).

Given Assumption A4, we have a fixed structure for Gg(w):

Ge(w) = N_lp;(w)Gx(W)Px(w)
= N7 Py (w) P () Ax (W) Py (w) Py (w)
= N'A (w).

So Gg(w) is a diagonal matrix with positive and real entries on the diagonal and

the entries are distinct by part (i) of Assumption A3." Moreover, since

GX(CU) — C’(e_izm)Gf(w)C’* (e—i27rw)
_ C<€7i27rw)N71/2Ax(w)Nfl/ch*(efiZmu)
= P(@)Ax() Py(w),
we have that C'(e7™) = N/2P, (w). This also means that for w € [0, 1) and for
any NV,
sup HC*(efﬁﬂ-w)C(efiZﬂw)/N o Ir” — 0,

which satisfies but also strengthens part (ii) of Assumption A3. That is, the
above property arises now for any N, which is achievable since we defined the

factors and the loadings in a manner such that they change with N.

To summarise, we still have the properties of divergence (as N — oo0) and sep-
aration of the r non-zero dynamic eigenvalues of x;. In addition, we are able
to identify the DTFT of the dynamic factors up to a complex diagonal matrix
with unit-modulus entries. The next assumption permits full identification of the
DTFT of the dynamic factors.®

The final remaining source of indeterminacy is that dynamic eigenvectors are

In fact, with Assumption A4 in place, we could have merely asked for the diagonal entries
of Gg(w) to be distinct in part (i) of Assumption A3.
8See, for instance, Hormann et al. (2015), which considers Dynamic Functional PCA.
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only defined up to post-multiplication by a complex diagonal matrix with unit-
modulus diagonal elements, Q(w). Let [C'(e”*™)]y; for k = 1,...,r denote the

entries in the first row of C'(e~*™). We choose to fix Q(w) as follows.

Assumption A5. For any w € [0,1), and for any N X r matriz of ordered
dynamic eigenvectors of x, say IL, (w), there exist r xr complex diagonal matrices
with unit-modulus diagonal entries Q(w), which depend on N and Py (w), such
that

(i) C(e=2™) = NY2II, (w) = NY2P, (w)Q(w); and

(11) [C(e ?™)]1x € Rsg fork=1,...,7.

Given Assumption A5, we can find II, (w) from P, (w) by choosing a diagonal
matrix Q(w), such that for any w € [0,1),

ding (Qw) = ( Pl [Pl ) |
[[Px(@)]u " [Py (w)]ie]
where the numerators are the complex conjugates and the denominators are the
moduli of the entries of the first row of any general N x r dynamic eigenvector
matrix P, (w).” The numerators ensure that the first row of N*/2P, (w)Q(w) will
be positive and real, while the denominators ensure that the diagonal entries of
Q(w) are all unit-modulus. Specifically, the transformation is such that post-
multiplication by ()(w) replaces each entry in the first row of P (w) with its own

modulus.

This completes our discussion of the common component. It remains now to en-

sure non-pervasiveness of the idiosyncratic component.
Assumption A6. There exists a finite positive integer MS such that for w €

[0,1), it holds that 0 < sup, \;{G¢(w)} < MS for all N € N.

Let us define g, (w) as the (4, s)" element of G¢(w). The bound on the largest

dynamic eigenvalue of the idiosyncratic component in A6 means that the average

9In addition to the definition stated above, we also set to zero any element of Q(w) for which
the divisor is zero.
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column sum of the spectral density of ¢; is bounded. Indeed,

N N
N7 Y gean(w) = N7WGc(w)e < M{Gelw)} < M < o0
s=1 i=1
where ¢ is an N-dimensional vector of ones. It is in this sense that we limit
cross-sectional and serial correlation in ¢; to be “mild” and thereby characterise

the idiosyncratic component to be non-pervasive.

Remark 1. APPROXIMATING MODEL. Assumptions A1-A6 are sufficiently
general to model cases of interest (say, just by allowing for a higher number of lags
in the filter C(L)). See for example Stock and Watson (2005) and Bai and Wang
(2015). However, we proceed with what we refer to as an “approximating” model,
which is much simpler in respect of the stochastic behaviour of the idiosyncratic
component. Our approach is similar, for instance, to that in Doz et al. (2011).
The motivation is that an exact factor structure, ruling out any cross-sectional or
serial correlation in the idiosyncratic component, greatly facilitates derivations of
equations relating to our proposed estimators. Further, Gaussianity permits us
to use likelihood-based methods. We make similar assumptions on the stochastic
disturbance term in the factor equation. We will find consistency of our quasi-
maximum likelihood estimators despite these forms of possible mis-specification.

We outline our approximating model in detail below. A

2.3 The Approximating Model

We specify our ezact dynamic r-factor model by a system of stochastic difference

equations,

Xt = Corfie +Ciifig—1+ ...+ Corfrt + Crpfro1 + &
fir=anfigz1+ ... Fanfrio1 +uy

fr,t = arlfl,tfl + ...+ a'I’TfT,tfl + Uyt
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where
X; is an N x 1 vector of observables;

fre for every k € {1,...,r} is a scalar unobserved common factor, and a

vector of all r factors is denoted by f; = (fi4, ..., fre)s

cor and ¢y, are N x 1 vectors of loadings corresponding to the k** factor

and the lagged k" factor respectively; and

ay for every k,1 € {1,...,r} is a scalar coefficient on the I** lagged factor in

the autoregressive equation for the k™ factor.

Thus, our approximating model is identical to the one outlined in Assumption A2
with the notable exception of the two stochastic disturbance terms in the mod-
elling equations. We assume a much simpler covariance structure for these terms
as outlined in our assumption below. Further, we assume that the statement of

Assumption A6 applies also to &;.

Assumption A7. In the “approzimating model” defined above,

(1) & is N x 1 and & ~ iid N(0,I'¢) where I'¢ is a diagonal matriz; moreover,
& is such that diag(l'e) = diag(T'¢);

(i) ups ~ N(0,7v), and ugy is independent of w; s for any k # | or t # s.
Alternatively, we have that uy = (uy g, ..., ur )" ~ iid N(0,T'y) for all t where
Ly = diag({~, ..., }); moreover, w; is such that diag(I'y,) = diag(l'y,); and

(iii) there exists a finite positive integer MS, such that for w € [0,1), it holds
that 0 < sup, A1 {Ge(w)} < M¢ for all N € N.

Concise Specification

We can also express the approximating model using lag polynomial notation. For
k =1, ...r, we have the filter

Ck<L) = Cok + ClkL.
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This is a lag polynomial of order 1 with dimension N x 1.

Moreover, for k,1l =1, ...,r, we have the filter
(lkl(L) = ale

which is a one-dimensional lag polynomial of order 1.

We can then construct the N x r matrix
C(L)=[ci(L) ... ¢ (L)]

and the r X r matrix

(111<L) alr(L)
A(L) =1, — : - :
a1(L) ... a.(L)
1—ay (L) ... —ay(L)
—an (L) ... 1—a.(L)

so that our approximating model may be more concisely expressed as follows:

x; = C(L)f, + &, (2.1)
A(L)f, = u,. (2.2)

We gather all unknown parameters in the vector

0 = (Chyy -y Copy Chps oy Chpy Q11,4 ooy A, diag(Te)’, diag(Ty)")

Spectral Densities

For a given h, we define I'¢(h) and ['y(h), h = —o0,...,0,...,00, as the lag h

autocovariance matrices of the stochastic disturbance terms in our approximating
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model (where I'¢(0) = I'¢ and I'y(0) = I'y,). The corresponding spectral density
matrices are obtained as the DTFTs of the respective autocovariance matrices.

Specifically, for any w € [0, 1),

Ge(w) = Z Te(h)e ™" and
h=—o00

Gu(w) _ Z Fu(h) —i2rwh
h=—00

Given the simplified structure of the stochastic disturbance terms in our approx-

imating model, we have that for any w € [0, 1),

Ge(w) =T¢; and

Discrete Fourier Transforms (DFTs)

Given X, our N x T rectangular array of observations, we define

T
E x,e ity and

where the discretised frequency wj is defined as a grid of equally spaced values of
w € [0, 1) specifically of the form w; = j/T for j =0, ...,7 — 1. These are referred

to as “Fourier” (or “fundamental”) frequencies.

Then, by the linearity property of the DF'T and the convolution theorem, we have
that

<l

— O(e™?™i)gzf: and

77

N
I
N

X
J

A(e—i27rwj )Z§

N
s
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where the matrices containing the transfer functions associated with the linear

filters are given by

C<e—i27rwj) — [cl(e—i%rwj) Cr(e_ﬂm]j)}
and
1— all(efﬂﬂ'wj) _alr(efiQﬂ'wj)
A(eiﬁﬂwj) —
_arl(efﬁﬂw]’) 1= arr(efz?muj)

for any w; = j/T for j =0,...,T — 1.

Filtrations

We define the information sets

for any t € {1,...,T}.

2.4 'Towards the E Step:
WK Smoother (known parameters, fixed 7T')

In this section, we focus on developing the theoretical foundations for extraction
of the factors (in preparation for our discussion of the E step). In particular, we
present an expression for the conditional expectation of the DFT of the factors
given (i) assumed values for the parameters 6, and (ii) the observed series. This
is nothing but the WK smoother.’® Once we extract the DFT of the factors in

this way, we can easily return to the time domain using the inverse DFT. The

OFyrther, we present expressions for two additional conditional expectation terms involving
the second-order structure of the factors.
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key results of this section are Theorem 2.1 and its corollary which pertain to v N

consistency of the extracted signal assuming known parameters.

2.4.1 Computation of Eg[z}|Dr]
2.4.1.1 Wiener-Kolmogorov Smoother

Wiener-Kolmogorov theory of signal extraction indicates that optimal estimates
of the latent factors are provided by conditional expectations that are formed
given the observed data and characteristics of the models that are presumed to
have generated them. A foundational reference is, of course, Wiener (1950). The
WK smoother is nothing but the frequency-domain counterpart of the Kalman
smoother (Hannan, 1970, Chapter II1.7). A detailed summary of WK smoothing
for multivariate time series with time-invariant state-space structure is Gomez
(2007) which establishes equivalence between Wiener-Kolmogorov and Kalman
methods within this setting. Finally, a specific application of the WK smoother to
dynamic factor models similar to the one considered in our own study is Fiorentini
et al. (2018).

For a given j, we obtain the conditional expectation of z§ by the WK smoother

as follows:
fW

z; = Eg [25|Dr] = Gr(w;)C* (e ™) G (w;) 2]

J X J

where the Gx(w,) is the spectral density of the observed series, and
Gr(w;)C™(e7™) Gy (wy)

is the transfer function of the WK smoother.

We note that the spectral density of the factors in our model is given by
Gf(wj) — [A*l(efiZﬂ'UJj)]Fu[Afl(efiQﬂ'UJj)]*

since we assume the factors follow a VAR(1) process A(L)f; = u;. This is in fact

a diagonal matrix under Assumptions A1-A4.
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2.4.1.2 Woodbury Formula

Given our approximating model, by the Woodbury formula, we have that
G (wy) = Gl (w)) = G (wy)Cle™ ™) W (wy) O (7™ G H(wy),

where W (w;) = [Gy ' (w)) + C*(e=2)Gg (1)) Ce=>)]

Thus,

C*(e_ﬂmuj)G_l(W‘) — C*( _i27rwj)G§_1<(Uj) _ C*(e—’l:27TUJ]')G§_1(wj)o(e_i2ﬂ'w]')
(G (wy) + C7 (7™ G (wy)C e )] 71O (e72™) G Hwy)

X

= (167 ) + 076 ) Clem )] = ()G )l ))
X [Grt () + O (e72m) G ) Ce )] L O (e G ()
= Gr (@)W (w))C" (e ™) G )

so that the transfer function of the WK smoother may be written in terms of
W(w;). That is,

Gr(w;)C" (e7™0) G wj) = W(w;)C™ (e7™) G (wj)

Correspondingly, for a given j, the WK smoother becomes

28 = W (w)C" (7™ Gt (w))z)

J J

where W (w;) = [G; ' (w;) + C*(Gfmmj)Ggl(wj)c(efmmj)]71-

2.4.2 Computation of Eg[z§z§ D]

We note that, for a given j,

Eo [ |®T} = ZfWZ§W + Ey [(z - sz> (zg —Z§W)* |®T] :
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We consider the first term in the above expression. Based on the definition of
the WK smoother, and noting the Hermitian nature of the relevant matrices, we
compute the first term as follows:

fwWogWw
i Zj

= W (w;)C* (e~ ™) G (w))zf 2y Gg ' (w;)C (e ™ )W (w;)).

As regards the second term, we use a textbook result on the conditional dis-
tribution of partitioned multivariate Gaussian random vectors. Simply stated,
assuming standard regularity conditions, if random vector y ~ N(pu, X,,), where

y € R¥ its mean p and covariance Y can be partitioned according to

Ya Ha Eaa Zab
y = NTES , X={, ;
Yo Hey Ziab  2bb
then (ya|yb) ~ N(I"’aﬂn Ea|b) where

IJ’a\b = Hq + Eabzl;;l (Yb - I-'l’b)a and
Za\b = Yga — 2abEb_blZ:zb'

Y is known as the Schur complement of matrix ¥ with respect to block Xy,. If
Ya 1 Yo, then Ea|b = z]aa-

We carry this result to the frequency domain, let y, = (zf — Z§W) and y;, = 27,
and note that the cross spectral density of the factor estimation error and the
observables is zero by design. Then, our second term is just the spectral density

of the factor estimation error (f; — f!V'), which we denote by Q(w;). That is,
f W f *
Qwy) = EO[(Zj —Z; )(Zj —Z; )7

Next, since the spectral density of the factors equals the sum of the spectral
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densities of the smoothed factors and of the factor estimation error, we have

Q(w;) =Eg [(zf - z§ )(zf - sz> }
= Gr(wj) — Gew (wy)
— Grlwy) — Gelw) O™ (e ) G ) Cle2) G ().

Using the fact that Gf(w;)C*(e ™) G (w;) = W(wj)C*(e*ij)Gg—l(wj), we
see that

I
Q

£(wj) = W (w;)C™ (e#™) G (wy) C 7™ ) G (w;)
(W)W (w))Grlwy) — C7 (e7™9) G (wy) Cle™ ™) G (w))]
(Wl[Gy H(wy) + C* (7™ G (wy)Ce ™) Gr(wj)

= O™ ()G (wy)Ce™ ™) Gr(w;)]

Wi(w;)-

[
%%

Hence, our second term is W (w;). We treat it as just another parameter.

To summarise, for a given j, we use the formula

Eolz}z; |Dr] = W(w;)C*(e™) G H(w))z]zy Gg ' (wy)Ce™ ™) W (w;) + W (w;).

2.4.3 Computation of Eg[z'z¥ |Dr]
We have, for a given j, that

Eglz!zy D] = Eolzf|Drlal = W(w;)C" (e ™) G (wy)az

2.4.4 Population Results for WK Smoother

We begin this section with a remark that clarifies our meaning of uniform con-

vergence with respect to frequencies.
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Remark 2. UNIFORMITY. Say we have a sequence of r-dimensional vector-

valued random variables depending on N, denoted Z;N), for j =0,...,7—1. This

sequence is said to be O,(1) uniformly in j as N — oo, if for any € > 0, there

exists a finite positive constant M., independent of j, such that
(=) <

for any j = 0,...,7 — 1. Indeed, since the constant M, is independent of j, we

have specifically also that

lim max Pr(
N—oo 0<;<T—1

zg-N)H > e) < M..

This version of uniformity (which places a bound on the maximum of the prob-
abilities) is weaker than the classical definition (in which the bound is on the
probability of the maximum). We use this approach following Hallin and Liska
(2007).

™)
J
square with respect to j if, as N — oo, there exists a finite positive constant M,

Analogously, we refer to a sequence z; ' as being uniformly bounded in mean-

independent of j, such that

lim max E (

Nooo 0<;5<T—1

2
z§-N)H ) < M,

or equivalently,

z§.N>H2) —0(1).

max E )
0<;<T-1

Proposition 2.2. Under Assumptions A1-A7, and assuming parameters @ are
known, for any T € N, it holds that as N — oo,

2):0(1).

f

fW
Z; Z;

max Eg (N ’

0<j<T—-1
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Proof. See Appendix 2.10.2. m

For completeness, we also report below the implied result on convergence in prob-
ability. That is, the WK smoother is weakly consistent with rate v/ /N uniformly

with respect to the frequencies.

Corollary. Under Assumptions A1-A7, and assuming parameters @ are known,
for any T € N, it holds that as N — oo,

uniformly (as defined in Remark 2) with respect to j, where j =0,....T — 1.
Proof. The proof follows from an application of Chebyshev’s inequality. n

It remains now to revert to the time domain. Given our frequency domain esti-

mator zg , we define our time domain estimator of the factors as

=
fW - waei2wwjt
t \/T]ZO Vi
fort=1,..,T, where w; = j/T for j =0,...,7 — 1.

Theorem 2.1. Under Assumptions A1-A7, and assuming parameters @ are known,

for any T € N and a given time period t, it holds that as N — oo,
2
Eo (N[~ &]|") = 0(1)
pointwise with respect to t, wheret =1,...,T.

