
The London School of Economics and Political Science

Essays in Household Finance and

Innovation

William Oliver Matcham

A thesis submitted to the Department of Economics of

the London School of Economics and Political Science

for the degree of Doctor of Philosophy

London, October 2023

1



For my late father, Nicholas Matcham:

my first and foremost academic inspiration

2



Declaration

I certify that the thesis I have presented for examination for the Ph.D. degree of the

London School of Economics and Political Science is solely my own work other than

where I have clearly indicated that it is the work of others (in which case the extent

of any work carried out jointly by me and any other person is clearly identified in

it).

The copyright of this thesis rests with the author. Quotation from it is permitted,

provided that full acknowledgement is made. In accordance with the Regulations,

I have deposited an electronic copy of it in LSE Theses Online held by the British

Library of Political and Economic Science and have granted permission for my thesis

to be made available for public reference. Otherwise, this thesis may not be repro-

duced without my prior written consent. I warrant that this authorisation does not,

to the best of my belief, infringe the rights of any third party.

I declare that my thesis consists of approximately 55,000 words.

The views expressed in Chapters 1 and 2 are exclusively my own and do not neces-

sarily reflect those of the Financial Conduct Authority. Therefore, this thesis should

not be reported as representing the views of the Financial Conduct Authority.

Statement of co-authored work

I confirm that Chapter 3 is co-authored with Mark Schankerman, and I contributed

50% of this work.

3



Acknowledgments

I thank several individuals who played an important role during my Ph.D. and

graciously acknowledge the financial support from the Paul Woolley Centre and

Richard Goeltz.

I owe an enormous debt of gratitude to my supervisors, Alessandro Gavazza and

Mark Schankerman, for guiding me throughout the writing of this thesis and in-

structing me in the craft of economic research. They have been extremely generous

with their time, and their insights and have contributed enormously to my develop-

ment as a researcher. I thank Alessandro specifically for his constant encouragement

and advice on how to work effectively as a researcher, helping me to focus and

simplify my ideas, and defaulting my thinking towards finding the key trade-offs.

I thank Mark specifically for teaching me to think like an economist and helping

me to realize how to push the envelope of the economic questions in which I am

interested. Further, I thank two excellent advisers: Tatiana Komarova, who started

me on the research process and Daniel Paravisini, for many stimulating discussions

as I produced the first draft of this thesis.

Throughout the years, my colleagues at LSE have provided valuable support. For

this reason, I acknowledge those who produced inspiring theses ahead of me: Karun

Adusumilli, Matteo Benetton, Svetlana Chekmasova, Patrick Coen, Hao Dong, Dita

Eckardt, Alkis Georgiadis-Harris, Krittanai Laohakunakorn, Jay Euijung Lee, Chen

Qiu, Luke Taylor, and Mengshan Xu. I acknowledge those who produced outstanding

theses alongside me: Heidi Thysen, Arthur Taburet, Bilal Tabti, Aditya Soenarjo,

Akash Raja, Lu Liu, Amanda Dahlstrand, Jamie Coen, Thomas Brzustowski, and

Daniel Albuquerque. And I acknowledge those who will produce remarkable theses

after me: Pete Lambert, Andres Fajardo-Ramirez, Hugo Reichart, Kamila Nowakow-
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Abstract

This thesis consists of two essays on household finance and one essay on innova-

tion. Chapter 1 examines descriptively how UK credit card lenders set credit limits

and interest rates for customers. First, I summarize the literature on credit card

regulation and lenders’ choices of credit limits and interest rates. Second, I detail

the relevant credit card regulation, focusing on how UK credit card lenders are re-

quired to advertize a “representative” interest rate for every credit card product

they offer. Third, I describe my credit card dataset together with basic summary

statistics. Finally, I offer a set of descriptive findings. My main results describe the

limited variation in interest rates within credit card products relative to substantial

variation in credit limits.

In Chapter 2, I build on Chapter 1 by presenting and estimating an economic model

of the UK credit card market. The modeling novelty is the link between individuals’

credit limits and lenders’ predictions of customers’ risk. With the estimated model, I

examine a counterfactual scenario in which credit card lenders are subject to no costs

and constraints in individualizing interest rates and credit limits, which the existing

environment precludes. In this case, credit card lenders’ profits increase, consistent

with lenders facing costs and constraints that discourage them from individualizing

interest rates.

In Chapter 3, we develop a dynamic structural model of patent screening incorpo-

rating incentives, intrinsic motivation, and multi-round negotiation. We use detailed

data on examiner decisions and employ natural language processing to create a new

measure of patent distance that enables us to study strategic decisions by applicants

and examiners. We find that patent screening is moderately effective, given the ex-

isting standards for patentability. Examiners exhibit substantial intrinsic motivation

that significantly improves the effectiveness of screening. A reform that limits ne-

gotiation rounds strongly increases screening quality. We quantify the annual net

social costs of patent screening at $25.5bn, equivalent to 6.5% of U.S. private sector

R&D.
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Chapter 1

Risk-Based Borrowing Limits in

the UK Credit Card Market

1.1 Introduction and Summary

Asymmetric information is a pervasive feature of several markets considered essen-

tial for the functioning and development of the economy (Kiyotaki and Moore, 1997;

Acemoglu, 2001). Two leading examples are insurance and credit markets. The pres-

ence of asymmetric information in these markets, specifically in the form of adverse

selection, can lead to market inefficiencies and, in extreme cases, market unraveling

(Akerlof, 1970; Rothschild and Stiglitz, 1976). The consequences of adverse selec-

tion can be severe, with the failure of credit markets described as “one of the major

reasons for [economic] under-development” (Akerlof, 2001).

Accordingly, lenders in credit markets attempt to minimize the deleterious effects

of adverse selection by tailoring contract characteristics to predictions of customers’

default risk. However, governments want such contracts to be simple and transparent

so that consumers are not misled and can search effectively across lenders. As a

result, regulation has limited the extent to which lenders can tailor certain features of

credit contracts according to risk. In the first two chapters of this thesis, I investigate

how credit card lenders individualize contracts according to risk in the context of

credit card regulation.

The academic literature and policy discourse in this space generally focuses on risk-

based pricing, that is, the practice of interest rate discrimination based on a cus-

tomer’s risk. However, in this chapter, I provide evidence that UK credit card lenders
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primarily adopt risk-based credit limits. In Chapter 2, I estimate a structural model

of the credit card market to ascertain whether this empirical feature is a result of

lenders’ preference for risk-based credit limits over interest rates or the result of

costs and constraints that affect lenders’ willingness and ability to tailor interest

rates according to risk.

Studying credit card lenders’ credit limit and interest rate choices is important

owing to its standalone economic interest and the credit card market’s central role

in the economy. It represents the largest unsecured credit market, with most prime

and superprime adults owning a credit card. Net lending via credit cards reached

£1.5bn in February 2022—the highest monthly amount since records began.1 For

this reason, lenders’ credit limit and interest rate choices have material effects on

individuals’ financial well-being. This is especially true for subprime consumers, who

are more likely to revolve a credit card balance and be credit constrained.

To establish my findings in Chapters 1 and 2, I use novel, statement-level adminis-

trative data on approximately 80% of all UK credit cards that were active between

2010 and 2015. I observe cardholder demographics and card characteristics for every

card, along with monthly card use, borrowing, repayment, and default decisions.

Among other advantages, the data contain the lenders’ proprietary risk scores for

every credit card origination, hence, I can credibly check whether interest rates and

credit limits are tailored to predictions of customers’ risk.

Using these data, I document how credit limits vary substantially across individuals

within lenders and the credit card product, with the highest risk scores corresponding

to the lowest credit limits. In contrast, interest rates are almost constant at the

card-month level and are generally not risk-based. This fact is best understood in

the context of UK credit card regulations, which require (i) lenders to advertise one

annual percentage rate (APR) for each credit card and (ii) at least 51% of customers

on each card to be granted the advertised APR or lower at origination. However,

80 to 90% of customers are granted the advertised APR at origination. Finally, I

report substantial heterogeneity in the shape and scale of credit limit distributions

across lenders. This is a primary source of variation that I seek to explain with the

economic model in Chapter 2.

This chapter proceeds as follows. Following a review of the germane literature in

1Bank of England 2023, Bank of England website, https://www.bankofengland.co.uk/stat

istics/money-and-credit/2023/february-2022 last accessed 25 May 2023.
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Section 1.2 and a summary of the relevant credit card regulations in Section 1.3, I

describe my data in Section 1.4 and present my descriptive findings in Section 1.5.

1.2 Related Literature

Chapters 1 and 2 relate to several bodies of literature, and I detail my contributions

to the work most closely related to my own in what follows. I describe my relation-

ship to the extensive literature pertaining to credit card markets more generally in

Appendix 1.A.

My thesis contributes primarily to the literature concerning the role of credit limits

in credit card markets. In this regard, the most relevant article is that of Agarwal,

Chomsisengphet, Mahoney, and Stroebel (2017), which shows that average credit

limits increase in association with FICO scores in the US. The authors argue that

credit limits are the main margin of adjustment for US credit card lenders. Fur-

ther, the paper reveals that some lenders have FICO thresholds at which average

credit limits increase discontinuously. For the authors, risk-based credit limits are

a means rather than an end: Their paper focuses on the way in which banks’ pass

through credit expansions to customers. My contribution to this literature is to ex-

plain lender heterogeneity and discontinuities in credit limit schedules by estimating

a model of lenders’ credit limit choices. In the model, heterogeneous lender screen-

ing technologies that provide noisy signals on customers’ levels of private risk justify

the differences in the shape and scale of lenders’ credit limit distributions and can

explain discontinuities in the credit limits.2

Chapters 1 and 2 also relate to the literature on risk-based pricing. Existing research

documents the presence of risk-based pricing in some financial markets (Edelberg,

2006; Magri and Pico, 2011; Magri, 2018; Bachas, 2019) and its absence in others

(Benetton, 2021; Robles-Garcia, 2022). Notably, Adams, Einav, and Levin (2009)

shows that risk-based pricing mitigates the effects of adverse selection in the US

auto market. However, evidence of risk-based pricing in credit card markets is lim-

ited.3 Hence, I contribute to the literature on risk-based pricing by documenting and

2On a related theme, Agarwal, Chomsisengphet, Mahoney, and Stroebel (2017) and Gross and

Souleles (2002b;a) estimate the causal effect of credit limits on borrowing and default. Aydin (2022)

presents an interesting experiment randomizing credit limit shocks across credit card accounts in

the US. Fulford (2015) shows that US credit limits vary after origination, with more individuals

obtaining credit limit increases than decreases. In the UK, credit limits are less volatile.
3Linares-Zegarra and Wilson (2012) argues that cards offered in riskier regions of the United
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justifying the lack of risk-based pricing in the UK credit card market.

On the relationship between credit quantity and interest rates in markets with im-

perfect information, a highly influential and related paper is that of Stiglitz and

Weiss (1981). The paper sets forth the notion of credit rationing, whereby lenders

are not willing to increase interest rates to market clearing rates, because higher in-

terest rates attract riskier borrowers (adverse selection effect) and can lead to more

defaults (moral hazard effect). As a result, rather than increasing interest rates to

market clearing levels, lenders decide to ration credit. My framework is consistent

with that of Stiglitz and Weiss (1981), as I consider a credit market in which lenders

set a constant interest rate for each credit card and induce some credit rationing

by rejecting some consumers through card-level income thresholds. My contribu-

tion is to allow lenders to mitigate the adverse effects of asymmetric information by

individualizing the amount of credit they offer each individual through the credit

limit. Furthermore, whereas lenders in Stiglitz and Weiss (1981) infer default risk

based on the willingness of potential borrowers to accept higher interest rates, in

my framework, lenders obtain noisy signals on borrowers’ risk. Therefore rationing

in my framework will only occur as a result of residual imperfect information, given

the lender’s signal.

Underpinning risk-based credit limits is the use of statistical credit scoring models by

lenders to measure risk. Einav, Jenkins, and Levin (2012; 2013) and Paravisini and

Schoar (2015) document significant profit increases for lenders following the adoption

of risk-scoring methods. A large segment of the literature focuses on the predictive,

statistical quality of credit scores (Khandani, Kim, and Lo, 2010; Lessmann, Bae-

sens, Seow, and Thomas, 2015; Butaru, Chen, Clark, Das, Lo, and Siddique, 2016;

Albanesi and Vamossy, 2019; Fuster, Goldsmith-Pinkham, Ramadorai, and Walther,

2022). However, Einav, Finkelstein, Kluender, and Schrimpf (2016) takes a differ-

ent approach by focusing on the economic content of risk scores. Their paper notes

that if risk scores determine contractual terms, then risk scores confound underlying

default risk with endogenous responses to those terms. I contribute to this body

of literature in Chapter 2 by estimating the underlying screening technologies of

lenders, which provide a signal of the underlying unobservable risk on a harmonized

scale. By estimating these harmonized scores off credit limits at origination, rather

than ex-post default, my measure is not confounded with the potential endogeneity

States have lower APRs on average, though they do not look at the relationship between interest

rates and risk within credit cards.
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of origination contractual terms and the lender-borrower relationship.

The final primary contribution of my thesis involves the literature on price regulation

in credit markets. Two contexts are particularly relevant. The first is Chilean credit

markets, studied by, among others, Cuesta and Sepulveda (2021). Their paper shows

that tighter interest rate caps decrease surplus, with the welfare costs from loss of

credit access outweighing the lower prices in equilibrium. Related to my work, they

show that risk-based interest rate caps cause less harm to welfare.

Nelson (2022) and Agarwal, Chomsisengphet, Mahoney, and Stroebel (2014) study

the second relevant regulatory context: the 2009 US Credit Card Accountability,

Responsibility, and Disclosure (CARD) Act. Agarwal, Chomsisengphet, Mahoney,

and Stroebel (2014) documents substantial consumer savings as a result of the Act.

Nelson (2022) focuses on how the CARD Act limited lenders’ abilities to reprice

credit card customers after origination. The estimated economic model implies that

consumer surplus rose at the expense of lender profits. In my paper, I focus entirely

on ex-ante risk-based pricing. While I acknowledge the possible role of ex-post risk-

based pricing, it has limited application in the UK, which is a feature I document

in the next section. Instead, I show that price regulation limiting ex-ante risk-based

pricing coincides with lenders adopting risk-based quantities through credit limits.

Further, I consider counterfactual scenarios that allow lenders to freely base prices

on risk in the context of endogenous risk-based credit limits, in which risk-based

interest rates emerge.

1.3 Interest Rate Regulations

This section provides a brief and non-technical overview of regulations relating to

APRs in the UK and the US. For precise details, the interested reader can consult the

Consumer Credit Sourcebook (CONC) Section 3.5 for the UK case and the Code

of Federal Regulations (CFR) §1022.70 for the US case.4 The Financial Conduct

Authority (FCA, 2015c) offers a general summary of UK credit card regulation.

4https://www.handbook.fca.org.uk/handbook/CONC/3/5.html and https://www.consum

erfinance.gov/rules-policy/regulations/1022/70/, last accessed 25 May 2023.
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1.3.1 Definitions and UK Advertised APR Regulations

A credit card’s purchase balance is the total amount spent on the card relating to

non-cash transactions currently not repaid.5 A purchase interest rate for a credit

card is the percentage rate at which interest is added to a credit card purchase

balance.

As a prelude to defining the APR, I describe the daily interest compounding method,

which many lenders use to add interest to credit cards. At the end of a statement

cycle, lenders may allow individuals a grace period of interest-free days to pay their

balance. This period is typically between 20 to 40 days. Lenders charge interest for

the statement cycle if the total balance is not paid within the grace period. Lenders

compound interest on unpaid balances daily by taking each day’s average balance

and multiplying it by the daily periodic purchase rate. The daily periodic purchase

rate is the percentage rate at which interest is added to an unpaid balance daily. The

consumer is notified of the interest charged on their monthly statement, in which

the monthly interest charge is the sum of daily interest across all the days in the

month.

The annual purchase rate is the daily periodic rate multiplied by the number of days

in the year. For example, outside a leap year, if the daily periodic rate is 0.0005, the

annual purchase rate is 0.1825 or 18.25%. An APR is similar to the annual purchase

rate, except it also accounts for all mandatory fees that an individual must pay

each year on the card, hence, it represents the total cost of revolving a balance on

a credit card each year. If a card has no compulsory fees or charges, its APR equals

the annual purchase rate.

Accounting for fees when calculating the total cost of borrowing on a card requires

a representative credit limit. The calculation of the APR assumes that the individ-

ual pays the fees, spends the entire representative credit limit on the first day of

the year, and then pays it back in equal, regular installments over a year without

spending anything else. The sum of the charges and interest accruing over a year (as

a percentage) when an individual follows this spending pattern and pays the fees

defines the APR.

5The withdrawal of cash counts towards the cash advance balance and cash advance interest

rates are typically higher than purchase interest rates. Transfers of balances from a previous credit

card counts towards the balance transfer balance, which may also have a different interest rate to

the purchase rate and cash advance rate.
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The representative or advertised APR is defined as “an APR at or below which the

firm communicating or approving the financial promotion reasonably expects, at the

date on which the promotion is communicated or approved, that credit would be

provided under at least 51% of the credit agreements which will be entered into as

a result of the promotion.” Credit card lenders must include a representative APR

on all promotional materials for a credit card, and, by definition, most consumers

each month must obtain the representative APR or lower. Before February 2011,

the proportion of customers on a given credit card required to obtain the advertised

APR or lower was 66%. After February 2011, the UK harmonized its regulations

with the EU and the proportion changed from 66% to 51%.

1.3.2 US Credit Card Regulations

US credit card lenders do not have to provide one representative APR for each credit

card, but they are still subject to regulation should they use risk-based pricing. Since

the introduction of the Truth in Lending Act in 1998, credit card agreements must

include a “Schumer” Box, which is a table showing basic information about the

card’s rates and fees. The box must contain either a list of values or a range of

values identifying the APR that the lender will use. The APR values must be in at

least an 18-point font size.

Further, lenders must provide a consumer with a “risk-based pricing notice” if they

(i) use a consumer credit report in connection with a credit application and (ii)

grant or extend credit to that consumer on “material terms that are materially

less favorable than the most favorable material terms available to a substantial

proportion of consumers from or through the lender.” The risk-based pricing notice

must inform the consumer that a consumer report includes information about their

credit history, that the terms offered have been set based on information from the

consumer report, and that the terms offered may be less favorable than the terms

offered to consumers with better credit histories, among other information.

Another major addition to recent US credit card regulations is the 2009 CARDAct of

2009. The CARD Act limits lenders’ ability to change interest rates after origination

and is the subject of the papers by Nelson (2022) and Agarwal, Chomsisengphet,

Mahoney, and Stroebel (2014).
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1.4 Data and Summary Statistics

In this section, I summarize the novel datasets I employ in my analysis. My primary

data source is the FCA Credit Card Market Study (CCMS) Dataset.6 The FCA

used its legal authority as the regulator of UK financial markets to obtain data on

all the credit cards active at 14 lenders between 2010 and 2015.7 The data cover

approximately 80% of the universe of cards active in 2010–2015, comprising around

74 million cards. The CCMS databases are only available to restricted staff and

associated researchers at the FCA.

1.4.1 Origination Data

The first dataset contains information on cardholders and their cards at origination,

including the cardholder’s demographics (age, income, etc.), their acquisition chan-

nel (whether in-branch, online, by post, via telephone, etc.), and the interest rate

and credit limit of their cards. The most useful feature of this dataset, however, is

the inclusion of each customer’s lender-specific risk score at origination.

Documenting that credit limits are based on risk rather than interest rates is the

foundation of my analysis. For this reason, I require observations of lenders’ measures

of customer risk. Furthermore, observations on publicly available risk scores are

insufficient because UK lenders generally do not use these scores for credit decisions.8

As such, it is critical that I have access to observations of lenders’ proprietary risk

scores.

Lenders’ proprietary risk scores are formulated on different numerical scales and, as

shown in Figure 1.C.1, vary in how they are distributed over these scales. Further,

public risk scores only explain a moderate proportion of the variation in each lender’s

proprietary risk scores. To provide evidence of this, I regress each lender’s proprietary

risk scores on percentile dummies of the main publicly available risk score. In these

6See (FCA, 2015b) for a detailed summary of the data source.
7The FCA chose 11 firms (divided into 14 separate lending entities) as representative of the

entire credit card market. For confidentiality reasons, I cannot reveal their identities. In the main

analysis, I omit store cards and, where necessary, one other lender for which data submission issues

occurred.
8For example, suppose a researcher only has access to public credit scores but interest rates are

based solely on private risk scores. The researcher would find no relationship between public risk

scores and interest rates, and it would be incorrect to interpret this as the absence of risk-based

pricing.
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regressions, public risk scores explain 21% of the variation in private risk scores

explained on average.

The use of proprietary risk scores rather than public risk scores in the UK credit

card market contrasts with the US, where FICO scores offer a measure of customer

creditworthiness that many banks use as part of their lending decisions (Agarwal,

Chomsisengphet, Mahoney, and Stroebel, 2017). Recent research has provided some

justification for why lenders might create their own risk scores. For example, Al-

banesi and Vamossy (2019) shows that machine learning (specifically deep learning)

methods consistently outperform standard credit scoring models, even when trained

on the same data sources. Further, lenders may have more granular customer data

than credit reference agencies are able to access.9

Table 1.C.4 provides summary statistics on individuals at origination. The mean

age is 43 years. Net monthly individual income is £2, 099 at the mean, though the

distribution is right-skewed, and the median income is £1604. Four in ten customers

have an existing relationship with the credit card lender prior to origination, approx-

imately 52% of cardholders report being female, 57% are homeowners, and 85% are

employed. Finally, most customers (53%) originate online, 32% originate in a store,

12% originate via post, and 4% by telephone.

Table 1.C.5 provides summary statistics on individuals’ card features at origina-

tion. The mean credit limit is £3390, and the mean purchase APR at origination

is 21.52%. The coefficient of variation in credit limits across all lenders and months

is almost 1. The variation in interest rates (purchase and balance transfer) is much

smaller at approximately 0.36. Expanding on this finding—reported here across

lenders and cards—is the focus of the analysis in Section 1.5. Promotional deal

lengths for purchases are short, typically around three or six months where they

exist, and around 44% of cards have no purchase promotional deal. Across all cards,

83% of customers obtain the advertised APR, a fact I describe in detail in Sec-

tion 1.5.1. Finally, 28% of customers transfer a balance from a previous card at

origination.

9See FCA (2022) for a recent report on the UK credit information market and credit reference

agencies.
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1.4.2 Statement Data

The second dataset is a monthly panel of statement data for active credit cards.

For the 61 months between January 2010 and January 2015, I observe opening and

closing balances; repayments; the number and value of transactions, fees, interest;

and the evolution of credit limits and interest rates. I also observe the account status,

which records the months for which payment is overdue. In the event of repeated

failures to repay the minimum repayment, the lender will typically charge off the

account, which the dataset also details. Finally, these data contain observations on

lenders’ costs of servicing the account, including typically unobserved funding costs

and provisions for non-repayment of debt at the statement level. Observations on

lender’s funding costs are essential to estimate screening technologies. Without these

observations, I cannot separate differences in lenders’ costs from differences in the

precision of their screening technologies.

Table 1.C.6 provides summary statistics for the statement-level variables. Credit

limits are larger, and interest rates are lower relative to origination, as riskier indi-

viduals are repriced or eventually close their cards. Over 25% of balances are zero,

and the distribution of account balances is heavily right-skewed, with the mean ac-

count balance approximately £830 larger than the median. Repayments are much

lower than balances, which is unsurprising as many individuals make the minimum

monthly repayment. Interest is also highly skewed: over half the statement months

carry no interest, but the right tail is long, with a 90th percentile of £26.58. Fi-

nally, only 2% of statement months have an overdue payment, and 2% of statement

months involve the account being charged off.

Based on these data, I find substantial variation across lenders regarding the propor-

tion of statements in which the entire credit card balance is repaid. The proportion

ranges from approximately 20% at one lender to 80% at another.

1.4.3 Card Characteristics Panel

The third CCMS dataset is a monthly panel of card characteristics. For the months

between January 2010 and January 2015, the panel collects card rewards (such as

cashback and air miles) and income thresholds. Both income thresholds (for choice

sets) and rewards (for observable card characteristics) make credible demand esti-

mation feasible. Further, the dataset includes each card’s monthly advertised APR.

With this variable, I calculate the differences between the advertised and obtained

APRs, which provides the intensive and extensive margins of risk-based pricing. As
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previously mentioned, the obtained APR must be at most the advertised APR for

at least 51% of the originations within a product-month.

Table 1.C.7 provides summary statistics on cards, in which the unit of observation is

the card-month. The most important conclusion from this table is that rewards are

scant in the UK, with only 9% of card-months offering cashback and 7% offering air

miles. This differs from the US, where rewards are generally more readily available.

The table also shows the following facts. First, around 88% of cards have no annual

fees. Annual fees are also more common in the US. Second, there is significant disper-

sion across card-months in minimum and maximum credit limits. Third, individuals

usually receive around 25 days to repay their bill before interest is added. Fourth,

most cards are available to all customers, with only 5% reserved for students and

7% exclusively for those who are employed.

1.4.4 Other Sources

The CCMS data include a credit reference agency (CRA) dataset that matches cards

to individuals. The CRA data confirm that, on average, UK adults hold fewer cards

relative to the US population, with the majority holding only one card each (see

Figures 1.C.2 and and FCA (2015a)). I estimate my model using individuals with one

credit card, which circumvents complications arising from (i) balance transfers and

(ii) balance-matching heuristics in repayment across multiple cards (Gathergood,

Mahoney, Stewart, andWeber, 2019). Finally, I occasionally complement my analysis

with an FCA survey of cardholders, detailed in FCA (2015d).

1.5 Central Descriptive Findings

I conclude this chapter by showing that the leading UK credit card lenders indi-

vidualize credit card contracts through risk-based credit limits rather than interest

rates. The previous section revealed that, when pooling across lenders and months,

credit limits are substantially more dispersed than interest rates. In what follows, I

explore similar statistics within lenders, cards, and months.

1.5.1 Limited Variation in Lenders’ Interest Rates

Limited Total Variation

I begin by documenting the limited variation in each lender’s interest rates across

originations within a month. Table 1.C.1 Column (1) reports the average (over
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Figure 1.1: Coefficient of variation and proportion of within-card variation in in-

terest rates and credit limits for prime and superprime lenders
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Notes: To construct each bar, I calculate the average of the statistic over the months within a

lender to create a lender-specific value. Each bar in this plot is a weighted average (weighting by

origination share) of the lender-specific averages for the prime and superprime lenders.

months) of the lenders’ interest rate coefficient of variation.10 The values are below

23%, and, as shown in the left-hand dotted maroon bar in Figure 1.1, the average

across prime and superprime lenders (weighted by originations) is 14%. This implies

that the standard deviation in the interest rate is, on average, one-seventh of the

mean at a lender in a given month. Additionally, as detailed in Table 1.C.1 Columns

(2) and (3), the across-lender weighted average of the ratio of the 75th to 25th per-

centile (respectively 90th to 10th) for interest rates is 1.19 (respectively 1.38), further

illustrating limited variation in interest rates within lenders.

Limited Within-Card Variation

For the leading UK credit card lenders, a modest proportion of the already minimal

total variation in interest rates is within credit cards rather than across them. To

expose this feature, I decompose the variation in lenders’ interest rates into within-

10For lender ℓ in month t, who offers cards j ∈ Jℓt, creating originations i ∈ Ijℓt, I calculate the

grand average r̄ℓt and standard deviations sdr,ℓt of interest rates, where r̄ℓt =
1
Iℓt

∑
i

∑
j rijℓt and

sd2ℓt = 1
Iℓt

∑
j

∑
i(rijℓt − r̄ℓt)

2, and Iℓt is the total number of originations. The value in Column

(1) of Table 1.C.1, for lender ℓ is cvrℓ = 1
Tℓ

∑
t

sdr,ℓt
r̄ℓt

, where Tℓt is the number of months of

observations for each lender. The left-hand dotted maroon bar in Figure 1.1 shows the weighted

average (weighted by market share) of cvrℓ over prime and superprime lenders.
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card and between-card terms. For each lender ℓ and month t, I divide the total

variation V TOT
ℓt in interest rates rijℓt for cards j ∈ Jℓt and originations i ∈ Ijℓt into

within-card variation V W
ℓt and between-card variation V B

ℓt

1

Iℓt

Jℓt∑
j=1

Ijℓt∑
i=1

(rijℓt − r̄ℓt)
2

︸ ︷︷ ︸
V TOT
ℓt

=
1

Iℓt

Jℓt∑
j=1

Ijℓt∑
i=1

(rijℓt − r̄jℓt)
2

︸ ︷︷ ︸
V W
ℓt

+
∑
j

sjℓt(r̄jℓt − r̄ℓt)
2

︸ ︷︷ ︸
V B
ℓt

, (1.1)

where Iℓt is the total number of originations at lender ℓ in month t, r̄ℓt is the grand

mean of interest rates, r̄jℓt is the card-j-specific interest rate mean, and sjℓt =
Ijℓt
Iℓt

is the share of originations on card j at lender ℓ in month t. Intuitively, the

decomposition separates the grand variance into an average of within-card variances

(V W
ℓt ) and a weighted variance of card averages (V B

ℓt ). As plotted in the right-hand

dotted maroon bar in Figure 1.1, within variation for prime and superprime lenders

is, on average, 23% of the total variation.11 Table 1.C.1 Column (4) reports the

values of the percentage of within-card variation for all lenders. In the extreme case,

two lenders give almost all (99% and 100%) customers on the respective credit card

the same interest rate in all months, hence, practically all the variation in interest

rates at origination is at the card level for these two lenders.

Proportion of Customers Obtaining Advertised APR

To explain the lack of within-card variation in interest rates, I calculate the monthly

percentage of customers obtaining the advertised APR and plot its value in Figure

1.C.3. The value across all credit cards in the sample hovers around 80 to 90% and

it does not change in February 2011 when regulations on advertised APRs relax.

Even though regulation required lenders to give the advertised APR (or lower) to

only 51% of their customers after February 2011, most lenders still gave almost all

their customers the advertised APR.12 Further, Figure 1.C.4 plots the proportion

of cards giving at least 70% (solid) and 90% (dashed) of customers the advertised

APR at origination in each month. Each month, around 85% of cards give at least

70% of customers the advertised APR, and in 77% of card-months, over 90% of

originations obtain the advertised APR. These statistics confirm that most cards,

and not just lenders, give the majority of their consumers the advertised APR.

In Chapter 2 I embed this feature into my economic model by making borrowers’

11The weighted average including subprime lenders is 31%. I discuss subprime lenders separately

in Appendix 1.B.
12I pool over lenders in this case, but the lender-by-lender and card-by-card plots are similar.
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credit card preferences dependent on card-level APRs, abstracting from the minimal

within-card variation in interest rates.

I summarize the descriptive facts presented thus far in Finding 1.

Finding 1 (Interest Rate Variation). There is limited total variation in interest

rates, of which an even smaller part is within-card variation. The fact that 80–90%

of customers obtain the advertised APR at origination each month corroborates the

limited within-card variation in interest rates.

1.5.2 Substantial Variation in Credit Limits

Substantial Total Variation

Having confirmed the lack of variation (particularly within-card variation) in interest

rates, I turn to credit limits. I provide the average of lenders’ credit limit coefficients

of variations (weighted by originations) in the left-hand striped gold bar in Figure

1.1. At 78%, it is over five times larger than the interest rate equivalent. As reported

in Columns (6) and (7) of Table 1.C.1, the across-lender weighted average of the 75th

to 25th (respectively 90th to 10th) credit limit percentile ratios is 3.34 (respectively

9.15), displaying substantial variation in credit limits within each lender.

Substantial Within Variation

I perform the same within-card and between-card decomposition as in Equation

(1.1) for credit limits. Across lenders, as shown in the right-hand gold striped bar in

Figure 1.1, the average percentage of total variation found within credit cards is 81%.

The dominance of within variation suggests that lenders do not sort individuals onto

cards with varying average credit limits. Rather, there is large variation in credit

limits across individuals even within a specific credit card product.

Shape and Scale of Credit Limit Distributions

The distribution of credit limits varies substantially across all lenders in both shape

and scale.13 I illustrate this fact in Figure 1.2, where I plot the empirical cumulative

distribution function (CDF) of credit limits for two contrasting lenders, labelled

13To confirm differences between lenders’ credit limit distributions formally, I conduct multiple

distribution “Kolmogorov-Smirnov” hypothesis tests. I strongly reject the equality of empirical

CDFs across lenders at lower than 0.1% significance levels in all tests. Table 1.C.2 reports the

results and further details of the specific tests I conduct.
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Figure 1.2: Empirical CDFs of two particular lenders’ credit limits
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Lenders A and B. Two substantial differences are evident. The first relates to the

shape of the credit limit distributions. Lender B’s curve is step-like, implying a coarse

process of assigning credit limits to individuals, whereby groups of consumers obtain

the same credit limit. Lender A’s smooth curve is consistent with a more finely tuned

allocation mechanism for origination credit limits. The second difference relates to

the scale of the credit limit distributions. Lender A has lower values of credit limits

than Lender B for the first 25 percentiles; all percentiles after the 25th, however, are

larger. The range of Lender A’s credit limit distribution is evidently much larger.

