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Abstract

In this thesis, we study the distributional properties of functionals of the Brownian motion.

The thesis starts with an analysis of the occupation time process of Brownian motion in

which the joint Laplace transforms of the occupation time processes in different regions and

their driving Brownian motion are computed for different starting points using martingale

methodology. The corresponding joint density functions are also derived. A version of the

Brownian motion, called the interrupted Brownian motion is introduced in the next chapter

where the paths of the Brownian motion within a certain band are eliminated. Some distri-

butional properties of the interrupted Brownian motion are derived using the perturbation

method. The study of the local time at a certain level of the Brownian motion is then inves-

tigated using the Feynman-Kac formulas to derive the joint Laplace transforms of the local

time evaluated at the first inverse time local time of the Brownian motion. We repeat the

procedure for a compound Poisson process with drift. This thesis is concluded with a discus-

sion on hitting and exit times of other diffusion using symmetry methods. In particular, we

look at a diffusion related to Nicholson’s integral and another diffusion by conditioning on

the Brownian motion.
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Chapter 1

Introduction

In this thesis, as the title suggested, we investigate the distributional properties of a version of

the Brownian motion, which we call the interrupted Brownian motion. Before going into the

details, let us consider a continuous, adapted process W = {Wt, t ≥ 0} defined on a filtered

probability space (Ω,F ,F,P) and taking values in the space (R,B) where F = {Ft, t ≥ 0} is

the filtration generated by W and B = B(R) denotes the Borel σ-algebra on R.

Definition 1.0.1. Standard Brownian Motion.

The process W starting from 0 is called a standard one-dimensional Brownian motion if it

satisfies one of the following equivalent properties:

I. For any 0 = t0 < t1 < . . . < tn < ∞ and n ≥ 1, the increments of W, defined as

{Wti −Wti−1}ni=1 are independent and Wti −Wti−1 is distributed as N (0, ti − ti−1).

II. W is a Gaussian process such that E(Wt) = 0 and cov(Ws,Wt) = E(WsWt)=min(s,t)

for s, t ∈ R+.

III. The processes {Wt, Ft; t ≥ 0} and {X2
t − t, Ft; t ≥ 0} are local martingales.

IV. The process {eλWt−λ2

2
t, Ft; t ≥ 0} is a local martingale for any fixed λ ∈ R.

V. The process {eiλWt+
λ2

2
t, Ft; t ≥ 0} is a local martingale for any fixed λ ∈ R and i ∈ C

denotes the square root of −1.

Definition 1.0.2. Brownian Motion with Drift.
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An adapted, continuous process X = {Xt = µt + σWt; t ≥ 0} is called a Brownian motion

with drift µ ∈ R and diffusion coefficient σ ∈ R+.

For more details, see Karatzas and Shreve (1991), Revuz and Yor (1991), Borodin and Salmi-

nen (2002) and Jeanblanc et al. (2009). Louis Bachelier presented the Bachelier model in

his PhD thesis ”Théorie de la Spéculation” which uses an arithmetic Brownian motion to

model the dynamics of stock prices to study the theory of the valuation of financial options.

Bachelier (1900) assumes that stock price S = {St, t ≥ 0} follow an arithmetic Brownian

motion defined as

St = x+ µt+ σWt,

where x ∈ R is the starting point, µ ∈ R is the drift (or growth rate), σ ∈ R+ is the volatility

and W is the Brownian motion as defined in Definition 1.0.1. In the paper Samuelson (2015)

in 1965, building on the model introduced by Louis Bachelier, Paul Samuelson introduced

the geometric Brownian motion (or economic Brownian motion) with the following stochastic

differential equation (SDE):

dSt = µStdt+ σStdWt, (1.1)

in place of the arithmetic Brownian motion on the grounds that stock prices should only take

non-negative values.

Definition 1.0.3. Black & Scholes Model.

In 1973, Fischer Black and Myron Scholes developed the famous Black & Scholes model

dSt = µStdt+ σStdWt,

dBt = rBtdt,

with the following assumptions:

I. The risk free interest rate r ∈ R is constant.

II. The stock price process S = {St, t ≥ 0} follows the geometric Brownian motion with

SDE (1.1).

III. Short positions are allowed.
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IV. The stock pays no dividends.

V. Only European options are considered.

VI. Market is frictionless.

VII. Unlimited credit is allowed.

where B = {Bt, B ≥ 0} is the money market account.

See Black and Scholes (1973) and Merton (1973) for more details. The pricing of deriva-

tive securities which hinges around the Black-Scholes model is closely related to the studies

concerning the problems of finding the distributions of measurable functionals of Brownian

motion such as the maximum and minimum functionals. The distribution of the running

maximum Brownian motion is well explored by Karatzas and Shreve (1991) which gives the

results

P0 [Wt ∈ da, Mt ∈ db] =
2(2b− a)√

2πt3
e−

(2b−a)2

2t dadb,

for M = {Mt, t ≥ 0} the running maximum of the Brownian motion defined as

Mt = sup
0≤s≤t

Ws.

The law of the running minimum m = {mt, t ≥ 0} of the Brownian motion can be deduced

by

mt := inf
0≤s≤t

Ws = − sup
0≤s≤t

(−Ws) = − sup
0≤s≤t

Bs,

where B = {Bt = −Wt, t ≥ 0} is again a Brownian motion. See Jeanblanc et al. (2009)

for more details. The distribution of the running maximum and minimum of the Brownian

motion is widely used in the pricing of some path dependent options, such as the barrier

option and the lookback option. The barrier options are a type of path dependent options

which can be divided in to two classes:

• Knock-out barrier option: The option is eliminated, or ”knocked-out” when the a pre-

determined barrier is reached.

• Knock-in barrier option: The option comes into play, or ”knocked-in” when the pre-

determined barrier is reached.
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For more details regarding the pricing of Barrier option in the discrete time setting, see

P Wilmott and Howison (1993), Chesney et al. (1995), Pliska (1997), Zhang (1997), Wilmott

(1998) and Musiela and Rutkowski (2006). For pricing of this option in continuous time

setting, see Rubinstein (1991), Rich (1994), Heynen and Kat (1995), Carr and Chou (1997),

Baldi et al. (1999), Andersen et al. (2000), Linetsky (2004a), Suchanecki (2004), Jeanblanc

et al. (2009).

A lookback option is a type of option with path dependency feature whose payoff depends

not only on the value of the underlying stock price at maturity but on the optimal value

over the life of the option. More details on the pricing of a lookback option can be found in

Goldman et al. (1979a), Goldman et al. (1979b), Conze (1991), He et al. (1998), Shreve et al.

(2004), Musiela and Rutkowski (2006) and Jeanblanc et al. (2009).

Let us look at a type of option with path dependency structure, the α-quantile option for

α ∈ [0, 1], first introduced by Miura (1992) which motivated the main part of the studies in

this thesis. For a fixed strike price K > 0, the α-quantile option can be seen as an extension

of the barrier option (see Broadie and Detemple (2004)) where as an α-quantile option with

floating strike can serve as the extension of a lookback option (see Cai (2011)). The payoff of

this option depends on the α-quantile of the underlying process X = {Xt, t ≥ 0} as defined

in Definition 1.0.2 is given as

M(α, t) := inf{x :

∫ t

0
1{Xs≤x}ds > αt}, (1.2)

which is the smallest level, or barrier such that the underlying process spends a fraction of

time exceeding α below that level. The quantity

∫ t

0
1{B}(Xs)ds = meas{0 ≤ s ≤ t : Xs ∈ B}, t ∈ R+,

is known as the occupation time of the process X, a Brownian motion with drift for every fixed

Borel set B ∈ B(R) and meas denotes the Lebesgue measure. The occupation time process

has received much attention in the study of ruin problems for general diffusion processes

where the ruin probabilities can be expressed in terms of the occupation time processes.

The event of ruin was first introduced as the first time the surplus process of an insurance
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company dips below zero for the first time. However, many have observed that this definition

of ruin can be a bit conservative as even when the surplus drops below zero, most companies

can still endure a small period of negative surplus and cam quickly recover to a positive

surplus level. This leads to the discussion which encourages the distinction between ruin and

bankruptcy as in Dassios and Wu (2008) who introduced the concept of Parisian ruin, which

is a type of ruin that occurs only when the surplus process stays below the pre-determined

ruin level for a continuous time interval of some length. For a surplus process in continuous

time X = {Xt, t ≥ 0}

Xt = x+ ct−
Nt∑
i=0

Yi,

for x ∈ R+, c a constant rate for premium payment, Nt ∼ Poisson(λ) for λ ∈ R+ and

Yi, i = 1, 2, . . . are independent and identically distributed claim sizes which are independent

of Nt, the authors defined the excursions

gXt = sup{s < t : sign(Xs)sign(Xt) ≤ 0},

dXt = inf{s > t : sign(Xs)sign(Xt) ≤ 0},

where sign(x) is the sign function. The Parisian ruin in the finite horizon is defined as the

event {τXd ≤ t} where for d ∈ R+, τXd is given as

τXd := inf{t ≥ 0 : 1{Xt<0}(t− gXt ) ≥ d}.

Landriault et al. (2010) extended the study of Parisian ruin in an insurance risk model with

underlying spectrally negative Lévy process of bounded variation. The authors proved that

the Parisian ruin with exponential implementation clock with mean 1
d can be obtained in

terms of the occupation time process of X, given as

P
[
τXd <∞

]
= 1 − E

[
e−d

∫∞
0 1{Xs≤0}ds

]
,

where X here is a spectrally negative Lévy process. For more details on Parisian determin-

istic delays, see Landriault et al. (2011), Loeffen et al. (2013), Czarna et al. (2014), Wong

and Cheung (2015), Czarna et al. (2017) and Loeffen et al. (2018). The extension of Parisian

deterministic delay to Parisian stochastic delay is explored by Landriault et al. (2014), Baur-
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doux et al. (2016), Albrecher and Ivanovs (2017) and Frostig and Keren-Pinhasik (2020). In a

model analysed by Kyprianou and Loeffen (2010), the occupation time process is considered

for X = {Xt, t ≥ 0}, a spectrally negative Lévy process and U = {Ut, t ≥ 0} a refracted

Lévy process in (b,∞) described by

Ut = Xt − δ

∫ t

0
1{Us>b}ds, t ≥ 0.

Then, X can be thought of as a Lévy insurance risk process with dividend policy at rate

δ > 0 whenever the process goes above the barrier level b > 0. In Chapter 2 of this thesis, we

take X = {Xt, t ≥ 0} to be a Brownian motion as defined in Definition 1.0.1 and we modify

this model to study the process

Xτ − α1Vτ − α2Z
(2)
τ = Xτ − α1

∫ τ

0
1{−a<Xs<a}ds− α2

∫ τ

0
1{Xs<−a}ds, 0 < α1 < α2 <∞,

where we have the following occupation time processes of the Brownian motion X with

different barriers for a > 0:

Z
(1)
t =

∫ t

0
1{Xs>a}ds

Vt =

∫ t

0
1{−a<Xs<a}ds

Z
(2)
t =

∫ t

0
1{Xs<−a}ds,

(1.3)

and τ is defined as the right-continuous inverse of the occupation time Z
(1)
t :

τ := inf{t : Z
(1)
t = z}. (1.4)

This model can be considered as an insurance risk process with penalising rates α1 and α2

for 0 < α1 < α2 <∞ such that when the process is penalised at the lower rate α1 when it is

in the region between −a and a, and at a higher rate α2 when the process falls beyond the

barrier −a, until the process stabalizes in the sense that the process spends a predetermined

proportion of time above the level a (this is when τ comes into play). For negative rates α1

and α2, the company is forced to have an influx at rates α1 and α2 instead. We can then
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consider a flip of the process −X where we study

Xτ − δ1Vτ∗ − β2Z
(1)
τ∗ = Yτ∗ − δ1

∫ τ∗

0
1{−a<Xs<a}ds− δ2

∫ τ∗

0
1{X>a}ds, 0 < δ1 < δ2,

where

τ∗ := inf{t ≥ 0 : Z
(2)
t = z}.

The intuition remains the same as the case for X but now we have the company paying

dividends or investing at rates δ1 and δ2 according to the region the process is in, until the

first time the process stays below the level −a for an amount z of time.

With this in mind, we derive the distributional properties of the occupation time processes

defined in (1.3) evaluated at the stopping time τ given in (1.4) by extending the martingale

methodology as seen in Dassios and Embrechts (1989), Dassios and Jang (2003) and Dassios

and Jang (2005). We derive the joint Laplace transforms for these quantities at different

starting points and proceed to obtain the respective density functions.

Our results of the occupation time process also find application in structural credit risk

modelling. The study of credit risk is the investigation surrounding the potential loss arising

from possible default of counterparty. There are two main classes of credit risk models, which

are the structural model and the reduced form method. The structural credit models were

first developed by Merton (1974) following the argument of Black and Scholes (1973) in option

pricing in order to study default behaviour. The Black & Cox model proposed in Black and

Cox (1976) is based on a default time of the form :

τ = inf{t ≥ 0 : Vt ≤ B(t)}

where V = {Vt, t ≥ 0} is the value process of the firm and B(t) is a predetermined time-

dependent default barrier. In Mukhopadhyay and Makarov (2019), a structural credit risk

model based on the occupation time of the underlying process is studied. The default of the

firm happens at time τ where τ is given as

τ = inf{t ≥ 0 :

∫ t

0
1{Vs≤B(s)}ds ≥ v},
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for V and B(s) as defined in Black and Cox (1976) and v > 0 is some predetermined threshold

level.

As mentioned, a large part of this thesis is motivated by the path dependent option called the

α-quantile option introduced by Miura (1992). For an underlying process X = {Xt, t ≥ 0},

its α-quantile M(α, t) is given in (1.2) for 0 < α < 1. It follows that

lim
α→0

M(α, t) = inf
0≤s≤t

Xs a.s.

lim
α→1

M(α, t) = sup
0≤s≤t

Xs a.s.

The distribution of the α-quantile of a process has been studied by many, including Yor

(1995) who investigated the connection between the arc-sine law and the distribution of the

α-quantile of a a Brownian motion. Dassios (1995) proved the remarkable identity in law for

X = {Xt, t ≥ 0} using Feynman-Kac method detailed in Kac (1951):

M(α, t)
(d)
= sup

0≤s≤αt
X(1)
s + inf

0≤s≤(1−α)t
X(2)
s , (1.5)

where
(d)
= denotes equality in distribution and X

(2)
s is an independent copy of X

(1)
s . Dassios

(1996b) then obtained a similar representation of (1.5) for a joint distribution of α-quantile

and the process X, a process with stationary and independent increments with paths in

D[0,∞). Dassios (1996a) later investigated the identity (1.5) for a renewal reward process

X = {Xt, t ≥ 0} given as

Xt =


∑Nt

i=1 Yi, Nt = 1, 2, . . . ,

0, Nt = 0,

for the renewal process N = {Nt, t ≥ 0} defined as

Nt = sup
n∈Z+

0

{n :

n∑
i=1

Ti ≤ t},

where the sequence of pairs of independent and identically distributed random variables

{(Ti, Yi), i = 1, 2, . . .} taking vales in R+×R. Embrechts et al. (1995) provided two different
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proofs of the identity (1.5) for a Brownian motion with drift. The first proof uses the following

identity in law: ∫ t

0
1{Xs≥0}ds

(d)
= sup

0<s<t
{s : sup

u≤s
Xu = Xs},

where as the second proof follows an extension of Bertoin (1991) rearrangement of the posi-

tive and negative excursions of a Brownian motion with drift. Bertoin et al. (1997) extended

the identity (1.5) for renewal reward processes using a predictable transformation and for

chains with exchangable increments using an optional transformation.

The pricing of this option in the Black-Scholes model as detailed in Definition 1.0.3 is ex-

plored by Akahori (1995) and Dassios (1995) who derived the explicit expression of the price

of α-quantile call option by applying the risk neutral precedure as detailed in Harrison and

Pliska (1981). For more literature on the pricing of an α-quantile option, see Linetsky (1999),

Hugonnier (1999), Pechtl (1999), Fusai (2000), Fusai and Tagliani (2001) and Davydov and

Linetsky (2002). For pricing approaches beyond the Black-Scholes model, see Sun Leung and

Kwok (2007) who obtained the pricing formula for α-quantile option from the distribution

functions of occupation times under the constant elasticity of variance process, Cai et al.

(2010) who derived the solutions to the pricing problem under Kou’s double exponential

jump diffusion model and Cai (2011) for a Laplace transform based pricing solution under a

hyperexponential jump diffusion model.

Inspired by the α-quantile option, the study in Chapter 3 is motivated by the double quantile

option of the underlying process which is a path dependent option that is the smallest level,

or barrier such that the fraction of time spent by the process above that level or below the

negative part of that level in the time period [0, t] exceeds the amount α for 0 < α < 1. More

formally, we define

M(α, t) := inf{x ∈ R+ :

∫ t

0
1{Ws≥x}ds+

∫ t

0
1{Ws≤−x}ds > αt},

where W = {Wt, t ≥ 0} is the Brownian motion as detailed in Definition 1.0.1. The struc-

ture of this option has prompted the study of the joint distribution of the occupation time

process of W above a predetermined barrier a and below the barrier −a for any a ∈ R+. To

do this, we introduce a version of the Brownian motion which we only consider the paths
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of the Brownian motion above a and below −a by joining them. We call this process the

Interrupted Brownian Motion. As we will see later, the interrupted Brownian motion is a

continuous version of the Brownian motion by construction. The main body of Chapter 3

focuses on the construction and derivation of the distributional properties of the interrupted

Brownian motion. We derive the stochastic differential equation of the interrupted Brownian

motion with the help of Doob’s h-transform and obtain some distributional properties of the

interrupted Brownian motion using the extended martingale methodology as seen in Das-

sios and Embrechts (1989), Dassios and Jang (2003) and Dassios (2005). In the last part of

this chapter, we derive the Laplace transform of the maximum height of the excursion of an

interrupted Brownian motion with exponential time using the perturbed Brownian motion

introduced by Dassios and Wu (2008).

In Chapter 4, we look at the stochastic process Lx = {Lxt , (t, x) ∈ [0,∞) ×R} taking values

in [0,∞) which describes the amount of time spent by a continuous time stochastic process

X = {Xt, t ≥ 0} in the neighbourhood of a point x ∈ E for E the state space of the stochastic

process X. The Lebesgue measure of the time spent at the level x can be derived using

Lxt =

∫ t

0
1{Xs=x}ds.

However, this does not make sense for when X is a Brownian motion, for example, as we have

meas{0 ≤ t <∞ : Wt(ω) = x} = 0, for P− a.e., ω ∈ Ω,

With E = R, this is not helpful as it does not tell us how much time the Brownian motion

has spent in the neighbourhood of the point x ∈ R. In order to provide a meaningful

interpretation for this measure of time, Paul Lévy in Lévy (1940) first introduced the notion

of local time of Brownian motion by defining the following random field for t ∈ [0,∞) and

x ∈ R,

Lx,ϵt =
1

2ϵ
meas{0 ≤ s ≤ t : |Ws − x| ≤ ϵ}.

He showed that the limit below almost surely exists for all t > 0

Lxt = lim
ϵ↓0

1

2ϵ
meas{0 ≤ s ≤ t : |Ws − x| ≤ ϵ}, (1.6)

17



and this is called the mesure du voisinage or “measure of the time spent by the Brownian

path in the vicinity of the point x”. Lxt shall be referred to as the local time from here on-

wards. Interested readers can refer to Lévy (1940), Itō and McKean (1974a), Balkema (1991),

Balkema and Chung (1991), Karatzas and Shreve (1991), Chung and Durrett (2008), and

Jeanblanc et al. (2009). The introduction of the Brownian local time finds many applications

in terms of the development of the theory of stochastic calculus. In particular, the local time

process is crucial in the generalisation of the celebrated Itô rule for convex functions.

Definition 1.0.4. Itô Process.

Let µ = {µt, t ≥ 0} and σ = {σt, t ≥ 0} be two predictable processes. If the following

integrability conditions hold for all t ≥ 0:

P
[∫ t

0
|µs|ds <∞

]
= 1,

P
[∫ t

0
σ2sds <∞

]
= 1.

Then X = {Xt, t ≥ 0} is called an Itô process which satisfies

Xt = x+

∫ t

0
µsds+

∫ t

0
σsdWs, t ≥ 0, x ∈ R,

where W is as defined in Definition 1.0.1.

Theorem 1.0.5. For a function f ∈ C1,2(R+ ×R,R) and X an Itô process as in Definition

1.0.4, the process {f(t,Xt), t ≥ 0} is a continuous semi-martingale given as

f(t,Xt) = f(0, X0) +

∫ t

0

∂f(x,Xs)

∂t
ds+

∫ t

0

∂f(s,Xs)

∂x
dXs +

1

2

∫ t

0

∂2f(s,Xs)

∂x2
d ⟨X⟩s ,

where ⟨X⟩ is the predictable quadratic variation of X. See Revuz and Yor (1991) for a proof

on the invariance of semi-martingale under “smooth” transformation.

Remark 1.0.6. For a function f ∈ C1,2(R+×R,R) satisfying the partial differential equation:

∂f

∂t
+

1

2

∂2f

∂x2
= 0,
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the process {f(t,Wt), t ≥ 0} is a local martingale for W a Brownian motion.

See for example Itô (1944) and Kunita and Watanabe (1967). The Itô rule plays an important

role as it acts as the foundation to stochastic calculus, but as we can see from the definition

above, Itô rule requires the existence of the second derivative for the formula to make sense.

The local time process finds application in the generalisation of the Itô rule for convex function

f : R 7→ R which are not necessarily twice differentiable. The generalised Itô rule is given as

f(Xt) = f(X0) +

∫ t

0
D−f(Xs)dXs +

∫ ∞

−∞
Lxt µ(dx), 0 ≤ t <∞,

for every X0 ∈ R, D−
f as the left derivative of f , µ to be taken as the second derivative

measure in the distribution sense and Lx is the local time process as given in (1.6). For

more details, see Chung et al. (1990), Revuz and Yor (1991), Karatzas and Shreve (1991),

Kallenberg (1997), Rogers and Williams (2000b) and Borodin and Salminen (2002).

Besides contributing to the generalised Itô rule, the local time process also plays a significant

part in mathematical finance. Leblanc (1997) made use of the definition of local time to

derive the Dupire’s formula for local volatility which states that

1

2
K2σ2(T,K) =

∂TC(K,T ) + rK∂KC(K,T )

∂2KKC(K,T )
,

where ∂T (resp. ∂K) is the partial derivative operator with respect to the maturity (resp.

the strike), C(K,T ) = E
[
e−rT (ST −K)+

]
is the price of the European call for any maturity

T ∈ [0,∞) and any strike price K ∈ R+ for S = {St, t ≥ 0} the price process, r ∈ R+

the instantaneous risk free rate and σ(T,K) the dispersion of S. In the Black-Scholes model

defined in Definition 1.0.3, the instant volatility σt is assumed to be deterministic. Here, the

local volatility term has a dependence on time is therefore a function of time represented as

σ2(T,K) and ∂ is the partial derivative operator. The Dupire’s formula is well used as it

serves as a direct method to deduce the local volatility function from the prices of call op-

tions in the market. For early works of local volatility model, see more details regarding the

derivation of the Dupire formula, see Dupire et al. (1994) for the continuous case and Derman

and Kani (1994) for the discrete case. Further details of the derivations of the Dupire’s for-

mula can be found in Buraschi and Dumas (2001), Esser and Schlag (2002), Gatheral (2004),
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Derman and Miller (2016) and Itkin (2020).

Another established application of the local time process is the pricing of a knock-out BOOST

option studied by Leblanc (1997) which is an option that pays at maturity, for the amount

of time when the underlying price process stays above a level b ∈ R+ until the time when

the price process touches level a ∈ R+ for the first time, for positive levels a and b such that

b < a. The local time process is also being employed in the form of the Ito-Tanaka formula

for the pricing of a special type of contingent claim which is known as a passport option.

This option gives its holder the right to engage in an optimal trading strategy of choice. For

a finite horizon model, let S = {St, 0 ≤ t ≤ T} be the price process, {qt, ; 0 ≤ t ≤ T} be the

predictable strategy, r ∈ R+ be the deterministic interest rate and ψ(q) = {ψ(q)
t , 0 ≤ t ≤ T}

be the gains from the trade process. The payoff of a passport option with expiry time T ∈ R+

is defined as

max{ψ(q)
T , 0}.

Following the arguments in Harrison and Pliska (1981), the price of the passport option can

be determined using

max
|qt|≤K

e−r(T−t)Et
[
max{ψ(q)

T , 0}
]
.

For more details on pricing a passport option, see Hyer et al. (1997) who applied the pricing

partial differential approach to derive the pricing formula for passport option, Andersen et al.

(1998) who employed a change of measure method for the derivation of a pricing formula for

a passport option, Shreve and Vecer (1998) who made use of probabilistic methods to price

this option and Andersen et al. (1998) who utilized the concepts of local time process and

Skorokhod lemma in deriving the price of a passport option.

In Chapter 4, we employ the methods in Borodin (1994) and Karatzas and Shreve (1991)

to investigate the joint distribution of the local times of a Brownian motion with drift at 2

distinct levels evaluated at the first hitting time of level 0 of the driving Brownian motion.

Using the results obtained, we proceed to compute the joint distribution of the local times at

the 2 levels evaluated at right inverse of the local time of the driving process at 0. We then

continue to compute the same quantity for a compound Poisson process with drift at different

starting points. Our results find applications in counterparty credit risk management con-
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cerning the Accumulator option. We compute the expected exposure of this derivative using

the density function derived. The accumulator option is a derivative with high path depen-

dency which is popular among investors with appetite for high risk. The accumulator option

is settled periodically thought its term, and this option with a knock-out feature, vanishes if

the underlying price process reaches above a pre-determined barrier. If the underlying price

process lies inside the knock-out barrier and the strike price, then the buyer of this option

”accumulates” the stock at the strike price. Otherwise, the buyer is met with the obligation

to purchase the stock at the strike price with some gearing ratio g (this is usually set to 2).

The payoff (Pi) on observation day ti, i ∈ N+ of the accumulator derivative is then:

Pi =


0, if max0≤s≤ti Ss ≥ b,

Q(Sti −K), if max0≤s≤ti Ss < b, Ss ≥ K,

gQ(Sti −K), if max0≤s≤ti Ss < b, Ss < K,

where b is the knock-out barrier level, K is the strike price, Q is the purchase quantity and

g the gearing ratio. See Lam et al. (2009) and Bonollo et al. (2017) for more details. We

conclude the chapter by following the argument of Bonollo et al. (2017) to use our local time

results to estimate the counterparty credit risk relating to the accumulator option.

In Chapter 5, we look at the role of symmetry methods in obtaining the solutions to some

differential equations. There are many tools for obtaining solutions to differential equations,

for example if the differential equation is separable:

g(y)
dy

dx
= f(x),

then the differential equation can be easily solved by separating the dependent and indepen-

dent variables to the form:

g(y)dy = f(x)dx. (1.7)

A closer inspection reveals that the underlying method allowing the separation technique to

be possible is the presence of a Lie group symmetry. Indeed, the solution of the separable

differential equation involves integrating both sides of equation (1.7) which gives us the
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Figure 1.1: Symmetries of the unit circle.

solution of the form

y = h(x, c), (1.8)

where c ∈ R is the integration constant. This constant of integration is exactly the adjustable

parameter of a continuous transformation that takes each solution curve (1.8) into another.

The theory of Lie group symmetry, is a topic developed by Marius Sophus Lie in Lie (1970).

The theory of Lie group symmetry has then received a lot of attention and has been exten-

sively studied by many, see Bluman and Kumei (1989), Stephani (1989), Olver (1993), Hydon

and Hydon (2000), Starrett (2007) to name a few. The development of Lie group symmetry

has profound influence in, but not limited to the fields of pure and applied Mathematics,

Physics and Engineering. In particular, the Lie group symmetry can be applied in vast areas

of studies, such as algebraic topology, differential geometry, invariant theory, bifurcation the-

ory, numerical analysis, control theory, classical mechanics, quantum mechanics, relativity,

continuum mechanics and many others. Before moving on to the application of Lie group

symmetry, we provide some important definitions surrounding this topic. According to Mar-

tin (2012), a symmetry of a geometrical object involves a transformation i for i in the set

of transformation, such that i maps the object to itself. The object is said to be invariant

under transformation. For example, a circle has two different types of symmetries: rotation

symmetry about the origin and reflection symmetry in the diagonals. See Figure 1.1 for more

details.
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Extending this notion of symmetry to the symmetry of ordinary differential equation, we list

some important definitions for the one-parameter Lie group of transformation.

Definition 1.0.7. One-Parameter Lie Group of Transformation.

On the Euclidean plane, let x = (x, y) and x̂ = (x̂, ŷ) be some points on the plane. For ϵ ∈ C,

the transformation

Γϵ : x 7→ f(x, ϵ),

such that

x̂ = f(x, y, ϵ); ŷ = g(x, y, ϵ),

is the one-parameter group of transformation with parameter ϵ, if the following hold:

I. Γ0 gives the identity transformation, i.e.

f(x, y, 0) = x; g(x, y, 0) = y.

II. Γ is closed under composition. This means that for ϵ1, ϵ2 ∈ C,

Γϵ2Γϵ1 = Γϵ2+ϵ1 ,

i.e.

x∗ = f(x̂, ŷ, δ) = f(x, y, ϵ1 + ϵ2); y∗ = f(x̂, ŷ, δ) = f(x, y, ϵ1 + ϵ2).

III. Γ−1
ϵ gives the inverse transformation:

Γ−1
ϵ = Γ−ϵ.

IV. Each x̂ can be represented as a Taylor series in ϵ.

Example 1.0.8. For the following ordinary differential equation:

dy

dx
= 0,

we know the solution is of the form y = C for C ∈ R. There are a few valid symmetries avail-

able for this differential equation. One possible symmetry for this is translational symmetry
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in the x-direction, giving us

(x̂, ŷ) = (x+ ϵ, y).

We can spot that this is a trivial symmetry since every solution is mapped to itself. Another

symmetry is to perform the transformation in the y-direction. This gives us

(x̂, ŷ) = (x, y + ϵ).

This is no longer trivial as under this transformation, the solution curve is mapped from

y = C to y = C + ϵ, and we can easily see that this solution curve satisfies the original

differential equation.

As we discussed, it is straightforward to solve a differential equation which is separable, i.e.

of the form in (1.7). However, this is not the case in many differential equations that we

encounter, for example an ordinary differential equation of the form

dy

dx
= ω(x, y),

can be quite complicated to solve depending on the form of ω. This is when canonical

coordinates come in handy.

Definition 1.0.9. Canonical Coordinates.

Any coordinates (r(x, y), s(x, y)) satisfying

ξ(x, y)rx + η(x, y)ry = 0,

ξ(x, y)sx + η(x, y)sy = 1,

and

rxsy − rysx ̸= 0,

is called the canonical coordinates, where (ξ, η) is the tangent vector at (x, y) to the curve,

rx = ∂
∂xr(x, y), ry = ∂

∂y r(x, y) and similarly defined for sx and sy. The canonical coordinates

can be obtained using the method of characteristics such that

dx

ξ(x, y)
=

dy

η(x, y)
= ds.
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The ODE of the form
dy

dx
= ω(x, y) can then be transformed to its canonical coordinates:

ds

dr
=
sx + ω(x, y)sy
rx + ω(x, y)ry

.