Proof. See Appendix 2.10.3. O]

Corollary. Under Assumptions A1-A7, and assuming parameters @ are known,

45



with some fired T € N, it holds that as N — oo,

VN ||£Y £ = 0,(1)

pointwise with respect to t, where t =1, ...,T.
Proof. The proof follows from an application of Chebyshev’s inequality. n

In other words, using the WK smoother, we can recover the factors consistently
with rate v/ IV pointwise in ¢, for £ = 1, ..., T". This rate is identical to that obtained
for equivalent time domain methods. For instance, Doz et al. (2011, Proposition

1) finds the same rate for the Kalman smoother.

Finally, we present for completeness some associated results on the second-order

terms too.

Proposition 2.3. Under Assumptions A1-A7, and assuming parameters 6 are
known, for any T € N, it holds that as N — oo,

(i) max Eg <N ||Ee 2828 | Dy] — 2f2!

0<;j<T—1 97

2) =0(1); and

(i) max Eo (N |[Eolalzy|Dr] - 2l

0<j<T—1 I

2) —0(1).

Proof. See Appendix 2.10.4. n

2.5 Towards the M Step:
Likelihood (known factors, fixed N)

In this section, we focus on developing the theoretical foundations for estimation
of the parameters (in preparation for our discussion of the M step). We begin by
making a small aside in order to review the objective function for the standard
EM algorithm following Dempster et al. (1977) and Wu (1983).
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2.5.1 Objective Function for the EM Algorithm
Let us consider the (quasi-) maximum likelihood estimator of @ given by
argmax £ (X;0)
0

where £ (X; 0) may be interpreted as the marginal likelihood of € given observa-
tions X that may be obtained from the complete likelihood £ (F7; @) of 8 given
observations X and latent factors, say denoted by F. Of course, the marginal
likelihood is unknown but, given the structure of the approximating model, the
complete likelihood can indeed be analysed. Taking some liberties with notation

(throughout this brief expository section), the following relation holds
L(X;0) :/L(X,F;O)dF.
The interpretation of the integral is, of course, that we are interested in the

likelihood of @ given X across all possible values of F'.

For any arbitrary density function of F', say ¢(F), the right hand side of the above

expression may be manipulated as follows,

/L(X,F;G)dF:/L(X,F;O)%dF

S

where the expectation is under the parameters governing q(F).

Moreover, one typically does not maximise the likelihood; rather, one tends to

focus on the log likelihood. So let us consider instead

((X;0) =log L(X;0)

[
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where the lower bound to ¢(X; ) is found due to Jensen’s inequality.

Since it is not possible to maximise ¢(X; @) directly, the goal will be to maximise
the log likelihood by repeatedly constructing a lower bound for it and then max-
imising that instead. It seems natural then that the choice of ¢(F') should be

guided by ensuring that the lower bound obtained above is tight and holds with
L(X,F;0)
q(F)

equality. Of course, this will be the case if is independent of F' (and thus

constant with respect to the expectation).

Indeed, we can set ¢(F’) to be the conditional distribution of F' given X, L(F|X; ).

Then, with an initial guess for parameters, say 8,

U(X;0) = Ego) [( (X, F;0) | X] — Ego [€ (FX;0) | X]
= Epo) [(((X|F;0) + ((F;0)) | X] — Ego) [ (F|X; 0) | X]
= 0(6;0) — 3(6;60), say,

where the “Q-function” above is referred to as an auxiliary function. It is typi-

cally interpreted as a two-parameter family of curves enveloped by the likelihood

function.

To help find arg maxg ¢ (X;0), we refer to Dempster et al. (1977), wherein the
EM algorithm is outlined. The key requirement is that the likelihood is uniformly
bounded from above for any @ in the parameter space. Briefly, this is an iterative
procedure with two steps to be repeated at each iteration of the algorithm. It is

based on the idea that increasing the Q-function increases the likelihood function.

Say we have 8| an estimated value of the parameters at a given iteration k > 0,

we alternate between
E step: compute Q(8;0W) = Egw) [(¢ (X |F;80)|X] + Egw [( (F;0)) |X]; and
M step: compute 8% = argmax, Q(6; 0%),

until a suitable convergence criterion has been satisfied.

Let us denote the final estimate of the parameters by M),
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Of particular note for our purpose is that for any &£ > 0,

0(X;0%)) — 0 (X;00) = 9(e% D ™) — 9(e™; o™
— [g{(@(kﬂ); 0" — 3 (6", g(k))] 7

where the first term is non-negative since §**1) maximises Q(@; 8*)) by construc-
tion. Further, the second term is no greater than zero as shown in Dempster et al.
(1977, Lemma 1). The key advantage of the EM algorithm follows, namely that
the log-likelihood is monotonically increasing in k. Indeed, given continuity of the
OQ-function and if the Q-function is not trapped at any point that is a stationary
point but not a local maximum of the likelihood, the algorithm is guaranteed to

converge to a local maximum as k — oo for any N and 7" (Wu, 1983, Theorem

3).11

Thus, in this study, we focus only on the Q-function with respect to parameter 0
and not also any additional terms in ¢(X;8). Indeed, in the sections below, we
focus on spelling out the ingredients for our own Q-function. That is, we begin
by considering a frequency domain approximation of ¢(X, F;0) = ((X|F;0) +
((F;0).

Of course, the concern that we attain a local rather than the global maximum
remains outstanding. Indeed, as phrased in Wu (1983, p. 97), “[a]lthough a global
maximization of @) is involved in the M step, the other term H in L = Q — H
may not cooperate”. In practice, however, this will not be a concern for us, and

we discuss the reason in Remark 3 below.

A general discussion pertaining to conditions for convergence guarantees for the
EM algorithm, based chiefly on Dempster et al. (1977), Wu (1983) and Balakr-
ishnan et al. (2017), is presented in Appendix 2.11. The latter expands upon

several results that are alluded to above.

HMF¥or a unimodal concave and continuous likelihood which is bounded from above and has a
single stationary point, the global maximum is attained.
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2.5.2 Whittle Likelihood

We consider the Whittle likelihood which is formed from the distribution of the
DFT of the data. Specifically, with Fourier frequencies w; for j =0,...,7 —1, the
Whittle spectral approximation to the complete log-likelihood function is

T
1 1
(X, F;0) §Zlog|G£ wj)| 52

where the we exclude the constant terms for brevity.!'?

Since we have assumed zero cross-sectional correlation in the idiosyncratic com-
ponent, the autocovariance sequence of &, is given by diagonal matrices.'® Thus,
Ge(w;) is also diagonal. Hence, we can decompose the first line in ¢(X, F'; ) as
the sum of N univariate components. Analagously, since there is zero correlation
between common shocks, the autocovariance sequence of wu; is given by diagonal
matrices. Thus, G, (w;) is diagonal. Hence, we can decompose the second line in

((X, F;0) as the sum of r univariate components. We obtain

~

N 1 -1 1T*l
& - :
(i) = Y| -5 Yo el - 5 3 Gl )|
i=1 Jj=0 Jj=0
T 1T—1 1T—1 .
Y5 Tos ol - 3 T el |
k=1 7=0 7=0

Above, we use G, (w;) to denote the i element on the diagonal of G¢(w;), and

G, (w;) to denote the k™ element on the diagonal of Gy (w;).

128ee, for example, Krafty and Collinge (2013) and Fiorentini et al. (2018).
13This would be true even if we were to allow for serial correlation in the idiosyncratic
component.
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Plugging in the DF'T’s,

N 1T*1
(i) = Y -5 Y tog[Gs )

i=1 =0
1 T-1

- 5 L - G G ) - Gl
7=0

3 [Ak<e—"2’wf‘>zf1*G;,3(w»[Ak(e-ﬂWf)zﬂ}.

J

=0
Above, we use C;(e~"75) to denote the i’ row of matrix C'(e=%27i), and Ay(e~"7)
to denote the k' row of matrix A(e=¥7i),
Expressing all terms using scalars (rather than vectors), we have
N T—1
(X Fi0) =) [—- > tog G, )
i=1 =0
=
5 Cz 01 + Ci11€ ﬂﬂwj)zjfl — ... — (Ci,Or + Ci’lre_ﬁmuj) fr] sz ( )
]:O
X [Z]x (Cz o1 + C;i11€ ’Q’T“’f)zjfl — ... (Ci,Or + ci,lre_m’wﬂ')zf’“]

T 1 T-1
3|5 L osl6n ()
=1 ]

<

(2 — (e 4+ a2 G )

> [ka (a'k e zQTrwJZfl + .t age z?mujzfv)]

o1



Rearranging terms and plugging in the exact forms of the spectral densities,

Nror
UX,F;0)~ ——logT’
( ) ’ ) Z |: 2 Og fz
=1
1 T-1
— §F€_11 Z[Z}El — (Ci,Ol + Ci,116712ﬂwj)2]fl — ... — (Cz’,Or + Ci71r€712ﬂwj)zjfr]

j=0

X [z;’ — (cion + cl-,lle_"zmj)zfl — . — (Cior + ciylre_"z”“j)zfr]*]

~[ T
1
,yk—l [ijk _ (akle—i%uﬁjz]ﬁ + .+ akre—i%wjzjfr)]
% [ijk _ (akle—iQWWjZ].fl + .+ akre—iwajZ;‘r)]*}

which is the final expression we will use for further calculations below.

We now take derivatives with respect to each of the unknown parameters. These
yield estimators for the elements of @ given (i) the latent factors and (ii) the

observed series.

2.5.3 Loadings

For a given frequency wj;, we have that for observations ¢ = 1,..., N, lags h = 0, 1,

and factors k=1, ...,7,

T—1
Ol(X,F;0 1 . . s 9w
S50 STl Y | lre ™™t 25 — (cion + cime” ™) — = (cior + ciare ™))
OC; ni 27 & £ - J J J J
) ]:
T Ji2nwih —i2nwi 1 —i2mw;i\  fr
+ Zj € [Zj - (CZ’701 + Ci11€ )Zj — ... (Ci,gr + Ci1r€ )Zj ] .

Setting the above to zero defines a system of 2r equations for obtaining ML

estimators of the dynamic factor loadings for the i*" observed variable.
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This system of equations (or first-order conditions) is given by
T-1
Z {Z]sz;f? €—i27rw] + ka :cz 127rwjh

T-1
[A (kaZfle i2mwjh +ka f1 1271'0.)] )

+ /C\z,ll(szzfl e —i27w;(h—1) 4 zflzzjfleﬂﬂwj(hfl))

_'_’C\i’or(szzfre i2mwjih +ka f'r 127rwj )

+/c\i,lr(zf ]fe 27w (h— 1)+ka freiQTrwj(h—l))

For ¢« = 1,..., N, the left hand side of the above system of equations can be

expressed in matrix form as

f1 + Z sz
S ijl Zj i e—szuJ + Zfl z27rw]-
LHS =)
=0 e Ty Z
_z{”zj*e"%“’f + zj z;-“ewmf_

and the right hand side consists of the matrix
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flsz —f-foZfl lefl* 'iZmuj +fo fl —127w;
J J J J
* . * .
o Z]flzjfl e—z?muj + ijl Z]f1€7,27rwj fl + Z Zfl
RHSY ="
j=0 Zfr IT + Zf:Zfl Zfrsz 127w + Zf: —i27rw]-
J J J
zfrzfl e—i27rw]- + Zfr ZfleiQmuj fr f1 + Z f1
f L z fr SN Zfr €i27rwj + le fr —i2mw; |
J 77
z]flzjf e 127rw] + Zj frei27ro.)j fl + Z fr
f +Z Zfr ij Z]f 6227rw] +Zf fr fi27rwj

Zf Zfr 6—127rw] + Z]fr ijrei%rw]-
post-multiplied by the vector

Ci 01

Ci 11

Cior

Ci1r
Thus,

Ci 01

Ci 11

Cior

Ci1r

are our spectral ML estimators of loadings for the i*?

o4

s fr
Z5 —I—z

= [RHS|"'LHS®

observed variable.




More compactly, reverting to vector notation, we have

€101 --- CN,O1
L1 N,11 —1 1 12TW; 1 127wW;
£ f* € £ e
= E z;Z; & o + 1%z, ® .
R R ]: 6—1 ﬂ'OJJ 1 e—l m.u] 1
CLor --- CNor
Ciir --- CN1r
T—1
P 1 P 1
X 7.7, & ) +|z:z5 ® )
270 e—z2mu]- 277 e—z27rw]-

=

It will also be useful to re-write the above using a more familiar expression for

such an estimator. We define the 2r x 2 matrix

. 1 1
Z§ - Z§ ® —i27w; ’Zg ® —i27w; ’
e i e i
and the N x 2 matrix
77X X °xX
z; = |z;,77] .
Then, our estimators have the form
€101 --- CNpO1
111 .- CN11 T—1 174
_ fryf* £r7x*
= E 7.7 E YAV
~ ~ j=0 7=0
Ci0r -+ CNoOr
Ci1r --- CNr

which is of course reminiscent of a standard least-squares style formula.
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2.5.4 Autoregressive Coefficients

For a given frequency w;, we have that for factors k,l =1, ..., 7,
T-1

8£(X,F,0> 1 -1 fi_—i2mw;i S —i2nw; f —i2mrw; o fr\]*
" a2 % Do e — (e P e P )]

I i2rwir  fr —i2nw; f1 —i2nw;  f
+ zj' e [0 — (age 725t agre 725 -

Setting the above to zero defines a system of r equations for obtaining the ML

estimators of the coefficients in autoregressive equation for the k' factor.
This system of equations (or first-order conditions) is given by

T-1

Z |:Z]le]fk o 12mw; + Z]fl ijkei%rwj

7=0
T—1
Z lakl( i -1 + Z]fl Zfl) + ... —i—ﬁkr(zf’zf* + z]fl zj’-cT) )
=0

For k£ = 1,...,r, the left hand side of the above system of equations can be

expressed in matrix form as

f1 fk — 127w, ff fr i2nw;
T1 % %e J+zjzje J

LHS! = :
=0 ijr Z]fk e—i2mw; | zjf: ijk 12w

and the right hand side consists of the matrix

- f1 f1 + Z f1 f1 _'_ Z f'r
RHS* =" .
=0 fr f1 +Z f1 fr +Z fr
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post-multiplied by the vector

Qr1

Ay

Thus,

k1
= [RHSY'LHS{
/a\kr
are our spectral ML estimators of autoregressive coefficients for the k' factor.

More compactly, reverting to vector notation, we have

a1 r1 T-1 “lra
. . . _ L f_f* £ £ —i2rw; f_f*_ _i%27nw,;
: . : = { [zjzj -+ Z;Z; ]} E [zjzj e —|—Zij e J

~ ~ §=0
A1y oo Qpp

It will also be useful to re-write the above using a more familiar expression for

such an estimator. We define the r x 2 matrix

J ]

- [zf ?]

and the r X 2 matrix

VA [deZZ’TWj,zge“Wj] :

Then, our estimators have the form

aip ... Qp1 T_1 14
B PR i
-~ <§ YAVA > N 7tal
~ ~ j=0 j=0
A1y .. Qpp

which is again reminiscent of a standard least-squares style formula.
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2.5.5 Variances

For a given frequency w;, we have that for observations i = 1,...,; N,

ag(X7 F7 6) T -1 1 -2 — x; —i2mw;\ S —i2mw;\ L fr
T& = _EF& + 51“& jgo [zj — (¢io1 + e J)zj1 — . — (Cior +cinre J)zj ]
X [ijl — (Ci,Ol + Ci7116_i27rwj)2§]f1 — ... (CLOT + ciylre_izmj)zjfr]*} .

We set the above to zero, plug in our ML estimators for the loadings, and obtain

T-1
~ 1 ) . N . _ N N . ]
F& = T Z |:[Zfl — (Ci,Ol -+ Ci’lle ZZWwJ)ZJfl — ... (Ci,OT‘ + Ci,l're 7127“‘)])2]]'%]
=0
x [z = (Cio1 + /C\i,n@_izmj)zfl — .. — (Cior + /C\i,lre_mwwj)zjﬁ]*}

as our spectral ML estimator for the variance of the i*" idiosyncratic component.
In an analagous way, we obtain

T—1

~ 1 o, o

A = — E |i[ijk _ (akle 127rw32]f1 + o Ope 127rwjzjfr)]
Jj=0

% [zjfk _ (/a\klefiQﬂ'wjzjfl + _i_akTefiZﬂonzjfr)]*

as our spectral ML estimator for the variance of the stochastic disturbance term

in the £ factor equation.

2.5.6 Some Convergence Results

In this section, we present an unsurprising result; that is, on v/7' consistency of the
maximum likelihood estimator. Indeed, since this is just a textbook property, we
state the result only for the loadings estimators. Analogous results hold for max-

imum likelihood estimators of all the parameters in our model. See, for instance,
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Hannan (1973), Dunsmuir and Hannan (1976), and Deistler et al. (1978).14

Let ¢ denote the 27 x 1 vector of estimated loadings for the i observed variable;

.o~ ~ ~ ~ ~ ’ .
that 1S, C¢; = (Ci701, Ci11y -+ Ci0r, Ci,lr) for 1 = 1, ey N.

Proposition 2.4. Under Assumptions A1-A7, and assuming factors {fy, ..., fr}

are known, for any N € N, and a given observation t, it holds that as T — o0,
VT |&; — el = 0,(1),
uniformly (as defined in Remark 2) with respect to i fori=1,...,N.