Other lenders’ credit limit empirical CDFs at origination, plotted in Figure 1.C.5,

lie between the two lenders in Figure 1.2. This range in the shape and scale of

distributions is consistent with lenders who vary in the coarseness of their credit

limit assignment.14 Some lenders offer large groups of customers the same credit

limit, while others with smoother CDFs adjust their credit limits more precisely to

each customer. The model I build in Chapter 2 justifies differences in the shape and

scale of lenders’ credit limit distributions through differences in the coarseness of

information they possess on customers’ risk levels.

I summarize my descriptive facts on the distributions of credit limits in Finding 2.

Finding 2 (Credit Limit Distributions). There is substantial within-card vari-

ation in credit limits across lenders. The distributions of credit limits differ in shape

and scale across lenders.

14These findings are robust to dividing lenders into cards and dividing originations by year and

by month.

26



1.5.3 Risk-Based Credit Limits, Not Risk-Based Prices

Since interest rates at a lender rarely vary within a credit card month, they are

unlikely to relate strongly to lenders’ predictions of customers’ default risk. I confirm

this in Figure 1.C.6, in which most lenders’ average interest rates are flat across the

application risk score support. Exceptions exist for two subprime lenders, who, as

described in Appendix 1.B, engage in risk-based pricing.

Lenders could employ risk-based pricing by adjusting interest rates after origination

and repricing customers according to their evolving risk and behavior.15 However,

in the period I study, limited repricing occurs in the UK credit card markets. As

detailed in Table 1.C.3, lenders reprice only 4% of cards within the first year after

origination.

Rather, as expected, lenders link each individual’s credit limit to an assessment of

their risk. In Figure 1.3, I plot the mean of the origination credit limit along appli-

cation credit scores for two contrasting lenders.16 Both curves are upward sloping,

consistent with risk-based credit limits. Further, the right-hand lender has disconti-

nuities in credit scores at credit score thresholds. If risk is continuously distributed

and lenders create finely tuned assessments of customers’ risk, discontinuities in

credit limits at points of their credit scores are difficult to rationalize. Accordingly,

the overarching aim of my model is to rationalize discreteness and discontinuities

in lenders’ credit limit distributions through coarse (discrete) assessments of cus-

tomers’ risk. Separate and ongoing work exploits these discontinuities to measure

the distribution of causal effects of credit limits on borrowing and default, similar to

Agarwal, Chomsisengphet, Mahoney, and Stroebel (2017). Several discontinuities in

credit limits exist over lenders’ credit scores and time. Formally aggregating multi-

ple regression discontinuity design estimates across cards, time, and proprietary risk

scores is a detailed procedure and the subject of future work on this topic.

I summarize my descriptive facts on risk-based credit limits in Finding 3.

Finding 3 (Risk-Based Credit Limits). Credit limits vary with lender-specific

application credit scores, while interest rates generally do not. Heterogeneity exists

in how lenders map their credit scores into credit limits: Some, but not all, lenders

15Nelson (2022) shows that repricing was a relatively common practice in the US credit card

market until the (2009) CARD Act essentially outlawed the practice.
16In Figure 1.C.7, I plot the mean of the origination credit limit for each lender, along application

credit scores. In unreported plots, the same patterns emerge when produced by month.
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Figure 1.3: Mean credit limits across risk scores for two particular lenders
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exhibit discontinuities in their credit limits at certain credit score thresholds.

1.5.4 Implications of Descriptive Findings

This chapter reveals that the leading UK credit card lenders individualize credit

limits according to their assessments of the customer’s risk. My empirical facts

are best understood alongside UK credit card regulations, which demands a card-

level advertised APR that most customers must obtain at origination. The next

step is to learn about how lender heterogeneity and the regulatory environment

impact lenders’ decisions to individualize contract characteristics. For example, the

empirical setting is not insightful with regard to how lenders would choose interest

rates if they were not required to set and advertise a card-level APR. In the absence

of meaningful exogenous variation in the regulatory environment or the makeup of

lenders, the best—and perhaps only—way to achieve this aim is to build an economic

model of the credit card market. This model and its estimation follows in Chapter

2.
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Appendices for Chapter 1

1.A Broader Literature on Credit Card Markets

Through this thesis, I contribute to the vast body of literature in economics and

finance examining credit card markets. Several research articles, books, and reports

on credit card markets are of note. Agarwal and Zhang (2015) surveys the credit

card market literature, while Knight (2010) extensively summarizes the UK credit

card market. The FCA produced a UK credit card market study in 2015 (FCA,

2015a), and the Consumer Finance Protection Bureau (CFPB) produces a biennial

report on the US credit card market, the most recent appearing in 2021 (CFPB,

2021). Evans and Schmalensee (2005) offers a comprehensive account of the history

of credit cards in the US. A separate body of literature studies credit card networks,

the most recent of which includes Wang (2023).

Many papers explore the impact of behavioral biases on the credit card market. The

biases include time inconsistency and present bias (Ausubel and Shui, 2005;

Ausubel, 1991; 1999; Laibson, Repetto, and Tobacman, 2000; Meier and Sprenger,

2010; Kuchler and Pagel, 2021), self-control and naivete (Heidhues and Kőszegi,

2010), anchoring (Keys and Wang, 2019; Stewart, 2009), exponential growth

bias (Stango and Zinman, 2009; Adams, Guttman-Kenney, Hayes, Hunt, Laibson,

and Stewart, 2022), over-optimism (Exler, Livshits, MacGee, and Tertilt, 2021;

Yang, Markoczy, and Qi, 2007), shrouding (Ru and Schoar, 2016), and repayment

heuristics (Gathergood, Mahoney, Stewart, and Weber, 2019). Although my model

in Chapter 2 does not explicitly account for these features, I base my estimation

on a set of linearized equations that are not inconsistent with behavioral biases.

Future research could explore the interaction between consumer behavioral biases

and lenders’ risk-based credit limits and interest rates.

Other papers stress the importance of search (Galenianos and Gavazza, 2022;

Stango, 2002; Stango and Zinman, 2015; Drozd and Nosal, 2011; Calem and Mester,

1995), promotional deals (Drozd and Kowalik, 2019), learning (Agarwal, Driscoll,

Gabaix, and Laibson, 2008), minimum repayments (Druedahl and Jørgensen,

2018), and information frictions (Ausubel, 1999) in credit card markets. These

topics are relevant features of credit card markets, and, similar to behavioral biases,

further work could explore how they interact with risk-based prices and credit limits.

In particular, when lenders have to advertise an APR, search becomes less costly

for consumers, so the role of consumer search is particularly important.
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1.B Pricing by Subprime Lenders

I identify two particular subprime lenders in the sample. These lenders (removed

from the solid line to create the higher dashed line in Figure 1.C.3) price differ-

ently, giving many customers a rate that differs from the advertised APR. As Table

1.C.1 reveals, in contrast to prime and superprime lenders, most of the interest rate

variation for these two lenders is within rather than between cards. I investigate

these two lenders’ pricing strategies in Figure 1.B.1 by plotting the distribution of

percentage point differences (rounded to the nearest integer) between the advertised

APRs and the APRs the customers actually received. The differences are minor

and often favorable to consumers. In the most commonly occurring case, 42% of

customers received an interest rate six percentage points lower than that which

was advertised. Very few customers (around 2.6%) received interest rates more than

eight percentage points above the advertised APR.

Figure 1.B.1: Histogram of differences between obtained and advertised APR at

two subprime lenders
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1.C Additional Figures and Tables

1.C.1 Figures

Figure 1.C.1: Distribution of proprietary credit scores across lenders
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Notes: I scramble lenders’ identities to preserve anonymity, so labels do not necessarily match the

identities in other tables and figures. Link back to data section
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Figure 1.C.2: Distribution of the number of cards held by individuals
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Source: CCMS account origination data
Conditional on holding a card
Numbers are averages over months

Notes: Distribution of the number of cards held by individuals with at least one credit card in

the UK. I calculate the distribution using the CRA dataset described in text. I calculate the

distribution of cards held, conditional on holding a card, in each month, and then average over

months. The distribution of the number of cards shows total stability over time, justifying the

process of averaging the distribution over months. Link back to data section

Figure 1.C.3: Proportion of originations each month obtaining the advertised APR
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Source: CCMS account origination data

Notes: The solid line includes all lenders; the dashed line removes the two subprime lenders dis-

cussed in text. The proportion did not significantly change in February 2011 when regulation on

the proportion required to obtain the advertised APR or below fell from 66% to 51%. Link back

to descriptive findings
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Figure 1.C.4: Proportion of cards each month given advertised APR
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Notes: Link back to descriptive findings

Figure 1.C.5: Empirical CDFs of credit limits at all lenders, pooled over time
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Notes: I scramble lenders’ identities to preserve anonymity, so labels do not necessarily match the

identities in other tables and figures. Link back to descriptive findings
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Figure 1.C.6: Mean interest rates across lenders’ risk scores
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For year 2012

Notes: I scramble lenders’ identities to preserve anonymity, so labels do not necessarily match

the identities in other tables and figures. Credit score scales differ across lenders so cannot be

compared. Credit scores are not available at two lenders. Link back to descriptive findings
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Figure 1.C.7: Mean credit limits across lenders’ risk scores
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Notes: I scramble lenders’ identities to preserve anonymity, so labels do not necessarily match

the identities in other tables and figures. Credit score scales differ across lenders so cannot be

compared. Credit scores are not available at two lenders. Link back to descriptive findings
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1.C.2 Tables

Table 1.C.1: Interest rate and credit limit variation by lender

Interest Rate Credit Limit

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bank C. of V. 75/25 90/10 Within C. of V. 75/25 90/10 Within Share

A 0.11 1.19 1.32 20.45 0.78 3.28 8.98 88.53 2.2

B 0.15 1.25 1.39 45.62 0.79 4.57 11.74 77.89 8.27

C 0.22 1.29 1.59 18.63 0.84 4.45 16.18 71.11 21.79

D 0.14 1.02 1.66 23.13 0.74 3.87 9.76 73.92 3.16

E 0.11 1.09 1.27 44.72 0.76 3.12 10.36 82.38 8.36

F 0.12 1.11 1.21 0.59 2.65 6.08 5.98

G 0.12 1.06 1.32 0.00 1.64 4.71 9.99 24.97 8.48

H 0.06 1.11 1.15 0.99 0.66 2.07 5.18 98.57 11.35

I 0.23 1.53 1.77 66.07 0.76 4.44 10.83 92.51 5.11

J 0.08 1.03 1.15 19.15 0.66 2.42 5.37 91.31 9.49

K 0.08 1.01 1.17 0.32 1.51 2.39 4.36

Subprime 1 0.19 1.41 1.42 83.68 0.51 2.00 2.68 88.62 8.78

Subprime 2 0.15 1.31 1.49 96.48 0.70 1.77 2.97 97.38 2.66

Mean 0.14 1.19 1.38 38.08 0.75 3.14 7.88 80.65 -

Weight Mean 0.14 1.19 1.38 31.22 0.78 3.34 9.15 78.28 -

NS Mean 0.13 1.15 1.36 26.53 0.78 3.37 8.81 77.91 -

NS Weight Mean 0.14 1.17 1.37 23.09 0.81 3.52 9.98 76.47 -

Notes: “Share” column reports share of originations; “C. of V.” columns report coefficients of variation; “75/25” and

“90/10” columns report 75th to 25th and 90th to 10th percentile ratios respectively; “within” columns report the ratio

of within to total variation, in percentage terms. All values are averages over months. Weighted mean is weighted

by number of originations. NS stands for “no subprime”, and NS means calculate the mean omitting the subprime

lenders. Missing values of within correspond to lenders who only offer one card. Lenders’ identities are scrambled for

confidentiality reasons and do not necessarily match the identities in other tables and figures. Shares may not add up

to 100 because of rounding. Link back to descriptive findings section
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Table 1.C.2: Tests for equality of lenders’ credit limit distributions

Test p-value

Anderson-Darling Version 1 0.00

Anderson-Darling Version 2 0.00

Rank Score Version 1 0.00

Rank Score Version 2 0.00

Notes: p-values from a collection of tests for the equality of lenders’

credit limit distributions. p-values are averages over months of the

test statistic calculated on the month-by-month credit limit distri-

butions using a random sample of size 1 million. The Anderson-

Darling version 1 (respectively 2) test statistic is A2
kN (respectively

A2
αkN ) in Scholz and Stephens (1987). The Rank Score test statistic

is QN in Lehmann (2006) and Sidak, Sen, and Hajek (1999), where

versions 1 and 2 use integer scores and van der Waerden scores re-

spectively. See Scholz and Zhu (2019) for more details. Link back to

descriptive findings section

Table 1.C.3: Percentage of cards retaining origination interest rate by month

Month after origination Cards not repriced (%)

6 98.00

9 95.98

12 95.77

15 95.27

18 91.01

21 90.11

24 88.75

27 87.81

30 86.67

Notes: I calculate the proportion of cards that have the same interest

rate as they received at origination, for t = 6, 9, 12, . . . , 30 months

after origination. Link back to descriptive findings section

37



Table 1.C.4: Summary statistics on credit card originators

Variable Mean SD 10% 25% 50% 75% 90%

Age 42.88 14.83 25.00 31.00 41.00 53.00 64.00

Income (£) 2099.26 5185.72 630.00 1058.56 1604.14 2335.00 3393.00

Existing Customer 0.40 0.49

Female 0.52 0.50

Homeowner 0.57 0.50

Employment

Employed at Company 0.76 0.43

Self-Employed 0.09 0.29

Unemployed 0.01 0.10

Retired 0.12 0.33

Student 0.01 0.12

Channel

Branch 0.32 0.46

Online 0.53 0.50

Post 0.12 0.32

Telephone 0.04 0.20

Notes: Income is monthly income net of tax. Homeownership is equal to one if the individual

owns a house (with a mortgage or without) at origination. Categorical variables’ means may not

add to 1 because of rounding. Link back to summary statistics description

Table 1.C.5: Summary statistics of card features at origination

Variable Mean SD 10% 25% 50% 75% 90%

Credit Limit (£) 3390.33 3144.37 300.00 1000.00 2500.00 5000.00 7700.00

Purchase APR (%) 21.52 7.64 15.76 16.90 18.90 23.95 31.11

BT APR (%) 20.24 5.28 15.90 17.50 18.90 20.90 30.33

Purch Promo Length 3.57 4.71 0.00 0.00 3.00 6.00 13.00

BT Promo Length 9.21 8.71 0.00 0.00 9.00 15.00 21.00

Balance Transfer 0.28 0.45

Get Ad APR 0.83 0.37

Notes: Unit of observation is the credit card origination (i). “Balance Transfer” is equal to one

if the originator transferred a balance from another card onto this newly originated card at

origination. Promotional lengths are in months. Purchase (respectively BT) promo are equal to

one if the originated card had a purchase (respectively balance transfer) promotional period.

“Get Advertised APR” is a dummy equal to one if the individual obtains the APR advertised

in the promotional materials. Link back to summary statistics description
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Table 1.C.6: Summary statistics on credit card statements

Variable Mean SD 10% 25% 50% 75% 90%

Credit Limit (£) 4213.90 3459.56 500.00 1600.00 3500.00 5900.00 9000.00

Purchase APR (%) 16.46 8.10 0.00 15.70 17.50 18.94 29.90

Account Balance (£) 1224.25 1956.57 0.00 0.00 395.12 1593.46 3669.04

Purchase Balance (£) 611.67 1255.25 0.00 0.00 75.95 660.18 1820.31

Value Transactions (£) 311.19 802.62 0.00 0.00 0.00 259.85 880.38

Repayment (£) 224.69 637.35 0.00 0.00 30.02 150.00 569.40

Total Interest (£) 8.23 20.52 0.00 0.00 0.00 6.01 26.58

Purchase Interest (£) 6.39 17.60 0.00 0.00 0.00 3.30 20.51

Account Status

Up-To-Date 0.94 0.23

1 Month Overdue 0.02 0.14

2 Months Overdue 0.00 0.06

3 Months Overdue 0.00 0.05

4 Months Overdue 0.00 0.04

5+ Months Overdue 0.00 0.06

Charged Off 0.02 0.15

Notes: Unit of observation is the statement-month. Account balance includes purchase, cash

advance, money transfer, and balance transfer balances. Total interest includes purchase, cash

advance, money transfer, and balance transfer interest. The variables 2 Months overdue to 5+

Months Overdue are zero rounded to 2 decimal places. Categorical variables’ means may not sum

to 1 because of rounding. Link back to summary statistics description
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Table 1.C.7: Summary statistics for card characteristics

Variable Mean SD 10% 25% 50% 75% 90%

Annual fee 10.34 37.37 0.00 0.00 0.00 0.00 24.00

Min income 6463.20 8356.91 0.00 2.08 4000.00 7500.00 20000.00

Min CL (£) 463.09 516.11 100.00 200.00 450.00 500.00 1000.00

Max CL (£) 19881.44 30651.74 1000.00 3000.00 15000.00 20000.00 30000.00

Interest free days 31.29 12.92 20.00 25.00 25.00 46.00 50.00

Eligibility

Student Only 0.05 0.21

Employed Only 0.07 0.26

All 0.88 0.32

Risk Segment

Superprime 0.02 0.15

Prime 0.51 0.50

Subprime 0.21 0.40

All 0.26 0.44

Rewards

Cashback 0.09 0.29

Airmiles 0.07 0.26

Affinity 0.25 0.43

Credit repair 0.21 0.41

Purch protection 0.25 0.44

Contactless 0.48 0.50

Insurance 0.14 0.35

Priority 0.12 0.32

Notes: Unit of observation is the card-month (jt). CL stands for credit limit. Reward variables

are all equal to one if the card-month offers the reward. Categorical variables’ means may not sum

to 1 because of rounding. Link back to summary statistics description
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Chapter 2

Regulating Prices in the UK

Credit Card Market

2.1 Introduction and Summary

In this chapter, I construct and estimate a structural equilibrium model of the UK

credit card market. The primary novelty of my modeling arises through the supply

side. Lenders choose credit limits for each customer after they apply for a credit

card. I endow each lender with a screening technology that generates the lender a

noisy signal on each customer’s private type, which represents their risk. Differences

in the granularity of these signals across lenders explain the differences in the shape

of lenders’ credit limit distributions shown in Chapter 1. This chapter offers the first

quantitative model of credit card lenders’ screening technologies and credit limit

choices. I am able to estimate lender-specific screening technologies from lenders’

optimizing equations because I have data on typically unobserved marginal costs of

lending, which are their funding costs.

On the demand side of the model, I explain borrowers’ credit card choices, level of

borrowing, and default decisions, allowing for observed and unobserved heterogene-

ity in all endogenous demand-side variables. For credit card and borrowing choices,

preferences over interest rates are heterogeneous, depending on individuals’ incomes.

I identify demand parameters using a novel source of quasi-experimental price vari-

ation. I create an instrument that exploits the cost shock resulting from the April

2011 case in the High Court concerning the mis-selling of payment protection insur-

ance (PPI). Credit card lenders were forced to compensate thousands of consumers
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when the court deemed they had mis-sold PPI alongside credit cards.

My estimates imply the following findings. First, I find a positive correlation be-

tween unobservables driving the level of borrowing and default, implying adverse

selection on the intensive borrowing margin. Second, my supply-side estimates in-

dicate that substantial variation exists in lenders’ screening technologies, which cor-

responds with the variation in lenders’ credit limit distributions. Third, I find that

lenders with more precise screening technologies have a lower proportion of cases

in which the customer repays their entire balance. This finding is consistent with a

segmentation of credit card lenders in which lenders with the most precise screening

technologies serve a riskier, but more profitable, market segment on average. Lenders

with more precise screening technologies are more willing to serve customers who

will borrow but may default because they can more accurately set lower credit limits

for customers they perceive to be riskier.

The lack of interest rate variation, combined with the non-binding regulatory APR

constraint, imply either that (i) alternative costs/constraints exist for setting indi-

vidualized interest rates or (ii) lenders would choose card-level interest rates even in

the absence of such frictions. To investigate this further, I analyze a counterfactual

scenario in which lenders have the option to use fully individualized interest rates

and credit limits, subject to no costs or constraints. The distribution of interest rates

moves from a small set of card-level interest rates to a more continuous, individual-

level distribution, and interest rate discrimination emerges. The riskiest individuals

experience large reductions in consumer surplus, and the consumer surplus of the

safest individuals increases. Further, credit limits remain individualized, borrowing

increases on average, and lenders’ profits increase.

The counterfactual findings suggest that lenders face frictions that limit their will-

ingness to set individualized interest rates. Although I cannot identify the exact

source of these frictions, I offer three possibilities. First, lenders may face reputa-

tional costs in advertising one APR while giving customers an alternative individ-

ualized APR.17 Individualizing interest rates in a context where interest rates are

advertised is also accompanied by the risk of being perceived to discriminate on

unfair grounds. Second, overhead and operational costs of tailoring prices optimally

17In 2003, the UK House of Commons Treasury Committee described risk-based pricing as

an “unacceptable practice,” raising “serious transparency issues” (House of Commons Treasury

Committee, 2003).
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may exist, specifically in the IT infrastructure required to operationalize individual-

ized prices. Lenders may choose to focus their investments on tailoring credit limits

if regulations limit their ability to tailor individuals’ interest rates. Third, lenders

may face behavioral frictions or alternative motives that prevent them from making

profit-maximizing decisions. In particular, lenders may opt for parsimonious models

for interest rates for practical reasons that are beyond the scope of my economic

model.

The chapter proceeds as follows. My structural model follows in Section 2.2. In

Section 2.3, I explain how I estimate the model parameters. Section 2.4 discusses

my parameter estimates, and Section 2.5 describes the results of the counterfac-

tual analyses. In Section 2.6, I provide potential explanations for the results of the

counterfactual analyses. Section 2.7 offers brief remarks to conclude Chapters 1 and

2.

2.2 A Model of the Credit Card Market

This section details my UK credit card market model. To help navigate the model,

Tables 2.D.1 and 2.D.2 provide a glossary of notation and Figure 2.1 depicts the

timeline within the market.

2.2.1 Preliminaries

The market is a pair (m, t). Here t represents an origination month between January

2010 and June 2013, and m represents the distribution channel, divided into origi-

nations occurring in the store and out of the store.18 I describe the model through

its three features: the credit card j ∈ Jmt, consumers i ∈ Imt currently without a

credit card (who represent demand), and lenders ℓ ∈ Lmt (who represent supply). I

focus on customers currently without a credit card for two reasons. First, estimating

my model on the sample currently without a credit card circumvents complications

arising from (i) balance transfers and (ii) balance-matching heuristics in repayment

across multiple cards (Gathergood, Mahoney, Stewart, and Weber, 2019). Second,

as discussed in Section 1.4.4, most UK adults hold only one credit card.

An alternative option is to microfound my demand model in a typical consumption-

18I stop at June 2013 to ensure that I observe 18 months of borrowing and default data on each

individual.
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Figure 2.1: Model timeline within a market

Consumer transacting choice Revolver chooses card

Lender sets credit limit

Revolving level

DefaultRevolve (j > 0)

Transact (j = 0)

savings setup. However, I prefer to view my demand-side estimating equations as a

set of linearized equations, agnostic to most of the behavior that generates them.

This is similar to the approach of Einav, Jenkins, and Levin (2012), which focuses

on a set of linearized estimating equations from their standard model of consumer

choice. The benefit of this approach is that the econometric model becomes a valid

approximation of several underlying models of consumer choice, not just the stan-

dard model of intertemporal optimization. Though this can limit the extent of wel-

fare analysis, it is a worthwhile concession in modeling credit card borrowing, where

standard assumptions about revealed preference, rational expectations, and con-

sumer sophistication are subject to deserved scrutiny. I discuss various departures

from rational utility maximizing agents with standard intertemporal preferences in

the in credit card market literature in Appendix 1.A.

2.2.2 Credit Card

Following Lancaster (1966), I model a credit card as a bundle of features, given

by (rjmt, Y jmt, Xjmt, ξjmt). The first term, rjmt, is the advertised interest rate. The

second component, Y jmt, is the income threshold, explained in Section 2.2.3. The

third and fourth are characteristics: those I observe, denoted as Xjmt (e.g. cashback

and air miles), and those I do not, denoted as ξjmt (e.g. prestige and brand loyalty).

2.2.3 Consumer

My demand model follows those in the credit market literature, sharing features

with Crawford, Pavanini, and Schivardi (2018).19 The left side of Figure 2.2 depicts

the demand-side building blocks. Consumers potentially make three decisions (card

choice, borrowing, and default), each of which I detail in turn.

19Grodzicki, Alexandrov, Bedre-Defoile, and Koulayev (2022) provides a more general setup of

credit card demand.
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Figure 2.2: Model overview
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Card Choice

In the first nest of the model, consumers choose whether they will be transactors or

revolvers. Transactors, denoted j = 0, either do not use the card, or do use the card

but do not use the card’s borrowing facility, paying off their balance in full every

month. Revolvers leave some of the card balance unpaid, thereby accruing interest.20

The revolving consumer’s utility from obtaining card j is

V E
ijmt = V̄ E(XE

jmt, ξ
E
jmt, rjmt, η

E
mt, yi; θ

E
mt) + νijmt.

Throughout the model, superscript E represents the Extensive margin. The term

XE
jmt represents the elements of observed card characteristics Xjmt that affect card

choice; the same convention also applies to ξ. The term νijmt represents a random

taste shock . I model νijmt as generalized type-1 extreme value distributed taste

20That consumers choose whether they will use the card for revolving or transacting is one of the

few substantive behavioral assumptions I require. Though not all consumers commit to transacting

or revolving, consumers’ use of direct debits (automatic transfers) suggests that many consumers

have decided how they intend to use their credit card at origination. In the first three months of

originating the card, 28% have set up a direct debit, rising to 34% by six months. Of those who set

up a direct debit at origination, around 40% set up a direct debit to automatically pay off their

entire balance each month, suggesting they intend to be a transactor. Of the remaining 60% who

set up a direct debit for an amount less than the full balance, 77% set up a direct debit to pay

the minimum repayment, which is usually the maximum of (i) 1-2.5% of the balance, and (ii) £5

(around $6).
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shocks. These random taste shocks are independent and identically distributed (iid)

across customers and correlated across choices for each consumer. The final compo-

nents of revolvers’ credit card utility are ηEmt, which is a card-utility market fixed

effect, yi, which denotes logged income, and θEmt, which denotes market specific pa-

rameters that govern the indirect utility function.

To justify my choice concerning the components of V̄ E, I draw on the results of a

question from the cardholder survey in the FCA Credit Card Market Study. Figure

2.D.1 from the FCA CCMS presents the results to the question “Which of the fol-

lowing applied when you took out your credit card?” The most common response

is rewards, provided by 33% of respondents. For this reason, I include XE
jmt in V̄

E.

Twelve percent of customers mention the card’s interest rate, hence I include rjmt

in V̄ E. Since I focus on individuals currently without a credit card, who by defini-

tion will not be making a balance transfer, I omit preferences over balance transfer

characteristics. Finally, other non-price, non-reward, and non-promotional deal re-

sponses comprise some of the remaining survey responses, implying the importance

of ξEjmt. Such responses include “use abroad” (15%), “low fees” (4%), and “good deal

offered” (13%), all of which are examples of unobserved characteristics contained in

ξEjmt. Finally, there is little to no mention of credit limits, which I omit from V̄ E

directly. However, through ξEjmt, I do allow for individuals to prefer certain cards

because they are aware that these cards have higher average credit limits.

I follow the literature (Berry, Levinsohn, and Pakes (1995) and Nevo (2001) among

numerous others) and linearize V̄ E to imply

V E
ijmt = βE

′
XE
jmt + ξEjmt + νijmt + αEimtrjmt + ηEmt. (2.1)

The random coefficient αEimt represents individual-specific preferences over interest

rates. Heterogeneous preferences over interest rates read

αEimt = αE + ΩE,r
mt ỹimt. (2.2)

The term ỹimt = yi− ȳmt denotes log income recentered around the market average,

where the market average is given by ȳmt = I−1
mt

∑
i∈Imt

yi. Logged income is centered

around the market average so that αE represents the mean interest rate sensitivity

in the card choice equation.

In this version of the model, preferences over rewards, βE, are constant across indi-

viduals. I use random coefficients on interest rates because, on the supply side, I take

rewards as exogenous and model lenders’ choices of interest rates. Since my counter-
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factual scenarios explore how lenders would choose individualized interest rates, it

is important that I allow preferences over interest rates to differ across individuals.

I generate choice sets for individuals by comparing an individual’s income at origi-

nation to the card’s income threshold. Individuals qualify for a card if their income

Yi exceeds the income threshold Y jmt. Consequently, the set of cards available to

customer i is

Jimt = {j ∈ Jmt|Yi > Y jmt}.

I discuss the rationale for lenders’ use of income thresholds in Section 2.2.4.

The utility from transacting, also linearized, is V E
i0mt = δ0mt + νi0mt + ΩE,cons

mt ỹimt,

where δ0mt is a market-level constant of transacting utility. If the individual chooses

to borrow, they choose the card j∗ in their choice set corresponding to the maximal

value of V E
ijmt. The individual chooses to transact if V E

i0mt exceeds V
E
ij∗mt.

Revolving

Next, revolvers choose their level of borrowing. I denote the desired level of bor-

rowing as b∗ijmt, which represents the individual’s level of borrowing in the absence

of any credit limit. The word “desired” reflects that individuals may wish to revolve

a larger balance than their credit limit b̄ijmt allows. The value of b∗ijmt satisfies

b∗ijmt = b(XB
jmt, ξ

B
jmt, rjmt, η

B
mt, yi, ε

B
imt; θ

B
mt).

As in card choice utility, the log of borrowing is linear in its parameters:

log(b∗ijmt) = βB
′
XB
jmt + ξBjmt + αBimtrjmt + ηBmt + ΩB,cons

mt ỹimt + εBimt. (2.3)

The terms XB
jmt, ξ

B
jmt, α

B
imt, and ηBmt in (2.3) have analogous definitions to those

in (2.1) and (2.2), swapping E for Borrowing. The random variable εBimt reflects

a revolver’s unobserved demand for borrowing. Neither the lender nor I perfectly

observe εBimt. I define its distribution at the end of this subsection.

In practice, revolvers make different borrowing choices each month, such as those

implied by the solution to an intertemporal consumption-savings problem. I do not

model the dynamics of borrowing, since the primary aim of the model is to explain

lenders’ origination credit limit choices. What matters to lenders when choosing

origination credit limits are consumers’ overall borrowing over the immediate period

that they use the card, and less so the dynamics of borrowing within that period.

As such, “borrowing” can be interpreted either as the result of a borrowing choice

in a two-period consumption-savings model, or as a summary statistic (such as
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an average) of multiple choices of borrowing.21 In either case, my framework does

not require a model of multiple values of borrowing across periods as implied by a

consumption-savings problem: Modeling a summary statistic of borrowing is a clear

profitable abstraction for my context.22

Default

Finally, revolvers choose whether or not to default on their balance. The net utility

from defaulting reads

V D
imt = V D(ηDmt, yi, ε

D
imt; θ

D
mt),

where, again, all terms are analogous to those defined in (2.1) and (2.3), swapping

E for Default. The individual defaults if V D
imt > 0. I linearize V D

imt, implying

V D
imt = ηDmt + ΩD

mtỹimt + εDimt. (2.4)

I follow Nelson (2022) by not including the interest rate in default utility. Nelson

(2022) and Castellanos, Jiménez Hernández, Mahajan, and Seira (2018) provide em-

pirical evidence that price has an insignificant effect on default in credit markets.

Assuming price-invariance of default also follows other structural models of selec-

tion markets without moral hazard, for example Cohen and Einav (2007) and Einav,

Finkelstein, and Schrimpf (2010b). These findings support research in consumer fi-

nance that suggests there are limited channels through which prices can affect de-

fault. Much of the research on default implies that short-run liquidity drives default,

rather than the long-run value of a loan contract, especially for the relatively small

credit lines found on credit cards (Bhutta, Dokko, and Shan, 2017; Guiso, Sapienza,

and Zingales, 2013; Ganong and Noel, 2020; Indarte, 2021).

I also follow Nelson (2022) in assuming that default is not a direct function of credit

limit. If credit limit does affect default, then, insofar as market fixed effects, income,

and the lenders’ signal on risk explain individuals’ credit limits, my default model in

part accounts for the effect of credit limits on default, and my estimates are lower,

rather than upper, bounds.23

21When I take the model to the data, I take the average of individuals’ borrowing over 18 months.