In canonical coordinates r(x, y), s(x, y), a differential equation becomes separable, which we

can manage. We summarise this paragraph by giving the steps to solve a first-order ordinary

differential equation using symmetry methods:

I. When the given differential equation

dy

dx
= ω(x, y),

is not separable, identity the form of Lie symmetry of the solutions using ansatz which

satisfies the linearized symmetry condition:

ηx + (ηy − ξx)ω(x, y) − ξyω
2(x, y) = ξωx(x, y) + ηωy(x, y).

II. Make use of the canonical coordinates to transform the original differential equation

to a separable differential equation. The canonical coordinates r(x, y), s(x, y) can be

identified from ξ(x, y) and η(x, y), the solutions to the linearized symmetry condition

using method of characteristics.

III. Substitute the canonical coordinates obtained in the previous step into the differential

equation for (r, s):
ds

dr
=
sx + ω(x, y)sy
rx + ω(x, y)ry

.

IV. Solve this differential equation in terms of the canonical coordinates.

V. Obtain the solution of the original differential equation by using the inverse relation

x = (x(r, s)) and y = y(r, s).

We use the symmetry method for differential equation to obtain a diffusion that links to

the Nicholson’s integral. The Nicholson’s integral, introduced by J.W.Nicholson in Nicholson

(1910) and Nicholson (1911) is the generalized version for the case of Bessel functions of the
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well known relationship between cosine and sine:

cos2(x) + sin2(x) = 1.

For Jn(x) and Yn(x) Bessel functions of order n of the first and second kinds, respectively,

the Nicholson’s integral is given as

J2
n(x) + Y 2

n (x) =
8

π2

∫ ∞

0
K0(2x sinh(t)) cosh(2nt)dt,

where K0(x) is the modified Bessel function of the second kind, sinh(x) and cosh(x) are the

hyperbolic sine and cosine functions respectively. The Nicholson’s integral is proved Watson

(1922) for x ∈ C+ using Hardy’s theory of generalised integrals developed by Hardy (1903)

and Cauchy’s integral theorem which states that

∫
C
f(z)dz = 0,

for f : U → C a holomorphic function with U ⊆ C and C is a smooth closed curve in U .

Dixon and Ferrar (1930) proved the Nicholson’s integral using a transformation following the

method in Nicholson (1910) for all values of n if ℜ(x) > 0 and when x is purely imaginary for

ℜ(n) < 3
4 . Durand (1975) extended the result for Nicholson’s integral for general Gegenbauer

and Legendre functions. The functions, C
(α)
λ (x) and D

(α)
λ (x), the Gegenbauer functions of

the first and second kind solves the differential equation of the form

(1 − x2)
d2y

dx2
− (2α+ 1)x

dy

dx
+ λ(λ+ 2α)y = 0,

for arbitrary α and λ and x ∈ C. The generalisation for Gegenbauer functions obtained by

Durand (1975) reads

(1 − x2)n
(

[C
(α+n)
λ−n (x)]2 + [D

(α+n)
λ−n (x)]2

)
= 2−2α−2n+3e−iπα

Γ(2α− 1)Γ(n+ 1)Γ(λ+ 2α+ n)

[Γ(α+ n)]2Γ(n+ 2α− 1)Γ(λ− n+ 1)

·
∫ ∞

1
D

(α)
λ (x2 + (1 − x2)z)C

(α− 1
2
)

n (z)(z2 − 1)α−1dz,

for ℜ(λ− n+ 1) > 0 and ℜ(α) > 0. For Pn(x) and Qn(x), the Legendre function of the first

26



and second kind, the Legendre differential equation is

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0,

where n is the degree of the Legendre function. The generalisations for ordinary Legendre

functions derived by Durand (1975) for −1 < x < 1 is

P 2
n(x) +

4

π2
Q2
n(x) =

4

π2

∫ ∞

1
Qn(x2 + (1 − x2)z)

1√
z2 − 1

dz.

We end the chapter by constructing a conditioned Brownian motion and we proceed to find

the Laplace transform of its first exit time as well as density function with the help of the

symmetry methods for differential equation established.
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Chapter 2

Occupation Times of Brownian

Motion

2.1 Introduction

The Bachelier model presented by Louis Bachelier in his PhD thesis is an option pricing

model which marks the birth of modern mathematical finance. His results received attention

after Chicago Mercantile Exchange (CME) and Intercontinental Exchange (ICE) decided to

adopt the Bachelier model to model oil and natural gas options after the price of the oil

future dropped to negative for the first time in history due to the lack of demand owing to

the spread of Covid-19. In 1973, Black and Scholes developed the much celebrated Black

& Scholes model (see Black and Scholes (1973), Merton (1973)) for the problems of pricing

derivative securities which are closely related to the the problems of finding the distributions

of measurable functional of Brownian motion such as the first passage time, maximum and

minimum functionals. The distribution of the maximum and minimum of Brownian motion

is well explored and widely used in the pricing of certain path dependent options such as the

barrier option and lookback option. For more details regarding the pricing of Barrier option,

see Rich (1994), Kunitomo and Ikeda (1992), and Goldman et al. (1979a), Goldman et al.

(1979b) and Conze (1991) for lookback options.

Consider X = {Xt, t ≥ 0} a Brownian motion as given in Definition 1.0.1. The occupation
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time of X is a well studied functional defined as

Γt(B) :=

∫ t

0
1B(Xs)ds = meas{0 ≤ s ≤ t : Xs ∈ B}, 0 ≤ t ≤ ∞,

for every fixed Borel set B ∈ B(R) and meas denotes Lebesgue measure. The occupation

time of Brownian motion measures the amount of time up till a deterministic time t that

the Brownian motion stays in the set B. The resulting process Γ(B) = {Γt(B), t ≥ 0}

is adapted and continuous. For more details regarding the Brownian occupation time, see

Karatzas and Shreve (1991) and Borodin and Salminen (2002). For occupation time for more

general diffusion processes, see Pitman and Yor (2003). The study of the occupation time

process finds applications in the pricing of the α-quantile option first introduced by Miura

(1992) and the pricing of this option is investigated using Feynman-Kac formula by Akahori

(1995) who derived the explicit form of the distribution function of the occupation time of

a Brownian motion and Dassios (1995) who showed the identity in law between the sum of

max and min of independent Brownian motions and the Brownian quantiles.

The occupation time process also received attention in the study of in the study of ruin prob-

lems for general diffusion processes where the ruin probabilities can be expressed in terms of

the occupation times. The idea of Parisian ruin introduced by Dassios and Wu (2008), is a

special type of ruin that takes into consideration that companies may be able to withstand

some periods of negative surplus before experiencing bankruptcy. This concept is extended

to an insurance risk model with underlying spectrally negative Lévy process of bounded vari-

ation in Landriault et al. (2010) and to an omega risk process in Li and Zhou (2013).

In this chapter, we study the occupation time of the Brownian path over different regions.

We define the following occupation times for a pre-determined level a ∈ R+:

Z
(1)
t =

∫ t

0
1{Xs>a}ds,

Vt =

∫ t

0
1{−a<Xs<a}ds,

Z
(2)
t =

∫ t

0
1{Xs<−a}ds,

(2.1)
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and let us define τ as the right-continuous inverse of the occupation time Z
(1)
t for z ∈ R+:

τ := inf{t : Z
(1)
t = z}, (2.2)

using the usual convention inf(∅) = ∞. We continue to derive the joint Laplace transform

and joint density function of the occupation time processes in the region above the level a,

between the levels −a and a and their driving Brownian motion evaluated at τ . Our results

can be applied to the study of insurance risk models which will be discussed later.

2.2 Preliminaries

Let an adapted stochastic process X = {Xt : t ≥ 0} defined on a filtered probability space

(Ω,F , {Ft},P) be a Markov process (with continuous paths) taking values in measurable

space (E, E). For simplicity, we take E = R and E = B the Borel σ-algebra on R. Then, the

infinitesimal generator of X applied to a function f : R → R is defined as the operator A

such that:

Af(x) := lim
t↓0

Ex [f(Xt)] − f(x)

t
, ∀x ∈ R,

where Ex [·] = E [·|F0] = E [·|X0 = x] by the Markov property. This relation holds for every

f in a suitable subclass of the space C2(R) of real-valued, twice continuously differentiable

functions on R. From the theory of Markov processes in Dynkin (1965). The infinitesimal

generator A applied to function f is a second order differential operator given by

Af(x) = b(x)
∂f(x)

∂x
+

1

2
a(x)

∂2f(x)

∂x2
,

for suitable Borel-measureable functions b, a : R → R. For X a Brownian motion with

b(x) = 0 and a(x) = 1, we see that X is a standard one-dimensional Brownian motion

introduced in Definition 1.0.1. This process can be defined as a linear diffusion on R and for

any f ∈ C2
b (R), the infinitesimal generator of X is given by

Af(x) :=
1

2
∂xxf(x).
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Remark 2.2.1. A simple application of Itô formula implies that

f(Xt) −
∫ t

0
Af(Xs)ds,

is a martingale. This gives us an approach to identify martingale candidates of the form

f(Xt) by solving

Af = 0,

subject to some boundary conditions.

2.3 Construction

In order to find a martingale of the form

f(Xt, Vt, Z
(1)
t , Z

(2)
t ),

for X,V, Z(1), Z(2) as defined in (2.1), we use the martingale approach discussed in Remark

2.2.1. Consider a function f : R4 → R such that its domain X is a subset of R4 that contains

a nonempty open set. The infinitesimal generator A acting on the function f in its domain

is such that

Af(x, v, z1, z2) = 1{x>a}
∂f(x, v, z1, z2)

∂z1
+ 1{−a<x<a}

∂f(x, v, z1, z2)

∂v
+ 1{x<−a}

∂f(x, v, z1, z2)

∂z2

+
1

2

∂2f(x, v, z1, z2)

∂x2

=



∂f1(x,v,z1,z2)
∂z1

+ 1
2
∂2f1(x,v,z1,z2)

∂x2
, x > a,

∂f2(x,v,z1,z2)
∂v + 1

2
∂2f2(x,v,z1,z2)

∂x2
, −a < x < a,

∂f3(x,v,z1,z2)
∂z2

+ 1
2
∂2f3(x,v,z1,z2)

∂x2
, x < −a.

(2.3)

Trying a solution of the following form

fi(x, v, z1, z2) = e−β1v e−β2z2 eγz1fi(x); i = 1, 2, 3 (2.4)
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for β1, β2, γ ∈ C+. We solve Af = 0, which gives us the following ordinary differential

equations: 
0 = γf1(x) + 1

2f
′′
1 (x), x > a,

0 = −β1f2(x) + 1
2f

′′
2 (x), −a < x < a,

0 = −β2f3(x) + 1
2f

′′
3 (x), x < −a.

(2.5)

Solving the differential equations gives

f1(x) = A1 cos(
√

2γx) +A2 sin(
√

2γx),

f2(x) = B1e
√
2β1x +B2e

−
√
2β1x,

f3(x) = Ce
√
2β2x,

(2.6)

where A1, A2, B1, B2, C ∈ R are some constants to be determined subject the boundary

conditions for the functions fi ∈ C2(R), i = 1, 2, 3:

f1(a) = f2(a),

f ′1(a) = f ′2(a),

f2(−a) = f3(−a),

f ′2(−a) = f ′3(−a).

(2.7)

Following Remark 2.2.1, we obtain martingales of the form

fi(Xt, Vt, Z
(1)
t , Z

(2)
t ) = e−β1Vte−β2Z

(2)
t eγZ

(1)
t fi(Xt), i = 1, 2, 3 (2.8)

where the functions fi(z) are derived as

f1(x) =

(
e
√
2β1a + e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
B1 cos(

√
2γ[x− a])

+

(
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

) √
2β1√
2γ

B1 sin(
√

2γ[x− a]),

f2(x) = B1e
√
2β1x +

(
B1e

−2
√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
e−

√
2β1x,

f3(x) = B1e
−
√
2β1ae

√
2β2(a+x)

(
2
√

2β1√
2β1 +

√
2β2

)
.

(2.9)
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Note that we could have obtained the same equations more easily by having

f1(x) = A1 cos(
√

2γ[x− a]) +A2 sin(
√

2γ[x− a]),

f2(x) = B1e
√
2β1x +B2e

−
√
2β1x,

f3(x) = Ce
√
2β2[x+a],

with the same boundary conditions as above.

Remark 2.3.1. Substituting (2.6) into (2.7), we obtain an under-determined system of equa-

tions with 5 parameters and 4 equations. Setting the free variable to an arbitrary value (say

1) as we have in Appendix 2.9.1, we can obtain the rest of the required parameters.

2.4 Distributional Properties

In this section, we explore the relationship between V , Z(2) and X evaluated at time τ

by deriving first the joint density of V and Z(2) from the inversion of the double Laplace

transform. We then derive the joint density of V , Z(2) and X at time τ by inverting the

triple Laplace transform. We look at the three different cases when we have the starting

point X0 = x to be below the level −a, above the level a and finally between the levels −a

and a.

2.5 Case 1 : X0 = x < −a

We look at the first case where the starting point X0 is below the level −a.

2.5.1 Joint distribution of Vτ and Z
(2)
τ

Lemma 2.5.1. For β1, β2 ∈ C+ and the first hitting time τ defined as

τ := inf{t : Z
(1)
t = z}, (2.10)
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for z ∈ R+, the joint Laplace transform of Vτ and Z
(2)
τ can be derived as

Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
= 2

√
2

π

e−2
√
2β1ae

√
2β2(a+x)(

1 − e−4
√
2β1a

) ∫ ∞

0
e−

1
2
s2 exp

(
−s

√
2zβ1(1 − h2(β1))√
β1h(β1) +

√
β2

)
e−s

√
2zβ1h(β1)

√
β1√

β1h(β1) +
√
β2
ds,

(2.11)

where the function h(β1) is

h(β1) =
1 + e−4

√
2β1a

1 − e−4
√
2β1a

=
cosh(2a

√
2β1)

sinh(2a
√

2β1)
, (2.12)

and cosh(x) = ex+e−x

2 is the hyperbolic cosine function and sinh(x) = ex−e−x

2 is the hyperbolic

sine function.

Proof. The proof is in the appendix (2.9.1).

Theorem 2.5.2. The joint density of V and Z(2) evaluated at τ is

P
[
Vτ ∈ dm,Z(2)

τ ∈ dy
]

=
1

2π
√
y3

∫ ∞

0

∫ ∞

√
2(−a−x)

e−
1
2
s2te

− t2

4y

∞∑
k=0

∞∑
l=0

(
s
√
z√
2

[
t+

√
2(a+ x)

])k
Γ(k + 1)k!

(−1)l

l!
21+2k+l

·
∞∑
j=0

Γ(1 + 2k + l + j)
√

2πm1+ 1+2k+l
2 Γ(1 + 2k + l)j!

exp

(
−

[(1 + k + l + j)(4a) + s
√
z + x+ t√

2
− a]2

4m

)

·D2+2k+l

(
(1 + k + l + j)4a+ s

√
z + x+ t√

2
− a

√
m

)
dtds,

with the conditions

2a > 0, 2a+

√
2(s

√
z + a+ x) + t√

2
> 0,

where Dn(x) is a parabolic cylinder function.

Proof. There are two steps to this proof. The first step is to consider inverting the Laplace

transform in (2.11) with respect to the parameter β2. Letting L−1
β2

denote the inverse Laplace

transform operator with respect to β2, we want to compute

L−1
β2

(
Ex
[
e−β1Vτ e−β2Z

(2)
τ

])
(y).
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For any β > 0, the following inverse Laplace transform holds

L−1
β

(
1

β
e
− s

√
2zβ1(1−h2(β1))

β

)
(y) = I0

(
2i

√
s
√

2zβ1(1 − h2(β1))y

)
. (2.13)

Using a change of variable of the form β +
√
β1h(β1) as the argument of the inverse Laplace

gives

L−1
β

(
F1

[
β +

√
β1h(β1)

])
(y) = e−

√
β1h(β1)yI0

(
2i

√
s
√

2zβ1(1 − h2(β1))y

)
, (2.14)

where the function F1 is defined as

F1(x) =
1

x
e−

s
√
2zβ1(1−h2(β1))

x .

We can add the term e
√
β2

√
2(a+x) = e−

√
β2

√
2(−a−x) to the inversion and proceed as follows:

L−1
β

(
e−

√
2(−a−x)βF2(β)

)
(y)

= e−
√
β1h(β1)[y−

√
2(−a−x)]I0

(
2i

√
s
√

2zβ1(1 − h2(β1)[y −
√

2(−a− x)])

)
y >

√
2(−a− x)

= e−
√
β1h(β1)[y+

√
2(a+x)I0

(
2i

√
s
√

2zβ1(1 − h2(β1)[y +
√

2(a+ x)])

)
1{y>

√
2(−a−x)},

(2.15)

where the function F2 is defined as

F2(x) = F1(x+
√

2β1h(β1)) =
1

x+
√

2β1h(β1)
e
− s

√
2zβ1(1−h2(β1))

x+
√

2β1h(β1) ,

with the condition
√

2(−a − x) > 0. We then take into account the square root term by

considering:

L−1
β2

(
F3(
√
β)
)

(y)

=
1

2
√
πy3

∫ ∞

0
te

− t2

4y e−
√
β1h(β1)[t+

√
2(a+x)]

1{t>
√
2(−a−x)}

· I0
(

2i

√
s
√

2zβ1(1 − h2(β1)[t+
√

2(a+ x)])

)
dt,

(2.16)

where the function F3 is defined as

F3(x) = e−
√
2(−a−x)xF2(x).
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Therefore, we have that

L−1
β2

(
Ex
[
e−β1Vτ e−β2Z

(2)
τ

])
(y)

=
4√
2π

∫ ∞

0

e−
1
2
s2e−s

√
2zβ1h(β1)e−

√
2β1a

√
β1

e
√
2β1a − e−3

√
2β1a

· L−1
β2

(
exp

(
−s

√
2zβ1(1 − h2(β1))√
β1h(β1) +

√
β2

)
e
√
2β2(a+x)

√
β1h(β1) +

√
β2

)
(y)ds

=

√
2

π
√
y3

∫ ∞

0

∫ ∞

0

e−
1
2
s2e−s

√
2zβ1h(β1)e−

√
2β1a

√
β1

e
√
2β1a − e−3

√
2β1a

te
− t2

4y e−
√
β1h(β1)[t+

√
2(a+x)]

· I0
(

2i

√
s
√

2zβ1(1 − h2(β1)[t+
√

2(a+ x)])

)
1{t>

√
2(−a−x)}dtds,

(2.17)

where in the first equality we exchange the order of inverse Laplace transform and integration.

Recall that the inverse Laplace transform of a function F is given as the Bromwich integral:

1

2πi

∫ c+i∞

c−i∞
estF (s)ds,

where c ∈ R is chosen such that it is greater than the real parts of all the possible singularities

of F (s) on the complex plane.

The next step is to invert expression (2.17) with respect to β1 in order to obtain the joint

density function. Using the following inversion

L−1
β1

(
1

2
√

2
e
−

√
2(s

√
z+a+x)+t√

2

√
2β1 cosh(2a

√
2β1)

sinh(2a
√

2β1)

√
2β1

sinh(2a
√

2β1)

·I0

−2

√
s

√
z

2
[t+

√
2(a+ x)]

√
2β1

sinh(2a
√

2β1)

 (m)

=
1

2
√

2

∞∑
l=0

(
s
√
z√
2
[t+

√
2(a+ x)]

)l
Γ(l + 1)l!

esm

(
1 + 2l, 1 + 2l, 2a, 0,

√
2(s

√
z + a+ x) + t√

2

)
,

(2.18)

with the conditions

2a > 0, 2a+

√
2(s

√
z + a+ x) + t√

2
> 0,
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where the function esm is such that for t > 0, ν ≥ 0, νt+ z > 0 and νt+ x+ z > 0,

• esy(µ, ν, t, x, z) =

∞∑
k=0

(−1)k

k!
sy(µ+ k, ν + k, t, x+ z + kt),

• st(µ, ν, t, z) = 2ν
∞∑
k=0

Γ(ν + k) e
− (νt+z+2kt)2

4y

√
2πy1+

µ
2 Γ(ν)k!

Dµ+1

(
νt+ z + 2kt

√
y

)
,

• Dn(x) = 2−
n
2 e−

x2

4 Hn

(
x√
2

)
= e−

x2

4 Hen(x),

where He is the modified Hermite function. We can invert Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
twice with

respect to β2 and β1 respectively to compute the joint density.

2.5.2 Joint distribution of Vτ , Z
(2)
τ and Xτ

Lemma 2.5.3. For β1, β2, ξ ∈ C+ and the first hitting time τ as defined in (2.10), the joint

Laplace transform of Vτ , Z
(2)
τ and Xτ can be derived as

Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

]
=

4ξe−
√
2β1ae

√
2β2(a+x)

√
2β1 e

ξ2 z
2 Φ(−ξ

√
z)

H(ξ, β1, β2)

−
√

2β1[H̃2(β1, β2)]

H(ξ, β1, β2)

4√
2π

∫ ∞

0
e−

1
2
s2 exp

(
−s

√
z

2β1(1 − h2(β1))√
2β1h(β1) +

√
2β2

)
· e

−s
√
2zβ1h(β1)e−

√
2β1ae

√
2β2(a+x)

√
2β1

H̃1(β1, β2)
ds,

(2.19)

where the functions h,H, H̃1 and H̃2 are such that

h(β1) =
1 + e−4

√
2β1a

1 − e−4
√
2β1a

,

H(ξ, β1, β2) = ξH̃1(β1, β2) −
√

2β1H̃2(β1, β2),

H̃1(β1, β2) = e
√
2β1a(

√
2β1 +

√
2β2) + e−3

√
2β1a(

√
2β1 −

√
2β2),

H̃2(β1, β2) = e
√
2β1a(

√
2β1 +

√
2β2) − e−3

√
2β1a(

√
2β1 −

√
2β2).

Proof. From (2.37), we can see that the expression for the triple Laplace transform is derived
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in terms of the double Laplace transform (2.11):

Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

]
=

4ξe−
√
2β1ae

√
2β2(a+x)

√
2β1 e

ξ2 z
2 Φ(−ξ

√
z)

H(ξ, β1, β2)

−

√
2β1

[
e
√
2β1a(

√
2β1 +

√
2β2) − e−3

√
2β1a(

√
2β1 −

√
2β2)

]
Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
H(ξ, β1, β2)

.

Substituting the expression derived for the double Laplace transform (2.11), we can derive

the expression for the triple Laplace transform.

Theorem 2.5.4. The joint density of Vτ , Z
(2)
τ and Xτ can be obtained as

P
[
Vτ ∈ dp, Z(2)

τ ∈ dm,Xτ ∈ dy
]

=

∫ ∞

0

2e−
1
2
s2√

2mπ3p5
δ(y − s

√
2z)e−

(a+x)2

2m

∞∑
k=0

[(2k + 1)2(2a)2 − p]e
− (2k+1)2(2a)2

2p ds

−
∫ ∞

0

e−
1
2
s2

√
2π

δ(y − s
√
z)

∫ ∞

0
e−

(a+x)2

2m e−r
2
e

√
2r(a+x)√

m

∞∑
k=0

(−
√

2mr)k√
πk!

·
[
S̃p(2 + k, 2 + k, 2a,−2a+

√
2ms+ 2ka)

+S̃p(2 + k, 2 + k, 2a, 2a+
√

2ms+ 2ka)
]
drds,

where the function S̃ is such that for t > 0, ν ≥ 0, νt+ z > 0:

S̃y(µ, ν, t, z) = 2ν
∞∑
k=0

Γ(ν + k)e
− (νt+z+2kt)2

4y

√
2πy1+

µ
2 Γ(ν)k!

Dµ+1

(
νt+ z + 2kt

√
y

)
.

Proof. We focus on the first term of (2.19), which we define as g1(ξ, β1, β2).

g1(ξ, β1, β2)

=
4ξe−

√
2β1ae

√
2β2(a+x)

√
2β1 e

ξ2 z
2 Φ(−ξ

√
z)

H(ξ, β1, β2)

=
4ξe−

√
2β1ae

√
2β2(a+x)

√
2β1 e

ξ2 z
2 Φ(−ξ

√
z)

H̃1(β1, β2)
· 1

ξ −
√

2β1

(
H̃2(β1,β2)

H̃1(β1,β2)

)
=

∫ ∞

0

4ξe−
√
2β1ae

√
2β2(a+x)

√
2β1e

− 1
2
s2e−ξs

√
z

√
2πH̃1(β1, β2)

· 1

ξ −
√

2β1

(√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

)ds.
(2.20)
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We will proceed to invert g(ξ, β1, β2) with respect to ξ, β2 and finally β1. The inversion with

respect to ξ gives us

L−1
ξ

∫ ∞

0

4e−
√
2β1ae

√
2β2(a+x)

√
2β1e

− 1
2
s2

√
2πH̃1(β1, β2)

· ξe−ξs
√
z

ξ −
√

2β1

(√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

)ds
 (y)

= L−1
ξ

(∫ ∞

0

4e−
√
2β1ae

√
2β2(a+x)

√
2β1e

− 1
2
s2

√
2πH̃1(β1, β2)

e−ξs
√
zds

)
(y)

+ L−1
ξ

∫ ∞

0

4e−
√
2β1ae

√
2β2(a+x)

√
2β1e

− 1
2
s2

√
2πH̃1(β1, β2)

e−ξs
√
z
√

2β1

(√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

)
ξ −

√
2β1

(√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

) ds

 (y)

=

∫ ∞

0

4e−
√
2β1ae

√
2β2(a+x)

√
2β1e

− 1
2
s2

√
2πH̃1(β1, β2)

δ(y − s
√
z)ds

+

∫ ∞

0

4e−
√
2β1ae

√
2β2(a+x)(2β1)e

− 1
2
s2

√
2πH̃1(β1, β2)

√
2β1 +

√
2β2h(β1)√

2β1h(β1) +
√

2β2

· e
√
2β1

(√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√

2β2

)
(y−s

√
z)
1{y>s

√
z}ds,

(2.21)

where δ(x) is the Dirac Delta function. We then proceed with the inversion with respect to

β2:

L−1
β2

(∫ ∞

0

4e−
1
2
s2e−

√
2β1ae

√
2β2(a+x)

√
2β1√

2πH̃1(β1, β2)
δ(y − s

√
z)ds

)
(m)

+ L−1
β2

(∫ ∞

0

4e−
1
2
s2e−

√
2β1ae

√
2β2(a+x)(2β1)1{y>s

√
z}√

2πH̃1(β1, β2)

√
2β1 +

√
2β2h(β1)√

2β1h(β1) +
√

2β2

· e
√
2β1

(√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√

2β2

)
[y−s

√
z]
ds

)
(m).

Exchanging the order of integration and inversion gives:

∫ ∞

0

4e−
1
2
s2e−

√
2β1a

√
2β1√

2π

δ(y − s
√
z)√

2(e
√
2β1a − e−3

√
2β1a)

L−1
β2

(
e
√
β2

√
2(a+x)

√
β1h(β1) +

√
β2

)
(m)ds

+

∫ ∞

0

4e−
1
2
s2e−

√
2β1a(2β1)√

2π

1{y>s
√
z}h(β1)√

2(e
√
2β1a − e−3

√
2β1a)

e
√
2β1h(β1)[y−s

√
z]

· L−1
β2

(
e
√
2β2(a+x)

√
β1h(β1) +

√
β2
e

√
2β1[1−h2(β1)](y−s

√
z)√

β1h(β1)+
√

β2

)
(m)ds

+

∫ ∞

0

4e−
1
2
s2e−

√
2β1a(2β1)√

2π
1{y>s

√
z}

√
β1[1 − h2(β1)]√

2(e
√
2β1a − e−3

√
2β1a)

e
√
2β1h(β1)[y−s

√
z]

· L−1
β2

(
e
√
2β2(a+x)

(
√
β1h(β1) +

√
β2)2

e

√
2β1[1−h2(β1)](y−s

√
z)√

β1h(β1)+
√

β2

)
(m) ds.
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Finally, we can obtain the inversion with respect to β2 is obtained as:

∫ ∞

0

4e−
1
2
s2e−

√
2β1a

√
2β1√

2π

δ(y − s
√
z)√

2(e
√
2β1a − e−3

√
2β1a)

e−
(a+x)2

2m

√
πm

ds

−
∫ ∞

0

4e−
1
2
s2e−

√
2β1a

√
2β1√

2π

δ(y − s
√
z)√

2(e
√
2β1a − e−3

√
2β1a)

√
β1h(β1)

· e−
√
2β1h(β1)(a+x)eβ1h

2(β1)merfc

(
h(β1)

√
β1m− (a+ x)√

2m

)
ds

+

∫ ∞

0

4e−
1
2
s2e−

√
2β1a(2β1)√

2π

h(β1)e
√
2β1h(β1)[y−s

√
z]

√
2(e

√
2β1a − e−3

√
2β1a)

∫ ∞

0

te−
t2

4m e−
√
β1h(β1)[t+

√
2(a+x)]

2
√
πm3

· I0
(

2i

√√
2[s

√
z − y]β1(1 − h2(β1))[t+

√
2(a+ x)]

)
1{t>−

√
2(a+x)}1{y>s

√
z}dtds

+

∫ ∞

0

4e−
1
2
s2e−

√
2β1a(2β1)√

2π

√
β1[1 − h2(β1)]e

√
2β1h(β1)[y−s

√
z]

√
2(e

√
2β1a − e−3

√
2β1a)

∫ ∞

0

te−
t2

4m e−
√
β1h(β1)[t+

√
2(a+x)]

2
√
πm3

·

(
t+

√
2(a+ x)

−
√

2[s
√
z − y]β1(1 − h2(β1))

) 1
2

I1

(
2i

√√
2[s

√
z − y]β1(1 − h2(β1))[t+

√
2(a+ x)]

)
· 1{t>−

√
2(a+x)}1{y>s

√
z}dtds.

We then proceed to invert with respect to β1 using the following relationships for a > 0:

L−1
β1

( √
2β1

2 sinh(2a
√

2β1)

)
(p) =

√
2

2
√
πp5

∞∑
k=0

[(2k + 1)2(2a)2 − p]e
− (2k+1)2(2a)2

2p ,

L−1
β1

(
β1h(β1)e

−2s
√
β1mh(β1)

sinh(2a
√

2β1)

)
(p) =

∞∑
k=0

(−
√

2ms)k

4k!
S̃p(2 + k, 2 + k, 2a,−2a+

√
2ms+ 2ka)

+

∞∑
k=0

(−
√

2ms)k

4k!
S̃p(2 + k, 2 + k, 2a, 2a+

√
2ms+ 2ka),

where the function S̃ is such that for t > 0, ν ≥ 0, νt+ z > 0:

S̃y(µ, ν, t, z) = 2ν
∞∑
k=0

Γ(ν + k)e
− (νt+z+2kt)2

4y

√
2πy1+

µ
2 Γ(ν)k!