Proof. See Appendix 2.10.5. O]

Remark 3. /T-CONSISTENCY. In reality, one should consider not just ¢ (X |F; @)+
¢(F;0) but the entire likelihood function ¢(X;0) for estimation of the parame-
ters. Maximising the former gives rise to a typical least-squares style sampling
error which vanishes at rate v/T as per Proposition 2.4 whereas maximising the
latter results in an additional term that is O, (N~') along with terms that are
vanishing with rate faster than v/7'. For results in the time domain, see Barigozzi
and Luciani (2022, Lemma 13(i)) and Bai and Li (2016, Theorem 1).

We expect analogous results to hold for our frequency domain estimators. That

14 Additionally, a textbook treatment is available in Dzhaparidze (1986).
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is, forany 1 = 1,..., N,

where, say VT /N — 0, we would have that spectral ML estimators are VT-

consistent.

We do not prove this result or pursue this thread in our study since the extra
O, (N71) term that we omit will ultimately be dominated by the O,(N~'/2) error
in relation to the WK smoother already established in Section 2.4 above.!® In
other words, the first order conditions based on the likelihood function ¢(X; @)
versus the first order conditions based on ¢ (X|F;0) + ¢ (F;0) differ only by an

amount that will vanish at a rate faster than that of our overall estimation error.

A

We now make a remark about the formulae for our loadings estimators. The
context for this remark will be clear in the next section pertaining to the need for

smoothing techniques in non-parametric estimation of spectral density matrices.

Remark 4. LOADINGS ESTIMATORS. As is evident from the expressions in

Section 2.5.3, the estimators ¢;, for 7 = 1, ..., N are composed primarily of matrices

15Tn fact, as we shall see below, it will also be dominated by an Op(N_l/Q) term in the error
of our non-parametric estimator of the spectral density matrix. See Proposition 2.5 below. The
same spectral density estimator is featured in Forni et al. (2017).
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of cross periodograms at each frequency that are summed across frequencies.
Clearly, these are “unsmoothed” (see Section 2.6 and, in particular, Section 2.6.2
below) and this is all that is needed to consistently estimate the parameters. As
noted in Engle (1974, p.3), the fact that these are unsmoothed periodograms
is not a problem; the paper states, “The estimator is consistent, not because
each periodogram element approaches its spectral value, but because the sum of
the elements approaches the sum of the spectral values which is just the total
variance of the variable”. Moreover, the variance of the factors is well-behaved
due to the ergodicity inherent in the modelling structure in Assumption A2, and
consistency follows from the asymptotic independence of the idiosyncratic error

and the factors.

2.6 Towards Initialisation:
Spectral Density Estimation

With the building blocks for the E step and the M step now in place, we proceed
to discuss issues surrounding initialisation of the algorithm. For the exposition

in Section 2.6, we consider what happens as T" — oo with fixed N.

2.6.1 Lag Window Estimator for Spectral Density

We will shortly propose initialisation of our spectral EM procedure using Dynamic
PCA, which involves the eigen-decomposition of some non-parametric estimator
of the spectral density matrix of x;. In principle, we could use the periodogram

to estimate Gx(w;). Indeed, for a given NN, we could compute
T-1

Per(w;) = z}‘z;‘* = Z Sy (h)e2msh
h=—(T—-1)
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where

T
1 / !/
Sx(h) = T E Xtth‘h‘ h = 0, ,T — 1, Sx<—h) = Sx(h),

t=|h|+1

for the Fourier frequencies w; = j/T for j =0,...,T — 1.

The periodogram is asymptotically unbiased. Nevertheless, it exhibits high vari-
ability even for very large T', and is in fact an inconsistent estimator of the true
spectral density. This may be a surprising result prima facie since Per(w,) is es-
sentially the same function (a linear combination) of the sample autocovariances
as Gx(wj) is of the theoretical autocovariances. That is, one might be tempted
to argue that since Sx(h) is, under general conditions, a consistent estimator of
I'x(h) for any h, a linear combination of {Sx(h) Z:_i(:r—n would also be a consis-

tent estimator of a linear combination of {I'x(h)},~__ : but this is incorrect.

To see why (heuristically), we first note that, under standard conditions on con-
tinuity of I'x(h), the rate at which the squared bias of Sx(h) vanishes will be
dominated by the rate at which its variance vanishes in the overall mean-square
error computations. So it is the variance of Sx(h), which is O(1/T), that deter-
mines the overall rate of convergence. The problem is that while each term in
the linear combination is O(1/T"), the number of such terms within the overall
linear combination is also growing linearly with 7T". Therein lies the source of the
inconsistency. The specific consequence is that the variance of the periodogram

does not shrink as 7" increases. Further details can be found in Priestley (1982).

A common solution to reduce the variance of our estimator as T — oo is to use
a lag-window (or Blackman-Tukey) estimator which weights the autocovariance
sequence so that the number of terms in our linear combination grows at a rate
slower than T'. Effectively, some of the sample autocovariances are excluded. Of
course, this can and does give rise to bias in our estimates. In order to minimise
bias, we typically choose to exclude sample autocovariances corresponding to
lags that are relatively large (in magnitude). The justification is that continuity
of Gx(w;) implies that theoretical autocovariances decay as |h| grows and so

excluding large-lag terms is relatively less problematic.
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More formally, for some integer By < (T'—1) such that By — oo and By /T — 0
as T — oo, we can consider a truncated two-sided sequence Sx(—Br), ..., Sx(0), ..., Sx(Br)

of (2Br + 1) sample autocovariance matrices. More precisely,

T
1 / !/
Sx(h) = — > xXi . h=0,...Br, Si(=h)=S(h),

t=|h|+1
so that Br is our truncation point.

Such an estimator is referred to as a rectangular (or boxcar) lag-window estimator.
The weights are of the form 1 for |h| < By and 0 for |h| > Br. However, there
is no reason why we cannot consider other estimators in which the weighting
functions are continuous in A, say, in order to obtain weights that decrease more
gradually. As we will observe below, the exact choice of window can indeed affect
the asymptotic properties of our estimator, and the rectangular lag window is
far from ideal. Indeed, the sharp discontinuities associated with the rectangular
lag-window are not a desirable feature for variance reduction. Moreover, we have

no guarantee that it generates estimates that are positive definite.

We thus consider a reasonably broad class of windows referred to as “scale param-
eter” windows. Let us denote our lag-window estimator for Gx(w;), the spectral
density matrix of x;, by éfT (w;) where Br is placed in the superscript to em-
phasise the dependence of the estimator on the size of the window. Specifically,

we define
T—1

~ h —12Tw
Gorup) = X Sulh) K () e

h=—(T—1)

where wy = j'/(2Br+1) for j' =0, ..., 2By, and K (-) is a fixed weighting function

or “kernel” such that

K(h)_ X (), 0<Ih<Br
Br 0, Br <|h| <T -1,

with K(-) an even, bounded, and continuous function satisfying K(0) = 1.

An increase (or decrease) in the truncation point Br can be thought of as stretch-
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ing (or contracting) the window. Thus, By behaves like a scaling parameter. The
definitive theory of asymptotic bias, variance and mean-square error for estima-
tors based on scale parameter windows was developed in Parzen (1957). Below,
we will generally rely on the more recent treatments presented in Wu and Zaffa-
roni (2018) and Forni et al. (2017).

Remark 5. B1AS-VARIANCE TRADEOFF. The effect of truncating and/or re-
weighting the sample autocovariance sequence is indeed to reduce the variance
of our estimator. These manipulations will affect the expected value of the new

expression. In general, we can expect the bias to increase. We discuss details in
Section 2.6.2 below. A

Remark 6. REVISED GRID. We draw attention to the fact that the discretised
frequency w; has necessarily been modified (with respect to w;). We discuss
details in Section 2.6.3 below. A

Prior to discussing the items alluded to in the foregoing remarks, we borrow (to
some extent) from “Assumption 9(7)” in Forni et al. (2017). We present below

our assumed regularity conditions for the weighting function.

Assumption A8. A kernel K(-) is a function with support [—1,1] such that
(i) K(-) is even, bounded, and has the property K(0) = 1;
(it) [7° K?(u)du < oo;

(iii) there exists some k > 0, the Parzen characteristic exponent of kernel K(-),

which represents the largest integer for which

1-K
ljm 2= K ()

u—0 |u’”
1s finite and positive;

(iv) K(-) is Lipschitz continuous; that is, there exists a finite positive constant
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m such that
—K
[K(u1) = K(u)| < M [ur — up

for uy,us € [—1,1].

Remark 7. ASSuMPTION AS8(éii). The Parzen characteristic exponent cap-
tures the smoothness of the kernel at zero. Indeed, the smoother is the kernel at
zero, the larger is the value of k. For instance, as explained in Andrews (1991), &
equals 1 for the Bartlett kernel (which is triangular in shape with a kink at zero),
but 2 for the Parzen, Daniell, General Tukey, Tukey-Hanning, Tukey-Hamming
and Bartlett-Priestley kernels. The periodogram, denoted previously by Per(w;),
incorporates the rectangular kernel which has a Parzen characteristic exponent
of co. See Priestley (1982, p. 463). A

Remark 8. ASSUMPTION AS8(iv). Part (iv) of our Assumption A8 is stronger
than Assumption 9(¢)(3) of Forni et al. (2017). In particular, Lipschitz continuity
implies bounded variation, and as explained in Liu and Wu (2010)', this in turn
implies Assumption 9(¢)(3) of Forni et al. (2017). While Lipschitz continuity is
relatively stronger than the latter, this assumption is not binding in practice. As
explained in the context of Assumption 1(b) of Newey and West (1994), several

commonly used kernels satisfy this condition. A

2.6.2 Bias-Variance Tradeoff

Lag-window estimators necessitate an inherent trade-off between variance reduc-
tion and frequency resolution.!” The lower is By relative to T, the less erratic
is our estimator. Indeed, given N, for each frequency w; = j'/(2Br + 1) for
j'=0,...,2Bp, the variance of éfT(wj/) will be O(Br/T). The cost, however, is

16See paragraph immediately following “Condition 3”.
1"The trade-off is somewhat similar, for instance, to that arising when estimating a probability
density function via a histogram.
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a loss in the ability of our estimator to reveal variation in the spectrum between
closely spaced frequencies. In fact, the periodogram may be interpreted as an
estimator capable of identifying peaks in the spectrum at the finest possible fre-
quencies, the Fourier frequencies. Lag window methods, which weight the sample
autocovariances so as to reduce the contribution from the tail, have the same
effect as smoothing the periodogram over adjacent frequencies. While this may
mitigate against spurious spikes and troughs, there is an inevitable decrease in
resolution. As a result, details in the spectrum that are separated by less than

1/(2Br + 1) > 1/T cycles per sampling interval cannot be resolved.

In fact, variance and resolution are affected not just by the size but also the
type of lag window. For example, multiplication of the estimated autocovari-
ance sequence in the time domain by a rectangular lag window (say of size Br)
corresponds to convolution in the frequency domain with the Dirichlet spectral
smoothing window. The latter features sidelobes that are relatively tall, which is
a reflection of the jump discontinuities in the rectangular lag window. This causes
spectral leakage, which manifests itself through spurious spikes and troughs. In
contrast, the triangular lag window, which attenuates end-points of the trun-
cated signal more smoothly, is associated with the Fejér spectral window which
features much shorter sidelobes. This reduces spectral leakage. The downside,
however, is that the Fejér spectral smoothing window features a relatively broad
mainlobe. This causes spectral smearing, or loss in resolution. Again, we have a
bias-variance tradeoff since one has to strike a balance between mainlobe width
and sidelobe height when choosing a suitable window function. There are several
possible choices. Nevertheless, we do not consider alternatives. Following the
literature, we rely on the triangular lag window. See Forni et al. (2000) and Forni
et al. (2017).

To summarise, we need to lower Br/T to lower the variance of our estimator.
In contrast, we need to raise By to lower the bias of our estimator. It follows
then that choosing By such that Br/T — 0 and Br — oo as T' — oo (as stated

previously) is the key to achieving mean-square convergence.
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2.6.3 Coarse Time and Frequency Grids

As mentioned above, in order to consistently estimate the spectral density, we
rely on smoothing techniques, which inevitably entail a loss in resolution. In
particular, the lag window estimator proposed above is computed not at all T’
Fourier frequencies but at only 2By +1 < T frequencies. Consequently, reverting
to the time domain (i.e. via the Inverse DFT), we will be able to estimate the
factors f; not on the original grid of T" time points but on a relatively coarse grid
of 2Br + 1 points. That is, we will compute some ftV,V, where t' denotes a revised

temporal index such that ¢ € T’ where T’ is a set with cardinality 2B7 + 1.

Typically, the revised temporal grid is constructed so as to divide the period
under consideration into 2B7 + 1 equally-spaced intervals. That is, while the
space between two adjacent points of the original grid is At = 1, for the revised
grid, it is At' = T'/(2Br + 1). Of particular note is that the revised (coarse)
grid is in general not synchronous with the original (fine) grid. This is a natural

artefact of the interpolative effect of smoothing the periodogram.

Our particular aim, however, will be to discuss pointwise convergence of our
estimators. Thus, we need to ensure that there is an overlap between the grids
(i.e. for a subset of 2By + 1 < T points on the original grid). This facilitates a

comparison between our estimator and the true value, pointwise in ¢’ for ¢’ € J”.

To this end, we use the following methodology to construct our revised grid. We
set t' = t, such that

tQE{T—(QBT—I—l—q)\‘ qul,,2BT—|—1}

2Br +1
denotes our revised temporal index, where the function |-| returns the largest
integer that is less than or equal to any (real-valued) argument. In other words,
we start with the most recent observation, aligning the (2B + 1) point on our
revised grid with the 7% point on the original grid. We then work backwards

aligning each preceding point on our revised grid, with points that are exactly

B Bz ] apart on the original grid.
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For the frequency domain, we set j' = j, such that for j € {0,...,7 — 1},

. ) g a—1
> ——0iq=1,..,2Bp+1
]qe{mln{j T_ZBT—i—l} q sy 2T 4 }

denotes our revised frequency index. In other words, we start with frequency zero,
aligning the first point on our revised grid with the first point on the original grid.
We then work forwards by aligning each consecutive frequency on our revised grid
with the smallest available Fourier frequency that is greater than or equal to the
latter.

To summarise our notation, we will use

Lg= 1,...,2BT+1}, and

{

to denote the sets of our factor estimation errors in the frequency and time

rai
B 1,

g = 1,...,QBT+1}

domains respectively. Typically, our convergence results will be stated either
uniformly in j, (following our weaker definition of uniformity in Remark 2), or

pointwise in ¢, for ¢ = 1, ...,2B7p + 1. This will be sufficient for our purposes.

Finally, we note that the density of the revised grid, corresponding to our effective
sample size, is increasing (with Br) but its relative density with respect to the

original grid, or the original sample size, is decreasing to zero (with By /T).

2.6.4 Consistency of Lag Window Estimator

We do not explicitly prove consistency of the lag window estimator proposed
for the initialisation of our algorithm because such a proof would not contribute
much towards the specific aims of this study. Instead, parallel to the approach
in Forni et al. (2009, Assumption 8), we make an additional assumption on the

estimate of the cross spectral density between z; and x4 for i,s =1,..., V.

To this end, we leverage results presented in Wu and Zaffaroni (2018). In partic-
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ular, the latter finds a \/T/(Brlog Br) convergence rate. The log Br term arises
because Wu and Zaffaroni (2018) considers convergence of the extremum over
frequencies of the estimation error.'® Strengthening the usual pointwise consis-
tency result in order to cover convergence of the extremum over frequencies slows
the rate from the typical \/T/Br term, for instance in Hallin and Liska (2007),
to \/T/(Brlog Br) in Wu and Zaffaroni (2018). The result is seminal because

it applies to a general class of multivariate stationary processes represented by

arbitrary measurable functions of 7¢d innovations. In particular, no Gaussianity,
linearity or strong-mixing assumptions are relied upon. Only primitive assump-
tions are made; one on finiteness of the p order moments (for p > 4) of the
observables, and another on the extent of time dependence of the observables,
which involves placing upper bounds on a defined measure referred to as “physi-

cal dependence”.