Since many individuals have only a few interludes of borrowing over 18 months, an alternative

choice such as the choice of borrowing at 18 months will not be representative of all 18 monthly

borrowing choices made by individuals over the period.
22Further evidence supporting an abstraction from the dynamics of borrowing choice is the lack

of ex-post repricing, as I discuss in Section 1.5.3.
23For example, suppose instead that V D

imt = ηDmt+ΩD
mtỹimt+Υ1b̄ijmt+ε

D
imt and b̄ijmt = Υ2ỹimt+
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Private Information Structure

I decompose private characteristics (εBimt, ε
D
imt) into a common component, ε̃i, and

an idiosyncratic component, ε̃hi , so that

εhimt = σhmtε̃i + ε̃hi

for h ∈ {B,D}. The common component simplifies the lender signal structure (fol-

lowing in Section 2.2.4) and generates correlation among unobserved private charac-

teristics for each individual. The distribution of unobserved preferences varies over

markets through σBmt and σ
D
mt. Finally, I further simplify by setting ε̃Bi to zero and

letting (ε̃i, ε̃
D
i ) be independently standard normally distributed. Henceforth, I de-

clutter the notation, writing εi instead of ε̃i.

2.2.4 Lender

My model of supply, specifically lenders’ screening technologies and the credit limit

optimization problem, comprises the central novelty of my model, though it shares a

few similarities with the model of credit limit categories sketched in Agarwal, Chom-

sisengphet, Mahoney, and Stroebel (2017) and the model in Livshits, Mac Gee, and

Tertilt (2016). The right side of Figure 2.2 depicts the supply-side building blocks.

Lenders observe individuals’ incomes Yi and take Xjmt, ξjmt, and Y jmt as given. I

take lenders’ choices of card characteristics as given for three reasons. First, in the

data, lenders do not individualize rewards and rewards are sticky, rarely changing

over the entire five-year period on which I have data. Second, many unobserved

characteristics, such as brand prestige and loyalty, cannot be adjusted by a lender in

a given month. Third, full-contract pricing introduces issues in equilibrium existence

and uniqueness from which it is profitable to abstract, where justified.

The sorting of individuals onto cards based on their income occurs through income

thresholds. Lenders use income thresholds because UK lenders must be able to

inform consumers of the information used to reject them if they source data from a

CRA (Department for Business Innovation and Skills, 2010). Consequently, lenders

base decisions on eligibility at least in part on income.

To match the institutional environment and my empirical findings in Section 1.5,

εb̄imt. We expect that Υ1,Υ2 ≥ 0. In this case, my specification will estimate ΩD
mt+Υ1Υ2. Therefore,

if my estimates are negative, the true value of ΩD
mt will be negative and at most the value of the

estimate.
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lenders choose credit limits for individuals non-competitively after they have orig-

inated a card. The regulatory environment requires that, at the beginning of each

month, lenders set advertised APRs rjmt at the card-month-market level. This insti-

tutional feature usefully circumvents issues of equilibrium existence and uniqueness

that are pervasive in the empirical literature on contract pricing in credit markets. I

estimate the supply side entirely from lenders’ credit limit choices and therefore do

not need to take a stance on how lenders set interest rates in the baseline. This avoids

the need to model how lenders optimize interest rates around the fiddly regulatory

requirements of (i) an advertised APR and (ii) a minimum of 51% of customers

obtaining the advertised APR or lower.24 By not requiring a model of how lenders

set interest rates, I also avoid making a specific assumption about the nature of

conduct in setting interest rates.

Before presenting the lenders’ optimization problem in detail, I describe the main

exogenous characteristic of the lender—their screening technology.

Screening Technology

Each lender has their own screening technology. The screening technology imports

data on a customer that is available to the lender and provides the lender with a

tailored prediction of possible values for the customer’s common risk component εi.

Without a screening technology, the lender would take expectation over a standard

normal for each customer, which is the population distribution of εi. The screening

technology aims to provide a distribution with a mean closer to each individual’s

realization of εi and a variance of less than one. That is, the screening technology

aims to lower the bias and variance in the lenders’ estimation of customers’ risk.

The lender-specific, tailored distributions that the screening technology delivers are

characterized by two features. The first is the set of signals or central points around

which the tailored distributions are based. I denote these as eiℓt, which take a finite

number of lender-specific values {eℓt1, . . . , eℓtLℓt
}. The second feature is the preci-

sion of the distribution the technology generates. The distribution generated by the

screening technology accounts for potential error in the signal. I assume that, for an

individual who generated the signal eiℓt, the distribution provided by the screening

technology is normal with mean eiℓt and variance σ2
ℓt ≤ 1, and I call σℓt the preci-

sion parameter. Given the value of eiℓt, the screening technology approximates the

24Appendix 2.A.2 presents a yearning reader with one model—the standard Nash-Bertrand pric-

ing model—of how lenders may set advertised APRs competitively.
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Figure 2.3: Distribution of actual and predicted risk scores at two lenders

0 ε̌ ei1t

N (0, 1) N (ei1t, 0.95)

Lender 1

Lender 2

0 ε̌ ei2t

N (0, 1) N (ei2t, 0.45)

Notes: These figures show the distribution of ε (solid) and ε̂i (dashed) across two lenders for a

customer with unknown value εi = ε̌. The bottom lender’s screening technology, which delivers the

signal ei2t, outperforms the top lender’s signal of ei1t for this individual.

possible values of εi as ε̂i = eiℓt+wiℓt, where wiℓt ∼ N (0, σ2
ℓt). When setting profits,

the lender takes expectation using the distribution N (eiℓt, σ
2
ℓt), as provided by the

screening technology.

Figure 2.3 depicts distributions of εi and ε̂i for two fictitious lenders. The distribution

of risk provided by Lender 1’s screening technology for customer i is N (ei1t, 0.95).

The mean of the conditional distribution is relatively far from customer i’s true

realization of εi = ε̌. Lender 2 has a better screening technology. The screening

technology distribution given the signal ei2t is much closer to ε̌. Furthermore, since

σ2 is smaller than σ1, the signal errors at Lender 2 are less dispersed around the

signal than at Lender 1. When setting credit limits for customer i, Lender 2 will

place more weight (relative to Lender 1) on potential values close to ε̌ and less weight

on incorrect values, such as those close to zero.

Credit Limit

Modeling lenders’ credit limit choices requires an expression for their profits, that

is, their costs and revenues. Regarding costs, lenders incur some fixed costs such

as overheads and operational costs, but the majority of their costs vary with the

number of cards they issue and how consumers use the cards they issue. I focus on
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charge-off (default) costs and cost of funds, denoted as c. According to statistics

from US credit card lenders, these account for over two-thirds of lenders’ total costs

from issuing credit cards (Evans and Schmalensee, 2005). The remaining third is

comprised in most part of fixed costs, which I am free to ignore since they do

not affect lenders’ margins in choosing credit limits or interest rates. As such, the

decision to model cost of funds and charge-off costs is a reasonable counterpart to

the lenders’ decisions that I observe in the data.

Regarding revenue, I focus entirely on finance charges arising from interest. For

US lenders in 2001, this accounted for approximately 70% of their card revenue

(Evans and Schmalensee, 2005). The remaining 30% derived from three main factors:

interchange, fees, and cash-advances. Each of these three factors are likely to account

for a smaller percent of UK lenders’ revenue relative to the US, thus, motivating

their abstraction. Appendix 2.A.1 describes each of the three factors in more detail

and explains why they are less relevant in the UK credit card market than the US.

Each lender’s profit from a transacting customer is Πi0mt, which is unrelated to the

credit limit and interest rate.25 Therefore, the credit limit decision is unaffected by

whether the individual originating card j is a transactor or a borrower. Let ∆imt

denote the probability that borrower i defaults and cjmt denote funding rate. Then

the profit per unit of credit borrowed from individual i is the interest rate minus the

funding cost if the customer does not default, and −(1−ψ)− cjmt if they do, where

ψ is the proportion of the balance that debt collectors are able to recover, which I

set to zero in my empirical specification.26

Hence, the expected profit per unit credit for individual i on card j is

πijmt = (1−∆imt)(rjmt − cjmt) + ∆imt(−1− cjmt).

25The revenue and costs from transactors do not relate to the interest rate, since they do not

revolve a balance on which interest accrues. I assume that lenders’ variable cost from non-defaulting

customers is per-unit credit, and therefore lenders’ costs from transactors are unrelated to the credit

limit. The credit limit may affect interchange revenue, but I abstract from interchange revenue for

revolvers and do so for transactors for the same reason. Resultantly, profits from transactors are

not related to credit limit and interest rate choices.
26When cardholders default, payment card issuers start debt collection procedures. These card-

holders will often have other debts, which may be collected before credit card debt. Debt collection

procedures are very costly relative to the size of the loan for credit card lenders. Further, in the

US in 2002, 50% of all charge-offs resulted from bankruptcy, in which case debt collection is often

futile (Evans and Schmalensee, 2005). These factors considered together, ψ = 0 is a reasonable

abstraction.
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Given the signal eiℓt and the implied screening technology distribution, the lender

chooses the credit limit b̄ijmt to maximize the expected profit from the individual:

Πijmt = max
b̄ijmt

E
[
min{b∗ijmt, b̄ijmt}πijmt

]
= max

b̄ijmt

∫
min{b∗ijmt(eiℓt, w), b̄ijmt}πijmt(eiℓt, w)fw(w)dw. (2.5)

As derived in Appendix A.2.3, the first order condition for credit limit is

E
[
πijmt|b∗ijmt ≥ b̄ijmt

]
=

∫ ∞

ω(b̄ijmt)

πijmt(eiℓt, wiℓt)ϕ

(
wiℓt
σℓt

)
dwiℓt = 0, (2.6)

where

ωiℓt(b̄ijmt, eiℓt) =
log(b̄ijmt)− δBjmt − uBijmt

σBmt
− eiℓt (2.7)

is the risk signal uncertainty at which the individual wants to borrow exactly their

credit limit, that is, the value of wiℓt which makes log(b∗ijmt) equal to log(b̄ijmt). The

intuition for the first order condition is that at the optimal credit limit, the expected

profit per unit credit, over those with unobservables that drive them to use their full

credit line, is zero. If the expected profit per unit credit on these types of individuals

were positive, the lender should raise the credit limit, because the expected benefit

of safer types using the full credit limit exceeds the expected costs of riskier types

using the full credit limit. However, if the expected profit per unit credit over those

with unobservables that drive them to use the full balance were negative, the types

exploiting the full credit line would be too risky, and therefore the lender should

lower their credit limit choice in this case, to render the marginal individual using

their entire credit line less risky.

My descriptive findings in Section 1.5.2 on the differences in lenders’ credit limit

distributions motivate the tight relationship between lenders’ screening technolo-

gies and the shape of the distribution of credit limits. Each unique signal implies

a different choice of credit limit for the lender, and, therefore, given income, there

is a mapping between the number of unique credit limits at each lender and the

number of unique signals provided by their screening technology. Lenders who give

observably identical consumers (to the econometrician) a wide range of credit limits

must have a wide range of different signals of these consumers’ unobserved risk. Con-

versely, lenders who give consumers who have identical on observables a coarse set of

credit limits (or, in the extreme, a single value) do not appear to use a sophisticated

screening technology. I use this link between credit limits and signals to estimate

the distribution of signals from each of the unique values of credit limits. Consumers
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who obtain the maximum credit limit for their income category obtained the lowest

signal on their underlying risk εi and those obtaining the lowest credit limit for

their income category obtained the highest risk signal on the lender’s underlying

risk scale.

2.3 Estimation

This section outlines how I estimate the model parameters. I start with demand

estimation, since the demand estimates serve as inputs into supply estimation. My

approach to demand estimation shares features with Benetton (2021), Robles-Garcia

(2022) and Benetton, Gavazza, and Surico (2022). Figure 2.4 displays the four steps

of the estimation procedure.

2.3.1 Demand

Log-Likelihood Conditional on Borrowing

I start with Step 1 in Figure 2.4, in which I estimate the demand parameters for

those who borrow. My demand model for those who borrow consists of equations for

consumer card choice (Equation 2.1), borrowing (Equation 2.3), and default (Equa-

tion 2.4). The equations map cardholders’ characteristics along with lenders’ interest

rates, credit limits, and card characteristics onto card choice, borrowing level, and

default choice. Together with stochastic assumptions on unobservables, the three

equations imply a log-likelihood function for observed decisions, enabling maximum

likelihood estimation. Appendix 2.B.1 provides detailed expressions for the terms of

the log-likelihood. In what follows, I provide its basic structure and intuition for the

main components. I focus on how the estimation approach overcomes two primary

challenges and discuss the exogenous variation I exploit to identify the parameters.

The conditional log-likelihood is the sum of a log-likelihood for card choice, logLmt,E,
and a joint log-likelihood for borrowing and default choices, logLmt,BD, hence it is

equal to

logLmt = logLmt,E + logLmt,BD. (2.8)

This feature derives from the lack of relationship between the unobservables for card

choice and the unobservables driving borrowing and default. I begin by discussing

the components relating to borrowing and default and then move to the components

relating to card choice.

The first challenge in forming the log-likelihood components relating to borrowing
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Figure 2.4: Four steps of model estimation

SMLE

Fixed effect (δ)RCs (ΩE,r) Var(εi)Step 1

Logit

Fixed effect (δ0) ϱΩE,consStep 2

IV

RC Constants (α, β, η)

RSS

Screening (eℓ,σℓ)

Step 3

Step 4

Notes: Step 1 refers to the simulated maximum likelihood estimation of the demand parameters,

for those who borrow. Step 2 refers to the choice between transacting and borrowing and the

maximum likelihood estimation of the parameters governing the transaction utility. Step 3 refers

to instrumental variables estimation of the parameters inside of the fixed effects δjmt. Step 4 refers

to supply estimation.

and default is the truncation in borrowing. Specifically, I observe the constrained

level of borrowing bijmt = min{b∗ijmt, b̄ijmt}, rather than the desired level b∗ijmt. As a

result, I do not observe desired borrowing for the revolvers who borrow their entire

credit limit. Revolvers either borrow their entire credit line (full utilization) or not

(interior utilization), and also default or not. This creates four possible outcomes

for revolver i:

1. i ∈ I1: Interior utilization and default

2. i ∈ I2: Interior utilization and no default

3. i ∈ I3: Full utilization and default

4. i ∈ I4: Full utilization and no default
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Let s
(g)
ijmt denote the likelihood of i ∈ Ig. Then the expression for logLmt,BD is

logLmt,BD =
∑
i∈Imt

∑
j∈Jimt

4∑
g=1

1
(g)
ijmt log(s

(g)
ijmt), (2.9)

where 1
(g)
ijmt is a dummy equal to one if individual i chooses card j and is in group

Ig. I provide expressions for s
(g)
ijmt in Appendix 2.B.1.

Individuals borrowing their entire credit line (i in I3 or I4) create the most compli-

cations. Their contribution to the log-likelihood is an integral with no closed form

and, as a result, I use simulated maximum likelihood (Pakes and Pollard, 1989;

Gouriéroux and Monfort, 1993; 1996; Hajivassiliou and Ruud, 1994; Lee, 1992; 1995)

with Halton (1960) draws (Bhat, 2003; Train, 2003).

The second challenge is the endogeneity of interest rates in the card choice and

borrowing level equations. Interest rates rjmt are chosen strategically by lenders and

are likely to correlate with unobserved card characteristics ξjmt. For example, interest

rates may be high on a given card because its unobserved card characteristics imply

high demand for the card. In this example, if I ignore the endogeneity of interest

rates, the estimation would deliver a positive value of αE. Yet, the positive value of

αE would not imply that individuals prefer, or favor, higher interest rates. Instead,

it occurs because individuals favor cards with attractive alternative features that

coincide with high interest rates. In the first of two steps I take to overcome the

endogeneity of interest rates, I estimate a full set of product-channel-month fixed

effects in the card choice and borrowing equations. Formally, I rewrite Equations

(2.1) and (2.3), respectively as

V E
ijmt = δEjmt + νijmt + uEijmt, (2.10)

δEjmt = βE
′
XE
jmt + ξEjmt + ηEmt + αErjmt, (2.11)

uEijmt = ΩE,r
mt ỹimtrjmt,

and

log(b∗ijmt) = δBjmt + εBimt + uBijmt,

δBjmt = βB
′
XB
jmt + ξBjmt + αBrjmt + ηBmt, (2.12)

uBijmt = ΩB,cons
mt ỹimt + ΩB,r

mt ỹimtrjmt,

where δEjmt and δBjmt are the card-channel-month fixed effects. As a result of the

typical identification issue in discrete choice models, I normalize δE0mt = 0 and take

interest rates and card characteristics in (2.11) and (2.12) as differences from the
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outside option. I provide the second step in overcoming the endogeneity of interest

rates at the end of this subsection.

The term in the log-likelihood containing the card choice parameters is

logLmt,E =
∑
i∈Imt

∑
j∈Jimt

1Eijmt log(s
E
ijmt|j∈Jimt

), (2.13)

where 1Eijmt = 1(j∗imt = j) is a dummy equal to one if individual i chooses card j in

their choice set Jimt and s
E
ijmt|j∈Jimt

are logit shares, derived in Appendix 2.B.1. The

term sEijmt|j∈Jimt
reflects the probability that individual i chooses card j in channel

m and origination month t, conditional on individual i choosing to revolve a credit

card balance.

To summarize, in the first step of demand estimation, I use market-by-market sim-

ulated maximum likelihood estimation on the log-likelihood for card choice, bor-

rowing, and default, conditional on borrowing, to estimate scaled versions of the

product-market fixed effects (δEjmt and δ
B
jmt), thereby sidestepping the endogeneity

problem for the moment. This step also estimates the variance-covariance matrix

of private characteristics (εBimt, ε
D
imt), specifically σ

B
mt and σ

D
mt, and the demographic

coefficients (ΩE,r
mt , Ω

B,r
mt , and ΩB,cons

mt ).

Log-Likelihood for Borrowing and Transacting

In the second step of demand estimation (Step 2 in Figure 2.4) I maximize a log-

likelihood for the choice between transacting and borrowing, which estimates δ0mt

and outside option utility term ΩE,cons
mt , along with the correlation coefficient for

the generalized extreme value shocks, ϱmt. The identification of ΩE,cons
mt derives from

differences in incomes between those who transact and those who borrow. I provide

more detail and an expression for the log-likelihood of borrowing/transacting in

Appendix 2.B.2.

Constant Demand Parameters

In the third and final step of demand estimation (Step 3 in Figure 2.4), I estimate the

constant parameters of the card choice and borrowing equations by projecting the

estimates of card-channel-month fixed effects (δEjmt, δ
B
jmt) onto distribution-channel-

month fixed effects, interest rates, and observed characteristics, as in (2.11) and

(2.12). The endogeneity problem still exists, hence, I use instrumental variables, the

choice of which I now detail.
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As an instrument for interest rates, I exploit a cost shock to UK lenders that occurred

in mid-2011 relating to the mis-selling of PPI. PPI is a form of insurance designed to

cover loan repayments in the event that an individual cannot make credit repayments

due to adverse events such as unemployment, illness, or disability. In the late 20th

century, UK lenders began bundling PPI with loans and other credit products such

as credit cards. In the mid-2000s, claims emerged that PPI was being mis-sold to

borrowers. For example, lenders were selling PPI to self-employed individuals who

would be unable to use it because of their employment status. In 2006, the Financial

Services Authority began imposing fines on financial institutions for the mis-selling of

PPI. An important development occurred in January 2011 when the British Bankers’

Association (BBA) took the FSA to court over its decision to retrospectively impose

standards on the correct selling of PPI.27 The BBA were defeated in the High Court,

and in May 2011, banks informed the BBA that they were withdrawing their support

for an appeal of the decision. The ruling forced banks to reopen thousands of claims

for PPI mis-selling. In total, around 64 million policies were mis-sold between the

1970s and late 2000s, with over £33bn repaid to individuals who complained about

the sale of PPI.28

The loss of the court case in April 2011 and the reopening of PPI claims led to cost

increases, which were spread unevenly amongst banks according to how frequently

they had mis-sold PPI. Shortly after, some credit card lenders increased interest

rates for all individuals at origination for some of the cards in their portfolios. From

this cost shock, I create an instrument for interest rates by interacting lender fixed

effects with a “post” treatment dummy.29 The validity of the instrument requires

that the only channel through which the court case ruling affects individual card

choice and subsequent borrowing is through the impact of cost increases on card

interest rates. I know of no other events in the same period that affected credit card

lenders’ unobservable card characteristics, and I can find no significant changes in

observable characteristics or credit limits in the same period.

27See R (on the application of the British Bankers’ Association) vs Financial Services Authority

and another [2011] EWHC 999.
28See https://www.fca.org.uk/ppi/ppi-explained, last accessed 6 June 2023.
29At the time of writing, I have no data on the proportion of PPI repayments made by each lender

over time. If this information were available, I could construct the instrument by constructing a

measure of lenders’ exposure to the court case decision.
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2.3.2 Supply

The final step of estimation (Step 4 in Figure 2.4) concerns the supply parame-

ters. The parameters to estimate in the supply model are the screening technology

signals eiℓt and the standard deviation of the signal noise σℓt. I estimate these by

minimizing the residual sum of squares from the first order condition of the credit

limit optimization problem in (2.5). As derived in Appendix 2.A.3, for each unique

observed credit limit b̄ijmt on card j at lender ℓ in month t, the corresponding signal

eiℓt satisfies ∫ ∞

ωiℓt(b̄ijmt,eiℓt)

πijmt(eiℓt, wiℓt)ϕ

(
wiℓt
σℓt

)
dwiℓt = 0. (2.14)

Towards an estimation strategy, note that under the distributional assumptions on

private characteristics,

∆imt = Φ
(
ηDmt + ΩD

mtỹimt + σDmt(eiℓt + wiℓt)
)
.

From this expression I can calculate ∆imt—and therefore the integrand—as a func-

tion of the (already-estimated) demand parameters and the signal error.

With the demand parameters estimated, Equation (2.14) provides an equation in

which, for each observed credit limit and income, the only unknowns are the screen-

ing technology eiℓt and precision σℓt. The basis of the estimation strategy is to

estimate the screening technologies as the values that minimize the sum of squared

deviations (over individuals) from the integral in (2.14). As in Step 1 of the demand

estimation, the integral in (2.14) has no closed form. Therefore, for each lender-

month, I simulate the integral using Halton (1960) draws ωhiℓt, and solve

min
{eiℓt},σℓt

∑
i∈Iℓt

(
1

H

H∑
h=1

1
(
σℓtω

h
iℓt > ωiℓt(b̄ijmt, eiℓt)

)
πijmt(eiℓt, σℓtω

h
iℓt)

)2

,

where 1(A) denotes the indicator function, equal to 1 if A is true and 0 other-

wise. For estimation, I choose more parsimonious models that pool months within a

year (thereby estimating at the lender-year level) or pool over all months (thereby

estimating at the lender level).

2.4 Model Estimates

This section discusses the parameter estimates. I begin with demand parameters

and then move to my estimates of lenders’ screening technologies.
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Table 2.1: First and second step demand estimates

Variable Mean SD

ηD -1.804 0.125

ΩD -0.092 0.088

σD 0.532 0.100

ΩB,cons 0.250 0.523

ΩB,r -0.196 1.515

σB 2.909 0.213

Corr(εB, εD) 0.466 0.069

ΩE,r -0.468 0.717

ΩE,cons -0.513 2.079

ϱ 0.328 0.182

2.4.1 Demand Estimates

First and Second Stage Estimates

Table 2.1 presents the demand estimates from the first stage (log-likelihood of

card choice, borrowing, and default) and second stage (log-likelihood for transact-

ing/revolving) of demand estimation. I report means and standard deviations of

estimates over markets.

The signs of the parameters are largely as expected, and some particular parameter

estimates warrant discussion. First, I begin with the default equation parameters.

The negative value for ΩD implies that higher income revolvers are less likely to de-

fault. The mean value of 0.532 for σD indicates unobserved heterogeneity in default,

thereby justifying the role of lenders’ screening technology.

Second, moving to the borrowing equation, the estimate of 0.250 for ΩB,cons means

that, conditional on revolving, higher income individuals revolve more than lower

income individuals. The negative value of ΩB,r implies that, on average, higher in-

come borrowers’ level of revolving is more sensitive to interest rates. The correlation

between unobserved preferences for borrowing and default is 0.466, implying that

revolvers with a positive unobserved preference for borrowing have a positive unob-

served preference for default. I refer to this as evidence of adverse selection along
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Figure 2.5: Model fit
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the intensive borrowing margin.30 This estimate is larger than the estimate of 0.16

obtained by Crawford, Pavanini, and Schivardi (2018), whose context was the Italian

market for small business loans between 1988 and 1998.

Third, I discuss my parameter estimates for the card choice equation and the utility

for transacting. I estimate a negative mean value for ΩE,r, implying that higher-

income individuals who decide to revolve are more sensitive to interest rates when

they choose their card. Finally, the parameter ϱ, estimated at 0.328, indicates a

reasonable substitution between transacting and borrowing choices.

Figure 2.5 displays three plots that illustrate how the demand model fits the data on

card choice, borrowing, and default. They demonstrate that the fit is good, indicating

that the model captures the heterogeneity of the data well.

Third Stage Estimates and Elasticities

Table 2.D.3 reports the estimates and bootstrapped standard errors of the demand

parameters recovered in the third stage of demand estimation. The OLS coeffi-

cients on interest rates in both the card choice and borrowing equations are pos-

itive, whereas instrumental variable estimates are negative, indicating the severity

of interest rate endogeneity. Coefficients on dummies for rewards in the card choice

equation are generally positive across specifications, though the effect of cashback

cannot be estimated precisely. Cashback rewards are rare in the UK and the rate of

cashback tends to be low compared to the US, owing to lower interchange fees in the

30Lacking data on those without a credit card, I cannot at this point assess the correlation

between take-up of a credit card and default, which would be the more traditional form of (extensive

margin) adverse selection.
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UK. Finally, Figures 2.D.2 and 2.D.3 plot the distribution of random coefficients αEi

and αBi , which are negative almost everywhere and indicate substantial variations

in preferences over interest rates.

Next, I turn to interest rate elasticities, where Equations (2.18) and (2.20) provide

the formulas for borrowing and card choice price elasticity, respectively. Figures

2.D.4 and 2.D.5 plot the distribution of elasticities over individuals. Three notewor-

thy features emerge. First, revolvers display much more elasticity to the interest rate

in their card choice relative to their borrowing choice. This suggests that individuals

are influenced in their card choice by the interest rate, even if the interest rate will

not strongly affect their choice of borrowing . Second, there is a very large degree of

dispersion in both elasticities: The coefficient of variation of both card choice and

borrowing elasticity is approximately one. This implies substantial heterogeneity in

responsiveness to changes to interest rates across individuals. Third, both distribu-

tions are skewed. The distribution of card choice elasticities has a long left tail and

the distribution of borrowing elasticities has a large mass close to zero. Finally, the

elasticities are similar, though slightly larger in magnitude to other experimental

estimates of interest rate elasticities in credit markets (Alan and Loranth, 2013;

Karlan and Zinman, 2018). Estimates of borrowing elasticity are very similar to

those in Nelson (2022).

2.4.2 Supply Estimates

My supply estimation delivers two sets of parameter estimates. The first is the

variation in signal mismeasurement across lenders, denoted as σℓ. For simplicity, I

present estimates from the model pooling over years and consider the nine prime or

superprime lenders in the data. Table 2.2 reports summary statistics in the values of

σℓ across lenders. The coefficient of variation is 1.699, showing that lenders’ screening

technologies differ substantially in their precision. While most lenders show a vast

improvement in precision relative to the prior distribution (which has a precision of

1), at the 90th percentile, there is less than a 30% improvement over the prior.

The second set of parameter estimates from supply estimation are the lenders’

screening technology signals, denoted as eℓ. Figure 2.6 shows the estimated screen-

ing technologies for two contrasting lenders superimposed onto a standard normal

distribution. Each vertical line represents one of the lender’s possible signals. I su-

perimpose the values onto a standard normal distribution since the signals partition

the standard normally distributed signal, εi. The left lender’s screening technology
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Table 2.2: Summary statistics for variation in signal mismeasurement

Variable Mean SD 10% 25% 50% 75% 90%

σℓ 0.196 0.333 0.002 0.004 0.004 0.198 0.704

contains many values, and represents a sophisticated screening technology, provid-

ing sharp signals on borrowers’ types. The right lender’s screening technology offers

only a few values, implying less precise signals on borrowers’ unobservables. Inter-

estingly, the right lender’s screening technology also contains a cluster of signals for

high values of εi, indicating a small degree of specialization towards risky borrowers.

Figure 2.D.6 shows the screening partitions for other lenders. Similar to the values

of σℓ, there is substantial variation in the values and the coarseness of the screening

technology across lenders.

The variation in screening technologies supports the descriptive evidence in Section

1.5.2, showing that different lenders have screening technologies of varying levels of

sophistication. Finally, across lenders, the correlation between σℓ and the propor-

tion of periods in which individuals repay the full balance is 0.17. This estimate is

consistent with a segmentation of credit card lenders in which lenders with the most

precise screening technologies serve a riskier, but more profitable, market segment

on average. Lenders with more precise screening technologies are more willing to

serve customers who will borrow but may default because they can more accurately

set lower credit limits for customers they perceive to be riskier.

2.5 Counterfactual Analysis

2.5.1 Individualizing Interest Rates

The central empirical finding I present and analyze in Chapters 1 and 2 is that

lenders individualize credit limits, with minimal within-card variation in interest

rates. Related to this empirical fact is the regulatory environment, which requires

lenders to set an interest rate for each credit card product they offer. Despite the

requirement to advertise a card-level interest rate, lenders can still individualize

interest rates to some extent. Under the assumption of profit maximization, my em-

pirical findings imply that either (i) it is optimal for lenders to only individualize

credit limits, or (ii) there exist costs/constraints exist that restrict lenders’ willing-

ness or ability to individualize interest rates. To clarify this, I use my estimated
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Figure 2.6: Screening technology at two lenders
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model to run counterfactual scenarios that change the environment for lenders. In

my main counterfactual scenario, I allow lenders to set individualized interest rates

subject to no costs or constraints in doing so, then analyze the resulting distribu-

tion of interest rates and credit limits. In this case, lenders can charge a higher

price to mitigate higher costs from risky individuals, and can manage default risk

by lowering borrowing from customers they perceive to be risky either through a

higher interest rate or a lower credit limit. It is not obvious whether lenders will in-

dividualize interest rates, credit limits, or both, in equilibrium. Indeed, elementary

economic theory suggests that in a perfect information, monopolistic environment

where interest rates and credit limits can be used as screening instruments, credit

limits are redundant.

2.5.2 Implementation

I simulate the final market of my previous analysis (June 2013 out of branch) under

the new regime, with lenders setting interest rates and credit limits, but keeping

income thresholds and card characteristics fixed. Then, cardholders make decisions

on card choice, borrowing, and default. In the counterfactual I present, I follow the

baseline model by assuming that individuals know their potential interest rate at

each lender when choosing their card.31

For customer i, lender ℓ now solves simultaneously for all interest rates and credit

31I maintain the assumption that consumers do not know their credit limits to ensure that I am

only changing one part of the environment at a time and also due to the absence of any credible

source or way to measure what individuals’ preferences concerning credit limits would be, were

they known to the consumer.
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limits across their cards Jiℓ for which consumer i is eligible. This is because the whole

vector of interest rate choices affects the probability that the individual chooses each

one of the cards that they offer. Formally, given other lenders’ optimal interest rate

choices r∗−iℓmt, for customer i, lender ℓ solves

max
riℓ,b̄iℓ

∑
j∈Jiℓ

sEij(riℓ, r
∗
−iℓ)E

[
min{b∗ij, b̄ij}πij

]
(2.15)

Similar to the supply estimation, I minimize the residual from the first order condi-

tions to Equation (2.15) to calculate riℓ and b̄iℓ for all individuals i.
32 Appendix 2.C

provides the first order conditions that I use for the calculation of the counterfactual

interest rates and credit limits.

In the counterfactual, I measure changes to the distributions of several endogenous

variables of interest. The first set I describe is interest rates and credit limits. Then

I consider changes to consumers’ levels of borrowing and consumer surplus. I cal-

culate individuals’ card choices and borrowing using indirect card utility (2.1) and

borrowing Equation (2.3), respectively, replacing rjmt with rijmt. I define consumer

surplus as

CSi =
1

αi
log

(∑
j∈Ji

exp
(
ŪE
ij

))
,

where ŪE
ij is equal to V̄ E

ij /ϱ, a scaled version of indirect utility. Ex-post profit from

borrower i is given by

πpost
ij = bij

[
Di(rj − cj) + (1−Di)(−1− cj)

]
,

where Di is equal to 1 if borrower i defaults. Finally, I measure concentration using

the combined market share of the largest three, four, and five lenders.