Dµ+1

(
νt+ z + 2kt

√
y

)
,
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and we use the following relationship:

L−1
β1

( √
2β1e

2
√
2β1a

sinh(2
√

2β1a)
e
−
√

β1[t+
√
2(a+x+s

√
z−y)]

tanh(2
√

2β1a)

· I0

 −2
√

2β1

sinh(
√

2β12a)


√√

2[s
√
z − y][t+

√
2(a+ x)]

√
2

 (p)

=
∞∑
k=0

−

√√
2[s

√
z − y][t+

√
2(a+ x)]

√
2

2k

1

Γ(k + 1)k!

· esp

(
1 + 2k, 1 + 2k, 2a,−2a,

t+
√

2(a+ x+ s
√
z − y)√

2

)
.

(2.22)

We can then finally obtain that

L−1
β1

(
L−1
β2

(
L−1
ξ (g1(ξ, β1, β2)) (y)

)
(m)

)
(p)

=

∫ ∞

0

2e−
1
2
s2√

2mπ3p5
δ(y − s

√
2z)e−

(a+x)2

2m

∞∑
k=0

[(2k + 1)2(2a)2 − p]e
− (2k+1)2(2a)2

2p ds

−
∫ ∞

0

e−
1
2
s2

√
2π

δ(y − s
√
z)

∫ ∞

0
e−

(a+x)2

2m e−r
2
e

√
2r(a+x)√

m

∞∑
k=0

(−
√

2mr)k√
πk!

· S̃p(2 + k, 2 + k, 2a,−2a+
√

2ms+ 2ka)drds

−
∫ ∞

0

e−
1
2
s2

√
2π

δ(y − s
√
z)

∫ ∞

0
e−

(a+x)2

2m e−r
2
e

√
2r(a+x)√

m

∞∑
k=0

(−
√

2mr)k√
πk!

· S̃p(2 + k, 2 + k, 2a, 2a+
√

2ms+ 2ka)drds

+

∫ ∞

0

∫ ∞

0

2e−
1
2
s2

√
π2m3

te−
t2

4m1{t>−
√
2(a+x)}(2.23)dtds

+

∫ ∞

0

∫ ∞

0

2e−
1
2
s2

√
π2m3

te−
t2

4m1{t>−
√
2(a+x)}(2.24)dtds,
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where (2.23) is such that

1

8

√
2√
πp5

∞∑
k=0

(
(2k + 1)2(2a)2 − p

)
e
− (2k+1)2(2a)2

2p

∗
∞∑
k=0

(
−
√√

2[s
√
z−y][t+

√
2(a+x)]√

2

)2k

Γ(k + 1)k!

·

[
esp

(
1 + 2k, 1 + 2k, 2a,−2a,

t+
√

2(a+ x+ s
√
z − y)√

2

)

+esp

(
1 + 2k, 1 + 2k, 2a, 2a,

t+
√

2(a+ x+ s
√
z − y)√

2

)]
,

(2.23)

and (2.24) is such that

(−1)

4

(
t+

√
2(a+ x)√

2[s
√
z − y]

) 1
2

·
√

2√
πp5

∞∑
k=0

((2k + 1)2(2a)2 − p)e
− (2k+1)2(2a)2

2p

∗
∞∑
k=0

(
−
√√

2[s
√
z−y][t+

√
2(a+x)]√

2

)1+2k

Γ(2 + k)k!

· esp

(
2 + 2k, 2 + 2k, 2a, 0,

t+
√

2(a+ x+ s
√
z − y)√

2

)
,

(2.24)

with ∗ denoting convolution. We repeat the same steps to compute the inversion of the second

term of (2.19) to finally obtain the joint density.

2.6 Case 2: X0 = x > a

We have looked at the case when we start in state 3 by setting X0 = x < −a. In this section,

we will look at the case when we start in state 1 by having X0 = x > a.
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2.6.1 Joint distribution of Vτ and Z
(2)
τ

Lemma 2.6.1. For β1, β2 ∈ C+ and the first hitting time τ as defined in (2.10), the joint

Laplace transform of Vτ and Z
(2)
τ can be derived as

Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
=

2√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e
−2sx−a√

2z e−s
√
2z

√
2β1h(β1) exp

(
−s

√
2z

[
2β1

[
1 − h2(β1)

]
√

2β1h(β1) +
√

2β2

])
ds

+ erf

(
x− a√

2z

)
,

(2.25)

where erf is the error function defined as

erf(z) =
2√
π

∫ z

0
e−t

2
dt,

and h(β1) is as previously defined (2.12).

Proof. The proof of this Lemma is included in the Appendix (2.9.2).

Theorem 2.6.2. The joint density of V and Z(2) at τ can be derived as

P
[
Vτ ∈ dm,Z(2)

τ ∈ dy
]

=
i√
π2y3

∫ ∞

0

∫ ∞

0
e−

(x−a)2

2z e−s
2
e
−2sx−a√

2z te
− t2

4y i

√
s
√
z

t
ism

(
1, 2a, 0,

t√
2

+ s
√

2z,−
√
st
√
z

)
dtds

+
1√
π2y3

∫ ∞

0

∫ ∞

0
e−

(x−a)2

2z e−s
2
e
−2sx−a√

2z te
− t2

4y δ(t)esm

(
0, 0, 2a, 0,

t√
2

+ s
√

2z

)
dtds

+ erf

(
x− a√

2z

)
δ(y)δ(m),

where the functions ism and esm are defined as

isy(v, t, r, z, x) =

∞∑
l=0

xv+2l

Γ(v + l + 1)l!
esy(1 + v + 2l, 1 + v + 2l, t, r, z),

esy(u, v, t, x, z) =

∞∑
k=0

(−z)k

k!
sy(u+ k, v + k, t, x+ z + kt),

sy(u, v, t, z) = 2v
∞∑
k=0

Γ(v + k)e
− (vt+z+2kt)2

4y

√
2πy1+

u
2 Γ(v)k!

Du+1

(
vt+ z + 2kt

√
y

)
,
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with the conditions

2a > 0,
t√
2

+ s
√

2z > 0, 4a+
t√
2

+ s
√

2z > 0.

Proof. The proof of this theorem can be divided into two steps. Inverting (2.25) with respect

to β2 and using Fubini’s theorem gives

L−1
β2

(
Ex
[
e−β1Vτ e−β2Z

(2)
τ

])
(y)

= L−1
β2

(
2√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e
−2sx−a√

2z e−s
√
2z

√
2β1h(β1)

· exp

(
−s

√
2z

[
2β1

[
1 − h2(β1)

]
√

2β1h(β1) +
√

2β2

])
ds

)
(y) + L−1

β2

(
erf

(
x− a√

2z

))
(y)

=
2√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e
−2sx−a√

2z e−s
√
2z

√
2β1h(β1)

· L−1
β2

(
exp

(
−s

√
2z

[
2β1

[
1 − h2(β1)

]
√

2β1h(β1) +
√

2β2

]))
(y)ds+ erf

(
x− a√

2z

)
L−1
β2

(1) (y).

The inversion in the first term can be derived by first noticing that

L−1
β2

(
exp

(
−s

√
2z

[
2β1

[
1 − h2(β1)

]
√

2β1h(β1) +
√

2β2

]))
(y)

= L−1
β−2

(
exp

(
−s

√
z

[
2β1

[
1 − h2(β1)

]
√
β1h(β1) +

√
β2

]))
(y).

We then use the following steps:

• Considering a change of variable of the form β =
√
β1h(β1)+

√
β2, the inversion becomes

L−1
β

(
exp

(
−s

√
z

[
2β1

[
1 − h2(β1)

]
β

]))
(y)

= L−1
β

(
exp

(
−s

√
z

[
2β1

[
1 − h2(β1)

]
β

])
− 1

)
(y) + L−1

β (1) (y)

= i

√
s
√
z(2β1)[1 − h2(β1)]

y
I1

(
2i

√
s
√
z(2β1)[1 − h2(β1)]y

)
+ δ(y).

where I1(x) is the modified Bessel function of the first kind and δ(x) is the Dirac delta

function.

In the second equality, we used the theory of residues and the concept of a distribution.
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The function δ(y) is an infinite spike centered at y = 0, such that its total mass is 1

and the inverse Laplace transform of 1 which can be written in the integral form as

L−1
β (1) (y) =

1

2πi

∫ c+i∞

c−i∞
eβydβ = lim

p→∞

sin(py)

πy
= δ(y),

using complex analysis, since the function 1 has no poles we can take c = 0 for conve-

nience.

• Using the following relationship:

If L−1
γ (F (γ)) (y) =: f(y), where F (γ) =

∫ ∞

0
e−γyf(y)dy, ℜ(γ) ≥ 0,

then L−1
γ (F (aγ + β)) =

1

α
e−

βy
α f
( y
α

)
, α > 0.

We can add the terms with β1 in

= L−1
β

(
exp

(
−s

√
z

[
2β1

[
1 − h2(β1)

]
√
β1h(β1) + β

]))
(y)

= L−1
β

(
F (
√
β1h(β1) + β)

)
(y)

= e−
√
β1h(β1)y

i√s
√
z(2β1)[1 − h2(β1)]

y
I1

(
2i

√
s
√
z(2β1)[1 − h2(β1)]y

)
+ δ(y)

 .
• Using the following relationship,

If L−1
γ (F (γ)) (y) =: f(y), where F (γ) =

∫ ∞

0
e−γyf(y)dy, ℜ(γ) ≥ 0,

then L−1
γ (F (

√
γ)) (y) =

1

2
√
πy3

∫ ∞

0
xe

−x2

4y f(x)dx.

We can then add the square root in to obtained the desired inverse Laplace transfor-
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mation with respect to β2

L−1
β2

(
exp
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√
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[
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√
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√
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∫ ∞
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√
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√
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√
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)
+ δ(t)

]
dt.

Therefore, the inversion with respect to β2 for the double Laplace transform is given as

L−1
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(
Ex
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(2)
τ

])
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=
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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δ(y),

where the function h(β1) is as defined earlier. We can now proceed to the second part of the

proof where we invert the expression with respect to β1. Therefore, using Fubini’s theorem,
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we have that the joint density can be obtained as

L−1
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√
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with the conditions

2a > 0,
t√
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√
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√

2z > 0.
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2.6.2 Joint distribution of Vτ , Z
(2)
τ and Xτ

Lemma 2.6.3. For β1, β2, ξ ∈ R+ and the first hitting time τ as defined in (2.10), the joint

Laplace transform of Vτ , Z
(2)
τ and Xτ can be derived as
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(2)
τ e−ξ[Xτ−a]

]
=

1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e−2s

√
z
2
ξe

2sx−a√
2z ds+

1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e−2s

√
z
2
ξe

−2sx−a√
2z ds

+
2√
π

√
2β1

√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

ξ −
√

2β1
√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

e−
(x−a)2

2z

∫ ∞

0
e−s

2
e−s

√
2zξe

−2sx−a√
2z ds

− 2√
π

√
2β1

√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

ξ −
√

2β1
√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

e−
(x−a)2

2z

∫ ∞

0
e−s

2
e
−2sx−a√

2z e−s
√
2z

√
2β1h(β1)

· exp

(
−s

√
2z

[
2β1

[
1 − h2(β1)

]
√

2β1h(β1) +
√

2β2

])
ds,

(2.26)

where h(β1) is as defined in (2.12).

Proof. We have from (2.25), that the double Laplace transform is

Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
=

2√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e
−2sx−a√

2z e−s
√
2z

√
2β1h(β1) exp

(
−s

√
2z

[
2β1

[
1 − h2(β1)

]
√

2β1h(β1) +
√

2β2

])
ds

+ erf

(
x− a√

2z

)
.

Substituting this into (2.39), we can easily obtain the desired expression for the triple Laplace

transform.
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Theorem 2.6.4. The joint density of Vτ , Z
(2)
τ and Xτ is given as

P
[
Vτ ∈ dp, Z(2)

τ ∈ dm,Xτ ∈ dy
]

=
1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
δ(y − s

√
2z)δ(m)

[
e
2sx−a√

2z + e
−2sx−a√

2z

]
δ(p)ds

+

√
2√

π2m3

∫ ∞

0

∫ ∞

0
e
−
[
s+x−a√

2z

]2
te−

t2

4m

[
θ(y − s

√
2z) − 1

]{
−1

2
sp (2a)

∗isp

(
0, 2a, 0,

t√
2

+ s
√

2z − y,−

√(
s
√

2z − y
) t√

2

)}
dtds

+
1√
π2m3

∫ ∞

0

∫ ∞

0
e
−
[
s+x−a√

2z

]2
te

− t2

4y

[
θ(y − s

√
2z) − 1

]−
√

2

√√
2
(
s
√

2z − y
)

t

·

[
f(p) ∗ isp

(
1, 2a, 0,

t√
2

+ s
√

2z − y,−

√(
s
√

2z − y
) t√

2

)]}
dtds

+
1√
π2m3

∫ ∞

0

∫ ∞

0
dtds e

−
[
s+x−a√

2z

]2
te

− t2

4y

[
θ(y − s

√
2z) − 1

]
δ(t) ·

∞∑
k=0

(
−2
[
t√
2

+ s
√

2z − y
])k

k!

·


∞∑
l=0

Γ(k + l + 2)e
−

[
(k+l)(4a)+ t√

2
+s

√
2z−y

]2
2p

√
2πp1+

k+1
2 Γ(k + 2)l!

Hek+2

(
(k + l)(4a) + t√

2
+ s

√
2z − y

√
p

)

−
∞∑
l=0

Γ(k + l + 2)e
−

[
(k+l+2)(4a)+ t√

2
+s

√
2z−y

]2
2p

√
2πp1+

k+1
2 Γ(k + 2)l!

Hek+2

(
(k + l + 2)(4a) + t√

2
+ s

√
2z − y

√
p

) ,

with the conditions

2a > 0,
t√
2

+ s
√

2z − y > 0,

where He is the modified Hermite function, δ(t) the Dirac delta function and θ(x) the Heav-

iside step function.

Proof. There are three steps to this proof. First, we look at the inversion of the triple Laplace

transform with respect to ξ.
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L−1
ξ

(
Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

])
(y)

= L−1
ξ

(
1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e−2s

√
z
2
ξe

2sx−a√
2z ds

)
(y)

+ L−1
ξ

(
1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e−2s

√
z
2
ξe

−2sx−a√
2z ds

)
(y)

+ L−1
ξ

 2√
π

√
2β1

√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

ξ −
√

2β1
√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

e−
(x−a)2

2z

∫ ∞

0
e−s

2
e−s

√
2z ξe

−2sx−a√
2z ds

 (y)

− L−1
ξ

 2√
π

√
2β1

√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

ξ −
√

2β1
√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

e−
(x−a)2

2z

∫ ∞

0
e−s

2
e
−2sx−a√

2z e−s
√
2z

√
2β1h(β1)

· exp

(
−s

√
2z

[
2β1

[
1 − h2(β1)

]
√

2β1h(β1) +
√

2β2

])
ds

)
(y)

=
1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e
2sx−a√

2z δ(y − s
√

2z)ds

+
1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e
−2sx−a√

2z δ(y − s
√

2z)ds

+
2√
π

√
2β1

√
2β1 +

√
2β2h(β1)√

2β1h(β1) +
√

2β2
e−

(x−a)2

2z

·
∫ ∞

0
e−s

2
e
−2sx−a√

2z e

√
2β1

√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√

2β2
(y−s

√
2z)
θ(y − s

√
2z)ds

− 2√
π

√
2β1

√
2β1 +

√
2β2h(β1)√

2β1h(β1) +
√

2β2
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e
−2sx−a√

2z e−s
√
2z

√
2β1h(β1)

· e
√
2β1

√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√

2β2
y

exp

(
−s

√
2z

[
2β1

[
1 − h2(β1)

]
√

2β1h(β1) +
√

2β2

])
ds,

(2.27)

where we have used the following inversions:

L−1
ξ

(
e−2s

√
z
2
ξ
)

(y) = δ

(
y − 2s

√
z

2

)
= δ(y − s

√
2z),

L−1
ξ

 e−2s
√

z
2
ξ

ξ −
√

2β1
√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

 (y) = e

√
2β1

√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√

2β2
(y−s

√
2z)
θ(y − s

√
2z),

L−1
ξ

 1

ξ −
√

2β1
√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√
2β2

 (y) = e

√
2β1

√
2β1+

√
2β2h(β1)√

2β1h(β1)+
√

2β2
y
,
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for δ(x) is the Dirac delta function and θ(x) is the Heaviside step function defined as

θ(x) =
1

2
[1 + sgn(x)] ,

where sgn(x) is the sign function defined as

sign(x) =



−1, x < 0,

0, x = 0,

1, x > 0.

We can then proceed to invert the expression in (2.27) with respect to β2. We consider a

change of variable of the form β =
√
β1h(β1) +

√
β2 and define

L−1
γ (F (γ)) (y) =: f(y),

where for ℜ(γ) ≥ 0,

F (γ) =

∫ ∞

0
e−γyf(y)dy.

Using the following inversions,

L−1
γ (F (aγ + β)) (y) =

1

α
e−

βy
α f
( y
α

)
, α > 0,

L−1
γ (F (

√
γ)) (y) =

1

2
√
πy3

∫ ∞

0
xe

−x2

4y f(x)dx,

and Fubini’s thereom, we can obtain the inversion with respect to β2 for the triple Laplace
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transform:

L−1
β2

(
L−1
ξ

(
Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

])
(y)
)

(m)

=
1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
δ(y − s

√
2z)
[
e
2sx−a√

2z + e
−2sx−a√

2z

]
L−1
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(1) (m)ds

+

√
2√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
e
−2sx−a√

2z e(y−s
√
2z)

√
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[
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√
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]
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√
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)
e

(
y−s

√
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2
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√
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(m)ds

+
2√
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√
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∫ ∞

0
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2
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√
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√
2z) − 1
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√
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√
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)
(m)ds

=
1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
δ(y − s

√
2z)δ(m)

[
e
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]
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+

√
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π2m3

∫ ∞

0

∫ ∞

0
e
−
[
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te−
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2
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√
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·
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√
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]
I0

(
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√√
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(
s
√
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)
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)
dtds

+
1√
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√
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∫ ∞
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∫ ∞

0
e
−
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te
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4y e
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2
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√
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√
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[
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√
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]
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√√
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√
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(
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√√
2
(
s
√
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+

√
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∫ ∞
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∫ ∞

0
e
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te
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4y e
(y− t√

2
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√
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√
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[
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√
2z) − 1

]
δ(t)dtds.

(2.28)
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Finally, the joint density can be obtained by inverting (2.28) with respect to β1.

L−1
β1

(
L−1
β2

(
L−1
ξ

(
Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

])
(y)
)

(m)
)

(p)

=
1√
π
e−

(x−a)2

2z

∫ ∞

0
e−s

2
δ(y − s

√
2z)δ(m)

[
e
2sx−a√

2z + e
−2sx−a√

2z

]
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β1

(1)(p)ds

+

√
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π2m3

∫ ∞

0

∫ ∞

0
e
−
[
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2z

]2
te−
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4m

[
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√
2z) − 1

]
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(
e
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2
−s

√
2z)

√
2β1h(β1)

· β1[1 − h2(β1)]I0

(
2i

√√
2
(
s
√

2z − y
)
β1[1 − h2(β1)]t
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(p)dtds

+
1√
π2m3

∫ ∞

0

∫ ∞

0
dtds e
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s+x−a√

2z

]2
te
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4y

[
θ(y − s

√
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]
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(√
2β1h(β1)e
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2
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√
2z)

√
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·

√√
2
(
y − s

√
2z
)
β1[1 − h2(β1)]

t
I1

(
2i

√√
2
(
s
√

2z − y
)
β1[1 − h2(β1)]t

) (p)

+
1√
π2m3

∫ ∞

0

∫ ∞

0
e
−
[
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2z
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te
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4y

[
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√
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]
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2
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√
2z)

√
2β1h(β1)
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This can be computed as:

1√
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e−

(x−a)2

2z

∫ ∞

0
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√
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2z + e
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∫ ∞
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∫ ∞
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te−
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√
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t√
2

+ s
√
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s
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π2m3

∫ ∞
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∫ ∞
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√
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√√
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(
s
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2z − y
)

t

·
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d
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(
1√
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∞∑
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e
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)
∗ isp

(
1, 2a, 0,

t√
2
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√
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√(
s
√
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) t√

2
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+
1√
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∫ ∞

0

∫ ∞

0
e
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[
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2z

]2
te
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[
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√
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t√
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√
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where the functions s, is and escs are such that

sy(t) =

√
2

√
πy

5
2

∞∑
k=0

((2k + 1)2t2 − y)e
− (2k+1)2t2

2y ,

isy(v, t, r, z, x) =
∞∑
l=0

xv+2l

Γ(v + l + 1)l!
esy(1 + v + 2l, 1 + v + 2l, t, r, z),

esy(u, v, t, x, z) =
∞∑
k=0

(−z)k

k!
sy(u+ k, v + k, t, x+ z + kt),

sy(u, v, t, z) = 2v
∞∑
k=0

Γ(v + k)e
− (vt+z+2kt)2

4y

√
2πy1+

u
2 Γ(v)k!

Du+1

(
vt+ z + 2kt

√
y

)
,

escsy(u, v, t, z) =
1

4
esy(1, 2, t,−u− v, z) − 1

4
esy(1, 2, t, u+ v, z),

+
1

4
esy(1, 2, t,−u+ v, z) − 1

4
esy(1, 2, t, u− v, z),

with the conditions

2a > 0,
t√
2

+ s
√

2z − y > 0.

2.7 Case 3: −a < X0 = x < a

We have looked at the cases where X0 = x < −a (we start in state 3) and X0 = x > a (we

start in state 1). We now look at the case where −a < X0 = x < a when we start in state 2.

This is the most complicated case out of the three.
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2.7.1 Joint distribution of Vτ and Z
(2)
τ

Lemma 2.7.1. For β1, β2 ∈ C+ and the first hitting time τ as defined in (2.10), the joint

Laplace transform of Vτ and Z
(2)
τ can be derived as

Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
=

1√
2π

∫ ∞

0
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1
2
s2e

− s
√
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2
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√
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√
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√
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√
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2
√
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√

2β1)√
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√
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√
β2]

]
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∫ ∞
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s2e
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√
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√
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√
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[√
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√
2β1)√

2[
√
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√
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]
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+
1√
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∫ ∞

0
e−

1
2
s2e

− s
√
z√
2

[
2β1[1−h2(β1)]√
β1h(β1)+

√
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]
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√
2β1[s

√
zh(β1)]

sinh(2a
√

2β1)

(
2 sinh([a+ x]

√
2β1)

)
ds,

(2.29)

where the functions sinh(x) and cosh(x) are the hyperbolic sine and cosine functions respec-

tively and the function h(β1) is as defined in (2.12).

Proof. With the starting point −a < X0 = x < a, applying the optional stopping theorem

to the martingales fi(Xt, Vt, Z
(1)
t , Z

(2)
t ) with a bounded stopping time τ ∧ t gives

E
[
e−β1Vτ∧te−β2Z

(2)
τ∧teγZ

(1)
τ∧tf1(Xτ∧t)

∣∣∣∣X0 = x

]
= e−β1V0e−β2Z

(2)
0 eγZ

(1)
0 f2(X0).

Taking limits for t→ ∞ gives us

Ex
[
e−β1Vτ e−β2Z

(2)
τ eγzf1(Xτ )

]
= f2(x).

Ex
[
e−β1Vτ e−β2Z

(2)
τ f1(Xτ )

]
= e−γzf2(x).

We proceed using the same steps as in the previous section. With the change of variable of

the form ω =
√

2γ, multiplying both sides with 1
ω2+ξ2

and integrating with respect to ω over

the range of ω, the right hand side of the expressions gives∫ ∞

0
e−γzf2(x)

1

ω2 + ξ2
dω

=

∫ ∞

0
e−

ω2

2
z

[
B1e

√
2β1x +

(
B1e

−2
√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
e−

√
2β1x

]
1

ω2 + ξ2
dω

= B1

[
e
√
2β1x + e−

√
2β1(2a+x)

√
2β1 −

√
2β2√

2β1 +
√

2β2

]
π

ξ
eξ

2 z
2 Φ
(
−ξ

√
z
)
.
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Now, computing the left hand side of the expression with ω =
√

2γ gives∫ ∞

0
Ex
[
e−β1Vτ e−β2Z

(2)
τ f1(Xτ )

] 1

ω2 + ξ2
dω

= B1
π

2ξ

(
e
√
2β1a + e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

]
+B1

π

2ξ2

√
2β1

(
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
−B1

π

2ξ2

√
2β1

(
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

]
.

Equating the 2 expressions and making the triple Laplace transform the subject gives

Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

]
=

1

ξ −
√

2β1
g2(β1,β2)
g1(β1,β2)

{
2

g1(β1, β2)
ξe

√
2β1x 1√

2π

∫ ∞

0
e−

1
2
s2 e−sξ

√
zds

+
2ξe−

√
2β1(2a+x)

g1(β1, β2)

√
2β1 −

√
2β2√

2β1 +
√

2β2

1√
2π

∫ ∞

0
e−

1
2
s2e−sξ

√
zds

−
√

2β1
g2(β1, β2)

g1(β1, β2)
Ex
[
e−β1Vτ e−β2Z

(2)
τ

]}
.

(2.30)

where the functions g1 and g2 are defined as

g1(β1, β2) := e
√
2β1a + e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2
,

g2(β2, β2) := e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2
.

Looking at the expression in (2.30), we can say that there exists a ξ∗ > 0 such that when

the denominator goes to 0 at ξ∗, the numerator goes to 0 at the same point for the triple

Laplace transform exists and not to be identically 0, when the denominator goes to 0 at

ξ = ξ∗, we should have that the numerator goes to 0 at the same point. The value of ξ∗ can

be determined by setting

ξ∗ =
√

2β1
g2(β1, β2)

g1(β1, β2)
=

2β1[1 − h2(β1)]√
2β1h(β1) +

√
2β2

+
√

2β1h(β1).

The double Laplace transform can be obtained directly by setting the numerator to 0 at

ξ∗.
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2.7.2 Joint distribution of Vτ , Z
(2)
τ and Xτ

Lemma 2.7.2. For β1, β2, ξ ∈ R+ and the first hitting time τ as defined in (2.10), the joint

Laplace transform of Vτ , Z
(2)
τ and Xτ can be derived as

Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

]
=

1

ξ −
√

2β1
g2(β1,β2)
g1(β1,β2)

2

g1(β1, β2)
ξe

√
2β1x 1√

2π

∫ ∞

0
e−

1
2
s2 e−sξ

√
zds

+
1

ξ −
√

2β1
g2(β1,β2)
g1(β1,β2)

2

g1(β1, β2)
ξe−

√
2β1(2a+x)

√
2β1 −

√
2β2√

2β1 +
√

2β2

1√
2π

∫ ∞

0
e−

1
2
s2 e−sξ

√
zds

− 1

ξ −
√

2β1
g2(β1,β2)
g1(β1,β2)

√
2β1

g2(β1, β2)

g1(β1, β2)

1√
2π

∫ ∞

0
e−

1
2
s2e

− s
√

z√
2

[
2β1[1−h2(β1)]√
β1h(β1)+

√
β2

]
e−

√
2β1[s

√
zh(β1)]

sinh(2a
√

2β1)

·
[

2
√

2β1 cosh([a+ x]
√

2β1)√
2[
√
β1h(β1) +

√
β2]

−
√

2β1h(β1)2 sinh([a+ x]
√

2β1)√
2[
√
β1h(β1) +

√
β2]

+ 2 sinh([a+ x]
√

2β1)

]
ds.

Proof. From (2.29), we have

Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
=

1√
2π

∫ ∞

0
e−

1
2
s2e

− s
√
z√
2

[
2β1[1−h2(β1)]√
β1h(β1)+

√
β2

]
e−

√
2β1[s

√
zh(β1)]

sinh(2a
√

2β1)

[
2
√

2β1 cosh([a+ x]
√

2β1)√
2[
√
β1h(β1) +

√
β2]

]
ds

− 1√
2π

∫ ∞

0
e−

1
2
s2e

− s
√
z√
2

[
2β1[1−h2(β1)]√
β1h(β1)+

√
β2

]
e−

√
2β1[s

√
zh(β1)]

sinh(2a
√

2β1)

[√
2β1h(β1)2 sinh([a+ x]

√
2β1)√

2[
√
β1h(β1) +

√
β2]

]
ds

+
1√
2π

∫ ∞

0
e−

1
2
s2e

− s
√
z√
2

[
2β1[1−h2(β1)]√
β1h(β1)+

√
β2

]
e−

√
2β1[s

√
zh(β1)]

sinh(2a
√

2β1)

(
2 sinh([a+ x]

√
2β1)

)
ds.

(2.31)

Substituting this into (2.30) gives us the desired triple Laplace transform.

Remark 2.7.3. We can derive the joint densities using the same steps as in the previous

cases.

2.8 Concluding Remarks

In this chapter, we derived and discussed in details the joint Laplace transform and the joint

density functions of the Brownian occupation time processes under three different cases. Our

results find applications in the study of insurance risk models. This is discussed in Chapter

1 .
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2.9 Appendix

2.9.1 Proof of Lemma 2.5.1

We provide some steps to obtain the expression in Lemma 2.5.1.

Proof. With the starting point X0 = x < −a (ie starting in state 3), applying the optional

stopping theorem to the martingales fi(Xt, Vt, Z
(1)
t , Z

(2)
t ), i = 1, 2, 3 derived with a bounded

stopping time τ ∧ t gives

E
[
e−β1Vτ∧t e−β2Z

(2)
τ∧t eγZ

(1)
τ∧tf1(Xτ∧t)|X0 = x

]
= eβ1V0e−β2Z

(2)
0 eγZ

(1)
0 f3(X0), (2.32)

where Ex [·] = E [·|X0 = x]. Taking limits for t → ∞ and recalling from the definition of τ

that Z
(1)
τ = z gives

Ex
[
e−β1Vτ e−β2Z

(2)
τ eγZ

(1)
τ f1(Xτ )

]
= f3(x),

Ex
[
e−β1Vτ e−β2Z

(2)
τ f1(Xτ )

]
= e−γzf3(x).

(2.33)

We proceed by using a change of variable of the form ω =
√

2γ and multiplying both sides

with 1
ω2+ξ2

and integrating with respect to ω from 0 to ∞. Using Schwinger parametrisation,

the right hand side of the expression gives

∫ ∞

0
e−γzf3(x)

1

ω2 + ξ2
dω = B1e

−
√
2β1ae

√
2β2(a+x) 2

√
2β1√

2β1 +
√

2β2

∫ ∞

0
e−ξ

2u

√
π

2
√

z
2 + u

du.