Remark 9. EXAMPLES. The concept of physical dependence, first introduced in
Wu (2005), has been used in a variety of time series settings in recent years. See,
for example, McMurry and Politis (2010), Jirak (2015), Forni et al. (2017), Dette
and Gosmann (2018), Wu and Zaffaroni (2018), and Barigozzi et al. (2022). Also
see the relatively recent contribution of Zhang and Wu (2021), which extends the
dependence measure introduced in Wu (2005) for the high-dimensional setting
and considers so-called “nonasymptotic bounds” (Zhang and Wu, 2021, Theorem
4.1 and Corollary 4.4). For succinctness, we prefer to relegate our full exposition
of the definition of physical dependence and the restrictions to be imposed on
the dependence structure to Appendix 2.10.11. At present, we note simply that
there exist many data-generating processes that can be accommodated within the
framework of Wu (2005). Indeed, a key reason behind the popularity of the latter
is the generality that it admits. Some examples of linear and non-linear processes
are mentioned in Liu and Wu (2010, p.1220), and theorems establishing the va-
lidity of such examples may be found in Shao and Wu (2007, Section 5). For the

purpose of this remark, however, we refer the reader to the excellent overview in

18This is what is typically referred to as uniform convergence in the literature but we refrain
from using this word in this context since we have defined uniformity slightly differently for the
purpose of our study in Remark 2.
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Wu (2011), which provides not only a detailed list of examples but also a flavour
of the theoretical arguments to be made in each case. In general, as Wu (2011) ex-
plains, the theory applies to stationary processes of the form z; = F(€;, €1, ...),
where F': [R x R x ...] = R is a measurable function, and €, is an iid stochas-
tic vector process. A sequence of this form is called a physical system (Dette
et al., 2020, p.1248), and examples covered thereby include: (i) linear processes,
(i) ARMA processes, (iii) Volterra series, (iv) amplitude-dependent exponen-
tial autoregressive processes, (v) non-linear AR processes based on the Clayton
copula, (vi) bilinear time series, (vii) threshold AR processes, (viii) ARCH pro-
cesses, (ix) GARCH processes, (x) random coefficient autoregressive processes,
and (xi) non-linear heteroskedastic AR processes. (Wu, 2011, Sections 3-4) A

Below, our assumption borrows from Forni et al. (2017, Proposition 6), which
itself builds on results in Wu and Zaffaroni (2018). We believe the assumption
is reasonable since its result holds under conditions that are compatible with our
modelling framework. Readers who may be interested in the detailed derivations

behind the statement of the assumption are referred to Appendix 2.10.11.
For i,s = 1,..., N, we define ﬁffs(qu) and g, ;,(w;,) as the (i,5)"™ elements of

éfT(qu) and Gx(w,,) respectively.

Assumption A9. There exist finite positive constants Myq. and My;qs such that

~ Brlog B 1
max E max |gff5(qu) - gx,is<qu)’2:| < Mvar <L“) + Mbias < ) )

1<i,s<N _ |1<q<2Bp+1 T B2k

for any N, T € N.

The first and second terms on the right hand side of Assumption A9 inform us of
the rates at which respectively the variance and squared bias of our lag window
estimator vanish as 7' grows without bound (for any N). To fix ideas, say we
set the positive integer By such that By = |T%]| for some constant «, where

0 < a < 1. Then, clearly By — oo and Br/T — 0 as T' — 0.

Our Assumption A9 is slightly more general than “Proposition 6”7 in Forni et al.

(2017) on two counts. First, we present our statement in terms of a general

70



choice of kernel K(-), while Forni et al. (2017) specifically employs the Bartlett
lag window. See equation “3.3” therein. This means that in our statements
above, the Parzen characteristic exponent x is not suppressed; whereas in Forni
et al. (2017) the value of k is implicitly fixed to 1. Second, we explicitly display
the squared bias term in our “Assumption 9”, whereas this term does not appear
in “Proposition 6”7 of Forni et al. (2017). The reason is that “Assumption 10”
in Forni et al. (2017) effectively limits the choice of a so as to ensure that the
variance term will dominate the squared bias term in determining the consistency
result. It is only for this reason that the squared bias term can be suppressed in

Forni et al. (2017). We discuss this second point in more detail below.

Given &, for 0 < a < (25 + 1)1, the squared bias term will lead the convergence
result in Assumption A9. To see this, let’s assume (for ease of exposition) that
T is an integer so that |7%| = T*. Then, the variance term is

BT IOg BT T log T

T = T =aT* logT,

the squared bias term is

1
I T—2m;v
B ’

and the ratio of these terms evaluates to
aT(QfH-l)a—l IOg T

With a given value of k, for 0 < o < (2k+ 1), the ratio above will tend to 0 as
T — oo. In other words, the squared bias term will lead the convergence result.
On the other hand, for (2 + 1)~ < a < 1, the ratio above will tend to co as

T — 0o, which means that the variance term will lead instead.

We can now see that our exposition is entirely compatible with Forni et al. (2017)
wherein the lower bound for « is simply assumed to be larger than or equal to
1/3. This makes sense since (i) the authors employ the Bartlett lag window, for
which the value for x is equal to 1, and (ii) the authors presumably wished to
focus simply on rate of variance reduction in their “Proposition 6”. As noted

previously, our exposition is just slightly more general. For instance, with our
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approach, it is easy to observe that if one were to employ, say, the Parzen or
Daniell lag windows, for which  is equal to 2, the appropriate threshold for «
would be 1/5.

Restricting our attention to the case that (2k + 1)™! < a < 1, one may compare
our assumed rate O(Brlog By/T) with the rate O(1/T) which is standard in
the time domain literature concerning estimation of the covariance matrix of the
observables. For instance, Forni et al. (2009) has “Assumption 8", wherein it is
assumed that E[(Fxis — Yxis)?] < T7'M7; the terms 7y s and ;s denote the
covariance and estimated covariance between x;; and x, the inequality holds for
all i, = 1,..., N, and M"” is some finite positive constant. By comparison, the
extra term Br in the numerator of our assumed rate, which slows the speed of
convergence, is the additional price we pay for requiring initialisation via consis-
tent non-parametric estimation of the spectral density matrix of the observables
for a given frequency (and a given N). Moreover, the extra term log By in the nu-
merator, which further slows the speed of convergence, is the additional price for
requiring a consistency result that holds uniformly with respect to the frequencies
(and for any N).

2.7 Spectral EM Algorithm:

Implementation

We now possess all building blocks needed in order to summarise the key steps in
implementing the Spectral EM algorithm. Say assumptions A1-A9 hold, and our
objective is to estimate the factors and parameters of the model. Then, the first
step of our proposed procedure would be to construct a lag window estimator for
the spectral density matrix of x;, denoted by éfT (wj,), for ¢ = 1,...,2Bp + 1,

with an appropriate choice of kernel. Subsequent steps are as follows.

72



2.7.1 Initialisation: Factors

We initialise the algorithm using dynamic PCA following Forni et al. (2000),
whereby we aim to carry out the eigen-decomposition of our éfT (wj,). The
eigenvectors thus obtained are hereafter referred to as the dynamic eigenvectors

of x;.

Specifically, we compute the N (complex orthogonal unit-modulus) eigenvectors
of éfT(qu) as our estimators of the dynamic eigenvectors of x;. We retain
and gather the first r of these N eigenvectors in an N X r matrix denoted by
f’x(qu). This forms our estimate of the first  (complex orthogonal unit-modulus)
eigenvectors of the spectral density matrix of the common component, which are
themselves contained in the N x r matrix denoted by Py (wj;,). We denote the

corresponding eigenvalue matrices as Kx(qu) and Ay (wy, ).

We define the estimator Zg: as

Ja

as our Dynamic PCA estimator of the DFT of the unobserved factors noting
(as mentioned in Section 2.6.3) that we compute the latter for the frequencies

indexed as j, for ¢ = 1,...,2Br + 1.

We refer to Zg: as our pre-estimator of the DFT of the unobserved factors at
frequency j, for ¢ = 1, ..., 2Bp+1, the theoretical properties of which are presented

in Section 2.8.1 below.

2.7.2 Initialisation: Parameters

. . . . . oy ~fP
Next, we carry out a round of maximum likelihood estimation conditional on z§q ,

for g =1,...,2Br+1, to obtain our pre-estimator of the parameters of the model.
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The loadings pre-estimator él(-o) is obtained by

2Bp+1 - 1 i} 1
Nf xl ~fP X}
X Z Jq Jq ® 6—i27rqu + qu qu ® e—i27rqu
g=1

for each observed variable 1 =1, ..., N.

The pre-estimator for the autoregressive coefficients é\,(co) is obtained by

~(0)

g 2Br+1 “Loprt1
. _¢P _gP* P ~gP* P _¢P* P pP*
: — § Zf Zf +Zf ~f § ij Zf e 127rw]q —|—Zf Zf e 127rqu
: Ja " Jq Jq Ja " Jq Ja

~(0) q=1 q=1

akr

for each factor k =1,...,r

(0) (0)

Given the pre-estimators ¢; ’ and a, ', we estimate the variances by
1 2Br+1 R R
r(0) _ z; _ (A0 A(O) —i2mw;, \ i _ ~(0) A(0) —i2mwy, \ 2fr
00 = gy O |5 (e ) o (e ) o
q=1
x; ~(0 i27w; il 0) —i2nw; ~fF *
R G R ) P Cr R O El
fori=1,...,N; and
1 2B+l P P P
~(0 ~f 0) —i27w; ~f ~(0) —i27w;, =fr
%(g) - 2Br+1 Z {[Zj: N (al(fl) ? ququ +o —{—CL](W)B ? "z, >}
p
P . P . P\ 7*
X [ijf — (d,gol)e_ﬁ”wfq ijql + .. —1—61(3)6_12”% 2;0; ﬂ ]
fork=1,..,r
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To summarise, we are now able to construct the following key terms; that is, for
q=1,....,2Br + 1, we obtain

(1)

(iii)

(iv)

estimates of the transfer functions of the linear filters in our model

~

0 (efi%qu ) and A0 (efizmvjq ),

by plugging in the computed pre-estimators into the relevant matrices of
interest;

estimates of the spectral density matrices of the idiosyncratic component
and of the innovation process in the factor equation,

~(0) (0

G (w;,) and Gfl)(qu),

noting that at all frequencies these are given simply by féo) and ﬁlo) respec-

tively;
an estimate of the spectral density matrix of the factors

o~

GE'O) (qu )7

*

given by [ﬁ(o)_l(e’i%wM)} Y [A\(o)—1<642nqu) - and
an estimate of the spectral density of the factor estimation error

WO (w;,),

. ~(0)~1 A0)* —i2mw;, \ ~0) 7! ~ —i27Tw,;
given by [Ggo) (qu)—l—C’(O) (e7*2 JQ)Géo) (qu)C'(O)(e 2 Jq)]

I6)



2.7.3 Spectral EM Algorithm

We summarise the steps of our procedure by means of the pseudocode presented
in the table below. As regards notation used therein, let [ (X, F; @) represent
the complete Whittle log-likelihood computed with respect to the coarse grid of
2Br + 1 frequencies. That is,

| 2B | 2Bt

[(X,F;0) ~ —— Z log |G (wy,)| — 3 Z z? Gg1<qu)z§
qg=1
2BT+1 | 2Bl

—= Z log |Gy (wj, )| Z z} oyt (w;,)z

Accordingly, at iteration £ > 0, and given estimates é(k), our “Q-function” is
given by
Q(6:6") = Egu [ (X, F;6)[X].

The procedure is as follows. Given, é(k), we run the WK smoother to com-
pute an estimator of the DFT of the factors. This is then used to compute
the our Q-function, which constitutes the E step. Then, the Q-function is max-
imised with respect to 8 to find é(kﬂ), and this constitutes the M step. Once
we have convergence (according to a given criterion), we denote the final esti-
mate of the parameters as 05PEM  We end with a final run of the WK smoother
to obtain an estimator of the DFT of the factors and convert this via the in-

verse DFT to get a time domain estimator of the factors denoted by ftsq pEM
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10

11

12

13

14

15

16

Algorithm: Spectral EM Algorithm

Input :an N x T matrix of observations X; a threshold e¢; pre-estimators of
parameters, collectively denoted by vector 6

Output: an estimator of the parameters QsPEM ; an estimator of the factors

f, £5PEM. number of iterations until convergence kSPFM.
set k = 0;
while £ > 0 do
WK Smoother: compute Egy, [zﬁq!X } denoted by igk)
~f(k) 117 A(k)* (—i2mw; \ Ak ! X
2, = W (w;, )CW ()G (wy, )2,
forq=1,...,2Br + 1;
compute additional sufficient statistics
Egor [2h,20) 1] = 282" + W (), and
* ~f(k) x*
Eé(k) |:Z§qZJ |Xi| - Zﬁq qu’
forq=1,...,2Br + 1;
E step: compute Q(0;0®);
M step: compute 8% = arg maxgy Q(6; é(k));
. (X, P50+ D) —1(X,F;60) |
if S(Jux P00 |+ [1(X,F;60)] ) 2 € then
reset k =k + 1;
else
define 95PEM — g(k+1).
define kPEM = | 4 1;
WK Smoother: compute 22“1) forq=1,...,2Br + 1;
Inverse DFT: compute
2B7+1
S'pEM 1 Z Af(k+1) z27rw]qtq
ta vV 2BT +1
forqg=1,...,2Br + 1;
break;
end
end
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2.8 Spectral EM Algorithm:
Asymptotic Properties

In this section, we present convergence results (as N, T — 0o) for our estimators

based on the various building blocks outlined in previous sections.

2.8.1 Initialisation: Factors

We have the following result on the DFT of the factors obtained using Dynamic
PCA.

Proposition 2.5. Under Assumptions A1-A9, it holds that as N and T — oo,

max 7 72t || = 0, [ max ! Br log Br .
1<q<2Bp+1 || 74 Ja p \/_ /BQ;@
Proof. See Appendix 2.10.6. O

Proposition 2.5 is equivalent to the key result in Forni et al. (2017, Equation 1.7).

The rates are effectively the same.

2.8.2 Initialisation: Parameters

We have the following result on the loadings pre-estimators obtained subsequent
to an initial round of maximum likelihood estimation given our pre-estimator of
the DFT of the factors (as referred to in Section 2.8.1 above).

Proposition 2.6. Under Assumptions A1-A9, as N and T — oo, it holds for

any k > 1/2 that
0 ma. 1 BT log BT
= X y
P N /By

é(o)

7
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uniformly (as defined in Remark 2) with respect to i where i =1,...,N.
Proof. See Appendix 2.10.7. O

The intuition for Proposition 2.6 is as follows. Our maximum likelihood estimator
(given the pre-estimator of the DFT of the factors) is computed over 2By + 1
points. It follows from Proposition 2.4 that the associated error is O,(1/v/Br).
Upon combining this with Proposition 2.5, we see that the latter term dominates
O,(1/4/B2) term therein whenever x > 1/2, so the result in Proposition 6
follows. Indeed, for all commonly used lag windows, « is typically 1 or 2 (see, for
instance, Priestley (1982, p. 463)). For brevity, we do not make further mention

of k hereafter.

We return briefly to the discussion in Remark 3 above. It is clear now from
Proposition 2.6 that the extra O,(1/N) term in the estimation error arising as
a result of focussing on the Q-function rather than the likelihood function is of
no practical importance for this study. It will inevitably be dominated by the
O,(1/v/N) terms emanating not only from the Dynamic PCA estimation error
in Proposition 2.5 but also the WK smoother to be considered in Proposition 2.7

below.

2.8.3 Final Results

We denote our final loadings estimators, obtained when the Spectral EM algo-

rithm is terminated, as
~SpEM A(kSpE )
¢ =¢

fori=1,...,N.

Proposition 2.7. Under Assumptions A1-A9, as N and T — oo, it holds that

0 1 1 BT 10g BT
= max ) ) )
? VN \/Br T

uniformly (as defined in Remark 2) with respect to i fori=1,...,N.

ASpEM

C;
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Proof. See Appendix 2.10.8. m

Next, we define, for i =1,..., N,

&M (1)

as the the r x 1 column vector containing the i row of the matrix lag polynomial
C(L) estimated using the Spectral EM procedure. Analogously, we have for

q = 1, ceey 2BT + 1,
éf%DEM(efz'Qﬂqu)

as the associated transfer functions.

Then, we can express as the scalar quantity

SXi — C/-’. (6—i27rqu )qu

for ¢ =1,...,2B7r + 1. Analogously, we define

SpEM ’ .
2 X ~SpEM [ —i27w; \afSPEM
A = . Jq .
z; ¢, (e )Z i

as our corresponding estimator of the DFT of the i** common component.
Proposition 2.8. Under Assumptions A1-A9, as N and T — oo, it holds that

0 N 1 1 BT log BT
= max y 3 y
P VN’ /Br T

uniformly (as defined in Remark 2) with respect to @ for i = 1,...,N and q =
1,...2Bp + 1.

SpEM
S Xi

g —_ .
qu ZJq

Proof. See Appendix 2.10.9. n
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Finally, we let the scalar quantities obtained via the Inverse DFT’s,

2B7r+1

1 o
Xi 127w,
Xits — —F7m—— z:e J‘?, and
V2Br +1 q_zl Ja

2Br+1
SSpEM _ 1 .

e Z AXl z27rqu
e \/2BT +1

forte =1,...,N and s = 1,...,2B7r + 1 represent the theoretical and estimated
values of the common component respectively.'?

Proposition 2.9. Under Assumptions A1-A9, as N and T — oo, it holds that
1 BT lOg BT

max )

\/_\/_

~SpEM -~ o
ths - X’its Op

pointwise with respect to i fori=1,.... N and s=1,...,2Br + 1.

Proof. See Appendix 2.10.10. O]

2.8.4 Discussion of Results

In this section, we comment on our finding above that Propositions 2.6 and 2.7
offer the same convergence rate. In other words, we certainly do not claim to
have demonstrated an improvement in speed of convergence for our EM algo-
rithm based procedure over and above a principal components based approach.
Nevertheless, we believe that our finding is interesting in its own right for the

following reasons.