2.5.3 Counterfactual Results

Interest Rates and Credit Limits

The two variables driving all changes in the counterfactual are lenders’ new choices

of interest rates and credit limits. Figure 2.7 displays the distribution of interest

rates in the data and separately in the counterfactual. The distribution of interest

rates becomes individualized in the counterfactual, where there are over 500 unique

32This is a computationally intensive procedure because I have to solve the optimization problem

for each consumer separately. Consequently, I use a random sample of 1000 consumers.
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Figure 2.7: Distributions of interest rates in baseline and counterfactual
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values of interest rates. Lenders with finer screening technologies use a larger set of

interest rate values, as expected. This contrasts with the observed data shown in

the left panel of Figure 2.7, which features 21 distinct interest rate values across 22

cards. The coefficient of variation in interest rates increases from 15.0% in the data

to 32.9% in the counterfactual, and the standard deviation increases from 0.028 to

0.068. These together imply a large increase in the dispersion of interest rates.

However, the net directional effect of the counterfactual on the values of interest rates

is ambiguous. Interest rates may increase because lenders can now price discriminate,

but interest rates may decrease because lenders need not pool interest rates across

risk types. The former dominates in the counterfactual, with interest rates increasing

by 1.9 percentage points, equivalent to a 10.0% increase. This result is consistent

with some success in using credit limits to manage default risk in the baseline: if

lenders were unable to manage default risk using credit limits alone, we would expect

them to set large pooled interest rates in the baseline, which would fall, on average,

once lenders had the option to individualize them.

The net increase in interest rates in the counterfactual masks vast heterogeneity

in interest rate changes across borrowers. In the counterfactual, lenders practice

traditional third-degree price discrimination. Individuals with the most inelastic

demand receive an average interest rate increase of 7.5 percentage points, equivalent

to a 39.4% increase. In contrast, interest rates fall by 2.5 percentage points for

the most elastic individuals. Further, interest rates become risk-based. I create two

groups of consumers representing high-risk (income below the 25th percentile and
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Figure 2.8: Distributions of credit limit in baseline and counterfactual
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risk above the 75th percentile) and low-risk (income above the 75th percentile and

risk below the 25th percentile) borrowers. The proportion of borrowers defaulting in

the high-risk group is 5.3%, compared to 2.6% in the low-risk group. Interest rates

rise by 12.3 percentage points for the high-risk group and fall by 4.7 percentage

points for the low-risk group.

The second screening instrument available to the lender is the credit limit. Figure

2.8 displays the distribution of credit limits in the data and the counterfactual sce-

nario. Credit limits remain individualized in the counterfactual and become more

dispersed, with the coefficient of variation in credit limits increasing by 11.8% and

standard deviation increasing by 7.8%. Credit limits fall by 15.9% on average in the

counterfactual. The concurrence of rising interest rates and falling credit limits fol-

lows the intuition of downward sloping cost curves in Einav, Finkelstein, and Cullen

(2010a) and Einav and Finkelstein (2011). The set of individuals receiving an in-

crease in interest rates reduce their borrowing, therefore, the set of individuals using

their entire credit limit becomes riskier. To rebalance this and make the marginal

profit over those using the entire credit limit zero, credit limits should fall.

The intuition for why lenders combine individualized interest rates and credit limits

is that interest rates also affect an individual’s choice of card through the term sEij in

the profit function for individual i, whereas credit limits do not. Individualized prices

are also a device for standard third-degree price discrimination, along with their role

as a tool for competition among lenders. Credit limits do not affect individuals’ card

choices and therefore serve as a tool for managing downside risk from default only.
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Figure 2.9: Distributions of consumer surplus in baseline and counterfactual
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This intuition explains why lenders use a combination of individualized interest rates

and credit limits in the counterfactual scenario.

Demand-Side Variables

Next, I explore changes to borrowers’ outcomes. In the counterfactual, borrowing

increases for revolvers by 13.8% on average. The increase occurs because the most

elastic borrowers obtain reductions in interest rates, which they respond to with

significant increases in borrowing. This contrasts with the least elastic borrowers,

who react to interest rate increases with smaller borrowing reductions. The net effect

is, therefore, an increase in borrowing on average.

Relative to the baseline, consumer surplus falls by 6.6% on average in the counter-

factual. It is intuitive that once lenders obtain the freedom to individualize interest

rates without cost, consumers are disadvantaged on net. However, as with interest

rates, this decrease in the average masks vast heterogeneity across borrowers. In Fig-

ure 2.9, I plot the distribution of percentage changes in consumer surplus for high-

and low-risk individuals. Consumer surplus generally increases in the counterfactual

for the low-risk group—a 2.6% increase on average—because they benefit from lower

interest rates. Consumer surplus falls by 19% on average for the high-risk group. In

sum, the counterfactual induces discrimination in interest rates and credit limits,

which benefits individuals with the lowest probability of default.
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Supply-Side Variables

Finally, I explore changes to lenders’ outcomes. The market shares of the largest

three, four, and five firms all increase by approximately eight percentage points,

implying an increase in concentration in the counterfactual relative to the base-

line. Further, lenders’ ex-post profits increase by 25% on average. These significant

changes to profit imply that the gains from tailoring interest rates alongside credit

limits are substantial, in the absence of any frictions that dissuade lenders from

individualizing interest rates. If lenders do not face material costs or constraints in

individualizing interest rates, my findings suggest they are leaving money on the

table by failing to do so. I discuss potential reasons for this finding in the section

that follows.

2.6 Implications of Counterfactual Findings

The results of the previous section suggest that, in the absence of any costs or con-

straints involved in individualizing interest rates, profit-maximizing lenders would

tailor interest rates and credit limits. However, in the data, interest rates are set

at the card level and not individualized. These findings, together with the sizable

increases in profits available from individualizing interest rates, imply that frictions

restrict lenders’ willingness to adopt individualized prices. Identifying the exact

sources of these frictions is beyond the current scope of this thesis. Nevertheless,

in what follows, I discuss four potential contributing factors.

First, as described in Section 1.4, UK regulations requires that at least 51% of cus-

tomers originating a card must obtain the advertised APR or lower. This constraint

directly impedes from fully individualizing prices. If there is a sufficiently large fixed

cost in individualizing any interest rate, which can only be recovered if over 51% of

interest rates are set above the advertised APR, it may be optimal not to individu-

alize any interest rates, even if the regulatory constraint allows 49% to be tailored

individually. These fixed costs may include administrative costs related to setting

up the infrastructure and software to optimally set individualized prices optimally.33

Given that restrictions on the ability to individualize interest rates already exist,

lenders may have focused their investments on optimal individualized credit limits

instead.

33Conversations with industry and policy experts suggest that lenders point to sizeable infras-

tructure investments as the reason why they currently do not individualize interest rates.
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Second, lenders may encounter significant reputational costs if they advertise a par-

ticular APR but then provide customers with a differing, individualized APR, espe-

cially if the individualized rate is set after the individual signs the contract. In fact,

members of the UK Government have already expressed their disapproval for such

practices (House of Commons Treasury Committee, 2003). In April 2022, the UK

Chancellor of the Exchequer stated that it was “important that advertised APRs

reflect the rate the consumer is likely to receive.”34 His statement was made in re-

sponse to a report on advertised APRs by the largest consumer website in the UK,

MoneySavingExpert.com.35 As part of their report, the website conducted two na-

tionally representative surveys of over 2,000 British adults. The findings revealed

that 35% of customers who were offered a higher rate than advertised stated that it

had a negative effect on their financial well-being, and the same percentage claimed

the higher rate had a detrimental impact on their emotional well-being.

This issue is a focal point for lenders, as they recognize that negative attention

arising from unpopular business practices generates reputational risk. There is a

substantial body of literature that discusses the importance of reputational risk in

the banking sector (Fiordelisi, Soana, and Schwizer, 2013; Scandizzo, 2011; Xifra

and Ordeix, 2009). My dataset spans the years immediately following the global

financial crisis—an event that greatly impaired the public’s attitude towards the

banking industry (Bennett and Rita, 2012). Therefore, in the short term, avoiding

further reputational damage was likely to have been a primary objective of credit

card lenders at this time. Hence, though it may be challenging to quantify, the long-

term reputational cost resulting from routinely deviating from the advertised interest

rate may outweigh the immediate increases in profit from the lenders’ perspective.

Third, the concept of lenders augmenting their profits by personalizing interest rates

and credit limits is predicated on the assumption that these lenders possess the abil-

ity and tools to efficiently implement profit-maximizing individualized rates in real

world situations. This is not a trivial task, as it requires a robust understanding of

each customer’s financial behavior and risk profile, along with the ability to accu-

rately translate this understanding into corresponding interest rates. The theoretical

framework for individualizing interest rates is intricate, necessitating a delicate bal-

ance between risk assessment and profit optimization. Consequently, any missteps

34https://on.ft.com/3uKGZ92 last accessed 6 June 2023.
35https://www.moneysavingexpert.com/news/2022/03/chancellor-ask-regulator-credi

t-card-loan-aprs-martin-lewis/ last accessed 6 June 2023.
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in this process could result in undesirable repercussions. Such mistakes could be

the result of several factors, such as inaccurate risk assessment, the dynamic nature

of customer behavior, market fluctuations, or unforeseen changes in the economic

climate. These errors could potentially leave lenders in a worse position than if they

had adopted simpler, card-level interest rates.

Finally, a potential concern for lenders could stem from the legal implications tied to

the individualization of interest rates, particularly in a landscape that requires the

advertisement of APRs. Deploying machine learning and deep learning technologies

in the creation of refined risk scores could inadvertently lead to reliance on protected

characteristics, such as race or gender. This potential issue may place lenders at the

precipice of significant legal repercussions if interest rates are individualized based

on these scores. An illustrative example of this possible pitfall can be seen in the

recent case of Amazon.com Inc., who had to abandon an AI recruiting tool that had

inadvertently “learned” to view the male gender as a more desirable characteristic

for job candidates.36 This incident serves as a stark reminder that the implementa-

tion of “advanced technologies” with the aim of enhancing firm outcomes, can have

unintended consequences.

2.7 Concluding Remarks

Chapters 1 and 2 investigate how credit card lenders in the UK manage customers’

unobserved default risk by individualizing contracts through risk-based credit limits.

I use novel microdata to estimate a structural model of the UK credit market. The

critical innovation in the model is the lender screening technology that provides

noisy signals on borrowers’ unobserved types. Lenders make credit limits contingent

on these signals, and the coarseness of the set of potential signals offered by the

screening technology corresponds to the coarseness of their equilibrium credit limit

distribution. I use the estimated model to evaluate a counterfactual scenario in which

lenders can freely individualize interest rates and credit limits, which the existing

regulatory environment precludes. As a result, individualized, risk-based interest

rates and credit limits emerge. The induced interest rate discrimination results in

consumer surplus gains for low-risk individuals and losses for high-risk individuals.

Lenders’ profits increase on average. My findings imply either that lenders are not

36https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazo

n-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G,

last accessed 6 June 2023.
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maximizing profits, or that the current environment imposes meaningful restrictions

on lenders’ willingness to adopt risk-based pricing, hence, motivating lenders to use

risk-based credit limits instead.

There are also several important extensions to the content in these two chapters.

For example, my model considers screening technologies as exogenous. Endogeniz-

ing screening technologies is a natural and interesting extension that may provide

additional insights into lenders’ interest rates and credit limit choices and their

investments into financial technologies. Future work could analyze counterfactuals

that change lenders’ screening technologies. One example would be a scenario in

which lenders share their screening technologies. This would create a setting closer

to the US environment, where many lenders use FICO scores to make decisions about

consumers. Furthermore, building on the empirical work of Panetta, Schivardi, and

Shum (2009) I could analyze the welfare effects of mergers in which the merging

lenders combine their screening technologies. Along with the typical trade-off be-

tween cost synergies and increased concentration, mergers would gain an advantage

from shared and improved screening technologies. The profit increases resulting from

improved screening technologies would gauge the private benefits of screening tech-

nologies. The model could also measure an element of the cost synergies from the

merger, which is typically challenging.

There are two other avenues for extensions concerning this part of the thesis. The

first is the role of consumer search and inattention. Throughout this study, I assume

that consumers are fully aware of the interest rates at all lenders and are aware of

all the cards for which they qualify, implying that their consideration set (Abaluck

and Adams-Prassl, 2021) is equal to their choice set. The role of consumer search

in this context is nuanced by lenders who currently impose heterogeneous costs on

consumers to learn their interest rates and credit limits. Some lenders allow con-

sumers to learn their contractual terms before origination. In contrast, other lenders

will not divulge them until after the credit card origination. A second extension re-

lates to behavioral biases. Consumers may have incorrect expectations or be overly

optimistic about their interest rate at each lender. These biases may affect lenders’

optimal use of risk-based credit limits and interest rates. These extensions warrant

particular attention in work that quantifies consumer welfare in this context.

Regarding the external validity of my findings, financial products in developed

economies use a variety of risk-based prices and quantities. For example, mort-

gages and credit cards across UK and US markets all feature different combinations
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of risk-based contractual characteristics. No general theory exists to explain how

product features and regulatory environments interact to influence lenders’ choices

among multiple screening instruments. Understanding the product characteristics

and regulatory conditions that result in risk-based prices or quantities (or both) is

a natural sequel to this work.
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Appendices for Chapter 2

2.A Additional Modeling Details

2.A.1 Focus on Interest Revenue

I focus on interest revenue in lenders’ profit functions because it comprises the vast

majority of revenue for lenders. Evans and Schmalensee (2005) reports that 70% of

US credit card lenders’ revenue is interest revenue. The remaining 30% consists of

revenue sources that are likely to be proportionally smaller in the UK relative to

the US. I describe the three largest alternative revenue sources below and explain

why they are likely to be smaller in the UK compared to the US.

The first is interchange revenue, which accounts for 15% of US lenders’ revenues on

average (Evans and Schmalensee, 2005). Interchange revenues are the funds lenders

receive from merchants when individuals use their cards for purchases. When a

customer makes a purchase using a credit card, the merchant pays a percentage of the

transaction amount, known as the interchange fee, to the credit card company. Owing

to EU regulation, interchange fees were much lower in the UK than in the US between

2010-2013, making it likely that interchange accounted for a lower proportion of UK

lenders’ revenue than was the case in the US.37

The second major portion of the remaining 30% of non-interest revenue derives from

cash-advance fees. Cash-advance fees are the charges that consumers pay for using

a credit card to withdraw cash or conduct other non-standard card uses such as

gambling. Cash-advance revenues became a negligible part of UK lenders’ revenue

in April 2011, when new credit card regulations forced lenders to use customers’

repayments towards high-interest cash-advance balances first rather than last, as

was the practice of most lenders before the regulation.

The final main source of revenue is fee revenue. Over 75% of cards have no annual fee

in the UK, hence, I focus on fees other than annual fees. In 2003, the Office of Fair

Trading (OFT) began an inquiry into the “default charges” levied by credit card

companies when, for example, a cardholder exceeded their credit limit or was late

37In 2015, the European Parliament and the Council of the European Union adopted the Inter-

change Fee Regulation (IFR), which set the default interchange fee cap at 0.3% of the transaction

for credit cards. The UK adopted these changes in late 2015.
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in making the minimum monthly payment.38 In 2006, the OFT stated that many of

the charges were “unlawful,” and disclosed that it would act upon receiving notice

of any fee over £12 (Office of Fair Trading, 2006). From 2010 to 2015, all fees apart

from annual fees (including late, dormancy, over-limit, and foreign transaction) were

at most £12, approximately 50% lower than in 2003 (House of Commons Treasury

Committee, 2003). Fees are generally more common and are usually larger than £12

in the US, once more suggesting that fees accounted for a smaller proportion of UK

lenders’ revenues. These arguments imply that interest revenue accounts for the vast

majority of UK credit card lenders’ revenue, thus, justifying its use as the sole source

of lenders’ revenue in my model.

2.A.2 Interest Rate Model

The following subsection offers one possible model for how lenders set advertised

APRs. I provide it merely to give one such example of how these rates may be set,

rather than specifying that it accurately represents the method used by lenders.

In this model, lenders choose rates strategically so that interest rates form a Bertrand

Nash equilibrium. Let r∗−ℓmt denote the equilibrium interest rates on cards at lenders

other than ℓ. Then, for every lender ℓ, the vector of interest rate r∗ℓmt solves

max
rℓmt

∑
i∈Imt

∑
j∈Jiℓmt

sEijmt(rℓmt, r
∗
−ℓmt)Πijmt(rjmt). (2.16)

The term sEijmt denotes the probability of individual i originating card j as a bor-

rower. The term Jiℓmt = Jimt∩Jℓmt is the set of cards offered by lender ℓ with income

thresholds lower than Yi. I define the term Πijmt in Equation (2.5).

2.A.3 First Order Condition Derivation

Now I derive Equation (2.6) from the first order condition of the lender’s profit

maximization problem. The first step is to replace εi with eiℓt + wiℓt. The second—

and main—step is to note that for every b̄, there exists a threshold signal error ωiℓt(b̄)

such that if the signal error is larger (respectively smaller) than ωiℓt, the individual’s

desired borrowing will be larger (respectively smaller) than b̄.39 The value of ωiℓt

38https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a

ttachment_data/file/284445/oft842.pdf, last accessed 5 June 2023.
39This version assumes that σB

mt is positive, a condition I impose in estimation without loss of

generality. The sign of σB
mt is not identified so I normalize it as positive. The sign of σD

mt then
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sets log(b∗ijmt) equal to log(b̄ijmt) and is therefore

ωiℓt(b̄ijmt, eiℓt) =
log(b̄ijmt)− δBjmt − uBijmt

σBmt
− eiℓt.

From this, I split the objective function into∫ ωiℓt

−∞
b∗ijmtπijmt(eiℓt, wiℓt)ϕ

(
wiℓt
σℓt

)
dwiℓt + b̄ijmt

∫ ∞

ωiℓt

πijmt(eiℓt, wiℓt)ϕ

(
wiℓt
σℓt

)
dwiℓt.

By L’Hopital’s rule, the first derivative with respect to b̄ijmt is equal to∫ ∞

ωiℓt

πijmt(eiℓt, wiℓt)ϕ

(
wiℓt
σℓt

)
dwiℓt (2.17)

and the second derivative

− dωiℓt
db̄ijmt

π(eiℓt, ωiℓt)ϕ

(
ωiℓt
σℓt

)
,

which is negative provided that π(eiℓt, ωiℓt) > 0. In this region, the objective is

concave and the first order condition is necessary and sufficient for a maximum.

2.A.4 Derivation of Elasticities

I derive formulas of the demand elasticities, both for the intensive borrowing quan-

tity bijmt and extensive product choice sEijmt. I start with the intensive borrowing

quantity. The elasticity for individual i is

∂ log(bijmt)

∂ log(rjmt)
= rjmt

∂ log(bijmt)

∂rjmt
.

The right-hand side derivative is the marginal effect from a Tobit model with top

censoring at log(b̄ijmt). The marginal effect in this model is (Greene, 2017)

∂ log(bijmt)

∂rjmt
= αBijmtΦ

(
Q̄B
ijmt

σBmt

)
,

where

Q̄B
ijmt = log(b̄ijmt)− δBjmt − uBijmt.

Hence the elasticity of intensive borrowing is

∂ log(bijmt)

∂ log(rjmt)
= rjmtα

B
ijmtΦ

(
Q̄B
ijmt

σBmt

)
. (2.18)

determines the sign of the correlation between εBimt and εDimt. If I normalize σB
mt as negative, the

first order condition bounds would swap to (−∞, ωiℓt] but the equation is otherwise unchanged.
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The elasticity for the extensive product choice is more involved. By definition, the

probability that an individual chooses card j as a borrower is

sEijmt = (1− sEi0mt)s
E
ijmt|j∈Jimt

,

where sEijmt|j∈Jimt
is the probability of individual i choosing card j, conditional on

revolving, and sEi0mt is the probability that individual i chooses to transact. From

this,
∂sEijmt
∂rjmt

= (1− sEi0mt)
∂sEijmt|j∈Jimt

∂rjmt
− sEijmt|j∈Jimt

∂sEi0mt
∂rjmt

.

The standard logit derivative for the inside options is

∂sEijmt|j∈Jimt

∂rjmt
= sEijmt|j∈Jimt

(1− sEijmt|j∈Jimt
)
αEijmt
ϱmt

and derivative of the outside option probability is

∂sEi0mt
∂rjmt

= −αEimtsEijmt|j∈Jimt
sEi0mt(1− sEi0mt) = −αEimtsEi0mtsEijmt.

Putting these together yields

∂sEijmt
∂rjmt

= αEijmts
E
ijmt

[
1− sEijmt|j∈Jimt

ϱmt
+ sEijmt|j∈Jimt

sEi0mt

]
. (2.19)

Multiplying (2.19) by
rjmt

sEijmt
provides the product choice price elasticity of demand

for individual i, given by

∂ log(sEijmt)

∂ log(rjmt)
= rjmtα

E
ijmt

[
1− sEijmt|j∈Jimt

ϱmt
+ sEijmt|j∈Jimt

sEi0mt

]
. (2.20)

2.B Additional Estimation Details

2.B.1 Conditional Log-Likelihood

Recall that the demand model (conditional on revolving) is a system of three equa-

tions: (i) a logit equation for card choice, (ii) a Tobit equation for borrowing choice

(with censoring at the credit limit), and (iii) a Probit equation for default. The es-

timating equations for individual i, card j, in channel m, and origination month t

are

V E
ijmt = δEjmt + νijmt + uEijmt,

log(b∗ijmt) = δBjmt + εBimt + uBijmt,

V D
imt = ηDmt + ΩD

mtỹimt + εDimt,
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where

δEjmt = βE
′
XE
jmt + ξEjmt + ηEmt + αErjmt,

uEijmt = ΩE,r
mt ỹimtrjmt,

δBjmt = βB
′
XB
jmt + ξBjmt + ηBmt + αBrjmt,

uBijmt = ΩB,cons
mt ỹimt + ΩB,r

mt ỹimtrjmt,

with all terms defined as in the main text and in the notation tables 2.D.1 and

2.D.2.40 The system’s endogenous dependent variables are borrowing utility V E
ijmt,

desired borrowing b∗ijmt, and default net utility V D
imt. Interest rates rjmt correlate with

unobserved card characteristics ξjmt, creating additional endogeneity along with the

simultaneity. The exogenous variables are card characteristics Xjmt and individual

logged income yi. I never observe utilities V
E
ijmt and V

D
ijmt. I observe card choice j∗imt,

constrained borrowing bijmt, and default choice for revolvers. Constrained borrowing

bijmt is equal to min{b∗ijmt, b̄ijmt}, implying that I only observe desired borrowing b∗ijmt

for those who borrow less than their credit limit b̄ijmt. Unobservables ε
B
imt and ε

D
imt

satisfy

εBimt = σBmtεi,

εDimt = σDmtεi + ε̃Di ,

where (εi, ε̃
D
i ) ∼ N (0, I2). I require no distributional assumption on ξEjmt and ξ

B
jmt.

Expressions for s
(g)
ijmt

I derive the expressions s
(g)
ijmt in Equation (2.9) for g = 1, . . . , 4. The first term s

(1)
ijmt,

which is for an individual who borrows b < b̄ijmt and then defaults, is

s
(1)
ijmt = P(Default| log(b∗ijmt) = log(b)) · flog(b∗ijmt)

(log(b))

=
1

σBmt
P(εDimt > −QD

imt|εBimt = QB
ijmt(b))ϕ

(
QB
ijmt(b)

σBmt

)

=
1

σBmt
ΦBD,1
ijmt ϕ

(
QB
ijmt(b)

σBmt

)
,

40As described in text, because of the typical identification issue in discrete choice models, I

normalize δE0mt = 0 and take interest rates and card characteristics in the card choice equation as

differences from the outside option.
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where

ΦBD,1
ijmt = Φ

(
QD
imt +

σDmt
σBmt

QB
ijmt(b)

)
,

QB
ijmt(b) = log(b)− δBjmt − uBijmt,

QD
imt = ηDmt + ΩD

mtỹimt.

By a similar derivation,

s
(2)
ijmt =

1

σBmt

[
1− ΦBD,1

ijmt

]
ϕ

(
QB
ijmt(b)

σBmt

)
.

The third and fourth terms are slightly more complicated, because of the full uti-

lization of credit limit. The third term s
(3)
ijmt is

s
(3)
ijmt = P

(
log(b∗ijmt) > log(b̄ijmt)

)
P
(
V D
imt > 0| log(b∗ijmt) > log(b̄ijmt)

)
= P

(
εBimt > Q̄B

ijmt

)
P(εDimt > −QD

imt|εBimt > Q̄B
ijmt)

= P
(
εBimt > Q̄B

ijmt

) ∫ ∞

Q̄B
ijmt

P(εDimt > −QD
imt|εBimt = a)fεBimt|εBimt>Q̄B

ijmt
(a|εBimt > QB

ijmt)da

=
1

σB
mt

∫ ∞

Q̄B
ijmt

Φ

(
QD

imt +
σD
mt

σB
mt

a

)
ϕ

(
a

σB
mt

)
da

=

∫ ∞

Q̄B
ijmt/σ

B
mt

Φ
(
QD

imt + σD
mtã

)
ϕ (ã) dã,

where

Q̄B
ijmt = QB

ijmt(b̄ijmt).

Similarly,

s
(4)
ijmt =

∫ ∞

Q̄B
ijmt/σ

B
mt

[
1− Φ

(
QD
imt + σDmtã

) ]
ϕ (ã) dã.

Expressions for sEijmt|j∈Jimt

Next, I write out the expression for sEijmt|j∈Jimt
in Equation (2.13). It is

sEijmt|j∈Jimt
=

exp
(
ŪE
ijmt

)∑
k∈Jimt

exp
(
ŪE
ikmt

) ,
where

ŪE
ijmt =

V̄ E
ijmt

ϱmt
,

ϱmt is the parameter of the generalized type-1 distributed terms νijmt, and the indi-

rect utility term V̄ E
ijmt is

V̄ E
ijmt = δEjmt + uEijmt.

The first step yields estimates of the following parameters
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δEjmt
ϱmt

,
ΩE,r
mt

ϱmt
, δBjmt, Ω

B,r
mt , Ω

B,cons
mt , ΩD

mt, η
D
mt, σ

B
mt, σ

D
mt.

The next subsection derives the log-likelihood of borrowing/transacting, which de-

livers estimates of δ0mt, ϱmt and ΩE,cons
mt .

2.B.2 Log-Likelihood For Transacting

An individual transacts if the utility from transacting V E
i0mt exceeds the maximal

utility from borrowing. The probability that this occurs for individual i is

sEi0mt =
1

1 + exp
(
ϱmtFimt − V̄i0mt

) ,
where

Fimt = log
∑
k∈Jimt

exp
(
ŪE
ikmt

)
is the inclusive value and V̄i0mt = δ0mt + ΩE,cons

mt ỹimt. Let ζimt be a dummy equal to

one if the individual chooses to transact. Then the log-likelihood for transacting is

logLtrmt =
∑
i∈Imt

ζimt log(s
E
i0mt) + (1− ζimt) log(1− sEi0mt).

Maximizing logLtrmt market-by-market provides estimates of δ0mt, ϱmt and ΩE,cons
mt ,

from which I recover ΩE,r
mt and δEjmt.

2.C Additional Counterfactual Details

I derive the first order conditions to the optimization problem in Equation (2.15).

First, I define

Eij = Eεi|eiℓ
[
min{b∗ij, b̄ij}πij

]
and rewrite the objective function by separating out card j as

sEij(riℓ, r
∗
−iℓ)Eij +

∑
k ̸=j

sEik(riℓ, r
∗
−iℓ)Eik. (2.21)

Since b̄ij only affects the lender’s profit for card j, the first order condition with

respect to b̄ij, after cancelling s
E
ij(riℓ, r

∗
−iℓ) > 0, is

∂

∂b̄ij
Eεi|eiℓ

[
min{b∗ij, b̄ij}πij

]
=
∂Eij
∂b̄ij

= 0.

The equation is exactly the same first order condition for credit limits as in the

baseline model. However, because interest rates change in equilibrium, even if the

individual stays on the same card, their credit limit may change.
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The first order condition with respect to rij is

∂sEij
∂rij

Eij + sEij
∂Eij
∂rij

+
∑
k ̸=j

∂sEik
∂rij

Eik = 0.

Equation (2.19) provides an expression for
∂sEij
∂rij

. To finish this section, I provide

expressions for
∂Eij
∂rij

and
∂sEik
∂rij

when k ̸= j. The former of these two terms is

∂Eij
∂rij

=

∫ ωiℓ

−∞

[
b∗ij(1−∆i) + αBi b

∗
ijπij

]
ϕ

(
wiℓ
σℓ

)
dwiℓ+

b̄ij

∫ ∞

ωiℓ

(1−∆i)ϕ

(
wiℓ
σℓt

)
dwiℓ.

The expression for
∂sEik
∂rij

is more involved. To start,

∂sEik
∂rij

= (1− sEi0)
∂sEik|k∈Ji
∂rij

− ∂sEi0
∂rij

sEik|k∈Ji .

The standard logit cross-derivative yields

∂sEik|k∈Ji
∂rij

= −sEij|j∈Jis
E
ik|k∈Ji

αEi
ϱ

and
∂sEi0
∂rij

= −αEi sEi0sEij.

Putting these together yields

∂sEik
∂rij

= sEijs
E
ik|k∈Jiα

E
i

[
sEi0 −

1

ϱ

]
.
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2.D Additional Figures and Tables

2.D.1 Figures

Figure 2.D.1: Reasons for taking out a credit card

Notes: Link back to card utility discussion

Figure 2.D.2: Histogram of card choice interest rate random coefficient
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−5 −4 −3 −2 −1 0

Random Coefficient

Distribution of card choice interest rate random coefficient

Source: CCMS origination and statement data

Notes: I plot the estimated distribution of αE
imt, defined in Equation (2.2). Link back to demand

estimates discussion
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Figure 2.D.3: Histogram of borrowing interest rate random coefficient
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Distribution of borrowing interest rate random coefficient

Source: CCMS origination and statement data

Notes: I plot the estimated distribution of αB
imt. Link back to demand estimates discussion

Figure 2.D.4: Histogram of revolvers’ interest rate elasticity for card choice
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Elasticity

Distribution of card choice interest rate elasticity

Source: CCMS origination and statement data

Notes: Equation (2.20) defines card choice elasticity. Link back to demand estimates discussion
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Figure 2.D.5: Histogram of revolvers’ interest rate elasticity for borrowing levels

0%

2%

4%

6%

−0.8 −0.4 0.0

Elasticity

Distribution of borrowing interest rate elasticity

Source: CCMS origination and statement data

Notes: Equation (2.18) defines borrowing elasticity. Link back to demand estimates discussion

Figure 2.D.6: Screening technologies at prime and superprime lenders
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0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
e

Lender 5
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Lender 6
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Lender 9

Notes: I scramble lenders’ identities to preserve anonymity, so labels do not necessarily match the

identities in other tables and figures. Link back to supply estimates
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2.D.2 Tables

Table 2.D.1: Variable glossary: Latin

Letter Meaning

b Observed borrowing

b∗ Desired borrowing

b̄ Credit limit

B Borrowing symbol

c Funding rate (marginal cost)

D Default symbol

e lender signal

E Extensive margin symbol

F Inclusive value

h Halton draw dummy

H Number of Halton draws

i Credit card origination

I Number of originations

j Card

J Number of cards

ℓ Lender

L Number of lenders

m Distribution channel

M Number of channels

r Interest rate

s Market share

t Origination month

T Number of origination months

u Individual-specific terms in indirect utility

Ū Scaled indirect utility

V̄ Indirect utility

V Utility

w Signaling error

X Card characteristics

y Logged income

ỹ Centered logged income

Y Minimum income threshold

Notes: Link back to model section
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Table 2.D.2: Variable glossary: Greek

Letter Meaning

α Interest rate sensitivity

β Rewards sensitivity

δ Card-market fixed effect

∆ Default probability

ε Individual unobserved characteristics

ζ Transactor dummy

η Market fixed effect

ν Generalized Type-1 EV shocks

ξ Unobserved card characteristics

π Profit per unit credit

Π Total profit

ρ Correlations

ϱ ν substitution parameter

σ Standard deviations

ϕ Standard normal PDF

Φ Standard normal CDF

ψ Proportion of default debt recovered

Ω Demographic random coefficient

Notes: Link back to model section
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Table 2.D.3: Third step demand estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable δB δB δE δE δE δE δE δE δE

Price Sensitivity (α) 2.626 -1.489 1.083 -1.277 -0.934 -1.238 -3.264 -0.901 -2.825

(0.369) (1.71) (0.269) (0.804) (0.831) (0.793) (0.904) (0.815) (0.834)

Airmiles (βairmiles) 0.121 0.124 0.266

(0.048) (0.049) (0.042)

Cashback (βcashback) 0.059 0.072 -0.026

(0.069) (0.070) (0.056)

Contactless (βcontactless) 0.178 0.270

(0.035) (0.075)

Estimation OLS IV OLS IV IV IV IV IV IV

First-stage F - 22.870 - 21.912 20.562 22.416 19.540 21.508 20.007

Wu-Hausman - 30.120 - 13.410 4.653 9.196 32.177 4.699 22.316

Notes: This table provides the estimates and bootstrapped standard errors of the demand parameters recovered in the third stage of

demand estimation. In IV specifications I use a cost shifter as excluded instrument for interest rate. I include distribution-month, and

network fixed effects in all regressions. Link back to parameter estimates section
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Chapter 3

Screening Property Rights for

Innovation

3.1 Introduction

Public institutions play a central role in promoting innovation. The two most impor-

tant channels are government support for public and private research, both in the

form of direct funding and indirect fiscal subsidies, and the allocation of property

rights, in the form of patents, to enhance innovation incentives for private sector

R&D. To give a sense of the scale of investment, in 2015 the U.S. federal govern-

ment financed 54.3% of overall R&D expenditures, or $151.5 billion (2023 U.S.D.),

and 34.1% of university research. At the same time, the U.S. Patent and Trademark

Office (hereafter, Patent Office) issued nearly 400,000 new patents. These property

rights promote innovation by increasing the private returns to R&D, facilitating

access to capital markets, and underpinning the market for technology, especially

for small, high-technology firms (Hall and Lerner, 2010; Galasso and Schankerman,

2018). Moreover, the aggregate economic impact of these investments and property

rights for innovation is magnified by the extensive knowledge spillovers they generate

(Bloom, Schankerman, and Van Reenen, 2013).