(2.34)

Setting t =
√

z
2 + u and 1

2s
2 = ξ2t2 gives

∫ ∞

0
e−γzf3(x)

1

ω2 + ξ2
dω = B1e

−
√
2β1ae

√
2β2(a+x) 2

√
2β1√

2β1 +
√

2β2

π

ξ
eξ

2 z
2 Φ(−ξ

√
z), (2.35)

where Φ is the CDF of a standard Normal distribution. Letting ω =
√

2γ and applying

Fubini’s theorem on the left hand side gives∫ ∞

0
Ex
[
e−β1Vτ e−β2Z

(2)
τ f1(Xτ )

] 1

ω2 + ξ2
dω

= Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

](
e
√
2β1a + e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
B1

π

2ξ

+ Ex
[
e−β1Vτ e−β2Z

(2)
τ

(
1 − e−ξ[Xτ−a]

)](
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)√
2β1B1

π

2ξ2
.

(2.36)
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Equating the expressions on the LHS and RHS then gives

Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

]
=

4ξe−
√
2β1ae

√
2β2(a+x)

√
2β1 e

ξ2 z
2 Φ(−ξ

√
z)

H(ξ, β1, β2)

−

√
2β1

[
e
√
2β1a(

√
2β1 +

√
2β2) − e−3

√
2β1a(

√
2β1 −

√
2β2)

]
Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
H(ξ, β1, β2)

,

(2.37)

where the function H is such that

H(ξ, β1, β2) = ξ
[
e
√
2β1a(

√
2β1 +

√
2β2) + e−3

√
2β1a(

√
2β1 −

√
2β2)

]
−
√

2β1

[
e
√
2β1a(

√
2β1 +

√
2β2) − e−3

√
2β1a(

√
2β1 −

√
2β2)

]
.

Looking at the expression in (2.37), we can say that there exists a ξ∗ > 0 such that when

the denominator to go to zero at ξ∗, the numerator goes to 0 at the same point for the triple

Laplace transform to exist and not be identically 0. The value of ξ∗ can be determined from

the denominator by setting H(ξ, β1, β2) = 0 and this gives

ξ∗ =
2β1√

2β1 h(β1) +
√

2β2

(
1 − h2(β1)

)
+
√

2β1 h(β1),

where the function h(β1) is as defined in (2.12) Setting the numerator to 0 at ξ∗ and notice

that with s = t− ξ
√
z, we have

eξ
2 z
2 Φ(−ξ

√
z) = eξ

2 z
2

∫ ∞

ξ
√
z

1√
2π
e−

1
2
t2dt =

1√
2π

∫ ∞

0
e−

1
2
s2 e−sξ

√
zds, (2.38)

gives the joint Laplace transform

Ex
[
e−β1Vτ e−β2Z

(2)
τ

]
=

4ξ∗e−
√
2β1ae

√
2β2(a+x)

√
2β1

1√
2π

∫∞
0 e−

1
2
s2 e−sξ

∗√zds
√

2β1
[
e
√
2β1a(

√
2β1 +

√
2β2) − e−3

√
2β1a(

√
2β1 −

√
2β2)

]
=

4√
2π

∫ ∞

0
e−

1
2
s2 exp

(
−s

√
z

√
2β1(1 − h2(β1))√
β1 h(β1) +

√
β2

)
1

e
√
2β1a − e−3

√
2β1a

· e
−s

√
2zβ1h(β1)e−

√
2β1ae

√
2β2(a+x)

√
β1√

β1h(β1) +
√
β2

ds.
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2.9.2 Proof of Lemma 2.6.1

We now provide the steps to obtain the expression for the double Laplace transform in Lemma

2.6.1.

Proof. With the starting point X0 = x > a, applying the optional stopping theorem to the

martingales fi(Xt, Vt, Z
(1)
t , Z

(2)
t ), i = 1, 2, 3 with a bounded stopping time τ ∧ t gives

E
[
e−β1Vτ∧te−β2Z

(2)
τ∧teγZ

(1)
τ∧tf1(Xτ∧t)

∣∣∣∣X0 = x

]
= e−β1V0e−β2Z

(2)
0 eγZ

(1)
0 f1(X0).

Taking limits for t→ ∞ gives us

Ex
[
e−β1Vτ e−β2Z

(2)
τ eγzf1(Xτ )

]
= f1(x),

Ex
[
e−β1Vτ e−β2Z

(2)
τ f1(Xτ )

]
= e−γzf1(x).

We proceed using the same steps as in the previous section. With the change of variable of

the form ω =
√

2γ, multiplying both sides with 1
ω2+ξ2

and integrating with respect to ω over

the range of ω, the right hand side of the expression gives∫ ∞

0
e−γzf1(x)

1

ω2 + ξ2
dω

=

∫ ∞

0
e−

ω2

2
z 1

ω2 + ξ2

(
e
√
2β1a + e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
B1 cos(ω[x− a])dω

+

∫ ∞

0
e−

ω2

2
z 1

ω2 + ξ2

(
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

) √
2β1√
2γ

B1 sin(ω[x− a])dω.

The integrals can be computed as follows:

• The first integral with cosine function∫ ∞

0
e−

ω2

2
z 1

ω2 + ξ2
cos(ω[x− a])dω

=
π

4ξ
e

z
2
ξ2
[
e−ξ(x−a)erfc

(√
z

2
ξ − x− a√

2z

)
+ eξ(x−a)erfc

(√
z

2
ξ +

x− a√
2z

)]
,

with the conditions

ℜ
(z

2

)
> 0, ℜ (ξ) > 0,
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where erfc(z) is the complementary error function defined as

erfc(z) = 1 − erf(z).

• Using partial fraction, the second integral with sine function∫ ∞

0
e−

ω2

2
z 1

ω2 + ξ2
1√
2γ

sin(ω[x− a])dω

=

∫ ∞

0
e−

ω2

2
z 1

ω(ω2 + ξ2)
sin(ω[x− a])dω

=
π

2ξ2
erf

(
x− a√

2z

)
− π

4ξ2
e

z
2
ξ2e−ξ(x−a)erfc

(√
z

2
ξ − x− a√

2z

)
+

π

4ξ2
e

z
2
ξ2eξ(x−a)erfc

(√
z

2
ξ +

x− a√
2z

)
,

with the conditions

arg
(z

2

)
<
π

2
, ℜ

(√
z

2

)
> 0, ℜ(ξ) > 0.

Therefore, RHS of the expression becomes∫ ∞

0
e−γzf1(x)

1

ω2 + ξ2
dω

=

[
e−ξ(x−a)erfc

(√
z

2
ξ − x− a√

2z

)
+ eξ(x−a)erfc

(√
z

2
ξ +

x− a√
2z

)]
·
(
e
√
2β1a + e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
B1

π

4ξ
e

z
2
ξ2

+

[
π

2ξ2
erf

(
x− a√

2z

)
− π

4ξ2
e

z
2
ξ2e−ξ(x−a)erfc

(√
z

2
ξ − x− a√

2z

)]
·
(
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)√
2β1B1

+

(
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)√
2β1B1

π

4ξ2
e

z
2
ξ2eξ(x−a)erfc

(√
z

2
ξ +

x− a√
2z

)
.

Now, computing the left hand side of the expression with ω =
√

2γ and Fubini’s theorem, we
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have∫ ∞

0
Ex
[
e−β1Vτ e−β2Z

(2)
τ f1(Xτ )

] 1

ω2 + ξ2
dω

= Ex
[
e−β1Vτ e−β2Z

(2)
τ

∫ ∞

0

{(
e
√
2β1a + e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
B1 cos(ω[Xτ − a])

+

(
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

) √
2β1
ω

B1 sin(ω[Xτ − a])

}
1

ω2 + ξ2
dω

]
= Ex

[
e−β1Vτ e−β2Z

(2)
τ

(
e
√
2β1a + e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
B1

π

2ξ
e−ξ[Xτ−a]

]
+ Ex

[
e−β1Vτ e−β2Z

(2)
τ

(
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)√
2β1B1

(
1 − e−ξ[Xτ−a]

) π

2ξ2

]
.

Let us define the following functions to simplify our calculations:

h(β1) =
1 + e−4

√
2β1a

1 − e−4
√
2β1a

=
cosh(2a

√
2β1)

sinh(2a
√

2β1)
,

g1(β1, β2) :=

(
e
√
2β1a + e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
=

1√
2β1 +

√
2β2

[√
2β1h(β1) +

√
2β2

] (
e
√
2β1a − e−3

√
2β1a

)
,

g2(β1, β2) :=

(
e
√
2β1a − e−3

√
2β1a

√
2β1 −

√
2β2√

2β1 +
√

2β2

)
=

1√
2β1 +

√
2β2

[√
2β1 +

√
2β2h(β1)

] (
e
√
2β1a − e−3

√
2β1a

)
.

Equating the expressions for LHS and RHS gives

Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

](
g1(β1, β2) −

√
2β1
ξ

g2(β1, β2)

)
+ Ex

[
e−β1Vτ e−β2Z

(2)
τ

] √2β1
ξ

g2(β1, β2)

=
1

2
e

z
2
ξ2e−ξ(x−a)erfc

(√
z

2
ξ − x− a√

2z

)[
g1(β1, β2) −

√
2β1
ξ

g2(β1, β2)

]
+

√
2β1
ξ

g2(β1, β2)erf

(
x− a√

2z

)
+

1

2
e

z
2
ξ2eξ(x−a)erfc

(√
z

2
ξ +

x− a√
2z

)[
g1(β1, β2) +

√
2β1
ξ

g2(β1, β2)

]
.
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Making the triple Laplace transform the subject gives

Ex
[
e−β1Vτ e−β2Z

(2)
τ e−ξ[Xτ−a]

]
=

1

ξg1(β1, β2) −
√

2β1g2(β1, β2)

·
[

1

2
e

z
2
ξ2e−ξ(x−a)erfc

(√
z

2
ξ − x− a√

2z

)[
ξg1(β1, β2) −

√
2β1g2(β1, β2)

]
+

1

2
e

z
2
ξ2eξ(x−a)erfc

(√
z

2
ξ +

x− a√
2z

)[
ξg1(β1, β2) +

√
2β1g2(β1, β2)

]
+
√

2β1g2(β1, β2)erf

(
x− a√

2z

)
− Ex

[
e−β1Vτ e−β2Z

(2)
τ

]√
2β1g2(β1, β2)

]
.

(2.39)

Looking at the expression in (2.39), we can say that there exists a ξ∗ > 0 such that when the

denominator goes to 0 at ξ∗, the numerator goes to 0 at the same point for the triple Laplace

transform to exist and not to be identically 0. The value of ξ∗ can be determined by setting

the denominator to 0.

0 = ξ∗g1(β1, β2) −
√

2β1g2(β1, β2),

ξ∗ =
√

2β1
g2(β1, β2)

g1(β1, β2)

=
√

2β1

1√
2β1+

√
2β2

[√
2β1 +

√
2β2h(β1)

] (
e
√
2β1a − e−3

√
2β1a

)
1√

2β1+
√
2β2

[√
2β1h(β1) +

√
2β2
] (
e
√
2β1a − e−3

√
2β1a

)
=

2β1√
2β1h(β1) +

√
2β2

[
1 − h2(β1)

]
+
√

2β1h(β1).

Notice that with s = t−
[√

z
2ξ + x−a√

2z

]
, we can derive

erfc

(√
z

2
ξ +

x− a√
2z

)
=

2√
π
e−

z
2
ξ2e−(x−a)ξe−

(x−a)2

2z

∫ ∞

0
e−s

2
e
−2s

(√
z
2
ξ+x−a√

2z

)
ds.

The double Laplace transform can then be obtained by setting the numerator to be 0 at

ξ∗.
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Chapter 3

Interrupted Brownian Motion

3.1 Introduction

A path dependent option is an option, as the name suggests, whose payoff is determined by

the path history of the underlying asset price either throughout the whole or part of the life

of the option. Path dependent options have received much attention in the recent years due

to their innovative structure which can be designed to allow for different payoff outcomes in

order to accommodate different risk profiles. Barrier option is a path dependent option whose

payoff depends on the price of the underlying asset breaching a predetermined barrier level.

The option then either comes into existence or vanishes prior to expiration, depending on the

type or structure of the barrier option. Barrier options are widely used because they allow

the buyers to incorporate their views on the movement of the asset price in the structure of

the options. For example, a buyer who is concerned about possible sharp increase in asset

price can invest in a knock-out barrier option as it can protect the buyer from unlimited lia-

bilities when there is a rise in the underlying asset price. For more results on barrier options

in discrete time setting, see P Wilmott and Howison (1993), Chesney et al. (1995), Pliska

(1997), Zhang (1997), Wilmott (1998) and Musiela and Rutkowski (2006). For continuous

time setting, see Rubinstein (1991), Rich (1994), Heynen and Kat (1995), Carr and Chou

(1997), Baldi et al. (1999), Andersen et al. (2000), Linetsky (2004a) and Suchanecki (2004)

and Jeanblanc et al. (2009).

Another type of option with path dependency structure is the lookback option whose payoff
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is related to the optimal value of the price of the underlying asset (either the maximum or

the minimum ) over certain period or the life of the option. Lookback options are attractive

because they help to minimize regrets by lowering the uncertainty on the optimal timing

on entering into or exiting from the market. This option is therefore particularly popular

among buyers with some market movements anticipation during the life of the option but not

knowing the exact time of these occurrences. Early works on lookback options can be found

in Goldman et al. (1979a), Goldman et al. (1979b) and Conze (1991). More results can be

found in He et al. (1998), Shreve et al. (2004), Musiela and Rutkowski (2006) and Jeanblanc

et al. (2009).

An Asian option is a type of path dependent option in which the average of the underlying

asset price over some duration of the life of the option is used to determine its payoff. This

option is desired by many as the Asian option is usually cheaper than European or American

option and its averaging structure helps to reduce price manipulation of the underlying asset

close to the maturity period. For more results on Asian options, see Geman and Yor (1992),

Yor (1995), Dufresne (2005), Schröder (2000), Donati-Martin et al. (2001), Geman and Yor

(2001), Schröder (2001), Carr and Schröder (2004), Dufresne (2000), Linetsky (2004b) and

Jeanblanc et al. (2009).

We now look at a special option with path dependency structure, the α-quantile option for

0 < α < 1. The study of the α-quantile option revolves around the α-quantile of the process

W = {Ws, 0 ≤ s ≤ t} which is defined as

M(α, t) = inf{x :

∫ t

0
1{Xs≤x}ds > αt},

for σ ∈ R+, µ ∈ R and Wt = µt+ σBt where B = {Bt, t ≥ 0} is a one-dimensional Brownian

motion starting from 0 as in Definition 1.0.1. The α-quantile option first introduced by Miura

(1992) and the pricing of this option is investigated using Feynman-Kac formula by Akahori

(1995) who derived the explicit form of the distribution function of the occupation time of

a Brownian motion and Dassios (1995) who showed the identity in law between the sum of
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maximum and minimum of independent Brownian motions and the Brownian quantiles:

M(α, t)
(d)
= sup

0≤s≤αt
W (1)
s + inf

0≤s≤(1−α)t
W (2)
s ,

where
(d)
= denotes equality in distribution and W 2

s is an independent copy of W
(1)
1 . More

results on the alpha-quantile of a Brownian motion can be found in Embrechts et al. (1995),

Yor (1995), Takács (1996), Fusai (2000), Dassios (2005), Detemple (2005) and Jeanblanc

et al. (2009).

In this chapter, we will focus on the double-quantile option which we have to consider for

0 < α < 1:

M(α, t) = inf{x :

∫ t

0
1{Ws≥x}ds+

∫ t

0
1{Ws≤−x}ds > αt}.

This leads us to the study of the distribution of occupation times of the Brownian motion

above a predetermined level x and below the level −x for any x ∈ R+. We proceed by

introducing a new version of the Brownian motion which we call the Interrupted Brownian

motion. It is the continuous version of a Brownian motion where we eliminate the paths of

the Brownian motion within the band from −x to x and join the remaining paths.

The main focus of this chapter is the construction of the interrupted Brownian motion using

an reflected Brownian motion. We derive the stochastic differential equation (SDE) of the

interrupted Brownian motion and compare this to the SDEs of some well-known processes.

We then obtain some distributional properties of the interrupted Brownian motion such as

the joint Laplace transform at a deterministic time t of the reflected Brownian motion and

the number of interruption as well as the probability generating function using the definition

of the infinitesimal generator and the extension of the martingale methodology developed

by Dassios and Embrechts (1989) and Dassios and Jang (2003). We also look at the some

distributional properties of the interrupted Brownian at the first passage time. In the last part

of this chapter, we employ a new process, called the perturbed Brownian motion introduced

by Dassios and Wu (2011) in order to study the excursion of the interrupted Brownian

motion. We then derive the Laplace transform of the maximum height of the excursion of an

interrupted Brownian motion with exponential time.
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3.2 Connection

In this section, we look at the connection of the interrupted Brownian motion with other

variants of Brownian motion by deriving the stochastic differential equations, (SDE) of the

processes. The main ingredient for this section is the well known Doob’s h-transform discussed

in Doob (1957).

Theorem 3.2.1. Let X = {Xt, t ≥ 0} be a 1-dimensional diffusion starting at X0 = x with

SDE of the form

dXt = µ(Xt)dt+ σ(Xt)dWt,

with infinitesimal generator applied to a function f ∈ D(A)

Af(t, x) =
∂f

∂t
(t, x) + µ(x)

∂f

∂x
(t, x) +

1

2
σ2(x)

∂2f

∂x2
(t, x), (3.1)

and the function h(t, x) is a positive harmonic function. Then, referring to Williams (1974)

and Doob (1957), we can define the probability measure P∗ as follows:

E∗
x(Z) =

1

h(X0)
EX0(h(Xt)Z) =

1

h(x)
Ex(h(Xt)Z),

for Z a Ft-measurable random variable. The new measure P∗ is the Doob’s h-transform of

P. Under this measure P∗, the process {Xt, t ≥ 0} is a Markov process with infinitesimal

generator A∗ for a bounded and measurable function f of the form:

A∗f = h−1A(hf).

From (3.1), it follows that the infinitesimal generator under P∗ applied to a function f ∈

D(A∗) can be derived as:

A∗f(t, x) =
∂f

∂t
(t, x) +

(
µ(x) +

σ2(x)

h(t, x)

∂h

∂x
(t, x)

)
∂f

∂x
(t, x) +

1

2
σ2(x)

∂2f

∂x2
(t, x). (3.2)

3.2.1 SDE: Brownian Bridge

In order to construct a Brownian bridge, W (Br) = {W (Br)
t ), 0 ≤ t ≤ T} from x to y for every

y ∈ R, we have to condition on its starting and ending points. We consider the transition

probability density for a Brownian motion such that given W0 = x, the probability density
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for WT−t, where T is fixed, is given by:

h(t, x, y) =
1√

2π(T − t)
e
− (y−x)2

2(T−t) .

Therefore, using (3.2) with µ = 0 and σ = 1, we can deduce that the infinitesimal generator

of the conditioned process is

A∗f(t, x)

=
A(fh)(t, x)

h1(t, x)

(3.2)
=

∂f

∂t
+

(
µ(x) +

σ(x)

h1

∂h1
∂x

)
∂f

∂x
+

1

2
σ(x)

∂2f

∂x2

=
∂f

∂t
+

(
µ(x) +

σ(x)

h1

y − x

(T − t)
√

2π(T − t)
e
− x2

2(T−t)

)
∂f

∂x
+

1

2
σ(x)

∂2f

∂x2

(µ=0,σ=1)
=

∂f

∂t
+

(
y − x

T − t

)
∂f

∂x
+

1

2

∂2f

∂x2
.

The dynamics of the Brownian bridge for t ∈ [0, T ] is then of the form

dW
(Br)
t =

y −W
(Br)
T

T − t
dt+ dWt. (3.3)

For more properties of Brownian bridge, see for example Pitman (1999) and Vervaat (1979).

3.2.2 SDE: Brownian Meander

For a Brownian meander, W (Me) = {W (Me)
t ), 0 ≤ t ≤ T}, we condition on a Brownian

motion to stay positive until T . This is equivalent to conditioning on the event that the

first time the Brownian motion reaches zero is after the period [0, T ]. Therefore, we use the

function h(t, x) for Brownian meander of the following form:

h(t, x) =

∫ ∞

T−t
fτ0(x)ds

=

∫ ∞

T−t

x√
2πs3

e−
x2

2s ds

= erf

(
x√

2(T − t)

)
.
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Using the Doob’s h-transform in Theorem 3.2.1, the conditioned process has the infinitesimal

generator as follwos:

A∗f(t, x) =
Af(t, x)

h(t, x)

=
∂f

∂t
(t, x) +

1

erf

(
x√

2(T−t)

) 2 e
− x2

2(T−t)√
2π(T − t)

∂f

∂x
(t, x) +

1

2

∂2f

∂x2
(t, x),

and the dynamics of a Brownian meander is:

dW
(Me)
t =

 2√
2π(T − t)

1

exp

([
W

(Me)
t√
2(T−t)

]2)
erf

(
W

(Me)
t√
2(T−t)

)
 dt+ dWt. (3.4)

For more properties of Brownian meander, see for example Durrett and Iglehart (1977),

Pitman (1999).

3.2.3 SDE: Brownian Excursion

For the Brownian excursion W (Ex) = {W (Ex)
t , 0 ≤ t ≤ T}, we condition on the event of

hitting 0 at time T and not before. We choose the function h to be the first hitting time

density such that

h(t, x) =
x√

2π(T − t)3
e
− x2

2(T−t) .

The infinitesimal generator of the conditioned process is:

A∗f(t, x)

=
A(fh1)(t, x)

h1(t, x)

(µ=0,σ=1)
=

∂f

∂t
+

(
1

x
− x

T − t

)
∂f

∂x
+

1

2

∂2f

∂x2
.

(3.5)

Therefore, we can obtain the SDE for a Brownian excursion,

dW
(Ex)
t =

(
1

W
(Ex)
t

− W
(Ex)
t

T − t

)
dt+ dWt. (3.6)

For more properties of Brownian excursion, see for example Durrett and Iglehart (1977),
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Pitman (1999) and Vervaat (1979).

3.3 Construction of Interrupted Brownian Motion

3.3.1 Definition

We present the formal definition of an interrupted Brownian motion.

Definition 3.3.1. Interrupted Brownian Motion

The interrupted Brownian motion can be constructed by defining it as

(−1)NtXt, (3.7)

where

• {Nt, t ≥ 0}, number of interruption is a renewal process defined by the sequence of

arrival time process (T0, T1, . . .) such that the time of the n-th arrival is

Tn =

n∑
i=1

L
(τ)
i ,

where L
(τ)
i is the occupation time process of a Brownian motion defined as

L
(τ)
i =

∫ τ

0
1{B(i)

s >0}ds,

for τ = inf{s ≤ t : Bs = −2a} for B a standard Brownian motion.

• {Xt, t ≥ 0} is a reflected Brownian motion with reflecting barrier at 0.

From this definition, it is clear that the interrupted Brownian motion is a continuous

version of the Brownian motion whose paths within a specified interval have been eliminated.

This is further presented by Figures 3.1 and 3.2, which show the construction of an interrupted

Brownian motion with the standard Brownian motion. This is done by discarding the negative

negative excursions and adjusting the time scale to provide appropriate representation of the

bahviour of the interrupted Brownian motion.
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Figure 3.1: Standard Brownian Motion with Renewal.

Figure 3.2: Interrupted Brownian Motion.

3.3.2 SDE: Interrupted Brownian Motion

In this subsection, we provide, in details, the derivation of the SDE of an interrupted Brownian

motion. Let us define the occupation time process as follows:

Γt := meas{0 ≤ s ≤ t;Ws > 0},

=

∫ t

0
1{Ws>0}ds.

(3.8)
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Let us now introduce the right-continuous inverses of the occupation time {Γ+(t), t ≥ 0} as

Γ−1(τ) = inf{t ≥ 0; Γt > τ}; 0 ≤ τ <∞. (3.9)

The interrupted Brownian motion is then given as

WΓ−1(τ)

∣∣∣∣τ < Γ(τ−2a). (3.10)

From Karatzas and Shreve (1991), it is known that the time changed process

WΓ−1(t); t ≥ 0, (3.11)

is a continuous Markov process. If f is a locally integrable function such that the support

of f is an interval which contains the origin, then from Bertoin (1999), we have that the

generator of the process WΓ−1
τ

is such that

Af(t, x) =
∂f

∂t
(t, x) +

1

2

∂2f

∂x2
(t, x); x > 0, (3.12)

such that

lim
x↓0

f ′(t, x) = 0.

For further reference, we direct readers to McKean (1963), Itō and McKean (1974b) and

Jeanblanc et al. (2009). In order to take into account the condition for the interrupted

Brownian motion, we use Doob’s h-transform where h is the function such that

h(τ, x) = 1 + e
x
2a e

τ
2(2a)2 erfc

(
x√
2τ

+

√
τ√

2(2a)

)
− erfc

(
x√
2τ

)
. (3.13)

Therefore, we have that

∂h

∂x
(τ, x) =

1

2a
e

x
2a e

τ
2(2a)2 erfc

(
x√
2τ

+

√
τ√

2(2a)

)
. (3.14)
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With τ = T − t, the infinitesimal generator A∗ for the conditioned process is then given as

A∗f(t, x)

=
∂f

∂t
(t, x) +

1

2

∂2f

∂x2
(t, x)

+


1
2a e

x
2a e

T−t

2(2a)2 erfc

(
x√

2(T−t)
+

√
T−t√
2(2a)

)
1 + e

x
2a e

T−t

2(2a)2 erfc

(
x√

2(T−t)
+

√
T−t√
2(2a)

)
− erfc

(
x√

2(T−t)

)
 ∂f∂x (t, x),

(3.15)

for x ∈ R+ and with the condition

lim
x↓0

f ′(x) = 0.

The dynamics of the interrupted Brownian motion, Y = {Yt, 0 ≤ t ≤ T} is then given as

dYt =


1
2a e

Yt
2a e

T−t

2(2a)2 erfc

(
Yt√

2(T−t)
+

√
T−t√
2(2a)

)
1 + e

Yt
2a e

T−t

2a2 erfc

(
Yt√

2(T−t)
+

√
T−t√
2(2a)

)
− erfc

(
Yt√

2(T−t)

)
 dt+ dWt. (3.16)

Long Term Behavior

In this part, we investigate the long term behaviour of the interrupted Brownian motion.

Using the SDE derived in (3.16), we see that as T → ∞, the drift term becomes

lim
τ→∞

1
2ae

x
2a e

τ
2(2a)2 erfc

(
x√
2τ

+
√
τ√

2(2a)

)
1 + e

x
2a e

τ
2(2a)2 erfc

(
x√
2τ

+
√
τ√

2(2a)

)
− erfc

(
x√
2τ

)
=

1

2a+ x
.

The long term dynamics of the interrupted Brownian motion is

dYt =
1

2a+ Yt
dt+ dWt; Yt > 0.

We can see that as T → ∞, the process behaves like a Bessel process staying above the level

2a.
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3.3.3 Infinitesimal Generator

We use the martingale approach discussed in Remark 2.2.1 to find a martingale of the form

f(Xt,Wt, t),

where {Xt, t ≥ 0} is a reflected Brownian motion and the process W = {Wt, t ≥ 0} is given

as

Wt =

∫ t

0
e−βsθNse−γXsds.

The infinitesimal generator of the process {(Xt, t), t ≥ 0} acting on a function fn : R2
+ → R

belonging to its domain is given by:

Afn(x, t) =
∂fn
∂t

(x, t) +
1

2

∂2fn
∂x2

(x, t); x > 0.

We then extend this process by adding one other component, the process {Wt, t ≥ 0} so

that the infinitesimal generator of the process {(Xt,Wt, t), t ≥ 0} acting on a function

fn : R3
+ → R belonging to its domain is given by:

Afn(x,w, t) =
∂fn
∂t

(x,w, t) + e−βtθne−γx
∂fn
∂w

(x,w, t) +
1

2

∂2fn
∂x2

(x,w, t). (3.17)

Let us assume that fn takes the following form:

fn(x,w, t) = w + e−βtfn(x). (3.18)

Substituting (3.18) into (3.17) and setting it to 0, we have to solve the second-order linear

non-homogeneous differential equation of the form:

− βfn(x) + θne−γx +
1

2
f ′′n(x) = 0, (3.19)

where f ′′n(x) is the second derivative with respect to x of fn(x). The solution to (3.19) is the

sum of the particular solution of the form e−γx and the complementary solution which can

be obtained by solving the homogeneous differntial equation:

1

2
f ′′n(x) − βfn(x) = 0.
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We can obtain that fn(x) as:

fn(x) =
2θ2e−γx

2β − γ2
+ Cne

−
√
2βx, (3.20)

where we have also ensured that fn as defined above is bounded. In order to derive a condition

satisfied by the function fn(x) for the interrupted Brownian motion, we start by restricting a

standard Brownian motion to only run above level −2a where a > 0 with interruption levels

at 0 and −2a. By imposing some differentiability conditions and by forcing this Brownian

motion to start afresh at the level 0 when it hits the level −2a, we can establish a condition

for the function fn(x). We then include Nt by recording the number of times the process

restarts. With this, we can deduce that the condition that fn(x) has to satisfy is

fn+1(0) = −2af ′n(0) + fn(0). (3.21)

Solving the function (3.20) subject to the condition (3.21), we can obtain fn(x):

fn(x) =
2θn

(
√

2β − γ)(
√

2β + γ)

[
e−γx +

1 + 2aγ − θ

θ − 1 − 2a
√

2β
e−

√
2βx

]
. (3.22)

Therefore, from (3.18), we see that fNt(Xt,Wt, t) is a martingale:

fNt(Xt,Wt, t)

= Wt + e−βtfNt(Xt)

= Wt + e−βt
(

2θNt

(
√

2β − γ)(
√

2β + γ)

[
e−γXt +

1 + 2aγ − θ

θ − 1 − 2a
√

2β
e−

√
2βXt

])
.

(3.23)

3.4 Distributional Properties

In this section, we derive the joint Laplace transform of (Nt, Xt), the probability generating

function (Nt, Xt) and the probability generating function of Nt.
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3.4.1 Joint Laplace Transform of E(θNte−γXt)

Theorem 3.4.1. For |θ| ≤ 1 and γ ∈ C+, the joint Laplace transform of E
(
θNte−γXt

)
is

obtained as:

∫ ∞

0
e−βsE

(
θNse−γXs

)
ds =

2θ2N0e−γx

2β − γ2
+

2θ2N0(1 + 2aγ − θ)

(2β − γ2)(θ − 1 − 2a
√

2β)
e−

√
2βx. (3.24)

Proof. From (3.23), we can easily deduce that Wt+e
−βtθNtfNt(Xt) is a martingale, therefore,

using property of martingales, we have that:

E(Wt) + E
(
e−βtθNtfNt(Xt)

)
= θN0fN0(X0).

Taking limits t → ∞ on both sides and using Dominated Convergence Theorem (DCT), we

have

lim
t→∞

E(Wt) + lim
t→∞

E
(
e−βtθNtfNt(Xt)

)
= lim

t→∞
θN0fN0(X0)

lim
t→∞

E(Wt) = θN0fN0(X0).