First, specific rates notwithstanding, our work accords an extensive degree of
theoretical support to our main precursor, Fiorentini et al. (2018), which albeit

ground-breaking in the frequency domain literature for dynamic approximate

19We remind the reader that, as discussed in Section 2.6.3, the indexation t, for s =
1,...,2B7 + 1 refers to the relatively coarse temporal grid that arises due to the necessary
loss in resolution as a result of smoothing techniques required for non-parametric estimation
of the spectral density matrix. The notation has been switched from ¢, to t; simply to avoid
conflicting with the indexation over the corresponding coarse frequency grid that appears on
the right-hand side of the given expressions.
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factor models, is completely silent on the question of asymptotic properties. The
paper chooses to focus instead on considerations of computational efficiency. In
this regard, our study addresses an important lacuna in the literature. Indeed,

Fiorentini et al. (2018) remarks:

[...] an extension of the Doz et al. (2012) analysis that looks at
the properties of our algorithm and the resulting ML estimators in
approximate factor models in which the cross-sectional dimension is
non-negligible relative to the time series dimension would constitute
a very valuable addition. In fact, a very large number of series might
constitute a computational blessing in this framework, the rationale
being that for large N the unobservable factors will be consistently
estimated by the Kalman-Wiener-Kolmogorov filter [...]. (Fiorentini
et al., 2018, p.269, emphasis added)

Second, our study establishes formally that convergence rates obtained at initial-
isation are at least preserved through our spectral EM procedure. Indeed, the
same finding is celebrated in the time domain analogue of our study, Barigozzi

and Luciani (2022). The paper states:

[...] although potentially subject to mis-specification errors, we show
that under assumptions similar to those made for PC analysis |...], the
EM estimators of the loadings and the factors have the same rate of
consistency as those of the PC estimators.?? (Barigozzi and Luciani,
2022, p.6, emphasis added)

In fact, arguably the most influential work in this area for the entire decade
prior to Barigozzi and Luciani (2022) was Doz et al. (2012), which was only
able to establish a relatively slow rate of consistency of the factors estimated
via the EM algorithm with respect to PCA. Contrast, for example, Doz et al.
(2012, Proposition 1) with Barigozzi and Luciani (2022, Proposition 3). Indeed,
Barigozzi and Luciani (2022, p.38) states, “[...] our result confirms the conjecture
by Doz et al. (2012), based on numerical studies, that, in terms of consistency

rates, the EM estimator behaves asymptotically as the PC estimator.”

20PC is the acronym used in Barigozzi and Luciani (2022) for “principal components”.
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From this perspective, we believe that by establishing rates in line with the bench-
mark, we have developed a frequency domain counterpart (for at least some of the

results) of Barigozzi and Luciani (2022). We believe this is a non-trivial exercise.

Third, the availability (since 2006%!) of a formally outlined procedure backed by
consistency rates in Doz et al. (2012) (albeit not the sharpest possible) led to a
resurgence of interest in the use of likelihood-based methods for factor models for
high-dimensional time series. We will very shortly outline some reasons for the

popularity of such methods, but let us first consider examples from the literature.

With respect to theory, studies that build upon the contributions of Doz et al.
(2012) include (but are not limited to) Bai and Li (2012), Ng et al. (2015),
Jungbacker and Koopman (2015), Sundberg and Feldmann (2016), Bai and Li
(2016), Bai and Liao (2016), and of course, Barigozzi and Luciani (2022). These
papers develop the theory for various likelihood-based procedures for factor model

structures in high-dimensional settings.

With respect to applications, studies that leverage and, in some cases, extend the

approach of Doz et al. (2012) include (but are not limited to):

(i) Reis and Watson (2010), Luciani (2020), and Barigozzi and Luciani (2021)

for constructing indices of economic activity;

(ii) Marcellino and Schumacher (2010), Jungbacker et al. (2011), Baribura and
Modugno (2014), and Marcellino and Sivec (2016) for addressing challenges

associated with missing or ragged-edge data??;

(iii) Giannone et al. (2008), Baibura et al. (2013), Modugno (2013), and Barnett
et al. (2016) for nowcasting;

(iv) Baribura et al. (2015) for computation of conditional forecasts?;

21The results of Doz et al. (2012) were first made publicly available at least as far back as
2006 prior to official publication in The Review of Economics and Statistics in 2012. See, for
example, the working paper Doz et al. (2006) freely available from the European Central Bank
(ECB) website since September 2006.

22Datasets with a ragged-edge refer to unbalanced panels that emerge from publication lags
of high- and low-frequency indicators.

23These are defined as projections of a set of variables of interest on future paths of some
other variables in dynamic systems.
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(v) Coroneo et al. (2016), Altavilla et al. (2017), Delle Chiaie et al. (2022), and

Barigozzi et al. (2021a) for estimating models with block structures;

(vi) Juvenal and Petrella (2015), and Luciani (2015) for impulse response anal-

ysis; and
(vii) Linton et al. (2022) for financial risk management.

Our simple point is that there is clearly a vast amount of interest in using the
EM algorithm as an estimation strategy with respect to factor models in high-
dimensional settings, and it stands to reason that a serious investigation of the-

oretical properties is of paramount importance.

We naturally segue to our next question of interest. That is, what indeed is
the appeal of the EM algorithm (or likelihood-based procedures in general) to
researchers and practitioners alike? The answers offered by Barigozzi and Luciani
(2022) are insightful:

The EM algorithm has two main advantages with respect to PC es-
timation. First, the EM algorithm allows the user to impose restric-
tions on the model, thus reflecting any prior knowledge about the
data. Indeed, as mentioned above, on the one hand, the state-space
formulation and the related Kalman smoother in the E-step allow to
impose a variety of different dynamics on the states and to deal with
data irregularly spaced in time. On the other hand, in the M-step,
we can impose restrictions on the parameters. Although these tasks
are in principle possible also by means of PC analysis [...?*], dealing
with missing data and implementing parameter constraints via the
EM is simpler and more common in the literature |[...]. (Barigozzi and
Luciani, 2022, p.6-7)

The paper continues:

Second, the EM algorithm allows us to model the dynamic evolution
of the data explicitly. Indeed, we show that when we estimate a DFM

on a dataset of US macroeconomic times series, the EM algorithm

24References have been omitted.
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produces estimates of the common component that track the dynamics
of the observed series better than the PC estimator. This is especially
true for those series displaying periods of high persistence and regime
changes, like inflation and interest rates, thus suggesting that the EM
might be more robust to local deviations from stationarity. (Barigozzi
and Luciani, 2022, p.7)

Further, while we relegate the question of efficiency to future study, there is much
evidence to suggest that the EM procedure harbours efficiency gains. Certainly
in the time domain, for instance, Barigozzi and Luciani (2022) finds that the
loadings estimator of the EM algorithm is asymptotically as efficient as the prin-
cipal components estimator, while the asymptotic covariance of the estimated
factors depends on the degree of cross-sectional correlation in the idiosyncratic

component. The paper states:

In particular, if we strengthen the classical assumption of weak cross-
correlation to impose sparsity of the idiosyncratic covariance matrix,
the EM estimator of the factors becomes more efficient than the PC

estimator. (Barigozzi and Luciani, 2022, p.6)

Finally, there is one specific additional benefit accruing to us in the frequency
domain, albeit not in the time domain setting of Barigozzi and Luciani (2022).
Specifically, when it comes to forecasting, our spectral EM procedure accords us
with a useful advantage over-and-above dynamic PCA. Indeed, it is well-known
that dynamic PCA produces an estimator of the common component y;; that is
consistent but is based on filters that are two-sided, involving not only present
and past values but also future values of x; (see, for instance, Forni et al.; 2000,
Equation 9). This creates no problem in the central part of the sample, but
the performance of the estimator of y;; deteriorates as t approaches 1 or T'. For
this reason, dynamic PCA cannot be used for forecasting. Various studies have
attempted to address this (Forni et al., 2005, 2015, 2017; Forni and Lippi, 2011).
In similar fashion, we too are able to furnish estimators that do not necessitate

the use of two-sided filters and thereby may indeed be used for forecasting.

For all the reasons above, we believe that our findings represent a significant
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contribution to the literature. Indeed, it is our hope that availability of bench-
mark rates for the spectral EM procedure will also galvanise analogous studies in
the frequency domain where many sophisticated dynamic specifications (see, for
example, Fiorentini et al. (2018)) may be accommodated but research remains

scarce.

2.9 Simulations

2.9.1 DModel Specification
Fort =1,...,T, we simulate data from a single-lag r-factor model:

x, =C(L)fi+ /1O e,
A(L)ft = Ut with Uy ~ iid N(O, L«),
B(L)er = v with vy ~ iid N(0,7),

where?® in particular,

X; is the N-dimensional vector of observables;

f; is the r-dimensional vector of unobserved factors;
C(L) = |cot+cul ... co+ciL|;

1—aL itk=1

Ap(L) = for k,l=1,...,r;
0 itk #1
1—-0bL ifi=j o

Bi;(L) = T ford, =1, N;
0 ifi#j

Tij = d I fori,j=1,...,N.

We note that cg, and c;; are N x 1 vectors of loadings corresponding to the k™

factor and its lag. Specifically, for each ¢ = 1,..., N and k = 1,..,r, we choose

Z5We use ® to represent the Hadamard (or element-wise) product between two vectors.
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loadings ¢; o and ¢; 15 as draws from the N(0, 1) distribution with the restriction
that ’%‘ > 1 in order to guarantee invertibility of the MA polynomial in the
equation for the observables.

We set the scalar autoregressive coefficient a = 0.7, and draw initial values for

the factor processes, fio for all k, from the N(0,1/(1 — a?)) distribution.

The constant n is an N x 1 vector that allows us to control the proportion of
the variance of x; accounted for by the idiosyncratic component. Suppose we
want this noise-to-signal ratio to be p. We can impose the latter by setting
N = 1%ﬂ)(l — V), where Ty, is the variance of the " common component.

Specifically, we set p = 0.5.

The Toeplitz matrix T allows us to model cross-sectional correlation in the id-
iosyncratic component through parameter. Serial correlation in the idiosyncratic
component is governed by the autoregressive coefficient. We recall that our
spectral EM estimation procedure does not explicitly account for cross-sectional
and/or serial correlation in the idiosyncratic component. Thus, the parameters
¢ and b allow us to assess the robustness of our estimators with respect to this

form of mis-specification.

The procedure is terminated by looking at the convergence statistic

’z(x, F;00M) — (X, F: é<m—1>)‘

CStat,,, = - -
(1 72 60m)| + |ucx, Py 60y

where 0™ refers to the parameter estimates obtained from the m® iteration. We
stop after M iterations if CStaty, < 1074

2.9.2 Illustrative Example

In this section, we present an illustration of a single run of our procedure. As
regards control parameters, we set N = 100,7 = 200, = 2,¢ = 0.5,b = 0.3 and
estimate common components in the manner outlined in the previous paragraph.
The size of our lag window is set to 2 x [V/T].
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For comparison, we also estimate common components using three other ap-
proaches, namely, Static Principal Components Analysis or “SPCA” (see, for
example, Stock and Watson, 2002a); the time-domain EM algorithm or “DGR”
(see Doz et al., 2011), and Dynamic Principal Components Analysis or “DPCA”
(see Forni et al., 2000).

We note that in order to facilitate a convenient comparison across all methods,
i.e. with reference to the original temporal grid, we compute the common com-
ponent in a manner analogous to Forni et al. (2000). That is, we obtain the filter
KPPM (L) such that KPP (¢=2mia) is the product of the transfer function of
the loadings and the transfer function of the WK smoother. Indeed,

[/(\'fPEM<€7i27rqu) _ éi’pEM (67i27rqu )WSpEM(qu)éspEM* (e—i27rqu )@?pEM—l (qu)
for ¢ = 1,...,2Br + 1. Then, we simply convolve IA(iSpEM(L) with the data for
the i-th series for ¢ = 1,..., N and this allows for interpolation on the original

temporal grid.

We are then able to measure the performance of each of the four estimators with

the following mean-square error criterion:

N /~
MSE = Zthl > i1 (Xt — Xit)2
Zf:l Zfil X5

where X;; and y;; represent respectively the estimated and true common compo-

nent for series ¢ at time t. Of course, the lower is MSE, the better.

The graphs below depict the common component estimates for the first 2 series

(chosen simply for illustrative purposes).
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Figure 2.1: Common Component for Series 1 (SPCA)

—True
—— Estimated

o |
_30 55 1(|)0 150
Time

Figure 2.2: Common Component for Series 1 (DGR)
3 T
——True

2 | -
1 A ;’:\ W | N .

AN /\f\/\ \ / \Ig‘i;\ /\\ /\\\ \ll\ s\\;\ M\/\) ;-—“; MY “
-2 - i
-30 5‘0 1(|)0 150

Time

89



Figure 2.3: Common Component for Series 1 (DPCA)
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Figure 2.4: Common Component for Series 1 (SpEM)
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Figure 2.5: Common Component for Series 2 (SPCA)
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Figure 2.7: Common Component for Series 2 (DPCA)
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Figure 2.8: Common Component for Series 2 (SpEM)
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Results appear to be in accordance with what one might expect. First, it appears
that the two time-domain methods outperform the two frequency-domain meth-
ods. We believe this is a manifestation of the relative loss in resolution inherent
in frequency-domain methods arising due to the need for non-parametric spec-
tral density estimation. That is, for a given T, the effective sample size in the
frequency-domain reduces to 2Br+1 < T points. Second, DGR broadly seems to
improve upon SPCA; and correspondingly, SpEM seems to improve upon DPCA.
In other words, the two iterative methodologies DGR and SpEM represent gains
over and above their one-shot pre-estimators SPCA and DPCA respectively. Of
course, our visual analysis is based on only the first two series. By examining the
MSE figures we obtained for this illustration, we can also summarise the findings
for all N series. Indeed, the MSE for SPCA and DGR obtained were 0.48 and
0.17 respectively and for DPCA and SpEM were 0.65 and 0.48 respectively.

We note as a final point of interest that convergence for SpEM was achieved in
16 iterations in this illustration. The evolution of our convergence statistic is

depicted below.

Figure 2.9: Convergence of the SpEM procedure
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We conduct a more extensive simulation analysis in the next section.
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2.9.3 Monte Carlo Study

Throughout, we let N € {50, 70,100,150}, T" € {70,100, 150, 200,300}, r = 2,
¢ € {0,0.5}, and b € {0,0.3}. We consider 100 replications for each individual
configuration of these control parameters. Subsequently, we evaluate our estima-

tors by looking at averages of the MSE performance statistic over all repetitions.

Tables 2.1-2.4 report results for cases where innovations are modelled as Gaussian.
Specifically, Table 2.1 corresponds to the case in which the estimating model is
well-specified; that is, the idiosyncratic component is neither cross-sectionally nor
serially correlated (¢ = 0,b = 0). On the other hand, Table 2.2 reports results for
the case in which the estimating model is mis-specified; that is, the idiosyncratic
component is cross-sectionally correlated (¢ = 0.5). Table 2.3 considers serial
correlation in the idiosyncratic component (b = 0.3). Table 2.4 considers both
cross-sectional and serial correlation in the idiosyncratic component (¢ = 0.5, =
0.3).

Again, results conform to what we expect. We summarise our findings below.

(i) Given the size of the cross-section N, the quality of SpEM estimates im-
proves as the sample size T' increases. SpEM estimates also improve with

joint increases in N and 7.

(ii) Given N and T, the performance of SpEM deteriorates when we move from
considering a well-specified estimating model to a mis-specified one (for

example, if we move from Table 2.1 to Table 2.4).

(iii) For any given N and T, the two time-domain procedures SPCA and DGR
outperform their frequency-domain counterparts DPCA and SpEM respec-
tively.