Despite their evident importance, little is known about whether these innovation-

supporting public institutions allocate resources efficiently and how organizational

changes affect agency performance. The aim of this chapter, as part of a broader

research program, is to show how structural models can be used to study and im-

prove the efficiency of resource allocation by innovation-related public agencies. We
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study this topic in the context of the U.S. patent system, focusing on the quality of

screening—that is, the allocation of property rights for innovation—by the Patent

Office.

We develop a dynamic structural model of the patent screening process, which in-

corporates incentives, intrinsic motivation, and the actual structure of multi-round

negotiation in the current system. We estimate the model using novel negotiation-

round-level data on examiner decisions and text data from 20 million patent claims.

From the claim text data, we use modern natural language processing (NLP) meth-

ods to develop a new measure of distance between patents, a key ingredient for

characterizing strategic decisions by patent applicants and examiners. We conduct

counterfactual analyses of how reforms to incentives, fees, and the structure of ne-

gotiations affect the quality and speed of patent screening, and we develop an ap-

proach to quantify these impacts and thus construct a “pseudo-welfare” measure of

the quality of patent screening.

The effectiveness of patent screening and its implications for the quality of patents

is a hotly debated policy issue. Academic scholars and policymakers have argued

that patent rights have increasingly become an impediment to innovation rather

than an incentive. These concerns have been prominently voiced in public debates

(The Economist, 2015; Federal Trade Commission, 2011), recent U.S. Supreme Court

decisions (eBay Inc. v. MercExchange L.L.C., 547 U.S. 338, 2006), and the major

statutory reform of the patent system, the Leahy-Smith America Invents Act of

2011.

Critics of the patent system claim that the problems arise in large part from inef-

fective patent office screening, where patents are granted to inventions that do not

represent a substantial inventive step—especially in emerging technology areas such

as business methods and software (Jaffe and Lerner, 2004). The issue is important

because granting “excessive” patent rights imposes static and dynamic social costs:

higher prices and deadweight loss on patented goods, greater enforcement (litiga-

tion) costs, and higher transaction costs of R&D and the potential for retarding

cumulative innovation (Galasso and Schankerman, 2015).

The patent prosecution process is an advantageous context to study the effects of

incentives and motivation on screening for two primary reasons. First, the patent

application process has a clear and well-documented structure that can be modeled.

The multi-round negotiation between the applicant and examiner fits naturally into

a dynamic game, which forms the basis of our model. The model involves an ap-
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plicant who “pads” their patent application, attempting to extract more property

rights than their invention truly entails. The examiner’s role is to grant or reject

the application based on the existing judicial interpretation of statutory criteria as

applied to each claim in the patent application.

The fundamental trade-off for the applicant when choosing the level of padding is

between the benefits of increased patent scope and the costs of engaging in a lengthy

and costly negotiation with the examiner. The trade-off for the patent examiner for

each specific application is between the incentives to grant patents quickly and the

intrinsic utility cost of awarding an inappropriate degree of “patent scope”—i.e.,

granting only patent claims (after narrowing) that satisfy the patentability criteria.41

The patent examiner searches prior art to estimate the appropriate scope of patent

protection for the invention, but this estimate contains error. Allowing for examiner

error is important because it implies that negotiation between the applicant and

examiner, while costly, may not always be socially wasteful.

The second advantage of the patent context is the quality of data. The Patent Office

collects detailed and extensive data on all applications, not just granted patents.

We constructed a dataset covering around 55 million patent application decisions

across 20 million patent claims between 2010–2015 and we observe the examiner’s

decisions on each patent claim over all rounds of the negotiation. These data allow

us to formulate and estimate a structural model that reflects the actual patent

application process.

Our estimates imply several key empirical findings. First, intrinsic motivation plays a

significant role in contributing to the accuracy of patent screening. Junior examiners

are more motivated than seniors on average, but both groups display substantial het-

erogeneity. Further, using the estimated parameters, counterfactual analysis shows

that turning off intrinsic motivation increases the frequency of examiners granting

invalid patents four-fold. This finding highlights the importance of designing human

resource policies that effectively select examiners with high intrinsic motivation and

ensure examiners sustain this motivation over their entire careers.

Second, we find that innovators substantially pad their patent applications, claiming

(typically) greater property rights than are warranted by the true “inventive step”

of their innovation. Moreover, there is a large degree of heterogeneity in the extent

41For a discussion of the economics and legal doctrines of patent scope, see Merges and Nelson

(1990).
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of padding across patent applications. This result highlights the importance of ef-

fective screening. An essential feature of our model is that the extent of padding is

endogenous and thus is affected by various counterfactual policy reforms, which we

detail later. We estimate the average level of padding at about 8%, rising to 10%

when we weight by the value of the patent. This exaggerated scope of the patent

applications is reflected in the fact that more than 80% of claims start below the dis-

tance threshold for patentability—as measured by the minimum required distance

to claims in prior patents—and thus should be rejected.

However, the multi-round screening process is relatively effective at narrowing the

scope of patent rights sought and, in so doing, reducing the number of invalid claims

to about 7% among granted claims, but still, nearly one in five granted patents

contains at least one claim that does not meet the threshold. One implication of this

finding is that the proportion of patent applications that are granted—a commonly

used indicator of the effectiveness of screening—is a misleading measure because it

does not capture the extent to which granted property rights are narrowed during

the screening process.

We evaluate counterfactual reforms involving changes to fees for the patent appli-

cant, the structure of the negotiation process (e.g., limiting the number of rounds

allowed), and the degree of intrinsic motivation of patent examiners. We quantify

the effects of counterfactual reforms along three distinct dimensions. The first two

relate to the accuracy of screening, meaning the degree of alignment between the

scope of property rights granted and the scope justified by the invention. We assess

accuracy in terms of granting claims that are not justified (false grants, or “type 1”

error) and not granting claims that should be (false rejections, or “type 2” error).

Both errors carry their own social costs and benefits. Incorrect grants impose ex post

welfare costs (deadweight loss) from higher prices and litigation costs associated with

enforcing these patents, but at the same time may raise innovation incentives. False

rejections dilute ex ante innovation incentives and discourage the development of

new inventions that would contribute positive social value, but at the same time

they reduce ex post deadweight loss. The last dimension is the speed of patent

examination, measured by the number of negotiation rounds in equilibrium. We

develop a method to quantify these impacts in terms of the associated net social costs

and thus construct a “pseudo-welfare” measure of the quality of patent screening. We

estimate the total net social cost of patent screening at $25.5bn per annual cohort

of applications. This figure represents 6.5% of total R&D performed by business
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enterprises in the United States.

The counterfactual analysis highlights two key conclusions. First, restrictions on

the number of allowable rounds of negotiation (currently absent in the U.S. patent

system) significantly reduce the net social costs of screening, with a reduction of

45% in the case of allowing only one round. We show that these outcomes can be

replicated through an equivalent fee per round for the applicant, but the required

fees are too high to be politically feasible. Second, given the high levels of intrinsic

motivation we estimate, extrinsic incentives are largely ineffective, leading to almost

no change in net social costs. Extrinsic incentives do affect outcomes in a scenario

with low intrinsic motivation, but they are counterproductive in that they raise the

net social costs of screening.

We organize the chapter as follows. Section 3.2 briefly summarizes the related lit-

erature. Section 3.3 describes the datasets and summarizes key descriptive features.

The structural model is presented in Section 3.4. Section 3.5 describes our estima-

tion methods. Section 3.6 presents the empirical estimates. Section 3.7 analyzes the

impact of counterfactual reforms on the accuracy and speed of patent screening, and

Section 3.8 describes our quantification of the net social costs and benefits associated

with these counterfactual reforms. Section 3.9 concludes.

3.2 Related Literature

Intrinsic Motivation in Public Agencies

We contribute to the literature that studies how intrinsic motivation affects the

optimal design of incentives in mission-oriented agencies. On the theoretical side,

Benabou and Tirole (2003; 2006) show conditions under which extrinsic rewards

may crowd out intrinsic motivation. Particularly relevant to ourwork, Besley and

Ghatak (2005) emphasize how intrinsic motivation—which they define as the align-

ment between worker and agency objectives—induces welfare-improving sorting of

workers across entities with different goals and also affects the optimal design of

incentives and authority.

Empirical studies use field experiments to analyze intrinsic motivation and public

agency performance. These rely on various proxies for motivation. Leading examples

include Ashraf, Bandiera, and Jack (2014), which evaluates the impact of extrinsic

rewards on agents’ performance in a public health organization in Zambia, and

Ashraf, Bandiera, Davenport, and Lee (2020), which studies whether career benefits

94



induce sorting at the expense of “pro-social” motivation. Both papers find that

extrinsic rewards and intrinsic motivation are complementary.

Despite their interesting findings, these empirical studies cannot be used for coun-

terfactual policy analysis, for which structural models are more appropriate. Our

project is the first structural model of a public agency that incorporates intrinsic

motivation.42 In doing this, we follow Besley and Ghatak’s definition of intrinsic

motivation—alignment of workers’ objectives and the public agency mission. In our

context, the Patent Office’s mission is to award inventors property rights over their

invention, consistent with statutory and judicial prescriptions. We model intrinsic

motivation as an inherent disutility that examiners incur if they grant more intellec-

tual property rights than they believe the inventor deserves, based on the information

the examiners have. We show that patent examiners sometimes award patents to

applications they believe are invalid due to strategic considerations and the extrinsic

pay scheme they face.

Finally, recent papers study how screening mechanisms affect the performance of

public agencies. Adda and Ottaviani (2023) develop a model of nonmarket allocation

of resources, including but not limited to the award of grants to research projects.

The authors study how the design of allocation rules and informational noise in

the evaluation process affect the optimal design. In two empirical papers, Li and

Agha (2015) and Li (2017) analyze the allocation of research grants at the National

Institutes of Health (NIH) and show that peer review increases the effectiveness

of grants in terms of post-grant citations. Azoulay, Graff Zivin, Li, and Sampat

(2018) study the economic impact of these NIH grants, linking screening outcomes to

publication citations and other innovation outcomes. Our contribution is to quantify

some of the forces these papers identify and evaluate the equilibrium effects of various

counterfactual reforms in the patent context.

Patents and Innovation

We also contribute to the limited empirical literature on patent screening. In a first

paper on the topic, Cockburn, Kortum, and Stern (2003) show that patent exam-

iner characteristics affect the “quality” of issued patents, measured by subsequent

citations and the frequency of litigation. Frakes and Wasserman (2017) use data on

42Egan, Matvos, and Seru (2023) develop a structural model of consumer arbitration in which

arbitrators differ in their idiosyncratic degrees of “slant” (or bias), which can be interpreted as a

form of intrinsic motivation.
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promotions of patent examiners (which are accompanied by lower extrinsic incen-

tives) and show that promotions are associated with sharp increases in grant rates.

They interpret this result as less rigorous screening and lower quality patents. While

this is a striking finding, their analysis does not pin down whether it is driven by dif-

ferences in extrinsic incentives, intrinsic motivation, or examiner opportunity costs,

which our structural model will do.

Perhaps the most closely related paper is Schankerman and Schuett (2022), who de-

velop an integrated framework to study patent screening, encompassing the patent

application decision, examination, post-grant licensing, and litigation in the courts.

They calibrate the model on data for the U.S. and use it to evaluate various counter-

factual patent and court reforms. Their model estimates the effectiveness of patent

examination, but they treat this as an exogenous parameter, but they do not model

the prosecution process. In contrast, we develop and estimate the first equilibrium

model of the patent examination process itself, which in turn allows us to investi-

gate how various reforms to the incentives and design of patent screening affect the

performance of this public agency.

Before turning to the data, we summarize a few key features of patents that guide

our modeling choices. The critical feature of the patent document is the list of inde-

pendent claims, which delineate the “metes and bounds,” or scope, of the property

right. The examination process involves assessing the patentability of each claim,

not the patent as a single entity. In a departure from most existing literature, we

treat a patent as a collection of claims that differ in both their private value and

their similarity to previous patented claims. These two dimensions are a critical fea-

ture in the model. This heterogeneity is a first-order feature necessary to match the

actual process of patent examination and to develop accurate statements about the

potential effects of regime changes on the patent examination process.

3.3 Data and Descriptive Results

In this section, we describe our primary data sources, focusing on datasets not pre-

viously used in empirical studies of patents. We also present summary statistics and

describe reduced-form evidence. Appendix 3.B provides hyperlinks to all publicly

available datasets and data sources we use in our empirical work.

Distance Metric

We construct a new measure of independent claim distance. To create this, we exploit
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the U.S.PTO Patent Application Claims Full Text Dataset and the Granted Patent

Claims Full Text Dataset. The first dataset contains the full text for all U.S. patent

application claims between 2001 and 2014 and an indicator for whether the claim

is independent. The Granted Patent Claims Full Text Dataset records the full text

for all U.S. patent claims granted between 1976 and 2014.

We summarize our approach to creating a distance measure here (see Appendix

3.C for more detail). The approach calculates distances by representing a patent

claim’s text as a numerical vector and calculating a metric on that vector space.43

We adopt the Paragraph Vector approach of Le and Mikolov (2014), which uses an

unsupervised algorithm to “learn” the meaning of words by studying the context in

which they appear and forming a vector representation for each word, picking up the

meaning of paragraphs as a by-product.44 As is common in the NLP literature, we

measure distances between numerical vectors using the angular distance metric. To

reflect distance to prior art, we compute the distance from each independent claim

to every previously granted independent claim.45

Rounds Data

Since we estimate a model of the patent prosecution process over multiple rounds,

comprehensive and reliable round-level data on the patent process are essential. We

use the Transactions History data in the Patent Examination (PatEx) Research

Dataset to create a dataset on the round-by-round evolution of utility patent ap-

plications between 2007 and 2014. In total, the transactions dataset includes 275.6

million observations covering 9.2 million unique applications. For every patent ap-

plication, these data record examiner and applicant decisions at each round of the

examination process.

43Kelly, Papanikolaou, Seru, and Taddy (2021) use similar methods to calculate patent similarity.
44The standard method (bag-of-words) for representing the patent claim text as a numerical

vector has two significant weaknesses: it ignores the ordering and semantics of words.
45We conduct two falsification tests on our distance measure. First, we put independent claims

into twenty, five-percentile bins of the distance measure and then calculate the proportion of

claims rejected on novelty/obviousness grounds in each bin. We would expect that examiners are

more likely to reject claims with a small distance to existing claims based on novelty/obviousness

criteria. Thus the proportion of first-round rejections should be a declining function of the distance

metric and the results confirm this prediction. Second, we conduct a similar test on the average

number of examination rounds for each granted patent, by five-percentile bins of average distance

of independent claims. Patents with higher average distance should be granted faster, and this is

what we find.
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Sources Matched to Round Data

We match the round-level data to three other datasets on patent applications. The

first is the Application Data in the PatEx Dataset, which contains features of the

patent application, such as the identities of the applicant and examiner, the patent

art unit (narrow technology classifications), and a binary indicator of the size of

the applying firm (below or above 500 employees). Second, we match our data to

renewal decisions by patent holders using the U.S. PTO Maintenance Fee Events

Dataset. Third, since we focus on novelty/obviousness rejections, we require data

on the types of rejections of each claim at each stage of the process. We obtain this

from the U.S.PTO Office Action Research Dataset for Patents.

Legal Fees

For attorney fees, we use data from the 2017 American Intellectual Property Law

Association (AIPLA) Report of the Economic Survey. The survey reports means and

percentiles of the distribution of hourly fees for different tasks, such as preparing and

filing an application, issuing, paying renewal fees, and amending applications, split

into three broad technology areas (biotechnology/chemical, electrical/computer, and

mechanical). We use these moments to estimate the distributions of application and

fighting costs for each patent application, adjusted for inflation.

Seniority and Technology Complexity Credit Adjustments

We obtained data on examiner seniority from Frakes and Wasserman (2017), who

provide a panel of General Schedule (GS) grades for examiners, including each ex-

aminer’s promotion dates. Using this, we work out the seniority of the examiner

for each application. Finally, we received information on examiner extrinsic rewards

from the Patent Office at the disaggregated U.S. Patent Classification level and then

aggregated them to the technology center level.

Descriptive Statistics

Several features of the data are worth noting (Table 3.A.1 in the Appendix provides

details). First, 70% of applications resulted in the issuance of a patent. However, this

is a misleading measure of the fraction of content granted because, as we will see,

most applications are heavily narrowed during the examination process. Second, the

prosecution time varies across applications—the mean duration is 2.96 years, and

the mean number of rounds is 2.40. Third, the mean, median, and modal number of

independent claims is three. Fourth, 24% of applications were by firms with fewer

than 500 employees (a so-called “small entity”). Lastly, 46% of granted patents were

renewed to the statutory limit, and only 13% were not renewed at the first renewal
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date.

Existing studies show that patent grant rates vary widely across technology cen-

ters and examiner seniority, with more senior examiners granting more frequently

(Frakes and Wasserman, 2017; Sampat and Williams, 2019). In Appendix 3.D, we

confirm these findings about grant rates using our data, and we also show that

the likelihood of multi-round negotiation (lasting beyond one round) is much lower

for senior examiners and varies substantially across technology centers. In addition,

small entities are less likely to negotiate. We also analyze the variation in these

outcomes for each examiner, decomposing variation in examiner-specific outcomes

(such as their grant rate) within and between technology center-seniority pairs.46

This decomposition shows that 80% of the variation in examiner grant rates and

81% of the variation in each examiner’s average number of rounds is within-group

variation.

Our model allows for several factors that can explain the substantial variation in

examiner statistics even within seniority-technology-center dyads: we allow for a

different distribution of intrinsic motivation for junior and senior examiners, we

incorporate differences in the examiner credit structure across seniorities and tech-

nology centers, and we allow for heterogeneous legal (fighting) costs for applicants

across technology centers. Our parameter estimates will enable us to disentangle the

effects of these factors in explaining the variation in outcomes.

3.4 Model of the Patent Screening Process

We model the patent screening process as a dynamic game in technology center

T , between an inventor, a, and a realization of the examiner, e. There are four

potential stages: (1) Application Decision and Patent Drafting, (2) Examiner Search,

(3) Negotiation, and (4) Renewal. Figure 3.1 depicts the extensive form of the model.

In the baseline model, we analyze patent screening conditional on the invention

being developed. For the validity of the structural model (and the counterfactual

analysis), we do not need to model the potential inventor’s decision whether to

invest to develop their idea into an invention. However, to quantify the net social

costs associated with these errors, we need to model the decision to develop (as well

46Table 3.D.2 provides more detail, along with the proportion of within-group variation for other

dependent variables, such as mean examination length, mean number of rounds, etc.
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Figure 3.1: Extensive Form of the Model
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as how the patentee licenses their invention), which we do in Section 3.8.

Regarding the examiner, we present a model of how they act on one specific applica-

tion. Therefore, we focus on intra-application incentives and costs for the examiner,

rather than inter-application incentives induced by factors such as meeting their

quarterly credit targets. A model in which examiners make decisions over time with

consideration of the complete set of examinations in their docket would introduce

significant complications and is not necessary to meet the aims of our model.

3.4.1 Application Decision and Patent Drafting

Inventor Type

An inventor is endowed with a developed invention they are considering patenting.

The patent application for the invention consists of M0 initial independent claims
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(C1, ..., CM0).
47 We characterize an independent claim Cj by the pair (D∗

j , v
∗
j ) where

D∗
j ∼ GD(·) is the distance of the true version of claim j to the nearest claim in

any existing invention and v∗j ∼ Gv(·) denotes the initial flow net returns generated

by the true version of claim j once it is commercialized.48 We define the returns v∗j

as relative to the inventor’s outside option, e.g., protecting the invention by trade

secrecy.49

Application Decision

First, the inventor decides whether to apply. If they do not, the game ends, and their

payoff is zero. If they do, they become an applicant, and the game continues. The

inventor, a risk-neutral expected utility maximizer, chooses to apply if the expected

utility of the game that follows applying is positive (because flow returns are defined

relative to the next best alternative).

Padding

After deciding to apply, the applicant chooses the amount to exaggerate the claims on

their patent application. We refer to this as the initial choice of padding, denoted p.

Padding obfuscates the true “metes and bounds” of the invention, thereby concealing

the inventive step and expanding the property rights claimed in the application.

Padding allows the patent owner to extract potentially more revenue, by working it

themselves or licensing it. However, greater padding also entails some obfuscation

in defining the relationship between the actual invention and the boundaries of the

patent rights claimed and necessarily moves the application closer to the prior art.

Figure 3.2 illustrates the concepts of independent claims and padding.

There is a tradeoff for the applicant in the choice of padding. The advantage is

that it increases the initial returns of claim j for the applicant from v∗j to ṽ0j =

47As we want to focus on the economic incentives for the applicant, we do not consider any

agency issues between the inventor and the patent attorney who actually drafts the application.
48We assume that distances and values are uncorrelated. Based on the theoretical literature on

differentiated products, the relationship is ambiguous. Other things equal, being further from rivals

(in product space, which we assume is correlated with claim distances) softens price competition

and thus increases private value – implying a positive correlation between distance and value.

However, the distribution of demand will typically vary with location, with firms endogenously

locating (patenting) in areas of high demand. This implies a negative correlation between distance

to rivals and values.
49Table 3.A.2 provides our choices for parameterized distributions of distances GD(·) and values

Gv(·) (along with all other distributions in the model).
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Figure 3.2: Distances and Padding
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Notes: The orange semicircle in the top left corner represents the closest existing invention to the

independent claim j, which is the small full blue circle in the bottom right corner. The applicant

pads the true independent claim to create the larger cross-hatched circle. The distance between

the true independent claim and the nearest existing invention is D∗
j , whereas the distance between

the padded claim and nearest point is D̃j .

V(v∗j , p), where the padded value function V(·, ·) is increasing in both arguments.

On the other hand, padding increases the likelihood of examiner rejections during

the examination process on the grounds of non-obviousness (closeness to existing

patents) and indefiniteness. Padding shrinks independent claim distances from D∗
j

to D̃0
j = D(D∗

j , p), where the padded distance function D(·, ·) is increasing in D∗
j

and decreasing in p. For simplicity, we assume that value (distance) is proportional

(inversely proportional) to the degree of padding: ṽ0j = p · v∗j and D̃0
j = D∗

j/p.

Finally, there is a direct cost of padding in the form of legal costs, which we assume

is proportional to padding because heavily padded applications require more time to

craft.50 In particular, we specify legal costs as Fapp = fapp · (1+ |p−1|), where fapp is

the attorney fees associated with patent drafting (which is log-normally distributed

across applicants). The motivation for this specification is that it takes additional

time for the attorney either to under-pad (p < 1) or over-pad (p > 1); writing down

the truth (p = 1) is quickest. We assume symmetry for simplicity.

50The applicant may choose to understate the true scope of the invention (p < 1) and thus earn

lower returns, as it reduces the likelihood of rejection by the examiner (especially if there is a

restriction of the number of rounds allowed). We find some evidence of such under-padding in the

empirical results.
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Applicant Expected Utility

The applicant decides the initial level of padding without knowing the identity of

the examiner the Patent Office will assign. This feature is relevant because exam-

iners differ in types (seniority, time cost, and intrinsic motivation) and, thus, in

their strategies. As a result, applicants make initial padding decisions in light of the

distribution of examiner types. The applicant chooses initial padding to maximize

their expected utility less application legal costs, where the expectation is taken first

over the roster of potential examiners e = 1, . . . E (where the random assignment of

applications implies an equally likely chance of each examiner in the relevant tech-

nology center), over the error of the examiner ε ∼ Ge,ε(·), and potential obsolescence

of their invention ω (all described later).

Formally, the applicant’s optimal padding choice p0 maximizes the ex ante value of

patent rights Γ(p), defined51

Γ(p) = Ee,ε,ω
[
U0
a (e, ε,ω, p)

]
− Fapp(p),

where

Ee,ε,ω
[
U0
a (e, ε,ω, p)

]
=

1

E

E∑
e=1

∫
EωU

0
a (e, ε,ω, p) dGe,ε(ε),

and we define EωU
0
a (e, ε,ω, p), the applicant expected utility (over the full vector

of obsolescence) for a given examiner e and error ε, later in Equation (3.4).52 The

applicant applies if

Γ∗ ≡ Γ(p0) ≥ 0. (3.1)

3.4.2 Examiner Search

Examiner Assignment

The patent office assigns the application randomly to an examiner within the relevant

art unit of the technology center. We characterize an examiner by the tuple (S, θ, π).

51Throughout, we use the notation Eω to denote expectations taken over the vector of obsoles-

cence shocks that are not yet realized. Before applying, this is the full vector of 20 possible shocks

that could occur, one each year after application. As the process continues, obsolescence shocks

occur, and fewer shocks are left to be realized. With a slight abuse of notation, whenever we use Eω

with an emboldened ω, it refers to the sub-vector of ω that have not yet occurred. The notation

Eωr
refers to an expectation over ω only in round r.

52We simplify notation by using e to denote both the random variable reflecting the (unknown)

examiner prior to application its realization after applying. The same holds for examiner errors.
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The first term S represents examiner seniority. The type θ ∼ GS,θ(·) corresponds

to the level of intrinsic motivation. Intrinsically motivated workers incur a disutility

from awarding patent rights that do not meet the patentability standard, based on

the information available to them (see Section 3.4.4 for formalization of how this

enters the examiner’s payoff). We let the distribution of θ depend on seniority S.

Finally, π ∼ Gπ(·) corresponds to the examiner’s cost of delay (i.e., the extra effort

cost for going another round plus any pressure costs associated with timely docket

management). The effort cost component will reflect the examiner’s productivity.

Examiner Grounds for Rejection

Once assigned, the examiner learns the applicant’s identity and thus their fighting

costs. The examiner also knows the padded value of the application to the applicant.

The examiner reads the application and independently searches the existing prior

art to assess the grounds for rejection throughout the negotiation process. There

are three main grounds for rejection: novelty, non-obviousness, and indefiniteness.

Novelty requires that the claim has not been in use for one year before filing. Non-

obviousness requires that the claim makes an inventive step beyond the closest

existing invention that would not be immediate to anyone skilled in the relevant area.

Indefiniteness requires that the claim is precise and clear on the exact boundaries

of claimed property rights. In this chapter, we focus on novelty/non-obviousness.53

After searching the prior art, the examiner assesses the obviousness/novelty of each

claim j, with their assessment denoted by D̂j and equal to

D̂j = D(D∗
j , p) · ε,

where ε denotes the drawn examiner error in assessing obviousness/novelty, which is

assumed to be independent of the true distancesD∗
j . The distribution of search errors

depends on the seniority of the examiner and may also depend on the technology

center since the number and complexity of patents and other prior art vary across

technology fields.

The distribution of search errors also depends on the intrinsic motivation of the

53 Using the Office Action Research Dataset described in Section 3.3, which identifies the rea-

sons the examiner rejects claims in a patent at each round, we analyzed the overlap between

novelty/non-obviousness (102/103) and indefiniteness (112) rejections. We find that 73% of office

actions containing a 112 rejection also contain a 102/103 rejection. Thus, novelty/non-obviousness

rejections cover most of the observed indefiniteness rejections, so omitting indefiniteness from the

baseline model is a profitable abstraction.
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examiner. We specify that the mean of the search error distribution satisfies two

criteria. The first is that the mean of the error tends to one (the unbiased case) as

θ → ∞. The second is that for all θ <∞, the mean of the search error distribution

is greater than one. We specify the second feature because examiners who are not

perfectly intrinsically motivated do not scour the literature so thoroughly, thereby

missing relevant prior art. When they miss relevant prior art, they perceive distances

to be larger than they are and hence have errors greater than one. However, these

requirements do not force one-sided examiner error since some draws may still be

below one, even if the mean is above one. Our functional form choice satisfying this

assumption is µε = 1 +
1

θ
.

We say the examiner has grounds for an obviousness rejection if D̂j is less than an

obviousness threshold τ . However, having grounds for rejection will not necessarily

mean the examiner will reject the claim. The examiner’s decision will be the one

that maximizes their utility, taking into account their explicit incentives (credits)

and intrinsic motivation. This is a crucial point as it implies that examiners’ decisions

in the data may not align with decisions made solely on legal grounds.

Finally, examiner errors are specified to be constant throughout the negotiation

stage. In this sense, there is no updating of examiner error. However, the grounds

for rejection will be recalculated at every negotiation round as the applicant narrows

the extent of padding in response to a rejection by the examiner.

3.4.3 Information Structure

The information structure for the applicant and examiner is as follows. The inventor

knows the set of claims covered by the invention (given by nature), their true distance

to all prior art, and the private value of each claim. Before deciding whether to

apply for a patent, the inventor does not know which examiner will be assigned

to the application. After assignment, the applicant knows the characteristics of the

examiner, including the level of intrinsic motivation, productivity, seniority, and

structure of patent office incentives the examiner faces. The applicant also knows

the structure of the process and the fees imposed by the patent office at each stage.

The assigned examiner does not observe the true claim distances or the applicant’s

extent of padding, only the padded distances, contaminated by examiner error, for

each claim in the application. The examiner does not know the error she makes

in determining the claim distances during the search of prior art. The examiner
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observes the fighting costs and padded private value of the applicant’s claims.54

Since the examiner reports their assessment of the padded distance to the applicant,

the applicant knows the examiner’s error.

3.4.4 Negotiation

The Negotiation Stage is a finitely repeated version of the stage game shown in

the “Negotiation” section of Figure 3.1. At round r, if required to act, first, the

examiner chooses whether to grant or abandon and, if rejected, the applicant chooses

whether to abandon or fight. In between the examiner’s and applicant’s decision,

the applicant’s invention can become obsolete, in which case the applicant abandons

it immediately. The applicant and examiner discount each stage at rate β.

Let xa and xe be the vector of strategies of the applicant and examiner, respectively,

if the invention is not obsolete.55 We detail the actions and payoffs obtained at the

two decision nodes, starting at the point at which the examiner has just rejected in

round r so that xre = REJ.

Obsolescence and Credits

First, pre-grant obsolescence, denoted by ωr, is realized. If ωr = 1, the applicant’s

invention becomes obsolete. In this case, all returns shrink to zero permanently, and

trivially, the applicant abandons and obtains a period payoff of zero.56 In this case,

the examiner obtains a period payoff of credits grABN(S, T ). If the invention does

not become obsolete, then ωr = 0, and the applicant makes a non-trivial decision.

Formally, obsolescence is a Markov process, where, for all r, if ωr = 1, then ωr+1 = 1

(an absorbing state). Otherwise, if ωr = 0, ωr+1 is a Bernoulli random variable with

parameter Pω,pre if we are still in the application process, and parameter Pω,post if a

patent has been granted and we are in the renewals process.

54We could assume that the examiner does not perfectly observe the private value, but instead

obtains an unbiased signal of the value. This feature would not deliver any additional insights and

would increase computational burden.
55Of course, the vectors include a rejection/acceptance decision and abandonment/fight decision

for every round. To check whether a strategy is optimal, we must specify what each player would

do in every round, even if the prior parts of the strategy dictate that this round will not be reached

on the equilibrium path.
56The applicant obtains a period payoff of zero because the Patent Office reveals all applications

(after 18 months), so their potential for appropriation of innovation returns (e.g., by trade secrecy

as an alternative) has essentially vanished.
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We provide the full schedule of examiner credits in Appendix 3.E. The most impor-

tant feature to note is that credits weakly decline as the applicant enters subsequent

requests for continued examination, which make early granting more attractive to

the examiner.