The second term goes to 0 as t → ∞ because |θ| ≤ 1 and the function fn is bounded by

construction. Following from the previous equation and with the aid of Fubini’s theorem,

(3.24) follows.

3.4.2 Probability Generating Function of (Nt, Xt)

Theorem 3.4.2. For |θ| ≤ 1 and γ ∈ C+, we can obtain the joint expectation of Nt and Xt

as:

E
(
θNte−γXt

)
= 2θ2N0e

(θ−1)2t

8a2 e−
(θ−1)x

2a
θ − 1

2aγ + θ − 1
+
θ2N0

2
e

tγ2

2 e−γxerfc

(
γ

√
t

2
− x√

2t

)

+ θ2N0e
tγ2

2 eγxerfc

(
γ

√
t

2
+

x√
2t

)[
1

2
− θ − 1

θ − 1 + 2aγ

]

− θ2N0(θ − 1)

θ − 1 + 2aγ
e

(θ−1)2t

8a2 e−
(θ−1)x

2a erfc

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)
,

(3.25)
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where erfc(x) is the complementary error function defined as

erfc(x) =
2√
π

∫ ∞

x
e−t

2
dt.

Proof. From (3.24), the joint Laplace transform of (Nt, Xt), we can invert with respect to β

to obtain E
(
θNse−γXs

)
. We can do this term by term:

• For the first term:

L−1
β

(
2θ2N0e−γx

2β − γ2

)
(t) = θ2N0e−γx+

1
2
γ2t. (3.26)

• For the second term, we invert the Laplace transform to get:

L−1
β

(
2θ2N0(1 + 2aγ − θ)

(2β − γ2)(θ − 1 − 2a
√

2β)
e−

√
2βx

)
(t)

= −e
γ2t
2 e−γxθ2N0 + 2θ2N0e

(θ−1)2t

8a2 e−
(θ−1)x

2a (θ − 1)
1

2aγ + θ − 1

+
θ2N0

θ − 1 + 2aγ
e

tγ2

2 e−γxerfc

(
γ

√
t

2
− x√

2t

)[
θ − 1

2
+ aγ

]

+
θ2N0

θ − 1 + 2aγ
e

tγ2

2 eγxerfc

(
γ

√
t

2
+

x√
2t

)[
aγ − θ − 1

2

]

− θ2N0(θ − 1)

θ − 1 + 2aγ
e

(θ−1)2t

8a2 e−
(θ−1)x

2a erfc

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)
.

(3.27)

The details on inverting this Laplace transform are included in the Appendix 3.6. Combining

(3.26) and (3.27), we have that the inversion with respect to β of (3.24) is (3.25).
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3.4.3 Joint Distribution of Nt and Xt

Theorem 3.4.3. For |θ| ≤ 1 and 1{A} be the indicator function, we have:

E
[
θNt1{Xt∈dy}

]
=
θ2N0(θ − 1)

2a
e

(θ−1)2t

8a2 e−
(θ−1)
2a

(x+y)

[
2 − erfc

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)]

+
θ2N0

√
2πt

[
e
−
(

y√
2t
− x√

2t

)2

+ e
−
(

y√
2t
+ x√

2t

)2]

− θ2N0(θ − 1)

2a
e−

x2

2t e−
θ−1
2a

y e
( θ−1

2a −x
t )

2

2
t

[
erf

(
y√
2t

−
(
θ−1
2a − x

t

)√
t

√
2

)

+erf

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)]
,

(3.28)

where erfc(x) is as defined earlier and erf, the error function is given as:

erf(x) =
2√
π

∫ x

0
e−t

2
dt.

Proof. With the expectation as defined in (3.25), we can derive the joint distribution of

Nt, the number of interruptions and Xt, the reflected Brownian motion by inverting the

expectation with respect to γ. We can do this term by term as before but with respect to γ

this time to obtain the joint distribution of Nt and Xt:

• For the first term:

L−1
γ

(
2θ2N0e

(θ−1)2t

8a2 e−
(θ−1)x

2a (θ − 1)
1

2aγ + θ − 1

)
(y)

=
θ − 1

a
θ2N0e

(θ−1)2t

8a2 e−
(θ−1)
2a

(x+y).

(3.29)

• For the second term:

L−1
γ

(
θ2N0

2
e

tγ2

2 e−γxerfc

(
γ

√
t

2
− x√

2t

))
(y)

=
θ2N0

√
2πt

e
−
(

y√
2t
− x√

2t

)2

.

(3.30)
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• For the third term

L−1
γ

(
θ2N0e

tγ2

2 eγxerfc

(
γ

√
t

2
+

x√
2t

)[
1

2
− θ − 1

θ − 1 + 2aγ

])
(y)

=
θ2N0

√
2πt

e
−
(

y√
2t
+ x√

2t

)2

− θ2N0(θ − 1)

2a
e−

x2

2t e−
θ−1
2a

y e
( θ−1

2a −x
t )

2

2
t

[
erf

(
y√
2t

−
(
θ−1
2a − x

t

)√
t

√
2

)

+ erf

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)]
.

(3.31)

• For the forth term

L−1
γ

(
− θ2N0(θ − 1)

θ − 1 + 2aγ
e

(θ−1)2t

8a2 e−
(θ−1)x

2a erfc

(
(θ − 1)

√
t

2a
√

2
− x√

2t

))
(y)

= −θ
2N0(θ − 1)

2a
e

(θ−1)2t

8a2 e−
(θ−1)
2a

(x+y)erfc

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)
.

(3.32)

Combining (3.29), (3.30), (3.31) and (3.32), we can obtain (3.28).

3.4.4 Probability Generating Function of Nt

Theorem 3.4.4. For |θ| ≤ 1, the probability generating function of N can be obtain as

E(θNt) =: GNt(θ)

= θ2N0 erf

(
x√
2t

)
+ θ2N0e

t(θ−1)2

8a2 e−
x(θ−1)

2a

[
2 − erfc

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)]
,

(3.33)

where erf(x) and erfc(x) are as defined earlier.

Proof. From equation (3.24), we have that

∫ ∞

0
e−βsE

(
θNse−γXs

)
ds =

2θ2N0e−γx

2β − γ2
+

2θ2N0(1 + 2aγ − θ)

(2β − γ2)(θ − 1 − 2a
√

2β)
e−

√
2βx.
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If we take limits γ → 0, we can obtain the following expression:

∫ ∞

0
e−βsE

(
θNs
)
ds =

2θ2N0

2β
+

2θ2N0(1 − θ)

(2β)(θ − 1 − 2a
√

2β)
e−

√
2βx.

This is the Laplace transform of the E(θNt). We can then obtain the probability generating

function by inverting the Laplace transform with respect to β to obtain (3.33).

Remark 3.4.5. We can also obtain the probability generating function for Nt in (3.33) from

(3.28) by integrating over the range of y.

Corollary 3.4.6. Given the probability generating function of Nt as above, we can derive

the P(Nt = n) using the following formula:

P(Nt = n) =
G

(n)
Nt

(0)

n!
,

where G
(n)
Nt

(θ) is the n-th derivative of GNt(θ). This gives us probability of the n numbers of

interruptions that the process had undergone.

Corollary 3.4.7. Using the definition of a probability generating function, we have that

GNt(θ) = E(θNt) =
∞∑
n=0

PNt(n)θn,

where PNt is the probability mass function of Nt. By setting θ = −1, we observe that

E
(
−1Nt

)
= P(Nt = 0) − P(Nt = 1) + P(Nt = 2) − P(Nt = 3) + ...

= P(Nt = even) − P(Nt = odd).

This shows us that when we choose the value of θ to be θ = −1, we obtain a sequence with

alternating signs and this gives us information about the sign of the interrupted Brownian

motion.
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3.4.5 Distribution of First Passage Time of Interrupted Brownian Motion

We want to find the first hitting time of the level b ∈ R+ of the interrupted Brownian motion

before the first interruption occurs. Let us define the following hitting times:

τ̃∗b := inf{t ≥ 0 : Yt ≥ b},

τb := inf{t ≥ 0 : Wt ≥ b},

τ−a,b := inf{t ≥ 0 : Wt /∈ (−a, b)},

(3.34)

where {Yt, t ≥ 0} is the interrupted Brownian motion and {Wt, t ≥ 0} is the standard

Brownian motion. Let us also define the occupation times of the standard Brownian motion

to be

Γ+
t :=

∫ t

0
1{Ws≥0}ds,

Γ̃
(c1,c2)
t :=

∫ t

0
1{c1≤Ws≤c2}ds.

where c1 and c2 are non-negative constants.

Theorem 3.4.8. The density of the first passage time of the level b > 0 of the interrupted

Brownian motion can be derived as

Px[τ̃∗b ∈ dy]

=


(x+ a)r̃cy(1, b, 0, a)dy; −a ≤ x ≤ 0,

ssy(x, b)dy + a · ssy(b− x, b) ∗ r̃cy(1, b, 0, a)dy; 0 ≤ x ≤ b,

(3.35)

where

• f(t) ∗ g(t) :=

∫ t

0
f(s)g(t− s)ds is the convolution of functions f and g.

• ssy(x, b) :=

∞∑
k=−∞

b− x+ 2kb√
2πy3

e
− (b−x+2kb)2

2y .

• r̃cy(1, b, 0, a) :=
∞∑
k=0

2(−1)k

ak+1

k∑
l=0

(−1)l
(
k

l

) ∞∑
j=0

(−1)j e
− (2b(k+j−l)+b)2

4y

√
2π y1−

k
2

(
k + j

j

)

·D1−k

(
2b(k + j − l) + b

√
y

)
,
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where Dn(x) is the parabolic cylinder function of order n.

Proof. Since the events {τb < τ−a} and {Wτ−a,b
= b} are equivalent, we then have

Px[τ̃∗b > t]

= Px[Γ+
τb
> t , τb < τ−a]

= Px[Γ̃(0,b)
τ−a,b

> t , Wτ−a,b
= b].

From Borodin and Salminen (2002), it is given that

Px[Γ̃(r,b)
τ−a,b

> t , Wτ−a,b
= b]

=


(x+ a)r̃cy(1, b− r, 0, r + a)dy, −a ≤ x ≤ r,

ssy(x− r, b− r)dy + (r + a) · ssy(b− x, b− r) ∗ r̃cy(1, b− r, 0, r + a)dy, r ≤ x ≤ b.

Setting r = 0 gives the desired result.

3.4.6 Joint Distribution of First Passage Time and Counter

We look at another approach to compute the first passage time of the interrupted Brownian

motion in this subsection. This approach gives us an additional piece of information, the

distribution of the counter N . Let us define the first hitting time τ to be:

τ = inf{t : Yt = γ}, (3.36)

where γ is a positive, attainable level.

Theorem 3.4.9. The joint distribution of the first passage time τ and the counter N is given
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as:

Ex
[
θNτ1{τ∈dy}

]
= θN0

∞∑
k=0

(−1)k(
2a
1−θ

)k k∑
l=0

(−1)l
(
k

l

) ∞∑
j=0

(−1)j e
− [2γ(k+j−l)+γ−x]2

4y

√
2πy1−

k
2

(
k + j

j

)

·D1−k

(
2γ(k + j − l) + γ − x

√
y

)

+ θN0

∞∑
k=0

(−1)k(
2a
1−θ

)k k∑
l=0

(−1)l
(
k

l

) ∞∑
j=0

(−1)je
− [2γ(k+j−l)+γ+x]2

4y

√
2πy1−

k
2

(
k + j

j

)

·D1−k

(
2γ(k + j − l) + γ + x

√
y

)

+ θN0

∞∑
k=0

(−1)k(
2a
1−θ

)k+1

k∑
l=0

(−1)l
(
k

l

) ∞∑
j=0

(−1)je
− [2γ(k+j−l)+γ−x]2

4y

√
2πy1−

k+1
2

(
k + j

j

)

·D−k

(
2γ(k + j − l) + γ − x

√
y

)

− θN0

∞∑
k=0

(−1)k(
2a
1−θ

)k+1

k∑
l=0

(−1)l
(
k

l

) ∞∑
j=0

(−1)je
− [2γ(k+j−l)+γ+x]2

4y

√
2πy1−

k+1
2

(
k + j

j

)

·D−k

(
2γ(k + j − l) + γ + x

√
y

)
,

(3.37)

where Dn(x) is the parabolic cylinder function of order n.

Proof. We have from (3.12) that the infinitesimal generator of an interrupted Brownian mo-

tion has the following form:

Afn(x, t) =
∂fn(x, t)

∂t
+

1

2

∂2fn(x, t)

∂x2
; x > 0,

with the following condition:

fn+1(0) = −2af ′n(0) + fn(0). (3.38)

Using a solution of the form

fn(x, t) = e−βtfn(x) = e−βtθnf(x),
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we have that

f(x) = C1e
√
2βx + C2e

−
√
2βx.

Substituting the f(x) obtained into condition (3.38), we have

C1 =

2a
√
2β

θ−1 − 1

2a
√
2β

θ−1 + 1
C2.

We see that for boundedness of C1 and C2, we need θ ̸= 1. Therefore, f(x) is such that

f(x) =

(
2a

√
2β

θ−1 − 1

2a
√
2β

θ−1 + 1

)
C2e

√
2βx + C2e

−
√
2βx.

We then conclude that

e−βtθNtf(Xt),

is a martingale. Using Doob’s optional stopping theorem, we have that

Ex
[
e−βτθNτ f(Xτ )1{τ<t}

]
+ Ex

[
e−βtθNtf(Xt)1{t<τ}

]
= e−β(0)θN0f(X0)

Ex
[
e−βτθNτ

]
= θN0

f(x)

f(γ)

θN0


(

2a
√
2β

θ−1
−1

2a
√
2β

θ−1
+1

)
C2e

√
2βx + C2e

−
√
2βx(

2a
√
2β

θ−1
−1

2a
√

2β
θ−1

+1

)
C2e

√
2βγ + C2e−

√
2βγ

 (3.4.6)
= Ex

[
e−βτθNτ

]

θN0

[
2a

√
2β

θ−1 cosh
(√

2βx
)
− sinh

(√
2βx

)
2a

√
2β

θ−1 cosh
(√

2βγ
)
− sinh

(√
2βγ

)] = Ex
[
e−βτθNτ

]
.

We have included in the condition |θ| < 1 in our calculations. We can then obtain the desired

result (3.37) using Borodin and Salminen (2002) with the following conditions:

2a

1 − θ
̸= 0; γ > 0; x < γ; x > −γ.
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3.5 Perturbation Method

3.5.1 Formulation of Problem

We would like to study the excursions of the interrupted Brownian motion by first studying

the excursions of a Brownian motion. However, due to the properties of paths of Brownian

motion, the Brownian motion has an infinite number of very small excursions which make

studying the excursion results very difficult. Therefore, in an attempt to overcome this issue,

we introduce a new process, the perturbed Brownian motion, X(ϵ), where ϵ > 0. Let X be

a standard Brownian motion starting from X0 = 0. Define a sequence of stopping times as

follows:

σ−1,ϵ = 0

σ+1,ϵ = inf{t ≥ σ−1,ϵ : Xt = ϵ}

σ−2,ϵ = inf{t ≥ σ+1,ϵ : Xt = 0}

σ+n,ϵ = inf{t ≥ σ−n,ϵ : Xt = ϵ}

σ−n+1,ϵ = inf{t ≥ σ−n,ϵ : Xt = 0},

where n = 1, 2, . . .. Let us now define the perturbed Brownian motion as follows

X
(ϵ)
t =


Xt − ϵ; σ−k,ϵ ≤ t ≤ σ+k,ϵ

Xt; σ+k,ϵ ≤ t ≤ σ−k+1,ϵ.

ϵ

−ϵ
t

X
(ϵ)
t

Figure 3.3: Brownian motion Xt (before perturbation).
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ϵ

−ϵ
t

X
(ϵ)
t

Figure 3.4: Perturbed Brownian motion X
(ϵ)
t

The process X
(ϵ)
t can be thought of as a Brownian motion with the level 0 as a boundary

and the process jumps to the other side of the boundary whenever the boundary is hit. We

can see that the process X
(ϵ)
t has alternating positive and negative excursions with length of

each excursion being greater than 0, making 0 an irregular point.

Let t be the new clock for the interrupted Brownian motion. This clock only accumulates

time when the path of the Brownian motion is above the level 0 before the event of hitting

the level −a happens. We define the following quantities:

• Y
(ϵ)
t be the perturbed interrupted Brownian motion

• Γt,ϵ := meas{0 ≤ s ≤ t : Y
(ϵ)
t > 0} be the occupation time of Y

(ϵ)
t in the interval

(0,∞).

• Γ−1
t,ϵ be the left inverse of Γt,ϵ such that the jumps as {σ−k,ϵ − σ+k,ϵ, k ∈ N}

• τ
(ϵ)
0,k = σ−k+1,ϵ − σ+k,ϵ

• τ−a−ϵ := inf{t ≥ 0 : Xϵ
t = −a− ϵ}

3.5.2 Laplace Transform of Maximum Height of Excursion

Theorem 3.5.1. The Laplace transform of the maximum height of excursion of the inter-

rupted Brownian motion with exponential time eθ where eθ ∼ exp(θ) for θ > 0 and eθ is
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independent of the Brownian motion can be derived as

E
[
exp

(
−q max

s∈[0,eθ]
Ys

)]
=

q√
2θ + 1

a

[
log

(
1

2

q√
2θ

)
−

√
2θ

q
− ψ

(
1

2

q√
2θ

)]
,

(3.39)

where the function ψ(x) is the logarithmic derivative of the Gamma function known as the

Digamma function. It is defined as

ψ(x) =
Γ′(x)

Γ(x)
=

∫ ∞

0

(
e−t

t
− e−xt

1 − e−t

)
dt.

Proof. Using the definition of interrupted Brownian motion, we can rewrite the expression in

terms of the perturbed Brownian motion.

E
[
exp

(
−q max

s∈[0,eθ]
Ys

)]
= lim

ϵ→0
E

[
exp

(
−q max

s∈[0,Γ−1
eθ,ϵ

−Γ−1
eθ−,ϵ]

Xs+Γ−1
eθ,ϵ

) ∞∑
n=1

1{
∑n−1

k=1 τ
(ϵ)
0,k<eθ<

∑n
k=1 τ

(ϵ)
0,k}

1{σ−
n+1,ϵ<τ−a−ϵ}

]
.

With tower property, we have

E

[
exp

(
−q max

s∈[0,Γ−1
eθ,ϵ

−Γ−1
eθ−,ϵ]

Xs+Γ−1
eθ,ϵ

) ∞∑
n=1

1{
∑n−1

k=1 τ
(ϵ)
0,k<eθ<

∑n
k=1 τ

(ϵ)
0,k}

1{σ−
n+1,ϵ<τ−a−ϵ}

]

= E

[ ∞∑
n=1

E

[
exp

(
−q max

s∈[0,σ−
n+1,ϵ−σ

+
n,ϵ]

Bs+σ+
n,ϵ

)
1{

∑n−1
k=1 τ

(ϵ)
0,k<eθ<

∑n
k=1 τ

(ϵ)
0,k}

1{σ−
n+1,ϵ<τ−a−ϵ}

] ∣∣∣∣Fσ+
n,ϵ

]

=
∞∑
n=1

E

[
1{τ−a−ϵ>σ

+
n,ϵ} f1

(
n−1∑
k=1

τ
(ϵ)
0,k, ϵ

)]
,

(3.40)

where the function f1 can be derived as using the strong Markov property of Brownian motion

to be:

f1(t, ϵ) = Eϵ

[
exp

(
−q max

s∈[0,τ−0 ]
Bs

)
1{eθ<t+τ−0 }1{t<eθ}1{τ−0 <τ−a−ϵ}

]

= e−θt Eϵ
[
e
−qB̄

τ−0 1{B
eθ
>0}1{τ−0 <τ−a−ϵ}

]
,
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where B̄t = maxs∈[0,t]Bs. Substituting the expression for f1 into (3.40), we can derive

E

[
exp

(
−q max

s∈[0,Γ−1
eθ,ϵ

−Γ−1
eθ−,ϵ]

Xs+Γ−1
eθ,ϵ

) ∞∑
n=1

1{
∑n−1

k=1 τ
(ϵ)
0,k<eθ<

∑n
k=1 τ

(ϵ)
0,k}

1{σ−
n+1,ϵ<τ−a−ϵ}

]

=

∞∑
n=1

E

[
1{τ−a−ϵ>σ

+
n,ϵ} f1

(
n−1∑
k=1

τ
(ϵ)
0,k, ϵ

)]

=

∞∑
n=1

E
[
1{τ−a−ϵ>σ

+
n,ϵ} · e

−θ
∑n−1

k=1 τ
(ϵ)
0,k Eϵ

[
e
−qB̄

τ−0 1{B
eθ
>0}1{τ−0 <τ−a−ϵ}

]]
.

Using tower property again, we derive

E

[
exp

(
−q max

s∈[0,Γ−1
eθ,ϵ

−Γ−1
eθ−,ϵ]

Xs+Γ−1
eθ,ϵ

) ∞∑
n=1

1{
∑n−1

k=1 τ
(ϵ)
0,k<eθ<

∑n
k=1 τ

(ϵ)
0,k}

1{σ−
n+1,ϵ<τ−a−ϵ}

]

=
∞∑
n=1

E
[
1{τ−a−ϵ>σ

+
n,ϵ}e

−θ
∑n−1

k=1 τ
(ϵ)
0,k

]
Eϵ
[
e
−qB̄

τ−0 1{B
eθ
>0}1{τ−0 <τ−a−ϵ}

]

=
∞∑
n=1

Eϵ
[
e
−qB̄

τ−0 1{B
eθ
>0}1{τ−0 <τ−a−ϵ}

]
· E
[
E
[
1{τ−a−ϵ−σ−

n,ϵ>σ
+
n,ϵ−σ−

n,ϵ}1{τ−a−ϵ>σ
−
n,ϵ}e

−θ
∑n−1

k=1 τ
(ϵ)
0,k

] ∣∣∣∣Fσ−
n,ϵ

]
=

∞∑
n=1

Eϵ
[
e
−qB̄

τ−0 1{B
eθ
>0}1{τ−0 <τ−a−ϵ}

]
E
[
1{τ−a−ϵ>σ

−
n,ϵ}e

−θ
∑n−1

k=1 τ
(ϵ)
0,k

]
P
[
τ−a−ϵ > τ+ϵ

]
= Eϵ

[
e
−qB̄

τ−0

]
1

1
P[τ−a−ϵ>τ

+
ϵ ]

− Eϵ
(
e−θτ

−
0

) − Eϵ
[
e
−qB̄

τ−0 e−θτ
−
0

]
1

1
P[τ−a−ϵ>τ

+
ϵ ]

− Eϵ
(
e−θτ

−
0

) .
(3.41)

We can compute the following:

Eϵ
[
e−θτ

−
0

]
= e−ϵ

√
2θ,

Eϵ
[
e
−qB̄

τ−0

]
= e−qϵ − qϵ

∫ ∞

ϵ

1

y
e−qydy,

P
[
τ−a−ϵ > τ+ϵ

]
= P

[
Wτ−a−ϵ,ϵ = ϵ

]
=

a+ ϵ

a+ 2ϵ
.

Finally, the double Laplace transform can be obtained as

Eϵ
[
e
−qB̄

τ−0 e−θτ
−
0

]
=

∫
x∈[ϵ,∞)

qe−qx
sinh([x− ϵ]

√
2θ)

sinh(x
√

2θ)
dx.
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Substituting these quantities into the expectation (3.41) gives us the

E
[
exp

(
−q max

s∈[0,eθ]
Ys

)]
= lim

ϵ→0
E

[
exp

(
−q max

s∈[0,Γ−1
eθ,ϵ

−Γ−1
eθ−,ϵ]

Xs+Γ−1
eθ,ϵ

) ∞∑
n=1

1{
∑n−1

k=1 τ
(ϵ)
0,k<eθ<

∑n
k=1 τ

(ϵ)
0,k}

1{σ−
n+1,ϵ<τ−a−ϵ}

]

= lim
ϵ→0

e−qϵ − qϵ
∫∞
ϵ

1
ye

−qydy −
∫
x∈[ϵ,∞) qe

−qx sinh([x−ϵ]
√
2θ)

sinh(x
√
2θ)

dx

a+2ϵ
a+ϵ − e−ϵ

√
2θ

=
q√

2θ + 1
a

[
log

(
1

2

q√
2θ

)
−

√
2θ

q
− ψ

(
1

2

q√
2θ

)]
,

where the function ψ(x) is the logarithmic derivative of the Gamma function known as the

Digamma function.

3.5.3 Density of Maximum height of Excursion

Remark 3.5.2. We can obtain the density of the maximum height of excursion of the inter-

rupted Brownian motion by inverting the Laplace transform in (3.39) with respect to q. We

need to invert the following Laplace transform with respect to q:

L−1
q

(
q√

2θ + 1
a

[
log

(
1

2

q√
2θ

)
−

√
2θ

q
− ψ

(
1

2

q√
2θ

)])
(s).

Using results from integral transform, the inverse Laplace transform with respect to q can be

obtained as

P
[

max
u∈[0,eθ]

Yu ∈ ds

]
= L−1

q

(
q√

2θ + 1
a

[
log

(
1

2

q√
2θ

)
−

√
2θ

q
− ψ

(
1

2

q√
2θ

)])
(s)

=
1√

2θ + 1
a

 1

s2
−

(
2
√

2θ

1 − e−2s
√
2θ

)2

e−2s
√
2θ

 ds
=

1

s2
1√

2θ + 1
a

− 1√
2θ + 1

a

(
2e−2s

√
2θ

1 − e−2s
√
2θ

)2

· 2θ e2s
√
2θds.

Remark 3.5.3. We can further invert with respect to θ to recover the original clock.
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Therefore, we have that

P
[

max
u∈[0,s]

Yu ∈ dp

]

L−1
θ

 1

s2
1√

2θ + 1
a

− 1√
2θ + 1

a

(
2e−2s

√
2θ

1 − e−2s
√
2θ

)2

· 2θ e2s
√
2θ

 (p)

=
1√
2s2

· 1

2a2

 1
√
πp

−
e

p

2a2 erfc
( √

p

a
√
2

)
a
√

2

 dp
− 1

2
√

2

([
1

√
πp

− 1

a
√

2
e

p

2a2 erfc

( √
p

a
√

2

)]
∗ sp (4, 2, 2s,−2s)

)
dp,

where the function sp(4, 2, 2s,−2s) is defined as

sp (4, 2, 2s,−2s)

= 22
∞∑
k=0

Γ(2 + k)e
− (2s+4ks)2

4p

√
2πp3Γ(2)k!

D5

(
2s+ 4ks

√
p

)
.

3.6 Appendix

We provide now the rest of the proof for in Theorem 3.4.2. We want to invert the Laplace

transform of (3.27) with respect to β. Considering only the required terms, we have:

L−1
β

(
2θ2N0(1 + 2aγ − θ)

(2β − γ2)(θ − 1 − 2a
√

2β)
e−

√
2βx

)
(t)

= 2θ2N0(1 + 2aγ − θ)L−1
β

(
e−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
(t).

(3.42)

We then follow the steps:

• Using the definition of inverse Laplace transform, the desired inversion can be expressed

as

f(t) :=
1

2πi

∫ c+i∞

c−i∞
eβt

e−
√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)
dβ, (3.43)

where c is a constant to be determined.

• We determine the poles βn = (β1, β2) present and establish the contour, C to be used

for the expression in (3.42). Here, it is easy to see that we require a keyhole contour

due to the presence of branch cut.
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• With the singularities, we choose the constant c in the limits of the integration such

that the contour C contains all the poles. We therefore need c > max(β1, β2).

• Define the function g(β) to be

g(β) :=
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)
.

Since the function g(β) is analytic everywhere except at the poles, according to Residue

Theorem, we have that

1

2πi

∮
C

(
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ =

2∑
i=1

Res
β=βi

g(β), (3.44)

where C is a keyhole contour and βi for i = 1, 2 are the poles such that

β1 =
γ2

2
,

β2 =
θ2 − 2θ + 1

8a2
.

Computing the residues at the poles enables us to express (3.44) as

1

2πi

∮
C

(
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ

= e
γ2

2
te−γx

1

2(θ − 1 − 2aγ)
+ e

θ2−2θ+1

8a2
te−

θ−1
2a

x θ − 1

4a2γ2 − (θ − 1)2
.

(3.45)

• By Cauchy’s Theorem, the contour integral on the LHS of (3.45) can be broken down

to ∮
C
g(β)dβ =

(∮
C1

+

∮
C2

+

∮
C3

+

∮
C4

+

∮
C5

+

∮
C6

)
g(β)dβ,

where Ci, i = 1, . . . , 6 form a closed path of C.

• Then, by the Bromwich Inversion formula, we have that the inverse Laplace transform,
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f(t) can be evaluated using

f(t) =
1

2πi

∮
C
g(β)dβ

− lim
R→∞, r→0

6∑
j=2

1

2πi

∮
Cj

(
eβt

e−
√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ,

(3.46)

where R is the radius of the big circular contours C2 and C6 centred around (0, 0),

whereas r is the radius of the small circular contour C4 centered around (0, 0). What

is left to do is to compute the contour integrals in (3.46) for contours Cj , j = 2, . . . , 6.

• Using the parametrisation β = Reiz for different values of z accordingly, the Estimation

Lemma tells us that

lim
R→∞

∮
C2

(
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ = 0,

lim
R→∞

∮
C6

(
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ = 0.

(3.47)

• Computing contour C4 using the parametrisation β = reiz gives

lim
r→0

∮
C4

(
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ = 0. (3.48)

• We now compute the contour C3 where β takes values from −R to −r.

∮
C3

(
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ =

∫ r

R

(
e−yte−ix

√
2y

(2y + γ2)(θ − 1 − 2ai
√

2y)

)
dy.

(3.49)

• Computing contour C5 where β takes values from −r to −R gives us

∮
C5

(
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ =

∫ R

r

(
e−yteix

√
2y

(2y + γ2)(θ − 1 + 2ai
√

2y)

)
dy.

(3.50)
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• Adding
∮
C3

in (3.49) and
∮
C5

in (3.50) gives

∮
C3

(
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ +

∮
C5

(
eβte−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ

=

∫ ∞

0

2ie−yt

2y + γ2
· θ − 1

(θ − 1)2 + 8a2y
sin
(
x
√

2y
)
dy

−
∫ ∞

0

2e−yt

2y + γ2
· 2ai

√
2y

(θ − 1)2 + 8a2y
cos
(
x
√

2y
)
dy.

The integrals can be computed with the help of Weierstrass test and a change of variable.