(iv) As regards the time-domain procedures, DGR outperforms SPCA for any
given N and T. As regards the frequency-domain procedures, SpEM out-
performs DPCA for any given N and 7. This demonstrates that there are
additional gains associated with the iterative procedures over and above

their respective one-shot pre-estimators.
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Tables 2.5-2.8 report analogous results for the case in which innovations are drawn
from the Student’s t-distribution with 4 degrees of freedom. We consider this case
in order to further assess the performance of SpEM under mis-specification in the
context of the true data-generating process following a relatively heavy-tailed dis-
tribution. In general, the procedure works as expected. Indeed, the performance
of SpEM (along with the other three procedures) deteriorates somewhat relative
to the Gaussian case but the overall patterns described above remain broadly

unchanged.
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Table 2.1: Simulation Results - MSEs

¢ = 0,b = 0, Gaussian innovations

SPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.4839 0.4551 0.4368 0.4191 0.4094
N=70 0.4202 0.3798 0.3498 0.3318 0.3236
N=100 0.3283 0.2998 0.2757 0.2562 0.2299
N=150 0.2514 0.2263 0.1900 0.1753 0.1564
DGR

T=70 T=100 T=150 T=200 T=300
N=50 0.2006 0.1635 0.1441 0.1309 0.1162
N=70 0.1707 0.1367 0.1147 0.1000 0.0915
N=100 0.1468 0.1153 0.0918 0.0815 0.0693
N=150 0.1290 0.1009 0.0758 0.0667 0.0543
DPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.6826 0.6778 0.6511 0.6415 0.6347
N=70 0.6899 0.6624 0.6438 0.6394 0.6276
N=100 0.6745 0.6586 0.6403 0.6286 0.6193
N=150 0.6763 0.6533 0.6331 0.6236 0.6114
SpEM

T=70 T=100 T=150 T=200 T=300
N=50 0.7258 0.6918 0.5503 0.5043 0.5724
N=70 0.5807 0.5007 0.4930 0.4567 0.4519
N=100 0.5295 0.4647 0.4424 0.4403 0.4178
N=150 0.4691 0.4418 0.4239 0.4070 0.3973
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Table 2.2: Simulation Results - MSEs
¢ = 0.5,b = 0, Gaussian innovations

SPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.5654 0.5195 0.5035 0.4956 0.4854
N=70 0.4811 0.4367 0.4166  0.4091  0.3990
N=100 0.3736 0.3542 0.3253 0.3195 0.3040
N=150 0.3007 0.2653 0.2404 0.2196 0.2075
DGR

T=70 T=100 T=150 T=200 T=300
N=50 0.2638 0.2366 0.1992 0.1959 0.1746
N=70 0.2234 0.1812 0.1505 0.1424 0.1293
N=100 0.1764 0.1429 0.1178 0.1045 0.0965
N=150 0.1495 0.1163 0.0942 0.0821 0.0706
DPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.6926 0.6810 0.6564 0.6493 0.6359
N=70 0.6846 0.6680 0.6546 0.6396 0.6312
N=100 0.6796 0.6587 0.6454 0.6340 0.6232
N=150 0.6751 0.6623 0.6385 0.6250 0.6155
SpEM

T=70 T=100 T=150 T=200 T=300
N=50 0.6489 0.6466 0.7556  0.5583  0.5247
N=70 0.5962 0.5623 0.5197 0.5286 0.4884
N=100 0.5307 0.4951 0.4830 0.4632 0.4419
N=150 0.4974 0.4672 0.4486 0.4251 0.4063

97



Table 2.3: Simulation Results - MSEs
¢ = 0,b = 0.3, Gaussian innovations

SPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.5303 0.4770 0.4582 0.4271 0.4167
N=70 0.4287 0.3956 0.3590 0.3422 0.3271
N=100 0.3626 0.3276 0.2904 0.2688 0.2465
N=150 0.3128 0.2570 0.2077 0.1835 0.1718
DGR

T=70 T=100 T=150 T=200 T=300
N=50 0.2492 0.1967 0.1657 0.1438 0.1278
N=70 0.2112 0.1638 0.1338 0.1145 0.1024
N=100 0.1855 0.1437 0.1117 0.0943 0.0791
N=150 0.1734 0.1286 0.0935 0.0779 0.0633
DPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.6842 0.6663 0.6439 0.6306 0.6254
N=70 0.6735 0.6520 0.6387 0.6283 0.6166
N=100 0.6742 0.6546 0.6279 0.6188 0.6094
N=150 0.6634 0.6481 0.6238 0.6176 0.6050
SpEM

T=70 T=100 T=150 T=200 T=300
N=50 0.7057 0.6906 0.5936 0.5656 0.5256
N=70 0.6108 0.5685 0.5170 0.4972 0.4646
N=100 0.5455 0.5269 0.4775 0.4677 0.4390
N=150 0.5095 0.4831 0.4513 0.4352 0.4095
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Table 2.4: Simulation Results - MSEs
¢ = 0.5,b = 0.3, Gaussian innovations

SPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.5907 0.5493 0.5203 0.5009 0.4962
N=70 0.4829 0.4592 0.4222 0.4247 0.3937
N=100 0.4205 0.3701 0.3476 0.3341 0.3130
N=150 0.3496 0.2926 0.2639 0.2390 0.2197
DGR

T=70 T=100 T=150 T=200 T=300
N=50 0.3145 0.2538 0.2242 0.1967 0.1827
N=70 0.2544 0.2004 0.1689 0.1542 0.1372
N=100 0.2159 0.1675 0.1341 0.1190 0.1023
N=150 0.1891 0.1445 0.1124 0.0946 0.0804
DPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.6850 0.6679 0.6534 0.6387 0.6256
N=70 0.6837 0.6570 0.6372 0.6295 0.6226
N=100 0.6684 0.6524 0.6328 0.6246 0.6136
N=150 0.6695 0.6410 0.6272 0.6163 0.6073
SpEM

T=70 T=100 T=150 T=200 T=300
N=50 0.9155 0.6861 0.9196 0.6165 0.5575
N=70 0.6309 0.5841 0.5441 0.5528 0.5251
N=100 0.5661 0.5328 0.5097 0.4882  0.4587
N=150 0.5461 0.5004 0.4787 0.4547 0.4380
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Table 2.5: Simulation Results - MSEs
¢ = 0,b= 0, Student’s t innovations

SPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.4077 0.3743 0.3593 0.3360 0.3239
N=70 0.3173 0.2871 0.2811 0.2603 0.2586
N=100 0.2512 0.2275 0.2080 0.1862 0.1754
N=150 0.1991 0.1678 0.1460 0.1269 0.1149
DGR

T=70 T=100 T=150 T=200 T=300
N=50 0.1792 0.1501 0.1291  0.1192 0.1083
N=70 0.1463 0.1216 0.1071 0.0956 0.0878
N=100 0.1294 0.1031 0.0880 0.0791 0.0709
N=150 0.1164 0.0958 0.0757 0.0674 0.0587
DPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.7280 0.7260 0.7150 0.7052 0.7089
N=70 0.7283 0.7199 0.7087 0.7120 0.6997
N=100 0.7295 0.7191 0.7061 0.6968 0.6970
N=150 0.7230 0.7118 0.7056 0.6991 0.7004
SpEM

T=70 T=100 T=150 T=200 T=300
N=50 0.6831 0.6335 0.6112 0.5954 0.5805
N=70 0.6095 0.5866 0.5554 0.5653 0.5501
N=100 0.5790 0.5667 0.5484 0.5204 0.5192
N=150 0.5646 0.5332 0.5350 0.5135 0.5170
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Table 2.6: Simulation Results - MSEs
¢ = 0.5,b =0, Student’s t innovations

SPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.4422 0.4247 0.4147 0.4127  0.3902
N=70 0.3753 0.3507 0.3289 0.3186 0.3086
N=100 0.3069 0.2717 0.2586 0.2414 0.2292
N=150 0.2362 0.2019 0.1747 0.1572 0.1468
DGR

T=70 T=100 T=150 T=200 T=300
N=50 0.2288 0.1879 0.1787 0.1689 0.1511
N=70 0.1864 0.1533 0.1357 0.1255 0.1147
N=100 0.1558 0.1257 0.1076  0.0999 0.0885
N=150 0.1339 0.1070 0.0896 0.0789 0.0718
DPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.7293 0.7203 0.7241 0.7128 0.7059
N=70 0.7305 0.7187 0.7145 0.7106  0.7037
N=100 0.7302 0.7190 0.7099 0.7039 0.7033
N=150 0.7215 0.7130 0.7064 0.7017 0.7018
SpEM

T=70 T=100 T=150 T=200 T=300
N=50 0.6874 0.6410 0.6292 0.6229 0.5991
N=70 0.6515 0.6097 0.5963 0.5932 0.5764
N=100 0.6069 0.5898 0.5675 0.5549 0.5578
N=150 0.5778 0.5585 0.5517 0.5417 0.5409

101



Table 2.7: Simulation Results - MSEs
¢ =0,b= 0.3, Student’s t innovations

SPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.4418 0.4125 0.3849 0.3676 0.3618
N=70 0.3843 0.3404 0.3109 0.2765 0.2796
N=100 0.3309 0.2724 0.2512 0.2187 0.2030
N=150 0.2826 0.2094 0.1675 0.1513 0.1258
DGR

T=70 T=100 T=150 T=200 T=300
N=50 0.2163 0.1797 0.1485 0.1319 0.1211
N=70 0.1931 0.1515 0.1232 0.1085 0.0966
N=100 0.178 0.1308 0.1056 0.0921  0.0779
N=150 0.1625 0.1158 0.0906 0.0772 0.0654
DPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.7323 0.7210 0.7111  0.7051  0.7093
N=70 0.7278 0.7261 0.7110 0.6991 0.7016
N=100 0.7241 0.7123 0.7093 0.7016 0.6997
N=150 0.7238 0.7104 0.7007 0.6918 0.6910
SpEM

T=70 T=100 T=150 T=200 T=300
N=50 0.7016 0.6589 0.6302 0.6111 0.6127
N=70 0.6555 0.6476 0.6043 0.5882 0.5803
N=100 0.6255 0.6034 0.5796 0.5672 0.5664
N=150 0.6061 0.5767 0.5555 0.5468 0.5358
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Table 2.8: Simulation Results - MSEs
¢ = 0.5,b = 0.3, Student’s t innovations

SPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.4989 0.4666 0.4558 0.4298  0.4259
N=70 0.4240 0.3985 0.3667 0.3489 0.3431
N=100 0.3686 0.3220 0.2903 0.2649 0.2536
N=150 0.2961 0.2522 0.2070 0.1822 0.1628
DGR

T=70 T=100 T=150 T=200 T=300
N=50 0.2766 0.2289 0.2038 0.1790 0.1679
N=70 0.2240 0.1838 0.1599 0.1392 0.1272
N=100 0.1991 0.1556 0.1245 0.1111  0.0995
N=150 0.1724 0.1317 0.1027 0.0885 0.0777
DPCA

T=70 T=100 T=150 T=200 T=300
N=50 0.7354 0.7207 0.7121 0.7041  0.7085
N=70 0.7324 0.7184 0.7153 0.7074  0.7008
N=100 0.7323 0.7207 0.7074 0.7038  0.6950
N=150 0.7172 0.7109 0.7059 0.7034 0.6890
SpEM

T=70 T=100 T=150 T=200 T=300
N=50 0.8301 0.6879 0.6560 0.6450 0.6378
N=70 0.6894 0.6494 0.6235 0.6202 0.6006
N=100 0.6524 0.6198 0.5984 0.5921 0.5697
N=150 0.6102 0.5898 0.5915 0.5735 0.5480
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2.10 Appendix — Proofs for Chapter 2

2.10.1 Proof of Proposition 2.1

First, we note that under Assumptions A1-A3, the matrix Gg(w) is positive defi-

nite with real, finite and distinct eigenvalues. Next, we observe that

N_lGx(w) = N'C(e ™) G (w)C* (e ™)
= N'C(e7 ™) Pe(w) Ag(w) P§ (w)C* (7™
= N7 G5 (w) G5 (w)

where Gy (w) is defined Gy (w) = C(e~2™) Pr(w)Ay*(w). Then, for w € [0, 1),

G5 (@)Sx(W)/N = Ag(w)

= A2 (@) B @) O (e7™)C ™) Pr(w) Ay (@) /N = A (@) P (@) Pe(w) Ay ()
= A2 (@) () [C7(e7#)C (e ™) IN — L] Pe(w) A (w).

so that, by properties of G¢(w), there exists a finite positive constant M7 such
that

sup || 95 (w)Gx(w) /N — Ag(w)]|
2 A :
< sup (A2 (@) P @) sup [0 (e>™)0 () /N ~ |
< M7 sup ||C*(e7 ™) C'(e72™) /N — L.
Then by part (ii) of Assumption A3, clearly

Jim_sup [[93()9x(w)/N — Ar(w)]| =0,

We note that Ag(w) is in fact diagonal and has r non-zero, finite and distinct
entries due to Assumptions Al, A2, and part (i) of Assumption A3. Since the r
largest eigenvalues of N™'Gy(w) = N7'Gy(w)S (w) are of course equal to the r

cigenvalues of NG5 (w)Sy(w), we have that as N — oo, the r largest dynamic
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eigenvalues of x; are the same as N times the r finite, non-zero and distinct
dynamic eigenvalues of f;. We thus have our needed conditions on asymptotic
divergence (linearly with N) as well as on separation of the dynamic eigenvalues

of the common component.

2.10.2 Proof of Proposition 2.2
In this section, we assume the true parameters are known. We prove that the
factors can be consistently estimated, as N becomes larger, by the WK smoother.

We begin with the definition of the WK smoother,

2" = Gr(w))C* (7™ G (w;) 2%

J J7

for a given frequency w;.

Step 1: Application of the Woodbury Formula
We recall from Section 2.4.1.2 that due to the Woodbury formula we can express

the WK smoother as

2l =W (w)C" (e72™) G (w))z)

J
where W (w;) =[G (w)) + C*(e7#™) Gy (wy)C(e™?m)] 7
Step 2: Decomposition of z§w
Plugging back in for W (w;), we have
W

- [G;l(wj') +C*(e—z’2mu]-)G§—1(wj)c(e—ﬁmu]-)]—IC*(e—i27rwj)Gg—l(wj>Z;<'

J

The next step is to express the inverse, that is the W(w;) term, as the sum of

two terms. In order to proceed, we first present the following matrix identities
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for square invertible matrices A, B, C and D:

i) A~' =B '=A"Y(B-A)B™!
Proof.

At - B t'=AT'BB' — A'AB™!
=AYBB' - AB™)
=AYB-AB™! O

(i) (C+D)'=D"'—(C+D)"'CD™!
Proof.

(C+D) ' =(C+D)"' =D "'+ D!
=(C+D)'[D—(C+ D)D"+ D
(using matrix identity (i))

=D*'—(C+D)'CcD™! O

We apply matrix identity (ii) to the previously obtained expression for zgw, treat-
ing G¢'(w;) as C and C*(e=?™)G (w;)Ce ™) as D:

fW

" = (107 )Gg )t )]

—[G (W) +C (7™ ) G Hwy ) C e ™) TG (w))[CF (€77 ) G (wy) C (ei%“”)]l)

x C*(e7 ™) G (w))2].

Expanding by bringing the final multiplicative term inside the large parentheses,
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we have

Z;-W _ [C*(efﬂﬂ*wj)Ggl(wj)c(efﬁﬂwj)]710*(67i2ﬂwj)Ggl(wj)Z;<
—[GFH(wy) O (e G Hwy)C (e ™) T Gy Hwy )[CF (6720 ) G Hw) ) C e m)] 7
% C'*(e_i%“’j)Ggl(wj)z-

X
g

w
Let us temporarily denote the first term of the previous summation by z§ (Iremp)

w
and the second term by z§ (Hremp) gt is,

ZfW — Zf;W(ITemp) _ Zf;W(IITemp)
J J J )

where

W (Iremp K (L —i2mw;\ = —i2mw; =1 ok (o i2mw; (1 X
z; () =[O (e G ) C e )] O (e PG ()2, and

at rem) — (Gt (wy) + CF (™2™ ) G Mw;) O e 2)]
x Gyt (w;)

x [ ( )G ) Ol )

X O (e )G ()2

w w
We note that z§ (Iremn) and z§ (Iremp) may each be further split into two separate

terms by substituting in for 2¥ = C'(e” ™)z} + ZJC- as follows:

First, we see that

ZfW (ITemp)

_f £Y(1)
i =2+ 2

where

ijW([) _ [C*<e—i27rwj)G€—1(wj)c<e—i27rwj)]—10*(e—i2ﬂ'wg')Gg—l(wj)zc.

J J°
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Second, we see that

ZfW(HTemp) _ ZfW(II)

fW(IIT)
J J j

J

+z

where

W i i — —i27w; \1— —
7y =[Gy (W) + O (7™ Gg H(wy) Cle ™) T G (wj)z, and
w . )
Z§ () _ [G;l(u)j) + C*(e—z%rwj)Gg—l(wj>0(e—z27rwj>]—1
X Gt (wy)
% [C«*(e—i27rwj)G£—1(wj)c(e—i%rwj)]—l
X C*(e_i%wj)Ggl(wj)zf-.

fW

Thus, we have an expression for z;

involving four terms:

w
zf- :zg—i—z

V(1) fW(IT) fW(IIT)
j —Z. —Z. .

J J J

In the subsequent steps below, our goal will be to examine the asymptotic be-

(I fW(II) (Irr

. £ W
haviour of each of the terms z; ', z; , and z; ) as N = oo.

Step 3: Intermediate Results

In this section, we state three useful lemmas which we will rely upon in the steps
that follow.

Lemma 2.10.1. For w; = j/T where j =0,...,T — 1,

max Eg ||N—1/20*<e—i2wf)c;—1<wj)z§.||2] — 0(1).

0<j<T—1 £

Proof. We recall that Ggl(wj) is an N x N diagonal matrix and (as above) the
i'" term of the leading diagonal of this matrix is denoted by G;l(wj).
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Noting that C*(e=™7)G¢" (wj)zc is an 7 x 1 vector, we can express its squared

spectral norm as

N Cil

|C* (e72™0) G (w))z$||* = Z ((Z G, ust ) (; ﬁ»

where a bar on top signifies a complex conjugate (for example, Ufk refers to the

complex conjugate of the complex scalar ka)

Thus, for w; = j/T where j = 0,...,T — 1, there exist finite positive constants
ML 2101 and M2‘10.17 independent of w;, such that

( |
N ]Z_C T
Eas)

rfe[EE A%

k=1 i=1 s=1

N N .

-1 2.10.1 Gi ,GCs

< NS [
i=1 s=1

(by Assumptions A2 and A7)

N N
= My INT Z Z 9e.is(W;)

i=1 s=1

< M2'10‘1MC

<M < x (by Assumption A6).

Since M s independent of wj, the final result follows. O

For the next two lemmas, we note that the spectral norm of a square Hermitian
matrix is equal to the modulus of its largest eigenvalue. For a non-negative defi-

nite matrix this is simply equal to the largest eigenvalue.
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Lemma 2.10.2. For w; = j/T where j =0,...,T — 1,

max || N[C* (™) G (w;)Ce ™) H* = O(1).