Applicant Decision

Upon receiving a rejection, if the invention has not become obsolete, the applicant

has two choices. They can abandon (xra = ABN), in which case the applicant’s

and examiner’s payoffs are as described in the event of obsolescence. Instead of

abandoning, the applicant can continue the application (xra = FIGHT). Continuing

involves narrowing rejected claims, which we model as a reduction in padding p by

proportion η.57 Hence for all rejected claims j, the padding becomes pj,r+1 = ηpj,r.

The padding level remains the same for all accepted claims.

Continuing involves a fighting cost to the applicant. The applicant must pay the

attorney the fee for amending the application, Famend. In the case of a Request

for Continued Examination, the applicant must pay the associated patent office

fee, F r
round. Continuation involves delay costs for the examiner, denoted by π. After

narrowing occurs, the applicant pays fighting costs, and we move to round r + 1.

Formally, let the value function for the applicant upon being rejected in round r

be U r
a(ωr,xe). Clearly, the value function for the applicant is a function of the

future strategies of the examiner. Further, because ω is a Markov process, the value

function for the applicant only depends on the realization of ω in period r. The term

U r
a(ωr,xe) is defined as follows. If the invention becomes obsolete, so that ωr = 1,

we have (for all xe)

U r
a(1,xe) = 0. (3.2)

57We could extend the model to allow the applicant to choose whether to narrow by proportion

η with some probability or respond by arguing that the examiner is in error and not narrow at all.

However, our data on patent word counts imply that this extension is empirically unimportant.

To see this, we look at word counts on patents granted with one rejection after publication and

calculate the proportion of cases whether the applicant resubmits an application with the same

word count. This happens only 7% of the time, so we view the choice to ignore the possibility of

no narrowing as a profitable abstraction in the baseline.
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Otherwise,

U r
a(0,xe) = max

{
0,−Famend − F r+1

round + β
(
1(xr+1

e = GR)[V r+1 − ϕ] (3.3)

+ 1(xr+1
e = REJ)Eωr+1U

r+1
a (ωr+1,xe)

)}
,

where 1(A) is the indicator function, equal to one if statement A is true and zero oth-

erwise, V r+1 defines the ex post net expected benefits from patent rights if granted

in round r+1, as given in Equation (3.9) in Section 3.4.5, and ϕ is the finalizing fee.

Equation (3.3) says that the value for the applicant in round r, provided they are

not obsolete, is either zero if it is optimal for them to abandon or the sum of fighting

costs, plus either the payoff of being granted in the next round (if the examiner will

grant them) or the expected value from round r+1 if the examiner will reject them

in round r + 1 (both discounted by β).

If xr+1
e = GR, and ωr = 0, the applicant abandons in round r if

Famend + F r+1
round > β[V r+1 − ϕ]

and if xr+1
e = REJ, the applicant abandons in round r if

Famend + F r+1
round > βEωr+1U

r+1
a (ωr+1,xe).

At this point, we can define the expected utility for the applicant before applying,

for a given choice of padding, as

EωU
0
a (e, ε,ω, p) = 1(x1e = GR)[V 1 − ϕ] + 1(x1e = REJ)Eω1U

1
a (ω1,xe), (3.4)

where all four terms on the right-hand side are (implicitly) functions of the level of

padding.

Examiner Grant/Rejection

If the applicant fights (xra = FIGHT), we move to a new round r + 1, and the

examiner obtains updated assessments D̂r+1
j = D(D∗

j , p0η
r) on previously rejected

claims. Based on their updated assessment, the examiner recalculates the grounds

for rejection and decides whether to grant the patent.

Granting

Granting a patent in round r + 1 (xr+1
e = GR) ends the negotiation game and

moves the applicant into the renewal stage. Let Rr+1 ∈ [0, 1] denote the proportion
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of claims the examiner thinks they should reject on obviousness/novelty grounds.

Then the immediate payoff to the examiner from granting is

Gr+1 = gr+1
GR (S, T )− θRr+1.

Here gr+1
GR (S, T ) is the credit received by the examiner for granting at stage r + 1.

The term θRr+1 captures the intrinsic utility cost for the examiner. For intuition

on this term, consider the extreme cases. When Rr+1 = 0, the examiner believes

there are no independent claims on which they have grounds to reject and therefore

feels no intrinsic disutility in granting the application. On the other hand, when

Rr+1 = 1, the examiner believes that they should reject every independent claim,

so the examiner is going against the organization’s mission statement in granting

a patent. The examiner’s intrinsic penalty from premature granting is the product

of the proportion of strategically incorrect claim acceptances and their intrinsic

motivation parameter.

One might be concerned that our specification of intrinsic motivation also captures

examiner career concerns within the Patent Office. Even if the examiner were not

intrinsically motivated, their internal career prospects may depend on the frequency

with which they grant invalid claims. However, while the Office does have a “random

review” of examiners’ decisions by a senior panel, these reviews are very rare, they do

not come with explicit punishments, and Patent Office data confirm that decisions

are frequently successfully appealed by the head examiner in the art unit.

Rejecting

If the examiner chooses not to grant in round r + 1 (xr+1
e = REJ) they get cred-

its gr+1
REJ(S, T ), and the stage game continues. The examiner follows this choice by

rejecting any claim on which they believe there are grounds to reject. Hence, the

examiner rejects any independent claim j if D̂r+1
j < τ . After this, the application

moves back into the hands of the applicant, at which point another obsolescence

realization occurs, and then the applicant decides again whether to abandon or

continue.

Formally, we define the value function for the examiner after rejecting in round r as

W r
e (ωr,xa). The value function for the examiner satisfies

W r
e (ωr,xa) =

g
r
ABN if xra = ABN or ωr = 1

−π + βmax
{
Gr+1, gr+1

REJ + Eωr+1
W r+1

e (ωr+1,xa)
}

if xra = FIGHT

(3.5)

In the bottom branch of Equation (3.5), where the applicant fights, the value to the
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examiner of rejecting in round r is the cost π plus either the (discounted) benefits

of granting in round r + 1 or the net benefits of rejecting in round r + 1, whichever

is larger.

Given the applicant’s strategy xa the examiner grants in round r if

Gr > grREJ + EωrW
r
e (ωr,xa).

This says that the examiner grants if the period payoff from granting exceeds the

credits from rejecting plus the expected continuation value from the point of having

rejected in round r, with expectation taken over obsolescence outcomes.

3.4.5 Renewal

We enter the renewals stage if the examiner grants the patent and the applicant pays

the finalizing fee. Our renewal model adapts Schankerman and Pakes (1986) to the

United States context, adding a probability of post-grant obsolescence in addition

to deterministic depreciation. Suppose the patent is granted in round r. The returns

for each granted claim j start at ṽj,r = v∗j · pr and depreciate at rate δ each period

after grant. With probability Pω,post, the invention becomes obsolete, at which point

the returns shrink to zero permanently. To keep the patent rights, the applicant

must pay renewal fees F4, F8, and F12 at years four, eight, and twelve after grant.

The patent life ends at L = 20 years after submission of the patent application, at

which point the invention enters the public domain.

The renewal decisions by the applicant are those that maximize their expected utility

from retaining patent rights. Formally, define the expected returns from years t1 to

t2 as

EωVt1,t2 =

t2∑
t=t1

[β(1− δ)(1− Pω,post)]
t−t1

∑
j

ṽj,r

and let It be equal to one if the applicant will renew at year t (provided the patent

is not obsolete) and zero otherwise. Then, the applicant will renew at year four if

the net expected benefit after year four is positive:

V N,r
4 ≡ EωV4,7 − F4 + I8β

4V N,r
8 > 0, (3.6)

where V N,r
8 is the net returns from patent rights after year eight, which is defined

analogously. The renewal decision at year eight is analogous, and the decision at year
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12 is similar, except there is no future renewal decision post year 12.58 Finally, we

define the ex post net expected benefits from patent rights, when granted in round

r, denoted as V r (as in Equation (3.3), as

V r = EωV1,3 + I4β
4V N,r

4 . (3.9)

Characterizing the Equilibrium

For every given parameter vector and choice of padding, the negotiation game is

a finite game of perfect information, and hence has a subgame-perfect equilibrium

that can be found through backward induction. The equilibrium strategies (x∗
a and

x∗
e) are characterized by (for all r):59

1. xr,∗e = GR if and only if

Gr > grREJ + EωW
r
e (ωr,x

∗
a).

2. If xr+1,∗
e = GR, xr,∗a = ABN if and only if

Famend + F r+1
round > β[V r+1 − ϕ].

3. If xr+1,∗
e = REJ, xr,∗a = ABN if and only if

Famend + F r+1
round > βEωr+1U

r+1
a (ωr+1,x

∗
e).

4. The terms U r
a(1,x

∗
e), U

r
a(0,x

∗
e), and W

r
e (ωr,x

∗
a), and W

r
e (0,x

∗
a) satisfy Equa-

tions (3.2), (3.3), and (3.5), respectively.

5. I4, I8, and I12 are equal to one if and only if inequalities (3.6), (3.7), and (3.8),

respectively, are satisfied.

We want to highlight the important advantages of modelling patents as comprised

of multiple claims rather than as a single object. First, a model with multiple claims

58To be precise, conditional on not becoming obsolete, the applicant renews at year eight if

V N,r
8 ≡ EωV8,11 − F8 + I12β

4V N,r
12 > 0, (3.7)

and, conditional on not becoming obsolete, the applicant renews at year 12 if

V N,r
12 ≡ EωV12,20−r − F12 > 0. (3.8)

59In practice, we limit the process to six rounds (around 95% of applications last at most three

rounds of negotiation and the modal number is two) so the characterization holds for r < 6. In the

sixth round, if rejected, we force the applicant to abandon. The examiner’s continuation value is

therefore only g6ABN (S, T ).
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allows a more realistic description of the patent prosecution system and thus a tighter

link to the data on which the model parameters will be estimated. Second, endowing

applicants with multiple claims allows for specific claims to be narrowed only up to

the round at which they are granted. Third, a multiple claim model enables us to

specify the examiners’ intrinsic motivation disutility as a function of the proportion

of granted claims they judge invalid.

3.5 Estimation

Our primary estimation method is simulated method of moments (SMM), though we

estimate some parameters outside the model. For reference, Appendix Table 3.A.2

summarizes all parameters and their associated distributional assumptions.

3.5.1 External Estimation

Discount Rate (β)

The data lack some detailed information for identifying all parameters. Specifically,

discount rates are traditionally difficult to identify. Hence, we set β = 0.95—as in

most of the literature (Pakes, 1986).

Distance Threshold (τ)

We estimate the distance threshold externally using observations on claim distances

and examiners’ grant decisions. For every examiner e, we calculate the minimum

value of the distances among claims they grant. This number corresponds to their

“personal distance threshold,” denoted as τe = minj∈Je D̃j, where Je is the set of

claims granted across all applications by examiner e. Since examiners are not per-

fectly intrinsically motivated, some examiners’ personal thresholds are below the

true threshold τ in cases where they knowingly grant patents with relatively small

distances. However, we assume that the most intrinsically motivated examiner will

have a personal threshold τe equal to the true threshold τ . This assumption allows

us to estimate the distance threshold as the maximum of the distribution of exam-

iners’ individual thresholds. The validity of this approach relies on max
e=1,...,E

τe → τ

as the number of examiners in the technology center E → ∞.60 We calculate these

60In practice, we experiment with the first and fifth percentiles as robustness checks. We also

remove examiners who have conducted fewer than a threshold number of examinations. We exper-

iment with values of 50 and 100 for this threshold and find only minor differences in all of these

cases.
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thresholds separately for each technology center to create technology-center-specific

thresholds. Notably, our estimates of the threshold in different technology centers

are very similar, ranging from 0.48 to 0.52.

Applicant Fighting Costs (f·)

We have data on the quantiles of the distributions of amendment, maintenance,

and issuance hourly fees charged by lawyers. We assume these three costs are log-

normally distributed. Since these moments directly correspond to the elements of

applicant fighting costs and do not identify any other parameters in the model,

we estimate the mean and variances of the log of fighting costs using the optimal

two-step generalized method of moments estimation procedure for each of the three

negotiation-based fighting costs. The data allow us to estimate different negotiation

fighting cost distributions for simple applications (less than ten claims) and complex

applications in chemical, electrical, and mechanical fields.61

Depreciation of patent returns (δ)

Bessen (2008) estimates the combined effect of depreciation and the probability of

obsolescence at 0.14, using U.S. renewal data. In our context, this corresponds to

(1 − Pω,post) · δ + Pω,post · 1. Hence, for each parameter guess of Pω,post, we extract

the implied pure depreciation rate from this relationship.

3.5.2 Simulated Method of Moments

We estimate the remaining set of model parameters using SMM. The model does not

admit an analytic solution for endogenous variables as a function of all the model

primitives. Hence, the goal is to choose the parameters that best match the moments

of the data with the corresponding moments computed from the model’s numerical

solution. We estimate the model using moments from the data described in Section

3.3, assuming the model’s equilibrium generates the data.

We denote the full vector of parameters to estimate as ψ = (ψe,ψa). The vector

of applicant parameters is ψa =
(
η, Pω,pre, Pω,post, αD, βD, µv, σv,µfapp ,σfapp

)
. We

61On application fighting costs, though we have similar moments on lawyers’ application drafting

fees, because application fighting cost is proportional to padding in the model, its distribution is

contaminated by the endogenous choice of padding (which is a function of all model parameters).

This feature means that we cannot estimate the distribution of application fighting costs outside the

model: we must estimate these parameters as part of the simulated method of moments procedure

described in the next subsection.
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described the narrowing and obsolescence parameters in Section 3.4. For distances,

we assume D∗
j is Beta distributed with parameters (αD, βD). The Beta distribution

is a natural choice as it provides a flexible distribution on the interval [0, 1], which

coincides with the interval of our distance metric. Further, we use a multivariate

normal distribution copula to correlate claim distances within an application.62 Mo-

tivated by Schankerman and Pakes (1986), the log of initial claim flow returns is

normally distributed with mean µv and variance σ2
v . Finally, we assume that the

log of application drafting legal fees per unit padding, fapp, are normally distributed

with mean µfapp and variance σ2
fapp

, with different parameters for simple and complex

applications in chemical, electrical, and mechanical fields.

The vector of examiner parameters is ψe = (µθ,junior, µθ,senior, σθ, µπ, σπ, σε). The first

three parameters (µθ,junior, µθ,senior, σθ) correspond to log-normal parameters for the

distribution of examiner intrinsic motivation. We estimate different µ parameters

for “junior” (pre-GS-14 grade) and “senior” examiners. Though we constrain the σ

parameter to be the same for juniors and seniors, given the log-normal specification,

this does not force the variances (or even the variance relative to the mean) to be

the same for juniors and seniors. The log of examiner delay costs, π, are normally

distributed with mean µπ and variance σ2
π. Finally, examiner errors are normally

distributed, with mean 1 +
1

θ
and variance σ2

ε .

We estimate ψ using a minimum-distance estimator that matches moments of the

data with the corresponding moments implied by the model. More specifically, for

any value of ψ, we solve the model for several simulated draws from the distributions

of exogenous variables. Then, we calculate moments of the endogenous variables

across the simulated observations. The minimum-distance estimator minimizes the

SMM objective function:

ψ̂ = argmin
ψ

(m(ψ)−mS)
′ Ω (m(ψ)−mS) ,

where m(ψ) is the vector of simulated moments computed from the model when

the parameter vector is ψ, mS is the vector of corresponding sample moments, and

62Specifically, in the simulation, for each application, we draw a vector of sizeM0 from a standard

multivariate normal with correlation coefficient ρ. We apply the quantile function of the normal to

the draws to create correlated uniform random variables. Then for the estimation guess (α̃D, β̃D),

we apply the inverse CDF of a Beta distribution with these parameters to the uniform draws to

generate correlated beta distributed initial distances. For ρ, we use the empirical correlation of

granted distances. Simulations confirm that the correlation of the multivariate copula is very close

to the correlation of the distances. See Nelsen (2007) for details.
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Ω is a symmetric, positive-definite weighting matrix.63

3.5.3 Choice of Moments

We now briefly describe our choice of moments for the SMM estimation. In Appendix

3.F, we provide some intuition about how these moments aid in identifying the

parameters we estimate.

The number of moments we can calculate on endogenous variables in the model far

exceeds the number of model parameters. To select a subset of moments for our

estimation procedure, we followed a rigorous, data-driven methodology, based on

the sensitivity matrix of parameter estimates to the inclusion of particular moments

(Andrews, Gentzkow, and Shapiro, 2017), along with plots of how estimated model

moments (and separately, the value of the SMM objective) vary with parameter

values. We provide details on the complete set of moments we considered and our

pruning procedure in Appendix 3.F. Through this procedure, we pruned the set of

moments down to 40 that clearly assist in estimating the parameters.

The selected moments corresponding to outcomes for examiners are the proportion

of applications granted by round and seniority, the standard deviation of examiner

rejection rates by seniority, and the proportion of patents granted containing an

invalid claim (again, by seniority and round). The selected moments corresponding to

outcomes for applicants are the proportion of abandonments by round and examiner

seniority, patent renewal rates, means and standard deviations of granted claim

distances by round granted, and means and medians of legal application fees by

technology class.

3.6 Empirical Results

In this section, we present and interpret our parameter estimates and briefly discuss

model fit and robustness. For model estimates, we bootstrap standard errors. Stan-

dard errors are negligible for all parameters, which is unsurprising since we calculate

data moments using millions of observations.

63For the weighting matrix we use a diagonal matrix that scales moments to a uniform scale. We

cannot use the optimal two-step weight matrix because we do not have application-specific data

on fighting costs that can allow us to compute the correlation between these moments and others.

Details on computation and numerical optimization are available on request.
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Table 3.1: Applicant Parameter Estimates

Parameter Symbol Estimate S.E.

Per-round narrowing 1− η 0.25 0.000

Pre-grant obsolescence Pω,pre 0.14 0.001

Post-grant obsolescence Pω,post 0.04 0.000

Initial returns log-mean µv 10.55 0.077

Initial returns log-sigma σv 1.32 0.022

Initial distance alpha αD 4.57 0.003

Initial distance beta βD 7.74 0.004

Simple application fighting cost log-mean µf,simple 8.53 0.011

Simple application fighting cost log-sigma σf,simple 0.87 0.054

Notes: This table provides the applicant’s model parameters. Standard errors are boot-

strapped. Table 3.A.3 provides fighting cost parameters by technology area.

3.6.1 Applicant Parameters

Table 3.1 presents the estimates for parameters relating to the applicant. First, we

estimate the proportion of narrowing per round as 1 − η = 0.25. This estimate

indicates that screening substantially narrows over-claiming by the applicant. Sec-

ond, we estimate two probabilities of obsolescence: a pre-grant probability during

the application process and post-grant obsolescence during the patent’s life. The

estimated pre-grant obsolescence probability is 14% for each negotiation round. The

post-grant rate is 4% per year, which is broadly similar to other estimates in the

literature.64 The probability of obsolescence is higher during the application process

for two reasons. First, applicants are more likely to discover their invention to be

obsolete earlier in its life cycle (e.g., discovering that commercialization costs make

the project unviable). Second, the prosecution stage contains applications that are

eventually granted and those who abandon, and many of those who abandon do so

precisely because they become obsolete.

Third, the distribution of initial returns from an unpadded independent claim is

highly skewed. Though the mean is $91,046, the median is $38,069, and the modal

64Using data for three European countries, pooled across technology fields, Pakes (1986) calcu-

lates values of 6%, 4% and 1% for the likelihood of obsolescence in the first, second and third year

after grant, respectively. Using German data, disaggregated by four technology areas, Lanjouw

(1998) estimates a range of 7-12%.

116



value of initial returns for an unpadded independent claim is $6,656. To understand

the distribution of unpadded initial returns on the application, we take the distri-

bution of the number of independent claims and use it to construct sums of draws

from the distribution of claim returns. For example, the first patent application in

our dataset has two independent claims. Hence, we draw two values from the dis-

tribution of claim initial unpadded returns and add them to get the total initial

unpadded returns on that application. The median initial unpadded returns from a

patent application are $129,659.

It is difficult to compare our estimates of initial returns to existing estimates in the

literature on total patent returns since we estimate the distribution of initial returns

for (a) all applications (not just granted ones) and (b) unpadded claims. Nonetheless,

it is worth noting that Bessen (2008) estimates the mean net present value of patents

(adjusted to 2018 U.S.D) for all U.S. patentees as $78,168 and $113,067 for just U.S.

public firms in manufacturing.

Next, we discuss the implied distribution of initial unpadded distances and fighting

costs. The mean distance is 0.37, and the distribution is approximately symmetric.

Given that our estimated thresholds are between 0.48 and 0.52, these estimates imply

that about 83% of application claims have distances below the threshold. Despite

this, many applications are eventually granted because of extensive narrowing and

examiners granting invalid claims. Fighting costs for simple applications are lower

than all other categories. Recall that legal costs per application are specified as

Fapp = fapp · (1 + |p − 1|), where fapp is the attorney fees associated with patent

drafting. Evaluated at the mean levels of p and fapp, we estimate these transaction

costs at $7,920 for simple applications and $12,333 for electrical applications.

Padding (overclaiming property rights)

We compute statistics on the model’s endogenous variables by simulating the model

at our estimates. Relating to the applicant, we calculate the distribution of optimal

initial padding for those who apply. The mean padding level is 8%, with 70th and

90th percentiles equalling 18% and 31%, respectively. These results suggest that

many applicants substantially exaggerate the true extent of their invention when

they apply for patent rights.

We also compute two weighted averages of padding, where our weights are either the

mean (over claims) of initial unpadded distances (D̄∗
s) or initial unpadded values (v̄∗s).

The weighted average of padding rises to 10% when weighted by values and 9% when

weighted by distances, indicating that inventors increase padding for applications
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Table 3.2: Examiner Parameters Estimates

Parameter Symbol Estimate Standard Error

Junior intrinsic motivation log-mean µθ,junior 3.92 0.004

Senior intrinsic motivation log-mean µθ,senior 3.38 0.005

Intrinsic motivation log-sigma σθ 0.77 0.055

Delay cost log-mean µπ 0.19 0.006

Delay cost log-sigma σπ 0.27 0.015

Error standard deviation σε 0.02 0.000

Notes: This table provides the model parameters relating to the examiner. Standard errors are

bootstrapped.

with claims that are more valuable and distant from the prior art (where such

padding is less likely to induce the examiner to reject).

3.6.2 Examiner Parameters

Table 3.2 presents the estimates of the examiner parameters. To understand ex-

aminer costs and intrinsic motivation, we provide a slight digression on the units

of examiner payoffs in the model, which we call “normalized credits.”65 The Of-

fice adjusts each examiner’s credits based on their seniority and the technological

complexity of applications. We use the same adjustments when we model payoffs for

examiners.66 These normalized credits are the unit of examiner payoffs. This ensures

that payoffs are in the same units for all examiners, regardless of their seniority and

technology center.

We start by interpreting the parameters of intrinsic motivation. To our knowledge,

these are the first structural estimates of intrinsic motivation in a public agency. We

estimate σθ as 0.77, which implies, by the properties of the log-normal distribution,

65Appendix Section 3.E provides a detailed derivation of the examiners’ credit structure.
66For example, an examiner receives two credits for granting a patent in the first negotiation

round. We adjust these credits by dividing by a seniority factor (for example, by 1.25 for a senior

GS-14 examiner) and multiplying by a technology correction (say, 29 for the relatively complex

category of computer networks). Therefore, a GS-14 examiner in technology center “computer

networks” receives 46.4 normalized credits for granting a patent in the first round. Tables 3.E.1 and

3.E.2 report the values of seniority and technology corrections across all seniorities and technology

centers, respectively.
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a coefficient of variation of 0.82 (82%). This estimate implies substantial variation in

intrinsic motivation across examiners, even within seniority category. We estimate

µθ,junior = 3.92 and µθ,senior = 3.38, which implies that, on average, junior exam-

iners are more intrinsically motivated than senior examiners. Figure 3.3 plots the

distribution of intrinsic motivation for junior and senior examiners as implied by

the log-normal assumptions. It is clear that the distribution of senior examiners’

intrinsic motivation (yellow solid) is generally lower than that of junior examiners

(maroon dashed). At least two countervailing forces influence the relationship be-

tween seniority and intrinsic motivation. Intrinsic motivation will fall with seniority

if examiners become “jaded” with experience. However, selection cuts the other way

since the least intrinsically motivated examiners are likelier to move to the private

sector with higher remuneration. The evidence thus indicates that the jading effect

dominates the selection effect.

To interpret the magnitude of intrinsic motivation, we calculate the associated cost

for a median intrinsically motivated GS-12 (junior) examiner in a selected technology

center 36 (“Miscellaneous” category). For this examiner, the seniority correction

is one and the technology correction is 22.4. Recall that intrinsic motivation cost

(in terms of normalized credits) is CIM = θR, where θ is the intrinsic motivation

parameter, andR is the proportion of claims the examiner believes invalid. We divide

CIM by 22.4 to change the units back to pure credits. Hence, in terms of raw credits,

this examiner’s intrinsic motivation cost is 2.25R, which means that the examiner

faces a cost of 2.25 credits for knowingly granting a patent with 100% of its claims as

invalid. This cost is equivalent to the credits the examiner obtains for making three

final rejections. This example is only an illustration, but our estimates generally

imply that intrinsic motivation costs are sizeable relative to extrinsic rewards.

Next, we consider examiner delay costs. The coefficient of variation of examiner costs

is 0.08, ten times smaller than examiner intrinsic motivation. Moreover, delay costs

are estimated to be small, with the median cost for a GS-12 (junior) examiner in

technology center 36 paying an equivalent of 0.05 credits to go an extra round on this

particular application. The fact that these costs are so small suggests that examiners

are not pressured explicitly to finish applications fast and that the opportunity cost

of devoting more time to this application relative to the next on their desk is small.

This finding is intuitive since the most time-consuming activity for the examiner is

their initial literature search. Hence, continuing to make decisions on an application

they have already reviewed is less time-intensive than starting a new application

(though also less compensated).

119



Figure 3.3: Density of examiner intrinsic motivation

0.000

0.005

0.010

0.015

0.020

0 25 50 75 100 125
IM (Normalized Credits)

Seniority: Senior Junior

Notes: Orange solid curve represents the distribution for senior examiners; maroon dashed curve

represents the distribution for junior examiners. To interpret the x-axis, consider an examiner in

technology center 36, where the technology correction is 22.4. Dividing the values on the x-axis

by 22.4 yields the number of credits the examiner pays as an intrinsic motivation cost to a GS-12

examiner for granting a patent for an application on which every claim is invalid.

Finally, we discuss examiner error parameters. Recall that examiner errors are

normally distributed, with an estimated standard deviation and mean equal to

µε = 1+
1

θ
, where θ is the examiner’s intrinsic motivation. The error that an exam-

iner draws multiplies padded distances to create the examiner’s distance assessment.

Since junior examiners are more intrinsically motivated on average, the mean of the

junior examiners’ error distribution is closer to one. We estimate the standard de-

viation of examiner errors to be 0.02, indicating that errors are modest, typically

within 4% of the examiner-specific mean.

Calculating Examiner Errors

We compute statistics on two kinds of examiner errors by simulating the model with

our baseline estimates. The first error occurs when an examiner grants a patent with

invalid claims. We refer to this as a “type 1” error. We calculate that this happens

for 19% of grants, suggesting that while examiners are screening out some invalid

patents, nearly one in five applications contain some claims that should not have

been granted. The last statistic represents the “extensive” margin of this type of

examiner error; we can also calculate an “intensive margin” error. Among all granted

claims, 7% are invalid (compared to 83% of claims whose unpadded distance is below

the threshold), implying that most invalid patents contain only a few invalid claims.

We also calculate the weighted errors (focusing on the intensive margin), where
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weights reflect the distance of the claim from the patentability threshold. Among

simulations, indexed by s, let SG be the set granted and j represent a claim. We

calculate the measure ∑
s∈SG

∑
j

wsj∑
s′∈SG

∑
j′ ws′j′

E1sj,int, (3.10)

where E1sj,int is equal to one if claim j on simulation s is invalid (has a distance below

the threshold) and zero otherwise, and the weight wsj = |D̃sj − τs|, where τs is the
threshold relevant to simulation s. The idea is to put more weight on errors where

claims are further away from the threshold (making the error more “egregious”). If

the weighted average is lower than the unweighted average, it implies that errors

occur in marginal cases in which it is not obvious whether the patent is valid. Indeed,

the weighted error is 2%, much lower than the unweighted value of 7%, suggesting

that most errors occur in cases of marginal validity.67

The other kind of “error” (or “undesirable” outcome) occurs when an applicant

abandons an application that contains valid claims. We refer to these as “type 2”

errors. Approximately 36% of abandonments have at least one valid claim. Strictly

speaking, these are not a mistake by the examiner since they should only grant

patents to applications on which all claims are valid. At the intensive margin, among

all claims the applicant abandons, 18% are valid.

Similar to Equation (3.10), we calculate a weighted average of type 2 intensive

margin errors, where the weights are the same as before—the distance of a claim

from the threshold. In this case, the weighted error falls to 6%, again implying

that abandonments occur on marginally valid claims rather than clearly valid ones.

When we compute the extensive margin weighted error, the proportion of abandoned

applications with at least one valid claim is 11%.

Model Fit and Robustness

We compare the values of simulated moments, calculated at the estimated param-

eters, with moments in the data.68 As expected, we match most of the internal

moments well (two exceptions are described in Appendix 3.F). The real test of

model fit, however, is how well we match moments that are not used in the estima-

tion procedure. Appendix Figure 3.A.2 displays these comparisons for the excluded

67We also calculate weighted averages for the extensive margin type 1 errors (details available

on request). The weighted error in this case is 5.1%, similarly suggesting that most errors occur in

marginal cases.
68Appendix Figure 3.A.1 displays the full set of comparisons.
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moments described in Appendix 3.F, which include percentiles on granted distances

in each round, the mean of distances for latter rounds, and means and percentiles of

round one rejection rates across seniority categories. We match all of these moments

well.

We run a series of robustness checks on our baseline model (Appendix Table 3.A.5

summarizes the results). First, we examine changes to how we define the distance

threshold for patentability. In the baseline, we define each examiner’s “revealed”

threshold as the minimum distance they grant and then take the threshold as the

maximum of those values over examiners. We experiment with using the first and

fifth percentile of distances granted for each examiner, which allows for measurement

error in their personal threshold. We also check robustness to a discount factor of 0.99

and a broader definition of examiner seniority. In all cases, the parameter estimates

are generally robust.

3.7 Counterfactual Analysis

We use the estimated model to conduct a series of counterfactual analyses to examine

the impacts of various reforms on the speed and quality of the screening process

and the degree of padding in patent applications. The counterfactual scenarios we

examine include removing intrinsic motivation, and changing the level of patent

office fees, the number of allowable rounds in the process, and examiner extrinsic

incentives (credits).

Table 3.3 presents the results. We focus on four endogenous outcomes. The first is

the proportion of applicants who choose not to apply for a patent on their developed

invention. The second is the applicant’s choice of how much to pad the application.

The third set of outcomes is the proportion of grants in round one and the average

number of rounds (speed of resolution). The fourth set, relating to screening quality,

is the proportion of granted patents with at least one invalid claim (type 1 error

at the extensive margin) and abandoned applications with at least one valid claim

(type 2 error at the extensive margin). We note but do not report that the changes

in these errors at the intensive margin errors are similar.

Fees

In the baseline, there are relatively low fees for applicants throughout the prosecution

process. In the first counterfactual, we introduce a substantial per-round fee that
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Table 3.3: Counterfactual Experiments

Counterfactual Not Apply Pad Rounds R1 Gr T1 T2

(%) (%) (%) (%) (%)

Baseline 6.3 8.0 2.5 11.5 18.8 36.5

25K Round Fee 8.4 6.6 2.4 12.8 18.0 37.9

50K Round Fee 12.2 5.9 2.4 14.2 17.7 39.8

Three Rounds 27.2 3.6 2.1 15.1 15.9 49.2

Two Rounds 51.1 0.8 1.6 25.8 11.9 56.1

One Round 79.6 -2.3 1.0 98.4 0.5 91.7

15% IM 3.9 8.0 2.1 30.2 89.3 22.4

Credit↘ 6.3 7.9 2.5 11.5 18.7 36.3

Credit↘ + 15% IM 3.4 18.1 2.1 32.8 88.9 17.7

Notes: “Not Apply’ is the percent of inventors who do not apply for a patent; Pad is the

mean level of padding. Rounds is the mean number of rounds. “R1 Gr” is the percent

of applications granted in Round 1. T1 represents the proportion of granted patents with

some invalid claims. T2 represents the proportion of abandoned applications with some

valid claims.

the applicant must pay for each negotiation (not just for an RCE).69 This fee acts as

a marginal cost per round of negotiation. Since each round is now more expensive,

applicants have increased incentives to exit the patent process as soon as possible,

and less incentive to apply in the first place. A substantial $50,000 fee for every

extra round reduces padding by a quarter (from 8.0% to 5.9%) and slightly reduces

the mean number of rounds, from 2.5 to 2.4. The proportion of grants in round one

increases from 11.5% to 14.2%, reflecting the reduced padding, and the fraction of

granted patents with some invalid claims (type 1 error) falls slightly. However, the

rounds fee increases type 2 error—rising from 36.5% to 39.8%. The trade-off between

these two types of errors is a feature of many of the counterfactuals we analyze.