• From (3.46), we know that the inverse Laplace transform is

1

2πi

∫ c+i∞

c−i∞
eβt

e−
√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)
dβ

=
1

2πi

∮
C
g(β)dβ − lim

R→∞, r→0

6∑
j=2

1

2πi

∮
Cj

(
eβt

e−
√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ

=
1

2πi

∮
C
g(β)dβ − 1

2πi

(∮
C3

+

∮
C5

)(
eβt

e−
√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
dβ

= e
γ2

2
te−γx

1

2(θ − 1 − 2aγ)
+ e

θ2−2θ+1

8a2
te−

θ−1
2a

x θ − 1

4a2γ2 − (θ − 1)2

− ψ
θ − 1

4
e

tγ2

2

[
e−γxerfc

(
γ

√
t

2
− x√

2t

)
− eγxerfc

(
γ

√
t

2
+

x√
2t

)]

+ ψ
θ − 1

4
e

(θ−1)2t

8a2

[
e−

(θ−1)x
2a erfc

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)

−e
(θ−1)x

2a erfc

(
(θ − 1)

√
t

2a
√

2
+

x√
2t

)]

− ψ
a

2
e

tγ2

2

[
γe−γxerfc

(
γ

√
t

2
− x√

2t

)
+ γeγxerfc

(
γ

√
t

2
+

x√
2t

)]

+ ψ
a

2
e

(θ−1)2t

8a2

[
θ − 1

2a
e

(θ−1)x
2a erfc

(
(θ − 1)

√
t

2a
√

2
+

x√
2t

)

+
θ − 1

2a
e−

(θ−1)x
2a erfc

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)]
,

(3.51)

where ψ = 1
(θ−1)2−4a2γ2

= 1
(θ−1−2aγ)(θ−1+2aγ) .
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• From (3.42), we can finally express the inverse Laplace transform as

L−1
β

(
2θ2N0(1 + 2aγ − θ)

(2β − γ2)(θ − 1 − 2a
√

2β)
e−

√
2βx

)
(t)

= 2θ2N0(1 + 2aγ − θ)L−1
β

(
e−

√
2βx

(2β − γ2)(θ − 1 − 2a
√

2β)

)
(t)

= −e
γ2t
2 e−γxθ2N0 + 2θ2N0e

(θ−1)2t

8a2 e−
(θ−1)x

2a (θ − 1)
1

2aγ + θ − 1

+
θ2N0

θ − 1 + 2aγ
e

tγ2

2 e−γxerfc

(
γ

√
t

2
− x√

2t

)[
θ − 1

2
+ aγ

]

+
θ2N0

θ − 1 + 2aγ
e

tγ2

2 eγxerfc

(
γ

√
t

2
+

x√
2t

)[
aγ − θ − 1

2

]

− θ2N0(θ − 1)

θ − 1 + 2aγ
e

(θ−1)2t

8a2 e−
(θ−1)x

2a erfc

(
(θ − 1)

√
t

2a
√

2
− x√

2t

)
.

(3.52)
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Chapter 4

Local Time Process

4.1 Introduction

In this chapter, we study the stochastic process {Γxt : a ∈ R, t ≥ 0} which characterises the

amount of time spent by a continuous time stochastic process X = {Xt : t ≥ 0} in the

neighbourhood of a point x ∈ E where E is the state space of the stochastic process. The

Lebesgue measure of the time spent at the level x can be derived using

Γxt =

∫ t

0
1{Xs=x}ds.

However, this does not make sense for X a Brownian motion as we have

meas{0 ≤ t <∞ ; Wt(ω) = x} = 0, for P− a.e., ω ∈ Ω.

This is not helpful as it does not tell us how much time the Brownian motion has spent in

the neighbourhood of the point x ∈ R. In order to provide a meaningful interpretation for

this measure of time, Paul Lévy introduced the random field for t ∈ [0,∞) and x ∈ R,

Lxt = lim
ϵ↓0

1

2ϵ
meas{0 ≤ s ≤ t; |Ws − x| ≤ ϵ},

which is called the mesure du voisinage or “measure of the time spent by the Brownian path

in the vicinity of the point x”. Lxt shall be referred to as the local time from here onwards.

Interested readers can refer to Lévy (1940), Itō and McKean (1974a), Karatzas and Shreve
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(1991), Chung and Durrett (2008), and Jeanblanc et al. (2009).

The introduction of the local time process gained a lot of attention, with rapid develop-

ment in both theory and applications in many fields such as stochastic integration, excursion

and stochastic differential equation. In particular, the local time process is also taken as a

tool to generalise Itô rule for convex functions. It is well known that the celebrated Itô rule

f(Xt) = f(X0) =

∫ t

0
f ′(Xs)dMs+

∫ t

0
f ′(Xs)dBs +

1

2

∫ t

0
f ′′(Xs)d ⟨M⟩s ,

for f : R → R a function in C2 and X = {Xt, 0 ≤ t <∞} a continuous semimartingale with

decomposition

Xt = X0 +Mt +Bt,

for M a continuous local martingale and B a continuous adapted process. See for example

Itô (1944) and Kunita and Watanabe (1967). The Itô rule plays an important role as it is

the key to the world of stochastic calculus but as we can see from the definition above, Itô

rule requires the existence of the second derivative for the formula to make sense.

The local time process comes in for the generalisation of the Itô rule for convex function

f : R 7→ R which are not necessarily twice differentiable. The generalised Itô rule is given as

f(Xt) = f(X0) +

∫ t

0
D−f(Xs)dXs +

∫ ∞

−∞
Lt(x)µ(dx); 0 ≤ t <∞,

for every X0 ∈ R, D−
f as the left derivative of f , µ to be taken as the second derivative

measure in the distribution sense and L is the local time process as defined earlier. For

more details, see Chung et al. (1990), Revuz and Yor (1991), Karatzas and Shreve (1991),

Kallenberg (1997), Rogers and Williams (2000b) and Borodin and Salminen (2002).

Besides contributing to the generalised Itô rule, the local time process also plays a significant

part in mathematical finance. Leblanc (1997) made use of the definition of local time to

derive the Dupire’s formula for local volatility which states that

1

2
K2σ2(T,K) =

∂TC(K,T ) + rK∂KC(K,T )

∂2KKC(K,T )
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where C(K,T ) = E
[
e−rT (ST−K)+

]
is the price of the European call for any maturity T ∈

[0,∞) and any strike price K ∈ R+, σ2(T,K) is the local volatility and ∂ is the partial

derivative operator. The Dupire’s formula is well used as it serves as a direct method to

deduce the local volatility function from the prices of call options in the market.

Another established application of the local time process is the pricing of a knock-out BOOST

option studied by Leblanc (1997) which is an option that pays at maturity, for the amount

of time when the underlying price process stays above a level b ∈ R+ until the time when

the price process touches level a ∈ R+ for the first time, for positive levels a and b such that

b < a. The local time process is also being employed in the form of the Itô-Tanaka formula

which is an extention of the Tanaka’s formula. The Itô-Tanaka formula develop for formula

for {f(Xt), t ≥ 0} as a semi-martingale for the function f which is the difference of two

convex functions and {Xt, t ≥ 0} is a continuous semi-martingale. Then,

f(Xt) = f(X0) +

∫ t

0
D−f(Xs)dXs +

1

2

∫
R
Lat f

′′(da).

In particular, {f(Xt), t ≥ 0} is again a semi-martingale. The Itô-Tanaka formula is used

for the pricing of a special type of contingent claim which is known as a passport option,

see Shreve and Vecer (1998). This option gives its holder the right to engage in an optimal

trading strategy of choice.

The study in this chapter is motivated by the the computation of the expected exposure of

the Accumulator option which is a path-dependent option. We look at the distribution of

the local times of a Brownian motion with drift evaluated at the first time its local time at

0 exceeds some amount l ∈ R+. We employ the techniques in Karatzas and Shreve (1991)

to first compute the joint Laplace transform of local times at the first time the Brownian

motion with drift hits 0. We then proceed to compute the same quantity for a compound

Poisson process with drift at different starting points. We finish this chapter with some

concluding remarks on the application of our results in the setting of counterparty credit risk

management.
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4.2 Brownian Motion

In this section, we focus on the local time of the Brownian motion at some level a ∈ R.

4.2.1 Construction

We follow the same construction as in Karatzas and Shreve (1991) to derive the distributions

of Brownian local time at one or several points. The procedure is outlined as follows: in the

interest of studying the Brownian local time, we first consider the elastic Brownian motion

W ∗ = {W ∗
t , 0 ≤ t <∞} which is defined as

W ∗ :=


Wt; if t < ξ,

∂; if t > ξ.

where ∂ denotes the cemetery state and ξ is called the lifetime of the elastic Brownian motion

such that there exists 1 ≤ i ≤ n where

ξ := inf{t ≥ 0 : L
(ai)
t > Ri},

and R1, R2, . . . , Rn are independent and exponentially distributed random variables with

parameters γ1, γ2, . . . , γn respectively on a probability space (Ω′,F ′,P′) and ξ and W ∗ are

defined on the enlarged probability space (Ω∗,F∗,P∗) = (Ω×Ω′,F ⊗F ′,P×P′) . The elastic

Brownian motion can then be seen as the original Brownian motion conditioned to stop at

time ξ, the first time the local times at any of the n distinct levels a1, a2, . . . , an ∈ R exceeds

the corresponding level Ri. Using the description of the elastic Brownian motion W ∗ as

defined earlier, it is known that

f(x) = E∗
x

[∫ ∞

0
g(W ∗)e−αte−

∫ t
0 k(W

∗)dsdt

]
= Ex

[∫ ∞

0
g(Wt)e

−αte−
∫∞
0 k(Ws)dse−

∑n
i=1 γiL

(ai)
t dt

]
,

(4.1)

where g : R → R, k : R → [0,∞) are piecewise continuous functions and α ∈ R+ is a

constant. With this and some appropriate functions g and k, we can use this to compute the

joint distribution of the Brownian local times at levels ai. For more details regarding elastic

Brownian motion, see Karatzas and Shreve (1991) and Grebenkov (2006).
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4.2.2 Brownian Motion with Drift

Consider the process W (µ) = {W (µ)
t , t ≥ 0}, a Brownian motion with drift defined as

W
(µ)
t = µt+ σWt

with µ ∈ R the drift, σ ∈ R+ the dispersion coefficient and W = {Wt, t ≥ 0} the standard

Brownian motion defined in (1.0.1). We let X = {Xt, t ≥ 0} to be the process W (µ) with a

reflecting boundary b > 0. We want to derive the expression for 1 ≤ i ≤ n,

E
[
e−

∑n
i=1 γiLΓ0(l)

(ai)
]
, (4.2)

for positive coefficients γi, n distinct levels ai such that 0 < a1 < . . . < an < b and the inverse

local time of X defined as

Γ0(l) = inf{t ≥ 0 : Lt(0) = l}, (4.3)

where Lt(0) is the local time process of X at 0. The quantity in (4.2) is of interest as it finds

applications in the field of counterparty credit risk which is further discussed in Subsection

4.2.3.

Construction

In the effort to derive (4.2), we first compute for ϵ > 0,

f(ϵ) = Eϵ
[
e−

∑n
i=1 γiLT0

(ai)
]
, (4.4)

where we have 0 < a1 < . . . < an < b and the first hitting time of the level 0 of X defined as

T0 := inf{t ≥ 0 : Xt = 0}. (4.5)

Using the expression (4.1) from the elastic Brownian motion and following the construction

in Karatzas and Shreve (1991), we see that the expectation (4.4) can be derived by first

finding a function on [0, b] such that it is bounded, continuous and satisfies the conditions for
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1 ≤ i ≤ n.

f ′(ai+) − f ′(ai−) = γif(ai) (4.6)

f(0) = 1 (4.7)

f ′(b) = 0, (4.8)

where the first condition (4.6) is for the elasticity condition for the Local time process to

make sense at levels ai and the third condition (4.8) corresponds to the reflection boundary

at level b. We see that the function f has to be of the form

f(x) =
σ2

µ
Cie

− 2µ

σ2 x +Di,

for Ci and Di some deterministic constants, in each of the interval (ai, ai+1] for 0 ≤ i ≤ n

where an+1 = b.

We can then compute the expression (4.4) by deriving

f(ϵ) = Eϵ
[
e−

∑n
i=1 γiLT0

(ai)
]

=
σ2

µ
C0e

− 2µ

σ2 ϵ +D0,

for some constants C0 and D0 to be determined using (4.6), (4.7) and (4.8). We solve the

above system for the case when n = 2 in order to find the distribution of the Brownian local

times at levels a1 and a2 for 0 < a1 < a2 < b,

Eϵ
[
e−γ1LT0

(a1)e−γ2LT0
(a2)
]
.

We follow the aforementioned steps with n = 2.

Lemma 4.2.1. For positive parameters γ1, γ2, two levels a1, a2 such that 0 < a1 < a2 < b

and stopping time T0 defined in (4.5), the joint Laplace transform of the Brownian local times
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at levels a1 and a2, evaluated at T0 can be derived as

Eϵ
[
e−γ1LT0

(a1)e−γ2LT0
(a2)
]

=
σ2

µ

(
e−

2µ

σ2 ϵ − 1
) 2γ2e

− 2µ

σ2 a1

2e
− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

) + γ1

2e−
2µ

σ2 a1 − γ1
σ2

µ

(
e−

2µ

σ2 a1 − 1
)
−

2e
− 2µ

σ2 a1γ2
σ2

µ

(
e
− 2µ

σ2 a1−1

)
2e

− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)
+ 1.

Proof. When n = 2, we have that condition (4.6) gives us for 1 ≤ i ≤ 2

− 2Cie
− 2µ

σ2 (ai+ϵ) + 2Ci−1e
− 2µ

σ2 (ai−ϵ) = γi
σ2

µ
Ci−1e

− 2µ

σ2 ai + γiDi−1

⇒


−2C1e

− 2µ

σ2 (a1+ϵ) + 2C0e
− 2µ

σ2 (a1−ϵ) = γ1
σ2

µ C0e
− 2µ

σ2 a1 + γ1D0

−2C2e
− 2µ

σ2 (a2+ϵ) + 2C1e
− 2µ

σ2 (a2−ϵ) = γ2
σ2

µ C1e
− 2µ

σ2 a2 + γ2D1.

(4.9)

The condition in (4.7) gives

σ2

µ
C0 +D0 = 1, (4.10)

and condition (4.8) gives

−2C2e
− 2µ

σ2 b = 0.

With the continuity of f , we have that for 1 ≤ i ≤ 2,

σ2

µ
Ci−1e

− 2µ

σ2 ai +Di−1 =
σ2

µ
Cie

− 2µ

σ2 ai +Di

⇒


σ2

µ C0

(
e−

2µ

σ2 a1 − 1
)
− σ2

µ e
− 2µ

σ2 a1C1 + 1 = D1

σ2

µ C1e
− 2µ

σ2 a2 +D1 = D2.

(4.11)

Substituting C2 = 0 into (4.9), we have that,

−2C2e
− 2µ

σ2 (a2+ϵ) + 2C1e
− 2µ

σ2 (a2−ϵ) = γ2
σ2

µ
C1e

− 2µ

σ2 a2 + γ2D1

2C1e
− 2µ

σ2 (a2−ϵ) = γ2
σ2

µ
C1e

− 2µ

σ2 a2 + γ2D1

C1 = γ2

σ2

µ C0

(
e−

2µ

σ2 a1 − 1
)

+ 1

2e−
2µ

σ2 (a2−ϵ) − γ2
σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
) .

(4.12)
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From (4.9) and (4.10), we have that

−2C1e
− 2µ

σ2 (a1+ϵ) + 2C0e
− 2µ

σ2 (a1−ϵ) = γ1
σ2

µ
C0e

− 2µ

σ2 a1 + γ1D0

C0

[
2e−

2µ

σ2 (a1−ϵ) − γ1
σ2

µ

(
e−

2µ

σ2 a1 − 1
)]

=
2e−

2µ

σ2 (a1+ϵ)γ2
σ2

µ C0

(
e−

2µ

σ2 a1 − 1
)

+ 2e−
2µ

σ2 (a1+ϵ)γ2

2e−
2µ

σ2 (a2−ϵ) − γ2
σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
) + γ1.

Finally, we can see that

C0 =

2e
− 2µ

σ2 (a1+ϵ)
γ2

2e
− 2µ

σ2 (a2−ϵ)−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

) + γ1

2e−
2µ

σ2 (a1−ϵ) − γ1
σ2

µ

(
e−

2µ

σ2 a1 − 1
)
−

2e
− 2µ

σ2 (a1+ϵ)
γ2

σ2

µ

(
e
− 2µ

σ2 a1−1

)
2e

− 2µ

σ2 (a2−ϵ)−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)
.

Taking the limit when ϵ approaches 0 gives us C0 of the form

C0 =

2γ2e
− 2µ

σ2 a1

2e
− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

) + γ1

2e−
2µ

σ2 a1 − γ1
σ2

µ

(
e−

2µ

σ2 a1 − 1
)
−

2e
− 2µ

σ2 a1γ2
σ2

µ

(
e
− 2µ

σ2 a1−1

)
2e

− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)
.

Using the expressions derived, we can derive that the joint Laplace transform of the Brownian

local times at levels a1 and a2 up till the first time the process the level 0 as

f(ϵ) = Eϵ
[
e−γ1LT0

(a1)e−γ2LT0
(a2)
]

=
σ2

µ
C0e

− 2µ

σ2 ϵ +D0

=
σ2

µ

(
e−

2µ

σ2 ϵ − 1
) 2γ2e

− 2µ

σ2 a1

2e
− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

) + γ1

2e−
2µ

σ2 a1 − γ1
σ2

µ

(
e−

2µ

σ2 a1 − 1
)
−

2e
− 2µ

σ2 a1γ2
σ2

µ

(
e
− 2µ

σ2 a1−1

)
2e

− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)
+ 1.

Theorem 4.2.2. For positive parameters a1, a2, positive levels a1, a2 where a1 < a2 <∞ and

the right inverse of the local time of X at 0 as defined in (4.3), the joint Laplace transform
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of the Brownian local times at levels a1 and a2 evaluated at Γ0(l) can be computed as

E
(
e−γ1LΓ0(l)

(a1)e−γ2LΓ0(l)(a2)

)

= exp


−4le

− 2µ

σ2 a1[
σ2

µ

(
e
− 2µ

σ2 a1−1

)]2
2e

− 2µ

σ2 a1

σ2

µ

(
e
− 2µ

σ2 a1−1

) − γ1 − 2e
− 2µ

σ2 a1γ2

2e
− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)

 · exp

 −2l

σ2

µ

(
e−

2µ

σ2 a1 − 1
)
 .

Proof. The proof can be obtained by considering the independent excursions as we have with

a Brownian motion with drift starting from ϵ > 0 with a reflecting boundary at b > 0 until the

first time the process reaches 0. This tells us that we can derive the joint Laplace transform

of the Brownian local times at levels a1 and a2 evaluated at the right inverse of the Brownian

local time at 0 from the joint Laplace transform of the same quantities evaluated at the first

time the process reaches level 0. We observe the process until we accumulate an amount of l

on the Brownian local clock at the level 0. We need to cross this level for l times, this is the

same as having l many excursions that starts from ϵ > 0 that is being reflected at level b and

stopped at the first time the process gets to 0.

E
(
e−γ1LΓ0(l)

(a1)e−γ2LΓ0(l)(a2)

)
= lim

ϵ→0

(
Eϵ
[
e−γ1LT0

(a1)e−γ2LT0
(a2)
] l

ϵ

)
.

Substituting our results from Lemma (4.2.1), we have that

E
(
e−γ1LΓ0(l)

(a1)e−γ2LΓ0(l)(a2)

)
= e−2lC0

= exp


−2l

2γ2e
− 2µ

σ2 a1

2e
− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

) + γ1

2e−
2µ

σ2 a1 − γ1
σ2

µ

(
e−

2µ

σ2 a1 − 1
)
−

2e
− 2µ

σ2 a1γ2
σ2

µ

(
e
− 2µ

σ2 a1−1

)
2e

− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)



= exp


−4le

− 2µ

σ2 a1[
σ2

µ

(
e
− 2µ

σ2 a1−1

)]2
2e

− 2µ

σ2 a1

σ2

µ

(
e
− 2µ

σ2 a1−1

) − γ1 − 2e
− 2µ

σ2 a1γ2

2e
− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)

 · exp

 −2l

σ2

µ

(
e−

2µ

σ2 a1 − 1
)
 .
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Theorem 4.2.3. The joint distribution of the Brownian local times at positive levels a1 and

a2 evaluated at Γ0(l) as defined in (4.3) can be obtained as

fLΓ0(l)
(a1),LΓ0(l)

(a2)(z1, z2)

= exp

 −2l

σ2

µ

(
e−

2µ

σ2 a1 − 1
)

√√√√√√ 4le

− 2µ

σ2 a1[
σ2

µ

(
e
− 2µ

σ2 a1−1

)]2
z1

√√√√√√ 4z1e
− 2µ

σ2 a1e
− 2µ

σ2 a2[
σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)]2
z2

· exp

− 2z1e
− 2µ

σ2 a1

σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
)
 exp

 2z1e
− 2µ

σ2 a1

σ2

µ

(
e−

2µ

σ2 a1 − 1
)
 exp

 2e−
2µ

σ2 a2

σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
)z2


· J1

2i

√√√√√ 4z1e
− 2µ

σ2 a1e−
2µ

σ2 a2[
σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
)]2 z2

 J1

2i

√√√√√ 4le−
2µ

σ2 a1[
σ2

µ

(
e−

2µ

σ2 a1 − 1
)]2 z1

 ,

where J is the Bessel function of the first kind.

Proof. The joint density can be obtained by inverting

E
(
e−γ1LΓ0(l)

(a1)e−γ2LΓ0(l)(a2)

)
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derived in Theorem (4.2.2) with respect to γ1 and γ2. Inverting wrt γ1 gives us

L−1
γ1

(
E
(
e−γ1LΓ0(l)

(a1)e−γ2LΓ0(l)(a2)

))
(z1)

= exp

 −2l

σ2

µ

(
e−

2µ

σ2 a1 − 1
)


· L−1
γ1

exp


−4le

− 2µ

σ2 a1[
σ2

µ

(
e
− 2µ

σ2 a1−1

)]2
2e

− 2µ

σ2 a1

σ2

µ

(
e
− 2µ

σ2 a1−1

) − γ1 − 2e
− 2µ

σ2 a1γ2

2e
− 2µ

σ2 a2−γ2 σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)



 (z1)

= exp

 −2l

σ2

µ

(
e−

2µ

σ2 a1 − 1
)
 (−i)

√√√√√√ 4le
− 2µ

σ2 a1[
σ2

µ

(
e
− 2µ

σ2 a1−1

)]2
z1

J1

2i

√√√√√ 4le−
2µ

σ2 a1[
σ2

µ

(
e−

2µ

σ2 a1 − 1
)]2 z1


· exp

z1
 2e−

2µ

σ2 a1

σ2

µ

(
e−

2µ

σ2 a1 − 1
) − 2e−

2µ

σ2 a1γ2

2e−
2µ

σ2 a2 − γ2
σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
)
 .

Taking only the term with γ2 and invert the Laplace transform with respect to γ2, we have

L−1
γ2

exp

− 2z1e
− 2µ

σ2 a1γ2

2e−
2µ

σ2 a2 − γ2
σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
)
 (z2)

= exp

− 2z1e
− 2µ

σ2 a1

σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
)
 · L−1

γ2

exp

−

4z1e
− 2µ

σ2 a1e
− 2µ

σ2 a2[
σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)]2
2e

− 2µ

σ2 a2

σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

) − γ2



 (z2)

= exp

− 2z1e
− 2µ

σ2 a1

σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
)
 · (−i)

√√√√√√ 4z1e
− 2µ

σ2 a1e
− 2µ

σ2 a2[
σ2

µ

(
e
− 2µ

σ2 a2−e−
2µ

σ2 a1

)]2
z2

· exp

 2e−
2µ

σ2 a2

σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
)z2

 J1

2i

√√√√√ 4z1e
− 2µ

σ2 a1e−
2µ

σ2 a2[
σ2

µ

(
e−

2µ

σ2 a2 − e−
2µ

σ2 a1
)]2 z2

 .

Combining these expressions, we can finally obtain the required density.
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4.2.3 Application and Concluding Remarks

In response to the Financial Crisis in 2007-2009 which exhibited the event where more than

60% of losses in default came from the exposure to the credit quality of the counterparty in-

stead of the actual default, the Basel Committee on Banking Supervision (BCBS) strength-

ened its management of counterparty credit risk by including an additional counterparty

credit valuation adjustment (CVA) capital charge on top of the traditional default capital

charge. For this chapter, we focus on the Over The Counter (OTC) derivatives, which can be

traded in the forms of options, futures, forwards, swaps and many more. It is well known that

these derivatives have different types of risks associated to them, and in particular, we look at

counterparty credit risk of derivatives, which depends on market condition and counterparty

behaviour. The definition of counterparty credit risk detailed by the BCBS in Basel (2004)

reads:

Definition 4.2.4. Counterparty credit risk is the risk that the counterparty to a transaction

could default before the final settlement of the transaction’s cash flows.

Basel (2004) provided two approaches for the computation of banks capital requirements:

A Standardized Approach and an Internal Model Approach. The details on Standardized

Counterparty Credit Risk Approach can be found in Committee et al. (2014) which gives:

Counterparty Credit Capital Charge = EAD · RW · 8%,

where RW is the risk weight and 8% is to reflect the obligation in Pillar 1 of Basel and EAD

is the exposure at default computed as:

EAD = 1.4 · (RC+PFE),

for RC the replacement cost and PFE the potential future exposure.

The Internal Model Approach is detailed in Basel III (2011) and Committee et al. (2016) to

present banks with the freedom to model internally the EAD for the OTC derivatives. Let

T ∈ R+ be the maturity date, time grid 0 < t1 < t2 < . . . < tN = T for N ∈ N+. The
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Expected Positive Exposure (EPE) is defined as

EPE :=
1

T

N∑
n=1

EEn · ∆n,

where EEn is the expected exposure of the derivative and ∆n = tn − tn−1. For an equally

spaced time grid, the EPE becomes

EPE =
1

N

N∑
n=1

EEn.

We follow Bonollo et al. (2017) who utilize the Brownian local time to evaluate the coun-

terparty credit for the Accumulator derivative. The accumulator derivative is a instrument

with the payoff Pi on observation day ti, i ∈ N+ given as

Pi =


0, if max0≤s≤ti Ss ≥ b,

Q(Sti −K), if max0≤s≤ti Ss < b, Ss ≥ K,

gQ(Sti −K), if max0≤s≤ti Ss < b, Ss < K,

where b is the knock-out barrier level, K is the strike price, Q is the purchase quantity and

g the gearing ratio. See Lam et al. (2009) and Bonollo et al. (2017) for more details. We

extend their model and consider that the payoff of the derivative is computed at:

Γ0(l) = inf{t ≥ 0 : Lt(0) = l}.

For ease of computation, we set Q = 1, g = 2 and assume that the barrier b is reflective.

Then the payoff of the derivative is

∫ ∞

0
LΓ0(l)(x)[(x−K)+ − 2(K − x)+]dx,

which tells us the fair value on day ti, i ∈ N+ can be obtained as

Vti = E
(
e−r(Γ0(l)−ti)

∫ ∞

0
LΓ0(l)(x)[(x−K)+ − 2(K − x)+]dx

)
.
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Setting r = 0 and using Fubini’s Theorem, the fair value is

V =

∫ ∞

0
E
[
LΓ0(l)(x)

]
[(x−K)+ − 2(K − x)+]dx,

and the expectation can be obtained using the density derived in Theorem (4.2.3). The

expected exposure of the derivative can then be obtained as

EE = E [V ] .

We are aware that it might not be realistic to set r = 0. This procedure can be easily

extended to the case when r ̸= 0. We can derive for positive parameters α, γ1, γ2 , two levels

a1, a2 ∈ R such that 0 < a1 < a2 < b for b ∈ R and stopping time T0 as defined in (4.5)

Eϵ
[
e−αT0e

−γ1L
(a1)
T0 e

−γ2L
(a2)
T0

]
.

This is left as future research.

4.3 Compound Poisson Process with Drift

In this section, we look at the claim surplus process and the distribution of its number of

downcrossing for some deterministic level a. A risk reserve process, U = {Ut, t ≥ 0} defined

as

Ut = u+ δt−
Nt∑
i=1

ξi,

where u is the initial reserve, δ is the premium rate, {Nt, t ≥ 0} is a Poisson process with

intensity λ ∈ R+ and {ξi, i ≥ 1} is a sequence of independent and identically distributed

random variables which are independent of N and ξi ∼ F for some law F with no atoms

at zero. This process is most commonly used to describe the risk process of an insurance

company in the time interval [0,∞) which receives premiums continuously at a constant rate

δ from the policyholders and pays an amount of ξi when a claim happens. We take the

constant δ to be positive. The main quantity of interest of the study of the risk process

revolves around computing the probability of ruin which is the event when the reserve U

drops below zero, indicating that the sum of the claims that the company has to pay out is

more than the initial reserve and premium that the company is receiving. The probability of
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ultimate ruin, denoted by ψ(u) is defined as

ψ(u) = P
[

inf
t≥0

Ut < 0 | U0 = u

]
.

For computing purposes, it is more convenient the aggregate loss process X = {Xt, t ≥ 0}

defined as

Xt = u− Ut =

Nt∑
i=1

ξi − δt. (4.13)

A Lévy process is a process Z = {Zt, t ≥ 0} defined on probability space (Ω,F , P ) with

paths P−almost surely right continuous with left limits, P [Z0 = 0] = 1 and has independent

and stationary increments. The distribution of a Lévy process Z can be uniquely determined

by its characteristic exponent Ψ(θ) for θ ∈ R

E
[
eiθZt

]
= e−tΨ(θ).

The Lévy Khintchine formula for Lévy processes guarantees the existence of a Lévy triplet

(a, σ,Π) where a ∈ R, σ ≥ 0 and Π a measure concentrated on R\{0} with
∫
R(1∧x2)Π(dx) <

∞ such that for θ ∈ R

Ψ(θ) = iaθ +
1

2
σ2θ2 −

∫
R

(eiθz − 1 − iθy1{|z|<1})Π(dz).

With this formula, we can see that the loss process X can also be seen as a Lévy process with

Lévy triplet (a, σ,Π) with a = µ, σ = 0 and Π(dy) = λF (dy). We will refer to Kyprianou

(2014) for the computations in this section.

4.3.1 Local Time at One Level

We are interested in computing the Laplace transform of the number of downcrossing of a

level a ∈ R+ until the first time the local time at 0 exceeds an amount l.

Eeθ
[
e−βNΓ0(l)

]
,
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where eθ is an exponential random variable with parameter θ > 0, Nt = #{Xt = a} and

Γ0(l) is such that

Γ0(l) = inf{t ≥ 0 : N
(0)
t = l}. (4.14)

We will compute this for the case when the starting point X0 = x is below a, at a and above

a. Let us define the following stopping times:

T0 := inf{t ≥ 0 : Xt = 0} = inf{t ≥ 0 : Xt ≤ 0} =: T−
0 , (4.15)

τ+a := inf{t ≥ 0 : Xt > a}. (4.16)

Theorem 4.3.1. For β ∈ R+ and T0 as defined in (4.15), we can compute

Ex
[
e−βNT0

]
=



W (0)(a−x)
W (0)(a)

+ e−β
(

1 − W (0)(a−x)
W (0)(a)

) e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

) ; 0 < x < a,

e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

) ; x = a,

e−β
e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

) ; x > a.