0<j<T-1

Proof. We note first that C* (e~ )G " (w;)C (e~ ) is an 7 x r Hermitian non-
negative definite matrix. Next, we note that there exist finite positive constants

M219-2 and M>""? independent of wj, such that
[IN[C™(e72™9) G (wy) C (e ™) 7|2
2
= 3 (MO G )1 )
< N2 AM{Ge(w;)} ’
— )\T{C*(efi%rwj)C’(efiQmuj)}
) M{Gely)} 2
)\T{C*(e—zﬂﬂ'wj)C’(e—i%rwj)}/]\]'
< M£M2.10.2

—2.10.2
<M < 00

where the penultimate weak inequality follows because (i) the eigenvalue in the
numerator is bounded from above due to Assumption A7, and (ii) the denomina-

tor is finite and positive due to Assumption A3.

Since M- is independent of wj;, the final result follows. n

Lemma 2.10.3. For w; = j/T where j =0,...,T — 1,
ohax INGF (w)) + C*(e72™) G (wy)Cle™™™ )] 7 |* = O(1).

Proof. For the r x r Hermitian non-negative definite matrices G;'(w;) and

C* (6—i27rwj )Gg_l (wj)cv(e—i%rwj )’
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we have

IGe " (wy) + C*(e7™) G Hwy)Cle™™™)|
> [|C*(e7 ™) G (wy)Cle™ ™™ )|

so that

(G wo7) + C" (672G (g Cle™ )] |
< 07 (e G (wy) e ) |

—-—2.10.3

It follows by Lemma 2.10.2 that there exists a finite positive constant M ,

independent of w;, such that

— *( —i27mw; — —127w; \1— 72103
INIGe (w;) + C™(e™™) G (wy)Cle ™™ )] HIP < M7 < oo,

Since M is independent of w;, the final result follows. n

(1)

Step 4: Asymptotic Analysis of zgw as N — oo

We recall the definition of zﬁW(I) from Step 2:

2" = [ G () Ol 2] O (7™ G (wy )25

J

Then,

Eol| N5 D17 = Eg[||N[C* (e~ ™) Gy M (wy) C e ™) N V20" (727 G w28 ]

J

< N[O (e72™) G (wy) C e ™) HPEg [ NT2CH (e727) G wy )25 |1

(by submultiplicativity of the norm)
< M (by Lemmas 2.10.2 and 2.10.1 respectively)

< Q.
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Since M and M- are independent of w;, we have that

0<j<T—1

max Eg U)Nl/zzﬁw(l)uz} = O(1).

(1)

Step 5: Asymptotic Analysis of Z§W as N - o

We recall the definition of zﬁw(m from Step 2:

zf = [Gr(w)) + O (e72™0) G (w;) C (e ™) 1 G (wy )2t

J J

Then, there exists a finite positive constant M**P°_ independent of wj, such that

EolI Nz, "% = Eo[| N[GF (w)) + O (e72™0) G (wy)C e ™) 7 G (wj )2t
< |IN[GFH(w;) + O (e72™0) G (wj) Ce™ ™) 7 e [[| Gy (w;)25 1]
(by submultiplicativity of the norm)
< [IN[GeH(w)) + C*(e72m™0) G M wy ) C e ™)) 7| 2 Fter
(by Assumptions A2-A4)
—2.10.3

< M~ MS*P (by Lemma 2.10.3)

< OQ.

. ==2103 .
Since M7 and MSterS are independent of w;, we have that

fW(Ir
max Eg HNZ~ (1)
0<j<T—1 J

2] — o).
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W(IIT)

Step 6: Asymptotic Analysis of z§ as N — o

We recall the definition of z?W(IH) from Step 2 below:

Z§W(IH) _ [Gf’l(wj) + C*(€7i2ﬂ'w]‘)Ggl(wj)0(67i27rwj>]fl
x Gyt (w;)

« [C*(e—i27rwj)Gg—1<wj>c(e—i27rwj)]—1

% C*(e—iQij)Gg—l(wj>ZC

;-
Then, there exists a finite positive constant M**P5_ independent of wj, such that

Eol| V322 1D 112] < [N (G (wj) + C*(e7 ™) G H(wy)Ce )] |2
x |Gg H(w))]?
X [[N[C*(e7™9) G w;)C e ™) 1|2
x Eg[|[N712C™ (e7™0) G (w))z5 ]
(by submultiplicativity of the norm)
< |IN[GgHwj) + C* (e ™) G H(w;)Ce ™) 71|
% MStepﬁ
X INC (e270) G ) e 2m)

X Eg| N30 (e7m) G (wy)z5 |]

(by Assumption A2)
< TPO8 o ppSters o 72107 o 70
(by Lemmas 2.10.3, 2.10.2, and 2.10.1)

< 0.

. ——2.10.3 —2.10.2 ——2.10.1 .
Since M , MSters N p , and M are independent of w;, we have that

2
max Eg [)’N3/2z§W(III)“ } =O(1).

0<j<T—1
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Step 7: Asymptotic Analysis of Z§W as N — oo

We recall from Step 2 that

W £ () ZfW(II) . ZfW(HI)
J J J J J )

Given Steps 4, 5, and 6 above, we notice that, as far as convergence as N — oo

is concerned, the leading term on the right-hand side is ZEW(I). It follows that

f

fW
Z; Z;

max Eg {N ‘

0<j<T-1

2} —0(1).
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2.10.3 Proof of Theorem 2.1

Given the DFT of a sequence of time series observations, one may exactly recover
the original sequence using the inverse DF'T. The inverse relationship between

the DF'T and the inverse DFT for our time series is given by:

1 T—-1

w .
ftW — \/_ Zg elZﬂw]t
T ijo

for t = 1,...,T. We recall the proof of this well-known result below.?

To prove this relationship, we substitute for zgw into the right hand side. We

have that for any t,7=1,..., T,

1 T-1 1 T-1 1 T
W i2rw;t W _—i2nw,T 2mw it
Tt LS (3 o
ﬁ 7=0 \/T 7=0 ﬁ =1
T

1 T—1
_ w —i27w; (T—t)
Iy ey

=1 7=0
T

1 T, 1=t
SN

T =1 07 T 7é t
_ fW

where the penultimate line follows due to the orthogonality property of complex

exponentials.
By the same reasoning, it also holds that

T—

1 f i27w;t
ft = ﬁ ZZj@ J

=

[asry

fort=1,..,T.

26See for example Bracewell (2000).
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. . .. —f"
Then, there exists a finite positive constant M, independent of w;, such that

2

T-1
2 1 w 127w
Eg [N HftW — ftH :| = NEg f Z(Z? — Zf)e 2mwjt
7=0
1 o , -1—5 .
— N?Ee Z ( (Z]fk _ ijk) 7,27rwjt> (Z (Z koo ka)6227rwj/t>]
k=1 \j=0 j3'=0
1 r T—-1T-1 w = A
=NT 2.0 D B {(ijk WO z]]'c/k)em(wf‘”a")t}
k=1 j=0 j/=0
r T-1
1 w 2
k=1 j=0

T—1
1 W £]|?
j=0
W £
< max Eg |N z; —1z,
0<;j<T—1
—)
<M <o,

by Proposition 2.2. This completes the proof of Theorem 2.1.

2.10.4 Proof of Proposition 2.3

Part (i)

We recall that by definition,

Eolz'z! |Dr] = 2" 25" + W (w;).

for a given j.
We recall some results. As N — oo,

1) |W(w;)|]| = O(N~t) (by Lemma 2.10.3);
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(i) [|zf]| = Op(1)  (by Assumption A2);
for each of the Fourier frequencies w;. Thus,
Eylztzl |Dy] = (25 + O,(N 7)) (28 + O,(N V)" + W (w;)

(by Proposition 2.2
o 4 O,(NV2).

This completes the proof of part (i) of Proposition 2.3.
Part (ii)

For a given 7,

f_x*

®T] = E@ [Z§|DT]Z3{*
= ZfWZx*
i 2
= (z§ + Op(N_l/Q))z}‘*
(by Proposition 2.2)
=77 + O)(N71)

since ||z¥|| = O,(1) due to Assumptions A1-A2.

This completes the proof of part (ii) of Proposition 2.3.
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2.10.5 Proof of Proposition 2.4

We recall that the it row, for i = 1,..., N, in the DFT of our model is

Ci<€—i27rwj )Z§ + Z]Cz

:(Ci,Ol Ci11 Cio2 Cii2

:(Cz’,01 Ci11 Cio2 Cii2

Ci,or Ci,lr)

Cior Ci,lr)

for a given j, where w; = j/T and j =0,...,7 — 1.

Then, the complex conjugate transpose is

since the loadings coefficients are all real.
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C; 01
Ci11

C;.02

Ci12

Cior

Ci1r

0 0
0 0
1 0
e 12T 0
0 1
0 L. eTimYy

+ 25




Let us define the 2r x N matrix of all loadings coefficients C as

Ci01 --- CNpo1
€111 --- CN11
C102 --- CN,02
C= €112 ... CNj12
Cior --- CNoOr
C11r .- CN1r

The definition of Z}‘ = [z}‘,g] means that

UX* Zx*
- |7]
)
1 ’ .
f ¢
£ ¢
Zj ® <€i27rwj> e + Zj

so that the product ZgZ;‘ is
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This means that our estimators may be expressed as

T-1 ; . i )
B 1 . 1 67,27rwj g 1 ezZTrwJ
_ e + T = <ZJZJ ® <e—i27rwj 1 + Zij ® e—z’27rwj 1
T-1
1 iy 1 e 1
X T —~ (ijj ® (e—izmj>> T (ijj ® e~ i2mw;
j:

(by the Law of Iterated Expectations)
=0,x1 (by Assumption A2).

-~

It follows that Eg[C] = € and we have unbiasedness.

As regards consistency, we notice first the matrices involved in the inverse term

are Hermitian and non-negative definite so that

T-1 ; . i )
1 ¢ g 1 67,27rw3 g 1 ezZTrw]
T = (ZJZJ ® (e—i27rwj 1 + Zij ® e—z’27rwj 1

N 1 T-1 . e o 1 ei27rwj
— T = Z]Z] 677,'27'('&)]‘ 1
T—1
1 £, £
= |7 2 %%
T s
We note that
= 1 r T | I.T T-1 1 T
+ £ L ) i2mwji(t—s) . — / i2mwj(t—s) _ /
S DRSS 3D D) LLELISEIE 3) 917 DECTE TR St
j= §=0 t=1 s=1 t=1 s=1 §=0 t=1

—T¢+ 0,(1/VT),
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due to ergodicity of f;, in turn a consequence of Assumption Al. In other words,
the norm of the inverse term is bounded away from zero by a positive term.

Moreover, this result is independent of ¢ for 1 =1, ..., N.

Next, we consider the error term,

T-1
1 £ 1 £.¢ 1
T 4 - (ijj ® (e—z?muj)) T (ijj ® o—i2mw;
‘7:
T-1
1 £0 1
T (Zij ’ <ei2wj>> H

Looking at the squared expectation of the necessary expression, we observe that

there exists a finite positive constant M*7P* independent of observations i for
t=1,...,N, such that

1T71f< 1 T-1 . L T-1 -
Eo |T TszzJ' = TEG Z(zjzj’> (z],z]}>
§=0 §=0 §'=0
1 r T—-1T-1 -
= — Eo [zf’“zf,’“} Eo [zfzj}
k=1 j=0 j'=0
| oL Tl L L
=7 ZZ Eo [szsz] Eo [zflz]ﬂ
k=1 j=0
< MProp4

due to Assumptions A2 and A6. The result on v/T-consistency of the estimator
follows from Chebyshev’s inequality and an application of the continuous map-
ping theorem. Moreover, since M*™P* is independent of i for i = 1,..., N, the
consistency result is uniform with respect to the observations. This completes

the proof of Proposition 2.4.
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2.10.6 Proof of Proposition 2.5

In this section, we prove N,T consistency of our initialisation method for the
factors.?” Let us begin by recalling the definition of our estimator for the DFT
of the factors:

fP

A" = B(wy)a/VN.

J

Step 1: Decomposition of z;f»P
Given the DFT of the observables equation of our true model,

X —i27ww;\ ., f ¢
z; = C(e 7)z; + 7,

we have that
P - D* X
z§ - zg =N I/QPX(wj)zj - zg
= ]\f_1/21’:~’;:(wj)[C’(e_w“"j)Z;‘T + Zg] — z§
= [N~V2p; (w;)C(e™ ™) — Ir]z;IT + N~V2pr (wj)z§
= [N P;(w;) N2 Py (w)) — L]zt + N~ Py (w))z;

= [Py (w;) Py (w;) — I,]25 + N~V2 Py (w;)z5,.

Our goal will be to examine the asymptotics of the two terms in the above sum-

mation as N and T' go to oc.

Step 2: Intermediate Results

For convenience (in particular, to avoid over-burdening the notation needed be-
low), let us assume just for the moment that x = 1 which is true for the Bartlett
lag-window. In this case, there is no need to explicitly carry around the additional
rate associated with the bias in A9. For the purpose of the body of this proof,
let us define pr = T/Bylog By as in Forni et al. (2017, Appendix B. Proof of

2TWe combine techniques from various proofs in Forni et al. (2009), Doz et al. (2011) and
Forni et al. (2017).
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Proposition 7). We re-introduce the suppressed term in the last line of this proof.

Lemma 2.10.4. For frequencies w; = j/(2Br + 1) where j = 0,...,2Bp, as
N — o0 and T — o0,

(i) max; N~Y|GEr (w;) — Gu(w;)|| = Op(pr?);

(i4) max; N GE (wy) = Gx(w;)]| = Op(max(N~, pr'"*));
Proof. For statement (i), we note that

G (w) =G (w; )|

x(w
= M{[GYT (w;) = Gu(w))[[GYT (wy) — Guc(w;)]}

So

B QZZ Grcr(107) = geis)

i=1 s=1 J
N N
N2 SR [maxwgBT (105) — sl
J X,18 J X,ts J
i=1 s=1 J

IN

My x pp' (by Assumption A9).

The statement follows from an application of Chebyshev’s inequality.

For statement (ii), the identity Gy (w;) = Gy (w;)+G¢(w;) implies that GET (w;) —
Gy (w;) = GB7 (w;) — Gy (w;) + G¢(w;). Then, by the triangle inequality for the

matrix norm,

G (w;) = Grx(w)|l < G (wy) = Goelw)l + | Gelw;)-
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Statement (ii) then follows from statement (i) and the fact that ||G¢(w;)| =
IM{G¢(w;)}| = O(1) by Assumption A6. O

Lemma 2.10.5. For frequencies w; = j/(2Br + 1) where j = 0,...,2Bp, as
N — o0 and T — o0,

(i) max; N-YNAGET (w;)} = MfGy(w))} = Op(max(N~L, ;') for k =

1.7

(ii) max; | Ay (w;)/N|| and max; ||(Ay(w;)/N)7Y|, which depend on N, are O(1);
(iii) max; ||Ay(w;)/N|| and max; ||(Ax(w;)/N)~Y||, which depend on N and T,
are Op(1).

Proof. We use the consequence of Weyl’s inequality that for any two r x r Her-

mitian matrices A and B,
IM{A+ B} — Me{A} < ||B|, fork=1,..r
Setting A = Gy (w;) and B = GB7(w;) — Gy (w;) we have that for k =1,...,7,
A G (w5)} = Ae{ Gewy) Y < (| GET (w;) = Gix(wy)|

Statement (i) follows from Lemma 2.10.4(ii).

Statement (ii) is proved by noting that || Ay (w;)/N|| = A {Gx(w;)}|/N is bounded
in probability uniformly with respect to the frequency due to Assumption A3.
The same applies to [[(Ay(w;)/N) 1| = N/A{Gr(w,)}.

Statement (iii) follows from statement (i). O
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Lemma 2.10.6. For frequencies w; = j/(2Br + 1) where j = 0,...,2Br, as
N — o0 and T — oo,

(i) max; N7 P (w;) Pe(w;) Asc(w;) — Ay (w;) P (w;) P (w;)|
= Op<maX(N 1710;1/2))’

(i) ma; || Py (w;) Py (w;) P (w;) Pe(w;) = || = Op(max(N =1, p7%));

(#ii) there exist complex diagonal orthogonal matrices, depending on N and T,
denoted by Qr(wj) = diag(q1.j, Gojy s Grj) with |Gry|> = 1 for k =1,..,r
such that

max |1 P2 (w;) Py (w;) — Qp(w;)]| = Op(max(N~", pp'/?)).

Proof. Since Py(w;)A

we have

> 2
9
|
P!

7 (w;) Pe(w;) and Ay (w;) Py (w;) = Py (w;)Gy(wy),

1Py (w;) Pe(w;) (A (w;) /N) = (Ay (w;)/N) (1) Pr(w;) |
= N 7| P(wy) G (w;) P(w;) = Prg(w;) G (wy) P(wy) |
= N7 Py (w))[GET (w)) = Gi(w;)] P(w)) |
< NP (wp) |1GRT (w;) = G (wy) | P (uwy) |
(by submultiplicativity of the norm)
= N 7Y GET (w)) = Gx(wy)]-

Statement (i) follows from Lemma 2.10.4(ii).
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For statement (ii), we define
A = Pi(w;) Po(w;) Py (w;) Pe(w))

= ﬁ;(wj)Px(wj)P;(wj)f’x(wj) (Ax](\?fﬂj)> <Ax](\§uj)> |

B = Py (w;) Py (w;) (AX](VMJ’)) Py (w;) Pe(wy) (AXJ(V%”J‘)>

and note that ||[A — C|| < ||]A — BJ| + ||B — C||. Both terms on the right
are bounded in probability uniformly with respect to the frequency with rate
Op(max(N 1, p;1/2)), the first due to statement (i) along with Lemma 2.10.5(iii)
and the second due to Lemma 2.10.4(ii) along with Lemma 2.10.5(iii).