69We also consider substantially increasing the application fees to as much as $50,000. However,

because this is a fixed fee paid upon application, provided it is still profitable to apply, applicants

will not change their padding decision. Even at this level, the fee does not materially alter average

padding and, since there is practically no change to the proportion of inventors who choose to apply,

introducing an application fee acts mainly as a transfer from applicants to the Patent Office, with

minimal changes to quality or speed of prosecution. If the additional resources from the higher

application fee were reinvested in patent office examination, there would be improvements. This

finding—that application fees only really help if they are reinvested—is similar to the findings in

Schankerman and Schuett (2022), who use a completely different theoretical model and data.
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It is at first surprising that per-round fees as high as $50,000 do not substantially

change the speed or quality of patent prosecution. The explanation is that the private

value of patent rights is large enough to make applying for a patent on many of

these inventions worthwhile, even with high per-round fees. Further, the applicant

has the option to apply and then abandon after the first rejection, without paying

any negotiation fee. Fees would have to be much higher to substantially impact

outcomes.70

Restricting the Number of Rounds

Instead of using fees, we consider limiting the maximum number of rounds of ne-

gotiation between the applicant and examiner. We consider a maximum of three

rounds, then a maximum of two rounds (equivalent to removing all RCEs, allowing

only one round of interaction between applicant and examiner), and finally, we allow

for only one round (that is, no negotiation between applicant and examiner so that

the examiner’s first decision is final). These counterfactuals are motivated by a 2007

U.S.PTO proposal to restrict the number of RCEs. The proposed rulemaking was

challenged in federal court, which judged the restrictions as an overreach of Patent

Office authority.71 The court decision did not consider the quantitative impact of

such changes on patent office screening quality or its welfare effects, which our work

makes possible.

Round restrictions have material consequences on screening outcomes. Removing all

RCEs (allowing only two rounds) would lead to half of all inventors not applying

for a patent and would virtually eliminate padding. In this case, 25.8% of applicants

are granted in the first round, and because applicants respond to the restriction

by reducing padding, the proportion of patents granted with invalid claims falls. In

particular, with only one opportunity for negotiation, type 1 error falls sharply, from

18.8% to 11.9%.

70Of course, these fees would be significant for small firms or single inventors who may be cash

constrained. However, round fees for small and micro entities could be reduced, as the Patent Office

already does for other types of fees.
71The proposed changes are in U.S.PTO Changes to Practice for Continued Examination Fil-

ings, Patent Applications Containing Patentably Indistinct Claims, and Examination of Claims

in Patent Applications—the “New Rules” (SmithKline Beecham Corp. v. Dudas, 541 F. Supp. 2d

805, 2008). The court decided that the “New Rules” were substantive and that the Patent Office

did not have the rulemaking authority to make substantive changes, though the Court noted that

the Patent Office could make procedural changes, such as fees. As we will show, one can achieve

the same equilibrium number of rounds with an “equivalent” fee, so from an economic point of

view, this distinction is problematic.

124



The disadvantage of limiting the scope for negotiation is that it increases the pro-

portion of abandoned applications with valid claims. With no RCEs, this proportion

rises from 36.5% to 56.1%. As with fees, making the process tougher for applicants

through fewer allowable rounds generally reduces the granting of invalid claims and

speeds up the process but leads to the abandonment of valid claims. As we discuss in

the next section, granting invalid claims and not granting valid claims each imposes

social costs, and we need to measure these to evaluate the overall impact of the

reforms.

Finally, we compare the effectiveness of fees and round restrictions (“price versus

quantity” instruments) by computing the equivalent per-round fee—in the sense of

equalizing the mean number of rounds in equilibrium—to restrictions on the number

of RCEs. The simulations show that the fee equivalent to removing all RCEs is a

massive $600,000 per round. Using fees generally produces lower type 1 and type 2

errors than their rounds equivalents, but such fee levels are politically unpalatable.

Removing Intrinsic Motivation

Next, we evaluate the impact of removing intrinsic motivation by reducing it for

every examiner to 15% of its original value.72 Knowing that examiners will be more

unwilling to grant invalid patents, only 3.9% of inventors do not apply, the number

of rounds falls from 2.5 to 2.1, and the proportion of applications granted in round

one almost triples, increasing from 11.5 to 30.2. Not surprisingly, type 1 error jumps

sharply to 89.3%, while type 2 error declines. This counterfactual highlights the

quantitative importance of intrinsic motivation on the quality of patent screening

and confirms its potential salience for economic analyses of other public agencies.73

Removing Credits

Finally, we consider changes to the structure of credits for examiners. We remove

all credits for the examiner after the first round. If it is the case that examiner

costs of delay represent the marginal cost of an extra examination round, then such

a policy change could be justified on efficiency grounds of “marginal cost pricing”

72We cannot fully remove intrinsic motivation because our specification of mean error being

inversely related to IM implies that IM cannot be exactly zero. We provide the reason behind our

choice of 15% in Section 3.8.
73Interestingly, increasing intrinsic motivation (not reported) does not have much impact in

reducing padding or type-1 error. The explanation for this outcome is that examiners are already

sufficiently intrinsically motivated to get most of the benefits, so further increases do not have

much bite.
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since we estimated examiner delay costs to be small.74 When we remove all credits

after the first round in the baseline model, there are minimal, if any, impacts on

any of the outcome variables. This result suggests that our baseline estimates of

intrinsic motivation are sufficiently large for examiners to want to avoid granting

invalid patents even in a context where they will receive no further extrinsic reward if

they do so. This striking finding reflects the extent to which patent office examiners

are intrinsically motivated. The results are not consistent with extrinsic incentives

crowding out intrinsic incentives.

To complement this exercise, we also analyze the effect of removing all credits after

the first round alongside reducing intrinsic motivation to 15% of its value (at any

higher value of intrinsic motivation, removing credits has no material effect). In

this case, we find non-trivial impacts of credits consistent with economic intuition.

First, padding doubles, up to 18% (relative to 8.0% when only intrinsic motivation is

changed) and first-round grants increase from 30.2% to 32.8%. Type 2 error declines

because the increased padding means that abandonments are less likely to include

valid claims. These results indicate that extrinsic incentives and intrinsic motivation

are substitutes, not complements, as sometimes found in the experimental literature

(see Section 3.2 for citations): credits only work as an effective device to incentivize

examiners when examiners are not intrinsically motivated (and even then, as we

show in the next section, credits do not reduce social costs of screening).

In summary, these counterfactual experiments show that no reform we consider un-

ambiguously improves both prosecution speed and quality. There is typically a trade-

off: policies that make prosecution stricter lead to fewer grants of invalid patents

but increased abandonments of valid applications. Evaluating reforms requires con-

verting these outcomes into social costs, which we do in the following section.

74This counterfactual has limitations that the others do not because our model is focused on

optimal decisions on a given patent application. It does not incorporate any interactions between

different applications the examiner faces, such as optimizing docket management across applications

(including meeting quarterly or annual targets). This counterfactual is best thought of informing

an examiner that for one of the new applications in their docket, they will only receive credits for

the first round.
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3.8 Quantifying the Social Costs of Screening

We classify net social costs into three categories: type 1, type 2, and prosecution

costs. Type 1 costs refer to the costs induced by granting invalid claims. Type 2

costs refer to the social value of inventions that are not developed ex ante because

of the potential threat of not being granted valid claims. Type 1 benefits refer to the

social value of inventions that would not be developed ex ante without type 1 error.

Type 2 benefits refer to the ex post deadweight loss not incurred when inventors

abandon valid claims. Prosecution costs are the Patent Office’s costs of examining

applications plus the legal fees incurred by the applicants during the negotiation

process. In what follows, we summarize our quantification approach; full details are

in Appendix 3.G. We start with the costs of each type of error and then discuss the

benefits.

3.8.1 Type 1 Costs

There are two sources of costs from type 1 error: the deadweight loss associated with

the royalties extracted by the patentee and the litigation costs associated with legal

challenges against invalid patents that are granted (and that are valuable enough to

warrant a challenge).

Deadweight loss from royalties

We assume that the patentee charges the Arrow royalty equal to the unit cost

savings due to the invention, ∆c. The deadweight loss from royalties depends on

the market structure of licensees. Our baseline specification is perfect competition

among licensees, with a linear demand and constant unit cost.75 In this case, the

deadweight loss is

DWL =
1

2
∆℘∆q =

λ

2

∆℘

℘
Ṽ ,

where ℘ is the initial price (without the royalty associated with the claim), ∆℘ = ∆c

with perfect competition, Ṽ = q∆℘ denotes total royalty payments, and λ is the

elasticity of product demand (in absolute value).76 To calibrate this expression, we

follow Schankerman and Schuett (2022), who estimate the ratio of corporate licensing

75In Appendix 3.G, we extend the approach to Cournot competition. Our calibration indicates

that this extension yields quantitatively very similar results.
76For invalid patents, we cannot use the model estimates of values of patent rights V to represent

royalty payments for invalid patents Ṽ , since our estimates of V are contaminated with potential

legal costs (explained in the next subsection). In Appendix 3.G, we explain how we overcome this

challenge to calculate type 1 costs.
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revenue from intangible industrial property to R&D at 39.3%. Multiplying this ratio

by the ratio of R&D to sales in manufacturing in 2002 (4.1%), we take
∆℘

℘
= 1.61%.

We do the computation for values of the demand elasticity λ ∈ (1, 3) and report

λ = 2 in the main analysis (qualitative conclusions hold for the other values).

Cost of litigation on invalid patents

The social cost of type 1 error also involves litigation costs on invalid patents. Not

all invalid patents are “exposed” to litigation because their private value is not large

enough to justify the litigation expense. Letting GṼ (·) denote the distribution of

the value at stake Ṽ , we take the proportion of patents not exposed to litigation

from Schankerman and Schuett (2022) (v̌ = 89.6%) and calculate the v̌st percentile

of the value at stake distribution, V̌ = G−1

Ṽ
(v̌). Then, all patents with Ṽ exceeding

the threshold V̌ are exposed to litigation.

The social cost for invalid patents not exposed to litigation is only the deadweight

loss from royalties. From Schankerman and Schuett (2022), exposed invalid patents

have a 16.3% probability of being litigated, in which case, we assume that courts are

perfect and thus always invalidate wrongly granted claims. In this case, the social

cost is the sum of litigation costs for the patentee and challenger, each denoted

C(Ṽ ).77 The remaining 83.7% of exposed invalid patents are not litigated and only

impose the deadweight loss.78

In summary, the expected social cost of granting an invalid patent of value Ṽs is

S1s = IsDWLs + (1− Is)
[
0.837 ·DWLs + 0.163 · 2C(Ṽs)

]
, (3.11)

where Is = 1(Ṽs ≤ V̌ ) is an indicator equal to one if the patent is not exposed to

litigation. Then, the total type 1 cost is

T1 =
∑
s∈SG

E1sS1s (3.12)

where E1s is equal to one if a granted application s ∈ SG is invalid and zero otherwise.

77We take C(Ṽ ) as linear in Ṽ and calibrate the coefficients using AIPLA data.
78Patentees with invalid patents can pre-empt a challenge by charging a royalty payment (typi-

cally a lump sum) equal to the cost of litigation for the challenger (this is commonly referred to as

“trolling” behavior). For these cases, the social cost is only the deadweight loss associated with the

patent, since the payment is a pure transfer from the licensee to the patentee (we ignore possible

R&D incentive effects of the transfer). See Schankerman and Schuett (2022) for more discussion.
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3.8.2 Type 2 Costs

From the ex post perspective, there is no social cost from type 2 errors because the

innovation has already been produced and the R&D cost is sunk (this is essentially

ex post hold-up). Therefore, it only makes sense to analyze the social cost of type 2

errors from the ex ante (incentive) perspective. Type 2 error reduces the expected

value of patent protection for the inventor and, thus, the ex ante decision of inventors

to develop their (exogenous) ideas. We want to calculate the social value of the set

of socially valuable inventions that are not developed when there is the possibility

of type 2 error but which would be developed in the absence of type 2 error. This

task requires us to construct a simple model of development. We emphasize that

we do not require this extension to estimate the screening model, nor to calculate

padding, the number of equilibrium rounds, type 1 and type 2 errors, type 1 social

costs, and prosecution costs.

The decision to develop an idea into an invention depends on three things: the ex ante

value of patent rights (Γ∗), the value of the invention without patent rights (π), and

the development cost (κ). To compute Γ∗, we use our model to calculate the ex ante

value of patent rights (net of all costs), as in Equation (3.1). To calculate the private

value of the invention without patent rights, we define the patent premium (ξ) as

the percentage increase in private value due to patent protection. Hence, for positive

Γ∗, by definition Γ∗ = ξπ, implying a set of values of π. We assume that the patent

premium is constant across inventions and calibrate it based on existing estimates

from the literature on patent renewal models (Schankerman, 1998).79 For the cost

of developing an idea into an invention, κ, we draw values from the distribution

estimated by Schankerman and Schuett (2022).80

An inventor does not invest to develop an idea i if

NDi ≡ Bi − κi ≤ 0,

where Bi ≡ πi+max{Γ∗
i , 0} is the private benefit of development. An idea is socially

79This is a strong assumption, but it is not feasible to identify πs if we allow the patent premium

to vary. The reason is that we do not have any information on who develops their ideas, which might

allow us to back out π from the decision to develop and our estimated value of Γ∗. Furthermore,

we must specify π for inventions with negative ex ante value of patent rights. To do this, we draw

from the distribution of π created from positive values of patent rights.
80An alternative approach is to assume that inventors do not know their development cost, and

thus use the mean cost κ̄. We experimented with this approach and qualitative conclusions are

robust.
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valuable to develop if the net social benefit of development,

S2i ≡
ρsoc
ρpriv

Bi − κi,

is positive (where ρpriv and ρsoc denote the private and social rates of return). We

use a conservative estimate of
ρsoc
ρpriv

= 2 from Bloom, Schankerman, and Van Reenen

(2013).

Let Υ0 denote the set of ideas that are socially beneficial to develop (S2i > 0) but

which are not developed (NDi ≤ 0). To calculate type 2 social cost, we compute the

subset of Υ0, which we denote Υ1, that would develop in the absence of type 2 error.

To do this, we simulate the outcome from a “counterfactual” patent prosecution

where, at the point of patent abandonment, the inventor obtains the value of all

valid claims in that patent. By definition, in this scenario, all abandoned claims are

invalid, so there is no type 2 error. Let Γ′ denote the expected value of patent rights

in this new scenario. The idea i would be developed in this scenario if

ND′
i ≡ πi +max{Γ′

i, 0} − κi > 0.

We then compute type 2 costs as

T2 =
∑
i∈Υ1

S2i, (3.13)

where Υ1 is the subset of Υ0 with ND
′
i > 0. This is the set of ideas that are socially

beneficial to develop, that are not developed in the scenario with type 2 error, but

that would be developed in the absence of any type 2 error.

3.8.3 Patent Prosecution Costs

The social cost of patent prosecution for each application s consists of two com-

ponents: applicant legal costs of amending the application each round and Patent

Office administrative costs. The amendment cost is the per-negotiation cost Famend,s

drawn from the estimated distribution, multiplied by the equilibrium number of

negotiations for application s (equal to the number of rounds rs minus 1). For the

administrative cost, we calculate the patent operations budget per application as

$4,117 (in 2018 dollars). This value excludes patent office fees, as these are transfers

from the applicant to the patent office, as well as loss in patent value associated with

pre-grant obsolescence since that, too, is a transfer from the applicant to the owner

of the invention that superseded it. We divide the operations budget per application
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by the average number of rounds across all simulations and by the average number

of independent claims in an application, to create the average patent office cost per

round and claim, denoted by RCC. Then, the total social cost of patent prosecution

is

T3 =
∑
s

(rs − 1)Famend,s︸ ︷︷ ︸
Applicant Fighting Costs

+
∑
s

M0,srsRCC,︸ ︷︷ ︸
Office Costs

(3.14)

where M0,s is the initial number of claims in application s.

3.8.4 Benefits of Type 1 and Type 2 Errors

There are also benefits from errors. In the type 1 case, when invalid patents are

incorrectly granted, the ex ante incentives for inventors to develop and patent their

ideas are increased. This is analogous to the costs of type 2 error. We compute these

benefits as the sum of social development benefits from welfare-enhancing projects

that would not be developed without type 1 error but that are developed with type

1 error.81 The method is similar to the approach described in Section 3.8.2.

Further, there are benefits from type 2 errors. Not granting valid patents saves

the deadweight loss on those patents. We compute these benefits as described in

Section 3.8.1. Note that there is no benefit associated with litigation cost savings

since, under our assumption of costly but perfect courts (always upholding valid

patents and overturning invalid ones), valid patents that are granted would not be

challenged.

One important point to note is that the quantification of net social costs in this

section is based on the presumption that the patentability threshold used by the

Patent Office corresponds to the social optimum, that is, the threshold that only

grants patents to inventions that are welfare-enhancing but would not be developed

without patent rights. To see this, suppose the threshold is too low (the conven-

tional wisdom) so that some patents are considered “valid” and granted despite not

being welfare-enhancing. We would incorrectly not count these as a type 1 error, so

they would not contribute to our measure of type 1 social costs. Thus, we would

understate type 1 costs (and type 2 benefits). By an analogous argument, we would

overstate type 2 costs (and type 1 benefits). Therefore, if the threshold is too low,

the consequence is that we would understate net type 1 social costs and overstate

81The “counterfactual” patent prosecution in this case is one where, at the point of patent grant,

the inventor only obtains the value of the valid claims in the patent.
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net type 2 social costs. It remains an open and important research question to de-

termine the “optimal” distance threshold, that is, the one that grants patents only

to inventions that are welfare-enhancing and not otherwise developed (Schankerman

and Schuett, 2022).

3.8.5 Social Costs in Counterfactual Reforms

Table 3.4 summarizes the three components of net social costs for the baseline

model and the set of counterfactual reforms.82 The baseline row approximates the

net social costs associated with a yearly cohort of ideas, averaged over 2011–2013

(Appendix 3.G explains how we calibrate the annual number of ideas). Subsequent

rows provide the net social costs in that counterfactual scenario. All values are

adjusted for inflation, presented in 2023 U.S. dollars.

In the baseline, total type 1 net costs equal $6.4bn, total type 2 net costs are $1.5bn,

and prosecution costs equate to $17.6bn. In the final column, we sum these three

net costs and estimate the total net social cost of patent screening at $25.5bn. This

total constitutes 6.5% of total R&D performed by business enterprises in the U.S.

in 2011.83

Introducing a per-round fee lowers type 1 and prosecution costs because it discour-

ages applications and lowers padding for those that do apply. This, in turn, implies

that fewer grants are invalid and that grants occur in fewer rounds. However, a

round fee increases type 2 costs as applicants are more likely to abandon with some

valid claims in a scenario with high negotiation fees. With a $25,000 round fee, the

latter effect dominates, so the total net social cost increases by a very modest 1.9%.

As mentioned earlier, for sufficiently large rounds fees (likely to be politically infea-

sible), the reductions in type 1 and prosecution costs eventually dominate. Further,

in these counterfactuals, the extra revenues generated by the fees are not reinvested

in more intensive or faster examinations. If they were reinvested, social costs from

82The table presents the values of net social costs for λ = 2, ρsoc

ρpriv
= 2, ξ = 0.1, and development

costs drawn. The qualitative conclusions are similar for a range of other parameter values. In

Appendix 3.9, we provide results for the cases of a 5% patent premium with ρsoc

ρpriv
equal to 1.5 and

2, and a 10% patent premium with ρsoc

ρpriv
equal to 1.5. We do not present results for different values

of λ because quantitative values in this case are very similar to the baseline.
83It is worth noting that this is at the lower end of estimates of the private value of patent

rights (Pakes, 1986; Schankerman, 1998). This suggests that the patent system, as it is currently

configured, generates net positive social value. For similar findings in a different framework, see

Schankerman and Schuett (2022).
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Table 3.4: Net Social Costs of Patent Prosecution

Counterfactual T1 T2 T3 Total

Baseline ($Bn) 6.4 1.5 17.6 25.5

25K Round Fee 5.9 3.7 16.4 26.0

50K Round Fee 6.1 6.3 15.1 27.5

Three Rounds 4.9 10.1 10.2 25.1

Two Rounds 2.9 15.6 4.7 23.1

One Round 0.0 13.4 0.7 14.1

15% IM 25.8 2.3 15.0 43.0

Credit↘ 6.4 1.5 17.6 25.5

Credit↘ + 15% IM 15.9 4.0 15.8 35.7

Notes: Equation (3.12) defines T1; Equation (3.13) defines

T2, respectively; Equation (3.14) defines T3; Total sums the

three kinds of costs. The “baseline” row provides the total

social costs in billions of 2023 U.S. dollars.

introducing fees would be mitigated or even converted to social gains.

Restrictions on the allowable number of negotiation rounds have qualitatively similar

effects on social costs as rounds fees, but the impacts are much larger. Removing all

RCEs (two rounds) yields a 10.4% fall in total social costs relative to the baseline.

Restricting the process to one round reduces net social costs by 45%.

Removing intrinsic motivation (down to 15% of its original level) increases the total

social cost by 68.6%. When examiners have almost no intrinsic motivation, they are

willing to grant applications fast, even if they are padded. As a result, administrative

costs fall when intrinsic motivation is removed.84 However, the grants of patents with

invalid claims cause type 1 net costs to triple and consequently lead to an overall rise

in net social costs. This finding confirms the critical role that intrinsic motivation

plays in this public agency.

Finally, with the baseline level of intrinsic motivation, removing all examiner credits

after the first round for one examination has almost no effect on social costs – pre-

cisely as we would expect, given the negligible changes to any endogenous variables.

84The decrease in prosecution costs is countervailed by the fact that when intrinsic motivation

is low, there is an extensive margin increase in the number of inventors applying for patent rights.
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In fact, examiners’ intrinsic motivation must be as low as 15% of original values for

credits to have any effect on net social costs. With 15% intrinsic motivation, type

2 gross (and net) costs, prosecution costs, and type 1 gross costs all increase when

credits are removed. As a result, when intrinsic motivation is lowered by 85%, re-

moving credits increases total gross social costs. Yet, total net social costs decrease,

suggesting that credits are counter-productive even when intrinsic motivation is low.

This finding is driven by a large increase in type 1 benefits (and hence a decrease

in type 1 net social costs) from removing credits. This result highlights the impor-

tance of accounting for the increased development from relaxed patent granting, as

opposed to just the ex post social costs that arise through deadweight losses and

litigation.

3.9 Conclusion

In this chapter, we develop and estimate a structural model of the patent screening

process. The model incorporates incentives, intrinsic motivation, and multi-round

negotiation between the examiner and applicant. We show how structural modeling

of the incentives and organization of innovation-supporting public agencies can be

used to design reforms to improve agency performance. Our work highlights the fact

that, to analyze the impact of reforms on the effectiveness of screening, it is critical

to incorporate both the agency’s decision-making and the endogenous responses of

applicants being screened.

Our findings show that patent screening is moderately effective given the statutory

and judicial standards for patentability within which the Patent Office is required to

operate. This effectiveness is driven by substantial intrinsic motivation of examiners.

We find that restrictions on the number of allowable rounds of negotiation reduce

the social costs of screening. This outcome can be replicated through an equivalent

round fee for the applicant, but the required fees are too high to be politically

feasible. Finally, we estimate the total net social cost of patent screening at $25.5bn

per annual cohort of applications. This figure represents 6.5% of R&D in the United

States performed by business enterprises.

This chapter studies patent screening and instruments to improve its effectiveness

at the pooled technology level. A fruitful extension would be to estimate the model

for individual technology fields, such as biotechnology and software, which would

allow for the evaluation of the differential effectiveness of various instruments in

different areas. More generally, we hope this project illustrates the value of using
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structural models to inform decisions on how to reform public agencies, particularly

those that affect the allocation of R&D resources, including leading institutions

like the National Institutes of Health and National Science Foundation, and similar

institutions in other countries.
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Appendices for Chapter 3

3.A Additional Tables and Figures

Table 3.A.1: Summary Statistics

Variable Observations Mean Median Std. Dev.

Issued 4,846,053 0.70 1.00 0.46

Duration of Prosecution (years) 4,846,053 2.96 2.67 1.57

Number of Rounds 4,608,833 2.40 2.00 1.45

Independent Claims 3,838,553 2.99 3.00 2.94

Small Entity 4,781,012 0.24 0.00 0.43

Not Renewed at 4 410,667 0.13 0.00 0.33

Renewed at 4, not at 8 410,667 0.19 0.00 0.39

Renewed at 8, not at 12 410,667 0.23 0.00 0.42

Renewed at 12 410,667 0.46 0.00 0.50

Notes: Sample sizes are lower for rounds, claims, and examiner variables since

the datasets containing these variables cover a subset of the years 2001-2017. On

renewal variables, we restrict attention to patents granted before 2006 to ensure

that we have full renewal data on all granted patents. Categorical variables may

not sum to one due to rounding.
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Table 3.A.2: Estimated and Assigned Parameters

Estimated Parameters

Variable Notation Distribution Parameters

Examiner

Intrinsic motivation θ ∼ GS,θ(·) Log-normal σθ, µθ,junior or µθ,senior

Examiner Delay Cost π ∼ Gπ(·) Log-normal µπ , σπ

Error ε ∼ Ge,ε(·) Normal σε

Applicant

Initial claim returns v∗j ∼ Gv(·) Log-normal µv , σv

Initial claim distances D∗
j ∼ GD(·) Beta αD, βD

Obsolescence ω Bernoulli Pω,pre or Pω,post

Application legal costs fapp Log-normal µf,app, σf,app

Issuance legal costs fiss Log-normal µf,iss, σf,iss

Maintenance legal costs fmain Log-normal µf,main, σf,main

Amendment legal costs famend Log-normal µf,amend, σf,amend

Narrowing η - -

Assigned Parameters

Variable Notation Values

Discount rate β 0.95

Depreciation δ
0.14−Pω,post

1−Pω,post

Threshold by technology center τ Range from 0.48 to 0.52

Credits gr(S, T ) -

Finalizing fee ϕ $2,268

RCE fees F 3
round = F 5

round $1,034

F4 $1,685

Renewal fees F8 $3,791

F12 $7,792

Table 3.A.3: Application Fighting Costs by Technology Area

Parameter Symbol Estimate S.E.

Chemical application fighting cost log-mean µf,chem 9.15 0.008

Chemical application fighting cost log-sigma σf,chem 0.38 0.010

Electrical application fighting cost log-mean µf,elec 9.18 0.010

Electrical application fighting cost log-sigma σf,elec 0.57 0.014

Mechanical application fighting cost log-mean µf,mech 9.02 0.008

Mechanical application fighting cost log-sigma σf,mech 0.47 0.011

Notes: Standard errors are bootstrapped.
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Table 3.A.4: Applicant Fighting Costs by Technology Area

Parameter Symbol Estimate

Simple amendment fighting cost log-mean µf,amend,simp 7.60

Simple amendment fighting cost log-sigma σf,amend,simp 0.37

Chemical amendment fighting cost log-mean µf,amend,chem 8.13

Chemical amendment fighting cost log-sigma σf,amend,chem 0.45

Electrical amendment fighting cost log-mean µf,amend,elec 8.07

Electrical amendment fighting cost log-sigma σf,amend,elec 0.38

Mechanical amendment fighting cost log-mean µf,amend,mech 7.95

Mechanical amendment fighting cost log-sigma σf,amend,mech 0.43

Issuance cost log-mean µf,iss 6.54

Issuance cost log-sigma σf,iss 0.62

Maintenance cost log-mean µf,main 5.67

Maintenance cost log-sigma σf,main 0.46
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Table 3.A.5: Robustness of Estimates

Parameter Symbol Baseline 1% τ 5% τ β = 0.99 Definition of Seniority

(GS13 + GS14)

Junior intrinsic motivation log-mean µθ,j 3.92 3.96 3.96 3.90 4.16

Senior intrinsic motivation log-mean µθ,s 3.38 2.90 2.73 3.18 2.93

Intrinsic motivation log-sigma σθ 0.77 0.82 0.79 0.90 0.99

Examiner delay cost log-mean µπ 0.19 0.16 0.18 0.49 0.12

Examiner delay cost log-sigma σπ 0.27 0.37 0.42 0.10 0.60

Error standard deviation σε 0.02 0.02 0.02 0.03 0.02

Initial returns log-mean µv 10.55 10.59 10.88 10.07 10.28

Initial returns log-sigma σv 1.32 1.13 1.61 2.94 0.57

Initial distance alpha αD 4.57 3.92 3.90 4.56 3.75

Initial distance beta βD 7.74 6.72 6.22 7.79 7.15

Narrowing probability η 0.75 0.73 0.74 0.75 0.72

Application obsolescence probability Pω,pre 0.14 0.13 0.13 0.12 0.14

Renewal obsolescence probability Pω,post 0.04 0.04 0.04 0.04 0.04

Simple application fighting cost log-mean µf,simple 8.53 8.43 8.56 8.60 8.53

Simple application fighting cost log-sigma σf,simple 0.87 0.97 0.79 0.74 0.95

SMM Objective 1.23 1.47 1.29 1.25 1.33

Notes: This table provides estimates of the model parameters across various model alternatives. The baseline model defines

senior examiners as those at the GS14 level. The last column expands this to include GS13 and GS14.
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Table 3.A.6: Net Social Costs of Patent Prosecution: Robustness

Patent Premium (ξ) = 0.10 Patent Premium (ξ) = 0.05

Counterfactual T1 T2 (1.5) T3 Total T1 T2 (1.5) T2 (2.0) T3 Total (1.5) Total (2.0)

Baseline ($Bn) 6.4 0.7 17.6 24.7 6.6 0.0 0.2 20.6 27.2 27.4

25K Round Fee 5.9 1.8 16.4 24.1 6.3 0.7 1.4 19.1 26.1 26.8

50K Round Fee 6.1 3.1 15.1 24.2 5.5 1.7 3.5 17.1 24.7 26.1

Three Rounds 4.9 4.8 10.2 19.8 5.4 1.9 3.9 11.5 18.8 20.8

Two Rounds 2.9 7.4 4.7 14.9 2.9 3.2 6.6 5.2 11.4 14.8

One Round 0.0 6.3 0.7 7.0 0.0 1.6 3.3 0.8 2.4 4.1

15% IM 29.0 1.1 15.0 45.1 31.6 0.4 0.8 17.3 50.1 49.8

Credit↘ 6.4 0.7 17.6 24.7 6.5 0.0 0.2 20.6 27.2 27.3

Credit↘ + 15% IM 24.3 1.9 15.8 42.0 23.7 0.7 1.5 18.2 47.8 43.3

Notes: This table provides the values of net social costs for alternative values of the patent premium and social multiplier. Columns denoted T2

(1.5) and T2 (2.0) provide values of type 2 net social costs when ρsoc

ρpriv
is equal to 1.5 and 2.0, respectively. Columns Total (1.5) and Total

(2.0) provide the total net social costs when ρsoc

ρpriv
is equal to 1.5 and 2.0, respectively.
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Figure 3.A.1: Match of internal data and model moments
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Figure 3.A.2: Match of external data and model moments
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3.B Data Sources

If the links are broken, the documents are available upon request.

3.B.1 Publicly Available Datasets

1. U.S.PTO Patent Application Claims Full Text Dataset and U.S. PTO Patent

Claims Full Text Dataset : https://www.uspto.gov/learning-and-resourc

es/electronic-data-products/patent-claims-research-dataset

2. Patent Examination Research Dataset : https://www.uspto.gov/ip-polic

y/economic-research/research-datasets/patent-examination-researc

h-dataset-public-pair

3. U.S.PTO Maintenance Fee Events Dataset : https://developer.uspto.go

v/product/patent-maintenance-fee-events-and-description-files

4. U.S.PTO Office Action Research Dataset : https://www.uspto.gov/ip-pol

icy/economic-research/research-datasets/office-action-researc

h-dataset-patents

5. Frakes and Wasserman (2019): https://dataverse.harvard.edu/datase

t.xhtml?persistentId=doi:10.7910/DVN/ABE7VS

3.B.2 Data from Public Documents

6. GDP Deflator: https://fred.stlouisfed.org/series/GDPDEF.

7. AIPLA Report of the Economic Survey : See https://www.aipla.org/deta

il/journal-issue/economic-survey-2017 for 2017.