The function W (q) : R+ → R is the q-scaled function for q ≥ 0 such that it is the unique

function satisfying ∫ ∞

0
e−βxW (q)(x)dx =

1

ψ(β) − q
,

for all β > sup{y : ψ(y) = q} where ψ is the Laplace exponent of X.

Proof. For the case when 0 < x < a, using T0 and τ+a as defined in (4.15) and (4.16), we have

Ex
[
e−βNT0

]
= Ex

[
1{T0<τ+a }e

−βNT0

]
+ Ex

[
1{τ+a <T0}e

−βNT0

]
= Px

[
T0 < τ+a

]
+ Ex

[
1{τ+a <T0}e

−βNT0

]
.

Let us define for Y = {Yt = −Xt, t ≥ 0}

τ̃−x−a = inf{t ≥ 0 : Yt < x− a}, (4.17)

τ̃+x = inf{t ≥ 0 : Yt > x}. (4.18)
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Conditioning with respect to the filtration at time τ+a , the expression in Ex
[
e−βNT0

]
becomes

Ex
[
e−βNT0

]
= P0

[
τ̃+x < τ̃−x−a

]
+ Ex

[
1{τ+a <T0}EXτ+a

[
e−βNT0

]]
= P0

[
τ̃+x < τ̃−x−a

]
+ Ex

[
1{τ+a <T0} · e

−βEa
[
e−βNT0

]]
= P0

[
τ̃+x < τ̃−x−a

]
+ e−βEa

[
e−βNT0

]
Px
[
τ+a < T0

]
= P0

[
τ̃+x < τ̃−x−a

]
+ e−βEa

[
e−βNT0

]
P0

[
τ̃−x−a < τ̃+x

]
= P0

[
τ̃+x < τ̃−x−a

]
+ e−βEa

[
e−βNT0

] (
1 − P0

[
τ̃+x < τ̃−x−a

])
.

From Kyprianou (2014), we have that for a spectrally negative Lévy process Xt = µt − St

with any x ≤ a and q ≥ 0

Ex
[
e−qτ

+
a 1{τ−0 >τ

+
a }

]
=
W (q)(x)

W (q)(a)
, (4.19)

where the function W is the scale function given for compound Poisson process with rate

λ > 0 and exponential jump distribution with parameter δ > 0

W (x) =
1

δ

(
1 +

λ

µδ − λ

[
1 − e−(µ−λ

δ
)x
])

.

Putting everything together, we have that for 0 < x < a

Ex
[
e−βNT0

]
= P0

[
τ̃+x < τ̃−x−a

]
+ e−βEa

[
e−βNT0

] (
1 − P0

[
τ̃+x < τ̃−x−a

])
= P̃a−x

[
τ̃+a < τ̃−0

]
+ e−βEa

[
e−βNT0

] (
1 − P̃a−x

[
τ̃+a < τ̃−0

])
=
W (0)(a− x)

W (0)(a)
+ e−β

(
1 − W (0)(a− x)

W (0)(a)

)
Ea
[
e−βNT0

]

=
W (0)(a− x)

W (0)(a)
+ e−β

(
1 − W (0)(a− x)

W (0)(a)

)
e−β W

(0)(0)

W (0)(a)

1 − e−β
(

1 − W (0)(0)

W (0)(a)

) .
The expression P̃a−x

[
τ̃+a < τ̃−0

]
can be obtained from (4.19) and Ea

[
e−βNT0

]
is calculated in

the next part.
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For the case when x = a, we can compute using similar reasoning that

Ea
[
e−βNT0

]
= Ea

[
1{T−

0 <τ
+
a }e

−βNT0

]
+ Ea

[
1{τ+a <T−

0 }e
−βNT0

]
= e−βEa

[
1{T−

0 <τ
+
a }

]
+ Ea

[
1{τ+a <T−

0 }e
−βNT0

]
= e−βE0

[
1{τ−−a<τ

+
0 }

]
+ Ea

[
1{τ+a <T−

0 }e
−βNT0

]
,

with

τ̃+a := inf{t ≥ 0 : Yt ≥ a},

τ̃−0 := inf{t ≥ 0 : Yt < 0}.

The expression becomes

Ea
[
e−βNT0

]
= e−βE0

[
1{τ̃+a <τ̃−0 }

]
+ Ea

[
1{τ+a <T−

0 }e
−βNT0

]
.

Conditioning with respect to the filtration at time τ+a , we can compute

Ea
[
e−βNT0

]
= e−βE0

[
1{τ̃+a <τ̃−0 }

]
+ Ea

[
1{τ+a <T−

0 }e
−βNT0

]
= e−βE0

[
1{τ̃+a <τ̃−0 }

]
+ Ea

[
Ea
[
1{τ+a <T−

0 }e
−βNT0 |Fτ+a

]]
= e−βE0

[
1{τ̃+a <τ̃−0 }

]
+ Ea

[
1{τ+a <T−

0 }EXτ+a

[
e−βNT0

]]
= e−βE0

[
1{τ̃+a <τ̃−0 }

]
+ Ea

[
1{τ+a <T−

0 }e
−βEa

[
e−βNT0

]]
= e−βE0

[
1{τ̃+a <τ̃−0 }

]
+ e−βEa

[
e−βNT0

]
E0

[
1{τ̃−0 <τ̃

+
a }

]
= e−βP0

[
τ̃+a < τ̃−0

]
+ e−βEa

[
e−βNT0

]
P0

[
τ̃−0 < τ̃+a

]
.

Some rearranging gives

Ea
[
e−βNT0

]
=

e−βP0

[
τ̃+a < τ̃−0

]
1 − e−βP0

[
τ̃−0 < τ̃+a

] (4.19)
=

e−β W
(0)(0)

W (0)(a)

1 − e−β
(

1 − W (0)(0)

W (0)(a)

) . (4.20)

For the case when x > a, conditioning on the filtration with respect to time Ta, we can
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compute

Ex
[
e−βNT0

]
= Ex

[
Ex
[
e−βNT0 |FTa

]]
= Ex

[
e−βEa

[
e−βNT0

]]
= e−βEa

[
e−βNT0

]
= e−β

e−β W
(0)(0)

W (0)(a)

1 − e−β
(

1 − W (0)(0)

W (0)(a)

) .
where the last equality is obtained from (4.20).

Remark 4.3.2. For 0 < x < a, NT0 can be viewed as the product of a Bernoulli random vari-

able with success probability p1 and an independent Geometric random variable with support

on the set {1, 2, . . .} and success probability p2 where p1 and p2 are given as

p1 = 1 − W (0)(a− x))

W (0)(a)
,

p2 =
W (0)(0)

W (0)(a)
.

Proof. We can compute

Px [NT0 = n] =


W (0)(a−x)
W (0)(a)

; n = 0,

W (0)(0)

W (0)(a)

(
1 − W (0)(a−x)

W (0)(a)

)(
1 − W (0)(0)

W (0)(a)

)n−1
; n ≥ 1,

where λ > 0 is the rate of the compound Poisson process and α > 0 is the parameter of the

exponential jump distribution. From there, we can easily identify the distribution of NT0 .

Theorem 4.3.3. For β ∈ C+, eθ an independent exponential variable with parameter θ > 0

and Γ0(l) as defined in (4.14), we have

Eeθ
[
e−βNΓ0(l)

]
=



[g(θ, λ, δ, µ, a, β)]l ; 0 < x < a, e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

)
l ; x = a,e−β e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

)
l ; x > a,
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where the function g is given as

g(θ, λ, δ, µ, a, β)

=

1 − e−β
e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

)
W (0)(a)

[
1 + λ

µδ−λ
δ

− θλe−(µ−λ
δ
)a

δ(µδ − λ)(θ + µ− λ
δ )

]
+

e−2β W
(0)(0)

W (0)(a)

1 − e−β
(

1 − W (0)(0)

W (0)(a)

) ,
for θ + µ− λ

δ > 0.

Proof. From Theorem (4.3.1), we computed

Ex
[
e−βNT0

]
=



W (0)(a−x)
W (0)(a)

1 − e−β
e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

)


+e−β
e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

) ; 0 < x < a,

e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

) ; x = a,

e−β
e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

) ; x > a.

This tells us the number of times we have crossed the level a > 0 in this particular excursion

starting from X0 = x until the first time the processes goes below 0. As we can see from the

expression in Theorem (4.3.1), the Laplace transform of NT0 depends on the position of the

starting point. Therefore, assuming that the starting point X0 = x follows an exponential

distribution with parameter θ > 0, we have

Eeθ
[
e−βΓ0(l)

]
=
(
Eeθ

[
e−βNT0

])l
=

(∫ ∞

0
Ex
[
e−βNT0

]
θe−θxdx

)l
.

since the excursions are independent. Using the results in Theorem (4.3.1), for 0 < x < a,

we have

W (a− x)θe−θx =
1

δ

(
1 +

λ

µδ − λ

[
1 − e−(µ−λ

δ
)(a−x)

])
θe−θx

=
1 + λ

µδ−λ
δ

θe−θx − θλe−(µ−λ
δ
)a

δ(µδ − λ)
e−(θ+µ−λ

δ
)x.
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Therefore, for 0 < x < a, we have

Eeθ
[
e−βΓ0(l)

]
=

(∫ ∞

0
Ex
[
e−βNT0

]
θe−θxdx

)l

=


1 − e−β

e−β W (0)(0)

W (0)(a)

1−e−β

(
1−W (0)(0)

W (0)(a)

)
W (0)(a)

[
1 + λ

µδ−λ
δ

− θλe−(µ−λ
δ
)a

δ(µδ − λ)(θ + µ− λ
δ )

]
+

e−2β W
(0)(0)

W (0)(a)

1 − e−β
(

1 − W (0)(0)

W (0)(a)

)


l

.

4.3.2 Local Times at Two Levels

We are interested in computing the Laplace transform of the numbers of downcrossing of two

level a1, a2 ∈ R+ such that 0 < a1 < a2 < ∞ until the first time the local time at 0 exceeds

an amount l > 0:

Eeθ

[
e
−β1N

(a1)

Γ0(l)e
−β2N

(a2)

Γ0(l)

]
,

where eθ is an exponential random variable with parameter θ > 0, N
(a1)
t = #{Xt = a1},

N
(a2)
t = #{Xt = a2} and Γ0(l) is as defined in (4.14). Let us define as in the case for one

level

T0 =:= inf{t ≥ 0 : Xt = 0} = inf{t ≥ 0 : Xt ≤ 0} =: T−
0 ,

τ+a := inf{t ≥ 0 ; Xt > a}.

We will compute this for the case when x > a1, x = a1 and 0 < x < a1 with the exponential

jump distribution rate, δ = 1 for simplicity.
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Theorem 4.3.4. For β1, β2 ∈ C+, 0 < a1 < a2 <∞ and δ = 1, we can derive

Ex
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]

=



W (0)(a−x)
W (0)(a)

+Ea1
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
e−β1

∫ 0
−∞ E−z

[
e
−β2N

(a2−a1)
T0

]
fZτ (z)dz; 0 < x < a1,

e−β1
W (0)(0)

W (0)(a1)

1−e−β1

(∫−(a2−a1)
−∞ +

∫ 0
−(a2−a1)

)
E−z

[
e
−β2N

(a2−a1)
T0

]
fYτ (z)dz

; x = a1,

e−β1Ex−a1
[
e
−β2N

(a2−a1)
T0

]
Ea1

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
; x > a1,

where

E−z

[
e
−β2N

(a2−a1)
T0

]

=



e−β2
e−β2

W (0)(0)

W (0)(a2−a1)

1−e−β2

(
1− W (0)(0)

W (0)(a2−a1)

) ; z ∈ (−∞,−(a2 − a1)),

W (0)(a2−a1+z)
W (0)(a2−a1)

+e−β2
(

1 − W (0)(a2−a1+z)
W (0)(a2−a1)

) e−β2
W (0)(0)

W (0)(a2−a1)

1−e−β2

(
1− W (0)(0)

W (0)(a2−a1)

) ; z ∈ (−(a2 − a1), 0),

and the density fYτ is given as

Px [Yτ ∈ dz]

= µeµzdz
λ

µ− λ

([
W (0)

W (a1)
− 1

] (
1 − e−µa1

)
−
[
W (0)

W (a1)
e−(µ−λ)a1 − 1

](
1 − e−λa1

))
,

and the function W (x) is such that

W (x) =
1

δ

[
1 +

λ

δµ− λ

(
1 − e−(µ−λ

δ )x
)]

(δ=1)
= 1 +

λ

µ− λ

(
1 − e−(µ−λ)x

)
.

Proof. We start with the case when x > a1. Conditioning with respect to the filtration at

time τ−a1 and using the strong Markov property, we can derive
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Ex
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
= Ex

[
Ex
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0 |Fτ−a1

]]
= e−β1Ex

[
e
−β2N

(a2)

τ
(−)
a1 Ea1

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]]

= e−β1Ex−a1
[
e
−β2N

(a2−a1)
T0

]
Ea1

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
,

where Ex−a1
[
e
−β2N

(a2−a1)
T0

]
can be obtained from Theorem (4.3.1). In order to compute the

joint Laplace transform, we have to compute when x = a1,

Ea1
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
= Ea1

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0 1{T0<τ+a1}

]
+ Ea1

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0 1{τ+a1<T0}

]
= e−β1Ea1

[
1{T0<τ+a1}

]
+ Ea1

[
Ea1

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0 1{τ+a1<T0}

|Fτ+a1

]]
= e−β1E0

[
τ̃+a1 < τ̃−0

]
+ Ea1

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
Ea1

[
1{τ+a1<T0}

e−β1EX
τ+a1

−a1

[
e
−β2N

(a2−a1)
T0

]]
,

by conditioning with respect to the filtration at time τ+a1 and strong Markov property. We

have from the calculations for the local time at one level that

E0

[
τ̃+a1 < τ̃−0

]
=

W (0)(0)

W (0)(a1)
.

The joint Laplace transform then becomes

Ea1
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
=

e−β1 W (0)(0)

W (0)(a1)

1 − Ea1
[
1{τ+a1<T0}

e−β1EX
τ+a1

−a1

[
e
−β2N

(a2−a1)
T0

]] . (4.21)
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What is left to do is to compute the expectation in the denominator.

Ea1
[
1{τ+a1<T0}

e−β1EX
τ+a1

−a1

[
e
−β2N

(a2−a1)
T0

]]
= e−β1E0

[
1{τ̃−0 <τ̃

+
a1

}E−Y
τ̃−0

[
e
−β2N

(a2−a1)
T0

]]
= e−β1

∫ 0

−∞
E−z

[
e
−β2N

(a2−a1)
T0

]
fYτ (z)dz

= e−β1

(∫ −(a2−a1)

−∞
+

∫ 0

−(a2−a1)

)
E−z

[
e
−β2N

(a2−a1)
T0

]
fYτ (z)dz.

The density of Yτ̃−0
can be computed by referring to Kyprianou (2014)

Px [Yτ ∈ dz]

=

∫ a

0
Px
[
Yτ ∈ dz, Yτ− ∈ dy

]
=

∫ a

0
λµeµ(z−y)dz

(
W (x)W (a− y) −W (a)W (x− y)

W (a)

)
dy

=
λµ

δ
eµz

W (x)

W (a)
dz

∫ a

0
e−µy

(
1 +

λ

δµ− λ
− λ

δµ− λ
e−(µ−λ

δ
)(a−y)

)
dy

− λµ

δ
eµz
∫ a

0
e−µydz

(
1 +

λ

δµ− λ
− λ

δµ− λ
e−(µ−λ

δ
)(x−y)

)
dy

= λµeµzdz

(
1 +

λ

µ− λ

)[
W (0)

W (a1)
− 1

]
1 − e−µa1

µ

− λµeµzdz
λ

µ− λ

[
W (0)

W (a1)
e−(µ−λ)a1 − 1

]
1 − e−λa1

λ

= µeµzdz
λ

µ− λ

([
W (0)

W (a1)
− 1

] (
1 − e−µa1

)
−
[
W (0)

W (a1)
e−(µ−λ)a1 − 1

](
1 − e−λa1

))
,

for δ = 1, x = 0 and a = a1. We can compute the expectation using the results with one

level by having −z instead of x as the starting point, and a2− a1 instead of a as the crossing
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level.

E−z

[
e
−β2N

(a2−a1)
T0

]

=



e−2β2
W (0)(0)

W (0)(a2−a1)

1−e−β2

(
1− W (0)(0)

W (0)(a2−a1)

) ; z ∈ (−∞,−(a2 − a1)),

W (0)(a2−a1+z)
W (0)(a2−a1)

1 −
e−2β2

W (0)(0)

W (0)(a2−a1)

1−e−β2

(
1− W (0)(0)

W (0)(a2−a1)

)


+
e−2β2

W (0)(0)

W (0)(a2−a1)

1−e−β2

(
1− W (0)(0)

W (0)(a2−a1)

) ; z ∈ (−(a2 − a1), 0).

Putting everything together gives us

Ea1
[
1{τ+a1<T0}

e−β1EX
τ+a1

−a1

[
e
−β2N

(a2−a1)
T0

]]
= e−β1

(∫ −(a2−a1)

−∞
+

∫ 0

−(a2−a1)

)
E−z

[
e
−β2N

(a2−a1)
T0

]
fYτ (z)dz

=
e−β1e−2β2 W (0)(0)

W (0)(a2−a1)

1 − e−β2
(

1 − W (0)(0)

W (0)(a2−a1)

) λ

µ− λ

·
([

W (0)

W (a1)
− 1

] (
1 − e−µa1

)
−
[
W (0)

W (a1)
e−(µ−λ)a1 − 1

](
1 − e−λa1

))

+

1 −
e−2β2

W (0)(0)

W (0)(a2−a1)

1−e−β2

(
1− W (0)(0)

W (0)(a2−a1)

)
W (0)(a2 − a1)

(
1 − e−µ(a2−a1)

µ− λ
− e−(µ−λ)(a2−a1) − e−µ(a2−a1)

µ− λ

)
µλe−β1

µ− λ

·
([

W (0)

W (a1)
− 1

] (
1 − e−µa1

)
−
[
W (0)

W (a1)
e−(µ−λ)a1 − 1

](
1 − e−λa1

))
.

Substituting this into (4.21) gives us the expression of the joint Laplace transform when

x = a1.
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Finally, let us look at the case when 0 < x < a1.

Ex
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
= Ex

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0 1{T0<τ+a1}

]
+ Ex

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0 1{τ+a1<T0}

]
= Px

[
T0 < τ+a1

]
+ Ex

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0 1{τ+a1<T0}

]
= Px

[
T0 < τ+a1

]
+ Ex

[
Ex
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0 1{τ+a1<T0}

|Fτ+a1

]]
=
W (0)(a− x)

W (0)(a)
+ Ea1

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
Ex
[
1{τ+a1<T0}

e−β1EX
τ+a1

−a1

[
e
−β2N

(a2−a1)
T0

]]
,

by conditioning on the filtration at time τ+a1 and the last equality comes from the case when

x > a1. The expression for Ea1
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
is the case that we have computed for

x = a1 so let us focus on the last expectation. Defining Zt = Yt + a1 − x gives

Ex
[
1{τ+a1<T0}

e−β1EX
τ+a1

−a1

[
e
−β2N

(a2−a1)
T0

]]
= e−β1E0

[
1{τ+a1−x<τ

−
−x}

EX
τ+a1−x+x−a1

[
e
−β2N

(a2−a1)
T0

]]
= e−β1Ea1−x

[
1{τ̃−0 <τ̃

+
a1

}E−Z
τ̃−0

[
e
−β2N

(a2−a1)
T0

]]
= e−β1

∫ 0

−∞
E−z

[
e
−β2N

(a2−a1)
T0

]
fZτ (z)dz

= e−β1

(∫ −(a2−a1)

−∞
+

∫ 0

−(a2−a1)

)
E−z

[
e
−β2N

(a2−a1)
T0

]
fZτ (z)dz.

We can then proceed using the same steps as described for the case when x = a1.

Remark 4.3.5. We can compute the joint Laplace transform of the same quantity at time

Γ0(l) as defined in (4.14) with an exponentially distributed starting point with parameter θ > 0

by setting

Eeθ

[
e
−β1N

(a1)
Γ0l e

−β2N
(a2)

Γ0(l)

]
=

(
Eeθ

[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

])l
=

(∫ ∞

0
Ex
[
e
−β1N

(a1)
T0 e

−β2N
(a2)
T0

]
θe−θxdx

)l
.

(4.22)

The reasoning behind this is that for the joint Laplace transform computed in Theorem (4.3.4),

we have an excursion starting from X0 = x and stopping the first time the process goes below
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the level 0. Since each of these excursions are independent of each other, by assuming the

starting point, we can use (4.22) to derive the joint Laplace transform evaluated at the time

when we have passed the level 0 for l many times by having l many excursions of the same

kind. The exponential assumption for the starting point is important as we replicate the

excursion for l many times, which mean that the starting point for each of these excursion

may vary.
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Chapter 5

Hitting and Exit Times for Other

Diffusions

5.1 Introduction

5.1.1 Introduction

Let X = {Xt, t ≥ 0} be a one-dimensional Brownian motion starting in x and is defined on

a filtered probability space (Ω,F , (Ft),Px) taking values in (R,B). Given a bounded open

space D ⊆ R, define the first exit time from D as

τD := inf{t ≥ 0 : Xt /∈ D}.

For x ∈ R, consider the function f defined as

f(x) = Ex
[
e−βXτD

]
, (5.1)

where β ∈ C+ is the killing rate. Following Peskir and Shiryaev (2006), we see that the

function f is the solution to the Dirichlet problem:

Af = βf ; in D,

f |∂D = 1,
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where ∂D is the boundary of D and A is the infinitesimal operator defined as

Af(x) = lim
t↓0

Ex [f(Xt)] − f(x)

t
,

for x ∈ R and f : R → R. It is well known that, from Dynkin (1965) that for X continuous,

the infinitesimal generator A has the differential form:

Af(x) = βf(x) +
1

2

∂2f(x)

∂x2
.

This differential form of the infinitesimal generator forms a bridge that connects the proba-

bility and analysis as our task of finding the expectation in (5.1) resolves around solving the

differential equation presented in the Dirichlet problem.

There are many tools for obtaining solutions to differential equations, for example if the differ-

ential equation is separable, then the differential equation can be easily solved by separating

the dependent and independent variables. A closer inspection reveals that the underlying

method allowing the separation technique to be possible is the presence of a Lie group sym-

metry. The theory of Lie group symmetry, developed by Marius Sophus Lie is a topic that

has been extensively studied by many, see for example Lie (1970), Bluman and Kumei (1989),

Stephani (1989), Olver (1993), Hydon and Hydon (2000), Starrett (2007) to name a few.

The development of Lie group symmetry has a significant impact in, but not limited to the

fields of pure and applied Mathematics, Physics and Engineering. The Lie group symmetry

finds applications in vast areas of studies, such as algebraic topology, differential geometry,

invariant theory, bifurcation theory, numerical analysis, control theory, classical mechanics,

quantum mechanics, relativity, continuum mechanics and others. The steps to apply Lie

group symmetry will be detailed in the next chapter. We also discuss the diffusion that links

to the Nicholson’s integral. Finally, we construct a conditioned Brownian motion and find

the Laplace transform of its first exit time as well as its density function.

Before moving on to the application of Lie group symmetry, we provide some important

definitions surrounding this topic.
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5.1.2 Preliminaries/Definitions

Definition 5.1.1. One-Parameter Lie Group of Transformation.

On the Euclidean plane, let x = (x, y) and x̂ = (x̂, ŷ) be some points on the plane. For ϵ ∈ C,

the transformation

Γϵ : x 7→ f(x, ϵ),

such that

x̂ = f(x, y, ϵ), ŷ = g(x, y, ϵ),

is the one-parameter group of transformation with parameter ϵ, if the following hold:

I. Γ0 gives the identity transformation, i.e.

f(x, y, 0) = x, g(x, y, 0) = y.

II. Γ is closed under composition. This means that for ϵ1, ϵ2 ∈ C,

Γϵ2Γϵ1 = Γϵ2+ϵ1 ,

i.e.

x∗ = f(x̂, ŷ, δ) = f(x, y, ϵ1 + ϵ2), y∗ = f(x̂, ŷ, δ) = f(x, y, ϵ1 + ϵ2)

.

III. Γ−1
ϵ gives the inverse transformation:

Γ−1
ϵ = Γ−ϵ.

IV. Each X̂ can be represented as a Taylor series in ϵ.

Definition 5.1.2. Orbits of Solutions.

Under the transformation Γ as defined in Definition 5.1.1, for a suitable choice of ϵ, the orbit

through a point (x, y) is the set of all points that (x, y) can be mapped to. This means that
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the points on the orbit through (x, y) can be represented as

(x̂, ŷ) = (x̂(x, y, ϵ), ŷ(x, y, ϵ)).

Definition 5.1.3. Tangent Vector and Tangent Vector Field.

For a one-parameter group of transformation Γ as defined in Definition 5.1.1 for ϵ ∈ C such

that

x̂ = f(x, y, ϵ), ŷ = g(x, y, ϵ).

According to Property (IV) of Definition 5.1.1, expanding (x̂, ŷ) about the identity gives

x̂ = x+ ϵξ(x, y) + O(ϵ2),

ŷ = y + ϵη(x, y) + O(ϵ2),

such that

ξ(x, y) =
dx̂

dϵ

∣∣∣∣
ϵ=0

, η(x, y) =
dŷ

dϵ

∣∣∣∣
ϵ=0

.

(ξ, η) is called the tangent vector at (x, y) to the curve described by the transformed points

(x̂, ŷ), and it is the tangent vector field of the one-parameter Lie group of transformation Γ.

Definition 5.1.4. Infinitesimal Generator.

The infinitesimal generator of the Lie group transformation is given by

A = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (5.2)

Definition 5.1.5. Symmetry Condition.

The symmetry condition for a first order ordinary differential equation (ODE) is the condition

required to make sure that any transformation maps the set of solution curve of a differential

equation to another solution curve that also satisfies the original equation. Consider a first

order ODE of the form
dy

dx
= ω(x, y),
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where ω is an arbitrary function of x and y. Then the symmetry condition for ODE is

dŷ

dx̂
= ω(x̂, ŷ), when

dy

dx
= ω(x, y).

Using the total derivative operator Dx defined by

Dx =
dx

dx

∂

∂x
+
dy

dx

∂

∂y
+
dy′

dx

∂

∂y′
+ . . . =

∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
,

we have that with y′ = ω(x, y) that

dŷ

dx̂
=
Dxŷ

Dxx̂
=
ŷx + ω(x, y)ŷy
x̂x + ω(x, y)x̂y

= ω(x̂, ŷ). (5.3)

Definition 5.1.6. Linearized Symmetry Condition.

The Lie symmetries of
dy

dx
= ω(x, y),

can be represented by

x̂ = x+ ϵξ(x, y) + O(ϵ2),

ŷ = y + ϵη(x, y) + O(ϵ2),
(5.4)

and we note that we can obtain linearized form of x̂ and ŷ when ignoring terms of order ϵ2

and higher. In order to obtained a linearized form of the symmetry condition in Definition

5.1.5, we substitute (5.4) into (5.3) to obtain

ω(x, y) + ϵ[ηx + ω(x, y)ηy] + O(ϵ2)

1 + ϵ[ξx + ω(x, y)ξy] + O(ϵ2)
= ω(x+ ϵξ + O(ϵ2), y + ϵη + O(ϵ2)).

Ignoring terms of order ϵ2 and higher and equating the terms or order O(ϵ) gives us the

linearized symmetry condition for first order ODE:

ηx + (ηy − ξx)ω(x, y) − ξyω
2(x, y) = ξωx(x, y) + ηωy(x, y).

Definition 5.1.7. Canonical Coordinates.
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Any coordinates (r(x, y), s(x, y)) satisfying

ξ(x, y)rx + η(x, y)ry = 0,

ξ(x, y)sx + η(x, y)sy = 1,
(5.5)

and

rxsy − rysx ̸= 0,

is called the canonical coordinates. The canonical coordinates can be obtained from (5.5) by

using the method of characteristics such that

dx

ξ(x, y)
=

dy

η(x, y)
= ds.

The ODE of the form
dy

dx
= ω(x, y) can then be transformed to its canonical coordinates:

ds

dr
=
sx + ω(x, y)sy
rx + ω(x, y)ry

. (5.6)

5.2 Construction

Lemma 5.2.1. Consider a general first order differential equation of the form

g′(x) = g2(x) + p(x) =: ω(x, g), (5.7)

for some function p : R → R such that

p(x) = −b2(x) − b′(x) − 2β. (5.8)

Then, its reduced form in terms of canonical coordinates (r, s) = (r(x, g), s(x, g)) can be

obtained as
ds

dr
=

1

r2 + ψ
,

where we define ψ as

ψ =
1

2
α′′(x)α(x) − 1

4
[α′(x)]2 + p(x)α2(x).
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Proof. For the ODE (5.7), we take symmetries of the form as defined in (5.4)

x̂ = x+ ϵξ(x, g) + O(ϵ2),

ĝ = g + ϵη(x, g) + O(ϵ2).
(5.9)

With ω := ω(x, g), this gives us the linearized symmetry condition as defined in Definition

(5.1.6):

ηx + (ηg − ξx)ω − ξgω
2 = ξωx + ηωg, (5.10)

where ωx and ωg can be computed from (5.7) by treating g(x) as g:

ωx = p′(x) = −2b(x)b′(x) − b′′(x),

ωg = 2g(x).
(5.11)

Substituting (5.11) in (5.10), we have

ηx + (ηg − ξx)[g2(x) + p(x)] − ξg[g
2(x) + p(x)]2 = ξp′(x) + η(2g(x)).1 (5.12)

In order to solve the above system for ξ and η, we consider the symmetry tangent vector of

the form:

ξ(x, g) = α(x),

η(x, g) = γ(x) + κ(x)g(x),
(5.13)

The left hand side of (5.12) then becomes

[κ(x) − α′(x)]g2(x) + κ′(x)g(x) + γ′(x) + [κ(x) − α′(x)]p(x), (5.14)

and the right hand side of (5.12)

2κ(x)g2(x) + 2γ(x)g + α(x)p′(x),

1Note: Equation (5.12) has 2 dependent variables ξ and η, therefore we have infinitely many solutions.
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giving us the following:

κ(x) = −α′(x),

κ′(x) = 2γ(x),

η(x, g) = −1
2α

′′(x) − α′(x)g(x),

α′′′(x) + 4α′(x)p(x) + 2α(x)p′(x) = 0.

(5.15)

We can now find the canonical coordinates as defined in Definition 5.1.7. Let (r, s) =

(r(x, g), s(x, g)) be the canonical coordinates such that

(r̂, ŝ) = (r(x̂, ĝ), s(x̂, ĝ)) = (r, s+ ϵ).