For statement (iii), we consider a single element of the matrix on the left side of
statement (i). Denoting by Py x(w;) and Py, x(w;) the k** columns of P, (w;) and

Py(w,) respectively, we have from statement (i) that

X’k(wj)Ple(wj)‘ = Op(maX(N_lvp;1/2))

max NHOAAGE (w))} — Me{ Gx(w)) }) P

for k,l=1,...,r.

We recall the convergence result for estimated dynamic eigenvalues of x; in
Lemma 2.10.5(i). Then, due to Assumption A3, which ensures asymptotic sep-
aration of the dynamic eigenvalues, we have that for k # [, the expression
NYN{GEr ()} — M{Gx(w;)}) is bounded away from 0 in probability uni-
formly with respect to the frequency. Therefore, it must hold that the modulus
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of any off-diagonal term of P (w;)Py(w;) is Op(max(N~!, P}l/z)) uniformly with

respect to the frequency.

As regards the diagonal terms, we consider a single element of the matrix on the

left side of statement (ii). For k = 1,...,7, we have

max | Py (w;) Py (w;) Py (w;) Peg(wy) — 1]

= max |y [P (w;) Prea(wy)]® — 1

J
=1

= Op(max(N~", p;'/?)).
Consequently,
max 1P o (w5) P (wy) 2 = 1]
= max (| P e (w7) P ()| + 1) (| P () P (w;)] = 1))
= Oy(max(N ™", p;'/?)).

Thus, the modulus of any diagonal term converges in probability to 1 uniformly

with respect to the frequency at rate O,(max(N ™!, ,0;1/2)).

Statement (iii) follows. O

Lemma 2.10.7. For frequencies w; = j/(2Br + 1) where j = 0,...,2Bp, as
N — o0 and T — oo,

uniformly in 1.

Proof. Since Py (w;)Py(w;) = I, we first note that || Py (w;)| = O(1). Next, we
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define

and note that |D — G| < ||D — E|| + ||E — F| + ||FF — G||. All terms on the

right are O,(max(N ™1, ,0;1/2)), the first because of Lemma 2.10.6(iii), the second

because of Lemma 2.10.6(i) and Lemma 2.10.5(iii), and finally the third because
of Lemma 2.10.4(ii) and Lemma 2.10.5(iii).

The result follows. ]

Step 3: Asymptotic Analysis of z§P as N and T go to
We recall from Step 1 that we have

P = -1/2 px
2 — 2 = [Pi(w;) Plw;) — L]z} + N~V P (wy)a5.

Dynamic eigenvectors are defined up to post-multiplication by a complex diagonal
orthogonal matrix with unit-modulus diagonal elements. In particular, using the
dynamic eigenvectors IL, (w;) = Py(w;)Q,(w;), the result of Lemma 2.10.6(iii)

could be expressed as

max | P (w;) Ty (w;) = L] = O, (max(N ", p:'/%)).
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We thus conduct our subsequent analysis using the expression [z — Q,(w;)zf]

i J
rather than [zgp — z§]. We have

2t — Q. (w;)z! = [P(w;) Py(w)) — Qn(w;)]Q(w))zt + N™V2P (w))z
= [Py (w;)y(w;) — I,]25 + N~V2 Py (w;)z5.

Therefore,

P A D* — D*
125 — Q(w))zE|| = |I[P (w) Ty (wy) — L]zt + N7V Py (w;)zS)|
< [P (wy) Ty (w;) = L]zl + [|NTV2 P (w;)z5 |
(by the triangle inequality for the matrix norm)
<P (wy) iy (wy) = L ll25 ] + [N P (wy)z5 |
(by submultiplicativity of the norm).

il =

Since max; ||z; O,(1) by Assumption A2, the first term above converges in

probability to 0 uniformly with respect to the frequency at rate O, (max(N ™, p}l/ 2

due to Lemma 2.10.6(iii). It remains to analyse the second term.

Now,

IN~Y2 P (w))z CH = 1/2|| P (w)) = Qr(wy) Py(w;) + Q7 (wy) Py(w)) ]S |
) — I (w;)]2; + IL5 (w;)25]|

wg) IL; (w;))25]| + N ™2 | (wy) 25 |

) — I (w125 |+ NI ()25 -

The first term on the right is O,(N~*/2max(N~', p7'/?)) due to Lemma 2.10.7.
As noted above, ||zf|| = O,(1). Further, the final term on the right is O,(N~/2)
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since

E||TL;, (w;)25]|*) = B\ {25 Ty (w;)IL; (w;)25}]

(25 Ty (w;) T (w;)25]
[Tr (25 Ty (w;) I (w;)25)]
r (1L, (w;) G (wi) Ty (wy))
< rA{Ge(w;)} = O(1)

(by Assumption A4).

|-
o &

Il
-

The result follows that max; [|zf" — @, (w;)zf|| = O, (max(N~1/2, pr’?)). Finally,
by relaxing the assumption that x = 1 and redoing the entire proof while carrying
through the additional bias term everywhere would yield the required result of

Proposition 2.5.
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2.10.7 Proof of Proposition 2.6

Proof. We first note that if we were to replace all the summations over T" points in
the proof of Proposition 2.4 by summations over 2By + 1 points, we would obtain
a rate of /By instead of v/T. Combining this result with that of Proposition 2.5,

we recognise that our error is

O 1 1 1 BT lOg BT
max : : : .
8 VN VBr /B¥ T
Finally, noticing that the term 1/y/Br dominates 1/1/B%" whenever k > 1/2,

the required result follows. We explicitly note here that for all commonly used

lag windows, indeed,  is typically 1 or 2; see (Priestley, 1982, p. 463). O
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2.10.8 Proof of Proposition 2.7

Proof. We organise our proof into two parts. The first part, which we refer to as a
technical remark, explains why we can claim that there exists a point, say é“, to
which the spectral EM iterates {é(k)} converge (as k — 00); and further, that this
point is a local maximum. This property can easily be seen for the general case in
Wu (1983) (which we have summarised in considerable detail in Appendix 2.11)
and for the time domain analogue of our specific setting in Barigozzi and Luciani

(2022, Lemma 21). The logic in the frequency domain is identical.

Part 1. Technical remark:

(i) Is the problem well-defined?

Consider our d-dimensional vector of parameters 8 € @ (see Section 2.3), for
which parameter space © is such that @ C RY where d = 2rN + N + r2 + r.
For finite dimensional parameter spaces, the Heine-Borel theorem?® provides a
simple characterisation of which sets are compact, but for potentially infinite
dimensional parameter spaces, the situation is more complicated. Nevertheless,
in our setting, due to the form of the (quasi-) log likelihood (see Section 2.5.2),
the M step is greatly simplified. Indeed, for any iteration k& > 0, the M step

requires solving the N individual maximisations

PR /
(é§k+1) ,Fgﬂ—l)) = argmax Eé(k) [ll (Iily . (L’zT’F, C;, Pgl) |X]
(c;. T, ) €01

for i = 1,..., N, where (i) the function [; refers to the marginal contribution of
the i-th observation to the overall Whittle log-likelihood computed with respect
to the coarse grid of 2B + 1 frequencies (see Sections 2.5.2 and 2.7.3 for details);

and (ii) O1 = [—me, mc)* X [me ™, me] C R¥ ™ with “X” denoting the Cartesian

28 If a set 8 of real numbers is closed and bounded, then the set 8 is compact. That is, if
a set § of real numbers is closed and bounded, then every open cover of the set 8 has a finite
subcover.
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product; and the finite dimensional maximisation

~ !
(veeh(A®HD), 40D 5040) = argmax  Egu [L(FIA,1,7) 1X],

(VeCh(A) Y1 7"'7’YT)/602

where (i) A is the matrix of autoregressive coefficients such that A(L) = I, — AL;
and (i) Oy = [=ma, ma]” % [m, "', m,)” € R™+. In this setup, it holds that
O = OV x 0,. Recall further that we have Gaussianity due to Assumption A7.

Then for any iteration £ > 0, the M step estimator given by

6%+ — arg max Q(0; 9™)
0c®
is well-defined since O; and Oy — each the product of finitely many compact sets
— are compact sets, and [ (X, F'; ) is continuous and differentiable in the interior
of each of those sets (Gourieroux and Monfort, 1995, Property 7.11, p.181-182).
Further, it holds that O+ g unique because the log likelihoods alluded to above

are concave in their arguments.

(i) Do we have convergence to a stationary point?

Next, by recalling that (i) O; and O, are compact sets, (ii) {(X; ) is continuous
in © and differentiable in the interior of ©, and (iii) the point of initialisation
is chosen such that 0© is assumed to satisfy [(X; é(o)) > —o0, it follows that
the sequence {I(X;0%®))} for k > 0 is bounded from above for any 8© € @
(see Barigozzi and Luciani (2022, p.95) and Wu (1983, p.96-97)). Further, we
recall the monotonicity property of the EM algorithm (which we prove in detail in
Appendix 2.11.1), and we note that Q(0; ¢) is continuous in both its arguments
for arbitrary values @ and ¢. It follows by Wu (1983, Theorem 2) that we are
guaranteed monotonic convergence of the likelihood:

lim (X;0®) = 1(X; '),

k—o0

where 011 is a stationary point.
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(1) Is the stationary point a local mazimum?

Given that Q(8; é(k)) has a unique maximum, and since Q(0; ¢) is continuous
in both its arguments for arbitrary values € and ¢ and its gradient V¢Q(0; ¢)
is continuous in @, it follows from Wu (1983, Theorem 3) that ' is a local

maximum. (See also Barigozzi and Luciani (2022, Proof of Lemma 21).)

(iv) Do EM iterates also converge?

Further, we know by Wu (1983, Condition 1) that, under Gaussianity, there exists

a real positive constant, say Mg, such that
Q(g(k+1); g(k)) — Q(g(k’); g(k)) > MQ||9(1€+1) — 9(’6)||2

for all k. Together with monotonicity of the likelihood and the result under point

(i7i) above, the latter constitutes a sufficient condition for:

lim [|@%+D —@®)|| =0,

k—o0

Further details can be seen in Wu (1983, p.100). Finally, it follows from Wu
(1983, Theorem 6) that
lim 9*) = 1.

k—o0

Below, we will focus just on é;ﬁ, a subset of the vector 1.

Part 2. Main proof:

We have

ASpEM
& =l < |lé ¢,

)

ASPEM ot

el — ¢l ¢l — ¢

|

|

where é;ﬁ denotes the point to which the Spectral EM algorithm converges as the

number of iterations go to infinity,

= lim &%

)
k—o00

el

134



and éj denotes the global maximiser of I(X;0) for i = 1,..., N.

The third term on the right-hand side is simply the error of the quasi-maximum
likelihood estimator where the Whittle likelihood is computed via summations

over 2B + 1 points. By Proposition 2.4 and Remark 3, as N,T" — oo,

el i)

uniformly in i for ¢ = 1,..., N. See Barigozzi and Luciani (2022, Lemma 14(i))
and Bai and Li (2016, Theorem 1).

o

Similarly, the second term on the right-hand side is

0 1 1

= max | —,—| |,

b N /Br

uniformly in i for ¢ = 1,..., N, as implied by Barigozzi and Luciani (2022, Lemma
22(1)).

Now we consider the first term on the right-hand side. This represents the dis-

elt —ef

crepancy between the Spectral EM estimator and the point to which the spectral
EM algorithm converges as k — 0o, a local maximiser of {(X; @). Using key parts
of Barigozzi and Luciani (2022, Proof of Lemma 23), we know there exists a finite

positive real constant Mp; such that

kSpE]W 2
9

v el < o e - er)

+MﬁWﬂMW@—@W

where R (éf) represents the relevant sub-matrix of a ratio (in the matrix sense)
of conditional Hessians associated with the Whittle log-likelihood computed at

the value of the local maximiser. It is sufficient for the purpose of this study to
consider |R (éﬁ) | as an O,(1) term.*

2In reality, it is vanishing at a rate dominated by the other rates in our procedure. See
Barigozzi and Luciani (2022, Proof of Lemma 23) for further details.
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Finally, by Proposition 2.6 and the results above, we have

e

<[

¢ —éjH n HcT et

0 (max< 1 BTlogBT>>
8 VN V/Br’
+ 0, (max(;] \/%_T>)
oo )
1 BTlogBT
o (m<f VB ))

and the required result follows.
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2.10.9 Proof of Proposition 2.8

Proof. The following algebraic identity will be useful. For arbitrary scalars ag, by, a1,
and by,

albl — agbo = albl — aobo —+ (a1b0 — albo) + (a0b1 — aobl) + (aobo — aobg)
= a1by — agby + apb1 — apby + a1by — a1by — apby + agby

= (CLl — ao)bo + (b1 — bg)ao + (a1 — Clo)(bl — bo)

Using similar reasoning,

SpEM . , ! .
£ X i ASPEM (1 —i27w; —i2Tw; f / —i27Tw; ~fSPEM f
e — M = ; Ja ) — c; Jq . ; Jq . — 7.
ZJq ZJq |:Cla' (6 ) sz‘(e )} ZJq + C%'(e ) |:ZJq Z]q
/
ASPEM ¢ —i27w); —i27w; A fOPEM f
+ [arPM (et — e, ()| [af <4 |
so that
SpEM ) ) / )
s Xi Xi ASPpEM  —i2mw; —i27w; f / —i2Tw; ~fSPEM
z; — 2| < [cl (e i) —¢;.(e )|z |+ |c; (e )|z -
/
ASPEM ( —i2mw; —i27w; ~fSPEM £
| e ez — e (e [ <o ] |

forq=1,...,2Br + 1.

The first term on the right-hand side is

O a 1 1 BT log BT
max s s
P VN /Br T

uniformly in 1 < ¢ < N and 1 < ¢ < 2By + 1 by Proposition 2.7 and the fact

that Hzqu = O,(1) uniformly in ¢ as a consequence of weak stationarity of f;

emanating from Assumption A2.

The second term on the right-hand side is also

0 N 1 1 BT log BT
m X ) b
P VN +/Br T
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uniformly in 1 <7 < N and 1 < ¢ < 2Br + 1 due to Theorem 2.1, Proposition
2.7 and the fact that [|e;.(e”**™4)|| = O(1) uniformly in 1 < i < N due to
Assumption A2.

The third term on the right-hand side will converge in probability to zero as a
product of the above two rates and thus be dominated by the first and second

terms. The required result follows.

2.10.10 Proof of Proposition 2.9

Proof. The proof is analogous to the proof of Theorem 2.1, except where the

factors therein are replaced with common components. O

2.10.11 Showing Assumption A9

The overall focus of our work is not strictly on consistent estimation of the spec-
tral density per se; nevertheless, Assumption A9 is important for our study and
its statement cannot be regarded as trivial. For this reason, we aim in this section
to outline for the interested reader the steps that would be needed in order to

derive the statement of Assumption A9 based on more primitive conditions.

Step 1. Defining Physical Dependence

The physical dependence measure espoused by Wu and Zaffaroni (2018) is char-
acterised in terms of the L,-norm of the difference between the observations
and their constructed (or so-called “coupled”) version using an independent and
identically distributed copy of the innovation at time zero. A formal definition,

following Forni et al. (2017), is given below.

Let €; be an iid stochastic vector process, possibly infinite-dimensional, and let
2z = F(€, € 1,...), where F' : [R xR x...] = R is a measurable function. Assume

that 2, has finite p!” moment for p > 0. Let é denote a stochastic vector with the
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same dimension and distribution as €; such that € and €, are independent for all

t. Then, for k > 0, the physical dependence (5,[31 is defined as

5][;;] = (E (|F(6k7 ..., €Q, 6_1...) - F(ek, cevy é7 6_1,”)|p))1/p .

Step 2. Alternative Assumptions

In lieu of Assumption A9, one could impose more basic conditions on existence
of finite p'* moments (for p > 4) for the innovations 1, and ¢;; (the primitive
building blocks of our model) defined in Assumption A2. The requirements are

as follows.

Assumption A10. There exist constants p and A, with p >4 and 0 < A < o0,
such that
E([val’) <A, E(jgul’) <A

forallq=1,...,7r andi=1,...,N.

We concurrently need a slight strengthening of Assumption A6 (on the charac-
terisation of non-pervasiveness of the idiosyncratic component) to accommodate
our upcoming proof. We mirror the relevant phrasing from Forni et al. (2017,
Assumption 4) whereby restrictions are imposed on coefficients of the filter ap-
plied to the innovations driving the idiosyncratic component (rather than on the

eigenvalues of the spectral density matrix of the idiosyncratic component).

Assumption A11. There exist finite positive constants B, B;s for i,s € N, and
p €10,1), such that

> B, < B foralli€N,

s=1

ZBiS < B for all s € N,

i=1

Bisk| < Bisp® for alli,s € N and k = 0,1, ...
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We make two remarks at this stage. First, we highlight that the time dependence
of the idiosyncratic component is assumed to decline geometrical