8. Industry concentration: https://www.census.gov/content/dam/Census/pr

ograms-surveys/economic-census/data/archived_tables/2007/sector

31/2007_31-33_Con_Ratios_US.zip.

9. Patent Office fees: https://www.govinfo.gov/content/pkg/CFR-2011-tit

le37-vol1/pdf/CFR-2011-title37-vol1.pdf or from https://www.uspt

o.gov/sites/default/files/aia_implementation/AC54_Final_Table_of

_Patent_Fee_Changes.pdf.

10. Patent operations costs:

2005: https://www.uspto.gov/sites/default/files/about/stratplan/

ar/USPTOFY2005PAR.pdf
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2010: https://www.uspto.gov/sites/default/files/about/stratplan/

ar/USPTOFY2010PAR.pdf

2015: https://www.uspto.gov/sites/default/files/documents/USPTOF

Y15PAR.pdf

11. Patent applications: https://www.uspto.gov/web/offices/ac/ido/oeip/

taf/us_stat.htm.

12. R&D expenditures: https://www.nsf.gov/statistics/infbrief/nsf143

07/.

3.C Distance Measure

This section provides details on how we construct our patent distance metric. We

describe our preferred choice, the paragraph vector approach.85 The method consists

of four steps: (1) standardizing the independent claim text, (2) turning the text into

a numerical vector, (3) calculating the distances between a focal patent claim on an

application to all existing granted patent claims and (4) calculating the distance to

the closest existing independent claim.

The first step before converting text into a numerical vector is text standardization.

We perform basic changes to the content of the text and remove words that carry

no informational content. Once we standardize the text, we drop any claims with

fewer than two words or illegible text.

We use the paragraph vector approach to represent the text of a patent claim as

a numerical vector. The paragraph vector approach is an improvement of the word

vector approach. We implement the Paragraph Vector approach using Gensim’s

Doc2Vec Python model (Řeh̊uřek and Sojka, 2010).

The step above converts all patent claims, including those on applications and those

granted, into a numerical vector. The next step involves taking every focal applica-

tion patent claim vector and calculating its distance to every existing granted claim

at the point of application. After representing a patent claim’s text as a numerical

vector, we use cosine similarity and angular distance, both of which are standard in

the text matching and the NLP literature. We compute the cosine similarity (CS)

85At the time of writing this chapter, we used the state-of-the-art approach, but there is a fast-

moving frontier. The most recent approaches use GPT-4 or BERT word embeddings integrated

directly into Neural Networks. See Elliot and Hansen (2023) for details on text algorithms.
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between claim text vectors x and y as

cs(x, y) =

∑
i xiyi√∑

j x
2
j

∑
j y

2
j

.

Then, we calculate the angular distance (AD) metric, AD(x, y) = arccos(cs(x, y))/π

and then double AD to obtain a normalized distance in the interval [0, 1].

With all distances computed, it is a simple step to find the closest 50 claims to each

application. We experiment with different choices on which percentile of the closest

50 distances to use. We also experimented with taking an average of the five closest

distances for example, and the resulting distances were similar.

3.D Descriptive Results

We show how patent application outcomes vary with technology center and exam-

iner seniority. First, we regress a binary variable equal to one if the application

process lasts more than one round against fixed effects for examiner seniority grade,

technology center, year of application, and a small entity indicator (applying firm

having fewer than 500 employees). The results in Column (1) of Table 3.D.1 reveal

substantial variation across technology centers; e.g., Computer Networks (TC-24)

has a 12 percentage point higher likelihood of multi-round negotiation than the

reference category, Biotechnology (TC-16). Further, the likelihood of any negotia-

tion decreases with the seniority of the examiner, with senior (GS-14) examiners

nine percentage points less likely to require negotiation relative to the most junior,

holding technology center and application year fixed. Further, small entities are 12

percentage points less likely to negotiate (all else fixed).

In Column (2), we do the same analysis for the dependent variable equal to one if the

examiner grants a patent. We match the findings of Frakes and Wasserman (2017)

– senior examiners are more likely to grant and grant rates vary substantially across

technology centers. In our model, we explain this variation by letting the distribution

of intrinsic motivation vary with seniority level, by incorporating differences in the

credit structure for examiners that vary across seniority and technology centers, and

by allowing fighting costs to differ for applicants, with technology category-specific

distributions. Our parameter estimates enable us to disentangle the effects of these

factors in explaining the variation in outcomes, as we discuss in the text.
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Table 3.D.1: Regression Results

(1) (2)

Variable Negotiation Grant

Intercept 0.7433 (0.006) 0.542 (0.005)

GS-7 -0.002 (0.004) 0.003 (0.005)

GS-9 -0.016 (0.004) 0.035 (0.004)

GS-11 -0.020 (0.004) 0.066 (0.004)

GS-12 -0.034 (0.004) 0.092 (0.004)

GS-13 -0.045 (0.004) 0.126 (0.004)

GS-14 -0.091 (0.004) 0.178 (0.004)

Chemicals (17) 0.064 (0.002) 0.067 (0.002)

Comp. Software (21) 0.105 (0.002) 0.196 (0.002)

Comp. Networks (24) 0.123 (0.002) 0.192 (0.002)

Communications (26) 0.047 (0.002) 0.198 (0.002)

Electronics (28) -0.010 (0.001) 0.244 (0.001)

Other (36) 0.065 (0.002) 0.136 (0.002)

Mech Engineering (37) 0.042 (0.002) 0.139 (0.001)

Small Entity -0.120 (0.001) -0.170 (0.001)

Year FE Yes Yes

N 1,641,333 1,759,313

Notes: Omitted grade is GS-5 and omitted technology center is Biotechnol-

ogy and Organic Fields (16). Technology center “Other” refers to Center 3600,

which is “Transportation, Electronic Commerce, Construction, Agriculture, Li-

censing and Review.” Following Frakes and Wasserman (2017), we omit GS-15

grade examiners. We report heteroskedasticity robust (HC1) standard errors in

parentheses.

These results show stark differences in average grant rates and likelihood of negoti-

ation across technology centers and examiner seniority grades. Next, we investigate

the variation in examiner-specific decisions within and between seniority grades and

technology center pairs. To do this, we calculate examiner-specific outcomes (average

grant rates, number of rounds, length of examination period, probability of negoti-

ation, etc.) within each seniority grade examiners are in at the time. We decompose

the variation in these examiner averages into within and between seniority grade-

technology center pairs by introducing dummies for each seniority-grade-technology-

center dyad in Table 3.D.2. The proportion of within-group variation in examiner
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Table 3.D.2: ANOVA Results

Variable Grade × TC Fixed Effects

Grant rate 79.84

Duration of examination (years) 75.79

No negotiation (one round) 89.53

Independent claims granted 74.93

Notes: For each variable y, and an examiner e when they are in seniority grade

S and technology center T , we calculate ȳeST . Then we regress ȳeST on a set

of interactive dummies for seniority grade and technology center. We report

1−R2 (as a percentage) for these regressions, thereby providing the proportion

of within group variation.

grant rates is 80%, implying substantial variation in examiner grant rates not ex-

plained by seniority and technology centers. Our model explains this variation in

examiner-specific grant rates within the technology center and seniority groups by

incorporating group-specific distributions of examiner intrinsic motivation and costs

of delay.

Here we provide expressions for grGR(S, T ), g
r
ABN(S, T ), g

r
RCE(S, T ) and g

r
REJ(S, T ).

For y ∈ {GR, ABN, REJ, RCE}, we write gry(S, T ) = νry · c(S, T ), and give expres-

sions for νry and c(S, T ) separately.

3.E.1 Credits

Granting in the first round gives the examiner a payoff of ν1GR = 2 credits. Rejecting

in the first round gives ν1REJ = 1.25. If the applicant abandons in round one, the

examiner obtains ν1ABN = 0.75. Granting in the second round gives ν2GR = 0.75

credits. Rejecting in the second round gives ν2REJ = 0.25 credits, with an extra

ν2ABN = ν2RCE = 0.5 credits whether the applicant abandons or continues to an RCE.

Ultimately, the examiner obtains two credits irrespective of what happens in the first

two rounds. The only difference is whether they obtain the credits immediately (say,

from an immediate grant) or spread out over two rounds.

The structure of the payoffs in the first RCE are the same, except ν3REJ = 1 and

ν3GR = 1.75. In this case, irrespective of what happens in the RCE, the examiner will

obtain 1.75 credits. The difference comes from whether they receive all 1.75 credits

at once by granting, or 1 credit from their non-final rejection and ν4REJ = 0.25 plus

ν4ABN = ν4RCE = 0.5 credits from the applicant’s response.
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Table 3.E.1: Seniority Corrections

Seniority Grade Signatory Authority cSEN(S)

GS-5 None 0.55

GS-7 None 0.7

GS-9 None 0.8

GS-11 None 0.9

GS-12 None 1.0

GS-13 None 1.15

GS-13 Partial 1.25

GS-14 Partial 1.25

GS-14 Full (primary examiner) 1.35

Notes: This table provides the seniority factors for credit adjust-

ment. In the empirical work, we use 1.15 for GS-13 and 1.25 for

GS-14.

In the second and any subsequent RCEs, the structure of the payoffs is still the same,

except ν2r+1
REJ = 0.75 and ν2r+1

GR = 1.5 (r > 1). As before, the examiner will receive

1.5 credits from second and subsequent RCEs. The difference comes from whether

they receive all 1.5 credits at once from granting, or 0.75 credits from their non-final

rejection and ν2r+2
REJ = 0.25 plus ν2r+2

ABN = ν2r+2
RCE = 0.5 credits from the applicant’s

response.

3.E.2 Seniority and Technology Complexity Adjustments

The seniority and technology complexity adjustment term is

c(S, T ) =
cTECH(T )

cSEN(S)
.

Table 3.E.1 gives the values of cSEN(S) across the GS categories. Higher seniority

factors imply larger values of cSEN , and therefore lower values of credits. Table 3.E.2

gives the values of cTECH(T ) we created for the different technology centers and use

in the estimation of the model. The Patent Office does not have adjustments at the

technology center level, but rather at the more detailed U.S. Patent Class (USPC)

level. We obtained the adjustments at the USPC level from the Patent Office and

constructed a patent-application weighted average for each technology center.
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Table 3.E.2: Technology Center Adjustments

Technology Center T U.S.PTO Number Correction (cTECH (T ))

Chemical and Materials Engineering 17 22.2

Computer Architecture Software and Information Security 21 31

Computer Networks, Multiplex, Cable and Cryptography/Security 24 29

Communications 26 26.5

Semiconductors, Electrical and Optical Systems and Components 28 21.4

Transportation, Electronic Commerce, Construction, Agriculture... 36 22.4

Mechanical Engineering, Manufacturing and Products 37 19.9

3.F Moment Selection and Identification Intuition

First, we provide further details on the possible moments we could use to estimate

our model. Then, we provide some information on our methods to prune moments

from the full set. Finally, we provide some intuition on how the moments identify

the model parameters.

3.F.1 Available Moments

We have seven sets of moments available, which we describe in turn.

Our first group of moments corresponds to examiners’ issuance and applicants’ aban-

donment decisions. For each round in the model and each seniority level, we calculate

the proportion of applications examiners grant and the proportion that applicants

abandon. Since there are nine seniority grade-signatory authority pairs, and we

observe at least six rounds, this implies at least 108 moments on grants and aban-

donments.

Second, we observe the distribution of the proportion of claims rejected, both by

round (six) and by seniority grade-signatory authority pair (nine). These observa-

tions generate another 54 moments. Third, we observe the proportion of granted

patents that renew at four, eight, and twelve years after issuance. These observa-

tions generate four moments on patent renewals (don’t renew at four, renew at four

but not eight, renew at eight but not twelve and renew at twelve).

Fourth, we calculate the distribution of claim distances by round. We calculate the

mean and standard deviation of the distance distribution by round for at least six

rounds, implying at least 12 moments on distance. Another moment comes from the

within-application distance correlation. Fifth, at each of the nine seniority grades,

we calculate each examiner’s leniency, which is their average rejection rate across all
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the applications they examine. Hence for each seniority grade-signatory authority

pair, we obtain a distribution of examiner rejection rates, for which we can calculate

the mean and standard deviation of the distribution of examiner fixed effects. From

this we obtain another 18 moments.

Next, given that we can identify the distance threshold externally, we calculate the

proportion of granted patents containing at least one invalid claim (that is, a claim

whose distance is below the distance threshold). Hence, for each round and each

seniority level, we calculate the proportion of patents granted containing an invalid

claim, implying another 54 moments.

Finally, we observe the distribution of application fighting costs. We have six mo-

ments on the distribution of legal application fees for four technology categories

(simple, chemical, electrical and mechanical), which we match to the technology

centers on which we estimate the model. This implies another 24 moments.

3.F.2 Choosing Moments

We have more than two hundred data moments that we can calculate from endoge-

nous variables in the model. Since we have 21 model parameters to estimate with

simulated method of moments, in principle, we are over-identified. However, not

all moments will aid the estimation procedure in identifying the parameters, so we

begin by pruning the set of moments for estimation.

We follow a rigorous, data-driven methodology to create a subset of the moments

that best estimate the parameters. To do this, we calculate the sensitivity matrix

described in Andrews, Gentzkow, and Shapiro (2017). As the authors explain, “sen-

sitivity gives a formal, quantitative language in which to describe the relative im-

portance of different moments for determining the value of specific parameters.” If a

moment had a small value in the sensitivity matrix for all parameters, we considered

it as not useful in estimating our model. Further, as described in Jalali, Rahman-

dad, and Ghoddusi (2015), for each parameter and moment, we plot the value of the

moment for different values of the parameter, fixing the other parameters at their

estimates. If this curve is flat, this parameter does not influence on the value of the

moment. For a given moment, if the curve is flat across all parameters, it suggests

that the moment offers no useful variation to identify the parameters.

For each parameter, we also plot the value of the SMM objective across all values

of the parameter, fixing other parameters at their estimates. Ideally, the SMM will
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be U-shaped in each parameter to ensure a well-defined global minimum exists. By

doing this, we learn how well we pin down parameters based on the set of moments

we have available.

By combining the sensitivity matrix with moment and SMM plots, we pruned the set

of moments down to those that offer some assistance in estimating the parameters.

Since we split many parameters into two seniority groups (junior and senior), we

split some of our moments into the same seniority categories.

3.F.3 Full Set of Moments

The full set of moments we use for estimation is as follows. The selected moments

corresponding to outcomes for examiners are:

(i) The proportion of applications granted in each round for juniors and seniors,

for rounds one, two, three, and all rounds after four combined [eight moments]

(ii) The standard deviation of the distribution of examiner rejection rates for the

six seniority categories used by the Patent Office (GS levels 7, 9, 11, 12, 13,

and 14) [six moments]

(iii) The proportion of patents granted containing an invalid claim (for juniors and

seniors) for rounds one and two [four moments]

The moments corresponding to outcomes for applicants are:

(i) The proportion of abandonments in each round, when the assigned examiner

is junior and senior, for rounds one and two [four moments]

(ii) The proportion of granted patents not renewed, renewed at year four but not

eight, renewed at year eight but not twelve, and renewed at year twelve [four

moments]

(iii) The mean and standard deviation of the distribution of granted claim distances

for rounds one, two, and three [six moments]

(iv) Mean and median of legal application fees for simple applications and com-

plex applications in electrical, mechanical, and chemical technologies [eight

moments]

3.F.4 Identification

A model is either point identified or not, and technical conditions on the required

variation in exogenous variables determine whether a model is identified (Andrews,
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Gentzkow, and Shapiro, 2017). Due to our model’s complicated and nonlinear na-

ture, we cannot calculate these conditions. Identification with simulated method of

moments is based on how different moments are affected by specific parameters.

While we cannot identify this link exactly, we provide some intuition of how mo-

ments aid in pinning down specific parameters of the model.

We start with the parameters relating to the applicant. The renewal rates, together

with first-round abandonment decisions, aid in identifying the parameters of the dis-

tribution of flow returns, i.e., µv and σv. This is because, all else equal, an applicant

with higher returns is less likely to abandon after learning their examiner and more

likely to renew their patent, conditional on being granted. The renewal moments

also aid in identifying the post-grant obsolescence probability Pω,post. Similarly, the

ex post claim distribution of padded distances, as calculated using the distance be-

tween text vectors, aids in identifying the parameters of the distribution of ex ante

unpadded distance, i.e., αD and βD. Moments on application fighting costs directly

pin down the distribution of application fighting costs, µfapp , and σfapp .

Regarding pre-grant obsolescence Pω,pre, the only case in which an applicant aban-

dons in interim rounds two to four is when they become obsolete. If an applicant,

upon learning their examiner calculates that they will want to abandon in any round

after the first, they will abandon immediately in round one. Therefore, interim round

abandonments offer substantial assistance in identifying the obsolescence probability

in the application process.

Intuition for examiner parameters is more complicated. Observing that examiners

grant several invalid patents could result from low intrinsic motivation, high ex-

aminer error, or high examiner delay costs. Three factors make this challenge less

formidable. First, since we assume that only intrinsic motivation varies by seniority,

differences in grant rates and examiner errors by seniority pick up the value of intrin-

sic motivation, µim by seniority, and differences in the variation in examiner-specific

grant rates by seniority capture the variation in intrinsic motivation, σθ by seniority.

Second, we assume that each examiner has the same delay cost across all applica-

tions and rounds but faces varying intrinsic motivation costs at each round of every

application (because Rr, the proportion of invalid independent claims varies across

rounds and applications). This implies that the proportion of invalid patents granted

in rounds one and two offer the best assistance in identifying the mean examiner

intrinsic motivation and mean examiner delay costs. Third, examiner error is two-

sided and symmetric. This feature creates cases where examiners do not grant valid
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patents, whereas intrinsic motivation and delay costs only incentivize examiners to

grant when they should not. Otherwise, we know that an examiner, making no mis-

take, and facing a fully valid patent, will always issue it. Together, this implies that

we can use the residual variation in grant rates (valid and invalid) by round and

seniority to learn about the distribution of examiner error.

3.F.5 Details on Model Fit

As shown in Figure 3.A.1, we match most of the internal moments well, though

there are two exceptions. The first is the proportion of fully renewed patents, which

we overestimate. The other exception is the second-round grant rate. This moment

is difficult to match with our model because examiners have incentives to wait until

the third round and obtain RCE credits if they do not choose to grant in the first

round. Since examiners have incentives and targets across applications on their desks

(docket management), they are more likely to grant in the second round than our

baseline model predicts.

3.G Quantification of Social Costs

3.G.1 Implementing Type 1 Social Cost Calculation

As indicated in the text, a key challenge in implementing our calculation of type

1 social costs comes from the fact that the estimates of the value of patent rights

for invalid patents include potential litigation costs. To impute the “value at stake”

in litigation for these patents, we need to adjust our methodology to exclude these

costs.

To do this, we make two assumptions:

A1: Valid patents are not litigated. This assumption holds in a model with perfect

courts, where a competitor knows (or can pay a fee to discover) whether a

patent is valid or not, and then choose whether to litigate based on the result.86

This assumption allows us to calculate the value of patent rights for valid

86This assumption is not at odds with Schankerman and Schuett (2022), where high types are

litigated with some probability even though they will not be invalidated. The important point is

that high types in their model (patents that would not be developed without patent rights) are

not the same as valid patents in our model, which are defined as those with distance larger than

the threshold.
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patents, Ṽ , as equal to the observed value since there are no litigation costs

to net out.

A2: The distribution of the value at stake, GṼ (·), is the same for valid patents

as invalid patents. The basis for this assumption is that initial distances and

values are uncorrelated in the model. This assumption allows us to draw values

from the observed distribution of Ṽ = V for valid patents and use them as

draws from the distribution of Ṽ for invalid patents.

Given A1 and A2, the procedure for calculating type 1 social costs is as follows:

1. Estimate the parameters of a log-normal distribution for the value at stake for

valid patents.87 Let the estimated distribution be denoted as ĜṼ (·).

2. Let P̄ be the total number of invalid patent grants for the given period we

simulate. Then, for each p = 1, . . . , P̄ :

(a) Take a draw from the estimated distribution of valid patents’ value at

stake (ex post value), ĜṼ (·), to represent the value at stake for the invalid
patent p

(b) Using the draw, calculate S1p from Equation (3.11).

3. Calculate the total social cost of type 1 error as
P̄∑
p=1

S1p.

Finally, note that we calculate the threshold for exposure to litigation from the

empirical distribution of the value at stake for valid patents, ĜṼ (·).

3.G.2 Implementing Type 2 Social Cost Calculation

The primary challenge in implementing our calculation of type 2 social costs comes

from calibrating the value of the invention without patent rights (π), particularly

for inventions with Γ∗ ≤ 0, where we cannot use the patent premium. In a similar

vein to our approach to type 1 social costs, we assume that the distributions of π

for those with positive and negative Γ∗ are the same and then draw values of π from

this distribution for those inventions.

To be precise, our specific implementation is as follows:

87The sum of log-normal distributions is approximately log-normal (Dufresne, 2004), which our

simulation here exhibits.
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1. Draw a pilot set of potential inventions, used to calculate a distribution of π.

Run these set of potential inventions through the model and calculate Γ∗. For

those with positive Γ∗, create a distribution of π using the relationship Γ = ξπ.

2. Now start the simulation for type 2 social costs by drawing a new set of poten-

tial inventions (returns, distances, number of claims, fighting costs, examiner

etc.). For each potential invention i, calculate Γ∗
i . If Γ

∗
i > 0, calculate πi =

Γ∗
i

ξ
.

If Γ∗
i ≤ 0, draw a value of πi from the distribution calculated in 1. Also, draw

a development cost κi.

3. For each of the potential inventions i, work out the set i = 1, . . . , Ino dev that

do not develop as those with max{Γ∗
i , 0}+ πi < κi

4. For i = 1 . . . , Ino dev, run the potential invention through a model where, at

the point of abandonment, the inventor obtains all valid claims they have, and

so obtains the patent value of their valid claims, instead of a payoff of 0. By

definition, this scenario has the property that all abandoned claims are invalid,

so that there is no type 2 error. Let Γ′
i denote the expected value of patent

rights in this new scenario.

5. For i = 1 . . . , Ino dev, calculate the set i = 1, . . . , Inow dev who have max{0,Γ′
i}+

πi ≥ κi. This is the set who do not develop because of type 2 error but do

develop in the absence of type 2 error.

6. For i = 1, . . . , Inow dev, calculate S2i =
ρsoc
ρpriv

(
max{0,Γi}+ πi

)
− κi and calcu-

late the total type 2 social cost as

T2 =

Inow dev∑
i=1

S2i.

3.G.3 Calibrating Deadweight Loss

In the derivation of deadweight loss, note that

DWL =
1

2
∆℘∆q =

1

2

∆q

q
q∆℘ =

λ

2

∆℘

℘
Ṽ ,

by the definitions of Ṽ and λ. Further, note that

∆℘

℘
=
q∆℘

q℘
=

lic. rev

sales
=

lic. rev

R&D
· R&D

sales

As described in the text, we use Schankerman and Schuett (2022) for the ratio of

licensing revenue to R&D, and data from the Bureau of Economic Analysis for the

ratio of R&D to sales.
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3.G.4 Deadweight Loss Under Cournot Competition

In the main text, we compute deadweight loss from a patented invention assuming

symmetric licensees operate in a perfectly competitive industry. Suppose instead

that the licensees compete in a Cournot setting. By standard calculations, the

equilibrium price-cost margin is
℘− c

℘
=
m∗

λ
where m∗ =

1

N
is the average market

share and λ is the demand elasticity. We write this as
℘− c

℘
= He

η
where He is the

symmetric-equivalent Herfindahl index of concentration. Thus for He < 1

℘ =
c

1− He

λ

.

With imperfect competition, the change in equilibrium price is larger than the Arrow

royalty due to double marginalization: ∆℘ = ∆c

1−He

λ

> ∆c. The associated deadweight

loss with Cournot competition is

DWLcournot =
1

2
∆℘∆q =

1

2

∆c

1− He

λ

∆q = DWLpc ·
1

1− He

λ

,

where it should be noted that in this case Ṽ = q∆c denotes total royalty payments.

Since He ∈ (0, 1) and we require that |λ| > 1, deadweight loss in this imperfect

competition setting is larger than in perfect competition case.

Using U.S. Census data for 2007, the value added weighted-average Herfindahl index

for manufacturing industries (based on the 50 largest firms), H, for manufacturing

sectors is 0.05. As is well-known,the Herfindahl index can be decomposed as H =
1
N
+N ·Var(m) = He+N ·Var(m), where m is the market share of each firm. Thus,

the observed H overstates the unobserved He, so the computed deadweight loss will

be an upper bound to the true value of DWL. Despite this, the upper bound for the

Cournot setting is not materially different from the competitive case in the text.

The value of H varies widely across industries. We do not compute deadweight loss

using industry-specific values because it is difficult to assign patents in different

patent classes to industries, and the existing Patent Office concordance is problem-

atic (e.g., the mapping is not unique).

3.G.5 Calibrating Litigation Costs

To calibrate litigation costs, C(Ṽ ), we use data from the American Intellectual Prop-

erty Law Association (AIPLA) surveys on litigation costs as a function of (intervals)

of the value at stake, which we assume is the same for the patentee and challenger.

We use the linear specification

C(Ṽ ) = ℓ0 + ℓ1Ṽ
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Using this same specification, Schankerman and Schuett (2022) estimate the value

of ℓ0 as $624, 000 and ℓ1 = 0.162 (2018 USD). Note that this calibration of legal

costs is at the patent, not claim, level.

3.G.6 Calibrating Development Costs

We apply the estimates from Schankerman and Schuett (2022) to our context. They

assume that development costs κ are exponential, with mean equal to k0+k1s, where

s is the size reduction of the invention and k0 and k1 are estimated as 254.6 × 103

and 2.33 × 1010, respectively. Regarding the size reduction, they assume that s is

log-logistic distributed with parameters β0 = 1.02 and β1 = 1.14× 10−6. We use the

mean value of s in our calibration.

In the baseline quantification, we draw values of κ from the distribution described

above, which assumes that development costs are independent of Γ∗ and π. In this

model, inventors know their development costs prior to their decision to develop their

idea. We also experiment with another model, which makes the opposite assumption

that inventors do not know their development costs and thus use the mean value,

κ̄ = k0 + k1s̄, to make their development decision. Both models produce similar

conclusions; results are available upon request.

3.G.7 Calibrating the Number of Ideas

To compute the number of ideas, we start with the average annual number of utility

patent applications in the period 2011–2013. We convert this number into the num-

ber of ideas in two steps. First, we use the estimates from Schankerman and Schuett

(2022) that about two-thirds of applications are “low type” inventions (defined by

them as those that would have been developed even without patent protection), and

second, that one-third of ideas become a low type patent application. Together, this

implies about one million ideas for potential inventions for each cohort of applica-

tions.

157



This page is intentionally left blank.

158



Bibliography

The numbers at the end of every reference link to the pages citing the reference.

Abaluck, J. and A. Adams-Prassl (2021): “What do Consumers Consider Be-

fore They Choose? Identification from Asymmetric Demand Responses,” The Quar-

terly Journal of Economics, 136, 1611–1663. 73

Acemoglu, D. (2001): “Credit market imperfections and persistent unemploy-

ment,” European Economic Review, 45, 665–679. 12

Adams, P., B. Guttman-Kenney, L. Hayes, S. Hunt, D. Laibson, and

N. Stewart (2022): “Do Nudges Reduce Borrowing and Consumer Confusion in

the Credit Card Market?” Economica, 89, S178–S199. 29

Adams, W., L. Einav, and J. Levin (2009): “Liquidity Constraints and Im-

perfect Information in Subprime Lending,” American Economic Review, 99, 49–84.

14

Adda, J. and M. Ottaviani (2023): “Grantmaking, Grading on a Curve, and

the Paradox of Relative Evaluation in Nonmarkets,” forthcoming in The Quarterly

Journal of Economics. 95

Agarwal, S., S. Chomsisengphet, N. Mahoney, and J. Stroebel (2014): “

Regulating Consumer Financial Products: Evidence from Credit Cards,” The Quar-

terly Journal of Economics, 130, 111–164. 16, 18

——— (2017): “Do Banks Pass through Credit Expansions to Consumers Who want

to Borrow?” The Quarterly Journal of Economics, 133, 129–190. 14, 20, 27, 50

Agarwal, S., J. C. Driscoll, X. Gabaix, and D. Laibson (2008): “Learning

in the Credit Card Market,” Working Paper 13822, National Bureau of Economic

Research. 29

159



Agarwal, S. and J. Zhang (2015): “A review of credit card literature: perspec-

tives from consumers,” Unpublished Working Paper. 29

Akerlof, G. A. (1970): “The Market for “Lemons”: Quality Uncertainty and the

Market Mechanism,” The Quarterly Journal of Economics, 84, 488–500. 12

——— (2001): “Behavioral Macroeconomics and Macroeconomic Behavior,” Nobel

Prize Committee, Nobel Prize lecture. 12

Alan, S. and G. Loranth (2013): “Subprime Consumer Credit Demand: Evi-

dence from a Lender’s Pricing Experiment,” The Review of Financial Studies, 26,

2353–2374. 63

Albanesi, S. and D. F. Vamossy (2019): “Predicting Consumer Default: A Deep

Learning Approach,” NBER Working Paper Series. 15, 20

Andrews, I., M. Gentzkow, and J. M. Shapiro (2017): “Measuring the Sen-

sitivity of Parameter Estimates to Estimation Moments,” The Quarterly Journal of

Economics, 132, 1553–1592. 115, 150, 151

Ashraf, N., O. Bandiera, E. Davenport, and S. S. Lee (2020): “Losing

Prosociality in the Quest for Talent? Sorting, Selection, and Productivity in the

Delivery of Public Services,” American Economic Review, 110, 1355–94. 94

Ashraf, N., O. Bandiera, and K. Jack (2014): “No margin, no mission? A field

experiment on incentives for public service delivery,” Journal of Public Economics,

120, 1 – 17. 94

Ausubel, L. M. (1991): “The Failure of Competition in the Credit Card Market,”

The American Economic Review, 81, 50–81. 29

——— (1999): “Adverse selection in the credit card market,” Unpublished Working

Paper. 29

Ausubel, L. M. and H. Shui (2005): “Time Inconsistency in the Credit Card

Market,” Unpublished Working Paper. 29

Aydin, D. (2022): “Consumption Response to Credit Expansions: Evidence from

Experimental Assignment of 45,307 Credit Lines,” American Economic Review, 112,

1–40. 14

Azoulay, P., J. S. Graff Zivin, D. Li, and B. N. Sampat (2018): “Public

R&D Investments and Private-sector Patenting: Evidence from NIH Funding Rules,”

The Review of Economic Studies, 86, 117–152. 95

160



Bachas, N. (2019): “The Impact of Risk-Based Pricing in the Student Loan Market:

Evidence from Borrower Repayment Decisions,” Unpublished Working Paper. 14

Benabou, R. and J. Tirole (2003): “Intrinsic and Extrinsic Motivation,” The

Review of Economic Studies, 70, 489–520. 94

——— (2006): “Incentives and Prosocial Behavior,” American Economic Review,

96, 1652–1678. 94

Benetton, M. (2021): “Leverage Regulation and Market Structure: A Structural

Model of the U.K. Mortgage Market,” The Journal of Finance, 76, 2997–3053. 14,

55

Benetton, M., A. Gavazza, and P. Surico (2022): “Mortgage Pricing and

Monetary Policy,” Unpublished Working Paper. 55

Bennett, R. and K. Rita (2012): “Public attitudes towards the UK banking

industry following the global financial crisis,” The International Journal of Bank

Marketing, 30, 128–147. 71

Berry, S., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market

Equilibrium,” Econometrica, 63, 841–890. 47

Besley, T. and M. Ghatak (2005): “Competition and Incentives with Motivated

Agents,” American Economic Review, 95, 616–636. 94

Bessen, J. (2008): “The value of U.S. patents by owner and patent characteristics,”

Research Policy, 37, 932–945. 113, 117

Bhat, C. R. (2003): “Simulation estimation of mixed discrete choice models us-

ing randomized and scrambled Halton sequences,” Transportation Research Part B:

Methodological, 37, 837–855. 57

Bhutta, N., J. Dokko, and H. Shan (2017): “Consumer Ruthlessness and Mort-

gage Default during the 2007 to 2009 Housing Bust,” The Journal of Finance, 72,

2433–2466. 49

Bloom, N., M. Schankerman, and J. Van Reenen (2013): “Identifying Tech-

nology Spillovers and Product Market Rivalry,” Econometrica, 81, 1347–1393. 90,

130

Butaru, F., Q. Chen, B. Clark, S. Das, A. W. Lo, and A. Siddique

(2016): “Risk and risk management in the credit card industry,” Journal of Banking

& Finance, 72, 218–239. 15

161



Calem, P. S. and L. J. Mester (1995): “Consumer Behavior and the Stickiness

of Credit-Card Interest Rates,” The American Economic Review, 85, 1327–1336. 29
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