Then, under this new coordinates, the tangent vector at this point is such that

dr̂

dϵ

∣∣∣∣
ϵ=0

= 0,
dŝ

dϵ

∣∣∣∣
ϵ=0

= 1. (5.16)

This means that we need the conditions Ar = 0 and As = 1 to be satisfied, where A is the

infinitesimal generator as defined in Definition 5.1.4. This gives us the condition as defined

in (5.5):

ξ(x, g)rx + η(x, g)rg = 0,

ξ(x, g)sx + η(x, g)sg = 1.
(5.17)

Substituting (5.13) and (5.15) into (5.17), we get

s =

∫
1

α(x)
dx, r =

1

2
α′(x) + α(x)g(x). (5.18)

With these, the original ODE (5.7) can be reduced in terms of the canonical coordinates as
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given in (5.6):

ds

dr
=
sx + ω(x, g)sg
rx + ω(x, g)rg

=
1

1
2α

′′(x)α(x) + α′(x)α(x)g(x) + g2(x)α2(x) + p(x)α2(x)

=
1

g2(x)α2(x) + α′(x)α(x)g(x) + 1
4 [α′(x)]2 − 1

4 [α′(x)]2 + 1
2α

′′(x)α(x) + p(x)α2(x)

=
1

r2 + 1
2α

′′(x)α(x) − 1
4 [α′(x)]2 + p(x)α2(x)

=:
1

r2 + ψ
.

(5.19)

With the simplified result from Lemma 5.2.1, we are ready to solve the original problem (5.7)

for different cases.

Remark 5.2.2. The original problem as specified in (5.7) corresponds to a non-linear Riccati

equation, which can be converted to a second order linear ordinary differential equation. This

correspondence means that the Riccati equation can be solved by obtaining quadrature, when

a particular solution is known. This section aims to provide another method to obtain the

solution via the Lie group theory.

Theorem 5.2.3. For an ODE of the form in (5.7) given as

g′(x) = g2(x) + p(x) =: ω(x, g),

the solution can be obtained as

g(x) =



1
α(x)

(
1∫

1
α(x)

dx−c1
− 1

2α
′(x)

)
; ψ = 0,

√
ψ tan

([ ∫
1

α(x)
dx−c2

]√
ψ
)
− 1

2
α′(x)

α(x) ; ψ > 0,

−
√
−ψ tanh

([ ∫
1

α(x)
dx−c3

]√
−ψ

)
− 1

2
α′(x)

α(x) ; ψ < 0,

where α(x) is the solution to

α′′′(x) + 4α′(x)p(x) + 2α(x)p′(x) = 0, (5.20)
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p(x) satisfies

p(x) = −b2(x) − b′(x) − 2β,

and tanh(x) is the hyperbolic tangent function.

Proof. From Lemma 5.2.1, we see that the solving the differential equation (5.7) is equivalent

to solving
ds

dr
=

1

r2 + ψ
,

where ψ = 1
2α

′′(x)α(x) − 1
4 [α′(x)]2 + p(x)α2(x). We will do this for 3 cases.

Case 1: ψ = 0. The differential equation in (5.19) becomes

ds

dr
=

1

r2
.

This can be solved directly to obtain

s =
1

r
+ c1,

where c1 is an integrating constant. Using

s =

∫
1

α(x)
dx; r =

1

2
α′(x) + α(x)g(x),

as derived in (5.18), we see that

∫
1

α(x)
dx =

1
1
2α

′(x) + α(x)g(x)
+ c1.

Then the solution to the original differential equation can be derived as

g(x) =
1

α(x)

(
1∫

1
α(x)dx− c1

− 1

2
α′(x)

)
. (5.21)

Case 2: ψ > 0. The equation (5.19) can be written as

ds

dr
=

1

r2 + [
√
ψ]2

.
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So, we have

s =
tan−1

(
r√
ψ

)
√
ψ

+ c2,

where c2 is an integrating constant. Using (5.18), we can derive

(∫
1

α(x)
dx− c2

)√
ψ = tan−1

(
1
2α

′(x) + α(x)g(x)
√
ψ

)
,

which gives us

g(x) =

√
ψ tan

([ ∫
1

α(x)dx− c2
]√
ψ
)
− 1

2α
′(x)

α(x)
. (5.22)

Case 3: ψ < 0. With the differential equation in (5.19), we can solve it to obtain

s = −
tanh−1

(
r√
−ψ

)
√
−ψ

+ c3

(s− c3)(−
√

−ψ) = tanh−1

(
r√
−ψ

)
,

where c3 is an integrating constant. Using (5.18), we have that

tanh

([∫
1

α(x)
dx− c3

](
−
√
−ψ
))

=
1
2α

′(x) + α(x)g(x)
√
−ψ

,

which gives us the solution to the original differential equation

g(x) =

√
−ψ tanh

([ ∫
1

α(x)dx− c3
](

−
√
−ψ
))

− 1
2α

′(x)

α(x)

=
−
√
−ψ tanh

([ ∫
1

α(x)dx− c3
]√

−ψ
)
− 1

2α
′(x)

α(x)
.

(5.23)

We have seen the use of Lie algebra in solving differential equations above. We will now

explore this method for diffusion theory to help us identify martingales.

Theorem 5.2.4. For X = {Xt; t ≥ 0} a standard Brownian motion, we can derive a
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martingale of the form

e−βtf(x) := e−βte−h(Xt),

where h(x) is given as

h(x) =



∫
1

α(x)

(
1∫

1
α(x)

dx−c1
− 1

2α
′(x)

)
dx+

∫
b(x)dx; ψ = 0,

∫ √
ψ tan

([ ∫
1

α(x)
dx−c2

]√
ψ
)
− 1

2
α′(x)

α(x) dx+
∫
b(x)dx; ψ > 0,

∫ −
√
−ψ tanh

([ ∫
1

α(x)
dx−c3

]√
−ψ

)
− 1

2
α′(x)

α(x) dx+
∫
b(x)dx; ψ < 0,

where α(x) is the solution to (5.20).

Proof. We use the martingale approach discussed in Remark 2.2.1 to derive the required

martingale. For a diffusion X = {Xt; t ≥ 0} with stochastic differential equation given as

dXt = b(Xt)dt+ σ(Xt)dWt; X0 = x, (5.24)

where W = {Wt, t ≥ 0} is a standard Brownian motion defined in Definition 1.0.1, b : R → R

and σ : R → R+ are functions of class C1 and C2 and representing the drift and dispersion

coefficients respectively so that

b′(x) − 1

2
σ(x)σ′′(x) − b(x)σ′(x)

σ(x)
,

is bounded and 1
σ is non-integrable at ±∞. Then the stochastic differential equation (5.24)

admits a unique and strong solution.

Let the state space of X be either non-negative real half-line or the real line. The infinitesimal

generator of the process (t,Xt) acting on a function f : R+×R → R belonging to its domain

is given by

Af(x, t) =
∂f(x, t)

∂t
+ b(x)

∂f(x, t)

∂x
+

1

2

∂2f(x, t)

∂x2
, (5.25)

where b is a function such that b : R → R. Let us assume now that the function f(x, t) takes

the form of

f(x, t) = e−βtf(x), (5.26)
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where f : R → R. As in Remark 2.2.1, substituting (5.26) into (5.25) and setting it to 0, it

is easy to obtain

− βf(x) + b(x)f ′(x) +
1

2
f ′′(x) = 0. (5.27)

A transformation of the form f(x) = e−h(x) gives us

−β − b(x)h′(x) +
1

2
(h′(x))2 − 1

2
h′′(x) = 0.

We observe that this is a non-linear second order differential equation, which can then be

easily transformed into the form of the differential equation in (5.7) given as

g′(x) = g2(x) − b2(x) − b′(x) − 2β.

From Theorem 5.2.3, we see that the solutions to this differential equation are given as (5.21),

(5.22) and (5.23). From this, we can easily revert the transformations applied to retrieve h(x).

h(x) =



∫
1

α(x)

(
1∫

1
α(x)

dx−c1
− 1

2α
′(x)

)
dx+

∫
b(x)dx; ψ = 0,

∫ √
ψ tan

([ ∫
1

α(x)
dx−c2

]√
ψ
)
− 1

2
α′(x)

α(x) dx+
∫
b(x)dx; ψ > 0,

∫ −
√
−ψ tanh

([ ∫
1

α(x)
dx−c3

]√
−ψ

)
− 1

2
α′(x)

α(x) dx+
∫
b(x)dx; ψ < 0,

with α(x) satisfying equation (5.20).

Finally, we see that we need the expression for α(x) in Lemma 5.2.1, Theorems 5.2.3 and

5.2.4. We have derived in (5.15) that α(x) has to satisfy the third order differential equation

(5.20)

α′′′(x) + 4α′(x)p(x) + 2α(x)p′(x) = 0.

Therefore, in order to obtain a solution for α(x), we have to solve this differential equation.

Following van Hoeij (2007), let K be a differential field of characteristic 0 which is a field

equipped with a derivation operator ∂ such that

L = an∂
n + an−1∂

n−1 + . . .+ a1∂ + a0.
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When an ̸= 0 and L(y) = 0, we say that L is a homogeneous linear differential equation of

order n with coefficients in K. Let K[∂] be ring formed by a set of differential operators over

K and CK =: {x ∈ K : ∂(x) = 0} be the field of constants. For L ∈ K∂, if we have a third

order linear differential equation of the form:

L(y) = y′′′(x) + a2y
′′(x) + a1y

′(x) + a0y(x), (5.28)

then this can be reduced to a second order linear differential equation taking the form

L2(y) = y′′(x) + b1y
′(x) + b0y(x), (5.29)

where

b1 =
a2
3

; b0 = −b
′
1 − a1 + 2b21

4
,

provided that L is the symmetric square of L2. For more details on derivation, see Singer

(1985) and van Hoeij (2007). Comparing (5.20) to (5.28), the coefficients a2, a1 and a0 are

such that

a2(x) = 0; a1(x) = 4p(x); a0(x) = 2p′(x), (5.30)

and this tells us that if L(α) defined as

L(α) := α′′′(x) + 4α′(x)p(x) + 2α(x)p′(x) = 0,

is a symmetric square of a second order operator L2, then we can reduce α(x) to the following

second order differential equation:

L2(y) := y′′(x) + [−b2(x) − b′(x) − 2β]y(x) = 0. (5.31)

where b(x) represents the drift component in (5.25). With this, we can see that if {y1, y2} is

the basis of the solution space for L2(y) = 0, then {y21, y22, y1y2} is the basis of the solution

space for L(y) = 0. This gives a way to simplify our third order differential equation for α(x)

and what we need to do is to check that L is the symmetric square of L2. Following the proof
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of Singer (1985), we see that L is the symmetric square of L2 if and only if

4b0b1 + 2b′0 = a0, (5.32)

is satisfied, where a0, b0 and b1 are coefficients in (5.28) and (5.29). In our case for the

coefficients as defined in (5.30), we can see that we have b1 = 0 and b0 = p(x) and therefore

condition (5.32) is satisfied.

5.3 Nicholson’s Integral

Let us consider a one-dimensional diffusion process X = {Xt, t ≥ 0} defined on the filtered

probability space (Ω,F ,F,P) with infinitesimal generator on C2(R+) given as:

AX =
b

x

∂

∂x
+

1

2

∂2

∂x2
,

where b is an arbitrary constant. For b = 1−2α
2 with α ∈ (0, 1), this coincides with the

infinitesimal generator of a Bessel process of dimension 2(1 − α). See Borodin and Salminen

(2002) and Jeanblanc et al. (2009) for a more detailed investigation of the Bessel process.

The infinitesimal generator of the process (t,Xt) acting on a bounded function f : R2
+ → R

is given by:

Af(x, t) =
∂f(x, t)

∂t
+ AXf(x, t)

=
∂f(x, t)

∂t
− b

x

∂f(x, t)

∂x
+

1

2

∂2f(x, t)

∂x2
.

(5.33)

Comparing (5.33) to (5.25), we see the the drift term b(x) becomes

b(x) = − b

x
,

where b is an arbitrary constant. As derived in (5.31), we know we have to consider the

following second order ordinary differential equation to obtain the values for α(x):

y′′(x) + [−b2(x) − b′(x) − 2β]y(x) = 0

y′′(x) +

(
− b2

x2
− b

x2
− 2β

)
y(x) = 0.

(5.34)
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Rearranging equation (5.34) gives us

x2y′′(x) +

(
2

(
− 1

2

)
+ 1

)
xy′(x) +

(
− 2βx2 − b2 − b

)
y(x) = 0.

We can easily see that this is of the form of a transformed Bessel differential equation proposed

by Bowman (2012) given as :

x2y′′(x) + (2p+ 1)xy′(x) + (q2x2r + s2)y(x) = 0,

with p = −1
2 , q2 = −2β, r = 1 and s2 = −(b(b + 1)). The basis of the solution space to this

differential equation is {y1(x), y2(x)} where y1(x) and y2(x) are such that

y1(x) =
√
xJ√

(b+ 1
2
)2

(
−i
√

2βx
)
,

y2(x) =
√
xY√

(b+ 1
2
)2

(
−i
√

2βx
)
,

where Jn(x) and Yn(x) are the Bessel functions of the first and second kinds. As derived

earlier, the third order differential for α(x) in (5.20) has {y21(x), y22(x), y1(x)y2(x)} as the

basis of the solution space where y21(x), y22(x) and y1(x)y2(x) given as :



x J2√
(b+ 1

2
)2

(
−i

√
2βx

)
,

x Y 2√
(b+ 1

2
)2

(
−i

√
2βx

)
,

x J√
(b+ 1

2
)2

(
−i

√
2βx

)
· Y√

(b+ 1
2
)2

(
−i

√
2βx

)
.

(5.35)

We will now explore the connection of this diffusion X with the Nicholson’s Integral. The

famous Nicholson’s integral is given as

J2
n(z) + Y 2

n (z) =
8

π2

∫ ∞

0
K0(2x sinh(t)) cosh(2vt)dt

where sinh(x) and cosh(x) are the hyperbolic sine and cosine functions respectively and K0(x)

is the modified Bessel function of the second kind. The Nicholson’s integral has been proven

by many, such as Watson (1922) using Hardy’s theory of generalized integrals and integration

over contours in the complex plane, and Dixon and Ferrar (1930) using a transformation.
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In an attempt to prove the Nicholson’s integral, Wilkins Jr (1948) considered the following

differential equation:

z2y′′′(z) + 3zy′′(z) + (1 − 4n2 + 4z2)y′(z) + 4zy(z) = 0. (5.36)

This is equation (3) of the paper. By setting


y(z) = 1

xα(x),

z = −i
√

2βx,

n = b+ 1
2 .

(5.37)

We see that equation (5.36) of the paper can be transformed into our equation for α(x) in

(5.20). Using chain rule, we can derive the expressions for y′(x), y′′(x) and y′′′(x) in terms of

α(x). For y′(x), we have

y′(z) =
d

dz
y(z)

=
d

dz

1

x
α(x)

=

(
− 1

x2
α(x) +

1

x
α′(x)

)
· i√

2β
.

(5.38)

Similarly, for y′′(z), we obtain

y′′(z) =
−1

2β

(
2

x3
α(x) − 2

x2
α′(x) +

1

x
α′′(x)

)
. (5.39)

Finally for y′′′(z), we have

y′′′(z) =
−1

2β
· i√

2β

(
1

x
α′′′(x) − 3

x2
α′′(x) +

6

x3
α′(x) − 6

x4
α(x)

)
. (5.40)

Substituting (5.37), (5.38), (5.39) and (5.40) into (5.36) and rearranging the terms, we obtain

α′′′(x) + 4

(
− b2

x2
− b

x2
− 2β

)
α′(x) + 2

(
2b2

x3
+

2b

x3

)
α(x) = 0. (5.41)
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Comparing this to our original equation for α(x) in (5.20):

α′′′(x) + 4p(x)α′(x) + 2p′(x)α(x) = 0,

we see that p(x) is such that

p(x) = −b2(x) − b′(x) − 2β

= − b2

x2
− b

x2
− 2β.

This tells us that b(x) = − b

x
, which is the same as the drift term of our diffusion X. This

means that we can use what we derived earlier for the diffusion to solve the Nicholson’s

integral using the method proposed by Wilkins Jr (1948). Then, if we set z = −i
√

2βx, we

have x = i√
2β
z, then

y(z) =
1

x
α(x)

=
1
i√
2β
z
α

(
i√
2β
z

)
= − i

√
2β

z
α

(
i√
2β
z

)
.

(5.42)

Using values of α(x) derived in (5.35), we have that

y(z) =



J2√
(b+ 1

2
)2

(z),

Y 2√
(b+ 1

2
)2

(z),

J√
(b+ 1

2
)2

(z) · Y√
(b+ 1

2
)2

(z),

(5.43)

as given in the paper. In addition, following the argument in the paper, we have that for

A = π2

8 , B = A and C = 0, we can obtain

y(z) = AJ2√
(b+ 1

2
)2

(z) +BY 2√
(b+ 1

2
)2

(z) + CJ√
(b+ 1

2
)2

(z) · Y√
(b+ 1

2
)2

(z)

=
π2

8

(
J√

(b+ 1
2
)2

(z) + Y√
(b+ 1

2
)2

(z)

)
+ 0,

(5.44)

which completes the proof of the Nicholson integral.

139



5.4 Conditioned Brownian Motion with Drift

Let us consider a one-dimensional Brownian motion X = {Xt, t ≥ 0} with drift parameter

µ ∈ R+, scale parameter σ = 1. Since this is a time-homogeneous Markov process, then

according to Karatzas and Shreve (1991), X has an infinitesimal generator A that satisfies

A = µ
∂

∂x
+

1

2

∂2

∂x2
.

With the assumption that h∗ is a C2 function on the domain R+, we can perform Doob’s

h-transform as detailed in Theorem (3.2.1), where the function h is obtained as

h∗(x) = 1 + be−2µx.

As detailed in the Theorem (3.2.1), the conditioned process {Xt, t ≥ 0} is a diffusion on R+

and has drift term of the form

µ+
1

h∗(x)

∂h∗

∂x
= µ

1 − be−2µx

1 + be−2µx
,

and the infinitesimal generator A∗ of the conditioned process is given as

A∗f(x) = µ · 1 − be−2µx

1 + be−2µx

∂f(x)

∂x
+

1

2

∂2f(x)

∂x2
,

for a function f ∈ D(A∗) where D(A) is

D(A∗) = {f ∈ C2(R+)}.

It is well established from Ikeda and Watanabe (1989) that the operator (A∗,D(A∗)) generates

a unique family of (strongly Markovian) measures {P∗
x;x ∈ R+} on the space (C+,B(C+) with

C+ = C([0,∞),R+) such that

f(Xt) − f(X0) −
∫ t

0
Af(Xs)ds, (5.45)

is a martingale under P∗
x for every f ∈ D(A∗). Note that C+ = C([0,∞),R+) denotes the

family of continuous functions from the time set [0,∞) into the state space +, and the symbol
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B(C+) denotes the Borel σ-algebra on C+, i.e. the smallest σ-algebra containing all Borel

cylinder subsets of C+. Note also that (Xt, t) is again Markovian with infinitesimal generator

A∗∗ such that

A∗∗f(x, t) =
∂f(x, t)

∂t
+ A∗f(x, t),

for a function h(x, t) ∈ D(A∗∗), i.e. f(x, ·) has a continuous first derivative for each x and

f(·, t) is in the domain of A∗ for each t. We then have for our conditioned process an

infinitesimal generator given as

A∗∗f(x, t) =
∂f(x, t)

∂t
+ µ · 1 − be−2µx

1 + be−2µx

∂f(x, t)

∂x
+

1

2

∂2f(x, t)

∂x2
, (5.46)

for f(x, t) ∈ D(A∗∗). Following our construction, a quick comparison between (5.25) and

(5.46) tells us that the drift terms b(x) becomes

b(x) = µ
1 − be−2µx

1 + be−2µx
, (5.47)

and in order to obtain a form of martingale, we can consider

− βf(x) + µ
1 − be−2µx

1 + be−2µx
f ′(x) +

1

2
f ′′(x) = 0. (5.48)

From (5.31), we know we have to solve the following differential equation to obtain the

solutions for α(x):

y′′(x) + [−b2(x) − b′(x) − 2β]y(x) = 0

y′′(x) +

[
−µ2 (1 − be−2µx)2

(1 + be−2µx)2
− µ

4µbe−2µx

(1 + be−2µx)2
− 2β

]
y(x) = 0

y′′(x) +

[
−µ

(1 + be−2µx)2
(
µ− 2µbe−2µx + µb2e−4µx + 4µbe−2µx

)
− 2β

]
y(x) = 0

y′′(x) +

[
−µ

(1 + be−2µx)2
· µ ·

(
1 + be−2µx

)2 − 2β

]
y(x) = 0

y′′(x) + (−µ2 − 2β)y(x) = 0.

(5.49)

We can easily solve equation (5.49) by realizing that its solution is proportional to eγx. So,
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letting y(x) = eγx and substituting into equation (5.49), we have

d2

dx2
(eγx) = (µ2 + 2β)eγx

γ2eγx = (µ2 + 2β)eγx,

(5.50)

we obtain that γ =
√
µ2 + 2β or γ = −

√
µ2 + 2β and hence,

y(x) =


e
√
µ2+2βx,

e−
√
µ2+2βx.

(5.51)

Then, from our arguments earlier, equation (5.20) has solutions y21, y22 and y1y2.

α(x) =


e2
√
µ2+2βx,

e−2
√
µ2+2βx,

e
√
µ2+2βx · e−

√
µ2+2βx = 1.

(5.52)

From (5.19), with b(x) as derived in (5.47) and α(x) as obtained in (5.52),

ψ =
1

2
α′′(x)α(x) − 1

4
[α′(x)]2 + p(x)α2(x)

=
1

2
α′′(x)α(x) − 1

4
[α′(x)]2 +

[
−b2(x) − b′(x) − 2β

]
α2(x)

=
1

2
α′′(x)α(x) − 1

4
[α′(x)]2 +

(
−µ2 − 2β

)
α2(x)

= −a2C2
2 ,

(5.53)

where C2 is an arbitrary constant.

5.4.1 First Exit Time

Consider the conditioned process X = {Xt, t ≥ 0} defined on the filtered probability space

(Ω,F ,Ft,P), starting at x for x ∈ R+ under the associated probability Px with Ex as cor-

responding the expectation operator. Let TD be the first exit time of X from D defined

as

TD = inf{t ≥ 0 : Xt /∈ D}, (5.54)
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where D is an open, bounded domain. We are interested in finding the Laplace transform of

the first exit time TD given as

f(x) := Ex
[
e−βTD

]
, (5.55)

for x ∈ D̄. Then following Peskir and Shiryaev (2006) or Karatzas and Shreve (1991), we

have that for D and TD as defined earlier, f is the solution of the Dirichlet problem:

Af − βf = 0; in D,

f = 1; on ∂D.
(5.56)

Theorem 5.4.1. For β ∈ C+, m1,m2 ∈ R+ such that 0 < m1 < x < m2 and the domain

D = (m1,m2), the Laplace transform of TD can be obtained as

Ex
[
e−βTD

]
= e−µ(m1−x) b+ e2µm1

b+ e2µx
sinh(

√
µ2 + 2β(m2 − x)))

sinh(
√
µ2 + 2β(m2 −m1))

+ e−µ(m2−x) b+ e2µm2

b+ e2µx
sinh(

√
µ2 + 2β(x−m1))

sinh(
√
µ2 + 2β(m2 −m1))

,

where sinh(x) is the hyperbolic sine function.

Proof. For D = (m1,m2) and the stopping times Tm1 and Tm2 defined as

Tm1 = inf{t ≥ 0 : Xt = m1},

Tm2 = inf{t ≥ 0 : Xt = m2},

and since the first exit time of the process {Xt, t ≥ 0} from the interval D = (m1,m2) can

be computed as

TD = Tm1 ∧ Tm2 := min(Tm1 , Tm2),

then we see that the Laplace transform of the first exit time can be split into 2 cases

Ex
[
e−βTD

]
= Ex

[
e−βTm11{Tm1<Tm2}

]
+ Ex

[
e−βTm21{Tm2<Tm1}

]
.

For the first expectation on the right hand side, using the same reasoning as in Karatzas and
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Shreve (1991), we have that

Ex
[
e−βTm11{Tm1<Tm2}

]
= f(x),

with the boundary conditions 
f(m1) = 1,

f(m2) = 0,

(5.57)

whereas the second term can be computed by

Ex
[
e−βTm21{Tm2<Tm1}

]
= f(x),

with the boundary conditions 
f(m2) = 1,

f(m1) = 0,

(5.58)

where f(x) is the solution to (5.48). In order to derive f(x), we follow the same steps as in

Theorem 5.2.4. From equation (5.53) and Theorem (5.2.3), we see that C2 ̸= 0 corresponds

to the case when ψ < 0 which gives us

g(x) =
−
√
−ψ tanh

([ ∫
1

α(x)dx− c3
]√

−ψ
)
− 1

2α
′(x)

α(x)
,

and h(x) of the form

h(x) =

∫ −
√
−ψ tanh

([ ∫
1

α(x)dx− c3
]√

−ψ
)
− 1

2α
′(x)

α(x)
dx+

∫
b(x)dx,

and we can derive f(x) using the expressions for ψ in (5.53), α(x) in (5.52) and b(x) in (5.47)

f(x) = e−h(x)

= C1
e(µ−

√
µ2+2β)x

b+ e2µx
+ C2

e(µ+
√
µ2+2β)x√

µ2 + 2β(b+ e2µx)
,

where C1 and C2 are arbitrary constants to be determined using the boundary conditions

(5.57) and (5.58). For the first expectation Ex
[
e−βTm11{Tm1<Tm2}

]
= f(x) with the following
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boundary conditions, we can determine


f(m1) = 1,

f(m2) = 0,
1 = C1

e(µ−
√

µ2+2β)m1

b+e2µm1
+ C2

e(µ+
√

µ2+2β)m1√
µ2+2β(b+e2µm1 )

,

0 = C1
e(µ−

√
µ2+2β)m2

b+e2µm2
+ C2

e(µ+
√

µ2+2β)m2√
µ2+2β(b+e2µm2 )

,

⇒


C1 = e−µm1e

√
µ2+2βm1 b+e2µm1

1−e−2
√

µ2+2β(m2−m1)
,

C2 = −
√
µ2 + 2βC1e

−2
√
µ2+2βm2 .

Then, for 0 < m1 < x < m2, we can derive

Ex
[
e−βTm11{Tm1<Tm2}

]
= f(x)

= e−µ(m1−x) b+ e2µm1

b+ e2µx
sinh(

√
µ2 + 2β(m2 − x)))

sinh(
√
µ2 + 2β(m2 −m1))

.

(5.59)

For the second expectation Ex
[
e−βTm21{Tm2<Tm1}

]
= f(x) with the appropriate boundary

conditions, we have


f(m2) = 1,

f(m1) = 0,
1 = C1

e(µ−
√

µ2+2β)m2

b+e2µm2
+ C2

e(µ+
√

µ2+2β)m2√
µ2+2β(b+e2µm2 )

0 = C1
e(µ−

√
µ2+2β)m1

b+e2µm1
+ C2

e(µ+
√

µ2+2β)m1√
µ2+2β(b+e2µm1 )

,

⇒


C1 = e−µm2e

√
µ2+2βm2 b+e2µm2

e−2
√

µ2+2β(m1−m2)

C2 = −
√
µ2 + 2βC1e

−2
√
µ2+2βm1

.
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Then for 0 < m1 < x < m2, we can derive

Ex
[
e−βTm21{Tm2<Tm1}

]
= f(x)

= e−µ(m2−x) b+ e2µm2

b+ e2µx
sinh(

√
µ2 + 2β(x−m1))

sinh(
√
µ2 + 2β(m2 −m1))

.

(5.60)

The expression for the Laplace transform of the first exit time can then be obtained from

(5.59) and (5.60)

Ex
[
e−βTD

]
= Ex

[
e−βTm11{Tm1<Tm2}

]
+ Ex

[
e−βTm21{Tm2<Tm1}

]
= e−µ(m1−x) b+ e2µm1

b+ e2µx
sinh(

√
µ2 + 2β(m2 − x)))

sinh(
√
µ2 + 2β(m2 −m1))

+ e−µ(m2−x) b+ e2µm2

b+ e2µx
sinh(

√
µ2 + 2β(x−m1))

sinh(
√
µ2 + 2β(m2 −m1))

.

(5.61)

With the expression of the Laplace transform of the first exit time, we can easily invert the

Laplace transform to obtain its density.

Theorem 5.4.2. For t ≥ 0, µ ∈ R+ and 0 < m1 < x < m2, the density function of the first

exit time can be derived as

Px [TD ∈ dt]

= eµ(m1−x) 1 + be−2µm1

1 + be−2µx
e−µ

2t
∞∑

k=−∞

x−m1 + 2k(m2 −m1)√
2πt3

e−
(x−m1+2k(m2−m1))

2

2t dt

+ eµ(m2−x) 1 + be−2µm2

1 + be−2µx
e−µ

2t
∞∑

k=−∞

m2 − x+ 2k(m2 −m1)√
2πt3

e−
(m2−x+2k(m2−m1))

2

2t dt.

Proof. From (5.61), we have

Ex
[
e−βTD

]
= e−µ(m1−x) b+ e2µm1

b+ e2µx
sinh(

√
µ2 + 2β(m2 − x)))

sinh(
√
µ2 + 2β(m2 −m1))

+ e−µ(m2−x) b+ e2µm2

b+ e2µx
sinh(

√
µ2 + 2β(x−m1))

sinh(
√
µ2 + 2β(m2 −m1))

.
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We want to invert this with respect to β. Using Borodin and Salminen (2002), we know that

L−1
β

(
sinh(a

√
2β)

sinh(b
√

2β)

)
(t) =

∞∑
k=−∞

b− a+ 2kb√
2πt3

e−
(b−a+2kb)2

2t ; a < b.

Then, we can easily derive that for 0 < m1 < x < m2,

L−1
β

(
sinh(

√
µ2 + 2β(m2 − x)))

sinh(
√
µ2 + 2β(m2 −m1))

)
(t) = e−µ

2t
∞∑

k=−∞

x−m1 + 2k(m2 −m1)√
2πt3

e−
(x−m1+2k(m2−m1))

2

2t ,

L−1
β

(
sinh(

√
µ2 + 2β(x−m1))

sinh(
√
µ2 + 2β(m2 −m1))

)
(t) = e−µ

2t
∞∑

k=−∞

m2 − x+ 2k(m2 −m1)√
2πt3

e−
(m2−x+2k(m2−m1))

2

2t .

Therefore, we can derive that

Px [TD ∈ dt]

= eµ(m1−x) 1 + be−2µm1

1 + be−2µx
e−µ

2t
∞∑

k=−∞

x−m1 + 2k(m2 −m1)√
2πt3

e−
(x−m1+2k(m2−m1))

2

2t dt

+ eµ(m2−x) 1 + be−2µm2

1 + be−2µx
e−µ

2t
∞∑

k=−∞

m2 − x+ 2k(m2 −m1)√
2πt3

e−
(m2−x+2k(m2−m1))

2

2t dt.
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Schröder, M. (2001). The laplace transform approach to valuing exotic options: the case of

the asian option. In Mathematical Finance, pages 328–338. Springer.
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